

Android™

A Programmer’s Guide

../../../../../dx.doi.org/10.1036/0071599886

This page intentionally left blank

Android™

A Programmer’s Guide

J.F. DiMarzio

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

../../../../../dx.doi.org/10.1036/0071599886

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159989-4

The material in this eBook also appears in the print version of this title: 0-07-159988-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-
CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages
that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071599886

../../../../../dx.doi.org/10.1036/0071599886

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

../../../../../dx.doi.org/10.1036/0071599886

This book is dedicated to Suzannah, Christian, and Sophia

About the Author
J.F. DiMarzio is a developer with over 15 years of
experience in networking and application development
and is the author of seven books on computing technologies.
He has become a leading resource in the fields of IT
consulting and development. He lives in Central Florida.

About the Technical Editor
Gilbert L. Polo is a software developer with over 20
years of experience working in the telecommunications,
financial, and, most recently, educational industries. He
has programmed in various languages including C, C++,
Java, and C#.

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

Contents at a Glance

1 What Is Android? . 1

2 Downloading and Installing Eclipse . 9

3 Downloading and Installing the Android SDK . 21

4 Exploring the Android SDK . 35

5 Application: Hello World! . 53

6 Using the Command-Line Tools and the Android Emulator 83

7 Using Intents and the Phone Dialer . 117

8 Lists, Menus, and Other Views . 149

9 Using the Cell Phone’s GPS Functionality . 203

10 Using the Google API with GTalk . 239

11 Application: Find a Friend . 257

12 Android SDK Tool Reference . 307

Index . 313

vii

This page intentionally left blank

ix

Contents

ACKNOWLEDGMENTS . xiii
INTRODUCTION . xv

1 What Is Android? . 1
Brief History of Embedded Device Programming . 2
Open Handset Alliance and Android . 5
Introduction to Android . 6

2 Downloading and Installing Eclipse . 9
Why Eclipse? . 11
Downloading and Installing the JRE . 12
Downloading and Installing Eclipse . 18

3 Downloading and Installing the Android SDK . 21
Downloading the Android SDK . 24
Downloading and Installing the Android Plugin for Eclipse . 24
Configuring the Android Plugin for Eclipse . 30

For more information about this title, click here

../../../../../dx.doi.org/10.1036/0071599886

x Android: A Programmer’s Guide

4 Exploring the Android SDK . 35
What Is in the Android SDK? . 37

Android Documentation . 38
Android Samples . 39

Try This: Run the API Demos Sample Application . 41
Android Tools . 45
APIs . 48

Application Life Cycle . 49
Standard ASP Application Life Cycle . 49
Android Application Life Cycle . 50

5 Application: Hello World! . 53
Creating Your First Android Project in Eclipse . 55
Examining the Android-Created Files . 61

AndroidManifest.xml . 62
Referenced Libraries . 62
Directories . 63

Hello World! Again . 69
Hello World! Using an Image . 72

Hello World! Code-Based UI . 75
Hello World! XML-Based UI . 78

Try This: Use TextView and ImageView . 81

6 Using the Command-Line Tools and the Android Emulator 83
Creating a Shell Activity Using the Windows CLI . 84

Running the ActivityCreator.bat . 85
The Project Structure . 88

Creating the Hello World! Activity in the Windows CLI . 95
Editing the Project Files . 95
Adding the JAVA_HOME Variable . 96
Compiling and Installing the Application . 97

Hello World! on Linux . 109
Configuring the PATH Statement . 109

Try This: Create an Image-Based Hello World! in the CLI 115

7 Using Intents and the Phone Dialer . 117
What Are Intents? . 119
Using the Dialer . 124
Placing a Call from Your Activity . 128

Adding the Intent to Your Activity . 129
Editing Activity Permissions . 131

Modifying the AndroidPhoneDialer . 136
Adding a Button . 136
Implementing an EditText View . 141

Try This: Modify the AndroidPhoneDialer Project . 145

8 Lists, Menus, and Other Views . 149
Building the Activities . 151

Intent Code for the .xml File . 152
Intent Code for the .java File . 154
Modifying the AndroidManifest.xml . 155

Using the Menu . 157
Creating the Activity for AutoComplete . 163
Button . 173
CheckBox . 178
EditText . 183
RadioGroup . 189
Spinner . 195

Try This: Modify More View Attributes . 202

9 Using the Cell Phone’s GPS Functionality . 203
Using the Android Location-Based API . 204

Creating a kml File . 205
What Is a track File? . 208
Getting the nmea File in Windows . 208
Getting the nmea File in Linux . 210

Reading the GPS with the Android Location-Based API . 212
Creating the AndroidLBS Activity . 212
Passing Coordinates to Google Maps . 222
Adding Zoom Controls . 226

Try This: Toggling Between MapView’s Standard and Satellite Views 232

10 Using the Google API with GTalk . 239
Configuring the Android Emulator for GTalk . 241
Implementing GTalk in Android . 244

Creating the Activity’s Layout in the GoogleAPI.xml . 245
Adding Packages to GoogleAPI.java . 247
Implementing the View.OnClickListener . 248
Compiling and Running GoogleAPI . 252

Try This: Add a Settings Feature to Your GoogleAPI Activity 255

Contents xi

11 Application: Find a Friend . 257
Creating a SQLite Database . 259
Creating a Custom Content Provider . 263

Editing the strings.xml . 263
Creating Your Content Provider . 265

Creating the FindAFriend Activity . 276
Editing AndroidManifest.xml . 276
Creating the NameEditor Activity . 278
Creating the LocationEditor Activity . 283
Creating the FriendsMap Activity . 293
Creating the FindAFriend Activity . 299

Running the FindAFriend Activity . 302
Try This: Real-Time Location Updating . 305

12 Android SDK Tool Reference . 307
Android Emulator Commands . 308
Android Debug Bridge Commands . 310

Index . 313

xii Android: A Programmer’s Guide

Acknowledgments

I would like to thank everyone who participated in the creation of this book. My agent,
Neil Salkind; Roger, Carly, Janet, Bill, and the crew at McGraw-Hill; Gil Polo; and

everyone at Studio B.
I would also like to thank my family, Suzannah, Christian, and Sophia; Brett, Robert,

Roger, Zack, Mark, Kurt, Walter, Walter, Walter, Steve, Steve, Steve, and Gary—and all
my colleagues in Central Florida; and anyone else whom I may have forgotten.

xiii
Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

Introduction

Welcome to Android: A Programmer’s Guide. This book has been designed to give
you the best first step toward the exciting new frontier of open source mobile

development. Android is the newest mobile device operating system, and this is one
of the first books to help the average programmer become a fearless Android developer.
Through the course of this book, you will be introduced to the fundamentals of mobile
device application development using the Open Handset Alliance’s Android platform.
By the end of this book, you will be able to confidently create your own mobile device
programs.

The format of this book is such that it will take you through Android application
development in a logical manner. The book begins by examining the architecture of
Android as a platform, looking at how it was developed, what it can run on, and what
tools are required to develop programs for it. After discussing and installing the
development tools, Android SDK, and the Eclipse development environment
(Chapters 2, 3, and 4), the book dives directly into designing and creating Android
applications (Chapter 5). The book concludes with instructions on tying your applications
to existing Google tools such as Google Maps (Chapters 9 and 11) and GTalk (Chapter
10). A quick reference guide is also included in Chapter 12.

This book is a programmer’s guide, not a beginner’s guide, meaning that you do need
to possess some programming skills to get the most from it. Foremost among these skills
is a working knowledge of Java programming fundamentals. Android applications are

xv
Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

developed in Java and run on the Linux 2.6 kernel. If you are a quick learner, you may be
able to understand what is going on with just some basic object-oriented programming
(OOP) experience. Chapter 2 explains how to download and install the preferred
integrated development environment, Eclipse. All the code samples and screenshots in
this book are provided using Eclipse (Europa release) and the Android plugin for Eclipse.

Any comments, questions, or suggestions about any of the material in this book can
be forwarded directly to the author at jfdimarzio@jfdimarzio.com.

xvi Android: A Programmer’s Guide

Chapter1
What Is Android?

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

2 Android: A Programmer’s Guide

It can be said that, for a while, traditional desktop application developers have been
spoiled. This is not to say that traditional desktop application development is easier than
other forms of development. However, as traditional desktop application developers, we
have had the ability to create almost any kind of application we can imagine. I am
including myself in this grouping because I got my start in desktop programming.

One aspect that has made desktop programming more accessible is that we have
had the ability to interact with the desktop operating system, and thus interact with any
underlying hardware, pretty freely (or at least with minimal exceptions). This kind of
freedom to program independently, however, has never really been available to the
small group of programmers who dared to venture into the murky waters of cell phone
development.

NOTE
I refer to two different kinds of developers in this discussion: traditional desktop
application developers, who work in almost any language and whose end product,
applications, are built to run on any “desktop” operating system; and Android
developers, Java developers who develop for the Android platform. This is not
for the purposes of saying one is by any means better or worse than the other.
Rather, the distinction is made for purposes of comparing the development styles
and tools of desktop operating system environments to the mobile operating
system environment, Android.

Brief History of Embedded Device Programming
For a long time, cell phone developers comprised a small sect of a slightly larger group of
developers known as embedded device developers. Seen as a less “glamorous” sibling to
desktop—and later web—development, embedded device development typically got the

Key Skills & Concepts
● History of embedded device programming

● Explanation of Open Handset Alliance

● First look at the Android home screen

Chapter 1: What Is Android? 3

proverbial short end of the stick as far as hardware and operating system features, because
embedded device manufacturers were notoriously stingy on feature support. Embedded
device manufacturers typically needed to guard their hardware secrets closely, so they
gave embedded device developers few libraries to call when trying to interact with a
specific device.

Embedded devices differ from desktops in that an embedded device is typically a
“computer on a chip.” For example, consider your standard television remote control; it is
not really seen as an overwhelming achievement of technological complexity. When any
button is pressed, a chip interprets the signal in a way that has been programmed into the
device. This allows the device to know what to expect from the input device (key pad),
and how to respond to those commands (for example, turn on the television). This is a
simple form of embedded device programming. However, believe it or not, simple
devices such as these are definitely related to the roots of early cell phone devices and
development.

Most embedded devices ran (and in some cases still run) proprietary operating
systems. The reason for choosing to create a proprietary operating system rather than use
any consumer system was really a product of necessity. Simple devices did not need very
robust and optimized operating systems.

As a product of device evolution, many of the more complex embedded devices, such
as early PDAs, household security systems, and GPSs, moved to somewhat standardized
operating system platforms about five years ago. Small-footprint operating systems such
as Linux, or even an embedded version of Microsoft Windows, have become more
prevalent on many embedded devices. Around this time in device evolution, cell phones
branched from other embedded devices onto their own path. This branching is evident
when you examine their architecture.

Nearly since their inception, cell phones have been fringe devices insofar as they run
on proprietary software—software that is owned and controlled by the manufacturer, and
is almost always considered to be a “closed” system. The practice of manufacturers using
proprietary operating systems began more out of necessity than any other reason. That is,
cell phone manufacturers typically used hardware that was completely developed in-house,
or at least hardware that was specifically developed for the purposes of running cell phone
equipment. As a result, there were no openly available, off-the-shelf software packages
or solutions that would reliably interact with their hardware. Since the manufacturers
also wanted to guard very closely their hardware trade secrets, some of which could be
revealed by allowing access to the software level of the device, the common practice

4 Android: A Programmer’s Guide

was, and in most cases still is, to use completely proprietary and closed software to run
their devices. The downside to this is that anyone who wanted to develop applications
for cell phones needed to have intimate knowledge of the proprietary environment within
which it was to run. The solution was to purchase expensive development tools directly
from the manufacturer. This isolated many of the “homebrew” developers.

NOTE
A growing culture of homebrew developers has embraced cell phone application
development. The term “homebrew” refers to the fact that these developers typically do
not work for a cell phone development company and generally produce small, one-off
products on their own time.

Another, more compelling “necessity” that kept cell phone development out of
the hands of the everyday developer was the hardware manufacturers’ solution to the
“memory versus need” dilemma. Until recently, cell phones did little more than execute
and receive phone calls, track your contacts, and possibly send and receive short text
messages; not really the “Swiss army knives” of technology they are today. Even as late
as 2002, cell phones with cameras were not commonly found in the hands of consumers.

By 1997, small applications such as calculators and games (Tetris, for example) crept
their way onto cell phones, but the overwhelming function was still that of a phone dialer
itself. Cell phones had not yet become the multiuse, multifunction personal tools they
are today. No one yet saw the need for Internet browsing, MP3 playing, or any of the
multitudes of functions we are accustomed to using today. It is possible that the cell
phone manufacturers of 1997 did not fully perceive the need consumers would have
for an all-in-one device. However, even if the need was present, a lack of device memory
and storage capacity was an even bigger obstacle to overcome. More people may have
wanted their devices to be all-in-one tools, but manufacturers still had to climb the
memory hurdle.

To put the problem simply, it takes memory to store and run applications on any
device, cell phones included. Cell phones, as a device, until recently did not have the
amount of memory available to them that would facilitate the inclusion of “extra”
programs. Within the last two years, the price of memory has reached very low levels.
Device manufacturers now have the ability to include more memory at lower prices.
Many cell phones now have more standard memory than the average PC had in the
mid-1990s. So, now that we have the need, and the memory, we can all jump in and
develop cool applications for cell phones around the world, right? Not exactly.

Device manufacturers still closely guard the operating systems that run on their
devices. While a few have opened up to the point where they will allow some Java-based
applications to run within a small environment on the phone, many do not allow this.
Even the systems that do allow some Java apps to run do not allow the kind of access
to the “core” system that standard desktop developers are accustomed to having.

Open Handset Alliance and Android
This barrier to application development began to crumble in November of 2007 when
Google, under the Open Handset Alliance, released Android. The Open Handset Alliance
is a group of hardware and software developers, including Google, NTT DoCoMo,
Sprint Nextel, and HTC, whose goal is to create a more open cell phone environment.
The first product to be released under the alliance is the mobile device operating
system, Android. (For more information about the Open Handset Alliance, see
www.openhandsetalliance.com.)

With the release of Android, Google made available a host of development tools
and tutorials to aid would-be developers onto the new system. Help files, the platform
software development kit (SDK), and even a developers’ community can be found at
Google’s Android website, http://code.google.com/android. This site should be your
starting point, and I highly encourage you to visit the site.

NOTE
Google, in promoting the new Android operating system, even went as
far as to create a $10 million contest looking for new and exciting Android
applications.

While cell phones running Linux, Windows, and even PalmOS are easy to find, as of
this writing, no hardware platforms have been announced for Android to run on. HTC, LG
Electronics, Motorola, and Samsung are members of the Open Handset Alliance, under
which Android has been released, so we can only hope that they have plans for a few
Android-based devices in the near future. With its release in November 2007, the system
itself is still in a software-only beta. This is good news for developers because it gives us
a rare advance look at a future system and a chance to begin developing applications that
will run as soon as the hardware is released.

Chapter 1: What Is Android? 5

www.openhandsetalliance.com
../../../../../code.google.com/android

6 Android: A Programmer’s Guide

NOTE
This strategy clearly gives the Open Handset Alliance a big advantage over other cell
phone operating system developers, because there could be an uncountable number of
applications available immediately for the first devices released to run Android.

Introduction to Android
Android, as a system, is a Java-based operating system that runs on the Linux 2.6 kernel.
The system is very lightweight and full featured. Figure 1-1 shows the unmodified
Android home screen.

Figure 1-1 The current Android home screen as seen on the Android Emulator.

Chapter 1: What Is Android? 7

Android applications are developed using Java and can be ported rather easily to the
new platform. If you have not yet downloaded Java or are unsure about which version you
need, I detail the installation of the development environment in Chapter 2. Other features
of Android include an accelerated 3-D graphics engine (based on hardware support),
database support powered by SQLite, and an integrated web browser.

If you are familiar with Java programming or are an OOP developer of any sort, you
are likely used to programmatic user interface (UI) development—that is, UI placement
which is handled directly within the program code. Android, while recognizing and allowing
for programmatic UI development, also supports the newer, XML-based UI layout. XML
UI layout is a fairly new concept to the average desktop developer. I will cover both
the XML UI layout and the programmatic UI development in the supporting chapters
of this book.

One of the more exciting and compelling features of Android is that, because of its
architecture, third-party applications—including those that are “home grown”—are
executed with the same system priority as those that are bundled with the core system.
This is a major departure from most systems, which give embedded system apps a
greater execution priority than the thread priority available to apps created by third-party
developers. Also, each application is executed within its own thread using a very
lightweight virtual machine.

Aside from the very generous SDK and the well-formed libraries that are available to
us to develop with, the most exciting feature for Android developers is that we now have
access to anything the operating system has access to. In other words, if you want to
create an application that dials the phone, you have access to the phone’s dialer; if you
want to create an application that utilizes the phone’s internal GPS (if equipped), you have
access to it. The potential for developers to create dynamic and intriguing applications is
now wide open.

On top of all the features that are available from the Android side of the equation,
Google has thrown in some very tantalizing features of its own. Developers of Android
applications will be able to tie their applications into existing Google offerings such as
Google Maps and the omnipresent Google Search. Suppose you want to write an
application that pulls up a Google map of where an incoming call is emanating from,
or you want to be able to store common search results with your contacts; the doors of
possibility have been flung wide open with Android.

Chapter 2 begins your journey to Android development. You will learn the hows
and whys of using specific development environments or integrated development
environments (IDE), and you will download and install the Java IDE Eclipse.

8 Android: A Programmer’s Guide

Ask the Expert
Q: What is the difference between Google and the Open Handset Alliance?

A: Google is a member of the Open Handset Alliance. Google, after purchasing the original
developer of Android, released the operating system under the Open Handset Alliance.

Q: Is Android capable of running any Linux software?

A: Not necessarily. While I am sure that there will be ways to get around most any open
source system, applications need to be compiled using the Android SDK to run on
Android. The main reason for this is that Android applications execute files in a specific
format; this will be discussed in later chapters.

Chapter2
Downloading and
Installing Eclipse

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

10 Android: A Programmer’s Guide

A ndroid applications are developed in Java. Android itself is not a language, but rather
an environment within which to run applications. As such, you can theoretically use

any distribution or integrated development environment (IDE) you have at your disposal
to begin your development. In fact, you can choose to use no IDE at all.

TIP
In later chapters of this book, I will give you an introduction to developing Android
applications without the use of an IDE—or “in the command-line interface (CLI).” While
I will not cover every example in the book using this technique, you will get the basics of
how to develop in the CLI.

If you are more comfortable with one Java IDE over any other, such as JBuilder
by Borland or the open source NetBeans, feel free to use it. With a moderate level of
experience, you should still be able to follow along with the majority of the examples
in this book. However, the Open Handset Alliance and Google do endorse one Java
IDE over any others: Eclipse.

NOTE
If you choose to follow the examples in this book without using Eclipse, you need to
check your IDE’s documentation for compiling and testing your Android apps. The
examples in this book give instructions only for compiling and testing in Eclipse, using
the Android plugin for Eclipse.

This chapter concisely outlines the steps for downloading and installing Eclipse and
the required Java Runtime Environment (JRE). Too many times, installation guides and

Key Skills & Concepts
● Selecting a development environment

● Downloading Eclipse

● Installing and configuring Eclipse

Chapter 2: Downloading and Installing Eclipse 11

tutorials, in a quest to not shut out more technologically advanced readers, tend to skip
simple steps such as this. I have found that texts that skip these smaller steps often
overlook important items. For this reason, I am including all of the download and
installation steps in this chapter.

Why Eclipse?
Why is Eclipse the recommended IDE for Android applications? There are a few reasons
for this particular endorsement:

● In keeping with the Open Handset Alliance’s theme of truly opening the mobile
development market, Eclipse is one of the most fully featured, free, Java IDEs
available. Eclipse is also very easy to use, with a minimal learning curve. This
makes Eclipse a very attractive IDE for solid, open Java development.

● The Open Handset Alliance has released an Android plugin for Eclipse that allows
you to create Android-specific projects, compile them, and use the Android Emulator
to run and debug them. These tools and abilities will prove invaluable when you are
creating your first Android apps. You can still create Android apps in other IDEs, but
the Android plugin for Eclipse creates certain setup elements—such as files and
compiler settings—for you. The help provided by the Android plugin for Eclipse
saves you precious development time and greatly reduces the learning curve, which
means you can spend more time creating incredible applications.

NOTE
Eclipse is also available for Mac and Linux. Having greater availability, on numerous
operating systems, means that almost anyone can develop Android applications on
any computer. However, the examples and screenshots in this book are given from
the Microsoft Windows version of Eclipse. Keep this in mind if you are using Eclipse
in a non-Microsoft environment; your interface may look slightly different from the
screenshots, but the overall functionality should not change. If there is a major change
in operation of Eclipse under Linux, I will include an example of that change. I will
provide several examples from within a Linux environment. The majority of these
examples will be from the Linux/Android command-line environment.

12 Android: A Programmer’s Guide

Downloading and Installing the JRE
Before you begin downloading and installing Eclipse, you have to make sure you have the
Java Runtime Environment (JRE) downloaded and installed on your machine. Because
Eclipse as an application was written in Java, it requires the JRE to run. If the JRE is not
installed or is not detected, you will see the following error if you try to open the Eclipse
environment:

If you are an existing Java developer and already have Java installed on your
computer, you will still want to follow along here, just to be sure you have the correct
version of the JRE installed.

NOTE
Most people who have used the Web, or applications that are web-based, have the JRE
installed. The JRE allows you to run Java-based applications, but it does not allow you
to create them. To create Java applications, you need to download and install the Java
Development Kit (JDK), which contains all the tools and libraries needed to create Java
applications. If you are not familiar with Java, keep these differences in mind. For the
examples in this book, I will be downloading the JDK, because it also includes the JRE.
Although you don’t need the JDK to run Eclipse, you can use it for other development
later in the book.

Navigate to the Sun Developer Network (SDN) Downloads page at http://
developers.sun.com/downloads/, as shown in the following illustration. Normally
you only need the JRE to run Eclipse, but for purposes of this book you should download
the full JDK, which includes the JRE. The reason for downloading the full JDK is that
later in the book I will also give some examples of how to create Android applications
outside Eclipse, using just the JDK tools. If you want to follow along with these tutorials,
you will need the full JDK.

Chapter 2: Downloading and Installing Eclipse 13

../../../../../developers.sun.com/downloads/default.htm
../../../../../developers.sun.com/downloads/default.htm

From the SDN Downloads page, navigate to the download section for the proper JDK.
Select and initiate the download, as shown in the following illustration:

For the examples in this book, I chose to go with the Java 5 JDK update 14 because it
is explicitly defined in the Eclipse documentation as the “supported” version of Java. To
download the Java 5 JDK, select the platform for which you want to download. You
should be able to follow along just as easily if you choose to download the Java 6 JDK.
However, if you do want to download the older JDK 5, you need to click the Previous
Releases link, as shown next:

14 Android: A Programmer’s Guide

Chapter 2: Downloading and Installing Eclipse 15

NOTE
You must agree to and accept the Sun licensing agreement on this page before you can
initiate your download.

On the Java SE Previous Releases Downloads page, click the J2SE 5.0 Downloads
link, and then click the Download button for JDK 5.0 Update x, where x is the latest
update number (14 at the time of this writing but likely different by the time you
read this).

If you are downloading to a Microsoft Windows environment, when you see
the notification in the following illustration, click Run to begin the installation of
the JDK.

CAUTION
If you want to retain a copy of the JDK package, click Save rather than Run.
However, if you choose to save the JDK, be sure to note the location. After the
download completes, you will need to navigate to the download location and
execute the package manually.

During the installation process, you will be prompted to read and accept the License
Agreement, shown next. After agreeing to the standard License Agreement and clicking
Next, you will be able to select your custom setup options.

16 Android: A Programmer’s Guide

Chapter 2: Downloading and Installing Eclipse 17

There is very little you need to change here, unless you are a more seasoned Java
veteran and have particular options that you want to choose, in which case you should feel
free to change the selections as you see fit. The following illustration shows the Custom
Setup screen for the Java JDK.

To keep the process simple, and fairly standardized, you should accept the suggested
packages—by default everything is selected—and continue the installation by clicking
Next. Once again, if you are comfortable with making specific changes, feel free to do so.
However, if you have trouble in later chapters, you will want to modify your installation
options. When the Installation Completed page appears, shown in the following illustration,
click Finish and your installation should be completed.

18 Android: A Programmer’s Guide

Once you complete the Java JDK installation—and by default the JRE
installation—you can begin to install Eclipse.

Downloading and Installing Eclipse
Navigate to the Eclipse Downloads page at www.eclipse.org/downloads, shown in the
following illustration. As the opening paragraph states, the JRE is required (Java 5 JRE
recommended) to develop in Eclipse, which you took care of in the previous section.
Download the Eclipse IDE for Java Developers from this site. The package is relatively
small (79MB) and should download fairly quickly. Be sure not to download the Eclipse
IDE for Java EE Developers, as this is a slightly different product and I will not be
covering its usage.

www.eclipse.org/downloads

After you have downloaded Eclipse, it is time to install it. Navigate to the location
where you downloaded the Eclipse package. As of the writing of this book, the latest
Eclipse package file for Microsoft Windows is eclipse-java-europa-fall2-win32.zip.
Expand the package and run the eclipse.exe file. Eclipse installs to your User directory by
default (under Microsoft Windows), but you may want to install it to your Program Files
directory. This will keep your applications in order and still allow you to set a different
location for your workspaces. The following illustration shows the Eclipse title screen that
appears upon startup.

NOTE
If you do not see the splash screen shown in the illustration, try rebooting your machine.
If rebooting does not help, download and install the Java 5 JRE only.

Once the Eclipse installation commences, you will be prompted to create a default
workspace, or folder. Just as in most development environments, projects are created in, and
saved to, a workspace. The default path for the workspace is your User directory, as shown
in the illustration that follows. To select a different location, click Browse and navigate to it.

Chapter 2: Downloading and Installing Eclipse 19

I recommend that you also check the check box that defaults all of your projects to the
specified workspace. By checking this box, you will have one less thing to worry about
when creating new projects and you will always know in what directory structure to find
your source files. In this book, sometimes you will be navigating to the project files to
work on them outside of the Android development environment, so knowing exactly
where they are will be helpful.

After you select a location for your workspace, click OK.
At this point, your development environment is downloaded and installed. While the

installation of Eclipse seemed deceivingly quick, you still need to do some configuration
work before you can create your first Android project. Much of the configuration work
that you need to do centers on the Android SDK and the Android plugin for Eclipse.

Next you need to download and install the Android SDK, download and install the
Android plugin for Eclipse, and configure the Eclipse settings. By the end of Chapter 3
you will have a fully configured development environment within which you can begin to
create your applications. You will then explore the Android SDK and begin creating your
first Hello World! application in Chapter 5.

20 Android: A Programmer’s Guide

Ask the Expert
Q: Eclipse is used to develop applications in Java, but can Android run applications

written in any other languages?

A: As of the writing of this book, there were no other SDKs or emulators available to allow
Android development in any language other than Java.

Q: Can you use Eclipse (and the Android SDK) with a version of the JRE other than
version 5?

A: Technically you can use Eclipse with versions 5 and newer. However, the latest version
of Eclipse was only tested on the Java 5 JRE.

Chapter3
Downloading and Installing
the Android SDK

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

In the previous chapter, you downloaded and installed your primary development
environment, Eclipse. Now that your initial development environment is established,
using Eclipse as your Java IDE, you can use it to develop Java applications, but you
have one more step before you can begin creating mobile phone applications. You must
configure it in a way that will facilitate Android development.

Because Eclipse is a Java development environment, you can create and edit Java
projects with great ease. However, given that you have no libraries yet for understanding
how Android applications should behave, you cannot develop anything that will run on an
Android-based device. To begin creating Android projects, you need to download and
install the Android SDK. You must then download the related Android plugin for Eclipse
to utilize the SDK within the Eclipse IDE. With these pieces in place, you can begin your
development.

If you have any development experience, you are most likely familiar with the process
of using an SDK. Desktop application developers, regardless of the platform they are
developing on, use SDKs to create applications that will run on the desired system they
are developing on. The Android SDK is no different from any other SDK in that it
contains all the Java code libraries needed to create applications that run specifically
on the Android platform. The SDK also includes help files, documentation, an Android
Emulator, and a host of other development and debugging tools.

NOTE
Chapter 4 covers most of the functionality of the Android SDK in depth.

To begin, you are going to download the Android SDK from the Google Android
development site, located at http://code.google.com/android. The Google Android

22 Android: A Programmer’s Guide

Key Skills & Concepts
● Downloading the Android SDK

● Using the Update feature of Eclipse

● Downloading, installing, and configuring the Android plugin for Eclipse

● Checking the PATH statement

../../../../../code.google.com/android

development home page contains a host of valuable tools and documents about developing
for the Android platform, including links to the Android developer forum (or
“community”). Figure 3-1 shows the home page for Google Android development.

TIP
If you ever encounter a problem while you are developing an Android application,
the first place you should look for an answer is the Android developers’ forum at
http://code.google.com/android/groups.html. There are discussion groups for
beginners, developers, and “hackers,” and a general-issue discussion group. Given
that Android is such a new platform, the Android developers’ forum is one of the few
places to find comprehensive, reliable information about developing for the product.

Chapter 3: Downloading and Installing the Android SDK 23

Figure 3-1 The Google Android development home page.

../../../../../code.google.com/android/groups.html

Downloading the Android SDK
The Android SDK is easily accessible from the http://code.google.com/android page.
From the development home page, click the Download the SDK link under Getting
Started. After you agree to the terms of the Android SDK License Agreement, you will
see the Download the Android SDK page. The Android SDK is downloaded in a 79MB
(for Windows) package and it should download fairly quickly. Click the package name
for your operating system to begin the download.

NOTE
Download sizes for other operating systems may vary.

There is no “setup” or installation process to speak of for the Android SDK; rather,
you must follow a series of steps to associate the SDK with your Eclipse development
environment. The first of these steps is to obtain the Android plugin for Eclipse, after
which you will configure it.

Downloading and Installing the
Android Plugin for Eclipse

The first step in setting up the Android SDK within the Eclipse development
environment is to download and install the Android plugin for Eclipse. Both tasks
of downloading and installing the plugin can be performed at the same time, and
are relatively easy to do:

1. Open the Eclipse application. You will download the Android plugin for Eclipse from
within the Eclipse IDE.

2. Choose Help | Software Updates | Find and Install.

24 Android: A Programmer’s Guide

../../../../../code.google.com/android

3. In the Install/Update window, which allows you to begin the process of downloading
and installing any of the plugins that are available to you for Eclipse, click the Search
for New Features to Install radio button and then click Next.

Chapter 3: Downloading and Installing the Android SDK 25

4. The Update Sites to Visit page of the Install window, shown next, lists all the default
websites used for obtaining Eclipse plugins. However, the plugin you want, Android
for Eclipse, is not available from the default sites. To download the Android plugin,
you must tell Eclipse where to look for it, so click the New Remote Site button.

5. In the New Update Site dialog box, shown next, you must enter two pieces of
information to continue: a name for your new site, and its associated URL. The
name is only for display purposes and does not affect the downloading of the plugin.
In the Name field, enter Android Plugin. In the URL field, enter the URL from
which Eclipse will obtain information about the plugins that are available:
https://dl-ssl.google.com/android/eclipse/. Click OK.

26 Android: A Programmer’s Guide

../../../../../https@dl-ssl.google.com/android/eclipse/default.htm

NOTE
The name for your site can be anything you want, as long as it will help you identify
what the link is. Feel free to use something other than Android Plugin.

6. A new site named Android Plugin should now be in your list of available sites:

Chapter 3: Downloading and Installing the Android SDK 27

28 Android: A Programmer’s Guide

At this point Eclipse has not yet looked for the plugin; this is just a list of paths that you
can tell Eclipse to check when looking for new plugins to install.

7. Check the check box next to Android Plugin and then click Finish. Eclipse searches the
URL associated with the Android Plugin site for any available plugins.

8. On the Search Results page of the Updates window, select the Android Plugin and then
click Finish.

Chapter 3: Downloading and Installing the Android SDK 29

9. On the Feature License page of the Install window, shown next, accept the licensing
agreement for the Android Development Tools and click Next.

NOTE
Keep in mind that all Eclipse plugins are installed to the %installpath%/eclipse/plugins
directory. This information will help you if you need to locate the files that make up the
Android plugin.

30 Android: A Programmer’s Guide

10. Eclipse downloads the Android plugin. At the time of this writing, the plugin version is
0.4.0.200802081635. On the final plugin installation page, Feature Verification, click
Install All to complete the installation of the Android plugin.

With the Android plugin installed, the last step you have to perform is to configure
the plugin.

Configuring the Android Plugin for Eclipse
After installing the Android plugin for Eclipse, Eclipse should have prompted you to
restart the application. If it did not prompt you, restart Eclipse now. Restarting Eclipse
will ensure that the program has a chance to reinitialize with the plugin installed. It is

Chapter 3: Downloading and Installing the Android SDK 31

important to make sure configuration steps like this are followed in order to reduce the
chance of misconfigurations.

The Android plugin for Eclipse is configured from the Preferences window of Eclipse.
Proceed as follows:

1. From the main Eclipse window, choose Window | Preferences.

2. In the Preferences window, shown next, select Android in the menu on the left. On the
right side of the window, click Browse, find the location of the Android SDK on your
hard drive, and enter it in the SDK Location field. Eclipse needs this information to be
able to access all the tools that are supplied with Android, such as the emulator.

32 Android: A Programmer’s Guide

3. Check the Automatically Sync Projects to Current SDK check box and then
click Apply.

NOTE
The Android plugin for Windows is shipped in a zip file that contains a directory
with a very long directory name: android-sdk_m5-rc14-win32. It may help you in
future chapters, especially when command-line programming, to rename this directory
to something more manageable. You may also want to extract the SDK to the Program
Files directory.

4. The final step in setting up the Android SDK is to put it into your PATH statement. If
you are using a Microsoft Windows machine, right-click Computer (or My Computer,
depending on your version of Windows) and select Properties to open the System
Properties dialog box. Click the Advanced tab.

5. Click Environment Variables to display the window of the same name, shown in the
following illustration. This is where you can edit your PATH statement.

6. Under System Variables, find the variable PATH and double-click it.

7. In the Edit System Variable dialog box, shown next, add the location of your Android
SDK—separated from the existing paths by a semicolon—and click OK to apply your
changes, and click OK again in the Environment Variables window.

The Android SDK, Eclipse, and the Android plugin for Eclipse are now fully
configured and ready for development. In the next chapter, you will explore the
Android SDK, and learn about its features. The Android SDK contains many tools
to help you develop full-featured cell phone applications, and the next chapter
provides a good overview.

Chapter 3: Downloading and Installing the Android SDK 33

Ask the Expert
Q: Is the Android SDK available for any languages other than Java?

A: No. Android applications can be developed only in Java.

Q: Will there be updates to the Android SDK?

A: Yes! Even during the writing of this book, an SDK update was released that addresses
many issues within the platform. I suggest checking the development page often for the
latest updates.

(continued)

34 Android: A Programmer’s Guide

Q: If an update is released, how do I upgrade my SDK?

A: Upgrading the SDK can be very tricky. When a new SDK is released, chances are a
new plugin is also released. During the writing of this book, both a new SDK and a new
plugin were released. I attempted to use the “provided” upgrade tools to change
versions. However, this proved fruitless and left me with two conflicting versions,
neither of which worked correctly. I eventually had to uninstall both versions and
reinstall only the latest version. The newest SDK then worked correctly. I suggest that
anyone faced with the possibility of upgrading from one version of an SDK/plugin
combo to another use this same process: simply uninstall the older version, and install
the newer one, rather than upgrading.

Chapter4
Exploring the Android SDK

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

Now that you have your development environment established, you are ready to
explore the Android SDK, which contains multiple files and tools specifically

intended to help you design and develop applications that run on the Android platform.
These tools are very well designed and can help you make some incredible applications.
You really need to be familiar with the Android SDK and its tools before you begin
programming.

The Android SDK also contains libraries for tying your applications into core Android
features such as those associated with cell phone functions (making and receiving calls),
GPS functionality, and text messaging. These libraries make up the core of the SDK and
will be the ones that you use most often, so take the time to learn all about these core
libraries.

This chapter covers all of the important items contained within the Android SDK. By
the end of the chapter, after familiarizing yourself with the contents of the Android SDK,
you will be comfortable enough to begin writing applications. However, as with any
subject, before you can dive into the practice of the discipline, you must familiarize
yourself with its contents and instructions.

CAUTION
I am not going to go over every minute detail of the Android SDK; Google does a very
good job of that within its documentation. To avoid the risk of spending too much time
discussing how things work instead of showing you how they work, I have tried to keep
this discussion as brief as possible. I cover only the most important topics and items,
leaving you free to explore the rest in more depth yourself, at your own pace.

36 Android: A Programmer’s Guide

Key Skills & Concepts
● Using the Android SDK documentation

● Using the Android SDK tools

● Using the sample applications

● Learning the life cycle of an Android application

What Is in the Android SDK?
The Android SDK is downloaded in a simple zipped package (as described in Chapter 3).
The bulk of the Android SDK, in number of files, consists of documentation, with
programming APIs, tools, and samples comprising the rest. This section provides a closer
look at exactly what is included in the Android SDK.

TIP
Chapter 3 suggested that you extract the Android SDK to the Program Files folder,
so that it would be easier to track. If you are having trouble finding the SDK because
you used the default extraction setting, it should be in the following folder:
/%downloadfolder%/android-sdk_m5-rc14_windows/android-sdk_m5-rc14_windows.

Navigate to the folder where you unpacked the Android SDK so that you can begin
to explore the folder structure within. While there are a few files in the root folder, like
android.jar (a compiled Java application containing the core SDK libraries and APIs) and
some release notes, the remainder of the Android SDK is divided into three main folders:

● Docs Contains all of the accompanying Android documentation

NOTE
Much of the documentation found in the Docs folder can also be found on the
http://code.google.com/android Android development site.

● Samples Contains six sample applications that you can compile and test from
within Eclipse

● Tools Contains all of the development, compilation, and debugging tools that you
need throughout the development process of an Android application

The following sections discuss in a bit more detail what is included in each of the
SDK folders. Each API demo is compiled and run to illustrate the capabilities of Android.
Many of the tools are discussed and demonstrated in later chapters as you learn how to
create and compile applications using the command-line options of Microsoft Windows
and Linux.

Chapter 4: Exploring the Android SDK 37

../../../../../code.google.com/android

Android Documentation
The Android documentation is located in the Docs folder within the Android SDK at
../%sdk folder%/DOCS. The documentation that is supplied with the SDK includes steps
on downloading and installing the SDK, “Getting Started” quick steps for developing
applications, and package definitions. The documentation is in HTML format and can be
accessed though the documentation.html file in the root of the SDK folder. The following
illustration depicts the main page of the Android SDK documentation.

You can navigate to all of the documentation that is included in the Android SDK by
using the links within documentation.html.

38 Android: A Programmer’s Guide

CAUTION
As you are navigating the Android SDK, you may think some pages are mislinked or
missing, because the right side of the screen may be blank when you click some links.
However, if you scroll down you will see that the pages are just misaligned.

In working with the Android SDK, I have found that there are sections of the
documentation that I refer to more than others. For me, the most valuable segments of
the Android SDK documentation are as follows (as they appear in the navigation bar):

● Reference Information

● Class Index
● List of Permissions
● List of Resource Types

● FAQs

● Troubleshooting

The Troubleshooting subsection of the documentation will be especially helpful as
you are starting out. As you progress through the book and begin to develop your own
Android applications, you will find that the Reference Information section of the
documentation is more helpful. For example, while it would have little to no use to you
now, the List of Permissions subsection will be very helpful to you when you progress to
the section of the book that deals with creating more complex applications. Take some
time to familiarize yourself with the Android SDK documentation and the hundreds of
documents that have been provided for you.

Android Samples
The Samples folder, ../%sdk folder%/SAMPLES, contains six sample applications that
demonstrate a good cross-section of Android functionality:

● API Demos

● Hello, Activity!

● Lunar Lander

Chapter 4: Exploring the Android SDK 39

● Note Pad

● Skeleton App

● Snake

These sample applications are provided by Google to give you a quick idea of how to
develop an Android application. Each sample application demonstrates a different piece
of Android’s functionality. You can open and run these applications from within Eclipse.
Following is a brief description of each.

API Demos
The API Demos application is a host application that demonstrates multiple API functions
in a single Activity.

TIP
An Activity is an Android application. Activities are covered in more depth in the
following chapters.

The API Demos application, as shown in the following illustration, contains multiple,
smaller, examples of different Android functions:

40 Android: A Programmer’s Guide

Some of the applications included in the API Demos sample include 3-D image
transitions, list and progress dialog boxes, and a finger-painting demo.

Try This Run the API Demos Sample Application
Using Eclipse, load the API Demos application as a New Android Project. To do this,
select File | New | Project from the Eclipse menu bar; a New Android Project wizard
opens. Do not worry about the options in this wizard for now. Simply select Create
Project From Existing Source and browse to the folder with the API Demo application
in it. When the project is loaded, choose Run to see it execute in the Android Emulator.

Navigate your way through the more than 40 different applications. Use each
application to become familiar with the terminology and function of each API tool
it demonstrates.

Hello, Activity!
The Hello, Activity! application, shown in the following illustration, is a simple Hello
World!–style application. Though simple in its design, Hello, Activity! does a good job
of showing off the abilities of the platform. You will create your own Hello World!–style
applications in the next chapter.

Chapter 4: Exploring the Android SDK 41

Lunar Lander
Lunar Lander, shown next, is a small game that plays on the Android Emulator. Lunar
Lander shows how a simple 2-D game works on Android. The controls are fairly simple,
and the game is not very complex. However, given these drawbacks, it is a great starter
for game development.

Lunar Lander implements a simple control scheme (Up, Down, Left, and Right).
The game also displays relatively fluid graphics and looks impressive given the
platform. Complex game theories such as collision detection are used in a simple
way. Although this book does not cover programming games for the Android
platform, if you are interested in doing so, you may want to look at Lunar Lander
for some tips.

42 Android: A Programmer’s Guide

Note Pad
Note Pad, as shown in the illustration that follows, allows you to open, create,
and edit small notes. Note Pad is not a full-featured word editor, so do not
expect it to be something to rival Word for Windows Mobile. However, it does
a good job as a demonstration tool to show what is possible with a relatively
small amount of code.

Skeleton App
Skeleton App, shown next, is an application shell. This is more of a base application that
demonstrates a couple of different application features, such as fonts, buttons, images, and
forms. If you are going to run Skeleton App by itself, you really are not going to get much

Chapter 4: Exploring the Android SDK 43

44 Android: A Programmer’s Guide

out of it. You will be better served by referring to Skeleton App as a resource for how to
implement specific items.

Snake
The final demo that is
included with the Android
SDK is Snake. This is a
small, SNAFU-style game
that is far more simplistic
than Lunar Lander. This
illustration shows what
Snake looks like when run.

NOTE
If you navigate to the base folder of each of the sample applications, you will see a
folder named src. This is the source code folder for the given sample application. You
can use this to view, edit, and recompile the code for any of the applications. Take
advantage of this source code to learn some tricks and tips about the Android platform.

Android Tools
The Android SDK supplies developers with a number of powerful and useful tools.
Throughout this book, you will use only a handful of them directly. This section takes a
quick look at just a few of these tools, which will be covered in much more depth in the
following chapters, as you dive into command-line development.

NOTE
For more detailed information about the other tools included in the Android SDK,
consult the Android doc files.

emulator.exe
Arguably one of the most important tools included in the Android SDK is emulator.exe.
emulator.exe launches the Android Emulator. The Android Emulator is used to run your
applications in a pseudo-Android environment. Given that, as of the writing of this book,
there were no hardware devices yet released for the Android platform, emulator.exe is
going to be your only means to test applications on a “native” platform.

You can run emulator.exe from the command line or execute it from within Eclipse.
In this book, you’ll usually let Eclipse launch the Android Emulator environment for you.
However, in the interest of giving you all the information you need to program with the
Android SDK outside of Eclipse, Chapter 6 covers command-line usage of emulator.exe
when you create your Hello World! applications.

When using the Android Emulator to test your applications, you have two choices for
navigating the user interface. First, the emulator comes with usable buttons, as shown in
Figure 4-1. You can use these buttons to navigate Android and any applications that you
develop for the platform.

TIP
The Power On/Off, Volume Up, and Volume Down buttons are slightly hidden to the
sides of the virtual device. They identify themselves when you hover the mouse pointer
over them.

Chapter 4: Exploring the Android SDK 45

Given that many higher-end phones now include a touch screen, the second input
choice you have when using the emulator is a simulated touch screen. You use your
mouse as a stylus. The objects on the emulator’s screen can be interacted with using
the mouse.

adb.exe
Another tool that will become very useful to you when you are using command-line
programming is Android Debug Bridge or adb (adb.exe). This tool allows you to issue

46 Android: A Programmer’s Guide

Figure 4-1 Navigating with the Android Emulator

Power on/off

Volume up

Volume down

Full QWERTY keyboard

Left, right, up, down, and Select pad

End call

Menu

Home

Send call

Back

Full telephone keypad

commands to the Emulator.exe tool. When you are working in a command-line
environment, the adb tool allows you to do the following:

● Start and stop the server

● Install and uninstall applications

● Move files to and from the emulator

MKSDCARD.exe
MKSDCARD.exe is a very useful tool if you are testing an application that will need
to read or write files to or from an SD Memory Card inserted into the mobile device.
MKSDCARD.exe creates a small partition drive on your drive that will hold and retain
the test files. The emulator will treat this partition like an SD Memory Card.

DX.exe
DX.exe is the compiler of the Android SDK. When run against your Java files, DX.exe
will create files with .dex extensions—Dalvik executable format. These files are in the
correct format to be understood by, and run on, an Android device.

NOTE
Android executable files are called Dalvik executable files as a reference to the Dalvik
virtual machine that Android used to run all applications. The Dalvik virtual machine
runs each application in its own thread with the same priority as core Android
applications.

activityCreator(.bat or .pn)
activityCreator is a simple command-line tool that is used to set up a basic development
environment. When run from the command line, activityCreator will set up the shell files
needed to create a basic Android application. Having these shell files is especially useful
if you are not using Eclipse. The Android plugin for Eclipse sets up these shell files for
you by calling the activityCreator when you create a new project.

Depending on what type of environment you are running, you will see the
activityCreator represented by a different type of script file. If you are in a Windows
environment, this will be a .bat file; otherwise it will be a python (.pn) script. You
simply execute the script, which in turn calls the actual activityCreator process with
the correct parameters.

Chapter 4: Exploring the Android SDK 47

48 Android: A Programmer’s Guide

APIs
The API, or application programming interface, is the core of the Android SDK. An API
is a collection of functions, methods, properties, classes, and libraries that is used by
application developers to create programs that work on specific platforms. The Android
API contains all the specific information that you need to create applications that can
work on and interact with an Android-based application.

The Android SDK also contains two supplementary sets of APIs—the Google APIs
and the Optional APIs. Subsequent chapters will focus much more on these APIs as you
begin writing applications that utilize them. For now, take a quick look at what they
include so that you are familiar with their uses.

Google APIs
The Google APIs are included in the Android SDK and contain the programming
references that allow you to tie your applications into existing Google services. If you
are writing an Android application and want to allow your user to access Google services
through your application, you need to include the Google API.

Located in the android.jar file, the Google API is contained within the com.google.*
package. There are quite a few packages that are included with the Google API. Some of
the packages that are shipped in the Google API include those for graphics, portability,
contacts, and calendar utilities. However, the packages devoted to Google Maps will be
the primary focus in this book.

Using the com.google.android.maps package, which contains information for Google
Maps, you can create applications that interact seamlessly with the already familiar
interface of Google Maps. This one set of packages opens a whole world of useful
applications just waiting to be created.

The Google API also contains a useful set of packages that allows you to take
advantage of the newer Extensible Messaging and Presence Protocol (XMPP) developed
by the Jabber open source community. Using XMPP, applications can quickly become
aware of other clients’ presence and availability for the purpose of messaging and
communications. The API packages dealing with XMPP are very useful if you want
to create a “chat”-style program that utilizes the phone messaging capabilities.

Optional APIs
The Android SDK includes a number of Optional APIs that cover functionality not
covered by the standard Android APIs. These Optional APIs are considered optional
because they deal with functionality that may or may not be present on a given handset

device. That is, some devices created for the Android platform may include upgrades
and features that others do not; the Optional APIs cover your programming options
when trying to utilize these features in your Android applications.

One of these optional features (which you will use later in the book) is a cell-phone-based
GPS. The Android LBS (Location-Based Services) API deals with the functionality
needed to receive and utilize information from a device’s GPS unit. (Combine the
information in the Android LBS API with that in the Google Maps API, and you might
have a very useful application that can automatically display a map of where you are
located at any given point in time.)

Other Optional APIs include those for utilizing Bluetooth, Wi-Fi, playing MP3s, and
accessing 3-D—OpenGL-enable hardware.

Application Life Cycle
If you have a decent amount of experience as an application developer, you are familiar
with the concept of an application life cycle. An application life cycle consists of the
steps that the application’s processes must follow from execution to termination. Every
application, regardless of the language it was written in, has a specific life cycle, and
Android applications are no exception. This section examines the life cycle of an ASP
application and compares that to an Android application’s life cycle.

Standard ASP Application Life Cycle
The life cycle of a standard ASP application is similar enough to that of an Android
application to make this a good comparison. ASP applications step through five
distinct processes from launch to disposal. These steps are required to be implemented
by all ASP applications, and really define what an ASP application is. The steps, in
order, are

1. Application_Start

2. Event

3. HTTPApplication.Init

4. Disposal

5. Application_End

Chapter 4: Exploring the Android SDK 49

50 Android: A Programmer’s Guide

TIP
Some ASP reference materials consider Disposal and Application_End to be one step
in the life cycle. However, the Disposal call can be intercepted before it is passed to
Application_End. This can allow the application to perform specific functions before
it is actually destroyed.

Application_Start is called when the application is requested from the server. This
process in turn leads into the Event process(es). When all associated application modules
have loaded, HTTPApplication.Init is called. The application executes its events, and
when the user attempts to close it, Dispose is called. Dispose then passes processing
on to the Application_End process, which closes the application.

This is a fairly standard application life cycle. Most applications follow similar life
cycles: an application is created, loaded, has events, and is destroyed. The following
section demonstrates how this compares to the Android application life cycle.

Android Application Life Cycle
The Android application life cycle is unique in that the system controls much of the life
cycle of the application. All Android applications, or Activities, are run within their own
process. All of the running processes are watched by Android and, depending on how
the activity is running (this is, a foreground activity, background activity, and so forth),
Android may choose to end the activity to reclaim needed resources.

NOTE
When deciding whether an activity should be shut down, Android takes into account
several factors, such as user input, memory usage, and processing time.

Some of the specific methods called during the life cycle of an android activity are

● onCreate

● onStart

● Process-specific events (for example: launching activities or accessing a database)

● onStop

● onDestroy

Following the same logic as other application life cycles, an Android application
is created, the processes are started, events are fired, processes are stopped, and the
application is destroyed. Though there are a few differences, many application developers
should be comfortable with the steps in the life cycle.

Chapter 4: Exploring the Android SDK 51

Ask the Expert
Q: Does Google ever update the Android SDK?

A: Yes. From the time I started writing this book, Google had already updated the Android
SDK three times. Google will post the updates to the Android website as they are
available.

Q: Do any of the API Demos represent applications that will be in the finished product?

A: Probably not. The API Demos were created to show off the capabilities of the product.
Although there may be core “release” applications that contain some of the elements
found in the API Demos, we probably will not see Lunar Lander in the finished version.

This page intentionally left blank

Chapter5
Application: Hello World!

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

In this chapter, you will be creating your first Android Activity. This chapter examines
the application-building process from start to finish. I will show you how to create an
Android project in Eclipse, add code to the initial files, and run the finished application
in the Android Emulator. The resulting application will be a fully functioning program
running in an Android environment.

Actually, as you move through this chapter, you will be creating more than one
Android Activity. Computer programming tradition dictates that your first application
be the typical Hello World! application, so in the first section you will create a standard
Hello World! application with just a blank background and the “Hello World!” text. Then,
for the sake of enabling you to get to know the language better, the next section explains
in detail the files automatically created by Android for your Hello World! application.
You will create two iterations of this Activity, each using different techniques for
displaying information to the screen. You will also create two different versions of a
Hello World! application that will display an image that delivers the “Hello World!”
message. This will give you a good introduction to the controls and inner workings
of Android.

NOTE
You will often see “application” and “Activity” used interchangeably. The difference
between the two is that an application can be composed of multiple Activities, but
one application must have at least one Activity. Each “window” or screen of your
application is a separate Activity. Therefore, if you create a fairly simple application
with only one screen of data (like the Hello World! application in this chapter), that will
be one Activity. In future chapters you will create applications with multiple Activities.

54 Android: A Programmer’s Guide

Key Skills & Concepts
● Creating new Android projects

● Working with Views

● Using a TextView

● Modifying the main.xml file

● Running applications on the Android Emulator

To make sure that you get a good overall look at programming in Android, in
Chapter 6 you will create both of these applications in the Android SDK command-line
environment for Microsoft Windows and Linux. In other words, this chapter covers
the creation process in Eclipse, and Chapter 6 covers the creation process using the
command-line tools. Therefore, before continuing, you should check that your Eclipse
environment is correctly configured. Review the steps in Chapter 3 for setting the PATH
statement for the Android SDK. You should also ensure that the JRE is correctly in your
PATH statement.

TIP
If you have configuration-related issues while attempting to work with any of the
command-line examples, try referring to the configuration steps in Chapters 2 and 3;
and look at the Android SDK documentation.

Creating Your First Android Project in Eclipse
To start your first Android project, open Eclipse. When you open Eclipse for the first
time, it opens to an empty development environment (see Figure 5-1), which is where
you want to begin. Your first task is to set up and name the workspace for your
application. Choose File | New | Android Project, which will launch the New Android
Project wizard.

CAUTION
Do not select Java Project from the New menu. While Android applications are written
in Java, and you are doing all of your development in Java projects, this option will
create a standard Java application. Selecting Android Project enables you to create
Android-specific applications.

If you do not see the option for Android Project, this indicates that the Android plugin
for Eclipse was not fully or correctly installed. Review the procedure in Chapter 3 for
installing the Android plugin for Eclipse to correct this.

The New Android Project wizard creates two things for you:

● A shell application that ties into the Android SDK, using the android.jar file, and
ties the project into the Android Emulator. This allows you to code using all of
the Android libraries and packages, and also lets you debug your applications in
the proper environment.

Chapter 5: Application: Hello World! 55

● Your first shell files for the new project. These shell files contain some of the
vital application blocks upon which you will be building your programs. In
much the same way as creating a Microsoft .NET application in Visual Studio
generates some Windows-created program code in your files, using the Android
Project wizard in Eclipse generates your initial program files and some
Android-created code.

In addition, the New Android Project wizard contains a few options, shown next, that
you must set to initiate your Android project.

56 Android: A Programmer’s Guide

Figure 5-1 The empty Eclipse development environment

For the Project Name field, for purposes of this example, use the title HelloWorldText.
This name sufficiently distinguishes this Hello World! project from the others that you
will be creating in this chapter.

In the Contents area, keep the default selections: the Create New Project in Workspace
radio button should be selected and the Use Default Location check box should be checked.
This will allow Eclipse to create your project in your default workspace directory. The
advantage of keeping the default options is that your projects are kept in a central location,
which makes ordering, managing, and finding these projects quite easy. For example, if
you are working in a Unix-based environment, this path points to your $HOME directory.

Chapter 5: Application: Hello World! 57

If you are working in a Microsoft Windows environment, the workspace path will be
C:/Users/<username>/workspace, as shown in the previous illustration.

However, for any number of reasons, you may want to uncheck the Use Default
Location check box and select a different location for your project. One reason you may
want to specify a different location here is simply if you want to choose a location for this
specific project that is separate from other Android projects. For example, you may want
to keep the projects that you create in this book in a different location from projects that
you create in the future on your own. If so, simply override the Location option to specify
your own custom location directory for this project.

On the other hand, you may be required to specify a project location if you did not check
the Use This as the Default and Do Not Ask Again check box in the Select a Default
Workspace dialog box during the Eclipse setup (as recommended in the last section of
Chapter 2). Checking that box during the Eclipse setup defaults all new projects to the workspace
directory (and provides the default location shown in the Location field of the New Android
Project wizard). If you did not check this box during the Eclipse setup process, you need to
select a path for your new project now by clicking the Browse button and navigating to it.

The final three options in the New Android Project wizard are in the Properties area.
These properties define how your project is integrated into the Android environment. In
the Package Name field, you specify the namespace given to your application package.
For example, android.app.Activity or com.google.android.map.MapActivity.

CAUTION
The package name adheres to the standard Java package-naming guidelines, which
were established to lower the risk of two packages being released with the same name.
The top level of the package name is the domain identifier of the company (com, org,
and net are examples). This is followed by the domain name, such as google. Finally, a
descriptive title for the contents of the package is provided. For purposes of this chapter,
my package name for the Hello World! application will omit “com” to identify that it is
a text application and not meant to be published. All future packages created in this
book will be publishable and use the com identifier.

For the HelloWorldText application, use the package name android_programmers_
guide.HelloWorldText. This name uniquely identifies the code that belongs to this
application and differentiates this test application from others you will develop in this book.

CAUTION
If you are paying attention to the screen as you are typing, you will notice that an error
message appears at the top of the wizard as you enter the package name, stating that
you must fill out all the fields properly to continue. This error message is premature and
can be a bit confusing because you have not even attempted to fill out the other fields in
the Properties area. If you see such an error message, just ignore it and continue on
and complete the next two fields in Properties area.

58 Android: A Programmer’s Guide

The next Properties field, Activity Name, is required because it is the reference to the
main screen of your application. That is, think of the Activity as the “window” within
which your application is displayed. Without an Activity, your application would not
do very much. However, because Android applications can be composed of several
Activities, the New Android Project wizard needs to know which Activity will be the
default. Activity Name is a required field and has no default, so you must supply one
to continue (as indicated in the preceding caution). For purposes of this example, use
HelloWorldText. This keeps the application simple and is just about as descriptive
as it needs to be for the moment.

The final Properties field, Application Name, specifies the name of your application.
This is the name that will be used to manage your application when it is installed on
the device. Again, for the sake of keeping things simple, go with HelloWorldText as
the application name. The following illustration shows the completed New Android
Project wizard.

Chapter 5: Application: Hello World! 59

TIP
The Application Name and the Activity Name fields do not have to match. In fact, many
programmers are used to the older conventions whereby the “starting” screen of an
application is usually called Main or Startup. Use whatever conventions you are
comfortable with. For purposes of demonstration, this chapter assumes that you are
using the names suggested.

Click Finish to kick off the creation process. The wizard runs a background process
that facilitates the auto-generation of some required files, and the setup of the directory
structure needed to support an Android application. When the process is complete, you
will have your first Android application project, like that shown in Figure 5-2.

60 Android: A Programmer’s Guide

Figure 5-2 Your first Android application project

TIP
If the Finish button is not available to you, you may have made an error in one of the
fields in the Properties area. To ensure that the Properties fields are correctly filled in,
Eclipse will not allow you to finish the process if any of the information that you entered
may cause problems. Go back and make sure that all of the Properties fields are
correctly filled in.

The next section examines the contents of the auto-generated Android files and the
purpose of some of the shell items for your application.

Examining the Android-Created Files
This section discusses the new files that Android has just created for you. A fairly robust
structure has been created for you, and if you do not know what you are looking at, you
may end up putting some code in places that you should not. There are files provided by
Android that you need to modify, and there are ones that you should not modify; knowing
the difference may save you from having to re-create your project.

With your new application project open, take a look at the Package Explorer, one
of two tabs located in the pane to the left of the main development area. The following
illustration shows what the Package Explorer should look like.

NOTE
If the Package Explorer is not open, you can activate it by choosing Window | Show
View | Package Explorer.

Chapter 5: Application: Hello World! 61

You should see a root directory, in this case named HelloWorldText. The root directory
is the home, or repository, for all of your project files. Both your user-created files and
the Android auto-generated files will be placed in the directory, easily accessible from
the Package Explorer. Currently there should be a few items in your root directory: an
AndroidManifest.xml file, a package included in the Referenced Libraries, and three
directories (res, assets, and src). These items are discussed in turn next.

AndroidManifest.xml
The AndroidManifest.xml file is where your global settings are made. If you are an
ASP.NET developer, you can think of AndroidManifest.xml as Web.config and
Global.asax rolled into one. (If you are not an ASP.NET developer, this means that
AndroidManifest.xml is a place for storing settings.) AndroidManifest.xml will include
such settings as application permissions, Activities, and intent filters.

The standard AndroidManifest.xml file should contain the following information:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="testPackage.HelloWorldText">
<application android:icon="@drawable/icon">

<activity class=".HelloWorldText" android:label="@string/app_name">
<intent-filter>

<action android:value="android.intent.action.MAIN" />
<category android:value="android.intent.category.LAUNCHER"

/>
</intent-filter>

</activity>
</application>

</manifest>

As you create future applications, you will be adding information to this file. Notice
that the package name you supplied is listed here, as well as the action that your Activity
will handle.

Referenced Libraries
A list of the Referenced Libraries is also included in the root of the project. Typically,
for a beginner project, you should see only one library here. Expand the Referenced
Libraries branch and examine its contents, the libraries that are currently referenced by

62 Android: A Programmer’s Guide

your application project. Given that this is a new Android project, you will see one library
in your project’s references, android.jar, the Android SDK. (If you are familiar with the
Java SDK, android.java is analogous to Java’s rt.java file, containing many of the Java
APIs found in rt.java.) The Android plugin ensures that this file is the only library
referenced by your application. The application needs to reference the SDK to gain
access to all the classes contained in the SDK libraries, such as your Views, Controls,
and even the Google API.

CAUTION
Eclipse enables you to add other user-defined libraries and external classes to your
project’s references. However, unless you are sure that those external references will
work with your Android application (and thus on the Android platform), you should
think twice before you add them.

Directories
There are also three directories in the project root—res, assets, and src—each of which
has a distinct purpose. These directories play an integral part in the operation of your
application.

res Directory
The res directory is where your in project resources are held and compiled into your
application. When you create a new Android project, the res directory contains three
subdirectories: drawable, layout, and values. You will use the drawable and layout
directories in many of your projects to hold and display images and layouts respectively,
whereas the values directory holds string globals that can be used throughout your
application.

NOTE
A reference to the res directory and its contents is contained by the R.java file, located
in the src directory. This file is covered in much more detail later in the chapter.

The drawable directory contains actual image files that your application can use and
reference. The layout directory holds an XML file, main.xml, that is referenced by your
application when building its interface. In most of the applications in this book, you will
be editing the main.xml file included in the layout directory. This will allow you to insert

Chapter 5: Application: Hello World! 63

Views into the application’s visual layout and display them. An unaltered main.xml file
contains the following code:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, HelloWorldText"
/>

</LinearLayout>

The last directory under res, values, holds an XML file named strings. The strings.xml
file is used to hold global string values that can be referenced by your application.

assets Directory
The assets directory is used to hold raw asset files. The files contained in the assets
directory can include audio files for streaming and animation assets. I will not use any
audio assets in the applications for this book because the beta audio drivers for the
Android Emulator are not yet optimized.

src Directory
The src directory contains all the source files for your project. When your project
is first created, it will contain two files, R.java and <activity>.java (in this example,
HelloWorldText.java), described next.

NOTE
<activity>.java is always named according to your Activity name.

R.java File The file R.java is an auto-generated file that is added to your application
by the Android plugin. This file contains pointers into the drawable, layout, and values
directories (or the items within the directories, as is the case with strings and icons).
You should never have to modify this file directly. You will be referencing R.java in
most of your applications. The code that was auto-generated for the HelloWorldText
application follows:

64 Android: A Programmer’s Guide

/* AUTO-GENERATED FILE. DO NOT MODIFY.
*
* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.
*/

package testPackage.HelloWorldText;

public final class R {
public static final class attr {
}
public static final class drawable {

public static final int icon=0x7f020000;
}
public static final class layout {

public static final int main=0x7f030000;
}
public static final class string {

public static final int app_name=0x7f040000;
}

}

NOTE
The comment section of the R.java file provides an explanation of the origin of the file.
It states that the file was created by the aapt tool. In Chapter 6, when you create a
command-line–only version of the Hello World! application, you will use command-line
tools to create all of the auto-generated files.

<activity>.java File The file in the src directory that you will spend the most time with
is <activity>.java (HelloWorldText.java in this example), which is created by the Android
plugin and named to match the Activity name that you specified in the New Android
Project wizard. Unlike most of the files you have examined in this section, this file is
completely editable; in fact, it will do very little for you if you do not modify it with
your code.

After briefly looking at what is in your HelloWorldText.java file as it is created by the
Android plugin, you will then edit the file to create your first Android Activity.

package android_programmers_guide.HelloWorldText;
import android.app.Activity;
import android.os.Bundle;

Chapter 5: Application: Hello World! 65

public class HelloWorldText extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);

}
}

The three lines at the top of the file are the standard preprocessor directives—that is,
as in most programming languages, statements that are directives to the compiler to run
before the application process. In this case, you have the definition and inclusion of your
package android_programmers_guide.HelloWorldText.

The next two lines import specific packages from the Android SDK via android.jar:

import android.app.Activity;

and

import android.os.Bundle;

These lines tell the project to include all the code from the imported packages before all
the code in your application. These two lines are critical for your base Android application
and should not be removed.

TIP
If you do not see the android.os.Bundle import statement in your project, expand the
tree within your development window. Eclipse rolls up all the import statements under
the first one, so you must expand the tree to see the rest of them.

Focusing now on your class HelloWorldText, you can see that it extends the Activity
class. Activity is imported from the previous lines. All applications derive the Activity class,
and this derivation is required for running an application on Android. For something to
run and be displayed on the screen, it must be derived from Activity.

The HelloWorldText class holds the code needed to create, display, and run your
application. Right now there is only one method in your HelloWorldText class that is
defined with code in it, onCreate().

The onCreate() method takes in icicle as a bundle. That is, all of the current
state information is bundled as an icicle object and held in memory. You will not be
directly handling icicle in this application, but you need to be aware of its presence
and purpose.

66 Android: A Programmer’s Guide

Chapter 5: Application: Hello World! 67

The next line in the file is the one that really does some perceptible action:

setContentView(R.layout.main);

The method setContentView() sets the Activity’s content to the specified resource.
In this case, we are using the main.xml file from the layout directory via the pointer in
the R.java file. The main.xml file, right now, contains nothing more than the size of the
HelloWorldText screen and a TextView. The TextView is derived from View and is used
to display text in an Android environment. Reviewing the contents of main.xml, you can
see that it contains the following line:

android:text="Hello World, HelloWorldText"

Considering that the setContentView() method is being told to set main.xml as the
current View, and main.xml contains a TextView that says “Hello World, HelloWorldText,”
it may be safe to assume that compiling and running HelloWorldText now will give
you your Hello World! application. To test this, run your unaltered HelloWorldText
application. Choose Run | Run to open the Run As dialog box, select Android Application,
and click OK.

The new project you just established contains the code to create a Hello World!
application on its own. However, that is not very engaging, nor does it teach you very
much about programming an Android application. You need to dissect the project and
see exactly how the project displayed the “Hello World!” message.

What happened when you created the new Android project is that the Android plugin
modified main.xml. This is a perfect example of one way to modify the UI in Android.
The following lines of code are added to main.xml by the Android SDK when the project
is created:

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, HelloWorldText"

/>

While I have discussed the existence of this TextView in the xml, I have not yet
discussed why it works without any corresponding code. I mentioned earlier in this book
that there are two ways to design a UI for Android: through the code, and through the
main.xml file. The preceding code sample creates a TextView in xml and sets the text to
“Hello World, HelloWorldText.” Edit this line of the main.xml file to read as follows:

android:text="This is the text of an Android TextView!"

Rerun the project,
and your results should
appear as they do in
this illustration.

Take some time
and experiment with
the xml TextView.
Then you can move
on to another way of
creating a Hello World!
application.

68 Android: A Programmer’s Guide

Hello World! Again
In this section, you will create another Hello World! application for Android. However,
this time you will program the UI in code rather than by using the xml file—and you will
actually do most of the work. The first step here is to remove the TextView code that is in
main.xml. The following section of code represents the TextView. Removing it essentially
makes your application an empty shell.

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, HelloWorldText"

/>

After you have removed the TextView code, your main.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

</LinearLayout>

Now that you have a clean main.xml file, and thus a clean application shell, you can
begin to add the code that will display “Hello World!” on the screen. Start by opening the
HelloWorldText.java file and removing the following line:

setContentView(R.layout.main);

NOTE
You still need to set a ContentView for your new application; however, you are going
to implement it slightly differently from how it is implemented here, so it is best to just
remove the entire statement for now.

This line uses setContentView() to draw the main.xml file to the screen. Since you
will not be using main.xml to define your TextView, you will not be setting it to your
view. Instead, you will be building the TextView in code.

Chapter 5: Application: Hello World! 69

Your next step is to import the package TextView from android.widget. This will
give you access to the TextView and let you create your own instance of it. Place this
code near the top of your current HelloWorldText.java file, where the existing import
statements are

import android.widget.TextView;

Now, create an instance of TextView. By creating the TextView instance, you can use
it to display text to the screen without directly modifying main.xml. Place the following
code after the onCreate() statement is fired:

TextView HelloWorldTextView = new TextView(this);

NOTE
TextView takes a handle to the current context as an argument. Pass this to the
TextView to associate it with the current context. If you follow the hierarchy
through the SDK, HelloWorldText extends Activity, which extends
ApplicationContext, which in turn extends Context. This is how you can
pass this to your TextView.

The preceding line creates an instance of TextView named HelloWorldTextView
and then instantiates HelloWorldTextView, by setting it to a new TextView. The new
TextView is passed the context of this to be fully instantiated.

Now that the TextView is defined, you can add your text to it. The following line of
code assigns the text “Hello World!” to the TextView:

HelloWorldTextView.setText("Hello World!");

This line lets you set the text of your TextView. setText() lets you assign a string to the
TextView.

Your TextView has been created and now contains the message that you want to
display. However, simply passing “Hello World!” to the TextView does not display
anything to the screen. As discussed previously, you need to set the ContentView to

70 Android: A Programmer’s Guide

display something to the screen. You have to use the following code to set TextView
to the context and display it to the screen:

setContentView(HelloWorldTextView);

Examining this line, you can see that you pass to setContentView your TextView. The
preceding three lines of code are what it takes to make your Hello World! application.
You created a TextView, assigned your text to it, and set it to the screen. All things
considered, this is not very complicated at all.

The full contents of your HelloWorldText.java file should look like the following:

package android_programmers_guide.HelloWorldText;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class HelloWorldText extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
/**Hello World JFD */
/**BEGIN */
/**Create TextView */

TextView HelloWorldTextView = new TextView(this);
/**Set text to Hello World */

HelloWorldTextView.setText("Hello World!");
/**Set ContentView to TextView */

setContentView(HelloWorldTextView);
/**END */

}
}

Now compile and run your new Hello World! application in the Android Emulator.
Choose Run | Run or press CTRL-F11 to launch the application in the Android

Chapter 5: Application: Hello World! 71

72 Android: A Programmer’s Guide

Emulator. The following illustration depicts the results of your Hello World!
application.

You have just created your first full Android Activity. This small project demonstrated
a fairly common execution of a Hello World! application. You set a TextView to the
Activity’s ContentView and displayed the “Hello World!” message to a cell phone screen
in the Android Emulator. The following section looks at a slightly different way of
implementing Hello World!, using an image.

Hello World! Using an Image
In this section, you are going to use the Hello World! application to get more familiar
with a relatively common practice in programming: displaying images. Modern computer
displays would be exceedingly uninteresting without a graphical display. These graphical
displays center on the ability to send images to the screen.

As late as five years ago, displaying images was a fairly difficult thing to do on a cell
phone. Working with images is just one of those things that we, as modern PC users, take
for granted. We look at windows of all types everyday without even considering that they
are really images sent to a screen. This version of the Hello World! application will
display an image to the screen that says “Hello World!”

For this application, use the New Android Project wizard to create a new project and
name it HelloWorldImage, as shown in the following illustration.

With the application project created, navigate to and remove the TextView code from
main.xml so that you have a clean project. If you do not remove this code, you will end up
with a text-based Hello World! program again.

Chapter 5: Application: Hello World! 73

Before you begin writing any code, you need an image to display. Create a small
image in the graphics program of your choice. For ease of use, I chose Microsoft Paint,
but any program should be able to give you the desired image. The image I am using is
shown here:

Name your image helloworld.png and save it to the %workspace%/HelloWorldImage/
res/drawable directory.

CAUTION
Be careful not to mix upper- and lowercase letters in your image names. Your images
should be named using lowercase letters only. If you mix in some uppercase letters, you
will get an error message from Eclipse when you try to use the file.

After you copy the image to the correct directory, refresh the project. The helloworld.png
image should now appear in your project view, in the drawable directory, as shown in the
following illustration.

74 Android: A Programmer’s Guide

Open R.java and take a look at its code. Eclipse should have added a pointer to
helloworld.png. Your R.java file should look similar to this:

/* AUTO-GENERATED FILE. DO NOT MODIFY.
*
* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.
*/

package android_programmers_guide.HelloWorldImage;

public final class R {
public static final class attr {
}
public static final class drawable {

public static final int helloworld=0x7f020000;
public static final int icon=0x7f020001;

}
public static final class layout {

public static final int main=0x7f030000;
}
public static final class string {

public static final int app_name=0x7f040000;
}

}

With a clean application shell as your starting point, and an available handle to the
image you want to display, you can begin to add your code. You are going to look
at this application from two perspectives: that of the XML-based UI and that of the
code-based UI.

Hello World! Code-Based UI
Assuming you were able to follow along with and understand the HelloWorldText
solution, this version of Hello World! will seem very familiar. To begin, you need to
import the package for displaying images. Whereas text is displayed using a TextView,
images are displayed using ImageView. Therefore, you must import the ImageView
package. Like TextView, ImageView is contained in android.widgets:

import android.widgets.ImageView;

Chapter 5: Application: Hello World! 75

76 Android: A Programmer’s Guide

NOTE
Both TextView and ImageView are derived from View. This makes both of them very
similar in structure and easy to implement.

With the package imported, you can create your ImageView and display it to the
screen. Instantiating ImageView is the same as instantiating TextView; create an instance
of ImageView and pass it the current context using this:

ImageView HelloWorldImageView = new ImageView(this);

The next line is where a difference between ImageView and TextView can be seen.
This step involves setting your view to something that you want to display. In the
TextView example, you used setText() to set the text of the TextView to “Hello World!”
While both TextView and ImageView are derived from View, they are still different and
therefore require some different methods. Obviously, you would not want to use setText()
for your ImageView. You need to use setImageResource() to set the image in your
ImageView. As shown next, pass into setImageResource() the handle to helloworld.png
from R.java (the syntax for the handle is R.drawable.helloworld):

HelloWorldImageView.setImageResource(R.drawable.helloworld);

Finally, to send the image to the screen, you must set the ContentView. Just as you
did with the TextView, you pass to the ContentView your ImageView. The job of the
ContentView is then to set the object that it is passed to the screen.

setContentView(HelloWorldImageView);

Your final HelloWorldImage.java file should look like this:

package android_programmers_guide.HelloWorldImage;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ImageView;

public class HelloWorldImage extends Activity {
/** Called when the activity is first created. */

Chapter 5: Application: Hello World! 77

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
/**Hello World Image JFD*/
/**BEGIN */
/**Create the ImageView */
ImageView HelloWorldImageView = new ImageView(this);
/**Set the ImageView to helloworld.png */
HelloWorldImageView.setImageResource(R.drawable.helloworld);
/**Set the ContentView to the ImageView */
setContentView(HelloWorldImageView);
/**END */

}
}

Compile HelloWorldImage and run it in the Android Emulator. Your application
should look similar to that in the following illustration.

78 Android: A Programmer’s Guide

In the next section, you will again display helloworld.png, but this time using XML
rather than code.

Hello World! XML-Based UI
This section gives you a very good comparison by which to judge the processes of
displaying images using the XML-based UI and the code-based UI. As you are going to
see, the process of sending images to the screen using main.xml requires roughly the same
amount of code as using the code-based UI. However, the syntax differs between the two
processes.

Using the same project as you did for the last example, remove the TextView code
from the HelloWorldImage.java file. The clean file should look like this:

package android_programmers_guide.HelloWorldImage;

import android.app.Activity;
import android.os.Bundle;

public class HelloWorldImage extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);

}
}

Now that you have a clean slate to start with, move over to main.xml. You need to add
in a definition for an ImageView. Start off by adding the empty ImageView tag to your
main.xml file:

<ImageView
/>

You need to edit four attributes of the ImageView: android:id, android:layout_width,
android:layout_height, and android:src. You are going to place these attributes in the tag,
where they will govern how the tag is displayed to the screen.

Chapter 5: Application: Hello World! 79

The android:id attribute is set to the identifier for the ImageView. The android:id
attribute can be used to refer to the ImageView in your code. Use the @+id/<name>
syntax to assign to the ImageView an identity that can be retrieved later using
R.layout.imageview:

android:id="@+id/imageview"

This line inserts an auto-generated ID, @+id, into the R.java file under the name
imageview.

The next two attributes that you must define are android:layout_width and android:layout_
height. These attributes govern how the image will fill the screen. There are two options
you are going to select from when assigning values to these attributes. The fill_parent
value fills the screen with the image while keeping it in perspective. The wrap_content value
keeps the image its defined size, possibly losing some of the image definition in the
process. For this example, use wrap_content:

android:layout_width="wrap_content"
android:layout_height="wrap_content"

The final attribute you need to assign is arguably the most important: android:src. This
attribute points to the image that you want to display to the view. For this example, point
the attribute to the drawable/helloworld image:

android:src="@drawable/helloworld"

Your full ImageView tag should look like this:

<ImageView android:id="@+id/imageview"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/helloworld"
/>

Finally, before the image will display to the view, you must pass main.xml to
setContentView in HelloWorldImage.java:

setContentView(R.layout.main);

80 Android: A Programmer’s Guide

Compile and run HelloWorldImage. The results should look like the following
illustration.

Before closing out this chapter, try one more thing. Go back to main.xml and change
the layouts from wrap_content to fill_parent. When you are finished, your main.xml file
should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<ImageView android:id="@+id/imageview"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:src="@drawable/helloworld"
/>

</LinearLayout>

Chapter 5: Application: Hello World! 81

Run the application again to see the difference between wrap_content and fill_parent.
Your new application should look like the following illustration when it is run.

Try This Use TextView and ImageView
Use some of the skills and techniques that you learned in this chapter to create a new
Hello World! application. Create an application that uses both the TextView and the
ImageView to put an image on the screen with a text caption. This is slightly more
difficult than using just one View on an Activity. Play with the Views and see what
you can create.

The next chapter takes one more look at Hello World! applications, from the
perspective of command-line programming.

82 Android: A Programmer’s Guide

Ask the Expert
Q: Does Android have a label or LabelView like most other APIs?

A: No. All text displays are facilitated through the TextView. You can, as some people
have done, create a custom View that functions like a label and name it LabelView,
but there is no packaged Android LabelView.

Q: Is there an advantage to using <application>.java rather than main.xml to
create Views?

A: While there is no documented speed or processor savings in using one over the other,
there is one key advantage: By using main.xml, you have a number of Views predefined
for your Activity. Then, in your code, you can jump from View to View as needed
without having to manually create them in code.

Chapter6
Using the Command-Line
Tools and the
Android Emulator

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

So far this book has covered some very broad subjects to get you up and running on the
Android platform. At this point, you should be fairly comfortable using Eclipse to

create and run a small Android application. You created a new project, edited the
main.xml and <activity>.java files, and recompiled the R.java file. These are the
basic skills that you need to create Android applications.

In this chapter, you are going to expand and round out those skills by experimenting
with command-line application development. Android development does not have to
be limited to the confines of the Eclipse IDE. The Android SDK offers a host of
command-line tools that can help you develop full applications without the need
of a graphical IDE. You will use these command-line tools to create, compile, and
run a Hello World! application, first in Windows and then in Linux.

Creating a Shell Activity Using the Windows CLI
The Android SDK comes with multiple tools to help you create and compile Android
applications. These tools are in place to help users who do not wish to, or do not have a
system capable of supporting, work within a GUI IDE. However, if you are doing all of
your Android development work within Eclipse, you still should be aware of the Android
SDK command-line tools and their functionality.

When you run Android-related functions, such as creating an Android project or
running an application in the Android Emulator, you are actually calling connections
to the Android command-line tools. These Android command-line tools, whether run
from a command-line interface or from a GUI IDE, are the real core to the functionality
of the Android SDK.

84 Android: A Programmer’s Guide

Key Skills & Concepts
● Using the Android SDK command-line tools

● Creating a command environment

● Navigating the Android server with a shell

● Using the Android SDK in Linux

In the following section, I demonstrate the functionality of one Android tool. The
ActivityCreator.bat is a powerful tool that is used to establish shells of Activities that are
ready for you to program.

Running the ActivityCreator.bat
The ActivityCreator.bat should be located in the ../tools/ directory of the Android SDK.
Most of the forward-facing command-line tools are located in the root of the tools
directory. “Forward-facing” tools are tools that in turn call other tools located deeper in
the ../tools/ directory. ActivityCreator.bat is an example of a tool from the root of the tools
directory that actually calls another tool when it is run. Using vi, Notepad, or any text
editor, open ActivityCreator.bat; it should contain the following lines of code:

NOTE
ActivityCreator.bat is specific to the Microsoft Windows version of the Android SDK. In
a later section of this chapter you will also learn about the ActivityCreator.py. This is the
Linux version of the ActivityCreator.

@echo off
rem Copyright (C) 2007 Google Inc.
rem
rem Licensed under the Apache License, Version 2.0 (the "License");
rem you may not use this file except in compliance with the License.
rem You may obtain a copy of the License at
rem
rem http://www.apache.org/licenses/LICENSE-2.0
rem
rem Unless required by applicable law or agreed to in writing, software
rem distributed under the License is distributed on an "AS IS" BASIS,
rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
rem See the License for the specific language governing permissions and
rem limitations under the License.

rem don't modify the caller's environment
setlocal

"%~dp0\lib\activityCreator\activityCreator.exe" %*

Navigating through all of the rem statements (batch file comment statements), you
will see that there is one line of practical code at the bottom of the file. ActivityCreator.bat
is used to call ActivityCreator.exe in the ../tools/lib/activityCreator/ directory. The
ActivityCreator.bat is an example of a tool that is really just a front end of other tools
in the SDK.

Chapter 6: Using the Command-Line Tools and the Android Emulator 85

So, what does ActivityCreator.bat (or ActivityCreator.exe) do? ActivityCreator is used
to establish your development environment to the point where it will create the initial files
needed to begin developing your application. This directory structure is the same structure
discussed in Chapter 5. ActivityCreator.bat creates R.java, AndroidManifest.xml, and all
the supporting files needed to begin your application.

Let’s now go to a command-line environment and explore the ActivityCreator.
From your Start menu, click Run, type CMD or COMMAND in the Run dialog box,

and click OK.
Executing this command launches the command window shown next. This window is

the equivalent of the older DOS operating environments.

With the command window open, enter ActivityCreator at the > prompt.

TIP
The Microsoft command-prompt interface is not case sensitive, by default. If you are
using a different environment that is case sensitive, such as Linux/Unix, the screenshots
in this chapter may not show the proper case for your environment.

Running the command ActivityCreator, which actually runs ActivityCreator.bat,
produces the following output:

Activity Creator Script
Usage:
activityCreator [--out outdir] [--ide intellij] yourpackagename.ActivityName

Creates the structure of a minimal Android application.
The following will be created:
- AndroidManifest.xml: The application manifest file.
- build.xml: An Ant script to build/package the application.
- res : The resource directory.
- src : The source directory.

86 Android: A Programmer’s Guide

- src/your/package/name/ActivityName.java the Activity java class. packageName
is a fully qualified java Package in the format <package1>.<package2>... (with at
least two components).
- bin : The output folder for the build script.

Options:
--out <folder>: specifies where to create the files/folders.
--ide intellij: creates project files for IntelliJ

This output simply indicates that you need to provide more information to run
ActivityCreator. More specifically, you need to pass the command a directory location
within which to build your shell application.

NOTE
The output from the ActivityCreator command gives you a lot more information than just
the fact that you did not provide enough information. It gives the complete list of the files
created when using the tool. This list should look similar to that covered in Chapter 5,
although build.xml is not directly exposed to Eclipse users.

Go back to the command window and run ActivityCreator with the following option
(ActivityCreator also accepts path parameters with Unix-style forward slashes, if you are
used to programming in a Unix/Linux environment):

--out c:\AndroidHelloWorld\android_programmers_guide.HelloWorldCommandLine

The --out option tells ActivityCreator that you want it to output something. This command
option takes two parameters, <folder> and <package.activity>. The first part of the
preceding line tells ActivityCreator to build the shell application in the nonexistent folder
c:\AndroidHelloWorld.

TIP
If you specify a folder or directory that does not exist, ActivityCreator will create it for
you during its process.

The second parameter of the --out option is the package name and the activity name.
Following the convention established in the previous chapter, this example uses
android_programmers_guide as the package name and HelloWorldCommandLine as
the activity name for this project.

Chapter 6: Using the Command-Line Tools and the Android Emulator 87

NOTE
The parameters needed to successfully run ActivityCreator and set up your initial
environment are the same as those required by the New Android Project wizard.

Run ActivityCreator with this new command-line option and its parameter. You
should see the following output from the tool:

The following section covers the files created by ActivityCreator, because they do
vary slightly from those created by Eclipse.

The Project Structure
ActivityCreator created a number of directories and files for you to use and begin your
development. Navigate to the c:\AndroidHelloWorld\ directory to explore its structure.
ActivityCreator created the structure shown in the following illustration.

88 Android: A Programmer’s Guide

Chapter 6: Using the Command-Line Tools and the Android Emulator 89

Because you are working outside of the Eclipse environment, you have a slightly
different environment. When you are working within an IDE such as Eclipse, certain
functions are performed behind the scenes for you. Given that you are working without
any IDE help, ActivityCreator creates a file that outlines what the complier needs to do
to create your project. ActivityCreator, when run manually, creates the build.xml file for
your project. This file is not created when you use Eclipse to begin an Android project.
It contains an instruction set that explains how to turn your .java files into a functional
Android project.

The build.xml file tells the compiler what it needs to do to create your application. The
compiler in this example is Apache ANT, a Java-based tool that uses build files as scripts
to compile projects. You need to download ANT to compile your command-line project.
Download ANT from http://ant.apache.org/bindownload.cgi.

Once you have ANT downloaded and installed, you must add it to the PATH statement.
From within a Windows environment, simply right-click Computer and select Properties
to change the PATH statement.

The build.xml file is created specifically for ANT to use in compiling your Android
application. It should be located in the root of your project, as shown in the previous
illustration. Open build.xml with your text editor and take a look at what is inside.

The first section of build.xml contains code that is editable by the user. This section
is set off from the rest of the file because the remaining portions of the file should not be
modified.

<?xml version="1.0" ?>
<project name="HelloWorldCommandLine" default="package">

<property name="sdk-folder" value="c:\Android\android-sdk_m5
rc14_windows\android-sdk_m5-rc14_windows" />

<property name="android-tools" value="c:\Android\android-sdk_m5
rc14_windows\android-sdk_m5-rc14_windows\tools" />

<property name="android-framework" value="${android-tools}/lib/framework.aidl"
/>

<!-- The intermediates directory -->
<!-- Eclipse uses "bin" for its own output, so we do the same. -->
<property name="outdir" value="bin" />

The first section of build.xml contains values for the following properties:

● Project name

● Android SDK location

● Android tools location

● Android framework location

● Output location

90 Android: A Programmer’s Guide

../../../../../ant.apache.org/bindownload.cgi

Chapter 6: Using the Command-Line Tools and the Android Emulator 91

If you need to change any of these parameters for your project, you can do so within
this file. However, immediately following these parameters in build.xml, you should see
a warning informing you that you should not edit any remaining values:

<!-- No user servicable parts below. -->

Following this warning in build.xml is a list of parameters and values that are critical
to the proper creation of your project. This list includes compiler options, input directories,
and tool locations. Take a look at the following output of the core processing information
of build.xml:

NOTE
While Android advises against changing the following parameters, if you are very
familiar with how ANT works, you can modify these options to suit a particular need
you may have.

<!-- Input directories -->
<property name="resource-dir" value="res" />
<property name="asset-dir" value="assets" />
<property name="srcdir" value="src" />

<!-- Output directories -->
<property name="outdir-classes" value="${outdir}/classes" />

<!-- Create R.java in the source directory -->
<property name="outdir-r" value="src" />

<!-- Intermediate files -->
<property name="dex-file" value="classes.dex" />
<property name="intermediate-dex" value="${outdir}/${dex-file}" />

<!-- The final package file to generate -->
<property name="out-package" value="${outdir}/${ant.project.name}.apk"/>

<!-- Tools -->
<property name="aapt" value="${android-tools}/aapt" />
<property name="aidl" value="${android-tools}/aidl" />
<property name="dx" value="${android-tools}/dx" />
<property name="adb" value="${android-tools}/adb" />
<property name="android-jar" value="${sdk-folder}/android.jar" />

92 Android: A Programmer’s Guide

<property name="zip" value="zip" />

<!-- Rules -->

<!-- Create the output directories if they don't exist yet. -->
<target name="dirs">

<mkdir dir="${outdir}" />
<mkdir dir="${outdir-classes}" />

</target>

<!-- Generate the R.java file for this project's resources. -->
<target name="resource-src" depends="dirs">

<echo>Generating R.java...</echo>
<exec executable="${aapt}" failonerror="true">

<arg value="compile" />
<arg value="-m" />
<arg value="-J" />
<arg value="${outdir-r}" />
<arg value="-M" />
<arg value="AndroidManifest.xml" />
<arg value="-S" />
<arg value="${resource-dir}" />
<arg value="-I" />
<arg value="${android-jar}" />

</exec>
</target>

<!-- Generate java classes from .aidl files. -->
<target name="aidl" depends="dirs">

<apply executable="${aidl}" failonerror="true">
<arg value="-p${android-framework}" />
<arg value="-I${srcdir}" />
<fileset dir="${srcdir}">

<include name="**/*.aidl"/>
</fileset>

</apply>
</target>

<!-- Compile this project's .java files into .class files. -->
<target name="compile" depends="dirs, resource-src, aidl">

<javac encoding="ascii" target="1.5" debug="true" extdirs=""
srcdir="."
destdir="${outdir-classes}"
bootclasspath="${android-jar}" />

</target>
<!-- Convert this project's .class files into .dex files. -->

Chapter 6: Using the Command-Line Tools and the Android Emulator 93

<target name="dex" depends="compile">
<exec executable="${dx}" failonerror="true">

<arg value="-JXmx384M" />
<arg value="--dex" />
<arg value="--output=${basedir}/${intermediate-dex}" />
<arg value="--locals=full" />
<arg value="--positions=lines" />
<arg path="${basedir}/${outdir-classes}" />

</exec>
</target>

<!-- Put the project's resources into the output package file. -->
<target name="package-res-and-assets">

<echo>Packaging resources and assets...</echo>
<exec executable="${aapt}" failonerror="true">

<arg value="package" />
<arg value="-f" />
<arg value="-c" />
<arg value="-M" />
<arg value="AndroidManifest.xml" />
<arg value="-S" />
<arg value="${resource-dir}" />
<arg value="-A" />
<arg value="${asset-dir}" />
<arg value="-I" />
<arg value="${android-jar}" />
<arg value="${out-package}" />

</exec>
</target>

<!-- Same as package-res-and-assets, but without "-A ${asset-dir}" -->
<target name="package-res-no-assets">

<echo>Packaging resources...</echo>
<exec executable="${aapt}" failonerror="true">

<arg value="package" />
<arg value="-f" />
<arg value="-c" />
<arg value="-M" />
<arg value="AndroidManifest.xml" />
<arg value="-S" />
<arg value="${resource-dir}" />
<!-- No assets directory -->
<arg value="-I" />
<arg value="${android-jar}" />
<arg value="${out-package}" />

</exec>
</target>

<!-- Invoke the proper target depending on whether or not
an assets directory is present. -->

<!-- TODO: find a nicer way to include the "-A ${asset-dir}" argument
only when the assets dir exists. -->

<target name="package-res">
<available file="${asset-dir}" type="dir"

property="res-target" value="and-assets" />
<property name="res-target" value="no-assets" />
<antcall target="package-res-${res-target}" />

</target>

<!-- Put the project's .class files into the output package file. -->
<target name="package-java" depends="compile, package-res">

<echo>Packaging java...</echo>
<jar destfile="${out-package}"

basedir="${outdir-classes}"
update="true" />

</target>

<!-- Put the project's .dex files into the output package file.
Use the zip command, available on most unix/Linux/MacOS systems,
to create the new package (Ant 1.7 has an internal zip command,
however Ant 1.6.5 lacks it and is still widely installed.)

-->
<target name="package-dex" depends="dex, package-res">

<echo>Packaging dex...</echo>
<exec executable="${zip}" failonerror="true">

<arg value="-qj" />
<arg value="${out-package}" />
<arg value="${intermediate-dex}" />

</exec>
</target>

<!-- Create the package file for this project from the sources. -->
<target name="package" depends="package-dex" />

<!-- Create the package and install package on the default emulator -->
<target name="install" depends="package">

<echo>Sending package to default emulator...</echo>
<exec executable="${adb}" failonerror="true">

<arg value="install" />
<arg value="${out-package}" />

</exec>
</target>

</project>

Now that you have a good understanding of how build.xml is used in the manual,
command-line creation of Android projects, you can begin to edit your project files and

94 Android: A Programmer’s Guide

create an Android Activity. The first file you need to look at is main.xml. Using Windows
Explorer, navigate to main.xml at AndroidHelloWorld\res\layout.

Creating the Hello World! Activity
in the Windows CLI

In this section you will use the Windows command-line interface to edit the project files.
The project files were created in the previous sections by the ActivityCreator.bat. You
will edit these files and add code to them, without using Eclipse.

Editing the Project Files
Open main.xml in either an XML editor or (if you do not have a specific XML editor)
Notepad. This will let you edit the file and remove the <TextView/> definition that is
within it. Save main.xml as shown in the next illustration.

The result of saving main.xml is an empty shell. This gives you a platform on which
to edit your <activity>.java file. The <activity>.java file is in a folder that is several
directories deep, AndroidHelloWorld\src\android\programmers\guide.

To create your Hello World! application, add the following lines to create, set, and use
a TextView:

/**Hello World JFD */
/**BEGIN */
/**Create TextView */

TextView HelloWorldTextView = new TextView(this);
/**Set text to Hello World */

HelloWorldTextView.setText("Hello World!");
/**Set ContentView to TextView */

setContentView(HelloWorldTextView);
/**END */

Chapter 6: Using the Command-Line Tools and the Android Emulator 95

Do not forget to add the TextView package to the beginning of the file:

import android.widget.TextView;

The finished HelloWorldCommandLine.java file should look like that in the following
illustration.

Your project files should now be set. You can now compile your program and run it in
the Android Emulator.

Adding the JAVA_HOME Variable
Before you try compiling your project, you must add another environment variable to your
PC—JAVA_HOME—that points to your JDK. Even if this path is in your PATH statement,
you still need to create a new variable named JAVA_HOME.

NOTE
The JAVA_HOME variable is needed only if you are working in the command-line
environment. If you are exclusively using Eclipse, you do not need to add it.

96 Android: A Programmer’s Guide

Chapter 6: Using the Command-Line Tools and the Android Emulator 97

1. Right-click My Computer and select Properties.

2. Select the Advanced tab on the System Properties window and click the Environment
Variables button. This will open an Environment Variables window.

3. Click the New button to add a new variable named JAVA_HOME. The value for the
variable should be the full path to your Java SDK, as seen in the following illustration.

Compiling and Installing the Application
It is time for the real test. You can now compile your command-line project. To
compile your project, use ANT. Once the project is compiled, you will install it on
your Emulator.

98 Android: A Programmer’s Guide

Compiling Your Project with ANT
After you have your JAVA_HOME environment variable set and have ANT in your
PATH statement, you should be able to navigate the directory containing your build.xml
file and simply run the command ant. Open a Windows command prompt to your project
directory and run ant, as follows:

The result of running ant will be an .apk file that you will install directly onto your
phone (Emulator). However, whereas Eclipse installs the .apk file for you directly on the
Emulator, you need to install it manually. You use the Android Debug Bridge (adb)
Android tool to install the application, as described in the next section.

What to Do if Running ant Produces an Error If ANT produces an error when you
run it, fear not. Because Android is still in its initial release stages as of the writing of this
book, several items may need to be tweaked. Small changes here and there can always be
expected when you are working in a new technology. When I first tried to run ant and
compile my project, I received an error like that shown in the following illustration.

Chapter 6: Using the Command-Line Tools and the Android Emulator 99

Some research on the issue at the Google Android developer’s forum turned up an
interesting solution: a rewrite of build.xml that tweaked some of the commands offered to
ANT. What follows is the modified build.xml file, in which the key changes have been
bolded. Compare this file with the original and you will see that it differs quite noticeably.

<?xml version="1.0" ?>
<project name="HelloWorldCommandLine" default="package" basedir=".">

<property name="sdk-folder" value="c:\Android\android-sdk_m5
rc14_windows\android-sdk_m5-rc14_windows" />

<property name="android-tools" value="c:\Android\android-sdk_m5
rc14_windows\android-sdk_m5-rc14_windows\tools" />

<property name="android-framework" value="${android-tools}/lib/framework.aidl"
/>

<!-- The intermediates directory -->
<!-- Eclipse uses "bin" for its own output, so we do the same. -->
<!-- Use full path for output dir - FIX - BLOCK START -->
<property name="outdir" value="${basedir}/bin" />
<!-- Use full path for output dir - FIX - BLOCK END -->

<!-- No user servicable parts below. -->

<!-- Input directories -->

100 Android: A Programmer’s Guide

<property name="resource-dir" value="res" />
<property name="asset-dir" value="assets" />
<property name="srcdir" value="src" />

<!-- Output directories -->
<property name="outdir-classes" value="${outdir}/classes" />

<!-- Create R.java in the source directory -->
<property name="outdir-r" value="src" />

<!-- Intermediate files -->
<property name="dex-file" value="classes.dex" />
<property name="intermediate-dex" value="${outdir}/${dex-file}" />

<!-- The final package file to generate -->
<property name="out-package" value="${outdir}/${ant.project.name}.apk"/>

<!-- Tools -->
<property name="aapt" value="${android-tools}/aapt" />
<property name="aidl" value="${android-tools}/aidl" />

<condition property="dx" value="${android-tools}/dx.bat" else="${android
tools}/dx" >

<os family="windows"/>
</condition>

<property name="dx" value="${android-tools}/dx" />

<property name="zip" value="zip" />
<property name="android-jar" value="${sdk-folder}/android.jar" />

<!-- Rules -->

<!-- Create the output directories if they don't exist yet. -->
<target name="dirs">

<mkdir dir="${outdir}" />
<mkdir dir="${outdir-classes}" />

</target>

<!-- Generate the R.java file for this project's resources. -->
<target name="resource-src" depends="dirs">

<echo>Generating R.java...</echo>
<exec executable="${aapt}" failonerror="true">

<arg value="compile" />
<arg value="-m" />
<arg value="-J" />
<arg value="${outdir-r}" />
<arg value="-M" />
<arg value="AndroidManifest.xml" />

<arg value="-S" />
<arg value="${resource-dir}" />
<arg value="-I" />
<arg value="${android-jar}" />

</exec>
</target>

<!-- Generate java classes from .aidl files. -->
<target name="aidl" depends="dirs">

<apply executable="${aidl}" failonerror="true">
<fileset dir="${srcdir}">

<include name="**/*.aidl"/>
</fileset>

</apply>
</target>

<!-- Compile this project's .java files into .class files. -->
<target name="compile" depends="dirs, resource-src, aidl">

<javac encoding="ascii" target="1.5" debug="true" extdirs=""
srcdir="."
destdir="${outdir-classes}"
bootclasspath="${android-jar}" />

</target>

<!-- Convert this project's .class files into .dex files. -->
<target name="package-dex" depends="dex, package-res">

<echo>Packaging dex...</echo>
<exec executable="${zip}" failonerror="true">

<!--<arg value="-Xmx384M" />-->
<!-- Move Xmx parameter to dx.bat - FIX - BLOCK END -->
<arg value="--dex" />
<arg value="--output=${intermediate-dex}" />
<arg value="--locals=full" />
<arg value="--positions=lines" />
<arg path="${outdir-classes}" />

</exec>
</target>

<!-- Put the project's resources into the output package file. -->
<target name="package-res-and-assets">

<echo>Packaging resources and assets...</echo>
<exec executable="${aapt}" failonerror="true">

<arg value="package" />
<arg value="-f" />
<arg value="-c" />
<arg value="-M" />
<arg value="AndroidManifest.xml" />
<arg value="-S" />
<arg value="${resource-dir}" />

Chapter 6: Using the Command-Line Tools and the Android Emulator 101

<arg value="-A" />
<arg value="${asset-dir}" />
<arg value="-I" />
<arg value="${android-jar}" />
<arg value="${out-package}" />

</exec>
</target>

<!-- Same as package-res-and-assets, but without "-A ${asset-dir}" -->
<target name="package-res-no-assets">

<echo>Packaging resources...</echo>
<exec executable="${aapt}" failonerror="true">

<arg value="package" />
<arg value="-f" />
<arg value="-c" />
<arg value="-M" />
<arg value="AndroidManifest.xml" />
<arg value="-S" />
<arg value="${resource-dir}" />
<!-- No assets directory -->
<arg value="-I" />
<arg value="${android-jar}" />
<arg value="${out-package}" />

</exec>
</target>
<!-- Invoke the proper target depending on whether or not

an assets directory is present. -->
<!-- TODO: find a nicer way to include the "-A ${asset-dir}" argument

only when the assets dir exists. -->
<target name="package-res">

<available file="${asset-dir}" type="dir"
property="res-target" value="and-assets" />

<property name="res-target" value="no-assets" />
<antcall target="package-res-${res-target}" />

</target>

<!-- Put the project's .class files into the output package file. -->
<target name="package-java" depends="compile, package-res">

<echo>Packaging java...</echo>
<jar destfile="${out-package}"

basedir="${outdir-classes}"
update="true" />

</target>
<!-- Put the project's .dex files into the output package file. -->
<target name="package-dex" depends="dex, package-res">

<echo>Packaging dex...</echo>
<exec executable="${zip}" failonerror="true">

<arg value="-qj" />
<arg value="${out-package}" />
<arg value="${intermediate-dex}" />

</exec>

102 Android: A Programmer’s Guide

</target>
<!-- Create the package file for this project from the sources. -->
<target name="package" depends="package-dex" />

</project>

After modifying build.xml, you can then try to run ant again.

Installing Your Application with adb
The first step is to start your Emulator. In the Android /tools folder, find the emulator.exe
file and execute it. This starts your Android server. That is, starting the Emulator also
starts a virtual cell phone on your PC, as shown next. You can then use different tools
to interact with the server, to do such things as install applications and call a shell
environment.

To install your command-line application on your Android server, you need to use
adb. adb is your connection to the Android server, which is started with your Emulator.
adb contains many useful functions that allow you to interact with your Android server;
one of these enables you to install applications.

Table 6-1 lists and describes the commands that adb accepts.

Chapter 6: Using the Command-Line Tools and the Android Emulator 103

To copy your application to the server, open a Windows command prompt and
navigate to the directory of your build.xml file. The command syntax for adb is as
follows:

adb install <apk path>

If the application installs to the phone properly, you will just get the package size as
feedback in return from the command, as shown next.

104 Android: A Programmer’s Guide

Command Description

install <path> Installs applications to the server

pull <remote file> <local file> Pulls a remote file off the server

push <local file> <remote file> Pushes a local file to the server

shell Opens a shell environment on the sever

forward <local port> <remote port> Forwards traffic from one port to another (to and
from the server)

start-server Starts the server

kill-server Stops the server

ppp <tty> <params> Uses a PPP connection over USB

devices Lists the available emulators

help Lists the adb commands

version Displays the adb version

Table 6-1 adb Commands

Switching over to your running Android Emulator, you should now see the application
installed on your phone.

What to Do if Running the Application Produces an Error The first time I ran
this application, after using the new build.xml file, I received an error on the Android
Emulator. Shown in the following illustration, the error pointed to a missing class.

NOTE
While you may or may not encounter this exact error, depending on what release
of the Android SDK is available when this book is published, you should follow the
troubleshooting steps presented here, because they will help you in later projects.

This error seems to point to the fact that my classes, somehow, are missing from the
HelloWorldCommandLine.apk file. I can easily remedy this issue without using any of
the Android SDK command-line tools.

Chapter 6: Using the Command-Line Tools and the Android Emulator 105

As it turns out, .apk files are just .zip files. That is, you can easily open them with
a .zip file decompressor and view the files within them. The following illustration
shows what the inside of HelloWorldCommandLine.apk looks like using the WinRAR
decompressor.

What is missing from the file is classes.dex. This is the compiled Dalvik executable
of my classes. Navigating to the bin directory of my Android project, I can see that ANT
did successfully compile and create the classes.dex file. The file was just left out of the
HelloWorldCommandLine.apk. With the .apk file open in WinRAR, I can drag-and-drop
classes.dex into HelloWorldCommandLine.apk. After classes.dex has been added to my
.apk file, I can save and close the file.

Uninstalling a Prior Version of an Activity
Before you add the file to your running Android server, you are going to uninstall the
prior version of HelloWorldCommandLine. Uninstalling a prior version of an application
before you install another is not required. However, to get a good look at how to interact
with the Android server, go ahead and uninstall your previous version before proceeding.

With your Android Emulator open, return to your command prompt environment and
run the command adb shell, which opens the shell environment of the Android server. If
you are successful, your command prompt should turn from a > to a #.

You now have an open shell into your Android server. There are a multitude of
functions you can run from this point, but for now focus on one: removing the old
HelloWorldCommandLine.apk file.

106 Android: A Programmer’s Guide

Chapter 6: Using the Command-Line Tools and the Android Emulator 107

TIP
Keep in mind that Android is an operating environment. The commands that you can
use within the shell are standard POSIX commands.

On the Android server, user-installed applications are kept in the /data/app directory.
Using cd, navigate to the app directory, as shown in the following illustration.

Run the command ls to list all the files in this directory. You should see a file named
HelloWorldCommandLine.apk. This file represents the installation of your Activity.

Now that you have located the application on the Android server, you can remove it.
Use the command syntax rm HelloWorldCommandLine.apk to remove the application.
The following illustration shows that the rm command, if run correctly, gives no feedback.
A subsequent use of ls shows that the file has been removed.

CAUTION
Because you are technically logged into a Linux server via a shell, all the commands
you run in the shell are case sensitive.

With the application removed, type exit to leave the shell and return to your command
prompt.

Reinstalling and Launching the Application
You can now reinstall the application using adb install:

adb install HelloWorldCommandLine.apk

Once the application is installed back to the server, switch to your Emulator. Launch
the application from your Emulator. It should work perfectly, as shown in the following
illustration.

Now that we have covered the process for creating and editing files on Windows, let’s
take a look at it on Linux. Even if you are a die-hard Windows user, you may want to
pay attention to the following section. I have found that there are definite advantages
to programming with open source tools.

108 Android: A Programmer’s Guide

Chapter 6: Using the Command-Line Tools and the Android Emulator 109

Hello World! on Linux
Many programmers, especially those who are interested in open source software, use
Linux as their platform of choice. Google and the Open Handset Alliance have made an
Android SDK just for these programmers. The SDK is actually the same SDK (because
Java is portable), but the tools are created specifically to run on Linux.

When I started writing this book, I was using an older version of Red Hat Linux (Red
Hat 9) as my Linux platform. I downloaded and installed Eclipse and the Android SDK.
However, it quickly became apparent that there are limitations to the version of Linux that
you can safely run Android on. As a minimum, you have to have a version of Linux that
supports libstdc++.so.6.

The Android documentation lists Ubuntu Dapper Drake as a tested version of Linux.
If you have not yet made a decision as to which version you want to use, you can feel safe
with that version. Unfortunately, with the hardware that I am running, I had a problem
installing the latest version of Ubuntu. So I decided to move away from what was
recommended and try something new.

When I made the decision to drop Red Hat for another distribution of Linux, I decided
to try Fedora 8. The remainder of this book uses Linux examples from Fedora 8; however,
they should work without an issue on the distribution of your choice.

CAUTION
If you choose to use Fedora 8, it comes packaged with a custom version of Eclipse
called Fedora Eclipse. If you attempt to install the Android plugin (using the steps
outlined earlier in this book) for Fedora Linux, it will throw an error stating that the
plugin org.eclipse.wst.sse.u is required. You can address this in either of two ways:
download the latest version of Eclipse for Linux, or use Fedora’s automatic update
program, which will download an update to Fedora Eclipse that will bring it up to
date with the latest version of Eclipse. You can then use this version of Eclipse with
the Android SDK.

Configuring the PATH Statement
The first step is to configure your PATH statement. The path is the list of directories
within which the operating system will look when trying to find a command that is being
run. To see what your path is currently configured to, run the following from a terminal:

echo $PATH

110 Android: A Programmer’s Guide

You will get back something that resembles the PATH statement in the following
illustration.

Use the export command to add Android to the PATH statement (see the next
illustration):

export PATH=$PATH:<android path>

Editing the PATH statement like this in Linux will change the PATH statement only
for the current terminal session. To make your PATH statement change permanent, you
must edit .bash_profile. Use vi to edit .bash_profile, as shown in the following illustration.

With .bash_profile open in the vi editor, it should look something like the next
illustration. As you can see the PATH statement is clearly visible. Use the command

Chapter 6: Using the Command-Line Tools and the Android Emulator 111

:i to put vi in insert mode, and then add Android to the PATH statement. Then press
the ESC key, use the command :w to write the file, and then use :q to quit.

The Linux version of the Android SDK comes with a Python script, activityCreator.py,
that is used to create your initial projects. When running the Python script, an output
directory is created for your project. However, I like to create this directory manually
to make sure it is created where I need it to be. Use mkdir to create a directory for your
project (see the following illustration).

112 Android: A Programmer’s Guide

After you create the project directory, you can run the activityCreator.py Python
script. The syntax for the script is very close to that of the Windows .bat file:

activityCreator.py --out <output directory> package.activityName

Use the activityCreator.py script to set up your project. Take a look at the following
illustration to see the output from the activityCreator.py script.

TIP
Notice that the activityCreator.py command is prefixed by sudo. The sudo command
is used to emulate the permissions of another user (in this case, root) if you do not have
sufficient permissions to run the requested command. On my installation of Fedora,
my user account does not have the rights to interact with certain directories the way
root does.

Chapter 6: Using the Command-Line Tools and the Android Emulator 113

With the project created, edit HelloWorldLinux.java to add the TextView. You can
choose to edit the .java file a number of ways in Linux. You can use vi once again, or you
can use a standard text editor as shown in the following illustration.

Finally, remove the defined TextView from main.xml. These two small changes are
all you need to now compile your Linux version of the Hello World! application.

To compile the application, use ANT (which is what was used in the Windows
environment earlier in the chapter). Apache ANT should be preinstalled in your Linux
distribution, especially if you are using Fedora 8. If you are not using Fedora 8, you need
to download, install, and set the path for the Linux version of Apache ANT.

When you run ant, you should see an output like that shown in the following
illustration.

Finally, you need to start up your Android Emulator and install your application. With
the Emulator started and running, execute the following command:

adb install HelloWorldLinux.apk

This installs the application to the Linux Android server. If the command runs
successfully, you should be able to run your Activity in the Android Emulator.

The next chapter explores how to use the Android SDK to react to phone events.

114 Android: A Programmer’s Guide

Try This Create an Image-Based
Hello World! in the CLI

Using the command-line tools covered in this chapter, re-create the image-based Hello
World! project from Chapter 5. When you are creating this project, keep the following
items in mind:

● Place the image in the res folder.

● Check if any tools are needed to create an R.java file with a handle into the image.

● Compile the project using ANT.

● Use the command adb install to push the application to your emulator.

Chapter 6: Using the Command-Line Tools and the Android Emulator 115

Ask the Expert
Q: Is one operating system better than any other when programming for Android?

A: After using several operating systems with Android, I have not noticed any one operating
system having a clear and distinct advantage over another. It is really just a matter of
personal preference. However, as often happens, you may see more “tools”—of the
unofficial sort—be released on the Linux platform. Because both Linux and Android are
open source, more open source developers will be apt to create tools for other open source
platforms. This symbiosis may even end up benefiting Android more than it benefits Linux.

Q: Are there other commands that can be run from within the adb shell environment?

A: Yes. For example, one interesting command is the service command, which can be used
to check on the status of a process, such as:

service check phone

Assuming the phone is running, you should get back

Service phone: found

Another use of the service command is to place calls. With the Emulator running, type the
following command and check the results on the Emulator interface:

service call phone 2 s16 "15555551212"

This page intentionally left blank

Chapter7
Using Intents and
the Phone Dialer

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

The chapters up to this point have introduced you to the basics of Android programming.
You have examined the outline of an Android application and installed your first

applications to the Android server. You have learned how to use Views and setContentView(),
as well as how to create a UI in XML. These skills have helped you to create a static
application. What you have not done yet is use the application interface to interact with
the hardware that the platform was created for—the cell phone.

You should not lose sight of the fact that the platform for which Android was created
is, in essence, still a cell phone. The underlying hardware for the devices that Android will
run on is designed for the purpose of person-to-person communication. If you strip away
all the bells and whistles that the Android SDK is capable of adding to the cell phone, it
must still be able to send and receive phone calls. For this reason, this chapter focuses on
the code that enables you to interact with the phone hardware.

By the end of this chapter, you should have the skills needed to interact with some
of the basic functions of the phone. You will be able to work with the dialer to send and
receive calls. These tools and skills will be your keys to creating useful applications on
this flexible platform.

You are reading this book because you intend to design applications that run on a cell
phone, so it stands to reason that you should learn how Android allows for interaction
with the phone hardware—in particular, the process that enables the phone to send and
receive calls.

When we think of a cell phone, a few basic functions come to mind. The first, and
most obvious, of which is the ability to send and receive phone calls. This is inarguably
the quintessential function of a cell phone. There are a few peripheral features that make
the cell phone easier to use, such as the ability to keep and manage contacts and the ability
to store and review missed calls. As you’ll read in this chapter, you can access and
manipulate the code for all of these functions.

118 Android: A Programmer’s Guide

Key Skills & Concepts
● Using Intents

● Creating code that interacts with the phone hardware

● Learning the difference between dialing and calling

The first phone function that you will look at in this chapter is the sending of calls. You
will create an application, using an Intent, that controls the phone dialer and causes it to
place a call to a number. As the chapter progresses, you will expand on this application
and add some bells and whistles to it.

NOTE
On the Android platform, there is a difference between the actions of dialing
and calling. When you dial a number, you enter the digits into the keypad (or
programmatically), but no call is actually placed. That is, dialing does not encompass
pressing the Send button. When you call a number, you send a signal from your
handset. That is, after you enter the number into the dialer, you press the Send
button—either physically or programmatically. You need to know the difference
between the two actions to understand the scope of the applications you will create
in this section.

What Are Intents?
Before you can begin to interact with the phone dialer, you need to understand the type
of code that you will use to do the job. Android uses Intents to do specific jobs within
applications. Once you master the use of Intents, a whole new world of application
development will be open to you. This section defines what an Intent is and how it is used.

An Intent is Android’s method for relaying certain information from one Activity to
another. An Intent, in simpler terms, expresses to Android your intent to do something.
You can think of an Intent as a message passed between Activities. For example, assume
that you have an Activity that needs to open a web browser and display a page on your
Android device. Your Activity would send an “intent to open x page in the web browser,”
known as a WEB_SEARCH_ACTION Intent, to the Android Intent Resolver. The Intent
Resolver parses through a list of Activities and chooses the one that would best match
your Intent; in this case, the Web Browser Activity. The Intent Resolver then passes your
page to the web browser and starts the Web Browser Activity.

Intents are broken up into two main categories:

● Activity Action Intents Intents used to call Activities outside of your application.
Only one Activity can handle the Intent. For example, for a web browser, you need to
open the Web Browser Activity to display a page.

● Broadcast Intents Intents that are sent out for multiple Activities to handle. An
example of a Broadcast Intent would be a message sent out by Android about the
current battery level. Any Activity can process this Intent and react accordingly—for
example, cancel an Activity if the battery level is below a certain point.

Chapter 7: Using Intents and the Phone Dialer 119

Table 7-1 lists and describes the current Activity Action Intents that are available to
you. As you’ll notice, in most cases, the name of the Intent does a good job of describing
what that Intent does.

120 Android: A Programmer’s Guide

Activity Action Intent Message

ADD_SHORTCUT_ACTION Add a function shortcut to the Android Home Screen

ALL_APPS_ACTION List all the applications available on the device

ANSWER_ACTION Answer an incoming call

BUG_REPORT_ACTION Open the Bug Reporting Activity

CALL_ACTION Place a call to supplied location

DELETE_ACTION Delete the specified data

DIAL_ACTION Open the Dial Activity and dial the specified number

EDIT_ACTION Provide editable access to the supplied data

EMERGENCY_DIAL_ACTION Dial an emergency number

FACTORY_TEST_ACTION Retrieve factory test settings

GET_CONTENT_ACTION Select and return specified data

INSERT_ACTION Insert an empty item

MAIN_ACTION Establish the Activity start point

PICK_ACTION Pick an item and return the selection

PICK_ACTIVITY_ACTION Pick a given Activity (returns a class)

RUN_ACTION Execute the given data

SEARCH_ACTION Launch a search on the system

SEND_ACTION Send data without specifying the recipient

SENDTO_ACTION Send data to the recipient specified

SETTINGS_ACTION Launch System Settings

SYNC_ACTION Sync phone data with external source

VIEW_ACTION (DEFAULT_ACTION) Open a View

WALLPAPER_SETTINGS_ACTION Show settings for modifying the Android Wallpaper

WEB_SEARCH_ACTION Open Google Search, or another web page if specified

Table 7-1 Activity Action Intents

NOTE
For the applications in this chapter, you will use two of the Intents listed in Table 7-1:
CALL_ACTION and DIAL_ACTION. These Intents give you access to the phone’s dialing
and calling capabilities.

Table 7-2 lists and describes the current Broadcast Intents that are available. Refer to
this list when you need to establish a receiver for a specific Intent.

Chapter 7: Using Intents and the Phone Dialer 121

Broadcast Intent Message

CALL_FORWARDING_STATE_CHANGED_ACTION The phone’s call forwarding state has
changed

CAMERA_BUTTON_ACTION The camera button has been pressed

CONFIGURATION_CHANGED_ACTION The device’s configuration has changed

DATA_ACTIVITY_STATE_CHANGED_ACTION The device’s data activity state has changed

DATA_CONNECTION_STATE_CHANGED_ACTION There has been a change in the data
connection state

DATE_CHANGED_ACTION The phone’s system date has changed

FOTA_CANCEL_ACTION Cancel pending system update downloads

FOTA_INSTALL_ACTION An update has been downloaded and must
be installed immediately (sent by the system)

FOTA_READY_ACTION An update has been downloaded and can be
installed—but does not need to be installed
immediately (sent by the system)

FOTA_RESTART_ACTION Restart a system update download

FOTA_UPDATE_ACTION Begin the download of a system update

GTALK_SERVICES_CONNECTED_ACTION Sent when a GTALK session has been
successfully established

GTALK_SERVICES_DISCONNECTED_ACTION Sent when a GTALK session has been
disconnected

MEDIA_BAD_REMOVAL_ACTION Sent when an SD Memory Card was
removed but unsuccessfully unmounted from
the system

MEDIA_BUTTON_ACTION Sent when the media button has been
pressed

Table 7-2 Broadcast Intents

122 Android: A Programmer’s Guide

Broadcast Intent Message

MEDIA_EJECT_ACTION Sent when the eject action has been initiated
on an SD Memory Card

MEDIA_MOUNTED_ACTION Sent when an SD Memory Card was
successfully mounted to the system

MEDIA_REMOVED_ACTION Sent when an SD memory card was detected
as having been removed

MEDIA_SCANNER_FINISHED_ACTION Sent when the scanner has finished

MEDIA_SHARED_STARTED_ACTION Sent when the scanner has begun

MEDIA_UNMOUNTED_ACTION Sent when an SD memory card has been
detected but has not been mounted

MESSAGE_WAITING_STATE_CHANGED The “message waiting” state on the phone
has changed

NETWORK_TICKLE_RECEIVED_ACTION A new device network notification has been
received

PACKAGE_ADDED_ACTION Sent when a new package has been installed
on the device

PACKAGE_CHANGE_ACTION Sent when an existing package has been
modified

PACKAGE_INSTALL_ACTION A package can be downloaded and installed

PACKAGE_REMOVED_ACTION A package has been removed

PHONE_INTERFACE_ADDED_ACTION The device’s phone interface has been
created

PHONE_STATE_CHANGED_ACTION The device’s phone state has changed

PROVIDER_CHANGED_ACTION The device has received a notification from a
provider

PROVISIONING_CHECK_ACTION Check for the latest settings from the
provisioning service

SCREEN_OFF_ACTION The screen has been shut off (sent by the
device)

SCREEN_ON_ACTION The screen has been turned on (sent by the
device)

SERVICE_STATE_CHANGED_ACTION The service state has changed

SIGNAL_STRENGTH_CHANGED_ACTION The signal strength has changed

Table 7-2 Broadcast Intents (continued)

NOTE
Some of these Broadcast Intents are sent out quite often, such as TIME_TICK_ACTION
and SIGNAL_STRENGTH_CHANGED_ACTION. Be careful how you use them. You
should try not to receive such broadcasts if at all possible.

The Intent is only one-third of the picture. An Intent is really just that, an intent to do
something; an Intent cannot actually do anything by itself. You need Intent Filters and
Intent Receivers to listen for, and interpret, the Intents.

An Intent Receiver is like the mailbox of an Activity. The Intent Receiver is used
to allow an Activity to receive the specified Intent. Using the previous web browser
example, the Web Browser Activity is set up to receive web browser Intents. A system
like this allows unrelated Activities to ignore Intents that they would not be able to
process. It also allows Activities that need the assistance of another Activity to utilize
that Activity without needing to know how to call it.

With Intents and Intent Receivers, one Activity can send out an Intent and another can
receive it. However, there needs to be something that governs the type of information that
can be sent between the two Activities. This is where Intent Filters come in.

Intent Filters are used by Activities to describe the types of Intents they want to
receive. More importantly, they outline the type of data that should be passed with the
Intent. Therefore, in our example scenario, we want the web browser to open a web page.
The Intent Filter would state that the data passed with the WEB_SEARCH_ACTION
Intent should be in the form of a URL.

In the next section, you will begin to use Intents to open and utilize the phone’s dialer.

Chapter 7: Using Intents and the Phone Dialer 123

Broadcast Intent Message

SIM_STATE_CHANGED_ACTION The state of the SIM card has changed

TIME_CHANGED_ACTION The device’s time was set

TIME_TICK_ACTION The current time has changed

TIMEZONE_CHANGED_ACTION The device’s timezone has changed

UMS_CONNECTED_ACTION The device has connected via USB

UMS_DISCONNECTED_ACTION The device has been disconnected from its
USB host

WALLPAPER_CHANGED_ACTION The device’s wallpaper has been changed

Table 7-2 Broadcast Intents (continued)

Using the Dialer
Now that you know what an Intent is, it is time to see one in action. This section shows
you how to use the DIAL_ACTION Intent to open the phone dialer. You will pass a
telephone number with your Intent. If your application works correctly, you should see
displayed in the dialer the number you pass with your Intent.

The first step is to create a new project for this Activity (see Chapter 5 for instructions).
Name the project AndroidPhoneDialer. The following illustration shows the New
Android Project wizard for this project.

With your new application open in Eclipse, the first order of business is to remove the
TextView from main.xml that contains that Hello World statement. The main.xml file
should look like this after you remove the TextView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

124 Android: A Programmer’s Guide

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

</LinearLayout>

You need to add two new packages to your project to utilize the DIAL_ACTION
Intent, as follows. The first package allows you to set up Intents and the second allows
you to parse URIs.

import android.content.Intent;
import android.net.Uri;

NOTE
There are several different Intent Filters on the DIAL_ACTION Intent that you can use.
You are using the Filter that lets you pass a phone number as a URI.

The next step is to create your Intent. The syntax for creating an Intent is as follows:

Intent <intent_name> = new Intent(<Android_Intent>,<data>)

For your application, replace the first parameter, <intent_name>, with DialIntent.
To get the value for the second parameter, <Android_Intent>, refer to the list of
Activity Actions in Table 7-1. You’ll find that, to call the dialer, you need to use
the DIAL_ACTION Intent. To call the Intent properly, use the format Intent.DIAL_
ACTION. The last parameter, <data>, is the phone number. The DIAL_ACTION Intent
takes in data as a URI. Thus, you need to use Uri.parse to parse out your phone number.
Using Uri.parse will ensure that the DIAL_ACTION Intent understands the number you
are trying to dial. You pass Uri.parse a string that represents the phone number you want
to dial, "tel:5551212" in this example.

The final call to create an Intent for your project should look like this:

Intent DialIntent = new
Intent(Intent.DIAL_ACTION,Uri.parse("tel:5551212"));

TIP
You use the notation tel:<phone_number> to dial a specific phone number. You can
also use voicemail: instead of tel: to dial the phone’s voicemail shortcut.

Chapter 7: Using Intents and the Phone Dialer 125

With the Intent created, you now have to tell Android that you want the dialer to be
launched in a new Activity. To do this, you use the setLaunchFlags() method of the
Intent. You must pass setLaunchFlags() the appropriate parameter for launching. The
following is a list of the possible launch flags that you can set:

NOTE
In some cases, more than one of the following flags may be set to accomplish the
desired outcome.

● NO_HISTORY_LAUNCH Launches the Activity without recording it in the
system’s launch history

● SINGLE_TOP_LAUNCH Tells the system not to launch the Activity if it is
already running

● NEW_TASK_LAUNCH Launches the Activity

● MULTIPLE_TASK_LAUNCH Launches the Activity even if it is already running

● FORWARD_RESULT_LAUNCH Allows the new Activity to receive results that
would normally be forwarded to the existing Activity

In this case, you want to use Intent.NEW_TASK_LAUNCH, which simply lets you
open a new instance of the dialer Activity:

DialIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);

The last step to creating your dialer Intent is to actually launch the Activity. (More
accurately, you are telling Android that you have an intent to launch the dialer as a New
Task. It is ultimately up to Android to launch the Dialer Activity.) To tell Android that
you want to start the dialer, you need to use startActivity():

startActivity(DialIntent);

Notice that you pass to startActivity() your Intent. The Intent is then passed to
Android, and the action is resolved. The full code for AndroidPhoneDialer.java should
look like this:

126 Android: A Programmer’s Guide

package android_programmers_guide.AndroidPhoneDialer;
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.net.Uri;

public class AndroidPhoneDialer extends Activity {
/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
/** Create our Intent to call the Dialer */
/** Pass the Dialer the number 5551212 */
Intent DialIntent = new

Intent(Intent.DIAL_ACTION,Uri.parse("tel:5551212"));
/** Use NEW_TASK_LAUNCH to launch the Dialer Activity */
DialIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
/** Finally start the Activity */
startActivity(DialIntent);

}
}

You should now compile AndroidPhoneDialer and run it on your Emulator. The
process for compiling and running applications was covered in previous chapters, so you
should be familiar with that process. Once you run your application, the Emulator should
launch. After the lengthy boot process, your Activity will launch.

TIP
It is a good idea to keep the Emulator running, even after you are finished with your
Activity and have returned to the code window. It is most people’s instinct to close the
Emulator window when they have finished testing their Activity. However, I have found
that leaving the Emulator open helps with two major issues. The first is the amount of
time it takes for the Emulator to start. By leaving the Emulator open, you avoid the
lengthy load time. Second, I have noticed that there are times when I make minor
changes to an Activity and they are not copied to the Emulator. Leaving the Emulator
open seems to alleviate this issue as well. If you continue to have issues in the Emulator,
remove the userdata-qemu.img file from your computer. This allows the Emulator to start
up with a clean image.

Chapter 7: Using Intents and the Phone Dialer 127

128 Android: A Programmer’s Guide

If you have followed the code in the examples correctly, you should see the following:

As you can see, you have now opened the phone’s Dialer Activity. The Dialer is
displaying the phone number that you passed to it, 5551212. Using the Emulator, click
the Send button, and the phone should now call 555-1212—virtually of course.

Just displaying the Dialer Activity is useful only if you want to create an application
that allows the user to edit the number before calling it, or even confirm that they really
want to make the call. What should you do if you want your application to actually place
the call for you? The answer is addressed next.

Placing a Call from Your Activity
In this section you will learn what Intent to add to your Activity when calling the dialer.
You will also learn where to add your chosen Intent in the Activity’s code. Further, you
will learn how to parse the intended phone number as a URI.

You need to make a few changes to your code to move from the Dialer Activity to the
Call Activity. In this section, you are going to edit your AndroidPhoneDialer Activity to
place a call after opening the dialer.

Adding the Intent to Your Activity
You still need the Intent and Uri packages—shown here—so leave those in place at the
header of your AndroidPhoneDialer.java file.

import android.content.Intent;
import android.net.Uri;

These packages will enable you to not only instantiate the Intent that you need, but
also pass the needed telephone number data to the Intent (with the Uri package).

TIP
If you are flipping through the chapters out of order, and did not work on the project
in the previous section, simply create a new project, name it AndroidPhoneDialer, and
add the previous two packages to it. That will catch you up to speed.

Take a look now through the list of possible Activity Action Intents in Table 7-1,
shown earlier in this chapter. True to its name, the Intent that you need in your Activity
is CALL_ACTION. In much the same way that DIAL_ACTION opened the Android
dialer, CALL_ACTION will launch the phone’s calling process and initiate a call to the
supplied number.

To create the Intent, use the same procedure as you did for the dialer, only this time
call CALL_ACTION:

Intent CallIntent = new
Intent(Intent.CALL_ACTION,Uri.parse("tel:5551212"));

Notice that you use Uri.parse to pass a correctly parsed telephone number to the
Activity. The next step is to tell Android that you want to set this Activity to launch,
and then launch it. This is accomplished using the following two lines of code.

CallIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
startActivity(CallIntent);

In the first line, you sent the launch flag to NEW_TASK_LAUNCH. This launches a
new instance of the Call Activity. Finally, you tell Android to start the Activity using your
Intent. When finished, your AndroidPhoneDialer.java file should look like this.

package android_programmers_guide.AndroidPhoneDialer;
import android.app.Activity;

Chapter 7: Using Intents and the Phone Dialer 129

import android.content.Intent;
import android.os.Bundle;
import android.net.Uri;

public class AndroidPhoneDialer extends Activity {
/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);

/** Create our Intent to call the device's Call Activity */
/** Pass the Call the number 5551212 */
Intent CallIntent = new

Intent(Intent.CALL_ACTION,Uri.parse("tel:5551212"));
/** Use NEW_TASK_LAUNCH to launch the Call Activity */
CallIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);

/** Finally start the Activity */
startActivity(CallIntent);

}
}

Compile the application now and observe the results; you should see something
similar to the error in the following illustration.

130 Android: A Programmer’s Guide

I purposely wanted you to see this error because it shows a side of Android that we
have not explored yet. The text of the error should read as follows:

Application_Error:
…
Java.lang.SecurityException:
Permission Denial: starting Intent
…

Android marshals certain actions by requiring that permissions be granted to perform
them, as covered next.

Editing Activity Permissions
Most Activity Action Intents fall into the category of requiring that the proper permission
be set before Android will allow the action. As with many systems, Android just needs to
make sure that only Activities with the correct credentials be allowed to perform actions
with Activities that are outside of their base. Here are the available permissions:

● ACCESS_ASSISTED_GPS ● INTERNAL_SYSTEM_WINDOW

● ACCESS_CELL_ID ● RAISED_THREAD_PRIORITY

● ACCESS_GPS ● READ_CONTACTS

● ACCESS_LOCATION ● READ_FRAME_BUFFER

● ACCESS_SURFACE_FLINGER ● RECEIVE_BOOT_COMPLETED

● ADD_SYSTEM_SERVICE ● RECEIVE_SMS

● BROADCAST_PACKAGE_REMOVED ● RECEIVE_WAP_PUSH

● BROADCAST_STICKY ● RUN_INSTRUMENTATION

● CALL_PHONE ● SET_ACTIVITY_WATCHER

● CHANGE_COMPONENT_ENABLED_
STATE

● SET_PREFERRED_
APPLICATIONS

● DELETE_PACKAGES ● SIGNAL_PERSISTENT_
PROCESSES

● DUMP ● SYSTEM_ALERT_WINDOW

● FOTA_UPDATE ● WRITE_CONTACTS

● GET_TASKS ● WRITE_SETTINGS

● INSTALL_PACKAGES

Chapter 7: Using Intents and the Phone Dialer 131

Compare this list of permissions with the list of Intents in Table 7-1. You should find
that most of the Intents match up with a corresponding permission. The CALL_ACTION
Intent is no exception. You need to assign your Activity the CALL_PHONE permission to
be able to execute your Intent.

To assign your Activity the correct permission, you first need to know what permission
you need to assign. The current example is using the Dialer Activity. Access to the Dialer
Activity is governed by the CALL_PHONE permission. By assigning this permission to
your Activity, Android will let your Intent launch the Dialer Activity.

How do you add permissions to the Activity? You need to edit the Activity’s Manifest.
If you are using Eclipse, double-click AndroidManifest.xml. This opens the Android
Manifest Overview window, shown in the following illustration.

132 Android: A Programmer’s Guide

Chapter 7: Using Intents and the Phone Dialer 133

To edit the Activity’s permissions, click the Permission link. This should take you to
the Android Manifest Permissions window, shown in the following illustration.

This window lists the permissions that are currently assigned to your Activity. Given
that you are working in a new project, you do not have any assigned permissions. Therefore,
click the Add button to begin the process. In the dialog box that opens, select Uses
Permission and click OK.

134 Android: A Programmer’s Guide

Back in the Android Manifest Permissions window, in the Name drop-down list,
select android.permission.CALL_PHONE, as shown next. This adds the CALL_PHONE
permission to your Activity.

Now that you have added the CALL_PHONE permission, take a look at
AndroidManifest.xml. It should look similar to the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="android_programmers_guide.AndroidPhoneDialer">
<application android:icon="@drawable/icon">

<activity android:name=".AndroidPhoneDialer"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />

Chapter 7: Using Intents and the Phone Dialer 135

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>
<uses-permission android:name="android.permission.CALL_PHONE">
</uses-permission></manifest>

The line of most interest is at the end of the file:

<uses-permission android:name="android.permission.CALL_PHONE">
</uses-permission>

This line of code was added by the Android plugin for Eclipse. If you wanted to, you
could have edited AndroidManifest.xml directly to assign the permission. However, if
there are times when you are not sure what permission you need to add, or the syntax with
which to add it, you can use the Manifest’s wizard.

Now that the permission is in place, recompile and run your Activity. Your Emulator
should now be making a phone call, as shown in the following illustration.

The Activity you created has used an Intent to launch the device’s Call Activity and
call the number 555-1212. This demonstrates how you can use Intents to your benefit.
However, this application does little for you practically. That is to say, how practical
would it be to launch an Activity with a hard-coded phone number, just to make a call?

In the following section, you are going to make your application more practical, by
adding both a button, to initiate the launching of the Call_Action Intent, and a textbox,
to allow the user to input a phone number of their choosing.

Modifying the AndroidPhoneDialer
This section shows you how to modify your AndroidPhoneDialer to make it a bit more
practical by adding a few features. By the end of this section, you should be pretty
comfortable using not only Intents, but EditTexts and Buttons.

CAUTION
If you did not follow along with the project from the last section, go back and create
that Activity. The tutorial in this section assumes that you already have the completed
code from the last project at your disposal.

Adding a Button
This section shows you how to modify your project to include a Button. Instead of
launching the Intent when the Activity is started, it will be launched by the Button. With
the exception of text, buttons are the most prevalent type of object on an application.
Buttons form the main interaction between users and applications. Learning how to create
and utilize buttons in Android is essential to creating a practical, user-friendly Activity.

You are going to create the Button in main.xml. Think back to Chapter 5, in which
you created the TextView for your Hello World! Activity. The TextView had a distinct
structure to it, something like this:

NOTE
Remember, when you create a View in main.xml, you are only telling Android
what you want the View to look like. You still need to assign functionality to it in
AndroidPhoneDialer.java.

<View android:id=<id>
android:layout_width=<width>
android:layout_height=<height>
>

136 Android: A Programmer’s Guide

This formatting is common across views, and the Button is no exception. The XML
attributes you need to set for your Button are android:id, android:layout_width,
android:layout_height, and android:text. These four XML attributes sufficiently
describe your Button so that you can use it within your Activity.

1. Assign to your Button the ID callButton:

android:id="@+id/callButton"

2. Set layout_width and layout_height to fill_parent and wrap_content, respectively:

android:layout_width="fill_parent"
android:layout_height="wrap_content"

3. Set the text of the Button to “Show Dialer,” which is descriptive enough to identify
what the Button will do:

android:text="Show Dialer"

The full XML for the Button, with attributes, looks like this:

<Button android:id="@+id/callButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Show Dialer" />

Take a look now at the finished main.xml file. The Button appears in context and is
waiting for you to begin coding it.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<Button android:id="@+id/callButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Show Dialer" />
</LinearLayout>

To start adding functionality to the Button, you need to add another package to
AndroidPhoneDialer.java. The package that contains the Button View is

android.widget.Button;

Chapter 7: Using Intents and the Phone Dialer 137

138 Android: A Programmer’s Guide

You have now imported the Button widget into your project. This gives you the
necessary information to begin coding your project. The ultimate outcome of what you
are coding in this project should be a Button in your Activity that, when clicked, launches
the Call Activity. The Call Activity should be launched with the data "tel:5551212". The
resulting screen will match that from your original AndroidPhoneDialer.

The described functionality encompasses a few different concepts. First, you must
program a Button that uses the Button attributes you established in main.xml. Next, you
have to create a function that will launch the CALL_ACTION Intent code from your
previous project. Finally, your Button needs to be able to execute the function and launch
the Intent.

The syntax for creating your Button is

final Button <button_name> = <button>

The left side of this equation creates the Button in your code. The right side of the
equation is where you call the Button attributes from main.xml. To call the attributes, you
use findViewById() and cast the result as a Button. This sounds a little more complicated
than it actually is.

Remember, when you added the Button attributes to main.xml, you gave the Button a
specific android:id, callButton, which was registered by the Android plugin for Eclipse in
the id file as R.id.callButton. Use findViewById() to retrieve the Button attributes from
main.xml by passing it the id callButton:

findViewById(R.id.callButton)

Don’t forget to cast the result as a Button:

(Button) findViewById(R.id.callButton)

This statement makes up the right side of your equation. The full equation to create
your Button looks like this:

final Button callButton = (Button) findViewById(R.id.callButton);

You now have a Button that you can work with, but you need something for it to do.
The Button by itself really does not do much without more code. For purposes of this
example, you need to have it execute the CALL_ACTION Intent. Therefore, you are

Chapter 7: Using Intents and the Phone Dialer 139

going to create a small function around your existing Intent call. This will give you
something to call from when the Button is pressed.

There should be no surprises here if you are familiar with Java programming. You
will set up the onClick() method to call the Intent code from the previous section. The
onClick() method takes a View as an argument; however, in this project, you make no
calls to the View within the onClick() method itself:

public void onClick(View v){
Intent callIntent = new

Intent(Intent.CALL_ACTION,Uri.parse("tel:5551212"));
callIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
startActivity(callIntent);

}

The only piece of the application that is left to code is the listener that will tie the
Button to the onClick. Listeners should be familiar to Java programmers. For those of you
who are not familiar with Java or listeners, listeners are the method by which Java objects
can “listen” to calls from other objects. The same concept applies within Android. You
can establish listeners within Android to let Android Views handle calls from other inputs.

For this project, you need to create for your Button a listener that listens for the onClick
event from the Button on the Activity. When the user presses the Button, the listener will
call the code in the onClick() method. To establish the listener you need, you use the
setOnClickListener() method of the Button.

If you are familiar with Java development, this structure should not look foreign. This
is a typical onClickListener interface implementation in Java. What you will see here is
the use of a Java anonymous class to implement the onClickListener for your Button.
Also, as an anonymous class, you can make use of local variables—in this case the
Button—if that variable is defined as final.

The setOnClickListener() method takes a pair of arguments. The first is an
instantiation of the onClickListener(). The second is the onClick established earlier.
Your setOnClickListener() should look like this:

callButton.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

Intent callIntent = new
Intent(Intent.CALL_ACTION,Uri.parse("tel:5551212"));

callIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
startActivity(callIntent);

}
});

This code segment states that when the callButton is pressed, the onClickListener will
execute the code in the onClick. The code in the onClick will execute the CALL_ACTION
Intent and call the phone number 555-1212.

Your finished AndroidPhoneDialer.java looks like this:

package android_programmers_guide.AndroidPhoneDialer;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Button;
import android.view.View;
import android.content.Intent;
import android.net.Uri;

public class AndroidPhoneDialer extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);

/** Create the Button */
final Button callButton = (Button) findViewById(R.id.callButton);
/** Set the onClickListener to call the onClick */
callButton.setOnClickListener(new Button.OnClickListener() {
/** Use the onClick to call the existing Intent code */
public void onClick(View v){

Intent callIntent = new
Intent(Intent.CALL_ACTION,Uri.parse("tel:5551212"));

callIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
startActivity(callIntent);

}
});

}
}

Compile and run this Activity in the Emulator. The main Activity will display a
Button labeled Show Dialer. Click the Button. It should open the Call Activity and dial
555-1212. The main Activity should look as it does in the following illustration.

140 Android: A Programmer’s Guide

Chapter 7: Using Intents and the Phone Dialer 141

As you can see, Android is a very robust and flexible platform. With a relatively few
lines of code, less than a page, you have created an Activity that utilizes the device’s
phone hardware and is launched with a Button. Also, by this point you should be pretty
comfortable with the way Android handles Activities, Intents, and Views.

Your AndroidPhoneDialer Activity is still rather impractical. You need to add one
more item to it. The final section of this chapter shows you how to use the EditText View to
let the user input a phone number. The number will then be passed to the CALL_ACTION
Intent (instead of the hard-coded value tel:5551212).

Implementing an EditText View
You need to add a View to your Activity that will let the user input some text. You will
then parse that text and send it to the Intent call from the previous section. Because all
Views inherit from the base View, they are helpfully similar in structure and usage. You
will find that implementing an EditText is a very simple operation.

First, lay out the Views in your main.xml. You will actually add two Views here: a
TextView to act as a label and give some direction to the user, and an EditText to accept
the user’s input. Together these two Views will add the needed depth and practicality to
your Activity.

As you form the look of your Activity, keep in mind that the .xml file is formed
visually. This means that if you want the TextView to appear above the EditText on
the finished Activity, you should place it before the EditText in main.xml.

Because you have used TextViews a few times now, creation of this View will not get
too involved. Simply take a look at the attributes that you set in your TextView:

<TextView android:id="@+id/textLabel"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Enter Number to Dial:"
/>

There is nothing out of the ordinary here. This is just a simple TextView with the text
Enter Number to Dial:. This TextView will serve as a label for your EditView. Here’s
how you set the attributes for the EditView.

<EditText android:id="@+id/phoneNumber"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

NOTE
You do not have to set the android:text attribute because you do not need any
default text.

The id is set to phoneNumber, which is the name you will use to refer to the EditText
View in the code. Again, there should be no surprises when setting up main.xml. Your
final file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"

142 Android: A Programmer’s Guide

Chapter 7: Using Intents and the Phone Dialer 143

android:layout_height="fill_parent"
>

<TextView android:id="@+id/textLabel"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Enter Number to Dial:"
/>
<EditText android:id="@+id/phoneNumber"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<Button android:id="@+id/callButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"
android:text="Show Dialer" />

</LinearLayout>

The main.xml file is now completed. You can move on to AndroidPhoneDialer.java.
If you are not using an existing version of AndroidPhoneDialer.java—one from a previous
project in this chapter—you may want to refer to the previous sections to see what code is
added to the .java file. This will ensure that you start from the correct point in the code.

The first item you need to add to your .java file is the package definition. You need to
add packages not only for the Uri, Button, and Intent, but also for the EditText:

import android.widget.Button;
import android.content.Intent;
import android.net.Uri;
import android.widget.EditText;

The syntax to set up your EditText View is the same as that for the Button:

final EditText <edittext_name> = <edittext>

Again, call your EditText phoneNumber. The code to create your EditText is as
follows:

final EditText phoneNumber = (EditText) findViewById(R.id.phoneNumber);

Once your phoneNumber EditText is created, you can use it to reference the text that
is input on the device. All you have to do now is call phoneNumber.getText() to retrieve
the user’s input. Replace the hard-coded value “tel:5551212” in the following line,

Intent(Intent.CALL_ACTION,Uri.parse("tel:5551212"));

with the value of getText():

Intent(Intent.CALL_ACTION,Uri.parse("tel:" + phoneNumber.getText()));

That is all the new code you need to update your project. With these simple two
additions, you can give the user an object with which to input a phone number, and
send that number to the phone’s Call Activity. The full code in the .java file should
look like this:

package android_programmers_guide.AndroidPhoneDialer;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Button;
import android.view.View;
import android.content.Intent;
import android.net.Uri;
import android.widget.EditText;

public class AndroidPhoneDialer extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);

final EditText phoneNumber = (EditText) findViewById(R.id.phoneNumber
);

final Button callButton = (Button) findViewById(R.id.callButton);
callButton.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

Intent CallIntent = new
Intent(Intent.CALL_ACTION,Uri.parse("tel:" + phoneNumber.getText()));

CallIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
startActivity(CallIntent);

}

});
}

}

144 Android: A Programmer’s Guide

Chapter 7: Using Intents and the Phone Dialer 145

When you run the application in your Emulator, you should see a screen that
resembles the following illustration.

Try This Modify the AndroidPhoneDialer Project
If you played around with the latest version of the AndroidPhoneDialer, you may have
noticed something missing. Unfortunately, the way the project is currently written, it
allows you to input any type of value into the EditText View and try to send it to the
Call Activity. This is really not an optimal approach to application development.

Do some research and add some validation to the EditText. Use the following
parameters to modify your project:

● Use a regular expression to validate that a phone number was entered in the EditText
(package java.regex).

● Use the showAlert() syntax to display a message telling the user they input something
that does not match your regular expression.

146 Android: A Programmer’s Guide

When you feel you have a working solution, compare it against the following code.

main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView android:id="@+id/textLabel"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Enter Number to Dial:"
/>
<EditText android:id="@+id/phoneNumber"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<Button android:id="@+id/callButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"
android:text="Show Dialer" />

</LinearLayout>

AndroidPhoneDialer.java
package android_programmers_guide.AndroidPhoneDialer;
import android.app.Activity;
import android.os.Bundle;
import android.widget.Button;
import android.view.View;
import android.content.Intent;
import android.net.Uri;
import android.widget.EditText;
import java.util.regex.*;
public class AndroidPhoneDialer extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
final EditText phoneNumber = (EditText)

findViewById(R.id.phoneNumber);
final Button callButton = (Button) findViewById(R.id.callButton);

callButton.setOnClickListener(new Button.OnClickListener() {

Chapter 7: Using Intents and the Phone Dialer 147

public void onClick(View v){
if (validatePhoneNumber(phoneNumber.getText().toString())){

Intent CallIntent = new
Intent(Intent.CALL_ACTION,Uri.parse("tel:" + phoneNumber.getText()));

CallIntent.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
startActivity(CallIntent);

}
else{

showAlert("Please enter a phone number in the X-XXX-XXX-XXXX
format.",0, "Format Error", "Re-enter Number",false);

}
}

});
}

public boolean validatePhoneNumber(String number){
Pattern phoneNumber = Pattern.compile("(\\d-)?(\\d{3}-)?\\d{3}

\\d{4}");
Matcher matcher = phoneNumber.matcher(number);
return matcher.matches();

}
}

When you run the project, it should produce a message similar to that in the following
illustration.

In the next chapter, you will learn about more Views. You will create a multi-Activity
application that will allow you to explore and create Views that have not yet been
discussed in this book. You will also create and utilize a menu system that will launch
your Activities.

148 Android: A Programmer’s Guide

Ask the Expert
Q: Is there a way to establish a call to or from the Emulator, to ensure that these

Activities are working?

A: As of the time this book was written, there was no way to complete a call to or from the
Emulator. However, there was talk from Google that in a future release of the SDK,
developers would be able to open two Emulators and complete calls between the two.

Q: Are there other types of Buttons available to Activities—with a different look
or feel?

A: Yes. You can use the style attribute to create small Buttons, or small Buttons that
include a pointer up, down, left, or right.

Chapter8
Lists, Menus,
and Other Views

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

This chapter provides a more in-depth treatment of Views and Intents, which arguably are
the most important features you should master as a newcomer to Android. These two

entities will make up the majority of your early Activities. Almost every Activity you
create will have more than one View, and most of them will also need to call an Intent
or two.

The best way to learn the most about these topics is to take a very hands-on approach.
Reading about these topics and reviewing a list of attributes is one thing, but implementing
the code on your own is something entirely different. That is, just as you have done in the
previous chapters, you are going to build an Activity that uses Views and Intents rather
heavily. By building this application, you will get the best experience with Views and
Intents.

The previous two chapters briefly introduced both Views and Intents by having you
create very simple Activities that exploited the basic functions of a handful of example
Views and Intents. In this chapter, you are going to build a slightly more complex Activity
that uses Intents to call new Activities, which you will also create. These new Activities
will showcase most of the Views that are available in the current version of the Android
SDK. This chapter explains the basic functionality of these Views, such as AutoComplete
lists and Galleries, and introduces variations of each View attribute for each Activity.

To begin, create a new Eclipse project named AndroidViews. Create the project
with the parameters shown in the following illustration: a Package Name of android_
programmers_guide.AndroidViews, an Activity Name of AndroidViews, and an
Application Name of AndroidViews.

150 Android: A Programmer’s Guide

Key Skills & Concepts
● Building Activities

● Using Android Menus

● Using the AutoCompleteTextView

Finish creating the project and open the main.xml file. Remove the Hello World!
code from main.xml. With the project created and main.xml cleaned, you can begin to
add your code.

Building the Activities
Up to now, you have created only single-Activity applications. This is to say, you have
created rather simplistic applications that encompass only one “screen” of data. Take a
minute, and think of the last few applications you have used. Chances are, they used more
than one “window.” Most applications use multiple windows to gather, display, and save
data. Your Android applications should be no different.

Chapter 8: Lists, Menus, and Other Views 151

Although you have not yet learned how to create multiple-Activity applications that
run on Android, you got a hint about how to leverage multiple Activities in the last
chapter. You used a new concept called Intents to call—and run—a core Android
Activity. While the concept still holds true in this chapter, the execution is slightly
different when you want to call Activities that you have created, as opposed to calling
core Android Activities.

The first thing you need to do is build the Activities. Then you can create the Intents
that will call them. When building the Activities, you need to follow a three-step process.

● Intent code for the .xml file

● Intent code for the .java file

● Calling Activities using an Intent

Once you create your first additional Activity, the rest should come very easily.

NOTE
These steps are not bound to each other. You can perform them in any order.

Intent Code for the .xml File
Remember that all Android Activities comprise three main parts: the .java file that
contains the code, the .xml file that holds the layout, and the package’s Manifest. To
this point in the book, you have only used main.xml to control the layout of a single
Activity. However, to take advantage of having multiple Activities, you must have
multiple .xml layout files.

To create a new .xml file, open your Eclipse project and navigate to the Package
Explorer. Open the res directory, right-click the layout folder, and choose New | File.

In the New File dialog box, shown next, name your file test.xml.

152 Android: A Programmer’s Guide

CAUTION
Be sure to enter the filename test.xml in all lowercase letters. New .xml filenames must
be all lowercase.

The layout file is created, but it is empty. To get the Activity off on the right foot, add
the following code to test.xml. This code will provide a base for your layout. If you need
to, you can simply copy this code from the existing main.xml file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

</LinearLayout>

Chapter 8: Lists, Menus, and Other Views 153

154 Android: A Programmer’s Guide

Intent Code for the .java File
Using the Package Explorer again, navigate to the src directory, open it, and right-click
the android_programmers_guide.AndroidViews package, as shown in the following
illustration.

Once again, you are going to add a new file to the folder. After you right-click the
AndroidViews package, select New | File from the context menu. This file will hold all
the code for the second Activity in this project. Name the file test.java. You should now
have a nice, new (but empty) .java file. You just need to add a few lines of code to the file
to make it usable:

package testPackage.test;
import android.app.Activity;
import android.os.Bundle;
public class test extends Activity {

/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.test);
/** This is our Test Activity

All code goes below */
}

}

Notice that you call test.xml in the setContentView method, using the context
R.layout.test. This line tells the new Activity to use the .xml file you created as the
layout file for this “page.”

Modifying the AndroidManifest.xml
Open your AndroidManifest.xml file in Eclipse. AndroidManifest.xml has not been
discussed in great detail in this book. AndroidManifest.xml contains the global settings for
your project. More importantly, AndroidManifest.xml also contains the Intent Filters
for your project.

Chapter 7 discussed how Android uses the Intent Filters to marshal what Intents can
be accepted by what Activities. The information that facilitates this process is kept in
AndroidManifest.xml.

NOTE
There is only one AndroidManifest.xml file per project.

If your AndroidManifest.xml file is currently open, it should appear as follows:

<activity android:name=".AndroidViews" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

What you are looking at here is the Intent Filter for the AndroidViews Activity, the
main Activity that was created with the project. To this file you can add any other Intent
Filters that you want your project to handle. In this case, you want to add an Intent Filter
that will handle the new Test Activity that you created.

The following is the code for the Intent Filter that you need to add to the
AndroidManifest.xml file:

<activity android:name=".Test" android:label="Test Activity">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

Adding this code to AndroidManifest.xml enables Android to pass Intents for the Test
Activity to the correct place. The full AndroidManifest.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

Chapter 8: Lists, Menus, and Other Views 155

package="android_programmers_guide.AndroidViews">
<application android:icon="@drawable/icon">

<activity android:name=".AndroidViews" android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".AutoComplete" android:label="AutoComplete">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"

/>
</intent-filter>

</activity>
</application>

</manifest>

Now your Activity can handle Intent calls for the Test Activity. To make your Intent
call to the Test Activity, you are going to use a structure very similar to the one you used
when calling the phone dialer in Chapter 7. The following line of code will set up your
Intent:

NOTE
When you start your application, the Activity that will be opened is the AndroidViews
Activity that you created with your project. Therefore, place the following code in
AndroidViews.java for the purpose of starting the Test Activity.

Intent testActivity = new Intent(this, test.class);

This line creates an Intent called testActivity. The parameter test.class tells the call
that you want the Intent testActivity to represent the Test Activity you created that is
associated with this Activity.

CAUTION
Do not forget to import the android.content.Intent package when you are working with
Intents.

Finally, use the startActivity() method to actually start the Test Activity:

156 Android: A Programmer’s Guide

Chapter 8: Lists, Menus, and Other Views 157

startActivity(autocomplete);

Your completed AndroidViews.java file should look like this:

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.content.Intent;

public class AndroidViews extends Activity {
/** Called when the Activity is first created. /
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
/**Set up our Intent /

Run this application in your Android Emulator. Android should launch the
AndroidViews Activity, followed quickly by the Test Activity.

In the following section, you will use these techniques to create an application that
launches multiple Activities. Each of these Activities will house one View to which you
can apply different options. This will give you a great deal of practice displaying and
manipulating Views as well as working with Activities.

NOTE
To work with the remaining samples in the upcoming section, remove the Test Activity
that you created in this section. You will proceed with the creation of the AndroidViews
project without the Test Activity.

Using the Menu
In this section, you are going to build an application that will allow a user to select from a
number of different Views. When the user selects a View, a new Activity will be launched
containing the selected View.

158 Android: A Programmer’s Guide

The tool you are going to use to offer the selections to the user is the Android Menu.
Take a look the following illustration. The Menu is displayed when the user activates the
Menu Button.

As you can see, selecting the Menu Button from the Android home screen produces a
Wallpaper settings option. You are going to create a similar menu for your main Activity
that will hold all the options for the Views that the user will be able to select from. Right
now, the code of your AndroidViews.java file should look like this:

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;

public class AndroidViews extends Activity {
/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);

setContentView(R.layout.main);
}

}

As with everything you add to your Activities, you need to import a new package to
create your menu. Import the android.view.Menu into your AndroidViews Activity:

Import android.view.Menu;

To create the Menu, you need to override the onCreateOptionsMenu() method of the
Activity. The method onCreateOptionsMenu() is a Boolean method that is called when
the user first selects the Menu Button. You will use this method to build your Menu and
add your selection items to it. Add the following code to AndroidViews.java:

@Override
public boolean onCreateOptionsMenu(Menu menu) {

super.onCreateOptionsMenu(menu);
}

You will add the code to create the Menu inside the onCreateOptionsMenu() method.
The items that you need to add to the Menu are the Views that you are going to create
in this project. The following is the list of View names that you will need to add to
the Menu:

● AutoComplete

● Button

● CheckBox

● EditText

● RadioGroup

● Spinner

In the preceding code that you created to override the onCreateOptionsMenu()
method, you passed in a Menu variable called menu. This variable represents the actual
menu item that is created on the Android interface.

To add your list of items to the Menu, you will use the menu.add() method. The
syntax for this call is as follows:

menu.add(<group>,<id>,<title>)

Chapter 8: Lists, Menus, and Other Views 159

160 Android: A Programmer’s Guide

The parameter group is used to associate the menu items. You will not be using group
in this example. However, the value is very important. The parameter id is used to
determine what menu item was selected. Finally, the parameter title is the text that will
be displayed in the Menu.

Add the following code to the onCreateOptionsMenu() method:

menu.add(0, 0, "AutoComplete");
menu.add(0, 1, "Button");
menu.add(0, 2, "CheckBox");
menu.add(0, 3, "EditText");
menu.add(0, 4, "RadioGroup");
menu.add(0, 5, "Spinner");

Your full AndroidViews.java file should now look like this:

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;

public class AndroidViews extends Activity {
/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

menu.add(0, 0, "AutoComplete");
menu.add(0, 1, "Button");
menu.add(0, 2, "CheckBox");
menu.add(0, 3, "EditText");
menu.add(0, 4, "RadioGroup");
menu.add(0, 5, "Spinner");
return true;

}
}

If you execute this code as it is written, you should see the menu shown in Figure 8-1.

This is exactly what you wanted to accomplish. However, try clicking any of the
options in the Menu. You do not have anything in your Activity that handles events
when the user selects a Menu item.

The method you need to override to handle the calls to the Menu items is
onOptionsItemSelected(). Again, like onCreateOptionsMenu(), onOptionsItemSelected()
is a Boolean method that you need to override with the specific code to be executed when
a Menu item is selected. The override code should look like this:

@Override
public boolean onOptionsItemSelected(Menu.Item item){
}

There is one problem with this code: onOptionsItemSelected() is a general method
that is called when any menu item is selected. You need to give onOptionsItemSelected()
a way to differentiate between the menu items and execute code accordingly. Therefore,

Chapter 8: Lists, Menus, and Other Views 161

Figure 8-1 Menu with six Views

162 Android: A Programmer’s Guide

use a switch/case statement to help the method select between the menu items. When you
created the menu items, you specified a series of numbers from 0 to 5 as the values for
your menu items. You can use a call to getId() in your case statement to determine which
menu item was selected:

switch (item.getId()) {
case 0:

return true;
case 1:

return true;
case 2:

return true;
case 3:

return true;
case 4:

return true;
case 5:

return true;
}
return true;

In this case statement, the action for each id is currently set to return true. This
will not do anything but hold open the area where you need to add code. Your
AndroidViews.java file is now ready for use to create Activities that can be launched
by the new menu system. The full code of AndroidViews.java should look like this:

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;

public class AndroidViews extends Activity {
/** Called when the Activity is first created. /
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

/** Add one menu item for each View in our project */
menu.add(0, 0, "AutoComplete");
menu.add(0, 1, "Button");
menu.add(0, 2, "CheckBox");
menu.add(0, 3, "EditText");
menu.add(0, 4, "RadioGroup");
menu.add(0, 5, "Spinner");
return true;

}
/** Override onOptionsItemSelected to execute code for each

menu item */
@Override
public boolean onOptionsItemSelected(Menu.Item item){
}
/** Select statement to handle calls

to specific menu items */
switch (item.getId()) {
case 0:

return true;
case 1:

return true;
case 2:

return true;
case 3:

return true;
case 4:

return true;
case 5:

return true;
}
return true;

}
}

With AndroidViews.java complete, you can focus on creating your other Activities. In
the following sections, you will create one Activity for each View in your project and add
the code to launch that view’s Activity in your case statement.

Creating the Activity for AutoComplete
In this section, you are going to create an Activity that will show off the
AutoCompleteTextView. AutoCompleteTextViews can be very powerful tools
for your applications. This View is specifically helpful at making the most of the
limited space available to the Android main screen.

Chapter 8: Lists, Menus, and Other Views 163

AutoCompleteTextView, as the name implies, is a modified TextView that will refer a
possible value for the completion of a word or phrase typed into it. Such Views are greatly
useful in mobile applications when you do not want to devote a large amount of space to a
ListView, or you want to speed along the process of entering text into your application.

To begin creating your Activity for the AutoCompleteTextView, you need to add
a new .xml file for that layout, a .java file for the code, and an Intent Filter to handle
the calls.

TIP
The process of creating these items appeared in the “Building the Activities” section
earlier in the chapter. Refer to that section as needed to create the following pieces of
the project.

Create an autocomplete.xml File
Create a new .xml file in your AndroidViews project named autocomplete.xml. Keep in
mind that the filename must be all lowercase. The file should appear in the layout folder
in your Package Explorer. Double-click the file to edit it.

This file is going to control the layout for your AutoCompleteTextView Activity,
so you need to have an AutoCompleteTextView in the layout. The XML for adding an
AutoCompleteTextView looks like this:

<AutoCompleteTextView android:id="@+id/testAutoComplete"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>

You have created a few Views now in .xml files, so you should be familiar with the
format. There is nothing different or unusual about the AutoCompleteTextView. You
are setting the id to testAutoComplete, and the width and height to fill_parent and
wrap_content, respectively.

You should add the layouts for two Buttons as well. These Buttons will be used to
control the attributes that you will change. Name the Buttons autoCompleteButton and
textColorButton, as follows:

<Button android:id="@+id/autoCompleteButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Layout"/>

<Button android:id="@+id/textColorButton"
android:layout_width="fill_parent"

164 Android: A Programmer’s Guide

android:layout_height="wrap_content"
android:text="Change Text Color"/>

With the three View layouts added, your finished autocomplete.xml file should look
like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<AutoCompleteTextView android:id="@+id/testAutoComplete"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
<Button android:id="@+id/autoCompleteButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Layout"/>
<Button android:id="@+id/textColorButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Text Color"/>
</LinearLayout>

Create an autocomplete.java File
Follow the instructions that were introduced in the “Creating a New .java File” section
earlier in this chapter to create your autocomplete.xml file.

The first thing you need to do is import the packages for your Views. In this Activity,
you are using two Views, the AutoCompleteTextView and the Button. You also need to
work with Colors and an ArrayAdapter. Therefore, import the following packages with
your Activity:

package android_programmers_guide.AndroidViews;
import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.AutoCompleteTextView;
import android.widget.Button;
import android.graphics.Color;

NOTE
While you may not know what they are for yet, just add the packages for Color and
ArrayAdapter. I will explain them later in this section.

Chapter 8: Lists, Menus, and Other Views 165

Add the initial structure for your AutoComplete class to autocomplete.java:

public class AutoComplete extends Activity {
@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);

}
}

This class gives you a base to start building the rest of your Activity. All the functionality
of this Activity will be built around this class. The first thing you need to do is load the
layout from autocomplete.xml:

setContentView(R.layout.autocomplete);

For this example, you will create the AutoCompleteTextView so that it contains a list
of the months of the year. When a user types into the box, it will anticipate which month
they are trying to enter. Given that the AutoCompleteTextView will contain a list of the
months, you need to create a list that can be assigned to the AutoCompleteTextView.
Create a string array and assign the month values to it:

static final String[] Months = new String[]{
"January","February","March","April","May","June","July","August",
"September","October","November","December"
};

The next task is to assign this string array to the AutoCompleteTextView. You have
created more than a few Views by now, so the code to create the AutoCompleteTextView
should look very familiar. What you have not seen before is the code to assign the string
array to the View:

ArrayAdapter<String> monthArray = new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, Months);

final AutoCompleteTextView textView = (AutoCompleteTextView)
findViewById(R.id.testAutoComplete);
textView.setAdapter(monthArray);

In the first line, you are taking the string array you created and assigning it to an
ArrayAdapter named monthArray. Next, you instantiate your AutoCompleteTextView
by locating it in the .xml layout file. Finally, you use the setAdapter() method to assign
the monthArray ArrayAdapter to the AutoCompleteTextView.

166 Android: A Programmer’s Guide

Chapter 8: Lists, Menus, and Other Views 167

The next snippet of code instantiates the two Buttons. This is the same code you have
used in previous chapters. The only difference here from other code you have written is
that you are calling two functions, changeOption and changeOption2, which have not
been created yet.

NOTE
Notice that you are passing the AutoCompleteTextView into the function calls. You will
need to create this parameter when you create the functions.

final Button changeButton = (Button) findViewById(R.id.autoCompleteButton);
changeButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption(textView);

}
});
final Button changeButton2 = (Button)

findViewById(R.id.textColorButton);
changeButton2.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption2(textView);

}
});

The functions called by these Buttons will be used to change layout attributes on the
AutoCompleteTextView. The two attributes I have chosen to modify (using the Buttons)
are the layout height and text color. You are going to set up one of these Buttons to
change the AutoCompleteTextView’s layout height from 30 to 100 and back. The other
Button will change the color of the text within the View to red.

The function changeOption() will change the AutoCompleteTextView’s layout
height. The code for this function is very simple:

public void changeOption(AutoCompleteTextView text){
if (text.getHeight()==100){
text.setHeight(30);
}
else{

text.setHeight(100);
}

}

What you are doing in this function is checking the current height of the
AutoCompleteTextView. If that height is 100, you set it to 30; otherwise you set
it to 100.

168 Android: A Programmer’s Guide

The changeOption2() function is just as easy:

public void changeOption2(AutoCompleteTextView text){
text.setTextColor(Color.RED);
}
}

This function simply sets the text color of the AutoCompleteTextView to Color.RED.
The value Color.RED is imported from the android.graphics.Color package. You can
browse this package and change the color to any value; I selected RED so that it would
stand out.

Your full autocomplete.java file should now look like this:

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.AutoCompleteTextView;
import android.widget.Button;
import android.graphics.Color;

public class AutoComplete extends Activity {
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.autocomplete);

ArrayAdapter<String> monthArray = new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, Months);

final AutoCompleteTextView textView = (AutoCompleteTextView)
findViewById(R.id.testAutoComplete);

textView.setAdapter(monthArray);
final Button changeButton = (Button)

findViewById(R.id.autoCompleteButton);
changeButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption(textView);

}
});
final Button changeButton2 = (Button)

findViewById(R.id.textColorButton);

changeButton2.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

changeOption2(textView);

}
});

}

static final String[] Months = new String[]{
"January","February","March","April","May","June","July","August",
"September","October","November","December"
};

public void changeOption(AutoCompleteTextView text){
if (text.getHeight()==100){
text.setHeight(30);
}
else{

text.setHeight(100);

}
}
public void changeOption2(AutoCompleteTextView text){
text.setTextColor(Color.RED);
}
}

Add an Intent Filter
The last thing you need to do before you can run this application is to set up the Intent
Filter in AndroidManifest.xml. You will then be able to call that Intent from the Menu
shown earlier in Figure 8-1. The code for the Intent Filter should look as follows:

<activity android:name=".AutoComplete" android:label="AutoComplete">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>

Here is your completed AndroidManifest.xml file for this project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="android_programmers_guide.AndroidViews">

Chapter 8: Lists, Menus, and Other Views 169

<application android:icon="@drawable/icon">
<activity android:name=".AndroidViews"

android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".AutoComplete" android:label="AutoComplete">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"

/>
</intent-filter>

</activity>
</application>

</manifest>

Handling the Intent Call
With AndroidManifest.xml complete, add the following function to AndroidViews.java:

public void showAutoComplete(){
Intent autocomplete = new Intent(this, AutoComplete.class);
startActivity(autocomplete);

}

When called from your select/case statement, this function will open your
autocomplete Activity. Edit the case 0 of the select statement to let it call the new
function:

case 0:
showAutoComplete();
return true;

Run the application in the Android Emulator. When the main Activity is launched,
click the Menu Button, and you should see the menu shown earlier in Figure 8-1. Click
the AutoComplete menu item.

Clicking the AutoComplete Button menu item should bring up your autocomplete
Activity, shown next.

170 Android: A Programmer’s Guide

Chapter 8: Lists, Menus, and Other Views 171

To test the AutoCompleteTextView, begin typing the word January. After you type
a few characters, you should see the word January appear under the text box, as shown in
the following illustration.

Next, click the Change Layout Button, the result of which should be an expanded text
entry box similar to that shown in the following illustration.

Now click the Change Text Color Button and type some text, as shown next.

172 Android: A Programmer’s Guide

The following sections give you the supporting code for implementing the remaining
five Views in your project.

Button
Take a look at the following code. This code represents four files, AndroidManifest.xml,
Button.xml, testButton.java, and AndroidViews.java. Add the code in these files to your
existing AndroidViews Activity.

CAUTION
If you have not followed this chapter from the beginning, you may have trouble
implementing this code. To make sure you are getting the full project, follow this
chapter from the beginning.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="android_programmers_guide.AndroidViews"
<application android:icon="@drawable/icon">

<activity android:name=".AndroidViews"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".AutoComplete" android:label="AutoComplete">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testButton" android:label="TestButton">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

</application>
</manifest>

Button.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"

Chapter 8: Lists, Menus, and Other Views 173

android:layout_height="fill_parent">
<Button android:id="@+id/testButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="This is the test Button"/>
<Button android:id="@+id/layoutButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Layout"/>
<Button android:id="@+id/textColorButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Text Color"/>
</LinearLayout>

testButton.java
package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.graphics.Color;
public class testButton extends Activity {

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.Button);

final Button Button = (Button) findViewById(R.id.testButton);

final Button changeButton = (Button)findViewById(R.id.layoutButton);
changeButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption(Button); }

});
final Button changeButton2 = (Button)

findViewById(R.id.textColorButton);
changeButton2.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption2(Button);

}
});

}
public void changeOption(Button Button){
if (Button.getHeight()==100){

Button.setHeight(30);
}

174 Android: A Programmer’s Guide

Chapter 8: Lists, Menus, and Other Views 175

else{
Button.setHeight(100);

}
}
public void changeOption2(Button Button){
Button.setTextColor(Color.RED);

}
}

AndroidViews.java
package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.content.Intent;

public class AndroidViews extends Activity {
/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

menu.add(0, 0, "AutoComplete");
menu.add(0, 1, "Button");
menu.add(0, 2, "CheckBox");
menu.add(0, 3, "EditText");
menu.add(0, 4, "RadioGroup");
menu.add(0, 5, "Spinner");
return true;

}
@Override
public boolean onOptionsItemSelected(Menu.Item item){
switch (item.getId()) {
case 0:

showAutoComplete();
return true;

case 1:
showButton();
return true;

176 Android: A Programmer’s Guide

case 2:
return true;

case 3:
return true;

case 4:
return true;

case 5:
return true;

}
return true;

}
public void showButton() {

Intent showButton = new Intent(this, testButton.class);
startActivity(showButton);

}
public void showAutoComplete(){

Intent autocomplete = new Intent(this, AutoComplete.class);
startActivity(autocomplete);

}
}

Launch your application and select the Button option from the Menu (shown earlier in
Figure 8-1).

The following illustration shows what the Button Activity looks like.

Try clicking the Change Layout Button. Again, the result is a wider display area for
the text, as depicted in the following illustration.

Click the Change Text Color Button and the text should turn red, as shown next.

Chapter 8: Lists, Menus, and Other Views 177

178 Android: A Programmer’s Guide

CheckBox
In this section you will be creating an Activity for the CheckBox View. The steps for
creating the Activities are identical to those in the preceding sections. Therefore, you will
be provided with the full code of the three main Activity files—AndroidManifest.xml,
checkbox.xml, and testCheckBox.java. These files are provided for you in the following
sections.

AndroidManifest.xml
This section contains the full code of the current AndroidViews’ AndroidManifest.xml. If
you are following along in Eclipse, modify your Activity’s AndroidManifest.xml to look
as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="android_programmers_guide.AndroidViews">
<application android:icon="@drawable/icon">

<activity android:name=".AndroidViews"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".AutoComplete" android:label="AutoComplete">

<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
<activity android:name=".testButton" android:label="TestButton">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testCheckBox" android:label="TestCheckBox">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

</application>
</manifest>

Chapter 8: Lists, Menus, and Other Views 179

checkbox.xml
This section shows the complete code of the checkbox.xml. Create a new XML file in
your project named checkbox.xml using the instructions outlined earlier in this chapter.
Use the following code to model your file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<CheckBox android:id="@+id/testCheckBox"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="This is the test CheckBox"/>
<Button android:id="@+id/layoutButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Layout"/>
<Button android:id="@+id/textColorButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Text Color"/>
</LinearLayout>

testCheckBox.java
This section covers the final new file needed to implement your CheckBox Activity.
Create a new .java file in your project named testCheckBox.java. This file is the main
file of the Activity and contains the actionable code. Use the following code in your
testCheckBox.java.

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.CheckBox;
import android.widget.Button;
import android.graphics.Color;

public class testCheckBox extends Activity {

180 Android: A Programmer’s Guide

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.checkbox);

final CheckBox checkbox = (CheckBox)findViewById(R.id.testCheckBox);

final Button changeButton = (Button)findViewById(R.id.layoutButton);
changeButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption(checkbox); }

});
final Button changeButton2 = (Button)

findViewById(R.id.textColorButton);
changeButton2.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption2(checkbox);

}
});

}
public void changeOption(CheckBox checkbox){
if (checkbox.getHeight()==100){

checkbox.setHeight(30);
}
else{

checkbox.setHeight(100);
}

}
public void changeOption2(CheckBox checkbox){
checkbox.setTextColor(Color.RED);

}
}

AndroidViews.java
The last step to create this Activity is to edit the AndroidViews.java. If you want to call
the testCheckBox Activity from the main AndroidViews Activity, you must add code to the
AndroidViews.java. Compare the following code with that in your current AndroidViews.java.
Add the needed code to complete your file.

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.content.Intent;

Chapter 8: Lists, Menus, and Other Views 181

public class AndroidViews extends Activity {
/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

menu.add(0, 0, "AutoComplete");
menu.add(0, 1, "Button");
menu.add(0, 2, "CheckBox");
menu.add(0, 3, "EditText");
menu.add(0, 4, "RadioGroup");
menu.add(0, 5, "Spinner");
return true;

}
@Override
public boolean onOptionsItemSelected(Menu.Item item){
switch (item.getId()) {
case 0:

showAutoComplete();
return true;

case 1:
showButton();
return true;

case 2:
showCheckBox()
return true;

case 3:
return true;

case 4:
return true;

case 5:
return true;

}
return true;

}
public void showButton() {

Intent showButton = new Intent(this, testButton.class);
startActivity(showButton);

}
public void showAutoComplete(){

Intent autocomplete = new Intent(this, AutoComplete.class);
startActivity(autocomplete);

}
public void showCheckBox() {

Intent checkbox = new Intent(this, testCheckBox.class);
startActivity(checkbox);

}
}

Launch your application and select the CheckBox option from the Menu (shown
earlier in Figure 8-1).

The following illustration shows what the CheckBox Activity looks like.

Try clicking the Change Layout and Change Test Color Buttons. The results are
depicted in the following illustrations.

182 Android: A Programmer’s Guide

Chapter 8: Lists, Menus, and Other Views 183

EditText
In this section, much like the last, you will be creating an Activity for the EditText
View. The steps for creating the Activities are identical to those in the preceding
sections. Therefore you will be provided with the full code of the three main Activity
files—AndroidManifest.xml, edittext.xml, and testEditText.java. These files are
provided for you in the following sections.

AndroidManifest.xml
This section contains the full code of the current AndroidViews’ AndroidManifest.xml. If
you are following along in Eclipse, modify your Activity’s AndroidManifest.xml to look
as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="android_programmers_guide.AndroidViews">

184 Android: A Programmer’s Guide

<application android:icon="@drawable/icon">
<activity android:name=".AndroidViews"

android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".AutoComplete" android:label="AutoComplete">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testButton" android:label="TestButton">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testCheckBox" android:label="TestCheckBox">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testEditText" android:label="TestEditText">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

</application>
</manifest>

edittext.xml
This section shows the complete code of the edittext.xml. Create a new XML file in your
project named edittext.xml using the instructions outlined earlier in this chapter. Use the
following code to model your file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"

Chapter 8: Lists, Menus, and Other Views 185

android:layout_height="fill_parent"
>

<EditText android:id="@+id/testEditText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<Button android:id="@+id/layoutButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Layout"/>
<Button android:id="@+id/textColorButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Text Color"/>
</LinearLayout>

testEditText.java
This section covers the final file needed to implement your EditText Activity. Create
a new .java file in your project named testEditText.java. This file is the main file
of the Activity and contains the actionable code. Use the following code in your
testEditText.java to finish this Activity.

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.Button;
import android.graphics.Color;

public class testEditText extends Activity {
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.edittext);

final EditText edittext = (EditText)findViewById(R.id.testEditText);

final Button changeButton = (Button)findViewById(R.id.layoutButton);
changeButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){

186 Android: A Programmer’s Guide

changeOption(edittext); }
});
final Button changeButton2 = (Button)

findViewById(R.id.textColorButton);
changeButton2.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption2(edittext);

}
});

}
public void changeOption(EditText edittext){
if (edittext.getHeight()==100){

edittext.setHeight(30);
}
else{

edittext.setHeight(100);
}

}
public void changeOption2(EditText edittext){
edittext.setTextColor(Color.RED);

}
}

AndroidViews.java
The last step to create this Activity is to edit the AndroidViews.java. If you want to call
the testEditText Activity from the main AndroidViews Activity, you must add code to the
AndroidViews.java. Compare the following code with that in your current AndroidViews.java.
Add the needed code to complete your file.

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.content.Intent;

public class AndroidViews extends Activity {
/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

menu.add(0, 0, "AutoComplete");
menu.add(0, 1, "Button");
menu.add(0, 2, "CheckBox");
menu.add(0, 3, "EditText");
menu.add(0, 4, "RadioGroup");
menu.add(0, 5, "Spinner");
return true;

}
@Override
public boolean onOptionsItemSelected(Menu.Item item){
switch (item.getId()) {
case 0:

showAutoComplete();
return true;

case 1:
showButton();
return true;

case 2:
showCheckBox();
return true;

case 3:
showEditText();
return true;

case 4:
showRadioGroup();
return true;

case 5:
showSpinner();
return true;

}
return true;

}
public void showButton() {

Intent showButton = new Intent(this, testButton.class);
startActivity(showButton);

}
public void showAutoComplete(){

Intent autocomplete = new Intent(this, AutoComplete.class);

Chapter 8: Lists, Menus, and Other Views 187

startActivity(autocomplete);
}
public void showCheckBox(){

Intent checkbox = new Intent(this, testCheckBox.class);
startActivity(checkbox);

}
public void showEditText() {

Intent edittext = new Intent(this, testEditText.class);
startActivity(edittext);

}
}

Launch your application and select the EditText option from the Menu (shown earlier
in Figure 8-1).

The following illustration shows what the EditText Activity looks like.

Click the Change Layout and Change Test Color Buttons. The results are depicted in
the following illustrations.

188 Android: A Programmer’s Guide

RadioGroup
In this section you will be creating an Activity for the RadioGroup View. The steps for
creating the Activities are identical to those in the preceding sections. Therefore you will
be provided with the full code of the three main Activity files—AndroidManifest.xml,
radiogroup.xml, and testRadioGroup.java. These files are provided for you in the
following sections.

AndroidManifest.xml
This section contains the full code of the current AndroidViews’ AndroidManifest.xml. If
you are following along in Eclipse, modify your Activity’s AndroidManifest.xml to look
as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="android_programmers_guide.AndroidViews">
<application android:icon="@drawable/icon">

<activity android:name=".AndroidViews"

Chapter 8: Lists, Menus, and Other Views 189

190 Android: A Programmer’s Guide

android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".AutoComplete" android:label="AutoComplete">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testButton" android:label="TestButton">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testCheckBox" android:label="TestCheckBox">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testEditText" android:label="TestEditText">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

<activity android:name=".testRadioGroup" android:label="Test
RadioGroup">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

</application>
</manifest>

radiogroup.xml
This section shows the complete code of the radiogroup.xml. Create a new XML file in
your project named radiogroup.xml using the instructions outlined earlier in this chapter.
Use the following code to model your file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

Chapter 8: Lists, Menus, and Other Views 191

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<RadioGroup android:id="@+id/testRadioGroup"
android:layout_width="fill_parent"
android:layout_height="wrap_content" >

<RadioButton
android:text="Radio 1"
android:id="@+id/radio1"
/>

<RadioButton
android:text="Radio 2"
android:id="@+id/radio2" />

</RadioGroup>
<Button android:id="@+id/enableButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Set isEnabled"/>
<Button android:id="@+id/backgroundColorButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Background Color"/>
</LinearLayout>

testRadioGroup.java
This section covers the final file needed to implement your RadioGroup Activity. Create
a new .java file in your project named testRadioGroup.java. This file is the main file
of the Activity and contains the actionable code. Use the following code in your
testRadioGroup.java to finish this Activity.

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.RadioGroup;
import android.widget.Button;
import android.graphics.Color;

public class testRadioGroup extends Activity {
@Override
public void onCreate(Bundle icicle) {

192 Android: A Programmer’s Guide

super.onCreate(icicle);
setContentView(R.layout.radiogroup);

final RadioGroup radiogroup = (RadioGroup)
findViewById(R.id.testRadioGroup);

final Button changeButton = (Button)findViewById(R.id.enableButton);
changeButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption(radiogroup); }

});
final Button changeButton2 = (Button)

findViewById(R.id.backgroundColorButton);
changeButton2.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption2(radiogroup);

}
});

}
public void changeOption(RadioGroup radiogroup){
if (radiogroup.isEnabled()){

radiogroup.setEnabled(false);
}
else{

radiogroup.setEnabled(true);
} }

public void changeOption2(RadioGroup radiogroup){
radiogroup.setBackgroundColor(Color.RED);

}
}

AndroidViews.java
The last step to create this Activity is to edit the AndroidViews.java. If you want to call
the testRadioGroup Activity from the main AndroidViews Activity, you must add code to the
AndroidViews.java. Compare the following code with that in your current AndroidViews.java.
Add the needed code to complete your file.

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.content.Intent;

public class AndroidViews extends Activity {
/** Called when the Activity is first created. */

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

menu.add(0, 0, "AutoComplete");
menu.add(0, 1, "Button");
menu.add(0, 2, "CheckBox");
menu.add(0, 3, "EditText");
menu.add(0, 4, "RadioGroup");
menu.add(0, 5, "Spinner");
return true;

}
@Override
public boolean onOptionsItemSelected(Menu.Item item){
switch (item.getId()) {
case 0:

showAutoComplete();
return true;

case 1:
showButton();
return true;

case 2:
showCheckBox();
return true;

case 3:
showEditText();
return true;

case 4:
showRadioGroup();
return true;

case 5:
showSpinner();
return true;

}
return true;

}
public void showButton() {

Intent showButton = new Intent(this, testButton.class);
startActivity(showButton);

Chapter 8: Lists, Menus, and Other Views 193

194 Android: A Programmer’s Guide

}
public void showAutoComplete(){

Intent autocomplete = new Intent(this, AutoComplete.class);
startActivity(autocomplete);

}
public void showCheckBox(){

Intent checkbox = new Intent(this, testCheckBox.class);
startActivity(checkbox);

}
public void showEditText() {

Intent edittext = new Intent(this, testEditText.class);
startActivity(edittext);

}
public void showRadioGroup(){

Intent radiogroup = new Intent(this, testRadioGroup.class);
startActivity(radiogroup);

}
public void showSpinner(){
}
}

Launch your application and select the RadioGroup option from the Menu (shown
earlier in Figure 8-1).

The following illustration shows what the RadioGroup Activity looks like.

Chapter 8: Lists, Menus, and Other Views 195

Try clicking the Set isEnabled and Change Background Color Buttons. The results
are depicted in the following illustrations. Notice that the Set isEnabled Button for the
RadioGroup disables the group, whereas the Change Background Color Button changes
the group’s background color.

Spinner
In this section you will be creating an Activity for the Spinner View. A Spinner View
is similar to a ComboBox in other programming languages. The steps for creating the
Activities are identical to those in the preceding sections. Therefore you will be provided
with the full code of the three main Activity files—AndroidManifest.xml, spinner.xml,
and testSpinner.java. These files are provided for you in the following sections.

AndroidManifest.xml
This section contains the full code of the current AndroidViews’ AndroidManifest.xml. If
you are following along in Eclipse, modify your Activity’s AndroidManifest.xml to look
as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="android_programmers_guide.AndroidViews">
<application android:icon="@drawable/icon">

<activity android:name=".AndroidViews"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".AutoComplete" android:label="AutoComplete">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testButton" android:label="TestButton">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testCheckBox" android:label="TestCheckBox">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<activity android:name=".testEditText" android:label="TestEditText">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

<activity android:name=".testRadioGroup" android:label="Test
RadioGroup">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

<activity android:name=".testSpinner" android:label="Test Spinner">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

196 Android: A Programmer’s Guide

Chapter 8: Lists, Menus, and Other Views 197

spinner.xml
This section shows the complete code of the spinner.xml. Create a new XML file in your
project named spinner.xml using the instructions outlined earlier in this chapter. Use the
following code to model your file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<Spinner android:id="@+id/testSpinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<Button android:id="@+id/enableButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Set isEnabled"/>
<Button android:id="@+id/backgroundColorButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Change Background Color"/>
</LinearLayout>

testSpinner.java
This section covers the final file needed to implement your Spinner Activity. Create a new
.java file in your project named testSpinner.java. This file is the main file of the Activity
and contains the actionable code. Use the following code in your testSpinner.java to finish
this Activity.

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.Button;
import android.graphics.Color;

198 Android: A Programmer’s Guide

public class testSpinner extends Activity {
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.spinner);

final Spinner spinner = (Spinner) findViewById(R.id.testSpinner);
ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_spinner_item, Months);
adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinner.setAdapter(adapter);

final Button changeButton = (Button)findViewById(R.id.enableButton);
changeButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption(spinner); }

});
final Button changeButton2 = (Button)

findViewById(R.id.backgroundColorButton);
changeButton2.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
changeOption2(spinner);

}
});

}
static final String[] Months = new String[]{
"January","February","March","April","May","June","July","August",
"September","October","November","December"
};

public void changeOption(Spinner spinner){
if (spinner.isEnabled()){

spinner.setEnabled(false);
}
else{

spinner.setEnabled(true);
}

}
public void changeOption2(Spinner spinner){
spinner.setBackgroundColor(Color.RED);

}
}

AndroidViews.java
The last step to create this Activity is to edit the AndroidViews.java. If you want to call
the testSpinner Activity from the main AndroidViews Activity, you must add code to the

Chapter 8: Lists, Menus, and Other Views 199

AndroidViews.java. Compare the following code with that in your current AndroidViews.java.
Add the needed code to complete your file.

package android_programmers_guide.AndroidViews;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.content.Intent;

public class AndroidViews extends Activity {
/** Called when the Activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

menu.add(0, 0, "AutoComplete");
menu.add(0, 1, "Button");
menu.add(0, 2, "CheckBox");
menu.add(0, 3, "EditText");
menu.add(0, 4, "RadioGroup");
menu.add(0, 5, "Spinner");
return true;

}
@Override
public boolean onOptionsItemSelected(Menu.Item item){
switch (item.getId()) {
case 0:

showAutoComplete();
return true;

case 1:
showButton();
return true;

case 2:
showCheckBox();
return true;

case 3:
showEditText();
return true;

case 4:
showRadioGroup();
return true;

case 5:
showSpinner();
return true;

}
return true;

}
public void showButton() {

Intent showButton = new Intent(this, testButton.class);
startActivity(showButton);

}
public void showAutoComplete(){

Intent autocomplete = new Intent(this, AutoComplete.class);
startActivity(autocomplete);

}
public void showCheckBox(){

Intent checkbox = new Intent(this, testCheckBox.class);
startActivity(checkbox);

}
public void showEditText() {

Intent edittext = new Intent(this, testEditText.class);
startActivity(edittext);

}
public void showRadioGroup(){

Intent radiogroup = new Intent(this, testRadioGroup.class);
startActivity(radiogroup);

}
public void showSpinner(){

Intent spinner = new Intent(this, testSpinner.class);
startActivity(spinner);

}
}

Launch your application and select the Spinner option from the Menu (shown earlier
in Figure 8-1).

The following illustration shows what the Spinner Activity looks like.

200 Android: A Programmer’s Guide

Chapter 8: Lists, Menus, and Other Views 201

Try clicking the Set isEnabled and Change Background Color Buttons. The results are
depicted in the following illustrations.

Try This Modify More View Attributes
Modify the Button actions for the Activities to change different attributes on each View:

● Use Eclipse’s list feature to see what attributes are available for each View.

● Edit the two Button functions on any given Activity to change how the Buttons
interact with that View.

In the next chapter you will utilize more of the Google API. You will create
applications that interface with GTalk. This will give you a great base of knowledge
on which to build your own unique applications.

202 Android: A Programmer’s Guide

Ask the Expert
Q: If I am using multiple Views in my application, can I just import the full widget

package using the call import android.widget.*;?

A: Yes. However, I would use calls like this sparingly. When you import the entire root of
a specific package, you add all the code of that package to your Activity. This can slow
down your Activity if not managed. I try to import just those sections of specific
packages that I need, in an attempt to reduce the amount of code in the Activity.

Chapter9
Using the Cell Phone’s
GPS Functionality

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

In this chapter, you are going to learn about the Android Location-Based API. This
chapter is invaluable if you want to leverage the ability of Android to work with the
Global Positioning System (GPS) hardware of a device. You will use the Android
Location-Based API to collect your current position and display that location to the
screen. Toward the end of this chapter, you will use Google Maps to display your
current location on your cell phone.

You will also learn some new techniques that will add some depth and creativity to
your Activities. Resources such as RelativeLayouts and small buttons will let you create
more user-friendly and visually appealing Activities for Android.

In the first section of this chapter, you will learn about using your device’s GPS
hardware to obtain your current location. However, before you jump into that section,
you need to create your project for this chapter. Create a new Project in Eclipse and
name it AndroidLBS.

Using the Android Location-Based API
The Android SDK contains an API that is specifically geared to help you interface your
Activity with any GPS hardware that may be in your device. This chapter assumes that
your device will include GPS hardware.

CAUTION
Just as Android-based cell phones are not required to include a camera, they are not
required to include GPS hardware either, although many models likely will include both
a camera and GPS hardware. Android included the Android Location-Based API in
anticipation that GPS hardware will be included in many cell phones.

204 Android: A Programmer’s Guide

Key Skills & Concepts
● Using the Android location-based service APIs

● Obtaining coordinate data from the GPS hardware

● Changing your Activity’s look and feel with a RelativeLayout

● Using a MapView to plot your current location

● Using Google Maps to find your current location

Because you are working on a software-based emulator, and not on a real device, the
presence of GPS hardware has to be simulated. In this case, Android provides a file in
the adb server that simulates having GPS hardware. The file is located at

data/misc/location/<provider>

where <provider> represents the location information provider. The provider that Android
supplies to you is

data/misc/location/gps

TIP
You can have multiple providers to simulate different scenarios. Therefore, you can
create a provider named test or gps1; whichever you prefer.

Within the specific provider’s folder could be any number of files that will hold the
sample coordinates that you want Android to use. When you are using the Android
Emulator, you can use the following types of files to store/retrieve GPS style coordinates.
Each of these file types has a different format for providing information to the Android
Location-Based API.

● kml

● nmea

● track

Let’s take a look at what each of these files does and how they differ from each other.

Creating a kml File
A .kml file is a Keyhole Markup Language file. These files were originally developed for,
and can be created by, Google Earth. The Android Location-Based API can parse a .kml
file for coordinates to simulate a GPS.

NOTE
If you do not have Google Earth, it is a free download from Google. Installing
it may be worth your time if you want to develop more Android Location-Based
API Activities.

Chapter 9: Using the Cell Phone’s GPS Functionality 205

To create a .kml file from Google Earth, open Google Earth and navigate to a location.
In the following illustration, I have navigated to Tampa, Florida.

Choose File | Save As and choose KML. In the example, this produces a .kml file with
the navigation information for Tampa, Florida. The following .kml code is from this file.
Pay close attention to the <coordinates> tag, which is what the Android Location-Based
API would be read in.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
<name>Tampa, FL.kml</name>
<Styleid="default+icon=http://maps.google.com/mapfiles/kml/pal3/icon52.png">

<IconStyle>

206 Android: A Programmer’s Guide

<scale>1.1</scale>
<Icon>

<href>http://maps.google.com/mapfiles/kml/pal3/icon52.png</href>
</Icon>

</IconStyle>
<LabelStyle>

<scale>1.1</scale>
</LabelStyle>

</Style>
<Styleid="default+icon=http://maps.google.com/mapfiles/kml/pal3/icon60.png">
<IconStyle>

<Icon>
<href>http://maps.google.com/mapfiles/kml/pal3/icon60.png</href>

</Icon>
</IconStyle>

</Style>
<StyleMapid="default+nicon=http://maps.google.com/mapfiles/kml/pal3/

icon60.png+hicon=http://maps.google.com/mapfiles/kml/pal3/icon52.png">
<Pair>
<key>normal</key>

<styleUrl>#default+icon=http://maps.google.com/mapfiles/kml/pal3/
icon60.png</styleUrl>

</Pair>
<Pair>

<key>highlight</key>
<styleUrl>#default+icon=http://maps.google.com/mapfiles/kml/pal3/

icon52.png</styleUrl>
</Pair>

</StyleMap>
<Placemark>

<name>Tampa, FL</name>
<open>1</open>
<address>Tampa, FL</address>
<LookAt>

<longitude>-82.451142</longitude>
<latitude>27.98146</latitude>
<altitude>0</altitude>
<range>38427.828125</range>
<tilt>0</tilt>
<heading>0</heading>

</LookAt>
<styleUrl>#default+nicon=http://maps.google.com/mapfiles/kml/pal3/
icon60.png+hicon=http://maps.google.com/mapfiles/kml/pal3/icon52.png</styleUrl>

<Point>
<coordinates>-82.451142,27.98146,0</coordinates>

</Point>
</Placemark>
</Document>
</kml>

Chapter 9: Using the Cell Phone’s GPS Functionality 207

You can create your own .kml files with Google Earth to simulate different locations.
This is useful when you want to make an Activity that responds differently depending
on the location of the user. The ease of creating .kml files makes this a very flexible
alternative for simulating GPS hardware.

What Is a track File?
The file that Android provides in the gps folder is an .nmea file (National Marine
Electronics Association file). An .nmea file can be output from many popular GPS
products. These files are in a common format and can contain multiple coordinates
and elevations, representing trips or tracks. The following sections discuss getting and
opening this file in Windows and Linux, respectively.

Getting the nmea File in Windows
The nmea file provided by Android represents a short trip through San Francisco.

Let’s take a look inside the nmea file. Use the adb tool to pull the file from the server
to your desktop:

adb pull <remote file> <local file>

The following illustration depicts the use of the adb pull command to retrieve the file.

If your command executes successfully, you should see a message like that shown in
the following illustration, indicating the size of the file downloaded.

Navigating to the C:\Android folder, you can see that the adb pull tool placed the
nmea file here (see the following illustration).

208 Android: A Programmer’s Guide

Now that you have the file pulled to your desktop, associate it with Notepad.
Finally, open the file to examine its contents. You should see many rows of coordinate

data, as shown here.

Chapter 9: Using the Cell Phone’s GPS Functionality 209

Getting the nmea File in Linux
If you are using Linux for your Android development, begin a terminal session to access
the adb server. Let’s take a quick look at the steps for retrieving and editing the nmea file
in Linux.

NOTE
The screenshots in this section were taken in the Fedora distribution of Linux.

The first step is to open a new terminal session (Applications | System Tools |
Terminal).

Next, use the adb pull command to pull the nmea file to the Android folder:

adb pull data/misc/location/gps/nmea Android/

If you read the Windows directions for getting the nmea file, you’ll notice a slight
difference in the syntax for Linux; the inclusion of c:\ is unnecessary because of the
difference in directory structures.

After you execute the command from the terminal, the resulting screen should appear
as shown in the following illustration.

210 Android: A Programmer’s Guide

Chapter 9: Using the Cell Phone’s GPS Functionality 211

Use the ls command to list the files in the Android folder. If the command executed
correctly, the nmea file should appear as shown in the following illustration.

I used the Fedora GUI to navigate to the nmea file and open it in the system Text Editor.

212 Android: A Programmer’s Guide

TIP
You could just as easily use the vi editor to open, read, and modify the nmea file from
the command line.

Now that you have examined the nmea file and the different methods for simulating
a GPS device, you can begin to use the Android Location-Based API to create a
full-featured Activity.

Reading the GPS with the
Android Location-Based API

The remainder of this chapter is devoted to building an Activity, AndroidLBS, that
identifies the location of the user from the nmea file on the server. The first iteration
of this Activity will be fairly simple.

You are going to create a simple Activity that will get the user’s current GPS location.
You can then display that location as a longitude and latitude coordinate pair. In doing
this, you will get a good introduction to the Android Location-Based API and how it
functions.

Creating the AndroidLBS Activity
The following are the steps for creating this simple Activity:

1. Adjust the permissions level.

2. Create your Activity’s layout.

3. Write the code to run your Activity.

4. Run the Activity.

Adjusting the Permissions Level
The first step in working with the Android Location-Based API is to adjust the
permissions level. Using the Android Location-Based API itself does not require any
specific permission, but using the Android Location-Based API to access location
information on the GPS does.

Chapter 9: Using the Cell Phone’s GPS Functionality 213

There are two ways you can set the permission from Eclipse. The first is through
the Android Manifest Permissions wizard, which you used in Chapter 7. In Eclipse,
double-click AndroidManifest.xml to open the Android Manifest Overview window.
Click the Permission link and, using the same method described in Chapter 7, add the
ACCESS_GPS and ACCESS_LOCATION Uses Permission as shown in the following
illustration.

The second way you can add the permission values to your Activity is to edit
AndroidManifest.xml manually. You would need to add the following lines to
AndroidManifest.xml:

<uses-permission android:name="android.permission.ACCESS_GPS">
</uses-permission>
<uses-permission android:name="android.permission.ACCESS_LOCATION">
</uses-permission>

The syntax here is to add the permission name within the <uses-permission> tag.

214 Android: A Programmer’s Guide

When you have finished adding the permissions, your AndroidManifest.xml file
should look like the following code snippet. This code should look pretty familiar by
now. You are using just one Activity in the Intent Filter, and a pair of permissions.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="android_programmers_guide.AndroidLBS">
<application android:icon="@drawable/icon">

<activity android:name=".AndroidLBS"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
<uses-permission android:name="android.permission.ACCESS_GPS">
</uses-permission><uses-permission
android:name="android.permission.ACCESS_LOCATION">
</uses-permission></manifest>

Creating Your Layout
To begin designing your layout, open main.xml in Eclipse. In total, you will be adding
one Button and four TextViews to the layout. The Button will call the information from
the GPS and display it to the TextViews.

Set up the Button as follows, which creates a Button layout that fills the top part of the
screen and contains the text “Where Am I”:

<Button
android:id="@+id/gpsButton"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Where Am I"
/>

Next, set up the four TextViews. You should arrange them in the layout so that they
appear as two TextViews on top of two more TextViews. This will let you use two of

them as labels for the others. To accomplish this, you need to implement two more
LinearLayouts.

Notice that all the elements in main.xml are contained in a LinearLayout tag. This tag
binds the elements within it to certain rules. For LinearLayouts, the elements are stacked
one after the other either in a vertical or horizontal orientation.

The orientation of the LinearLayout is governed by the android:orientation attribute.
If this attribute is not assigned, the layout defaults to horizontal. Figure 9-1 shows what
a vertical LinearLayout does.

Notice that there are several slots or shelves stacked vertically. You can place
elements on these shelves to stack your items on the screen. However, if you want to
place a few items next to each other on the same shelf of a vertical LinearLayout, then
you need to place a horizontal LinearLayout on the shelf first. This concept can be seen
in Figure 9-2.

Chapter 9: Using the Cell Phone’s GPS Functionality 215

Figure 9-1 Vertical LinearLayout

Android screen

216 Android: A Programmer’s Guide

You can now stack elements next to each other and above and below each other. This
is the concept you need to employ in this Activity. Therefore, under the button, add a
horizontal LinearLayout to hold two of the TextViews.

<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android
android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/latLabel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Latitude: "

/>
<TextView

android:id="@+id/latText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

Figure 9-2 Vertical LinearLayout with embedded horizontal LinearLayout

Horizontal LinearLayout

Android screen

/>
</LinearLayout>

These two TextViews hold the label and value for the latitude that you will collect
from the GPS. Next, add another horizontal LinearLayout to hold the remaining two
TextViews:

<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android
android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/lngLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Longitude: "
/>

<TextView
android:id="@+id/lngText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>

This will give you a good layout for this particular Activity. Your finished main.xml
file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<Button
android:id="@+id/gpsButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Where Am I"
/>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

Chapter 9: Using the Cell Phone’s GPS Functionality 217

218 Android: A Programmer’s Guide

<TextView
android:id="@+id/latLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Latitude: "
/>

<TextView
android:id="@+id/latText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/lngLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Longitude: "
/>

<TextView
android:id="@+id/lngText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>
</LinearLayout>

Writing the Code to Run Your Activity
Now that you have created your layout, you can begin to write the code that will run your
Activity. Your Button needs to call the user’s current location from the GPS. Once you
have this information, you can then send the longitude and latitude to the corresponding
TextViews.

First, you need to add your import statements. The packages that you need to import to
complete this Activity include four packages for Views,

import android.view.View;
import android.widget.TextView;
import android.content.Context;
import android.widget.Button;

and one for the Android Location-Based API:

Chapter 9: Using the Cell Phone’s GPS Functionality 219

import android.location.LocationManager;

Next, create the code for the Button. The goal is to retrieve the current coordinate
information from the GPS. You have created a few Buttons already in this book, and the
format for this one is no different. You need to set up your Button and load its layout from
main.xml. Then you can set up the onClick event to call a function, LoadCoords().

final Button gpsButton = (Button) findViewById(R.id.gpsButton);
gpsButton.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

LoadCoords();
}});

The final step to create this Activity is to fill out the code of the LoadCoords()
function. Create the TextViews that you will post your coordinates to:

TextView latText = (TextView) findViewById(R.id.latText);
TextView lngText = (TextView) findViewById(R.id.lngText);

NOTE
You do not have to create the two TextViews that you will use as labels because you will
not be posting anything to them.

Now create a LocationManager from which you can pull the coordinate values. The
important part of this instantiation is that you must pass the LocationManager a context;
use the LOCATION_SERVICE:

LocationManager myManager =
(LocationManager)getSystemService(Context.LOCATION_SERVICE);

To pull the coordinates from myManager, use the getCurrentLocation() method. This
method needs one parameter, a provider, which represents the location that the API will
pull the coordinates from. In this case, Android has provided a mock location gps that
contains the nmea file discussed earlier in this chapter:

Double latPoint = myManager.getCurrentLocation("gps").getLatitude();
Double lngPoint = myManager.getCurrentLocation("gps").getLongitude();

Finally, take the new Double values and pass them to your TextViews:

latText.setText(latPoint.toString());
lngText.setText(lngPoint.toString());

Your finished code should look like this:

package android_programmers_guide.AndroidLBS;

import android.app.Activity;
import android.os.Bundle;
import android.location.LocationManager;
import android.view.View;
import android.widget.TextView;
import android.content.Context;
import android.widget.Button;

public class AndroidLBS extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
final Button gpsButton = (Button) findViewById(R.id.gpsButton);

gpsButton.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

LoadCoords();
}});

}

public void LoadCoords(){
TextView latText = (TextView) findViewById(R.id.latText);
TextView lngText = (TextView) findViewById(R.id.lngText);
LocationManager myManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);
Double latPoint = myManager.getCurrentLocation("gps").getLatitude();
Double lngPoint = myManager.getCurrentLocation("gps").getLongitude();
latText.setText(latPoint.toString());
lngText.setText(lngPoint.toString());

}
}

Running the Activity
Run your Activity in the Android Emulator. The Activity should open to the screen as
shown in the following illustration.

220 Android: A Programmer’s Guide

Click the Where Am I button. You should see the coordinates shown in this image.

Chapter 9: Using the Cell Phone’s GPS Functionality 221

Passing Coordinates to Google Maps
In this section, you will build on the Activity you created in the previous section. The
major modification you will make to your AndroidLBS Activity is to pass the coordinates
to Google Maps. You will use Google Maps to display the user’s current location.

The only change you need to make to your main.xml file is to add a layout for the
MapView. In the current version of the Android SDK, the MapView is established as a
generic View. Perhaps in a future release there will be a MapView that corresponds to
this layout.

<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

The complete main.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<Button
android:id="@+id/gpsButton"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Where Am I"
/>

<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android
android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/latLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Latitude: "
/>

<TextView
android:id="@+id/latText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

222 Android: A Programmer’s Guide

Chapter 9: Using the Cell Phone’s GPS Functionality 223

</LinearLayout>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android

android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/lngLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Longitude: "
/>

<TextView
android:id="@+id/lngText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>

<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

</LinearLayout>

Because you are embedding the MapView within this Activity, you need to change the
definition of your class. Currently, your main class extends Activity. However, to properly
work with the Google MapView, you must extend MapActivity. Therefore, you need to
import the MapActivity package and replace the Activity package with it in your header.

Import the following packages:

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;
import com.google.android.maps.Point;
import com.google.android.maps.MapController;

The Point package will be used to hold point values that represent map coordinates,
whereas the MapController will center the map to your Point. These two packages are
critical for using the MapView.

Now you are ready to add the code that will establish the map and pass your
coordinates to it. First, set up a MapView and assign it the layout from main.xml:

MapView myMap = (MapView) findViewById(R.id.myMap);

Next, set up a Point and assign it the latPoint and lngPoint values that you retrieved
from the GPS:

Point myLocation = new Point(latPoint.intValue(),lngPoint.intValue());

Now you can create your MapController, which will be used to move the focus of the
Google Map to the location you just defined in the Point. Use the getController() method
from the MapView to establish a controller in your specific Map:

MapController myMapController = myMap.getController();

The only job left is to use the controller to move the map to your location (to make the
map a little more recognizable, set the zoom to 9):

myMapController.centerMapTo(myLocation, false);
myMapController.zoomTo(9);

What you have just written is all the code needed to utilize Google Maps from your
Activity. The full class should look like this:

package android_programmers_guide.AndroidLBS;

import android.os.Bundle;
import android.location.LocationManager;
import android.view.View;
import android.widget.TextView;
import android.content.Context;
import android.widget.Button;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;
import com.google.android.maps.Point;
import com.google.android.maps.MapController;

public class AndroidLBS extends MapActivity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
final Button gpsButton = (Button) findViewById(R.id.gpsButton);
gpsButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
LoadProviders();

}});
}

224 Android: A Programmer’s Guide

public void LoadProviders(){
TextView latText = (TextView) findViewById(R.id.latText);
TextView lngText = (TextView) findViewById(R.id.lngText);
LocationManager myManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

Double latPoint =
myManager.getCurrentLocation("gps").getLatitude()*1E6;

Double lngPoint =
myManager.getCurrentLocation("gps").getLongitude()*1E6;

latText.setText(latPoint.toString());
lngText.setText(lngPoint.toString());

MapView myMap = (MapView) findViewById(R.id.myMap);
Point myLocation = new Point(latPoint.intValue(),lngPoint.intValue());

MapController myMapController = myMap.getController();
myMapController.centerMapTo(myLocation, false);
myMapController.zoomTo(9);

}
}

Run the Activity in the Emulator. The Activity should open to a blank map, as shown
in the following illustration.

Chapter 9: Using the Cell Phone’s GPS Functionality 225

Click the Where Am I button and you should see the map focus to, and zoom in
on, San Francisco. Take a look at the following illustration to see how your map
should appear.

Adding Zoom Controls
For your last exercise in this chapter, you will add two more buttons to your AndroidLBS
Activity. These buttons will control the zoom in and zoom out methods of the Google
MapView. What makes this modification a little different is that I will introduce a new
type of layout for your main.xml file: the RelativeLayout. Whereas LinearLayouts allow
you to place Views directly, one after the other, RelativeLayouts let you place Views on
top of each other.

For this Activity, you will be placing the two new buttons over the Google Map. To
achieve this effect, place the MapView within the RelativeLayout. With the MapView in
the RelativeLayout, you can add the buttons that will be placed over the map.

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"

226 Android: A Programmer’s Guide

Chapter 9: Using the Cell Phone’s GPS Functionality 227

android:layout_height="fill_parent"
>

<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

</RelativeLayout>

Now you can add your two additional buttons. Place the buttons so that they appear in
the upper-left and lower-left corners of the MapView. You need to make one change to
the standard Button layout. By default, the RelativeLayout adds the Button to align with
the top edge of the anchor view, in this case, the MapView. Therefore, in the layout, use
the android:layout_alignBottom attribute and assign it the id of the MapView. This will
align the button to the bottom of the map.

<Button android:id="@+id/buttonZoomIn"
style="?android:attr/buttonStyleSmall"

android:text="+"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
<Button android:id="@+id/buttonZoomOut"
style="?android:attr/buttonStyleSmall"
android:text="-"
android:layout_alignBottom="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

TIP
Take a close look at the layout attributes for the Button layout. I use a new attribute,
style, to make this Button a small button.

Your full main.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<Button
android:id="@+id/gpsButton"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Where Am I"
/>

228 Android: A Programmer’s Guide

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/latLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Latitude: "
/>

<TextView
android:id="@+id/latText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/lngLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Longitude: "
/>

<TextView
android:id="@+id/lngText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>
<Button android:id="@+id/buttonZoomIn"
style="?android:attr/buttonStyleSmall"
android:text="+"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
<Button android:id="@+id/buttonZoomOut"
style="?android:attr/buttonStyleSmall"
android:text="-"

android:layout_alignBottom="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

</RelativeLayout>
</LinearLayout>

You are going to make a few modifications to the code. Aside from adding the code
for the new views, you need to move some existing code around. To make your Activity
more flexible, you need to move the instantiations of the MapView and MapController to
the main part of the class. This will allow you to then pass those items into other functions
as needed (like those you will create for the zoom in and zoom out features).

final MapView myMap = (MapView) findViewById(R.id.myMap);
final MapController myMapController = myMap.getController();

Now you can create the code for the two new buttons. Create the buttons as you have
done in the past, adding calls to functions you will build next:

final Button zoomIn = (Button) findViewById(R.id.buttonZoomIn);
zoomIn.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ZoomIn(myMap,myMapController);

}});
final Button zoomOut = (Button) findViewById(R.id.buttonZoomOut);

zoomOut.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

ZoomOut(myMap,myMapController);
}});

Finally, create the functions that will control the zoom in and zoom out feature. The
maximum zoom in level is 21 and the minimum is 1. Therefore, in your function, test for
the current level before adjusting. This will ensure that you do not run into any problems.

public void ZoomIn(MapView mv, MapController mc){
if(mv.getZoomLevel()!=21){
mc.zoomTo(mv.getZoomLevel()+ 1);
}

}
public void ZoomOut(MapView mv, MapController mc){
if(mv.getZoomLevel()!=1){

mc.zoomTo(mv.getZoomLevel()- 1);
}

}

Chapter 9: Using the Cell Phone’s GPS Functionality 229

230 Android: A Programmer’s Guide

Notice that you pass the MapView and MapController into the functions. From there,
it is simply Integer manipulation to set the zoom level. The only tricky part of this
function is that the MapController physically moves the MapView to the desired zoom
level, whereas the MapView itself holds the zoom value.

TIP
Think of this relationship as being similar to that between a remote control and
a television. The remote control tunes the TV to channel 5, but the channel itself
is stored on the TV.

Your completed AndroidLBS.java file should look like this:

package android_programmers_guide.AndroidLBS;

import android.os.Bundle;
import android.location.LocationManager;
import android.view.View;
import android.widget.TextView;
import android.content.Context;
import android.widget.Button;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;
import com.google.android.maps.Point;
import com.google.android.maps.MapController;

public class AndroidLBS extends MapActivity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
final MapView myMap = (MapView) findViewById(R.id.myMap);
final MapController myMapController = myMap.getController();
final Button zoomIn = (Button) findViewById(R.id.buttonZoomIn);
zoomIn.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ZoomIn(myMap,myMapController);

}});
final Button zoomOut = (Button) findViewById(R.id.buttonZoomOut);
zoomOut.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ZoomOut(myMap,myMapController);

}});
final Button gpsButton = (Button) findViewById(R.id.gpsButton);
gpsButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
LoadProviders(myMap,myMapController);

}});

}

public void LoadProviders(MapView mv, MapController mc){
TextView latText = (TextView) findViewById(R.id.latText);
TextView lngText = (TextView) findViewById(R.id.lngText);
LocationManager myManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);
Double latPoint = myManager.getCurrentLocation("gps").getLatitude()*1E6;
Double lngPoint =

myManager.getCurrentLocation("gps").getLongitude()*1E6;
latText.setText(latPoint.toString());
lngText.setText(lngPoint.toString());
Point myLocation = new Point(latPoint.intValue(),lngPoint.intValue());
mc.centerMapTo(myLocation, false);
mc.zoomTo(9);

}
public void ZoomIn(MapView mv, MapController mc){
if(mv.getZoomLevel()!=21){
mc.zoomTo(mv.getZoomLevel()+ 1);
}

}
public void ZoomOut(MapView mv, MapController mc){
if(mv.getZoomLevel()!=1){

mc.zoomTo(mv.getZoomLevel()- 1);
}

}
}

Run this Activity in your Android Emulator. The Activity should open to a reset
MapView, with the buttons placed as shown in the following illustration.

Chapter 9: Using the Cell Phone’s GPS Functionality 231

232 Android: A Programmer’s Guide

Test the zoom in and zoom out buttons. When you zoom in, you should see something
that looks similar to the following illustration.

Try This Toggling Between MapView’s
Standard and Satellite Views

Edit the AndroidLBS Activity one more time. You should add two more buttons to the
RelativeLayout. These buttons should toggle the MapView between standard view and
satellite view. Here are some points to consider:

● Add the toggle buttons to the opposite corners of the MapView using the align layout
attributes.

● Research the MapView to find the toggling method.

● Create a function that you can pass the MapView to and toggle it.

The complete text of solution main.xml and AndroidLBS.java are as follows.

Chapter 9: Using the Cell Phone’s GPS Functionality 233

main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<Button
android:id="@+id/gpsButton"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Where Am I"
/>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/latLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Latitude: "
/>

<TextView
android:id="@+id/latText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
>

<TextView
android:id="@+id/lngLabel"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:text="Longitude: "
/>

<TextView
android:id="@+id/lngText"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
/>

</LinearLayout>

234 Android: A Programmer’s Guide

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>
<Button android:id="@+id/buttonZoomIn"
style="?android:attr/buttonStyleSmall"
android:text="+"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<Button android:id="@+id/buttonMapView"
style="?android:attr/buttonStyleSmall"
android:text="Map"
android:layout_alignRight="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<Button android:id="@+id/buttonSatView"
style="?android:attr/buttonStyleSmall"
android:text="Sat"
android:layout_alignRight="@+id/myMap"
android:layout_alignBottom="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<Button android:id="@+id/buttonZoomOut"
style="?android:attr/buttonStyleSmall"
android:text="-"
android:layout_alignBottom="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

</RelativeLayout>
</LinearLayout>

AndroidLBS.java
package android_programmers_guide.AndroidLBS;

import android.os.Bundle;
import android.location.LocationManager;
import android.view.View;
import android.widget.TextView;
import android.content.Context;
import android.widget.Button;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;
import com.google.android.maps.Point;
import com.google.android.maps.MapController;

Chapter 9: Using the Cell Phone’s GPS Functionality 235

public class AndroidLBS extends MapActivity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);
final MapView myMap = (MapView) findViewById(R.id.myMap);
final MapController myMapController = myMap.getController();
final Button zoomIn = (Button) findViewById(R.id.buttonZoomIn);
zoomIn.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ZoomIn(myMap,myMapController);

}});
final Button zoomOut = (Button) findViewById(R.id.buttonZoomOut);
zoomOut.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ZoomOut(myMap,myMapController);

}});
final Button gpsButton = (Button) findViewById(R.id.gpsButton);
gpsButton.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
LoadProviders(myMap,myMapController);

}});
final Button viewMap = (Button) findViewById(R.id.buttonMapView);
viewMap.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ShowMap(myMap);

}});
final Button viewSat = (Button) findViewById(R.id.buttonSatView);
viewSat.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ShowSat(myMap);

}});

}

public void LoadProviders(MapView mv, MapController mc){
TextView latText = (TextView) findViewById(R.id.latText);
TextView lngText = (TextView) findViewById(R.id.lngText);
LocationManager myManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);
Double latPoint =

myManager.getCurrentLocation("gps").getLatitude()*1E6;
Double lngPoint =

myManager.getCurrentLocation("gps").getLongitude()*1E6;
latText.setText(latPoint.toString());
lngText.setText(lngPoint.toString());
Point myLocation = new Point(latPoint.intValue(),lngPoint.intValue());
mc.centerMapTo(myLocation, false);
mc.zoomTo(9);

}

236 Android: A Programmer’s Guide

public void ZoomIn(MapView mv, MapController mc){
if(mv.getZoomLevel()!=21){
mc.zoomTo(mv.getZoomLevel()+ 1);
}

}
public void ZoomOut(MapView mv, MapController mc){
if(mv.getZoomLevel()!=1){

mc.zoomTo(mv.getZoomLevel()- 1);
}

}
public void ShowMap(MapView mv){

if (mv.isSatellite()){
mv.toggleSatellite();

}
}
public void ShowSat(MapView mv){

if (!mv.isSatellite()){
mv.toggleSatellite();

}
}
}

When you run your Activity, you should be able to toggle the satellite view on and
off, as shown in the following illustrations.

In the next chapter you will dive deeper into the Google API. Chapter 10 will walk
you step by step through the process of using the Google API to send GTalk messages to
and from an Android phone.

Chapter 9: Using the Cell Phone’s GPS Functionality 237

Ask the Expert
Q: Will the final release of Android continue to utilize .kml or .nmea files?

A: While the final release of Android was not finished at the time this book was written,
it can be assumed that, yes, the final release will continue to utilize .kml and/or .nmea
files. This would allow application developers to include files containing static
coordinates with their applications.

Q: Is it possible to create a Google Map that has markers on it?

A: Yes, in Chapter 11 you will learn how to manipulate Google Map Overlays. These
Views allow you to draw text, markers, and other shapes on top of Google Maps.

This page intentionally left blank

Chapter10
Using the Google API
with GTalk

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

Chapter 9 introduced you to the Google API. You created an Activity that leveraged
the Google API and Google Maps. Because of the ease and flexibility of the API,

you were able to quickly display a Google Map of a user’s current location. You also
learned how to manipulate that map with relatively few lines of code.

The Google API contains more than just hooks into Google Maps. You used a small
part of a much larger API in the last chapter. The base package for the Google API is
com.google. From this base, the Google API contains packages that allow you to create
Activities that leverage the power of GTalk (Google’s chat service), Google Calendar,
Google Docs, Google Spreadsheet, and Google Services.

When I started writing this book, the version of the Android SDK was m3-rc22. By
the time I completed writing, Google had released m5-15. In the time between these two
releases, Google had deprecated a few of these packages—while leaving them in the SDK.

Google Calendar, Google Spreadsheet, and Google Services appear to be undergoing
an upgrade that, unfortunately, leaves them in a state of incompletion for the m5-rc15
release of the SDK. Google also removed any associated help files from the SDK for these
packages, to avoid any confusion. Therefore, the focus of this chapter is a package that
works quite well with the latest release of the Android SDK—GTalk.

In this chapter, you will build a small Activity that utilizes the GTalk package of the
Android SDK. When the Activity is complete, you will be able to send GTalk messages
from your phone to other GTalk users and receive messages from them.

NOTE
In the first iteration of the Google API for Android, the package dealing with GTalk was
a much broader XMPP package. (XMPP is the protocol on which many chat platforms
are based, including GTalk and Jabber.) With the latest release of the SDK, the original
XMPP package was tightened up and renamed to reflect the specificity of GTalk.

To get started, create a new Project in Eclipse and name GoogleAPI.

240 Android: A Programmer’s Guide

Key Skills & Concepts
● Implementing a Google API package

● Configuring the XMPP development settings for Google access

● Implementing the View.OnClickListener() method

Configuring the Android Emulator for GTalk
Before you can begin coding this project, you need to adjust a development setting on the
Android Emulator, XMPP Settings.

With the project open, you need to depart from your routine for a minute. If you are
familiar with GTalk, you are aware that you can use the product only when you log into
your Google account. Therefore, you must take an extra step now to ensure that your
device (in this case, the Android Emulator) can log into your Google account, thus
enabling you to send and receive messages.

Navigate to your AndroidSDK/tools folder and launch the Emulator. You could
launch it from within the Eclipse development environment, but that would require
you to also launch an Activity that you have not coded yet. To save some time, just
launch the Emulator manually.

After the Emulator is open, click the All shortcut. Find the Dev Tools item and launch
it. You should see a menu similar to that shown in the following illustration.

Chapter 10: Using the Google API with GTalk 241

Scroll through the Dev Tools menu until you find XMPP Settings. Select XMPP
Settings and you should see the Activity shown in the following illustration.

NOTE
When you open XMPP Settings, the Activity name is GTalk Settings. This may be an
indication of where Google is going with the remaining packages of the Google API.
The noticeable disconnect in the naming may be a leftover from the changes that were
made between SDK versions.

The Activity should read Account:<None>, as the illustration shows. This indicates
that there is not login information stored for your device. You need to add the login
information for your Google account to allow your Activity access to Google’s servers.

242 Android: A Programmer’s Guide

Chapter 10: Using the Google API with GTalk 243

Click Add Account to display a screen, similar to the following, that you add your
information to.

After you input your Username and Password, click Sign In. The Android Emulator
should now attempt to authenticate your information. While the Emulator attempts to
authenticate your information, it shows an “Authenticating” message.

244 Android: A Programmer’s Guide

CAUTION
Depending on your connection and whether or not you have a debugger connected to
your Emulator, you may see this “Authenticating” message for a while. If your account
is not authenticated after a few minutes, restart your Emulator and try again.

Once your information is authenticated, you should see the screen shown in the
following illustration. Notice that there is no Return button here; just click the Home key
on the Emulator to return to the main screen.

Now that the Emulator is configured and the project is set up, you can begin to code
your Activity.

Implementing GTalk in Android
In this section you will use the Google API to create a GTalk-enabled Activity. This
Activity will send and receive messages from the GTalk network, save them on screen,
and display them in a notification bar. Your Activity will be able to communicate with
other GTalk users, whether they are using GTalk on an Android phone or the PC.

Chapter 10: Using the Google API with GTalk 245

The next section starts you off by creating the layout for the application. The first step
in coding this new Activity is to add your layouts to GoogleAPI.xml.

Creating the Activity’s Layout in the GoogleAPI.xml
This Activity consists of several Views. You need a ListView to display your text
messages as you send and receive them. You also need two EditText Views, for the
recipient’s address and the message, and a Button for the send function.

First, set up a ListView with the id of messageList, as follows. You will be using a
new attribute in this layout, android:scrollbars. Setting this attribute to vertical gives you
a way to scroll through the message list.

<ListView
android:id="@+id/messageList"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:scrollbars="vertical"
android:layout_weight="1"
android:drawSelectorOnTop="false" />

Place this ListView in the main layout tag. Under the ListView layout, place the
layout for an EditText, as follows. This EditText will hold the address of the recipient
that you are messaging.

<EditText
android:id="@+id/messageTo"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="16sp"
android:minWidth="250dp"
android:scrollHorizontally="true" />

There should be nothing out of the ordinary with this EditText View.
Finally, you need to create a new horizontal layout to hold the message contents,

EditText View, and the Send Button:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content">

<EditText
android:id="@+id/messageText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="16sp"
android:minWidth="250dp"
android:scrollHorizontally="true" />

<Button
android:id="@+id/btnSend"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Send Msg">

</Button>
</LinearLayout>

This layout will line up your Views so that they fall inline with each other. Place
this LinearLayout in your main LinearLayout. Your final GoogleAPI.xml file should
look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<ListView
android:id="@+id/messageList"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:scrollbars="vertical"
android:layout_weight="1"
android:drawSelectorOnTop="false" />

<EditText
android:id="@+id/messageTo"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="16sp"
android:minWidth="250dp"
android:scrollHorizontally="true" />

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"

246 Android: A Programmer’s Guide

android:layout_height="wrap_content">
<EditText

android:id="@+id/messageText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="16sp"
android:minWidth="250dp"
android:scrollHorizontally="true" />

<Button
android:id="@+id/btnSend"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Send Msg">

</Button>
</LinearLayout>
</LinearLayout>

Adding Packages to GoogleAPI.java
With the layout file complete, there are a number of new packages you need to add to
GoogleAPI.java. The first packages that you must import correspond to the Views you
added to the layout. Therefore, you must import the packages for the EditText, ListView,
ListAdapter, and Button:

import android.widget.EditText;
import android.widget.ListView;
import android.widget.ListAdapter;
import android.widget.Button;

You also need to import the packages of the Google API that deal with GTalk:

import com.google.android.gtalkservice.IGTalkSession;
import com.google.android.gtalkservice.IGTalkService;
import com.google.android.gtalkservice.GTalkServiceConstants;
import com.google.android.gtalkservice.IChatSession;

Some other packages that you need in this application include Intent,
ServiceConnection, Color, and Im. The full list is as follows:

import android.content.ComponentName;
import android.content.Intent;
import android.content.ServiceConnection;
import android.database.Cursor;

Chapter 10: Using the Google API with GTalk 247

248 Android: A Programmer’s Guide

import android.os.Bundle;
import android.os.DeadObjectException;
import android.os.IBinder;
import android.provider.Im;
import android.graphics.Color;
import android.view.View;
import android.widget.SimpleCursorAdapter;

As you can see, quite a few packages are needed for this Activity. However, as you
will find, the amount of code needed to send and receive a message is relatively small.
Now you need to implement an OnClickListener that will run your code.

Implementing the View.OnClickListener
You need to modify the GoogleAPI class to implement the View.OnClickListener. This
will allow you to call the onClick() method from the Activity’s main class when any
button is clicked. Normally, this way of implementing the onClick() method is only
effective when you have numerous buttons on one Activity and want to handle all the
onClick calls in one method. However, I felt that you should still see how the method
works so you can use it in your own future code. Keep in mind that I am showing this
method because it can be a valuable tool in many situations.

public class GoogleAPI extends Activity implements View.OnClickListener {
}

Implementing general variables in your Activity is another concept that hasn’t been
covered previously in this book. You need to establish in this Activity a few general
variables that you can work with from multiple methods:

EditText messageText;
ListView messageList;
IGTalkSession myIGTalkSession;
EditText messageTo;
Button sendButton;

In your onCreate() method, you will perform your normal initializations. You
should assign your layouts to your Views and set IGTalkSession to null. Also, just
to add a little bit of interest to your Activity, change the background color of the
ListView to gray.

Chapter 10: Using the Google API with GTalk 249

myIGTalkSession = null;
messageText = (EditText) findViewById(R.id.messageText);
messageList = (ListView) findViewById(R.id.messageList);
messageTo = (EditText) findViewById(R.id.messageTo);
sendButton = (Button) findViewById(R.id.btnSend);
sendButton.setOnClickListener(this);
messageList.setBackgroundColor(Color.GRAY);

TIP
Because you are implementing View.OnClickListener from your class, you can set the
Send Button’s OnClickListener() method to this.

The final piece of business to perform in the onCreate() method is to bind your
service. This process creates the connection that you will use, facilitated by the Google
account you established in the Dev Tools, to pass your GTalk messages:

this.bindService(new
Intent().setComponent(GTalkServiceConstants.GTALK_SERVICE_COMPONENT),
connection, 0);

In the bindService statement above, one of the parameters you pass to the setComponent()
method is connection. This variable represents a ServiceConnection that implements the
onServiceConnected() and onServiceDisconnected() methods. The following code builds
the connection that is bound in the previous bindService statement:

private ServiceConnection connection = new ServiceConnection() {
public void onServiceConnected(ComponentName name, IBinder service) {

try {
myIGTalkSession =

IGTalkService.Stub.asInterface(service).getDefaultSession();
} catch (DeadObjectException e) {

myIGTalkSession = null;
}
}
public void onServiceDisconnected(ComponentName name) {

myIGTalkSession = null;
}

};

In the onServiceConnected() method, you establish a session using the
IGTalkService.Stub. If this process fails, you should set the session to null once again.
Similarly, in the onServiceDisconnected() method, you set the session to null.

Now you can create the code for the class’s onClick event. There are several actions
that you should perform during each onClick event:

1. Check the database for any messages.

2. Create a ListAdapter from the results of this query and display them to the ListView.

3. Create a ChatSession to the address in the EditView and send your message text.

NOTE
The Android server includes a SQLite database that you can use to hold many
Activity-related items and any custom data you feel should be put into it. This
database is introduced in depth in Chapter 11.

The following line of code queries the database for any messages sent between you
and the messageTo recipient:

Cursor cursor = managedQuery(Im.Messages.CONTENT_URI, null,
"contact=\'" + messageTo.getText().toString() + "\'", null, null);

Use the following code to create a ListAdapter from the query results and assign the
adapter to the ListView. You have used a similar process in a previous Activity, so it
should not look foreign to you.

ListAdapter adapter = new SimpleCursorAdapter(this,
android.R.layout.simple_list_item_1, cursor,
new String[]{Im.MessagesColumns.BODY},
new int[]{android.R.id.text1});
this.messageList.setAdapter(adapter);

With the messages displayed, the last step is to send your message. The following
lines of code create an IChatSession with the specified messageTo address. The message
text is then passed over this session to the recipient.

try {
IChatSession chatSession;
chatSession =
myIGTalkSession.createChatSession(messageTo.getText().toString(););

250 Android: A Programmer’s Guide

chatSession.sendTextMessage(messageText.getText().toString());
} catch (DeadObjectException ex) {

myIGTalkSession = null;
}

When you put it all together, the complete GoogleAPI.java file should look like this:

package android_programmers_guide.GoogleAPI;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Intent;
import android.content.ServiceConnection;
import android.database.Cursor;
import android.os.Bundle;
import android.os.DeadObjectException;
import android.os.IBinder;
import android.provider.Im;
import android.graphics.Color;
import android.view.View;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.ListAdapter;
import android.widget.Button;
import android.widget.SimpleCursorAdapter;
import com.google.android.gtalkservice.IGTalkSession;
import com.google.android.gtalkservice.IGTalkService;
import com.google.android.gtalkservice.GTalkServiceConstants;
import com.google.android.gtalkservice.IChatSession;

public class GoogleAPI extends Activity implements View.OnClickListener {
EditText messageText;
ListView messageList;
IGTalkSession myIGTalkSession;
EditText messageTo;
Button mSend;

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.main);

myIGTalkSession = null;
messageText = (EditText) findViewById(R.id.messageText);
messageList = (ListView) findViewById(R.id.messageList);
messageTo = (EditText) findViewById(R.id.messageTo);
mSend = (Button) findViewById(R.id.btnSend);
mSend.setOnClickListener(this);
messageList.setBackgroundColor(Color.GRAY);

Chapter 10: Using the Google API with GTalk 251

this.bindService(new
Intent().setComponent(GTalkServiceConstants.GTALK_SERVICE_COMPONENT),
connection, 0);

}
private ServiceConnection connection = new ServiceConnection() {
public void onServiceConnected(ComponentName name, IBinder service) {

try {
myIGTalkSession =

IGTalkService.Stub.asInterface(service).getDefaultSession();
} catch (DeadObjectException e) {

myIGTalkSession = null;
}
}

public void onServiceDisconnected(ComponentName name) {
myIGTalkSession = null;

}

};
public void onClick(View view) {

Cursor cursor = managedQuery(Im.Messages.CONTENT_URI, null,
"contact=\'" + messageTo.getText().toString() + "\'",

null, null);
ListAdapter adapter = new SimpleCursorAdapter(this,

android.R.layout.simple_list_item_1, cursor,
new String[]{Im.MessagesColumns.BODY},
new int[]{android.R.id.text1});

this.messageList.setAdapter(adapter);

try {
IChatSession chatSession;
chatSession =

myIGTalkSession.createChatSession(messageTo.getText().toString());
chatSession.sendTextMessage(messageText.getText().toString());

} catch (DeadObjectException ex) {
myIGTalkSession = null;

}
}

}

Compiling and Running GoogleAPI
Now, compile and run your GoogleAPI Activity in the Emulator. If your connection is
successful, you should see a screen that looks like the following.

252 Android: A Programmer’s Guide

Chapter 10: Using the Google API with GTalk 253

To test the Activity, I sent the message “Hello” to androidprogrammersguide@gmail.com,
as shown here:

254 Android: A Programmer’s Guide

In the next illustration, you can see that clicking the Send Msg Button moves the
message I sent to the ListView of messages.

When I log in as androidprogrammersguide, I find that the message did indeed get
passed through to the intended recipient, as shown here:

I replied to the chat with the text “Greetings!” To see this, look at the following two
illustrations. Pay attention to the information bar at the top of the Activity screen. In the
illustrations that follow, you can see that message is displayed with the sender.

In the next chapter, you will create your final application, in which you will use both
the SQLite database and Google Maps Overlays to plot data records on a Google Map.
These are very powerful technologies that elevate Android above other mobile operating
systems.

Try This Add a Settings Feature to Your
GoogleAPI Activity

Edit your GoogleAPI Activity to include a settings feature. Using the AndroidViews
Activity from Chapter 8 as a guide, add a Button to the GoogleAPI Activity that can
change the layout attributes of the application. Here are some ideas for what you may
want a settings Button to do:

● Change the font of the message list

Chapter 10: Using the Google API with GTalk 255

● Change the font color in the message list for messages you send as opposed to
messages you receive

● Change the background color of the message list

256 Android: A Programmer’s Guide

Ask the Expert
Q: Can the GTalk API be used to communicate with other XMPP-based chat clients?

A: The answer to this is still unclear. The m3-rc22 version of the SDK included an XMPP
API rather than the more specific GTalk API included in the m5-15 SDK. It is possible
that these two will be combined in a future release of the Android SDK; in which case
the GTalk API can be used to communicate with other XMPP-based chat clients.

Chapter11
Application: Find a Friend

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

258 Android: A Programmer’s Guide

This is the final chapter in which you will create an application, but it will be one of the
largest applications introduced in this book. I will cover a couple of topics that you have

not encountered thus far, and you will use the skills introduced in those topics to create a
very robust application.

In this chapter, you will learn how to create SQLite databases on your Android
Emulator. I will show you how to read, write, and delete data within your custom
database. This process includes creating and using your own custom Content Provider
to work with your database. Then, you will take the data that is stored in your database
and write it out to a Google Maps Overlay. While you have worked with Google Maps
previously in this book, you have not yet used an Overlay. You use Google Maps
Overlays to draw shapes and write text on your map, resulting in very informative maps.

In this project, you will create a two-part application. The first part of the application
will allow the user to enter “friends” into a mobile database. (A friend consists of a name
and a geographic coordinate location.) The user will be able to add, modify, and delete
friends.

The second part of the application will include a menu item. When the user selects this
menu item, the application will display a Google Map. What make this different from the
other Google Map you created in Chapter 9 is that this map will include a Google Maps
Overlay, which enables you to write names, give information, and draw items on top of a
Google Maps tile.

To begin, create a new Android Project within Eclipse named FindAFriend, using the
settings shown in the following illustration.

Key Skills & Concepts
● Create a SQLite database

● Create a custom Content Provider

● Retrieve items from a database and pass them to a Google
Maps Overlay

Chapter 11: Application: Find a Friend 259

While you should be fairly comfortable creating Android applications by now, you
will have a little bit of help creating this project. Google includes in the Android SDK
an application called NotePad, a simple interface that lets you store, modify, and delete
“notes” in a database. You are going to modify some of this sample code to create the
interface for your Friends database.

If you want to see how Google NotePad works, load the project into Eclipse and run
it in your Android Emulator before you move on. You will begin to modify this code
shortly, but first, in the following section, you will create your first SQLite database.

Creating a SQLite Database
Android devices will ship with an internal SQLite database. The purpose of this database
is to give users and developers a location in which to store information that can be used in
Activities.

If you have used Microsoft SQL Server or SQLite, the structure and process for using
Android’s SQLite database will not seem foreign. Whatever your experience, this section
covers all the skills you need to create and use a fully functional SQLite database.

You are going to create a database on your Android Emulator. To do this, you need
to access the Android SDK command-line tools and use the shell command to access the
Android server.

TIP
Refer to Chapter 3 to refresh your memory on setting your Path statement and using the
command-line tools.

Once you are shelled into the server, you need to navigate to the location where the
database will reside. All SQLite databases for Android reside in the data/data/<package>/
databases directory. Use the cd command to change directories from your current location
to the data directory, and then again to the <package> directory. Use ls to list the files
and directories at your current location if you are unsure of the <package> directory
name. Change the directory to the location where <package> is, android_programmers_
guide.FindAFriend, as shown in the following illustration.

260 Android: A Programmer’s Guide

CAUTION
If you do not have an android_programmers_guide.FindAFriend directory, create your
application as explained in the previous section and quickly run the “Hello World!”
default application that is created with your project. This will ensure that you have the
correct directory.

Once you have navigated to the android_programmers_guide.FindAFriend directory,
run the ls command. This command lists all the files and directories within a specific
directory. This command should come up empty. As of right now, there are no files or
directories inside your android_programmers_guide.FindAFriend directory.

Given that SQLite databases must be in a databases directory within this directory,
this is a good time to create one. The tool mkdir creates directories for you. Therefore,
run the command mkdir databases. This creates the directory that will hold your
database.

CAUTION
Right now, you are most likely shelled into the server as root. Therefore, the directory
you just created will be accessible only to root. This will prove very problematic when
you attempt to run your Activity, because each Activity has a different user. To get
around this, for development purposes, run chmod 777 databases to grant everyone
access to the databases directory. However, in the future, you must be cautious about
granting everyone rights to sensitive items on Android. Give to specific users only those
rights that they need for specific items.

Now that you have created the directory for the database, you can create the database.
Use the cd command to navigate into your databases directory. After you are in the
databases directory, use the sqlite3 tool to create your database and name it friends.db,
as follows:

sqlite friends.db

If the command is successful, you should see a SQLite3 version message, in this case
3.5.0, and a SQLite3 prompt—sqlite>. This indicates that the database itself has been
successfully created but is still empty. The database contains no tables or data. With this
in mind, your next step is to create a table for your Activity’s data.

You need to create a table called friends. This table will hold id, name, location,
created, and modified fields. These fields will offer more than enough information for
your project.

Chapter 11: Application: Find a Friend 261

262 Android: A Programmer’s Guide

TIP
If you are not familiar with SQLite, a SQLite command must terminate with a semicolon.
This is helpful if you want to span commands across prompts. Pressing the ENTER key
without terminating a SQLite command will give you a continuation prompt, …>. You
can continue to enter your command at this prompt until you use the semicolon. SQLite
will treat such continued commands as one full command once the semicolon is used.

To create your friends table within your database, enter the following command at the
sqlite> prompt:

CREATE TABLE friends (_id INTEGER PRIMARY KEY, name TEXT, location TEXT,
created INTEGER, modified INTEGER);

If your command executes successfully, you will be returned to the sqlite> prompt, as
shown in the following illustration.

Your database is now ready to be used, and you can exit SQLite. Use the command
.exit to exit. You can then quit your shell session and return to Eclipse.

Creating the database was the first step in setting up your application. Now that the
database and corresponding table are created, you need a method to access the data. The
data access method employed by Android is a Content Provider. The following section
walks you through creating a custom Content Provider for your new database and
accessing your data.

Chapter 11: Application: Find a Friend 263

Creating a Custom Content Provider
Android uses Content Providers to mitigate access to data. You used a Content Provider
in Chapter 9 to access and read coordinate information from a GPS. The same process
applies to databases. There are Content Providers for Contact Lists, IMs, and Recent
Calls. However, there is not yet a Content Provider for your Friends database.

Android is extremely flexible and allows you to create your own custom Content
Providers for your own custom data. In this section you will create a Content Provider
that works with your Friends database. This will be the key to access the friend data and
eventually display it to the screen.

In the next section you will edit the strings.xml file. This file holds some global string
content that can be used throughout your Activity.

Editing the strings.xml
First, you will edit the strings.xml file for your project. The strings.xml file is created with
each project but you have not used it yet. This file holds static strings that can be used in
your Activities.

Typically, you will not be able to determine all of the strings that you need to use in
your Activity before you even write it. That is, you will usually add entries to strings.xml
as you build the Activity. However, because that would break the flow of the book, I am
giving you the full contents of the strings.xml file up front. Edit your strings.xml file to
look as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">FindAFriend</string>
<string name="menu_delete">Delete</string>
<string name="menu_insert">Add Friend</string>
<string name="find_friends">Find Friends</string>
<string name="menu_revert">Revert</string>
<string name="menu_discard">Discard</string>
<string name="resolve_edit">Edit location</string>
<string name="resolve_title">Edit name</string>
<string name="title_create">Create Friend</string>
<string name="title_edit">Edit Friend</string>
<string name="title_notes_list">Friends</string>
<string name="title_note">Location</string>
<string name="title_edit_title">Friend Name:</string>
<string name="button_ok">OK</string>
<string name="error_title">Error</string>

<string name="error_message">Error loading note</string>
</resources>

With the strings.xml file complete, you need to create a .java file to hold your code.
You should call this file FriendsProvider.java. You also need to create another .java file
to hold your data definition. Name this file Friends.java, because it will define what a
Friends data structure looks like and let your Content Provider access it correctly.
(Because the provider will be a class that sits in your project, there is no need to build
a corresponding .xml layout file.)

TIP
Technically, your custom Content Provider does not need to reside within the same
project or package as the rest of the code for this application. For simplicity’s sake,
I am making the Content Provider a class in the FindAFriend project. However, if you
plan to create a Content Provider that may be used by multiple projects, create it in a
separate package. This will let you call one package when you want to use the Content
Provider only.

Let’s start with the Friends.java file. You need to import only two packages for this
relatively small class:

import android.net.Uri;
import android.provider.BaseColumns;

BaseColumns will be implemented by a subclass off of your main Friends class. Name
this subclass Friend, because it will represent one friend from the Friends dataset. The
following code shows how you should set up the class outline:

public final class Friends {
public static final class Friend implements BaseColumns {

}
}

This class will hold some static variables that define each of the columns in your
Friends database, the Content URI, and the default sort order for the records.

TIP
A Content URI is used to identify the content that you will handle. This value must
be unique.

The strings that you need to define look like this:

264 Android: A Programmer’s Guide

public static final Uri CONTENT_URI
=

Uri.parse("content://android_programmers_guide.FindAFriend.Friends/friend");

public static final String DEFAULT_SORT_ORDER = "modified DESC";

public static final String NAME = "name";

public static final String LOCATION = "location";

public static final String CREATED_DATE = "created";

public static final String MODIFIED_DATE = "modified";

With these variables set, the contents of your Friends class come together perfectly.
The full file should look like this:

package android_programmers_guide.FindAFriend;

import android.net.Uri;
import android.provider.BaseColumns;

public final class Friends {
public static final class Friend implements BaseColumns {

public static final Uri CONTENT_URI
=

Uri.parse("content://android_programmers_guide.FindAFriend.Friends/friend");

public static final String DEFAULT_SORT_ORDER = "modified DESC";

public static final String NAME = "name";

public static final String LOCATION = "location";

public static final String CREATED_DATE = "created";

public static final String MODIFIED_DATE = "modified";
}

}

In the next section you will create your Content Provider.

Creating Your Content Provider
Using Eclipse, open FriendsProvider.java, which will become the Content Provider for
your project. You are going to use this custom Content Provider in your Activity to
retrieve data from your Friends database.

Chapter 11: Application: Find a Friend 265

As always, let’s start by looking at the imports for this file. You need to import the
Friends class and several other classes:

import android_programmers_guide.FindAFriend.Friends;
import android.content.*;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import android.text.TextUtils;
import android.util.Log;
import java.util.HashMap;

As you can see, you are importing several packages here, most of which deal with
SQL. I will explain these packages as you use them.

The package you will be using first is android.content. To utilize and override the
required methods for being a Content Provider, your FriendsProvider class needs to
extend ContentProvider. Take a look at the following class outline, which includes
several variable definitions that you will use throughout your provider:

public class FriendsProvider extends ContentProvider {
private SQLiteDatabase mDB;
private static final String TAG = "FriendsProvider";
private static final String DATABASE_NAME = "friends";
private static final int DATABASE_VERSION = 2;

private static HashMap<String, String> FRIENDS_PROJECTION_MAP;

private static final int FRIENDS = 1;
private static final int FRIENDS_ID = 2;

private static final UriMatcher URL_MATCHER;}

The Content Provider contains several methods that you will want to override,
including onCreate(), query(), insert(), delete(), and update(). Because these methods
will be called by Activities using your Content Provider, you must override them to
specifically access the Friends database.

The onCreate() method that you will be overriding calls a SQLiteOpenHelper.
Therefore, before you can override the onCreate() method of the ContentProvider, you
have to create a class that extends SQLiteOpenHelper.

266 Android: A Programmer’s Guide

Chapter 11: Application: Find a Friend 267

The code block that follows is a subclass of your Content Provider that extends
SQLiteOpenHelper:

private static class DatabaseHelper extends SQLiteOpenHelper {

@Override
public void onCreate(SQLiteDatabase db) {
db.execSQL("CREATE TABLE friends (_id INTEGER PRIMARY KEY,"

+ "name TEXT," + "location TEXT," + "created INTEGER,"
+ "modified INTEGER" + ");");

}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int

newVersion) {
Log.w(TAG, "Upgrading database from version " + oldVersion + "to "
+ newVersion + ", which will destroy all old data");

db.execSQL("DROP TABLE IF EXISTS friends");
onCreate(db);

}
}

The DatabaseHelper class you just created contains two overridden methods:
onCreate() and onUpgrade(). The onCreate() method is used when creating the
database from code, or in instances where the table definition does not exist.

NOTE
Given that you created the database structure from the adb shell, you will not rely on
the onCreate() method of DatabaseHelper to establish your database.

With the DatabaseHelper class created, you can now override the onCreate() method
for your Content Provider:

@Override
public boolean onCreate() {

DatabaseHelper dbHelper = new DatabaseHelper();
mDB = dbHelper.openDatabase(getContext(), DATABASE_NAME, null,

DATABASE_VERSION);
return (mDB == null) ? false : true;

}

This is a fairly simple method that, in the end, returns a Boolean representing whether
or not your database could be opened. You use the SQLiteOpenHelper created in your

sibling class to open the Friends database. Notice that you pass the database name into the
DatabaseHelper class. If the database object—mDB—is not null when it returns, then the
database was successfully opened and you can query it.

Next, override the query() method of the ContentProvider class. This will be the meat
of your Content Provider. The query() method is called from your Activity through the
Content Provider to gather the records from your database. Take a look at the code in the
overridden version of the query() method:

@Override
public Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

switch (URL_MATCHER.match(url)) {
case FRIENDS:

qb.setTables("friends");
qb.setProjectionMap(FRIENDS_PROJECTION_MAP);
break;

case FRIENDS_ID:
qb.setTables("friends");
qb.appendWhere("_id=" + url.getPathSegments().get(1));
break;

default:
throw new IllegalArgumentException("Unknown URL " + url);

}

String orderBy;
if (TextUtils.isEmpty(sort)) {

orderBy = Friends.Friend.DEFAULT_SORT_ORDER;
} else {

orderBy = sort;
}

Cursor c = qb.query(mDB, projection, selection, selectionArgs, null,
null, orderBy);

c.setNotificationUri(getContext().getContentResolver(), url);
return c;

}

The query() method does a little bit of housekeeping, by checking the validity of the
database URL passed into it and defining a query sort order. The URL check is to ensure
that you are trying to access only the Friends database. If you are attempting to access a
database from another Activity, or from another Content Provider, the query() method
throws an exception.

268 Android: A Programmer’s Guide

Chapter 11: Application: Find a Friend 269

Toward the end of the method, you perform a query using a SQLiteQueryBuilder. The
resulting dataset is assigned to a Cursor using the following line of code:

Cursor c = qb.query(mDB, projection, selection, selectionArgs, null,
null, orderBy);

NOTE
A Cursor is a device that allows you to move through records and return information
from columns.

The update(), delete(), and insert() methods are also fairly straightforward in design.
Take a look at these three methods, as you should override them:

@Override
public Uri insert(Uri url, ContentValues initialValues) {

long rowID;
ContentValues values;
if (initialValues != null) {

values = new ContentValues(initialValues);
} else {

values = new ContentValues();
}

if (URL_MATCHER.match(url) != FRIENDS) {
throw new IllegalArgumentException("Unknown URL " + url);

}

Long now = Long.valueOf(System.currentTimeMillis());
Resources r = Resources.getSystem();

if (values.containsKey(Friends.Friend.CREATED_DATE) == false) {
values.put(Friends.Friend.CREATED_DATE, now);

}

if (values.containsKey(Friends.Friend.MODIFIED_DATE) == false) {
values.put(Friends.Friend.MODIFIED_DATE, now);

}

if (values.containsKey(Friends.Friend.NAME) == false) {
values.put(Friends.Friend.NAME,

r.getString(android.R.string.untitled));
}

if (values.containsKey(Friends.Friend.LOCATION) == false) {
values.put(Friends.Friend.LOCATION , "");

}

270 Android: A Programmer’s Guide

rowID = mDB.insert("friends", "friend", values);
if (rowID > 0) {

Uri uri = ContentUris.withAppendedId(Friends.Friend.CONTENT_URI
, rowID);

getContext().getContentResolver().notifyChange(uri, null);
return uri;

}

throw new SQLException("Failed to insert row into " + url);
}

@Override
public int delete(Uri url, String where, String[] whereArgs) {

int count;
long rowId = 0;
switch (URL_MATCHER.match(url)) {
case FRIENDS:

count = mDB.delete("friends", where, whereArgs);
break;

case FRIENDS_ID:
String segment = url.getPathSegments().get(1);
rowId = Long.parseLong(segment);
count = mDB

.delete("friends", "_id="
+ segment
+ (!TextUtils.isEmpty(where) ? " AND (" + where

+ ')' : ""), whereArgs);
break;

default:
throw new IllegalArgumentException("Unknown URL " + url);

}

getContext().getContentResolver().notifyChange(url, null);
return count;

}

@Override
public int update(Uri url, ContentValues values, String where, String[]

whereArgs) {
int count;
switch (URL_MATCHER.match(url)) {
case FRIENDS:

count = mDB.update("friends", values, where, whereArgs);
break;

case FRIENDS_ID:
String segment = url.getPathSegments().get(1);
count = mDB

.update("friends", values, "_id=" + segment

Chapter 11: Application: Find a Friend 271

+ (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : ""), whereArgs);
break;

default:
throw new IllegalArgumentException("Unknown URL " + url);

}

getContext().getContentResolver().notifyChange(url, null);
return count;

}

The code within these methods should be fairly self-explanatory. If you look past
the housekeeping that takes place in each method, the core of the code issues a database
statement to perform the requested action of updating, deleting, or inserting.

The final part of the Content Provider will be a getType() method that returns the
type of your Friends data. When creating your own type, you should always follow this
convention:

vnd.android.cursor.dir/vnd.<package>

Take a look at the getType() method:

@Override
public String getType(Uri url) {

switch (URL_MATCHER.match(url)) {
case FRIENDS:

return
"vnd.android.cursor.dir/vnd.android_programmers_guide.friend";

case FRIENDS_ID:
return

"vnd.android.cursor.item/vnd.android_programmers_guide.friend";

default:
throw new IllegalArgumentException("Unknown URL " + url);

}
}

That should complete your new custom Content Provider. Take a look at the
completed FriendsProvider code:

package android_programmers_guide.FindAFriend;
import android_programmers_guide.FindAFriend.Friends;
import android.content.*;

272 Android: A Programmer’s Guide

import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import android.text.TextUtils;
import android.util.Log;
import java.util.HashMap;

public class FriendsProvider extends ContentProvider {
private SQLiteDatabase mDB;
private static final String TAG = "FriendsProvider";
private static final String DATABASE_NAME = "friends";
private static final int DATABASE_VERSION = 2;

private static HashMap<String, String> FRIENDS_PROJECTION_MAP;

private static final int FRIENDS = 1;
private static final int FRIENDS_ID = 2;

private static final UriMatcher URL_MATCHER;

private static class DatabaseHelper extends SQLiteOpenHelper {

@Override
public void onCreate(SQLiteDatabase db) {

db.execSQL("CREATE TABLE friends (_id INTEGER PRIMARY KEY,"
+ "name TEXT," + "location TEXT," + "created INTEGER,"
+ "modified INTEGER" + ");");

}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int

newVersion) {
Log.w(TAG, "Upgrading database from version " + oldVersion + "to "
+ newVersion + ", which will destroy all old data");

db.execSQL("DROP TABLE IF EXISTS friends");
onCreate(db);

}
}

@Override
public boolean onCreate() {

DatabaseHelper dbHelper = new DatabaseHelper();
mDB = dbHelper.openDatabase(getContext(), DATABASE_NAME, null,

DATABASE_VERSION);
return (mDB == null) ? false : true;

}

Chapter 11: Application: Find a Friend 273

@Override
public Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

switch (URL_MATCHER.match(url)) {
case FRIENDS:

qb.setTables("friends");
qb.setProjectionMap(FRIENDS_PROJECTION_MAP);
break;

case FRIENDS_ID:
qb.setTables("friends");
qb.appendWhere("_id=" + url.getPathSegments().get(1));
break;

default:
throw new IllegalArgumentException("Unknown URL " + url);

}

String orderBy;
if (TextUtils.isEmpty(sort)) {

orderBy = Friends.Friend.DEFAULT_SORT_ORDER;
} else {

orderBy = sort;
}

Cursor c = qb.query(mDB, projection, selection, selectionArgs, null,
null, orderBy);

c.setNotificationUri(getContext().getContentResolver(), url);
return c;

}

@Override
public String getType(Uri url) {

switch (URL_MATCHER.match(url)) {
case FRIENDS:

return
"vnd.android.cursor.dir/vnd.android_programmers_guide.friend";

case FRIENDS_ID:
return

"vnd.android.cursor.item/vnd.android_programmers_guide.friend";

default:
throw new IllegalArgumentException("Unknown URL " + url);

}
}

@Override

274 Android: A Programmer’s Guide

public Uri insert(Uri url, ContentValues initialValues) {
long rowID;
ContentValues values;
if (initialValues != null) {

values = new ContentValues(initialValues);
} else {

values = new ContentValues();
}

if (URL_MATCHER.match(url) != FRIENDS) {
throw new IllegalArgumentException("Unknown URL " + url);

}

Long now = Long.valueOf(System.currentTimeMillis());
Resources r = Resources.getSystem();

if (values.containsKey(Friends.Friend.CREATED_DATE) == false) {
values.put(Friends.Friend.CREATED_DATE, now);

}

if (values.containsKey(Friends.Friend.MODIFIED_DATE) == false) {
values.put(Friends.Friend.MODIFIED_DATE, now);

}

if (values.containsKey(Friends.Friend.NAME) == false) {
values.put(Friends.Friend.NAME,

r.getString(android.R.string.untitled));
}

if (values.containsKey(Friends.Friend.LOCATION) == false) {
values.put(Friends.Friend.LOCATION , "");

}

rowID = mDB.insert("friends", "friend", values);
if (rowID > 0) {

Uri uri = ContentUris.withAppendedId(Friends.Friend.CONTENT_URI
, rowID);

getContext().getContentResolver().notifyChange(uri, null);
return uri;

}

throw new SQLException("Failed to insert row into " + url);
}

@Override
public int delete(Uri url, String where, String[] whereArgs) {

int count;
long rowId = 0;
switch (URL_MATCHER.match(url)) {
case FRIENDS:

Chapter 11: Application: Find a Friend 275

count = mDB.delete("friends", where, whereArgs);
break;

case FRIENDS_ID:
String segment = url.getPathSegments().get(1);
rowId = Long.parseLong(segment);
count = mDB

.delete("friends", "_id="
+ segment
+ (!TextUtils.isEmpty(where) ? " AND (" + where

+ ')' : ""), whereArgs);
break;

default:
throw new IllegalArgumentException("Unknown URL " + url);

}

getContext().getContentResolver().notifyChange(url, null);

return count;
}

@Override
public int update(Uri url, ContentValues values, String where, String[]

whereArgs) {
int count;
switch (URL_MATCHER.match(url)) {
case FRIENDS:

count = mDB.update("friends", values, where, whereArgs);
break;

case FRIENDS_ID:
String segment = url.getPathSegments().get(1);
count = mDB

.update("friends", values, "_id=" + segment
+ (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : ""), whereArgs);

break;

default:
throw new IllegalArgumentException("Unknown URL " + url);

}

getContext().getContentResolver().notifyChange(url, null);
return count;

}

static {
URL_MATCHER = new UriMatcher(UriMatcher.NO_MATCH);
URL_MATCHER.addURI("android_programmers_guide.FindAFriend.Friends",

"friend", FRIENDS);

URL_MATCHER.addURI("android_programmers_guide.FindAFriend.Friends",
"friend/#", FRIENDS_ID);

FRIENDS_PROJECTION_MAP = new HashMap<String, String>();
FRIENDS_PROJECTION_MAP.put(Friends.Friend._ID, "_id");
FRIENDS_PROJECTION_MAP.put(Friends.Friend.NAME, "name");
FRIENDS_PROJECTION_MAP.put(Friends.Friend.LOCATION, "location");
FRIENDS_PROJECTION_MAP.put(Friends.Friend.CREATED_DATE, "created");
FRIENDS_PROJECTION_MAP.put(Friends.Friend.MODIFIED_DATE,

"modified");
}

}

With the underlying data elements now created (the database, definitions, and Content
Provider), you can begin to build the surrounding Activity. Remember, this activity will
use the data in your database, display it to a list, and then allow the user to launch another
Activity that places database items on a Google Maps Overlay. In the following section,
you will build both Activities and complete your FindAFriend application.

Creating the FindAFriend Activity
If you have taken the time to run Google’s NotePad demo, then you will be very familiar
with the layout of this Activity. You will be modifying the NotePad interface to work with
your Friends database and Google Maps. The FindAFriend Activity will interact with
several smaller Activities: NameEditor, LocationEditor, and FriendsMap. You will build
all of these Activities in the coming sections.

NOTE
In addition to NotePad, Google provides several very well-written demo Activities that
outline basic techniques for multiple programming situations.

As you have done with past Activity projects from this book, start with the
AndroidManifest.xml file. Being a fairly complex application, you need to make
multiple changes to AndroidManifest.xml.

Editing AndroidManifest.xml
Take a look at the following AndroidManifest.xml file for the FindAFriend project. You
need to add several Intent Filters for new Activities, including ones to edit a friend’s
location, edit a friend’s name, and launch your Google Map.

Also, pay close attention to the actions within each Intent Filter. These represent
actions that will be passed to each Activity handling that Intent. Finally, do not forget

276 Android: A Programmer’s Guide

to add Access_Location and Access_GPS permission so that you can add your current
location to the map as well.

The full AndroidManifest.xml file should appear as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="android_programmers_guide.FindAFriend">
<application android:icon="@drawable/icon">

<provider android:name="FriendsProvider"

android:authorities="android_programmers_guide.FindAFriend.Friends" />
<activity android:name=".FindAFriend"

android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
<intent-filter>

<action android:name="android.intent.action.VIEW" />
<action android:name="android.intent.action.EDIT" />
<action android:name="android.intent.action.PICK" />
<category android:name="android.intent.category.DEFAULT" />
<dataandroid:mimeType="vnd.android.cursor.dir/

vnd.android_programmers_guide.friend" />
</intent-filter>
<intent-filter>

<action android:name="android.intent.action.GET_CONTENT" />
<category android:name="android.intent.category.DEFAULT" />
<dataandroid:mimeType="vnd.android.cursor.item/

vnd.android_programmers_guide.friend" />
</intent-filter>

</activity>
<activity android:name=".FriendsMap" android:label="FriendsMap">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"

/>
</intent-filter>

</activity>
<activity android:name="LocationEditor"

android:label="@string/title_note">
<intent-filter android:label="@string/resolve_edit">

<action android:name="android.intent.action.VIEW" />
<action android:name="android.intent.action.EDIT" />
<action

android:name="com.google.android.notepad.action.EDIT_LOCATION" />
<category android:name="android.intent.category.DEFAULT" />
<dataandroid:mimeType="vnd.android.cursor.item/

vnd.android_programmers_guide.friend" />
</intent-filter>

Chapter 11: Application: Find a Friend 277

<intent-filter>
<action android:name="android.intent.action.INSERT" />
<category android:name="android.intent.category.DEFAULT" />
<dataandroid:mimeType="vnd.android.cursor.dir/

vnd.android_programmers_guide.friend" />
</intent-filter>

</activity>

<activity android:name="NameEditor"
android:label="@string/title_edit_title"

android:theme="@android:style/Theme.Dialog">
<intent-filter android:label="@string/resolve_title">

<action android:name="com.google.android.notepad.action.EDIT_NAME"
/>

<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.ALTERNATIVE" />

<category android:name="android.intent.category.SELECTED_ALTERNATIVE" />
<dataandroid:mimeType="vnd.android.cursor.item/

vnd.android_programmers_guide.friend" />
</intent-filter>

</activity>
</application>

<uses-permission android:name="android.permission.ACCESS_GPS">
</uses-permission><uses-permission
android:name="android.permission.ACCESS_LOCATION">
</uses-permission></manifest>

In the next section, you will create the first Activity for this project—NameEditor. As
the name implies, this Activity will be launched when the user wishes to edit the name of
a friend.

Creating the NameEditor Activity
In this section, you will create the NameEditor Activity for the FindAFriend project. This
Activity will be launched from a menu item on the main FindAFriend Activity (which you
have not created yet). The purpose of the NameEditor Activity will be to modify the name
field of a Friend record.

Add a name_editor.xml layout file and a corresponding NameEditor.java file to your
application. You will edit these files to create your Activity.

First, edit name_editor.xml to create the layout for the Activity. The Activity will hold
one EditText and one Button. The EditText will allow you to modify the name field, and
the Button will write the results and exit. If you followed this book from the beginning,
you have added quite a few View layouts to XML files. Therefore, I can spare you the
details of each addition individually. The full name_editor.xml file should appear as
follows:

278 Android: A Programmer’s Guide

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:orientation="vertical"
android:paddingLeft="6dip"
android:paddingRight="6dip"
android:paddingBottom="3dip">

<EditText android:id="@+id/name"
android:maxLines="1"
android:layout_marginTop="2dip"
android:layout_width="wrap_content"

android:ems="25"
android:layout_height="wrap_content"
android:autoText="true"
android:capitalize="sentences"
android:scrollHorizontally="true" />

<Button android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="right"
android:text="@string/button_ok" />

</LinearLayout>

Now, edit NameEditor.java and begin building your code. You need to import your
Friends class from the previous sections and import the Cursor package to help you work
with the database records:

import android.app.Activity;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

You should establish your Activity so that you implement the View.OnClickListener().
This will let you override the OnClickListener() methods in your Activity. This code
sample shows the outline of your NameEditor class with some variable definitions that
you will need:

public class NameEditor extends Activity implements View.OnClickListener {

public static final String EDIT_NAME_ACTION =
"android_programmers_guide.FindAFriend.action.EDIT_NAME";

Chapter 11: Application: Find a Friend 279

280 Android: A Programmer’s Guide

private static final int NAME_INDEX = 1;

private static final String[] PROJECTION = new String[] {
Friends.Friend._ID,
Friends.Friend.NAME,

};

Cursor mCursor;
EditText mText;

}

Next, you need to override some methods, starting with onCreate(). You have seen
this method overridden in other chapters. Typically, it holds all the code that should be
executed when the Activity is created.

public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.name_editor);

Uri uri = getIntent().getData();

mCursor = managedQuery(uri, PROJECTION, null, null);

mText = (EditText) this.findViewById(R.id.name);
mText.setOnClickListener(this);

Button b = (Button) findViewById(R.id.ok);
b.setOnClickListener(this);

}

Notice that, in the previous code sample, you assign layouts to their respective Views
and initiate some of your variables. However, you may be wondering where the data is for
the name field. That is, you have created a cursor, but you have not retrieved anything
from it. You will use the onResume() method for that.

The two methods that you will override next, onResume() and onPause(), will do
the work of reading from and writing to the database, respectively. Within the Android
life cycle, onResume() is called when an Activity is open and on the top of the focus.
onPause() is called when an Activity is being closed but before focus is handed to
another Activity.

Override your onResume() method to read the database and retrieve the name field:

protected void onResume() {
super.onResume();

if (mCursor != null) {
mCursor.first();
String title = mCursor.getString(NAME_INDEX);
mText.setText(title);

}
}

In this method, you move the Cursor to its first record, read the name field from it
using the index assigned earlier, and set the EditText to the contents of the name field.
This automatically populates the field with the current record’s name value.

Next, modify the onPause() method to write the contents of the EditText back to the
database:

protected void onPause() {
super.onPause();

if (mCursor != null) {
String title = mText.getText().toString();
mCursor.updateString(NAME_INDEX, title);
mCursor.commitUpdates();

}
}

Finally, call the Activity method finish() from the onClick handler. This will clean up
and close your Activity. The finished NameEditor.java file should look like this:

package android_programmers_guide.FindAFriend;

import android_programmers_guide.FindAFriend.Friends;
import android.app.Activity;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class NameEditor extends Activity implements View.OnClickListener {

public static final String EDIT_NAME_ACTION =
"android_programmers_guide.FindAFriend.action.EDIT_NAME";

private static final int NAME_INDEX = 1;

private static final String[] PROJECTION = new String[] {
Friends.Friend._ID,

Chapter 11: Application: Find a Friend 281

Friends.Friend.NAME,
};

Cursor mCursor;
EditText mText;

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);

setContentView(R.layout.name_editor);

Uri uri = getIntent().getData();

mCursor = managedQuery(uri, PROJECTION, null, null);

mText = (EditText) this.findViewById(R.id.name);
mText.setOnClickListener(this);

Button b = (Button) findViewById(R.id.ok);
b.setOnClickListener(this);

}

@Override
protected void onResume() {

super.onResume();

if (mCursor != null) {
mCursor.first();
String title = mCursor.getString(NAME_INDEX);
mText.setText(title);

}
}

@Override
protected void onPause() {

super.onPause();

if (mCursor != null) {
String title = mText.getText().toString();
mCursor.updateString(NAME_INDEX, title);
mCursor.commitUpdates();

}
}

public void onClick(View v) {
finish();

}
}

282 Android: A Programmer’s Guide

Chapter 11: Application: Find a Friend 283

At this point, you can edit name values in the Friends database. However, there are
two fields of importance in the database, name and location. In the next section, you will
create an editor for the location field.

Creating the LocationEditor Activity
In this section, you will create an editor for the location field of the Friends database. You
are going to make this Activity slightly different from the NameEditor Activity. Therefore,
the code will be different and follow a slightly unfamiliar process.

If you explored the Google demo NotePad, you should have noticed that the “notes”
editor is a white screen with a dynamically drawn line on it that repeats itself as needed.
This effect is performed using a custom View. You are going to use this same custom
View for the LocationEditor.

location_editor.xml
The first step is to create location_editor.xml and LocationEditor.java files for the layout
and code, respectively. The layout file should contain a call to the custom View layout.
The full layout is as follows:

<?xml version="1.0" encoding="utf-8"?>
<view xmlns:android="http://schemas.android.com/apk/res/android"
class="android_programmers_guide.FindAFriend.LocationEditor$MyEditText"
android:id="@+id/location"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffffff"
android:padding="10dip"
android:scrollbars="vertical"
android:fadingEdge="vertical" />

The LocationEditor will also contain a menu system that will allow the user to discard,
delete, or revert any changes they make. This will be a pretty complex Activity. Therefore, it
is best to start at the beginning, the imports section of the LocationEditor.java.

LocationEditor.java
Take a look at the following imports for this Activity, many of which deal with drawing
the custom View on the screen:

import android.app.Activity;
import android.content.ComponentName;

284 Android: A Programmer’s Guide

import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Rect;
import android.net.Uri;
import android.os.Bundle;
import android.util.AttributeSet;
import android.view.Menu;
import android.widget.EditText;
import java.util.Map;

Next, set up your Activity’s main class outline. There are a number of variables that
you need to define for use throughout the LocationEditor:

public class LocationEditor extends Activity {

private static final String TAG = "Friends";

private static final int FRIEND_INDEX = 1;
private static final int NAME_INDEX = 2;
private static final int MODIFIED_INDEX = 3;

private static final String[] PROJECTION = new String[] {
Friends.Friend._ID, // 0
Friends.Friend.LOCATION, // 1
Friends.Friend.NAME, // 2
Friends.Friend.MODIFIED_DATE // 3

};

private static final String ORIGINAL_CONTENT = "origContent";

private static final int REVERT_ID = Menu.FIRST;
private static final int DISCARD_ID = Menu.FIRST + 1;
private static final int DELETE_ID = Menu.FIRST + 2;

private static final int STATE_EDIT = 0;
private static final int STATE_INSERT = 1;

private int mState;
private boolean mNoteOnly = false;
private Uri mURI;
private Cursor mCursor;

Chapter 11: Application: Find a Friend 285

private EditText mText;
private String mOriginalContent;

}

Having performed the tasks in the previous sections of this chapter, the variable
definitions here should be rather self-explanatory.

The next piece of code shows a subclass that you need to create. This subclass will
draw to the screen the EditText that will be used for the LocationEditor. You are breaking
this out so that you can call it as needed from the Activity. Keep in mind that you will
dynamically draw a new EditText on the screen as is needed by the user. Pay special
attention to the onDraw class that you need to override.

public static class MyEditText extends EditText {
private Rect mRect;
private Paint mPaint;

public MyEditText(Context context, AttributeSet attrs, Map params) {
super(context, attrs, params);

mRect = new Rect();
mPaint = new Paint();
mPaint.setStyle(Paint.Style.STROKE);
mPaint.setColor(0xFF0000FF);

}
@Override
protected void onDraw(Canvas canvas) {

int count = getLineCount();
Rect r = mRect;
Paint paint = mPaint;

for (int i = 0; i < count; i++) {
int baseline = getLineBounds(i, r);

canvas.drawLine(r.left, baseline + 1, r.right, baseline + 1,
paint);

}

super.onDraw(canvas);
}

}

Again, while this may look like a lot of code, there should be nothing foreign about it.
This subclass simply draws a new EditText as needed to the screen.

286 Android: A Programmer’s Guide

Just as with the NameEditor, you will use the onResume() and onPause() methods to
do your database work. Take a look at the code for each below:

protected void onResume() {
super.onResume();

if (mCursor != null) {
mCursor.first();

if (mState == STATE_EDIT) {
setTitle(getText(R.string.title_edit));

} else if (mState == STATE_INSERT) {
setTitle(getText(R.string.title_create));

}

String note = mCursor.getString(FRIEND_INDEX);
mText.setTextKeepState(note);

if (mOriginalContent == null) {
mOriginalContent = note;

}

} else {
setTitle(getText(R.string.error_title));
mText.setText(getText(R.string.error_message));

}
}
protected void onPause() {

super.onPause();

if (mCursor != null) {
String text = mText.getText().toString();
int length = text.length();

if (isFinishing() && (length == 0) && !mNoteOnly) {
setResult(RESULT_CANCELED);
deleteFriend();

} else {
if (!mNoteOnly) {

mCursor.updateLong(MODIFIED_INDEX,
System.currentTimeMillis());

if (mState == STATE_INSERT) {
String title = text.substring(0, Math.min(30,

length));

Chapter 11: Application: Find a Friend 287

if (length > 30) {
int lastSpace = title.lastIndexOf(' ');
if (lastSpace > 0) {

title = title.substring(0, lastSpace);
}

}
mCursor.updateString(NAME_INDEX, title);

}
}

mCursor.updateString(FRIEND_INDEX, text);

managedCommitUpdates(mCursor);
}

}
}

Much like in the NameEditor, you read from the database during onResume() and
write back to it during onPause(). The one added feature that appears in LocationEditor as
opposed to NameEditor is that you are also writing out the modified dates when you make
a change.

Finally, you need two methods for canceling changes and deleting friends. These
methods will be called from the menu system:

private final void cancelFriend() {
if (mCursor != null) {

if (mState == STATE_EDIT) {
mCursor.updateString(FRIEND_INDEX, mOriginalContent);
mCursor.commitUpdates();
mCursor.deactivate();
mCursor = null;

} else if (mState == STATE_INSERT) {
deleteFriend();

}
}
setResult(RESULT_CANCELED);
finish();

}

private final void deleteFriend() {
if (mCursor != null) {

mText.setText("");
mCursor.deleteRow();
mCursor.deactivate();

mCursor = null;
}

}

Given that you learned about creating menu systems in Chapter 8, simply examine the
full LocationEditor.java file to see how all of these methods and subclasses work together:

package android_programmers_guide.FindAFriend;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Rect;
import android.net.Uri;
import android.os.Bundle;
import android.util.AttributeSet;
import android.view.Menu;
import android.widget.EditText;
import java.util.Map;

public class LocationEditor extends Activity {

private static final String TAG = "Friends";

private static final int FRIEND_INDEX = 1;
private static final int NAME_INDEX = 2;
private static final int MODIFIED_INDEX = 3;

private static final String[] PROJECTION = new String[] {
Friends.Friend._ID, // 0
Friends.Friend.LOCATION, // 1
Friends.Friend.NAME, // 2
Friends.Friend.MODIFIED_DATE // 3

};

private static final String ORIGINAL_CONTENT = "origContent";

private static final int REVERT_ID = Menu.FIRST;
private static final int DISCARD_ID = Menu.FIRST + 1;
private static final int DELETE_ID = Menu.FIRST + 2;

private static final int STATE_EDIT = 0;
private static final int STATE_INSERT = 1;

private int mState;

288 Android: A Programmer’s Guide

Chapter 11: Application: Find a Friend 289

private boolean mNoteOnly = false;
private Uri mURI;
private Cursor mCursor;
private EditText mText;
private String mOriginalContent;

public static class MyEditText extends EditText {
private Rect mRect;
private Paint mPaint;

public MyEditText(Context context, AttributeSet attrs, Map params) {
super(context, attrs, params);

mRect = new Rect();
mPaint = new Paint();
mPaint.setStyle(Paint.Style.STROKE);
mPaint.setColor(0xFF0000FF);

}

@Override
protected void onDraw(Canvas canvas) {

int count = getLineCount();
Rect r = mRect;
Paint paint = mPaint;

for (int i = 0; i < count; i++) {
int baseline = getLineBounds(i, r);

canvas.drawLine(r.left, baseline + 1, r.right, baseline + 1,
paint);

}

super.onDraw(canvas);
}

}

@Override
protected void onCreate(Bundle icicle) {

super.onCreate(icicle);

final Intent intent = getIntent();
final String type = intent.resolveType(this);

final String action = intent.getAction();
if (action.equals(Intent.EDIT_ACTION)) {

mState = STATE_EDIT;
mURI = intent.getData();

} else if (action.equals(Intent.INSERT_ACTION)) {
mState = STATE_INSERT;

290 Android: A Programmer’s Guide

mURI = getContentResolver().insert(intent.getData(), null);

if (mURI == null) {

finish();
return;

}

setResult(RESULT_OK, mURI.toString());

} else {
finish();
return;

}

setContentView(R.layout.location_editor);

mText = (EditText) findViewById(R.id.location);

mCursor = managedQuery(mURI, PROJECTION, null, null);

if (icicle != null) {
mOriginalContent = icicle.getString(ORIGINAL_CONTENT);

}
}

@Override
protected void onResume() {

super.onResume();

if (mCursor != null) {
mCursor.first();

if (mState == STATE_EDIT) {
setTitle(getText(R.string.title_edit));

} else if (mState == STATE_INSERT) {
setTitle(getText(R.string.title_create));

}

String note = mCursor.getString(FRIEND_INDEX);
mText.setTextKeepState(note);

if (mOriginalContent == null) {
mOriginalContent = note;

}

} else {
setTitle(getText(R.string.error_title));
mText.setText(getText(R.string.error_message));

}
}

Chapter 11: Application: Find a Friend 291

@Override
protected void onFreeze(Bundle outState) {

outState.putString(ORIGINAL_CONTENT, mOriginalContent);
}

@Override
protected void onPause() {

super.onPause();

if (mCursor != null) {
String text = mText.getText().toString();
int length = text.length();

if (isFinishing() && (length == 0) && !mNoteOnly) {
setResult(RESULT_CANCELED);
deleteFriend();

} else {
if (!mNoteOnly) {

mCursor.updateLong(MODIFIED_INDEX,
System.currentTimeMillis());

if (mState == STATE_INSERT) {
String title = text.substring(0, Math.min(30,

length));
if (length > 30) {

int lastSpace = title.lastIndexOf(' ');
if (lastSpace > 0) {

title = title.substring(0, lastSpace);
}

}
mCursor.updateString(NAME_INDEX, title);

}
}

mCursor.updateString(FRIEND_INDEX, text);

managedCommitUpdates(mCursor);
}

}
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {

super.onCreateOptionsMenu(menu);

if (mState == STATE_EDIT) {
menu.add(0, REVERT_ID, R.string.menu_revert).setShortcut('0',

'r');
if (!mNoteOnly) {

menu.add(0, DELETE_ID,
R.string.menu_delete).setShortcut('1', 'd');

}

} else {
menu.add(0, DISCARD_ID, R.string.menu_discard).setShortcut('0',

'd');
}

if (!mNoteOnly) {
Intent intent = new Intent(null, getIntent().getData());
intent.addCategory(Intent.ALTERNATIVE_CATEGORY);
menu.addIntentOptions(

Menu.ALTERNATIVE, 0,
new ComponentName(this, LocationEditor.class), null,
intent, 0, null);

}

return true;
}

@Override
public boolean onOptionsItemSelected(Menu.Item item) {

switch (item.getId()) {
case DELETE_ID:

deleteFriend();
finish();
break;

case DISCARD_ID:
cancelFriend();
break;

case REVERT_ID:
cancelFriend();
break;

}
return super.onOptionsItemSelected(item);

}

private final void cancelFriend() {
if (mCursor != null) {

if (mState == STATE_EDIT) {
mCursor.updateString(FRIEND_INDEX, mOriginalContent);
mCursor.commitUpdates();
mCursor.deactivate();
mCursor = null;

} else if (mState == STATE_INSERT) {
deleteFriend();

}
}
setResult(RESULT_CANCELED);
finish();

}

private final void deleteFriend() {
if (mCursor != null) {

mText.setText("");

292 Android: A Programmer’s Guide

mCursor.deleteRow();
mCursor.deactivate();
mCursor = null;

}
}

}

In the next section, you will create the Activity that will draw your Google Maps
Overlay. The FriendsMap activity will read the full recordset of friends from the Friends
database and write each to the Overlay.

Creating the FriendsMap Activity
The FriendsMap Activity is the final Activity that will be callable from the main
application. This Activity will call your recordset from the Friends database and draw
a circle on a Google Map for each friend. The Activity will also draw a circle for you
at your current location.

You need to begin by adding two new files to your project, friendsmap.xml and
FriendsMap.java. Because you have seen the layout for the friendsmap.xml file in
Chapter 9, there is no need to fully explain it here. You are using a RelativeLayout to place
four Buttons over a Google Map. The full friendsmap.xml file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<view class="com.google.android.maps.MapView"
android:id="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>
<Button android:id="@+id/buttonZoomIn"
style="?android:attr/buttonStyleSmall"
android:text="+"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<Button android:id="@+id/buttonMapView"
style="?android:attr/buttonStyleSmall"
android:text="Map"
android:layout_alignRight="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<Button android:id="@+id/buttonSatView"
style="?android:attr/buttonStyleSmall"
android:text="Sat"
android:layout_alignRight="@+id/myMap"

Chapter 11: Application: Find a Friend 293

android:layout_alignBottom="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<Button android:id="@+id/buttonZoomOut"
style="?android:attr/buttonStyleSmall"
android:text="-"
android:layout_alignBottom="@+id/myMap"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

</RelativeLayout>

Because you have seen the overwhelming majority of the FriendsMap.java file in
Chapter 9 as well, I will not go over every little detail. However, there is one method that
should be explained.

You will create a method called LoadFriends() that will access the database, read the
records, and draw the Overlay. Take a look at the LoadFriends() code that follows. Notice
that you open the database, match and parse the location field, create a point from the
latitude and longitude in the location field, and draw that point to the Overlay. The last
thing the method does is to grab your coordinates from the GPS and draw them to the
Overlay with the label “ME”.

public void LoadFriends(MapView mv, MapController mc, Cursor c){
Point myLocation = null;
Double latPoint = null;
Double lngPoint = null;
c.first();
do{

if (c.getString(c.getColumnIndex("location")) != null) {
final String geoPattern = "(geo:[\\-]?[0-9]{1,3}\\.[0

9]{1,6}\\,[\\-]?[0-9]{1,3}\\.[0-9]{1,6}\\#)";
Pattern pattern = Pattern.compile(geoPattern);

CharSequence inputStr =
c.getString(c.getColumnIndex("location"));

Matcher matcher = Pattern.matcher(inputStr);

boolean matchFound = matcher.find();
if (matchFound) {

String groupStr = matcher.group(0);
latPoint =

Double.valueOf(groupStr.substring(groupStr.indexOf(":") + 1,
groupStr.indexOf(","))) ;

lngPoint =
Double.valueOf(groupStr.substring(groupStr.indexOf(",") + 1,

groupStr.indexOf("#"))) ;
Point friendLocation = new

Point(latPoint.intValue(),lngPoint.intValue());

294 Android: A Programmer’s Guide

drawFriendsOverlay.addNewFriend(c.getString(c.getColumnIndex("name")),
friendLocation);

}
}

}while(c.next());
LocationManager myManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);
Double myLatPoint =

myManager.getCurrentLocation("gps").getLatitude()*1E6;
Double myLngPoint =

myManager.getCurrentLocation("gps").getLongitude()*1E6;
myLocation = new Point(myLatPoint.intValue(),myLngPoint.intValue());
drawFriendsOverlay.addNewFriend("Me", myLocation);

mc.centerMapTo(myLocation, false);
mc.zoomTo(9);
mv = null;

}

The remainder of the FriendsMap.java file operates the zoom and toggle buttons, as
introduced in Chapter 10:

package android_programmers_guide.FindAFriend;

import android.os.Bundle;
import android.location.LocationManager;
import android.view.View;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.widget.Button;
import java.util.regex.Pattern;
import java.util.regex.Matcher;
import android.graphics.Canvas;
import android.graphics.RectF;
import android.graphics.Paint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;
import com.google.android.maps.Point;
import com.google.android.maps.MapController;
import com.google.android.maps.Overlay;
import com.google.android.maps.OverlayController;

public class FriendsMap extends MapActivity {

private static final String[] PROJECTION = new String[] {
Friends.Friend.NAME, Friends.Friend.LOCATION};

public Cursor mCursor;

Chapter 11: Application: Find a Friend 295

296 Android: A Programmer’s Guide

DrawFriendsOverlay drawFriendsOverlay = new DrawFriendsOverlay();

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.friendsmap);

Intent intent = getIntent();
if (intent.getData() == null) {

intent.setData(Friends.Friend.CONTENT_URI);
}
mCursor = managedQuery(getIntent().getData(), PROJECTION, null,null);

final MapView myMap = (MapView) findViewById(R.id.myMap);
final MapController myMapController = myMap.getController();
LoadFriends(myMap, myMapController, mCursor);
OverlayController myOverlayController =

myMap.createOverlayController();
myOverlayController.add(drawFriendsOverlay, true);
final Button zoomIn = (Button) findViewById(R.id.buttonZoomIn);

zoomIn.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v){

ZoomIn(myMap,myMapController);
}});

final Button zoomOut = (Button) findViewById(R.id.buttonZoomOut);
zoomOut.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ZoomOut(myMap,myMapController);

}});
final Button viewMap = (Button) findViewById(R.id.buttonMapView);
viewMap.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ShowMap(myMap,myMapController);

}});
final Button viewSat = (Button) findViewById(R.id.buttonSatView);
viewSat.setOnClickListener(new Button.OnClickListener() {

public void onClick(View v){
ShowSat(myMap,myMapController);

}});

}

public void LoadFriends(MapView mv, MapController mc, Cursor c){
Point myLocation = null;
Double latPoint = null;
Double lngPoint = null;
c.first();
do{

if (c.getString(c.getColumnIndex("location")) != null) {
final String geoPattern = "(geo:[\\-]?[0-9]{1,3}\\.[0

9]{1,6}\\,[\\-]?[0-9]{1,3}\\.[0-9]{1,6}\\#)";
Pattern pattern = Pattern.compile(geoPattern);

CharSequence inputStr =
c.getString(c.getColumnIndex("location"));

Matcher matcher = pattern.matcher(inputStr);

boolean matchFound = matcher.find();
if (matchFound) {

String groupStr = matcher.group(0);
latPoint =

Double.valueOf(groupStr.substring(groupStr.indexOf(":") + 1,
groupStr.indexOf(","))) ;

lngPoint =
Double.valueOf(groupStr.substring(groupStr.indexOf(",") + 1,

groupStr.indexOf("#"))) ;
Point friendLocation = new

Point(latPoint.intValue(),lngPoint.intValue());

drawFriendsOverlay.addNewFriend(c.getString(c.getColumnIndex("name")),
friendLocation);

}
}

}while(c.next());
LocationManager myManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);
Double myLatPoint =

myManager.getCurrentLocation("gps").getLatitude()*1E6;
Double myLngPoint =

myManager.getCurrentLocation("gps").getLongitude()*1E6;
myLocation = new Point(myLatPoint.intValue(),myLngPoint.intValue());
drawFriendsOverlay.addNewFriend("Me", myLocation);

mc.centerMapTo(myLocation, false);
mc.zoomTo(9);
mv = null;

}

public void ZoomIn(MapView mv, MapController mc){
if(mv.getZoomLevel()!=21){
mc.zoomTo(mv.getZoomLevel()+ 1);
}

}
public void ZoomOut(MapView mv, MapController mc){
if(mv.getZoomLevel()!=1){

mc.zoomTo(mv.getZoomLevel()- 1);
}

}
public void ShowMap(MapView mv, MapController mc){

if (mv.isSatellite()){
mv.toggleSatellite();

}
}
public void ShowSat(MapView mv, MapController mc){

if (!mv.isSatellite()){

Chapter 11: Application: Find a Friend 297

mv.toggleSatellite();
}

}
protected class DrawFriendsOverlay extends Overlay{
public String[] friendName = new String[0];
public Point[] friendPoint = new Point[0];
final Paint paint = new Paint();

@Override
public void draw(Canvas canvas, PixelCalculator calculator, Boolean

shadow){
for(int x=0;x<friendPoint.length; x++){

int[] coords = new int[2];
calculator.getPointXY(friendPoint[x], coords);

RectF oval = new RectF(coords[0] - 7, coords[1] + 7,
coords[0] + 7, coords[1] - 7);

paint.setTextSize(14);
canvas.drawText(friendName[x],

coords[0] +9, coords[1], paint);
canvas.drawOval(oval, paint);

}
}
public void addNewFriend(String name,Point point){
int x = friendPoint.length;

String[] friendNameB = new String[x + 1];
Point[] friendPointB = new Point[x + 1];

System.arraycopy(friendName, 0, friendNameB, 0, x);
System.arraycopy(friendPoint, 0, friendPointB, 0, x);

friendNameB[x] = name;
friendPointB[x]= point;

friendName = new String[x + 1];
friendPoint = new Point[x + 1];
System.arraycopy(friendNameB, 0, friendName, 0, x + 1);
System.arraycopy(friendPointB, 0, friendPoint, 0, x + 1);

}

}
}

The last task to finish this project is to create the main Activity, FindAFriend, which
will be a shell that calls the other Activities you created in this chapter.

298 Android: A Programmer’s Guide

Chapter 11: Application: Find a Friend 299

Creating the FindAFriend Activity
To begin this section, create two files, findafriend.xml and FindAFriend.java. Once again,
these files will hold your layout and code for the current section, respectively.

The layout file is very basic and contains only a TextView. This TextView will be
used to write results to in your list of friends. The full findafriend.xml file should appear
as follows:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@android:id/text1"
android:layout_width="fill_parent"
android:layout_height="?android:attr/listPreferredItemHeight"
android:textAppearance="?android:attr/textAppearanceLargeInverse"
android:gravity="center_vertical"
android:paddingLeft="27dip"

/>

The full contents of the FindAFriend.java file follows. All of the code in this file has
already been covered in this chapter. First, you read the database and write the results to
a ListView. The user is then given menu options to edit or delete entries, or launch the
FriendsMap Activity. Piece of cake, right?

package android_programmers_guide.FindAFriend;

import android_programmers_guide.FindAFriend.Friends;
import android.app.ListActivity;
import android.content.ComponentName;
import android.content.Intent;
import android.content.ContentUris;
import android.database.Cursor;
import android.graphics.Color;
import android.net.Uri;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.view.View.MeasureSpec;
import android.widget.ListAdapter;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;
import android.widget.TextView;

public class FindAFriend extends ListActivity {

300 Android: A Programmer’s Guide

public static final int DELETE_ID = Menu.FIRST;
public static final int INSERT_ID = Menu.FIRST + 1;
public static final int FIND_FRIENDS = Menu.FIRST + 2;

private static final String[] PROJECTION = new String[] {
Friends.Friend._ID, Friends.Friend.NAME};

private Cursor mCursor;

@Override
protected void onCreate(Bundle icicle) {

super.onCreate(icicle);

setDefaultKeyMode(SHORTCUT_DEFAULT_KEYS);

Intent intent = getIntent();
if (intent.getData() == null) {

intent.setData(Friends.Friend.CONTENT_URI);
}

setupList();

mCursor = managedQuery(getIntent().getData(), PROJECTION, null,
null);

ListAdapter adapter = new SimpleCursorAdapter(this,
R.layout.findafriend_item, mCursor,
new String[] {Friends.Friend.NAME}, new int[]

{android.R.id.text1});
setListAdapter(adapter);

}

private void setupList() {
View view = getViewInflate().inflate(

android.R.layout.simple_list_item_1, null, null);

TextView v = (TextView) view.findViewById(android.R.id.text1);
v.setText("X");
getListView().setBackgroundColor(Color.GRAY);
v.measure(MeasureSpec.makeMeasureSpec(View.MeasureSpec.EXACTLY,

100),
MeasureSpec.makeMeasureSpec(View.MeasureSpec.UNSPECIFIED,

0));
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {

super.onCreateOptionsMenu(menu);

Chapter 11: Application: Find a Friend 301

menu.add(0, INSERT_ID, R.string.menu_insert).setShortcut('3', 'a');

Intent intent = new Intent(null, getIntent().getData());
intent.addCategory(Intent.ALTERNATIVE_CATEGORY);
menu.addIntentOptions(

Menu.ALTERNATIVE, 0, new ComponentName(this, FindAFriend.class),
null, intent, 0, null);

return true;
}

@Override
public boolean onPrepareOptionsMenu(Menu menu) {

super.onPrepareOptionsMenu(menu);
final boolean haveItems = mCursor.count() > 0;

if (haveItems) {
Uri uri = ContentUris.withAppendedId(getIntent().getData(),

getSelectedItemId());

Intent[] specifics = new Intent[1];
specifics[0] = new Intent(Intent.EDIT_ACTION, uri);
Menu.Item[] items = new Menu.Item[1];

Intent intent = new Intent(null, uri);
intent.addCategory(Intent.SELECTED_ALTERNATIVE_CATEGORY);
menu.addIntentOptions(Menu.SELECTED_ALTERNATIVE, 0, null,

specifics, intent, 0, items);
menu.add(Menu.SELECTED_ALTERNATIVE, DELETE_ID,

R.string.menu_delete)
.setShortcut('2', 'd');

menu.add(Menu.SELECTED_ALTERNATIVE, FIND_FRIENDS,
R.string.find_friends).setShortcut('4', 'f');

if (items[0] != null) {
items[0].setShortcut('1', 'e');

}
} else {

menu.removeGroup(Menu.SELECTED_ALTERNATIVE);
}

menu.setItemShown(DELETE_ID, haveItems);
return true;

}

@Override
public boolean onOptionsItemSelected(Menu.Item item) {

switch (item.getId()) {
case DELETE_ID:

deleteItem();

return true;
case INSERT_ID:

insertItem();
return true;

case FIND_FRIENDS:
Intent findfriends = new Intent(this, FriendsMap.class);
startActivity(findfriends);
return true;

}
return super.onOptionsItemSelected(item);

}

@Override
protected void onListItemClick(ListView l, View v, int position, long

id) {
Uri url = ContentUris.withAppendedId(getIntent().getData(), id);

String action = getIntent().getAction();
if (Intent.PICK_ACTION.equals(action)

|| Intent.GET_CONTENT_ACTION.equals(action)) {
setResult(RESULT_OK, url.toString());

} else {
startActivity(new Intent(Intent.EDIT_ACTION, url));

}
}

private final void deleteItem() {
mCursor.moveTo(getSelectedItemPosition());
mCursor.deleteRow();

}
private final void insertItem() {

startActivity(new Intent(Intent.INSERT_ACTION,
getIntent().getData()));

}
}

While this was the longest Activity that you have created in this book, it should still be
noted that the relative amount of programming needed to do what you did is fairly small.
Next, run this Activity and see the result of all your work.

Running the FindAFriend Activity
Run the FindAFriend Activity in the Android Emulator. You should be greeted with an
empty list, as shown in the following illustration. To add your first friend, click the Menu
button and select the Add Friend option.

302 Android: A Programmer’s Guide

Chapter 11: Application: Find a Friend 303

This option launches the custom View you created. Enter a friend’s name on the line
provided, as shown here, and return to the main Activity by clicking the back arrow on the
Emulator.

304 Android: A Programmer’s Guide

You should now have a friend’s name in the ListView. Click the Menu button again;
you clearly have more options now, as shown in this illustration.

Select the Edit Location option. This should bring up your custom control yet again.
Enter a coordinate-based location, as shown here.

Chapter 11: Application: Find a Friend 305

Finally, return to the main Activity and select the Find Friends option. This should
clearly map out your current location in San Francisco and your friend’s location off the
coast of Africa, respectively.

Try This Real-Time Location Updating
Try modifying the FindAFriend application to update the “ME” marker as you move. This
should be fairly easy to do using the update() method.

Chapter 12, the final chapter, provides a reference to some of the Android SDK
options, such as the adb commands and the Android Emulator options.

306 Android: A Programmer’s Guide

Ask the Expert
Q: Can a SQLite database be created in code?

A: Yes. However, for the purposes of giving a well-rounded tutorial on Android, I chose
to give an example of manually creating the database. Feel free to modify this project to
include an in-code database-creation method in the FriendsProvider Content Provider.

Q: Do you need to have a separate class that implements BaseColumns?

A: No. You can define the items from the Friends class (in this chapter’s example) directly
in the calling class. However, if you are creating a Content Provider that will be
implemented by other developers who may not know the underlying data structure,
you will want to provide a defining class.

Chapter12
Android SDK Tool
Reference

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

This chapter provides a valuable reference to some of the Android SDK tools that you
have used over the course of this book. It gives you some of the command-line options

that you can use with the Android Emulator and the Android Debugging Bridge.

Android Emulator Commands
The following table contains a list of the most common Android Emulator commands.
These are the commands that were available as of the March 2008 SDK release. A short
description is provided with each command.

Emulator Command Function

emulator -console Enables the console shell on the current terminal

emulator -data <filename> Uses a different file as the working user-data
disk image

emulator -debug-kernel Sends kernel output to the console

emulator -flash-keys Flashes keypresses on the device skin

emulator -help Prints a list of all Emulator commands

emulator -http-proxy <proxy> Makes all TCP connections through a specified
HTTP/HTTPS proxy

emulator -image <file> Uses <file> as the system image

emulator -kernel <file> Uses <file> as the emulated kernel

emulator -logcat <logtags> Enables logcat output with given tags

emulator -mic <device or file> Uses device or WAV file for audio input

emulator -netdelay <delay> Sets network latency emulation to <delay>.
(The <delay> parameter simulates the delay
experienced on specific types of networks.)
The <delay>s you can use are as follows:

● Gprs
● Edge
● Umts
● None
● <num>
● <min>:<max>

emulator -netfast Shortcut for -netspeed full -netdelay
none

308 Android: A Programmer’s Guide

Emulator Command Function

emulator -netspeed <speed> Sets network speed emulation to <speed>. (The
<speed> parameter simulates the data speed
experienced on specific types of networks.) The
<speed>s you can use are as follows:

● Gsm
● Hscsd
● Gprs
● Edge
● Umts
● Hsdpa
● Full
● <num>
● <up>:<down>

emulator -noaudio Disables Android audio support

emulator -nojni Disables JNI checks in the Dalvik virtual machine

emulator -noskin Specifies not to use any Emulator skin

emulator -onion <image> Uses overlay image over screen

emulator -onion-alpha <percent> Specifies onion skin translucency value (as percent)

emulator -qemu Passes arguments to QEMU

emulator -qemu -h Displays QEMU help

emulator -radio <device> Redirects the radio modem interface to a host
character device

emulator -ramdisk <file> Uses <file> as the ramdisk image

emulator -raw-keys Disables Unicode keyboard reverse mapping

emulator -sdcard <file> Uses <file> as the SD Memory Card image

emulator -skin <skinID> Starts the Emulator with the specified skin:
● HVGA-L 480x320, landscape
● HVGA-P 320x480, portrait (default)
● QVGA-L 320x240, landscape
● QVGA-P 240x320, portrait

emulator -skindir <dir> Searches for Emulator skins in <dir>

emulator -system <dir> Searches system, ramdisk, and user-data disk
images in <dir>

emulator -trace <name> Enables code profiling (press F9 to start), written
to a specified file

Chapter 12: Android SDK Tool Reference 309

310 Android: A Programmer’s Guide

Emulator Command Function

emulator -useaudio Enables Android audio support

emulator -verbose Enables verbose output

emulator -verbose-keys Enables verbose keypress messages

emulator -verbose-proxy Enables verbose proxy debug messages

emulator -wipe-data Deletes all data on the user-data disk image
(see emulator –data <filename>) before
starting

Android Debug Bridge Commands
The following commands are gsm commands. You access them by connecting to the
Emulator’s terminal console. If you do not know the port terminal console, it is one less
than the debug port. Execute adb devices to get a list of active devices and the related
port numbers.

adb Command Function

adb Bugreport Prints dumpsys, dumpstate, and logcat data
to the screen, for the purposes of bug
reporting

adb call <phonenumber> Simulates an inbound phone call from
<phonenumber>

adb cancel <phonenumber> Cancels an inbound phone call from
<phonenumber>

adb -d {<ID>|<serialNumber>} Lets you direct an adb command to a specific
Emulator/device instance, referred to by its
adb-assigned ID or serial number

adb data <state> Changes the state of the GPRS data
connection to <state>

adb Devices Prints a list of all attached Emulator/device
instances

adb forward <local> <remote> Forwards socket connections from a specified
local port to a specified remote port on the
Emulator/device instance

adb get-serialno Prints the adb instance identifier string

adb get-state Prints the adb state of an Emulator/device
instance

Chapter 12: Android SDK Tool Reference 311

adb Command Function

adb help Prints a list of supported adb commands

adb install <path-to-apk> Pushes an Android application (specified as a
full path to an .apk file) to the data file of an
Emulator/device

adb jdwp Prints a list of available JDWP processes on a
given device

adb kill-server Terminates the adb server process

adb logcat [<option>] [<filter-specs>] Prints log data to the screen

adb ppp <tty> [parm]... Runs PPP over USB:
● <tty> The tty for PPP stream; for

example, dev:/dev/omap_csmi_ttyl
● [parm]... Zero or more PPP/PPPD

options, such as defaultroute, local,
notty, etc.

Note that you should not automatically start
a PDP connection.

adb pull <remote> <local> Copies a specified file from an
Emulator/device instance to your
development computer

adb push <local> <remote> Copies a specified file from your development
computer to an Emulator/device instance

adb Shell Starts a remote shell in the target
Emulator/device instance

adb start-server Checks whether the adb server process is
running and, if not, starts it

adb Status Reports the current GSM voice/data state

adb unregistered Indicates no network is available

adb Version Prints the adb version number

adb voice <state> Changes the state of the GPRS voice
connection to <state>

adb wait-for-bootloader Blocks execution until the bootloader is
online—that is, until the instance state is
bootloader

adb wait-for-device Blocks execution until the device is
online—that is, until the instance state is
device

This page intentionally left blank

Index

A
Activities

AndroidLBS Activity, 212–221
AndroidPhoneDialer, 124–128
AutoCompleteTextView, 163–172
building, 151–157
Button Activity, 173–177, 202
Call Activity, 128–136
Checkbox Activity, 178–183
creating your first Android project in

Eclipse, 55–61
defined, 54
Dialer Activity, 124–128
EditText Activity, 183–189
FindAFriend Activity, 258–259, 276–305
FriendsMap Activity, 293–298
launch flags, 126
LocationEditor Activity
Manifest, 132–135
NameEditor Activity, 278–283

permissions, 131–136
RadioGroup Activity, 189–195
shell Activity using Windows CLI, 84–95
Spinner View, 195–201
Test Activity, 155–157
uninstalling a prior version, 106–108
See also Hello World!

Activity Action Intents
CALL_ACTION, 129
defined, 119
DIAL_ACTION, 124–128
list of, 120

<activity>.java file, 65–68
activityCreator, 47
ActivityCreator.bat, 85–88

project structure, 88–95
activityCreator.py, 111–112
adb.exe, 46–47

commands, 104, 115, 310–311
installing applications with, 103–106
ls command, 211

313
Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

adb.exe (continued)
pull command, 208, 210
reinstalling and launching an

application, 108
uninstalling prior versions of an

application, 106–108
Android

developers’ forum, 23
developing in languages other than Java, 20
home screen, 6
and Linux, 8
overview, 6–7
release of, 5

Android applications, life cycle, 50
Android Location-Based API, 204–205

adding zoom controls, 226–232
creating .kml file, 205–208
creating the AndroidLBS Activity,

212–221
MapView, 222–225, 232–236
passing coordinates to Google Maps,

222–226
track files, 208

Android plugin for Eclipse
configuring, 30–33
downloading and installing, 24–30

Android SDK, 22–23
activityCreator, 47
API Demos application, 40–41, 51
APIs, 48–49
Debug Bridge, 46–47, 310–311
Docs folder, 37
documentation, 38–39
downloading, 24
DX.exe, 47
Emulator, 45–46, 71–72, 241–244,

308–310
FAQs, 39
Hello, Activity! application, 41
languages, 33
and Linux, 109

Lunar Lander application, 42
MKSDCARD.exe, 47
Note Pad application, 43
overview, 36–37
Reference Information, 39
Samples folder, 37, 39–45
Skeleton App, 43–44
Snake, 44
tools, 45–47
Tools folder, 37
updates, 33, 51
upgrading, 34

android_programmers_guide.FindAFriend
directory, 261

android.jar, 63
android.java, 63
AndroidLBS Activity

adding zoom controls, 226–232
adjusting permissions, 212–214
creating the layout, 214–218
running the Activity, 220–221
writing code to run the Activity, 218–220

AndroidLBS.java, 234–236
AndroidManifest.xml, 62

adding an Intent Filter, 169–170
for Button Activity, 173
for Checkbox Activity, 178
editing to adjust permissions,

213–214
for EditText Activity, 183–184
for FindAFriend Activity, 276–278
modifying, 155–157
for RadioGroup Activity, 189–190
for Spinner View Activity, 195–196

AndroidPhoneDialer, 124–128
modifying, 136–147

AndroidPhoneDialer.java, code, 146–147
AndroidViews, 150–151
AndroidViews.java, 160, 162–163

Button Activity, 175–176
Checkbox Activity, 180–182

314 Android: A Programmer’s Guide

for EditText Activity, 186–188
for RadioGroup Activity, 192–194
for Spinner View Activity, 198–200

ANT, 90
compiling Hello World! Activity,

98–103
errors, 98–103
and Linux, 113–114

Apache ANT. See ANT
API Demos application, 40–41, 51
APIs, 48

GoogleAPIs, 48
Optional APIs, 48–49

application life cycle, 49
Android applications, 50
standard ASP applications, 49–50

<application>.java, 82
applications, defined, 54
ASP applications, life cycle, 49–50
assets directory, 64
authenticating users, Emulator,

243–244
autocomplete.java, 165–169
AutoCompleteTextView, 163–172
autocomplete.xml, 164–165

B
BaseColumns, 306
Broadcast Intents

defined, 119
list of, 121–123

build.xml, 89–94
Button Activity, modifying Button

actions, 202
buttons

adding, 136–141
Button Activity, 173–177
types of, 148

button.xml, 173–174

C
Call Activity, 128–136
CALL_ACTION Intent, 129
calling, vs. dialing, 119
cell phones, 3–4, 118
Checkbox Activity, 178–183
checkbox.xml, 179
CLI. See command-line interface (CLI)
command-line interface (CLI), shell Activity

using Windows CLI, 84–95
command-line tools, 84

ActivityCreator.bat, 85–95
Content Providers

creating, 263–276
providing a defining class, 306

ContentView, 69, 71, 76
Cursors, 269

D
Dalvik executable files, 47
DatabaseHelper class, 267
Debug Bridge, 46–47

commands, 104, 115, 310–311
installing applications with,

103–106
reinstalling and launching an

application, 108
uninstalling prior versions of an

application, 106–108
delete(), 269–271
Dev Tools, 241–242
developers, 2

homebrew, 4
developers’ forum, 23
DIAL_ACTION Intent, 124–128
Dialer Activity, 124–128
dialing

vs. calling, 119

Index 315

dialing (continued)
notation to dial a specific phone number

or voicemail, 125
directories, 63–68
DX.exe, 47

E
Eclipse, 10

advantages of using, 11
Android plugin for, 24–33
creating your first Android project,

55–61
downloading and installing, 18–20
and JRE versions, 20

EditText, 245–246
implementing an EditText view,

141–145
EditText Activity, 183–189
edittext.xml, 184–185
embedded device programming, history

of, 2–5
embedded devices, 3
Emulator, 45–46, 71–72

authenticating users, 243–244
calling to or from, 148
commands, 308–310
compiling and running GoogleAPIs,

252–255
configuring for GTalk, 241–244
installing applications with,

103–106
leaving open, 127

error messages, 58
errors

Call Activity, 130
running ANT, 98–103
when running Hello World! Activity,

105–106
executable files, 47

F
Fedora 8 Linux, 109
FindAFriend Activity, 258–259

creating, 276–302
running, 302–305

finish(), 281
FORWARD_RESULT_LAUNCH, 126
FriendsMap Activity, 293–298

G
getCurrentLocation(), 219
getType(), 271
Google

applications, 7
and the Open Handset Alliance, 5, 8, 109

Google Android development site, 22–23
Google Calendar, 240
Google Docs, 240
Google Earth, 205–208
Google Maps

and markers, 237
passing coordinates to, 222–226

Google NotePad, 259
Google Services, 240
Google Spreadsheet, 240
GoogleAPI.java, 247–248
GoogleAPIs, 48, 240

adding a settings feature, 255–256
compiling and running in the Emulator,

252–255
GoogleAPI.xml, creating an Activity’s layout

in, 245–247
GPS. See Android Location-Based API
GTalk, 240

adding packages to GoogleAPI.java,
247–248

communicating with other XMPP-based
chat clients, 256

316 Android: A Programmer’s Guide

compiling and running Google API,
252–255

configuring the Android Emulator for,
241–244

creating an Activity’s layout in
GoogleAPI.xml, 245–247

implementing View.OnClickListener,
248–252

H
Hello World!, 41

adding the JAVA_HOME variable,
96–97

code-based UI, 75–77
compiling with ANT, 98–103
creating an image-based version, 115
editing project files, 95–96
errors, 105–106
with images, 72–81
installing with adb, 103–106
on Linux, 109–114
programming in code, 69–72
reinstalling and launching, 108
uninstalling prior versions, 106–108
XML-based UI, 78–81

HelloWorldImage, 72–81
HelloWorldText, 55–61
homebrew developers, 4

I
IChatSession, 250–251
IDEs. See integrated development

environments (IDEs)
images

displaying, 72–81
naming, 74

ImageView, 75–77, 78–80

importing packages
full packages vs. specific sections, 202
to GoogleAPI.java, 247–248

insert(), 269–271
integrated development environments (IDEs), 10

See also Eclipse
Intent Filters, 123

adding to AutoCompleteTextView,
169–170

for AndroidViews Activity, 155–157
and DIAL_ACTION Intent, 125

Intent Receivers, 123
Intent Resolver, 119
Intents

Activity Action Intents, 119, 120
Broadcast Intents, 119, 121–123
CALL_ACTION, 129
defined, 119
DIAL_ACTION, 124–128
Intent code for .java file, 154
Intent code for .xml file, 152–153

J
Java Development Kit (JDK), downloading and

installing, 12–18
.java file, Intent code for, 154
Java Runtime Environment (JRE)

downloading and installing, 12–18
versions, 20

JAVA_HOME variable, 96–97
JDK. See Java Development Kit (JDK)
JRE. See Java Runtime Environment (JRE)

K
Keyhole Markup Language file. See .kml file
.kml file, 237

creating, 205–208

Index 317

L
labels, 82
LabelView, 82
launch flags, 126
licenses, for Java Development Kit (JDK),

15, 16
LinearLayout, 215–218, 246–247
Linux

and Android, 8
Hello World! Activity, 109–114
installing the Linux Android server, 114

ListAdapter, 250
listeners, 139
ListView, 245–246
LoadCoords(), 219
LoadFriends(), 294
location updating in real time, 305
location_editor.xml, 283
LocationEditor Activity, 283–293
LocationEditor.java, 283–293
Lunar Lander application, 42

M
main.xml, 82, 233–234

code, 146
Manifest

editing, 132–135
Permissions wizard, 213

MapView, 222–225
toggling between standard and satellite

views, 232–236
Menu, creating, 157–163
MKSDCARD.exe, 47
MULTIPLE_TASK_LAUNCH, 126

N
NameEditor Activity, 278–283
National Marine Electronics Association files.

See .nmea files

New Android Project wizard, 55–61
NEW_TASK_LAUNCH, 126, 129
.nmea files, 237

defined, 208
in Linux, 210–212
in Windows, 208–209

NO_HISTORY_LAUNCH, 126
Note Pad application, 43

O
onCreate(), 266, 267
onCreateOptionsMenu(), 159–160
onOptionsItemSelected(), 161–162
onPause(), 281, 286, 287
onResume(), 280–281, 286, 287
Open Handset Alliance, 5–6

and Google, 8, 109
operating systems, 115

See also Linux
Optional APIs, 48–49

P
Package Explorer, 61
package name, 58
PATH statement, configuring,

109–114
permissions, 131–136, 212–214
plugins, Android plugin for Eclipse,

24–33
priority, 7

Q
query(), 268–269

R
RadioGroup Activity, 189–195
radiogroup.xml, 190–191

318 Android: A Programmer’s Guide

Referenced Libraries, 62–63
RelativeLayout, 226–228, 293
res directory, 63–64
R.java file, 64–65
root directory, 62

S
SDK, Android, 22–24
SDN. See Sun Developer Network (SDN)
settings feature, adding to a GoogleAPI

Activity, 255–256
SINGLE_TOP_LAUNCH, 126
Skeleton App, 43–44
Snake, 44
Spinner View Activity, 195–201
spinner.xml, 197
SQLite database, 250

creating, 259–262
creating in code, 306

SQLiteOpenHelper, 266–267
src directory, 64–68
src folder, 45
strings.xml, editing, 263–265
Sun Developer Network (SDN), Downloads

page, 13–14
system priority, 7

T
Test Activity, 155–157
testButton.java, 174–175
testCheckBox.java, 179–180
testEditText.java, 185–186
test.java, 154
testRadioGroup.java, 191–192
testSpinner.java, 197–198
test.xml, 152–153
TextView, 67, 68, 69–71, 82
track files, 208

U
Ubuntu Dapper Drake, 109
uninstalling, prior versions of an Activity,

106–108
update(), 269–271
updates, Android SDK, 51
Uri.parse, 125, 129
user interface (UI) development, 7

V
View.OnClickListener, 248–252
voicemail, dialing shortcut, 125

X
.xml file, Intent code for, 152–153
XMPP, 240

communicating with other XMPP-based
chat clients, 256

Settings, 242

Z
zoom controls, 226–232

Index 319

	Contents
	Acknowledgments
	Introduction
	1 What Is Android?
	Brief History of Embedded Device Programming
	Open Handset Alliance and Android
	Introduction to Android

	2 Downloading and Installing Eclipse
	Why Eclipse?
	Downloading and Installing the JRE
	Downloading and Installing Eclipse

	3 Downloading and Installing the Android SDK
	Downloading the Android SDK
	Downloading and Installing the Android Plugin for Eclipse
	Configuring the Android Plugin for Eclipse

	4 Exploring the Android SDK
	What Is in the Android SDK?
	Android Documentation
	Android Samples
	Try This: Run the API Demos Sample Application
	Android Tools
	APIs

	Application Life Cycle
	Standard ASP Application Life Cycle
	Android Application Life Cycle

	5 Application: Hello World!
	Creating Your First Android Project in Eclipse
	Examining the Android-Created Files
	AndroidManifest.xml
	Referenced Libraries
	Directories

	Hello World! Again
	Hello World! Using an Image
	Hello World! Code-Based UI
	Hello World! XML-Based UI
	Try This: Use TextView and ImageView

	6 Using the Command-Line Tools and the Android Emulator
	Creating a Shell Activity Using the Windows CLI
	Running the ActivityCreator.bat
	The Project Structure

	Creating the Hello World! Activity in the Windows CLI
	Editing the Project Files
	Adding the JAVA_HOME Variable
	Compiling and Installing the Application

	Hello World! on Linux
	Configuring the PATH Statement
	Try This: Create an Image-Based Hello World! in the CLI

	7 Using Intents and the Phone Dialer
	What Are Intents?
	Using the Dialer
	Placing a Call from Your Activity
	Adding the Intent to Your Activity
	Editing Activity Permissions

	Modifying the AndroidPhoneDialer
	Adding a Button
	Implementing an EditText View
	Try This: Modify the AndroidPhoneDialer Project

	8 Lists, Menus, and Other Views
	Building the Activities
	Intent Code for the .xml File
	Intent Code for the .java File
	Modifying the AndroidManifest.xml

	Using the Menu
	Creating the Activity for AutoComplete
	Button
	CheckBox
	EditText
	RadioGroup
	Spinner
	Try This: Modify More View Attributes

	9 Using the Cell Phone’s GPS Functionality
	Using the Android Location-Based API
	Creating a kml File
	What Is a track File?
	Getting the nmea File in Windows
	Getting the nmea File in Linux

	Reading the GPS with the Android Location-Based API
	Creating the AndroidLBS Activity
	Passing Coordinates to Google Maps
	Adding Zoom Controls
	Try This: Toggling Between MapView’s Standard and Satellite Views

	10 Using the Google API with GTalk
	Configuring the Android Emulator for GTalk
	Implementing GTalk in Android
	Creating the Activity’s Layout in the GoogleAPI.xml
	Adding Packages to GoogleAPI.java
	Implementing the View.OnClickListener
	Compiling and Running GoogleAPI
	Try This: Add a Settings Feature to Your GoogleAPI Activity

	11 Application: Find a Friend
	Creating a SQLite Database
	Creating a Custom Content Provider
	Editing the strings.xml
	Creating Your Content Provider

	Creating the FindAFriend Activity
	Editing AndroidManifest.xml
	Creating the NameEditor Activity
	Creating the LocationEditor Activity
	Creating the FriendsMap Activity
	Creating the FindAFriend Activity

	Running the FindAFriend Activity
	Try This: Real-Time Location Updating

	12 Android SDK Tool Reference
	Android Emulator Commands
	Android Debug Bridge Commands

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X
	Z

	Copyright © 2008 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Acknowledgments:
	Introduction:
	1 What Is Android?:
	Brief History of Embedded Device Programming:
	Open Handset Alliance and Android:
	Introduction to Android:
	2 Downloading and Installing Eclipse:
	Why Eclipse?:
	Downloading and Installing the JRE:
	Downloading and Installing Eclipse:
	3 Downloading and Installing the Android SDK:
	Downloading the Android SDK:
	Downloading and Installing the Android Plugin for Eclipse:
	Configuring the Android Plugin for Eclipse:
	4 Exploring the Android SDK:
	What Is in the Android SDK?:
	Try This: Run the API Demos Sample Application:
	Application Life Cycle:
	5 Application: Hello World!:
	Creating Your First Android Project in Eclipse:
	Examining the Android-Created Files:
	Hello World! Again:
	Hello World! Using an Image:
	Try This: Use TextView and ImageView:
	6 Using the Command-Line Tools and the Android Emulator:
	Creating a Shell Activity Using the Windows CLI:
	Creating the Hello World! Activity in the Windows CLI:
	Hello World! on Linux:
	Try This: Create an Image-Based Hello World! in the CLI:
	7 Using Intents and the Phone Dialer:
	What Are Intents?:
	Using the Dialer:
	Placing a Call from Your Activity:
	Android Documentation:
	Android Samples:
	Android Tools:
	APIs:
	Standard ASP Application Life Cycle:
	Android Application Life Cycle:
	AndroidManifest:
	xml:

	Referenced Libraries:
	Directories:
	Hello World! Code-Based UI:
	Hello World! XML-Based UI:
	Running the ActivityCreator:
	bat:

	The Project Structure:
	Editing the Project Files:
	Adding the JAVA_HOME Variable:
	Compiling and Installing the Application:
	Configuring the PATH Statement:
	Adding the Intent to Your Activity:
	Editing Activity Permissions:
	Modifying the AndroidPhoneDialer:
	Try This: Modify the AndroidPhoneDialer Project:
	8 Lists, Menus, and Other Views:
	Building the Activities:
	Using the Menu:
	Try This: Modify More View Attributes:
	9 Using the Cell PhoneŁs GPS Functionality:
	Using the Android Location-Based API:
	Reading the GPS with the Android Location-Based API:
	Try This: Toggling Between MapViewŁs Standard and Satellite Views:
	10 Using the Google API with GTalk:
	Configuring the Android Emulator for GTalk:
	Implementing GTalk in Android:
	Try This: Add a Settings Feature to Your GoogleAPI Activity:
	Adding a Button:
	Implementing an EditText View:
	Intent Code for the :
	xml File:
	java File:

	Modifying the AndroidManifest:
	xml:

	Creating the Activity for AutoComplete:
	Button:
	CheckBox:
	EditText:
	RadioGroup:
	Spinner:
	Creating a kml File:
	What Is a track File?:
	Getting the nmea File in Windows:
	Getting the nmea File in Linux:
	Creating the AndroidLBS Activity:
	Passing Coordinates to Google Maps:
	Adding Zoom Controls:
	Creating the ActivityŁs Layout in the GoogleAPI:
	xml:

	Adding Packages to GoogleAPI:
	java:

	Implementing the View:
	OnClickListener:

	Compiling and Running GoogleAPI:
	11 Application: Find a Friend:
	Creating a SQLite Database:
	Creating a Custom Content Provider:
	Running the FindAFriend Activity:
	Try This: Real-Time Location Updating:
	12 Android SDK Tool Reference:
	Android Emulator Commands:
	Android Debug Bridge Commands:
	Index:
	Editing the strings:
	xml:

	Creating Your Content Provider:
	Editing AndroidManifest:
	xml:

	Creating the NameEditor Activity:
	Creating the LocationEditor Activity:
	Creating the FriendsMap Activity:
	Creating the FindAFriend Activity:

