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Preface

In 1990 we introduced a one-semester applications of algebra course at
North Carolina State University for students who had successfully com-
pleted semesters of linear and abstract algebra. We intended for the course
to give students more exposure to basic algebraic concepts, and to show
students some practical uses of these concepts. The course was received
enthusiastically by both students and faculty and has become one of the
most popular mathematics electives at NC State.

When we were originally deciding on material for the course, we knew
that we wanted to include several topics from coding theory, cryptography,
and counting (what we call Polya theory). With this in mind, at the sug-
gestion of Michael Singer, we used George Mackiw’s book Applications of
Abstract Algebra for the first few years, and supplemented as we saw fit.
After several years, Mackiw’s book went out of print temporarily. Rather
than search for a new book for the course, we decided to write our own notes
and teach the course from a coursepack. About the same time, NC State
incorporated the mathematics software package Maple VTM 1 into its calcu-
lus sequence, and we decided to incorporate it into our course as well. The
use of Maple played a central role in the recent development of the course
because it provides a way for students to see realistic examples of the topics
discussed without having to struggle with extensive computations. With
additional notes regarding the use of Maple in the course, our coursepack
evolved into this book. In addition to the topics discussed in this book, we
have included a number of other topics in the course. However, the present
material has become the constant core for the course.

Our philosophy concerning the use of technology in the course is that
it be a useful tool and not present new problems or frustrations. Conse-
quently, we have included very detailed instructions regarding the use of

1Maple V is a registered trademark of Waterloo Maple, Inc., 57 Erb St. W, Waterloo,
Canada N2L6C2, www.maplesoft.com.

c© 1999 by CRC Press LLC



Maple in this book. It is our hope that the Maple discussions are thorough
enough to allow it to be used without much alternative aid. As alterna-
tive aids, we have included a basic Maple tutorial in Appendix A, and an
introduction to some of Maple’s linear algebra commands in Appendix B.
Although we do not require students to produce the Maple code used in
the course, we do require that they obtain a level of proficiency such that
they can make basic changes to provided worksheets to complete numerous
Maple exercises. So that this book can be used for applications of algebra
courses in which Maple is not incorporated, we have separated all Maple
material into sections that are clearly labeled, and separated all Maple and
non-Maple exercises.

When teaching the course, we discuss the material in Chapter 1 as
needed rather than review it all at once. More specifically, we discuss the
material in Chapter 1 through examples the first time it is needed in the ap-
plications that follow. Some of the material in Chapter 1 is review material
that does not apply specifically to the applications that follow. However,
for students with weak backgrounds, Chapter 1 provides a comprehensive
review of all necessary prerequisite mathematics.

Chapter 2 is a short chapter on block designs. In Chapters 3, 4, and
5 we discuss some topics from coding theory. In Chapter 3 we introduce
error-correcting codes, and present Hadamard, Reed-Muller, and Hamming
codes. In Chapters 4 and 5, we present BCH codes and Reed-Solomon
codes. Each of these chapters are dependent in part on the preceding chap-
ters. The dependency of Chapter 3 on Chapter 2 can be avoided by omitting
Sections 3.2, 3.3, and 3.4 on Hadamard and Reed-Muller codes. In Chap-
ters 6, 7, and 8 we discuss some topics from cryptography. In Chapter 6
we introduce algebraic cryptography, and present several variations of the
Hill cryptosystem. In Chapter 7 we present the RSA cryptosystem and
discuss some related topics, including the Diffie-Hellman key exchange. In
Chapter 8 we present the ElGamal cryptosystem, and describe how elliptic
curves can be incorporated into the system naturally. There is a slight de-
pendency of Chapters 7 and 8 on Chapter 6, and of Chapter 8 on Chapter
7. Chapter 9 is a stand-alone chapter in which we discuss the Polya count-
ing techniques, including Burnside’s Theorem and the Polya Enumeration
Theorem.

We wish to thank all those who have been involved in the develop-
ment of this course and book. Pete Hardy taught from the coursepack and
improved it with his suggestions. Also, Michael Singer suggested various
topics and wrote notes on some of them. Many students have written on
this material for various projects. Of these, the recent master’s project by
Karen Klein on elliptic curves was especially interesting. Finally, we wish to
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thank our mentor, Jack Levine, for his interest in our projects, his guidance
as we learned about applications of algebra, and his many contributions to
the subject, especially in cryptography.
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Chapter 1

Preliminary Mathematics

There are two purposes to this chapter. We very quickly and concisely re-
view some of the basic algebraic concepts that are probably familiar to many
readers, and also introduce some topics for specific use in later chapters.
We will generally not pursue topics any further than is necessary to obtain
the material needed for the applications that follow. Topics discussed in
this chapter include permutation groups, the ring of integers, polynomial
rings, finite fields, and examples that incorporate these topics using the
philosophies of concepts covered in later chapters.

1.1 Permutation Groups

Suppose a set G is closed under an operation ∗. That is, suppose a ∗ b ∈ G
for all a, b ∈ G. Then ∗ is called a binary operation on G. We will use the
notation (G, ∗) to represent the set G with this operation. Suppose (G, ∗)
also satisfies the following three properties.

1. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

2. There exists an identity element e ∈ G for which e ∗ a = a ∗ e = a for
all a ∈ G.

3. For each a ∈ G, there exists an inverse element b ∈ G for which
a ∗ b = b ∗ a = e. The inverse of a is usually denoted a−1 or −a.

Then (G, ∗) is called a group. For example, it can easily be verified that for
the set Z of integers, (Z,+) is a group with identity element 0.
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Let S be a set, and let A(S) be the set of bijections on S. Then an
element α ∈ A(S) can be uniquely expressed by its action (s)α on the
elements s ∈ S.

Example 1.1 If S = {1, 2, 3}, then A(S) contains six elements. One of
the α in A(S) can be expressed as (1)α = 2, (2)α = 3, and (3)α = 1.

Let ◦ represent the composition operation on A(S). Specifically, if
α, β ∈ A(S), then define α ◦ β by the action (s)(α ◦ β) = ((s)α)β for s ∈ S.
Since the composition of two bijections on S is also a bijection on S, then
α ◦ β ∈ A(S). Hence, ◦ is a binary operation on A(S). It can easily be
verified that (A(S), ◦) is a group (see Written Exercise 1).

A group (G, ∗) is said to be abelian or commutative if a∗b = b∗a for all
a, b ∈ G. For example, since m+n = n+m for all m,n ∈ Z, then (Z,+) is
abelian. However, for a set S with more than two elements, α◦β �= β◦α for
some α, β ∈ A(S). Therefore, if a set S contains more than two elements,
then (A(S), ◦) is not abelian.

We will represent the number of elements in a set S by |S|. Suppose
S is a set with |S| = n. Then (A(S), ◦) is denoted by Sn and called the
symmetric group on n letters. It can easily be shown that |Sn| = n! (see
Written Exercise 2). Suppose α ∈ Sn. Then α can be viewed as a bijection
on the set {1, 2, . . . , n}. This bijection can be represented by listing the
elements in the set {1, 2, . . . , n} in a row with their images under α listed
immediately below.

α :
(

1 2 · · · n
(1)α (2)α · · · (n)α

)

Example 1.2 Let S = {1, 2, 3}, and let α ∈ S3 be given by (1)α = 2,
(2)α = 3, and (3)α = 1. Then α can be represented as follows.

α :
(

1 2 3
2 3 1

)

An element α ∈ Sn is called a permutation. Note that for permutations
α, β ∈ Sn, we can represent α ◦ β as follows.
(

1 · · · n
(1)α · · · (n)α

) (
1 · · · n

(1)β · · · (n)β

)
=

(
1 · · · n

(1α)β · · · (nα)β

)

For example, let α ∈ S4 be given by (1)α = 2, (2)α = 4, (3)α = 3, and
(4)α = 1, and let β ∈ S4 be given by (1)β = 4, (2)β = 3, (3)β = 2, and

c© 1999 by CRC Press LLC



(4)β = 1. Then we can express α ◦ β as follows.
(

1 2 3 4
2 4 3 1

) (
1 2 3 4
4 3 2 1

)
=

(
1 2 3 4
3 1 2 4

)

We now discuss another way to express elements in Sn. Let i1, i2, . . . , is
be distinct elements in the set S = {1, 2, . . . , n}. Then (i1 i2 i3 · · · is−1 is)
is called a cycle of length s or an s-cycle, and represents the permutation
α ∈ Sn that maps i1 
→ i2, i2 
→ i3, . . . , is−1 
→ is, is 
→ i1, and every other
element in S to itself. For example, the permutation

α :
(

1 2 3 4 5 6
3 4 5 1 6 2

)

in S6 can be expressed as the 6-cycle (135624). Note that this expression
of α as a cycle is not unique, for α can also be expressed as (356241) and
(562413), among others.

Next, consider the permutation

β :
(

1 2 3 4 5 6
3 4 5 6 1 2

)

in S6. To express β using cycle notation, we must use more than one cycle.
For example, we can express β as the following “product” of two 3-cycles:
(135)(246). Since these cycles contain no elements in common they are
said to be disjoint. And because they are disjoint, the order in which they
are listed does not matter. The permutation β can also be expressed as
(246)(135).

Every permutation in Sn can be expressed as either a single cycle or a
product of disjoint cycles. When a permutation is expressed as a product of
disjoint cycles, cycles of length one are not usually included. For example,
consider the permutation

γ :
(

1 2 3 4 5 6
3 4 5 2 1 6

)

in S6. Even though the fact that γ maps 6 to itself would be expressed as
the 1-cycle (6), this cycle would not usually be included in the expression
of γ as a product of disjoint cycles. That is, γ would usually be expressed
as (135)(24) or (24)(135).

In an expression of a permutation as a product of cycles, the cycles
need not be disjoint. For example, the permutation α = (135624) defined
above can also be expressed as the product (13)(15)(16)(12)(14) of 2-cycles.
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Because these 2-cycles are not disjoint, the order in which they are listed
matters.

A 2-cycle is also called a transposition. Any permutation can be ex-
pressed as a product of transpositions in the way illustrated above for α.
Specifically, the cycle (i1 i2 i3 · · · is−1 is) can be expressed as the product
(i1 i2)(i1 i3) · · · (i1 is−1)(i1 is) of transpositions. If a permutation can be
expressed as a product of more than one disjoint cycle, then each cycle can
be considered separately when expressing the permutation as a product of
transpositions. For example, the permutation β = (135)(246) defined above
can be expressed as (13)(15)(24)(26), and the permutation γ = (135)(24)
defined above can be expressed as (13)(15)(24).

There are many ways to express a permutation as a product of trans-
positions, and the number of transpositions in these expressions may vary.
However, the number of transpositions in the expression of a permutation
as a product of transpositions is either always even or always odd. A per-
mutation is said to be even if it can be expressed as a product of an even
number of transpositions, and odd if it can be expressed as a product of an
odd number of transpositions. Thus, the product of two even permutations
is even, and the product of two odd permutations is also even.

The inverse of the cycle (i1 i2 i3 · · · is−1 is) is (is is−1 · · · i3 i2 i1).
Suppose α = α1α2 · · ·αk ∈ Sn, where each αi is a transposition. Then
α−1 = α−1

k · · ·α−1
2 α−1

1 = αk · · ·α2α1 since α−1
i = αi for each transposition

αi. Hence, the inverse of an even permutation is even. And because the
identity permutation is even, the subset of even permutations in Sn forms a
group. This group is denoted by An and called the alternating group on n
letters. Since An is a subset of Sn and forms a group, we call An a subgroup
of Sn.

Definition 1.1 Let (G, ∗) be a group, and suppose H is a nonempty subset
of G. If (H, ∗) is a group, then H is called a subgroup of G.

Consider a regular polygon P , such as, for example, an equilateral
triangle or a square. Any movement of P that preserves the general shape of
P is called a rigid motion. There are two types of rigid motions – rotations
and reflections. For a regular polygon P with n sides, there are 2n distinct
rigid motions. These include the n rotations of P through 360j/n degrees
for j = 1, . . . , n. The remaining n rigid motions are reflections. If n is even,
these are the reflections of P across the lines that connect opposite vertices
or bisect opposite sides of P . If n is odd, these are the reflections of P
across the lines that are perpendicular bisectors of the sides of P . Since
the rigid motions of P preserve the general shape of P , they can be viewed
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as permutations of the vertices or sides of P . The set of rigid motions of a
regular polygon P forms a group called the symmetries of P .

Example 1.3 Consider the group of symmetries of a square. To express
these symmetries as permutations of the vertices of a square, consider the
following general figure.

1

2

4

3

The 8 symmetries of a square can be expressed as permutations of the
vertices of this general figure as follows (rotations are counterclockwise).

Rigid Motion Permutation

90◦ rotation (1234)
180◦ rotation (13)(24)
270◦ rotation (1432)
360◦ rotation identity

reflection across horizontal (12)(34)
reflection across vertical (14)(23)

reflection across 1–3 diagonal (24)
reflection across 2–4 diagonal (13)

Note that expressing these rigid motions as permutations on the vertices of
the preceding general figure yields a subgroup of S4.

When the symmetries of an n-sided regular polygon are expressed as
permutations on the set {1, 2, . . . , n}, the resulting subgroup of Sn is de-
noted by Dn and called the dihedral group on n letters. The subgroup of
S4 in Example 1.3 is the dihedral group D4.

A group (G, ·), or just G for short, is called cyclic if there is an element
a ∈ G for which G = {ai | i ∈ Z}. In this case, a is called a cyclic generator
for G. More generally, suppose a is an element in a group G, and let
H = {ai | i ∈ Z}. Then H is a subgroup of G called the cyclic group
generated by a. Let ai = aj for some 0 < i < j. Then aj−i = aja−i = e,
where e is the identity element in G. Thus, there is a smallest positive
integer m for which am = e. Now, suppose at = e. Since t = mq + r
for some 0 ≤ r < m, and at = amq+r = (am)qar = ar, it follows that
r = 0. Hence, m divides t. Since ai = aj for i < j forces aj−i = e, a
contradiction if 0 < j − i < m, the set {ai | 0 ≤ i < m} consists of m
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distinct elements. Furthermore, for any integer k we can write k = mq + r
for some 0 ≤ r < m with ak = ar. Therefore, H = {ai | 0 ≤ i < m},
and H contains m elements. We summarize this discussion as the following
theorem.

Theorem 1.2 Suppose a is an element in a group G. If m is the smallest
positive integer for which am = e, where e is the identity element in G,
then the cyclic group generated by a contains m elements.

The value of m in Theorem 1.2 is called the order of a. Also, a set
S with |S| = n is said to have order n. Hence, the order of an element a
in a group G is the order of the cyclic subgroup of G generated by a. We
will show in Theorem 1.4 that for an element of order m in a group G of
order n, m must divide n. Therefore, in a group G of order n, an = e for
all a ∈ G where e is the identity element in G. We summarize this as the
following corollary.

Corollary 1.3 Suppose a is an element in a group G of order n. Then
an = e where e is the identity element in G.

Example 1.4 Consider the dihedral group Dn of order 2n. Recall that
the elements in Dn can be viewed as the symmetries of an n-sided regular
polygon P . Each of the n reflections of P has order 2. Also, the rotations
of P through 360/n and 360(n−1)/n degrees have order n (as do, possibly,
some other rotations). Note that these orders divide |Dn|.

1.2 Cosets and Quotient Groups

Let H be a subgroup of a group G. For an element g ∈ G, we define
gH = {gh | h ∈ H}, called a left coset of H in G. Since gh1 = gh2 implies
h1 = h2 for all h1, h2 ∈ H, then there is a one-to-one correspondence
between the elements in gH and H. Thus, if H is finite, |gH| = |H|.
Suppose g1, g2 ∈ G. If x ∈ g1H ∩ g2H for some x ∈ G, then x = g1h1 =
g2h2 for some h1, h2 ∈ H. Hence, g1 = g2h2h

−1
1 ∈ g2H. Then for any

y ∈ g1H, it follows that y = g1h3 = g2h2h
−1
1 h3 ∈ g2H for some h3 ∈ H.

Therefore, g1H ⊆ g2H. Similarly, g2H ⊆ g1H, so g1H = g2H. The
preceding arguments imply that if g1, g2 ∈ G, then either g1H = g2H, or
g1H and g2H are disjoint. Hence, G is the union of pairwise disjoint left
cosets of H in G.
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Example 1.5 Consider the subgroup An of Sn. If α is an odd permutation
in Sn, then αAn and An are disjoint. If β is any other odd permutation
in Sn, then β−1α will be even. Therefore, β−1α ∈ An, and αAn = βAn.
Hence, there are two left cosets of An in Sn, one consisting of the even
permutations in Sn, and the other consisting of the odd permutations.

For a finite group G with subgroup H, the following theorem is a
fundamental algebraic result regarding the number of left cosets of H in G.
This theorem is called Lagrange’s Theorem.

Theorem 1.4 Let G be a group of order n with subgroup H of order k,
and suppose there are t distinct left cosets of H in G. Then n = kt.

Proof. Each of the t distinct left cosets of H in G contains k elements.
Since G is the union of these left cosets, then n = kt.

As a consequence of Lagrange’s Theorem, the order of a subgroup H in
a finite groupGmust divide the order ofG. For example, the dihedral group
D4 of permutations in Example 1.3 has order 8, which divides |S4| = 24.

We began this section by defining the left cosets gH of a subgroup H
in a group G. Results analogous to those discussed so far in this section
also hold for the sets Hg = {hg | h ∈ H}, called right cosets of H in G.

Next, we discuss how cosets can be used to construct new groups from
known ones. Suppose H is a subgroup of a group G. Then for x ∈ G,
let x−1Hx = {x−1hx | h ∈ H}. If x−1Hx ⊆ H for all x ∈ G, then H is
called a normal subgroup of G. As we will show, if H is a normal subgroup
of a group G, then the set of left cosets of H in G forms a group with
the operation (xH)(yH) = (xy)H. To see this, note first that since H is
normal in G, then x−1Hx ⊆ H for all x ∈ G. Specifically, this will be true
if we replace x with x−1. That is, (x−1)−1Hx−1 = xHx−1 ⊆ H. Thus,
for any h ∈ H, it follows that h = x−1(xhx−1)x = x−1h1x ∈ x−1Hx for
some h1 ∈ H. Hence, H ⊆ x−1Hx, and since H is normal in G, then
x−1Hx = H. Therefore, a subgroup H in a group G satisfies x−1Hx = H
if and only if H is normal in G.

To see that the operation defined above for the left cosets of H in G
is well-defined, let xH = x1H and yH = y1H for some x, x1, y, y1 ∈ G.
Since xH = x1H and yH = y1H, then x = x1h1 and y = y1h2 for some
h1, h2 ∈ H. And since H is normal in G, then y−1

1 h1y1 = h3 for some
h3 ∈ H, or, equivalently, h1y1 = y1h3 for some h3 ∈ H. This yields xy =
x1h1y1h2 = x1y1h3h2 ∈ x1y1H. Thus, xy ∈ x1y1H, and xyH = x1y1H.
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Therefore, the operation defined above for the left cosets of H in G is
well-defined.

We can now easily show that if H is a normal subgroup of a group
G, then the set of left cosets of H in G forms a group with the operation
(xH)(yH) = (xy)H. This group, denoted G/H, is called a quotient group.

Theorem 1.5 Suppose H is a normal subgroup of a group G. Then the
set G/H = {xH | x ∈ G} of left cosets of H in G forms a group with the
operation (xH)(yH) = (xy)H.

Proof. If e is the identity element in G, then eH = H is the identity
in G/H since (eH)(xH) = (ex)H = xH and (xH)(eH) = (xe)H = xH
for all x ∈ G. Also, the inverse of the element xH in G/H is x−1H since
(x−1H)(xH) = (x−1x)H = eH = H. The associative law in G/H can
easily be verified.

Note that if G is abelian, then any subgroup H of G is normal and
G/H is abelian.

Example 1.6 Let G = (Z,+). Choose an integer n ∈ Z, and let H
be the cyclic subgroup of G generated by n. Since the operation on this
group is addition, then H = {kn | k ∈ Z} and additive notation x +H is
used for the cosets of H in G. That is, the cosets of H in G are the sets
x+H = {x+h | h ∈ H} = {x+kn | k ∈ Z} for all x ∈ Z. The distinct left
cosets of H in G are the sets H, 1+H, 2+H, . . . , (n−1)+H. Hence, G/H
consists of these sets with the operation (x+H) + (y +H) = (x+ y) +H.
Note that if we would perform this operation without including H in the
notation, we would simply be doing integer addition modulo n. Note also
that G/H is cyclic with generator 1 +H.

Suppose H is a normal subgroup of a group G, and define the mapping
ϕ : G → G/H by ϕ(x) = xH. For this mapping ϕ, it can easily be seen
that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G. Since ϕ satisfies this property, we
call ϕ a homomorphism.

Definition 1.6 Let G and H be groups. A mapping ϕ : G → H that
satisfies ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G is called a homomorphism.

Example 1.7 Let H be the group H = {odd, even} with identity element
even. Define ϕ : Sn → H by ϕ(x) = even if x is an even permutation, and
ϕ(x) = odd if x is an odd permutation. Then ϕ is a homomorphism.
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Example 1.8 Let G be the multiplicative group of nonsingular n×n ma-
trices over the reals (i.e., with entries in the reals). Then the determi-
nant function is a homomorphism from G onto the multiplicative group of
nonzero reals.

Let ϕ be a homomorphism from G into H. We define the kernel of ϕ
to be the set Ker ϕ = {g ∈ G | ϕ(g) = e}, where e is the identity element
in H. It can easily be verified that Ker ϕ is a normal subgroup of G (see
Written Exercise 14). Also, if H is a normal subgroup of G, and if we
define the mapping ϕ : G→ G/H by ϕ(x) = xH, then Ker ϕ = H. Hence,
every normal subgroup of a group G is the kernel of a homomorphism with
domain G, and the kernel of every homomorphism with domain G is a
normal subgroup of G.

1.3 Rings and Euclidean Domains

Let R be a set with two binary operations, an addition “+” and multipli-
cation “∗”. Suppose R also satisfies the following three properties.

1. (R,+) is an abelian group with identity element we will denote by 0.

2. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ R.

3. a ∗ (b + c) = (a ∗ b) + (a ∗ c) and (a+ b) ∗ c = (a ∗ c) + (b ∗ c) for all
a, b, c ∈ R.

Then R is called a ring. If also a∗ b = b∗a for all a, b ∈ R, then R is said to
be commutative. And if there exists a multiplicative identity element 1 ∈ R
for which 1 ∗ a = a ∗ 1 = a for all a ∈ R, then R is said to be a ring with
identity. As is customary, we will suppress the ∗ from the notation when
performing the multiplication operation in a ring.

All of the rings we will use in this book will be commutative with
identity. A commutative ring R with identity is called an integral domain
if ab = 0 with a, b ∈ R implies a = 0 or b = 0. A commutative ring R with
identity is called a field if every nonzero element in R has a multiplicative
inverse in R. All fields are integral domains.

Two rings we will use extensively are the ring F [x] of polynomials in
x with coefficients in a field F and the ring Z of integers with the usual
operations of addition and multiplication. Both F [x] and Z are integral
domains, but not fields.
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Suppose B is a nonempty subset of a commutative ring R. If (B,+)
is a subgroup of (R,+), and if rb ∈ B for all r ∈ R and b ∈ B, then B
is called an ideal of R. If also there exists an element b ∈ B for which
B = {rb | r ∈ R}, then B is called a principal ideal. In this case we denote
B = (b) and call B the ideal generated by b.

If f(x) ∈ F [x], then (f(x)) consists of all multiples of f(x) over F .
That is, (f(x)) consists of all polynomials in F [x] of which f(x) is a factor.
A similar result holds for integers n ∈ Z. We will show in Theorem 1.9
that all ideals in F [x] and Z are principal ideals.

Ideals play a role in ring theory analogous to the role played by normal
subgroups in group theory. For example, we can use an ideal of a known
ring to construct a new ring. Suppose B is an ideal in a commutative ring
R. Since (B,+) is a subgroup of the abelian group (R,+), it follows that
R/B = {r + B | r ∈ R} is an abelian group with the addition operation
(r + B) + (s + B) = (r + s) + B. In fact, R/B is a commutative ring
with the multiplication operation (r + B)(s + B) = (rs) + B. To see
that this multiplication operation is well-defined, let r + B = r1 + B and
s + B = s1 + B for some r, r1, s, s1 ∈ R. Since r + B = r1 + B and
s + B = s1 + B, then r = r1 + b1 and s = s1 + b2 for some b1, b2 ∈ B.
But rs = (r1 + b1)(s1 + b2) = r1s1 + r1b2 + b1s1 + b1b2 ∈ r1s1 + B. Thus,
rs ∈ r1s1 +B, and hence, rs+B = r1s1 +B. Therefore, the multiplication
operation defined above for R/B is well-defined. The ring R/B is called a
quotient ring.

Suppose B is an ideal in a commutative ring R, and we define the
mapping ϕ : R→ R/B by ϕ(x) = x+B. For this mapping ϕ, it can easily
be seen that ϕ(rs) = ϕ(r)ϕ(s) and ϕ(r + s) = ϕ(r) + ϕ(s) for all r, s ∈ R.
Since ϕ satisfies these properties, we call ϕ a ring homomorphism.

Definition 1.7 Let R and S be rings. A mapping ϕ : R→ S that satisfies
ϕ(rs) = ϕ(r)ϕ(s) and ϕ(r+s) = ϕ(r)+ϕ(s) for all r, s ∈ R is called a ring
homomorphism. We define the kernel of ϕ as Ker ϕ = {r ∈ R | ϕ(r) = 0}.

Proposition 1.8 Let R and S be commutative rings, and suppose ϕ is a
ring homomorphism from R onto S. Then the following statements hold.

1. If B is an ideal in R, then the set ϕ(B) = {ϕ(r) ∈ S | r ∈ B} is an
ideal in S.

2. If B is an ideal in S, then the set ϕ−1(B) = {r ∈ R | ϕ(r) ∈ B} is
an ideal in R.

Proof. Exercise.
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If every ideal in an integral domain D is a principal ideal, then D is
called a principal ideal domain.

We will represent the nonzero elements in a set S by S∗. Let D be
an integral domain, and let N be the set of nonnegative integers. Suppose
there is a mapping δ : D∗ → N such that for a ∈ D and b ∈ D∗, there
exists q, r ∈ D for which a = bq + r with r = 0 or δ(r) < δ(b). Then D
is called a Euclidean domain. Two examples of Euclidean domains are the
ring F [x] of polynomials over a field F with δ(f(x)) = deg f(x), and the
ring Z of integers with δ(n) = |n|.

Theorem 1.9 Suppose D is a Euclidean domain. Then D is a principal
ideal domain.

Proof. Let B be a nonzero ideal in D, and let b ∈ B such that δ(b) is
the minimum of all δ(x) with x ∈ B. Then choose a ∈ B. Since D is a
Euclidean domain, there exists q, r ∈ D such that a = bq + r with r = 0 or
δ(r) < δ(b). But since r = a − bq and B is an ideal, then r ∈ B. By the
choice of b, it follows that r = 0. Therefore, a = bq, and a ∈ (b). Hence,
B ⊆ (b), but certainly (b) ⊆ B, so B = (b).

If an element a in an integral domain D has a multiplicative inverse
in D, then a is called a unit. We will denote the set of units
in an integral domain D by U(D). For example, U(Z) = {1,−1}, and
U(F [x]) = {f(x) | f(x) is a nonzero constant in F}. Elements a, b ∈ D are
called associates if a = ub for some unit u ∈ D. The only associates of an
element n ∈ Z are n and −n. The associates of a polynomial f(x) ∈ F [x]
are cf(x) for any nonzero c ∈ F .

For elements a and b in an integral domain D, suppose there exists
x ∈ D for which ax = b. Then a is said to divide b, written a|b.

Proposition 1.10 Let a, b, and c be elements in an integral domain D.
Then the following statements hold.

1. If a|b and b|c, then a|c.

2. a|b and b|a if and only if a and b are associates in D.

3. a|b if and only if (b) ⊆ (a).

4. (a) = (b) if and only if a and b are associates in D.

Proof. Exercise.

c© 1999 by CRC Press LLC



A nonzero element a in a Euclidean domain D is said to be irreducible
if for all b ∈ D, b|a implies b is a unit or b is an associate of a. An ideal
M in a Euclidean domain D with M �= D is said to be maximal if for all
ideals B in D, M ⊆ B ⊆ D implies B = M or B = D.

Theorem 1.11 An element a in a Euclidean domain D is irreducible if
and only if (a) is a maximal ideal in D.

Proof. Suppose first that (a) is maximal. If b|a, then (a) ⊆ (b). Hence,
either (b) = D, in which case there exists x ∈ D for which bx = 1 and b
is a unit, or (b) = (a), in which case a and b are associates. Therefore, a
is irreducible. Now, suppose a is irreducible. If (a) ⊆ (b) ⊆ D for some
b ∈ D, then b|a. Hence, either b is a unit in D, in which case (b) = D, or
a and b are associates in D, in which case (a) = (b). Therefore, (a) is a
maximal ideal in D.

Theorem 1.12 An ideal M in a Euclidean domain D is maximal if and
only if the quotient ring D/M is a field.

Proof. Suppose M is a maximal ideal in D, and choose r+M ∈ D/M such
that r +M �= M . Let B = (r +M) ⊆ D/M , and let C = ϕ−1(B), where
ϕ is the ring homomorphism from D onto D/M defined by ϕ(x) = x+M .
Since B is an ideal in D/M , by Proposition 1.8 we know that C is an ideal
in D. Hence, M ⊆ C ⊆ D. But since M is maximal and r+M �= M , then
C = D. Therefore, B = D/M . Thus, there exists an element s+M ∈ D/M
for which (r+M)(s+M) = 1 +M , and so r+M has an inverse in D/M .
Hence, D/M is a field. Conversely, suppose D/M is a field, and let B be an
ideal in D for which M ⊆ B ⊆ D. By Proposition 1.8, we know that ϕ(B)
is an ideal in D/M . Since the only ideals in a field are the field and {0} (see
Written Exercise 16), it follows that either ϕ(B) = M or ϕ(B) = D/M .
Hence, either B = M or B = D, and M is maximal.

By combining the results of Theorems 1.11 and 1.12, we obtain the
following theorem.

Theorem 1.13 Suppose a is an element in a Euclidean domain D. Then
the following statements are equivalent.

1. a is irreducible in D.

2. (a) is maximal in D.

3. D/(a) is a field.
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1.4 Finite Fields

Finite fields play an important role in several of the applications we discuss
in this book. In this section, we describe the theoretical basis of construct-
ing finite fields. Then in Section 1.5 we demonstrate how Maple can be
used to construct finite fields.

It can easily be shown (see below) that the ring Zp = {0, 1, 2, . . . , p−1}
for prime p is a field with the usual operations of addition and multiplication
modulo p (i.e., divide the result by p and take the remainder). This shows
that there are finite fields of order p for every prime p. In the following
discussion we show how the fields Zp can be used to construct finite fields
of order pn for every prime p and positive integer n. A finite field of order
pn for prime p and positive integer n is sometimes called a Galois field,
denoted GF (pn).

Let m be an irreducible element in a Euclidean domain D, and let
B = (m). Then by Theorem 1.13 we know that D/B is a field. If D is the
ring Z of integers and m > 0, then m is a prime p (see Written Exercise 23).
Note then that if we perform the addition and multiplication operations in
D/B without including B in the notation, these operations will be exactly
the addition and multiplication operations in Zp. That is, we can view
D/B as Zp.

Now, supposeD is the integral domain Zp[x] of polynomials over Zp for
some prime p, and let B = (f(x)) for some irreducible polynomial f(x) of
degree n in D. Then again by Theorem 1.13, we know that D/B is a field.
Each element in D/B is a coset of the form g(x)+B for some g(x) ∈ Zp[x].
Since Zp[x] is a Euclidean domain, then there exists r(x) ∈ Zp[x] for which
g(x)+B = r(x)+B with r(x) = 0 or deg r(x) < n. Therefore, each element
in D/B can be expressed as r(x) +B for some r(x) ∈ Zp[x] with r(x) = 0
or deg r(x) < n. Hence, the elements in D/B can be expressed as r(x) +B
for all r(x) ∈ Zp[x] with r(x) = 0 or deg r(x) < n. Since a polynomial
r(x) ∈ Zp[x] with r(x) = 0 or deg r(x) < n can contain up to n terms, and
each of these terms can have any of p coefficients (the p elements in Zp),
then there are pn polynomials r(x) ∈ Zp[x] with r(x) = 0 or deg r(x) < n.
That is, the field D/B will contain pn distinct elements. The operations
on this field are the usual operations of addition and multiplication modulo
f(x) (i.e., divide the result by f(x) and take the remainder). Because
it is possible to find an irreducible polynomial of degree n over Zp for
every prime p and positive integer n, this shows that there are finite fields
of order pn for every prime p and positive integer n. It is also true that
all finite fields have order pn for some prime p and positive integer n (see
Theorem 1.14).
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Suppose again that D = Zp[x] for some prime p, and B = (f(x)) for
some irreducible polynomial f(x) ∈ D. For convenience, when we write
elements and perform the addition and multiplication operations in D/B,
we will not include B in the notation. That is, we will write the elements
r(x) +B in D/B as just r(x).

Example 1.9 Suppose D = Z3[x], and let B = (f(x)) for the irreducible
polynomial f(x) = x2 + x + 2 ∈ Z3[x]. (Note: We can show that f(x)
is irreducible by verifying that f(a) �= 0 for all a ∈ Z3.) Then the field
D/B will contain the 32 = 9 polynomials in Z3[x] of degree less than 2.
That is, D/B = { 0, 1, 2, x, x + 1, x + 2, 2x, x + 1, 2x + 2 }. To add
elements in D/B we simply reduce the coefficients in Z3. For example,
(2x + 1) + (2x + 2) = 4x + 3 = x. To multiply elements in D/B we can
use several methods. One method is to divide the product by f(x) and
take the remainder. For example, to multiply the elements 2x + 1 and
2x + 2 in D/B, we could form (2x + 1)(2x + 2) = 4x2 + 6x + 2 = x2 + 2.
Then, dividing x2 + 2 by f(x), we obtain a quotient of 1 and remainder
of −x = 2x. Hence, (2x + 1)(2x + 2) = 2x in D/B. Another method for
multiplying elements in D/B is to use the fact that x2 +x+2 = 0 in D/B.
Therefore, x2 = −x − 2 = 2x + 1 in D/B. The identity x2 = 2x + 1 can
then be used to reduce powers of x in D/B. For example, we can also
compute the product of the elements 2x+1 and 2x+2 in D/B by forming
(2x + 1)(2x + 2) = 4x2 + 6x + 2 = x2 + 2 = (2x + 1) + 2 = 2x. A third
method for multiplying elements in D/B will be described in general next
and then illustrated in Example 1.10.

A fundamental fact regarding finite fields is that the nonzero elements
in every finite field form a cyclic multiplicative group (see Theorem 1.15).
Suppose D = Zp[x] for some prime p, and B = (f(x)) for some irreducible
polynomial f(x) ∈ D. For the field F = D/B, if x is a cyclic generator
for F ∗, then f(x) is said to be primitive. Hence, if f(x) is primitive, then
all nonzero elements in F can be generated by constructing powers of x
modulo f(x). This is useful because it allows products of elements in F to
be formed by converting the elements to their representations as powers of
x, multiplying the powers of x, and then converting the result back to an
element in F . This is illustrated in the following example.

Example 1.10 Consider the field D/B in Example 1.9. In this field we
can use the identity x2 = 2x + 1 to construct the elements that corre-
spond to powers of x. For example, we can construct the field element that
corresponds to x3 as follows.

x3 = xx2 = x(2x+ 1) = 2x2 + x = 2(2x+ 1) + x = 5x+ 2 = 2x+ 2
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Hence, x3 = 2x + 2 in D/B. And we can construct the field element that
corresponds to x4 as follows.

x4 = xx3 = x(2x+ 2) = 2x2 + 2x = 2(2x+ 1) + 2x = 6x+ 2 = 2

Therefore, x4 = 2 in D/B. The field elements that correspond to subse-
quent powers of x can be constructed similarly. We list the field elements
that correspond to the first 8 powers of x in the following table.

Power Field Element
x1 x
x2 2x+ 1
x3 2x+ 2
x4 2
x5 2x
x6 x+ 2
x7 x+ 1
x8 1

The only element in D/B not listed in this table is 0. Since all nonzero
elements in D/B are in the cyclic group generated by x, then f(x) =
x2 + x+ 2 is primitive in Z3[x].

The preceding table is useful for computing products in D/B. For
example, we can form the product of the elements 2x + 1 and 2x + 2 in
D/B as follows.

(2x+ 1)(2x+ 2) = x2x3 = x5 = 2x

Note that this matches the product obtained in Example 1.9. And we can
form the product of the elements 2x and x+ 2 in D/B as follows.

(2x)(x+ 2) = x5x6 = x11 = x8x3 = 1x3 = 2x+ 2

Other products in D/B can be formed similarly.

Example 1.11 Suppose D = Z3[x], and let B = (f(x)) for the polynomial
f(x) = x2 + 1 ∈ Z3[x]. Since f(x) is irreducible in Z3[x], then D/B is a
field of order 32 = 9 (with the same elements as the field in Example
1.9). However, note that x2 = −1 = 2 in D/B, and thus x4 = 4 = 1
in D/B. Hence, computing powers of x will not generate all 8 nonzero
elements in D/B. Therefore, f(x) = x2 + 1 is not primitive in Z3[x],
and we cannot compute all possible products in D/B using the method
illustrated in Example 1.10. However, we can still compute all possible
products in D/B using the methods illustrated in Example 1.9.
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We close this section by proving two fundamental results we have men-
tioned regarding finite fields.

Theorem 1.14 Suppose F is a finite field. Then |F | = pn for some prime
p and positive integer n.

Proof. Let H be the additive subgroup of F generated by 1. Suppose
|H| = mn for some positive integers m,n with m �= 1 and n �= 1. Then
0 = (mn)1 = (m1)(n1). But since m1 �= 0 and n1 �= 0, this contradicts the
fact that F is a field. Hence, |H| = p for some prime p. That is, H = Zp

for some prime p. The field F can then be viewed as a vector space over
H with scalar multiplication given by the field multiplication, so F has a
basis with a finite number of elements, say n. The order of F is the number
pn of linear combinations of these basis elements over Zp.

Theorem 1.15 Let F be a finite field. Then F ∗ is a cyclic multiplicative
group.

Proof. Clearly, F ∗ is an abelian multiplicative group. To show that F ∗

is cyclic, we use the first of the well-known Sylow Theorems, which states
that for a finite group G of order n, if pk divides n for some prime p and
positive integer k, then G contains a subgroup of order pk. Suppose |F ∗|
has prime factorization pn1

1 pn2
2 · · · pnt

t , and let Si be subgroups of order pni
i

in F ∗ for each i = 1, 2, . . . , t. Let ki = pni−1
i for each i = 1, 2, . . . , t. Then,

if Si is not cyclic for some i, it follows that aki = 1 for all a ∈ Si. Hence,
f(x) = xki − 1 has pni

i roots in F , a contradiction. Thus, each Si must
have a cyclic generator ai. Let b = a1a2 · · · at. Since b has order |F ∗|, then
b is a cyclic generator for F ∗.

1.5 Finite Fields with Maple

In this section, we show how Maple can be used to construct the nonzero
elements in a finite field Zp[x]/(f(x)) for prime p and primitive polynomial
f(x) ∈ Zp[x] as powers of x. We consider the field in Example 1.10.

We begin by defining the polynomial f(x) = x2 + x + 2 ∈ Z3[x] used
to construct the field elements.

> f := x -> x^2 + x + 2;

f := x→ x2 + x+ 2
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We can use the Maple Irreduc function to verify that f(x) is irreducible in
Z3[x]. The following command will return true if f(x) is irreducible modulo
3, and false if not.

> Irreduc(f(x)) mod 3;

true

Hence, f(x) is irreducible in Z3[x], and Z3[x]/(f(x)) is a field. However, in
order for us to be able to construct all of the nonzero elements in this field
by computing powers of x, f(x) must also be primitive. We can use the
Maple Primitive function to verify that f(x) is primitive in Z3[x]. The
following command will return true if f(x) is primitive modulo 3, and false
if not.

> Primitive(f(x)) mod 3;

true

Therefore, f(x) is primitive in Z3[x].

To construct elements in Z3[x]/(f(x)) as powers of x, we can use the
Maple Powmod function. For example, the following command returns x6

modulo f(x).
> Powmod(x, 6, f(x), x) mod 3;

x+ 2

In the preceding command, the polynomial x given by the first parameter
is raised to the power 6 given by the second parameter, with the output
displayed after the result is reduced modulo the third parameter f(x) (de-
fined over the specified modulus 3). The fourth parameter is the variable
used in the first and third parameters.

We will now use a Maple for loop to construct and display all of the
8 nonzero elements in Z3[x]/(f(x)) and corresponding powers of x. In the
following commands, we store the results returned by Powmod for each of
the first 8 powers of x in the variable temp and display these results using
the Maple print command. Note where we use colons and semicolons in
this loop. Note also that we use back ticks ”‘” in the print statement.

> for i from 1 to 8 do

> temp := Powmod(x, i, f(x), x) mod 3:

> print(x^i, ‘ Field Element: ‘, temp);

> od:

x, Field Element : , x

x2, Field Element : , 2x+ 1
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x3, Field Element : , 2x+ 2

x4, Field Element : , 2

x5, Field Element : , 2x

x6, Field Element : , x+ 2

x7, Field Element : , x+ 1

x8, Field Element : , 1

Note that these results match those listed in Example 1.10 for the nonzero
elements in Z3[x]/(f(x)).

1.6 The Euclidean Algorithm

Let a and b be nonzero elements in a Euclidean domain D, and consider
an element d ∈ D for which d|a and d|b. Suppose that for all x ∈ D, if x|a
and x|b, then x|d. Then d is called a greatest common divisor of a and b.
We will use the notation d = (a, b) to represent this.

Greatest common divisors do not always exist for two elements in a
general ring. But as we will show in Theorem 1.16, greatest common di-
visors do always exist for two elements in a Euclidean domain. As they
are defined above, there is not a unique greatest common divisor of two
elements in a Euclidean domain. For example, in the ring Z of integers,
both 1 and −1 are greatest common divisors of any two distinct primes.
However, it can be shown very easily that if both d1 and d2 are greatest
common divisors of two elements in a Euclidean domain D, then d1 and d2

are associates in D (see Written Exercise 30).

Theorem 1.16 Let a and b be nonzero elements in a Euclidean domain
D. Then there exists a greatest common divisor d of a and b that can be
expressed as d = au+ bv for some u, v ∈ D.

Proof. Let B be an ideal in D of smallest order that contains both
a and b. It can easily be shown that B = {ar + bs | r, s ∈ D} (see
Written Exercise 31). Since D is a Euclidean domain, by Theorem 1.9
we know that D is a principal ideal domain. Hence, B = (d) for some
d ∈ D. Since d generates B, and a, b ∈ B, then d|a and d|b. And since
d ∈ B = {ar + bs | r, s ∈ D}, then d = au + bv for some u, v ∈ D. Now,
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if x|a and x|b for some x ∈ D, then a = xr and b = xs for some r, s ∈ D.
Therefore, d = au+ bv = xru+ xsv = x(ru+ sv), and x|d.

When considering only certain specific rings, it is often convenient to
place restrictions on greatest common divisors to make them unique. For
example, for elements a and b in the ring Z of integers, there is a unique
positive greatest common divisor of a and b. And for elements a and b in the
ring F [x] of polynomials over a field F , there is a unique greatest common
divisor of a and b that is monic (i.e., that has a leading coefficient of 1).
Since these are the only rings we will use extensively here, for the remainder
of this book we will assume greatest common divisors are defined uniquely
with these restrictions. We should note that even though the greatest
common divisor (a, b) of two integers or polynomials a and b is uniquely
defined with these restrictions, the u and v that yield (a, b) = au+ bv need
not be unique.

In several of the applications in this book we will need to determine
not only the greatest common divisor (a, b) of two integers or polynomials
a and b, but also u and v that yield (a, b) = au + bv. We will use the
Euclidean algorithm to do this. We describe this algorithm next.

Let a and b be nonzero elements in a Euclidean domain D, and let N
be the set of nonnegative integers. Since D is a Euclidean domain, then
there is a mapping δ : D∗ → N for which we can find q1, r1 ∈ D with
a = bq1 + r1 and r1 = 0 or δ(r1) < δ(b). Suppose δ(r1) < δ(b). Then we
can find q2, r2 ∈ D with b = r1q2 + r2 and r2 = 0 or δ(r2) < δ(r1). Suppose
δ(r2) < δ(r1). Then we can find q3, r3 ∈ D with r1 = r2q3 + r3 and r3 = 0
or δ(r3) < δ(r2). We continue this process until the first time ri = 0 (which
is guaranteed to happen eventually since the δ(ri) form a strictly decreasing
sequence of nonnegative integers). That is, we construct all qi, ri for the
following equations.

a = bq1 + r1 {δ(r1) < δ(b)}
b = r1q2 + r2 {δ(r2) < δ(r1)}
r1 = r2q3 + r3 {δ(r3) < δ(r2)}
...

rn−2 = rn−1qn + rn {δ(rn) < δ(rn−1)}
rn−1 = rnqn+1 + 0

By working up this list of equations we can see that rn divides both a
and b. By working down the list we can see that any x ∈ D that divides
both a and b must also divide rn. Hence, (a, b) = rn. This technique for
determining (a, b) is called the Euclidean algorithm.
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We have now shown a technique for determining the greatest common
divisor (a, b) of two integers or polynomials a and b. We must still show a
technique for finding u and v that yield (a, b) = au + bv. To do this, we
consider the following table constructed using the qi, ri from the preceding
list of equations, and ui, vi we describe below. We will call this table a
Euclidean algorithm table.

Row Q R U V

−1 − r−1 = a u−1 = 1 v−1 = 0
0 − r0 = b u0 = 0 v0 = 1
1 q1 r1 u1 v1
2 q2 r2 u2 v2
...

...
...

...
...

n qn rn un vn

The entries in each row i = 1, 2, . . . , n of this table are constructed as
follows. The qi, ri are from the ith equation

ri−2 = ri−1qi + ri (1.1)

in the preceding list of equations. Note that if we solve for ri in (1.1), we
obtain the following equation.

ri = ri−2 − ri−1qi (1.2)

We then construct ui, vi by following this pattern for constructing ri from
qi. Specifically, we construct ui, vi from qi as follows.

ui = ui−2 − ui−1qi (1.3)
vi = vi−2 − vi−1qi (1.4)

Many useful relations exist between the entries in a Euclidean algo-
rithm table. For example, the following equation is true for all rows i.

ri = aui + bvi (1.5)

Clearly, this equation is true for rows i = −1 and 0. To see that it is true
for all subsequent rows, assume it is true for all rows i through k−1. Then,
using (1.2), (1.3), and (1.4), it follows that

rk = rk−2 − rk−1qk

= (auk−2 + bvk−2) − (auk−1 + bvk−1)qk
= a(uk−2 − uk−1qk) + b(vk−2 − vk−1qk)
= auk + bvk.
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Specifically, rn = aun + bvn. But recall, we have stated that rn = (a, b).
Hence, for u = un and v = vn, we have (a, b) = au+ bv.

Another useful relation between the entries in a Euclidean algorithm
table is the following equation for all i = −1, 0, 1, 2, . . . , n− 1.

riui+1 − uiri+1 = (−1)i b (1.6)

Note first that this equation is clearly true for i = −1. To see that it is true
for all subsequent i, assume it is true for i = k−1. Then, using (1.2), (1.3),
and the fact that adding a multiple of a row of a matrix to another row in
the matrix does not change the determinant of the matrix, it follows that

rkuk+1 − ukrk+1 =
∣∣∣∣ rk uk
rk+1 uk+1

∣∣∣∣
=

∣∣∣∣ rk uk
rk−1 − rkqk+1 uk−1 − ukqk+1

∣∣∣∣
=

∣∣∣∣ rk uk
rk−1 uk−1

∣∣∣∣
= rkuk−1 − ukrk−1

= −(rk−1uk − uk−1rk)
= −(−1)k−1 b

= (−1)k b.

Two additional relations that exist between the entries in a Euclidean
algorithm table are the following equations for all i = −1, 0, 1, 2, . . . , n− 1.

rivi+1 − viri+1 = (−1)i+1 a (1.7)
uivi+1 − ui+1vi = (−1)i+1 (1.8)

These equations can be verified in a manner similar to the verification of
(1.6) given above (see Written Exercises 32 and 33).

We close this section with two examples in which we use the Euclidean
algorithm to find (a, b), and a Euclidean algorithm table to find u and v
such that (a, b) = au+ bv.

Example 1.12 In this example, we consider a = 81 and b = 64 in Z. To
use the Euclidean algorithm to find (a, b), we form the following equations.

81 = 64 · 1 + 17
64 = 17 · 3 + 13
17 = 13 · 1 + 4
13 = 4 · 3 + 1
4 = 1 · 4 + 0
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Hence, (81, 64) = 1. It can easily be verified that these equations yield the
following Euclidean algorithm table.

Row Q R U V

−1 − 81 1 0
0 − 64 0 1
1 1 17 1 −1
2 3 13 −3 4
3 1 4 4 −5
4 3 1 −15 19

Thus, u = −15 and v = 19 satisfy (81, 64) = 81u+ 64v.

Example 1.13 In this example, we consider a = x6 + x2 + x and
b = x4 + x2 + x in Z2[x]. To use the Euclidean algorithm to find (a, b), we
form the following equations.

a = b(x2 + 1) + x3

b = x3(x) + (x2 + x)
x3 = (x2 + x)(x+ 1) + x

x2 + x = x(x+ 1) + 0

Therefore, (a, b) = x. The ui and vi for the resulting Euclidean algorithm
table are constructed as follows (with all coefficients expressed in Z2).

u1 = u−1 − u0q1 = 1 − 0(x2 + 1) = 1
v1 = v−1 − v0q1 = 0 − 1(x2 + 1) = x2 + 1
u2 = u0 − u1q2 = 0 − 1x = x
v2 = v0 − v1q2 = 1 − (x2 + 1)x = x3 + x+ 1
u3 = u1 − u2q3 = 1 − x(x+ 1) = x2 + x+ 1
v3 = v1 − v2q3 = (x2 + 1) − (x3 + x+ 1)(x+ 1) = x4 + x3

Thus, the Euclidean algorithm table is the following.

Row Q R U V

−1 − x6 + x2 + x 1 0
0 − x4 + x2 + x 0 1
1 x2 + 1 x3 1 x2 + 1
2 x x2 + x x x3 + x+ 1
3 x+ 1 x x2 + x+ 1 x4 + x3

Hence, u = x2 + x+ 1 and v = x4 + x3 satisfy (a, b) = au+ bv.
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Written Exercises

1. Let A(S) be the set of bijections on a set S, and let ◦ be the compo-
sition operation on A(S). Show that (A(S), ◦) is a group.

2. Show that |Sn| = n! for the symmetric group Sn.

3. Consider the following elements in S6:

α :
(

1 2 3 4 5 6
4 3 6 2 1 5

)

β :
(

1 2 3 4 5 6
4 1 6 2 3 5

)

γ :
(

1 2 3 4 5 6
4 1 6 2 5 3

)

(a) Find the elements α ◦ β and β ◦ γ in S6, where ◦ represents the
composition operation.

(b) Express α, β, and γ as a cycle or product of disjoint cycles.

(c) Is α ◦ γ even or odd?

(d) Find the inverses of α, β, and γ.

(e) Express α, β, and γ as a product of transpositions.

4. Find the elements in the alternating group A4.

5. Find the elements in the dihedral group D3.

6. Find the elements in A5 ∩D5.

7. Find the distinct left cosets of A4 in S4.

8. Show that A3 is cyclic.

9. Find the order of the following elements.

(a) The 144◦ rotation in D5.

(b) The 144◦ rotation in D10.

(c) Reflection across horizontal in D10.

(d) The element α in Written Exercise 3.

(e) The element (123)(45)(67) in A7.

10. Show that if a group G is cyclic, then G is abelian.
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11. Show that if H is a subgroup of a cyclic group, then H is cyclic.

12. Show that if H is a subgroup of a cyclic group G, then G/H is cyclic.

13. Find the kernel of the homomorphisms in Examples 1.7 and 1.8.

14. Let G and H be groups, and suppose ϕ : G→ H is a homomorphism.
Show that Ker ϕ is a normal subgroup of G.

15. Show that An is a normal subgroup of Sn.

16. Show that the only ideals in a field F are F and {0}.

17. Let a be an element in a field F . Define the mapping ϕ : F [x] → F
by ϕ(f(x)) = f(a). Show that ϕ is a ring homomorphism, and find
Ker ϕ.

18. Prove Proposition 1.8.

19. Show that the ring F [x] of polynomials over a field F is a Euclidean
domain with the function δ(f(x)) = deg f(x).

20. Is it true that all ideals in the ring F [x] of polynomials over a field F
are principal ideals? State how you know.

21. Show that the ring Z of integers is a Euclidean domain with the
function δ(n) = |n|.

22. Prove Proposition 1.10.

23. Find all irreducible elements in the ring Z of integers.

24. Perform the following calculations.

(a) (x+ 2) + (2x+ 2) in the field D/B in Examples 1.9 and 1.10.

(b) (x+ 2)(2x+ 2) in the field D/B in Examples 1.9 and 1.10.

(c) (x+ 2) + (2x+ 2) in the field D/B in Example 1.11.

(d) (x+ 2)(2x+ 2) in the field D/B in Example 1.11.

25. Let f(x) = x2 + x+ 2.

(a) Show that f(x) is primitive in Z3[x] by constructing the field
elements that correspond to powers of x in Z3[x]/(f(x)).

(b) Show that f(x) is primitive in Z5[x] by constructing the field
elements that correspond to powers of x in Z5[x]/(f(x)).

(c) Show that f(x) is not primitive in Z11[x] by showing that f(x)
is not irreducible in Z11[x].
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26. Show that f(x) = x3 +x+1 is primitive in Z2[x] by constructing the
field elements that correspond to powers of x in Z2[x]/(f(x)).

27. Show that f(x) = x3 + x2 + 1 is primitive in Z2[x] by constructing
the field elements that correspond to powers of x in Z2[x]/(f(x)).

28. Show that f(x) = x4 +x+1 is primitive in Z2[x] by constructing the
field elements that correspond to powers of x in Z2[x]/(f(x)).

29. Let f(x) = x4 + x3 + x2 + x + 1, g(x) = x4 + x3 + x2 + 1, and
h(x) = x4 + x3 + 1. In Z2[x], one of the polynomials f(x), g(x), and
h(x) is primitive, one is irreducible but not primitive, and one is not
irreducible. Which is which? Explain how you know. For the poly-
nomial that is irreducible but not primitive, find the multiplicative
order of x.

30. Show that if d1 and d2 are greatest common divisors of two elements
in an integral domain D, then d1 and d2 are associates in D.

31. Let a and b be elements in an integral domain D, and let B be an
ideal in D of smallest order that contains both a and b. Show that
B = {ar + bs | r, s ∈ D}.

32. Verify Equation (1.7).

33. Verify Equation (1.8).

34. Use the Euclidean algorithm to find (2272, 716), and use a Euclidean
algorithm table to find u and v such that (2272, 716) = 2272u+716v.

35. Let a = x5 + x4 + x3 + x2 and b = x4 + x3 + x + 1 in Z2[x]. Use
the Euclidean algorithm to find (a, b), and use a Euclidean algorithm
table to find u and v such that (a, b) = au+ bv.

Maple Exercises

1. Find a primitive polynomial of degree 4 in Z3[x], and use this poly-
nomial to construct the nonzero elements in a finite field.

2. Find a primitive polynomial of degree 2 in Z11[x], and use this poly-
nomial to construct the nonzero elements in a finite field.

3. Construct the nonzero elements in a finite field of order 128.

4. Construct the nonzero elements in a finite field of order 127.

c© 1999 by CRC Press LLC



Chapter 2

Block Designs

Suppose a magazine editor wishes to compare seven cars by evaluating the
responses of seven consumers to a series of questions regarding topics such
as handling and comfort. The most obvious way for the editor to obtain a
valid comparison of the cars would be to have each of the consumers test
each of the cars. However, for various reasons such as time or monetary
constraints, it may not be feasible to have each of the consumers test each
car. The most convenient way to obtain a comparison of the cars would be
to have each of the consumers test just one of the cars. But this might not
yield a valid comparison of the cars due to potential differences among the
consumers. In this chapter, we discuss some techniques the editor could
use to ensure a testing scheme that is both fair and reasonable.

2.1 General Properties of Block Designs

Let B1, . . . , Bb be subsets of a set S = {a1, . . . , av}. We will call the
elements ai objects and the subsets Bj blocks. This collection of objects
and blocks is called a balanced incomplete block design if it satisfies the
following conditions:

1. Each block contains the same number of objects.

2. Each object is contained in the same number of blocks.

3. Each pair of objects appears together in the same number of blocks.
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For convenience, we will refer to balanced incomplete block designs as just
block designs. A block design is described by parameters (v, b, r, k, λ) if it
has v objects and b blocks, each object is contained in r blocks, each block
contains k objects, and each pair of objects appears together in λ blocks.

In all of the (v, b, r, k, λ) block designs we consider in this book, we will
assume k < v and λ > 0. These restrictions are harmless, for clearly k ≤ v,
and k = v corresponds to the case when each block contains all of the ob-
jects. With regard to the example in the introduction to this chapter, this
represents the possibly infeasible case when each of the consumers (repre-
sented by the blocks) tests each of the cars (represented by the objects).
Also, clearly λ ≥ 0, and λ = 0 corresponds to the case when each block
contains only one object. With regard to the example in the introduction
to this chapter, this represents the possibly invalid case when each of the
consumers tests just one of the cars.

Example 2.1 Suppose a magazine editor wishes to obtain a fair and
reasonable comparison of seven cars by evaluating the opinions of
seven consumers. If we represent the cars by the elements in the set
S = {1, 2, 3, 4, 5, 6, 7}, then each consumer can be represented by a block
containing the cars to be tested by that consumer. For example, the subsets
{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, and {7, 1, 3} of S are
the blocks in a (7, 7, 3, 3, 1) block design, indicating that the first consumer
should test cars 1, 2, and 4, the second consumer should test cars 2, 3, and
5, and so forth. Note that in this block design, each car is tested three
times, each consumer tests three cars, and each pair of cars is tested by the
same consumer once. Therefore, this design yields a valid comparison of
the cars while requiring only 21 total tests (versus 49 tests if each consumer
tests each car).

In this chapter we discuss several techniques for constructing block
designs, including one that yields the design in Example 2.1. Before dis-
cussing these techniques, we first mention some general properties of block
designs.

Theorem 2.1 The parameters in a (v, b, r, k, λ) block design satisfy the
equations vr = bk and (v − 1)λ = r(k − 1).

Proof. To show that the equation vr = bk holds, we consider the set
T = {(a,B) | a is an object in block B}, and count |T | in two ways. First,
the design has v objects that each appear in r blocks. Hence, |T | = vr. But
the design also has b blocks that each contain k objects. Hence, |T | = bk.
Thus, vr = bk. To show that (v − 1)λ = r(k − 1), we choose an object a0
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in the design. Then for U = {(x,B) | x is an object with a0 in block B},
we count |U | in two ways. First, there are v − 1 objects in the design that
each appear in λ blocks with a0, so |U | = (v − 1)λ. But there are also r
blocks in the design that each contain a0 and k − 1 other objects. Hence,
|U | = r(k − 1). Thus, (v − 1)λ = r(k − 1).

For a block design with objects a1, . . . , av and blocks B1, . . . , Bb, let
A = (aij) be the v × b matrix for which aij = 1 if ai ∈ Bj , and aij = 0 if
ai /∈ Bj . Then A is called an incidence matrix for the design.

Example 2.2 The following is the incidence matrix for the block design
in Example 2.1 with objects and blocks taken in order of appearance.



1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1




In this chapter we use incidence matrices for two purposes. In Section
2.2 we use them to construct block designs. In this section we use them to
prove some general results about block designs.

Let A be an incidence matrix for a (v, b, r, k, λ) block design. Note that
the dot product of any row i of A with itself will be equal to the number r
of blocks in the design that contain ai. Note also that the dot product of
any two distinct rows i and j of A will be equal to the number λ of blocks
in the design that contain both ai and aj . Since the matrix AAt can be
viewed as containing the dot product of every row of A with itself and all
other rows of A, then

AAt =




r λ . . . λ
λ r . . . λ
...

...
...

λ λ . . . r


 = (r − λ)I + λJ,

where I is the v × v identity matrix, and J is the v × v matrix of all ones.

Lemma 2.2 Let B be a v × v matrix such that B = (r − λ)I + λJ , where
I is the v × v identity matrix and J is the v × v matrix of all ones. Then
detB = (r − λ)(v−1)(r + (v − 1)λ).
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Proof. Note first that B must have the following form.

B =




r λ . . . λ
λ r . . . λ
...

...
...

λ λ . . . r




Subtracting the first column of B from each of the remaining columns of B
yields the following.

B1 =




r λ− r . . . λ− r
λ r − λ . . . 0
...

...
...

λ 0 . . . r − λ




Then, adding each row of B1 except the first to the first row of B1 yields
the following.

B2 =




r + (v − 1)λ 0 . . . 0
λ r − λ . . . 0
...

...
...

λ 0 . . . r − λ




Since B2 is triangular, detB2 is equal to the product of the diagonal entries
of B2. Hence, detB2 = (r − λ)(v−1)(r + (v − 1)λ). But detB = detB2.
Thus, detB = (r − λ)(v−1)(r + (v − 1)λ).

Theorem 2.3 The parameters in a (v, b, r, k, λ) block design satisfy the in-
equalities v ≤ b and k ≤ r.

Proof. Let A be an incidence matrix for the design. Since k < v, Theorem
2.1 implies λ < r. Then by Lemma 2.2, we know detAAt 	= 0. Since the
rank of a product is at most the minimum rank of the factors, it follows
that rank A ≥ rank AAt = v. Hence, since A is of size v× b, we know that
v ≤ b. And then by Theorem 2.1 we know that k ≤ r.

A block design is said to be symmetric if it has the same number of
objects and blocks. That is, a (v, b, r, k, λ) block design is symmetric if
b = v which by Theorem 2.1 implies k = r. The block design in Example
2.1 is symmetric.

Theorem 2.4 In a (v, v, r, r, λ) block design, each distinct pair of blocks
contains λ objects in common.
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Proof. Let A be an incidence matrix for the design. By Lemma 2.2 we
know that A must be nonsingular. Also, for the v× v matrix J of all ones,
it follows that AJ = JA since each entry in both products will be r. Now,
since AAt = (r − λ)I + λJ for the v × v identity matrix I, and AJ = JA,
then

AAtA = ((r − λ)I + λJ)A = A((r − λ)I + λJ) = AAAt.

Since A is nonsingular, it can be canceled from the left of both sides of the
equation AAtA = AAAt, leaving AtA = AAt = (r − λ)I + λJ . Thus, the
dot product of any two distinct columns of A (the off-diagonal entries of
AtA) will be equal to λ. Hence, each distinct pair of blocks in the design
will contain λ objects in common.

Theorem 2.4 states that in a symmetric block design, the number of
objects contained in common in each pair of blocks will be equal to the
number of blocks that contain each pair of objects. Thus, in the block
design in Example 2.1, each pair of consumers will test the same car once.

2.2 Hadamard Matrices

In this section we show how Hadamard matrices can be used to construct
block designs. An n×n matrix H is called a Hadamard matrix if the entries
in H are all 1 or −1, and HHt = nI for the n× n identity matrix I.

For an n×n Hadamard matrix H, since 1
nH

t = H−1, then HtH = nI.
Since HHt = HtH = nI, we see that the dot product of any row or column
of H with itself will be equal to n, and the dot product of any two distinct
rows or columns of H will be equal to 0. Thus, changing the sign of each
entry in a row or column of H will yield another Hadamard matrix. A
Hadamard matrix H is said to be normalized if the first row and column
of H contain only positive ones. Therefore, every Hadamard matrix can
be converted into a normalized Hadamard matrix by changing the signs of
the entries in the necessary rows and columns. Because the first row and
column of a normalized Hadamard matrix H contain only positive ones, all
other rows and columns of H must contain the same number of positive
and negative ones. Thus, for a Hadamard matrix H of order n, if n > 1,
then n must be even. In fact, if n > 2, then n must be a multiple of 4,
since for H = (hij),

∑
j

(h1j + h2j)(h1j + h3j) =
∑
j

h2
1j = n,

and (h1j + h2j)(h1j + h3j) = 0 or 4 for each j.
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The only normalized Hadamard matrices of orders one and two (i.e.,

of sizes 1 × 1 and 2 × 2) are H1 =
[

1
]

and H2 =
[

1 1
1 −1

]
. Also,

H4 =
[

H2 H2

H2 −H2

]
is a normalized Hadamard matrix of order four. This

construction of H4 from H2 generalizes. Specifically, if H is a (normalized)

Hadamard matrix, then
[

H H
H −H

]
is also a (normalized) Hadamard ma-

trix (see Written Exercise 6). This shows that there are Hadamard matrices
of order 2n for every positive integer n.

We are interested in Hadamard matrices because they provide us with a
method for constructing block designs. For a normalized Hadamard matrix
H of order 4t ≥ 8, if we delete the first row and column from H, and change
all negative ones in H to zeros, the resulting matrix will be an incidence
matrix for a (4t− 1, 4t− 1, 2t− 1, 2t− 1, t− 1) block design. We state this
as the following theorem.

Theorem 2.5 Let H be a normalized Hadamard matrix of order 4t ≥ 8.
If the first row and column of H are deleted, and all negative ones in H
are changed to zeros, the resulting matrix will be an incidence matrix for a
(4t− 1, 4t− 1, 2t− 1, 2t− 1, t− 1) block design.

Proof. Delete the first row and column from H, change all negative ones
in H to zeros, and call the resulting matrix A. Each row and column of H
except the first will contain 2t ones. Therefore, each row and column of A
will contain 2t− 1 ones. Hence, the dot product of any row or column of A
with itself will be equal to k = 2t− 1. Furthermore, in any pair of distinct
rows of H excluding the first, there will be 2t positions in which the rows
differ, t positions in which the rows both have a 1, and t positions in which
the rows both have a −1. Thus, in the corresponding pair of rows of A,
there will be t − 1 positions in which the rows both have a 1, so the dot
product of any two distinct rows of A will be equal to λ = t−1. Therefore,
AAt = (k−λ)I +λJ , where I is the (4t− 1)× (4t− 1) identity matrix, and
J is the (4t − 1) × (4t − 1) matrix of all ones. Since also JA = kJ , then
we know A is the incidence matrix for a (4t− 1, 4t− 1, 2t− 1, 2t− 1, t− 1)
block design.

Example 2.3 Consider the normalized Hadamard matrix

H8 =
[

H4 H4

H4 −H4

]
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of order 8, where H4 is the normalized Hadamard matrix of order four
constructed previously. Using H = H8, Theorem 2.5 states that

A =




0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0




is the incidence matrix for a (7, 7, 3, 3, 1) block design. Note that this
incidence matrix is not the same as the incidence matrix in Example 2.2
for the (7, 7, 3, 3, 1) block design in Example 2.1.

2.3 Hadamard Matrices with Maple

In this section, we show how Maple can be used to construct the Hadamard
matrices H2n and corresponding block designs discussed in Section 2.2. We
consider the design resulting from the incidence matrix in Example 2.3.

Because some of the commands we will use are in the Maple linalg
linear algebra package, we begin by including this package.

> with(linalg):

Next, we define the Hadamard matrix H1 =
[

1
]
.

> H1 := matrix(1, 1, [1]);

H1 :=
[

1
]

Recall that the Hadamard matrix H2k can be constructed as a block ma-
trix from H2k−1 . Hence, the Hadamard matrices H2, H4, and H8 can be
constructed using the Maple blockmatrix command as follows.1

> H2 := blockmatrix(2, 2, [H1, H1, H1, -H1]);

H2 :=
[

1 1
1 −1

]

1Maple V Release 5 is the first release of Maple that requires brackets [ ] to be
included in the blockmatrix command around the matrices that form the blocks. For
example, to construct the matrix H2 with an earlier release of Maple, the blockmatrix
command must be entered as follows.

> H2 := blockmatrix(2, 2, H1, H1, H1, -H1);
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> H4 := blockmatrix(2, 2, [H2, H2, H2, -H2]);

H4 :=




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




> H8 := blockmatrix(2, 2, [H4, H4, H4, -H4]);

H8 :=




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




The first two parameters in the preceding blockmatrix commands are the
dimensions of the result in terms of blocks. The remaining parameters are
an ordered list of the blocks by rows. Normalized Hadamard matrices of
higher orders can be constructed similarly.

We will now construct the incidence matrix shown in Example 2.3 that
results from the Hadamard matrix H8. We first delete the first row and
column from H8 by applying the Maple delrows and delcols commands
as follows.

> A := delrows(H8, 1..1):

> A := delcols(A, 1..1):

We can then obtain the incidence matrix by changing all negative ones in
A to zeros. To do this, we define the following function f.

> f := x -> if x = -1 then 0 else 1 fi:

We then apply the function f to each of the entries in A by entering the
following map command.

> A := map(f, A);

A :=




0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0
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Note that the preceding matrix is the incidence matrix from Example 2.3.

Finally, we will use Maple to list the objects that are contained in each
of the blocks in the design. To do this, we first assign the general block
design parameters as follows.

> v := 7:

> b := 7:

> k := 3:

Since each of the blocks in the design will contain k objects, we create the
following vector block of length k in which to store the objects contained
in each block.

> block := vector(k);

block := array( 1..3, [ ] )

By entering the following commands, we can then see the objects that are
contained in each block. In these commands, the outer loop spans the
columns of A, and the inner loop spans the rows of A.

> for j from 1 to b do

> bct := 0:

> for i from 1 to v do

> if A[i,j] = 1 then

> bct := bct + 1;

> block[bct] := i;

> fi;

> od:

> print(‘Block ‘, j, ‘ contains objects ‘, block);

> od:

Block , 1, contains objects , [ 2, 4, 6 ]

Block , 2, contains objects , [ 1, 4, 5 ]

Block , 3, contains objects , [ 3, 4, 7 ]

Block , 4, contains objects , [ 1, 2, 3 ]

Block , 5, contains objects , [ 2, 5, 7 ]

Block , 6, contains objects , [ 1, 6, 7 ]

Block , 7, contains objects , [ 3, 5, 6 ]

In the preceding commands, note that we use colons after both od state-
ments. This causes Maple to suppress the output (except the output result-
ing from the print command) after each passage through the loop. Note
also that, as in Section 1.5, we use back ticks ”‘” in the print statement.
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2.4 Difference Sets

In this section we discuss some techniques for constructing block designs
using difference sets. As we will show, these techniques yield block de-
signs with more of a variety of parameters than the designs resulting from
Hadamard matrices.

Let G be an abelian group of order v, and let D be a subset of G of
order k. If every nonzero element in G can be expressed as the difference
of two elements in D in exactly λ ways with λ < k, then D is called a
difference set in G, and is described by the parameters (v, k, λ).

Example 2.4 The set D = {0, 1, 2, 4, 5, 8, 10} is a (15, 7, 3) difference set
in Z15.

Example 2.5 The set D = {1, 2, 4} is a (7, 3, 1) difference set in Z7. If
we add each element in Z7 to each of the elements in D (i.e., if we form
the sets i + D for i = 0, 1, . . . , 6), it can easily be verified that the seven
resulting sets are the blocks in the block design in Example 2.1 (with 0 ∈ Z7

represented by 7). Hence, the (7, 3, 1) difference set D = {1, 2, 4} in Z7 can
be used to construct the (7, 7, 3, 3, 1) block design in Example 2.1.

The fact that a block design results from adding each element in Z7 to
each of the elements in the difference set D in Example 2.5 is guaranteed
in general by the following theorem.

Theorem 2.6 Let D = {d1, . . . , dk} be a (v, k, λ) difference set in the
abelian group G = {g1, . . . , gv}. Then the sets

gi + D = {gi + d1, . . . , gi + dk}, i = 1, . . . , v

are the blocks in a (v, v, k, k, λ) block design.

Proof. Clearly, there are v objects in the design. Also, the v blocks gi +D
are distinct, for if gi +D = gj +D for some i 	= j, then (gi − gj) +D = D.
We can then find k differences of elements in D that are equal to gi − gj ,
contradicting the assumption that λ < k. Now, if we add an element in D
to each of the elements in G, the result will be the set G. Each element
in G will appear k times among the elements gi + dj for i = 1, . . . , v and
j = 1, . . . , k. Hence, each element in G will appear in k blocks. Also, by
construction, each block will contain k objects. It remains to be shown
only that each pair of elements in G appears together in exactly λ blocks.
Choose distinct x, y ∈ G. If x, y appear together in some block g+D, then

c© 1999 by CRC Press LLC



x = g+di and y = g+dj for some i, j. Thus, x−y = di−dj , so x−y is the
difference of two elements in D. Since D is a (v, k, λ) difference set in G,
x− y can be written as the difference of two elements in D in λ ways. And
since x = g + di = h+ di implies g = h, the difference di − dj cannot come
from more than one block. Hence, the pair x, y cannot appear in more than
λ blocks. On the other hand, suppose x− y = di − dj for some i, j. Then
x = g + di for some g ∈ G, and y = x− (di − dj) = (x− di) + dj = g + dj .
Thus, x and y appear together in the block g +D. Therefore, the pair x, y
must appear in at least λ blocks. With our previous result, this implies x
and y must appear in exactly λ blocks.

As illustrated in Example 2.5, Theorem 2.6 gives us an easy method for
constructing a (v, v, k, k, λ) block design provided we are first able to find
a (v, k, λ) difference set. Before discussing how we can construct difference
sets, we first generalize them as follows.

Let G be an abelian group of order v, and let D1, . . . , Dt be subsets
of G of order k. If every nonzero element in G can be expressed as the
difference of two elements in the same Di in exactly λ ways with λ < k,
then the subsets Di are called initial blocks in a generalized difference set
in G, and are described by the parameters (v, k, λ). Note that for t = 1,
this definition matches our previous definition of a difference set.

The following theorem generalizes the method given in Theorem 2.6
for constructing block designs from difference sets.

Theorem 2.7 Let D1, . . . , Dt be initial blocks in a (v, k, λ) generalized dif-
ference set in the abelian group G = {g1, . . . , gv}. Then the sets

gi + Dj , i = 1, . . . , v; j = 1, . . . , t

are the blocks in a (v, vt, kt, k, λ) block design.

Proof. Exercise.

Example 2.6 The sets D1 = {1, 7, 11}, D2 = {2, 14, 3}, and D3 = {4, 9, 6}
are initial blocks in a (19, 3, 1) generalized difference set in Z19. Theorem
2.7 states that if we add each element in Z19 to each of the elements in
these initial blocks, the resulting sets will be the blocks in a (19, 57, 9, 3, 1)
block design.

As illustrated in Example 2.6, Theorem 2.7 gives us an easy method
for constructing a (v, vt, kt, k, λ) block design provided we are first able to
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find t initial blocks in a (v, k, λ) generalized difference set. The following
two propositions give methods for constructing initial blocks in generalized
difference sets.

Proposition 2.8 Suppose v = 6t + 1 = pn for some prime p and positive
integers n and t. Let F be a finite field of order pn, and choose a ∈ F such
that a is a cyclic generator for F ∗. Then the sets

Di =
{
ai, a2t+i, a4t+i

}
, i = 0, . . . , t− 1

are initial blocks in a (6t + 1, 3, 1) generalized difference set in F .

Proof. Exercise. (See the proof of Proposition 2.9 below.)

Example 2.7 We can use Proposition 2.8 to construct the initial blocks
in Example 2.6 as follows. Let F = Z19, and choose cyclic generator a = 2
for Z∗

19. Since 19 = 6t + 1 implies t = 3, Proposition 2.8 yields three
initial blocks. These initial blocks are D0 =

{
20, 26, 212

}
= {1, 7, 11},

D1 =
{
21, 27, 213

}
= {2, 14, 3}, and D2 =

{
22, 28, 214

}
= {4, 9, 6}.

Proposition 2.9 Suppose v = 4t + 1 = pn for some prime p and positive
integers n and t. Let F be a finite field of order pn, and choose a ∈ F such
that a is a cyclic generator for F ∗. Then the sets

Di =
{
ai, at+i, a2t+i, a3t+i

}
, i = 0, . . . , t− 1

are initial blocks in a (4t + 1, 4, 3) generalized difference set in F .

Proof. Since a is a cyclic generator for F ∗, the order of a is 4t. Hence,
a4t = 1, and a2t 	= 1. Also, a4t − 1 = (a2t − 1)(a2t + 1) = 0 implies
a2t = −1. Furthermore, at−1 	= 0, so at−1 = as for some s between 1 and
4t. Forming all possible differences from the sets ±ai(at − 1), ±ai(a2t − 1),
±ai(a2t − at), ±ai(a3t − 1), ±ai(a3t − at), and ±ai(a3t − a2t), we obtain
the following.

±ai(at − 1) = ±ai(as) = ai+s, ai+s+2t

±ai(a2t − 1) = ±ai(2a2t) = 2ai+2t, 2ai

±ai(a2t − at) = ±aiat(at − 1) = ai+t+s, ai+3t+s

±ai(a3t − 1) = ±aia3t(1 − at) = ai+t+s, ai+3t+s

±ai(a3t − at) = ±aiat(2a2t) = 2ai+3t, 2ai+t

±ai(a3t − a2t) = ±aia2t(as) = ai+2t+s, ai+s

Multiplication by as and 2 are bijections, so these elements can be canceled
from the preceding expressions. The only remaining elements are ai, at+i,
a2t+i, and a3t+i for i = 0, . . . , t− 1 repeated three times each. Since these
are all of the elements in F ∗, then λ = 3.
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Example 2.8 Suppose we wish to obtain a fair and reasonable comparison
of 9 cars by evaluating the opinions of 18 consumers. We can use Proposi-
tion 2.9 to construct a block design for this comparison as follows. We first
need a finite field F of order 9 to represent the cars. For F , we will use
the field of order 9 constructed in Example 1.10. For the cyclic generator
a for F ∗, we will use the element x ∈ F . Since 9 = 4t + 1 implies t = 2,
Proposition 2.9 yields two initial blocks in a (9, 4, 3) generalized difference
set in F . These initial blocks are D0 =

{
1, x2, x4, x6

}
= {1, 2x+1, 2, x+2}

and D1 =
{
x, x3, x5, x7

}
= {x, 2x + 2, 2x, x + 1}. Theorem 2.7 states that

if we add each element in F to each of the elements in these initial blocks,
the resulting sets will be the blocks in a (9, 18, 8, 4, 3) block design. The
blocks in this design are listed at the end of Section 2.5. Note that in this
block design, each car is tested 8 times, each consumer tests 4 cars, and
each pair of cars is tested by the same consumer 3 times.

2.5 Difference Sets with Maple

In this section, we show how Maple can be used to construct the initial
blocks and corresponding block designs discussed in Section 2.4. We con-
sider the design resulting from the initial blocks in Example 2.8.

We begin by including the Maple linalg package and entering the
primitive polynomial f(x) = x2 + x + 2 ∈ Z3[x] used to construct the
elements in the finite field F .

> with(linalg):

> f := x -> x^2 + x + 2:

> Primitive(f(x)) mod 3;

true

Recall that since v = 4t+1 = 9 implies t = 2, there will be 2 initial blocks.
We define this parameter next.

> t := 2:

Because the field elements are the objects that will fill the blocks, we must
store these elements in a way such that they can be recalled. We will do
this by storing the field elements in a vector. We first initialize a vector
with the same number of positions as the number of field elements.

> field := vector(4*t+1);

field := array( 1..9, [ ] )
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Then by entering the following commands, we generate and store the field
elements in the vector field. Note the bracket [ ] syntax for accessing
the positions in field.

> for i from 1 to 4*t do

> field[i] := Powmod(x, i, f(x), x) mod 3:

> od:

> field[4*t+1] := 0:

We can view the entries in the vector field by entering the following evalm
command.

> evalm(field);

[x, 2x + 1, 2x + 2, 2, 2x, x + 2, x + 1, 1, 0 ]

Next, we define the number k = 4 of objects contained in each of the initial
blocks and blocks in the design, and create a vector in which to store the
initial blocks.

> k := 4:

> initblock := vector(k);

initblock := array( 1..4, [ ] )

We can then generate and display the initial blocks by entering the following
commands. In these commands, the outer loop spans the initial blocks while
the inner loop constructs the entries in each one.

> for i from 0 to t-1 do

> for j from 1 to k do

> initblock[j] := Powmod(x, (j-1)*t+i, f(x), x) mod 3;

> od:

> print(‘Initial Block ‘, i, ‘ is ‘, initblock);

> od:

Initial Block , 0, is , [1, 2x + 1, 2, x + 2]

Initial Block , 1, is , [x, 2x + 2, 2x, x + 1]

In order to construct all of the blocks in the design, we first create a vector
in which to store the blocks, and initialize a counter bct we will use to
number the blocks.

> block := vector(k):

> bct := 0:

We can then generate and display all of the blocks in the design by entering
the following commands. In these commands, the outer loop spans the
initial blocks while the first inner loop constructs the entries in each one.
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The last two inner loops add each field element to each of the elements in
the initial blocks, thus yielding the blocks in the design.

> for i from 0 to t-1 do

> for j from 1 to k do

> initblock[j] := Powmod(x, (j-1)*t+i, f(x), x) mod 3;

> od:

> for j from 1 to 4*t+1 do

> for h from 1 to k do

> block[h] := (field[j] + initblock[h]) mod 3;

> od:

> bct := bct + 1;

> print(‘Block ‘, bct, ‘ is ‘, block);

> od:

> od:

Block , 1, is , [x + 1, 1, x + 2, 2x + 2]

Block , 2, is , [2x + 2, x + 2, 2x, 0]

Block , 3, is , [2x, x, 2x + 1, 1]

Block , 4, is , [0, 2x, 1, x + 1]

Block , 5, is , [2x + 1, x + 1, 2x + 2, 2]

Block , 6, is , [x, 0, x + 1, 2x + 1]

Block , 7, is , [x + 2, 2, x, 2x]

Block , 8, is , [2, 2x + 2, 0, x]

Block , 9, is , [1, 2x + 1, 2, x + 2]

Block , 10, is , [2x, 2, 0, 2x + 1]

Block , 11, is , [1, x, x + 1, 2]

Block , 12, is , [2, x + 1, x + 2, 0]

Block , 13, is , [x + 2, 2x + 1, 2x + 2, x]

Block , 14, is , [0, x + 2, x, 1]

Block , 15, is , [2x + 2, 1, 2, 2x]

Block , 16, is , [2x + 1, 0, 1, 2x + 2]

Block , 17, is , [x + 1, 2x, 2x + 1, x + 2]

Block , 18, is , [x, 2x + 2, 2x, x + 1]
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Written Exercises

1. Suppose a magazine editor wishes to obtain a comparison of 15 cars
by evaluating the opinions of 15 consumers. Construct a block design
for this comparison. List the block design parameters.

2. Construct two different block designs with v = 13 objects. List the
block design parameters for each one.

3. Suppose a magazine editor wishes to obtain a comparison of 25 cars
by evaluating the opinions of a certain number of consumers after
each of the consumers tests 3 of the cars. Construct a block design
for this comparison. List the block design parameters, and state what
each parameter represents.

4. Repeat Written Exercise 3 if the editor decides to have each of the
consumers test 4 of the cars instead of 3.

5. Repeat Written Exercise 3 if the editor decides to compare only 7 cars
instead of 25. (Assume each consumer still tests 3 of the cars.)

6. Show that if H is a Hadamard matrix, then so is
[

H H
H −H

]
.

7. Prove Theorem 2.7.

8. Prove Proposition 2.8.

Maple Exercises

1. Suppose a magazine editor wishes to obtain a comparison of 31 cars
by evaluating the opinions of 31 consumers. Construct a block design
for this comparison. List the block design parameters.

2. Suppose a magazine editor wishes to obtain a comparison of 81 types
of candy by evaluating the opinions of a certain number of children
after each child samples 4 of the types of candy. Construct the initial
blocks in a block design for this comparison. List the block design
parameters, and state what each parameter represents.

3. Construct two different block designs with v = 121 objects. (Con-
struct initial blocks only if you use Propositions 2.8 or 2.9.) List the
block design parameters for each one.

4. Construct two different block designs with v = 127 objects. (Con-
struct initial blocks only if you use Propositions 2.8 or 2.9.) List the
block design parameters for each one.
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Chapter 3

Error-Correcting Codes

In the next three chapters we discuss several types of error-correcting codes.
A code is a set of messages called codewords that can be transmitted be-
tween two parties. An “error-correcting” code is a code for which it is
sometimes possible to detect and correct errors that occur during transmis-
sion of the codewords. Some applications of error-correcting codes include
correction of errors that occur in information transmitted via the Internet,
data stored in a computer, and music encoded on a compact disc. Error-
correcting codes can also be used to correct errors that occur in information
transmitted through space. For example, we mention in Section 3.3 how
an error-correcting code was used in the Mariner 9 space probe when it
returned photographs of Mars to Earth in 1972.

3.1 General Properties of Codes

In this chapter we consider some types of codes in which the codewords
are vectors of a fixed length over Z2. We will denote the space of vectors
of length n over Z2 as Zn

2 . Hence, the codes we consider in this chapter
will be subsets of Zn

2 for some n. A code C in Zn
2 is not required to be a

subspace of Zn
2 . If C is a subspace of Zn

2 , then we call C a linear code. We
discuss linear codes beginning in Section 3.5 and continuing in Chapters 4
and 5.

The way we will tell in general if an error occurred during the trans-
mission of a codeword in a code C is by determining if the received vector
is in C. Thus, because our goal is to be able to detect and correct errors
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in received vectors, not all vectors in Zn
2 for some n can be codewords in

a code C. In general, we will use the “nearest neighbor policy” to correct
a received vector that contains errors. This means that we will assume
the fewest possible number of errors, and correct the received vector to the
codeword from which it differs in the fewest positions. This method of error
correction is limited, for there is not always a unique codeword that differs
from a received vector in the fewest positions.

Example 3.1 Consider the code C = {(1010), (1110), (0011)} in Z4
2 . Sup-

pose a codeword in C is transmitted and we receive the vector r1 = (0110).
A quick search of C reveals that c = (1110) is the codeword from which r1
differs in the fewest positions. Hence, we would correct r1 to c, and assume
that the error in r1 is e = r1 − c = (1000). Now, suppose a codeword
in C is transmitted and we receive the vector r2 = (0010). Since two of
the codewords in C differ from r2 in only one position, we cannot uniquely
correct r2 using the nearest neighbor policy. Therefore, in this code C, we
are not guaranteed to be able to uniquely correct a received vector in Z4

2

even if the received vector contains only a single error.

To make the nearest neighbor policy error correction method more
precise, we make the following definition. Let C be a code in Zn

2 . For
vectors x, y ∈ C, we define the Hamming distance d(x, y) from x to y to be
the number of positions in which x and y differ. Hence, if x = (x1, . . . , xn)

and y = (y1, . . . , yn), then d(x, y) =
n∑

i=1

|xi − yi|. We will call the smallest

Hamming distance between any two codewords in a code C the minimum
distance of C. We will denote this minimum distance by d(C), or just d
if there is no confusion regarding the code to which we are referring. For
example, for the code C in Example 3.1, d = 1.

Determining the number of errors that are guaranteed to be uniquely
correctable in a given code is an important part of coding theory. To do
this in general, consider the following. For x ∈ Zn

2 and positive integer r,
let Sr(x) = {y ∈ Zn

2 | d(x, y) ≤ r}. In standard terminology, Sr(x) is called
the ball of radius r around x. Let C be a code with minimum distance d,
and let t be the largest integer such that t < d

2 . Then St(x)∩St(y) is empty
for every pair x, y of distinct codewords in C. If z is a received vector in
Zn

2 with d(u, z) ≤ t for some u ∈ C, then z ∈ St(u) and z /∈ St(v) for all
other v ∈ C. That is, if a received vector z ∈ Zn

2 differs from a codeword
u ∈ C in t or fewer positions, then every other codeword in C will differ
from z in more than t positions. Thus, the nearest neighbor policy will
always allow t or fewer errors to be corrected in the code. The code C is
said to be t-error correcting.
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Example 3.2 Let C = {(00000000), (11100011), (00011111), (11111100)}.
It can easily be seen that the minimum distance of C is d = 5. Since t = 2
is the largest integer such that t < d

2 , then C is 2-error correcting.

Suppose C is a t-error correcting code in V = Zn
2 . We now address the

problem of determining the number of vectors in V that are guaranteed to

be correctable in C. Note first that for any x ∈ V , there are
(
n

i

)
vectors

in V that differ from x in exactly i positions. Also, any vector in V that
differs from x in i positions will be in St(x) provided i ≤ t. Hence, the

number of vectors in St(x) will be
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

t

)
. To determine

the number of vectors in V that are guaranteed to be correctable in C,
we must only count the number of vectors in St(x) as x ranges through
the codewords in C. Since the sets St(x) are pairwise disjoint, the number
of vectors in V that differ from one of the codewords in C in t or fewer
positions, and are consequently guaranteed to be uniquely correctable in

C, is |C| ·
[(
n

0

)
+

(
n

1

)
+ · · · +

(
n

t

)]
. The fact that |V | = 2n then yields

the following theorem, which gives a bound on the number of vectors in Zn
2

that are guaranteed to be correctable in a t-error correcting code in Zn
2 .

This bound is called the Hamming bound.

Theorem 3.1 Suppose C is a t-error correcting code in Zn
2 . Then

|C| ·
[(
n

0

)
+

(
n

1

)
+ · · · +

(
n

t

)]
≤ 2n.

A code C in Zn
2 is said to be perfect if every vector in Zn

2 is guaranteed
to be correctable in C. That is, a code C in Zn

2 is perfect if the inequality
in Theorem 3.1 with C is an equality. For the code C in Example 3.2,

the factors in this inequality are |C| = 4,
(

8
0

)
+

(
8
1

)
+

(
8
2

)
= 37, and

28 = 256. Thus, for the code C in Example 3.2, 108 of the vectors in Z8
2

are not guaranteed to be uniquely correctable in C (some may, however,
still be “closest” to a unique codeword). Therefore, this code is far from
perfect. In Sections 3.5 and 3.6 we discuss a class of codes called Hamming
codes that are perfect.

In practice, it is often desirable to construct codes that have a large
number of codewords and are guaranteed to correct a large number of er-
rors. However, the number of errors guaranteed to be correctable in a code
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is obviously related to the number of codewords in the code. Indeed, to
construct a t-error correcting code C in Zn

2 for fixed values of n and t such
that |C| is maximized has been an important problem of recent mathemat-
ical interest. An equivalent problem is to find the maximum number of
points in Zn

2 such that the balls of a fixed radius around the points can be
arranged in the space without intersecting. This type of problem is called
a sphere packing problem.

For the remainder of this chapter and the two subsequent chapters we
will discuss several methods for constructing various types of codes and
correcting errors in these codes. To facilitate this, we will establish a set
of parameters to use in describing codes. We will describe a code by the
parameters (n, d) if the codewords in the code are of length n positions and
the code has minimum distance d.

3.2 Hadamard Codes

In Section 2.2 we showed that for certain values of v, k, and λ, it is pos-
sible to use a Hadamard matrix to construct an incidence matrix for a
(v, v, k, k, λ) block design. The following theorem states that the rows of
such an incidence matrix form the codewords in an error-correcting code.

Theorem 3.2 Suppose A is an incidence matrix for a (v, v, k, k, λ) block
design. Then the rows of A form a (v, 2(k − λ)) code with v codewords.

Proof. There are v positions in each of the v rows of A. Hence, the
rows of A form a code with v codewords each of length v positions. It re-
mains to be shown only that the minimum distance of this code is 2(k−λ).
Consider rows R1 and R2 in A. Since each row of A contains ones in k po-
sitions, and each pair of rows of A contains ones in λ positions in common,
there will be k− λ positions in which R1 contains a one and R2 contains a
zero, and k − λ positions in which these elements are reversed. This yields
2(k − λ) positions in which R1 and R2 differ.

Example 3.3 Theorem 3.2 states that the rows of the incidence matrix A
in Example 2.3 form a (7, 4) code with 7 codewords.

In Theorem 2.5, we showed that a normalized Hadamard matrix H
of order 4m ≥ 8 can be used to construct an incidence matrix for a
(4m−1, 4m−1, 2m−1, 2m−1,m−1) block design. Theorem 3.2 states that
the rows of such an incidence matrix A form codewords of length 4m − 1
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positions in a code with minimum distance d = 2((2m−1)− (m−1)) = 2m
and 4m − 1 codewords. Recall that each of the rows of A will contain 2m
zeros and 2m − 1 ones. Hence, there will be 2m positions in which the
vector (1 1 · · · 1) of length 4m−1 positions differs from each of the rows of
A. Thus, by including the vector (1 1 · · · 1) of length 4m−1 positions with
the rows of A, we obtain a (4m− 1, 2m) code with 4m codewords. And no
more vectors can be included in this code without decreasing the minimum
distance of the code (see Corollary 3.4). Because these (4m− 1, 2m) codes
with 4m codewords are constructed from Hadamard matrices, we will call
them Hadamard codes.

We close this section by proving the following theorem and corollary
which verify the fact mentioned above that no vectors can be joined to the
codewords in a Hadamard code without decreasing the minimum distance
of the code.

Theorem 3.3 Let r be the number of codewords in a code with parameters
(n, d) for some n, d with d > n

2 . Then r ≤ 2d
2d−n .

Proof. Let A = (aij) be an r× n matrix with the codewords as rows, and
let S =

∑
u,v
d(u, v) for all distinct pairs u, v of codewords. Now, d(u, v) ≥ d

for all pairs u, v of codewords. Hence, S ≥
(
r

2

)
d =

r(r − 1)
2

d. Let t(i)0

and t(i)1 be the number of times that 0 and 1 appear in the ith column of
A, respectively. Then t(i)1 + t(i)0 = r for all i. Also,

S =
∑
Ω

∑
j

|aij − akj | =
∑
j

∑
Ω

|aij − akj | ,

where Ω is the set of all distinct pairs of rows of A. For each j,∑
Ω

|aij − akj | is equal to the number of times that any two rows of A

contain differing entries in the jth position. This number is t(j)0 t
(j)
1 , so

S =
∑
j

t
(j)
0

(
r − t(j)0

)
. To find an upper bound on t(j)0 t

(j)
1 , we consider the

function f(x) = x(r − x) for 0 ≤ x ≤ r. Note that f(x) is maximized at

the point (x, f(x)) =
(

r
2 ,

r2

4

)
. Hence, t(j)0 t

(j)
1 ≤ r2

4 , and S ≤ nr2

4 . Thus,
r(r−1)d

2 ≤ nr2

4 , and r
(
d− n

2

)
≤ d. Therefore, r ≤ d

d−n
2

= 2d
2d−n .

Corollary 3.4 Let r be the number of codewords in a code with parameters
(4m− 1, 2m) for some m. Then r ≤ 4m.

Proof. Exercise.
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3.3 Reed-Muller Codes

In Section 3.2, we showed that normalized Hadamard matrices can be used
to construct error-correcting codes we called Hadamard codes. We also
showed that the number of codewords in a Hadamard code is maximal in
the sense that no vectors can be included in the code without decreasing
the minimum distance of the code. As a consequence of the following
theorem, by increasing the length of the codewords in a Hadamard code by
one position, we can double the number of codewords in the code without
decreasing the minimum distance of the code.

Theorem 3.5 Suppose A is the incidence matrix constructed from a nor-
malized Hadamard matrix of order 4m, and let B be the matrix that results
from interchanging all zeros and ones in A. Let A be the matrix obtained
by placing a one in front of all of the rows of A, and let B be the matrix
obtained by placing a zero in front of all of the rows of B. Then the rows
of A and B taken together form a (4m, 2m) code with 8m− 2 codewords.

Proof. Exercise.

Each of the rows in the matrices A and B in Theorem 3.5 will contain
2m zeros and 2m ones. Hence, there will be 2m positions in which both of
the vectors (0 0 · · · 0) and (1 1 · · · 1) of length 4m positions differ from
each of the rows of A and B. Thus, by including the vectors (0 0 · · · 0)
and (1 1 · · · 1) of length 4m positions with the rows of A and B, we obtain
a (4m, 2m) code with 8m codewords. And no more vectors can be included
in this code without decreasing the minimum distance of the code. These
(4m, 2m) codes with 8m codewords are called Reed-Muller codes.

A Reed-Muller code was used in the Mariner 9 space probe when it
returned photographs of Mars to Earth in 1972. The specific code used
in the space probe was the (32, 16) Reed-Muller code with 64 codewords
constructed using the normalized Hadamard matrix H32 of order 32 (see
Maple Exercise 1). Before being transmitted, each photograph was broken
down into a collection of very small dots. Each dot was then assigned one
of 64 levels of grayness and encoded into one of the 64 codewords.

3.4 Reed-Muller Codes with Maple

In this section, we show how Maple can be used to construct and correct
errors in the (16, 8) Reed-Muller code.
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We begin by generating the normalized Hadamard matrix H16 of order
16 used to construct the code.1

> with(linalg):

> H1 := matrix(1, 1, [1]):

> H2 := blockmatrix(2, 2, [H1, H1, H1, -H1]):

> H4 := blockmatrix(2, 2, [H2, H2, H2, -H2]):

> H8 := blockmatrix(2, 2, [H4, H4, H4, -H4]):

> H16 := blockmatrix(2, 2, [H8, H8, H8, -H8]):

We can then construct the incidence matrix A that results from H16 as
follows.

> A := delrows(H16, 1..1):

> A := delcols(A, 1..1):

> f := x -> if x = -1 then 0 else 1 fi:

> A := map(f, A);

A :=




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
1 0 0 0 0 1 1 0 0 1 1 1 1 0 0
0 0 1 0 1 1 0 0 1 1 0 1 0 0 1




Next, we construct the matrix B from Theorem 3.5 by interchanging all
zeros and ones in the matrix A. To do this, we define and apply the
following function g to the entries in A.

> g := x -> if x = 0 then 1 else 0 fi:

> B := map(g, A);

1See footnote p. 33 regarding the Maple blockmatrix command.
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B :=




1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0




We now construct the matrices A and B from Theorem 3.5. Recall
that to construct A and B, we must place a one in front of all of the rows
of A and a zero in front of all of the rows of B. To do this, we first define
the following vectors colA and colB.

> colA := vector(rowdim(A), 1);

colA := [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

> colB := vector(rowdim(B), 0);

colB := [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

By construction, the preceding vectors both have the same number of posi-
tions as the number of rows in A or B. Hence, by placing the vectors colA
and colB as columns in front of the matrices A and B respectively, we will
obtain the matrices A and B. We can do this using the Maple augment
command as follows.

> scriptA := augment(colA, A):

> scriptB := augment(colB, B):

The rows of the matrices scriptA and scriptB taken together form all but
two of the codewords in the (16, 8) Reed-Muller code. The two codewords
not included in the rows of these matrices are the vectors (0 0 · · · 0) and
(1 1 · · · 1) of length 16 positions. We create these vectors next.

> v_zero := vector(coldim(scriptB), 0):

> v_one := vector(coldim(scriptB), 1):

We can then view the codewords in the (16, 8) Reed-Muller code by using

c© 1999 by CRC Press LLC



the Maple stackmatrix command2 as follows to stack the matrices A and
B and the vectors v zero and v one.

> cw := stackmatrix(scriptA, scriptB, v_zero, v_one);

cw :=




1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




Recall that the (4m, 2m) Reed-Muller code contains 8m codewords. Hence,

2Maple V Release 5 is the first release of Maple that uses stackmatrix to stack
matrices and vectors vertically. Earlier releases of Maple use the stack command to
accomplish this. For example, with an earlier release of Maple, we would construct the
matrix cw by entering the following command.

> cw := stack(scriptA, scriptB, v zero, v one);
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there should be 32 rows in the preceding matrix. We can verify this as
follows.

> rowdim(cw);

32

We now show how Maple can be used to correct a vector in Z16
2 in

the (16, 8) Reed-Muller code. Note first that since in general the (4m, 2m)
Reed-Muller code is (m− 1)-error correcting, the (16, 8) Reed-Muller code
will be 3-error correcting. Suppose a codeword in the (16, 8) Reed-Muller
code is transmitted and we receive the following vector.

> r := vector([1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0]):

We can then use the following commands to determine if this received
vector contains a correctable error. We first define the general Reed-Muller
parameter m = 4, and then define two additional parameters fc and rn
we will use in the subsequent while loop. The loop compares each of the
rows in the matrix cw (i.e., each of the codewords) with the received vector
r. The norm command that appears in the loop counts the number of
positions in which each row of cw differs from r. If a row is found that
differs from r in fewer than m positions, the variable fc is assigned the
value 1. This terminates the loop, leaving m as the number of errors in r,
and rn as the number of the row in cw that differs from r in fewer than
m positions. If no codeword is found that differs from r in fewer than m
positions, the loop ends when the rows of cw are exhausted, leaving m with
its initial value of 4.

> m := 4:

> fc := 0:

> rn := 0:

> while (fc <> 1) and (rn < rowdim(cw)) do

> rn := rn + 1;

> if norm(row(cw, rn) - r, 1) < m then

> m := norm(row(cw, rn) - r, 1):

> fc := 1:

> fi:

> od:

After we execute the preceding commands we can enter the following com-
mand to see if r contains a correctable error.

> m;

3
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This value for m indicates that r contains three errors, and hence is cor-
rectable. The following command shows that the codeword that differs
from r in three positions is the 22nd row of cw.

> rn;

22

We can view this codeword by entering the following command.
> evalm(row(cw, rn));

[ 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1 ]

And we can see the positions in r that contain errors by entering the fol-
lowing command.

> map(x -> x mod 2, evalm(row(cw, rn) - r));

[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]

3.5 Linear Codes

As shown, Hadamard and Reed-Muller codes are easy to construct and can
have significant error-correction capabilities. However, because Hadamard
and Reed-Muller codes do not generally form vector spaces, they are not
ideal for situations in which a very large number of codewords is needed.
Because Hadamard and Reed-Muller codes do not generally form vector
spaces, error correction in these codes must consist of comparing received
vectors with each of the codewords one by one. This is the scheme we used
to correct the received vector in Section 3.4. While this error correction
scheme poses no real problems in small codes like the one constructed in
Section 3.4, it would not be an efficient way to correct errors in a code with
a very large number of codewords. In this section we discuss a method for
constructing codes that form vector spaces. We then discuss some error
correction schemes for these codes.

Recall that a code that forms a vector space is called a linear code.
We will describe linear codes by the parameters [n, k] if the codewords
in the code are of length n positions and the code forms a vector
space of dimension k. In this section we discuss linear codes constructed
using generator matrices. Specifically, let W = Zk

2 and V = Zn
2 with

k < n, and let G be a k × n matrix over Z2 of full row rank. Then
C = {v ∈ V | v = wG for some w ∈ W} is a subspace of V of dimension
k. Hence, the vectors in C form the codewords in an [n, k] linear code in V
with 2k codewords. The matrix G is called a generator matrix for C.
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Example 3.4 Let W = Z2
2 = {(00), (10), (01), (11)}, and choose the fol-

lowing generator matrix G.

G =
[

1 1 1 1 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 1 1 1

]

Then C = {(00000000000), (11110000111), (00001111111), (11111111000)}
is the resulting [11, 2] linear code.

Note that the code C in Example 3.4 has minimum distance d = 7.
Hence, C is 3-error correcting, whereas errors cannot be corrected in
W = Z2

2 . Of course, the vectors in C are longer than the vectors in W .
Consequently, it would take more “effort” to transmit the vectors in C.
However, the ability to correct up to 3 transmission errors in C should
be much more valuable than the extra effort required to transmit the vec-
tors. Furthermore, W can still be used for encoding and decoding actual
messages or information. The general idea we can take is that messages
or information can be encoded in W and then converted to C before being
transmitted. Received vectors can then be corrected in C (if necessary) and
converted back to W to be decoded. Note that in order for this process
to be valid, we must be able to convert between W and C uniquely. But
this is precisely why we required G to have full row rank. Since G has full
row rank, G has a right inverse, say B. Therefore, w ∈W can be retrieved
uniquely from wG ∈ C by w = wGB.

We now consider the problem of detecting errors in received vectors
that occur from codewords in linear codes constructed using generator ma-
trices. Because linear codes are vector spaces, there are techniques for
identifying received vectors as codewords in linear codes that are generally
much more efficient than comparing the received vectors with each of the
codewords one by one. For a linear code C constructed from W using gen-
erator matrix G of size k × n, consider an (n − k) × n matrix H of full
row rank over Z2 with HGt = 0. Since HGt = 0, then HGtwt = 0 for all
w ∈ W . Hence, H(wG)t = 0 for all w ∈ W , or, equivalently, Hct = 0 for
all c ∈ C. And since H has full row rank, it can be shown that Hct = 0 if
and only if c ∈ C. Thus, H can be used to identify codewords in C. The
matrix H is called a parity check matrix for C.

To determine a parity check matrix H from a generator matrix G, note
that HGt = 0 implies GHt = 0, so the columns of Ht, that is, the rows of
H, are in the null space of G. Thus, to determine H from G, we must only
find a basis for the null space of G and place these basis vectors as rows
in H. In practice, when constructing a linear code, it is often convenient
to begin with a parity check matrix rather than a generator matrix. But
since HGt = 0, then G can be determined from H in the same way H can
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be determined from G. That is, G can be determined from H by finding a
basis for the null space of H and placing these basis vectors as rows in G.

Example 3.5 Consider a linear code C with the following parity check
matrix H.

H =


 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1




To construct a generator matrix G for C, we find a basis for the null space
of H by considering H as the coefficient matrix for the following system of
3 homogeneous equations in 7 unknowns.

x1 + x3 + x5 + x7 = 0
x2 + x3 + x6 + x7 = 0
x4 + x5 + x6 + x7 = 0

By solving these equations for x1, x2, and x4 in terms of the others, we can
find a basis for the null space of H by setting each of x3, x5, x6, and x7
equal to one while setting the others equal to zero. For example, setting
x5 = 1 and x3 = x6 = x7 = 0 gives x1 = x4 = 1 and x2 = 0. This yields
the basis vector (1001100). This vector and the other three basis vectors
constructed similarly form the rows in the following generator matrix G.

G =




1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1




To construct the codewords in C, we would take W = Z4
2 and form wG

for all w ∈W . The resulting code is a [7, 4] linear code with 16 codewords
called a Hamming code.

The code in Example 3.5 is called a Hamming code because of the
form of the parity check matrix H. Note that the columns of the matrix
H in Example 3.5 are the numbers 1, 2, . . . , 7 in order expressed in binary.
For example, the 6th column of H is [1, 1, 0]t, whose entries are the coef-
ficients in the expression 6 = 1 · (22) + 1 · (21) + 0 · (20). In general, to
construct a Hamming code, we place the binary expressions of the numbers
1, 2, . . . , 2m − 1 for some integer m > 1 in order as columns in a parity
check matrix H of size m × (2m − 1). The reason we stop at a number of
the form 2m − 1 is so that the columns of H will form all nonzero vectors
of length m over Z2. The importance of this is for error correction and will
be addressed later. From H, we determine a generator matrix G of size
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(2m − 1−m)× (2m − 1) over Z2 by finding a basis for the null space of H
over Z2. We then construct the codewords in the code by forming wG for
all vectors w of length 2m − 1 −m over Z2.

Example 3.6 The following is the parity check matrix H for the [15, 11]
Hamming code.

H =




0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1




All Hamming codes are one-error correcting (see Corollary 3.8) and
perfect (see Written Exercise 11). Recall that a code C in Zn

2 is said
to be perfect if every vector in Zn

2 is correctable in C. The fact that
Hamming codes are perfect is a consequence of the discussion immediately
preceding Theorem 3.1 regarding the number of correctable vectors in
a t-error correcting code in Zn

2 . For example, because the [7, 4] Hamming
code C is one-error correcting, the number of vectors in Z7

2 that are cor-
rectable in C is

|C| ·
[(
n

0

)
+ · · · +

(
n

t

)]
= 16 ·

[(
7
0

)
+

(
7
1

)]
= 128.

But there are only 27 = 128 vectors in Z7
2 . Thus, every vector in Z7

2 is
correctable in the [7, 4] Hamming code. Hence, the [7, 4] Hamming code is
perfect. The general result is Written Exercise 11.

We have now seen an effective method for detecting errors in received
vectors that occur from codewords in linear codes constructed using gener-
ator matrices. Specifically, for a linear code C with parity check matrix H,
Hct = 0 if and only if c ∈ C. We now consider the problem of correcting
errors in received vectors that occur from codewords in these codes. Let
C be a linear code in Zn

2 with parity check matrix H. Suppose c ∈ C is
transmitted and we receive the vector r ∈ Zn

2 . Then r = c+e for some error
vector e ∈ Zn

2 that contains ones in the positions where r and c differ and
zeros elsewhere. Note that Hrt = Hct +Het = Het, so we can determine
Het by computing Hrt. If we can then find e from Het, we can form the
corrected codeword as c = r + e.

Consider again the Hamming codes. Because they are one-error cor-
recting and perfect, the only error vectors we must consider with Hamming
codes are the vectors ei that contain all zeros except a single one in the ith
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position. Suppose a codeword in the [2m − 1, 2m − 1 −m] Hamming code
C is transmitted and we receive the vector r ∈ Z2m−1

2 . If r /∈ C, then since
the columns in the parity check matrix H for C form all nonzero vectors of
length m over Z2, Hrt will be one of the columns of H. Suppose Hrt is the
jth column of H. Since the jth column of H is also Hetj , then Hrt = Hetj .
Thus, the error in r is ej . Note also that the jth column of H is the binary
expression of the number j. Hence, if Hrt is the binary expression of the
number j, then the error in r is ej .

Example 3.7 Suppose a codeword in the [7, 4] Hamming code C is trans-
mitted and we receive the vector r = (1011001). Then with the parity
check matrix H for C in Example 3.5, Hrt = (001)t is the first column of
H. Thus, the error in r is e1 = (1000000), and we correct r to the codeword
c = r + e1 = (0011001) ∈ C.

Example 3.8 Suppose a codeword in the [15, 11] Hamming code C is
transmitted and we receive the vector r = (101011100111000). Then with
the parity check matrix H for C in Example 3.6, Hrt = (1011)t is the 11th

column of H. Thus, the error in r is e11 = (000000000010000), and we
correct r to the codeword c = r + e11 = (101011100101000) ∈ C.

As mentioned, Hamming codes are one-error correcting. We now con-
sider the problem of determining the number of errors that are guaranteed
to be correctable in more general linear codes constructed using generator
matrices. We discussed in Section 3.1 that we can determine the number of
errors that are guaranteed to be correctable in a code by finding the mini-
mum distance of the code. Specifically, in a code with minimum distance d,
we are guaranteed to be able to uniquely correct t errors for any t < d

2 . In
a code with a very large number of codewords, it would not be efficient to
find the minimum distance of the code by actually computing the Hamming
distance between each pair of codewords. However, because linear codes
are vector spaces, there are techniques for determining the minimum dis-
tance that are generally much more efficient than computing the Hamming
distance between each pair of codewords. The following Theorems 3.6 and
3.7 provide such techniques.

For a codeword x in a linear code constructed using a generator matrix,
we define the Hamming weight w(x) to be the number of ones in x. That
is, w(x) = d(x, 0), the Hamming distance between x and the zero vector.

Theorem 3.6 Let C be a linear code constructed using a generator matrix,
and suppose w = min{w(x) | x ∈ C, x = 0}. Then w = d(C).
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Proof. Since w = w(c) = d(c, 0) for some c ∈ C, it must be the case that
d(C) ≤ w. But d(C) = d(x, y) = w(x− y) for some x, y ∈ C. Since C is a
vector space, then x− y ∈ C. Hence, w ≤ d(C).

Theorem 3.7 Let C be a linear code with parity check matrix H, and
let s be the minimum number of linearly dependent columns in H. Then
s = d(C).

Proof. Let w = min{w(x) | x ∈ C, x = 0}, and suppose Ci1 , . . . , Cis

are linearly dependent columns in H. Then

a1Ci1 + · · · + asCis = 0

for some nonzero a1, . . . , as. Let x be a vector of appropriate length (the
number of columns in H) with aj in position ij for j = 1, . . . , s and zeros
elsewhere. Then Hxt = 0. Hence, x ∈ C. Thus, s ≥ w = d(C). Conversely,
let y ∈ C with w(y) = d(C), and let i1, . . . , id be the positions in y that
are nonzero. Then 0 = Hyt = Ci1 + · · · + Cid , so columns Ci1 , . . . , Cid are
linearly dependent. Thus, s ≤ d(C).

The fact that Hamming codes are one-error correcting can be shown
as a corollary to Theorem 3.7. We show this next.

Corollary 3.8 Let C be a Hamming code. Then C is one-error correcting.

Proof. Note that the first three columns in the parity check matrix H
for C are linearly dependent. Also, no two columns in H are linearly de-
pendent since either they would be equal or one would be the zero vector.
By Theorem 3.7, d(C) = 3. Thus, C is one-error correcting.

We have already shown how errors can be corrected in Hamming codes.
We now consider error correction in more general linear codes constructed
using generator matrices.

Let C be a t-error correcting linear code in Zn
2 . A subset S of Zn

2 is
called a coset of C if any two vectors in S differ by an element in C. Suppose
c ∈ C is transmitted and we receive the vector r ∈ Zn

2 with r = c + e for
some nonzero error vector e. Since r and e differ by an element in C, then
r and e are in the same coset of C. Hence, if r contains t or fewer errors,
we can find the error vector e that corresponds to r by finding the unique
vector with the fewest ones in the coset that contains r. In a code with a
very large number of codewords, it would not be practical to construct all
of the elements in the cosets. The following theorem yields an equivalence
on vectors in the same coset for such codes.
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Theorem 3.9 Let C be a linear code with parity check matrix H. Then
u, v are in the same coset of C if and only if Hut = Hvt.

Proof. Exercise.

Theorem 3.9 states that each coset S of a linear code with parity check
matrix H can be uniquely identified by Hut for any u ∈ S. We will call
Hut the syndrome of u. Suppose a codeword c in a t-error correcting linear
code C in Zn

2 is transmitted and we receive the vector r ∈ Zn
2 with r = c+e

for some nonzero error vector e. If r contains t or fewer errors, then we
can find e by finding the unique vector with the same syndrome as r that
contains t or fewer ones. And if r contains more than t errors, then the
syndrome of r will not match the syndromes of any of the vectors in Zn

2

that contain t or fewer ones. When a coset contains a unique vector with
the fewest number of ones, we will call this vector the coset leader. Hence,
for a t-error correcting linear code, each vector that contains t or fewer ones
must be a coset leader.

Example 3.9 Let W = Z2
2 = {(00), (10), (01), (11)}, and choose the fol-

lowing generator matrix G.

G =
[

1 1 1 0 0
0 0 1 1 1

]

Then C = {(00000), (11100), (00111), (11011)} is the resulting [5, 2] linear
code. It can easily be verified that the following matrix H is a parity check
matrix for C.

H =


 1 1 0 0 0

1 0 1 1 0
1 0 1 0 1




It can also easily be verified that C is one-error correcting. Therefore, the
only cosets leaders in Z5

2 for C will be the zero vector and the five vectors in
Z5

2 that contain a single one. The following table shows these coset leaders
and their syndromes.

Coset Leader Syndrome

(00000) (000)t

(10000) (111)t

(01000) (100)t

(00100) (011)t

(00010) (010)t

(00001) (001)t
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Suppose a codeword c ∈ C is transmitted and we receive the vector
r1 = (00011) ∈ Z5

2 . To correct this vector, we compute Hrt1 = (011)t.
Since the coset leader (00100) also has this syndrome, then the error in r
is e = (00100). Hence, we would correct r1 to c = r1 + e = (00111). Note
that because each coset for this code contains 4 vectors, only 24 of the 32
vectors in Z5

2 are in cosets that have coset leaders. For example, suppose a
codeword in C is transmitted and we receive the vector r2 = (01001). To
correct this vector we compute Hrt2 = (101)t. But none of the coset leaders
for C also have this syndrome, so r2 is not in a coset with a coset leader.
Thus, r2 cannot be corrected.

3.6 Hamming Codes with Maple

In this section we show how Maple can be used to construct codewords and
correct errors in the [15, 11] Hamming code.

We begin by constructing the parity check matrix H for the code. We
first enter the length m = 4 of the binary vectors that form the columns in
the parity check matrix.

> m := 4:

Recall that the columns of H are binary expressions of length m for
the numbers 1, 2, . . . , 2m − 1. We can obtain the binary expression of
a number in Maple by using the convert command. For example, we can
obtain the binary expression of the number 4 by entering the following
command.

> cb := convert(4, base, 2);

cb := [ 0, 0, 1 ]

The entries in the preceding vector are the coefficients in the expression
4 = 0 · (20) + 0 · (21) + 1 · (22). Note that this vector contains only three
positions, whereas for the columns in H we want binary vectors of length
m = 4 positions. That is, to be placed as the 4th column in H, we would
want the number 4 to be converted to the binary vector [0, 0, 1, 0].
Furthermore, note that the binary digits in this vector are the reverse of
how they should be expressed in the 4th column of H. To be directly placed
as the 4th column in H, the number 4 should be converted to the binary
vector [0, 1, 0, 0]. We can use the following commands to take care of
these problems. After first including the Maple linalg package, we define
the vector bv of length m = 4 containing all zeros. Then in the subsequent
for loop we place the binary digits from cb in appropriate order in the
vector bv.
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> with(linalg):

> bv := vector(m, 0):

> for i from 1 to vectdim(cb) do

> bv[m-i+1] := cb[i]:

> od:

> evalm(bv);

[ 0, 1, 0, 0 ]

We now construct the parity check matrix H for the [15, 11] Hamming
code by placing properly ordered binary representations of length m = 4
for the numbers 1, 2, . . . , 2m−1 as columns in H. To do this, we first create
an empty list H. We then use a Maple for loop to build the parity check
matrix column by column in H. The op command that appears in the loop
allows new columns to be attached to H with the augment command.

> H := []:

> for j from 1 to 2^m-1 do

> cb := convert(j, base, 2):

> bv := vector(m, 0):

> for i from 1 to vectdim(cb) do

> bv[m-i+1] := cb[i]:

> od:

> H := augment(op(H), bv):

> od:

> evalm(H);




0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1




Next, we construct a generator matrix G for the [15, 11] Hamming code
by finding a basis for the null space of H over Z2 and placing these basis
vectors as rows in G. To do this, we first find a basis for the null space of
H using the Maple Nullspace command as follows.

> nH := Nullspace(H) mod 2;

nH := {[ 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 ],
[ 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0 ],
[ 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0 ],

c© 1999 by CRC Press LLC



[ 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 ],
[ 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0 ],
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0 ]}

The preceding output is a basis for the null space of H expressed as rows
in a set. Because Maple places a default ordering on the vectors in this set
(although not necessarily in the order in which they are displayed), each
basis vector can be retrieved by entering a command like the following.

> nH[2];

[ 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0 ]

The following command returns the number of vectors in the set nH.
> nops(nH);

11

We now form a generator matrixG for the [15, 11] Hamming code by placing
the vectors in the set nH as rows in G. In the following for loop we build
the generator matrix row by row in G. Note that we attach new rows to G
using the Maple stackmatrix command.3

> G := []:

> for i from 1 to nops(nH) do

> G := stackmatrix(op(G), nH[i]):

> od:

> evalm(G);




0 1 0 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0




3See footnote p. 51 regarding the Maple stackmatrix command.
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Recall that the codewords in a linear code constructed using a gener-
ator matrix G are all vectors of the form wG where w is a vector over Z2

of appropriate length. To see the length of the vectors w for the [15, 11]
Hamming code, we can enter the following command, which returns the
number of rows in G.

> rowdim(G);

11

Hence, the vectors w for the [15, 11] Hamming code should contain 11 po-
sitions. For example, consider the following vector w.

> w := vector([1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0]):

In the next command we form the codeword wG that results from w. Note
that we use the map command to reduce the result over Z2. Note also that
we use the Maple &* command for matrix multiplication.

> c := map(x -> x mod 2, evalm(w &* G));

c := [ 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1 ]

We now show how Maple can be used to correct errors in the [15, 11]
Hamming code. Suppose a codeword in the [15, 11] Hamming code is trans-
mitted and we receive the following vector r.

> r := vector([0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0]):

To determine if an error exists in this received vector, we compute the
syndrome of r as follows.

> syn := map(x -> x mod 2, evalm(H &* r));

syn := [ 1, 0, 0, 1 ]

Because this syndrome is nonzero, we know r is not a codeword in the
[15, 11] Hamming code. Recall that to correct the error in r we must only
find the column in H that matches this syndrome. The number of this
column in H will be the same as the number of the position in r that
contains an error. We can use the following commands to find the column
in H that matches this syndrome. We first assign the parameters fc and
cn that we will use in the subsequent while loop. The loop compares each
of the columns in H with the syndrome of r. When a match is found, the
variable fc is assigned the value 1. This terminates the loop, leaving cn
as the column number where the match occurred. The col command that
appears in the loop allows us to access each of the columns of H. The Maple
equal command is a logical statement that returns true if its parameters
are equal, and false if not.

> fc := 0:

> cn := 0:
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> while (fc <> 1) and (cn < 2^m-1) do

> cn := cn + 1;

> if equal(col(H, cn), syn) = true then

> fc := 1;

> fi:

> od:

After we execute the preceding commands, we can enter the following com-
mand to see the position in r that contains an error.

> cn;

9

This value for cn indicates that the error in r is in the 9th position. To
correct this error, we first define the following vector e of length 2m − 1
containing all zeros.

> e := vector(2^m-1, 0);

e := [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

Next, we define the entry in position cn of e to be equal to 1.
> e[cn] := 1:

We can then see the error vector that corresponds to r as follows.
> evalm(e);

[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]

And we can see the corrected codeword as follows.
> map(x -> x mod 2, evalm(r + e));

[ 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0 ]
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Written Exercises

1. Using Theorem 3.1, find the maximum number of errors that are
guaranteed to be correctable in a code of length 7 with 4 codewords.
Then, using Theorem 3.3, show that it is not possible to construct a
code of length 7 with 4 codewords that is guaranteed to correct this
maximum number of errors.

2. Construct a (15, 8) code with 16 codewords. What is the maximum
number of errors that are guaranteed to be correctable in this code?

3. Construct an (8, 4) code with 16 codewords. What is the maximum
number of errors that are guaranteed to be correctable in this code?

4. Is it possible to construct a [6, 2] linear code that is 2-error correcting?
State how you know. (Hint: See Theorem 3.1.)

5. Find a generator matrix for a 2-error correcting linear code with 4
codewords. Also, construct a parity check matrix for the code.

6. Let C be the [7, 4] Hamming code.

(a) Construct the codewords in C.
(b) Correct the following received vectors in C: r1 = (0011101),
r2 = (0100101).

(c) Make a list of the coset leaders for C and their syndromes.

7. For the code in Example 3.9, which of the vectors r1 = (11101),
r2 = (01011), and r3 = (10101) can be corrected using the coset
method? Correct those that can be corrected. For the one(s) that
cannot be corrected, explain why.

8. Let W = {(00), (01), (10), (11)}, and choose the following generator
matrix G.

G =
[

1 1 0 0 1 1
0 0 1 1 1 1

]

(a) Construct the linear code C that results from G and W . How
many errors are guaranteed to be correctable in this code?

(b) Make a list of the coset leaders for C and their syndromes for
all coset leaders that contain a single one or all zeros. Why are
the remaining cosets irrelevant for error correction?

(c) Which of the vectors r1 = (100011), r2 = (001100), and
r3 = (111100) can be corrected in C using the coset method?
Correct those that can be corrected. For the one(s) that cannot
be corrected, explain why.
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9. Prove Corollary 3.4.

10. Prove Theorem 3.5.

11. Show that the [2m − 1, 2m − 1 −m] Hamming codes are perfect.

12. Prove Theorem 3.9.

13. An equivalence relation is a relation ∼ on a set A that satisfies
(i) a ∼ a
(ii) a ∼ b ⇒ b ∼ a
(iii) a ∼ b and b ∼ c ⇒ a ∼ c

for every a, b, c ∈ A. Let C be a linear code in Zn
2 . Define a relation

∼ on V by x ∼ y if x and y are in the same coset of C. Show that ∼
is an equivalence relation on V .

14. A metric space is a setM with a real-valued function d(·, ·) onM×M
that satisfies

(i) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y
(ii) d(x, y) = d(y, x)
(iii) d(x, z) ≤ d(x, y) + d(y, z)

for every x, y, z ∈ M . Prove or disprove: a code C in Zn
2 with the

Hamming distance function d(·, ·) is a metric space.

Maple Exercises

1. We mentioned in Section 3.3 that the (32, 16) Reed-Muller code was
used in the Mariner 9 space probe when it returned photographs of
Mars to Earth in 1972.

(a) Construct the codewords in the (32, 16) Reed-Muller code. How
many errors are guaranteed to be correctable in this code?

(b) Correct the following received vector r in the (32, 16) Reed-
Muller code,

r = (11100101011010011110101101101001)

2. Let C be the [31, 26] Hamming code.

(a) Construct the parity check matrix and a generator matrix for C.
(b) Construct the codeword in C that results from the following

vector w.

w = (10110101110110111110111000)

(c) Correct the following received vector r in C.

r = (1101011100110110110101011110111)
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Chapter 4

BCH Codes

The most useful codes we discussed in Chapter 3 were Hamming codes be-
cause they are linear and perfect. However, Hamming codes are not ideal
for situations in which the occurrence of more than one error in a single
codeword is likely. Recall that Hamming codes are only one-error correct-
ing. If more than one error occurs during the transmission of a Hamming
codeword, the received vector will not be correctable to the codeword that
was sent. Furthermore, since Hamming codes are perfect, if more than one
error occurs during the transmission of a Hamming codeword, the received
vector will be uniquely correctable – it will just be correctable to the wrong
codeword. In this chapter we discuss a class of codes called BCH codes that
are linear and can be constructed to be multiple-error correcting. BCH
codes are named for their creators Bose, Chaudhuri, and Hocquenghem.

4.1 Construction of BCH Codes

One way that BCH codes differ from the codes we discussed in Chapter 3
is that BCH codewords are polynomials rather than vectors. To construct
a BCH code, we begin by letting f(x) = xm − 1 ∈ Z2[x] for some positive
integer m. Then R = Z2[x]/(f(x)) is a ring that can be represented by all
polynomials in Z2[x] of degree less than m. Suppose g(x) ∈ Z2[x] divides
f(x). Then C = {multiples of g(x) in Z2[x] of degree less than m} is a
vector space in R with dimension m− deg g(x). Hence, the polynomials in
C form codewords in an [m,m−deg g(x)] linear code in R with 2m−deg g(x)

codewords. The polynomial g(x) is called a generator polynomial for the
code. We consider the codewords in this code to have length m positions
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because we view each term in a polynomial codeword as a codeword posi-
tion. A codeword c(x) ∈ Z2[x] with m terms can naturally be expressed as
a unique vector in Zm

2 by listing the coefficients of c(x) in order (includ-
ing coefficients of zero). In this book we will assume BCH codewords are
transmitted this way with increasing powers of x.

Example 4.1 Let f(x) = x7 − 1 and g(x) = x3 + x + 1 in Z2[x]. Then
the code C of multiples of g(x) in Z2[x] of degree less than 7 has basis
{x3 + x + 1, x4 + x2 + x, x5 + x3 + x2, x6 + x4 + x3 }. Hence, C is a
[7, 4] code with 16 codewords consisting of all linear combinations of
these basis polynomials in Z2[x]. In this code, we will assume that
the codeword x5 + x4 + x3 + x would be transmitted as the vector
0 + 1x + 0x2 + 1x3 + 1x4 + 1x5 + 0x6 = (0101110) ∈ Z7

2 .

For a code constructed as described above to be a BCH code, the
generator polynomial g(x) must be chosen as follows. Let a1, a2, . . . , as for
s < m be roots of f(x) with minimum polynomials m1(x),m2(x), . . . ,ms(x)
in Z2[x], respectively, and let g(x) be the least common multiple of the
polynomials mi(x) in Z2[x]. Note that g(x) divides f(x), so g(x) can be
used as the generator polynomial for a code. Choosing g(x) in this manner
is useful because of how it allows errors to be corrected in the resulting code.
We will discuss BCH error correction in Section 4.2. Actually, choosing a
generator polynomial as just described still does not necessarily yield a
BCH code. For the resulting code to be a BCH code, the values of m and
the roots ai must be chosen in a special way. We describe this next.

Let m = 2n − 1 for some positive integer n, and let f(x) = xm − 1 in
Z2[x]. Suppose p(x) is a primitive polynomial of degree n in Z2[x]. Then
Z2[x]/(p(x)) is a field of order 2n whose nonzero elements are generated by
the field element x. For reasons that will become apparent when we begin
discussing Reed-Solomon codes in Chapter 5, we will denote the element x
in this field by a. Then, for the roots ai described in the previous paragraph,
we let ai = ai for i = 1, . . . , s. Choosing the ai in this manner is useful
because of how it allows the generator polynomial g(x) to be determined.
The polynomials mi(x) described in the previous paragraph are then the
minimum polynomials of ai for i = 1, . . . , s. Thus, we can determine g(x)
by forming the product that includes a single factor of each unique mi(x).
As a consequence of Lagrange’s Theorem (Theorem 1.4), ai will be a root
of f(x) for all i. Hence, g(x) will divide f(x).

Because BCH codewords are in Z2[x], some of the computations that
are necessary for constructing BCH codes can be done very easily. Specif-
ically, note that (x1 + x2 + · · · + xr)2 = x2

1 + x2
2 + · · · + x2

r over Z2 since
all cross terms will contain a factor of 2. Therefore, for a polynomial
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h(x) = xi1 + xi2 + · · · + xir ∈ Z2[x], it follows that

h(a2) = (a2)i1 + (a2)i2 + · · · + (a2)ir = (ai1 + ai2 + · · · + air )2 = h(a)2.

Similarly, it can be seen that h(a2k) = h(ak)2 for any positive integer k.
Thus, for example, h(a12) = h(a6)2 = h(a3)4. The utility of this will be
clear in the following examples.

Example 4.2 Let f(x) = x7 − 1, and choose the primitive polynomial
p(x) = x3 + x + 1 in Z2[x]. Then for the element a = x in the field
Z2[x]/(p(x)) of order 8, we list the field elements that correspond to the
first seven powers of a in the following table.

Power Field Element
a1 a
a2 a2

a3 a + 1
a4 a2 + a
a5 a2 + a + 1
a6 a2 + 1
a7 1

Let C be the BCH code that results from considering the first four powers
of a. To determine the generator polynomial g(x) for C, we must find
the minimum polynomials m1(x), m2(x), m3(x), and m4(x). But
since p(x) is primitive and a = x, it follows that p(a) = 0. Furthermore,
p(a2) = p(a)2 = 0 and p(a4) = p(a)4 = 0 since p(x) ∈ Z2[x]. Thus,
m1(x) = m2(x) = m4(x) = p(x). Now, since a3 is a root of f(x), the
minimum polynomial m3(x) of a3 must be one of the irreducible factors
of x7 − 1 = (x3 + x + 1)(x3 + x2 + 1)(x + 1). (This factorization can be
obtained by using the Maple Factor command as illustrated in Section
4.3.1.) By substituting a3 into each of these irreducible factors, we can
find that x3 + x2 + 1 is equal to zero when evaluated at a3. Hence,
m3(x) = x3+x2+1. Thus, g(x) = m1(x)m3(x) = x6+x5+x4+x3+x2+x+1.
The code that results from this generator polynomial is a [7, 1] BCH code
with basis {g(x)} and two codewords.

Example 4.3 Let f(x) = x15 − 1, and choose the primitive polynomial
p(x) = x4 + x + 1 in Z2[x]. Then for the element a = x in the field
Z2[x]/(p(x)) of order 16, we list the field elements that correspond to the
first 15 powers of a in the following table.

c© 1999 by CRC Press LLC



Power Field Element Power Field Element
a1 a a9 a3 + a
a2 a2 a10 a2 + a + 1
a3 a3 a11 a3 + a2 + a
a4 a + 1 a12 a3 + a2 + a + 1
a5 a2 + a a13 a3 + a2 + 1
a6 a3 + a2 a14 a3 + 1
a7 a3 + a + 1 a15 1
a8 a2 + 1

Let C be the BCH code that results from considering the first six powers
of a. To determine the generator polynomial g(x) for C, we must find the
minimum polynomials m1(x),m2(x), . . . ,m6(x). But p(a) = 0, and hence
p(a2) = p(a4) = 0. Thus, m1(x) = m2(x) = m4(x) = p(x). Also, since a3

and a5 are roots of f(x), then m3(x) and m5(x) are irreducible factors of
x15 − 1 = (x+1)(x2 +x+1)(x4 +x+1)(x4 +x3 +1)(x4 +x3 +x2 +x+1).
By substituting a3 and a5 into each of these irreducible factors, we can
find that m3(x) = x4 + x3 + x2 + x + 1 and m5(x) = x2 + x + 1. Fur-
thermore, m3(a6) = m3(a3)2 = 0, and hence m6(x) = m3(x). Thus,
g(x) = m1(x)m3(x)m5(x) = x10 + x8 + x5 + x4 + x2 + x + 1. The code
that results from this generator polynomial is a [15, 5] BCH code with basis
{g(x), xg(x), x2g(x), x3g(x), x4g(x)} and 25 = 32 codewords.

Although BCH codes are not as easy to construct as Hadamard or
Reed-Muller codes, BCH codes are linear while Hadamard and Reed-Muller
codes are not. Also, unlike Hamming codes, BCH codes can be constructed
to be multiple-error correcting. Specifically, in the next section we will
show that a BCH code that results from considering the first 2t powers of a
is t-error correcting. For example, since in Example 4.3 we considered the
first six powers of a, the resulting BCH code is 3-error correcting. Also,
since in Example 4.2 we considered the first four powers of a, the resulting
BCH code is 2-error correcting. We discuss a scheme for correcting errors
in BCH codewords next.

4.2 Error Correction in BCH Codes

As mentioned in Section 4.1, the generator polynomial for a BCH code is
chosen in a special way because of how it allows errors to be corrected in
the code. Before discussing the BCH error correction scheme, we first note
the following theorem.
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Theorem 4.1 Let C be a BCH code that results from a primitive poly-
nomial of degree n by considering the first s powers of a, and suppose
c(x) ∈ Z2[x] has degree less than 2n − 1. Then c(x) ∈ C if and only if
c(ai) = 0 for i = 1, . . . , s.

Proof. Let mi(x) be the minimum polynomial of ai in Z2[x] for i = 1, . . . , s,
and let g(x) be the least common multiple of the polynomials mi(x) in
Z2[x]. If c(x) ∈ C, then c(x) = g(x)h(x) for some h(x) ∈ Z2[x]. Thus,
c(ai) = g(ai)h(ai) = 0 h(ai) = 0 for i = 1, . . . , s. Conversely, if c(ai) = 0
for i = 1, . . . , s, then mi(x) divides c(x) for i = 1, . . . , s. Hence, g(x) divides
c(x), and c(x) ∈ C.

We now outline the BCH error correction scheme. Let C be a BCH
code that results from a primitive polynomial of degree n by considering
the first 2t powers of a. We will show in Theorem 4.2 that C is then t-error
correcting. Suppose c(x) ∈ C is transmitted and we receive the polynomial
r(x) �= c(x) in Z2[x] of degree less than 2n − 1. Then r(x) = c(x) + e(x)
for some nonzero error polynomial e(x) in Z2[x] of degree less than 2n − 1.
To correct r(x), we must only determine e(x), for we could then compute
c(x) = r(x) + e(x). But note that Theorem 4.1 implies r(ai) = e(ai) for
i = 1, . . . , 2t. Thus, by knowing r(x), we also know some information about
e(x). We will call the values of r(ai) the syndromes of r(x). Now, suppose

e(x) = xm1 + xm2 + · · · + xmp

for some integer error positions m1 < m2 < · · · < mp with p ≤ t and
mp < 2n − 1. To find these error positions, we begin by computing the
first 2t syndromes of r(x). We will denote these syndromes as follows by
r1, r2, . . . , r2t.

r1 = r(a) = e(a) = am1 + am2 + · · · + amp

r2 = r(a2) = e(a2) = (a2)m1 + (a2)m2 + · · · + (a2)mp

...
r2t = r(a2t) = e(a2t) = (a2t)m1 + (a2t)m2 + · · · + (a2t)mp

Next, we introduce the following polynomial E(z), which we will call an
error locator polynomial.

E(z) = (z − am1)(z − am2) · · · (z − amp)
= zp + σ1z

p−1 + · · · + σp

We call E(z) an error locator polynomial because the roots of E(z) show
the error positions in r(x). Our eventual goal will be to determine these
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roots. Before doing this, we must first find the coefficients σ1, σ2, . . . , σp

of E(z). These coefficients are the elementary symmetric functions in
am1 , am2 , . . . , amp . That is,

σ1 =
∑

1≤i≤p

ami

σ2 =
∑

1≤i<j≤p

amiamj

...
σp = am1 · · · amp .

Note that if we evaluate E(amj ) for all 1 ≤ j ≤ p and multiply each result
by (amj )i for any 1 ≤ i ≤ p, since E(amj ) = 0 for all 1 ≤ j ≤ p, we obtain
the following system of equations for 1 ≤ i ≤ p.

0 = (am1)i[(am1)p + σ1(am1)(p−1) + · · · + σp]

0 = (am2)i[(am2)p + σ1(am2)(p−1) + · · · + σp]
...
0 = (amp)i[(amp)p + σ1(amp)(p−1) + · · · + σp]

By distributing the (amj )i in the preceding equations and summing the
results, we obtain the following equation for 1 ≤ i ≤ p.

0 = ri+p + σ1ri+p−1 + σ2ri+p−2 + · · · + σpri

Since this holds for 1 ≤ i ≤ p, this yields a system of p linear equations in
the p unknowns σ1, . . . , σp that are equivalent to the following single matrix
equation. 


r1 · · · rp
...

...
rp · · · r2p−1







σp

...
σ1


 =




rp+1

...
r2p


 (4.1)

If the p × p coefficient matrix in (4.1) is nonsingular, then we can solve
(4.1) uniquely for σ1, . . . , σp. After we find σ1, . . . , σp, we can then form
the error locator polynomial E(z) and determine am1 , . . . , amp by trial and
error as the roots of E(z). This reveals the error positions m1, . . . ,mp in
r(x).

We will now look at two examples of the BCH error correction scheme
in the code that results from the generator polynomial in Example 4.3.
Since we will generally not know the number of errors in a received polyno-
mial before attempting to correct it, we will begin the BCH error correction
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scheme in a t-error correcting BCH code by assuming that the received poly-
nomial r(x) contains the maximum number t of correctable errors and using
the first 2t syndromes of r(x). If r(x) does not contain exactly t errors, then
the t × t coefficient matrix in (4.1) will not be nonsingular. In this case,
we can simply reduce the number of assumed errors to t− 1 and repeat the
error correction procedure using only the first 2t− 2 syndromes of r(x). If
r(x) also does not contain exactly t− 1 errors (i.e., if the (t− 1) × (t− 1)
coefficient matrix in (4.1) is also not nonsingular), we can continue to re-
peat the procedure, each time reducing the number of assumed errors by
one and using twice as many syndromes as the number of assumed errors
until the coefficient matrix in (4.1) is nonsingular. If the error in r(x) is
not correctable, then the coefficient matrix in (4.1) will not be nonsingular
for any number of assumed errors between 1 and t.

Example 4.4 Let C be the BCH code in Example 4.3 that results from
the generator polynomial g(x) = x10 +x8 +x5 +x4 +x2 +x+1. Suppose a
codeword in C is transmitted as a vector in Z15

2 and we receive the vector
r = (101111110010000) ∈ Z15

2 . Note first that this vector converts to the
polynomial r(x) = 1 + x2 + x3 + x4 + x5 + x6 + x7 + x10 ∈ Z2[x]. It can
easily be verified that g(x) does not divide r(x). Hence, r(x) /∈ C. Since
C is 3-error correcting, to correct r(x) we begin by computing the first six
syndromes of r(x). Using the table of powers of a and corresponding field
elements in Example 4.3, we can compute these syndromes as follows.

r1 = r(a)
= 1 + a2 + a3 + a4 + a5 + a6 + a7 + a10

= 1 + a2 + a3 + a + 1 + a2 + a + a3 + a2 + a3 + a + 1 + a2 + a + 1
= a3

r3 = r(a3)
= 1 + a6 + a9 + a12 + a15 + a18 + a21 + a30

= 1 + a6 + a9 + a12 + 1 + a3 + a6 + 1
= · · ·
= a6

r5 = r(a5)
= 1 + a10 + a15 + a20 + a25 + a30 + a35 + a50

= · · ·
= a10

Since r(x) ∈ Z2[x], we can find the remaining syndromes as follows.

r2 = r(a2) = (r(a))2 = (a3)2 = a6

r4 = r(a4) = (r(a))4 = (a3)4 = a12

r6 = r(a6) = (r(a3))2 = (a6)2 = a12
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Now, assuming r(x) contains three errors, we must find σ1, σ2, and σ3 that
satisfy the following equation.


 a3 a6 a6

a6 a6 a12

a6 a12 a10





 σ3

σ2

σ1


 =


 a12

a10

a12


 (4.2)

It can be verified that the determinant of the 3 × 3 coefficient matrix in
(4.2) is a12. Hence, this coefficient matrix is nonsingular and r(x) contains
three errors. We can use Cramer’s rule to determine σ1, σ2, and σ3. For
example, since

∣∣∣∣∣∣
a12 a6 a6

a10 a6 a12

a12 a12 a10

∣∣∣∣∣∣ = a28 + a30 + a28 + a24 + a36 + a26

= 1 + a9 + a6 + a11

= 1 + a3 + a + a3 + a2 + a3 + a2 + a

= a3 + 1
= a14,

Cramer’s rule yields

σ3 =
a14

a12
= a2.

Similarly, since
∣∣∣∣∣∣
a3 a12 a6

a6 a10 a12

a6 a12 a10

∣∣∣∣∣∣ = · · · = a10 and

∣∣∣∣∣∣
a3 a6 a12

a6 a6 a10

a6 a12 a12

∣∣∣∣∣∣ = · · · = 1,

Cramer’s rule yields

σ2 =
a10

a12
= a13 and σ1 =

1
a12

= a3.

The resulting error locator polynomial is E(z) = z3 + a3z2 + a13z + a2.
By evaluating E(z) at successive powers of a, we can find that the roots of
E(z) are 1, a5, and a12. Hence, the error in r(x) is e(x) = 1 + x5 + x12.
Thus, we correct r(x) to the following codeword c(x).

c(x) = r(x) + e(x) = x2 + x3 + x4 + x6 + x7 + x10 + x12

It can easily be verified that this polynomial c(x) is a multiple of g(x).

Suppose another codeword in C is transmitted and we receive the vec-
tor r = (100100010011010) ∈ Z15

2 . This vector converts to the polynomial
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r(x) = 1 + x3 + x7 + x10 + x11 + x13 ∈ Z2[x]. It can easily be verified
that r(x) is not a multiple of g(x). Hence, r(x) /∈ C. To correct r(x) we
begin by computing the first six syndromes of r(x). These syndromes can
be determined as in the first part of this example and are as follows.

r1 = a5

r2 = a10

r3 = a2

r4 = a5

r5 = 1
r6 = a4

Now, assuming r(x) contains three errors, we must find σ1, σ2, and σ3 that
satisfy the following equation.


 a5 a10 a2

a10 a2 a5

a2 a5 1





 σ3

σ2

σ1


 =


 a5

1
a4


 (4.3)

However, it can be verified that the determinant of the 3 × 3 coefficient
matrix in (4.3) is 0. Hence, this coefficient matrix is not nonsingular and
r(x) does not contain three errors. Thus, we assume r(x) contains only
two errors and use only the first four syndromes of r(x). Assuming r(x)
contains only two errors, we must find σ1 and σ2 that satisfy the following
equation. [

a5 a10

a10 a2

] [
σ2

σ1

]
=

[
a2

a5

]
(4.4)

It can be verified that the determinant of the 2×2 coefficient matrix in (4.4)
is a13, so this coefficient matrix is nonsingular and r(x) contains two errors.
We can again use Cramer’s rule to determine σ1 and σ2. Specifically, since∣∣∣∣ a2 a10

a5 a2

∣∣∣∣ = · · · = a and
∣∣∣∣ a5 a2

a10 a5

∣∣∣∣ = · · · = a3,

Cramer’s rule yields

σ2 =
a

a13
= a3 and σ1 =

a3

a13
= a5.

The resulting error locator polynomial is E(z) = z2 + a5z + a3. The roots
of E(z) can be determined as a and a2. Hence, the error in r(x) is
e(x) = x + x2 and we correct r(x) to the following codeword c(x).

c(x) = r(x) + e(x) = 1 + x + x2 + x3 + x7 + x10 + x11 + x13

It can easily be verified that this polynomial c(x) is a multiple of g(x).
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We close this section by proving a fundamental result we have men-
tioned regarding BCH codes.

Theorem 4.2 Let C be a BCH code that results from considering the first
2t powers of a. Then C is t-error correcting.

Proof. Suppose C results from a primitive polynomial of degree n, and let
m = 2n − 1. Consider the following matrix H.

H =




1 a a2 · · · am−1

1 a2 (a2)2 · · · (a2)m−1

1 a3 (a3)2 · · · (a3)m−1

...
...

...
...

1 a2t (a2t)2 · · · (a2t)m−1




Note that for a polynomial r(x) = b0 + b1x + · · · + bm−1x
m−1 ∈ Z2[x], if

we let b = (b0, b1, . . . , bm−1), then Hbt = (r1, r2, . . . , r2t)t. Hence, r(x) ∈ C
if and only if Hbt is the zero vector. Thus, H can serve as a parity check
matrix for C.

We will now show that the minimum number of linearly dependent
columns in H is 2t + 1. We first show that any 2t columns in H must be
linearly independent. Choose integers 0 ≤ j1 < j2 < · · · < j2t < m. Then
the columns in H in these positions form the following 2t× 2t matrix.




aj1 aj2 · · · aj2t

(a2)j1 (a2)j2 · · · (a2)j2t
...

...
...

(a2t)j1 (a2t)j2 · · · (a2t)j2t




The determinant of this matrix can be expressed as
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
aj1 aj2 aj2t

...
...

...
(aj1)2t−1 (aj2)2t−1 · · · (aj2t)2t−1

∣∣∣∣∣∣∣∣∣
· aj1aj2 · · · aj2t ,

which is nonzero because it is the determinant of a Vandermonde matrix
with distinct columns. Thus, any 2t columns in H are linearly independent.
Also, since H has 2t rows, then we know that any 2t + 1 columns in H
must be linearly dependent. Therefore, the minimum number of linearly
dependent columns in H is 2t+1. By Theorem 3.7, we know then that the
minimum distance of C is 2t + 1. Hence, C is t-error correcting.
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4.3 BCH Codes with Maple

In this section, we show how Maple can be used to construct the BCH gen-
erator polynomial in Example 4.3, and correct the two received polynomials
in Example 4.4.

We begin by including the Maple linalg package and entering the
primitive polynomial p(x) = x4 + x+ 1 ∈ Z2[x] used to construct the code.

> with(linalg):

> p := x -> x^4 + x + 1:

> Primitive(p(x)) mod 2;

true

Next, we use the Maple degree function to assign the number of elements in
the underlying field as the variable fs, and use the Maple vector function
to create a vector in which to store the field elements.

> fs := 2^(degree(p(x)));

fs := 16
> field := vector(fs);

field := array( 1..16, [ ] )

By entering the following commands, we generate and store the field ele-
ments in the vector field. Since for BCH codes we denote the field element
x by a, we use the parameters a and p(a) in the following Powmod com-
mand.

> for i from 1 to fs-1 do

> field[i] := Powmod(a, i, p(a), a) mod 2:

> od:

> field[fs] := 0:

> evalm(field);

[ a, a2, a3, a + 1, a2 + a, a3 + a2, a3 + a + 1, a2 + 1, a3 + a,

a2 + a + 1, a3 + a2 + a, a3 + a2 + a + 1, a3 + a2 + 1, a3 + 1,
1, 0 ]

Because working with BCH codes requires frequent conversions between
polynomial field elements and powers of a, it will be very useful for us to
establish an association between the polynomial field elements and corre-
sponding powers of a for this field. We will establish this association in a
table. We first use the Maple table command to create a table.

> ftable := table():

Then, by entering the following commands we establish an association be-
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tween the polynomial field elements and corresponding powers of a for this
field in ftable. Note the bracket [ ] syntax for accessing the field elements
and the table entries.

> for i from 1 to fs-1 do

> ftable[ field[i] ] := a^i:

> od:

> ftable[ field[fs] ] := 0:

We can view the entries in ftable by entering the following print com-
mand. For the sake of space (because Maple displays this table as a vertical
list) we have removed this output.

> print(ftable);

The following command illustrates how ftable can be used. Specifically,
by entering the following command we can access the power of a that cor-
responds to the polynomial field element a3 + a2.

> ftable[a^3 + a^2];

a6

4.3.1 Construction of the Generator Polynomial

We now show how Maple can be used to construct the generator polynomial
in Example 4.3. We first define the polynomial f(x) = x15 − 1 of which
each power of a is a root.

> f := x -> x^(fs-1) - 1;

f := x → x( fs−1 ) − 1

Next, we use the Maple Factor command to find the irreducible factors of
f(x) in Z2[x].

> factf := Factor(f(x)) mod 2;

factf := (x4 + x3 + x2 + x + 1 ) (x4 + x + 1 ) (x2 + x + 1 )
(x + 1 ) (x4 + x3 + 1 )

To construct the generator polynomial in Example 4.3, we will need to
access the factors of f(x) separately. We can do this by using the Maple
op command. For example, we can use the following command to assign
the third factor in the expression factf to the variable f3.

> f3 := op(3, factf);

f3 := x2 + x + 1
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We can then use the Maple unapply command as follows to convert f3
into a function that can be evaluated in the usual manner.

> f3 := unapply(f3, x);

f3 := x → x2 + x + 1
> f3(a^6);

a12 + a6 + 1

The following Maple Rem command returns the polynomial field element
that corresponds to the preceding output.

> Rem(f3(a^6), p(a), a) mod 2;

a

And the following command returns the number of factors in factf.
> nops(factf);

5

We now find the minimum polynomials that will be the factors in the gen-
erator polynomial. We first assign the number t = 3 of errors the code
is to be able to correct. In the subsequent loops we find and display the
minimum polynomials of a, a2, . . . , a2t. In these commands, the outer loop
spans the powers ai of a, while the inner loop evaluates each factor of factf
at ai. Since each power of a is a root of factf, each power of a will be
a root of an irreducible factor of factf. The factor of which each power
of a is a root will be the minimum polynomial of that power of a. The
if and print statements that appear in these commands cause the correct
minimum polynomial to be displayed. The break statement causes the
inner loop to terminate when the correct minimum polynomial is found.

> t := 3:

> for i from 1 to 2*t do

> for j from 1 to nops(factf) do

> fj := op(j, factf):

> fj := unapply(fj, x):

> if Rem(fj(a^i), p(a), a) mod 2 = 0 then

> print(a^i, ‘ is a root of ‘, fj(x)):

> break:

> fi:

> od:

> od:
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a, is a root of , x4 + x + 1

a2, is a root of , x4 + x + 1

a3, is a root of , x4 + x3 + x2 + x + 1

a4, is a root of , x4 + x + 1

a5, is a root of , x2 + x + 1

a6, is a root of , x4 + x3 + x2 + x + 1

Next, we define one factor of each of the three unique minimum polynomials
in the preceding output.

> m1 := x -> x^4 + x + 1:

> m3 := x -> x^4 + x^3 + x^2 + x + 1:

> m5 := x -> x^2 + x + 1:

We can then define the generator polynomial g(x) as the product of these
three factors.

> g := m1(x) * m3(x) * m5(x);

g := (x4 + x + 1 ) (x4 + x3 + x2 + x + 1 ) (x2 + x + 1 )

Finally, we convert g(x) into a function that can be evaluated in the usual
manner as follows.

> g := unapply(g, x);

g := x → (x4 + x + 1 ) (x4 + x3 + x2 + x + 1 ) (x2 + x + 1 )

4.3.2 Error Correction

We now show how Maple can be used to correct the received polynomials
in Example 4.4. Consider first the following received polynomial r(x).

> r := x -> 1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^10:

Recall that to correct r(x) we begin by computing the first 2t syndromes
of r(x). Before doing this, we first create a vector syn of length 2t in which
to store the syndromes.

> syn := vector(2*t);

syn := array( 1..6, [ ] )
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By entering the following commands we generate and store the first 2t
syndromes of r(x) in syn.

> for i from 1 to 2*t do

> syn[i] := Rem(r(a^i), p(a), a) mod 2:

> syn[i] := ftable[ syn[i] ];

> od:

> evalm(syn);

[ a3, a6, a6, a12, a10, a12 ]

We can then access particular syndromes of r(x) from the vector syn. For
example, we can access the 5th syndrome of r(x) by entering the following
command.

> syn[5];

a10

Next, we define the 3 × 3 coefficient matrix from (4.2) as follows.
> A := matrix( [ [syn[1], syn[2], syn[3]], [syn[2], syn[3],

> syn[4]], [syn[3], syn[4], syn[5]] ] );

A :=




a3 a6 a6

a6 a6 a12

a6 a12 a10




And next we define the vector from the right-hand side of (4.2).
> b := vector( [syn[4], syn[5], syn[6]] );

b := [ a12, a10, a12 ]

We can use the Maple det function to find the determinant of A as follows.
> d := det(A);

d := a19 − a27 − a22 + 2 a24 − a18

The next command returns the field element that corresponds to the de-
terminant of A.

> d := Rem(det(A), p(a), a) mod 2;

d := a3 + a2 + a + 1
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And the next command returns the power of a that corresponds to the
determinant of A.

> d := ftable[d];

d := a12

Since this determinant is nonzero, we know r(x) contains three errors. As
in Example 4.4, we will use Cramer’s rule to determine σ1, σ2, and σ3 from
(4.2). To construct the matrices required for Cramer’s rule, we will use the
Maple col function for choosing a column from a matrix. For example, the
following command returns the second column from A.

> col(A, 2);

[ a6, a6, a12 ]

We can easily use the Maple col and augment functions to construct the
matrices required for Cramer’s rule. For example, the following command
constructs a new matrix A1 from A by replacing the first column of A with
the vector b. This matrix is necessary for Cramer’s rule in computing σ3.

> A1 := augment(b, col(A,2), col(A,3));

A1 :=




a12 a6 a6

a10 a6 a12

a12 a12 a10




The following command returns the determinant of A1 as a power of a.
> dA1 := ftable[ Rem(det(A1), p(a), a) mod 2 ];

dA1 := a14

Hence, by Cramer’s Rule, we can compute σ3 as follows.
> sigma3 := dA1/d;

σ3 := a2

Similarly, by Cramer’s Rule, we can determine σ2 as follows.
> A2 := augment(col(A,1), b, col(A,3));

A2 :=




a3 a12 a6

a6 a10 a12

a6 a12 a10
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> dA2 := ftable[ Rem( det(A2), p(a), a) mod 2 ];

dA2 := a10

> sigma2 := dA2/d;

σ2 :=
1
a2

Because this expression for σ2 in not in the exact form we want (as a positive
power of a), we enter the following command.

> sigma2 := sigma2 * a^(fs-1);

σ2 := a13

Finally, by Cramer’s Rule we can determine σ1 as follows.
> A3 := augment(col(A,1), col(A,2), b);

A3 :=




a3 a6 a12

a6 a6 a10

a6 a12 a12




> dA3 := ftable[ Rem(det(A3), p(a), a) mod 2 ];

dA3 := a15

> sigma1 := dA3/d;

σ1 := a3

Next, we define the resulting error locator polynomial.
> EL := z^3 + sigma1*z^2 + sigma2*z + sigma3;

EL := z3 + a3 z2 + a13 z + a2

> EL := unapply(EL, z);

EL := z → z3 + a3 z2 + a13 z + a2

By entering the following commands we find the roots of this error locator
polynomial by trial and error.

> for i from 1 to fs-1 do

> if Rem(EL(a^i), p(a), a) mod 2 = 0 then

> print(a^i, ‘ is a root of EL(z) = ‘, EL(z));

> fi:

> od:
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a5, is a root of EL(z ) = , z3 + a3 z2 + a13 z + a2

a12, is a root of EL(z ) = , z3 + a3 z2 + a13 z + a2

a15, is a root of EL(z ) = , z3 + a3 z2 + a13 z + a2

Recall, a15 = 1. Hence, the roots of this error locator polynomial are 1, a5,
and a12. Thus, the following polynomial is the error e(x) = 1 + x5 + x12 in
the received polynomial r(x).

> e := x -> 1 + x^5 + x^12:

The next command returns the corrected codeword.
> c := (r(x) + e(x)) mod 2;

c := x2 + x3 + x4 + x6 + x7 + x10 + x12

And the next command verifies that c(x) is a multiple of g(x).
> (Factor(c) mod 2)/g(x);

x2

We now consider the following polynomial r(x), which is the second
received polynomial from Example 4.4.

> r := x -> 1 + x^3 + x^7 + x^10 + x^11 + x^13:

To correct this received polynomial, we begin as follows by computing and
storing the first 2t syndromes of r(x) in the vector syn.

> for i from 1 to 2*t do

> syn[i] := Rem(r(a^i), p(a), a) mod 2:

> syn[i] := ftable[ syn[i] ];

> od:

> evalm(syn);

[ a5, a10, a2, a5, a15, a4 ]

Next, we define the coefficient matrix and vector from (4.3).
> A := matrix( [ [syn[1], syn[2], syn[3]], [syn[2], syn[3],

> syn[4]], [syn[3], syn[4], syn[5]] ] );

A :=




a5 a10 a2

a10 a2 a5

a2 a5 a15
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> b := vector( [syn[4], syn[5], syn[6]] );

b := [ a5, a15, a4 ]

We find the determinant of the coefficient matrix from (4.3) as follows.
> d := Rem(det(A), p(a), a) mod 2;

d := 0

Since this determinant is zero, we know r(x) does not contain exactly three
errors. Thus, we assume r(x) contains only two errors and define the co-
efficient matrix and vector from (4.4). To create the coefficient matrix, we
first use the Maple delrows command to delete the last row from A.

> A := delrows(A, 3..3);

A :=


 a5 a10 a2

a10 a2 a5




Note that the last column of this new matrix A is the vector on the right-
hand side of (4.4). We define this vector next.

> b := col(A, 3);

b := [ a2, a5 ]

Then, by deleting the last column from the new matrix A as follows, we
obtain the coefficient matrix from (4.4).

> A := delcols(A, 3..3);

A :=


 a5 a10

a10 a2




Next, we find the determinant of this 2 × 2 coefficient matrix.
> d := ftable[ Rem(det(A), p(a), a) mod 2 ];

d := a13

Since this determinant is nonzero, we know r(x) contains two errors. We
again use Cramer’s rule to determine σ1 and σ2 from (4.4).

> A1 := augment(b, col(A,2));

A1 :=


 a2 a10

a5 a2
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> dA1 := ftable[ Rem(det(A1), p(a), a) mod 2 ];

dA1 := a

> sigma2 := dA1/d;

σ2 :=
1
a12

> sigma2 := sigma2 * a^(fs-1);

σ2 := a3

> A2 := augment(col(A,1), b);

A2 :=


 a5 a2

a10 a5




> dA2 := ftable[ Rem(det(A2), p(a), a) mod 2 ];

dA2 := a3

> sigma1 := dA2/d;

σ1 :=
1
a10

> sigma1 := sigma1 * a^(fs-1);

σ1 := a5

Next, we define the resulting error locator polynomial.
> EL := z^2 + sigma1*z + sigma2;

EL := z2 + a5 z + a3

> EL := unapply(EL, z);

EL := z → z2 + a5 z + a3

We find the roots of this error locator polynomial as follows.
> for i from 1 to fs-1 do

> if Rem(EL(a^i), p(a), a) mod 2 = 0 then

> print(a^i, ‘ is a root of EL(z) = ‘, EL(z));

> fi:

> od:

a, is a root of EL(z ) = , z2 + a5 z + a3

a2, is a root of EL(z ) = , z2 + a5 z + a3
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Thus, the following polynomial is the error e(x) = x + x2 in r(x).
> e := x -> x + x^2:

The next command returns the corrected codeword.
> c := (r(x) + e(x)) mod 2;

c := 1 + x3 + x7 + x10 + x11 + x13 + x + x2

We can use the Maple sort command as follows to sort the terms in the
preceding polynomial.

> sort(c);

x13 + x11 + x10 + x7 + x3 + x2 + x + 1

The next command verifies that c(x) is a multiple of g(x).
> (Factor(c) mod 2)/g(x);

(x2 + x + 1 ) (x + 1 )
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Written Exercises

1. Use the primitive polynomial p(x) = x3 + x2 + 1 ∈ Z2[x] to construct
a generator polynomial for a one-error correcting BCH code. State
the parameters [n, k] for the code.

2. Correct the following received vectors in the BCH code that results
from the generator polynomial in Written Exercise 1.

(a) r = (1101110)

(b) r = (1100010)

3. Use the primitive polynomial p(x) = x3 + x2 + 1 ∈ Z2[x] to construct
a generator polynomial for a 2-error correcting BCH code. State the
parameters [n, k] for the code. How does this code compare to the
code that results from the generator polynomial in Example 4.2?

4. Use the primitive polynomial p(x) = x3 + x2 + 1 ∈ Z2[x] to construct
a generator polynomial for a 3-error correcting BCH code. State the
parameters [n, k] for the code. How does this code compare to the
code that results from the generator polynomial in Written Exercise
3? Can you make any additional conclusions about the code that
results from the generator polynomial in Written Exercise 3?

5. Use the primitive polynomial p(x) = x4 + x + 1 ∈ Z2[x] to construct
a generator polynomial for a [15, 7] BCH code. State the number of
codewords in the code and the number of errors that can be corrected
in the code. How does this code compare to the code that results from
the generator polynomial in Example 4.3?

6. Use the primitive polynomial p(x) = x4 + x3 + 1 ∈ Z2[x] to construct
a generator polynomial for a 2-error correcting BCH code. State the
code’s parameters [n, k] and the number of codewords in the code.

7. Use the primitive polynomial p(x) = x4 + x3 + 1 ∈ Z2[x] to construct
a generator polynomial for a 3-error correcting BCH code. State the
code’s parameters [n, k] and the number of codewords in the code.

8. Correct the following received vectors in the BCH code that results
from the generator polynomial in Example 4.3.

(a) r = (100011011001010)

(b) r = (011111010011010)

(c) r = (101000011101100)

(d) r = (111011001010100)
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9. The irreducible factors of f(x) = x31 − 1 ∈ Z2[x] are (x + 1) and six
primitive polynomials of degree 5. To construct a t-error correcting
BCH code with binary codewords of length 31 positions, we begin
with a primitive polynomial p(x) ∈ Z2[x] of degree 5, and a certain
number of powers of a = x in the field of order 32 resulting from p(x).
This determines a generator polynomial for the code, the number of
basis elements in the code, and the number of codewords in the code.
Complete the following table for a BCH code with binary codewords
of length 31 positions.

Number of Number of Degree of Number Number of
Correctable Powers of Generator of Basis Codewords
Errors a Needed Polynomial Elements

3

4

5

6

Maple Exercises

1. Find a primitive polynomial of degree 5 in Z2[x], and use this polyno-
mial to construct a generator polynomial for a BCH code. State the
parameters [n, k] for the code, the number of codewords in the code,
and the number of errors that can be corrected in the code.

2. Use the primitive polynomial p(x) = x6 + x5 + 1 ∈ Z2[x] to construct
a generator polynomial for a 3-error correcting BCH code. State the
code’s parameters [n, k] and the number of codewords in the code.

3. Correct the following received polynomials in the BCH code that re-
sults from the generator polynomial in Maple Exercise 2.

(a) r(x) = 1 + x + x2 + x9 + x10 + x13 + x15 + x16 + x17

+ x18 + x21 + x22 + x25 + x26 + x28

(b) r(x) = 1 + x + x2 + x3 + x5 + x6 + x7 + x8 + x9 + x11

+ x12 + x14 + x15 + x18 + x20 + x21 + x22 + x23

(c) r(x) = x3 + x4 + x5 + x12 + x14 + x18 + x19 + x20 + x21
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Chapter 5

Reed-Solomon Codes

In this chapter we discuss a class of codes called Reed-Solomon codes. These
codes, like BCH codes, have polynomial codewords, are linear, and can be
constructed to be multiple-error correcting. However, Reed-Solomon codes
are significantly more popular than BCH codes and all other types of codes
because they are uniquely ideal for correcting error bursts. A received vec-
tor is said to contain an error burst if it contains several errors very close
together. There are many situations in which transmission errors in binary
vectors occur naturally in bursts. We describe one such situation, an ap-
plication of a Reed-Solomon code in the Voyager 2 satellite that returned
photographs to Earth of several of the planets in our solar system, in Sec-
tion 5.6. Reed-Solomon codes also have numerous other applications. For
example, another extensive and well-known use of Reed-Solomon codes is
in the encoding of music, software, and other information on compact discs.

5.1 Construction of Reed-Solomon Codes

To construct a Reed-Solomon code, we begin as in the construction of a
BCH code by choosing a primitive polynomial p(x) of degree n in Z2[x] and
forming the field F = Z2[x]/(p(x)) of order 2n. We will again denote the
element x in this field by a. Reed-Solomon codewords, like BCH codewords,
are then polynomials of degree less than 2n − 1. However, unlike BCH
codewords which are elements in Z2[x], Reed-Solomon codewords are in
F [x]. To construct a t-error correcting Reed-Solomon code C, we use the
following generator polynomial g(x) ∈ F [x].

g(x) = (x− a)(x− a2) · · · (x− a2t)
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The codewords in C are then all multiples b(x)g(x) of degree less than 2n−1
with b(x) ∈ F [x]. Theorem 4.2 can easily be modified to show that C is
t-error correcting. The codewords in C have length 2n − 1 positions and
form a vector space with dimension 2n − 1 − 2t. We will use the notation
RS(2n − 1, t) to represent a t-error correcting Reed-Solomon code with
codewords of length 2n − 1 positions.

Example 5.1 Choose primitive polynomial p(x) = x4+x+1 ∈ Z2[x]. The
nonzero elements in F = Z2[x]/(p(x)) are listed in the table in Example
4.3. Using this field F , we obtain the following generator polynomial g(x)
for an RS(15, 2) code C.

g(x) = (x− a)(x− a2)(x− a3)(x− a4)
= · · ·
= x4 + a13x3 + a6x2 + a3x+ a10

To construct one of the codewords in C, consider b(x) = a10x9 ∈ F [x].
Then

b(x)g(x) = a10x13 + a8x12 + ax11 + a13x10 + a5x9

is one of the codewords in C.

The fact that Reed-Solomon codewords are in F [x] causes two problems
we must address. First, unlike BCH codewords, Reed-Solomon codewords
cannot be transmitted as binary vectors by simply listing the coefficients.
Despite this, Reed-Solomon codewords are still transmitted as binary vec-
tors. We will discuss transmission of Reed-Solomon codewords in Section
5.4. The other problem we must address is that of error correction, for
the BCH error correction scheme cannot be used to correct errors in Reed-
Solomon codewords. Actually, applying the BCH error correction scheme to
a received Reed-Solomon polynomial yields the same information as when
it is applied to a received BCH polynomial. Recall that the last step in the
BCH error correction scheme involves finding the roots of the error locator
polynomial. This reveals only the error positions in the received polyno-
mial. However, because there are only two possible coefficients for each
term in a BCH polynomial, knowledge of the error positions is all that is
necessary to correct the polynomial. The BCH error correction scheme can
also be used to find the error positions in a received Reed-Solomon polyno-
mial, but because there is more than one possible coefficient for each term
in a Reed-Solomon polynomial, knowledge of the error positions is gener-
ally not enough to correct the polynomial. The specific error in each error
position must also be determined. Hence, we must present a new error cor-
rection scheme for correcting Reed-Solomon polynomials. We discuss this
error correction scheme next.
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5.2 Error Correction in Reed-Solomon Codes

Before stating the Reed-Solomon error correction scheme, we first note the
following analogue to Theorem 4.1.

Theorem 5.1 Let F be a field of order 2n, and let C be an RS(2n − 1, t)
code in F [x]. Suppose c(x) ∈ F [x] has degree less than 2n − 1. Then
c(x) ∈ C if and only if c(ai) = 0 for i = 1, . . . , 2t.

Proof. Exercise.

Theorem 5.1 is useful for error correction in Reed-Solomon codes in
the same way Theorem 4.1 is useful for error correction in BCH codes.
Specifically, let F be a field of order 2n, and let C be an RS(2n− 1, t) code
in F [x]. Suppose c(x) ∈ C is transmitted and we receive the polynomial
r(x) �= c(x) in F [x] of degree less than 2n − 1. Then r(x) = c(x) + e(x)
for some nonzero error polynomial e(x) in F [x] of degree less than 2n − 1.
To correct r(x) we must only determine e(x), for we could then compute
c(x) = r(x) + e(x). But note that Theorem 5.1 implies r(ai) = e(ai) for
i = 1, . . . , 2t. Thus, by knowing r(x), we also know some information about
e(x). We will again call the values of r(ai) the syndromes of r(x).

We now outline the Reed-Solomon error correction scheme. As we will
show, this error correction scheme is only slightly more computationally
intensive than the BCH error correction scheme. However, because veri-
fication of the Reed-Solomon error correction scheme is significantly more
involved than verification of the BCH error correction scheme, we will not
verify the Reed-Solomon error-correction scheme in this section. In this
section we will summarize and illustrate the Reed-Solomon error correction
scheme. We will then verify the Reed-Solomon error correction scheme in
Section 5.3.

Let F be a field of order 2n, and let C be an RS(2n − 1, t) code in
F [x]. Suppose c(x) ∈ C is transmitted and we receive the polynomial
r(x) = c(x)+e(x) for some nonzero error polynomial e(x) in F [x] of degree
less than 2n − 1. We can use the following steps to determine e(x).

1. We first compute the first 2t syndromes of r(x), which we will denote
by S1 = r(a), S2 = r(a2), . . . , S2t = r(a2t), and form the following
syndrome polynomial S(z).

S(z) = S1 + S2z + S3z
2 + · · · + S2tz

2t−1

(Note: Because r(x) is not necessarily in Z2[x], it will not necessarily
be the case that r(a2k) = r(ak)2 for any integer k.)
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2. Next, we construct the Euclidean algorithm table (see Section 1.6) for
the polynomials a(z) = z2t and b(z) = S(z) in F [z], stopping at the
first row j for which deg(rj) < t. (The U column may be excluded
from this table.) Let R(z) = rj and V (z) = vj .

3. We can then find the error positions in r(x) by finding the roots of
V (z). Specifically, if ai1 , ai2 , . . . , aik are the roots of V (z), then r(x)
contains errors in positions x−i1 , x−i2 , . . . , x−ik . Finally, we must
find the coefficients of e(x) at these error positions. Let e−i be the

coefficient of the x−i term in e(x). Then e−i =
R(ai)
V ′(ai)

.

We will illustrate this error correction scheme first in a BCH code by
correcting the first received vector in Example 4.4. Although the BCH error
correction scheme is not sufficient to correct errors in Reed-Solomon code-
words, the Reed-Solomon error correction scheme can be used to correct
errors in BCH codewords.

Example 5.2 Let C be the BCH code that results from the generator
polynomial in Example 4.3. Suppose a codeword c(x) ∈ C is transmitted
and we receive the polynomial r(x) = 1+x2+x3+x4+x5+x6+x7+x10. In
this example we will correct r(x) using the Reed-Solomon error correction
scheme. Since C is 3-error correcting, we begin by computing the first six
syndromes of r(x). These syndromes were computed in Example 4.4 and
are as follows.

S1 = r(a) = a3

S2 = r(a2) = a6

S3 = r(a3) = a6

S4 = r(a4) = a12

S5 = r(a5) = a10

S6 = r(a6) = a12

These syndromes yield the following syndrome polynomial S(z).

S(z) = a3 + a6z + a6z2 + a12z3 + a10z4 + a12z5

Constructing the Euclidean algorithm table for a(z) = z6 and b(z) = S(z)
(with numerous necessary calculations omitted), we obtain the following.

Row Q R V

−1 − z6 0
0 − S(z) 1
1 a3z + a a12z4 + a10z3 + z2 + a10z + a4 a3z + a
2 z a11z3 + a7z2 + a12z + a3 a3z2 + az + 1
3 az + a5 a4z2 + a5 a4z3 + z2 + a5z + a2
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Note that we have not included the U column in this table, and that we
have stopped at the first row for which the degree of the entry in the R
column is less than the number of errors that can be corrected in C. Next,
we let R(z) = a4z2 + a5 and V (z) = a4z3 + z2 + a5z + a2. By evaluating
V (z) at successive powers of a, we can find that the roots of V (z) are a0,
a3, and a10. The positions in r(x) that contain errors are x0, x−3 = x12,
and x−10 = x5. To determine the coefficients of these terms in the error
polynomial, we first note that V ′(z) = a4z2 + a5. We can then determine
the coefficients of the terms in the error polynomial as follows.

e0 =
R(a0)
V ′(a0)

=
a4 + a5

a4 + a5
= 1

e5 =
R(a10)
V ′(a10)

=
a24 + a5

a24 + a5
= 1

e12 =
R(a3)
V ′(a3)

=
a10 + a5

a10 + a5
= 1

Hence, the error in r(x) can be expressed as the error polynomial
e(x) = 1 · x0 + 1 · x5 + 1 · x12 = 1 + x5 + x12.

Although the error correction procedure in Example 5.2 appears less
involved than the procedure used to correct the same received polynomial
in Example 4.4, the procedure in Example 5.2 is actually more involved due
to the many calculations necessary in constructing the Euclidean algorithm
table. Also, Example 5.2 shows a relatively simple example of the Reed-
Solomon error correction scheme because it is applied to a polynomial in
Z2[x]. If the scheme is applied to a more general polynomial, the process
can be even more involved. We illustrate this next.

Example 5.3 Consider the primitive polynomial p(x) = x4 + x3 + 1 in
Z2[x]. For the element a = x in the field F = Z2[x]/(p(x)) of order 16,
we list the field elements that correspond to the first 15 powers of a in the
following table.

Power Field Element Power Field Element
a1 a a9 a2 + 1
a2 a2 a10 a3 + a
a3 a3 a11 a3 + a2 + 1
a4 a3 + 1 a12 a+ 1
a5 a3 + a+ 1 a13 a2 + a
a6 a3 + a2 + a+ 1 a14 a3 + a2

a7 a2 + a+ 1 a15 1
a8 a3 + a2 + a
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Let C be the RS(15, 3) code that results from p(x). The following is the
generator polynomial g(x) for C.

g(x) = (x− a)(x− a2)(x− a3)(x− a4)(x− a5)(x− a6)
= · · ·
= x6 + a12x5 + x4 + a2x3 + a7x2 + a11x+ a6

To construct one of the codewords in C, consider the polynomial

b(x) = a8x8 + a3x7 + a7x6 + a9x5 + x4 + a3x3 + a6x2 + a3x+ a7

in F [x]. Then

c(x) = b(x)g(x)
= · · ·
= a8x14 + a12x13 + a3x12 + a8x11 + a12x10 + a3x9 + a8x8

+ a12x7 + a3x6 + a4x5 + a4x4 + a8x3 + a12x2 + a11x+ a13

is one of the codewords in C. Suppose c(x) is transmitted and we receive
the following polynomial r(x).

r(x) = a8x14 + a12x13 + a3x12 + a8x11 + a12x10 + a3x9 + a9x8

+ a5x7 + a13x6 + a4x5 + a4x4 + a8x3 + a12x2 + a11x+ a13

Note that r(x) contains errors in the x8, x7, and x6 positions. To correct
r(x), since C is 3-error correcting, we begin by computing the first six
syndromes of r(x). We list these syndromes below.

S1 = r(a) = · · · = 0
S2 = r(a2) = · · · = 0
S3 = r(a3) = · · · = a2

S4 = r(a4) = · · · = 1
S5 = r(a5) = · · · = 1
S6 = r(a6) = · · · = a12

These syndromes yield the following syndrome polynomial S(z).

S(z) = a2z2 + z3 + z4 + a12z5

Constructing the Euclidean algorithm table for a(z) = z6 and b(z) = S(z)
(again with numerous calculations omitted), we obtain the following.

Row Q R V

−1 − z6 0
0 − S(z) 1
1 a3z + a6 a7z4 + a2z3 + a8z2 a3z + a6

2 a5z + a6 a4z3 + a3z2 a8z2 + a3z + a
3 a3z + a a7z2 a11z3 + a10z2 + a3z + a5
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Hence, R(z) = a7z2 and V (z) = a11z3 + a10z2 + a3z + a5. By evaluating
V (z) at successive powers of a, we can find that the roots of V (z) are a7,
a8, and a9. Thus, the positions in r(x) that contain errors are x−7 = x8,
x−8 = x7, and x−9 = x6. To determine the coefficients of these terms in
the error polynomial, we first note that V ′(z) = a11z2 + a3. We can then
determine the coefficients of the terms in the error polynomial as follows.

e6 =
R(a9)
V ′(a9)

=
a25

a29 + a3
=

a10

a2
= a8

e7 =
R(a8)
V ′(a8)

=
a23

a27 + a3
=

a8

a5
= a3

e8 =
R(a7)
V ′(a7)

=
a21

a25 + a3
=

a6

a
= a5

Therefore, the error in r(x) can be expressed as the error polynomial
e(x) = a5x8 +a3x7 +a8x6. It can easily be verified that forming r(x)+e(x)
yields the codeword c(x).

5.3 Proof of Reed-Solomon Error Correction

In this section we verify the Reed-Solomon error correction scheme sum-
marized and illustrated in Section 5.2. As we mentioned in Section 5.2,
this verification is extensive, so the reader may wish to postpone this sec-
tion until completing the remainder of this chapter, or skip this section
altogether.

Let F be a field of order 2n, and let C be an RS(2n − 1, t) code in
F [x]. Suppose c(x) ∈ C is transmitted and we receive the polynomial
r(x) = c(x)+e(x) for some nonzero error polynomial e(x) in F [x] of degree

less than 2n − 1. We will denote this error polynomial by e(x) =
m−1∑
j=0

ejx
j

with m = 2n − 1 and coefficients ej ∈ F . To determine e(x) from r(x),
we begin by computing the first 2t syndromes of r(x). We denote these
syndromes as follows.

Si = r(ai) = e(ai) =
m−1∑
j=0

eja
ij for i = 1, . . . , 2t

Next, we use these syndromes to construct the syndrome polynomial
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S(z) =
2t−1∑
i=0

Si+1z
i. Note then that

S(z) =
2t−1∑
i=0

m−1∑
j=0

eja
(i+1)jzi =

m−1∑
j=0

eja
j

2t−1∑
i=0

aijzi.

Let M be the set of integers that correspond to the error positions in r(x).
That is, let M = {j ≤ m− 1 | ej �= 0}. Note also that

S(z) =
∑
j∈M

eja
j

2t−1∑
i=0

aijzi =
∑
j∈M

eja
j

(
1 − aj(2t)z2t

1 − ajz

)

=
∑
j∈M

eja
j

1 − ajz
−

∑
j∈M

eja
j(2t+1)z2t

1 − ajz
.

Hence, for the polynomials

R(z) =
∑
j∈M

eja
j

∏
i∈M
i�=j

(1 − aiz),

U(z) =
∑
j∈M

eja
j(2t+1)

∏
i∈M
i�=j

(1 − aiz), and

V (z) =
∏
i∈M

(1 − aiz),

it follows that

S(z) =
R(z)
V (z)

+
U(z)z2t

V (z)
,

or, equivalently,
U(z)z2t + V (z)S(z) = R(z).

This last equation is called the fundamental equation. In this equation, V (z)
is called the error locator polynomial, R(z) is called the error evaluator
polynomial, and U(z) is called the error coevaluator polynomial. Note that
this error locator polynomial V (z) is not the same as the error locator
polynomial from the BCH error correction scheme. Note also that

(U(z), V (z)) = (R(z), V (z)) = 1.

We now consider how to determine the error locator, error evaluator,
and error coevaluator polynomials. As we will show, these polynomials are
the entries in the Euclidean algorithm table for a(z) = z2t and b(z) = S(z)
in the first row j for which deg(rj) < t. The following results verify this. For
convenience, in these results we suppress the variable z whenever possible.
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Theorem 5.2 Suppose V S + Uz2t = R for some syndrome polynomial S,
and let V0, U0, and R0 be polynomials that satisfy

V0S + U0z
2t = R0; deg(V0) ≤ t, deg(U0) < t, deg(R0) < t.

Then there exists a polynomial h ∈ F [z] such that V0 = hV , U0 = hU , and
R0 = hR. If it is also true that (V0, U0) = 1, then h is constant.

Proof. Note first that since V S + Uz2t = R and V0S + U0z
2t = R0,

it follows that
V0V S + V0Uz

2t = V0R

and
V V0S + V U0z

2t = V R0.

Hence, by subtraction,

(V0U − V U0)z2t = V0R− V R0.

By a degree argument we can see that both sides of the preceding equation
must be equal to 0. Thus,

V0U − V U0 = V0R− V R0 = 0.

Since (V,U) = 1, then there must exist polynomials α, β ∈ F [z] for which
αV + βU = 1. Therefore,

V0αV + V0βU = V0.

But since V0U = V U0, then

V0αV + V βU0 = V0,

or, equivalently,
(V0α+ U0β)V = V0.

Now, let
h = V0α+ U0β.

Then hV = V0. Also, hV U = V0U = V U0 implies hU = U0, and
hV R = V0R = V R0 implies hR = R0. Finally, since h must divide
V0 and U0, if (V0, U0) = 1, then h must be constant.

Theorem 5.3 Suppose a = z2t and b = S for some syndrome polynomial
S. In the Euclidean algorithm table for a and b, let j be the first row for
which deg(rj) < t. Define R0 = rj, U0 = uj, and V0 = vj. Then R0, U0,
and V0 satisfy all of the conditions in Theorem 5.2.
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Proof. From Equation (1.5) we know that rj = ujz
2t + vjS. Hence,

R0 = U0z
2t + V0S. Furthermore, since R0 = rj and deg(rj) < t, we

know that deg(R0) < t. Now, because deg(vj−1) < deg(vj) = deg(V0) and
deg(rj−1) > deg(rj) = deg(R0), it follows that deg(vj−1R0) < deg(V0rj−1).
But by Equation (1.7), we know that R0vj−1 − rj−1V0 = a = z2t. Thus,
deg(rj−1V0) ≤ 2t, and since deg(rj−1) ≥ t, it follows that deg(V0) ≤ t.
Also, since deg(uj−1) < deg(uj) = deg(U0), it must be the case that
deg(R0uj−1) < deg(rj−1U0). But by Equation (1.6) we know that
R0uj−1 − rj−1U0 = b = S. Therefore, deg(U0rj−1) < 2t, and since
deg(rj−1) ≥ t, it follows that deg(U0) < t. It remains to be shown only that
(V0, U0) = 1. But by Equation (1.8) we know that uj−1vj − ujvj−1 = 1.
Hence, uj−1V0 − U0vj−1 = 1, and (V0, U0) = 1.

In summary, for a syndrome polynomial S(z), to determine the error
locator, error evaluator, and error coevaluator polynomials V (z), R(z),
and U(z), we construct the Euclidean algorithm table for a(z) = z2t and
b(z) = S(z). At the first row j for which deg(rj) < t, then rj = R0 = hR(z),
uj = U0 = hU(z), and vj = V0 = hV (z). But since (V0, U0) = 1, then
h = 1. Hence, rj = R(z), uj = U(z), and vj = V (z). By finding the
roots of V (z), we can determine the locations of the errors in the received
polynomial as described previously. To find the coefficients of the error
polynomial terms, note that since V (z) =

∏
i∈M

(1 − aiz), then

V ′(z) =
∑
j∈M

−aj
∏
i∈M
i�=j

(1 − aiz).

And recall we already know that

R(z) =
∑
j∈M

eja
j

∏
i∈M
i�=j

(1 − aiz).

By evaluating the preceding polynomials at a−j , we obtain the following.

V ′(a−j) = −aj
∏
i∈M
i�=j

(
1 − a(i−j)

)

R(a−j) = eja
j

∏
i∈M

i�=j

(
1 − a(i−j)

)

Hence,
R(a−j)
V ′(a−j)

= ej reveals the coefficient of xj in the error polynomial.
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5.4 Binary Reed-Solomon Codes

We still have two topics to address regarding Reed-Solomon codes. We
stated in the introduction to this chapter that Reed-Solomon codes are
uniquely ideal for correcting error bursts, but we have not yet discussed
how or why. Also, we stated in Section 5.1 that Reed-Solomon codewords
are transmitted as binary vectors, but we have not yet mentioned the actual
form in which Reed-Solomon codewords are transmitted. It turns out that
these two topics are intimately connected. We will first discuss the form in
which Reed-Solomon codewords are transmitted.

Consider the codeword c(x) in the Reed-Solomon code C in Example
5.3. To convert c(x) to a binary vector, we would begin by listing the terms
in c(x) as follows with increasing powers of x.

c(x) = a13 + a11x+ a12x2 + a8x3 + a4x4 + a4x5 + a3x6 + a12x7

+ a8x8 + a3x9 + a12x10 + a8x11 + a3x12 + a12x13 + a8x14

Next, we would write the coefficients in c(x) as follows, using the table in
Example 5.3 to express each coefficient as a polynomial in a of degree less
than the degree of p(x) with increasing powers of a.

c(x) = (a+ a2) + (1 + a2 + a3)x+ (1 + a)x2 + (a+ a2 + a3)x3

+ (1 + a3)x4 + (1 + a3)x5 + (a3)x6 + (1 + a)x7

+ (a+ a2 + a3)x8 + (a3)x9 + (1 + a)x10 + (a+ a2 + a3)x11

+ (a3)x12 + (1 + a)x13 + (a+ a2 + a3)x14

Finally, we would express each of these coefficients of c(x) as binary vectors
of length four positions by listing in order the binary coefficients of a. For
example, we would express the first coefficient 0+1a+1a2+0a3 of c(x) as the
vector (0110). Using this method, we would convert the entire codeword
c(x) into a binary vector of length 60 positions by listing together these
binary vectors of length four positions, including four zeros for all terms
that could be present in c(x) but have a coefficient of 0 (of which there are
none in this codeword). That is, we would convert c(x) to the following
binary vector of length 60 positions.

( 011010111100011110011001000111000111000111000111000111000111 )

It is clear by the fact that Reed-Solomon codewords are converted
to binary vectors in this manner why Reed-Solomon codes are ideal for
correcting error bursts. Specifically, four errors in the binary equivalent of
c(x) constructed above could represent only a single error in c(x). Hence,
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although c(x) is a codeword in a code that is only 3-error correcting, it may
be possible to correct a received vector to c(x) even if 12 errors occur during
transmission of the binary equivalent of c(x). More generally, regarding
the code C, we would say that provided only one error burst occurs during
transmission of the binary equivalent of a codeword in C, we are guaranteed
to be able to correct the received vector as long as the error burst is not
longer than nine positions. This is because any error burst of length not
longer than nine positions in the binary equivalent of a codeword in C could
not span more than three of the coefficients in the codeword, while an error
burst of length ten positions in the binary equivalent of a codeword in C
could span four of the coefficients in the codeword. This statement can be
generalized in an obvious manner to apply to any RS(2n − 1, t) code (see
Written Exercise 7).

As we mentioned in the introduction to this chapter, there are many
situations in which transmission errors in binary vectors occur naturally in
bursts. It is for these situations that Reed-Solomon codes are ideal.

5.5 Reed-Solomon Codes with Maple

In this section we show how Maple can be used to construct codewords
and correct errors in the RS(31, 4) code C that results from the primitive
polynomial p(x) = x5 + x3 + 1 ∈ Z2[x].

We begin by including the Maple linalg package, entering p(x), and
assigning the number 25 = 32 of elements in the field F = Z2[x]/(p(x)) as
the variable fs.

> with(linalg):

> p := x -> x^5 + x^3 + 1:

> Primitive(p(x)) mod 2;

true

> fs := 2^(degree(p(x)));

fs := 32

Next, as we did for the BCH code in Section 4.3, we generate and store the
field elements in the vector field by entering the following commands.

> field := vector(fs);

field := array( 1..32, [ ] )
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> for i from 1 to fs-1 do

> field[i] := Powmod(a, i, p(a), a) mod 2:

> od:

> field[fs] := 0:

> evalm(field);

[a, a2, a3, a4, a3 + 1, a4 + a, a3 + a2 + 1, a4 + a3 + a,

a4 + a3 + a2 + 1, a4 + a+ 1, a3 + a2 + a+ 1, a4 + a3 + a2 + a,

a4 + a2 + 1, a+ 1, a2 + a, a3 + a2, a4 + a3, a4 + a3 + 1,
a4 + a3 + a+ 1, a4 + a3 + a2 + a+ 1, a4 + a2 + a+ 1,
a2 + a+ 1, a3 + a2 + a, a4 + a3 + a2, a4 + 1, a3 + a+ 1,
a4 + a2 + a, a2 + 1, a3 + a, a4 + a2, 1, 0]

As we also did for the BCH code in Section 4.3, we establish an association
between the polynomial field elements and corresponding powers of a in the
table ftable by entering the following commands.

> ftable := table():

> for i from 1 to fs-1 do

> ftable[ field[i] ] := a^i:

> od:

> ftable[ field[fs] ] := 0:

5.5.1 Construction of the Codewords

Before constructing any of the codewords in C, we must construct the
generator polynomial for C. To do this, we first assign the number t = 4
of errors the code is to be able to correct. We can then use the Maple
product command as follows to construct the generator polynomial for C.

> t := 4:

> g := product(x-a^j, j=1..2*t);

g := (x− a ) (x− a2 ) (x− a3 ) (x− a4 ) (x− a5 ) (x− a6 )
(x− a7 ) (x− a8 )

The process of expanding and simplifying this polynomial so that its co-
efficients are written in a desirable form (as powers of a) is nontrivial as
it requires several conversions between the polynomial field elements and
powers of a. Hence, for performing this expansion and simplification, we
have provided the user-written procedure rscoeff, for which code is given
in Appendix C.1. If this procedure is saved as the text file rscoeff in the di-
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rectory from which we are running Maple, then we can include the rscoeff
procedure in this Maple session by entering the following command.

> read rscoeff;

We can then see the expanded and simplified form of the generator poly-
nomial g(x) by entering the following command.

> g := rscoeff(g, x, p(a), a);

g := x8 + a6 x7 + a27 x6 + a4 x5 + a17 x4 + a13 x3 + a14 x2

+ a2 x+ a5

The first two parameters in the preceding command are the polynomial we
wish to simplify and the variable used in this polynomial. The final two
parameters are the primitive polynomial p(x) in terms of the field element
a = x followed by the field element a.

Recall that C is the set of all multiples b(x)g(x) of degree less than 31
with b(x) ∈ F [x]. For example, consider the following polynomial b(x).

> b := a^18*x^8 + a^20*x^7 + a^19*x^6 + a^23*x^5 + a^6*x^4

> + a^2*x^3 + a^23*x^2 + a^4*x + a^15:

We can construct the codeword c(x) = b(x)g(x) ∈ C that results from b(x)
by entering the following command. Note that we use rscoeff so that c(x)
will be displayed in a simplified form.

> c := rscoeff(b*g, x, p(a), a);

c := a18 x16 + a14 x15 + a10 x14 + a30 x13 + a6 x12 + a24 x11

+ a5 x10 + a26 x9 + a27 x8 + a30 x7 + a24 x6 + a27 x5 + a21 x4

+ a9 x2 + a28 x+ a20

Recall that to transmit this codeword we would convert c(x) into a binary
vector using the process described in Section 5.4. To perform this conversion
we have provided the user-written procedure binmess,1 for which code is
also given in Appendix C.1. If this procedure is saved as the text file
binmess in the directory from which we are running Maple, we can include
the binmess procedure in this Maple session as follows.

> read binmess;

We can then find the binary vector that corresponds to c(x) by entering
the following command.

> cbin := binmess(c, degree(p(x)), p(a), a, fs-2);

cbin := [1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1,
0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0,

1The binmess procedure uses the Maple stackmatrix command. See footnote p. 51
regarding the stackmatrix command.
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1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0,
0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]

The first parameter in the preceding command is the polynomial for which
we wish to find the binary equivalent. The last parameter is the largest
possible degree fs-2 of the codewords in C. Although the codewords in C
can be of degree up to 30, the degree of c(x) is only 16. Note that binmess
recognizes that the terms in c(x) of degrees 17 through 30 have coefficients
of zero and inserts appropriate zeros in the resulting binary vector.

5.5.2 Error Correction

Suppose a codeword in C is transmitted as a binary vector and we receive
the following vector rbin.

> rbin := vector([1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1,

> 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0,

> 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,

> 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,

> 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,

> 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,

> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]):

To correct this received vector we must first convert the vector to its poly-
nomial equivalent. To help with this conversion we have provided the user-
written procedure bincoeff, for which code is given in Appendix C.1. As-
suming this procedure is saved as the text file bincoeff in the directory from
which we are running Maple, we can include this procedure in our Maple
session as follows.

> read bincoeff;

Then, by entering the following command we obtain an ordered list of the
coefficients in the polynomial equivalent of rbin. The first parameter in
the following command is the number of binary digits in rbin that should
be used to form each of these coefficients.

> pcoeff := bincoeff(5, rbin);

pcoeff := [a4 + a3 + a2 + a+ 1, a2 + 1, a4 + a3 + a2 + 1, 0,
a4 + a2 + a+ 1, a4 + a2 + a, a4 + a3 + a2, a4 + a2,
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a4 + a2 + a, a4 + a3 + a+ 1, a3 + a2, a3 + a, a3 + a+ 1,
a4 + a3 + a2 + a+ 1, a4, a3 + a2 + 1, a4 + a+ 1, a3 + a2,

a4 + a3, a4 + a3 + 1, a4 + a2 + a+ 1, a4 + a3, a4 + a3 + 1,
0, 0, 0, 0, 0, 0, 0, 0]

We can then construct a polynomial r(x) with these coefficients by entering
the following command.

> r := sum(’pcoeff[i]*x^(i-1)’, ’i’=1..vectdim(pcoeff));

r := 1 + a+ a3 + a2 + a4 + (a2 + 1)x+ (a4 + a3 + a2 + 1)x2

+ (a4 + a2 + a+ 1)x4 + (a4 + a2 + a)x5 + (a4 + a3 + a2)x6

+ (a4 + a2)x7 + (a4 + a2 + a)x8 + (a4 + a3 + a+ 1)x9

+ (a3 + a2)x10 + (a3 + a)x11 + (a3 + a+ 1)x12

+ (a4 + a3 + a2 + a+ 1)x13 + a4 x14 + (a3 + a2 + 1)x15

+ (a4 + a+ 1)x16 + (a3 + a2)x17 + (a4 + a3)x18

+ (a4 + a3 + 1)x19 + (a4 + a2 + a+ 1)x20 + (a4 + a3)x21

+ (a4 + a3 + 1)x22

We can use rscoeff as follows to simplify the coefficients in the preceding
polynomial r(x).

> r := rscoeff(r, x, p(a), a);

r := a18 x22 + a17 x21 + a21 x20 + a18 x19 + a17 x18 + a16 x17

+ a10 x16 + a7 x15 + a4 x14 + a20 x13 + a26 x12 + a29 x11

+ a16 x10 + a19 x9 + a27 x8 + a30 x7 + a24 x6 + a27 x5

+ a21 x4 + a9 x2 + a28 x+ a20

Finally, we enter the following unapply command so that we can evaluate
r(x) in the usual manner.

> r := unapply(r, x);

r := x → a18 x22 + a17 x21 + a21 x20 + a18 x19 + a17 x18 + a16 x17

+ a10 x16 + a7 x15 + a4 x14 + a20 x13 + a26 x12 + a29 x11

+ a16 x10 + a19 x9 + a27 x8 + a30 x7 + a24 x6 + a27 x5

+ a21 x4 + a9 x2 + a28 x+ a20

We will now use the Reed-Solomon error correction scheme to correct
r(x). Recall that to correct r(x) we begin by computing the first 2t syn-
dromes of r(x). Before doing this we create a vector Sa of length 2t positions
in which to store the syndromes. In the subsequent loop we generate and
store the first 2t syndromes of r(x) in Sa. Note that we use the Maple
Rem function to simplify the syndromes, and that we use ftable to find
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the representations of the syndromes as powers of a. The if statement that
appears in the loop reduces the syndromes to 1 if they are expressed as a
raised to the order of F ∗.

> Sa := vector(2*t);

Sa := array( 1..8, [ ] )

> for i from 1 to 2*t do

> Sa[i] := ftable[ Rem(r(a^i), p(a), a) mod 2 ]:

> if degree(Sa[i], a) = (fs-1) then

> Sa[i] := Sa[i]/a^(fs-1):

> fi:

> od:

> evalm(Sa);

[ a13, a20, a8, a2, a21, a14, a3, a3 ]

Next, we use the Maple sum command to form the resulting syndrome
polynomial S(z), and use unapply to convert S(z) into a function that we
can evaluate in the usual manner.

> S := sum(’Sa[j+1]*z^j’, ’j’=0..2*t-1);

S := a13 + a20 z + a8 z2 + a2 z3 + a21 z4 + a14 z5 + a3 z6 + a3 z7

> S := unapply(S, z);

S := z → a13 + a20 z + a8 z2 + a2 z3 + a21 z4 + a14 z5 + a3 z6 + a3 z7

We must now construct the Euclidean algorithm table for S(z) and the
following polynomial f(z) = z2t.

> f := z^(2*t);

f := z8

To perform the calculations necessary in constructing this table, we have
provided the user-written procedure rseuclid, for which code is given in
Appendix C.1. Assuming this procedure is saved as the text file rseuclid in
the directory from which we are running Maple, we can include this pro-
cedure in our Maple session as follows. (Note: Because rseuclid calls and
uses the rscoeff procedure we discussed previously, the rscoeff procedure
must be saved as the text file rscoeff in the same directory as rseuclid.)

> read rseuclid;

Then the following command causes Maple to construct and display the
entries in each row of the Euclidean algorithm table for S(z) and f(z), stop-
ping at the appropriate row for the Reed-Solomon error correction scheme.
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The first parameter in this command is the number of errors that can be
corrected in the code. The next two parameters are the two polynomials for
which we are constructing the table. The fourth parameter is the variable
z used in the previous two parameters.

> res := rseuclid(t, f, S(z), z, p(a), a);

Q = , a28 z + a28, R = ,

a23 z6 + a27 z5 + a7 z4 + a9 z3 + a25 z2 + a26 z + a10, V = ,

a28 z + a28, U = , 1

Q = , a11 z + a5, R = ,

a17 z5 + a27 z4 + a23 z3 + a24 z2 + a5 z + a10, V = ,

a8 z2 + a12 z + a28, U = , a11 z + a5

Q = , a6 z + a20, R = ,

a26 z4 + a21 z3 + a26 z2 + a27 z + a22, V = ,

a14 z3 + a24 z2 + a11 z + a9, U = , a17 z2 + a23 z + a4

Q = , a22 z + a8, R = , a24 z3 + a7 z2 + a16 z + a22, V = ,

a5 z4 + z3 + a24 z2 + a2 z + a9, U = ,

a8 z3 + a6 z2 + a28 z + a21

res := a22 z + a8, a24 z3 + a7 z2 + a16 z + a22,

a5 z4 + z3 + a24 z2 + a2 z + a9, a8 z3 + a6 z2 + a28 z + a21

Note that the preceding process stops at the first row for which the degree
of the entry in the R column is less than t = 4. Note also that the process
leaves the vector res containing the entries in the last computed row of
the table. Hence, the entries in the table of which we are interested, the
polynomials R(z) in the R column and V (z) in the V column, are the
second and third entries in res. We define these entries next as the variables
R and V, and use unapply to convert each to a function that we can evaluate
in the usual manner.

> R := res[2];

R := a24 z3 + a7 z2 + a16 z + a22

> R := unapply(R, z);

R := z → a24 z3 + a7 z2 + a16 z + a22

> V := res[3];

V := a5 z4 + z3 + a24 z2 + a2 z + a9
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> V := unapply(V, z);

V := z → a5 z4 + z3 + a24 z2 + a2 z + a9

Next, we find the roots of V by trial and error as follows. These commands
also show the corresponding error positions in r(x).

> for i from 1 to fs-1 do

> if (Rem(V(a^i), p(a), a) mod 2) = 0 then

> print(a^i, ‘ is a root of ‘, V(z), ‘ error

> position is ‘, degree(a^(fs-1)/a^i, a));

> fi:

> od;

a15, is a root of , a5 z4 + z3 + a24 z2 + a2 z + a9,

error position is , 16

a16, is a root of , a5 z4 + z3 + a24 z2 + a2 z + a9,

error position is , 15

a17, is a root of , a5 z4 + z3 + a24 z2 + a2 z + a9,

error position is , 14

a18, is a root of , a5 z4 + z3 + a24 z2 + a2 z + a9,

error position is , 13
To find the coefficients of the terms in the error polynomial, we need to
find the derivative of V. We find this derivative next using the Maple diff
command.

> Vp := diff(V(z), z) mod 2;

Vp := z2 + a2

> Vp := unapply(Vp, z);

Vp := z → z2 + a2

We can then define the coefficients of the four terms in the error polynomial
as follows.

> e13 := ftable[ Rem(R(a^18), p(a), a) mod 2 ] /

> ftable[ Rem(Vp(a^18), p(a), a) mod 2 ]:

> e14 := ftable[ Rem(R(a^17), p(a), a) mod 2 ] /

> ftable[ Rem(Vp(a^17), p(a), a) mod 2 ]:

> e15 := ftable[ Rem(R(a^16), p(a), a) mod 2 ] /
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> ftable[ Rem(Vp(a^16), p(a), a) mod 2 ]:

> e16 := ftable[ Rem(R(a^15), p(a), a) mod 2 ] /

> ftable[ Rem(Vp(a^15), p(a), a) mod 2 ]:

Next, we form the error polynomial e(x) that corresponds to r(x).
> e := e16*x^16 + e15*x^15 + e14*x^14 + e13*x^13;

e := a14 x16 + a x15 + a12 x14 + a2 x13

> e := unapply(rscoeff(e, x, p(a), a), x);

e := x → a14 x16 + a x15 + a12 x14 + a2 x13

Finally, by adding this error polynomial to r(x), we obtain the following
corrected codeword c(x) ∈ C.

> c := rscoeff(r(x)+e(x), x, p(a), a);

c := a18 x22 + a17 x21 + a21 x20 + a18 x19 + a17 x18 + a16 x17

+ a4 x16 + a11 x15 + a23 x14 + a19 x13 + a26 x12 + a29 x11

+ a16 x10 + a19 x9 + a27 x8 + a30 x7 + a24 x6 + a27 x5

+ a21 x4 + a9 x2 + a28 x+ a20

The following command shows that c(x) is in C by verifying that c(ai) = 0
for i = 1, . . . , 2t.

> seq(Rem(subs(x=a^i, c), p(a), a) mod 2, i=1..2*t);

0, 0, 0, 0, 0, 0, 0, 0

To see the positions in rbin that contained errors, we can use the binmess
routine as follows to find the binary representation of e(x).

> ebin := binmess(e(x), degree(p(x)), p(a), a, fs-2);

ebin := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]

We can then use the Maple sum command as follows to see the number of
binary errors in rbin.

> berrors := sum(’ebin[i]’, ’i’=1..vectdim(ebin));

berrors := 8
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Note that although C is only 4-error correcting, we were able to correct the
binary vector rbin in C even though it contained 8 errors. This is because
the binary errors in rbin occurred together (i.e., as an error burst) and
resulted in only four errors in the corresponding polynomial r(x).

5.6 Reed-Solomon Codes in Voyager 2

In August and September 1977, NASA launched the Voyager 1 and Voyager
2 satellites from Cape Canaveral, Florida. Upon reaching their first desti-
nation goals of Jupiter and Saturn, the Voyager satellites provided NASA
with the most detailed analyses and visual images of these planets and their
moons that had ever been observed. After encountering Jupiter and Sat-
urn, Voyager 2 continued farther into the outer reaches of our solar system
and successfully transmitted to Earth data and visual images from Uranus
and Neptune. Without the use of a Reed-Solomon code in transmitting
these images, the extreme success achieved by Voyager 2 would have been
very unlikely. We briefly describe the image transmission process next.

Images transmitted to Earth from outer space are usually digitized
into binary strings and sent over a space channel. Voyager 2 digitized
its full-color images into binary strings with 15,360,000 positions. Using
an uncompressed spacecraft telecommunication system, these binary digits
were transmitted one by one to Earth, where the images were then recon-
structed. This uncompressed system was the most reliable system available
when Voyager 2 was launched, and was satisfactory for transmitting im-
ages to Earth from Jupiter and Saturn. However, when Voyager 2 arrived
at Uranus in January 1986, it was about twice as far from Earth as it had
been when at Saturn. Since the transmission of binary digits to Earth had
already been stretched to a very slow rate from Saturn (around 44,800 dig-
its per second), a new transmission scheme was needed in order for NASA
to be able to receive a large number of images from Uranus.

The problem of image transmission from Uranus was solved through
the work of Robert Rice at California Institute of Technology’s Jet Propul-
sion Laboratory. Rice developed an algorithm that implemented a com-
pressed spacecraft telecommunication system which reduced by a factor of
2.5 the amount of data needed to transmit a single image from Uranus with-
out causing any loss in image quality. However, there was a problem with
Rice’s algorithm. During the long transmissions through space, the com-
pressed binary strings experienced errors much more frequently than the
uncompressed strings, and Rice’s algorithm was very sensitive to binary
errors. In fact, if a received binary transmission from Uranus contained
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even a single error, the resulting image would be completely ruined. After
considerable study, it was discovered that the binary errors that occurred
during the long transmissions through space usually occurred in bursts. To
account for these error bursts, a new system was designed in Voyager 2 for
converting images into binary strings that utilized a Reed-Solomon code.
The binary strings were compressed and transmitted back to Earth, and
then uncompressed using Rice’s algorithm and corrected using the Reed-
Solomon error correction scheme. This process was highly successful. The
specific Reed-Solomon code used in Voyager 2 is mentioned in Maple Ex-
ercise 4.

After leaving Uranus, Voyager 2 continued its journey through space.
In August 1989 the satellite transmitted data and visual images to Earth
that provided NASA with most of the information currently known about
Neptune. At present, the Voyager 2 satellite is still in operation and is still
providing NASA with invaluable information about our solar system.

In addition to being used in the transmission of images through space,
Reed-Solomon codes have a rich assortment of other applications, and are
claimed to be the most frequently used digital error-correcting codes in the
world. As we mentioned in the introduction to this chapter, Reed-Solomon
codes are used extensively in the encoding of various types of information on
compact discs. Also, Reed-Solomon codes have played an integral role in the
development of high-speed supercomputers. In the future, Reed-Solomon
codes will be an important tool for dealing with complex communication
and information transfer systems.
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Written Exercises

1. Let C be the RS(7, 2) code that results from the primitive polynomial
p(x) = x3 + x+ 1 ∈ Z2[x].

(a) Construct and simplify the generator polynomial for C.

(b) Construct two of the codewords in C.

(c) Convert the codewords you constructed in part (b) into binary
vectors using the process described in Section 5.4.

(d) Find the maximum error burst length that is guaranteed to be
correctable in C.

2. Correct the following received polynomials in the Reed-Solomon code
C in Written Exercise 1.

(a) r(x) = a5x6 + ax5 + a6x4 + ax2 + a4x+ a5

(b) r(x) = a4x6 + a3x5 + x4 + a4x3 + a2x2 + a2x+ a3

(c) r(x) = ax5 + a4x4 + a6x3 + a3x2 + a5x+ a4

3. Use the Reed-Solomon error correction scheme to correct the following
received polynomial r(x) in the BCH code C in Example 4.3.

r(x) = 1 + x4 + x5 + x7 + x8 + x11 + x13

4. Correct the following received polynomials in the Reed-Solomon code
C in Example 5.3.

(a) r(x) = ax12 + a2x11 + a8x10 + a6x9 + x8 + a7x7 + a10x6

+ a6x5 + a4x4 + a7x3 + ax2 + a6x

(b) r(x) = a5x14 + a14x13 + a3x12 + a4x11 + a14x10 + a4x9

+ a11x8 + a7x7 + a11x6 + a9x5 + a14x4 + a7x3

+ a10x+ a5

5. Use the reverse of the process described in Section 5.4 to convert the
following binary vector to the polynomial codeword it represents in
the Reed-Solomon code C in Example 5.3.

( 110101010000111000111010101111101011100100111001000100111101 )

6. Prove Theorem 5.1.

7. Let C be an RS(2n−1, t) code. In terms of n and t, find the maximum
error burst length that is guaranteed to be correctable in C.
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Maple Exercises

1. Correct the following received binary vector r in the RS(31, 4) code
C considered in Section 5.5.

r = (1010010001010011010000010101010011110110000101010010
1101111101000101001101000001110111110000000011000001
000110110010000000000000000000000000000000000000000)

2. Let C be the RS(127, 4) code that results from the primitive polyno-
mial p(x) = x7 + x+ 1 ∈ Z2[x].

(a) Construct and simplify the generator polynomial g(x) for C.
(b) Construct the codeword b(x)g(x) ∈ C that results from the fol-

lowing polynomial b(x).

b(x) = a30x100 + a2x51 + a91x2 + a3

(c) Convert the codeword b(x)g(x) in part (b) into a binary vector
using the process described in Section 5.4 (i.e., using the bin-
mess procedure).

(d) Find the maximum error burst length that is guaranteed to be
correctable in C.

3. Correct the following received polynomials in the Reed-Solomon code
C in Maple Exercise 2.

(a) r(x) = a100x22 + a10x21 + a100x20 + a28x19 + a114x18

+ a35x17 + a81x16 + a95x15 + a56x14 + a59x13

+ a38x12 + a83x11 + a42x10

(b) r(x) = a10x108 + a60x107 + a49x106 + a115x105 + a18x104

+ a124x103 + a67x102 + a87x101 + a46x100

(c) r(x) = a100x81 + a23x80 + a12x79 + a78x78 + a108x77

+ a80x76 + a25x75 + a50x74 + a9x73

4. The Reed-Solomon code used in the Voyager 2 satellite (see discus-
sion in Section 5.6) was the RS(255, 16) code C that results from the
primitive polynomial p(x) = x8 +x4 +x3 +x2 +1 ∈ Z2[x]. Construct
several of the codewords in C as polynomials or binary vectors. Also,
illustrate the Reed-Solomon error correction scheme in C by correct-
ing several received binary vectors or polynomials that contain errors.
Write a summary of your results.
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Chapter 6

Algebraic Cryptography

Cryptography is the study of techniques that can be used to disguise a mes-
sage so that only the intended recipient can remove the disguise and read
it. The simplest way to disguise a message is to replace every occurrence
of each specific character with a different character. This method for dis-
guising a message yields what we will call a substitution cipher. Since sub-
stitution ciphers appear as puzzles in many newspapers and puzzle books,
they are obviously relatively easy to “break” and should not be used when
sending “top secret” information. In the next three chapters, we discuss
some disguising techniques that involve applying mathematical operations
to messages. Using mathematics to disguise messages gives us the abil-
ity to create disguising techniques that are increasingly more difficult to
break by simply choosing mathematical operations that are increasingly
more complex. Because the disguising techniques we discuss involve apply-
ing mathematical operations to messages, these techniques are examples of
algebraic cryptography.

6.1 Some Elementary Cryptosystems

We will call an undisguised message a plaintext and a disguised message
a ciphertext. Also, we will call the process of converting a plaintext to a
ciphertext the encryption or encipherment of the message, and we will call
the reverse process the decryption or decipherment of the message.

Since we will encipher messages by applying mathematical operations,
our plaintext characters will have to have some kind of mathematical struc-
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ture. We will give our messages the structure of a ring so that we can both
add and multiply message characters.

Definition 6.1 A cryptosystem consists of the following:

1. An alphabet L that contains all characters that can be used in mes-
sages (letters, numerals, punctuation marks, blank spaces, etc.),

2. A commutative ring R with identity such that |R| = |L|,

3. Bijections α : L→ R and f : R→ R.

The idea we will take is that to encipher a plaintext that is expressed
as a list of elements in L, we first use α to convert the plaintext into a list
of elements in R. We can then form the ciphertext by applying f to the
plaintext ring elements and, if desired, use α−1 to convert the ciphertext
back to a list of elements in L. We can recover the plaintext from the ci-
phertext by repeating this procedure using f−1 instead of f . So that only
the intended recipient of the message can recover the plaintext, only the in-
tended recipient can know f−1. We will always assume that everything else
in a cryptosystem, with the obvious exception of f , is public knowledge. (It
is true in some cryptosystems that f can be public knowledge without re-
vealing f−1. Such cryptosystems are called public-key systems. We discuss
two public-key cryptosystems, the well-known RSA and ElGamal systems,
in Chapters 7 and 8.)

For simplicity, in this chapter we will assume that all messages are
written in the alphabet L = {A,B, . . . , Z}. Also, we will take R = Z26

and let α : L → R be given by α(A) = 0, α(B) = 1, . . . , α(Z) = 25. For
reference, we list the correspondence for α below.

A B C D E F G H I J K L M N O
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P Q R S T U V W X Y Z
15 16 17 18 19 20 21 22 23 24 25

We now consider some cryptosystems with different types of encryption
methods. That is, we consider some cryptosystems with different types of
bijections f : R→ R.

Encryption Method 1: Choose f : R → R by f(x) = ax mod |R| for
some a ∈ R with (a, |R|) = 1.
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Example 6.1 Let f(x) = 3x mod 26. Then the message “ATTACK AT
DAWN” enciphers as follows.

A T T A C K A T D A W N
α ⇒ 0 19 19 0 2 10 0 19 3 0 22 13
f ⇒ 0 5 5 0 6 4 0 5 9 0 14 13
α−1 ⇒ A F F A G E A F J A O N

Hence, the corresponding ciphertext is “AFFAGEAFJAON”. To decipher
this message, we repeat the same procedure using the inverse function
f−1(x) = a−1x mod |R| = 9x mod 26 instead of f . (Note: We can de-
termine a−1 in general by using the Euclidean algorithm as illustrated in
Section 7.1.) This message deciphers, of course, as follows.

A F F A G E A F J A O N
α ⇒ 0 5 5 0 6 4 0 5 9 0 14 13
f−1 ⇒ 0 19 19 0 2 10 0 19 3 0 22 13
α−1 ⇒ A T T A C K A T D A W N

Note that 3−1 = 9 mod 26 because 3 · 9 = 27 = 1 mod 26. Note also that
we are guaranteed a multiplicative inverse of a = 3 exists modulo |R| = 26
because of the requirement that (a, |R|) = 1 (see Written Exercise 10).

We will say that any person except the intended recipient who tries to
decipher an encrypted message is an intruder and is attempting to break
the cryptosystem. Two people wishing to exchange a secret message would
certainly want to use a cryptosystem that an intruder would find difficult to
break. However, breaking a cryptosystem is not generally as difficult as it
may at first appear. Recall that everything in a cryptosystem is assumed to
be public knowledge except f and f−1, and in practice it is usually assumed
that even the form of f is publicly known and that only the parameters in f
are unknown to intruders. We will call the parameters in f the keys of the
cryptosystem because if an intruder is able to find these parameters, the
intruder should then be able to determine f−1 (i.e., “unlock” the system).

The cryptosystem in Example 6.1 has a = 3 as its only key. As you may
have supposed, this system is not very secure. However, this is not because
it has only a single key or because it is so easy to use for enciphering mes-
sages. Recall we would assume that intruders know everything about this
system except the parameters in f and f−1. Indeed, we would even assume
that intruders know f(x) = ax mod 26 for some a ∈ Z26 with (a, |R|) = 1.
With a function f of this form, an intruder could very quickly determine the
key by trial and error. Specifically, because the only elements in Z26 that
are relatively prime to 26 are {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}, then one
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of these elements must be the key. An intruder could very easily take each of
these key candidates separately, form the corresponding inverse functions
f−1, and use each f−1 to decipher the encrypted message. Most likely,
only one of these decipherments, the correct plaintext, will make any sense.
Even if the calculations are done with a pencil and paper, an intruder could
break this system in only a few minutes.

One obvious way to enhance the security of the cryptosystem in Ex-
ample 6.1 is to include a constant term in the function f . We summarize
this in general as our second encryption method.

Encryption Method 2: Choose f : R→ R by f(x) = ax+ b mod |R| for
some a, b ∈ R with (a, |R|) = 1.

Example 6.2 Let f(x) = 3x + 4 mod 26. Then the message “ATTACK
AT DAWN” enciphers as follows.

A T T A C K A T D A W N
α ⇒ 0 19 19 0 2 10 0 19 3 0 22 13
f ⇒ 4 9 9 4 10 8 4 9 13 4 18 17
α−1 ⇒ E J J E K I E J N E S R

Hence, the corresponding ciphertext is “EJJEKIEJNESR”. To decipher
this message, we repeat the same procedure using the inverse function
f−1(x) = a−1(x− b) mod |R| = 9(x− 4) mod 26 instead of f .

The cryptosystem in Example 6.2 has two keys, a = 3 and b = 4. While
this system is more secure than the cryptosystem in Example 6.1, it is still
not a very secure system. We would assume that an intruder who intercepts
the ciphertext in Example 6.2 would know that f(x) = ax + b mod 26 for
some a, b ∈ Z26 with (a, |R|) = 1. Hence, since a must be one of the twelve
elements in {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}, and b must be one of the
26 elements in Z26, there will only be 12 · 26 = 312 possible pairs (a, b) of
keys. An intruder using only a hand-held calculator could easily test each
of these pairs of key candidates in only a few hours. More importantly,
an intruder using a computer that can perform millions of operations per
second could test each of these pairs of key candidates immediately. Thus,
although the cryptosystem in Example 6.2 has more key candidates than
the system in Example 6.1, it can still be broken very easily.

We have shown that neither of the cryptosystems described in this
section are secure by presenting rather simple mathematical methods for
breaking them. We can also see that these systems are not secure because
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they both just yield substitution ciphers. And the systems described in
this section are actually easier to break than non-mathematical substitu-
tion ciphers, for in each case our general procedure for breaking the system
can easily be programmed on a computer, while breaking nonmathemat-
ical substitution ciphers generally requires somewhat time-consuming fre-
quency analysis (i.e., trial and error under the assumption that the most
frequently occurring ciphertext characters correspond to the most com-
monly used plaintext characters). However, the cryptosystems described in
this section were not presented in an attempt to illustrate secure systems,
but rather because they will be generalized in Sections 6.2 and 6.4 into
well-known systems that can be designed with any desired level of security.

6.2 The Hill Cryptosystem

The cryptosystems described in Section 6.1 have been known for many
years. In fact, a variation of our second encryption method in Section
6.1 was used in ancient Rome by Julius Caesar, who supposedly invented
it himself (see Written Exercise 1). While the advent of calculators and
computers have rendered these systems obsolete, generalizations of these
systems that use matrices as keys instead of scalars can still be constructed
with any desired level of security. The generalization of our first encryption
method was first described by Lester Hill in 1929. We summarize this in
general as our next encryption method.

Hill Encryption Method: Let A be an n × n invertible matrix over R
(i.e., such that (detA, |R|) = 1). Group the plaintext into row vectors Pi
of length n, and define f : Rn → Rn by f(Pi) = PiA with each entry taken
modulo |R|. The resulting rows listed together form the ciphertext.

Example 6.3 In this example, we use the Hill encryption method to enci-
pher the message “MEET AT SEVEN”. We begin by converting the message
into a list of elements in Z26.

M E E T A T S E V E N
α ⇒ 12 4 4 19 0 19 18 4 21 4 13

We will use the following 2 × 2 key matrix A to encipher this message.

A =
[

2 5
1 4

]
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Note that A is invertible over Z26 since (detA, 26) = (3, 26) = 1. To form
the ciphertext, we group the plaintext into row vectors Pi of length 2, and
compute PiA for all i with each entry taken modulo 26. For example, the
first ciphertext vector is computed as follows.

P1A = (12, 4)
[

2 5
1 4

]

= (28, 76)
= (2, 24)

The remaining ciphertext vectors are computed as follows. (Since the mes-
sage does not completely fill the last plaintext vector P6, we fill this vector
with an arbitrary element from Z26.)

P2A = (4, 19)A = · · · = (1, 18)
P3A = (0, 19)A = · · · = (19, 24)
P4A = (18, 4)A = · · · = (14, 2)
P5A = (21, 4)A = · · · = (20, 17)
P6A = (13, 25)A = · · · = (25, 9)

Hence, the entire encipherment is

M E E T A T S E V E N
α ⇒ 12 4 4 19 0 19 18 4 21 4 13 25
f ⇒ 2 24 1 18 19 24 14 2 20 17 25 9
α−1 ⇒ C Y B S T Y O C U R Z J

and the ciphertext is “CYBSTYOCURZJ”. Although the last ciphertext
character is in a position beyond the last plaintext character, it must be
retained as it is necessary for decipherment.

One thing we can notice immediately from Example 6.3 is that the Hill
encryption method does not in general yield a substitution cipher. Also,
enciphering messages with the Hill system requires nothing more than some
matrix multiplication with an invertible key matrix A over R. A matrix A
over R is invertible if and only if the determinant of A has a multiplicative
inverse in R (see Written Exercise 9). For R = Zk, this is equivalent to
(detA, k) = 1 (see Written Exercise 10).

To decipher a message that has been encrypted using the Hill system
with an n×n key matrix A, we would group the ciphertext into row vectors
Ci of length n and compute f−1(Ci) = CiA

−1 mod |R| for all i. The matrix
A−1 over R can be determined in general by the well-known formula

A−1 =
1

detA
(adjA) (6.1)

c© 1999 by CRC Press LLC



where adjA represents the adjoint of A. To determine adjA, we would first
need to find the cofactors of A. These cofactors are defined as

Cij = (−1)i+jMij i, j = 1, . . . , n

whereMij is the determinant of the matrix obtained by deleting the ith row
and jth column from A. Using these cofactors, the adjoint of A is defined
as follows.

adjA =



C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

...
C1n C2n · · · Cnn




That is, adjA is the transpose of the matrix of cofactors of A.

Example 6.4 To decipher the message in Example 6.3, we would first need
to find the inverse of the key matrix A. Using (6.1), we can determine this
inverse as follows.

A−1 =
1
3

[
4 −5
−1 2

]

= 9
[

4 21
25 2

]

=
[

36 189
225 18

]

=
[

10 7
17 18

]

Then to recover the plaintext, we group the ciphertext into row vectors Ci

of length 2 and compute CiA
−1 for all i with each entry taken modulo 26.

For example, the first plaintext vector is recovered as follows.

C1A
−1 = (2, 24)

[
10 7
17 18

]

= (428, 446)
= (12, 4)

The remaining plaintext vectors are recovered as follows.

C2A
−1 = (1, 18)A−1 = · · · = (4, 19)

C3A
−1 = (19, 24)A−1 = · · · = (0, 19)

C4A
−1 = (14, 2)A−1 = · · · = (18, 4)

C5A
−1 = (20, 17)A−1 = · · · = (21, 4)

C6A
−1 = (25, 9)A−1 = · · · = (13, 25)
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Applying α−1 to the entries in these plaintext vectors will reveal the original
message. (Because we chose an arbitrary element from Z26 to fill the last
plaintext vector P6 in Example 6.3, there will be an extra character at the
end of this message.)

We now consider how an intruder could break the cryptosystem in
Example 6.3. We would assume that an intruder who intercepts the
ciphertext in Example 6.3 would know that the ciphertext was formed
by grouping the plaintext into row vectors Pi of length 2 and multiplying
each Pi by some 2 × 2 invertible key matrix A over Z26. Although the
requirement that A be invertible does not impose any specific restrictions
on any of the four individual entries in A, an intruder would at least know
that each of these entries must be elements in Z26. Hence, to find A by trial
and error, an intruder would have to test a maximum of only 264 = 456976
possible key matrices. While it would not be feasible for an intruder to
test all of these possible key matrices by hand or even with a calculator,
an intruder using a computer that can perform millions of operations per
second could test these possible key matrices very quickly and easily. Hence,
the Hill system with a 2 × 2 key matrix A does not yield a very secure
system. However, if A were chosen of size 3 × 3, then there would be
269 = 5429503678976 possible key matrices for an intruder to test; and if
A were chosen of size 5 × 5 there would be 2625 = 2.37 × 1035 possible key
matrices. Thus, even with a relatively small key matrix, the Hill system
yields a reasonable amount of security. And the Hill system can be used to
obtain any desired level of security by simply choosing a key matrix that is
sufficiently large.

The Hill system does have a vulnerability we should mention. It is
not unreasonable to suppose that an intruder who intercepts a ciphertext
formed using the Hill system might know or be able to guess a small part
of the plaintext. For example, the intruder may know from whom the
message originated and correctly guess that the last few characters in the
plaintext were the originator’s name or signature. It turns out that it may
be possible for an intruder to break the Hill system relatively easily if the
intruder knows or is able to correctly guess a small part of the plaintext.
More specifically, if the Hill system is used with an n × n key matrix, it
may be possible for an intruder to break the system relatively easily if the
intruder knows or is able to correctly guess n2 characters from the plaintext.
We illustrate this in the following example.

Example 6.5 Suppose an intruder intercepts the ciphertext in Example
6.3 and somehow knows or guesses that the last four ciphertext letters were
produced by the plaintext letters “VENZ”. That is, suppose the intruder
knows or guesses the following from the encipherment in Example 6.3.
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V E N Z
α ⇒ 21 4 13 25
f ⇒ 2 24 1 18 19 24 14 2 20 17 25 9
α−1 ⇒ C Y B S T Y O C U R Z J

Since the intruder would know that the plaintext was enciphered using some
2 × 2 key matrix

A =
[
a b
c d

]

over Z26, then the intruder would know that

(21, 4)
[
a b
c d

]
= (20, 17) and (13, 25)

[
a b
c d

]
= (25, 9)

with a, b, c, d ∈ Z26. The preceding two matrix equations are equivalent to
the following single matrix equation.[

21 4
13 25

] [
a b
c d

]
=

[
20 17
25 9

]
(6.2)

If the intruder could determine a unique solution to this equation over Z26,
then this solution would necessarily be the key matrix A for the system.
Note that since ∣∣∣∣ 21 4

13 25

∣∣∣∣ = 473 = 5

has an inverse in Z26, then (6.2) has a unique solution over Z26. Using
(6.1), the intruder could find this solution as follows.

[
a b
c d

]
=

[
21 4
13 25

]−1 [
20 17
25 9

]

=
1
5

[
25 −4
−13 21

] [
20 17
25 9

]

= 21
[

25 22
13 21

] [
20 17
25 9

]

=
[

22050 13083
16485 8610

]

=
[

2 5
1 4

]

Note that 5−1 = 21 mod 26 because 5 · 21 = 105 = 1 mod 26. Note also
that the last result is the key matrix A from Example 6.3. The intruder
could then find A−1 and decipher the rest of the ciphertext.
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For a message enciphered using the Hill system with an n × n key
matrix, one obvious problem an intruder could encounter when trying to
break the system in the way illustrated in Example 6.5 is that even if
the intruder knows or correctly guesses n2 characters from the plaintext,
the analogue to (6.2) may not have a unique solution. And even if (6.2)
has a unique solution, it may not be possible to find this solution in the
way illustrated in Example 6.5. For example, if an intruder intercepts the
ciphertext in Example 6.3 and correctly guesses that the first four ciphertext
letters were produced by the plaintext letters “MEET”, the analogue to
(6.2) would be the following.

[
12 4
4 19

] [
a b
c d

]
=

[
2 24
1 18

]
(6.3)

But since ∣∣∣∣ 12 4
4 19

∣∣∣∣ = 212 = 4

does not have a multiplicative inverse in Z26, then even if (6.3) has a unique
solution over Z26 it will not be possible to find this solution in the way
illustrated in Example 6.5.

6.3 The Hill Cryptosystem with Maple

In this section we show how Maple can be used to encipher and decipher
messages using the Hill cryptosystem.

We begin by establishing the correspondence α between the alphabet
letters and ring elements. To do this, we construct the following array
letters containing the alphabet letters.

> letters := array(0..25, [A, B, C, D, E, F, G, H, I, J, K, L,

> M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z]):

We can then access the alphabet letters from their positions in this array,
with the first letter being in position 0. For example, because C is the
third letter in this array, the letter C is returned when its corresponding
ring element is entered as follows.

> letters[2];

C

c© 1999 by CRC Press LLC



So that we can also access the ring elements by entering the alphabet letters,
we will also establish the correspondence α in a table. We first create the
table ltable.

> ltable := table():

We can then use the array letters to establish the correspondence α in
ltable by entering the following commands.

> for i from 0 to 25 do

> ltable[ letters[i] ] := i:

> od:

Using ltable, we can access the ring elements by entering the correspond-
ing letters. For example, the ring element that corresponds to the letter C
is returned by the following command.

> ltable[C];

2

We now show how Maple can be used to encipher the message
“RENDEZVOUS AT NOON”. We will use the following 3× 3 key matrix A.

> with(linalg):

> A := matrix( [ [11,6,8], [0,3,14], [24,0,9] ] );

A :=


 11 6 8

0 3 14
24 0 9




By entering the following commands, we verify that A is a valid key matrix
by verifying that the determinant of A is relatively prime to the number of
alphabet letters.

> d := det(A) mod 26;

d := 21
> gcd(d, 26);

1

Next, we enter the plaintext as the vector ptext. Note that we include two
extra letters in this vector so that the number of plaintext characters will
be a multiple of the number of rows of A.

> ptext := vector([R, E, N, D, E, Z, V, O, U, S, A, T, N, O, O,

> N, A, A]);

ptext := [R, E, N, D, E, Z, V, O, U, S, A, T, N, O, O, N, A, A ]

c© 1999 by CRC Press LLC



The following command returns the number of plaintext characters.
> vectdim(ptext);

18

By entering the following loop, we convert the list ptext of plaintext letters
into a list of ring elements. We then use evalm to display the result.

> for i from 1 to vectdim(ptext) do

> ptext[i] := ltable[ ptext[i] ]:

> od:

> evalm(ptext);

[ 17, 4, 13, 3, 4, 25, 21, 14, 20, 18, 0, 19, 13, 14, 14, 13, 0, 0 ]

Before enciphering this message, we must group the plaintext ring elements
into row vectors with the same number of positions as the number of rows
of A. To do this, we first assign the number of rows of A as blocksize.

> blocksize := rowdim(A);

blocksize := 3

Next, we assign the number of row vectors into which we will group the
plaintext ring elements as numblocks.

> numblocks := vectdim(ptext)/blocksize;

numblocks := 6

By entering the following matrix command, we group the plaintext ring
elements from the vector ptext into row vectors of length blocksize and
place these row vectors in order as rows in the matrix pmatrix.

> pmatrix := matrix(numblocks, blocksize, ptext);

pmatrix :=




17 4 13
3 4 25

21 14 20
18 0 19
13 14 14
13 0 0




Because pmatrix contains all of the plaintext row vectors, we can find all of
the ciphertext row vectors at once by multiplying pmatrix by A. By entering
the following command, we compute this product and define the result as
cmatrix. Note that in this command we use the Maple map procedure to
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reduce the entries in cmatrix modulo 26. Note also that we use &* for the
matrix multiplication, and evalm to display the result.

> cmatrix := map(m -> m mod 26, evalm(pmatrix &* A));

cmatrix :=




5 10 23
9 4 19
9 12 24
4 4 3

11 16 10
13 0 0




We can use the Maple convert command as follows to list the rows in
cmatrix in order as the vector ctext.

> ctext := convert(cmatrix, vector);

ctext := [ 5, 10, 23, 9, 4, 19, 9, 12, 24, 4, 4, 3, 11, 16, 10, 13, 0, 0 ]

The preceding output shows the ciphertext expressed as a list of ring ele-
ments. By entering the following loop, we convert this list of ring elements
into a list of alphabet letters.

> for i from 1 to vectdim(ctext) do

> ctext[i] := letters[ ctext[i] ]:

> od:

> evalm(ctext);

[F, K, X, J, E, T, J, M, Y, E, E, D, L, Q, K, N, A, A ]

Thus, the resulting ciphertext is “FKXJETJMYEEDLQKNAA”.

To decipher this message, we would begin by defining the ciphertext
as the vector ctext, and defining letters, ltable, A, blocksize, and
numblocks as before (defining numblocks as the number of ciphertext char-
acters divided by blocksize). We would then need to convert the list of
ciphertext letters into a list of ring elements. We can do this by entering
the following commands.

> for i from 1 to vectdim(ctext) do

> ctext[i] := ltable[ ctext[i] ]:

> od:

> evalm(ctext);

[ 5, 10, 23, 9, 4, 19, 9, 12, 24, 4, 4, 3, 11, 16, 10, 13, 0, 0 ]
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Next, we would need to group these ciphertext ring elements into row
vectors of length blocksize. We can do this by entering the following
command, which leaves these row vectors in order as rows in the matrix
cmatrix.

> cmatrix := matrix(numblocks, blocksize, ctext);

cmatrix :=




5 10 23
9 4 19
9 12 24
4 4 3

11 16 10
13 0 0




We can then recover the plaintext ring elements by multiplying the preced-
ing matrix by the inverse of the key matrix A. We can do this by entering
the following command, which leaves the resulting product as the matrix
pmatrix. (Note that to obtain the inverse of A, we must only raise A to the
power -1.)

> pmatrix := map(m -> m mod 26, evalm(cmatrix &* A^(-1)));

pmatrix :=




17 4 13
3 4 25

21 14 20
18 0 19
13 14 14
13 0 0




We can list the plaintext ring elements in order in the vector ptext by
entering the following command.

> ptext := convert(pmatrix, vector);

ptext := [ 17, 4, 13, 3, 4, 25, 21, 14, 20, 18, 0, 19, 13, 14, 14, 13, 0, 0 ]

Finally, we can see the corresponding alphabet letters by entering the fol-
lowing commands.

> for i from 1 to vectdim(ptext) do

> ptext[i] := letters[ ptext[i] ]:

> od:

> evalm(ptext);

[R, E, N, D, E, Z, V, O, U, S, A, T, N, O, O, N, A, A ]
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6.4 Generalizations of the Hill Cryptosystem

Just as we enhanced the security of our first encryption method in Section
6.1 by including a constant in the function f : R→ R, we can enhance the
security of the Hill encryption method by including a vector of constants
in the function f : Rn → Rn. We summarize this as our next encryption
method.

Generalized Hill Encryption Method: Let A be an n × n invertible
matrix over R, and let B be a row vector of length n over R. Group the
plaintext into row vectors Pi of length n, and define f : Rn → Rn by
f(Pi) = PiA + B with each entry taken modulo |R|. The resulting rows
listed together form the ciphertext.

The generalized Hill encryption method yields a system that has the
matrix A and vector B as keys. The inclusion of B obviously yields a
higher level of security than our original Hill encryption method. To break
the generalized system by trial and error, an intruder would have to test
a maximum of 26n

2+n possible pairs (A,B) of keys, while to break the
original Hill system an intruder would have to test a maximum of only 26n

2

possible keys. Even for very small values of n this increase is significant.
For example, for n = 5, the generalized system has 265 = 11881376 times as
many possible pairs of keys as the number of possible keys for our original
Hill system.

To decipher a message that has been encrypted using the generalized
Hill encryption method with a key matrix A of size n × n and vector B
of length n, we would group the ciphertext into row vectors Ci of length
n, and compute f−1(Ci) = (Ci − B)A−1 mod |R| for all i. Hence, despite
the somewhat significant increase in security yielded by the generalized Hill
encryption method, there is not a significant increase in the computational
work necessary for enciphering and deciphering messages.

We now discuss an extension of the generalized Hill encryption method
that yields an even higher level of security.

Variable Matrix Encryption Method: Let A be an n × n invertible
matrix over R, and let Bi be varying row vectors of length n over R. Group
the plaintext into row vectors Pi of length n, and define fi : Rn → Rn by
fi(Pi) = PiA + Bi with each entry taken modulo |R|. The resulting rows
listed together form the ciphertext.
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To decipher a message that has been encrypted using the variable
matrix encryption method with a key matrix A of size n × n and vectors
Bi of length n, we would group the ciphertext into row vectors Ci of length
n, and compute f−1

i (Ci) = (Ci −Bi)A−1 mod |R| for all i.

One problem with the variable matrix encryption method is that in
practice it may be difficult or cumbersome for the originator and intended
recipient of the messages to keep a record of the vectors Bi. To avoid this
problem, these vectors can be chosen so that they depend uniquely on the
plaintext vectors Pi, the ciphertext vectors Ci, or the previous Bi. For
example, three simple methods for choosing the Bi are

1. Bi = Pi−1B, where B is a fixed n× n matrix over R and P0 is given,

2. Bi = Ci−1B, where B is a fixed n×n matrix over R and C0 is given,

3. Bi = (ri, ri+1, . . . , ri+n−1), where {rj} is a recursive sequence over R
with necessary initial rj given.

Example 6.6 In this example we use the variable matrix encryption
method to encipher the message “MEET AT SEVEN”. We begin by convert-
ing the message into a list of elements in Z26. The result of this conversion
is shown at the beginning of Example 6.3. We will use the following key
matrix A to encipher this message.

A =


 1 2 1

3 1 0
0 2 1




And we will use the first of the three methods listed above for choosing the
vectors Bi with the following matrix B

B =


 1 0 0

1 1 1
0 0 1




and vector P0 = (1, 2, 3). To form the ciphertext, we group the plaintext
into row vectors Pi of length 3, and compute PiA + Bi for all i with each
entry taken modulo 26. Before constructing the first ciphertext vector, we
construct the vector B1 as follows.

B1 = P0B = (1, 2, 3)B = (3, 2, 5)

We can then construct the first ciphertext vector as follows.

P1A+B1 = (12, 4, 4)A+ (3, 2, 5)
= (27, 38, 21)
= (1, 12, 21)
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We construct the remaining vectors Bi as follows.

B2 = P1B = (12, 4, 4)B = (16, 4, 8)
B3 = P2B = (19, 0, 19)B = (19, 0, 19)
B4 = P3B = (18, 4, 21)B = (22, 4, 25)

And we can then construct the remaining ciphertext vectors as follows.

P2A+B2 = (19, 0, 19)A+ (16, 4, 8) = · · · = (9, 2, 20)
P3A+B3 = (18, 4, 21)A+ (19, 0, 19) = · · · = (23, 4, 6)
P4A+B4 = (4, 13, 25)A+ (22, 4, 25) = · · · = (13, 23, 2)

Hence, the entire encipherment is

M E E T A T S E V E N
α ⇒ 12 4 4 19 0 19 18 4 21 4 13 25
f ⇒ 1 12 21 9 2 20 23 4 6 13 23 2
α−1 ⇒ B M V J C U X E G N X C

and the ciphertext is “BMVJCUXEGNXC”.

6.5 The Two-Message Problem

Recall that the Hill cryptosystem can be used to obtain any desired level of
security by simply choosing a key matrix that is sufficiently large. However,
recall also that for the Hill system with an n× n key matrix, we discussed
a technique in Section 6.2 by which an intruder may be able to break the
system relatively easily if the intruder knows or is able to correctly guess n2

characters from the plaintext. This technique illustrates the general fact
that it is sometimes possible for an intruder to break a cryptosystem in
an unusual way provided the intruder knows some additional information
about the system (such as, for example, n2 characters from the plaintext).
In this section we discuss a technique by which an intruder can break a
slight modification of the Hill system in an unusual way. We first discuss
the modification of the system, which consists of using a key matrix that is
involutory. A matrixK is said to be involutory ifK2 = I (i.e., ifK = K−1).

Modified Hill Encryption Method: Let K be an n × n involutory
matrix over R. Group the plaintext into row vectors Pi of length n, and
form ciphertext vectors Ci by Ci = PiK with each entry taken modulo |R|.
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This modified Hill encryption method is in fact the method suggested
by Hill when he first presented his cryptosystem in 1929. The reason for
Hill’s suggestion of using an involutory key matrix is obvious, for then the
same matrix could be used to decipher a message that was used to enci-
pher the message. Although this simplification of the Hill system is not as
significant now with the recent developments in calculators and computers,
the elimination of having to determine the inverse of the key matrix was
very noteworthy in 1929. In fact, Hill even invented a machine designed
to perform the calculations in his cryptosystem, and argued that by using
an involutory key matrix one could both encipher and decipher a single
message without “changing the settings”.

Note that in order for the modified Hill encryption method to be a
useful encryption technique, there should be a relatively large number of
n × n involutory matrices for each n > 1. For any specific n > 1, if there
are only a relatively few n× n involutory matrices, then an involutory key
matrix of size n × n would certainly not yield a secure cryptosystem. We
would assume in general that an intruder to such a system would know
the size of the key matrix and the fact that the key matrix was involutory.
Hence, if there are only a relatively few involutory matrices of size
n×n, an intruder could break the system very easily by simply testing each
one. However, it is not the case that there are only a relatively few n × n
involutory matrices for any n > 1. It has been well-known for many years
that for any matrices A of size r × s and B of size s× r over a ring R, the
block matrix 

 BA− I B

2A−ABA I −AB




is involutory over R (see Written Exercise 7). Thus, it is not unreason-
able to suppose that an intruder should find the modified Hill system not
significantly less difficult to break than the usual Hill system. But, as men-
tioned, it is sometimes possible for an intruder to break a cryptosystem in
an unusual way provided the intruder knows some additional information
about the system. As we discuss next, an intruder can break the modified
Hill system in an unusual and relatively easy way provided the intruder
intercepts two ciphertexts formed from the same plaintext using different
involutory key matrices of the same size. In this scenario, the problem of
breaking the system is called the Two-Message problem.

Suppose we intercept ciphertexts C,C′ formed from the same plaintext
P using the Hill cryptosystem with two different n×n involutory key matri-
ces K,K ′. That is, suppose a single plaintext P is grouped into row vectors
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Pi of length n, and we intercept ciphertext vectors Ci and C ′
i formed by

Ci = PiK (6.4)

and
C ′

i = PiK
′ (6.5)

for all i where K,K ′ are distinct n × n involutory matrices. The Two-
Message problem is to determine the plaintext vectors Pi for all i from
knowledge of the ciphertext vectors Ci and C ′

i. Note that since K and
K ′ are involutory, they are their own corresponding decryption matrices.
Thus, if we could determine K or K ′ we would be done. To do this, note
that because K is involutory, (6.4) is equivalent to

Pi = CiK (6.6)

for all i. By substituting this expression for Pi into (6.5), we obtain

C ′
i = CiKK

′ (6.7)

for all i. If there are n values of i, say i1, i2, . . . , in, for which the n×nmatrix
S = [Ci1 , Ci2 , . . . , Cin ] is invertible, then we can determine the matrix KK ′

as follows. Define the n×nmatrix T =
[
C ′

i1
, C ′

i2
, . . . , C ′

in

]
. Since (6.7) holds

for every i, it follows that T = SKK ′. Hence, we can determine KK ′ as
KK ′ = S−1T . Note that in order for the matrices S and T to exist, the
message P must be at least n2 characters in length. Note also that T will
be invertible since T−1 can be expressed as T−1 = K ′KS−1.

Recall, as we stated above, if we can determine K or K ′, then the
Two-Message problem will be solved. However, as we have just shown,
with a very mild assumption we should not have any difficulty in finding
the matrix KK ′. After finding KK ′, we consider the matrix equation
(KK ′)X = X(KK ′)−1 or, equivalently,

(KK ′)X = X(K ′K) (6.8)

for unknown matrix X. Note that both K and K ′ are involutory solutions
to (6.8). Thus, if we find all of the involutory solutions to (6.8), the resulting
collection of matrices will include both K and K ′. To find the plaintext, we
must then only decipher one of the ciphertexts with each of the involutory
solutions to (6.8). Most likely only one of these decipherments, the correct
plaintext, will make any sense. (To save time, we can decipher only a
portion of one of the ciphertexts with each of the involutory solutions to
(6.8). This will reveal which of the involutory solutions to (6.8) is the
correct key matrix for that ciphertext. We can then use this key matrix to
decipher the rest of the ciphertext.)
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We now summarize the complete solution process for the Two-Message
problem as follows.

1. Determine the matrix KK ′.

2. Find all of the involutory solutions to (6.8).

3. Decipher one of the ciphertexts with each of the involutory solutions
to (6.8). The correct key matrix, which is one of these involutory
solutions, will yield the correct plaintext.

The procedure for completing the first step in this solution process was
described previously, and can generally be done in a straightforward man-
ner. The calculations for the third step can also generally be done in a
straightforward manner, although due to the potentially large number of
involutory solutions to (6.8), these calculations can be long and tedious. It
is in the second step of this solution process that the essential difficulties
of the Two-Message problem lie. This step can be considered in two parts.
First, we can determine the general solution X to (6.8) by solving a system
of n2 linear equations for the unknown elements in X. After finding this
general solution, we can find the involutory solutions to (6.8) by imposing
the condition X2 = I on the general solution X. This requires solving
a system of up to n2 quadratic equations, hence providing many possible
difficulties, especially for large n. However, the potential difficulties that
can be incurred in solving a system of up to n2 quadratic equations do not
compare (time-wise) to those incurred in breaking the modified Hill system
by using trial and error to determine the key matrix.
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Written Exercises

1. Julius Caesar was known to encipher messages using our second en-
cryption method from Section 6.1 with a = 1. This encryption
method yields what is often called a shift cipher. Use a shift cipher
to encipher the message “ATTACK AT DAWN”. Also, describe and
illustrate procedures the intended recipient could use to decipher the
message and an intruder could use to break the system. Explain why
it is natural to say that this encryption method yields a shift cipher.

2. Consider the following matrix A over Z26.

A =
[

13 7
8 21

]

(a) Use the Hill encryption method with the key matrix A defined
above to encipher the message, “SEND TARGET STATUS”.

(b) Decipher “NDJLWLTBWFVXGSNV”, a message that has been
enciphered using the Hill encryption method with the key matrix
A defined above.

3. Suppose you intercept “FLBIPURCRGAO”, a message that has been
enciphered using the Hill encryption method with a 2× 2 key matrix
A over Z26, and you somehow know that the first four letters in the
corresponding plaintext are “NCST”. Decipher the message.

4. (a) Use the generalized Hill encryption method with the key matrix
A from Written Exercise 2 and the vector B = (1, 2) over Z26 to
encipher the message, “ABORT MISSION”.

(b) Decipher “UXSJOEWNOJHE”, a message that has been enci-
phered using the generalized Hill encryption method with the
key matrix A from Written Exercise 2 and the vector B = (1, 2)
over Z26.

5. Consider the following matrices A and B and vector C0 over Z26.

A =
[

2 5
1 4

]
B =

[
1 0
1 1

]
C0 = (1, 2)

(a) Use the variable matrix encryption method with the key matrix
A defined above to encipher the message, “NEED BACKUP”.

For choosing the vectors Bi, use the second of the three methods
listed immediately before Example 6.6 with the matrix B and
vector C0 defined above.
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(b) Decipher “RTOWKRPTLS”, a message that has been enciphered
using the variable matrix encryption method with the key matrix
A defined above. The vectors Bi were chosen using the second of
the three methods listed immediately before Example 6.6 with
the matrix B and vector C0 defined above.

6. Consider the recursive sequence {rj} over Z26 given by

rj+2 = (rj+1 + rj) mod 26

with r1 = 3 and r2 = 5.

(a) Use the variable matrix encryption method with the key
matrix A from Written Exercise 5 to encipher the message,
“GO PACK”. For choosing the vectors Bi, use the third of the
three methods listed immediately before Example 6.6 with the
recursive sequence {rj} defined above.

(b) Decipher “JAYGKI”, a message that has been enciphered using
the variable matrix encryption method with the key matrix A
from Written Exercise 5. The vectors Bi were chosen using the
third of the three methods listed immediately before Example
6.6 with the recursive sequence {rj} defined above.

7. Consider matrices A of size r × s and B of size s × r over a ring R.
Find the size of the matrix[

BA− I B
2A−ABA I −AB

]

and show that this matrix is involutory over R.

8. Use the result from Written Exercise 7 to construct an involutory
matrix of size 3× 3 over Z26. Then use your result as the key matrix
K in the modified Hill encryption method to encipher a plaintext of
your choice with at least six characters. Also, show how to decipher
the resulting ciphertext.

9. Let A be a matrix of size n× n over Zk. Recall that

A (adjA) = (adjA) A = (detA) I

where adjA represents the adjoint of A and I is the n × n identity.
Show that A is invertible over Zk if and only if the determinant of A
has a multiplicative inverse in Zk.

10. Show that a ∈ Zk has a multiplicative inverse in Zk if and only if
(a, k) = 1.
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Maple Exercises

1. Consider the following matrix A over Z26.

A =




9 10 0 20 7
4 3 14 23 16
7 2 5 7 5
21 1 25 3 1
1 5 4 3 0




(a) Use the Hill encryption method with the key matrix A defined
above to encipher the message, “ABORT MISSION PROCEED

WITH SECONDARY ORDERS”.

(b) Decipher “ZQBTDDBIGZZDCQFRXFBXPVJERZRSBA”, a mes-
sage that has been enciphered using the Hill encryption method
with the key matrix A defined above.

2. Consider the following matrix B and vector P0 over Z26.

B =




13 22 4 4 3
2 0 4 6 8
1 25 17 23 9
3 2 6 3 12
7 4 5 3 12


 P0 = (1, 1, 1, 1, 1)

(a) Use the variable matrix encryption method with the key matrix
A from Maple Exercise 1 to encipher the message, “ATTACK

FLANK AT SUNRISE”. For choosing the vectors Bi, use the first
of the three methods listed immediately before Example 6.6 with
the matrix B and vector P0 defined above.

(b) Decipher “ZRLGVCKZHWLMOSHXOGBU”, a message that has
been enciphered using the variable matrix encryption method
with the key matrix A from Maple Exercise 1. The vectors Bi

were chosen using the first of the three methods listed imme-
diately before Example 6.6 with the matrix B and vector P0

defined above.

3. Use the result from Written Exercise 7 to construct an involutory
matrix of size 5×5 over Z26. (You may find the Maple blockmatrix
command useful in constructing this matrix.) Then use your result as
the key matrix K in the modified Hill encryption method to encipher
a plaintext of your choice with at least 15 characters. Also, show how
to decipher the resulting ciphertext.

c© 1999 by CRC Press LLC



Chapter 7

The RSA Cryptosystem

In this chapter, we discuss one of the most well-known and popular cryp-
tosystems ever developed – the RSA cryptosystem. One reason why it is
so well-known and popular is that it is a classic public-key system. Re-
call in general that everything in a cryptosystem is assumed to be public
knowledge except the parameters in the enciphering function. A public-key
system is one in which even these parameters can be public knowledge with-
out compromising the security of the system. That is, using the notation
introduced in Section 6.1, a public-key system is one in which the function
f can be public knowledge without revealing f−1. The RSA cryptosystem
is named for R. Rivest, A. Shamir, and L. Adleman, who first published it
in 1978.

Before formally presenting the RSA system, we consider a very simple
example of the mathematics that govern it. Choose primes p = 5 and
q = 11, and let n = pq = 55 and m = (p − 1)(q − 1) = 40. Next,
choose a = 27, chosen so that (a,m) = 1, and let b = 3, chosen so that
ab = 1 mod m. Then for x = 2, note that

(xa)b = (227)3 = 2417851639229258349412352 = 2 mod 55 = x mod n.

An important thing to note about this computation is that

xab = x mod n. (7.1)

In fact, this equation will be true for any x ∈ Z because a and b were chosen
so that

ab = 1 mod m. (7.2)

Thus, if we encipher a message by raising the plaintext to the power a,
we can decipher the message by raising the ciphertext to the power b and
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reducing modulo n. It is certainly not obvious that (7.1) will hold for any
x ∈ Z provided (7.2) is true. Establishing this result will be one of our
primary goals in Section 7.1.

7.1 Mathematical Prerequisites

Before establishing the fact that (7.1) will hold for any x ∈ Z provided
(7.2) is true, we discuss some additional preliminaries. We first discuss how
to find values of a and b that satisfy (7.2). Of course, it is not difficult to
choose a, as it must only be relatively prime to m. Once a is chosen, we
can then find b as the multiplicative inverse of a modulo m by constructing
the Euclidean algorithm table (see Section 1.6) for a and m. We illustrate
this in the following example.

Example 7.1 Consider a = 27 and m = 40. To find a value for b that
satisfies ab = 1 mod m, we first apply the Euclidean algorithm to a and m
as follows.

40 = 27 · 1 + 13
27 = 13 · 2 + 1

Note that, as required, (a,m) = 1. Constructing the Euclidean algorithm
table for a and m, we obtain the following.

Row Q R U V

−1 − 40 1 0
0 − 27 0 1
1 1 13 1 −1
2 2 1 −2 3

Hence, 40(−2) + 27(3) = 1. This immediately gives the result, for it states
that 27(3) = 1 mod 40, and thus b = 3 satisfies ab = 1 mod m.

Next, we show the general relationship between the values of n and m
in the example in the introduction to this chapter. To do this we must first
prove some general results about the ring of integers.

Let n be an integer with n > 1. Then the modular ring Zn

inherits many properties from Z since it is a quotient ring of Z.
Consider the set Un of units in Zn. That is, consider the set
Un = {x ∈ Zn | x has a multiplicative inverse in Zn}. Note that Un can
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also be expressed as Un = {x ∈ Zn | (x, n) = 1}, and that Un forms a
multiplicative group (see Written Exercise 11). The order of Un is denoted
in general by ϕ(n). The function ϕ is called the Euler-phi function.

Theorem 7.1 If p is a prime, then Up = Z∗
p and ϕ(p) = p− 1.

Proof. Exercise.

Theorem 7.2 Suppose a and b are integers with (a, b) = 1. Then
ϕ(ab) = ϕ(a)ϕ(b).

Proof. Consider the sets A = {s | 0 < s ≤ a and (s, a) = 1} and
B = {r | 0 < r ≤ b and (r, b) = 1}. Then |A| = ϕ(a) and |B| = ϕ(b). Now,
let T = {ar + bs | r ∈ B and s ∈ A}. We claim that (ar + bs, ab) = 1.
Suppose there exists a prime p that divides both ar + bs and ab. Then
p|a or p|b. If p|a, then p|ar + bs implies p|bs. But since (a, b) = 1, then
p does not divide b. Hence, p|s. But (s, a) = 1, which is a contradic-
tion. A similar argument holds if p|b. Thus, (ar + bs, ab) = 1. Sup-
pose now that ar + bs = ar′ + bs′ mod ab with r, r′ ∈ B and s, s′ ∈ A.
Then a(r − r′) = b(s′ − s) mod ab, and b|a(r − r′). Hence, b|(r − r′)
since (a, b) = 1. But 0 < r and r′ ≤ b. Therefore, r = r′. Similarly,
s = s′. Let U = {w | w is the remainder when ar + bs is divided by ab}.
Each element in U is relatively prime to ab, and |U | = |A × B|. Hence,
ϕ(ab) ≥ |U | = |A×B| = ϕ(a)ϕ(b). To show the desired equality, it is now
sufficient to show that if c ∈ Z with (c, ab) = 1 and 0 < c ≤ ab, then c ∈ U .
Since (a, b) = 1 and ax+ by = 1 for some x, y ∈ Z, then axc+ byc = c. Let
z = xc and t = yc. Then az + bt = c. Since (a, c) = 1, it then follows that
(a, t) = 1. Thus, t = s mod a for some s ∈ A, and bt = bs mod ab. In a
similar manner it can be seen that az = ar mod ab for some r ∈ B. Hence,
ar + bs = c mod ab, and c ∈ U .

The reason Theorems 7.1 and 7.2 are of interest to us is because of
the following corollary, which states the general relationship between the
values of n and m in the example in the introduction to this chapter.

Corollary 7.3 Suppose n = pq for distinct primes p and q. Then
ϕ(n) = (p− 1)(q − 1).

Proof. Exercise.

We now show that (7.1) will hold for any x ∈ Z provided (7.2) is true.
The main result we will use to show this is the following theorem, commonly
called Fermat’s Little Theorem.
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Theorem 7.4 Let p be a prime, and suppose x ∈ Z satisfies (x, p) = 1.
Then xp−1 = 1 mod p.

Proof. We claim first that the elements in the set

S1 = {x mod p, 2x mod p, . . . , (p− 1)x mod p}

are a rearrangement of the elements in the set

S2 = {1, 2, . . . , p− 1}.

To see this, note that if jx mod p = kx mod p for some positive integers j
and k less than p, then p|(j−k)x. But since p does not divide x, this implies
that p|j − k. Thus, because j and k are less than p, it follows that j = k.
Now, since S1 = S2, the product of the elements in S1 will be equal to the
product of the elements in S2. That is, xp−1(p−1)! mod p = (p−1)! mod p.
Hence, p|(p− 1)!(xp−1 − 1). Finally, since p does not divide (p− 1)!, then
p|xp−1 − 1 or, equivalently, xp−1 = 1 mod p.

In the following theorem we establish the fact that (7.1) will hold
provided (7.2) is true.

Theorem 7.5 Suppose p and q are distinct primes and define n = pq and
m = ϕ(n) = (p−1)(q−1). If a and b are integers that satisfy ab = 1 mod m,
then xab = x mod n for all x ∈ Z.

Proof. Since ab = 1 mod m, then ab = 1 + km for some k ∈ Z. Hence, for
any x ∈ Z, it follows that

xab = x1+km = x(xkm) = x(xp−1)k(q−1).

If (x, p) = 1, then by Theorem 7.4 we know that xp−1 = 1 mod p. Thus,
xab = x(1)k(q−1) mod p = x mod p. Also, if (x, p) 
= 1, then x = 0 mod p,
and certainly xab = x mod p. Similarly, xab = x mod q. Hence, p|(xab − x)
and q|(xab−x), and thus pq|(xab−x). That is, n|(xab−x) or, equivalently,
xab = x mod n.

7.2 RSA Encryption and Decryption

To encipher a message using the RSA cryptosystem, we first convert the
message into a list of nonnegative integers by applying a mapping like the
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correspondence α from Chapter 6. We then choose distinct primes p and q
and define n = pq and m = ϕ(n) = (p− 1)(q− 1). Next, we choose a ∈ Z∗

m

such that (a,m) = 1, and find b ∈ Z∗
m that satisfies ab = 1 mod m. (Recall

that b can be found by constructing the Euclidean algorithm table for a
and m.) To encipher the message, we form ciphertext integers by raising
the plaintext integers to the power a and reducing modulo n. According
to Theorem 7.5, we can then recover the plaintext integers by raising the
ciphertext integers to the power b and reducing modulo n.

Example 7.2 In this example, we use the RSA cryptosystem to encipher
and decipher the message, “NCSU”. We first apply the correspondence α
from Chapter 6 to convert this message into the list of integers 13 2 18
20. Next, we choose primes p = 5 and q = 11, and define n = pq = 55 and
m = (p− 1)(q − 1) = 40. We then choose encryption exponent a = 27. To
encipher the message, we perform the following calculations.

1327 = 7 mod 55
227 = 18 mod 55

1827 = 17 mod 55
2027 = 15 mod 55

Hence, the ciphertext is the list of integers 7 18 17 15. (Although we could
use α−1 to convert this particular list of integers back into a list of letters,
conversion of an RSA ciphertext back into a list of alphabet characters is
not usually possible. To see this, note that because the results of these
encryption calculations were reduced modulo n = 55, these results could
have been as large as n−1 = 54.) By Example 7.1, the decryption exponent
that corresponds to the encryption exponent a = 27 in this example is
b = 3. Hence, to decipher the message, we must only perform the following
calculations.

73 = 13 mod 55
183 = 2 mod 55
173 = 18 mod 55
153 = 20 mod 55

Note that the results are the original plaintext integers.

We still have several topics to address regarding the RSA cryptosystem.
Note first that no matter how large we choose the encryption exponent
and modulus for the RSA system, the system as illustrated in Example
7.2 will certainly not be secure because it will just yield a substitution
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cipher. However, we can use the RSA encryption procedure as presented to
obtain a non-substitution cipher by simply grouping consecutive integers
in the plaintext before enciphering. Because our exponentiation operations
are done modulo n, we will still be able to convert between plaintext and
ciphertext uniquely, provided the plaintext integers are grouped into blocks
that are smaller than n. We illustrate this in the following example.

Example 7.3 In this example, we again encipher and decipher the mes-
sage, “NCSU”. We begin by choosing primes p = 79 and q = 151, and
defining n = pq = 11929 and m = (p − 1)(q − 1) = 11700. Next, we
choose a = 473, chosen so that (a,m) = 1. We can then use the Euclidean
algorithm to find that b = 8237 satisfies ab = 1 mod m. Recall that our
plaintext converts to the list of integers 13 2 18 20. Since we have cho-
sen a 5-digit value for n, we can group the first two and last two plaintext
integers into blocks that will be smaller than n. That is, we can express
the plaintext as 1302 1820 (note that we use 02 for 2), and use the RSA
encryption procedure as presented. To encipher the message, we perform
the following calculations.

1302473 = 7490 mod 11929
1820473 = 9723 mod 11929

Hence, the ciphertext is 7490 9723. To decipher the message, we perform
the following calculations.

74908237 = 1302 mod 11929
97238237 = 1820 mod 11929

We can then split the resulting 4-digit integers into the original 2-digit
plaintext integers.

Another topic we must address regarding the RSA cryptosystem is how
the system actually progresses between two people wishing to exchange a
secret message. We stated in the introduction to this chapter that the RSA
cryptosystem is a public-key system. This forces the system to progress in
a particular way.

Recall that in general we assume almost everything in a cryptosys-
tem is public knowledge, including the form of the enciphering function.
This means that we would assume an intruder who intercepts an RSA ci-
phertext would know that each ciphertext integer was formed as xa mod n
for some plaintext integer x and positive integers a and n. The fact that
the RSA cryptosystem is a public-key system means that we would as-
sume the intruder also knows the actual values of a and n used in the
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encryption. For example, we would assume an intruder who intercepts the
ciphertext in Example 7.3 would know that each ciphertext integer was
formed as x473 mod 11929 for some plaintext integer x. Although this ob-
viously affects the security of the system, we make this assumption because
in practice the RSA system is used with a and n being public knowledge.
The benefit of this is that two people wishing to use RSA to send a secret
message across an insecure line of communication do not have to figure out
a way to secretly exchange an encryption exponent and modulus.

The comments made in the previous paragraph imply that the RSA
system in Example 7.3 is not mathematically secure. This is because an
intruder could mathematically break the system as follows. After find-
ing the values of p and q in n = pq = 11929, an intruder could form
m = (p − 1)(q − 1), use the Euclidean algorithm to find that b = 8237
satisfies ab = 1 mod m, and decipher the message by raising the ciphertext
integers to the power b and reducing modulo n. Hence, none of the opera-
tions necessary to break this system would take an intruder more than a few
minutes. And even with significantly larger numbers, the Euclidean algo-
rithm and modular exponentiation can easily be efficiently programmed on
a computer. However, the first step in this process requires an intruder to
find the two prime factors of n. It is the apparent difficulty of this problem,
provided p and q are very large, that gives the RSA system an extremely
high level of security. For example, if p and q are both around 100 digits
long, the fastest known factoring algorithms would generally take millions
of years to factor n = pq, even when programmed on a computer that can
perform millions of operations per second. (We make some comments on
choosing very large prime numbers in Sections 7.3 and 7.5, and some com-
ments on factoring numbers with very large prime factors in Sections 7.3
and 7.6.) Hence, even if the encryption exponent a is public knowledge,
an intruder should not be able to determine the decryption exponent b.
This is precisely why the RSA cryptosystem is called a public-key system –
the parameters in the enciphering function f(x) = xa mod n can be public
knowledge without revealing the parameter b in the deciphering function
f−1(x) = xb mod n.

We now mention how the RSA system actually progresses between
two people wishing to exchange a secret message across an insecure line of
communication. Because only the intended recipient of the message must
be able to decipher the message, the intended recipient of the message
initiates the process by choosing primes p and q, and defining n = pq
and m = (p− 1)(q− 1). The intended recipient then chooses an encryption
exponent a ∈ Z∗

m such that (a,m) = 1 and, using the Euclidean algorithm if
necessary, finds b ∈ Z∗

m that satisfies ab = 1 mod m. The intended recipient
then sends the values of a and n to the originator of the message across the
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insecure line of communication, forcing the assumption that a and n are
public knowledge. The originator of the message enciphers the message by
applying the function f(x) = xa mod n to the plaintext integers, and then
sends the resulting ciphertext integers to the intended recipient across the
insecure line of communication. Since only the intended recipient knows
b, only the intended recipient can decipher the message by applying the
function f−1(x) = xb mod n to the ciphertext integers.

Example 7.4 Suppose we wish to use the RSA cryptosystem to send the
message, “NCSU” to a colleague across an insecure line of communication.
Our colleague begins the process by choosing primes p and q, and defining
n = pq = 363794227 and m = (p − 1)(q − 1). Next, our colleague chooses
a = 13783, chosen so that (a,m) = 1, and uses the Euclidean algorithm
to find b ∈ Z∗

m that satisfies ab = 1 mod m. Our colleague then sends the
values of a and n to us across the insecure line of communication. Recall
that our plaintext converts to the list of integers 13 02 18 20. Since
our colleague has chosen a 9-digit value for n, we can group all four of
these 2-digit plaintext integers into a single block that will be smaller than
n. That is, we can express the plaintext as 13021820, and encipher our
message by applying the function f(x) = xa mod n to this plaintext integer.
To encipher the message we perform the following calculation.

1302182013783 = 91518013 mod 363794227

We would then transmit the ciphertext integer 91518013 to our colleague
across the insecure line of communication. In order for an intruder who
intercepts this ciphertext and the previously transmitted values of a and
n to decipher the message, the intruder would need to find the decryption
exponent b. But to find b, an intruder would first need to find m. And to
find m, an intruder would need to find the prime factors of n, a problem
that, as we have stated, is essentially impossible provided our colleague has
chosen sufficiently large values for p and q. This would not pose a problem
for our colleague, however, because our colleague began the process by
choosing p and q. Hence, our colleague would know that the prime factors
of n = pq = 363794227 are p = 14753 and q = 24659, and would have
no difficulty in forming m = (p − 1)(q − 1) = 363754816 and using the
Euclidean algorithm to find that b = 20981287 satisfies ab = 1 mod m. To
decipher the message, our colleague would then only need to perform the
following calculation.

9151801320981287 = 13021820 mod 363794227

(We make some comments on efficiently raising large numbers to large
powers in Sections 7.3 and 7.4.)
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7.3 The RSA Cryptosystem with Maple

In this section we show how Maple can be used to encipher and decipher
messages using the RSA cryptosystem.

We begin by mentioning several Maple commands that are useful for
finding large primes. The first command we will mention is the nextprime
command, which returns the smallest prime larger than an integer input.
For example, the following command returns the smallest prime larger than
400043344212007458000.

> nextprime(400043344212007458000);

400043344212007458013

A similar command is the prevprime command, which returns the largest
prime smaller than an integer input. For example, the following command
returns the largest prime smaller than 400043344212007458000.

> prevprime(400043344212007458000);

400043344212007457977

A final primality command we will mention is the isprime command, which
returns true if an integer input is prime and false if not. For example,
the following commands imply that 400043344212007457977 is prime while
400043344212007458000 is not.

> isprime(400043344212007457977);

true

> isprime(400043344212007458000);

false

We should mention that the nextprime, prevprime, and isprime com-
mands are probabilistic routines that employ primality tests (see Section
7.5). This means that the output returned by Maple is in general guaran-
teed to be correct with extremely high probability, but not absolutely.

We now show how Maple can be used to perform the RSA encipherment
and decipherment procedures. We begin by finding large primes p and q.

> p := nextprime(400043344212007458000);

p := 400043344212007458013

> q := nextprime(500030066366269001200);

q := 500030066366269001203
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Next, we define n = pq and m = (p− 1)(q − 1).
> n := p*q;

n := 200033699955714283345172521584008468989639

> m := (p-1)*(q-1);

m := 200033699955714283344272448173430192530424

And we will use the following encryption exponent a.
> a := 10098768900987679000910003;

a := 10098768900987679000910003

To verify that this value of a is a valid RSA encryption exponent, we enter
the following Maple igcd command, which returns the greatest common
divisor of the integers a and m. Note that, as required, (a,m) = 1.

> igcd(a, m);

1

We now use the RSA encipherment procedure to encipher the message,
“RETURN TO HEADQUARTERS”. (Because the letter “I” represents√
−1 in Maple, the user-written procedures that follow had to be designed

for messages expressed with lower-case letters. Also, contrary to the way we
defined messages in Section 6.3, note that the following message is defined
as a string of letters without spaces rather than as a vector containing the
letters.)

> message := ‘returntoheadquarters‘;

message := returntoheadquarters

Next, we convert this message into a list of 2-digit integers and combine
these integers into a single block. To do this, we have provided the user-
written procedure to number, for which code is given in Appendix C.2. If
this procedure is saved as the text file to number in the directory from which
we are running Maple, then we can include the to number procedure in
this Maple session by entering the following command.

> read to_number;

We can then convert message into its numerical equivalent as a single block
by entering the following command.

> plaintext := to_number(message);

plaintext := 1704192017131914070400031620001719041718
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Because this plaintext integer is smaller than n, we can encipher this mes-
sage as a single block. That is, we can encipher this message by raising
plaintext to the power a and reducing modulo n. To do this, we enter the
following command. (Because this modular exponentiation involves such a
large exponent, we use the Maple &^ command instead of just ^ for the
exponentiation. By using &^, we cause Maple to do the exponentiation in
a very efficient way, like the technique discussed in Section 7.4.)

> ciphertext := plaintext &^ a mod n;

ciphertext := 39705667751051336812284136334817473485289

To decipher this message, we must find a decryption exponent b that sat-
isfies ab = 1 mod m. We can do this by entering the following Maple
igcdex command. Like the preceding igcd command, the following igcdex
command returns the greatest common divisor of the integers a and m.
However, the following igcdex command also takes two additional user-
defined variable inputs, which it leaves as integers b and y that satisfy
ab +my = (a,m). Since (a,m) = 1, these will be values of b and y that
satisfy ab +my = 1 or, equivalently, ab = 1 mod m. Thus, we can find a
decryption exponent b by entering the following command.

> igcdex(a, m, ’b’, ’y’);

1

To see the decryption exponent b defined by the previous command, and to
express this value as a positive number less than m, we enter the following
command.

> b := b mod m;

b := 54299300950841826990071853678997985400035

Next, by entering the following command we verify that this value of b
satisfies ab = 1 mod m.

> a*b mod m;

1

To recover the plaintext integer, we must only raise ciphertext to the
power b and reduce modulo n.

> plaintext := ciphertext &^ b mod n;

plaintext := 1704192017131914070400031620001719041718

To see the original plaintext letters, we must split this single block into a
list of 2-digit integers and convert these integers back into letters. To do
this, we have provided the user-written procedure to letter, for which code
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is given in Appendix C.2. If this procedure is saved as the text file to letter
in the directory from which we are running Maple, then we can include
the to letter procedure in this Maple session by entering the following
command.

> read to_letter;

We can then convert plaintext back into a list of letters by entering the
following command.

> to_letter(plaintext);

returntoheadquarters

A final command we will mention is the ifactor command, which re-
turns the prime factorization of an integer input. For example, the following
command very quickly returns the prime factorization of the 43-digit integer
1118516508138307725195354324934560155358253.

> ifactor(1118516508138307725195354324934560155358253);

( 17 )5 ( 389 ) ( 45001200019828331 )2

Recall that the security of the RSA cryptosystem is based on the apparent
difficulty of factoring the value of n. Hence, in order for the RSA system
used in this section to be secure, it should be very difficult for an intruder
to factor the 42-digit value of n used in this section. Although this value
of n is one digit shorter than the integer used in the preceding command,
because the prime factors of n are both very large, it will take ifactor much
more time to return these prime factors. For example, the reader may wish
to enter the preceding and following commands to see the difference. (Make
sure you know how to interrupt the following command before entering it.)

> ifactor(200033699955714283345172521584008468989639);

And recall, as mentioned in Section 7.2, if p and q are both around 100
digits long, then the fastest known factoring algorithms, including the one
employed by the ifactor command, would in general take millions of years
to factor n = pq, even when programmed on a computer that can perform
millions of operations per second.

7.4 A Note on Modular Exponentiation

Securely enciphering and deciphering messages using the RSA cryptosys-
tem generally requires modular exponentiation with extremely large bases
and exponents. For example, to decipher the message in Section 7.3,
we had to raise the number 39705667751051336812284136334817473485289
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to the power 54299300950841826990071853678997985400035 and reduce
the result modulo 200033699955714283345172521584008468989639. Even
using the world’s fastest computer, performing this computation by ac-
tually multiplying 39705667751051336812284136334817473485289 by itself
54299300950841826990071853678997985400034 times would take essen-
tially an infinite amount of time. In this section we show a technique that
can be used to perform this modular exponentiation in a very efficient way.

For convenience, we will illustrate this technique for efficient modular
exponentiation in the calculation

9151801320981287 = 13021820 mod 363794227 (7.3)

that deciphered the message in Example 7.4. This modular exponentia-
tion can be done in a much more efficient way than multiplying 91518013
by itself 20981286 times. To do this computation more efficiently,
we begin by computing the values of (91518013)2

i

mod 363794227 for
i = 1, . . . , 24. That is, for P = 91518013 and M = 363794227, we compute
P 2, P 4, P 8, P 16, . . . , P 224

, and reduce each modulo M . Note that each
P 2i

modM can be found by squaring P 2i−1
modM . Thus, finding these

values requires 24 total multiplications. The modular exponentiation in
(7.3) can then be completed by computing

P 20981287 modM

= P 16777216+4194304+8192+1024+512+32+4+2+1 modM
= P 224+222+213+210+29+25+22+21+20

modM
= P 224 · P 222 · P 213 · P 210 · P 29 · P 25 · P 22 · P 21 · P 20

modM

which requires only 8 additional multiplications. Hence, this technique can
be used to perform the modular exponentiation in (7.3) with only 32 multi-
plications. This is, of course, much fewer than the 20981286 multiplications
necessary to multiply P by itself 20981286 times.

It is not difficult to see that this technique for efficiently computing
P a modM requires at most 2 log2 a multiplications (see Written Exercise
6). Hence, to perform even the massive modular exponentiation mentioned
at the beginning of this section, this technique would require at most only

2 log2 54299300950841826990071853678997985400035 ≈ 270

multiplications.
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7.5 A Note on Primality Testing

Recall that to construct a secure RSA cryptosystem, the primes p and q
chosen for the system must be very large. For example, we mentioned in
Section 7.2 that if p and q are both around 100 digits long, it would in
general take an intruder millions of years to break the system, even using
a computer that can perform millions of operations per second. However,
constructing an RSA system with such large primes is not particularly easy,
for it is not particularly easy to find such large primes. In fact, motivated in
part by the development of public-key cryptosystems like the RSA system,
much research has been done recently in the area of primality testing.

Contrary to what the general name primality test suggests, a primality
test is a criterion that can be used to determine if a specific number is not
prime. The conclusions that can be drawn from applying a primality test to
a number n are that either n “fails” the test and is definitely not prime, or
that n “passes” the test and is probably prime (with probability depending
on the “power” of the test).

The most direct and conclusive way to determine if a large odd integer
n is prime is to try to find nontrivial factors of n by trial and error. We can
do this systematically by checking to see if m|n as m runs through the odd
integers starting with m = 3 and stopping when m reaches

√
n. While this

would reveal with certainty whether n was prime or composite, it would
require many more divisions than could reasonably be done if n was of any
significant size. In the remainder of this section we briefly discuss a very
well-known and simple primality test based on Fermat’s Little Theorem
(Theorem 7.4).

If n is prime, then as a consequence of Fermat’s Little Theorem,

an−1 = 1 mod n (7.4)

for all a ∈ Z∗
n. Hence, it follows that if an−1 
= 1 mod n for any a ∈ Z∗

n,
then n is not prime. Thus, we can test the primality of an integer n by
checking to see if (7.4) holds for certain values of a in Z∗

n. While this test
is very easy to perform, there are some values of a for which (7.4) holds
even when (a, n) = 1 and n is composite. In such cases, n is called a
pseudoprime to the base a. For example, 2340 = 1 mod 341 even though
341 is not prime. Thus, 341 is a pseudoprime to the base 2. However, since
3340 = 56 mod 341, then 341 is not a pseudoprime to the base 3.

Pseudoprimes are scarce relative to the primes. For example, there are
only 245 pseudoprimes to the base 2 less than one million, while there are
78498 primes less than one million. Also, most pseudoprimes to the base 2
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are not pseudoprimes to many other bases. However, there do exist com-
posite integers n that are pseudoprime to every base a < n with (a, n) = 1.
Such numbers are called Carmichael numbers. There are 2163 Carmichael
numbers less than 2.5 × 1010. The smallest Carmichael number is 561.

There are many primality tests that are more definitive in their con-
clusions than the test described above. For example, a further primality
test based on Fermat’s Little Theorem that is also very easy to perform
fails only for an extremely small number of composites called strong pseu-
doprimes. In fact, there is only one strong pseudoprime to the bases 2, 3,
5, and 7 less than 2.5 × 1010. There is no strong pseudoprime analogue to
Carmichael numbers.

7.6 A Note on Integer Factorization

Recall that the security of the RSA cryptosystem is based on the apparent
difficulty of factoring a number that is the product of two very large distinct
primes. As in the area of primality testing, the development of public-key
cryptosystems like the RSA system has motivated much research in the
area of integer factorization. In this section we briefly discuss a very simple
technique for integer factorization called Fermat factorization. Despite the
fact that this factorization technique is quite old, Fermat factorization is
still a very useful technique for factoring numbers that are the product of
two very large distinct primes that are relatively close together.

Let n = pq be the product of two very large distinct primes, and
suppose we wish to determine the values of p and q from the knowledge
of n. The most direct way to find p and q would be by trial and error.
However, this would certainly not be feasible if both p and q were of any
significant size. But if p and q were relatively close together, then even if
they were very large we could determine them as follows. Let x = (p+ q)/2
and y = (p− q)/2. Then n = pq = x2 − y2 = (x+ y)(x− y). And since n
has prime factors p and q, then p and q must be equal to x+ y and x− y.
Hence, to determine p and q, we must only find the values of x and y. To
find x and y, we begin by assuming that x is the smallest integer larger
than

√
n. Since n = x2 − y2, if we have assumed the correct value of x,

then x2 − n will be the perfect square y2. If x2 − n is not a perfect square,
then we have assumed an incorrect value for x, and we increase x by one
and repeat. We continue to repeat this process, each time increasing x by
one, until x2−n is a perfect square. Note that if p and q are relatively close
together, then the number of times this process must be repeated should
be relatively small.
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Example 7.5 Suppose that we wish to find the two prime factors of
n = pq = 64349. Since the smallest integer larger than

√
64349 is 254,

we begin by letting x = 254. But since 2542 − n = 167 is not a perfect
square, then 254 is not the correct value for x. Next, we try x = 255. Since
2552 − n = 676 = 262 is a perfect square, then the correct values of x and
y are x = 255 and y = 26. Thus, the prime factors of n are x + y = 281
and x− y = 229.

In comparison of the problems of primality testing and integer factor-
ization, we should mention that factoring a known composite is in general
significantly more time-consuming than finding a prime of approximately
the same size. We have stated several times that the security of the RSA
cryptosystem is based on the apparent difficulty of factoring a number that
is the product of two very large distinct primes. To be more precise, the
security of the RSA cryptosystem is based on the fact that it is apparently
much more time-consuming for an intruder to factor the publicly known
value of n = pq than for the intended recipient of the message to choose
p and q. (We use the word “apparently” because it has never been con-
clusively proven that factorization is significantly more time-consuming.
Evidence, however, strongly suggests this.)

7.7 A Note on Digital Signatures

When the idea of public-key cryptography was developed, one way in which
it was envisioned that it could be used was as follows. Suppose a group of
people all wish to be able to communicate spontaneously with each other
across a series of insecure lines of communication. For illustration, suppose
they wish to use the RSA system to encipher their messages. To use the
RSA system most effectively, each person in the group could choose their
own secret primes p and q, form their own personal value for n = pq, and
choose their own personal encryption exponent a. Each person in the group
could then make their values of n and a public knowledge. Then, whenever
a person in the group wanted to send another person in the group a secret
message, they could use the intended recipient’s public values of n and a to
encipher the message. That way, only the intended recipient would be able
to decipher the message. However, this leads to a problem for the intended
recipient of the message, for the intended recipient would have no way to
verify that the received message was sent by the person claiming to have
sent it. This problem can be avoided as follows.

Suppose we wish to send the secret message P to a colleague across an
insecure line of communication using RSA. Assume we have made public
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our personal RSA modulus n1 and encryption exponent a1 while keeping
our decryption exponent b1 secret, and our colleague has made public his or
her personal RSA modulus n2 and encryption exponent a2 while keeping
his or her decryption exponent b2 secret. Suppose also that n1 < n2.
To encipher our message, instead of applying our colleague’s encryption
exponent and modulus directly to the plaintext, we first apply our own
decryption exponent and modulus. That is, instead of sending our colleague
the ciphertext P a2 mod n2, we first compute P1 = P b1 mod n1, and then
send our colleague the ciphertext C1 = P a2

1 mod n2. Our colleague can
easily decipher this message by first applying his or her decryption exponent
and modulus to obtain P1 = Cb2

1 mod n2, and then applying our publicly
known encryption exponent and modulus to obtain P = P a1

1 mod n1. Since
the decryption exponent b1 we used in enciphering the message is known
only to us, our colleague would know that only we could have enciphered the
message. Because it has the effect of authenticating the message, applying
our own decryption exponent and modulus in the encipherment of a message
is sometimes called signing the message. For the case when n1 > n2, see
Written Exercise 9.

Authentication of messages has been a very important and highly stud-
ied branch of cryptography for many years. In fact, it is interesting to note
that in the title of their classic paper, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, in which Rivest, Shamir, and
Adleman introduced the RSA system, the notion of a digital signature was
given precedence over that of a public-key cryptosystem.

7.8 The Diffie-Hellman Key Exchange

Recall that two people wishing to use the RSA cryptosystem to exchange
a secret message across an insecure line of communication make their en-
cryption exponent public knowledge. In this section we discuss a technique
that can be used by two people to keep an RSA encryption exponent secret
while communicating only across an insecure line of communication.1

There are several techniques by which two people can agree upon a
cryptographic key secretly without having a secure way to communicate.
One technique is the Diffie-Hellman key exchange, a process presented by
W. Diffie and M. Hellman in their classic paper, “New Directions in Cryp-
tography”, in which they introduced the idea of public-key cryptography.
In order to describe a way of incorporating this key exchange system with

1Copyright 1999 by COMAP, Inc. This material appeared in the spring 1999 issue of
UMAP (see [10]).
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the RSA system, suppose we wish to receive a secret message from a col-
league using RSA. Furthermore, suppose we and our colleague would like
to agree upon our encryption exponent secretly while communicating only
across an insecure line of communication. We can accomplish this by the
following steps in the Diffie-Hellman key exchange.

1. We choose primes p and q, form n = pq, and choose a positive integer
k < n with (k, n) = 1. We then send the values of k and n to our
colleague across the insecure line of communication.

2. We choose a positive integer r < n, compute kr mod n, and send
the result to our colleague while keeping r secret. Meanwhile, our
colleague chooses a positive integer s < n, computes ks mod n, and
sends the result to us while keeping s secret.

3. Both we and our colleague form the candidate encryption exponent
a = krs mod n, which we compute as (ks)r mod n, and our colleague
computes as (kr)s mod n. Since we know p and q, we can form
m = (p − 1)(q − 1) and determine if a is a valid RSA encryption
exponent by determining if (a,m) = 1. If a is not a valid RSA
encryption exponent, we repeat the process.

After we obtain a valid RSA encryption exponent, our colleague can then
encipher his or her message using the usual RSA encipherment procedure
with encryption exponent a and modulus n.

Example 7.6 Suppose we choose primes p = 83 and q = 101 so
that n = 8383 and m = 8200. Suppose also that we choose k = 256,
and send k and n to our colleague. We then choose r = 91, compute
25691 mod 8383 = 2908, and send the result to our colleague while
keeping r secret. Meanwhile, our colleague chooses s = 4882, computes
2564882 mod 8383 = 1754, and sends the result to us while keeping s secret.
Both we and our colleague then form the candidate encryption exponent
a = 6584, which we compute as 175491 mod 8383 = 6584, and our colleague
computes as 29084882 mod 8383 = 6584. However, because this value of a
is not a valid RSA encryption exponent (6584 is not relatively prime to m),
we would inform our colleague that we must repeat the process. For the
second attempt, suppose we choose the same values for p, q, and k. We
then choose r = 17, compute 25617 mod 8383 = 5835, and send the result
to our colleague. Meanwhile, our colleague chooses s = 109, computes
256109 mod 8383 = 1438, and sends the result to us. Both we and our
colleague then form the candidate encryption exponent a = 3439, which
we compute as 143817 mod 8383 = 3439, and our colleague computes as
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5835109 mod 8383 = 3439. Since this value of a is a valid RSA encryption
exponent, we would confirm to our colleague that he or she could proceed
with the usual RSA encipherment procedure.

Note that in this key exchange system, we must assume the values of
k, n, kr mod n, and ks mod n are known to intruders since they were all
transmitted across an insecure line of communication. Hence, in order for
this key exchange system to be secure, it should be an essentially impossible
problem for an intruder to determine krs mod n from the knowledge of k,
n, kr mod n, and ks mod n. This problem is called the Diffie-Hellman
problem. It has been conjectured that the only way to solve the Diffie-
Hellman problem in general is to solve the discrete logarithm problem. We
discuss this problem next.

Discrete logarithms are important to consider when studying the Diffie-
Hellman key exchange because the solution to a particular discrete log-
arithm problem leads directly to the solution to a corresponding Diffie-
Hellman problem. Suppose we intercept transmissions between our enemy
as they perform a Diffie-Hellman key exchange. That is, using the vari-
ables defined previously, suppose we intercept values of k, n, kr mod n,
and ks mod n. We now consider the problem of determining r from the
knowledge of k, n, and kr mod n. In this scenario, r is called a discrete log-
arithm of kr mod n to the base k, and the problem of determining r from
the knowledge of k, n, and kr mod n is called the discrete logarithm problem.
Note that if we could solve this general discrete logarithm problem, then the
preceding general Diffie-Hellman problem would also be solved, for we could
determine r from kr mod n, and then compute a = (ks)r mod n. However,
solving the discrete logarithm problem is not an easy method for solving the
Diffie-Hellman problem, for it can be argued that the best (fastest) way to
solve the discrete logarithm problem with a composite modulus n involves
first factoring n. Thus, the factorization problem that provides security to
the RSA system also provides security to the Diffie-Hellman key exchange
(as it has been presented in this section).

Many algorithms for computing discrete logarithms have been pre-
sented in literature. For small values of n, and some special large values
of n (for example, powers of a small base), many mathematics software
packages have pre-defined functions for directly computing discrete loga-
rithms. The Maple function for computing discrete logarithms is the mlog
function, which is part of the numtheory number theory package. If we
enter the following commands in Maple

> with(numtheory):

> mlog(y, k, n);

c© 1999 by CRC Press LLC



for positive integers y, k, and n, Maple will return an integer r with the
property that y = kr mod n. (If no such integer exists, Maple will return
false.) For example, the following command

> mlog(1438, 256, 8383);

109

indicates that 256109 mod 8383 = 1438, a fact we used in Example 7.6.

Using mlog and provided n is small, an intruder who intercepts
Diffie-Hellman key exchange transmissions could easily determine the
resulting cryptographic key. For example, suppose an intruder intercepts
the second set of transmissions k = 256, n = 8383, kr mod n = 5835,
and ks mod n = 1438 from Example 7.6. The intruder could deter-
mine the resulting RSA encryption exponent a by using mlog as
above to find that s = 109 satisfies ks mod n = 1438, and then computing
a = 5835109 mod 8383 = 3439.

In addition to the fact that mlog will in general run essentially for-
ever for very large values of n (as will all known algorithms for computing
discrete logarithms), there is another problem with using mlog to “undo”
the operation of modular exponentiation. While it is true that entering
the preceding general mlog command will cause Maple to return an in-
teger r with the property that y = kr mod n, this integer will not nec-
essarily be the integer actually used in the modular exponentiation being
undone. For example, in the first part of Example 7.6, we used the fact
that 2564882 mod 8383 = 1754. But the following command

> mlog(1754, 256, 8383);

782

indicates that also 256782 mod 8383 = 1754. Hence, the number returned
by Maple is not the exponent we used in the example. However, this would
not pose a problem for an intruder who intercepts the first set of trans-
missions from Example 7.6, for the intruder could still find the resulting
candidate encryption exponent a by computing 2908782 mod 8383 = 6584.
Thus, despite the fact that Maple returned an unexpected result, this re-
sult can still be used in the intruder’s general procedure for determining
the candidate encryption exponent. To see that this will be true in gen-
eral, suppose an intruder uses the mlog command to try to find the ex-
ponent in a Diffie-Hellman key exchange transmission ks mod n. Even if
the number returned by Maple is s′ 
= s, since it will be the case that
ks mod n = ks

′
mod n, the intruder can still find the candidate encryption

exponent a in the way illustrated above since it will also be the case that
a = (ks)r mod n = (ks

′
)r mod n.
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Written Exercises

1. Consider the message, “ATTACK RIGHT FLANK”.

(a) Encipher this message using the RSA cryptosystem with primes
p = 11 and q = 23 and encryption exponent a = 7. Use the
correspondence α from Chapter 6 to convert the message into
numerical form, and encipher each plaintext character separately
as in Example 7.2.

(b) Use the Euclidean algorithm to find the decryption exponent
that corresponds to the encryption exponent in part (a).

(c) Encipher this message using the RSA cryptosystem with primes
p = 83 and q = 131 and encryption exponent a = 3. Use the
correspondence α from Chapter 6 to convert the message into
numerical form, and group the plaintext integers into blocks with
four digits as in Example 7.3 before enciphering.

2. Suppose you wish to be able to receive messages from a colleague
using the RSA cryptosystem. You begin the process by choosing
primes p = 17 and q = 29 and encryption exponent a = 153. Verify
that this value of a is a valid RSA encryption exponent, and use the
Euclidean algorithm to find the corresponding decryption exponent.

3. Suppose your enemy is exchanging messages using the RSA cryptosys-
tem, and you intercept their modulus n = 33, encryption exponent
a = 7, and the following ciphertext: 27 8 20 29 16 16 9 13 20
13 0 8 30 16 13. Decipher this message. (The correspondence α
from Chapter 6 was used to convert the message into numerical form,
and each plaintext character was enciphered separately as in Example
7.2.)

4. Suppose you wish to be able to receive messages from a colleague using
the RSA cryptosystem. You begin the process by choosing primes
p = 47 and q = 59 and encryption exponent a = 1779. Suppose you
also determine the corresponding decryption exponent b = 3, and
you receive the following ciphertext from your colleague: 0792 2016
0709 0464 1497 1086 2366 0524. Decipher this message. (The
correspondence α from Chapter 6 was used to convert the message
into numerical form, and the plaintext integers were grouped into
blocks with four digits as in Example 7.3 before being enciphered.)
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5. Consider the modular exponentiation

1302182013783 = 91518013 mod 363794227

that enciphered the message in Example 7.4. Find the exact number
of multiplications the technique for efficient modular exponentiation
illustrated in Section 7.4 requires to perform this calculation.

6. Show that the technique for efficiently computing P a modM
illustrated in Section 7.4 requires in general at most 2 log2 a
multiplications.

7. Show that 15 is a pseudoprime to the base 4 but not a pseudoprime
to the base 3.

8. Use Fermat factorization to find the two prime factors of the integer
n = pq = 321179.

9. Suppose you wish to send the secret message P to a colleague across
an insecure line of communication using the RSA cryptosystem. As-
sume you have made public your personal RSA modulus n1 and en-
cryption exponent a1 while keeping your decryption exponent b1 se-
cret, and your colleague has made public his or her personal RSA
modulus n2 and encryption exponent a2 while keeping his or her de-
cryption exponent b2 secret. Suppose also that n1 > n2.

(a) Explain how the method described in Section 7.7 for digitally
signing your message could fail.

(b) Devise a method similar to the one described in Section 7.7 for
digitally signing your message that could not fail.

10. Using primes p = 5 and q = 7, act as both people in the Diffie-
Hellman key exchange system and agree upon a valid RSA encryption
exponent a. List the results from all trials of the key exchange process,
including trials that do not result in a valid encryption exponent.

11. Show that the set Un of units in Zn forms a multiplicative group.

12. Prove Theorem 7.1.

13. Prove Corollary 7.3.
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Maple Exercises

1. Consider the message, “GO PACK”.

(a) Encipher this message using the RSA cryptosystem with 3-digit
primes p and q and a valid 2-digit encryption exponent a of your
choice. Use the correspondence α from Chapter 6 to convert the
message into numerical form, and group the plaintext integers
into blocks with four digits as in Example 7.3 before enciphering.

(b) Encipher this message using the RSA cryptosystem with 4-digit
primes p and q and a valid 3-digit encryption exponent a of your
choice. Use the correspondence α from Chapter 6 to convert the
message into numerical form, and group the plaintext integers
into blocks with six digits before enciphering.

(c) Encipher this message using the RSA cryptosystem with 7-digit
primes p and q and a valid 4-digit encryption exponent a of your
choice. Use the correspondence α from Chapter 6 to convert the
message into numerical form, and group the plaintext integers
into a single block as in Example 7.4 before enciphering.

2. Suppose your enemy is exchanging messages using the RSA cryp-
tosystem, and you intercept their modulus n = 86722637, encryption
exponent a = 679, and the following ciphertext: 35747828 20827476
55134021 85009695. Decipher this message. (The correspondence α
from Chapter 6 was used to convert the message into numerical form,
and the plaintext integers were grouped into blocks with six digits
before being enciphered.)

3. Set up a parameterization of the RSA cryptosystem using primes p
and q with at least 30 digits each. Choose a valid encryption exponent
a, and determine a corresponding decryption exponent b. Then use
this parameterization of the RSA system to encipher and decipher
the message, “CANCEL MISSION WAIT FOR NEW ORDERS”. (Use
the correspondence α from Chapter 6 to convert the message into
numerical form.)

4. Using a Maple for or while loop, find the smallest base to which the
number 3215031751 is not a pseudoprime.

5. Using primes p = 503 and q = 751, act as both people in the Diffie-
Hellman key exchange system and agree upon a valid RSA encryption
exponent a. List the results from all trials of the key exchange process,
including trials that do not result in a valid encryption exponent.
Also, show how an intruder could use Maple to find the value of a.
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Chapter 8

Elliptic Curve
Cryptography

Recall from Section 7.8 that the security of the Diffie-Hellman key exchange
system is based on the difficulty of solving the discrete logarithm problem.
In this chapter we discuss a public-key cryptosystem whose security is also
based on the difficulty of solving the discrete logarithm problem. This sys-
tem, named the ElGamal cryptosystem for T. ElGamal who first published
the system in 1985, has formed an important area of recent cryptographic
research due to how elliptic curves can naturally be incorporated into the
system.

8.1 The ElGamal Cryptosystem

Before discussing elliptic curves and how they can naturally be incorporated
into the ElGamal system, we first describe the system in general and give
two simple examples of it. In order to describe the ElGamal system, suppose
two people wish to exchange a secret message across an insecure line of
communication. They can accomplish this by the following steps in the
ElGamal cryptosystem:

1. As with the RSA cryptosystem, the intended recipient of the message
initiates the process. The intended recipient chooses a finite abelian
group G and an element a ∈ G, then chooses a positive integer n,
computes b = an in G, and makes the group G and the values of a
and b public knowledge.
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2. Using some public method of conversion, the originator of the mes-
sage converts his or her message into an equivalent element or list of
elements in G. Suppose the message converts to the element w ∈ G.
The originator of the message then chooses a positive integer k, com-
putes y = ak and z = wbk in G, and sends the values of y and z to
the intended recipient across the insecure line of communication.

3. Because the intended recipient of the message knows n, the intended
recipient can recover w by computing zy−n in G since

zy−n = wbk(ak)−n = w(ba−n)k = w(1)k = w.

(Note: If |a| = m, then y−n can be determined as ym−n.)

Although the preceding steps are specific to the ElGamal cryptosystem,
the system can appear in many different forms due to the various types of
groups that can be used for G. This is precisely how we will incorporate
elliptic curves into the system. We will show in Section 8.3 that elliptic
curves over finite fields form abelian groups with a specially-defined opera-
tion. Of course, it is not necessary to use this type of group in the system.
The ElGamal system is especially easy to implement if G is chosen to be a
group like the multiplicative group Z∗

p for prime p.

Example 8.1 Suppose we wish to use the ElGamal cryptosystem to send
the message, “NCSU” to a colleague across an insecure line of communi-
cation.

1. Our colleague begins the process by choosing G = Z∗
p for prime

p = 100000007. Next, our colleague chooses a = 180989 and
n = 5124541, computes b = an mod p = 10524524, and sends the
values of p, a, and b to us.

2. Suppose we use the correspondence α from Chapter 6 to convert our
message into a single block numerical equivalent. That is, suppose
we convert our message into the numerical equivalent w = 13021820.
We then choose k = 3638997, compute y = ak mod p = 73133845 and
z = wbk mod p = 83973114, and send the values of y and z to our
colleague.

3. Our colleague can easily verify that the polynomial x − 180989
is primitive in Zp[x]. Hence, the order of a = 180989 in Z∗

p

is p − 1. Thus, our colleague can recover w by computing
zy−n mod p = zy(p−1)−n mod p = 13021820.
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Note that in Example 8.1 we would have to assume that the values of
p, a, b, y, and z were all public knowledge since they were all transmitted
across an insecure line of communication. And for the system to be secure,
an intruder must not be able to determine zy−n mod p. Hence, an intruder
must not be able to determine the value of n from intercepted values of p,
a, and b = an mod p. But this is precisely the statement of the discrete
logarithm problem we discussed in Section 7.8 with a prime modulus. That
is, the security of the ElGamal system in Example 8.1 is based on an in-
truder not being able to solve the discrete logarithm problem we discussed
in Section 7.8 with a prime modulus. We mentioned in Section 7.8 that the
discrete logarithm problem with a large composite modulus is in general
very difficult to solve. This is true, of course, with a large prime modulus
as well.

Discrete logarithms and the discrete logarithm problem can be defined
much more generally than how we defined them in Section 7.8. More gen-
erally, for any element x in a finite group G and an element y ∈ G that is a
power of x, any integer r that satisfies xr = y is called a “discrete logarithm
of y to the base x”, and the problem of determining an integer r that satis-
fies xr = y is called the “discrete logarithm problem”. As we mentioned in
Section 7.8, many algorithms for computing discrete logarithms have been
presented in literature. However, in groups with extremely large order, even
the fastest known discrete logarithm algorithms are in general extremely
time-consuming. For example, the fastest known discrete logarithm al-
gorithms would take millions of years to compute discrete logarithms in
groups with approximately 10200 elements.

As we mentioned above, the ElGamal cryptosystem can appear in
many different forms due to the various types of groups that can be used for
G. Recall that the group Z∗

p used in Example 8.1 is the group of nonzero
elements in the finite field Zp. We close this section with an example of
the ElGamal system using the group of nonzero elements in a more general
finite field.

Example 8.2 Suppose we wish to use the ElGamal cryptosystem to send
a secret message to a colleague across an insecure line of communication.

1. Our colleague begins the process by choosing the primitive polynomial
p(x) = x5 +4x+2 ∈ Z5[x]. Then for the finite field F = Z5[x]/(p(x))
with 55 = 3125 elements, our colleague lets G be the multiplicative
group F ∗. Next, our colleague chooses a = x and n = 1005, computes
b = an = 2x4 +4x3 +x2 +4x+2 in G, and sends p(x), a, and b to us.

2. Using some public method of conversion, we convert our message into
the field element w = x4 + x3 + 3 ∈ G. We then choose k = 537,
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compute y = ak = 2x4 +x3 +4x+4 and z = wbk = x4 +3x3 +2x2 +3
in G, and send y and z to our colleague.

3. Since p(x) is primitive and a = x, then |a| = |F ∗| = 3124. Hence, our
colleague can recover w by computing zy−n = zy3124−n = x4+x3+3.

Note that an intruder could break the ElGamal cryptosystem in Exam-
ple 8.2 by solving the discrete logarithm problem in the group F ∗. Specifi-
cally, an intruder could break the system by finding a discrete logarithm of
b = 2x4 + 4x3 + x2 + 4x + 2 ∈ F ∗ to the base a = x.

8.2 The ElGamal Cryptosystem with Maple

In this section we show how Maple can be used to perform the computations
in Examples 8.1 and 8.2.

In Example 8.1 our colleague began the process by choosing G = Z∗
p

with prime p = 100000007. The following command defines this value of p
and shows that it is prime.

> p := nextprime(100000000);

p := 100000007

Next, our colleague chose the following values for a and n.
> a := 180989:

> n := 5124541:

Our colleague then formed b = an mod p. Recall that this computation can
be done in an efficient way by using the Maple &^ command as follows.

> b := a &^ n mod p;

b := 10524524

Our colleague then sent the values of p, a, and b to us. We converted our
message into the following numerical equivalent w and chose the following
value for k.

> w := 13021820:

> k := 3638997:

Next, we computed y = ak mod p and z = wbk mod p.
> y := a &^ k mod p;

y := 73133845
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> z := w*(b &^ k) mod p;

z := 83973114

We then sent the values of y and z to our colleague. Recall that the poly-
nomial x − 180989 is primitive in Zp[x], and thus the order of a = 180989
in Z∗

p is p− 1. The following command verifies this.

> Primitive(x-a) mod p;

true

Finally, our colleague recovered w by computing zy(p−1)−n mod p.
> z*(y &^ (p-1-n)) mod p;

13021820

In Example 8.2 our colleague began the process by choosing the primi-
tive polynomial p(x) = x5 +4x+2 ∈ Z5[x]. The following commands define
p(x) and show that it is primitive in Z5[x].

> p := x -> x^5 + 4*x + 2:

> Primitive(p(x)) mod 5;

true

For the finite field F = Z5[x]/(p(x)) of order 55 = 3125, our colleague then
let G = F ∗. Next, our colleague chose a = x and the following value for n.

> a := x:

> n := 1005:

Our colleague then formed b = an in G. Recall that this computation can
be done by using the Maple Powmod command as follows.

> b := Powmod(a, n, p(x), x) mod 5;

b := 2x4 + 4x3 + x2 + 4x + 2

Our colleague then sent p(x), a, and b to us. We converted our message
into the following field element w and chose the following value for k.

> w := x^4 + x^3 + 3:

> k := 537:

Next, we computed y = ak in G.
> y := Powmod(a, k, p(x), x) mod 5;

y := 2x4 + x3 + 4x + 4
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We then computed z = wbk in G. To do this, we can enter the following
Powmod and Rem commands.

> bk := Powmod(b, k, p(x), x) mod 5;

bk := 3x4 + 2x2 + 3x + 1

> z := Rem(w*bk, p(x), x) mod 5;

z := x4 + 3x3 + 2x2 + 3

We then sent y and z to our colleague. Recall that since p(x) is primitive
and a = x, then |a| = 3124. Hence, our colleague recovered w by computing
zy3124−n ∈ G. We can perform this computation by entering the following
Powmod and Rem commands.

> yn := Powmod(y, 3124-n, p(x), x) mod 5;

yn := x4 + 4x3 + 4x2 + 4x + 2

> Rem(z*yn, p(x), x) mod 5;

x4 + x3 + 3

8.3 Elliptic Curves

Elliptic curves have figured prominently in several types of mathematical
problems. For example, the recent proof of Fermat’s Last Theorem by An-
drew Wiles employed elliptic curves. Elliptic curves have also played an im-
portant role in integer factorization, primality testing, and, more recently,
public-key cryptography. The idea of using elliptic curves in public-key
cryptography was first proposed by N. Koblitz and V. Miller in 1985.

Let F be a field not of characteristic 2 or 3, and suppose c, d ∈ F
such that x3 + cx + d has no multiple roots or, equivalently, such that
4c3 + 27d2 �= 0. Then the set of ordered pairs (x, y) ∈ F × F of solutions
to the equation

y2 = x3 + cx + d (8.1)

together with a special element denoted by O and called the point at in-
finity is called an elliptic curve. The significance of the element O will be
described below. An elliptic curve, when endowed with a specially-defined
operation, forms an abelian group. This operation is initially best viewed
geometrically when applied to an elliptic curve over the reals. For example,
consider the following graph of the ordered pairs (x, y) of solutions to the
equation y2 = x3 − 6x over the reals.
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Note first that, as we would expect from the form of (8.1), this graph
is symmetric about the x-axis. We now describe the operation that, when
applied to the points on this graph and point at infinity O, gives this elliptic
curve E the structure of an abelian group. This operation is an addition
operation and can be summarized as follows.

1. The point at infinity serves as the identity in the group. Thus, by
definition, P + O = O + P = P for all P ∈ E.

2. For any point P = (x, y) on the graph of y2 = x3 − 6x, we define the
negative of P to be −P = (x,−y). This is illustrated in the following
graph.

3. Suppose that P and Q are on the graph of y2 = x3−6x with P �= ±Q,
and that the line connecting P and Q is not tangent to the graph at
P or Q. Then it is not difficult to show that the line connecting P
and Q will intersect the graph at a unique third point R. We then
define P + Q = −R. This is illustrated in the following graph.
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4. Suppose that P and Q are on the graph of y2 = x3−6x with P �= ±Q,
and that the line connecting P and Q is tangent to the graph at P .
We then define P + Q = −P . This is illustrated in the following
graph.

5. Suppose that P is on the graph of y2 = x3 − 6x with x �= 0, and that
P is not a point of inflection for the graph. Then it is not difficult to
show that the line tangent to the graph at P will intersect the graph
at a unique second point R. We then define P + P = −R. This is
illustrated in the following graph.

6. Suppose that P is on the graph of y2 = x3 − 6x, and that P is a
point of inflection for the graph. We then define P + P = −P . This
is illustrated in the following graph.
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This operation is clearly commutative. The fact that this operation is
associative is less obvious, and will be assumed.

Recall that for the ElGamal cryptosystem we need a finite abelian
group. Hence, elliptic curves over the reals like the one illustrated above
do not form groups that we could use in the ElGamal system. However, for
an elliptic curve in which the underlying field F is finite, the elliptic curve
will also be finite. For example, consider an elliptic curve in which the
underlying field is Zp for prime p > 3. Although the operation described
above geometrically is applied specifically to an elliptic curve over the reals,
this general operation gives any elliptic curve the structure of an abelian
group. Of course, for an elliptic curve over Zp, this operation cannot be
described in the same way geometrically. However, the operation can be
expressed algebraically.

Let p be a prime with p > 3, and suppose c, d ∈ Zp such that x3+cx+d
has no multiple roots or, equivalently, such that 4c3 +27d2 �= 0 mod p. Let
E be the elliptic curve of ordered pairs (x, y) ∈ Zp × Zp of solutions to
(8.1) modulo p and point at infinity O. It can be shown that the addition
operation described above that gives E the structure of an abelian group
can be expressed algebraically as follows. Recall first that O serves as the
identity in the group. Now, let P = (x1, y1) and Q = (x2, y2) be elements
in E. If P = −Q, then P + Q = O. Otherwise, if P = Q, then we define
P + Q = (x3, y3) where

x3 =
(

3x2
1 + c

2y1

)2

− 2x1 mod p, (8.2)

y3 =
(

3x2
1 + c

2y1

)
(x1 − x3) − y1 mod p. (8.3)

And if P �= ±Q, then we define P + Q = (x3, y3) where

x3 =
(
y2 − y1

x2 − x1

)2

− x1 − x2 mod p, (8.4)
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y3 =
(
y2 − y1

x2 − x1

)
(x1 − x3) − y1 mod p. (8.5)

For small primes p, we can construct elliptic curves over Zp by trial
and error. Let p be a prime with p > 3, and suppose c, d ∈ Zp such that
4c3 +27d2 �= 0 mod p. We can then use the following steps to construct the
solutions to (8.1) modulo p.

1. Determine which x ∈ Zp have the property that z = x3+cx+d mod p
is a perfect square in Zp.

2. Find all y ∈ Zp such that y2 = z mod p.

The values in Z∗
p that are perfect squares are called quadratic residues.

Thus, the values of z determined in the preceding two steps are 0 and the
quadratic residues in Z∗

p .

For the first preceding step, we consider the homomorphism s(y) = y2

on Z∗
p . Note that the kernel of s(y) is K = {x | x2 = 1} = {1,−1}.

Hence, |K| = 2, and the set Q = {z ∈ Z∗
p | z = s(y) for some y ∈ Z∗

p} of

quadratic residues in Z∗
p has order t = p−1

2 . Next, we consider the function
g(x) = xt − 1. If z ∈ Q, then z = y2 mod p for some y ∈ Zp. Thus,
g(z) = zt − 1 = y2t − 1 = yp−1 − 1 = 0 mod p by Lagrange’s Theorem.
Hence, the t roots of g(x) are precisely the t elements in Q. We summarize
this test in the following lemma.

Lemma 8.1 An element z is a quadratic residue in Z∗
p if and only if

z
p−1
2 = 1 mod p. Hence, z is a perfect square in Zp if and only if z = 0 or

z
p−1
2 = 1 mod p.

For the second preceding step, note that if z = y2 mod p, it follows

that
(
z

p+1
4

)2

= yp+1 = y2 = z mod p. Therefore, for the second preceding

step, if p = 3 mod 4, then we can find a square root of z by computing
z

p+1
4 mod p. We summarize this in the following lemma.

Lemma 8.2 Suppose p = 3 mod 4. If z is a quadratic residue in Z∗
p , then

y = z
p+1
4 mod p is a square root of z in Z∗

p . The only other square root of
z in Z∗

p is −y.
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In summary, let p be a prime with p > 3 and p = 3 mod 4, and suppose
c, d ∈ Zp such that 4c3 + 27d2 �= 0 mod p. Let E be the elliptic curve of
ordered pairs (x, y) in Zp × Zp of solutions to (8.1) modulo p and point at
infinity O. Then for the set Q of quadratic residues in Z∗

p ,

E = {(x,±y) | z = x3 + cx + d ∈ Q and y = z
p+1
4 mod p}

∪ {(x, 0) | x3 + cx + d = 0} ∪ {O }.

Example 8.3 Let p = 19, and let E be the elliptic curve of ordered pairs
(x, y) ∈ Zp×Zp of solutions to y2 = x3+x+6 modulo p and point at infinity
O. We can construct the ordered pairs in E as follows. First, by trial and
error, we determine the values of x in Zp for which z = x3 + x + 6 mod p
is a quadratic residue in Z∗

p . For example, for x = 0, the value of z is
z = 03 + 0 + 6 mod p = 6. Then since z

p−1
2 = 69 = 1 mod p, Lemma 8.1

implies that z = 6 is a quadratic residue in Z∗
p . And for x = 1, the value

of z is z = 13 + 1 + 6 mod p = 8. And since z
p−1
2 = 89 �= 1 mod p, Lemma

8.1 implies that z = 8 is not a quadratic residue in Z∗
p . By continuing

this process, we can determine that the values of x ∈ Zp for
which z = x3 + x + 6 mod p is a quadratic residue in Z∗

p are x = 0, 2, 3,
4, 10, 12, 14, and 18. Next, for each quadratic residue z in Z∗

p we must
find the values of y in Z∗

p for which y2 = z mod p. Since p = 3 mod 4,
we can use Lemma 8.2 to do this. For example, for the quadratic residue
z = 6 that results from x = 0, Lemma 8.2 implies that the square roots of
z are z

p+1
4 mod p = 65 mod p = 5 and −5. And since z = 6 results from

x = 0, then the ordered pairs (0,±5) are in E. By repeating this process
for each of the quadratic residues in Z∗

p , we can determine that the ordered
pairs (0,±5), (2,±4), (3,±6), (4,±6), (10,±16), (12,±6), (14,±16), and
(18,±17) are all in E. Also, by trial and error, we can determine that the
only value of x ∈ Zp for which z = x3 + x + 6 = 0 mod p is x = 6. Hence,
the only additional ordered pair in E is (6, 0).

Now, suppose that we wish to compute the sum of the elements
P = (x1, y1) = (2, 4) and Q = (x2, y2) = (10, 16) in E. Denote this sum
by P + Q = (x3, y3). Since P �= ±Q, then we can use (8.4) and (8.5)

to find x3 and y3. We first compute
y2 − y1

x2 − x1
mod p as follows. (Note:

8−1 = 12 mod p since (8)(12) = 96 = 1 mod p. This inverse can be found
by using the Euclidean algorithm as illustrated in Section 7.1.)

y2 − y1

x2 − x1
=

16 − 4
10 − 2

= (12)(8)−1 = (12)(12) mod p = 11 mod p.
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Then, using (8.4) and (8.5), we have

x3 = 112 − 2 − 10 = 14 mod p,

y3 = 11(2 − 14) − 4 = 16 mod p.

Hence, in this elliptic curve, (2, 4) + (10, 16) = (14, 16).

Next, for the element P = (x1, y1) = (0, 5) in E, suppose that we wish
to compute the sum P + P = (x3, y3). To do this, we can use (8.2) and

(8.3). We first compute
3x2

1 + c

2y1
mod p as follows. (Note: 10−1 = 2 mod p

since (10)(2) = 20 = 1 mod p.)

3x2
1 + c

2y1
=

3(0)2 + 1
(2)(5)

= (1)(10)−1 = (1)(2) mod p = 2 mod p.

Then, using (8.2) and (8.3), we have

x3 = 22 − (2)(0) = 4 mod p,

y3 = 2(0 − 4) − 5 = 6 mod p.

Hence, in this elliptic curve, (0, 5) + (0, 5) = (4, 6).

Although elliptic curves over Zp are not particularly easy to construct
or even describe, their general structure is remarkably simple and specific.
We summarize this general structure in the following theorem, which we
state without proof.

Theorem 8.3 Let E be an elliptic curve over Zp for prime p > 3. Then
E is isomorphic to the direct product Zn1 ×Zn2 of the additive groups Zn1

and Zn2 for some integers n1 and n2 with n2|n1 and n2|(p− 1).

As an example of Theorem 8.3, consider the elliptic curve E in Example
8.3. For this elliptic curve, |E| = 18, and thus the only possible values for
n1 and n2 in Theorem 8.3 are n1 = 18 and n2 = 1, and n1 = 6 and n2 = 3.
Since it can be verified that (0, 5) ∈ E generates all of the elements in E
(as do several other elements in E), then E is cyclic. Hence, the correct
values of n1 and n2 are n1 = 18 and n2 = 1, and E is isomorphic to the
additive cyclic group Z18.

Consider an elliptic curve E over Zp for very large prime p. While
constructing all of the elements in E is generally not possible, it is possible,
although nontrivial, to compute the exact value of |E| using a well-known
algorithm by Schoof. Although Schoof’s algorithm is beyond the scope of
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this book, we will mention a well-known result from Hasse that can be
stated rather simply and yields upper and lower bounds on |E|. This result
is commonly called Hasse’s Theorem, which we state as follows without
proof.

Theorem 8.4 Let E be an elliptic curve over Zp. Then

p + 1 − 2
√
p ≤ |E| ≤ p + 1 + 2

√
p .

We close this section by mentioning one additional fact regarding el-
liptic curves. Recall that we began this discussion of elliptic curves by
assuming that the underlying field F was not of characteristic 2 or 3, and
that the cubic polynomial on the right-hand side of (8.1) had no multiple
roots. Elliptic curves can also be defined over fields of characteristic 2 or
3; they are just not defined as the set of solutions to an equation of the
exact form of (8.1). Specifically, if F is a field of characteristic 2, then an
elliptic curve over F is defined as the set of ordered pairs (x, y) ∈ F ×F of
solutions to an equation of the form

y2 + y = x3 + cx + d (8.6)

and point at infinity O where c, d ∈ F and the cubic polynomial on the
right-hand side of (8.6) is allowed to have multiple roots. And if F is a
field of characteristic 3, then an elliptic curve over F is defined as the set
of ordered pairs (x, y) ∈ F × F of solutions to an equation of the form

y2 = x3 + bx2 + cx + d (8.7)

and point at infinity O where b, c, d ∈ F and the cubic polynomial on
the right-hand side of (8.6) is not allowed to have multiple roots. Results
analogous to those mentioned in this section also hold for elliptic curves
over fields of characteristic 2 or 3.

8.4 Elliptic Curves with Maple

In this section we show how Maple can be used to construct the elliptic
curve E in Example 8.3 and perform the elliptic curve addition operation.

We begin by defining the prime p = 19 and the values c = 1 and d = 6
for the elliptic curve equation (8.1).

> p := 19:

> c := 1:

> d := 6:

Recall that for the ordered pairs (x, y) ∈ Zp × Zp of solutions to (8.1)
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modulo a prime p > 3 and point at infinity O to form an elliptic curve, c
and d must satisfy 4c3 + 27d2 �= 0 mod p. We verify this as follows.

> 4*c^3 + 27*d^2 mod p;

7

Next, we store the right-hand side of (8.1) as eqn.
> eqn := x^3 + c*x + d:

We now generate the elements in E that are ordered pairs (x, y) ∈ Zp ×Zp

of solutions to (8.1) modulo p. To generate these solutions we have provided
the user-written procedure epoints, for which code is given in Appendix
C.3. If this procedure is saved as the text file epoints in the directory from
which we are running Maple, then we can include the epoints procedure
in this Maple session by entering the following command.

> read epoints;

We can then generate the ordered pairs of solutions to (8.1) modulo p by
entering the following command.

> ecurve := epoints(eqn, x, infinity, p);

ecurve := [ 0, 5 ], [ 0, 14 ], [ 2, 4 ], [ 2, 15 ], [ 3, 6 ], [ 3, 13 ], [ 4, 6 ], [ 4, 13 ],
[ 6, 0 ], [ 10, 16 ], [ 10, 3 ], [ 12, 6 ], [ 12, 13 ], [ 14, 16 ], [ 14, 3 ], [ 18, 17 ],
[ 18, 2 ]

In the preceding command, the first parameter is the right-hand side of
(8.1), and the second parameter is the variable used in the first parameter.
The third parameter is a numerical value that indicates the number of
solutions to (8.1) we wish the command to generate. If this parameter
exceeds the total number of solutions to (8.1), then the command will
generate all of the solutions to (8.1). By using infinity for this parameter,
we guarantee that the command will generate all of the solutions to (8.1).
The last parameter is the prime p.

Recall that the ordered pairs of solutions to (8.1) modulo p form all of
the elements in E except the point at infinity O. By entering the following
command, we attach the representation 0 for the point at infinity to the
list ecurve of elements in E.

> ecurve := ecurve, 0;

ecurve := [ 0, 5 ], [ 0, 14 ], [ 2, 4 ], [ 2, 15 ], [ 3, 6 ], [ 3, 13 ], [ 4, 6 ], [ 4, 13 ],
[ 6, 0 ], [ 10, 16 ], [ 10, 3 ], [ 12, 6 ], [ 12, 13 ], [ 14, 16 ], [ 14, 3 ], [ 18, 17 ],
[ 18, 2 ], 0

The following nops command returns the number of elements in E.
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> nops([ecurve]);

18

To perform the elliptic curve addition operation defined in Section 8.3,
we have provided the user-written procedure addec, for which code is given
in Appendix C.3. Assuming this procedure is saved as the text file addec
in the directory from which we are running Maple, then we can include the
addec procedure in this Maple session as follows.

> read addec;

We can then compute the sum of the elements [ 2, 4 ] and [ 10, 16 ] in E by
entering the following command.

> addec([2,4], [10,16], c, p);

[ 14, 16 ]

In the preceding command, the first two parameters are the elements in E
we wish to add. The third and fourth parameters are the value of c from
(8.1) and the prime p.

As another example of the addec procedure, in the next command we
add the element [ 0, 5 ] in E to itself.

> addec([0,5], [0,5], c, p);

[ 4, 6 ]

Next, we compute the sum of the element [ 0, 5 ] and the point at infinity.
> addec([0,5], 0, c, p);

[ 0, 5 ]

And finally, we compute the sum of the elements [ 0, 5 ] and [ 0, 14 ] in E.
> addec([0,5], [0,14], c, p);

0

Note that the preceding output shows, as expected, that [ 0, 5 ] and
[ 0, 14 ] = [ 0,−5 ] are inverses of each other in E.

We can verify that [ 0, 5 ] is a cyclic generator for E as follows. We first
assign the element [ 0, 5 ] as the variable gen.

> gen := [0,5]:

We now construct the cyclic subgroup of E generated by gen. To do this,
we first assign [ 0, 5 ] also as the variable temp and store this element as the
first entry in a table cgroup.
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> temp := [0,5]:

> pct := 1:

> cgroup[pct] := temp:

Then by entering the following while loop, we construct the cyclic sub-
group of E generated by gen and place these elements as the subsequent
entries in cgroup. More specifically, by entering the following while loop,
we compute multiples of gen using addec and place these multiples as
the subsequent entries in cgroup. The loop terminates when the identity
element 0 is obtained.

> while temp <> 0 do

> temp := addec(temp, gen, c, p):

> pct := pct + 1:

> cgroup[pct] := temp:

> od:

> seq(cgroup[i], i = 1..pct);

[ 0, 5 ], [ 4, 6 ], [ 2, 4 ], [ 3, 6 ], [ 14, 3 ], [ 12, 13 ], [ 18, 2 ], [ 10, 3 ], [ 6, 0 ],
[ 10, 16 ], [ 18, 17 ], [ 12, 6 ], [ 14, 16 ], [ 3, 13 ], [ 2, 15 ], [ 4, 13 ],
[ 0, 14 ], 0

Since the preceding output is all of the elements in E, then [ 0, 5 ] is a cyclic
generator for E.

8.5 Elliptic Curve Cryptography

If an elliptic curve over Zp for some prime p is used as the group G in the
ElGamal cryptosystem, the value of p would have to be extremely large
in order for the system to be secure. More specifically, it is commonly
accepted that G should contain a cyclic subgroup of order at least 2160 in
order for the system to be secure. Constructing all of the elements in an
elliptic curve over Zp for extremely large p can be very time-consuming.
However, to use an elliptic curve E over Zp as the group G in the ElGamal
system, it is not necessary to construct all of the elements in E. It is only
necessary to find an element in E that has a relatively large order. Suppose
we wish to use the ElGamal cryptosystem with an elliptic curve over Zp as
the group G in the system to send a secret message to a colleague across an
insecure line of communication. Then the system could proceed as follows.

1. Our colleague begins the process by choosing a very large prime p
and values for c and d that satisfy 4c3 + 27d2 �= 0 mod p. Let E be
the elliptic curve of ordered pairs (x, y) ∈ Zp × Zp of solutions to
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(8.1) modulo p and point at infinity O. Our colleague then chooses
an element a ∈ E with relatively large order (which our colleague
could verify by computing multiples of a in E). Next, our colleague
chooses a positive integer n, computes b = na = a + a + · · · + a in E
(note that we use the notation na for b instead of an since the elliptic
curve operation is an addition operation), and sends the values of p,
c, and d and the elements a, b ∈ E to us.

2. Using some public method of conversion, we convert our message into
an equivalent element w ∈ E. We then choose a positive integer k,
compute y = ka and z = w+kb in E, and send the elements y, z ∈ E
to our colleague.

3. Our colleague can then recover w by computing z − ny in E since

z − ny = w + kb− nka = w + kb− kb = w.

Example 8.4 Suppose we wish to use the ElGamal cryptosystem with an
elliptic curve over Zp as the group G in the system to send a secret message
to a colleague across an insecure line of communication.

1. Our colleague begins the process by choosing p = 19 (for illustration,
we use a very small value for p in this example), c = 1, and d = 6.
Then the elliptic curve E of ordered pairs (x, y) ∈ Zp×Zp of solutions
to (8.1) modulo p and point at infinity O is the elliptic curve in
Example 8.3. Our colleague then chooses a = (0, 5) ∈ E, which,
recall from Example 8.3, generates all of E. Next, our colleague
chooses n = 4, computes b = na = 4(0, 5) = (3, 6) ∈ E using the
elliptic curve addition operation, and sends the values of p, c, and d
and the elements a, b ∈ E to us.

2. Using some public method of conversion, we convert our message into
the element w = (18, 17) ∈ E. We then choose k = 3, compute
y = ka = 3(0, 5) = (2, 4) and z = w + kb = (18, 17) + 3(3, 6) = (14, 3)
in E using the elliptic curve addition operation, and send the elements
y, z ∈ E to our colleague.

3. Our colleague can then recover w by computing

z − ny = (14, 3) − 4(2, 4) = (14, 3) − (12, 6)
= (14, 3) + (12, 13)
= (18, 17)

using the elliptic curve addition operation.
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Note that to break the ElGamal cryptosystem in Example 8.4, an
intruder would need to determine the value of n from the knowledge of a and
b = na in E. That is, to break the ElGamal cryptosystem in Example 8.4,
an intruder would need to solve the discrete logarithm problem (expressed
using the additive notation na for an) in E. Of course, because the elliptic
curve in this example contains so few elements, an intruder could break
the system very easily by trial and error. However, if an elliptic curve with
an extremely large number of elements was used in the system, and the
element a was chosen with a very large order, then it would be extremely
difficult (time-wise) for an intruder to break the system.

There is a practical difficulty with using an elliptic curve E over Zp as
the group G in the ElGamal cryptosystem. Recall that if the system is im-
plemented as described above, then the plaintext must be converted to one
of the elements in E before being enciphered. This obviously limits flexi-
bility in formatting plaintexts, and could possibly require the generation of
many elements in E. We can avoid this difficulty by using a variation of
the ElGamal system due to Menezes and Vanstone. Suppose as before that
we wish to use the ElGamal cryptosystem with an elliptic curve over Zp as
the group G in the system to send a secret message to a colleague across
an insecure line of communication. The steps in the Menezes-Vanstone
variation of the ElGamal system can be stated as follows.

1. The first step is the same as in the usual ElGamal system. That is,
our colleague chooses a very large prime p and values for c and d that
satisfy 4c3 +27d2 �= 0 mod p. Then for the elliptic curve E of ordered
pairs (x, y) ∈ Zp × Zp of solutions to (8.1) modulo p and point at
infinity O, our colleague chooses an element a ∈ E with large order
and a positive integer n, computes b = na in E, and sends p, c, d, a,
and b to us.

2. We convert our message into an equivalent ordered pair of numbers
w = (w1, w2) ∈ Z∗

p × Z∗
p (which does not need to be an element

in E). We then choose a positive integer k, compute y = ka and
kb = (c1, c2) in E, and encipher our message as the ordered pair
z = (z1, z2) ∈ Z∗

p × Z∗
p by computing

z = (z1, z2) = (c1w1 mod p, c2w2 mod p).

We then send the ordered pairs y and z to our colleague.

3. Our colleague can first recover the ordered pair kb = (c1, c2) by
computing ny in E since ny = nka = kna = kb in E. Our col-
league can then recover the message w = (w1, w2) by computing
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(c−1
1 z1 mod p, c−1

2 z2 mod p) since

(c−1
1 z1 mod p, c−1

2 z2 mod p) = (c−1
1 c1w1 mod p, c−1

2 c2w2 mod p)
= (w1, w2).

(Note: The multiplicative inverses c−1
1 and c−1

2 modulo p can be
found in general by using the Euclidean algorithm as illustrated in
Section 7.1.)

Example 8.5 Suppose we wish to use the Menezes-Vanstone variation of
the ElGamal cryptosystem with an elliptic curve over Zp as the group G in
the system to send a secret message to a colleague across an insecure line
of communication.

1. Our colleague chooses the values p = 19, c = 1, and d = 6 so that
the elliptic curve E of ordered pairs (x, y) ∈ Zp × Zp of solutions to
(8.1) modulo p and point at infinity O is the elliptic curve in Example
8.3. Our colleague then chooses a = (0, 5) ∈ E and n = 4, computes
b = na = (3, 6) ∈ E, and sends p, c, d, a, and b to us.

2. We convert our message into the ordered pair w = (5, 13) ∈ Zp × Zp

(which, note from Example 8.3, is not an element in E). We then
choose k = 3, compute y = ka = (2, 4) and kb = (12, 6) in E, and
encipher our message by computing

z = ((12)(5) mod p, (6)(13) mod p) = (3, 2).

We then send y and z to our colleague.

3. Our colleague can first recover kb by computing ny = (12, 6) in E.
Our colleague can then recover w by computing

((12−1)(3) mod p, (6−1)(2) mod p)

= ((8)(3) mod p, (16)(2) mod p)

= (5, 13) .

(Note: 12−1 = 8 mod p since (12)(8) = 96 = 1 mod p, and
6−1 = 16 mod p since (6)(16) = 96 = 1 mod p.)

Note that with the elliptic curve E in Example 8.3, the usual ElGa-
mal system allows only |E| = 18 possible plaintexts, while the Menezes-
Vanstone variation of the system allows |Z∗

p |2 = 324 possible plaintexts.
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8.6 Elliptic Curve Cryptography with Maple

In this section we show how Maple can be used to do the computations in an
example of the Menezes-Vanstone variation of the ElGamal cryptosystem
with an elliptic curve over Zp as the group G in the system.

Recall that to use Lemma 8.2 in constructing an elliptic curve (which
is employed in the user-written procedure epoints we used in Section 8.4
and will use again in this section), the prime p must satisfy p = 3 mod 4.
We begin this section by entering the following procedure, which creates a
Maple command for this session with the name p3mod4. This procedure
is designed to quickly generate a large prime p with p = 3 mod 4.

> p3mod4 := proc(s)

> local t;

> t := nextprime(s);

> while t mod 4 <> 3 do

> t := nextprime(t);

> od:

> RETURN(t);

> end:

The Maple procedure defined by the preceding commands takes as its input
an integer s and returns the smallest prime p larger than s that satisfies
p = 3 mod 4. For example, the following command defines p as the smallest
prime larger than 220532496293778805800 that satisfies p = 3 mod 4. We
will use this prime in our example.

> p := p3mod4(220532496293778805800);

p := 220532496293778805891

For this value of p, let E be the elliptic curve of ordered pairs (x, y) ∈ Zp×Zp

of solutions to (8.1) modulo p and point at infinity O with c = 1 and d = 6.
In the following commands we define these values for c and d, and verify
that they satisfy 4c3 + 27d2 �= 0 mod p.

> c := 1:

> d := 6:

> 4*c^3 + 27*d^2 mod p;

976

Next, we store the right-hand side of (8.1) as eqn.
> eqn := x^3 + c*x + d:

For the ordered pair a in the system, we will use the first solution to (8.1)
generated by the user-written procedure epoints that was introduced in
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Section 8.4. We define this element next.
> read epoints;

> a := epoints(eqn, x, 1, p);

a := [ 0, 56750407271085204502 ]

We could easily verify that this element a has relatively large order in E by
repeatedly applying the user-written procedure addec that was introduced
in Section 8.4 for adding elliptic curve elements. We will not include this
verification here.

Next, we define the following value for n that we will use to construct
the ordered pair b = na in E.

> n := 91530873521338:

To expedite the process of adding a to itself n times using the elliptic curve
addition operation, we have provided the user-written procedure elgamal,
for which code is given in Appendix C.3. If this procedure is saved as the
text file elgamal in the directory from which we are running Maple, then
we can include the elgamal procedure in this Maple session by entering
the following command. (Note: Because elgamal calls and uses the addec
procedure that was introduced in Section 8.4, the addec procedure must
be saved as the text file addec in the same directory as elgamal.)

> read elgamal;

We can then construct the ordered pair b = na by entering the following
command.

> b := elgamal(a, n, c, p);

[ 88936959893700554040, 106879392491870047319 ]

The parameters in this command are the ordered pair a, the multiple n of
a we are computing, the value of c from (8.1), and the prime p.

Next, we define the following value for k that we will use to construct
the ordered pairs y = ka and kb in E.

> k := 431235145514:

We can then construct the ordered pairs y = ka and kb in E as follows.
> y := elgamal(a, k, c, p);

[ 41921046194776811649, 52283417773968786897 ]

> kb := elgamal(b, k, c, p);

[ 88498850550708417382, 90428938891656008815 ]

c© 1999 by CRC Press LLC



We now use the ordered pair kb to encipher the message, “REN-

DEZVOUS AT NOON”. We first apply the correspondence α from Chapter
6 to convert this message into a list of two-digit integers. Using α, this
message converts into the following list of integers: 17 04 13 03 04 25
21 14 20 18 00 19 13 14 14 13. Next, we group these integers into two
blocks of equal length, and place these blocks as entries in the following
ordered pair w.

> w := [1704130304252114, 2018001913141413]:

We can then encipher the message by entering the following command.
> z := [ kb[1]*w[1] mod p, kb[2]*w[2] mod p ];

z := [ 79041720375143250245, 25557336104884537057 ]

To decipher the message, we first recover the ordered pair kb by computing
ny in E as follows.

> ny := elgamal(y, n, c, p);

[ 88498850550708417382, 90428938891656008815 ]

We can then decipher the message by entering the following command.
> [ (ny[1]^(-1)*z[1]) mod p, (ny[2]^(-1)*z[2]) mod p ];

[ 1704130304252114, 2018001913141413 ]
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Written Exercises

1. Suppose you wish to use the ElGamal cryptosystem with a group of
the form Z∗

p for some prime p as the group G in the system to send
a secret message to a colleague across an insecure line of communica-
tion. Your colleague sends you the values p = 31, a = 13, and b = 9,
and you convert your message into the numerical equivalent w = 20.
Using the value k = 6, construct the values of y and z you would then
send to your colleague.

2. Suppose you wish to receive a secret message across an insecure line
of communication from a colleague using the ElGamal cryptosystem
with a group of the form Z∗

p for some prime p as the group G in
the system. You send your colleague the values p = 13, a = 2, and
b = 23 = 8 mod p, and your colleague converts his or her message
into a numerical equivalent w and returns to you the values y = 5
and z = 2. Decipher the message (recover w).

3. Suppose you wish to use the ElGamal cryptosystem with the group
of nonzero elements in a finite field as the group G in the system
to send a secret message to a colleague across an insecure line of
communication. Your colleague sends you the primitive polynomial
p(x) = x2 + x + 2 ∈ Z5[x] and the polynomials a = x and b = 4x in
G, and you convert your message into the element w = 2x + 4 ∈ G.
Using the value k = 6, construct the polynomials y and z you would
then send to your colleague.

4. Suppose you wish to receive a secret message across an insecure line
of communication from a colleague using the ElGamal cryptosystem
with the group of nonzero elements in a finite field as the group G in
the system. You send your colleague the primitive polynomial
p(x) = x2 + x + 2 ∈ Z5[x] and the polynomials a = x and
b = x8 = 3x+ 1 in G, and your colleague converts his or her message
into an element w ∈ G and returns to you the polynomials y = 2x
and z = 4x + 4. Decipher the message (recover w).

5. Let E be the elliptic curve of ordered pairs (x, y) ∈ Z11 × Z11 of
solutions to y2 = x3 + x + 1 modulo 11 and point at infinity O.

(a) Construct the elements in E.

(b) Compute the sum (3, 8) + (4, 6) in E.

(c) Compute the sum (1, 6) + (1, 6) in E.

(d) Compute the sum (1, 6) + (1, 5) in E.
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6. Let E be the elliptic curve of ordered pairs (x, y) ∈ Z23 × Z23 of
solutions to y2 = x3 + x + 7 modulo 23 and point at infinity O.

(a) Use Theorem 8.3 to show that E is cyclic. (Note: |E| = 18.)

(b) Use Theorem 8.4 to find upper and lower bounds on |E|.

7. Let E be the elliptic curve of ordered pairs (x, y) ∈ Z11 × Z11 of
solutions to y2 = x2 + 2x modulo 11 and point at infinity O.

(a) Construct the elements of E.

(b) Is E cyclic? State the structure of E given by Theorem 8.3.

8. Suppose you wish to use the usual ElGamal cryptosystem with an
elliptic curve over Zp for some prime p as the group G in the system
to send a secret message to a colleague across an insecure line of
communication. Your colleague sends you the elements a = (8, 9)
and b = (1, 6) in the elliptic curve E in Written Exercise 5, and you
convert your message into the element w = (4, 6) ∈ E. Using the
value k = 2, construct the elements y, z ∈ E you would then send to
your colleague. (Hint: 7−1 = 8 mod 11.)

9. Suppose you wish use the Menezes-Vanstone variation of the ElGamal
cryptosystem with an elliptic curve over Zp for some prime p as the
group G in the system to send a secret message to a colleague across
an insecure line of communication. Your colleague sends you the
elements a = (8, 9) and b = (1, 6) in the elliptic curve E in Written
Exercise 5, and you convert your message into the ordered pair
w = (5, 7). Using the value k = 2, construct the ordered pairs y ∈ E
and z you would then send to your colleague. (See hint at end of
Written Exercise 8.)

10. Suppose you wish to receive a secret message across an insecure line
of communication from a colleague using the Menezes-Vanstone vari-
ation of the ElGamal cryptosystem with an elliptic curve over Zp for
some prime p as the group G in the system. You send your colleague
the elements a = (4, 6) and b = 2a = (6, 6) in the elliptic curve E
in Written Exercise 5, and your colleague converts his or her mes-
sage into an ordered pair w and returns to you the ordered pairs
y = (1, 6) and z = (10, 10). Decipher the message (recover w). (Hint:
3−1 = 4 mod 11, and 8−1 = 7 mod 11.)

11. Recall that for the set of ordered pairs (x, y) ∈ Zp × Zp of solutions
to (8.1) modulo a prime p > 3 and point at infinity O to be an ellip-
tic curve, the values of c and d must satisfy 4c3 + 27d2 �= 0 mod p.
To demonstrate the importance of this condition, use the elliptic curve
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addition operation to add the ordered pairs (0, 1) and (14, 0) of solu-
tions to the equation y2 = x3 + x + 1 modulo 31. Explain why your
answer shows the importance of the condition 4c3 + 27d2 �= 0 mod p
in the definition of an elliptic curve over Zp for prime p > 3.

Maple Exercises

1. Suppose you wish to use the ElGamal cryptosystem with a group of
the form Z∗

p for some prime p as the group G in the system to send
a secret message to a colleague across an insecure line of communica-
tion. Your colleague sends you the values p = 10000000019, a = 132,
and b = 240246247, and you convert your message into the numerical
equivalent w = 2324123. Using the value k = 398824116, construct
the values of y and z you would then send to your colleague.

2. Suppose you wish to receive a secret message across an insecure line
of communication from a colleague using the ElGamal cryptosystem
with a group of the form Z∗

p for some prime p as the group G in
the system. You send your colleague the values p = 10000000019,
a = 132, and b = an = 5803048419 mod p with n = 121314333, and
your colleague converts his or her message into a numerical equivalent
w and returns to you the values y = 9054696956 and z = 7432712113.
Decipher the message (recover w).

3. Suppose you wish to use the ElGamal cryptosystem with the group
of nonzero elements in a finite field as the group G in the system
to send a secret message to a colleague across an insecure line of
communication. Your colleague sends you the primitive polynomial
p(x) = 3x7 + 4x + 1 ∈ Z5[x] and the polynomials a = x and
b = 3x5 + x4 + 2x3 + 4x in G, and you convert your message into
the element w = 2x6 + 4x5 + x2 + x + 1 ∈ G. Using the value
k = 1851, construct the polynomials y and z you would then send to
your colleague.

4. Suppose you wish to receive a secret message across an insecure line
of communication from a colleague using the ElGamal cryptosystem
with the group of nonzero elements in a finite field as the group G
in the system. You send your colleague the primitive polynomial
p(x) = 3x7 + 4x + 1 ∈ Z5[x] and the polynomials a = x and
b = xn = 2x6 + 3x5 + 1 in G with n = 51801, and your colleague
converts his or her message into an element w ∈ G and returns
to you the polynomials y = x6 + 4x5 + 3x4 + x3 + x + 2 and
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z = 2x6 + 2x5 + 3x4 + 3x3 + 2x2 + 3x + 2. Decipher the message
(recover w).

5. Let E be the elliptic curve of ordered pairs (x, y) ∈ Z59 × Z59 of
solutions to y2 = x3 + 31x + 21 modulo 59 and point at infinity O.

(a) Construct the elements in E.

(b) Use Theorem 8.3 to show that E is cyclic. Then explain why
every element in E except O will be a cyclic generator for E.

(c) Compute the sum (42, 3) + (54, 6) in E.

(d) Compute the sum (42, 3) + (42, 3) in E.

(e) Compute the sum (42, 3) + (42, 56) in E.

6. Set up a parameterization of the Menezes-Vanstone variation of the
ElGamal cryptosystem using an elliptic curve over Zp for some prime
p with at least 25 digits as the group G in the system. Then use this
parameterization of the ElGamal system to encipher and decipher
the message, “TARGET HIT SEND NEW ORDERS”. (Use the corre-
spondence α from Chapter 6 to convert the message into numerical
form.)
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Chapter 9

Polya Theory

In this chapter we discuss some results for counting orbits when a group
acts on a set. Because the most celebrated result we mention is the Polya
Enumeration Theorem, we will refer to the theory we discuss in this chapter
as Polya theory.

We begin by stating a very simple example of the type of problem we
consider in this chapter. Suppose we wish to construct a necklace with four
colored beads, and that each bead can be either blue or green. If we assume
that the beads can be rotated around the necklace, and that the necklace
can be flipped over and worn, then how many different necklaces can we
construct? To answer this question, suppose we stretch the necklace into
the shape of a square with one bead at each corner. The following figures
show the set X of 16 possible arrangements for the beads.
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Of course, not all of these arrangements yield different necklaces. By rotat-
ing the beads around the necklace we can see that arrangements 2 through
5 are really the same necklace. Likewise, by flipping the necklace over we
can see that arrangements 6 and 8 are really the same necklace. The move-
ments of rotating the beads around the necklace and flipping the necklace
over are called rigid motions of the necklace. We can also view these rigid
motions as motions of the single figure

1

2

4

3

or, more specifically, motions of the set S of vertices of this figure. Note that
each rigid motion of the necklace permutes the elements in X and S. Thus,
we can represent these rigid motions by their permutations on X or S. We
will use the permutations on S to answer questions like the one we posed at
the start of this example. The advantage to using the permutations on S
rather than X is that there are 16 elements in X, but only 4 elements in S.
And this reduction in size would be much more important if the necklace
contained more beads or if more colors were available for each bead. For
example, if the necklace contained four beads but five colors were available
for each bead, then there would be 54 = 625 possible arrangements of the
beads, but still only four vertices of the preceding general figure.

9.1 Group Actions

Recall that the set of rigid motions of a square forms a group with the
operation of composition. In the following table we list the elements in
this group G along with their permutations on S expressed as cycles. The
rotations are counterclockwise. (Note that we include all cycles of length
one. The significance of this will be apparent in Section 9.3.)

Element in G Permutation on S

π1 = 90◦ rotation (1234)
π2 = 180◦ rotation (13)(24)
π3 = 270◦ rotation (1432)

π4 = reflection across horizontal (12)(34)
π5 = reflection across vertical (14)(23)

π6 = reflection across 1–3 diagonal (24)(1)(3)
π7 = reflection across 2–4 diagonal (13)(2)(4)

π8 = identity (1)(2)(3)(4)
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Expressing the elements in G as permutations on X would in general require
much longer notation. For example, the 90◦ rotation would be represented
as a permutation on X by (1)(2, 5, 4, 3)(6, 9, 8, 7)(10, 11)(12, 15, 14, 13)(16).
Since it is true that each rigid motion π ∈ G corresponds to unique per-
mutations on S and X, in this chapter we will often write π when we
mean to refer to one of the permutations. For example, by writing π1, we
could mean the 90◦ rotation, the permutation (1234) on S, or the permu-
tation (1)(2, 5, 4, 3)(6, 9, 8, 7)(10, 11)(12, 15, 14, 13)(16) on X. The context
will make it clear which one we intend.

We now formalize our necklace example. Let S be a collection of
objects, and let R be a set of elements called colors (not necessarily colors
in the usual sense). A coloring of S by R is an assignment of a unique color
to each element in S. That is, a coloring of S by R is a function f : S → R.
Note that if |S| = n and |R| = m, then there will be mn distinct colorings
of S by R. We will denote by X the set of colorings of S by R. The set X
of 16 possible arrangements of the beads in our necklace example is the set
of 16 colorings of S = {vertices of a square} by R = {blue, green}.

Now, consider a group G and a set Y . An action of G on Y is a
mapping Y ×G → Y such that

1. y(gh) = ((y)g)h for all y ∈ Y and g, h ∈ G,

2. (y)1 = y for all y ∈ Y , where 1 represents the identity in G.

In our necklace example, the group G = {rigid motions of a square} acts
on both S = {vertices of a square} and X = {colorings of S by R} where
R = {blue, green}. As illustrated in this example, when a group G acts on
a set Y , each element in G can be represented as a permutation on Y .

Lemma 9.1 Suppose a group G acts on a set Y . For any x, y ∈ Y , define
x ∼ y if there exists g ∈ G for which (x)g = y. Then ∼ is an equivalence
relation.

Proof. Exercise.

As a consequence of Lemma 9.1, when a group G acts on a set Y , the
set is decomposed into equivalence classes of elements that can be mapped
to each other by elements in G. These equivalence classes are called orbits.
When Y is a set of colorings, these orbits are also called patterns. The gen-
eral type of problem we consider in this chapter can be viewed as counting
the number of patterns when a group acts on a set of colorings.
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In summary, suppose S is a set, R is a set of colors, and X is the set
of colorings of S by R. When a group G acts on S, G also acts on X by
((x)f)π = ((x)π)f for all x ∈ S, f ∈ X, and π ∈ G. Two colorings f, g ∈ X
are equivalent if there exists π ∈ G such that ((a)f)π = (a)g for all a ∈ S.
Hence, two of the 16 colorings in our necklace example are equivalent if there
is a rigid motion of a square that maps one to the other. To answer the
question that began our necklace example, we must only count the number
of patterns under this equivalence. From the list of colorings shown at the
beginning of this chapter we can easily see that there are six such patterns:
{1}, {2, 3, 4, 5}, {6, 7, 8, 9}, {10, 11}, {12, 13, 14, 15}, and {16}. With only
16 possible arrangements for the beads, it is not necessary to consider the
group action of G on S or X to count the patterns. However, it would
certainly not be practical to list all of the possible arrangements for the
beads if the necklace had 10 beads and 12 colors were available for each
bead. In this chapter we discuss how the idea of a group action can be used
to count patterns without actually constucting the patterns.

9.2 Burnside’s Theorem

Our goal in this chapter is to count the number of patterns when a group
acts on a set of colorings. Counting the number of orbits when a group
acts on a set is the focus of a fundamental result from Burnside. Before
establishing this result, we first define some additional terms.

Suppose a group G acts on a set Y . Then for each element π ∈ G,
we denote by Fix(π) the set of elements in Y that are fixed by π. That is,
Fix(π) = {y ∈ Y | (y)π = y}.

Example 9.1 Consider G acting on X in our necklace example. Using the
notation πi defined at the start of Section 9.1 for the elements in G, and
the enumeration from the beginning of this chapter for the colorings in X,
we list Fix(πi) for each πi ∈ G in the following table.

πi ∈ G Fix(πi) |Fix(πi)|
π1 1, 16 2
π2 1, 10, 11, 16 4
π3 1, 16 2
π4 1, 7, 9, 16 4
π5 1, 6, 8, 16 4
π6 1, 2, 4, 10, 11, 12, 14, 16 8
π7 1, 3, 5, 10, 11, 13, 15, 16 8
π8 X 16
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Suppose again that a group G acts on a set Y . Then for each element
y ∈ Y , we denote by Stab(y) the subgroup of elements in G that fix y.
That is, Stab(y) = {π ∈ G | (y)π = y}.

Example 9.2 Consider again G acting on X in our necklace example. We
list Stab(x) for each x ∈ X in the following table.

x ∈ X Stab(x) |Stab(x)|
1 G 8
2 π6, π8 2
3 π7, π8 2
4 π6, π8 2
5 π7, π8 2
6 π5, π8 2
7 π4, π8 2
8 π5, π8 2
9 π4, π8 2
10 π2, π6, π7, π8 4
11 π2, π6, π7, π8 4
12 π6, π8 2
13 π7, π8 2
14 π6, π8 2
15 π7, π8 2
16 G 8

Note that the sum of the entries in the |Fix(πi)| column in Example
9.1 and sum of the entries in the |Stab(x)| column in Example 9.2 are both
48. This equality is guaranteed in general by the following lemma.

Lemma 9.2 If a group G acts on Y , then
∑
π∈G

|Fix(π)| =
∑
y∈Y

|Stab(y)|.

Proof. Exercise. (Let S = {(y, π) | (y)π = y, y ∈ Y, π ∈ G}, and
count |S| in two ways – first by ranging through the possibilities for y, and
then by ranging through the possibilities for π.)

Suppose again that G acts on Y . Then for y ∈ Y we denote the orbit
of y by Orb(y). That is, Orb(y) = {x ∈ Y | x = (y)π for some π ∈ G}.

Lemma 9.3 If a group G acts on Y , then |G| = |Stab(y)| · |Orb(y)| for
each y ∈ Y .
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Proof. Suppose g and h are in the same right coset of Stab(y). Hence,
g = πh for some π ∈ Stab(y). Thus, (y)g = (y)πh = (yπ)h = (y)h. On
the other hand, suppose (y)g = (y)h for some g, h ∈ G. Then y = (y)hg−1,
and hg−1 ∈ Stab(y). Therefore, hg−1 = π for some π ∈ Stab(y). Hence,
h = πg, and h and g are in the same right coset of Stab(y). In summary, g
and h are in the same right coset of Stab(y) if and only if (y)g = (y)h. Thus,
there is a bijection between the right cosets of Stab(y) and the elements in
Orb(y). Using this and Lagrange’s Theorem (Theorem 1.4), we conclude

|G| = |Stab(y)| · (number of right cosets of Stab(y))

= |Stab(y)| · |Orb(y)| .

We now establish the following fundamental result for counting orbits
when a group acts on a set. This result is due to Burnside, and thus we
will call it Burnside’s Theorem.

Theorem 9.4 Suppose a group G acts on a set Y . Then the number of

orbits in Y is
1
|G|

∑
π∈G

|Fix(π)|.

Proof. Dividing both sides of the equation in Lemma 9.2 by |G| yields

1
|G|

∑
π∈G

|Fix(π)| =
1
|G|

∑
y∈Y

|Stab(y)| .

And by Lemma 9.3, we know that

1
|G|

∑
y∈Y

|Stab(y)| =
∑
y∈Y

1
|Orb(y)| .

Suppose there are s orbits in Y , which we denote by O1, O2, . . . , Os. Then
if x, y ∈ Oi, it follows that |Orb(x)| = |Orb(y)| = |Oi|. But then

∑
y∈Oi

1
|Orb(y)| =

1
|Oi|

+ · · · + 1
|Oi|

= 1.

Thus,
∑
y∈Y

1
|Orb(y)| = s.

To see how Theorem 9.4 can be applied, consider G acting on X in our
necklace example. From Example 9.1, we can see that

∑
π∈G

|Fix(π)| = 48.
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Then, since |G| = 8, it follows from Burnside’s Theorem that the number of
orbits in X is 48/8 = 6. That is, as we have already seen, there are 6 distinct
necklaces in our necklace example. While this result is certainly correct, in
practice the result of Burnside’s Theorem is not usually determined exactly
in this manner. Specifically, in practice the value of

∑
π∈G

|Fix(π)| is not

usually determined by actually constructing the sets Fix(π) as we did in
Example 9.1. To construct the table in Example 9.1 we referenced the
list of all possible necklace arrangements shown at the beginning of this
chapter. However, recall that in general we would like to be able to count
orbits without having to list all of the possible arrangements. We discuss
a method for doing this next.

9.3 The Cycle Index

In our necklace example, consider the rigid motion π7 = reflection across
2–4 diagonal. Note that if x ∈ Fix(π7), then x must have the same color
bead at vertices 1 and 3, but can have any color bead at vertices 2 and
4. Hence, since two colors are available for the beads, then there will be
2 ·2 ·2 = 8 colorings fixed by π7. Thus, we can determine that |Fix(π7)| = 8
without having to reference the list of all possible necklace arrangements
shown at the beginning of this chapter. And we could determine |Fix(π7)|
in the same way if more than two colors were available for the beads. For
example, if five colors were available for the beads, then there would be
5 ·5 ·5 = 125 colorings fixed by π7. Note that |Fix(π7)| depends only on the
number of colors available for the beads and the number of sets of vertices
that can take arbitrary colors. Specifically, if a colors are available for the
beads, then |Fix(π7)| = a3.

The preceding discussion can be generalized as follows. Suppose π is
a rigid motion for which k sets of vertices can take arbitrary colors. Then
if a colors are available, it follows that |Fix(π)| = ak. It is easy to see
the number of sets of vertices that can take arbitrary colors from the cycle
representation of π as a permutation on the set S of vertices. For example,
recall that in our necklace example the rigid motion π7 can be represented
as the permutation (13)(2)(4) on S. Since there are three disjoint cycles in
this representation for π7, then there will be three factors of a in |Fix(π7)|.
In general, if there are k disjoint cycles in the representation of π as a
permutation on S and a colors are available, then |Fix(π)| = ak. This
relates to the material in Section 9.2 because it provides us with a way to use
Burnside’s Theorem for counting patterns without having to refer to a list
of all of the possible arrangements. Specifically, it states that the sum in the
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formula in Burnside’s Theorem can be expressed as
∑
π∈G

|Fix(π)| =
∑
π∈G

akπ ,

where kπ is the number of disjoint cycles in the representation of π as a
permutation on S.

Example 9.3 Consider G acting on S in our necklace example. From the
table at the start of Section 9.1 we can see that the number of disjoint
cycles in the representations of πi as permutations on S are 1, 2, 1, 2, 2, 3,
3, and 4, respectively. Thus, with two colors available for the beads,

∑
π∈G

|Fix(π)| = 21 + 22 + 21 + 22 + 22 + 23 + 23 + 24 = 48.

And if five colors were available for the beads instead of just two, then
∑
π∈G

|Fix(π)| = 51 + 52 + 51 + 52 + 52 + 53 + 53 + 54 = 960.

Hence, by Burnside’s Theorem there are
1
|G|

∑
π∈G

|Fix(π)| =
1
8
· 960 = 120

distinct necklaces if five colors are available for the beads.

This process for computing
∑
π∈G

|Fix(π)| can be refined as follows. Sup-

pose π ∈ G is a rigid motion that, when acting on S, is represented by the
product of disjoint cycles of lengths i1, i2, . . . , it. We then associate with π
the monomial fπ = xi1xi2 · · ·xit . For example, with π7 = (13)(2)(4) in our
necklace example, we associate the monomial fπ7 = x2x1x1 = (x1)2x2. We
then define the cycle index of G acting on S as

f(x1, x2, . . . , xw) =
1
|G|

∑
π∈G

fπ

where w is the length of the longest cycle in the representation of any π ∈ G
as a permutation on S. The cycle index is of interest to us because of the
following theorem, which states how it can be used to count orbits when a
group acts on a set.

Theorem 9.5 Let S be a set, let R be a set of colors, and let X be the
set of colorings of S by R. Suppose a group G acts on S with cycle index
f(x1, x2, . . . , xw). If |R| = a, then the number of patterns in X under the
corresponding action of G on X is f(a, a, . . . , a).

Proof. Exercise.
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Example 9.4 For our necklace example we list the monomial fπ for each
π ∈ G in the following table.

π ∈ G fπ

(1234) x4

(13)(24) (x2)2

(1432) x4

(12)(34) (x2)2

(14)(23) (x2)2

(24)(1)(3) (x1)2x2

(13)(2)(4) (x1)2x2

(1)(2)(3)(4) (x1)4

Thus, the cycle index for this example is

f(x1, x2, x3, x4) =
1
8

(
2x4 + 3x2

2 + 2x2
1x2 + x4

1

)
.

Hence, if two colors are available for the beads, then there will be
f(2, 2, 2, 2) = 1

8 (4 + 12 + 16 + 16) = 6 distinct necklaces. And if five colors
were available for the beads instead of just two, then there would be
f(5, 5, 5, 5) = 1

8 (10 + 75 + 250 + 625) = 120 distinct necklaces.

Example 9.5 Suppose we wish to construct a necklace with six colored
beads. As in the 4-bead necklace example, we assume that the beads can
be rotated around the necklace, and that the necklace can be flipped over
and worn. In this example, we use a cycle index to determine the number
of distinct necklaces we can construct with a specified number of colors
available for each bead. To do this, suppose we stretch the necklace into
the shape of a hexagon with one bead at each corner. Consider the following
general shape for the necklace.

2

1 6

5

43

✔
✔

❚
❚

❚
❚

✔
✔

Let G be the set of rigid motions of a hexagon, and let S be the set of
vertices of the preceding general figure. In the following table, we list the
elements π ∈ G, their cycle representations as permutations on S, and the
associated monomials fπ.
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π ∈ G Permutation on S fπ

60◦ rotation (123456) x6

120◦ rotation (135)(246) (x3)2

180◦ rotation (14)(25)(36) (x2)3

240◦ rotation (153)(264) (x3)2

300◦ rotation (165432) x6

reflection fixing 2,5 (13)(46)(2)(5) (x1)2(x2)2

reflection fixing 1,4 (26)(35)(1)(4) (x1)2(x2)2

reflection fixing 3,6 (15)(24)(3)(6) (x1)2(x2)2

reflection across vertical (16)(25)(34) (x2)3

reflection across diagonal (23)(14)(56) (x2)3

reflection across diagonal (12)(36)(45) (x2)3

identity (1)(2)(3)(4)(5)(6) (x1)6

Thus, the cycle index for this example is

f(x1, x2, x3, x4, x5, x6) =
1
12

(
2x6 + 2x2

3 + 4x3
2 + 3x2

1x
2
2 + x6

1

)
.

Hence, if two colors are available for the beads, then there will be
f(2, 2, 2, 2, 2, 2) = 1

12 (4 + 8 + 32 + 48 + 64) = 13 distinct necklaces. And if
five colors are available for the beads instead of just two, there will be
f(5, 5, 5, 5, 5, 5) = 1

12 (10 + 50 + 500 + 1875 + 15625) = 1505 distinct neck-
laces.

9.4 The Pattern Inventory

From Example 9.5, we can see that 1505 distinct necklaces can be con-
structed with six beads if five colors are available for each bead. Consider
now the following question. How many of these 1505 distinct necklaces have
beads with only three of the five possible colors? Or, more specifically, if
the colors available for the beads are blue, green, red, white, and yellow,
then how many of these 1505 distinct necklaces have exactly two red beads,
three white beads, one yellow bead, and no blue or green beads? In this
section, we discuss a way to answer such questions.

Let S be a set, let R be the set {C1, C2, . . . , Ct} of colors, and let X
be the set of colorings of S by R. Suppose a group G acts on S with cycle
index f(x1, x2, . . . , xw). Then the simplified symbolic expression

f(C1 + · · · + Ct, C
2
1 + · · · + C2

t , . . . . . . , C
w
1 + · · · + Cw

t )

c© 1999 by CRC Press LLC



is called the pattern inventory of X. The pattern inventory of X allows
us to answer questions like those posed at the start of this section. This
is due to the following theorem, commonly called the Polya Enumeration
Theorem.

Theorem 9.6 Suppose the monomial kCi1
1 Ci2

2 · · ·Cit
t appears in the pat-

tern inventory of X. Then there are k patterns in X in which C1 appears
i1 times, C2 appears i2 times, . . . , and Ct appears it times.

Because the proof of the Polya Enumeration Theorem is extensive,
before verifying this theorem we first show how it can be applied in our
4-bead necklace example.

Example 9.6 Consider our 4-bead necklace example with cycle index

f(x1, x2, x3, x4) =
1
8

(
2x4 + 3x2

2 + 2x2
1x2 + x4

1

)
.

Suppose that each bead can be either B = blue or G = green. Then the
pattern inventory of the set X of colorings is

f(B + G,B2 + G2, B3 + G3, B4 + G4)

=
1
8
(2(B4 + G4) + 3(B2 + G2)2 + 2(B + G)2(B2 + G2)

+ (B + G)4)

= · · ·
= B4 + B3G + 2B2G2 + BG3 + G4 .

From this pattern inventory, we can easily see the number of distinct 4-
bead necklaces that have prescribed numbers of blue and green beads. For
example, because the term BG3 appears in this pattern inventory with a
coefficient of 1 and exponents of 1 on B and 3 on G, then there is only one
distinct 4-bead necklace with one blue bead and three green beads. And
because the term 2B2G2 appears in this pattern inventory with a coefficient
of 2 and exponents of 2 on B and G, then there are two distinct 4-bead
necklaces with two blue beads and two green beads.

Now, suppose that each bead can also be R = red. Then the pattern
inventory of the set of colorings is

c© 1999 by CRC Press LLC



f(B + G + R,B2 + G2 + R2, B3 + G3 + R3, B4 + G4 + R4)

=
1
8
(2(B4 + G4 + R4) + 3(B2 + G2 + R2)2 + · · · + (B + G + R)4)

= · · ·
= B4 + B3G + 2B2G2 + BG3 + G4 + B3R + 2B2R2 + BR3 + R4

+ G3R + 2G2R2 + GR3 + 2BGR2 + 2BG2R + 2B2GR .

For example, because the term 2BGR2 appears in this pattern inventory,
then there are two distinct 4-bead necklaces with one blue bead, one green
bead, and two red beads. Note that by adding the coefficients of all of the
terms in this pattern inventory, we see that there are 21 distinct 4-bead
necklaces if three colors are available for the beads. Also, note that by
adding the coefficients of just the last ten terms in this pattern inventory,
we see that 15 of these 21 distinct necklaces have at least one red bead.
Finally, as we would expect, note that each term in the 2-color pattern
inventory is present in the 3-color pattern inventory.

A pattern inventory can be used to answer both of the questions posed
at the start of this section. Specifically, consider the 6-bead necklace ex-
ample with cycle index

f(x1, x2, x3, x4, x5, x6) =
1
12

(
2x6 + 2x2

3 + 4x3
2 + 3x2

1x
2
2 + x6

1

)
.

Suppose that each bead can be B = blue, G = green, R = red, W = white,
or Y = yellow. We showed in Example 9.5 that 1505 distinct necklaces
can be constructed with six beads if five colors are available for each bead.
Of these 1505 necklaces, the number that have two red beads, three white
beads, one yellow bead, and no blue or green beads will be the coefficient
of R2W 3Y in the pattern inventory

f(B + G + R + W + Y, . . . . . . , B6 + G6 + R6 + W 6 + Y 6).

Of course, it would not be easy to compute this pattern inventory by hand.
However, with the help of a symbolic manipulator like Maple, this pattern
inventory is very easy to compute. We show how Maple can be used to
compute pattern inventories in Section 9.5.

We close this section with a discussion of why the Polya Enumeration
Theorem is true. Rather than giving a formal proof of the theorem, which
would be complicated and not intuitive, we give an informal discussion of
why it is true with two colors. This discussion can be generalized in an
obvious way for more than two colors.
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Let S be a set of s vertices, let R be the set {B = blue, G = green} of
colors, and let X be the set of colorings of S by R. Suppose a group G of
rigid motions acts on S with cycle index f(x1, . . . , xw). If π ∈ G acts on S
with a single cycle of length s, then for an element in X to be fixed by π,
each of the vertices in S must be assigned the same color. We will keep a
record of this by writing Bs + Gs, which we interpret as representing the
fact that a coloring fixed by π must have either s blue vertices or s green
vertices. For example, with π1 = (1234) in our 4-bead necklace example,
we would write B4 +G4, which we interpret as representing the fact that a
coloring fixed by π1 must have either four blue beads or four green beads.

Now, suppose π ∈ G acts on S with two cycles of lengths s1 and s2.
Then for an element in X to be fixed by π, all of the s1 vertices represented
in the first cycle of π must be assigned the same color, and all of the s2

vertices represented in the second cycle of π must also be assigned the same
color. We will keep a record of this by writing

(Bs1 + Gs1)(Bs2 + Gs2),

which we interpret as representing the fact that for a coloring to be fixed
by π, the s1 vertices represented in the first cycle of π must be all blue
or all green (hence the first factor), while the s2 vertices represented in
the second cycle of π must also be all blue or all green (hence the second
factor). Note that by expanding this expression we obtain the following.

(Bs1 + Gs1)(Bs2 + Gs2) = Bs1+s2 + Bs1Gs2 + Bs2Gs1 + Gs1+s2

The terms on the right-hand side of this equation represent the fact that
for a coloring to be fixed by π, all of the vertices must be blue (hence the
first term), or the s1 vertices represented in the first cycle of π must be all
blue and the s2 vertices represented in the second cycle of π must be all
green (hence the second term), or the s1 vertices represented in the first
cycle of π must be all green and the s2 vertices represented in the second
cycle of π must be all blue (hence the third term), or all of the vertices
must be green (hence the fourth term). For example, with π2 = (13)(24)
in our 4-bead necklace example, we would write

(B2 + G2)(B2 + G2) = B4 + B2G2 + B2G2 + G4.

The first and last terms on the right-hand side of this equation indicate
that the colorings in our 4-bead necklace example with four blue beads and
four green beads are fixed by π2. The middle two terms indicate that there
are also two colorings in our 4-bead necklace example with two blue beads
and two green beads that are fixed by π2.

More generally, suppose π ∈ G acts on S with j cycles of lengths
s1, s2, . . . , sj . Then for an element in X to be fixed by π, the vertices

c© 1999 by CRC Press LLC



represented in each of these cycles must all be assigned the same color. We
keep a record of this by writing

(Bs1 + Gs1)(Bs2 + Gs2) · · · (Bsj + Gsj ),

whose factors we interpret as representing the fact that for a coloring to
be fixed by π, the vertices represented in each of the cycles of π must be
all blue or all green. Recall that for use in the cycle index we attach to π
the monomial fπ = xs1xs2 · · ·xsj . Note that the above expression can be
viewed as fπ(B+G, . . . , Bt +Gt), where t is the length of the longest cycle
in π. As we have demonstrated, each term in the expansion of the above
expression represents a coloring fixed by π with the distribution of colors
given by the bases to the number of vertices specified by the exponents.
Hence, if we combine the terms in this expansion that are similar, the
coefficient of each resulting term will be the total number of colorings fixed
by π with the distribution of colors given by the bases to the number of
vertices specified by the exponents. And if we sum over all π ∈ G and
combine similar terms, the coefficient of each resulting term will be the
total number of colorings fixed by any π ∈ G with the distribution of colors
given by the bases to the number of vertices specified by the exponents.

We now claim that if the monomial kBi1Gi2 appears in the pattern
inventory of X, then there will be k patterns in X in which B appears i1
times and G appears i2 times. To see this, let Y be the subset of X that
contains all of the colorings in which B appears i1 times and G appears i2
times. Since G clearly acts on Y , Burnside’s Theorem states that

Number of patterns in Y =
1
|G|

∑
π∈G

|Fix(π)| (9.1)

with G acting on Y . It is precisely this number of patterns that we wish
to determine. As we have just discussed, the coefficients in the expanded
form of fπ(B + G, . . . , Bt + Gt) show the number of colorings fixed by
π (i.e., |Fix(π)|) for any π ∈ G. Hence, if we add the Bi1Gi2 terms in
fπ(B + G, . . . , Bt + Gt) for all π ∈ G, the coefficient of the result will be
the sum in (9.1). If we then divide this coefficient by |G|, this will show
the number of patterns in Y . More generally, we can find the number of
patterns for any possible distribution of the colors B and G by adding and
simplifying fπ(B +G, . . . , Bt +Gt) for all π ∈ G and dividing by |G|. The
coefficients of the result will show the number of patterns in X with the
distribution of colors given by the bases of the terms to the number of
vertices specified by the exponents of the terms. Finally, note that adding
fπ(B + G, . . . , Bt + Gt) for all π ∈ G and dividing the result by |G| will
yield exactly the cycle index f(x1, x2, . . . , xw) of G acting on S evaluated
at B +G, . . . , Bw +Gw. Since this is how we defined the pattern inventory
of X, the result is shown.

c© 1999 by CRC Press LLC



9.5 The Pattern Inventory with Maple

In this section, we show how Maple can be used to count patterns and
construct pattern inventories. We consider the 6-bead necklace example
with cycle index

f(x1, x2, x3, x4, x5, x6) =
1
12

(
2x6 + 2x2

3 + 4x3
2 + 3x2

1x
2
2 + x6

1

)
.

We begin by defining this cycle index. Note that we use brackets [ ]
to obtain the appropriate subscripts.

> f := (1/12)*(2*x[6] + 2*x[3]^2 + 4*x[2]^3 + 3*x[1]^2*x[2]^2

> + x[1]^6);

f :=
1
6
x6 +

1
6
x3

2 +
1
3
x2

3 +
1
4
x1

2 x2
2 +

1
12

x1
6

To convert this expression into a function that we can evaluate in the usual
manner, we enter the following unapply command.1

> f := unapply(f, x[1], x[2], x[3], x[4], x[5], x[6]);

f := (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) →
1
6

x 6 +
1
6

x 3 2 +
1
3

x 2 3 +
1
4

x 1 2 x 2 2 +
1
12

x 1 6

Although the preceding command changes the variables in f from xi to
x i, this has no effect on how f can be used. For example, we can find the
number of distinct 6-bead necklaces if two colors are available for the beads
by evaluating f(2, 2, 2, 2, 2, 2) as follows.

> f(2, 2, 2, 2, 2, 2);

13

Hence, as we saw in Example 9.5, there are 13 distinct 6-bead necklaces
if 2 colors are available for the beads. Suppose these colors are B = blue
and G = green. To see how many of these 13 distinct necklaces have
prescribed numbers of blue and green beads, we compute the following
pattern inventory.

> simplify(f(B+G, B^2+G^2, B^3+G^3, B^4+G^4, B^5+G^5, B^6+G^6));

B6 + G6 + 3B3 G3 + 3B4 G2 + 3B2 G4 + B5 G + BG5

1The output displayed for this command was produced by Maple V Release 5. Pre-
vious releases of Maple yield output in which the variables are changed to y1, y2, . . . , y6.
This has no effect on how f can be used.
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Thus, for example, because the term 3B4 G2 appears in this pattern inven-
tory, then there are three distinct 6-bead necklaces with four blue beads
and two green beads.

Now, suppose that the color R = red is also available for the beads. We
can find the number of distinct 6-bead necklaces if three colors are available
for the beads by evaluating f(3, 3, 3, 3, 3, 3) as follows.

> f(3, 3, 3, 3, 3, 3);

92

Hence, there are 92 distinct 6-bead necklaces if 3 colors are available for the
beads. To see how these colors are distributed in the patterns, we compute
the following pattern inventory.

> simplify(f(B+G+R, B^2+G^2+R^2, B^3+G^3+R^3, B^4+G^4+R^4,

> B^5+G^5+R^5, B^6+G^6+R^6));

11B2 G2 R2 + 6GR3 B2 + 6G3 RB2 + 3GRB4 + 6BR3 G2

+ 3BRG4 + 6B3 RG2 + 3BGR4 + 6BG3 R2 + 6B3 GR2

+ B6 + G6 + 3B3 G3 + 3B4 G2 + 3B2 G4 + B5 G + BG5

+ 3B3 R3 + 3G3 R3 + 3B4 R2 + 3B2 R4 + 3G4 R2 + 3G2 R4

+ B5 R + BR5 + G5 R + GR5 + R6

Thus, for example, because the term 6GR3 B2 appears in this pattern
inventory, then there are six distinct 6-bead necklaces with one green bead,
three red beads, and two blue beads. Also, as we would expect, note that
each term in the 2-color pattern inventory is present in the 3-color pattern
inventory.

Finally, suppose that the color W = white is also available for the
beads. We can find the number of distinct 6-bead necklaces if four colors
are available for the beads by evaluating f(4, 4, 4, 4, 4, 4) as follows.

> f(4, 4, 4, 4, 4, 4);

430

Hence, there are 430 distinct 6-bead necklaces if 4 colors are available for
the beads. To see how these colors are distributed in the patterns, we
compute the following pattern inventory.

> simplify(f(B+G+R+W, B^2+G^2+R^2+W^2, B^3+G^3+R^3+W^3,

> B^4+G^4+R^4+W^4, B^5+G^5+R^5+W^5, B^6+G^6+R^6+W^6));

11B2 G2 R2 + 16BGR2 W 2 + 16BRG2 W 2 + 16BW G2 R2

+ 16GRB2 W 2 + 16GW B2 R2 + 16RW B2 G2

+ 10B3 GRW + 10BGRW 3 + 10BG3 RW + 10BGR3 W

+ 6GR3 B2 + 6G3 RB2 + 3GRB4 + 6BR3 G2 + 3BRG4
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+ 6B3 RG2 + 3BGR4 + 6BG3 R2 + 6B3 GR2 + B6 + G6

+ 3B3 G3 + 3B4 G2 + 3B2 G4 + B5 G + BG5 + 3B3 R3

+ 3G3 R3 + 3B4 R2 + 3B2 R4 + 3G4 R2 + 3G2 R4 + B5 R

+ BR5 + G5 R + GR5 + R6 + 3BW G4 + 6BW 3 G2

+ 3BW R4 + 6G3 W B2 + 3GW B4 + 3GRW 4 + 6GR3 W 2

+ 6B3 W G2 + 6G3 RW 2 + 6BW 3 R2 + 6B3 W R2

+ 3BRW 4 + 6BR3 W 2 + 3B3 W 3 + 3G3 W 3 + 3R3 W 3

+ 3B4 W 2 + 3B2 W 4 + 3G4 W 2 + 3G2 W 4 + 3R4 W 2

+ 3R2 W 4 + W 6 + 6B3 RW 2 + 3BGW 4 + 6BG3 W 2

+ 6B3 GW 2 + 11G2 R2 W 2 + 11B2 R2 W 2 + 11B2 G2 W 2

+ 6GW 3 B2 + 6G3 W R2 + 3GW R4 + 6GW 3 R2 + 3RW B4

+ 6R3 W B2 + 6RW 3 B2 + 3RW G4 + 6R3 W G2

+ 6RW 3 G2 + B5 W + BW 5 + G5 W + GW 5 + R5 W + RW 5

Thus, for example, because the term 16GRB2 W 2 appears in this pattern
inventory, then there are 16 distinct 6-bead necklaces with 1 green bead, 1
red bead, 2 blue beads, and 2 white beads.

9.6 Switching Functions

In this section we show how the theory discussed in this chapter can be
applied to the classification of switching functions. A switching function is
a function f : Zn

2 → Z2. (More generally, a switching function is a process
that can start with any number of inputs but has only two possible outputs.
The preceding definition is sufficient for our purposes.) Switching theory
was born in the first part of the 20th century due to the increasingly high
volume of telephone calls being placed through local switchboards. The
way switching functions were subsequently used by telephone companies
led to their more recent use in the design of digital computers. It is in this
area that switching functions as we have defined them (mapping from Zn

2

to Z2) are most useful because of how computers store, send, and receive
information as binary strings.

Although we will not describe any specific applications of switching
functions, we will mention that in general it is desirable to keep a record
of all possible switching functions. However, this poses a problem because,
even for small values of n, switching functions are very numerous. Specif-
ically, for each positive integer n, since |Zn

2 | = 2n, there are 22n

switching
functions. Hence, even for a value of n as small as 5, there are more than 4
billion switching functions. Because switching functions are so numerous, it
would not be practical to keep a record of all of them. What is done instead
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is that an equivalence relation is defined on the set of switching functions.
This breaks the set of switching functions into equivalence classes, and then
a record can be kept of just one function from each equivalence class. In
order to define the equivalence relation that is used in general, fix a positive
integer n and let X be the set of colorings of Zn

2 by Z2. Then X is the set
of switching functions for the fixed value of n. Note that the symmetric
group Sn acts on X by

πf(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . , xπ(n))

for f ∈ X and π ∈ Sn (see Written Exercise 11). Then for f, g ∈ X,
we define f ∼ g if there exists π ∈ Sn such that πf = g (see Written
Exercise 12).

Example 9.7 Let n = 2 so that Zn
2 = Z2

2 = {00, 01, 10, 11}. Define f :
Z2

2 → Z2 by

f(0, 0) = 1
f(0, 1) = 0
f(1, 0) = 1
f(1, 1) = 0.

Let π be the cycle (12) ∈ S2. Then πf(x1, x2) = f(x2, x1). Hence,

πf(0, 0) = 1
πf(0, 1) = 1
πf(1, 0) = 0
πf(1, 1) = 0.

Thus, if we define g : Z2
2 → Z2 by

g(0, 0) = 1
g(0, 1) = 1
g(1, 0) = 0
g(1, 1) = 0,

then f ∼ g.

Since switching functions are recorded in general by keeping a record
of one function from each equivalence class, it is of obvious importance to
know the number of equivalence classes for each value of n. This is precisely
where the theory discussed in this chapter applies. To count the number of
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equivalence classes we can use a cycle index. And to count the number of
equivalence classes in which the functions produce prescribed numbers of
zeros and ones we can use a pattern inventory. We illustrate these ideas in
the following example.

Example 9.8 In this example we consider the switching functions
f : Zn

2 → Z2 with n = 3. We begin by noting that the elements in the
symmetric group S3 can be expressed as the following cycles.

π ∈ S3 Cycle Representation

π1 (1)(2)(3)
π2 (12)(3)
π3 (13)(2)
π4 (1)(23)
π5 (123)
π6 (132)

Next, we apply each of the permutations in S3 to the elements in the
set Z3

2 = {000, 001, 010, 011, 100, 101, 110, 111}. For example, applying π2

to 011 yields 101 since π2 flips the first and second entries and fixes the
third. In the following table we list the results from applying each of the
permutations in S3 to the elements in Z3

2 . Also, in the first column of the
following table we attach numerical labels to the elements in Z3

2 . We will
use these labels to express the actions of the elements in S3 on Z3

2 as cycles.

Label Z3
2 π1 π2 π3 π4 π5 π6

1 000 000 000 000 000 000 000
2 001 001 001 100 010 100 010
3 010 010 100 010 001 001 100
4 011 011 101 110 011 101 110
5 100 100 010 001 100 010 001
6 101 101 011 101 110 110 011
7 110 110 110 011 101 011 101
8 111 111 111 111 111 111 111

Now, in the following table we list the actions of each of the permutations
in S3 on the labels of the elements in Z3

2 . For example, the action of π2 is
(1)(2)(35)(46)(7)(8) since, using the labels in the preceding table, π2 fixes
elements 1, 2, 7, and 8; sends elements 3 and 5 to each other; and sends
elements 4 and 6 to each other. Also, in the third column of the following
table we list the monomials for the resulting cycle index.
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π ∈ S3 Action on Z3
2 Monomial

π1 (1)(2)(3)(4)(5)(6)(7)(8) (x1)8

π2 (1)(2)(35)(46)(7)(8) (x1)4(x2)2

π3 (1)(25)(3)(47)(8) (x1)4(x2)2

π4 (1)(23)(4)(5)(67)(8) (x1)4(x2)2

π5 (1)(253)(467)(8) (x1)2(x3)2

π6 (1)(235)(476)(8) (x1)2(x3)2

Thus, the cycle index for this example is

f(x1, x2, x3) =
1
6

(
x8

1 + 3x4
1x

2
2 + 2x2

1x
2
3

)
.

Since there are two colors in this example (the numbers zero and one), then
the total number of equivalence classes of switching functions with n = 3
is given by f(2, 2, 2) = 1

6 (256 + 192 + 32) = 80. To see how many of these
equivalence classes contain functions that produce prescribed numbers of
zeros and ones, we compute the following pattern inventory. Denote the
colors by A = zero and B = one. Then the pattern inventory is

f(A + B,A2 + B2, A3 + B3)

=
1
6
((A + B)8 + 3(A + B)4(A2 + B2)2 + 2(A + B)2(A3 + B3)2)

= · · ·
= A8 + 4A7B + 9A6B2 + 16A5B3 + 20A4B4 + 16A3B5 + 9A2B6

+ 4AB7 + B8 .

Hence, for example, because the term 16A5B3 appears in this pattern in-
ventory, then there are 16 equivalence classes that contain functions that
produce 5 zeros and 3 ones.

9.7 Switching Functions with Maple

In this section we show how Maple can be used to count and classify equiv-
alence classes of switching functions. We demonstrate using the results
obtained in Example 9.8.

To construct the cycle index for a set of switching functions, we have
provided the user-written procedure switch, for which code is given in
Appendix C.4. Because switch calls and uses the user-written procedure
ppoly, for which code is also given in Appendix C.4, both of the procedures
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switch and ppoly must be saved as text files in the directory from which
we are running Maple. If they are saved as the text files switch and ppoly,
then we can include the switch procedure in this Maple session by entering
the following command.

> read switch;

We can then construct the cycle index for the set of switching functions
with n = 3 by entering the following command.2

> f := switch(3, x, ’maxsub’);

f :=
1
6
x1

8 +
1
2
x1

4 x2
2 +

1
3
x1

2 x3
2

Note that the result is the cycle index in Example 9.8. In the preceding
command, the first parameter specifies the value of n. The second pa-
rameter is the variable in whose terms the resulting cycle index is to be
expressed. The third parameter is a variable defined by the command as
the value of the largest subscript on the variables in the cycle index. (This
would be important for larger values of n.)

Next, we convert the preceding cycle index into a function that we can
evaluate in the usual manner. Note that in this command we include input
parameters x[1] through x[3] because 3 is the largest subscript on the
variables in the cycle index.)

> f := unapply(f, x[1], x[2], x[3]);

f := (x 1 , x 2 , x 3 ) → 1
6

x 1 8 +
1
2

x 1 4 x 2 2 +
1
3

x 1 2 x 3 2

Since there are two colors, we can find the total number of equivalence
classes of switching functions by evaluating f(2, 2, 2) as follows.

> f(2, 2, 2);

80

To classify these equivalence classes, we compute the following pattern in-
ventory. Denote the colors by A = zero and B = one. Then we can compute
the pattern inventory by entering the following command.

> simplify(f(A+B, A^2+B^2, A^3+B^3));

4B7 A + 9B6 A2 + 16B5 A3 + 20B4 A4 + 16B3 A5 + 9B2 A6

+ 4BA7 + A8 + B8

Note that the result is the pattern inventory in Example 9.8.
2Due to the tremendous number of switching functions for even moderately sized

values of n, this routine, depending on your machine speed, can be very time-consuming
for n > 10.
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Written Exercises

1. Suppose you wish to construct a necklace with three colored beads,
and each bead can be either red or white. Assume that the beads can
be rotated around the necklace, and that the necklace can be flipped
over and worn. Consider the following general shape for the necklace
with one bead positioned at each corner.

1

2 3
✔
✔
✔✔❚

❚
❚❚

Let G be the set of rigid motions of a triangle, let S be the set
of vertices of the preceding general figure, and let X be the set of
colorings of S by the colors R = red and W = white.

(a) For each π ∈ G, find Fix(π).

(b) For each x ∈ X, find Stab(x).

(c) Find the cycle index of G acting on S. Use this cycle index to
determine the number of distinct necklaces you can construct.

(d) Find the pattern inventory of X.

(e) Suppose each bead can also be B = blue. Determine the num-
ber of distinct necklaces you can construct with this additional
color available. Also, find the new pattern inventory. Accord-
ing to this new pattern inventory, how many of the new distinct
necklaces have at least one blue bead?

2. How many distinct necklaces can you construct with three beads if
ten colors are available for each bead? Assume that the beads can
be rotated around the necklace, and that the necklace can be flipped
over and worn.

3. Suppose you wish to construct a necklace with five colored beads,
and each bead can be either red or white. Assume that the beads can
be rotated around the necklace, and that the necklace can be flipped
over and worn.

(a) How many distinct necklaces can you construct?

(b) How many of the distinct necklaces in part (a) have two red
beads and three white beads?

(c) How many of the distinct necklaces in part (a) have at least three
white beads?
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4. Suppose you wish to construct a building in the shape of a pentagon,
and you will paint each side of the building one of ten different colors.
Assume two buildings are equivalent if one could be rotated or flipped
to look like the other. How many nonequivalent buildings can you
construct?

5. Suppose you wish to construct a six-pointed star, and you will paint
each point on the star either blue, green, or red. Assume two stars
are equivalent if one could be rotated to look like the other. (Rotated
only, not flipped!)

(a) How many nonequivalent stars can you construct?

(b) How many of the nonequivalent stars in part (a) have each of
the three colors used on exactly two of the points?

(c) How many of the nonequivalent stars in part (a) have each of
the three colors used on at least one of the points?

6. Repeat Written Exercise 5 if you assume two stars are equivalent if
one could be rotated or flipped to look like the other.

7. Find the number of equivalence classes of switching functions
with n = 4.

8. Prove Lemma 9.1.

9. Prove Lemma 9.2.

10. Prove Theorem 9.5.

11. Let X be the set of switching functions for a fixed positive integer n.
Show that the symmetric group Sn acts on X by

πf(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . , xπ(n))

for f ∈ X and π ∈ Sn.

12. Let X be the set of switching functions for a fixed positive integer n.
For f, g ∈ X, define f ∼ g if there exists π ∈ Sn such that πf = g
using the action of Sn on X defined in Written Exercise 11. Show
that ∼ is an equivalence relation.
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Maple Exercises

1. Suppose you wish to construct a necklace with five colored beads,
and each bead can be either red, white, blue, or yellow. Assume that
the beads can be rotated around the necklace, and that the necklace
can be flipped over and worn. Let G be the set of rigid motions of a
pentagon, let S be the set of vertices of a pentagon, and let X be the
set of colorings of S by the colors R = red, W = white, B = blue,
and Y = yellow. Find the pattern inventory of X. Then use this
pattern inventory to determine the number of distinct necklaces you
can construct with exactly two red beads, one white bead, one blue
bead, and one yellow bead.

2. Find the number of equivalence classes of switching functions with
n = 5. Also, determine how many of these equivalence classes contain
functions that produce 30 zeros and 2 ones.
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Appendix A

Basic Maple Tutorial

The purpose of this appendix is to introduce some basic commands, syntax,
and programming concepts for Maple V Release 5. For a more thorough
introduction to Maple, see [5] and [16].

A.1 Introduction to Maple

Maple is an advanced software tool designed for doing complicated math-
ematics quickly and precisely on a computer. To use Maple, you enter
commands at “prompts” that can be identified as the following symbol
that appears on the left in the body of a Maple worksheet.

>

When you access Maple, a Maple window will open that contains a prompt
at which you can immediately begin performing mathematical operations.
For example, you can use Maple to multiply the numbers 247 and 3756 by
entering “247 * 3756;” as follows.

> 247 * 3756;

927732

When you enter a Maple command (assuming no syntax errors), Maple
will perform the calculation and move the cursor to the next command line
in the worksheet (which it will create if no subsequent command line exists).
Each Maple command must end with either a semicolon or a colon. If you
end a Maple command with a semicolon, Maple will display the result. If
you use a colon, Maple will suppress the result. For example, if you enter
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the preceding command with a colon instead of a semicolon, Maple will
respond as follows.

> 247 * 3756:

Despite the fact that no result is displayed after this command, the cal-
culation was performed. Suppression of output is useful in many of the
applications we discuss in this book.

If you do not include a semicolon or colon at the end of a Maple
command, Maple will not perform the calculation and will respond with
a warning message after a new prompt. For example, if you enter the
preceding command without a semicolon or colon, Maple will respond with
a warning message similar to the following.

> 247 * 3756

>

Warning, incomplete statement or missing semicolon

One of the great benefits of a computer package like Maple is that if you
make a mistake in entering a command, you can go back to the command
and correct the error. For example, you can remedy the preceding warning
message by returning to the preceding command and entering it again with
a semicolon or colon. If you enter the preceding command with a semicolon
at the end of the command line, Maple will respond as follows.

> 247 * 3756;

>

927732

A.2 Arithmetic

Maple is an example of a computer algebra system. One feature of such a
system is that it can be used as a very smart calculator. In particular, you
can very easily use Maple to add, subtract, multiply, or divide numbers
or algebraic expressions. These arithmetic operations can be performed in
Maple by using the following symbols: + for addition, - for subtraction, *
for multiplication, and / for division. Also, the operation of exponentiation
can be performed in Maple by using the symbols ^ or **. As examples, two
numbers or fractions can be added in Maple as follows.

> 253 + 7775;

8028
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> 25/27 + 3/51;

452
459

Operations can be performed in Maple on the last entered result by using
the percent symbol %.1 For example, by entering the following command,
we multiply the preceding result by 23.

> 23 * %;

10396
459

Two percent symbols listed together refer to the next-to-last entered result.
> 23 * %%;

10396
459

And we can evaluate 37 by entering either of the following commands.
> 3^7;

2187

> 3**7;

2187

Like other computer algebra systems, Maple uses exact arithmetic.
Thus, if we divide two integers, Maple will return the exact answer as
follows.

> 3235/7478;

3235
7478

The Maple evalf command can be used to obtain the decimal representa-
tion of a number. For example, the following command returns the decimal
representation of the preceding number. The default number of digits dis-
played is ten.

> evalf(%);

.4326023001

1Maple V Release 5 is the first release of Maple that uses the percent symbol % to
refer to the last entered result. Earlier releases of Maple use ditto marks " for this
purpose.
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To obtain more or fewer than ten digits, the desired number of digits must
be specified. For example, the following command yields the first 20 digits
in the decimal representation of the preceding fraction.

> evalf(%%, 20);

.43260230008023535705

As a final note in this section, we mention the fact that Maple will
recognize only parentheses to enclose groups of objects with the basic arith-
metic operations. Maple will not recognize square brackets or curly braces
for this purpose. We illustrate this in the next two commands.

> 5^[15*(3+2)];
Error, non algebraic terms in power should be of the same type

> 5^(15*(3+2));

26469779601696885595885078146238811314105987548828125

A.3 Defining Variables and Functions

To assign a numerical value or expression to a variable in Maple, you must
use the colon-equal := notation. For example, the following command as-
signs the value 5 to the variable y.

> y := 5;

y := 5

The variable y will then have this value throughout the current Maple ses-
sion until y is assigned another value or its value is “unassigned”. To display
the contents of this variable, we must only enter the following command.

> y;

5

We can directly perform mathematical operations using the assigned vari-
able y as illustrated in the next command.

> 4*y + 5;

25

The following command can be used to “unassign” the value of y. Note
that we use back ticks ’ in this command.

> y := ’y’;

y := y
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There are two ways to define functions in Maple. The most useful way
is to use the minus-greater than -> notation. For example, the following
command defines the function f(x) = x2.

> f := x -> x^2;

f := x → x2

The reason this is the most useful way to define a function in Maple is
because it allows standard functional notation like f(5) to be used when
evaluating the function at a particular value.

> f(5);

25

Functions can also be defined in Maple as expressions without using
the -> notation. For example, the following command defines f(x) = x2 as
an expression.

> f := x^2;

f := x2

The reason this method for defining a function in Maple is not as useful is
because evaluating the function at a particular value then requires use of
the Maple subs command. For example, to evaluate f(5) we must enter
the following command.

> subs(x=5, f);

25

For a function defined as an expression, standard functional notation is not
understood by Maple and results in nonsense.

> f(x);

x(x )2

> f(5);

x( 5 )2

A.4 Algebra

Another benefit of Maple is that it allows entire algebraic expressions to
be manipulated in the same way calculators manipulate numbers. Some
important Maple commands for performing operations with algebraic ex-
pressions are simplify to simplify an expression, expand to expand an
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expression, factor to factor an expression, and solve to solve an equation
or system of equations. Examples of these commands follow.

> simplify( (x^3+1)/(x^2-x+1) );

x + 1

> expand( (x^2+1)*(x+1)*(x+3) );

x4 + 4x3 + 4x2 + 4x + 3

> factor(%);

(x2 + 1 ) (x + 1 ) (x + 3 )

> sol := solve( x^3-9*x^2+20*x=0 , x );

sol := 0, 4, 5

The output for the preceding solve command is returned by Maple as a
set whose elements can be chosen. For example, we can choose the second
element in sol by entering the following command.

> sol[2];

4

A.5 Case Sensitivity

Maple is case sensitive – it distinguishes between upper and lower case
characters in commands. For example, to factor the polynomial x2−2x−3,
we can enter the following command.

> factor(x^2-2*x-3);

(x + 1 ) (x− 3 )

However, the next command does not yield the result.
> FACTOR(x^2-2*x-3);

FACTOR(x2 − 2x− 3 )

Maple has several functions designed for doing modular arithmetic. For
many of these functions, the name of the function is the same as for the
nonmodular arithmetic function but with an upper case first letter. For
example, to factor the polynomial x2 − 2x− 3 over the integers modulo 3,
we can enter the following command.
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> Factor(x^2-2*x-3) mod 3;

x (x + 1 )

As another example, consider the Maple irreduc function, which re-
turns true if a polynomial input is irreducible over the integers and false
if not. The following command indicates, as expected, that x2 + 1 is irre-
ducible over the integers.

> irreduc(x^2+1);

true

However, the next command states that x2 + 1 is not irreducible over the
integers modulo 2.

> Irreduc(x^2+1) mod 2;

false

We can see how x2 + 1 factors over the integers modulo 2 by entering the
following Factor command.

> Factor(x^2+1) mod 2;

(x + 1 )2

A.6 Help File

If you ever need to see information or an example regarding a particular
Maple command, you can gain access to a help window for the command by
entering the command name preceded by a question mark (and not followed
by a semicolon). For example, the following command causes Maple to
display a help window for the factor command.

> ? factor

A.7 Arrays and Loops

Arrays in Maple are data structures in which the elements are grouped
sequentially. To create an array in Maple, we can use the array function.
For example, the following command creates an array with four elements.

> a := array([5, 1, -4, 6]);

a := [ 5, 1, −4, 6 ]
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Maple associates with each element in an array an integer that can be used
to access the element. To access an element in an array, we enter the name
of the array with the position of the element we wish to access in square
brackets. For example, the following command returns the third element
in the preceding array a.

> a[3];

−4

In this book we often create arrays that we use as vectors. In Maple,
the vector routine, which is part of the linalg linear algebra package (a
more detailed discussion of this package is given in Appendix B), can be
used to create vectors. Vectors function in Maple essentially the same way
as arrays, except that the integers Maple associates with the elements in a
vector always start with an integer index of 1, whereas arrays can have any
integer index. To illustrate the vector command, we first include the Maple
linalg package in this Maple session by entering the following command.

> with(linalg):

Then in the next command we create a vector with four elements.
> b := vector([1, 1, 3, -4]);

b := [ 1, 1, 3, −4 ]

The following command allows us to access the first element in b.
> b[1];

1

In the next command we create an empty array with storage for four ele-
ments.

> c := array(1..4);

c := array( 1..4, [ ] )

In Maple, loops are designed to repeat a specific command a specified
number of times. The most basic type of loop in Maple is a for loop. In
the following commands we enter a for loop in which we sequentially access
the elements in a and b, multiply each of the corresponding elements, and
store the results in c.

> for i from 1 to 4 do

> c[i] := a[i]*b[i];

> od:

In this loop, the indexing element i starts at 1 and increases by 1 with
each passage through the loop. The loop terminates when i reaches the
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upper index 4. Every for loop in Maple ends with a matching od statement
(the reverse of the letters in the do statement). We use a colon after the
od statement to prevent Maple from printing the intermediate calculations
during the progression of the loop.

The Maple evalm command can be used to display the contents of a
vector. For example, to display the vector c constructed in the preceding
for loop, we enter the following command.

> evalm(c);

[ 5, 1, −12, −24 ]

Another useful type of loop in Maple is a while loop, which executes
the commands inside the loop until a specified condition fails. For example,
the following while loop constructs the same array c as the preceding for
loop.

> i := 0:

> while i < 4 do

> i := i + 1;

> c[i] := a[i]*b[i];

> od:

This while loop executes the two commands inside the loop, each time
incrementing i by 1, and terminates when i reaches 4. While loops also
end with od statements. The next command shows that this while loop
constructs the same array c as the preceding for loop.

> evalm(c);

[ 5, 1, −12, −24 ]

A.8 Conditional Statements

Conditional statements in Maple are designed to decide which provided
commands to execute based on whether a provided statement is true or
false. To demonstrate, we define the following numbers x and y.

> x := 13034021/29391911;

x :=
13034021
29391911

> y := 2483118283/4630112000;

y :=
2483118283
4630112000
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The Maple if statement can be used to perform conditional statements.
When combined with the else statement, it performs a double alternative
step. For example, suppose we wish to determine which of x and y is larger.
To do this, we can enter the following commands.

> if x > y then

> print(x);

> else

> print(y);

> fi:

2483118283
4630112000

The if statement in the preceding commands checks if x is greater than
y. Since this is false, Maple executes the print command after the else
statement. Maple if statements end with fi statements (the reverse of the
letters in the if statement).

To produce multiple decision statements in Maple, we can use the if
statement in combination with the elif and else statements. For example,
the following Maple for loop compares the corresponding elements in the
array a and vector b defined in Appendix A.7, and multiplies or divides the
elements depending on which one is larger. Maple then stores the results
in the array c. If the elements in a and b are equal, then the corresponding
element in c is defined to be 0.

> for i from 1 to 4 do

> if a[i] > b[i] then

> c[i] := a[i]*b[i]:

> elif a[i] < b[i] then

> c[i] := a[i]/b[i]:

> else

> c[i] := 0:

> fi:

> od:

We can see the resulting array c by entering the following command.
> evalm(c); [

5, 0,
−4
3

, −24
]
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A.9 Maple Procedures

A Maple procedure is a prearranged collection of commands that Maple
executes together. To define a procedure in Maple we use the proc state-
ment. In order to illustrate the syntax for writing a Maple procedure we
construct the following procedure dprod, which is designed to compute the
dot product of two vectors.

> dprod := proc(v1, v2)

> local res, n, i;

> res := 0:

> n := linalg[vectdim](v1);

> for i from 1 to n do

> res := res + v1[i]*v2[i]:

> od:

> RETURN(res):

> end:

In this procedure, v1 and v2 are input vectors. Note that the proc state-
ment is not ended with a semicolon. The local statement that appears at
the start of this procedure defines variables whose values are used only in
the procedure itself. After the procedure terminates, these variables will
return to their assigned values, if any, from before the procedure was exe-
cuted. The RETURN statement that appears at the end of this procedure
specifies the value to be returned by the procedure to the calling program.
If this statement is not included in the procedure, then the procedure will
return its last computed result. To specify the end of the procedure, we use
an end statement. And we use a colon after the end statement to prevent
Maple from printing the commands and statements in the procedure after
the procedure is entered or read in as text.

In the following commands, we define two vectors and demonstrate
how the dprod procedure can be used to compute their dot product.

> vect1 := vector([1, 3, 5, 3, 6]);

vect1 := [ 1, 3, 5, 3, 6 ]

> vect2 := vector([7, 2, 1, 0, -1]);

vect2 := [ 7, 2, 1, 0, −1 ]

> dprod(vect1, vect2);

12
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We mention one final note regarding how user-written procedures can
be included in Maple sessions. First, the statements in any procedure can
always be entered interactively, line by line in a Maple session. However,
if the procedure is very long (for example, see the procedures in Appendix
C.4), this may not be practical. Another way to include a user-written
procedure in a Maple session is by saving the text of the procedure as a
text file, and reading the text file into a Maple session using a Maple read
command. To do this in a UNIX-like environment, the procedure must
be saved as a text file in the same directory in which the Maple program
is running. For other operating systems, the proper location of the text
file varies. Assuming we are working in a UNIX-like environment, if we
have saved the text of the dprod procedure shown above as the text file
dprod, then we can include the procedure in a Maple session by entering
the following command.

> read(dprod);

The procedure can then be used as illustrated above.
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Appendix B

Some Maple Linear
Algebra Commands

Most of the Maple functions that deal with vector and matrix computa-
tions are part of the linalg linear algebra package. In this appendix, we
give a brief introduction to some of these functions. We begin by entering
the following command, which includes the linalg package in this Maple
session.

> with (linalg):

By entering the preceding command, we gain access to all of the routines in
the linalg package. Note that we used a colon at the end of this command.
This suppresses the list of available liner algebra routines that would have
been displayed had we used a semicolon. If you wish to see a list of the
available routines, just enter the preceding command with a semicolon (or
look at the help file on the linalg package – see Appendix A.6).

There are several ways to enter a matrix in Maple. In the following
command, we use the Maple matrix function to define a 3 × 3 matrix A.
The first two parameters in this command are the dimensions of the result.
The remaining parameters enclosed in brackets are the entries in the matrix
listed by consecutive rows.

> A := matrix(3, 3, [2, 5, 7, 3, 1, 7, 8, 1, 2]);

A :=


2 5 7

3 1 7
8 1 2
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Next, we again use the matrix function to define the matrix A, but
this time we use slightly different syntax. In this command, we use double
brackets within the matrix function. The outside brackets again contain
the entries in the matrix listed by consecutive rows, but now each specific
row is set off by another set of square brackets. This syntax does not require
that we specify the dimensions of the result.

> A := matrix([[2, 5, 7], [3, 1, 7], [8, 1, 2]]);

A :=


2 5 7

3 1 7
8 1 2




In Maple, when a variable has been assigned as a number of an expres-
sion, it is usually possible to see this stored value or expression by entering
the name of the variable. For example, note the following commands.

> a := 7;

a := 7

> a;

7

However, if a variable has been assigned as a matrix, then entering the
name of the variable will not cause Maple to display the matrix. Instead,
Maple will print only the name of the matrix. For example, if we try to
view the matrix constructed above by entering the name of the variable A
in which the matrix is stored, Maple will respond as follows.

> A;

A

To view the matrix A constructed above, we must use the Maple evalm
function as follows.

> evalm(A); 
2 5 7

3 1 7
8 1 2




In the next command, we multiply each of the entries in A by the
scalar 4. Again, Maple responds with only the name of the result.

> 4*A;

4A
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But we can again use the Maple evalm function to see the result.

> evalm(4*A);




8 20 28

12 4 28

32 4 8




Next, we enter the following 3 × 3 matrix B.

> B := matrix([[1, 0, 3], [-3, 5, 1], [2, 4, 1]]);

B :=




1 0 3

−3 5 1

2 4 1




To add matrices in Maple, we can use the usual + symbol.

> evalm(A + B);




3 5 10

0 6 8

10 5 3




And to raise matrices to powers in Maple, we can use the usual ^ symbol.

> evalm(A^2);




75 22 63

65 23 42

35 43 67




However, Maple distinguishes between scalar and matrix multiplication
with different symbols. To multiply matrices in Maple, we must use the &∗
command rather than the ususal ∗ symbol.

> evalm(A &* B); 


1 53 18

14 33 17

9 13 27
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The preceding operations of matrix addition, exponentiation, and multipli-
cation can be combined when evaluating expressions in Maple. For example,
for the matrices A and B constructed above, we can evaluate A3 − 4BA by
entering the following command.

> evalm(A^3 - 4*B &* A);


616 428 753

467 426 636

639 225 504




To enter vectors in Maple, we can use the vector function. For example,
in the following command, we define a vector c of length 3 positions.

> c := vector([1,4,2]);

c :=
[
1, 4, 2

]
For the matrix A and vector c deffined above, we can use the Maple linsolve
command as follows to solve the equation Ax = c.

> x := linsolve(A, c);

x :=
[

39
205

,
−144
205

,
121
205

]

Also, the following command yields the inverse of A. Note that to obtain
the inverse of A, we must only raise A to the power −1.

> invA := evalm(A^(-1));

invA :=




−1
41

−3
205

28
205

10
41

−52
205

7
205

−1
41

38
205

−13
205




Since A is invertible, then we can also solve the equation Ax = c by forming
x = A−1c as follows.

> x := evalm(invA &* c);

x :=
[

39
205

,
−144
205

,
121
205

]

We close this appendix by mentioning how some special types of matri-
ces can easily be defined in Maple. For example, in the following command,
we define the 3 × 3 zero matrix.
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> mat0 := matrix(3, 3, 0);

mat0 :=


0 0 0

0 0 0
0 0 0




And in the following command, we define a 4×4 matrix containing all ones.

> mat1 := matrix(4, 4, 1);

mat1 :=




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




Finally, in the following command, we use the Maple diag function to define
the 5 × 5 identity matrix.

> id := diag(1, 1, 1, 1, 1);

id :=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




In general, the diag function yields a diagonal matrix with diagonal entries
given in order by the parameters in the command.
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Appendix C

User-Written Maple
Procedures

C.1 Chapter 5 Procedures

rscoeff := proc(f, x, p, a)
local g, i, j, ng, cg, fs, field, ftable;
fs := 2^(degree(p));
field := linalg[vector](fs);
for i from 1 to fs-1 do

field[i] := Powmod(a, i, p, a) mod 2:
od:
field[fs] := 0;
ftable := table();
for i from 1 to fs-1 do

ftable[ field[i] ] := a^i:
od:
ftable[ field[fs] ] := 0;
g := expand(f) mod 2;
ng := 0;
for j from 0 to degree(g,x) do

cg := coeff(g, x, j):
cg := ftable[ Rem(numer(cg), p, a) mod 2 ]

/ ftable[ Rem(denom(cg), p, a) mod 2 ];
if degree(cg,a) < 0 then
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cg := cg * a^(fs-1);
fi:
if degree(cg,a) = (fs-1) then

cg := cg/a^(fs-1);
fi:
ng := ng + cg*x^j:

od:
g := sort(ng mod 2, x);
RETURN(g);

end:

binmess := proc(cw, n, p, a, ml)
local i, j, bvect, vs, pco, dga, binmat, binvect;
for i from 0 to ml do

pco := coeff(cw, x, i):
if pco <> 0 then

dga := degree(pco, a):
pco := Powmod(a, dga, p, a) mod 2:

fi:
vs := []:
for j from 0 to n-1 do

vs := [op(vs), coeff(pco, a, j)]:
od:
if i = 0 then

binmat := linalg[matrix](1, n, vs):
else

binmat := linalg[stackmatrix](binmat, vs):
fi:

od:
binvect := convert(binmat, vector);
RETURN(evalm(binvect));

end:

bincoeff := proc(n, bmess)
local i, j, k, bk, pcoeff, poly;
pcoeff := []:
bk := linalg[vectdim](bmess);
i := 0;
k := 0;
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while i < bk do
poly := 0:
for j from 1 to n do

poly := poly + bmess[i+j]*a^(j-1):
od:
pcoeff := [op(pcoeff), poly]:
k := k+1;
i := k*n;

od:
RETURN(evalm(pcoeff)):

end:

rseuclid := proc(t, f, g, z, p, a)
local q, r, rm1, rp1, um1, u, up1, vm1, v, vp1, i;
rm1 := sort(Expand(f) mod 2);
r := sort(Expand(g) mod 2);
um1 := 1;
u := 0;
vm1 := 0;
v := 1;
read(rscoeff);
while degree(r,z) >= t do

rp1 := Rem(rm1, r, z, ’q’) mod 2;
rp1 := rscoeff(rp1, z, p, a);
q := rscoeff(q, z, p, a);
vp1 := expand(vm1 - v*q) mod 2;
vm1 := v;
v := sort(vp1, z);
v := rscoeff(v, z, p, a);
up1 := expand(um1 - u*q) mod 2;
um1 := u;
u := sort(up1);
u := rscoeff(u, z, p, a);
rm1 := r;
r := sort(rp1, z);
print(‘Q = ‘, q, ‘ R = ‘, r,

‘ V = ‘, v, ‘ U = ‘, u);
od;
print();
RETURN(q, r, v, u):

end:
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C.2 Chapter 7 Procedures

Note: The following two procedures are variations of procedures found in
the examples folder of the Maple V Release 3 student version (see [27])
produced by Waterloo Maple Inc. and the University of Waterloo.

to_number := proc(mess)
local sl, cn, sn, ii, ntable;
ntable := table([’a’=0, ’b’=1, ’c’=2, ’d’=3, ’e’=4,

’f’=5, ’g’=6, ’h’=7, ’i’=8, ’j’=9, ’k’=10,
’l’=11, ’m’=12, ’n’=13, ’o’=14, ’p’=15,
’q’=16, ’r’=17, ’s’=18, ’t’=19, ’u’=20,
’v’=21, ’w’=22, ’x’=23, ’y’=24, ’z’=25]):

sl := length(mess);
cn := 0;
for ii from 1 to sl do

sn := ntable[substring(mess, ii..ii)]:
cn := 100*cn + sn:

od:
RETURN(cn):

end:

to_letter := proc(num)
local cs, cn, sl, a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,
ltable, ans;

ltable := table([0=a, 1=b, 2=c, 3=d, 4=e, 5=f, 6=g,
7=h, 8=i, 9=j, 10=k, 11=l, 12=m,
13=n, 14=o, 15=p, 16=q, 17=r, 18=s,
19=t, 20=u, 21=v, 22=w, 23=x, 24=y,
25=z]);

cn := num;
sl := floor(trunc(evalf(log10(cn)))/2) + 1:
ans := ‘‘;
for i from 1 to sl do

cn := cn/100;
cs := ltable[frac(cn)*100];
ans := cat(cs, ans);
cn := trunc(cn);

od:
RETURN(ans);

end:
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C.3 Chapter 8 Procedures

epoints := proc(ec, x, ub, p)
local ecurve, z, pct, k, i;
pct := 0;
for k from 0 to p-1 while pct <= ub do

z := subs(x=k, ec) mod p;
if z = 0 then

pct := pct + 1;
ecurve[pct] := [k, z];

fi:
if z &^ ((p-1)/2) mod p = 1 then

z := z &^ ((p+1)/4) mod p;
ecurve[pct+1] := [k, z];
ecurve[pct+2] := [k, -z mod p];
pct := pct + 2;

fi:
od:
if pct > ub then

pct := ub:
fi:
seq(ecurve[i], i = 1..pct):

end:

addec := proc(le, re, c, p)
local i, cle, cre, lambda, res, x3, y3;
cle := le mod p;
cre := re mod p;
if cle = 0 or cre = 0 then

res := cle + cre;
elif cle[1] = cre[1] and cle[2] = -cre[2] mod p then

res := 0;
else

if cle[1] = cre[1] mod p and cle[2] = cre[2] mod p
then

lambda := ((3*cle[1]^2+c)/2/cle[2]) mod p;
else

lambda := (cre[2]-cle[2])/(cre[1]-cle[1]) mod p;
fi:
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x3 := (lambda^2-cle[1]-cre[1]) mod p;
y3 := (lambda*(cle[1]-x3)-cle[2]) mod p;
res := [x3, y3];

fi:
res;

end:

elgamal := proc(alpha, e, c, p)
local calpha, n, y;
read(addec);
calpha := alpha;
n := e;
y := 0;
while n > 0 do

if irem(n, 2, ’n’) = 1 then
y := addec(calpha, y, c, p):

fi:
calpha := addec(calpha, calpha, c, p):

od:
y;

end:

C.4 Chapter 9 Procedures

switch := proc(n, x, maxsub)
local vs, i, j, k, pg, bk, nsw, pe, bki, pn, allpoly,

mon, nlist, dg, vres, colist, pnum, part, pgel,
jnum, vt, pct, multiplicity, m;

vs := linalg[vector](n, 0);
vt := linalg[vector](n, 0);
nsw := 2^n;
read(ppoly);
multiplicity := proc(y, j)

j[y] := j[y] + 1;
end:
allpoly := 0;
nlist := {};
pg := []:
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colist := []:
for pnum from 1 to combinat[numbpart](n) do

for i from 1 to n do
j[i] := 0:

od:
if pnum = 1 then

part := combinat[firstpart](n);
else

part := combinat[nextpart](part);
fi:
map(multiplicity, part, ’j’):
pgel := [];
pct := 0;
for i from 2 to n do

for jnum from 1 to j[i] do
pgel := [op(pgel),
[seq(pct + (jnum-1)*i + k, k = 1..i)]];

od:
pct := pct + i*j[i];

od:
pg := [op(pg), pgel];
colist := [op(colist),
product(1/(’k’^j[’k’]*j[’k’]!), ’k’ = 1..n)];

od:
m := 1;
for i from 1 to nops(pg) do

pe := pg[i];
nlist := {};
mon := 1;
dg := 0;
for j from 0 to nsw-1 do

bk := convert(j, base, 2);
bki := linalg[vectdim](bk);
for k from 1 to n do

vs[k] := 0;
od;
for k from 1 to bki do

vs[k] := bk[k];
od:
for k from 1 to linalg[vectdim](vs) do

vt[linalg[vectdim](vs)-k+1] := vs[k];
od:
vres := ppoly(pe, vs, n, x, nlist, m);
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pn := vres[1];
nlist := nlist union vres[2];
dg := dg + vres[3];
m := vres[4];
mon := simplify(mon*pn);

od:
mon := colist[i] * mon * x[1]^(2^n-dg);
allpoly := simplify(allpoly + mon);

od:
maxsub := m;
RETURN(allpoly);

end:

ppoly := proc(pe, vb, n, x, nlist, max)
local i, j, dcycle, clen, ob10, nb10, res, cyct, vs,

vc, plist, k, dg, nsum, tmp, m, ct, tmax;
vs := [];
vc := [];
plist := {};
tmax := max;
for i from 1 to n do

vs := [vb[i], op(vs)];
vc := [vb[i], op(vc)];

od:
res := 1;
dg := 0;
cyct := 0;
if linalg[vectdim](pe) = 0 then

res := res * x[1];
dg := dg + 1;

fi:
if linalg[vectdim](pe) <> 0 then

ob10 := convert([seq(vs[linalg[vectdim](vs) - ct + 1],
ct = 1 .. linalg[vectdim](vs))], base, 2, 10);

if linalg[vectdim](ob10) > 1 then
m := linalg[vectdim](ob10);
nsum := 0;
for i from 1 to m do

nsum := nsum + ob10[m-i+1]*10^(m-i);
od:
ob10 := subsop(1 = nsum, ob10);
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fi:

if linalg[vectdim](ob10) = 0 then
res := res*x[1];
dg := dg+1;
plist := plist union {0};

else
if (member(ob10[1], nlist) = false) and

(linalg[vectdim](pe) <> 0)
then
plist := plist union {ob10[1]};
nb10 := -1;
cyct := 0;
while nb10 <> ob10[1] do

cyct := cyct + 1;
for i from 1 to linalg[vectdim](pe) do

dcycle := pe[i];
clen := linalg[vectdim](dcycle);
for j from 1 to clen-1 do

vs :=
subsop(dcycle[j+1]= vc[dcycle[j]], vs);

od;
vs :=
subsop(dcycle[1] = vc[dcycle[clen]], vs);
for k from 1 to n do

vc := subsop(k = vs[k], vc);
od:

od:
plist := plist union {nb10};
if linalg[vectdim](convert

([seq(vs[linalg[vectdim](vs) - ct + 1],
ct = 1 .. linalg[vectdim](vs))],
base, 2, 10)) > 1

then
nsum := 0;
tmp := convert

([seq(vs[linalg[vectdim](vs) - ct + 1],
ct = 1 .. linalg[vectdim](vs))],
base, 2, 10);

m := linalg[vectdim](tmp);
for i from 1 to m do

nsum := nsum + tmp[m-i+1]*10^(m-i);
od:
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nb10 := nsum;

else
nb10 := convert

([seq(vs[linalg[vectdim](vs) - ct + 1],
ct = 1 .. linalg[vectdim](vs))],
base, 2, 10)[1];

fi:
od;
dg := dg + cyct;
res := res*x[cyct];
if cyct > tmax then

tmax := cyct;
fi:
fi;

fi;
fi;
RETURN(res, plist, dg, tmax);

end:
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Hints and Solutions to
Selected Written
Exercises

Chapter 1

4. (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143),
(234), (243), identity.

6. (12345), (13524), (14253), (15432), (25)(34), (13)(45), (15)(24),
(12)(35), (14)(23), identity.

7. A4 and (12)A4.

9. (a) 5

(b) 5

(c) 2

(d) 6

(e) 6

11. Let a be a cyclic generator forG, and suppose j is the smallest positive
integer for which aj ∈ H. Use the fact that Z is a Euclidean domain
to show that aj is a cyclic generator for H.

13. Example 1.7: An.
Example 1.8: The set of matrices A with det(A) = 1.

15. Let a ∈ Sn and b ∈ An, and argue that a−1ba ∈ An.

20. Yes. Use the fact that F [x] is a Euclidean domain.

23. The primes.
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25. (a)
Power Field Element
x1 x
x2 2x+ 1
x3 2x+ 2
x4 2
x5 2x
x6 x+ 2
x7 x+ 1
x8 1

(c) f(x) = (x+ 5)(x+ 7) in Z11[x].

29. f(x) is irreducible but not primitive since the order of x is 5; g(x) is
not irreducible since 1 is a root of g(x), and h(x) is primitive.

35. (a, b) = x2 + 1, u = x+ 1, and v = x2 + x+ 1.

Chapter 2

2. Use Propositions 2.8 and 2.9 with p = 13 and n = 1. With the
cyclic generator 2 for Z∗

13, Proposition 2.8 yields the initial blocks
D0 = {1, 3, 9} and D1 = {2, 6, 5}. The parameters for the resulting
block design are (13, 26, 6, 3, 1).

4. Use Proposition 2.9 with p = n = 5. In this block design, there are
150 drivers, each car is driven 24 times, and each pair of cars is driven
by the same driver 3 times. Let x be a cyclic generator for the set of
nonzero elements in a finite field of order 25, and construct 6 initial
blocks with 4 elements in each one. For example, the first two initial
blocks are D0 = {x0, x6, x12, x18} and D1 = {x1, x7, x13, x19}.

Chapter 3

2. The Hadamard code with m = 4 satisfies the stated requirements.

5. The following generator matrix G and parity check matrix H are one
of many correct answers.

G =
[

1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1

]
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H =




0 0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 1 0
1 0 0 1 0 0 1 0 0




7. r1 can be corrected to (11100), r2 can be corrected to (11011), and
r3 cannot be corrected.

Chapter 4

1. g(x) = p(x), which yields a [7, 4] BCH code.

2. (a) r can be corrected to (1001110).

5. Refer to Example 4.3. Note that if we consider only the first four
powers of a, then g(x) = m1(x)m3(x), which has degree 8. The
resulting code has 27 = 128 codewords and is 2-error correcting.

8. (a) r can be corrected to (000111011001010).

(b) r can be corrected to (111100010011010).

Chapter 5

1. (a) g(x) = (x−a)(x−a2)(x−a3)(x−a4) = x4 +a3x3 +x2 +ax+a3

(b) The following polynomial is one of the codewords in C.

(a4x+ a5)g(x) = a4x5 + a4x4 + a2x3 + a2x+ a

(c) The codeword above converts to the following binary vector.

(010001000001011011000)

2. (a) r(x) can be corrected to a5x6 + a6x4 + ax2 + a6x+ a5.

(c) r(x) can be corrected to x6 + ax5 + a6x3 + a3x2 + a5x+ a4.

4. (a) r(x) can be corrected to a7x12 + a2x11 + a8x10 + a6x9 + x8 +
ax7 + a10x6 + a6x5 + a4x4 + a7x3 + ax2 + a6x+ a.
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Chapter 6

3. The following is the key matrix A for the system.

A =
[

5 21
9 12

]

5. (a) “HFXLKQOOFS”.

(b) “NONETOSEND”.

8. One possible way to find K is to use the 2 × 1 matrix

A =
[

2
1

]

and the 1 × 2 matrix
B =

[
1 3

]
to form the following 3 × 3 involutory matrix K.

K =


 4 1 3

20 25 20
23 25 24




Chapter 7

1. (a) The ciphertext is 0 222 222 0 128 175 250 35 118 28 222
201 99 0 216 175.

2. The corresponding decryption exponent is b = 41.

5. 22 total multiplications.

8. p = 509 and q = 631.

Chapter 8

1. y = 16 and z = 5.

4. w = 2x+ 1.
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7. (a) E = { (1,±5), (2,±1), (5,±5), (7,±4), (0, 0), (3, 0), (8, 0), O }.
(b) E is not cyclic. Theorem 8.3 states then that E is isomorphic to
Z6 × Z2.

8. y = (0, 1) and z = (8, 2).

10. w = (7, 4).

Chapter 9

1. (c) f(x1, x2, x3) = 1
6 (x31 + 3x1x2 + 2x3), 4 distinct necklaces.

(d) R3 +R2W +RW 2 +R3.

3. (a) 8 distinct necklaces.

(b) 2 distinct necklaces.

6. See Example 9.5 and the results obtained in Section 9.5.

7. 3984 distinct equivalence classes.
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