
Hacking
the Xbox
An Introduction to Reverse Engineering

H
A
C
K
I
N
G

T
H
E

X
B
O
X

Andrew “bunnie” Huang

B
U
N
N
I
E

qANQR1DBwU4DiyVm0iq7P8gQB/9IoylwNnOxHExELKfHCTyOxX1m/eKe3+bgN/kc
afpcdG1BR0ZV3degJhP2ru8h58Tw/MLU+h+jMYPUOCulwRAMyhxqX+0K1fU0oNAd
1UKi0e8sju0mks0XXzEOXNpM6BO8L90/NCSUTWPBUMgR6/KtezsFJUDAIOlxVuBX
IpN1x+6A3O6Tayrg0+Qp+hD3FDRSIVKoD/uiaCnxkp5wxXh3JPRU3JMHWtUcwsr2
ThN1xhandO6Tn gg0dep+hDhackingKwas iaCcekledxby3JheUoriginalwsr2
This hands-on guide to hacking was canceled by the original
publisher out of fear of DMCA-related lawsuits. Following the
author’s self-publication of the book (during which time he sold
thousands directly), Hacking the Xbox is now brought to you by
No Starch Press.

Hacking the Xbox begins with a few step-by-step tutorials on
hardware modifications that teach basic hacking techniques as
well as essential reverse engineering skills. It progresses into
a discussion of the Xbox security mechanisms and other advanced
hacking topics, emphasizing the important subjects of computer
security and reverse engineering. The book includes numerous
practical guides, such as where to get hacking gear, soldering
techniques, debugging tips, and an Xbox hardware reference guide.

Hacking the Xbox confronts the social and political issues facing
today’s hacker, and introduces readers to the humans behind the
hacks through several interviews with master hackers. It looks at
the potential impact of today’s legal challenges to legitimate
reverse engineering activities, which are further examined in a
chapter contributed by Lee Tien of the Electronic Frontier
Foundation (EFF) about the rights and responsibilities of
hackers. The book concludes with a discussion of the latest
trends and vulnerabilities in secure PC platforms.

Hurry and get Hacking the Xbox before Microsoft does!
VurrRyVnZ6EetMHackingyDhi XboxxbEforeaMicrosoft BOesDPGWrkhbxfH
VDsdRyVDZ6E0sMGl2Qe9/yDriFn2RJx1E1bmoaSd/+Va3UfEBOXBDPGWrkhbxfH
5+zS6m6B4sG3p+2veuIZSN3CTfHRWCbAjcmYWokhHUN+p2VOpeTit7w08cEqMjDc
/du9x6CkPyxGMcL4EwVpNLf3PO6nCevVNRk18pSq64ICUgtRFqmc+JXCg+UZO2Mi

$24.99 ($34.99 CDN)

SHELVE IN: PC HARDWARE/GENERAL

Get Hacking the Xbox before Microsoft Does!

9 781593 270292

52499>
ISBN 1-59327-029-1

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Dear Reader,

Thank you for downloading and reading this book.

No Starch Press and I have decided to release this free ebook version
of Hacking the Xbox in honor of Aaron Swartz. As you read this book, I
hope that you’ll be reminded of how important freedom is to the hacking
community and that you’ll be inclined to support the causes that Aaron
believed in.

I agreed to release this book for free in part because Aaron’s treatment by
MIT is not unfamiliar to me. In this book, you will find the story of when
I was an MIT graduate student, extracting security keys from the original
Microsoft Xbox. You’ll also read about the crushing disappointment of
receiving a letter from MIT legal repudiating any association with my
work, effectively leaving me on my own to face Microsoft.

The difference was that the faculty of my lab, the AI laboratory, were
outraged by this treatment. They openly defied MIT legal and vowed
to publish my work as an official “AI Lab Memo,” thereby granting me
greater negotiating leverage with Microsoft. Microsoft, mindful of the
potential backlash from the court of public opinion over suing a legitimate
academic researcher, came to a civil understanding with me over the issue.

It saddens me that America’s so-called government for the people, by the
people, and of the people has less compassion and enlightenment toward
their fellow man than a corporation. Having been a party to subsequent
legal bullying by other entities, I am all too familiar with how ugly and
gut-wrenching a high-stakes lawsuit can be. Fortunately, the stakes in my
cases were not as high, nor were my adversaries as formidable as Aaron’s,
or I too might have succumbed to hopelessness and fear. A few years ago,
I started rebuilding my life overseas, and I find a quantum of solace in the
thought that my residence abroad makes it a little more difficult for me to
be served.

While the US legal system strives for justice, the rules of the system
create an asymmetric war that favors those with resources. By far one of
the most effective methods to force a conclusion, right or wrong, against
a small player is to simply bleed them of resources and the will to fight
through pre-trial antics. Your entire life feels like it is under an electron
microscope, with every tiny blemish magnified into a pitched battle of
motions, countermotions, discovery, subpoenas, and affidavits, and each
action heaping tens of thousands of dollars onto your legal bill. Your
friends, co-workers, employers, and family are drawn into this circus of
humiliation as witnesses. Worse, you’re counseled not to speak candidly
to anyone, lest they be summoned as a witness against you. Isolated
and afraid, it eventually makes more sense to roll over and settle than to
take the risk of losing on a technicality versus a better-funded adversary,
regardless of the justice.

The US government is far and away the best-funded and fearsome enemy
in the world, and copyright law has some unusually large, if not cruel,
penalties associated with it. I never knew Aaron, but I feel that the magni-
tude of the bullying he was subjected to is reflected in his decision to end
his life.

I echo Larry Lessig’s notion that the US legal system needs a sense of
shame. To an outsider like me, it seems that certain prosecutors in the
US government are obsessed with making a name for themselves at the
expense of the individuals they pursue. Winning cases gains them the rec-
ognition and credibility needed for promotions and assignments to ever
higher profile cases. For them, it’s not about justice—it’s about victory
and self-aggrandizement.

This system of incentives contributes to the shameless bullying of indi-
viduals and small entities who have the guts to stand up and do something
daring. Individuals are robbed of the will and strength to fight for what
they feel is right, as the mere act of prosecution can be as much a punish-
ment as the verdict. As a result, I fear that the era of civil disobedience
may be coming to a close.

As people, as individuals, as hackers, we need to oppose this trend and
continue to do what we feel deep down in our hearts is right. While
Aaron’s story came to a tragic end, I hope that in this book you will find
an encouraging story with a happy ending. Without the right to tinker
and explore, we risk becoming enslaved by technology; and the more we
exercise the right to hack, the harder it will be to take that right away.

bunnie
Singapore, March 2013

Hacking the Xbox
An Introduction to Reverse Engineering

Unlimited Edition

Hacking the Xbox
An Introduction to Reverse Engineering

Unlimited Edition

Andrew “bunnie” Huang

No Starch Press, Inc.
San Francisco

HACKING THE XBOX. Copyright © 2003 by Xenatera LLC.

Some rights reserved. This work is licensed under the Creative Commons Attri-
bution-NonCommerical-ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, CA 94305, USA.

Publisher: William Pollock
Managing Editor: Karol Jurado
Design and Layout: Xenatera LLC

No Starch Press and the No Starch Press logo are registered trademarks of No
Starch Press, Inc. Other product and company names mentioned herein may be
the trademarks of their respective owners. Rather than use a trademark symbol
with every occurrence of a trademarked name, we are using the names only in an
editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

For information on book distributors or translations, please contact No Starch
Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103 USA
Phone: 415-863-9900; Fax: 415-863-9950; info@nostarch.com;
http://www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor No Starch Press, Inc. shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in it.

ISBN 1-59327-029-1

In memory of Aaron Swartz

Table of Contents

Prologue - README.1ST .. 1
The Video Game Console Market .. 2
About Hackers and Hacking .. 4

The Politics of Hacking .. 7
The People Behind the Hacks .. 11

Chapter 1 - Voiding the Warranty15
Tools of the Trade ... 15

Tools to Open Things Up .. 15
Tools to Attach and Remove Components .. 17
Tools to Test and Diagnose ... 18
Tools for Design .. 20

Deconstructing the Xbox ... 22
Step 1: Safety First ... 22
Step 2: Remove Case Screws ... 22
Step 3: Remove the Top Cover .. 24
Step 4: Move the Disk Drives ... 25
Step 5: Remove the Disk Drives (Optional) ... 28
Reassembling the Xbox .. 28

Chapter 2 - Thinking Inside the Box31
Reading a Circuit Board .. 32

Circuit Board Basics .. 32
Components ... 34
Test Points ... 39

Xbox Architecture ... 40
High-Level Organization .. 40
Functional Details .. 42

CPU .. 42
Northbridges and Southbridges ... 45
RAM ... 46
ROM ... 47
Odds and Ends ... 48

Pattern Matching .. 48
Comparison: Xbox Versus the PC ... 49
Contrast: Xbox Versus the Gamecube ... 50

Chapter 3 - Installing a Blue LED 53
What You’ll Need ... 54
Removing the Xbox Front Panel .. 54
Removing the Front Panel Circuit Board .. 58
Installing the Blue LED ... 59
Reassembling the Front Panel .. 63
Debugging ... 65

Hacking the Xbox: An Introduction to Reverse Engineeringx
Chapter 4 - Building a USB Adapter 67
Starting Materials .. 67
Strategy .. 69
Implementation ... 69

Chapter 5 - Replacing a Broken Power Supply 73
Diagnosing a Broken Power Supply ... 74
Replacing the Power Supply ... 76

Strategy .. 77
Procedure .. 78

Building the Xbox Power Cable ... 78
Installing the Replacement Power Supply .. 84
Operating with the Replacement Power Supply ... 85
Debugging Tips ... 86

Chapter 6 - The Best Xbox Game: Security Hacking 89
First Encounters with a Paranoid Design .. 90

To Snarf a ROM ... 90
An Encounter with Microsoft ... 92
Analyzing the ROM Contents .. 93

Chapter 7 - A Brief Primer on Security 101
Who Needs Security, Anyways? ... 101
A Brief Primer on Cryptography .. 104

Classes of Cryptographic Algorithms .. 105
SHA-1 Hash ... 109
TEA ... 111
RC-4 .. 113
RSA .. 114

The Rest of the Picture ... 116

Chapter 8 - Reverse Engineering Xbox Security 119
Extracting Secrets from Hardware ... 119

Eavesdropping a High Speed Bus .. 122
Tapping the Bus on a Budget ... 122
Building the Data Logger ... 129
Determining the Bus Order and Polarity ... 131

Making Sense of the Captured Data ... 131

Chapter 9 - Sneaking in the Back Door 137
Back Doors and Security Holes ... 138

Visor Jam Table Attacks ... 139
MIST Premature Unmap Attack ... 140

Microsoft Retaliates ... 141
Reverse Engineering v1.1 Security .. 142
The Threat of Back Doors ... 147

Table of Contents xi
Chapter 10 - More Hardware Projects 151
The LPC Interface .. 151

LPC Interface on the Xbox ... 152
Using the LPC Interface ... 153

The Other 64 MB of SDRAM ... 155
Xbox VGA .. 157
Mass Storage Replacement ... 158

Chapter 11 - Developing Software for the Xbox 161
Xbox-Linux ... 161

Installing Xbox-Linux ... 162
“Project B” ... 166

OpenXDK... 171

Chapter 12 - Caveat Hacker .. 173
Caveat Hacker: A Primer on Intellectual Property, by Lee Tien 175

Classical Intellectual Property Law: An Overview ... 175
Copyright .. 176
Patent ... 178
Trade Secrets .. 179
The Constitutional Copyright Bargain ... 179

The Traditional View of Reverse Engineering .. 180
Trade Secrecy and “Improper Means” ... 180
Copyright Law and the Problem of Intermediate Copying .. 181
Patent Law .. 182

New Challenges for Reverse Engineers ... 183
The Digital Millennium Copyright Act and the Problem of Unauthorized Access 184
Unauthorized Access ... 184
Circumvention Technologies ... 185
Navigating the DMCA’s Exemptions ... 185

1201(f): reverse-engineering for interoperability .. 186
1201(g): encryption research ... 187
1201(j): security research .. 187

End-User License Agreements and Contractual Prohibitions on Reverse-Engineering 187
Trade Secrets and the Economic Espionage Act ... 189

The Responsible Hacker: Ignorance Is No Defense .. 189
Civil and Criminal Offenses and Penalties .. 190

Reverse Engineering as “The Freedom to Tinker” and Other Legal Issues 191

Chapter 13 - Onward! .. 193
The Hacking Community .. 193

Hacking Fora .. 194
Making a Contribution ... 195

Trusted Computing .. 197
Taking a Step Back .. 199
Palladium Versus TCPA.. 202
Hacking the Trusted PC .. 204
Looking Forward .. 205

Concluding Thoughts .. 206

table_of_contents_kj.pmd 7/11/2003, 12:21 PM11

Hacking the Xbox: An Introduction to Reverse Engineeringxii
Appendix A - Where to Get Your Hacking Gear........ 207
Vendors for Hobbyists .. 207
Prepared Equipment Order Forms .. 209

Appendix B - Soldering Techniques 211
Introduction to Soldering ... 211

Use Flux .. 212
Starter Tips ... 213

Surface Mount Soldering ... 214
Technique for Simple Components .. 215
Technique for Complex Components ... 216
Technique for Removing Components .. 219

Appendix C - Getting into PCB Layout......................223
Philosophy and Design Flow ... 223

Refining Your Idea .. 223
Schematic Capture ... 224
Board Layout ... 226
General Placement and Routing Guidelines .. 227

Leave Space for Via Fanouts on Surface Mount Devices ... 228
Decoupling Capacitors Fit Nicely Under SMD Pads .. 228
Know Your Special Traces ... 229
Circuit Boards Make Fine Heatsinks ... 231
Establish Preferred Routing Directions for Each Layer ... 231
Stack a Board with Orthogonal Layers .. 231
On Two-Layer Boards, Use Fingers to Bus Power .. 232
Hints on Using an Auto-Router ... 232

CAD Tools .. 232
Board Fabrication Companies ... 233

Sierra Proto Express ... 233
Data Circuit Systems ... 234
Advanced Circuits ... 234
Alberta Printed Circuits ... 234

Starter Projects ... 235

Appendix D - Getting Started with FPGAs................237
What Is an FPGA? ... 237
Designing for an FPGA .. 239

Project Ideas ... 243
Where to Buy ... 244

Appendix E - Debugging: Hints and Tips.................247
Don’t Panic! ... 247

Understand the System ... 247
Observe Symptoms .. 248

Common Bugs .. 249
Recovering from a Lifted Trace or Pad ... 252

table_of_contents_kj.pmd 7/11/2003, 12:21 PM12

Table of Contents xiii
Appendix F - Xbox Hardware Reference257
Power Supply Pinout ... 257
Video Connector Pinout ... 258
USB Connector Pinout .. 260
Ethernet Connector Pinout .. 261
ATA Connector Pinout ... 262
DVD-ROM Power Connector .. 263
LPC Connector .. 264
Fan Connector .. 265
Front Panel Connector .. 265

Index...267

table_of_contents_kj.pmd 7/11/2003, 12:21 PM13

Acknowledgments

I would like to thank my dedicated and caring parents for raising me to be
the person that I am today.

I would also like to thank the online hacking community for their advice
and guidance, especially those who must operate anonymously for fear of
persecution by government or retribution by their employer.

Lee Tien of the Electronic Frontier Foundation, Joseph Liu of the Boston
College Law School, and Dr. Tom Knight and Prof. Hal Abelson of the
MIT Artificial Intelligence Laboratory all deserve a special thanks for
helping me through the process of publishing my original paper on the
Xbox security system. I never would have published if it weren’t for their
support and counsel.

I am also indebted to the Xbox-Linux team: Michael Steil, Milosch Meriac,
Franz Lehner (thanks for all the detailed technical review!), and the amaz-
ing Andy Green (aka numbnut), for providing so much insight into the
latest Xbox hacks and for providing such interesting material for the book.
Mad props to you guys; keep up the great work. I would also like to thank
Dan Johnson (aka SiliconIce), founder of the XboxHacker.net BBS, for
starting the XboxHacker.net BBS and for his interesting material for the
book, and for his very helpful technical review, advice, and encouragement.
Also, thanks to Gerhard Farfeleder for contributing a photograph of the
Xbox-Linux team.

Thanks to Timothy Chen of Via Technologies, Inc., for contributing the
P4M266 motherboard for the Xbox versus PC comparison and for his fasci-
nating insight into the PC industry. I would also like to thank Xilinx for their
generous FPGA donations through the Xilinx University Program.

You know who you are, and you know how you helped me: xor, adq, luc,
head, visor, roastbeef, kgasper, xerox, lordvictory, pixel8, El (GCN), tom
from HK, and sween (Scotch!).

More thanks are due for the unlimited edition of this book: Bill Pollock of
No Starch Press deserves a special thanks for boldly stepping up to handle
the printing and distribution of the book; Paul Yoon deserves a hearty
thanks for his numerous typo corrections; and Rael Dornfast and Tim
O’Reilly of O’Reilly & Associates, Inc. also deserve a special thanks for
their helpful advice and encouragement.

PROLOGUE

README.1ST

The XboxTM video game console from Microsoft® is an exciting piece of
hardware, and not just because it can play the latest video games. The
powerful and cheap Xbox has the potential to be used as a PC, an all-in-one
media player, or even a web server. Unfortunately, there is a dearth of books
that can teach a reader how to explore and modify modern electronic
hardware such as the Xbox. Most electronics textbooks are theory-oriented
and very focused, whereas real hacking requires a broad set of practical skills
and knowledge. Also, the few practical books on hardware hacking that I
had as inspiration as a child have long been outdated by the fast pace of
technology. This book is intended to fill the need for a practical guide to
understanding and reverse engineering modern computers: a handbook for
a new generation of hackers.

The ultimate benefit of hacking the Xbox is its educational value, or as the
saying goes, “Given a fish, eat for a day; learn to fish, eat for a lifetime.”
Hence, this book focuses on introducing basic hacking techniques —
soldering, reverse engineering, debugging — to novice hackers, while
providing hardware references and insight that may be useful to more
seasoned hackers. The Xbox has served to educate both the security
community and the hacking community: not because it is an outstanding
example of security, but because it is a high profile, high volume product
made by a large company whose focus was recently defined to be security
by its chairman.1 The Xbox experience shows that building trustable
clients in a hostile user environment is hard, even for a large, well-funded
company. One observation is that this risk and difficulty of building
cheap, trustable hardware clients places an upper bound on the impor-
tance of the secret that can be trusted to such client hardware. In
addition, the Xbox provides a consistent teaching example, with almost
10 million nearly identical units out there at the time of writing. The
similarity of the Xbox’s architecture to a vanilla PC adds even more
educational value to Xbox hacking, since much of the discussion in this
book also applies directly to the much broader subject of PCs.

1 “Trustworthy Computing” by Bill Gates, http://
www.microsoft.com/mscorp/execmail/2002/07-18twc.asp

Hacking the Xbox: An Introduction to Reverse Engineering2
Another interesting aspect of Xbox hacking is the underground society
of hardware hackers following the Xbox. The people who hacked the
Xbox and the expertise they attained will be relevant long after the Xbox
has become a dusty yard sale piece. Hence, there is a conscious social
focus to this book. I have included profiles of a sampling of Xbox
hacking personalities. The hope is to inspire people, through role models,
to pick up a screwdriver and a soldering iron and to start hacking.
Instilling this sort of exploratory spirit in the younger generations will be
important in the long run for preserving the pool of talented engineers
that drove the technology revolution to where it is today. Many of
today’s engineers got their start hacking and tinkering with ham radios,
telephones and computers which, back in that day, shipped with a
complete set of schematics and source code. This pool of engineering
talent is essential for maintaining a healthy economy and for maintaining
strong national security in the computer age.

The Video Game Console Market
2002 was a year marked by turmoil, not only abroad, but also in the
technology marketplace; PC sales flattened, the server business shrank, and
the telecommunications market, with a few exceptions, looked dismal.
Despite the bear market for technology, the video game hardware, software
and accessories market had a landmark year, hitting a total dollar sales of
$10.3 billion — a 10% increase over 2001.2 This is comparable to the
recording industry’s sales of $13 billion in the US in 2001.

Even though the market for video games is large, running a profitable
console business is a daunting challenge. Video game customers are picky,
trendy, and frugal. They demand high-performance, sexy console hardware
at the price of a fancy family dinner or a visit to the doctor. This combina-
tion of frugality with an expectation for high performance game hardware
forces console vendors to sell their hardware at a loss. As a result, a “closed-
console” business strategy is used by console vendors: the console is sold as
a loss leader, and profits come from future sales of video game titles. This
business strategy requires a large amount of up-front investment in console
hardware and in advertising. It is the console manufacturer’s responsibility
to create a market for their hardware so that game developers feel comfort-
able investing their time and money in the platform.

The Catch-22 is that nobody wants to buy a console that has few game
titles. Thus, the risk of building and deploying millions of units of
hardware, and the hundreds of millions of dollars of up-front losses
taken on the hardware, is shouldered almost entirely by the console
manufacturer. As a result, there are currently only three players in the
game console business today: Sony, Nintendo, and Microsoft. Of these
three, Sony has a head-and-shoulders lead in the console market, while
Nintendo has cornered the handheld market with its Gameboy line of

2 source: NPDFunworld

Prologue - README.1ST 3
products. Microsoft is the new player in the game console market. The
race for second place is yet undecided. In early 2003, Gamecube sales
were leading Xbox sales in Japan and Europe, while the Xbox maintained
a sales lead over the Gamecube in the huge North American market.

Crucial to the success of the closed-console business model is the idea of
locking consumers into buying only approved, royalty-bearing game
titles. In other words, piracy and unapproved game titles can destroy the
profitability of the business. Hence, a console must employ security
mechanisms that hamper game copying and unapproved game develop-
ment and distribution. The failure of the Sega Dreamcast is a salient
example of what happens when security mechanisms fail.

The Dreamcast was launched in Japan on November 1998. Production
problems with the NEC PowerVR2 DC chip, the graphics accelerator used
by the Dreamcast, limited initial shipments. The following three years were a
rollercoaster ride for the Dreamcast. Popular games such as Soul Caliber,
Dead or Alive 2, Resident Evil, Crazy Taxi and Shen Mue buoyed the
Dreamcast’s popularity, while Sony’s Playstation2 launch ate away at the
Dreamcast’s sales and ultimately the confidence of software developers.
Ironically, the quality of the Dreamcast graphics was equivalent or
superior to quality to early Playstation2 titles, such as Dead or Alive 2,
despite the extra horsepower packed by the Playstation2. (The
Playstation2 is difficult to program, and it took a couple of years for
developers to realize its full potential.)

The final nail in the Dreamcast’s coffin was hammered in the spring and
summer of 2000. A German hacker group, Team Utopia, discovered a back
door inside the Dreamcast’s mask-ROM BIOS that allowed the Dreamcast
to boot from a standard CD-ROM. Nominally, the Dreamcast uses a
proprietary format called the “GD-ROM” for game distribution. The GD-
ROM format cannot be copied using standard CD or DVD burners.
However, the back door in the Dreamcast’s ROM BIOS enabled pirates to
eventually create monolithic CD-ROM images of video games that were
bootable without any need for hardware modification. Who was going to
pay for a game when it could be downloaded for free on the internet? The
resulting rampant piracy diminished game sales, discouraging game
developers from developing for the console and damaging Sega’s
business. Six million units sold, and about three years after its launch, the
Dreamcast was pulled from the market. Now, Sega is exclusively in the
game development business, and even makes games for their former
competitors Sony and Nintendo as well as Microsoft.

While there are many lessons to be learned from the Dreamcast experience,
this message is clear: the ability to run code from near-free sources such as
CD-Rs, DVD-Rs, or the network, without significant hardware modifica-
tions, is the kiss of death for any console business based on the closed-
console model. This is a brutal problem for the Microsoft Xbox, since it
is built from standard PC hardware originally designed to be open and to
run code loaded from numerous sources. Hence, Microsoft’s fate in the
console market is intimately linked to the success and robustness of the

Hacking the Xbox: An Introduction to Reverse Engineering4
Xbox security system. The security system has held up fairly well so far:
all of the weaknesses found require at least a solderless, warranty-voiding
modification to be installed. The need for hardware modifications limits
the practical impact of these weaknesses, since most users are afraid to
take the cover off their appliances. However, there is an intense desire
from multiple groups, legitimate and illegitimate, to get the Xbox to run
code from arbitrary sources without hardware modifications.

The Xbox is a victim of its own design: the choice to use standard PC
hardware vastly increases the value of an “opened” Xbox to hackers and
pirates alike. The Xbox is a rather satisfying target for weekend hackers and
hobbyists for the same reason Microsoft adopted the PC architecture for the
Xbox: existing PC programs are easily ported to the Xbox. In addition,
there is a wide and deep knowledge base about PC hardware, so the learning
curve for hacking the Xbox is not as steep as for other consoles. On the
other hand, the Playstation2 and the Gamecube have a steep learning curve
and they also have architectural limitations that hamper the porting of most
PC applications. The Xbox is also a popular target for pirates because of the
ease of porting legacy game emulators, and because of its high profile and
ease of obtaining compatible debugging and testing hardware.

Additionally, the similarity of the Xbox architecture to the PC architecture
makes the Xbox a good educational vehicle. The knowledge gained from
this book applies to more than than just embedded hardware or game
consoles; you should be able to apply most of the knowledge in this
book directly to PCs. Too, vast documentation resources applicable to
the Xbox, inherited from the PC world, are conveniently indexed by web
search engines. The ready availability of documentation will assist
motivated readers to build upon the knowledge contained in this book.

The Xbox is also a more appealing educational example than the run-of-
the-mill PC. There is too much variation between the hardware details of
PC implementations to make useful step-by-step hacking guides for the
PC, whereas step-by-step guides for the Xbox are guaranteed to be
accurate across millions of units that are conveniently available for
purchase in almost any mall or electronics retailer.

About Hackers and Hacking
This is a book about hacking in the traditional sense: about the process and
methods of exploration. Some may be surprised that this book doesn’t
have chapters devoted to ripping games and patching specific security
checks — after all, isn’t that what hacking is all about? In reality, the term
“hacker” has evolved quite dramatically over the years as the public’s
awareness of technology has increased and as a sensationalist mass media
continues to color the public’s opinion of hackers.

In the beginning, a hacker was someone who worked passionately for the
sake of curiosity and exploration. There were hardware hackers who
took it upon themselves to remove the covers from computers to

Prologue - README.1ST 5
optimize their design (early computers were built out of discrete
components, so they could be modified in meaningful ways with simple
tools), and there were software hackers who labored to make the most
compact and elegant code, since computational resources were scarce
and slow. There were hackers who explored the ins and outs of the phone
system, and those who explored the roofs and tunnels of buildings of
university campuses. Quite often, early hackers engaged in all of these
activities. Hackers would share their findings or results (hacks) with each
other freely, as their rewards were not financial, but came from satisfying
their intellectual curiosity and from the enthusiasm of their peers. As a
result, hackers tended to form into meritocratic groups where member-
ship and advancement were based entirely upon a person’s ability to hack.

As technology evolved and computers became faster and more inte-
grated, hackers found that the effort involved in hardware hacking was
not worth the benefits. The interesting pieces of computers were quickly
becoming buried deep within hermetically sealed ceramic packages,
etched into silicon structures that were difficult to see even with a good
microscope. A difficult hardware hack that might double the perfor-
mance of a computer was made moot within months by Moore’s Law.

On the other hand, software hacking was beginning to focus more on
applications and less on algorithms or optimization. The compactness or
elegance of a program was no longer directly important as memory and
processor power became cheap and plentiful. Besides, compiler technol-
ogy had also improved to the point where compiled code ran almost as
fast as hand assembly. By the late 80’s, the term “hacker” had grown to
imply someone who could write volumes of C code in their sleep and
create brilliant applications overnight. The old hardware hackers were
either converting to software hackers, or retreating to university labs and
corporations that could afford to support their expensive hobbies.3

The term “hacker” at that time was increasingly associated with people
who cracked passwords and programs to gain access to machines and
software that was otherwise off limits. Hollywood was partly responsible
for this stereotype, with a slew of movies that portrayed teenagers
bringing the world to the brink of nuclear annihilation with a few
keystrokes, or closet geniuses creating artificially intelligent cyber-
monsters in their basement.4 Unfortunately, the hyberbole of these movie

3 The good news is that hardware hacking technology has been
catching up with Moore’s Law lately, leading to a hardware
hacking renaissance. Affordable circuit board fabrication
services have spring up, and the birth of the Internet has
simplified the process of acquiring components. In addition,
services such as the Mosis chip foundry service and FIB (focused
ion beam) services have started to bring integrated circuit
hacking into the realm of financial possibility for individual
hardware enthusiasts.
4 Rodney Brooks, the Director of the Artificial Intelligence lab at
MIT, once said that the Hollywood idea of a crackpot inventor
making an artificially intelligent being in their basement was
about equivalent to someone building a 747 jumbo jet in their
backyard.

Hacking the Xbox: An Introduction to Reverse Engineering6
plots was lost on the general public, and this dark impression of hackers
eventually became a dominant part of the hacker stereotype. The
inaccuracy of this stereotype contributed to the creation of a term for
hackers that focuses primarily upon cracking systems and programs —
“crackers.”

Technology shapes the contemporary hacker as much as hackers have
shaped technology. New generations of hackers have to work hard to
penetrate the “friendly” user interfaces and the media and marketing glitz
that surrounds computer technology today. Everybody uses computers
and expects them to perform flawlessly and intuitively, but few really
understand what’s going on underneath the hood.

The technology of computation has grown so complex that beginners are
increasingly like the parable about the seven blind men and the elephant.
Some beginners will start their hacking journey by exploring the Internet.
Others will start by exploring the operating system on their computer.
Still others will start by looking underneath the covers of their computer.
Each individual could spend a year exploring their facet, yet each will
have a distinctly different view about computer technology at the end the
day.

The cultural rift between the young hackers and the old guard was made
apparent to me when a self-proclaimed hacker hot-shot freshman at MIT
scoffed, “Where are all the Windows[98] computers? . . . all you have are
these lame Sun computers that don’t even have AOL! I thought MIT
would have good Internet access.” He seemed to have no comprehension
of the fact that the “lame Sun computers” were quite powerful worksta-
tions running one of the most robust operating systems in the world, and
that there is Internet beyond AOL — moreover, that the MIT campus
was one of the birthplaces of the Internet, with rights to more IP
addresses than most ISPs and a direct connection to the backbone of the
Internet.

The penetration of computer technology into every corner of everyday
life intensified the hacker stereotypes. In particular, the media’s portrayal
of hackers as modern-day Robin Hoods has somehow irrevocably tied
hacking to aspects involving security or access to computer resources.
Now, the stereotypical hacker is responsible for warez, Code Red and
ping floods, while “developers” are responsible for Linux and BSD.
Hackers are 31337 d00ds that 0\/\/n jh00r b0x0r, and a hard-
ware hacker overclocks and mods their computer case with neon lights.
Hacking has become trendy, and many are striving to fit the stereotype
created by the media. It is very difficult today to convince people that I
hacked the Xbox solely because it was there to be hacked: it was challeng-
ing, and it was new. Likewise, it is difficult for people to understand why I
haven’t worked on the Xbox since. After hacking the security on the
Xbox, all that is left is a standard PC — which, to me, is not that
interesting to work on, and definitely not worth the risk of a lawsuit from
Microsoft.

Prologue - README.1ST 7
The Politics of Hacking
The introduction of the Digital Millennium Copyright Act (DMCA) in
1998 took cryptography out of the hacker’s domain — the law now
spells out that only researchers “engaged in a legitimate course of study,
is employed or is appropriately trained or experienced”5 are allowed to
investigate cryptographic methods for protecting access rights to works.
As a result, Xbox hacking has been a politically charged topic. It is a
battle between hackers and lawmakers to keep cryptography within the
legal rights of hackers.

Microsoft’s laudable reaction to Xbox hackers — that is, no persecution
or attempt so far to shut down Xbox hacking projects — will hopefully
serve as a role model to others thinking about using the DMCA to stop
hacking activities. Despite all of the Xbox hacks out there, Microsoft still
enjoys robust sales of games. All of the interest and buzz generated by
Xbox hacking may have increased Microsoft’s sales more than piracy has
hurt them. (Of course, I am sympathetic with the hackers, so my interpre-
tation of the situation is biased. A more subjective and informed legal
analysis of reverse engineering can be found in Chapter 12, “Caveat
Hacker,” by Lee Tien of the Electronic Frontier Foundation.)

The most alarming aspect of the DMCA for hackers is that it embodies
the fallacy that the only sources of innovation of benefit to society lie
within the halls of research institutions and corporations. Suddenly, it is a
crime to explore, in the comfort of your own home in pursuit of your
hobby, the cryptographic methods used to secure access rights. Restrict-
ing the research of such technology to only established institutions
disallows the possibility of technology development by unaffiliated
individuals. Without the freedom to research and develop technology in
their own garage, where would the likes of Bill Hewlett and Dave
Packard, or Steve Jobs and Steve Wozniak be today? Would we have
Linux and netBSD if the right of hackers to express themselves freely in
code was regulated?

For every copyright protection scheme that is defeated by a hacker, there is someone
who learned an important lesson about how to make a better protection scheme. To
pass laws that regulate the research of technological measures that
protect copyrights and the dissemination of such results is to concede
that copyright technology is broken and can never be improved — that
the only possible outcome of allowing common people to understand
copyright control technology is the demise of the technology. I offer a
counter to that mindset: some of the best peer review that I received on
my Xbox hacking work did not come from the academic community. It
came from individual hackers around the world — especially in foreign

5 17 U.S.C § 1201(g)(3), Factors in determining exemption. Of
course, the meaning of “appropriately trained or experienced” is
not defined. I think that the best training for applied
cryptography research should involve some practical hands-on
experience hacking real cryptosystems.

Hacking the Xbox: An Introduction to Reverse Engineering8
countries — who have been free to explore and understand access
control technologies. The stricter laws in the U.S. and the litigious nature
of corporations has already negatively affected the U.S.’s standing in
electronic security, and this is just the beginning.

The societal impact of the DMCA is being felt by hacker communities
around the world. During the course of my work on the Xbox, I had the
good fortune of meeting brilliant hackers across the globe. Hackers in
America were some of the most fearful of the group, and even though they
were talented engineers, they were loath to apply their skills to such prob-
lems for fear of persecution. The result is that some of the most interesting
results in Xbox hacking are garnered by European and Asian hacker
communities. Significantly, these results are not well known in America, as
these hackers have little motivation to make the effort to share their
findings with Americans. In fact, many foreign hackers make a conscious
effort to keep their findings from leaving their communities, for reasons
including a fear of retribution by American corporations. This “brain
drain” does little to strengthen America’s competency in a technology as
important as fair and effective digital copyright control. And in today’s
global economy, American corporations cannot survive by pretending to
do business in a vacuum.

One may point to the successful publication of my paper on the Xbox
security system as an example of how the DMCA works to protect both free
speech rights as well as economic interests in copyright control technology.
My situation was not typical for most hackers in the US. Since I was a
graduate student at the time, I had no family to worry about or significant
assets to lose if I were to get involved in a lawsuit over my work. I also
had the generous legal assistance of the Electronic Frontier Foundation
(EFF) to help guide me through the legal minefield. The EFF helped
position my paper in the most legal light possible, informing me of my
rights and obligations under the DMCA.

For example, I am required to “make a good faith effort to obtain
authorization [from Microsoft] before the circumvention.” 6 (Note that
authorization is not required, but the good faith effort is.) The EFF
helped me draft such a letter for research. I also had to fight MIT to allow
my research to be published as an affiliated entity. All of the direct effort
of reverse engineering the Xbox security was funded out of my own
pocket, conducted in my apartment, and done after-hours on my own
time. MIT initially took advantage of this fact to separate themselves
from my work, forcing me to seek out the counsel of the EFF. MIT
finally capitulated and allowed me to publish my paper as a student of
MIT after much cajoling by sympathetic professors and after I had
received a constructive, non-threatening letter from Microsoft about my
research.

Freedom of speech should not require a lawyer, and free thought should
not involve letters of authorization for research. I fought to publish my

6 17 U.S.C. § 1201(g)(2), Permissible acts of encryption research

Prologue - README.1ST 9
paper because I had nothing to lose, and because I believed in making a
statement about my rights as a hacker. Unfortunately, there is a silent
majority of hackers out there who have families to feed and jobs to lose,
and not everyone can be so fortunate as to have the EFF helping them out.

This book you are reading is yet another example of how the DMCA has a
chilling effect on free speech. Originally commisioned by the technical
publisher, John Wiley & Sons, Ltd., this book was cancelled in the last
hour over fears of lawsuits and backlash from Microsoft. Such censor-
ship is frustrating and discouraging, and perhaps some authors would
have stopped there and allowed their voice to be silenced by fear. I am
taking the legal and financial risk of self-publishing this book to make a
statement about my right to free and unimpeded speech as a hacker. Even
this path is not free of impediments, however. The book pre-order
process was suspended on its second day because the original e-com-
merce provider, Americart, “declined to offer [me] cart service for
selling hacker materials . . . $15 per month doesn’t pay for us to take the
risk of being named in a DMCA suit.”

I must emphasize that this book does not infringe on Microsoft’s
copyrights, and the knowledge presented in this book cannot be directly
applied to copyright circumvention. To perform an infringing act, one
would have to hone their skills and apply a substantial amount of
additional art and know-how aimed specifically at copyright control
circumvention. To claim that this book is a circumvention tool would be
tantamount to claiming that all books about circuit boards, embedded
software or cryptography are also circumvention tools.

The scope of the DMCA with respect to the “fair use” of hardware is
another important political topic with enormous economic repercussions. Is
it illegal to modify or circumvent a cryptographically secured boot sequence
for the purpose of running alternate, legitimately purchased or created,
software? This question may be decided in part by the fate of Xbox hackers.
A strict interpretation of the reverse engineering exemption of the DMCA7

reveals strong arguments for making such acts of circumvention illegal.

In particular, reverse engineering is only allowed for interoperability,
where interoperability means “the ability of computer programs to
exchange information, and of such programs mutually to use the
information which has been exchanged.” But this definition contains two
potential land mines: First, circumventing hardware-based security
measures is arguably different from circumventing a program’s (software)
security measures. It may not be a very strong argument technically, but
the clause has yet to be legally tested, to the best of my knowledge.
Second, the purpose is not really to exchange information with the
hardware security measures — it is to bypass them.

The final argument against allowing the reverse engineering of the
hardware security mechanisms is incidental copyright circumvention. The

7 17 U.S.C § 1201(f), Reverse Engineering

Hacking the Xbox: An Introduction to Reverse Engineering10
information gained through the process of reverse engineering can be
applied equally to create copyright circumvention devices. In other
words, the basic research that enables interoperability, at least in the case
of the Xbox, may also be applied indirectly to those wishing to construct
circumvention devices. As it turns out, some very specific design flaws in
the Xbox enable boot security circumvention without necessarily
enabling copyright circumvention, though these flaws may be patched in
the near future, bringing us face to face with our original question.

There are significant economic implications if it turns out that “fair use”
does not cover the reverse engineering of Xbox security for the purpose of
running alternate applications. The most significant implication is that
Microsoft can sell legally restricted hardware to end users, locking users
into their software base. This can be used to create an unbreakable
monopoly over computer hardware and software. For example,
Microsoft could offer subsidies to vendors that elect to secure their
hardware to run Microsoft’s operating system. This financial incentive
will be transferred to customers, who will be motivated to buy the
discounted hardware. Once a significant portion of the installed base of
hardware is locked into Microsoft’s operating systems, Microsoft can set
prices for their products in a competition-free market, since it would be
illegal for anyone to run any other operating system on locked hardware.

In reality, this scenario might be difficult for Microsoft to execute even if
the DMCA did restrict the fair use of hardware, since government and
civic bodies are closely monitoring Microsoft’s activities for monopolis-
tic behavior. However, in other emerging markets, such as smart cell

The author at his workstation.

Prologue - README.1ST 11
phones, PDAs and set-top boxes, it may not be unrealistic for a vendor
to try to gain an edge over the competition through such low-ball tactics.
At least, such tactics can be used to stall competition for the duration of
the court proceedings, which may be long enough to cause irreparable
harm to the competition’s market position. It is because of these con-
cerns that many Xbox hackers have been consciously acting to express
their political beliefs through their engineering efforts.

The People Behind the Hacks
Throughout this book, I include profiles of various hackers who have
agreed to be interviewed. This set of hackers is by no means the only set
of hackers; in fact, it is a self-selecting group, since many hackers work in
secrecy for fear persecution or because they are employed by companies
with strong connections to Microsoft. The goal of these interviews is to
introduce a little bit about the people behind the hacks, and to introduce
their motivations and methods to promote understanding and to inspire
new hackers to join our ranks.

Let me start the process by introducing myself. I’m Andrew “bunnie”
Huang; most people call me bunnie. As of this writing, I was 27 years
old, the son of Andrew C. and Margaret Huang. I was born and raised in
Kalamazoo, Michigan, but I currently live in San Diego, California, with
my wonderful fianceé, Nikki Justis. I recently graduated from MIT with a
PhD in Electrical Engineering. One of the reasons I was selected to write
this book about Xbox Hacking is because I discovered and published the
first known weakness in the Microsoft Xbox’s security system.

In general, I hack because it is quite satisfying to know that somebody’s
life was made better by something I built. I feel it is my obligation to
apply my talents and return to society what it has given me. I also enjoy
the challenge of exploration. I want to understand electronics as deeply
as I can. Black boxes frustrate me; nothing gets my curiosity going more
than a box that I’m not allowed to open or understand. As a result, I have
a fiduciary interest in cryptography and security methods.

I hack hardware because I enjoy the aesthetics of electronics; there is some-
thing satisfying about having a tangible artifact at the end of the day, as
opposed to ephemeral bits of software code. It may sound a little bit silly,
but one of my pastimes is taking apart electronic devices and “reading”
the circuit boards. There is something exciting about the smell of brand
new electronics equipment, fresh out of their anti-static bags; I think it is
the smell of a new adventure unfolding. It is inviting, like a stack of blank
paper: I wonder what I will do with those blank pages. A stack of blank,
white paper stands there and challenges me to fill it with useful informa-
tion.

My inquisitive nature stems from my childhood. When I was about seven
years old, my father bought an Apple II clone. He bought just the
motherboard, so it didn’t have a case. I still remember when he first took

Hacking the Xbox: An Introduction to Reverse Engineering12
it out of the box – the green circuit board, the shiny chips, and all the
colorful resistors and capacitors. I wanted to play with it! Curious as I was
about the Apple II, I was not allowed to touch the motherboard. Of
course, this meant that whenever my parents weren’t looking, I was taking
the chips out of their sockets on the motherboard and doing silly things
like putting them in backwards to see what would happen.

After nearly destroying the computer a few times, my parents bought me
a 200-in-1 electronics experimenter kit from Radio Shack and my first
electronics book, Getting Started in Electronics, by Forrest Mims, III. These
were a great introduction to electronics for me, as they satisfied my desire
to play with circuits and components. My uncle also gave me his old copy
of the Art of Electronics by Horowitz and Hill, along with a couple of
books about microprocessors. I subscribed to Byte magazine, which back
in the day included regular columns about hardware projects, complete
with schematics and pictures.

Eventually, I developed enough of a sense of electronics to begin
understanding the schematics and the ROM listings included in the Apple
II user manuals. (I still believe that computers should ship with full
schematics and source code.) By the eighth grade, I had developed just
enough understanding to be able to build my own add-in card for the
Apple II. The card had a General Instruments SPO-256 speech synthe-
sizer that I had purchased from Radio Shack. I also added an analog to
digital converter to my Apple II and wrote an application that turned my
Apple II into a talking voltmeter. I continued to build hardware, and
before I was admitted to MIT I had built my own working embedded
computer using an 80188 microprocessor.

During my undergraduate years at MIT, I dodged the drudgery of
schoolwork by building fun little projects, such as a remote controlled
light switch and music-responsive party lights for my fraternity, ZBT. It
was during these years that I was first introduced to affordable
prototyping services and PCB CAD tools, such as those discussed in
Appendix C, “Getting Into PCB Layout.”

The rise of circuit board fabrication services to fit a college student’s
budget is a landmark event for hardware hackers. Finally, the wire-wrap
tool can be put away, and surface-mount components and complex
circuits are within the reach of everyday hobbyists.

Over the years, I have made a point of writing up my projects on my
webpage (http://www.xenatera.com/bunnie) so that everyone can
benefit from my experiences. Many of my projects are available with
schematics, Gerber files and source code, although some of my more
recent projects have been consulting jobs so I unfortunately cannot share
those results with the world.

While I have your attention, I would like to set one thing straight. I did
not get my PhD thesis at MIT for hacking the Xbox. Hacking the Xbox
was actually a diversion from my thesis that was tangentially related, but
not central to my thesis topic.

Prologue - README.1ST 13

8 The text of my PhD thesis can be found at http://
www.xenatera.com/bunnie/phdthesis.pdf
9 “A Minimal Trusted Computing Base for Dynamically Ensuring
Secure Information Flow” by Jeremy Brown and Tom Knight can
be found at http://www.ai.mit.edu/projects/aries/Documents/
Memos/ARIES-15.pdf

My thesis on supercomputers 8 focused on an architecture for efficient
code and data migration. My interest in video game consoles stems from
my natural curiosity about all hardware combined with the encourage-
ment of my thesis adviser, Dr. Tom Knight. Video game consoles
represent the pinnacle of performance per cost, and cost is a significant
issue for supercomputers today. Hence, I was encouraged to look at all
video game consoles to see what I could learn about building cost-
effective hardware. The fact that the Xbox also had an interesting security
system was a bonus; since government agencies have a great interest in
supercomputer technology, the security of supercomputers is always a
topic for consideration. (In fact, a very interesting paper about building
trustable computers9 was written by colleagues in my research group; I
recommend reading it if you are curious about alternatives to crypto-
graphically secured trusted computing platforms, such as Palladium and
TCPA.)

My best advice to aspiring hardware hackers is to be persistent and to be
thorough. Significantly, persistence and thoroughness come naturally if you
love what you are doing. Also, part of being a hardware hacker is being a
pack rat. Buying new equipment is prohibitively expensive, so I accumu-
late broken and depreciated equipment and tools habitually, even if I
don’t know exactly what I might do with them, or if I can fix them. It
turns out that trying to fix test equipment is a learning experience in itself,
and can be quite rewarding even if the conclusion is to junk the darn
thing for spare parts.

To quote former Apple Evangelist and current Executive of Garage
Technology Ventures Guy Kawasaki, “eat like a bird, poop like an
elephant.” Kawasaki points out that a hummingbird eats the equivalent of
50% of its body weight every day. Hence, eating like a bird means that
you should have an endless appetite for information. Subscribe to free
electronics trade magazines, browse the web (but be selective about the
sites you browse — you are what you eat), go to free trade shows and
sign up for every catalog and periodical you can get your hands on; take
apart every piece of electronics that you own and your friends,’ and try to
learn all you can from their design.

In hardware hacking, half of your most difficult problems can be solved
or made easier by just using the right selection of components or
techniques. “Poop like an elephant” refers to sharing your information
and discoveries with your fellow hackers. No matter how much informa-
tion you digest, you can never know it all. Sharing your findings freely
invites the advice and good will of fellow hackers and leads to a synergy
of minds. Especially in hardware hacking where all results have a basis in

Hacking the Xbox: An Introduction to Reverse Engineering14
tangible artifacts, hiding your techniques and results only means that other
people will eventually re-invent your work without your help. On the
other hand, do exercise some judgment in what you say or share; people
only have so much bandwidth and they will listen more closely if you
share results that are new or interesting in some way.

That being said, pick up a screwdriver, and let’s start hacking!

Voiding the
Warranty

Tools of the Trade
Hardware hacking may seem daunting at first because of the sophisti-
cated tools that are required for some projects. Fortunately, most basic
projects can be accomplished with only a small investment in tools,
comparable to the price of one or two video games. Appendix A,
“Where to Get Equipment,” contains a suggested list of starter tools and
instructions on how to order these tools.

This chapter will talk about basic tools you will need for serious hardware
hacking, including tools to open things up, attach and remove electronic
components, diagnose and probe circuits, and design circuit boards. Of
these tools, good quality versions of the first two can be purchased at
fairly reasonable prices. Diagnostic and test tools such as oscilloscopes
and logic analyzers are worth their weight in gold, but you’ll find that
these are very heavy and they will be a formidable investment. As for
circuit board design tools, some of the best tools can come at surpris-
ingly affordable prices.

This chapter will conclude with a step-by-step pictorial tutorial on how to
open up the Xbox. More experienced hardware hackers can skip the next
couple of chapters.

Tools to Open Things Up
The first step in hacking anything is getting the cover off. Most electronic
appliances can be opened with just a set of Phillips and flathead screwdriv-
ers, but the most interesting boxes will require a set of special security bits.

CHAPTER 1

Hacking the Xbox: An Introduction to Reverse Engineering16

Figure 1-1: A selection of security bits. From left to right: Nintendo 4.5mm,
security torx, standard torx, clutch, Robertson or square, tri-wing, torq,
spanner, and security allen or hex.

Figure 1-1 shows a lineup of some common security bits. Surprisingly,
security bit sets are affordable and easy to obtain. MCM Electronics
(www.mcmelectronics.com) sells a 105-piece security bit set (MCM order
number 22-3495) for under twenty dollars, and a 32 piece set (MCM order
number 22-1875) for under ten dollars. They are well worth the invest-
ment. Nintendo security bits are sold separately. You can get the large
Nintendo security bit, used in the Nintendo Gamecube, for a few dollars
(MCM order number 22-1150, “4.5mm Security Bit”). A smaller version
of the bit (MCM order number 22-1145, “3.8mm Security Bit”) is also
used in the older Nintendo systems and their game cartridges.

The Xbox uses standard torx (six-pointed star) bits of the T10, T15 and
T20 size. These bits are fairly common and can be purchased at hardware
stores such as Home Depot. You may also find a magnetic extension bit
holder handy for reaching into a couple of tight spots around the hard drive
and DVD drive in the Xbox.

Do not use excessive force when taking the cover off equipment. If you
think you have removed all of the screws but the cover is still stuck, most
likely you have either missed a screw, or you need to depress some
friction lock tabs. Too, many times screws are hidden beneath the rubber
feet on the bottom of equipment, or under a sticker label. To find screws
hidden by sticker labels, firmly rub the surface of the label. You will feel a
soft spot wherever there is a screw underneath. (Breaking such a label to
access the screw instantly voids the equipment’s warranty, but have no
fear: Most equipment is designed to be serviced, so simply removing the
cover rarely causes any damage.)

On occasion, you will encounter a stubborn assembly that refuses to
come apart. If the cover or panel flexes open around the edges or seems
to have some freedom of movement, there may be some kind of friction
lock holding the cover on. Friction locks are typically tab-and-slot
structures, shaped so that it is much easier to insert the tab than to
remove it. In this case, locate the tab by observing where the case seems
to be stuck, and push in on the tab with a small flathead screwdriver while

Chapter 1 - Voiding the Warranty 17
gently pulling up on the case. If there are multiple tabs like this, insert a
wedge of some kind, such as another screwdriver or a paperclip, to
prevent the tab from re-engaging as you open the other tabs.

If the cover or panel refuses to move even slightly when you apply firm
pressure, it may also be attached with adhesive or it may even be welded
shut. For example, “wall-wart” power supplies (the square black boxes
that you plug directly into wall outlets) are often sealed in such a fashion.
Taking such a piece of equipment apart may mean you’ll never be able to
get it back together into its original form.

Tools to Attach and Remove Components
Electronic components are attached to boards by soldering. When solder-
ing, a low-melting-point alloy known as solder is heated and flowed
around the metals to be joined. The solder and the metals form a local
alloy. Once the joint cools, the components are electrically and mechani-
cally connected.

The basic tools for soldering are a soldering iron, solder, flux, and
desoldering braid. (A pair of fine-tipped tweezers is also quite handy for
jobs that involve fine-pitch components or small parts.) A soldering iron
is a hand-held tool that consists of a heating element and a tip; the tip is
used to melt solder alloys through conduction or direct contact, unlike
other tools that use hot gases or intense infra-red radiation. The kind of
soldering iron tip required for optimal heat transfer depends upon the
situation. For example, a flattened “chisel” or “conical chisel” tip will
perform better than a simple pointed tip when soldering most small
surface mount components.

There are also many grades of soldering irons. The cheapest ones cost
around ten dollars and come with large, unwieldy tips and have no
temperature control; they just get as hot as they can. Better soldering
irons cost more and have a sensor that actively regulates the tip’s tem-
perature. Temperature regulation makes the tool’s action more consis-
tent, and extends the life of the tip. Better irons also come with a wider
selection of tips that may include very fine ones, suitable for working with
the tiny components found in most electronics today. For light use, a
quality direct-plug soldering iron with a good tip is sufficient. However,
if you plan on building boards and really getting into hardware hacking, a
hundred dollars for a quality temperature-controlled soldering iron such
as the Weller WTCPT or the Weller WES50 is well worth the investment.

Solders come in a wide variety. For most purposes, a eutectic Pb-Sn alloy
solder wire with a no-clean or water-cleanable flux core is sufficient.
Eutectic alloys are desirable because they go directly from a liquid phase
to a homogenous solid. Kester is a major manufacturer of solders; their
standard cored wire solders, Formula 245 and 331, are both pretty good.
Formula 245 uses a no-clean flux, but if you like, you can use a cotton
swab with some isopropyl alcohol to remove the residue. Formula 331

Hacking the Xbox: An Introduction to Reverse Engineering18
has a flux core that works on more materials than 245. However, with
331 you need to wash down the board with water soon after soldering, or
the flux residue will become gummy and possibly interfere with circuit
operation. Many distributors sell Kester solder; for example, Kester 24-
6337-8802 (25-gauge Formula 245 solder wire in a 1-lb spool) is Digi-
Key (www.digikey.com) part number KE1410-ND. The kind of
solder sold at most Radio Shack’s is also quite good for soldering,
although their solder tends to leave a sticky black residue and require
cleanup with organic solvents.

Solder can also come as paste, with tiny solder balls suspended in a flux
matrix. Solder paste can be very useful when attaching fine-pitched
surface mount components. (See Appendix B, “Soldering Techniques,”
for more information.)

If a solder connection is stubborn to form, flux is the panacea. Always
keep some flux on hand. When a joint is not forming correctly, a small
drop of flux applied directly to the joint will typically fix the problem.
Flux also comes in a wide variety of pastes and liquids, each of which
requires a different cleanup method. A convenient flux application
solution is the flux pen, such as Kester 83-1000-0951, a Formula 951 no-
clean flux pen. You can purchase this flux pen from Digi-Key, part
number KE1804-ND, for just a few dollars. Radio Shack also sells a flux
paste in a tube, but their paste is messy and it requires clean-up.

Finally, desoldering braids are useful for cleaning up any soldering messes
or mistakes you might make. A desoldering braid is a fine braided
copper wire, typically laced with dry flux. To use it, place it between the
soldering iron and the joint you want to clean up; once the braid is hot,
the excess solder on the joint will wick into the desoldering braid’s
capillaries. Even though the braid may be pre-fluxed, applying a drop of
flux to the braid prior to use still helps the process. Chemtronics makes a
nice line of desoldering braids; an example part is Chemtronics 60-3-5
“No-Clean Solder-Wick” (Digi-Key part number 60-3-5-ND).

I discuss the basic technique for soldering at the beginning of Chapter 2,
where you learn how to install a blue LED in the Xbox’s front panel.

Tools to Test and Diagnose
Electronic test equipment comes in as many forms as there are electronic
products. For a beginner, the basic “must-have” tool is a digital multimeter.
Digital multimeters (DMMs) have become very featureful and affordable in
the past few years; a typical unit will be able to measure resistance, voltage,
current, capacitance, diode polarity and continuity, for a price of around fifty
dollars. Radio Shack and Jameco (www.jameco.com) both carry a reason-
able selection of entry-level multimeters. (Appendix A, “Where to Get
your Hacking Gear,” has a suggestion for an entry-level multimeter.)

Chapter 1 - Voiding the Warranty 19
For basic modification and kit-build projects, DMMs are useful for
checking for shorted connections, and for checking the basic health of a
circuit before and after applying power. Continuity mode in a DMM can
be helpful when you feel like you may have messed up a solder connec-
tion.

In continuity mode, the DMM will emit a tone whenever a low-resistance
path exists between the test probes. Thus, the continuity feature is useful
for both verifying the integrity of a solder joint, and for checking for
shorts with adjacent connections. You should not use continuity mode to
check for power supply shorts, because some boards will quite normally
have a sufficiently low resistance between power and ground (ten ohms
or so) to trigger the continuity tone. Thus, before applying power to any
newly modified or built board, use the resistance measuring mode to
check and make sure that there is no dead short (zero ohms of resistance)
on the power lines.

For reverse engineering and more advanced projects, the basic tools
you’ll need are an oscilloscope and sometimes a logic analyzer. Oscillo-
scopes are useful for capturing the detailed shape of electrical wave-
forms. One can diagnose timing, noise and interference problems with an
oscilloscope.

The oscilloscope’s basic defining characteristics are the number of
channels or waveforms it can display simultaneously, and its maximum
electrical bandwidth. High-quality oscilloscopes typically have four
channels and over 500 MHz of bandwidth; discount or used oscillo-
scopes often have only two channels and somewhere between 20 MHz
and 100 MHz of usable bandwidth. The chief limitation of all oscillo-
scopes is that they can only display a short segment of an electrical
waveform.

Logic analyzers are useful for capturing large quantities of digital data.
They trade off the ability to capture waveform shape for expansive data
analysis and logging capabilities. Logic analyzers are useful for diagnosing
complex digital busses and circuits. The basic defining characteristics of a
logic analyzer are the number of digital channels it can sample, the
maximum sampling rate, and the maximum sampling depth. A typical
modern logic analyzer may have several dozen channels, a sampling rate
in the hundreds of megahertz, and a sampling depth of a couple mega-
bytes. Other features found in logic analyzers are programmable trigger
algorithms and the ability to detect glitches or runt pulses.

Unfortunately, the average price of a new oscilloscope or logic analyzer
runs in the thousands to tens of thousands of dollars. The good news is
that most projects will not require the latest and greatest in test technol-
ogy, so you can get away with second-hand equipment. Swapfests are
great places to pick up an old scope or analyzer for cheap; eBay also has
some good deals from time to time. If you have to make a choice
between purchasing an oscilloscope and a logic analyzer, I’d recommend
getting the oscilloscope first; a logic analyzer is not nearly as versatile as

Hacking the Xbox: An Introduction to Reverse Engineering20
an oscilloscope, and is typically more expensive. Oscilloscopes can be
coaxed into capturing a limited amount of logic data, whereas a logic
analyzer can never be used to measure an analog waveform. Also, it is
easier to build your own home-brew logic analyzer using FPGAs and
custom boards than it is to build an oscilloscope of comparable quality.
Home-brew logic analyzers can be built to work in high-end, high-speed
applications relatively cheaply. (Chapter 8 describes how I built a home-
brew logic analyzer to eavesdrop on a critical high-speed bus in the
Xbox.)

In a pinch, a very simple digital trace capture device can be built with
about fifty dollars in Radio Shack parts. Once, I had to capture the data
on a PS/2 keyboard port, but I didn’t have any test equipment, and I
needed to capture the data right away. A breadboard with several
bargraph LEDs wired to a set of 8-bit registers (part number
74HCT574) wired to shift data did the trick — all components that I
bought at Radio Shack. The actual design is fairly simple, but because its
use is very limited, but I’ll spare you the details. The point is that you can
build your own devices for capturing digital data — something to
consider before plunking down a few thousand dollars for a logic
analyzer.

Tools for Design
The final set of tools to needed to round out any hacker’s collection is a set
of electronic design tools for PC boards and FPGAs. The subject of PC
board and FPGA design is discussed in the appendices, but it’s worth
mentioning here that quality versions of these tools can be acquired for
almost nothing. As a result, one can design and build a complete circuit
board with sophisticated reconfigureable hardware components for less than
the cost of an Xbox — including the cost of the design and construction
tools.

PC board design used to be a very expensive proposition; tools would
cost thousands of dollars and a simple board manufacturing run would
cost a few hundred dollars. Today, a novice can have a simple board
fabricated for a total less than seventy dollars. For PC board design tools,
Altium, formerly called Protel, sells a tool called CircuitMaker2000.
While I have not used CircuitMaker2000 extensively, my first impression
is that it is very similar to Altium’s now discontinued Protel 99SE.
Download a free 30-day demo or their free student version (with
restrictions), which is perfect for a first design project, from http://
www.circuitmaker.com. Once you’ve designed your first board using
your free tool, you can fabricate it with a vendor such as Sierra Proto
Express (http://www.sierraprotoexpress.com) for around 30 dollars
per board as of this writing, with a two board minimum order. As you
can see, price is no longer a serious barrier, and I encourage you to try
building a project or two using your own custom printed circuit boards.

Chapter 1 - Voiding the Warranty 21

FPGAs — Field Programmable Gate Arrays — are the solution for
inexpensive silicon prototyping. An FPGA consists of a large array of
gates and storage elements with a programmable interconnect. As a
result, FPGAs can implement all kinds of digital devices, limited only by
the gate and wire capacity of the FPGA. Larger FPGAs, with a capacity
of several million gates, can contain entire systems, complete with
microprocessors and peripherals. FPGAs are also very affordable: a
100,000 gate Xilinx Spartan II FPGA costs around 20 dollars in single
quantities. And better yet, you can get unrestricted design and synthesis
environments for Xilinx FPGAs for free! Xilinx has a free product called
the “ISE WebPack”, available from their website (www.xilinx.com), that
includes features such as Verilog and VHDL synthesis, HDL testbench
generation, and power-analysis software. Verilog is a C-like language for
hardware design; one can think of it as a strictly typed, multi-threaded C.
This is great news for software hackers who would like to dabble in
hardware. There are even open-source hardware design communities,
such as www.opencores.org, where you can download the code for
microprocessors and other interesting digital components, again for free.

Static Electricity: The Circuit Killer
Static electricity, also known as Electro-Static Discharge (ESD),
is the bane of integrated circuits. Modern ICs are particularly
sensitive to ESD; a few volts is all that is required to destroy a
naked transistor. Since you do not feel static electricity dis-
charges until the hundred or thousand-volt range, you can
destroy such devices without knowing it.

The good news is that most chips are built with special struc-
tures to help make them more resistant to ESD. Still, it is better
not to voluntarily participate in testing them. In order to neu-
tralize static electricity on your body, always touch a grounded
metallic object before touching a circuit board or a chip. The
bare metal on the case of a computer that is plugged into a
properly wired household outlet is a good starting point.

Wearing an antistatic wrist strap, available at almost any com-
puter store, will minimize the risk of damaging your Xbox with
ESD. The wrist strap must be attached to a grounded object in
order for it to be effective.

If you feel like living on the edge, working with bare feet on
an uncarpeted concrete floor will also keep you grounded.
Bare concrete floors are surprisingly conductive, to the point
where you can get a shock or burn from prolonged contact
with electronic equipment plugged into improperly wired
outlets. Linoleum and hardwood floors can also be effective
grounding points, depending on the kind of tile or wax used
on the floor. Special conductive waxes or sprays can be ap-
plied to insure that the floor is sufficiently conductive.

Hacking the Xbox: An Introduction to Reverse Engineering22
Deconstructing the Xbox

Now that we’ve discussed some of the tools you’ll need to hack, let’s do
some hacking. The first step in hacking your Xbox is opening the box. Here
are the tools you will need to take the cover off:

• T10 and T20 Torx bits (six-pointed star shaped bits)

• A screwdriver handle for the bits

• Antistatic safety gear (see “Static Electricity: The Circuit Killer”)

• Small flathead screwdriver (helpful, but not required)

Note
Before you start taking apart your Xbox, keep a few things
in mind: first, there is always some risk of permanent dam-
age when taking things apart, and taking apart the Xbox
voids your warranty. Second, be sure to read through the
entire section before proceeding. And third, have fun.

Step 1: Safety First
Unplug the Xbox. Leaving the Xbox plugged in will expose you to
hazardous, possibly lethal, voltages.

Step 2: Remove Case Screws
Flip the Xbox upside-down and inspect the bottom. There are six screws
that hold the top and bottom halves of the outer shell together, and they
are all hidden underneath labels or the rubber feet. Figure 1-2 illustrates
the position of all the screw locations.

The rubber feet are glued onto the Xbox with a strong adhesive. Remov-
ing the feet will usually require a little bit of help from a flathead screw-
driver. Figure 1-3 illustrates this procedure. Once you have pried up an
edge of the rubber foot, peel it back as evenly as possible so as to
preserve the adhesive backing on the foot. If you are careful, you will be
able to re-attach the foot later on, although after a couple of removal
cycles the adhesive will lose its tack. As a replacement, you can buy
rubber feet at any hardware store and attach them if you use your Xbox
on a surface that is slippery or sensitive to scratching.

Use the T20 size Torx bit to remove the four screws that were underneath
the rubber feet. The screws are fairly long, but their threads are short so
removal should be quick.

The last two screws are hidden underneath the serial number label and the
product certification label. Figure 1-4 illustrates the location of these screws.

Chapter 1 - Voiding the Warranty 23

Figure 1-2: Location of the Xbox case screws. This is a view of the bottom of
the Xbox.

In order to locate them, rub a finger firmly over the general region where
the screws should be. The label will indent slightly over the screw holes.
Puncture the label with the bit and slide or rotate the bit around until it
catches in the screw hole, and proceed to remove the screw. If you care

Figure 1-3: Use a small flathead screwdriver to pry up an edge of the Xbox’s
rubber feet, then carefully peel them back.

Hacking the Xbox: An Introduction to Reverse Engineering24

Figure 1-4: Location of the screws hidden by the serial number and product
certifications labels.

about the cosmetic integrity of the labels, hold the label down while you
remove the screw, otherwise the label will peel back or tear.

Tip
Keep a small tray or plastic bag around to store your screws
so you don’t lose them. The screws that hold the Xbox
together are fairly unique and you may find it difficult to
purchase a suitable substitute at the local hardware store.

Step 3: Remove the Top Cover
You should have removed six identical long screws at this point. Turn the
Xbox right side up, and gently grasp the box by the sides using the open
palms of your hands, and attempt to lift the cover off with a gentle shake.
If the cover does not come off with this method, you may need to “start”
the cover by prying the case with your fingers from the back. In some rare
cases, you will also have to pry with a screwdriver from the front, but be
careful and gentle when you do this. Figure 1-5 illustrates some of the
points you can use to help remove the case.

Do not force the case cover off. If the prying methods described above
yield no progress on the case cover, an extra screw may have been added
since the publication of this book. Attempt to locate the screw by feeling
the labels on the back of the Xbox.

Chapter 1 - Voiding the Warranty 25

Step 4: Move the Disk Drives
Now that you’re inside, you should see two drives mounted on black
plastic carriers. In order to access the motherboard, you will need to move
(not necessarily remove) the disk drives. You do not have to disconnect
the drive cables, but you will need to unscrew the drive carriers.

Three T10 Torx screws hold down the carriers. Figure 1-6 illustrates the
location of these screws. One is hidden underneath the gray IDE ribbon
cable near the back of the case, and two are recessed about an inch below
the surface of the drives near the front of the case. You may need a
flashlight or direct overhead lighting to see the recessed screws.

The recessed screws may prove to be a bit challenging if your screw-
driver does not have a magnetized bit holder, as the bit will tend to slide
out as you position it over the screw. The bit is also small enough so that
it can engage the space between the screw and the plastic carrier. If the
drive carriers remain stiff even though you think you have removed the

Figure 1-5: Some places where you can pry to work open a stubborn cover.

Hacking the Xbox: An Introduction to Reverse Engineering26

Figure 1-6: Location of the three drive carrier screws. Note that the gray IDE ribbon
cable is being lifted for the photograph. The box on the left is the hard drive, and the
box on the right is the DVD drive.

screws, double-check to make sure they are actually unscrewed. You
should be able to lift up the carriers slightly without undue force.

Once you have removed the screws, you will need to free the hard drive
power cable, or it will interfere with the removal of the drive carriers.
The power cable is a black, yellow, and red bundle of wires to the outside
of the hard drive. The hard drive is the device on the left in Figure 1-6. It
is held in a notch along the edge of the carrier. Gently work the cable free
of the notch so that there is a couple inches of slack on the cable. Figure
1-7 illustrates about how much slack you should have when you are done.

Once the cable is free, you will be able to lift the hard drive out of its
storage position. Lift the hard drive up and rest it over the DVD drive.
With both hands, lift the DVD and hard drives out of the case, and fold
them outward so they hang off to the side as shown in Figure 1-8. The
cables connecting the drives should fold over easily with no resistance.
(Be mindful of the yellow cable coming from the back of the DVD drive;
it can be easily pulled out of its socket if you are not careful.)

You now have a full view of the Xbox motherboard and power supply,
without having disconnected any of the drives. This arrangement will be
advantageous for testing the Xbox following any hardware modifications.

Chapter 1 - Voiding the Warranty 27

Figure 1-7: Free the hard drive cable from its retaining notch. Once it is free,
you should have a couple inches of slack on the cable.

Figure 1-8: Position of the disk drives, preserving electrical connections for testing
and experimentation.

Hacking the Xbox: An Introduction to Reverse Engineering28
Always be mindful of the power supply; it has voltages that could
injure or kill you if you touch it. Remember that it is “live” as long as
the Xbox is plugged in, even if the Xbox is turned off. Also note that the
bottom of the hard drive carrier and the DVD drive have a secondary
use as air ducting inside the Xbox. Running the Xbox with the drives off
at the sides for extended periods of time could lead to your Xbox
overheating. Likewise, be mindful of the large aluminum heat sinks on the
CPU and the GPU. They can get unpleasantly hot — potentially hot
enough to burn you — while the Xbox is operating.

For the project in the next chapter (replacing the LED on the front panel
of the Xbox), you will not need to disconnect the hard drives, although it
is preferable that you do. This will prevent you from placing undue
stresses on the cables when manipulating the Xbox’s case.

Step 5: Remove the Disk Drives (Optional)
In many cases, you will find it more convenient and safer for your
hardware to remove the disk drives entirely.

To do so, first unplug the gray IDE ribbon cable from the Xbox
motherboard. Next, unplug the yellow discrete wire cable connected to
the DVD drive from the motherboard. This yellow cable carries power
to the DVD and communicates information about the state of the DVD
drive’s tray to the motherboard. Do not yank on any single wire in the
yellow discrete wire cable, or you could unseat a wire from the cable
head. The preferred method of removing the cable is to grip it by the
white connector and pull; however, if your fingers are not small enough
to fit in the tight space, you can grip the entire bundle of wire and pull
gently to remove the connector. Set the DVD drive aside.

Next, unplug the hard drive’s power connector. You will find that the
connector is very firmly seated in the hard drive. If you simply pull on
the connector directly, you risk injuring yourself on the sharp edges of
the case when the connector comes free of the drive. To avoid injury, use
a small flathead screwdriver to gently pry the connector off of the hard
drive’s body, as shown in Figure 1-9.

You can now remove the disk drive assembly entirely. The gray IDE
ribbon cable will still span the separate drive units; you may remove them
if you wish, but remember its orientation so you can later re-attach the
drives to the Xbox.

Reassembling the Xbox
Now that you’ve taken the Xbox apart, skip to the next sections for some
fun projects that you can try. When you are finished, read this section for
notes on how to reassemble your Xbox.

Chapter 1 - Voiding the Warranty 29

Before attaching anything to the Xbox, turn it upside-down and shake it
gently to ensure that there are no loose screws or parts that you might
have accidentally dropped into the Xbox. A loose screw will spell the end
of your video game console and presents a potential fire hazard, so this is
a worthwhile check if you have any doubt in your mind.

The first step in reassembling your Xbox is to re-attach the disk drives. If
you followed the procedure from the previous section, your DVD drive
and your hard drive should already be attached by the gray IDE ribbon
cable. If they are not, attach the end of the cable with the fewest creases
to the hard drive, and then attach the middle connector of the cable to
the DVD drive. The cables will only attach in one direction; pay attention
to the bump on the connector and the position of the notch on the drive
connectors.

Plug the remaining free end of the gray IDE ribbon cable into the Xbox
motherboard. The cable will only plug into the motherboard in one
direction; note the bump in the middle of the IDE plug and the notch on
the motherboard receptacle. Now, attach the yellow DVD cable to the
Xbox motherboard. This cable also will plug into the motherboard
connector in only one orientation, and it too has bumps on the cable and
corresponding notches on the motherboard receptacle. Now, set the
DVD drive into the Xbox. Check that it is flush and level by observing
how the Xbox-logo DVD drive tray sits with respect to the edge of the
case. It is likely that you will need to try to place the drive a couple of

Figure 1-9: Prying the hard drive power connector off with a flathead
screwdriver.

Hacking the Xbox: An Introduction to Reverse Engineering30
times before it sits just right. Use the creases in the gray IDE ribbon cable
to help guide you if you are confused about the orientation of the
various parts.

You’re almost done. Drop the hard drive into place next to the DVD
drive. Again, this drive will probably require a bit of jiggling about in
order to get it to settle into place. The drive should be level with the
DVD drive and flush with the edges of the metal EMI radiation shield
around the Xbox case. Thread the hard drive power cable through its
retaining notch in the drive tray, and plug it into the hard drive. You will
need to apply a fair bit of force on the connector to create a solid
connection; you should feel a gentle snap when the connector is fully
engaged. Finally, thread the gray IDE ribbon cable through its original
retaining hook on the drive carriers.

At this point, it is a good idea to plug the Xbox in, connect it to a TV and
check to make sure that the Xbox starts up properly. You can run the Xbox
indefinitely with the cover off like this, as all of the cooling ducts formed
by the bottom of the drive carriers and the DVD drive are in place. If
the drives are not properly connected to the Xbox, the console will still
boot, but it will display a message that your console requires service.
Check your connections carefully if this message appears.

It is now time to screw the drives in place. You should have nine screws at
this point: three short T10-drive screws for the drive carriers, and six long
T20-drive screws for the case cover. Don’t panic if you are missing a couple
of screws, or if you have a couple extra. The Xbox will still hold together
even if you’re short a screw or two. Attach the screws and the case cover in
the reverse order of removing them. (See the pictures earlier in this
section if you need a reminder as to where they go.)

Once the case cover is attached, you are ready to use your Xbox again!

CHAPTER 2

Thinking Inside
the Box

Reverse engineering can be thought of as a very challenging yet very reward-
ing game. To win, you need a bit of skill and a bit of luck. And like any
game, to develop your skills you just need to play, play, play.

The first step in building your skills as a hacker is to develop an intuition
for the material. In the case of hardware, a good way to get a feel for
things is to take the covers off of everything and try to figure out what all
the components are, and what they might do. It is also helpful to order a
paper catalog from a parts vendor such as Digi-Key, Jameco or Newark
Electronics and just leaf through the pages in your spare time. At first,
reading through a parts catalog may feel like reading a dictionary, but as
you look at more and more circuit boards, you will gradually find that
everything makes sense.

The next most powerful tool of the reverse engineer is pattern matching.
All hardware engineers are constrained by the same laws of nature, and
all hardware engineers use the same kinds of building blocks. Engineers
also like to modularize and reuse existing designs. As a result, a single
design motif can be found in many designs. Recognizing design motifs
will enable you to determine the function of circuits even if you do not
recognize a single part number. Likewise, one can go quite far in reverse
engineering without any formal electrical engineering training.

The final tool of the reverse engineer is experimentation. When intuition
and pattern matching fail to reveal the secrets of a circuit, one must resort to
probing and perturbing the system and trying to deduce function based on
the observed responses. While experimentation may lead to hardware
failure, one can take solace in the fact that most consumer hardware is
designed to be probed and tested as a requirement for manufacturing.
Furthermore, in the case of the Xbox, one can take some comfort in the
fact that a new Xbox is relatively inexpensive. Buying two boxes up front

Hacking the Xbox: An Introduction to Reverse Engineering32
and treating one as the “sacrificial” box helps remove the psychological
barrier one might otherwise have about performing aggressive experi-
ments on the hardware.

This chapter will introduce you to the basics of reverse engineering, with
a focus on basic techniques, such as reading circuit boards to build an
intuition, and some coverage of intermediate techniques such as pattern
matching and recognizing basic design motifs.

Reading a Circuit Board
The first thing you see when you take the cover off of a typical electronic
device is the circuit board. Typically colored green or tan, this multilayer
sandwich of copper, glass fiber and epoxy contains an exact schematic
netlist within its traces. In other words, by following the traces, one can
determine exactly how every component is connected. The placement of
components and the layout of the traces also contains clues that can bring
insight into the designer’s thought process.

Circuit Board Basics
A typical circuit board consists of a few layers of patterned copper
separated by thin sheets of fiberglass impregnated with epoxy. The color
of a raw circuit board is whitish or tan with copper traces; however,
almost all circuit boards are coated with a thin polymer called the
soldermask that gives circuit boards their familiar green color. Molten
solder does not adhere to the soldermask, so during production excess
solder does not stick to the board and cause shorts. The soldermask has
openings for connections to components. These openings typically have a
silvery color from a thin plating of tin or solder that is applied to prevent
the copper from oxidizing and to enhance solderability.

On top of the soldermask is typically a layer of white lettering referred
to as the silkscreen. Each component on a circuit board has an outline and
a unique designator on the silkscreen layer. The designator enables people
to quickly associate a component on a circuit board with a component on
a schematic. You can use the designator to help guess the function of a
component based on the component naming scheme. Table 2-1 summa-
rizes the component naming scheme used in the Xbox.

Chapter 2 - Thinking Inside the Box 33
Tip

The Xbox motherboard includes a handy coordinate sys-
tem printed along the edges of the board in the silkscreen
layer. On the component side of the board, the coordinates
go from A through G on the sides, and from 1 through 8
along the top and bottom. The reverse side of the board
has coordinates M through V along the sides. Note that the
letters I, O, Q, and S are skipped because they can be con-
fused with the numbers 0, 1, and 5. Component designators
on the Xbox motherboard are encoded using this coordi-
nate system; thus, J7D1, the LPC debug port, can be found
on the top side at coordinates 7D. This book will frequently
use this coordinate system along with the component des-
ignators to refer to specific components.

Connections between wiring layers are made by copper-filled holes called vias.
Since the cost of a circuit board grows with the number of layers, most
consumer electronic devices are designed to keep the number of layers to a
minimum. Radio receivers and audio amplifiers will typically use single-
sided boards, whereas the latest PC motherboards might have up to six or
eight layers. The Xbox motherboard has four layers. The top two layers are
dedicated to carrying information between chips, and the inner two layers are
dedicated to delivering power. The Xbox motherboard will appear opaque
at first glance because the inner power layers are basically solid sheets of
copper. The good news for reverse engineering is that we can trace every
connection on the Xbox motherboard through casual visual inspection
because all of the signals layers are outside of the opaque power layers. The
Xbox design contrasts with motherboards that bury two or four signal
layers inside of the power layers. Buried signal layers can make signal
tracing difficult. (Note that the decision to bury signals inside power

Table 2-1: The Xbox component naming scheme.

Designator Component Type

C Capacitor

R Resistor

U Integrated Circuit or Transistor

L Inductor

RP Resistor Pack

Q Transistor

CR Diode

J Connector or Jumper

RT Resettable Fuse

Y Crystal

Hacking the Xbox: An Introduction to Reverse Engineering34
layers is typically not driven by security, but rather by the physics of how
electrical signals interact between circuit board layers.)

It’s fairly easy to trace a signal. Starting from the connection of the source
component to the board, follow the copper trace. If the trace intersects
with a circle, then there is a good chance that the signal continues on the
opposite side of the board. If a trace ends and there is no connection to
the other side of the board, there is a good chance that the trace is
connected to one of the power planes.

Figure 2-1: Cross-section of a typical circuit board.

Try It
Try tracing some signals on the Xbox motherboard. On the
Xbox motherboard, take a look at connector J8C1, the 40-
pin IDE connector in sector 8C. Almost all of the signals
from the IDE connector go to one chip, the MCPX, on the
motherboard by way of some resistor packs. What might
you be able to conclude about that chip? Notice how
some of the traces coming from the IDE connector mean-
der back and forth. This is a technique used to try and
ensure that all wires have the same length. See the sidebar
on “Why do Circuit Board Traces Meander Everywhere?”
for more explanation.

Components
Now that you have a little bit of experience tracing back a signal, it is time to
learn what some basic components look like.

Chapter 2 - Thinking Inside the Box 35

Why Do Circuit Board Traces
Meander Everywhere?
After looking at a few circuit boards, you will probably start
noticing that the traces on the circuit board often times
meander all over the place, sometimes going back and
forth several times before connecting to their destination.
This seems pointless when a straight trace would do the
trick. However, rarely will you find a structure on a circuit
board that was placed as a flighty whim by the designer. It
turns out that the speed of signals in most high- end elec-
tronic devices, about ¼ the speed of light, is slow com-
pared to the time required for a signal to arrive at its desti-
nation. For example, a signal will only travel 3 inches on a
circuit board during one clock cycle in a 1 GHz processor
(one clock tick at 1 GHz is a duration of 1 billionth of a
second, or one nanosecond). Thus, two signals starting from
the same chip will arrive at their destination at quite differ-
ent times if the trace lengths are very different. To combat
this, designers will put extra bends into the shorter trace so
that the effective length of the trace is the same as the
longer one.

Components are classified as passive and active. Loosely speaking,
passive components cannot amplify a signal, so they usually have just two
leads. Sometimes multiple passive components are packaged together, so
a single package of passive components will have multiple leads. Passive
components include capacitors, resistors and inductors. The most
common passive components on the Xbox motherboard are capacitors.
Capacitors store energy as an electric charge; in the Xbox, they are

Figure 2-2: Typical passive components in an Xbox.

Hacking the Xbox: An Introduction to Reverse Engineering36
primarily used to smooth out local power fluctuations from CMOS
digital logic switching, and to suppress high frequency noise.

Other large passive components found on the Xbox motherboard
include inductors and resistors. The large wire-wound toroidal (donut-
shaped) inductors found on the Xbox motherboard are all part of the
power supply subsystem. Inductors store energy as magnetic flux. An
inductor’s electrical properties are complementary to that of a capacitor.
Combinations of inductors and capacitors with transistor switches in
between are used to build very efficient power regulators. Most of the
resistors on the Xbox motherboard are used either to absorb excess
energy at the termination of signal traces, or to bias a wire to a particular
logic level.

There are two ways you can identify a passive device on the Xbox
motherboard. The first is by the shape of the package. Package shape
recognition is feasible because there are so few basic varieties of passive
parts. Figure 2-2 has some pictures of the capacitors, inductors, and
resistors that you might see on an Xbox motherboard. The second
method is to read the label next to the part on the motherboard and to
infer the part’s function by the reference designator, using Table 2-1 as a
guide.

Active components can amplify signals, and have three or more leads. The
simplest active component is a transistor, with three and occasionally four
leads (sometimes discrete “MOSFET” transistors have an explicit fourth

Figure 2-3: Cross sectional view of a BGA packaged part (GeForce2) mounted on a
motherboard.

Chapter 2 - Thinking Inside the Box 37

What Are All These Resistors and
Capacitors Doing on a Digital
Circuit Board?
A motif you will notice on many circuit boards is a prepon-
derance of resistors and capacitors. Capacitors are every-
where because they help keep noise to a minimum and
stabilize the power supply voltages. They are required be-
cause the copper planes used to distribute power have a
small amount of resistance and inductance. These small
parasitics can cause big problems when a large amount
of current is switched through the power supply. The exact
placement and selection of capacitors is considered a bit
of a black art. If you happen to knock off one of the tiny,
sand-grain sized capacitors on a circuit board while work-
ing on it, chances are that you’ll be able to get away
without replacing it. However, given a defect of this kind,
the most likely problem you will encounter are intermittent
reliability problems.

While capacitors are everywhere to provide local storage
of energy for all the components, the resistors remove ex-
cess energy. Fast signals on a motherboard carry a lot of
energy, and if the energy is not dissipated at the receiver in
a controlled fashion with a resistor, the signal energy will
reflect back to the transmitter and cause problems. The
phenomenon is similar to that of sound in a gymnasium.
When you speak in an empty gymnasium, there is an echo.
If you speak too fast, people will be unable to understand
you because the echo will start interfering with your speech.
However, if you cover the gymnasium walls with foam, the
echo will be absorbed by the foam and you can talk with-
out interference from your echo.

Resistors are like the acoustic foam you would put on walls
to damp out echoes, so that circuits can talk to each other
at high speeds. Unlike most capacitors, if you happen to
knock off one of these resistors while playing around, you will
have to replace it in order for the circuit to work properly.
These “termination resistors” are often packaged four or
eight to a package, so they almost look like small inte-
grated circuits. You can distinguish resistor packs from other
components because they are shiny, slightly lumpy, have a
white border, and they will have a reference designator
prefix of “RP” near them. When tracing a signal through a
resistor pack, it is fairly safe to assume that signals flow straight
through, so that a connection on one side goes straight
through to the pin immediately on the other side.

“body” terminal). The most complicated active components are inte-
grated circuits, such as CPU and memory chips, with hundreds, some-
times thousands, of leads. Integrated circuits come in a wide variety of
packages, and sometimes the connections are hidden underneath the
package, as is the case in the Ball Grid Array (BGA) package. The

Hacking the Xbox: An Introduction to Reverse Engineering38
graphics chip, MCPX, and CPU on the Xbox motherboard use BGA
packages. Figure 2-3 shows a cross section of a BGA device, revealing
the hidden connections underneath.

Identifying the function of a particular integrated circuit is more challeng-
ing than identifying the function of a passive device. Functionally
identical silicon can be purchased in a variety of packages that can look
very different. In some cases, you can guess the function of a device by
observing what the device is connected to or what it looks like, but the
most reliable method is to read the part number off the chip and look it
up on the web. (Typically, parts have some kind of logo or part number
prefix that identifies the manufacturer, which you can use to find more
data on the device by visiting the manufacturer’s website.) If you do not
recognize the logo or the part number prefix, the services listed below
can help you look up part functions.

1. www.findchips.com can take a part number or pieces of a part
number and search the inventories of many distributors for
inventory matches. Most common parts will show up in
FindChips, and the links provided will often lead you not only to
a short description of the part, but also pricing and ordering
information.

2. www.google.com indexes everything on the web, and part num-
bers are no exception. Google can also be used to help find
manufacturer’s websites if you query on the letters in the logo plus a
descriptive term such as “semiconductors.” At the manufacturer’s
website, you will probably need to find the specialized part search
engine buried in the website or go to the semiconductor products
sub-page in order to do a part number lookup. The search function
on the front page of a company’s website will sometimes find part
numbers, but more often it indexes only useless corporate and
marketing pages.

3. If neither of these services gets you there, try stripping off some
of the prefixes and suffixes on the part number. In our
M29F080A example, querying just the part number 29F080 will
bring you to the webpages of multiple manufacturers who make
parts that are functionally compatible with the STMicroelectronics
part.

M29F080A
70N1

5881K
0141

SINGAPORE
ST

Part Number

Speed Grade

Pin 1
marker

Lot Code

Date Code

Origin Country

Manufacturer's logo
(STMicroelectronics)

Figure 2-4: Anatomy of a typical IC part number. The diagram is a cartoon of the
chip at location U7D1 on the Xbox motherboard.

Chapter 2 - Thinking Inside the Box 39

Try It
Let’s try looking up an Xbox part number. Locate U7D1 on
the Xbox motherboard. Figure 2-4 illustrates what you might
find. The part number is typically the longest number on
the chip, and it often starts with one or two alphabetic
characters. Memory chips and processors also frequently
have a speed grade or quality suffix after the part number.
Additionally, almost all chips have a date code. Date codes
are usually a four digit number of the format YY-WW, where
YY is the year the chip was manufactured, and WW is the
workweek. In our example, our M29F080A part was manu-
factured in the 41st week of 2001 in Singapore, and it has a
speed grade of 70N1. The remaining number, 5881K, is a
lot code whose meaning varies between manufacturers, but
in general links a chip to a particular silicon wafer or sili-
con wafer lot’s tracking number in the fabrication facility.
The “ST” logo indicates the manufacturer of this chip is
STMicroelectronics, and fortunately the website for this
manufacturer can be quickly found through Google or by
guessing, as the URL for the company is simply www.st.com.
Entering the part number M29F080A into the search field on
the home page brings you directly to search results that
include detailed datasheets and descriptions of this part
— an 8 Mbit Uniform Block Single Supply FLASH ROM.

Test Points
Almost all circuit boards in consumer electronics feature structures designed
to expedite the testing of the finished board in the factory. These “test
points” exist to cope with the unfortunate reality of manufacturing defects.
The Xbox is no exception when it comes to test points and manufacturing
defects. The bottom of the Xbox motherboard is populated with hundreds
of test points — tiny silvery circles — that allow a contact probe to
access almost every interesting signal within the Xbox. These test points
are a welcome gift to reverse engineers and to people who wish to
modify their hardware, because they provide easy access to signals that
might otherwise require a microscope and a steady hand.

A set of test points are probed all at once on the manufacturing line with a
piece of equipment called a “bed of nails tester.” Aptly named, the bed
of nails tester consists of hundreds of spring-loaded “pogo pin”
structures. A motherboard is aligned to the testbed and clamped down
with either mechanical plungers or a vacuum chuck. Similarly, you can use
pogo-pins to make your own solderless modifications to an Xbox
motherboard by leveraging the test points. You will need to build your
own circuit boards (see Appendix), but the result will be a board that you
can install simply by screwing it down — no soldering required!

Hacking the Xbox: An Introduction to Reverse Engineering40
Xbox Architecture

Before diving into the pattern matching examples, we will need a pattern
reference. Let’s take this opportunity to study the Xbox internal architec-
ture as the pattern reference, and eventually compare the Xbox architecture to
a PC and to another video game console.

High-Level Organization
The Xbox has a Pentium-III class processor running at 733 MHz as its
CPU. The “S-Spec” number on the CPU is closest to that of a Mobile
Celeron. The CPU is connected via a standard P6 133 MHz Front Side Bus
(FSB) to a graphics processing unit (GPU) and a northbridge combo
chip called the NV2A by nVidia. Its closest PC relative is the nForce IGP
chip by nVidia. Since the northbridge logic and the GPU are combined

Figure 2-5: High level architectural view of the Xbox.

Chapter 2 - Thinking Inside the Box 41
in a single chip, the CPU and graphics processors can share a common
bank of memory. This is called a “unified memory architecture” (UMA).
Compared to a traditional split video/main memory architecture, a
UMA costs less to build because it eliminates the dedicated video
memory. However, UMA has lower performance in certain situations
because it introduces memory access contention between the main
processor and the graphics processor. In order to alleviate some of this
contention, the system memory is frequently split into multiple banks.
The nForce IGP, for example, splits the memory into two banks that can
be independently accessed by both the GPU and the CPU through a
switching network.

Figure 2-6: Photograph of an Xbox motherboard with the major components
labelled.

The GPU is connected to a kitchen-sink chip called the “MCPX” via a
fast, narrow bus called a HyperTransport bus. The MCPX combines a
southbridge chip plus almost all of the Xbox peripherals, including USB
controllers, a legacy boot ROM interface, a Dolby digital audio processor, a
mass storage IDE controller, an ethernet controller, and interfaces to system
management functions.

The connectivity of all the major blocks in an Xbox are illustrated in
Figure 2-5, and Figure 2-6 illustrates the location of these blocks on an
actual Xbox motherboard.

Hacking the Xbox: An Introduction to Reverse Engineering42
Functional Details
The following sections present a cursory overview of the pieces that
constitute the Xbox architecture. We pay particular attention to the
details necessary for understanding how to reverse engineer the Xbox
security mechanisms.

CPU
The CPU (Central Processing Unit) is the computational heart of a conven-
tional computer. The subject of CPU architecture deserves an entire book
alone, so we will cover just the material required to understand how to
reverse engineer the Xbox. In particular, we will investigate how to gain
control of the Xbox CPU.

A CPU reads sequences of instructions stored in memory — programs
— that tell the CPU to perform various computations or to make
decisions based on available data. The instructions are stored in memory
as numbers called opcodes. Opcodes take operands as arguments. Program-
mers use alphabetic mnemonics when writing low-level machine code so
that they don’t have to remember hundreds of opcode numbers. For
example, a kind of byte-wide subtraction instruction has the opcode
0010.1000 (binary) or 0x28 (hexadecimal) and the mnemonic “SUB”.
The requisite subtraction opcode varies depending upon the source and
width of the subtraction data. Keeping track of all of the opcode to
operand rules is overwhelming, so the process of translating mnemonics
and operands to instruction numbers is accomplished with a program
called an assembler. Likewise, the process of translating instruction
numbers back into mnemonics is done with a disassembler. Significantly,
most programs are not written in assembly language; a higher-level
language, such as C, is typically employed. These high-level languages are
translated into machine instructions using compilers. Automatic
decompilation of machine instructions back into a high-level language
can be difficult because the process of compilation — especially opti-
mized compilation — discards much of the high-level structural infor-
mation contained in the original source code.

The processor keeps track of which instruction is being executed with an
instruction pointer (IP). An IP is also referred to as a program counter (PC) in
some contexts. IPs typically advance through a program one instruction at a
time, unless a branch instruction is encountered. A branch instruction gives
the program an opportunity to make a decision by inspecting data inside the
CPU and jumping to a new location based on the outcome of the
inspection. Understanding the movement of the instruction pointer is a central part
of reverse engineering an Xbox. Being able to manipulate the IP is tantamount
to having control of what the Xbox can and cannot do. The security
measures implemented in the Xbox software architecture attempt to
guarantee that the IP is always executing only Microsoft-approved code
by always cryptographically verifying a piece of code for authenticity
before running it.

Chapter 2 - Thinking Inside the Box 43

Binary and Hexadecimal Numbers
Digital circuits use 1’s and 0’s to represent numbers. This binary, or
“base-2”, notation is a reflection of the way electrical signals are
used to represent numbers: two ranges of voltage levels are used
to define one logic state or the other. It is possible to build electrical
systems that represent information using more than two voltage
levels, but only at the cost of power and complexity. Modern mo-
dems, for example, use multiple voltage levels and phase informa-
tion to represent multiple bits of data in a single time unit.

Number composition and arithmetic in binary follows the same
rules as our familiar decimal (“base-10”) representation. In decimal,
0’s are used as placeholders to remember when a digit has over-
flowed. For example, 1 more than 9 leads to an overflow because
there is no single digit bigger than 9. Hence, the number 10 records
that we had one overflow of the right-most decimal location. Like-
wise, in binary, 1 more than 1 is 10, since the largest single digit in
binary is 1.

Thus, in decimal, the value of a four-digit decimal number d4d3d2d1
can be broken down as:

d4 * 103 + d3 * 102 + d2 * 101 + d1 * 100 = d4 * 1000 + d3 * 100 + d2 * 10 + d1 * 1

Likewise, a four-digit binary number b4b3b2b1 can be broken down
as:

 b4 * 23 + b3 * 22 + b2 * 21 + b1 * 20 = b4 * 8 + b3 * 4 + b2 * 2 + b1 * 1

For example, the number 1010 = 1*8 + 0*4 + 1*2 + 0*1 = 10 decimal.

Keeping track of numbers in straight binary can become cumber-
some quickly; for example, to represent decimal 968, you need ten
binary digits. To save on screen space, binary numbers are con-
verted to octal or hexadecimal. The octal format, or “base-8”, was
popular in the early days of computers, but has since become a
rarity. Hexadecimal, or “base-16”, is the de-facto numbering sys-
tem. There are 16 digits in hexadecimal, so the hex digits that corre-
spond to decimal numbers 10 through 15 are represented by the
letters A through F. Table 2-2 summarizes the conversion between
binary, decimal, and hexadecimal for the first 16 positive integers.

In order to differentiate hexadecimal from decimal numbers, many
people use the C language convention where 0x[number] represents a
hexadecimal number, and [number] is implicitly a decimal number. Bi-
nary numbers have no similar standard to draw from in C, so some
people use the Verilog standard, [digits]’b[number], where [digits] is the
number of digits in the binary number. The suffix “b” after a string of 1’s
and 0’s, such as 1010.1100.1110b is also used to denote a binary number.
Notice how a “.” was used to group the binary digits into sets of four;
this assists in mentally translating the binary number into hexadeci-
mal: 0xACE.

(continued)

Hacking the Xbox: An Introduction to Reverse Engineering44

The heart of a CPU is a tiny, but very fast, memory called the register file.
Multiple pieces of data can be written into and read out of a register file
each processor clock cycle. Data from the register file is fed into an
execution unit called the arithmetic logic unit (ALU). The function
computed by the ALU is controlled by instructions fetched from
memory. Once the data has been processed by the ALU, it can either be
written back into the register file, or stored into memory.

One important performance feature of almost every modern CPU is a
memory access accelerator called a cache. Caches are small, fast memories
that store copies of data and instruction snippets that are likely to be
used in the near future by the CPU core. Caches are slower than register
files but faster than main memory; likewise, caches store more data than a
register file, but store less data than main memory.

One important feature of the Xbox CPU cache to be aware of is that it is
a writeback cache. Writeback caches allow copies of data stored inside
the CPU to be out of sync with what exists in main memory. This timing
difference can complicate attempts to trace CPU execution by observing
external memory traffic alone. The cache memory can also be leveraged
by security routines to hide intermediate computation results from
someone observing the memory bus.

Northbridges and Southbridges
The terms Northbridge and Southbridge are vernacular specific to the
PC architecture. They refer to the two basic support chips that are found
in virtually every PC. A Northbridge chip connects the CPU to main
memory as well as any high-performance expansion busses, such as AGP
and PCI. A Southbridge chip hangs off of the Northbridge chip and
contains all of the extra peripherals that are found in a typical PC —
parallel, serial, USB, mouse, keyboard, IDE controllers, audio codecs,

Binary and Hexadecimal Numbers (continued)

 Bin Dec Hex Bin Dec Hex

0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 10 A
0011 3 3 1011 11 B
0100 4 4 1100 12 C
0101 5 5 1101 13 D
0110 6 6 1110 14 E
0111 7 7 1111 15 F

Table 2-2: Binary, decimal, and hexadecimal conversion table.

Chapter 2 - Thinking Inside the Box 45
and more. Dividing the PC architecture into these three main modules —
CPU, Northbridge and Southbridge — enables PC designers to mix and
match different kinds of memory architectures with a diverse selection of
processors and peripherals.

The connection between the Northbridge and the Southbridge chipsets
varies from chipset to chipset. In the case of the Xbox, a high perfor-
mance, narrow parallel bus called HyperTransport is employed as the
connection between the functional equivalent of the Northbridge and
Southbridge chips. The bus is only 8 bits wide in each of two directions,
but it is clocked at 200 MHz and data is sampled on each clock edge so
the effective peak transfer rate is 400 Mbytes/second in each direction. A
Northbridge chip is connected to a CPU via a bus called the Front Side
Bus (FSB). In the case of the Xbox, the FSB is a 64-bit 133 MHz bus that
uses AGTL+ logic levels.

Knowing and understanding the kinds of connections between chips is
crucial in reverse engineering because the kind of connection will dictate
how difficult it is to intercept data going between various components.
The details of the relatively easier bus to tap, the HyperTransport bus, are
discussed in Chapter 8, “Reverse Engineering Xbox Security.”

In the Xbox, the Southbridge is a chip designed by nVidia called the
MCPX; it is a derivative of the nVidia nForce MCP Multimedia and
Communications Processor. The Northbridge chip was also designed by
nVidia, and it is called the NV2A GPU. Both the Northbridge and
Southbridge chips were manufactured by TSMC (Taiwan Semiconductor
Manufacturing Corporation). The NV2A combines both a GPU (Graph-
ics Processing Unit) and the traditional memory and expansion bus
controllers found in most Northbridge chips. As explained previously,
combining the graphics processor and the Northbridge allows system
designers to merge the graphics memory into main memory, at some
performance penalty.

RAM
The Xbox motherboard employs 64 MB of DDR SDRAM for the main
memory. DDR SDRAM stands for Double Data-Rate Synchronous
Dynamic Random Access Memory. By combining synchronization and
DDR techniques, the aggregate bandwidth of the Xbox main memory
achieves 6.4 Gigabytes/second.

A RAM is basically a table of information that is indexed by the CPU.
Each location in RAM has a unique index number called its address, and
as the name “random access” implies, there are no restrictions on the
order of data access in a RAM.1

1 Actually, SDRAMs can have a few restrictions on memory access
patterns (such as page modes and burst modes) for performance
reasons. The “random” moniker is intended to differentiate RAMs
from First-In, First-Out (FIFO) and Last-In, First-Out (LIFO) style
memories where data is accessed using a strict set of ordering
rules.

Hacking the Xbox: An Introduction to Reverse Engineering46
The term “dynamic” is applied to RAM that has to be constantly
refreshed in order to preserve the integrity of data. For example, the
RAM used in the Xbox must have every location read out and written
back about thirty times a second. The performance penalty is not as bad
as it sounds, as special hardware is built into modern DRAM chips that
help optimize the process.

The “synchronous” prefix means that inside the DRAM, the procedure
for data access is broken down into a series of steps. Each of these steps
are independent and can occur in parallel, so that multiple data requests
can be in-flight simultaneously. An external timing signal, known as a
clock, is used to synchronize the movement of data access requests
through the various steps inside the DRAM. As a result, data access
requests flow through each step like water through a pipe, and this
technique is also known as pipelining. Synchronous DRAMs have higher
bandwidth throughput than their predecessors, because pipelining allows
multiple requests to be processed at once. However, the time required
from when an access is first issued to an SDRAM to when the data finally
appears on the output —the access latency — is not improved by
pipelining.

The term “Double Data Rate” refers to the way synchronous data is
transferred relative to the synchronizing clock. A clock waveform
consists of a repeating pattern of high and low signals. In traditional
systems, data is only transferred on the low-to-high transition of a clock
waveform. In a DDR system, data is transferred on both the low-to-high
and the high-to-low transitions. Thus, for the same clock frequency, twice
the amount of data can be transferred. The performance mnemonic
quoted by DDR SDRAM vendors, such as DDR266, refers to the
transfer rate, so the actual clock speed is one-half the performance
mnemonic, or 133 MHz in this case.

ROM
Every computer needs to have some kind of persistent or non-volatile
memory for storing the start-up, or boot, program. The DDR SDRAM
discussed above does not work for this application because all data in a
DDR SDRAM is lost when the power is removed. Current versions of
the Xbox use a FLASH ROM instead to store data that has to persist
even when the power is turned off. ROM stands for Read-Only Memory,
and FLASH refers to a specific style of storage element that is electroni-
cally reprogrammable. FLASH style memories are convenient in PCs
because they can be reprogrammed by the end user to fix mistakes in the
boot code. However, in the Xbox, FLASH ROM programming by the
end user is purposely disabled. The write signal required for program-
ming is disconnected by leaving out the jumper located on the back of
the Xbox motherboard at component location R7R4 (see the sidebar
titled “Enabling FLASH ROM Programming Hardware” for more
information). In the case of the Xbox, the reprogrammability of FLASH
is primarily leveraged as a convenience for Microsoft during develop-
ment and production. It is quite likely that in a few months, the Xbox will

Chapter 2 - Thinking Inside the Box 47

use cheaper hard-wired “mask ROMs” once Microsoft believes it is ready
to etch its boot program and kernel in stone (or silicon, as the case may
be).

The boot ROM is pivotal in reverse engineering any computer because it
contains critical code that is responsible for initializing the whole system.
In the case of the Xbox, the boot FLASH ROM plays an even more
crucial role because it is partially responsible for implementing the tight
software security system. The exact role of the FLASH ROM in the
security system will be explained later, but the important thing to
remember for now is that the FLASH ROM controls the initialization of
the hardware in the Xbox and also contains the initial operating system
kernel image.

Odds and Ends
The Xbox features a small 8-bit coprocessor called the System Manage-
ment Controller (SMC). The SMC is a complete miniature computer with
RAM, ROM, and a processor in a single package. The processor inside
the SMC uses the PIC (Peripheral Interface Controller) architecture,
originally developed at Harvard university around 1975 and adapted by
General Instruments for commercial sale. Arizona Microchip Technology
(now called Microchip Technology, www.microchip.com) acquired the
PIC product line in 1985 and has been selling it ever since. The SMC can
be found in sector 7B on the Xbox, and its reference designator is U7B2.
The SMC monitors the power button on the front of the Xbox, so the
SMC must run even when the CPU is turned off. As a result, the Xbox
power supply has a low-current 3.3V “standby” power line that is always
active when the Xbox is plugged in. The SMC is also responsible for
controlling the lights around the power button on the Xbox, and it
controls the DVD eject mechanism as well. Finally, the SMC has a
function that monitors the health of the CPU, and reboots the CPU in
case it crashes. The SMC monitoring function must be disabled if you

Enabling FLASH ROM Programming
Hardware
Patching the signal that was disconnected by Microsoft in
order to prevent in-system FLASH ROM programming is a
fairly simple procedure. The FLASH ROM write signal was
disconnected by omitting a single resistor, component num-
ber R7R4, located on the bottom side of the Xbox
motherboard at sector 7R. You can solder a piece of wire
between the two silver pads of the resistor, or you could
even simply bridge the pads with a large amount of solder.
Note, even though FLASH ROM programming is enabled in
the hardware by this patch, you still do not have a pro-
gram that actually does the reprogramming. Running such
a program is a much greater challenge due to the crypto-
graphic software security system put in place by Microsoft.

Hacking the Xbox: An Introduction to Reverse Engineering48
wish to run your own operating system on the Xbox. The SMC talks to
the CPU via the MCPX through a 1-bit serial interface known as I2C.

Another important feature of the Xbox is the LPC debug port. The LPC
debug port is a 4-bit wide bus that runs at 33 MHz. LPC stands for
“Low Pin Count,” and it was originally devised as a method for connect-
ing a large number of slow legacy devices, such as keyboards, serial ports,
parallel ports and boot ROMs, to the Southbridge chip via a simple
intermediate translation chip. The debug port is provided on the Xbox
presumably for manufacturing test purposes by Microsoft’s hardware
contractor. When the Xbox nears its final stages in production, the LPC
debug port is used to load a boot program that performs tests, diagnos-
tics and burn-in on the Xbox motherboard. The LPC debug port is
discussed in more detail in chapter 11, but the important thing to know
for now is that one can force the Xbox to read its initial boot ROM
image through the LPC debug port by connecting an LPC-compliant
ROM device and shorting one of the data pins (D0) on the FLASH
ROM to particular voltage (zero volts). This is perhaps the easiest
method for forcing the Xbox to boot your own code — given that you
know how to get around the secret boot code that secures the Xbox.

Pattern Matching
Now that we are familiar with the Xbox architecture, we have a reference
point for perhaps one of the most powerful reverse engineering tools —
pattern matching. Being able to make educated guesses about the
function of various parts by simply observing their connectivity, place-
ment and shape is the first step in becoming a crack reverse engineer. To
demonstrate the power of pattern matching, we will compare the Xbox
motherboard to a PC motherboard and to a Nintendo Gamecube
motherboard.

Learning a lot of patterns is the best way of becoming a good pattern
matcher. I take apart every piece of equipment that I buy, and I pore over
the circuit boards to try and learn what other designers know by “read-
ing” the circuit board. Every circuit board tells a story about its design
process; rarely will one encounter a peculiar circuit feature that does not
have some intended purpose.

Caution
When taking apart any piece of electronic equipment, be
sure to first unplug it and wait a minute for the charge on
the large capacitors in the power supply to dissipate. Also
be sure to use appropriate static electricity control mea-
sures described in chapter 1!

Chapter 2 - Thinking Inside the Box 49
Comparison: Xbox Versus the PC
The similarity of an Xbox to a PC is a boon to hackers, since the PC
platform is very well documented. Every part in an Xbox has an analog
in a typical PC, so almost any high-level question can be answered by just
reading about a similar PC part. Thus, it pays to take a closer look at the
similarities between the Xbox motherboard and a standard PC
motherboard. Another benefit is that much of the information in this
book will apply directly to PCs, so you can easily apply what you will
learn from hacking the Xbox to a large number of situations.

The Xbox’s closest relatives are systems based on chipsets that use a
unified memory architecture, such as nVidia’s nForce or Via
Technology’s ProSavageDDR. The architectural diagram presented in the
previous section was derived by reading the published specifications of
the Xbox and material available on nVidia’s website about the nForce
chipset. In this section, we will compare the Xbox to the Via Technology
ProSavageDDR-based P4M266 motherboard. The Xbox is compared
here with a non-nVidia chipset motherboard to emphasize the broad
similarities of the Xbox to PCs.

Figure 2-7 shows a picture of a PC motherboard, the Via P4M266. Even
though the chipset is manufactured by a different vendor, the similarities

Figure 2-7: Via P4M266 motherboard with integrated graphics.

Hacking the Xbox: An Introduction to Reverse Engineering50
between the P4M266 and the Xbox are striking. Almost all of the
material covered in the previous section applies to this PC motherboard.
The primary differences are a few miscellaneous ports and connectors,
and the presence of PCI and AGP high-performance expansion ports.
The Via P4M266 also lacks an explicit LPC debug connector, since all of
the legacy peripherals are directly realized by an LPC multi-I/O chip.

Contrast: Xbox Versus the Gamecube
The Nintendo Gamecube interesting in comparison with the Xbox. The
Gamecube is a machine designed for the same purpose as the Xbox —
gaming — but with a very different design philosophy in mind. The
Xbox and the Gamecube both use the same gross architecture — a CPU,
a graphics coprocessor, some memory, and some support chips — but
the similarities end there. The Gamecube design demonstrates an
exacting attention to detail and cost. The Gamecube motherboard is
small and simple, the component count is kept to a minimum, and the
heat sinking and thermal design is very simple. The clean, straight layout
of most of the PCB traces on the Gamecube motherboard reflects the
fact that almost every IC is custom-designed specifically for the
Gamecube. As a result, the Gamecube is a much more economical
platform to build than the Xbox.

One can recognize the gross organization of the Gamecube by inferring each
chip’s function from the basic marketing information Nintendo provides.
Further details about the architecture of the Gamecube are difficult to
infer, because it uses so many custom components that have no counterpart
in a standard PC. By the pattern of the traces on the motherboard, one
would be lead to believe that the large chip in the center of the board, the
“Flipper” chip, is the equivalent of an integrated graphics Northbridge chip
in a PC. This is almost correct. A key difference is that even though the
Flipper chip combines both a memory controller and a graphics controller
into a single package, the graphics function still has its own dedicated
memory, built inside the same chip. This kind of organization allows a very
high performance memory to be used by the graphics engine, with the trade-
off of the memory being a bit smaller than if off-chip memories were used.
The smaller size of the on-chip memory is compensated in part by the use
of extremely fast off-chip memory.

The Gamecube does not use DDR SDRAM like the Xbox; instead, it
uses what is called a 1-T SRAM. 1-T SRAMs are DRAM memories that
emulate a very fast type of memory known as the Static RAM (SRAM).
SRAMs have much lower random access latencies than DRAMs, and they
also do not require each memory cell to be refreshed 30 times a second like
DRAM does. The actual magic behind how DRAM can masquerade as fast
SRAM is fairly complicated and is beyond the scope of this book, but you
can find more information at the 1-T SRAM manufacturer’s website,
www.mosys.com.

Chapter 2 - Thinking Inside the Box 51

Figure 2-8: Gamecube motherboard plus its power regulator card. The
motherboard is about half the size of the Xbox motherboard.

The Gamecube also has yet another piece of memory, known as ARAM,
that is slower than the 1-T SRAM memory, and is used to store things like
audio samples that do not require high-bandwidth accesses. Having a
disparate memory architecture means that the Gamecube can squeeze a
more consistent amount of performance out of each subsystem, some-
thing important in keeping frame lag to a minimum. The trade-off,
however, is that the Gamecube can be more difficult to program, and
mismanagement of the multiple pieces of memory can lead to performance
problems.

Another important distinction between the Gamecube and the Xbox is
that the Gamecube consumes much less power than an Xbox. Power
consumption may seem unimportant at first, since both consoles are
designed to be plugged into a wall outlet, but the Gamecube’s lower
power envelope requires fewer heat transfer components and smaller
power supplies to be used, saving on cost. Figure 2-8 includes a picture
of the Gamecube power regulator for reference; the power regulator is a
fraction of the volume of the Xbox power supply plus the local switch-
ing regulators on the Xbox motherboard.

To be fair, note that the Gamecube does have a small external AC to DC
converter, while the Xbox takes wall power directly into the console.
Furthermore, electronic components degrade much faster at elevated
temperatures, as described by the rule of Arrhenius. For example, a 10
degree Celsius operating temperature increase roughly doubles the failure
rate of a component. As such, the Gamecube should be more reliable
over the years than the Xbox since the Gamecube puts out less heat, and
because its thermal management system is as good as, if not better, than
the Xbox’s.

Hacking the Xbox: An Introduction to Reverse Engineering52
Finally, it is interesting to note that the Gamecube uses proprietary I/O
interfaces everywhere. The game disk format is a mini-DVD format, and
the DVD reader connects to the motherboard through a proprietary
connector. Using a smaller DVD media allows Nintendo to reduce the
latency of data seeks, which means shorter game loading times. The game
controllers and memory cards also use a proprietary signaling format.
Everything in the Gamecube is somewhat similar to our familiar PC, but
nothing was directly incorporated into the design unchanged.

In addition to optimizing the manufacturability and cost of the Gamecube,
the use of mostly proprietary chips and standards makes the console much
more difficult to reverse engineer than the Xbox. For example, note that in
Figure 2-8, there is no obvious ROM chip in the Gamecube. Thus, in order
to even start looking at Gamecube code, one has to hunt down and extract a
ROM hidden somewhere in one of the chips on the motherboard! This is
one of the rare times where security through obscurity works. Even if there
were no security at all on the Gamecube, the cost and effort of trying to
burn your own code onto Nintendo’s custom DVD format is just not
worth it for the individual enthusiast.

CHAPTER 3

Installing a
Blue LED

Now that you have taken the cover off of your Xbox, it is time to do a
couple of starter projects. The next chapters walk you through some
elementary modifications and repairs that you can perform on your Xbox.
These projects are designed and written for readers who have little or no
experience with hardware hacking. More advanced topics on the Xbox can be
found in later chapters.

In this chapter, you will learn how to replace the normally green LED in
the Xbox front panel with a blue LED. This project requires minimal
soldering; most of the effort is in removing the front panel and the LED
circuit assembly. Let’s get started!

Note
A stock Xbox uses a green/red combo LED, but the red LED
is only used to indicate error conditions. The procedure
described in this chapter will convert your Xbox front panel
indicator into a blue-only LED. The proper substitute would
be a blue/red combo LED (T-1, 3mm diameter lens). How-
ever they are difficult to find, so the instructions here do
not use them. The instructions will give the necessary back-
ground knowledge for you to improvise and incorporate
your own LED solution if you are so inclined.

Hacking the Xbox: An Introduction to Reverse Engineering54
What You’ll Need

The following is a list of the equipment that you’ll need to complete this
project:

• Low-wattage soldering iron with a fine point tip

• Solder

• Flux and soldering iron tip cleaner (optional)

• Small flathead screwdriver

• T-10 bit Torx driver

• Two low voltage (3 volt) blue LEDs in a T-1 (3 mm) case

• Masking tape for holding parts in place during soldering

You can substitute any color LED that you like, but it must turn on at a
voltage of around 3 volts and have a T-1 style case. Pay attention when
buying your LEDs, because many blue and white LEDs are rated to work
only at 5 volts. The LED used here is a Lumex SSL-LX3044USBC which
you can buy through Digi-Key (www.digikey.com); part number 67-
1747-ND. (For the budget-conscious, Digi-Key can send the LEDs via
United States Postal service’s first class mail. Note that there is a $5
handling fee for orders through Digi-Key that are less than $25.)

If Digi-Key’s minimum order restriction is a problem for you, Mouser
Electronics (www.mouser.com) also has a line of blue LEDs, and they
have no minimum order. An example part is the Kingbright blue LED in
a T-1 case with a water clear lens; the Mouser stock number is 604-
L7104PBC/H for the brighter, slightly higher voltage version, or 604-
L7104QB/D for a version that operates at a lower voltage but with a
lower rated brightness.

You can also use a bi-color LED if you would like to maintain the error
condition LED functionality as well. The Xbox requires a common-cathode
bi-color LED in a T-1 case with three leads. Unfortunately, bi-color LEDs
with a blue element in the smaller T-1 case are very difficult to find.

Removing the Xbox Front Panel
The Xbox front panel is a molded piece of ABS plastic that is held in place
with four T-10 torx screws and three molded friction locks. The electronics
in the front panel connect to the Xbox motherboard through a single nine-
wire connector that winds its way through a hole in the metal electromag-
netic interference shield.

Open the Xbox as instructed in Chapter 1. Lift and move the hard drive
and the DVD drive up and toward the back of the box just enough to
expose the front edge of the Xbox motherboard. You should not have to

Chapter 3 - Installing a Blue LED 55

undo any of the disk drive cables. Figure 3-1 illustrates how your Xbox
should look after these steps.

Note
Older Xbox models will have a vertically mounted PC board
near the front of the Xbox. This PC board can be removed
by grasping the board and pulling it out of its socket. You
may find that removing the vertically mounted PC board is
helpful when trying to release the middle friction lock of
the front panel. Do not forget to replace the PC board
when you are done!

Remove the four screws that hold the front panel assembly in place (see
Figure 3-2).

Detach the front panel wire connector from the Xbox motherboard as
shown in Figure 3-3. A firm, steady force is all the connector should
require. (Do not jerk the connector out, because you may damage the
wires.)

Figure 3-1: Position the disk drives so that the front edge of the motherboard is
exposed.

Hacking the Xbox: An Introduction to Reverse Engineering56

Now for the tricky part: the friction locks. A friction lock is a hook made
out of plastic that holds parts together. The hook is shaped so that it is
easy to insert, but difficult to extract. Releasing a friction lock typically
requires some kind of bending or pushing on the plastic.

Figure 3-2: Location of the four retaining screws on the front panel assembly.

Figure 3-3: Detach the front panel wire connector from the Xbox motherboard.

Chapter 3 - Installing a Blue LED 57
Three friction locks hold the front panel in place: one on either edge of
the front panel, and one in the middle poking through the metal electro-
magnetic interference shield. First, loosen the friction locks on the edge
using a thin-bladed flathead screwdriver as shown in Figure 3-4. These
locks are very tight, and you may have to release it in sections, starting
with the top section. Insert the screwdriver tip into the space along the
side between the panel and the main case body, and pry until you feel a
slight give. Remove the screwdriver and repeat the process near the
bottom of the case. You may need to try several times before the lock is

Figure 3-4: Loosen the edge friction locks with a flathead screwdriver.
(1) Start working from the top and move down; (2) once the panel is free, it should
bend outward from the case.

Hacking the Xbox: An Introduction to Reverse Engineering58
free. Do not apply excess force to the case, as you could crack or nick the
plastic. When the edge of the front panel is free, you will be able to flex it
away from the case. Repeat this process for both edges.

Once both edges are free, pull up on the middle friction lock (shown in
Figure 3-5), and the front panel should pop off.

Once the front panel is free, thread the front panel wire connector
through the hole in the metal electromagnetic interference shield and lay
the panel flat on a table with the outer face down.

Figure 3-5: The thumb is pressing on the middle friction lock.

Removing the Front Panel Circuit
Board

The front panel assembly of the Xbox contains a small circuit board,
held in place with a single friction lock retaining clip, as shown in Figure
3-6. Use a finger or a screwdriver to push down on the friction lock and
pull the front panel circuit board assembly out of its cradle.

Lay the circuit board assembly on a table with the green side down. You
should see two clear LEDs and two flat push-button switches.

Chapter 3 - Installing a Blue LED 59

Now that the circuit card assembly has been removed, it is time to install
the blue LED. This will require some soldering, so plug your soldering
iron in and let it heat up. Keep in mind that it is important to use a
soldering iron with a fine tip and to use soldering iron tip cleaner to
condition the tip before using it. See Appendix A, “Where To get Your
Hacking Gear,” if you need any of these items; you can equip yourself
for just a little more than the cost of a video game.

Figure 3-6: Lift the printed circuit assembly out of the front panel. (1) Push
down on the friction lock tab, using a screwdriver if necessary, (2) then lift the
assembly out of the front panel.

Installing the Blue LED

Hacking the Xbox: An Introduction to Reverse Engineering60
Remove both existing LEDs with a flush-cutting wire cutter. Preserve as
much of the metal legs coming out of the LEDs as possible because you
will use them to attach your blue LED later on. Figure 3-7 shows how the
circuit board should look when you are finished.

Figure 3-7: Cut the existing LEDs off the circuit card assembly. (Top) cut the
LED as close to the case as possible; (bottom) the LED removed. Use this
procedure to remove both LEDs.

To assist with soldering, tape the circuit board down to a flat surface with
a piece of masking tape, so that it does not move. Position the blue
LEDs so that their legs touch the metal stubs of the old LEDs on the
circuit board assembly. (Figure 3-8 shows how to identify the polarity of
an LED and their proper orientation on the circuit card assembly. See the
sidebar “The Anatomy of an LED” if you are unsure about how to
identify the polarity of an LED.)

Tape the lens portion of the LEDs in place with masking tape so they do
not roll around while you solder them. You will need to bend or cut the
legs of the LED that will be installed on the right hand side of the board
because the yellow wire connector will be in the way.

Warning
Pay careful attention to an LED’s polarity. If you install an
LED backwards, no light will be emitted. See the sidebar
on the Anatomy of an LED if you are unsure how to identify
the polarity of an LED.

Chapter 3 - Installing a Blue LED 61

Figure 3-8 also illustrates the polarity and function of the stock Xbox
LEDs. Adventurous readers are encouraged to improvise and install
multiple LEDs or surface-mount LED packages to try and get more
colors and functionality. It is possible to install LEDs that are slightly
larger than the T-1 package used in the Xbox by first sanding down the
edges of the LED.

Once you have double-checked the LED polarities and verified that the
short lead on both LEDs is abutting the remains of the original LED’s
center lead, solder the LEDs in place. Figure 3-10 shows the LEDs being
soldered in place. (If you have never soldered before, you may find it
helpful to read Appendix B, “Soldering Techniques” before proceeding.)

Before using the soldering iron, melt a little bit of solder wire to verify
that the tip is sufficiently hot. The solder wire should melt instantly if the
tip is hot enough. If the soldering iron is too cold, you will not be able to
form a good joint and you run the risk of damaging the circuit board.

Hold the hot iron tip against the blue LED’s lead and push the lead into
the metal stub on the circuit card assembly. While the lead is heated,
apply a touch of solder wire to the point where the blue LED lead meets
the metal stub. The molten solder’s surface tension should cause the

EJECT

POWER

LED2 LED1

green

red

red

green

EJECT

POWER

LED2 LED1

Place blue LEDs across "green" LED
connections, short lead toward the middle

Location and function of LEDs on a stock
Xbox front panel circuit card assembly

Red LED wire must not
touch any other wires

Red LED wire must not
touch any other wires

Figure 3-8: Placement of the blue LEDs on the front panel circuit board
assembly. Note the anti-symmetry of the LED colors on each side of the circuit
board.

Hacking the Xbox: An Introduction to Reverse Engineering62

The Anatomy of an LED
LEDs, or light emitting dodes, are polarized devices, which only
allow current to flow in one direction. This means that they will
not work when put in backwards. Figure 3-9 illustrates the
anatomy of an LED. The shorter lead on the side of the LED
package with a small flat is called the cathode. The cathode
must be connected to a potential more negative than the
other lead, the anode, in order for the LED to function.

Figure 3-9: The anatomy of an LED.

Differentl LEDs characteristically require a different amount of
forward voltage to turn on. Red LEDs typically require 1.7 volts,
green LEDS require about 2.1 volts, and blue LEDs require 3.5
volts and up. Early blue LEDs required almost 5 volts of for-
ward voltage, but advances in technology have decreased
their voltage making them easier to integrate into battery-
powered and low voltage electronics. When shopping for an
LED for this project, be mindful of the required forward volt-
age. If you install a 5 volt blue LED, its light output will be very
dim, since the maximum forward voltage generated by the
Xbox drivers is around 3 volts.

solder to wet the blue LED’s leads and the metal stub on the circuit
board assembly. If this does not happen, remove the iron and apply a
little bit of flux to the joint, and try again.

Do not hold the soldering iron tip against the metal stub for extended
periods of time or it will melt the solder that holds the stub in place.
You will know that the stub’s solder joint to the board has melted, when
the stub starts to sway freely. If this happens, hold the soldering iron tip
against the board and slowly drag the soldering iron tip away. Dragging
the tip will prevent the stub from getting pulled out of the board with the
iron. Wait for the stub to cool and bend the stub back into position.

flat mark
(most cases)

shorter
lead

cathode
(negative)

Chapter 3 - Installing a Blue LED 63

Figure 3-10: Soldering the LEDs in place. Note how the board and the LEDs are
taped in place using masking tape.

Once you have soldered all four connections on the two LEDs, clip off
the excess LED leads as short as you can without cutting the metal stubs.
The finished board should look similar to Figure 3-11.

Figure 3-11: Finished board assembly.

Reassembling the Front Panel
Snap the circuit card assembly back into the front panel by aligning the
top edges beneath the retaining clamps and pushing the card into the
friction lock.

Now, take the full front panel assembly and mate it to the Xbox. First,
feed the wire connector through the original oval-shaped hole through
the electromagnetic interference shield. Then, push the front panel into
the Xbox, and all three friction locks should snap into place.

Hacking the Xbox: An Introduction to Reverse Engineering64
Reattach the front panel wire connector to the Xbox motherboard. The
connector is shaped so that you can only insert it in one direction, but the
plastic used in the connector molding is soft and you could insert it
backwards if you push hard enough, possibly causing irreversible damage
to it. Verify the correct orientation by lining up the missing pin on the
board receptacle with the missing wire on the connector header, as shown
in Figure 3-12.

If you have an older Xbox, re-attach the vertical circuit board assembly
by pushing it into its sockets. This circuit board is the interface card for
the Xbox game controllers, so you’ll definitely want that installed
correctly.

Now, you are ready to test your newly modified front panel assembly.
Replace the disk drives in their bays and verify that their power cable and
ribbon cable connections are secure. Plug the Xbox in and you should be
treated to a blue glow coming from the Xbox front panel. (If you don’t
see what you expect, don’t panic. The next section, “Debugging,” offers
solutions to some possible problems.)

Once you are satisfied with the modification of your Xbox, turn the
Xbox off and replace the four retaining screws on the front panel
assembly. (You will need to remove the disk drives again to access the
screw holes.) Replace the disk drives, power up the Xbox one more time
to verify that everything is working fine, and then reassemble the rest of
the Xbox as described in Chapter 1.

Figure 3-12: Orientation features of the front panel wire connector. The
arrows indicate the position of the empty polarizing pin.

Chapter 3 - Installing a Blue LED 65
Debugging

Sometimes things go wrong. In my experience, something going wrong is
more often the case than not. The most important thing to remember if
something doesn’t work is, don’t panic! Keep your wits together, make
observations about what is going wrong, and try to hypothesize the cause
the malfunction. For your reference, Table 3-1 contains a list of common
problems and their possible causes. Appendix E, “Debugging: Hints and
Tips,” contains a more in-depth discussion of debugging techniques.

Table 3-1: Debugging guide for installing a blue LED.

Problem Possible Cause
Xbox does not turn on. • Front panel wire connector not properly

inserted.

• Xbox not plugged in.
• Front panel wire connector damaged, or front
panel circuit card assembly damaged.

• One or more LED installed backwards.
• One or more LEDs installed on the red LED's
metal stubs, instead of the green LED's metal
stubs. Verify this by turning on the Xbox without
the video cable plugged in. This will cause the
Xbox to send a flashing signal to both the red
and the green LEDs.

• Hard drive or DVD connectors have come
loose. Verify that the gray ribbon cable header is
fully inserted into each drive and that the power
connector for each drive is fully inserted.

• On older Xbox models, check that the vertical
game controller interface board was re-installed
properly.

Xbox turns on, but game
controllers do not
respond.

• On older Xbox models, check that the vertical
game controller interface board was re-installed
properly.

• Verify that the wire connector between the
front panel and the Xbox motherboard is properly
inserted.

• Verify that the DVD power connector is properly
inserted.

Xbox turns on and
functions properly, but
no light comes out of the
LEDs or only half of the
light circle around the
eject button is lit.

Xbox turns on and
sequences through initial
animation, but the
console indicates that it
needs service.

Xbox turns on but DVD
does not eject.

CHAPTER 4

Building a USB
Adapter

Cable building is a compulsory part of hardware hacking. Many modifica-
tions and experiments performed on pieces of hardware will require a
custom cable to adapt your existing connectors to what you need.

In this chapter, you will learn how to build a USB adapter cable for the
Xbox, something not available in most retail outlets (although select
online vendors, such as Lik-Sang (www.lik-sang.com) do carry this
item). A USB adapter allows standard USB hubs, keyboards, and mice to
be connected to the Xbox for the purpose of running Linux. (This
chapter presents the basics of robust cable building in a tutorial fashion;
experienced hardware hackers should feel free to skim or skip it.)

Starting Materials
This project requires the following materials:

• One Xbox game controller breakaway cable replacement or game
controller extension cable. (See Figure 4-1.)

• One USB type A extension cord or a USB type A female socket.
(A picture of a USB type A female socket is shown in Figure 4-2.)

• A soldering iron, solder, and flux.

• A diagonal wire cutter and a wire stripper.

• Electrical tape.

• (Optional) 3/8" heat shrink tubing and hot-glue.

• (Optional) Third hand soldering aid.

Hacking the Xbox: An Introduction to Reverse Engineering68
The step-by-step description in this chapter uses a breakaway replace-
ment cable (available at any video game retailer), and the USB extension
cord. If you want to use something different, see Appendix F, “Xbox
Hardware Reference,” for the pinouts of the various connectors em-
ployed by the Xbox.

Figure 4-1: (Left) an Xbox game controller extension cable. (Right) an Xbox
breakaway cable.

Figure 4-2: USB type A female connector.

Chapter 4 - Building a USB Adapter 69
Strategy

When building the Xbox USB adapter cable, the basic idea is to cut the
Xbox breakaway cable and the USB extension cable in half and to join
the proper ends of the two cables. Fortunately, there is a standard wiring
code for USB-compliant cables. Red is +5V power, black is Ground,
White is Data (-), and Green is Data (+). In order to join the cables
together, simply connect wires of like colors together. (Note that the
Xbox cable will have an extra yellow wire that carries a copy of the
composite video sync signal for use in light-gun type game interfaces.
This extra yellow wire can be safely ignored.) This chapter will walk you
step-by-step through connecting the wires and sealing the cable.

Warning
Some USB cable manufacturers do not comply with the stan-
dard USB wiring code. The most common deviation is re-
versing the white and green wires, although on rare occa-
sion the color code is ignored outright. It is always a good
idea to use a continuity meter to verify that your USB exten-
sion cable actually complies with the USB color code.

Implementation
First, cut the Xbox breakaway cable near (about 2") the Xbox connector
end, and cut the USB extension cable near the female connector end.
Discard the male half of the USB extension cable and the half of the
Xbox cable with the smaller connector.

Next, use the diagonal cutters to cut 1/2" slits into the insulation of each
cable, as illustrated in frame 1 of Figure 4-3. Peel the insulation back to
reveal the wires, which will be protected by a braided metal shield and
some metal foil. Peel the metal braiding and foil back, and cut off the
excess insulation and shielding. Strip the ends of the red, green, white,
and black wires so that about 1/8" of bare conductor is showing. (Do
not strip the yellow wire in the Xbox breakaway cable.) Dip the bare ends
of the conductors into some solder flux. (See Figure 4-3.)

If you are concerned about the robustness or safety of the adapter cable
assembly, slip a 1-1/4" segment of heat shrink tubing onto one of the
cables. (This tubing will later be slipped over the bare solder joints and
filled with hot glue to make a robust connection.) The shielding is not
mandatory, but the cable will not be as robust without the heat shrink
reinforcement; it will be susceptible to breakage if subjected to repeated
bending or straining.

Continue the cable building process by soldering together wires of like
colors, as shown in Figure 4-4. Have a friend help you hold the cables in
place while you solder them, or use a “third hand” tool (Jameco order

Hacking the Xbox: An Introduction to Reverse Engineering70

number 26690) with alligator clips to hold the cable in place. All of the
solder joints should look smooth and shiny. Give a firm tug on each joint
to verify that the solder connection is good. Wrap a small piece of
electrical tape around the open joints to prevent the exposed joints from
shorting together. Test the cable before proceeding to the next step
where the joints will be permanently encased.

Once the cable has been tested and confirmed to be good, it is time to
put a robust casing around the solder joints for mechanical reinforce-
ment, as shown in Figure 4-5. Place a couple of small dabs of hot glue
over the open solder joints to hold them in place so they do not short
against each other, slip the heat shrink tubing over the solder joints, then
fill both sides of the tubing with hot glue. The tubing should shrink from
the heat of the glue and form a solid, permanent conformal case over the

Figure 4-3: (1) Cut slits in the cable insulation and (2) peel the insulation back
to reveal the wires and shielding inside. (3) Cut off the excess shielding and
insulation, and strip 1/8” off the end of the wires. (Note how the yellow wire in
the Xbox connector cable at right is not stripped.) (4) Finally, dip the stripped
wire ends in soldering flux.

Chapter 4 - Building a USB Adapter 71

Figure 4-4: (1) Slip a piece of heat shrink tubing over the cable before
soldering. (2) Solder the wires together, like color to like color. (3) Wrap the
wires in electrical tape to prevent shorting. Test the cable. (4) Apply small dabs
of hot glue to the tested cable to hold the electrical tape and wires in place for
the next step.

joint. (The hot glue acts as a strain relief for the joint as well, thus the
cable will be robust under most normal operating circumstances.)

Although the cable is fully operational without the hot glue and heat
shrink tubing treatment, you can still improve the connection’s stability if
you do not have these items handy. Electrical tape can be wrapped
carefully around the individual joints as a makeshift mechanical reinforce-
ment.

Now that you have finished your USB to Xbox game port adapter,
Chapters 11 and 12 describe some of the steps necessary to install Linux
on the Xbox so you can use your new adapter.

Hacking the Xbox: An Introduction to Reverse Engineering72

Figure 4-5: (1) Slide the heat shrink tubing over the joint, and begin filling the
tube with hot glue. (2) The hot glue will cause the heat shrink tubing to collapse.
(3) The end product is a permanent conformal casing that will stand up against
most abuse. (4) A picture of the final product, showing the Xbox and USB cable
ends.

CHAPTER 5

Replacing a
Broken Power
Supply

In the unfortunate (and surprisingly common) event that an Xbox breaks
after its three month warranty period expires, the only official way to fix
it is to pay Microsoft for the repair bill. Even the simplest fixes can cost
over one hundred dollars, or about half the original purchase price of the
console. As a result, I have received numerous emails from people asking
how to fix broken power supplies and hard drives.

Unfortunately, replacing a broken hard drive requires defeating the Xbox
security system, since a unique key is used to lock Xbox motherboards to
a particular hard drive. Installing a new hard drive would require a
modchip that can reprogram or bypass the hard drive lock. Further-
more, a copy of the factory-installed Xbox software is required, some-
thing that is illegal to distribute or copy even for repair purposes.
Therefore, the topic of Xbox hard drive replacement is too dicey to be
discussed in this text. Readers are encouraged to search online for any of
the numerous FAQs about replacing hard drives.

On the other hand, the power supply used in the Xbox is very similar to
that used in a standard PC. There are many websites where you can
purchase exact replacement Xbox power supplies, such as Llama.com
(www.llama.com/xbox/Repairs/repairs.htm), XboxRepair.com
(www.xboxrepair.com), and Firefly-HK (www.firefly-hk.com), or you
can attempt to build one yourself out of a standard PC power supply!

Considering the frequency of power supply failures, I will show you how
to adapt a standard PC ATX power supply for the Xbox. The approach
described in this section requires no soldering, at the expense of having to
flip an extra switch to power on the Xbox. Appendix C, “Getting Into

Hacking the Xbox: An Introduction to Reverse Engineering74
PCB Layout,” describes a simple project that you can build to have the
convenience of no additional power switches. Of course, it is easier to
purchase an exact replacement power supply for the Xbox and use parts
of the procedure presented in this chapter to help you with the installa-
tion. However, there is less educational value in doing a direct replace-
ment than in doing an adaptation. If you decide to adapt the ATX power
supply for use with the Xbox, you will learn how to make crimp cables as
well as learn a little bit about electronics theory and how the Xbox works.

Another reason for adapting a standard PC ATX power supply to the
Xbox is to provide extra power to the console. The OEM (original
equipment manufacturer) or “stock” Xbox power supply puts out just
barely enough power to meet the Xbox’s demands. Connecting extra
drives or fans to an otherwise unmodified Xbox can overload the OEM
Xbox power supply and cause it to burn out.

Note that as of this writing, a new hardware revision of the Xbox
(known as “v1.2” in the Xbox hacking community) was released that
appears to have a standard ATX power supply connector, instead of the
proprietary Xbox power supply connector described later in this chapter.
Check to make sure that your Xbox power supply connector matches the
connector described in this chapter before proceeding with the adapta-
tion procedure. The Xbox power supply connector assumed in this
chapter has twelve pins in a single row, whereas the newer Xbox power
supply connector has 20 pins arranged in two rows of ten. Also, even
though the latest Xbox hardware revision has an ATX-like connector, it is
not necessarily electrically compatible with a standard ATX power
supply. It would be prudent to measure the voltages on the power
connector and compare them to the ATX specification
(www.formfactors.org/developer/specs/atx/atx2_1.pdf)
before attempting to mate a standard ATX power supply to an Xbox
with the new ATX-like connector.

Caution
Replacing a power supply may expose you to hazardous
voltages. Before removing the power supply, always un-
plug the Xbox from the wall outlet and wait a minute for
stored charges to dissipate. In addition, improper installa-
tion of the replacement power supply could result in per-
manent, even explosive, damage to the console. Only per-
form this procedure if you are sure that the power supply is
discharged and off, and if you are willing to take the risk of
further damaging your console.

Diagnosing a Broken Power Supply
If your Xbox is experiencing problems powering up, you must first
diagnose the problem and locate the source of failure. It does no good to
replace a power supply when the fault is actually within the console or in
the wall outlet. Perform these diagnostic steps to verify that the Xbox
power supply is in fact the culprit, and not something else.

Chapter 5 - Replacing a Broken Power Supply 75
1. Verify that the power outlet is functional by plugging a lamp

into it. Use a 100 watt lamp minimum to accurately simulate
the load of the Xbox.

2. Visually inspect the power cord for kinks and cuts.

3. Verify that the power cord plug is firmly seated in the Xbox
power receptacle, and that the Xbox still does not turn on
despite these checks.

4. Visually inspect the inside of the Xbox for char marks or
ruptured capacitors. If char marks are visible on the
motherboard, you may have to replace the Xbox
motherboard (i.e., buy a new Xbox). If there are char marks on
the power supply, most likely the power supply was
damaged and you may begin replacing it. (Keep in mind that
a power supply failure may also damage the motherboard,
so there is still a chance that the Xbox will not work once the
power supply is replaced.)

5. Verify that the main power supply connector and the front
panel circuit assembly connector are firmly seated. (The
location of the front panel circuit assembly connector is
illustrated in Figure 3-3 of Chapter 3, “Installing a Blue
LED.”) The power switch for the Xbox is connected to the
motherboard through the front panel circuit assembly
connector.

6. While the Xbox is off but still plugged, use a voltmeter to
verify that the 3.3V standby voltage (3.3VSB) is within
specification. Measure 3.3VSB by probing the sixth wire in
the power supply connector from the end closest to the
front panel, and any of the black wires on the power
connector. You can measure power supply voltages by
inserting the tips of a voltmeter probe into the free space
between the power wires and the power connector. (There is
a metal collar around the power wires inside the
motherboard power connector’s body.) If the value of
3.3VSB is not between 3.14 to 3.47 volts, you may need to
replace the power supply.

7. Press the power button on the Xbox to turn it “on”
(presumably, if the power supply is broken the Xbox won’t
do much). If the power supply makes noise or smokes,
unplug the box and proceed with replacing the power supply.
If the box seems dead, measure each of the primary voltages
coming from the power supply. The yellow wire should have a
voltage between 11.4 to 12.6 volts; the red wire should have
between 4.8 to 5.25 volts; and the orange wire should have
between 3.14 to 3.47 volts. (All of these voltages are
referenced with respect to the black wire.) Also, check that
the voltage on the Power OK signal (located at pin 12, the
pin farthest from the front panel) is above 3.1 volts.

Hacking the Xbox: An Introduction to Reverse Engineering76
If everything in the list on the previous page checks out, it is quite
unlikely that the problem is with your power supply. Further things to
check are the electrical and mechanical integrity of the power switch (see
Chapter 3 for how to remove the board with the power switch) and the
functionality of the motherboard. However, if you did observe indica-
tions of a failed power supply, read on.

Replacing the Power Supply
The overall strategy for replacing the Xbox power supply is to adapt a
standard PC ATX power supply for use in the Xbox. Here is a list of the
equipment you will need:

• A standard ATX power supply. A 1-U power supply will fit
within the footprint of the Xbox case, but it will probably be a
little bit too tall to close the case.

• (Optional) An ATX motherboard power cable extension.
Power cable extensions can be purchased through numerous
vendors, including PC Power and Cooling
www.pcpowerandcooling.com). Modifying the extension cable for the
Xbox instead of the ATX power supply’s cable allows you to
reuse the power supply in a standard PC once you are ready to
toss your Xbox.

• A crimping tool. The Molex universal crimping tool (Digi-Key
part number WM9999-ND) is highly recommended, but it is a
little bit expensive (about $35). A cheaper crimping tool, such as
the Jameco 159265, can be purchased for about a third the price
but it is more frustrating to use and you may have to use solder
on the crimps to achieve the desired connection strength.

• One 12 position 0.156" pitch connector housing (i.e. Digi-Key
part number WM2313-ND) or two stacking 6 position 0.156"
pitch connector housings (i.e. Jameco part number 104731).
This housing is used for the Xbox power connector replacement.

• Thirteen crimp terminals for the 0.156" pitch power connec-
tor (i.e. Digi-Key part number WM2313-ND or Jameco part
number 78318).

• Two 1N4001 or better silicon rectifier diodes in a DO-41
package (i.e. Digi-Key part number 1N4001DICT-ND or
Jameco part number 35975).

• A wire stripper. Any wire stripper that can handle 18 gauge wire
will do.

• A wire cutter. Any diagonal wire cutter will do.

• Electrical tape.

Chapter 5 - Replacing a Broken Power Supply 77

Strategy
The interface for a standard ATX power supply is very similar to that of
an Xbox’s power supply. The Xbox requires +3.3V, +5V, +12V, a +3.3V
standby supply, as well as two control signals, “power OK” and “power
on.” The power OK signal indicates that the power output from the
power supply is stable and properly regulated, and the Power On signal is
a control signal from the Xbox that turns the power supply on and off. A
typical ATX supply has +3.3V, +5V, and +12V outputs with enough juice
to run an Xbox, and it also has a power OK signal that is compatible
with the Xbox motherboard. However, an ATX power supply generates
a +5V standby voltage instead of a +3.3V standby voltage, and the
Power On signal has an inverted polarity from the Xbox. Both of these
incompatibilities can be addressed in a manner that requires no soldering.
Two diodes in series are used to reduce the +5V standby voltage down
to a voltage of a little less than +3.6V. The Power On signal to the ATX
power supply defaults to “on,” so it will remain unconnected, making the
power supply always on even if the console is off. This isn’t problematic for

Using Diodes to Drop Voltages
The Xbox requires a +3.3V standby supply voltage, but an
ATX power supply only outputs a +5V standby supply volt-
age. The “correct” solution to this problem would be to use
a voltage regulator that precisely converts +5V into +3.3V,
but the goal of this hack is to replace the power supply
with a minimal amount of soldering.

The alternate solution is to use two diodes to reduce a +5
volt supply down to a “close enough” +3.6 volt supply. We
can do this because the voltage across a forward con-
ducting diode is logarithmically proportional to the current
through the diode. In other words, for most currents, the
voltage across a diode is almost constant. It turns out that
silicon diodes almost uniformly have a forward voltage drop
of about 0.7 volts, so two of them in series will drop 1.4 volts.

The diodes used in this hack, the 1N4001, are only capable
of conducting 1 ampere of current, so don’t use this trick in
other applications that require a large amount of current.
Fortunately, the stand-by supply for the Xbox only needs to
draw a tiny amount of current so burning out the diodes is
not a concern.

As a final note, the voltage dropped by a diode fluctuates
slightly with the amount of current through it, so do not use
this trick in applications that require precisely regulated
voltages. In the Xbox application, we are running the volt-
age a little bit on the high side, but fortunately the digital
logic powered off of this supply can tolerate this condition.

Hacking the Xbox: An Introduction to Reverse Engineering78
the console’s electronics, but it might be aesthetically disconcerting.
Appendix C, “Getting Into PCB Layout,” describes a sample design that
you can implement to avoid these incompatibilities in a more graceful
manner. However, the design outlined in the appendix will require you to
invest some effort in the form of soldering and board design.

Procedure
The procedure for replacing the Xbox power supply consists of two
parts:

1. Modifying the standard ATX power cable to be an Xbox
power cable.

2. Removing the old power supply and installing the new one.

Building the Xbox Power Cable
Begin by cutting off the existing ATX power supply’s motherboard
connector as shown in Figure 5-1. You may elect to perform this modifi-
cation using an ATX motherboard power extension cable, so you can
preserve the ATX power connector on the power supply for future use.
The procedure is identical for both options, but the pictures in this
chapter are taken using the ATX motherboard extension cable.

Now, attach crimp terminals to the following wires ten of the ATX cable,
as shown in Figure 5-2:

• One yellow wire
• Three red wires
• One orange wire
• Four black wires
• One gray wire

If you are using a cheaper crimp tool, you may have trouble making a
sufficiently strong crimp connection. In this case finish the connection by
soldering the crimp terminal onto the wire. Use a copious amount of heat
when soldering, or else the solder will not fully penetrate the wire and the
crimp terminal. The soldering iron should be in contact with the joint for
about five seconds before and after applying the solder.

On the violet wire (the +5V standby wire), attach two diodes in series
between the end of the wire and the crimp terminal. The procedure
shown in Figure 5-3 uses portions of crimp terminals for connecting the
diodes, so no soldering is required. (Note that diodes are polarized
devices: they will not conduct electricity if they are installed backwards.
The diodes should be installed with their cathodes (the end with the band
painted on it) toward the motherboard.)

Chapter 5 - Replacing a Broken Power Supply 79

Figure 5-1: Cut the connector off of the ATX power supply cable.

Next, wrap all of the unused wires on the ATX cable with electrical tape
to prevent any accidental shorts that will damage the power supply and
possibly the Xbox. Be sure to also wrap the diodes with electrical tape as
well. (See Figure 5-4.)

Finally, insert the finished crimp terminals into the 0.156" connector
housing. The crimp terminals will lock into place inside the housing when
they are fully and properly inserted. (See Figure 5-5.) Insert the wires in
the order specified in Table 5-1.

Some vendors do not sell the larger 12 position connector housing. In
this case, use two six position connector housings, and pay special
attention to the ordering you choose for stacking the connectors. Also,
note the location of pin 1 with respect to the polarizing lip of the
connector. Pin 1 is located at the top of the connector when the polariz-
ing lip is on the left and you are viewing the connector from the side from
which the wires are inserted (the top view). Since it is very easy to invert
the connector and reverse this in some way, use the existing Xbox
connector as a reference. The yellow, red, orange, and black wires should
all line up when compared with each other.

Hacking the Xbox: An Introduction to Reverse Engineering80

Figure 5-2: Attaching a crimp terminal to the end of a wire. (1) Strip about 1/8" of
insulation off the end of the wire. (2) Remove a virgin crimp terminal from the retaining
strip, if necessary. (3 and 4) Insert the wire into the crimp terminal, such that 1/16” of
insulation is sitting between the longer pair of crimp fingers. (5) Crimp the insulation
portion (longer pair) of the crimp fingers. (6) Shows the wire with just the insulation
portion crimped. (7) Crimp the conductor portion of the crimp fingers. (8) The finished
crimp terminal. The conductor crimp terminals should be folded in tightly on the bare
wire for good contact. Test the crimp connection by firmly pulling on the terminal end.

Chapter 5 - Replacing a Broken Power Supply 81

Figure 5-3: Attach two diodes in series between the end of the violet wire and the
crimp terminal that goes into the power connector. Arrows indicate the proper
orientation of the polarizing line painted on the end of the diode. This procedure will
consume a total of three crimp terminals. (1) Attach one diode to a crimp terminal
with the polarizing band near the crimp terminal. (2) Cut a crimp terminal in half to
remove the leaf contact. (3 and 4) Position the diodes within the crimp portion of
the severed connector, noting the polarity of the diodes. (5) Diodes shown after
crimping. (6) Attach the diodes to the end of the violet wire using the same
procedure with a second severed crimp terminal.

Double check your work after completing the assembly of the power
supply cable, as any error could result in permanent, irreparable damage
to the console. Figure 5-6 shows what the finished connector assembly
should look like. You may wish to use a cable tie, if available, to bundle
the unused wires so that they do not get in the way and accidentally short
or become damaged.

Hacking the Xbox: An Introduction to Reverse Engineering82

Figure 5-4: Wrap the unused wires and diodes in electrical tape to prevent
accidental shorting.

Table 5-1: Wiring table for connecting ATX power supply cable to Xbox power
connector (view from wire entry side, with the polarizing rib on the left).

Pin Color

1 Yellow
2 Red
3 Red
4 Red
5 Orange
6 Diodes + Violet
7 Black
8 Black
9 Black
10 Black
11 Empty
12 Gray

rib

Chapter 5 - Replacing a Broken Power Supply 83

Figure 5-6: The final cable assembly.

Figure 5-5: Inserting a crimp connector into the connector header.

Hacking the Xbox: An Introduction to Reverse Engineering84

Installing the Replacement Power Supply
Now that we’ve prepared a replacement power supply, we must swap out
our old, broken one. First, remove the top of the Xbox case as described
in Chapter 1, “Voiding the Warranty,” then detach the hard drive power
connector and lift the hard drive out of the case. You should not need to
detach the gray IDE ribbon cable connected to the hard drive.

 Note
At this point, verify that the Xbox is unplugged and that it
has had an opportunity to sit for at least a minute to dissi-
pate any stored charge in the power supply. Working on
the Xbox while plugged in, or soon after it has been un-
plugged, is extremely hazardous. The Xbox will deliver a
nasty, possibly lethal shock if you touch any part of the
power supply with your bare hands before it has dissipated
its stored charge.

1. Unplug the Xbox power supply connector by grasping the
full bundle of power wires and pulling firmly on the cable
while holding the box down with the other hand. Mind the
sharp metal edges of the case and heat sinks when removing
the cable.

Figure 5-7: Location of the two power supply mounting screws.

Chapter 5 - Replacing a Broken Power Supply 85
2. Remove the two T-10 torx screws that hold the Xbox power

supply in place. (See Figure 5-7.)

3. Lift the power supply out of the Xbox case by first raising
the end of the power supply closer to the front of the Xbox.

4. Compare the cable you created with the Xbox power supply
cable, making sure to align the polarizing ribs. The red, yellow,
orange, and black wires should line up between the two
connectors. (This check will help ensure that you do not
damage the Xbox through a wiring error on the cable.)

5. Plug your ATX power supply cable assembly into the Xbox
power connector. The yellow wire should align with the pin
closest to the front of the Xbox. Remember, there is
nothing to prevent you from inserting the power cable offset
by one or two pins. If you see a bare pin on the power
connector, you have inserted the cable by a one pin offset.
Double check for this condition because it could permanently
damage the Xbox hardware and/or the power supply.

6. Plug the Xbox hard drive into one of the ATX power supply’s
disk drive power connectors. The hard drive uses a connector
identical to the standard PC disk drive power connector so no
modification is necessary.

7. Check to see that no wires are shorted against the case or
caught in the blades of the cooling fans. Now, you are ready
to power on the Xbox.

Operating with the Replacement Power
Supply
Most ATX power supplies come with a power switch on them. Set this
switch to off, then plug the ATX power supply in, and then turn the
power switch to on. At this point, the ATX power supply will apply
power to Xbox, even though the Xbox’s system controller thinks the box
is powered off. As a result, the cooling fans inside the Xbox should sping.
Now, press the power switch on the front of the Xbox. The Xbox should
power on normally at this point. If so, congratulations!

Caution
Some Xbox versions are missing a heatsink fan for the GPU.
If your Xbox motherboard does not have a fan mounted
directly on one of the chips, then you have such an Xbox.
Xboxes that lack a heatsink fan for the GPU are prone to
overheating under certain conditions, and must be oper-
ated with the disk drives installed over the motherboard
for reliable long-term operation. The undersides of the disk
drives form an air ducting system that guides air over the
GPU heatsink from the main Xbox case fan. (Your ATX power
supply cable will prevent the disk drives from installing
flush with the case, but this is not a major cause for con-
cern with respect to airflow ducting.)

Hacking the Xbox: An Introduction to Reverse Engineering86

Figure 5-8: 1U slimline ATX power supply connected to the Xbox using the
modified ATX power supply extension cable.

When you are ready to turn the Xbox off, you can simply flip the power
switch on the ATX power supply. Or, you can use the power switch on the
front of the Xbox to power the Xbox off first, and then turn off the ATX
power supply.

Debugging Tips
If the Xbox did not power on properly after replacing the power supply,
test your power supply cable using the checklist in the section at the
beginning of this chapter called “Diagnosing a Broken Power Supply.”
The most likely problem you will encounter is a bad crimp connection or
poorly or improperly attached diodes. A bad crimp connection may also
lead to intermittent operation where the Xbox powers on but crashes
frequently.

Chapter 5 - Replacing a Broken Power Supply 87
If the Xbox powers on, but halts during the power on sequence for some
reason, see Table 3-1 in the “Debugging” section at the end of Chapter 3
for a list of possible problems and their causes. Appendix E, “Debug-
ging: Hints and Tips,” contains a more in-depth discussion of debugging
techniques and methodology.

If the Xbox works properly but crashes occasionally, you may have an
Xbox that has no heatsink fan over the GPU. See the Caution note on the
facing page describing this problem. To fix this problem, you may need
to add an extra fan or enhance the existing ducting system with a piece of
paper and some sticky tape.

CHAPTER 6

The Best Xbox
Game: Security
Hacking

The next step beyond modifying and tweaking the Xbox hardware is taking
control of the Xbox hardware. Unfortunately, gaining control of the
hardware is not as easy as one might think. The designers of the Xbox put a
great deal of thought into securing the hardware against sophisticated
software attacks as well as most simple hardware attacks. The Xbox’s security
mechanisms are an artifact of its digital rights management architecture.

 Note
In principle, applying hardware to “fair-use” purposes,
such as running your own homebrew programs, should
not be illegal. However, the relationship between fair use,
secured hardware, and the relatively new copyright con-
trol circumvention laws is still unclear. Chapter 12, “Ca-
veat Hacker,” discusses the legal issues of hacking in more
detail.

There are many ways around the Xbox’s security measures. In this chapter
and in Chapter 8, “Reverse Engineering Xbox Security,” I tell the story
of my adventures mapping out the Xbox security system. I write not
only about the successes, but also about the failures I encountered, so that
you can learn from my experiences. Chapter 9, “Sneaking in the
Backdoor,” explains some approaches taken by others to get around the
Xbox’s security measures. Chapter 7, “A Brief Primer on Security,”
provides the background necessary to appreciate Chapters 8 and 9.

Hacking the Xbox: An Introduction to Reverse Engineering90
First Encounters with a Paranoid Design

When the Xbox was announced in the Spring of 2000, excitement rippled
through the hardware enthusiast community. The cause for this excite-
ment was not just the Xbox’s gaming potential, but its potential for use as
a high performance, network-enabled x86-architecture PC at the afford-
able price of $300. Price cuts a few months after its introduction have
since dropped the cost of an Xbox to below $200. The similarity of the
Xbox to an x86 PC meant that a huge base of existing applications and
expertise could, in theory, be easily ported to the console.

My first look inside an Xbox was in late November 2001 when my
girlfriend (now fianceé) gave it to me as an early Christmas gift. I immedi-
ately got down to business. In order to take control of the Xbox hard-
ware, the first task is to extract the boot ROM and analyze its contents:
Recall from the discussion on Xbox architecture in Chapter 2 that the
boot ROM of the Xbox contains all of the code for establishing the
Xbox’s operating environment.

To Snarf a ROM
The type of ROM used in the Xbox is an electrically erasable and program-
mable variety known as FLASH ROM. FLASH ROM typically comes in one
of a few package types, and the Xbox uses one of the most popular
packages, the TSOP (Thin Small Outline Package). It is located in sector U7
on the top side of the Xbox motherboard, and the reference designator for
the part is U7D1. The TSOP package is very recognizable because it is one of
the few chip packages that is rectangular and has pins only on the narrow
edges of the package. Most other packages put pins on the long edge or all
edges to maximize connectivity, but FLASH ROM has relatively low I/O
requirements per silicon area. A quick check on the base part number,
29F080, with a Web search engine verifies that this part is indeed an 8 Mbit
FLASH ROM.

There are a few techniques that one can use to read out (snarf) the contents
of the FLASH ROM. The no-solder approach is to buy a test clip that snaps
onto the FLASH ROM, and read out its contents by powering up and
controlling the ROM through the test clip, while the rest of the Xbox is
powered off. A suitable test clip for this purpose can be purchased from
Emulation Technology, www.emulationtechnology.com. (The test clip
override approach has a few problems with it, the biggest being the
possibility of permanently damaging chips connected to the FLASH
ROM that are not receiving power through the test clip. However, in the
case of the Xbox, this does not seem to be a problem and those who
attempted this approach did meet with success.1 I did not initially take

1 Andy Green has an excellent page that documents his
experiences with the test clip approach at http://
www.warmcat.com/milksop/milksop.html

Chapter 6 - The Best Xbox Game: Security Hacking 91
this approach as I did not want to risk damaging the motherboard, and
because I could not afford the $300 test clip required for the job.)

Another ingenious approach is to solder wires to the test points around
the FLASH ROM to eavesdrop on the Xbox as it reads the ROM’s
contents. Eavesdropping can be accomplished by either connecting the
wires to a custom board that can interface with the ROM, or by using a
logic analyzer to capture the data as it is accessed by the Xbox CPU. The
latter approach was used with success as well, and in fact some back
doors in the Xbox boot sequence were discovered as a consequence of

2 Visor has written up his experiences with the logic analyzer
snooping approach at http://www.xboxhacker.net/visor/
aXventure1.txt

Figure 6-1: Removing the Xbox FLASH ROM with a tweezer-style soldering iron.

this methodology.2 I chose not to use this approach either, as I did not
have a logic analyzer when I got my first Xbox, and because soldering all
the wires down can be very tedious, difficult, and error-prone. My
approach was more traditional: just remove the FLASH ROM and drop
it into a ROM reader. I also placed a socket on the motherboard, so that
future removal and programming of the ROM would be very quick and
reliable.

Hacking the Xbox: An Introduction to Reverse Engineering92
Removing the FLASH ROM in a manner that preserves the integrity of
its fine-pitched pins simple if you have the right tools, and nearly
impossible with the wrong tools. The key is to heat all of the pins of the
FLASH ROM simultaneously; once uniform heating is achieved, the
FLASH ROM will fall right off the motherboard. Clearly, the standard
pencil-style soldering iron is not going to be able to heat all of the pins
simultaneously. The proper tool for the job is a “tong” or “tweezer” style
soldering iron as shown in Figure 6-1 below. These soldering irons have
two heating elements, so they can heat both sides of the chip simulta-
neously. Furthermore, the soldering iron must have a paddle-tip that is
wide enough to heat the length of the chip all at once.

A soldering iron with these features can cost quite a bit (hundreds of
dollars), but it is a worthwhile investment as it comes in handy in all kinds
of situations. I use an Ersa SMT Unit 60A soldering iron that I bought for
a good discount on the floor of a tradeshow, and it quickly paid for itself
through the few board assembly jobs that I picked up on the side while
finishing my degree. A more affordable iron by Xytronic can be purchased
through Jameco (#168410) for about $70, but I have not used it so I
cannot vouch for its quality. Another budget approach that is very simple
and straightforward is to use a desoldering alloy, as described in Appendix
B, “Soldering Techniques.” (Note that a suitable socket for the ROM3 is
relatively cheap — under $20 — although installing it does require a
steady hand and an optical magnifying device of some kind.)

Once the ROM is removed and its pins cleaned and inspected, its contents
can be read out in a ROM reader. Of course ROM readers can be purchased,
but it is always a good learning experience to build your own. You can read
up a little bit on ROM programmers that I’ve built at my website, http://
www.xenatera.com/bunnie. My original Flashburner4 programmer is a
simple device that is easier to understand and build than its second revi-
sion5, but it is less powerful.

However, if your goal is to read out ROMs as quickly as possible, just
purchase a ROM reader outright. A good ROM reader is an essential tool in
any serious hardware hacker’s toolbox. Needham’s Electronics (http://
www.needhams.com) makes a great line of ROM programmers/readers
that fit a wide range of budgets.

An Encounter with Microsoft
After extracting the ROM contents, the next step is to share its contents
with fellow hackers for analysis. Or is it? Within twelve hours of posting the
contents of the ROM to my website, I received a call from an engineer at

3 Emulation Technologies (http://www.emulation.com) makes a
wide line of affordable sockets for purposes just like these. The
specific model for the Xbox is the S-TS-SM-040-A.
4 http://www.xenatera.com/bunnie/proj/flashburn/fb.html
5 http://www.xenatera.com/bunnie/proj/fb2/

Chapter 6 - The Best Xbox Game: Security Hacking 93
Microsoft politely requesting that I remove their copyrighted content
from my website. Of course, I immediately removed their content from
my website; I should have known better before posting it in the first
place.

This first brush with Microsoft was a sobering warning that reverse
engineering the Xbox was not going to be like any other home appliance
reverse engineering project. There are laws that protect aspects of reverse
engineering, and a vast body of copyright law that protects the intellectual
property (IP) owner. Collaborative reverse engineering of the Xbox while
respecting Microsoft’s rights is a legal minefield.

On the one hand, Microsoft should be able to invest in a product and take a
risk in hopes of a profit. However, profitability is not guaranteed by law.
For example, selling the consoles at a huge loss, as Microsoft has done, in
hopes of selling software to make up the difference (as a “loss leader”) is a
risky proposition, and there is no guarantee by law that Microsoft has to
come out ahead in the end. On the other hand, we as hackers have the right
to tinker (“fair use”) with hardware purchased with our own hard-earned
cash, and if Microsoft wants to basically sell PCs at a huge discount to us,
that’s fine. Whether or not we purchase enough games (around ten or
more) to compensate for Microsoft’s losses on the Xbox is entirely up to
Microsoft’s business and marketing strategy.

In my view, Microsoft’s large loss-to-revenue ratio is a bit of an anomaly in
this industry. Sony and Nintendo roughly break-even on the cost of their
console hardware. Also, cell phone providers often sell their phones at a loss
comparable to that of the Xbox, but require the subscriber to enter a
contract to ensure that the cost of the phone is recouped; breaking the
contract implies termination fees. Perhaps this is a reflection of Microsoft’s
confidence in the Xbox Live business model.

Somewhere in the middle of all of this is the interplay of cryptographic
copyright protection mechanisms and the right to fair use. It turns out that
the Xbox makes extensive use of cryptography to enforce copy protections
as well as console usage policies, which brings us to the Digital Millennium
Copyright Act of 1998 (DMCA), a relatively new, untested body of law.
With little established court precedent and plenty of gray area in between the
letters of the law, you as a hacker must assess the potential liabilities that
you could face. Chapter 12, “Caveat Hacker,” explores in greater detail the
legal issues of hacking in the new millennium.

Analyzing the ROM Contents
Rebuffed by Microsoft, but ROM contents still in hand, I proceeded to
analyze the ROM contents. One would expect that the boot ROM contains
a hardware initialization procedure, followed by instructions that load up
the operating system, and possibly the operating system code itself. But
where to start?

Hacking the Xbox: An Introduction to Reverse Engineering94
The program inside the ROM can be thought of as a ball of yarn: Once
you find the starting point of the thread, it is just a matter of time and
perseverance until you unwind the ball of yarn to its core.

Fortunately, the starting point of the Xbox’s Pentium processor is very
well documented by Intel. On power-up, the processor starts running
code at a special hard-wired location, called the reset vector. This reset
vector is at address 0xFFFF.FFF0, near the top of memory. Let’s look
at the data contained at this location (in hexadecimal):

0xFFFF.FFF0EBC6 8BFF 1800 D8FF FFFF 80C2 04B0 02EE

 // key initialization routine

 unsigned char K[256]; // 0xFFFFC80 in flash

 unsigned char S[256]; // 0x10000 in SDRAM

 for(i = 0; i < 256; i++) {

 S[i] = i;

 }

 j = 0;

 for(i = 0; i < 256; i++) {

 // RC-4 would do j = (j + K[i] + S[i]) % 256

 j = (j + K[i] + S[j]) % 256;

 // swap S[i], S[j]

 temp = S[i];

 S[i] = S[j];

 S[j] = temp;

 }

 // decryption routine

 unsigned char cipherText[16384]; // 0xFFFFA000 in FLASH

 unsigned char plainText[16384]; // 0x400000 in SDRAM

 for(index = 0x4000, i = 0, k = 0; index > 0; index—) {

 // xbox version

 t = (S[i] ^ cipherText[k]) % 256;

 plainText[k] = t;

 // swap(S[i], S[t]);

 temp = S[i];

 S[i] = S[t];

 S[t] = temp;

 i = (i + 1) % 256;

 k++;

 }

Listing 6-1: Decompilation of the dummy cipher found in the FLASH ROM.

Chapter 6 - The Best Xbox Game: Security Hacking 95
The first two bytes, EBC6, are a jump instruction to location
0xFFFF.FFB8. The first byte, EB, is the specific opcode for a “jump,
short, relative, displacement relative to next instruction;” the second
byte, C6, is the 8-bit signed offset of the jump. In other words, the first
thing the processor does is jump to another location — something every
boot program does, since you only have 16 bytes of runway in the reset
vector before you fall off the high end of memory. Since this code is
typical for a reset vector, it is okay to reprint the code here for educa-
tional purposes.

The next chunk of code is a piece that initializes the processor’s GDT
(Global Descriptor Table) and IDT (Interrupt Descriptor Table) state. The
GDT and IDT set up the processor’s memory management scheme and
interrupt handling scheme. You do not need to understand exactly what
these registers do, but if you are curious, Intel’s “IA-32 Intel Architecture
Software Developer’s Manual, Volume 3: System Programming Guide”
explains the function of these registers in detail. This manual is available at
Intel’s developer website, http://developer.intel.com.

After setting up these registers, the processor gets kicked into protected
mode and jumps to 0xFFFF.FE00 — a region exactly 512 bytes below
the top of memory — and this is where things start to get interesting.
After a short snippet of code that sets up the segment registers, a
program called a jam table interpreter (also known as the X-Code inter-
preter in the Xbox community) is executed. A jam table is industry
vernacular for a table of values that contains opcodes for reads, writes,
and simple decision operations, used in the context of hardware
initializations. Hundreds of operations are required to initialize a typical
PC, and jam tables help cope with this complexity without bloating the
core initialization code base. Using jam tables also helps make initializa-
tion more flexible and capable of dealing with user-configurable hard-
ware parameters, such as the type and amount of memory installed. In the
case of the Xbox, the jam table interpreter starts fetching jam table
opcodes from a location near the bottom of the FLASH ROM. (Keep in
mind that the opcodes implemented by the jam table interpreter are quite
powerful; one can write and read data from any location in the Xbox
using jam table opcodes.)

Once the terminal opcode is executed by the jam table interpreter, the
processor clears the MTRRs (Memory Type Range Registers, used to declare
the cacheability of various regions of memory) and starts to decrypt a 16 kB
region of memory starting at 0xFFFF.A000. The cipher used to decrypt
this region of memory looks very similar to RC-4, with some subtle
differences. Listing 6-1 shows the cipher reverse-engineered into C code,
with the help of a tool called IDA Pro by Data Rescue corporation (more
about this tool in the next couple of chapters).

The data decrypted by this cipher is actually a block of code that is executed
at the end of the decryption process, but something goes very wrong here.

The decrypted code is garbage. It doesn’t work.

Hacking the Xbox: An Introduction to Reverse Engineering96

Memory Address Decoding Tricks
A number of tricks exist that can be used to make regions of
memory appear different in some way than their physical
representation would indicate. The two tricks relevant to
the analysis of the Xbox boot sequence are aliasing and
overlaying.

Memory locations are aliased when two addresses refer to
the same memory location, typically accomplished by ig-
noring a few address bits. To illustrate aliasing, consider a
system using a 3-bit address. There are only 23 = 8 unique
locations addressable in a 3-bit system: 000, 001, 010, 011,
100, 101, 110, and 111. Now suppose that you have a
memory with four locations; it requires only two bits to distin-
guish each of the four locations: 00, 01, 10, and 11. If you use
our 3-bit address scheme to talk to this four-location memory,
one of the address bits must be ignored. If the highest bit is
ignored, then address 000 and 100 will both map to loca-
tion 00 in memory. In other words, location 00 is aliased to
addresses 000 and 100.

Memory overlaying is a technique where out-of-band infor-
mation is used to select between different banks of memory.
Let’s suppose that we wish to have a bank of secret memory.
To do this, we insert a selector between our public and
secret memories, and the CPU. This selector can choose to
present the CPU with data from either the secret memory or
the public memory, as indicated in Figure 6-2. As a result,
the program that controls the address selector also controls
who has access to the secret block. If the computer starts
up running code located in the secret bank of memory, a
program in the secret code region can use this mechanism
to hide itself by setting the selector to point at public memory
before running programs located in public memory.

Figure 6-2: Memory overlaying to hide secret regions.

Public
Memory

selector
secret / public

selector control from
trusted program

Data to CPU

Memory address from CPU

Secret
Memory

Chapter 6 - The Best Xbox Game: Security Hacking 97
Furthermore, the jam table opcodes seem to be corrupted. This phe-
nomenon was corroborated by other hackers working on the problem,
thus ruling out a code translation error. Clearly, there is more to the
Xbox than meets the eye.

Theories and rumors started to emerge to explain this strange behavior.
Some of the popular theories included:

• Address and/or data line scrambling. Somewhere, the address or
data lines were being inverted or permuted with some 1:1 mapping
function. The scrambling function could be programmed into the
chipset as part of the initialization procedure, so that the initial
boot block would read like plaintext while the rest of the data
would be scrambled.

• Secondary crypto processor. Another processor on the
Xbox was actually handling the Xbox’s initialization, and the boot
code in the ROM is bogus.

• Boot code contained in the processor. The processor is
actually initialized by a chunk of code sitting on the processor die,
and the boot code in the ROM is bogus.

• Boot code contained in the chipset. The processor
functions identically to a standard Pentium, but the chipset contains
boot code that overrides the bogus code inside the ROM.

For almost all of these theories, the only way to prove or disprove them is
to perform experiments on the hardware. For example, in order to ensure
that the SMC (System Management Controller, an 8-bit self-contained
processor that is always on when the Xbox is plugged in) played no role in
the secure boot sequence of the machine, hackers captured traces of the
waveforms on all of the SMC’s pins and analyzed them against the expected
sequence of events if the SMC were to play a crucial role in machine
initialization.

A crucial observation from a fellow hacker was that the Xbox booted
perfectly even when the reset vector code at 0xFFFF.FFF0 was changed.
One would expect that if the first instruction executed by the processor at
0xFFFF.FFF0 were corrupted, then the machine would crash. Rather, the
machine operated flawlessly. This observation was verified by a set of
experiments where various parts of the FLASH ROM were intentionally
corrupted. The results were that corrupting surprisingly large regions of the
FLASH ROM had no effect on the booting of the Xbox. In particular, the
entire boot initialization sequence from 0xFFFF.FE00 to 0xFFFF.FFFF
could be nulled out and the Xbox would boot just fine.

This finding alone strongly supported the theory of a bogus boot block in
FLASH ROM. The question remained, however, about where the real boot
code was stored. There were three options: in a secondary crypto-processor,
in the processor, and in the chipset. The secondary crypto-processor theory
was discounted on the basis that there were no chips on the motherboard
that were powerful enough or active enough at boot time to play the role

Hacking the Xbox: An Introduction to Reverse Engineering98
of a crypto processor. Storing the boot block in the processor was also
deemed a less likely option than storing the boot block in the chipset.

The rationale for this analysis is based on the economics of building
chips. A Pentium III processor is very complex with many handcrafted
blocks, and modifying the silicon to include a secure boot block would
require significant engineering resources as well as an upfront investment
of about a quarter of a million dollars just for the masks needed to
produce the custom silicon. In addition, it was rumored that Microsoft
had originally chosen an AMD processor for the Xbox, and switched to
Intel at the last minute. If custom blocks were integrated into the
processor core, Microsoft could not have switched between CPU
vendors so easily. On the other hand, nVidia’s chipsets are designed
modularly using silicon compilers, so it is technically easier to add warts
like a secure boot block. Furthermore, the chipset in the Xbox is a
custom build of the nForce made just for Microsoft, tailored specifically
for an Intel front-side bus (FSB). As a result, the cost of adding a secure
boot block could be rolled into the engineering resources and the mask
sets already allocated to such a project.

Operating under the theory that the real boot code is located in a secret
ROM overlay in the chipset, the challenges remaining were to determine in
which chip (Northbridge or Southbridge) the code was stored, and how to
extract this secret ROM. A few strategies for extracting the secret ROM
presented themselves:

• Use the JTAG “boundary scan” feature on the Pentium to try
to capture the initial boot code. JTAG is a diagnostic bus that
allows you to read and set the state of every pin on a chip
through a special serial port. It is a very powerful and versatile
debugging tool.

• Probe the processor FSB (Front Side Bus) to try and capture
the boot code as it enters the processor.

Figure 6-3: Missing JTAG via. Note how the filled in copper region (lighter area)
has a hole where a via used to be. This is the result of a last-minute change to
the board layout without recalculation of the fill regions.

Chapter 6 - The Best Xbox Game: Security Hacking 99
• Install a memory sniffer to try and capture the decrypted data

stream as it is written into memory.

• Use microscopy to read out the contents of the secure boot
area from the chip surface.

• Probe the bus between the Southbridge and the
Northbridge chips to try and capture the boot code being sent
to the processor by the chipset. This would only work if the boot
data is stored somewhere in the Southbridge chip.

None of these theories were trivial to test, so the Xbox hacking effort slowly
ground down to a halt as frustrated hackers gave up trying to cryptanalyze
the FLASH ROM image. I would have been one of the quitters (after all, I
had a doctoral thesis to finish and write in just a few months) had it not
been for the community of determined hackers feeding me encouragement.
Over Christmas break in December 2001, I kept in touch with my hacker
friends via IRC channels and web fora. Hackers from all over the world and
all walks of life pervaded the Xbox hacking IRC channel, and I enjoyed
learning from them and chatting with them about their various experiences,
both technical and personal.

Even though I was determined to spend all of January writing my PhD
thesis6 and avoiding Xbox hacking, I was still pulled in by the intriguingly
complex security employed by the Xbox. As time went on, the need for a
hardware guy to join the small group of hardcore hackers hanging out on
the IRC channel became increasingly clear. By the end of January, the reports
I was hearing about the Xbox security scheme were too interesting to
ignore.

I purchased a second Xbox and I started removing all of its key parts using
a hot air gun. Stripping down the Xbox served many purposes. First,
removing the chips exposed all of the traces and connections on the Xbox
so that I could easily follow the connections between chips using the
continuity test mode on my multimeter. Second, I was able to drop all of
the interesting chips into a hot acid bath and remove their plastic encapsula-
tion for analysis under a microscope. Finally, buying an Xbox and totally
ripping it apart gave me a sort of peace of mind when it comes to probing
and modifying a working Xbox. (Reverse engineering is like gardening.
Planting a garden is much more challenging if you’re trying to keep your
hands and knees clean, so you might as well get over it and start rolling in
the dirt.)

The results of the Xbox tear-down revealed some of the measures that
Microsoft took to secure the box against hardware hackers. For example, I
first checked the JTAG connections on the Pentium CPU. All of the JTAG
signals were conveniently routed to a set of easy-to-tap resistors near the
processor, except for one, the TRST# signal. TRST# plays a critical role in

6 For those interested in supercomputer architecture, data and
thread migration, fault tolerance, high speed low-latency
networks, or massively multithreaded machines, check out my
thesis at http://www.xenatera.com/bunnie/phdthesis.pdf.

Hacking the Xbox: An Introduction to Reverse Engineering100
initializing the JTAG interface. Interestingly, TRST# was tied to the
internal ground plane, in a difficult to access area, permanently deactivat-
ing the JTAG mechanism. Further inspection of the Xbox motherboard
revealed hints that the TRST# signal was stripped out at the last minute.
(The biggest hint of a missing via is a hole in a power trace perfectly
sized for a via near a cluster of vias dedicated to JTAG signals, as shown
in Figure 6-3.)

Another blow to the JTAG approach for extracting the secret ROM is
the fact that Intel’s JTAG scan codes are proprietary. Reverse engineering
the codes to a level where I could use them for extracting the secret boot
data was a major project on its own.

Giving up on the JTAG approach, the next method for extracting the secret
ROM was to strip the packaging off of the CPU, GPU, and MCPX and to
inspect the bare die with a microscope and search for any candidate ROM
structures. Package removal or “decapsulation” was accomplished by bathing
the chips in fuming hot sulfuric acid. (I don’t recommend trying this
approach at home; one time I spilled the toxic, corrosive solution all over
myself and thankfully, my protective gear was consumed instead of my
skin. Fuming sulfuric consumes organic material faster than a burning
flame.) Fuming nitric, also very toxic and dangerous, can also be used. While
I have not tried it myself, reports indicate that fuming nitric is more effective
at removing the epoxy encapsulation, especially in situations where selective
package removal is desired.

The manual inspection approach using a traditional visible light microscope
offered some hope; however, the technique is limited by the physics of
light. Not even the best visible microscopy technology can resolve a 150 nm
transistor, since the shortest wavelength of light is 450 nm (corresponding
to the color blue). I was hoping the secret code would be stored on the
chips using a traditional array ROM structure, with the metal lines defining a
1 or a 0 etched into the top metal layers which can be identified with an
optical microscope. The use of a hard-wired ROM structure is motivated by
cost: FLASH ROMs and fuse-based PROMs require extra processing and
manufacturing steps that can add significantly to the cost of the system,
whereas the use of top metal layers would be motivated by risk manage-
ment on the designer’s part. Top metal layers are the coarsest layers (so
coarse that an optical microscope may resolve them), and are thus the
cheapest layers to change if there is a bug in the ROM code. Also, during
initial bring-up, the top layer is the easiest to cut and jumper using a chip
repair machine knows as a FIB (focused ion beam) machine. Unfortunately,
a quick glance at the chip under the microscope revealed no such structures.

At this point, the only remaining option for extracting the secret ROM
was to probe the live Xbox hardware, in an effort to capture the code
during loading into the Xbox processor. Eavesdropping for code
upstream of the Southbridge chip and the FLASH ROM meant probing
either the Front Side bus, the Northbridge-Southbridge bus, or the main
memory bus. We’ll discuss the trade-offs of executing these probing
approaches in Chapter 8, after a short introduction to basic security
concepts in the next chapter.

CHAPTER 7

A Brief Primer
on Security

Hacking the Xbox requires security hacking in addition to hardware and
firmware hacking, as you discovered in the last chapter. We will go over
some of the possible motivations behind adding sophisticated security to
something as mundane as a gaming machine, and then we will dive into
the basic principals and algorithms necessary to understand and appreci-
ate the Xbox’s security mechanisms.

Who Needs Security, Anyways?
The video game console is a toy for most people: it’s low cost, consumer
electronics. Why did Microsoft go through such pains to secure their
system? In the game of security hacking, quite frequently understanding the
motive of the securer is helpful in finding weaknesses that you can
exploit.

Cryptography is not security. Cryptography is a means to an end for
security, but real security involves the entire system architecture, including
the end users. As Kevin Mitnick said in a recent Slashdot interview,
“. . . security is not a product that can be purchased off the shelf, but
consists of policies, people, processes, and technology.”1 I believe that
security is fundamentally a social concept. In practice, you can open your
windows and leave the front door locked and people won’t just walk in
through your window or pick your doorlock, even though both are
relatively easy tasks. Locked doors and open windows work because a
locked door is mostly a symbolic measure; it forces an intruder to make a
conscious act of violation in order to enter a house, and that alone is
enough to separate criminals from well-doers. Sony’s Playstation console

1 http://interviews.slashdot.org/article.pl?sid=03/02/04/
2233250&mode=nocomment&tid=103&tid=123&tid=172

Hacking the Xbox: An Introduction to Reverse Engineering102
has a good example of front-door lock security. The mechanism used to
copy-protect their games is simple, involves no cryptography, and is
easily overridden with easily installed, inexpensive hardware modifica-
tions. Despite this, sales numbers indicate that purchasing Playstation
games has not gone out of style; the front-door lock is working.

Microsoft employs a variation of front-door lock style security. Video
games for the Xbox are distributed using the (so far) uncopyable DVD-9
format, a single-sided, dual layer media format. User-writeable DVDs,
on the other hand, are always in DVD-5 format, a single-sided, single
layer media format. DVD-9 capable burners are not likely to be avail-
able soon due to the difficulty in making a writing system capable of
burning one layer without affecting the integrity of the other layer. Thus,
by distributing security data between the two layers of a DVD-9 disk and
requiring a game executable to come from DVD-9 media, Microsoft has
a fairly effective front-door lock on its video games. By judiciously
requiring the DVD-9 format, Microsoft has pretty much forced any
potential game copier into a realm where some kind of hardware
modification is necessary.

Why then would Microsoft risk investing in such a complex security scheme
on the Xbox? Is Microsoft’s main motivation really to quell piracy? It is
quite possible that in fact the primary reason for the rest of the Xbox
security system—the secure boot sectors, signed executables, trust relation-
ships and encrypted/authenticated network protocols — lies not in anti-
piracy measures.

One possible motivation for all the security is to prevent the use of the
Xbox console for any purpose other than gaming. The Xbox console is in
the unique position of being an almost 100 percent stock PC. Unlike the
Gamecube and the Playstation2, there is an enormous body of software
that seems like it should just run on the Xbox, given the right BIOS
programming. To make matters worse, Microsoft loses much more money
on its console hardware than its competitors. Some estimate that its losses
may be as high as $200 per console, assuming the most recent retail price of
$199. Hence, it is in Microsoft’s interest to try and ensure that it is not selling
subsidized GNU/Linux boxes. However, even this is probably not
Microsoft’s main goal. The Xbox’s 64 MB of main memory, lack of a
keyboard or mouse out of the box, and a fairly slow processor by today’s
standards makes it less appealing than, for example, the $200 Microtel PC
available at Walmart as of late 2002. In addition, Microsoft has deep
pockets; if the Xbox gained market traction and outsold Sony’s
Playstation2, Microsoft would only have to stomach a few billion dollars
of upfront loss — relatively small in comparison to the roughly $40
billion cash-pile on which it sits. Thus, it is quite possible that the critical
mission of Xbox security is not to prevent alternative console uses or to
deter piracy.

Perhaps the real reason for the complex security of the Xbox is to ensure the
success of Xbox Live, Microsoft’s on-line gaming service. Microsoft’s
marketing hype and PR statements indicate that it is betting on the success

Chapter 7 - A Brief Primer on Security 103
of Xbox Live to drive hardware sales. Furthermore, Xbox Live is a
subscription service, and one year from its launch users will have to pay a
monthly fee. If Microsoft can get its subscribers hooked on Xbox Live,
then all of a sudden the Xbox business looks quite profitable, even if a
substantial amount of money is lost up-front on the hardware. The trick
is, of course, hook Xbox users on Xbox Live. Billed as the “Disneyland
of on-line gaming,” the goal of Xbox Live is to provide a well-executed
and fair gaming experience. Central to the value proposition of Xbox
Live that there are no cheaters. In order to ensure that nobody is cheat-
ing, users must be forced to authenticate themselves against a registry
maintained by Xbox Live, and their game state must be kept secure and
unmodifiable. In addition, game software must be unpatched. Even more
crucial is the fact that you only need a few cheaters to ruin the gaming
experience of an entire user base. All of a sudden, the front-door security
protections offered by the DVD-9 format seem inadequate. The odds are
against you if you betting the success of a business on the morality and
honor of a user base of millions of twenty-something hardcore male
gamers with a reasonable amount of computer savvy distributed
throughout. The hardware must be trustable, network connections
secure, and executables signed and sealed.

The statement that the hardware must be trustable bears repeating. Given an
untrustable user base, the only way to establish a trust relationship with
clients is if a seed of trust exists in every piece of hardware. Hence,
Microsoft must include in every client a piece of tamper-proof hardware that
enables some kind of attestation. Attestation is the ability to prove that
some piece of data, such as a player’s identity or game state, is in fact
generated by untainted software and hardware. The tamper-proof
hardware does not have to implement the attestation function directly,
but it must at least ensure that the system is in a trustable state before
attestation.

There are many ways to ensure that hardware is trustable. The brute-
force method is to make the entire piece of hardware physically secure.
Automated Teller Machines are prime examples of hardware that is
physically secure. Sealed in thick sheet metal and covered with intrusion
sensors, it is difficult to physically penetrate and modify the hardware of
an ATM. Still, hile effective, this is an impractical and expensive solution
for a video game console.

A more economical solution is to use a small piece of trusted tamper-proof
hardware that can make “measurements” on the rest of the system. These
sorts of measurements are typically accomplished through the use of a
cryptographic hash function. If all of these trust measurements conform
with the expected values, then one might be able to conclude that the entire
system is trustable.

I say might because this scheme is still vulnerable to man-in-the-middle
attacks where a hacker sends spoofed valid data in response to a mea-
surement query. Man-in-the-middle attacks refer to a general class of
attacks where an adversary can freely modify and control the information

Hacking the Xbox: An Introduction to Reverse Engineering104
being passed between two parties. Because of the man-in-the-middle
weakness, it does not make sense to use an extremely sophisticated tamper-
proof module to make the system measurements. A single packaged
silicon chip is probably good enough, as it is typically easier to intercept
and spoof the measurement data going past on a printed circuit board
than it is to penetrate the epoxy package of a chip and modify the chip’s
circuitry.

The trust measurement system can be implemented using a measure-once
approach. Starting with the processor cold-boot sequence, every piece of
code is measured for trust before execution. If the processor never executes
untrusted code, then what is there not to trust? This scheme requires a very
simple tamper-proof hardware module — a tamper-proof ROM that
stores the cold-boot code, a “seed” of trust. The type of cryptography
used for the measurement and verification process is typically a combina-
tion of hashes and public-key cryptography. Public-key cryptography is
preferred for this application because the private key required to generate
a valid code segment is a secret kept by only the hardware vendor. Again,
this scheme is vulnerable to many kinds of man-in-the-middle attacks, as
well as pure cryptographic attacks and attacks on the implementation of
the system.

A Brief Primer on Cryptography
ci·pher (n): 1 a: ZERO b: one that has no weight, worth, or influ-
ence : NONENTITY. 2 a: a method of transforming text in order to
conceal its meaning — compare to CODE 2

Ciphers provide no security on their own. More specifically, ciphers only
provide security if the key is secure, if the algorithm is strong, and if there
are no back doors into the system. If someone hands you a CD-ROM
encrypted with a strong cipher and locks you in a padded room with a
supercomputer, the sun will probably go supernova before you can decrypt
the CD-ROM. On the other hand, if you could observe and probe the
machine as it was working to encrypt the CD-ROM, the encryption is moot.
You could get the enciphering key by eavesdropping the keyboard. Or, you
could dump the contents of the computer’s memory and obtain the
plaintext without knowing the key.

The situation with the Xbox is similar to the latter. Ultimately, the Xbox
must access and run the programs presented to it on valid disks. Further-
more, the Pentium CPU used in the Xbox cannot tell the difference
between an authorized instruction and an unauthorized instruction.
Finally, the user has full access to probe and modify the Xbox hardware.
Thus, even if the Xbox uses strong ciphers, the security of keys is
questionable, and there may be back doors into the system.

2 Merriam-Webster OnLine Dictionary (www.webster.com).

Chapter 7 - A Brief Primer on Security 105
This section will briefly describe the kinds of cryptographic algorithms
used in the Xbox. We will focus on the practical implications and
implementation issues of these algorithms. You will need to understand
these algorithms in order to appreciate the available attacks on the Xbox
security system.

 Note
I make no pretense of addressing the theoretical aspects
of cryptography; those are beyond me and beyond the
scope of the book. Instead, I refer interested readers to
Bruce Schneier’s excellent book, Applied Cryptography
(John Wiley & Sons); most of my knowledge in cryptogra-
phy comes from that book. Readers who are already famil-
iar with cryptography should be able to skim or skip the
remainder of this chapter.

Classes of Cryptographic Algorithms
There are a few important classes of cryptographic algorithms used in the
Xbox. These are:

• Hashes

• Symmetric ciphers

• Public key ciphers

Hashes come in several varieties. Hashes of the cryptographic variety are
used to summarize or “digest” a large amount of data. The summary is a
number of fixed length, typically around 100 to 200 bits long, while the
source data can be of almost any size. The most important property of a
hash is that it is a one-way computation. In other words, it is easy to
compute the hash, but it is very difficult (see the sidebar “Very Difficult
Problems” to understand exactly what this means) to derive sequences of
data whose hash digest are identical or to determine anything about the
original data from the hash.

The strength of a hash against finding two sequences of data that hash to
the same value is referred to as its collision resistance, and in general, a good
n-bit hash requires about 2n/2

random data sequences to be hashed and

compared in order to cause a collision. Since hashes are designed to be
very easy to compute and very collision-resistant, they are often used to
detect whether a bit has been changed in large regions of secure data. For
many applications, it is sufficient to include just an encrypted hash of a
message in lieu of expending the computational effort to encrypt the
whole message.

Symmetric ciphers are algorithms that have encryption and decryption keys
that can be easily derived from one another. Most of the time, the
encryption and decryption keys are the same. Symmetric ciphers use a
mixing function to combine a key schedule with data that has been processed
by some cryptographic function. This mixing may be repeated several times

Hacking the Xbox: An Introduction to Reverse Engineering106
over a single block of data as in a block cipher, or it may occur once as in
a stream cipher. All of the basic functions in a symmetric cipher are
computationally simple, so symmetric ciphers are the preferred method
for encrypting bulk data.

Typical examples of mixing functions are XORs, modular additions and
modular multiplications. The simplest function, XOR, has the property
that any number XOR itself is zero. The XOR operation is often denoted
with a ⊕ symbol. The XOR operation also has all the usual properties of
arithmetic (commutative, associative, distributive, etc.), so

(A ⊕ B) ⊕ B = A ⊕ (B ⊕ B) = A ⊕ 0 = A

Thus, if A were a message and B were a key, (A ⊕ B) would be the
ciphertext, and the plaintext can be recovered by simply performing an XOR
with B again.

A key schedule is an algorithm that takes a relatively short key and expands
its information over a long series of bits. Key schedules are used to help
diffuse the key data over a larger block of data so the relationship
between the ciphertext and the key is obscured.

Very Difficult Problems
Cryptographic functions are all based on mathematical al-
gorithms whose results are easy to compute given all the op-
erands, but whose operands are very difficult to compute given
just the result. The security of a cryptographic function is pre-
cisely the difficulty of computing these operands given just
the results. Let us take a moment and explore what it means to
be very difficult.

Consider the symmetric cipher AES. It uses a 128-bit key, and
so far, it is strong against all known analytical cryptographic
attacks, such as differential and linear cryptanalysis. When I
say it is strong against analysis X, I mean that it will require at
least as many operations to recover the key or plaintext using
a brute-force search as it would using analysis X. A brute-force
search is when I take a very fast computer and try every one
of the 2128 possible keys in order to recover the original data.
Most cryptographic algorithms in common use today are
strong against all known cryptanalysis techniques, so the im-
portant number to understand is the strength of a brute-force
attack.

As it turns out, older algorithms such as DES, a 56-bit cipher is
not a very difficult problem. It is fairly easy to build a machine
using FPGAs (Field Programmable Gate Arrays) that can crack
keys at an economy of about 222 keys/second/dollar (222 is
about four million). Note that this number increases with time
at a rate equivalent to Moore’s Law. Today, if you are willing
to wait about a week for each key, you can recover them for

(continued)

Chapter 7 - A Brief Primer on Security 107
A typical cryptographic function as used in a symmetric block cipher
consists of a set of carefully designed substitutions, permutations,
compressions and expansions. These functions serve to confuse and
diffuse the plaintext. Subtle changes in any piece of a cryptographic
function typically have a profound effect on the security of a cipher.

The fact that the encryption and decryption keys are closely related in a
symmetric cipher makes them difficult to use in certain security applica-
tions. For example, if I wish to distribute an encrypted document to a
mailing list, everyone on the mailing list must also effectively know my
encryption key if they can read the document. In addition, initiating
contact with a remote party is difficult, because at some point I have to
transmit a key to them. Someone observing the transmission medium
could steal the key and read, forge, and modify all subsequent messages.

Public key ciphers are algorithms that use a different key for encryption and
decryption. They are also referred to as asymmetric ciphers for this
reason. The big advantage of public key ciphers is that one of the keys
can be kept a secret. This allows data exchange with untrusted users
without giving the untrusted user the ability to forge or read other
protected content. The down side of public key algorithms is that they

about the price of a nice car. Let’s hope that banks do not
use DES to encrypt their account data!

The successor to DES, AES, is a cipher that can use 128, 192, or
256-bit keys. These keys are large enough to be considered
impervious to brute-force attacks (i.e., a very difficult prob-
lem). According to the AES Q&A published by NIST (http://
csrc.nist.gov/encryption/aes/aesfact.html), a machine
powerful enough to recover one DES key per second through
brute force (trying on average 255 keys per second) would still
require 149 trillion years to recover a 128-bit AES key. My favor-
ite analysis of the strength of 256-bit keys against brute force
attacks comes from Bruce Schneier’s Applied Cryptography.
In his book, he uses an argument based on the amount of
energy required to crack a 256-bit key. It turns out that even
with a thermodynamically ideal computer, it would require
over 32 times the annual energy output of our sun to just count
to 2192, much less do anything useful with that count. (I must
stress that all of this assumes that the most efficient attack is
brute force. Who knows, maybe someone will discover a weak-
ness in the algorithm that can be used to mount a much more
efficient attack. New analysis techniques are constantly being
invented that slowly chips away at the strength of a cipher.)

Public key ciphers, on the other hand, are based on a wide
variety of difficult to reverse mathematical operations, such as
prime number multiplication and modular exponentiation. As
a result, the key space for many public key ciphers is sparse,
so more key bits are required for equivalent symmetric cipher
security. As an example, key lengths in the RSA public-key ci-
pher are typically several thousands of bits long.

(continued)

Hacking the Xbox: An Introduction to Reverse Engineering108

The exact correlation between the security of RSA public key
lengths and symmetric cipher key lengths is unknown. The se-
curity of RSA is thought to be the difficulty of factoring the
products of large prime numbers; however, there may be other
attacks yet to be discovered on the algorithm. Even so, the
effective difficulty of factoring the product of large primes is
reduced not only by advances in computing technology
(Moore’s Law), but also by advances in number theory, such
as the invention and refinement of the Quadratic Sieve and
the General Number Field Sieve.

In August 1999, a group of researches used the Number Field
Sieve to factor a 512-bit prime number in 7.4 calendar months,
including the time required to set up the factorizing run1.

In

addition, new technologies such as quantum computing
promise to enable the factorization of prime numbers in poly-
nomial time. I wouldn’t hold your breath, however; there is still
debate as to whether it is possible to build a quantum com-
puter large enough to factor an interesting prime.

As of today, RSA Security, Inc. recommends key lengths of 1024
bits for most corporate uses, and 2048 bits for “extremely valu-
able keys”2. Bruce Schneier estimates in the second edition of
Applied Cryptography that a 2304 bit public key length gives
the equivalent security of a 128 bit symmetric key, and that a
1792 bit public key length corresponds to about a 112 bit sym-
metric key.

As you read about the Xbox security scheme, keep in mind
these basic guidelines about how difficult it can be to crack
these security schemes using brute-force methods. Time after
time, messages are posted on hacking forums and bulletin
boards asking, “why don’t we start a distributed key search
effort for these keys?” Now you know the answer.

1 http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa155.html
2 http://www.rsasecurity.com/rsalabs/faq/3-1-5.html

Very Difficult Problems (continued)

typically require more complex computations and are thus slower than
symmetric ciphers. Public key ciphers also tend to require longer keys for
equivalent security. As a result, if a large amount of data is to be ex-
changed, public key ciphers are often used to encrypt a key for a symmet-
ric cipher that is used to encrypt the bulk of the data. This symmetric
cipher key can be unique to each transaction and hence it is often referred
to as a “session key.”

SHA-1 Hash
SHA-1 is the Secure Hash Algorithm recommended by the Federal
government in FIPS publication 180-1 (http://www.itl.nist.gov/
fipspubs/fip180-1.htm). Devised by the NSA and based on Ronald L.
Rivest’s MD4 message digest algorithm, SHA-1 works on messages of

Chapter 7 - A Brief Primer on Security 109

any length less than 264

bits in length, and it produces a 160 bit output.

The SHA-1 hash algorithm starts with a deterministic 160-bit seed state;
this state is blended with a block of 512 bits of message data over four
rounds. Each round consists of a series of non-linear functions, rotations,
shifts and XORs. The result of a round is used to seed the next round’s
computation. In general, 280 random messages need to be generated,
hashed and “simultaneously” compared in order to find two messages
that have the same hash value (i.e., a hash collision). Finding two random
messages that have the same hash is known as the “birthday attack,”
named after the probabilistic phenomenon called the “birthday para-
dox”: the probability that two people share the same birthday in a room
of 23 people is better than 50%. On the other hand, 2160 random
messages need to be generated, hashed and compared in order to find a
message that hashes to the same value as a specific message. Thus, the
strength of a hash function depends heavily upon the manner in which it
is used.

TEA
TEA, or tiny encryption algorithm, was developed by David Wheeler
and Roger Needham at the Computer Laboratory of Cambridge
University. (The developers have a web page for TEA at http://
vader.brad.ac.uk/tea/tea.shtml; much of the material pre-
sented here is gleaned from that page.)

As its name implies, TEA is a compact, fast encryption algorithm suitable

 void encipher(unsigned long *const v,unsigned long *const w,

 const unsigned long *const k)

 {

 register unsigned long

y=v[0], z=v[1], sum=0, delta=0x9E3779B9,

a=k[0], b=k[1], c=k[2], d=k[3], n=32;

 while(n—>0) {

 sum += delta;

 y += (z << 4)+a ^ z+sum ^ (z >> 5)+b;

 z += (y << 4)+c ^ y+sum ^ (y >> 5)+d;

 }

 w[0]=y; w[1]=z;

 }

Listing 7-1: TEA Algorithm in ANSI C3

3 Code is from http://vader.brad.ac.uk/tea/source.shtml#ansi

Hacking the Xbox: An Introduction to Reverse Engineering110

Figure 7-1: Tea cipher usage scenarios.

TEA
cipher

128-bit key in

64 bits
plaintext in

64 bits
ciphertext out

K

I O

TEA
cipher

K

I O64 bit magic
seed number

64-bit key
data[1],
data[0]

TEA
cipher

K

I O

data[3],
data[2]

TEA
cipher

K

I O

data[n],
data[n-1]

hash
value
out

TEA in a cipher application

TEA used as a hash function

Figure 7-2: Inner structure of TEA. This diagram depicts a single round of TEA,
which is repeated 32 times for the full cipher. The key schedule is described in the
boxes on the right for use as both a cipher and as a hashing function.

A B

<< 4 Key word 0 /
Last Hash Block's A

Key word 1 /
Last Hash Block's B>> 5

Key word 2 /
Low Message Word

Key word 3 /
High Message Word

A B

A B

<< 4

>> 5

delta

delta

0x9e3779b9

Chapter 7 - A Brief Primer on Security 111
for encrypting real-time data streams and embedded applications where
processor performance and storage space is tight. TEA has a 128-bit key
and it operates on 64-bits of data at a time, and each of its 32 rounds
uses only shifts, XORs and additions. (The algorithm, given in Listing 7-1
and Figure 7-2, is optimized for implementation on 32-bit general-
purpose processors.)

The bantam TEA algorithm is believed to be quite secure when used to
encrypt and decrypt data. However, TEA is not used for encryption in
the Xbox; it is actually used as a hash function by operating the cipher in
a modified Davies-Meyer mode. The region to be hashed is divided into
64-bit blocks. These source data blocks are used as half of the key input
to TEA. The other half of the key input comes from the result of the
previous TEA operation, and the first TEA operation uses a magic
number as its input.

The result is a 64-bit hash function, as depicted in Figure 7-1. This hash is
weak against birthday attacks, especially given the computational effi-
ciency of TEA, as only 232 message pairs need to be tested on average to
find a collision. Even though a birthday attack does not apply in the
Xbox’s usage scenario, the Xbox runs the hash twice, each time with a
different magic number seed, and concatenates the results to generate a
single 128-bit hash value — probably in an attempt to foil brute-force
attacks.

Unfortunately, TEA has a weakness in its key schedule: every TEA key
has four related keys. In other words, for every key, you can generate
three other keys that produce the same ciphertext result with the same
input data. Related-key generation is as simple as complementing pairs of
key bits (bits 31 and 63 is one pair, bits 95 and 127 are the other pair).
This makes TEA unsuitable for use as a hash function, and this weakness
is well documented in the paper “Key-schedule cryptanalysis of IDEA,
G-DES, GOST, SAFER, and triple-DES,” by John Kelsey, Bruce
Schneier, and David Wagner, presented many years ago at CRYPTO
1996. This weakness was later leveraged by a team headed by Andy
Green to break the second version of the Xbox security scheme.

RC-4
RC-4 (Ron’s Code or Rivest Cipher 4) is a variable key-length stream
cipher by Ron Rivest. The heart of RC-4 is the keystream generator. It
can be thought of as a cryptographic pseudo-random number generator
(CPRNG). The output of the CPRNG is XOR’d one byte at a time with a
plaintext stream to generate the ciphertext. Decryption is accomplished in a
similar fashion. Loosely speaking, the generator is “seeded” with a value
(the key) of up to 256 bytes (2048 bits) long. If the key is shorter than 256
bytes, it is repeated to fill out the 256 bytes before use as a seed; this enables
variable-length keys. In the Xbox, the key is 16 bytes (128 bits) in length,
and thus the cipher is dubbed RC-4/128.

Hacking the Xbox: An Introduction to Reverse Engineering112
typedef struct rc4_key {

 unsigned char state[256];

 unsigned char x;

 unsigned char y;

} rc4_key;

void prepare_key(unsigned char *key_data_ptr, int key_data_len,

 rc4_key *key) {

 unsigned char swapByte, index1, index2;

 unsigned char* state;

 short counter;

 state = &key->state[0];

 for(counter = 0; counter < 256; counter++)

 state[counter] = counter;

 key->x = 0; key->y = 0;

 index1 = 0; index2 = 0;

 for(counter = 0; counter < 256; counter++) {

 index2 = (key_data_ptr[index1] + state[counter] +

 index2) % 256;

 swap_byte(&state[counter], &state[index2]);

 index1 = (index1 + 1) % key_data_len;

 }

 }

 void rc4(unsigned char *buffer_ptr, int buffer_len, rc4_key

 *key) {

 unsigned char x, y, xorIndex;

 unsigned char* state;

 short counter;

 x = key->x; y = key->y;

 state = &key->state[0];

 for(counter = 0; counter < buffer_len; counter ++) {

 x = (x + 1) % 256;

 y = (state[x] + y) % 256;

 swap_byte(&state[x], &state[y]);

 xorIndex = state[x] + (state[y]) % 256;

 buffer_ptr[counter] ^= state[xorIndex];

 }

 key->x = x; key->y = y;

 }

Listing 7-2: RC-4 code in C, from original Usenet posting.4

4 Code from http://www.cc.jyu.fi/~paasivir/crypt/rciv/
rc4article.txt. Minor white-space modifications to make it all fit
on one page. The swap byte function definition is also not
included, but you can guess what it does by its name.

Chapter 7 - A Brief Primer on Security 113
RC-4 is thought to be a strong cipher, although there are a few known
weaknesses in the key scheduling algorithm that can be leveraged in poorly
designed cryptosystems, such as WEP. Scott Fluhrer, Itsik Mantin, and Adi
Shamir document these weaknesses in a paper titled “Weaknesses in the Key
Scheduling Algorithm of RC4,” presented at the Eighth Annual Workshop
on Selected Areas in Cryptography (August 2001). None of these weak-
nesses can be applied against the Xbox’s implementation of RC-4.

There is, however, a potential problem in the way that RC-4 is used in the
first version of the Xbox security. RC-4 is used on the Xbox to encipher a
stream of x86 code, and no significant check is performed on the deciphered
code to ensure the integrity of the plaintext. This means that changes in the
ciphertext will lead to changes in the code that the Xbox executes. The trick
is to figure out a change in the ciphertext that leads to a meaningful code
modification. Since RC-4 encrypts one byte at a time and x86 opcodes
can be as short as a single byte, it requires no more than 28 = 256
iterations to “brute force” an instruction into a single known location by
mutating the ciphertext.

Determing which location to brute force can be tricky, but I suspect a lot
of information could be derived by mutating ciphertext bits and
observing what happens to the pattern of instruction fetches, even with
the caches turned on. The goal would be to try and identify the location
of a jump opcode’s operands and to modify the jump destination such
that the secured program jumps into an unsecured region of memory.
The process would be similar to playing the classic board game “Battle-
ship.” Keep in mind that the attack is so easy that guessing through a
kilobyte of code only requires a maximum of 218 iterations. The guessing
process could be automated by integrating a logic analyzer with a ROM
emulator via a control script running on a host computer.

The history behind RC-4 is actually quite interesting. RC-4 was invented
in 1987 by Ron Rivest, and was kept as a trade secret by RSA Security,
Inc. until it was released in 1994 by an anonymous post to a cypherpunks
mailing list (see Listing 7-2). As a result of RC-4’s virtues of simplicity
and robustness, it has found its way into numerous applications, including
WEP, SSL, SQL, and CDPD. While the source code for RC-4 is widely

Figure 7-3: Use of RSA with session keys.

key

plaintext
AES
(fast)

session
key

ciphertext

RSA
(slow)

private
key

ciphertext

RSA
(slow)

AES
(fast)

public
key

plaintext

untrusted
transmission

medium

session
key

SENDER RECEIVER
key

Hacking the Xbox: An Introduction to Reverse Engineering114

Figure 7-4: RSA used to implement digital signatures.

message
message

hash RSA

private
key

signature

untrusted
transmission

medium

message

signature
RSA

public
key

hash
compare

if equal, message
is likely to be authentic

and unaltered

SENDER RECEIVER

distributed and well known, the cipher is still the intellectual property of
RSA Security. I wouldn’t recommend integrating it into a commercial
product without first obtaining a license from RSA Security.

RSA
RSA is a public-key algorithm devised by Ron Rivest, Adi Shamir and
Leonard Adleman in 1977. In a public-key algorithm, two distinct keys are
used, a public key and a private key. As their names imply, the private key
must be kept secret, while the public key can be freely distributed. The
math behind RSA is briefly described in the sidebar titled “The RSA
Algorithm.” You need not understand the details of the math behind
RSA to grasp how RSA is used in the context of the Xbox.

Brute-force attacks are currently thought to be infeasible on RSA with
keylengths in excess of about a thousand bits. Also note that one cannot
be too cavalier about how RSA is integrated into a cryptosystem. There
are some attacks against protocols that use RSA, such as tricking the
private key holder into signing carefully crafted messages that can then be
used to derive the signer’s private key.

Encrypting a message using RSA is as simple as invoking RSA on a
message. However, RSA encryption works on message blocks that are too
short and the encryption process is too slow to be practical for most
messages. Thus, RSA is typically used to encrypt a single-use random key,
called a session key, for a fast symmetric cipher such as AES that is then used
to encrypt the bulk message. This process is illustrated in Figure 7-3.

In addition to encryption, RSA enables digital signatures. A digital signature
allows parties exchanging messages over an insecure medium to guarantee
that messages are not forged and are not modified. The message does not
have to be encrypted. A typical digital signature protocol works as
follows: The sender computes a hash of the message to be sent. This hash
is then encrypted with the sender’s private key and included with the
message plaintext. The receiver decrypts the encrypted message hash
using the sender’s public key, and compares this hash against a locally

Chapter 7 - A Brief Primer on Security 115

computed hash of the received message. If the decrypted hash sent with
the message and the locally computed hash agree, then the receiver could
conclude that the message is authentic and unaltered. This process is
outlined in Figure 7-4.

If this protocol sounds complex to you, it is. There are a lot of places
where things can go wrong. The receiver could have a false copy of the
sender’s public key. The sender could have had his private key compro-
mised. The hash could have weaknesses. Employing digital signatures in
an adversarial environment requires attention to detail at all levels of the
system design.

In the Xbox, digital signatures are used to control the distribution and sale
of programs for the console. Microsoft is effectively in control of both the
sender and the receiver of messages. The receivers — Xbox consoles —
are programmed to only run programs that are digitally signed by
Microsoft. In an ideal world, this guarantees that Microsoft has the final

The RSA Algorithm
The RSA algorithm was patented by the Massachusetts
Institute of Technology and exclusively licensed to RSA Data
Security, Inc in 1983. The patent on the RSA algorithm has
since expired in September 2000. Thus, today RSA is free to
use in any application. Many excellent tutorials and edu-
cational examples using RSA can now be found on the
Internet. Perform a Google search using the keywords “RSA
algorithm” to find some of these examples.

The RSA algorithm is as follows (adapted from http://
world.std.com/~franl/crypto/rsa-guts.html):

1. Find two large (thousands of bits long) prime numbers, “P”
and “Q”.

2. Choose “E” such that E > 1, E < PQ, and E is relatively prime
to (P-1)(Q-1). E does not have to be prime, but it must be
odd. The pair of E and PQ are the public key.

3. Compute “D” such that (DE - 1) is evenly divisible by
(P-1)(Q-1). This can be accomplished by finding an integer
X which causes D = (X(P-1)(Q-1) + 1)/E to be an integer. D is
the private key.

4. Plaintext “T” is encrypted using the function
C = (TE) mod PQ

5. Ciphertext “C” is decrypted using the function
T = (CD) mod PQ

Note that T < PQ. Messages larger than PQ must be broken
down into a sequence of smaller messages, and very short
messages must be padded with carefully selected values
to foil dictionary attacks, among other things.

Hacking the Xbox: An Introduction to Reverse Engineering116
word on who can or cannot run programs on the console, and hackers
cannot modify games to insert viruses, Trojan horses, or back doors.
Saved games are also sealed using encryption, and as a result, it is
nominally impossible to hack a game and cheat by patching the execut-
able or by jacking up your character stats.

Clearly, a pivotal issue in hacking the Xbox console is their implementation
of the digital signature system. The Xbox uses a SHA-1 hash with 2048-bit
RSA keys, making the chance of a successful brute force attack very, very slim.
Of course, the probability is zero if you never try, but the odds are stacked
against you (see the sidebar “Very Difficult Problems”). You’ll have better
luck trying to win the lottery. This is by no mistake; the discovery of the
private key would make game copying trivial and developers would not have
to pay royalties to Microsoft (legally, they may be obligated but there is no
technical reason preventing them). Given that this key is probably worth a
few billion dollars to Microsoft, it is quite likely that no single human
knows the full key, as rubber-hose (beatings) and green-paper (bribery)
cryptanalysis techniques tend to be quite effective on humans. (Do not
discount real “brute force” as a possibility if you are trying to protect an
extremely valuable secret!) Products such as BBN’s SignAssure™ certificate
authority management system ensure the physical security of high-value
keys and implement secret-sharing schemes that require multiple trusted
users to activate the machine.

As mentioned previously, there are a few known viable attacks against RSA,
but not all of them apply in the Xbox scenario, as they rely on groups of
users or require chosen-ciphertext. In addition, the list of weaknesses is
widely known and most implementations of digital signatures implement
the proper countermeasures to protect against such attacks.

The Rest of the Picture
An effective security system needs good key management, strong
protocols, and in the case of the Xbox, physical security in addition to
strong ciphers and hashes.

Key management is perhaps one of the most difficult system implementa-
tion tasks that face any security architect. Ultimately, the decryption keys need
to go into the hands of a user. The user interface must be designed so
that the average user with minimum training does not accidentally leak
key information. As ciphers become stronger, the easiest path of attack is
increasingly through the user. Eavesdropping through surveillance videos,
social engineering, or even analyzing the pattern of sounds made by the
keyboard as a password is typed will probably yield more information per
unit effort about a passphrase than cryptanalysis. Public key cryptography
partially helps solve the problem of key distribution, but public key
fingerprints should be compared in person to rule out the possibility of
man-in-the-middle attacks. Public key cryptography also does not
prevent someone with physical access to the client machine from eaves-
dropping on the decrypted output.

Chapter 7 - A Brief Primer on Security 117
In addition, protocol attacks find weaknesses in the way keys and data are
manipulated, or in the way strong ciphers are used. The WEP attack on
RC-4 and Mike Bond and Ross Anderson’s attack on the IBM 4758
Cryptoprocessor are both examples of protocol attacks. The red flags
for potential protocol attacks are systems that implement backward-
compatibility measures, and systems that are implemented by engineers
whose primary job is not crypto-security.

Finally, in a system like the Xbox where one of the goals is to establish a
trustable client, back doors and buffer-overrun attacks are also viable attacks
on the trust state of a machine. No widely used commercial processors
embed execution privileges within instruction streams or data tags. Proces-
sors blindly execute any piece of code that it is instructed to jump to,
whether or not the jump was induced through a transient hardware failure
or through maliciously placed code. Periodic hashes on the machine state can
be used to counter this deficiency, but even then the state checks can be
spoofed.

As discussed in the beginning of this chapter, establishing the trust state
of a client also requires a piece of tamper-resistant hardware to carry the
seed of trust. The amount of physical security must be enough to make it
uneconomical to defeat the security once, and robust enough such that
one instance of broken security does not enable trivial attacks on the
remainder of the consoles. Some of the trade-offs when designing
physical security as well as the decisions made by Microsoft to this end
are discussed in the next chapter.

The moral of this chapter is that security requires a well-designed system.
Although ciphers have become strong enough to make brute-force attacks
moot, systems have grown in complexity. This complexity increases the
likelihood of a viable protocol or back door attack, yet does little to save
users from the more traditional eavesdropping, rubber-hose and user-error
attacks.

CHAPTER 8

Reverse
Engineering
Xbox Security

In this chapter, I will describe how I defeated the initial production
version of the Xbox security system that was first encountered in Chapter
6. The security system was discovered after analyzing the FLASH ROM
and realizing that the true hardware initialization and boot image
decryption sequence was somehow hidden outside of the FLASH ROM.
The Chapter 7 introduced some basic cryptography concepts that will be
useful understanding the contents of this chapter.

Extracting Secrets from Hardware
The hidden boot code in the Xbox, as concluded in Chapter 6, can be
recovered by eavesdropping on one of the following buses: (1) the FSB,
(2) the main memory bus, or (3) the Northbridge-Southbridge connection.

The format of the Front Side Bus (FSB) of the Pentium processor used in
the Xbox is documented in the Pentium III processor datasheets, available
at Intel’s Developer Website. The FSB is a bidirectional 64-bit data bus with
about fifty address and control signals, all running at 133 MHz. The bus
uses a signaling convention known as AGTL+. Eavesdropping on this bus
is an expensive and difficult proposition because of the high signal count
and challenging physical form factor. Viable approaches include: (a) socketing
the processor with a special emulator break-out socket that costs many
thousands of dollars, or (b) reverse engineering the meaning of each FSB
trace on the Xbox motherboard, and tack soldering a short probe wire onto
each of the almost one hundred signals. In addition, a logic analyzer that
supports AGTL+ signaling is required. The combination of all these factors
made me look elsewhere for a starting point for eavesdropping.

Hacking the Xbox: An Introduction to Reverse Engineering120
Our next eavesdropping candidate, the main memory bus, is a 128-bit
data bus plus address and control signals running at 200 MHz with
double data rate (DDR) clocking. The memory bus uses a signaling
convention known as SSTL-2. (The details of this bus can be inferred by
reading the datasheet for the Samsung K4D263238M memory part,
available at the Samsung Electronics website.) Despite its higher speeds,
eavesdropping the main memory bus is probably easier than eavesdrop-
ping the processor FSB, because of the empty (spare) memory footprints
designed into the Xbox motherboard.

A relatively inexpensive, standard 100-pin TQFP adapter (Thin Quad Flat
Pack, a rectangular chip package with 100 gull-wing shaped pins) could be
soldered onto the empty memory footprints. These adapters would provide
convenient probe points for connecting a logic analyzer. The problem with
this approach is that you can only capture data that is written to main
memory. Decryption keys are generally read-only data, and read-only

More About High Speed
Information Transmission
Eavesdropping and modifying data on computer buses is
a powerful technique that is difficult to counter. In order to
understand how to eavesdrop, you will need a little bit of
background on how digital information is transmitted in-
side a computer.

There are two major categories of signaling standards: single-
ended and differential. The transmission of digital informa-
tion over a wire requires a translation into physical quanti-
ties such as voltage and current. Classically, signals were
defined in terms of voltages measured with respect to a
common reference potential called the “ground.” This kind
of signaling is known as single-ended or unbalanced sig-
naling. Unfortunately, the idea of a ground reference point
only works when signals change slowly with respect to their
propagation time. In reality, every change in potential is
accompanied by a flow of current. The laws of nature de-
mand that current be conserved, i.e., for every flow of cur-
rent in one direction, there must be a flow of current in the
reverse direction. In single-ended signaling, the reverse cur-
rent, also known as a return current, must find its way back
through the “ground”. At very high speeds, the return paths
for current do not necessarily follow the same path as the
signal current. This imbalance results in a distorted signal.

Differential signaling combats this problem by using two wires
to transmit a signal, with one wire used for the signal current
and the other used for an explicit return current path. The
differential approach allows the signal and return paths to
be laid out so that they track each other, ensuring that the
flow of current is balanced. The result is a more robust signal
transmission system at the cost of twice the number of wires.

(continued)

Chapter 8 - Reverse Engineering Xbox Security 121
data will go straight from the hidden boot ROM into the processor cache
without ever being stored into main memory. Once the processor is done
with the cache line containing the key, it will be overwritten, so the key
should never leave the physical perimeter of the processor.

The third potential eavesdropping candidate, the Northbridge to
Southbridge connection, is a pair of unidirectional, 8-bit wide differential
busses, each with just one control signal and one clock signal. The bus uses
the HyperTransport signaling convention and runs at 200 MHz with DDR
clocking. The signaling convention of the bus was deduced from the
publicly available information at nVidia’s website about the nForce, a chipset
closely related to the Xbox’s chipset. A few measurements with an
oscilloscope, cross-checked against the open HyperTransport specifica-

A specific standard for interpreting voltages as logic values
is called a signaling convention. The venerable TTL and
3.3V CMOS signaling conventions were invented in an era
when transistors performed so poorly that large signal ex-
cursions were necessary. Lately, a host of new and even old
signaling conventions have been gaining popularity, such
as SSTL (series stub terminated logic), GTL (gunning trans-
ceiver logic), LVDS (low voltage differential signaling), and
PECL (pseudo emitter coupled logic). These high-speed sig-
naling conventions account for the fact that electric waves
travel slowly with respect to the rate of data transmission.
They also account for the fact that electric waves carry
energy that must be dissipated upon the termination of its
journey, otherwise the energy will reflect and cause inter-
ference with incoming waves.

In high-speed applications, wires are often called “trans-
mission lines” in order to emphasize the fact that these waves
travel slowly in comparison to the signal transition time (the
time required for a signal to transition between a “1” and a
“0” state). (Note that the speed comparison is made rela-
tive to transition time of the signal, and not its gross signaling
frequency.) A common mistake is to think that transmission
line effects can be ignored because the clock frequency
of the signal is slow. Even if there is only one transition every
year, problems can still arise if the duration of that transition
takes only a picosecond (one trillionth of a second).

The good news for novices is that the latest FPGAs from
vendors such as Xilinx come with built-in support for almost
every widely deployed signaling standard. The other piece
of good news is that signaling standards are becoming
increasingly well documented. The Xilinx FPGA data sheets,
for example, illustrate the expected position and value of
the termination resistors for every supported signaling stan-
dard. By following the recommended practices in the
datasheet and application notes, you can use the FPGA
to eavesdrop on a wide range of signals. Just remember to
keep your eavesdropping taps as short as possible and
you shouldn’t go wrong.

Hacking the Xbox: An Introduction to Reverse Engineering122
tions available at the HyperTransport consortium’s website, were used to
verify the assumption that the HyperTransport signalling convention is
indeed being used.

The HyperTransport bus is implemented on the Xbox motherboard with
all the signals parallel and evenly spaced, a decision likely driven by the high
operating speed of the bus. This makes the bus an ideal target for eaves-
dropping, except for the fact that it runs at such a high data rate. Eavesdrop-
ping a bus that runs at this speed requires special attention to the stub
length of the eavesdropping traces (in order to preserve the integrity of the
signals) and it also requires a rather expensive logic analyzer or a custom
analyzer circuit.

Ultimately, the Northbridge-Southbridge connection was chosen as the
first bus to eavesdrop because it has by far the fewest wires, and therefore
requires the least amount of soldering. The Northbrige-Southbridge
connection has only ten unique signals, whereas both the FSB and the main
memory have about one hundred signals each. Soldering a large number of
connections not only consumes a large amount of time, but also greatly
increases the risk of hardware failures due to solder bridges or damaged
traces. Thus, minimizing the number of solder connections minimizes the
risk of collateral damage to the motherboard.

Eavesdropping a High Speed Bus
I had committed to the HyperTransport eavesdropping approach in late
January 2002. The significant technical issues with this approach were:

• Tapping the high-speed differential bus without disrupting signal
integrity

• Finding or building a logging tool that could keep up with the 400
MB/s data rates on the HyperTransport bus

• Determining the polarity and bit ordering of the differential
HyperTransport bus traces on the motherboard

Tapping the Bus on a Budget

The first two issues are intimately linked. High-speed bus analysis and
logging tools typically have proprietary interfaces that would require a
custom adapter to the Xbox motherboard. The last issue, determining bit
polarity and ordering, just requires a lot of post-processing and data
massaging after the data logger is attached and functioning.

HyperTransport is an open standard that has gained industry acceptance,
meaning that off-the-shelf protocol analyzers and logging tools are available
for the bus. One such example is the HyperTransport protocol analyzer
by FuturePlus. Unfortunately, this protocol analyzer was priced in excess

Chapter 8 - Reverse Engineering Xbox Security 123
of $25,000 at the time the work was being done. In addition, the proto-
col analyzer requires the target board to be specially designed to accom-
modate the protocol analyzer’s bus interface pod.

Instead of buying a protocol analyzer and investing the time and effort to
adapt it for use with the Xbox, I built my own simplified one. This task is
feasible because the HyperTransport protocol is quite simple. The Xbox
implementation of HyperTransport uses two 8-bit unidirectional buses,
one for transmit and one for receive. Each bus has a clock and a strobe line
associated with it. The signaling standard requires valid data to be presented
on each edge of the clock. The beginning of a new packet is indicated by the
data lines leaving their idle state. The strobe line differentiates between
command and data packets. All of the sideband signals typical of other
busses, such as the address, read/write control, chip select, and interrupt
lines, are handled in HyperTransport using in-band command packets.
Hence, just ten differential signals (twenty wires) are all you need for
eavesdropping the bus — great news for hackers.

The HyperTransport protocol is simple enough, but what about finding
something that can both physically interface to the Xbox bus and keep up
with the 400 MB/s speeds? The ideal tool for building this HyperTransport
bus tap would be an FPGA. However, at the time, no FPGA was available
that could keep up with the high data rates and more importantly, no FPGA
was available that was certified by the vendor for use with HyperTransport.
Theoretically, a Xilinx Virtex-II FPGA would work for this application, but
the product had just been launched and the devices were extremely pricey
and hard to get (today, you can purchase a low-end Virtex-II FPGA for well
under a hundred dollars). The best FPGA that I had on hand at the time
was a Xilinx Virtex-E FPGA that I had previously designed into a prototype
supercomputer network router as part of my thesis. The network router
board used CTT (Center Tap Terminated) signaling for its network inter-
faces, and also had an Intel StrongArm processor on board for configura-
tion, control, and debugging purposes.

The challenge therefore boiled down to figuring out how to interface
HyperTransport signals to CTT signals, and how to coax 400 MB/s
performance out of an FPGA that wasn’t intended to run at those speeds.

The HyperTransport signaling convention, it turns out, is a close relative of
the more common LVDS (low voltage differential signaling) convention,
specified in the TIA/EIA-644 standard. HyperTransport drivers create a
signal with a differential swing of 600 mV typically, centered around a
common mode voltage of 600 mV. LVDS receivers, on the other hand, can
make sense out of data that has a differential swing of greater than 100 mV
and a common mode voltage anywhere between 50 mV and 2.35 V. So
LVDS receivers are directly compatible with HyperTransport drivers!
(Although the Virtex-E supports a direct interface to LVDS signals, I could
not take advantage of this because the Virtex-E parts I had were already
designed into a system that is hard-wired for CTT signals.) If you are
designing your own tap board, the best approach would be to use the
native LVDS capabilities of the FPGA instead of the hack described

Hacking the Xbox: An Introduction to Reverse Engineering124

here. In addition, the LVDS receiver must be located very close to the
Xbox motherboard in order to not corrupt the target signals. A long
cable would dissipate energy out of the wires and introduce noise and
reflections that might cause the system to cease functioning.

The solution to the problem of getting the HyperTransport signals to the
FPGA is to use a signal conversion chip. LVDS is a popular standard for
LCD panel interfaces and backplanes used in telecomm systems, so numer-
ous inexpensive LVDS-to-CMOS converters are available. Of course, the
desired signaling convention is CTT, but a closer look reveals that interfacing
CMOS drivers to CTT receivers is actually not a problem. CTT is a current-
mode signaling convention that drives +8 mA or -8 mA into a 50 ohm
transmission line terminated at 1.5 volts. The receiver is a differential
amplifier that compares the reference termination voltage with the transmis-
sion line voltage. In the Virtex-E, a CTT receiver amplifier is specified to
work as long as the received voltage swings more than 200 mV up or down
from the reference voltage. Most CMOS transmitters driving a CTT
terminated line will have no problem sourcing or sinking 8 mA of current

What About Driving Signals onto
HyperTransport?
The eavesdropping application described in this chapter
only requires a HyperTransport receiver. Applications such
as “man-in-the-middle” attacks require a device that can
override HyperTransport signals and insert a false bit or two.
Such a device is feasible because HyperTransport, like LVDS,
uses current-mode drivers. In other words, the drivers are
designed to drive only a measured amount of current into
the wire, regardless of the voltage it creates. In a normal
situation, this works perfectly well because the impedance
of the wire transforms the current into a voltage in accor-
dance with Ohm’s Law. However, currents can sum and
cancel each other out. An antagonistic differential driver
that applies an overdrive current that cancels out the in-
tended signal can be attached to a HyperTransport line.
This kind of overdrive can be accomplished using the flex-
ible, programmable I/O provided in FPGAs such as the Xilinx
Virtex-E and Virtex II.

The simplest application of such a bus override device would
be one that modifies the destination of the reset vector as
it is transmitted to the CPU, enabling you to gain control of
the Xbox. The reset vector destination is coded into a single
byte that follows the “jump” opcode located at 0xFFFF.FFF0.
The reset vector is likely transmitted a deterministic number
of clocks from the de-activation of reset, so the timing ele-
ment for this attack can consist of just a timer that is clocked
by the HyperTransport bus clock and synchronized to a
reset signal. A “man-in-the-middle” attack like this will de-
feat even a cryptographically secure public-key boot block
implementation.

Chapter 8 - Reverse Engineering Xbox Security 125
into a 50 ohm load. Also, CMOS transmitters should have no problem
driving a wire terminated into a fixed voltage. Thus, a standard LVDS to
CMOS converter chip can be used to take the Xbox motherboard’s
HyperTransport signals and feed them into the board I had previously built
for my thesis. The chip I chose was the Texas Instruments SN65LVDS386,
and you can find data sheets for this chip at Texas Instruments’ website.

Attaching the LVDS-to-CMOS converter chip to the board is made
delightfully simple by the clean layout used for the HyperTransport bus on
the Xbox motherboard. Figure 8-1 is a picture of what the HyperTransport
bus traces look like. Notice how all the wires run in parallel and how they are
evenly spaced. Some of the wires, such as the clock (TX CK/TX CX* and RX
CK/RX CX*) and the strobe line (TXD8/TXD8* and RXD8/RXD8*), are
even labeled for us with polarity markings! This simple layout enables the
use of an easy-to-engineer tap board.

The tap board contains just the LVDS-to-CMOS converter chip, some
power conditioning circuitry, and a set of traces laid out right up to the edge
of the board that are identically spaced to the HyperTransport bus on the
Xbox motherboard. For identical spacing and easy alignment and mount-
ing, I measured the dimensions of these traces using a digital caliper tool.
Figure 8-2 illustrates the dimensions of the HyperTransport bus traces.

Figure 8-1: HyperTransport bus traces as laid out on an Xbox motherboard.

Hacking the Xbox: An Introduction to Reverse Engineering126
The measurements were a little tricky to make. My approach was to
measure the overall width of the bus and divide the width by the number
of traces and spaces to get the average expected spacing and trace width.
I then laid out these traces with a PCB CAD program and printed the
layout on paper at a 1:1 scale. I compared the printed traces with the
board traces and made a few adjustments by hand. (Note that many
printers have some small amount of scaling error, so if you are trying
this, calibrate yourself by printing out a few long lines of known length
and measuring them. Printers can have different scaling errors along the
horizontal and vertical axes, so be sure to print lines in both directions.)

12 mil

13 mil

12 mil

differential signal pair

6 mil
trace

Designing your own boards is fairly easy with the right software. You can
find out more about how to make your own boards by reading the
Appendix C, “Getting Into PCB Layout.”

Once the component selection process was finished, the design and layout
of the HyperTransport tap and signal conversion board took just a few
more hours. A schematic of the board’s design can be seen in Figure 8-6.
The board was then fabricated by an order placed via the Internet. Many
board houses offer affordable, quick-turn board fabrication services that take
board designs in Gerber file format via an email or ftp upload. In this case, I
had two copies of the board built in five days for a price of $33 per board
(see Appendix C, “Getting Into PCB Layout,” for more information on
how to build your own boards). This price only includes the price of cutting
the board into a square piece. However, I needed the side of the board with
the HyperTransport tap to have a special shape that facilitates board
mounting without interfering with the existing components on the Xbox
motherboard. I also needed the mating edge of the board to be beveled
such that the board mounts at a slight angle, to simplify the task of
soldering the tap board to the motherboard. I used a belt sander to
manually sculpt the edge into the shape described in Figure 8-3. When
sculpting, the board had to be oriented such that the belt sander’s abrasive
belt made contact with the trace side of the board first to prevent the
belt sander from tearing the copper traces off of the board. Be careful
when using a belt sander to sculpt small boards like the tap board — a
belt sander could just as easily sculpt your fingers by accident.

Figure 8-2: Dimensions of the HyperTransport bus traces on the Xbox
motherboard. A “mil” is 1/1000th of an inch or 25.4 microns.

Chapter 8 - Reverse Engineering Xbox Security 127

clearance for
motherboard
components bare traces brought

out to board edge
motherboard

front view side view

beveled edge
for angled mounting

soldering
iron tip

Figure 8-3: Shaping of the HyperTransport tap board edge.

After sculpting the beveled edge, all the parts were soldered onto the
board. (See Appendix B, “Soldering Techniques.”)

The finished tap board now had to be attached to the Xbox motherboard.
This critical step was perhaps the most difficult one. First, the Xbox
motherboard was prepared by using a fine grit sandpaper to strip away
the green soldermask, revealing the bright bare copper of the target
traces. Then, these traces were fluxed and a thin coat of solder was
applied using a hot soldering iron tip.

The procedure I used for attaching the tap board to the motherboard is
shown in Figure 8-4. The prepared tap board was tacked onto the
motherboard at the approximate location and angle using a thin (30
AWG) wire soldered between a trace on the tap board and the
motherboard. The tack wire serves only as a temporary aid for holding

motherboard

30-AWG wire soldered
across bare traces to tack

board at desired angle

motherboard

Apply epoxy and
let cure

motherboard

Remove tacking
wire; clean up

bridges

motherboard

Solder all
connections

1 2

3 4

Figure 8-4: Tap board soldering procedure.

Hacking the Xbox: An Introduction to Reverse Engineering128

the board in place and will be removed, so it does not matter if the wire
bridges multiple traces. Once the wire was attached, I carefully adjusted
the position of the tap board on the motherboard, heating the wire to
release its bond to avoid lifting any of the copper traces. (I used a
microscope to aid in determining the optimal alignment.) Once I was
satisfied with the position of the board, I applied a strong epoxy to the
board joint to hold it all in place. The epoxy should cure and form a
rigid, stiff joint. (Note that some epoxies when applied incorrectly cure
into a gel; this is not acceptable, as the entire mechanical integrity of the
joint must come from the epoxy and not the solder joints.) I used Miller-
Stephenson Epoxy formula 907, and it sets with enough strength for me
to lift the Xbox by the tap board and not disturb the tap connection.

Once the epoxy had cured, I removed the temporary tack wire that was
used to hold the tap board in place, and cleaned the bare mated traces
with a bit of solderwick and flux. The last step of soldering the tap board
traces to the bare motherboard traces was now no different from
soldering any surface mount component onto a board; most of the
standard techniques described in Appendix B applied directly to this
situation. Figure 8-5 shows what the finished assembly looks like.

Building the Data Logger

The second challenge of eavesdropping the HyperTransport bus is
acquiring or building a logging device that can keep up with the 400 MB/
s data rate of the bus. Considering my budget, I decided that my only
option was to build a logger, as buying any tools with sufficient perfor-
mance for this job was well outside of my budget.

Figure 8-5: HyperTransport tap board mounted on the Xbox motherboard.

Chapter 8 - Reverse Engineering Xbox Security 129

Fi
gu

re
 8

-6
: S

ch
em

at
ic

 o
f t

he
 H

yp
er

Tr
an

sp
or

t t
ap

 b
oa

rd
.

In building the logging device, I had settled on using a Virtex-E FPGA
that was integrated into a board that I had previously built. However, the
one problem with using the Virtex-E FPGA is that the performance of
the FPGA (as specified in the databook) is insufficient to keep up with
the HyperTransport bus. Fortunately, FPGAs overclock well because
their manufacturing margin is very conservative, and because FPGA
performance is largely limited by signal propagation delays in the
configurable wiring fabric. As a result, some key performance-limiting
paths can be manually identified and compensated using soft delay lines
and selectively inverted clocks. The most performance sensitive blocks
can be hand-placed to optimize the delays, while the compiler and

Hacking the Xbox: An Introduction to Reverse Engineering130

Figure 8-7: Block diagram of the data logger built in the Xilinx Virtex-E FPGA.

D
9 9

9
QP

QN

DP

DN

QPP
QPN
QNP

QNN

div by 2

div by 2

Dual-edge
triggered

data demux
Quad-phase
data demux

9
9

9

9

Align
vs

Clock Phase

HyperTransport
Data (200 MHz DDR)

HyperTransport
Clock

2x200 MHz
SDR

4x100 MHz
SDR

32

4

Adjust clocking phase on a bit
by bit basis to compensate for

FPGA delays

2 kB x 36
deep FIFO

memory

32-bit up
counter

RESET

HyperTransport bus
reset line

compare
and trigger

data
sequence

count

logged
data

alignment

read
strobe

automated place-and-route tool handle the non-critical parts of the
circuit. Figure 8-7 shows the overall design that was used to capture the
data on the HyperTransport bus.

The design is fairly simple in concept: take the high speed data off of the
HyperTransport bus and clock it into four phases of a quarter speed clock,
creating a data stream that is four times slower but four times wider. This
confines all hand-placing and tweaking to just the first few input flip flops.
Next, realign the data using a set of delays and rotators, and store the data
one piece at a time inside a first in, first out (FIFO) memory. The signal that
triggers the start of FIFO capture is generated by a timer-comparator that
starts counting up from first reset. Long windows of data can be captured
by concatenating the results of multiple runs, each with the capture trigger
point delayed from the previous. A later optimization applied to the trigger
circuit is a “do not store zeros” (DNSZ) function. In the DNSZ mode, data
consisting of all 0’s is not stored in the FIFO. This is helpful in culling out
all of the idle data on the HyperTransport bus. The resulting data traces are a
time-stamped series of 32-bit words.

The most difficult part of the FPGA data logger design was calibrating the
delays on the input paths. Delay calibration was accomplished by using an
oscilloscope to probe a small window of data on the HyperTransport bus.
Wire delays and byte-wide rotations were tweaked until the probed data
matched the log data. This process was aided by the fact that during idle
times, a common sequence of commands was repeated on the bus every
few hundred microseconds, which served as the calibration reference.

Determining the Bus Order and Polarity

The final challenge after logging the data is figuring out the order of the
signals on the HyperTransport bus and their polarities. Note that while the
two most important signals of the HyperTransport bus on the Xbox
motherboard are labeled for us, the remaining eight data lines have ambigu-
ous polarity and bit ordering.

Chapter 8 - Reverse Engineering Xbox Security 131
The correct polarity of the eight data signals was determined by observ-
ing the idle bus data bit pattern. The HyperTransport bus spends most of
its time in an idle state, so this is not difficult. If the idle pattern is
supposed to be all 0s, then any bit position that shows up as a 1 has its
polarity inverted. This was corrected in hardware by inserting an inver-
sion term in the FPGA on the appropriate wire.

Determining the correct bit ordering is much more difficult, however.
Operating under the assumption that data coming across the
HyperTransport bus must in large part come from the FLASH ROM, a 1’s
count was performed on a byte by byte basis. The theory is that the bus
ordering is a pure permutation, meaning that the number of binary 1’s in a
byte is preserved between the FLASH ROM data and the data captured by
the logger. Patterns of 1’s counts were lined up against each other to identify
candidate regions of correspondence between FLASH ROM and logged
data. Fortunately, the first few words to come across the HyperTransport
bus are some chipset-specific initializations that are located near the bottom
of FLASH memory, so finding a set of patterns that lined up correctly did
not take too long. A set of bytes from each ROM and the logger were
tabulated, and, with the aid of a short C program, columns of bits were
transposed until an ordering was found that made all of the row values
match up.

Making Sense of the Captured Data
Now that valid data traces have been extracted, the problem remains of
deciphering the meaning of it all. Before doing so, let us recap what we
know about the data we have collected thus far.

• Temporal correlation. The logged data, on a macroscopic scale,
should have a strong time correlation to the expected sequence of
initialization events: jam table initialization, followed by a decryption
step, followed by execution from RAM. The regions of the log traces
that correspond to each of these events can be determined by just
observing when large bursts of activity happen, followed by regions
of silence.

• Transaction lengths. Since the Pentium processor has both a
data and an instruction cache, all fetches on the HyperTransport bus
to FLASH ROM or the hidden boot ROM should come in even-
length bursts of traffic.

• Guaranteed ordering. The collected data is time stamped and
chronologically correct, so if the first instruction fetched in the reset
vector can be identified in the data logs, the position and structure
of the remainder of the instructions can be deduced.

Initially, I neglected to check the macroscopic organization of data coming
across the HyperTransport bus, and this caused me some problems. The
simplified block diagram of the logging machine in Figure 8-7 would have
the log FIFO resetting each time the HyperTransport bus is reset. This

Hacking the Xbox: An Introduction to Reverse Engineering132
seems like a fine idea, however I originally incorrectly assumed that the
HyperTransport bus is reset only once upon the application of power. In
reality, the HyperTransport bus is reset a second time following the jam table
initialization step. Thus, when I first started looking at traces, all I saw was
the encrypted data plus a smattering of code, none of which could really be
lined up in any logical fashion with a boot vector.

Imagine how disappointing that was! I took a step back and observed the
HyperTransport bus events on an oscilloscope with the time scale set at
the milliseconds per division. I observed that there was an earlier reset
pulse, and after adjusting the trigger mechanism to catch only the first
pulse, the boot instruction was easy to identify. The sixteen bytes at
0xFFFF.FFF0 in the secret ROM happened to be identical to the same
sixteen bytes in the FLASH ROM. From that point, I tracked the current
value of the program counter by performing a lot of grungy tracing and
disassembling with bookkeeping, so that I could place each instruction
block at the correct location in memory. Every cache line fetch consisted
of 16 or 32 consecutive bytes of memory, resulting in a distinctive data
logger time stamp pattern which aided the reverse engineering process.
After a few hours of sifting through traces looking for cache lines, I had

More Tools of the Trade: Software
Analysis Tools
Inevitably at some point in your hacking experiences, you
will come across a need to disassemble some assembly
language code. I was introduced to an excellent tool for
this job by some fellow software hackers in January 2002
while I was reverse engineering the Xbox security. The tool is
called “IDA Pro” by Ilfak Guilfanov, sold by DataRescue Cor-
poration (http://www.datarescue.com/idabase/). IDA Pro is ca-
pable of disassembling not only x86 code, but a huge vari-
ety of embedded processors’ code as well. The quality of
IDA Pro’s output is also very high: Code segments are auto-
matically annotated and organized for readability. IDA Pro
also features a vast array of useful and fun tools. Some of my
favorites include the ability to automatically pattern match
code library signatures to function calls, and the ability to
follow jumps at the press of a key.

Another tool that was quite handy during the code analy-
sis was HackMan. HackMan is freeware from
TechnoLogismiki Corporation (http://www.technologismiki.com/
hackman/). It is nominally a “hex editor,” i.e., a file editor that
allows you to manipulate binary data directly, but it has a
lot of unique capabilities that go far beyond simple editing.
For example, HackMan has a built in disassembler. The
disassembler is not as powerful as IDA Pro, but it is interactive
with the hex editor. This allowed me to rapidly test candi-
date cache lines for valid code while tracing through the
data logs, while assembling the final binary image of the
secret ROM.

Chapter 8 - Reverse Engineering Xbox Security 133
collected enough code to feed into a disassembler. (See the sidebar on
software analysis tools for more information about the disassembler that
I used.)

After a bit of data massaging and a good bit of help from some on-line
hacker friends, we had determined that the cipher being used was RC-4/128.
RC-4 is a symmetric cipher, and the key had to be stored somewhere in the
Xbox, but I was having difficulty trying to identify the key in the data
stream. The key seemed to span cache line fetches that were shared with
pieces of code which at the time I could not map to a definitive location.

As the night was drawing long and I was growing weary of staring at hex
digits, I decided to try something that should never have worked. I adapted
an RC-4 decryption program to decrypt the target image in FLASH ROM
using a key that was derived from a sliding window within the data log. This
is a fairly brute-force approach, as it requires tens of thousands of
decryptions (one for every byte in the log) to search the whole data stream. I
automated the process by feeding the output of the RC-4 decryption into a
histogram routine. If the key did not match, the output should be statisti-
cally “white.” In other words, a histogram of the output should show that
all values are roughly equally probable for a non-matching key. However, if
the key was the correct one, the histogram should be biased, with some
values being significantly more popular than all the other values.

Eventually I finished the program, trykeys, to perform this brute-force
search around 5 AM. Bleary-eyed and tired, I decided to give the program a
test run before calling it quits for the night. Imagine the dumbfounded look
on my face as I watched the output of the program as it crunched away at
the candidate data stream:

$./trykeys.exe ms4.bin binout.full

...

.....................found possible key combo: avg 96, min 5,

offset 8745..

..

The FLASH ROM image is named ms4.bin, and the binary data logger
trace is named binout.full. The trykeys program had identified a
statistically different histogram (with an average value of 96 and a minimum
bucket height of 5) for a decryption of the ROM image using, as a test key,
data starting at offset 8745. I then isolated the candidate key from the data
stream and analyzed the decrypted output using the candidate key. The
output looked like real, valid code. I had found the key in a hidden boot
sector, stored in the Southbridge chip! A few days later after getting
some sleep and catching up on my schoolwork, I finished doing a proper
analysis of the data stream and I had patched together an image of the
entire secret boot sector.

With the secret boot code’s RC-4 key in hand, I had the ability to generate
FLASH ROM images that could be accepted by any Xbox at the time. The
implication is that the entire trust mechanism of the Xbox could be violated

Hacking the Xbox: An Introduction to Reverse Engineering134
by just overriding or replacing the ROM on the Xbox motherboard. This
is accomplished by using the test structures provided by Microsoft to
override the FLASH ROM during manufacturing for test and diagnostic
purposes. Xboxes must roll off the production line at a rate of one every
couple seconds, therefore Microsoft had designed a set of quick-connect
test points that enable FLASH ROM override. The ability to boot to an

The Legal Challenges of Hacking
In retrospect, hacking the Xbox was less challenging tech-
nically than it was socially and legally. After retrieving the
secret key from the Southbridge chip, I met with my re-
search advisor, Prof. Tom Knight, at the MIT Artificial Intelli-
gence Laboratory to discuss my results. My advisor pointed
out that my work could possibly be in violation of the DMCA,
so prior to publishing we contacted MIT’s legal department
for counsel. MIT Legal eventually responded that the DMCA
made the case too risky and that I had to publish as an
individual, despite the fact that my work was conducted
at MIT as a part of my research in computer architecture. I
despaired, thinking I would never be able to afford a law-
yer and that I would never be able to publish my results,
but then Prof. Hal Abelson connected me with the Elec-
tronic Frontier Foundation (EFF). As a result, Lee Tien and Joe
Liu from the EFF and Boston College were assigned to help
me publish my work. Months of deliberation and position-
ing ensued. It was a battle fought on two fronts: we had to
convince MIT to accept the work, while trying to appease
Microsoft at the same time. After four months, MIT capitu-
lated after an encouraging review of my work by Microsoft,
and the overwhelming support of my laboratory colleagues
and professors. MIT decided that I could publish my work as
a student of MIT, instead of as an independent entity. The
result of five months of legal stalemate was an AI Labora-
tory technical memorandum, followed by an academic
presentation of the work at the conference on Crypto-
graphic Hardware in Embedded Systems (CHES) in August
2002.

While the ending of this story may be happy, things could
have been very different if not for the support of my advisor,
my laboratory and the talented lawyers at the EFF. The
DMCA draws a fuzzy line between a rogue hacker and a
legitimate researcher; perhaps without MIT’s endorsement,
I would not have been able to satisfy the DMCA’s research
exemption and my research would never have been pub-
lished, or it might have been published and been con-
tested by Microsoft. Free speech applies to all, not just to
those who are lucky enough to sit in the ivory towers of
esteemed academic institutions. There are countless others
who were also working on the Xbox with excellent results,
but their voices shall remain forever silent behind the cur-
tain of the DMCA.

Chapter 8 - Reverse Engineering Xbox Security 135
alternate ROM image is valuable for running production test programs
using the native Xbox CPU. The physical structure of the Xbox LPC
interface implementation allows users, as well as Microsoft’s contract
manufacturer, to install a properly designed FLASH ROM override
device without any soldering.

Clearly, the ability to override the trust mechanism used in the Xbox has
sticky legal implications. While my intent was mostly to satisfy my curiosity
and secondly to run my own code on the Xbox under my fair-use rights,
other people have a desire to copy games and to modify and redistribute
Microsoft’s copyrighted kernel code. Because a cipher is blind to its applica-
tion, the extraction of the RC-4 key enables all applications equally. As a
result, I contacted the Electronic Frontier Foundation (EFF) to help me sort
through the legal issues. The legal process is a slow and ponderous one. I
had extracted the key in February, 2002, and it took until almost June before
I was allowed to publish the results of my study in the appropriate
academic forum.

Never had I experienced so much ado over 128 bits. The Digital Millen-
nium Copyright Act (DMCA) of 1998 has eternally changed the land-
scape of hardware hacking. Reverse engineering used to be a protected
act, deemed part of what makes a marketplace healthy and competitive.
Now, tinkering with and bypassing a cryptographic security system to
exercise your fair-use rights in the privacy of your own home could serve
you thousands of dollars of fines and lawsuits. I strongly recommend that
you read Chapter 12, “Caveat Hacker,” so that you understand your legal
rights and responsibilities.

Security Through Obscurity
The technique used by Microsoft in the first version of the
Xbox security is an excellent example of security through
obscurity. A strong cipher, RC-4/128, was used to encrypt
the ROM image in order to prevent people from analyzing
the ROM contents or from creating their own ROMs. How-
ever, RC-4/128 is a symmetric cipher, which means that the
Xbox must contain a decryption key also usable as an
encryption key. This decryption/encryption key is the im-
portant piece of information buried inside the secret boot
ROM. Hiding this key is security through obscurity: once the
key is found, the cipher is moot and all security is lost.

True security would require that the user have access to
every single piece of the Xbox and still be unable to en-
crypt their own valid FLASH ROM image. This implies that
some secret must be kept outside of the Xbox. Public-key
cryptography was invented for precisely this scenario. If
Microsoft had used a public-key cipher to encrypt or sign
the Xbox boot code, then knowing the entire contents of
the secure boot ROM would be useless, since the main
secret, Microsoft’s private key, remains safely out of our reach
in a vault somewhere in Redmond, Washington.

Hacking the Xbox: An Introduction to Reverse Engineering136
There is an upside, however. The next chapter introduces the findings of
my colleagues, many of which include the discovery of back doors in the
Xbox initialization sequence. These backdoors enable you to run your own
code on the Xbox without enabling access to Microsoft’s copyrighted works,
and without enabling the copying of games. The next chapter will also
introduce Xbox security version 1.1, which was cracked in just a few days by
Andy Green in the UK.

CHAPTER 9

Sneaking in the
Back Door

The full range of viable attacks on the Xbox are too numerous to describe
in this book. The Xbox is based on the PC architecture, a complex, evolved
architecture originally designed with no thought for security. Many of the
classic hardware security holes exploited by smart card hackers, such as power
supply modulation, sideband attacks, and clock glitching have not even
been touched on the Xbox, to the best of my knowledge. (You can find
more information on these security weaknesses in the proceedings of the
Cryptographic Hardware in Embedded Systems (CHES) conference, in
the Lecture Notes in Computer Science series (Springer-Verlag).

Unfortunately, console and secure PC manufacturers are not concerned
about hardware security weaknesses, because hardware attacks are “too
difficult for the average consumer to execute” and therefore of little threat.
While it is true that researching an attack requires a skilled hacker with the
correct tools, implementing an attack can be very cheap and easy. I’m
reminded of the parable where a mechanic, called in to fix an important
piece of broken machinery, spends an hour looking at the situation and
repairs the machine by tapping on it at just the right spot. Upon receiving
a bill for $1,000, the machine’s owners demand to know why a tap costs
so much. The mechanic responds with, “The tap costs a dime. Knowing
where to tap costs $999.90.” The corollary to this parable is that anyone
could have executed the tap to repair the machine, given specific instruc-
tions.

Security attacks are often the same: difficult to figure out; easy to share
and implement. Secure hardware manufacturers should also be concerned
about adopting mainly reactive policies to hacker intrusions. Many
hackers work in secret, and keep their methods and results quiet so that
vendors cannot develop proper countermeasures. These hackers also
maintain a library of known attacks and back doors, disclosing only one
at a time, so that vendors with reactive hardware security policies are
always playing catchup.

Hacking the Xbox: An Introduction to Reverse Engineering138

The previous chapter described my eavesdropping attack on the Xbox
security mechanism that eventually yielded the RC-4 key hidden in a block of
secret code. This chapter describes a few of the other attacks available on the
Xbox that were devised by my colleagues, as well as the attack that was
mounted on the revised Xbox security scheme, herein referred to as security
version 1.1.

Back Doors and Security Holes
A class of back door attacks on the Xbox leverage a fundamental
weakness in the way the hardware is initialized by the secret boot code.

A Commentary on Naming
Conventions
Hacking communities often invent their own terminology
for important concepts, which can vary from community to
community and from industry standard terminology. The
following is the list of terminologies accepted by the Xbox-
Linux community. Any deviations from the terminology I use
in this book are noted.

• X-code: Jam table opcodes; the opcodes
used by the secret Southbridge (MCPX) boot
ROM to initialize the Xbox hardware

• 2BL: Second boot loader. This is the code that is
decrypted by the secret boot ROM. It is called
the second boot loader because this code’s
primary responsibility is to decrypt and
decompress a kernel image.

• Flash Boot Loader: In version 1.1 security, this is
an intermediate boot loader in between the
secret boot ROM and the 2BL. The FBL is verified
by a lightweight hash against a hard-coded
value within the secret boot ROM. As a result,
the FBL cannot be changed without changing
the MCPX silicon. The FBL is responsible for
verifying the digital signature on all critical
portions of the FLASH ROM.

• Kernel: The Xbox kernel code. It is stored
compressed and encrypted in the FLASH ROM.

• Version 1.0 security: The original Xbox security
system using RC-4 encryption on the 2BL.

• Version 1.1 security: The second Xbox security
system using the TEA hash to verify regions of the
FLASH ROM. The earliest manufacturing date
seen on boxes with version 1.1 security is around
August 2002.

Chapter 9 - Sneaking in the Back Door 139

FLASH ROM
contents

(simplified)
jam table
opcodes

(unencrypted)

2BL
(encrypted)

kernel
(compressed,

encrypted)

decoy code

opcode argument 1 argument 2

opcode argument 1 argument 2...

opcode == memory read/write, PCI
read/write, IO read/write, etc.

secret code
(in Southbridge)

Figure 9-1: Jam table opcodes in relation to the rest of FLASH ROM.

This weakness stems from the fact that hardware initialization is accom-
plished by way of a powerful jam table opcode interpreter that stores its
commands in unverified cleartext.

Visor Jam Table Attacks
One class of attacks on the Xbox involves modifying the hardware initializa-
tion sequence. Recall that hardware initialization of the Xbox is accom-
plished by means of an opcode interpreter that retrieves its commands from
an unencrypted portion of the FLASH ROM called the “jam table.” The
relationship of the jam table entries to the rest of FLASH ROM is illus-
trated in Figure 9-1. Jam table entries are stored as <opcode, arg1,
arg2> tuples near the lowest FLASH ROM addresses. The available
opcodes include memory read and write functions to all the address spaces
in the x86 architecture. Since the jam tables are stored unencrypted and never
checked for modification, opcodes can be inserted into the jam table that can
“seed” the Xbox memory with rogue instructions or modified hardware
state before the RC-4 decryption of the FLASH ROM 2BL.

One application of jam table modification is to recover the plaintext of the
kernel without knowledge of the RC-4 key. A hacker, known only as Visor,
first described this approach to me. Here is a summary of Visor’s approach:

1. Boot the Xbox normally. Part of the normal boot process will
place a decrypted kernel image into main memory.

2. While maintaining power to the Xbox, switch the contents
of the FLASH ROM’s jam table to an alternate table that
copies regions of main memory to an easily monitored
location, such as the FLASH ROM’s bus.

3. Perform a soft-reset of the Xbox CPU. This forces a
hardware re-initialization without erasing the main memory.

Hacking the Xbox: An Introduction to Reverse Engineering140
4. Record the contents of main memory as the modified jam

table program is executed.

Dynamic switchover of the FLASH ROM contents, required in step 2, can
be accomplished by means of a ROM emulator, or by using an oversized
ROM with the excess address bits wired to a bank of switches.

Visor also described how the jam table can be used as part of an elaborate
hack to gain control over the Xbox’s instruction pointer (IP). To better
understand this hack, we will further investigate how the secret boot code
handles the case of an invalid FLASH ROM image.

After decrypting the 2BL in the FLASH ROM image, the secret boot code
checks for a magic number at a location near the end of the 2BL. For an
invalid FLASH ROM image, this number does not match, and causes the
CPU to jump to a short sequence of instructions located at 0xFFFF.FFFA.
This set of instructions continues all the way to the very last addressable
location in physical memory, location 0xFFFF.FFFF. Once the CPU
executes this last instruction of the invalid ROM image, it should crash and
halt execution due to a code segment boundary error when the IP rolls over
from 0xFFFF.FFFF to 0x0000.0000. However, this does not happen;
rather, the CPU happily attempts to execute whatever instruction, valid or
invalid, is located at location 0x0000.0000. Nominally, this instruction is
invalid and the CPU halts anyway due to an instruction fault. However, a
valid instruction can be placed there during the Xbox jam table initialization
sequence using a jam table memory write opcode. Thus, by corrupting or
erasing the encrypted FLASH ROM image and by modifying the jam tables
to insert a jump instruction to your own unencrypted code in FLASH
ROM, you can gain control of the Xbox CPU IP without ever touching a
cipher or any similar technological measure that effectively controls access to a
copyrighted work. Hence, this hack might be legal under the DMCA. I say
might because the DMCA is an oftentimes vague piece of legislation, and
there is little court precedent to clarify the ambiguities. The argument for the
legality of this approach lies in the fact that no significant Microsoft
copyrighted code is ever decrypted or executed. The only exception is the
portion of the secret boot ROM that must execute because they are hard-
wired into the Southbridge’s silicon. See Chapter 12, “Caveat Hacker,” for a
more in-depth discussion of the legal issues that are facing the hacking
community today.

MIST Premature Unmap Attack1

In order to protect the secret boot code in the event that a hacker gains
control of the Xbox, the secret boot code in the Southbridge chip unmaps
itself shortly before it exits. In other words, it hides itself permanently
from the system when it is finished executing. Thus, a user program
attempting to access any of the top 512 bytes in memory will see the
decoy block in FLASH memory instead of the secret boot code. Michael

1 From Andy Green’s 19th Annual Chaos Communication
Congress presentation on Xbox security hacking.

Chapter 9 - Sneaking in the Back Door 141
Steil, the lead of the Xbox-Linux project, discovered a way to leverage
this feature.

The unmapping process is accomplished by writing to 0x8000.8008, a
hardware register in the PCI configuration space. The basic strategy is to
include a jam table opcode that writes to 0x8000.8008 and unmaps the
secret boot code before the initialization sequence is finished. Since the
caches are off at this time, the processor will start fetching and executing
instructions from the decoy block. Fortunately, since the decoy block can be
freely modified since it is part of the FLASH ROM. The catch, however, is
that the jam table interpreter blocks writes to location 0x8000.8008, so
this shouldn’t work. However, a bug in the decoding of the PCI configura-
tion space in the Southbridge chipset makes the unmap instruction respond
to multiple aliased addresses. In particular, the “function” bitfield is
ignored. Thus, a write to 0x8000.8X08 where X is not equal to 0 also does
the trick, and these writes are not blocked by the jam table interpreter.
Therefore, to gain control of the CPU IP using the MIST hack, you must
modify the decoy block in FLASH to contain your code, then add the
appropriate jam table opcode to unmap the secret boot ROM during
hardware initialization.

Microsoft Retaliates
The discovery of security holes prompted many to speculate that Microsoft
would be swift to rotate its security scheme. In August 2002, Xboxes with a
new motherboard quietly started to appear in Australia. The first official
word of the new security system came from an unlikely source: nVidia,
the producer of the chipsets used in the Xbox. Following an unspectacu-
lar second quarter in 2002, an nVidia spokesperson cited this as the last
of a few reasons why the quarter went poorly:

“What we said about Xbox was that we reached a
volume discount milestone, further reducing the
margins. And that we will be taking an inventory
write off in Q2 related to the amount of Xbox
MCPs that were made obsolete when MSFT
transitioned to a new security code (by way of the
MIT hacker) and excess in nForce chipsets that we
built in anticipation of higher demand of Athlon-
based PCs.” — Derek Perez, PR Director, nVidia 2

2 From an article by the Inquirer, http://www.theinquirer.net/
?article=4735

Hacking the Xbox: An Introduction to Reverse Engineering142
Reverse Engineering v1.1 Security3

The specifics of the security code changes were not revealed until
October 2002, when a hacker named Andy Green began investigating the
first version 1.1 Xboxes available in the United Kingdom. The outward
physical differences between Xbox version 1.1 and 1.0 on the
motherboard were subtle: the GPU traded its fan for a larger heat sink,
the USB daughtercard was merged into the motherboard, and a PLL
clock synthesizer chip was missing. Also missing were filter capacitors
here and there, but nothing significant seemed to have changed. Further
probing revealed that the hole leveraged by the MIST attack was patched,
but the jam table opcodes were unchanged. The LPC bus, a key vector
for gaining access to the Xbox, was also present and unchanged.

Andy was able to extract the MCPX ROM in one day using a procedure
thought up by a fellow hacker named Asterisk. The procedure leveraged an
undisclosed combination of previously identified security holes and back
doors. The initial analysis of the ROM contents revealed that the security
was implemented in a radically different fashion. A cursory overview of the
version 1.1 Xbox revealed that the old security through obscurity scheme
was tossed out, and replaced with a scheme that nominally gets its security
from the strength of public-key ciphers.

Secret Boot ROM

Hardcoded hash value

Flash Boot Loader +
Public Key

Public Key Signed Hash

2BL (kernel decompress,
decrypt)

Kernel Image

Jam Tables

MCPX
Southbridge Chip FLASH ROM

1. hash-check
intermediate flash

boot loader against
hardcoded hash

value

2. hash-check
critical ROM regions

against digitally
signed hash

3. jump to 2BL if
hashes check out

4. decrypt,
decompress and

execute kernel image

Figure 9-2: Xbox Security Version 1.1. Regions that cannot be changed
without replacing the MCPX silicon are shaded gray.

3 From Andy Green’s 19th Annual Chaos Communication Congress
presentation on Xbox security hacking.

Chapter 9 - Sneaking in the Back Door 143
Microsoft’s implementation of the new security scheme was a bit counter-
intuitive, though. Because the secret boot ROM within the MCPX
remained the same size, 512 bytes, they could not fit the full public-key
digital signature algorithm within the secret boot ROM. Instead, they
chose to use a lightweight hash in the secret boot ROM to verify a region
of FLASH ROM dubbed the Flash Boot Loader (FBL). The FBL
contains the code (RSA cipher, SHA-1 hash, Microsoft’s public key, and
the driver program) for digital signature verification of the FLASH
ROM. The FBL is executed only if the FBL’s hash can be verified against
a constant stored within the secret boot ROM. Thus, the FBL is in theory
as immutable as the secret boot ROM, even though it is stored in the
mutable FLASH ROM.

Although this scheme sounded fairly bulletproof, the hacking community
did not give up so easily. They examined the secret boot ROM’s hash in
detail and discovered that it is based on TEA, a Tiny Encryption Algorithm
by David Wheeler and Roger Needham at the Computer Laboratory of
Cambridge University. Franz Lehner, a collaborator in the effort, sent a query
to the newsgroup sci.crypt regarding weaknesses in the TEA hash.

On Friday afternoon, October 11th, their query was answered. A paper
written by John Kelsey, Bruce Schneier, and David Wagner, presented in
CRYPTO 1996 pointed out that the TEA cipher has a weakness in its key
scheduler where every key has three related keys that can be generated by
inverting certain pairs of bits (this weakness, along with the TEA cipher, is
discussed in more detail in Chapter 7). On Saturday, Andy Green posted
this to XboxHacker.net:

Aw, I'm a mere mortal, my feet are definitely made of

clay.

OK, I don't think its giving too much away to say the

first 5 bytes of the region.

ffffd400: E9 83 01 00 00

This is a relative longbranch to 0xffffd588

If I flip b31 of that as a DWORD (and flip its friend at

DWORD address +1 the same way) I branch instead to

0x7fd588.... Hmmmm that's, what, 8M up, where...

where

there's

RAM

Xcodes.. visor ram push method... (looks at MCPX for RAM

Write X-Code)

X-Code opcode 3 ... unrestricted

Hacking the Xbox: An Introduction to Reverse Engineering144
Hold on to your hat, boys! Its testing time!

(mviz, a marvelous and well-timed revelation, I feel

mysterious and invisble forces helping me along, for which

I am grateful!)4

In other words, the related-key weakness of the TEA cipher means that
every adjacent pair of double words in the FBL can be modified by one bit,
the most significant bit, without any change to the resulting hash. This
weakness gave Andy and his team enough breathing room to modify the
target of a single jump instruction to point to a location in main memory.

Profile: Andy Green
Can you tell us a little bit more about yourself, and how you
got into hacking?

I am 37, living in England, near Kettering in the East Mid-
lands, with my wife, our four children and two cats.

I have been interested in computers from the age of 12 or
so, when my brother bought a Commodore Pet. This 1MHz
6502 kept me occupied for months and months trying to
write first BASIC code typed in from magazines, then games
for it; eventually I wrote a fantastic character-cell Space
Invaders thing in machine code. Machine code is where
you are actually programming the CPU directly in hex; I still
remember the common 6502 opcodes in hex now. This was
such a dificult effort that I decided my next project would
be an assembler written in machine code. 1978 was before
the days of the Internet: I couldn't afford the commercial
assemblers because I was just a kid and there weren't any
people around us that I knew to warez a copy from.

This was fairly pathetic as assemblers go, but it worked fine.
I learned from this the value of having the right tools, I could
write far faster in Assembler, and whole kinds of errors mis-
computing relative branches by hand, for example) went
completely away. Next I had a BBC Model B computer,
and again I was interested to make tools and games. I was
offered a scholarship at a public school, but turned it down
and instead left school at 16 with no further education. I
was quite content to teach myself anything that interested
me.

I sold a few games for this and another 6502 platform called
the Oric, and with that money started up a company
making Assemblers and other development tools. On the
way I learned C and C++, and each time I stepped up
whole rafts of bugs and timewasting miseries disappeared.

(continued)

4 Posting from www.xboxhacker.net under the Xbox Hacker BBS- >
Xbox Hacking (TECHNICAL) -> BIOS/Flash ROM/Firmware ->
News from the Xbox Linux Team, MS ‘made a hash of it,’ guts
exposed.

Chapter 9 - Sneaking in the Back Door 145
That single location can be pre-loaded with a follow-up jump instruction
back into any piece of user code using the previously discussed jam table
codes. The Xbox hacking community had come together in a heroic
effort and cracked Xbox security version 1.1 in three days. A separate
effort, no less valiant, by Xecuter had also cracked the security in the
same time frame.

The first moral of this story is that security is only as strong as its weakest
link. While there is little doubt about the robustness of the RSA cipher
and the SHA-1 hash for digital signature purposes, these were not the
only elements of the security system. The TEA cipher used to extend the
secure boot ROM’s trust sphere into the FLASH ROM had flaws that
allowed hackers to walk around the strong digital signature algorithms.
This leads us to our second moral: complexity breeds weaknesses.
Complex systems are difficult to design, test, and analyze. The version 1.1
security for the Xbox was probably implemented on a short fuse, so

Its like that picture on the “Ascent of Man,” from Nethanderal
relative branch computation through to Homo Erectus with
his virtual functions.

Alongside this I began to explore digital hardware design,
again teaching myself from experience. I discovered that
hardware and software are two sides of the same coin, al-
though they are treated completely separately in education.
It’s really an implementation detail whether you choose to
make your logical function in software or in hardware, or some
mixture of the two. Having a foot in both camps gives greater
insight into the nature of design: for example, C++ can be
said to borrow many concepts from electronics in terms of the
importance of interfaces.

Recently before becoming interested in the Xbox I had been
working for a US-owned company with an office in Oxford,
doing many jobs but the last one was designing smartcard
silicon. Although the design was interesting and there were
some great people working in the trenches there, I became
increasingly despondent about the politics and problems with
the management. Nor did it help that despite being spread
across several projects, I was paid 2/3rds the salary of staff in
San Jose simply because I was based in the UK. And don't get
me started about the patents they had from me with no re-
ward. In December 2001 I discovered that integrity was more
important than money, resigned, and decided to go back to
working for myself.

I had been rather tenderized by some unpleasant experiences
on leaving this company, while digesting these I found myself
snagged by the vast difference in outlook between the ugly,
grabbing, controlling instincts of your average company in-
volved in Intellectual Property, and the nature of GPL projects
and the people involved in encouraging a reduction in the
severity of patent and copyright laws. As time went on I in-
creasingly came to see Microsoft, and the previous company

(continued)

Hacking the Xbox: An Introduction to Reverse Engineering146
there was insufficient time to analyze the system for weaknesses. Either
that, or Microsoft knew about the TEA weakness and designed this back
door into the system to mitigate the risk of locking their FBL into
silicon. It seems rather doubtful that Microsoft intentionally included this
back door, since modifying the MCPX silicon is a very expensive
proposition (although the expense ended up on nVidia’s books). On the
other hand, complexity is hard to avoid. My advisor at MIT, Tom
Knight, once told me, “There are two kinds of designs in this world:
those that are useful, and those that you can formally prove to be
correct.” To some extent, the only way to ensure the security of a real-
world system is to make its details open (no security through obscurity!)
and subject the system to analysis from all angles. In a way, a thorough
analysis of Xbox security is being conducted at no expense to Microsoft,
thanks to the hacker community.

I was working for in the same light.

It was after this that I read about bunnie's hack on Slashdot. I
read about bunnie's methods with some tart emotions. My
main thoughts were that this was something that I could have
done, since I have been using the FPGAs that bunnie used
since 1989, admiration for the conciseness of the attack, and
dismay with myself that I had not been doing something equally
cool and interesting — and that matched with my philosophi-
cal predilictions — with my time. Instead I was sitting there
reading Slashdot, drinking coffee, contributing nothing. (An
aside, I think this is a fairly common experience for many
Slashdot readers, to be a little jealous and challenged when
they read about someone else's cool hacks. I think it explains
the constant background noise there of jeering and question-
ing why someone would want to do such a thing.)

Over the next few weeks I gathered as much information as I
could on the internals of the Xbox; Xboxhacker.net was cru-
cial for this. It’s also where I met Michael Steil as the Xbox
Linux project was starting. Pretty soon I was able to identify
interesting projects that I could contribute to, for example
the Milksop project. Again from this, with Surferdude's help, it
became possible for me to put together the very first clean
ROM which was able to boot and keep up the Xbox with-
out being reset. This later became the basis of the crom
1MB Linux and cromwell, the Xbox Linux clean ROM. After
the initial hacks and designs, I decided to work almost en-
tirely towards the Xbox Linux goal.

Can you tell us why you hack the Xbox?

Why? Everyone has different reasons, but for me it was my
comprehension of Microsoft's outrageous antitrust behaviour
— deny everything, appeal everything, delay everything,
and in the meanwhile, create and dump (for they are sold
at below cost) on the market millions of Microsoft-only PCs
— the Xbox. Since our representatives here in Europe and
the U.S. don't seem to care (perhaps, as was the case re-
cently in the EU, because they plan to go work for Microsoft

(continued)

Profile: Andy Green (continued)

Chapter 9 - Sneaking in the Back Door 147
Even if Microsoft had used a stronger hash function in the secret boot
ROM, there are still a number of viable attacks on the Xbox that have yet to
be tried. One can mount a man-in-the-middle attack on the
HyperTransport bus (see Chapter 8) by overdriving the signals with
carefully timed pulses. This attack is fairly simple to implement, since
each HyperTransport bus trace has a test point visible from the compo-
nent side of the motherboard. A complete hardware solution would
involve an FPGA on a board with “pogo pin” bed-of-nails style test
connectors. This board can be impressed upon these test points without
any solder. Another attack, suggested by Adi Shamir to me at the CHES
conference, is to employ a timed glitch in the CPU clock or power supply
to upset the calculation of a jump target address. This kind of attack has
been applied with success to the processors in cryptographic smart cards.
Again, this kind of attack can be implemented fairly easily and cheaply as
a user-installable module. (Keep in mind that a much broader range of
attacks is available to hackers if the goal is a onetime defeat of the
security to recover, for example, a secret key or a block of critical code.)

The Threat of Back Doors
As this chapter has demonstrated, searching for back doors is a practical
method for attacking cryptographically secured hardware. The relatively high
success rate of finding back doors in the Xbox is partially because the

and take their silver pieces), it would be an honour to be part
of pricking this evil plan of a bloated monopoly using the
weapons of the GPL and Linux. I know that people shut their
eyes and think of their share options, but it must be hard for
decent people — and surely most of the people working there
are this — to work for such a monster.

I was lucky enough to get a couple of contracts through 2002
that allowed me to spend the latter part of the year working
exclusively on getting the first Linux kernel up in crom and bring-
ing Cromwell up so it was able to control the main peripher-
als of the box and boot Linux from HDD or CD. Since then my
share of the Project A prize money (thanks to donor Michael
Robertson) will allow me to continue working full time, for the
next few months at least.

Do you have any advice you’d like to share?

My final thought is to encourage people, especially young
people, to listen to their brain when it comes to things that
interest them. Don't be afraid to dig around and try to learn
about things that snag your attention. That feeling you get
when you wish you understood something, a kind of yearn-
ing, is your brain's way of telling you that it thinks the knowl-
edge might be useful later. If you listen to it enough, you stand
a good chance of knowing the right thing at the right time to
make some small difference.

Hacking the Xbox: An Introduction to Reverse Engineering148

Xbox represents the first significant attempt made by a vendor to
cryptographically secure a PC. Despite the lessons learned from the
Xbox experience, future secure PC implementations are still at risk of
having hardware security weaknesses, since the legacy of the PC is an
open and unsecured hardware architecture.

PC hardware is complex yet fragile, and building a chain of trust out of
it is difficult because of this brittleness. Fundamentally, each component
in a PC is designed to be “trusting” of its physical environment. The
specifications for any commercial integrated circuit component clearly
state that the IC is guaranteed to operate over a bounded range of
temperatures, voltages, frequencies, and other conditions. If these maxi-
mum ratings are violated, then the behavior of the device is “undefined,”
and all bets are off. Most chip engineers do not even consider trying to make
their circuits recover gracefully from an out-of-range condition, as it is already
hard enough to get a chip to work under the specified operating conditions.
Furthermore, most consumer applications are very cost-sensitive, and the
overhead of building in robust fault tolerance measures results in a product
that is not price-competitive.

Thus, chips are typically implemented with no internal error-checking. If, for
some reason, the Arithmetic Logic Unit (ALU, the computational “brains”
of a CPU) adds two numbers incorrectly, the problem will only manifest
itself symptomatically; you can observe only the effects of such an error,
sometimes long after the error-causing event. One can think of attacks that
take advantage of faults induced by out-of-range conditions as the analogy
of buffer overruns in the software world.

Another problem with the PC architecture is that the processor is too
trusting of its code environment. The Pentium processor architecture has
no provision in hardware for discriminating between code that is insecure or
secure. If the instruction pointer happens to find its way into an insecure
code segment through a bug or an induced failure, the processor will happily
execute this code.

Profile: Franz Lehner
Franz Lehner, 29, lives in Austria with his girlfriend. He studied
Electrical Engineering for 5 years. Now, he programs “auto-
mated solutions” while running an ISP. In his spare time, he
searches for projects that are fun and educational.

After finding bunnie’s Xbox hacking document, he met the
Xbox-Linux team on sourceforge.net. He joined the Xbox-
Linux project to learn about team programming, Linux ker-
nel hacking and debugging, and cryptographic systems.
He also joined the Xbox-Linux project to develop a better
understanding of related systems, such as Palladium.

Chapter 9 - Sneaking in the Back Door 149

4 http://www.ai.mit.edu/projects/aries/Documents/Memos/ARIES-15.pdf.
“A Minimal Trusted Computing Base for Dynamically Ensuring
Secure Information Flow,” by Tom Knight and Jeremy Brown.

 Note
Code compartmentalization based on hardware security
levels is a different technique from sand-boxing. Sand-
boxing does not provide an adequate solution for situa-
tions where a user program requires direction from or in-
teraction with secret or protected code or data. Lately,
new processor architectures have been proposed that can
solve this problem through the use of data tags that embed
a sort of security audit log.4

Another source of back doors are the design bugs that exist in every
complex chip. It is common practice to ship chips with plenty of known
bugs, also known as errata. For example, the Intel i860 XP processor (first
released in 1991, not to be confused with the recently released i860 chipset
for the Pentium4 processor) shipped with a book of errata that was
comparable in size to the processor’s data sheet. Another example closer to
home is the bug in the nVidia MCPX’s address space decoder that made the
MIST Premature Unmap attack possible. Most of these errata have simple
work-arounds or have minor implications for the functionality of the chip
under nominal conditions. However, some errata, such as those dealing
with cache coherence, address decoding, and memory management can result
in major software security holes.

In the case of the Xbox, the business impact of a hardware back door is
probably small. Perhaps Microsoft loses some small fraction of game sales
revenue, but the losses due to piracy are dwarfed by the losses Microsoft
takes on hardware sales. Also, the Xbox is just a game console — grandma’s
bank account is not being tapped dry or credit card numbers stolen as a
result of security weaknesses in the Xbox. However, more than game
revenues will be at risk with the trusted PC. Unless the trusted PC architec-
ture is a fundamental change from legacy PCs, people will be blindly trusting
financial secrets and personal data security to untrustworthy hardware.

Like most things in life, the first step is education. The more we learn about
hardware security, even if it involves poking around a game console, the
better our security systems will be tomorrow. Now, on with the lesson . . .

CHAPTER 10

More Hardware
Projects

The similarity of the Xbox to the PC architecture allows hackers to borrow
technology and expertise from the PC world when building hardware
projects. As a result, PC hardware, monitors, cables, and peripherals have all
been adapted to work with the Xbox. This chapter introduces some of
these hardware projects, discovered, documented and implemented by
hackers around the world.

The LPC Interface
Version 1.0 of the LPC (Low Pin Count) interface was defined by Intel in
1997. The LPC interface is a royalty-free bus that is designed to enable
systems without explicit ISA or X-bus (ISA-like expansion bus for memory
or generic I/O devices) capabilities. The need for the LPC interface stems
from the large number of low bit-rate, high pin count devices and busses
with incompatible interfaces found in a standard PC, such as the floppy
disk, keyboard, mouse, serial, IrDA, parallel, ISA, and boot ROM interfaces.
The aggregate bandwidth consumed by all these devices is small, but the
number of signals required to support all of them easily exceeds the signal
count required by higher-bandwidth buses such as the PCI or AGP bus.
Making matters worse, not all configurations of computers requires all of
these legacy I/O devices, and wasted pins and functions just eat away at
profits. The cost of a pin on a chip package is high relative to the cost of the
silicon required to support these simple interfaces. (A rule of thumb is that
one package pin costs a penny, while in 0.13µ silicon, about ten thousand
gates — enough logic to implement a small processor—costs a penny in
silicon area, assuming the design is not bond-pad limited1.)

The LPC interface counters this problem with a single, low-pin count (seven
required pins, versus the 36 pins required for an ISA bus) bus that operates

Hacking the Xbox: An Introduction to Reverse Engineering152
at a high speed. All of the legacy I/O and expansion functions are
mapped into this high-bandwidth bus, enabling system designers to create
so-called “Super I/O” chips that in turn enable Southbridge chips with a
much lower pin count. In addition, segregating functions between Super
I/O chips and Southbridge chips allows designers to choose Super I/O
and Southbridge chip combinations that provide the optimal set of
features for a given application.

The LPC physical interface is quite simple. The interface is a 4-bit bi-
directional bus that runs at a 33 MHz clock rate. The interface also has two
“sideband” signals: one framing signal that indicates the start and end of
LPC bus cycles, and one reset signal that forces all LPC peripheral devices
into a known state for initialization purposes. In addition, there are a couple
of optional signals for the LPC interface that provide DMA and interrupt
capabilities as well as power management for more sophisticated I/O
devices. (More information on the LPC bus and its protocol can be found in
the Intel Low Pin Count (LPC) Interface Specification, version 1.1. The
specification can be found on the Intel corporate website at http://
www.intel.com/design/chipsets/industry/lpc.htm.)

LPC Interface on the Xbox
The Xbox incorporates an LPC interface on the motherboard. The LPC
interface in this case is used to implement a debug and test bus. One can
connect a keyboard and mouse through this LPC interface, as well as an
alternate boot ROM for diagnostic purposes. The LPC interface is activated
to load alternate boot code when the FLASH ROM on the Xbox is not
available. The lack of a FLASH ROM device can be simulated by forcing the
lowest data bit (D0) of the FLASH ROM data bus to a level of zero volts.

Many speculate that the LPC interface is an essential part of the Xbox
production line because of the alternate boot ROM ability provided by the
LPC interface. Fully assembled Xboxes can be configured with a comprehen-
sive self-test program via the LPC interface. Applying the CPU as a fast test
controller allows defective units to be quickly and efficiently isolated on the
factory floor without the cost of expensive testing machines.

For hackers, the alternate boot ROM facility provided by the LPC interface is
an ideal mechanism for getting code into the Xbox. Valid LPC-loadable
boot ROM images for the Xbox can be created by anyone since the crypto-
graphically secured boot procedure of the Xbox is now fully understood. In
fact, some vendors of alternate boot ROM devices for the Xbox have
leveraged the regularity of the LPC interface’s pinout geometry on the Xbox

1 The circuits on a chip are typically surrounded by squares of
metal (“bond pads”) that are wired to the pins on the chip’s
packaging. A chip is said to be bond-pad limited when the
area required for the ring of bond pads exceeds the area
required by the circuitry inside the chip. The cost of excess pins
becomes even higher in the case that a chip is bond-pad
limited.

Chapter 10 - More Hardware Projects 153
motherboard to create ROM devices that install without any soldering.
These devices use a set of spring-loaded “pogo-pins,” similar to those used
during production for Xbox testing, to contact the LPC interface with just a
pressure-fit. (The pinout of the LPC bus as implemented on the Xbox can
be found in Appendix F, “Xbox Hardware Reference.”)

Using the LPC Interface
The fact that the LPC interface is an industry standard is quite convenient for
Xbox hardware hackers. First, there is a plethora of LPC-compatible
interface devices, ranging from Super-I/O chips to firmware ROMs with
built-in LPC interfaces. Second, the wide acceptance of the LPC interface as a
diagnostic and convenience bus for generic PCs helps mitigate the legal risk
of using the LPC interface and selling LPC interface devices. A firmware
ROM for the LPC interface can be sold without any Xbox-specific contents
since end-users can easily reprogram their LPC bus devices using a simple,
cheap adapter for their PC. A further help to the legality of LPC firmware
devices is that the Xbox’s LPC connector pinout is nearly identical to the one
recommended by Intel for generic PCs. As a result, an LPC firmware device
sold for the Xbox is very similar to an LPC firmware device sold for the
standard PC.

One of the first LPC boot ROM devices was developed by Andy Green.
The project is called “Cheapmod” and it is an SST 49LF020 device (256
kByte FLASH ROM with an integrated LPC interface) in a socket wired to an
LPC-compatible header. According to Andy’s Cheapmod webpage,
“http://warmcat.com/milksop/cheapmod.html,” “If you can get
ahold of the $2.50 SST 49LF020, you can build an alternative BIOS for $4.”
This device can be programmed using his “CheapLPC” programmer
(http://warmcat.com/milksop/cheapLPC.html), a delightfully
simple PC parallel-port based device that can (slowly) talk to and reprogram
an LPC device. Many commercially available alternate firmware devices have
been based off of or inspired by his design, including the Xodus/Matrix
design. The Xodus/Matrix is a particularly interesting variant of Andy’s
original design, as it was the first Xbox alternate firmware device to imple-
ment an entirely solderless installation procedure. This opened up the world
of Xbox hacking to software-oriented hackers who were not inclined to
solder wires into their Xboxes. (A photograph of the Xodus/Matrix can be
seen in Figure 10-1.) The Xodus/Matrix device comes without any code
programmed in it; the user must provide the alternate firmware image.

There are some important functional considerations when selecting a
FLASH ROM chip with an LPC interface for use with the Xbox. The most
significant is that the native Xbox architecture allocates a 16 MB area for the
boot ROM. If the physical boot ROM is smaller than 16 MB in size, the
boot ROM contents are aliased to fill up the entire 16 MB space. This gives
Xbox designers more flexibility in choosing the size of the ROM chip
without causing problems with routines that uses both bottom- and top-
relative addressing.

Hacking the Xbox: An Introduction to Reverse Engineering154

Figure 10-1: The solderless Xodus/Matrix alternate firmware device, showing
the spring-loaded “pogo-pin” contacts that enable a solderless connection to
the LPC connector on the Xbox motherboard.

Let’s make the concept of bottom- and top-relative addressing more
concrete with an example. The addresses for the 16 MB boot ROM area in
the Xbox spans from 0xFF00.0000 to 0xFFFF.FFFF. Programs on the
Xbox that use bottom-relative addressing will compute addresses using
0xFF00.0000 + offset (bottom address plus offset), while programs
that use top-relative addressing will use 0xFFFF.FFFF – offset (top
address minus offset). Suppose a 1 MB boot ROM is installed in the Xbox.
This means that the processor will see 16 identical copies of this 1 MB ROM
spread evenly over the 16 MB ROM address space. In other words, the
contents of the boot memory appear identical for every address A +
0xFF00.0000 + n * 0x0010.0000, n = 0 through 15, A = 0
through 0x000F.FFFF. As a result, programmers can pack data into the
smaller 1 MB boot ROM using both top- and bottom-relative addressing
without having to change any of their code: A valid copy of the ROM image

Chapter 10 - More Hardware Projects 155

appears near both the top- and the bottom-relative base addresses. Now,
suppose that Microsoft decided to save on cost and shrink their 1 MB boot
ROM down to a 256 kB boot ROM. The processor now sees 64 identical
copies of this 256 kB boot ROM distributed over the 16 MB ROM address
space, and all of the old code that uses bottom- and top-relative addressing
still works. Significantly, the CPU in the Xbox is hard-wired to start
executing code on power-up from an address located 16 bytes from the top
of memory (its “reset vector”), while the hardware initialization routines
wired into the Xbox chipsets use ROM locations located near the bottom
of the 16 MB FLASH ROM space. As a result, the Xbox hardware requires
an LPC ROM implementation that is either 16 MB in size, or else aliases a
smaller ROM’s contents throughout the FLASH ROM address space. (The
SST 49LF020 is one of the few LPC FLASH ROMs that aliases the ROM’s
contents over the whole address space. Arguably, this feature is actually a
bug: By ignoring the upper address bits and aliasing the ROM’s contents
over the whole address space, this chip occupies space that could be allocated
to other functions. As a result, SST has released an updated “A-step” of the
part, called the 49LF020A, that does not alias the ROM’s contents over
memory. Likewise, the A-step silicon will not work as an alternate firmware
device for the Xbox.)

The Other 64 MB of SDRAM
An astute observer will note that there are two missing chips on the top
side of the Xbox motherboard, and that these missing chip spots look

Alternate Firmware Devices vs.
Modchips
An alternate firmware device is a hardware module that
provides a method for running user-specified firmware on
the Xbox hardware. Alternate firmware devices are distin-
guished from the so-called “modchip” in that an alternate
firmware device is furnished as a blank device and has no
inherent ability to circumvent copyright control mecha-
nisms. A blank LPC-interface ROM device, for example, is
an alternate firmware device: you could burn a copy of
the U.S. Bill of Rights on it if you wanted. Any user-installed
FLASH ROM that comes blank is also an alternate firmware
device. A modchip, on the other hand, colloquially implies
a device that is crafted for playing game backups and
otherwise modifying or removing DRM (digital rights man-
agement) policy restrictions. Hence, the term modchip en-
compasses certain boot ROM devices that have been pro-
grammed with code that enables DRM policy modifica-
tions, as well as devices such as “patchers” that contain no
ROM and operate by dynamically patching a few key
Xbox firmware locations as the firmware is loaded for ex-
ecution.

Hacking the Xbox: An Introduction to Reverse Engineering156

Figure 10-2: The unpopulated memory footprints on the Xbox motherboard.

Fiduciaries
Look at an unpopulated memory spot on the Xbox
motherboard. The silver dot surrounded by a dark annulus
inside these unpopulated chip footprints is called a fidu-
ciary. Fiduciary patterns are used by circuit board assem-
bly machines as reference points for aligning large chips
with many pins. They are designed to be easily recognized
by the machine vision systems employed in board assem-
bly machines. Specially shaped fiduciaries can also be used
to enable automatic identification of the orientation and
type of a circuit board.

Chapter 10 - More Hardware Projects 157
suspiciously like the spots currently occupied by memory chips. Flip the
board over, and there are two more unoccupied chip footprints. These
empty footprints are in fact for memory chips. The location of these blank
spots is shown in Figure 10-2.

The next logical question is, of course, “Can you double the Xbox’s
memory size to 128 MB by soldering suitable memory chips into the open
slots on the Xbox motherboard?” The answer is in fact yes, but the
initialization code for the Xbox needs to be modified in order for the
chipset to recognize and use the extra memory. In addition, the extra
memory does not help graphics or gaming performance. Xbox games are
not designed to take advantage of the extra memory, so the extra memory
will typically sit around unused. The extra memory spots are provided
primarily for the manufacture of special consoles for game developers.
Game developers can use the extra memory to ease the transition of games
into the Xbox’s relatively tight memory footprint, as well as for keeping
debug, performance monitoring, and test utilities resident in memory that
are not part of the game image. Note that the extra memory could be
leveraged by home-brew software, but the difficulty of obtaining and
installing the memory chips makes Xbox memory expansions more of an
interesting soldering practice exercise than a practical modification.

Xbox VGA
There is a little bit of confusion about what an Xbox VGA adapter does.
Many Xbox VGA adapters are actually TV-to-VGA converters. In other
words, they take the low resolution TV output from the Xbox and run it
through a line doubler to yield a low-quality VGA display. A true Xbox
VGA adapter actually configures the Xbox to output a much higher
resolution video output, yielding a better-than-TV quality display on a VGA
monitor.

The VGA adapter configures the Xbox graphics mode using designated
pins in the AVIP (Audio Video I/O Port) connector. The main problem
with this approach is that a game has to be specially written to support this
higher resolution mode. As a result, some games will not work with a true
Xbox VGA adapter, but fortunately going back to TV resolution is as easy
as plugging in the standard TV adapter cable.

The original Xbox-VGA adapter was developed by Ken Gasper. He sells a
version of it on his website at http://xboxvga.xemulation.com.
Currently, he offers the Xbox-VGA adapter in a “bare board” form as well
as in a fully assembled form. If you are looking for an interesting hardware
hacking project for the Xbox that is both useful and will hone your circuit
assembly skills, it may be worth purchasing one of his bare boards and
attempting to assemble the adapter yourself.

Appendix F contains a pin diagram of the Xbox AVIP.

Hacking the Xbox: An Introduction to Reverse Engineering158
Mass Storage Replacement

The Xbox contains a DVD-ROM drive and a hard drive, both of which
use the PC standard IDE interface for talking to the Xbox motherboard.
The DVD-ROM drive also has a proprietary power and DVD tray state
connector. A popular and sometimes necessary hacking activity for the
Xbox is replacing these drives.

Users replace or tweak the DVD-ROM because the native Xbox DVD-ROM
drive is unable to read CD-Rs and many types of CD-RW media. This can
be particularly annoying for those who are trying to install Xbox-Linux for
the first time, or for users who are trying to rip music from their CD-R
collection to the Xbox hard drive.

There are many methods for replacing and tweaking the Xbox DVD-ROM
drive. Some Xbox DVD-ROM drive models can have their laser intensity
adjusted to improve their ability to read CD-R and CD-RW media. This is a
potentially risky operation, since you can permanently damage your DVD-
ROM drive by improperly adjusting the power output of the laser, but
many hackers have reported that a properly executed procedure results in
better media compatibility. I suggest a web-search for the latest news and
techniques since the style and model of DVD-ROM drive used in the Xbox
varies frequently. In addition, the Xbox DVD-ROM drive can be replaced
outright with a standard PC DVD-ROM. The problem with this method is
twofold. First, a regular PC DVD-ROM drive cannot read original Xbox
game disks due to physical security measures built into an Xbox game disk.
Second, a PC DVD-ROM drive needs to be adapted to the custom DVD
power and traystate connector on the Xbox motherboard.

The easiest, but ugliest,way is to install a standard PC DVD-ROM drive but
leave the Xbox DVD-ROM drive connected through its proprietary cable. In
this method, the gray IDE cable is connected to the standard PC DVD-
ROM drive (set to slave mode through jumper configurations on the drive),
and power is stolen from the hard drive’s power connector using a standard
power splitter cable. The Xbox DVD-ROM drive remains in place, but with
its IDE connector empty and with the proprietary yellow power-and-tray-
state cable installed. The purpose of the Xbox DVD-ROM drive is to serve
as a dummy drive that is used to manually relay the state of the DVD drive
tray to the Xbox. In other words, the user needs to manually replicate the
state of the standard PC DVD-ROM’s tray using the Xbox DVD-ROM’s
tray during a media change event.

The exact procedure for operating an Xbox in this configuration varies
depending upon the particular PC DVD-ROM drive model and the nuances
of the Xbox hardware configuration, so again, I suggest a web-search for
the latest information. There are also some websites that describe how to
adapt select PC DVD-ROM drive models to work with the Xbox’s propri-
etary tray state and power connector. A project like this is a good intermedi-
ate-level one for hackers who are basically comfortable with soldering and
screwdrivers. The modifications performed on the standard DVD-ROM

Chapter 10 - More Hardware Projects 159
drive allow the state of the standard drive’s DVD tray to be accurately
transmitted to the Xbox. They do not allow you to play original games,
however, unless the Xbox has been modified with additional hardware that
circumvents the security checks on the DVD ROM drive. Even without the
ability to play games, this is still a useful technique for ferreting out Xbox-
Linux installation problems and for enhancing the ability of the Xbox to rip
your CD collection or to watch DVDs. (Note that returning the IDE
connector back to the Xbox DVD-ROM drive will restore the original
gaming functionality of the Xbox.)

Xbox hard drives also need replacing from time to time. Serious
software developers for the Xbox find it advantageous to install a higher
capacity hard drive in the Xbox, and users with broken hard drives also
desire to replace their hard drives. Unfortunately, the OEM Xbox hard
drive contains copyrighted Microsoft programs. Xbox hard drives are
also protected with a firmware lockout, which makes installing a new
hard drive with original gaming functionality rather challenging, especially
in terms of legal issues. The firmware lockout is also unique to each hard
drive, preventing you from replacing your hard drive with a used Xbox
hard drive. However, if you only wish to run Xbox-Linux or other
homebrew programs and do not care about playing games, installing a
new hard drive in the Xbox is as easy and as legal as installing a hard
drive in any PC.

CHAPTER 11

Developing
Software for
the Xbox

While the focus of this book is educating readers in the ways of hardware
hacking and security, one ultimate goal of Xbox hacking is to run home-
brew software. This chapter is devoted to describing some of the home-
brew software projects in progress for the Xbox at the time of this writing.

Xbox-Linux
The goal of the Xbox-Linux project is to create a user-friendly and legal port
of GNU/Linux and of GNU/Linux applications to the Xbox hardware
platform. Thanks to the dedication and contributions of hackers around the
globe, the Xbox-Linux project has had a great deal of success toward
meeting its goals. A picture of the core Xbox-Linux project team can be seen
in Figure 11-1, and the sidebars in this chapter and in Chapter 9 contain
interviews with Xbox-Linux project team members. (The homepage for the
Xbox-Linux project is http://xbox-linux.sourceforge.net.)
Significantly, the Xbox-Linux project and its principle hackers are not anti-
Microsoft. They are pro-“freedom to tinker,” and not puerile Microsoft-
haters; they have an agenda that touches upon preserving the very freedoms
of thought and speech that brought technology to where it is today.

Xbox-Linux is not the ultimate software project for the Xbox; on the
contrary, it is just the beginning of Xbox software hacking. Porting the

Hacking the Xbox: An Introduction to Reverse Engineering162
familiar GNU/Linux development environment to the Xbox enables a
larger base of software hackers to join the Xbox hacking project. With
GNU/Linux, the Xbox can run a wide variety of application software, from
free open-source video games to word processing applications to clustering
software for building Beowulf-style computer clusters.

Installing Xbox-Linux
Currently, in order to run Xbox-Linux, you need to install a GNU/Linux
boot ROM using an alternate firmware device. This requires opening up the
Xbox. Chapter 10 describes methods for building and installing an alternate
firmware device for the Xbox via the LPC interface. Several vendors now
offer easy-to-install LPC interface alternative firmware devices. Notably, the
Xodus/Matrix device is the first alternative firmware device on the market
with an entirely solderless installation procedure. All the tools you need to
install the Xodus/Matrix device are described in Chapter 1, “Voiding the
Warranty,” and the Xodus/Matrix device itself comes with some easy-to-

Profile: Michael Steil
Michael, can you tell us a little bit more about yourself?

Born in 1979 in Erding/Germany, I’m a student of computer
science at the Technische Universität München. I teach
Assembly to students in the first semester, and I plan to have
a MA degree next year. I have been working with comput-
ers since I was ten years old; my first computer was a Com-
modore 64, followed soon by a 386 PC. My main interests
were always hardware and operating systems, and I was
especially fascinated by the diversity of hardware archi-
tectures (Commodore, PC, Amiga, Macintosh, . . .) as well as
popular embedded systems, such as gaming consoles. (Did
you know the “SEGA CD” has three CPUs, one Z80 and two
M68000?). That’s why I bought many video game systems
for experimentation, such as the Nintendo SNES, the SEGA
Genesis, and the Nintendo Game Boy. I also had a look at
Linux for the SEGA Dreamcast, but I have never seen Linux
for the Sony Playstation 2, since the whole set was really too
expensive for me, both for experimentation and for real use.

How did you get into Xbox hacking, and in particular, the
Xbox-Linux project?

On April 30th 2002, I bought an Xbox, convinced that it
would be a great toy for hacking, and well-suited for Linux.
After looking at the system software for an hour or two (I
bought no game), I unscrewed the Xbox. Looking for infor-
mation about hacking the box disappointed me at first: I
didn’t find much more than how to connect the hard disk
to a PC, and a site about Xbox Linux with virtually no infor-
mation on it. So I decided to start my own Xbox hacking site
and put information on it that I found out by connecting
the hard disk to a PC.

(continued)

Chapter 11 - Developing Software for the Xbox 163

Xboxhacker.net and the original Xbox Linux mailing list were
a great help; they both attracted excellent hackers and
published valuable information. Dissatisfied with the origi-
nal infrastructure of the Xbox Linux Project, I decided to
move to Sourceforge on May 23rd. Now every contributor
could add anything to the website without having to go
through the maintainer. But at that time, everything was still
quite theoretical: Without the advent of modchips we
couldn’t do much more than write code that “should theo-
retically work.” Andy Green’s Filtror accelerated everything:
This mod made it possible to finish the bootloader and, with
Milosch Meriac’s help, adapt the Linux kernel within a very
short time.

The “anonymous donor” approaching me in June did not
only lead to additional publicity of the project and there-
fore to even more contributors, but also to a personal friend-
ship of mine: Walter Meyer, creator of the BioXX (OpenXbox)
modchip happens to live only 20 kilometers away from my
place. Among other things, he helped me a lot with
modding my boxes, since I’m not really a soldering iron per-
son.

With Linux already running on the Xbox, in December 2002
the Xbox Linux core team (Andy Green, Milosch Meriac,
Franz Lehner, and me; Edgar Hucek unfortunately couldn’t
come) met in person for the first time at the Chaos Com-
puter Club Congress in Berlin.

My original motivation for everything was just that it’s fun
and I could learn a lot by doing it. I didn’t start it because
I wanted to harm Microsoft — still, I agree that Microsoft
harms their customers by not letting them use the software
they want to use on the hardware they bought, and that’s
why the Xbox Linux Project is especially important.

follow instructions on how to program and use the alternate firmware
device.

Note
Microsoft can and will revise their motherboard layout and
security system, so check with your device vendor for com-
patibility with your specific system hardware before mak-
ing a purchase. You will also need an Xbox gameport to
USB converter cable if you wish to use a standard key-
board and mouse with the Xbox, which can be purchased
through aftermarket retailers such as Lik-Sang (http://
www.lik-sang.com) or you can build one yourself by fol-
lowing the step-by-step guide in Chapter 4.

Before installing your alternative firmware device, you will need to program
it with a ROM image that boots the GNU/Linux kernel. “Cromwell” is an
open-source, clean-room (i.e., contains no Microsoft code) boot ROM for
the Xbox that is capable of booting GNU/Linux. Significantly, the informa-
tion contained in the Cromwell source code and binary image cannot be

(continued)

Hacking the Xbox: An Introduction to Reverse Engineering164

[We’re] not “Anti-MS” or “MS-haters.” We dislike their market in
strategy, so we have a rational reason to work against them.

Is there anything more you’d like to say about the $200k prize
for Xbox-Linux?

I think that the award didn’t attract people that wanted to
see some money: Now one month after the deadline, the
money still hasn’t been distributed yet and still not a single
person has sent me a single question about when he will get
the money. The award attracted the press; we got more pub-
licity, and this way we got more hackers. But nobody did it
because of the money. So we don’t want to be regarded as
being paid for the job by Michael Robertson. A good proof is
that we’re still all active after the deadline.

Can you tell us more about your “MIST X-Code hack”?

Some time after bunnie’s original hack, Andy extracted the
MCPX ROM completely and Steve, Paul , and I started to ana-
lyze the code, and I reverse-engineered the X-Code interpreter
contained within it. When looking for bugs that could be used
to escape the X-Code interpretation loop, I found that a part
of the code had already been written with our attacks in mind.
This is my original disassembly:

cmp ebx, 80000880 ; ISA Bridge, MCPX disable?

jnz short not_mcpx_disable

 ; BUG: too specific: bits 24 to 30

 ; undefined and ignored by PCI hardware!

and ecx, not 2 ; clear bit 1 (MCPX ROM will be

 ; turned off by setting bit 1)

not_mcpx_disable:

mov eax, ebx

mov dx, 0CF8h

out dx, eax ; PCI configuration address

add dl, 4

mov eax, ecx

out dx, eax ; PCI configuration data

jmp short next_instruction

I had been working with “PCI configuration” before, therefore
I knew that the test for the attack was too specific: Similar
codes would do the same, but they pass the test. So the MS
developers had a good idea, but the implementation was
wrong, thus telling us about their idea this way!

I sent my idea to Andy, Steve, and Paul, and they verified after
a short time that 0x88000880 worked just as well as 0x80000880
to turn off the MCPX ROM and exiting the interpreter by map-
ping the interpreter code out of memory!

 (Profile: Michael Steil, continued)

Chapter 11 - Developing Software for the Xbox 165
used to bypass any of the native copyright control mechanisms built into
the Xbox. In other words, it is difficult to argue that Cromwell is any kind
of copyright control circumvention tool. (Cromwell can be downloaded
from the Xbox-Linux website on the Sourceforge.net server at http://
xbox-linux.sourceforge.net.)

After burning the Cromwell ROM to your alternate firmware device and
installing the device in the Xbox, you will need to burn onto CD/RW
media a GNU/Linux install image that you can download from the Xbox-
Linux website (again, http://xbox-linux.sourceforge.net). This
install image comes as a fairly hefty (100+ MB) ISO image, compressed using
bzip2, and it contains all of the software, interfaces, and tools necessary for
getting a user-friendly GNU/Linux distribution up and running on the
Xbox. When burning this ISO image, you must use the burn image option
in the CD burner software. Do not copy the ISO image onto the CD as a
single large file. (ISO images are literal bit patterns for a CD, so an ISO
image already contains a complete filesystem description. Burning an ISO
image as a regular file, instead of as an image, encapsulates the ISO image in
a new filesystem, so the ISO just appears as a “bag of bits” instead of a
filesystem with files.)

You may also need a second disk burned with the boot program for Xbox-
Linux. This boot program comes as a smaller ISO image that should be
available from the same place where you downloaded the main GNU/Linux
install image. This boot image allows you to boot the Linux installation by
simply dropping it into the Xbox, just like starting a game. (You can also
copy the contents of this disk onto the hard drive using a third-party
dashboard and boot Xbox-Linux directly from the hard drive if you prefer
not to deal with a separate boot disk.)

Burning a good CD/RW image is perhaps one of the trickiest parts of
installing Xbox-Linux. The laser used inside the DVD-ROM drive of the
Xbox is not well-suited for reading writeable CD media, so the Xbox is very
finicky about the kind of media and the kind of burner as well as the burner
settings used to create the CD image. Furthermore, the exact details of how
the laser is degraded varies from Xbox to Xbox and is dependent upon the
model of drive that happened to be installed. Users have found that few
Xboxes can reliably read CD-R media, so CD/RW media must be used. In
addition, it helps to burn the CD/RW media at the slowest burner setting
using either a fresh, blank CD/RW, or a CD/RW that has been fully erased
(as opposed to the quick erase that just resets the filesystem and does not
actually destroy previously written data).

Before committing to a particular type of CD/RW media, try using the
regular Xbox Dashboard’s WMA ripping tools to copy the contents of a
CD/RW that you burned with music to the hard drive. If this works
reliably and without error, you can probably use that kind of CD/RW
media for installing Linux. (Many Xbox-Linux installation problems have
been traced to problems reading data off of the CD/RW drive.) At the time
of this writing, there are no distributions available in hard-pressed CD-
ROM media. There is some talk in the Xbox-Linux community of ordering

Hacking the Xbox: An Introduction to Reverse Engineering166
a set of custom CD-ROM images, since this would solve many of the
CD/RW headaches that users have been experiencing. (Also note that it
is possible to install in your Xbox an after-market DVD-ROM drive that
has better compatibility with writeable CD formats, as discussed in the
previous chapter.)

Note
Keep in mind that Xbox-Linux is an active project that is
constantly evolving. The most up-to-date instructions for
installing GNU/Linux on the Xbox can be found at the
Sourceforge Xbox-Linux website, and these instructions
have been translated into at least a half-dozen languages
at the time of this writing. If you are interested in contribut-
ing your talents to the Xbox-Linux project, there is a list of
projects to-do on the Sourceforge Xbox-Linux website as
well as some instructions on how to join the developer’s
mailing list.

“Project B”
There is a work in progress, referred to as “Project B” by the Xbox-Linux
developers, to find a way to install and boot Xbox-Linux without any
hardware modifications. The Project B moniker comes from the criteria
defined for the awarding of a $200,000 prize offered by Michael Robertson,
the CEO of Lindows. The “Project A” prize was $100,000 and it has been
awarded to the first group to get Linux running on an Xbox with hardware
modifications. The remaining $100,000 will be awarded to the individual or
group that completes Project B. The asymmetric division of the prize
money hints at the challenge of completing Project B. (More details on
Project B can be found at the Sourceforge Xbox-Linux website at http://
xbox-linux.sourceforge.net/articles.php?aid=2002354043211.)

There are a number of Project B strategies being pursued by various groups.
The most conceptually simple approach is to factor the 2048-bit RSA key
used to sign Xbox game disks. This approach is being pursued by
OperationProjectX (http://sourceforge.net/projects/opx) using
a distributed computing approach. Simply put, if the 2048-bit RSA key is
factored to reveal Microsoft’s private key, anyone can forge Microsoft’s digital
signature and create bootable game disks for the Xbox, given that Microsoft
never removes from the Xbox kernel the ability to load programs from
regular CD or CD/RW media. Significantly, Microsoft ships its games on 2-
layer DVD-9 format disks with special security structures. The Xbox
firmware could be configured by Microsoft to only boot from disks that
have this particular structure, regardless of the digital signature check. Since it
is currently impossible to burn 2-layer DVDs using a common DVD burner
drive, requiring secured DVD-9 media as the only source for executables
would present an impairment to distributing Xbox-Linux through free
downloads off the Internet. The other problem with this approach is that
the chance of successfully factoring the Xbox’s private key through a brute
force search is very, very small. (Chapter 7, “A Brief Primer on Security,”

Chapter 11 - Developing Software for the Xbox 167
contains a sidebar on “Very Difficult Problems” that attempts to
communicate the computational difficulty of this task.) If the private key
is successfully recovered within a reasonable amount of time by this
approach, it will significantly reduce people’s confidence in the RSA
algorithm. (On the other hand, you can never win the lottery if you don’t
buy a ticket, and running a free distributed factoring client using the spare
cycles on your CPU is much cheaper than a Powerball ticket.)

Another approach, related to cracking the RSA-2048 bit key, is to modify
an existing, signed Xbox executable in a useful manner without changing
its cryptographic hash value. Such a constructive hash collision would
make the modified executable look identical to the original as far as the
digital signature check is concerned. The hash used in the Xbox’s digital
signature algorithm is SHA-1. SHA-1 is a 160-bit hash with no publicly
known algorithmic weaknesses; since the source of the hash is fixed,
about 2160 random variations would have to be tried to discover a
collision. As a side note, you can’t use a birthday attack to reduce the
difficulty of the attack to 280 random variations because we are not trying
to find two messages that hash to the same arbitrary value. The goal is to
generate a specific target hash, or perhaps one of a very limited set of
target hashes harvested from the set of all published Xbox game titles.
Hence, this approach also falls into the category of “Very Difficult
Problems.”

Figure 11-1: The Xbox-Linux core team at the 19th annual Chaos Computer
Conference, held in Berlin, Germany. In the back, Michael Steil; in the front, from
left to right: Andy Green, Milosch Meriac, and Franz Lehner. (Photograph courtesy
of Gerhard Farfeleder.)

Hacking the Xbox: An Introduction to Reverse Engineering168
An alternative approach to Project B is to find security holes in Xbox
software and use the holes to seize control of the CPU’s instruction
pointer. To see how this is helpful, consider this example: Suppose a
network-based buffer overrun exploit was discovered in a game that can
lead to arbitrary code execution. A program running on a PC connected
to the Xbox via the network could then use this exploit to send packets
to the Xbox that would install a simple bootloader for Xbox-Linux. This
bootloader could be something as simple as a program that runs code at
a designated location on the Xbox’s hard drive or on the DVD drive.
Any port where the Xbox can accept data is a vector for this kind of
attack, including the USB and network port as well as the hard drive and
the DVD-ROM drive.) Corrupted save games or file structures can be
imaged onto the hard drive or DVD-ROM drive that cause the Xbox to
run user-developed code. To Microsoft’s credit, all of the network
interactions and save game protocols use fairly strong and well-tested
security techniques. In addition, I heard at a presentation about the Xbox
by Microsoft at MIT that all game code is inspected by a buffer overrun
checker and that Microsoft has contractual remedies against game
developers that are found guilty of putting deliberate back doors into their
game code. This points to the Xbox code base being more secure than a
typical Microsoft product, which makes it all the more interesting as a
problem for hackers to work on. (If you are interested in participating in
hacking on the Xbox as a part of “Project B,” I encourage you to first check

Profile: Milosch Meriac
Can you tell us a little bit about yourself?

My general history is fairly simple. I was born in 1976 in Czecho-
slovakia. My parents (my mother is a teacher, my father is a
civil engineer) escaped during the Cold War to western
Germany because of repressions by the communist regime.
I was about three years old when we arrived in Germany. In
German kindergarten I immediately learned the German
language. From this point it was really simple — being ten
years old, I got my first computer after some months of whin-
ing. Things started to roll.

After school leaving exams and a weird intermezzo at Ger-
man Federal Armed Forces Military Duty, i started studying
cybernetics and computer science, but i decided after
three years to quit university and to concentrate as a long-
term objective on my own company. During my studies i
established some valuable business connections, so it was
easy to work as a freelancer for various companies in Ger-
many. I did some reverse engineering projects, developed
realtime embedded linux systems with small footprint, did
some lowlevel programming like realtime extensions for Win-
dows systems, and developed a software based harddisk
safeguard for a famous German company. I now live with
my girlfriend in Berlin and we are having a great time there.

(continued)

Chapter 11 - Developing Software for the Xbox 169

Why do you hack?

After getting more experienced in programming I started to
discover that the beautiful and bright entity of the com-
puter world is in fact a fragile patchwork.

In the beginning hacking was like a game for me. You could
walk around inside your computer system discovering worlds
of new code and possibilities every single day. Occasion-
ally one could challenge the application authors to a duel
by trying to analyze and circumvent their copy protec-
tions. Sometimes it was like playing chess; other times it was
like a deathmatch.

On one hand I was excited to see my knowledge growing
and on the other hand it was naturally a great ego boost
for a 14 year old child to circumvent security systems of
overpaid godlike hardcore programmers. During my time
as a senior high school, I revised this view — while program-
ming tools and applications for some local companies dur-
ing school vacations I met some genuine programmers —
and was disappointed: they were neither gods, nor god-
like.

After some time i realized that writing a cool demo, hacking
application X, or finding a nifty hack for Y doesn’t change
the world more than a sack of rice toppling down some-
where in China. So I started choosing my realms more wisely
— technologies of everyday life like telephones, computers,

out the Project B Prize Rules web page at
http://xbox-linux.sourceforge.net/
articles.php?aid=20030023081956.)

Recently, a buffer overrun exploit was discovered in the way saved games
are handled by Electronic Arts’ “007: Agent Under Fire” game. The
exploit was first divulged by a hacker known simply as “habibi_xbox” on
March 29, 2003 through a posting on the XboxHacker.net BBS. Signifi-
cantly, the exploit was identified in an undisclosed number of games, but
“007: Agent Under Fire” was the only game explicitly named in the
posting. The exploit leverages an unchecked string to run a short segment
(a few hundred bytes) of code that inserts a series of kernel patches.
Various measures were included in the design of the hack to make it very
difficult to modify the hack to do anything other than run the intended
Xbox-Linux target. For example, the hack patches the original Xbox
RSA public key, used for verifying digital signatures, with a new public
key, while leaving the digital signature check algorithm unpatched. Only
the Xbox-Linux bootloader, provided as part of the hack, is appropri-
ately signed with the corresponding new private key. Other hackers
would have to factor the new public key in order to use this hack to run
other executables. Also, the “007: Agent Under Fire” game itself
performs an independent digital signature check on all saved games, so
modifying the exploit code in the hacked savegame file is not trivial. The
inclusion of such security measures in the hack is a laudable decision on

(continued)

Hacking the Xbox: An Introduction to Reverse Engineering170

networks and satellites. I found out that one has the power to
change things by explaining technology to average users or
by helping companies to secure their products.

Today I am aware of my power as whitehat hacker. Every
person in today’s life is affected by information technologies:
surveillance techniques, data mining, information warfare, Digi-
tal Milllenium Copyright Act, TCPA, digital rights management,
new interpretations of copyright and patent law are growing
like mushrooms after monsoon rain. Like in my past I ache to
peek behind these beautiful and bright entities, and hopefully
find the bugs and traps before they find us.

Can you tell us about your experience with the Xbox-Linux
project?

I joined the Xbox Linux project and helped to get the kernel
running, which was tricky because the Xbox architecture has
some traps and differences compared to a personal com-
puter. I created the early Linux distributions for Microsoft’s Xbox.
This was important because we had only 1 MB flash available
to store the complete distribution and the kernel, and the hard
disk wasn’t unlocked yet. I also provided a console driver for
Andy Green’s filtror device, so we were able to see the kernel
boot messages and get a linux console by using his device as
some sort of remote interface. This distribution already included
network drivers, soundcard drivers, mp3 support, a telnet server,
webserver, NFS support, and a broad range of standard linux
tools. This enabled us to get rid of our custom-made hard-
ware and allowed hundreds of people to join the project,
either as code contributors or as test persons. We had no screen
output yet, so I added a framebuffer interface to the Xbox
Linux kernel and made many other contributions.

The number of contributing developers started to grow enor-
mously. We get awesome help from all over the world to make
Xbox Linux possible. Some stay hidden because they are afraid
of legal uncertainties like the DMCA in United States, while
others can contribute freely.

Do you have any other comments you would like to share?

Some people may ask why full-grown people like me fiddle
about with this Xbox toy. Every person certainly has his own
reasons; my reason is to improve my skills and to learn more
about recent technologies. The Microsoft Xbox for instance is
the predecessor of a TCPA/Palladium protected computer,
with all the technical and social implications. It’s a fine play-
ground for my research on more secure computer systems with-
out pressing users.

One of the main reasons is our community. It’s really fun and a
great pleasure to work together with these bright geeks —
online and especially offline in a pub with pints of fine beer. I
am amazed every day by the growing strength of our com-
munity. Thanks to all for making this possible!

(Profile: Milosch Meriac, continued)

Chapter 11 - Developing Software for the Xbox 171
the part of the hack’s implementer, as it helps ensure that the hack is not
directly useful for applications such as piracy. Implementing security
measures that protect Microsoft’s interests may help save the Xbox-Linux
project from the wrath of Microsoft and the U.S. Department of Justice.

Looking forward, the success of Project B could spell either a new age
for Xbox hacking, or the demise of Xbox hacking. Even though Project
B hackers have demonstrated social conscience and good will by trying to
protect Microsoft’s interests, it is impossible to prevent less scrupulous
hackers from reverse engineering the hack and eventually figuring out how
to reproduce the technique in some less Microsoft-friendly form. The end
result could either be a harsh crackdown by Microsoft upon all hacking
activity, or Microsoft exiting the video game business altogether since their
revenue stream would be cut off like Sega’s in the Dreamcast piracy debacle.
Or, Microsoft could just elect to plow more money into the business and
release a redesigned console that incorporates patches and countermeasures
for known security holes. The outcome will depend heavily upon how
events unfold in the next few months. However, with deep price cuts on the
horizon for the Xbox and rumors of a thoroughly redesigned “shrink”
version of the console floating around, it seems that Microsoft’s near-term
strategy is to focus its energies on storming the market instead of stemming
fair-use or piracy. After all, every Playstation2 or Gamecube sold probably
has a worse effect on Microsoft’s business than every Xbox converted to run
GNU/Linux, or even an Xbox converted to run pirated games.

OpenXDK
Many interesting and useful projects for the Xbox, such as the
XboxMediaPlayer and MAME-X (Multiple Arcade Machine Emulator for
the Xbox), have been developed for the native Xbox gaming platform.
Unfortunately, these programs were developed using unauthorized versions
of the Microsoft Xbox SDK (Software Development Kit). Microsoft’s
Xbox SDK is supposed to be available only to approved, licensed develop-
ers. However, the SDK was leaked even before the console was launched,
and since then many have used the leaked Xbox SDK for creating their own
Xbox programs. While the proprietary Xbox SDK is convenient and easy to
use, it is also technically illegal to use. The lack of a legal SDK for the native
Xbox platform makes it difficult to attract a large base of open-source
developers.

The OpenXDK project was created to address the need for a legal alternative
to the Xbox SDK. OpenXDK’s stated goal is to create a legal development
kit for creating Xbox Executables (XBEs). OpenXDK will allow users to
create native XBE files that, when signed with the appropriate digital
signature, could run on a vanilla Xbox. Since this appropriate digital
signature is as of yet unknown, this work is done in anticipation of a legal
technology that enables interoperability with programs developed using the
OpenXDK.

Hacking the Xbox: An Introduction to Reverse Engineering172
Despite its utility, the OpenXDK project is still in its nascence and is
looking for developers. More about the OpenXDK project can be found
at http://openxdk.sourceforge.net. OpenXDK’s project managers
are Dan Johnson (also known as SiliconIce, the creator of the
XboxHacker BBS) and Aaron Robinson (also known as caustik; caustik is
also leading the CXBX executable relinker and the CXBE Xbox emula-
tor projects).

CHAPTER 12

Caveat Hacker

Reverse engineering and intellectual property law has some tricky legal
interactions. On one hand, innovation deserves its just reward. The right of
inventors or authors to exclusively produce or sell the fruits of their labor
must be protected. On the other hand, a free and competitive marketplace is
also required to preserve innovation and to ensure fair markets. The study
of the design principles embodied in existing products and the ability to
produce improved derivative products are an important part of a competi-
tive market place.

This chapter provides an overview of intellectual property law, and some of
the more important bits that you need to know about as a hacker. Ignorance
is not a valid defense, and there are some severe penalties prescribed by the
law for those who ignore the laws that govern reverse engineering and
intellectual property rights. Some acts of intellectual property violation are
punishable as felonies along with hefty fines.

The majority of this chapter was written by Lee Tien, a Senior Staff
Attorney with the Electronic Frontier Foundation. Lee (and Joseph Liu)
were my counsel during the period when I was trying to publish my
findings on the Xbox security system. Chapter 8 has a sidebar titled “The
Legal Challenges of Hacking” that describes my fight with MIT to get my
paper published.

The content of this chapter is presented with the intention of providing an
informational resource for hackers. If you think you may be in a legally
compromising situation, there is no substitute for contacting an attorney
and getting proper legal advice on your specific situation.

Hacking the Xbox: An Introduction to Reverse Engineering174

Profile: Lee Tien
Lee Tien is a Senior Staff Attorney with the Electronic Frontier
Foundation, specializing in free speech law, including inter-
sections with intellectual property law and privacy law.
Before joining EFF, Lee was a sole practitioner specializing in
Freedom of Information Act (FOIA) litigation. Mr. Tien has
published articles on children’s sexuality and information
technology, anonymity, surveillance, and the First Amend-
ment status of publishing computer software. Lee received
his undergraduate degree in psychology from Stanford
University, where he was very active in journalism at the
Stanford Daily. After working as a news reporter at the
Tacoma News Tribune for a year, Lee went to law school at
Boalt Hall, University of California at Berkeley. Lee also did
graduate work in the Program in Jurisprudence and Social
Policy at UC-Berkeley. 1

The Electronic Frontier Foundation
The Electronic Frontier Foundation (EFF) provided me legal
counsel during the period when I was trying to publish my
paper on the Xbox security system. The following para-
graphs introduce what the EFF does, and who they are.

Imagine a world where technology can empower us all to
share knowledge, ideas, thoughts, humor, music, words and
art with friends, strangers and future generations.

That world is here and now, made possible with the elec-
tronic network — the Internet — with the power to connect
us all. And future developments in technology will enable
us to access information and communicate with others in
even more powerful ways.

But governments and corporate interests worldwide are
trying to prevent us from communicating freely through new
technologies, just as when those in positions of power con-
trolled the production and distribution of — or even burned
— books they did not want people to read in the Middle
Ages. But only by fighting for our rights to speak freely what-
ever the medium — whether books, telephones, or com-
puters — can we protect and enhance the human condi-
tion.

The Electronic Frontier Foundation (EFF) was created to
defend our rights to think, speak, and share our ideas,
thoughts, and needs using new technologies, such as the
Internet and the World Wide Web. EFF is the first to identify
threats to our basic rights online and to advocate on be-
half of free expression in the digital age.

Based in San Francisco, EFF is a donor-supported member-
ship organization working to protect our fundamental rights
regardless of technology; to educate the press, policymakers
and the general public about civil liberties issues related to

(continued)

Chapter 12 - Caveat Hacker 175

Caveat Hacker: A Primer on Intellectual
Property, by Lee Tien

Reverse engineering is the process of extracting know-how or knowledge
from an artifact; in the marketplace, it’s been called the “time-honored
technique of figuring out just what makes a competitor’s product tick.”1

But anyone who studies mass-marketed products today should be aware
of the legal minefield surrounding reverse-engineering. The anti-
circumvention provisions of the Digital Millennium Copyright Act
(DMCA),2 contractual terms prohibiting reverse-engineering, and the
Economic Espionage Act3 are a few of the dangerous legal areas that
technologists should know about. This chapter will briefly survey these
areas to give hackers a rough idea of the issues.

There are two general issues here. First, is the reverse engineering lawful?
Second, even if you may reverse engineer the product, can you publish
what you learn from the reverse engineering?

Classical Intellectual Property Law:
An Overview
Intellectual property law traditionally meant copyrights and patents. Both
are created and limited by federal statutes based on the Constitution’s
intellectual property clause: “Congress shall have the Power . . . To
promote the Progress of Science and useful Arts, by securing for limited
Times to Authors and Inventors the exclusive Right to their respective

technology; and to act as a defender of those liberties.
Among our various activities, EFF opposes misguided legisla-
tion, initiates and defends court cases preserving individu-
als’ rights, launches global public campaigns, introduces
leading edge proposals and papers, hosts frequent edu-
cational events, engages the press regularly, and publishes
a comprehensive archive of digital civil liberties information
at one of the most linked-to websites in the world: http://
www.eff.org.2

1 From the EFF website, http://www.eff.org/homes/lee_tien.html
2 From the EFF website, http://www.eff.org/abouteff.html

1 Joel Miller, Reverse Engineering: Fair Game or Foul?, IEEE
Spectrum, Apr. 1993, at 64, 64.
2 17 U.S.C. § 1201–1204.
3 18 U.S.C. § 1831–39.

Hacking the Xbox: An Introduction to Reverse Engineering176
Writings and Discoveries.”4 Computer programs are typically protected
as copyrighted “literary works,” but they can also be patented.5

People have recently come to think of trade secrets as another kind of
intellectual property. Trade secrets were originally protected by courts under
case law, but they are now the subject of both state and federal states as well.
Unlike copyrights and patents, trade secrecy law is historically grounded in
unfair competition principles.

In the United States, authors and inventors don’t have “natural rights.”6

Instead, their rights are based on a notion of public welfare. Society will
benefit if authors and inventors get some protection, because they won’t
have adequate incentives to create if others can freely use their work. But
that protection is limited in order to assure that the public ultimately
benefits.7 For example, copyright and patent rights are only for “limited
times”; eventually, protected works must enter the public domain.8 In
short, intellectual property law sets the terms for a “bargain” between the
public and authors or inventors.

Copyright
Copyright law protects original works of expression that are “fixed” in a
tangible medium and gives the author (or assignee) exclusive rights over
reproduction, distribution, adaptation, public display and public perfor-
mance of the work. It does not protect against independent creation.

Works are not the same as copies or phonorecords (copies of sound
recordings). When you buy a book, you own a copy, but the copyright
owner retains the rights to the work itself. Note, by the way, that the “first
sale” doctrine allows lawful owners of copies to sell or transfer these
lawfully owned copies, 9 with certain exceptions.10

There are many different types of works, with many different rules for each

4 U.S. Const. Art. I, §8, cl. 8. When the Constitution was written,
the word “science” was often used as a synonym for
“knowledge.”
5 See Diamond v. Diehr, 450 U.S. 175 (1981); In re Alappat, 33
F.3d 1526 (Fed. Cir. 1994).
6 In Europe, copyright has traditionally been viewed as
protecting an inherent inalienable personal right of the creator
of a work.
7 “ The economic philosophy behind the clause empowering
Congress to grant patents and copyrights is the conviction that
encouragement of individual effort by personal gain is the best
way to advance public welfare through the talents of authors
and inventors in ‘Science and useful Arts.’” Mazer v. Stein, 347
U.S. 201, 219 (1954).
8 Feist Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 348-
49 (1991) (“This result is neither unfair nor unfortunate. It is the
means by which copyright advances the progress of science
and art.”)

Chapter 12 - Caveat Hacker 177
type. So copyright law is quite complex, and technology hasn’t simplified
matters. Consider a copyrighted song. The song or musical composition
(MC) is protected by copyright, typically held by the songwriter. To record
the song, one needs permission from the MC copyright owner.11 Once
recorded, there is an independent copyright in the sound recording (SR),
which protects the actual recorded sounds including the singer’s interpreta-
tion of the underlying song as well as the efforts of the producer and
sound engineers. Record companies usually own SR copyrights. As a result,
if you want to use a copyrighted sound recording of the song in a TV
commercial, you need permission of both the MC copyright owner and the
SR copyright owner.

Most of the copyright owner’s rights are fairly obvious, but some of them
are not — especially when computers are involved. For instance, computers
load programs into RAM, creating a copy for copyright purposes. The
copyright act contains a specific exemption that permits the owner of a copy
of a computer program to copy the program into computer memory.12

This illustrates the general strictness of copyright law: that one can’t use a
copyrighted work for its intended purpose without making a copy doesn’t
mean that making the copy isn’t copyright infringement. The implications
of this strictness for the Internet are serious, since Internet dissemination
generally involves the making of copies.

The right over adaptation can also be confusing. Adaptations, or “derivative
works,” are works based on a copyrighted work: foreign-language transla-
tions, movies based on books, and so on. In one much-criticized case, a
court found that cutting pictures out of lawfully owned copies and mount-
ing the pictures onto ceramic tiles created infringing derivative works.13

Most courts disagree with this result.14

9 See 17 U.S.C. Sec. 109. “The whole point of the first sale doctrine
is that once the copyright owner places a copyrighted item in
the stream of commerce by selling it, he has exhausted his
exclusive statutory right to control its distribution.” Quality King v.
L’Anza Research Int’l, 523 U.S. 135, ___ (1998).
10 For instance, phonorecords and stand-alone computer
programs are treated differently than books under Sec. 109.
11 Under current copyright law, the MC reproduction copyright is
controlled by compulsory license provisions, which means that
you automatically get permission by paying a statutory rate.
12 17 U.S.C. § 117 (permitting making of copy or adaptation copy
or adaptation “as an essential step in the utilization of the
computer program in conjunction with a machine.”).
13 Mirage Editions, Inc. v. Albuquerque A.R.T. Co., 856 F.2d 1341,
1344 (9th Cir. 1988), cert. denied, 489 U.S. 1018 (1989).
14 See, e.g., Lee v. Deck The Walls, Inc., 925 F. Supp. 576 (N.D. Ill.
1996), aff’d sub nom. Lee v. A.R.T. Co., 125 F.3d 580 (7th Cir. 1997)
(rejecting reasoning of Mirage Editions); Precious Moments, Inc.
v. La Infantil, Inc., 971 F. Supp. 66, 68-69 (D.P.R. 1997) (denying
claim against one who purchased fabric and then incorporated
it into bedding); Paramount Pictures Corp. v. Video
Broadcasting Sys., Inc., 724 F. Supp. 808 (D. Kan. 1989)
(distribution claim barred by first sale doctrine, distinguishing
Mirage Editions).

Hacking the Xbox: An Introduction to Reverse Engineering178
Copyright protection begins automatically when a work is created and
generally lasts for the life of the author plus 70 years.15 Works become free
for all to use, i.e., enter the public domain, once the copyright term expires.

There are many exceptions to copyright. The rule that copyright protects
expression means that it doesn’t bar anyone from using the ideas or facts
revealed in the work. “Ideas” includes the plots of stories. More generally,
copyright doesn’t protect the utilitarian aspects of a work, so you can write a
computer program that does the same thing as another program so long as
you don’t copy its expression.

Facts are considered “outside” copyright because they are discovered, not
authored. This would include, for instance, the discovery of new prime
numbers. But you can have a copyright in the selection, sequence or
arrangement of facts or anything else that is not itself copyrightable. The
classic example is an anthology of public-domain poetry. You can have a
copyright to the compilation even though the individual pieces are unpro-
tected if the selection, sequence or arrangement is sufficiently original. The
alphabetical arrangement of facts in the typical telephone “white pages”
directory fails the constitutional originality requirement. You don’t get any
protection merely because you invested money, time or effort into collecting
the phone numbers.

Copyright doesn’t cover many “ordinary” uses of the work. In itself,
reading a book isn’t subject to copyright, because it doesn’t infringe any of
the copyright owner’s rights. Singing a song in the shower is a performance,
but the copyright owner only has a right over public performances. Here
again, however, the Internet has changed things. When you read a docu-
ment in your web browser, a copy of the document was probably made by
your computer. Thus, many formerly ordinary uses now entail the making
of a copy, which raises copyright issues.

Today, there’s a lot of controversy about “fair use.” Fair use is a defense to
copyright infringement that was intended to allow people to make some
unauthorized use of copyrighted works. Fair use allows book reviewers to
quote from books. It’s a very complicated area of law; whether a use is
“fair” depends on factors like the purpose, nature, amount, and economic
effect of the use.16

Patent
Patent law protects inventions and gives the inventor (or his assignee) the
right to exclude others from making, selling, or using the invention for 20
years from the date of the filing of the patent. Unlike copyright, patent law
protects against independent invention by another person.

The bargain here is that in return for the patent, the inventor must provide
enough information in the patent application to enable one “skilled in the

15 Under the first copyright act, protection lasted for only 14 years.
16 17 U.S.C. § 107.

Chapter 12 - Caveat Hacker 179
art” to create the invention without much experimentation. Once a
patent is awarded, the application is made public. By making the
information public, the patentee contributes to society’s store of
knowledge.

A patent confers no affirmative rights, however; if you patent an im-
provement to someone else’s invention, you can’t practice the improve-
ment without infringing on the underlying patent. If you invent and
patent a new drug, you may still need regulatory approval before you can
sell the drug.

To be patentable, an invention must be useful, novel, and “nonobvious”
to one “skilled in the art.” The novelty and nonobviousness requirements
mean that the invention must be a sufficient development in technology
before the right to exclude is given. Developments that do not meet these
high standards are denied protection.

Trade Secrets
A third area of law — trade secrecy — is also considered part of intellectual
property law, although it is not really property. A trade secret is commercially
valuable business or other information known to the user but not to
competitors. Secrecy, although not absolute secrecy, is the essence of a trade
secret; one must take reasonable precautions to protect the trade secret
against disclosure.

There’s an obvious relationship between patents and trade secrets, because
both protect useful information. If the useful information isn’t patentable
at all, there’s no choice. But one might not want patent a patentable
invention for several reasons. You might not want to disclose information
in the patent application. Also, if you don’t expect the technology to be
valuable for very long, it might not be worth getting a patent that lasts 20
years.

The main downside of trade secrecy is that it provides no protection against
independent invention or against reverse-engineering. Trade secrecy is
therefore unwise if the secret can be figured out from the product. If, on
the other hand, the invention is a process used in making the product, it
might be hard to reverse-engineer. Even though Coca-Cola has been on
the market for many years, apparently no one has figured out how to
duplicate it.

The Constitutional Copyright Bargain
Intellectual property rights are a means to an end — to promote the
progress of knowledge and technology. As the Supreme Court once said,
“the monopoly privileges that Congress may authorize are neither unlimited
nor primarily designed to provide a special private benefit.”17

17 Sony v. Universal City Studios 464 U.S. 417, 429 & 432 (1984).

Hacking the Xbox: An Introduction to Reverse Engineering180
The above passage indicates that intellectual property law has long been
concerned about limiting the potential monopoly power conferred by
copyright and patent law. For instance, the first-sale doctrine prevents patent
and copyright owners from controlling the market once patented products
or copies of copyrighted works are sold.

Also, copyright law has long been interpreted by courts and crafted by
Congress to preserve a balance with freedom of speech. Doctrines like the
idea/expression dichotomy, the fair use doctrine, and copyright’s limited
term are generally viewed as reducing the potential conflict between copyright
and freedom of expression.18

Interestingly, concern about monopolies is historically linked to the concern
for free speech. English copyright law had long functioned as a kind of
state-sponsored cartel; in return for private monopolies over writings, the
publishers agreed to act as policemen of the press in the service of govern-
ment censorship — in particular, the Bible and other religious works.19

Similarly, copyright law’s idea-expression dichotomy ensures that
uncopyrightable facts and ideas and unpatentable functional principles
remain in the public domain for future creators to build on.

The Traditional View of Reverse
Engineering
Historically, reverse engineering has always been a lawful way to gain
information embodied in mass-marketed products. For many technology
firms, reverse-engineering competitors’ products to study their innovations
is a standard practice. Indeed, U.S. courts have also treated reverse engineer-
ing as an important factor in maintaining balance in intellectual property law,
and the Supreme Court has called reverse engineering “an essential part of
innovation.”

The law recognizes three main purposes of legitimate reverse engineering.
Competitive reverse-engineering is intended to create a direct substitute.
Compatibility or interoperability reverse-engineering is aimed at figuring out
how to make a product that works with the reverse-engineered product.
And of course, researchers often reverse-engineer products in order to gain
knowledge with no commercial purpose.

Trade Secrecy and “Improper Means”
In general, a trade secret is misappropriated only if a person or firm
misuses or discloses the secret in breach of an agreement or confidential
relationship, engages in other wrongful conduct (e.g., bribery, coercion,

18 See generally Neil Weinstock Netanel, Locating Copyright
Within the First Amendment Skein, 54 Stan. L. Rev. 1 (2001).
19 See generally L. Ray Patterson, Free Speech, Copyright, and
Fair Use, 40 Vand. L. Rev. 1 (1987).

Chapter 12 - Caveat Hacker 181
trespass) to obtain the secret, or acquires the secret from a
misappropriator knowing or having reason to know that the information
was a misappropriated trade secret.

Most states, like California, explicitly provide that reverse engineering is a
lawful way to acquire a trade secret. Several reasons support reverse engineer-
ing as a sound principle of trade secret law.20 Buying a product in the open
market generally gives the buyer personal property rights in the product,
which include the right to take the product apart, measure it, subject it to
testing, and the like. The law also regards sale of a product in the open
market as a publication of innovations it embodies and a dedication of
them to the public domain unless the creator has obtained patent protection
for them.

The vulnerability of trade secrets to reverse engineering is part of the overall
constitutional scheme. In Bonito Boats v. Thunder Craft Boats, the Supreme
Court struck down a Florida law that forbade manufacturers of boats from
using existing boat parts as “plugs” for a direct molding process that yielded
competing products because the law “prohibit[ed] the entire public from
engaging in a form of reverse engineering of a product in the public
domain.”21 The court explained that reverse engineering is “an essential part
of innovation,” likely to yield variations on the product that “could lead to
significant advances in technology.” Indeed, “the competitive reality of
reverse engineering may act as a spur to the inventor” to develop additional
patentable ideas.

In cases like Bonito Boats, the question is whether a state law is “preempted”
by federal law. When federal and state law conflict, either directly or as a
matter of federal policy goals, the state law loses under the doctrine of
“conflict” preemption. This stems from the Constitution’s Supremacy
Clause, under which federal law generally trumps state law.22 Copyright law
also contains a specific preemption clause, discussed below.

Copyright Law and the Problem of
Intermediate Copying

Until recently, copyright law didn’t need to worry about reverse engineer-
ing, because there was little reason to reverse engineer books, art, or
music. Now that computer programs are “literary works,” things are
much different. Since many computer programs are distributed only in
object code, the reverse engineering process commonly requires an initial
decompilation into source code — which entails making a copy.

20 See generally Pamela Samuelson & Suzanne Scotchmer, The
Law and Economics of Reverse Engineering, 111 Yale L. J. 1575
(2002).
21 The Court went on to say that “[w]here an item in general
circulation is unprotected by a patent, ‘[r]eproduction of a
functional attribute is legitimate competitive activity.’”
22 U.S. Const. art. VI, cl. 2.

Hacking the Xbox: An Introduction to Reverse Engineering182
U.S. courts have found that copyright law does not necessarily prohibit
reverse-engineering, because copying incidental to reverse engineering can be
a “fair use”: “The Copyright Act permits an individual in rightful posses-
sion of a copy of a work to undertake necessary efforts to understand the
work’s ideas, processes, and methods of operation.”23 This can be true even
when the ultimate goal of the reverse engineering is commercial. The courts
generally rely on the Constitutional purpose for copyright protection: “the
promotion of ‘the Progress of Science….’” 24 The fair use doctrine advances
this Constitutional objective by “encourag[ing] others to build freely upon
the ideas and information conveyed by a work.”25

The key case here was Sega Enterprises Ltd. v. Accolade, Inc.26 Accolade
disassembled Sega game programs in order to get information necessary to
make its games compatible with the Sega Genesis game console. Accolade
then sold its own games in competition with games made by Sega and its
licensed developers. Accolade raised a fair use defense to Sega’s claims that
the disassembly copies were infringing. The court accepted Accolade’s
defense for the reasons described above. It also noted that if Accolade
could not dissassemble Sega’s code, Sega would get “a de facto monopoly
over [the unprotected] ideas and functional concepts [in the program],”
which is only available under patent law.27

The court’s holding, however, was limited to reverse engineering undertaken
for a “legitimate reason,” such as to gain access to the functional specifica-
tions necessary to make a compatible program, and then only if it “provides
the only means of access to those elements of the code that are not
protected by copyright.”28

Patent Law
There is no general fair use defense or reverse-engineering exemption in
patent law. In theory, you shouldn’t need to reverse-engineer a patented
product, because the patent specification should inform the relevant
technical community of the best way to make the invention.

Some reverse engineering activities will not infringe a patent. The buyer of a
machine embodying a patented invention, for example, is generally free to
disassemble it to study how it works under patent law’s first-sale principle.
Buying the product means that you have the right to use it, and simply
studying it doesn’t infringe the patent owner’s exclusive rights to make or
sell the invention. Nevertheless, courts sometimes enforce contractual
restrictions on reverse engineering.29

23 Atari Games Corp. v. Nintendo, 975 F.2d 832, 842 (Fed. Cir.
1992); see Sony Computer Ent. Corp. v. Connectix Corp., 203
F.3d 596 (9th Cir. 2000).
24 Id., quoting U.S. Const. Art. I, §8, cl. 8.
25Feist Publications, Inc., v. Rural Telephone Serv. Co., Inc., 499
U.S. 340, 350 (1991).
26 977 F.2d 1510 (9th Cir. 1992).
27 Id. at 1526-1527.
28 Id. at 1518.

Chapter 12 - Caveat Hacker 183
Also, one who tries to make a patented invention to satisfy scientific
curiosity may have an “experimental use” defense. Under U.S. law, this
defense is narrow and probably does not include research uses that may lead
to development of a patentable invention or a commercial product.30

The clash between these three areas can be seen if we look again at the Sega
situation. Suppose Sega had a patent on an algorithm used in all of its
game programs. By disassembling Sega programs, Accolade arguably
“makes” or “uses” the patented algorithm, even if it did so inadvertently.
In short, the intermediate copying problem reappears in the patent context.

New Challenges for Reverse Engineers
The importance of reverse engineering has only grown with the rise of
commercial cryptography in mass-marketed products, because it is impos-
sible to make systems more secure without trying to break them. Ironically,
the growing use of encryption has contributed to laws against reverse
engineering. The entertainment industry, for example, now relies on
encryption and other technologies to protect digital information like music
on CDs and movies on DVDs against unauthorized copying.
Unsurprisingly, new laws have been enacted to prevent people from
“circumventing” encryption and other forms of security.

Legal encroachments to reverse engineering haven’t been limited to encryp-
tion. In the 1970s and 1980s some states forbade the use of a direct
molding process to reverse-engineer boat hulls.31 In the late 1970s and early
1980s, the semiconductor industry sought and obtained legislation to
protect chip layouts from reverse engineering to make clone chips.32 A

29 See Pioneer Hi-Bred Int’l, Inc. v. DeKalb Genetics Corp., 51
U.S.P.Q.2d (BNA) 1797 (S.D. Iowa 1999) (enforcing a “bag tag”
prohibiting purchasers of PVPA-protected corn seed from using
the seed for breeding or research purposes).
30 See Roche Prod. v. Bolar Pharmaceutical Co., 733 F.2d 858,
858-63 (Fed. Cir. 1984) (defense does not permit “unlicensed
experiments conducted with a view to the adaptation of the
patented invention to the experimentor’s business,” as opposed
to experiments conducted “for amusement, to satisfy idle
curiosity, or for strictly philosophical inquiry”); Rebecca S.
Eisenberg, Patents and the Progress of Science: Exclusive
Rights and Experimental Use, 56 U. Chi. L. Rev. 1017, 1023
(1989).
31 These state laws were struck down by the Supreme Court in
Bonito Boats.
32 Semiconductor Chip Protection Act, Pub. L. No. 98-620, 98
Stat. 3347 (1984) (codified at 17 U.S.C. § § 901-914 (1994)). We
will not discuss this statute except to note that it contains a
specific reverse-engineering privilege that permits the copying of
protected chip designs in order to study the layouts of circuits,
and also the incorporation of know-how discerned from reverse
engineering in a new chip. Interestingly, reverse engineers must
engage in enough “forward engineering” to develop an original
chip design that itself qualifies for SCPA protection.

Hacking the Xbox: An Introduction to Reverse Engineering184
major international agreement on intellectual property rights says nothing
about reverse engineering.33

The Digital Millennium Copyright Act and the
Problem of Unauthorized Access

The DMCA is one of the most important laws that now regulate reverse
engineering. One part of the DMCA — its “anti-circumvention” provisions
— gives legal protection to technical measures that effectively control access
to or prevent copying of a copyrighted work. Unfortunately, the DMCA is
extremely complex; for instance, the DMCA makes it unlawful to bypass
“effective technical protection measures” without clearly specifying what that
term means.

Unauthorized Access
The DMCA essentially creates a new right of “access” for copyright owners.
Spokesmen for the copyright industry liken the act of circumventing a
technical protection system to “breaking and entering” a home.

One simple example is censorware programs used by schools and libraries
to prevent children from viewing inappropriate images. These programs
often contain encrypted “blacklists” of censored websites, which vendors
typically treat as trade secrets. Suppose a researcher finds that a particular
program blocks sites that are wholly appropriate for children, and wants to
read the blacklist in order to figure out how many appropriate websites are
being wrongly blocked.34 Because the vendor has encrypted the blacklist in
order to prevent people from gaining access to its content, and the list is
arguably a copyrighted compilation of facts, the encryption is a technical
protection measure applied to a copyrighted work and unauthorized
decryption would be an unlawful act of circumvention — except that the
DMCA currently has a temporary exemption for decrypting censorware
blacklists.

Another example: the movie industry uses an encryption scheme called
Content Scrambling System (CSS) to protect movies on DVDs. In the 2600
case,35 CSS was held to be a technical measure that “effectively” controls
access to movies. Bypassing CSS without the copyright owner’s authoriza-
tion is an unlawful “act of circumvention” under the DMCA. Note that the
courts have not found that the fair use doctrine applies to the DMCA (as

33 Agreement on Trade-Related Aspects of Intellectual Property
Rights (TRIPS), Apr. 15, 1994, Marrakesh Agreement Establishing
the World Trade Organization, Annex 1C, Legal Instruments—
Results of the Uruguay Round vol. 31, 33 I.L.M. 81 (1994). The
trade secrecy provision of the TRIPS Agreement is Article 39, 33
I.L.M. at 98.
34 See, e.g., http://www.sethf.com.
35 Universal City Studios v. Reimerdes, 111 F.Supp. 294 (S.D.N.Y.
2000), aff’d 273 F.3d 429 (2d Cir. 2001).

Chapter 12 - Caveat Hacker 185
opposed to copyright law). Thus, if the use of CSS prevents you from
fast-forwarding through the commercials on a DVD movie — it is still
unlawful to “circumvent” that restriction.

Note here that the notion of “effective” here is not connected to
cryptographic efficacy. Even weak encryption is “effective” under the
DMCA because the ordinary person could not defeat it.

Circumvention Technologies
The DMCA protects technical measures in a second way: its “anti-device”
provisions outlaw the manufacture and distribution of technologies that
enable circumvention.36 Continuing the “breaking and entering” metaphor,
spokesmen for the copyright industry liken circumvention technologies to
“burglars’ tools,” which are illegal in many states.

Section 1201 of the DMCA states that “[n]o person shall manufacture,
import, offer to the public, provide, or otherwise traffic in any technology,
product, service, device, component, or part thereof ” if it has one or more
of the following three characteristics: (1) if it is “primarily designed or
produced for the purpose of circumventing [technical] protection,” (2) if it
has “only limited commercially significant purpose or use other than to
circumvent [technical] protection,” or (3) if it is “marketed by that person or
another acting on its behalf with that person’s knowledge for use in
circumventing technical protection.”

Note that these provisions apply not only to the new right of “access
control,” but to the rights of copyright owners generally. Thus, technolo-
gies that would circumvent copy-protection measures for CDs can be
unlawful under these provisions.

Recall the two examples just given. In the 2600 case, at issue was the DeCSS
program, which enables people to decrypt DVD movies protected by CSS.
DeCSS was found to be a prohibited circumvention technology. In the
censorware example, the DMCA exemption permits the act of decryption,
but it says nothing about whether a censorware researcher can make available
the computer program used to decrypt the encrypted blacklist, or even
the details of the method of decryption.

Navigating the DMCA’s Exemptions
Just as you can’t reverse-engineer object code without decompiling or
dissassembling it, you can’t reverse-engineer a technical protection measure
without circumventing it. Moreover, you often need a technological device
or tool to actually perform reverse engineering, so the ban on circumvention
technologies also restricts reverse engineering.

36 The DMCA covers two different kinds of technologies based on
what they protect: technologies that “effectively control access
to [copyrighted] works,” Sec. 1201(a)(2) and technologies that
“effectively protect[] a right of a copyright owner . . . in a work or
a portion thereof.” Sec. 1201(b)(1).

Hacking the Xbox: An Introduction to Reverse Engineering186
In combination, these DMCA provisions create major barriers to
cryptographers and security researchers who want to analyze the security
measures used in real, mass-marketed products. A commercial reverse
engineer who discovers a problem with another firm’s technical measure
and offers suggestions about how to improve it is at risk of being
indicted on criminal DMCA charges.

Even an academic reverse engineer is at risk of being sued for publishing
a paper about the weaknesses in a firm’s security measures, because such a
paper could be labeled a “tool of circumvention.”37 One example is
Princeton professor Edward Felten, who assembled and entered a team of
scientists in the music industry’s “SDMI Challenge,” a contest to crack digital
watermarking and other technologies being considered by the Secure Digital
Music Initiative for protecting digital music. Felten and his team entered the
contest with the intent of using the SDMI Challenge as a real-world security
case study, and they eventually authored a peer-reviewed academic paper that
was to be presented at a conference. Before the paper was actually presented,
the Recording Industry Association of America (RIAA) sent Felten and the
conference organizers a letter warning him that publishing the paper would
violate intellectual property laws, including the DMCA.

The DMCA also contains several exemptions relevant to reverse engineering:
circumvention of a technical protection system when necessary to achieve
interoperability among computer programs; circumventions conducted in
the course of legitimate encryption research; and circumvention for purposes
of computer security testing. Unfortunately, each of these exemptions is
both complex and narrow. Even when the act of reverse-engineering is
allowed, the DMCA strictly regulates what can be done with the resulting
information.

1201(f): reverse-engineering for interoperability
This exemption allows the circumvention of technical protection measures
for interoperability reverse engineering. It also allows, to a very limited
extent, the dissemination of information gained from reverse-engineering.
Note that 1201(f) would not have exempted Felten’s attack on the SDMI
watermarks, because it had no relation to interoperability.

The 2600 case, mentioned earlier, concerns the publication of a com-
puter program known as “DeCSS” on the website of 2600 Magazine.
DeCSS can be used to bypass CSS, the technical protection measure used
to control access to DVD movies. EFF, which represented 2600
Magazine, argued that DeCSS qualifies for the interoperability privilege
of 1201(f). DeCSS was designed, we argued, to enable people to build
software that would enable them to play legitimately purchased DVD
movies on their platform of choice, namely, Linux computer systems.

The courts rejected this argument, saying that 1201(f) only permitted
circumvention for purposes of achieving program-to-program

37 While this seems odd, consider that many academic papers in
the security include computer program code.

Chapter 12 - Caveat Hacker 187
interoperability, whereas DeCSS enabled program-to-data
interoperability that 1201(f) did not cover. This ruling is dubious,
because there are computer programs as well as data on movie DVDs.

While 1201(f) seems to follow Sega in permitting interoperability reverse-
engineering, it is more restrictive in several ways: interoperability is the only
legitimate purpose for which reverse engineering may be done; only
program-to-program interoperability qualifies, even though circumvention
may be needed to achieve hardware-to-program interoperability or program-
to-data interoperability; and the information resulting from reverse engi-
neering cannot be freely published.

1201(g): encryption research
The DMCA also contains an express exemption for encryption research.
Unfortunately, it is also very narrow. For one thing, this exception only
applies if the cryptographer has asked (even if he or she has not received)
permission from the copyright owner to engage in an act of circumvention
before the circumvention is accomplished. Second, the statute emphasizes
the need for a cryptographer to be an expert in order to qualify for this
exemption, even though some of the most brilliant minds in the field of
cryptology lack formal training. Third, the statute permits a cryptanalyst to
make tools to bypass access controls, but is silent on whether tools to
bypass use or copy controls are permissible (that is, it contains an exception
to one but not both of the anti-device rules). Fourth, it regulates the
cryptologist’s ability to disseminate the results of decryption.

Consider again Prof. Felten’s SDMI research: it would not be exempted by
1201(g) because digital watermarks are not encryption.

1201(j): security research
The DMCA’s security research exemption has a similar structure: it applies
only if the tester asks in advance and likewise allows making tools only to
bypass access controls, not copy or use controls. Like 1201(g), it too
regulates the tester’s dissemination of the results of the testing.

Even in this narrow form, it is not clear whether Felten’s research would be
covered. Sec. 1201(j) only permits making a tool to bypass an access control.
Is a digital watermark an access control or a copy control? The answer to this
question depends to a large extent on how the watermark is used. EFF
argued that, as contemplated by the RIAA, the SDMI watermark
technologies were both access and copy control technologies.

End-User License Agreements and
Contractual Prohibitions on
Reverse-Engineering

Intellectual property isn’t the only obstacle to reverse engineering. It’s
common for software licenses to prohibit reverse engineering. A typical
license clause might say: “You may not, and you may not permit others to,

Hacking the Xbox: An Introduction to Reverse Engineering188
(a) disassemble, decompile or otherwise derive source code from the
Software, (b) reverse engineer the Software, (c) modify or prepare
derivative works of the Software, (d) copy the Software, except as
expressly permitted in this Agreement, (e) rent or lease the Software, or
(f) use the Software in any manner that infringes the intellectual property
or other rights of Licensor or another party.”

Companies argue that such provisions legally bind purchasers not to reverse
engineer their software. If they do so anyway, they have breached a contract
and can be sued for damages. The problem, of course, is that the anti-
reverse-engineering provision gives the copyright owner rights beyond those
it would have under, say, the Sega decision.

Whether this kind of contractual prohibition is enforceable is a hotly
disputed issue. Courts have sometimes rejected reverse engineering
defenses in trade secrecy cases because this activity exceeded the scope of
licensed uses of the software.38 Courts have sometimes refused to enforce
software shrinkwrap license restrictions against reverse engineering because
of a conflict between the clause and federal intellectual property policy. In
Vault Corp. v. Quaid Software Ltd.,39 the maker of copy-protection software
tried to enforce an anti-reverse-engineering clause under Louisiana law
against a firm that had reverse-engineered its copy-protection scheme. The
court held that federal law preempted the contractual clause as a matter
of federal policy, the same argument used in Bonito Boats to override the
Florida boat hull law.

In addition, Section 301 of the Copyright Act preempts state-created or
state-enforced rights “that are equivalent to any of the exclusive rights
within the general scope of copyright” As might be expected,
there’s a debate about what “equivalent” means. Courts have said that
contract provisions enforceable under state law are “equivalent” to
federal copyright when the conditions for infringement are the same. But
if infringement of the state-created right requires an “extra element,” it is
not “equivalent.”

38 E.g., Technicon Data Sys. Corp. v. Curtis 1000, Inc., 224
U.S.P.Q. (BNA) 286 (Del. Ch. 1984) (holding that a consultant to a
hospital used improper means to obtain trade secret interface
information by wiretapping the hospital’s licensed software
system to study the manner in which the server software
exchanged data with the client software because this use had
not been authorized by the hospital; stating further that even if
the use had been authorized, the action would have
breached restrictive terms in the license); see also DSC
Communications Corp. v. Pulse Communications, Inc., 170 F.3d
1354 (Fed. Cir. 1999) (holding that there was a triable issue of fact
as to whether Pulsecom’s use of a “snooper board” at a
telephone company to get access to interface information
about DSC’s software resulted in a misappropriation of a trade
secret in view of restrictions in the telephone company’s license
to use DSC’s software).
39 847 F.2d 255 (5th Cir. 1988).

Chapter 12 - Caveat Hacker 189
Such a contractual clause was recently found enforceable. In Bowers v.
Baystate Technologies, Inc.,40 an inventor marketed a patented computer-
aided design (CAD) software “toolkit” with an anti-reverse-engineering
license clause. Baystate, a competitor, reverse engineered Bowers’
software and then marketed a competing CAD toolkit. After some
complicated litigation, the court eventually held, among other things, that
Baystate breached its contract with Bowers.

The court held that the license wasn’t preempted because a contract has
an “extra element” — the parties must agree.41 It follows that federal
copyright law can never preempt a contractual prohibition. The problem
with the Bowers decision is that it focuses only on the specific preemption
clause of the Copyright Act and completely ignores constitutional
“conflict” preemption.42

The Uniform Computer Information Transactions Act (UCITA) is a state
legislative atttempt to address these issues, but it is also mired in contro-
versy.

Trade secrets and the Economic
Espionage Act

The Economic Espionage Act (EEA)43 created the first federal cause of
action for trade secrecy misappropriation. But it has no reverse engineering
defense. This is troubling because rights granted under the EEA arguably
implicate certain reverse engineering activities previously thought to be
lawful. In particular, it’s unclear whether decompilation and disassembly of
computer programs may violate EEA rules that forbid duplicating trade
secrets.

The Responsible Hacker:
Ignorance Is No Defense
In general, there are two ways you can violate intellectual property laws.
Direct infringement means that you actually infringed. Indirect infringement
means that you facilitated actual infringement by someone else. For
example, in the Betamax case, the issue was whether Sony, by selling
VCRs, could be found liable for its customers’ copyright infringement.

40 302 F.3d 1334 (Fed. Cir. 2002).
41 The court relied on an earlier case, ProCD, Inc. v. Zeidenberg,
86 F.3d 1447, 1454. (7th Cir. 1996) (“A copyright is a right against
the world. Contracts, by contrast, generally affect only their
parties; strangers may do as they please, so contracts do not
create ‘exclusive rights.’”).
42 EFF has submitted an amicus brief supporting Baystate’s
petition for rehearing en banc in the case. [add cite]
43 Economic Espionage Act of 1996, Pub. L. No. 104-294, 110 Stat.
3488 (codified at 18 U.S.C. § § 1831-1839 (Supp. V 1999)).

Hacking the Xbox: An Introduction to Reverse Engineering190
Civil and Criminal Offenses and Penalties

The legal theories we’ve talked about carry a broad range of potential
penalties. The main concern is civil liability, either economic damages or an
injunction against the activity or both. Damages are usually tied to the
amount of harm caused by the infringement.

In patent law, for example, the usual basis for damages is that of a “reason-
able royalty.” The court will calculate how much you should have paid the
patent owner in royalties if you had contracted for a license. Damages can
also be based on the infringer’s profits or the patent owner’s lost profits.

“Willful” infringement is treated more harshly. The patent statute permits a
court, in its discretion, to increase damages up to three times the base
damages (and also to pay the patent owner’s attorney’s fees) if the infringer
knew about the patent and did not consult with competent patent counsel.

The current trend in intellectual property law is toward greater attention to
criminal penalties. Under the first federal copyright act in 1790, copyright
infringement was a purely civil matter. It was not until 1897 that Congress
added criminal penalties to the copyright act, and criminal copyright
infrngement was classified as a misdemeanor.44 Moreover, criminal
copyright infringement was rarely used.

Today, the risk of criminal prosecution appears considerably higher, and the
criminal penalties are much greater. Amendments to the copyright act in
1982 and 1992, for instance, classified certain kinds of infringement as
felonies. Even then, however, criminal infringement had to be undertaken
willfully and for commercial advantage or private financial gain.

The 1997 No Electronic Theft Act (NET Act) criminalized the reproduction
or distribution of one or more copies of copyrighted works that have an
aggregate retail value of over $1,000 during any 180 day period, regardless of
how those copies are created or distributed. It retained the willfulness
requirement, but eliminated the requirement that the defendant’s infringe-
ment be motivated by profit or commercial gain.

The DMCA also contains criminal provisions, which were invoked in the
prosecution of Dmitry Sklyarov and the company he worked for,
ElcomSoft. Elcomsoft produced and distributed software that can be used
to convert digital books from Adobe’s eBook format into Adobe’s PDF
format. In the course of the format conversion, the use restrictions
imposed by the eBook format are stripped away. It was undisputed that the
Elcomsoft software can be used to facilitate noninfringing uses of eBooks
(e.g., fair use excerpting, or to facilitate automated translation into Braille for
blind readers). Sklyarov himself was never accused of infringing a copyright,
or assisting in the infringing activities of any third party. Nevertheless, for

44 See generally Lydia Loren, Digitization, Commodification,
Criminalization: The Evolution of Criminal Copyright
Infringement and the Importance of the Willfulness
Requirement, 77 Wash. U. L.Q. 835, 840 (1999).

Chapter 12 - Caveat Hacker 191
his part in developing the software, the FBI arrested him and held him in
custody for 3 weeks.45 He and Elcomsoft were indicted by a grand jury;
based on the indictment, Sklyarov faced a maximum of 25 years in prison
and a fine that could exceed $2 million.46 ElcomSoft and Sklyarov eventually
were found not guilty of violating the DMCA.

Reverse Engineering as “The Freedom to
Tinker” and Other Legal Issues
Edward Felten, a computer science professor at Princeton University, views
reverse engineering as a part of the “the freedom to tinker,” which should
include the freedom to “take them apart, to discuss them, to explore how
they work, to modify them, to make them better.” Felten argues that “as
more and more of our world is experienced through electronic devices, and
communications and culture are more and more mediated by these devices,
it becomes increasingly important that we be able to tinker with them, to be
able to understand this part of our world.”

The freedom to tinker should also include the right to talk about tinkering.
But as we’ve seen, many of the new intellectual property rules limit the right
of reverse-engineers to share what they learn from tinkering. These limits
not only raise serious First Amendment free-speech issues, they go to the
heart of the constitutional basis for copyright and patent law: progress in
the arts and sciences. One of the major issues raised by the DMCA is its
chilling effect on scientists.47

45 See Professor Larry Lessig, “Jail Time in the Digital Age,” N.Y.
Times (July 30, 2001) (available at <http://www.nytimes.com/
2001/07/30/opinion/30LESS.html>); Declan McCullagh, “Hacker
Arrest Stirs Protest,” Wired News (July 19, 2001) (available at
<http://www.wired.com/news/politics/0,1283,45342,00.html>);
Jennifer 8 Lee, “U.S. Arrests Russian Cryptographer as Copyright
Violator,” N.Y. Times, July 18, 2001.
46 See Brad King & Michelle Delio, “Sklyarov, Boss Plead Not
Guilty,” Wired News (Aug. 30, 2001) (available at <http://
www.wired.com/news/politics/0,1283,46396,00.html>).
47 See generally Electronic Frontier Foundation, Unintended
Consequences: Four Years under the DMCA (2003) [cite to EFF
website]

CHAPTER 13

Onward!

The state of the art in Xbox hacking is constantly advancing. Thousands of
hackers are constantly researching, innovating, discovering, and sharing
new methods and techniques for making the Xbox a more useful and
valuable piece of hardware to its end users. Keeping abreast of the latest
developments in hacking can be overwhelming. Hopefully, reading this
book has given you the faculties to understand the latest posts and news
on various websites and web fora dedicated to Xbox hacking. This
chapter discusses where you can go to find out more about the latest
hacks, where to ask for help, and how you can contribute your unique
abilities and perspective to the community. This chapter also discusses
some of the larger challenges that will face hackers in the future, namely
the trusted PC initiatives.

The Hacking Community
Xbox hackers are an anarchistic community that works mostly underground,
keeping in touch and sharing information through various Internet “fora”
(fora is the plural of forum, as data is the plural of datum). Most of the
Xbox hacking community keeps a low profile, and hackers often use
pseudonyms to protect their identities. The reasons for using pseudonyms
varies, but in general anonymity carries the benefit of greater operating
freedom. Hackers are more inclined to share their results and findings if they
know they can back away unscathed in case things get ugly. The use of
pseudonyms also levels the playing field. Hackers judge each other primarily
on the basis of the quality and frequency of their contributions, and little
else. The fact that you may be young does not detract from your first
impression or street credibility, as it might in other situations. Likewise,
many hackers have no qualms about being blunt when you’ve made an
error, and they have even less patience for stupidity presented as erudition or
rude assertions. On the other hand, many hackers are more than happy to
extend a hand to those who have made an honest effort to read the FAQs,
search the web and generally try their best to check and make sure that the
question hasn’t already been answered.

Hacking the Xbox: An Introduction to Reverse Engineering194
Hacking Fora
The Xbox hacking community has many civic fora for sharing their results
and airing their concerns. The most popular fora are web-based BBSes such
as www.XboxHacker.net and www.xbox-scene.com, and IRC
channels such as #xboxhacker. Web-based BBSes typically feature news
logs, FAQs, and useful links to information. More importantly, BBSes
include fora where people can share information and post questions.
Through these fora, you can tap the collective knowledge of all the
hackers that frequent these BBSes. The logged history of these fora also
contains a wealth of Xbox hacking information (and misinformation). I
encourage readers who have unanswered questions from this book to
check out these fora for answers.

One of the first Xbox hacking fora to be created was the XboxHacker BBS
(www.xboxhacker.net). Many of the best and brightest Xbox hackers
have contributed to its fora. For example, one of the forum threads
documents, in real-time, the adventures of Andy Green (known as
numbnut on the XboxHacker BBS) as he hacked the version 1.1 security
scheme of the Xbox. I have learned much from reading the forum
postings of the XboxHacker BBS. I have also met some of the most
interesting people through the BBS fora. The founder of the
XboxHacker BBS, Dan Johnson (also known as SiliconIce) tells his story
in the sidebar “Profile: Dan Johnson.”

Another resource for finding more information about the Xbox in general
is the web search engine Google (www.google.com). As more hackers
become involved with the Xbox, Google is becoming an increasingly
important tool for casting a wide net and discovering the latest tools and
techniques. For example, at the time of writing Google started indexing a
number of resources for replacement Xbox components. This can be useful
for those who do not want to go through the trouble of adapting an ATX
power supply to work with the Xbox.

Try to use keywords that are as specific as possible when searching with
Google. For example, typing Xbox hacking into Google will return a
large number of links related to the general topic of Xbox hacking, but
few specifics. For example, today’s top hit on Google for “Xbox
hacking” is a LWN.net article titled “LWN: Lindows CEO funds Xbox
hacking contest (News.com).” This seems fairly removed from informa-
tion about how to install a new hard drive or the details about the Xbox
security system. When narrowing down your search, try to figure out
what the de facto jargon and spelling is for your concept. Suppose you
are looking for information on the new Xbox security system. If you
search on new Xbox, you hardly get any technical information. How-
ever, if you search on xbox v1.1 the search returns many more useful
technical results. One of the best ways to harvest the current jargon and
acronyms is by browsing the hacking BBSes.

Chapter 13 - Onward! 195
Making a Contribution
If you are looking for a way to contribute to the Xbox hacking community,
keep in mind that most hackers have a unique skill or strength that
typically corresponds to his or her area of greatest interest, and that most
hackers hack for fun. For example, I really enjoy hardware, especially
when it requires building something. Also, while I can write code, I don’t
particularly enjoy it. Thus, my contribution to the hacking community is
primarily through hardware projects. Likewise, I have a hard time
motivating myself to engage in software projects. So, most of the time I
just sit back and enjoy watching what other people are doing on the
Xbox. It is both educational and entertaining.

When trying to think about what you can do for the Xbox hacking
community, don’t worry yourself about trying to jump in quickly and
rush into a project that you aren’t in love with, or that you aren’t comfort-

Profile: Dan Johnson (a.k.a.
SiliconIce)
Can you tell us a little bit about yourself, and how you got into
hacking?

For some time, I had been interested in electronics hacking,
though for the most part my interest had been limited to
merely reading about such feats. Hacked devices such as
Sega’s Dreamcast and the Netpliance I-Opener had
caught my attention from time to time. However, my first
real experience with electronics hacking came with the
“ePods,” a discontinued internet appliance/web-tablet device.
I read about these interesting devices online and found my
way to Ken Segler’s I-Appliance BBS (http://www.linux-
hacker.net), home of the famous I-Opener hacks. After read-
ing about the neat things people were doing with these tab-
lets, I was intrigued and spent a good deal of my saved up
money at the time ($200) on one of the units. After receiving
my new toy, I spent a lot of time performing many of the docu-
mented hacks, mostly software based. This was to be my first
glimpse into the world of electronics hacking. After the ePods,
I moved on to another internet appliance, the Gateway Con-
nected Touchpad. A slick-looking 10" touchscreen with a
400MHz Crusoe and 96MB RAM housed behind it; it looked
like a great deal and perfect for a fun project. The device ran
a custom build of Linux for AOL off of a 32MB CompactFlash
card. I swapped this out with a Microdrive and after much
swapping of this disk between laptops and USB readers and
the Gateway, the device booted a pared down version of
Windows using “98Lite.” The device seemed perfect for use as
a finger-operated, network-attached mp3 jukebox (among
other things) so I began working on a custom player that would

(continued)

Hacking the Xbox: An Introduction to Reverse Engineering196

allow easy operation via the touchpad. The whole Gateway
experience made for a neat summer project between my Jun-
ior and Senior years of high school.

How did the XboxHacker BBS come about?

It was during this time period that I got the idea for
XboxHacker.Net. To me, the Xbox seemed to have the po-
tential to be the ideal computing device for under the TV . . .
as soon as it could be programmed. The hardware was most
impressive for the time, and more than adequate for what I
hoped would be accomplished on the device. Unlike other
consoles, the Xbox also was to have a hard drive and ethernet
port built in. Once hacked, the Xbox could be used to emu-
late old consoles such as NES, SNES, N64, and even PSX, to
conveniently play back any type of media file, such as mp3s
or DivXs, on your home entertainment system, to play streamed
media from a home network, or even to double as a basic
PC. Some argued that the cost of the device at $299 made it
out of range to bother hacking, as a PC with similar specs
could be constructed without the need for hacking for not
much more in cost. However, the Xbox had the advantage
that it could also play Xbox games and was already designed
to sit with your TV. The hacks would just be added value. After
my short foray into the world of electronics hacking, I thought
that hacking the Xbox could be an interesting project to help
organize as I was intrigued by the possibility of having a con-
venient box for my TV to perform the tasks mentioned above.
It was not until many months later that I would actually ac-
quire the XboxHacker.Net domains.

How was your experience growing and running the
XboxHacker BBS?

From the beginning, XboxHacker.Net focused on a few pri-
mary goals: providing and spreading technical informa-
tion about the Xbox, and providing a place for fellow hack-
ers to discuss technical information related to hacking the
Xbox. Though due to my limited technical knowledge and
experience I could do little in the way of actual hacking to
contribute to the effort, I knew plenty enough to help facili-
tate the effort by collecting and distributing relevant infor-
mation and moderating a discussion board.

Not long after the site launched, we were fortunate enough
to receive some links from such high-profile websites as Mike
Magee’s The Inquirer and Van Smith’s Van’s Hardware. The
XboxHacker.Net BBS quickly became one of the primary places
on the Internet to discuss any material related to hacking the
Xbox and the XboxHacker.Net news page had the most up-
to-date news on the status of the Xbox. A few weeks after the
site came online, it received mention in an article on CNET,
and from then on the activity level steadily increased. It wasn’t
long before XboxHacker.Net had outgrown the small shared
server we were on, so the site moved to a much larger ac-
count which was also outgrown in a matter of weeks. Traffic

(continued on page 198)

Profile: Dan Johnson (continued)

Chapter 13 - Onward! 197
able executing. You will know when your time has arrived: the project will
just shout your name, and you will naturally be compelled to hack.

Trusted Computing
Trust is the cornerstone of security, and in order to have faith in your
security system, you need to have faith in the hardware and software you are
running. The trusted computer is a machine that has been architected to be
resistant to attacks that could compromise the trustability of the machine.
There are many approaches to building a trustable computer, from the
Automated Teller Machine model of physical security and tamper-resistance,
to less hardware intensive solutions such as those used in the Xbox. The
Xbox fits into the broader picture of trusted computing since it is one of
the first high-profile, widely-deployed trusted PC implementations. In a
way, the Xbox gives us a hint of what we might expect down the road for
trusted computing,

Trusted computing is a potentially disruptive emerging technology. The rise
of trusted clients in an ad-hoc network like the Internet harbors the promise
of enabling safe and private on-line financial transactions, of reducing or
eliminating the occurrence of computer viruses, and of reducing or eliminat-
ing spam email. Trusted PCs can also be used to securely store sensitive data,
such as your medical and financial records and your naughty or embarrassing
secrets. Another application of trusted PCs is to reliably enforce digital
content access rights and management policies upon users. The digital rights
management (DRM) aspect of trusted computing could fundamentally
change the way we use computers today; many of us enjoy the benefits of
pseudo-free content and flexible copyright implementations. The funda-
mental problem is not the existence of content management policies —
indeed, content management policy can be beneficial for consumers. The
real problem is when the policies which govern your rights can be set
unilaterally by content providers. In the current trusted PC proposals, the
user is not trusted to have control over certain key secrets inside their
machines. Instead, the attestation information (information required to
establish trustability) of a user’s machine is partially maintained by a third
party. Can we rely on a non-elected, unregulated third party with business
interests to determine who can do business, send email, and otherwise be
recognized as a trustable entity?

Trusted computing is like a gun. It’s great to have one as long as you’re the
one controlling the trigger. Unfortunately, many trusted PC opponents fear
that in practice, systems will be deployed with preset rights, policies and
third-party trust affirmation resources pointed in the wrong direction for
consumers. A company, during good times, may set the privacy and security
policy in favor of users to attract a larger customer base, but once Chapter 11
comes knocking, or the company is sold or otherwise changes hands, these
policies can and will shift. What is to prevent businessmen from promoting
trusted computing initially with user-friendly policies, and then suddenly
shifting into a wallet-squeezing DRM mode? Ethics?

Hacking the Xbox: An Introduction to Reverse Engineering198

to the forums continued to increase rapidly, so I made the
decision to move the site to its own dedicated server where
we could have room to grow and not worry about every few
MBs of bandwidth usage or how many concurrent forum us-
ers were online.

It didn’t take long before the activities of XboxHacker.Net
captured the attention of Microsoft. Early in the site’s his-
tory, I was contacted a couple of times with requests to
remove materials. The first instance was of a screenshot of a
developer tool I had received without much explanation
that showed “security sectors” on the disks. The second in-
stance was a request to remove a link someone had posted
in the forums to a BIOS image of the Xbox. Aside from these
few minor incidents, contact between Microsoft and
XboxHacker.Net was virtually non-existent. It was made a
policy early on to steer clear of issues of questionable legality
such as discussion about the backing up of games, linking to
copyrighted materials, or posting Microsoft code from the BIOS.

In the beginning, though interest was high, progress seemed
to be relatively slow . . . there was not a lot that could be done
with the Xbox before the security was broken. There were many
individuals who contributed notably early on. Some of the
earliest contributors to the XboxHacking world were Andy and
Luke, whose Web-pages contained a plethora of information
on file formats and other valuable tidbits of Xbox information.
Steve “SurferDude” Gehlbach contributed to the design of a
VGA converter circuit for the Xbox and Ken Gasper improved
on this to create a true VGA adapter for the Xbox. Bunnie’s
early analysis and hardware info page generated interest in
XboxHacking as well after its appearance on Slashdot. Indeed,
there are numerous others who made their mark as well. Privi-
leged to count such skilled hackers among the contributing
members on the boards, XboxHacker.Net grew into a hub for
technical Xbox information, discussion, and news.

The crown jewel of XboxHacker.Net has no doubt always been
the XboxHacker BBS. The site was centered around the forums
and activities of our members. Often, the latest XboxHacking
news would simply be links to forum topics and clips from posts
made by our members. The purpose of the forums was to en-
able the diverse, multi-national group of people interested in
hacking the Xbox to work together towards this common goal.
The forums provided a great place to share information and
discuss ideas with fellow hackers and also served to bring to-
gether many talented hackers who may otherwise have had
no means of collaborating. It was a great feeling to watch
the progress that the forums enabled. One particular discus-
sion that comes to mind took place over the course of several
days. A number of members were discussing the new security
system in the second generation Xbox, looking for flaws and
ways around it. It was exciting to watch the events unfold as
hackers got closer to the solution and eventually broke the
security on the revised Xbox. Our hundreds of contributing
forum members were in large part responsible for the success

(continued on page 200)

Profile: Dan Johnson (continued)

Chapter 13 - Onward! 199
Taking a Step Back
There is a problem with the phrase “trusted computing”: it has become
synonymous with cryptographically secured trusted computers. Let’s take a
step back and just talk about alternative approaches to building trusted
computers.

Trustability has always been important in computers. However, back in
the early days of computing, machines were so expensive that the
hardware necessary to enforce strong trust policies was not within the
reach of consumers. For example, many early machines shipped with a
socket for a hardware Memory Management Unit (MMU) chip. The
MMU was one of the first steps toward trustable hardware memory
models; part of an MMU’s job is to enforce page-level memory access
protections. MMUs were sold as an option because they were quite pricey
at the time. Unfortunately, the move toward trustable hardware stopped
at the MMU, partially because computer networks didn’t exist in any
major form until relatively recently. In a non-networked world, data
needed to be protected only from programmer errors and from access
by a few select users with physical access to the machine. Today, comput-
ers need something stronger than just an MMU, something that can
provide trust in the face of viruses and remote attackers attempting to
exploit subtle software weaknesses to run malicious code.

The natural extension to the MMU’s hardware-enforced paged virtual
memory model might be address capabilities with a tagged memory model.
A memory tag is a set of bits that record the type of data or code stored in a
memory location. In a tagged memory model, every memory location has a
set of tag bits, kind of like how every memory location in a conventional
error-correcting memory implementation is associated with some ECC bits.
Tag bits help the hardware enforce data type management policies; for
example, a memory location tagged as piece of data can never be accidentally
or intentionally executed as code. A capability is a pointer granted by a
trusted kernel that cannot be forged. The unforgeability property is prefer-
ably enforced by hardware through tag bits. Many architectures also include
the ability to enforce access boundaries as part of a hardware capability.1
Capabilities and memory tags are not new ideas; in 1961, the Burroughs
B5000 used capabilities (then called descriptors) and tagged memory to
guard, in hardware, against buffer overflow attacks, and to isolate code
from data.2 The MIT PDP-1, Intel i432, IBM System/38, and the Mach
and Amoeba operating systems also implemented capabilities in some

1 An efficient, high performance hardware implementation of
precise object boundaries using tagged capabilities can be
found in a tech note titled “A capability representation with
embedded address and nearly-exact object bounds” by
Jeremy Brown, J.P. Grossman, Andrew Huang and Tom Knight.
http://www.ai.mit.edu/projects/aries/Documents/Memos/
ARIES-05.pdf
2 “The Architecture of the Burroughs B5000 — 20 Years Later and Still
Ahead of the Times?” by Alastair J.W. Mayer. http://www.ajwm.net/
amayer/papers/B5000.html

Hacking the Xbox: An Introduction to Reverse Engineering200

of XboxHacker.Net and the progress of the XboxHacking world
in general.

Besides the activity on the XboxHacker.Net BBS, there were no
doubt many other groups working to hack the Xbox in secret.
One such group I knew of on IRC contained contributing fo-
rum members as well as others from the electronics hacking
underground. Names here will go unmentioned. Many bits of
information from independent groups or individuals were re-
layed to me for reporting over time. However, despite the grow-
ing interest in XboxHacking and the number of people in-
volved in the effort, it would be some time before any major
breakthroughs became public knowledge.

The XboxHacking scene picked up pace fairly rapidly after
the public availability of modchips near summer 2002. By this
time, the Xbox security system had been cracked by multiple
groups and it was only a matter of time before modchips were
readily available to the public. At this point, the work shifted
away from hardware hacking for the most part and more to-
wards software development. A sister site to XboxHacker.Net,
XboxDeveloper (http://www.xboxdeveloper.net) was started
to help catalog the software that became available for the
Xbox, though it never took off to the level that XboxHacker.Net
did. Using leaked copies of the Microsoft Xbox SDK, program-
mers began writing and porting various applications for the
Xbox, including media players and emulators such as MAME.
The Xbox-Linux project (http://xbox-linux.sourceforge.net/
) under the leadership of Michael Steil, successfully allowed
the Linux operating system to run on the Xbox. I pushed to
start the OpenXDK project (http://sourceforge.net/projects/
openxdk/), an open source developer kit that would allow de-
velopment of software for the Xbox unhindered by legal is-
sues, though that project has met with only mixed success. It is
now under the leadership of “Caustik” (Aaron Robinson), a
CS student at Case Western University. Due to the more acces-
sible nature of software development compared with hard-
ware hacking, the number of contributing members to the
general XboxHacking effort increased rapidly. The amount of
“homebrew” software available for the Xbox today is amaz-
ing and includes everything from media players, console
emulators, and utilities to originally written games.

form, and this is by no means a complete list of systems that have used
capabilities or tagged memory. The security properties of capabilities
have also been demonstrated in many academic studies, such as the
EROS (Extremely Reliable Operating System).3 Unfortunately, capabili-
ties and tagged memory never made their way into the heart of main-
stream PC architecture. Security and reliability has always taken a back
seat to cost, backward-compatibility, and performance.

Profile: Dan Johnson (continued)

3 Originally conceived at the University of Pennsylvania by
Jonathan Shapiro (http://www.eros-os.org/)

Chapter 13 - Onward! 201
This brief history lesson demonstrates that trusted computing does not
require the cryptographic approach that is being proposed today by
Palladium and the Trusted Computing Platform Alliance (TCPA). In fact,
cryptography on its own does not provide any security. Secure key
management is really what provides all the security in Palladium/TCPA.
Cryptographic algorithms simply transfer the security of the key into the
user’s domain.

This being said, one can draw an analogy between a capability and a
cryptographic key. Both require a trusted OS to manage their creation,
dissemination and destruction. Both are equally weak if the system
cannot protect against forged keys or capabilities. The big difference is
that if a secret key leaks, all security is lost, eternally. On the other hand,
capabilities are created and destroyed dynamically, so the leakage of a
capability might lead to a security breach, but the scope and duration of
the breach is limited. To this extent, capabilities provide a more robust
solution for computer security.

Note that relying solely on cryptographic techniques for hardware
security still leaves machines open to classic buffer-overrun style attacks
and security holes due to programming errors. “Measurements” of the
software’s state help mitigate this weakness by detecting code alterations
before executing security-critical operations, but measurements are not a
perfect solution. On the other hand, buffer-overrun attacks are impos-
sible in systems using hardware enforced capabilities with bounds
checking.

Memory tags can also be used to implement security features that are not
feasible using a purely cryptographic approach to trusted computing. One
example is the trustable concurrent processing of compartmentalized
secrets.4 In this example, multiple threads with varying levels of security
clearance are operating on a single processor. The hardware enforces a policy
where all threads impress their security level upon the data that they access.
In other words, every computation simultaneously operates in two
domains: the conventional arithmetic domain, and the security domain.

Suppose an unclassified thread adds two unclassified numbers and creates
a piece of data named foo. foo’s security tag is also computed in parallel
with the add arithmetic operation. In this case, the security tag’s result is
“unclassified.” Now, suppose a top-secret thread touches foo: foo’s security
tag now changes to “top secret.” Unclassified threads can no longer read
foo, even if the unclassified thread has a valid pointer to foo; foo must be
explicitly reclassified before it can be read again by unclassified threads.

Such a strictly compartmentalized security system can be used, for
example, to ensure that no internal kernel structures are ever accessible to

4 More about security systems like this can be found in a tech
note titled “A Minimal Trusted Computing Base for Dynamically
Ensuring Secure Information Flow” by Jeremy Brown and Tom
Knight. http://www.ai.mit.edu/projects/aries/Documents/
Memos/ARIES-15.pdf

Hacking the Xbox: An Introduction to Reverse Engineering202
user processes, even in the presence of bugs and memory leaks (including
scenarios where kernel memory is deallocated and reassigned to a user
process without a memory clearing step). This scheme can also be used to
establish security audit trails which are useful for helping programmers to
trace the root cause of a security breach, and as damage control measures
in case of a security breach.

To be fair, one advantage of the cryptographic approach to trusted
computing is that if a rogue does get hold of data through some
hardwares means — by eavesdropping on the hardware or stealing a hard
drive — the data cannot be deciphered. However, users can elect to use
cryptography for data protection in any computer implementation,
including those using hardware capabilities and tagged memory. The
problem of secure key management is still a difficult problem, but
perhaps it can be solved in part by integrating cryptographic smart card
readers into PCs.

There is no essential reason why a trusted PC implementation must use the
cryptographic techniques proposed in Palladium and TCPA. The techniques
reviewed in this section, namely capabilities and tagged memory, can be used
to implement a secure, trustable PC in a manner that does not involve the
risk of users losing the ability to set their own access policies. Users would
be in full control of their machine and their secrets at all times.

Palladium Versus TCPA
There is much confusion these days about the current trusted PC proposals,
namely Microsoft’s Palladium and the Trusted Computing Platform Alliance
(TCPA). There are enough similarities between the two proposals that many
people think they are one and the same, but the goals of each initiative
are different.

The TCPA is a multi-corporation alliance to create computers with some
nominal amount of trust. Significantly, much of its specifications can also
be applied to non-PC platforms. In TCPA the trust is planted in a secure
hardware module called the TPM (Trusted Platform Module). The TPM
contains features to ensure that the secrets contained within the module
are never leaked through software attacks. It also contains features, such
as secured system “measurements,” that attempt to transfer the trust
contained within the TPM to the host machine.

Palladium, on the other hand, is a whole-system PC-centric security
concept created by Microsoft alone. One of its components is a TPM-
like security module, but Palladium also calls for sweeping changes to the
hardware chipset and the way I/O ports are implemented. The chipset is
required to enforce memory security policies from all potential DMA
sources, such as the graphics card. Palladium also calls for encryption of
the I/O to the keyboard and video subsystems.

Chapter 13 - Onward! 203
Palladium’s requirement for cooperation between chipset vendors, OEMs
and Microsoft is a potentially large flaw. There isn’t enough margin in the
commodity PC hardware industry today to support the overhead of an
extensive cryptographic security overhaul. Too, many chipset vendors do
not have any experience with implementing secure systems. On top of the
language barrier faced by many overseas chipset vendors, chipsets are
usually developed on a short fuse and with a keen eye on the pocketbook.
Can chipsets developed under these conditions be expected to protect
sensitive secrets?

The Xbox is an example of what can go wrong when security policies are
defined by one body and implemented by another very different organi-
zation. Microsoft wrote a specification for a trustable piece of hardware,
namely, the Xbox. Strong cryptographic algorithms are used liberally in the
Xbox, and the master key for the system is locked deep inside a complex
piece of silicon. However, experience has demonstrated that the Xbox’s
security system can be bypassed using a combination of an unsecured debug
port, a flaw in the hardware initialization scheme, and a bug in the handling
of a boundary case of the instruction pointer in the CPU. These three minor
oversights, committed by three independent parties (the assembly contrac-
tor, the Xbox firmware designer, and Intel), conspire to provide a
convenient method for defeating Xbox security.

Each of these oversights on their own does not represent a significant
security problem. This leads to the disconcerting question of how many
security breaches in a particular Palladium implementation will be caused by
the stacking of multiple benign flaws. Every complex consumer electronics
system has minor bugs or design oversights, especially when systems are
composed of components built by multiple independent entities whose
primary interest is in turning a profit.

In the consumer electronics industry, one can either ship a perfect
product, or one can make money. Products that don’t make money are
quickly cancelled. Thus, it is very rare to find a consumer product that is
technically perfect in all respects. As a result, the only practical way to
guarantee the security of consumer electronics system as complex as
Palladium is to throw it into the wild, and let the hackers have their way
with it for many years until all of the big security holes have been
discovered and plugged.

On the other hand, the TCPA’s TPM is a device created to solve a certain
set of problems that is smaller in scope than Palladium’s. Thus, the TPM
is not as exciting from a market perspective, but it may be more practical
and serviceable for its intended purpose. Both the TPM and Palladium
are weak to hardware attacks, but the TPM doesn’t attempt to extend
security requirements as far into third-party system design territory. The
TPM is primarily a secured key management module that can detect most
modifications and intrusions to the host system. The software layers built
on top of this substrate do the rest of the heavy lifting, caveat emptor.

Hacking the Xbox: An Introduction to Reverse Engineering204
Hacking the Trusted PC
The current proposals for the trusted PC are weak against some fairly simple
hardware attacks, even in the absence of any integration oversight or bug-
related back doors.

The first attack is one that I call the “Surreptitious BIOS,” or SPIOS
(pronounced “Spy OS”) attack. SPIOS can be used to defeat DRM
policies that rely on the cryptographically sealed storage feature of the
trusted PC to prevent unauthorized user access to data. The basic idea is
to boot the PC with an unmodified BIOS into trusted mode and extract
all the desired data into system RAM, then to perform a warm reset of
the system while swapping the BIOS image.

The modified BIOS image can be used to read out the desired data from
system RAM. The desired data may be a session key stored in memory,
or the actual decrypted data itself, depending upon how the program
structures and caches its data in memory. Since the current trusted PC
specifications call for an LPC bus based BIOS, inexpensive alternate
firmware devices (similar to those used on the Xbox) can be used to
execute this attack. There are techniques that application programmers
can use to complicate this attack, such as only decrypting a single block
of data each time into system memory, but many of these techniques
severely degrade system performance. The degradation of system
performance may be especially pronounced if file caching and
prefetching is disabled.

Another attack is one that I call the “Surreptitious RAM,” or SPAM
attack. The goal of this attack is to spoof the trusted routines responsible
for measuring the fitness of the system state. A device, such as an FPGA
or ASIC, is installed on the plug-in memory cards in between the DRAM
chips and the memory connector. This device monitors the pattern of
addresses going by, or it may have an extra connector that sniffs the state
of the wires connected to the I/O pins of the cryptomodule responsible
for authenticating the system.

Either way, when a system measurement is in progress, the SPAM device
presents a memory image that is consistent with an unmodified, trusted
system state. However, during all other operating modes, the SPAM
device presents a memory image that is modified to do whatever the user
pleases. This modification can be very subtle: Just a couple of bits flipped
at the right locations is all it takes to modify key branch instructions in
the security kernel.

This device is more powerful than the SPIOS since it works on a system
that is powered-up and supposedly trustworthy. It can be applied to
effectively defeat a wider range of DRM schemes as well as some
authenticated transactions between the local machine and the server.
SPAM alone cannot be used, however, to falsely identify a system as
another registered, trusted system, since SPAM lacks the secret shared

Chapter 13 - Onward! 205
between the tamper-resistant secure cryptomodule in the local machine
and the authentication server. False system identification would require
either extracting the key from a tamper-resistant secure cryptomodule
(possible, but not trivial and most likely destructive to the module), or
somehow tricking a secure cryptomodule from another registered,
trusted machine into providing the falsified identity.

The SPAM device can be manufactured for relatively little (high perfor-
mance FPGAs can cost as little as $50 today in single quantities), and can
be very easy to install. The SPAM can be either integrated directly into a
memory module (in which case it functions as both a trust violation
device and as a memory expansion device), or it can be provided as a
device that is installed in a stacked configuration in between the
motherboard’s memory slot and the existing memory device. In some
memory card configurations, particularly ones that employ heat shields, it
may be possible to hide the SPAM device and pass the module off as a
regular memory expansion device. While elaborate, this may be a
worthwhile attack against a large corporation or bank that stores high-
value secrets on a trusted PC-based server.

Looking Forward
When considering the prospect of trusted computing, we need to first
consider whether the currently proposed schemes will offer all the
benefits that they promise, and then weigh those against the potential
harm to consumers’ rights and the potential benefits to criminals
(enhanced privacy can be used for both good and ill). If trusted comput-
ing could provide perfect security for online businesses, then that might
be worth the potential risks. However, the scenarios outlined in this
chapter indicate that the trusted PC’s security may be less than perfect.

Consider the Xbox. The Xbox is a trusted PC implementation that can
be hacked with just a $50 solderless module. This places a fairly strong
bound on the value of secrets that can be trusted to an Xbox. Hardware
modchips are so inexpensive that they pay for themselves with the cost of
a copied game title, or two games if you elect to pay someone to install
the chip for you.

Of course, there are always the moral and social implications of stealing
content too, as well as new legislation, such as the DMCA, which aims in
part to make such acts a crime. Unfortunately, the current trusted PC
proposals on the table are also weak in the face of similarly inexpensive
hardware attacks. Thus, it is unlikely that they will provide the level of
security required for high-value or very embarrassing secrets.

The fact of the matter is that hacking technology will be developed
whether or not it is illegal, and whether or not the intention is good or
evil. Thus, it is in the best interests of consumers and companies to
educate the population about hacking, and for everyone to understand
the limitations of their “trusted PC.” The worst-case scenario would be

Hacking the Xbox: An Introduction to Reverse Engineering206
if billions of dollars were invested in trusted computing, only produce a
net result of no greater safety or privacy for consumers, while severely
curtailing consumers’ rights with poor content policy implementations.

The good news for trusted PC proponents is that shrinking feature sizes
in integrated circuits is driving greater integration throughout the PC.
Within a decade, today’s PC will fit on a single piece of silicon. Once the
RAM and the BIOS are fully integrated into a single piece of silicon,
hacking a system becomes much more difficult — but not impossible.
Focused Ion Beam (FIB) machines, a tool used by chip designers and
failure analysis labs, can cut and jumper nano-scale features. Another
upside for for trusted machine designers is that public key processors
could become so small and cheap to integrate into a chip that individual
chips, especially memory chips, could start using strong crypto to
authenticate and encrypt their I/O.

Another technology that could aid the implementation of trusted PCs is
integrated tamper-resistant or tamper-detecting features. For example, a
time-domain reflectometer (TDR) could be built into a chip’s I/O cells.
A TDR can detect the presence of an eavesdropper on a wire by
recognizing certain changes to the wire’s electrical properties. In addition
to the ability to detect eavesdroppers, integrated TDR devices are
desirable for high performance I/O since they can be used to calibrate
the drive impedance and equalization/pre-emphasis filters required for
multi-gigabit speed communications.

Concluding Thoughts
This book has taken you through a whistle-stop tour of Xbox hardware
hacking, from the basics of soldering and disassembling to the latest
projects and techniques. It has also introduced you to the social aspects
of Xbox hacking: the people who hack, and the interplay between
society, law, and hacking.

While the details of how to install a blue LED in an Xbox may be
irrelevant in a few years, the skills you learn executing the installation will
last a lifetime. Moreover, the social and legal issues confronting hackers
and consumers will extend beyond the Xbox and into every part of our
emerging information-centric way of life.

The material in this book is just a starting point; there is a world of
hardware out there waiting to be explored. I hope this book has pro-
vided the novice readers with a strong starting point for becoming an
explorer, fixer, and innovator in a world increasingly filled with, con-
trolled by, and dependent upon electronics.

Happy hacking!

— bunnie@xenatera.com

APPENDIX A

Where to Get
Your Hacking
Gear

A significant psychological barrier to getting started in hardware hacking is
the perceived unavailability of hacking tools. While Radio Shack stocks a
small supply of components and tools, the components are expensive and
most of the tools are difficult to use with today’s miniaturized compo-
nents. This appendix lists a few of the component and tool vendors that
have a solid selection at reasonable prices. This appendix also includes
Jameco order numbers for the basic tools required to do the projects in this
book. You can enter these order numbers directly into Jameco’s secure
ordering website to help get you started quickly.

Vendors for Hobbyists
There are a wide variety of component and equipment distributors, from
those that cater primarily to large businesses, to those that service individu-
als, hobbyists, and repairmen. You may experience some frustration when
dealing with a distributor that caters to large businesses. These distributors
service high-volume accounts, so accounts are serviced by a designated sales
representative. As a result, it may be difficult to get a comprehensive catalog
of parts or pricing and inventory information for small orders. The vendors
listed in this section are friendly to individual orders and the their collective
inventory will stock most of the parts you will ever need.

Hacking the Xbox: An Introduction to Reverse Engineering208
Vendor
Name Vendor Contact Info Specialties and Notes

www.digikey.com
1-800-344-4539 (phone)
1-218-681-3380 (fax)

www.jameco.com
1-800-831-4242 (phone)
1-800-237-6948 (fax)

www.mcmelectronics.com
1-800-543-4330 (phone)
1-800-765-6960 (fax)

www.mouser.com
1-800-346-6873 (phone)
1-817-804-3899 (fax)
orders@mouser.com
www.newark.com
1-800-463-9275 (phone)

Fry's
Electronics

www.frys.com Retail electronics store that stocks a reasonable
selection of components and tools. A great place to
go and browse if you do not like catalog shopping.
Only found in California, Texas, Oregon and
Arizona.

McMaster
Carr

www.mcmastercarr.com Vendor of mechanical hardware, metal stock and
machine tools. A place to get raw sheet metal and
fasteners to finish off a project. Website is
comprehensive and helpful.

FindChips www.findchips.com Automated parts search engine. Search dozens of
distributors for parts. Most hobbyist-friendly vendors
are listed in this search engine.

Newark Larger, traditional component distributor. Broad
component selection but not all components are
stocked; you may have to wait some weeks for
certain orders to get filled. A good place to go for
components you cannot find at other hobbyist-
friendly distributors. $5 handling fee on all orders
under $25.

MCM
Electronics

Specialty consumer electronics service/repair tools
and parts as well as common tools and
components. Sells hard-to-find security bits and
replacement parts. $2.95 flat handling charge, no
minimum order requirement for internet purchases.

Mouser Tools and component vendor that stocks a good
selection of original components. Hobbyist-friendly,
no minimum order, no handling charge.

Digi-Key Wide selection of original manufactured
components. Hobbyist-friendly, prompt service. $5
handling charge on all orders under $25. Excellent
website features real-time inventory and pricing
check information, data sheets and parametric
search tools.

Jameco Economical hobbyist-friendly vendor. Components
are a mixture of original and surplus stock. Good
selection of tools at a reasonable price. $5 handling
fee on all orders under $20. A wide selection of do-
it-yourself kits available.

Table A-1: Table of vendors of components and equipment.

Appendix A - Where to Get Your Hacking Gear 209
Prepared Equipment Order Forms

This section contains a selected list of tools sold by Jameco that you can
order to get you geared up for hacking. The “basic” order form contains all
the bits and drivers necessary for opening up an Xbox, as well as some basic
soldering tools. The “advanced” order form contains a set of tools and
utilities that are useful to have on hand, but are expensive enough that
those on a budget may consider ordering them only as they require them.

In addition to the tools in these order forms, you will need a few small
parts for the projects described in Part I. Please refer to the introduction of
each respective chapter for a list of parts that you will require.

Basic Order Form
The table below lists the basic tools that you will need to do
the projects described in this book. You can order these parts
by going to Jameco’s website, www.jameco.com, and clicking
on the yellow “Quick Order” button on the left hand side. En-
ter in the Jameco part numbers listed here and get started
hacking! (Prices may vary.)

The 26-piece SAE Hobby Tool Set includes all of the bits, driv-
ers, and screwdrivers necessary to disassemble an Xbox, in-
cluding the T-10, T-15, and T-20 torx bits. I have included the 1/
32” conical bevel tip in the order form above because the
soldering iron comes with a horrendously large
1/8” chisel tip. A 1/8” tip is useful for soldering together small
countries and creating solder shorts all over your fine-pitched
components. Conical bevel and chisel tips feature a flattened
region that enables rapid heat transfer, and thus are easier to
use than conical sharp tips. I have also included some solder-
ing iron tip cleaner and some rosin paste flux. They are a little
bit pricey, but they will make your life a lot easier, trust me.

Description

Jameco
Part
Number Price

16 to 30 Watt Variable Soldering Iron 116572 $18.95
1/32” Conical Bevel tip for soldering iron 35326 $4.49
Small pack of 60/40 Kester flux core solder 73576 $2.59
2 oz Kester rosin paste flux 73584 $1.59
Desoldering Wick 175986 $2.49
Soldering iron tip cleaner and conditioner 132986 $4.95
26-Piece SAE Hobby Tool Set 170069 $14.95
Wire stripper, 22-30 gauge 127870 $4.95

Total price $54.96

Hacking the Xbox: An Introduction to Reverse Engineering210

Advanced Order Form
The table below lists a few tools that are nice to have
around, but pricey enough that you probably should only
get them if you anticipate doing a lot of hacking.

• The soldering iron stand and sponge are a must if
you plan on doing even a moderate amount of
soldering. The stand safely stows the hot soldering
iron tip, reducing the chance of burns and fires.

• Try soldering with the 1/32” semi-chisel tip. You may
find that you like it better than the conical bevel
tip.

• The anti-stat wrist-strap is always a good idea to
have on hand, especially if you tend to wear
clothes and shoes that generate static electricity.

• The SMT removal kit comes in handy when trying to
remove smaller SMT components.

• The multimeter is a great all-purpose test,
measurement, and diagnostic tool to have on
hand at all times, and has applications all around
the house or dorm. Many models of multimeters are
available; the one listed here offers the most
features for the lowest price. I have tried it out and
it works well.

• The wire stripper and crimping tool listed here are
very helpful for the power supply replacement
project. The crimping tool is sold by Digi-Key, not
Jameco. The crimping tool is a bit on the pricey
side, but unlike sub ten dollar tools it features
shaped crimp dies for higher-quality solderless
crimps.

Description Part Number Price
Soldering iron stand 36329 $4.25
Sponge for soldering iron stand 134631 $2.99
Semi-chisel 1/32” tip 35078 $4.49
Adjustable anti-stat strap 159257 $7.95
SMT component removal kit 141305 $21.95
Multimeter (volts, ohms, amps, farads,
temperature, frequency, dide/transistor)

177480 $49.95

Wire stripper, 16-26 Gauge 127861 $4.96

Crimping tool (order from Digi-Key) WM9999-ND $36.19

APPENDIX B

Soldering
Techniques

This appendix will explain the basics of soldering as well as some more
advanced surface-mount soldering techniques. You will get the most out of
this appendix if you experiment with the soldering techniques as you read
along. Jameco Electronics (www.jameco.com) sells a wide variety of project
kits requiring through-hole assembling that you can use for basic soldering
practice. Companies such as TopLine (www.topline.tv) offer economy
practice kits using component blanks if you want to practice your SMT
assembly techniques, and MCM Electronics (www.mcmelectronics.com)
offers a practical Surface Mount Solder Practice Kit. (I highly recommend
that you practice your SMT soldering skills before trying to attach an SMT
component that you care about.)

Introduction to Soldering
The basic technique for soldering is fairly easy: wedge the tip of your
soldering iron into the space between the component lead and the circuit
board pad to heat both pieces up. Once they are sufficiently hot, gradually
feed some solder wire into the joint until a nice, smooth solder fillet is
created. In reality, soldering requires a bit of practice and experience before
one is able to solder a typical board with over a thousand joints without any
bad solder joints.

In order for a good solder joint to be created, the hot liquid solder must
“wet” the subject pieces in order for a connection to be made. Thus, the real
art of hand-soldering is understanding how to guarantee solder wetting.

Hacking the Xbox: An Introduction to Reverse Engineering212
You can tell when liquid solder is wetting a piece of metal by looking at it. A
wetted joint looks like the molten solder has lost all surface tension; the
liquid solder is shiny and it flows smoothly over the work area. In the
opposite situation, the solder has a dull sheen to it, and it tends to ball up
around the soldering iron tip instead of flowing outward.

Use Flux
Solder fails to wet the subject metal because oxygen in the air or dirt and
grease have reacted with the metals. In this case, you can apply a flux to your
workpiece to break down these foreign compounds. The word flux comes
from the Latin fluxus, which means flowing. Most solder comes with a core
of flux built in to enhance solderability. If you look at a cut piece of solder
carefully, you can see the flux core surrounded by the solder alloy. Always use
solder with a flux core, or you will be in a world of pain trying to get the
solder to wet. Almost all solders made specifically for electronics have a flux
core, but there are solders that you can accidentally purchase in a hardware
store that have no flux, and that are made for purposes such as joining
pipes. When you heat a flux-core solder, a small puff of vaporized flux
smoke will rise up. A small fan placed near the work area will blow the
fumes away and prevent inhalation.

A common novice mistake is to have too much faith in flux-core solder.
Frequently, the flux contained in a flux core solder is not enough to get the
solder to wet. In this case, you will need to apply extra flux. Raw flux comes
usually as a liquid or a paste, so application is easy. In liquid form, a single
drop of flux can be applied with half of a toothpick. Break the toothpick in
half, leaving the break slightly jagged. Dip the broken end of the toothpick
into the flux, and a small drop will cling to the end. Applying liquid flux to
a large area can be done with a fine-tipped artist’s brush, but be sure to clean
the brush when you are done or it will end up gummy and unusable in a
couple of days. A flux dropper is also handy, but expensive. A flux dropper
is a bottle with a thin capillary needle on top; when you invert the bottle,
flux slowly drips out of the capillary. In paste form, flux can be applied by
dipping any piece of scrap, such as a toothpick or a piece of solid wire, in the
flux paste. Finally, flux pens are handy for beginners because they combine
flux storage and dispensing in a convenient and inexpensive package. Flux
pens don’t have the accuracy or quality of other flux application techniques,
but they are convenient and good for occasional use.

Many fluxes require clean-up after use. Fluxes can harden with time, making
repairs difficult in the future, they can slowly attack the board, and they can
absorb water and become conductive. The traditional soldering flux is a
resin flux. Resin fluxes require the use of strong solvents that are flammable
and toxic. As a result, I tend to recommend water soluble fluxes or no-clean
fluxes. Water soluble fluxes can be removed by just washing down the
board with water. It is better to use distilled deionized water, but I have
found that most warm tap water is pretty effective as well. When I have to
clean a large batch of boards, I throw them into a dishwasher (with the
food trap cleaned and no detergent!). After the boards are washed, set them

Appendix B - Soldering Techniques 213
on a conductive, clean cookie sheet or aluminum foil, and put them into
an oven on low heat (around 200°F) to bake for about an hour or two, or
until all the water is driven away. Be sure not to turn the oven up too
high, or water trapped inside the pores of components will turn into
steam and cause them to crack or explode. Most parts are designed to be
“process sealed” so washing them with water is fine. Be careful with
connectors and switches, however; you may need to tape over them with
a piece of Kapton tape to prevent contamination with water.

Warning
Do not use acid-type fluxes on circuit boards. They will
attack the board and components and cause failures with
time. Acid fluxes frequently plague novices who use sol-
ders and fluxes that are intended for pipe soldering.

Starter Tips
Components with many leads need to be aligned and tacked in place before
soldering. If the component is of a surface-mount type, it can be held in
place by soldering down two pins on opposite corners of the device. After
tacking the component in place, re-inspect the alignment in case the compo-
nent drifted during the tacking process. If the component is of a through-
hole type, you will need masking tape to hold it in place while you turn the
board over. Tack the corner leads of the component in place, and check that
it is level to the board before soldering all of the leads. (Masking tape has a
bit of play in it and frequently you will have to heat one of the tacked
corners while pressing down on the component to level the component
with the board.)

Kapton tape is a fairly handy thing to keep around the workbench. Made by
DuPont, Kapton can withstand temperatures up to 500oF, well above the
melting point of solder. It is handy for masking off nearby regions where
you do not want solder. However, Kapton tape is expensive so use it only
in situations where it will come in contact with hot solder.

Solder fails to wet metal that is too cold. This is a common problem when
soldering large joints, or when soldering joints attached to large sheets of
copper. In these cases, the connected metal conducts enough heat away so
that the junction never reaches the melting point of solder. The solution to
this is either to use a more powerful soldering iron (but be careful—the heat
of very large soldering irons can also cause the board traces to fall off), or to
leave your soldering iron in contact with the junction for a longer period of
time before applying the solder. One trick to heating up the work area faster
is to feed just a touch of solder into the tip of the iron where it is heating
things up. Even though the solder will not wet on the board, the liquid
solder on the iron’s tip increases the effective contact area between the iron
and the board, and heat will be transferred more rapidly into the board.
After applying solder to the iron’s tip, you will sometimes have to rotate the
iron, maintaining contact at the joint, in order to get the molten solder in
contact with the board.

Hacking the Xbox: An Introduction to Reverse Engineering214
You can tell when a component lead or a board pad is sufficiently hot by
carefully observing the way light reflects off of it. Component leads and
pads on a circuit board typically have some kind of plating on them, usually
made out of solder. This solder plating has a slightly dull sheen under
normal conditions. When made sufficiently hot, however, the sheen goes
from dull to almost perfectly reflective. To get a feel for what this looks like,
try heating up a large square pad with your soldering iron, using the
technique described above. You can usually watch the melting front
propagate across the pad as the soldering iron heats the board.

Warning
If you are using a non-temperature controlled soldering
iron, use the lowest wattage soldering iron you can to get
the job done. This will help prevent board damage, as
excess heat can cause the copper traces to delaminate
from the board.

Surface Mount Soldering
Mastering the skill of surface mount soldering requires a bit of patience,
practice, and good tools. The basic tools that are required beyond the basic
soldering kit are tweezers and a magnifying lens.

A good pair of fine-tipped tweezers is an essential soldering accessory for
surface mount components. Tweezers are required for the safe handling of
surface mount components during soldering, as small components will
rapidly heat up and become hot enough to burn your finger. Tweezers are
also necessary to hold small components in place, preventing them from
being pulled around by the surface tension of the liquid solder as it melts
and cools. The point on the tweezers should be small enough to fit in
between the pins of the finest surface-mount part that you intend to work
on. This way, you can use the tweezers to manipulate individual pins during
soldering and inspection.

There are many grades of tweezers. The grading is based on the sharpness,
quality and durability of the tips, the alignment of the tips, and the spring
action of the tweezers. High-grade tweezers are a little bit pricey, but well
worth the investment if you intend to do a lot of surface mount soldering.
Distributors that focus on production supplies, such as Future-Active
Electronics (www.future-active.com), sell a reasonable selection of
good tweezers.

The biggest challenge in surface mount soldering is being able to see what
you are working on. Your hands have the ability to easily and repeatedly
manipulate objects smaller than the naked eye can see. The ideal magnifying
solution for soldering is an optical stereoscope, like the kinds used for the
inspection of biological specimen. Unfortunately, these microscopes are very
expensive, with the better models selling for around the priceof a used car.

Appendix B - Soldering Techniques 215
A more economical solution is to use a tabletop magnifying lens. Many
drafting/art supply stores sell these kinds of lenses, and most office
supply stores sell at least one model of lamp with an integrated magnify-
ing lens. These magnifying lenses will help assembly, but they lack the
power to do a thorough inspection of your soldering job. A relatively
inexpensive high-power portable magnifier, such as a jeweler’s loupe or a
proofing magnifier, should be used to inspect finished solder joints.

Technique for Simple Components
Simple surface mount components, such as resistors, capacitors, inductors,
and small semiconductor devices such as transistors and diodes, are easy to
mount on a circuit board. Let’s look at the technique for mounting these
components.

Figure B-1: (1) Apply a touch of solder to one of the target component’s pads.
In this case, the target component is C25. (2) Picture of the solder blob after
application. (3) Use tweezers to align the target component and then apply heat
with a soldering iron until the initial solder blob has flowed around the
component’s leads. (4) Solder the remaining component pads.

Hacking the Xbox: An Introduction to Reverse Engineering216
First, place a blob of solder on one of the component’s pads, then place
and align the component over its pads using a pair of tweezers. Once you
feel comfortable with the component’s placement, apply heat to the blob
of solder until it melts and the component sinks into place on its pads.
Keep applying the heat while you adjust the alignment of the component.
Remove the heat, and wait for the solder to cool down and solidify.
Double-check the alignment of the component, and then solder the rest of
the component’s contacts to the board. If the first solder joint looks dull or
weak, reheat it with a touch more solder once all the other pins have been
soldered down (see Figure B-1). This technique works for components with
two or three pins, and for multi-pin components with a wide pitch, such as
the 50-mil pitch small outline IC packaged devices.

The most difficult situation you may encounter when soldering down these
components occurs when one or more of the component leads are attached
to a large area of copper, such as a power plane. In this case, a large amount
of heat must be applied to the PCB pad before the solder will wet and
adhere to the circuit board. Beware when this happens, as the solder will
oxidize and ball up, and make poor electrical contact with the board. Add a
touch of solder flux if this situation occurs to help enhance the wetting
action of the molten solder.

Tip
A “dry” soldering iron tip will have trouble heating large
patches of copper, or pads that are connected to power
planes. One way to increase the rate of heat transfer from
the soldering iron is to start the iron out with a blob of
molten solder on the tip, and touch the iron to the board
through the molten solder blob. This blob will spread out
and heat the board locally, and will establish a good ther-
mal connection that more effectively transfers heat. This
will ultimately lead to a better solder connection once
more solder is added.

Technique for Complex Components
Most integrated semiconductor components today are available in some
kind of a fine-pitch surface mount package. This kind of packaging can be
intimidating at first, but a little bit of practice with a few simple techniques
and tips is all it takes to attach these parts with a high degree of confidence.
The process of attaching a fine-pitch surface mount component is very
similar to that of attaching a simple surface mount component, and it
should take no more than a few minutes for a typical mid-sized surface
mount package.

The first step is to tack the component on the circuit board by soldering
down only two corner pins on the chip. If the alignment is not correct on
your first try, it is easy to correct by just heating one of the two corners while
pushing the chip in the desired direction for alignment (see Figure B-2). Be
very mindful of the accuracy of this alignment: a misaligned chip will lead to
no end of frustration while trying to solder the chip down.

Appendix B - Soldering Techniques 217

The next step is to apply a thin film of solder flux around the chip. This
will enhance the wetting action of the solder on the chip pins and cause
the solder to wick onto the component pads, instead of in between the
leads, which would cause a short (see Figure B-3).

Tip
When laying out a board, use extra-long pads for fine-
pitched surface mount components. The extra length will
make hand-soldering easier, though it will also make rout-
ing a little bit more difficult and cause the board size to
grow slightly. The extra pad length acts to wick away ex-
cess solder from the chip leads, thus making solder bridges
less likely.

Once all of the leads have been uniformly coated with the soldering flux,
load the tip of a soldering iron with a tiny ball of solder, and press this ball
up against the unsoldered leads. The ball of solder will wick into the space
underneath and around the component leads. Repeat this process until all
of the leads have been coated with solder. Do not worry at this point if
excess solder bridges multiple pins. Once you are finished soldering all the
pins, use a copper desoldering braid (solder-wick) to remove any solder
bridges, as shown in Figure B-4.

Figure B-2: First, solder down one pin on each of two opposite corners of a chip.
The arrows on this diagram indicate the corners used in this example.

Hacking the Xbox: An Introduction to Reverse Engineering218

Figure B-3: Apply a thin film of solder flux to the pins around the chip. In this
illustration, a paste flux is being applied using a scrap piece of wire that is
frequently dipped in the flux container.

You are almost done. Finally, make sure that all the pins are firmly
soldered down. It is difficult to do this inspection visually without a
microscope. Instead, pull on the pins with a needle or the tips of a
tweezer, dragging the tweezer along the pins as shown in Figure B-5 using
a firm, steady motion. Pins that are not soldered in place will move
slightly. If they do, repair them by pushing them back into place, and
applying a touch of solder to the pin.

Caution
Always check for power shorts after soldering a circuit
board. Some solder bridges can be microscopic dendrites,
and some solder bridges will form behind the pins under-
neath the chip. Check for power shorts using a multimeter
set to measure resistance. Do not use the audible continu-
ity mode, as large, high speed computer boards usually
have a low (few ohms) resistance between power rails,
which is low enough to register a short on many continuity
meters. Also, when measuring the resistance between
power lines, wait a second or two for the measurement to
settle. The initial resistance between power rails will be
very low while the large capacitors that sit on the power
lines charge up.

Once your component has been soldered down, clean up the excess flux
using a mild solvent, such as Isopropyl alcohol, and a cotton swab as
shown in Figure B-6. Clean-up is important because it makes visual

Appendix B - Soldering Techniques 219

Figure B-4: (1) melt a small amount of solder onto the tip of a hot iron.
(2) Transfer this solder onto the pins of the component. Repeat steps (1) and
(2) until all pins are soldered. (3) Solder bridges, indicated with arrows, will have
formed across many pins. (4) Remove the solder bridges using a piece of copper
desoldering braid.

inspection easier, and it also makes it easier to probe the chip pins during
debugging. It is also important because many fluxes tend to crust over
and trap contaminants with age, hampering future repairs.

Technique for Removing Components
There are many techniques for removing surface mount components, and
many of them require special tools, such as tong-style soldering irons or hot
air guns. Tong-style soldering irons are good for removing smaller surface
mount components, especially on boards that are densely packed. They are
fairly quick and efficient, and a proper tong-style soldering iron will leave the
pins of the component in relatively good condition. However, they are also
fairly expensive, and a bit of practice is needed in order to figure out the
right timing and pressure to use when removing a chip.

Hacking the Xbox: An Introduction to Reverse Engineering220

Figure B-5: Stroke the pins along the side of the chip using a pair of tweezers
or a needle using a firm, steady force. Pins that are not soldered well will bend
slightly. The arrow indicates the direction of motion.

Figure B-6: Clean up the flux residue using a cotton swab dipped in a mild
solvent.

An easier and cheaper solution is to use a heat gun, like the ones sold in
hardware stores for removing linoleum floor tiles. The heat gun will heat
the entire region of a board, and components will float off their pads
with minimal damage to their leads. The downside of this technique is
that it is not very precise, so it is not an ideal solution for removing chips
on boards that are going to be used again. As a result, heat guns are most
effective for salvaging good chips from broken boards. The other
problem with using heat guns is that the heat can warp boards or cause
destructive failures in chips that have absorbed moisture into their
packages. This failure mode, called “popcorning,” happens when

Appendix B - Soldering Techniques 221
moisture trapped inside a chip boils but cannot escape, causing a
pressure buildup that culminates in a destructive release event. Chips and
boards operating in a humid environment or that have been washed in
water should be baked in an oven at around 200 to 250°F for a few hours
before desoldering with a heat gun.

Another option that is particularly appealing for hobbyists is to re-alloy the
solder joint so that it melts at a very low temperature, below 300°F. A
company called Chip Quik (www.chipquikinc.com) holds the patent on
this technique, and removal kits can be purchased from many vendors,
including Jameco (order number 141305). This technique is appealing
because it requires no special equipment, and it is easy and fairly safe, as
shown in Figure B-7.

To do so, first coat the chip pins with soldering flux, then melt the chip
removal alloy onto the pins of the component to be removed. This will
create a large bead of low melting temperature alloy all around the chip.
Next, heat the entire bead by dragging the tip of the soldering iron through
the bead. The stored heat in the chip and the alloy will keep it molten long
enough for the whole chip to be easily slid off its pads. Finally, clean up the
low melting temperature alloy by heating it with a soldering iron and then
wiping it away with a cotton swab. The alloy will wipe off fairly easily from
both the board and the chip.

This re-alloying technique preserves the integrity of the removed chip’s pins
as well as the pads on the circuit board. The downside of this technique is
that cleaning up the alloy can be a bit messy, and tiny particles of alloy can
get caught between the pins of neighboring chips. (Caution while cleaning
up will prevent this problem.) The other downside is that removing chips
consumes the removal alloy, so removing large numbers of chips with this
alloy can become expensive in the long run. Fortunately, chip removal is a
fairly rare occurrence for most hobbyists.

The “ball grid array” (BGA) package is a type of surface mount package
that is becoming increasing popular due to its high electrical performance
and density. These packages are attached to a board through a large array
of solder balls underneath the package. Clearly, this kind of package
cannot be soldered using a conventional soldering iron. In addition, BGA
packages are very difficult to inspect because most of the solder connec-
tions are buried deep below the package. The only viable method for
attaching these components is to use an oven that heats the whole board
and the component to the point where all the solder balls melt. Typically,
the alignment of these BGA packages is accomplished with the aid of a
machine of some kind, and the inspection of these BGA packages is
accomplished with either X-rays or ultrasonic imaging.

The equipment required to install these kinds of packages is very
expensive, so the best way for a hobbyist to install a BGA packaged
device is to pay a professional assembly house to do it. Companies such
as Naprotek (www.naprotek.com) that specialize in quick-turn, low
volume prototyping will install a BGA packaged device for a fairly

Hacking the Xbox: An Introduction to Reverse Engineering222

Figure B-7: Removing a chip by realloying the solder joint. (Prepare the chip pins
with soldering flux before starting this process.) (1) Melt the realloying compound
onto all of the chip pins. The realloying compound comes in wire form. (2) Heat the
blobs of metal around the chip by dragging a soldering iron through the metal. All
the realloyed solder will become molten, at which point the chip can be pushed off
its pads. (3) Clean up the realloying compound from the board and the chip by
heating it and wiping it away with a cotton swab. (4) The result, a clean chip
removal.

reasonable fee. When getting a BGA installed, always ask for a copy of
the inspection photo for the part; the peace of mind brought by the
photo is worth the extra cost. BGA parts can also be removed and re-
balled, although this process can be much more pricey than the attach-
ment process.

APPENDIX C

Getting into
PCB Layout

This appendix will introduce you to the PCB design and layout process, and
will survey available tools that you may need to achieve your design goals,
featuring products and techniques for those on a shoestring budget. I
conclude by presenting some simple designs to get you started in your
hardware adventures.

Philosophy and Design Flow
Printed circuit boards are the canvas of the hardware hacker, and CAD tools
are the brushes. Like any engineering or artistic discipline, building profi-
ciency in printed circuit board design and layout takes practice. Fortunately,
the advent of inexpensive PCB prototyping services and free (or nearly free)
CAD tools have made PCB design and layout an inexpensive and accessible
hobby.

The design and layout of PCBs are two intimately coupled tasks. Trade-offs
give and take throughout the design and layout phases. Sometimes a
component may not fit, or a part may not be available, and you’ll have to
change the schematic design to allow for this shortfall. Other times, you may
make a high-level design change or you may catch a bug, and the PCB will
have to be updated to reflect these changes. In my experience, the key to
rapidly cranking out a successful PCB design is to be flexible on all design
fronts.

Refining Your Idea
The PCB design process always starts with your idea. The first thing you
need to do is to get a very clear vision of what you are trying to build. The

Hacking the Xbox: An Introduction to Reverse Engineering224
more specifics you have up front, the easier you will find the design
process. You should have an idea of how big you want the final board to
be, how much it should cost, and of course what it should do. I always
find it helpful to draw sketches and, in the case of large projects, to write
design documents that help me organize and record my thoughts.

For the first few designs, one of the most difficult steps will be nailing
down an idea, because you won’t know what kinds of components are
available to implement your idea, and what sorts of real-world constraints
you will have to design around. The best way to get started is to find an
existing idea that is very similar to yours and to model your idea after it.
(Many chip manufacturers offer free application notes and design samples
that form a great starting point.) Another way to define your ideas is to learn
from existing products: If you want to build an alarm clock, take an existing
clock apart to see how it was built.

Schematic Capture
Once you have your idea, you need to create a schematic diagram. A schematic
is a symbolic representation of your idea, expressed as a collection of part
symbols and virtual wires.

Most schematic capture software comes with a library of parts to help
accelerate the schematic capture process. However, if you do not find the
part you need in the library, you will have to build your own schematic
symbol. All schematic symbols are linked to a PCB component footprint,
which is a pattern of copper on a PC board that mates to a component.

One common source of errors stems from not checking the link between
the symbol and the footprint: A 16-pin DIP footprint does not fit a 16-pin
in-line surface mount connector, and most design tools cannot tell the
difference between the two. Therefore, check to make sure that your
footprint assignments are all correct, and double and triple check the
schematic symbol. In particular, always check and recheck power pins, since
they can cause the most difficult and destructive kinds of errors. Consider
having a friend double check the symbols as well, to avoid repeating errors
or allowing errors to pass unknowingly. (This amount of redundancy may
sound silly for simple parts, but it becomes absolutely essential for hundred
and thousand-pin parts where your brain becomes mush halfway through
the checking process.)

Attention to detail from the very beginning is the most important skill for
capturing a schematic, and can save you from the headache of frustrating
bugs later on. Every pin on every component is there for a reason, and if
any pin is left unconnected you should understand why that is or is not
okay. To this end, read the product data sheets, including every single page
and footnote. Don’t ignore the fine print that requires a pull-up resistor to
set startup conditions, or a capacitor to filter noise or stabilize the system or
you’re likely to end up with more frustrating bugs.

Appendix C - Getting Into PCB Layout 225

Yo
ur

Fi
ni

sh
ed

 Id
ea

Sc
he

m
at

ic
S

ym
bo

l
Li

br
ar

ie
s

C
om

po
ne

nt
Fo

ot
pr

in
t

Li
br

ar
ie

s

Sc
he

m
at

ic
C

ap
tu

re

Yo
ur

 Id
ea

C
om

po
ne

nt
Pl

ac
em

en
t

N
et

lis
t

Si
gn

al
R

ou
tin

g

M
an

uf
ac

tu
rin

g
D

es
ig

n
R

ul
e

C
he

ck
s

Ph
ys

ic
al

Ve
rif

ic
at

io
n

Fa
br

ic
at

io
n

G
er

be
r

Fi
le

s

C
om

po
ne

nt
s

Bi
ll

of
M

at
er

ia
ls

D
is

tri
bu

to
r

As
se

m
bl

y

R
ul

e-
Ba

se
d

an
d

H
ue

ris
tic

Ve
rif

ic
at

io
ns

Ph
ys

ic
al

C
on

st
ra

in
ts

PC
B

La
yo

ut
 T

oo
l

Sc
he

m
at

ic
 C

ap
tu

re
 T

oo
l

Ba
re

 B
oa

rd

C
om

po
ne

nt
s

or
 F

ile
s

Th
in

gs
 th

at
 y

ou
 d

o

Th
in

gs
 th

at
so

m
eo

ne
 e

ls
e

do
es

 fo
r y

ou

C
ro

ss
-

R
ef

er
en

ce

LE
G

EN
D

Fi
gu

re
 C

-1
: T

he
 b

oa
rd

 d
es

ig
n

pr
oc

es
s,

 fr
om

 id
ea

 to
 fi

ni
sh

ed
 p

ro
du

ct
.

Hacking the Xbox: An Introduction to Reverse Engineering226
Design rule checkers are helpful in finding some errors in schematics, but
the checks they perform are usually quite elementary, and thus catch only the
grossest of errors. A typical set of checks might include catching duplicate
part designators, dangling nets, and floating inputs.

In addition to conventional design rule checkers, you can also devise your
own simple checks. For example, many design tools do not perform “netlist
parity checks,” which can be generated fairly easily using a perl script or a
spreadsheet program. Netlist parity checks are heuristic checks that tally the
number of components connected to each netlist, then sort the tally by the
number of connections. The “single-pin nets” will be at the top of the
sorted list. A single-pin net is almost always an indication of a typographical
error (misspelled netlist name) during schematic capture. It can be useful to
browse through the whole sorted list briefly, to see that all groups of signals
have the same number of connections. Most signal busses have the same
number of connections to every signal in the bus. You can create a tool that
enables netlist connection tally checks for your schematic capture program in
an afternoon, and you will undoubtedly save yourself countless hours of
effort and money by finding the bugs it will catch.

Before exporting the schematic to the board layout tool, you should order
all of the parts in the schematic’s bill of materials. Often, critical parts will be
in short supply and the schematic capture will have to be redesigned to
account for the shortage. Frequently, a change in a component footprint
assignment is the only redesign necessary. Modifying the schematic design to
account for manufacturer’s shortages avoids the difficult task of making the
change on a finished board layout.

Board Layout
The input to a board layout program is a netlist that is annotated with
component footprint information. A netlist is an intermediate representa-
tion of every component and pin, and their connectivity. Netlist extraction is
a well-automated process, but the correlation of schematic symbols to PC
board footprints is not always well-managed.

The difficulty of symbol-to-footprint correlation stems from the availability
of multiple packaging options for a single part. For example, the symbol for
a transistor could equally imply a tiny SOT-23 packaged device or an
enormous TO-3 packaged device, and it is up to you to ensure that the
proper package is chosen during netlist extraction. It’s always good to check
the implied footprint when the component is placed in a schematic, rather than
checking all at once during the netlist translation, or, worse yet, during
placement or final design review.

Once you have a finished netlist, you are ready to do the board layout.

Appendix C - Getting Into PCB Layout 227
The other external input to a board layout program are the design rules.
Design rules are set by the board fabrication company and include
specifications for the minimum trace width and minimum trace to trace
spacing, minimum hole size, minimum through-hole annulus, and the
number of power and routing layers. The exact design rules depend on
the process you choose, which in turn is driven by what you can afford.
The best processes offer traces as fine as 2 mils (a mil is 1/1000th of an
inch or 25.4 microns) and laser-drilled blind/buried vias with a diameter
of about the same, but the price for fabrication is well outside the typical
hobbyist’s budget of less than one hundred dollars. A more typical
hobbyist’s process features 6 mil trace/space design rules with 15 mil
minimum finished hole sizes, with either two or four layers of copper.
(You’ll find a list of board fabrication companies toward the end of this
appendix.)

Board layout consists of two phases: placement and routing. Intelligent
parts placement will greatly simplify the routing task. In general, the goal is
to place all parts so as to keep connections as short as possible, with as few
vias as possible, in order to minimize noise, delay, and signal losses. The
placement of some parts, such as connectors, switches, and power compo-
nents, are well-constrained, leaving you little choice. For the remainder of
the parts, an understanding of the design will help you to determine which
parts should get the best placement.

Once your placement is finished, print the design at a scale of 1:1 and verify
that the components fit in their respective footprints by populating the
printed layout with the actual components. If you intend to use a socket
with a component, be sure to use the socket for verifying the 1:1 plot, as
sockets require more space than the component itself. This check guarantees
that you have all the components in the correct package type, that all your
component outlines are correct, and that there is sufficient clearance between
each component to facilitate easy assembly. Another important thing to
check on the 1:1 plot is the orientation and pinout of all the connectors
because it is very easy to invert a connector or to have used the wrong
gender’s footprint on the circuit board. Be careful when handling chips too,
especially those with fine-pitch surface mount leads. Be sure not to bend the
leads, and observe proper static electricity control protocol.

General Placement and Routing
Guidelines
Here is a short list of some placement and routing guidelines. Remember,
these are just general suggestions, and there will undoubtedly be situations
where they do not apply.

Hacking the Xbox: An Introduction to Reverse Engineering228
Leave Space for Via Fanouts on Surface
Mount Devices

Surface mount devices offer a great density advantage when compared
with the older through-hole componentry that used to be the de facto
standard. However, surface mount components still require through-
hole vias for routability, especially in complex and/or auto-routed
designs. These routing vias are referred to as “fan-out” vias for SMD
pads. Figures C-2 and C-3 demonstrate the use of fan-out vias on a
surface mount part.

Decoupling Capacitors Fit Nicely Under
SMD Pads

The most common passive component in a typical digital design is the
decoupling capacitor. These tiny capacitors are everywhere, and they can
consume valuable routing and via fan-out space if they are not properly
placed. If you are willing to create a double-sided surface-mount board,
decoupling capacitors can be placed on the board side opposite the target
component’s pads. By placing these components under the component’s
pad space, you are not consuming any via fan-out area. In fact, a well-placed

Figure C-2: Four views of a circuit board layout. From the top left, clockwise:
fabricated circuit board with components; top-layer circuit board view in PCB
layout program; all-layers circuit board view in PCB layout program; top and
bottom only layers view demonstrating two-sided SMT layout.

Appendix C - Getting Into PCB Layout 229
decoupling capacitor can share the power via used by the component’s
power pins. The view in the lower left hand corner of Figure C-2
provides a clear illustration of this technique. (There are some special
cases where you may not want to do this, as noted in the next section.)

component pads

fanout regions

component body

Know Your Special Traces
The good news about laying out digital circuit boards is that most traces
require little thought, unlike a typical analog board. The bad news is that if
you don’t do the rest of the traces correctly, your board will exhibit strange
and frustrating behavior that will be hard to debug. As a result, routing
these special traces is a little bit of a black art. This section gives just a few
guidelines for coping with these special traces, but I encourage interested
readers to find a text dedicated to board layout to really learn and appreciate
these techniques. Two texts that I recommend are Digital Systems Engineering
by William J. Dally and John W. Poulton (Cambridge University Press), and
High Speed Digital Design: A Handbook of Black Magic by Howard W.
Johnson and Martin Graham (Prentice-Hall PTR).

Typically, the kinds of traces that require special attention when routing a
circuit board are:

• Power traces

• Timing reference (clock) traces

• High speed traces

• Analog/mixed signal traces

As a general rule, power traces should be thicker than your average signal
trace, especially if you are using one of the higher-end fabrication processes
that offer narrow (~ 5 mil) trace widths. Power traces need to be thickened
to counter both resistive heating and parasitic inductance. Narrow power
traces, especially near the key power distribution points, will act like resistors
and heat up, dropping the supply voltage to a level that causes indeterminate
malfunctions in your circuits.

Figure C-3: Fan-out regions around an SMD component’s footprint.

Hacking the Xbox: An Introduction to Reverse Engineering230
The proper sizing of a power trace depends upon the thickness of the
copper. Typical boards use “1-oz copper” that is 1.35 mils thick (one square
foot of 1.35 mil thick copper foil weights one ounce). An exterior 12 mil
wide trace in 1 oz copper is required to pass 1 ampere of current with a 10
degree Celsius temperature rise. Thicker traces are required for buried layers
for a similar current handling capacity.

When routing power traces between layers, remember that vias have
resistance as well. A single via is insufficient to connect critical power traces
between layers. Critical power traces should have multiple vias connecting
them between layers to keep parasitic resistances and inductances down.
Distributed power planes on multiple layers should also have vias gener-
ously distributed throughout to ensure that a common potential is
preserved.

Note
In high performance or low noise applications, placing a
via between a decoupling capacitor and the power pin
may carry too high an electrical integrity price for the
routing convenience. Vias disrupt the propagation of high-
speed (hundreds of megahertz) electrical waves. Thus,
the optimal location of a decoupling capacitor in these
applications is between the component pin and the power
via.

Timing reference signals include clocks and strobes. Many memory devices
require asynchronous control strobes that have sensitive timing require-
ments. These signals should be properly terminated and routed in a manner
consistent with the termination strategy, typically a “daisy chain” route. Daisy
chain routes have no branches, so there is only one path for the wavefront
of the signal to travel.

Electric signals travel at about 1/4 the speed of light on a circuit board, or
about three inches in a nanosecond. Thus, high speed traces must have
matched lengths, or signals can arrive significantly out of phase with respect
to the timing reference. Trace lengths are matched by extending shorter traces
to the length of the longest trace. Trace length extension is accomplished
using serpentine traces that meander and increase the effective length of a
trace without changing the placement of the trace’s endpoints.

Analog and mixed-signal routing is well beyond the scope of this appendix.
In an average hobbyist’s digital design, most of the analog circuitry will be
isolated to the power supplies. Any special layout requirements for a
particular power supply component is typically well-documented in the
component’s datasheet.

Keep in mind that electrical signals are lazy and promiscuous: signal
current will always follow the path of least resistance, and signals will
couple into adjacent traces. Furthermore, current must be conserved, so
every signal current path must have a return current path, whether it is
explicit or not. Keep these simple rules in mind as you layout any analog
sections on your circuit board.

Appendix C - Getting Into PCB Layout 231
Circuit Boards Make Fine Heatsinks

When routing high-power components, such as power regulators and high-
performance microprocessors, remember that the copper in a circuitboard is
an excellent conductor of heat. You can save yourself a heat sink under
certain conditions by simply laying out a large region of copper connected to
the heat slug or ground pins of the target part. If you are using a multilayer
board design with power planes, use multiple vias to help conduct heat into
the internal layers.

The heatsinking capabilities of a circuitboard can also be a nuisance during
hand assembly. The good thermal conductivity of copper makes it difficult
to heat up a component pin that is also connected to a large region of
copper. When connecting low-power components to the power planes,
consider using vias with thermal reliefs. A thermal relief is a set of small gaps
in a via connection to a power plane that reduces thermal conductivity
without significantly impacting the connection’s electrical performance. (Note
that a large group of densely packed thermally relieved power vias around a
region of copper can result in unconnected or poorly connected islands of
copper.)

Establish Preferred Routing Directions for
Each Layer

Establishing a dominant routing direction for each layer can simplify the
routing of dense boards. For example, make the top layer the horizontal
routing layer, and the bottom one the vertical routing layer. If you need to
route a signal between two components located diagonally across the board,
first run a horizontal trace on the top and then a vertical trace on the bottom
to connect the two components. The alternative strategy of just running a
trace diagonally across the top layer of the board, for example, reduces the
overall routability between the two halves of the board by one-half: The
only way to get from one half to the other is now to go on the bottom.

Exceptions to this rule are acceptable, especially if you have to make a signal
integrity versus routability trade-off.

Stack a Board with Orthogonal Layers
After establishing the preferred routing directions for each layer, stack
the layers such that no two layers have parallel preferred routing direc-
tions. This orthogonality helps keep the interference of signals between
layers to a minimum. If you have power layers, try to stack them between
layers to help shield interference between signal layers.

On Two-Layer Boards, Use Fingers to Bus
Power

On a two-layer board, it is often tempting to just run power and ground
as a ring around the outside of the board. This is not an ideal situation,

Hacking the Xbox: An Introduction to Reverse Engineering232
because the ring starves the heart of the board and also increases the
potential for large parasitic current loops that will degrade circuit
performance. Instead, use interdigitated and/or stacked power
fingers.These fingers will establish the dominant routing direction of each
layer, and should be laid out before routing any signals.

Hints on Using an Auto-Router
Auto-routers are a mixed blessing: they can save hours of routing time,
but they can also cause hours of frustrating problems. The first rule of
using an auto-router is to never allow it to work on your only copy of a
circuit board design file. Instead, create a copy of your design and let the
auto-router perform its magic on the copy.

The second rule is to learn the auto-router’s bugs using simple test
designs before applying it to your final design. Auto-routers frequently
have critical bugs or limitations that must be understood before using the
tool. When learning an auto-router’s bugs, pay particular attention to
how it handles locked traces, poured polygons, and awkward trace sizes.
Some auto-routers will actually remove locked traces (traces laid down
by hand and marked as unmovable), while others ignore them or do not
function in their presence. This can be particularly frustrating if you have
spent hours laying out the critical power and timing nets before turning
on the auto-router.

Finally, don’t count on an auto-router to fully route a complex board.
Auto-routers are great for quickly routing the first 90 percent of a board,
but they really slow down as the board gets more congested. Note that
subtle changes in component placement can make or break an auto-
router. Many auto-routers will not recognize busses or straight-through
connections without special annotation or ideal component placement.

CAD Tools
Board design tools have dropped in price significantly over the past few
years. The tool I use most frequently for board design is Protel 99SE. (I
have yet to purchase the newer version, Protel DXP.) Protel is a highly
integrated tool, featuring schematic capture, simulation, library manage-
ment, and board layout with design rule checking and auto-routing, all
integrated in one tool. (It seems like every software release some new
feature is integrated into the design environment, for better or for
worse.)

You can download a 30-day fully functional demo of the Protel software
from their website at www.protel.com. While a full-fledged license for
the product is in the thousands of dollars, this still compares favorably
with many other software packages that offer the same depth of function-
ality and number of features. Other high-end PCB CAD vendors include

Appendix C - Getting Into PCB Layout 233
Mentor (PADS), Cadence (OrCAD), and Altium (P-CAD). Interestingly,
Altium also owns the Protel software suite.

If you are are just starting out and want to do some casual board layout,
some board fabrication companies offer full-function captive design tools
for free. ExpressPCB (www.expresspcb.com) offers a free schematic
capture and PCB layout tool for clients who use their fabrication service.
Their tool is functional, but a little limited in terms of the design rule checks
and the practical complexity for which you can realistically use it. ExpressPCB
is a great starter tool for beginners, however, and is capable of implement-
ing almost any weekend hardware project.

Before submitting any finished design for production, preview your
exported files with a third-party file viewer to help protect your fabrica-
tion investment against bugs in your design tools. The most common file
format used for board fabrication is the “Gerber” file format. A good,
free Gerber previewer that I trust is made by Graphicode (http://
www.graphicode.com/).

Board Fabrication Companies
Board fabrication companies come in as wide a range of capabilities as
the CAD tools. Some companies only do large production orders, while
others earn their bread and butter servicing the quick-turn prototype and
hobbyist market. Here are a few of my favorite board fabrication
companies, along with a brief description of their basic offerings.

Sierra Proto Express
Located in San Jose, California, Sierra Proto Express offers some of the
most competitive quick-turn prototype rates. As of this writing, Sierra
Proto Express offers a line of “No Touch Product” processes. These
fabrication processes have strict design rule requirements, but they are
very affordable. For example, you can have a two-layer circuit board
fabricated in four days for $34 per board (minimun order of two
boards), or you can have a four-layer circuit board fabricated in four days
for $51 per board (minimum order of two boards). The technology
offered at these prices is a 6 mil trace/space design rule with 15 mil
finished hole sizes. Sierra Proto Express also offers faster turn-time
processes with trace widths down to 5 mils and 10 mil finished hole sizes.
For more information, visit www.sierraprotoexpress.com.

Data Circuit Systems
Data Circuit Systems, also located in San Jose, California, is my vendor of
choice for designs that require aggressive design rules or special process-
ing options that don’t fit well with the cheaper quick-turn companies’
offerings. Their comprehensive “Process Capabilities Survey” (available

Hacking the Xbox: An Introduction to Reverse Engineering234
for download at their website) is comprehensive and clearly written, so it
takes a lot of guesswork out of interpreting the design rules. They also
do a fairly rigorous set of factory checks on your submitted design,
which often catch subtle layout errors that can cause problems later. I
have found their staff to be competent and friendly and, though their
prices are slightly higher than most engineering prototype manufacturers,
their well-documented process and design rule checks help reduce the
risk of aggressive designs, and in the end the extra cost is probably worth
it. Visit www.datacircuits.com.

Advanced Circuits
Advanced Circuits of Aurora, Colorado (www.4pcb.com) features an
instant quotation feature at their website. This feature alone makes them a
good choice for boards of intermediate-complexity that do not fit any of
the discount, quick-turn process guidelines. You can use the instant quote
feature to optimize your choice of implementation technology for price.
In addition, they frequently offer discount, quick-turn specials.

Alberta Printed Circuits
Alberta Printed Circuits (AP Circuits), located in Alberta, Canada, is one
of the original quick-turn prototype PCB houses, with prompt service.
The P1 process they offer is a basic one, with no soldermask or
silkscreen. As a result, it is difficult to execute fine-pitch surface mount
designs because solder tends to get everywhere during the assembly
phase. However, they will fabricate and ship your board in the P1
process in just one day for an unheard of price, with no minimum order
requirements. The base fee for a production run is about $45 at the time
of writing, with approximately a $0.65 per square inch charge on top of
the base fee. The technology is an 8 mil trace/space with a minimum drill
size of 20 mil (28 mil if you want to stick with the cheapest process
option). AP Circuits is great for boards that have to get done in a pinch
and on a strict budget, especially if you are using through-hole or coarse
SMT components that are easy to assemble without a soldermask. Visit
www.apcircuits.com.

Starter Projects
In Chapter 5, “Replacing a Broken Power Supply,” you are instructed on
how to replace an Xbox power supply with a standard ATX power
supply. The one problem is that the polarity of the power on signal is
inverted between the Xbox and the standard ATX supply. The hack
solution proposed in the chapter is to always leave the supply on, and to
instead switch the Xbox on and off by first turning on the power supply
and then pressing the Xbox’s power button.

Appendix C - Getting Into PCB Layout 235

regulate the standby power supply, instead of using two diodes. Such a
board would consist of an inverter chip, such as the 74HCT04, and a
regulator, such as the LM317K. The LM317K is an adjustable regulator
that can be set to reduce the +5V standby voltage provided by the ATX
supply down to the +3.3V standby voltage demanded by the Xbox. An
example schematic diagram of this board is shown in Figure C-4.

The choice of connectors to this board is up to you. The simplest
solution would be to just use holes and solder the wires through the
holes. There are only five connections on this board. Three go to the
power supply: the +5VSB (violet) wire, a ground (black) wire, and the
power on output (green) wire. The remaining two, +3.3VSB (pin 6 on the
power connector) and power on input (pin 11 on the power connector),
go to the Xbox.

Be sure to test the voltage output of the regulator before installing your
finished board. It is fairly easy to get a resistor value wrong or a pin
swapped, and both of these conditions could lead to dangerously high
voltages going into the Xbox. Also, when installing the board perma-
nently, be sure to insulate the bottom and top of the board from
accidental contact with the Xbox case or other Xbox components.

It is fairly easy to design and layout a board that enables you to invert the
polarity of the power signal so that you can control the power state of
the Xbox from just the front panel of the Xbox. You can also properly

VIN VOUT

ADJ

U1 LM317T

C1
0.1uF, 10V

C2
10uF, 6.3V

R1
240 1%

R2
392 1%

3

1

2, Tab

U2 74HCT04
1 2

14

7

+5.0V
Standby From
Power Supply
(violet wire)

+3.3V
Standby To

Xbox Motherboard
(Pin 6 on Xbox

power connector)

Power On
Signal to

Power Supply
(green wire)

Power On
Signal from

Xbox Motherboard
(Pin 11 on Xbox

power connector)

Ground from
Power Supply
(black wire)

Figure C-4: Example schematic diagram of the ATX power supply replacement
adapter board. Resistors R1 and R2 program the output voltage of the voltage
regulator, U1, to be +3.3V.

APPENDIX D

Getting Started
with FPGAs

Integration is the bane of hardware hackers. We like to take things apart,
modify them, and improve them, but the trend has been to cram every-
thing into one or two ASICs (Application Specific Integrated Circuit).
This kind of integration is out of the reach of mere mortals, as the cost
of a set of masks used for defining the features on chips is rapidly
approaching one million dollars. That’s one million dollars per unique
revision of the chip. If a mistake is made that requires a new mask set, you
have to spend yet another million dollars to fix it.

Fortunately, a million dollars cash upfront for a chip is too much even for
many corporations, and this has created a market for FPGAs — general-
purpose, programmable (“reconfigurable”) hardware devices that can be
used in place of an ASIC in many applications.

What Is an FPGA?
FPGA stands for field programmable gate array. In other words, it is an
array of gates that can be programmed in the field by end users. You can
think of FPGAs as custom silicon that you can build in the comfort of
your own home, although the trend toward partial reconfigurability and
context-sensitive reconfiguration adds a dimension to FPGAs that is not
found in ASICs. While ASICs are cheaper per unit in volume, and they
can have much higher clock speed performance, FPGAs have established
themselves as the tool of choice for low to moderate volume applica-
tions and for prototyping.

The FPGA’s basic architecture is that of an array of hardware primitives
embedded in a flexible routing network. The power of the FPGA comes
from the fact that complex computations can be broken down into a

Hacking the Xbox: An Introduction to Reverse Engineering238
sequence of simpler logic functions. These simpler functions can each be
broken down in turn, until the entire computation is described by nothing
more than a sequence of basic logic operations that can be mapped into
the FPGA’s hardware primitives. Thus, the same FPGA can be used to
implement a microprocessor, a video controller, or a tic-tac-toe game
just by changing the configuration of the hardware primitives and the
routing network.

The kinds of hardware primitives implemented by an FPGA architecture
strongly influence the FPGA’s implementation efficiency for a given
target application. Modern FPGAs provide designers with mostly one
bit wide primitives: a 4 or 5 input to 1-bit output lookup table, and a
single bit of time-synchronized storage known as a flip flop. Lookup
tables are used as the logic primitive because they can be programmed to
perform any logic operation with as many terms as there are inputs to the
lookup table. These primitives are then wired into a vast programmable
network of wires; a typical high-end FPGA might have many tens of
thousands of these primitive elements.

It turns out that while single bit-wide structures are very general, they can be
very resource-inefficient in applications where the natural data width is large.
In particular, the area dedicated to the actual logic primitives is around 1
percent in many cases, with the remainder being configuration memory

4:1
LUT

Flip
Flop

Programmable
Switch Element

Logic
Function

Memory and
Timing

Function

Routing Wires

’

Interconnect
Area

Computational
Area

Section of FPGA Chip

Figure D-1: Block diagram of a typical FPGA structure, illustrating the disparity
between the amount of wire on an FPGA versus the amount of computational logic.
A typical modern FPGA will contain several tens of thousands of these basic cells.

Appendix D - Getting Started with FPGAs 239
and interconnect. All of this wire is required to handle the many routing
permutations that you might require for single-bit wide applications.

In order to boost area efficiency, many FPGAs also include a few coarse-
grain primitives, such as chunks of RAM or a multiplier block. Xilinx’s
Virtex II-Pro FPGAs even include several PowerPC cores on-chip. While
this sounds impressive, the actual area consumed by such a core is
surprisingly small: A PowerPC processor probably consumes a little
more than 1mm2 of silicon area, whereas the area of the FPGA is
hundreds of square millimeters.

The most recent FPGAs on the market have very flexible I/Os in
addition to having very flexible computational hardware. A typical
FPGA can interface to all of the most popular high-speed signaling
standards, including PCI, AGP, LVDS, HSTL, SSTL, and GTL. In
addition, most FPGAs can handle DDR clocked signals as well. In case
those acronyms didn’t mean anything to you, the basic idea is that an
FPGA can be used to talk to just about any piece of hardware you might
find on a typical PC motherboard, such as the Xbox. This is extremely
good news to hardware hackers, because it means that an FPGA can be
used to emulate or monitor almost any chip found in a PC. (Of course,
the PC may have to be down-clocked in cases where the FPGA cannot
keep up with the speed of the PC.)

Designing for an FPGA
You have a number of design entry options to choose from for a typical
FPGA design flow. If you prefer to think graphically, most design flows
support a schematic-capture tool. While schematic capture is often more
intuitive for hardware designs, they can be more difficult to maintain and
modify. For example, changing all instances of a net name can be tedious
if you have to click on every wire and type in the new name. Further-
more, the size of any single level of design hierarchy is limited to the size
of a schematic sheet, so a complex design will require a good deal of
planning and forethought for just the schematic capture.

As a result, hardware description languages (HDLs) are the tool of
choice for implementing complex designs. HDLs look very similar at
first glance to normal programming languages. For example, the syntax
of Verilog looks very similar to that of C or Java. However, the seman-
tics of the language can be a bit of a challenge to understand.

Hardware has an inherent parallelism that procedural languages such as C
cannot express. If you think about it, every gate and every flip flop on an
FPGA can compute in parallel, whereas in a C program, a single thread
of execution is nominally assumed. As a result, HDLs represent hard-
ware as a collection of processes that operate in parallel; it is up to the
coder to group all of the functions into the correct processes so that the
compiler can understand how to turn a process into gates.

Hacking the Xbox: An Introduction to Reverse Engineering240

Fi
gu

re
 D

-2
: T

yp
ic

al
 F

PG
A

de
si

gn
 fl

ow
.

Ve
nd

or
Li

br
ar

ie
s

b
e
g
i
n

a

<
=

b

&

!
c
;

e
n
d

Th
ird

-
Pa

rty
C

or
es

M
ap

 to
FP

G
A

Pr
im

iti
ve

s

Tr
an

sl
at

e
or

C
om

pi
le

 to
C

om
m

on
 F

or
m

at

FP
G

A
Sp

ec

Pl
ac

e
Pr

im
iti

ve
s,

R
ou

te
 W

ire
s

C
om

pu
te

Ti
m

in
g

G
en

er
at

e
C

on
fig

ur
at

io
n

Bi
ts

tre
am

C
on

fig
Fi

le

Sc
he

m
at

ic
 C

ap
tu

re

H
ar

dw
ar

e
D

es
cr

ip
tio

n
La

ng
ua

ge
 (H

D
L)

R
ep

ea
t i

f T
im

in
g

C
on

st
ra

in
ts

 n
ot

 m
et Ti

m
in

g
C

on
st

ra
in

ts

Appendix D - Getting Started with FPGAs 241
For example, a single clocked storage element (a flip-flop) in Verilog is a
“process” that typically has a structure similar to this:

input inData; // declare your inputs and outputs

input clock;

reg bitOfStorage; // declare the storage bit as a reg

type

always @(posedge clock) begin

 bitOfStorage <= inData;

end

This code takes the value on input port inData, and on every rising clock
edge, stores inData in a flip flop whose output is called bitOfStorage.
Multiple processes delimited by always @(...) begin ... end syntax
can exist in a single design, and all processes execute in parallel.

Combinational logic can also be expressed as a process. For example, the
following Verilog code implements a two-input multiplexer that has no
clock:

input a;

input b;

input select;

output out;

reg c;

always @(a or b or select) begin

 if(select == 1’b1) begin

 c <= a;

 end else begin

 c <= b;

 end

end

assign out = c; // assign statements can contain logic

 // functions as well

In this example, the contents of the parenthesized block following the
always keyword contains a sensitivity list that includes all of the inputs that
might affect the output. Leaving a parameter out of the sensitivity list
means that the output will not change, even if that parameter changes. For
example, if you omitted a and b from the sensitivity list, then the only time
the output would change would be when select changed: you would have
built a latch that stores either a or b depending upon the state of select.
However, the desired operation of a multiplexer is to relay changes on
either a or b to the output at all times, even when select does not
transition, so a and b must both be part of the sensitivity list.

There are a number of subtleties when learning an HDL that are beyond the
scope of this book, but the two code segments above should give you a
flavor for what to expect. A skilled software programmer may have more

Hacking the Xbox: An Introduction to Reverse Engineering242
trouble adjusting to an HDL than a novice, because many software tricks
that are taken for granted translate very poorly to direct hardware
implementation. Arrays, structures, multiplication, and division primi-
tives are all taken for granted in the software world, but each of these
constructs translate to potentially large and inefficient blocks of hard-
ware. Furthermore, in a hardware implementation, all possible cases in a
case statement exist whether or not you intend for it; neglecting to fully-
specify a case statement with a default case often means that extra
hardware will be synthesized to handle the implicit cases. Numerous
tutorials and syntax reference manuals for Verilog are indexed in Google;

Overclocking FPGA Designs
It is worth noting that the timing models used for an FPGA are
quite conservative. This means that it is quite likely that an
FPGA will operate properly at frequencies much higher than
the timing analyzer will admit. In fact, careful hand-layout of
an FPGA’s logic can stretch the performance of the FPGA much
further than its stated specifications.

For example, the FPGA (Xilinx Virtex-E) used to implement the
Xbox Hypertransport bus tap is only specified to handle data
rates of around 200 Mbits/s/pin, but the application demanded
400 Mbits/s/pin. The reason I could pull this off is that the ac-
tual logic and storage elements can run very fast, but most of
the performance is burned off in the wires and repeaters that
carry the signals between logic elements. Specifically, some
wires will have so much delay at 400 Mbits/s that they effec-
tively store data for a single clock cycle.

I determined which wires were slower than the rest by captur-
ing a sequence of data and comparing it against a pattern
that I had previously discovered using an oscilloscope. Once
the slow paths were identified, I inverted the clock and/or in-
serted flip-flops on channels that had too little delay. The end
result was a set of signals that were time-skew corrected. These
signals could then be trivially demultiplexed to a lower clock
rate where conventionally compiled HDL design techniques
could be used.

While this technique is very powerful, it is not generally appli-
cable because the amount of delay caused by a wire varies
from chip to chip and can depend on parameters such as
the ambient temperature and the quality of the power supply
voltage. However, for one specific chip under controlled cir-
cumstances, I was able to get 2x the rated performance. An-
other important difference between this application and a
more general application is that bit error rates on the order of
1 error in a few thousand was tolerable, since I could just take
three traces and XOR them to recover any information lost to
random noise sources. However, 1 in 10,000 bit error rates are
not acceptable for normal applications; unrecoverable error
rates better than 1 in 10,000,000,000,000 are more typical. This
all goes back to a saying that I have: “It is easy to do some-
thing once, but doing something a million times perfectly is
hard.”

Appendix D - Getting Started with FPGAs 243
verilog syntax and verilog tutorial are both good sets of keywords to
start out with when searching for syntax references or tutorials. Xilinx’s
website also has a good Verilog reference for FPGA designers, and
Sutherland HDL, Inc. has a free Verilog quick reference guide at http://
www.sutherland-hdl.com/on-line_ref_guide/vlog_ref_body.html.

Another advantage of the HDL design entry approach is the availability
of free and paid “softcores.” Websites such as www.opencores.org offer
general-public licensed HDL cores for functions such as USB interfaces, DES
and AES crypto-engines, and various microprocessors. In addition, almost
every standard function is offered by third-party vendors who will sell you
cores for a fee.

After design entry, I highly recommended that you simulate your design
before compiling it into hardware. Trying to track down bugs by
twiddling code, pushing it to hardware and probing for changes is very
inefficient. Simulation allows you to probe any node of the circuit with
the push of a button. In addition, the effort required to simulate a code
change is very small, especially when compared to the effort of pushing a
change all the way through to hardware.

Once the design has been entered and simulated, it needs to be compiled or
translated into a common netlist format. This netlist format is fed into a
program that maps the netlist primitives into the target FPGA hardware
primitives, after which the mapped primitives are placed and routed. The
resulting design is analyzed for compliance with a set of constraints
specified by the designer. If the design does not meet the designer’s
specifications, it is iteratively refined through successive place and route
passes. Once the design passes its design constraints, it goes to a configu-
ration bitstream generator where the internal representation of the
FPGA is translated into a binary file that the FPGA can use to configure
itself. (All of these steps happen fairly seamlessly at the touch of a button
in the later versions of the FPGA design tools.)

Project Ideas
Now that you know a little bit about what an FPGA is and how you can
program them, what sorts of things can you do with them?

As it turns out, FPGAs have enough logic capacity and performance
these days to accomplish a very impressive range of tasks. The obvious
industrial application of FPGAs is in the emulation of designs intended
for hard-wired silicon. The cost of building a custom chip has been
skyrocketing, and it will soon be the case where a single critical mistake
can cost hundreds of thousands of dollars, if not millions, to fix.

On the other hand, fixing a mistake made in an FPGA HDL description
pretty much only costs time and design effort; you don’t throw away any
parts, and you don’t have to buy any new parts. Thus, many companies
have adopted the strategy of fully simulating a mock-up of the design in

Hacking the Xbox: An Introduction to Reverse Engineering244
FPGAs before taping out the final silicon. A side benefit from this
approach is that the software and hardware teams that are users of the
custom silicon can begin validating their designs using the FPGA mock-
up while the custom silicon is being fabricated; a process that can
sometimes take a couple of months.

For hackers, FPGAs are sort of a panacea for all kinds of complex
projects. They are excellent choices for implementing cryptographic
functions if you are interested in doing brute-force keysearches or
encrypting large amounts of data quickly. They are also very useful for
implementing signal processing functions, especially given the existence
of free multiplier and digital filter cores. FPGAs can achieve higher
performance for less power than a DSP, and thus they have a unique
niche in applications such as battery-powered robotics. FPGAs are also
useful for embedded controller applications: A small microprocessor
core, equivalent to or better than a PIC, can easily fit in an FPGA today.
Add all your custom hardware peripherals, such as a serial port and
PWM timing generators, and you’re in business.

FPGAs are also useful in situations where the focus is not on big number
crunching. An FPGA makes a great piece of glue logic in a tight spot,
and well-placed FPGA can save you from having to ever add a wire
jumper to patch a board due to a logic design error. FPGAs also make a
cheap logic analyzer alternative for those of us who cannot afford a
$10,000 Tek TLA mainframe. The high-speed I/O capabilities of the
latest FPGAs combined with large autogenerated FIFO-configured
embedded memories make short work of designing a signal capture and
analysis system.

Finally, FPGAs have applications in mixed-signal situations that are not
immediately obvious. The most common mixed-signal application is
probably using an FPGA to drive the analog signals of a VGA monitor. A
couple of resistive dividers or a well-chosen output driver type is all you
need, and all the timing and logic necessary to generate color images can be
handled with logic inside the FPGA. FPGAs can also be trivially used as
PWM D/A converters, or even as part of a sigma-delta D/A or A/D
converters.

Where to Buy
You’re probably thinking that any tool this versatile and powerful has to
cost a fortune. While that was true about a decade ago, today you can buy
100,000 gate FPGAs for well under $50, and the design tools are often
free for educational users and/or hobbyists.

Of course, an FPGA on its own is not so useful; it needs to be mounted
to a board with the proper connections in order to be used. To this end,
a company called XESS (www.xess.com) makes a line of fairly affordable
FPGA starter kits. Their product line shifts as new FPGAs are intro-
duced, but the current entry-level FPGA board is the XSA-50 board that

Appendix D - Getting Started with FPGAs 245
comes with a 50,000 gate FPGA for about $150. The board also includes
a few megabytes of RAM, a parallel port, a VGA port, a PS/2 keyboard
port, and a few other essential items.

The other option is to build your own board from scratch, if you’re
feeling bold. Other appendices in this book describe how to get into
board layout and fabrication and how to attach fine-pitched FPGA
devices to your boards. It is actually quite rewarding to try to build your
own boards, and I recommend giving it a try; the cost of fabricating a
board is well below $100 these days, so you don’t lose too much even if
your board doesn’t work in the end.

If you are making your own board, you will need to buy your FPGA
from a Xilinx distributor. The Xilinx webpage (www.xilinx.com) has the
most up-to-date links to distributors. As of this writing, one of the more
convenient distributors is NuHorizons (www.nuhorizons.com), as they
offer product availability and pricing information on their webpage
without requiring registration or a special customer account.

FPGA development software can usually be acquired at a low price or
for free. For example, Xilinx offers a free development environment for
its Virtex-II (up to 300K gates), Spartan II-E and CoolRunner lines of
parts. The development environment is called the Xilinx ISE WebPACK,
and it is available for download after registration at www.xilinx.com.
This free environment sports an impressive list of features, including
schematic and HDL input, HDL synthesis, a flooplanner, timing driven
place and route, timing analysis, and power analysis tools.

Xilinx also offers a version of its software called “Xilinx Student
Edition” through Prentice-Hall. This software comes bundled with a
number of tutorials and documentation that can help you get into FPGA
design. You’ll find a wide variety of helpful tutorials and lectures on the
Xilinx website under the “Education” tab.

APPENDIX E

Debugging:
Hints and Tips

Don’t Panic!
Developing your debugging skills is as important, if not more important,
than developing your design skills. The most important single piece of
advice is to never panic: randomly tweaking and changing things will
introduce more uncertainty and bugs than it will fix.

Debugging is simple when given total visibility into a system and total
knowledge of the expected state of a properly working system. Simply
comparing the observed state against the expected state will elucidate what
went wrong. Unfortunately, the world rarely works this way. Chips are black
boxes, and the only visibility into the internal state of the chip is through its
pins. Many signals are also too difficult to directly measure or record. Also,
the specifications provided by manufacturers are often vague or difficult to
interpret. Thus, the real art of debugging is in tracing a set of symptoms to
a root cause despite a lack of visibility and total system knowledge.

Understand the System
Trying to debug a system without first understanding what you are trying to
debug is like trying to read a Japanese comic without any knowledge of
Japanese. You can figure out at a superficial level who is the bad guy and
who is the good guy, but you get really lost as to exactly what the floating cat
has to do with all of it. In order to fully understand the plot, you need a
Japanese dictionary and a lot of time and patience. Similarly, basic electronics
principles and intuition will get you to the point where you know roughly

Hacking the Xbox: An Introduction to Reverse Engineering248
what to expect, but enlightenment only comes after you have read the
component data sheets. The more you understand about a system, the
easier it will be to figure out why things went wrong. Keep notes as you read
more about the system, and think to yourself about ways problems might
express themselves if something did go wrong. It also helps to have seen
other systems that are similar to the one you are trying to fix, and it helps to
have an understanding of the theory of operation.

Observe Symptoms
Bugs manifest themselves through symptoms, and it is up to you to
deduce the root cause by observing several symptoms and deducing the
culprit. A blank screen on a TV that should be showing the video output of
your console is an example of a symptom. There are many reasons why
your TV screen could be blank, such as a broken video cable, a broken TV, a
broken video connector, a broken video source, blank media in the video
source, or even lack of power to the system. As a general rule, you should
observe at least two, preferably three, symptoms that are consistent with a
cause before concluding that you have found the root cause. Keep in mind
that the most telling symptoms are often not outwardly obvious, and will
require a measurement or an experiment to find them. In the example of
our blank TV screen, our measurements are as simple as seeing if the power
light on the TV turns on, or if sound comes out of the TV without the
video.

The basic strategy for debugging is to start with an obvious symptom and
isolate various parts of the system to determine which part is the immediate
cause of the symptom. An immediate cause is defined as something that
directly impacts the observed symptom. Immediate causes for video failure
on a TV are lack of a signal to the TV, a broken TV, or lack of power; non-
immediate causes would be a hardware failure in your video source or the
phase of the moon. In other words, given symptom A, think of all the
possible immediate causes X, Y, and Z, and then test each to determine
which is the actual cause. Once you have isolated the problem, think about
what might have caused it to fail and repeat the process until you have
discovered the root cause.

Isolating the cause of bugs can be facilitated by the use of known good
references. In our example, you can eliminate the TV as a source of failure by
feeding it a signal from a known good DVD player. In order for a known
good reference experiment to be valid, you must keep everything constant
except for the piece you are replacing with the reference. Plugging the good
DVD player into a different input from the consoles’ on the TV will only
tell us that the display part of the TV works. The path from the console
input to the TV is not tested. A proper execution of the experiment would
plug the DVD player into the video input used by the console.

This kind of paranoia or inherent mistrust of the system becomes very
important when tracing down subtle hardware bugs. Do not take any
factor for granted that could affect the system you are observing, and

Appendix E - Debugging: Hints and Tips 249
never, ever ignore an inexplicable or inconsistent behavior, even if it is
intermittent. For example, sometimes a system will work properly or
break if you touch a certain location on the circuit board or wave your
hand near a certain area; sometimes a system will demonstrate different
behavior for a brief moment after power-on. It is tempting to write off
such observations as anomalies or trivial occurrences, but the fact is that
they did happen and there must be an explanation. One specific example
is touching a circuit board and observing a change in the state of the
system. Where did you touch? How did you touch it? Are your hands
sweaty or dry? When you touch a circuit board, your body acts like a
small capacitance and a large resistance. This can slightly slow down
signals or discharge high-impedance nodes such as an unconnected digital
input. If you pressed firmly on the board, you could be flexing the board
in such a way that changes the electrical properties of a cracked trace or a
bad solder joint.

There are some symptoms that are often times incorrectly interpreted as
causes. A burned-out trace or a damaged component is usually a symptom
and not a cause of the problem. In other words, a malfunction elsewhere in
the circuit is usually responsible for the failure of a component. Spontane-
ous component failure is a relatively rare occurrence. Suppose you are
debugging a broken stereo. You smell something burning coming from the
stereo, and you see a large resistor that is blackened from overheating.
Chances are that if you just replace that resistor, the replacement will just
burn out again. The real cause might be a shorted transistor or a damaged
power supply circuit, but these do not manifest themselves as obviously as
the burned out resistor.

Another potent observation technique is comparison against a known good
system. If you are trying to debug a broken device, find a working one and
compare voltages and other operational characteristics between the two. If
you are trying to debug your own home-brew system, construct a simula-
tion of the circuit if possible, or find a circuit with a similar design. You can
use these known good systems to quickly isolate anomalous behavior.
Furthermore, you can induce failures in the known good sample in a
controlled fashion to check if you have really found the root cause of the
problem. This technique is particularly applicable to simulated systems.

Common Bugs
The most common source of hardware bugs in home-brew projects are
poor solder joints and improperly installed polarized components, such as
capacitors, diodes, ICs, and connectors. Also, connectors are particularly
notorious sources of failures because they are subjected to the most
physical abuse and it is typically difficult to determine if a connector is in
good condition through visual inspection alone. The following is a list of
common bugs, ranked loosely in descending order of popularity.

Hacking the Xbox: An Introduction to Reverse Engineering250
1. Bad solder joint. This includes cold solder joints, bridges,

and forgotten joints. Careful visual inspection can catch many
instances of bad joints. The solder between all joints should
appear to be smooth and shiny, and the solder should exhibit
a wet-looking meniscus over circuit board pads and
component leads. Pictures of good and bad solder joints can
be found in Appendix B: Soldering Techniques. Poor solder
joints can also be quickly identified on many surface mount
packages by gently dragging a stiff wire, such as the tip of a
tweezer or a paperclip, over the pins along the length of the
package. Poorly connected pins will bend slightly. Flexing the
board can also help reveal poor solder joints. In other cases,
you may have to use an ohmmeter to verify the quality of a
solder joint. (If you had a messy experience soldering your
components, clean the board with a mild solvent such as
Isopropyl Alcohol using a cotton swab before inspection.)

Finally, remember that seeing is believing: use a magnifying
lens to help your inspections. A medium-power microscope is
preferred, but any mounted magnifying lens (like those found
on drafter’s lamps) or a ring loupe like the kind used by
jewelers will help enormously.

2. Improper component values. An improper component
value can happen when a similar looking but different valued
component is accidentally mounted on the circuit board. This
is especially problematic with surface mount passives, which are
often unlabeled or obscurely labeled. Keep in mind that the
only way to properly test a component’s value is to remove it
from the board and then test it. Populating boards with
wrong components can be avoided by being very careful and
methodical about storing your components in clearly labeled
bags or boxes during assembly.

3. Bad connectors. This includes connectors that have been
installed backwards, or worse yet, designed with the wrong pin
assignments. Pay attention to where pin 1 is, and the
numbering system used by the connector. Some connectors
use a zig-zag pin numbering system, while others use a circular
pin numbering system. Wire-to-board connectors are also
difficult to build by hand. Inspect all points where wires
interface with connector contacts for poor crimps, excess
insulation, or bad solder joints. In the worst case, use a
voltmeter to verify the continuity of the connector.

4. Configuration oversights as a result of not reading the
data sheet. Complex chips frequently support multiple
operating modes that are selected by strapping a set of pins to
high or low logic levels. Chips also frequently require external
resistors to load or bias a pin for proper operation. Sometimes
networks of capacitors, resistors and inductors are required by
chips as well to stabilize internal functions. Keep in mind
that unused inputs often require termination to a fixed

Appendix E - Debugging: Hints and Tips 251
voltage for proper operation, so do not ignore parts of a
data sheet just because you do not use certain functions.

5. Design problem or implementation problem. Sometimes
the bug is caused by an outright design error, or by a
translation problem between a correct schematic and the board
layout. Translation problems are frequently caused by typos
when specifying the names of schematic nets, or by implicit
power names on schematic symbols. Implicit power names are
frequently used on digital components as a matter of
convenience, but can cause significant problems in designs that
use multiple power supply voltages. These kinds of problems
can be caught before going to layout with a heuristic netlist
checking program, as described in Appendix C. High speed
design rule violations represent another kind of
implementation problem. Circuits that operate at high
frequencies (25+ MHz) or have fast edge rates (< 5 ns) require
special attention to electrical impedance and transmission line
termination.

6. Power supply is out of specification. Test power supply
voltages as close to the point of use as possible, as wires can
reduce the actual delivered voltage. In some cases, there is
nothing wrong with the circuit and the power supply is just
incapable of providing enough juice to run your design. Also
check for variations of the power supply voltage with time.
Excess noise on a power supply can cause problems, and
systems that use large amounts of high speed CMOS logic can
have very demanding shifts in current consumption that can
lead to short dips and spikes in the power supply voltage.

7. Broken or damaged PC board traces. This can be a problem
if you hand-assembled a board and you were having troubles
attaching a component. Excess heat during assembly can cause
traces to lift off of the circuit board. Also, know your board
vendor. Some board vendors (especially quick-turn discount
prototype vendors) will not perform a full netlist electrical test
of your circuit board. Look for over-etched traces that have
thinned out of tolerance, and also check that every via hole has
a silvery annulus around the hole. Sometimes the drill bits are
misaligned or angled during board drilling, and the mis-drilled
hole will end up breaking electrical connections.

8. Latch-up or power-sequencing problem. Latch-up is a
potentially disastrous phenomenon where a parasitic short is
created between power and ground within a chip’s substrate.
Latch-up is triggered by injecting current into the substrate.
This can happen in mixed-voltage systems where input
voltages are applied that are higher than a chip’s power supply
voltage. In many cases, latch-up is accompanied by chip
overheating that can lead to permanent chip damage. A
recommended practice when powering up a system for the
first time is to use an ammeter to monitor how much current

Hacking the Xbox: An Introduction to Reverse Engineering252
the system is drawing, and touch all the components to see if
any are getting excessively hot. If a component has gone into
latch-up, you will typically observe excess current
consumption on the order of hundreds of milliamps.

9. Thermal problem. This is a problem primarily with linear
voltage regulators and high power digital circuitry. Verify that all
high power components are properly heat sinked, and that the
heat sinks are properly isolated when they contact an electrically
active part of the chip package.

10. Unintentional short to bare copper. This is a problem with
connectors and chips that have exposed regions of metal on
their undersides that can short across exposed regions of the
board, such as vias. This is also a problem around areas where
screws are used to hold a board in place. The head of a metal
screw can inadvertently come in contact with a via that has been
placed too close to the screw hole.

11. Contamination of the board. This problem is caused by
solder flux residue or other process residue on the board
causing low-current leakage paths. Some flux residues have a
non-negligible (less than one mega-ohm) resistance and this
can cause problems with high-impedance circuits, such as slow
time constant R-C networks.

12. Faulty test equipment. This is especially a problem if you use
second-hand or old test equipment. Test probes develop kinks
and calibration faults over time, so sometimes the crummy
signal you are seeing on the oscilloscope is actually a result of a
bad test probe or a poor choice of probe ground. Calibrate
your test equipment to a known good signal to eliminate test
equipment problems.

13. The least likely problem is a bad chip or a faulty component.
Component manufacturers go to great lengths to ensure that
the parts shipped to you are functional. Typical failure rates are
measured in the single-digit parts per million for simple to
moderately complex parts. Frequently, we like to imagine that
the cause of our problem is a bad chip from the manufacturer,
but that is almost never the case. Usually, if a bad part is
found, the part was damaged either by a processing problem
(rough handling or assembly issues) or a design problem
elsewhere in the circuit that induces the observed failure.

Recovering from a Lifted Trace or Pad
The lifting or tearing of the copper traces on a circuit board is a common
problem encountered by people trying to install after-market modifications
using flying wires. This delamination of the copper foil traces is usually
caused by excessive heat from the soldering iron. Another common cause is
pulling on the attached modification wire, as one might do while stripping

Appendix E - Debugging: Hints and Tips 253
the insulation off the end of a wire, after it has been soldered to the
circuit board. Fortunately, it is usually fairly easy to recover from this
problem.

Tip
The best solution is prevention. Do not use an over-pow-
ered soldering iron for working on circuit boards. A tem-
perature-controlled iron is preferred, but an inexpensive
low-wattage (15 watts) iron will also work. Also, if the sol-
der does not seem to be sticking to the board, stop apply-
ing heat. Instead, put a touch of flux on the board and the
wire, and clean the soldering iron tip with tip conditioner
or a sponge dampened with distilled water (tap water con-
tains chemicals that can degrade soldering iron tips). This
will enhance solderability so you do not need to apply as
much heat or force to make the connection.

The first thing to do when you see a trace or pad lifting off of the circuit
board is to STOP! Do not aggravate the problem further; the worst thing
you can do is cause the entire trace to peel back by continuing to pull on

the wire. Remove the wire, if it is still connected, by barely touching the
soldering iron to the joint and letting the wire fall off. Figure E-1
illustrates such a disaster scene.

The strategy for recovering from a broken trace is to remove the soldermask,
fix the trace with a jumper wire, and find an alternate point for soldering by
following the trace to a nearby component or via.

Removing the soldermask reveals the underlying copper traces. A short
jumper wire can be soldered to these bared traces to fix the discontinuity
caused by the torn trace. The bare region also serves as a convenient starting
point for using a continuity meter to find an alternate point for affixing the
jumper wire. Remove the soldermask using either a fine-grit (200 or finer)
sandpaper, or by scraping the surface with a sharp hobbyists knife. When
removing the soldermask, be careful not to catch pieces of the broken trace
and further tear the trace of the board. Once the soldermask has been
removed, clean the region with a gentle solvent, such as rubbing alcohol,

Figure E-1: Left, arrow points to the original pad that is being soldered. Right,
pad has been torn off through excess heat and force.

Hacking the Xbox: An Introduction to Reverse Engineering254
using a cotton swab. Then, apply a very thin layer of soldering flux to the
region and rub a clean soldering iron tip along the exposed traces. Small
amounts of solder sticking to the iron’s tip will wick onto the circuitboard
and coat the traces, preventing oxidation of the bare copper. If the iron’s tip
is too clean, apply a drop of solder to it and lightly wipe the tip off on a wet
sponge and try again. Do not attempt to tin the exposed traces with a ball of
molten solder on the tip. Excess solder will be deposited that can lead to

shorts. (Note that the soldering flux is essential for getting a uniform, thin
coating of solder on the traces. Do not skip the application of the solder
flux.) Figure E-2 illustrates what the traces will look like before and after the
tinning process.

At this point, you may want to use a continuity meter to determine an
alternate point for attaching your modification wire. Most voltmeters come
with an audible continuity meter function. When selected, a tone is emitted
from the voltmeter whenever the resistance between the probes is very low.

Vias and component leads both make good alternate attachment points.
If you decide to use a via, you must scrape the solder mask off and

Figure E-2: Left, region after soldermask has been removed with fine-grit
sandpaper. Right, region after it has been tinned (reconditioned for soldering).

Figure E-3: Using a continuity meter to find an alternate attachment point. In this
case, R7R10 turns out to be a good alternate.

Appendix E - Debugging: Hints and Tips 255
condition the via prior to attaching the modification wire. Figure E-3
illustrates using a continuity meter to find an alternate soldering point.
Keep in mind that sometimes you will have to trace through several vias
to find the best alternate attachment point.

The next step is to attach a short jumper wire across the broken trace. Apply
a touch more soldering flux over the region of the broken trace. Cut a piece
of fine wire (about 30-gauge) that is about the length of the gap in
question. Place the wire over the gap, using the stickiness of the soldering
flux to aid the placement process. Hold the wire in place with a pair of
tweezers, and apply heat with the soldering iron until both sides have
bonded to the edges of the broken trace. Verify that the wire is in place by
gently pushing on it with the tweezers; the wire should not move. Also
inspect for shorts to neighboring traces using your continuity meter. If a
short is discovered, simply heat the jumper until it falls off the board and
try again. Figure E-4 illustrates what the repaired trace looks like.

Finally, attach the modification wire to the alternate soldering point that was
discovered previously using the continuity meter.

Figure E-4: Left, a jumper has been installed over the damaged trace. Right, the
modification wire has been successfully attached to the alternate soldering
point.

APPENDIX F

Xbox Hardware
Reference

This appendix summarizes the pinouts of the major connectors employed
in the Xbox hardware.

Power Supply Pinout
The power supply used in the Xbox is a switcher rated at 96 watts maxi-
mum, with a peak pulse capability of 160 watts for less than 10 seconds.
Microsoft buys this power supply from multiple vendors, including Delta
Electronics, Inc. (www.deltaww.com). Delta’s is used in United States
Xboxes, and you can find a datasheet for this part through their website or
through a web search.

Table F-1: Main power connector pinouts. Wire colors may vary slightly
depending upon the specific power supply model used in your Xbox. This table
applies to the Delta DPSN-96AP A version power supply.

Pin Description Wire Color
1 +12V Yellow
2 +5V Red
3 +5V Red
4 +5V Red
5 +3.3V Orange
6 +3.3V Standby Brown
7 GND Black
8 GND Black
9 GND Black

10 GND Black
11 Power On White
12 Power OK Blue

Hacking the Xbox: An Introduction to Reverse Engineering258

Video Connector Pinout
The video connector pinout is a little bit of a mystery because some of its
signals show no obvious or recognizable signal patterns when probed, and
because multiple display modes are supported by a single connector. There
are a few websites that post pinouts for the video connector, but cross-
checking the posted information with measurements reveals some discrep-
ancies. I have done my best here to piece together and reconcile two separate
postings from the XboxHacker BBS and the ucon64 web page at
Sourceforge.net. The original postings can be found at http://
www.xboxhacker.net/index.php?do=article&id=10&page=1

and at http://ucon64.sourceforge.net/ucon64misc/
conn.html. The definition of all eight video modes selectable by the
MODE1-3 signals is listed on the XboxHacker BBS web page. My measure-
ments indicate that all of the composite video and audio signal mappings
are correct, but I was unable to verify the SDTV, HDTV, and RGB map-
pings as given by the Xboxhacker BBS posting. I apologize in advance if any
of these signals are incorrect.

Note that pins 12 and 24 have longer pins on the Xbox’s connector, which
indicate that they are used to supply power to peripherals attached to the
video connector during hot-insertion events. The longer pins allow a
peripheral’s circuitry to power up before receiving signals in the event that
the peripheral is connected while the Xbox is powered on. This helps
prevent a potentially destructive situation inside the peripheral’s chips called
latch-up.

Description
Wire Color

+12V Yellow
GND Black
GND Black
+5V Red

Table F-2: Hard disk power connector pinouts.

112

13 24

Figure F-1: Xbox audio-video connector, as viewed while looking at the Xbox
back panel from the outside.

Appendix F - Xbox Hardware Reference 259

The pin numbering used by Table F-3 for the Xbox video connector is
illustrated in Figure F-1. Both the Xboxhacker-derived pinout and the
ucon64-derived pinouts disagree in terms of their numbering scheme, so I
chose a number scheme that is somewhere in between the two. Interestingly,
pin 24 in Figure F-1 is mapped to a square pad on the Xbox video connec-
tor, indicating that the numbering scheme I chose to give the connector here
is not consistent with the manufacturer’s numbering scheme (square pads
typically indicate pin 1, while round pads indicate all other pins). This
should not effect the correctness of the table, as pin numbering schemes are
arbitrary and only need to be consistent with the pin definition table.

Pin
Signal
Name I/O Comment

1 Right Audio Out Audio out, right channel
2 GND Power
3 SPDIF Out Sony/Philips Digital Interface (S/PDIF) audio output
4 VSYNC Out Vertical Sync (VGA output mode)
5 GND Power
6 GND Power
7 GND Power
8 GND Power
9 Pb / B Out Pb for HDTV mode, Blue for RGB mode
10 GND Power
11 Y / G Out Y in SDTV and HDTV modes, Green in RGB mode
12 GND Power Has longer pins for hot-insertion
13 CVIDEO Out Composite video out.
14 GND Power
15 C / Pr / R Out C in SDTV, Pr in HDTV, Red in RGB mode
16 GND Power

17
STATUS Out SCART (Syndicat des Constructeurs d'Appareils Radio

Récepteurs et Téléviseurs) status pin
18 MODE3 In Video output mode select pin 3
19 MODE2 In Video output mode select pin 2
20 MODE1 In Video output mode select pin 1
21 HSYNC Out Horizontal Sync (VGA output mode)
22 GND Power Left channel audio cable shield
23 Left Audio Out Audio out, left channel
24 +5V Power +5V power, has longer pins for hot-insertion

Table F-3: Video connector pinouts.

Hacking the Xbox: An Introduction to Reverse Engineering260
USB Connector Pinout

The Xbox uses a USB derivative for the game controller ports. There are
four game controller ports on the front of the Xbox, and all of them have
an identical pinout, as shown in Figure F-2.

+5V USB
Data -

USB
Data +

Video
Sync

GND

Figure F-2: Game controller pinout, as viewed from outside the Xbox case looking
at the connector.

The “video sync” signal is a 3.3V CMOS or TTL-compatible signal. It is a
basic 15.734 kHz positive polarity pulse train synchronized to the horizontal
line time of the composite video output, with a single longer pulse at the
beginning of every video field. This signal enables peripherals that are
pointed at the TV screen, such as a light pen or a light gun for shooting
games, to derive position information.

The game controllers are connected to the Xbox via an intermediate break-
away connector. The purpose of this break-away connector is to prevent
console damage (particularly hard drive damage) by dragging or jerking in
the event that a cord becomes entangled around a user’s foot. The pinout of
this break-away connector is depicted in Figure F-3.

Figure F-3: Game controller break-away pinout, as viewed looking head-on into the
connector closer to the Xbox.

+5V

Data -Data +

Video
Sync

GND

Appendix F - Xbox Hardware Reference 261
The Xbox game controller features two expansion slots for memory
cards, microphones and other peripherals. These slots also provide a
USB-compliant interface. The game controller contains a USB hub (an
Atmel AT43USB401 hub chip) that repeats the incoming USB signal to
the expansion slots. The pinout of the expansion connector is illustrated
in Figure F-4.

+5V GNDVideo
Sync

USB
Data -

USB
Data +

Figure F-4: Game controller expansion slot pinout, as viewed looking into the game
controller slot with the buttons facing up.

Ethernet Connector Pinout
The Ethernet port on the Xbox is a standard 10/100 base-TX twisted pair
RJ-45 connector. The pinouts and colors of Table F-4 are based on the
EIA/TIA 568B standard. Figure F-5 illustrates the pin numbering of
the connector.

Pin Description Wire Color
1 Transmit + Orange stripe
2 Transmit - Orange
3 Receive + Green stripe
4 Not connected Blue
5 Not connected Blue stripe
6 Receive - Green
7 Not connected Brown stripe
8 Not connected Brown

Table F-4: Ethernet 10/100 RJ-45 pinout.

Figure F-5: Pinout of the Xbox ethernet connector, seen looking from the
outside toward the back panel of the Xbox.

18

Hacking the Xbox: An Introduction to Reverse Engineering262
ATA Connector Pinout

The Xbox uses the standard Advanced Technology Attachment (ATA) bus
to communicate with its hard drive and DVD drive. The ATA bus is
popularly (but technically improperly) referred to as the IDE (Integrated
Drive Electronics) bus. Most drives today qualify as IDE-style drives; for
example, SCSI drives also feature integrated drive electronics. However, years
of (mis-) use have made the term IDE synonymous with the ATA bus.

Table F-5 gives the pinout of the ATA connector, as viewed on the Xbox
motherboard looking down on the connector with the back of the Xbox
toward the viewer (the connector should be on the right hand side). Note
how the pin numbering zig-zags with all the odd pins on one side and the
even pins on the other.

Pin Name Comment Pin Name Comment
1 Reset 2 Ground
3 Data 7 4 Data 8
5 Data 6 6 Data 9
7 Data 5 8 Data 10
9 Data 4 10 Data 11
11 Data 3 12 Data 12
13 Data 2 14 Data 13
15 Data 1 16 Data 14
17 Data 0 18 Data 15

19 Ground 20 Key Blank pin for polarizing
21 DMARQ DMA Request 22 Ground
23 DIOW- I/O Write 24 Ground
25 DIOR- I/O Read 26 Ground
27 IORDY I/O Ready 28 CSEL Cable Select
29 DMACK- DMA Acknowledge 30 Ground
31 INTRQ Interrupt Request 32 IOCS16- 16 bit I/O
33 DA1 Device Address Bit 1 34 PDIAG- Passed Diagnostics
35 DA0 Device Address Bit 0 36 DA2 Device Address Bit 2
37 CS0- Chip Select 0 38 CS1- Chip Select 1

39 DASP-
Dev. Active/Slave
Present 40 Ground

Table F-5: ATA connector pinout.

Appendix F - Xbox Hardware Reference 263
DVD-ROM Power Connector

The Xbox uses a proprietary DVD-ROM power connector. This connector
not only brings power, but it also carries a few control and status signals.
These signals convey information about the state of the drive and the drive
tray. The pinouts given here are from the Xboxhacker BBS, and the original
post by Ken Gasper that this pinout is based on can be found at
http://www.xboxhacker.net/forums/

index.php?act=ST&f=5&t=1025&s=0755f2b600975b776552f93d0730e4b1

Figure F-6: DVD-ROM power connector pin numbering, as viewed looking down at
the Xbox motherboard.

1

2 12

13

The connector pin numbering, as viewed looking down at the Xbox
motherboard, can be found in Figure F-6, and the pinout in Table F-6.

Pin Name Comment Pin Name Comment
1 12VDC +12 Volts power 2 5VDC +5 Volts power

3 GND
Current return,
reference 4 EJECT- Active low tray eject

5 TS0 Traystate status 0 6 TS1 Traystate status 1

7 TS2 Traystate status 2 8 ACTIVITY- Disk seek/data transfer
9 12VDC +12 Volts power 10 5VDC +5 Volts power

11 GND
Current return,
reference 12 GND

Current return,
reference

13 Key Not connected Blank for polarizing

Table F-6: DVD power connector pinout (viewed on motherboard).

Hacking the Xbox: An Introduction to Reverse Engineering264
LPC Connector

The Xbox features a debug and test port based on the LPC (Low Pin
Count) bus. This bus was originally defined by Intel for use with
Southbridge chipsets to reduce pin count, thus saving on cost, while
maintaining support for legacy PC I/O functions. These legacy I/O
functions used to sit on the nearly extinct ISA bus, and they include the
keyboard, mouse, serial port, parallel port, and boot ROM. Intel’s specifica-
tion for the LPC bus can be found at http://www.intel.com/design/
chipsets/industry/25128901.pdf.

The LPC debug connector is particularly significant because it can be used to
supply an alternate ROM image to the Xbox in case the built-in ROM is
absent or corrupted in a fashion that makes the ROM seem absent or blank.
This feature can be and has been used to make an easy to install alternate
boot ROM for the Xbox.

The pinout for the Xbox LPC debug connector seems to be based on the
Installable LPC Debug Module Design Guide by Intel, http://
www.intel.com/technology/easeofuse/LPC_mod_spec72.pdf,
with some minor modifications as noted in Table F-7. In particular, the
function of pin 16 is unclear, as its companion pin 15 was re-assigned to be
a power pin on the Xbox motherboard. The allocation of pin 15 as a power
pin is deduced by the fat trace and nearby decoupling capacitor allocated to
the pin. If pin 15 were intended for use as a permanently high SPDA1
signal, then a narrower trace without the power conditioning would have
been used.

Pin Name Comment Pin Name Comment
1 LCLK 33 MHz clock 2 VSS Current return

3 LFRAME#
Start, end of LPC
transactions 4 KEYWAY Blank for polarizing

5 LRST# LPC Reset 6 VCC5 +5V power
7 LAD3# Muxed Address/Data 8 LAD2# Muxed Address/Data
9 VCC3 +3.3V power 10 LAD1# Muxed Address/Data
11 LAD0# Muxed Address/Data 12 VSS Current return
13 SCL I2C serial clock 14 SDA I2C serial data

15 VCC3
+3.3V power (was
SPDA1 in Intel spec.) 16 SPDA0

Address select for serial
EEPROM device (?).

Table F-7: LPC connector pinout (as viewed on motherboard).

Appendix F - Xbox Hardware Reference 265
Fan Connector

The fan connector in the Xbox is a three-pin header, where pins 1 and 3 are
connected to a temperature-regulating pulse-width-modulation (PWM) fan
speed controller, and pin 2 is connected to the +12 volt power supply.

Front Panel Connector
The Xbox’s front panel functions, namely the flashing LED, power switch
and eject switch, are connected to the Xbox motherboard through the front
panel connector. The pinout of this connector is given in Table F-8. The
pinout reflects the pin numbering of the connector on the Xbox
motherboard, as seen looking at the connector from above.

Pin Comment Pin Comment
1 Ground 2 Power switch
3 Ground 4 Eject switch
5 Green LED 6 Red LED
7 Red LED 8 Green LED
9 Not connected but wired 10 No pin (polarization)

Table F-8: Front panel connector (as viewed on motherboard).

Index

Symbols

007: Agent Under Fire (exploit) 169
1-T SRAM 51
1N4001 76
2600 Magazine 184, 186
2BL 138, 140

birthday paradox 109
Bond, Mike 117
Bonito Boats v. Thunder Craft Boats

181
Boot code 97
boot ROM 90
Boston College 134
Bowers v. Baystate Technologies, Inc.

189
break-away cable, Xbox game controller

67
Brooks, Rodney 5
Brown, Jeremy 13, 199, 201
buffer overrun 168
bunnie 11
bzip2 165

C

cache 44
cache line fetch 133
capability 199
capacitors 37
caustik 172
CD/RW media, and the Xbox 165
censorware 184
CheapLPC 153
Cheapmod 153
Chemtronics 18
CHES 137, 147
chilling effect, free speech and the DMCA 9
Ciphers 104
Circuit Board 32

silkscreen 32
soldermask 32
vias 33

Coca-Cola 179
compartmentalized secrets 201
Computer Laboratory of Cambridge

University 143
Constitution, the 175
Constitutional Copyright Bargain 179
Content Scrambling System (CSS) 184

A

Abelson, Hal 134
active components 35
Adleman, Leonard 114
Adobe 190
AES 115
AGP 151
AGTL+ 119
alternate firmware device 153, 155, 162
Altium 20
ALU 148
AMD 98
Americart 9
Amoeba 199
Andreson, Ross 117
Applied Cryptography 105
arithmetic logic unit (ALU) 44
Artificial Intelligence Laboratory (MIT)

5, 134
artificially intelligent cyber-monsters 5
assembler 42
Asterisk 142
ATX power supply 73, 76, 77, 85
AVIP (Audio Video I/O Port) 157

B

Back Doors 138–141, 147–149
BBN 116
bed of nails 147

tester 39
Beowulf 162
BGA package 38
birthday attack 109, 167

268
continuity mode, in DMMs 19
Copyright 176–178
CPRNG 113
CPU 40, 91, 100

arithmetic logic unit 44
cache 44
register file 44

crackers 6
crimping 80, 81
crimping tool 76
Cromwell 163
CRYPTO (conference) 143
cryptographic function 105
Cryptographic Hardware in Embedded

Systems (CHES) 134
Cryptography 101–104
CTT (Center Tap Terminated) 123
CXBE Xbox emulator 172
CXBX executable relinker 172

D

Data Logger 129
Davies-Meyer 111
DDR 120
Debugging 65, 86
decapsulation 100
decoy boot code 97
DeCSS 186

program 185
derivative works 177
Digi-Key 18, 31, 76
Digital Millennium Copyright Act (DMCA)

7–11, 93, 134, 136, 140, 175,
184

digital multimeters (DMMs) 18
digital rights management 155, 197
digital signature 115, 138, 167
diode 77
disassembler 42, 133
DMCA 7–11, 93, 134, 136,

140, 175, 184
do not store zeros (DNSZ) 130
Dreamcast 3
DRM 155
DVD-5 102
DVD-9 102

E

eBook 190
Economic Espionage Act (EEA) 175, 189
EFF 7, 9, 134, 135, 173, 174
ElcomSoft 190
Electronic Arts 169
Electronic Frontier Foundation (EFF)

7, 9, 134, 135, 173, 174
EROS (Extremely Reliable Operating

System) 200
errata 149
error messages

console requires service 30
ESD 21

F

fair use 9, 93, 178
Felton, Edward 186, 191
FIB (focused ion beam) 5, 100, 206
findchips.com 38
FIPS publication 180-1 109
firmware lockout, Xbox hard drive 159
first in, first out (FIFO) 130
first-sale doctrine 180
Flash Boot Loader (FBL) 143
Flashburner 92
FLASH ROM

47, 90, 95, 97, 99, 119, 135, 140,
141, 152, 153

Flipper chip 50
Fluhrer, Scott 113
flux 18
focused ion beam (FIB) 5, 100, 206
FPGA 20, 123, 129
freedom of speech 8
Freedom to Tinker 191
front-door lock security 102
Front Side Bus (FSB) 119. See also Xbox

Architecture
FSB 119. See also Xbox Architecture
fuming hot sulfuric acid 100
FuturePlus 123

269
G

Gameboy 2
Gamecube 50, 102, 171
Garage Technology Ventures 13
Gasper, Ken 157
Gates, Bill 1
GD-ROM 3
General Instruments 12
GNU/Linux 102, 162, 165, 186
Google 38, 115
GPU 45, 100
Green, Andy 136, 142, 143, 153, 194
green-paper cryptography 116
Grossman, J.P. 199

H

hackers 4–14
hard drive, replacing 73
hashes 105, 138
histogram 133
Home Depot 16
Huang, Andrew “bunnie” 11, 199
HyperTransport

121, 123, 126, 130, 131, 132, 147
bus 41

I

i860 XP processor, Intel 149
IBM 4758 Cryptoprocessor 117
IBM System/38 199
IDA Pro 95
Improper Means 180
installing Xbox-Linux 162–166
instruction pointer (IP) 42, 140, 168
Intel 94, 98, 123, 152, 153
Intel i432 199
intellectual property 93, 173
IP 42, 140, 168
IRC 99, 194
ISA bus 151
ISO image burning 165

J

Jameco 18, 31, 70, 76, 92
jam table 139–140

jam table interpreter 95
Johnson, Dan 172, 194
JTAG 98, 99
Justis, Nikki 11

K

Kawasaki, Guy 13
Kelsey, John 111, 143
Kester 17
key schedule 105
Knight, Tom 13, 134, 146, 199, 201

L

Lehner, Franz 143
Lik-Sang 163
Liu, Joseph 134, 173
Llama.com 73
logic analyzer 19
loss leader 93
LPC debug port 33, 48
LPC interface 151–155, 162
LVDS (low voltage differential signaling)

123

M

Mach 199
MAME-X 171
man-in-the-middle attack 147
Mantin, Itsik 113
Massachusetts Institute of Technology

(MIT) 12, 115, 134, 146, 168, 173
Mayer, Alastair J.W. 199
MCM Electronics 16
MCPX 38, 45, 100, 138, 146
MD4 109
Memory Management Unit (MMU) 199
Microsoft 2, 3, 73, 93, 98, 101, 116,

134, 135, 141, 161, 166, 168, 202
Miller-Stephenson 128
MIST Premature Unmap Attack 140
MIT 12, 115, 134, 146, 168, 173
Mitnick, Kevin 101
MIT PDP-1 199
mixing function 105
modchip 155

270
Molex 76
Moore’s Law 5
Mosis 5
Multimedia and Communications Processor

45
musical composition (MC) 177

N

NEC 3
Needham, Roger 111, 143
Newark Electronics. See vendors
nForce 121
nForce IGP 41
Nintendo 2, 3, 93
Nintendo Gamecube 16, 50

Flipper chip 50
RAM 51

No Electronic Theft Act (NET Act) 190
Northbridge 121. See also Xbox

Architecture
Northbridge-Southbridge 119
NSA 109
nuclear annihilation 5
numbnut 194. See also Green, Andy
NV2A 40
nVidia 40, 45, 98, 121

O

OEM (original equipment manufacturer)
74

opcodes, CPU 42
OpenXDK 171
oscilloscope 19

P

P4M266 ProSavageDDR 50
Palladium 13, 201, 202–203
passive components 35
patchers 155
Patent 178–179
PCI 141, 151
Pentium 94, 98, 99, 119
Perez, David 141
Playstation 101
Playstation2 3, 102, 171

pogo pin 39, 147, 153
power supply, replacing Xbox's 73–87
program counter (PC). See instruction

pointer (IP)
Protel 20
public key ciphers 107

R

Radio Shack 12, 18, 20
RAM 46, 51
RC-4 95, 113, 133, 139
Recording Industry Association of

America (RIAA) 186
related key weakness 111
relative addressing 153
reset vector 94, 97, 155
resistors 37
reverse Engineering 31–38,

173, 175, 180–183
circuit board, reading 32
components 36
part number lookup 39
Pattern Matching 48
test points 39

RIAA 187
right to tinker 93
Rivest, Ronald L. 109, 114
Robertson, Michael 166
Robinson, Aaron 172
RSA 114, 143, 145, 166
RSA algorithm 115
RSA Data Security, Inc. 115
rubber-hose cryptography 116

S

Samsung 120
Schneier, Bruce 105, 111, 143
SDMI 187
SDMI Challenge 186
secret boot code 140
secret boot ROM 141
secure boot ROM 145
Secure Digital Music Initiative 186
security 42, 101–104

through obscurity 52
proprietary interfaces 52

271
security bits 15
Sega 3
Sega Enterprises Ltd. v. Accolade, Inc.

182
SHA-1 143, 145, 167
SHA-1 Hash 109
Shamir, Adi 113, 114, 147
Shapiro, Jonathan 200
signal energy, termination and 37
SignAssure 116
SiliconIce 172, 194. See also Johnson,

Dan
silkscreen 32
Sklyarov, Dmitry 190
Slashdot 101
SMC 97. See also Xbox Architecture
SN65LVDS386 125
snarf a ROM 90
soldermask 32
Sony 3, 93, 101
sound recording (SR) 177
Sourceforge 165–166
Southbridge 121, 152. See also Xbox

Architecture
Springer-Verlag 137
SST 49LF020 155
SST 49LF020A 155
static electricity 21
Steil, Michael 140
STMicroelectronics 38
StrongArm 123
Super I/O 152
Surreptitious BIOS (SPIOS) 204
Surreptitious RAM (SPAM) 204
symmetric ciphers 105
System Management Controller. See

Xbox architecture

T

tagged memory 200
tap board 125, 127
TCPA 13, 201, 202–203
TEA 145
Team Utopia 3
termination resistors 37
test points 39

Texas Instruments 125
third hand soldering tool 70
TIA/EIA-644 123
Tien, Lee 7, 134, 173, 174
time-domain reflectometers (TDRs) 206
Tiny Encryption Algorithm (TEA) 143
tools 15

desoldering braids 18
Digital multimeters (DMMs) 18
logic analyzer 19
oscilloscope 19
security bits 15
soldering iron 17
torx 16

TPM (Trusted Platform Module) 202
trade secrets 179
trusted computing 197
Trustworthy Computing 1
trykeys 133
TSMC 45
TSOP 90

U

unified memory architecture (UMA).
See Xbox architecture

Uniform Computer Information
Transactions Act (UCI) 189

USB adapter, how to build 67–71
U.S. Bill of Rights 155

V

v1.2 Xbox 74
Vault Corp. v. Quaid Software Ltd.

188
vendors

Data Rescue Corporation 95
Digi-Key 18, 31, 76
Ersa 92
Jameco 18, 31, 70, 76, 92
MCM Electronics16
Needham’s Electronics 92
Newark Electronics 31
Radio Shack 18, 20
Xytronic 92

Via Technology 50
Virtex-E FPGA 123

272
Virtex-II FPGA 123
Visor 139, 140

W

Wagner, David 111, 143
Weller 17
Wheeler, David 111, 143

X

x86 architecture. See Pentium
XBE (Xbox Executable) 171
Xbox 93, 101

architectural diagram 40
case screws 23
motherboard 33, 41
motherboard coordinates 33
taking apart 22–30
USB Adapter 67–71

Xbox architecture 40, 40–48, 42–44
CPU 40
Front Side Bus (FSB) 45
GPU 45
MCPX 45
vs. Nintendo Gamecube 50
Northbridge 45
vs. a PC 49
RAM 46
reliability issues 52
ROM 47
Southbridge 45
System Management Controller

(SMC) 48

unified memory architecture (UMA) 41
vs a PC 49
vs Nintendo Gamecube 50

Xbox DVD-ROM drive 158
Xbox game port 71
XboxHacker.net 143, 169, 172, 194
Xbox hard drive 159
Xbox Live 93, 103
XboxMediaPlayer 171
Xbox power connector 82
xbox-scene.com 194
Xbox SDK 171
Xbox-Linux 141, 158, 159
Xbox-Linux project 161–171

Project B 166
Xbox Linux installation problems 165

xbox-scene.com 194
XboxHacker.net 143, 169, 172, 194
XboxMediaPlayer 171
X-bus 151
X-Code 95, 138. See also jam table
Xecuter 145
Xilinx 21, 123
Xodus/Matrix 153, 162
XOR 106

Z

ZBT 12

Hacking
the Xbox
An Introduction to Reverse Engineering

H
A
C
K
I
N
G

T
H
E

X
B
O
X

Andrew “bunnie” Huang

B
U
N
N
I
E

qANQR1DBwU4DiyVm0iq7P8gQB/9IoylwNnOxHExELKfHCTyOxX1m/eKe3+bgN/kc
afpcdG1BR0ZV3degJhP2ru8h58Tw/MLU+h+jMYPUOCulwRAMyhxqX+0K1fU0oNAd
1UKi0e8sju0mks0XXzEOXNpM6BO8L90/NCSUTWPBUMgR6/KtezsFJUDAIOlxVuBX
IpN1x+6A3O6Tayrg0+Qp+hD3FDRSIVKoD/uiaCnxkp5wxXh3JPRU3JMHWtUcwsr2
ThN1xhandO6Tn gg0dep+hDhackingKwas iaCcekledxby3JheUoriginalwsr2
This hands-on guide to hacking was canceled by the original
publisher out of fear of DMCA-related lawsuits. Following the
author’s self-publication of the book (during which time he sold
thousands directly), Hacking the Xbox is now brought to you by
No Starch Press.

Hacking the Xbox begins with a few step-by-step tutorials on
hardware modifications that teach basic hacking techniques as
well as essential reverse engineering skills. It progresses into
a discussion of the Xbox security mechanisms and other advanced
hacking topics, emphasizing the important subjects of computer
security and reverse engineering. The book includes numerous
practical guides, such as where to get hacking gear, soldering
techniques, debugging tips, and an Xbox hardware reference guide.

Hacking the Xbox confronts the social and political issues facing
today’s hacker, and introduces readers to the humans behind the
hacks through several interviews with master hackers. It looks at
the potential impact of today’s legal challenges to legitimate
reverse engineering activities, which are further examined in a
chapter contributed by Lee Tien of the Electronic Frontier
Foundation (EFF) about the rights and responsibilities of
hackers. The book concludes with a discussion of the latest
trends and vulnerabilities in secure PC platforms.

Hurry and get Hacking the Xbox before Microsoft does!
VurrRyVnZ6EetMHackingyDhi XboxxbEforeaMicrosoft BOesDPGWrkhbxfH
VDsdRyVDZ6E0sMGl2Qe9/yDriFn2RJx1E1bmoaSd/+Va3UfEBOXBDPGWrkhbxfH
5+zS6m6B4sG3p+2veuIZSN3CTfHRWCbAjcmYWokhHUN+p2VOpeTit7w08cEqMjDc
/du9x6CkPyxGMcL4EwVpNLf3PO6nCevVNRk18pSq64ICUgtRFqmc+JXCg+UZO2Mi

$24.99 ($34.99 CDN)

SHELVE IN: PC HARDWARE/GENERAL

Get Hacking the Xbox before Microsoft Does!

9 781593 270292

52499>
ISBN 1-59327-029-1

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

	Table of Contents
	Acknowledgements
	PROLOGUE - README.1ST
	The Video Game Console Market
	About Hackers and Hacking
	The Politics of Hacking
	The People Behind the Hacks

	CHAPTER 1- Voiding the Warranty
	Tools of the Trade
	Tools to Open Things Up
	Tools to Attach and Remove Components
	Tools to Test and Diagnose
	Tools for Design

	Deconstructing the Xbox
	Step 1: Safety First
	Step 2: Remove Case Screws
	Step 3: Remove the Top Cover
	Step 4: Move the Disk Drives
	Step 5: Remove the Disk Drives (Optional)
	Reassembling the Xbox

	CHAPTER 2- Thinking Inside the Box
	Reading a Circuit Board
	Circuit Board Basics
	Components
	Test Points

	Xbox Architecture
	High-Level Organization
	Functional Details

	Pattern Matching
	Comparison: Xbox Versus the PC
	Contrast: Xbox Versus the Gamecube

	CHAPTER 3- Installing a Blue LED
	What You’ll Need
	Removing the Xbox Front Panel
	Removing the Front Panel CircuitBoard
	Installing the Blue LED
	Reassembling the Front Panel
	Debugging

	CHAPTER 4- Building a USB Adapter
	Starting Materials
	Strategy
	Implementation

	CHAPTER 5- Replacing a Broken Power Supply
	Diagnosing a Broken Power Supply
	Replacing the Power Supply
	Strategy

	Procedure
	Building the Xbox Power Cable
	Installing the Replacement Power Supply
	Operating with the Replacement PowerSupply
	Debugging Tips

	CHAPTER 6- The Best Xbox Game: Security Hacking
	First Encounters with a Paranoid Design
	To Snarf a ROM
	An Encounter with Microsoft
	Analyzing the ROM Contents

	CHAPTER 7- A Brief Primer on Security
	Who Needs Security, Anyways?
	A Brief Primer on Cryptography
	Classes of Cryptographic Algorithms
	The Rest of the Picture

	CHAPTER 8- Reverse Engineering Xbox Security
	Extracting Secrets from Hardware
	Eavesdropping a High Speed Bus

	Making Sense of the Captured Data

	CHAPTER 9- Sneaking in the Back Door
	Back Doors and Security Holes
	Visor Jam Table Attacks
	MIST Premature Unmap Attack1

	Microsoft Retaliates
	Reverse Engineering v1.1 Security
	The Threat of Back Doors

	CHAPTER 10- More Hardware Projects
	The LPC Interface
	LPC Interface on the Xbox
	Using the LPC Interface

	The Other 64 MB of SDRAM
	Xbox VGA
	Mass Storage Replacement

	CHAPTER 11- Developing Software for the Xbox
	Xbox-Linux
	Installing Xbox-Linux
	“Project B”

	OpenXDK

	CHAPTER 12- Caveat Hacker
	Caveat Hacker: A Primer on IntellectualProperty, by Lee Tien
	Classical Intellectual Property Law:An Overview
	The Traditional View of ReverseEngineering
	New Challenges for Reverse Engineers
	The Responsible Hacker:Ignorance Is No Defense
	Reverse Engineering as “The Freedom toTinker” and Other Legal Issues

	CHAPTER 13- Onward!
	The Hacking Community
	Hacking Fora
	Making a Contribution

	Trusted Computing
	Taking a Step Back
	Palladium Versus TCPA
	Hacking the Trusted PC
	Looking Forward

	Concluding Thoughts

	APPENDIX A- Where to Get Your Hacking Gear
	Vendors for Hobbyists
	Prepared Equipment Order Forms

	APPENDIX B- Soldering Techniques
	Introduction to Soldering
	Use Flux
	Starter Tips

	Surface Mount Soldering
	Technique for Simple Components
	Technique for Complex Components
	Technique for Removing Components

	APPENDIX C- Getting into PCB Layout
	Philosophy and Design Flow
	Refining Your Idea
	Schematic Capture
	Board Layout
	General Placement and RoutingGuidelines

	CAD Tools
	Board Fabrication Companies
	Sierra Proto Express
	Data Circuit Systems
	Advanced Circuits
	Alberta Printed Circuits

	Starter Projects

	APPENDIX D- Getting Started with FPGAs
	What Is an FPGA?
	Designing for an FPGA
	Project Ideas
	Where to Buy

	APPENDIX E- Debugging: Hints and Tips
	Don’t Panic!
	Understand the System
	Observe Symptoms

	Common Bugs
	Recovering from a Lifted Trace or Pad

	APPENDIX F- Xbox Hardware Reference
	Power Supply Pinout
	Video Connector Pinout
	USB Connector Pinout
	Ethernet Connector Pinout
	ATA Connector Pinout
	DVD-ROM Power Connector
	LPC Connector
	Fan Connector
	Untitled

	INDEX

