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(ELTE) of Budapest, Hungary, since 1991. Working as a 
professor at ELTE, he pursued his long-term investigations 
on the theoretical characterization of the chemical bond by 
geminal wave functions as well as on model Hamiltonians 
for the description of pi-electron systems. He also extended 
his research activity to the fi eld of many-body methods, 
Green’s function theory, electronic excited states and linear 
scaling methods in quantum chemistry. 

 The research work of Péter R. Surján is characteristi-
cally rich in scientifi c interactions. He has been a success-
ful Ph.D. advisor, raising generations of graduate students. 
He has also been actively cooperating both on the national 
and international level and was proud to host his distin-
guished colleagues at his laboratory in Budapest. This col-
lection was initiated by students and colleagues of Péter 
R. Surján, on the occasion of his reaching 60. It is not 
intended to be a celebration, however. It is rather a tribute 
to the colleague and the friend. But mostly, it is a snapshot 
of current research in quantum chemistry. The Editors of 
this Collection strongly hope that the reader will fi nd these 
papers instructive and inspirational.  Tolle ,  lege et procede!  

 Budapest, 7 November, 2015.      

  

                       This collection of papers presents a special cross section of 
recent advances in Theoretical Chemistry. It gives a fi nger-
print of the scientifi c interest of Péter R. Surján, contribu-
tors having either interacted with him and/or working on 
topics closely related to his expertise. 

 A study on optical rotatory strength calculation, pub-
lished in 1980 in Theoretica Chimica Acta, marks the 
beginning of the documented scientifi c career of Péter R. 
Surján. His interest has always been shared between funda-
mental problems in electronic structure theory and theoreti-
cal applications in material structure research. Localizabil-
ity of electron pairs and weak intermolecular interactions 
were his fi rst research topics besides characterization of 
conjugate polymers by semiempirical methods. During 
his visit at the Memorial University of Newfoundland, St. 
John’s, Canada, he started lecturing on the theory of sec-
ond quantization, applied in quantum chemistry. This was 
the origin of the book titled “Second Quantized Approach 
to Quantum Chemistry”, published by Springer in 1989. 
The easy to follow elaboration of a complicated subject 
is characteristic not only to this book but also to the lec-
tures he has been giving at the Eötvös Loránd University 

  Published as part of the special collection of articles “Festschrift 
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    *     Ágnes     Szabados      
    szabados@chem.elte.hu           

  1     Laboratory of Theoretical Chemistry, Institute of Chemistry   , 
 Eötvös Loránd University    ,  P.O. Box 32   ,  Budapest     1518   , 
 Hungary   

  2     MTA-BME Lendület Quantum Chemistry Research Group, 
Department of Physical Chemistry and Materials Science   , 
 Budapest University of Technology and Economics    ,  POB 91   , 
 Budapest     1521   ,  Hungary   

1Reprinted from the journal

mailto:szabados@chem.elte.hu


1 3

Theor Chem Acc (2015) 134:123
DOI 10.1007/s00214-015-1707-6

              REGULAR ARTICLE 

 Combination of many-body perturbation theory and quantum 
electrodynamics 

                                                       Ingvar Lindgren  1         ·   Johan Holmberg  2     ·   Sten Salomonson  1    

 Received: 22 May 2015 / Accepted: 25 July 2015   / Published online: 6 October 2015
©  Springer-Verlag Berlin Heidelberg     2015  

      1  Introduction 

 The procedures for many-body perturbation calculations 
(MBPT) for atomic and molecular systems are nowadays 
very well developed, and the dominating electrostatic as 
well as magnetic perturbations can be taken to essentially 
all orders of perturbation theory (see, for instance, [ 1 ]). 
Less pronounced, but in many cases still quite signifi -
cant, are the quantum electrodynamical (QED) pertur-
bations—retardation, virtual pairs, electron self-energy, 
vacuum polarization and vertex correction. Sophisticated 
procedures for their evaluation have also been developed, 
but for practical reasons such calculations are prohibi-
tive beyond second order (two-photon exchange). Pure 
QED effects beyond that level can be expected to be very 
small, but the  combination  of QED and electrostatic per-
turbations (electron correlation) can be signifi cant. How-
ever, none of the previously existing methods for MBPT 
or QED calculations is suited for this type of calculation. 

 We have during the past decade developed an energy-
dependent perturbation procedure, based on a “ covariant 
evolution operator method ” [ 2 – 5 ], that will make it pos-
sible to handle energy-dependent QED perturbations very 
much in the same way as the energy-independent ones in 
MBPT. 

    2   Covariant evolution operator 

 The time-evolution operator for the Schrödinger wave func-
tion transforms the wave function from one time to another
     

In the  interaction picture  the wave function has the time 
dependence

(1)Ψ (t) = U(t, t0)Ψ (t0).

                     Abstract     A procedure for energy-dependent perturba-
tion expansion has been developed, based upon the covari-
ant evolution operator method. This makes it possible to 
treat energy-dependent perturbations very much like the 
energy-independent ones in standard many-body perturba-
tion theory. This has been applied to the non-radiative QED 
perturbations (retardation and virtual electron–positron 
pairs) as well as the radiative ones (electron self-energy, 
vacuum polarization and vertex correction). The combina-
tion of QED and electron correlation, beyond two-photon 
exchange, has been evaluated, using the Coulomb gauge. It 
turned out that in that gauge the extremely time-consuming 
model-space contributions of the self-energy and vertex 
corrections do not have to be evaluated in full. In the Fey-
nman gauge no sensible results could be obtained in this 
way, as is demonstrated by the numerical results. 

   Keywords     Perturbation theory    ·  Quantum 
electrodynamics    ·  Electron correlation    ·  Electron 
self-energy    ·  Green’s operator    ·  Covariant evolution 
operator  

  Published as part of the special collection of articles “Festschrift 
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with the Hamiltonian in the  Schrödinger representation 
   H = H0 + V     and  E  being the exact energy of the state. An 
equation for the evolution operator follows from the time-
dependent Schrödinger equation. 

 The non-relativistic evolution operator is in fi rst order 
represented by the fi rst Feynman diagram in Fig.  1 . It is 
non-covariant, since time fl ows only in the positive direc-
tion. If we insert electron propagators in the in- and outgo-
ing orbital lines, time can fl ow in both directions, and we 
get a covariant form of the evolution operator, represented 
by the second diagram.        

 The  covariant evolution operator  for a ladder of retarded 
interactions between the electrons is given by
     

assuming that we have a small damping factor on the per-
turbation so that   t = −∞    corresponds to an unperturbed 
state. Here,   PE    is the projection operator for the part of the 
model space of energy   E   .   Γ (E)    is the resolvent
     

The evolution operator is (quasi)singular, when an interme-
diate or fi nal state lies in the model space. 

 The evolution operator without intermediate model-
space states is
     

which is regular. Here,   ΓQ    is the reduced resolvent
     

(2)Ψ (t) = e−it(E−H0)/�Ψ (0)

(3)

U(t,−∞) PE = e−it(E−H0)[1 + Γ (E) V(E)

+ Γ (E) V(E) Γ (E) V(E)+ · · · ]PE ,

Γ (E) =
1

E − H0
.

(4)

U0(t,−∞) PE = e−it(E−H0)[1 + ΓQ(E) V(E)

+ ΓQ(E) V(E) ΓQ(E) V(E)+ · · · ]PE ,

ΓQ =
Q

E − H0
.

and  Q  is the projection operator for the space outside the 
model space. 

 We defi ne a  Green’s operator  by
     

which is free from singularities and analogous to the 
Green’s function in fi eld theory. In the defi nition the heavy 
dot indicates that the Green’s operator acts on the inter-
mediate model-space state. The evolution operator and the 
Green’s operator depend on the energy of the model-space 
states they are operating on. We then write the relation
     

leaving out the initial time   t0 = −∞    and assuming that the 
model-space energies might be slightly different. 

 The defi nition leads to  counterterms , which form  model-
space contributions  (MSC) that eliminate the singularities 
so that the Green’s operator becomes regular for all times. 

 The Green’s operator transforms the unperturbed state 
in the model space,   Ψ0   , to the corresponding exact (target) 
state,   Ψ (t)   , at a given time  t 
     

and hence acts as a time-dependent wave operator. For 
 t  = 0 it is the energy-dependent analogue of the standard 
wave operator in standard MBPT [ 1 ]
      

   2.1   Model-space contributions 

 Including the counterterm, the fi rst-order Green’s operator 
becomes
     

where we observe that the Green’s operator in the counter-
term has the energy parameter   E ′   . Here,
     

is the zeroth-order Green’s operator. 
 When there is an intermediate model-space state   PE ′    in 

the fi rst term, we have a MSC given by
     

In the case of exact degeneracy, the difference ratio goes 
over into a partial derivative. The complete fi rst-order 
Green’s operator then becomes

(5)U(t,−∞)P = G(t,−∞) · PU(0,−∞)P,

U(t, E)PE = G(t, E ′) · PE ′U(0, E)PE ,

(6)Ψ (t) = G(t, E)Ψ0(E)

(7)Ω(E) = G(0, E).

(8)
G

(1)(t, E)PE = G
(0)(t, E) U(1)(0, E)PE

− G
(0)(t, E ′)PE ′U

(1)(0, E)PE ,

(9)G
(0)(t, E) = e−it(E−H0)

(10)

[
G

(0)(t, E) − G
(0)(t, E ′)

]
PE ′U

(1)(0, E)PE

=

[
G

(0)(t, E) − G
(0)(t, E ′)

]
PE ′

V(E)

E − E ′
PE

=
δG(0)(t, E)

δE
PE ′V(E)PE .

t

t ψ̂+ ψ̂+ u

z
1 2

r ψ̂†
+ ψ̂†

+ s

t0

Particles

x x
r sψ̂†

± ψ̂†
±

t ψ̂± ψ̂± u

z
1 2

r ψ̂± ψ̂± s

x0 x0
t uψ̂± ψ̂±

Part.
Holes

 Fig. 1       Comparison between the standard evolution operator and the 
covariant evolution operator for single-photon exchange in the equal-
time approximation  

4 Reprinted from the journal
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where the second term is the MSC. 
 The  effective interaction  that gives rise to the energy 

shift is given by
     

and applied to the fi rst-order Green’s operator we fi nd that 
the fi rst-order effective interaction is as expected
     

Continuing this process we fi nd that the second-order 
Green’s operator becomes
     

where we have assumed that the interactions might be 
different. If the interactions are energy independent, this 
goes over into the second-order wave operator of standard 
MBPT [ 1 ]
     

The second-order effective interaction becomes
     

The last terms in Eqs. ( 14 ) and ( 16 ) are MSC. 
 The Green’s operator satisfi es a Bloch-like equation

     

where the asterisk represents derivation with respect to the 
last interaction   ΓQV     and with respect to   G(0)    when no factor 
of   ΓQV     is present. When the interactions are energy inde-
pendent, this equation goes over into the Bloch equation in 
standard MBPT [ 1 ,  6 ,  7 ]. 

     3   Application to Helium-like ions 

 The procedure sketched above has recently been applied 
to the ground state of medium-heavy helium-like ions. We 
have evaluated the effect of QED combined with electron 
correlation, defi ned as the interaction with at least two Cou-
lomb interactions. The QED part is here restricted to fi rst 
order and consists of “non-radiative” effects (retardation of 
the electromagnetic interaction and effect of virtual elec-
tron–positron pairs) as well as “radiative” effects (electron 
self-energy, vacuum polarization and vertex correction). 

(11)

G
(1)(t, E)PE = G

(0)(t, E)ΓQVPE

+
δG(0)(t, E)

δE
PE ′V(E)PE ,

(12)W = P

(
i
∂

∂t
G(t,−∞)

)
t=0

P,

(13)W (1)
= PVP.

(14)G
(2)(t, E)PE = ΓQV2ΓQV1 +

δΓQV2

δE
PV1P,

(15)�(2)
= ΓQV2ΓQV1 − ΓQ�(1)W (1).

(16)W (2)
= PV2ΓQV1 + P

δV2

δE
PV1P.

(17)G = G
(0)
+ ΓQVG +

δ∗G

δE
W ,

 It is true that in this procedure we miss some second-
order QED effects which can be evaluated by standard QED 
methods. To mix these in a general way with electron cor-
relation is beyond reach for the moment. We have found, 
however, that higher-order correlation is considerably more 
important than second-order QED effects for medium-heavy 
elements. Therefore, this procedure does include the most 
important effects of many-body QED in the cases studied. 

 The effect of retardation in combination with electron 
correlation was evaluated by Daniel Hedendahl in his PhD 
thesis [ 8 ], including the effect of crossing Coulomb interac-
tion and the effect of virtual pairs. The effect was found to 
be of the order of 5–10 meV for the ground state of helium-
like ions in the range  Z  = 20–40. This is one order of mag-
nitude smaller than the corresponding two-photon effect. 

 To evaluate the corresponding radiative effects is consider-
ably more diffi cult. First or all, these effects are divergent and 
the effects have to be regularized and renormalized, which 
has to be done in a covariant way. Several schemes for this 
procedure exist, but the most effective scheme is the dimen-
sional regularization, where the calculations are performed in 
  (4 − ε)    dimensions,   ε    being a small positive number. Then all 
integrals are fi nite, and fi nally the limit   ε → 0    is taken. 

 All calculations of radiative QED effects have until very 
recently been performed using the Feynman gauge. The 
procedure for dimensional regularization was developed 
for that gauge around 1990 mainly by Snyderman at Liv-
ermore Nat. Lab. [ 10 ], and the procedure has been applied 
by several laboratories [ 11 ,  12 ]. We have demonstrated 
that it is more advantageous to use the Coulomb gauge in 
combination with electron correlation. Here, the dimen-
sional regularization is more complicated, but a working 
procedure was developed a few years ago by Hedendahl 
and Holmberg [ 9 ] at our laboratory, based upon the work of 
Adkins [ 13 ,  14 ]. This procedure was tested for hydrogen-
like ions, and the result is given in Table  1 , showing the 
results in terms of the   F(Zα)    function,
     

(18)
ESE
=

α

π
(Zα)4mc3F(Zα),

 Table 1       Values of the function   F(Zα)    in Eq. ( 18 ) for the self-energy 
of the ground state of hydrogen-like ions (from Hedendahl and Holm-
berg [ 9 ])  

   Z     Coulomb gauge    Feynman auge  

  18    3.444 043(9)    3.444 04(3)  

  26    2.783 762(3)    2.783 77(1)  

  36    2.279 314(2)    2.279 316(7)  

  54    1.181 866 2(6)    1.781 868(3)  

  66    1.604 461 5(4)    1.604 462(2)  

  82    1.487 258 4(4)    1.487 259(1)  

  92    1.472 424 1(4)    1.472 425(1)  

5Reprinted from the journal
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 Z  being the nuclear charge and  α  the fi ne-structure con-
stant. The gauge invariance is here clearly demonstrated, 
and it is interesting to note that the accuracy is actually 
higher in the Coulomb gauge, the reason being that in the 
Feynman gauge there are large cancellations between dif-
ferent contributions, making the result less accurate.  

 Very recently these calculations have been extended to 
helium-like systems by Holmberg et al. [ 5 ]. Complete two-
photon calculations have been performed in the Coulomb 
as well as the Feynman gauge, again demonstrating the 
gauge invariance. It is very striking to observe how differ-
ent the various contributions behave in the two gauges, as 
shown in Table  2  for  Z  = 18. In the Coulomb gauge one 
can see that the wave function contribution dominates and 
the remaining model-space (MSC) and vertex (VTX) con-
tributions are considerably smaller. In the Coulomb gauge 
this is not at all the case. Here all contributions are of the 
same order. In the Coulomb gauge the MSC and VTX 
beyond zero-potential represent about one per cent of the 
total effect, while in the Feynman gauge it represents about 
200 %. This will have important consequences in higher 
orders.  

 The evaluation of the full MSC and VTX correction 
in combination with electron correlation (beyond sec-
ond order) is prohibitive in any gauge for computational 
reason. Fortunately, however, one can conclude from the 
second-order results that these contributions should be rel-
atively small in the Coulomb gauge and be well approxi-
mated by the zero-potential part. This gives the result 
shown in Table  3  for He-like argon (Z = 18). It is obvi-
ous from the results in the table that no sensible results can 
be deduced by using this approximation in the Feynman 
gauge.  

    4   Summary and conclusions 

 Quite extensive calculations on helium-like ions on the 
two-photon level have been performed by Artemyev et al., 
using the Two-Time Green’s function [ 15 ], and related cal-
culations have been performed by Plante et al., using the 
relativistic MBPT with fi rst-order QED energy corrections 
to the energy [ 16 ]. The calculations of Artemyev et al. leave 
out effects beyond second order and those of Plante et al. 
include them in a very restricted way. We have for the fi rst 
time performed calculations of combined QED-correlation 
effects  beyond  the two-photon level on the ground states of 
a number of helium-like ions, using the recently developed 
Green’s operator method. 

 The X-ray transition energies of type 1 s –2 p  for helium-
like ions can in many cases be measured with high accu-
racy, and this can be used to test various computational 
results and possibly also the QED theory itself. 

 The agreement between the experiments results and the 
theoretical results of Artemyev et al. and Plante et al. is in 
most cases quite good. Nevertheless, Chantler et al. have 
in a series of papers claimed that there are signifi cant dis-
crepancies between theory and experiments in a number of 
cases [ 17 ,  18 ]—up to the order of 100 meV. We have found 
in our calculations that the effects beyond second order for 
the ground states of medium-heavy ions are only of the 
order of a few meV (the effect on the excited state should 
be even smaller), thus considerably smaller than the effects 
that Chantler et al. claim to have found. Therefore, if these 
discrepancies are real, they must have other causes than 
higher-order QED effects. 

 The fi ndings of Chantler have recently been challenged 
by Kubic̆ek et al. [ 19 ], who found excellent agreement 
between their experiments and the above-mentioned theo-
retical calculations. Our numerical results are consequently 
quite consistent with those of Kubic̆ek et al. 

 The effect of interactions beyond two-photon exchange 
has been estimated in a crude way in the publication by 
Artemyev et al. [ 15 ]. We have found that these estimations 
agree roughly with our accurate calculations for light ele-
ments, while there is signifi cant disagreement for heavier 
elements [ 5 ]. 

 In some cases the X-ray energies can be measured with 
extreme accuracy, and in such cases effects beyond second 

 Table 2       Two-photon electron self-energy and vertex correction for the ground state of He-like argon ion, using the Coulomb and Feynman 
gauges, from Holmberg et al. [ 5 ] (in meV)  

  Gauge    Wave function contr.    MSC    VTX    MCS,VTX    Total SE  

  Zero-pot.    Beyond    Zero-pot    Zero-pot    Beyond  

  Coulomb    −115.8(7)    11.55(1)    −24.8(1)    16.2(1)    −1.1(1)    −113.8(8)  

  Feynman    1620.8(6)    −1707.7(1)    3819.0(1)    −3653.3(1)    −192.2(6)    −113(1)  

 Table 3       Correlation effect beyond two-photon exchange for the elec-
tron self-energy and vertex correction for the ground state of He-like 
argon ion, using the Coulomb and Feynman gauges, from Holmberg 
et al. [ 5 ] (in meV)  

  Gauge    Wave function contr.    MSC    VTX    Total SE  

  Zero-pot.    Beyond    Zero-pot    Zero-pot  

  Coulomb    4.8    −0.5    1.2    −0.7    4.6  

  Feynman    −142    71    −24    54    
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order might be relevant. Here the comparison between the-
ory and experiment can be carried out on a higher level in 
order to fi nd out whether there are effects that cannot be 
accounted for. 

 The Green’s operator procedure was primarily devel-
oped for investigating  static  problems, but it has recently 
been demonstrated that also  dynamical  processes, such as 
scattering processes or transitions between atomic states, 
are governed by the Green’s operator and can be handled 
by a similar procedure [ 20 ]. 

       Acknowledgments     The authors want to congratulate Peter Surjan 
to his 60th birthday, and I.L. wants in particular to thank Peter for 
his hospitality during several visits to Budapest. This work has been 
fi nancially supported by the Helmholtz Association and the Gesells-
chaft für Schwerionenforschung under the project VH-NG-421.  

  References 

     1.                                         Lindgren I, Morrison J (1986) Atomic many-body theory, 2nd 
edn. Springer, Berlin reprinted 2009  

     2.                                             Lindgren I, Salomonson S, Åsén B (2004) Phys Rep 389:161  
     3.     Lindgren I, Salomonson S, Hedendahl D (2010) Recent progress 

coupled cluster methods: theory and applications. In: Čársky P, 
Paldus J, Pittner J (eds) Springer, New York, pp 357–374  

     4.                           Lindgren I (2011) Relativistic many-body theory: a new fi eld-
theoretical approach. Springer, New York  

     5.                                             Holmberg J, Salomonson S, Lindgren I (2015) Phys Rev A 
92:012509  

     6.                             Bloch C (1958) Nucl Phys 6/7:329/451  
     7.                             Lindgren I (1974) J Phys B 7:2441  
     8.     Hedendahl D (2010) Ph.D. thesis, University of Gothenburg, 

Gothenburg, Sweden  
     9.                                     Hedendahl D, Holmberg J (2012) Phys Rev A 85:012514  
     10.                             Snyderman NJ (1991) Ann Phys (NY) 211:43  
     11.                                             Artemyev AN, Shabaev VM, Yerokhin VA (1997) Phys Rev A 

56:3529  
     12.     Sunnergren P (1998) Ph.D. thesis, Department of Physics, Chal-

mers University of Technology and University of Gothenburg, 
Gothenburg, Sweden  

     13.                             Adkins G (1983) Phys Rev D 27:1814  
     14.                             Adkins G (1986) Phys Rev D 34:2489  
     15.                                                             Artemyev AN, Shabaev VM, Yerokhin VA, Plunien G, Soff G 

(2005) Phys Rev A 71:062104  
     16.                                             Plante DR, Johnson WR, Sapirstein J (1994) Phys Rev A 

49:3519  
     17.     Chantler CT et al (2012).   arXiv-ph0988193      
     18.                             Chantler CT (2012) Phys Rev Lett 109:153001  
     19.                                                             Kubic ̆ek K, Mokler PH, Mäckel V, Ullrich J, López-Urrutia JC 

(2014) PRA 90:032508  
     20.                                             Lindgren I, Salomonson S, Holmberg J (2014) Phys Rev A 

89:062504    

7Reprinted from the journal



1 3

Theor Chem Acc (2016) 135:6
DOI 10.1007/s00214-015-1761-0

              REGULAR ARTICLE 

 Effi cient calculation of the density response function 
from generalized polarizabilities 

                                                       Tomasz Janowski  1,2     ·   Krzysztof Wolinski  3     ·   Peter Pulay  1    

 Received: 26 June 2015 / Accepted: 7 November 2015   / Published online: 21 December 2015
©  Springer-Verlag Berlin Heidelberg     2015  

proportional to the product of the number occupied and 
virtual orbitals, and therefore scaling quadratically with the 
system size at constant basis set quality. The diagonal ele-
ments of the DRF (local polarizabilities) of water and buta-
diene in the molecular plane are displayed. An example of 
non-diagonal DRF is presented for butadiene 0.77 Å above 
the molecular plane, with one point fi xed over the midpoint 
of a C=C bond. We obtain a fairly localized DRF, even in 
this conjugated system. The values become quite small if 
the distance of the two local perturbations exceeds a bond 
length. By using frequency-dependent polarizabilities, one 
could readily calculate the dynamic DRF. 

   Keywords     Density response function    ·  Polarization 
propagator    ·  Density response kernel    ·  Generalized 
polarizability    ·  Polarizability    ·  Conceptual density 
functional theory    ·  Random phase approximation  

      1  Introduction 

 The density response function (DRF), also known as polar-
ization propagator or density response kernel,  χ ( r ,  r ′,  ω ), 
[ 1 ,  2 ] is an important quantity in electronic structure theory, 
particularly in evaluating dispersion energies, in concep-
tual density functional theory (DFT) and in random phase 
approximation (RPA) and GW (approximate Green’s func-
tion) methods. The static ( ω  = 0) limit of this function is 
defi ned as the second functional derivative of the molecular 
energy  E  with respect to the external potential  u  at constant 
electron number  N . Its frequency-dependent form is widely 
used, as its poles give the electronic excitation energies. 
The zero-frequency limit [ 3 ] can be used to defi ne elec-
tric response in larger molecules and is useful in concep-
tual density functional theory [ 4 ,  5 ]. The fi rst functional 

                     Abstract     We present a method to calculate the den-
sity response function (DRF), also known as the density 
response kernel or the polarization propagator in the static 
limit. Our method uses generalized polarizabilities (GPs) 
which are second derivatives of the molecular energy with 
respect to two arbitrary perturbations of the external elec-
trostatic potential. They are generalizations of the com-
mon multipole polarizabilities. The latter use solid spheri-
cal harmonics as perturbing potentials, while GPs can 
use any function. We use a sine function expansion of the 
electrostatic potential. Generalized polarizabilities were 
originally introduced for a different project, ultrafast quan-
tum/molecular mechanics calculations. By transforming 
the GPs to a (discretized) direct space representation, we 
obtain the DRF in the static limit. The method has been 
implemented for single-determinant (Hartree–Fock and 
density functional theory) wavefunctions, but can be gener-
alized to more accurate wavefunctions. The number of cou-
pled-perturbed self-consistent fi eld (CP-SCF) calculations 
in our method is proportional to the molecular volume at 
a given spatial resolution, i.e., scales linearly with the sys-
tem size, and is independent of the basis set size. The best 
previous method has the number of CP-SCF calculations 
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derivative of the energy with respect to  u ( r ) is  ρ ( r ), the 
electronic charge density at  r . Therefore,  χ  can be written 
as the functional derivative of the approximate electron 
density (corresponding to the quantum chemical method 
used) at a point  r ,  ρ ( r ) with respect to  u ( r ′), the potential at 
another point  r ′, at constant electron number  N :
      

 In this paper, we will concentrate on the static limit, but 
generalization to the frequency-dependent case is straight-
forward at the Hartree–Fock and DFT levels, and we plan 
to implement it. 

 Although the density response function is a fundamen-
tal quantity in theory, see, e.g., [ 6 – 12 ], there have been 
few numerical studies of it, partly because it is a function 
of 7 real variables (6 in the static limit), but also because 
the diffi culty of its calculation. Yang [ 13 ], Kudrnovsky 
and coworkers [ 14 ], Senet [ 15 ], and Ayers [ 16 ] discuss the 
numerical evaluation of this quantity, but have apparently 
not found a practical formulation, as none of these papers 
has a single numerical result or example. The problem is 
connected with the fact that evaluating  χ ( r ,  r ′) at a single 
pair of points ( r ,  r ′) involves a numerically awkward delta 
function perturbation in the potential. Kudrnovsky and 
coworkers [ 14 ] discuss a simplifi ed version of this function 
in which the potential perturbation consists of varying the 
nuclear charge of the atoms which can be evaluated sim-
ply using analytical derivative methods. This leads us to 
naturally coarse-grained approximations to the DRF. The 
foremost of these is the distributed multipole polarizabil-
ity expansion of Stone and coworkers [ 3 ,  17 ]. This method 
partitions the DRF to local atomic multipole polarizabili-
ties by using weight functions to defi ne the atomic regions. 
Le Sueur and Stone [ 18 ] reported diffi culties in calculat-
ing physically meaningful distributed polarizabilities from 
ab initio calculations, although these have been at least 
partially resolved by the density fi tting method and its lat-
est modifi cation [ 19 – 21 ]. Nevertheless, Rob and Szalewicz 
[ 21 ] remark that the values obtained using the Misquitta–
Stone method [ 19 ] for distributed polarizabilities are still 
not satisfactory, often containing large cancelling terms. A 
further radical simplifi cation was introduced by Morita and 
Kato [ 22 ,  23 ]. In their technique, the charges and the elec-
tric potential are condensed to atoms, and thus polarization 
effects are described as charge fl owing from one atom to 
another. This method was applied very successfully by Hu 
and Yang [ 24 ]. Condensing the charges to the nuclear posi-
tions greatly simplifi es both the calculations and the pres-
entation, reducing  χ  from a function of 6 real variables to 
an  M  ×  M  matrix, where  M  is the number of atoms in the 
system. However, its limits are clear. Consider, for instance, 

(1)χ(r, r′, 0) = χ(r, r′) =
(

δ2E

δu(r)δu(r′)

)
N
=

(
δρ(r)
δu(r′)

)
N

planar molecules like benzene and naphthalene (Table  1 ). 
A polarizability model, expressed as derivatives of atomic 
charges, gives obviously zero polarizability perpendicular 
to the molecular plane. The calculated static dipole polariz-
ability of benzene is 76.5 atomic units in-plane and 41.4 au 
out-of-plane at the PW91/aug-cc-pVTZ level. The second 
value is clearly not negligible compared to the fi rst, show-
ing the importance of the atomic polarizability which is 
neglected in the Morita–Kato–Yang scheme. The situation 
is similar for naphthalene (Table  1 ). This limitation does 
not apply to the distributed polarizability method.  

 The fi rst numerical results for the DRF we are aware of 
were published by Savin et al. [ 25 ] for He and Be isoelec-
tronic series. However, the method they used is restricted 
to spherical electron densities and potentials, and thus its 
applicability in chemistry is limited. A practical method, 
based on standard coupled-perturbed Kohn–Sham, CPKS, 
or its predecessor, the coupled-perturbed Hartree–Fock, 
CPHF [ 26 ,  27 ], was introduced recently by Yang et al. [ 28 ]. 
This paper presents a lucid rederivation of the CPHF/CPKS 
equations and uses the fact that, in a fi nite basis set, the 
only possible fi rst-order changes in the density are linear 
combinations of  φ   i  ( r ) φ   a  ( r ), where  φ   i   and  φ   a   are occupied 
and virtual (vacant) orbitals, respectively. The results were 
used extensively by Geerlings and coworkers who have 
done the most signifi cant work in calculating the density 
response function numerically at the single-determinant 
level, and correlating the results with chemical concepts. 
Their results, with a number of chemical applications, are 
summarized in a recent review article [ 29 ] which also gives 
a detailed exposition of such time-honored techniques 
as the CPHF and CPKS methods. The method used [ 28 ] 
avoids the problem with the delta functions by carrying 
out the perturbations in molecular orbital (MO) basis and 
transforming it to real space. In agreement with the num-
ber of possible fi rst-order density variations, this procedure 
leads to  nV  distinct perturbations, where  n  is the number 
of occupied and  V  is the number of virtual orbitals. Each 
perturbation requires the solution of the coupled-perturbed 
Hartree–Fock or Kohn–Sham (CPHF and CPKS) equa-
tions, giving 34 × 610 = 20740 CPHF equations in the 

 Table 1       Electric dipole polarizabilities of benzene and naphthalene 
in the coupled and uncoupled Kohn–Sham perturbation theory  

 Geometry optimized using the BP86/cc-pVTZ level. Aug-cc-pVTZ 
basis set 

  Molecule    Method     α ( xx )     α ( yy )     α ( zz )  

  Benzene    CPKS    76.5    76.5    41.4  

  Benzene    UCKS    134.9    134.9    67.5  

  Naphthalene    CPKS    163.3    117.9    61.2  

  Naphthalene    UCKS    293.4    224.3    105.5  
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naphthalene example (for comparison, the calculation of 
the nuclear Hessian or force constant matrix requires only 
54 CPHF equations). While the effort is still manageable in 
this case, the method of Ref. [ 29 ] has a steep formal scal-
ing of O( N  2 ) solutions of the CPHF/CPKS equations, each 
of which scales formally as O( N  4 ). This leads to an overall 
formal scaling of O( N  6 ) and becomes impractical for large 
molecules and basis sets. This method does not lend itself 
to truncation because it is formulated in delocalized canon-
ical MO basis. 

 The large computational effort associated with the 
solution of the CPHF/CPKS equations can be avoided by 
neglecting the change of the effective one-electron (Fock) 
operator caused by the orbital perturbations. This is known 
in the chemistry literature as the uncoupled Hartree–Fock 
(UCHF) approximation, and in physics as the independent 
particle approximation. With this approximation, the zero-
frequency propagator is given, assuming real orbitals, as
      

 Unlike the true propagator, the UCHF approximation is 
given by a simple closed formula and requires only mini-
mum computational effort to evaluate “on the fl y” if the 
orbitals are available. The uncoupled Hartree–Fock/Kohn–
Sham approximation has almost completely vanished from 
the chemistry literature about 40 years ago when modern 
derivative techniques became available because of the poor 
results it produced for second-order properties. Some sys-
tematic expositions of analytical derivative methods still 
use it as a starting point, but it is in our opinion pedagogi-
cally inappropriate, as it requires considerable effort to 
recover the coupled-perturbed Hartree–Fock results which 
can be derived in a simpler way. UCHF/UCKS is still used 
in some approximate theories, but we suspect that its only 
merit is easy computability. According to Geerlings et al. 
[ 29 ], the polarizabilities derived from the uncoupled den-
sity response function correlate well with accurate results 
but can be off by up to a factor of 2, and thus they are only 
qualitatively useful. Our results in Table  1  confi rm this. 

    2   Generalized polarizabilities for ultrafast 
quantum/molecular mechanics simulations 

 Recently we developed a quantum/molecular mechanics 
(QM/MM) method for the accurate statistical simulation of 
molecules in polar environments such as in aqueous solu-
tions [ 30 ,  31 ], which speeds up the calculations by 4 or 
more orders of magnitude or more, even for relatively small 
solutes and at the inexpensive DFT level. The generalized 
polarizabilities in our protocol can be used for the effi cient 

(2)χ0(r, r′) =
δρ(r)
δu(r′)

= 4
∑
i,a

φi(r)φi(r′)φa(r)φa(r′)
εi − εa

.

evaluation of the density–density response function. In this 
section, we give a brief description of our ultrafast QM/
MM method to clarify the connection between the two very 
different methods. However, only the generalized polariz-
abilities of the quantum system (and not the models for the 
solvent or the statistical sampling) are relevant for the cal-
culation of the DRF. 

 In our simulations, a small molecule or region, which we 
will call the “solute,” is described by a quantum mechanical 
method, and its much larger environment (the “solvent”) is 
modeled by simpler and much faster molecular mechan-
ics. The most important and computationally most expen-
sive interaction between the two subsystems is long-range 
electrostatics. Van der Waals interaction has a much shorter 
range. In general, the environment is very fl exible and must 
be statistically sampled for thermodynamic properties like 
free energy. For reliable statistical predictions, particu-
larly of entropic properties, 1–50 million solvent confi gu-
rations have to be sampled [ 32 ]. This is straightforward if 
the polarization of the quantum subsystem by the solvent is 
neglected, as it reduces to the evaluation of the electrostatic 
interaction between the solute and the solvent (usually rep-
resented by point charges), and does not require quantum 
mechanical calculations for each solvent confi guration. 
However, the polarizability of the solute is important, par-
ticularly in polar solvents. Statistical (for instance, Monte 
Carlo) simulation becomes extremely time-consuming if 
the polarization energy of the quantum system in the fi eld 
of the solvent molecules is calculated by quantum mechan-
ics, even if a single calculation takes only a fraction of a 
minute. 

 We eliminate the need for separate QM calculations for 
each solvent confi guration by approximating the electric 
potential of the solvent within the solute molecule as linear 
combination of predefi ned basis functions  for the potential :
      

 The potential  within the volume of the solute molecule  
is a smooth function and can be expanded in an appropri-
ate set of expansion functions  g   k  ( r) . This is a generalization 
of the usual multipole expansion. The latter uses Cartesian 
monomials 1,  x ,  y ,  z ,  x  2 ,  xy ,  y  2 ,  xz ,  yz ,  z  2 ,  x  3 , …, or the cor-
responding solid spherical harmonics to expand the poten-
tial. However, for reasons explained in [ 17 ], the origin-cen-
tered multipole expansion is unsuitable for most systems. 
We experimented with several expansion sets. One impor-
tant requirement is that the expansion functions should not 
diverge to infi nity like the solid harmonics do. We fi nally 
settled on a sine function expansion of the potential. It is 
conveniently defi ned in an outer box that is larger than the 
extent of the molecular electronic density, to avoid prob-
lems with the periodic nature of the sine expansion. Other 

(3)U(r) ≈
∑

k

ckgk(r) k = 1, . . . M
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choices such as distributed (atom-centered) Gaussian-
damped spherical harmonics would also work. The latter 
provide an alternative defi nition of distributed polarizabil-
ities [ 3 ]. A plane wave expansion of the electric potential 
has been used successfully for atoms a long time ago by 
Koide [ 33 ]. 

 In the ultrafast QM/MM method, we precalculate  gener-
alized polarizabilities , i.e., second derivatives with respect 
to electrostatic perturbations representing the potential. 
For single-determinant wavefunctions, this requires the 
solution of the coupled-perturbed Hartree–Fock (or Kohn–
Sham) (CPHF/CPKS) equations for each perturbation  g   k  , 
i.e., for each function used to expand the potential. The 
solution is simplifi ed by the fact that the perturbation is a 
one-electron operator. The CPHF procedure [ 27 ,  34 ] is rou-
tinely included in most quantum chemistry programs; for 
a review, see [ 35 ]. As the potential is irregular within the 
molecule, a fairly large number of expansion (in our case, 
sine) functions (several hundred to a few thousand for a 
drug-sized molecule) are required to represent the electro-
static potential accurately. The result of the second deriva-
tive calculation in the fi eld-free ( λ  = 0) case is a matrix of 
generalized polarizabilities:
      

 This is analogous to the usual dipole polarizability ten-
sor which has only 3 × 3 components, corresponding to the 
perturbations  g ( r)  =  x ,  y ,  z.  The second-order part of the 
energy in the electric fi eld is given as
      

 We calculate the electric potential within the molecu-
lar box on a grid, and these values are fi tted by a linear 
combination of the potential basis functions, Eq. ( 3 ), by 
a weighted least-squares procedure. This gives the coeffi -
cients of the expansion functions,  c   k   in Eq. ( 3 ), as
      

 Here,  c  is the (column) vector of the expansion 
coeffi cients,  A  is a rectangular matrix,  A   μk   =  g   k  ( r   μ  ), 
 μ  = 1,… N , i.e., the value of the expansion (in our case, 
sine) function  g   k   at grid point  r   μ  . To ensure a unique 
solution, the number of grid points  N  should exceed the 
number of expansion functions  M .  W  is a weight matrix, 
see [ 31 ] for a discussion about appropriate weights. For 
the calculation of DRFs, no weights were used. The vec-
tor  u  contains the values of the electrostatic potential at 
the grid points within the molecule,  u   μ   =  U  (r   μ  ), and  L  is 
the  N  ×  M  matrix ( A   T   WA ) −1  A   T   W . Calculating the coef-
fi cients  c  and the second-order energy, Eq. ( 5 ) involves 

(4)αkl = −

(
∂2E

∂ck∂cl

)
�=0

(5)E(2)
= −

1

2

∑
kl

ckclαkl = −
1

2
cT αc

(6)c = [(AT WA)−1AT W]u = Lu

only linear algebra manipulations and is very fast on mod-
ern CPUs. 

    3   Calculation of the density response function 
from generalized polarizabilities 

 We will discuss in this section the determination of the 
density response function from generalized polarizabili-
ties. This has lower formal scaling, O( N  5 ), than the method 
of Yang et al. [ 28 ], and its spatial resolution can be easily 
adjusted. One possibility is taking the 3-D Fourier (actually, 
sine) transform of the generalized polarizability expressed 
by sine waves. We have implemented an alternative, more 
general method. Substituting Eq. ( 6 ) into Eq. ( 5 ) gives
     

where  L  is defi ned in Eq. ( 6 ) and in the text. Recall that  u  
contains the values of the electrostatic potential at the grid 
points and  α  is the matrix of generalized polarizabilities 
(second derivatives with respect to modulated perturba-
tions in the potential). Equation ( 7 ) gives the second-order 
(polarization) energy as a discretized sum over the values 
of the potential on the grid points. By considering this dis-
crete sum as a quadrature formula for the two-dimensional 
integral
     

where  u ( r ) is the (continuous) electric potential, we can 
identify the density response function at the grid points as
     

where the Δ v ’s are the weights, i.e., grid cell volumes cor-
responding to the points  μ  and  ν . We use a regular grid 
(with grid points where the electron density is practically 
zero removed), with all cells of the same volume for our 
sine function expansion, and thus the density response 
function at the pair of points ( r   μ  ,  r   ν  ) is simply (Δ v ) −2  times 
the  μν  matrix element in Eq. ( 9 ). 

 The computational cost of the transformation in Eq. ( 9 ) 
is negligible compared to the cost of calculating the gener-
alized polarizabilities,  α . Compared to the method used by 
Geerlings et al. [ 29 ], the advantage of our method is that its 
resolution, i.e., the size of the sine basis, can be defi ned by 
the user and is not given by the atomic orbital basis set. The 
main features of the DRF do not require high resolution. 
The number of the expansion (sine) basis is proportional 
to the molecular volume and at a constant resolution scales 
linearly with molecular size. This quantity determines the 
main computational cost, the calculation of the fi rst-order 
perturbed wavefunctions by the CPHF or CPKS procedure 

(7)E(2)
= −

1

2
uT (LTαL)u

(8)E(2)
= −

1

2

∫
dr3

∫
dr′3u(r)χ(r, r′)u(r′)

(9)χ(rμ, rν) = −[LT αLT
]μν(�vμ)−1(�vν)

−1
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for Hartree–Fock or DFT wavefunctions. This is propor-
tional to the number of the expansion functions for the 
potential. By contrast, the number of CPHF/CPKS calcula-
tions in the method of Ref. [ 28 ] is  nV , where  n  is the num-
ber of occupied and  V  is the number of virtual orbitals, i.e., 
it scales quadratically with the molecular size at constant 
basis set quality. For this reason, it becomes impractical for 
larger molecules and basis sets. 

 Verifying the correctness of the DRF program is 
somewhat challenging because there are few published 

numerical results. A simplest test was introduced by 
Liu et al. [ 10 ]. It states that the integral of the DRF with 
respect to one of its coordinates ( r  or  r ′) over the whole 
space gives zero. It can be easily proven from the second 
equality in Eq. ( 1 ), by noting that the electron density 
is unchanged if the potential is changed uniformly. It 
is particularly easy to apply in our case because of our 
uniform rectangular grid. Satisfying this test is not, of 
course, a proof for the correctness of the program, but a 
random programming error is unlikely to preserve this 
property. 

    4   Examples 

 Although the main content of this paper is to describe our 
technique to calculate the DRF, we give a few numerical 
examples. Figure  1  shows the diagonal elements of the 
density response function (DRF) in the water molecule, 
shown as color contours in the molecular plane. These are 
in essence local polarizability densities. The values of the 
diagonal elements  χ ( r , r ) are negative as expected because 
polarization always lowers the molecular energy in the sec-
ond order.        

 Figure  2  shows the diagonal elements of  χ  (the local 
polarizability) for the butadiene molecule in a plane 0.77 Å 
above the molecular plane. The diagonal elements of the 
DRF mimic the electron density. Of more interest is Fig.  3  
which shows the off-diagonal elements, with  r  fi xed 0.77 Å 
above the midpoint of the C=C bond and  r ′ sweeping in a 
plane parallel to the molecular plane at the same height. It 

 Fig. 1       Diagonal elements of the density response function for water 
in the molecular plane. Coordinates are expressed in atomic units. 
The wavefunction is restricted Hartree–Fock with the 6-31G** basis 
set. The fi gure shows raw values of the response function. These must 
be multiplied by 1.0012 × 10 5  (twice the inverse square of the vol-
ume element) to get the values in atomic units  

 Fig. 2       Diagonal elements of 
the density response function 
for butadiene in the molecu-
lar plane. Coordinates are 
expressed in atomic units. 
The wavefunction is restricted 
Hartree–Fock with the 
6-311G** basis set. The atomic 
coordinates are C: (±3.4673, 
∓0.4178, 0) and (±1.1939, 
±0.6839, 0); H: (±5.1952, 
±0.6801,0), (±3.6663, 
∓2.4596,0), (±1.0674, 
±2.7366, 0). The fi gure shows 
raw values of the response func-
tion. These must be multiplied 
by 1.0012 × 10 5  to get the 
values in atomic units  
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shows that the DRF, even in this conjugated molecule, is 
quite localized, its value becoming small if the distance | r-
r ′| is larger than the C=C bond length.               
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      1  Introduction 

 In our recent paper [ 1 ], we presented a way of evaluation 
of exchange integrals that is based on the use of Fourier 
transform of the 1/ r  operator and its subsequent numeri-
cal quadrature. In this way, we succeeded [ 1 ] to reduce 
the computational time for exchange integrals consider-
ably. The stimulus for undertaking that study arose from 
our urgent need to calculate effi ciently exchange inte-
grals in electron–molecule scattering calculations. These 
integrals are of the [ g (1) k (1)| g (2) k (2)] type, where  g  and 
 k  symbols, respectively, refer to Gaussians and plane-
wave functions. Lengthy evaluation of theses integrals 
has been a bottleneck in the scattering theory [ 2 ], and it 
hampers ab initio applications to larger polyatomic mol-
ecules. The use of the Fourier transform of the 1/ r  opera-
tor itself
     

and its subsequent numerical quadrature
     

brought only a minor computer time-saving. However, 
the merit of Fourier transformation is that it can express 
exchange integrals for a Hartree–Fock exchange potential 
 V  ex  as a scalar product of two vectors with one-electron 
elements

(1)
1

r12
=

1

2π2

∫
1

k2 e−ik.r1eik.r2 dk

(2)
1

r12
=

1

2π2

∑
pj

ωpωje
−ikpj .r1eikpj .r2

                     Abstract     In this paper, we propose an effi cient way for 
evaluation of derivatives of exchange integrals. We propose 
an approach in which we factorize the non-local exchange 
kernel into a sum of separable terms. We exploit a discre-
tized Fourier transform for the 1/ r  operator, and we devise 
a method that allows us to employ a manageable number 
of plane-wave functions in the Fourier expansion while still 
keeping necessary accuracy. Resulting formulas are ame-
nable for effi cient evaluation on graphics processing units 
(GPU). We discuss the GPU implementation for deriva-
tives of two-electron repulsion integrals of the ( gk | gk ) type 
in the hybrid Gaussian and plane-wave basis. Derivatives 
of such integrals are needed for computation of cross sec-
tions in vibrationally inelastic electron scattering by polya-
tomic molecules. Speedup and accuracy achieved are dem-
onstrated for cross sections of selected vibrational modes 
of cyclopropane, benzene and adamantane. The proposed 
factorization method is general and may be applied to any 
type of exchange integrals. We note briefl y on its possible 
application to exchange integrals and their derivatives in 
quantum chemical computational methods. 
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which is an ideal task for general-purpose computation on 
graphics processing units (GPU). The indices  p  and  j  in 
Eq. ( 2 ) refer to radial and angular numerical quadrature, 
respectively,   ωp    and   ωj    are weights of the grid points,  N   k 1  
and  N   k 2  in Eq. ( 3 ) are normalization constants for plane-
wave functions  k  1  and  k  2 , the fi rst summation in Eq. ( 3 ) 
is over occupied molecular orbitals, and  q  is a collective 
index for numerical quadrature
     

Vectors  A  in Eq. ( 3 ) were obtained as
     

where  c   iμ   stands for expansion coeffi cients of the  i th 
molecular orbital, and
     

where the notation ( μkk   q  ) denotes the overlap inte-
gral between the gaussian  μ  and a plane-wave function 
exp[i( k  +  k   q  )]. By substituting the  A  terms in Eq. ( 3 ) from 
Eqs. ( 5 ) and ( 6 ), we obtain the working form of Eq. ( 3 )
     

which is ready for differentiation.  P   μν   is a density matrix 
element. 

 In our original code [ 1 ,  3 ], the ( gk | gk ) integrals were evalu-
ated by means of complex Shavitt functions  F   n  ( z ). When 
the Fourier transform of the 1/ r  operator was used together 
with graphics processing units, the calculation of exchange 
integrals for adamantane could be accomplished in 2 min, 
whereas it lasted previously about 4 days and half on the 
same computer. Our primary interest has been calculations 
of cross sections for vibrationally inelastic electron scatter-
ing, for which, in contrast to elastic electron scattering, also 
derivatives of exchange integrals with respect to atomic coor-
dinates has to be evaluated [ 3 ]. Their evaluation by Fourier 
transform and the use of GPU are the subject of this paper. 

 The paper is organized as follows. In Sect.  2 , we pre-
sent derivation of formulas for derivatives of ( gk | gk ) inte-
grals suitable for computer coding. Sections  3  and  4  are 
dealing with test calculations on the molecules of cyclopro-
pane, benzene and adamantane. By its size, adamantane is 
a molecule considerably larger than molecules for which 
calculations on vibrationally inelastic scattering have been 

(3)Nk1Nk2(k1|Vex|k2) =

occ∑
i

∑
q

(Ak1
iq )∗(Ak2

iq ),

(4)q ≡ pj

(5)
Ak

iq =
∑
μ

ciμak
μq,

(6)ak
μq = Nk

√
ωpωj

2π2 (μkkq),

(7)

Nk1 Nk2 (k1|Vex|k2)

= Nk1 Nk2

1

2π2

∑
μ

∑
ν

∑
p,j

ωpωj(μk1kp,j)
∗(νk2kp,j)Pμν ,

reported. In 2004, Itikawa [ 4 ] characterized the situation 
as that “a lot of problems are still to be solved” and that 
“compared to the large number of theoretical studies of 
vibrational excitation of diatomic molecules, the number 
of theoretical works for polyatomic molecules is very lim-
ited.” Hence, in this paper we wish to show that the use of 
Fourier transform of the 1/ r  operator and the use of GPU 
open a way to treatments of polyatomic molecules consid-
erably larger than it was possible so far. Section  3  com-
prises technical details of calculations, and in Sect.  4 , we 
check performance and accuracy of the proposed computa-
tional scheme. The technique presented in this paper is gen-
eral and can be also applied to exchange integrals of other 
types. In Sect.  5 , we note on its possible use for integrals 
and their derivatives in quantum chemical methods. 

    2   Derivatives of exchange integrals 

 Our task is to differentiate Eq. ( 7 ) with respect to a nuclear 
coordinate denoted as variable  y ,
     

The fi rst two terms on the r.h.s. of Eq. ( 8 ), representing the 
Hellmann–Feynman contribution, can be easily factorized. 
Substituting ( 5 ) and ( 6 ) into ( 8 ) and defi ning
     

we obtain
     

Factorization of the last term on the r.h.s. of Eq. ( 8 ) is 
harder, but it is facilitated by availability of quantum chem-
ical software. From the coupled perturbed Hartree–Fock 
part of quantum chemical programs, it is possible to extract 
the fi rst-order transformation matrix P (1)  which is needed 
for evaluation of derivatives of density matrix elements. 

(8)

Nk1 Nk2

∂

∂y
(k1|Vex|k2)

= Nk1 Nk2

1

2π2

∑
μ

∑
ν

∑
p,j

ωpωj

[(
∂

∂y
(μk1kp,j)

∗

)
(νk2kp,j)Pμν

+ (μk1kp,j)
∗

(
∂

∂y
(νk2kp,j)

)
Pμν + (μk1kp,j)

∗(νk2kp,j)
∂

∂y
Pμν

]

(9)Dk,y
i,q =

∑
μ

(
∂

∂y
ak
μ,q

)
ciμ,

(10)

Nk1 Nk2

1

2π2

∑
μ

∑
ν

∑
p,j

ωpωj

[(
∂

∂y
(μk1kp,j)

∗

)
(νk2kp,j)Pμν

+ (μk1kp,j)
∗

(
∂

∂y
(νk2kp,j)

)
Pμν

]
= 2

occ∑
i

∑
q

[(Dk1,y
i,q )∗Ak2

i,q + (Ak1
i,q)

∗Dk2,y
i,q ].
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In notation of the paper by Pople et al. [ 5 ], they can be 
expressed as
     

but in contrast to Ref. [ 5 ], the subscripts  r  and  s  are used 
here for molecular orbitals (both occupied and virtual) 
instead of spin orbitals. Comparison with
     

provides us the expression for derivatives of expansion 
coeffi cients
     

Subscripts  i  and  j  are used for occupied molecular orbit-
als and  a  for virtual molecular orbitals. Equations ( 11 ) and 
( 12 ) can be used for factorization of the derivatives of the 
density matrix elements, giving the following expression 
for the last term on the r.h.s. of Eq. ( 8 )
     

where the  C  terms are defi ned as
     

Addition of  C  and  D  terms
     

gives the following compact factorized expression for 
derivatives of exchange integrals
      

 As reported in our previous paper [ 1 ], a straightfor-
ward conventional coding of the  A* . A  scheme for integrals 
brought only a small time-saving when compared to rigor-
ous calculation of integrals by means of complex Shavitt 
functions. With derivatives and the  B *. A  +  A *. B  scheme, 
the situation is even less favorable. As a matter of fact, the 

(11)
∂Pμν

∂y
=
∑

rs

2P(1)
rs crμcsν ,

(12)
∂Pμν

∂y
=

occ∑
i

2

(
∂

∂y
ciμ

)
civ +

occ∑
i

2ciμ

(
∂

∂y
civ

)
,

(13)
∂

∂y
ciμ =

virt∑
a

2P(1),y
ia caμ +

occ∑
j

P(1),y
ij cjμ.

(14)

Nk1Nk2

1

2π2

∑
μ

∑
ν

∑
p,j

ωpωj(μk1kp,j)
∗(νk2kp,j)

∂

∂y
Pμν

= 2
occ∑

i

∑
q

[(Ck1,y
i,q )∗Ak2

i,q + (Ak1
i,q)

∗Ck2,y
i,q )],

(15)Ck,y
i,q =

∑
μ

ak
μ,q

∂

∂y
ciμ.

(16)Bk,y
i,q = Ck,y

i,q + Dk,y
i,q

(17)Nk1 Nk2

∂

∂y
(k1|Vex|k2) = 2

occ∑
i

∑
q

[(Bk1,y
i,q )∗Ak2

i,q + (Ak1
i,q)

∗Bk2,y
i,q ].

CPU implementation of derivatives based on the factoriza-
tion approach lasted longer than the calculation performed 
with our original version of the program using complex 
Shavitt functions. However, the merit of the factorization 
approach is that the plain multiplication of two long vectors 
 B  *  .A  and  A*.B  is an ideal task for general-purpose com-
putation on graphics processing units (GPU). Processing of 
elementary mathematical operations is considerably faster 
on GPU than processing a general Fortran code on CPU. 
In Sect.  4 , we show that the bottleneck of generation of  B  
matrix and the  B*.A ,  A*.B  multiplications is largely elimi-
nated by the use of GPU. This bottleneck emerges due to 
sheer number of ( k  1 ,  k  2 ) pairs (~10 8 ) needed by realistic 
scattering calculations. 

 Details on the CPU and GPU implementations are dis-
cussed below in Sect.  3.4 . 

    3   Computational details 

   3.1   Scattering calculations 

 Our theoretical model for scattering calculations [ 3 ,  6 ] is a 
two-channel approach in the discrete momentum represen-
tation (DMR) expressed for each vibrational mode by the 
following two equations
     

     

We found that cross sections for elastic scattering evaluated 
by means of Eq. ( 19 ) for different vibrational modes differ 
very little and this fact permits us to simplify Eq. ( 19 ) as
     

and to obtain the  T   00   matrix by a standard single-channel 
calculation for elastic scattering. The  T   00   matrix so obtained 
is then used in Eq. ( 18 ) for all vibrational modes. Hence, the 
two-channel approach is so converted to a pseudo-single-
channel Lippmann–Schwinger equation, where subscripts 
10 and 00 mean the transitions 1 ← 0 and 0 ← 0, respec-
tively [ 6 ]. The  T  10  elements were obtained from Eq. ( 18 ) 
by a standard method of matrix inversion. The calculations 
are of the SEP (static-exchange-plus-polarization) type [ 7 ]. 
The SE part is calculated rigorously in an ab initio manner 
by using the density matrix, its analytical derivatives with 
respect to atomic coordinates of the target, normal modes, 
and dipole moment derivatives from Hartree–Fock calcu-
lations. The polarization–correlation potential is approxi-
mated by a model based on the DFT (density functional 
theory) as described previously [ 7 ]. As in photon spectros-
copy, the harmonic approximation seems to be the only 

(18)T10 = U10 + U10G0T00 + U11G1T10,

(19)T00 = U00 + U00G0T00 + U01G1T10.

(20)T00 = U00 + U00G0T00,
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manageable approach to polyatomic molecules. Hence, the 
 U   10   matrix elements for the  i th normal mode can be taken as 
the derivative of the electron–molecule interaction potential 
with respect to the  i th normal coordinate,
     

The calculations were performed for the incident electron 
energy of 10 eV. The one-electron  A  and  B  terms were eval-
uated for 62 680 806  k  1 , k  2  pairs, with the absolute value 
of  k  vectors within the range from 0 to 17 a.u. For more 
details, we refer to the quoted papers. 

    3.2   Hartree–Fock calculations 

 For Hartree–Fock calculations of cyclopropane, benzene 
and adamantane, we used the Gaussian valence-shell dou-
ble-zeta-and-polarization (9 s 5 p /4 s 1 p )/[3 s 2 p 1 d /2 s 1 p ] basis 
set of Dunning and Hay [ 8 ]. The geometries of the three 
molecules were optimized with this DZP basis set and 
then used for analytical evaluation of normal modes, har-
monic frequencies, dipole moment and its derivatives, and 
density matrix and its derivatives with respect to atomic 
coordinates. 

    3.3   Numerical quadrature 

 In the  x   y   notation of Chien and Gill [ 9 ], the quadrature 
used for  UGT  terms in Eq. ( 18 ) may be denoted as 6 12  12 1  
38 1  590 2  146 1  194 2  302 1  434 2  770 7  2030 1 , indicating that 
 x  point angular Lebedev grid [ 10 ,  11 ] was used for  y  suc-
cessive radial points of the Gauss–Legendre quadrature. 
The total number of radial points was 31. The 31st radial 
point with 770 angular grid points was assigned to  k  0  of 
the incoming electron. The total number of grid points 
was 11,196. The quadrature used for factorization of the 
1/ r  operator in Eq. ( 2 ) was of the Laguerre–Lebedev type. 
After some experimentation, we found that a scaled adap-
tive Laguerre quadrature with 15 grid points can be used 
as an universal radial quadrature for low-energy electron–
molecule scattering calculations. The radial points were 
obtained as scaled Laguerre grid points
     

where  x  15, i   is the  i th grid point in the 15-point Laguerre 
quadrature and the scaling factor  R  was obtained as
     

with the fi xed  R  max  = 11 a.u. The weights were also scaled 
as
     

where  w   i  ’s are weights of Laguerre grid points. The scaled 
radial points  k   i   were ordered in fi ve ranges (0, 0.2), (0.2, 

(21)U10 = 1/
√

2 ∂U/∂qi

(22)ki = x15,iR,

(23)R = Rmax/x15,15,

(24)ωi = wie
xi R,

0.4), (0.4, 0.8), (0.8, 1.0) and (1.0, 11.0) and assigned to 
Lebedev angular quadratures with 26, 50, 86, 194 and 302 
grid points, respectively. The total number of grid points 
was 3402. In the  x   y   notation of Chien and Gill, the quadra-
ture may be denoted as 26 2  50 1  86 1  194 1  302 10 . Some cal-
culations were performed with a larger quadrature with a 
total number of 31,516 grid points, to see if the accuracy of 
the calculated integrals and derivatives can be improved to 
the μHartree range.  R  max  was fi xed at 20, and 50 Laguerre 
radial points were ordered in six ranges (0, 0.5), (0.5, 
3.0), (3.0, 7.5), (7.5, 9.5), (9.5, 15.0) and (15.0, 20.0) as 
50 9  302 14  590 14  770 1  2030 8  302 4 . It should be noted that 
this quadrature with 31,516 grid points is used here only 
for testing. For practical calculations, it is too large as it 
increases the computational time so much that the merit of 
time-saving is lost. 

    3.4   GPU implementation of the method 

 The bottleneck of the computational scheme, as it is rep-
resented by Eqs. ( 8 )–( 17 ), is the calculation and storage 
of the  B  terms defi ned by Eq. ( 16 ). For a somewhat larger 
molecular system, the size of the  B  array may quickly 
exceed common disk capacities; moreover, a manipula-
tion with such a large data object (represented by necessary 
input/output operations) quickly becomes a dominant hin-
drance in the calculations. For example, in case of adaman-
tane, which serves as one of the benchmark molecules in 
the present paper, the physical size of the  B  array that is 
necessary to form the  U   10   matrix in Eqs. ( 18 ), ( 19 ), is larger 
than 1 TB of data. Therefore, we do not recommend a typi-
cal CPU implementation of presented method. Instead, we 
propose an implementation in which the elements of the 
 B  array are not saved on any storage device. In fact, they 
never even enter the memory space of the computer. This 
idea is implemented as follows. 

 Let  M  be a collective index for plane-wave  k  1  and the 
nuclear coordinate we differentiate with respect to. Thus, 
 M  represents two upper indices of the  B  array in Eq. ( 16 ). 
Let  N  be a contraction index in Eq. ( 17 ); i.e.,  N  represents 
a collective index for occupied orbital  i  and plane-wave 
 q  ( 4 ), denoted as lower indices of  B  array in Eq. ( 16 ). 
Then, the fi rst term in Eq. ( 17 ) represents a simple matrix 
multiplication
     

while the second term is a Hermitian conjugate of the 
fi rst term. Since the array  B  is too large to be stored in 
the GPU memory, the multiplication ( 25 ) must be done in 
more passes. For each pass, we fi rst calculate a sub-matrix 
 B  *  for a subset of rows  M  1 – M  2 . This computation is car-
ried out by a simultaneous launch of a CUDA kernel on 

(25)

∑
N

B∗(M, N)A
(
N , M ′

)
,
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several thousands of GPU threads. The role of the com-
putational kernel is to perform operations summarized by 
Eqs. ( 8 )–( 16 ). Once the sub-matrix  B * is generated in the 
GPU memory, we carry out the matrix multiplication ( 25 ) 
by the use of the CUBLAS library. Results are then trans-
ferred into the CPU memory space (RAM of the computer 
that hosts the GPU card) and saved on the disk. Size of the 
segment computed in one pass is determined by the size of 
the GPU memory, which was 6 GB in the present case. As 
can be seen, the proposed algorithm for the derivatives of 
the exchange integrals requires, in general, very large data 
blocks denoted as  B * in Eq. ( 17 ). However, in the presented 
GPU implementation these data blocks are generated on 
the GPU card, they are used on the GPU device, and they 
are deleted from the GPU memory once they are of no use 
for the following calculations. Therefore, there is no over-
head time connected with their manipulation. 

 From our personal experience, an exploitation of GPU 
for its effi cient use is not an easy and straightforward task. 
Large parts of the programs designed for CPU must be 
rewritten, and algorithms must be rethought. For exam-
ple, an alignment of data in the GPU memory plays a very 
important role in the speed of the program. A GPU imple-
mentation often requires (as in the present case) program-
ming of a GPU kernel that is designed to be launched in 
thousands of instances. The available programing and espe-
cially the debugging tools are still very limited. Even, with 
all these diffi culties, the GPGPU implementations presently 
undergo very rapid development in software and hardware 
and thus they offer a promising environment for computa-
tional quantum chemistry and physics. 

     4   Performance and accuracy 

 For testing purposes, we performed calculations for all vibra-
tional modes of cyclopropane, benzene and adamantane 
in two different ways. In the fi rst approach, the exchange 
integrals and their derivatives were evaluated rigorously by 
means of complex Shavitt functions  F   n  ( z ) by the original 
(CPU parallelized) version of the program [ 1 ,  3 ]. We used 12 
CPU cores, because on a single core the calculations would 
be excessively long, in particular for adamantane. 

 In the second approach, a single CPU was used but 
with the help of GPU for factorization given by Eqs. ( 3 ) 
and ( 17 ). The entries in Table  1  are the respective timings 
for the evaluation of all integrals and their derivatives that 
were needed for computation of differential cross sections 
for all vibrational modes. The CPU execution times,  t  0 , 
shown in Table  1  on the fi rst line were obtained by using 
12 cores of Intel Xeon 3 GHz workstation. The entries on 
the second line are execution times on a single CPU core 
code where the evaluation steps shown in Eqs. ( 3 ) and ( 17 ) 

were offl oaded to Tesla card K20m with 2496 cuda cores 
clocked at 710 MHz. Single-core rigorous calculations for 
benzene and adamantane would be excessively long, and 
therefore, they were only performed with our parallelized 
version of the program for 12 CPU’s. Speedups are there-
fore expressed as ratios  t  0 / t  FT . They may be multiplied by 
a factor of 11.1, which was the ratio of timings for rigor-
ous calculations we obtained for cyclopropane on 1 and 12 
CPU’s.  

 For checking the loss in accuracy connected with the 
numerical discretization of the 1/ r  term, we selected the 
cyclopropane molecule and derivatives with respect to the 
C 2 y   atomic coordinate, as it is defi ned in Fig.  1 . Testing 
was done for many combinations of  k  1  and  k  2 , keeping the 
 k  2  vectors fi xed at 12 orientations, whereas the  k  1  vectors 
were varied.        

 The result of the testing is shown graphically in Figs.  2  
and  3 . Figure  2  shows a case when variation of  k  1  is limited 
to small values of | k   1  |. For plots, we selected the regions 
of  k  1  and  k  2  combinations, where the error was the largest. 
With a smaller numerical quadrature used in Eq. ( 2 ), the 
maximum error was found for  k   2   ≡ (0; 10; 0) and it was in 
the range of 10 −4  a.u. The purpose of this fi gure is to show 
that on increasing the number of grid points from 3402 to 
31,516, the maximum error was reduced to the range of 
microhartrees.               

 Figure  3  shows the only region where the factorization 
method does not work well. If both  k  1  and  k  2  are large in 
absolute value and parallel or close to be parallel in orienta-
tion, the error is in the millihartree range. On increasing the 
number of grid points from 3402 to 31,516, the maximum 
error was reduced, but only to the range of 10 −4  a.u. If a 
higher accuracy is requested, this small number of integrals 
and their derivatives must be evaluated by some other more 
rigorous method. It is unlikely that the mere use of the 
double-precision arithmetics would solve the problem. We 
reached the limit in accuracy of single-precision arithmet-
ics that is suffi cient for our scattering codes, and therefore, 
we did not attempt to optimize the numerical FT quadrature 
further. 

 Table 1       CPU time (in seconds) and speedup in calculations of a 
preselected set of exchange integrals ( k  1 | V  ex | k  2 ) and their derivatives 
∂/∂ A  x ( k  1 | V  ex | k  2 ) (denoted as ∂/∂y in Sect.  2 ), needed for computation of 
vibrational cross sections of cyclopropane, benzene and adamantane  

  a    Calculation by means of complex Shavitt functions  F   n  ( z ) 

  b    Calculation by means of the Fourier transform of 1/ r  

    C 3 H 6     C 6 H 6     C 10 H 16   

  Rigorous calculation a , 12 CPU’s,  t  0     19,894    67,330    515,100  

  FT calculation b , GPU used, 1 CPU,  t  FT     1398    3610    19,460  

  Speedup, defi ned as ( t  0 / t  FT )    14    19    26  
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 Fig. 1       Two sets of 12 fi xed 
orientations of the  k  2  vectors 
used for testing the accuracy 
of derivatives ∂/∂ A  x ( k  1 | V  ex | k  2 ) 
for cyclopropane. The absolute 
values of  k  2  vectors were either 
those shown in the fi gure or ten 
times greater. All derivatives 
were with respect to the C 2y  
atomic coordinate, as shown on 
the right side of the fi gure  

 Fig. 2       Error in derivatives ∂/∂ A  x ( k  1 | V  ex | k  2 ) with respect to values 
obtained by regular calculations. The  k  1  vectors are bound to lie in 
the σ xy  plane of cyclopropane, and its  k  1x  and  k  1y  components are var-
ied with a grid of 0.01 a.u. The  k  2  vector is kept fi xed at the position 
(0; 10; 0).  Left  A smaller numerical quadrature with 3402 grid points 

was used for Eq. ( 2 ). The largest error was in the imaginary part of 
derivatives.  Right  A larger numerical quadrature with 31,516 grid 
points was used for Eq. ( 2 ). For this quadrature, the largest error was 
in the real part of derivatives  

 Fig. 3       Error in the real part of derivatives ∂/∂ A  x ( k  1 | V  ex | k  2 ) with 
respect to values obtained by the regular calculations. The  k  1  vectors 
are bound to lie in the σ xy  plane of cyclopropane, and its  k  1x  and  k  1y  
components varied with a grid of 0.1 a.u. The  k  2  vector is kept fi xed 

at the position (8.66, 5, 0). The left plot was obtained with a smaller 
quadrature with 3402 grid points, whereas the right plot was obtained 
with a larger quadrature with 31,516 grid points  
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 Next, we show that the smaller numerical quadrature 
with 3402 grid points is good enough for scattering calcu-
lations. As an illustration, we present in Fig.  4  the angu-
lar dependence of the differential cross sections for four 
selected vibrational modes of different types for adaman-
tane. We note that even for such a large multicenter sys-
tem, results obtained by factorizing the exchange kernel are 
practically indistinguishable from results obtained rigor-
ously. In the four plots in Fig.  4 , the largest error was found 
for the  ν  5  at 142°. In absolute value, it is 0.0005 Å 2  which 
is negligible for any kind of practical application.        

    5   Possible use in quantum chemistry 

 The factorization method presented in this paper may be 
benefi cial for the computational approach proposed by 
Füsti-Molnar and Pulay [ 12 ]. In 2002, they came up with 
the idea that modern computers have overcome the severe 
memory limitations of their predecessors, and thus alter-
native basis sets such as plane waves are becoming attrac-
tive alternatives. Up to now, this statement applies to Cou-
lomb integrals only, whereas the exchange energy has to be 
treated in a traditional way by using a Gaussian basis set 
or by using a DFT-type functional. However, even for Cou-
lomb integrals a Gaussian basis set cannot be substituted 
fully by a plane-wave basis because compact molecular 
orbitals (core orbitals) are not suited to be expanded in a 

plane-wave basis. Therefore, Füsti-Molnar and Pulay [ 12 ] 
used for expansion of molecular orbitals a mixed Gaussian 
and plane-wave basis. This led to appearance of ( gk | gk ) and 
( gg | gk ) integrals in their computational scheme. Evalua-
tion of these integrals by standard methods, using complex 
Shavitt functions or some other variant of the incomplete 
Gamma function, is lengthy, and it represents therefore a 
drawback in the full exploitation of the F ű sti-Molnar and 
Pulay’s idea. We considered it therefore expedient to men-
tion a possible use of the factorization method in this con-
text, though we cannot take it for granted that it is a rem-
edy for this problem. Although factorization of ( gk | gk ) 
and ( gg | gk ) integrals gives readily obtainable overlap inte-
grals ( ggk ) and ( gkk ), it may bring profi t only in conjunc-
tion with the use of GPUs, which reduces considerably the 
CPU time of originally lengthy multiplication of long vec-
tors with ( ggk ) and ( gkk ) elements. A point in favor of the 
factorization method presented in this paper may be antici-
pated when derivatives of integrals are to be calculated. A 
link of the program for derivatives can be coded in such a 
way that execution of many elementary operations can be 
passed from CPU to GPU. 

 The factorization technique presented in this paper is 
general, and it can be, at least in principle, applied to any 
type of two-electron integrals. Hence, a question can be 
asked, if its use could also be profi table for quantum chem-
istry methods that are using pure Gaussian basis sets. Here, 
the situation is less clear-cut. A few years ago, the potential 

 Fig. 4       Angular dependence 
of the vibrationally inelastic 
differential cross sections for 
adamantane and its CC stretch 
breathing  ν  5  mode ( top left ), 
CH 2  twist  ν  6  ( top right ), CH 2  
wag  ν  14  ( bottom left ) and the 
IR-active CH 2  scissoring  ν  23  
mode ( bottom right ). The 
black curves are the result of 
calculations with factorized 
exchange integrals, whereas red 
lines were obtained by rigorous 
calculations. The calculations 
were done for the collision 
energy of 10 eV. The corre-
sponding black and red lines are 
not distinguishable in the scale 
of plots. The maximum error 
found is shown in the upper left 
plot for  ν  5   
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of GPUs in quantum chemistry has been recognized, and 
since then, their merits in applications to evaluation of two-
electron repulsion integrals [ 13 – 17 ], semiempirical meth-
ods [ 18 ,  19 ], Hartree–Fock calculations [ 19 ,  20 ], DFT [ 21 , 
 22 ], CIS [ 23 ], MP2 [ 24 – 26 ], CCSD and CCSD(T) [ 27 ,  28 ] 
and Quantum Monte Carlo calculations [ 29 ] were reported. 
Nevertheless, we considered it expedient to note a possi-
ble use of our computational scheme also for post-Hartree–
Fock methods. We mention post-Hartree–Fock methods 
on purpose, because for energy gradients our factorization 
approach needs the coupled perturbed Hartree–Fock calcu-
lation for evaluation of derivatives of expansion coeffi cients 
of molecular orbitals [in Eq. ( 15 )]. It is assumed that evalu-
ation of the gradient at the correlated level is considerably 
more time-consuming than the coupled perturbed Hartree–
Fock calculation. Provided that evaluation of derivatives 
would be done on GPU in double-precision arithmetics and 
with an optimized FT quadrature, the calculations may be 
effective. Below, we indicate how it could work. 

 Consider an integral of the type [ p (1) q (1)| r (2) s (2)], 
where  p ,  q ,  r ,  s  are molecular orbitals, constructed from a 
Gaussian atomic basis set. Direct application of the Fourier 
transform of 1/ r  by means of Eqs. ( 1 ) and ( 2 ) leads to the 
following expression
     

where ( pqk ) and ( krs ) are one-electron overlap integrals 
that are easy to evaluate. Provided that we have good com-
putational facilities at our disposal, and that GPUs can be 
effectively applied, we can expect considerable time-saving 
with respect to a standard evaluation, as we demonstrated 
it with ( gk | gk ) integrals [ 1 ]. Obviously, the utility of this 
approach cannot be taken for granted and it should be 
tested against well-established quantum chemical methods, 
known under specifi cations such as RI (resolution of iden-
tity), density fi tting, Cholesky decomposition or chain-of-
spheres approach which employs factorization based on a 
mixed analytical and numerical evaluation of the exchange 
integrals [ 30 ]. They all use sort of a factorization, and for 
most of them, the factorization of ( pq | rs ) integrals can be 
expressed as
     

where
     

The ( pq | Q ) and ( Q | P ) are, respectively, three- and two-
index two-electron repulsion integrals. The overlap inte-
grals ( pqk ) in our approach in Eq. ( 26 ) are easier to 

(26)(pq|rs) =
1

2π2

∑
t

√
ωt(pqkt)|(ktrs)

√
ωt ,

(27)(pq|rs) =
∑

P

BP
pqBP

rs,

(28)
BP

pq =
∑

Q

(pq|Q)|(Q|P)−1/2.

evaluate, but this need not be a substantial advantage 
because performance of factorization depends mainly 
on effi cient coding the matrix multiplication operations. 
Three-center overlap integrals in pure Gaussian basis were 
also exploited in tensor hypercontraction density fi tting 
applied perturbation approaches [ 31 ] and coupled clusters 
method [ 32 ]. Recent experience with the development of 
quantum chemical methods shows that when an ingen-
ious use is made of GPUs, not depending on linear algebra 
libraries only, unprecedented progress in the evaluation of 
exchange integrals can be achieved [ 13 ,  14 ,  20 ,  21 ]. Hence, 
the factorization method presented in this paper for deriva-
tives of exchange integrals is worth of further exploration, 
if it is a viable alternative to RI-type methods. 

    6   Conclusions 

 We have shown that the factorization method, proposed in 
our earlier paper [ 1 ] for exchange integrals of the ( gk | gk ) 
type, can also be applied to their derivatives. We found that 
the Fourier transform of 1/ r  alone does not bring an advan-
tage of speedup. However, its merit is its ability to cast 
mathematical expressions into a form which is suited ide-
ally for use of GPUs. Net result of such a combination is 
considerable computer time-saving. In this paper, the test 
calculations were extended for evaluation of derivatives. 
The calculations were done for a set of exchange integral 
and their derivatives that were needed for a treatment of 
electron scattering by cyclopropane, benzene and adaman-
tane. The data on timing of calculations are listed in Table  1 . 
The mere Fourier transform by means of Eqs. ( 1 ) and ( 2 ) 
did not bring any profi t. But, if on top of that the  A*.A  and 
 B*.A  +  A*.B  multiplications in Eqs. ( 3 ) and ( 17 ) were per-
formed on GPU, the CPU time dropped by more than an 
order of magnitude. It is important to note that the present 
speedup achieved for the derivatives of the ( gk | gk ) integrals 
is smaller when comparing to speedup of the GPU imple-
mentation for the ( gk | gk ) integrals alone [ 1 ]. A reason for 
this is due to very effi cient implementation of the nuclear 
derivatives in the original rigorous method that uses tabu-
lated Shavitt functions while the present algorithm scales 
linearly with the number of nuclear degrees of freedom. 

 The factorization method in a form presented in this 
paper is general and can be, at least in principle, applied 
to any type of two-electron integrals. To become an alter-
native to existing established quantum chemical methods, 
the computer code has to enable an effi cient use of GPU. 
Although reorganization of the program for this purpose is 
tedious and requires programming skill, the result may be 
rewarding. The factorization method may also have a merit 
in supporting the idea of Füsti-Molnar and Pulay [ 12 ] to 
substitute Gaussians by plane-wave functions. So far, their 
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method is limited to Coulomb energy only because of the 
problem to calculate effi ciently integrals of ( gk | gk ) and 
( gg | gk ) types. The factorization method may be profi table 
in this context. 

 Finally, a brief remark on economy is noteworthy. At 
the present price level, a single CPU with a GPU (used in 
the present setup) is 2–3 times cheaper than a computer 
with 12 CPU’s (also used in the present demonstration), 
still providing more than one order of magnitude better 
performance. 
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      1  Introduction 

 Originally motivated by the United Atom studies of Thir-
ring, Narnhofer, and Lieb [ 1 – 3 ], the idea of exploiting 
nuclear charge convexity relations between electronic 
energies of molecules, without involving the extreme case 
of uniting all nuclei of the molecule into a single, formal 
nucleus of the United Atom, has lead to a variety of rigor-
ous quantum chemical energy inequalities for various sets 
of molecules, starting with simple diatomic cases [ 4 ,  5 ]. 

 After the very fi rst examples of such electronic energy 
inequalities [ 4 ,  5 ], including one of the simplest cases, the 
N 2  and CO pair, the concept of the nuclear charge space 
was elaborated [ 6 ] and the level set topology approach was 
introduced [ 7 ]. A generalization to other linear parameters 
besides the nuclear charges was described [ 8 ], followed by 
several additional applications [ 9 – 15 ]. As one important 
generalization, geometry-independent relations were also 
derived [ 9 ,  14 ]. Analogous relations for isomerisation ener-
gies [ 10 ], as well as for potential surfaces for higher mul-
tiplicities, were derived [ 11 ], and applications to clusters 
[ 13 ], an early step toward the more recent reference cluster 
model, relevant to this study, were also described. Exploit-
ing the quadratic dependence of the nuclear repulsion on 
the nuclear charges, in some cases, for example, in the 
prototype case of N 2  and CO, analogous inequalities were 
derived for molecular total energies [ 12 ,  15 ]. Special appli-
cations, for example, to polymers of different unit cell sizes 
[ 16 ], and to special problems of vibrational spectra [ 17 ], 
have also been described. 

                     Abstract     Replacing integer atomic numbers representing 
nuclear charges by continuous variables has already pro-
vided some rigorous quantum chemical relations between 
real molecules, using a formal interpolation through non-
physical abstract molecules of continuously varying nuclear 
charges. Extending this approach to the more general “uni-
versal molecule” model, where all discrete parameters of 
molecules are generalized and replaced by continuous vari-
ables, provides further relations, actually interconnecting 
all real molecules through abstract, non-physical “mole-
cules,” involving, for example, non-integer number of elec-
trons. One simplifying idea of this model is the so-called 
“reference cluster,” originally defi ned for isoelectronic sys-
tems of a fi xed number  N  of nuclei, where each nucleus is 
replaced by a possibly fi ctive nucleus with a nuclear charge 
equal to the average of the  N  nuclear charges. Based on the 
earlier results, some new relations are derived interrelating 
energies and some other properties of some real molecules, 
and also providing a unifying framework for the utiliza-
tion of both symmetry and energy relations of the universal 
molecule model. 
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 In the present study, the earlier relations are extended 
to cases involving larger number of “anchor structure” 
points of the relevant nuclear charge space, that is, higher-
dimensional convex sets will be used than in earlier studies. 
These higher-dimensional cases are not as easily visual-
ized; however, they can provide more options for interre-
lations between molecules. Some new connections to the 
reference cluster and the universal molecule models, espe-
cially in the context of symmetry, will also be elaborated. 

 A common feature of most of the earlier approaches is 
the replacement of the formal nuclear charges by continu-
ous variables, and considering the resulting values as com-
ponents of a “nuclear charge vector”  z  in a formal nuclear 
charge space  Z , of dimension equal to or greater than the 
number of nuclei in the molecules studied. Note that for-
mal dummy nuclei of zero nuclear charges could always 
be added without affecting the validity of the physical laws 
applied, and hence very general treatments, interrelating 
rather diverse molecules and ionic systems, have become 
possible. 

 Although the specifi c linear dependence of the electronic 
Hamiltonian on the nuclear charges has been the primary 
tool applied, it has been also natural to extend the approach 
by replacing other discrete, integer parameters of molecules 
by continuous variables. Clearly, no such fractional nuclear 
charges correspond to real molecules, and similarly, allow-
ing, for example, the number of nuclei and the number 
of electrons to vary continuously, many “non-physical,” 
abstract entities can result. For example, just as there exists 
no molecule “halfway between” N 2  and CO, as far as the 
nuclear charge vectors of (7, 7) and (6, 8) are concerned, 
similarly, no actual molecules exist, for example, with 10.3 
nuclei or with some non-integer number of electrons. Nev-
ertheless, just as the mathematical approaches extended to 
the complex plane can provide useful shortcuts (such as 
contour integration), even if no actual physical quantities 
can ever take complex values, similarly, such an extension 
of the family of real molecules to fi ctitious “objects” with 
non-physical properties also has provided useful shortcuts. 
This way, new relations can be derived between actual, 
physically valid molecules, such as the simplest of these 
rigorous electronic energy inequalities for N 2  and CO using 
continuous nuclear charge variations, the earliest example 
that will be briefl y reviewed and also extended in the next 
section. 

 By following this idea to the extreme case, where all such 
parameters of individual molecules are considered continu-
ous variables, a rather general model has been established. 
The resulting formal “universal molecule” model [ 18 – 21 ] 
provides a formal link between any two actual molecules, 
by some continuous changes in all those parameters which 
distinguish these molecules. This universal molecule model 
offers not only conceptual tools, but also new relations on 

energy or other properties of actual, real molecules. In this 
contribution, the advantages of this model are used to obtain 
new results for both energy interpolation, as well as energy 
extrapolation, resulting in both upper and lower bounds for 
energies. Besides this result, the central role of the so-called 
“reference cluster” [ 22 ,  23 ], a formal molecular entity with 
all nuclei having the same nuclear charge, is discussed. 
The reference cluster has a distinguished role in terms of 
its transformations to real, actual molecules, and also in 
terms of the maximal symmetry properties of the associ-
ated potential energy surfaces, where somewhat counter-
intuitive, “opposing” trends exist between transformations 
reducing symmetry and reducing energy. 

    2   Nuclear charge space convexity relations 
and their extensions 

 In the Born–Oppenheimer approximation, the molecular 
total energy,  E  t , is regarded as a sum of the nuclear repul-
sion energy,  E  n , and the electronic energy  E  e ,
     

where the latter is associated with the electronic Hamilto-
nian  H  e  ( N ,  k ,  z ,  r ) given as
     

The  z   i   nuclear charges of the  N  nuclei of nuclear positions 
 r   i   are collected into a formal nuclear charge vector  z  (usu-
ally considered as a column vector, although often the 
transpose,  z′ , is used), and the index  t  refers to the electrons 
of a  k -electron molecule. 

 In order to derive the general, ( n  − 1)-dimensional con-
vexity relation for nuclear charge vectors, consider  n  + 1 
isoelectronic molecular systems,
     

in their electronic ground states (or in some common, low-
est state of some electronic manifold), where the nuclear 
locations match, but the nuclear charges can be different 
and even zero nuclear charges, that is, “dummy nuclei” are 
allowed. 

 For each of these molecular systems, the nuclear charge 
vector  z  contains the individual nuclear charges as compo-
nents, following some fi xed ordering. 

 Let us denote the corresponding nuclear charge vectors 
by
     

(1)Et = En + Ee

(2)

He(N , k, z, r) = −1/2
∑
t=1,k

�t −
∑

i=1,N

∑
t=1,k

zi/|ri− rt|

+
∑

t<t′≤k

1/|rt− rt′ |

(3)M, M(1), M(2), . . . M(i), . . . M(n)

(4)z, z(1), z(2), . . . z(i), . . . z(n),
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respectively, where the ordering of the nuclei as com-
ponents of these vectors is consistent with the common 
nuclear geometry  r . 

 If  z  is a convex combination of the other n nuclear 
charge vectors,  z  (1) ,  z  (2) ,… z  ( i ) ,… z  ( n ) , that is, if
     

where 
 

     

and where
     

then due to linearity of the electronic Hamiltonians  H  e ( z ,   
r ) in components of  z , a relation analogous to Eq. ( 5 ) must 
apply for their corresponding electronic Hamiltonians as 
well,
     

If the electronic wavefunction of system  M  is  Ψ  e , then 
based on the above, the electronic energy expectation value 
of system  M  can be written as
     

However, the wavefunction  Ψ  e  of system  M  is not in gen-
eral variationally optimal for any of the other molecular 
systems  M  (1) ,  M  (2) ,…  M  ( i ) ,…  M  ( n ) . Consequently, accord-
ing to the variational theorem, the right-hand side of Eq. ( 9 ) 
cannot increase if in the expectation value expression for 
each of the right-hand side Hamiltonians  H  e  ( z  ( i ) ,  r ), we 
replace  Ψ  e  with the actual wavefunction  Ψ   e  

( i )   of the respec-
tive molecular system  M  ( i ) . 

 Consequently, we obtain that
     

But, inequality ( 10 ) is in fact an inequality for the elec-
tronic energies,
     

That is, convexity for the set of nuclear charge vectors, 
which in our case form a simplex in an ( n  − 1)-dimen-
sional nuclear charge space  Z , implies convexity for the 
respective electronic energies. 

 Specifi cally, if the nuclear charge vector  z  falls on or 
inside of the  Z -space simplex defi ned by the nuclear charge 

(5)z = α(1)z(1)
+ α(2)z(2)

+ · · · + α(i)z(i)
+ · · · + α(n)z(n),

(6)0 ≤ α(i)
≤ 1, for every i,

(7)α(1)
+ α(2)

+ · · · + α(i)
+ · · · + α(n)

= 1

(8)

He(z, r) = α(1)He

(
z(1), r

)
+ α(2)He

(
z(2), r

)
+ · · · + α(i)He

(
z(i), r

)
+ · · · + α(n)He

(
z(n), r

)
,

(9)〈Ψe|He(z, r)|Ψe〉 =
∑
i=1,n

α(i)
〈
Ψe|He

(
z(i), r

)
|Ψe

〉

(10)〈Ψe|He(z, r)|Ψe〉 ≥
∑
i=1,n

α(i)
〈
Ψ (i)

e |He

(
z(i), r

)
|Ψ (i)

e

〉

(11)
Ee ≥

∑
i=1,n

α(i)E(i)
e

vectors  z  (1) ,  z  (2) ,…  z  ( i ) ,…  z  ( n ) , then the electronic energy 
relation ( 11 ) must hold. 

 The special case of  n  = 2 has been studied in most 
detail, and one of the simplest applications that has been 
already discussed is the comparison of the electronic 
energies of N 2 , CO, and the equivalent OC molecule. If 
 M  = N 2 ,  M  (1)  = CO, and  M  (2)  = OC, with identical bond 
lengths, and with the following 2D nuclear charge vectors 
 z  = (7, 7)′,  z  (1)  = (6, 8)′ and  z  (2)  = (8, 6)′, respectively, then 
these nuclear charge vectors fulfi ll the convexity condition
     

where, as in general, 0 ≤  α  ≤ 1, now with the simple spe-
cial choice of  α  = 0.5. 

 Consequently, the theorem applies, hence for every com-
mon bond length, that is, for the entire electronic potential 
energy curves
     

     

that is, 

  E  e (N 2 ) ≥  E  e (CO) for every common bond length. 

 Note that this is a rigorous (although simple) quantum 
chemical result, as derived entirely by using nuclear charge 
variations. 

 However, convexity, if used in a judicious way, can also 
be used for extrapolation! 

 Consider now the case of  M  = CO,  M  (1)  = N 2 , and 
 M  (2)  = BF triple of diatomics, again, with identical bond 
lengths, and with the following 2D nuclear charge vectors 
 z  = (6, 8),  z  (1)  = (7, 7), and  z  (2)  = (5, 9), respectively. 

 Again, we obtain that
     

where 0 ≤  α  ≤ 1, with the current special choice of  α  = 0.5. 
 Hence, just as before, the theorem applies, consequently, 

for every common bond length, that is, for the entire elec-
tronic potential energy curves
     

      

 However, now we can combine this result with the previ-
ous one,
     

and we get
     

that implies

z = αz(1)
+ (1−α) z(2)

Ee ≥ 0.5E(1)
e + (1− 0.5)E(2)

e

Ee(N2) ≥ 0.5E(1)
e (CO)+ (1− 0.5)E(2)

e (OC),

z = αz(1)
+ (1−α) z(2)

Ee ≥ 0.5E(1)
e + 0.5E(2)

e

Ee(CO) ≥ 0.5E(1)
e (N2) + 0.5E(2)

e (BF).

Ee(N2) ≥ Ee(CO),

Ee(N2) ≥ Ee(CO) ≥ 0.5E(1)
e (N2)+ 0.5E(2)

e (BF),
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After subtracting 0.5  E  e (N 2 ) from both sides, we get
     

that is,
     

for every common bond length, that is, for the entire elec-
tronic potential energy curves. 

 We might note that the same result can also be obtained, 
not through the above extrapolation, but considering the tri-
ple of FB, N 2 , and BF. 

 These two simple examples also can serve as illustra-
tions of the reference cluster concept. For both CO and BF, 
the reference cluster is in fact the molecule N 2 , since in 
each of these systems the average nuclear charge is 7. 

 For many molecular families, the reference cluster, hav-
ing identical nuclei with the average nuclear charge present 
in the family, is a chemically viable system, which happens 
to have integer nuclear charges, just as in the above exam-
ple. For example, for all carbohydrates, such as those with 
the formula [C(H 2 O)] 6 , the reference cluster is made up by 
Be atoms: Be 24 , or in general, for carbohydrates [C(H 2 O)]  m  , 
the reference cluster is Be 4 m  . 

 Similarly, for both methanol, CH 3 OH, and hydrazine, 
H 2 NNH 2 , the reference cluster is Li 6 , again, a chemically 
viable entity, with integer nuclear charges. 

 The advantage of such reference clusters is the fact that 
their potential energy surfaces typically show the high-
est symmetry, as well as the most elaborate distribution 
of 3D symmetries along the usually multidimensional 
energy surface, an important advantage in the analysis of 
such potential surfaces. This has consequences also for the 
lower symmetry cases represented by the molecules which 
generate the actual reference cluster, for example, metha-
nol, CH 3 OH, and hydrazine, H 2 NNH 2 , in the Li 6 , reference 
cluster case (a problem discussed from a different perspec-
tive in Ref. [ 22 ]). 

 We call these integer-charge cases the “realizable refer-
ence clusters.” 

 However, it is far more common to obtain a reference 
cluster with non-integer formal nuclear charge, that is, a 
“non-realizable reference cluster,” but even in such cases, 
the principle of continuous nuclear charge variations 
can lead to new results, for actual, existing molecular 
systems. 

 As an example, consider some four-atom clusters com-
posed from some of the metal atoms from the sequence
     

where the atomic numbers are given in the parentheses. 
 One such example: 

Ee(N2) ≥ 0.5Ee(N2)+ 0.5Ee(BF).

0.5Ee(N2) ≥ 0.5Ee(BF),

Ee(N2) ≥ Ee(BF),

Re(75), Os(76), Ir(77), Pt(78), Au(79),

 Take the following fi ve isoelectronic atomic clusters 
with a common nuclear geometry assumed to be some 
irregular tetrahedron in the 3D space:
     

     

     

     

     

The reference cluster  M  (ref)  in this case is a fi ctitious entity, 
an isoelectronic cluster of four atoms with nuclear charges 
equal to 77.25, in protonic units, clearly, a non-physical 
entity. It is evident that the formal potential energy hyper-
surface for this reference cluster  M  (ref)  shows the highest 
symmetry among all of the actual potential energy hyper-
surfaces that can be associated with the given nuclear 
charge space  Z , including, of course, the potential energy 
hypersurfaces of the actual clusters,  M ,  M  (1) ,  M  (2) ,  M  (3) , and 
 M  (4) , an issue we shall discuss briefl y in the closing seg-
ment of this paper. 

 For these fi ve actual clusters, their respective 4D nuclear 
charge vectors are
     

     

     

     

     

whereas for the reference cluster  M  (ref)  the nuclear charge 
vector is
      

 One can easily verify by direct substitution that nuclear 
charge vector  z  is a convex combination of the other four 
nuclear charge vectors:
      

 Consequently, the 4D version of the electronic energy 
convexity theorem applies, and one obtains the quantum-
chemically rigorous result that
     

valid for any common nuclear geometry, that may be taken 
as any irregular tetrahedron in the 3D space. 

M = [Ir(77) Ir(77) Ir(77) Pt(78)]

M(1)
= [Os(76) Au(79) Os(76) Pt(78)]

M(2)
= [Pt(78) Re(75) Ir(77) Au(79)]

M(3)
= [Re(75) Ir(77) Au(79) Pt(78)]

M(4)
= [Au(79) Ir(77) Os(76) Ir(77)]

z = [77 77 77 78]

z(1) = [76 79 76 78]

z(2) = [78 75 77 79]

z(3) = [75 77 79 78]

z(4) = [79 77 76 77],

z(ref) = [77.25 77.25 77.25 77.25].

z = 0.25 z(1)
+ 0.25 z(2)

+ 0.25 z(3)
+ 0.25 z(4)

Ee(Ir3Pt) ≥ 0.25 Ee(OsAuOsPt)+ 0.25 Ee(PtReIrAu)

+ 0.25 Ee(ReIrAuPt)+ 0.25 Ee(AuIrOsIr),
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 Note, however, that if the common geometry of the tet-
rahedra chosen shows some symmetry, then some simplifi -
cations are possible, for example, structures of molecules 
 M  (2)  and  M  (3)  may become equivalent, that can lead to a 
more concise energy relation. 

 That is, symmetry, in this case, indeed, provides 
simplifi cation. 

    3   Some comments about the universal molecule 
aspects of potential energy hypersurface 
symmetry and energy relations connected 
to the reference cluster 

 If in a molecule all parameters are taken as continuous vari-
ables, one obtains the abstract “universal molecule model” 
that connects all real molecules, even seemingly unrelated 
molecules, to one another through impossible, non-physical 
models within a single mathematical framework [ 18 – 21 ]. 
Turning discrete variables into continuous ones amounts 
to “anti-quantization,” and if these variables again take up 
one of the allowed (often integer) values, this amounts to 
“re-quantization.” This anti-quantized and re-quantized 
“universal molecule model” provides new, valid relations 
on energy and other properties of real molecules, and all 
actual molecules may then be regarded as special cases of 
the “universal molecule.” 

 In a formal sense, it is possible to defi ne a  universal 
molecule 
     

of  N  nuclei and k electrons, with nuclear confi guration 
vector variable  r , nuclear charge vector  z , electronic state 
label  s , and possible additional variables  w , where all these 
variables are allowed to take non-integer values, even if for 
some of them only integer values (and very limited values) 
may actually correspond to physically possible entities. 

 We have seen that for the case of nuclear charges, such 
a generalization provides rather quick and rigorous results. 
Although taking advantage of other such variables appears 
less straightforward, this general framework provides the 
tools for such investigations. One fi eld that can benefi t 
from such a model is using comparisons of various reali-
zations of the universal molecule to the level of reference 
clusters [ 22 ,  23 ], where the potential energy surface, PES, 
of the reference clusters typically shows the highest sym-
metry when compared to molecules of equal total nuclear 
charge, as a consequence of permutational equivalences of 
atoms, being the highest possible for the reference clusters. 
On the other hand, as shown also by the diatomic exam-
ple with N 2  being the reference cluster, the energy of the 
reference cluster is typically higher than the energy of the 
related other molecules with the same total nuclear charge. 

M(N , k, r, z, s, w)

 That is, in this case, higher symmetry is associated with 
higher energy, a combination of properties that in other 
contexts often considered counter-intuitive. 

 Specifi cally, we are concerned with two symmetry prob-
lems along PES [ 22 ,  23 ]:

   (a)      the distribution of the three-dimensional, 3D, symme-
tries of molecular structures along PES   

  (b)      the actual (3 N  + 1)D symmetry of the (3 N )D PES 
itself, defi ned by the 3 N  laboratory-frame Cartesian 
coordinates of the N nuclei; such a PES is a (3 N )D 
hypersurface embedded in a (3 N  + 1)D space, where 
one may formally regard energy as the “vertical coor-
dinate.”     

 It is often advantageous to use the (3 N  − 6)D reduced 
nuclear confi guration space, a metric space M obtained as 
the quotient space of equivalence classes of (chemically 
equivalent) internal confi gurations related to one another 
by rigid translations and rigid rotations within the (3 N )D 
Euclidean space of all, mass-weighted Cartesian coordi-
nates of the nuclei. If the PES is defi ned over  M , then it is a 
(3 N  − 6)D hypersurface embedded in a (3 N  − 5)D space, 
where, as before, one may formally regard energy as the 
“vertical coordinate.” 

 In general, if the dimension of a Euclidean space is  W , 
then all refl ections in such high-dimensional spaces can 
be constructed by some series of refl ections with refer-
ence to some ( W  − 1)D hyperplanes, and all rotations can 
be generated by a series of rotations according to some 
( W  − 2)D rotation axes. It is advantageous to use for each 
of these refl ections and rotations specifi c coordinate sys-
tems aligned with the refl ection planes and rotation axes, 
in such a way that the origin falls on the refl ection plane 
or rotation axis, and one coordinate axis is orthogonal to 
the ( W  − 1)D refl ection hyperplane, and two coordinate 
axes are orthogonal to the ( W  − 2)D rotation axis. Then, 
refl ection is accomplished by a sign change in all coordi-
nate values along the coordinate axis orthogonal to the 
refl ection hyperplane. Rotation by some angle α is accom-
plished by keeping all coordinates along the ( W  − 2)D 
rotation axis unchanged, and by the cos( α ), sin( α ) linear 
combination of the remaining two coordinate values for the 
new fi rst such coordinate, and the −sin( α ), cos( α ) linear 
combinations of the remaining two coordinate values for 
the new second such coordinate. This is in exact analogy 
with the rotation along the  z  axis in 3D, where  x  and  y  take 
the roles of the two “remaining” coordinates, becoming 
 x cos( α ) +  y sin( α ) for the new “fi rst” coordinate value, and 
− x sin( α ) +  y cos( α ) for the new “second” coordinate value. 

 These very tools, higher-dimensional refl ections and 
rotations are those which are gradually “degraded” from 
their symmetry element status as the reference cluster is 
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gradually replaced by molecular structures of fewer and 
fewer equivalences among their nuclear charges. To follow 
these changes, it is advantageous to use the 3 N -dimensional 
confi guration space (instead of the reduced nuclear confi g-
uration space  M  of (3 N  − 6) dimensions), for the following 
reasons: 

 The case of (3 N )D PES allows for such Euclidean rep-
resentation; however, in the case of PES defi ned over  M , 
no such representation is possible generally, and in fact 
one deals with not an Euclidean space but with a manifold 
with boundary, involving many, only locally valid coordi-
nate systems. Therefore, in this context, it is advantageous 
to use for reference cluster studies the full, 3 N -dimensional 
confi gurational space. 

 A contrast exists between two effects of increasing sym-
metry. If the symmetry of nuclear charges is maximal in  Z  
space, as it happens for the reference cluster, then this typi-
cally implies the highest energy among all isoprotonic spe-
cies within the same nuclear charge space  Z  for these clus-
ters. Yet, if an increase in the actual 3D symmetry of the 
nuclear framework renders two, previously non-equivalent 
clusters equivalent, then the energy inequalities, such as 
those for the clusters produced by the metals atoms Re(75), 
Os(76), Ir(77), Pt(78), Au(79) of the examples above, 
become simpler, often implying tighter energy bounds. 

 An interesting problem arises concerning the manifesta-
tion of the gradual reductions in the 3 N -dimensional sym-
metries of the reference cluster to actual molecule trans-
formations as these are represented in the reduced internal 
confi guration space of (3 N  − 6) dimensions. In this lower-
dimensional space, the recognition of such symmetries is 
less straightforward; however, the information is fully pre-
served in some different form. These relations will be the 
subject of a forthcoming study. 

       Acknowledgments     This study has been supported by the Canada 
Research Chair (CRC) Program of Canada, the Scientifi c Modeling 
and Simulation Laboratory (SMSL), and the Memorial University of 
Newfoundland.  

  References 

     1.                                Thirring W (1975) Acta Phys Austriaca (Suppl) 14:631–635  
     2.                                        Narnhofer H, Thirring W (1975) Acta Phys Austriaca 

41:281–287  
     3.                                        Lieb EH, Simon B (1978) J Phys B 11:L537–L542  
     4.                                Mezey PG (1981) Theor Chim Acta 59:321–332  
     5.                                Mezey PG (1981) Int J Quant Chem Symp 15:279–285  
     6.                                Mezey PG (1982) Mol Phys 47:121–126  
     7.                                Mezey PG (1982) Int J Quant Chem 22:101–114  
     8.                                Mezey PG (1982) Chem Phys Lett 87:277–279  
     9.                                Mezey PG (1983) Int J Quant Chem 24:523–526  
     10.                                Mezey PG (1984) Can J Chem 62:1356–1357  
     11.                                Mezey PG (1984) J Chem Phys 80:5055–5057  
     12.                                Mezey PG (1985) J Am Chem Soc 107:3100–3105  
     13.                                Mezey PG (1985) Surf Sci 156:597–604  
     14.                                Mezey PG (1986) Int J Quant Chem 29:85–99  
     15.                                Mezey PG (1986) Int J Quant Chem 29:333–343  
     16.                                                Otto P, Ladik J, Mezey PG (1987) J Math Chem 1:85–96  
     17.                                                Cassam-Chenaï P, Chiaramello J-M, Mezey PG (2008) J Math 

Chem 44:981–987  
     18.                                Mezey PG (2007) AIP Conf Proc 963:513–516  
     19.                                Mezey PG (2012) AIP Conf Proc 1504:725–728  
     20.                                Mezey PG (2015) J Phys Chem A 119:5305–5312  
     21.     Mezey PG (2015) Topological tools for the study of families of 

reaction mechanisms: the fundamental groups of potential sur-
faces in the universal molecule context. In: Alikhani E, Chauvin 
R, Lepetit C, Silvi B (eds) Applications of topological methods 
in molecular chemistry. Springer, New York (in press)  

     22.                           Mezey PG (1987) Potential energy hypersurfaces. Elsevier, 
Amsterdam  

     23.                                                Mezey PG (1989)  Topology of molecular shape and chiral-
ity. In: Bertran J, Csizmadia IG (eds) New theoretical concepts 
for understanding organic reactions. Kluwer Academic, The 
Netherlands    

30 Reprinted from the journal



1 3

Theor Chem Acc (2015) 134:86
DOI 10.1007/s00214-015-1682-y

              REGULAR ARTICLE 

 Hermitian “chemical” Hamiltonian: an alternative ab initio 
method 

                                                       I. Mayer  1    

 Received: 21 April 2015 / Accepted: 6 June 2015   / Published online: 4 July 2015
©  Springer-Verlag Berlin Heidelberg     2015  

      1  Introduction 

 Three decades ago the present author studied the apparent 
contradiction that one has one- and two-electron integrals up 
to four-center ones in the ab initio quantum chemical theory, 
while the empirical chemical facts indicate that the intra-
molecular interactions are basically of atomic and diatomic 
character [ 1 ]. In chemical practice, one needs not to assume 
the existence of any  primary  three- and four-atom effects 
in a molecule, while the presence of the three- and four-
center integrals in the theory would indicate the opposite. 
The problem was approached by introducing a “projected” 
integral approximation scheme [ 1 ], permitting to present 
each three- and four-center integral as a sum of a leading 
“physical” term containing only one- and two-center inte-
grals, and a fi nite basis correction to it (this integral approxi-
mation scheme has some resemblance with Ruedenberg 
classical proposition [ 2 ]). Combined with a special “mixed” 
second quantized formalism for non-orthogonal basis orbit-
als, this permitted to present the fi nite basis version of the 
Born–Oppenheimer Hamiltonian as a sum of atomic and 
diatomic “physical” terms and fi nite basis correction ones. 
An interesting theoretical property of these atomic Hamilto-
nians was that—despite the interatomic overlap of the basis 
functions—the antisymmetrized product of atomic full CI 
solutions was an eigenfunction of the respective sum of the 
atomic Hamiltonians, and the eigenvalues were the sums 
of the atomic full CI energies [ 1 ] (no analogous property 
could be proved, however, for the Hartree–Fock wave func-
tions). The diatomic terms of the Hamiltonian have been 
also decomposed into terms of different physical nature, like 
electrostatic and overlap effects. 

 These properties motivated us to call this formalism as 
“Chemical Hamiltonian Approach” (CHA). The disad-
vantage of the formalism was the non-Hermiticity of the 

                     Abstract     Some previous results of the present author 
are combined in order to develop a Hermitian version of 
the “Chemical Hamiltonian Approach.” In this framework 
the second quantized Born–Oppenheimer Hamiltonian is 
decomposed into one- and two-center components, if some 
fi nite basis corrections are omitted. (No changes are intro-
duced into the one- and two-center integrals, while projec-
tive expansions are used for the three- and four-center ones, 
which become exact only in the limit of complete basis 
sets.) The total molecular energy calculated with this Ham-
iltonian can then presented as a sum of the intraatomic and 
diatomic energy terms which were introduced in our pre-
vious “chemical energy component analysis” scheme. The 
corresponding modifi ed Hartree–Fock–Roothaan equations 
are also derived; they do not contain any three- and four-
center integrals, while the non-empirical character of the 
theory is conserved. This scheme may be useful also as a 
“layer” in approaches like ONIOM. 
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“physical” terms [ 1 ], obviously causing complications in 
the practical applications. This non-Hermiticity originated 
from the asymmetric treatment of “bra”-s and “ket”-s 
constituting the different one- and two-electron integrals, 
as different functions in the integrands were analyzed by 
assuming that every operator acts “to right.” 

 The intramolecular CHA formalism received no direct 
numerical applications. However, the application of the same 
philosophy to the BSSE problem of intermolecular interac-
tions has been found rather useful [ 1 ,  3 ,  4 ]. An energy decom-
position formalism has also been developed [ 1 ], in which the 
different energy components were defi ned as the expectation 
values of the corresponding ‘‘physical” terms of the Hamilto-
nian; the analysis of one of them (that of the diatomic electro-
static interactions in a point-charge approximation) had led to 
the defi nition of the bond order index [ 5 – 8 ], which has been 
widely applied in studying different chemical problems. 

 Later a somewhat different energy decomposition 
scheme—called “chemical energy component analysis” 
(CECA)—has been introduced [ 9 ,  10 ]. It differed from the 
scheme in [ 1 ] in two aspects. First all two-center integrals 
were conserved, including those that in [ 1 ] were considered 
as fi nite basis correction terms with respect to the intra-
atomic Hamiltonians, and were omitted from the “physical 
terms.” Second, the projective integral approximations were 
symmetrized with respect the “bra”-s and “ket”-s. Although 
for the energy decomposition this symmetrization prob-
ably would have a true signifi cance only if one admitted the 
use of complex basis functions, it is the conceptual starting 
point for our present analysis, because it permits to build 
up a Hermitian version of the “chemical” Hamiltonian. 

 In the CECA scheme, the energy of a molecule calcu-
lated at the SCF level is expressed  approximately but to a 
good accuracy  as a sum of atomic and diatomic contribu-
tions, the computation of which requires the use of  one- 
and two-center integrals only  [ 9 ]. It seems important that 
the error of this approximation apparently has the character 
of a “white noise” and does not refl ect any actual intramo-
lecular effects of physical or chemical signifi cance. 

 For the CECA scheme, several (more or less success-
ful) improvements and refi nements have been developed 
(see e.g., [ 11 – 14 ]); we are not going to discuss them here 
in any detail. All of them (including, of course, CECA 
itself) are  a posteriori  means of analysis, that is, they can 
be applied  after  a conventional ab initio SCF calculation 
has been performed, in order to elucidate the results of the 
latter. The aim of the present paper is to use the same inte-
gral approximation scheme in order to develop an approxi-
mate ab initio scheme of a priori calculations, in which one 
needs not to calculate any three- and four-center integrals. 
In this respect, the scheme could be put in parallel with 
the semiempirical quantum chemical methods. However, 

the projective integral approximations are improving with 
increasing basis sets; thus, one may expect that the pro-
posed scheme will exhibit convergence to the conventional 
Hartree–Fock limit. (The proposed scheme may be useful 
also as a “layer” in schemes like ONIOM [ 15 ].) 

    2   Integral approximation 

 Let us fi rst consider the three-center one-electron integral 
  〈χA

μ |
ZC
rC
|χB

ν 〉   , where  A ,  B  and  C  represent three  different  atoms. 
Here the superscripts  A  and  B  indicate that the basis orbitals   χμ    
and   χν    are centered on the atoms  A  and  B , respectively. Thus 
the integral describes the interaction of the diatomic overlap 
population   χA∗

μ (r)χB
ν (r)    with the nucleus of atom  C . This inte-

gral can also be written in the symmetrized form
     

(All the one- and two-electron integrals, if the opposite is not 
stated, include also summations over the spin variables). Con-
sidering the “bra”   ZC

rC
|χB

ν 〉    in the fi rst integral, one may picto-
rially consider it as describing the “scattering” of the electron 
occupying orbital   χB

ν     on the nucleus of atom  C ; it is a function 
that may be considered a diatomic entity related to the atoms  B  
and  C . By writing a resolution of identity in the form
     

where   ̂PBC    is the projector on the subspace of orbitals cen-
tered on atoms  B  and  C , this function can be written as a 
sum of two components: One which is in the subspace  BC  
of the basis orbitals centered on atoms  B  and  C , and another 
which is orthogonal to that subspace. The fi rst component 
appears always when atoms  B  and  C  are at the given con-
fi guration with respect to each other, while the question 
whether the second plays any role in the molecular problem 
depends on the particular confi guration of the other atoms 
of the molecule. That term is simply neglected in any cal-
culations of the diatomic molecule  BC. ) As the basis set on 
atoms  B  and  C  improves, the term in the orthogonal com-
plement becomes smaller and smaller; experience shows 
that for reasonable basis sets—but not for the minimal 
ones—one may neglect these terms without causing serious 
problems [ 9 ,  11 ]. 

 According to the above discussion, we shall replace 
the function   ZC

rC
|χB

ν 〉    in the fi rst integral by its projection 

  ̂PBC
ZC
rC
|χB

ν 〉   , and analogously, the function   ZC
rC
|χA

μ〉    in the 

second integral by its projection   ̂PAC
ZC
rC
|χA

μ〉    on the sub-
space of the basis orbitals centered on atoms  A  and  C :
     

(1)〈χA
μ |

ZC

rC
|χB

ν 〉 =
1

2

[
〈χA

μ |
ZC

rC
|χB

ν 〉 + 〈χB
ν |

ZC

rC
|χA

μ〉
∗

]
.

(2)1 ≡ P̂BC + (1 − P̂BC),

(3)〈χA
μ |

ZC

rC
|χB

ν 〉 =⇒
1

2

[
〈χA

μ |P̂BC
ZC

rC
|χB

ν 〉 + 〈χB
ν |P̂AC

ZC

rC
|χA

μ〉
∗

]
.
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Here and further on we use the symbol   =⇒    to indicate the 
replacements caused by the projective integral approxima-
tions of the type discussed. We recall in this connection, 
that in the case of an overlapping basis, the projection on 
the subspace of orbitals centered on some subunit  X  can be 
presented as
     

Here and further on we use the shorthand   S−1
(X)κ�

    for the ele-
ments of the  inverse  overlap matrix of the subunit  X :
     

One should proceed analogously with the three- and four-
center two-electron integrals. The two-electron function 
  1r12

χC
κ (1)χD

ρ (2)    can be considered as belonging primar-
ily to the diatomic fragment  CD  where the basis orbitals 
are centered; accordingly, we introduce projectors on the 
 CD  subspace  for both electrons . We shall again perform 
the symmetrization, thus we obtain the projective integral 
approximation for the two-electron integral
     

It is assumed that at least three of the four atoms  A ,  B ,  C  
and  D  are different. (If it happens that for a three-center 
integral   A = B    or   C = D   , then the projector   ̂PAB    or   ̂PCD    
obviously reduces to   ̂PA    or   ̂PC   , respectively.) 

 We introduce the matrices   AX    closely related to the pro-
jectors, with the elements
     

Note that the intra-fragment block of matrix   AX    (i.e., that 
corresponding to both   μ, ν ∈ X   ) is a unit matrix, according 
to the defi nition. 

 Utilizing the defi nition ( 7 ) when substituting the expres-
sion ( 4 ) of the projection operators in the integral approxi-
mation formulae ( 3 ) and ( 6 ), the latter become
     

(4)
P̂X =

∑
κ ,�∈X

|χκ 〉S
−1
(X)κ�

〈χ�|.

(5)S−1
(X)κ�

= (S−1
(X))κ�.

(6)

〈χA
γ (1)χB

ν (2)|
1

r12
|χC

κ (1)χD
ρ (2)〉

=⇒
1

2

[
〈χA

γ (1)χB
ν (2)|P̂CD(1)P̂CD(2)

1

r12
χC

κ (1)χD
ρ (2)〉

+〈χC
κ (1)χD

ρ (2)|P̂AB(1)P̂AB(2)
1

r12
χA

γ (1)χB
ν (2)〉∗

]
.

(7)
AX

μν =
∑
ρ∈A

SμρS−1
(X)ρν .

(8)

〈χA
μ |

ZC

rC
|χB

ν 〉 =⇒
1

2

⎡⎣∑
ρ∈BC

ABC
μρ 〈χρ |

ZC

rC
|χν〉 +

∑
ρ∈AC

(
AAC

νρ 〈χρ |
ZC

rC
|χμ〉

)∗

⎤⎦
=

1

2

⎡⎣∑
ρ∈BC

ABC
μρ 〈ρ|

ZC

rC
|ν〉 +

∑
ρ∈AC

〈μ|
ZC

rC
|ρ〉AAC†

ρν

⎤⎦,

and
     

respectively. Here, and further on, † denotes the adjoint, 
and we have introduced the short-hand notations for the 
one- and two-electron integrals
     

which, in general, include also summations over the spin 
variables. 

 The integral approximations ( 8 ) and ( 9 ) are the same 
as were used in the energy decomposition scheme [ 9 ]; we 
hope that here we succeeded to present them in a more 
compact and transparent manner. 

 The accuracy of the integral approximations introduced 
may be guessed on the basis of comparing the exact SCF 
energies and the sum of the CECA one- and two-center 
energy components of a given molecule. In Ref. [ 9 ] such 
a comparison was done for ethane molecule, by using a 
wide variety of basis sets from 6-31G to 6-311++G** and 
cc-pVDZ, and it was found that the total energy of about 
  −79.2    Hartree-s of this molecule in all cases was approxi-
mated within 15  milli Hartree-s, and the deviation was less 
than 20 mH even for 4-31G. Considering the refi ned ver-
sion of the CECA scheme [ 11 ] in which these remaining 
three- and four-electron effects were distributed among 
the one- and two-center components by using a special 
scheme, one could conclude that this error is scattered in a 
random fashion among the numerous energy components, 
so it does not carry any physical or chemical signifi cance 

(9)

〈χA
γ (1)χB

ν (2)|
1

r12
|χC

κ (1)χD
ρ (2)〉

=⇒
1

2

⎡⎣ ∑
�,τ∈CD

ACD
γ �

ACD
ντ 〈χ�(1)χτ (2)|

1

r12
|χκ(1)χρ(2)〉

+

⎛⎝ ∑
�,τ∈AB

AAB
κ�

AAB
ρτ 〈χ�(1)χτ (2)|

1

r12
|χγ (1)χν(2)〉

⎞⎠∗⎤⎦
=

1

2

⎡⎣ ∑
�,τ∈CD

ACD
γ �

ACD
ντ [�τ |κρ] +

∑
�,τ∈AB

[γ ν|�τ ]AAB†
�κ AAB†

τρ

⎤⎦.

(10)

〈μ|
ZC

rC
|ν〉 = 〈χμ|

ZC

rC
|χν〉;

[μν|ρτ ] = 〈χμ(1)χν(2)|
1

r12
|χρ(1)χτ (2)〉,
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(this conclusion was drawn not only for ethane molecule, 
but for every system considered as yet). 

    3   The LCAO Hamiltonian 

 In the followings we shall use, besides the non-orthogonal 
set of original basis orbitals   {χμ}   , also the respective  Löw-
din-orthogonalized  set   {ψν}    of orbitals:
     

where   S−
1
2

μν
    is an element of the   − 1

2   th power of the overlap 
matrix, as well as the biorthogonal set   {ϕρ}   :
     

All the three sets span the same subspace of the one-elec-
tron functions. 

 We introduce creation and annihilation operators cor-
responding to each set of these orbitals. In order to distin-
guish to what type of orbitals the given creation or anni-
hilation orbital is pertinent, we shall use Longuet-Higgins’ 
[ 16 ] notations   ̂ψ+

ν    ,   ̂χ+
μ     and   ̂ϕ+ρ     for the creation operators and 

  ̂ψ−
ν    ,   ̂χ−

μ     and   ̂ϕ−ρ     for the annihilation ones. The annihilation 
operators are defi ned as the adjoints of the respective crea-
tion operators:
     

The creation operators transform in the same manner as the 
respective orbitals do, i.e., according to Eqs. ( 11 ) and ( 12 ). 
However, standard Fermion anticommutation rules hold 
only for the creation and annihilation operators defi ned for 
the orthonormalized set   {ψν}   
     

while
     

and
     

respectively. Owing to the presence of the (inverse) over-
lap matrix elements in the anticommutators ( 15 ) and 
( 16 ), Fermion anticommutation rules hold for the  mixed  
anticommutators
     

(11)ψν =
∑
μ

S−
1
2

μν
χμ,

(12)
ϕρ =

∑
μ

S−1
μρ χμ.

(13)ψ̂−
ν = (ψ̂+

ν )† χ̂−
μ = (χ̂+

μ )† ϕ̂−ρ = (ϕ̂+ρ )†.

(14){ψ̂+
ν ; ψ̂

−
μ } = ψ̂+

ν ψ̂−
μ + ψ̂+

μ ψ̂−
ν = δμν ,

(15){χ̂+
ν ; χ̂

−
μ } = χ̂+

ν χ̂−
μ + χ̂+

μ χ̂−
ν = Sμν ,

(16){ϕ̂+ν ; ϕ̂
−
μ } = ϕ̂+ν ϕ̂−μ + ϕ̂+μ ϕ̂−ν = S−1

μν ,

(17){χ̂+
ν ; ϕ̂

−
μ } = δμν .

and
     

This means that when acting  to right  on a string of crea-
tion operators   ̂χ+

μ     in a “ket”, operator   ̂ϕ−μ    behaves as a 
conventional annihilation operator does, and analogously, 
when acting  to left  on a string of annihilation operators 
  ̂χ−

μ = (χ̂+
μ )†    in a “bra”, operator   ̂ϕ+μ     behaves as a conven-

tional creation operator. 
 The LCAO version of the Born–Oppenheimer Hamilto-

nian has a standard form in terms of the creation and anni-
hilation operators referring to the Löwdin-orthogonalized 
basis [ 16 ,  17 ]:
     

Here the fi rst sum describes the internuclear repulsion, 
  h�
μν = 〈ψμ|ĥ|ψν〉    is the matrix element of the one-electron 

Hamiltonian
     

in the Löwdin-orthogonalized basis, and   [ψμψν |ψρψτ ]    
is a two-electron integral in that basis and the [12|12] 
convention. 

 Using the transformations ( 11 ), ( 12 ) connecting the 
different sets of the orbitals (and thus also the respective 
creation and annihilation operators,) one can transform the 
Hamiltonian ( 19 ) into several equivalent forms. We shall 
present here two of them. 
  Using “biorthogonal” operators  

 In one version we collect pairs of matrices   S−
1
2    into 

matrices   S−1   , and express the Hamiltonian in terms of the 
one- and two-electron integrals over the original  overlap-
ping  basis orbitals and of the “biorthogonal” creation and 
annihilation operators   ̂ϕ+μ    ,   ̂ϕ−ν    :
     

where   hμν    and   [μν|κρ]    are the one- and two-electron inte-
grals calculated for the overlapping set of basis orbitals 
  {χμ}   . 

 As it is known [ 17 ], the expectation value  E  of opera-
tor   Ĥ    can be expressed through the matrix representations 

(18){ϕ̂+ν ; χ̂
−
μ } = δμν .

(19)

Ĥ =
∑
A<B

ZAZB

RAB
+
∑
μ,ν

h�
μνψ̂

+
μ ψ̂−

ν

+
1

2

∑
μ,ν,ρ,τ

[ψμψν |ψρψτ ] ψ̂+
μ ψ̂+

ν ψ̂−
τ ψ̂−

ρ .

(20)ĥ = −
1

2
�−

∑
A

ZA

rA
,

(21)

Ĥ =
∑
A<B

ZAZB

RAB
+
∑
μ,ν

hμνϕ̂
+
μ ϕ̂−ν

+
1

2

∑
μ,ν,κ ,ρ

[μν|κρ]ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ .
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  P    and   �    of the fi rst- and second-order density matrices, 
respectively:
     

Comparison with Eq. ( 21 ) indicates that in  overlapping 
basis  the elements of the spin-dependent fi rst- and second-
order density matrix can be obtained as expectation values 
of operator strings constructed from “biorthogonal” crea-
tion and annihilation operators:
     

and
     

calculated for the actual wave function (note that 
  �κρμν = �ρκνμ = −�ρκμν    etc.) As it is known, in the case 
of  single-determinant  (SD) wave functions the second-
order density matrix can be expressed through the fi rst-
order one, so one has
     

 Using “mixed” set of operators  
 In this version, fi rst presented in [ 1 ], we collect the 

matrices   S−1    necessary to form operators   ̂ϕ−μ   , but let the 
other matrices   S−1    to appear explicitly (this increases the 
number of summation indices to be explicitly written out). 
Thus we obtain an expression of   Ĥ    that contains individual 
terms that are not Hermitian—although the overall   Ĥ   , of 
course, is:
     

The advantage of this form is that it permits to work only 
with quantities related to the original, non-orthogonal 
basis orbitals; we recall in that respect that operators   ̂ϕ−μ    
can be considered as the “true” annihilation operators, in 
light of the anticommutation rule ( 17 )—they  act  (to right) 
in the non-orthogonal framework exactly in the manner as 
usual annihilation operators do in the orthogonal case. This 
approach has been utilized when CHA has been applied to 
the BSSE problem of intermolecular interactions [ 1 ,  3 ,  4 ]. 

(22)

E = 〈Ĥ〉 =
∑
A<B

ZAZB

RAB
+
∑
μ,ν

hμνPνμ

+
1

2

∑
μ,ν,κ ,ρ

[μν|κρ]�κρμν .

(23)
〈
ϕ̂+μ ϕ̂−ν

〉
= Pνμ;

(24)
〈
ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ

〉
= �κρμν ,

(25)
〈
ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ

〉
SD

= PκμPρν − PκνPρμ.

(26)

Ĥ =
∑
A<B

ZAZB

RAB
+
∑
μ,ν,ρ

S−1
ρμhμνχ̂

+
ρ ϕ̂−ν

+
1

2

∑
μ,ν,ρ,τ ,�,σ

S−1
�μ S−1

σν [μν|ρτ ] χ̂+
�

χ̂+
σ ϕ̂−τ ϕ̂−ρ

 As for a Hermitian Hamiltonian   Ĥ    one obviously has 
  Ĥ ≡ 1

2 (Ĥ + Ĥ†)   , one can symmetrize each term of ( 26 ), 
and get:
     

This possibility was not considered previously. To save 
space, we shall not develop it in any detail either here, 
only note that the respective formulae of this type can be 
obtained from those discussed in the forthcoming sections 
by substituting for every creation operator   ̂ϕ+μ     its explicit 
expansion
     

and, if necessary, symmetrize like it was done for Eq. ( 27 ). 

    4   The “chemical” Hamiltonian 

 The different forms of the “chemical Hamiltonian” are 
obtained if one introduces into formulae ( 21 ), ( 26 ) and 
( 27 ), the integral approximations discussed previously. 

 When introducing the projective integral approxi-
mations into these equations, we shall group the terms 
according to the centers involved. The one-electron 
matrix elements   hμν    do not contain any three-center inte-
grals if   μ, ν ∈ A   , i.e., both basis orbitals   χμ    and   χν    are 
centered on the same atom  A . In this case, no approxi-
mation is needed. If, however,   μ ∈ A   ,   ν ∈ B    (  A �= B   ),
then   hμν    will contain both two-center integrals and three-
center ones—and the latter should be approximated 
according to Eq. ( 8 ). For treating the genuine two-center 
contributions in this case, it is worth introducing the one-
electron Hamiltonian   ̂hAB    corresponding to the diatomic 
fragment  AB :
     

The two-electron integrals need be grouped not only 
according to the number of centers involved, but also 
depending on whether the two orbitals in the “ket” part 
of the integral in ( 21 ) are centered on the same or on dif-
ferent atoms. 

 Performing the grouping of the terms, one obtains the 
approximation to the Hamiltonian ( 21 ) as

(27)

Ĥ =
∑
A<B

ZAZB

RAB
+

1

2

∑
μ,ν,ρ

(
S−1
ρμhμνχ̂

+
ρ ϕ̂−ν + hνμS−1

μρ ϕ̂+ν χ̂−
ρ

)
+

1

4

∑
μ,ν,ρ,τ ,�,σ

(
S−1
�μ S−1

σν [μν|ρτ ] χ̂+
�

χ̂+
σ ϕ̂−τ ϕ̂−ρ

+[ρτ |μν]S−1
μ�

S−1
νσ ϕ+ρ ϕ̂+τ χ̂−

σ χ̂−
�

)

(28)
ϕ̂+ρ =

∑
μ

S−1
μρ χ̂+

μ .

(29)ĥAB
= −

1

2
�−

ZA

rA
−

ZB

rB
.
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This is a Hermitian Hamiltonian that does not contain 
explicitly three- and four-center integrals any more. It 
requires some further regrouping in order to present it as a 
sum of terms that can be assigned to the individual atoms 
and pairs of atoms. For that reason, we introduce the atomic 
one-electron Hamiltonian   ̂hA   
     

and perform projections of all relevant quantities to atomic 
subspaces in order to separate out effective atomic Hamilto-
nians. However, the error of projecting two-center quantities 
on the one-center ones is not neglected but is assigned to the 
diatomic terms of the Hamiltonian. In this manner we get

(31)ĥA
= −

1

2
�−

ZA

rA
.

     

where
     

and

(32)Ĥ =⇒
∑

A

ĤA +
∑
A<B

ĤAB,

(33)

ĤA =
1

2

∑
ν,τ∈A

∑
μ

(
AA

μτ hA
τν ϕ̂

+
μ ϕ̂−ν + hA

ντ AA†
τμϕ̂+ν ϕ̂−μ

)
+

1

4

∑
η,κ ,τ ,ρ∈A

∑
μ,ν

(
AA

μτ AA
νη[τη|κρ]ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ

+[κρ|τη]AA†
τμAA†

ην ϕ̂+κ ϕ̂+ρ ϕ̂−ν ϕ̂−μ

)

     

(30)

Ĥ =⇒
∑

A

∑
μ,ν∈A

hμνϕ̂+μ ϕ̂−ν +
∑
A,B

A�=B

∑
μ∈A
ν∈B

⎡⎢⎢⎣hAB
μν −

1

2

∑
C

C �=A,B

⎛⎝ ∑
ρ∈BC

ABC
μρ 〈ρ|

ZC

rC
|ν〉 +

∑
ρ∈AC

〈μ|
ZC

rC
|ρ〉AAC†

ρν

⎞⎠
⎤⎥⎥⎦ϕ̂+μ ϕ̂−ν

+
1

2

∑
A

∑
μ,ν,κ ,ρ∈A

[μν|κρ] ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ +
1

4

∑
A,B

A�=B

⎡⎢⎢⎢⎣ ∑
κ ,ρ∈A

∑
μ,ν∈AB

(μ/∈A)∨(ν /∈A)

(
[μν|κρ] ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ + [ρκ|νμ] ϕ̂+κ ϕ̂+ρ ϕ̂−ν ϕ̂−μ

)

+
∑
κ∈A
ρ∈B

∑
μ,ν∈AB

(
[μν|κρ] ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ + [ρκ|νμ] ϕ̂+κ ϕ̂+ρ ϕ̂−ν ϕ̂−μ

)

+
∑

κ ,ρ,τ ,η∈A

∑
μ∈B

∑
ν

(ν /∈AB)

(
AA

μτ AA
νη[τη|κρ]ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ + [ρκ|ητ ]AA†

ην AA†
τμϕ̂+κ ϕ̂+ρ ϕ̂−ν ϕ̂−μ

)

+
∑
κ∈A
ρ∈B

∑
τ ,η∈AB

∑
μ,ν

(μ/∈AB)∨(ν /∈AB)

(
AAB

μτ AAB
νη [τη|κρ]ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ + [ρκ|ητ ]AAB†

ην AAB†
τμ ϕ̂+κ ϕ̂+ρ ϕ̂−ν ϕ̂−μ

)⎤⎥⎥⎥⎦

     

(34)

ĤAB =
ZAZB

RAB
−

1

2

∑
τ∈AB

∑
ν

⎡⎣∑
μ∈A

(
AAB

ντ 〈τ |
ZB

rB
|μ〉ϕ̂+ν ϕ̂−μ + 〈μ|

ZB

rB
|τ 〉AAB†

τν ϕ̂+μ ϕ̂−ν

)
+
∑
μ∈B

(
AAB

ντ 〈τ |
ZA

rA
|μ〉ϕ̂+ν ϕ̂−μ + 〈μ|

ZA

rA
|τ 〉AAB†

τν ϕ̂+μ ϕ̂−ν

)⎤⎦
+

1

2

∑
κ∈A
ρ∈B

∑
η,τ∈AB

∑
μ,ν

(
AAB

μτ AAB
νη [τη|κρ]ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ + [κρ|τη]AAB†

τμ AAB†
ην ϕ̂+κ ϕ̂+ρ ϕ̂−ν ϕ̂−μ

)

+
1

2

∑
ν∈A
μ∈B

[(
hA
μν −

∑
τ∈A

AA
μτ hA

τν + hB
μν −

∑
τ∈B

hB
μτ AB†

τν

)
ϕ̂+μ ϕ̂−ν +

(
hA
νμ −

∑
τ∈A

hA
ντ AA†

τμ + hB
νμ −

∑
τ∈B

AB
ντ hB

τμ

)
ϕ̂+ν ϕ̂−μ

]

+
1

2

⎧⎪⎪⎨⎪⎪⎩
∑

κ ,ρ∈A

∑
μ,ν∈AB

(μ/∈A)∨(ν /∈A)

⎡⎣⎛⎝[μν|κρ] −
∑

η,τ∈A

AA
μτ AA

νη[τη|κρ]

⎞⎠ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ +

⎛⎝[κρ|μν] −
∑

η,τ∈A

[κρ|τη]AA†
τμAA†

ην

⎞⎠ϕ̂+κ ϕ̂+ρ ϕ̂−ν ϕ̂−μ

⎤⎦

+
∑

κ ,ρ∈B

∑
μ,ν∈AB

(μ/∈B)∨(ν /∈B)

⎡⎣⎛⎝[μν|κρ] −
∑

η,τ∈B

AB
μτ AB

νη[τη|κρ]

⎞⎠ϕ̂+μ ϕ̂+ν ϕ̂−ρ ϕ̂−κ +

⎛⎝[κρ|μν] −
∑

η,τ∈B

[κρ|τη]AB†
τμAB†

ην

⎞⎠ϕ̂+κ ϕ̂+ρ ϕ̂−ν ϕ̂−μ

⎤⎦
⎫⎪⎪⎬⎪⎪⎭
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In this presentation, the monoatomic terms of the Hamil-
tonian contain only one-center integrals and the diatomic 
terms contain one- and two-center ones. While the fi rst 
few terms in Eq. ( 34 ) describe direct diatomic interactions 
(electron-nuclear and electron-electron), most of the terms 
contain differences between a two-center integral related 
to  intra atomic interactions and its approximation by one-
center integrals and projection-related matrices   AX   , like the 
term
     

These terms account for the effects of the basis extension 
from the atomic description to the diatomic fragments. 
Their role should diminish as the basis set increases, and in 
Ref. [ 1 ] terms of this type were assigned to the fi nite basis 
correction ones. Here they are conserved as to provide that 
the diatomics (diatomic fragments) are treated without any 
approximations. 

 Contrary to the integrals, a part of the creation and anni-
hilation operators run over the whole basis, so there occur 
operator strings involving three and four centers. When the 
energy is calculated as the expectation value of the Hamil-
tonian, the expectation values of the operator strings give 
the density matrix elements according to Eqs. ( 23 )–( 25 ). 
Combined with the elements of the matrices   AX   , in the 
single-determinant case they lead to the  projected density 
matrices  [ 9 ]   BX    and   CσX   ,   σ = α    or  β :
     

which implicitly account for the three- and four-center 
effects—without the need to deal with them explicitly. In 
Eq. ( 36 )
     

is the usual spinless density matrix, while   Pσ    is the density 
matrix for spin  σ  (  σ = α    or  β ). The expectation values of 
the operators   ĤA    and   ĤAB    are equal to the energy compo-
nents   ̂EA    and   ̂EAB   , respectively, quoted in [ 9 ]; we shall not 
display them here explicitly. (We note, however, that a fur-
ther decomposition of these energy components into terms 
of different physical origin has also been accomplished in 
[ 18 ].) 

 We shall mention that using the “mixed” second quan-
tized formalism of Ref. [ 1 ], already mentioned, it is pos-
sible to present the “chemical” Hamiltonian ( 32 )–( 34 ) in 
a form in which each term of the Hamiltonian contains 
only creation and annihilation operators assigned to the 
corresponding atom or pair of atoms. To save place, we 
shall illustrate that only by considering the fi rst term of 
Eq. ( 33 )—all the other terms can be treated analogously. 
The fi rst term in question is

(35)hA
μν −

∑
τ∈A

AA
μτ hA

τν .

(36)
BX

μν =
∑
γ

Dμγ AX
γ ν; CσX

μν =
∑
γ

Pσ
μγ AX

γ ν (ν ∈ X),

(37)D = Pα
+ Pβ ,

     

We substitute the explicit expansions   ̂ϕ+μ =
∑

ρ S−1
ρμχ̂+

ρ    , 
and   AA

μτ =
∑

�∈A Sμ�S−1
(A)�τ   , and get

     

When calculating expectation values, the three- and four-
center effects will again be accounted for through the “pro-
jected density matrices” Eq. ( 36 ), owing to the fact that for 
the expectation values of the “mixed” pairs of creation and 
annihilation operators one has (in the single-determinant 
case) [ 1 ,  6 ]
     

and
     

The overlap matrix elements appearing in these expres-
sions, combined with the elements of matrices   S−1

(X)    in the 
terms like ( 39 ) give elements of matrices   AX   , occurring in 
the defi nitions ( 36 ). 

 Equation ( 33 ) contains also the adjoint of the term con-
sidered in Eq. ( 38 ). After the transformations analogous 
to those in Eq. ( 39 ), it will contain the subscripts of the 
matrices interchanged (complex conjugation) and the 
operator string   ̂χ+

�
ϕ̂−ν     replaced by   ̂ϕ+ν χ̂−

�
   ; its expectation 

value will be the complex conjugate of that for the term 
( 38 ). 

 Based on these consideration, it is easy to see that the 
atomic Hamiltonians Eq. ( 33 ) can be obtained by Hermitiz-
ing the non-Hermitian atomic Hamiltonians   Ĥ ′

A    defi ned in 
Ref. [ 1 ]:
     

As a consequence of this Hermitization, the antisym-
metrized products of the full CI atomic solutions is not an 
eigenfunction of the sum of atomic operators   ĤA   , as was 
the case for the sum of non-Hermitian operators   Ĥ ′

A   . How-
ever, considering   Ĥ ′

A    acting to right and   Ĥ ′ †
A     acting to left, 

one can easily see that the  expectation value  of that opera-
tor sum calculated with the antisymmetrized product of the 
atomic full CI solutions will be equal to the sum of atomic 
full CI energies. 

(38)

∑
ν,τ∈A

∑
μ

AA
μτ hA

τν ϕ̂
+
μ ϕ̂−ν .

(39)

∑
ν,τ∈A

∑
μ

AA
μτ hA

τν ϕ̂+μ ϕ̂−ν =
∑

�,ν,τ∈A

∑
μ,ρ

Sμ�S−1
(A)�τ

hA
τνS−1

ρμχ̂+ρ ϕ̂−ν

=
∑

�,ν,τ∈A

∑
ρ

δρ�S−1
(A)�τ

hA
τν χ̂+ρ ϕ̂−ν

=
∑

�,ν,τ∈A

S−1
(A)�τ

hA
τν χ̂+

�
ϕ̂−ν .

(40)
〈
χ̂+

μ ϕ̂−ν
〉
= (PS)νμ =

∑
τ

Pντ Sτμ,

(41)
〈
χ̂+

μ χ̂+
ν ϕ̂−� ϕ̂−κ

〉
SD

= (PS)κμ(PS)�ν − (PS)κν(PS)�μ.

(42)ĤA =
1

2

(
Ĥ ′

A + Ĥ ′ †
A

)
.
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 The possibility to write down an (even if approximate) 
Hermitian Hamiltonian representing the sum of monoatomic 
and diatomic terms has a signifi cant conceptual importance, 
in particular because the expectation values of these terms of 
the Hamiltonian reproduce the one- and two-center energy 
components in the CECA analysis [ 9 ]. We hope that this 
way of writing the Hamiltonian will permit to accomplish 
some a priori approaches to molecular structure problems, 
and not only a posteriori ones like the energy decomposition. 
In the next section, we shall consider the application of our 
approach at the SCF level of theory; it is not utilizing explic-
itly the detailed form ( 32 )–( 34 ) of the Hamiltonian. 

    5   SCF equations 

 The fact that the projective integral approximations dis-
cussed in Sect.  2  lead to the approximate Hermitian Hamil-
tonian ( 30 ), opens a quite straightforward way to introduce 
the respective approximate SCF equations. As the Hamil-
tonian in the second quantized framework is defi ned by the 
 integrals  over the basis orbitals, one should simply intro-
duce the same integral approximations in the SCF equa-
tions as were used for the Hamiltonian. 

 Admitting unrestricted Hartree–Fock (UHF) case, the 
Hartree–Fock–Roothaan (HFR) equations are
     

where   cσ
i     is the vector of the LCAO coeffi cients of the i-th 

molecular orbital of spin  σ  (  σ = α    or  β ),   εσ
i     is its orbital 

energy, and the matrix elements of the Fockian are given in 
terms of the  integrals over the spatial orbitals  by
     

When introducing here the projective integral approxima-
tions, one should treat separately the cases, when the sub-
scripts  μ  and  ν  of   Fσ

μν    correspond the same atom (  μ, ν ∈ A   )
and when they refer to different atoms (  μ ∈ A   ,   ν ∈ B   ;
  A �= B   ). By performing somewhat lengthy derivations 
outlined in the “ Appendix ”, and turning to the convention 
(11|22) for the two-electron integrals, usually preferred in 
the programming work, we get for the one-center Fock-
matrix elements:
     

(43)Fσ cσ
i = εσ

i Scσ
i

(44)
Fσ

μν = hμν +
∑
ρ,τ

(
Dτρ[μρ|ντ ] − Pσ

τρ[μρ|τν]
)
.

(45)

Fσ
μν

∣∣
μ,ν∈A

=⇒ hμν +
∑

ρ,τ∈A

[
Dρτ (μν|ρτ)− Pσ

ρτ (μρ|ντ)
]

+
∑
ρ∈A

∑
B

B �=A

∑
τ∈B

{
Dρτ (μν|ρτ)−

1

2
Pσ

ρτ [(μρ|ντ)+ (μτ |νρ)]

}

+
∑

B
B �=A

∑
τ∈B

∑
η∈AB

{
BAB

τη (μν|ητ)−
1

2
CσAB

τη [(μτ |ην)+ (μη|ντ)]

}
.

In the case of two-center Fock-matrix elements, it is also 
possible to add and subtract terms as to get an expression 
with the “projected density matrices”   BAB    and   CσAB   ; how-
ever, that expression would contain a number of correction 
terms with sums containing one-center to two-center correc-
tions, like the difference   [μρ|ντ ] −

∑
η,�∈B AB

μηAB
ρ�
[η�|ντ ]   ,

essentially similar to those occurring in Eq. ( 34 ). For that 
reason we separate out only the terms containing only one- 
and two-center integrals and conserve explicitly the projec-
tive expansion of the three- and four-center ones:
     

Here the notation   {C, D} �= {A, B}    is used to indicate that at 
least one of the centers   C, D    is different from both  A  and 
 B . When three-center integrals are expanded, it happens 
that   D = B    or   C = A   ; then obviously one should assume 
  AAA ≡ AA    and   ABB ≡ AB   . 

 An interesting property of these equations is that the 
respective SCF energy—the expectation value of the Ham-
iltonian ( 30 )—will be an exact sum of the one- and two-
center CECA energy components. The SCF energy may be 
calculated by using the standard formula
     

Here the effective core matrix   heff     is defi ned by the one-
electron components of the Fock-matrix elements ( 45 ), 
( 46 ). 

 The conceptual approach behind these equations is quite 
similar to that we used [ 3 ,  4 ] with success in the theory of 
intermolecular interactions in order to get wave functions 
which are free of the so-called basis set superposition error. 
However, in contrast to that case, the present SCF equa-
tions are Hermitian and, as a consequence, may be directly 
used also to calculate the energy. 

 The actual programming of these equations may require 
introduction of different intermediate matrices; the effec-
tiveness of the whole procedure may depend decisively on 

(46)

Fσ
μν

∣∣
μ∈A, ν∈B (A �=B)

=⇒ hAB
μν −

1

2

∑
C

C �=A,B

[∑
τ∈BC

ABC
μτ 〈τ |

ZC

rC
|ν〉 +

∑
τ∈AC

AAC
ντ 〈μ|

ZC

rC
|τ 〉

]

+
∑

ρ,τ∈AB

[
Dρτ (μν|ρτ)− Pσ

ρτ (μρ|ντ)
]

+
1

2

∑
C,D

{C,D}�={A,B}

∑
ρ∈C

∑
τ∈D

⎡⎣⎛⎝Dρτ

∑
η,�∈BD

ABD
μη ABD

ρ�

− Pσ
τρ

∑
η,�∈BD

ABD
μ�

ABD
ρη

⎞⎠(ην|�τ)

+

⎛⎝Dρτ

∑
η,�∈AC

AAC
νη AAC

τ�
− Pσ

τρ

∑
η,�∈AC

AAC
ν�

AAC
τη

⎞⎠(μη|ρ�)

⎤⎦

(47)

E =
∑
A<B

ZAZB

RAB
+

1

2

{
Tr
[
Pα(heff

+ Fα)

]
+ Tr

[
Pβ(heff

+ Fβ)

]}
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what quantities may be stored in the computer’s memory. 
However, we think that the exclusion of the explicit appear-
ance of the three- and four-center integrals will worth of 
these complications. A promising special applications of 
these equations may be their use as a special intermediate 
layer in the ONIOM-type approaches between the parts 
used with full ab initio and those treated at the semiempiri-
cal level. 

    6   Conclusions 

 An attempt is made to develop a new scheme of non-
empirical SCF-LCAO-MO calculations, which may 
represent an alternative for both the “orthodox” ab ini-
tio scheme and the semiempirical theories (it may also 
be a useful intermediate layer in the ONIOM-type 
approaches). For that reason it is suggested to treat all 
the one- and two-center integrals in a strict ab initio man-
ner and to use approximate projective expansions for the 
three- and four-center ones—the same as were used in 
the CECA energy decomposition scheme [ 9 ]. These pro-
jective integral expansions permit to express the leading 
“physical” components of the three- and four-center inte-
grals through one- center and two-center integrals and 
the overlap ones. These expansions are utilized to rewrite 
the second quantized Born–Oppenheimer LCAO Hamil-
tonian in an approximate form not containing any three- 
and four-center integrals and to write down a Hermitian 
version of the “Chemical Hamiltonian” [ 1 ], containing 
only mono- and diatomic terms. Incorporating these pro-
jective integral approximations in the HFR equations, 
one obtains some modifi ed SCF equations. The calcula-
tions will require only one- and two-center integrals and 
some quantities calculated by using the overlap matrix. 
Nevertheless, for large basis sets, this method should 
converge to the usual Hartree–Fock limit. The approach 
is in the spirit of the CHA–SCF equations [ 3 ,  4 ] used 
with success to exclude basis set superposition error in 
the theory of intermolecular interactions, but here the 
Fockian is Hermitian and can also directly be applied to 
calculate energy. 

        Appendix: Derivation of Eq. ( 45 ) 

 When considering the integral approximations, we should 
stick to the [12|12] convention for the integrals permit-
ting to distinguish the terms originating from the “bra”-s 
and “ket”-s, respectively; in the fi nal formulae we have 
turned to the (11|22) convention more convenient in 
programming. 

 Systematizing the terms according to the centers of the 
orbitals involved, for the one-center matrix elements of 
matrix   Fσ    one has
     

Only the last sum of Eq. ( 48 ) contain three- or four-center 
integrals that need to be approximated, therefore we shall 
consider its terms in detail. At fi rst, we substitute the 
approximations ( 6 ) in the fi rst term of that sum:
     

Both subscripts of the coeffi cient   AAC
μ�

    in the fi rst term are 
belonging to the diatomic fragment  AC ; as noted above, the 
intra-fragment blocks of the matrices   A    are unit-matrices; 
therefore, this coeffi cient reduces to the Kronecker delta 
  δμ�   . Similarly, in the second term   AAB†

�ν = δ�ν   . Utilizing this 
we get:
     

In the followings we shall assume that we use real 
basis orbitals and orbital coeffi cients—as it is usually 
the case in the practice. Then   Dτρ = Dρτ   ,   AAB†

ητ = AAB
τη    ,

  [μρ|�η] = [�η|μρ]   , and interchanging some summation 

(48)

Fσ
μν

∣∣
μ,ν∈A

= hμν +
∑

ρ,τ∈A

(
Dτρ[μρ|ντ ] − Pσ

τρ[μρ|τν]
)

+
∑

B
B �=A

∑
ρ∈B

∑
τ∈A

(
Dτρ[μρ|ντ ] − Pσ

τρ[μρ|τν]
)

+
∑

B
B �=A

∑
τ∈B

∑
ρ∈A

(
Dτρ[μρ|ντ ] − Pσ

τρ[μρ|τν]
)

+
∑
B,C

B,C �=A

∑
ρ∈B

∑
τ∈C

(
Dτρ[μρ|ντ ] − Pσ

τρ[μρ|τν]
)

(49)

∑
B,C

B,C �=A

∑
ρ∈B

∑
τ∈C

Dτρ[μρ|ντ ]

=⇒
∑
B,C

B,C �=A

∑
ρ∈B

∑
τ∈C

Dτρ

1

2

⎛⎝ ∑
�,η∈AC

AAC
μ�

AAC
ρη [�η|ντ ]

+
∑

�,η∈AB

AAB†
�ν AAB†

ητ [μρ|�η]

⎞⎠

(50)

∑
B,C

B,C �=A

∑
ρ∈B

∑
τ∈C

Dτρ[μρ|ντ ]

=⇒
∑
B,C

B,C �=A

∑
ρ∈B

∑
τ∈C

Dτρ

1

2

⎛⎝∑
η∈AC

AAC
ρη [μη|ντ ]

+
∑
η∈AB

AAB†
ητ [μρ|νη]

⎞⎠.
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indices we can conclude that the two sums are equal. Thus 
we have in the real case
     

The summation over   ρ ∈ B; B �= A    in the right-hand side 
of Eq. ( 51 ) means that  ρ  runs over all the orbital indices, 
except those assigned to atom  A ; we may add and subtract 
the sum for the case   ρ ∈ A   :
     

In the fi rst term on the right-hand side, we can sum over 
 ρ  to get the “projected density matrix element”   BAC

τη    , while 
in the second term the coeffi cient   AAC

ρη     again reduces to the 
Kronecker delta   δρη   . Thus we get, changing the summation 
index  C  to  B  in the right-hand side:
     

(51)

∑
B,C

B,C �=A

∑
ρ∈B

∑
τ∈C

Dτρ[μρ|ντ ]

=⇒
∑
B,C

B,C �=A

∑
ρ∈B

∑
τ∈C

Dτρ

∑
η∈AC

AAC
ρη [μη|ντ ].

(52)

∑
B,C

B,C �=A

∑
ρ∈B

∑
τ∈C

Dτρ [μρ|ντ ] =⇒
∑

C
C �=A

∑
ρ

∑
τ∈C

Dτρ

∑
η∈AC

AAC
ρη [μη|ντ ]

−
∑

C
C �=A

∑
ρ∈A

∑
τ∈C

Dτρ

∑
η∈AC

AAC
ρη [μη|ντ ].

(53)

∑
B,C

B,C �=A

∑
ρ∈B

∑
τ∈C

Dτρ[μρ|ντ ] =⇒
∑

B
B �=A

∑
τ∈B

∑
η∈AB

BAB
τη [μη|ντ ]

−
∑

B
B �=A

∑
ρ∈A

∑
τ∈B

Dτρ[μρ|ντ ].

The second sum just cancels the respective term in the third 
line of Eq. ( 48 ). 

 The second (exchange) term in the fourth line of Eq. ( 48 ) 
transforms analogously. However, in that case the two 
terms are not equal, as were in Eq. ( 50 ), and there is no full 
canceling of the second term in the third line of Eq. ( 48 ); 
instead the  half  of the respective terms in both second and 
third lines is canceled. 
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used in quantum chemical calculations not directly in 
the quantum mechanical determination of single-point 
energies rather in representing the equilibrium and 
transition-state geometries. The dimension of a com-
plete and non-redundant set of the internal coordinates 
is smaller than the number of the Cartesians, but this 
is not the main reason for their application. Their most 
important feature is that in terms of internal coordi-
nates, the Hessian matrix could be well approximated 
with a simple diagonal matrix [ 4 ] in gradient geometry 
optimization procedures. In this paper, we will deal 
with the system of internal coordinates, in order to 
give a deeper insight and characterize some interesting 
features of the pseudoinverse of the Eliashevich–Wil-
sonian matrix  B  [ 1 ,  2 ]. 

    2   Theory 

 Instead of the usual Cartesians, we can also apply a com-
plete and non-redundant set of the so-called internal coor-
dinates. In order to understand their application in vibra-
tional calculations, let us consider a molecular system 
consisting of  N  nuclei; let the Cartesian displacement vec-
tors of the nuclei be   d1, d2, . . . , dN    around their equilibrium 
geometry in the usual three-dimensional Euclidean space 
E  3  . (The expression for the  n -th Cartesian displacement 
vector is   dn = ρn − ρ

0
n   , where  ρ   n   is the instantaneous posi-

tion vector of the  n -th nucleus, and   ρ0
n    is the position vector 

of the same nucleus at equilibrium. Hereafter, these posi-
tion vectors correspond to an arbitrary origin. Note that for 
simplicity, we omit the explicit use of the atomic masses, 
i.e., do not use mass-weighted Cartesians.) A single-point 
 δ  of a hypothetical 3 N -dimensional space ℜ  3N     (δ ∈ �3N )   , 
defi ned as

                     Abstract     It is shown that the system of unit vectors cor-
responding to the internal coordinates is non-orthogonal 
generally. The deduction starts with the well-known ortho-
normality of unit vectors of the Cartesian coordinates. The 
crucial point of the GDIIS method is discussed regarding 
a “partially isomorphic” relationship between two vector 
spaces. Some features of the pseudoinverse of the Elia-
shevich–Wilsonian matrix  B  are deduced and discussed: 
these are analogous to the conditions formulated originally 
for the elements of the  B -matrix. 

   Keywords     Internal coordinates    ·  Reciprocal internal 
displacement coordinates    ·  Non-orthogonal    ·   B -matrix    · 
 Pseudoinverse    ·  Sayvetz conditions    ·  GDIIS  

      1  Introduction 

 The use of the internal coordinates is a relevant and 
interesting topic both in the field of the vibrational 
calculations [ 1 – 3 ] and in quantum chemistry [ 4 ]. 
Though vibrational calculations could be carried out 
in terms of Cartesians as well, the system of valence-
type internal coordinates gives the most significant 
and physically meaningful description of the vibra-
tional potential energy. Internal coordinates are often 
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can be used as an equivalent of the set   d1, d2, . . . , dN .    
(Note the difference between the components of vec-
tor  δ  and the Kronecker-delta symbol: the former have 
just one index in subscript, the latter has two!) Let us 
denote an orthonormal (Cartesian) basis set of the ℜ  3N   
space by   {ek}

3N
1 ,    for which the well-known equations 

hold:
     

(that is, the Gram-matrix of the   ek    unit vectors is the unit 
matrix). Naturally,
     

Let us construct another space in order to determine the 
vibrational displacements of the molecule without refer-
ring the external coordinates, that is, without the data of 
the center-of-mass (COM) and the rotations. In the gen-
eral case, the dimension of the latter space is 3 N  − 6, 
according to the well-known Sayvetz (or, Eckart) condi-
tions [ 5 – 7 ] (the special case of the linear molecules is 
exceptional with its 3 N  − 5 dimension). Hereafter, this 
Euclidean space will be denoted by ℜ  3N − 6  , and let us 
denote the internal displacement vector by   s ∈ �3N−6    
which can be expressed in terms of the basis set   {κ i}

3N−6
1     

according to the following equation:
     

(here the  s   i   − s are the well-known internal coordi-
nates; moreover,   s = σ − σ

0   , where   σ    is the instanta-
neous internal coordinate vector and   σ 0    is the inter-
nal coordinate vector at the equilibrium). Unit vectors 
  κ i ∈ �3N−6    are constructed as fixed linear combina-
tions of the primitive curvilinear valence coordinates 
(bond lengths, bond angles, out-of-plane and dihedral 
angles), similarly to the contracted Gaussian basis sets 
in quantum chemistry. [Naturally, there is a significant 
difference between the unit vectors of the “internal 
vector space” ℜ  3N − 6   and the Cartesian unit vectors (or 
the Gaussian primitives): each of the latter is attached 
to (centered on) a single nucleus, while the former 
ones are non-local]. Let us express the   κ i    unit vectors 
of ℜ  3N − 6   by a simple  linear  transformation around the 
molecular equilibrium:

(1)

⎛⎜⎜⎝
d1
d2
· · ·

dN

⎞⎟⎟⎠→

⎛⎜⎜⎝
δ1
δ2
· · ·

δ3N

⎞⎟⎟⎠

(2)〈ek | el〉 = δkl ( k, l = 1, 2, . . . , 3N )

(3)δ =

3N∑
k

δkek .

(4)s =
3N−6∑

i

siκ i

     

(here the role of linear coeffi cients  A   ki   is not known yet). 
Let us collect the   κ i    unit vectors of ℜ  3N − 6   and the   ek    unit 
vectors of ℜ  3N   into the row matrices   (κ1 κ2 · · · κ3N−6)    and 
  (e1 e2 · · · e3N )   , respectively. Now we can write the follow-
ing expression, obviously:
     

{here  A  is a matrix of dimension 3 N  × (3 N  − 6)}. Also, let 
us consider the following equation:
     

where  E  is the full-rank (3 N ) projector (i.e., the unit 
matrix), whereas the rectangular matrix  B  multiplied from 
the left by its pseudoinverse  A  (see below in details) results 
a projector  AB  of rank lower by 6. In Eq. ( 7 ), the order of 
the matrices  A  and  B  in the product follows from Eq. ( 6 ) 
and the relation   s = Bδ    equation (see, e.g., Ref. [ 3 ]) where 
matrix  B  of dimension (3 N  − 6) × 3 N  is that of Eliashevich 
[ 8 ] and Wilson [ 9 ]. It is well known that there exists no bet-
ter approximation to the left “inverse” of matrix  B  than 
matrix  A . In other words,  AB  is the closest possible to the 
unit matrix  E  of dimension 3 N  × 3 N . Projector  AB  could 
thus be a replacement of  E  in Eq. ( 7 ). The expression for 
the matrix  A  is:
     

(In our case, the adjoint of a matrix is equivalent to the 
transpose of it since we use real arithmetics. We denote it 
with a + symbol according to the conventions.) In Eq. ( 8 ), 
 U  is an arbitrary 3 N  × 3 N  non-singular matrix; we use the 
unit matrix for  U  in the simplest case; the matrix  A  is the 
Moore–Penrose pseudoinverse [ 10 ,  11 ] of the rectangu-
lar  B -matrix. To our best knowledge, the aforementioned 
matrix  A  was originally introduced exactly in the same way 
as in Eq. ( 8 ) by Pulay et al. [ 12 ,  13 ] who referred to gener-
alized inverse. The notation  A  itself originates from Craw-
ford [ 14 ]. The defi nitions for the elements of both matrices 
 A  and  B  are:
     

at a special nuclear confi guration   σ 0   . [Note that in Eq. ( 9 )   κ i    
is a vector and  s  i  is a component of a vector]. Moreover, for 
another internal unit vector, one can write   κ j =

∑3N
l elAlj    

[c.f. Eq. ( 5 )], so we get for a typical   
〈
κ i
∣∣ κ j

〉
    element of 

the Gram-matrix of the   κ i    unit vectors (with the help of 
Eq. ( 8 ) setting  U  to the unit matrix):

(5)κ i =

3N∑
k

ekAki

(6)(κ1 κ2 · · · κ3N−6) = (e1 e2 · · · e3N )A,

(7)
(e1 e2 · · · e3N )Eδ → (e1 e2 · · · e3N )ABδ =

(κ1 κ2 · · · κ3N−6)Bδ = (κ1 κ2 · · · κ3N−6)s,

(8)A = UB+
(
BUB+

)−1
.

(9)

(
∂κ i

∂ek

)
σ 0
= Aki and

(
∂si

∂ek

)
σ 0
= Bik ,
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that is, the   {κ i}
3N−6
1     basis set is generally  not   orthogonal  

in the ℜ  3N − 6   space. (Nevertheless, it is possible to  defi ne  
the internal coordinate system as an orthogonal one; this 
statement is acceptable on the basis that the Eliashevich–
Wilson-type  B -matrix can be regarded as a sparse matrix.) 
Note that   s = Bδ    is valid in linear approximation only, 
thus Eq. ( 6 ) is true in the same approximation as well. 
Consequently, our proof given above also assumes a lin-
ear approximation. If considering higher terms, the basis 
  {κ i}

3N−6
1     will still not be orthogonal. In a strict sense, the 

linear approximation is valid using infi nitesimal displace-
ments, but in practice we can consider it to be effective 
using “small enough” displacements in molecular vibration 
calculations as well as determination of stationary states 
in quantum chemistry. The fi rst (minor) consequence of 
this non-orthogonality is that the terminology of internal 
 coordinates  itself is improper according to the rules of the 
linear algebra (see, e.g., [ 15 ]): in the case of a non-ortho-
normal metrics, it is correct to mention  components  instead 
of coordinates. However, we will use the terminology 
of “internal coordinates” in the following, as it is widely 
accepted. 

 Let us consider a physical system consisting of  N  points 
of masses representing the nuclei of a molecule. Let us 
choose a complete and non-redundant system of the inter-
nal coordinates (such coordinates are, e.g., the so-called 
natural internal coordinates (NICs) [ 4 ,  16 ]) and consider 
the linear approximation valid at a given reference point. 
Now, let us consider two different vector spaces  X  and  Y , 
both of them being of 3 N  − 6 dimensional. Vector space  X  
possesses the   s   ’ vectors describing the molecular conforma-
tions in terms of the internal coordinates chosen (later the 
apostrophe can be left). Vector space  Y  contains the forces 
acting on the nuclei in the same system of internal coordi-
nates, evaluated in the corresponding   s   ’ points. An  X  to  Y  
mapping   ̂C    can be created between the two vector spaces 
that connect to each internal coordinate vector of the  X  
space to the internal force vector of  Y  space:
     

(10)

〈
κ i
∣∣ κ j

〉
=

〈
3N∑
k

ekAki

∣∣∣∣∣
3N∑
l

elAlj

〉

=

3N∑
k

3N∑
l

AkiAlj〈ek | el〉

=

3N∑
k

3N∑
l

AkiAljδkl =

3N∑
k

AkiAkj

=

3N−6∑
l

3N−6∑
m

(
BB+

)−1
li

(
BB+

)−1
mj

3N∑
k

BlkBmk ,

(11)Ĉs′ = −

(
∂E

∂s

)
s′

(where  E  is the total molecular energy and  s  is the internal 
coordinate vector). It is obvious that the operator   ̂C    has no 
inverse: if the molecule has more than one energy minima 
the operator connects at least two different vectors of the  X  
space to the same (zero) vector of the  Y  space. In this way, 
it is evident that the  X  and  Y  spaces are not isomorphic. In 
spite of this, the vector spaces mentioned before are  “par-
tially isomorphic”  in the vicinity of a chosen molecular 
equilibrium geometry. This “reduced-level” isomorphism 
does not apply in a strict sense to any subspaces of  X  and 
 Y,  only to not well-defi ned subsets whose borders are some-
what blurred. This serves as the basis of the Eqs. ( 6 ) and 
( 7 ) of the paper on geometry optimization by direct inver-
sion in the iterative subspace (GDIIS) [ 17 ]: Eq. ( 6 ) of Ref. 
[ 17 ] refers to the  X  space, and Eq. ( 7 ) of Ref. [ 17 ] corre-
sponds to the  Y  vector space; the same coeffi cients in both 
linear combinations are coming from the existing “partial 
isomorphism” mentioned above. 

 As it is well known, Malhiot and Ferigle [ 18 ] have 
proven two interesting characters of the elements of the 
 B -matrix in their classical paper. Let us write the  i -th inter-
nal coordinate in linear approximation in a somewhat mod-
ifi ed form:
     

In Eq. ( 12 ), the terms occurring in the fi rst summation 
are grouped into  N  terms in the second one where each 
term corresponds to a certain nucleus only. Let the vector 
 b   in   contains three consecutive elements of the  i -th row of 
matrix  B  corresponding to nucleus  n , and let the compo-
nents of vector  d   n   be the three Cartesian displacements of 
the same nucleus [see Eq. ( 1 ) in E  3  ]. With these notations, 
the following equations are valid [ 18 ]:
     

     

that is, the  b   in   elements fulfi ll conditions similar to the Say-
vetz ones. In Eq. ( 13B )   ρn    means the position vector of 
nucleus  n  for an arbitrary origin. It can be mentioned that 
the assumption of Malhiot and Ferigle [ 18 ]—Eq. ( 13B ) 
is valid in a COM system only—was too strict. Due to 
Eq. ( 13A ), it can be easily realized that Eq. ( 13B ) is valid 
in an arbitrary coordinate system as well. 

 We will show that an equation similar to Eq. (13) holds 
for the columns of the matrix  A  mentioned before. In order 
to prove this, let us consider the following partition:

(12)si =

3N∑
k=1

Bikδk =

N∑
n=1

bin · dn.

(13A)
N∑

n=1

bin = 0

(13B)
N∑

n=1

ρn × bin = 0,
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here  NQ  equals to 3 N  − 6,  B  is the aforementioned Elia-
shevich–Wilsonian matrix,  C  is the submatrix of the addi-
tional six rows descripting the transformations between the 
Cartesian displacement coordinates and the external coordi-
nates,  A  is the pseudoinverse of the rectangular  B -matrix,  K  
is the pseudoinverse of the submatrix  C ,   ENQxNQ    is a diag-
onal unit block corresponding to elements for the internal 
coordinates separately,   E6x6    is the unit block correspond-
ing to elements for the external coordinates only. Note that 
a similar partition was used in Refs. [ 19 ] and [ 20 ] earlier. 
The internal coordinates are chosen in a way that the fol-
lowing requirements are satisfi ed [c.f., Eq. (12) of Ref. [ 18 ] 
in somewhat different transcription]:
     

where index  p  refers to any of the six external coordinates 
coming from the Sayvetz conditions, i.e.,  p  = 1, 2,…, 6 in 
submatrix  C . It is easy to prove that an equation analogous 
to Eq. ( 15 ) is valid for the elements of the   (A K)    matrix 
as well:
     

In fact,
     

where we have taken into consideration Eq. ( 15 ) and used 
the pseudoinverse of the submatrix  C  to express the ele-
ments of submatrix  K  [similarly to Eq. ( 8 )]. Now let us 
group the elements of each column of the   (A K)    matrix 
into triplets corresponding to the various nuclei. With 
the help of these, we can defi ne the new set of  reciprocal  
 internal displacement coordinates    si    ( i  = 1, 2,…, 3 N  − 6) 
according to the equation:
     

(the reciprocity refers to the “inverse” transformation in 
connection with Eq. ( 12 ), instead of matrix  B  with  A  + ; 
however, it is only a terminology). In Eq. ( 18 ) each term 
corresponds to a certain nucleus only in summation like in 
Eq. ( 12 ), that is, the vector  a   ni   contains three consecutive 
elements in the  i -th column of the matrix  A  corresponding 

(14)

(
B
C

)
(A K) =

(
ENQxNQ 0

0 E6x6

)
,

(15)
3N∑
k

BikCpk = 0,

(16)
3N∑
k

AkiKkp = 0.

(17)

3N∑
k

AkiKkp =

NQ∑
l

6∑
q

(
BB+

)−1
li

(
CC+

)−1
qp

3N∑
k

BlkCqk = 0,

(18)(s)i ≡
(
A+

δ
)

i =

N∑
n=1

ani · dn

to nucleus  n , and the components of vector  d   n   contain the 
three Cartesian displacements of the same nucleus again. A 
similar expression is valid for the new  reciprocal external 
coordinates    sp    ( p  = 1, 2,…, 6 in case of the submatrix  K ) 
as well:
     

respectively. (Note, that Eq. ( 19 ) is valid for the recipro-
cal external coordinates; one can easily realize taking into 
account
     

the last summation of Eq. ( 20 ) is obviously zero because of 
the zero values of the “usual” external coordinates, see, e.g., 
p. 28 of Ref. [ 3 ]). Thus, the orthogonality condition Eq. ( 16 ) 
can be reformulated with Eqs. ( 18 ) and ( 19 ) as follows:
     

Now, we can turn to the characterization of the elements of 
matrix  A .The Sayvetz conditions [ 3 ] are
     

     

where  m   n   is the atomic mass of the  n -th nucleus. (Note that 
hereafter we will omit the masses, as it was mentioned ear-
lier.) Since the selected   sp    and   sq    reciprocal external coordi-
nates can be expressed as
     

     

one can easily express the required   knp    and   knq    elements 
[c.f., Eq. ( 19 )] as
     

(19)sp =

N∑
n=1

knp · dn = 0,

(20)

sp =

3N∑
k=1

K+
pkδk =

3N∑
k=1

[(
CC+

)−1C
]

pk

δk =

6∑
q=1

(
CC+

)−1
pq

3N∑
k=1

Cqkδk = 0;

(21)
N∑

n=1

ani · knp = 0,

(22A)
N∑

n=1

mndn = 0,

(22B)
N∑

n=1

mnρ
0
n × dn = 0,

(23A)sp = ep ·

N∑
n=1

dn = 0 p = 1, 2, 3,

(23B)sq = eq ·

N∑
n=1

ρ
0
n × dn = 0 q = 4, 5, 6,

(24A)knp = ep,
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respectively. Now we can substitute Eq. (24) into Eq. ( 21 ) 
leading to
     

     

[In Eq. ( 25B ) the rules for the scalar triple product were 
used]. The equations above are valid for any value of  p  and 
 q  thus our fi nal result is
     

     

It can be clearly seen that similar expressions are valid 
for the  a   ni   column-elements of the pseudoinverse of the 
 B -matrix as the  b   in   row-elements of matrix  B  itself. 

    3   Conclusion 

 We prove that the unit vectors associated with the valence-
type internal coordinates are not orthogonal generally. It 
can be expected that the metrics deduced is suitable for the 
acceleration of the obstinate bad convergence of gradient 
geometry optimization procedure GDIIS [ 17 ] in case of 
very shallow potential surfaces. For instance, such situ-
ations are the torsional modes around single bonds (e.g., 
the rotations of methyl groups). The possible gain can be 

(24B)
knq = eq × ρ

0
n,

(25A)
N∑

n=1

ep · ani = 0,

(25B)
N∑

n=1

eq · ρ
0
n × ani = 0.

(26A)
N∑

n=1

ani = 0,

(26B)
N∑

n=1

ρ
0
n × ani = 0 .

signifi cant if using a complete and non-redundant set of 
internal coordinates. In our next paper, we will deal with 
this project. 
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      1  Introduction 

 Molecular actuators present large and reversible structural 
changes triggered by an external stimulus [ 1 ,  2 ]. The poten-
tial applications of such systems range from molecular 
electronics to nanotechnology [ 3 ,  4 ]. Actuation mechanism 
is based on the ability of the system to transform this exter-
nal stimulus into mechanical work. The signal can take 
many forms: optical [ 5 ], chemical, or electrical [ 6 ], which 
allows a wide range of systems to be used, such as syn-
thetic foldamers [ 7 – 9 ] or functional molecular rotaxanes 
[ 10 ,  11 ]. The review by Baughman et al. [ 1 ] summarized 
various advantages and limitations of those systems. 

 In particular, the external stimuli can be a consequence 
of chemical or electrochemical doping, for example in the 
case of conducting polymers (polypyrroles [ 12 ,  13 ], poly-
anilines [ 14 ,  15 ] or polythiophenes [ 16 ]) or single-walled 
carbon nanotubes [ 17 ]. Electromechanical actuators, in 
which the conformational or confi gurational change is 
caused by a redox event, have attracted signifi cant atten-
tion [ 18 – 21 ]. This class also includes, for example, redox-
controlled S···N interactions [ 22 ] and π-dimers forma-
tion [ 23 – 25 ]. In these cases, the redox event triggers a 
modifi cation of the frontier orbital pattern which is a 
quantum mechanical (QM) orbital effect. The overlap of 
the singly occupied molecular orbitals (SOMOs) creates 
multicenter/2-electron bonds (mc/2e), which are generally 
found in π-radical dimers, where they are called  pancake  
bonds [ 26 – 33 ]. These multicenter π-stacking bonds pre-
sent a number of unusual characteristics, one being that 
the contact distances are shorter than the classical van 
der Waals (vdW) distances [ 34 ]. They also present some 
characteristics of covalent bonds: These bonds are typi-
cally signifi cantly stronger than vdW contacts and have 
ESR-silent diamagnetic character providing evidence for 

                     Abstract     In an attempt to design molecular electrome-
chanical actuators with large deformation response, we pre-
sent here three helicene-like compounds, which offer sig-
nifi cant strain above 5 % due to two-electron charge transfer 
(CT). The shrinking induced by CT is a quantum mechani-
cal orbital effect. A good π–π overlap across the helical 
pitch is critical for this type of actuation. The relevant over-
lap refers to frontier orbitals that are involved in the CT, and 
it has some features common with π–π stacking pancake 
bonds; however, these molecules do not represent all aspects 
of typical pancake bonding. This overlap is accompanied by 
a change in the bond length alternation pattern indicating 
signifi cant change in π-conjugation. Additionally, two fur-
ther helicene-like molecules included in this study also indi-
cate large electromechanical actuation, but a simple orbital 
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electron pairing [ 35 ]. Those observations are coherent 
with the molecular orbital description of the phenomenon, 
where two singly occupied molecular orbitals (SOMOs) 
overlap to form a bonding inter-molecular orbital between 
the two molecules, like the electron pair in a covalent bond 
(Fig.  1 ), in a  trough space  fashion across the vdW separa-
tion. However, those bonds are much weaker than conven-
tional bonds and are longer than covalent ones (for exam-
ple, the CC covalent distance is 1.54 Å, while pancake 
bonds are around 3.1 Å). They also often retain a diradica-
loid character [ 35 ].        

 Combining these two concepts, it may be interesting to 
look into highly π-conjugated molecules for intramolecu-
lar orbital interactions with signifi cant overlap across the 
vdW separation triggered by a redox charge transfer (CT) 
process. The candidates must present possibilities of π–π 
stacking, and therefore, aromatic helical molecules are 
very appealing. In the past, helical structures were already 
envisaged for molecular actuation, for example helicene 
[ 36 ] and  o -phenylene [ 37 – 39 ]. The helical architecture is 
attractive because the helical molecule holds the π-electron 
network in place and is ready made for through space 
bonding and antibonding interactions that is then exploited 
for redox actuation. The critical question is whether for 
any given helix, there is suffi cient frontier orbital overlap 
matching across the pitch. Given the subtle dependency 
of this overlap as a function of the molecular architecture, 

only computations at the appropriate level can help select 
systems for this goal. 

 In this paper, we will present computational results for 
helicene-like molecules testing the idea whether such an 
architecture could be exploited for molecular redox actuation 
using the π–π overlap across the space of the helical pitch. 
We selected systems from components for which crystal 
structures have been reported in the literature (Fig.  2 ).        

 A quantitative measure of a molecular actuator is the 
magnitude of geometrical change as function of the amount 
and sign of the charge transferred to the molecule,  q , in 
terms of the number of electrons added (X | q |− , reduction) or 
removed (X | q |+ , oxidation), and the following formula can 
be used to characterize them:
     

where  s  is the (linear) strain, defi ned as the ratio of the 
change   

[
�l = l(q)− l(0)

]
    to the length ( l ) in a given direc-

tion [ 42 ]. Addition or removal of electrons leads normally 
to Coulombic repulsion (  ∝ 1/r   , where  r  is the distance 
between two charges), and therefore, for most systems, this 
strain is positive. We will then show that the systems listed 
in Fig.  2  display signifi cant  s  values for at least one direc-
tion of CT, which can be used to design molecular actuators 
triggered by redox processes with strain values comparable 
to those obtained previously for other systems [ 1 ]. 

    2   Computational methodology 

 In this paper, we will focus on molecules  1b ,  2b , and  3 .  1b  
was chosen instead of  1a , for which the methyl units can 
cause steric hindrance, and  2b  is longer than the experi-
mentally available  2a  presenting a minimal length so that 
at least part of the molecule overlaps with another part of 
the molecule in a π–π stacking fashion. All structures were 

(1)s(q) =
�l(q)

l
× 100 %

 Fig. 1       Orbital interaction diagram between two π-radicals, example 
of the phenalenyl (PLY) with the representation of the HOMO with 
strong bonding interaction across the vdW separation in the dimer 
[ 35 ]  

O O

OO R

R

RR

R

R

1a : R=Me 1b : R=H

n
2a : n=6 2b : n=10 n

3 : n=6

(a) (b) (c)

 Fig. 2       Structures of the helicene-like molecules:  a  sketch of helicene incorporating saturated sp 3  carbons, distorted metric shows connectivity 
( 1a  from Kimura et al. [ 40 ]).  b  Heliphene ( 2a  from Han et al. [ 41 ]) and  c  heliphene with naphthalene units  
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optimized using density functional theory at the UM05-
2X/6-31G(d,p) level, for charges going from +2 to −2, 
except for  2b , which was optimized at the (R)M05-2X/6-
31G(d,p) level. The M05-2X functional is a hybrid func-
tional with 52 % of Hartree–Fock exchange [ 43 ], which 
was previously found to give accurate results for conju-
gated systems with pancake bonds [ 44 ]. We found that the 
restricted and unrestricted levels give geometries in close 
agreements with each other. We obtained zero spin den-
sities in all cases when there was a good overlap across 
the helical pitch. For this reason, calculations at the unre-
stricted level provided no new information. The structures 
present a C 2  symmetry, except for  1b   2+  . All calculations 
were performed using the Gaussian 09 package [ 45 ]. We 
used the graphics program ChemCraft [ 46 ]. 

 To characterize such structures, we have used three dif-
ferent approaches which are listed below. The Cartesian 
coordinates   (x, y, z)    of the  i th atom of a helix are given by 
the parametric Eq. ( 2 ),
     

where  θ   i   is the angle (in radian),  r   i   is the radius (in Å), and 
 p   i   the pitch (in Å) of the helix (width of one complete heli-
cal turn, measured parallel to the axis of the helix along the 
axis, Fig.  3 ) [ 47 ].        

 Many helical molecules lack perfect “helical staircases” 
in which repeat units would be perpendicular to the helical 
axis making it necessary to defi ne an average pitch value. 
Due to this and due to end effects, we used three alternative 
measures for the change of the pitch and  l :   ̄p, �z, and dCC    , 
as defi ned below. These are based on the atomic numbering 
for the carbon atoms located in the inner part of the helices 
(Figs.  4 ,  5 ,  6 ), because we found that those carbons showed 
the largest changes in contact distances as they respond to 
CT. Note that the two fi rst and last carbons of  2b  and  3  are 
not considered, because the terminal regions deviate most 
from the helical symmetry.                        

 The three measures used for the quantitative description 
of the changes of the helical geometry are   ̄p, �z, and dCC     , 
and they are defi ned below. The following algorithm was 
used to obtain average pitch,   ̄p   . First, we used Eq. ( 2 ) in 
order to fi nd  r   i  ,  θ   i  , and  p   i   for each carbon in each molecular 
(repeat) units; their indices are listed in Table  1 . Then, the 
average radius,   ̄r   , is retrieved from the average of all  r   i   val-
ues.   ̄p    is calculated by taking the slope (and forcing the trend 
line to pass through zero) of the graph of  z   i   with respect to  θ   i  . 
The reason for choosing this algorithm is that we observed 
that directly averaging  p   i   leads to a strong dependency on the 
choice of the  Z  axis for the molecule producing large stand-
ard deviations. In this paper, the Z axis is chosen by taking 

(2)

⎧⎪⎨⎪⎩
xi = ri cos θi

yi = ri sin θi

zi =
pi

2π
θi

the mean vector that passes through the centers of the cir-
cles determined for each consecutive three carbons listed in 
Table  1 .   ̄p    and   ̄r    give therefore quantitative measures of the 
global conformational changes induced by CT.  

 Another metric is   �z   , the difference in the  z  coordinates 
of the fi rst and the last atom considered in the previous pro-
cess (bold indices in Table  1 ). Finally, since the lowest intra-
molecular C···C through space contact distances across the 
pitch were found to be on the inner part of the molecules, 
the shortest C···C distances,  d   CC  , were measured, by taking 
the three shortest contacts for each inner atom (Table S1). An 
average of these three values,   dCC    , was then be evaluated, 
giving an insight into the overall length change of the mol-
ecule. This value should correlate with the average pitch,   ̄p   . 

 To validate this analysis, an error was estimated by 
measuring the average deviation from helicity,   ̄D   , between 
the coordinates of the carbon in the structure   

(
xC,i, yC,i, zC,i

)
    

and the one obtained by using Eq. ( 2 ) with our   ̄r    and   ̄p   , 
which is the position if the structure was a “perfect helix” 
  (xi, yi, zi)   :
     

  ̄D    is zero if the structure is a perfect helix, and   ̄r    and   ̄p    fi t 
perfectly, and a large value means structure deviates signifi -
cantly from a helix. 

 To characterize the optimized structures, another struc-
tural parameter was also used: the bond length alterna-
tion (BLA), defi ned as the mean difference between the 

(3)
D̄ =

1

N

N∑
i

Di with

Di =

√(
xi − xC,i

)2
+
(
yi − yC,i

)2
+
(
zi − zC,i

)2.

 Fig. 3       Defi nition of the helical axis and parameters, with  r  the radius 
and  p  the pitch  
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single- and double-bond lengths [ 48 ]. For a π-conjugation 
path containing  N  carbon–carbon bonds, it reads
     

where   li    is the length of bond  i . For an aromatic structure, 
BLA  >  0, and for quinonoid ones, BLA  <  0 starting with a 
short bond along the conjugation path. Signifi cant changes 
in BLA due to oxidation or reduction indicate signifi cant 

(4)BLA =
1

N − 1

N−1∑
j=1

(
lj+1 − lj

)
(−1)j

electronic structure changes. We note that due to a rela-
tively large exact exchange contribution in the M05-2X 
functional, the computed BLA values are expected to be 
somewhat overestimated [ 49 ]. 

 Considering a CT of adding electrons to the lowest 
unoccupied molecular orbital, LUMO, or removing them 
from the highest occupied molecular orbital, HOMO, two 
major effects should be considered. The orbital effect can 
lead to both positive and negative strain depending on the 
bonding or antibonding nature of the frontier orbital in 

 Fig. 4        a  Top and  b  side view of  1b  with the numbering of the carbons of the inner part. Hydrogens were omitted for clarity. Carbons are in  yel-
low , and oxygens in  red   

 Fig. 5        a  Top and  b  side view of  2b  with the numbering of the carbons of the inner part. Hydrogens were omitted for clarity. The  green bonds  are 
shorter than the  yellow ones , indicating a bond length alternation pattern  
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question. In addition to the orbital effect, the additional 
charge is delocalized according to the HOMO or LUMO. 

    3   Results and discussion 

   3.1   Changes of the geometry due to CT 

 All three target molecules show actuation effects upon 
charging as refl ected by the differences of the optimized 
geometries compared to the  q  = 0 optimized geometry as 
a reference. One feature of pancake bond is the overlap of 
the two SOMOs to form mc/2e bonds. Figures  7 ,  8 ,  9  show 
that this is also the case in those molecules when optimized 
with a modifi cation of the number of electrons. Molecules 
 1b  and  2b  show this behavior under reduction, while  3  pre-
sent an overlap for both oxidation and reduction.                      

 Note that the corresponding HOMO–LUMO gaps are 
large (more than 2.0 eV, see Table S3), while they tend to 
be small in the case of pancake bonding (Fig.  1 ). Also, the 
presence or absence of overlap does not seem to affect the 
energy levels signifi cantly. As a result, other metrics are to 
be used for these systems. 

    3.2   Comparison of the different metrics 

 Table  2  reports the radius and the average deviation from 
helicity, using Eq. ( 3 ), for each charge state of the 3 mol-
ecules. As mentioned, the overlap goes with a shrinking of 
the distances along the  Z  axis, as reported in Table  3  for the 
metric defi ned in the previous section.   

 From Table  2 , one can see that the CT affects the radius 
by a few %. Note that the larger radius difference between 
 2b  and  3  is due to the change from the phenyl units to 
naphthalenes, and those two molecules have a larger radius 
than  1b , due to the presence of unsaturated carbons in 

 Fig. 6        a  Top and  b  side view of  3  with the numbering of the carbons in the inner part. Hydrogens were omitted for clarity  

 Table 1       Index of the carbons (numbering as defi ned in Figs.  4 ,  5 , 
and  6 ) considered in the helix analysis, and total number of carbons 
included in the average radius,   ̄r     

 Initial and fi nal carbons for the calculation of   �z    are bolded 

    Index of the carbons    Total number  

   1b      1 , 3, 5, 7,  9     5  

   2b      2 , 4, 6, 8, 10, 12, 14, 16,  18     9  

   3      2 , 5, 8, 11,  14     5  

 Fig. 7       HOMO of  a   1b  and  b   1b  2− . Isosurface was generated with a 
contour value of 0.030 a.u  

 Fig. 8       HOMO of  a   2b  and  b   2b  2− . Isosurface was generated with a 
contour value of 0.021 a.u  
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the latter, which gives more fl exibility to the molecule to 
change its conformation and form the overlap. Under CT, 
 2b  and  3  undergo a larger change in radius than  1b . Also, 
the large standard deviations of the radius for  2b   2+   and 
for  3   2−   ( > 0.15 Å) indicate that the use of Eq. ( 2 ) is more 
approximate in these cases. This statement is confi rmed by 
the larger average deviations from helicity for those two 
cases (  ̄D > 0.15    Å). 

 In Table  3 ,   dCC     and   ̄p    provide a comparable metric, as 
expected, but   dCC     is usually larger than   ̄p   . The exception 
is for  2b   2+   for the reasons mentioned above. It is important 
to note that in  1b  and  3 , the average pitch is smaller than 

the carbon–carbon vdW distance (3.4 Å [ 34 ]), even for the 
neutral case. This small through space contact distance is 
partially responsible for the large actuation effect on the 
pitch due to CT. 

 Table  4  lists the strain data for all three systems and 
both directions of the CT based on Eq. ( 1 ) using a sub-
script to identify which of the three measures of elonga-
tion are used. Large strain is obtained for  1b   2−  ,  3   2+  , and 
 2b   2−  . Most of the   s(q)    values are negative, indicating that 
the effect is mostly quantum mechanical, and, when nega-
tive, in opposition to the Coulombic repulsion due to the 
extra charge on the molecule. The numbers in bold identify 

 Fig. 9       HOMO of  a   3 ,  b   3   2+   and  c   3   2−  . Isosurface was generated with a contour value of 0.030 a.u. for the neutral and oxidized molecule ( a ,  b ), 
and 0.025 a.u. for the reduced molecule ( c )  

 Table 2       Average radius,   ̄r    (Å), and its standard deviation,   σr̄    (Å), average deviation from helicity,   ̄D    (Å), and its standard deviation,   σD̄   , for  1b , 
 2b , and  3  in different charge states  

 For the charged molecules, the percentages of change in the radius from the neutral ones are given in parentheses 

    Neutral     q  = +2     q  = −2  

    ̄r         σr̄         ̄D         σD̄         ̄r         σr̄         ̄D         σD̄         ̄r         σr̄         ̄D         σD̄     

   1b     1.347    0.040    0.033    0.023    1.345 (−0.2)    0.046    0.042    0.025    1.384 (2.7)    0.038    0.030    0.023  

   2b     2.903    0.040    0.054    0.027    2.784 (−4.1)    0.174    0.156    0.082    3.120 (7.5)    0.058    0.109    0.062  

   3     2.189    0.100    0.092    0.049    2.129 (−2.8)    0.100    0.082    0.062    2.011 (−8.1)    0.168    0.165    0.051  

 Table 3       Changes upon charge 
transfer of various measures of 
the molecular length: average 
pitch,   ̄p    (Å),   �z    (Å), and 
carbon–carbon intramolecular 
distances,   dCC     (Å), for  1b ,  2b  
and  3   

  a    Underlined numbers refer to cases where the helicity is partially lost due to CT (see text) 

    Neutral     q  = +2     q  = −2  

    ̄p         �z         dCC          ̄p         �z         dCC          ̄p         �z         dCC      

   1b     3.299    4.352    3.378    3.258    4.254    3.334    3.130    4.046    3.182  

   2b     3.561    4.431    3.688    3.402     4.415   a       3.884     3.437    3.982    3.500  

   3     3.308    4.030    3.422    3.148    3.939    3.273    3.246     4.283      3.373   

 Table 4       Computed strain due 
to CT,  s ( q ) (in %), using the 
three different metrics for  1b , 
 2b , and  3   

  a    Numbers in bold indicate large actuation (see text) 

  b    Underlined numbers indicate partial loss of helicity upon CT (see text) 

     q  = +2     q  = −2  

    sp̄         s�z         sdCC
         sp̄         s�z         sdCC

     

   1b     −1.24    −2.25    −1.30     −5.11      −7.02      −5.81   

   2b      −4.45   b       −0.35      5.31      −3.49      −10.13      −5.09   

   3      −4.82  a      −2.26      −4.34      −1.86      6.28      −1.43   
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relatively large actuation strains. The number in italics refer 
to two cases where the helicity is partially lost upon charge 
transfer, and therefore, the three measures indicate signifi -
cant discrepancies as we pointed out in connection with the 
data in Table  4 . The large actuation effect is the result of 
the antibonding nature of the LUMO for  3 , and due to the 
bonding nature of the HOMO for  1b  and  2b . The lack of 
charge symmetry is also apparent as expected for a quan-
tum mechanical mechanism of CT actuation. Molecule 
 1b   2−   gives the largest strain values, followed by  3   2+   and 
 2b   2−  , if one considers   ̄p    as the measure of the elongation of 
the molecule. Considering   dCC     confi rms that  1b   2−   is fi rst, 
but exchanges the order of strains for  3   2+   and  2b   2−  .  

  The most signifi cant  through space orbital overlap  is 
located in the inner part near the C 2  axis of the helix and 
involves at least four carbons for all three systems, with 
two pairs of  overlapping carbons  (relation between a pair 
of overlapping carbon  i  and  j  is  θ   j   ≈  θ   i   + 360°, so  j  is “on 
top” of  i , together with the presence of overlap as shown in 
Figs.  7 ,  8 ,  9 ). Contact distances are given in Table  5 , along 
with the shortest and/or overlapping contact distances. The 
values are lower than the average pitch and carbon–carbon 
distances in Table  4 , so one can conclude that local changes 
are larger than the global changes. Also, except for the 
reduced  3   2−  , the distances are shorter for the charged mol-
ecules with respect to the neutral ones, even if the change 
is more important when there is an overlap, in comparison 
with the opposite sign CT (for example, 3.03 Å for  1b   2−  , 
which present a short contacts with a possibility of a good 

overlap, vs 3.16 Å for  1b   2+  ). Contact distances between 
overlapping carbons are compatible with the hypothesis of 
pancake bonds: about 3.00 Å for  1b   2−   and  3b   2+   and 3.25 Å 
for  2b   2−  . The smallest  d   CC   values do not always refer to 
pairs of overlapping carbons (good overlap would require 
also the appropriate orientation of the two 2p z  atomic orbit-
als), but short contacts imply that at least one of the four 
has a good overlap. Therefore, this is the interesting area of 
the molecule to look at: this is where the actuation is con-
centrated on.  

    3.3   Analysis of the molecular strain generated by CT 

 In Table  6 , the BLA values were displayed for both  1b  and 
 2b , using Eq. ( 4 ) along the path defi ned by the inner car-
bons (note that carbons 1 and 10 were omitted in  1b  to start 
the BLA path with the “short” bond). This analysis is not 
possible for  3 , because the alternation of single and dou-
ble bonds is modifi ed by the presence of the naphthalene 
units. Therefore, another approach was used for  3 : For each 
4-membered ring that links two naphthalene units, the inner 
bond was considered along with its two neighbors, and the 
average of the length of the two double bonds were sub-
tracted from the length of the single bond. Then, these three 
values were averaged.  

 The BLA is lower in the charged systems, so those 
systems tend to change toward their quinonoid forms, 
but this decrease in the BLA is more signifi cant if there 
is an overlap as it is the case for the tree bolded values in 
Tables  4  and  6  . A BLA change is interpreted as an increase 
in the π-conjugation, and one can conclude that the form 
which presents an overlap is more π-conjugated, which is 
coherent with the large delocalization of the HOMOs in 
Figs.  7 ,  8  and  9 . For example, a representation of the qui-
nonoid structure of  1b   2−   is illustrated in Fig.  10 .        

 In Table  7 , results from a Mulliken population analysis 
are given on the respective HOMOs of each three  q  values, 
in order to quantify the overlap pictured in Figs.  7 ,  8 , and 
 9 . This sheds light on the participation of the inner part of 
the structure (see Figs.  4 ,  5 ,  6  for the defi nition) and the 4 
atoms that were reported to overlap above in Table  5 .  

 Table 5       Carbon–carbon 
intramolecular through space 
contact distance,  d   CC   (Å), 
between overlapping carbons 
(see text for defi nition) and 
smallest contact distances for 
each molecule  

  a    Due to broken symmetry, two values are given 

  b    Due to the C 2  symmetry, only one distance is given (the other pair is given in parentheses) 

  c    Carbon numbers refer to Figs.  4 ,  5 , and  6  

  d    Numbers in bold indicate large actuation (see text) 

    Overlapping carbon number c      d   CC   between overlapping carbons    Smallest  d   CC    

  Neutral     q  = +2     q  = −2    Neutral     q  = +2     q  = −2  

   1b   a      2···8, 3···9    3.256    3.163, 3.242     3.030     3.021    2.975     2.898   

   2b   b      3···16, (4···17)    3.532    3.822     3.272     3.439    3.339     3.260   

   3   b      2···11, (3···12)    3.188     3.036  d     3.192    3.188     3.036     3.137  

 Table 6       BLA (Å) for  1b ,  2b  and  3 , calculated by using Eq. ( 4 ) for 
different charge states  

  a    Carbon numbers refer to Figs.  4 ,  5 , and  6  

  b    Bolded numbers indicate the three highest strain systems (see Table  4 )  

    Path defi nition a     BLA  

  Neutral     q  = +2     q  = −2  

   1b     2–9    0.069    0.051     −0.011   

   2b     2–18    0.142    0.136     0.092   

   3     3–6; 6–9; 9–12    0.143     0.091  b     0.089  
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 This population analysis gives a percentage which is 
proportional to the presence of the HOMO electrons in a 
given region of the space. In Table  7 , the values for the neu-
tral molecule are low, but when there is CT, a non-negligi-
ble part of the population (between 10 and 25 %) is located 
on the four carbons mentioned in Table  5  in correlation 
with the presence of an overlap. In that case, the participa-
tion of the inner part of the helix accounts for between 38 
and 54 % of the population of the orbital. This is in agree-
ment with the previous presented observations as well as 
the presence of overlaps across the helical pitch as pictured 
in Figs.  7 ,  8 , and  9 . 

     4   Further systems studied 

 We have studied (at the same level of theory) fi ve analo-
gous conjugated helical systems with similar architectures 
which are illustrated in Fig.  11 .        

 Table  8  lists the average deviation from helicity for each 
systems which is quite large for these systems (larger than 
in Table  2 ), making the values diffi cult to interpret in terms 
of a helix.  

 Table  9  gives the calculated strain values using   ̄p   , as 
well as BLA values at different oxidation states. For BLA, 
the same path defi nition was used as before: only the inner 
part of the helix was considered, with the exclusion of the 
fi rst and the last repeat unit.  

 The main result from this table is that two systems dis-
play large computed actuation values:  4b   2+   and  5a   2−  . The 
large positive actuation value for  5a   2−   indicates that the 
electrostatic repulsion is not being reduced by an orbital 
effect which partially explains the actuation in this case. 
The signifi cant negative actuation value for  4b   2+   is in 
concordance with strong bonding interaction displayed in 
Fig.  12 . Except for this case, structures  4  and  5  miss an 
overlap in their frontier orbitals with CT.        

 While we did not fi nd one general reason for the lack of 
orbital overlap-based charge transfer actuation for the mol-
ecules in Fig.  11 , a pattern arises: Heteroatoms (for exam-
ple sulfur) on the periphery in  4  tend to have X···X contacts 
larger than vdW distances, and for this reason, the overlap 
across the pitch is small. In the case of  5 , the actuation 
reported by Ohta et al. [ 39 ] via oxidation is confi rmed by 
our calculations ( 5b ), but this is probably due to a reduc-
tion in the length of inter-phenyl bond lengths, as shown 
by the reduction in the BLA value. Note that the large pos-
itive strain value for  5a   2−   is partially related to the large 
deviation from the helical structure (as shown in Table  8 , 
with   ̄D > 0.90    Å), probably due to the presence of less 
phenyl rings to constrain the structure. Concerning  4b   2+  , 
the strain is negative, but the large   ̄D = 0.14    Å value for 
 4b  indicates a large deviation from helicity. Also, the pitch 

O

O

O

O

 Fig. 10       A representation of the quinonoid structure of  1b   2−  . Dis-
torted metric is used to show the connectivity  

 Table 7       Percentage of the 
HOMO localized on the 4 
carbons that present a direct 
overlap (“4 carbons” as defi ned 
in Table  5 ) and localized on the 
inner part of the helix (“Inner 
part” as defi ned in Figs.  4 ,  5 , 
 6 ) for molecules  1b ,  2b , and 
 3 , using a Mulliken population 
analysis  

 The number of carbons involved in this percentage is given in parentheses 

  a    Bolded numbers refer to the three highest strain systems 

    Neutral     q  = +2     q  = −2  

  4 carbons    Inner part    4 carbons    Inner part    4 carbons    Inner part  

   1b     7(2)    26 (10)    11 (2)    20 (5)     16 (4)      48 (10)   

   2b     0 (0)    1 (1)    0 (0)    4 (1)     10 (4)      54 (18)   

   3     6 (2)    34 (10)     22 (4)  a      38 (7)     14 (4)    30 (10)  

X

X

n

X

X

4a X=NH, n=4
4b X=O, n=4
4c X=S, n=4

n

R'

RR R R

R R

R'

5a R=R'=H, n=4
5b R=R'=H, n=6

(a) (b)

 Fig. 11       Alternative helicene-like molecule considered in this work: 
 a  heterohelicenes (Nakagawa et al. [ 50 ] for  n  = 3, X = S) and  b  
polymeric  o -phenylenes (Ohta et al. [ 39 ] for  n  = 6, R = OMe and 
R′ = NO 2 )  
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as measured by   ̄p    is 3.24 Å for  4b   2+  , which is larger than 
 3   2+   and  1b   2−   ( < 3.2 Å, see Table  3 ) presented before. This 
partially explains why the effect of the overlap is smaller in 
this case. 

    5   Conclusions 

 In this paper, we discussed the charge transfer actuation 
mechanism in helical conjugated molecules. We fi nd signif-
icant actuation values for molecules with repeat units that 
appear to be synthesizable. 

 Molecules  1b  and  2b  present a large strain under reduc-
tion, while a large strain is obtained under oxidation for 

 3 . This change of the number of electrons is accompanied 
with a modifi cation of the radius of the molecule. We dis-
cussed three alternative measures for strain in a helix point-
ing out the limitations of these metrics when the structure 
deviates from an exactly helical shape. The strains are 
signifi cant and larger than 5 % with two electrons added 
or removed, which is comparable to other values in the 
literature. 

 The shrinking generated by CT is accompanied by a 
large modifi cation of the BLA, with a clear shift toward a 
quinonoid structure. The strain caused by CT is strongly 
correlated with the presence of an across the pitch overlap 
in the relevant frontier orbital. This overlap is concentrated 
in the inner parts of the molecules. 

 In the oxidized or reduced systems, there are some hints 
of the presence of a pancake bonding, but there are some 
signifi cant differences. First, the structure presents no spin 
densities when there is an overlap. It was also mentioned 
that the HOMO–LUMO gaps are large in these systems, 
which is generally not the case with pancake bonds. There-
fore, what is observed for  1b ,  2b , and  3  should be more 
thought of as a  through space  interactions rather than pan-
cake bonds. 

  4b   2+   and  5a   2−   also show large actuation values. While 
the mechanisms vary, the presented examples indicate that 
various helical molecules should show electromechanical 
actuation effects similar to the ones described in this paper 
and that the order of this effect should be several percent 
strain per electron transferred. 
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 Table 8       Average deviation 
from helicity,   ̄D    (Å), and its 
standard deviation,   σD̄   , for  4a–c , 
and  5a – b  in different charge 
states  

    Neutral     q  = +2     q  = −2  

    ̄D         σD̄         ̄D         σD̄         ̄D         σD̄     

   4a     0.122    0.066    0.107    0.053    0.107    0.055  

   4b     0.140    0.068    0.090    0.039    0.106    0.039  

   4c     0.125    0.051    0.112    0.045    0.127    0.055  

   5a     0.350    0.042    0.441    0.063    0.914    0.144  

   5b     0.051    0.022    0.077    0.039    0.122    0.024  

 Table 9       Strain values due to CT   
[
sp̄(q) in %

]
    and bond length alter-

nation (BLA, in Å) for  4a – 4c  and  5a – 5b  for different charge states  

  a    Numbers in bold indicate large actuation (see text) 

  b    Underlined numbers indicate partial loss of helicity upon CT 
(based on the values in Table  8 , see text) 

      sp̄       BLA  

   q  = +2     q  = −2    Neutral     q  = +2     q  = −2  

   4a     0.09    0.20    0.029    0.047    −0.005  

   4b      −7.34  a     −2.85    0.040    0.005    −0.008  

   4c     −0.89    1.07    0.034    0.023    −0.011  

   5a      −1.95  b      14.77     0.082    0.040    0.043  

   5b     −2.74    3.52    0.082    0.051    0.049  

 Fig. 12       HOMO of  4b   2+   (isosurface was generated with a contour 
value of 0.021 a.u.)  
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      1  Introduction 

 The concept of atoms and bonds is ubiquitously employed 
to predict, interpret, and communicate chemistry [ 2 ]. In 
pursuit of a well-defi ned molecular atom, numerous atoms 
in molecules (AIM) theories were developed [ 1 ,  3 – 5 ]. An 
AIM theory partitions the molecular electron density into 
atomic contributions, revealing the properties of each 
molecular atom [ 3 ]. One downfall of most AIM theories is 
that they fail to explicitly defi ne the bond. In this paper, we 
seek to develop an atoms and bonds in molecules (ABIM) 
theory that elucidates the physical and chemical properties 
of both molecular atoms and bonds. 

 There are many benefi ts to quantify atoms and bonds. 
One motivation for defi ning molecular atoms is the poten-
tial to construct the electron density of larger molecules 
from a database of appropriate AIM representations, thus 
greatly reducing computational time and cost [ 1 ]. Further-
more, if molecules can be built from AIM representations, 
it follows that molecular properties could be determined as 
a combination of AIM properties [ 1 ]. We are also motivated 
to quantify the physical and chemical properties of the 
bond, such as number of electrons, strength, order (single, 
double, or triple), type (ionic or covalent), shape, and vol-
ume. With this knowledge, we can acquire greater insight 
into chemical reactions by noting changes in the molecular 
atom and bond properties. 

 Many approaches have been developed to defi ne atoms 
in molecules [ 3 ,  6 ], resulting in much debate about which 
model is the most realistic. One contentious issue is 
whether or not the electron density of the AIM overlaps. 

                     Abstract     The atoms and bonds in molecules (ABIM) the-
ory Warburton et al. (J Phys Chem A 115:852,  2011 ) parti-
tions the molecular electron density into atomic and bond-
ing regions using radial density. The concept is motivated 
by the radial distribution function of atoms which exhibit 
shell structure, where each shell contains a realistic num-
ber of electrons. In this paper, we defi ne molecular radial 
density and investigate its topology in 2D planes of halo-
gens, diatomics, and hydrides. The terminology employed 
to classify the radial density topology of atoms and mol-
ecules is then presented. The ABIM model quantifi es both 
the molecular atom and bond. Here, we describe and calcu-
late properties of ABIM and discuss how these properties 
correlate with expected trends. ABIM makes it possible to 
calculate the properties of atoms and bonds in molecules 
including number of electrons, shape, volume, dipole, and 
expectation values. The radial density model provides an 
intuitive description of ABIM. 
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The most widely used approach is Bader’s quantum the-
ory of atoms in molecules (QTAIM), which depicts AIM 
as nonoverlapping [ 3 ,  7 – 10 ]. Other popular models, such 
as those of Stewart [ 4 ,  11 ] and Hirshfeld [ 5 ], depict AIM 
as overlapping spherical fuzzy electron densities. Both the 
advantages and disadvantages of these methods have been 
previously discussed [ 1 ]. 

 This paper builds upon the preliminary fi ndings by War-
burton et al. [ 1 ], which suggest that employing molecular 
radial density to partition molecules into atomic and bond-
ing contributions may provide a more intuitive scheme to 
defi ne atoms and bonds. The ABIM model represents AIM 
as atoms with overlapping electron densities and bonds in 
molecules (BIM) as the region where this overlap occurs. 

 Radial density provides a good starting point for an 
ABIM theory because the atomic radial density,   r2ρ(r),    of a 
free atom in space has shell structure and contains a realistic 
number of electrons in each shell. The connection between 
the number and position of the critical points in the atomic 
radial density distribution function and the atomic shell 
structure has been well established [ 12 ,  13 ]. In 1976, Politzer 
and Parr [ 12 ] showed that the minimum in the atomic radial 
density provides a well-defi ned and physically meaningful 
separation of electron density into a core and valence region 
for the second period atoms. Boyd [ 13 ] then established 
that analogous minimum surfaces are also found for heavier 
atoms and further showed that the fi rst 54 neutral atoms in 
their ground state have the expected shell-occupation num-
bers. Therefore, partitioning the electron density of atoms 
based on the minimum in radial density is quite effective. By 
extension, we postulate that a molecular radial density func-
tion may effectively partition the molecular electron density 
in an intuitive and physically meaningful way. However, 
as Smith pointed out, extension of atomic radial density to 
molecular systems is not straightforward [ 14 ]. 

 Recently, the molecular radial density,   ρrad(ri)   , at a 
grid point,   ri   , was defi ned as the sum of the radial densi-
ties of all molecular atoms at that grid point as given by 
Equation 1 [ 1 ]. The weight,   WA(ri)   , is a partition function 
that represents the fraction of density owned by a particu-
lar atom in a molecule at each grid point in space at a dis-
tance   riA    from atom  A . The weight allows us to calculate 
the electron density distribution associated with each AIM 
  (WA(ri) ρ(ri) = ρA(ri))   . In particular, the Becke weight 
is employed in this paper, which defi nes the ownership 
of each point in the molecular space based on   riA    and the 
atomic Bragg–Slater radii [ 15 ].
     

(1)

ρrad(ri) =

NA∑
A

r2
iA WA(ri) ρ(ri)

=

NA∑
A

r2
iA ρA(ri) 0 ≤ WA(ri) ≤ 1

It is necessary to point out that any weighting scheme that 
partitions the molecular space into atomic contributions 
can be used, and the Becke weight is just one of many 
possible choices. Other possibilities include Hilbert space 
decomposition (e.g., Mulliken) and 3D space partitioning 
(e.g., QTAIM [ 3 ]). The Becke weight was originally cho-
sen to partition the molecular space because of its simplic-
ity and ease of implementation. One additional benefi t of 
the Becke weight is that it does not employ spherical aver-
aging, and thus, distortion of atoms upon bonding can be 
investigated. 

 The molecular radial density along the internuclear 
axis has been studied previously [ 1 ]. This paper looks 
at the radial density in 2D planes of various molecules 
which reveal topologically interesting features residing 
off the internuclear axis. We also present the terminology 
employed to classify the radial density topology of atoms 
and molecules. Most importantly, properties of ABIM will 
be calculated and discussed. 

    2   Methodology 

 All the calculations were performed with the program 
MUNgauss [ 16 ]. The molecular electron and radial den-
sities were calculated at HF/6-311++G(d,p)// HF/6-
311++G(d,p), specifi cally using RHF for closed shell 
and ROHF for open-shell molecules. All of the visual aids, 
including contour, relief, and gradient plots, were created 
using the Mathematica version 9.0 graphing package. The 
gradient vector fi eld plots were calculated in Mathematica 
from input radial density data. 

 Throughout this paper, length is given in bohr, radial 
density (  ρrad   ) is given in e/bohr, the gradient of radial den-
sity (  ∇ρrad   ) is given in   e/bohr2   , and electron density is in 
  e/bohr3   . The terms   ρrad   ,   ∇ρrad   , and   ∇2ρrad    are all calculated 
analytically using MUNgauss. Please see supporting infor-
mation for the derivation of   ∇ρrad    and   ∇2ρrad   . 

 For both atoms and bonds, the shape (  S′o    in   bohr   ) and 
volume (  Vo    in   bohr3   ) were calculated using Eqs.  2 – 5 . In 
Eq.  2 ,   So    is calculated at a specifi ed origin: the nuclear 
position for AIM and the radial bond critical point for 
BIM.   So    can be diagonalized as in Eq.  3 , which results in 
the diagonal matrix shown in Eq.  4 . The eigenvalues cor-
respond to principal axes of the electronic second moment. 
The shape of the atom or bond is defi ned as (  So

x   ,   So
y   ,   So

z    ), 
where   So

i =
√
〈i2′〉o   . Using the eigenvalues of shape, we 

can calculate the volume of an atom using Eq.  5 . All of the 
investigated properties (shape, volume, dipole, number of 
electrons,   〈r〉    and   〈r2〉   ), are calculated through numerical 
integration using the standard SG-1 grids [ 17 ]. In particu-
lar,   〈r〉    and   〈r2〉    can be calculated for atoms using Eqs.  6  
and   7 , as well as for bonds using Eqs.  8  and  9 .
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(2)So =

⎛⎝〈x2〉o 〈xy〉o 〈xz〉o
〈y2〉o 〈yz〉o

〈z2〉o

⎞⎠
(3)Q+SoQ = S′o

(4)S′o =

⎛⎜⎝〈x2′〉o 0 0
〈y2′〉o 0

〈z2′〉o

⎞⎟⎠

(5)Vo =
4π

3
So

x So
y So

z

(6)〈r〉A =
∫

WA(r) ρ(r) r dr

(7)〈r2
〉A =

∫
WA(r) ρ(r) r2 dr

     

      

    3   Results and discussion 

   3.1   Radial density 

   3.1.1   Atomic radial density 

 The atomic radial density of hydrogen, fl uorine, and chlo-
rine is shown in Fig.  1  to illustrate shell structure and elec-
tron distribution. The 2D, 3D, contour, and gradient paths 
of radial density are shown for each atom. The plots reveal 
that H, F, and Cl have one, two, and three shells, respec-
tively, which matches their period position. An atomic shell 
is defi ned here as the region of space bounded between 

(8)〈r〉A−B =

∫ √
WA(r) WB(r) ρ(r) r dr

(9)〈r2
〉A−B =

∫ √
WA(r) WB(r) ρ(r) r2 dr

 Fig. 1       The 2D (  ρrad    vs.  x  ) , 3D (  ρrad    vs.  x  ,  y  ) contour (  ρrad    vs.  x  ,  y ), and gradient path (  ∇ρrad    vs.  x  ,  y  ) plots for the H, F, and Cl atoms  
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adjacent minima in radial density (numerical values found 
in Table S1). The outermost shell is the valence shell, while 
any remaining inner shells are termed core shells. The num-
ber of electrons,   Ne   , found within each shell can be deter-
mined by integrating the electron density in the spherical 
regions between two adjacent radial minima,   r1    and   r2   , as 
shown in Eq.  10 . It has been shown that a realistic number 
of electrons is found within each shell [ 12 ,  13 ]. For exam-
ple, a neutral chlorine atom has approximately two, eight, 
and seven electrons in the fi rst, second, and third shells, 
respectively. The topology, shell structure, and electron dis-
tribution of atomic radial density motivated us to defi ne a 
molecular equivalent for use in the ABIM model.
     

        

    3.1.2   Molecular radial density 

 The central idea in ABIM is when atoms bond, it is primar-
ily the valence electron density of the bonding atoms that 
undergoes distortion and overlap to form a bond, while 
the core electron density remains mostly unaffected [ 1 ]. 
Therefore, the core region of each molecular atom should 
maintain the same shell structure and electron density as 

(10)Ne = 4π

r2∫
r1

r2ρ(r)dr

its free-atom counterpart, whereas the distorted valence 
shell can be investigated to defi ne bonding and nonbonding 
regions. This makes it possible to determine the number of 
electrons in each region. 

   3.1.2.1  Halogens      Figure  2 a shows the molecular radial 
density of   F2    along the internuclear axis, alongside the 
atomic radial density of two undistorted, free F atoms 
placed at   y = 0    and   y = 2.509 bohr    to coincide with the 
fl uorine nuclei of the molecule. As expected, the atomic 
radial density of each fl uorine atom has one core and one 
valence shell. When two fl uorine atoms combine to form 
  F2   , three regions are formed: the core, bonding, and non-
bonding valence regions. Intuitively, the core regions in 
the molecular atoms are identical to the core shells in the 
atom, except close to the interface between the core and 
the valence regions. The bonding region is found between 
the nuclei, where the valence shells of the fl uorine atoms 
overlap to form a single shared maximum, which we term 
the radial bond critical point (RBCP). Note that the ABIM 
RBCP should not be confused with the BCP based on elec-
tron density (DBCP). The nonbonding valence is classi-
fi ed as the region outside the internuclear region where the 
valence shells of the fl uorine atoms do not overlap.        

 The molecular radial density in a plane of the   F2    mol-
ecule is shown in Fig.  2 c, which uncovers more topologi-
cally interesting features. For clarity, the radial density 
along the internuclear axis has been superimposed on this 

 Fig. 2        a  The radial density 
of a   F2    molecule along the 
internuclear axis, with two free 
F atoms superimposed on the 
two fl uorine nuclei.  b  The radial 
density of a ClF ( red ) molecule 
along the internuclear axis, with 
a F atom ( blue ) and Cl atom 
( black ) superimposed on their 
corresponding two nuclei.  c  The 
radial density of an  xy  cross 
section of   F2    with the plot from 
 a  superimposed on it.  d  The 
radial density of an  xy  cross sec-
tion of ClF with the plot from  b  
superimposed on it  
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graph in red. The core region of each nucleus is easily 
identifi ed in this cross section as the symmetrical, volcano-
shaped cones that surround the nuclei. The core is sepa-
rated from the distorted valence by a minimum in radial 
density. Thus, the boundary between the core and valence 
shells still exists for the atoms in the molecule. 

 Unlike the homonuclear diatomic   F2   , which has a sym-
metrical distribution of radial electron density, the het-
eronuclear diatomic ClF has an asymmetric distribution as 
predicted due to the unequal sharing of electron density. 
When Cl (at   y = 0    bohr) and F (at   y = 3.050    bohr) com-
bine to form ClF, the single core shell in the F atom and 
both core shells in the Cl atom remain mostly unchanged 
in the bonded molecule as shown in Fig.  2 b. This fi gure 
also shows that the RBCP is skewed toward the fl uorine 
nucleus. This feature makes sense because F is more elec-
tronegative than chlorine, and Cl is fairly polarizable. In 
Fig.  2 d, the cross section of the ClF molecule depicts the 
two core shells for Cl and the single core shell for F. 

 As shown in Fig.  2 ,   F2    and ClF show very interesting 
and intuitive features with respect to the core, bonding, and 
the nonbonding regions. In the core region, we see that the 
core shells are transferable from an atom to a molecular 
atom. In the bonding region, the distorted valence shells 
overlap to form a bond with a single-bond critical point. 
There are also topological features, such as the peaks off 
the internuclear axis that require further investigation. 

    3.1.2.2  Second period hydrides      Hydrogen atoms in mol-
ecules can often be problematic to model and detect due 
to their relatively low electron density. However, although 
small, hydrogen can undergo very diverse chemistry 
depending on whether it is anionic, cationic, or neutral. 
Molecular radial electron density provides an aesthetic way 
to model hydrogen containing compounds and qualitatively 
determine the nature of the hydride in these molecules. 

 The molecular radial density of hydrogen containing 
compounds is more aesthetically pleasing to model and 
visualize than electron density. When plotting molecular 
electron density of hydrogen containing compounds, one 
must readjust the scale and truncate the electron density of 
heavier atoms in order to identify the electron density peak 
of a hydrogen constituent. On the other hand, the molecular 
radial density function of both hydrogen and heavy atoms 
can be viewed on the same scale. This is a consequence of 
the balance between the electron density and the squared 
distance from the nucleus that allows the valence region to 
become emphasized and the nuclear region to become less 
overwhelming in comparison with plotting solely the elec-
tron density function. As a result, radial density is generally 
shown on a scale between 0 and   2 e/ao   . 

  Hydrogen AIM can be easily identifi ed in Figs.  3  and 
 4 , which show the radial density (  ρrad   ) and the gradient 

paths of radial density (  ∇ρrad   ), respectively, for the second 
period hydrides. Since hydrogen does not have any core 
shells, we can easily identify the hydrogen nuclei as points 
of zero radial density that are surrounded by a single dis-
torted valence shell as shown in Fig.  3 . This leads to the 
depressions (‘dimples’) seen in the radial density graphs. In 
Fig.  4 , there exists a distinct boundary path that completely 
encircles each hydrogen nucleus that results in hydrogen 
having a very similar and easily identifi able shape. Larger 
versions of the plots found in Figs.  3  and   4  can be found in 
Figure S1–S16 of the supporting information.               

 The nature of hydrogen in the second row hydrides is 
chemically diverse. Crossing the second period from LiH 
to HF, hydrogen shifts from being anionic in LiH to more 
covalently bonded in   CH4    to cationic in HF. Ultimately, we 
would expect the molecular radial density to give insight 
into the type of bonding (ionic/covalent) and the nature 
of the hydrogen (cationic/anionic/neutral) in these types 
of molecules. One promising method for identifying bond 
type is by analyzing the curvature of the RBCP. In the 
  ∇ρrad    plots, the boundary path at the RBCP is concave for 
LiH and   BeH2   , fairly fl at for   BH3, CH4   , and   NH3   , and con-
vex for   H2O    and HF, all with respect to the hydrogen. The 
observed trend is concave curvature for anionic hydrogen, 
fl at curvature for covalently bonded hydrogen, and convex 
curvature for cationic hydrogen. 

      3.2   Topology 

   3.2.1   Terminology 

 The radial density of atoms and molecules is rich in topo-
logical features such as critical points, critical rings, and 
critical spheres. These critical architectures can be identi-
fi ed and characterized using the gradient and diagonalized 
Hessian of radial density, respectively. Each critical feature 
includes points where the gradient of radial density van-
ishes   (∇ρrad = 0)   . The classifi cation (point, ring, sphere) 
and magnitude (maximum, minimum, or saddle) of a criti-
cal feature is found by evaluating the diagonalized Hessian 
of radial density at these points to yield three characteristic 
eigenvalues that are invariant to coordinate rotation. 

 The set of eigenvalues {   �1, �2, �3    } is referred to as 
a spectrum. For consistency, the following convention 
is employed to order the eigenvalues:   �1 ≤ �2 ≤ �3   . The 
rank and the signature are crucial for classifying criti-
cal architecture. The rank ( r ) is the number of nonzero 
eigenvalues. A rank of one, two, or three represents a 
critical sphere, ring, and point, respectively. The signa-
ture ( s ) is the sum of the signs of the three eigenvalues. 
The sign is   +1    for a positive eigenvalue,   −1    for a nega-
tive eigenvalue, or zero for a vanishing eigenvalue. The 
signature relative to the rank determines whether the 
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topological feature is a maximum, minimum, or saddle. 
If   s = +r    a minimum results;   s = −r    denotes a maxi-
mum; if   −r < s < r   , a saddle results. The trivial case 
occurs when rank and signature are identically zero. 
This represents a critical point at infi nity and occurs in 
all systems at an infi nite distance away from the mol-
ecule. Table  1  summarizes the ABIM classifi cation of 
radial density critical architectures.  

    3.2.2   Atomic topology 

 The radial density topology of atoms is fairly simple, 
though not featureless. At the nucleus, the radial distance 
is zero, and thus, a minimum critical point (PM) occurs. 
Radially outward from the nucleus, a series of maximum 
critical spheres (SX) and minimum critical spheres (SM) 
are observed. For atoms in the fi rst three periods, the 

 Fig. 3       Radial density in the 
 xy -plane of   H2    and the second 
period hydrides. The central 
atom is located at (0, 0). The 
hydrogen nuclei are clearly 
identifi ed by the distinct depres-
sions (dimples) in the graphs  
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 Fig. 4       Map of the gradi-
ent vector fi eld of the radial 
density for the plane contain-
ing the maximum number of 
nuclei. Each line represents 
a trajectory traced out by the 
vector   ∇ρrad   . Gradient paths of 
radial density in the  xy -plane 
of the second period hydrides. 
The central atom is located at 
(0, 0). The hydrogen nuclei are 
clearly identifi ed by the distinct 
boundary path that encloses the 
nucleus  
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number of critical spheres observed is related to its period. 
The number of SX is equivalent to its atomic period, while 
the number of SM equals one less than the period. The 
boundary traced out by the minimum critical spheres marks 
the boundary between adjacent shells for an atom. It can be 
readily inferred from both the spherical symmetry of atoms 
and Fig.  1  that the radial density topology for a H, F, and 
Cl atom have 1, 2, and 3 SXs, as well as 0, 1, and 2 SMs, 
respectively. 

 We emphasize that the trend between the atomic period 
and the number of observed SXs and SMs is limited to the 
fi rst three periods [ 14 ]. In a study by Smith et. al. of the 
radial density of neutral atoms from hydrogen through ura-
nium, the radial density of atoms that were heavier than the 
third period exhibited fewer SXs than the actual number of 
shells [ 18 ]. 

    3.2.3   Molecular topology 

 The radial density topology of molecules is more complex 
than atoms. The topology of the simple   F2    diatomic has 
numerous critical points and critical rings as depicted in Fig.  5  
and described in Table  1 . A PM occurs at each F nucleus. 
Two more PM arise adjacent each F nucleus along the inter-
nuclear axis which marks the boundary between the core and 
valence regions. Also along the internuclear axis, residing 
in the middle of the two nuclei, is the maximum bond point 
(PX) depicted in red. This shows a buildup of radial density 
at the center of the bond. A saddle minimum point (PSM) is 
found in the nonbonding region for each F atom on the inter-
nuclear axis, which is shown as a green point. More interest-
ing features also arise off the internuclear axis including two 
maximum rings (RX) and two saddle rings (RS).        

 Table 1       Name, acronym, 
sign of eigenvalue, rank, and 
signature for each critical 
architecture in ABIM  

  Architecture    Name    Acronym      �1         �2         �3        r      s   

  Point    Max point    PX    −    −    −    3    −  
    Saddle max point    PSX    −    −    +    3    −1  

    Saddle min point    PSM    −    +    +    3    +1  

    Min point    PM    +    +    +    3    +3  

  Ring    Max ring    RX    −    −    0    2    −2  

    Saddle ring    RS    −    0    +    2    0  

    Min ring    RM    0    +    +    2    +2  

  Sphere    Max sphere    SX    −    0    0    1    −  
    Min sphere    SM    0    0    +    1    +  
  Trivial case    Infi nite point    IP    0    0    0    0    0  

 Fig. 5       The contour ( left ) and 
gradient vector fi eld ( right ) of 
  ρrad(r)    for   F2    shows numer-
ous critical points (PX =  red , 
PSM =  green , PM =  blue ) 
and critical rings (RX =  red , 
RS =  green )  

64 Reprinted from the journal



Theor Chem Acc (2015) 134:117 

1 3

 Table 2       Shape, volume,   〈r〉   , 
and   〈r2〉   , of AIM  

  Atom    Molecule    Shape    Volume      〈r〉         〈r2〉     

    So
x         So

y         So
z      

  Hydrogen      H−
2        2.15    2.15    3.02    58.38    3.94    18.36  

    H−    ion    2.35    2.35    2.35    54.59    4.83    16.61  

  LiH    1.21    1.21    1.08    6.65    1.88    4.11  

  H atom    1.00    1.00    1.00    4.20    1.50    3.01  

    H2       0.88    0.88    0.68    2.19    1.22    2.00  

    B2Ha
6       0.69    0.78    0.79    1.79    1.08    1.71  

    CH4       0.80    0.80    0.65    1.76    1.11    1.71  

    CH3F       0.77    0.75    0.63    1.52    1.05    1.58  

    NH3       0.75    0.59    0.82    1.51    1.05    1.57  

  HCl    0.76    0.76    0.58    1.42    0.97    1.51  

  HF    0.76    0.76    0.59    1.42    1.07    1.49  

    CH3Cl       0.75    0.72    0.61    1.39    1.00    1.46  

    C2H2       0.76    0.76    0.56    1.36    0.98    1.47  

    H2O       0.77    0.72    0.56    1.29    0.99    1.42  

    B2Hb
6       0.68    0.52    0.63    0.93    0.80    1.12  

    H+
2        0.56    0.56    0.49    0.64    0.58    0.87  

  Lithium    Li atom    2.50    2.50    2.50    65.12    5.02    18.69  

    Li2       2.52    2.52    2.07    54.99    4.82    16.96  

  LiCl    1.66    1.66    2.45    28.18    4.54    11.50  

  LiF    1.42    1.42    2.54    21.40    4.77    10.46  

  LiH    1.57    1.57    1.78    18.40    3.38    8.10  

    Li+    ion    0.55    0.55    0.55    0.68    1.15    0.89  

  Boron    B atom    2.30    2.30    2.30    51.12    6.82    15.90  

    B2H6       2.10    1.95    2.02    34.56    6.56    12.27  

  Carbon    C atom    2.15    2.15    2.15    41.57    7.16    13.85  

    C2       2.17    2.17    1.83    36.08    6.91    12.77  

  CO    1.97    1.97    2.05    33.23    6.78    11.94  

    C2H2       2.15    2.15    1.71    32.95    6.83    12.13  

    CH3F       1.85    1.85    2.01    28.79    6.75    10.87  

    CH4       1.86    1.86    1.86    26.85    6.49    10.35  

    CH3Cl       1.77    1.77    1.74    22.86    5.99    9.30  

  Nitrogen    N atom    2.01    2.01    2.01    34.09    7.36    12.14  

    N2       1.95    1.95    1.86    29.71    7.07    11.09  

    NH3       1.80    1.80    2.19    29.69    7.27    11.26  

  Oxygen    O atom    1.93    1.93    1.93    30.28    7.62    11.22  

    H2O       2.10    1.91    1.71    28.68    7.30    10.35  

    O2       1.92    1.92    1.77    27.36    7.43    10.51  

  CO    1.92    1.92    1.72    26.65    7.30    10.35  

  Fluorine      F−    ion    2.28    2.28    2.28    49.38    9.91    15.54  

  F atom    1.85    1.85    1.85    26.53    7.79    10.27  

  HF    1.91    1.91    1.66    25.30    7.71    10.03  

    F2       1.87    1.87    1.72    25.24    7.72    9.97  

    CH3F       1.86    1.86    1.66    24.10    7.54    9.68  

  LiF    1.80    1.80    1.65    22.32    7.07    9.18  

  ClF    1.79    1.79    1.57    21.02    7.09    8.86  
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 The critical architectures in molecular radial density 
provide information on the probability of fi nding electrons 
in a particular region such as at a point or along a ring or 
sphere. In the neighborhood of a critical architecture, the 
probability of fi nding electrons at a maximum is higher 
than at a minimum, while fi nding electrons at a saddle has 
intermediate probability. 

 The critical features shown on the contour and gradient 
vector fi eld of radial density for   F2    in Fig.  5  are an excel-
lent example of the electron probability distribution infor-
mation provided by the critical architectures. For com-
parison, the atomic radial density of a free fl uorine atom 
is shown in Fig.  1 . The most signifi cant topological change 
occurring in the free fl uorine atom is the distortion of the 
maximum sphere in the valence shell. The distortion yields 
numerous critical features in   F2    that are connected by a 

teardrop-shaped gradient path. The most intuitive feature is 
the red maximum bond point which shows a higher prob-
ability of electrons in the bonding region. Another intuitive 
feature is the red maximum spherical ring, which shows 
a high probability of electrons in the nonbonding region. 
A buildup of charge probability in the bonding and non-
bonding regions cannot occur without a subsequent deple-
tion from another region. The physical signifi cance of the 
green saddle ring is to show a lower probability of fi nding 

 Each group of AIM are ordered from largest to smallest volume 

  a    Terminal H 

  b    Bridging H 

Table 2    continued   Atom    Molecule    Shape    Volume      〈r〉         〈r2〉     

    So
x         So

y         So
z      

  Chlorine      Cl−    ion    3.57    3.57    3.57    190.12    18.87    38.17  

    CH3Cl       3.21    3.21    3.01    129.87    16.67    29.66  

  ClF    3.13    3.13    3.12    127.95    16.64    29.31  

  Cl atom    3.04    3.04    3.04    118.08    15.84    27.79  

  HCl    3.15    3.15    2.82    117.40    16.02    27.83  

    Cl2       3.09    3.09    2.85    114.00    15.74    27.23  

  LiCl    3.09    3.09    2.76    110.31    15.37    26.69  

 Table 3       Dipole (a.u.) of Li AIM  

  Molecule      μz     

  Li 2     ±0.68  

  LiH    −1.28  

  LiF    −2.83  

  LiCl    −2.39  

 Fig. 6       The relative size and shape of atoms ( top ) and AIM ( bottom ). 
The atoms, from left to right, are H, F, Cl, Li, C, N, O, and F, while 
the molecules are LiH, LiF, LiCl,   Li2, C2, N2, O2   , and   F2     

 Table 4       The number of electrons each AIM contributes to the bond 
and the total bonding electrons  

 Molecules are ordered in terms of increasing total number of elec-
trons 

  Molecule     No. electrons by atom    Total    Bond length  

  A–B    A    B  

  H–H  +       0.17    0.17    0.34    1.98  

  H–H    0.35    0.35    0.71    1.39  

  Li–H    0.35    0.40    0.75    3.04  

  H–H         0.39    0.39    0.79    1.43  

  Li–Li    0.46    0.46    0.92    5.26  

  Cl–H    0.61    0.37    0.98    2.40  

  F–H    1.02    0.49    1.51    1.70  

  C–C  C2H6       0.83    0.83    1.65    2.89  

  F–F    1.06    1.06    2.12    2.51  

  C–C  C2H4       1.11    1.11    2.21    2.49  

  Cl–F    0.91    1.45    2.36    3.05  

  C–C  C2       1.26    1.26    2.52    2.35  

  Li–F    0.91    1.65    2.56    2.98  

  C–O  CO2       1.09    1.48    2.57    2.15  

  Li–Cl    0.82    1.76    2.58    3.85  

  C–C  C2H2       1.34    1.34    2.69    2.24  

  O–O    1.29    1.29    2.58    2.18  

  Cl–Cl    1.34    1.34    2.68    3.77  

  C–O    1.20    1.53    2.72    2.09  

  N–N    1.40    1.40    2.81    2.02  
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electrons along this ring, due to the electrons residing close 
to the bond point or the nonbonding regions. 

 Critical features can be more easily identifi ed using con-
tour plots of the gradient length of radial density,   |∇ρrad|   , 
as shown in Figure S17–S22 of the supporting information. 

     3.3   Atoms in molecules 

 AIM properties can be quickly and easily calculated, 
including shape, volume [ 19 ],   〈r〉   ,   〈r2〉    (Table  2 ), and dipole 
(Table  3 ). For comparison, these properties are also given 
for free atoms and ions in Table S2.   

 Several intuitive trends can be extracted from these 
calculated properties. First of all, as given in Table  2 , 

volume is generally proportional to   〈r2〉   . This is con-
sistent with results found by Blair and Thakkar, who 
determined that the best correlation between volume 
and   〈r2〉    for a set of 1641 organic molecules could be 
approximated by   V ≈ 29.073〈r2〉

1/2
    [ 20 ]. Another 

observation is that the volume of an AIM in compari-
son with the free atom and ions follows the same trend 
as its ionic state. For example, hydrogen AIM ordered 
by volume result in:   H−

2 > H− > LiH > H    atom 
  > H2 > CH4 > H2O > H+

2    . As expected, this trend 
shows anionic hydrogen tend to be larger than covalently 
bonded hydrogen which are subsequently larger than cati-
onic hydrogen. For other heavy atoms, the AIM is gener-
ally smaller in volume than the free neutral atom because 

 Table 5       Expectation values 
(  〈r〉    and   〈r2〉   ), dipole, size, and 
volume of BIM calculated at 
both the RBCP (top row) or 
DBCP (bottom row) origin (  Zo   )  

 Note that RBCP = DBCP for homonuclear bonds when the BCP coincides with the molecule’s center of 
inversion. The BIM are ordered from largest to smallest volume at the RBCP 

  a      SX = 1.90   ,   SY = 1.60    

  Molecule    Size    Volume  

  A–B      Zo         〈r〉         〈r2〉         μZ         X = Y         Z   

   Homonuclear bonds   

  H–H  +       0.99    0.41    0.63    0.00    0.53    0.28    0.33  

  H–H    0.69    0.92    1.61    0.00    0.85    0.39    1.19  

  C–C  C2H6       1.44    2.53    4.60    0.00    1.41    0.79    6.55  

  F–F    1.25    2.72    4.36    0.00    1.29    1.01    7.07  

  H–H         0.71    1.42    4.83    0.00    1.42    0.90    7.57  

  O–O    1.09    3.27    5.40    0.00    1.49    0.97    9.05  

  N–N    1.01    3.70    6.44    0.00    1.67    0.93    10.84  

  C–C  C2H4       1.25    3.47    6.96    0.00      X �= Y     a     0.89    11.33  

  C–C  C2H2       1.12    4.23    8.80    0.00    1.98    0.97    16.01  

  C–C  C2       1.18    4.14    8.69    0.00    1.95    1.04    16.61  

  Cl–Cl    1.89    4.97    11.46    0.00    2.08    1.69    30.41  

  Li–Li    2.63    3.13    13.67    0.00    2.47    1.23    31.37  

   Heteronuclear bonds   

  F–H    0.80    1.71    2.56    −0.07    1.06    0.55    2.58  

    1.44    1.96    3.08    0.89    1.06    0.90    4.28  

  Cl–H    1.49    1.40    2.65    −0.28    1.08    0.58    2.80  

    1.72    1.37    2.58    −0.06    1.08    0.51    2.47  

  Li–H    2.11    1.46    3.80    −0.38    1.28    0.74    5.03  

    1.35    1.71    4.80    −0.95    1.28    1.24    8.48  

  C–O  CO2       1.21    3.29    5.50    −0.29    1.54    0.87    8.61  

    0.74    3.62    6.35    −1.51    1.54    1.27    12.57  

  Li–F    2.18    3.18    5.32    −0.84    1.49    0.93    8.67  

    1.15    4.68    9.73    −3.46    1.49    2.29    21.45  

  Cl–F    2.14    3.07    5.21    −0.44    1.46    0.99    8.75  

    1.33    3.87    7.46    −2.34    1.46    1.79    15.94  

  C–O    1.19    3.54    6.11    −0.13    1.62    0.91    10.09  

    0.70    3.86    6.89    −1.46    1.62    1.27    14.03  

  Li–Cl    2.48    4.71    11.03    −0.88    2.16    1.30    25.41  

    1.30    6.09    16.65    −3.91    2.16    2.70    52.91  
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the process of bonding places electrons into the bonding 
region decreasing the volume of the AIM. As well, we can 
easily distinguish between bridging and terminal hydrogen 
in   B2H6    from volume differences. The bridging hydrogen 
each share electron density among two bonds making its 
AIM volume signifi cantly smaller than the singly bonded 
terminal hydrogen. 

 The average shape and volume of several AIM also 
reveal electron density distortion for molecular atoms. 
Figure  6  shows that Li AIM shrinks in size relative to the Li 
atom, consistent with lithium’s low electronegativity and its 
propensity to lose electron density upon bonding. Moreo-
ver, there is little overlap observed between the Li AIM and 
its bonded atom, indicative of the cationic character of Li. 
In contrast, there is much more overlap in the covalently 
bonded atoms. The overlap, which increases in the order 

  F2 ≈ C2 < O2 < N2    correlates with the increase in bond 
order.        

 Another property that can be calculated is the dipole, 
which is a measure of charge polarization of the atom in a 
molecule. The dipole of several Li AIM in LiX molecules 
is given in Table  3 . These dipole values correlate well with 
electronegativity differences: the greater the electronegativ-
ity difference between Li and X, the larger the dipole of the 
Li AIM. 

 The benefi t of AIM go beyond determining atomic 
properties. We seek to create an AIM database where the 
electron density and properties of larger molecules can be 
built and approximated from the appropriate combination 
of AIM. Since molecular atoms in ABIM are represented as 
overlapping AIM, then the electron density can be built to a 
fi rst approximation as a linear combination of AIM. 

 Fig. 7       Contours of bond density for several molecules. The outer-
most contour has a magnitude of 0.05. The position of each nucleus 
is given as a  black dot . Spherical cores, defi ned as the position of 
the last minimum in the atomic radial density of the free atom (see 

Table S1), are depicted by a  green circle  for the heavy atoms. The 
superimposed ellipses show the shape and size of the bond calculated 
at the RBCP ( red ) and DBCP origin ( blue ), respectively. The RBCP 
origin better approximates bond density than the DBCP origin  

68 Reprinted from the journal



Theor Chem Acc (2015) 134:117 

1 3

    3.4   Bonds in molecules 

 One integral aspect of chemistry is that  chemical bonds , 
formed from the interaction of electron density, hold the 
atoms of a molecule together. Therefore, it is essential for 
any AIM model to explicitly defi ne the bond. 

 We defi ne a bond as the region of space between a pair 
of atoms where the joint probability of fi nding electron 
density owned by each atom is nonzero. In the bonding 
region, the weighting function of both nuclei (  WA    and   WB    ) 
must be nonzero (and nonnegligible) since both the space 
and electron density are shared. Thus, the bond density is 
defi ned in Eq.  11 . Similarly, the radial bond density can be 
defi ned as in Eq.  12 .
     

     

We denote the number of electrons in the bond A–B con-
tributed from atom  A  as   NA

A−B    and calculate this value by 
Eq.  13 . Therefore, the total number of bonding electrons in 
A–B is the sum of the contributions from  A  and  B  as seen 
in Eq.  14 . When performing the numerical integration for 
Eq.  13 , we use the combined grid points of both atom  A  
and  B .

(11)ρA−B(r) =
√

WA(r) WB(r) ρ(r)

(12)ρradA−B(r) =
√

WA(r) WB(r) ρrad(r)

     

     

The number of bonding electrons for several mole-
cules is given in Table  4 , which show some very intui-
tive trends. First, for diatomics, the number of bond-
ing electrons increases with increasing total charge as 
seen by   H+

2 (0.34) < H2 (0.71) < H−
2 (0.79)   . The addi-

tion of an electron to   H2    to form   H−
2     does not signifi -

cantly increase the number of bonding electrons, which 
is the expected result from molecular orbital theory. 
Another trend observed is the number of bonding elec-
trons increases with bond order, such as the C–C bond in 
  H3C    –   CH3 (1.65) < H2C=CH2 (2.21) < HC≡CH (2.69).    
Similarly, more electrons are observed in stronger bonds 
than weaker bonds, such as:   F2 (2.12) < O2 (2.58)

     < CO (2.72) ≈ N2 (2.81)   . However, there are several 
exceptions such as ClF (2.36), LiCl (2.56), and   Cl2    (2.68), 
which do not follow these trends as discussed below.  

 Similar to AIM, we can also quantify the properties of 
BIM. The shape, volume, and expectation values of BIM in 
various molecules are calculated using either the RBCP or 
DBCP as the origin as shown in Table  5 . Figure  7  shows 
the shape and size of the bond density calculated at both the 
RBCP and DBCP origin superimposed on a contour plot of 
bond density for several diatomics. This fi gure reveals that 
the RBCP origin better approximates bond density. Larger 
versions for these diatomics, as well as three additional 
examples, are shown in Figures S23–S29 of the supporting 
information. Unfortunately, for a number of cases, the core 
of the atom is included in the bond. This is an artifact of the 
Becke weight, where the step function partitions the density 
too early and causes the core to be included in the bond. As 
observed in Fig.  7 , the Cl core contributes to the bond in 
both ClF and LiCl, which results in the number of bonding 
electrons in ClF (2.36) and LiCl (2.56) to be of the same 
order as the double bond   O2    (2.58) as given in Table  4 .         

 One particularly interesting case is the hydrogen-
bridged   B2H6    molecule. A fi gure of the contours of radial 
density for   B2H6    suggests that there is no B–B bond, as 
shown in Figure S30 of the supporting information. This 
is consistent with a QTAIM analysis which fi nds no bond 
path between the boron atoms. Unfortunately, the machin-
ery does not yet exist in MUNgauss to quantitatively cal-
culate the number of bonding electrons for 3-centered 
bonds. 

    3.5   Applications 

 Is molecular radial density chemically signifi cant? One 
application is predicting the orientation of molecular 

(13)
NA

A−B =

∫
WA(r) ρA−B(r)dr

(14)NA−B = NA
A−B + NB

A−B

 Fig. 8       The radial density for a   F2    dimer. The maximum radial den-
sity ring ( red ) of one   F2    is oriented toward a saddle minimum ( green ) 
and a minimum critical point ( blue ) of the other   F2     

 Table 6       The orientation of halogen dimers predicted from the radial 
density topology of the monomer  

  Dimer    Predicted angle from monomer 
(  ◦   )  

  Computed dimer angle (  ◦   )  

    F2 · · · F2       96.56    95.72  

    Cl2 · · ·Cl2       98.50    98.52  
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dimers from the radial density topology of the monomers. 
This is based on the linear alignment of a maximum in 
radial density (charge accumulation) on one molecule with 
a minimum or saddle in radial density (charge depletion) 
for the other molecule. For example, the RX of one   F2    
orients itself toward the line between the PSM and PM of 
the other as illustrated in Fig.  8 . The same trend was also 
found in   Cl2   . The predicted angles fall within one degree of 
the computationally determined dimer angle in the lowest 
energy dimer structure as shown in Table  6 .         

 Another application of molecular radial density is moni-
toring and gaining insight into changes in bonding during a 

reaction. For example, changes in the molecular radial den-
sity during the intrinsic reaction coordinate of the Diels–
Alder reaction between ethene and 1,3-butadiene can be 
seen in Fig.  9  and also in a video available at:   http://www.
chem.mun.ca/homes/plwhome/fi les/DielsAlderanimate20.
mp4    .        

 In this video, the contours of molecular radial density are 
presented in the plane that contains the two carbon atoms of 
ethene and the two outermost carbon atoms of 1,3-butadi-
ene. There are 35 points in total along the IRC, where point 
1 represents the reactant complex, point 18 refl ects the 
transition state, and point 35 is the product of the reaction. 

 Fig. 9       The molecular radial 
density during the Diels–Alder 
reaction between ethene and 
1,3-butadiene showing  a  the 
reactant complex,  b  the transi-
tion state, and  c  the product 
of the reaction. See text for 
explanation  
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As the IRC proceeds from reactants to product, molecular 
radial density is seen to move from the   π    bond systems 
of the ethene and butadiene molecules into the regions of 
space between the ethene and butadiene carbon atoms to 
form sigma bonds. In the transition state, there is molecular 
radial density between these carbon atoms that is about half 
of the molecular radial density found in the product of the 
reaction. However, the ethene bond in the transition state 
has maintained much of its double bond character in the 
transition state as compared to the reactant complex, which 
is consistent with an early transition state for the reaction 
as expected through the Hammond postulate. 

     4   Conclusions 

 We have demonstrated that the molecular electron density 
can be partitioned into atomic and bonding contributions 
using radial density and electron density. The Becke weight 
was employed to partition the molecular space. Although 
the Becke weight works well in a number of cases, there 
are several drawbacks. First, the reliance on fi xed Bragg–
Slater radii makes the Becke weight less versatile in dealing 
with AIM that can have different charged states. Another 
problem arises when there is a large difference between 
the Bragg–Slater radii of the atoms. In the fi rst step of the 
Becke weight calculation, if the ratio of the Bragg–Slater 
radii of two atoms is larger than 2.4 (or smaller than 0.41), 
the ratio will be capped to these extremes. For example, 
the ratio of the Bragg–Slater radii for LiH and LiF is 4.15 
(=2.74/0.66) and 2.91 (=2.74/0.94), respectively, and both 
become capped to 2.4. Consequently, H and F are effec-
tively treated as the same size when paired with Li. The 
restriction on the range of the ratio is a problem of the 
Becke weight because the properties of AIM and BIM can 
change signifi cantly depending on the ratio of the Bragg–
Slater radii. This is illustrated in Tables S3–S5, where 
changing the radius of Li from its Bragg Slater radii (2.74) 
to   〈r〉    of   Li+    (1.15) changes its AIM and BIM properties. 
This motivates the need to explore or develop alternative 
partition functions to replace or modify the Becke weight. 

 The topology of ABIM is rich in features such as criti-
cal points, rings, and spheres, which can be identifi ed and 
characterized using the gradient and diagonalized Hessian 
of radial density, respectively. ABIM is able to quickly and 

easily determine the properties of atoms and bonds, includ-
ing shape, volume, dipole, and expectation values and link 
them to chemically intuitive properties such as electron 
density distortion and bond orders. Two of the most impor-
tant features arising from the ABIM model is that the bond-
ing region is explicitly defi ned and the number of electrons 
in the bonding region can be calculated. 
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initial position of the atoms. This information is an inevi-
table requirement for a molecular viewer as well. In many 
cases, however, only the neighbouring structure of the 
atoms is given. That is, we know the adjacency matrix 
  A = A(G) = (auv)    of the structure which is represented 
by a graph   G(V , E)   . Here   V     is the set of vertices, and   E    
is the set of edges, the adjacency matrix element   auv = 1    
if   (u, v) ∈ E    and   auv = 0   ; otherwise, we suppose further 
that the graph has   n = |V |    vertices. In this graph, the atoms 
correspond to the vertices and the fi rst-neighbour bonds 
to the edges. The topology can be described with the help 
of the   Q(G) = D − A    Laplacian matrix as well, where 
  D = (dvv)    is the diagonal matrix with   dvv =

∑
u:(u,v)∈E auv   . 

In the topological coordinate method, some eigenvec-
tors of the adjacency matrix (or the Laplacian matrix) are 
used to generate the Descartes coordinates of the atoms. 
These eigenvectors are the so-called bi-lobal eigenvec-
tors. An eigenvector   ck    is bi-lobal, if in the graph of the 
atomic structure after deleting the vertices   i    if   ck

i = 0    and 
the edges   (i, j)    if the signs of   ck

i     and   ck
j     are different, the 

resulting graph will have two components. The increas-
ing index   k    for the eigenvector   ck    corresponds to decreas-
ing   �k    eigenvector for the adjacency matrix and increasing 
eigenvector to the Laplacian matrix. The fi rst systematic 
application of this method was presented by Fowler and 
Manolopoulos [ 1 ,  2 ] for general fullerene isomers   C20    to 
  C50    and isolated-pentagon isomers   C60    to   C100   . Similar 
method was found by Pisanski and Shaw-Taylor [ 3 – 5 ]. All 
of these methods were applicable where the carbon atoms 
were on a spherical or near-spherical surface. In math-
ematics, the problem was stated and proved as embedding 
graphs into the Euclidean space   R3    or   R2    [ 5 – 7 ]. Under 
embedding a graph   G(V , E)    into   Rk   , we mean a mapping 
  τ : V(G) → Rk   . Let   τi    be the   n   -dimensional vector formed 
by taking the   i   -th coordinate   τ(v)i    of   τ(v)    for all   v ∈ V    . 

                     Abstract     Very often, the basic information about a nano-
structure is a topological one. Based on this topological 
information, we have to determine the Descartes coordi-
nates of the atoms. In the present paper, we review fi rst the 
previous results obtained by drawing graphs with the help 
of various matrices as the adjacency matrix, the Laplacian 
matrix and the Colin de Verdière matrix. We explain why 
they are applicable if the atoms are on spherical surfaces. 
We have found recently a matrix   W    which could generate 
the Descartes coordinates for fullerenes, nanotubes and 
nanotori and also for nanotube junctions and coils as well. 
Here will be shown with examples of bar polyhex struc-
tures that using the matrix elements of smaller structures, 
the   W    matrix of larger structures can be generated. 

   Keywords     Drawing    ·  Eigenvectors    ·  Embedding    · 
 Graphs    ·  Molecular structures    ·  Nanostructures  

      1  Introduction 

 In order to perform a quantum chemical calcula-
tion, usually one of the most important input data is the 
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As an example in   R3   , we introduce   X = τ1   ,   Y = τ2    and 
  Z = τ3   , then   (xv, yv, zv) =

(
τ(v)1, τ(v)2, τ(v)3

)
   . The ques-

tion arises if there is a topological coordinate method for 
toroidal structures as well. In these structures, the carbon 
atoms are on a surface of a torus. It seemed that three bi-
lobal eigenvectors of the adjacency matrix cannot describe 
the torus [ 8 ]. It turned out that a formula constructed from 
four bi-lobal eigenvectors yields reasonable Descartes 
coordinates for the atoms on the surface of a torus [ 9 ]. 
According to our shape analysis [ 10 ], 16 bi-lobal eigen-
vectors are necessary to describe the position of the carbon 
atoms in a nanotube junction of 1165 atoms. This result 
showed that there is not a general method for construct-
ing topological coordinates for any structures. Successful 
algorithm was found only spherical and toroidal structures. 
The torus is the Cartesian product of two circles (spheres 
in two dimensions). Thus, it can be said that the topologi-
cal coordinate method works only structures which are in 
some way related to the sphere. 

 Some kind of breakthrough happened when it turned 
out that there exists a matrix   W    which has the property 
that its three eigenvectors of zero eigenvalue can repro-
duce the Descartes coordinates of the atoms [ 11 – 14 ]. 
This matrix has further nonzero matrix elements only 
in the diagonal and for fi rst and second neighbours or 
at most third neighbours. In the following paragraphs, 
we review the topological coordinate method and show 
its applicability to bar polyhex carbon structures. Bar 
polyhex carbon structures are very simple ones, and its 
Descartes coordinates can be produced very easily. Here 
we are using them to test our method in these structures. 
The other problem is that although the matrix   W    exists 
for its precise construction, we need the Descartes coor-
dinates of the atoms as well. In this article, we present 
an algorithm for constructing an approximation of the 
matrix   W    without knowing the Descartes coordinates. 
The bar polyhex carbon structures are very good for test-
ing this algorithm. 

    2   Topological coordinates for spherical structures 

 Pisanski and Showe-Taylor [ 3 ,  4 ] obtained   τi = ci+1    with 
 i  = 1, …  k  for the optimal embedding   τ : V(G) → Rk    by 
minimizing the following energy functional
     

where   β    is a positive constant and   ‖τ(u)− τ(v)‖    is the 
Euclidean norm of the vector   τ(u)− τ(v)   . The solutions 
have further the constraints   ‖τi‖ = 1   ,   τT

i c1 = 0    for  i  = 1,…, 
 k  and   τT

i τj = 0    for   1 ≤ i < j ≤ k   . 

(1)

E(τ ) =
∑

(u,v)∈E

auv‖τ(u)− τ(v)‖2
− β

∑
(u,v)/∈E

‖τ(u)− τ(v)‖2

 Fowler and Manolopoulos [ 1 ,  2 ] have found that the fi rst 
few eigenvectors of the fullerene adjacency matrix contain 
three bi-lobal eigenvectors   ck1   ,   ck2    and   ck3    which determine 
the   (xv, yv, zv)    coordinates of the atoms as
     

     

     

where the scaling factors are   Sα = S0    or   Sα =
S0√

�1−�kα
   . 

 In the majority of fullerenes, these three bi-lobal eigen-
vectors are the second, third and fourth eigenvector of the 
adjacency matrix. 

 Lovász and Schrijver [ 6 ] proved that the null space of 
the Colin de Verdière matrix   M    gives a proper embedding 
of a three-connected planar graph   G(V , E)    in the sphere 
  S2    as   τi = ci+1    for  i  = 1, 2, 3, and   ‖τi‖ = 1   . The matrix   M    
defi ned with the following properties:

   1.        M    has exactly one negative eigenvalue, and its multi-
plicity is 1;   

  2.      for all   (u, v) ∈ E   :   muv < 0    and if   u �= v    for   (u, v) /∈ E   : 
  muv = 0   ;   

  3.        M    has rank   n − 3   .     

 The null space of   M    is defi ned as the vector space of its 
eigenvectors with   � = 0    eigenvalue. 

 Graovac et al. [ 8 ] have shown that three bi-lobal eigen-
vectors of the torus adjacency matrix are not suffi cient to 
generate the Descartes coordinates for such kind of struc-
tures. The torus always became fl at from some point of 
view. Laszlo et al. [ 9 ] have found that four bi-lobal eigen-
vectors of the adjacency matrix are suffi cient for embed-
ding the torus into   R3    as
     

     

     

where   ck1   ,   ck2   ,   ck3    and   ck4    are the four bi-lobal eigenvectors 
of the adjacency matrix of the torus. 

 Although the torus is a genus = 1 surface and the genus 
of the sphere is 0, we classifi ed here the torus to the spheri-
cal structure. It is namely the Descartes product of the two-
dimensional spheres (circles). Thus, in this paragraph under 
spherical structures, we mean atomic arrangements where 
the atoms are on surfaces which are homeomorphous to the 
sphere or to the torus. 

(2)xv = S1ck1
v

(3)yv = S2ck2
v

(4)zv = S3ck3
v

(5)xv = S1ck1
v

(
1 + S4ck4

v

)

(6)yv = S2ck2
v

(
1 + S4ck4

v

)
(7)zv = S3ck3

v
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    3   Topological coordinates for nonspherical 
structures 

 Under nonspherical structure, we mean a structure where 
the position of the atoms is not restricted to any kind of sur-
faces. That is, there is not a special restriction to the atomic 
positions. On the one side, it was presented that there is not 
a simple rule based on the bi-lobal eigenvectors of the adja-
cency matrix for generating the Descartes coordinates of 
the carbon atoms in nanotube junctions [ 10 ]. On the other 
side, however, we have proved that a matrix (or matrices) 
  W    can be constructed for any atomic arrangement and the 
eigenvectors of the null space of   W    construct the Descartes 
coordinates of the atoms [ 11 ]. In general cases, we know 
only the existence of such a matrix and it can be con-
structed with the help of an energy minimization process. 
In the next paragraphs, we shall show which way can we 
construct good approximations to this matrix without mini-
mizing the total energy. Our method will be shown on the 
bar polyhex structures. 

 First, let us see the construction of the matrix   W   . We 
describe the total energy of the system of   n    atoms with the 
potential function
     

where   ruv    is the interatomic distance between the atoms   u    
and   v   . The condition that in equilibrium, the forces acting 
on the atoms are zero, can be written in the following form:
     

where
     

and
      

 Thus, in equilibrium, the Descartes coordinates of the 
atom   v    are   (xv, yv, zv)    where   xv, yv and zv    are the  v -th com-
ponents in order of the vectors   X   ,   Y    and   Z   . The matrix ele-
ments of the matrix   W    are calculated at the equilibrium 
position of the atoms. If the centre of mass of the molecule 
is in the origin and the molecule is directed in such a way 
that the eigenvectors of its tensor of inertia are showing to 
the directions of the   x   ,   y    and   z    axis, then the vectors   X   ,   Y    
and   Z    are orthogonal eigenvectors of the matrix   W   . From 
the construction of the   wuu   , matrix elements follow that 
  WU = 0    if   uv =

1√
n
   . If the centre of mass is the origin of 

(8)E(r) = E(r12, . . . ruv, . . .)

(9)WX = 0, WY = 0, WZ = 0

(10)wuv = −
∂E(r)

ruv∂ruv
−

∂E(r)

rvu∂rvu

(11)

wuu =

n∑
v �=u

(
∂E(r)

ruv∂ruv
+

∂E(r)

rvu∂rvu

)

= −

n∑
v �=u

wuv.

the coordinate system,   U    is orthogonal to the vectors   X   , 
  Y    and   Z   . It can be seen very easily that if in the potential 
function   E(r) = E(r12, . . . ruv, . . .)    we suppose only fi rst-
neighbour interactions, the structure cannot be determined 
because of the freedom of the bond angles. In most of the 
cases, the fi rst and second neighbours completely deter-
mine the structure. In some cases, we have to take into 
account the third neighbours as well [ 12 ,  15 ,  16 ]. 

 If we determine in some way the matrix   W   , and the 
underlying graph is suffi ciently rigid, the degeneracy of the 
zero eigenvalue is four. We can chose that one of them is 
the vector   U   . As any linear combination of the other three 
eigenvectors is also eigenvector of the zero eigenvalue, the 
vectors   X   ,   Y    and   Z    establish an affi ne transformation of the 
molecule. In order to obtain some given realistic intera-
tomic distances, an appropriate scaling can be found. First, 
using Brenner potential [ 17 ], we could generate the matrix 
  W    for nanotube junction and helical structures as well. 
Figure  1  shows the corresponding structures obtained by 
the zero eigenvalues of   W   .        

 The Brenner potential can be seen as a potential where 
fi rst- and second-neighbour interactions are taken into 
account in the potential function   E(r) = E(r12, . . . ruv, . . .)   . 
Later, we replaced this potential by the much simpler one 
the harmonic potential [ 12 – 14 ],
     

(12)

E(r) = E(r12, r21, . . . ruv, rvu . . .) =

n∑
u,v=1

1

2
kuv(ruv − auv)

2

 Fig. 1        Side  and  top view  of nanotube junction ( a ) and helical struc-
ture ( b ) of atoms obtained by three zero eigenvalue of the matrix   W     
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and
     

Here   kuv = kvu    are the spring constants, and   auv = avu    are 
parameters. The summation goes for all the pairs   (u, v)    
which are suffi cient for determining the equilibrium posi-
tion of the atoms. The eigenvalue problem of the matrix   W    
has meaning only if it is not the zero matrix. 

 Thus, the parameters   auv    must be different from the cor-
responding equilibrium values of   ruv   . 

 The next step is to fi nd a good approximation to the matrix 
  W   . But if this matrix is approximated, only the vector   U    will 
be an eigenvector with zero eigenvalue. Then, the question is 
to fi nd the eigenvectors which are good approximations to the 
  X   ,   Y    and   Z    zero eigenvectors of the exact matrix   W   . Accord-
ing to our experiences, the lobality of the eigenvectors helps 
us to fi nd the good approximating eigenvectors to   X   ,   Y    and   Z   . 

 Let us see which explanation can we give to the formula 
of Eqs. ( 2 – 4 ) applied for fullerenes [ 1 ,  2 ]. Let the matrix 
  W    be constructed for the fullerene under study. We sup-
pose fi rst- and second-neighbour interactions. As each car-
bon atom has 3 neighbours, symmetry gives that   wuv    equals 
to a constant   w    for the fi rst neighbours and let us choose 
  wuv = 0    for the second neighbours. Usually, it has only one 
eigenvector with zero eigenvalue. It is the eigenvector   U   . 
If we put the centre of mass of a fullerene into the origin 
of a Descartes coordinate system, we can see that the   X   , 
  Y    and   Z    vectors are bi-lobal. Namely,   X    is bi-lobal as one 
connected set of atoms is on one side of the plane   yz    and 
the other connected set is on the other side. If some atoms 
are on this plane, usually this does not disturb the lobality. 
On similar way, can we see that the vectors   Y    and   Z    are 
also bi-lobal. Thus, we have to choose the three bi-lobal 
eigenvectors of our matrix for approximating the eigenvec-
tors   X   ,   Y    and   Z   . In the fullerenes, each carbon atom has 
three neighbours and thus   wuu = −3w   . From this reasoning 
follow Eqs. ( 2 – 4 ); namely by taking the value   w = 1    and 
shifting the diagonals by 3, we obtain the adjacency matrix 
of the fullerene and the eigenvectors will not be changed. 

 By inspecting Fig.  1 b, it can be seen that not all of the 
vectors   X   ,   Y    and   Z    of a helical structure are bi-lobal. The 
helical structure of this fi gure was obtained by two bi-lobal 
and on 4-lobal eigenvectors of the matrix   W   . 

    4   Topological coordinates for bar polyhex 
structures 

 The bar polyhex structure defi ned as a polyhex consist-
ing of hexagons arranged along a line. A polyhex con-
taining   h    hexagons has   n = 4h + 2    vertices (or atoms). In 

(13)wuv = −2kuv

(
1 −

auv

ruv

)
.

 Fig. 2       A bar polyhex structure containing   h = 5    hexagons and 
  n = 22    vertices  

6m-3 6m-2

6m-5 6m-4

6m-1 6m

 Fig. 3       Numbering of the vertices of the   m   -th hexagon in a bar pol-
yhex. The fi rst hexagon is the lowest one  

 Fig. 4       Bar structures of   h = 5    ( a ) and   h = 15    ( b ) hexagons obtained 
with the help of the two bi-lobal eigenvectors of the corresponding 
adjacency matrices using Eqs. ( 2 ,  3 )  
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Fig.  2 a, polyhex structure of fi ve hexagons and 22 vertices 
is shown.        

 Figure  3  shows our numbering of the vertices. The   m
   -th hexagon has the vertices   6m   ,   6m − 1   ,   6m − 2   ,   6m − 3   , 
  6m − 4    and   6m − 5   .        

 In Fig.  4 , we present two structures obtained by the top-
ological coordinates of Eqs.  2  and  3 . For hexagons   h = 5   , 
we obtained the second and the 5th eigenvectors as bi-lobal 
eigenvectors. For the adjacency matrix of the bar struc-
ture of 15 hexagons, we obtained the second and the 12th 
adjacency matrix bi-lobal eigenvectors. In both structures, 
we can see that the bonds at the ends of the bars are much 
smaller than those in the central part. The other peculiarity 
is that the structure turns back at the ends. If we increase 
the number of hexagons, these problems of the structures 
are much more pronounced.        

 In Fig.  5 , we used once more the same relations of 
Eqs.  2  and  3 , but we replaced the adjacency matrix with 
the Laplacian matrix. The bond lengths are still smaller at 
the ends of the bars, but the structure does not turns back at 
the ends. The bi-lobal eigenvectors of the Laplacian are the 
second and 12th in the case of 5 hexagon bar, and they are 
the second and the 10th eigenvectors in the case of the 15 
hexagon structure.        

 Figures  4  and  5  show that the eigenvectors of the adja-
cency matrix and of the Laplacian matrix cannot be used 
for constructing topological coordinates for bar polyhex 
structures. Here we study the eigenvectors of the matrix 
  W   . We shall use the harmonic potential of Eq. ( 12 ). We 
take   kμν = k = 1    for each bond. In the potential function, 
we suppose only fi rst- and second-neighbour interactions. 
We use the value   a1 = 1.4    for the fi rst neighbours and 
  a2 = 3.0    for the second neighbours. Here we remark that 
  a2 = a1

√
3    should give   wuv = 0    for each matrix elements 

of   W   . In Fig.  6 , we can see the bar polyhex structures of 
fi ve and 15 hexagons obtained by energy minimization of 
the harmonic potential of Eq. ( 12 ). Using the equilibrium 
positions of the vertices, we constructed the   W    matrix. The 
fi rst, second and third eigenvectors have the zero eigen-
value. We obtained that the fi rst eigenvector is one-lobal 
and the second and third eigenvectors are the bi-lobals. The 
two bi-lobal eigenvectors with appropriate scaling recon-
structed the structures of Fig.  6 .        

 The   a1 = 1.4    and   a2 = 3.0    parameters produced the fol-
lowing interatomic distances (edge lengths)   r1,2 = 1.6541   , 
  r5,6 = 1.7813   ,   r9,10 = 1.7865   ,   r13,14 = 1.7869   , 
  r17,18 = 1.7869   ,   r21,22 = 1.7869   ,   r25,26 = 1.7869   , 
  r29,30 = 1.7869    for the bar polyhex of 15 hexagons. For 
four digits, we obtained the same corresponding values 
with 5 hexagons as well. That is, increasing the number of 
hexagons, the distances in the central part of the polyhex 
do not depend strongly on the number of hexagons. This 

 Fig. 5       Bar structures of   h = 5    ( a ) and   h = 15    ( b ) hexagons obtained 
with the help of the two bi-lobal eigenvectors of the corresponding 
Laplacian matrices using Eqs. ( 2 ,  3 )  

 Fig. 6       Bar structure of   h = 5    ( a ) and   h = 15    ( b ) hexagons obtained 
with the help of the energy minimization of the harmonic potential of 
Eq. ( 12 ). The same structures were obtained from the zero-eigenvalue 
bi-lobal eigenvectors of the corresponding   W    matrix of Eq. ( 13 )  
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property gives the possibility to construct an approximate 
matrix   W    for a larger number of hexagons using the matrix 
elements obtained for a smaller number of hexagons. In 
Fig.  7 , we can see the results obtained for bar polyhex 
structures of 9 and 109 hexagons. For the structure of 9 
hexagons, we constructed the matrix   W(9)    by minimizing 
the total energy of Eq. ( 12 ) and using matrix elements of 
Eq. ( 13 ). The matrix   W(109)    was calculated with the help 
of   W(9)   . We imagined that the central hexagon   m = 5    of 
the structure of hexagons   h = 9    was repeated   100    times 
in the structure of hexagons   h = 109    and the correspond-
ing matrix elements of   W(109)    were taken from the matrix 
  W(9)   . Thus, we could construct an approximation for the 
exact matrix   W(109)   . We obtained that the fi rst and third 
eigenvector of this   W(109)    was bi-lobal. Using this bi-lobal 
eigenvectors, we could construct the topological coordi-
nates of the structure with   109    hexagons.        

 Although at the end of the 109 hexagon structure, the 
distances are different of the distances from the central 
part, the matrix   W(109)    could reproduce rather well the 
corresponding structure. Using the   W(21)    matrix, we could 
approximate well the   W(421)    matrix as well and could 

construct topological coordinates for the bar polyhex struc-
ture of 421 hexagons. 

    5   Conclusions and outlook 

 Using the well-known structures of bar polyhexes, we pre-
sented approximation for the   W    matrices of large number 
of hexagon structures. Using the calculated matrix elements 
of smaller structures, we constructed   W    matrices without 
minimizing the total energy of large polyhex. These results 
can be generalized for any complicated atomic (or graph) 
structures as well. First, we divide the large structure for 
smaller ones and the   W    matrices of these smaller parts can 
be used for constructing the   W    matrix of the large system. 
Using these ideas, topological coordinates can be con-
structed for any large molecular structures. 

 The topological coordinate method was successfully 
applied for fullerenes [ 1 ], and there are promising results 
for helical structures as well [ 18 – 21 ]. 
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more recent publications about the BLA in carbon chains, 
see, e.g. Refs. [ 3 – 6 ] and references therein. Polyyne in par-
ticular remains a hot topic experimentally and theoretically, 
in part due to the diffi culty in determining the band gap of 
this material [ 6 ]. One reason why it is diffi cult to correctly 
calculate the band gap in Peierls distorted systems is that 
the bond length alternation directly determines the band 
gap, i.e. if the bond length alternation is underestimated (as 
is often the case in, e.g. density functional theory), the band 
gap will be underestimated as well. As such, the matter of 
correctly describing bond length alternation is a current and 
important topic. 

 In addition, Peierls distortion brings with it some inter-
esting fundamental questions, such as whether the bond 
length alternation appears in carbon  rings . It is known that 
in long linear chains, as we increase the length of the chain, 
we approach the infi nite polymer where the Peierls distor-
tion is realized. However, the effect cannot depend on the 
boundary conditions, and hence, a hydrogen terminated 
fi nite chain and a cyclic carbon ring must converge to the 
same Peierls distorted geometry in the infi nite limit. All that 
can be different is the speed of convergence. In this work, 
we discuss the question of Peierls distortion in carbon rings 
and at what number of carbon atoms the alternation appears. 

 The BLA in conjugated polymers can be very well 
described by an improved Hückel-type method, the sem-
iempirical Longuet-Higgins–Salem (LHS) model [ 7 ,  8 ].  1   
The corresponding solid-state physics approximation is the 
Su–Schrieffer–Heeger model [ 9 ,  10 ]. The relationship 
between the LHS and the SSH models was pointed out in 
Ref. [ 11 ]. 

  1    Developing the model and the corresponding HUGEH code and 
applying it to various conjugated polymers was a very fruitful col-
laboration between P.R. Surján and J. Kürti. 

                     Abstract     We present a theoretical study of Peierls distor-
tion in carbon rings. We demonstrate using the Longuet-
Higgins–Salem model that the appearance of bond alterna-
tion in conjugated carbon polymers is independent of the 
boundary conditions and does in fact appear in carbon rings 
just as in carbon chains. We use the Hartree–Fock approxi-
mation and density functional theory to show that this 
behaviour is retained at the  fi rst principles  level. 

   Keywords     Peierls distortion    ·  Conjugated polymers    · 
 Annulenes     ·  Longuet-Higgins–Salem model    ·  Density 
functional theory  

      1  Introduction 

 Peierls distortion [ 1 ] in one dimension (1D) is an inher-
ent trait of linear conjugated polymers, leading to a bond 
length alternation (BLA). The usual chemical nomencla-
ture for it is conjugation. Examples include polyacetylene 
and polyyne, two materials which have been studied by 
the physics and chemistry community for a very long time 
(see, e.g. the book [ 2 ] and the papers cited therein). For 

  Published as part of the special collection of articles “Festschrift 
in honour of P. R. Surjan”.  

    *     Jenő     Kürti         
    kurti@virag.elte.hu               

  1     Department of Biological Physics   ,  Eötvös University 
Budapest    ,  Budapest   ,  P.O.B. 32   ,  1518   ,  Hungary   

  2     Physics Department   ,  Lancaster University    ,  Lancaster     LA1 
4YB   ,  UK   

  3     Wigner Research Institute   ,  Hungarian Academy of Sciences    , 
 Budapest   ,  P. O. B. 49   ,  1525   ,  Hungary   

81Reprinted from the journal

mailto:kurti@virag.elte.hu


 Theor Chem Acc (2015) 134:114

1 3

 To further demonstrate the robustness of the appearance 
of the Peierls distortion, we also use ab initio (Hartree–
Fock, HF) and  fi rst principles  (density functional theory, 
DFT) methods. 

 We start our investigation with the benzene molecule, 
where no BLA appears. We increase the number of car-
bon atoms by four atoms in each step in order to topologi-
cally allow the potential appearance of a BLA. Our goal 
is to fi nd the critical number of carbon atoms where the 
ring becomes Peierls distorted. As it will turn out, it is not 
enough to consider only the simplest planar rings. There-
fore, we consider various possible ring-type structures, 
determining their optimized geometries. The next section 
discusses which molecules come into question. This is 
followed by the results for the energies and for the BLA, 
starting with the LHS model, continuing with HF and DFT 
results. The paper is concluded by a summary. 

    2   Investigated molecules 

 Theoretically, the simplest possible carbon systems showing 
BLA are linear carbon chains with   sp1    hybridization. Imagine 
a row of carbon atoms where each atom is covalently bonded 
to its left and right neighbours. The question is, are the bond 
lengths uniform, or do they vary? Theoretically the purest 
case is the infi nite long carbon chain. It can be shown, based 
on solid-state physics arguments, that for the infi nite long 
chain the structure with alternating bond lengths (polyyne) is 
energetically more favourable than the structure with uniform 
bond lengths (polycumulene)—this is an example of the well-
known Peierls distortion [ 1 ,  12 ]. However, this is only a specu-
lative situation. In fact the longest isolated linear carbon chain 
consists of ‘only’ 44 carbon atoms [ 13 ], which is still far from 
a length which can be considered as infi nite. The structure of 
a fi nite chain is strongly infl uenced by how it is terminated. 
The chain can be stabilized by relatively large end groups [ 13 ] 
or it can simply have a nitrogen atom or a hydrogen atom at 
the end [ 14 ]. There is even the possibility that the chain has 
no end groups, consisting of only carbon atoms [ 15 ,  16 ]. 
However, the accurate treatment of pure carbon molecules is 
a delicate problem which is outside the scope of this paper. 
We just mention that a linear C  n    molecule is unstable against 
bending, crosslinking, forming fused rings or cage-like mol-
ecules, depending on the number of carbon atoms. The rela-
tively long carbon chains are stable and accessible for experi-
ments only if they exist inside carbon nanotubes [ 3 ,  17 ] or if 
they are separated from each other by alkali fl uoride particles 
when preparing them from polytetrafl uoroethylene [ 18 ,  19 ]. In 
any case the end groups have a drastic infl uence on the bond 
length alternation. For example, H–C  ≡    group or N  ≡   C– group 
at the end immediately triggers the BLA starting from the end 
of the chain. Therefore, the BLA is always present in linear 

carbon chains, and only its amount changes (decreases) when 
going from fi nite molecules to the infi nite limit. We can say, 
with some exaggeration, that qualitatively nothing special hap-
pens in this case. 

 The situation is more intriguing if we go from   sp1    to 
  sp2    molecules, that is, to hydrocarbons. Polyacetylene 
  (C2H2)x    is the prototype of the whole family of conjugated 
polymers. It has two isomers, the  trans  and  cis  forms (see 
Fig.  1 ). The  trans  isomer is more stable than the  cis  one. 
The experimentally observed bond lengths are 136/144 and 
137/144 pm for  trans  and  cis  isomers, respectively. [Note 
that these bond lengths differ from that of ‘true’ double 
bond (133 pm) and single bond (154 pm)].        

 The BLA of the infi nitely long polyacetylene can be 
reproduced theoretically on different computational levels: 
the LHS model gives a result of 136/144 pm for the bond 
lengths [ 8 ,  20 ], whereas the DFT method with B3LYP 
functional results in a BLA of 5 pm [ 12 ]. The BLA of 
short conjugated oligoenes is larger than this, again due to 
the chain end effects. The shortest oligoene 1,3-butadiene 
(  C4H6   ) has bond lengths of 134 and 145 pm at the end and 
in the middle, respectively [ 12 ]. The next non-radical oli-
goene is 1,3,5-hexatriene (  C6H8   ) with bond lengths of 134, 
146 and 137 pm, starting from the edge. 

 End-group effects are completely avoided when we 
investigate closed (cyclic) conjugated molecules, that is, 
rings instead of chains. For an infi nite long system, its prop-
erties should not depend on the boundary conditions. The 
question is what happens with the BLA for fi nite molecules. 
This is especially interesting in the case of   sp2    hydrocar-
bons. Benzene (  C6H6   ) is a peculiar system. It is an aromatic 
molecule with   D6h    symmetry, and hence, all six bonds are 
perfectly identical in length (140 pm). Our aim is to gradu-
ally increase the size of the ring in order to fi nd the critical 
size where the bond alternation appears. However, this is 
not so straightforward as one would naïvely think it is. 

 First of all, we restrict ourselves to   C4n+2H4n+2    mono-
cyclic, unsaturated hydrocarbon molecules with   n = 1    to 

 Fig. 1        Trans  ( trans - transoid ) and  cis  ( cis - transoid ) isomers of polya-
cetylene,  above  and  below , respectively  
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8 and 16. In other words, we consider annulenes, those 
ones which obey the Hückel’s rule. Otherwise, the mole-
cule cannot be aromatic, so there is ab ovo a bond length 
alternation. The next question is whether these molecules 
are planar or not. For the LHS model, this does not mat-
ter. In Hückel-type calculations, only the bond lengths play 
a role. However, for more sophisticated methods we need 
to know the precise spatial structure in three dimensions 
(3D). Therefore, we consider several possible confi gura-
tions which correspond to local energy minima. Note that 
the structure of annulenes has been the subject of extensive 
research, see. for example, Refs. [ 21 ,  22 ]. 

 The simplest case is the planar confi guration, similar 
to the structure of benzene (see Fig.  2  left side). We call 
this  all - cis  structure. However, there are problems with the 
 all - cis  confi guration. First, increasing the number of car-
bon atoms leads to an increasing deviation from the opti-
mal 120° bond angle, that is, an increasing angular strain 
is induced. Second, the structure does not converge to that 
of the polyacetylene chain in the infi nite case because all H 
atoms are on the same side of the carbon backbone. Even 
more, the  all - cis  structure is unstable in plane, as we will 
see later on.        

 Therefore, we consider the planar  all - trans  structures, 
as well (see Fig.  2  right side). Although this is very unfa-
vourable for small rings (it is impossible, e.g. for benzene), 
it becomes, as opposed to the  all - cis  case, more and more 
favourable with increasing size, and, at the end, it con-
verges to the structure of the  trans -polyacetylene chain for 
the infi nite case. Nevertheless, the  all - trans  structures are 
also unstable in a planar confi guration, at least for not too 
large rings, as we will see later on. 

 We consider further structures as well. We optimize the 
geometry in 3D for [10]annulene (cyclodecapentaene = 
  C10H10   ) and for [14]annulene (cyclotetradecaheptaene = 
  C14H14   ). Figures  3  and  4  right side show that these mol-
ecules are indeed a non-planar structure in their relaxed 
geometries. It should be mentioned that these annulenes 
also have local energy minimum confi guration where their 

structure is planar (see Figs.  3 ,  4  left side), but they are less 
favourable in energy than the non-planar ones in Figs.  3  
and  4  right side.               

 The next annulene, [18]annulene (cyclooctadecanonaene = 
  C18H18   ), is a special case. The most stable structure of this 
molecule is a planar aromatic structure with   D6h    symme-
try (see Fig.  5  left side). According to our geometry opti-
mization, there are two slightly different carbon–carbon 
bond lengths: 140.0 pm (between carbons in  trans  posi-
tion) and 141.6 pm (between carbons in  cis  position). In 
fact, according to Fig.  5  left side, one can defi ne a whole 
family of rings. Introducing longer and longer  trans  seg-
ments between the six  cis  carbon pairs, the   D6h    symmetry 
is retained. The   [6 + k · 12]   annulenes belong to this family. 
Figure  5  right side shows, e.g. the [30]annulene molecule 

 Fig. 2       [18]Annulene planar  all - cis  geometry ( left ) and [18]annulene 
planar  all - trans  geometry ( right )  

 Fig. 3       [10]Annulene planar, optimized in two dimensions (2D) ( left ) 
and [10]annulene non-planar, optimized in 3D ( right )  

 Fig. 4       [14]Annulene planar, optimized in 2D ( left ) and [14]annulene 
non-planar, optimized in 3D ( right )  

 Fig. 5       Two annulenes with   D6h    symmetry: [18]annulene-  D6h    ( left ) 
and [30]annulene-  D6h    ( right )  
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with   D6h    symmetry. Actually, with some indulgence, ben-
zene can be regarded as the smallest molecule of this fam-
ily, with no  trans  segments.        

 However, also the planar   D6h    confi gurations are not 
without problems, because the bonds are symmetry 
inequivalent. The  cis  parts act as boundaries for the  trans  
segments, so these molecules can be viewed as ones with 
internal delimiting effects, which can trigger the BLA 
even inside the  trans  segments. This leads us to consider 
 non-planar  hydrocarbon rings, with no end-group effects 
or internal delimitation (see Fig.  6  as an example). These 
  C4n+2H4n+2    nanorings can be regarded as cut out appro-
priately from a (  4n + 2, 0   ) zig-zag nanotube and hydro-
genized. In other words, they can be viewed as a fi nite 
piece of  trans -polyacetylene wrapped up  perpendicular  to 

the plane of the polymer. They are energetically unfavour-
able for short rings. However, they become more and more 
stable with increasing size as we will see, and they develop 
into  trans -polyacetylene in the infi nite limit. Their advan-
tage is that they are the adequate molecules to investigate 
the length dependence of the Peierls transition. Before Pei-
erls distortion switches on, the molecule has   Dñd    symmetry 
(where   ̃n = 2n + 1   ) and all bonds are symmetry equivalent. 
The ground state is degenerated, and the BLA can appear 
only by symmetry breaking.         

    3   LHS results 

 The LHS model originates from an early work of Longuet-
Higgins and Salem [ 7 ]. The model was further developed 
by Surján [ 11 ] and Kertész [ 23 ] and by Surján and Kürti 
[ 8 ,  20 ,  24 ,  25 ]. It is a Hückel-type method in essence but 
with two important extensions. First, the   β    parameter of 
the Hückel method is not constant but depends on the bond 
length:
     

Here the parameters  A  and  B  were optimized for carbon–
carbon bonding so that the model can reproduce the BLA 
and the gap of  trans -polyacetylene (see, e.g. in Ref. [ 8 ]). 

(1)β(r) = −A · exp(−r/B).

 Fig. 6       [18]Annulene in nanoring form  

 Fig. 7       Total energy per carbon atom contours for   C4n+2    carbon rings as a function of the two consecutive bond lengths, according to the LHS 
model. The number of carbon atoms (  nC = 4n + 2   ) increases from 6 to 26 in steps of four atoms  
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The second important improvement is the explicit account-
ing for the   σ   -electrons by an empirical potential:
     

where   R1    and   R2    are the lengths of the pure single and dou-
ble bonds, respectively. This potential can be derived from, 
therefore is equivalent to, the empirical linear Coulson rela-
tion between bond length and (mobile) bond order [ 26 ]:
     

where  p  is the bond order for the   π   -electrons. The details 
of the model, together with some of its applications, can 
be found in the references mentioned above. We emphasize 
here only the most important property of the LHS method: 
as opposed to the usual Hückel theory, it allows the opti-
mization of the bond lengths in a self-consistent manner 
by satisfying the Coulson relation, which at the same time 
minimizes the total (  π + σ   ) energy. However, one has to 
keep in mind that the LHS model cannot handle the bond 
angles, only the bond lengths. 

 H atoms are neglected in this model. We used our LHS 
code to calculate the total energy of the   C4n+2    rings, starting 
with   nC = 4n + 2 = 6    (benzene) until   nC = 4n + 2 = 42.    
We scanned the geometry according to dimerization, hav-
ing only two independent bond lengths. The two consecu-
tive bonds (  r1    and   r2    ) can be different, but all odd-numbered 
bonds are identical in length, as are all even-numbered bonds. 
Figure  7  shows the 2D total energy map, that is, the total 
energy per carbon atom contours as a function of the two 
neighbouring bond lengths, for rings   C6    to   C26   . The maps are 
symmetric with respect to the   r1 = r2    (BLA = 0) line.        

 The total energy has a stable minimum for   C6    and   C10    at 
  r1 = r2 = 140 pm   . However, starting from   C14    the minimum 

(2)fσ (r) = 2 · β(r) · (r − R1 + B)/(R1 − R2),

(3)r = R1 − (R1 − R2) · p,

with BLA = 0 becomes a saddle point and a Peierls distor-
tion appears. This can be seen more clearly in Fig.  8 . These 
1D curves show the total energy per carbon atom along the 
line which is perpendicular to the BLA = 0 line and goes 
through the minimum point for   nC = 4n + 2 = 6    and 10, or 
through the saddle point for   nC = 4n + 2 ≥   14. For the sake 
of clarity, the curves are shifted so that they all have the same 
energy value in the BLA = 0 point. For   nC = 6    the total 
energy has a relatively sharp minimum, and for   nC = 10    the 
minimum is already very fl at. Starting from   nC = 14    a bifur-
cation occurs which becomes more and more pronounced 
converging to BLA   ≈ ±   9 pm.        

    4   HF results 

 We already mentioned that the LHS model cannot handle 
either the H atoms or the bond angles. It takes into account 
only the topology of the C atoms. To check the reliability of 
the LHS results, we repeated the calculations on a higher 
level using the Hartree–Fock approximation. In this case, one 
has to know the true geometry of the molecule. We carried 
out the HF calculations for the planar  all - cis  confi guration 
of the   C4n+2H4n+2    molecules with   nC = 4n + 2 = 6,    10 and 
14. We used the G09 code [ 27 ] to calculate the total energy 
of these molecules. We repeated the same procedure what 
was done with the LHS model. We scanned the geometry 
according to dimerization, having only two free parameters, 
lengths of the two independent consecutive carbon–carbon 
bonds (  r1    and   r2   ). The lengths and angles for the C–H bond 
were kept fi xed. Figure  9  shows the 2D total energy map, 
that is, the total energy contours as a function of the two 
neighbouring bond lenghts, for   C4n+2H4n+2    molecules with 
  nC = 4n + 2 = 6   , 10 and 14. The energy values are defi ned 
as the total energy per carbon atom of the molecule minus 
the total energy per carbon atom for benzene. The maps are 
symmetric with respect to the   r1 = r2    (BLA = 0) line.        

 The total energy has a stable minimum for   C6H6    and 
  C10H10    at   r1 = r2 = 139 pm   . However, for   C14H14    the 
minimum with BLA = 0 becomes a saddle point and a Pei-
erls distortion appears, with two different bond lengths of 
137 and 146 pm (BLA = 9 pm), very similar to what was 
observed with LHS model. 

    5   DFT results 

 With the HF-method, we optimized only the positions of 
the carbon atoms. More reliable results can be obtained 
if one optimizes the structure by taking into account all 
geometrical degrees of freedom. This means not only 
the optimization of the positions of the H atoms but 
also allowing the molecule to distort out of plane. We 
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 Fig. 8       Total energy per carbon atom for   C4n+2    carbon rings versus 
bond length alternation, according to the LHS model. Increasing the 
number of carbon atoms (  nC = 4n + 2   ) from 6 to 42 in steps of four 
atoms results in a bifurcation. The BLA is initially zero and con-
verges to   ≈ ±   9 pm  
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mentioned already earlier that in most cases the planar 
structure proved to be unstable. Our aim was to consider 
further ring confi gurations and to fi nd possible structures 
in local energy minima. In order to do this, we have 
chosen density functional theory using the B3LYP/6-
31G(d,p) functional of the G09 program package [ 27 ]. 
This  fi rst principles  method already takes into account 
the correlation, but it is still manageable for molecules 
shown in Sect.  2 . 

 We optimized the geometry with various constraints:

   (a)      The structure was relaxed in plane with  all - cis  geometry 
(see, e.g. Fig.  2  left part), for   nC = 6, 10, . . . 34    and 66.   

  (b)      The structure was relaxed in plane with  all - trans  geom-
etry (see, e.g. Fig.  2  right part), for   nC = 6, 10, . . . 34    
and 66.   

  (c)      The structure was relaxed in plane starting from the 
special   sp2    structure for   nC = 10    and 14 (see Figs.  3 ,  4  
left parts).   

  (d)      The structure was relaxed in 3D starting from the spe-
cial   sp2    structure for   nC = 10    and 14 (see Figs.  3 ,  4  
right parts).   

  (e)      The structure was relaxed in plane starting from 
  D6h    structure for   nC = 18   , 30 and 66 (see Fig.  5  for 
  nC = 18    and 30).   

  (f)      The structure was relaxed in 3D for nanorings with 
  nC = 6, 10, . . . 34    and 66 (see, e.g. Fig.  6  for the case 
of   nC = 18   ).     

 As it was mentioned earlier, all molecules fulfi l Hückel’s 
rule: the number of C atoms is   nC = 4n + 2   . Figure  10  shows 
the results for the calculated total energies per carbon atom. 
Benzene is the energetically most favourable structure, and 
its value was chosen as zero. Benzene belongs to two dif-
ferent families: it has an  all - cis  structure and   D6h    symmetry 
at the same time. The energy of the  all - cis  series increases 
rapidly and starting from   nC = 18    they are the most unfa-
vourable structures. Furthermore, they are unstable against 

out-of-plane distortions as it can be read out from the increas-
ing number of imaginary frequencies in the vibrational 
analysis. 

 The behaviour of the  all - trans  series is reversed. It is 
very unfavourable in energy for small molecules, but its 
energy per carbon decreases with increasing   nC   . Never-
theless, they are unstable against out-of-plane distortions. 
Interestingly, the  all - trans  structure will go over the nanor-
ing structure for   nC = 66   . 

 We investigated the special   sp2    structures, in planar as 
well as non-planar confi guration, for   nC = 10    and 14. Their 
energies are quite favourable. Of course, the non-planar one 
is the most favourable structure, but the difference between 
the values for planar and non-planar case decreases when 
going from   nC = 10    to   nC = 14   . For   nC = 18    they coincide 
and they are both identical with the   D6h    structure. However, 
the bonds are symmetry inequivalent for these structures, 
even in the case of   D6h    symmetry, with the only exception of 
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benzene. Therefore, these molecules are not suitable for stud-
ying the appearance of Peierls distortion. (We mention that 
the   D6h    symmetry lowers to   D3h    symmetry for   nC = 30    and 
66). 

 We arrive at the nanorings. As mentioned in Sect.  2 , they 
are ring-like molecules with symmetry equivalent carbon–
carbon bonds. The consecutive H atoms are all in  trans  posi-
tion, and they lay not in the plane of the ring of C atoms, but 
perpendicular to this plane. The optimized geometry proves 
to be stable, without any imaginary frequency vibrational 
modes, until the largest nanoring we considered (  nC = 66   ). 
Due to the symmetry and the stability, the nanorings are the 
ideal systems to study the appearance of the bond length 
alternation. For small rings, until   nC = 26    there is no BLA 
in the molecule after geometry optimization. At   nC = 30    a 
bifurcation occurs and the BLA becomes fi nite. Figure  11  
shows the evolution of the Peierls distortion in the fi nite sys-
tem. The value of the BLA at   nC = 66    in the nanoring is 
5 pm which is in very good agreement with the DFT calcu-
lated 5 pm BLA for infi nite polyacetylene [ 12 ].               

    6   Summary 

 We investigated the appearance of bond length alterna-
tion (Peierls distortion in physical language, conjugation in 
chemical language) in closed   sp2    hydrocarbon molecules. 
For fi nite linear chains of the type   C2nH2n+2    it is well known 
that short and long bonds alternate regularly (conjugated 
oligoenes). Although the BLA decreases with increasing 
chain length, it does not disappear but remains fi nite when 
the chain length goes to infi nity. This means that there is no 
qualitative change in BLA when going from fi nite chains to 
the infi nite chain. On the other hand, the situation is different 

for closed annulenes. Here, a qualitative change occurs. Ben-
zene has no BLA, and all bonds have the same length. How-
ever, for long enough rings there should be a bond length 
alternation, because in the infi nite limit the properties should 
not depend on the boundary conditions, that is, it should not 
matter whether the system is open (chain) or closed (ring). 
We investigated theoretically the transition from non-alter-
nating rings to alternating ones, as a function of the number 
of carbon atoms in the ring for   C2nH2n+2    molecules. Calcu-
lations have been done on different levels of theory. With the 
Longuet-Higgins–Salem and the Hartree–Fock methods, this 
transition occurs rather soon: as few as 14 carbon atoms are 
enough and the BLA becomes nonzero. According to our 
DFT results with B3LYP/6-31G(d,p) functional, the transi-
tion shifts to larger rings: the appearance of the BLA occurs 
at   C30H30   . This result was obtained for ‘nanorings’ which 
are slices from zig-zag nanotubes, saturated by H atoms, 
where the H–C bonds are parallel with the symmetry axis of 
the ring. We investigated many cyclic structures, planar and 
non-planar both. The planar  all-cis  and  all-trans  rings are 
either energetically unfavourable or unstable, with the only 
exception of benzene. The annulenes with   D6h    symmetry are 
energetically favourable, but here and in some possible 3D 
cases the bonds are not symmetry equivalent. Therefore, the 
investigation of Peierls distortion is without meaning. The 
only cyclic hydrocarbon molecules are the   C2ñH2ñ    nanor-
ings with   Dñd    symmetry, which are energetically favourable 
and stable (except for the too small rings) and in which all 
carbon–carbon bonds are symmetry equivalent. The ground 
state is degenerate, and the BLA can appear only by sym-
metry breaking. 

 At the end, we mention that in the future there might be 
methods by which the planar structures, which are unstable 
in pristine state, can be stabilized by intercalation between 
the layers of 2D layered materials like boron nitride or tran-
sition metal dichalcogenide materials. Also the synthesis of 
hydrocarbon nanorings might be a challenge for prepara-
tive chemistry. Note that the synthesis of carbon picotubes 
[ 28 ] may be considered the fi rst step in this direction. 
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      1  Introduction 

 Generally, quantum chemical calculations of electronic 
structure take the number of electrons in the molecule as 
a fi xed parameter which states for a closed system [ 1 ,  2 ], 
i.e., for its neutral state of  N  electrons or for any of their 
ionic confi gurations. This is usually the correct approach 
for a molecule in gas phase but not within the framework 
of a surrounding environment which may donate or accept 
electrons as for instance in the treatment of solvation phe-
nomena, surface chemistry, or enzyme mechanisms, among 
others. Therefore, this scenario induces to describe these 
problems by means of fragments or physical domains 
as moieties like individual or group of atoms within the 
molecular structure. Thus, to associate non-integer charges 
to them is the main key to the understanding at atomic scale 
of complex processes of electron distributions undergo-
ing charge fl ux transfer among subsystems of atoms and 
molecules under the infl uence of reactive interactions and/
or external perturbations, conformational changes or inter-
actions, related to chemical reactivity [ 3 – 5 ]. For such a 
goal, the fundamental magnitudes to be described are the 
energy, the electron density and their derivatives [ 3 ,  4 ,  6 ]. 
Therefore, an accurate quantum treatment which attempts 
to reach a complete and rigorous description of the elec-
tron distribution and of ulterior way the determination of 
the physicochemical properties, needs a precise defi nition 
of the system, its energy and state. These problems merit 
the introduction of the Atoms in Molecules (AIM) concept 
and the energy and state dependence with the number of 
particles in the system. 

 It has been a common trend in the literature to assume 
under certain success that the quadratic electrostatic 
interactions constitute a suitable approach of the energy 
dependence on fractional charge and independent of the 

                     Abstract     The energy of an atomic or molecular sys-
tem undergoing Coulomb interactions is well known at 
the integer numbers of its neutral or ionic confi gurations. 
Nevertheless, the physical domains (atoms in molecules) 
inside the whole molecular system possess a non-integer 
number of particles due to the electron exchange with its 
surrounding.  Hence, the dependence of the energy, the 
density matrix and their marginal distributions (reduced 
density matrices) with the number of particles become 
a problem of fundamental importance in the description 
of the electron distribution, its properties and transforma-
tions. In this work, we present a rigorous mathematical and 
physical basis for the treatment of this problem within the 
grand-canonical statistical distribution of few particles. 
In this context, the derivatives of the energy and the den-
sity referred as chemical descriptors  (especially chemical 
potential and hardness) are analyzed in both cases, when 
the system is isolated and when it is subject to the interac-
tion with an environment. The ground state energy convex-
ity dependence with the number of particles of these sys-
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strength scale of the interaction [ 6 – 10 ]. Nevertheless, 
the inadequacy of this model has been noted, and a linear 
dependence within the density functional theory (DFT) 
and also for the state function approach was proposed 
as an attempt to obtain the right energy dependence 
for non-integral electron number   N     and its differenti-
ability [ 4 ,  5 ,  11 ]. Recently, a general proof for that pro-
posal going beyond the DFT and the pure state function 
approaches has been presented [ 12 ] under the hypoth-
esis of the ground state energy convexity for atomic 
and molecular systems driven by Coulombic interac-
tions [ 4 ,  5 ,  12 ,  13 ]. To understand the mechanism of 
charge transfer mentioned above, the fragments within 
the molecular structure or even a whole molecular sys-
tem may be interpreted as open systems that exchange 
electrons and energy between them and/or with a reser-
voir [ 4 ,  14 ,  15 ]. Therefore, it follows that a non-integer 
electron number may arise as a time average caused by 
the fl uctuating number of particles and thus the open 
system need to be described by a statistical mixture or 
ensemble of states with different number of particles [ 4 , 
 6 ,  8 ,  12 – 14 ]. Regarding the dependence of each magni-
tude, i.e., energy and/or the density, with the number of 
particles, two kinds of descriptors arise from them. The 
zero-order descriptors are those which are integrated 
functions of the magnitudes itself such as those describ-
ing the electronic distribution from electron populations 
as atomic charges, covalent bond orders, valencies, free 
valencies among others [ 16 ,  17 ] or local indicators as 
those coming from the topological approach like criti-
cal points of the density, their ellipticity or the Lapla-
cian functions of the density, among others [ 18 ,  19 ]. 
The other type are the so-called higher-order descrip-
tors depending on the successive derivatives of these 
magnitudes as for instance, the chemical potential, the 
hardness, Fukui functions, etc. [ 3 ]. The behavior of the 
energy, density or other properties for ensemble [ 4 ,  12 , 
 13 ] or even for pure states distributions [ 20 ,  21 ] is of 
fundamental importance for the latter type because of 
the discontinuities they undergo at integer numbers [ 4 ]. 
So that the system defi nition is supported on the AIM 
notion giving rise to atomistic models for molecules [ 18 , 
 22 ,  23 ] which permits to determine the concept of net 
charge on an atom as the key variable for determining 
its energy [ 4 ,  9 ,  12 ]. The energy and the density matrices 
(DM) are piecewise-continuous linear functions of the 
number of particles   N     [ 4 ,  12 ], and consequently, its fi rst 
derivatives are   N    -staircase functions being undefi ned at 
the integers and constant in between [ 24 ]. So that, sec-
ond derivatives vanish in between and are not defi ned 
at the integers. Hence, descriptors like hardness vanish 
[ 3 ]. This dependence has contradictory consequences 
as for instance, the violation of the electronegativity 

equalization principle [ 3 ,  6 ] closely related to reactivi-
ties and hardness [ 3 ]. 

 In Ref. [ 24 ], it is clearly noted that the formal   N     piece-
wise-continuous linear dependence of the physical magni-
tudes with the number of particles contains the essence of 
the model for non-integer electron systems [ 4 ,  12 ]. Thus, 
admitting the onset of a more accurate reactivity theory 
going beyond the mentioned inconsistencies, it must be 
recognized that reactivity descriptors are chemical environ-
ment dependent and may not be defi ned for isolated spe-
cies without considering a fragment and/or reservoir inter-
action, i.e., generally, system–reservoir (S–R) interactions 
from which the species exchanges or transfers electrons 
[ 24 ]. A formal approach which addresses the problem and 
proposed a formal solution at an ensemble level can found 
in Ref. [ 25 ]. 

 The objective of this work is to introduce some recent 
rigorous developments about the structure of the density 
matrices (DM), i.e., the state of the system as an ensem-
ble of pure states of different number of fi xed particles  M  
commonly called grand-canonical ensemble (GC), the cal-
culation of the energy under the hypothesis of its convex-
ity for ground state isolated molecular systems and their 
extensions to systems under the infl uence of an environ-
ment interaction, i.e., a fragment or a reservoir [ 14 ]. In this 
way, we attempt to obtain a solution based on the interac-
tion between the subsystems (S–R) inducing a coherent 
DM distribution which overcomes the inconsistencies men-
tioned above. Hence, the solution lies within the formal 
structure of reactivity theory, and the second-type chemical 
descriptors (second derivatives) are obtained in the natural 
scenario of the GC [ 12 ,  13 ] and the chemical context in 
which the species exchanges or transfers electrons. 

 Finally, the marginal distributions of the GC DMs, i.e., 
p-RDMs of the non-coherent (isolated systems) [ 13 ] dis-
tributions of the molecular open systems, are calculated 
by means of the contraction mappings [ 13 ,  26 ] in order to 
evaluate the properties as averages of the associated quan-
tum observable. As an example, an explicit derivation and 
generalization of the Fukui functions are shown as a fi rst-
order descriptor of the density from this formalism without 
using the fi nite difference methods. The article is organized 
as follows. Section  2  presents the theoretical aspects intro-
ducing the defi nition, characterization and features of the 
systems, the energy determination, their states (DM) and 
marginal distributions, i.e., the reduced density matrices 
 p -RDMs in the GC ensemble. Also in this section, some 
important properties for the open systems are sketched. In 
Sect.  3 , the chemical descriptors of interest and the solu-
tion for the quantum state of the system in the framework 
of the S–R interaction are presented to show the machin-
ery in action. A fi nal Section is dedicated to the concluding 
remarks. 
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    2   Theoretical background 

   2.1   The system 

 The dissociation process of a molecule leads to sepa-
rated atoms, i.e., physically isolated, which are neutral. 
This is an experimentally very well-supported result 
because the greatest electron affi nity (EA) of all the 
neutral atoms is smaller than the least ionization poten-
tial (IP) [ 5 ,  6 ]. The inverse process of the dissociation is 
the formation of a stable structure by bonding interac-
tions where their densities distort from the isolated ones 
and then polarize to produce a charge transfer as is also 
very well known by experimentalists [ 27 ]. Consequently, 
they become fractionally charged to form covalent, ionic 
or any other type of distribution [ 18 ,  19 ] regarding the 
linked atoms as open systems free to exchange electrons 
between them [ 4 ,  5 ] and no longer as isolated. Therefore, 
the notion of an atom in a molecule (AIM) as a physical 
domain within the physical space is needed for a theoreti-
cal determination of the transferred fraction of charge. 
For practical implementations, each physical magnitude 
may be decomposed for atoms or a group of them like 
moieties that can be for instance a functional group or 
a simple atom. Two equivalent methods but of different 
nature may be considered, the topological ones based 
on the physical partition of the real space by means of 
a rigorous methodology like the Bader’s AIM [ 16 – 18 , 
 28 – 30 ] or those supported by empirical parameters as 
the “fuzzy” atoms [ 22 ,  31 ,  32 ] while others, the fragment 
methods (FM) which are not of topological nature [ 23 ]. 
These ideas introduce the concept we will have in mind 
when we invoke the treatment of a non-integer domain 
population, i.e., they house a number of particles   N     with 
  N ∈ R    . In general, these systems can be considered a 
subsystem within a molecular framework or a whole mol-
ecule in contact with an electron reservoir so that both 
schemes admit the electron exchange [ 15 ]. 

    2.2   Energy and states 

 To describe these systems, the physical extension of the 
ground energy level   EN

0     where   N     is the number of parti-
cles with   N ∈ R   , as well as their states as a function of a 
continuous number of particles is needed. The most general 
description of the state of a quantum system is the density 
matrix  D  [ 26 ,  33 ]. It describes the state of an isolated sys-
tem as a non-coherent convex sum of the complete set of 
all accessible  M -electron pure state density matrices [ 26 , 
 33 ,  34 ]
     

(1)
MD�M

k
= |�M

k 〉〈�
M
k |

in the mixture, where   |�M
k >    is the  k th quantum state 

function in the antisymmetric  M -electron Hilbert space 
  FM    (Hamiltonian eigenstates) [ 34 ,  35 ]. Therefore,  D  is 
expressed by [ 34 ,  35 ]
     

where   ω�M
k

    are the statistical weights, i.e., the probability 
of occurrence of the pure state   |�M

k 〉    in the mixture. The 
carrier space for this type of description is the entire Fock 
space   F =

⊕∞
M=0 FM   , where the symbol   

⊕
    indicates direct 

sum [ 35 ]. These states admit particle number fl uctuation, 
and the number of particles is an average so that the sys-
tem may posses a non-integer number of particles. We will 
refer to this state as the  grand-canonical  distribution (GC). 
The background of the GC formalism ideas to be used for 
systems with a few number of particles, like a molecule or 
an atom, is supported by the statistical interpretation of the 
DM and the existence of some physical criteria to determine 
the weights for the distribution, i.e., maximum entropy in 
statistical physics [ 6 ] or minimum energy in ground states 
of systems with a non-integer number of particles as shown 
in Ref. [ 12 ] on the mathematical basis of a fi nite subspace 
of the Fock space [ 36 ]. Hence, this representation admits 
the different number of particles  M  of the system, and 
therefore, their populations   ω�M

k
    are the variables defi ning 

any state DM [ 12 ,  13 ]. Note that it stands for a generaliza-
tion of the PPLB [ 4 ] conjecture.  D  is an Hermitian, posi-
tive semi-defi nite (all eigenvalues are nonnegative or van-
ishing), bounded (the module of its elements are bounded) 
and fi nite trace (sum of the diagonal elements) matrix, and 
because of its probabilistic interpretation it may be normal-
ized to unity, i.e.,   Tr(D) =

∑
M
∑

�M
k

w�M
k
= 1    [ 33 ,  34 ]. 

Let us mention that the well-known  canonical distribution  
(C, all states in the mixture posses the same number of par-
ticles  N ), expressed by   N D =

∑
�N

k
ω�N

k
|�N

k 〉〈�
N
k |   , and 

the  microcanonical distribution  (MC, all weights vanish 
except one), i.e., pure states   N D�N

k
= |�N

k 〉〈�
N
k |   , are par-

ticular cases of the GC distribution. 
 The energy   E    is the average of the Hamiltonian over the 

distribution  D  and is defi ned by [ 33 ,  34 ]
     

where   H    is the system Hamiltonian operator, and Tr means 
the mathematical trace operation. Let   MD0    be a non-degen-
erate or removable degenerate ground pure state DM [ 37 , 
 38 ] of the  M -particle system and its associated energy 
given by

(2)

D =
∑
M

∑
�M

k

ω�M
k
|�M

k 〉〈�
M
k |;

∑
M

∑
�M

k

ω�M
k
= 1; ω�M

k
≥ 0

(3)
E = Tr(D H) =

∑
M

∑
�M

k

ω�M
k

Tr
(

MD�M
k

H

)
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Introducing the notation,   �M = E
M−1
0 − EM

0     as the energy 
difference convenient interval, i.e., the fi rst ionization 
potential of the system, and the assumption that for   M > 1    , 
the   �M > �M+1 > 0    inequality holds [ 4 – 6 ,  24 ], then 
it results that the sequence   

{
EM

0

}
M∈N

    verifi es the above 
inequality for arbitrary   N , M ∈ N    numbers, such that for 
  M �= N , N + 1   , it follows
     

and the equality holds only for   M = N , N + 1    [ 12 ]. Equa-
tion ( 5 ) stands for the mathematical expression of the 
energy convexity for the ground state energies with respect 
to the number of particles. Let us introduce explicitly the 
non-integer number of electrons in the systems,   N = N + ν    
with   N ∈ N    and   ν ∈ (0, 1)   , i.e., between the consecutive 
integer numbers,  N  and  N  + 1, to extend the dependence 
of the energy between these numbers. The use of the varia-
tional principle for the energy in Eq. ( 3 ) with the statistical 
weights   {ω�M

k
}    as variational parameters and the constrain 

of the number of particles   N     leads to the solution for this 
problem in which  D  is unique and expressed by [ 12 ]
     

Consequently, the energy of the system with non-integer 
number of particles reads as [ 12 ]
     

which is the rigorous derivation of the PPLB proposal 
[ 4 ] and consequently for the corresponding DM structure 
of Eq. ( 6 ). Therefore, it follows that Eqs. ( 6 ) and ( 7 ) are 
valid for any type of state function, i.e., particle independ-
ent or correlated models [ 39 ]. At this stage, it is important 
to mention that all results are also valid for   N − ν   , so we 
only refer to the   N + ν    case unless necessary for a clarify-
ing need. 

 The fundamental chemical concepts derived from the 
physical properties and the chemical descriptors of a sys-
tem are the summary of the physical information contained 
in the p-particle reduced density matrices   pD    ( p -RDM) of 
an  M -electron molecular system (  p < M   ) which are derived 
by contraction operations from the DM and represent its 
marginal distributions [ 26 ]. Any property associated with a 
physical magnitude   A    is the average of the corresponding 
quantum observable  A  expressed by
     

In general, the operators  A  are not a function of the coor-
dinates of all particles in the system but only of a few of 

(4)E
M
0 = Tr

(
MD0 H

)

(5)E
M
0 ≥ (N + 1 − M)EN

0 + (M − N)EN+1
0

(6)D = (1 − ν) N D0 + ν N+1D0

(7)E
N+ν
0 = (1 − ν)EN

0 + νE
N+1
0 .

(8)〈A〉 = Tr(DA)

them, a subset  p . They connect p-particles and are called 
p-particle operators noted by   pA   , as for instance kinetic, 
nucleus–electron interaction potential or dipolar moment 
are 1-particle operators,   1A   ; electron–electron interaction 
potential are 2-particle operators,   2A    and so on [ 26 ,  40 ]. So 
that, the averages become [ 26 ,  40 ]
     

As said above,   pD    are the marginal distributions of the 
whole distribution  D . To obtain them, the contraction 
mapping (CM) operation may be performed on  D  in order 
to reduce the number of variables from a fi xed  M  num-
ber of particles to  p , i.e., the order of contraction [ 26 ,  41 ]. 
In order to defi ne this operation for the GC distribution 
which has no fi xed number of particles, let us fi rst sketch 
it for the MC and C distributions. For this goal, we intro-
duce the p-RDMs in terms of the p-order replacement 
operators   pE    [ 42 ] in the second quantization formalism 
[ 43 ]
     

in which   i, j, k, l, . . .    indices denote spin orbitals of an 
orthogonal basis set, and   c+   ,  c  stand for the usual creation 
and annihilation fermion operators, respectively [ 43 ]. For a 
pure state   MD   , the CM becomes defi ned by Eq. ( 11 ) as [ 26 , 
 38 ]
     

The  p -RDMs are hermitian, positive semi-defi nite and 
bounded [ 26 ] and obey the essential property of repre-
sentability which states for the constraints that a given 
p-RDM must fulfi ll to be derivable from a DM [ 26 ,  44 ]. 
For both C and MC distributions in which the number of 
particles is fi xed for all states in the distribution, any two 
of the reduced density matrices, say   qD    and   pD (q < p)   , are 
related by a contraction operation [ 26 ,  41 ]. Equation ( 11 ) 
can be expressed in a more compact equivalent form by
     

where CM denoted by the symbol   ̂LM
p     is applied to   MD    and 

thus the  p -RDM arise for both C or MC states [ 26 ,  41 ]. The 
binomial symbol   

(M
p

)
    is the Coleman’s normalization factor 

or the number of the composed p-particles or p-ons [ 26 ]; 
  p = 1, 2, . . .    stand for the one-electron reduced density 
matrix   1D    of M particles; the two-electron reduced density 
matrix   2D    of   

(M
2

)
    pairs, and so on. More explicitly, it reads,

     

(9)〈
pA〉 = Tr(pD pA)

(10)pE
i1,i2,...,ip
j1,j2,...,jp = c+i1 c+i2 . . . c+ip cjp . . . cj2 cj1

(11)pD
i1,i2,...,ip
j1,j2,...,jp = Tr(MD pE

i1,i2,...,ip
j1,j2,...,jp )

(12)pD =

(
M

p

)
L̂M

p {
MD}

(13)
pD

i1,i2,...,ip
j1,j2,...,jp =

∑
�M

k

ω�M
k

pD
i1,i2,...,ip
j1,j2,...,jp(�

M
k )
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where   pD
i1,i2,...,ip
j1,j2,...,jp(�

M
k ) =

(M
p

)
L̂M

p {
MD�M

k
}    stands for the 

 p -RDM associated with the   |�M
k 〉    kth accessible M-particle 

pure state of the system. The physical meaning of this oper-
ation is nothing but an  averaging  process over the remain-
ing   M − p    variables [ 45 ]. 

 As stated above, any physical system featured by a 
non-integer number of particles   N     cannot be described 
by any other state than the GC. Therefore, a CM to take 
into account properly the M-particle different states in  D  
defi ned by Eq. ( 2 ) in Fock space to calculate the  p -RDMs 
marginal distributions may be introduced. This expression 
has been obtained recently [ 13 ] as
     

Equation ( 14 ) is the defi nition for the GC CM   ̂Lp    and per-
mits to note that it involves several pure states   MD�M

k
    with 

the condition that the number of particles was   M ≥ p   , i.e., 
the order of contraction  p  must be less than or equal to  M  
and all states in the mixture not lying in this interval, i.e., 
  M < p   , will not contribute to the GC distribution, while for 
 M  =  p , no action is needed [ 13 ]. These mathematical con-
ditions are expressed by
     

and
     

with   I     and   O   , the identity and null superoperators, respec-
tively [ 13 ]. These requirements complete the defi nition for 
the CM in Fock space, and the  p - RDM s may be expressed 
by the expansion,
     

It is worthy to note that the trace operation calculated by 
  Tr(pD) =

∑
{�M

k ,M≥p} ω�M
k

(M
p

)
= 〈

(M
p

)
〉    is the num-

ber of p-ons number in the system as an average which 
is noted by the symbol   〈. . . 〉   . In particular, for  p  = 1, 
  Tr
(

1D
)
=

∑
{�M

k ,M≥1} ω�M
k

M = 〈M〉   , is the num-
ber of particles expressed by the non-integer number 
  〈M〉 = N + ν    mentioned above. 

 To fi nish this section, let us mention some important 
consequences coming from the marginal distributions in 
the GC structure of the density matrices which we will not 
treat in this work. As noted in this section, within the C 
and MC states, any   qD    may be obtained from other matrix 
  pD    with   q < p    by a contraction operation [ 26 ]. The same 

(14)
pD = L̂p{D} =

∑
{�M

k ,M≥p}

ω�M
k

(
M

p

)
L̂M

p {
MD�M

k
}

L̂M
p {

MD�M
k
} = O M < p

L̂p
p{

pD�
p
k
} = I

pD�
p
k
=

pD�
p
k

(15)
pD =

∑
{�M

k ,M≥p}

ω�M
k

pD�M
k

is not true within the GC distribution [cf. Eq. ( 2 )] with-
out losing some information and hence any matrix may 
be only obtained directly by contraction of  D  [ 13 ]. Nev-
ertheless, for the case of our interest in which the energy 
has a convex structure [cf. Eq. ( 6 )], no information is lost, 
except for the case in which  q  =  N  and  p  =  N  + 1 [ 13 ]. 
The other consequence we want to mention is that for 
a closed atomic and molecular systems, the energy is a 
functional of the second-order reduced density matrix 
as   EN

0 = Tr
(

2DN
o

2KN
)
   , where   2KN    stands for the Cole-

man reduced Hamiltonian,   2DN
o     the ground state second-

order reduced density matrix with a supra-index  N  which 
indicates that the 2-RDM comes from contraction of a 
N-particle DM [ 26 ,  38 ]. In contrast, for an open atomic or 
molecular system, the energy cannot be expressed simi-
larly as a functional of the corresponding   2DN+ν

o     but as 
  EN+ν

0 = νTr
(

2DN+1
o

2KN+1
)
+ (1 − ν) Tr

(
2DN

o
2KN

)
    , 

namely the energy is a functional   F    of   2DN
o ,2 DN+1

o     
and the fractional population number   ν   , i.e., 
  EN+ν

0 = F(2DN+1
o , 2DN

o , ν)    [ 13 ,  46 ]. 

     3   Chemical descriptors: system–environment 
interactions and derivative discontinuities 

 The higher chemical descriptors are derivatives of the 
energy or of the electron density with respect of the number 
of particles   N     [ 3 ]. They are related to the concept of reac-
tivity interpreted as a response function to proper chemi-
cal interactions [ 24 ]. Joint together with the zero-order 
descriptors, i.e., energy and functions of the density itself, 
provides the complete and detailed description of a molec-
ular system and its intra- (with a solvent, a reservoir, etc.) 
and inner-interactions (between different fragments in the 
molecule). So that it imposes the knowledge of these mag-
nitudes,   EN

0     and   ρN     (or more generally the associated DM 
from which   ρN     is obtained), dependence with   N     [ 5 ,  12 , 
 13 ]. The common use of the method of fi nite differences 
with respect to integer number of the particles of isolated 
species to evaluate the derivatives [ 3 ] neglects their values 
at non-integer numbers [ 24 ] and consequently the true elec-
tron exchange between molecular subsystems which con-
stitutes the onset of chemical behavior. 

 For ground states, the dependence of the energy   EN
0     

and the DMs is a piecewise-continuous linear functions of 
  N     and only the closed systems with integers  N  and   N ± 1    
enter in this ensemble as stated by Eqs. ( 6 ) and ( 7 ), respec-
tively [ 12 ]. Hence, all ground state properties then have 
similar dependence, and the fi rst derivatives of the energy 
and the density are staircase functions of   N    , undefi ned at 
the integers and constant in between [ 24 ] leading to the 
second derivatives to vanish in between integers [ 4 ,  24 ]. 
The consequences of this dependence are nonphysical, 
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for example, the electronegativity equalization principle 
and the electronic principles based on hardness are sense-
less because they lose their foundations [ 3 ,  4 ,  24 ]. Let us 
show such dependence and make explicit the inconsisten-
cies. The chemical potential is defi ned at constant external 
potential   υ    by [ 3 ,  6 ]
     

which by explicit use of the ground state energy expression 
for open systems for both signs, i.e.,   ±ν    in Eq. ( 7 ) [ 4 ,  12 ]
     

with   EN±ν
0 , EN

0     and   EN±1
0     the energy of the systems with 

non-integer   N ± ν   ,  N  and   N ± 1    number of electrons, 
respectively; then regarding   ∂N = ±∂ν(N =    constant), 
the derivative is
     

yielding the two branches [ 4 ]
     

with EA and IP the electron affi nity and ionization poten-
tial energies, respectively [ 1 ,  2 ]. Hence, since both energies 
are different, the discontinuity becomes explicit. The other 
important fi rst derivative is that of the electron density   ρ(r)    
at point   r    in space, at constant external fi eld   υ    which is also 
expressed into two branches by
     

which stand for the well-known Fukui functions [ 3 ,  6 ,  47 , 
 48 ]. The two derivatives appear by considering the cases 
in which   N     increases/decreases from  N  to   N ± ν   , respec-
tively. This expression may be generalized to matrix form 
taking into account that   ρ(r)    is the diagonal element of   1D    
in the coordinate representation [ 26 ]. Therefore, applica-
tion of the CM of Eq. ( 14 ) to  D  matrix of Eq. ( 6 ) and intro-
ducing the expression for   1D

N±ν   , where the supra-index 
indicates the matrix comes from the state of   N±ν    electrons, 
it results
     

It establishes a rigorous justifi cation to the forms used to 
deal with accurate Fukui functions [ 3 ]. It is worthy to note 

(16)μ =

(
∂EN

o

∂N

)
υ

(17)E
N±ν
0 = (1 − ν)EN

0 + νE
N±1
0 .

(18)μ±
= ±

(
∂EN

o

∂ν

)
υ

= ±

(
E

N±1
0 − E

N
0

)

(19)
μ+

= E
N+1
0 − E

N
0 = −EA, μ−

= E
N
0 − E

N−1
0 = −IP

(20)f±(r) =
(

∂ρ(r)
∂N

)±

υ

= ±

(
∂ρ(r)
∂ν

)±

υ

(21)F±(r|r′) = ±

(
1D

N±1
(r|r′) −

1D
N
(r|r′)

)

Ref. [ 49 ] as a previous GC DFT formulation of the prob-
lem coincident with the determination performed by fi nite 
differences. For a complete description and properties of a 
matrix formulation of these magnitudes, see Refs. [ 50 ,  51 ]. 
Nevertheless, this magnitude has a different physical mean-
ing than those coming from the energy, and it will not be 
subject of the present work. 

 The example of the chemical potential shows the nature 
of the discontinuities caused by the lack of terms depend-
ing on the charge transferred coupling the states of differ-
ent number of particles. Hence, it does not enable the onset 
of nonvanishing higher-order derivatives. Let us deal with 
this lacking information and relate it to the interaction of 
the subsystem (fragment) within a molecular frame and/
or the interaction of the whole molecule with an environ-
ment (reservoir) which permits electron exchange and so 
charge transfer. Some attempts based in the treatment of 
the energy dependence from the point of view of the state 
function approach have been reported in order to overcome 
these discontinuities and thus incorporate the information 
into the descriptors [ 5 ,  15 ,  52 ]. Nevertheless, as the theory 
indicates, a general statistical formulation is needed at the 
GC level of description to consider the interaction of the 
system with the environment, i.e., other subsystem and/or 
reservoir (S–R) interactions. Early attempts to implement 
such formulation within the DFT can be found in Ref. [ 25 ]. 

 The remaining part of this report will be devoted to this 
topic in order to introduce such interactions within the DM 
structure [ 4 ,  12 ,  13 ] and thus calculate the expressions for 
the descriptors to shed some light into the essence of these 
reactivity indices. 

 In the previous section, it has been shown that the con-
vex structure of  D  and the energy for ground states evolve 
into two branches, each one as a two-state level model of  N  
and   N ± 1    Hilbert spaces as expressed in Eqs. ( 6 ) and ( 7 ) 
[ 4 ,  12 ,  13 ]. The corresponding pure ground state DMs in 
Dirac notation reads,
     

and
     

respectively. The interaction of the system (subsystem) 
with the environment may be described by means of a 
potential   Uν    which may have diverse nature regarding the 
type of interaction we are dealing with and depends on 
the electron fraction   ν    as indicated by the subscript. For 
instance, such potential may be considered as describing 
the interaction between subsystem fragments within the 
Atoms in Molecules (AIM) framework [ 11 ] or fragment 
methods [ 53 ], reservoir interactions effects [ 34 ], the infl u-
ence of a solvent fi eld on molecular systems (liquid phase) 

N D0 = |�N
0 〉〈�

N
0 |

N±1D0 = |�N±1
0 〉〈�N±1

0 |,
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[ 54 ,  55 ] or environmental effects [ 55 ] among others. There-
fore, the Hamiltonian in the adiabatic approximation [ 56 ] 
for each of the two branches,
     

can be expressed in matrix form as
     

where   H0    represents the isolated system Hamiltonian 
whose spectra and eigenstates are noted in Eq. ( 23 ) by the 
energies   EN

0     and   EN±1
0    , and   |�N

0 〉    and   |�N±1
0 〉    for the neu-

tral and the ionic states, respectively.   H0    is diagonal at the 
basis set of its eigenstates as well as its density matrix  D . 
The action of the interaction potential induces a new distri-
bution   ̃D    which may describe the open system and refl ects 
the coupling between both states, that of  N  with those of 
  N ± 1    [ 57 ,  58 ]. This equilibrium state may reach a perma-
nent regime of electron exchange, i.e., the rate of electron 
exchange is constant in time. Therefore, the density matrix 
  ̃D    may exhibit a coherent structure (nondiagonal elements 
or coherences are no vanishing) due to the action of the 
interaction potential   Uν    [ 34 ], so that it will be expressed by
     

where the fi rst term stands for the isolated distribution of 
Eq. ( 6 ), i.e., corresponding to   H0    [ 4 ,  12 ,  13 ], while the last 
two terms describe the coupling interaction of the   |�N

0 〉    
and   |�N±1

0 〉    states. The coherences must obey the ine-
quality related to its diagonal elements (or populations), 
  |D̃nm|

2 ≤ D̃nnD̃mm    whose physical meaning is that there can 
be coherences only between states whose populations are 
not zero; in this case,   

∣∣�±
ν

∣∣2 ≤ (1 − ν)ν    and if   ν = 1, 0   , i.e., 
one of the states, that of  N  or   N ± 1    respectively, has no 
populations. Thus, the coherence between them vanishes, 
so that   �±

0 = 0    [ 59 ]. Then, the energy for the system inter-
acting with the environment using Eq. ( 3 ) with   ̃D    distribu-
tion is expressed by
     

where the symbol   Re    indicates the real part of the complex 
number   U±

ν
∗
�±

ν    . This term determines the interaction with 
the environment, and because the interaction potential must 
depend on the fraction   ν    to ensure the electron transfer, it 
introduces a   ν   -nonlinearity dependence for the energy and 
the DM. Thus, it enable us to perform the calculation of the 
chemical descriptors of arbitrary order avoiding the discon-
tinuity problem. To show the machinery in action, let us 
write the descriptors defi ned above in order to clarify these 
ideas. The chemical potential of Eq. ( 16 ) becomes

(22)H = H0 + Uν

(23)
H = E

N
0 |�

N
0 〉〈�

N
0 | + E

N±1
0 |�N±1

0 〉〈�N±1
0 |

+ U
±
ν |�

N
0 〉〈�

N±1
0 | + U

±
ν
∗
|�N±1

0 〉〈�N
0 |

(24)D̃ = D + �±
ν |�N

0 〉〈�
N±1
0 | + �±

ν
∗
|�N±1

0 〉〈�N
0 |

(25)Ẽ
N±ν
0 = Tr(HD̃) = E

N±ν
0 + 2Re(U±

ν
∗
�±

ν )

     

and then it results
     

The second term of the r.h.s of Eq. ( 27 ) permits to avoid 
the chemical potential discontinuity [ 4 ,  24 ], and thus the 
equalization principle can be fulfi lled [ 3 ]. To understand it, 
let us consider two fragments   �A    and   �B    within a molecu-
lar framework which at equilibrium must obey the condi-
tion   ̃μ+

�A
= μ̃−

�B
   , i.e., the chemical potential of the donor 

fragment must be equal to that of the acceptor fragment; 
it is the second term of the r.h.s. of Eq. ( 27 ) which enables 
this condition. Hence, the hardness which vanishes iden-
tically because of the chemical potential discontinuity for 
an isolated system, i.e., without interaction with an envi-
ronment [ 24 ], becomes non-null due to the interaction and 
reads
     

showing the two signs as in the case of the chemical poten-
tial because of the openness of the systems. 

    4   Discussion and concluding remarks 

 The GC distribution has been used here avoiding the con-
cept of temperature but explicitly based on the electronic 
information. This description has been recognized ade-
quate to introduce the S–R interactions on the descriptors 
and permits by the means of a charge-dependent interac-
tion potential to overcome the problem of the discontinui-
ties in the derivatives of the energy. This treatment recovers 
the piecewise dependence when the interaction vanishes, 
i.e.,   Uν → 0   , as expected. This formulation, as has been 
pointed out, is more realistic than evaluating the descriptors 
in isolated systems by fi nite difference methods. In conclu-
sion, the GC distribution for open molecular domains ena-
bles to introduce statistical concepts to describe electron 
distributions in the molecular structure even they are few 
body systems. 

 It may be noted that for the present developments, the 
general structure of the DMs has been used, and hence, the 
results are valid at any level of approximation of the state 
functions, i.e., particle independent or correlated ones. Fur-
thermore, it depends only of the model used for system–
environment interaction. 

(26)μ̃±
=

(
∂ ẼN

0

∂N

)
υ

= ±

(
∂ Ẽ

N±ν
0

∂ν

)
υ

(27)μ̃±
= μ±

± 2Re

(
∂(U±

ν
∗
�±

ν )

∂ν

)
υ

(28)η̃± =
1

2

(
∂2ẼN

0

∂2N

)
υ

= ±Re

(
∂2(U±

ν
∗
�±

ν )

∂2ν

)
υ
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 Several topics deserve our attention as natural continu-
ation of the present work to continue the understanding of 
the reactivity phenomena from a rigorous point of view and 
are being considered in our laboratory. Some of them are 
related to obtain an equation that preserves the constant 
rate of electron transfer between the open domains in the 
molecular structure and provides DM evolution within this 
context, the modeling of the interaction potential of differ-
ent nature and the contraction mappings in Fock space for 
coherent density matrices, among others. 
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wave functions obtained by a range-separated hybrid 
method reproduce experimental values with  < 15 % error. 
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      1  Introduction 

 According to the Perdew’s popular classifi cation of density 
functional approximations (DFA) [ 1 ], the random phase 
approximation (RPA) is situated on the highest, fi fth rung 
of Jacob’s ladder, which leads from the simplest Hartree 
level toward the “heaven” corresponding to the exact solu-
tion of the Schrödinger equation. When stepping upwards 
on Jacob’s ladder, one uses more and more ingredients of 
the Kohn–Sham single determinant. Starting from the low-
est rungs, the density, its gradient, the full set of occupied 
orbitals are successively necessary for the construction of 
the functional. At the highest rung DFA is usually based on 
many-body methods, which require the knowledge of the 
complete set of occupied and virtual orbitals. Such meth-
ods have the drawback that the size of the virtual orbital 
space can be very large even in a moderately sized atomic 
orbital basis. In the case of plane wave calculations, the vir-
tual space can become even prohibitively large. One solu-
tion to keep the size of matrices in reasonable limits makes 
recourse to an auxiliary basis set to expand the occupied-
virtual product functions. Such approaches are known in 
quantum chemistry as resolution of identity [ 2 ] or density-
fi tting [ 3 ,  4 ] methods. Similar advantages can be achieved 
by Cholesky decomposition [ 5 ] techniques. In plane wave 
calculations, the plane wave basis itself can be used to 
expand the product states [ 6 ]. Further gain can be achieved 
by projection methods, which avoid any explicit reference 

                     Abstract     An approximation to the many-body Lon-
don dispersion energy in molecular systems is expressed 
as a functional of the occupied orbitals only. The method 
is based on the local-RPA theory. The occupied orbit-
als are localized molecular orbitals, and the virtual space 
is described by projected oscillator orbitals, i.e., functions 
obtained by multiplying occupied localized orbitals with 
solid spherical harmonic polynomials having their origin at 
the orbital centroids. Since we are interested in the long-
range part of the correlation energy, responsible for disper-
sion forces, the electron repulsion is approximated by its 
multipolar expansion. This procedure leads to a fully non-
empirical long-range correlation energy expression. Molec-
ular dispersion coeffi cients calculated from determinant 
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to virtual orbitals. Such a technique, named projective die-
lectric eigenpotential (PDEP) method, has been success-
fully applied to construct the dielectric function in plane 
wave RPA calculations [ 7 – 9 ]. Recently, Rocca succeeded 
to reduce further the size of the problem by a prescreened 
set of virtuals [ 10 ]. 

 The purpose of the present work is to demonstrate that 
an  approximate  variant of the RPA (and also of the MP2) 
correlation energy can be expressed by using quantities 
that are computable from occupied orbitals alone. In this 
context, one should mention the beautiful result, which has 
been obtained by Surján, who has shown that the MP2 cor-
relation energy, exempt of any further approximation in a 
given basis set, can be reformulated as a functional of the 
Hartree-Fock density matrix, i.e., using exclusively the 
occupied orbitals [ 11 ]. Our main interest is not to repro-
duce the full correlation energy with high numerical preci-
sion, but we focus our attention to a well-defi ned part of 
it, namely on the long-range dynamical correlation energy, 
which is usually taken responsible for the London disper-
sion forces. 

 It is now well-documented that most of the conven-
tional density functional calculations in the Kohn–Sham 
framework, unless special corrections are added to the 
total energy, are unable to grasp the physics of these long-
range forces. Various fairly successful dispersion correc-
tion schemes are known, but although most of them were 
claimed to posses an essentially ab initio character, they 
use, without exception, some “external” data, like atomic 
polarizabilities, atomic radii, etc. [ 12 – 18 ]. Even if these 
quantities are usually not taken from experimental sources, 
and rather originate from ab initio computations, their pres-
ence deprives these theories of their self-contained charac-
ter. Hence, although we do not pretend that the rather dras-
tic approximations which are going to be implemented in 
the following allow us to achieve results of a quality com-
parable to the precision attained by carefully fi ne-tuned 
methodologies, we argue that the ingredients of the present 
approach originate from a controlled series of approxima-
tions and do not use any “external” inputs. Moreover, in 
contrast to the relatively costly and sophisticated methods, 
like RPA, we do not need virtual orbitals, i.e., we stay on 
the fourth rung of Jacob’s ladder. 

 Our approach relies on the use of localized occupied 
molecular orbitals (LMOs) that can be obtained relatively 
easily by a unitary transformation in the subspace of occu-
pied orbitals, according to either an external or an internal 
localization criterion [ 19 ]. The localization of virtual orbit-
als is much more diffi cult, since the usual localization crite-
ria for the occupied orbitals lead often to divergent results. 
It is to be noted that recently a signifi cant progress has been 
reported [ 20 ] for the effi cient localization of virtual orbit-
als. However, we follow another strategy here and build 

excited determinants using localized functions which are 
able to span the essential part of the virtual space. One of 
the most popular local correlation approaches in this spirit 
consists in using the atomic orbital (AO) basis functions to 
represent the virtual space. They are made orthogonal to the 
occupied space by projection, leading to the projected AOs 
(PAOs) techniques [ 21 – 23 ]. The locality of these functions 
is guaranteed by construction, even if it may be somewhat 
deteriorated by the projection procedure. 

 In the present work we are going to revisit and explore 
a quite old idea of Foster and Boys from the early 60s 
[ 24 – 26 ]. The main concern of these authors was to con-
struct a set of virtual orbitals directly from the set of occu-
pied LMOs by multiplying them with solid spherical har-
monic functions centered on the barycenter of the LMO. 
The orthogonality of these new functions can be ensured by 
a projection procedure. Boys and Foster called these new 
functions, obtained after multiplication, oscillator orbit-
als (OOs), and after removing the components of the OOs 
in the space of the occupied orbitals they may be called 
projected oscillator orbitals (POOs). Very few articles in 
the literature mention Boys’ oscillator orbitals [ 27 ], prob-
ably because it had no particular numerical advantage in 
high-precision confi guration interaction calculations and 
its practical implementation raised a number of compli-
cations which could be avoided by more straightforward 
algorithms, like the use of the full set of virtual molecular 
orbitals (VMOs). We have found only a single, very recent 
article, which referred to the notion of oscillator orbitals 
[ 28 ] as a useful concept, but not as a practical computa-
tional tool. To the best of our knowledge, the mathematical 
implications of using oscillator orbitals to defi ne the virtual 
space has never been rigorously studied. Such an analysis 
is beyond the scope of the present study: it is going to be 
the subject of a forthcoming publication. 

 The POOs are non-orthogonal among each other, which 
is at the origin one of the complications mentioned above. 
This problem can be handled just like in the case of the 
PAOs; therefore, a theory of electron correlation based on 
POOs can follow a similar reasoning as local correlation 
methods using PAOs [ 29 ]. In particular, in this paper, the 
RPA method will be reformulated for a virtual space con-
structed from POOs. 

 It is worthwhile to mention that the projected oscilla-
tor orbitals bear some similarities to the trial perturbed 
wave function in the variation-perturbational technique 
associated with the names of Kirkwood [ 30 ], Pople and 
Schofi eld [ 31 ] (KPS), to calculate multipole molecular 
polarizabilities. The closely related Karplus–Kolker [ 32 , 
 33 ] (KK) method and its variants [ 34 ,  35 ] use a simi-
lar  Ansatz  for the perturbed orbitals. In these latter meth-
ods, which were formulated originally as simplifi ed per-
turbed Hartree–Fock theories, the fi rst-order perturbed 
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wave function is a determinant with fi rst-order orbitals 
  ψ(1)

i     which are taken in the following product form [ 36 ] 
  ψ(1)

i = giψi −
∑

k〈ψk|giψi〉ψk   , where   gi    are linear com-
bination of some analytically defi ned functions, like poly-
nomials. As we shall see, the principal difference of this 
 Ansatz  and the POOs is that in the former case one multi-
plies the occupied canonical orbitals with the function   gi    , 
while the oscillator orbitals are constructed from localized 
orbitals. 

 As mentioned previously, our main focus is the mode-
ling of London dispersion forces. It has been demonstrated 
in our earlier works [ 37 – 39 ] that the essential physical 
ingredients of London dispersion forces are contained in 
the range-separated hybrid RPA method, where the short-
range correlation effects are described within a DFA and 
the long-range exchange and correlation are handled at 
the long-range Hartree–Fock and long-range RPA levels, 
respectively. Among numerous possible formulations of the 
RPA [ 39 ,  40 ], we have chosen to adopt the variant based 
on the ring-diagram approximation to the coupled cluster 
doubles theory. The relevant amplitude equations will be 
rewritten with the help of POOs leading to simplifi ed work-
ing equations, which do not refer to virtual orbitals explic-
itly. For the sake of comparison we are going to study the 
case where the POOs are expanded in the virtual orbital 
space. The long-range electron repulsion integrals, appear-
ing in the range-separated correlation energy expression, 
can be reasonably approximated by a truncated multipole 
expansion. It means that in addition to the well-known 
improved convergence properties of the correlation energy 
with respect to the size of the basis set, one is able to con-
trol the convergence through the selection of the multipolar 
nature of the excitations, leading to a possibility of further 
computational gain. 

 The exploitation of localized orbitals for dispersion 
energy calculations has already been proposed since the 
early works on local correlation methods [ 41 – 45 ]. In clas-
sical and semiclassical models most often the atoms are 
selected as force centers; only a few works exploit the 
advantages related to the use of two-center localized orbit-
als and lone pairs. A notable exception is the recent work 
of Silvestrelli and coworkers [ 46 – 50 ], who adapted the 
Tkatchenko–Scheffl er model [ 16 ] for maximally localized 
Wannier functions (MLWF), which are essentially Boys’ 
localized orbitals for solids. It is worthwhile to mention 
that one of the very fi rst use of the bond polarizabilities as 
interacting units for the description of London dispersion 
forces has been suggested as early as in 1969 by Claverie 
and Rein [ 51 ]; see also [ 52 ]. 

 Our approach, at least in its simplest form, is situated 
somewhere between classical models and fully quan-
tum local correlation methods and can be considered 
(practically in all its forms) as a coarse-grained nonlocal 

dispersion functional formulated exclusively on the basis 
of ground state densities and occupied orbitals. It will be 
shown how the various matrix elements can be expressed 
from occupied orbital quantities only. As a numerical illus-
tration, molecular   C6    dispersion coeffi cients will be calcu-
lated from localized orbital contributions and compared to 
experimental reference data. The paper will be closed by a 
discussion of possible future developments. 

    2   Theory 

   2.1   Projected oscillator orbitals 

 The a posteriori localization of the subspace of the occu-
pied orbitals is a relatively standard procedure, which 
can be achieved following a large variety of localization 
criteria (for a succinct overview, see Ref. [ 53 ]). In the 
context of correlation energy calculations, i.e., in vari-
ous “local correlation approaches”, the most widely used 
localization methods are based either on the criterion 
of Foster and Boys [ 24 ] or that proposed by Pipek and 
Mezey [ 54 ]. For reasons which become clearer below, in 
the present work we will use the Foster–Boys localiza-
tion criterion, which can be expressed in various equiva-
lent forms [ 26 ]. In its the most suggestive formulation, 
the Foster–Boys’ localization procedure consists in the 
maximization of the squared distance between the cen-
troids of the orbitals:
      

 Another form of the localization criterion, which is 
strictly equivalent to the previous one, corresponds to the 
minimization of the sum of quadratic orbital spreads
      

 As it has been demonstrated by Resta [ 55 ], the previous 
minimization implies that the sum of the spherically aver-
aged squared off-diagonal matrix elements of the position 
operator is minimal too. This last property of the Boys’ 
localized orbitals is going to be useful in the development 
of the present model. 

 Any set of localized orbitals obtained by a unitary trans-
formation from a set of occupied orbitals spans the same 
invariant subspace as the generalized Kohn-Sham operator, 
  ̂f μ,    and satisfi es the equation:
     

(1)max

⎧⎨⎩
occ∑
i<j

|〈φi|r̂|φi〉 − 〈φj|r̂|φj〉|
2

⎫⎬⎭.

(2)min

{
occ∑

i

〈φi|r̂2
|φi〉 − |〈φi|r̂|φi〉|

2

}
.

(3)
f̂ μφ

μ
i =

occ∑
j

ε
μ
ij φ

μ
j ,
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where   ̂f μφi = t̂ + v̂ne + v̂H + v̂lr,μ
x,HF + v̂sr,μ

xc,DFA    is the range-
separated hybrid operator. In this expression   ̂t    is the kinetic 
energy,   ̂vne    is the nuclear attraction,   ̂vH    is the full-range 
Hartree,   ̂vlr,μ

x,HF    is the long-range Hartree–Fock (non-local) 
exchange, and   ̂vsr,μ

xc,DFA    is the short-range exchange-correla-
tion potential operator. The range-separation parameter,   μ    , 
defi ned below, cuts the electron repulsion terms to short- 
and long-range components. For   μ = 0    one recovers the 
full-range DFA, while for   μ →∞    one obtains the full-
range Hartree–Fock theory. 

 As outlined in the introduction, inspired by the original 
idea suggested fi rst by Foster and Boys [ 24 ] and refi ned 
later by Boys [ 26 ], we propose here to construct local-
ized virtual orbitals by multiplying the localized occupied 
orbital   φi(r)    by solid spherical harmonics having their ori-
gin at the barycenter (centroid) of the localized occupied 
orbital. According to Boys [ 26 ], this defi nition can be made 
independent of the orientation of the coordinate system by 
choosing local coordinate axes which are parallel to the 
principal axes of the tensor of the moment of inertia of the 
charge distribution   φ∗i (r)φi(r)    (see Appendix  1 ). 

 In the following we are going to elaborate the theory for 
the simplest case, when these  oscillator orbitals  are gen-
erated by fi rst-order solid spherical harmonic polynomials, 
i.e., the  i th LMO is multiplied by   (r̂α − Di

α)   , where   ̂rα    is the 
  α = x, y, z    component of the position operator and   Di

α    is a 
component of the position vector pointing to the centroid 
of the  i th LMO, defi ned as   Di

α = 〈φi|r̂α|φi〉.    It is possible 
to generate oscillator orbitals by higher order spherical har-
monics too, which is left for forthcoming work. We denote 
the POO by   |φ̃iα 〉   , where the index   iα    refers to the fact that 
the OO has been generated from the  i th LMO by using the 
  ̂rα    function. For the sake of the simplicity of the formulae, 

the POOs will be expressed in the laboratory frame; the 
expressions for the dipolar POOs in a local frame are 
shown in the Appendix  1 . The POO reads in the laboratory 
frame as
     

with   ̂Q = (Î −
∑occ

m |φm〉〈φm|),    the projector onto the vir-
tual space. 

 In Eq.  4  the “pure” (OO) component of the POO is 
  ̂rα|φi〉   , while the orthogonalization tails stem from the term 
  −
∑occ

m �=i |φm〉〈φm|r̂α|φi〉   . In this sense the “locality” of the 
OO is somewhat deteriorated, since we have contributions 
from each of the other LMOs. At this point the Boys locali-
zation criterion will be at our advantage, since it ensures 
that the sum of the off-diagonal elements of the  x ,  y  and  z  
operators taken between the occupied orbitals, and appear-
ing in the orthogonalization tails, be minimized [ 55 ]. In this 
sense, the Boys-localization scheme seems to be naturally 
adapted for the construction of dipolar oscillator orbitals. 

 To illustrate the concept of dipolar oscillator orbitals, 
two examples are taken from the oxygen lone pair and 
the C–H bonding orbitals of the formaldehyde molecule, 
described in the above-defi ned local frame. Figures  1  and 
 2  shows the localized orbitals and the three projected dipo-
lar oscillator orbitals having a nodal surface intersecting the 
orbital centroid and oriented in the three Cartesian coordi-
nate directions of the local coordinate system,  x ,  y  and  z . It 
is quite clear that the node coincides with the region of the 
highest electron density of the orbital and thereby ensures 
an optimal description of the correlation. Higher order pol-
ynomials generate virtual orbitals with further nodes.               

(4)|φ̃iα 〉 =

(
Î −

occ∑
m

|φm〉〈φm|

)(
r̂α − Di

α

)
|φi〉 = Q̂r̂α|φi〉,

 Fig. 1       Projected oscillator orbitals ( b – d ) generated by projection 
of the products of fi rst-order  solid spherical  harmonics polynomials 
with the O lone pair orbital of   H2C = O    seen in  a . The harmonics 
are aligned with the local frame axes, i.e., the principal axes of the 

tensor of the moment of inertia of the charge distribution of the oxy-
gen lone pair orbital. The  green dot  indicates the position of the LMO 
centroid.  a  O lone pair   |i〉   ,  b    ̂Qr̂x|i〉   ,  c    ̂Qr̂y|i〉   ,  d    ̂Qr̂z|i〉     

102 Reprinted from the journal



Theor Chem Acc (2015) 134:148 

1 3

 From now on, we will use the simplifi ed notations 
  |φi〉 ≡ |i〉    and   |φ̃iα 〉 ≡ |iα〉,    in other words the subscript   α    
on the orbital index indicates that it is an oscillator orbital. 
We designate the occupied (canonical or localized) molecu-
lar orbitals as   i, j, k, . . .    and the canonical virtual molecular 
orbitals (VMOs) as   a, b, c, . . .   . 

 The oscillator orbitals are non-orthogonal among each 
other; their overlap integral can be evaluated using the 
idempotency of the projectors:
     

Note that the overlap matrix   S    is of size   NPOO × NPOO,    
where   NPOO    is the number of projected oscillator orbitals. 

 The POOs can be expanded in terms of a set of ortho-
normalized virtual orbitals (e.g. the set of canonical virtu-
als). Although later we eliminate explicit reference to the 
set of virtual orbitals of the Fock/Kohn–Sham operator 
(i.e., everything will be written only in terms of the occu-
pied orbitals or equivalently in terms of the corresponding 
density matrix), with the help of the resolution of identity, 
we give the explicit form of the coeffi cient matrix linking 
the POOs with the virtuals:
     

The matrix   V    is constructed simply from the elements 
of the occupied/virtual block of the position operator, 
  Vaiα = 〈a|r̂α|i〉.    The overlap matrix of the expanded POOs 
can be written in terms of the coeffi cient matrix   V   :

(5)Siα ,jβ = 〈iα|jβ〉 = 〈i|r̂α r̂β |j〉 −
occ∑
m

〈i|r̂α|m〉〈m|r̂β |j〉.

(6)

|iα〉 =

(
all∑
p

|p〉〈p|

)
Q̂r̂α|i〉 =

virt∑
a

|a〉〈a|r̂α|i〉 =
virt∑
a

|a〉Vaiα .

      

 Higher order oscillator orbitals, not used in the present 
work, can be generated in an analogous manner, using 
higher order solid spherical harmonic functions. 

    2.2   Ring CCD-RPA equations with POOs 

 In the ring CCD (ring coupled cluster double excita-
tions) formulation [ 39 ], the general RPA correlation 
energy (direct-RPA or RPA-exchange) is a sum of pair-
contributions attributed to a pair of occupied (localized) 
orbitals:
     

where the amplitudes   Tij    satisfy the Riccati equations, 
which can be written in terms of orthogonalized occu-
pied   i, j, k, . . .    and virtual   a, b, c, . . .    orbitals as:
     

with the matrix elements:
     

where   f     is the fock matrix of the fock operator   ̂f     and 
with the two-electron integrals of spin-orbitals written 
with the physicists’ notation:

(7)Siα ,jβ = 〈iα|jβ〉 =
virt∑
ab

V†
iαa〈a|b〉Vbjβ =

(
V†V

)
iα jβ

.

(8)ERPA
c =

1

2

occ∑
ij

tr
{

BijTij
}

,

(9)
Rij

= Bij
+ ((ε + A)T)ij

+ (T(A + ε))ij
+ (TBT)ij

= 0,

(10)

ε
ij
ab = δijfab − fijδab

Aij
ab = Kij

ab − Jij
ab = 〈aj|ib〉 − 〈aj|bi〉

Bij
ab = Kij

ab − K ′ij
ab = 〈ij|ab〉 − 〈ij|ba〉,

 Fig. 2       Projected oscillator orbitals ( b – d ) generated by projection 
of the products of fi rst-order  solid spherical  harmonics polynomials 
with the C–H bonding orbital of   H2C = O    ( a ). The harmonics are 
aligned with the local frame axes, i.e., the principal axes of the tensor 

of the moment of inertia of the charge distribution of the C–H bond-
ing orbital. The  green dot  indicates the position of the LMO centroid. 
 a  C–H bonding orbital   |i〉   ,  b    ̂Qr̂x|i〉   ,  c    ̂Qr̂y|i〉   ,  d    ̂Qr̂z|i〉     
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where   w(r, r′) = |r′ − r|−1    is the Coulomb electron 
repulsion interaction. 

 Note that the size of the matrices in Eqs.  8  and  9  is, 
for each pair [ ij ],    Nvirt × Nvirt    and that in this notation 
the matrix multiplications are understood as, for example: 
  (T(A + ε))

ij
ab =

∑
mc T im

ac Amj
cb + Tim

ac ε
mj
cb    . 

 Using the transformation rule between the amplitudes 
in the VMOs and in the POO basis,   Tij = VTij

POOV†    (see 
Appendix  2 ), the Riccati equations can be recast in the 
POO basis as (again, see Appendix  2 ):
      

 This corresponds to a local formulation of the ring CCD 
amplitudes equations, and the dimension of the matrices, 
emphasized by the subscript POO, is merely   NPOO × NPOO.    
As explained in Appendix  3 , this type of Riccati equations 
can be solved iteratively in a pseudo-canonical basis. 

    2.3   Local excitation approximation 

 Since the excitations are limited to “pair-domains”, the 
effective dimension of the equations for a pair is actually 
roughly independent from the size of the system, just like 
in any local correlation procedure. 

 As the simplest approximation, one can take only the 
three excitations to the dipolar POOs generated by a selected 
LMO, i.e., for each pair of LMOs [ ij ] we have the local exci-
tations   i → iα    and   j → jβ ,    leading to a   3 × 3    problem to 
solve and iterate on. Within this approximation, all matrices 
involved in the derivations can be fully characterized by two 
occupied LMO indices and two cartesian components,   α    and 
  β    (the subscript POO is omitted from now on):
      

 With this in mind, and with the additional approximation 
which consists in neglecting the overlap between POOs 
coming from different LMOs, i.e.,   (S)

ij
αβ ≈ δij(S)ii

αβ   , the 
direct RPA Riccati equations of Eq.  12  become:
      

(11)〈ij|ab〉 =
∫

φ∗i (r)φ∗j
(
r′
)
w
(
r, r′

)
φa(r)φb

(
r′
)
drdr′,

(12)

Rij
POO = Bij

POO +

(
εPOO + Aim

POO

)
Tmj

POOSPOO

+ SPOOTim
POO

(
εPOO + Amj

POO

)
+ SPOOTim

POOBmn
POOTnj

POOSPOO = 0.

(13)

(A)
ij
iα jβ ≡ (A)

ij
αβ and (S)iα jβ ≡ (S)

ij
αβ

(B)
ij
iα jβ ≡ (B)

ij
αβ (f)iα jβ ≡ (f)ij

αβ

(T)
ij
iα jβ ≡ (T)

ij
αβ

(14)

Rij
= Bij

+ f iiTijSjj
− fiiSiiTijSjj

+ AimTmjSjj

+ SiiTijf jj
− SiiTijSjjfjj + SiiTimAmj

+ SiiTimBmnTnjSjj
= 0.

 In the above equation, we have written explicitly the 
fock matrix contributions and used implicit summation 
conventions over  m  and  n . A detailed derivation of Eq.  14  
from Eq.  12  is shown in Appendix  4 . These Riccati equa-
tions can be solved by a transformation to the pseudo-
canonical basis, as described in Appendix  3 . 

    2.4   Multipole approximation for the long-range 
two-electron integrals in the POO basis 

 In the context of range-separation, and in the spirit of con-
structing an  approximate  theory which takes advantage of 
the localized character of the occupied molecular orbitals, 
we are going to proceed via a multipole expansion of the 
long-range two-electron integrals. 

 The matrices   Aij
POO    and   Bij

POO    will be reinterpreted in 
terms of long-range two-electron integrals, i.e.,   w(r, r′)    
will be replaced by   wlr(r, r′) = erf(μ|r′ − r|)|r′ − r|−1    in 
Eq.  11 . They read respectively as (see Eq.  10  and the trans-
formation described in Appendix  2 ):
     

      

 Note that these integrals could be calculated by using 
the POO to VMO transformation of Eq.  6 . However, 
such an expression is not in harmony with our goal of 
getting rid of virtual orbitals, since it requires the full 
set of integrals transformed in occupied and canonical 
VMOs with an additional two-index transformation. 
We could formally eliminate virtual molecular orbitals 
by applying the resolution of identity, but in this case 
we would be faced with new type of two-electron inte-
grals, in addition to the usual ones generated by the Cou-
lomb interaction   |r − r′|−1,    namely integrals generated 
by   ̂rα|r − r′|−1   ,   ̂r′β |r − r′|−1    and   ̂rα r̂′β |r − r′|−1.    There-
fore we are going to proceed by a multipole expansion 
technique. 

 The expansion center for the multipole expansion will 
be chosen at the centroid of the LMOs, i.e., in this example 
at   Di    and   Dj   . Using the second-order long-range interaction 
tensor   Lij(Dij),    with   Dij = Di − Dj    (see Appendix  5 ), we 
have
      

 A truly remarkable formal result emerging from the 
framework of oscillator orbitals is that the   ̂rγ    matrix ele-
ment between the POO   mα    and the LMO  i  that appears 
in the previous equation is nothing else but the overlap 
between the POOs   mα    and   iγ    (c.f. Eq.  5 ):

(15)Kij
mαnβ

− Jij
mαnβ

= 〈mαj|inβ〉lr − 〈mαj|nβ i〉lr

(16)Kij
mαnβ

− K ′ij
mαnβ

= 〈ij|mαnβ〉lr − 〈ij|nβmα〉lr .

(17)

Kij
mαnβ

= 〈mαj|inβ〉lr ≈
∑
γ δ

〈mα|r̂γ |i〉L
ij
γ δ〈j|r̂δ|nβ〉

+ higher multipole terms.
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so that the matrix element   Kij
mαnβ    simply reads:

      

 After applying the local excitation approximation, this 
bi-electronic integral becomes even simpler, according to 
the following expression:
      

 In the case of direct RPA, only the   Kij    two-electron 
integrals are needed. For the more general exchange 
RPA (RPAx) case, most of the electron repulsion inte-
grals,   〈mαj|nβ i〉lr ,    can be neglected in the multipole 
approximation, since they correspond to the interaction 
of overlap charge densities formed by localized orbitals 
in different domains. Nevertheless, integrals of the type 
  〈mαj|mβ j〉lr    should be kept: they describe the interaction 
of the overlap charge densities of the  j th LMO and the   mα    
POO, which is a typical long-range Coulomb interaction. 
Similar considerations hold for the   K′ij    matrix elements, 
which correspond to an exchange integral involving 
overlap charge densities of orbitals belonging to differ-
ent domains and can be neglected at this point (a few 
integrals will however survive). The RPAx variant of the 
model will be considered in more details in forthcoming 
works. 

    2.5   Spherical average approximation 

 The previously discussed   3 × 3    matrices can be easily 
replaced by scalar quantities, if one considers a spherical 
average of the POO overlap and fock matrices:
     

and
      

 In this diagonal approximation, and in the case of direct 
RPA where   A = B = K   , the Riccati equations of Eq.  14  
supposing implicit summations on  m  and  n  become:
      

(18)〈mα|r̂γ |i〉 = 〈m|r̂α r̂γ |i〉 −
occ∑
n

〈m|r̂α|n〉〈n|r̂γ |i〉 = Smα iγ ,

(19)Kij
mαnβ

= Smα iγ Lij
γ δSjδnβ

.

(20)Kij
= SiiLijSjj.

(21)Sii
αβ ≈

1
3 siδαβ with si

=
∑
α

Sii
αα ,

(22)f ii
αβ ≈

1
3 f iδαβ with f i

=
∑
α

f ii
αα .

(23)

Rij
= sisjLij

+

(
f isj

− fiis
isj
)

Tij
+ 1

3 sismsjLimTmj

+

(
sif j

− sisjfjj
)

Tij
+ 1

3 sismsjTimLmj

+ 1
32 sismsnsjTimLmnTnj

= 0.

 This set of equations can be solved directly, i.e., with-
out proceeding by the pseudo-canonical transformation 
described in Appendix  3  for the more general case. The 
only quantities needed are the spherically averaged   si    and 
  f i    associated with localized orbitals and the long-range 
dipole-dipole tensors. The update formula to get the  n th 
approximation to the amplitude matrix element is
     

with
     

and
      

 Pursuing with the local excitation and the spherical aver-
age approximations, the long-range correlation energy is 
given by the following spin-adapted expression:
      

    2.6   Bond–bond C 6  coeffi cients 

 Using the fi rst-order amplitudes, i.e., the amplitudes 
obtained in the fi rst iteration step during the solution of 
Eq.  24 :
     

the second-order long-range correlation energy becomes:
      

 This expression describes the correlation energy as a 
pairwise additive quantity made up from bond–bond contri-
butions. The summation over the components of the long-
range interaction tensors gives (see Appendix  5 ):
     

and allows us to cast the long-range correlation energy in a 
familiar form, as:
     

(24)Tij(n)
αβ =

sisjLij
αβ +�Rij

αβ

(
T(n−1)

)
Δisj + siΔj

,

(25)Δi
= fiis

i
− f i,

(26)
�Rij(T) = 1

3 sismsjLimTmj
+ 1

3 sismsjTimLmj

+ 1
32 sismsnsjTimLmnTnj.

(27)ERPA,lr
c =

4

9

occ∑
ij

sisjtr
{

LijTij
}

.

(28)Tij(1)
=

sisj

Δisj + siΔj
Lij,

(29)E(2),lr
c =

4

9

occ∑
ij

sisjsisj

Δisj + siΔj
tr
{

LijLij
}

.

(30)tr
{

LijLij
}
=

6

Dij6 Fμ
damp

(
Dij

)
,

(31)E(2),lr
c =

occ∑
ij

Cij
6

Dij6
Fμ

damp

(
Dij

)
,

105Reprinted from the journal



 Theor Chem Acc (2015) 134:148

1 3

where   Cij
6    is the dispersion coeffi cient between the  i  and  j  

LMOs:
      

 Note that the above dispersion coeffi cient corresponds to 
a single-term approximation to the bare (non-interacting) 
spherically averaged dipolar dynamic polarizability associ-
ated with the localized orbital  i ,
     

where   ωi = Δi/si    is an effective energy denominator and 
the quantity   si    stands for the second cumulant moment 
(spread) of the localized orbital. Note that this possibility 
to approximate   αi

0(iω)    only as a function of objects like   f i    
and   si    is a direct consequence of the remarkable feature that 
the second moment between an LMO and a POO corre-
sponds to an overlap between two POOs (see Eq.  18 ). 

 It is easy to verify that with the help of the Casimir–Pol-
der formula
     

that it is indeed the   Cij
6    dispersion coeffi cient which is 

recovered from the polarizabilities defi ned in Eq.  33 . This 
simple model for the dynamic polarizability associated to 
an LMO, deduced from fi rst principles, can be the start-
ing point of alternative dispersion energy expressions, e.g. 
based on the modeling of the dielectric matrix of the sys-
tem or using the plasmonic energy expression. 

     3   Preliminary results: molecular C 6  coeffi cients 

 In order to have a broad idea about the appropriateness of this 
simple dispersion energy correction, we have calculated the 
molecular C  6    coeffi cients for a series of homodimers as the 
sum of the atom–atom dispersion coeffi cients given by Eq.  32 . 

 The matrix elements between POOs,   Sii
αβ    and   f ii

αβ   , which 
are needed to calculate the scalars   si    and   f i,    can be obtained 
directly by manipulating the matrix representation of the oper-
ators. Such a procedure leads to what we will call the “matrix 
algebra” expressions (denoted by [M]), of the following form:
     

and (see Appendix  6 ):
      

(32)Cij
6 =

8

3

sisjsisj

Δisj + siΔj
.

(33)αi
0(iω) ≈

4

3

ωi

ω2
i + ω2

si,

(34)Cij
6 =

3

π

∫ ∞

0
dω αi

0(iω) α
j
0(iω),

(35)si
[M] =

∑
α

〈i|r̂αQ̂r̂α|i〉 =
virt∑
a

|〈i|r̂|a〉|2,

(36)f i
[M] =

virt∑
ab

∑
α

〈i|r̂α|a〉fab〈b|r̂α|i〉.

 Alternatively, these matrix elements can be obtained 
through the application of commutator relationships, there-
fore this latter option will be referred to as the “operator 
algebra” approach (denoted by [O]). They take the form:
     

and (again, see Appendix  6 ):
      

 Four different Fock/Kohn-Sham operators have been 
applied to obtain the orbitals, which are subsequently local-
ized by the standard Foster–Boys procedure. In addition to 
the local/semi-local functionals LDA and PBE, the range-
separated hybrid RSHLDA [ 37 ,  56 ] with a range-separation 
parameter of   μ = 0.5    a.u. as well as the standard restricted 
Hartree–Fock (RHF) method were used. The notations 
LDA[M] and LDA[O] refer to the procedure applied to 
obtain the matrix elements: either by the matrix algebra [M] 
or by the operator algebra [O] method. All calculations were 
done with the aug-cc-pVTZ basis set, using the MOLPRO 
quantum chemical program package [ 57 ]. The matrix ele-
ments were obtained by the MATROP facility of MOLPRO 
[ 57 ]; the   C6    coeffi cients were calculated by Mathematica. 

 The results and their statistical analysis are collected in 
Table  1  for a set of small molecules taken from the data-
base compiled by Tkatchenko and Scheffl er [ 16 ], as used 
in [ 58 ]. The experimental dispersion coeffi cients have been 
determined from dipole oscillator strength distributions 
(DOSD) [ 59 – 71 ]. The percentage errors of some of the 
methods (LDA[M], PBE[M], RHF[M] and RSHLDA[M]) 
are shown in Fig.  3 .         

 Besides Eq.  32 , the   C6    coeffi cients were also calculated 
from an iterative procedure, where the amplitude matrices 
  Tij    were updated according to the fi rst two lines of Eq.  23 . 
Such a procedure corresponds roughly to a local MP2 itera-
tion, and the methods are labeled LDA2, PBE2, RHF2 
and RSHLDA2. These results are summarized in Table  2 , 
where a detailed statistical analysis is presented for all the 
computational results.  

 The dispersion coeffi cients obtained from LDA and PBE 
orbitals are strongly overestimated. It is not really surpris-
ing in view of the rather diffuse nature of DFA orbitals and 
their tendency to underestimate the occupied/virtual gap. 
Due to the fact that LDA and PBE lead to local potentials, 
the operator and matrix algebra results are very similar: 
their difference is smaller than the supposed experimen-
tal uncertainty of the DOSD dispersion coeffi cients (few 

(37)si
[O] =

∑
α

〈i|r̂αQ̂r̂α|i〉 = 〈i|r̂2
|i〉 −

occ∑
m

|〈i|r̂|m〉|2,

(38)

f i
[O] =

3
2 +

1
2

occ∑
m

(
fim〈m|r̂2

|i〉 + 〈i|r̂2
|m〉fmi

)
−

occ∑
mn

∑
α

〈i|r̂α|m〉fmn〈n|r̂α|i〉.
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percent). It is quite clear from Fig.  3  that the errors for the 
molecules containing second-row elements are consider-
ably higher than for most of the molecules composed of H, 
C, N, O and F atoms. Notable exceptions are the   N2    and 
  N2O    molecules. 

 The performance of the method is signifi cantly bet-
ter for orbitals obtained by nonlocal exchange: RHF and 
RSHLDA. In the latter case the long-range exchange is 
nonlocal, and only the short-range exchange is described 
by a short-range functional. The best performance has been 
achieved by the RSHLDA[M] method. In contrast to the 
pure DFA calculations, the matrix and operator algebra 
methods differ for the RHF and RSH methods signifi cantly: 
the mean absolute error and the standard deviation of the  Fig. 3       Percentage errors in calculated molecular   C6    coeffi cients 

obtained with different methods using the matrix algebra approach  

 Table 1       Molecular   C6    coeffi cients from the dipolar oscillator orbital method, using LDA, PBE, RHF and sr-LDA/lr-RHF determinants in aug-
cc-pVTZ basis set and Boys localized orbitals  

 The matrix elements are calculated with a matrix algebra [M] and operator algebra [O] approach, respectively. All results are in a.u. 

 Values highlighted as bold indicate the best agreement with experiment 

  Molecules    Ref.    LDA[M]    LDA[O]    PBE[M]    PBE[O]    RHF[M]    RHF[O]    RSHLDA[M]    RSHLDA[O]  

    H2       12.1    18.4    18.4    17.2    17.2    9.6    16.2     10.6     16.9  

  HF    19.0    20.7    21.5    20.7    21.6    12.4    17.2    14.9     19.3   

    H2O       45.3    55.6    56.5    55.1    56.1    31.9     45.4     36.4    48.9  

    N2       73.3    118.3    118.8    117.6    118.0     75.2     109.0    81.1    110.9  

  CO    81.4    120.4    120.9    119.1    119.7    70.9    104.1     79.1     109.6  

    NH3       89.0    118.8    119.9    116.7    117.8    66.3     98.6     72.6    102.0  

    CH4       129.7    192.4    193.0    185.9    186.5    105.3    163.5     114.5     168.2  

  HCl    130.4    208.9    211.8    205.1    208.5    121.5    186.3     126.7     184.8  

    CO2       158.7    234.9    237.0    233.2    235.4    130.9    184.0     153.3     202.8  

    H2CO       165.2    205.7    207.2    202.8    204.3    115.2     168.3     129.4    178.4  

    N2O       184.9    317.1    319.3    315.3    317.5     178.9     252.3    206.0    274.7  

    C2H2       204.1    343.5    345.2    340.4    342.2     206.4     316.1    209.7    306.5  

  HBr    216.6    303.3    325.9    302.5    325.4     188.3     293.5    188.2    282.7  

    H2S       216.8    392.8    397.7    382.8    388.2     213.0     339.2    220.5    335.5  

    CH3OH       222.0    303.8    305.3    297.0    298.5    166.8     246.2     187.2    260.2  

    SO2       294.0    542.6    554.9    539.8    552.5     284.9     416.7    329.5    456.2  

    C2H4       300.2    466.1    467.8    456.7    458.4    266.3    406.4     279.4     405.8  

    CH3NH2       303.8    440.6    442.3    429.8    431.4    240.2    360.3     263.2     373.3  

    SiH4       343.9    639.6    655.3    598.4    613.9    280.0    484.6     310.9     513.0  

    C2H6       381.9    579.2    580.9    560.9    562.5    313.5    480.9     341.2     495.5  

    Cl2       389.2    727.4    735.4    714.3    723.7     401.3     607.5    424.3    612.2  

    CH3CHO       401.7    627.5    630.4    613.3    616.0    333.2    493.6     372.6     521.7  

  COS    402.2    845.7    855.8    843.9    853.7     456.3     689.2    495.7    713.5  

    CH3OCH3       534.1    781.4    784.3    758.4    761.1    415.2    619.4     464.8     654.3  

    C3H6       662.1    1045.9    1049.4    1018.6    1021.8    571.2    868.2     609.8     881.2  

    CS2       871.1    2099.4    2119.5    2073.4    2094.5     1085.6     1658.0    1144.0    1686.2  

    CCl4       2024.1    3831.3    3861.0    3750.4    3784.0     2004.8     3007.0    2135.5    3051.9  

  MAD%E      59.84    61.69    56.71    58.62    15.22    33.75    11.84    37.60  

  STD%E      28.08    28.25    27.76    27.98    9.88    21.15    7.24    20.86  

  CSSD%E      67.14    68.92    64.11    65.97    18.39    40.37    14.07    43.62  
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error is increased by a factor of 2 or 3. This deterioration of 
the quality of the results refl ects the fact that in the operator 
algebra approach the commutator of the position and non-
local exchange operators is neglected (see Appendix  6 ), 
while this effect is automatically taken into account in the 
matrix algebra calculations. In view of the simplicity of the 
model and of its fully ab initio character, the best ME%E of 
about 11 % seems to be very promising and indicates that 
further work in this direction is worthwhile. 

    4   Conclusions, perspectives 

 It has been shown that, using projected dipolar oscillator 
orbitals to represent the virtual space in a localized orbital 
context, the equations involved in long-range ring coupled 
cluster doubles type RPA calculations can be formulated 
without explicit knowledge of the virtual orbital set. The 
POO virtuals have been constructed directly from the local-
ized occupied orbitals. The matrix elements and the electron 

repulsion integrals were evaluated using only the elements 
of the occupied block of the Fock/Kohn-Sham matrix in 
LMO basis and from simple multipole integrals between 
occupied LMOs. An interesting feature of the model is that, 
as far as one uses Boys localized orbitals and fi rst-order 
dipolar oscillator orbitals, practically all the emerging quan-
tities can be expressed by the overlap integral between two 
oscillator orbitals, which happens to be the matrix element 
of the dipole moment fl uctuation operator. Various levels 
of approximations have been considered for the long-range 
RPA energy leading fi nally to a pairwise additive disper-
sion energy formula with a non-empirical expression for the 
bond–bond   C6    dispersion coeffi cient. At this simplest level a 
straightforward relationship has been unraveled between the 
ring coupled cluster and the dielectric matrix formulations 
of the long-range RPA correlation energy. 

 Our derivation, starting from the quantum chemical RPA 
correlation energy and pursuing a hierarchy of simplifying 
assumptions, has led us to a dispersion energy expression 
which is in a straightforward analogy with classical van der 

 Table 2       Detailed statistical 
analysis of the methods to 
obtain POO   C6    coeffi cients  

    LDA[M]    PBE[M]    RHF[M]    RSHLDA[M]  

  MA%E    59.8    56.7    15.2    11.8  

  STD%E    28.1    27.8    9.9    7.2  

  CSSD%E    67.1    64.1    18.4    14.1  

  MED%E    55.3    52.1    17.1    11.4  

  MAX%E    141    138    24.6    31.3  

  MIN%E    9.1    8.8    −34.7    −21.7  

    LDA2[M]    PBE2[M]    RHF2[M]    RSHLDA2[M]  

  MA%E    64.3    61    17.1    17.1  

  STD%E    35.7    35.3    12.3    12.3  

  CSSD%E    74.7    71.5    21.3    21.3  

  MED%E    53.5    50.6    15.3    15.3  

  MAX%E    142.1    148.7    54.3    54.3  

  MIN%E    −4.7    −5.1    −36.6    −36.6  

    LDA[O]    PBE[O]    RHF[O]    RSHLDA[O]  

  MA%E    61.7    58.6    33.7    37.6  

  STD%E    28.3    28    21.2    20.9  

  CSSD%E    68.9    66    40.4    43.6  

  MED%E    55.8    52.7    34    34.6  

  MAX%E    143.3    140.4    90.3    93.6  

  MIN%E    13.4    13.4    −9.7    1.7  

    LDA2[O]    PBE2[O]    RHF2[O]    RSHLDA2[O]  

  MA%E    65.9    62.7    51    51  

  STD%E    36.3    36.9    47.7    47.7  

  CSSD%E    76.3    73.8    70.5    70.5  

  MED%E    54.7    51.1    34    34  

  MAX%E    143.3    152.9    214.8    214.8  

  MIN%E    −1.1    −1.2    −10.6    −10.6  
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Waals energy formulae. Our procedure produces an explicit 
model, derived from the wave function of the system, for 
the dynamical polarizabilities associated with the building 
blocks, which are bonds, lone pairs and in general localized 
electron pairs. Thus one arrives to the quantum chemical ana-
logs of the “quantum harmonic oscillators” (QHO) appearing 
in the semiclassical theory of dispersion forces, elaborated 
within a RPA framework by Tkatchenko et al. [ 72 ,  73 ]. 

 A promising perspective of the projected oscillator orbital 
approach concerns the description of dispersion forces in 
plane wave calculations for solids. Much effort has been 
spent recently in fi nding a compact representation of the 
dielectric matrix in plane wave calculations [ 10 ], but it still 
remains a bottleneck for a really fast non-empirical calcula-
tion of the long-range correlation energy. Projected oscilla-
tor orbitals may offer an opportunity to construct extremely 
compact representations of a part of the conduction band, 
which contributes the most to the local dipolar excitations at 
the origin of van der Waals forces. However, this approach 
is probably limited to relatively large gap semiconductors, 
where the construction of the MLWF [ 74 ,  75 ], which are 
the solid-state analogs of the Boys localized orbitals, is a 
convergent procedure. Such a methodology could become a 
fully non-empirical variant of Silvestrelli’s extension of the 
Tkatchenko–Scheffl er approach for MLWFs [ 46 – 50 ]. 

 The main purpose of the present work has been to 
describe the principal features of the formalism, without 
extensive numerical applications. However, the fi rst rudi-
mentary numerical tests on the molecular   C6    coeffi cients 
have indicated that the results are quite plausible in spite 
of the simplifying approximations and it is reasonable to 
expect that more sophisticated variants of the method will 
improve the quality of the model. In view of the modest 
computational costs and the fully ab initio character of 
the projected oscillator orbital approach applied at various 
approximation levels of the RPA, which is able to describe 
dispersion forces even beyond a pairwise additive scheme, 
the full numerical implementation of the presently outlined 
methodology has certainly a great potential for the treat-
ment of London dispersion forces in the context of density 
functional theory. 

       Acknowledgments     J.G.A. thanks Prof. Péter Surján (Budapest), to 
whom this article is dedicated, the fruitful discussions during an early 
stage of this work.  

   Appendix 1: Dipolar oscillator orbitals in local 
frame 

 Let   Ri    be the rotation matrix which transforms an arbi-
trary vector   v    from the laboratory frame to the vector   vloc    in 
the local frame defi ned as the principal axes of the second 

moment tensor of the charge distribution associated with 
a given localized occupied orbital  i ,   Ri · v = vloc.    The 
expression in the local frame of a POO   iα    constructed from 
the LMO  i  is then:
      

  

   Appendix 2: Riccati equations in POO basis 

 The fi rst-order wave function   Ψ (1)    can be written in terms 
of Slater determinants   | . . . ab . . . |    formed with LMOs 
and canonical virtual orbitals  a  and  b  on the one hand, 
and on the other hand in terms of Slater determinants 
  | . . . mαnβ . . . |    formed with LMOs and POOs   mα    and   nβ   . 
That is to say that:
      

 The canonical virtual orbitals and the POOs in question 
are related by (see Eq.  6 ):
      

 This allows us to write:
     

and leads to the transformation rule between the amplitudes 
in the VMO and in the POO basis:
      

 Multiplication of the Riccati equations of Eq.  9  by   V†    
and   V    from the left and from the right, respectively, and 
expressing the amplitudes in POOs using Eq.  43  leads to:

(39)

|iloc
α 〉 =

(
Î −

occ∑
m

|m〉〈m|

)(
R

i
·

(
r − Di

))
α
|i〉

=

(
R

i
· r
)

α
|i〉 −

occ∑
m

(
R

i
· 〈m|r|i〉

)
α
|m〉

=
∑
β

R
i
αβrβ |i〉 −

occ∑
m

∑
β

R
i
αβ〈m|rβ |i〉|m〉

(40)Ψ (1)
=

occ∑
ij

virt∑
ab

T ij
ab| . . . ab . . . | ≈

occ∑
ij

POO∑
mαnβ

Tij
mαnβ

| . . . mαnβ . . . |.

(41)|mα〉 =

virt∑
a

|a〉Vamα and |nβ〉 =

virt∑
b

|b〉Vbnβ
.

(42)

Ψ (1)
=

occ∑
ij

virt∑
ab

T ij
ab| . . . ab . . . |

≈

occ∑
ij

POO∑
mαnβ

Tij
mαnβ

| . . . mαnβ . . . |

=

occ∑
ij

POO∑
mαnβ

virt∑
ab

Vamα
Tij

mαnβ
V†

nβb| . . . ab . . . |,

(43)Tij
= VTij

POOV†.
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where implicit summation conventions are supposed on  m  
and  n . Recognizing the expression for the overlap matrix, 
  SPOO = V†V,    we obtain:
     

which defi nes   Rij
POO,      εij

POO   ,   Aij
POO    and   Bij

POO    and which are 
the Riccati equations seen in Eq.  12 . 
  

   Appendix 3: Solution of the Riccati equations 
in POO basis 

 To derive the iterative resolution of the Riccati equations 
seen in Eq.  12 , we write explicitly the fock matrix contribu-
tions hidden in the matrix   ε   . The matrix elements in canoni-
cal virtual orbitals,   εij

ab,    read:
     

so that the matrix element in POOs is (we omit the “POO” 
indices):
      

 The terms in the Riccati equations containing the matrix 
  ε    then read (we use implicit summations over  m  and  n ):
     

      

 We this in mind, the Riccati equations of Eq.  12  yield:
      

 Remember that the matrices are of dimension 
  NPOO × NPOO   . Due to the nonorthogonality of the POOs 
and the non diagonal structure of the fock matrix, the 
usual simple updating scheme for the solution of the Ric-
cati equations should be modifi ed in a similar fashion as 
in the local coupled cluster theory [ 29 ]. The fock matrix in 

(44)

V†RijV = V†BijV + V†(ε + A)im
(

VTmj
POOV†

)
V

+ V†
(

VTim
POOV†

)
(ε + A)mjV

+ V†
(

VTim
POOV†

)
Bmn

(
VTnj

POOV†
)

V = 0,

(45)

Rij
POO = Bij

POO + (εPOO + APOO)imTmj
POOSPOO

+ SPOOTim
POO(εPOO + APOO)mj

+ SPOOTim
POOBmn

POOTnj
POOSPOO = 0,

(46)ε
ij
ab = δij fab − δab fij,

(47)εij
mαnβ

= V†
mαaε

ij
abVbnβ

= δij fmαnβ
− Smαnβ

fij.

(48)ε
imTmjS = fTijS − fimSTmjS

(49)STim
ε

mj
= STijf − STimSfmj.

(50)

Rij
= Bij

+ (f − fiiS)TijS + STij(f − Sfjj
)

−
∑
m �=i

fimSTmjS −
∑
m �=j

STimSfmj

+ AimTmjS + STimAmj
+ STimBmnTnjS = 0.

the basis of the POOs will be diagonalized by the matrix 
  X    obtained from the solution of the generalized eigenvalue 
problem:
      

 Note that the transformation   X†f X    does not brings 
us back to the canonical virtual orbitals. We can write 
the transformation by the orthogonal matrix   X    as 
  X†

aiα fiα jβ Xjβb = δab εb   , where   a    and   b    are pseudo-canonical 
virtual orbitals that diagonalize the fock matrix expressed 
in POOs. The Riccati equations of Eq.  50  are transformed 
separately for each pair [ ij ] in the basis of the pseudo-
canonical virtual orbitals that diagonalize   fPOO   :
     

which can be simplifi ed by the application of the general-
ized eigenvalue equation Eq.  51  and the use of the relation-
ships   I = SXX† = XX†S   :
     

with the notations:
      

 The new Riccati equations of Eq.  53  can be solved by 
the iteration formula:
     

where   �R
ij
(T)    is

      

 As presented here, the update of the “non-diagonal” part 
of the residue is done in the pseudo-canonical basis. After 

(51)fX = SXε.

(52)

X†RijX = X†BijX +

(
X†f − fiiX†S

)
TijSX + X†STij(fX − SXfjj

)
−
∑
m �=i

fimX†STmjSX −
∑
m �=j

X†STimSXfmj

+ X†AimTmjSX + X†STimAmjX

+ X†STimBmnTnjSX = 0,

(53)

R
ij
= B

ij
+ (ε − fiiI)T

ij
+ T

ij(
ε − fjjI

)
−
∑
m �=i

fimT
mj
−
∑
m �=j

T
im

fmj

+ A
im

T
mj
+ T

im
A

mj
+ T

im
B

mn
T

nj
= 0,

R
ij
= X†RijX

A
ij
= X†AijX

B
ij
= X†BijX

T
ij
= X†S TijS X.

(54)T
ij(n)

ab
= −

B
ij
ab
+�R

ij
ab

(
T

(n−1)
)

εa − fii + εb − fjj
,

(55)

�R
ij(

T
)
= −

∑
m �=i

fimT
mj
−
∑
m �=j

T
im

fmj

+ A
im

T
mj
+ T

im
A

mj
+ T

im
B

mn
T

nj
.
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convergence, we could transform the amplitudes back to 
the original POO basis according to:
      

 However, this back-transformation is not necessary 
since the correlation energy can be obtained directly in the 
pseudo-canonical basis, as:
      

     Appendix 4: Riccati equations in the local 
excitation approximation 

 The local excitation approximation imposes that in the 
matrices   R   ,   ε   ,   A    and   B   , the excitations remain on the same 
localized orbitals. In this approximation the Riccati equa-
tions of Eq.  12 , with explicit virtual indexes, read:
      

 In this context, the terms containing the matrix   ε    are 
(with explicit POO indexes):
     

      

 Inserting this in Eq.  58  and using the shorthand notation 
  Rij

iα jβ ≡ Rij
αβ   ,   Bij

iα jβ ≡ Bij
αβ   ,   fiα jβ ≡ f ij

αβ    and   Siα jβ ≡ Sij
αβ ,    (note 

the matrix elements   Tij
iγ pδ

    cannot yet be translated to the 
shorthand notation) one obtains:
      

(56)

Tij
=

(
X†S

)−1
T

ij
(SX)−1

= S−1
(

X†
)−1

T
ij
X−1S−1

= XX†
(

X†
)−1

T
ij
X−1XX†

= XT
ij
X†.

(57)

occ∑
ij

tr
{

B
ij
T

ij
}
=

occ∑
ij

tr
{

X†BijXX†STijSX
}

=

occ∑
ij

tr
{

BijTijSXX†
}
=

occ∑
ij

tr
{

BijTij
}

.

(58)

Rij
iα jβ = Bij

iα jβ + (ε + A)im
iαmγ

Tmj
mγ pδ

Spδ jβ

+ Siαpγ Tim
pγ mδ

(ε + A)
mj
mδ jβ

+ Siαpγ Tim
pγ mδ

Bmn
mδnτ

Tnj
nτ qζ

Sqζ jβ = 0.

(59)εim
iαmγ

Tmj
mγ pδ

Spδ jβ = fiα iγ Tij
iγ pδ

Spδ jβ − fimSiαmγ Tmj
mγ pδ

Spδ jβ

(60)Siαpγ Tim
pγ mδ

ε
mj
mδ jβ = Siαpγ Tij

pγ jδ fjδ jβ − Siαpγ Tim
pγ mδ

Smδ jβ fmj.

(61)

Rij
αβ = Bij

αβ + f ii
αγ Tij

iγ pδ
Spj
δβ − fimSim

αγ Tmj
mγ pδ

Spj
δβ + Aim

αγ Tmj
mγ pδ

Spj
δβ

+ Sip
αγ Tij

pγ jδ
f jj
δβ − Sip

αγ Tim
pγ mδ

Smj
δβ fmj + Sip

αγ Tim
pγ mδ

Amj
δβ

+ Sip
αγ Tim

pγ mδ
Bmn

δτ Tnj
nτ qζ Sqj

ζβ = 0.

 It is then a further approximation to tell that the POOs 
coming from different LMOs have a negligible overlap, 
i.e., that   Sij

αβ = δijSii
αβ .    The Riccati equations become:

     

which, in turn, allows us to use the shorthand notation 
  Tiα jβ ≡ Tij

αβ    to arrive at:
      

  

   Appendix 5: Screened dipole interaction tensor 

 Any interaction   L(r)    can be expanded in multipole 
series using a double Taylor expansion around appro-
priately selected centers, here   Di    and   Dj   , such that, 
with   r = ri − rj = (ri − Di)+ Dij − (rj − Dj)    where 
  Dij = Di − Dj   :
     

where the defi nitions of   Lij
α(Dij)   ,   Lij

αβ(Dij)    are obvious. For 
example, in the case of the long-range interaction,   L(r)    will 
be defi ned according to the RSH theory as:
     

with   r = |r|.    
 The multipolar expansion of the long-range interaction 

leads to the following fi rst and second-order interaction 
tensors:
     

      

(62)

Rij
αβ = Bij

αβ + f ii
αγ Tij

iγ jδ Sjj
δβ − fiiS

ii
αγ Tij

iγ jδ Sjj
δβ + Aim

αγ Tmj
mγ jδ Sjj

δβ

+ Sii
αγ Tij

iγ jδ f jj
δβ − Sii

αγ Tij
iγ jδ Sjj

δβ fjj + Sii
αγ Tim

iγ mδ
Amj

δβ

+ Sii
αγ Tim

iγ mδ
Bmn

δτ Tnj
nτ jζ Sjj

ζβ = 0,

(63)

Rij
= Bij

+ f iiTijSjj
− fiiSiiTijSjj

+ AimTmjSjj

+ SiiTijf jj
− SiiTijSjjfjj + SiiTimAmj

+ SiiTimBmnTnjSjj
= 0,

(64)

L(r) = Lij
(

Dij
)
+
∑
α

(
r̂i
α − Di

α

)
Lij
α

(
Dij

)
+
∑
α

(
r̂j
α − Dj

α

)
Lij
α

(
Dij

)
+
∑
αβ

(
r̂i
α − Di

α

)(
r̂j
β − Dj

β

)
Lij
αβ

(
Dij

)
+ · · · ,

(65)L(r) =
erf(μr)

r
,

(66)

Lij
α

(
Dij

)
= −

Dij
α

Dij3

(
1 −

2
√

π
Dijμe−μ2Dij2

− erf
(
μDij

))

(67)

Lij
αβ

(
Dij

)
=

3Dij
αDij

β

Dij5

(
erf
(
μDij

)
−

2

3
√

π
Dijμe−μ2Dij 2(

3 + 2Dij2
μ2
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−
δαβDij2

Dij5

(
erf
(
μDij

)
−

2
√

π
Dijμe−μ2Dij 2

)
.
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 Remembering that the full-range Coulomb interaction 
tensor reads   Tij

αβ(Dij) = 3Dij
αDij

β − δαβDij2)Dij−5
,    the long-

range interaction tensor can be written in an alternate form 
which clearly shows the damped dipole–dipole interaction 
contribution:
      

 The trace of the tensor product (used for the spherically 
averaged   C6   ) then reads:
      
  

   Appendix 6: Fock matrix element in POO basis 

 The occupied–occupied block of the fock matrix,   fij,    is 
known. The POOs are orthogonal to the occupied subspace 
of the original basis set, they satisfy the local Brillouin the-
orem, i.e., the occupied-virtual block is zero. As a result, 
in the local excitation approximation, we need only to deal 
with the fock matrix elements   f ii

αβ   :
     

from which we directly derive the quantity   f i
[ M]    of Eq.  36 :

      

 Since we would like to express everything in occupied 
orbitals, we expand the projector   ̂Q    and use that the occu-
pied-virtual block of the fock matrix is zero to obtain the 
following expression:
      

 In order to transform the triple operator product,   ̂rα f̂ r̂β ,    
let us consider the following double commutator:
      

 Note that this holds provided that the fockian con-
tains only local potential terms, which commute with the 

(68)

Lij
αβ

(
Dij

)
= Tij

αβ

(
Dij

)(
erf
(
μDij

)
−

2

3
√

π
Dijμe−μ2Dij 2(

3 + 2Dij2
μ2
))

− δαβe−μ2Dij 2 4μ3

3
√

π
.

(69)

∑
αβ

Lij
αβLij

αβ =
6

Dij6

⎛⎝4e−2Dij 2
μ2

Dijμ

⎛⎝Dijμ

(
3 + 4Dij2

μ2 + 2Dij4
μ4
)

3π

−

(
3 + 2Dij2

μ2
)

erf
(
Dijμ

)
3
√

π

⎞⎠+ erf
(

Dijμ

)2

⎞⎠
=

6

Dij6 Fμ
damp

(
Dij

)
.

(70)f ii
αβ = 〈iα| f̂ |iβ〉 = 〈i|r̂αQ̂ f̂ Q̂r̂β |i〉,

(71)f i
[M] =

∑
α

f ii
αα =

virt∑
ab

〈i|r̂α|a〉fab〈b|r̂α|i〉.

(72)f ii
αβ = 〈i| r̂α f̂ r̂β |i〉 −

occ∑
mn

〈i|r̂α|m〉 fmn〈n|r̂β |i〉.

(73)
[
r̂α ,

[
r̂β , f̂

]]
= −δαβ .

coordinate operator: see later for the more general case. In 
this special case, the double commutator can be written as
     

which allows us to express the two triple products:
      

 The diagonal matrix element of the triple operator prod-
uct is then:
      

 Since the localized orbitals satisfy local Brillouin theo-
rem, we fi nally obtain for the matrix elements of the fock 
operator with multiplicative potential (typically Kohn-
Sham operator with local or semi-local functionals) 
between two oscillator orbitals:
      

 From this, we obtain the quantity   f i
[O]    of Eq.  38 :

      

 In the more general case, i.e., when the fockian contains 
a nonlocal exchange operator, like in hybrid DFT and in 
Hartree–Fock calculations, the relation seen Eq.  73  does 
not hold any more and the commutator of the position oper-
ator with the fockian contains an exchange contribution 
[ 76 ,  77 ], which gives rise to an additional term:
     

where the nonlocal exchange operator is defi ned as
     

where   ̂Prr′    is the permutation operator that changes the 
coordinates   r′    appearing after   ̂K    to   r,    and we recall that 
  w(r, r′)    is the two-electron interaction. Hence, the diagonal 
blocks of the POO fockian in the general case can be writ-
ten as:

(74)
[
r̂α ,

[
r̂β , f̂

]]
= r̂α r̂β f̂ − r̂α f̂ r̂β − r̂β f̂ r̂α + f̂ r̂β r̂α = −δαβ ,

(75)r̂α f̂ r̂β + r̂β f̂ r̂α = δαβ + r̂α r̂β f̂ + f̂ r̂β r̂α .

(76)〈i|r̂α f̂ r̂β |i〉 =
1
2δαβ +

1
2

(
〈i|r̂α r̂β f̂ |i〉 + 〈i|f̂ r̂β r̂α|i〉

)

(77)

f ii
αβ =

1
2δαβ +

1
2

occ∑
m

(
〈i |r̂α r̂β |m〉 fmi + fim〈m|r̂α r̂β |i〉

)
−

occ∑
mn

〈i |r̂α|m〉 fmn〈n|r̂β |i〉.

(78)

f i
[O] =

∑
α

f ii
αα =

3
2 +

1
2

occ∑
m

(
〈i |r̂2

|m〉 fmi + fim〈m|r̂2
|i〉
)

−

occ∑
mn

∑
α

〈i |r̂α|m〉 fmn〈n|r̂α|i〉.

(79)
〈

i|
[
r̂α ,

[
r̂β , K̂

]]
|i
〉
=

occ∑
m

〈
im|

(
r̂α − r̂′α

)
w
(
r, r′

)(
r̂β − r̂′β

)
|mi

〉
,

(80)K̂ =

occ∑
m

∫
dr′φ†

m

(
r′
)
w
(
r, r′

)
P̂rr′φm

(
r′
)
,
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 In the present work, the exchange contribution, which 
is present only in the case of Hartree–Fock or hybrid den-
sity functional fockians and which would give rise to non-
conventional two-electron integrals, is not treated explic-
itly. Possible approximate solutions for this problem will 
be discussed in forthcoming works. Although we do not 
use the elements of the off-diagonal (  i �= j   ) blocks of the 
POO fock operator, for the sake of completeness we give 
its expression:
      

 To derive this, instead of the double commutator of 
Eq.  73 , one needs to consider the product of the commuta-
tor with a coordinate operator
     

where   ̂T     is the kinetic energy operator, and   [r̂β , T̂ ] = ∇̂β   . 
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function expansions, and to study their multiconfi gura-
tional character. 

   Keywords     Compactness of wave functions    ·  Seniority 
number    ·  Shannon entropy indices    ·  Optimization of 
molecular orbital basis sets  

      1  Introduction 

 The confi guration interaction (CI) methods have played an 
important role in describing  N -electron systems, since they 
demand a lower computational cost than that required for 
determining the full confi guration interaction (FCI) expan-
sions which provide the exact descriptions for a given Hil-
bert space. Consequently, there has been a considerable 
interest in formulating  N -electron wave functions in terms 
of CI expansions providing a rapid convergence to the 
FCI ones [ 1 – 4 ]. Traditionally, the CI wave functions have 
been expanded by means of  N -electron Slater determinants 
selected according to their excitation degrees with respect 
to a given reference determinant. However, more recently, 
another selection criterion has also been proposed. This cri-
terion is based on the seniority number of the Slater deter-
minants used to construct the CI expansions [ 5 – 11 ]. Results 
arising from both excitation- and seniority number-based 
CI schemes show that the seniority number-based selection 
procedure is particularly suitable to describe systems exhib-
iting strong (static) correlation [ 5 ], what has increased the 
interest on this approach [ 9 – 11 ]. As is well known, the sen-
iority number of a Slater determinant is defi ned as the num-
ber of singly occupied orbitals which possesses that deter-
minant [ 12 ,  13 ]. The seniority number concept has been 
extended in Refs. [ 6 ,  9 ] to  N -electron wave functions which 
describe electronic states of atomic and molecular systems, 

                     Abstract     This work reports the formulation of Shan-
non entropy indices in terms of seniority numbers of the 
Slater determinants expanding an  N -electron wave func-
tion. Numerical determinations of those indices prove that 
they provide a suitable quantitative procedure to evaluate 
compactness of wave functions and to describe their con-
fi gurational structures. An analysis of the results, calculated 
for full confi guration interaction wave functions in selected 
atomic and molecular systems, allows one to compare 
and to discuss the behavior of several types of molecular 
orbital basis sets in order to achieve more compact wave 
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as well as to  N -electron spin-adapted Hilbert spaces. The 
expectation value of the seniority number operator with 
respect to an  N -electron wave function is a weighted sum 
of the seniority numbers of all determinants involved in the 
expansion of that wave function. The weights that deter-
mine those expectation values depend on the molecular 
orbital basis set used to express the wave function, and 
consequently, this feature has been utilized to evaluate 
the compactness of the FCI and CI expansions in several 
molecular basis sets. Likewise, the seniority number value 
with respect to a wave function allows one to analyze the 
multiconfi gurational character of the  N -electron expansion, 
which is useful to describe the static and dynamic correla-
tion of a determined state [ 14 – 17 ]. 

 On the other hand, in Ref. [ 18 ], the extent of the multi-
confi gurational character of an  N -electron wave function 
was evaluated by means of numerical determinations of 
an index set formulated within the Shannon information 
entropy approach [ 19 – 21 ]. This treatment provides a suit-
able information concerning the distribution of the wave 
function among different confi gurations characterized by 
the excitation degree of the Slater determinants. The aim 
of this work is to extend this methodology to the seniority-
based CI scheme and to report the corresponding Shannon 
index numerical values in terms of the contributions of Slater 
determinants classifi ed according to the seniority number cri-
terion. More recently, in Ref. [ 6 ], we have proposed unitary 
transformations which lead to the construction of basis sets 
of molecular orbitals in which the expectation values of the 
seniority number operator with respect to  N -electron wave 
functions reach minimum values. The results found using 
this type of molecular orbitals show that the wave function 
expansions present a more rapid convergence than those aris-
ing from the use of other molecular orbitals [ 9 ,  11 ]. Another 
aim of this work is to evaluate and compare quantitatively, 
by means of the proposed Shannon entropy indices, the com-
pactness of wave functions expressed in canonical molecular 
orbital (CMO) basis sets, natural orbitals (NO), and those 
mentioned orbitals  M  min , which minimize the expectation 
value of the seniority number operator. 

 This article has been organized as follows. Section  2  
summarizes the notation and formulation of the main con-
cepts used in this work; it also reports the formulation 
of the Shannon entropy indices in terms of the seniority 
numbers of the Slater determinants. In Sect.  3 , we present 
numerical values of those indices for wave functions of 
selected atomic and molecular systems; these values allow 
one to characterize the compactness of the wave function 
expansions. The calculation level and the computational 
details are also indicated in this section. An analysis and 
discussion of these results are reported in Sect.  4 . Finally, 
in the last section, we highlight the main conclusions and 
perspectives of this work. 

    2   Theoretical framework 

 The  K  orbitals of an orthonormal basis set will be denoted 
by   i, j, k, l, . . .    and their corresponding spin-orbitals by 
  iσ , jσ

′

, . . .    (  σ    and   σ ′    mean the spin coordinates   α    or   β   ). The 
spin-free version of the  N -electron seniority number opera-
tor   ̂�    has been formulated as [ 6 ,  9 ,  11 ]
     

where   ̂Ei
i =

∑
σ a†

iσ aiσ    and   ̂Eii
ii =

∑
σ ,σ ′ a†

iσ a†
iσ ′

aiσ ′aiσ    are 
the spin-free fi rst- and second-order replacement operators, 
respectively [ 22 – 25 ] and   a†

iσ    and   aiσ    are the usual creation 
and annihilation fermion operators [ 26 ]. 

 Closing both sides of Eq. ( 1 ) by an  N -electron Slater 
determinant   �    of   Sz    spin projection quantum number, one 
obtains
     

where, according to Eq. ( 1 ), the expectation value   �    is the 
difference   

∑
i 〈E

i
i 〉 −

∑
i 〈E

ii
ii 〉   , which is the number of total 

electrons  N  minus the number of electrons corresponding 
to doubly occupied orbitals. The possible values for the   �    
parameter are positive integers belonging to the sequence 
  � = 2|Sz|, 2(|Sz| + 1), . . . , �max    (where   �max = N    if 
  K ≥ N    and   �max = 2K − N    if   K < N   ); their meaning is the 
number of non-repeated orbitals in each determinant. That 
  �    parameter allows one to classify the Slater determinants 
  �    of   Sz    quantum number, according to the corresponding 
seniority level, and they will be denoted hereafter by   �(�)   . 
Consequently, a FCI  N -electron wave function with given 
spin quantum numbers  S  and   Sz    will be expressed by
     

where   C�(�)    stands for the coeffi cient correspond-
ing to the Slater determinant   �(�)   . Obviously, since 
there is no contribution of Slater determinants with 
  � < 2S    to spin-adapted  N -electron wave functions 
(  〈�(� < 2S)|!(N , S, Sz)〉 = 0   ), the lowest integer in the 
sum   

∑
�    is 2 S . If we truncate the series   

∑
�    in Eq. ( 3 ), 

we obtain CI(  �   ) wave function expansions involving only 
Slater determinants belonging to the selected   �    levels. 

 According to Eqs. ( 1 ) and ( 3 ), the expectation value 
of the operator   ̂�    with respect to the FCI wave function 
  !(N , S, Sz)    is [ 6 ]
     

(1)�̂ =

K∑
i=1

(
Êi

i − Êii
ii

)

(2)� = 〈�|�̂|�〉

(3)|!(N , S, Sz) > =

�max∑
�=2S

∑
�(�)

C�(�)|�(�) >

(4)

〈�̂〉!(N ,S) = N −

�max∑
�=2S

∑
�(�)

∣∣C�(�)

∣∣2 K∑
i

〈�(�)

∣∣∣Êii
ii

∣∣∣�(�)〉
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which is a spin-free quantity, independent of the   Sz    value, 
and consequently, we have dropped that quantum number. 
The coeffi cients   C�(�)    and the   〈�̂〉!(N ,S)    values are strongly 
dependent on the molecular orbital set utilized to formulate 
the Slater determinants   �(�)    in the expansion of the wave 
function expressed by Eq. ( 3 ). As mentioned in the Introduc-
tion, in Refs. [ 6 ,  9 ,  11 ], we have performed unitary transfor-
mations of the molecular orbitals, based on iterative proce-
dures [ 27 ], which lead to the minimization of the   〈�̂〉!(N ,S)    
values; the resulting molecular orbital basis sets have been 
denominated  M  min . That minimization requires the search of 
molecular orbitals leading to high values for the coeffi cients 
  |C�(�)|    corresponding to the determinants which possess 
greater doubly occupied orbital numbers, i.e., those provid-
ing higher values of the   

∑K
i 〈�(�)|Êii

ii |�(�)〉    quantities. 
Our results [ 6 ,  9 ,  11 ] have proven that the expansions for 
ground-state wave functions of atomic and molecular sys-
tems expressed in the molecular orbital basis sets  M  min  turn 
out to be more compact than those arising from the canonical 
molecular orbitals (CMO) or natural orbitals (NO). 

 Quantitative measures of the compactness of an 
 N -electron wave function have been reported in Ref. [ 18 ] 
by means of the informational content ( I   C   (or Shannon 
entropy) within the traditional CI expansion method based 
on Slater determinants classifi ed according to the excitation 
level with respect to a given reference determinant. Assum-
ing that the  N -electron wave function is normalized to unity 
(  
∑

�

∑
�(�) |C�(�)|

2 = 1   ), the counterpart formulation 
of that index for the seniority-based CI approach is
     

in which the index   �    runs over all the values defi ning the 
chosen CI (  �   ) expansion seniority levels. According to Eq. 
( 5 ), the  I   C   index accounts for the wave function confi gu-
rational distribution, having a minimum value in case of a 
single-determinant wave function. 

 The values of this  I   C   index quantify the multiconfi gura-
tional character of the CI wave function but do not report 
any detailed information on the contributions correspond-
ing to different seniority subspaces. For CI (  �   ) expansions 
involving several values of the   �    index, we can defi ne 
a weight   W�    which groups the contributions of all the 
Slater determinants with given seniority number   �    in that 
expansion
     

These weights provide the defi nition of the cumulative 
index  I   W  , which in the seniority number approach is
     

(5)IC = −
∑
�

∑
�(�)

∣∣C�(�)

∣∣2 log2

∣∣C�(�)

∣∣2, C�(�) �= 0

(6)W� =
∑
�(�)

∣∣C�(�)

∣∣2

(7)IW = −
∑
�

W� log2W�, W� �= 0

which evaluates that entropic quantity in terms of the 
weights corresponding to the seniority numbers   �   , provid-
ing a measure of the distribution of the wave function on 
different seniority subspaces. 

 One can also consider the distribution of each   �    sub-
space in terms of its corresponding Slater determinants and 
calculate its specifi c entropic index, which can be evaluated 
by means of the relationship
     

where the denominators   W�    have been introduced for nor-
malization requirements. Formula ( 8 ) accounts for the con-
fi guration distribution within a determined seniority num-
ber level. 

 As mentioned above, the multiconfi gurational character 
of an  N -electron wave function expanded in terms of Slater 
determinants allows one to distinguish between systems 
exhibiting static (strong) correlation (in which a suitable 
zeroth-order description requires several Slater determi-
nants) and those possessing dynamic correlation (in which 
a single Slater determinant is a good zeroth-order wave 
function). In the next sections, we report numerical values 
of the  I   C   and  I   W   indices in selected atomic and molecular 
systems, in order to assess the ability of these devices to 
describe quantitatively both types of electronic correlation 
within the seniority number approach. Likewise, we pre-
sent values of the   I�    index which show the infl uence of the 
bond stretching on the confi gurational distribution within 
the seniority number subspaces. As these Shannon entropy 
indices and the seniority number quantity for a determined 
wave function are not invariant under a unitary single-parti-
cle transformation, it is possible to perform molecular basis 
set unitary transformations and to compare values of these 
entropic indices according to the different molecular basis 
sets utilized. In particular, we compare values of Shannon 
indices arising from the molecular basis sets  M  min  (in which 
the seniority number achieves their minimum values) with 
those provided by the CMO and NO sets. 

    3   Results 

 We have determined expansions of wave functions of sev-
eral atomic and molecular systems in their ground states, at 
FCI level. These wave functions have been expressed in the 
three mentioned molecular basis sets CMO, NO, and  M  min , 
in order to study their compactness in different molecular 
orbital basis sets. Our aim is to analyze the structure and 
compactness of those expansions by means of the entropic 
indices proposed in Eqs. ( 5 ), ( 7 ), and ( 8 ) according to the 
seniority numbers. We have mainly chosen the systems of 

(8)I� = −
∑
�(�)

∣∣C�(�)

∣∣2
W�

log2

∣∣C�(�)

∣∣2
W�

, C�(�) �= 0
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four- and six-electron Be, LiH,   BeH+, Li2   , BH,   BH+
2    , and 

  BeH2    and the basis sets STO-3G, in order to face up to an 
affordable computational cost. Moreover, we also report 
results corresponding to the Be atom in the cc-pVDZ basis 
set and the Mg one in the 6-31G basis sets, which are pro-
totype examples of strongly correlated systems due to the 
near-degeneracies between it s and  p  shells. The molecular 
systems have been studied at equilibrium distances   (Re)    and 
at stretched ones   (Rst)   . The experimental geometrical dis-
tances have been used for the neutral species LiH,   Li2,    BH, 
and   BeH2    [ 28 ]; in the molecular ion   BeH+   , we have used 
the internuclear distance reported in Refs. [ 29 ] and [ 30 ], 
while in the system   BH+

2    , the geometry was optimized with 
the GAUSSIAN package [ 31 ] at single and double exci-
tations. The one- and two-electron integrals and the Har-
tree–Fock canonical molecular orbitals basis sets required 
for our calculations have been obtained from a modifi ed 
version of the PSI 3.3 code [ 32 ]. We have constructed 
our own codes to determine the ground-state FCI wave 
functions for these systems expressed in the basis sets of 
CMO and NO; the orbitals minimizing the seniority num-
ber for a given wave function have been obtained from an 
iterative procedure reported in Ref. [ 27 ], using the CMO 
sets as initial bases of that iteration. The results found for 
the  I   C   and  I   W   quantities in those systems are gathered in 
Table  1 , while Table  2  collects the   I�    index values of each 

seniority number level in the corresponding wave function 
expansion.   

    4   Discussion 

 The numerical results reported in Tables  1  and  2  have been 
obtained from the FCI method which coincides with the CI 
(  � = 0, 2, 4   ) one, in the CI framework, for the 4-electron 
systems (Be, LiH, and   BeH+   ). Likewise, for the case of 
the 6-electron systems (  Li2   , BH,   BH+

2    , and   BeH2   ), the FCI 
and the CI(  � = 0, 2, 4, 6   ) methods are identical. A survey 
of the results included in Table  1  shows that all described 
systems present low values for the  I   W   index, mainly at 
equilibrium geometries as well as at stretched ones in the 
NO and  M  min  molecular basis sets. It means that most of 
the Slater determinants involved in expansion ( 3 ) can be 
grouped into a weight   W�   , constituting a narrow   �   -level 
distribution. In fact, the weights corresponding to   � = 0    
for these closed-shell singlet ground states are close to 
unity (  W(�=0) ∼ 1)    [ 6 ]. Consequently, the determinants 
  �(� = 0)    are quite dominant in those expansions, while 
the others   �(� �= 0)    can be neglected. The CI (  � = 0   ) 
method has also been called doubly occupied confi guration 
interaction (DOCI) [ 33 ], since their  N -electron wave func-
tions are expanded on all possible   �(� = 0)    determinants. 

 Table 1       Calculated values of the  I   C   and  I   W   quantities (Eqs. ( 5 ) and 
( 7 )) for the ground states of atomic and molecular systems described 
by FCI expansions expressed in the canonical molecular orbitals 

(CMO), in the orbitals which minimize the seniority number  M  min  
and in the natural orbitals (NO)  

 Equilibrium distances (  Re   ) at experimental or optimized bond lengths and symmetrically stretched ones (  Rst   ) at   Rst = 2.002 Re    (for LiH), 
  Rst = 2.676 Re    (for   BeH+   ),   Rst = 1.599 Re    (for   Li2   ),   Rst = 1.487 Re    (for BH),   Rst = 1.826 Re    (for   BH+

2    ),   Rst = 2.066 Re    (for   BeH2   ). Results for 
molecules correspond to standard STO-3G basis sets 

  System     I   C       I   W    

  CMO     M  min     NO    CMO     M  min     NO  

  Be(STO-3G)    0.649    0.648    0.648    0.001    0.000    0.000  

  Be(cc-pVDZ)    0.737    0.602    0.602    0.181    0.001    0.001  

  Mg(6-31G)    0.648    0.521    0.522    0.184    0.007    0.007  

  LiH(  Re   )    0.231    0.167    0.167    0.081    0.001    0.001  

  LiH(  Rst   )    1.709    0.864    0.864    0.678    0.002    0.002  

    BeH+(Re)       0.222    0.164    0.164    0.073    0.001    0.001  

    BeH+(Rst)       1.767    0.990    0.990    0.733    0.001    0.001  

    Li2(Re)       0.664    0.598    0.598    0.078    0.003    0.003  

    Li2(Rst)       1.103    0.854    0.854    0.235    0.003    0.003  

    BH(Re)       0.681    0.552    0.556    0.169    0.009    0.015  

    BH(Rst)       0.979    0.802    1.005    0.224    0.026    0.028  

    BH+
2 (Re)       0.301    0.299    0.298    0.074    0.064    0.071  

    BH+
2 (Rst)       2.041    1.682    1.684    0.597    0.302    0.307  

    BeH2(Re)       0.282    0.265    0.278    0.080    0.049    0.077  

    BeH2(Rst)       2.695    1.883    1.892    0.875    0.275    0.293  

118 Reprinted from the journal



Theor Chem Acc (2015) 134:85 

1 3

The low values found for the  I   W   index show that, in these 
FCI wave functions, the CI (  � = 0   ) or DOCI expansions 
are close to the FCI ones, which is in agreement with the 
conclusions reported in Ref. [ 34 ] where the DOCI method 
has been picked up as a valuable tool to describe a wide 
variety of systems possessing strong correlation. As shown 
in Table  1 , the  I   C   values are higher than their counterpart  I   W   
ones, indicating that the expansions ( 3 ) involve signifi cant 
contributions of   �(� = 0)    Slater determinants other than 
the ground closed-shell ones, which are usually chosen as 
reference determinants within the traditional excitation CI 
approach. This result is confi rmed by the values reported in 
Table  2 , where the   I�=0    indices show a confi gurational dis-
tribution that cannot be considered as narrow. The results 
for the Be and Mg atoms show that these general trends are 
kept when basis sets larger than minimal STO-3G ones are 
used. The presence of strong correlation in the Be atom is 
well known, and consequently, its wave functions possess a 
multiconfi gurational character even at zeroth-order descrip-
tions; identical behavior has been found in the Mg atom. 
Our results confi rm this feature showing that in the three 
isoelectronic species Be, LiH(  Re   ), and   BeH+(Re)   , the high-
est  I   C   index value corresponds to the Be atom (the widest 
multiconfi gurational distribution), while the  I   W   index pre-
sents small values for that atomic system; its wave func-
tions have a narrow distribution in terms of seniority levels, 
with low contribution of   �(� �= 0)    determinants. 

 The results reported in Table  1  also allow one to com-
pare, in terms of the values of the indices  I   C   and  I   W  , the 
expansions of the wave functions of these systems accord-
ing to the molecular orbital basis sets in which they are 
expressed. As can be seen from that table, the values of 
both indices are considerably lower in the NO and  M  min  
basis sets than in their CMO counterparts (except for the 
Be atom in the STO-3G basis set); the Be atom recovers 
the improvement in the  M  min  and NO molecular basis sets 
when the larger cc-pVDZ basis set is used. These results 
again confi rm that the NO and  M  min  molecular basis sets 
lead to more compact wave functions, as has been reported 
in Refs. [ 6 ,  9 ,  11 ]. These values also point out that the  I   C   
and  I   W   indices constitute suitable devices to describe quan-
titatively the compactness of a wave function. The high 
values found for the  I   C   indices in the Be and Mg atoms in 
the three molecular basis sets can be interpreted in terms 
of the strong correlation exhibited by those systems. The 
appropriate ground-state wave functions for these atoms 
require several dominant Slater determinants. The   I�    val-
ues reported in Table  2  refl ect that seniority levels with 
very low contribution to the wave functions can present 
a broad determinantal distribution, i.e., the   Li2    molecule 
exhibits   I�=4 > 5    values because its   W�=4 = 10−4    weight 
is expanded on 7560 Slater determinants in the STO-3G 
basis set [ 6 ]. Moreover, the   I�=0    index values reported 
in that table indicate that all systems possess a narrower 

 Table 2       Calculated values of the quantities   I�    (Eq.  8 ) for the ground 
states of atomic and molecular systems described by FCI expansions 
expressed in the canonical molecular orbitals (CMO), in the orbitals 

which minimize the seniority number ( M  min ) and in the natural orbit-
als (NO)  

 Equilibrium distances (  Re   ) at experimental or optimized bond lengths and symmetrically stretched ones (  Rst   ) at   Rst = 2.002 Re    (for LiH), 
  Rst = 2.676 Re    (for   BeH+   ),   Rst = 1.599 Re    (for   Li2   ),   Rst = 1.487 Re    (for BH),   Rst = 1.826 Re    (for   BH+

2    ),   Rst = 2.066 Re    (for   BeH2   ). Results for 
molecules correspond to standard STO-3G basis sets 

  System    CMO     M  min     NO  

    I�=0         I�=2         I�=4         I�=6         I�=0         I�=2         I�=4         I�=6         I�=0         I�=2         I�=4         I�=6     

  Be(STO-3G)    0.648    2.585    0.522    –    0.648    2.115    2.008    –    0.648    2.837    2.000    –  

  Be(cc-pVDZ)    0.493    2.772    4.794    –    0.601    4.517    4.634    –    0.601    4.503    4.633    –  

  Mg(6-31G)    0.399    2.710    6.400    8.462    0.511    3.807    6.843    8.110    0.511    4.982    7.134    8.430  

  LiH(  Re   )    0.132    1.944    2.194    –    0.166    3.120    2.018    –    0.166    3.155    2.017    –  

  LiH(  Rst   )    0.807    2.063    2.207    –    0.862    3.604    2.234    –    0.862    3.608    2.234    –  

    BeH+(Re)       0.132    1.956    2.124    –    0.163    3.405    2.007    –    0.163    3.414    2.007    –  

    BeH+(Rst)       0.986    1.221    2.210    –    0.989    3.596    2.181    –    0.989    3.603    2.181    –  

    Li2(Re)       0.572    2.109    5.328    5.059    0.594    4.262    5.091    5.664    0.594    4.249    5.098    5.663  

    Li2(Rst)       0.822    2.033    5.261    5.027    0.849    4.633    5.080    6.347    0.849    4.639    5.079    6.346  

  BH(  Re   )    0.456    2.712    3.226    0.604    0.542    1.949    3.235    2.393    0.539    1.991    3.251    3.645  

  BH(  Rst   )    0.672    2.971    3.020    1.650    0.771    2.638    3.001    3.355    0.631    2.563    3.006    3.073  

    BH+
2 (Re)       0.210    3.977    2.160    2.923    2.213    3.259    2.383    1.856    0.210    3.493    2.168    2.665  

    BH+
2 (Rst)       1.324    2.627    2.242    0.677    1.331    3.031    2.255    2.897    1.327    3.014    2.252    2.245  

    BeH2(Re)       0.183    3.571    2.063    3.760    0.199    3.571    2.353    1.860    0.183    3.578    2.072    2.704  

    BeH2(Re)       1.635    2.981    2.178    3.210    1.572    3.343    2.254    0.625    1.560    3.310    2.250    3.136  
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distribution at equilibrium distances in the three molecu-
lar basis sets. Likewise, the molecular system descriptions 
at the stretched geometries systematically present higher 
values for the  I   C   and  I   W   indices (Table  1 ) than their coun-
terparts at the equilibrium distances. This effect is inter-
preted in the framework of the progressive openness of the 
chemical bonds until their complete dissociation, which is 
refl ected in the values of both indices. However, the index 
 I   C   shows a more sensitive character than the  I   W   one, and 
consequently, its use must be favored in order to account 
for the infl uence of the bond stretching on the wave func-
tion features. 

    5   Concluding remarks and perspectives 

 In this work, we have extended the formulation of the Shan-
non entropy indices, informational content ( I   C  ), cumulative 
( I   W  ), and specifi c   �   -subspace (  I�   ), within the framework of 
the seniority number criterion for constructing  N -electron 
wave function expansions in terms of Slater determinants. 
The quantitative evaluation of these indices has allowed us 
to implement analyses of the wave function expansions, 
determining their compactness in the well-known canonical 
molecular orbital and natural orbital basis sets, as well as 
in the recently proposed molecular orbital basis set which 
minimizes the seniority number of a given wave function. 
The results obtained for several atomic and molecular sys-
tems described at the FCI level show the suitability of the 
seniority-based formulation of these indices to measure 
quantitatively the wave function expansion compactness, 
as well as to analyze their multiconfi gurational structure. 
We have also studied the ability of these indices to provide 
information on the evolution of the wave functions accord-
ing to the stretching of the chemical bondings. We are cur-
rently working in our laboratories on the formulation of 
unitary transformations of molecular basis sets leading to 
the minimization of the Shannon entropy indices, in order 
to achieve a higher improvement on the compactness of 
wave function expansions. 
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calculated spectral properties were compared with experi-
mental data. 
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      1  Introduction 

 Transition metals complexes of tartaric acid have been the 
subject of research in all the main areas of practical appli-
cations of chirality: biochemistry and medicinal chem-
istry [ 1 ], asymmetric catalysis [ 2 – 4 ], and chiral separa-
tions [ 5 – 9 ]. It is not surprising that the rapid development 
of the chemistry of vanadium in recent decades smoothly 
covered all of these areas by itself. The main attention has 
been devoted to the insulin-mimetic activity of vanadium 
complexes of tartaric acid [ 10 ,  11 ]. Chirality of some insu-
linomimetic dinuclear vanadyl(IV)–tartrate complexes has 
been considered as well, resulting in an interesting fi nding 
that both the complexes of naturally occurring  L -tartaric 
acid and racemic tartaric acid are highly active [ 12 ]. 

 The catalytic activity of the VO(stearate) 2 – L / D  tar-
trate system with the suggested presence of a dinuclear 
oxidovanadium(IV) tartrato complex leads to an enanti-
oselective oxidative coupling polymerization of 2,3-dihy-
droxynaphthalene [ 13 ]. Very recently, the second har-
monic generation and spin-dimer behavior were observed 
for oxovanadium(IV) tartrates [ 14 ]. In addition, a study 
appeared on an interaction of tartratovanadates with chiral 
Fe(II) and Ni(II) tris(2,2′-bipyridine) complexes manifest-
ing itself with the solid state by packing into homochiral 
layers in the crystal structure [ 15 ]. 

 The following dinuclear and tetranuclear tartrato 
complexes of vanadium(V) previously isolated from 

                     Abstract     Structural and spectral properties of three com-
plex anions of vanadium(V) with tartrato ligands were the-
oretically studied by all-electron DFT calculations employ-
ing various functionals, such as BP86, BLYP, B3LYP, 
BHHLYP, and the M06-family. Results were statistically 
evaluated, with the aim to fi nd a reliable, fairly accurate, 
and yet computationally effi cient combination of meth-
ods and basis sets to be used in computational chemistry 
of vanadium(V) complex anions at even larger scale. Sub-
sequent vibrational analysis based upon BP86 and B3LYP 
data provided a fair agreement with the experimental vibra-
tional spectra. Additionally, the absorption UV–Vis and the 
electronic circular dichroism spectra of studied compounds 
were simulated via time-dependent density functional the-
ory calculations with the long-range corrected function-
als (CAM-B3LYP, LC- ω PBE, and  ω B97XD). Finally, the 
 51 V NMR chemical shifts were calculated using the GIAO 
approach at the B3PW91 level. The solvent effect was 
simulated within the PCM model. Where available, the 
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aqueous-ethanolic solution and characterized by X-ray 
structure analysis and spectral methods (infrared (IR), 
Raman, UV–Vis,  51 V NMR) [ 16 ,  17 ] were included in our 
computational study:
     

While the tetranuclear anion [ 17 ] always contains tar-
trato groups of the same enantiomeric form, formation 
of the dinuclear complexes is stereospecifi c [ 16 ]. Con-
tinuous effort to understand the stereospecifi c aspects of 
vanadium(V) tartrato complexes leads us to take a closer 
look at their spectral properties. Hence, this work is aimed 
to complement the aforementioned studies and provide 
deeper understanding of the experimental observations. 

 At present, the density functional theory (DFT) prevails 
in calculations of the structural and spectral parameters of 
transition metal complexes [ 18 ]. For this reason, and thanks 
to our previous positive experience with simulation and 
interpretation of the UV–Vis, IR, electronic and vibrational 
circular dichroism (ECD and VCD) spectra of chiral vana-
dium complexes [ 19 ], we decided to use the DFT methods 
as the main tool in the present work as well. We shall pre-
sent the calculated molecular structures, vibrational and 
electronic spectra, as well as the  51 V chemical shifts of 
the chosen anions of the vanadium(V) tartrato complexes. 
Where applicable, results are confronted with the available 
experimental data, with the aim to assess the reliability of 
the individual methods for future calculations of a similar 
kind. 

    2   Experimental details 

 Absorption UV–Vis and ECD spectra were recorded on a 
JASCO J-815 CD spectrometer in CH 3 CN and H 2 O solu-
tions with a 1-cm cell. 

 Experimentally observed IR and Raman fundamentals 
were extracted from the previously published spectra, and 
compounds were prepared based on established synthetic 
procedure [ 16 ,  17 ]. 

    3   Computational details 

 The quantum chemistry calculations were carried out using 
Gaussian 09 software package [ 20 ]. For visualization of 
the molecular structures and assignments of the vibrational 
modes, the Molden program [ 21 ] was used. 

 Our largest complex anion includes 36 atoms and alto-
gether 308 electrons, and the basis sets have been chosen 

[V2O4((2R,3R)− H2tart)2]
2− (1)

[V2O2((2R,3R)− tart)((2S,3S)− tart)]2− (2)

[V4O8((R,R)− tart)2]
4− (3)

accordingly. We have employed three basis sets: (a) Ahl-
richs TZV set for all atoms (TZV) [ 22 ,  23 ]; (b) composite 
basis set (WI) consisting of Wachters+f set for the vana-
dium atom [ 24 ,  25 ] and 6-311G(d) sets for remaining atoms 
[ 26 ]; and (c) extended composite basis set (WII) where 
6-311G(d) basis was replaced with the 6-311++G(d,p) 
basis set [ 26 ,  27 ]. Wachters+f set is frequently used for 
fi rst-row transition metals. It proved to perform fairly 
well in calculations for complexes of vanadium, too [ 19 , 
 28 – 30 ]. In order to improve the description of the donor–
acceptor bond between the central and the donor atom, 
inclusion of  f  functions on the central atom is, however, 
fully appropriate. Smaller Ahlrichs TZV basis set was 
tested due to our growing interest in a larger polyoxovana-
date clusters, where only small basis sets are applicable for 
geometry optimization. Geometries of the complexes were 
optimized using Hartree–Fock and DFT methods with gra-
dient-corrected BP86 [ 31 ,  32 ], BLYP [ 31 ,  33 ], and hybrid 
functionals including B3LYP [ 33 – 35 ], BHHLYP [ 36 ], and 
the M06-class of meta-GGA functionals [ 37 – 40 ] applying 
tight convergence criteria and ultrafi ne integration grids. 
Vibrational frequencies, absorption intensities, and Raman 
activities were calculated accordingly at the same levels. 
Potential energy distribution (PED) analysis of calculated 
vibrational frequencies was evaluated using the Vibrational 
Energy Distribution Analysis (VEDA4) program [ 41 ]. The 
solvent effect was simulated using the polarizable contin-
uum model (PCM) [ 42 ,  43 ] with default parameters (water 
as solvent for  1 , acetonitrile for  2  and  3 ). Calculations for 
excited states in the UV–Vis region were performed within 
the TD-DFT approach [ 44 ,  45 ] employing the LC- ω PBE 
[ 46 ,  47 ],  ω B97XD [ 48 ], and CAM-B3LYP [ 49 ] function-
als using the optimized geometries determined at the BP86/
WI level either in the gas phase or within PCM. Simula-
tion of the UV–Vis and ECD spectra was carried out by the 
GaussSum software [ 50 ], including all calculated singlet 
electronic transitions and assuming Gaussian band shape 
with a 0.35 eV bandwidth. The  51 V NMR chemical shifts 
were calculated using the GIAO approach [ 51 ,  52 ] at the 
B3PW91 level [ 34 ,  53 ,  54 ] with the Wachters+f basis set 
for the vanadium atom and IGLO-II basis sets [ 55 ] for the 
remaining atoms (W-IGLO). All chemical shifts are given 
with respect to the VOCl 3  reference chemical shielding 
obtained at the same computational level. 

    4   Results and discussion 

   4.1   Molecular structures 

 Geometry optimizations always started from the available 
experimental data. All studied complexes are singlets in 
their electronic ground states. The molecular structures for 
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complexes  1 ,  2 , and  3  are depicted in Fig.  1 . This fi gure 
also serves to identify the corresponding atoms as given 
throughout the main text and the supplementary material.        

   4.1.1   Assessment of the geometry optimization schemes 

 As our complexes involve both weaker donor–acceptor 
and strong covalent bonds, for full geometry optimization 
a functional is wanted that describes both bonding situa-
tions. This was the reason, why we have still investigated 
a broader spectrum of 8 aforementioned DFT functionals. 
Here, we comment on the performance of the variety of dif-
ferent optimization schemes (method/basis set) from the 
statistical point of view as summarized in Table  1  and in 
Fig.  2 . Selected bond lengths for all the three anions cal-
culated with M06, BP86, and B3LYP functionals with WI 
basis together with experimental XRD crystal structure 
data [ 16 ,  17 ] are given in Table  2 . Similar set for all inves-
tigated functionals can be found in Table S1 of the sup-
plementary material. We have excluded the H-containing 
bonds, since the positions of the hydrogen atoms cannot be 
exactly determined from the XRD analysis.          

 Moreover, as seen from Table  2 , gas-phase geometry 
optimization for  3  provided a C 2  symmetry, whereas bond 
lengths and/or bond angles that are equivalent in C 2  sym-
metry slightly differ in the experimental crystal structure 
that shows no symmetry (C 1 ). The same applies to the PCM 
calculations. These small differences are most probably due 
to the infl uence of crystal packing effects and impact of the 
surrounding cations on molecular structure of  3 . 

 Therefore, in Table  1  we show some statistical charac-
teristics for the relative errors—with respect to the experi-
ment—of the calculated bond lengths and bond angles just 
for complexes  1  and  2 . We have separately investigated 
ensembles of different bond types. First group involves 
bonding of the vanadium atom via donor–acceptor bonds 
with the ligands, in our case these are the V–O bonds. Sec-
ond group comprises CC or CO bonds that are of covalent 

character. The third group (non-H) represents merging of 
the mentioned two, i.e., all bonds that do not involve hydro-
gen. Bond angles are treated in the same way. 

 Results reveal that there is essentially no gain in the 
accuracy of structural parameters when extending from 
WI to WII basis set and WI basis is superior in compari-
son with TZV due to the additional presence of polariza-
tion functions. In general, the bond lengths from the in 
vacuo optimization are in a very good agreement with the 
data obtained from the crystals by XRD analysis. Maxi-
mal discrepancies between the calculated and experimental 
data were within few hundredths of Å. The largest devia-
tion of about 0.05–0.06 Å is observed for the V 2 –O  c   bonds 
for the complex  3 , causing a relative error of mere 2.8 %. 
The agreement with experiment is almost perfect for the 
complexes  1  and  2 , where both the theoretical model and 
experiment suggest symmetric structures. Nevertheless, 
only few of the investigated schemes provided mean error 
of the calculated bond lengths about 1 % for each of the 
selected groups. 

 Less accurate are the bond angles, as demonstrated in 
the second part of Table  1 . For the bond angles involving a 
vanadium atom, the mean of the absolute values of the rela-
tive errors exceeds 1.5 % even for schemes with the closest 
agreement with experiment. In particular, the largest devia-
tion is almost 10° for the O  c  −V 1 −O  c   angles in  1 , corre-
sponding to a relative error of almost 7 %. 

 Table  1  is complemented by Fig.  2  where normal distri-
butions of the relative errors for the calculated bond lengths 
are depicted for selected computational schemes. As evident, 
M06-L that provides apparently smallest mean of absolute 
deviations at the same time unequally describes the V–O 
bonds and the C–C, C–O bonds. M06 and B3LYP with exact 
exchange are performing more uniformly for both groups of 
bonds and/or separately for bond angles. B3LYP gave rise to 
little overestimation for bond lengths and also for the angles. 
On the other hand, M06 provided a systematical underesti-
mation of bond lengths and overestimation of bond angles. 

 Fig. 1       Structures of the complex anions together with their point-group symbols. Hydrogen atoms are excluded for clarity.  Black ,  red , and  gray 
colors  represent vanadium, oxygen, and carbon atoms, respectively  

125Reprinted from the journal



 Theor Chem Acc (2015) 134:116

1 3

Finally, BP86 provided more uniform, though slightly larger, 
deviations from the crystal structure data. Simulating the 
environment by PCM resulted in an insignifi cant change 
in this picture. As seen, one can hardly suggest an optimal 
scheme from those investigated. Hence, in the following we 
shall selectively pick up results that fi t best to the purpose of 
this paper, i.e., those that most closely mimic the available 
experimental data. 

     4.2   Spectral properties 

   4.2.1   Vibrational spectra 

 Table  3  contains assignments for selected parts of the vibra-
tional spectra of  1 – 3 . Data for the whole pertinent frequency 
range are given in the supplementary material and comple-
ment the experimentally recorded IR and Raman spectra 

 Table 1       Maximal relative 
deviations (  �max

r    ), mean 
relative deviations (  ̄�r   ), and 
mean of the absolute values 
of relative deviations (  ̄�abs

r    ) 
of the calculated bond lengths 
and bond angles from the 
experimental data  

 Results (in %) are shown separately for ensembles of different bonds and angle types of the complex ani-
ons  1  and  2  

  Functional    Basis    VO bonds    CC, CO bonds    Non-H bonds  

    �max
r          ̄�r         ̄�abs

r          �max
r          ̄�r         ̄�abs

r          ̄�r         ̄�abs
r      

  M06-L    WI    1.91    0.85    0.85    −2.26    −0.23    0.65    0.13    0.72  

  M06    WI    −1.19    −0.18    0.80    −2.68    −0.56    0.71    −0.43    0.74  

  M06-2X    WI    −2.60    −0.55    1.32    −1.89    −0.33    0.63    −0.40    0.86  

  M06-HF    WI    −4.08    −1.31    1.76    −1.69    −0.47    0.73    −0.75    1.07  

  BP86    WI    2.17    1.23    1.23    1.91    0.80    1.05    0.94    1.11  

  BP86 PCM    WI    1.93    0.95    0.95    2.00    0.85    1.02    0.88    1.00  

  BLYP    WI    3.00    1.94    1.94    2.08    1.24    1.37    1.47    1.56  

  B3LYP    WI    1.52    0.37    0.71    −1.83    0.14    0.68    0.22    0.69  

  BHHLYP    WI    −2.58    −1.10    1.33    −2.54    −0.91    0.92    −0.97    1.06  

  HF    WI    −4.72    −1.84    1.98    −2.61    −1.18    1.24    −1.40    1.49  

  BP86    WII    2.43    1.24    1.24    2.24    0.89    1.13    1.00    1.17  

  B3LYP    WII    1.65    0.39    0.67    −1.72    0.21    0.72    0.27    0.70  

  BP86    TZV    2.48    1.87    1.87    4.16    2.11    2.11    2.03    2.03  

  BLYP    TZV    3.31    2.57    2.57    4.41    2.57    2.57    2.57    2.57  

  B3LYP    TZV    1.55    0.98    1.01    3.16    1.37    1.37    1.24    1.25  

  BHHLYP    TZV    −2.03    −0.57    0.62    1.91    0.24    0.60    −0.03    0.60  

  HF    TZV    −2.99    −1.45    1.45    1.16    −0.06    0.46    −0.52    0.79  

  Functional    Basis      ∠OVO, ∠VOC         ∠CCC, ∠CCO, ∠OCO       Non-H angles  

    �max
r          ̄�r         ̄�abs

r          �max
r          ̄�r         ̄�abs

r          ̄�r         ̄�abs
r      

  M06-L    WI    −6.92    0.44    1.84    1.83    0.35    0.92    0.40    1.36  

  M06    WI    −5.65    0.68    2.12    2.76    0.42    1.00    0.54    1.53  

  M06-2X    WI    −6.60    0.51    1.81    1.79    0.25    0.93    0.37    1.35  

  M06-HF    WI    −6.34    0.57    1.78    1.92    0.00    0.99    0.27    1.37  

  BP86    WI    −5.89    0.68    2.21    3.32    0.51    1.02    0.59    1.59  

  BP86 PCM    WI    −4.41    0.68    1.96    3.96    0.49    0.90    0.58    1.41  

  BLYP    WI    −6.04    0.82    2.52    3.73    0.59    1.10    0.70    1.78  

  B3LYP    WI    −6.51    0.85    2.54    3.28    0.52    1.14    0.68    1.81  

  BHHLYP    WI    −6.90    0.91    2.60    2.71    0.44    1.13    0.67    1.83  

  HF    WI    −8.22    1.25    3.18    2.72    0.44    1.15    0.83    2.12  

  BP86    WII    −5.80    0.76    2.29    3.06    0.50    0.96    0.63    1.60  

  B3LYP    WII    −6.82    0.96    2.68    3.03    0.51    1.10    0.72    1.85  

  BP86    TZV    −5.32    0.76    2.18    3.09    0.42    1.13    0.59    1.63  

  BLYP    TZV    −5.57    0.91    2.48    3.49    0.50    1.19    0.70    1.81  

  B3LYP    TZV    −6.06    1.03    2.71    3.29    0.42    1.24    0.71    1.94  

  BHHLYP    TZV    −6.74    1.22    3.49    3.35    0.32    1.28    0.75    2.34  

  HF    TZV    −8.31    1.60    4.07    3.00    0.28    1.33    0.91    2.64  
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reported in [ 16 ,  17 ]. We show the calculated harmonic vibra-
tional frequencies obtained with BP86 and B3LYP function-
als in WI basis as fairly well coinciding with the measured 
spectra. Computed vibrational modes have been analyzed in 
terms of potential energy distribution (PED) contributions 
[ 41 ], as displayed together with the B3LYP values. Let us 
recall that the differences in the main features of the spec-
tra recorded in solid state and/or solutions were rather small 
[ 16 ], which supports justifi cation for confronting the solid-
state experiment with the gas-phase data calculated here. 
Yet, one has to be aware of the fact that some discrepancies 
due to this fact are naturally inherent.  

 It is well known that the harmonic vibrational frequen-
cies calculated by DFT methods are usually systematically 
overestimated with respect to experimental fundamentals, 
which was the case for most of our results, too. This sys-
tematic overestimation used to be corrected by rescaling 
the spectrum using scaling factors that are well tuned to 
specifi c functionals and basis sets. Such factors are avail-
able, e.g., for B3LYP/6-311G* [ 56 ]. For our schemes with 

combined basis sets, however, we have not found any suit-
able scaling factors. Hence, we display the unscaled values. 
Even in that case, the performance of BP86 is more than 
satisfactory, apparently due to a lucky cancellation of dif-
ferent biases. This fact has been stressed earlier and using 
the BP86 functional recommended as a pragmatic and cost-
effective approach to calculating vibrational frequencies for 
large molecules [ 57 ,  58 ]. 

 Involvement of the individual vibrations in different 
wave number ranges follows from the PED as given in 
Tables S2–S4 of the supplementary material, where con-
tributions under 10 % are disregarded. From our point of 
view, the vibrations involving the vanadium atom are most 
relevant (Table  3 ), in particular those that distinguish the 
different coordination spheres. For  2 , the IR and Raman 
spectra are exclusively complementary for asymmetric 
and symmetric skeletal vibrations, respectively, due to its 
C  i   symmetry. The stretching V–O  t   vibrations are shifted to 
somewhat higher energies than in  1  or  3 . While in  2 , there 
is one active mode for this vibration in IR and one in the 
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 Fig. 2       Normal distributions of the relative errors   �r    of the calculated bond lengths for the complex anions  1  and  2 . Errors are with respect to the 
experimental data  
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Raman spectrum, in  1 , the computations predict three rel-
atively close levels in IR around ∼955 cm −1  from which 
two are also active in the Raman spectrum. In addition, a 
single frequency in this region corresponding to the sym-
metric stretching of the VO 2  group appears in mere Raman 
spectrum. In  3 , the four V–O  t   stretching modes should 
be active in both spectra, while the highest wave number 
(∼978 cm −1 ) is dominant in the Raman and the lower fre-
quencies are dominated in IR spectra. 

 V–O  h   stretchings have not appeared in the investigated 
range for  1  with pseudo-hexacoordinated vanadium atom, 
and the O  h  –H stretching frequencies remain in their usual 
range. This behavior and the V–O  h   bond length confi rm 
a very weak bonding character for this bond. In  2 , the V–
O  h   stretchings dominantly contribute to IR bands around 
660 cm −1  and in Raman spectrum around 625 cm −1 . In  3 , 
those stretchings contribute to frequencies around ∼550–
600 cm −1  together with the V–O  b   stretchings and other 
skeletal bendings. IR bands at ∼800 and ∼770 cm −1  are 
mostly attributed to involvement of the V–O  b   stretchings, 
as well as a medium intensity band in this region of the 
Raman spectrum. 

    4.2.2   UV–Vis and ECD spectra 

 In the range of 180–500 nm, there are about 90, 130, and 
250 calculated singlet electronic transitions for  1 ,  2 , and 
 3 , respectively. As these spectra are dominated by LMCT 
transitions (charge transfer from ligand to metal), in this 
case, we have used long-range corrected functionals [ 59 ] 
combined with BP86/WI-optimized geometries. We have 
checked the M06/WI-optimized structures, too, but the dif-
ferences are negligible. 

 Our calculations and some new experimental data com-
plement the UV–Vis spectra published in [ 16 ]. We are 
aware that the calculated values are still infl uenced by sev-
eral approximations that might be quite crude but which are 
not easy to eliminate in a cost-effective way. First of all, the 
calculated spectra correspond to vertical transitions without 
vibronic couplings. Moreover, in order to simulate the envi-
ronment we have used a standard PCM model, but for more 
accurate computations of excitation spectra the response 
of the environment to the excitation should be included 
either perturbatively, as, e.g., done within the corrected lin-
ear response (cLR) scheme [ 60 ,  61 ], or in a self-consistent 
manner within the state-specifi c (SS-PCM) scheme [ 62 , 
 63 ]. 

 Let us fi rst discuss the complex  3 , for which we were 
able to measure the ECD (together with UV–Vis) spec-
tra, as shown in Fig.  3 . In Fig.  4 , we display the simulated 
spectra using CAM-B3LYP and LC- ω PBE functionals with 
extended WII basis sets (see below a comment on the basis 
set effect). Here, we have skipped results obtained with 

 Table 2       Selected bond lengths (Å) of the complex anions optimized 
at various levels of theory using composite WI basis set in vacuum  

  a    Subscripts defi nition:  h  hydroxylic,  c  coordinated and/or carbox-
ylic,  u  uncoordinated carboxylic,  t  terminal,  bi  bridged to   Vi    

  b    Experimental crystal structure data from references [ 16 ,  17 ] 

    Bonda         Expt.b       M06    BP86    B3LYP  

  [V 2  O 4 ((2R,3R) –H 2 tart) 2 ] 
2−  (1)   

   VO  t      1.612(2)    1.599    1.626    1.606  

   VO  h      2.272(2)    2.319    2.353    2.366  

   VO  c      1.970(2)    1.990    2.009    2.000  

   CC    1.528(3)    1.517    1.537    1.532  

   CC  c      1.526(4)    1.530    1.546    1.541  

   CO  h      1.426(3)    1.409    1.429    1.419  

   CO  c      1.284(3)    1.280    1.301    1.289  

   CO  u      1.220(3)    1.222    1.240    1.229  

    [V2O2((2R,3R)− tart)((2S,3S)− tart)]2−     (2)   

     VOt       1.590(1)    1.571    1.605    1.584  

     VOh       1.834(1)    1.828    1.847    1.833  

     VOh       1.815(2)    1.813    1.838    1.823  

     VOc       1.970(2)    1.949    1.976    1.963  

     VOc       1.933(1)    1.948    1.975    1.960  

   CC    1.530(2)    1.527    1.551    1.542  

     CCc       1.538(3)    1.537    1.558    1.549  

     CCc       1.545(3)    1.539    1.561    1.552  

     COh       1.419(3)    1.381    1.397    1.393  

     COh       1.409(3)    1.384    1.400    1.395  

     COc       1.311(2)    1.302    1.320    1.310  

     COc       1.323(3)    1.304    1.322    1.313  

     COu       1.217(3)    1.210    1.227    1.215  

     COu       1.203(3)    1.209    1.226    1.214  

     [V4O8((R,R)− tart)2]
4−     (3)   

     V1Ot       1.618(4), 1.617(4)    1.592    1.625    1.603  

     V2Ot       1.619(4), 1.603(4)    1.580    1.615    1.595  

     V1Oh       1.964(4), 1.963(4)    1.907    1.917    1.896  

     V2Oh       1.870(4), 1.883(4)    1.871    1.893    1.881  

     V1Oc       2.070(4), 2.070(4)    2.086    2.115    2.107  

     V2Oc       2.058(4), 2.069(4)    2.090    2.118    2.102  

     V1Ob2       1.759(4), 1.784(4)    1.771    1.796    1.791  

     V1Ob1       1.828(4), 1.823(4)    1.799    1.818    1.807  

     V2Ob2       1.854(4), 1.838(4)    1.804    1.819    1.806  

     V2Ob1       1.884(4), 1.889(4)    1.834    1.850    1.828  

   CC    1.538(8), 1.569(7)    1.538    1.564    1.555  

     CCc       1.522(9), 1.554(9)    1.535    1.556    1.546  

     CCc       1.564(8), 1.534(9)    1.532    1.552    1.544  

     COc       1.285(8), 1.308(7)    1.279    1.298    1.287  

     COc       1.270(8), 1.291(8)    1.277    1.296    1.285  

     COu       1.257(8), 1.225(7)    1.231    1.249    1.238  

     COu       1.245(7), 1.254(8)    1.231    1.250    1.238  

     COh       1.442(7), 1.397(7)    1.378    1.394    1.389  

     COh       1.401(7), 1.401(7)    1.375    1.391    1.386  
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 ω B97XD functional that practically copy the CAM-B3LYP 
spectra. One observes that the simulated UV–Vis spectra 
very well agree with the experimental recording. Except for 
a small range around the wavelength 200 nm, this statement 
is equally valid for the gas-phase and the PCM simulations. 
Yet, in the range toward the wavelength of about 200 nm 
the improving effect of PCM is visible. Generally, the sim-
ulated UV–Vis spectrum possesses all the features of the 

measured one in the CH 3 CN solution, although the maxima 
are slightly shifted toward shorter wavelengths. The latter 
effect is somewhat stronger for the LC- ω PBE values.               

 Improving effect of the PCM is much more evident in 
the simulated ECD spectra. In particular, the positive sign 
wave in the 200–250 nm range failed to be well simulated 
in the mere gas-phase model. Indeed, also in experiment, 
the effect of the different environment in ECD spectrum 

 Table 3       Selected experimental 
vibrational wave numbers 
(cm −1 ) for  1 – 3  compared with 
harmonic approximation values 
calculated using the composite 
WI basis set  

 Modes:   ν    stretching,  δ  in-plane bending 

 Absorption IR intensities (  AIR   , km mol −1 ), Raman activities (I Raman , Å 4  amu −1 ), and normal mode assign-
ments are presented as well. Data for a wider frequency spectrum are given in the supplementary material 

  a    Solid-state spectra 

  b    Total of 96 normal modes   �vib = 25A(Raman)+ 23B1(IR, Raman)+ 24B2(IR, Raman)+ 24B3(IR, Raman)    

  c    Total of 78 normal modes   �vib = 39Ag(Raman)+ 39Au(IR)    

  d    Total of 102 normal modes   �vib = 51A(IR, Raman)+ 51B(IR, Raman)    

  Complex    Symmetry      Experimentala       BP86    B3LYP  

  IR    Raman      νi         νi         AIR
i          IRaman

i        PED (  >   10 %) and assignments  

   1       Db
2 (NMe4)2[V2O4((2R,3R)− H2tart)2] · 6H2O    [ 16 ]  

    A      938 vs    965    1021    0    102    97   ν(VOt)     

      B1       953 vs      960    1017    539    0    97   ν(VOt)     

      B2       929 vs      957    999    322    14    96   ν(VOt)     

      B3       910 vs    906 s    953    996    240    12    92   ν(VOt)     

   2       Cc
i (NMe4)2[V2O2((2R,3R)− tart)((2S,3S)− tart)]    Ref. [ 16 ]  

      Ag         995 vs    1009    1064    0    58    96   ν(VOt)     

      Au       993 vs      1004    1058    649    0    96   ν(VOt)     

      · · ·                   

      Au       665 s      644    673    227    0    40   ν(VOh)     

      Au       655 s      626    651    405    0    66   ν(VOh)     

      Ag           622    647    0    3    35   ν(VOh)     

      Ag         626 m    607    631    0    32    59   ν(VOh)     

   3       Cd
2 , (NEt4)4[V4O8((R,R)− tart)2] · 6H2O    Ref. [ 17 ]  

    A      977 vs    978    1034    63    125    82   ν(VOt)     

    B        970    1023    227    16    96   ν(VOt)     

    A    957 vs      957    1013    724    15    82   ν(VOt)     

    B        952    1008    194    17    95   ν(VOt)     

      · · ·                   

    B    800 m      805    850    1273    6    67   ν(VOb)     

      · · ·                   

    B    770 b      738    765    1056    3    65   ν(VOb)     

      · · ·                   

    A    667 s    672 m    696    724    329    16    42   ν(VOb)     

      · · ·                   

    B      567 s    581    604    13    31    39   ν(VOb)     

    A    592 m      580    593    52    0    18   ν(VOh); 10 ν(VOb)     

    B    547 b      551    575    339    1    29   ν(VOh); 12 δ(CCcOc)     

      · · ·                   

    B    486 w      483    499    38    1    20   ν(VOh)     

    A        482    495    0    2    19   ν(VOh)     
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is much more pronounced than for the UV–Vis. The basic 
features of the simulated ECD spectra reproduce the basic 
pattern of the experimental recording. Yet, amplitudes of 
the bands decrease too fast in the region of large wave-
lengths, and in accord with UV–Vis, the extremes are 
shifted toward shorter wavelengths. Though the overall per-
formance of LC- ω PBE and CAM-B3LYP is not too differ-
ent, CAM-B3LYP with PCM model seems to be preferable. 
Consequently, we shall use the latter to predict the ECD 
spectrum of complex  1 . Unfortunately, we were unable to 
reliably measure this spectrum due to its slow conversion 
to  3  in the water solution and its decomposition in CH 3 CN 
[ 16 ]. 

 In Fig.  5 , the simulated UV–Vis spectra are shown for  2 , 
using CAM-B3LYP functional with both WI and WII basis 
sets. First, let us recall that the overall agreement with the 
experimental spectrum available beyond 300-nm range [ 16 ] 
is again very good. As expected, also here the simulated 

maximum at ∼350 nm is slightly shifted toward shorter 
wavelength than in experiment (∼400 nm). Evidently, 
extending the basis set from WI to WII has not caused a 
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 Fig. 6       Simulated UV–Vis ( upper - right corner ) and ECD spectra of  1   

 Table 4       Comparison of experimental and calculated  51 V NMR iso-
tropic chemical shifts ( δ , relative to VOCl 3 )  

  Geometry    GIAO-B3PW91/W-IGLO (in ppm)  

    σref        δ   

  Funct./basis    VOCI 3      1      2      3   

  V1     V2  

  BP86/WI    −2195    −620    −363    −523    −495  

  B3LYP/WI    −2107    −647    −402    −546    −501  

  M06L/WI    −2115    −609    −333    −508    −481  

  M06/WI    −2028    −625    −387    −531    −527  

  Exp. H 2 O      −550    –    −522  

  Exp. CH 3 CN      –    −377    −495  
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signifi cant change in the overall pattern, i.e., also results 
with WI basis are fairly reliable. The PCM model slightly 
increased the calculated oscillator strengths, still preserving 
the overall shape of the spectrum as in the gas phase.        

 In Fig.  6 , the predicted UV–Vis and ECD spectrum is 
shown for the complex  1 . It is worth noting that due to the 
mutual cancellation of rotatory strengths, the dichroism 
apparently disappears in the range beyond ∼250 nm.        

    4.2.3   NMR spectra 

  Finally, let us briefl y comment on the calculated isotropic 
NMR chemical shifts, as given in Table  4 . The  51 V NMR 
chemical shifts were calculated using the GIAO approach 
with well-established B3PW91 functional and the W-IGLO 
basis set. These computations were performed employ-
ing optimized structures as defi ned in the fi rst column of 
Table  4 . All chemical shifts are given with respect to the 
VOCl 3  reference chemical shielding. Since PCM did not 
provide any improvement, we just show in vacuo values. 
A good agreement with experiment has been accomplished 
for  2  and also for  3 . In  3 , the calculated values for V 1  and 
V 2  are distinguished, unlike in experiment when a single 
peak was observed. A rather big discrepancy with experi-
ment in the case of  1  indicates relatively large deviation of 
the calculated structure from the measured one in an aque-
ous solution. Similar differences were observed between 
computed and experimental values for   [VO2(H2O)4]

+    
cation [ 28 ]. As for the performance of the employed geom-
etries, even though the calculated chemical shifts vary 
within about 10 % of their values, this is still acceptable.  

      5   Concluding remarks 

 A number of DFT calculations investigating the perfor-
mance of a variety of functionals were performed for three 
complex anions of vanadium(V) with tartrato ligands. As 
expected, one can hardly fi nd a universal DFT method to 
equally well describe structures together with the spectral 
properties. Our further aim was to complement the experi-
mentally available data for  1 ,  2 , and  3  [ 16 ,  17 ]. Hence, we 
have confronted the results with those experiments. Struc-
tural parameters have been fairly well described using the 
BP86 functional which can be safely recommended for fur-
ther computations of a similar kind as a good compromise 
between the cost-effectiveness and accuracy. Consequently, 
the vibrational energy distribution analysis confi rmed and/
or complemented the measured spectral data. 

 Since the LMCT electronic transitions are dominant 
in the electronic spectra, long-range corrected function-
als have been employed in combination with the afore-
mentioned optimized structures, CAM-B3LYP proving as 

a favorite one. Calculated UV–Vis and ECD spectra were 
confronted with the experimental recordings, performed 
in this work for  3 , as well. This confrontation allowed to 
reliably predict the pertinent spectra for  1 , where we were 
unable to obtain ECD spectrum experimentally. Calculated 
NMR chemical shifts were in good agreement with experi-
ment for  2  and  3 , too. 
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appealing HLSCF method is a competitive alternative to 
the LA method. 

   Keywords     Mixed quantum mechanics/molecular 
mechanics    ·  Huzinaga equation-based local self-consistent 
fi eld (HLSCF)    ·  Frozen strictly localized molecular orbital    · 
 Link atom  

      1  Introduction 

 Mixed quantum mechanical/molecular mechanical (QM/
MM) methods are multiscale modeling techniques that 
fi nd widespread use in chemistry. The basic idea of QM/
MM methods is that a localized event in a large molecu-
lar system is described by a sophisticated computational 
method applied explicitly to the central subsystem where 
the event takes place, while the effect of the further regions 
is taken into account in a more approximate way. Typical 
fi elds of application include reaction mechanisms, among 
them enzyme-catalyzed biochemical reactions, solvation, 
and spectroscopic properties. While QM methods are most 
often combined with MM methods, multiscale modeling 
also includes the combination of various level QM tech-
niques. An early scheme developed by Náray-Szabó and 
Surján [ 1 ] calculates strictly localized molecular orbitals 
for the whole system followed by the release of localiza-
tion for the central subsystem. This QM/QM scheme was 
originally developed at the CNDO/2 level and was later 
extended to the NDDO level [ 2 ]. A virtue of this method is 
that it offers a natural way to separate the central subsystem 
and the environment. A strictly localized orbital is the linear 
combination of hybrids centered on bound atoms and point-
ing toward one another. Then atoms at the boundary have 
hybrids pointing toward the strictly localized region on the 

                     Abstract     A mixed QM/MM computer program coupling 
 AMBER  and  MRCC  is presented. This is the fi rst implemen-
tation of the Huzinaga equation-based local self-consistent 
fi eld (HLSCF) method that makes it possible to calculate 
ab initio wave functions without orthogonalizing the basis 
set to the frozen orbitals separating the QM and MM sub-
systems. A signifi cant novelty of the program is that it 
includes an automatic generation of the frozen localized 
orbitals obtained from calculations performed for model 
molecules cut out of the system. The  AMBER – MRCC  code 
also allows the use of the link atom (LA) approach. Sam-
ple calculations were performed to check the performance 
of both the HLSCF and the LA approaches by describing 
the interactions between the QM and MM subsystems with 
electrostatic embedding. It was found that the conceptually 
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one hand, and toward the delocalized region on the other 
hand. These latter hybrids contribute to the basis of the 
delocalized central subsystem. This computational scheme 
was shown to be appropriate to study various properties of 
extended systems like rotational barriers, protonation ener-
gies and conformational energy differences [ 1 – 3 ]. Further-
more, following the idea of Warshel and Levitt [ 4 ] strictly 
localized orbitals and predefi ned hybrids provided means 
for separating the covalently bound subsystems in several 
QM/MM schemes. In the local self-consistent fi eld (LSCF) 
method [ 5 ] an atom on the boundary has a single hybrid 
orbital that forms a strictly localized molecular orbital with 
an atom in the QM subsystem, while other electrons of the 
atom are not treated explicitly; the interaction of this atom 
with atoms in the MM subsystem is described by a clas-
sical force fi eld. The strictly localized molecular orbital is 
not included in the self-consistent fi eld procedure, rather 
its coeffi cients are kept frozen at some predefi ned values. A 
similar separation with frozen localized orbitals but using 
a different orbital equation and specifi c parametrization is 
proposed by Friesner et al. [ 6 ,  7 ]. Another related approach, 
the generalized hybrid orbital (GHO) method [ 8 ,  9 ] puts 
hybrid orbitals on the QM boundary atom and includes the 
hybrid directed toward the QM subsystem in the SCF pro-
cedure, while other hybrids are kept fi xed. 

 Other ways to separate covalently bound QM and MM 
subsystems have also been proposed, and most notable 
among them is the link atom approach. It cuts the bonds at 
the QM–MM interface and saturates the dangling bonds of 
the QM subsystem typically by hydrogen atoms. The prin-
cipal advantage of the link atom approach is that its compu-
tational realization can be reduced to almost standard QM 
and MM calculations that greatly facilitates its implemen-
tation into existing codes. On the other hand, the link atom 
approach introduces extra atoms not present in the original 
system, and this creates artifacts that requires special con-
siderations in the computation. Nevertheless, early com-
parisons of the link atom and the LSCF methods concluded 
that both can give valuable results when applied with pre-
caution [ 10 ]. 

 Early QM/MM methods were introduced at a semiem-
pirical level, and later they were generalized to ab initio and 
DFT schemes. Such a generalization is typically straight-
forward for the link atom approach but poses diffi culties for 
methods using frozen localized orbitals. The principal dif-
fi culty is that these methods assume orthogonality between 
the frozen and the optimized orbitals, and this is not auto-
matically guaranteed at ab initio level. It is not straightfor-
ward to set up orbital equations that include the effect of 
frozen orbitals and give solutions that are orthogonal to 
these orbitals. A possible approach to circumvent this dif-
fi culty is to orthogonalize the basis functions of the orbitals 
to be optimized to the frozen orbitals [ 9 ,  11 ]. Alternative 

propositions include the neglect of the overlap between the 
frozen and optimized orbitals [ 9 ] or the explicit inclusion of 
the orbital overlap [ 12 ]. The orthogonality requirement can 
also be in included in the orbital equation. This was real-
ized in Ref. [ 6 ] in the framework of a specifi c model with 
frozen localized orbitals. We have recently proposed [ 13 ] 
the application of the Huzinaga equation [ 14 ] to ensure 
the orthogonality of the optimized and frozen orbitals. 
Although the Huzinaga equation was originally proposed to 
calculate valence orbitals orthogonal to frozen core orbitals 
[ 15 ], it was shown [ 13 ] that the equation is well suited to 
calculate QM/MM wave functions with optimized orbitals 
orthogonal to the strictly localized frozen orbitals separat-
ing the covalently bound QM and MM subsystems. Having 
established the validity of this approach, it is highly desir-
able to implement it in a computer code that, fi rst, extends 
its applicability with various techniques to a wide range of 
problems and, second, makes it conveniently available for 
the scientifi c community. 

 We selected the  AMBER  [ 16 ,  17 ] molecular mechanics 
and the  MRCC  [ 18 ] quantum chemical codes to develop a 
versatile and user-friendly QM/MM program which is 
freely available for academic purposes. The choice of 
 AMBER  is motivated by its capabilities that include molecu-
lar mechanics, molecular dynamics, and techniques that 
allow the effi cient calculation of free energies. Since the 
QM/MM program is organized in a way that the MM code 
drives the calculation and the input instructions are primar-
ily based on the MM code, the widespread use of  AMBER  
ensures that the resulting QM/MM code can be used with 
reasonable extra effort for those familiar with  AMBER . It is 
also to be noted that although force fi elds in neither  AMBER , 
nor the  AMBER – MRCC  code restrict the use of force fi elds to 
the  AMBER  force fi eld, its application in a QM/MM code is 
expected to be advantageous owing to the charge derivation 
scheme that guaranties a sensible electrostatic potential in 
the QM region. The  MRCC  code was selected for the QM 
region owing to its highly effi cient implementation of local 
correlation techniques that are benefi cial for calculating 
reaction mechanisms, a fi eld with primary importance for 
QM/MM applications. 

 It has to be noted that the link atom method and the fro-
zen localized orbital method require signifi cantly different 
approaches in their implementation into existing computer 
codes. The link atom method basically performs stand-
ard MM and QM calculations, and it is the generation of 
the subsystems and the communication between the QM 
and MM programs that require special attention and cod-
ing. This is the reason, while interfaces connecting vari-
ous MM and QM programs [ 19 – 24 ] can be developed, and 
only small modifi cations in the original codes are necessary 
to be introduced. The situation is different for the frozen 
localized orbital method where specifi c orbital equations 
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are to be used, and this requires more intensive modifi ca-
tions in the QM code. On the contrary, the adaptation of 
the MM code is more straightforward, and it is without 
the complications caused by the presence of extra atoms 
appearing in the link atom method. 

 In the forthcoming discussion, we present our results in 
the combination of the  AMBER  and  MRCC  codes. Both theo-
retical considerations and practical issues are discussed 
together with the results of test calculations. 

    2   Theory 

 Our QM/MM code uses frozen strictly localized orbitals 
to separate the covalently bound QM and MM subsystems. 
Since this method has been described in detail in Ref. [ 13 ], 
here only a summary of the most important features of the 
method are recapitulated. 

 The QM and MM regions are bound with a strictly 
localized molecular orbital (SLMO) (see Fig.  1 ). This is 
realized by defi ning an MM host (MMH) atom (which is 
also known as frontier atom in the literature) at the border 
of the QM and MM subsystems so that it is connected to 
an QM host (QMH) atom with a bond orbital whose basis 
functions are located exclusively on the two atoms. The 
QMH atom contributes to the SLMO with one electron, and 
its other electrons are part of the optimized wave function. 
The MMH atom of the SLMO also contributes with a sin-
gle electron to the SLMO, while its other valence electrons 
are not treated explicitly.        

 The SLMO is not optimized, rather its coeffi cients are 
kept fi xed at certain predefi ned values. These values are 
determined by calculations performed for model molecules 
that include a chemically similar bond to the SLMO (see 

later). Note that the core electrons of the MMH atom are 
also treated explicitly and their orbitals are taken from the 
calculations performed for deriving the valence SLMOs. 
MMH core orbitals can also be included in the set of orbit-
als to be optimized without signifi cant effect on the cal-
culated wave function and properties [ 13 ,  25 ]. The LSCF 
method allows the use of further molecular orbitals on the 
MMH atom, and it was demonstrated that the explicit treat-
ment of the delocalized nitrogen lone pair of an amide bond 
makes it possible to separate the QM and MM subsystems 
along the amide bond and to produce good-quality poten-
tial energy surfaces [ 26 ,  27 ]. 

 It is convenient to use optimized orbitals that are orthog-
onal to the frozen SLMOs and this is achieved by calculat-
ing the optimized orbitals with the Huzinaga equation [ 14 ]. 
This can be written as
     

where   F    is the Fock matrix,   S    is the basis set overlap matrix, 
  Ca    includes the coeffi cients of the orbitals to be optimized, 
  Ea    is the diagonal matrix of the corresponding eigenval-
ues and   Rf    projects onto the space of the frozen orbitals. 
Assuming orthonormal frozen orbitals   Rf = Cf(Cf)†    , 
where   Cf     contains the coeffi cients of the frozen orbit-
als. The role of the last two terms on the left-hand side of 
Eq. ( 1 ) is to shift the eigenvalues of the frozen orbitals to 
positive values and to guaranty that the lowest eigenvalue 
orbitals, those that are used to construct the Fock matrix of 
the next iteration cycle, are orthogonal to the space spanned 
by the frozen orbitals. Three notes are appropriate here. 
First, the frozen orbitals are expected to appear with posi-
tive eigenvalues in Eq. ( 1 ) if they are reasonable approxi-
mations to the exact eigenfunctions of   F   . Second, the basis 
functions of the optimized orbitals have to include those of 
the SLMOs since this ensures that orthogonality between 
the optimized orbitals and the SLMOs could be achieved. 
Third, the subsystems can be connected by several SLMOs 
that are typically not orthogonal, and then the projector in 
Eq. ( 1 ) takes the form of   Rf = Cf(σ f)−1(Cf)†   , where   σ f    is 
the overlap matrix of the SLMOs. 

 It was found that the calculation of the optimized orbit-
als by Eq. ( 1 ) is advantageous when other valence elec-
trons of the MMH atom are represented by point charges 
placed on the bonds connecting the MMH atom with MM 
atoms. In case of an sp3 carbon MMH atom, three nega-
tive charges, called bond charges, are placed on the three 
bonds connecting the MMH atom with three MM atoms, 
while the fourth valence electron is involved in the SLMO. 
The magnitude of the bond charges (  qbond   ) are determined 
so that
     

(1)[F − SRf F − FRf S]Ca
= SCaEa,

(2)
∑

qbond + qMMH
core + (−3) = QMMH

MM ,

 Fig. 1       Separation of the QM and MM subsystems by a frozen strictly 
localized molecular orbital (SLMO). QM and MM atoms are des-
ignated by  Q  and  M , respectively.  QMH  is the QM host atom and 
 MMH  is the MM host atom, and the latter is also called frontier atom  
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where   qMMH
core

    is the MMH atom core charge, −3 accounts 

for the two core electrons and the single valence electron 
included in the SLMO, and   QMMH

MM     is the MM charge of 
the MMH atom. The magnitude of   qMMH

core     is an adjustable 
parameter that determines   qbond    via Eq. ( 2 ). Moreover, the 
position of the bond charges is, in principle, an additional 
parameter. These charges are placed at the midpoint of the 
bond formed by the MMH and the MM atom adjacent to 
the boundary to provide a sensible representation of the 
MMH valence electrons which are not accounted for quan-
tum mechanically. 

 The MM parameters at the boundary are used similarly as 
they are implemented in  AMBER  for the link atom approach. 
Internal coordinate force fi eld terms of bonds, angles, 
and dihedral angles are used if any MM or MMH atom is 
involved. Electrostatic and van der Waals (vdW) interac-
tions are also calculated in accordance with the AMBER 
force fi eld scheme [ 28 ]. Detailed description of the retained 
bonded and nonbonded terms, in particular the interactions 
with bond charges, is discussed in the following section. 

    3   Implementation 

 In this section, specifi c features of the QM/MM code 
obtained with the joint implementation of the molecu-
lar mechanics program  AMBER  and the quantum mechan-
ics program  MRCC  are presented. The coupling of the two 
codes is mainly based on the interface of Walker et al. [ 23 ]; 
therefore, relevant parts of their work will be reviewed 
with special emphasis on the similarities and differences 
of the link atom and the frozen strictly localized molecu-
lar orbital approaches. In the  AMBER – MRCC  interface, as in 
most implementations of MM and QM program couplings 
[ 24 ], the necessary data exchange is realized by writing 
and reading of fi les. All tasks, except the solution of the 
QM orbital equations, are driven by  SANDER , the molecular 
dynamics engine program of  AMBER . 

 In order to preform a QM/MM calculation, the fi rst step 
for the user is to prepare a parameter and topology fi le, a 
coordinate fi le, and a control fi le which are required for a 
regular molecular dynamics (MD) simulation. This proce-
dure may not be straightforward in the case of QM/MM 
runs, because the QM subsystem may not be represented 
by classical chemical structures and corresponding force 
fi eld parameters. Nevertheless, the construction of the 
topology fi le facilitates the QM/MM run since it allows the 
use of the MM program infrastructure with minimal modi-
fi cations; moreover, it may support system preparations, 
for example, MM energy minimization or equilibration. 
It is worth also noting that the only consequence of the 
topology defi nition to the QM subsystem is the assignment 

of vdW parameters. Owing to the short-range nature of the 
vdW interactions, an appropriate choice of the QM sub-
system can minimize the effect of potentially inconsistent 
parameters. 

 Changes in the control fi le with respect to a standard 
MM setup consist of marking the QM atoms, specifying 
the charge and multiplicity of the QM region as well as 
defi ning the theory and basis set. For compatibility reasons, 
only the most general  MRCC  keywords can be denominated 
in the control fi le; however, the user can also set up the 
full range of options by referring in the control fi le to an 
MRCC template fi le. Having done these arrangements, all 
other procedures required for a simulation are automati-
cally executed by  SANDER  for the link atom (LA) approach 
and for the Huzinaga equation-based local self-consistent 
fi eld (HLSCF) method, as well. 

   3.1   Link atom approach 

 In the case of link atom approach, the procedure for an 
AMBER-MRCC calculation closely follows that for-
merly implemented in  SANDER . Namely, it automatically 
determines the place where to cut bonds and also posi-
tions the hydrogen atoms as a function of the QMH and 
MMH positions to saturate the dangling bonds of the QM 
subsystem. (In the context of the link atom approach the 
MMH and QMH atoms are those whose bond is cut.) It is 
important to note that the LA method produces a good-
quality wave function when an apolar bond (e.g., bond 
between two sp3 carbon atoms) is cut; moreover, link 
atoms connected to a common host atom is disadvanta-
geous owing to their short spatial separation The latter 
criterion is checked by the program, and hence the user 
cannot mark arbitrary QM subsystems; furthermore, both 
criteria are applied in the rules of automatic selection 
of model molecules for the HLSCF method (see later). 
After the link atoms are defi ned, bonded terms in the QM 
region are removed, and in the case of electronic embed-
ding, the point charges are zeroed on the QM atoms as 
well as, to avoid overpolarization, on the MMH atoms. 
In order to preserve the total charge of the system, resid-
ual charges are distributed among the nonzero charges of 
the MM region; however, there are several schemes for 
both charge distribution and bonded term removal which 
can be specifi ed by the user. If the MM energy terms are 
defi ned, an input fi le will be written for  MRCC  by the 
 AMBER – MRCC  interface in every simulation step, which 
consists of QM atom coordinates, atomic numbers, MM 
point charges and their coordinates, and the controlling 
keywords.  MRCC  is then executed via a system call, and 
after a successful run, the energy of the QM region and 
forces acting on atoms are written into an output fi le 
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which is parsed by the interface. Here we note that LA 
calculations are performed during the preparation of a 
HLSCF run to generate SLMOs in model systems. 

    3.2   Huzinaga equation-based local self-consistent fi eld 
approach 

 In the HLSCF method, just as in the LA approach, the com-
munication between  AMBER  and  MRCC  is carried out by writ-
ing and reading fi les. The major difference between the two 
boundary methods as described earlier is that in the case of 
HLSCF, the QM and MM regions are connected by a fro-
zen SLMO. The coeffi cients of a frozen SLMO are taken 
from a molecule containing a QMH–MMH bond prefer-
ably in a chemical environment similar to that in the system 
studied. Therefore, the fi rst step in order to determine the 
SLMO coeffi cients of a QMH–MMH bond is to choose a 
suitable model system. Model systems are generated auto-
matically in our implementation using selection rules (see 
Sect.  3.2.2 ), but the user can also select atoms for the model 
systems manually using the previously mentioned tem-
plate fi le. After the model systems are set, the SLMOs are 
automatically calculated without any user intervention (see 
Sect.  3.2.1 ) for every QMH–MMH bond, and both the out-
puts of model calculations and the SLMO coeffi cients are 
saved in fi les. Following these procedures, bonded terms, 
which are defi ned only by QM atoms are removed, thus the 
following MM bonds, angles, and dihedrals are retained:
     

where MM and QM are MM and QM atoms, respectively, 
while QMH is a QM host atom and MMH is an MM host 
atom. Note that the MMH atom, which is treated specially 
in the electrostatic terms is handled as any other MM atom 
in the bonded terms. 

 The vdW and electrostatic contributions of the non-
bonded terms are calculated as in the LA approach; how-
ever, only those electrostatic point charges are zeroed 
which are defi ned on QM atoms, and furthermore, the 
charge of the full system is preserved by distributing the 
residual charges over all remaining point charges. Fol-
lowing this procedure, the charge of MMH atom is redis-
tributed according to Eq. ( 2 ): the MMH point charge is 
replaced by the   qMMH

core     core charge of the MMH atom and 
the   qbond    charges are automatically positioned at the mid-
point of the bonds formed between the MMH and the MM 
atom adjacent to the MMH atom. Interactions of the   qMMH

core     

Bonds = MM−MM, MM−MMH, MMH−QMH

Angles = MM−MM−MM, MM−MM−MMH,

MM−MMH−QMH, MMH−QMH−QM

Dihedrals = MM−MM−MM−MM, MM−MM−MM−MMH,

MM−MM−MMH−QMH, MM−MMH−QMH−QM,

MMH−QMH−QM−QM,

and   qbond    charges with MM atoms are calculated as in the 
AMBER force fi eld [ 28 ]:   qMMH

core     and   qbond    interact neither 
with MM charges adjacent to MMH nor with MM atoms 
adjacent to these atoms (1–2, 1–3 interactions). Further-
more, interactions with three bonds away from MMH are 
divided by a factor of 1.2. It is important to mention that 
the interactions between   qMMH

core     and   qbond   , just as any inter-
action including these charges are computed only by direct 
summation, and hence, periodic boundary conditions can-
not be handled at this stage of development. 

 When the setup of the MM energy terms completed, 
similarly to the LA approach, an input fi le is written for 
 MRCC  by the interface and  MRCC  is executed. In the case 
of HLSCF, host atoms are fl agged in the input fi le. The 
aim of these fl ags is to assign the previously calculated 
SLMO coeffi cients to the proper host atoms and to build 
the   Cf    matrix from the strictly localized molecular orbit-
als. Using these orbitals the overlap matrix of the frozen 
molecular orbitals are evaluated as   σ = (Cf)†SCf   . The 
inverse square root of the orbital overlap matrix is used 
to calculate the projector   Rf = Cf(σ f)−1(Cf)†    and then 
in each iteration cycle the Fock matrix and the Huzinaga 
matrix   F − SRf F − FRf S    are built. The diagonalization of 
the Huzinaga matrix according to Eq. ( 1 ) produces orbitals 
orthogonal to the frozen orbitals. When self-consistency is 
reached the calculated SCF energy is written in an output 
fi le which is parsed by the interface. As to the force evalu-
ation, note that the gradients derived in Ref. [ 13 ] for the 
QM atoms are implemented and tested in  MRCC ; however, 
the QM/MM gradients are not available at this stage of 
development. 

   3.2.1   Automatic generation of frozen strictly localized 
orbitals 

 The coeffi cients of the frozen SLMOs can be taken from 
model molecules that contain a chemical bond similar 
to that of the SLMO. The basic idea for the generation of 
the orbital coeffi cients is that after identifying a bond con-
necting the QM and MM subsystems, a molecular graph 
containing this bond is cut from the system, and a QM cal-
culation is performed for the model molecule generated 
from the molecular graph using the link atom approach. 
The wave function of the model molecule is calculated 
by taking into account the electrostatic potential of the 
point charges of the whole system (all atoms except those 
included in the model molecule). Note that during the cal-
culation of the model molecule bonded and vdW contribu-
tions are not calculated which is rationalized by the fact that 
the only aim is to determine the polarized wavefunction of 
the model molecule; nevertheless, charge neutrality is still 
assured by various charge distribution schemes set by the 
user. The orbitals obtained are Boys [ 29 ] or Pipek–Mezey 
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[ 30 ] localized which is followed by the Boughton–Pulay 
algorithm [ 31 ] to select those atoms on which the orbitals 
are localized. 

 The fi rst step of the Boughton–Pulay algorithm is that 
for each localized orbital, the atoms are ranked accord-
ing to their gross Mulliken population. Starting from the 
atom with the largest Mulliken population, subspaces of 
atoms are defi ned by adding atoms of smaller and smaller 
Mulliken populations. For each subspace, the local-
ized molecular orbital is truncated to the subspace, and 
the norm of the square of the difference of the original 
and the truncated function is calculated. The procedure 
is terminated when the norm drops below a threshold   ε   ; 
hence, the localized orbitals are assigned automatically 
to atoms whose basis functions span the best subspace 
for given localized orbital. In the implementation of the 
HLSCF method, a   1 − ε = 0.985    completeness criteria 
was chosen. 

 After assigning atoms to localized orbitals, the core 
orbitals of the MMH atom and the single valence orbital 
connecting the QMH and MMH atoms are selected. 
SLMOs are generated and saved from selected localized 
molecular orbitals by removing contributions from all 
atoms except the QMH and MMH atoms. 

    3.2.2   Selection of the model molecule 

 The model molecules are generated from the list of atom pairs 
defi ning those chemical bonds that connect the QM and MM 
subsystems. Our task is to select a molecular graph for every 
such atom pair and close their dangling bonds with hydrogens 
in a way to satisfy the considerations written in the Link atom 
approach section. Starting from a given atom pair, we use an 
incremental, step-by-step forwarding procedure to extend the 
initial model (graph) in both directions (see Fig.  2 ). In this pro-
cedure only the non-H atoms are used, and the H atoms are 
added to the model after the selection of heavy atoms is com-
pleted. For the easier formulation of the rules of extension, we 
introduce the following naming convention. At a certain step 
of the incremental procedure, the  base atoms  of the model 
molecule are those atoms that are connected to other atoms 
( border atoms ) not included in the model. The basic idea of 
the model molecule selection is to fi nd the smallest molecu-
lar subgraph every base atom of which is connected to the 
remaining part of the system by only one single bond. In the 
currently implemented algorithm, only single bonds can be cut 
to defi ne the model molecule ( breakable bonds ), and all the 
other bond types are  non-breakable . However, less restrictive 
defi nitions of the breakable bonds can also be applied.        

 Fig. 2       Schematic representa-
tion of the incremental proce-
dure used for the step-by-step 
extension of the model system. 
The rules applied in the  N th step 
are also identifi ed. See the text 
for the details  
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 The main steps of the algorithm are demonstrated in 
Fig.  2  and can be summarized as follows.

   1.      Repeat the model molecule search below for every 
atom pairs defi ning single bonds between the QM and 
MM subsystems   

  2.      Find the base atoms and the border atoms connected to 
them.   

  3.      Extend the model molecule using the following rules

   (a)      If more than one border atom is connected to a 
base atom, then all of them are attached to the 
model molecule, unless all but one base atom–
border atom connections are terminal (the bor-
der atoms have no further bonds to heavy atoms 
not included in the model system). In this case, 
only the terminal atoms are added to the model 
system, and the remaining one bond is cut and it 
is not used in the subsequent base atom–border 
atom search.   

  (b)      If only one border atom is connected to a base 
atom and

   (i)      this bond is a breakable one, then terminate this exten-
sion path   

  (ii)      this bond is a non-breakable one, then add its border 
atom to the model system.       

  (c)      If a border atom is connected to two different 
base atoms (crossing), then the common border 
atom is also attached to the model system.       

  4.      If every base atom has at the most one non-terminal 
bond to the border atoms and this bond is breakable, 
and furthermore no crossings occur, then the model 
molecule is defi ned, otherwise go to step 2.   

  5.      Add H atoms to terminate dangling bonds.     

 Examples indicating the selection of model molecules 
for several systems are presented as Supplementary Mate-
rial. The described protocol was applied to generate 
model molecules in all calculation presented in the current 
contribution. 

      4   Sample calculations 

 In this section results obtained both with the widely used 
link atom approach and with the newly implemented Huzi-
naga equation-based local self-consistent fi eld method are 
presented. Both QM/MM boundary methods were tested 
to model typical applications of hybrid methods. However, 

the systems selected are suffi ciently small so that reference 
full QM calculations are feasible. 

 In all the calculations presented below, the wave func-
tion of the QM region was calculated with the Hartree–
Fock–Roothaan equation for the LA approach and with the 
Huzinaga equation for the HLSCF approach. Pople-type 
Cartesian 6-31G* basis set [ 32 ] was used. The parameters 
defi ned in the ff14SB [ 28 ] and in the GAFF [ 33 ] force 
fi elds were used for peptide and hexanoic acid calcula-
tions, respectively, to evaluate the MM energy function. 
The MM parameters of the hexanoic acid were generated 
by the  ANTECHAMBER  program [ 34 ] using the AM1-BCC 
charge scheme [ 35 ,  36 ]. Input fi les were generated by using 
the Maestro [ 37 ] program and the  TELEAP  program which 
is part of the  AMBERTOOLS  package. Figures were prepared 
using Gnuplot [ 38 ] and Marvin [ 39 ]. 

 As a fi rst step, the full system was optimized at the 
HF/6-31G* level in all test cases, and then the obtained 
geometries were modifi ed to perform single-point calcu-
lations along the defi ned reaction coordinates. The choice 
of the computational level for geometry calculations was 
motivated by generating reasonable geometries that are 
consistent with the calculations performed to test the QM/
MM schemes. The tests were calculated in vacuum, with-
out periodic boundary conditions and the cutoff for elec-
trostatic and vdW terms was set to 999 Å. In the case of the 
link atom approach, the capping hydrogen atom was posi-
tioned 1.09 Å away from the QMH atom; furthermore, the 
residual charges, which were originated from the zeroing 
of the QM and MMH atoms, were distributed among all 
MM atoms. Those bonded terms which contained at least 
one MM or MMH atoms were retained. The SLMOs of the 
HLSCF method were only calculated for a single confi gu-
ration, and these SLMO coeffi cients were used for all other 
confi gurations. This procedure was found to better repro-
duce reference results than the recalculation of the SLMOs 
for each individual confi guration. We selected the confi gu-
ration of the global potential minimum for calculating the 
SLMO coeffi cients. In this way, the SLMO coeffi cients are 
treated on an equal footing with the MM parameters in the 
sense that they both provide a constant environment for 
the rest of the QM subsystem. The SLMOs were generated 
with automatically selected model systems, using Boys 
localization and with the setup described for the link atom 
approach. The model systems utilized for the SLMO cal-
culations are appended in the Supplementary information. 

 In all examples presented below, the effect of the QM 
subsystem size is investigated by varying the subsystem 
boundary. The boundary is defi ned by the bond cut by the 
subsystem separation. Note that “cut” in the LA approach 
indeed means bond cutting between the QM and MM 
subsystems and saturating the dangling bond of the QM 
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subsystem by a H atom. On the other hand, “cut” signifi es a 
frozen SLMO in the HLSCF approach. 

   4.1   Deprotonation energy 

 The calculation of the deprotonation energy is a highly 
sensitive test for the HLSCF method since it requires the 
evaluation of the energy difference of differently charged 
systems. Therefore, the deprotonation energy of hexaonic 
acid was calculated both with the LA and the HLSCF 
approaches as a fi rst test. Results were compared with the 
reference full QM calculations. As described above, the 
geometry of the natural hexaonic acid was fi rst optimized 
using the reference method; however, the geometry of the 
deprotonated acid was obtained by simply removing the 
H 20  hydrogen atom of the carboxyl group from the neutral 
form (see Fig.  3  for the numbering of atoms). Beside the 
same geometry of the two species, the MM subsystem and 
the SLMOs of the neutral hexanoic acid were also used 
for the deprotonated form to prevent the charge transfer 
between the QM and the MM subsystems.        

 The convergence of the QM/MM methods to the full 
QM calculations was investigated by gradually increasing 
the size of the QM subsystem. The various QM and MM 
subsystems are shown in Fig.  3 . The core charge of Eq.  2  
was determined in a trial-and-error procedure in which the 
absolute error belonging to largest QM subsystem, cut4 in 
Fig.  3 , was minimized. It was found that the optimal core 
charge is +5.5, and this parameter was also used in the sub-
sequent calculations. 

 The results of the LA and the HLSCF methods were 
compared with the reference, and the errors are presented in 
Table  1 . The data show that the error decreases as the QM 
subsystem increases; hence, both QM/MM methods con-
verge to the full QM calculation, and moreover, the errors 
are less than 0.1 kcal/mol if the largest QM subsystem 
(cut4) is used. For smaller QM subsystems the errors of the 
LA approach is smaller than those of the HLSCF approach. 
The larger HLSCF errors stem from the presence of a large 
positive MMH core charge and negative bond charges that 

have signifi cant interactions with the site of deprotonation. 
It was found that the optimal charges depend on the subsys-
tem separation and on the other parameters of the calcula-
tion. Optimal bond charges were found to depend also on 
whether vertical or adiabatic ionization energies are calcu-
lated and on whether the same or different SLBOs are used 
for the neutral and deprotonated species. It is expected that 
the force fi eld and in particular the MM charges also affect 
the optimal choice of the bond charges. Results may benefi t 
from the use of a polarizable force fi eld, and polarization 
is expected to be increasingly important with the decrease 
in the QM subsystem. It is worth emphasizing that the sen-
sitivity of the deprotonation energy on these parameters in 
the HLSCF approach is a consequence of calculating the 
energy difference of differently charged system. On the 
other hand, these parameters were found to have much less 
effect in typical QM/MM calculations where energies of 
systems with equal total charges are compared. This type 
of examples is presented in the forthcoming sections. In all 
these examples, an MMH core charge of 5.5 was used, but 
we note that this charge can also be treated as an adjustable 
parameter.  

    4.2   Conformational energies 

 In the second test example, the rotation energy profi le of 
the carboxyl group of hexaonic acid was investigated. Note 
that this is a challenging test because the energy change 
due to rotation is very small (only a few kcal/mol). Ener-
gies were calculated as a function of the C 3 –C 2 –C 1 –O 7  

 Fig. 3       System separation of the 
hexanoic acid  

 Table 1       QM/MM errors of deprotonation energies for the hexanoic 
acid molecule with various system separation (see Fig.  3 )  

  System    LA (kcal/mol)    HLSCF (kcal/mol)  

  cut1    −1.65    −6.18  

  cut2    −0.62    −1.51  

  cut3    −0.19    −1.48  

  cut4    0.04    −0.02  
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dihedral angle (see Fig.  3  for the atom numbering). Various 
system separations were applied in order to study the effect 
of QM subsystem size on the quality of the results. 

 Relative energies with respect of the lowest energy con-
former as obtained with the LA, HLSCF and full QM cal-
culations are presented in Fig.  4 . The data show that both 
QM/MM methods reproduce the rotation energy curve of 
the reference method well; furthermore, as the QM sub-
system increases, the absolute error decreases, and hence, 
the results of both approaches converge to that of the QM 
calculation. In the cases of cut3 and cut4, the estimation 
of the rotation energy profi le is highly satisfactory since 
the largest absolute errors are within 0.1 kcal/mol. For the 
smallest QM subsystem (cut2) where the subsystem bound-
ary is separated by a single bond from the rotating C–C 
bond, the maximum errors are few tenth of kcal/mol cor-
responding to 40–60 % relative errors and it larger for the 
HLSCF method. Summarizing the results, both approaches 
well reproduces the subtle energy changes of the reference 
calculations when the subsystem boundary is separated by 
more than a single bond from the rotating bond.        

 Another rotational energy curve calculation was per-
formed for the Ace–His–Nme system by rotating the imida-
zol group. Single-point energy calculations were preformed 
varying the C 9 –C 11 –C 14 –N 15  dihedral angle (see Fig.  5  for 
the numbering of the atoms) by 30°. In order to test the 
effect of the QM subsystem size on the quality of the QM/
MM results, calculations were performed with two QM–
MM boundaries; a smaller (cut1) and a larger (cut2) QM 
region was chosen (Fig.  5 ). In the case of cut1, the bound-
ary is at the bond between   Cα    (C 9 ) and   Cβ    (C 11 ), while for 
cut2, only the methyl groups of the acetyl and  N -methyl 

groups were included in the MM subsystem, and hence, the 
boundary is at the bonds between C 2 –C 5  and N 24 –C 26 .        

 The relative energies with respect to the lowest energy 
conformer are shown for the LA, HLSCF, and reference 
full QM calculations in Fig.  6 . (Tabulated data are avail-
able as Supplementary information.) The QM/MM meth-
ods well reproduce the shape of the energy profi le of the 
reference for both system separations. Furthermore, the 
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results of both methods improve with larger QM subsys-
tems. In the case of the smaller QM subsystem, cut1 in 
Fig.  6 , the mean absolute error and the largest error are 
1.5 and 4.8 kcal/mol, respectively, for the LA method, 
while they are 1.5 and 5.3 kcal/mol, respectively, for the 
HLSCF method. Note that MM dihedral parameters con-
tribute to the obtained energies for this small QM subsys-
tem. Increasing the size of the QM region decreases both 
the mean and the maximum error; 0.2 and 0.3 kcal/mol for 
the LA and 1.0 and 1.5 kcal/mol for the HLSCF method 
are obtained. In summary, it was found that both methods 
are able to reproduce the reference results for the rotation 
of the imidazole group within 5 % relative error when the 
amide bonds are included in the QM subsystems and thus 
the subsystem boundaries are separated from the rotating 
bond by 3 bonds.        

    4.3   Proton transfer energy curve 

 The fourth example comprises an Ace–His–Nme and a 
Ace–Asp–Nme peptide, where the proton transfer between 
the Asp and His residues was investigated. In this reaction, 
the oxygen(C 45 )–hydrogen(H 46 ) distance in the Asp residue 
was set as the reaction coordinate (see Fig.  7 . for the num-
bering of the atoms). Single-point energy calculations were 
preformed as the starting oxygen–hydrogen distance (0.8 
Å) was incremented by 0.1 Å. The relative energies with 
respect to the minimum of the potential energy surface are 
reported.        

 Just as in the third example, the effect of the QM sub-
system size was investigated by choosing a smaller (cut1) 

and a larger (cut2) QM region. In the case of cut1, bonds 
between the   Cα (C9,His, C38, Asp) and Cβ (C11, His, C40, Asp)    
connect the QM and MM subsystems, while in cut2 only 
the methyl groups were included in the MM region; hence, 
the system was separated along the bonds   C2,His   –  C5,His    
and   N24,His   –  C26,His   , as well as   C31,Asp   –  C34,Asp    and   N49,Asp

   –  C51,Asp    (Fig.  7 ). 
 Results of the LA and HLSCF approaches together with 

the reference full QM calculation are shown in Fig.  8 . (Tab-
ulated data are available as Supplementary information.) 

 Fig. 7       System separation of the 
Ace–His–Nme and Ace–Asp–
Nme system  
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 Fig. 8       Energy of the Ace–His–Nme and Ace–Asp–Nme system as a 
function of the proton from the oxygen of Asp  
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As in the previous test, both QM/MM boundary meth-
ods well approximate the reference; moreover, the quality 
of the energy curves also improves as the size of the QM 
subsystem increases. In the case of cut1, the mean abso-
lute error and the error of barrier height at 1.5 Å are both 
1.1 kcal/mol for the LA method, whereas these errors are 
0.6 and 0.8 kcal/mol, respectively, for the HLSCF method. 
The positions of the two minima are also very well repro-
duced. Applying a larger QM region (cut2), both methods 
approximate the reference even better: For both methods, 
both the mean error and the error at the potential barrier are 
0.1 kcal/mol (well below 1 %). Summarizing the results, it 
was found that the both methods perform well even with 
the smaller QM subsystem, and they reproduce both the 
positions and the relative heights of the reference minima 
extremely well with the larger QM subsystem.        

     5   Conclusions 

 A mixed QM/MM program is developed and tested 
with sample calculations. The coupling of the molecular 
mechanics program  AMBER  and the quantum mechanics 
program  MRCC  is based on the interface of Walker et al. 
[ 23 ]. Besides the traditional link atom approach, the Huzi-
naga equation-based local self-consistent fi eld method was 
also implemented in the  AMBER – MRCC  code. In addition 
to the implementation of the Huzinaga equation, an auto-
matic model system selector algorithm was also developed, 
which enables the automatic generation of the required 
strictly localized molecular orbital coeffi cients without any 
user intervention. This is an important step toward an effec-
tive and user-friendly QM/MM code since the necessity of 
the generation of system specifi c frozen SLMOs was con-
sidered as an obstacle that is eliminated by the proposed 
general method to derive the SLMOs. 

 The current implementation makes it possible to exten-
sively test the HLSCF method, to analyze the effect of its 
parameters and to compare its results with those of the link 
atom and of the full QM calculations. 

 It was found from the deprotonation energy and from 
the rotational energy profi le of the hexanoic acid that both 
boundary methods monotonously converge to the full QM 
calculations with increasing QM subsystem size. Calcu-
lations performed for peptides with various QM subsys-
tem sizes also confi rm this conclusion. The deprotonation 
energy was reproduced within a few tenth of kcal/mol 
by both boundary methods when the subsystem bound-
ary is separated from the site of deprotonation by fi ve 
bonds. The HLSCF results were found to be sensitive to 
the charge parameters at the boundary, and this sensitivity 
is attributed to the calculation of the energy difference of 
differently charged systems. The potential energy curves 

calculated by rotating the carboxyl group of the hexanoic 
acid in one example, and the imidazole group in the Ace–
His–Nme peptide in the other example showed that the 
reference QM results are well reproduced by both meth-
ods with a maximal error not exceeding 5 % (1 kcal/mol 
and less then 0.1 kcal/mol in the two examples) when the 
rotating bond is separated from the QM–MM boundary by 
three bonds. The proton transfer energy curve between an 
Asp and His residues was very well reproduced consider-
ing both the positions and the energies of the minima. Even 
with a subsystem boundary separated by two bonds from 
the proton acceptors, the error is within 2 kcal/mol (7 %) 
and it reduces signifi cantly, to less than 0.1 kcal/mol when 
the QM subsystem is further extended by three bonds. 

 The results obtained are in line with former studies [ 10 ] 
that compared the link atom and the LSCF approaches at 
semiempirical level and concluded that they give compa-
rable results when applied cautiously. However, the LSCF 
approach is conceptually more appealing and its cur-
rent Huzinaga equation-based implementation allows for 
the fi rst time to perform calculations at the ab initio level 
without orthogonalizing the basis set to the frozen orbitals. 
Further developments, such as gradient calculations, inclu-
sion of electron correlation effects from the QM side and 
the treatment of periodic boundary conditions and to per-
form molecular dynamics simulations on the MM side will 
be performed. These developments will allow a more thor-
ough exploration of the optimal parameters of the HLSCF 
method with the aim of providing a versatile QM/MM tool 
to the community. 
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limitations of using endohedral fullerenes as quantum 
information carriers. Mehring et al. [ 9 ] pointed out experi-
mentally the entanglement of the nuclear spin and the elec-
tronic spin of the encaged N atom. A detailed review of 
group V endohedral fullerenes can be found in Ref. [ 10 ]. 

 The changes in the characteristic EPR signal of the quar-
tet electronic spin of the N atom make it an ideal probe for 
monitoring chemical reactions of   C60    [ 11 ]. During the last 
decades, a great deal of excitement has been brought by 
the discovery of the superconductivity of the alkali-doped 
fullerenes. In this type of fullerene compounds, the valence 
electrons of the ionized alkali atoms partially occupy the 
bands formed by the LUMOs of the   C60    molecules. The 
applicability of the quartet atomic state of the N atom 
as a spin label depends on the strength of the interaction 
between the 2 p  electrons of the N atom and the valence 
electron of the fullerene cage. An interaction which is small 
compared to the hyperfi ne interaction results in a line width 
effect of the EPR signal, and the   N@C60    is a good candi-
date for a spin labeling agent. In the case of strong cou-
pling, the EPR signal of the system is completely changed 
and the lines corresponding to the valence electrons of the 
N atom are hard to identify in the signal of the paramag-
netic system. 

 The interaction between the 2 p  electrons of the N atom 
and the valence electrons of the   C60    can be described by 
a Heisenberg-like effective Hamiltonian   Hint = JSNSC60

    
where   SN    and   SC60

    denote the spin operator for the valence 
electrons of the N atom and for the   C60   , respectively, and J 
is the exchange coupling characterizing the strength of the 
interaction. The aim of the present paper is to determine 
theoretically the exchange coupling appearing in the effec-
tive Hamiltonian. The exchange coupling plays a role in the 
description of the transport through magnetic molecules 
[ 12 ,  13 ], which is particularly interesting from the point of 

                     Abstract     MCSCF calculations are performed in order to 
determine the exchange coupling between the 2 p  electrons 
of the N atom and the LUMOs of the fullerene cage in the 
case of mono- and tri-anions of   N@C60   . The exchange 
couplings provided our calculations are in the range of 
1.5 meV which is large compared to the hyperfi ne interac-
tion. The strong coupling can explain the missing EPR sig-
nal of the nitrogen in paramagnetic anions. 

   Keywords     Fullerene    ·  Exchange coupling  

      1  Introduction 

 Since the discovery of the fi rst endohedral fullerene [ 1 ], 
the variety of endohedral structures has been extended tre-
mendously [ 2 ]. Many metal atoms can be encapsulated by 
using discharge techniques or ion implantation. In all cases, 
the metal atom interacts strongly with the fullerene and acts 
as an electron donor occupying an ’off-centered’ position 
inside the cage. In contrast, the nitrogen in   N@C60    is situ-
ated at the center of the molecule and retains its S = 3/2 
spin quartet atomic state [ 3 ,  4 ]. This amazing property of 
the encapsulated N atom triggered several research on its 
possible application in quantum computing and spin labe-
ling. Several publications [ 5 – 8 ] studied the promise and 
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view of spintronics. Recent developments in nanotechnol-
ogy permit the investigation of tunneling spectra of individ-
ual magnetic endofullerene molecules [ 14 ]. 

    2   Computational details 

 The calculations have been performed using the Gamess 
quantum chemical program package [ 15 ]. The proper 
description of the open-shell   N@C−1

60     and   N@C−3
60     anions 

requires multi-determinant wave functions. The restricted 
open-shell (ROHF) calculations in the Gamess package are 
accessible via the generalized valence bond (GVB) or the 
multi-confi gurational self-consistent fi eld (MCSCF) meth-
ods using an appropriate active space. The energy of the 
anions of   N@C60    with different multiplicity has been deter-
mined by means of CAS SCF calculations where the active 
space is confi ned to the 2 p  orbitals of the nitrogen atom and 
the threefold degenerate LUMOs of the fullerene molecule. 
In order to improve the convergence of the MCSCF orbit-
als, the excitations from the orbitals of the nitrogen to the 
LUMOs of the cage were excluded from the active space 
applying the occupation restricted multiple active space 
[ 16 ] technique, and vice versa. However, expanding the 
active space with charge transfer excitations changed the 
energy of the different states with a negligible amount. The 
MCSCF treatment of the open-shell systems using such a 
small active space is practically equivalent to the ROHF 
level of calculations. The calculation has been performed 
using split valence 631g basis on the carbon atoms. For 
the better description of the week interaction between the 
encapsulated atom and the fullerene molecule [ 17 ], the 
basis on the N atom is extended by additional diffuse  p  
orbitals and two d polarization functions (631+g(dd)). The 
proper description of the electronic structure of negatively 
charged species requires application of diffuse basis func-
tions. However, in the present case, the excess charge is 
distributed uniformly among the 60 carbon atoms, and the 
lack of diffuse basis on the carbon atoms does not affect 
dramatically our results. In order to check the sensitivity 
of the exchange coupling to the applied basis, the calcula-
tions have also been performed with the Dunning’s double 
zeta [ 18 ] and the split valence 631+g basis sets on the car-
bon atoms. Although the   N@C−1

60     anion undergoes a Jahn-
Teller distortion [ 19 ] in the present study, the I  h    point group 
symmetry is kept during the optimization of the geometry 
by averaging the three degenerate states corresponding to 
  S = 2   . The same molecular structure has been used to fi nd 
the energy of the   S = 1    states. For the triple anion   N@C−3

60 ,    
the geometry has been optimized at ROHF level in the high 
spin   S = 3    state and it is retained during the calculations of 
the energy of the systems with different   S2    eigenstates. 

    3   Results and discussions 

 It has been shown experimentally that in the highly reduced 
states of the   N@C60    the excess electrons occupy the 
LUMOs of the fullerene and the N atom inside the cage 
remains in spin quartet state [ 20 ,  21 ]. In an EPR experi-
ment, the   N@C60    was stepwise reduced with lithium. 
Among the spectra of the anions the well-known three-line 
signal characteristic for the nitrogen nuclear spin   I = 1    
appeared only for the hexa-anion, indicating that the excess 
charges occupy the threefold degenerate   t1u    orbitals of the 
fullerene cage [ 10 ]. In order to check the consistency of our 
calculations to the experimental fi ndings, we performed a 
set of ROHF calculations on the mono- and tri-anions pop-
ulating at fi rst the 2 p  orbitals of the nitrogen and then popu-
lating the LUMOs of the   C60   . The results are summarized 
in Table  1 . The valence electrons of the nitrogen referred 
as  N 2 p  in Table  1  occupy the   7t1u    orbitals of the endohe-
dral complex between the   6hu    HOMO and   8t1u    LUMO of 
the   C60    in agreement with the result of ref [ 23 ]. Rather dif-
ferent value for the one-electron energy of the  N 2 p  orbit-
als is reported by Greer [ 24 ]. This discrepancy is originated 
from the different treatment of the open-shell problem as 
it is discussed in Ref. [ 25 ]. In the case of the mono-anion, 
the energy of the two triplet states were compared, while 
in the case of the triply ionized molecule the energy of the 
singlet state with fully occupied valence orbitals of N was 
compared to the high spin state of the   N@C−3

60    . For both 
ions, the system with intact N atom was energetically more 
favorable in agreement with the EPR measurements [ 20 , 
 21 ].  

         
 The interaction between the electrons of the nitro-

gen atom and the valence electrons on the   C60    anion is 
described by a Heisenberg-like effective Hamiltonian:
     

where  J  is the coupling constant,   SN    and   Sc60    are the spin 
of the nitrogen atom and the   C60    anion, respectively. The 
interaction Hamiltonian in Eq.  1  can describe only low-
energy excitations of the system; however, they are relevant 

(1)H int = JSNSc60

 Table 1       Energies of   N@C−1
60     and   N@C−3

60     with excess electron(s) 
occupying the 2 p  orbitals of the N atom ( a ) and the LUMOs of the 
  C60    molecule ( b )  

    Confi guration      Etotal   (Hartree)      �    E (eV)    

    N@C−1
60          N2p4C608t0

1u      S = 1         −   2325.30365      ( a )  

    N2p3C608t1
1u      S = 1         −   2325.37155      −   1.84    ( b )  

    N@C−3
60          N2p6C608t0

1u      S = 0         −   2324.74514      ( a )  

    N2p3C608t3
1u      S = 3         −   2325.10707      −   9.84    ( b )  
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in the explanation of EPR measurements. The square of the 
total spin operator   S2 = (SN + Sc60)

2    commutes with the 
Hamiltonian of the full system   H = HN + HC60 + Hint,    and 
consequently, its eigenvalue is a good quantum number. 
Expressing the interaction in terms of the spin of the sub-
systems and the spin of the whole molecule:
     

the energy can be simply given as:
     

where   E0    denotes the energy of the separated systems and 
the subscript  S  indicates the explicit dependence of the 
energy on the multiplicity. 

 In the case of   N@C−1
60       SN = 3/2    and   SC60 = 1/2    span-

ning an eight-dimensional direct product space. The total 
spin can have the values of   S = 1    or   S = 2    with the corre-
sponding energies
     

Comparing the energy of the triplet and quintet states, one 
can easily extract the exchange coupling as:
      

 The results of the MCSCF calculations using 631g and 
DH basis are summarized in Table  2 . Although the appli-
cation of the double-zeta basis resulted in considerably 
deeper total energy, the deviation of the exchange cou-
plings is small.  

 In the case of the triply ionized   N@C60,    the valence 
electrons form a   SC60 = 3/2    state on the LUMOs of the 
fullerene molecule according to the Hund’s rule. From the 
two quartet states,   SN   ,   SC60   , four eigenstate of the   S2    opera-
tor can be constructed with the spin of   S = 0, 1, 2, 3   , respec-
tively. The corresponding energies as a function of  S  must 
be on a parabola according to Eq.  3 . The results provided 
by the MCSCF calculations using three different basis sets 
are shown in Fig.  1 . The energies can be fi tted perfectly 
by the parabola given by Eq.  3 . The exchange couplings 
obtained by using the split valence basis with and without 
diffuse  p  orbitals are practically the same. Although the 
magnitude of the exchange coupling corresponding to the 
double-zeta basis is somewhat smaller than that provided 
by the split valence basis, the agreement between them is 
satisfactory. 

 Ferromagnetic exchange couplings between the 2 p  
orbitals of the N atom and the valence electrons of the 
fullerene molecule have been found in both anions. The 
exchange coupling of approximately 1.5 meV provided 

(2)Hint =
1

2
J
(

S2
− S2

N − S2
c60

)

(3)ES = E0 +
1

2
JS(S + 1),

(4)ES=1 = E0 + J , ES=2 = E0 + 3J .

(5)J =
1

2
(ES=2 − ES=1)

by our calculations for both systems is within the range of 
those found in organic ferromagnets [ 22 ]. This relatively 
strong coupling between the valence electrons of the nitro-
gen and the valence electrons of the fullerene cage could be 
responsible for the disappearance of the nitrogen lines in 
the spectrum of   N@C60    anions with partially fi lled LUMOs 
[ 20 ,  21 ]. 

    4   Conclusions 

 ROHF and MCSF calculations have been performed on sin-
gly and triply ionized anions of   N@C60    in order to deter-
mine the effective exchange coupling between the valence 
electrons of the encapsulated N atom and the fullerene 
cage. In agreement with experiments, we found that the 
excess electrons occupy the LUMOs of the fullerene mol-
ecule and the entrapped atom keeps its atomic character. 
The interaction between the valence electrons of the N 
atom and the LUMOs of the   C60    can be well described by 
a Heisenberg-like Hamiltonian. The size of the exchange 
couplings obtained by our calculations is much larger than 
the hyperfi ne interaction and can explain the results of EPR 
measurements on radical anions of   N@C60   . 
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 Fig. 1       Energies of   N@C−3
60     corresponding to different multiplicity 

and the parabola fi tted to the data points. The energy   E0    independent 
of spin is subtracted  

 Table 2       Energy of the   N@C−1
60     resulted by MCSCF calculations 

using split valence (631g) and double-zeta (DH) basis on the carbon 
atoms and the exchange coupling extracted from the energies  

  Basis      ES=1    (Hartree)      ES=2    (Hartree)    J (meV)  

  631g      −   2325.371558      −   2325.371673      −   1.56  

  DH      −   2325.515025      −   2325.515134      −   1.49  
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functions. The choice of these functions is dictated by com-
putational expedience and usually does not refl ect singular-
ities present in the potential energy. Thus, at the one-elec-
tron level, the commonly employed Gaussian-type basis 
functions do not possess cusps at nuclei, and at the many-
electron level, the Slater determinants do not reproduce the 
electron–electron coalescence cusps. 

 The failure to properly reproduce the particle–particle 
coalescence asymptotics bears upon the rates of conver-
gence of the computed energies and other observables 
to their complete-basis-set (CBS) limits [ 1 ]. Whereas 
in practice this convergence is suffi ciently rapid for the 
solutions of the Hartree–Fock equations [ 2 ,  3 ], obtaining 
accurate approximations to correlated electronic wave-
functions is much more diffi cult [ 4 ,  5 ]. In order to allevi-
ate this problem, two distinct strategies have been devel-
oped, namely inclusion of a correlation factor in the trial 
function [ 6 – 8 ] and extrapolation to the CBS limit [ 9 ,  10 ]. 
Successful implementations of the latter approach hinge 
upon understanding how the approximate wavefunction 
approaches its exact counterpart as the size of the basis 
set increases. 

 In a seminal paper [ 4 ], Hill carefully analyzed this 
asymptotic behavior for singlet ground states of two-elec-
tron systems. Results of that investigation, subsequently 
rederived [ 11 ] and generalized to excited states [ 5 ] and 
explicitly correlated basis functions [ 12 ], have opened an 
avenue to a plethora of extrapolation formulae that furnish 
approximate CBS limits for the total energy in terms of the 
energies computed with sequences of basis sets truncated at 
particular values of angular momenta [ 9 ,  10 ]. 

 Among Hill’s results, the large- l  asymptotics [ 4 ]
     

(1)lim
l→∞

(
l +

1

2

)6

νl =
5 π

4

∫
|	(�r, �r)|2 r5 d�r,

                     Abstract     An exact formula for the collective occupancy 
of natural orbitals with an angular momentum  l  is derived 
for the ground state of the two-electron harmonium atom.  
For confi nement strengths   ω    that correspond to polynomial 
correlation factors as well as at the weak (  ω →∞   ) and 
strong (  ω → 0   ) correlations limits, it reduces to closed-
form expressions.  At the former limit, a similar result 
obtains for the partial-wave contributions to the ground-
state energy. Slow convergence of the collective occupan-
cies to their leading large- l  asymptotics provided by Hill’s 
formula is uncovered. As the rate of convergence decreases 
strongly with   ω   , a complete breakdown of Hill’s formula 
ensues upon the confi nement strength becoming infi ni-
tesimally small. The relevance of these fi ndings to the per-
formance of the extrapolation schemes for the estimation 
of the complete-basis-set limits of quantum-mechanical 
observables is discussed. 

   Keywords     Partial-wave decomposition    ·  Two-electron 
harmonium atom    ·  Electron correlation  
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which relates the rate of decay of the collective occu-
pancy (per spin)   νl    of the natural orbitals (NOs) with 
the angular momentum  l  to the spatial part   	( �r1, �r2)    of 
the underlying electronic wavefunction, is of particular 
interest. Unfortunately, rigorous analysis of deviations 
of the collective occupancies from their asymptotic esti-
mates given by Eq. ( 1 ), which would certainly aid in the 
development in more accurate extrapolation formulae, 
has not been carried out thus far. As demonstrated in the 
present paper, such an analysis, which is quite diffi cult 
(if not outright impossible) for fully Coulombic systems 
(i.e., the helium-like species) due to the unavailability of 
an explicit expression for   νl   , becomes facile upon replac-
ing the external Coulombic potential with the harmonic 
one. 

    2   Theory 

 The two-electron harmonium atom, described by the non-
relativistic Hamiltonian [ 13 ,  14 ]
     

is an archetype of quasi-solvable systems of relevance to 
electronic structure theory. As such, it has been repeatedly 
employed in calibration and benchmarking of approximate 
electron correlation methods, especially in the context of 
the density functional theory [ 15 – 20 ]. Its three- and four-
electron counterparts have also been extensively studied 
[ 21 – 25 ]. 

 The spatial part of the   1S+    ground-state wavefunction 
  	(ω; �r1, �r2)    of the two-electron harmonium atom is given 
by the expression [ 13 ,  14 ]

(2)Ĥ = −
1

2
(∇̂2

1 + ∇̂
2
2 )+

1

2
ω2 (r2

1 + r2
2)+

1

r12
,

     

It is worth noting that, since the ratio   C1(ω)/C0(ω)    is fi xed 
at   12    by the electron–electron coalescence cusp condition, 
setting   �r1 = �r2 = 0    in Eq. ( 3 ) yields   C0(ω) = 	(ω; �0, �0)    
and   C1(ω) = 1

2 	(ω; �0, �0)   . For certain values of   ω ∈ {ωK }   , 
the series ( 4 ) terminates at the  K th power of  r  (  K ≥ 1   ). The 
fi rst four elements of the set   {ωK }    are   ω1 =

1
2   ,   ω2 =

1
10   , 

  ω3 =
5−

√
17

24    , and   ω4 =
35−3

√
57

712     [ 13 ,  14 ]. 
 Because to its spherical symmetry,   	(ω; �r1, �r2)    can be 

partitioned into contributions   	l(ω; r1, r2)    due to individual 
angular momenta  l ,
     

where   Pl(t)    is the  l th Legendre polynomial and   θ12    
is the angle between the vectors   �r1    and   �r2   . The norm 
  (2l + 1)−1 〈	l(ω; r1, r2) |	l(ω; r1, r2)〉    equals   νl(ω)    that 
according to Eq. ( 1 ) has the large- l  asymptotics of
     

Computations of the partial-wave contributions commence 
with application of the identities [ 26 ]
     

and

(4)g(ω; r) =
∞∑

j=0

Cj(ω) rj.

(5)	(ω; �r1, �r2) =

∞∑
l=0

	l(ω; r1, r2) Pl(cos θ12),

(6)

lim
l→∞

(
l +

1

2

)6
νl(ω) =

5 π

4
|g(ω; 0)|2

∫
exp(−2 ω r2) r5 d�r

=
15 π2

16
ω−4

|	(ω; �0, �0)|2.

(7)

|�r1 − �r2|
2 j
= (r2

1 + r2
2 − 2 r1 r2 cos θ12)j

=

j∑
l=0

j−l∑
k=0

Ajlk (r1 r2)l+2k (r2
1 + r2

2)j−l−2k Pl(cos θ12)

     

(8)

|�r1 − �r2|
2 j−1

=(r2
1 + r2

2 − 2 r1 r2 cos θ12)
(j−1/2)

=

∞∑
l=0

min(j,l)∑
p=0

j∑
q=p

j−q∑
k=0

Bjlpqk rl+2k−2p+2q
< r−l+2k+2p−1

> (r2
1 + r2

2)j−q−2k Pl(cos θ12),

     

where the correlation factor   g(ω; r)    (inclusive of the nor-
malization constant) has the power series representation

(3)	(ω; �r1, �r2) = exp
[
−

ω

2
(r2

1 + r2
2)

]
g(ω; |�r1 − �r2|),

where   r< = min(r1, r2)   ,   r> = max(r1, r2)   ,
     

and

(9)Ajlk = (−1)l (2l + 1)
2l+k j!

(j − l − 2k)! (2l + 2k + 1)!! k!
,

     

(10)Bjlpqk = (−1)q (2l + 1)
2k+q (2q + 1)

2l − 2p + 2q + 1

j!

k! (j − 2k − q)! (2k + 2q + 1)!!

(
2p

p

)(
2l − 2p

l − p

)(
2q − 2p

q − p

)(
2l − 2p + 2q

l − p + q

)−1

.
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Combining Eqs. ( 3 ), ( 4 ), and ( 5 ) with Eqs. ( 7 )–( 10 ) 
produces
     

where the contributions due to the terms with even and odd 
powers of  r  in the expansion ( 4 ) read
     

and
     

respectively. 

(11)	l(ω; r1, r2) = 	+
l (ω; r1, r2)+	−

l (ω; r1, r2),

(12)

	+
l (ω; r1, r2) = exp

[
−

ω

2
(r2

1 + r2
2)

] ∞∑
j=l

C2j(ω)

×

⎡⎣ j−l∑
k=0

Ajlk (r1 r2)
l+2k (r2

1 + r2
2)j−l−2k

⎤⎦

(13)

	−
l (ω; r1, r2) = exp
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−

ω

2
(r2

1 + r2
2)

] ∞∑
j=1

C2j−1(ω)

×

⎡⎣min(j,l)∑
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j∑
q=p

j−q∑
k=0

Bjlpqk rl+2k−2p+2q
<

× r−l+2k+2p−1
> (r2

1 + r2
2)j−q−2k

⎤⎦,

 When employed in conjunction with the identity
     

where   �(t)    and   2F1

(
a1, a2

b1

∣∣∣∣t)    are the pertinent gamma 

and hypergeometric functions, respectively, Eqs. ( 12 ) and 
( 13 ) yield

     

where

(14)
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2)β exp
[
−ω (r2

1 + r2
2)

]
r2

1 r2
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(15)
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and
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Although it is unlikely that in general the sums that enter 
Eqs. ( 16 )–( 18 ) are reducible to simple analytical expres-
sions, they permit rapid computations of the collective 
occupancies for arbitrary angular momenta. 

   2.1   The case of a polynomial correlation factor 

 When   ω = ωK   , the wavefunction ( 3 ) can be written in a 
closed form as the correlation factor   g(ω; r)    is a polyno-
mial of degree  K  in the interelectron distance  r . Accordingly, 
the even/even and odd/even terms in the rhs of Eq. ( 15 ) 
contribute only to the collective occupancies of NOs with 
  l ≤ 2

[
K−1

2

]
   . In contrast, the odd/odd terms do not vanish for 

any value of the angular momentum, giving rise to the large- l  
asymptotics of   νl(ω)   . For individual   (j, j′)    combinations, the 
summations in Eq. ( 18 ) can be carried out explicitly, produc-
ing expressions involving the digamma function   γ (t)   , e.g.,

by the previously published expressions valid for   K = 1    
[ 27 ,  28 ] and   K = 2    [ 28 ]. 

    2.2   The weak-correlation limit 

 At the weak-correlation limit of   ω →∞   , closed-form 
expressions for the collective occupancies are readily obtain-
able. The wavefunctions   {�nlm(ω; �r)}    of a three-dimensional 
harmonic oscillator with the circular frequency   ω   ,
     

provide a suitable basis set for such calculations thanks to 
the simple form of the respective two-electron integral

(24)

�nlm(ω; �r) = 2

(
ω3

π

)1/4 [
(2n)!!

(2n + 2l + 1)!!

]1/2

× Ll+1/2
n

(
ω r2

)(
2 ω r2

)l/2
exp

(
−

ω

2
r2
)

Ym
l (θ , ϕ) ,

     

     

     

(19)

D−−
l11 = 2 π2 (2l + 1)

(2l − 3)!!

(2l + 3)!!

(
4 (−16 l5

− 48 l4
− 32 l3

− 4 l2
− 23 l + 36)

(2l − 5)!!

(2l + 3)!!

+ (−4 l2
− 4 l + 5)

[
γ

(
2l − 3

4

)
− γ

(
2l − 1

4

)])
,

(20)

D−−
l12 = 6 π2 (2l + 1)

(2l − 3)!!

(2l + 3)!!

(
4
(

64 l7
+ 256 l6

+ 80 l5
− 432 l4

+ 380 l3
+ 1424 l2

+ 667 l − 1485
) (2l − 7)!!

(2l + 5)!!

+

(
4 l2

+ 4 l − 7
)[

γ

(
2l − 5

4

)
− γ

(
2l − 3

4

)])
,

(21)

D−−
l22 = 18 π2 (2l + 1)

(2l − 5)!!

(2l + 5)!!

(
4 (−512 l10

− 1280 l9
+ 5888 l8

+ 11136 l7
− 35712 l6

− 49344 l5

+ 76112 l4
+ 50312 l3

− 54758 l2
+ 183873 l − 225540)

(2l − 9)!!

(2l + 5)!!
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− 32 l3
+ 88 l2

+ 104 l − 189)

×

[
γ

(
2l − 7

4

)
− γ

(
2l − 5

4

)])
,

etc. These expressions have the large- l  asymptotics of
     

where   D−−
11 = 15

4 π2   ,   D−−
12 = − 315

4 π2   ,   D−−
22 = 8505

4 π2   , 
etc. Consequently, the leading large- l  asymptotics of   νl(ω)    
reads [compare Eqs. ( 15 ) and ( 22 )]
     

in agreement with the corollary ( 6 ) of Hill’s formula. Equa-
tion ( 19 ) reproduces the collective occupancies produced 

(22)lim
l→∞

(
l +

1

2

)2 (j+j′+1)

D−−
ljj′ = D

−−
jj′ ,

(23)

lim
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(
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1

2

)6

νl(ω) =
15 π2

4
ω−4

[C1(ω)]2

=
15 π2

16
ω−4

|	(ω; �0, �0)|2,

     

which facilitates explicit evaluation of the sums that enter the 
expressions
     

and
     

(25)

Vlnn′ (ω) =

〈
�nlm(ω; �r1) �000(ω; �r2) |

1

r12
|�000(ω; �r1) �n′lm(ω; �r2)

〉
=

(
8 ω

π

)1/2

2−(2n+2n′+l) (2n + 2n′ + 2l − 1)!

(n + n′ + l − 1)!

×

[
(n + l)! (n′ + l)!

n! (2n + 2l + 1)! n′! (2n′ + 2l + 1)!

]1/2

,

(26)
ν̃l(ω) = (2l + 1)
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n,n′=0

[
Vlnn′

2 ω (n + n′ + l)

]2

(27)E(2)
l = −(2l + 1)

∞∑
n,n′=0

V2
lnn′

2 ω (n + n′ + l)
,
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where   E(2)
l     is the incremental contribution to the second-

order energy   E(2)    [and also to its correlation component 
  E(2)

corr    for   l �= 0   ] arising from   	l(ω; r1, r2)   . Application of 
well-known algebraic techniques [ 29 ] to these expressions, 
which follow for   l �= 0    from straightforward arguments 
based upon perturbation theory [ 30 ], produces
     

and
     

In Eqs. ( 24 ), ( 28 ), and ( 29 ),   Ll+1/2
n (t)   ,   Ym

l (θ , ϕ)   , 

and   3F2

(
a1, a2, a3

b1, b2

∣∣∣∣t)    are the pertinent generalized 

Laguerre polynomial, spherical harmonic, and generalized 
hypergeometric function, respectively. Equation ( 29 ) 
yields the leading asymptotics   {ν̃l(ω)}    of the collective 

(28)E(2)
l = −

4−l

π (2l + 1) l
3F2

(
l, l + 1

2 , l + 1
2

l + 3
2 , 2l + 2

∣∣∣∣∣1
)

(29)ν̃l(ω) =

[
4−l

2 π l2 3F2

(
l, l, l + 1

2
l + 1, 2l + 2

∣∣∣∣1
)
+ E(2)

l

]
ω−1.

occupancies at the limit of   ω →∞    that, in excel-
lent agreement with the previously published 
results of numerical calculations [ 14 ], equal 

  127−48π+36 ln 2
24π

ω−1 ≈ 1.534 321 462 · 10−2 ω−1    for   l = 1    

and   −2053+720π−300 ln 2
360π

ω−1 ≈ 8.864 544 969 · 10−4 ω−1    
for   l = 2   . 

    2.3   The strong-correlation limit 

 At the strong-correlation limit of   ω → 0   , the wavefunction 
( 3 ) is given by its asymptotic expression [ 13 ,  14 ]
     

where   r0 = ( 2
ω2 )1/3   . The corresponding leading asymptot-

ics   {ν̃l(ω)}    of the collective occupancies is given by

(30)

	(ω; �r1, �r2) ≈ 	̃(ω; �r1, �r2)

=
31/8

25/6 π3/2 ω5/3 exp
[
−

ω

4
(�r1 + �r2)

2
]

× exp

[
−

√
3

4
ω (|�r1 − �r2| − r0)

2

]
,

 Table 1       The collective occupancies of NOs at the four largest values of   ω    that correspond to polynomial correlation factors  

   l       νl(ωK )     

   K  = 1     K  = 2     K  = 3     K  = 4  

  0    9.755557 × 10 −1     9.146744 × 10 −1     8.392861 × 10 −1     7.637280 × 10 −1   

  1    2.375865 × 10 −2     8.478905 × 10 −2     1.606437 × 10 −1     2.344602 × 10 −1   

  2    5.910989 × 10 −4     4.626236 × 10 −4     5.577958 × 10 −5     1.809789 × 10 −3   

  3    7.141400 × 10 −5     5.589217 × 10 −5     9.702106 × 10 −6     1.412707 × 10 −6   

  4    1.539745 × 10 −5     1.205081 × 10 −5     2.993862 × 10 −6     2.857688 × 10 −7   

  5    4.574478 × 10 −6     3.580215 × 10 −6     1.016854 × 10 −6     1.383782 × 10 −7   

  6    1.671905 × 10 −6     1.308516 × 10 −6     3.973200 × 10 −7     6.519386 × 10 −8   

  7    7.070209 × 10 −7     5.533500 × 10 −7     1.746623 × 10 −7     3.183796 × 10 −8   

  8    3.332811 × 10 −7     2.608425 × 10 −7     8.439335 × 10 −8     1.641902 × 10 −8   

  9    1.708878 × 10 −7     1.337453 × 10 −7     4.400492 × 10 −8     8.940612 × 10 −9   

  10    9.370289 × 10 −8     7.333657 × 10 −8     2.441966 × 10 −8     5.114637 × 10 −9   

  20    1.690606 × 10 −9     1.323153 × 10 −9     4.578093 × 10 −10     1.054168 × 10 −10   

  50    7.564718 × 10 −12     5.920527 × 10 −12     2.071120 × 10 −12     4.896421 × 10 −13   

  100    1.217710 × 10 −13     9.530410 × 10 −14     3.339285 × 10 −14     7.924784 × 10 −15   

     

(31)

ν̃l(ω) =
16 π2

2l + 1

31/4

25/3 π3 ω10/3

∞∫
0

∞∫
0

⎛⎝2l + 1

2

π∫
0

exp
[
−

ω

4
(r2

1 + r2
2 + 2 r1 r2 cos θ12)

]

× exp

[
−

√
3

4
ω

(√
r2

1 + r2
2 − 2 r1 r2 cos θ12 − r0

)2
]

Pl(cos θ12) sin θ12 dθ12)
2 r2

1 r2
2 dr1 dr2.
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The integrals that enter Eq. ( 31 ) can be evaluated (in the 
asymptotic sense) with Laplace’s method, yielding [ 22 ]
     

These collective occupancies properly sum to the number 
of electrons,
     

but obviously do not conform to Hill’s asymptotic formula
        

     3   Discussion and conclusions 

 The collective occupancies of natural orbitals pertaining to 
ground states of two-electron harmonium atoms with the 
four largest confi nement strengths that give rise to polyno-
mial correlation factors are listed in Table  1 . As expected, 
the values of   ν0(ωK )    gradually decrease with  K  as weaken-
ing of the confi nement (note that   ∀K ωK+1 < ωK   ) gives rise 
to stronger electron correlation. Interestingly, this depopu-
lation of the  s -type orbitals does not translate into uni-
form increases in the collective occupancies of NOs with 
nonzero angular momenta  l . The key to understanding of 
this phenomenon lies in the behavior of the even/even, odd/
even, and odd/odd terms in Eq. ( 15 ), namely the vanishing 

(32)ν̃l(ω) = 27/3 (2l + 1) ω1/3 exp
[
−(2 ω)1/3 (2l + 1)2

]
.

(33)lim
ω→0

∞∑
l=0

ν̃l(ω) = lim
ω→0

∞∫
0

ν̃l(ω) dl = 1

(34)

lim
l→∞

(
l +

1

2

)6

ν̃l(ω) =
5 35/4

217/3 π
ω−2/3 exp

(
−

31/2

21/3 ω1/3

)
.

of the fi rst two types of contributions for   l > 2
[

K−1
2

]
   . Thus, 

at least for   ω ∈ {ωK }   , decreasing   ω    results in predominant 
enhancement of the collective occupancies of NOs with 
low values of  l . The range of the angular momenta at which 
this mechanism is operative steadily increases with the 
extent of electron correlation. 

 In light of this observation, one anticipates large devia-
tions of the collective occupancies from their asymptotic 
counterparts given by Hill’s formula. Indeed, inspection 
of Table  2 , in which the ratios of the computed data from 
Table  1  to those obtained from Eq. ( 23 ) are compiled, 
reveals dramatic failures of the asymptotic predictions for 
small angular momenta, attainment of the asymptotic con-
vergence requiring larger and larger values of  l  as the elec-
trons become more correlated. Consequently, the complete 
breakdown of Hill’s asymptotics at the strong-correlation 
limit of   ω → 0    comes as no surprise. 

 It is instructive to compare the exact expressions ( 28 ) 
and ( 29 ) with the asymptotic ones, i.e.,
     

and
     

The convergence of the exact collective occupancies and 
energy increments to their asymptotic counterparts is found 
to be rather slow, the differences at   l = 5    amounting to 9.3 
and 3.6 %, respectively, and decreasing to 3.0 and 1.1 % at 
  l = 10   . Thus, even at the weak-correlation limit of   ω →∞   , 
signifi cant deviations from the leading asymptotic terms of 
Hill’s formulae are observed. 

 The results of the present study have direct relevance 
to construction of approximate extrapolation schemes 
that aim at estimation of the CBS limits. Relying on the 
dominance of the leading large- l  asymptotic terms in the 
partial-wave expansions, these schemes are commonly 
employed in electronic structure calculations on systems 
with small to moderate electron correlation. As clearly 
demonstrated by the aforediscussed data, such extrapo-
lations are bound to fail for strongly correlated species, 
especially when the nondynamical correlation effects are 
signifi cant. 

 In addition to providing benchmarks for extrapolation 
schemes, Eqs. ( 28 ) and ( 29 ) give rise to some new iden-
tities of mathematical interest. First, combining Eq. ( 28 ) 
with the known asymptotic expansions for the total energy 
and its   l = 0    component at the limit of   ω →∞    [ 31 ] yields 
the identity

(35)lim
l→∞

(
l +

1

2

)6

ν̃l(ω) =
15

16 π
ω−1

(36)lim
l→∞

(
l +

1

2

)4

E(2)
l = −

3

4 π
.

 Table 2       Ratios of the collective occupancies of NOs to the respec-
tive asymptotic estimates [Eq. ( 23 )] at the four largest values of   ω    that 
correspond to polynomial correlation factors  

   l   
    16
15 π−2 ω4

K |	(ωK ; �0, �0)|−2
(

l + 1
2

)6
νl(ωK )     

    K = 1         K = 2         K = 3         K = 4     

  0    0.121488    0.145539    0.380930    1.458749  

  1    2.156895    9.835114    53.152806    326.466459  

  2    1.150164    1.150164    0.395576    54.011954  

  3    1.046288    1.046288    0.518071    0.317455  

  4    1.019022    1.019022    0.722141    0.290076  

  5    1.009200    1.009200    0.817617    0.468237  

  6    1.004966    1.004966    0.870434    0.601047  

  7    1.002904    1.002904    0.902988    0.692683  

  8    1.001807    1.001807    0.924564    0.756977  

  9    1.001180    1.001180    0.939632    0.803398  

  10    1.000803    1.000803    0.950584    0.837862  

  20    1.000058    1.000058    0.987013    0.956434  

  50    1.000002    1.000002    0.997857    0.992771  

  100    1.000000    1.000000    0.999459    0.998173  

154 Reprinted from the journal



Theor Chem Acc (2015) 134:113 

1 3

     

In turn, employing this result in conjunction with Eqs. ( 29 ) 
and the known expression for   ̃ν0(ω)    [ 31 ], one arrives at
     

To author’s best knowledge, the identities ( 37 ) and ( 38 ), 
which can also be derived from the integral representation 
of the generalized hypergeometric function, have not been 
previously published. 
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      1  Introduction 

 Water in all its forms constitutes the basis of our existence. 
The properties of water are unique and its beauty is lim-
itless. Aggregates of water molecules are among the most 
studied chemical systems, but despite the intensive con-
certed efforts, water is still far from being understood. The 
reason behind is the set of hydrogen (H–) bonds keeping 
water molecules together. Networks of hydrogen bonds 
exhibit complex behaviour manifested as cooperative con-
tributions to properties of water systems. The enormity 
of these contributions gives impetus to studies of the col-
lective structure of H-bond networks. Among the most 
recent successes in electronic-structure theory devoted to 
H-bonded systems, we mention density-functional studies 
on carefully quantifying H-bonds in molecular crystals [ 1 , 
 2 ] and in assessing the amount of covalency involved [ 3 ]. 

 Water systems allow for numerous H-bond confi gura-
tions even when the morphology of the system (adjacency 
matrix) is fi xed and the restrictions of the ice rules (basi-
cally requiring the absence of ionized individual water mol-
ecules in a water system) [ 4 ] are imposed. The number of 
these confi gurations grows exponentially with the size of 
the system. Simple gas hydrate shells are a perfect illustra-
tion: the   512    D-cage   (H2O)20    allows for 30,026 symmetry 
independent confi gurations, the numbers for the larger 
  51262    T-cage   (H2O)24    and the   51264    H-cage   (H2O)28    are 
3,043,836 and 61,753,344, respectively [ 5 ]. Clearly, not 
all of them are important, but information extracted from 
studies of the minimal energy confi guration (which is 
commonly the only subject of the investigation) is often 

                     Abstract     The diversity of the various forms of water 
stems from systems of hydrogen bonds. Cooperative 
behaviour of hydrogen-bond networks gives rise to unique 
properties of water systems. A number of approaches to 
understand and model the collective behaviour of hydrogen 
bonds and predict their properties on the basis of a small 
number of calculations have been put forward. Among 
them, the concept of graph invariants provides most gen-
eral descriptors for hydrogen-bond networks, which are 
routinely used to predict properties of water systems. In the 
present work, we examine the formalism of graph invari-
ants and propose its modifi cation which may be benefi -
cial for water structures with defects. To benchmark graph 
invariants, we carried out quantum-chemical calculations 
of more than   107    water clusters with different hydrogen-
bond confi gurations. The quality of the approximation is 
studied as a function of the type of graph invariant and its 
order. The results demonstrate that the method is applicable 
only to cage-like structures without signifi cant strains. 
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insuffi cient. Any reasonable prediction of properties of 
such systems would require a thorough analysis of H-bond 
confi gurations because a signifi cant part of them can be 
thermally populated. 

 Construction of a predictive model correlating the 
energy and other properties with the H-bond network struc-
ture is a long-standing problem. A number of approaches 
have been put forward, mostly for water clusters. A most 
straightforward approach is based on classifi cation of all 
H-bonds in a cluster according to their local environment 
with subsequent counting the numbers of bonds of differ-
ent types. The required classifi cation can rely upon notions 
of weak and strong H-bonds (which are often associated 
with cis and trans H-bonds)—now so easily quantifi ed by 
DFT [ 3 ]—or it can take into account the fi rst neighbours 
of H-bonds leading to two types of trans-bonds and three 
types of cis-bonds [ 6 ]. Similar ideas underline the so-called 
Strong–Weak-Effective-Bond model for polyhedral water 
clusters which is based on estimating the effective pair 
interactions between nearest neighbours [ 7 ]. An alternative 
model, especially suited to water cages, classifi es bonds 
according to the state of oxygen atoms (having a dangling 
O–H bond or a lone pair) [ 8 ], but it leads to the same fi ve 
types of H-bonds. Our own calculations of all H-bond iso-
mers of dodecahedral water cluster   (H2O)20    indicate that 
there exists a correlation between the cluster energy and 
the number of trans or cis H-bonds or the number of pairs 
of dangling O–H bonds in vicinal positions, but it is not 
strong enough to build a predictive model [ 9 ]. 

 A viable alternative to this approach is given by a gen-
eral set of entities called graph invariants [ 10 ]. Those are 
automatically generated descriptors of the H-bond structure 
taking into account the symmetry of the system. The energy 
and other properties can be approximated as linear com-
binations of graph invariants. This approach seems very 
promising because it employs only the adjacency matrix, 
does not rely on special physical insight, and encompasses 
a hierarchy of approximations. Incidentally, other com-
mon descriptors of H-bond networks (such as numbers of 
H-bonds of different types, see above) emerge as particular 

cases of graph invariants. Moreover, the concept is highly 
useful for generation or enumeration of symmetry-distinct 
H-bond networks reducing   N2    scaling of these procedures 
to   N log N   , where  N  is the total number of confi gurations. 

 The method has originally been developed for fi nite 
clusters, but its generalization to periodic systems [ 11 ] has 
been no less successful. Graph invariant descriptors pro-
vide a simple algorithm to extrapolate from a handful of 
expensive quantum-mechanical calculations to a larger set 
of H-bond confi gurations. Similarly, they can be used to 
extrapolate from calculations for smaller unit cells to sta-
tistical mechanical simulations employing larger unit cells. 
The method is routinely applied in studies of H-bond topol-
ogy and proton-ordering transitions for different phases of 
ice [ 12 – 16 ]. At the same time, its applicability is not thor-
oughly tested in different aspects. First, only second-order 
invariants are used in all numerical applications. Second, 
only water systems without signifi cant strains and any 
defects are studied. Third, all the applications correspond to 
a very small number of actually calculated H-bond isomers 
with the only exception provided by the 30,026 isomers of 
the dodecahedral water cluster   (H2O)20   , where the graph 
invariant approximation is compared with the exhaustive 
force fi eld OSS2 calculations [ 10 ]. 

 In the present paper, graph invariants are benchmarked 
against results of quantum-chemical calculations. Exhaus-
tive calculations of all H-bond networks for water clusters 
of 24 different morphologies provide reference values of 
the energy. A series of tests attempting to approximate the 
energy by a linear combination of graph invariant descrip-
tors reveals limits for applicability of the method. 

    2   Computational details 

          Benchmarking requires calculations for a number of water 
clusters, each providing a set of H-bond networks, large 
enough to be studied with graph invariants. To be repre-
sentative, the set of water clusters should include clus-
ters of different size, symmetry and strains. Most of the 

 Fig. 1       Structures of ice nano-
tubes formed by rings of  a  4;  b  
5;  c  6 and  d  7 water molecules  
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structures considered in the paper are fi nite fragments of 
experimentally known ice nanotubes (see Fig.  1 ), which 
can be viewed as stacks of  n -membered rings (or rolled 
square-net sheets) with  n  being from 4 to 7. The fragments 
are denoted as   INTm

n     where  m  is the number of  n -mem-
bered layers. We studied structures with suffi cient but 
not exceedingly large number of H-bond confi gurations, 
namely   INTm

4     with   m = 3 ÷ 8   ,   INTm
5     with   m = 2 ÷ 6   , 

  INTm
6     with   m = 2 ÷ 5   , and   INTm

7     with   m = 2 ÷ 4    [ 17 ]. The 
other clusters studied are shown in Fig.  2 . They are the 
  512    D-cage   (H2O)20    (1); the same cage but having a single 
defect due to one H-bond broken (2) or two defects due to 
a couple of H-bonds broken (3); the same cage with one 
water molecule replaced by hydrogen fl uoride HF (4); the 
isomer of the D-cage with the structure of edge-sharing 
pentagonal prisms (5); and the   51262    T-cage   (H2O)24    (6). 
The total number of confi gurations in the water clusters 
mentioned above is 10,366,824.        

 Quantum-chemical calculations on such a grand 
scale pose special requirements to the computational 
scheme. Clearly, the task is far beyond the scope of 
sophisticated ab initio methods of quantum chem-
istry. To solve the problem, we devised a specialized 
semiempirical method dubbed strictly local gemi-
nals (SLG) [ 18 – 21 ]. The method is based on geminals 
[ 22 ]—two-electron wave functions enabling construc-
tion of efficient methods for large molecular systems 
[ 23 ]. The water molecule is represented by an antisym-
metrized product of four geminals—two describing the 
chemical bonds O–H and two describing the electron 
lone pairs. Interaction between molecules represented 
by geminal wave functions can be accounted for per-
turbatively [ 24 ], but we employ a different scheme. The 

H-bonds are represented by three-orbital four-electron 
wave functions. The resulting wave function combines 
geminals with other strictly local electron groups [ 25 ]. 
An important characteristic of the method is that it is 
ultra-fast but still highly reliable with respect to energy 
calculations for many classes of molecules. A modified 
PM3 parameterization is specially devised to describe 
water systems with this method [ 21 ]. The resulting 
binding energies are similar to MP2 and DFT bench-
marks. The method is successfully applied to a number 
of water clusters [ 9 ,  17 ]. 

 The present analysis requires the energy for each 
of H-bond networks under consideration. The sim-
plest way to proceed is to build an idealized O frame 
for each water cluster morphology, fixed H atom posi-
tions being determined separately for each H-bond 
network. Energy calculations for such idealized struc-
tures may already give some impression of the useful-
ness of graph invariants. However, many water clusters 
are strained and the calculations without optimiza-
tion of atomic positions would lead to a distorted pic-
ture. Therefore, we optimized the spatial structures of 
clusters for each H-bond network. It is important that 
the optimization does not change the topology of the 
H-bond network because the latter is explicitly incor-
porated into the structure of the wave function used. It 
should be stressed that the difference between the opti-
mized and the idealized structures strongly depends on 
the H-bond pattern. In particular, the H-bond network 
structure determines the H–O–H angle in the idealized 
structure and thus determines the local distortion of the 
structure after optimization. 

 Fig. 2       Water clusters:  1  dodec-
ahedral cage;  2  dodecahedral 
cage with one H-bond broken; 
 3  dodecahedral cage with two 
H-bonds broken;  4  dodeca-
hedral cage with one water 
molecule replaced by HF;  5  
edge-sharing pentagonal prisms; 
 6  tetrakaidecahedral cage  
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    3   Results and discussion 

 Graph invariants are described in detail in Ref. [ 10 ], 
but it is instructive to recall their definition. H-bonds 
between water molecules are directional: the H atom 
is closer to one of O atoms participating in the bond. 
Therefore, any H-bond network can be represented as 
an oriented graph. Each water system (such as 24 struc-
tures mentioned above) defines the adjacency graph 
but not orientations of individual edges. In general, the 
graph can generate   2l    oriented graphs, where  l  is the 
number of edges, but only a small part of them satis-
fies the ice rules. In addition, the system may have a 
non-trivial symmetry and some of the oriented graphs 
become identical. It further reduces the number of the 
oriented graphs allowed. Thus, each water cluster (mor-
phology)  M  generates a set of   NM

conf    H-bond networks 
(oriented graphs)   

{
XM

k

}
   , where   k = 1 ÷ NM

conf   . The aim 
is to find descriptors distinguishing between networks 
  XM

k     for different  k  and allowing for predictions of physi-
cal properties. 

 First, one introduces a set of functions   bM
ij     with  i  and  j  

denoting vertices of the adjacency graph for morphology 
 M  (it is assumed that   i < j    to avoid duplication):   bM

ij = 1    if 
the edge between  i  and  j  is oriented towards  j ;   bM

ij = −1    if 
the same edge is oriented towards  i ;   bM

ij = 0    if  i  and  j  are 
not connected. The arguments of functions   bM

r     ( r  here is a 
complex index denoting a pair of vertices) are H-bond net-
works   XM

k    . Values of   bM
r

(
XM

k

)
   ,   [brbs]

(
XM

k

)
   ,   [brbsbt]

(
XM

k

)
   , 

etc. are general descriptors of H-bond networks determin-
ing the direction of H-bonds, their pair correlations, triple 
correlations etc. Nevertheless, direct application of such 
descriptors is not generally recommended because most of 
the known water systems have that or another symmetry: 
physical entities such as energy are invariant with respect 
to symmetry operations, and this fundamental property 
should be refl ected in the defi nition of H-bond topology 
descriptors. 

 The symmetry meant is not the spatial symmetry of 
an actual water cluster. Instead, symmetry operations 
are permutations of graph vertices preserving the adja-
cency matrix. The resulting symmetry group  G  often 
corresponds to the spatial symmetry group of the ideal 
framework of O atoms. Permutations of vertices induce 
transformations of bond functions   br   . Symmetry-invar-
iant descriptors for H-bond networks are generated by 
projecting on the totally symmetric representation of 
group  G . The fi rst-order invariants (up to normalization 
constant) are given as:
     

(1)IM
r =

nG∑
α=1

gα

(
bM

r

)
,

where   gα    are symmetry operations and the summation is 
over all   nG    elements of the symmetry group. In full anal-
ogy, the second-order invariants are defi ned as:
     

where the group elements act upon products of bond var-
iables. The generalization to higher orders is straightfor-
ward. Not all generated invariants are independent: some 
invariants are zero, while some other coincide. 

 To illustrate the defi nitions, we consider a model case of 
four-membered cyclic clusters with low symmetry group 
  C4   . The idealized O framework is formed by a square of 
atoms  A ,  B ,  C , and  D . H-bonds 1–4 are between  A  and  B ,  B  
and  C ,  C  and  D ,  D  and  A , respectively. The only fi rst-order 
invariant for such a system is simply the sum of all bond 
functions:
     

Three independent second-order invariants can be 
constructed:
     

If one considers the network of H-bonds directed from  A  to 
 B , from  B  to  C , from  C  to  D , and from  D  to  A , then all vari-
ables  b  are equal to 1 and all the above invariants are equal 
to 4. Another network of H-bonds directed from  A  to  B , 
from  C  to  B , from  C  to  D , and from  A  to  D  is characterized 
by   b1 = b3 = 1    and   b2 = b4 = −1    leading to the following 
values for the invariants:   IM

1 = 0   ,   IM
11 = IM

13 = 4   ,   IM
12 = −4   . 

 One can notice that the defi nition of graph invariants 
strongly depends on the defi nition of bond functions. We 
employ this degree of freedom and propose an alternative 
defi nition of graph invariants based on the occupation num-
bers. Instead of functions   bM

ij     with   i < j   , we introduce twice 
as many functions   dM

ij     defi ned for   i �= j   :   dM
ij = 1    if the edge 

between  i  and  j  is oriented towards  j  and   dM
ij = 0    other-

wise. That means, for example, that each existing H-bond 
is represented by two bond functions   (dM

ij and dM
ji )   , one of 

them produces 1, while the other 0. The obvious advan-
tage of this alternative scheme is that dangling O–H bonds 
can be naturally incorporated into the defi nition and used 
for generating the graph invariants. Graph invariants from 
functions  d  are formed using the same projection opera-
tion as before (Eqs.  1 ,  2 ). At the same time, the set of graph 
invariants for systems of H-bonds without defects remains 
unchanged: both schemes lead to the same linearly inde-
pendent graph invariants because for each existing H-bond 
  bM

ij = 2dM
ij − 1    and the other bond function   dM

ji = 1 − dM
ij     

(2)IM
rs =

nG∑
α=1

gα

(
bM

r bM
s

)
,

(3)IM
1 = b1 + b2 + b3 + b4.

(4)

IM
11 = b2

1 + b2
2 + b2

3 + b2
4;

IM
12 = b1b2 + b2b3 + b3b4 + b4b1;

IM
13 = 2(b1b3 + b2b4).
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becomes redundant. The schemes are different only when 
the system of H-bonds allows for defects like broken 
H-bonds.  

 Before we start our analysis of the quality of the energy 
approximation by graph invariants, it is reasonable to look 
at their total numbers for different systems. Table  1  shows 
these numbers for some ice nanotubes   INTm

n    . In particular, 
the dependence of the numbers of distinct graph invari-
ants on the order of the invariant and the indices  m  and  n  
is revealed. The values in the table can be found numeri-
cally by applying the graph invariant defi nition to a specifi c 
water cluster. Alternatively, one can determine these num-
bers analytically on the basis of symmetry considerations. 
Transformation of bond variables defi nes a (reducible) rep-
resentation  T  of the symmetry group  G  of the cluster. The 
number of the  k th order invariants is simply the number of 
the totally symmetric representations in the  k th symmet-
ric power of  T . Thus, only characters of  T  are necessary to 
determine numbers in Table  1 . 

 One can notice that the numbers of graph invariants 
grow very fast with their order. The number of fi fth-order 
invariants is comparable and sometimes even exceeds the 
total number of H-bond confi gurations making their use 
unjustifi ed. Even in the case of the highly symmetric   512    
D-cage, the total number of fi fth-order invariants is 2286, 
which is only one order of magnitude smaller than the total 
number of confi gurations. At the same time, such unfavour-
able ratio of the numbers of H-bond confi gurations and 
high-order graph invariants is caused by the exclusion of 
confi gurations with defects. Moreover, many of the graph 
invariants are linearly dependent when they are computed 
for the given set of H-bond networks.  

 We carried out calculation of standard second-order 
graph invariants for all the systems mentioned above. 
The calculations correspond to two cases: one takes into 
account only H-bonds, while the other is based on dangling 
O–H bonds. Table  2  presents the results of our calculations 
for all 24 water clusters. The fi rst column shows numbers 
of H-bond confi gurations   NM

conf    satisfying the ice rules. 
When a graph invariant   IM

α     is applied to the set of H-bond 
confi gurations   

{
XM

k

}
   , it produces a vector of dimension 

  NM
conf    comprising numbers   IM

α

(
XM

k

)
   . Some of these vectors 

are linearly dependent. The next two columns of Table  2  
present numbers of linearly independent second-order 
graph invariants (determined for both systems of bonds 
mentioned above) with respect to H-bond confi gurations 
satisfying the ice rules. 

 The calculated energies of H-bond networks also consti-
tute vectors   EM

k     of dimension   NM
conf   . The linear predictive 

model approximates the energies by linear combinations of 
graph invariant descriptors:
     

The coeffi cients   CM
α     are determined by the method of least 

squares for all 24 clusters. The quality of the approxima-
tion is characterized by   R2   , a coeffi cient of determination 
routinely used in statistics. The remaining two columns of 
Table  2  show   R2    as determined for the same two systems 
of graph invariants (H-bonds and O–H bonds). The qual-
ity of the approximation turns out to be strongly dependent 
on the type of the cluster. In particular, energies of clusters 
with a cage structure are well described by linear combina-
tions of graph invariant descriptors. The invariants defi ned 
for H-bonds provide slightly better results than those 
defi ned for O–H bonds, but both approximations are highly 
accurate. Quite expectedly, the system of O–H bonds is 
not suffi cient to describe a defect in a system of H-bonds. 
Therefore, energies of clusters with defects (2) and (3) are 
reasonably well described only with graph invariants for 
systems of H-bonds.        

(5)EM
k =

∑
α

CM
α IM

α

(
XM

k

)
.

 Table 1       Number of invariants of different orders for H-bond net-
works in ice nanotubes  

  System    1-st order    2-nd order    3-rd order    4-th order    5-th order  

    INT2
3       1    7    10    52    94  

    INT3
3       1    15    56    279    963  

    INT4
3       1    26    140    928    4374  

    INT5
3       2    40    303    2350    14,138  

    INT6
3       2    57    534    5004    36,204  

    INT7
3       3    77    886    9457    80,171  

    INT8
3       3    100    1336    16,384    158,692  

    INT9
3       4    126    1949    26,568    289,818  

    INT3
4       1    24    91    644    2606  

    INT4
4       1    42    236    2172    12,372  

    INT5
4       2    65    513    5540    40,828  

    INT6
4       2    93    916    11,848    106,300  

    INT7
4       3    126    1523    22,456    237,790  

    INT8
4       3    164    2312    38,984    474,744  

    INT3
5       1    24    144    1083    5,931  

    INT4
5       1    42    374    3797    28,641  

    INT5
5       2    65    806    9896    95,302  

    INT6
5       2    93    1441    21,455    249,987  

    INT7
5       3    126    2388    41,049    561,823  

    INT8
5       3    164    3628    71,753    1,126,283  

    INT3
6       1    33    202    1857    11,529  

    INT4
6       1    58    529    6540    56,735  

    INT5
6       2    90    1141    17,082    190,510  

    INT6
6       2    129    2048    37,081    503,133  

    INT7
6       3    175    3396    71,003    1,135,599  
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 The quality of the approximation deteriorates when sig-
nifi cant strains are present in the structure (like those in 
ice nanotubes). Figure  3  shows the correlation between the 
calculated energy and its graph invariant approximation 
for clusters (1) and (5). The former is not strained, while 
the latter has mild strains. In line with this observation, the 
quality of the approximation is better for stable   INTm

5     and 
  INTm

6     than for strained   INTm
4     and   INTm

7    . As for the indices 
 m , the value of   R2    depends on its parity:   R2    is larger for 
even  m  than for odd  m . Taking into account that the number 
of dangling O–H bonds does not depend on the size param-
eter  m  of   INTm

n    , it is not surprising that the quality of the 
energy approximation by graph invariants for O–H bonds 
is inadequate for large  m . All these conclusions are valid 
only for calculations with the optimized spatial structure. If 
we consider idealized structures of ice nanotubes, the value 
of   R2    becomes close to 1 because the energy of H-bond 
confi gurations becomes largely determined by the number 
of strained water molecules with both O–H bonds placed 
along the nanotube axis, and this parameter is expressible 
via second-order graph invariant descriptors. 

 There are different possibilities to improve the 
description based on increasing the number of graph 
invariants in play. One of them is to take a larger set 
of variables combining both H-bonds and dangling O–H 
bonds. This approach slightly increases the value of 
  R2   : for example, in the case of cluster (2) it increases 
from 0.97290 to 0.97716, while in the case of cluster 
(3) it changes from 0.93086 to 0.93906. In the case of 
ice nanotubes, the effect of adding dangling O–H bonds 
to the set of variables is very small. Another obvious 
option is to increase the order of the invariants and this, 
indeed, increases the quality of the approximation, but 

 Table 2       Description of H-bond networks in water clusters by sec-
ond-order invariants: number of H-bond confi gurations   NM

conf   ; num-
ber of linearly independent second-order invariants for dangling O–H 
bonds and H-bonds   (NM

inv   (O–H) and   NM
inv(H-bond))   ; the quality of 

the approximations ( R -squared)  

  System      NM
conf         NM

inv   (O–H)      NM
inv

   (H-bond)  
    R2   (O–H)      R2   (H-bond)  

    INT3
4       178    5    14    0.15332    0.47787  

    INT4
4       978    5    21    0.26268    0.71627  

    INT5
4       5588    5    29    0.04810    0.44210  

    INT6
4       33,073    5    39    0.07379    0.49441  

    INT7
4       198,706    5    50    0.06196    0.46588  

    INT8
4       1,210,106    5    63    0.06761    0.54263  

    INT2
5       102    5    9    0.98234    0.99138  

    INT3
5       860    5    14    0.19914    0.57754  

    INT4
5       7480    5    21    0.39873    0.83217  

    INT5
5       66,160    5    29    0.10688    0.52272  

    INT6
5       591,328    5    39    0.12638    0.56749  

    INT2
6       408    7    13    0.96178    0.98239  

    INT3
6       4962    7    20    0.19364    0.48253  

    INT4
6       64,835    7    30    0.46010    0.85003  

    INT5
6       865,243    7    41    0.11721    0.55329  

    INT2
7       1474    7    13    0.94966    0.96614  

    INT3
7       28,896    7    20    0.35136    0.38212  

    INT4
7       580,200    7    30    0.35224    0.66997  

  (1)    30,026    5    7    0.96378    0.96403  

  (2)    443,112    5    8    0.46732    0.97290  

  (3)    2,772,313    5    8    0.24939    0.93086  

  (4)    394,000    39    78    0.99290    0.99345  

  (5)    22,960    9    36    0.41787    0.63397  

  (6)    3,043,836    19    35    0.98046    0.98140  

 Fig. 3       Correlation between the calculated energy and its graph invariant approximation for clusters (1) and (5)  
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it is necessary to bear in mind that it comes with a sig-
nificant increase in the number of graph invariants. For 
example, in the case of   INT4

4    the number of independent 
invariants increases from 21 to 57 and   R2    changes from 
0.71627 to 0.74785 when the second-order graph invari-
ants for H-bonds are replaced by third-order ones. The 
increase in   R2    is smaller when invariants for dangling 
O–H bonds are considered (for example,   R2    changes 
from 0.26268 to 0.27331 when the second-order invari-
ants are replaced by fourth-order invariants for the same 
ice nanotube   INT4

4   ). Even a significant increase in the 
number of graph invariants doesn’t necessarily bring 
serious improvement of the approximation. For exam-
ple, in the case of graph invariants defined for dangling 
O–H bonds of water cage (1), the number of invariants 
increases from 5 to 58 when the order of invariants 
changes from 2 to 4, but the value of   R2    is improved 
only marginally (from 0.96378 to 0.96907). 

 Some systems allow for specifi c approaches. In the 
case of mixed cluster (4), it is possible to separately con-
sider the confi gurations with a dangling F–H bond and 
those with the H-bond   F–H · · ·O   . It turns out that the 
value of   R2    is smaller for the fi rst set (0.98550) than for 
the other (0.99435). Approaches employing graph invar-
iants based on bond functions  b  and  d  are different in the 
case of clusters with broken H-bonds. Our calculations 
show that the change of the defi nition of the graph invar-
iants does not bring signifi cant improvements in terms 
of the quality of the approximation: the values of   R2    for 
two schemes are relatively close (larger for that based on 
bond functions  d ) and are equal to 0.97290 and 0.97763 
for cluster (2) and 0.93086 and 0.94077 for cluster (3), 
respectively. 

 Finally, we provide a few thoughts about the general 
idea of graph invariants as given by totally symmetric 
projectors of the products of bond variables. Sometimes 
other representations of the symmetry group may be use-
ful. An example is provided by ice nanotubes. They are 
thought to possess ferroelectric order with a net polari-
zation when  n  is odd and to be “anti-ferroelectric” when 
 n  is even [ 26 ,  27 ]. This prediction is based on a simple 
model discarding most of the H-bond confi gurations. 
Alternatively, we can consider an idealized structure of 
ice nanotubes. In this case, the polarization parallel to 
the INT axis is proportional to the difference of the num-
bers of dangling O–H bonds on the INT ends, thereby 
confi rming the original predictions. This parameter 
should also play a signifi cant role for relaxed structures, 
but it corresponds to the representation   A′′1    for   INTm

n     with 
an odd  n  and to the representation   A1u    for   INTm

n     with an 
even  n . Therefore, analysis of properties like polariza-
tion may require specialized graph descriptors based on 
the symmetry of the system. 

    4   Conclusion 

 In summary, a very large database of the energies of 
H-bond networks in water clusters is constructed with 
the help of an ultra-fast semiempirical method based 
on strictly local electron groups. It includes water clus-
ters of different symmetry and morphology, clusters 
with ideal and defected structures, systems where one 
water molecule is replaced with hydrogen fl uoride. 
Two varieties of graph invariant descriptors are bench-
marked against quantum-chemical calculations, one of 
them being proposed in the present paper. Both types 
of descriptors lead to identical results when applied to 
ideal networks satisfying ice rules but differ for struc-
tures with defects. We established that the use of high-
order invariants is not justifi ed unless H-bond networks 
signifi cantly deviating from ice rules are taken into con-
sideration. Approximation of the water cluster energies 
by linear combinations of second-order graph invariants 
shows that this approach gives surprisingly good results 
for clusters without signifi cant strains (including those 
with defects) but fails when four-membered water rings 
are present in the structure. 
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strongly depend upon the laser parameters applied. 
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      1  Introduction 

 By separating the motion of the fast-moving electrons 
and the slow nuclei in a molecular system the Born–
Oppenheimer (BO) approximation [ 1 ] usually can treat 
the dynamical process in a molecule after absorbing a 
photon. In this picture the nuclei move over a potential 
energy surface (PES) obtained from the electronic (adi-
abatic) eigenstates and therefore electrons and nuclei do 
not easily exchange energy. Although several chemical 
and physical dynamical processes can be described on 
a single Born – Oppenheimer PES, yet, in many impor-
tant cases like radiationless relaxation of excited elec-
tronic states, dissociation, proton transfer or isomeri-
zation processes of polyatomic molecules etc. this 
approximation breaks down. The nuclear and electronic 
motion then couple and so-called conical intersection 
(CI) arises [ 2 – 11 ]. In this situation the energy exchange 
between the electrons and nuclei can become important. 
It is widely recognized today these conical intersections 
are very important in the nonadiabatic processes which 
are ubiquitous in photophysics and photochemistry. 

 For diatomic systems that have only one degree of free-
dom, it is not possible for two electronic states of the same 
symmetry to become degenerate and as a consequence of the 
well-known noncrossing rule an avoided crossing results. 
However, it stands only in fi eld-free space. It was pointed out 

                     Abstract     Nonadiabatic effects are ubiquitous in phys-
ics and chemistry. They are associated with conical inter-
sections (CIs) which are degeneracies between electronic 
states of polyatomic molecules. Recently, it has been rec-
ognized that so-called light-induced conical intersections 
(LICIs) can be formed both by standing or by running 
laser waves even in diatomics. Owing to the strong nona-
diabatic couplings, the appearance of such laser-induced 
conical intersections (LICIs) may signifi cantly change the 
dynamical properties of a molecular system. In the present 
paper we investigate the photodissociation dynamics of   D+

2     
ion initiating the nuclear dynamics from the superposition 
of all the vibrational states produced by ionizing   D2   . The 
kinetic energy release and the angular distribution of the 
photodissociation products are computed with and without 
LICI for the several different values of the laser parameters. 
We performed both one- and two-dimensional calculations, 
as well. In the fi rst scheme the molecules were rotationally 
frozen, whereas in the latter one, the molecular rotation is 
included as a full additional dynamic variable. The results 
obtained undoubtedly demonstrate that the impact of the 
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in previous works that conical intersections can be formed 
in a molecular system both by running or by standing laser 
waves even in diatomics [ 12 ,  13 ]. In this case the laser-light 
couples either the center of the mass motion with the internal 
rovibrational degrees of freedom (in case of standing laser 
fi eld) or the vibrational motion with the emerged rotational 
degree of freedom (in the case of running laser fi eld) and 
so-called light-induced conical intersection (LICI) arises. In 
contrast to fi eld-free polyatomic molecules where the CI is 
given by nature, the energetic position of the LICI is deter-
mined by the laser frequency and the strength of its nonadi-
abatic coupling is controlled by the laser intensity. 

 A few years ago, we have started a systematic study of 
the nonadiabatic effect induced by laser waves in molecu-
lar systems. It has been demonstrated that the light-induced 
conical intersections have very signifi cant impact on sev-
eral different dynamical properties (like molecular spec-
tra, molecular alignment or photodissociation probability 
etc….) of diatomic molecules [ 14 – 20 ]. Additionally, in a 
very recent paper [ 21 ] by studying carefully the dissocia-
tion process of the   D+

2     molecule we could provide the fi rst 
“direct observable and measurable signature” of the light-
induced conical intersections. It was also found that reso-
nant laser pulses of high carrier frequency may induce an 
analogue of conical intersections of the complex potential 
energy surfaces of the ground and fi eld-dressed resonant 
states [ 22 – 24 ]. This analogue of a conical intersection in 
the continuum states forms also in nature [ 25 ,  26 ]. In 2013 
Cederbaum and his colleague published the fi rst theoreti-
cal results on polyatomic system in the optical regime [ 27 ]. 
Besides these theoretical studies some important experi-
mental papers have also been published recently. The fi rst 
experimental observation of light-induced conical intersec-
tions in diatomic molecules is provided by Bucksbaum, and 
his co-workers [ 28 ]. In another works the experimental out-
comes of the laser-induced isomerization and photodissoci-
ation processes of polyatomic molecules were qualitatively 
interpreted using the concept of the LICIs [ 29 – 32 ]. 

 In the present article we focus on the photodissociation pro-
cess of the   D+

2     molecule. This system and this process have 
extensively been studied in the last decades [ 33 – 57 ], but there 
are still many unclarifi ed issues. Moreover, as the   D+

2     ion is 
a fairly simple system, the light-induced nonadiabatic phe-
nomena can be investigated separately from other processes. 
By solving the time-dependent nuclear Schrödinger equation, 
we calculate the kinetic energy release (KER) spectra and the 
angular distribution of the photodissociated fragments with 
and without LICIs for several different values of the laser 
intensity and laser pulse length. We perform one (1d)- and 
two (2d)-dimensional calculations as well. In the fi rst case the 
molecular rotational angle is only a parameter, while in the 
2d situation the rotational angle is taken into account in the 
numerical simulations as a dynamic variable fully including 

the light-induced nonadiabatic phenomena. We will discuss 
in detail how the different laser intensities and pulse lengths 
infl uence the effect of the light-induced conical intersection 
for the investigated dynamical properties of the   D+

2     ion. This 
work can be considered as an extension of our previous work 
[ 18 ]. In that paper [ 18 ] the alignment dependence of the dis-
sociated photofragments of the   D+

2     molecular ion has been 
studied, in the present work we focus on describing properly 
the pulse length dependence of these photoproducts. Results 
obtained by using an initial wave packet starting from one of 
the vibrational eigenstates can be more easily interpreted. Ini-
tiating the dynamics from a Franck–Condon distribution, we 
have a mixture of the eigenstates and it makes it more com-
plicated to analyze the obtained results. However, from an 
experimental point of view it is easier to create a FC distribu-
tion for the initial wave packet by simply photoionizing the   D2    
molecule, than to create a well defi ned eigenstate of the ion. 

 The article is structured as follows. In the next section, 
we provide the background required for our theoretical 
study. The applied methods and the calculated dynamical 
quantities are briefl y summarized. In the third section, we 
present and discuss the numerical results for the values of 
several different laser parameters. In the last section, we 
summarize the conclusions. 

    2   Methods and details of the calculations 

          To study the dissociation dynamics, we consider the ground 
state of the   D2    molecule (  X1 ∑+

g    ) and the fi rst two electronic 
states (  V1 = 1sσg    and   V2 = 2pσu   ) of the   D+

2     ion (Fig.  1 ). 
At fi rst the   D2    molecule is in its ground (  X1 ∑+

g     ) elec-
tronic state and after ionization the vibrational wave packet 
is launched to the   1sσg    state of   D+

2     in the Franck–Condon 
region. In the next step, the   D+

2     ion is excited from the   1sσg    
state by a laser pulse to the dissociative   2pσu    state. The radia-
tive interaction mediated by the non-vanishing electronic 
dipole moment between the   1sσg    and   2pσu    electronic states 
is responsible for the light-induced electronic transitions. In 
these two electronic states the time-dependent Hamiltonian 
can be written for the rovibronic nuclear motions as:
      

 Here,  R  and (  θ , ϕ   ) are the molecular vibrational and 
rotational coordinates, respectively,   μ    denotes the reduced 
mass, and   Lθϕ    is the angular momentum operator of the 
nuclei.   θ    is the angle between the polarization direction 

(1)

Ĥ =

⎛⎜⎝− 1
2μ

∂2

∂R2 +
L2

θϕ

2μR2 0

0 − 1
2μ

∂2

∂R2 +
L2

θϕ

2μR2

⎞⎟⎠
+

(
V1(R) − ε0f (t)d(R) cos θ cos ωLt

−ε0f (t)d(R) cos θ cos ωLt V2(R)

)
.
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and the direction of the transition dipole and thus one of 
the angles of rotation of the molecule.   V1(R)    (  1sσg   ) and 
  V2(R)    (  2pσu   ) are the bare potential curves of the two elec-
tronic states coupled by the laser (whose frequency is   ωL    
and maximal amplitude is   ε0   ),  f ( t ) is the envelop func-
tion and   d(R)(= −〈ψe

1 |
∑

j rj|ψ
e
2〉)    is the transition dipole 

matrix element (  e = me = � = 1   ; atomic units are used 
throughout the article). The potential energies   V1(R)    and 
  V2(R)    and the transition dipole moment were borrowed 
from [ 58 ,  59 ]. 

 The Floquet representation is very illustrative and helps 
to understand the essence of the light-induced nonadiaba-
tic phenomena. In this picture the Floquet curves are rep-
licas of the fi eld-free molecular potential curves that are 
shifted in energy due to the interaction with the laser fi eld. 
The energy shift is given by the net number of photons the 
molecule absorbs from the fi eld and a crossing between 
the diabatic ground and the diabatic shifted excited poten-
tial energy curves is formed. New fi eld-induced states are 
obtained by diagonalizing the diabatic potential energy 
matrix. This gives rise to laser-induced   Vlower    and   Vupper    
adiabatic molecular potentials and to a conical intersection 
as well, whenever the two conditions   cos θ = 0      (θ = π/2)    
and   V1(R) = V2(R)− �ωL    are simultaneously fulfi lled. 

 The characteristic features of the light-induced conical 
intersection can be modifi ed by changing the frequency 
and intensity of the laser fi eld. In sharp contrast to fi eld-
free polyatomic molecules where the conical intersection is 
given by nature, the energetic position of the light-induced 
conical intersection can be controlled by the laser fre-
quency and the strength of its nonadiabatic coupling [ 2 – 7 , 
 10 ,  11 ] by the laser intensity. 

 To discuss the impact of the light-induced conical inter-
section on the photodissociation dynamics, we have to 
solve the time-dependent nuclear Schrödinger equation 
(TDSE) with the Hamiltonian   Ĥ    given by Eq. ( 1 ). One of 
the most effi cient procedure for solving the time-dependent 
nuclear Schrödinger equation is the MCTDH (multi con-
fi guration time-dependent Hartree) approach [ 60 – 64 ]. To 
describe the vibrational degree of freedom we have applied 
FFT-DVR (Fast Fourier Transformation-Discrete Variable 
Representation) with   NR    basis elements distributed on the 
range from 0.1 to 80 a.u. for the internuclear separation. 
The rotational degree of freedom was constructed by the 
Legendre polynomials   {PJ(cos θ)}j=0,1,2,...,Nθ

   . These so-
called primitive basis sets (  χ   ) were used to represent the 
single particle functions (  φ   ) which in turn were applied to 
represent the wavefunction:
      

 During the numerical simulations   NR = 2048    and, 
depending on the fi eld intensity,   Nθ = 6, . . . , 70    have 
been used. To construct the nuclear wave packet of the 
system on both diabatic surfaces and for both degrees of 
freedom a set of   nR = nθ = 3, . . . , 25    single particle func-
tions were applied. (The actual value of   Nθ    and   nR = nθ    
was chosen depending on the peak fi eld intensity   I0   .) 
All the calculations were properly converged with these 

(2)

φ
(q)
jq (q, t) =

Nq∑
l=1

c(q)

jql (t) χ
(q)

l (q) q = R, θ

ψ(R, θ , t) =
nR∑

jR=1

nθ∑
jθ=1

AjR,jθ (t)φ
(R)
jR (R, t)φ(θ)

jθ (θ , t).
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 Fig. 1       Potential energy curves. Shown are the curves for the ground 
state (  X1 ∑+

g    ) of   D2   , and for the ground (  1sσg   ), fi rst excited (  2pσu   ) 
and fi eld dressed (  2pσu − �ω   ) states of the   D+

2     ion. The fi rst laser 
pulse ionizes the   D2    molecule to create a vibrational wave packet 
on the   1sσg    surface of   D+

2    . The  solid green  and  red lines  show the 
fi eld-free energies of the ground and fi rst excited states of the ion, 
respectively, which are the diabatic energies when the fi eld is on. The 
energy of the fi eld-dressed excited state (  2pσu − �ωL   ;  dashed red 
line ) crosses the energy of the ionic ground state at the point where 
the light-induced conical intersection (LICI) of these two states is 
formed. These curves can also be viewed as cuts through the adi-
abatic surfaces at   θ = π/2    where the interaction between the states 
via the fi eld vanishes. For further visualization, cuts of the adiabatic 
surfaces at   θ = 0    (parallel to the fi eld polarization) are shown for a 
fi eld intensity of   3 × 1013 W cm−2   . The cuts through the lower and 
upper adiabatic surfaces are depicted by  solid black lines marked 
with circles and triangles , respectively. The position of the LICI 
(  RLICI = 1.53 Å = 2.891   a.u. and   ELICI = −2.16611    eV) is marked 
with a cross (fi gure is taken from Ref. [ 18 ])  
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parameters. Because of the cylindrical symmetry of the 
problem,   Lϕ = m    is a good quantum number and we have 
only concentrated on discussing the   m = 0    case. 

 Applying the nuclear wave function the kinetic energy 
release (KER) and the angular distribution of the photof-
ragments [ 62 ] are defi ned as:
     

 where   −iW    is the complex absorbing potential (CAP) used 
at the last 10 a.u. of the grid related to the vibrational degree 
of freedom (  W = 0.00005 · (r − 70)3   , if   r > 70    a.u. on the 
  1sσg    surface and   W = 0.00236 · (r − 75)3   , if   r > 75    a.u. on 
the   2pσu    surface), and
     

where   −iWθj    is the projection of the CAP to a specifi c 
direction of the angular grid   (j = 0, . . . Nθ )   , and   wj    is the 
weight related to this grid point according to the applied 
DVR. 

 To stress the impact of the laser-induced conical inter-
section on the dissociation process of   D+

2    , we compare the 
results obtained from the full two-dimensional (2d) model 
in which both the rotational and vibrational coordinates are 
accounted as dynamical variables with one-dimensional 
(1d) calculations where the rotational degree of freedom 
and accordingly the LICI is not considered. In the 1d situ-
ation the molecule’s initial orientation is not changing dur-
ing the dissociation and the “effective fi eld strength” in the 
Hamiltonian Eq. ( 1 ) was the projection of the real fi eld to 
the axis of the molecule:   εeff

0 = ε0 cos θ      (Ieff
0 = I0 cos2 θ)   . 

This restriction implies that the molecular rotation is frozen 
and therefore the orientation of the molecular axis relative 
to the polarization of the laser fi eld does not change during 
the whole process. 

(3)PKER(E) =

∞∫
0

dt

∞∫
0

dt′〈ψ(t)|W |ψ(t′)〉e−iE(t−t′)

(4)P(θj) =
1

wj

∞∫
0

dt〈ψ(t)|Wθj |ψ(t)〉

    3   Results and discussion 

 We used linearly polarized Gaussian laser pulses centered 
around   t = 12.3    fs in the calculations. This is the value 
of the delay time when the mean of the internuclear dis-
tance of the ground state wave packet vertically trans-
ferred to the ground state of the ion reaches its maximal 
value in the fi eld-free case. The center wavelength is 
200 nm and the two employed laser fi eld intensity values 
are (  1 × 1012 W cm−2   ,   1 × 1014 W cm−2   ). Several differ-
ent pulse lengths given by their full width at half-maxi-
mum (FWHM) (  tpulse = 10, 20, 30, 40    and 50 fs) have been 
applied. 

 The initial wave packet is provided by a vertical trans-
fer of the vibrational ground state of the neutral molecule 
to the potential energy curve of the ground electronic state 
of the   D+

2    . This Franck–Condon distribution of the vibra-
tional states of the ion has been employed. To obtain back 
the vibrational ground state of the neutral molecule one has 
to assume the initial wave packet on the   1sσg    curve as the 
superposition of all the vibrational states of the   D+

2     ion. 
 No preliminary alignments have been considered for the 

molecules. We applied isotropic initial distributions in the 
numerical simulations (with the rotational quantum number 
of   J = 0   ).  

 The total dissociation probabilities for the different 
applied laser pulses are collected in Table  1 . Comparison 
of the results of the one-dimensional calculations with the 
full two-dimensional ones shows that rotation plays a role 
in the dissociation dynamics only at large fi eld intensity 
combined with long pulse length. 

   3.1   Kinetic energy release (KER) 

          Results for the kinetic energy release spectra (KER) of 
the photofragments are displayed in Fig.  2 . The longer the 
pulse, the more structured the spectrum (see on Fig.  2 ). 
According to the Heisenberg’s uncertainty principle, the 
pulse length of 10 fs is too short to resolve the energy dif-
ference of the neighboring levels. For this pulse length the 
spectrum is rather wide and does not contain information 
about the vibrational structure of the ground electronic state 
of the   D+

2     ion. For the longer pulses the partial waves disso-
ciating at different times can create an interference pattern 
related to the vibrational states of the system. This effect 
is even more pronounced at the lower (  1 × 1012 W cm−2   ) 
intensity value. At the intensity of   1 × 1014 W cm−2    even 
a such short as 10 fs pulse duration is enough to provide 
nearly 70 % dissociation probability. It means that even 
for longer pulse this large amount of the wave packet dis-
sociates immediately at the fi rst time it reaches the large 
internuclear distance region just after a half vibrational 

 Table 1       Total dissociation probability as a function of intensity and 
pulse duration  

 The columns labeled as 2d and 1d correspond to the full two-dimen-
sional and the one-dimensional (no LICI situation) calculations, 
respectively 

    tpulse    (fs)      I0 = 1 × 1012 W cm−2         I0 = 1 × 1014 W cm−2     

  2d    1d    2d    1d  

  10    0.0539    0.0538    0.6885    0.6834  

  20    0.0712    0.0712    0.7803    0.7512  

  30    0.0862    0.0861    0.8466    0.7711  

  40    0.1009    0.1006    0.8850    0.7848  

  50    0.1144    0.1139    0.9107    0.7950  
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period. This part of the dissociated particles hardly collects 
any information about the ground electronic PES of the 
ion. The interference patterns observed in the KER spec-
tra for the longer pulses are related to the excess dissocia-
tion taking place after some initial vibrations. Increasing 
the pulse length from 20 to 50 fs, the peaks of the spectra 
are continuously increasing for both intensities. According 
to Table  1  for the longest studied pulse (50 fs) this excess 
dissociation amount relative to the dissociation rate at 10 fs 
pulse is about 32 % for the intensity of   1 × 1014 W cm−2    , 
while it is approximately 110 % for the lower intensity 
(  1 × 1012 W cm−2   ). This is the reason why one can recog-
nize much more characteristic fi ngerprint of the vibrational 
levels of the   D+

2     ion on the KER spectra at lower intensity. 
 Another important fi nding is that—similarly to the 

total dissociation rates—there is no noticeable differ-
ence between the 1d and 2d KERs at low intensities or at 
short pulses. We know from preliminary studies that at 

low intensities the effect of the laser-induced conical inter-
sections are not so signifi cant, and moreover, if the pulse 
length is not long enough substantial. rotation cannot 
emerge. For the case of the lower fi eld intensity, the KERs 
from the 1d and the full calculations are indistinguishable 
(see. panel A on Fig.  2 ). The situation is quite different in 
the case of the higher fi eld intensity. Even for the shortest 
pulse length there is a slight difference between the 1d and 
2d results in the spectra around the photon energy shifted 
position of the LICI. Increasing the pulse length the differ-
ences become more pronounced. Not only the total disso-
ciation rate reduces in the 1d model, (as we see in Table  1 ) 
but the interference peaks are also less characteristic. The 
peaks have smaller heights, and the minima between the 
peaks are not so deep as in the full 2d calculations. Moreo-
ver, there is a noticeable difference in the position of the 
peaks as well. In the 1d situation, similarly to the case of 
lower intensity the peaks are centered around the shifted 
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 Fig. 2       Kinetic energy release (KER) spectra of the   D+
2     photofrag-

ments at   1 × 1012    ( a ,  b ) and   1 × 1014 W/cm2    ( c ,  d ) intensities for fi ve 
different (10, 20, 30, 40 and 50 fs) pulse lengths. The  dashed  (1d) 
and  solid curves  correspond to the one-dimensional (no LICI situa-

tion) and the full two-dimensional calculations, respectively.  Vertical 
lines  denote the different vibrational levels of the   D+

2     molecule in the 
fi eld-free case shifted by the photon energy (  �ωL   ). The height of these 
lines is proportional to the population of the vibrational levels in the 
initial wave packet (Franck–Condon principle)  
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energies of the vibrational levels, while in the full calcula-
tions they are slightly shifted away from these values. The 
reason of this shift has already been discussed in [ 18 ]. 

 Again, we fi nd that at low (  1 × 1012 W cm−2   ) intensity 
the dissociation probability of the vibrational level   ν = 5    is 
practically zero (see panel A and B on Fig.  2 ). This fi nding 
has already been discussed by us. Namely, in a very special 
situation when one of the eigenvalues of the upper adiaba-
tic potential [ 20 ] matches to the energy level of a certain 
vibrational eigenstate on the diabatic surface, the nuclear 
wave packet can spend a non-negligible amount of time 
in the upper adiabatic potential before reaching the disso-
ciation region. The system somehow is being trapped for 
a certain time and as a result of it molecular fragments 
from this vibrational eigenstate are missing from the spec-
tra. Nevertheless this phenomenon disappears at greater 
(  1 × 1014 W cm−2   ) intensity (see panel C and D on Fig.  2 ), 
because of the shift of the eigenvalues of the upper adiaba-
tic potential due to the modifi cation of its shape caused by 
the increased intensity. 

    3.2   Angular distribution and wave packet density 

          Figure  3  illustrates the results for the angular distribution 
of the photofragments. When the laser intensity is low the 
curves are smooth for each pulses. As in the case of the 
total dissociation yield or the KER spectra the 1d model 
also provides good description of the angular distribution. 
Noticeable differences appear only for the case of the long-
est laser pulse at the region of the small angles where the 
1d model slightly underestimates the dissociation rate. At 
higher intensity, however, the situation changes signifi -
cantly. In this case, for all the applied pulses, the 1d and 
2d results strongly differ from each other. In fact, the 1d 
curves almost go together everywhere. One can observe 
small deviation between the curves only above 65 degrees. 
The strong fi eld intensity rotates the molecules toward the 
direction of the external electric fi eld and therefore more 
molecules appear parallel to the fi eld direction than that 
would result from the isotopic distribution. This is the rea-
son why the dissociation fl ux is much greater than 1 in the 
full two-dimensional calculations. The 1d model, however, 
cannot account for the rotation; therefore, in this model 
the dissociation rate is close to its largest possible value 
(1) at small angles, for which the effective fi eld intensity 
  (Ieff

0 = I0 ∗ cos2 θ)    is large enough to induce almost total 
dissociation. 

 At the larger intensity, except for the shortest pulse 
(10 fs) some modulations in the structure of the curves 
appear. We know from our earlier studies that these humps 
on the curves are the direct consequences of the rotation or 
the presence of the laser-induced conical intersection [ 19 ]. 
In the 1d calculations these modulations never appear. To 

see the clear signature of the LICI on the angular distribu-
tion of the photofragments, one needs large enough inten-
sity and long enough pulse. The LICI exerts a strong nona-
diabatic coupling via mixing the vibrational and rotational 
motions on both electronic surfaces. Rotational nodes are 
formed due to the high intensity. Applying longer pulses, 
higher rotational quantum numbers  J  are appearing.        

 To understand more deeply the role of the 
pulse lengths for the dynamics, we calcu-
lated and analyzed the nuclear density function 
  |ψ(R, θ , t)|2(= |ψ1sσg(R, θ , t)|2 + |ψ2pσu(R, θ , t)|2).    
Obtained results are displayed in Figs.  4  and  5 . In the 
absence of the laser fi eld, the wave packet exhibits a peri-
odic motion with an approximate time period of 24 fs. The 
fi rst maximum of the average internuclear distance happens 
at 12.3 fs. This is the reason we have centered the applied 
laser pulse around this time delay after the ionization. As a 
consequence, in the presence of external electric fi eld we 
can expect that the dissociation events occur around 12, 36, 
60 fs and so on time delays after ionization. On the other 
hand, the minima of the average internuclear distance are 
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 Fig. 3       Angular distributions of the   D+
2     photofragments at   1 × 1012    

( a ) and   1 × 1014 W/cm2    ( b ) intensities for fi ve different (10, 20, 30, 
40 and 50 fs) pulse lengths. The  dashed  (1d) and  solid curves  cor-
respond to the one-dimensional (no LICI situation) and the full two-
dimensional calculations, respectively  
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 Fig. 4       Snapshots from the real-time evolution of the nuclear den-
sity of the   D+

2     due to a Gaussian laser pulse of peak intensity 
  1 × 1014 W/cm2    and 10 fs duration. The nuclear density exhibits 
interference effects and splits at larger distances around   θ = π/2   . The 

instantaneous intensity is shown in the individual snapshots. The  yel-
low cross  denotes the position of the LICI.  All panels  show the results 
of the full 2d calculation. Note the jump in the interatomic scale  
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 Fig. 5       Snapshots from the real-time evolution of the nuclear den-
sity of the   D+

2     due to a Gaussian laser pulse of peak intensity 
  1 × 1014 W/cm2    and 50 fs duration. The nuclear density exhib-
its severe interference effects and splits at larger distances around 

  θ = π/2   . The instantaneous intensity is shown in the individual snap-
shots. The  yellow cross  denotes the position of the LICI.  All panels  
show the results of the full 2d calculation. Note the jump in the inter-
atomic scale  
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around 24, 48 fs and so on time delays. In the presence of 
external fi eld as a fi rst crude approximation, we can expect 
that the non-dissociated part of the wave packet also exhib-
its a similar periodic motion. The individual panels of the 
Figs.  4  and  5  are snapshots of the nuclear density func-
tion at the special times mentioned above and also at time 
42 fs which is half way between the two neighboring ones. 
Applying 10 fs pulse length the external fi eld has non-van-
ishing value only at the fi rst interesting time interval with 
large internuclear distances. The whole dissociation pro-
cess is practically completed when the nuclear wave packet 
is at fi rst time in the large internuclear distance region. 
Then the remaining part of the wave packet oscillates back 
and force in the adiabatic lower surface exhibiting interfer-
ence picture is the bound region. The nuclear wave packet 
will be again at the same position after another 24 fs, but 
because the intensity is very low further dissociation is no 
longer going to happen (see on Fig.  4 ;   t = 36    fs). On the 
right sides of the panels (on Fig.  4 ), the time evolution of 
the dissociated part of the wave packet is illustrated using 
different scaling for the internuclear distance.        

 On Fig.  5  results are collected by using longer laser pulse 
(50 fs). For this pulse length a completely different situation 
applies. The dissociation takes place in several steps since 
the laser pulse is long enough. Then the direct consequence 
of this process is, that on the right hand side of the panels 
(on Fig.  5 ) the pictures of the time evolution of the disso-
ciated part of the nuclear wave packet are more structured. 
Similarly, the interference pictures on the bounded region 
of these panels also show rich patterns. This behavior is 
the direct consequence of the laser fi eld-induced rotational 
nodes, which are formed due to applying long pulses. The 
nuclear wave packet density is close to zero at the rotational 
nodes. But above and below these nodes, the value of the 
wave packet density is markedly different from zero and so-
called quantum interference picture occurs. These quantum 
interference effects are then the sources of the modulations 
on the angular distribution curves of the photofragments. 
Applying short laser pulses, such interference patterns do 
not appear as rotational nodes are not formed. 

     4   Conclusions 

 We present results for the kinetic energy (KER) spectra and 
for the angular distribution of the photofragments of the   D+

2     
ion. By means of two-dimensional quantum dynamical cal-
culations, we have demonstrated that the impact of the laser-
induced conical intersection for these dynamical quantities 
is the largest possible, if one uses high fi eld intensity and 
long pulses together. Such a laser fi eld can rotate the mole-
cules signifi cantly, which is the heart of the LICI in diatomic 
systems. Moreover, we have analyzed the time evolution of 

the nuclear wave packet density, which visualizes the occur-
ring quantum interference effect during the dissociation due 
to the very strong nonadiabatic coupling between the elec-
tronic, vibrational and rotational motions. 
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operators  S   z   and  S  2 , a spin-symmetry respectful way of 
using the Hartree–Fock method consists in:

   (1)      Using spin-orbitals of pure  α - or  β -spin, so that the HF 
optimized Slater determinant is an eigenfunction of  S   z  ;   

  (2)      Imposing the spin-equivalence restriction [ 4 ], which 
means that paired  α - and  β -spin-orbitals are formed 
from the same set of linearly independent orbitals. 
We have proved mathematically [ 5 – 7 ] that this addi-
tional constraint is a necessary and suffi cient condi-
tion to insure that a Slater determinantal wave function 
is an eigenfunction of the spin operator  S  2 . In other 
words, we have shown that relaxing the  S  2 -symmetry 
constraint exactly amounts to allow different “paired 
orbitals,” in the sense of Refs. [ 8 ,  9 ], to have different 
spins. This equivalence enabled us to characterize the 
variational space explored by the restricted open-shell 
Hartree–Fock (ROHF) method [ 10 ], which precisely 
consists in optimizing a Slater determinant subject to 
constraints (1) and (2) (plus spatial-symmetry con-
straints if any) [ 11 ]. The equivalence was also discov-
ered independently [ 12 ] by optimizing a Slater deter-
minant with a Lagrange multiplier, enforcing   〈S2〉    to be 
arbitrarily close to the ROHF value, instead of apply-
ing the spin-equivalence restriction. Not surprisingly, 
the determinant was approaching the ROHF solution.     

 Similar to the spin-free case is the “complex-free” one: 
when a quantum system is described by a real Hamiltonian, 
which obviously commutes with complex conjugation, one 
can restrict oneself to the calculation of real eigenfunc-
tions. Then, it is also possible to employ only real spin-
orbitals to construct the HF Slater determinant [ 13 ] (how-
ever, diffi culties may occur when the symmetry group of 
the molecule cannot be represented over real numbers, and 

                     Abstract     An expression for the square of the spin opera-
tor expectation value,   〈S2〉   , is obtained for a general com-
plex Hartree–Fock wave function and decomposed into 
four contributions: the main one whose expression is for-
mally identical to the restricted (open-shell) Hartree–Fock 
expression. A spin contamination one formally analogous 
to that found for spin unrestricted Hartree–Fock wave func-
tions. A noncollinearity contribution related to the fact that 
the wave function is not an eigenfunction of the spin- S   z   
operator. A perpendicularity contribution related to the fact 
that the spin density is not constrained to be zero in the  xy -
plane. All these contributions are evaluated and compared 
for the H 2 O +  system. The optimization of the collinearity 
axis is also considered. 

   Keywords     Spin contamination    ·  Collinearity    ·  General 
complex Hartree–Fock  

      1  Introduction 

 Particle-independent models based on single Slater deter-
minant wave functions have enjoyed considerable interest 
in quantum chemistry, since the pioneering works of Har-
tree, Slater and Fock [ 1 – 3 ]. 

 When a quantum system is described by a spin-free 
Hamiltonian, which obviously commutes with the spin 
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nonetheless, one wishes the spin-orbitals to be adapted to 
spatial symmetry). 

 However, it has been proposed by various authors to 
relax some or all of the above-mentioned constraints, to 
gain variational freedom. For example, the different orbit-
als for different spins method (DODS) of Refs. [ 14 ,  15 ] 
(which is usually just called “unrestricted Hartree–Fock” 
(UHF), but in this paper we use “DODS” to avoid confu-
sions) relax the spin-equivalence restriction, and hence, 
the HF solution is no longer an eigenfunction of  S  2 . Other 
authors [ 16 – 18 ] have advocated the use of general spin-
orbitals, mixing  α -spin and  β -spin parts, in conjunction 
with the use of projectors [ 19 ]. 

 Along the same line of thought, the use of complex spin-
orbitals has been proposed [ 17 ,  20 ] to increase variational 
freedom in the case of real Hamiltonian. Prat and Lefebvre 
went a step further with the so-called hypercomplex spin-
orbitals to construct Slater determinants of arbitrary accu-
racy [ 21 ]. However, the coeffi cients of their spin-orbitals 
were elements of a Clifford algebra of dimension   22n   , that 
was not a normed division algebra, also known as Cayley 
algebra, for arbitrary values of  n . This was unfortunate, 
since such a structure appears to be a minimal requirement 
for a quantum formalism, if, for example, Born’s interpre-
tation of the wave function is to hold fi rmly. For  n  = 1, the 
Clifford algebra of Prat et al. was actually the noncommu-
tative fi eld of quaternions, therefore, a fortiori, a normed 
division algebra. The only larger normed division algebra is 
the octonion algebra. It is a Clifford algebra of dimension 
8, which has also been proposed in a quantum mechanical 
context [ 22 ], but this algebra is neither commutative nor 
associative. The lack of these properties rises diffi culties 
for its use for multipartite quantum systems; nevertheless, 
these diffi culties can be overcome by keeping the product 
of octonion coeffi cients in the form of a tensor product. So, 
octonion-unrestricted HF appears to be the largest Cilfford 
algebra-unrestricted single determinantal method that can 
be considered in the spirit of Prat and Lefebvre’s proposal. 
However, octonions seem incompatible with the desirable 
requirement that the algebra of quantum observables be 
what is now called a formally real Jordan algebra [ 23 ] act-
ing on a vector space of arbitrarily large dimension. Octon-
ions are also ruled out by the requirement of orthomodular-
ity in infi nite dimension according to Solèr’s theorem [ 24 , 
 25 ], which restricts quantum Hilbert spaces to be real, com-
plex or at most quaternionic. 

 The fi rst HF molecular calculations with general com-
plex spin-orbitals, without projecting out the symmetry-
breaking part of the wave function, are maybe those of Ref. 
[ 26 ]. It was found on the BH molecule around its equi-
librium geometry that the general complex Hartree–Fock 
(GCHF) energy was indeed lower than the DODS one, 
which itself was lower than the restricted Hartree–Fock 

(RHF) solution. So necessarily, the corresponding GCHF 
wave functions had  S  2 -spin contamination and  S   z  -spin con-
tamination, that is to say, the expectation values of these 
operators were different from 0, the value expected for a 
singlet ground state (it is not clear whether complex num-
bers were used for this molecule, but the authors did men-
tion that they performed complex calculations for two-elec-
tron systems). 

 Relaxing the “ S   z  -constraint” hence the “collinearity con-
straint” becomes perfectly legitimate when hyperfi ne or 
spin–orbit couplings are considered, since the operator  S   z   no 
longer commutes with the Hamiltonian. As a matter of fact, 
real physical systems do exhibit either light [ 27 ,  28 ] or strong 
[ 29 ,  30 ] noncollinearity of their spin densities. Similarly, the 
use of complex spin-orbitals is natural, when considering 
relativistic corrections resulting in a complex Hamiltonian 
operator. So, in such a context, one should use no less than 
general complex spin-orbitals in HF calculations [ 31 ]. The 
“spin-same-orbit” coupling term used in these calculations 
does not commute with the  S  2 -operator. Therefore, one can-
not strictly speak of “ S  2 -spin contamination” in relativistic 
GCHF wave functions. However, calculating the expectation 
value of  S  2 , a bona fi de quantum observable, can still provide 
valuable physical information about the system. 

 A general expression for the expectation value of  S  2  has 
been obtained in the DODS case [ 8 ] and has served as a 
measure of  S  2 -spin contamination. However, as far as we 
are aware, no such formula has been published in the case 
of a GCHF wave function. This gap will be fi lled in the 
next section. 

 Studying departure from collinearity is more diffi cult 
because of arbitrariness in the quantifi cation axis. One pos-
sible way to overcome the diffi culty would be to apply an 
external magnetic fi eld to fi x the  z -axis but small enough 
not to perturb the GCHF solution. However, an elegant 
alternative has been proposed recently by Small et al. [ 32 ]. 
It is based on studying the lowest eigenvalue of a   (3 × 3)

   -matrix built from expectation values of spin operator com-
ponents and their products. In the GCHF case, the authors 
provided the expressions required to compute the matrix 
elements in a compact form. In the third section, we give 
a more extended formula in terms of molecular orbital 
overlap matrix elements. We also illustrate the connections 
between spin contamination, noncollinearity and its correl-
ative: “perpendicularity” on the H 2 O +  cation example. We 
sum up our conclusions in the last section. 

    2   Spin contamination in GCHF 

 A general complex Hartree–Fock (GCHF) wave function,
     

(1)ΦGCHF = φ1 ∧ · · · ∧ φNe ,
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is the antisymmetrized product (or wedge product, denoted 
by   ∧   ) of orthonormal spin-orbitals, or “two-component 
spinors,”
     

     

where the scalar product   〈·|·〉    means integration over space 
variables and summation (i.e., taking the trace) over 
spin variables:   〈φi|φj〉 = 〈φiα|φjα〉 + 〈φiβ |φjβ〉   , (where 
the same bracket symbol is used for the scalar product 
between orbital parts). We defi ne the “number of  α -spin 
electrons” (respectively, “number of  β -spin electrons”) as 
  Nα :=

∑Ne
i=1〈φiα|φiα〉    (respectively,   Nβ :=

∑Ne
i=1〈φiβ |φiβ〉   ). 

It is the expectation value of the projection operator on the 
 α - (respectively,  β -) one-electron Hilbert subspace (more 
rigorously speaking, the operator induced onto the  n -elec-
tron Hilbert space by this one-electron projection operator). 
Note that these two numbers need not be integer numbers; 
however, their sum is an integer:   Nα + Nβ = Ne   . 

 Let us work out the expectation value of the spin 
operator,
     

on a general GCHF wave function. 
 The action of  S   z   is given by,

     

where,
     

and,
     

Note that,
     

So, the expectation value of  S   z   is
     

(2)φi =

(
φiα
φiβ

)
,

(3)〈φi|φj〉 = δi,j,

(4)S2
= S2

z +
1

2
(S+S− + S−S+),

(5)SzΦGCHF =
1

2

Ne∑
i=1

Φ̂ i
GCHF,

(6)Φ̂ i
GCHF = φ1 ∧ · · · ∧ φi−1 ∧ φ̂i ∧ φi+1 ∧ · · · ∧ φNe ,

(7)φ̂i =

(
+φiα
−φiβ

)
.

(8)〈φ̂i|φ̂j〉 = 〈φi|φj〉 = δi,j.

(9)

〈ΦGCHF|Sz|ΦGCHF〉 =
1

2

Ne∑
i=1

〈
ΦGCHF|Φ̂

i
GCHF

〉
=

1

2

Ne∑
i=1

〈
φi|φ̂i

〉

=
1

2

Ne∑
i=1

(
〈φiα |φiα〉 − 〈φiβ |φiβ 〉

)
=

Nα − Nβ

2
,

and that of   S2
z    :

     

This equation reduces to   
(

Nα

2 −
Nβ

2

)2
    in the 

case of a DODS wave function. So, the sec-
ond term on the right-hand side (rhs), which is 
  (〈ΦGCHF|S2

z |ΦGCHF〉 − 〈ΦGCHF|Sz|ΦGCHF〉
2)   , is directly 

related to relaxation of the  S   z  -constraint and will be called 
the “ z -noncollinearity” contribution. Note, however, that 
for a GCHF wave function, the fi rst term on the RHS does 
not necessarily correspond to an eigenvalue of   S2

z    , accord-
ing to the defi nition of   Nα    and   Nβ   . 

 The action of   S+    is given by,
     

where,
     

and,
     

Similarly, the action of   S−    is given by,

(10)

〈ΦGCHF|S
2
z |ΦGCHF〉 = 〈SzΦGCHF|SzΦGCHF〉

=
1

4

Ne∑
i,j=1

〈
Φ̂ i

GCHF|Φ̂
j
GCHF

〉

=
1

4

⎛⎜⎜⎝ Ne∑
i=1

〈
Φ̂ i

GCHF|Φ̂
i
GCHF

〉
+

Ne∑
i,j=1
i �=j

〈
Φ̂ i

GCHF|Φ̂
j
GCHF

〉⎞⎟⎟⎠

=
1

4

Ne∑
i=1

⎛⎜⎜⎝〈
φ̂i|φ̂i

〉
+

Ne∑
j=1
j �=i

(−1) |〈φ̂i|φj〉 |
2
+ 〈φ̂i|φi〉〈φj|φ̂j〉

⎞⎟⎟⎠

=
1

4

⎛⎜⎜⎝Ne +

Ne∑
i,j=1
i �=j

(−1) |
〈
φiα |φjα

〉
− 〈φiβ |φjβ 〉 |

2

+
(
〈φiα |φiα〉 − 〈φiβ |φiβ 〉

)(
〈φjα |φjα〉 − 〈φjβ |φjβ 〉

)⎞⎟⎟⎠
=

1

4

⎛⎝Ne +

Ne∑
i,j=1

(
〈φiα |φiα〉 − 〈φiβ |φiβ 〉

)(
〈φjα |φjα〉 − 〈φjβ |φjβ 〉

)

− |〈φiα |φjα〉 − 〈φiβ |φjβ 〉 |
2

⎞⎠
=

(
Nα

2
−

Nβ

2

)2

+
1

4

⎛⎝Ne −

Ne∑
i,j=1

|〈φiα |φjα〉 − 〈φiβ |φjβ 〉 |
2

⎞⎠.

(11)S+ΦGCHF =

Ne∑
i=1

Φ́ i
GCHF,

(12)Φ́ i
GCHF = φ1 ∧ · · · ∧ φi−1 ∧ φ́i ∧ φi+1 ∧ · · · ∧ φNe ,

(13)φ́i =

(
+φiβ

0

)
.

177Reprinted from the journal



 Theor Chem Acc (2015) 134:125

1 3

     

where,
     

and,
     

So, the expectation value of   S−S+    is,
     

Similarly, the expectation value of   S+S−    is,
     

Using Eq.( 4 ) and putting together Eqs. ( 10 ), ( 17 ) and ( 18 ), 
one obtains the expectation value of  S  2 ,
     

(14)S−ΦGCHF =

Ne∑
i=1

Φ̀ i
GCHF,

(15)Φ̀ i
GCHF = φ1 ∧ · · · ∧ φi−1 ∧ φ̀i ∧ φi+1 ∧ · · · ∧ φNe ,

(16)φ̀i =

(
0

+φiα

)
.

(17)

〈ΦGCHF|S
−S+|ΦGCHF〉 =

〈
S+ΦGCHF|S

+ΦGCHF
〉

=

Ne∑
i,j=1

〈
Φ́ i

GCHF|Φ́
j
GCHF

〉

=

Ne∑
i=1

〈
Φ́ i

GCHF|Φ́
i
GCHF

〉
+

Ne∑
i,j=1
i �=j

〈
Φ́ i

GCHF|Φ́
j
GCHF

〉

=

Ne∑
i=1

⎛⎜⎜⎝〈
φ́i|φ́i

〉
+

Ne∑
j=1
j �=i

(−1) |

〈
φ́i|φj

〉
|
2
+

〈
φ́i|φi

〉
〈φj|φ́j〉

⎞⎟⎟⎠

=

Ne∑
i=1

⎛⎜⎜⎝〈φiβ |φiβ 〉 +

Ne∑
j=1
j �=i

(−1) |〈φiβ |φjα〉 |
2
+ 〈φiβ |φiα〉〈φjα |φjβ 〉

⎞⎟⎟⎠
= Nβ +

Ne∑
i,j=1

〈
φiβ |φiα〉〈φjα |φjβ 〉 − 〈φiβ |φjα〉〈φjα |φiβ

〉
.

(18)

〈ΦGCHF|S
+S−|ΦGCHF〉 = 〈S−ΦGCHF|S

−ΦGCHF〉

=

Ne∑
i=1

⎛⎜⎜⎝〈φ̀i|φ̀i〉 +

Ne∑
j=1
j �=i

(−1) |〈φ̀i|φj〉 |
2
+ 〈φ̀i|φi〉〈φj|φ̀j〉

⎞⎟⎟⎠

=

Ne∑
i=1

⎛⎜⎜⎝〈φiα |φiα〉 +

Ne∑
j=1
j �=i

(−1) |〈φiα |φjβ 〉 |
2
+ 〈φiα |φiβ 〉〈φjβ |φjα〉

⎞⎟⎟⎠
= Nα +

Ne∑
i,j=1

〈φiα |φiβ 〉〈φjβ |φjα〉 − 〈φiα |φjβ 〉〈φjβ |φiα〉.

(19)

〈ΦGCHF|S
2
|ΦGCHF〉 =

(
Nα

2
−

Nβ

2

)2

+
Nα

2
+

Nβ

2

+
1

4

⎛⎝Ne −

Ne∑
i,j=1

|〈φiα|φjα〉 − 〈φiβ |φjβ〉 |
2

⎞⎠
+

Ne∑
i,j=1

〈φiα|φiβ〉〈φjβ |φjα〉 − 〈φiα|φjβ〉〈φjβ |φiα〉.

The expression reduces to the known formula in the case of 
a DODS wave function. Assuming, without loss of general-
ity, that   Nα ≥ Nβ   , we rewrite Eq. ( 19 ) as,
     

In this formula, we identify four contributions: The fi rst 
term is formally identical to the ROHF expression also 
found in the DODS case. However, care must be taken 
that it is actually different, because the numbers of  α - and 
 β -electrons are not good quantum numbers in the GCHF 
case. The second term is the “ z -noncollinearity” contribu-
tion. The third term is formally analogous to the “spin con-
tamination” of a DODS wave function as defi ned in [ 7 ,  8 ]. 
Finally, the last term is the square of the expectation value 
of the lowering or raising operator:
     

A nonzero contribution of this term can only arise from 
the release of the  S   z  -constraint, which allows for the  α - 
and  β -components of a given, general spin-orbital to be 
both nonzero. But it originates from   S+S−    and   S−S+    and 
is maximal when   φiβ = exp(ıθ)φiα    for all i, that is to say 
when the   φi   ’s are eigenfunctions of   cosθ Sx + sinθ Sy    for 
some angle   θ   . It is related to the emergence of a nonzero 
spin density in the  xy -plane, correlatively to the loss of 
 z -collinearity. We tentatively call this term the “ x ,  y -perpen-
dicularity” contribution.  

 The present formulas have been implemented in the code 
TONTO [ 33 ] and applied in a recent article (third column 
of Tab. 4 in [ 34 ]). Let us discuss further the different contri-
butions to  S  2  for a H 2 O +  GCHF calculation similar to that 
reported in [ 34 ]. The  z -quantization axis was the axis perpen-
dicular to the plane of the molecule. The results, see Table  1 , 
show that the main contribution to   〈ΦGCHF|S2|ΦGCHF〉    beside 
the reference expression (fi rst term on the right-hand side of 
Eq.  20 ) is the so-called spin contamination contribution (we 
set   � = 1    throughout the paper). The  x ,  y -perpendicularity and 
 z -noncollinearity contributions are of the same order of mag-
nitude and more than one order of magnitude smaller. Added 

(20)

〈ΦGCHF|S
2
|ΦGCHF〉 =

(
Nα

2
−

Nβ

2

)(
Nα

2
−

Nβ

2
+ 1

)

+
1

4

⎛⎝Ne −

Ne∑
i,j=1

|〈φiα|φjα〉 − 〈φiβ |φjβ〉 |
2

⎞⎠
+

⎛⎝Nβ −

Ne∑
i,j=1

〈φiα|φjβ〉〈φjβ |φiα〉

⎞⎠
+

∣∣∣∣∣
Ne∑
i=1

〈φiβ |φiα〉

∣∣∣∣∣
2

.

(21)

∣∣∣∣∣
Ne∑
i=1

〈φiβ |φiα〉

∣∣∣∣∣
2

= |〈ΦGCHF|S
+
|ΦGCHF〉|

2
= |〈ΦGCHF|S

−
|ΦGCHF〉|

2.
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to   
(

Nα

2 −
Nβ

2

)(
Nα

2 −
Nβ

2 + 1
)
   , they almost make up the ref-

erence value of   +   0.75. So, the spin contamination value of 
0.007033 amounts almost exactly to the difference between 
the exact expectation value   〈ΦGCHF|S2|ΦGCHF〉    and this ref-
erence “ROHF value.” This demonstrates that, in Table 4 of 
Ref. [ 34 ], the equality of the entries in column 2 (reference 
ROHF value plus spin contamination term) and column 4 
(our   〈ΦGCHF|S2|ΦGCHF〉    value) does not imply no noncol-
linearity. In contrast, if for a given line of the table, these 
two quantities differ, then necessarily there will be some 
noncollinearity in the corresponding GCHF wave function. 
This can be shown  reductio ad absurdum . Suppose that the 
 z -collinearity constraint is fulfi lled, then   Nα    and   Nβ    will be 
good quantum numbers and the fi rst term in our expression 
of   〈ΦGCHF|S2|ΦGCHF〉    will be equal to the ROHF reference 
value. The spin contamination contribution being included in 
both quantities, the difference between them must arise from 
the  x ,  y -perpendicularity and  z -noncollinearity contributions. 
One at least of the contributions arising from the release of 
the collinearity constraint must be nonzero, hence a contra-
diction. This hints that the following systems Cl, HCl  +   , Fe, 
Cu, Cu  2+    and [OsCl  5(Hpz)]−    reported in Table 4 of Ref.[ 34 ] 
would present stronger noncollinearity than H 2 O + . 

    3   Collinearity in GCHF 

 In the previous section, we have encountered a  z -(non)col-
linearity measure,   colz := (〈S2

z 〉 − 〈Sz〉
2)   . This quantity can 

be generalized to an arbitrary quantization direction defi ned 

by a unit vector   
u =

⎛⎝ ux
uy
uz

⎞⎠    of the unit sphere   S2    of   R3    by 

replacing  S   z   by   u · S =
∑

μ∈{x,y,z} uμSμ   . Then,   u   -(non)col-
linearity is measured by:
     

(22)
col(u) :=

∑
μ,ν∈{x,y,z}

uμuν(〈SμSν〉 − 〈Sμ〉〈Sν〉).

Small et al. [ 32 ] defi ned a (non)collinearity measure by:
     

which corresponds to the lowest eigenvalue of the matrix  A  
whose elements are given by,
     

where   R(z)    is the real part of  z . The associated eigen-
vector gives the optimal collinearity direction. Setting 
  xφ̃ = 1

2 (φ́ + φ̀)   ,   yφ̃ = −ı
2 (φ́ − φ̀)    and   zφ̃ = φ̂   , we have in 

this notation,
     

where   δμν    is the Krönecker symbol. 
 Returning to the H 2 O +  example and applying these for-

mulae, we obtain
     

The diagonalization of the  A -matrix gives the optimal col-
linear direction:
     

which is only slightly tilted with respect to the  z -direction, 
and the system is quasi-collinear in this direction since 
col = 0.000028 is very close to zero. This shows that the 
noncollinearity contribution to   〈ΦGCHF|S2|ΦGCHF〉    could 
be further reduced by more than one order of magnitude by 
selecting the optimal quantization axis corresponding to   u0    
instead of the spatial  z -axis. The perpendicularity contribu-
tion would decrease accordingly. 

    4   Conclusion 

 We have decomposed the expectation value of the spin 
operator  S  2  into (1) a term formally identical to its expres-
sion for a ROHF reference wave function, (2) a term called 
“spin contamination” because it is formally analogous to 
that derived by Amos and Hall [ 8 ] for DODS wave func-
tions, (3) a noncollinear contribution which can be mini-
mized by following a procedure recently introduced [ 32 ], 
(4) a term called the “perpendicularity contribution” which 
arises from the release of the  z -collinearity constraint but 
which should rather be regarded as arising from the release 
of the “nonperpendicularity constraint” on the spin density. 
The collinearity and nonperpendicularity constraints are 
correlatives. 

(23)col := min
u∈S2

col(u),

(24)Aμν = R(〈SμSν〉)− 〈Sμ〉〈Sν〉,

(25)∀μ, ν ∈ {x, y, z} Aμν = δμν
Ne

4
−

Ne∑
i,j=1

〈
μφ̃i|φj〉〈φj|

ν φ̃i〉,

(26)A =

⎛⎝+0.253128 +0.000145 −0.009774
+0.000145 +0.253451 +0.003745
−0.009774 +0.003745 +0.000461

⎞⎠

(27)ut
0 = (+0.0385908, −0.014789, +0.999146),

 Table 1       Expectation value of   〈S2〉    and related quantities for an H 2 O +  
GCHF optimized wave function  

 The geometry parameters were   rOH = 0.99192    Å,   ̂HOH = 101.411   °. 
The basis set consisted of the primitives Gaussian functions left 
uncontracted of Dunning’s cc-pVDZ hydrogen and oxygen basis sets 
[ 35 ]. The infi nite-order two-component (IOTC) relativistic Hamilto-
nian of Barysz and Sadlej [ 36 ] was employed 

    Nα       +4.999546  

    Nβ       +4.000454  

    
(

Nα

2 −
Nβ

2

)(
Nα

2 −
Nβ

2 + 1
)
       +0.749091  

   z -noncollinearity    +0.000461  

   x ,  y -nonperpendicularity    +0.000427  

  Spin contamination    +0.007033  

    〈S2〉       +0.757013  

179Reprinted from the journal



 Theor Chem Acc (2015) 134:125

1 3

 We have evaluated these four different contributions 
for a GCHF calculation on the H 2 O +  cation. Note that we 
used the IOTC relativistic Hamiltonian [ 36 ] so that the term 
“spin contamination” is not really appropriate in this con-
text, departure from the ROHF reference value being legiti-
mate. However, the so-called spin contamination contribu-
tion has been found to dominate the noncollinearity and 
perpendicularity ones. This could be made even more so, 
by tilting the quantization axis to the optimal collinearity 
direction. 
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be comparable to accurate quantum chemistry methods in 
many cases [ 4 – 18 ]. So far this is the only natural orbital 
functional (NOF) that has been obtained by top-down 
and bottom-up methods [ 19 ]. In the bottom-up method, 
the functional was generated by progressive inclusion 
of known necessary  N -representability conditions on the 
2-RDM, whereas the top-down method was used through 
reducing the energy expression generated from an  N -parti-
cle wavefunction to a functional of the occupation numbers 
and natural orbitals [ 5 ]. In the case of PNOF5, this wave-
function is an antisymmetrized product of strongly orthog-
onal geminals (APSGs), with the expansion coeffi cients 
explicitly expressed by the occupation numbers [ 20 ,  21 ]. 

 The idea of a function of this type dates back to the early 
fi fties [ 22 ,  23 ] and is inspired by the valence bond theory 
[ 24 ,  25 ]; in fact, PNOF5 can also be considered as a type of 
GVB-PP method with fi xed signs for the expansion coef-
fi cients of the corresponding determinants. Many scientists 
have worked actively in the fi eld of strongly orthogonal 
geminals, and one of them is Professor Péter R. Surján to 
whom is dedicated this Festschrift. Indeed, an excellent 
review summarizing the evolution of the geminal theory 
up to 1999 can be found at his work [ 26 ]. An overview of 
geminal-based perturbative techniques for describing elec-
tron correlation was given recently [ 27 ]. 

 Consequently, PNOF5 is an orbital-pairing approach 
that takes into account most of the non-dynamical effects, 
but also an important part of the dynamical electron corre-
lation corresponding to the intrapair (intrageminal) interac-
tions. The existence of a generating wavefunction confi rms 
that PNOF5 is strictly  N -representable, i.e., the 2-RDM is 
derived from a function that is antisymmetric in  N -particles 
[ 28 ]. Moreover, it demonstrates the size extensivity and 
size consistency of PNOF5, which is an inherent property 
to the generating singlet-type APSG wavefunction [ 29 ,  30 ]. 

                     Abstract     The performance of the “thermodynamic frag-
ment energy method” (FEM) in the context of natural 
orbital functional theory (NOFT) in its PNOF5 implemen-
tation is assessed. Two test cases are considered: the linear 
chains C  n  H 2 n +2  ( n  = 1, 10) and the hydrogen-bonded (FH)  n   
( n  = 1, 8) clusters. Calculations show a fast convergence 
of the PNOF5-FEM method, which allows the treatment of 
extended system at a fractional cost of the whole calcula-
tion. We show that this type of methodologies could expand 
the range of systems achievable by NOFT due to the sig-
nifi cant reduction in the computational cost. 

   Keywords     Natural orbital functional theory    ·  Fragment 
energy method    ·  APSG wavefunction  

      1  Introduction 

 In the last decade, a series of functionals has been devel-
oped [ 1 ,  2 ] using a reconstruction proposed by Piris [ 3 ] of 
the two-particle reduced density matrix (2-RDM) in terms 
of the one-particle RDM (1-RDM). In particular, the Piris 
natural orbital functional 5 (PNOF5) [ 4 ,  5 ] has proved to 
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 In NOF theory [ 31 ], the solution is established optimiz-
ing the energy functional with respect to the occupation 
numbers and to the natural orbitals, separately. If PNOF5 
is employed, the occupancies can be expressed through 
auxiliary variables in order to enforce automatically the 
 N -representability bounds on the 1-RDM, so the variation 
can be performed without constraints. A self-consistent 
procedure proposed in Ref. [ 32 ] yields the natural orbitals. 
This scheme requires computational times that scale as  n  4 , 
 n  being the number of basis functions, like in the Hartree–
Fock (HF) approximation. However, our implementation 
in the molecular basis set requires also four-index trans-
formation of the electron repulsion integrals, which is the 
time-consuming step though a parallel implementation of 
this part of the code has substantially improved the perfor-
mance of our program. Besides the matrix scaling carried 
out in [ 32 ], the direct inversion in the iterative subspace 
(DIIS) method has recently been implemented in our code, 
but new techniques should be considered to reduce the 
number of iterations required to achieve the convergence. 

 In spite of its promising performance, the computational 
cost of PNOF5 calculations prevents them for a wider use. 
In this sense, any strategy to reduce calculation times is 
highly interesting, as it would expand the range of appli-
cability of NOF theory. The fragmentation technique has 
allowed to span the range of systems attainable by wave-
function-based and density-functional theories, by means 
of a dividing approach that allows the calculation of the 
whole system fragmented in subsystems. In the present 
paper, we use such an approach, the so-called thermody-
namic fragment energy method (FEM) [ 33 ], to assess the 
performance of PNOF5 in the context of fragment energy 
calculations. 

 The aim of this work is to determine how PNOF5-FEM 
energies converge to the exact PNOF5 values for selected 
oligomers, namely the polyalkene chains C  n  H 2 n +2  and pla-
nar zigzag (FH)  n   clusters. The size-consistency property, 
and the fact that the functional tends to localize spatially 
the natural orbitals, makes this functional an exceptional 
candidate for fragment calculations. We demonstrate that 
the convergence of fragment energy calculations is very 
fast, especially in those cases where the interaction between 
fragments is small.  

    2   Methods 

   2.1   The functional 

 At the beginning [ 4 ], PNOF5 was formulated as an orbital-
pairing approach that involves coupling each orbital  g , 
below the Fermi level ( g  ≤  F  =  N /2), with only one orbital 
above  F  ( N   g   = 1). This model was further improved by 

a better description of the electron pair in the so-called 
extended PNOF5 [ 5 ], in which each orbital  g  was cou-
pled with  N   g    >  1 orbitals above  F . This pairing condition 
is refl ected in the following sum rule for the occupation 
numbers:
     

where  p  is the running index referring to the spatial part 
of natural spin orbitals and  n   p   their occupation numbers. 
Notice that for spin-compensated systems the spatial part 
of  α  and  β  natural spin orbitals are the same, so that the 
total occupation number for a given natural spatial orbital 
is   nocc

p = nα
p + nβ

p = 2 × np    and therefore can take values 
between [0, 2]. 

 In Eq. ( 1 ),   �g    is the subspace containing the orbital  g  
and its  N   g   coupled orbitals. It is worth to note that these 
subspaces are mutually disjoint   

(
�g1 ∩�g2 = ∅

)
   , i.e., 

each orbital belongs only to one subspace   �g   . The PNOF5 
energy for a singlet state of an  N -electron system can be 
cast as
     

The fi rst term of the energy ( 2 ) draws the system as inde-
pendent  F  electron pairs described by
     

     

where   Hpp    denotes for the one-particle matrix elements of 
the core Hamiltonian.   Jpq = 〈pq|pq〉    and   Kpq = 〈pq|qp〉    
are the usual direct and exchange integrals, respectively. 
  Lpq = 〈pp|qq〉    is the exchange and time-inversion integral 
[ 34 ], which only differs in phases of the natural orbitals 
with respect to the exchange integrals, so   Lpq = Kpq    for 
real orbitals. The interaction energy   Eint

pq     is given by
      

 Accordingly, the last term of Eq. ( 2 ) contains the con-
tribution to the HF mean fi eld of the electrons belonging to 
different pairs. It is clear that the weaknesses of this Ansatz 
is the absence of the interpair electron correlation. Recently 
[ 35 ], a new functional PNOF6, which includes interpair 
correlations, has been developed. The latter is able to treat 
orbital delocalization in aromatic systems such as in ben-
zene, a key aspect in radical stabilization. In this work, we 
study systems in which such effects are not present, so it 
seems proper to use the PNOF5 approach. Moreover, we 

(1)

∑
p∈�g

np = 1; g = 1, F

(2)E =

F∑
g=1

Eg +

F∑
g1 �=g2

∑
p∈�g1

∑
q∈�g2

Eint
pq

(3)
Eg =

∑
p∈�g

np
(
2Hpp + Jpp

)
+

∑
p,q∈�g,p�=q

�
(
np, nq

)
Lqp

(4)�
(
np, nq

)
=

{
−
√

npnq, p= g or q= g
√

npnq, p, q > F

(5)Eint
pq = nqnp

(
2Jpq −Kpq

)
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will limit ourselves to the simplest formulation of the func-
tional, i.e., we consider  N   g   = 1. Besides, in the present 
paper we will fi x the  n  associated with core orbitals to 1. 

    2.2   The “fragment energy method” (FEM) 

 We follow the “fragment energy method” (FEM) proposed 
by Suárez et al. [ 33 ], in which the total energy of a mol-
ecule   P    composed by a linear chain of M interconnected 
fragments  A   i   (  A1 − A2 −... −AM   ) is estimated as the sum of 
the energy of the fragments. Thus,
     

where  δ  E  is the error committed by the approximation. 
 The fragment energy   EF

R (P)    is defi ned according to
     

where   BR
i     are buffer regions that include a number of 

atoms around the fragments according to a well-defi ned 
R-dependent criterium (i.e., a distance and a number of 
monomer units), and  Y   i   are atoms or functional groups 
introduced to cap the boundaries upon fragmentation 
of covalent bonds. For details, we refer to the work of 
Suarez et al. [ 33 ]. The evaluation of fragment energies is 
less demanding computationally than the evaluation of the 
energy of the whole molecule. As the size of the buffer 
region increases, more accurate calculations are performed 
and smaller  δ  E  errors are obtained, but at higher computa-
tional cost. We have to take into account that PNOF5 scales 
as  f ( m ) ×  N  4  (where  f ( m ) is a prefactor related to the  m  
number of iterations), due to the required four-index trans-
formation of the J and K integrals in the molecular orbital 
basis ( N  4  scaling). At present, the code is time-consuming 
since the required consistency on the minimization over 
occupations and coeffi cients of the natural orbital lead to 
the need of performing several cycles (large  m  ). Moreover, 
this scaling prefactor increases with the size of the system. 
Therefore, there is a big advantage of using fragment ener-
gies. The aim of this work is to analyze the convergence of 
these errors with the fragment sizes for PNOF5 method.  

     3   Results and discussion 

 Geometries were optimized at the B3LYP/6-31+G(d) [ 36 ] 
level of theory using the GAUSSIAN09 program package [ 37 ]. 
For the (FH)  n   clusters, we fi rst optimized the (FH) 8  cluster, 

(6)E(P) = EF
R (P)+ δE

(7)

EF
R (P) = E

(
A1 − BR

1

)
−

M−1∑
i=1

E
(

Yi − BR
i

)

+

M−1∑
i=2

E
(

Yi−1 − Ai − BR
i

)
+ E(YM−1 − AM)

and the rest of geometries were taken by deleting FH units, to 
prevent the collapse of the cluster of lower size to geometries 
other than zigzag ones. All PNOF5 calculations have been car-
ried out using our computational code DoNOF with the 6-31G 
and 6-31G(d,p) basis set [ 38 ] and the correlation-consistent 
valence double- ζ  (cc-pVDZ) developed by Dunning et al. [ 39 ]. 
The matrix element of the kinetic energy and nuclear attrac-
tion terms, as well as the electron repulsion integrals, are inputs 
to our computational code. In the current implementation, we 
have used the GAMESS program [ 40 ,  41 ] for this task. The 
convergence criteria applied for PNOF solutions is 10 −8  a.u. in 
the energy and 10 −5  for the tolerance of the hermiticity of the 
matrix of Lagrange multipliers  λ  (see reference [ 32 ] for details 
on the iterative diagonalization procedure).        

   3.1   Polyalkene chain C  n  H 2 n +2  

 PNOF5/6-31G energies for oligomers of size  n  = 1, 10 
and PNOF5/cc-pVDZ energies for  n  = 1, 8 can be found 
in Table  1 . In order to calculate fragment energies, we will 
particularize Eq. ( 7 ) for the C  n  H 2 n +2  oligomers. In this 
case, the fragments are constituted by   Ai = −(CH2)i−    
units and the terminal –CH 3 . H atoms are used to cap the 
boundaries upon fragmentation ( Y   i   =  H ). Finally, the buffer 
region is constituted by a number of –CH 2 – units, namely 
  BR

i = −(CH2)R − H   . For this particular case, Eq. ( 7 ) can 
be cast as
     

where  n  is the order of the oligomer. Equation ( 8 ) implies 
that the evaluation of fragment energy of a  n -size oligomer 
with a  R -buffer region requires the calculation of three 
oligomers of size  R  + 1,  R  and  R  − 1. Therefore, the size 
of the buffer region determines the size of the largest oli-
gomer in the fragment energy calculation. Obviously, the 
larger the  R -size, the more accurate the results, but also the 
higher computational cost. The formula above can be fur-
ther simplifi ed by taking into account that  E ( P   R  ) −  E ( P   R −1 ) 
is a measure of the bond energy between fragments, and 
this bond energy can also be estimated more accurately by 
 E ( P   R+1  ) −  E ( P   R  ). Hence,
     

For convenience, we will use the index  l  for the largest oli-
gomer size in fragment calculations, namely
     

In summary, the evaluation of a fragment energy requires 
the evaluation of the energy for two oligomers of size  l  
and  l  − 1. The size of the largest oligomer in the fragment 
calculations is determined by the size of the buffer region 
according to  l  =  R  + 1. 

(8)EF
R (Pn) = E(PR+1)+ (n − R − 1)

[
E(PR)− E(PR−1)

]

(9)EF
R (Pn) = (n − R)E(PR+1)− (n − R − 1)E(PR)

(10)EF
l (Pn) = (n − l + 1)E(Pl)− (n − l)E(Pl−1)
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 As mentioned above, the aim of this work is to determine 
how fragment energies converge to the exact PNOF5 energy 
for a given size of the oligomer as function of  l . Fragment 
energies,   EF

l (Pn)    , for the oligomers of size ( n  = 3, 10) cal-
culated with the 6-31G basis set can be found in Table  1 , 

along with the difference between the two energies per oli-
gomer unit,  δ  E / n , in kcal/mol. In Fig.  1 , we represent  δ  E / n  
as a function of the largest oligomer size ( l ) used in the 
fragment calculation. Calculations were repeated with the 
cc-pVDZ basis set for  n  = (3, 8) and 6-31G(d,p) basis set 

 Table 1       PNOF5/6-31G energies  E ( P   n  ) and fragment energies   EF
l (Pn)    (Eq.  10 ), in a.u., for the C  n  H 2 n +2  oligomers, and the corresponding error, 

 δ  E , in kcal/mol  

 Geometries were optimized at the B3LYP/6-31+G(d) level of theory 

  6-31G    cc-pVDZ    6-31G(d,p)  

   n      E ( P   n  ) 
 (a.u.)  

  l      δE/n    
 (kcal/mol)  

   n      E ( P   n  ) 
 (a.u.)  

  l      δE/n    
 (kcal/mol)  

   n      E ( P   n  ) 
 (a.u.)  

  l      δE/n    
 (kcal/mol)  

  1    −40.24169045        1    −40.25889725        1    −40.262046      

  2    −79.30382845        2    −79.34030290        2    −79.344005      

  3    −118.367272    2    −0.273    3    −118.422678    2    −0.203    3    −118.426983    2    −0.213  

  4    −157.430646    2    −0.399    4    −157.505028    2    −0.300    4    157.509836    2    −0.300  

  3    0.011    4    3    0.004    3    0.020  

  5    −196.493955    2    −0.466    5    −196.587301    2    −0.349    5    −196.592634    2    −0.345  

  3    0.026    3    0.016    3    0.038  

  4    0.008    4    0.010    4    0.007  

  6    −235.557275    2    −0.512    6    −235.669573    2    −0.382    6    −235.675439    2    −0.376  

  3    0.034    3    0.024    3    0.050  

  4    0.012    4    0.016    4    0.011  

  5    −0.001    5    0.000    5    0.000  

  7    −274.620592    2    −0.545    7    −274.751846    2    −0.405          

  3    0.041    3    0.030          

  4    0.016    4    0.021          

  5    −0.002    5    0.000          

  6    0.000    6    0.000          

  8    −313.683917    2    −0.570    8    −313.834122    2    −0.422          

  3    0.045    3    0.034          

  4    0.018    4    0.024          

  5    −0.003    5    0.000          

  6    0.000    6    0.000          

  7    −0.001    7    0.000          

  9    −352.747238    2    −0.589                  

  3    0.048                  

  4    0.019                  

  5    −0.003                  

  6    0.000                  

  7    −0.001                  

  8    0.000                  

  10    −391.810562    2    −0.604                  

  3    0.051                  

  4    0.021                  

  5    −0.004                  

  6    0.000                  

  7    −0.001                  

  8    0.000                  

  9    0.000                  
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for ( n  = 3, 6), obtaining similar results. Therefore, we will 
analyze the PNOF5/6-31G results for which a larger data-
set of oligomers was calculated. 

 There is a very good convergence of the fragment calcu-
lations for any of the oligomer size. It is remarkable, that in 
all cases, we are within chemical accuracy (as defi ned by 
an error of  < 1 kcal/mol per oligomer unit) for any oligomer 
and fragment size calculation. For instance, if we consider 
the largest oligomer, namely C 10 H 22 , the  δ  E / n  error of the 
fragment energies for  l  = 2, 9 is −0.604, 0.051, 0.021, 
−0.004, 0.000, −0.001, 0.000, 0.000 kcal/mol, respec-
tively. Thus, the errors in the energy converge very fast 
and gradually between  l  = 2 to  l  = 6. For higher fragment 
sizes, we can say that the results are converged within the 
accuracy of the method. 

 As expected for a given  l , the errors get bigger as the 
size of the oligomer increases, but it is very relevant that 
these increases are very low. For instance, if we consider 
the smallest fragment calculation ( l  = 2), the error obtained 
for the different oligomer sizes is all within the same order 
of magnitude. Thus, for  l  = 2, we obtain a  δ  E / n  of only 
−0.273 kcal/mol (C 3 H 8 ), −0.399 (C 4 H 10 ), −0.466 (C 5 H 12 ), 
−0.512 (C 6 H 14 ), −0.545 (C 7 H 16 ), −0.570 (C 9 H 20 ), −0.589, 
−0.604 (C 10 H 22 ). 

 As one can see from Table  1 , the improvement on the 
basis set implies no dramatic changes, even an slight ame-
lioration of the convergence is observed in fragment ener-
gies. There is a very fast and good convergence of PNOF5 
fragment energies with fragment size. In all cases when 
considering   l ≈ n/2   , results are very accurate with errors 
within the chemical accuracy. 

 It is clear that linear C  n  H 2 n +2  oligomers are a very 
favorable case for fragment energy calculations. This is not 

surprising due to the nonpolar nature of the bonds between 
fragments, and the small interaction expected among the 
monomers of the chain. Therefore, we decided to inves-
tigate a less favorable case: a chain of hydrogen bonds 
among units with polar bonds: (FH)  n  . 

    3.2   Hydrogen-bonded chain (FH)  n   

 This case is a prototypical system bound by a chain of 
hydrogen bonds. We have constructed a planar zigzag 
(FH) 8  cluster and employed only the cc-pVDZ basis set. 
The incremental energies per cluster unit are depicted in 
Fig.  2 . As the size of the cluster increases, the energy per 
FH unit decreases indicating some cooperativity among the 
whole hydrogen-bonded chain in the hydrogen bond inter-
action between two neighbor FH units. Notice that as the 
size of the clusters increases, one should reach a limiting 
value, still not attained by the size of the clusters of the pre-
sent work. 

 Contrary to the alkane series, in this case, the higher the 
cluster size, the lower the energy per cluster unit. This is 
expected for a system bound by hydrogen bonds, due to 
the cooperative nature of the hydrogen bonding network. 
As the cluster size increases, the increments in energy per 
cluster unit tend to increase linearly. For instance, at  n  = 2, 
we obtain a value of 1.9 kcal/mol, and at  n  = 8, a value 
of 4.9 kcal/mol, at the PNOF5/cc-pVDZ level of theory. 
Remind that these structures are frozen.        

 Note that in this case there is no need to introduce cap 
atoms, since the fragments are constituted by each FH unit. 
The buffer region will be formed of  R -number of FHs. It is 
straightforward to demonstrate that the fragment energies 
can be calculated according to a formula analogous to the 
one used in the previous section, namely

 Fig. 1       Difference in energy between oligomer energy (  E(Pn)   ) 
and fragment energies (  EF

l (Pn)   ) per oligomer size, namely 
  δE/n =

[
E(Pn)− EF

l (Pn)
]
/n    , in kcal/mol. Calculations done at the 

PNOF5/6-31G level of theory for oligomers of size  n  = 1, 10  

 Fig. 2       Energy per oligomer unit ( E / n ) of the (FH)  n   clusters with 
respect to the energy of the hydrogen fl uoride ( E  FH ). Calculations 
done at the PNOF5/cc-pVDZ level of theory  
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with  l  =  R  + 1. Results can be found in Table  2  and 
Fig.  3 . The fi rst aspect to remark is that the errors in frag-
ment energies are bigger than for the alkane series. For 
instance, the error   δE/n    for the (FH) 8  cluster with  l  = 4 
is −0.7739 kcal/mol, whereas for   C8H16    is one order of 
magnitude less, 0.0239 kcal/mol. The convergence of frag-
ment energies with  l  is signifi cantly slower than in the case 
of C  n  H 2 n +2 . The decay in   δE/n    for (FH) 8  with   l = 2, 7    is 
−1.678, −1.229, −0.774, −0.532, −0.309, −0.129 kcal/
mol, respectively. This is a signifi cant reduction in error but 
at a much lower rate than for C  n  H 2 n +2  system. On the other 
hand, notice that these errors show a systematic behavior, 
approaching the total energy of the cluster from above, 
due to the gradual recovery of the cooperative effects in 
the hydrogen bonding network as the size of the fragments 
increases and approaches the total size of the cluster. For a 
given size  l , the errors also increase when the cluster grows 
at a higher rate than in the alkane series; for instance, for 
 l  = 2 the error in evaluating the energy for   (FH)n    increases 

(11)EF
l (Pn) = (n − l + 1)E(l)− (n − l)E(l − 1)

with the value of   n = 3, 8    as −0.247, −0.510, −0.764, 
−1.033, −1.328, −1.678 kcal/mol, respectively.         

 The origin of the worst performance of fragment ener-
gies for   (FH)n    cluster is the interaction between fragments. 
The interaction between hydrogen-bonded species is of 
long range type. Accordingly, the interaction is extended 
over large number of clusters and gives rise to coopera-
tive effects among the hydrogen bonding network. The use 
of fragment energies will therefore have a sizable effect. 
However, in the case of alkane, even though we fragment 
the molecule through covalent bonds, the apolar nature of 
the fragments makes them more amenable for fragment 
calculations. However, one has to highlight that the conver-
gence is still quite good, and considering fragment calcula-
tions of size   l ≈ n/2    , chemical accuracy is obtained for all 
the clusters. 

     4   Conclusions 

 We can conclude that the size-consistent and localized 
orbital nature of PNOF5 allows for a good performance 
of fragment calculations. For fragment calculations of 
size   l ≈ n/2    , the chemical accuracy is obtained for all the 
clusters, even in the case of hydrogen bond interactions 
between the units. This leads to very signifi cant compu-
tational gains, at least of one order of magnitude. There-
fore, the PNOF5-FEM method could be a promising tool 
to extend the size of systems amenable for PNOF-type 
calculations. 
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 Table 2       PNOF5/cc-pVDZ energies,  E ( P   n  ) and fragment energies 
  EF

l (Pn)    (Eq.  11 ), in a.u., for the (FH)  n   clusters, and the corresponding 
error divided by the number of FH units,   δE/NFH   , in kcal/mol  

 Geometries were optimized at the B3LYP/6-31+G(d) level of theory 

   n      E ( P   n  ) 
 (a.u.)  

  l      δE/NFH    
 (kcal/mol)  

  1    −100.076915      

  2    −200.159778      

  3    −300.243820    2    −0.247  

  4    −400.328752    2    −0.510  

  3    −0.140  

  5    −500.414457    2    −0.764  

  3    −0.320  

  4    −0.097  

  6    −600.501109    2    −1.033  

  3    −0.540  

  4    −0.261  

  5    −0.099  

  7    −700.588907    2    −1.328  

  3    −0.799  

  4    −0.480  

  5    −0.273  

  6    −0.103  

  8    −800.678348    2    −1.678  

  3    −1.123  

  4    −0.774  

  5    −0.532  

  6    −0.309  

  7    −0.129  

 Fig. 3       Error in PNOF5/cc-pVDZ fragment energies,   EF
l (Pn)   , with 

respect to the energy of the cluster   E(Pn)    for the   (FH)n    clusters, 
divided by the number of FH units in the cluster,   δE/NFH   , in kcal/mol  
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      1  Introduction 

 It is well known that Hartree–Fock (HF) theory not only 
has been proven to be quite suitable for calculations of 
ground state (GS) properties of electronic systems, but 
has also served as a starting point to develop many-parti-
cle approaches which deal with electronic correlation, like 
perturbation theory, confi guration interaction methods and 
so on (see e.g., [ 1 ]). Therefore, a large number of sophis-
ticated computational approaches have been developed 
for the description of the ground states based on the HF 
approximation. One of the most popular computational 
tools in quantum chemistry for GS calculations is based on 
the effectiveness of the HF approximation and the compu-
tational advantages of the widely used many-body Møller–
Plesset perturbation theory (MPPT) for correlation effects. 
We designate this scheme as “HF + MPPT,” here after 
denoted “HF + MP2.” 

 There is far less reported experience for the HF studies 
of electronic excited states (ESs). Especially, highly, doubly 
and core hole excited (ionized) states are not often studied. 
It is clear that existing ground state self-consistent fi eld 
(SCF) methods cannot be directly applied to excited states 
of the same symmetry or of the same spin multiplicity as a 
lower state because of the so-called variational collapse i.e., 
the optimization procedure will fi nd only the lowest solution 
of a given symmetry or a given spin multiplicity. Therefore, 
such calculations for ES cannot be considered as routine. 
The most powerful scheme for accurate treatment of ESs is 
based on multireference methods [ 2 – 8 ]. They typically pro-
vide an accuracy of about 0.1 eV but require the expense 
of much computational cost. Thus, it can be quite diffi cult 
to carry out the corresponding calculations. Such meth-
ods are, however, indispensable to study systems where 
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single-confi guration methods cannot be applied. However, 
in cases where a multireference approach is necessary, it is 
clear that the orbitals of a single confi guration, together with 
a basis set that has been specifi cally optimized for a given 
excited state, will prove more appropriate for the devel-
opment of many-body correlation methods than orbitals 
expanded in a basis set constructed for the ground state. Fur-
thermore, it would be very useful to have an analogue of the 
“HF + MP2” formalism for the description of excited states 
which can be adequately described by a single Slater deter-
minant. In doing so, we should take into account that the 
basis functions that are used to construct molecular orbit-
als are typically optimized to describe the ground states of 
atoms. Remembering that the ground and excited states are 
often of quite different character, it is desirable to use differ-
ent basis sets for different states. “The desirability of using 
different basis sets for different states” was already pointed 
out by Shull and Löwdin [ 9 ] in 1958. It is especially impor-
tant for highly excited states. We shall show that our meth-
odology allows a basis set to be optimized for the excited 
state under consideration with essentially the same com-
putational efforts as for the ground state. Such an approach 
provides a compact and accurate representation of excited 
state wave functions. On the other hand, fi nding a method 
that offers a well-balanced treatment of both states is often 
problematic. Accounting for electron correlation in excited 
states is not as straightforward as in the ground state. 

 In this contribution, we further develop the “HF + MP2” 
formalism for excited states focusing our attention on cal-
culations of the ground state and excited state energies in a 
balanced manner, i.e.,

   1.      Reference confi gurations are constructed by employ-
ing the same computational scheme. For example, 
the ground and excited SCF functions are constructed 
using the Hartree–Fock equations, whose solutions are 
approximated in one particle basis sets optimized spe-
cifi cally to the state under consideration.   

  2.      Correlation effects are taken into account using compa-
rable schemes for the ground and excited states using, 
for example, many-body Møller–Plesset-like perturba-
tion theory.     

 Some preliminary results in this direction were reported 
in papers [ 10 ,  11 ]. Here, we extend the theory and practi-
cal calculations to highly doubly excited states and doubly 
ionized core hole states. A simple and easily implemented 
asymptotic projection (AP) method for taking orthogo-
nality constraints into account, which has been proposed 
earlier [ 12 – 14 ], allows one to perform the “HF + MP2” 
scheme for the ground and excited states with essentially 
the same computational costs. The AP method is based on 
the properties of self-conjugate operators. It is general and 

applicable to any problem that can be cast in the form of 
an eigenvalue equation with some orthogonality constraints 
imposed on the eigenvectors. 

 The present work is arranged as follows: in Sect.  2 , 
orthogonality constraints for single determinantal wave 
functions and some existing methods to prevent “vari-
ational collapse” are briefl y discussed. Our orthogonality-
constrained HF method for excited states is presented in 
Sect.  3 . Unlike existing self-consistent fi eld (SCF) tech-
niques based on the Roothaan open-shell theory [ 15 ], 
it does not involve off-diagonal Lagrange multipliers. 
Additionally, equations for basis set optimization are also 
derived. The well-defi ned Møller–Plesset-like perturbation 
theory based on optimal excited orbitals generated by the 
proposed HF method is the subject of Sect.  4 . In addition 
single excitations do not contribute because the excited 
state orbitals, like the ground state orbitals, satisfy the gen-
eralized Brillouin theorem. In Sect.  5 , we apply the formal-
ism to highly doubly excited states of atoms as well as to 
doubly ionized core hole states of diatomic molecules. 

    2   Specifi c features of SCF excited states 
calculations 

 Quantum mechanics requires  exact  wave functions to be 
orthogonal, but it makes no such demand on SCF func-
tions. Indeed, consider the orthogonality condition for the 
 exact  many-electron wave functions describing the ground 
state,   Ψ0   , and the fi rst excited state   Ψ1   , i.e., (see also [ 11 ])
      

 The exact ground state wave function,   Ψ0   , can be written
     

where   Φ0    is the many-electron ground state SCF wave 
function and   χ0    is the correlation correction. Without loss 
of generality, we can require
      

 Similarly, the exact excited state wave function,   Ψ1   , can 
be written
     

where   Φ1    is the many-electron excited state SCF wave 
function and   χ1    is the corresponding correlation correction. 
Again, without loss of generality, we can require
      

 Substituting ( 2 ) and ( 4 ) into ( 1 ), we have
     

(1)〈Ψ0 | Ψ1〉 = 0

(2)Ψ0 = Φ0 + χ0

(3)〈Φ0 | χ0〉 = 0

(4)Ψ1 = Φ1 + χ1

(5)〈Φ1 | χ1〉 = 0

(6)
〈Ψ0 | Ψ1〉 = 〈Φ0 | Φ1〉 + 〈Φ0 | χ1〉

+ 〈χ0 | Φ1〉 + 〈χ0 | χ1〉 = 0
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or
      

 Thus we see that the SCF wave functions do not, in gen-
eral, satisfy orthogonality constraints analogous to those 
obeyed by the exact wave functions. 

 It is worth also noting that the imposition of the orthogo-
nality constraint on an approximate lower state wave func-
tion, such as the Hartree–Fock function, does not, in gen-
eral, yield an excited state energy which is an upper bound 
to the exact excited state energy. An upper bound to the 
excited state energy is obtained if we impose the additional 
constraint
     

which is much more diffi cult to implement. In practice, if 
the lower state energy and the corresponding wave function 
are known accurately, then the coupling matrix element 
  〈Φ0|H|Φ1〉    is expected to be small. 

 Several useful methods have been proposed to overcome 
the “variational collapse” problem, and a number of differ-
ent schemes have been proposed for obtaining SCF wave 
functions for excited states [ 10 ,  16 – 26 ]. In recent years, 
there has been renewed interest in the orthogonality-con-
strained methods [ 14 ,  27 ] as well as in the SCF theory for 
excited states [ 28 – 32 ]. It is clear that an experience accu-
mulated for the HF excited state calculations can be useful 
to develop similar methods within density functional the-
ory [ 33 – 36 ]. Some of these approaches [ 10 ,  18 ,  19 ,  23 ,  24 , 
 26 ,  30 – 35 ] explicitly introduce orthogonality constraints 
to lower states. Other methods [ 21 ,  22 ,  25 ] either use this 
restriction implicitly or locate excited states as higher solu-
tions of nonlinear SCF equations [ 29 ]. In latter type of 
scheme, the excited state SCF wave functions of interest 
are not  necessarily  orthogonal to the best SCF functions for 
a lower state or states of the same symmetry. 

 In our methodology we impose a constraint upon the 
SCF excited state function so that
     

i.e., we explicitly introduce the orthogonality constraint 
on   Φ1    to the best SCF ground state function   Φ0   . On the 
one hand, the restriction ( 8 ) limits slightly the variational 
degrees of freedom, but, on the other hand, the imposition 
of the constraint ( 8 ) has some advantages:

   1.      it preserves the important orthogonality property of 
exact eigenstates;   

  2.      any lack of orthogonality of the SCF wave functions 
may lead to excited state energies lying below the 
corresponding exact energies (For example, Cohen 
and Kelly [ 37 ] found for the  He  atom the fi rst singlet 
excited state energy  E  1  = −2.16984 hartree, whereas 

(7)〈Φ0 | Φ1〉 = −[〈Φ0 | χ1〉 + 〈χ0 | Φ1〉 + 〈χ0 | χ1〉]

〈Φ0|H|Φ1〉 = 0

(8)〈Φ0 | Φ1〉 = 0,

the observed energy  E   1  
extract   = −2.14598 hartree (See 

also the work of Tatewaki et al. [ 38 ]).);   
  3.      it allows the study of properties which depend on the 

wave functions of different states, e.g., in the evalua-
tion of transition properties (see also [ 23 ,  24 ]);   

  4.      it facilitates the development of a simple perturba-
tion theory expansion for correlation effects in excited 
states [ 10 ] (see also Sect.  4 ).     

 We shall be concerned with ground and excited elec-
tronic states which can be adequately described by a single 
determinantal wave function. For simplicity, we consider 
singly excited states and show how our formalism can be 
applied to highly and doubly excited states. 

 Let   Φ0    be the ground state  unrestricted  Slater determi-
nant constructed from a set of spin orbitals consisting of 
spatial part   

∣∣ϕα
0i

〉
, (iα = 1, 2, . . . , nα)    associated with   α    spin 

functions and orbitals   |ϕβ
0i〉, (i

β = 1, 2, . . . , nβ)    associated 
with   β    spin functions, i.e.,
     

without loss of generality, we defi ne 
  nα > nβ , nα + nβ = N    , where  N  is a number of electrons 
and   S = Sz = (nα − nβ)/2    is the total spin. Similarly,   Φ1    is 
a single  unrestricted  determinant wave function for the fi rst 
excited state:
      

 Then, one can show [ 10 ,  11 ] that the orthogonality con-
dition ( 8 ) is fulfi lled if
     

where   |u〉 =
∑nα

i bi

∣∣ϕα
0i

〉
.    Eq. ( 11 ) requires the orthogo-

nality of all occupied excited state orbital associated with 
  α    spin functions to the arbitrary vector   |u〉,    from the sub-
space of the occupied ground state orbitals associated with 
  α    spin functions. In other words the vector   |u〉    is orthogo-
nal to the subspace defi ned by occupied excited state   α−    
orbitals. A similar condition was also used in Refs. [ 23 ,  24 , 
 35 ]. However, our practical implementation differs essen-
tially from these works. In general, the coeffi cients   bi    can 
be determined by minimizing the excited state Hartree–
Fock energy, i.e., the complete variational space can be 
used instead of simply   |u〉 = |ϕα

0n

〉
   , where   ϕα

0n    is the highest 
occupied molecular orbital. However, our computational 
experience showed that such a choice is a good approxima-
tion for   |u〉    and provides very simple implementation dur-
ing SCF iteration procedure. Using a orthoprojector
     

(9)Φ0 = (N !)−1/2 det
∣∣∣ϕα

01α, . . . , ϕα
0nα;ϕ

β
01β, . . . , ϕβ

0nβ

∣∣∣

(10)Φ1 = (N !)−1/2 det
∣∣∣ϕα

11α, . . . , ϕα
1nα;ϕ

β
11β, . . . , ϕβ

1nβ

∣∣∣

(11)
〈

u
∣∣∣ ϕα

1j

〉
= 0, j = 1, 2, . . . , nα

Pα
u =

∣∣ϕα
0n

〉〈
ϕα

0n

∣∣
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the requirement ( 11 ) can be rewritten in a symmetrical 
form, which is useful when deriving the excited state Har-
tree–Fock equations for orbitals, as follows:
     

This result can be easily extended to higher energy levels. 
For example, for the second excited state the operator   Pα

u    
should be substituted by the orthoprojector
      

 It is clear, for arbitrary  K   th   singly excited state we have
     

Furthermore, this idea can be extended to doubly, triply etc. 
excited states. In contrast to existing SCF methods for hole 
states, we achieve the effect of the excitation (or ionization) 
of electrons by using orthogonality constraints imposed on 
the orbitals of the doubly excited state’s Slater determinant. 
For example, for description of excitations from   ϕα

0k    and   ϕβ
0l    

ground state orbitals, we require a fulfi llment of conditions
     

and
     

where   Pα
k =

∣∣ϕα
0k

〉〈
ϕα

0k

∣∣    and   Pβ
l = |ϕ

β
0l〉〈ϕ

β
0l |   . 

 At the HF level of theory, we call this method con-
strained self-consistent fi eld (CSCF). 

    3   Hartree–Fock and basis set optimization 
equations for excited states 

 We shall follow the unrestricted Hartree–Fock (UHF) for-
malism for obtaining the restricted open-shell HF (ROHF) 
functions to derive the Hartree–Fock equations for excited 
states. For the sake of simplicity, we restrict our attention 
to the fi rst excited state. The problem can be described as:
     

provided that
     

      

(12)

nα∑
j

〈
ϕα

1j|P
α
u |ϕ

α
1j

〉
= 0,

Pα
u =

∣∣ϕα
0n

〉〈
ϕα

0n

∣∣+ ∣∣ϕα
1n

〉〈
ϕα

1n

∣∣ ≡ Pα
u,0 + Pα

u,1etc.

Pα
u =

K−1∑
k=0

Pα
u,k , with Pα

u,k =
∣∣ϕα

kn

〉〈
ϕα

kn

∣∣.

(13)

nα∑
j

〈
ϕα

1j|P
α
k |ϕ

α
1j

〉
= 0,

(14)
nβ∑
j

〈
ϕ

β
1j|P

β
l |ϕ

β
1j

〉
= 0,

(15)EUHF
1 = min〈Φ1|H|Φ1〉/〈Φ1|Φ1〉

(16)〈Φ0|Φ1〉 = 0,

(17)

〈
Φ1

∣∣∣{Ŝ2
− S(S + 1)

}∣∣∣Φ1

〉
= 0.

 Equations ( 16 ) and ( 17 ) can be written in terms of one-
particle orbitals:

   1.      Orbitals must satisfy the restrictions ( 12 ) which ensure 
the orthogonality of Slater determinants ( 16 );   

  2.      Equation ( 17 ) means that the excited Slater deter-
minant must be an eigenvector of the  S  2  operator. As 
shown by Fock [ 39 ], the condition ( 17 ) is fulfi lled 
if the set of orbitals associated with the  β  spin func-
tions lies completely within the space defi ned by the 
set associated with the  α  spin functions. This condition 
eliminates spin contamination and can be written as the 
orthogonality constraint [ 40 ]:

          

   Qα
1 = I − Pα

1    is the orthoprojector on the subspace of the 
virtual  α  spin orbitals and
      

 In order to obtain equations for optimal orbitals for the 
fi rst excited state, we use the stationary condition
      

 Lagrange multipliers   �o    and   �s    are determined by the 
asymptotic projection methodology [ 10 ,  11 ,  40 ]. In practi-
cal applications, we invariably invoke the algebraic approx-
imation by parameterizing the orbitals in a fi nite basis set. 
This approximation may be written
     

where   P1    is an orthoprojector defi ned by a chosen basis set 
for the fi rst excited state. 

 Then the variations in orbitals can be divided into the 
following independent parts, e.g., for the  α  set
     

where   μa   ,  a  = 1, 2,  … ,  A , represents the basis set 
parameters (i.e., the exponents and the positions) and 
  ∂aP1 = ∂P1/∂μa    . The first term in Eq. ( 21 ) does not 
lead to changes in the total energy because it is invari-
ant to any orthogonal transformation of the orbitals of 
any spin among themselves. The energetically signifi-
cant variations are described by the second and third 
terms. The second term corresponds to variations 

(18)
nβ∑
j

〈
ϕ

β
1j|Q

α
1 |ϕ

β
1j

〉
= 0,

Pα
1 =

nα∑
i=1

∣∣ϕα
1i

〉〈
ϕα

1i

∣∣

(19)

δL = δ

⎧⎨⎩EUHF
1 + �s

nβ∑
i=1

〈
ϕ

β
1i|Q

α
1 |ϕ

β
1i

〉
+ �o

nα∑
i=1

〈
ϕα

1i|P
α
u |ϕ

α
1i

〉⎫⎬⎭

(20)|ϕ1i〉 = P1|ϕ1i〉

(21)
∣∣δ ϕα

1i

〉
= Pα

1

∣∣δ ϕα
1i

〉
+ (P1 − Pα

1 )

∣∣∣∣∣δ ϕα
1i

〉
+
∑

a

(∂aP1)

∣∣∣∣∣ϕα
1i

〉
δμa,
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within the finite-dimensional subspace spanned by the 
chosen basis set. The last term allows this subspace 
to be rotated within the Hilbert space of one-particle 
states to attain the deeper minimum with respect to the 
total energy. 

 Substituting Eq. ( 21 ) into Eq. ( 19 ) and taking into 
account the independence of the variations and their arbi-
trariness, we obtain the following equations for orbitals 
(see [ 10 ,  11 ] for more details):
     

and equations for basis set optimization
     

If the  K th excited state is considered then, as men-
tioned, the projector   Pα

u    takes the following form 
  Pα

u =
∑K−1

k=0

∣∣ϕα
kn

〉〈
ϕα

kn

∣∣   . Equations ( 22 ) represent the 
orthogonality-constrained HF method in its general form. 
According to the AP methodology, the orthogonality 
constraint of Eqs. ( 12 ) and ( 18 ) is satisfi ed in the limit 
  �o →∞    and   �s →∞,   , respectively. By setting   �s = 0   , we 
can relax the spin-purity constraint ( 18 ) and go back from 
ROHF to UHF solutions. By setting   �o = 0   , we fall back to 
the ground state. The corresponding orbitals form an opti-
mal set which satisfy the generalized Brillouin’s theorem 
(see [ 40 ] for more details) and lead to the same total energy 
that the one obtained by the Roothaan procedure. In our 
method, the only additional computation required, beyond 
that arising in the standard UHF scheme, is the evaluation 
of the overlap matrix element   〈ϕ0n|ϕkn〉   . 

 Left side of Eq. ( 23 ) represent a gradient of the total 
energy with respect to nonlinear basis set parameters   {μa}    . 
This expression allows these parameters to be determined 
 variationally  and can be also used to construct an algo-
rithm for optimization based on the gradient-like methods. 

 Since neither  λ   s   nor  λ   o   can be infi nity in practical cal-
culations, one has to settle on some large fi nite values. The 
recommended values are  λ   s   = 100 hartrees for the spin-
purity constraint and  λ   o   = 1000 hartrees for the orthogonal-
ity constraint. They provide target accuracy close to 10 −6 . 

 In concluding this section, it is also worth noting that in 

our method all excited confi gurations based on the excited 

Slater determinant   Φ1   , viz.,   Φa
i , Φab

ij     etc., where  i  and  j  refer 

(22)

P1

(
Fα − �sPβ

1 + �oPα
u − εα

i

)
P1
∣∣ϕα

1i

〉
= 0 , �s, �o →∞

P1

(
Fβ + �sQα

1 − ε
β
i

)
P1

∣∣∣ϕβ
1i

〉
= 0, i = 1, 2, . . . , M

(23)

nα∑
i

〈
ϕα

1i

∣∣(∂aP1)F
α
∣∣ϕα

1i

〉
+

nβ∑
i

〈
ϕ

β
1i

∣∣(∂aP1)F
β
∣∣ϕβ

1i

〉
= 0, a = 1, 2, . . . A

to occupied orbitals and  a  and  b  to virtual ones, are orthog-
onal both to   Φ0    and among themselves. Therefore, these 
functions form the orthonormal basis set in the many-body 
space and can be used, unlike other SCF methods which do 
not satisfy the orthogonality of states in the explicit form, 
to develop many-body methods incorporating the correla-
tion effects, in particular, a many-body Møller–Plesset-like 
perturbation theory (see next Section). 

    4   Second-order correction to the energy 
for excited states 

 It is known that within the framework of the Roothaan cou-
pling operator approach, there is no unique way of choos-
ing a reference Hamiltonian,   H(0)   , with respect to which 
a perturbation expansion for correlation effects can be 
developed. Several proposals have been made for open-
shell many-body perturbation theory expansions based 
on a reference from the ROHF formalism [ 41 ,  42 ] or the 
unrestricted Hartree–Fock formalism [ 43 ,  44 ]. We follow 
our papers [ 10 ,  45 ] where an alternative technique for the 
open-shell systems has been developed. In our method, the 
second-order correction to the ground state energy can be 
presented by [ 45 ]:
     

The summations are over spin-orbitals. Subscripts  i ,  j  and 
 a ,  b  correspond to occupied and virtual orbitals of the 
ground state determinant, respectively. Unlike the for-
malism developed in Refs. [ 43 ,  44 ], single excitations do 
not contribute because our orbitals satisfy the generalized 
Brillouin theorem. 

 An optimum set of MOs obtained by means of 
Eq. ( 22 ) allows us to construct a well-defi ned open-shell 
perturbation theory for excited states which is a natural 
extension of the popular closed-shell MP2. For example, 
the zeroth-order Hamiltonian for the fi rst excited state is 
as follows:
     

with Fockians
     

The summation up to  M  −  1  means that the vector   |ϕα
0n    is 

excluded from the subspace of virtual orbitals. Remind 
 M  is the dimension of the basis set for the fi rst ES. We 

(24)E(2)
0 =

occ∑
i>j

virt∑
a>b

∣∣(ϕ0aϕ0i|ϕ0bϕ0j
)
−
(
ϕ0aϕ0j|ϕ0bϕ0i

)∣∣2
ε0i + ε0j − ε0a − ε0b

H(0)
=

nα∑
m=electrons

Fα(m)+

nβ∑
m=electrons

Fβ(m)

Fσ
=

M−1∑
i

∣∣ϕσ
i

〉
εσ

i

〈
ϕσ

i

∣∣, σ = α, β

193Reprinted from the journal



 Theor Chem Acc (2016) 135:3

1 3

shall also omit the subscript “1” for a given ES and 
  Φ1 ≡ Φ(0), Φ0 ≡ Φ

(0)
0    . 

 In contrast to the ground state case, for the excited state 
it is necessary to take into consideration the orthogonality 
constraints. For the fi rst-order correction to the excited state 
reference function,   Φ(1)   , these constraints have the form
     

and the constraints determined by the orthogonality condi-
tion for the states in the fi rst-order perturbation theory leads 
to equation
     

where   P(0)
0 = |Φ

(0)
0 〉〈Φ

(0)
0 |    and 

  P(1)
0 = |Φ

(0)
0 〉〈Φ

(1)
0 | + |Φ

(1)
0 〉〈Φ

(0)
0 |   Then one can show 

that the Rayleigh–Schrödinger perturbation theory leads to 
the following expression for the second-order correction to 
the ES energy [ 10 ]:
     

Here subscripts “ i ” and “ j ” are occupied and “ a ,” “ b ” are 
virtual orbitals in   Φ(0).    

 The fi rst term in Eq. ( 25 ) is immediately recognized as 
the second-order perturbation theory expression for the 
ground state energy [ cf.  with ( 24 )]. The second term in 
Eq. ( 25 ) appears because the Hartree–Fock ground and 
excited state functions are not eigenfunctions of the Ham-
iltonian  H . In practice, if the ground state and excited state 
energies and the corresponding wave functions are known 
accurately then the coupling matrix element   〈Φ(0)|H|Φ(0)

0 〉    

〈
Φ(0)

|Φ(1)
〉
= 0,

P(0)
0

∣∣∣Φ(0)
〉
+ P(1)

0

∣∣∣Φ(1)
〉
= 0

(25)

E(2)
=

occ∑
i>j

virt∑
a>b

∣∣(ϕaϕi|ϕbϕj
)
−
(
ϕaϕj|ϕbϕi

)∣∣2
εi + εj − εa − εb

−

〈
Φ(0)

|H|Φ(0)
0

〉〈
Φ

(1)
0 |Φ(0)

〉

is expected to be small (see also [ 14 ], Sect. 3.1). Further-
more, as the overlap element   〈Φ(1)

0 |Φ(0)〉 < 1,    the last term 
in Eq. ( 25 ) may be neglected during the fi rst stage of calcu-
lations. We used this approximation here. 

 Thus, we obtain comparable perturbation schemes for 
the ground and excited state energies. Use of the asymp-
totic projection technique ensures that calculations for 
excited states require practically the same computational 
time as those for the ground state. 

    5   Results and discussion 

 At present, there are only very few published fi nite basis 
set calculations for excited states (especially for Rydberg 
states [ 46 ]) having the same symmetry as the ground state 
which are based on existing Hartree–Fock methods. In this 
section we demonstrate the potential of our methodology 
by means of the HF calculations for highly doubly excited 
 3  S  states of the He atom (2 s   ns ,  n  = 3, 4, …, 10 and 3 s   ns , 
 n  = 4, 5, …, 11), highly excited 1 s  2   ns  ( n  = 3, …, 9) states 
of the Li atom and of the doubly ionized core hole states 
for some diatomic molecules (CO, NO, LiF) computed at 
the HF + MP2 level of theory. 

   5.1   Atoms 

 For atoms, basis sets of 42 s -gaussians were constructed 
according to the even-tempered prescription i.e., the expo-
nents,  ζ   p  , were defi ned by the geometric series:
      

 The parameters  α  and  β  were optimized for each atom 
and a given excited state. Information of the even-tempered 
basis sets for low-lying states of the He and Li atom can 
be found in Ref. [ 47 ]. More information for highly excited 
state basis sets is available from authors on request. 

 As a fi rst test for orthogonality-constrained HF method, 
hereafter denoted CSCF for constrained self-consistent 
fi eld, the energies of triplet singly excited 1 s   ns  ( n  = 2, 3, 
…, 10) states of the He atom were computed and compared 
with the HF energies obtained with the maximum overlap 
method (MOM) [ 46 ] which does not use orthogonality 
restrictions. The calculations in [ 46 ] were carried out using 
70 s  even-tempered Slater-type basis functions. The results 
of [ 46 ] can be considered as benchmark data. These authors 
used the extended precision in the Mathematica package to 
avoid problems with almost linearly dependent basis set. 
Unlike Ref. [ 46 ], our calculations were restricted to nine 
states (up to 1 s  10 s ) because for  n   >  10 we observed that 
the corresponding basis sets present some linear dependen-
cies and the iterative SCF procedure does not converge. We 
used double precision. The corresponding results are listed 

ζp = αβp, p = 1, 2, . . . , M

 Table 1       Constrained self-consistent ( E  CSCF ) Hartree–Fock energies 
(in hartrees) of triplet 1 s   ns  ( n  = 2, 3, …, 10) states of the He atom 
and energy difference between the MOM method ( E  MOM ) and the one 
proposed here ( E ),  Δ  HF  =  E  CSCF  –  E  MOM  (μhartrees)  

  State     E  CSCF  (this paper)     E  MOM  [ 46 ]     Δ  HF   

  1 s 2 s   3  S     −2.174 250 72    −2.174 250 78    0.06  

  1 s 3 s   3  S     −2.068 484 88    −2.068 484 95    0.07  

  1 s 4 s   3  S     −2.036 436 35    −2.036 436 42    0.07  

  1 s 5 s   3  S     −2.022 582 55    −2.022 582 62    0.07  

  1 s 6 s   3  S     −2.015 357 22    −2.015 357 34    0.12  

  1 s 7 s   3  S     −2.011 117 33    −2.011 117 58    0.25  

  1 s 8 s   3  S     −2.008 418 90    −2.008 419 01    0.11  

  1 s 9 s   3  S     −2.006 595 66    −2.006 595 90    0.24  

  1 s 10 s   3  S     −2.005 306 45    −2.005 306 75    0.30  
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in Table  1 . One can see that the largest deviation from 
benchmark results is only 0.30 μhartrees.  

 In Tables  2  and  3 , triplet doubly excited energies of 
2 s   ns  ( n  = 3, 4, …, 10) states and 3 s   ns  ( n  = 4, 5, …, 11) 
states of He, computed at the CSCF level, are presented. 
Calculations of Ref. [ 46 ] were restricted to only singly 
excited states. Therefore, we compare our CSCF calcula-
tions with accurate theoretical calculations based on a 
confi guration interaction approach with the explicitly cor-
related Hylleraas basis set functions [ 48 ]. One can see that 
the accuracy of the CSCF calculations is improved when 
 n  increases. This observation is in agreement with Ref. 
[ 46 ]. whose authors pointed out that “In those states where 
 n   ≫  1, the electrons are spatially well separated and one 
might anticipate intuitively that they will be weakly cor-
related and that the Hartree–Fock method, which neglects 
such effects, may be an excellent approximation.”   

 In Table  4 , we compare our CSCF excited doublet 1 s  2  
 ns  ( n  = 3, …, 9) energies and excitation energies of the 

Li atom to the “exact” energies obtained with the most 
accurate confi guration interaction wave function using the 
Hylleraas basis set [ 49 ]. The calculations show that the cor-
relation energies  E  exact  −  E  CSCF  for different excited states 
are very similar, since they mainly arise from the 1 s –1 s  
correlation. As a result, excitation energies based on the 

 Table 2       Doubly excited energies (hartrees) computed at the con-
strained self-consistent Hartree–Fock level (method proposed in this 
paper) and their comparison with “exact” values for the 2 s   ns  ( n  = 3, 
4, …, 10) states of He  

  a    Confi guration interaction method with the Hylleraas basis set func-
tions 

  State     E  CSCF  (this work)     E  exact  [ 48 ] a      E  CSCF  −  E  exact   

  2 s 3 s   3  S     −0.584 843 21    −0.602 577 51    0.017 734 30  

  2 s 4 s   3  S     −0.541 993 88    −0.548 840 86    0.006 846 98  

  2 s 5 s   3  S     −0.525 150 96    −0.528 413 97    0.003 263 01  

  2 s 6 s   3  S     −0.516 757 01    −0.518 546 37    0.001 789 36  

  2 s 7 s   3  S     −0.511 964 04    −0.513 046 50    0.001 789 36  

  2 s 8 s   3  S     −0.508 969 03    −0.509 672 80    0.001 082 46  

  2 s 9 s   3  S     −0.506 966 91    −0.507 456 06    0.000 489 15  

  2 s 10 s   3  S     −0.505 538 99    −0.505 922 15    0.000 383 16  

 Table 3       Doubly excited energies (hartrees) computed at the con-
strained self-consistent Hartree–Fock level and their comparison with 
“exact” values for the 3 s   ns  ( n  = 4, 5, …, 11) states of He  

  a    Confi guration interaction method with the Hylleraas basis set func-
tions 

  State     E  CSCF  (this work)     E  exact  [ 48 ] a      E  CSCF  −  E  exact   

  3 s 4 s   3  S     −0.272 245 05    −0.287 277 14    0.015 032 09  

  3 s 5 s   3  S     −0.250 554 08    −0.258 133 98    0.007 579 90  

  3 s 6 s   3  S     −0.240 598 58    −0.244 807 49    0.004 208 91  

  3 s 7 s   3  S     −0.235 129 72    −0.237 672 21    0.002 542 49  

  3 s 8 s   3  S     −0.231 791 54    −0.233 433 33    0.001 641 79  

  3 s 9 s   3  S     −0.229 600 06    −0.230 719 09    0.001 119 03  

  3 s 10 s   3  S     −0.228 079 97    −0.228 880 00    0.000 800 03  

  3 s 11 s   3  S     −0.226 915 03    −0.227 577 80    0.000 662 77  

 Table 4       Excited doublet 1 s  2  ns  ( n  = 3, 4, …, 9) energies (hartrees) 
and excitation energies  ΔE  (eV) computed at the constrained self-
consistent Hartree–Fock level with respect to the 1 s  2 3 s  state and their 
comparison to “exact” [ 49 ] values for Li atom  

  a    Confi guration interaction method with the Hylleraas basis set func-
tions 

  State     E  CSCF  (this work)     E  exact  [ 49 ] a      ΔE  (eV)  

  CSCF    «Exact» 
[ 49 ] a   

  1 s  2 3 s   2  S     −7.310 207 76    −7.354 098 42    0    0  

  1 s  2 4 s   2  S     −7.274 883 90    −7.318 530 85    0.961    0.968  

  1 s  2 5 s   2  S     −7.259 978 78    −7.303 551 58    1.367    1.375  

  1 s  2 6 s   2  S     −7.252 316 91    −7.295 859 51    1.575    1.585  

  1 s  2 7 s   2  S     −7.247 864 34    −7.291 392 27    1.696    1.706  

  1 s  2 8 s   2  S     −7.245 049 87    −7.288 569 83    1.773    1.783  

  1 s  2 9 s   2  S     −7.243 155 19    −7.286 673 59    1.825    1.835  

 Table 5       Total energies (hartree) for the ground (GS) and doubly 
ionized states (DIS) calculated at different levels of approximation, 
namely at the constrained self-consistent Hartree–Fock level and at 
the HF + MP2 level  

 T, D and S refer to triplet, doublet and singlet of two holes created on 
different atomic sites, respectively 

  a    Core level notations of Ref. [ 51 ] are used, for example, core level 
C1 s  −1  O1 s  −1  means double core hole state obtained by removing 
electrons from the 1 s  carbon core orbital and from the 1 s  oxygen core 
orbital 

  Molecule    Core level a     CSCF    HF + MP2  

  CO    GS    −112.776 750    −113.103 104  

  DIS      

  C1 s  −2     −88.253 476    −88.694 091  

  O1 s  −2     −69.636 053    −69.866 416  

  C1 s  −1  O1 s  −1 , S    −81.367 221    −81.666 059  

  C1 s  −1 O1 s  −1 , T    −81.367 167    −81.665 687  

  NO    GS    −129.264 594    −129.623 929  

  DIS      

  O1 s  −2 , D    −86.091 825    −86.341 259  

  N1 s  −2 , D    −96.024 538    −96.399 098  

  LiF    GS    −106.988 804    −107.245 424  

  DIS      

  F1 s  −2     −52.645 367    −52.816 963  

  Li1 s  −1  F1 s  −1 , S    −79.049 260    −79.232 405  

  Li1 s  −1 F1 s  −1 , T    −79.049 465    −79.232 198  
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CSCF method are in good agreement with those computed 
with highly correlated methods.  

    5.2   Molecules 

 In this subsection, we apply our HF + MP2 methodology 
on doubly ionized core hole states. It is known that double 
core ionization potentials are more sensitive to changes in 
the molecular environment [ 50 ]. It is worth also noting that 
there exist very few reported applications for double core 
hole (DCH) states, especially of open-shell molecules [ 51 , 
 52 ]. For molecules under consideration (CO, NO, LiF), 
basis sets consisting of 30 s 9 p  distributed Gaussians were 
used. The exponents and positions of functions were deter-
mined by minimizing the HF energy for each individual 
state. Each  p -functions were presented as a linear combina-
tion of two  s -functions (so-called lobe representation). In 
Table  5 , we present total energies for the ground (GS) and 
doubly ionized states (DIS) calculated at different levels of 
approximation (CSCF and HF + MP2). Using these data, 
double core hole ionization potentials were calculated (see 
Table  6 ) and compared for the NO molecule with results 
of Ref. [ 52 ] and for closed-shell molecules with results of 
Ref. [ 51 ] and available experiment [ 53 ]. In Refs. [ 51 ,  52 ], 
the corresponding calculations were carried out at the self-
consistent fi eld (SCF) level of theory and using the com-
plete active space self-consistent fi eld (CASSCF) method. 
It is worth noting that the SCF and CASSCF calculations 
in these works were performed using a large cc-pVTZ basis 
set.   

 One can see that our results at the CSCF and HF + MP2 
level of approximation are in acceptable agreement with 
experiment and other calculations performed at the corre-
sponding level of approximation. 

 We conclude that the developed constrained HF + MP2 
formalism can be applied to both atoms and molecules 

and to a wide class of physically different states, includ-
ing highly excited states and core excited states, with a rea-
sonable accuracy. However, it is also worth noting that the 
proposed approach cannot be directly applied to important 
class of singlet excited states which are usually described 
in terms of two open-shell determinants. Preliminary appli-
cations of our modifi ed methodology to this problem can 
be found in Ref. [ 54 ] where a partially restricted Hartree–
Fock wave function for singlet excited states is introduced. 
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      1  Introduction 

 Synthetic metals and semiconductors are an important fi eld 
of materials chemistry and physics. These materials are 
based on conjugated   π   -electron systems. On the one hand, 
the various options of synthetic chemistry to link numerous 
possible pieces of conjugated   π   -electron systems together 
allow for tuning the properties of these materials. On the 
other hand, band structure calculations allow for the theo-
retical design of conjugated   π   -electron systems with spe-
cifi c predefi ned properties [ 1 – 8 ]. Poly(sulfur nitride), 
  (SN)x,    has been the earliest example of a synthetic metal 
based on a 1D conjugated   π   -electron system [ 9 ]. It has fi rst 
been synthesized [ 10 ] in 1910, but its conductivity has been 
measured only in 1973 [ 11 ], and its superconductivity at 
0.26 K has been discovered in 1975 [ 12 ]. Another signifi -
cant advance in the fi eld of quasi 1D (semi)conductors was 
the synthesis and characterization of polyacetylene   (CH)x    
by Heeger, MacDiarmid, Shirakawa and coworkers [ 13 – 15 ] 
in 1977. While   (SN)x    is a metal without doping,   (CH)x    is a 
semiconductor with a 1.4 eV band gap [ 16 ]. Despite dec-
ades of work on conjugated polymers,   (SN)x    remains the 
sole polymer that is metallic without doping.   (CH)x    and 
other known conjugated polymers become metallic only 
when doped, e.g., by iodine [ 16 ]. 

 Peierls’ instability theorem from 1955 predicts [ 17 ] that 
an equidistantly placed (quasi) 1D chain of identical atoms 
with a single electron per atomic site is unstable and under-
goes geometric rearrangements, such as bond-length alter-
nation in a unit cell containing two atoms instead of one, 
to stabilize itself. In fact, Peierls’ instability theorem is a 
special case of the well-known Jahn–Teller distortion [ 18 ] 
which states that a molecule with a degenerate ground state 
is unstable and undergoes a geometric distortion until its 
ground state becomes non-degenerate. Peierls’ instability 
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theorem has later been extended to any (quasi) 1D crystals 
containing multiple types of atoms and more than one elec-
tron per atomic site, for reviews see Refs. [ 19 ,  20 ]. The dis-
tortion toward the stabilized structure may also be based on 
charge or spin density waves with a doubled periodicity as 
compared to the geometric periodicity of the system.        

 In reality, 1D polymers form bunches and interact with 
each other. The strength of this interaction also has an 
effect on the applicability of Peierls’ instability theorem. 
  (CH)x    appears to be a classic example of the original form 
of Peierls’ instability theorem, as in reality the unit cell 
consists of two CH units and alternating shorter and longer 
C–C bonds are present along the polymeric backbone [ 21 ]. 
Bond-length alternation is present in   (SN)x    as well [ 22 ]; 
however, it is believed that the intermolecular interaction in 
  (SN)x    is strong enough to suppress Peierls’ instability and 
forces   (SN)x    to take up a specifi c geometry in which each 
strand becomes a metal instead of a semiconductor [ 3 ,  19 , 
 23 – 26 ]. Therefore, the origin of metallicity in   (SN)x    is a 3D 
effect of interchain interactions, and   (SN)x    is generally con-
sidered a 3D system instead of a loose set of 1D polymers. 

 Our recent work in the fi eld of ternary acetylides-based 
semiconductors [ 8 ,  27 ] directed the attention of the present 
author toward acetylenic polymers with –M–C  ≡   C– repeat-
ing units, where M may be a transition metal or a metal-
loid element, such as Te or Se, or sulfur. Several such 
polymers exist in an alkali-doped form in ternary acetyl-
ides [ 28 ]. While the doped forms are mechanically stable, 
the undoped ones are explosive. On the other hand, stable 
organic compounds with –C  ≡   C–(Te/Se/S)–C  ≡   C– struc-
tural units have been known for decades [ 29 ,  30 ]. The gen-
eralization of such chemical bonding systems into the cor-
responding polymers appears reasonable, but has not been 
carried out yet. While the corresponding polymers with Te 
or Se may be explosive, similar to transition metal acetyl-
ides, the one with sulfur, (–S–C  ≡   C–)  x   , is potentially stable 
at least to the degree of stability of   (SN)x   , which is known 
to be explosive when heated to   240 ◦C    [ 31 ]. The explosiv-
ity of transition metal acetylides also varies, for example, 
  CuC2    is a well-known explosive, while stable forms of 
  Cu2C2    have been produced [ 32 ,  33 ]. 

 The investigation of the –S–C  ≡   C– polymer is attractive 
also because its synthesis should be straightforward, based 
on existing synthesis methods on –C  ≡   C–S–C  ≡   C– com-
pounds (see, e.g., Ref. [ 30 ] and reviews Refs. [ 34 – 36 ]). 
Following these recipes, the reaction of dialkali acetylides 
with sulfur dichloride is expected to result in the desired 
polymer, according to
     

where A is conveniently Li or Na. Furthermore, this pro-
posed polymer is also related to polyyne (carbyne), (–
C  ≡   C–)  x   , the one-dimensional carbon-only chain with 

(1)xA2C2 + xSCl2 → (−S−C≡C−)x + 2xACl,

alternating single and triple bonds. While polyyne is very 
unstable and the longest synthesized species contain only 
about one hundred acetylenic units [ 37 – 41 ], embedding 
S atoms between the –C  ≡   C– units may be a way to cre-
ate long stable polymers, with attractive materials proper-
ties. Ladder-type copolymers with acetylenic linking units 
between main strands have been proposed by Kertesz et al. 
[ 6 ] as a way of reducing the band gap of conjugated poly-
mers, primarily that of   (CH)x   . Poly(para-phenylene sulfi de) 
(PPS, [ 42 ]) is a similar polymer to the proposed (–S–C  ≡
   C–)  x    one, in as much as the sulfur atoms link para-phe-
nylene groups (a benzene ring with two external links on 
inversionally symmetric carbon sites) instead of acety-
lenic –C  ≡   C– units. PPS is an industrially produced mate-
rial, and it is synthesized by a polycondensation reaction 
analogous to Eq.  1  with NaCl by-product. Recently, Duan 
et al. developed a composite material consisting of polyyne 
cross-polymerized with polysulfur links performing well as 
cathode material in Li ion batteries [ 43 ]. The present study 
focuses on predicting a few basic properties of the pro-
posed (–S–C  ≡   C–)  x    polymer, poly(sulfur acetylide). 

    2   Results and discussion 

 Density functional theory calculations using the  QUANTUM 
ESPRESSO  program package [ 44 ] have been carried out using 
the PBEsol [ 45 ] exchange–correlation functional with 
ultrasoft pseudopotentials as provided with the program 
package. Eighty Rydbergs wavefunction cutoff has been 
applied. Structural optimization has been carried out until 
the residual forces became smaller than 0.0001 Rydberg/
bohr and the residual pressure on the cell was smaller 
than 1 kbar. Three different conformers and crystal pack-
ings of the (–S–C  ≡   C–)  x    polymer have been explored. The 
one with I4/mmm space group contains straight polymeric 
strands of (–S–C  ≡   C–)  x   , the one with P4/mma space group 
has polymers with armchair conformation, and the one 
with C2/m space group has polymers in zig–zag conforma-
tion. Figure  1  depicts the conformers, while Fig.  2  shows 
the associated band structures. The band structure of the I4/
mmm crystal has been calculated for a unit cell containing 
a single –S–C  ≡   C– unit, using a   10 × 10 × 10    k-space grid. 
The band structure of the P4/mma crystal has been calcu-
lated in a unit cell containing four –S–C  ≡   C– units, using a 
  4 × 6 × 10    k-space grid. The band structure calculation of 
the C2/m crystal used a cell with two –S–C  ≡   C– units and a 
  5 × 6 × 10    k-space grid. The geometries of the given struc-
tures have been relaxed using the above defi ned k-space 
grids.        

 The band structures in Fig.  2  indicate that the straight 
polymers (space group I4/mmm) are metallic, while 
the zig–zag (C2/m) and armchair (P4/mma) ones are 
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 Fig. 1       Supercells of three different conformers of the (–S–C  ≡   C–)      
polymer as obtained from geometry optimization using density func-
tional theory: the linear polymer in a crystal of I4/mmm space group 
symmetry ( a ), the armchair conformer in a crystal of P4/mma space 
group symmetry ( b ) and the zig–zag conformer in a crystal of C2/m 
space group symmetry ( c ). Colors: S— yellow , C— gray   

 Fig. 2       Band structures of three different conformers of the (–S–C  ≡
   C–)      polymer. The one crystallizing in space group I4/mmm (linear 
conformer, panel  a ) is a metal, while the other two ones with space 
groups P4/mma (“armchair” conformation, panel  b ) and C2/m (“zig–
zag” conformation, panel  c ) are semiconductors, both with   ≈ 1.6    eV 
band gaps. The origin of the energy scale is the Fermi energy in each 
case. For paths expansions, see, e.g., Ref. [ 58 ]. For space group I4/
mmm (main axis c is parallel with the chains), the directions Z–A, 
M–  �   , Z–R and X–  �    are perpendicular to the chains, while A–M,   �   –Z 
and R–X are parallel with the linear chains. For the space group C2/m 
(zig–zag geometry, unique axis is b, the direction of the chains), the 
direction A-  �    is parallel with the chains, while   �   –Y is perpendicu-
lar, the rest of the directions close a non-rectangular angle with the 
chains. For space group P4/mma ( c  axis is perpendicular to plane of 
arm-chairs, a axis is parallel with chains), the direction Y-S is parallel 
with the chains, while the rest of the directions are perpendicular  
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semiconductors with   ≈    1.6 eV band gaps. Furthermore, 
the bands of the I4/mmm packed linear polymers cross 
the Fermi level in intervals that are directions parallel 
to the chains and close to boundaries of intervals that are 
directions perpendicular to the chains, also indicating that 
metallicity is primarily an intrinsic property of the linear 
polymers, instead of being due to interchain interactions.  

 Geometric parameters of the relaxed structures are given 
in Table  1 . In the optimum geometry, layers of the zig–zag 
conformers are shifted relative to each other approximately 
by and along a full S–C  ≡   C–S unit, the distance of the lay-
ers is 3.663 Å. The armchair conformers form planes with 
no phase shift between the polymeric strands, and the 
planes are replicated along the surface normal ( c  axis) at 
a distance of 4.136 Å. Nearest neighbor straight polymer 
strands in the I4/mmm packing are translated relative to 
each other such that the S atoms will be located closest to 
the center of the C  ≡   C bond of the nearest strands, and –S–
C  ≡   C– chains are parallel with the longest body diagonal of 
the primitive cell. 

 The S–C bond lengths are symmetric at each S atom 
in all conformers and slightly longer, by 0.006–0.017 Å, 
for the straight polymers than for the bent ones. The C  ≡
   C bond lengths are signifi cantly longer, by   ≈   0.06 Å, for 
the straight polymers than for the bent ones, while they 
are only slightly longer, by   ≈   0.02 Å in the bent ones than 
in acetylene gas (1.203 Å). The C–S–C angle was   101.4◦    
in the zig–zag conformer and   101.2◦    in the armchair one, 
being very close to that in dimethyl sulfi de (observed [ 46 ]: 
  99.0◦   , calculated by the present DFT technique:   100.7◦   ). 
Also note that the electronic energy of the straight C–S–C 
conformer of dimethyl sulfi de is higher by about 3.1 eV 
per molecule than that of the bent one. This is very similar 

to the energetics of the (–S–C  ≡   C–)  x    polymers where the 
electronic energy of the straight conformers is greater by 
about 2.6 eV per repeating unit, indicating the energy cost 
of straightening the C–S–C angle. As the energy cost of 
straightening the polymeric chains is in the range of the 
energy of visible photons, the polymers may become 
straightened out in the excited states upon illumination 
with visible light. 

 In order to investigate the effect of intermolecular inter-
action on the metallicity and bond lengths of the linear 
–S–C  ≡   C– chains, additional band structure calculations 
have been carried out on strands of (–S–C  ≡   C–)  x    isolated 
by 10 Å distance from each other. Lattice and atomic posi-
tion relaxations were allowed only along the chains, not for 
the interchain distances, in a rectangular cell with a single 
strand modeled with a double –S–C  ≡   C– unit to allow for 
charge/spin density waves as well. The polymeric chains 
have been constrained to linearity. The results indicate that 
the intermolecular interaction does not have signifi cant 
effect on the bond lengths, and the isolated linear strands 
are also metallic. Allowing for deviation from linearity 
leads to lower-energy bent polymers indicating that the lin-
ear optima are saddle points. 

 In the straight conformers, there is apparently some 
degree of   π   -electron back-donation from the   px    and   py    
orbitals of sulfur to the antibonding orbitals of the C  ≡
   C unit, this makes the C  ≡   C bond-length longer by about 
0.06 Å which is approximately the same value as what was 
observed for the bond-length alternation in   (CH)x    (0.08 Å, 
[ 21 ]). 

 Also note that the interchain interactions are poorly 
described in the present model for the lack of explicit van 
der Waals terms. The focus here is on the properties of the 
individual chains rather than their interactions. The I4/
mmm crystal packing of the linear polymers has been moti-
vated by analogous linear transition metal acetylenic poly-
mers in crystals of ternary acetylides [ 28 ]. As both isolated 
and I4/mmm packed linear polymers are metallic, it is rea-
sonable to assume that the metallicity of the linear poly-
mers is an intrinsic property of the linear   (SC2)x    and is not 
a result of van der Waals interactions, while the enforce-
ment of the linear conformation by external pressure would 
likely lead to signifi cant energetic contributions from van 
der Waals interactions. 

 While the S atom has a Löwdin charge of +0.49 and 
0.47 in the armchair and zig–zag conformers, in the straight 
polymer it is +0.52, while the corresponding carbon 
charges are   −0.12   ,   −0.13    and   −0.15   , respectively, indicat-
ing a slightly greater polarization in the linear chains as 
compared to the zig–zag and armchair ones. Note that the 
Löwdin charges do not sum up to zero in any of the mole-
cules, as the projection of electron density from plane wave 
basis to atomic orbitals is incomplete. 

 Table 1       Geometric parameters and relative electronic energies per 
formula unit (E(  SC2   )) of the three different crystalline conformers of 
the (S–C  ≡   C)      polymer and those of an isolated linear strand  

 Lattice parameters refer to simulation cells. Lengths (a, b, c, C  ≡   C, 
S–C) are given in Å, angles (  α, β, γ   , C–S–C) are given in degrees, 
energies in eV per formula unit 

    I4/mmm 
(linear)  

  P4/mma 
(armchair)  

  C2/m 
(zig–zag)  

  Isolated linear  

  a    4.011    11.637    7.243    (10.0)  

  b    4.011    8.084    4.389    (10.0)  

  c    4.011    4.136    5.556    5.928  

    α       109.5    90.0    67.9    90.0  

    β       109.5    90.0    49.4    90.0  

    γ       109.5    90.0    90.0    90.0  

  C  ≡   C    1.277    1.221    1.224    1.281  

  S–C    1.692    1.675    1.677    1.683  

  C–S–C    180.0    101.2    101.4    180.0  

    E(SC2)       2.610    0.029    0.0    2.600  
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 In general, anything is a Peierls’ distortion that moves an 
unstable (quasi) 1D system of atoms from a metallic ground 
state to a semiconductor one. The application of the term 
“Peierls distortion” is favored here by the present author, 
because—unexpectedly—the linear structure is metallic. 
Would the linear structure be nonmetallic, the term “Peierls 
distortion” could not be used and the distortion should be 
explained simply by the favored hybridization of the sul-
fur atom in the given bonding system. While linear   H2S    
or HC  ≡   C–S–C  ≡   CH has degenerate ground states, such 
ground states cannot be called metallic for the lack of band 
structure in isolated molecules, and therefore, they can be 
associated neither with Peierls distortion, nor with Jahn–
Teller distortion, the latter of which does not apply for lin-
ear molecules at all. All previously known cases of Peierls’ 
distortion happened along normal modes involving bond 
lengths only, or by charge/spin density waves. In the pre-
sent case, Peierls’ distortion happens along a different type 
of normal mode that involves only bond angles. 

 It is clear from the above analysis that Peierls’ distortion 
is realized through C–S–C angle bending in the (–S–C  ≡
   C–)  x    polymer. This is not surprising as the S atom is known 
to strongly prefer taking up two, four or six valences, and 
in the present situation, it could take up more than two 
valences only if at least one of its neighboring –C  ≡   C– units 
would convert to cumulenic =C=C= structure instead of 
the acetylenic –C  ≡   C– one. The feasibility of such a conver-
sion typically depends on the end units of the –C  ≡   C– chain 
and is energetically unfavorable in the present situation 
when the end units are   sp3    hybridized S atoms. While in 
  (SN)x    the N strongly prefers to have three valences and thus 
can to some degree force the sulfur to take up three or four 
valences in some of the possible resonance structures [ 47 ], 
the –C  ≡   C– unit is much less able to enforce more than two 
valences on sulfur in the present situation, as mentioned 
above. This also implies that there is virtually no opportu-
nity for S–C bond-length alternation in (–S–C  ≡   C–)  x   . 

 In the straight polymer, the hybridization of S changes 
to   sp1    establishing a continuous conjugation of carbon and 
sulfur   px    and   py    orbitals and some of sulfur’s d orbitals 
allowing for signifi cant   π   -electron donation from sulfur to 
antibonding orbitals of the C  ≡   C bond, as mentioned also 
above. This conjugation is also present at the bent C–S–C 
angles though to a lesser degree, through hyperconjugation 
of carbon   π   -orbitals and sulfur   sp3    lone pairs and d orbitals. 
Even though charge or spin density wave would theoreti-
cally be possible as an alternative of C–S–C angle bending 
for Peierls’ distortion, it is not realized in the conformers 
studied here. 

 Methods to enforce the metallic straight conformation 
may involve external pressure or strain, transition metal 
(M) salts that complex and cross-link the –S–C  ≡   C– poly-
mers through S–M–S bridges, substrates that favor (–S–C  ≡

   C–)  x    crystallization in the straight conformers, e.g., sur-
faces of transition metal compounds with suitable lattice 
parameters. Even though the energy required to straighten 
the C–S–C angles (2.6 eV per repeating unit) is high as 
compared to thermal energy at room temperature, it is still 
relatively low to the energy of phase transitions accessible 
in diamond anvil cells. Such phase transitions involve the 
compression of oxygen to a metallic solid [ 48 ] or the com-
pression of carbon dioxide to a quartz like crystal [ 49 ]. To 
the best of the knowledge of the present author, there is no 
other conjugated polymer that would become metallic from 
semiconductor by a moderately energetic stretching as in 
the case of the present (–S–C  ≡   C–)  x    polymer. 

 Chemical doping of (–S–C  ≡   C–)  x    is also possible to con-
trol its conductivity, similar to other conjugated polymers. 
Controlled distribution of the torsional angles around the 
polymeric backbone may also be possible, similar to   (CH)x    
which was shown to crystallize in helical conformations in 
the presence of chiral nematic liquid crystals [ 50 ]. A par-
ticularly interesting helical conformer would consist of hel-
ical turns composed of approximately four –S–C  ≡   C– units 
as the equilibrium bent C–S–C angle is only slightly larger 
than   90◦   . Similar to the composite polyyne-sulfur materi-
als recently proposed by Duan et al. [ 43 ], mentioned above, 
the presently proposed (–S–C  ≡   C–)  x    polymer may also fi nd 
application as electroactive material in batteries, and this 
potential will be analyzed in a forthcoming paper. 

    3   Summary and conclusions 

 A simple new conjugated polymer, poly(sulfur acetylide) 
with –S–C  ≡   C– repeating units, has been proposed on the 
basis of density functional theory calculations. The new 
polymer is predicted to be metallic in a straight conforma-
tion, while it is a semiconductor with   ≈   1.6 eV band gap 
when bent at the C–S–C angles. It appears to be unique 
among conjugated polymers by its ability to become metal-
lic when straightened out along a bending coordinate on the 
polymeric backbone, albeit the process requires a relatively 
large, 2.6 eV energy per repeating unit. Owing to its rela-
tive simplicity, potentially easy synthesis through polycon-
densation and close relationship to other fundamentally 
important conjugated polymers, such as   (SN)x, (CH)x    and 
(–C  ≡   C–)  x   , and to the great variety of synthetic opportuni-
ties and materials properties that can be associated with 
it, the experimental exploration of this new polymer is 
proposed. 
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sets is signifi cantly lower. The accuracy of the computed 
energies can be further increased by about 15 % if EGTO 
BFs are used. 

   Keywords     Bond functions    ·  Ellipsoidal Gaussian 
functions    ·  Polarization functions    ·  Unconventional basis 
functions  

      1  Introduction 

 In quantum chemistry, the computational cost of a theoreti-
cal investigation is substantially infl uenced by the size of 
the basis set selected. On the other hand, the “goodness” of 
the basis set for a given property can decide about the qual-
ity of the work. The most frequently used basis sets, such as 
those developed by Pople et al. [ 1 – 6 ], Ahlrichs et al. [ 7 – 9 ], 
and Dunning et al. [ 10 – 13 ], consist of atom-centered (AC) 
Gaussian-type orbitals (GTO), which were proposed by 
Boys [ 14 ]. Polarization functions fi rst have been introduced 
to help in describing the non-spherical symmetry of the 
atoms in the molecular environment [ 15 ]. However, beside 
characterizing molecular polarization effects, their use is 
also inevitable in the accurate treatment of the electron cor-
relation problem [ 16 ,  17 ]. Nevertheless, their addition to 
the basis set, due to their higher angular momentum, con-
siderably increases the number and the computational com-
plexity of the evaluation of molecular integrals. It is rea-
sonable to assume that the substitution of AC polarization 
functions with bond-centered (BC)  s - and  p -type Gaussians 
(bond functions, BFs) may provide a more natural account 
of the polarized molecular environment, and less BC than 
AC functions are needed to achieve the same effect. 

 Several studies with BF basis sets have been reported 
about replacing the polarization basis functions with BC 

                     Abstract     New types of bond function (BF) basis sets are 
proposed and tested for quantum chemical applications. 
First, BF basis sets constituted of conventional Gaussian-
type orbitals (GTO) are considered. Both the exponents 
and the positions of the BFs are optimized, but, in contrast 
to previous studies, the position of each BF shell is varied 
separately. Second, new types of basis functions, the gen-
eral ellipsoidal Gaussian-type orbitals (EGTOs), are pro-
posed for quantum chemical applications. The EGTOs are 
distorted spherical GTOs and, as such, are expected to be 
well suited for describing the polarized charge densities 
in molecular environments. EGTOs can be used either as 
atom-centered (AC) basis functions or as BFs. In this study, 
the latter possibility is explored, and BF basis sets includ-
ing EGTOs are optimized and compared to those contain-
ing only conventional GTO BFs. The performance of the 
developed GTO and EGTO BF basis sets is assessed for 
Hartree–Fock and density functional calculations against 
conventional AC GTO basis sets. Our results show that 
using GTO BF basis sets, the results are signifi cantly 
improved, while the number of the basis functions can be 
decreased by about 10 %, which is not dramatic; however, 
the average angular momentum quantum number in the BF 
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functions. Frost and Preuss were among the fi rst in the 
1960s who pioneered the use of BFs [ 18 ,  19 ]. Preuss  [ 18 ] 
studied the electron correlation problem in the   H+

3     ion with 
 s -type GTOs positioned at the atomic nuclei and the three 
bond centers as well as the centroid of the equilateral tri-
angle structure. Frost described a simple fl oating spherical 
Gaussian orbital model (FSGO) and applied it to the LiH 
molecule [ 19 ]. His model can be used for the qualitative 
description of singlet ground states; each pair of electrons 
is modeled by an FSGO, the centers and exponents of 
which are determined to satisfy the variational principle. 

 The  fl oating orbital  geometry optimization (FOGO) pro-
cedure was developed by Huber [ 20 ], and its feasibility was 
demonstrated in subsequent papers [ 21 – 23 ]. In the FOGO 
procedure, the energy gradient and the Hellmann–Feynman 
force are simultaneously minimized letting the nuclei and 
orbitals move independently. It is worth noting that the addi-
tional calculation of the Hellmann–Feynman force does not 
cause any serious computational overhead because it does 
not require the calculation of the two-electron derivatives. 
The agreement between the experimental and FOGO geom-
etries and dipole moments was found to be excellent [ 22 ]. 
Furthermore, rotational barriers obtained in FOGO using 
a double- ζ  basis set without polarization functions were in 
line with those calculated using energy gradient optimiza-
tion and basis sets including polarization functions [ 23 ]. 

 Helgaker and Almlöf [ 24 ] studied the fi rst- and sec-
ond-order molecular properties of small molecules 
at the Hartree–Fock (HF) level using double- ζ  qual-
ity basis sets including fl oating GTOs. They found that 
although the electronic energies were only slightly bet-
ter in comparison with the results obtained with the large 
6-311++G(3df,3pd) basis set, the accuracy of calculated 
properties greatly improved in many cases. 

 Rothenberg and Schaefer [ 25 ] investigated the effec-
tiveness of various polarization schemes including BFs 
and concluded that “bond functions provide a reasonable 
alternative to the more conventional type of polarization 
function.” 

 The fi rst thorough studies about BFs were conducted 
by Neisius and Verhaegen [ 26 ,  27 ]. First, BF parameters, 
positions and exponents, were determined for the C–C and 
C–H bonds as well as carbon lone pairs [ 26 ]. Later, they 
extended their basis set work for molecules containing C, 
N, O, and H atoms [ 27 ]. In both studies, the  s - and  p -type 
functions were restricted to be centered at the same posi-
tion, had identical exponents, and were optimized to be 
used with the 6-31G basis set. Their results showed that 
for less computational cost, the 6-31G basis set with addi-
tional BFs provided on average as accurate energies as the 
6-31G* basis set. 

 The fi rst extensive BF study with correlation meth-
ods was performed by Martin et al. [ 28 ]. The total and 

dissociation energies of fi rst-row hydrides were calcu-
lated using fourth-order Møller–Plesset perturbation the-
ory with hybrid bond/polarization basis sets. Their hybrid 
basis sets based on the 6-31G basis set and contained both 
higher angular momentum functions and BFs. The results 
obtained with the hybrid basis sets were competitive with 
those calculated using considerably larger polarization-
only basis sets. Furthermore, the computational savings 
gained were also substantial, and the cost of the calcula-
tions was reduced by a factor of 4–20. 

 Bauschlicher and Partridge [ 29 ] investigated the bond 
energies of eight diatomics using a series of correlation 
consistent basis sets with and without BFs. They con-
cluded that although the addition of BFs to a given basis set 
always improved the bond energies, the use of BFs does not 
offer any advantages over AC basis sets when the results 
were extrapolated to the basis set limit. Nevertheless, for 
the double- and triple- ζ  basis sets, they reported a sizable 
improvement in the bond energetics due to the incorpora-
tion of BFs. 

 Jensen et al.  [ 30 ] examined the basis set convergence 
properties of BFs in density functional theory (DFT) cal-
culations using the H 2 , N 2 , and N 4  species as test sys-
tems. They compared the convergence patterns of basis 
sets consisting of BFs only, AC polarization functions 
only, and a mixture of BFs and AC polarization functions. 
They showed that the BFs only basis sets yield the slow-
est convergence toward the basis set limit. The conver-
gence behavior of the other two basis set types was faster 
and similar. Some of their results also indicated that opti-
mal BFs might have fairly high angular momentum. It was 
concluded that although the use of low angular momentum 
BFs can reduce the number of high angular momentum AC 
polarization functions, BFs do not provide any computa-
tional advantage over pure AC basis functions. 

 Styszy ń ski et al. [ 31 ] studied the performance of BFs in 
relativistic HF and non-relativistic and relativistic electron 
correlation calculations for the BF, AlF, and GaF mole-
cules. It was found that at both the non-relativistic and rela-
tivistic HF levels, the diffuse and polarization functions of 
an AC basis set can be effectively substituted by BFs unless 
the calculations with the AC basis itself yield near-HF-limit 
energies. However, in correlation calculations, the benefi ts 
of BFs were not obvious because when many BFs were 
used, the rate of convergence was usually ruined. Neverthe-
less, when the number of BFs was relatively small, a con-
siderable improvement could be observed in the correlation 
energy at practically no additional computational cost. 

 Besides BFs, there have been numerous attempts made 
to introduce unconventional AC basis functions which 
improve upon conventional GTOs. Nearly a decade 
after Boys’ [ 14 ] paper on GTOs, the mathematical back-
ground of the application of special ellipsoidal (elliptical) 
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Gaussian-type orbitals (EGTOs) was laid down in a report 
by Browne and Poshusta [ 32 ]. They introduced the follow-
ing class of functions:
     

and the corresponding molecular integrals were also 
derived and presented. It is easy to recognize that when 
  α1 = α2 = α3   , the ellipsoidal case simplifi es to a conven-
tional GTO. They expected that the allowance for asymme-
try in the exponents will improve the description of elec-
tron distribution. 

 The analytical formulas for the integrals of generalized 
Hermite Gaussian functions were presented by Katriel [ 33 ] 
and Katriel and Adam [ 34 ]. They also investigated the 
effects of these basis functions for H 2  and   He2+

2     test sys-
tems. A serious drawback of their approach is its coordi-
nate dependence. 

 Bishop and Leclerc [ 35 ] investigated several uncon-
ventional basis functions including EGTOs, generalized 
Slater–Gauss-type, non-integer  n  Slater, rational, Hulthén, 
and Bessel functions and found that the non-integer  n  
Slater basis performed best. However, the scope of their 
study was fairly limited; only one system, the H 2  molecule, 
was probed. 

 More detailed studies dealing with EGTOs were con-
ducted by Cohen and Basch [ 36 ,  37 ]. In their fi rst paper 
[ 36 ], new, effi cient analytic integral evaluation formulas 
were developed and tested for the calculation of the total 
energies of HF and CO 2 . In their work, two single- ζ  basis 
sets (3 s 1 p /1 s ), a spherical and an ellipsoidal one, were gen-
erated and compared with a double- ζ  basis set (4 s 2 p /2 s ) for 
HF calculations. In the single- ζ  sets, both the spherical and 
ellipsoidal exponents were optimized for the valence orbit-
als of the atoms. They found that the optimized ellipsoidal 
single- ζ  basis set results approached the double- ζ  values 
and also performed better than the optimized spherical 
single- ζ  basis set. In the second report [ 37 ], further molecu-
lar systems were investigated using the methodology devel-
oped in their fi rst study [ 36 ]. However, beside the total 
energy, several one-electron properties were also examined 
and compared to the double- ζ  basis set results. Based on 
the one-electron properties, they concluded that the ellip-
soidal valence orbitals in the single- ζ  basis set were too 
rigid to represent simultaneously both the spherical atomic 
and the ellipsoidal bonding regions of the molecules and 
exaggerate the transfer of charge density from the atomic 
regions to the bonding regions of the molecules. They sug-
gested that a more selective use of ellipsoidal basis func-
tions will yield better results. 

 To describe the polarization caused by the molecu-
lar environment, Szalay and Surján [ 38 ] considered AC 
Slater-type orbitals whose exponents depended on the polar 

(1)χ = xiyjzk exp
[
−

(
α1x2

+ α2y2
+ α3z2

)]
,

angles. For the two-center one-electron problem,   H+
2 ,    they 

presented the necessary molecular integrals and demon-
strated that the potential curve of   H+

2     obtained with these 
distorted  s  functions in the minimal basis agrees well with 
the exact curve. 

 Here, we also refer to some other studies that are less 
directly related to our present work. Gaussian Lobe Func-
tions were introduced by Preuss [ 39 ]. In this representation, 
the higher angular momentum functions are constructed 
as a linear combination of usually two or more  s -type 
GTOs located on different centers. The study of Tasi and 
Császár [ 40 ] is also notable. In their work, in addition to 
the molecular orbital coeffi cients, both the position and the 
exponents of the GTOs were treated as variational parame-
ters during the solution of the HF equations. They were able 
to obtain HF-limit energies for small atomic and molecular 
systems with the help of a few dozen  s -type GTOs. 

 The purpose of this study is twofold. First, we develop 
new types of BF basis sets constituted of conventional 
GTOs. We optimize both the exponents and the positions of 
the BFs, but, in contrast to previous studies, the position of 
each BF shell is optimized separately. Second, we propose 
new types of basis functions for quantum chemical calcu-
lations, the general EGTOs. To ensure the coordinate-sys-
tem invariance of the results, the EGTOs are also used as 
BFs, and BF basis sets including EGTOs are optimized and 
compared to those containing only conventional GTO BFs. 
In both cases, we assess the performance of the developed 
BF basis sets for HF and DFT calculations against conven-
tional AC GTO basis sets including polarization functions. 

    2   Bond-centered spherical Gaussian functions 

 Our fi rst aim was to study and compare the effects of spher-
ical BC GTOs with those of AC higher angular momentum 
functions. In the following, the optimization of the GTO 
parameters is described and the results obtained with the 
application of BC GTOs are discussed in light of the data 
calculated with conventional polarization basis sets. 

   2.1   Optimization of function parameters 

 Basis sets most frequently used in quantum chemistry 
made up of contracted GTOs which are by defi nition linear 
combinations of the
     

Cartesian GTOs. In the above expression,   r = (x, y, z)    des-
ignates the electron’s coordinates,   A = (Ax, Ay, Az)    contains 
the coordinates of the function’s center, and   l = (i, j, k)    
determines the function’s type, for example, in the case of 

(2)χ(r, A, l, α) = (x − Ax)
i(y − Ay

)j
(z − Az)

ke−α(r−A)2
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 Table 1       Total HF energies in 
 E   h    calculated with the original 
and optimized basis sets  

  Molecule    Basis set    Hartree–Fock energy    Number of 
functions  

  Original    Optimized  

  Methane    6-31G    −40.18051      17  

  C–H    6-31G*    −40.19482      22  

  6-31G**    −40.20166    −40.20578    34  

  6-31G–2 s  BF      −40.20676    25  

  6-31G–3 s  BF      −40.20781    29  

  6-31G–4 s  BF      −40.20819    33  

  Ethane    6-31G    −79.15410      30  

  C–C    6-31G*    −79.22261      40  

  6-31G**    −79.23780    −79.24383    58  

  6-31G–2 s  BF      −79.24446    44  

  6-31G–3 s  BF      −79.24655    51  

  6-31G–4 s  BF      −79.24777    58  

  Ethene    6-31G    −78.00357      26  

  C=C    6-31G*    −78.03040      36  

  6-31G**    −78.03779    −78.02809    48  

  6-31G–1 s 1 p  BF      −78.03662    42  

  6-31G–2 s 1 p  BF      −78.04077    43  

  Ethyne    6-31G    −76.79244      22  

  C≡C    6-31G*    −76.81660      32  

  6-31G**    −76.82102    −76.80603    38  

  6-31G–1 s 2 p  BF      −76.83781    35  

  Ammonia    6-31G    −56.16199      15  

  N–H    6-31G*    −56.18282      20  

  6-31G**    −56.19445    −56.19813    29  

  6-31G–2 s  BF      −56.18796    21  

  6-31G–3 s  BF      −56.19556    24  

  6-31G–4 s  BF      −56.20233    27  

  6-31G–1 s 1 p  BF      −56.20629    27  

  Water    6-31G    −75.98399      13  

  O–H    6-31G*    −76.00913      18  

  6-31G**    −76.02264    −76.02861    24  

  6-31G–2 s  BF      −76.01125    17  

  6-31G–3 s  BF      −76.01679    19  

  6-31G–4 s  BF      −76.01726    21  

  6-31G–1 s 1 p  BF      −76.04319    21  

  Methylamine    6-31G    −95.16441      28  

  N–C    6-31G*    −95.20423      38  

  6-31G**    −95.21675    −95.22251    53  

  6-31G–1 s 1 p  BF      −95.23022    49  

  Methanol    6-31G    −114.98356      26  

  O–C    6-31G*    −115.03095      36  

  6-31G**    −115.04296    −115.04931    48  

  6-31G–1 s 1 p  BF      −115.06603    43  

  Methanimine    6-31G    −93.97984      24  

  N=C    6-31G*    −94.02656      34  

  6-31G**    −94.03403    −94.03705    43  

  6-31G–1 s 1 p  BF      −94.03843    38  

  Hydrogen cyanide    6-31G    −92.82786      20  

208 Reprinted from the journal



Theor Chem Acc (2015) 134:74 

1 3

an  s -type function   (l = i + j + k = 0)   , while for a  p -type 
  (l = i + j + k = 1)   , the orbital exponent is labeled by  α . 

 In this study, the 6-31G basis set [ 3 ] was augmented 
with  s - and  p -type BFs. The BFs were optimized for most 
common organic bond types including C–H, C–C, C=C, 
C≡C, N–H, O–H, C–N, C–O, C=N, C=O, and C≡N. In 
contrast to previous investigations, both the positions and 
the exponents of the BFs were simultaneously optimized. 
However, to keep our method coordinate-system independ-
ent, the positions of the BFs were constrained to stay in the 
bond lines. In the optimization process, the molecular sym-
metries were also exploited. Optimal values of the parame-
ters were obtained by the downhill simplex algorithm of 
Nelder and Mead [ 41 ]. During the optimization, the objec-
tive was to locate the minimum of the HF total energy. The 
algorithm was programmed using the  FORTRAN  language 
and implemented in our  MRCC  [ 42 ]  1   suite of quantum 
chemistry programs. To avoid being trapped in local min-
ima in each case, the optimization process was repeated 
about 100 times using different initial parameter sets. The 
parameters for a given BF were determined using the 
smallest molecular entities containing the corresponding 
bond; the geometries of the molecules were extracted from 
accurate literature data [ 43 – 48 ]. 

  1    See also Ref. [ 56 ] as well as   http://www.mrcc.hu/.     

 We note here that AC GTOs are also called atomic orbit-
als (AOs) and the two terms will be used interchangeably 
in the current text. In the following, 6-31G– XY  refers to a 
basis set whose 6-31G GTOs are centered on the atomic 
nucleus, while  Y  denotes the BC  Y -type function and  X  
gives the number of such BC functions. For example, in 
the case of methane, 6-31G–3 s  means 6-31G AO basis on 
atoms H and C, and three  s -type BFs on each C–H bond, or 
in the case of a C=C bond, the 6-31G–1 s 1 p  basis set indi-
cates 6-31G AO basis on the C atoms and additional BFs, 
one  s  and one  p  shell between the carbons. 

    2.2   Numerical results and discussion 

   2.2.1   Saturated hydrocarbons 

 For modeling the chemical bonds in saturated hydrocar-
bons, fi rst, we considered methane [ 43 ] and optimized 
the positions and exponents of  s -type BFs for the C–H 
bonds together with the exponents and contraction coef-
fi cients of the AO basis functions centered on the carbon 
and hydrogen atoms. For consistency and fair compari-
son, the conventional 6-31G** basis set was also reopti-
mized; the r6-31G** notation will be used hereafter for 
the basis set obtained in this way. The results are com-
piled in Table  1 .  

 The leftmost column shows the name of the molecule used in the optimizations and the bond type whose 
BFs were optimized 

Table 1    continued   Molecule    Basis set    Hartree–Fock energy    Number of 
functions  

  Original    Optimized  

  N≡C    6-31G*    −92.87303      30  

  6-31G**    −92.87519    −92.87899    33  

  6-31G–1 s 2 p  BF      −92.88782    28  

  Formaldehyde    6-31G    −113.78464      22  

  O=C    6-31G*    −113.85103      32  

  6-31G**    −113.85462    −113.86307    38  

  6-31G–1 s 1 p  BF      −113.86341    32  

  6-31G–2 s 1 p  BF      −113.87019    33  

 Table 2       B3LYP total energies 
in  E   h    for saturated hydrocarbons 
as a function of the number of 
BFs  

  Molecule    Basis set  

  6-31G**    r6-31G**    6-31G–2 s  BF    6-31G–3 s  BF    6-31G–4 s  BF  

  Propane    −119.05848    −119.06998    −119.06897    −119.07312    −119.07482  

  Butane    −158.34503    −158.36037    −158.35976    −158.36377    −158.36659  

  Isobutane    −158.34583    −158.36191    −158.36127    −158.36557    −158.36771  

  Pentane    −197.63154    −197.65064    −197.64815    −197.65485    −197.65789  

  Isopentane    −197.63085    −197.65049    −197.64890    −197.65469    −197.65777  

  Neopentane    −197.63282    −197.65440    −197.65338    −197.65901    −197.66116  

  Cyclopentane    −196.42107    −196.43789    −196.43371    −196.43912    −196.44255  
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 It can be observed that for methane, the energy obtained 
with the r6-31G** basis set can be recovered by two  s -type 
BFs placed on the C–H bonds, while the number of basis 
functions is only 25 instead of 34. In the next step, using 
the C–H BFs and the C and H AO basis sets optimized 
for methane, the positions and exponents of BFs placed 

on the C–C bond were determined for the ethane mole-
cule [ 43 ]. For consistency, for the optimization of the C–C 
BFs, we always chose the basis set optimized for methane 
that includes the same number of BFs on the C–H bonds. 
Inspecting the corresponding block in Table  1 , we can con-
clude that two  s -type BFs are also suffi cient for ethane to 
reach the accuracy of the r6-31G** basis set, while the 
number of basis functions is lower by 14, though the energy 
difference at the HF level with respect to the r6-31G** 
results is somewhat smaller than for methane. 

 In order to select the fi nal basis set augmented with 
BFs for the description of saturated hydrocarbons, further 
test calculations were carried out for linear, branched, and 
cyclic hydrocarbons at the DFT level using the B3LYP 
(Becke’s three-parameter hybrid functional including the 
correlation functional of Lee, Yang, and Parr) functional 
[ 49 ,  50 ]. For each species, the most stable conformer was 
considered. The geometries of the test molecules were 
optimized with the M06-2X hybrid functional of Truh-
lar et al. [ 51 ] with the cc-pVDZ basis set [ 52 ] using the 

 Table 3       Number of basis functions for saturated hydrocarbons  

  Molecule    Basis set  

  6-31G**    6-31G–
2 s  BF  

  6-31G–
3 s  BF  

  6-31G–
4 s  BF  

  Propane    82    63    73    83  

  Butane    106    82    95    108  

  Isobutane    106    82    95    108  

  Pentane    130    101    117    133  

  Isopentane    130    101    117    133  

  Neopentane    130    101    117    133  

  Cyclopentane    120    95    110    125  

 Table 4       B3LYP total 
energies in  E   h    for unsaturated 
hydrocarbons with various basis 
sets  

  Molecule    Basis set  

  6-31G**    r6-31G**    6-31G-BF    cc-pVTZ  

  2,3-Dimethylbuta-
1,3-diene  

  −234.46392    −234.46842    −234.49145    −234.54413  

  2-Methylbut-1-ene    −196.40363    −196.41235    −196.42748    −196.46967  

  2-Methylprop-1-ene    −157.11878    −157.12350    −157.13945    −157.17302  

  3-Methylbuta-1,2-diene    −195.16249    −195.16412    −195.18604    −195.23082  

  Benzene    −232.09867    −232.09475    −232.12102    −232.17872  

  But-1-en-3-yne    −154.63399    −154.62281    −154.65758    −154.69479  

  But-1-yne    −155.86263    −155.85995    −155.88784    −155.92111  

  Naphthalene    −385.64628    −385.64313    −385.67152    −385.77458  

  Prop-1-ene    −117.82646    −117.82633    −117.84181    −117.86918  

  Mean absolute error    0.071    0.071    0.048    

 Table 5       Number of basis 
functions for unsaturated 
hydrocarbons  

 In parenthesis, the number of functions is given for each angular momentum quantum number from  f  to  s  

  Molecule    Basis set  

  6-31G**    6-31G–BF    cc-pVTZ  

  2,3-Dimethylbuta-1,3-diene    134 (0, 30, 66, 38)    125 (0, 0, 45, 80)    320 (42, 110, 114, 54)  

  2-Methylbut-1-ene    120 (0, 25, 60, 35)    109 (0, 0, 33, 76)    290 (35, 100, 105, 50)  

  2-Methylprop-1-ene    96 (0, 20, 48, 28)    87 (0, 0, 27, 50)    232 (28, 90, 84, 40)  

  3-Methylbuta-1,2-diene    110 (0, 25, 54, 31)    101 (0, 0, 36, 65)    262 (35, 90, 93, 44)  

  Benzene    114 (0, 30, 54, 30)    114 (0, 0, 18, 96)    264 (42, 90, 90, 42)  

  But-1-en-3-yne    76 (0, 20, 36, 20)    71 (0, 0, 33, 38)    176 (28, 60, 60, 38)  

  But-1-yne    86 (0, 20, 42, 24)    79 (0, 0, 30, 49)    204 (28, 60, 82, 34)  

  Naphthalene    180 (0, 30, 84, 46)    185 (0, 0, 93, 92)    412 (70, 140, 138, 64)  

  Prop-1-ene    72 (0, 15, 36, 21)    65 (0, 0, 21, 44)    174 (21, 60, 63, 30)  
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Gaussian 09 suite [ 53 ]. The computed total energies are 
displayed in Table  2 , while the number of basis functions is 
collected in Table  3 .   

 Our results show that increasing the size of the sys-
tem, two  s -type BFs are not suffi cient any more at the 
B3LYP level to obtain energies of quality similar to that 
of r6-31G**. However, with three BFs, the calculated total 
energies are lower by 1.2–4.6 m E   h    than the corresponding 
values obtained with r6-31G**. If four BFs are employed, 
even the smallest difference is 4.7 m E   h,   , but in this case, 
the number of functions in the BF basis is somewhat larger. 
Taking into account these observations in the further calcu-
lations, the basis sets optimized with three  s -type BFs were 
used for the C–H and C–C bonds. 

    2.2.2   Unsaturated hydrocarbons 

 In the next step, we constructed BF basis sets for the dou-
ble and triple bonds present in unsaturated hydrocarbons. 
The AO basis sets optimized for the C and H atoms as well 
as the three  s -type BFs selected for the saturated molecules 
were placed on the ethene [ 44 ] and ethine [ 44 ] molecules, 
and the parameters for the BFs of C=C and C≡C bonds 
were optimized. To be consistent with the chemical picture, 
 p -type BFs were used for the description of  π  bonds; thus, 
at least one and two  p  functions were used for the double 
and triple bonds, respectively. Inspecting the results in 
Table  1 , we can conclude that the 6-31G** AO basis sets 
reoptimized for methane perform less well for ethene and 
ethine than the original Pople basis sets; therefore, the per-
formance of the basis sets including BFs was compared to 
the latter. For ethene, an additional  s  function is required 
beside the 1 s  2 p  minimal BF set for an accurate energy, 
while for ethine, one  s  and two  p  functions are suffi cient. 

 To assess the performance of the optimized basis sets 
for unsaturated hydrocarbons, test calculations were carried 
out at the DFT level. For reference, the energies obtained 
with Dunning’s cc-pVTZ basis set were used. The energies 
are collected in Table  4 , while the number of functions in 
the various basis sets is presented in Table  5 .   

 As can be seen, the mean absolute error with respect to 
the reference value is smaller by 33 % with the basis set 
augmented with the selected BFs (6-31G–BF) than with 
the reoptimized Pople basis set containing polarization 
functions, while the total number of functions is lower by 
6 %. It means that the decrease in the size of the basis set is 
not dramatic; however, in the BF basis sets, there are no  d  
functions at all, while there are, in average, 24 ones in the 
6-31G** basis sets for the considered molecules, as well as 
the number of  p  functions also decreases by about 32 %. In 
turn, the number of  s  functions is signifi cantly higher; how-
ever, the evaluation of two-electron integrals over  s  func-
tions is substantially faster than that for basis functions of 
higher angular momenta. 

    2.2.3   Heteroatom-containing hydrocarbons 

 Of the heteroatom-containing organic compounds, the 
nitrogen- and oxygen-substituted ones were considered. As 
for the BFs of hydrocarbons, the BFs for a particular bond 
type were optimized for the smallest molecule in which the 
bond of that type can be found. In this case, only the AO 
basis functions centered on the N and O atoms were reop-
timized, and for the H and C atoms, just as for the C–H 
and C–C bonds, the basis functions were taken over from 
the 6-31G–BF basis optimized for the hydrocarbons and 
were not varied. First, for the description of the O–H and 
N–H bonds, we considered the water [ 43 ] and ammonia 

 Table 6       B3LYP total energies 
in  E   h    for heteroorganic 
molecules with various basis 
sets  

  Molecule    Basis set  

  6-31G**    r6-31G**    6-31G–BF    cc-pVTZ  

  2-Aminopropan-1-ol    −249.55731    −249.57884    −249.60150    −364.17802  

  But-3-en-2-imine    −211.22286    −211.23126    −211.25137    −211.29976  

  But-3-en-2-one    −231.09874    −231.10993    −231.13414    −231.18563  

  Dimethylacetamide    −287.65991    −287.68500    −287.70126    −287.76399  

  Dimethylamine    −135.07599    −135.08945    −135.09761    −135.12468  

  Dimethyl ether    −154.93346    −154.94772    −154.96355    −154.99341  

  Ethanol    −154.94764    −154.96156    −154.97903    −155.01009  

  Ethyl cyanate    −247.12216    −247.14223    −247.16181    −247.21739  

  Ethyl methyl carbonate    −381.49093    −381.50859    −381.55443    −381.64087  

  Methyl propanoate    −307.53089    −307.55567    −307.58037    −307.64626  

  Propan-1-amine    −174.37198    −174.38821    −174.39859    −174.43428  

  Propanoic acid    −267.02444    −267.03636    −267.07153    −267.13211  

  Mean absolute error    0.089    0.072    0.050    
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[ 43 ] molecules and monitored the change of total energy 
increasing the number of basis functions and optimizing 
their parameters. Based on Table  1 , we fi nd that polariza-
tion functions decrease the energy of water and ammonia, 
respectively, by 38.7 and 32.5 m E   h,    while for methane, 
this number is 21.1 m E   h   . As expected, the more electrons 
build up an atom or the more a bond is polarized, the better 
description is achieved by the use of BFs. In these cases, 
 s -type BFs seem to be insuffi cient for the replacement of 
polarization functions, but using  p -type ones, the energy is 
considerably lower than with basis sets including polari-
zation functions. We note that the  p -type BFs are always 
located closer to the nitrogen and oxygen atoms improving 
also the description of atoms, while the  s -type functions are 
farther from the heavy atoms contributing primarily to the 
description of bonds. Evaluating the results, we selected 
the 6-31G–1 s 1 p  BF basis set for both bond types for fur-
ther calculations. 

 The next step is to study single bonds between heter-
oatoms and the carbon atom. We chose methylamine [ 45 ] 
and methanol [ 46 ] and optimized the BFs for the N–C and 
O–C bonds using the AO and BF basis sets optimized pre-
viously for the atoms and other bonds. As we have seen, for 
accurate energies, the N–H and O–H bonds require  p -type 
BFs, which improve the quality of the description of both 
the atoms and the bonds. Since it is likely to be the case 
for the N–C and O–C bonds, we also considered BF sets 
including  p  functions for the latter bonds. This turned out to 
be especially important for molecules which include N–C 
and O–C bonds but no O–H and N–H bonds, such as ethers, 
because for those systems, the  p -type functions improving 
the atoms would be missing. Performing the optimiza-
tions, we again observe that the  p  functions are closer to 
the heavy atom of higher electronegativity. Considering the 

results (see Table  1 ), we can conclude that the performance 
of the BF basis sets is superior to that for the conventional 
AO basis sets including polarization functions. 

 Double and triple bonds between heteroatoms and the 
carbon atom (N=C, N≡C, O=C) were treated similar to 
the carbon–carbon multiple bonds: A set of  p  functions 
was placed on each  π -bond. The model systems include 
methanimine [ 47 ], hydrogen cyanide [ 44 ], and formalde-
hyde [ 48 ]; the results of the optimizations are presented 
in Table  1 . As can be seen, if the heteroatom is nitrogen, 
even one  s -type function is suffi cient in addition to the  p  
functions used for the  π -bonds to achieve the accuracy of 
the reoptimized AO basis set. For oxygen, two  s  functions 
are desirable since the energies obtained with the 1 s 1 p  BF 
set are only slightly better than those computed with the 
r6-31G** basis, and, as we have seen for hydrocarbons, 
if the BF basis sets optimized for the small molecules are 
used for bigger systems, their performance with respect to 
the original AO bases is relatively worse. 

 With the BF basis sets optimized for the bonds including 
heteroatoms, we performed benchmark calculations for a 
test set of 12 molecules including alcohol, ketone, carbonic 
acid, carbonate, ester, ether, primary and secondary amine, 
imine, amide, and nitrile. As reference, the cc-pVTZ basis 
set was employed again. The numerical results are summa-
rized in Table  6 , while the number of functions in the vari-
ous basis sets is collected in Table  7 .   

 Using the 6-31G–BF basis set, the energy decreases 
by 21.6–63.5 m E   h    relative to the original 6-31G** basis, 
while this interval is 8.1–45.8 m E   h    with respect to the 
reoptimized AO basis sets. The average error against the 
cc-pVTZ reference decreases by 43 and 30 %, respec-
tively, if BFs are used. The total number of basis functions 
is lower by 9 %, but as for the hydrocarbons, the angular 

 Table 7       Number of basis 
functions for heteroorganic 
molecules  

 In parenthesis, the number of functions is given for each angular momentum quantum number from  f  to  s  

  Molecule    Basis set  

  6-31G**    6-31G–BF    cc-pVTZ  

  2-Aminopropan-1-ol    115 (0, 25, 57, 33)    107 (0, 0, 45, 62)    276 (35, 95, 99, 47)  

  But-3-en-2-imine    105 (0, 25, 51, 29)    98 (0, 0, 42, 56)    248 (35, 85, 87, 41)  

  But-3-en-2-one    100 (0, 25, 48, 27)    93 (0, 0, 39, 54)    234 (35, 80, 81, 38)  

  Dimethylacetamide    129 (0, 30, 54, 30)    119 (0, 0, 48, 71)    306 (42, 105, 138, 51)  

  Dimethylamine    77 (0, 15, 39, 23)    71 (0, 0, 27, 44)    188 (21, 65, 69, 33)  

  Dimethyl ether    72 (0, 15, 36, 21)    65 (0, 0, 24, 41)    174 (21, 60, 63, 30)  

  Ethanol    72 (0, 15, 36, 21)    65 (0, 0, 24, 41)    174 (21, 60, 63, 30)  

  Ethyl cyanate    95 (0, 25, 45, 25)    88 (0, 0, 42, 46)    220 (35, 75, 75, 35)  

  Ethyl methyl carbonate    128 (0, 35, 60, 33)    113 (0, 0, 45, 68)    294 (49, 100, 99, 46)  

  Methyl propanoate    124 (0, 30, 60, 34)    119 (0, 0, 60, 59)    292 (42, 100, 102, 48)  

  Propan-1-amine    101 (0, 20, 51, 30)    93 (0, 0, 33, 60)    246 (28, 85, 90, 43)  

  Propanoic acid    90 (0, 25, 42, 23)    83 (0, 0, 42, 41)    206 (35, 70, 69, 32)  
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momentum quantum number of the functions is in average 
signifi cantly lower: There is no  d  function in the basis sets, 
and the number of  p  functions is also considerably lower. 

      3   Bond-centered general ellipsoidal Gaussian 
functions 

 In this section, we study an extension of the BF approach. 
Only BF basis sets including  s -type functions will be con-
sidered, but instead of the conventional, spherical Gauss-
ians BC ellipsoidal Gaussians of general form will be 
employed. Since such functions, to the best of our knowl-
edge, have not yet been considered in quantum chemistry, 
fi rst, we briefl y discuss how the integrals over ellipsoidal 
Gaussians can be evaluated and what modifi cations in a 
quantum chemistry program are required to process such 
functions. Second, we will examine to what extent the 
additional fl exibility of ellipsoidal functions with respect to 
conventional Gaussians improves the calculated energies. 

 The ellipsoidal Gaussians that we propose here to be 
used as basis functions can be written in the
     

form, where   α    is   3 × 3,    symmetric, positive defi nite matrix. 
It can be easily seen that the above functions are distorted 
Cartesian Gaussians, which reduce to the latter if matrix   α    
is diagonal with all elements equal to  α . As such, ellipsoi-
dal Gaussians are expected to be particularly well suited 
for describing the polarized charge densities in molecular 
environments. 

 The use of special ellipsoidal Gaussians including diag-
onal   α    matrices as atom-centered basis functions in elec-
tronic structure calculations was already proposed more 
than 50 years ago [ 32 ]; however, these functions did not 
gain acceptance, probably because of the coordinate-sys-
tem-dependent results and the diffi culties in the evaluation 
of the corresponding integrals. To cope with the fi rst prob-
lem, we propose to use “adaptive” EGTO BFs (EBFs for 
short), for which the elements of matrix   α    are chosen so 
that the resulting ellipsoidal Gaussian will be stretched in 
the direction of the bond. With an appropriate choice of the 
exponent matrix, not only basis functions “polarized” in the 
direction of chemical bonds are obtained, but also the coor-
dinate-system invariance of the results is guaranteed. 

   3.1   Evaluation of molecular integrals 

 Since the purpose of this initial study is to evaluate the 
potential of ellipsoidal Gaussian basis functions, we did 
not endeavor to develop a highly effi cient integral code. 
The one-electron integrals were simply computed on a 

(3)χ(r, A, l, α) = (x − Ax)
i(y − Ay

)j
(z − Az)

ke−(r−A)†
α(r−A)

grid used for DFT calculations. The grid construction 
follows the design principles of Becke [ 54 ], the angular 
grids are Lebedev quadratures, while the radial grid is 
that of Gauss and Chebyshev. The accuracy of the inte-
grals was tested for conventional basis sets for various 
molecules. We found that using a 302-point Lebedev 
quadrature and about 40 radial quadrature points, the 
integrals are accurate to 7–8 decimals, which is already 
suffi cient for our purposes, but the numerically exact 
value can also be reproduced if at least 1730-point angu-
lar quadrature is applied. The two-electron integrals, of 
course, cannot be evaluated on a grid even for the small-
est systems, and we had to develop a more sophisticated 
algorithm for that purpose based on analytical formulas. 
Supposing only  s -type functions, a general two-electron 
Coulomb integral,
     

where   r12 = r1 − r2,    can be reexpressed using Eq. ( 3 ) as
     

Rewriting the product of the four exponential factors as one 
exponential function and performing the algebraic opera-
tions in its exponent, the latter can be expressed as
     

To further simplify the expression, we introduce the 
  r = (r1, r2)    six-component vector containing the elec-
tronic coordinates. The terms that are quadratic in   r    can be 
expressed with the aid of a   6 × 6    matrix
     

as   r†
�r;    the linear terms can be rewritten as   J†r,    where

     

while the coordinate-independent terms can be regrouped 
in constant
     

(4)

〈
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Exploiting these defi nitions, Eq. ( 5 ) can be recast as
     

To get rid of the   r−1
12     factors, they were approximated by the

     

expansion proposed by Hackbusch et al. [ 55 ], where   ωn    
and   κn    are, respectively, the weight and exponent of the 
 n th exponential term in the expansion, and   m    is the num-
ber of terms. The exponentials in the above expansion 
can also be regarded as ellipsoidal Gaussians, that is, if 
the
     

  6 × 6    matrix is introduced, the exponent of the  n th expo-
nential function can be expressed as   −r†

�nr,    and fi nally 
operator   r−1

12     is approximated as
     

Substituting this into Eq. ( 10 ), utilizing the properties of 
the exponential function, an   (ss|ss)   -type integral can be cal-
culated using the
     

formula, where   �n = �n + �   , and the   Sn    integrals are eval-
uated according to the
     

analytic expression. 
 Two-electron integrals including functions of higher 

angular momentum quantum numbers can be derived by 
differentiating Eq. ( 15 ) with respect to the components of 
vector   J   . Taking into account Eq. ( 3 ) and the above deri-
vation a   (pzs|ss)   , two-electron integral can be calculated 
as
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If we differentiate the corresponding   (ss|ss)    integral with 
respect to   J3   , we arrive at the
     

expression, where   (�−1)ij    is the corresponding element of 
the inverse of matrix   �,    and obviously the integrals in the 
above expansion can be evaluated as
     

It is easy to see that similar expressions apply to the   (pxs|ss)    
and   (pys|ss)    integrals which can be derived by the differ-
entiation of the   (ss|ss)    integral with respect to   J1    and   J2   , 
respectively. 

 Following this procedure, expressions can be derived for 
integrals with more   p    functions and also for higher angu-
lar momentum functions. For instance, to derive working 
equations for the evaluation of the   (pzpz|ss)    integrals, the 
second derivative of   Sn    is calculated with respect to   J3    as
     

Utilizing this, the   (pzpz|ss)    integral can be evaluated via 
the
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 Table 8       Total HF energies in  E   h    calculated with the optimized BF 
basis sets  

 The leftmost column shows the name of the molecule used in the 
optimizations and the bond type whose BFs were optimized for the 
molecule 

  Molecule (bond)    Basis set  

  6-31G–BF( p )    6-31G–BF( s )    6-31G–EBF( s )  

  Methane (C–H)      −40.20781    −40.20865  

  Ethane (C–C)      −79.24655    −79.24929  

  Ammonia (N–H)    −56.20630    −56.20239    −56.20503  

  Water (O–H)    −76.04319    −76.01726    −76.01928  

  Methylamine (N–C)    −95.23023    −95.22698    −95.22693  

  Methanol (O–C)    −115.06603    −115.04191    −115.04721  
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expression. Analogously, for integrals   (pzs|pzs),      (pzpz|pzs)   , 
and   (pzpz|pzpz)   , we arrive at the
     

     

     

formulas. For other Cartesian components, the correspond-
ing components of vector   J    and the appropriate nuclear 
centers should be considered. 

 We have derived and coded the analytical formulas for 
the   (ss|ss)   ,   (ps|ss)   ,   (ps|ps)   ,   (pp|ss)   ,   (pp|ps)   , and   (pp|pp)    
integrals. For the approximation of   r−1

12    , simply the larg-
est expansion with   m = 51    proposed by Hackbusch and 
co-workers was taken. Probably this expansion is far too 
long for our purposes, but no attempt has been made to fi nd 
the optimal expansion and to increase the effi ciency of the 
integral calculation. As we tested for integrals over conven-
tional Gaussians, the error in the fi nal total energies intro-
duced by this approximation is negligible. We also note 
that the above algorithm is only executed if at least one of 
the four functions in the integral is an ellipsoidal Gauss-
ian. Other integrals are still evaluated with the conventional 
algorithms. 

    3.2   Determination of the exponent matrix 

 The processing of conventional Gaussian BFs is trivial, 
however, that for the EBFs is a bit more complicated. In 
addition to the molecular integrals, the determination of 

(21)(pzs|pzs) =

(
∂

∂J3
− Az

)(
∂

∂J6
− Cz

)
Sn

(22)(pzpz|pzs) =

(
∂

∂J3
− Az

)(
∂

∂J3
− Bz

)(
∂

∂J6
− Cz

)
Sn

(23)

(pzpz|pzpz) =

(
∂

∂J3
− Az

)(
∂

∂J3
− Bz

)(
∂

∂J6
− Cz

)
(

∂

∂J6
− Dz

)
Sn

exponent matrix   α    also requires special treatment. In order 
to avoid the coordinate-system dependence and to be con-
sistent with the chemical picture, the ellipsoidal Gaussians 
must be stretched in the direction of the chemical bond. 
The corresponding exponent matrix can be constructed as 
follows. 

 A specifi c coordinate system is defi ned for each ellipsoi-
dal Gaussian. Its origin is the center of the Gaussian, here-
after denoted by   E   , while its  z -axis points in the direction 
of the bond. In the bond-specifi c coordinate system, the 
exponent matrix denoted by   α    takes the
     

form, where  α  will be referred to as the exponent and   ε    is 
the stretch factor. Thus, in these coordinate systems, the 
general ellipsoidal Gaussian is equivalent to a diagonal one, 
that is, reduces to Eq. ( 1 ) with   α1 = α2 = α    and   α3 = αε.    
To obtain the parameters of the ellipsoidal Gaussian in lab-
oratory coordinate system, the
     

transformation is required, where   r    is a vector in the bond-
specifi c coordinate systems.  If U  is the rotation matrix 
transforming the coordinate systems into each other, the 
fi nal exponent matrix is calculated as   α = U†

αU.    
 In contrast to simple Gaussian BFs, which have two 

parameters, the exponent and the position, in the case of 
EBFs, there are three adjustable parameters: the exponent, 
the position, and the stretch factor. These parameters were 
varied in the basis set optimizations. 

    3.3   Numerical results and discussion 

 In this initial study, only  s -type EBFs were considered, and 
the EBF basis sets were optimized for single bonds. We 

(24)α =

⎛⎝ α 0 0
0 α 0
0 0 αε

⎞⎠

(25)e−r†
αr
→ e−(r−E)†

α(r−E)

 Table 9       HF total energies in  E   h    
for various organic molecules 
using BF basis sets  

  Molecule    Basis set  

  6-31G–BF( p )    6-31G–BF( s )    6-31G–EBF( s )    cc-pVTZ  

  2-Aminoethanol    −170.10944    −170.08562    −170.08956    −170.14462  

  4-Aminobutan-2-ol    −287.23088    −287.20761    −287.21697    −287.28420  

  Cyclopentane      −195.19168    −195.19690    −195.22775  

  Ethane-1,2-diamine    −189.30786    −189.30331    −189.31327    −189.34628  

  Ethanol    −154.11357    −154.09108    −154.09459    −154.14173  

  Ethyldimethylamine    −212.33961    −212.18074    −212.23173    −212.37917  

  Methoxyethane    −193.14374    −193.12196    −193.11781    −193.17841  

  Pentane      −196.36954    −196.37901    −196.40166  

  Propane-1,2-diol    −268.02891    −267.98610    −267.98956    −268.07842  

  Propane-2-amine    −173.32185    −173.31926    −173.32636    −173.35336  

  Mean absolute error    0.039    0.068    0.058    
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sought to answer two questions: (1) To what extent does 
the energy decrease if the conventional BFs are replaced by 
EBFs, and (2) can conventional  p -type BFs be replaced by 
 s -type EBFs, e.g., for heteroatom–carbon bonds, in order 
to further reduce the average angular momentum quantum 
number of the basis functions? To that end, for conven-
tional BF basis sets containing only  s  functions, EBF sets 
with the same number of  s -type EBFs were optimized. For 
the BF bases including also  p  functions, in the correspond-
ing EBF basis set, each  p  shell was replaced by three  s -type 
EBFs. For comparison, in the latter case, we also con-
structed a GTO BF basis with the same number of  s -type 
BFs. The parameters of the functions were optimized as 
described in Sect.  2 . 

 The results of the optimizations are summarized in 
Table  8 , where 6-31G–BF( p ) refers to the original BF basis 
sets containing  p  functions, if any, under 6-31G–BF( s ), the 
results obtained with BF basis sets including exclusively 
 s -type GTO BFs (the original BF basis if it does not con-
tain  p  functions, and the new GTO BF basis optimized for 
this purpose otherwise) are presented, whereas 6-31G–
EBF( s ) stands for the EBF basis sets. As can be seen from 
the table, due to the variation of the additional parameter of 
the EGTOs, the stretch factor, for molecules where all the 
parameters of the basis sets are optimized at a time (meth-
ane, ammonia, and water), the energy computed with the 
EBF sets is lower by less than a m E   h    per bond with respect 
to that obtained with the corresponding BF basis set includ-
ing only  s  functions. For the remaining molecules, such as 
ethane, methylamine, and methanol, where only the EBFs 
of the C–C, N–C, and O–C bonds are optimized, respec-
tively, and other EBFs, just as the AO basis, are taken from 
methane, ammonia, and water, the energy either decreases 
(ethane and methanol) or practically does not change 
(methylamine). Concerning the difference with respect 
to the basis sets including  p  functions, the results suggest 
that the accuracy of the latter cannot be approached if the  p  
functions are replaced by the EGTOs.  

 To further study the performance of the various BF basis 
sets, we compiled a test set of ten molecules including 
hydrocarbons, alcohols, ethers, and various amines. The 
results are presented in Table  9 , where the cc-pVTZ ener-
gies are used again as reference values, and the same nota-
tions are employed as in Table  8 .  

 The trends are similar to those we observed for the mol-
ecules used in the basis set optimizations. In average, EBFs 
decrease the energy by 10 m E   h   , and thus, the error by 15 % 
with respect to purely  s -type GTO BF basis sets, which 
correspond to sub-m E   h    decrease per bond. The energy 
decrease is consistent, and the only exception is methox-
yethane, where a slight increase can be noticed. Compared 
to the BF sets including  p  functions, the EBF bases are still 

not fl exible enough to defeat them, but the error is consid-
erably smaller than with the simple GTO BF bases. Nev-
ertheless, these results prove the potential of EGTOs and 
also suggest that it is worthwhile testing the performance of 
 p -type EBFs in future. 

     4   Conclusions and outlook 

 In this paper, new types of BF basis sets have been tested. 
First, we considered conventional GTO BFs, but optimized 
the center of each BF shell separately. Our results show 
that using these BF sets, HF and DFT energies of similar 
quality can be achieved as with conventional AO basis sets 
including polarization functions, while the number of basis 
functions is somewhat smaller and the angular momentum 
quantum numbers of the basis functions are in average sig-
nifi cantly lower resulting in less expensive molecular inte-
grals. Second, we tested ellipsoidal GTO BFs. The results 
show that  s -type EBFs decrease the error by about 15 % 
with respect to basis sets with simple GTO BFs. All in all, 
for total energies, the performance of the new types of BF 
basis sets proposed here is encouraging, and further stud-
ies will be required to test them for other types of chemical 
bonds and with larger AO basis sets. 

 Further investigations are also desirable to test the per-
formance of our approach for energy differences, such as 
reaction energies or barrier heights. However, here we must 
also tackle with the general problems of the BF method-
ology. Though the proposed scheme for the positioning 
of the BFs guarantees smooth potential energy surfaces 
(PESs) and unbiased results for the energies of most reac-
tions, for particular reactions and transition states, the situ-
ation is ambiguous. The simplest example is probably the 
ring opening of cyclopropane to form propane, where we 
have three C–C bonds in the educt, while only two ones 
in the product. If the entire PES along the reaction coordi-
nate is computed, the BFs originally located on the splitting 
bond will migrate close to the middle carbon atom of pro-
pane. This is not elegant, but more importantly, the reac-
tion energy will be different as if it was directly calculated 
from the total energies of the reactant and the product. A 
possible alternative approach, which resolves this problem 
but partly retains the advantages of BFs, is to use atom-cen-
tered ellipsoidal Gaussian functions stretched in the direc-
tion of the bonds with geometry-dependent stretch factors. 
If the latter are determined by an algorithm which guaran-
tees that they converge to unity upon bond dissociation, the 
ellipsoidal Gaussians will reduce to simple atom-centered 
spherical Gaussians. The calculation of energy differences 
and the development of atom-centered ellipsoidal Gaussian 
basis sets will be the subject of subsequent papers. 
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describing bond breaking or forming processes since the 
valence bond wavefunction has a proper form in the disso-
ciation limit [ 2 ]. Generalized valence bond (GVB) method 
is a variational counterpart to VB in which orbitals are 
optimized self-consistently [ 3 – 6 ]. In the GVB, wavefunc-
tion orbitals comprising a breaking bond form a GVB pair
     

where the orbitals   φa    and   φb    are overlapping. The remaining 
electrons are treated at the Hartree–Fock (HF) level. A special 
case of the GVB wavefunction is obtained if all electron pairs in 
a molecule are described by distinct, strongly orthogonal GVB 
functions formed from the (orthogonal) natural orbitals [ 6 ,  7 ]
     

A method based on the ansatz for the wavefunction com-
prised of the antisymmetrized product of the GVB pairs 
( 2 ) is known as perfect-pairing GVB (GVB-PP) [ 3 ,  6 ]. 
Unlike in the full GVB wavefunction, which allows all 
possible spin couplings of different orbitals, GVB-PP is 
more restrictive, allowing only perfect-pairing (singlet) 
coupling of the spins. The immediate advantage of this 
restriction is a gain in computational effi ciency of the 
GVB-PP optimization compared to the full GVB ansatz. 
The GVB-PP wavefunction retains a desired property of 
the GVB approximation, namely it accounts for a left–
right correlation between electrons in each pair and allows 
for bond breaking. 

 The GVB-PP wavefunction can also be derived from of 
the strongly orthogonal geminals theory as a special case of 
the APSG (antisymmetrized product of strongly orthogonal 
geminal) ansatz [ 7 – 10 ] if each APSG geminal is restricted 
to be expanded in a two-dimensional subset of orbitals. 

(1)ψGVB
pair = [φ1(1)φ2(2)+ φ2(1)φ1(2)](αβ − βα),

(2)ψGVB−PP
pair =

[
c1 ϕ1(1)ϕ1(2)+ c2 ϕ2(1)ϕ2(2)

]
(αβ − βα).

                     Abstract     A generalized valence bond perfect-pairing (GVB-
PP) wavefunction has been extensively used in computational 
chemistry methods due to its multiconfi gurational character, 
which captures in an inexpensive way static electron correla-
tion. GVB-PP has been mostly applied to ground states and 
not much is known about its performance in predicting elec-
tronic spectra of molecules. Here, we present the formalism 
based on the time-dependent linear response theory which 
provides excitation energies from the GVB-PP ground-state 
wavefunction. The accuracy of the excitation energy dissocia-
tion curves parallels that of the TD-HF method around ground-
state equilibrium geometries of the investigated molecules. 
For stretched-bond molecules, when TD-HF breaks down, the 
proposed TD-GVB method remains reliable. TD-GVB may 
therefore serve as a useful and inexpensive tool for exploring 
potential energy surfaces of excited states of molecules. 

   Keywords     Generalized valence bond    ·  Time-dependent 
linear response    ·  Excitation energy  

      1  Introduction 

 Valence bond (VB) theory has been developed since the 
early days of quantum chemistry in parallel with molecu-
lar orbital theory [ 1 ]. The VB is particularly well suited for 
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Interestingly, recently the GVB-PP approximation has been 
reinvented within the natural orbital functional theory [ 11 , 
 12 ]. Namely, one of the recently proposed natural orbital 
functionals—PNOF5 [ 13 ]—obtained by reconstructing 
two-electron reduced density matrix in terms of the one-
electron reduced density matrix, has been shown to be 
equivalent to the GVB-PP approximation [ 14 ]. Fully vari-
ational PNOF5 calculations have proved usefulness of the 
method in predicting ground-state energies of molecules of 
diverse and challenging electronic structures [ 13 ,  15 ]. 

 GVB or GVB-PP approximations have been mostly 
employed to describe ground states of molecules. However, 
since the methods are variational and they are based on a 
wavefunction ansatz, then excited states calculations should 
be also possible in a similar fashion as it is done for the mul-
ticonfi guration self-consistent fi eld methods. However, appli-
cation of the GVB-PP method to excited states either by 
performing variational calculations or by employing the time-
dependent linear response formalism has not been explored 
so far. The aim of this paper is to fi ll this gap. We present a 
linear response GVB-PP formalism leading to obtaining sin-
glet excitation energies and discuss its performance by pre-
senting excitation energy curves for a few small molecules. 

    2   Theory  

 The reference GVB perfect-pairing (GVB-PP) wavefunction 
can be seen as a special case of the antisymmetrized prod-
uct of strongly orthogonal geminal (APSG) ansatz if each 
geminal is given by only two orbitals [ 14 ]. For a closed-shell 
 N -electron system, the GVB-PP wavefunction is therefore 
given by the antisymmetrized product of  N  / 2 geminals:
     

where each electron pair is singlet spin coupled and each 
geminal   ψP    is restricted to be given in terms of two orbitals 
only, i.e.,
     

In the expression above, the orbitals   
{
ϕp(r)

}
    are the natu-

ral orbitals associated with the wavefunction ( 3 ), i.e., they 
diagonalize a corresponding one-electron reduced density 
matrix (1-RDM)   γ   
     

(3)Ψ GVB−PP(x1, . . . , xN ) = Â
N/2∏
P=1

ψP(x2P−1, x2P),

(4)

∀P≤N/2 ψGVB−PP
P (x1, x2) = 2−1/2

[cP1 ϕP1(r1)ϕP1(r2)

+ cP2 ϕP2(r1)ϕP2(r2)]

× [α(1)β(2)− β(1)α(2)].

(5)

γ (x, x′) =
∑

p

np ϕp(r′)∗ϕp(r) [α(1′)∗α(1)+ β(1′)∗β(1)],

so they are orthonormal. Squares of the coeffi cients   
{

cp
}
    

are equal to the pertinent natural spinorbital occupation 
numbers   

{
np
}
   

     

     

Geminals in the GVB-PP theory are restricted to be 
strongly orthogonal
     

which implies that sets of orbitals belonging to individual 
geminals are disjoint, i.e., each orbital belongs to only one 
geminal [ 16 ]. Normalization of each geminal implies that 
two occupation numbers, Eq. ( 6 ), of orbitals belonging to a 
given geminal sum up to one
     

The GVB-PP wavefunction is the simplest wavefunction 
of the multiconfi gurational character, which is capable of 
describing bond dissociation, but by construction it misses 
a large part of the dynamic correlation. Consequently, 
unlike a more general APSG ansatz, GVB-PP is not exact 
(not equivalent to the full CI wavefunction) even for the 
simplest case of two-electron systems unless one goes to 
the strong correlation limit. For example, for the hydrogen 
molecule the APSG and GVB-PP wavefunctions become 
identical in the dissociation limit (we will come back to 
this issue when discussing the results for   H2   ). 

 The ground-state GVB-PP energy follows from the opti-
mization of the simple expression reading [ 9 ,  14 ]
     

where   
{

hpp
}
    are matrix elements of the one-electron Ham-

iltonian in the natural orbital representation, and two-elec-
tron integrals are defi ned as
     

and
     

A notation “  p ∈ P   ” adopted in Eq. ( 10 ) and below means 
that a natural orbital   ϕp    is assigned to a  P th geminal, which 

(6)∀p np =c2
p

(7)∀p 0 ≤np ≤ 1.

(8)∀P �=Q , ∀x1,x′1

∫
ψGVB−PP

P (x1, x2)ψ
GVB−PP
Q

(
x′1, x2

)
dx2 = 0,

(9)∀P≤N/2
(
cP1

)2
+
(
cP2

)2
= 1.

(10)

EGVB−PP
= 2

N/2∑
P

∑
p∈P

c2
phpp +

N/2∑
P

∑
p,q∈P

cpcq
〈
ϕpϕp|ϕqϕq

〉

+

N/2∑
P �=Q

∑
p∈P,q∈Q

c2
pc2

q

〈
ϕpϕq||ϕpϕq

〉
,

(11)

〈
ϕpϕq|ϕrϕs

〉
=

∫ ∫
ϕp(r1)

∗ϕq(r2)
∗
|r1−r2|

−1ϕr(r1)ϕs(r2) dr1dr2

(12)
〈
ϕpϕq||ϕpϕq

〉
= 2

〈
ϕpϕq|ϕpϕq

〉
−
〈
ϕpϕq|ϕqϕp

〉
.
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in turn implies that the corresponding coeffi cient   cp    is, in 
general, greater than zero. At fi rst sight, the expression for 
the energy ( 10 ) looks identical to its APSG counterpart, but 
one should keep in mind that orbitals in GVB-PP are paired 
[cf. Eq. ( 4 )] and the set of conditions given in Eq. ( 9 ) must 
be imposed while optimizing the functional ( 10 ). Clearly 
therefore, the APSG energy is a lower bound to the GVB-
PP energy and both are bounded from below by the exact 
ground-state value,
     

There is one signifi cant computational advantage of opti-
mizing the GVB-PP energy functional rather than that of 
the APSG. In the latter, all natural orbitals have nonzero 
occupation numbers, whereas in the former, only  N  orbit-
als are fractionally occupied and the rest of orbitals forms 
a set of virtual (unoccupied) orbitals. A need to optimize 
all (often very weakly occupied) orbitals in the APSG 
approach leads to a slowly converging optimization prob-
lem. Optimization of the GVB-PP energy, on the other 
hand, is much more effi cient (orbitals which are very 
weakly occupied in APSG are virtual orbitals in GVB and 
have no contribution to the energy). 

 GVB-PP method has been applied mostly to description 
of ground states of molecules although, in principle, one 
can also converge the GVB-PP energy to a selected excited 
state. A time-dependent linear response theory approach, 
which allows one to fi nd a number of excitation energies 
in a single calculation, has not been exploited in the con-
text of the GVB-PP so far. Recently, we have derived time-
dependent linear response equations for the APSG wave-
function and applied the resulting method to computing 
APSG excitation energies [ 17 ,  18 ]. Similar equations can 
be immediately written for the GVB-PP ansatz by repeat-
ing derivation presented in Ref. [ 18 ]. The derivation starts 
by writing the quantum action integral,  A , for the time-
dependent GVB-PP wavefunction [Eq. ( 3 )]
     

(13)Eexact
0 ≤ EAPSG

0 ≤ EGVB−PP
0 .

(14)

A =

∫ T

0

〈
Ψ GVB−PP(t)|Ĥ(t)− i

∂

∂t
|Ψ GVB−PP(t)

〉
dt

= 2
N/2∑
P=1

∑
p∈P

∫ T

0
cp(t)∗cp(t)hpp(t)dt

+

N/2∑
P=1

∑
p,q∈P

∫ T

0
cp(t)∗cq(t)

〈
ϕp(t)ϕp(t)|ϕq(t)ϕq(t)

〉
dt

+

N/2∑
P �=Q

∑
p∈P,q∈Q

∫ T

0

∣∣cp(t)
∣∣2∣∣cq(t)

∣∣2 〈ϕp(t)ϕq(t)||ϕp(t)ϕq(t)
〉
dt

− i
N/2∑
P=1

∑
p∈P

∫ T

0

[
cp(t)∗

∂cp(t)

∂t
+ 2cp(t)∗cp(t)

〈
ϕp(t)

∂ϕp(t)

∂t

〉]
dt,

and assuming that a Hamiltonian   Ĥ(t)    is composed 
of the time-independent part and a time-dependent 
perturbation, namely   Ĥ(t) = T̂ + V̂ee + V̂ext + δV̂(t)   . 
Employing stationarity of the action to variations of the 
coefficients and orbitals leads to the following time-
dependent equations
     

     

     

     

where the time-dependent Lagrange coefficients   {�rs(t)}    
have been introduced to keep the orbitals orthogonal. 
Equations. ( 15 )–( 18 ) are nonperturbative time-depend-
ent equations for the expansion coefficients   

{
cp(t)

}
   , the 

natural orbitals   
{
ϕp(r, t)

}
    and their complex conjugates. 

Upon applying the standard linear response theory, the 
following eigenequation is obtained for the excitation 
energies   {ων}    (cf. Eq. ( 34 ) in Ref. [ 18 ])
     

Elements of the matrices   A+, A−, D+, D−, E+, E−    are 
given in terms of the stationary orbitals   

{
ϕp(r)

}
    and the 

coefficients   
{

cp
}
    obtained by minimizing the GVB-PP 

energy expression given in Eq. ( 10 ). Definitions of the 
aforementioned matrices are provided in Refs. [ 18 ,  19 ], 
but for the convenience of the reader, we repeat them in 
the “ Appendix .” 

 By analogy with the TD-APSG method proposed 
in Ref. [ 18 ], we call the method for calculating GVB-
PP excitation energies based on solving eigenequation 
( 19 ) TD-GVB. From now on, it is assumed that station-
ary orbitals are in a descending order with respect to their 
occupancies. The fi rst  N  orbitals are therefore occupied 
(assigned to  N  / 2 geminals) and starting from the index 
  N + 1    the orbitals are virtual   (∀p>N cp = 0)   . In the linear 
response equations, only responses of the  N  coeffi cients 
and orbitals are considered. First-order perturbations of 
the orbitals have been expanded in the whole set of the 

(15)
δA

δcp(t)
= 0,

(16)
δA

δcp(t)∗
= 0,

(17)

〈
δ

[
A −

∫ T
0

∑
rs �rs(t)〈ϕr(t)|ϕs(t)〉

]
δϕp(t)∗

ϕq(t)
∗

〉
= 0,

(18)

〈
δ

[
A −

∫ T
0

∑
rs �rs(t)〈ϕr(t)|ϕs(t)〉

]
δϕp(t)

ϕq(t)

〉
= 0,

(19)

⎛⎝ A+A− + 2D+(D−)T A+D− + D+E−

2
[
(D+)T A− + E+(D−)T

]
2
(
D+

)T D− + E+E−

⎞⎠⎛⎝ Ỹ

W̃

⎞⎠
ν

= ω2
ν

⎛⎝ Ỹ

W̃

⎞⎠
ν

.
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stationary orbitals (including both occupied and virtual 
orbitals), namely
     

In the TD-GVB equations, the elements of the vector   ̃Y    are 
linked to perturbations   δUpq(t)    and the range of indices of 
the   ̃Ypq    elements is as follows
     

where   Mbasis    stands for a number of basis set functions 
employed in calculations. The value of the   ̃Ypq    element can 
be interpreted as a contribution to a given excitation from 
a transition either between two occupied orbitals   (p ≤ N)    
or between occupied and virtual orbitals   (p > N)    [ 20 ,  21 ]. 
Notice at this point that the dimensions of the analogous   ̃Y     
vectors present in the TD-APSG and TD-HF equations are, 
respectively, higher and lower. The indices of the respec-
tive vectors change as follows
     

     

Thus, in TD-HF there are only occupied–virtual transi-
tions, while in TD-APSG, all combinations are possible 
(also transitions between weakly occupied orbitals). The 
  W̃    component of the eigenvector in Eq. ( 19 ) comprises 
only  N  elements
     

and is related to responses of the coeffi cients   
{

cp
}
   . In 

the TD-APSG method, on the other hand, the   W̃    vec-
tor is longer since it is composed of   Mbasis    elements (also 
responses of the   cp    coeffi cients pertaining to weakly occu-
pied orbitals are taken into account)
     

Since all orbitals in the HF approximation are either 
fully occupied   (np = 1)    or virtual   (np = 0)    the fi rst-order 
responses of the occupation numbers are zero and eigen-
vectors in the TD-HF equations comprise only   ̃Y     com-
ponents. It has been discussed in Ref. [ 18 ] that   W̃    in 
TD-APSG is nonzero only for excitations to totally sym-
metric states. Nonzero contributions from   W̃p    elements or 
  ̃Ypq    when both   p, q > N/2    (transition between two weakly 
occupied orbitals) indicates a double character of a given 
excitation [ 18 ,  22 ,  23 ]. 

 It is worth mentioning that excitation energies can be 
also obtained from the GVB-PP ground-state wavefunction 
by employing the extended random phase approximation 

(20)
∀p≤N ϕ(1)

p (r, t) =
∑

q

δUpq(t)ϕq(r).

(21)TD-GVBỸpq : p = q + 1, . . . , Mbasis and q = 1, . . . , N ,

(22)

TD-APSGỸpq : p = q + 1, . . . , Mbasis and q = 1, . . . , Mbasis,

(23)

TD-HFỸpq : p = N/2 + 1, . . . , Mbasis and q = 1, . . . , N/2,

(24)TD-GVBW̃p : p = 1, . . . , N ,

(25)TD-APSGW̃p : p = 1, . . . , Mbasis.

(ERPA) in the framework of the Rowe’s equations of 
motion formalism [ 24 ] by [ 17 ]. ERPA equations are of the 
form
     

where the matrices   A+, A−    are identical to the pertinent 
matrices present in the TD-GVB Equations ( 19 ). ERPA 
excitations are only different from their TD-GVB counter-
parts if the excitation in question is totally symmetric. For 
other symmetries, ERPA and TD-GVB solutions coincide 
by construction. 

 Finally, we want to point out to the connection of the 
TD-GVB equations with the recently formulated TD-PINO 
(time-dependent phase including natural orbital) formal-
ism [ 25 – 27 ]. TD-PINO is an extension of the TD-RDMFT 
(time-dependent reduced density matrix functional theory) 
formalism to functionals depending not only on the natural 
occupation numbers and the natural spinorbitals but also on 
the phases of the latter. The phases are not generic features 
of the natural spinorbitals, i.e., they cannot be recovered 
from diagonalization of the one-electron density matrix. 
Rather they should be seen as additional variational param-
eters of the functional. Since it has been shown that the 
GVB-PP energy function ( 10 ) is identical to PNOF5—one 
of the phase including natural orbital functionals [ 14 ]—
then, from the perspective of the natural orbital functional 
theory, the TD-GVB equations ( 19 ) can be seen as TD-
PINO equations [ 18 ,  26 ] applied to the PNOF5 functional. 
In other words, the results discussed in the next section can 
be viewed as the TD-PINO (in the adiabatic approxima-
tion) excitation energies obtained by employing the PNOF5 
functional. 

    3   Results 

 The results presented in this section have been obtained in 
symmetry adapted orbital basis sets. To stabilize the TD-
APSG and TD-GVB equations and avoid obtaining occa-
sionally spurious excitation energies (cf. a discussion in 
Ref. [ 18 ]), we have assumed the lower and upper cutoffs 
for sums of pairs of occupation numbers that are included 
in calculations for LiH and   H2O    molecules. In other 
words, the accepted elements   ̃Ypq    of the eigenvectors are 
such that   ∀p>q 1 × 10−4 < np + nq < 1.98    .The matrices 
  A+, A−, D+, D−    are truncated accordingly. 

 We begin with the   1Σ+
g     and   1Σ+

u     excitation energy 
curves for the hydrogen molecule presented in Figs.  1  and 
 2 . They have been obtained by employing the TD-APSG, 
TD-GVB, and TD-HF methods in the aug-cc-pVTZ basis 
set [ 28 ]. The TD-APSG approach yields exact (in a given 
basis set) excitation energies since it is equivalent to the 
FCI method [ 22 ,  23 ] for two-electron systems. In the 

(26)A+A− Ỹ = ω2 Ỹ,
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dissociation limit   (R →∞)    the natural occupation num-
bers of the two occupied orbitals predicted by the GVB-
PP method achieve the value 1/2. In this limit, all but two 
APSG orbitals become virtual (their occupation numbers 
go to zero). Thus, asymptotically the GVB-PP and APSG 
methods become equivalent, yielding the same ground-
state density matrices and ground-state energies. In the 
TD-APSG, eigenequations contributions to a given exci-
tation energy from transitions between virtual orbitals and 
from the elements of the   W̃    vector corresponding to virtual 
orbitals vanish. Consequently, in the dissociation limit one 
expects that excitation energies predicted by the TD-GVB 
and TD-APSG methods become equal, which is numeri-
cally confi rmed by the results presented in Figs.  1  and  2 . 
For shorter interatomic distances  R , the TD-GVB curves 
also follow rather closely the exact TD-APSG curves. 
Around   R = 3.5    a.u. the fi rst   1Σ+

g     excitation acquires a 
double character, which is manifested by large values of the 
  W̃11, W̃22    elements in both TD-GVB and TD-APSG equa-
tions. The TD-HF excitation energies are very close to the 
exact values around the ground-state equilibrium geometry 
(  R = 1.4    a.u.), but they deteriorate rapidly when the bond 
is stretched. This is mainly due to the erroneous one- and 
two-electron density matrices produced by the HF approach 
which miss static correlation. The fi rst two HF orbitals are 
fully occupied instead of becoming half-occupied in the 
dissociation limit.               

 The conclusions drawn for the   H2    molecule can be 
extended to the lithium hydride molecule. In Figs.  3  
and  4 , we present   1Σ+    and   1Π    excitation energy curves 
for this molecule obtained in the cc-pVTZ basis set [ 28 ]. 
The CCSD results delivered by the Dalton package [ 29 ] 
are used as references. The core electrons of the lithium 
atom do not play a role in low electronic excitations and 
LiH molecule can be considered a quasi two-electron 
system. Consequently, the TD-APSG excitations almost 
coincide with the reference CCSD values. In the disso-
ciation limit, the bonding and antibonding natural orbit-
als, belonging to the same geminal, in both APSG and 
GVB-PP approaches are degenerated, i.e., their occupa-
tion numbers become equal. The other geminal includes 
a core orbital and it is localized on the lithium atom. 
The occupation numbers of the fi rst two orbitals belong-
ing to the core geminal are almost identical within the 
APSG and GVB-PP methods in the dissociation limit. 
For example at   R = 7    a.u. the core geminal includes 
orbitals of the occupancies amounting to   ncore

1 = 0.9986    
and   ncore

2 = 1.356 × 10−3    in GVB-PP and   ncore
1 = 0.9986    

and   ncore
2 = 1.360 × 10−3    in APSG. Thus, in the disso-

ciation limit, the one- and two-electron density matri-
ces resulting from the APSG and GVB-PP wavefunc-
tions possess the same structure and one expects that the 

corresponding time-dependent linear response equations 
would yield excitation energies of the similar accuracy. 
Figures  3  and  4  show that indeed for elongated bonds, 
the TD-GVB excitation energies tend to their TD-APSG 
counterparts. For shorter interatomic distances, the den-
sity matrices slightly differ and so do the excitation 
energies originating from the two methods. Deviations 
between the two methods stay within a few tenths of eV.               

 For water molecule, one observes qualitatively the 
same picture when comparing TD-GVB, TD-APSG, 
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 Fig. 1       Potential energy curves of the fi rst two   1Σ+
g     excited states for 

the dissociating   H2    molecule.  Solid lines : TD-APSG,  dashed lines : 
TD-GVB, and  dashed-dotted lines : TD-HF results.  
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 Fig. 2       Potential energy curves of the fi rst two   1Σ+
u     excited states for 

the dissociating   H2    molecule.  Solid lines : TD-APSG,  dashed lines : 
TD-GVB, and  dashed-dotted lines : TD-HF results  

223Reprinted from the journal



 Theor Chem Acc (2015) 134:118

1 3

and TD-HF performance as for smaller molecules. 
Figures  5  and  6  present   1A′    and   1A′′    excitation energies 
for   H2O    (the basis set is taken from Ref. [ 30 ]) as func-
tions of the length,  R , of one of the OH bonds. Around 
the ground-state equilibrium geometry (  R = 1.8    a.u.) 
all three linear response methods: TD-APSG, TD-GVB, 
and TD-HF yield similar values of excitation energies, 
which are in a substantial error (more than 1 eV) with 

respect to the CCSD counterparts. When the bond is 
stretched, the TD-APSG and TD-GVB approaches are 
more reliable than TD-HF in reproducing excitations 
which involve transitions from bonding or antibond-
ing orbitals describing the breaking OH bond. This is 
understandable taking into account that both the APSG 
and GVB-PP methods are capable of describing bond 
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 Fig. 3       Potential energy curves of the fi rst two   1Σ+    excited states 
for the dissociating LiH molecule.  Solid lines : CCSD,  dotted lines : 
TD-APSG,  dashed lines : TD-GVB, and  dashed-dotted lines : TD-HF 
results  
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 Fig. 4       Potential energy curves of the fi rst two   1Π    excited states for 
the dissociating LiH molecule. Solid lines: CCSD, dotted lines: TD-
APSG, dashed lines: TD-GVB, and dashed-dotted lines: TD-HF 
results  
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 Fig. 5       Potential energy curves of the fi rst two   1A′    excited states for 
  H2O    molecule with one dissociating OH bond.  Solid lines : CCSD, 
 dotted lines : TD-APSG,  dashed lines : TD-GVB, and  dashed-dotted 
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breaking so the ground state of the water molecule with 
the elongated bond is qualitatively correctly described 
unlike in the HF approximation. Thus, in the case of 
the first two   1A′    and the first   1A′′    excitation energy the 
TD-HF curves break down when  R  increases, whereas 
the TD-GVB and TD-APSG curves stay together and 
they parallel the CCSD reference. The second   1A′′    exci-
tation, on the other hand, does not include contribu-
tions from the orbitals involved in bond breaking but 
from orbitals localized on the OH bond of a constant 
length. The TD-GVB method does not outperform the 
TD-HF approach for this excitation.               

    4   Conclusions 

 The purpose of this paper was to fi ll a gap and formulate 
time-dependent linear response equations for the GVB-
PP wavefunction and to show performance of the result-
ing TD-GVB method in predicting excitation energies of 
molecules with stretched bonds. Although we have only 
investigated a few very small systems, the obtained results 
allow one to formulate general conclusions about quality 
of the TD-GVB excitations. Each geminal in the GVB-
PP ansatz includes only two orbitals in its expansion as 
opposed to APSG geminals which comprise an unrestricted 
number of orbitals. Thus, the GVB-PP wavefunction (and 
the corresponding reduced density matrices) misses more 
dynamic correlation than its APSG counterpart. However, 
this seems to have little effect on the quality of excita-
tion energies obtained from the linear response methods. 
Each excitation involves transitions from strongly occu-
pied orbitals (bonding, antibonding, lone pairs) to weakly 
occupied orbitals (including antibonding orbitals). By con-
fronting the structure of the eigenvectors in the TD-GVB 
equations [Eq. ( 21 )] and in the TD-APSG [Eq. ( 22 ], it is 
clear that in both methods such transitions are accounted 
for. The main difference between the two approaches is 
that orbitals which are purely virtual in the GVB method 
(their occupation is exactly 0) are nearly virtual in APSG, 
i.e., the corresponding natural occupation numbers are 
greater than 0 (typically their values are of the order of 
  10−3    or less). Apparently, whether the orbital is exactly or 
nearly virtual affects the excitation energies to only a small 
extent and the accuracy of the TD-GVB, and TD-APSG 
excitations is observed to be comparable. Computation-
ally, TD-GVB is more advantageous then the TD-APSG 
method due to the smaller computational effort in obtaining 
the GVB-PP ground state than that of the APSG and lower 

dimensionality of the TD-GVB eigenproblem comparing 
to TD-APSG. Unfortunately, when applied to molecules in 
ground-state equilibrium geometries, the TD-GVB does not 
lead to obtaining excitations of substantially better accu-
racy than the uncorrelated TD-HF method. When bonds 
are stretched, however, TD-GVB benefi ts from the correct 
description of a ground state and the method is much more 
reliable than TD-HF. 

 Taking into account that (1) solving the TD-GVB equa-
tions can be used to correct ground-state GVB-PP ener-
gies [ 31 – 33 ], (2) the TD-GVB equations lead to obtaining 
often reasonably accurate excitation energies, and fi nally 
that (3) the calculations can be done at modest computa-
tional cost, the TD-GVB approximation may be a useful 
tool in exploring potential energy surfaces of excited states 
of molecules. 

 Finally, we want to stress out that since the GVB-PP 
approximation is equivalent to PNOF5 [ 13 ,  14 ]—one of 
the natural orbital functionals—the results presented in 
this paper can be seen as examples of performance of the 
PNOF5 functional in the framework of the recently pro-
posed TD-PINO theory [ 26 ]. 
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   Appendix 

 The matrices   A+, A−, D+, D−    and   E+, E−    appearing in the 
TD-GVB Eq. ( 19 ) are determined by the optimal natural 
orbitals   

{
ϕp(r)

}
    and the expansion coeffi cients   {cp}    result-

ing from the optimization of the GVB-PP energy expres-
sion, Eq. ( 10 ). Their elements read
     

     

     

     

(27)∀p>q
r>s

A+pq,rs = (cp + cq)−1(Apq,rs + Bpq,rs)(cr + cs)
−1,

(28)∀p>q
r>s

A−rs,pq = (cp − cq)−1(Apq,rs − Bpq,rs)(cr − cs)
−1,

(29)∀p>q
r

D+
pq,r =

Bpq,rr

2(cp + cq)cr
,

(30)∀pq E+
pq =

Bpp,qq

4cpcq
,
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where
     

and
     

     

Additionally, the matrices   D−    and   E−    are of the form
     

     

∀ p �= q
r �= s

Bpq,rs = Apq,sr = (np − nq)(δpshqr − δqrhps)

+ (cpcsδIpIs + cqcrδIqIr )(〈pq|rs〉 + 〈pq|sr〉)

+ [npns(1 − δIpIs)+ nqnr(1 − δIqIr )− npnr(1 − δIpIr )− nqns(1 − δIqIs)]〈pr||qs〉

− δqrcp

∑
t

δIpIt ct〈ps|tt〉 − δpscq

∑
t

δIqIt ct〈qr|tt〉 − δprcr

∑
t

δIr It ct〈qs|tt〉

− δqscs

∑
t

δIsIt ct〈pr|tt〉 + δps

∑
t

nt[np(1 − δIpIt )− nq(1 − δIqIt )]〈qt||rt〉

− δqr

∑
t

nt[np(1 − δIpIt )− nq(1 − δIqIt )]〈pt||st〉 ,

(32)∀p�=q Bpq,rr = Brr,pq = 2cr(cqδIr Iq + cpδIr Ip)〈rr|pq〉 − 2cr(δrq + δrp)
∑

s

csδIr Is〈ss|pq〉,

(33)∀p,q Bpp,qq = 4cpcq

{
δIqIp〈qq|pp〉 + δpq

[
2
∑

r

nr(1 − δIqIr )〈qr||qr〉 + 2hqq − μIq

]}
.

(34)

∀ p > q
r

(cp − cq)D
−
pq,r = 2cr(δrp − δrq)hqp + (δrp − δrq)

∑
s

csδIr Is〈ss|pq〉

+ (cpδIr Ip − cqδIr Iq)〈rr|pq〉

+ 2(δrp − δrq)cr

∑
s

(1 − δIr Is)ns〈qs||ps〉

+ 2cr[np(1 − δIr Ip)− nq(1 − δIr Iq)]〈qr||pr〉,

(35)
∀pq E−

pq = δIpIq〈pp|qq〉 + δpq

[
2
∑

r

nr(1 − δIqIr )〈qr||qr〉 + 2hqq − μIq

]
+ 4cpcq(1 − δIpIq)〈pq||pq〉.

  (cp = 0) Ip = N/2 + 1   —so there is an additional   (N/2 + 1)

   th geminal and it includes all the virtual orbitals. 
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nonorthogonal set of  N -dimensional vectors. Arranging vectors 
  ci    as columns in matrix   C   , the overlap matrix
     

is a positive defi nite, nonunit matrix. Orthonormalization 
implies a linear transformation   B = CLo   , obeying
     

Vector set   
{

c̃i
}N

i=1   , biorthonormal to   
{

ci
}N

i=1    is obtained by the 
transformation   ̃C = CLbo   , fulfi lling
     

where   ̃C    contains vectors   ̃ci    in columns. In contrast to ortho-
normalization, the task of biorthonormal or reciprocal set con-
struction has the uniquely defi ned solution
     

as a direct consequence of Eq. ( 2 ). 
 Of the possible orthonormalization procedures, Löw-

din’s symmetric scheme [ 1 ,  2 ], operating with   Lo = S−1/2,    
is widely exploited in quantum chemistry. Gram–Schmidt 
orthogonalization is a popular, less costly alternative 
that lacks the symmetry conservation and resemblance 
[ 2 – 4 ] properties of Löwdin’s symmetric treatment. Gram–
Schmidt orthogonalization is known to depend on the 
ordering of vectors   ci   , which is not necessarily a shortcom-
ing. It is a deliberate advantage, e.g., if one, selected vector 
is meant to be fi xed. 

 This situation may be met when aiming to describe 
dynamic electron correlation starting from a single, multi-
determinantal reference vector. Correction schemes based 
on perturbation theory (PT) have been applying successive 
Gram–Schmidt orthogonalization in such circumstances [ 5 –
 7 ], occasionally combined with Löwdin’s symmetrical [ 8 ] or 

S = C†C

(1)B†B = L†
oSLo = I .

(2)C̃†C = L†
boS = I ,

Lbo = S−1

                     Abstract     Orthogonalization with the prerequisite of 
keeping several vectors fi xed is examined. Explicit formu-
lae are derived both for orthogonal and biorthogonal vector 
sets. Calculation of the inverse or square root of the entire 
overlap matrix is eliminated, allowing computational time 
reduction. In this special situation, it is found suffi cient to 
evaluate the functions of matrices of the dimension match-
ing the number of fi xed vectors. The (bi)orthogonal sets 
fi nd direct application in extending multiconfi gurational 
perturbation theory to deal with multiple reference vectors. 

   Keywords     Overlap    ·  Orthogonalization    ·  Biorthogonal 
sets     ·  Multiconfi guration perturbation theory    ·  Multistate 
theory  

      1  Introduction 

 There are two different, equivalent approaches for treating non-
orthogonality of a nonredundant vector set in a linear algebraic 
problem. One way is creating biorthogonal vectors to the over-
lapping set, and the other more common way is orthogonaliz-
ing the basis set. Let us assume that   

{
ci
}N

i=1    is a nonredundant, 
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canonical procedure [ 9 ,  10 ]. Biorthogonal treatment of the 
overlap when correcting a single, multideterminantal refer-
ence has been advocated and investigated extensively in the 
laboratory of Péter Surján [ 11 – 13 ]. The framework termed 
multiconfi gurational PT (MCPT) collects several approaches 
differing in the treatment of overlap and choice for the zero-
order Hamiltonian (see Ref. [ 14 ] for an elaboration on the 
perturbative partitioning). Focusing on the handling of over-
lap, options exploited so far, given a single reference vector 
are

   1.      orthogonal projection to the reference (fi rst step of a 
Gram–Schmidt procedure)

   (a)      biorthonormal set construction in the   (N − 1)

   -dimensional space   
  (b)      Löwdin orthogonalization in the   (N − 1)   -dimen-

sional space       

  2.      omit orthogonal projection to the reference

   (a)      biorthonormal set construction in the  N -dimen-
sional space         

 A notable feature of all three strategies is that the 
(bi)orthonormal set can be given explicitly, eliminating the 
need of numerical overlap treatment. Option 2b is lucidly 
missing from the above list just for the reason that no close 
form of the underlying inverse square root of the overlap 
could be constructed. Notation 2a is hence somewhat super-
fl uous, which we however keep to stress analogy with 1a. 
The procedure of option 1b is equivalent to the Jacobi rota-
tions’ inspired orthogonalization, designed by Mayer [ 15 , 
 16 ]. For applications of the above (bi)orthogonal schemes in 
PT strategies alternative to MCPT, see Refs. [ 17 ,  18 ]. 

 In the present work, we extend the above overlap treat-
ments for the case of multiple reference vectors. This involves 
derivation of explicit formulae for the (bi)orthonormal sets in 
cases analogous to 1a, 1b, and 2a above, with reference vec-
tors,   m > 1    in number. Construction of   S−1    and   S−1/2    in case 
1 for the   (N − m)× (N − m)    overlap matrix and   S−1    in case 
2 for the   N × N    overlap matrix is presented in Sect.  2 . These 
results facilitate a multistate extension of the MCPT frame-
work. The pertinent formulae are given in Sect.  3 , followed 
by an illustrative numerical study in Sect.  4 . 

    2   (Bi)orthogonal vector sets 

 Let   {ei}Ni=1    be the set of unit vectors, and let us replace the 
fi rst  m  vectors with the orthonormal set  1   of vectors   {ci}mi=1   . 

  1    Orthonormality of vectors   ci    is assumed since orthonormalizing  m  
vectors is relatively cheap for   m � N   . 

The new  N -dimensional set,   {ci}mi=1 ∪ {e
i}Ni=m+1    is not 

orthogonal as its subsets   {ci}mi=1    and   {ei}Ni=m+1    overlap. 
 Let us assume that coeffi cients   Cji    of the expansion

     

are arranged in matrix   C   , of dimension   N × m   . We now 
introduce notation   C1    for the upper   m × m    block of   C   , and 
  C2    for the lower   (N − m)× m    block. This allows to write
     

Orthonormality of vectors   ci    is refl ected by
     

where   Im    denotes the  m -dimensional unit matrix, and short-
hand   A    is introduced for subsequent use. We note here that the 
union of sets   {ci}mi=1    and   {ei}Ni=m+1    being  N -dimensional relies 
on the tacit assumption that matrix   A    is positive defi nite. 

 To extend option 1, projector   P    corresponding to the 
vector set   {ci}mi=1    is formulated as
     

As the next step, vectors   {ei}Ni=m+1   , arranged as the last 
  N − m    columns of unit matrix   IN   , are projected orthogonal 
to   {ci}mi=1    to generate the set   {ei′}Ni=m+1   . Denoting the corre-
sponding matrix   D′   , we get
     

with obvious notation for   IN−m   . Overlap of vectors   ei′    can 
be expressed as
     

using Eqs. ( 4 ) and ( 5 ). Matrix   D′†D′    represents the nontriv-
ial part of the   N × N    overlap matrix
     

of the set   {ci}mi=1 ∪ {e
i′}Ni=m+1   . 

 In the following paragraphs, the inverse and inverse 
square root of the overlap matrix of Eq. ( 7 ) is constructed. 
Clearly, it suffi ces to focus on   D′†D′    of Eq. ( 6 ). We 
approach the problem in a general manner, by expressing 
any analytic function,   f : (0, 1] → R    of matrix   S   . Matrix 
function   f (S)    is defi ned via Taylor expansion, written as
     

ci
=

N∑
j=1

ej Cji

(3)C =

(
C1
C2

)
.

(4)Im = C†
1C1 + C†

2C2 = A + C†
2C2,

P = CC†
=

(
C1C†

1 C1C†
2

C2C†
1 C2C†

2

)
.

(5)D′
= (IN − P)

(
0

IN−m

)
=

(
− C1C†

2
IN−m − C2C†

2

)
,

(6)D′†D′
= IN−m − C2C†

2,

(7)S =
(

Im

D′†D′

)

(8)f
(

IN−m − C2C†
2

)
=

∞∑
n=0

dn

(
C2C†

2

)n
,
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with   dn = (−1)nf (n)(1)/n!   . Since   ||C2C†
2|| < 1    (tak-

ing, e.g., the 2-norm of the matrix), the Taylor series is 
convergent if the coefficients   dn    are bounded. Explicit 
form of the Taylor coefficients   dn    is not necessary for 
further derivation, all we need to know is that they are 
indeed bounded for the inverse and inverse square root 
function. 

 We now recognize the following recursion for the pow-
ers of   C2C†

2   
     

that is easy to prove by induction. While the   n = 1    case is 
trivial, case   n = 2    is obtained as
     

an obvious consequence of Eq. ( 4 ). To take the induction 
step, let us suppose that statement ( 9 ) holds for   n − 1    and 
examine the case   n > 2   . We fi nd
     

which completes the proof. 
 Let us now substitute Eq. ( 9 ) into the Taylor expansion 

of Eq. ( 8 ) and utilize   d0 = f (1)   . We obtain
     

In the case   Im = A,    the second term of the expression above 
is zero. The role of the analytical treatment can be clearly 
pointed out at this step. Instead of evaluating function  f  of 
an   (N − m)× (N − m)    matrix, it is suffi cient to calculate 
the inverse and the same function  f  of   m × m    matrices. As 
long as   m � N   , much can be gained in computational time, 
the eventual speedup depending on the structure of   A    and 
the nature of  f . As   m → N   , the computational advantage 
evidently disappears. 

   2.1   Extended option 1a 

 Let us now work out the general formula of Eq. ( 10 ) for our 
two functions of interest. Starting with the inverse function, 
we obtain:

(9)
(

C2C†
2

)n
= C2(Im − A)n−1C†

2

(
C2C†

2

)2
= C2C†

2C2C†
2 = C2(Im − A)C†

2,

(
C2C†

2

)n
= C2(Im − A)n−2C†

2C2C†
2

= C2(Im − A)n−2(Im − A)C†
2

= C2(Im − A)n−1C†
2,

(10)

f
(

IN−m − C2C†
2

)
= f (1)IN−m + C2

[
∞∑

n=1

dn(Im − A)n

]
(Im − A)−1C†

2

= f (1)IN−m + C2

{[
∞∑

n=0

dn(Im − A)n

]
− f (1)Im

}
(Im − A)−1C†

2

= f (1)IN−m + C2(f (A)− f (1)Im)(Im − A)−1C†
2 .

     

The inverse of the overlap matrix of Eq. ( 7 ) therefore reads
     

Evaluating the biorthogonal counterpart of vectors   ei′,    one 
obtains
     

having utilized Eqs. ( 4 ) and ( 5 ). Noting that   C1A−1 = C†−1
1    , 

the special case of   m = 1    is recovered as
     

  ci    denoting the components of the single column vector   C    
of Eq. ( 3 ). While the biorthogonal vectors of Eq. ( 11 ) were 
introduced in Ref. [ 11 ], Eq. ( 3 ) of Ref. [ 12 ] allows for a 
more transparent comparison. 

    2.2   Extended option 1b 

 Let us step now to the inverse square root of Eq. ( 7 ). Based 
on the general result of Eq. ( 10 ), we obtain
     

The   −1/2    power of the overlap matrix of Eq. ( 7 ) hence 
becomes
     

The special case of   m = 1   , derived in Ref. [ 16 ], is obtained 
as
     

utilizing that   C    of Eq. ( 3 ) is composed of a single column. 
 Matrix   S−1/2    above facilitates to construct the Löwdin-

orthogonalized counterpart of vectors   ei′    as
     

(
IN−m − C2C†

2

)−1
= IN−m + C2

(
A−1

− Im

)
(Im − A)−1︸ ︷︷ ︸

A−1

C†
2

S−1
=

⎛⎜⎜⎜⎝
Im

IN−m + C2

(
C†

1C1

)−1
C†

2

⎞⎟⎟⎟⎠.

D̃′
= D′

(
IN−m + C2A−1C†

2

)
=

(
−C1A−1C†

2
IN−m

)
,

(11)ẽi′
= ei

−
c∗i
c∗1

e1 , i = 2, . . . , N ,

(12)

(
IN−m − C2C†

2

)−1/2
= IN−m + C2

(
A−1/2

− Im

)
(Im − A)−1︸ ︷︷ ︸

[(Im+A1/2)A1/2]−1

C†
2.

S−1/2
=

⎛⎜⎜⎜⎜⎜⎜⎝
Im

IN−m + C2

[(
Im +

(
C†

1C1

)1/2
)(

C†
1C1

)1/2
]−1

C†
2

⎞⎟⎟⎟⎟⎟⎟⎠.

(
S−

1
2

)
ij
= δij +

cic∗j
|c1|(1 + |c1|)

, i, j > 1,

D′L
= D′

(
IN−m + C2

(
A−1/2

− Im

)
(Im − A)−1C†

2

)
=

(
−C1A−1/2C†

2

IN−m − C2
(
Im + A1/2

)−1
C†

2

)
,
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having made use of Eqs. ( 4 ), ( 5 ), and ( 12 ). 

    2.3   Extended option 2a 

 Let us fi nally consider the almost trivial case of reciprocal 
set construction to the set   {ci}mi=1 ∪ {e

i}Ni=m+1   . Note that the 
orthogonal projection of Eq. ( 5 ) is now omitted. The   N × N    
overlap matrix of this set reads
     

Partitioning   S−1    into the same structure as   S    and solving for 
the individual blocks, the inverse overlap is readily found 
to be
     

The   N × m    matrix   ̃C    and   N × (N − m)    matrix   ̃D    collecting 
reciprocal column vectors are obtained as
     

their explicit form reading as
     

and
     

Similarly to Eq. ( 10 ), the most demanding computational 
task (inversion of   A   ) is connected to an   m × m    matrix, 
instead of the entire   N × N    overlap matrix. 

 It is interesting to observe that the reciprocal vectors   ̃D′    
of extended option 1a and   ̃D    of extended option 2a match 
explicitly. In the special case of   m = 1   , the fi rst reciprocal 
vector reads   ̃e1 = c∗−1

1 e1   , while   ̃ei    are the same as   ̃ei′    of 
Eq. ( 11 ) for   i > 1   , in accordance with [ 12 ]. 

     3   Multistate extension of MCPT 

 Electronic structure description often reaches its tar-
get in two successive steps. A fi rst, qualitative approxi-
mation is corrected in a second shot to incorporate the 
so-called dynamic correlation. Situations where a single 
vector—even if multiconfi gurational in character—does 
not represent an adequate fi rst approximation call for two 

S =

⎛⎜⎜⎝
Im C†

2

C2 IN−m

⎞⎟⎟⎠.

(13)S−1
=

⎛⎜⎜⎝
A−1 − A−1C†

2

−C2A−1 IN−m + C2A−1C†
2

⎞⎟⎟⎠.

(
C̃ D̃

)
=

(
C1 0
C2 IN−m

)
S−1,

C̃ =

(
C1A−1

0

)
,

D̃ =

(
−C1A−1C†

2
IN−m

)
.

or more reference vectors. Targeting more states of the 
system at a time is another example where multiple ref-
erence vectors are necessary. Many correction schemes 
have a version designed for such situations, assuming 
multiple reference states that form a so-called model 
space (MS). Equations of Rayleigh–Schrödinger PT [ 19 , 
 20 ] for instance can be regarded as a special case of the 
Bloch equation [ 21 ], corresponding to a one-dimensional 
model space. 

 Bloch-equation-based multistate PT formulations, 
termed quasidegenerate PT (QDPT) [ 22 ], largely assume 
an orthonormal set of vectors in the confi guration interac-
tion (CI) space that is partitioned for a model space and its 
complement. This restricts applicability to model spaces 
easily separable from the rest, e.g., formed by simple deter-
minants. While determinants facilitate a transparent deriva-
tion of many-body QDPT formulae [ 23 ,  24 ], identifying the 
determinants that need to be included in the model space 
is not always trivial. Though complete active space (CAS) 
appears a simple way out, CAS-based QDPT is unfortu-
nately prone to the so-called intruder problem, especially 
for large active spaces.  

 The idea of picking multiconfi gurational vectors to 
span the model space is appealing for two reasons. On 
one hand, the dimension of the space is reduced as com-
pared to the case of using determinants. On the other 
hand, it may have a benefi cial effect on intruder sensi-
tivity, due to the internally coupled nature of reference 
vectors. Such an approach is however hard to fi nd for the 
simple reason that the orthogonal complement of multi-
ple multiconfi guration vectors is not easy to construct. It 
is at this point where the overlap treatments elaborated 
in Sect.  2  can be relied upon. Detailed derivation of the 
multistate extension of the MCPT framework is out of 
the scope of the present report. In what follows we con-
fi ne ourselves to the key formulae necessary for the illus-
trative application of Sect.  4 . 

 Multiconfi gurational reference functions,   m > 1    in 
number, constitute the starting point of our approxima-
tion. Vectors   {ci}mi=1    of Sect.  2  are associated with these 
reference functions,   Cji    denoting the  j th component in the 
determinantal expansion of reference   ci   . In accordance 
with the generally applicable philosophy of MCPT, we 
do not assume any special structure of the reference func-
tions, apart from being orthonormal. Unit vectors   {ei}Ni=1    of 
Sect.  2  now represent determinants spanning the CI space. 
The fi rst  m  among determinants,   ei    are selected based on 
their projection to the model space. In particular, rows  j  for 
which   

∑
i C2

ji    are the largest, constitute   C1   . 
 The central quantity of PT approaches, the zero-order 

Hamiltonian, is formulated in MCPT via its spectral reso-
lution. Extended overlap treatment options 1a and 2a 
both imply a nonsymmetrical operator, 1b works with a 
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symmetrical expression. The zero-order Hamiltonian of 
option 1a, introduced in projected MCPT (pMCPT) [ 11 ,  13 ], 
can be extended as
     

MS standing for "multistate." Overlap treatment option 1b, 
applied, e.g., in Ref. [ 16 ], can be extended for multiple refer-
ence vectors as
     

Finally, the complete biorthogonal treatment of option 
2a, termed originally SC2-MCPT or unprojected MCPT 
(uMCPT) [ 12 ,  13 ], can be extended to the multistate case 
as
     

Diagonal matrices   E(0)
P     and   E(0)

P⊥    above contain zero-order 
energies corresponding to the model space and its comple-
ment, respectively. Zero-order energies in the Epstein–Nes-
bet (EN) partitioning [ 25 ,  26 ] are collected in Table  1  for 
completeness.        

 Energy corrections are calculated in MS theories as 
eigenvalues of an effective Hamiltonian, obtained rely-
ing on the Bloch equation and the zero-order operator. 
Matrix elements for the MS-pLMCPT variant at order 2 
read as
     

Corrected energies,   E(2)    and reference functions,   ci(2)    
arise as
     

and
     

respectively. 
 Closing this section, let us note that the MS-MCPT vari-

ants would merit a detailed formal and numerical examina-
tion respecting, e.g., size consistency, intruder sensitivity, 

H(0)
MS−pMCPT = C E(0)

P C†
+ D′ E(0)

P⊥ D̃′ †,

H(0)
MS−pLMCPT = C E(0)

P C†
+ D′L E(0)

P⊥ D′L †.

H(0)
MS−uMCPT = C E(0)

P C̃†
+ D E(0)

P⊥ D̃†.

(14)
(

Heff(2)
MS−pLMCPT

)
ij
= δijE

(0)
P,i −

N∑
k=m+1

〈ci|H|ek′L〉〈ek′L|H|cj〉

E(0)
P⊥,k − E(0)

P,j

.

∑
j

Heff(2)
ij d(2)

jk = E(2)
k d(2)

ik ,

ci(2)
=

∑
j

cjd(2)
ji ,

or dependence on the zero-order eigenvalues. We intention-
ally withdraw from such a study presently, as MS-MCPT 
merely serves an illustration purpose here. 

    4   Numerical illustration 

 Choosing suitable reference function(s) is a persisting 
challenge for multireference theories. Geminal-based 
approaches, continuously cultivated by Péter Surján, 
are promising in this respect [ 27 – 29 ] as they are more 
economic than CAS, still they often refl ect the multi-
confi gurational nature of the target function correctly. 
Obviously, geminal wavefunctions have their own 
shortcomings. We focus here on one of these, the pro-
cess of switching between two Lewis structures of the 
same molecule. A simple case study is provided by 
the rectangular-to-square distortion of the   H4    system. 
Antisymmetrized product of strongly orthogonal gemi-
nals (APSG) produces a cusp on the energy curve of this 
system at square geometry, as refl ected by Fig.  1 . The 
problem is connected to the fact that geminals (assigned 
to bonds) are reordered at the switching point, thereby 
capturing the correct, dominant Lewis structure at both 
rectangular arrangements. 

 There exist solutions to this problem [ 30 – 32 ], APSG-
based PT is however notably not among them, since a 
qualitative defect of the reference cannot be cured by PT. 
This is refl ected by the MCPT curve in Fig.  1 . If wishing to 
proceed by PT, it appears straightforward to construct two 
reference functions, corresponding to either of the Lewis 
structures, and follow a MS-MCPT strategy with two-
dimensional model space. The energy profi le obtained by 
such a procedure is shown for the MS-pLMCPT variant in 
Fig.  1 . Multistate theory apparently results a smooth energy 
curve with a correct, zero derivative at 90°. One can also 
observe in Fig.  1  a characteristic overshooting of EN parti-
tioning at order 2. 

 Due to the small system size, the example of Fig.  1  
cannot illustrate the gain in computational time, brought 
about by the results of Sect.  2 . To give an impression in 
this line, let us consider the ground state of p-benzyne. 
Description by a geminal-based MS-MCPT approach 
necessitates three reference vectors, corresponding 
to the three dominant Lewis structures. Value for  N  of 
Sect.  2  is given by the length of the determinantal expan-
sion of the reference vectors. Depending on the geminal 
scheme chosen,  N  may range from a couple of hundreds 
(in case of a minimalistic APSG) to astronomical dimen-
sions. The all pair coupled cluster doubles wavefunction, 
e.g., a geminal-type function [ 33 ], includes determinants 
on the order of   1016   , in a double zeta, polarized basis set, 
cores assumed frozen. Accordingly, analytic handling of 

 Table 1       Zero-order eigenvalues within the Epstein–Nesbet partition-
ing in multistate MCPT variants  

 Subscript  P  refers to the model space,   P ⊥    stands for the complemen-
tary space. See text for further notations 

    MS-pMCPT    MS-pLMCPT    MS-uMCPT  

    E(0)
P,i         〈ci|H|ci〉         〈ci|H|ci〉         〈c̃i|H|ci〉     

    E(0)
P⊥,i         〈ẽi ′|H|ei ′〉         〈ei ′ L|H|ei ′ L〉         〈ẽi|H|ei〉     
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overlap allows for dealing with   3 × 3    matrices instead 
of the numerical treatment of the   N × N     overlap matrix, 
with the above values for  N . 
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 Fig. 1       Total energy for   H4   , in STO-3G basis set. The four hydro-
gen atoms are confi ned to a circle with a radius of   

√
2    bohr. Angle 

of two neighboring hydrogen atoms (H) and the center of mass (X) 
are labeled angle(H–X–H). The APSG wavefunction, involving two 
geminals, with two orbitals assigned to each represents one of the ref-
erence states. The other reference function is generated by (1) local-
izing orbitals to atoms within the Arai subspaces; (2) assigning these 
orbitals to geminals representing the longer HH bonds, instead of the 
shorter; (3) optimizing geminal coeffi cients but not the orbitals. The 
MS-pLMCPT energy is obtained as the lower lying root of the effec-
tive Hamiltonian of Eq. ( 14 ). The curve MCPT is obtained in EN par-
titioning following the APSG-based PT strategy of Ref. [ 11 ]. Full CI 
is shown for comparison  
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not follow the anti-Markovnikov rule. We proceed to show 
that in addition to the polarity of the double bonds within a 
molecule, in this case, the conjugation with the allyl double 
bond and the specifi c geometric features of the cyclohex-
ane ring were key stabilizing factors for the unexpected 
transition state preference, resulting in a regioselectivity 
that is in quantitative agreement with previous experimen-
tal data. Our results further indicated that Re-face attacks 
and steric factors due to substituents of the substrate infl u-
enced mainly the stereoselective outcome of the reaction, 
also affecting the pathways available to proceed through to 
complete the hydroboration process. 

   Keywords     Hydroboration    ·  Anti-Markovnikov rule    · 
 Markovnikov rule    ·  11B NMR    ·  Lewis acid–base    · 
 Frustrated Lewis pair  

      1  Introduction 

 Hydroboration is one of the most central reactions pertain-
ing to boron chemistry, due to its involvement in a wide 
array of chemical synthesis applications [ 1 – 5 ]. Hydrobora-
tion of alkenes has great importance because of the wide 
variety of uses of the resulting organoboranes, such as in 
Suzuki cross-coupling reactions and aldol condensation 
reactions [ 6 – 8 ]. Compared with other intermediate com-
pounds, organoboranes are readily prepared from alkenes 
and alkynes with various structures, giving them their great 
applicability in organic synthesis [ 6 ,  9 – 11 ]. Furthermore, 
the highly stereo- and regioselective nature of hydrobora-
tion products has lent themselves to applications in phar-
maceuticals [ 12 ], as well in the reduction of environmen-
tal CO 2  [ 13 ] and in the polymerization of propylene into 
polypropylene [ 14 ]. Despite the relevance of the direct 

                     Abstract     Hydroboration and subsequent use of boron 
compounds in novel organic synthesis have been fl ourish-
ing in recent years largely due to its amiability in produc-
ing asymmetric stereo- and regioselective products. Direct 
products of diene hydroboration, however, have received 
little attention, with most substrates being assumed to pro-
duce the anti-Markovnikov product expected from textbook 
organic chemistry understanding. Previous experimental 
studies have observed the presence of a plethora of hyd-
roboration products, and a signifi cant progress has been 
made in assigning species to experimental data—though 
often with contradicting results. This study has used a 
computational approach employing quantum chemical 
calculations to determine atomic charges of cyclic and 
acyclic dienes and correlate these with calculated activa-
tion energy barriers in order to predict the regio- and ste-
reoselective outcome of hydroboration reactions. Results 
indicated a strong correlation between the most polarized 
atomic charges of double-bonded carbons and the lowest 
energy transition states as expected. Intriguingly, we iden-
tifi ed 1,3-cyclohexadiene as the main example that does 

  Published as part of the special collection of articles “Festschrift 
in honour of P. R. Surjan”.  

  Electronic supplementary material     The online version of this 
article (doi:  10.1007/s00214-015-1768-6    ) contains supplementary 
material, which is available to authorized users.  

    *     Edina     Rosta      
    edina.rosta@kcl.ac.uk                                                               

  1     Department of Chemistry   ,  King’s College London    , 
 London     SE1 1DB   ,  UK   

  2     Melville Laboratory for Polymer Synthesis, Department 
of Chemistry   ,  University of Cambridge    ,  Lensfi eld Road   , 
 Cambridge     CB2 1EW   ,  UK   

235Reprinted from the journal

mailto:edina.rosta@kcl.ac.uk


 Theor Chem Acc (2016) 135:13

1 3

hydroboration products in the fi nal product specifi city, 
previous studies have mainly focused on the subsequent 
reactions, such as their oxidation to form alcohols, and the 
direct unoxidized hydroboration products have until now 
received little attention [ 15 – 17 ]. 

 Stereo- and regiospecifi city of the fi nal synthetic prod-
ucts depends on the specifi city of the fi rst hydroboration 
reaction steps. It is well established that hydroboration 
favors the anti-Markovnikov regiochemistry and  cis  stereo-
chemistry ( syn -addition, Scheme  1 ), hence highly useful in 
chemical synthesis where only one stereoisomer is desired. 
In hydrocarbons with complex substituents, and more than 
one double bond, the anti-Markovnikov rule is not directly 
applicable (i.e., the number of hydrogens at two non-equiv-
alent carbon atoms of the same double bond can be equal), 
and determining the reaction specifi city is not immediately 
obvious. Simplifi ed explanations of hydroboration use the 
positions of resulting hydroxyl groups to assign the posi-
tions of boron attachment and infer the reaction mecha-
nism. This, however, is known to be inaccurate, as an 
oxidized product can arise from several different organo-
boranes [ 17 ], and a mechanistic explanation is missing that 
describes the complete process, including the specifi c iden-
tity of the unoxidized compounds [ 17 ]. In addition, owing 
to the high reactivity and sensitivity of the direct hydrobo-
ration products to oxidation, their study using solely ana-
lytical techniques is highly challenging. Here we studied 
potential direct hydroboration reaction products focusing 
on possible pathways depicted in Scheme  2 .               

 We characterized the specifi city of the direct hydrobo-
ration reaction products of straight chain and cyclic dienes 
using computational methods. It was previously thought 
that only partial hydroboration takes place in dienes, result-
ing in unsaturated reaction products described by Brown 
and Bhat [ 18 ]. Our recent study [ 17 ] demonstrated that 
hydroboration was not limited to one of the double bonds, 
and that in fact polymers formed as a result of fully sat-
urated, boron-containing hydrocarbons cross-linking 

together. We report here the results of quantum chemical 
calculations of hydroboration reactions, focusing on the 
regiospecifi city of the obtained products. We compare reac-
tion energy barriers and partial charges of carbon atoms to 
predict the most prevalent products. We validate our struc-
tural models by comparing calculated and experimental  11 B 
NMR chemical shifts. 

    2   Results and discussion 

 We focused primarily around the ten cyclic, and one non-
cyclic dienes (Fig.  1 ), with experimental data available 
from previous work for eight [ 17 ]. Hydroboration of the 
initial substrates yields a monosubstituted species, which 
can further react to form various fully hydroborated prod-
ucts, depending on the ratio of the borane and the reactant 
diene [ 17 ]. The amount of diene available to react affects 
the ratios of the resulting products, and its excess might 
only allow the fi rst step of the reaction to proceed and thus 
yield a monosubstituted olefi n. This is well documented in 
the example of hydroboration of 1,3-cyclohexadiene [ 18 , 
 19 ], when hydroboration proceeds only to the fi rst step in 
Scheme  2 , and both allyl (2-cyclohexene-1-ol) and homoal-
lyl (3-cyclohexene-1-ol) species are formed, with the fi rst 
one in excess (Fig.  2 ). Interestingly, up to 90 % regiose-
lectivity was observed for the allyl product with specifi c 
hydroboration agents [ 18 ]. This unexpected regioselective 
outcome [ 19 ] posed an interesting case in our analysis and 
is discussed further in Sect.  2.1 .               

   2.1   Monohydroboration products of dienes 

 In our fi rst analysis step, we were interested in determining 
the regio- and stereoselectivity of the hydroboration reac-
tions under reaction conditions where monohydroboration 
products are formed primarily. To analyze the selectivity 
of the reactions, we focused on the rate-determining step 

 Scheme 1       General mechanism of hydroboration with the favored anti-Markovnikov product  
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using the high-energy BH 3 -diene adducts as our starting 
reactant states [ 17 ]. We calculated the energies of geome-
try-optimized reactant and transition states corresponding 

to hydroboration on all possible  sp  2  carbons of the 8 mol-
ecules with previously available experimental data [ 17 ] 
from Fig.  1 . With the calculated transition state barriers, 
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 Scheme 2       Schematics of possible reaction intermediates and prod-
ucts in hydroboration reaction pathways utilizing hydroboration of 
C=C double bonds together with B–H–B bridge formation. Pathways 

A or B + E ( red ) lead to small-molecule products, whereas pathways 
C or B + D ( red ) can lead to the formation of polymers  
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and assuming a kinetically controlled mechanism, we can 
predict the most favorable isomers computationally [ 21 , 
 22 ]. Previous computational studies have also pointed out 
the fact that the fi nal thermodynamically favored products 
might not refl ect the selectivity of the kinetically favored 
hydroboration reactions [ 23 ] and emphasized the impor-
tance of dynamical effects beyond transition state theory 
[ 24 – 26 ]. 

 The regioselectivity of hydroboration reactions is gen-
erally dominated by the anti-Markovnikov product, where 
boron adds to the least substituted carbon. However, in 
cyclic dienes, especially those which are symmetrical, the 
regioselectivity is not immediately obvious owing to the 
equal number of hydrogens on both sides of the carbon–
carbon double bond. A key relationship was previously 
highlighted between the reacting carbon atomic charge and 
the energy of the intermediates at the transition state [ 23 ]. 
Instead of analyzing the charge distribution of the interme-
diates, here we hypothesized that the charge density of the 

reacting dienes would mainly determine the product selec-
tivity, corresponding to the reaction with the lowest tran-
sition state barrier. To test this, we calculated the atomic 
charges of the double-bonded carbon atoms (Figure S1) 
on the separate reacting molecules without BH 3  and com-
pared these to the transition state barriers for each specifi c 
hydroboration reaction (Table  1 ). The calculated free ener-
gies using harmonic approximation are consistent with the 
obtained energy differences and are also reported in Table  1  
(in parentheses). We analyzed the results focusing on both 
(1) the most negative carbons and the corresponding C–
BH 2  bond formation and (2) the most positive carbons and 
the corresponding new C–H bond formation.  

 Our results, presented in Table  1 , were generally con-
sistent with the anti-Markovnikov rule, and the most neg-
atively charged carbon atom afforded the lowest energy 
transition state (Fig.  3 , left). Analogously, the most positive 
carbon had the lowest energy transition state corresponding 
to the formation of the new C–H bond on that carbon atom 

 Fig. 1       Schematic and actual 
optimized molecular struc-
tures of the reactant diene 
molecules considered in this 
work: 2,3-dimethyl-1,3-buta-
diene (A4), α-terpinene (B6), 
1,2,4,5-tetramethyl-1,4-cy-
clohexadiene (C6), 1,3,5,5-tetra-
methyl-1,3-cyclohexadiene 
(D6), 1,5-cyclooctadiene (D8), 
γ-terpinene (E6), 1,3-cyclohex-
adiene (F6), 1,4-cyclohexadiene 
(G6), 1,3-cyclopentadiene (H5), 
1,5,5,6-tetramethyl-1,3-cy-
clohexadiene (I6a,b), 1,6,6-tri-
methyl-1,3-cyclohexadiene (J6)  
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(Fig.  3 , right). Both focusing on the carbon with the C–BH 2  
or on the one with the C–H bond, the corresponding cor-
relations are very similar and they show a good agreement 
with the expected selectivity. It is worth noting that the 

CHelpG charge scheme [ 27 ] performs much more consist-
ently than the Mulliken charge scheme, as expected. The 
seemingly contradicting atomic charge results between the 
two schemes can be attributed to the basis set size. CHelpG 
charges proved to be consistent across smaller (6-31G) and 
larger (cc-pVTZ) basis sets for F6 (data not shown). On the 
other hand, Mulliken charges fl uctuated and showed great 
variations depending on basis set size. In particular, atomic 
charges of the carbons for A4 are unphysically polar-
ized using diffuse orbitals with the 6-31+G or 6-31+G* 
basis sets, and the polarization of the BH 3  molecule is the 
opposite of the expected bond polarity using 6-31+G* or 
cc-pVTZ basis sets (Table S3). The low electronegativ-
ity of boron results in the attached hydrogens being more 
electronegative, allowing the boron to preferentially bond 
to the most negative conjugated carbon and the hydrogen 
to bond to the most positive carbon. Interestingly, slightly 
better correlation is found when considering the positivity 
of the carbon that forms the new C–H bond for B6 mol-
ecule (Fig.  3 , right); however, the most reactive double 
bond is also the most polarized bond for all three asymmet-
ric cases (B6, D6, and E6). The correlation with the reac-
tant’s atomic charges is less strong considering the predic-
tion for the highest energy transition states, indicating that 
for the high-energy transition states additional contributing 
factors are present. None of the highest energy transition 
states corresponded to the least negative carbon (or least 

 Fig. 2        Top  reaction scheme for the hydroboration of 1,3-cyclohexa-
diene, giving rise to the allyl and homoallyl products. Yields are 
reported using B 2 H 6  as the hydroboration agent in THF solvent [ 20 ]. 
 Bottom  optimized geometries of the F6 molecule and possible tran-
sition states leading to regio- and stereoselective monohydroboration 
intermediates. CHelpG atomic charges of the  sp  2  carbons of the F6 
molecule are shown (a.u.,  color code  corresponds to atomic charges), 
and for each transition state, the HOMO orbitals are displayed 
together with the corresponding activation energies (kcal/mol)  

 Table 1       The activation 
energies (and free energies 
in parentheses) are given in 
kcal/mol units for the C–BH 2  
bond formation for each 
non-equivalent carbon atom 
corresponding to the energy 
difference between the 
transition state (TS) and the 
most stable BH 3 –diene adduct 
reactant state of the fi rst eight 
molecules in Fig.  1   

 Atomic charges (in a.u.) are given for the reacting molecules without BH 3  (Figure S1) using both the 
CHelpG [ 27 ] and the Mulliken charge schemes. To assess potential stereospecifi city, activation energies 
were also calculated from Si-face attack leading to enantiomers for B6, D6, E6, and F6 

  Molecule    Carbon number    Atomic charge    Activation energy (free energy)  

  CHelpG    Mulliken    Re face    Si face  

  A4    TS1    1    −0.479    −1.370    2.37 (2.96)    

    TS2    2    0.149    1.078    5.56 (6.77)    

  B6    TS1    1    −0.167    0.027    7.60 (8.51)    7.77 (8.48)  

  TS2    4    0.082    0.015    5.08 (5.92)    7.51 (8.14)  

  TS3    2    −0.108    −0.150    5.89 (6.57)    4.88 (5.79)  

  TS4    3    −0.249    −0.141    3.10 (3.94)    4.97 (5.63)  

  C6    TS1    1    −0.117    1.263    5.25 (6.26)    

  D6    TS1    2    −0.354    −0.322    4.40 (5.28)    4.76 (5.85)  

    TS2    1    0.125    0.911    7.97 (8.78)    8.78 (9.64)  

    TS3    3    0.287    0.204    5.61 (6.31)    10.00 (10.94)  

    TS4    4    −0.594    −0.758    2.12 (2.95)    7.70 (8.61)  

  E6    TS1    4    0.052    0.813    5.73 (6.47)    5.86 (6.20)  

  TS2    5    −0.387    −0.190    3.25 (4.03)    3.30 (3.56)  

  TS3    1    −0.175    0.186    7.96 (8.52)    6.23 (6.91)  

  TS4    2    −0.302    0.398    3.87 (4.71)    4.37 (4.74)  

  F6    TS1    2    −0.083    −0.189    2.52 (3.39)    4.27 (4.98)  

  TS2    1    −0.243    −0.007    2.54 (3.52)    4.53 (5.06)  

  G6    TS1    1    −0.256    0.093    3.25 (3.98)    
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positive, if considering C–H bond formation), which might 
be explained by the more readily available polarization of 
the double bond with the most negative carbon, to accom-
modate the TS.        

 For our fi rst set of 8 molecules corresponding to experi-
mental data, in all but one case, the lowest energy transi-
tion state corresponded to the most polarized double bond 
with the expected selectivity for the hydroboration. Intrigu-
ingly, 1,3-cyclohexadiene (F6 molecule) was an exception, 
despite the strong polarization of the double bonds. The 
allyl and homoallyl products were approximately equally 
preferred, with the allyl TS lower in energy by 0.09 kcal/
mol based on the larger cc-pVTZ basis set calculations. 
This agrees well with the experimentally observed slight 
preference for the allyl product (60–65 %) reported for this 
molecule using THF as solvent and B 2 H 6  as hydroboration 
agent [ 20 ]. The experimental selectivity corresponds to 
a free energy difference of less than 0.4 kcal/mol, which 
is a difference well within the error of the calculations. 
Depending on the hydroboration agent, the allyl product 
can have even higher prevalence over the homoallyl prod-
uct, with the more positive carbon forming the C–B bond, 
opposite to other known hydroboration selectivities that 
follow the anti-Markovnikov rule [ 19 ]. 

 According to our calculated TS structures, there was 
also a strong stereoselectivity of the fi nal products in the R 
confi guration corresponding to the Re-face attack (Table  1 ) 
at both the allyl and homoallyl carbon positions. However, 
the observed products would be a mixture of enantiom-
ers, as the cyclohexadiene ring would have an equivalent 
conformer, leading to the opposite selectivity with identi-
cal energies. Additional asymmetric substituents at the CH 2  
groups would likely stabilize one of the two conformers of 
the ring, leading to stereospecifi c products. 

 To quantitatively analyze the energetic and structural 
reasons for the observed unexpected regioselectivity of F6, 
we performed separate QM calculations on the cyclohex-
adiene ring and the BH 3  molecules in their respective TS 
structures. We found that the structural differences were 

almost negligible for the BH 3  molecule and were very 
minor for the TSs corresponding to the Re-face (TS1 and 
TS3, RMSD = 0.062 Å) or the Si-face attacks (TS2 and 
TS4, RMSD = 0.045 Å). The main structural changes were 
due to slight movements of the CH 2  groups (Figure S2). 
The Re- and Si-face attacking direction naturally affects 
the hydrogen atoms already bonded to the carbons on the 
double bond, as these carbons move toward sp 3  hybridiza-
tion. We compared the energy differences between the TS 
geometries and the fully optimized F6 geometry for each 
TS structure (Table S1; Fig.  4 ). In general, the allyl and 
the Re-face attack structures were lower in energy than the 
homoallyl and the Si-face attack structures, respectively. 
Consequently, TS1 has the lowest energy, while TS2 the 
highest. The difference in the relative energies between 
the Re- and the Si-face attack structures is likely due to the 
specifi c fl exibility of the cyclohexadiene ring, with the TS1 
and TS3 structures being visibly closer to a chair confor-
mation, whereas TS2 and TS4 are closer to the boat confor-
mation. Interestingly, these minor structural changes lead 
to signifi cant polarization of the attacked carbon bonds 1 
and 2, respectively. In case of TS1 and TS4, the BH 2  group 
attacks at carbon 1. This carbon also becomes more nega-
tive compared to F6, with partial atomic charges changing 
from −0.08 to −0.18 a.u., for example, for TS1. On the 
other hand, for TS2 and TS3, the carbon 2 atomic charges 
change from −0.24 to about −0.32 a.u. These results indi-
cate that the structural changes observed between the allyl 
and homoallyl intermediates are consistent with the pre-
polarization of the carbon to allow charge transfer to the 
positively charged boron at the TS structure. This is also 
suggested by the displayed HOMO orbitals that are delo-
calized to the B-H breaking bond in the allyl attack (Fig.  2 ). 
In this specifi c case, the adjacent Lewis base double bond 
is likely a contributing factor for the preference toward the 
allyl intermediate.        

 The paradoxical regioselectivity is often attributed to 
steric effects of the CH 2  groups in the literature [ 19 ]. To 
test whether steric effects might be responsible for the 

 Fig. 3       Correlation between the 
carbon atomic charges (a.u.) 
and the activation energies 
(kcal/mol) corresponding to 
the C–BH 2  ( left ) and new C–H 
bond formation ( right ) for B6, 
D6, and E6 (the lower energy 
structures are chosen between 
the Re- and Si-face attack posi-
tions)  
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observed energy differences, we analyzed the TS structures 
with respect to the closest CH 2 –BH 3  distances (Figure S3). 
For TS2 and TS4, these distances are as short as 2.30 Å. 
However, there are no signifi cant steric effects between 
TS1 and TS3 that could prompt the observed energy dif-
ference of the F6 geometries (6.61 vs. 9.46 kcal/mol). To 
test this, we reoptimized the TS1 transition state enforcing 
a fi xed distance of 2.38 Å between two hydrogens as shown 
in Figure S3C, matching the shortest distance present in 
TS3. The increase in the energy was only 0.2 kcal/mol for 
the TS structure and 0.15 kcal/mol for only the F6 energy 
without BH 3 , which does not explain the almost 3 kcal/
mol energy difference between the altered F6 geometries 
of TS1 and TS3 (Fig.  4 ). Taken together, the data suggest 
that the main reason for the structural stabilization energy 
observed for the allyl attack F6 geometries is due to the dif-
ferences in polarizability between the allyl and homoallyl 
positions. Interestingly, we previously reported that when 
the BH 2  substituent is in an axial position, the double bond 
delocalizes over to the boron dihydride substituent at the 
allyl position as seen by the HOMO [ 17 ] and by the atomic 
charges (Figure S4). This allyl borane–π bond interaction, 
reminiscent to that of frustrated Lewis pairs [ 28 ], imparts 
a degree of stability to the molecule, through increasing 
the electron density located at the boron, and contributes to 
lowering the activation energy of the corresponding transi-
tions states. 

 To determine the electrostatic and polarization energies 
between the F6 and BH 3  molecules at the TS structures, 
we compared the energies of the fully interacting and non-
interacting cyclohexadiene and BH 3  molecules (Table S1). 

The calculated interaction energies show an excellent cor-
relation with the dipole–dipole interactions derived from 
the parallel B–H and C=C bonds at the TS (Figure S5). As 
expected based on the anti-Markovnikov rule, the homoal-
lyl attack corresponds to signifi cantly stronger electrostatic 
interactions due to the more favorable polarization of the 
double bond in F6 interacting with the dipole of the B-H 
bonds at TS3 and TS2. 

 To further explore examples where the deviation from 
the anti-Markovnikov rule might be present, we included 
three additional species in our analysis, described in pre-
vious experimental work [ 18 ,  29 ,  30 ]. Cyclopentadiene 
(H5) is known to follow the anti-Markovnikov rule, and 
our calculations also predicted the more favorable homoal-
lyl product [ 18 ] both on the basis of the atomic charges of 
H5 and the calculated activation energies (Table S2). Pre-
vious experimental data suggested that 1,5,5,6-tetrame-
thyl-1,3-cyclohexadiene (I6a,b), 1,6,6-trimethyl-1,3-cy-
clohexadiene (J6) can favor the allyl product under some 
conditions. For both of these molecules, the most polar-
ized double bond corresponds to carbons 3 and 4, with 
carbons 1 and 3 being the most positively charged  sp  2  car-
bons (Table S2). According to the anti-Markovnikov rule, 
we would expect the homoallyl carbon 4 to be most likely 
substituted by the BH 2  substituent after hydroboration. The 
activation energies suggest, however, that there is a nearly 
equal amount of allyl (I6a TS1 and I6b TS3 in total) and 
homoallyl (I6b TS4) products for I6 at carbons 3 and 4, 
respectively. Here, the unexpected preference for the pos-
itively charged carbon 3 is likely compensated for by the 
highly polarized double bond and by the conjugation also 

 Fig. 4       Charge distribution and 
structures of the cyclohexadi-
ene ring at the TS (color code 
corresponds to the atomic 
charges, from  blue negative  to 
 red positive ). The allyl attack 
conformations pre-polarize the 
allyl carbon from −0.08 a.u. 
to about −0.17 a.u., regardless 
of the attack orientation (Re or 
Si face). On the other hand, the 
conformations corresponding 
to the homoallyl attack pre-
polarize the homoallyl carbon 
from −0.24 a.u. to about −0.32. 
Relative energies of the F6 mol-
ecules are shown in parenthesis 
(kcal/mol,  red ) compared to the 
optimized geometry, and  arrows  
indicate the boron attack  
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observed in F6. In J6, the most preferred substitution cor-
responds to carbon 2 according to our calculations, favor-
ing the allyl position, and the most negatively charged 
homoallyl carbon 4 is less preferred with a higher activa-
tion energy. 

 In summary, our results show that the regioselectivity 
can be attributed to the interplay between two main factors 
(1) the dipole–dipole interactions of the boron B-H bond 
with the double bond and (2) the allyl position of a second 
double bond providing favorable polarization in the six-
membered ring. In addition, the stereoselectivity is largely 
controlled by the structural fl exibility of the cyclohexene 
ring favoring the Re attack. 

 These results lend themselves to predicting the most 
likely product of hydroboration reactions, as the molecule 
with the lowest energy transition state should yield the 
kinetic product. These results are also in correlation with 
the anti-Markovnikov regioselectivity of the reaction: the 
electropositive boron within a hydrogen-boron bond of the 
borane electrostatically favors the most negatively charged 
 sp  2  carbon within the molecule. Intriguingly, 1,3-cyclohex-
adiene presents an important exception to the anti-Mark-
ovnikov rule, whereas transition state theory continues to 
predict the selectivity of the reaction. 

 The observed product specifi city does depend not only 
on the selectivity of the fi rst hydroboration step leading 
to monosubstituted RBH 2  compounds, but also on subse-
quent hydroboration reactions as well. We showed previ-
ously that the RBH 2  products can be more reactive than the 
borane, and we expect rapid formation of R 2 BH products 
[ 17 ]. We assumed here that the selectivity remains simi-
lar using RBH 2  for hydroboration; however, future studies 
aiming for fully quantitative results would need to take into 
account subsequent steps. Here we further analyzed the 
possible hydroboration products after the completion of the 
hydroboration reactions. 

    2.2   Full hydroboration products of dienes 

 To better understand the nature of fi nal hydroboration 
products before subsequent oxidation, we considered com-
peting pathways of hydroboration reactions (Scheme  2 ). 
The end product of the fi rst hydroboration step using an 
activated ‘BH 3 ’ is a mixture of monosubstituted boranes 
with a single double bond. Further borane addition can 
take place in three different ways: by intermolecular hyd-
roboration via the attached BH 2  substituent (pathway A in 
Scheme  2 ), by another activated ‘BH 3 ’ molecule (pathway 
B in Scheme  2 ), or by intramolecular hydroboration via 
another monosubstituted borane (pathway C in Scheme  2 ). 
Covalent polymers can thus form via pathway C [ 17 ], fol-
lowing the intermolecular hydroboration reaction pathway. 
In pathway C, subsequent hydroboration of R 2 BH species 

can further occur to form trialkyl boranes. Accordingly, 
well-documented examples suggest that the corresponding 
species are often found as homologues of trialkylboranes 
(R 3 B) [ 20 ,  31 ]. 

 Immediately following the hydroboration reactions, the 
high-energy trigonal boron species are stabilized by form-
ing intermolecular (e.g., via pathway D) or intramolecular 
(when possible, e.g., via pathway E) B–H–B bridges. Sta-
bilization can also occur via adduct formation with the sol-
vent or with BH 3 . Trialkyl species are exceptions, in that 
they are generally stable trigonal boron species that do not 
form adducts [ 17 ]. 

 In Scheme  2 , dimeric or monomeric small-molecule 
compounds form via pathways A and B + E. On the other 
hand, polymers may form via pathways C or B + D. Here 
we aimed to compare the A and B + E pathways and to 
verify whether the species are also observed experimen-
tally, and to infer their relative prevalence. 

 In hydroboration reactions described in our previous 
study [ 17 ], two possible products were observed depend-
ing on the nature of the reactant dienes and the reaction 
conditions: formation of cross-linked polymers, which 
precipitate out of solution, or formation of soluble, small-
molecule products, which have been analyzed using  11 B 
NMR. Previous analysis [ 17 ] of the experimental NMR 
data (reproduced here as Figs.  5  and S6) suggested that a 
range of fully hydroborated product species were present. 
The substrates F6, 1,3-cycloheptadiene, 1,3-cyclooctadi-
ene, G6, and E6 all yielded cross-linked polymers, whereas 
substrates D8, B6, C6, and the control A4 all yielded clear 
solutions. Interestingly, the excess equivalents of borane 
used in the reaction can also affect the outcome of the reac-
tion products for certain molecules, such as in the example 
of 1,3,5,5-tetramethyl-1,3-cyclohexadiene (D6), which was 
seen to form a clear solution when only one equivalent of 
borane was used, but an insoluble precipitate was observed 
when two equivalents were used [ 17 ]. The clear solution of 
D6 eventually formed a precipitate after 2 h.        

  11 B NMR of the clear solutions of substrates reacted 
with two equivalents of borane resulted in spectra with 
many peaks, the origins of which were not all apparent. 
The presence of peaks at −10.4 and −29.1 ppm was attrib-
uted to the presence of impurities in the BH 3 ·SMe 2  starting 
material, but were found not to participate in the hydrob-
oration reaction. The presence of a quartet at −20.4 ppm 
was due to unreacted BH 3 ·SMe 2 . The main experimental 
peaks of the hydroboration products are listed in Table  2  
together with initial assignment of the corresponding spe-
cies [ 32 ]. In this work, we calculated theoretical chemical 
shifts for possible reaction products (Table S4) through the 
use of quantum chemical calculations, and their concord-
ance with reported experimental data was compared.  
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 The competing reaction pathways during hydroboration 
have very different rates depending on the chemical struc-
ture of the diene, thus resulting in entirely different out-
comes. Previous work by Brown and Bhat [ 18 ] suggested 
that monohydroboration was prevalent in six-membered 
rings, which were thought to be relatively inert to dihyd-
roboration. Our recent work has shown that with suffi cient 
excess borane using either B 2 H 6  or BH 3 ·SMe 2 , all cyclic 
dienes undergo complete hydroboration of all double bonds 
[ 17 ]. 

 As evident, a large number of  11 B NMR peaks in Table  2  
for the fi rst hydroboration products can be attributed to the 
formation of intermolecular B–H–B-bridged compounds, 
such as R 2 BHBH 3 . Interestingly, however, in the charac-
terization of the direct products of diene hydroboration, the 
possibility of intermolecular hydroboration via RBH 2  spe-
cies and the role of pathway C are often omitted in theo-
retical calculations. In Table  1 , we also focused on the reac-
tions with BH 3  as the hydroboration agent; however, we 
note that to quantitatively account for the selectivity, sub-
sequent reactions also need to be taken into account where 
RBH 2  species serve as hydroboration agents. Toward this 
aim, here we investigate a second, intramolecular dihyd-
roboration step of pathway A, leading to bridged bicyclic 
rings. 

 Pathway A with intramolecular hydroboration is favored 
for dienes where the double bonds are farther apart, hence 
the rapid dihydroboration of the 1,5-cyclooctadiene [ 19 ]. 
On the other hand, molecules such as 1,3-cyclooctadiene 

and 1,3-cycloheptadiene were seen to polymerize follow-
ing pathway B or C, and only the 1,5-cyclooctadiene was 
observed to yield clear solution. Therefore, with six-mem-
bered or larger rings, the intramolecular hydroboration will 
occur dominantly when the double bonds are not in prox-
imity to each another [ 18 ]; otherwise, steric constraints 
take precedence and the cyclic product does not rapidly 
form. With smaller rings, the energy barrier to form cyclic 
products is higher, and pathways A and B can be in compe-
tition with one another. 

 To better understand the structures and energetics of 
the mechanism for reaction pathway A, we performed ini-
tial reaction coordinate scanning using the B–C bond dis-
tance as the reaction coordinate with ORCA and calculated 
the energy profi les for A4 and D8 molecules (Figure S7, 
top). Subsequently, we optimized the TS geometries using 
Gaussian 09 (Fig.  6 , and Figure S7, bottom). To ensure that 
the correct saddle point was identifi ed, we calculated the 
minimum energy reaction pathway using the intrinsic reac-
tion coordinate (IRC) [ 33 ] with Gaussian 09 (Fig.  6 , left).        

 The calculated energy barrier starting with the mono-
hydroborated D8 1,5-cyclooctadiene was 8.25 kcal/mol, 
which is easily overcome in room temperature, and there-
fore, a rapid reaction is expected. Note, however, that to 
determine the actual activation energies, the relative energy 
of the reactant states also needs to be accounted for, as 
B-H-B bridges are generally more stable than the interact-
ing intramolecular π-bond–borane adduct [ 17 ]. We have 
not calculated this here, but estimate it to be below 7 kcal/

 Fig. 5        11 B NMR spectra at 
one equivalent BH 3  · SMe 2 . 
The  11 B NMR spectra of the 
clear solutions after hydrobora-
tion of (from  bottom  to  top ) 
α-terpinene (B6), 1,3,5,5-tetra-
methyl-1,3-cyclohexadiene 
(D6), 2,3-dimethyl-1,3-butadi-
ene (A4), 1,2,4,5-tetramethyl-
1,4-cyclohexadiene (C6), and 
1,5-cyclooctadiene (D8) in 
diglyme. Diagram adapted from 
Andreou et al. [ 17 ]  
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mol based on calculations presented in Table S1 of Andreou 
et al. [ 17 ], resulting in an overall barrier below 15 kcal/mol. 
The dihydroborated D8 product species affords a bicyclic 
ring system consisting of two six-membered rings. Figure  6  
illustrates that a stable reactant complex is formed via the 

intramolecular borane adduct formation, and the reaction 
proceeds via a relatively sharp transition state, correspond-
ing likely to the simultaneous breaking and forming of 
rigid hydrogen bonds (B–H and C–H) at the TS. In a solu-
tion where borane is not readily available, this secondary 
intramolecular hydroboration step would be even faster due 
to the availability of the already activated RBH 2  species, 
in particular where BH 2  does not yet form stable B–H–B 
bridges, only adducts with the solvent. 

 In contrast to D8, the intramolecular dihydroboration 
step of monohydroborated A4 has an increased barrier of 
15.04 kcal/mol. This is largely due to the steric strains due 
to the smaller alkyl chain, as seen from the unusual intra-
molecular adduct reactant state structure (A4 RS in Fig.  6 ). 
Cyclic dienes with 6-membered rings are expected to have 
further steric constraints to the barrier of the intramolecu-
lar dihydroboration. Accordingly, we obtained a 16.17 kcal/
mol activation barrier for C6 (Figure S7), a slight increase 
from that of the A4 molecule. To consider entropic effects 
at the harmonic approximation, we also calculated the zero 
point energies and determined the corresponding activation 
free energies. Entropic effects generally render the barri-
ers higher as shown also in Table  1 . The difference is par-
ticularly signifi cant for A4 (17.88 kcal/mol), whereas C6 
(17.04 kcal/mol) and D8 (8.58 kcal/mol) have only a rela-
tively small increase between activation energies and acti-
vation free energies. 

 Subsequently, we calculated the  11 B NMR chemical 
shifts both for the dimeric cyclic disubstituted boranes 
obtained via pathway A followed by dimerization and for 
the intramolecular B–H–B-bridging diborane compounds 
obtained via pathway B + E (Table  3 ). The calculated 
chemical shifts are listed alongside the experimental val-
ues in the range of +20 to +30 ppm (Table  3 ). The dif-
fi culties in assigning chemical shifts to specifi c species 
arose due to the ±2 ppm error margin of both theoretical 
and experimental data. Despite this, many peaks were pos-
sible to assign accurately. In the case of D8, the expected 

 Table 2       Experimental  11 B NMR chemical shifts in THF and 
diglyme, their structural attributions, and calculated chemical shifts  

 The chemical shifts of the most prominent peaks are highlighted in 
bold. Corresponding calculated potential structures are available in SI 
(Table S4) 

  Reactant molecule    Exp.  11 B NMR    Attribution  

  THF    diglyme  

  B6     4.7      4.9     R 2 BHBH 3   

  40.8    40.0    R 2 BHBH 3   

  D6    − 6.9     − 7.1     RBH 2 ·SMe 2   

   26.0      25.0     (RBH 2 ) 2   

  A4     14.7      14.9     R 2 BHBH 2 R  

   21.3      21.1     (RBH 2 ) 2   

   26.6      26.1     (R 2 BH) 2   

   32.1      32.4     R 2 BHBH 2 R  

   58.7      58.8     N/A  

  60    60    N/A  

   91.5      91.2     R 3 B  

  C6     24.8      26.0     (R 2 BH) 2   

   17.8      17.7     

  −12.9      

  D8    8.5    1.4    R 2 BHBH 3   

  3.7  

  18.5    13.4    N/A  

   27.6      27.6     Cyclic (R 2 BH) 2   

  29.1  

  43.0    43.0    R 2 BHBH 3   

    56.7  

  84.8    88.3    R 3 B  

  87.6    R 3 B  

 Fig. 6       Reactant intermediate 
and transition state species of 
A4 ( top right ) and D8 ( bottom 
right ) for intramolecular dihy-
droboration. Reaction energy 
profi les were determined by 
IRC calculations [ 33 ] for A4, 
D8, and C6 ( left ). Geometry-
optimized reactant and product 
states provided activation 
(free) energies of 15.04 kcal/
mol (17.88 kcal/mol) for A4, 
8.25 kcal/mol (8.58 kcal/mol) 
for D8, and 16.17 kcal/mol 
(17.04 kcal/mol) for C6  
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cyclic products are formed at the calculated +26.7 ppm, 
and the diborane species are not observed. On the other 
hand, A4 appears to have both kinds of molecules. The 
diborane species at +19.5 ppm matches the experimental 
value of +21.3 ppm well. The assignment of the cyclic 
products at the calculated +28.7 ppm, however, is less cer-
tain considering other potential species that might account 
for the observed peak at +26.6 ppm. In general, the chemi-
cal shifts of the diborane and cyclic dimer species are very 
similar for B6, C6, and D6, and their assignment cannot be 
done without ambiguity. Interestingly, all molecules exhibit 
strong peaks at the +20 to +30 ppm region and likely con-
tain at least one of the species considered in Table  3 , except 
for B6. The NMR spectrum of B6 is signifi cantly different 
from all other species, and the predicted R 2 BH species in 
the R 2 BHBH 3  remains elusive.  

 Experimentally, monosubstituted and  unbridged  disub-
stituted products are commonly accepted, and the forma-
tion of cyclic disubstituted products is thought to be more 
limited to larger cyclic dienes or longer alkyl chains [ 18 ]. 
The explanation underpinning this can be partly due to the 
strained geometries of the cyclic transition states, such as 
that for A4 (Fig.  6 ), and this can result in further ring-open-
ing reactions with BH 3  as proposed earlier via a hydrogen–
alkyl exchange mechanism (Scheme  3 ) [ 15 ,  34 ,  35 ]. Anal-
ogously, we found that the A4.6 (Table S3) species with 
+22.42 ppm calculated chemical shift has a lower energy 
by 4.85 kcal/mol compared with the A4.5 cyclic (R 2 BH 2 ) 2  
species and might correspond to the observed peak at 
+21.07 ppm. On the other hand, the corresponding cyclic 

diene derivatives were less energetically favorable for C6 
(data not shown), D6 (D6.5 vs D6.4 in Table S3), and D8 
(D8.2 vs D8.6 in Table S3).        

 Figure  5  and S6 of one and two equivalents of borane, 
respectively, show highly similar spectra for most mol-
ecules. The largest differences are observed in the case 
of A4, which showed products of the form (RBH 2 ) 2  and 
(R 2 BH) 2  become the major products when two borane 
equivalents are used. This suggests that these peaks do 
not correspond to the cyclic (R 2 BH 2 ) 2  species, as these 
would be expected to become less prominent when 
borane is in excess due to ring-opening reactions. Analo-
gously, this decrease is observed for D8, where the borane 
excess enhances minor peaks, and the main peak is vis-
ibly reduced. Interestingly, precipitate formation was also 
observed for D8 almost instantly when two equivalents 
of borane were used, analogously to D6 [ 32 ]. The excess 
equivalents of borane via the ring-opening reactions thus 
might contribute to polymer formation. 

     3   Methodology 

 All calculations were performed and completed using the 
Gaussian 09 and ORCA suites of programs [ 36 ,  37 ]. Geom-
etry optimizations of the reactant and transition states were 
done at the B3LYP level of theory with the 6-31+G(d,p) 
basis set [ 38 ] and the GD3 empirical dispersion correc-
tion [ 39 ] for each reported molecule using Gaussian 09. To 
determine the reaction profi les for intramolecular hydrobo-
ration, initial relaxed surface scans were performed with 
ORCA along the B–C bond distance of the A4, C6, and D8 
molecules at 0.05 Å increments, using density functional 
theory methods as described above. The identifi ed transi-
tion and product states were then fully optimized using 
Gaussian 09, and subsequent IRC calculations [ 33 ] were 
performed to confi rm the RS and PS states corresponding 
to the TS structures identifi ed. Vibrational frequencies were 
calculated for all optimized geometries to confi rm the iden-
tity of each state using Gaussian 09. 

 The CHelpG population analysis method implemented 
in Gaussian 09 was used to calculate Merz–Kollman atomic 
charges [ 27 ,  40 ] for each atom within the optimized diene 
reactant states as described above. 

 Theoretical predictions for the NMR chemical shifts 
of the hydroboration products were done using optimized 
geometries obtained as described above. Single-point cal-
culations were performed employing a larger basis set, 
6-311+G(d,p), to determine the NMR shielding tensors 
using the Gaussian implementation of the gauge-independ-
ent atomic orbital (GIAO) method developed by Pulay 
et al. [ 41 ]. 

 Table 3       Calculated NMR chemical shifts (ppm) of dimeric cyclic 
boranes and intramolecular B–H–B-bridging diborane  

 Experimentally observed peaks close to the calculated chemical shifts 
are also given 

    Cyclic (R 2 BH 2 ) 2     Intramolecular (RBH 2 ) 2     Exp.  

  A4    28.7    19.5    21.3, 26.6  

  B6    23.6    25.2, 25.6    N/A  

  C6    26.5    23.8    25.0–26.0  

  D6    22.4    19.3, 24.0    25.0–26.0  

  D8    26.7    23.3    27.6  

'BH3'

 Scheme 3       Breaking of the borolane ring upon further addition of 
borane, BH 3 , to form a diborane A4 species  
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 All previous experimental  11 B NMR work was car-
ried out by Andreou et al. in both THF and bis(2-meth-
oxyethyl)ether (diglyme) solvents [ 17 ,  32 ]. THF solvent 
was purchased from Acros, diglyme from Sigma-Aldrich, 
and deuterated NMR solvents from Euriso-top.  11 B NMR 
spectra were carried out using a Bruker Advance BB-
ATM-500 MHz NMR spectrometer using BF 3 ·OEt 2  as a 
reference. 

 Experimental work involved the following dienes: 
α-terpinene (0.12 mL, 0.7340 mmol), γ-terpinene 
(0.12 mL, 0.7340 mmol), 1,3-cyclohexadiene 
(0.07 mL, 0.7340 mmol), 1,3-cyclooctadiene (0.09 mL, 
0.7340 mmol), 1,3,5,5-tetramethyl-1,3-cyclohexadiene 
(0.13 mL, 0.7340 mmol), 1,2,4,5-tetramethyl-1,4-cyclohex-
adiene (0.1 g, 0.7340 mmol), 1,5-cyclooctadiene (0.12 mL, 
0.7340 mmol), 2,3-dimethyl-1,3-butadiene (0.09 mL, 
0.7340 mmol). 

 In THF, the representative procedure for the hydrobo-
ration of dienes used BH 3 ·SMe 2 , utilizing the borane to 
diene addition mode: BH 3 ·SMe 2  (0.14 mL, 1.4680 mmol) 
was added dropwise to a solution of a diene dissolved in 
THF (1 mL) pre-cooled to −40 °C. The reaction mixture 
was left to stir under nitrogen at 0 °C for 1 h to give a clear 
solution, which, depending on the diene used, contained a 
white precipitate. 

 In diglyme, the representative procedure for the hyd-
roboration of dienes used BH 3 ·SMe 2 , utilizing the borane 
to diene addition mode: BH 3 ·SMe 2  (0.07 mL, 0.7340 mmol 
or 0.14 mL, 1.4680 mmol) was added dropwise to a solu-
tion of a diene dissolved in diglyme (3.2 mL). The reaction 
mixture was left to stir under nitrogen at 0 °C for 1 h to 
give a clear solution, which, depending on the diene used, 
contained a white precipitate. 

    4   Conclusions 

 Hydroboration is one of the most valuable chemical syn-
thesis methods, due to many reasons, including its highly 
specifi c regio- and stereoselectivity. However, in complex 
reagents, the identity of the preferred anti-Markovnikov 
product is not apparent at fi rst glance. The use of electro-
static potential-based atomic charges has proved to be a 
useful tool in predicting the regioselectivity of hydrobora-
tion reactions. Here we studied 11 molecules, representing 
10 cyclic dienes and a straight chain diene. In most exam-
ples, the regioselectivity for the preferred product was pre-
dicted both by the extended anti-Markovnikov rule, using 
the atomic charges of the reactants, and also by transition 
state theory—comparing the activation energies of all pos-
sible products. Here we identifi ed the 1,3-cyclohexadi-
ene molecule as a key exception to the anti-Markovnikov 
rule, which had an unforeseen preference toward the allyl 

product according to the transition state barrier heights. 
Our calculated activation energies accurately predicted the 
selectivity favoring almost equally the allyl products, in 
agreement with previous experimental studies [ 19 ], there-
fore validating our transition state theory-based calculation 
results. The unexpected selectivity was suggested to arise 
due to steric effects [ 19 ]. We found, however, that steric 
effects do not directly contribute to the observed selectiv-
ity, leading to a deviation from the anti-Markovnikov rule. 
Instead, the stability of the axial BH 2  group via conjugation 
with the allyl double bond is a more important stabilizing 
factor, which also relies on the unique structural properties 
of the cyclohexene ring as additional required factors for 
the paradoxical regioselectivity. We also introduced two 
additional derivatives (I6 and J6) and confi rmed the similar 
selectivity rules favoring allyl positions for these molecules 
as well. These molecules lend themselves as additional 
examples with exceptional regioselectivity against the anti-
Markovnikov rule. 

 As the anti-Markovnikov rule follows the same gen-
eral principle as the Markovnikov rule [ 23 ] in terms of the 
most energetically favorable reaction pathway being deter-
mined by the attractive dipole–dipole interactions within 
a carbon–carbon double bond and the reacting X–H sub-
stituent, our results therefore provide an exception (on the 
basis of F6, I6, and J6) to these rules in general. We found 
that the Lewis acid borane, and the second remaining dou-
ble bond with Lewis base properties, resembling frustrated 
Lewis pair-type moieties, worked synergistically to stabi-
lize allyl–π bond interactions resulting in the unexpected 
selectivity. Using this as a design principle, molecules with 
similar electronic properties might provide an interesting 
avenue for the exploration of synthetically useful excep-
tions to the Markovnikov rule, resulting in novel chemical 
reactivity. 

 Although it is known that the process of hydroboration 
can occur fully at all unsaturated sites within an alkene, the 
precise nature of the unoxidized species formed after the 
completion of the reactions still remains within a gray area. 
 11 B NMR results show that several hydroboration reactions 
are possible, and that a variety of products may be formed. 

 Quantum chemical calculations together with NMR 
measurements can thus shed light on why a subset of reac-
tants does not polymerize, while others do, and what the 
potential reaction pathways and stable products are. The 
observation of a plethora of products indicates that com-
peting pathways concurrently take place within hydrobo-
ration reactions. It was concluded that the position of the 
double bonds, in relation to sterically demanding groups, 
was a strongly infl uencing factor in determining the struc-
ture of the product [ 17 ]. We have elucidated the mechanism 
for the formation of cyclic monohydroborated species, as 
well as specifi c diborane species. Our results are in very 
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good agreement with experimental  11 B chemical shifts; 
thus, computational methods can unveil detailed mecha-
nistic hydroboration pathways and accurately predict the 
NMR peaks of specifi c products, verifying the reaction 
mechanism. 

 Studying the experimental conditions necessary to 
secure a specifi c product would prove to be an interesting 
avenue of research to pursue, as current procedures allow 
for the possibility of multiple product species, such as 
dimers, polymers, and oligomeric species. Quantum chemi-
cal calculations thus lend themselves as useful tools to help 
design novel enantio- and diastereoselective chemical syn-
thesis strategies. They are also becoming easily available 
standard tools that are accessible in undergraduate educa-
tion for computational laboratories. 
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      1  Introduction 

 The adequate description of electron correlation for molec-
ular systems with multi-reference (MR) character is still a 
challenge for the theory. Due to technical and theoretical 
diffi culties—e.g., the polynomial scaling of computation 
cost, treatment of large complete active spaces (CAS), the 
question of extensivity—the applicability of existing multi-
reference-based methods is limited to small systems. To 
extend the scope of MR-based theories, a large number of 
various formalisms emerged in this fi eld aiming at a proper 
generalization for the successful single-reference-based 
perturbation (PT) [ 6 ,  28 ], coupled-cluster (CC) [ 9 – 11 ], and 
confi guration interaction (CI) theories. An extensive review 
of the MR-based CI and PT methods can be found in the 
recent paper of Szalay et al. [ 42 ]. The authors of this paper 
have also contributed to the improvement in these MR 
methods [ 12 ,  13 ,  20 – 22 ,  38 ,  39 ,  41 ] in many cases in coop-
eration with Péter Surján or with his support. 

 Along this line, in a recent paper [ 37 ] we introduced the 
so-called quasiparticle-based MR CC method (QMRCC). 
The mathematical structure of QMRCC is more or less the 
same as that of the well-known SR CC theory, i.e., the ref-
erence function is a determinant, commuting cluster opera-
tors are applied, normal-ordering and diagram techniques 
can be used, the method is extensive,  etc.  The point where 
the MR description appears is the application of quasiparti-
cle states instead of the ordinary molecular orbitals. These 
quasiparticles are second-quantized many-particle objects 
introduced by a unitary transformation which allows us to 
represent the reference CAS function in a determinant-like 
form. As it is shown in the cited paper, on one hand the 
QMRCC method has some advantages with respect to the 
closely related SR-based MR CC theory [ 22 ,  31 ,  34 ] (more 
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cal framework of the quasiparticle-based multi-reference 
coupled-cluster approach (Rolik and Kállay in J Chem Phys 
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stable, faster convergence), but on the other hand it is more 
complex and still Fermi-vacuum dependent. 

 Recently Sokolov and Chan published a paper where 
another quasiparticle-based framework was outlined [ 40 ]. 
This approach has the enviable feature of Fermi-vacuum 
independence. In that paper the concept of a non-particle-
number-conserving canonical transformation was intro-
duced and, as a low-order approximation, the application of 
a Bogoliubov transformation in a second-order perturbation 
theory was investigated to describe MR situations. The pre-
sented results, as well as the intruder problem on the PES 
in the BeH  2    model, indicate that the applied approximation 
needs further improvements. 

 Although the original aim of our QMRCC project is 
to develop tools to serve high accuracy calculations, it is 
also worth investigating the possibility of a quasiparticle-
based second-order perturbation theory as a low-cost alter-
native of the CC method. Development of such a pertur-
bative approach would offer twofold benefi ts, namely it 
would provide a cheap and easy to modify tool which 
helps the development of the more complex CC approach 
(understanding diffi culties, testing new ideas) and it can 
be an effi cient alternative of the existing MR perturbation 
theories. The aim of this paper is to investigate this second 
point. 

 The early attempts to develop MR perturbation meth-
ods focused on the use of an effective Hamiltonian deter-
mined from the Bloch equation [ 7 ,  18 ,  24 ,  27 ]. The main 
drawback of these theories is the intruder state problem, 
i.e., the appearance of close to zero denominators which 
give nonphysical contribution to the effective Hamiltonian 
matrix elements, especially for large CAS spaces where the 
high lying model functions are energetically not separated 
from the outer space determinants. To tackle with this prob-
lem the application of incomplete model spaces [ 18 ,  27 ], 
various level shift-based techniques [ 14 ,  23 ,  30 ,  45 ] and 
the concept of intermediate Hamiltonian [ 26 ] were inten-
sively studied, but the most common solution is to use a 
state-specifi c description, where only a single target state is 
described [ 3 – 5 ,  8 ,  16 ,  17 ,  29 ,  44 ]. 

 Among the large set of various state-specifi c MR per-
turbation theories, we selected two popular methods to 
compare our QMBPT2 approach to. These are the second-
order CAS-based PT (CASPT2) [ 2 ,  3 ,  8 ] method—which 
is undoubtedly the most popular MR approach—and the 
second-order n-electron-valence state PT (NEVPT2) [ 4 ,  5 ] 
method. 

 The zeroth-order Hamiltonian of the CASPT2 theory 
is a projected generalized Fock operator, and the orthogo-
nal functions are internally contracted excitations. In this 
case the resolvent operator is not diagonal, and thus its 
inverse is determined in an iterative process. To be able to 
perform the inversion of the resolvent operator effi ciently, 

the zero-order Hamiltonian has a block-diagonal struc-
ture. The well-known drawback of CASPT2 is the lack of 
size-consistency. 

 The NEVPT approach has a list of remarkable qualita-
tive properties (size-consistency, invariance to the rotation 
of active orbitals, absence of intruder states, fi rst-order 
correction to the wave function is a pure spin state) which 
indicates that this as a serious candidate when an MR prob-
lem should be solve. Although with all these properties 
the QMBPT2 method cannot compete (e.g., it is obviously 
not invariant to the rotation of active orbitals), the relative 
accuracy of these methods is still an interesting question. 

 The structure of the paper is as follows. In Sect.  2  the 
quasiparticle approach is briefl y summarized, and the 
new perturbation theory is introduced. The effi cient way 
of implementation and the scaling properties will be pre-
sented in Sect.  3 . Some numerical results will be presented 
in Sect.  4  and the conclusions of this study are collected in 
Sect.  5 . 

    2   Theory 

 The main idea behind the new approach is to extend the 
mathematical structure of the SR-based correlation meth-
ods to the MR case. To that end an orthonormal MR basis 
is defi ned where one element of this basis is the reference 
function which is supposed to a CAS wave function. We 
also suppose that these functions can be uniquely labeled 
by occupied and virtual one-particle indices as the ordinary 
determinants, where these indices indicate the type of exci-
tations with respect to a given predefi ned principal deter-
minant (PD) hereafter denoted by   |0〉   . In the notation of the 
MR functions,
     

  A, B, . . .    and   I , J , . . .    letters are used for active virtual and 
active occupied orbitals, respectively, while   a, b, . . .    and 
  i, j, . . .    stand for the inactive occupied and inactive virtual 
orbitals, fi nally   Φ0    is the reference CAS function. 

 Due to the one-particle labeling of these functions, we 
have a mapping between these functions and any set of 
determinants where a PD is defi ned and the excited deter-
minants are labeled in a similar fashion. More precisely, 
this mapping is a unitary transformation, where the PD is 
transformed into the reference function   Φ0 = Û|0〉   , and
     

where   |AI 〉, |
a
i 〉, . . .    are ordinary determinants excited with 

respect to the PD. Such a unitary transformation can be 

(1)Φ0, ΦA
I , Φa

i , ΦA
i , Φa

I , . . . , ΦAb
ij , Φab

Ij , etc.

(2)

|ΦA
I 〉 = Û|AI 〉, |Φ

a
i 〉 = Û|ai 〉, |Φ

A
i 〉 = Û|Ai 〉, . . . , |ΦAb

ij 〉

= Û|Ab
ij 〉, |Φ

ab
Ij 〉 = Û|ab

Ij 〉, etc,
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parametrized in an exponential form,   ̂U = eŜ    , where   ̂S    is an 
anti-hermitian operator,   ̂S = χ̂ − χ̂+    containing not only 
one-body but also higher-body terms. To restrict the dimen-
sionality of the unitary transformation, we suppose that it 
transforms exclusively the active part of the functions. 

 Before giving the defi nition of the unitary transforma-
tion we should fi x the PD. A simple choice for this is to 
use the determinant which has the maximal overlap with 
the reference function   Φ0    as the PD. Optimizing the active 
orbitals accordingly will lead to the exact Brueckner orbit-
als in the active space [ 19 ,  33 ]. 

 Once the reference function and the PD are determined, 
we can suppose that the unitary transformation satisfi es the
     

relation. Generally, the condition at Eq. ( 3 ) is not enough 
to defi ne the parameters of   ̂S   , but using a special, minimal 
parameterization,
     

where creation operators   ̂A+i     are virtual, annihilation opera-
tors   ̂I−i     are occupied orbitals, the unitary transformation can 
be uniquely defi ned. Equations ( 3 ) and ( 4 ) are basically the 
second-quantized parameterization of the multi-determi-
nantal CAS function. 

 As a useful tool to describe the excitation process among 
the MR basis elements, we can introduce the quasiparticle 
creation and annihilation operators,
     

     

where  X  is a general active orbital. One can also defi ne the 
inactive quasiparticles. Since   ̂U    keeps the inactive orbitals 
intact,   ̂Q+

i = Ûî+Û† = î+    and   ̂Q+
a = Ûâ+Û† = â+   . The 

quasiparticle creation and annihilation operators with arbi-
trary indices obviously satisfy the fermion anti-commuta-
tion relations,
      

 Supposing that the second-quantized form of the PD 
is   |0〉 = |Ina . . . I2I1inc . . . i1〉   , the reference CAS function 
reads as
     

(3)|Φ0〉 = eŜ
|0〉,

(4)

χ̂ =
∑
A1,I1

χ
A1
I1

Â+1 Î−1 +
∑

A1<A2,I1<I2

χ
A1A2
I1 I2

Â+1 Â+2 Î−2 Î−1 + . . .

+
∑

A1<A2<...<As
I1<I2<···<Is

χ
A1A2...As
I1 I2... Is

Â+1 Â+2 · · · Â
+
s Î−s · · · Î−2 Î−1

(5)Q̂+
X = ÛX̂+Û†

(6)
(

Q̂+
X

)†
=ÛX̂−Û†

= Q̂−
X ,

(7)
{

Q̂+
p , Q̂−

q

}
= δpq,

{
Q̂−

p , Q̂−
q

}
= 0.

(8)|Φ0〉 = Q̂+
Ina

. . . Q̂+
I2

Q̂+
I1

Q̂+
inc

. . . Q̂+
i1
|〉,

where Eq. ( 3 ) and   ̂U†Û = Î    are utilized, and   na    and   nc    are 
the number of active and core orbitals, respectively, and   |〉    
is the physical vacuum. The form of the singly excited MR 
basis functions can be written as
     

and
     

where typical active–active, inactive–inactive and active–
inactive single excitations are presented. The doubly, triply, 
etc., excited MR functions can be generated in a similar 
fashion resulting in the desired MR functions. 

 To be able to apply this quasiparticle framework we 
should derive the quasiparticle representation of the Hamil-
tonian. The fi rst step along this line is to substitute the ordi-
nary second-quantized operators by quasiparticles using the 
inverse of Eqs. ( 5 ) and ( 6 ) as
     

where   hpq    and   〈pq||sr〉    are one- and antisymmetrized two-
particle integrals, respectively. The bare Hamiltonian   Ĥ   , 
implicitly defi ned by the second equation, can be written in 
normal-ordered form as
     

where the   {}N    bracket denotes the normal-ordered opera-
tor product with respect to the CAS reference function   Φ0   , 
while   EHF    and   fpq    are the energy and Fock matrix elements 
defi ned by the occupied subspace of the PD, respectively. 

 As a consequence of the many-body nature of the uni-
tary transformation higher than two-body terms also appear 
in the Hamiltonian,
     

(9)

|Φ
Al
Ik
〉 = Q̂+

Al
Q̂−

Ik
|Φ0〉 = Q̂+

Al
Q̂−

Ik
Q̂+

Ina
. . . Q̂+

I2
Q̂+

I1
Q̂+

inc
. . . Q̂+

i1
|〉

= | . . . QIk+1 QAl QIk−1 . . . inc . . . i1〉,

|Φ
al
ik
〉 = â+l î−k |Φ0〉 = |QIna

. . . QI1 . . . ik+1alik−1 . . . 〉,

(10)
|Φ

Al
ik
〉 = Q̂+

Al
î−k |Φ0〉 = |QIna

. . . QI1 inc . . . ik+1QAl ik−1 . . . 〉,

(11)

Ĥ =
∑
pq

hpqp̂+q̂− +
1

4

∑
pqrs

〈pq||sr〉p̂+q̂+r̂−ŝ−

=
∑
pq

hpqÛ†Q̂+
p Q̂−

q Û +
1

4

∑
pqrs

〈pq||sr〉Û†Q̂+
p Q̂+

q Q̂−
r Q̂−

s Û

= Û†
ĤÛ,

(12)

Ĥ = EHF +
∑
pq

fpq

{
Q̂+

p Q̂−
q

}
N

+
1

4

∑
pqrs

〈pq||sr〉
{

Q̂+
p Q̂+

q Q̂−
r Q̂−

s

}
N

,

(13)

Ĥ =ECAS +
∑
pq

f
p
q

{
Q̂+

p Q̂−
q

}
N
+

1

4

∑
pqrs

v2
pq
sr

{
Q̂+

p Q̂+
q Q̂−

r Q̂+
s

}
N

+
1

36

∑
pqrs

v3
pqr
uvw

{
Q̂+

p Q̂+
q Q̂+

r Q̂−
w Q̂−

v Q̂−
u

}
N
+ · · · ,
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where the above expansion starts with the energy of the ref-
erence function and   f

p
q   ,   v2

pq
sr    ,   v3

pqr
uvw   , etc., are the elements 

of the one-, two-, three- and higher-body antisymmetrized 
integral lists. 

 To emphasize the analogy with the single-reference 
case, the quasiparticle Fockian denomination will be used 
for the one-particle part of the above expansion. Using a 
proper unitary transformation of the ordinary molecular 
orbitals, the quasiparticle Fockian has a block-diagonal 
structure, i.e., (1) for a   Φ0    obtained as a solution of a CAS 
problem, its active–active block can be always kept diago-
nal; (2) using pseudo-canonical orbitals to expand the inac-
tive occupied and inactive virtual subspaces, the inactive 
blocks of the quasiparticle Fockian are also diagonal 

 The fi rst property can be easily understood by consider-
ing a general active–inactive matrix element of   f

p
q   ,

     

which is zero, as   
{

Q̂+
A Q̂−

I

}
N
|Φ0〉    is orthogonal to the refer-

ence state and lies completely in the CAS. As the   fAB    and 

  fIJ    off-diagonal elements can be eliminated by simple rota-
tions of molecular orbitals, for which the reference function 
  Φ0    is invariant, the active–active block of the quasiparticle 
Fockian can be transformed into a diagonal form. Investi-
gating the inactive virtual block of the quasiparticle Fock-
ian would lead to similar conclusion. 

 To investigate the occupied inactive–inactive blocks of 
the quasiparticle Fockian we can start from the
     

relation. After some straightforward manipulation, it leads 
to the   f

i
j = hij +

∑
pq〈ip||jq〉Ppq +ΔE CAS δij    expression, 

where the fi rst and the second terms together at the left-
hand side form the occupied block of the generalized Fock 
matrix and   ΔE CAS    is the correlation energy of   Φ0   . When 
pseudo-canonical orbitals are used, this block of the gen-
eralized Fockian is diagonal, and thus   f

i
j    is also diagonal. 

One can reach a similar conclusion for the virtual inactive 
block, where the matrix elements are defi ned by the
     

relation. 
 The presented quasiparticle framework offers a sim-

ple way to develop the MR versions of the single-refer-
ence-based correlation methods, such as the CI or the CC 
approaches [ 37 ]. To introduce the MR variant of the MBPT 
[ 6 ], fi rst the Hamiltonian should be separated into a zeroth-
oder and a perturbation part,   Ĥ = Ĥ(0) + V̂    . Following the 
MBPT, it seems to be a natural choice to use the diagonal 

(14)f
A
I = 〈Φ0|Ĥ

{
Q̂+

A Q̂−
I

}
N
|Φ0〉,

(15)f
i
j = −〈Φ0|Q̂

+
i ĤNQ̂−

j |Φ0〉

(16)f
a
b = 〈Φ0|Q̂

−
a ĤNQ̂+

b |Φ0〉

part of the one-particle term from Eq. ( 13 ) as the zeroth-
order Hamiltonian,
     

where   εp = f
p
p   . The zeroth- and the fi rst-order perturbation 

energies together provide the CAS energy of the reference 
function,   E(0) + E(1) = 〈Φ0|Ĥ0 + V̂ |Φ0〉 = E CAS   . In the 
basis of the functions introduced in Eqs. ( 8 ) and ( 9 )—these 
are the zeroth-order functions—the zeroth-order Hamilto-
nian is diagonal,
     

where, for the sake of brevity, the MR basis elements are 
labeled by the serial numbers instead of the one-particle 
labels. The second-order energy correction according to the 
Rayleigh–Schrödinger PT reads as
     

where we could replace   ̂V     by   Ĥ    utilizing that   〈Φ0|Ĥ0|ΦK 〉    is 
zero for any  K . 

 The above   E(2)    energy correction directly provides an 
approximation to the dynamical electron correlation. For 
this correction only those   ΦK    functions give contributions 
where at least one inactive excitation appears, otherwise 
  〈ΦK |Ĥ|Φ0〉 = 0   . It means that at least one inactive one-
particle energy shows up in the denominator, which is 
a useful property, as it provides a certain amount of pro-
tection against the singular behavior of the perturbation 
denominator. 

 It can be easily seen that the above generalization of the 
MBPT2 keeps the size-consistency of the original theory. 
Supposing that we have two noninteracting subsystems,  A  
and  B , separately described by   ĤA    and   ĤB   , and the refer-
ence function has a product form,   Φ0 = ΦA

0 ΦB
0    , where   ΦA

0     
and   ΦB

0     are solutions of the CAS problems of the subsys-
tems, and then the unitary transformation at Eq. ( 3 ) is also 
product separable,   ̂U = ÛAÛB   . Considering the defi nition 
of quasiparticles at Eqs. ( 5 ) and ( 6 ) it is obvious now that 
these are localized either on subsystem A or on subsystem 
B, and the zeroth-order functions defi ned by the quasipar-
ticles at Eq. ( 9 ) are product separable, i.e.,   ΦK = ΦKAΦKB   . 
Using these results the contribution of any   ΦK    to the energy 
is a sum of the subsystem contributions,
     

(17)Ĥ0 =
∑

p

εp

{
Q̂+

p Q̂−
p

}
N

,

(18)Ĥ0|ΦK 〉 = EK |ΦK 〉, K = 0, 1, 2, . . . ,

(19)E(2)
=

∑
K ,K �=0

〈Φ0|Ĥ|ΦK 〉〈ΦK |Ĥ|Φ0〉

E0 − EK
,

(20)

〈Φ0|ĤA|Φ
aA...CA...
iA...JA... 〉〈Φ

aA...CA...
iA...JA... |ĤA|Φ0〉

εiA + · · · + εJA + · · · − εaA − · · · − εCA − · · ·
+

〈Φ0|ĤB|Φ
aB...CB...
iB...JB... 〉〈Φ

aB...CB...
iB...JB... |ĤB|Φ0〉

εiB + · · · + εJB + · · · − εaB − · · · − εCB − · · ·
,

252 Reprinted from the journal



Theor Chem Acc (2015) 134:143 

1 3

where   ΦK = Φ
aA...CA...aB...CB...
iA...JA...iB...JB...     and thus the QMBPT2 

energy of the supersystem is the sum of the subsystem 
energies. 

 We can also check the extensivity of the method [ 36 ], 
i.e., the connectedness of the QMBPT2 energy. To that 
end it is practical to reformulate the matrix elements in the 
numerator of Eq. ( 19 ),   〈Φ0|Ĥ|ΦK 〉 = 〈0|Û†ĤÛ|K〉   , where 
  |K〉    is the determinant assigned to   |ΦK 〉   . Using the exponen-
tial parameterization of   ̂U    it is easy to show that   ̂U†ĤÛ    is 
a connected quantity (see Ref. [ 37 ] for more details) and in 
this way the QMBPT2 energy is also connected. 

    3   Computational considerations 

 To investigate the scaling of the computation cost of 
QMBPT2, it is advantageous to use the orbital labeling 
instead of the composite label  K  in Eq. ( 19 ). For a small 
CAS problem the most expensive terms contain four inac-
tive indices,
     

where the above term has the same form that is known 
from the SR theory (see later) and its scaling is   n2

vn2
c   , where 

  nv    and   nc    are the number of inactive virtual and inactive 
occupied orbitals, respectively. The most expensive con-
tributions coming from the MR nature of QMBPT2 have 
three inactive indices,
     

Supposing that the   〈ΦabA...C
iJK ...L |Ĥ|Φ0〉    matrix element is given, 

the computation cost of this term scales as   n2
vncnaoN act   , 

where   nao    is the number of active occupied orbitals and   Nact    
is the number of active confi gurations. 

 There is another component of the calculations which 
has a signifi cant cost, namely the evaluation of the 
  〈ΦabA...C

iJK ...L |Ĥ|Φ0〉    type of matrix elements. As the effi cient 
implementation of these terms are not that straightforward 
the rest of this section is dedicated to this problem. 

 The matrix element in Eq. ( 19 ) can be expanded in the 
basis of determinants,
     

(21)E(2)
=
∑
abij

〈Φ0|Ĥ|Φab
ij 〉〈Φ

ab
ij |Ĥ|Φ0〉

εi + εj − εa − εb
+ · · · ,

(22)

E(2)
= . . .

+
∑

abA...CiJK ...L

〈Φ0|Ĥ|ΦabA...C
iJK ...L 〉〈Φ

abA...C
iJK ...L |Ĥ|Φ0〉

εi + εJ + εK + . . .+ εL − εa − εb − εA + . . .+ εB

(23)

〈ΦK |Ĥ|Φ0〉 =
∑
LM

[UK ]L[U0]M
〈L|Ĥ|M〉

=
∑
LM

[UK]L[UO]M〈L, k|Ĥ|M, o〉,

where in the last term we separated the active and inac-
tive parts of the determinants. Here calligraphic letters are 
used for the active, and roman letters stand for the inactive 
part of the determinants,   |L〉 = |L, l〉   . As   ̂U    transforms only 
the active labels, the coeffi cient matrix   [UK]L    holds exclu-
sively calligraphic letters. 

 Since the coeffi cient matrix belongs to a unitary trans-
formation, those components of the above expression 
where no active orbitals appear in the Hamiltonian can be 
trivially calculated. For example,
     

where   oab
ij     is a double inactive excitation with respect to the 

core part ( o ) of   Φ0   . Those terms where the active part of the 
Hamiltonian is involved are more complex. The most time-
consuming component from this class of terms is the one 
where one active occupied orbital appears,
     

where   MJ    is the inactive confi guration obtained by elimi-
nating  J  from confi guration   M   . According to the above 
expression the overall computation cost of these terms 
scales as   n2

vncnaoN2
act   . To reduce the computation cost one 

can try to factorize this expression into active and inactive 
parts,
     

At this point we can realize that though formally the matrix 
element containing the inactive second-quantized expres-
sion still   MJ    dependent, its value (1 or -1) is completely 
determined by the number of active electrons (  Nae   ) in   MJ    , 
i.e.,
     

(24)

〈Φab
ij |Ĥ|Φ0〉 =

∑
LM

[UK]L[UO]M

×
∑
pqrs

1

4
〈pq||rs〉〈L, oab

ij |p̂
+q̂+ŝ−r̂−|M, o〉 = 〈ab||ij〉,

(25)

〈ΦabA...C
iI...K |Ĥ|Φ0〉

=
∑
LM

[
UA...C

I...K

]L
[UO]M

∑
pqrs

1

4
〈pq||rs〉

× 〈L, oab
i |p̂

+q̂+ŝ−r̂−|M, o〉

=
∑
M

∑
J

[
UA...C

I...K

]MJ
[UO]M〈ab||iJ〉

× 〈MJ , oab
i |b̂

+â+ î−Ĵ−|M, o〉,

(26)

∑
J

〈ab||iJ〉
∑
M

[
UA...C

I...K

]MJ
[UO]M

〈MJ , oab
i |â

+b̂+ î−|MJ , o〉〈MJ , o|Ĵ−|M, o〉.

(27)sign(a, b, i, Nae − 1) = 〈MJ , oab
i |â

+b̂+ î−|MJ , o〉.
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Eq. ( 26 ) can be reformulated accordingly,
     

where the
     

intermediate quantity is introduced. The computation cost 
of these intermediates scales as   N2

actnoa    and independent 
of the number of inactive orbitals, while the overall scal-
ing of Eq. ( 25 ) is reduced to   N2

actnoa + n2
vncnaoNact   . It is 

clear now that using the above ideas we could signifi cantly 
reduce the calculation cost, but we still have a component 
which scales quadratically with the CAS size which pre-
vents the application of QMBPT2 for large CAS problems. 
At this point we can also mention that each contribution 
to Eq. ( 25 ) is multiplied by the same   sign(a, b, i, Nae − 1)    
factor and, for that reason, these factors can be completely 
eliminated as for the QMBPT2 energy only the square of 
Eq. ( 25 ) is needed. 

 Of course,   
[
WA...C

I...K

]
J    can be used for the calculation of 

  〈ΦaA...C
I...K |Ĥ|Φ0〉    terms as well, and similarly to Eq. ( 26 ) 

further intermediates can be introduced to calculate other 
types of matrix elements. Some typical intermediates are 
listed here:
     

(28)

∑
J

〈ab||iJ〉sign(a, b, i, Nae − 1)

×
∑
M

[
UA...C

I...K

]MJ
[UO]M〈MJ , o|Ĵ−|M, o〉

= sign(a, b, i, Nae − 1)
∑

J

〈ab||iJ〉
[
WA...C

I...K

]
J
,

(29)

[
WA...C

I...K

]
J
=
∑
M

[
UA...C

I...K

]MJ
[UO]M〈MJ , o|Ĵ−|M, o〉

(30)

[
WA...C

I...K

]J
=
∑
M

[
UA...C

I...K

]MJ

[UO]M〈M
J , o|Ĵ+|M, o〉

[
WA...C

I...K

]
B
=
∑
M

[
UA...C

I...K

]MB
[UO]M〈MB, o|B̂−|M, o〉

[
WA...C

I...K

]B
=
∑
M

[
UA...C

I...K

]MB

[UO]M〈M
B, o|B̂+|M, o〉

[
WA...C

I...K

]B

J
=
∑
M

[
UA...C

I...K

]MB
J
[UO]M〈M

B
J , o|B̂+Ĵ−|M, o〉

[
WA...C

I...K

]J

B
=
∑
M

[
UA...C

I...K

]MJ
B
[UO]M〈M

J
B, o|Ĵ+B̂−|M, o〉

[
WA...C

I...K

]B

C
=
∑
M

[
UA...C

I...K

]MB
C

[UO]M〈M
B
C , o|B̂+Ĉ−

|M, o〉

[
WA...C

I...K

]J

K
=
∑
M

[
UA...C

I...K

]MJ
K

[UO]M〈M
J
K , o|Ĵ+K̂−

|M, o〉

...

The above list can be easily completed as the derivation 
of the various classes of the   〈ΦK |Ĥ|Φ0〉    matrix elements 
expressed by these intermediates is also rather straightfor-
ward, and thus for the sake a brevity these equations are not 
listed here. 

    4   Numerical results 

 To test the QMBPT approach, following the ideas discussed 
in Sect.  3 , a FORTRAN code has been written. Using this 
implementation calculations were performed to describe 
the dissociation process of the HF molecule, the symmetric 
dissociation of the water molecule and the perpendicular 
insertion reaction of Be to   H2    to form the   BeH2    molecule. 
For these calculations cc-pVDZ basis set was applied, the 
core orbitals were kept frozen, and the inactive subspaces 
were described by pseudo-canonical orbitals. The results 
obtained by the new theory are compared against the FCI 
values which are calculated using our own implementation 
based on the string-based algorithm published by Olsen 
[ 32 ]. The quality of the QMBPT2 energies is also com-
pared to the accuracy of NEVPT2 and CASPT2 results. For 
the CASPT2 calculations the version published by Celani 
and Werner [ 8 ] was used. The multi-confi gurational self-
consistent fi eld (MCSCF) reference functions, CASPT2, 
and NEVPT2 results together with the transformed molecu-
lar integrals are calculated with the  MOLPRO  program pack-
age [ 43 ]. The NEVPT2 calculations were performed with 
both the partially and the strongly contracted versions. As 
these methods provide similar results for the investigated 
examples only the strongly contracted NEVPT2 results are 
presented. 

 As it can be clearly seen in Fig.  1 , for the dissociation 
of the HF molecule the CASPT2 calculations provide the 
most accurate results. The non-parallelity error (NEP) of 
the potential energy surface (PES) is an order of magni-
tude smaller than that for the other presented methods. The 
accuracy of the NEVPT2 and the QMBPT2 is comparable. 

 The next example is the symmetric dissociation process 
of the   H2O    molecule. For this model the NEVPT2 method 
provides the most accurate PES. For the presented inter-
val (see Fig.  2 ) the NEP for the NEVPT2 curve is roughly 
  4 mEh   , while for the CASPT2 and QMBPT2 it is about 
  6 mEh   . It is worth noting here that, since for the above 
dissociation problems closed-shell orbitals were used, the 
wave functions are not product separable at the dissociation 
limit; therefore, the QMBPT2 cannot provide size-consist-
ent results. 

 The insertion reaction of the   BeH2    system is frequently 
used to demonstrate the capabilities of various MR meth-
ods [ 1 ,  15 ,  25 ,  30 ]. The reaction path is parametrized by 
the  z  distance of Be from the midpoint of the   H2    bond. The 
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Be atom is fi xed at the x = 0, y = 0, z = 0 point, while 
the positions of hydrogens are x = 0, y =   ±   (2.54 a.u. − 
0.46*z) [ 35 ]. This process can be qualitatively described by 
a two-by-two CAS problem which contains two determi-
nants   DA = 1a2

12a2
11b2

2    and   DB = 1a2
12a2

13a2
1   , which give 

contribution to the ground state MCSCF wave function. 
The two determinants change role at the 2.875–2.9 a.u. 
interval, i.e., for   z < 2.9 a.u.      DA    is the leading determinant, 
while for the larger z values determinant   DB    has the larger 
coeffi cient. To demonstrate the Fermi-vacuum dependence 
of the QMBPT2 method these calculations were performed 
for both possible PDs. The results of the   BeH2    calculations 

are shown in Fig.  3 , where the QMBPT2 curve is obtained 
by using   DA    for   z < 2.9 a.u.    and   DB    for larger z values. 
Results of the   DA   - and   DB   -based calculations for the com-
plete reaction path are also shown in Fig.  3 . Comparing the 
accuracy of these results one can see that the NEP of the 
QMBPT2 calculations is similar to that of the NEVPT2 
curve, while the CASPT2 results are signifi cantly better. 

 Finally, we can mention that using the QMBPT2 method 
we have not observed any singular behavior. Since the gap 
between the occupied and the virtual orbitals was large 
enough, there was no need to use level shift for the pre-
sented calculations. 

    5   Conclusions 

 In this paper a new perturbation approach has been 
introduced based on a quasiparticle framework where 
the quasiparticles are introduced by a many-particle uni-
tary transformation. The new approach has some benefi -
cial qualitative properties like the size-extensivity and 
robustness against the intruder problem. According to 
the presented test calculations its accuracy is compara-
ble to that of the NEVPT approach. The main disadvan-
tages of the quasiparticle-based MBPT are the lack of 
invariance to the rotation of active orbitals and the high 
calculation cost of intermediate quantities for large CAS 
problems.                      

       Acknowledgments     Financial support has been provided by the 
Hungarian Scientifi c Research Fund (OTKA), Grant No. PD108451.  

 6

 8

 10

 12

 14

 2  4  6  8  10  12

ΔE
 (

m
E

h)

R (a.u.)

QMBPT2
NEVPT2
CASPT2

 Fig. 1       Performance of the QMBPT method in comparison with that 
for the CASPT2 and NEVPT approaches for the dissociation of the 
HF molecule. Two-by-two CAS reference space, cc-pVDZ basis set. 
The errors of total energies with respect to the FCI are presented  

 8

 10

 12

 14

 16

 18

 20

 22

 1  2  3  4  5  6  7  8  9  10

ΔE
 (

m
E

h)

RO-H (a.u.)

QMBPT2

NEVPT2

CASPT2

 Fig. 2       Performance of the QMBPT method in comparison with that 
for the CASPT2 and NEVPT approaches for the symmetric dissocia-
tion of the water molecule. Four-by-four CAS reference space, cc-
pVDZ basis set. The errors of total energies with respect to the FCI 
are presented  

 15

 20

 25

 30

 35

 0  0.5  1  1.5  2  2.5  3  3.5  4

ΔE
 (

m
E

h)

z (a.u.)

QMBPT2

QMBPT2DA

QMBPT2DB

NEVPT2

CASPT2

 Fig. 3       Performance of the QMBPT method in comparison with 
that for the CASPT2 and NEVPT approaches for the dissociation of 
the   BeH2    molecule. The results obtained from the   DA = 1a2

12a2
11b2

2    
(  DB = 1a2

12a2
13a2

1   ) PD are denoted by   QMBPT2DA
    (  QMBPT2DB

   ). 
Two-by-two CAS reference space, cc-pVDZ basis set. The errors of 
total energies with respect to the FCI are presented  

255Reprinted from the journal



 Theor Chem Acc (2015) 134:143

1 3

  References 

     1.                                     Amor N, Maynau D (1998) Chem Phys Lett 286:211  
     2.                                             Andersson K, Malmquist P, Roos BO (1992) J Chem Phys 

96:1218  
     3.                                                             Andersson K, Malmquist P, Roos BO, Sadlej AJ, Wolinski K 

(1990) J Chem Phys 94:5483  
     4.                                                             Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP 

(2001) J Chem Phys 114:10252  
     5.                                             Angeli C, Cimiraglia R, Pastore M (2007) Theor Chim Acta 

117:743  
     6.                             Bartlett RJ (1981) Annu Rev Phys Chem 32:359  
     7.                             Brandow BH (1967) Rev Mod Phys 39:771  
     8.                                     Celani P, Werner HJ (2000) J Chem Phys 112:5546  
     9.                             Čížek J (1966) J Chem Phys 45:4256  
     10.                             Čížek J (1969) Adv Chem Phys 14:35  
     11.                                     Čížek J, Paldus J (1971) Int J Quantum Chem 5:359  
     12.                                             Das S, Kállay M, Mukherjee D (2010) J Chem Phys 133:234110  
     13.                                             Das S, Mukherjee D, Kállay M (2010) J Chem Phys 132:074103  
     14.                             Finley JP (1998) J Chem Phys 108:1081  
     15.                                     Füsti-Molnár L, Szalay P (1996) J Chem Phys 100:6288  
     16.                                                     Ghosh P, Chattopadhyay S, Jana D, Mukherjee D (2002) Int J 

Mol Sci 3:733  
     17.                             Hirao K (1993) Chem Phys Lett 201:59  
     18.                                     Hose G, Kaldor U (1979) J Phys B 12:3827  
     19.                                             Jankowski K, Rubiniec K, Sterna P (1998) Mol Phys 94:29  
     20.                                     Kállay M, Surján PR (2000) J Chem Phys 113:1359  
     21.                                     Kállay M, Surján PR (2001) J Chem Phys 115:2945  
     22.                                             Kállay M, Szalay PG, Surján PR (2002) J Chem Phys 117:980  
     23.                                     Kozlowski PM, Davidson ER (1994) Chem Phys Lett 222:615  

     24.                             Lindgren I (1974) J Phys B 7:2241  
     25.                                             Mahapatra U, Datta B, Mukherjee D (1999) J Chem Phys 

110:6171  
     26.                                             Malrieu J, Durand P, Daudey JP (1985) J Phys A 18:809  
     27.                                     Meissner L, Bartlett RJ (1989) J Chem Phys 91:4800  
     28.                                     Møller C, Plesset M (1934) Phys Rev 46:618  
     29.                                     Murphy RB, Messmer RP (1991) Chem Phys Lett 183:443  
     30.                             Nakano H (1993) J Chem Phys 99:7983  
     31.                                     Oliphant N, Adamowicz L (1991) J Chem Phys 94:1229  
     32.                                                     Olsen J, Roos BO, Jørgensen P, Jensen HJA (1988) J Chem Phys 

89:2185  
     33.                                             Paldus J, Čížek J, Keating BA (1973) Phys Rev A 8:640  
     34.                                             Piecuch P, Oliphant N, Adamowicz L (1993) J Chem Phys 

99:1875  
     35.                                                     Purvis G, Shepard R, Brown F, Bartlett R (1983) Int J Quantum 

Chem 23:835  
     36.                                     Purvis GD, Bartlett RJ (1978) Int J Quantum Chem 14:561  
     37.                                     Rolik Z, Kállay M (2014) J Chem Phys 141:134112  
     38.                                     Rolik Z, Szabados Á (2009) Int J Quantum Chem 109:2554  
     39.                                             Rolik Z, Szabados Á, Surján PR (2003) J Chem Phys 119:1922  
     40.                                     Sokolov AY, Chan GKL (2015) J Chem Phys 142:124107  
     41.                                                     Szabados A, Rolik Z, Tóth G, Surján PR (2005) J Chem Phys 

122:114104  
     42.                                                             Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R (2012) 

Chem Rev 112:108  
     43.     Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, et al. 

(2012) Molpro, version 2012.1, a package of ab initio programs. 
See  

     44.                                     Wolinski K, Pulay P (1989) J Chem Phys 90:3647  
     45.                                     Zaitevskii A, Malrieu JP (1995) Chem Phys Lett 233:597    

256 Reprinted from the journal



1 3

Theor Chem Acc (2015) 134:107
DOI 10.1007/s00214-015-1710-y

              REGULAR ARTICLE 

 Second-order Møller–Plesset perturbation (MP2) theory at fi nite 
temperature: relation with Surján’s density matrix MP2 and its 
application to linear-scaling divide-and-conquer method 

                                                       Masato Kobayashi  1,2     ·   Tetsuya Taketsugu  1,2    

 Received: 24 June 2015 / Accepted: 28 July 2015   / Published online: 15 August 2015
©  Springer-Verlag Berlin Heidelberg     2015  

   Keywords     Fractional occupation number    ·  Many-body 
perturbation theory    ·  Laplace-transformed Møller–Plesset 
perturbation    ·  Linear-scaling electronic structure method  

      1  Introduction 

 The perturbation theory has widely been used in quantum 
chemistry to account for the dynamical electron correlation 
in single Slater [i.e., Hartree–Fock (HF)] and multideter-
minantal states [ 1 ]. Surján has worked on the perturbation 
theories for both HF and non-HF references. For non-HF 
reference functions, he and his coworkers proposed a series 
of multiconfi guration perturbation (MCPT) theories [ 2 – 6 ]. 
Because the MCPT theories are applicable to any refer-
ence functions, they have occasionally been applied to the 
antisymmetric product of strongly orthogonal geminals 
wave functions [ 7 – 9 ]. 

 Although many of Surján’s famous works are related 
to the multideterminantal framework, he has also worked 
on the Møller–Plesset perturbation (MP) theory [ 10 ,  11 ], 
where the HF wave function is adopted as the reference 
function. The importance of the MP theory, especially the 
second-order MP (MP2) method, remains unchanged as 
the simplest non-empirical way to consider the electron 
correlation, even though the practical density functional 
theory (DFT) is getting mature [ 12 ,  13 ]. The computational 
time for the canonical MP2 calculation, however, scales as 
  O(N5)   , where  N  is the number of basis functions, which is 
signifi cantly longer than those for the DFT and HF calcu-
lations of   O(N3)   . There have been proposed several tech-
niques to reduce the computational time for the MP2 cal-
culation. Surján [ 14 ] proposed a method to evaluate the 
MP2 correlation energy as the functional of the HF density 
matrix (DM),   D   , based on the Laplace-transformed MP2 

                     Abstract     In 2005, Surján showed two explicit formulas 
for evaluating the second-order Møller–Plesset perturba-
tion (MP2) energy as a functional of the Hartree–Fock den-
sity matrix   D    (Chem Phys Lett 406:318,  2005 ), which are 
referred to as the   �EMP2[D]    functionals. In this paper, we 
present the fi nite-temperature (FT) MP2 energy function-
als of the FT Hartree–Fock density matrix. There are also 
two formulas for the FT-MP2, namely the conventional and 
renormalized ones; the latter of which has recently been 
formulated by Hirata and He (J Chem Phys 138:204112, 
 2013 ). We proved that there exists one-to-one corre-
spondence between the formulas of two FT-MP2 and the 
  �EMP2[D]    functionals. This fact can explain the different 
behavior of two   �EMP2[D]    functionals when an approxi-
mate Hartree–Fock density matrix is applied, which was 
previously investigated by Kobayashi and Nakai (Chem 
Phys Lett 420:250,  2006 ). We also applied the FT-MP2 for-
malisms to the linear-scaling divide-and-conquer method 
for improving the accuracy with tiny addition of the com-
putational efforts. 
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formalism [ 15 – 17 ]. One of the authors (MK) followed 
this DM-MP2 or   �EMP2[D]    functional [ 18 ]. Its extension 
to higher-order MP energies was also mentioned by Surján 
and Szabados [ 19 ]. 

 Another simple but straightforward way of reducing the 
computational time of quantum chemical calculations is 
the fragmentation of the system under consideration. Kob-
ayashi, Nakai, and coworkers have developed one of them, 
called the divide-and-conquer (DC) method [ 20 – 22 ], which 
was fi rst proposed by Yang [ 23 ,  24 ] in the framework of the 
mean-fi eld theories. The characteristic feature of the DC 
method, which allows the method to be applied to delocal-
ized systems, is the use of the overlapped fragmentation 
that is managed by introducing the buffer region with the 
assistance of the fi nite-temperature (FT) HF formalism. 
They also proposed two types of the extension of the DC 
method to the post-HF correlation theories, including MP2. 
The fi rst one, called the DC–DM MP2 method, applies the 
approximate HF density matrix obtained from the DC-HF 
calculation to the   �EMP2[D]    functional [ 25 ]. In the other 
method, called the DC-MP2 method, the correlation energy 
corresponding to each subsystem is evaluated using the 
subsystem molecular orbitals (MOs) [ 26 ]. The latter one 
has also been applied to the cluster expansion theories 
[ 27 – 29 ]. Although it was practically found that the DC–
DM MP2 energy often shows better agreement with the 
canonical MP2 energy than the DC-MP2 one, the DC-MP2 
method is usually adopted because of its smaller compu-
tational cost. In the DC–DM MP2 method, the FT effect 
is considered to be included through the use of FT DC-HF 
density matrix. But in the DC-MP2 method, the subsystem 
MOs are clearly separated into occupied and virtual ones. 

 By the way, the MP2 theory was also extended to the 
FT ensemble [ 30 ,  31 ] based on the FT Green’s function 
theory. Recently, Hirata and He [ 32 ] formulated a novel 
representation, called the  renormalized  formula, which is 
free from the so-called Kohn–Luttinger conundrum [ 33 ]. 
Kohn–Luttinger conundrum refers to the following incon-
sistency: taking the limit of   T → 0    for the conventional 
FT many-body perturbation formalism does not lead to 
the zero-temperature correspondence for metallic system 
because of the appearance of the  anomalous  diagram. In 
addition, the renormalized FT-MP2 method consistently 
connects the divergence rates of the zero-temperature MP2 
energy for homogeneous electron gas system to the FT 
formalism. Their method is based on the FT normal order-
ing and thermal Wick’s theorem [ 34 ,  35 ]. In this paper, we 
reveal the relation between two DM-MP2 and two FT-MP2 
energy expressions. Then, we introduce the FT effect to the 
DC-MP2 correlation energy. The theoretical aspects of this 
paper are given in Sect.  2 . It is followed by the numerical 
assessment in calculations of small benzene molecule and 
fairly large polyene system,   C60 H62   . 

    2   Theory 

   2.1   Laplace-transformed MP2 and   �EMP2[D]    
functionals 

 The closed-shell pure state (i.e., zero temperature) MP2 
correlation energy is expressed by [ 10 ,  11 ,  36 ]
     

with the following amplitude
     

Through this paper,   {i, j, . . .}    and   {a, b, . . .}    refer to occu-
pied and virtual MOs for pure HF state, respectively, and 
  {p, q, . . .}    to arbitrary MOs, which are constructed as the 
linear combination of atomic orbitals (AOs),   {φμ},   
     

Here,   Cp    and   εp    are the coeffi cient vector and the energy 
of the MO  p , obtained by solving the following Roothaan 
equation:
     

  F    and   S    are the Fock and overlap matrices, respectively, of 
which the elements are expressed by
     

     

     

with the usual two-electron integral notation of 
  〈μσ |ν�〉 =

∫∫
φμ(r1)φσ (r2)r

−1
12 φν(r1)φ�(r2)dr1dr2,    the 

one-electron Hamiltonian of   ̂h,    and the HF density matrix 
  D    at zero temperature:
     

Due to the existence of the denominator in Eq. ( 2 ), the 
straightforward computation of the MP2 energy with 
Eq. ( 1 ) requires   O(N5)    time with the number of basis func-
tions  N . Almlöf [ 15 ] fi rst used the Laplace transformation 
for evaluating the MP2 energy to remove the denominator:
     

(1)

�EMP2 =

occ∑
ij

vir∑
ab

〈ij|ab〉
(
2t̃ij,ab − t̃ij,ba

)
,

(2)
t̃ij,ab = −

〈ab|ij〉

εa + εb − εi − εj
.

(3)
ψp =

∑
μ

Cμpφμ.

(4)FCp = εpSCp.

(5)Fμν = Hcore
μν +

∑
�σ

D�σ

[
2〈μσ |ν�〉 − 〈μσ |�ν〉

]
,

(6)Sμν =〈φμ|φν〉,

(7)Hcore
μν = 〈φμ|ĥ|φν〉,

(8)D =

occ∑
i

CiCT
i .

(9)�EMP2 = −

∫ ∞

0
e2(t)dt.
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The integrand in Eq. ( 9 ) is given in AO-based formalism by 
[ 16 ,  17 ]
     

where   X(t)    and   Y(t)    are the energy-weighted density matri-
ces of electron and hole given by
     

     

respectively. Because these matrices are sparse for large 
systems, the evaluation of the MP2 energy can be reduced 
to   O(N2)    [ 16 ] or even   O(N)    [ 17 ]. 

 Using this Laplace MP2 formalism, Surján [ 14 ] derived 
the explicit MP2 energy functional of the HF density matrix, 
while Ayala and Scuseria [ 17 ] suggested previously. Using 
the Roothaan Eq. ( 4 ), one can transform Eqs. ( 11 ) and ( 12 ) to
     

     

where   D̄    is the complement of the HF density matrix   D :   
     

Substituting Eqs. ( 13 ) and ( 14 ) for Eq. ( 10 ), the MP2 correla-
tion energy can be obtained as a functional of the HF den-
sity matrix, which is referred to as   �EMP2[D]    functional or 
DM-MP2 method in this paper. Hereafter, Eqs. ( 13 ) and ( 14 ) 
are referred to as the   S−1F    formulas. Furthermore, using the 
commutation relationship of   FDS = SDF    and the idem-
potency of the density matrix,   (DS)n = DS,    one can further 
derive
     

     

These equations, referred to as the   DF    formulas, can also be 
used instead of Eqs. ( 13 ) and ( 14 ). 

 This   �EMP2[D]    functional can be used to obtain proper 
MP2 correlation energy from the non-canonical HF method 
that cannot yield MOs of the system. The performance of 

(10)
e2(t) =

∑
γ δκε

∑
μν�σ

Xμγ (t)Yνδ(t)X�κ(t)Yσε(t)

〈γ κ|δε〉[2〈νσ |μ�〉 − 〈νσ |�μ〉],

(11)X(t) =
occ∑

i

eεitCiCT
i ,

(12)Y(t) =
vir∑
a

e−εatCaCT
a ,

(13)X(t) = etS−1FD,

(14)Y(t) = e−tS−1FD̄,

(15)D̄ =

vir∑
a

CaCT
a = S−1

− D.

(16)X(t) = etDFD,

(17)Y(t) = e−tD̄FD̄.

the DM-MP2 method for the use with approximate density 
matrix was numerically assessed by Kobayashi and Nakai 
[ 18 ]. As an example, the density matrix obtained from the 
DC-HF calculation was applied to this functional [ 25 ]. 
Although this scheme, called the DC-DM MP2 method, suc-
ceeded in accurately evaluating the MP2 correlation energy 
based on the DC method, the DC-MP2 method based on the 
subsystem MOs, explained in Sect.  2.3 , has been used as the 
standard extension of the DC method to the MP2 theory. 

    2.2   Finite-temperature MP2 and Laplace-transformed 
formula 

 For the FT ensemble, the HF density matrix is expressed as 
[ 37 ,  38 ]
     

where   fp    is the Fermi-distributed occupation number,
     

with Fermi level,   εF,    and Fermi distribution function 
  fβ(x) = [1 + exp(−βx)]−1    for the inverse temperature 
  β = (kBT)−1.    The electronic FT-HF energy is expressed by 
the usual formula as
     

with the FT density matrix of Eq. ( 18 ). Although the grand 
potential can also be evaluated with the entropy, obtained 
from the occupation numbers, and the Fermi level, we do 
not care about these terms in this study because they are 
not included in the DC formalism [ 20 ,  24 ]. 

 The MP2 theory has also been generalized to the FT 
ensemble [ 31 ,  38 ,  39 ]. At fi nite temperature, the MP2 cor-
relation energy is  conventionally  expressed as
     

with the following amplitude
     

Here,   fpq,rs    is obtained from the orbital occupation number 
of Eq. ( 19 ) and its complement,
     

by
     

The energy expression of Eq. ( 21 ) can be derived from 
the fi nite-temperature Green’s function [ 40 ]. Obviously, 
Eq. ( 22 ) diverges at fi nite   β    (or nonzero temperature) 
for   p = r    and   q = s,    for example. These divergent terms 

(18)
D =

∑
p

fpCpCT
p ,

(19)fp = fβ
(
εF − εp

)
,

(20)EHF = Tr[D(Hcore
+ F)],

(21)�EC
MP2 =

∑
pqrs

〈pq|rs〉
(

2t̃C
pq,rs − t̃C

pq,sr

)
.

(22)t̃C
pq,rs = −

fpq,rs〈rs|pq〉

εr + εs − εp − εq
.

(23)f̄p = 1 − fp,

(24)fpq,rs = fpfqf̄r f̄s.
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should be neglected in practical calculations. Hirata and 
He [ 32 ] recently proposed the  renormalized  formalism 
for the FT many-body perturbation theory that changes 
the divergence rate to be consistent to the zero-tempera-
ture counterpart:
     

     

This formula comes from the thermal Wick’s theorem [ 34 , 
 35 ]. Note that this renormalized FT-MP2 energy as well 
as the conventional FT-MP2 energy diverges for metallic 
system. The conventional FT-MP2 energy, however, may 
diverge even for insulators. In this subsection, we clarify 
the correspondence of the above two formalisms with two 
  �EMP2[D]    functionals. 

 According to the standard AO-based formalism [ 17 ], the 
Laplace transformation of   �EC

MP2    and   �ER
MP2    leads to

     

The integrand in Eq. ( 27 ) is given by
     

For the conventional formalism, the energy-weighted den-
sity matrices are given by
     

     

and for the renormalized formalism, they are
     

     

The expressions for the conventional formalism are different 
from Eqs. ( 11 ) and ( 12 ) only in the existence of the occupa-
tion number before   CpCT

p .    For the renormalized formalism, 
the occupation number also appears on the exponential. 

 If the HF equation of Eq. ( 4 ) is satisfi ed, one can derive 
the following equation:
     

(25)�ER
MP2 =

∑
pqrs

〈pq|rs〉
(

2t̃R
pq,rs − t̃R

pq,sr

)
,

(26)t̃R
pq,rs =−

fpq,rs〈rs|pq〉

f̄rεr + f̄sεs − fpεp − fqεq
.

(27)�EC/R
MP2 = −

∫ ∞

0
eC/R

2 (t)dt.

(28)
eC/R

2 (t) =
∑
γ δκε

∑
μν�σ

XC/R
μγ (t)YC/R

νδ (t)XC/R
�κ (t)YC/R

σε (t)

〈γ κ|δε〉[2〈νσ |μ�〉 − 〈νσ |�μ〉].

(29)
XC(t) =

∑
p

eεpt fpCpCT
p ,

(30)
YC(t) =

∑
p

e−εpt f̄pCpCT
p ,

(31)
XR(t) =

∑
p

eεpfpt fpCpCT
p ,

(32)YR(t) =
∑

p

e−εpf̄pt f̄pCpCT
p .

(33)XC(t) = etS−1FD,

     

where   D̄    is the complement of the FT-HF density matrix,
     

These are formally the same as the   S−1F    formulas of 
Eqs. ( 13 ) and ( 14 ). However, it cannot be further trans-
formed to the   DF    formulas because the density matrix is no 
longer idempotent at fi nite temperature but has the follow-
ing relationship:
     

As for the renormalized formulas, on the contrary, using 
the relationships of   FDS = SDF    and Eq. ( 36 ) leads to
     

     

These are formally the same as the   DF    formulas of 
Eqs. ( 16 ) and ( 17 ). 

 Here, we summarize the important point in this Section. 
As derived in the previous studies [ 14 ,  18 ], two DM-MP2 
formalisms (i.e., the   S−1F    and   DF    formulas) are equiva-
lent at zero temperature (see Eqs.  13  and  16 , for example). 
At fi nite temperature, however, these two formulas are no 
longer equivalent and further coincide with the conven-
tional and renormalized FT-MP2 formulas (see Eqs.  33  and 
 37 , for example). 

 When Kobayashi and Nakai [ 18 ] calculated the MP2 
correlation energy using Eq. ( 10 ) with the density matrix 
having random noise, they obtained a reasonable MP2 
correlation energy with Eqs. ( 16 ) and ( 17 ), although they 
could not with Eqs. ( 13 ) and ( 14 ). The noise-introduced 
HF density matrix can be represented as Eq. ( 18 ) having 
noise in the occupation number,   fp,    if the basis set spans 
the complete space. Therefore, this result can now be inter-
preted that the amplitude of Eq. ( 22 ) for   p = r    and   q = s,    
for instance, diverges when using a density matrix for a 
mixed state. 

    2.3   Finite-temperature DC-MP2 method 

 Kobayashi and coworkers [ 20 ,  21 ,  26 ,  41 ] have proposed a 
linear-scaling DC-MP2 method. This method utilizes MOs 
determined in the subsystem   α,      {ψα

p },    which are constructed as
     

(34)YC(t) = e−tS−1FD̄,

(35)
D̄ =

∑
p

f̄pCpCT
p = S−1

− D.

(36)
(DS)n

=
∑

p

f n
p CpCT

p S.

(37)XR(t) = etDFD,

(38)YR(t) = e−tD̄FD̄.

(39)
ψα

p =
∑

μ∈L(α)

Cα
μpφμ,
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where the coeffi cient   Cα
μp    is obtained by solving the HF equa-

tion in subsystem   α :   
     

In Eq. ( 39 ),   L(α)    is the set of AOs used in the expansion of 
MOs in subsystem   α,    which consists of two parts:
     

  S(α)    is the AOs corresponding to the  central region  of the 
subsystem   α,    which is mutually exclusive:
     

and   B(α)    is the AOs corresponding to the neighboring 
region of the central region of the subsystem   α,    called 
the  buffer region .   Fα    and   Sα    are the subsystem Fock and 
overlap matrices, respectively, of which the elements are 
expressed by
     

     

Obviously, the matrix elements of Eqs. ( 43 ) and ( 44 ) 
are the same as Eqs. ( 5 ) and ( 6 ). Here in Eq. ( 43 ), one 
can adopt any density matrix,   D,    which is appropriately 
determined. A possible candidate is the DC-HF density 
matrix:
     

where
     

  f α
p     is the Fermi-distributed occupation number:

     

and   P    is the partition matrix defi ned by
     

Fermi level,   εF,    in Eq. ( 47 ) is determined from the number 
of electrons in the entire system,   ne,    by solving the following 
equation:
     

As shown above, the Fermi level and the FT formalism are 
introduced in the DC-HF method. Recently, Yoshikawa and 
Nakai proposed an alternative DC procedure, where the num-
ber of electrons in each subsystem is fi xed after a couple of 
iterations for improving the parallel effi ciency of the DC-HF 

(40)FαCα
p = εα

p SαCα
p .

(41)L(α) = S(α)  B(α).

(42)S(α) ∩ S(β) = ∅, ∀α �= β,

(43)Fα
μν = Hcore

μν +
∑
�σ

D�σ [2〈μσ |ν�〉 − 〈μσ |�ν〉],

(44)Sα
μν = 〈φμ|φν〉.

(45)DDC
μν =

∑
α

Pα
μνDα

μν ,

(46)Dα
=

MO(α)∑
p

f α
p Cα

p CαT
p .

(47)f α
p = fβ(εF − εα

p ),

(48)Pα
μν =

⎧⎨⎩
1 (μ ∈ S(α) ∧ ν ∈ S(α))

1/2 (μ ∈ S(α) ∧ ν ∈ B(α), or vice versa)

0 (otherwise).

(49)ne = tr(DDCS).

calculations [ 42 ]. The Fermi level is no longer constant 
through the entire system in this scheme, which is also related 
to the adjustable density matrix assembly method [ 43 ,  44 ]. 

 In the DC-MP2 method, the total correlation energy 
is estimated by summing up the subsystem correlation 
energies:
     

The correlation energy of the subsystem   α,      �Eα
MP2,    has 

been estimated from the energy density analysis [ 45 ] with 
the subsystem MOs as follows:
     

  ̃tαij,ab    is the effective two-electron excitation amplitude for 
subsystem   α,    which is expressed in MP2 case with the sub-
system MOs as follows:
     

In the previous DC-MP2 method with integer occupation 
numbers, the subsystem MOs should clearly be separated 
into occupied and virtual ones by the Fermi level. In the 
DC-HF method, however, fractional occupations of MOs 
are allowed around Fermi level because the FT ensemble is 
formally treated (see Eq.  46 ). 

 It is also possible to adopt the FT-MP2 formalisms of 
Eqs. ( 21 ) or ( 25 ) in the DC-MP2 method. On the analogy 
to Eq. ( 51 ), the subsystem correlation energy at fi nite tem-
perature can be evaluated as
     

  ̃tC/Rα
pq,rs     is

     

or
     

where
     

(50)�EDC-MP2 =
∑
α

�Eα
MP2.

(51)
�Eα

MP2 =

occ(α)∑
ij

vir(α)∑
ab

∑
μ∈S(α)

Cα
μi

〈
μjα|aαbα

〉
×

(
2t̃αij,ab − t̃αij,ba

)
.

(52)t̃αij,ab = −
〈aαbα|iαjα〉

εα
a + εα

b − εα
i − εα

j
.

(53)
�EC/Rα

MP2 =

MO(α)∑
pqrs

∑
μ∈S(α)

Cα
μp

〈
μqα

|rαsα
〉

×

(
2t̃C/Rα

pq,rs − t̃C/Rα
pq,rs

)
.

(54)t̃Cα
pq,rs = −

f α
pq,rs〈r

αsα|pαqα〉

εα
r + εα

s − εα
p − εα

q
,

(55)
t̃Rα
pq,rs = −

f α
pq,rs〈r

αsα|pαqα〉

f̄ α
r εα

r + f̄ α
s εα

s − f α
p εα

p − f α
q εα

q

,

(56)f̄ α
p =1 − f α

p ,
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As mentioned in the previous DC-MP2 and DC coupled 
cluster papers [ 27 ,  28 ,  41 ,  46 ,  47 ], the buffer region used in 
the DC-MP2 method can be set to be smaller than that in the 
DC-HF method without signifi cant loss of accuracy. When 
this dual-buffer DC-MP2 scheme was adopted, the Fermi 
level was used to be redetermined using the MOs constructed 
in the smaller subsystems. In the integer occupation DC-MP2 
method, however, the use of the Fermi level obtained from 
the prior DC-HF calculation does not signifi cantly change the 
results because the Fermi level is used only for separating the 
subsystem MOs into occupied and virtual ones. On the other 
hand, in the FT DC-MP2 method, the subsystem MP2 cor-
relation energy of Eq. ( 53 ) may largely depend on the Fermi 
level due to the occupation numbers appearing in the coeffi -
cients of Eqs. ( 54 ) and ( 55 ). Because the reference state for the 
DC-MP2 method is the preceding DC-HF state, the authors 
decided to use the Fermi level determined in the DC-HF cal-
culation throughout the DC-MP2 calculation. The depend-
ence of the FT DC-MP2 energy on the Fermi level will also be 
assessed below. 

 Fundamentally, the difference between the implementa-
tions of the FT and integer occupation DC-MP2 methods is 
the summation lengths in Eqs. ( 51 ) and ( 53 ). Although the 
MO indices in Eq. ( 53 ) formally run over all subsystem orbit-
als, the MO  p  of subsystem   α    is regarded as to be doubly occu-
pied or fully vacant if   f α

p > 1 − θ    or   f α
p < θ ,    respectively 

(throughout this paper, the threshold of   θ = 10−15    is adopted). 
Therefore, the computational costs for the MP2 calculation of 
subsystem   α    depend on the practical numbers of occupied and 
virtual MOs, which are defi ned with the numbers of all MOs 
(  Nα   ), uncorrelated core MOs (  Nα

core   ), doubly occupied MOs 
(  Nα

docc,    including   Nα
core   ), and fully vacant MOs (  Nα

fvac   ) by
     

and
     

respectively. 
 The above-mentioned methods were implemented into 

the development version of the  GAMESS  program [ 48 ,  49 ], 
which was used in calculations for the next Section. 

     3   Numerical assessments 

   3.1   DM-MP2 and FT-MP2 calculations of benzene 

 First, the relation between FT-MP2 and DM-MP2, derived 
in the previous Section, was numerically assessed in cal-
culations of benzene molecule with 6-31G** basis set 

(57)f α
pq,rs = f α

p f α
q f̄ α

r f̄ α
s .

(58)Nα
occ = Nα

− Nα
fvac − Nα

core

(59)Nα
vir = Nα

− Nα
docc,

[ 50 ]. In DM-MP2 calculations, we applied the Chebyshev 
expansion for the evaluation of matrix exponential, which 
is implemented in the  EXPOKIT  library program [ 51 ]. For the 
numerical quadrature of the Laplace-transformed integrals 
of Eqs. ( 9 ) and ( 27 ), we used the   τ   -point Euler–Maclaurin 
(trapezoidal) quadrature
     

with
     

and the following change in variable
     

according to the previous assessment [ 18 ] (note that 
  f2(0) = f2(1) = 0   ).        

 Figure  1  shows the inverse temperature   (β)    dependence 
of the FT-MP2 (Eqs.  21  and  25 ) and the DM-MP2 (Eq.  27 ) 
energies of a benzene molecule with C–C and C–H bond 
lengths of 140 and 109 pm. In the DM-MP2 calculations, 
the number of quadrature points was set to   τ = 7.    The MP2 
energy at zero temperature (  −231.535    Hartree) is shown 
with dotted line. At low temperature (  β ≥ 30    a.u.), all the 
four MP2 energies shown in Fig.  1  coincide with the zero-
temperature energy because the benzene molecule has large 
band gap. For   β ≤ 20    a.u., the energy gradually increases 
as   β    decreases, except for the DM-MP2 result with the 
  S−1F    formula. Even in this high-temperature region, the 

(60)

∫ ∞

0
e2(t)dt =

∫ 1

0
f2(r)dr

≈
1

τ + 1

[∑τ

k=1
f2

(
k

τ + 1

)
+

f2(0)+ f2(1)

2

]

(61)f2(r) = e2(t)
dt

dr

(62)t =
r3 − 0.9r4

(1 − r)2 + r2tan
(πr

2

)
,

 Fig. 1       Inverse temperature (  β   ) dependence of the FT- and DM-MP2 
energies of benzene  
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DM-MP2 result with   DF    formula agrees well with the 
renormalized FT-MP2 one: The difference between these 
two results comes from the numerical quadrature error of 
Eq. ( 27 ). The DM-MP2 result with   S−1F    formula shows 
divergent behavior as   β    decreases due to the divergent 
terms of Eq. ( 22 ). As described in Sect.  2.2 , these diver-
gent terms are not taken into account in the conventional 
FT-MP2 calculations. Although the conventional FT-MP2 
result shows good agreement with the renormalized 
FT-MP2 one up to   β = 15    a.u., the difference between two 
FT-MP2 results increases as   β    decreases. In addition, this 
result numerically supports the reason for the divergence of 
DM-MP2 with   S−1F    formula when the density matrix is 
approximately obtained.  

 Table  1  shows the dependence of FT DM-MP2 energies 
of benzene on the number of numerical quadrature points, 
  τ .    Here, the results for   β = 15    a.u., where two DM-MP2 
energies in Fig.  1  show large discrepancy, are given. The 
energy with the   DF    formula smoothly converges to the 
renormalized FT-MP2 energy,   ER

MP2,    as   τ    increases. The 
energy with   τ = 7,    adopted in Fig.  1 , only differs by 0.1 
mHartree from the renormalized FT-MP2 energy. On the 
contrary, the result with the   S−1F    formula shows divergent 
behavior as   τ    increases. This divergence may be a correct 
behavior because the FT DM-MP2 energy with   S−1F    for-
mula includes the divergent terms, which are avoided when 
evaluating   EC

MP2.    

    3.2   Polyene system with bond alternation 

 Next, we assessed the FT DC-MP2 method in calculations 
of polyene system,   C60 H62,    with bond alternation, depicted 
in Fig.  2 .   �RBA    indicates the magnitude of bond alterna-
tion, i.e., larger   �RBA    leads more single- and double-bond 
alternating picture, and   �RBA = 0    means fully delocal-
ized structure. All the bond angles of   ∠C-C-C    and   ∠C-C-H    
were set to be   120◦.    A HC=CH (or   H2C=CH    for the edges) 

unit was adopted as the central region, and its adjacent   nHF
b     

and   nMP2
b     units (on either side) were adopted as the buffer 

regions in DC-HF and DC-MP2 calculations, respectively.        
 Figure  3  shows the dependence of the DC-MP2 energy 

deviation of polyene system,   C60 H 62,    from the zero-tem-
perature canonical MP2 energy on the bond alternation, 
  �RBA.    Three DC-MP2 formalisms (I for integer occupa-
tion, C for conventional FT, and R for renormalized FT) 
were used. In the MP2 correlation calculation, the C 1s 
orbitals were frozen. We adopted two different inverse tem-
perature parameters, i.e., (a) lower temperature (  β = 500    
a.u.) and (b) higher temperature (  β = 50    a.u.). Here, the 
6-31G** basis set [ 50 ] was used. The DC-HF buffer size 
used in these calculations was   nHF

b = 6.    The energy devia-
tions with   nMP2

b = 6    (solid lines) are always smaller than 
with   nMP2

b = 4    (dashed lines). For large   �RBA,    the dif-
ference between the conventional and renormalized 
FT DC-MP2 results is tiny: 0.14 mHartree or less for 
  �RBA = 4    pm. The difference between the integer occu-
pation and FT-MP2 is also small for   �RBA = 10    pm, and 
the maximum differences are 0.06 and 0.22 mHartree with 
  β = 500    and 50 a.u., respectively. As the bond alternation, 
  �RBA,    decreases, the energy deviation gradually increases 
because more delocalized electronic structure makes the 
DC approximation worse. The difference between the inte-
ger occupation and FT-MP2 also increases: For   �RBA = 4    
pm, the maximum differences are 0.7 and 1.5 mHar-
tree with   β = 500    and 50 a.u., respectively. For the same 
  �RBA    and   nMP2

b ,    the energy deviations obtained by the 
FT DC-MP2 formulas are smaller than those by the inte-
ger occupation DC-MP2 one except for the renormalized 
FT-MP2 result with   �RBA = 0,      β = 50    a.u., and   nMP2

b = 4.    
Because the renormalized FT-MP2 energy also shows 
divergent behavior for small band gap systems, the conven-
tional FT-MP2, in which the divergent terms are necessar-
ily avoided, may be a better choice when the FT-MP2 for-
mula is combined with the DC-MP2 method.        

 Table  2  summarizes the practical numbers of occupied 
and virtual MOs, defi ned by Eqs. ( 58 ) and ( 59 ), in the FT 
DC-MP2 calculations of   C60 H62    without bond alternation 
(i.e.,   �RBA = 0   ). The data for two characteristic subsys-
tems, namely the middle and edge subsystems, are pro-
vided in the table. The inverse temperature parameter,   β,    
was varied from 50 to 500 a.u. The numbers for the integer 

 Table 1       The dependence of FT DM-MP2 energies (in Hartree) of 
benzene on the number of numerical quadrature points,   τ     

 Inverse temperature was set to   β = 15    a.u. 

  a    Conventional FT-MP2 energy, Eq. ( 21 ) 

  b    Renormalized FT-MP2 energy, Eq. ( 25 ) 

    τ         S−1F    formula      DF    formula  

  MP2 energy    Diff.    MP2 energy    Diff.  

  3      −231.499433         −0.029700         −231.479424         −0.007277     

  5      −231.516181         −0.046448         −231.471887         +0.000259     

  7      −231.619518         −0.149786         −231.472234         −0.000087     

  10      −231.863400         −0.393668         −231.472130         +0.000016     

  Ref.      −231.469733a           −231.472147b       

29

140 − ΔRBA

140 + ΔRBA

 Fig. 2       Polyene system,   C60 H62,    with bond alternation,   �RBA.    Values 
in the fi gure are the bond lengths in pm  
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occupation DC-MP2 are given together for comparison. 
The buffer size was fi xed to   nHF

b = nMP2
b = 6.    Even for 

this delocalized system, the numbers for   β ≥ 200    a.u. are 
close to those for the integer occupation DC-MP2 method. 
Therefore, in case of large   β,    the additional computational 

costs for the FT-MP2 treatment are tiny, although the 
energy improvement shown in Fig.  3  is considerable.   Nα

occ    
and   Nα

vir    gradually increases as the temperature increases. 
It was concluded that the use of low temperature is impor-
tant in DC-MP2 calculation not only to improve the accu-
racy but also to reduce the computational demands for the 
FT-MP2 treatment. Although the use of high temperature 
often improves the self-consistent fi eld convergence in 
DC-HF calculation, so-called annealing technique can be 
adopted to lower the fi nal temperature [ 52 ].  

 Up to this point, as discussed in Sect.  2.3 , the Fermi 
level determined in the DC-HF calculation was also used 
for Eqs. ( 54 ) and ( 55 ). If the Fermi level is redetermined 
using the subsystem MOs constructed for the DC-MP2 
calculation and is used for Eqs. ( 54 ) and ( 55 ), the result 
of Fig.  3  changes to be Fig.  4  for   β = 500    a.u. Here, the 
data for   nMP2

b = 6    are not given, because the result does not 
change for the case of   nHF

b = nMP2
b    . For the integer occupa-

tion DC-MP2 method, the results of Figs.  3 a and  4  are the 
same. On the other hand, the results for the FT DC-MP2 
calculations are considerably different between Figs.  3 a 
and  4 . For example, the differences between the integer 
occupation and the conventional FT DC-MP2 energies for 
  �RBA = 0    are 1.5 and 16.7 mHartree for Figs.  3 a and  4 , 
respectively. The renormalized FT DC-MP2 result shows 
divergent behavior at   �RBA = 0,    as was also observed in 
Fig.  3 b. Although the detailed analysis may be required for 
the optimal determination of the Fermi level used in the 
DC-MP2 calculation, the authors use the Fermi level deter-
mined in the DC-HF calculation hereafter.        

 Finally, the present FT DC-MP2 results are compared 
with the DC-DM MP2 one, where the correlation energy 
is obtained from Eq. ( 9 ) with Eqs. ( 16 ) and ( 17 ), and the 
DC-HF density matrices. Figure  5  shows the buffer size 
dependence of the FT DC-MP2 and DC-DM MP2 energy 
deviations of polyene system,   C60 H62,    with   �RBA = 0,    
The inverse temperature was fi xed at   β = 500    a.u. In the 
DC-DM MP2 calculations, the number of quadrature points 
was set to   τ = 7.    For comparing with the DC-DM MP2 

(a)

(b)

 Fig. 3       Bond alternation (  �RBA   ) dependence of the DC-MP2 energy 
deviations of polyene system,   C60 H62   , with integer occupation (  EI

MP2   ), 
conventional FT (  EC

MP2   ), and renormalized FT (  ER
MP2   ) formalisms for 

(a)   β = 500    a.u. and (b)   β = 50    a.u., where   β    is the inverse tempera-
ture parameter appeared in the occupation number  

 Table 2       The practical numbers 
of occupied (  Nα

occ   ) and virtual 
(  Nα

vir   ) MOs for middle and edge 
subsystems in the FT DC-MP2 
calculations of   C60 H62    with 
  �RBA = 0     

   nHF
b = nMP2

b = 6    

  a    Numbers for the integer occupation DC-MP2 calculation 

  Subsystem        β    [a.u.]  

    50    100    200    500      ∞a     

  Middle      Nα
occ       128    99    72    68    66  

      Nα
vir       474    434    429    428    428  

      Nα       520    520    520    520    520  

  Edge      Nα
occ       70    54    39    37    36  

      Nα
vir       260    238    235    235    235  

      Nα       285    285    285    285    285  

264 Reprinted from the journal



Theor Chem Acc (2015) 134:107 

1 3

result, the computational details used in calculations for 
Fig.  5  are different from those for Fig.  3 : the buffer region 
was fi xed throughout the DC-HF and DC-MP2 calcula-
tions, i.e.,   nHF

b = nMP2
b ,    the core electrons were correlated 

as well as the valence ones (i.e.,   Nα
core = 0    for all subsys-

tems   α   ), and the 6-31G basis set [ 53 ] was used. The numeri-
cal quadrature scheme used in DC-DM MP2 calculations is 
the same as used in the DM-MP2 calculations of benzene, 
mentioned in Sect.  3.1 . The integer occupation DC-MP2 
results are also shown for comparison. Among three sub-
system-based DC-MP2 results, the conventional FT-MP2 
method shows the best agreement with the zero-temper-
ature canonical MP2 result, although the DC-DM MP2 
result gives smaller energy deviation than the subsystem-
based DC-MP2 method. The renormalized FT-MP2 results 

are also improved from the integer occupation DC-MP2 
when adopting the same buffer region for DC-HF and 
DC-MP2 calculations. The authors again concluded that the 
use of FT-MP2 formulas with low electronic temperature 
improves the accuracy of the DC-MP2 calculations espe-
cially with the conventional FT-MP2 formalism with slight 
addition of the computational demands, although a moder-
ate improvement can also be confi rmed with the renormal-
ized FT-MP2 formalism when the same buffer region is 
adopted for DC-HF and DC-MP2 calculations.        

     4   Conclusion 

 It was found that two different representations of density 
matrix (DM) MP2, which Surján originally formulated 
for pure state (  β = ∞   ) [ 14 ], can be obtained from the 
Laplace transformation of two types of fi nite-temperature 
(FT) MP2 formulas, namely   S−1F    formula from the con-
ventional FT-MP2 and   DF    formula from the renormalized 
FT-MP2. We numerically confi rmed this one-to-one corre-
spondence of FT-MP2 and DM-MP2 for benzene molecule 
by varying the electronic temperature   β    and found that the 
DM-MP2 energy with   S−1F    formula shows unfavorable 
behavior due to the divergent term. This fact also accounts 
for our previous experience [ 18 ] that the DM-MP2 calcula-
tion with   S−1F    formula fails to obtain approximate MP2 
energy when the density matrix is approximated. We also 
applied the FT-MP2 energy to the subsystem MO-based 
divide-and-conquer (DC) MP2 method. The FT DC-MP2 
energy shows better agreement with the zero-temperature 
canonical MP2 energy than the previous integer occupa-
tion DC-MP2 one, in spite of its tiny additional computa-
tional efforts especially for large   β   . For the combination 
of FT-MP2 and DC-MP2 method, the use of the conven-
tional FT-MP2 formalism that directly avoids the divergent 
terms may be more preferable than that of the renormalized 
FT-MP2. 

       Acknowledgments     The authors are grateful to Prof. Hiromi Nakai 
and Dr. Takeshi Yoshikawa (Waseda University) for their valuable 
comments. Some of the present calculations were performed using 
the computer facilities at Research Center for Computational Sci-
ence, Okazaki, and at Research Institute for Information Technology, 
Kyushu University, Japan. This work was supported in part by JSPS 
KAKENHI Grant No. 25810011.  

  References 

     1.                                           Helgaker T, Jørgensen P, Olsen J (2002) Molecular electronic-
structure theory. Wiley, Chichester  

     2.                                             Rolik Z, Szabados Á, Surján PR (2003) J Chem Phys 119:1922  
     3.                                                     Szabados Á, Rolik Z, Tóth G, Surján PR (2005) J Chem Phys 

122:114104  

 Fig. 4       The same fi gure as Fig.  3 a but for the case that the Fermi 
level,   εF,    is determined using the subsystem MOs reconstructed for 
the DC-MP2 calculation with smaller buffer size  

 Fig. 5       Buffer size (  nb = nHF
b = nMP2

b    ) dependence of the FT 
DC-MP2 and DC-DM MP2 energy deviations of polyene system, 
  C60 H62   , at   �RBA = 0    and   β = 500    a.u. 6-31G basis set was adopted  

265Reprinted from the journal



 Theor Chem Acc (2015) 134:107

1 3

     4.                                                     Surján P, Rolik Z, Szabados Á, Kőhalmi D (2004) Ann Phys 
13:223  

     5.                                                     Kobayashi M, Szabados Á, Nakai H, Surján PR (2010) J Chem 
Theory Comput 6:2024  

     6.                                     Szabados Á, Nagy P (2011) J Phys Chem A 115:523  
     7.                                              Surján PR (1999) An introduction to the theory of geminals. In: 

Surján PR (ed) Correlation and localization. Springer, Berlin, pp 
63–88  

     8.                                                             Jeszenszki P, Nagy PR, Zoboki T, Szabados Á, Surján PR (2014) 
Int J Quantum Chem 114:1048  

     9.                                             Tarumi M, Kobayashi M, Nakai H (2012) J Chem Theory Com-
put 8:4330  

     10.                                     Møller C, Plesset MS (1934) Phys Rev 46:618  
     11.                                   Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry 

and physics: MBPT and coupled-cluster theory. Cambridge Uni-
versity Press, Cambridge  

     12.                           Tsuneda T (2014) Density functional theory in quantum chemis-
try. Springer, Tokyo  

     13.                                   Engel E, Dreizler RM (2011) Density functional theory: an 
advanced course. Springer, Heidelberg  

     14.                             Surján PR (2005) Chem Phys Lett 406:318  
     15.                             Almlöf J (1991) Chem Phys Lett 181:319  
     16.                             Häser M (1993) Theor Chim Acta 87:147  
     17.                                     Ayala PY, Scuseria GE (1999) J Chem Phys 110:3660  
     18.                                     Kobayashi M, Nakai H (2006) Chem Phys Lett 420:250  
     19.                                                                              Surján PR, Szabados Á (2011) Perturbative approximations to 

avoid matrix diagonalization. In: Papadopoulos MG, Zalesny 
R, Mezey PG, Leszczynski J (eds) Linear-scaling techniques in 
computational chemistry and physics: methods and applications. 
Springer, Dordrecht, pp 83–95  

     20.                                                                              Kobayashi M, Nakai H (2011) Divide-and-conquer approaches 
to quantum chemistry: theory and implementation. In: Papado-
poulos MG, Zalesny R, Mezey PG, Leszczynski J (eds) Linear-
scaling techniques in computational chemistry and physics: 
methods and applications. Springer, Dordrecht, pp 97–127  

     21.                                     Kobayashi M, Nakai H (2012) Phys Chem Chem Phys 14:7629  
     22.                                             Akama T, Kobayashi M, Nakai H (2007) J Comput Chem 

28:2003  
     23.                             Yang W (1991) Phys Rev Lett 66:1438  
     24.                                     Yang W, Lee TS (1995) J Chem Phys 103:5674  
     25.                                             Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 

125:204106  
     26.                                             Kobayashi M, Imamura Y, Nakai H (2007) J Chem Phys 

127:074103  
     27.                                     Kobayashi M, Nakai H (2008) J Chem Phys 129:044103  

     28.                                     Kobayashi M, Nakai H (2009) J Chem Phys 131:114108  
     29.                                             Yoshikawa T, Kobayashi M, Nakai H (2013) Int J Quantum 

Chem 113:218  
     30.                                                            Bloch C (1965) Diagram expansions in quantum statistical 

mechanics. In: de Boer J, Uhlenbeck GE (eds) Studies in statisti-
cal mechanics, vol 3. North-Holland, Amsterdam, pp 3–211  

     31.                                   Blaizot JP, Ripka G (1985) Quantum theory of fi nite systems. 
The MIT Press, Cambridge  

     32.                                     Hirata S, He X (2013) J Chem Phys 138:204112  
     33.                                     Kohn W, Luttinger JM (1960) Phys Rev 118:41  
     34.                             Matsubara T (1955) Prog Theor Phys 14:351  
     35.                             Thouless DJ (1957) Phys Rev 107:1162  
     36.                             Cremer D (2011) WIREs Comput Mol Sci 1:509  
     37.                              Lipparini E (2008) Modern many-particle physics, 2nd edn. 

World Scientifi c, Singapore  
     38.                              Thouless DJ (1972) The quantum mechanics of many-body sys-

tems, 2nd edn. Academic Press, New York  
     39.                                             Cohen AJ, Mori-Sánchez P, Yang W (2009) J Chem Theory 

Comput 5:786  
     40.                           Mattuck RD (1976) A guide to Feynman diagrams in the many-

body problem. McGraw-Hill, New York  
     41.                                             Yoshikawa T, Kobayashi M, Nakai H (2011) Theor Chem Acc 

130:411  
     42.                                     Yoshikawa T, Nakai H (2015) Theor Chem Acc 134:53  
     43.                             Mezey PG (1995) J Math Chem 18:141  
     44.                                             Szekeres Z, Mezey PG, Surján PR (2006) Chem Phys Lett 

424:420  
     45.                             Nakai H (2002) Chem Phys Lett 363:73  
     46.                                     Kobayashi M, Nakai H (2009) Int J Quantum Chem 109:2227  
     47.                                     Kobayashi M, Nakai H (2013) J Chem Phys 138:044102  
     48.                                                                                                                                Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, 

Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Win-
dus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 
14:1347  

     49.                                                                              Gordon MS, Schmidt MW (2005) Advances in electronic struc-
ture theory:  GAMESS  a decade later. In: Dykstra CE, Frenking G, 
Kim KS, Scuseria GE (eds) Theory and applications of compu-
tational chemistry: the fi rst forty years. Elsevier, Amsterdam, pp 
1167–1189  

     50.                                     Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213  
     51.                             Sidje RB (1998) ACM Trans Math Software 24:130  
     52.                                             Akama T, Kobayashi M, Nakai H (2009) Int J Quantum Chem 

109:2706  
     53.                                             Hehre WJ, Ditchfi eld R, Pople JA (1972) J Chem Phys 56:2257    

266 Reprinted from the journal


	Contents
	Preface to the special collection of theoretical chemistry accounts in honour of Péter R. Surján
	Combination of many-body perturbation theory and quantum electrodynamics
	1 Introduction
	2 Covariant evolution operator
	2.1 Model-space contributions

	3 Application to Helium-like ions
	4 Summary and conclusions
	References

	Efficient calculation of the density response function from generalized polarizabilities
	1 Introduction
	2 Generalized polarizabilities for ultrafast quantum/molecular mechanics simulations
	3 Calculation of the density response function from generalized polarizabilities
	4 Examples
	References

	Use of graphics processing units for effi cient evaluation of derivatives of exchange integrals by means of Fourier transform of the 1/ r operator and its numerical quadrature
	1 Introduction
	2 Derivatives of exchange integrals
	3 Computational details
	3.1 Scattering calculations
	3.2 Hartree–Fock calculations
	3.3 Numerical quadrature
	3.4 GPU implementation of the method

	4 Performance and accuracy
	5 Possible use in quantum chemistry
	6 Conclusions
	References

	Relations between real molecules through abstract molecules: the reference cluster approach
	1 Introduction
	2 Nuclear charge space convexity relations and their extensions
	3 Some comments about the universal molecule aspects of potential energy hypersurface symmetry and energy relations connected to the reference cluster
	References

	Hermitian “chemical” Hamiltonian: an alternative ab initio method
	1 Introduction
	2 Integral approximation
	3 The LCAO Hamiltonian
	4 The “chemical” Hamiltonian
	5 SCF equations
	6 Conclusions
	Appendix: Derivation of Eq. ( 45 )
	References

	Internal coordinates and orthogonality: features of the pseudoinverse of the Eliashevich–Wilsonian B -matrix
	1 Introduction
	2 Theory
	3 Conclusion
	References

	Helical molecular redox actuators with pancake bonds?
	1 Introduction
	2 Computational methodology
	3 Results and discussion
	3.1 Changes of the geometry due to CT
	3.2 Comparison of the different metrics
	3.3 Analysis of the molecular strain generated by CT

	4 Further systems studied
	5 Conclusions
	References

	Atoms and bonds in molecules: topology and properties
	1 Introduction
	2 Methodology
	3 Results and discussion
	3.1 Radial density
	3.1.1 Atomic radial density
	3.1.2 Molecular radial density
	3.1.2.1 Halogens
	3.1.2.2 Second period hydrides


	3.2 Topology
	3.2.1 Terminology
	3.2.2 Atomic topology
	3.2.3 Molecular topology

	3.3 Atoms in molecules
	3.4 Bonds in molecules
	3.5 Applications

	4 Conclusions
	References

	Topological coordinates for bar polyhex carbon structures
	1 Introduction
	2 Topological coordinates for spherical structures
	3 Topological coordinates for nonspherical structures
	4 Topological coordinates for bar polyhex structures
	5 Conclusions and outlook
	References

	Hydrocarbon chains and rings: bond length alternation in fi nite molecules
	1 Introduction
	2 Investigated molecules
	3 LHS results
	4 HF results
	5 DFT results
	6 Summary
	References

	On the non-integer number of particles in molecular system domains: treatment and description
	1 Introduction
	2 Theoretical background
	2.1 The system
	2.2 Energy and states

	3 Chemical descriptors: system–environment interactions and derivative discontinuities
	4 Discussion and concluding remarks
	References

	Local random phase approximation with projected oscillator orbitals
	1 Introduction
	2 Theory
	2.1 Projected oscillator orbitals
	2.2 Ring CCD-RPA equations with POOs
	2.3 Local excitation approximation
	2.4 Multipole approximation for the long-range two-electron integrals in the POO basis
	2.5 Spherical average approximation

	3 Preliminary results: molecular C 6 coeffi cients
	4 Conclusions, perspectives
	Appendix 1: Dipolar oscillator orbitals in local frame
	Appendix 2: Riccati equations in POO basis
	Appendix 3: Solution of the Riccati equations in POO basis
	Appendix 4: Riccati equations in the local excitation approximation
	Appendix 5: Screened dipole interaction tensor
	Appendix 6: Fock matrix element in POO basis
	References

	A study of the compactness of wave functions based on Shannon entropy indices: a seniority number approach
	1 Introduction
	2 Theoretical framework
	3 Results
	4 Discussion
	5 Concluding remarks and perspectives
	References

	Structural and spectral properties of tartrato complexes of vanadium(V) from quantum chemical calculations
	1 Introduction
	2 Experimental details
	3 Computational details
	4 Results and discussion
	4.1 Molecular structures
	4.1.1 Assessment of the geometry optimization schemes

	4.2 Spectral properties
	4.2.1 Vibrational spectra
	4.2.2 UV–Vis and ECD spectra
	4.2.3 NMR spectra

	5 Concluding remarks
	References


	A QM/MM program using frozen localized orbitals and the Huzinaga equation
	1 Introduction
	2 Theory
	3 Implementation
	3.1 Link atom approach
	3.2 Huzinaga equation-based local self-consistent field approach
	3.2.1 Automatic generation of frozen strictly localized orbitals
	3.2.2 Selection of the model molecule


	4 Sample calculations
	4.1 Deprotonation energy
	4.2 Conformational energies
	4.3 Proton transfer energy curve

	5 Conclusions
	References

	The exchange coupling between the valence electrons of the fullerene cage and the electrons of the N atoms in N@C−1,360
	1 Introduction
	2 Computational details
	3 Results and discussions
	4 Conclusions
	References

	Partial-wave decomposition of the ground-state wavefunction of the two-electron harmonium atom
	1 Introduction
	2 Theory
	2.1 The case of a polynomial correlation factor
	2.2 The weak-correlation limit
	2.3 The strong-correlation limit

	3 Discussion and conclusions
	References

	Benchmarks of graph invariants for hydrogen-bond networks in water clusters of different topology
	1 Introduction
	2 Computational details
	3 Results and discussion
	4 Conclusion
	References

	Photodissociation dynamics of the D+2 ion initiated by several different laser pulses
	1 Introduction
	2 Methods and details of the calculations
	3 Results and discussion
	3.1 Kinetic energy release (KER)
	3.2 Angular distribution and wave packet density

	4 Conclusions
	References

	Spin contamination and noncollinearity in general complex Hartree–Fock wave functions
	1 Introduction
	2 Spin contamination in GCHF
	3 Collinearity in GCHF
	4 Conclusion
	References

	PNOF5 calculations based on the “thermodynamic fragment energy method”: C n H 2n+2 ( n =1, 10) and (FH) n ( n = 1, 8) as test cases
	1 Introduction
	2 Methods
	2.1 The functional
	2.2 The “fragment energy method” (FEM)

	3 Results and discussion
	3.1 Polyalkene chain Cn H2n+2
	3.2 Hydrogen-bonded chain (FH)n

	4 Conclusions
	References

	Orthogonality-constrained Hartree–Fock and perturbation theory for high-spin open-shell excited states
	1 Introduction
	2 Specifi c features of SCF excited states calculations
	3 Hartree–Fock and basis set optimization equations for excited states
	4 Second-order correction to the energy for excited states
	5 Results and discussion
	5.1 Atoms
	5.2 Molecules

	References

	Metallic and semiconducting 1D conjugated polymers based on –S–C≡C repeating units in poly(sulfur acetylide)
	1 Introduction
	2 Results and discussion
	3 Summary and conclusions
	References

	Unconventional bond functions for quantum chemical calculations
	1 Introduction
	2 Bond-centered spherical Gaussian functions
	2.1 Optimization of function parameters
	2.2 Numerical results and discussion
	2.2.1 Saturated hydrocarbons
	2.2.2 Unsaturated hydrocarbons
	2.2.3 Heteroatom-containing hydrocarbons


	3 Bond-centered general ellipsoidal Gaussian functions
	3.1 Evaluation of molecular integrals
	3.2 Determination of the exponent matrix
	3.3 Numerical results and discussion

	4 Conclusions and outlook
	References

	Excitation energies from time-dependent generalized valence bond method
	1 Introduction
	2 Theory
	3 Results
	4 Conclusions
	Appendix
	References

	Novel orthogonalization and biorthogonalization algorithms
	1 Introduction
	2 (Bi)orthogonal vector sets
	2.1 Extended option 1a
	2.2 Extended option 1b
	2.3 Extended option 2a

	3 Multistate extension of MCPT
	4 Numerical illustration
	References

	Deviation from the anti-Markovnikov rule: a computational study of the regio- and stereoselectivity of diene hydroboration reactions
	1 Introduction
	2 Results and discussion
	2.1 Monohydroboration products of dienes
	2.2 Full hydroboration products of dienes

	3 Methodology
	4 Conclusions
	References

	A second-order multi-reference quasiparticle-based perturbation theory
	1 Introduction
	2 Theory
	3 Computational considerations
	4 Numerical results
	5 Conclusions
	References

	Second-order Møller–Plesset perturbation (MP2) theory at fi nite temperature: relation with Surján’s density matrix MP2 and its application to linear-scaling divide-and-conquer method
	1 Introduction
	2 Theory
	2.1 Laplace-transformed MP2 and ƊEMP2[D]functionals
	2.2 Finite-temperature MP2 and Laplace-transformed formula
	2.3 Finite-temperature DC-MP2 method

	3 Numerical assessments
	3.1 DM-MP2 and FT-MP2 calculations of benzene
	3.2 Polyene system with bond alternation

	4 Conclusion
	References




