

Learn Java In One Day and Learn It Well
Java for Beginners with Hands-On Project

The only book you need to start coding in Java immediately

By Jamie Chan

http://www.learncodingfast.com/java

Copyright © 2016

All rights reserved. No part of this publication may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods, without
the prior written permission of the publisher, except in the case of brief
quotations embodied in critical reviews and certain other noncommercial uses
permitted by copyright law.

Preface

This book is written to help you learn Java FAST and learn it WELL.

The book does not assume any prior background in coding. If you are an
absolute beginner, you'll find that this book explains complex concepts in an
easy to understand manner. If you are an experienced coder but new to Java,
this book will provide you with enough depth to start coding in Java
immediately.

Topics are carefully selected to give you a broad exposure to Java, while not
overwhelming you with information overload. These topics include object-
oriented programming concepts, error handling techniques, file handling
techniques and more. In addition, new features of Java such as lambda
expressions are also covered. All examples in the book are carefully chosen
to demonstrate each concept so that you can gain a deeper understand of the
language.

http://www.learncodingfast.com/java

In addition, as Richard Branson puts it: "The best way of learning about
anything is by doing". This book comes with a project where you’ll be guided
through the coding of a membership management software from scratch. The
project uses concepts covered in the book and gives you a chance to see how
it all ties together.

You can download the source code for the project and all the sample
programs in this book at

http://www.learncodingfast.com/java

Contact Information

I would love to hear from you.
For feedback or queries, you can contact me at jamie@learncodingfast.com.

http://www.learncodingfast.com/java
mailto:jamie
mailto:jamie@learncodingfast.com

More Books by Jamie

Python: Learn Python in One Day and Learn It Well

CSS: Learn CSS in One Day and Learn It Well

http://mybook.to/Python
http://mybook.to/CSS

C#: Learn C# in One Day and Learn It Well

http://mybook.to/CSharp

Table of Contents

Chapter 1: Introduction to Java
1.1 What is Java?
1.2 Why Learn Java?

Chapter 2: Getting Ready for Java
2.1 Installing the JDK + NetBeans Bundle
2.1.1 What is JDK?
2.1.2 What is NetBeans?
2.2 How to use this book?
2.3 Your First Java Program
2.4 Basic Structure of a Java Program
2.4.1 Package
2.4.2 The HelloWorld Class
2.4.3 The main() Method
2.5 Comments

Chapter 3: The World of Variables and Operators
3.1 What are variables?
3.2 Primitive Data Types in Java
3.3 Naming a Variable
3.4 Initializing a Variable
3.5 The Assignment Operator
3.6 Basic Operators
3.7 More Assignment Operators
3.8 Type Casting In Java

Chapter 4: Arrays and Strings
4.1 String
4.1.1 String Methods
4.2 Array
4.2.1 Array Methods
4.2.2 Finding Array Length

4.3 Primitive Type vs. Reference Type
4.4 Strings are Immutable

Chapter 5: Making our Program Interactive
5.1 Displaying Output
5.2 Escape Sequences
5.3 Formatting Outputs
5.3.1 Converters
5.3.2 Flags
5.4 Accepting User Input

Chapter 6: Control Flow Statements
6.1 Comparison Operators
6.2 Decision Making Statements
6.2.1 If Statement
6.2.2 Ternary Operator
6.2.3 Switch Statement
6.3 Looping Statements
6.3.1 For Statement
6.3.2 Enhanced For Statement
6.3.4 Do-while Statement
6.4 Branching Statements
6.4.1 Break Statement
6.4.2 Continue Statement
6.5 Exception Handling
6.5.1 Specific Errors
6.5.2 Throwing Exceptions

Chapter 7: Object Oriented Programming Part 1
7.1 What is Object-Oriented Programming?
7.2 Writing our own class
7.2.1 Fields
7.2.2 Methods
7.2.3 Constructors
7.3 Instantiating an Object
7.4 Static

7.5 Advanced Methods Concepts
7.5.1 Using Arrays in Method
7.5.2 Passing Primitive Type vs Reference Type Parameters

Chapter 8: Object-Oriented Programming Part 2
8.1 Inheritance
8.1.1 Writing the Parent Class
8.1.2 Writing the Child Class
8.1.3 The main() method
8.2 Polymorphism
8.3 Abstract Classes and Methods
8.4 Interfaces
8.5 Access Modifiers Revisited

Chapter 9: Collections
9.1 The Java Collections Framework
9.2 Autoboxing and Unboxing
9.3 Lists
9.4 ArrayList
9.4.1 ArrayList Methods
9.5 LinkedList
9.5.1 LinkedList Methods
9.6 Using Lists in our Methods

Chapter 10: File Handling
10.1 Reading a Text File
10.2 Writing to a Text File
10.3 Renaming and Deleting Files

Chapter 11: Advanced Java Topics
11.1 Generics
11.1.1 Bounded Types
11.2 Functional Interfaces and Lambda Expressions

Chapter 12: Project
12.1 Overview

12.2 The Member Class
12.3 The SingleClubMember Class
12.4 The MultiClubMember Class
12.5 The Calculator Interface
12.6 The FileHandler Class
12.7 The MembershipManagement Class
12.8 The JavaProject class

Appendix A

Index

Chapter 1: Introduction to Java

Welcome to Java programming and thank you so much for choosing my book
among the large selection of Java books available.

Whether you are a seasoned programmer or a complete novice, this book is
written to help you learn Java programming fast. Topics are carefully selected
to give you a broad exposure to the fundamental concepts of Java while not
overwhelming you with information overload. While it is not possible to
cover every single Java concept in this book, rest assured that by the end of
the book, you should have no problem writing your own Java programs. In
fact, we will be coding a program together as part of the project at the end of
the book. Ready to start?

Let’s first answer a few questions:

1.1 What is Java?

Java is an object-oriented programming language developed by James
Gosling at Sun Microsystems, which has since been acquired by Oracle
Corporation. It was released in 1995 and is currently one of the most popular
programming languages in use. It can be used to develop applications for a
large variety of environments, such as applications for desktop, web and even
mobile devices. One of the main features of Java is that it is platform
independent. This means that a program written in Java can be executed on
any operating system (such as Windows, Mac or Linux).

Like all modern programming languages, Java code resembles the English
language which computers are unable to understand. Therefore, Java code
has to be converted into machine code through a process known as
compilation. Every computer platform has its own machine code instruction
set. Hence, machine code that is compiled for one platform will not work on
another platform. Most programming languages (like C and C++) compile
written code into machine code directly. As a result, this machine code can

only be run on the specific platform that the code is compiled for.

Java does it a little differently.

Instead of compiling into machine code directly, Java compiles all written
code into bytecode first. Bytecode is platform independent. That is, there is
no difference between the bytecode for Windows, Mac or Linux.

When a user wants to run a Java program, a program inside the user’s
computer (known as the Java Virtual Machine or JVM) converts this
bytecode into machine code for the specific platform that the user uses.

The advantage of using this two-step compilation process is that it allows
Java code to be run on all platforms as long as the computer running the Java
program has JVM installed. JVM is free to download and there are different
versions for different computer platforms. We’ll learn how to install JVM in
the next chapter.

1.2 Why Learn Java?

There are a lot of reasons why one should learn Java. Let’s look at some of
the reasons below.

Firstly, Java is currently one of the most popular programming languages in
use. According to Oracle, 3 billion devices run Java. Furthermore, Android
apps are also developed using Java. With the growing demand for mobile
apps, it is safe to say that Java is an essential language to learn if you are
interested in becoming a programmer.

Next, Java has syntax and features that resemble other programming
languages like C and C++. If you have any prior programming experience,
you will find learning Java a breeze. Even if you are totally new to
programming, you can rest assured that Java is designed to be a relatively
easy language to learn. Most programmers find it easier to learn Java than
say, C or C++.

Java is also designed to be platform independent. As mentioned earlier, Java
code is compiled into bytecode first, which can be run on any machine that
has the Java Virtual Machine. Hence with Java, you can write the code once
and run it anywhere you want.

Next, Java is an object-oriented programming (OOP) language. Object-
oriented programming is an approach to programming that breaks a
programming problem into objects that interact with each other. We’ll be
looking at various object-oriented programming concepts in this book. Once
you master Java, you will be familiar with these concepts. This will make it
easier for you to master other object-oriented programming languages in
future.

Convinced that Java is a great language to learn? Let’s move on.

Chapter 2: Getting Ready for Java

2.1 Installing the JDK + NetBeans Bundle

Before we can start developing applications in Java, we need to download
and install the free JDK + NetBeans bundle provided by Oracle.

2.1.1 What is JDK?

JDK stands for Java Development Kit and is a free kit provided by Oracle
that contains a number of tools to help us develop Java applications. Some of
these tools include a compiler to compile our written code into bytecode
(javac.exe), an archiver to package and distribute our Java files (jar.exe) and
a documentation generator to generate HTML documentation from our Java
code (javadoc.exe).

In addition, JDK also includes the Java Runtime Environment (JRE). JRE
contains the JVM mentioned in Chapter 1 and the resources that JVM needs
in order to run Java programs.

If you are only interested in running Java programs, all you need is the JRE.
However, since we are also interested in developing Java programs, we need
the JDK.

2.1.2 What is NetBeans?

Besides JDK, we also need to install NetBeans.

NetBeans is an Integrated Development Environment (IDE) that we’ll be
using to facilitate our coding process. Strictly speaking, we can develop Java
applications without using NetBeans. We can write our code in Notepad (or
any other text editor) and compile and execute them using the tools provided
in JDK. The screenshot below shows an example of how this can be done.

However, while it is possible to develop Java applications using the JDK
alone, this process is tedious and error-prone.

To make coding easier, you are strongly encouraged to use an IDE. An IDE
includes a text editor with advanced features for us to write our code, and
provides us with a graphical user interface to debug, compile and run our
applications. As we’ll see later, these features will help greatly when coding.
The IDE that we’ll be using is NetBeans provided by Oracle.

To download the JDK + NetBeans bundle, head over to
http://www.oracle.com/technetwork/Java/Javase/downloads/jdk-netbeans-jsp-
142931.html

You will be presented with a large number of download options which can be
overwhelming at first. The version that you’ll be downloading depends on the
operating system that you are using. x86 and x64 refer to the 32-bit and 64-
bit operating systems respectively. For instance, if you are using the 32-bit

http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html

Windows operating system, you’ll be downloading the “Windows x86”
version.

Go ahead and download the application. Once you are done installing it, you
are ready to start coding your first Java program.

2.2 How to use this book?

However, before we do that, I would like to highlight the fact that most of the
code in Java consists of rather long statements. Hence, some statements may
wrap around to the next line in this book. If you have problems reading the
code samples, you can download the source code for all the sample programs
at http://www.learncodingfast.com/java.

2.3 Your First Java Program

Now, let’s start coding our first program. To do that, let’s launch NetBeans
and select File > New Project…. from the top menu bar.

You’ll be prompted with the New Project dialog box. Select Java under
Categories and Java Application under Projects. Click Next to continue.

On the next screen, name the project HelloWorld and take note of where the
project is stored. Finally, click Finish to create the project.

http://www.learncodingfast.com/java

You will be presented with a default template that NetBeans created for you
automatically. Replace the code in the template with the code below.

Note that line numbers are added for reference and are not part of the actual
code. You may want to bookmark this page for easy reference later when we
discuss the program. You can also download the source code for this sample
program and all other sample programs in this book at
http://www.learncodingfast.com/java.
If you prefer not to type the whole program below, you can just delete all the
lines with forward slash (/) and/or asterisk (*) on the left in the template and
add lines 6 and 7 to it.

1 package helloworld;

2

3 public class HelloWorld {

4

5 public static void main(String[] args) {

6 //Print the words Hello World on the screen

7 System.out.println("Hello World");

8 }

9

10 }

http://www.learncodingfast.com/java

However, I strongly encourage you to type the code yourself to get a better
feel for how NetBeans works. As you type, you will notice some interesting
features of NetBeans. For instance, you’ll see that words are displayed in
different colours. This is the software’s way of making our code easier to
read. Different words serve different purposes in our program and are thus
displayed using different colours. We’ll go into more details in later chapters.

In addition, you will also notice that a box appears near the cursor with some
help messages occasionally. That is known as Intellisense. For instance, when
you type a period (.) after the word System, a dropdrop list appears to let you
know what you can type after the period, with a box that provides further
information.

Finally, also note that NetBeans will automatically close brackets for you
when you type an opening bracket. For instance, when you type “(“,
NetBeans will add the closing bracket “)” for you.

These are some of the features that NetBeans provides to make coding easier
for us.

After you finish typing, save the program by selecting File > Save. NetBeans
has a “Compile on Save” feature that compiles the code whenever you save
it. You can then execute the compiled program by clicking on the Run button
at the top menu (refer to image below).

If your program fails to run, there will be a pop up box with an error
message. Click Run Anyway to continue. You will then see a description of
the error in the output window (refer to next image). Alternatively, you can
also hover your mouse over the red squiggly line in the text editor window.
That will provide you with another clue about what went wrong. Try to
identify and correct the mistake and run the program again.

If all goes well, you will see the following in the output window.

run:

Hello World

BUILD SUCCESSFUL (total time: 0 seconds)

This program simply displays the words “Hello World” in the output
window. The other two sentences are additional information provided by
NetBeans and are not part of our program output.

That’s it! You have successfully coded your first program. Give yourself a
pat on the shoulders.

The name of the Java file that you just wrote is HelloWorld.java. You can
find the name at the top of the text editor window (refer to image above).

2.4 Basic Structure of a Java Program

Now, let us do a quick run-through of the basic program that you just coded.

2.4.1 Package

On the first line, we have the statement

package helloworld;

This statement tells the compiler that the Java file we wrote belongs to the
helloworld package.

A package is simply a grouping of related classes and interfaces. Do not
worry if you do not know what classes and interfaces are, we’ll cover them in
subsequent chapters.

When we write package helloworld; at the top of our file, we are asking the
compiler to include this file in the helloworld package. The compiler will
then create a folder named “helloworld” and save the file into that folder.
Files that belong to the same package are stored in the same folder.

If you navigate to your “NetBeansProjects” folder now, you’ll find a folder
named “HelloWorld”. The “NetBeansProject” folder is normally located in
your “Documents” folder. If you can’t find this folder, try searching for it
using your computer’s search function.

Within the “HelloWorld” folder, you’ll find a “src” folder that contains the
“helloworld” folder.

This folder stores the files of the helloworld package. It is a convention for
us to name our packages in lowercase. Note that Java is a case-sensitive
language. Hence, “HelloWorld” is not the same as “helloworld”. Inside the
“helloworld” folder, you’ll find the HelloWorld.java file.

The advantage of declaring packages is that it prevents naming conflicts. Two

or more files can have the same name as long as they belong to different
packages. This is similar to how you can have two or more files of the same
name on your computer as long as you put them in different folders. We’ll
learn how to create different packages in Chapter 8.

In addition to packages created by us, Java also comes with a large number of
pre-created packages that contain code that we can use in our programs. For
instance, code for input and output is bundled in the java.io package while
code for implementing the components of a graphical user interface (like
buttons, menus, etc) is bundled in the java.awt package. To use these pre-
written packages, we need to import them into our programs. We’ll learn how
to do that at a later time.

2.4.2 The HelloWorld Class

Next, let’s move on to the HelloWorld class. We’ll talk more about classes in
Chapter 7. For now, just know that in our example, the HelloWorld class
starts on line 3 with an opening curly brace and ends on line 10 with a closing
curly brace. Curly braces are used extensively in Java to indicate the start and
end of a code element. All opening braces in Java must be closed with a
corresponding closing brace.

Within the HelloWorld class, we have the main() method which starts on line
5 and ends on line 8.

2.4.3 The main() Method

The main() method is the entry point of all Java applications. Whenever a
Java application is started, the main() method is the first method to be called.

Notice the words String[] args inside the parenthesis of our main()
method? This means the main() method can take in an array of strings as
input. Do not worry about this for the moment. We’ll cover arrays and input
in subsequent chapters.

In our example, the main() method contains two lines of code. The first line

//Print the words Hello World on the screen

is known as a comment and is ignored by the compiler.

The second line

System.out.println("Hello World");

displays the line “Hello World” (without quotes) on the output window
(located at the bottom of the screen). Note that this statement ends with a
semi-colon. All statements in Java must end with a semi-colon (;). This is
similar to most of the other programming languages like C and C++.

After the System.out.println("Hello World"); statement, we end our
code with two closing braces to close the earlier opening braces.
That’s it! There’s all there is to this simple program.

2.5 Comments

We’ve covered quite a bit in this chapter. You should now have a basic
understanding of Java programming and be reasonably comfortable with
NetBeans. Before we end this chapter, there’s one more thing to learn -
comments.

We mentioned in the previous section that the line

//Print the words Hello World on the screen

is a comment and is ignored by the compiler.

A comment is actually not part of the program. It is added to our code to
make it more readable for other programmers. As such, comments are not
compiled into bytecode.

To add comments to our program, we type two forward slashes (//) in front
of each line of comment like this

// This is a comment

// This is another comment

// This is yet another comment

Alternatively, we can also use /* … */ for multiline comments like this

/* This is a comment

This is also a comment

This is yet another comment

*/

Comments can also be placed after a statement, like this:

System.out.println("Hello"); //prints the word Hello

Chapter 3: The World of Variables and Operators

Now that you are familiar with NetBeans and have some basic understanding
of a Java program, let’s get down to the real stuff. In this chapter, you’ll learn
all about variables and operators. Specifically, you’ll learn what variables are
and how to name, declare and initialize them. You’ll also learn about the
common operations that we can perform on them.

3.1 What are variables?

Variables are names given to data that we need to store and manipulate in our
programs. For instance, suppose your program needs to store the age of a
user. To do that, we can name this data userAge and declare the variable
userAge using the following statement:

int userAge;

This declaration statement first states the data type of the variable, followed
by its name. The data type of a variable refers to the type of data that the
variable will store (such as whether it’s a number or a piece of text). In our
example, the data type is int, which refers to integers. The name of our
variable is userAge.
After you declare the variable userAge, your program will allocate a certain
area of your computer's memory space to store this data. You can then access
and modify this data by referring to it by its name, userAge.

3.2 Primitive Data Types in Java

There are eight basic data types that are predefined in Java. These are known
as primitive data types.
The first 4 data types are for storing integers (i.e. numbers with no fractional
parts). They are as follows:

byte

The byte data type is used for storing integers from -128 to 127. It uses 1
byte of storage space (this is known as the width or the size of the data type).
We normally use the byte data type if storage space is a concern or if we are
certain the value of the variable will not exceed the -128 to 127 range.

For instance, we can use the byte data type to store the age of a user as it is
unlikely that the user’s age will ever exceed 127 years old.

short

The short data type uses 2 bytes of storage space and has a range of -32768
to 32767.

int

The int data type uses 4 bytes of storage space and has a range of -231

(-2147483648) to 231-1 (2147483647). It is the most commonly used data
type for storing integers as it has the most practical range.

long

The long data type uses 8 bytes of storage space and has a range of -263 to
263-1. It is rarely used unless you really need to store a very large integer
(such as the number of inhabitants on Earth). In order to specify a long value,
you have to add the suffix “L” to the end of the number. We’ll talk more
about suffixes in the next section.

In addition to having data types for storing integers, we also have data types
for storing floating point numbers (i.e. numbers with fractional parts). They
are:

float

The float data type uses 4 bytes of storage and has a range of approximately

negative 3.40282347 x 1038 to positive 3.40282347 x 1038. It has a precision
of about 7 digits. This means that if you use float to store a number like
1.23456789 (10 digits), the number will be rounded off to approximately 7
digits (i.e. 1.234568).

double

The double data type uses 8 bytes of storage and has a range of
approximately negative 1.79769313486231570 x 10308 to positive
1.79769313486231570 x 10308, with a precision of approximately 15 digits.

By default, whenever you specify a floating point number in Java, it is
automatically considered to be a double, not a float. If you want Java to
treat the floating point number as a float, you have to add a suffix “F” to the
end of the number.

Unless memory space is a concern, you should always use a double instead
of a float as it is more precise.

Besides the six data types mentioned above, Java has two more primitive data
types. They are:

char

char stands for character and is used to store single Unicode characters such
as ‘A’, ‘%’, ‘@’ and ‘p’ etc. It uses 2 bytes of memory.

boolean

boolean is a special data type that can only hold two values: true and false.
It is commonly used in control flow statements. We’ll cover control flow
statements in Chapter 6.

3.3 Naming a Variable

A variable name in Java can only contain letters, numbers, underscores (_) or
the dollar sign ($). However, the first character cannot be a number. Hence,
you can name your variables _userName, $username, username or userName2
but not 2userName.

The convention, however, is to always begin your variable names with a
letter, not "$" or "_". Additionally, the dollar sign character is almost never
used when naming a variable (although it is not technically wrong to use it).

Variable names should be short but meaningful, designed to indicate to the
casual reader the intent of its use. It makes more sense to name your variables
userName, userAge and userNumber, instead of n, a and un.

In addition, there are some reserved words that you cannot use as a variable
name because they already have pre-assigned meanings in Java. These
reserved words include words like System, if, while etc. We’ll learn about
each of them in subsequent chapters.

It is common practice to use camel casing when naming variables in Java.
Camel casing is the practice of writing compound words with mixed casing,
capitalising the first letter of each word except the first word (e.g.
thisIsAVariableName). This is the convention that we’ll be using in the rest
of the book.

Finally, variable names are case sensitive. thisIsAVariableName is not the
same as thisisavariablename.

3.4 Initializing a Variable

Every time you declare a new variable, you need to give it an initial value.
This is known as initializing the variable. You can change the value of the
variable in your program later.

There are two ways to initialize a variable. You can initialize it at the point of
declaration or initialize it in a separate statement.

The code below shows how you can initialize variables at the point of
declaration (line numbers on the left are added for reference and are not part
of the code).

1 byte userAge = 20;

2 short numberOfStudents = 45;

3 int numberOfEmployees = 500;

4 long numberOfInhabitants = 21021313012678L;

5

6 float hourlyRate = 60.5F;

7 double numberOfHours = 5120.5;

8

9 char grade = 'A';

10 boolean promote = true;

11

12 byte level = 2, userExperience = 5;

As mentioned above, in order to specify a long value, you have to add the
suffix “L” to the end of the number. Hence, on line 4 when we initialized
numberOfInhabitants, we added “L” to the end of the number. If we do not
do that, the compiler will complain that the number is too large and give us
an error.

In addition, when we initialized the variable hourlyRate on line 6, we added
the suffix “F”. This is because by default, any floating point number is treated
as a double by Java. We need to add the suffix “F” to indicate to the compiler
that hourlyRate is of float data type.

Finally, when initializing a char data type, we need to enclose the character
in single quotes as shown on line 9.

On line 12, we see an example of how you can declare and initialize two
variables of the same data type in one statement. The two variables are
separated by a comma, and there is no need to state the data type of the
second variable.

The examples above show how you can initialize a variable at the point of

declaration. Alternatively, you can choose to declare and initialize a variable
in two separate statements as shown below:

byte year; //declare the variable first

year = 20; //initialize it later

3.5 The Assignment Operator

The = sign in programming has a different meaning from the = sign we
learned in Math. In programming, the = sign is known as an assignment
operator. It means we are assigning the value on the right side of the = sign to
the variable on the left.

In programming, the statements x = y and y = x have very different
meanings.

Confused? An example will likely clear this up.

Suppose we declare two variables x and y as follows:

int x = 5;

int y = 10;

If you write

x = y;

your Math teacher is probably going to be upset at you since x is not equal to
y. However, in programming, this is fine.

This statement means we are assigning the value of y to x. It is alright to
assign the value of a variable to another variable. In our example, the value of
x is now changed to 10 while the value of y remains unchanged. In other
words, x = 10 and y = 10 now.

If we now change the values of x and y to 3 and 20 respectively by writing

x = 3;

y = 20;

and write

y = x;

we are assigning the value of x to the variable y. Hence, y becomes 3 while
the value of x remains unchanged (i.e. y = 3, x = 3 now).

3.6 Basic Operators

Besides assigning an initial value to a variable or assigning another variable
to it, we can also perform the usual mathematical operations on variables.
Basic operators in Java include +, -, *, / and % which represent addition,
subtraction, multiplication, division and modulus respectively.

Example

Suppose x = 7, y = 2

Addition: x + y = 9
Subtraction: x - y = 5
Multiplication: x*y = 14
Division: x/y = 3 (rounds down the answer to the nearest integer)
Modulus: x%y = 1 (gives the remainder when 7 is divided by 2)

In Java, division gives an integer answer if both x and y are integers.
However, if either x or y is a non integer, we will get a non integer answer.
For instance,

7 / 2 = 3
7.0 / 2 = 3.5
7 / 2.0 = 3.5
7.0 / 2.0 = 3.5

In the first case, when an integer is divided by another integer, you get an
integer as the answer. The decimal portion of the answer, if any, is truncated.
Hence, we get 3 instead of 3.5.

In all other cases, the result is a non integer as at least one of the operands is a
non integer.

Note that 7.0 is not the same as 7 in Java. The former is a floating point
number while the latter is an integer.

3.7 More Assignment Operators

Besides the = operator, there are a few more assignment operators in Java
(and most programming languages). These include operators like +=, -= and
*=.

Suppose we have the variable x, with an initial value of 10. If we want to
increment x by 2, we can write

x = x + 2;

The program will first evaluate the expression on the right (x + 2) and assign
the answer to the left. So eventually x becomes 12.

Instead of writing x = x + 2, we can also write x += 2 to express the same
meaning. The += operator is a shorthand that combines the assignment
operator with the addition operator. Hence, x += 2 simply means x = x + 2.

Similarly, if we want to do a subtraction, we can write x = x - 2 or x -= 2.
The same works for all the 5 operators mentioned in the section above.

Most programming languages also have the ++ and –– operators. The ++
operator is used when you want to increase the value of a variable by 1. For
instance, suppose

int x = 2;

If you write

x++;

the value of x becomes 3.

There is no need to use the = operator when you use the ++ operator. The
statement x++; is equivalent to

x = x + 1;

The ++ operator can be placed in front of or behind the variable name. This
affects the order in which tasks are performed.

Suppose we have an integer named counter. If we write

System.out.println(counter++);

the program first prints the original value of counter before incrementing
counter by 1. In other words, it executes the tasks in this order

System.out.println(counter);

counter = counter + 1;

On the other hand, if we write

System.out.println(++counter);

the program first increments counter by 1 before printing the new value of
counter. In other words, it executes the tasks in this order

counter = counter + 1;

System.out.println(counter);

In addition to the ++ operator, we also have the –– operator (two minus

signs). This operator decreases the value of the variable by 1.

3.8 Type Casting In Java

Sometimes in our program, it is necessary to convert from one data type to
another, such as from a double to an int. This is known as type casting.

If we want to convert a smaller data type into a larger data type, we do not
need to do anything explicitly. For instance, the code below assigns a short
(2 bytes) to a double (8 bytes). This is known as a widening primitive
conversion and does not require any special code on our part.

short age = 10;

double myDouble = age;

However, if we want to assign a larger data type to a smaller data type, we
need to indicate it explicitly using a pair of parenthesis. This is known as a
narrowing primitive conversion. The example below shows how it can be
done.

int x = (int) 20.9;

Here, we can casting a double (8 bytes) into an int (4 bytes).

Narrowing conversion is not safe and should be avoided unless absolutely
necessary. This is because narrowing conversion can result in a loss of data.
When we cast 20.9 into an int, the resulting value is 20, not 21. The decimal
portion is truncated after the conversion.

We can also cast a double into a float. Recall that we mentioned earlier that
all non integers are treated as double by default in Java? If we want to assign
a number like 20.9 to a float, we need to add a suffix ‘F’ to the number.
Another way to do it is to use a cast, like this:

float num1 = (float) 20.9;

The value of num1 will be 20.9.

In addition to casting between numeric types, we can also do other types of
casting. We’ll explore some of these conversions in subsequent chapters.

Chapter 4: Arrays and Strings

In the previous chapter, we covered the eight primitive data types in Java.
Besides these primitive types, Java also comes with a few advanced data
types. In this chapter, we are going to cover two of them: strings and arrays.
In addition, we are going to discuss the difference between a primitive data
type and a reference data type.

4.1 String

First, let us look at strings. A string is essentially a piece of text such as
“Hello World” or “Good morning”.

To declare and initialize a String variable, you write

String message = "Hello World";

where message is the name of the String variable and “Hello World” is the
string assigned to it. Note that you need to enclose the string in double quotes
(").

You can also assign an empty string to a String variable like this:

String anotherMessage = "";

If you want to join two or more strings together, you can use the concatenate
sign (+). For instance, you can write

String myName = "Hello World, " + "my name is Jamie";

This is the same as

String myName = "Hello World, my name is Jamie";

4.1.1 String Methods

Unlike the 8 primitive types we looked at in the previous chapter, a String is
actually an object. Specifically, it is an object of the String class.

Do not worry if you don’t understand what this means; we’ll discuss classes
and objects in Chapter 7. For now, all that you have to know is that the
String class provides us with a number of pre-written methods that we can
use when working with strings. A method is a block of reusable code that
performs a certain task. We’ll look at some examples later.

In Java, a method may have different variations. Most of the examples below
discuss only one of the variations for each method. However, if you learn
how to use one variation, you can figure out how to use the other variations
with relative ease. Let’s look at some of the commonly used String methods
now.

length()

The length() method tells us the total number of characters the string has.

To find the length of the string “Hello World”, we write

"Hello World".length();

Whenever we use a method, we need to use the dot operator. We type the
name of the method (length in this case) after the dot operator, followed by a
pair of parenthesis (). Most methods return an answer after they complete
their tasks. The length() method returns the length of the string. You can
assign this result to a variable as shown below.

int myLength = "Hello World".length();

In the example above, myLength will be equal to 11 as “Hello” and “World”
both have 5 characters each. When you add the space between the two words,
you get a total length of 11.

You can display the result of the length() method using the statements
below.

int myLength = "Hello World".length();

System.out.println(myLength);

Try adding the two statements above to the HelloWorld.java file you wrote
earlier in Chapter 2. You’ll have to add them inside the opening and closing
braces of the main() method. Run the program. You’ll see the value 11
displayed as the output. We’ll talk more about displaying outputs in the next
chapter.

toUpperCase()/toLowerCase()

The toUpperCase() method is used to convert a string to uppercase
characters. The toLowerCase() method is used to convert a string to
lowercase characters.

For instance, to change the string “Hello World” to upper case, we can write

String uCase = "Hello World".toUpperCase();

On the right side of the statement, we use the string “Hello World” to call the
toUpperCase() method. We then assign the result to the variable uCase.

uCase will thus be equal to “HELLO WORLD”.

substring()

The substring() method is used to extract a substring from a longer string.
Some methods in Java require certain data for them to work. These data are
known as arguments. We include these arguments in the pair of parenthesis
that follows the method name. The substring() method is an example of a
method that requires one argument to work.

For instance, to extract a substring from “Hello World”, we can use the

statement below:

String firstSubstring = "Hello World".substring(6);

On the right side of the statement, we use the “Hello World” string to call the
substring() method. The number 6 in the parenthesis is known as the
argument. This argument tells the compiler where to start extracting the
substring. Essentially, it is asking the compiler to extract the substring
starting from index 6 (i.e. position 6) to the end of the string.

Note that in programming, index starts with a value of ZERO not 1. This is a
common practice in almost all programming languages such as Python and
Java. Hence, in our example, ‘H’ is at index 0 while ‘W’ is at index 6.

The statement above will extract the substring “World”. This result is then
assigned to firstSubstring.

firstSubstring is thus equal to “World”.

The substring() method also comes with another variation that allows us to
extract a substring from one index to another. Suppose you want to extract a
substring from position 1 to 7, you can do it as follows:

String message = "Hello World";

String secondSubstring = message.substring(1, 8);

In the example above, we first assigned “Hello World” to the variable
message. We then use message to call the substring() method.

The two arguments are 1 and 8.
As before, the first argument tells the compiler the index of the starting
position to extract. The second argument tells the compiler the index of the
first position to stop extracting. In other words, in our example, the compiler
stops extracting at position 8 (not after position 8). That means the letter at
position 8 is not included in the substring. Hence, the substring extracted is
“ello Wo”.

secondSubstring is thus equal to “ello Wo”.
message remains as “Hello World”.

charAt()

The charAt() method returns a single character at a specified location. This
character can then be assigned to a char variable.

For instance, the statement

char myChar = "Hello World".charAt(1);

extracts the character at index 1 and assigns it to myChar. Hence, myChar is
equal to ‘e’.

equals()

The equals() method is used to compare if two strings are identical. It
returns true if the strings are equal and false if they are not.

If we have the statements:

boolean equalsOrNot = "This is Jamie".equals("This is Jamie");

boolean equalsOrNot2 = "This is Jamie".equals("Hello World");

equalsOrNot will be true while equalsOrNot2 will be false.

split()

The split() method splits a string into substrings based on a user-defined
separator (also known as a delimiter). After splitting the string, the split()
method returns an array that contains the resulting substrings. An array is a
collection of related data. We’ll discuss arrays in the next section.

Suppose you want to split the string “Peter, John, Andy, David” into
substrings, you can do it as follows:

String names = "Peter, John, Andy, David";

String[] splitNames = names.split(", ");

Here, we first assign the string that we want to split to the variable names.
We then use names to call the split() method. The split() method takes in
one argument – the delimiter used to separate the substring. In our example,
the delimiter is a comma followed by a space.

The result of the code above is the following array
{"Peter", "John", "Andy", "David"}

This array is assigned to the variable splitNames.

We’ve covered a number of the commonly used String methods in Java. For
a complete list of all the String methods available, check out this page
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#method.summary

4.2 Array

Next, let us look at arrays.

An array is a collection of data that are normally related to each other.
Suppose we want to store the ages of 5 users. Instead of storing them as
user1Age, user2Age, user3Age, user4Age and user5Age, we can store them
as an array.

There are two ways to declare an array variable. The first way is to declare it
as follows:

int[] userAge;

int indicates that this variable stores int values.
[] indicates that the variable is an array instead of a normal variable.

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

userAge is the name of the array.

The second way to declare it is as follows:

int userAge[];

This style comes from the C/C++ language and was adopted in Java to
accommodate C/C++ programmers. However, this is not the preferred syntax
in Java. We’ll stick to the first style in this book.

After you declare an array variable, you need to create an array and assign it
to the variable. To do that, we use the new keyword as shown below:

int[] userAge;

userAge = new int[] {21, 22, 23, 24, 25};

The first statement declares the array variable userAge. The second statement
creates the array {21, 22, 23, 24 and 25} and assigns it to userAge. Since
userAge has not been assigned any array previously, this statement initializes
userAge with the created array. Once you initialize an array, the size of the
array cannot be changed anymore. In this case, the array userAge can only
hold 5 values from now onwards as we initialized it with 5 integers. {21,
22, 23, 24, 25} are the five integers that the array stores currently.

In addition to declaring and initializing an array in two statements, we can
combine the two statements into a single statement using the shortcut syntax
below:

int[] userAge2 = new int[] {21, 22, 23, 24, 25};

We can further simply this statement to

int[] userAge2 = {21, 22, 23, 24, 25};

That is, you can omit the words new int[] if you declare and initialize an
array in the same statement.

A third way to declare and initialize an array is as follows:

int[] userAge3 = new int[5];

This statement declares an array userAge3 and initializes it with an array of 5
integers (as indicated by the number 5 inside the square brackets []). As we
did not specify the values of these 5 integers, Java automatically creates an
array using the default value and assigns it to userAge3. The default value for
integers is 0. Hence, userAge3 becomes {0, 0, 0, 0, 0}.

You can update the individual elements in the array by accessing them using
their indexes. Recall that indexes always start with a value of zero. The first
element of the array has an index of 0, the next has an index of 1 and so forth.
Suppose the array userAge is currently {21, 22, 23, 24, 25}. To update
the first element of the array, we write

userAge[0] = 31;

the array becomes {31, 22, 23, 24, 25}.

If we type

userAge[2] = userAge[2] + 20;

the array becomes {31, 22, 43, 24, 25}. That is, 20 is added to the third
element.

4.2.1 Array Methods

Like strings, arrays also come with a number of pre-written methods.

The methods that we discuss below are found in the java.util.Arrays class.
To use them, you have to add the statement

import java.util.Arrays;

to your program. This is to tell the compiler where to find the code for these
methods.

The import statement must appear after the package statement and before the
class declaration. An example is shown below:

package helloworld;

import java.util.Arrays;

public class HelloWorld {

//Code for HelloWorld class

}

You may recall that previously when we used the String class, we did not
have to write any import statement. This is because the String class is
present in the java.lang package which is imported by default in all Java
programs.

Now, let us look at some of the commonly used methods for arrays.

equals()

The equals() method is used to determine if two arrays are equal to each
other. It returns true if the arrays are equal and false if they are not. Two
arrays are considered equal if they have the same number of elements and the
elements are arranged in the same order.

Suppose you have the following code segment:

int[] arr1 = {0,2,4,6,8,10};

int[] arr2 = {0,2,4,6,8,10};

int[] arr3 = {10,8,6,4,2,0};

boolean result1 = Arrays.equals(arr1, arr2);

boolean result2 = Arrays.equals(arr1, arr3);

result1 will be true while result2 will be false. This is because for
result2, even though arr1 and arr3 have the same elements, the elements
are not arranged in the same order. Hence, the two arrays are not considered
equal.

Note that in the example above, we added the word Arrays in front of the
method name. This is because all methods in the Arrays class are static. To
call a static method, you have to add the name of the class in front. We’ll talk
more about static methods in Chapter 7.

copyOfRange()

The copyOfRange() method allows you to copy the contents of one array into
another. It requires three arguments.

Suppose you have

int [] source = {12, 1, 5, -2, 16, 14, 18, 20, 25};

You can copy the contents of source into a new array dest using the
statement below:
int[] dest = Arrays.copyOfRange(source, 3, 7);

The first argument (source) is the array that provides the values to be copied.
The second and third arguments tell the compiler at which index to start and
stop copying respectively. In other words, in our example, we are copying
elements from index 3 to index 6 (i.e. the element at index 7 is not copied).

After copying the elements, the copyOfRange() method returns an array with
the numbers copied. This array is then assigned to dest.

Hence, dest becomes {-2, 16, 14, 18} while source remains unchanged.

toString()

The toString() method returns a String that represents the contents of an
array. This makes it easy for us to display the contents of the array. For
instance, suppose you have

int[] numbers = {1, 2, 3, 4, 5};

You can use the statement below to display the contents of numbers.

System.out.println(Arrays.toString(numbers));

You will get

[1, 2, 3, 4, 5]

as the output.

sort()

The sort() method allows us to sort our arrays. It takes in an array as the
argument.

Suppose you have

int [] numbers2 = {12, 1, 5, -2, 16, 14};

You can sort this array by writing

Arrays.sort(numbers2);

The array will be sorted in ascending order.

The sort() method does not return a new array. It simply modifies the array
that is passed in. In other words, it modifies the numbers2 array in our
example. You can then use the statement

System.out.println(Arrays.toString(numbers2));

to print out the sorted array. You will get

[-2, 1, 5, 12, 14, 16]

as the output.

binarySearch()

The binarySearch() method allows you to search for a specific value in a
sorted array. To use this method, make sure your array is sorted first. You can
use the sort() method mentioned above to do so.

Suppose we have the following array:

int[] myInt = {21, 23, 34, 45, 56, 78, 99};

To determine if 78 is inside the array, we write

int foundIndex = Arrays.binarySearch(myInt, 78);

foundIndex will be equal to 5. This indicates that the number 78 is found at
index 5.

On the other hand, if you write

int foundIndex2 = Arrays.binarySearch(myInt, 39);

foundIndex2 will be equal to -4.

There are two parts to this result – the negative sign and the number 4.

The negative sign simply indicates that 39 is not found.

The number 4, on the other hand, is kind of weird. It tells you where the
number should be if it exists in the array. However, it adds ONE to that

index. In other words, if the number 39 exists in the array, it should be at
index 4-1 = 3.

We’ve covered some of the more commonly used array methods in this
section. For a complete list of all the array methods available in Java, check
out this page https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

4.2.2 Finding Array Length

Finally, let’s look at how we can find the length of an array. The length of an
array tells us the number of items the array has. Previously when we
discussed strings, we mentioned we can use the length() method to find the
length of a string.

Contrary to what most would believe, there is no length() method when
working with arrays. Instead, to find the length of an array, we use the
length field. We’ll talk about fields vs methods in Chapter 7. For now, all
you have to know is that to find the length of an array, you do not need to add
parenthesis after the word length.

For instance, if we have

int [] userAge = {21, 22, 26, 32, 40};

userAge.length is equal to 5 as there are 5 numbers in the array.

4.3 Primitive Type vs. Reference Type

Now that we are familiar with strings and arrays, let us discuss an important
concept regarding data types in Java.

All data types in Java can be classified as either a primitive type or a
reference type. There are only 8 primitive types in Java (byte, short, int,
long, float, double, char and boolean), the rest are reference types.
Examples of reference types include strings and arrays discussed in this

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

chapter, and classes and interfaces that will be discussed in Chapter 7 and 8.

One of the main differences between a primitive type and a reference type is
the data that is stored.

A primitive type stores its own data.

When we write

int myNumber = 5;

the variable myNumber stores the actual value 5.

A reference type, on the other hand, does not store the actual data. Instead, it
stores a reference to the data. It does not tell the compiler what the value of
the data is; it tells the compiler where to find the actual data.

An example of a reference type is a String. When you write a statement like
String message = "Hello";

the variable message actually does not store the string “Hello”.

Instead, the string “Hello” is created and stored elsewhere in the computer’s
memory. The variable message stores the address of that memory location.

That’s all that we need to know about reference types at the moment. As this
is a book for beginners, we will not go into details about why reference types
are necessary. Just be aware that there is a difference between primitive types
and reference types; the former stores a value while the latter stores an
address.

4.4 Strings are Immutable

Before I end this chapter, I would like to cover one more concept about
strings. Specifically, I would like to point out that strings are immutable in

Java (and most other languages).

Immutable means the value of a string cannot be changed. Whenever we
update a String variable, we are actually creating a new string and assigning
the memory address to the String variable. Let’s consider an example.
Suppose we have

String message = "Hello";

We learned earlier that the compiler will create the string “Hello” and store it
somewhere in the computer’s memory. The variable message stores the
address of that location. Now, if we update the value of message to “World”
as shown below

message = "World";

the compiler actually does not go to the location where “Hello” is stored to
change its value to “World”. Instead, it creates a new string “World” and
stores it somewhere else in the computer’s memory. This new address is then
assigned to message. In other words, there are two strings now: “Hello” and
“World”. message stores the address of “World”. If “Hello” is no longer
needed in the program, it is eventually destroyed so as to free up that memory
location. This process is known as garbage collection and is handled
automatically by Java.

Chapter 5: Making our Program Interactive

Now that we have covered the basics of variables and data types, let us write
a program that accepts input from users, stores the data in a variable and
displays messages to our users. After all, what good is a computer program if
it cannot interact with its users?

5.1 Displaying Output

We’ve already seen some examples of displaying outputs to users in Chapter
2 and 4.

Simply stated, to display outputs to our users, we can use the print() or
println() method provided by Java. In order to use these methods, we have
to add System.out in front of the method names. This is because the two
methods belong to the PrintStream class and we have to use System.out to
access them. Do not worry if this sounds very confusing at the moment.
We’ll learn more about classes and methods in Chapter 7.

The difference between the println() and print() methods is that
println() moves the cursor down to the next line after displaying the
message while print() does not.

For instance, if we write

System.out.println("Hello ");

System.out.println ("How are you?");

we’ll get

Hello

How are you?

If we write

System.out.print("Hello ");

System.out.print("How are you?");

we’ll get

Hello How are you?

Other than that, the two methods are the same.

Let us look at a few examples of how we can use println() to display
messages to our users. The print() method works exactly the same way.

Displaying a simple text message

To display a simple message, we write

System.out.println("Hi, my name is Jamie.");

Output:

Hi, my name is Jamie.

Displaying the value of a variable

To display the value of a variable, we pass in the variable name as an
argument. For instance, suppose we have

int number = 30;

we can display the value of number by writing

System.out.println(number);

Output:

30

Note that we do not enclose the variable name (number) in double quotes. If

we write

System.out.println("number");

we’ll get

number

as the output instead.

Displaying results without assigning them to variables

We can also use the println() method to display the result of a
mathematical expression or a method directly.

For instance, if we write

System.out.println(30+5);

we’ll get

35

as the output. To display the result of a method, we can write

System.out.println("Oracle".substring(1, 4));

Here, we are displaying the result of the substring() method. We’ll get

rac

as the output.

Using the concatenation sign

Next, let us look at a few examples of how we can display more complex
strings by combining two or more shorter strings. To do that, we use the
concatenation (+) sign.

For instance, if we write

System.out.println("Hello, " + "how are you?" + " I love Java.");

we’ll get

Hello, how are you? I love Java.

To concatenate strings with variables, we can write

int results = 79;

System.out.println("You scored " + results + " marks for your

test.");

Here, we are concatenating the strings “You scored ” and “ marks for your
test.” with the variable results. We’ll get

You scored 79 marks for your test.

Finally, we can concatenate strings with mathematical expressions as shown
below.

System.out.println("The sum of 50 and 2 is " + (50 + 2) + ".");

We’ll get

The sum of 50 and 2 is 52.

Note that in the example above, we added parenthesis to the mathematical
expression 50+2. This is to force the compiler to evaluate the expression first
before concatenating the result with the other two substrings. You are
strongly advised to do so whenever you concatenate strings with
mathematical expressions. Failure to do so can result in errors.

5.2 Escape Sequences

Next, let’s look at escape sequences. Sometimes in our programs, we may
need to print some special “unprintable” characters such as a tab or a newline.
In this case, you need to use the \ (backslash) character to escape characters
that otherwise have a different meaning.

For instance to print a tab, we type the backslash character before the letter t,
like this: \t.

Without the \ character, the letter “t” will be printed. With it, a tab is printed.
\t is known as an escape sequence. If you type

System.out.println("Hello\tWorld");

you’ll get

Hello World

Other commonly used escape sequences include:

To prints a newline (\n)

Example
System.out.println("Hello\nWorld");

Output
Hello

World

To print the backslash character itself (\\)

Example
System.out.println("\\");

Output
\

To print double quotes (\") so that the double quote does not end the
string

Example
System.out.println("I am 5'9\" tall");

Output
I am 5'9" tall

5.3 Formatting Outputs

In the previous examples, we looked at how we can display outputs to users
using the println() and print() methods. However, sometimes we want to
have greater control over the format of the output. For instance, if we write

System.out.println("The answer for 5.45 divided by 3 is " +

(5.45/3));

we’ll get

The answer for 5.45 divided by 3 is 1.8166666666666667

In most cases, we do not want to display so many decimal places to our users.
In that case, we can use the printf() method instead to display the output to
our users. The printf() method is slightly more complex than the println()
method, but it offers more control over how our output is displayed. To
format the output above, we can write

System.out.printf("The answer for %.3f divided by %d is %.2f.",

5.45, 3, 5.45/3);

This will give the output as

The answer for 5.450 divided by 3 is 1.82.

The printf() method requires one or more arguments. In the example above,
we passed in four arguments to the method.

The first argument "The answer for %.3f divided by %d is %.2f." is the
string to be formatted.

You may notice a few weird symbols in the string: %.3f, %d and %.2f. These
are known as format specifiers. They serve as placeholders and are replaced
by the arguments that follow. The first format specifier (%.3f) is replaced by
the first argument that follows (5.45), the second (%d) by the second
argument (3) and so on.

Format specifiers always begin with a percent sign (%) and end with a
converter (such as f or d). They specify how the arguments that replace them
should be formatted. In between the percent sign (%) and the converter, you
can add additional information known as flags.

In our example, the first format specifier is %.3f.

f is the converter. It tells the compiler that it should be replaced by a floating
point number (i.e. numbers with decimal places such as float or double). If
we try to replace it with a non floating point number, we’ll get an error.

.3 is the flag. It indicates that we want to display the number with 3 decimal
places. Hence, the number 5.45 is displayed as 5.450 in the output.
Other than the %.3f specifier, there are a lot of other specifiers that we can
use in Java. The next two sections discuss some of the other commonly used
converters and flags in our specifiers.

5.3.1 Converters

The integer converter: d

This converter is for formatting integers such as byte, short, int and long.

Example
System.out.printf("%d", 12);

Output
12

Note:

System.out.printf("%d", 12.9); will give us an error as 12.9 is not an
integer.

Similarly, System.out.printf("%f", 12); will give us an error as 12 is not
a floating point number.

The newline converter: n

This converter moves the cursor to the next line

Example
System.out.printf("%d%n%d", 12, 3);

Output
12

3

5.3.2 Flags

The width flag

This flag is used to specify total width.

Example 1
System.out.printf("%8d", 12);

Output
 12

In the output above, there are 6 spaces in front of the number 12, giving us a
total width of 8.

Example 2
System.out.printf("%8.2f", 12.4);

Output
 12.40

In the output above, there are 3 spaces in front of the number, giving us a
total width of 8 including the decimal point.

The thousands separator flag (,)

This flag is used to display numbers with a thousands separator

Example 1
System.out.printf("%,d", 12345);

Output
12,345

Example 2
System.out.printf("%,.2f", 12345.56789);

Output
12,345.57

5.4 Accepting User Input

Now that we know how to display outputs to users, let’s look at how we can
accept input from them. Accepting input is actually pretty straightforward.
There are a few ways to do it, but the easiest and most common way is to use
a Scanner object.

To accept user input, we need to first import the Scanner class using the
statement below:

import java.util.Scanner;

Next, we need to create a Scanner object and pass System.in as an argument.

System.in tells the compiler that you want to get input from the standard
input device, which is usually a keyboard. If you are new to programming,
you may not understand what an object is. Don’t worry about this; you’ll
learn about classes and objects in Chapter 7. For now, just know that you
need to write the statement below to accept inputs from users.

Scanner reader = new Scanner(System.in);

The Scanner class contains a few methods that we can use to read input from
the user. The commonly used methods are nextInt(), nextDouble() and
nextLine() for reading int, double and String data types respectively.

To understand how these methods work, let’s create a new project in
NetBeans and name it InputDemo. Refer to Chapter 2.2 if you have forgotten
how to create a new project in NetBeans. Replace the code with the code
below (line numbers are added for reference):
1 package inputdemo;

2 import java.util.Scanner;

3

4 public class InputDemo {

5 public static void main(String[] args) {

6 Scanner input = new Scanner(System.in);

7

8 System.out.print("Enter an integer: ");

9 int myInt = input.nextInt();

10 System.out.printf("You entered %d.%n%n", myInt);

11

12 System.out.print("Enter a double: ");

13 double myDouble = input.nextDouble();

14 System.out.printf("You entered %.2f.%n%n", myDouble);

15

16 System.out.print("Enter a string: ");

17 input.nextLine();

18 String myString = input.nextLine();

19 System.out.printf("You entered \"%s\".%n%n", myString);

20

21 }

22}

On line 2, we import the java.util.Scanner class.

Next, we create a Scanner object on line 6 and name it input.

On line 8, we prompt the user to enter an integer. We then use the nextInt()
method to read the integer. Finally on line 10, we display the user’s input
using the printf() method.

From line 12 to 14, we do something similar, except that we prompt the user
to enter a double and use the nextDouble() method to read the input.
From line 16 to 19, we prompt the user to enter a string and use the
nextLine() method to read the string.

However, you may notice something different here. On line 17, we have an
additional statement:

input.nextLine();

In other words, we called the nextLine() method twice (on lines 17 and 18).
This is necessary because of how the nextDouble() method on line 13
works. The nextDouble() method only reads in a double. However,
whenever the user inputs a number, the user will press the Enter key. This
Enter key is essentially the newline character ("\n") and is ignored by the
nextDouble() method as it is not a double. We say that the nextDouble()
method does not consume the newline character. We need the nextLine()
method on line 17 to consume this newline character.

If you delete Line 17 and try to run the program again, you’ll see that you
won’t have a chance to key in any string. This is because the nextLine()

method on line 18 consumes the previous newline character. As there is no
other nextLine() statement after this, the program will not wait for another
input from the user.

Whenever you use the nextLine() method after the nextDouble() method,
you should always have an additional nextLine() method to consume the
previous newline character. The same applies to the nextInt() method. Try
running this program and enter an integer, double and string when prompted.
The program should run as expected.

Besides the three methods mentioned above, Java also has the nextByte(),
nextShort(), nextLong(), nextFloat() and nextBoolean() methods for
reading a byte, short, long, float and boolean value respectively.

Each of these methods expects to read in values of the correct data type. For
instance, the nextDouble() method expects to read in a double. If the user
does not enter values of the correct data type, the methods will try to convert
the input to the correct type. If this fails, the methods result in an error.

For instance, if the nextDouble() method reads in the value 20, it’ll convert
it to a double. However, if it reads in the string “hello”, it’ll generate an
error.

We’ll learn how to deal with these errors in the next chapter.

Chapter 6: Control Flow Statements

We’ve covered quite a bit in the previous chapters. By now, you should know
the basic structure of a Java program and be able to write a simple Java
program that uses variables. In addition, you also learned how you can use
the various built-in Java methods to interact with your users.

In this chapter, we are going to take things a step further – we are going to
learn how to control the flow of your program. By default, the statements
inside your program are executed from top to bottom, in the order that they
appear. However, we can alter this flow using control flow statements.

These statements include decision-making statements (if, switch), looping
statements (for, while, do-while), and branching statements (break,
continue). We’ll look at each of them in subsequent sections.

For now, let us first look at comparison operators.

6.1 Comparison Operators

Most control flow statements involve doing some form of comparison. The
program proceeds differently depending on the result of the comparison.

The most commonly used comparison operator is the equality operator. If we
want to compare whether two variables are equal, we use the == (double =)
operator. For instance, if you write x == y, you are asking the program to
check if the value of x is equal to the value of y. If they are equal, the
condition is met and the statement evaluates to true. Else, the statement
evaluates to false.

In addition to evaluating whether two values are equal, there are other
comparison operators that we can use in our control flow statements.

Not equal (!=)

Returns true if the left is not equal to the right

5 != 2 is true
6 != 6 is false

Greater than (>)

Returns true if the left is greater than the right

5 > 2 is true
3 > 6 is false

Smaller than (<)

Returns true if the left is smaller than the right

1 < 7 is true
9 < 6 is false

Greater than or equal to (>=)

Returns true if the left is greater than or equal to the right

5 >= 2 is true
5 >= 5 is true
3 >= 6 is false

Smaller than or equal to (<=)

Returns true if the left is smaller than or equal to the right

5 <= 7 is true
7 <= 7 is true

9 <= 6 is false

We also have two logical operators (&&, ||) that are useful if we want to
combine multiple conditions.

The AND operator (&&)

Returns true if all conditions are met

5==5 && 2>1 && 3!=7 is true
5==5 && 2<1 && 3!=7 is false as the second condition (2<1) is false

The OR operator (||)

Returns true if at least one condition is met.

5==5 || 2<1 || 3==7 is true as the first condition (5==5) is true
5==6 || 2<1 || 3==7 is false as all conditions are false

6.2 Decision Making Statements

Now that we are familiar with comparison operators, let us proceed to learn
how we can use these operators to control the flow of a program. We’ll look
at the if statement first.

6.2.1 If Statement

The if statement is one of the most commonly used control flow statements.
It allows the program to evaluate if a certain condition is met and perform the
appropriate action based on the result of the evaluation.

The structure of an if statement is as follows (line numbers are added for
reference):

1 if (condition 1 is met)

2 {

3 do Task A

4 }

5 else if (condition 2 is met)

6 {

7 do Task B

8 }

9 else if (condition 3 is met)

10 {

11 do Task C

12 }

13 else

14 {

15 do Task D

16 }

Line 1 tests the first condition. If the condition is met, everything inside the
pair of curly braces that follow (lines 2 to 4) will be executed. The rest of the
if statement (from line 5 to 16) will be skipped.

If the first condition is not met, you can use the else if blocks that follow to
test more conditions (lines 5 to 12). There can be multiple else if blocks.
Finally, you can use the else block (lines 13 to 16) to execute some code if
none of the preceding conditions are met. The else if and else blocks are
optional. You do not need to include them if there are no additional
conditions to test.

To fully understand how the if statement works, let’s try an example.
Launch NetBeans and create a new project called IfDemo. Replace the code
generated with the following code.

package ifdemo;

import java.util.Scanner;

public class IfDemo{

public static void main(String[] arg)

{

 Scanner input = new Scanner(System.in);

 System.out.print("\nPlease enter your age: ");

 int userAge = input.nextInt();

 if (userAge < 0 || userAge > 100)

 {

 System.out.println("Invalid Age");

 System.out.println("Age must be between 0 and 100");

 }

 else if (userAge < 18)

 System.out.println("Sorry you are underage");

 else if (userAge < 21)

 System.out.println("You need parental consent");

 else

 {

 System.out.println("Congratulations!");

 System.out.println("You may sign up for the event!");

 }

}

}

The program first prompts the user for his age and stores the result in the
userAge variable. The statement

if (userAge < 0 || userAge > 100)

checks if the value of userAge is smaller than zero or greater than 100. If
either of the conditions is true, the program will execute all statements
within the curly braces that follow. In this example, it’ll print “Invalid Age”,
followed by “Age must be between 0 and 100”.

On the other hand, if both conditions are false, the program will test the next
condition - else if (userAge < 18). If userAge is less than 18 (but more
than or equal to 0 since the first condition is not met), the program will print
“Sorry you are underage”.

You may notice that we did not enclose the statement

System.out.println("Sorry you are underage");

in curly braces. This is because curly braces are optional if there is only one

statement to execute.

If the user did not enter a value smaller than 18, but entered a value greater
than or equal to 18 but smaller than 21, the next else if statement will be
executed. In this case, the message “You need parental consent” will be
printed.

Finally, if the user entered a value greater than or equal to 21 but smaller than
or equal to 100, the program will execute the code in the else block. In this
case, it will print “Congratulations” followed by “You may sign up for the
event!”.

Run the program five times and enter -1, 8, 20, 23 and 121 respectively for
each run. You’ll get the following outputs:

Please enter your age: -1

Invalid Age

Age must be between 0 and 100

Please enter your age: 8

Sorry you are underage

Please enter your age: 20

You need parental consent

Please enter your age: 23

Congratulations!

You may sign up for the event!

Please enter your age: 121

Invalid Age

Age must be between 0 and 100

6.2.2 Ternary Operator

The ternary operator (?) is a simpler form of an if statement that is very
convenient if you want to assign a value to a variable depending on the result
of a condition. The syntax is:

condition ? value to return if condition is true : value to

return if condition is false;

For instance, the statement

3>2 ? 10 : 5;

returns the value 10 since 3 is greater than 2 (i.e. the condition 3 > 2 is true).
This value can then be assigned to a variable.

If we write

int myNum = 3>2 ? 10 : 5;

myNum will be assigned the value 10.

6.2.3 Switch Statement

The switch statement is similar to an if statement except that it does not
work with a range of values. A switch statement requires each case to be
based on a single value. Depending on the value of the variable used for
switching, the program will execute the correct block of code.

The syntax of a switch statement is as follows:

switch (variable used for switching)

{

case firstCase:

 do A;

 break;

case secondCase:

 do B;

 break;

default:

 do C;

 break;

}

You can have as many cases as you want when using a switch statement.
The default case is optional and is executed if no other case applies. You
can use either a byte, short, char or int variable for switching. Starting
from Java 7, you can also use a String variable for switching.

When a certain case is satisfied, everything starting from the next line is
executed until a break statement is reached. A break statement instructs the
program to break out of the switch statement and continue executing the rest
of the program.

Let’s look at an example of how the switch statement works. To try this
example, launch NetBeans and create a new project called SwitchDemo.
Replace the code generated with the following code. In this example, we use
a String variable for switching.

1 package switchdemo;

2 import java.util.Scanner;

3

4 public class SwitchDemo{

5

6 public static void main(String[] args) {

7

8 Scanner input = new Scanner(System.in);

9

10 System.out.print("Enter your grade: ");

11 String userGrade = input.nextLine().toUpperCase();

12

13 switch (userGrade)

14 {

15 case "A+":

16 case "A":

17 System.out.println("Distinction");

18 break;

19 case "B":

20 System.out.println("B Grade");

21 break;

22 case "C":

23 System.out.println("C Grade");

24 break;

25 default:

26 System.out.println("Fail");

27 break;

28 }

29 }

30 }

The program first prompts the user for his grade on line 10. Next, on line 11,
it reads in the user’s input and stores the result in userGrade using the
statement below:

String userGrade = input.nextLine().toUpperCase();

This statement may look a bit unfamiliar to some readers. Here, we are
calling two methods in the same statement.

input.nextLine()

first reads the input that the user entered. This method returns a string. We
then use the resulting string to call the toUpperCase() method. This
statement shows an example of how you can call two methods in the same
statement. The methods are executed from left to right. That is, the
nextLine() method is executed first followed by the toUpperCase() method.

We have to convert user input to upper case before assigning it to userGrade
because Java is case-sensitive. We want the program to display “Distinction”
regardless of whether the user entered “A” or “a”. Hence, we convert any
lower case input to upper case first before assigning it to userGrade.

After getting the user’s grade, we use the switch statement that follows to
determine the output.

If the grade entered is “A+” (Line 15), the program executes the next
statement until it reaches the break statement. This means it’ll execute Line
16 to 18. Thus the output is “Distinction”.

If grade is “A” (Line 16), the program executes Line 17 and 18. Similarly, the
output is “Distinction”.

If grade is not “A+” or “A”, the program checks the next case. It keeps
checking from top to bottom until a case is satisfied. If none of the cases
applies, the default case is executed.

If you run the code above, you’ll get the following output for each of the
input shown:

Enter your grade: A+

Distinction

Enter your grade: A

Distinction

Enter your grade: B

B Grade

Enter your grade: C

C Grade

Enter your grade: D

Fail

Enter your grade: Hello

Fail

6.3 Looping Statements

Now, let us look at looping statements in Java. The four commonly used
looping statements in Java are the for statement, the enhanced for statement,
the while statement and the do-while statement.

6.3.1 For Statement

The for statement executes a block of code repeatedly until the test condition
is no longer valid.

The syntax for a for statement is as follows:

for (initial value; test condition; modification to value)

{

//Do Some Task

}

To understand how the for statement works, let’s consider the example
below.

1 for (int i = 0; i < 5; i++)

2 {

3 System.out.println(i);

4 }

The main focus of the for statement is Line 1:

for (int i = 0; i < 5; i++)

There are three parts to it, each separated by a semi-colon.

The first part declares and initializes an int variable i to zero. This variable
serves as a loop counter.

The second part tests if i is smaller than 5. If it is, the statements inside the
curly braces will be executed. In this example, the curly braces are optional
as there is only one statement.

After executing the System.out.println(i) statement, the program returns
to the last segment in Line 1. i++ increments the value of i by 1. Hence, i is
increased from 0 to 1.

After the increment, the program tests if the new value of i is still smaller
than 5. If it is, it executes the System.out.println(i) statement once again.

This process of testing and incrementing the loop counter is repeated until the
condition i < 5 is no longer true. At this point, the program exits the for
statement and continues to execute other commands after the statement.

The output for the code segment is:

0

1

2

3

4

The output stops at 4 because when i is 5, the System.out.println(i)
statement is not executed as 5 is not smaller than 5.

The for statement is commonly used to loop through an array. For instance,
if we have

int[] myNumbers = {10, 20, 30, 40, 50};

we can use a for statement and the length field of the array to loop through
the array as shown below.

for (int i = 0; i < myNumbers.length; i++)

{

System.out.println(myNumbers[i]);

}

As myNumbers.length is equal to 5, this code runs from i = 0 to i = 4. If
we run the code, we’ll get the following output:

10

20

30

40

50

6.3.2 Enhanced For Statement

In addition to the for statement, we can also use an enhanced for statement
when working with arrays and Collections (we’ll talk about Collections in
Chapter 9). An enhanced for statement is very useful if you want to get
information from an array without making any changes to it.

The syntax for an enhanced for statement is:

for (variable declaration : name of array)

{

}

Suppose you have

int[] myNumbers = {10, 20, 30, 40, 50};

You can use the following code to display the elements of the array.

for (int item : myNumbers)

System.out.println(item);

In the code above, we declared an int variable item that is used for looping.
Each time the loop runs, an element in the myNumbers array is assigned to the
variable item. For instance, the first time the loop runs, the integer 10 is
assigned to item.

The line

System.out.println(item);

then prints out the number 10.

The second time the loop runs, the integer 20 is assigned to item. The line

System.out.println(item);

prints out the number 20.

This continues until all the elements in the array have been printed.

6.3.3 While Statement

Next, let us look at the while statement. Like the name suggests, a while
statement repeatedly executes instructions inside the loop while a certain
condition remains valid. The structure of a while statement is as follows:

while (condition is true)

{

do A

}

Most of the time when using a while statement, we need to first declare a
variable to function as a loop counter. Let’s call this variable counter. The
code below shows an example of how a while statement works.

int counter = 5;

while (counter > 0)

{

System.out.println("Counter = " + counter);

counter = counter - 1;

}

If you run the code, you’ll get the following output

Counter = 5

Counter = 4

Counter = 3

Counter = 2

Counter = 1

A while statement has a relatively simple syntax. The statements inside the
curly braces are executed as long as counter > 0.

Notice that we have the line counter = counter – 1 inside the curly braces?
This line is crucial. It decreases the value of counter by 1 each time the loop
is run.

We need to decrease the value of counter by 1 so that the loop condition
(counter > 0) will eventually evaluate to false. If we forget to do that, the
loop will keep running endlessly, resulting in an infinite loop. The program
will keep printing counter = 5 until you somehow kill the program. Not a
pleasant experience especially if you have a large program and you have no
idea which code segment is causing the infinite loop.

6.3.4 Do-while Statement

The do-while statement is similar to the while statement with one main
difference - the code within the curly braces of a do-while statement is
executed at least once. Here’s an example of how a do-while statement
works.

int counter = 100;

do {

System.out.println("Counter = " + counter);

counter++;

} while (counter<0);

As the test condition (while (counter<0)) is placed after the closing curly
brace, it is tested after the code inside the curly braces is executed at least
once.

If you run the code above, you will get

Counter = 100;

After the System.out.println("Counter = " + counter); statement is
executed for the first time, counter is incremented by 1. The value of

counter is now 101. When the program reaches the test condition, the test
fails as counter is not smaller than 0. The program will then exit the loop.
Even though the original value of counter does not meet the test condition
(counter < 0), the code inside the curly braces is still executed once.

Note that for a do-while statement, a semi-colon (;) is required after the test
condition.

6.4 Branching Statements

We’ve now covered most of the control flow statements in Java. Next, let us
look at branching statements.

A branching statement is a statement that instructs the program to branch to
another line of code. Branching statements are commonly used in loops and
other control flow statements.

6.4.1 Break Statement

The first branching statement is the break statement. We have already seen
how this statement can be used in a switch statement. In addition to using it
in a switch statement, the break statement can also be used in other control
flow statements. It causes the program to exit a loop prematurely when a
certain condition is met. Let us look at an example of how the break
statement can be used in a for statement.

Consider the code segment below:

1 for (int i = 0; i < 5; i++)

2 {

3 System.out.println("i = " + i);

4 if (i == 2)

5 break;

6 }

In this example, we used an if statement inside a for statement. It is very

common for us to ‘mix-and-match’ various control flow statements in
programming, such as using a while statement inside an if statement or
using a for statement inside a while statement. This is known as a nested
control statement.
If you run the code segment above, you will get the following output.

i = 0

i = 1

i = 2

Notice that the loop ends prematurely at i = 2?

Without the break statement, the loop should run from i = 0 to i = 4
because the loop condition is i < 5. However with the break statement,
when i = 2, the condition on line 4 evaluates to true. The break statement
on line 5 then causes the loop to end prematurely.

6.4.2 Continue Statement

Another commonly used branching statement is the continue statement.
When we use continue, the rest of the loop after the word is skipped for that
iteration. An example will make it clearer.

If you run the code segment below

1 for (int i = 0; i<5; i++)

2 {

3 System.out.println("i = " + i);

4 if (i == 2)

5 continue;

6 System.out.println("I will not be printed if i=2.");

7 }

You will get the following output:

i = 0

I will not be printed if i=2.

i = 1

I will not be printed if i=2.

i = 2

i = 3

I will not be printed if i=2.

i = 4

I will not be printed if i=2.

When i = 2, the line after the continue statement is not executed. The
program jumps back to line 1 and continues executing from there. Everything
runs as per normal after that.

6.5 Exception Handling

We now know how to control the flow of a program under ‘normal’
circumstances using control flow statements. Let us now learn how to control
the flow of a program when an error occurs. This is known as exception
handling.

When we code a program, we should always try to pre-empt possible errors.
If we believe that a certain block of code may cause an error, we should try to
manage it using the try-catch-finally statement. The syntax for the try-
catch-finally statement is as follows:

try

{

do something

}

catch (type of error)

{

do something else when an error occurs

}

finally

{

do this regardless of whether the try or catch condition is

met.

}

You can have more than one catch blocks. In addition, the finally block is
optional.

Let’s consider an example. Launch NetBeans and create a new project called
ErrorDemo. Replace the generated code with the following:

1 package errordemo;

2 import java.util.Scanner;

3

4 public class ErrorDemo{

5 public static void main(String[] args) {

6

7 int num, deno;

8

9 Scanner input = new Scanner(System.in);

10

11 try

12 {

13 System.out.print("Please enter the numerator: ");

14 num = input.nextInt();

15

16 System.out.print("Please enter the denominator: ");

17 deno = input.nextInt();

18

19 System.out.println("The result is " + num/deno);

20

21 }

22 catch (Exception e)

23 {

24 System.out.println(e.getMessage());

25 }

26 finally

27 {

28 System.out.println("---- End of Error Handling

Example ----");

29 }

30 }

31 }

In this example, the try block is from line 11 to 21, the catch block is from
line 22 to 25 and the finally block is from line 26 to 29.

If you run the code and enter 12 and 4, you’ll get the message

The result is 3

---- End of Error Handling Example ----

In this case, the program tries to execute the code in the try block and does it
successfully. Hence, it displays the result of the division. After the code in
the try block is executed, the code in the finally block is executed. The
finally block is always executed regardless of whether the try or catch
block is executed.

Now, run the program again and enter 12 and 0 instead. You’ll get

/ by zero

---- End of Error Handling Example ----

In this case, the program tries to execute the code in the try block and fails.
This is because you cannot divide a number by zero. Hence, the code in the
catch block is executed instead. After the catch block is executed, the code
in the finally block is executed as well.

The catch block allows us to specify the type of error that it should catch. In
our example, we are trying to catch a general error. Therefore, we write

catch (Exception e)

where Exception refers to the class that the error belongs to and e is the
name given to the error.

Exception is a pre-written class in Java. It handles all general errors and has
a method called getMessage() that explains the reason for the exception. To
display the error message, we write

System.out.println(e.getMessage());

In our example, we get the following error message

/ by zero

6.5.1 Specific Errors

In the example above, we used the Exception class to catch a general error.
In addition to the Exception class, Java has other classes that can handle
more specific errors. This is useful if you want to perform specific tasks
depending on the error caught. For instance, you may want to display your
own error messages.

To see how this works, launch NetBeans and create a new project called
ErrorDemo2. Replace the code with the following code:

package errordemo2;

import java.util.InputMismatchException;

import java.util.Scanner;

public class ErrorDemo2{

public static void main(String[] args) {

 int choice = 0;

 Scanner input = new Scanner(System.in);

 int[] numbers = { 10, 11, 12, 13, 14, 15 };

 System.out.print("Please enter the index of the array: ");

 try

 {

 choice = input.nextInt();

 System.out.printf("numbers[%d] = %d%n", choice,

numbers[choice]);

 }catch (ArrayIndexOutOfBoundsException e)

 {

 System.out.println("Error: Index is invalid.");

 }catch (InputMismatchException e)

 {

 System.out.println("Error: You did not enter an

integer.");

 }catch (Exception e)

 {

 System.out.printf(e.getMessage());

 }

}

}

If you enter

10

You will get

Error: Index is invalid.

If you enter

Hello

You will get

Error: You did not enter an integer.

The first error is an ArrayIndexOutOfBoundsException exception and was
handled by the first catch block. This exception occurs when you try to
access an element of an array with an index that is outside its bounds.

The second error is an InputMismatchException exception and was handled
by the second catch block. The InputMismatchException exception occurs
when the input received by a Scanner method does not match the expected
type. In our example, input.nextInt() generated an
InputMismatchException error because the input “Hello” is not an integer,
which is the data type expected by the nextInt() method.

After the two specific catch blocks, we have one more catch block to catch
any general errors that we did not pre-empt.

The example above shows three of the many exceptions in Java.

The InputMismatchExpection class is found in the java.util package and
must be imported before it can be used. In contrast, the other two exception
classes (ArrayIndexOutOfBoundsException and Exception) are found in
java.lang and are imported by default is all Java programs. Do not worry if
you cannot remember which exception classes need to be imported and which
are imported by default; NetBeans will prompt you whenever you need to
import any package or class yourself.

6.5.2 Throwing Exceptions

Next, let us look at how to throw exceptions. In the example above, we try to
catch errors under pre-defined conditions.

For instance, we catch the ArrayIndexOutOfBoundsException error when
users try to access an element of an array with an index that is outside its
bounds. In the example above, that will be when users enter a negative
number or a positive number greater than 5.

In addition to catching errors under pre-defined conditions, we can also
define our own conditions for when an error should occur. This is known as
throwing an exception.

Suppose for whatever reason, you do not want users to access the first
element of the array. You can do that by forcing an exception to be triggered
when users enter the number 0.

To understand how this works, try running the previous program and enter
the value 0. You'll notice that the program runs normally and gives you

numbers[0] = 10

as the output.

Now try adding the statements

if (choice == 0)

throw new ArrayIndexOutOfBoundsException();

after the statement

choice = input.nextInt();

in the try block above. Run the program again and enter the value 0. You'll
notice that the

catch(ArrayIndexOutOfBoundsException e)

block is executed instead.

This is because when users enter the value 0, the condition choice == 0
evaluates to true. Hence, the statement

throw new ArrayIndexOutOfBoundsException();

is executed. This statement causes the

catch(ArrayIndexOutOfBoundsException e)

block to be executed.

Chapter 7: Object Oriented Programming Part 1

In this chapter, we are going to look at a very important concept in Java
programming – the concept of object-oriented programming.

We’ll learn what object-oriented programming is and how to write our own
classes and create objects from them. In addition, we’ll also discuss the
concept of fields, getters and setters, constructors and methods.

7.1 What is Object-Oriented Programming?

Simply stated, object-oriented programming is an approach to programming
that breaks a programming problem into objects that interact with each other.

Objects are created from templates known as classes. You can think of a class
as the blueprint of a building. An object is the actual “building” that we build
based on the blueprint.

7.2 Writing our own class

The syntax for declaring a class is as follows:

AccessModifier class ClassName {

//Contents of the class

//including fields, constructors and methods

}

An example is

public class ManagementStaff{

}

In the example above, we first state the access level of the class using an
access modifier. Access modifiers are like gate keepers, they control who has
access to that class. In other words, they control whether other classes can use

a particular field or method in that class.

A class can either be public or package-private. In the example above, the
class is public.

public means the class can be accessed by any class in the program.

Package-private, on the other hand, means the class is only accessible to
other classes within the same package. There can be more than one packages
within a single Java application. Refer to Chapter 2.3.1 if you have forgotten
what a package is. Package-private is the default access level. If we do not
write any access modifier, it means the class is package-private.

We’ll look at access modifiers in greater depth in Chapter 8.5.

After declaring the access level of the class, we type the class keyword to
indicate that we are declaring a class, followed by the name of the class
(ManagementStaff).

It is common practice to use PascalCasing when naming our classes.
PascalCasing refers to the practice of capitalizing the first letter of each word,
including the first word (e.g. ThisIsAClassName). This is the convention that
we’ll be following in the book.

The contents of the class are enclosed within the pair of curly braces that
follows the class name. Contents of a class include constructors, fields,
methods, interfaces, and other classes. We’ll cover some of them in this
chapter.

Now, let’s build a class from scratch together.

First, launch NetBeans and create a new Java Application called
ObjectOrientedDemo.
Study the code that is generated for you. Notice that NetBeans has
automatically created a public class for you?

This public class is called ObjectOrientedDemo and has the same name as the
file, which is called ObjectOrientedDemo.java. In Java, there can only be one
public class per java file and that public class must have the same name as the
file. The main() method is inside this public class.

For this example, we are going to create a second Java class that interacts
with the ObjectOrientedDemo class. We’ll create this class inside the
objectorienteddemo package. To do that, right-click on the package name in
Project Explorer and select New > Java Class. It is important that you click
on the correct item in Project Explorer when creating a new class. For
instance, if you are adding a new class to the objectorienteddemo package,
make sure you click on the package name when creating the class (refer to
image below).

We’ll call this new class Staff and add fields, constructors and methods to
the class. The declaration of the class is as follows:

public class Staff {

//Contents of the class

}

We’ll be adding fields, methods and constructors to this class. It is important
that you type the contents of the class inside the opening and closing braces
of the class. If you type them in the wrong location, the program will not run.
The complete code for this chapter can be downloaded at
http://www.learncodingfast.com/java.

7.2.1 Fields

We’ll first declare the fields for our Staff class. To do that, add the
following lines of code inside the curly braces of the class.

private String nameOfStaff;

private final int hourlyRate = 30;

private int hoursWorked;

Here, we declare one String variable (nameOfStaff) and two int variables
(hourlyRate and hoursWorked). These variables are known as fields of the
class. A field is simply a variable that is declared inside a class. Like any
other variables, they are used to store data.

All the three fields are declared as private.

We can declare a field as either private, public or protected. If we choose
not to state the access level of a class member, it is taken to be package-
private by default (i.e. only accessible to other classes within the same
package). In our case, we declared the three fields as private. This means
they can only be accessed from within the Staff class itself. Other classes,
such as the ObjectOrientedDemo class, cannot access these fields.

There are two reasons why we do not want other classes to access these
fields.

The first reason is that there is no need for other classes to know about these
fields. For instance, in our case, the field hourlyRate is only needed within
the Staff class. We have a method inside the Staff class that uses

http://www.learncodingfast.com/java

hourlyRate to calculate the monthly salary of an employee. Other classes do
not use the hourlyRate field at all. Hence, it is appropriate to declare
hourlyRate as private so as to hide this field from other classes.

This is known as encapsulation. Encapsulation enables a class to hide data
and behaviour from other classes that do not need to know about them. This
makes it easier for us to make changes to our code in future if necessary. We
can safely change the value of hourlyRate without affecting other classes.

The second reason for declaring a field as private is that we do not want
other classes to freely modify them. This helps to prevent the fields from
being corrupted.

We’ll talk more about access modifiers in the next chapter.

In addition to the private keyword, we also added the final keyword when
we declared the hourlyRate field.

private final int hourlyRate = 30;

The final keyword indicates that the value cannot be changed after it is
created. Any variable that is declared as final must be initialized at the point
of declaration or within the constructor (we’ll talk about constructors later).
In our example, we initialized hourlyRate to 30 when declaring it. This value
cannot be changed subsequently anywhere in the code.

7.2.2 Methods

Next, let us look at methods.

A method is a code block that performs a certain task.

Let’s add a simple method to our Staff class. Remember, you have to add
this method inside the opening and closing braces of the Staff class.

public void printMessage()

{

System.out.println("Calculating Pay…");

}

This method is declared as

public void printMessage()

{

}

The method declaration first states the access level of the method. Here we
declared the method as public so that the method is accessible everywhere in
the program (not just within the Staff class).

Next, we state the return type of the method. A method may return a certain
result after performing its task. If the method does not return any result, we
use the void keyword like in our example.

Finally, we state the name of the method (printMessage in our example).

The parenthesis () after the method name is where we include the parameters
of the method. Parameters are names given to data that we pass in to the
method in order for it to perform its task. If the method requires no data (like
in our example), we just add a pair of empty parenthesis after the method
name.

After we declare the method, we define what it does inside the pair of curly
braces that follow. This is known as implementing the method. In our
example, the printMessage() method simply prints the line “Calculating
Pay…”.

That’s all there is to the printMessage() method.

Let’s move on to a more complex method. This second method calculates the
pay of each employee and returns the result of the calculation. Add the
following lines of code to Staff.

public int calculatePay()

{

printMessage();

int staffPay;

staffPay = hoursWorked * hourlyRate ;

if (hoursWorked > 0)

 return staffPay;

else

 return -1;

}

This method is declared as

public int calculatePay()

{

}

The int keyword indicates that this method returns a value that is of int
type.

Inside the curly braces, we have the statement

printMessage();

This is known as calling or invoking the printMessage() method. When the
program reaches this statement, it will execute the printMessage() method
that we wrote earlier and print the line “Calculating Pay…” first before
executing the rest of the calculatePay() method. This example
demonstrates how you can call one method inside another method.

Next, we declare a local variable called staffPay and assign the product of
the private fields hourlyRate and hoursWorked to it.

A method can access all the fields that are declared inside the class. In
addition, it can declare its own variables. These are known as local variables

and only exist within the method. An example is the staffPay variable in our
example.

After assigning the staffPay variable, the calculatePay() method uses an
if statement to determine what result the method should return.

A method usually has at least one return statement. return is a keyword that
is used to return an answer from the method. There can be more than one
return statement in a method. However, once the method executes a return
statement, the method will exit.

In our example, if hoursWorked is greater than zero, the program will execute
the statement

return staffPay;

and exit the method. This return value can then be assigned to a variable.
We’ll see how to do that in our main() method later.

On the other hand, if hoursWorked is less than or equal to zero, the program
will execute the statement

return -1;

and exit the method.

There may be cases where a method does not need to return an answer but
simply uses the return statement to exit the method. We’ll look at an example
of this when we work through our project at the end of the book.

Overloading

Next, let’s look at overloading. In Java (and most other languages), you can
create two methods of the same name as long as they have different

signatures. This is known as overloading. The signature of a method refers to
the name of the method and the parameters that it has.

Add the following method below the previous calculatePay() method.

public int calculatePay(int bonus, int allowance)

{

printMessage();

if (hoursWorked > 0)

 return hoursWorked * hourlyRate + bonus + allowance;

else

 return 0;

}

The signature of the first method is calculatePay() while that of the second
method is calculatePay(int bonus, int allowance).

This second method has two parameters - bonus and allowance. It calculates
the pay of the employees by adding the values of these two parameters to the
product of hoursWorked and hourlyRate. In this example, we did not use a
local variable to store the result of hoursWorked * hourlyRate + bonus +
allowance. We simply return the result of the computation directly. This is
perfectly fine. We’ll learn how to use this method later.

Getter and Setter Methods

Now, let us write the getter and setter methods for the class. We’ll do that for
the hoursWorked field.

Recall that the hoursWorked field is declared as private? This means that the
field is not accessible anywhere outside the Staff class. However, there may
be cases where the field is needed by other classes. In cases like these, we
have to write setter and getter methods to allow other classes to access these
private fields.

This may sound like a contradiction. Earlier, we mentioned that we use
private fields so that other classes do not have access to them. If that is the

case, why are we allowing access to them via getter and setter methods?

One of the main reasons is that using getter and setter methods gives us
greater control over what rights other classes have when assessing these
private fields. We’ll see how to do that now.

Add the following setter method to the Staff class.

public void setHoursWorked(int hours)

{

if (hours>0)

 hoursWorked = hours;

else

{

 System.out.println("Error: HoursWorked Cannot be Smaller

than Zero");

 System.out.println("Error: HoursWorked is not updated");

}

}

It is a convention for us to name setter methods with the word ‘set’ followed
by the name of the field.

In the setter method above, we accept a parameter called hours and use that to
set the value of the hoursWorked field. However, we did a simple check first.
If the value of hours is more than zero, we assign it to hoursWorked. Else, we
do not assign it to hoursWorked and print an error message instead.

This example demonstrates how we can use a setter method to control what
values can be assigned to our private field.

In addition to setter methods, we can also write a getter method for our
private field. Add the following code to your Staff class. It is a convention
for us to name getter methods with the word ‘get’ followed by the name of
the field.

public int getHoursWorked()

{

return hoursWorked;

}

This method simply returns the value of the hoursWorked field.

7.2.3 Constructors

Now, let us look at constructors.

A constructor is a block of code (similar to a method) that is used to
‘construct’ an object from the class template. It always has the same name as
the class (Staff in our case) and is commonly used to initialize the fields of
the class.

The main feature of a constructor is that it is the first block of code that is
called whenever we create an object from our class. Other than that, a
constructor is pretty much like a method. However, a constructor does not
return any value and we do not have to use the void keyword when declaring
a constructor.

Let’s learn how to declare a constructor for our Staff class.

Add the following lines to the Staff class.
public Staff(String name)

{

nameOfStaff = name;

System.out.println("\n" + nameOfStaff);

System.out.println("---------------------------");

}

In the example above, the constructor accepts a parameter called name and
uses it to initialize the nameOfStaff field. It then displays the value of
nameOfStaff on the screen and underlines it with a series of dashes. That’s
all that it does. We’ll learn how to use this constructor to ‘construct’ our
objects later.

Next, let’s add another constructor to our class. Similar to methods, we can

have more than one constructor as long as the signature is different.

public Staff(String firstName, String lastName)

{

nameOfStaff = firstName + " " + lastName;

System.out.println("\n" + nameOfStaff);

System.out.println ("---------------------------");

}

This second constructor has two parameters - firstName and lastName. The
first line concatenates the two strings and assigns the resulting string to
nameOfStaff. The next two lines print nameOfStaff on the screen and
underline it with a series of dashes.

Declaring a constructor is optional. If we do not declare our own constructor,
NetBeans will automatically generate a default constructor for us. This
default constructor does not have any parameter. It initializes any
uninitialized fields to their default values, which is 0 or its equivalent,
depending on the data type. For instance, the default value for numerical data
type is 0 while that for a reference data type is null (which simply means the
variable does not store any address).
7.3 Instantiating an Object

Now that we have coded our Staff class, let’s look at how we can make use
of the class to create an object. This process is known as instantiating an
object. An object is also known as an instance.

To recap, our Staff class has the following components:

Fields

private String nameOfStaff;

private final int hourlyRate = 30;

private int hoursWorked;

Methods

public void printMessage()

public int calculatePay()

public int calculatePay(int bonus, int allowance)

public void setHoursWorked(int hours)

public int getHoursWorked()

Constructors

public Staff(String name)

public Staff(String firstName, String lastName)

We shall instantiate a Staff object in the main() method inside our
ObjectOrientedDemo class.

The syntax for instantiating an object is

ClassName objectName = new ClassName(arguments);

To do that, double click on the filename ObjectOrientedDemo.java in the
Projects window and add the following lines inside the curly braces of the
main() method.
Staff staff1 = new Staff("Peter");

staff1.setHoursWorked(160);

int pay = staff1.calculatePay(1000, 400);

System.out.println("Pay = " + pay);

The first statement

Staff staff1 = new Staff("Peter");

uses the first constructor (with one parameter) to instantiate our staff1
object.

Once we create the staff1 object, we can use the dot operator after the
object’s name to access any public field or method in the Staff class. We have
to use the dot operator here because we are trying to access members of the
Staff class from within the ObjectOrientedDemo class. The dot operator is
necessary whenever we want to access a field or method from another class.

If you are accessing members of the same class, you do not need to use the
dot operator. An example is when we called the printMessage() method
from the calculatePay() method earlier. We did not use the dot operator as
both methods are from the same class.

After creating our staff1 object, the next line shows how we can use the
public setter method setHoursWorked() to assign a value to the hoursWorked
field.

staff1.setHoursWorked(160);

Here, we set the hoursWorked field to 160. If we try to access the
hoursWorked field directly by writing

staff1.hoursWorked = 160;

we will get an error as hoursWorked is a private field and is therefore only
accessible within the Staff class.
Next, we call the calculatePay() method by writing

staff1.calculatePay(1000, 400);

In this example, as we have the numbers 1000 and 400 inside the parenthesis,
we are using the second calculatePay() method. We are passing in the
values 1000 and 400 to the parameters bonus and allowance respectively.
The values that we passed in are known as arguments. The program then uses
that method to calculate the pay and return the answer. This answer is
assigned to the variable pay.

Finally, we use the System.out.println() method to display the value of
pay on the screen.

If you run the code above, you will get

Peter

Calculating Pay...

Pay = 6200

Play around with the code a bit to get a better feel of how classes work. Try
adding the following lines of code

Staff staff2 = new Staff("Jane", "Lee");

staff2.setHoursWorked(160);

pay = staff2.calculatePay();

System.out.println("Pay = " + pay);

Here, we used the second constructor (with 2 parameters) to instantiate
staff2. If you run the code above, you will get

Jane Lee

Calculating Pay...

Pay = 4800

Now, let us add some code to demonstrate how data validation works when
we use setter methods. Add the following lines of code to your main()
method.

System.out.println("\n\nUpdating Jane's Hours Worked to

-10");

staff2.setHoursWorked(-10);

System.out.println("\nHours Worked = " +

staff2.getHoursWorked());

pay = staff2.calculatePay();

System.out.println("Pay = " + pay);

Here, we try to set the value of hoursWorked to -10. If you run the code
above, you’ll get

Updating Jane's Hours Worked to -10

Error: HoursWorked Cannot be Smaller than Zero

Error: HoursWorked is not updated

Hours Worked = 160

Calculating Pay…

Pay = 4800

As -10 is not a valid value for hoursWorked, the setter method does not
update the field for Jane (staff2). Hence, when we use the getter method to
get the value of hoursWorked, we realise that it remains as 160.

The example above shows how we can use setter methods to control what
values our fields can take. We should always do these data validations inside
the class that contains the private field itself. If we do not do that, we will
have to rely on whoever is using the Staff class to do the validation which is
risky.

7.4 Static

We’ve covered some pretty complicated concepts in this chapter. You now
know what a class is, including what fields, methods and constructors are.
You also learned how to declare and use a class. If you are new to object
oriented programming, I strongly suggest that you download the complete
program for this chapter from http://www.learncodingfast.com/java and play
around with it. Study the code and make sure you fully understand the topics
covered in this chapter so far before moving on.

In this section, we’ll look at another keyword that is used in object oriented
programming – the keyword static.

Previously, we looked at how we can use the Staff class to create our staff1
and staff2 objects. We then used these objects to call the methods inside the
Staff class (e.g. staff1.calculatePay(1000, 400)).

Now suppose we want to call some methods or access some fields in the
Staff class without creating a Staff object. Would that be possible?

The answer is yes. We have to use the static keyword.

http://www.learncodingfast.com/java

To understand the static keyword, consider the code below. Launch
NetBeans and create a new Java application called StaticDemo. Replace the
code with the code below:

package staticdemo;

class MyClass

{

//Non static field and method

public String message = "Hello World";

public void displayMessage()

{

 System.out.println("Message = " + message);

}

//Static field and method

public static String greetings = "Good morning";

public static void displayGreetings()

{

 System.out.println("Greeting = " + greetings);

}

}

public class StaticDemo {

public static void main(String[] args) {

 MyClass sd = new MyClass();

 System.out.println(sd.message);

 sd.displayMessage();

 System.out.println(MyClass.greetings);

 MyClass.displayGreetings();

}

}

In the example above, we created two classes called MyClass and
StaticDemo.

In this example, we created them within one file. If you prefer, you can
separate the two classes into separate files. It is considered good practice to

separate classes into separate files whenever possible. However for
simplicity, we’ll use a single file in this example. In addition, we declared the
fields as public to shorten the code. In practice, you are strongly encouraged
to make your fields private and use getter and setter methods instead.

In our example, MyClass contains one non static field message and one non
static method displayMessage().

It also contains one static field greetings and one static method
displayGreetings().

To access the non static members of MyClass from another class, we need to
instantiate an object as before. We did that inside the main() method of the
StaticDemo class.

MyClass sd = new MyClass();

System.out.println(sd.message);

sd.displayMessage();

However, to access the static members, we do not need to create any object.
We simply use the class name to access them as shown below.

System.out.println(MyClass.greetings);

MyClass.displayGreetings();

If you run the code above, you will get the following output

Hello World

Message = Hello World

Good morning

Greeting = Good morning

This is the main difference between a static field/method vs a non static
field/method. For the former, you do not have to create an object to access it;
you use the name of the class itself. For the latter, an object is necessary.

Some of the pre-written methods in Java are declared as static. An example
is the methods in the Arrays class. To access the methods in this class, we
use the name of the class. For instance, to use the sort() method, we write
Arrays.sort().

7.5 Advanced Methods Concepts

7.5.1 Using Arrays in Method

Before we end this chapter, I would like to discuss two more concepts about
methods. The first is regarding using arrays in methods.

Previously, we learned how to use primitive data types like int as parameters
to a method. In addition to using primitive data types, we can also use arrays.

To use an array as a parameter, we add a square bracket [] after the
parameter’s data type in the method declaration. An example is shown below.

public void printFirstElement(int[] a)

{

}

To call this method, we need to declare an array and pass it in as an argument
to the method. We’ll see an example of this later.

In addition to using arrays as parameters, we can also return an array from a
method. To return an array from a method, we add a square bracket [] after
the return type in the method declaration. An example is

public int[] returnArray()

{

int[] a = new int[3];

//Some code for updating values in the array

return a;

}

To use this method, we need to declare an array and assign the method’s
result to it.

To fully understand how we can use arrays in methods, let’s create a new
Java application called ArrayMethodDemo and replace the code with the
following:

1 package arraymethoddemo;

2

3 import java.util.Arrays;

4

5 class MyClass{

6

7 public void printFirstElement(int[] a)

8 {

9 System.out.println("The first element is " + a[0]);

10 }

11

12 public int[] returnArray()

13 {

14 int[] a = new int[3];

15 for (int i = 0; i < a.length; i++)

16 {

17 a[i] = i*2;

18 }

19 return a;

20 }

21

22 }

23

24 public class ArrayMethodDemo {

25 public static void main(String[] args) {

26

27 MyClass amd = new MyClass();

28

29 int[] myArray = {1, 2, 3, 4, 5};

30 amd.printFirstElement(myArray);

31

32 int[] myArray2 = amd.returnArray();

33 System.out.println(Arrays.toString(myArray2));

34

35 }

36 }

In this example, we included two classes – MyClass and ArrayMethodDemo –
in the same file again for simplicity.

Inside the class MyClass (lines 5 to 22), we have two methods.

The first method printFirstElement() shows how you can use an array as a
parameter.

The second method returnArray() shows how you can return an array from
a method.

To use these two methods, we initialized a MyClass object called amd in the
main() method (line 27).

We then declared an array and passed it in as an argument to the
printFirstElement() method on lines 29 and 30.

int[] myArray = {1, 2, 3, 4, 5};

amd.printFirstElement(myArray);

In addition, we also declared a second array in the main() method and
assigned the result of the returnArray() method to it on line 32.

int[] myArray2 = amd.returnArray();

Finally, on line 33, we printed the contents of the array.

If you run the program above, you’ll get the following output:

The first element is 1

[0, 2, 4]

7.5.2 Passing Primitive Type vs Reference Type Parameters

Now that you know how to pass an array to a method, let us look at the
difference between a primitive type parameter vs a reference type parameter
(such as an array). There is an important difference.

When you pass in a primitive type variable, any change made to the value of
that variable is only valid within the method itself. Once the program exits
the method, the change is no longer valid.

On the other hand, when you pass in a reference type variable, any change
made to the value of that variable is valid even after the method ends.

To understand how this works, add the following two methods to MyClass in
ArrayMethodDemo.java.

public void passPrimitive(int primitivePara)

{

primitivePara = 10;

System.out.println("Value inside method = " + primitivePara);

}

public void passReference(int[] refPara)

{

refPara[1] = 5;

System.out.println("Value inside method = " + refPara[1]);

}

The first method has a primitive type parameter (int primitivePara) and
tries to change the value of that parameter. It then prints the value of the
parameter.

The second method has a reference type parameter (an array) and tries to
change the value of the second element in the array. It then prints the value of
that element.

In our main() program, add the following lines of code:

int number = 2;

System.out.println("number before = " + number);

amd.passPrimitive(number);

System.out.println("number after = " + number);

System.out.print("\n");

System.out.println("myArray[1] before = " + myArray[1]);

amd.passReference(myArray);

System.out.println("myArray[1] after = " + myArray[1]);

If you run the program, you will get the following additional output

number before = 2

Value inside method = 10

number after = 2

myArray[1] before = 2

Value inside method = 5

myArray[1] after = 5

As you can see, the value of number stays the same before and after the
method call. On the other hand, the value of myArray[1] changes after the
method call.

The reason for this is because when you pass in a reference type variable, you
are passing in the address of the variable. The compiler can go to the address
that you passed in and make the relevant changes to the variable.

On the other hand, when you pass in a primitive type variable, you are
passing in the value of the variable and not the address.

For instance, if the value of number is 2, writing

amd.passPrimitive(number);

is the same as writing

amd.passPrimitive(2);

This value 2 is assigned to the parameter primitivePara. Since we are not
passing in the address of number, any change that occurs inside the method
does not affect number.

This is an important difference that you have to understand when you pass in
a primitive type variable (e.g. int, float etc) vs a reference type variable
(such as an array) to a method.

Chapter 8: Object-Oriented Programming Part 2

Now, let us move on to some of the more advanced topics in object-oriented
programming. In this chapter, we’ll learn about inheritance, polymorphism,
abstract classes and interfaces.

8.1 Inheritance

Inheritance is one of the key concepts in object-oriented programming.
Simply stated, inheritance allows us to create a new class from an existing
class so that we can effectively reuse existing code. In fact, all classes in Java
are inherited from a pre-written base class known as the Object class.

The Object class consists of a number of pre-written methods that we can use
whenever we work with classes. One such method is the toString() method
that returns a string that represents the object. We used the toString()
method previously when we discussed arrays. We’ll be looking at the
toString() method again when we work on our project.

So what exactly is inheritance?

8.1.1 Writing the Parent Class

Let us work through a small program together to illustrate the concept of
inheritance.

Suppose we are writing a program for a fitness club that has two types of
membership – VIP and Normal. To do that, let’s launch NetBeans and create
a new Java Project called InheritanceDemo.

Add a new class called Member to the inheritancedemo package. Refer to
Chapter 7.2 for instructions on how to add a new class if necessary.

We’ll be getting user input in the Member class. Hence, we need to add the
statement

import java.util.Scanner;

to our class. Add this statement after the line

package inheritancedemo;

Now, we are ready to start working on the class. Add the following lines to
the Member class (inside the curly braces).

public String welcome = "Welcome to ABC Fitness";

protected double annualFee;

private String name;

private int memberID;

private int memberSince;

private int discount;

Here, we declare six fields for the Member class.

The first is a public field that stores a welcome message. We initialise this
field with the string “Welcome to ABC Fitness”.

The other five fields include one protected field and four private fields. We’ll
talk more about protected fields in a later section. For now, just know that a
protected field is accessible within the class in which it is declared, any class
that is derived from it and any class that is in the same package. Derived
classes will be covered in the next section.

Next, let’s add two constructors to our class.

public Member()

{

System.out.println("Parent Constructor with no

parameter");

}

public Member(String pName, int pMemberID, int pMemberSince)

{

System.out.println("Parent Constructor with 3 parameters");

name = pName;

memberID = pMemberID;

memberSince = pMemberSince;

}

The first constructor merely prints the line “Parent Constructor with no
parameter”.

The second constructor is more interesting. It prints the line “Parent
Constructor with 3 parameters” and assigns its parameters to three of the
private fields in the Member class.

After writing the constructors, we’ll move on to the getter and setter methods.
We’ll add a getter and setter method for the private field discount so that
other classes can access this field.

public double getDiscount(){

return discount;

}

public void setDiscount(){

Scanner input = new Scanner(System.in);

String password;

System.out.print("Please enter the admin password: ");

password = input.nextLine();

if (!password.equals("abcd"))

{

 System.out.println("Invalid password. You do not have

authority to edit the discount.");

}else

{

 System.out.print("Please enter the discount: ");

 discount = input.nextInt();

}

}

The getter method simply returns the value of the discount field.

The setter method is more complex. It prompts the user to enter the admin
password before he/she can edit the discount field. This method
demonstrates how a setter method can be used to prevent unauthorised access
to a private field. However, suffice to say, this code will be way too easy for
a hacker to crack. In real life, you’ll need stronger security measures than just
a simple password to protect your data.

Now, let us add two more methods to our Member class.

The first method is a public method called displayMemInfo(). It uses a series
of println() statements to display information about a member.

public void displayMemInfo(){

System.out.println("Member Name: " + name);

System.out.println("Member ID: " + memberID);

System.out.println("Member Since " + memberSince);

System.out.println("Annual Fee: " + annualFee);

}

The second method is a public method called calculateAnnualFee(). It will
be used to calculate the annual fee of a member.

public void calculateAnnualFee()

{

annualFee = 0;

}

Notice that we set the annual fee of a member to zero? Don’t worry about this
at the moment; we’ll update this method later.

Once we are done with the above, the Member class is complete.

8.1.2 Writing the Child Class

Now that we have completed the Member class, let us learn how to derive a
class from it. Derived classes are known as child classes or subclasses, while
the classes from which they are derived are known as parent classes, base
classes or superclasses.

To recap, our parent class (Member) has the following contents:

Fields

public String welcome = "Welcome to ABC Fitness";

protected double annualFee;

private String name;

private int memberID;

private int memberSince;

private int discount;

Constructors

public Member()

public Member(String pName, int pMemberID, int pMemberSince)

Methods

public double getDiscount()

public void setDiscount()

public void displayMemInfo()

public void calculateAnnualFee()

We shall derive two classes – NormalMember and VIPMember – from the
Member class.

First, let’s declare the child class NormalMember.

Add a new Java class to the inheritancedemo package and name it
NormalMember. Notice that when you generate a new class, NetBeans

automatically declares the class as

public class NormalMember {

}

for you?

We need to indicate that NormalMember is derived from the Member class by
adding the words extends Member to the class declaration as shown below:

public class NormalMember extends Member{

}

extends is a Java keyword used to indicate that one class is inherited from
another class. In our example, the NormalMember class is inherited from the
Member class.

We have to use the extends keyword whenever we want to show that one
class is inherited from another class. The only exception is when inheriting
from the Object class. As all classes in Java are inherited from the Object
class, there is no need for us to state this inheritance explicitly.

When one class is inherited from another class, it inherits all the public and
protected fields and methods from the parent class. This means that the
child class can use these fields and methods as if they are part of its own
code; we do not have to declare these fields and methods again in the child
class. In other words, even though we have not started coding our child class
yet, it already has two fields (welcome and annualFee) and four methods
(getDiscount, setDiscount, displayMemInfo and calculateAnnualFee)
inherited from the parent class. This facilitates code reuse and is especially
valuable if the parent class has a large number of public/protected fields and
methods that the child class can use.

However, the child class does not inherit the private fields and methods of

the parent class. This means that the child class will not be able to access
these private fields and methods directly, it’ll have to access them using other
methods. We’ll see an example of this later.

Now that we have declared NormalMember as a child class of Member, we need
to write the constructor for the child class.

Whenever we write the child class constructor, it is a must for us to call the
parent class’ constructor first. If we do not do that, Java will automatically
call the parameterless constructor in the parent class for us.

For instance, add the following constructor to the NormalMember class.

public NormalMember() {

System.out.println("Child constructor with no parameter");

}

When we declare our constructor as above, Java looks for a parameterless
constructor (i.e. a constructor with no parameter) in the parent class and calls
that first before executing the code in the child constructor. If you use this
constructor to create a child object, the following two lines will be displayed
on the screen

Parent Constructor with no parameter

Child constructor with no parameter

The first line is from the parent constructor while the second line is from the
child constructor.

If you want to call a non parameterless constructor in the parent class, you
have to use the super keyword. An example is shown below:

public NormalMember(String pName, int pMemberID, int

pMemberSince)

{

super(pName, pMemberID, pMemberSince);

System.out.println("Child Constructor with 3 parameters");

}

When we use the super keyword to call a non parameterless constructor in
the parent class, the statement

super(pName, pMemberID, pMemberSince);

must be the first statement in the child constructor. If we fail to do that, Java
will give us an error.

In the example above, we used the super keyword to call the second
constructor in the parent class (i.e. the constructor with 3 parameters). We
passed in the values of pName, pMember and pMemberSince to the parent
constructor.

When we create a child object with this constructor, we write something like

NormalMember myChildMember = new NormalMember("James", 1, 2010);

You will get the following output when you run the code

Parent Constructor with 3 parameters

Child Constructor with 3 parameters

Behind the scene, the values "James", 1 and 2010 are assigned to the fields
name, memberID and memberSince respectively.

At this point, some of you may be wondering where the fields name,
memberID and memberSince come from? Since these are private fields in the
Member class and we mentioned that private fields are not inherited, why
would the child class have these fields?

The reason for this is that when we say private fields are not inherited, it
simply means the child class cannot access these fields directly. However,
these fields do exist in the child class. The only difference is that the child
class cannot access them directly but has to use constructors or setter and
getter methods instead. We’ll see an example of how we can use getter and

setter methods to access these private fields later.

Overriding a Method

Now that we have created the constructors for our child class, let us move on
to create a method to calculate the annual fee of a normal member. Recall
that we have already coded a calculateAnnualFee() method in the parent
class earlier? As this parent class method is public, it is inherited by the
child class. Hence, the child class can use this method as if it is part of its
own code.

However, recall that the calculateAnnualFee() method in the parent class
sets the annual fee of a member to zero? What if we want to use a different
formula for calculating the annual fee in the child class? In this case, we have
to override the inherited method.

Overriding a method simply means writing a new version of the method in
the child class.

To override the calculateAnnualFee() method, add the following code to
the NormalMember class.

@Override

public void calculateAnnualFee()

{

annualFee = (1-0.01*discount)*(100 + 12*30);

}

Notice that there is a red squiggly line under the word discount when you
save your code? This indicates an error. If you hover your mouse over the
line, you’ll get the message “discount has private access in Member”. This is
because discount is a private field in Member and is thus not accessible
directly by NormalMember.

In order for NormalMember to access the discount field, we have to use the
getter method declared in Member. Change the code above to

annualFee = (1-0.01*getDiscount())*(100 + 12*30);

Once you replace discount with getDiscount(), the error goes away.

Annotations

Next, notice the @Override line above the method declaration? This is known
as an annotation. In Java, annotations are metadata that we add to our code to
provide extra information to the compiler.

When we use the @Override annotation, we are informing the compiler that
the method that follows is meant to override the calculateAnnualFee()
method declared in the base class (i.e. the Member class).

When overriding a method, there are some rules that we must follow. For
instance, the method in the child class must have the same parameter list as
the method in the parent class. If the method in the child class fails to
override the method in the parent class correctly, the compiler will generate
an error. If that happens, you can hover your mouse over the error for more
information.

Using the @Override annotation is optional when overriding a method.
However, you are strongly encouraged to do so to prevent compilation errors.

Annotations follow a fixed syntax and are case sensitive. @override,
@overriding or @ThisMethodOverrideAnother are all invalid annotations.
Java comes with a number of predefined annotations. You can find the full
list of predefined annotations here
https://docs.oracle.com/javase/tutorial/java/annotations/predefined.html.

That’s all for our child class NormalMember. The class has the following
contents:

https://docs.oracle.com/javase/tutorial/java/annotations/predefined.html

Fields

Inherited from parent class:
public String welcome = "Welcome to ABC Fitness";

protected double annualFee

Constructors

public NormalMember()

public NormalMember(String pName, int pMemberID, int

pMemberSince)

Methods

Inherited from parent class:
public void setDiscount()

public double getDiscount()

public void displayMemInfo()

Overriden in child class:
public void calculateAnnualFee()

Next, we shall add another class – VIPMember – to our inheritance package.
This class also inherits from Member. To do that, add a new class to the
inheritancedemo package and name it VIPMember. Replace the code with the
code below:

package inheritancedemo;

public class VIPMember extends Member {

public VIPMember(String pName, int pMemberID, int

pMemberSince)

{

 super(pName, pMemberID, pMemberSince);

 System.out.println("Child Constructor with 3 parameters");

}

@Override

public void calculateAnnualFee()

{

 annualFee = (1-0.01*getDiscount())*1200;

}

}

This class has one constructor (with 3 parameters) and one method
calculateAnnualFee(). The calculateAnnualFee() method here uses a
different formula for calculating annual fee from the calculateAnnualFee()
method in the NormalMember class. It is alright for the two methods to share
the same name (and signature) as they are in different classes.

VIPMember class has the following contents:

Fields

Inherited from parent class:
public String welcome = "Welcome to ABC Fitness";

protected double annualFee

Constructors

public VIPMember(String pName, int pMemberID, int pMemberSince)

Methods

Inherited from parent class:
public void setDiscount()

public double getDiscount()

public void displayMemInfo()

Overridden in child class:
public void calculateAnnualFee()

8.1.3 The main() method

Now that we have written the three classes that we need, let’s write the code
for the main() method. Switch over to the InheritanceDemo.java file and add

the following two lines to the main() method.

NormalMember mem1 = new NormalMember("James", 1, 2010);

VIPMember mem2 = new VIPMember("Andy", 2, 2011);

Here, we are creating two objects for the two derived classes.

mem1 is created using the 3 parameters constructor from the NormalMember
class.
mem2 is created using the 3 parameters constructor from the VIPMember class.

Now we’ll use the calculateAnnualFee() methods in the respective classes
to calculate the annual fee for each member.

mem1.calculateAnnualFee();

mem2.calculateAnnualFee();

As mem1 is an instance of the NormalMember class, the
calculateAnnualFee() method from that class is executed. The annual fee
for mem1 is thus 100 + 12*30 = 460. For mem2, the annual fee is 1200 as it
uses the method from the VIPMember class.

Finally, let’s use the displayMemberInfo() method from the parent class
(Member) to display the information on our screen. We write

mem1.displayMemInfo();

mem2.displayMemInfo();

Since the displayMemberInfo() method belongs to the parent class and is
public, both mem1 and mem2 have inherited the method and are thus able to
use it in the main() method.

You’ll get the following output when you run the program:

Parent Constructor with 3 parameters

Child Constructor with 3 parameters

Parent Constructor with 3 parameters

Child Constructor with 3 parameters

Member Name: James

Member ID: 1

Member Since 2010

Annual Fee: 460.0

Member Name: Andy

Member ID: 2

Member Since 2011

Annual Fee: 1200.0

Now, we shall try to apply some discount to the annual fees for mem1. As
discount is a private field in the parent class, we cannot alter its value by
writing something like

mem1.discount = 100;

Instead, we have to use the setDiscount() method. To do that, add the
following line to the main() method.

mem1.setDiscount();

Next, we’ll add the following statements to recalculate the annual fee after
the discount and display the information.

mem1.calculateAnnualFee();

mem1.displayMemInfo();

Run the program again. When prompted, enter “abcd” for password and 30
for discount. You’ll get the following lines added to the original output.

Please enter the admin password: abcd

Please enter the discount: 30

Member Name: James

Member ID: 1

Member Since 2010

Annual Fee: 322.0

The annual fee is now 322 because a discount of 30% is applied.

8.2 Polymorphism

Now that we have seen an example of how inheritance works, let us move on
to discuss another topic that is closely related to inheritance - the concept of
polymorphism. Polymorphism refers to a program’s ability to use the correct
method for an object based on its run-time type.

The best way to explain polymorphism is through an example. Let’s expand
on our fitness club example above.

First, delete or comment out all the code in the previous main() method and
add the following lines to it.

Member[] clubMembers = new Member[6];

clubMembers[0] = new NormalMember("James", 1, 2010);

clubMembers[1] = new NormalMember("Andy", 2, 2011);

clubMembers[2] = new NormalMember("Bill", 3, 2011);

clubMembers[3] = new VIPMember("Carol", 4, 2012);

clubMembers[4] = new VIPMember("Evelyn", 5, 2012);

clubMembers[5] = new Member("Yvonne", 6, 2013);

Here, we declare an array of Member objects and add 6 members to it. The
first three members are objects of the NormalMember class, the next two are
objects of the VIPMember class while the last is an object of the Member class.

Although clubMembers is declared to be an array of Member type, we can
assign objects of NormalMember and VIPMember to it as they are child classes
of the Member class. We do not need to declare separate arrays for
NormalMember and VIPMember objects.
Next, we’ll use an enhanced for statement to calculate the annual fee of each
member and display the information.

To do that, we write

for (Member m : clubMembers)

{

m.calculateAnnualFee();

m.displayMemInfo();

}

Now save and run the program. You’ll notice that the annual fee for the first
three members (NormalMember) is $460, the annual fee for the next two
(VIPMember) is $1200 and the annual fee for the last member is $0.

This is the result of polymorphism. At run time (i.e. when the program runs),
the program determines that the first three members of clubMembers are of
NormalMember type and executes the calculateAnnualFee() method from
that class. It also determines that the next two members are of VIPMember
type and executes the method from that class. Finally, it determines that the
last member is of Member type and executes the method from the parent class.

We say that the runtime type of the first three elements of clubMembers is
NormalMember, the runtime type of the next two is VIPMember and the runtime
type of the last element is Member. In contrast, the declared type of all the 5
elements is Member.

Polymorphism simply means that at run time, although all objects are
declared to be of Member type, the program is smart enough to use the correct
calculateAnnualFee() method based on the runtime type of the element.

8.3 Abstract Classes and Methods

Next, let us move on to discuss two special types of “parent class” in Java -
abstract classes and interfaces.

We’ll first look at abstract classes.

An abstract class is a special type of class that is created strictly to be a base
class for other classes to derive from. They cannot be instantiated. In other
words, if FourWheelVehicles is an abstract class, the statement

FourWheelVehicle myVeh = new FourWheelVehicle();

will give you an error as you cannot create an object of an abstract class.

Abstract classes may have fields and methods just like any other classes. In
addition, they can have a special type of method known as abstract methods.
Abstract methods are methods that have no body and MUST be implemented
in the derived class. They can only exist in abstract classes.

In the fitness club example above, we declared a method called
calculateAnnualFee() in the parent class (Member) and set the annual fee to
zero. This method does not make any logical sense as the annual fee is zero.

Instead of adding such senseless method implementations in our parent class,
a better way would be to declare the method as an abstract method.

Let’s see how we can do that in our fitness club example. We’re going to
have to make some changes to our program.

Changes to the parent class

First, we need to replace the lines
public void calculateAnnualFee()

{

annualFee = 0;

}

in the Member class with

abstract public void calculateAnnualFee();

We add the abstract keyword in the method declaration above to indicate
that this is an abstract method. In addition, we do not add braces { } after the
method declaration as abstract methods have no body. Instead, we end the
declaration with a semi-colon (;).

Next, we need to declare our Member class as an abstract class. This is

because abstract methods can only exist in abstract classes.

To do that, we add the abstract keyword to the Member class declaration like
this:

abstract public class Member

That’s all the changes that we need to make to the Member class.

Changes to the InheritanceDemo class

Next, we need to make one change to the InheritanceDemo class.

As abstract classes cannot be instantiated, the line

clubMembers[5] = new Member("Yvonne", 6, 2013);

in the InheritanceDemo.java file will give us an error.

To remedy that, we can change the last item in our clubMember array to either
a NormalMember or a VIPMember object. This works well with the logic of our
program as a member should either be a NormalMember or a VIPMember, not
just a Member.

In our example, we’ll change the item to a VIPMember object.

Change the line to

clubMembers[5] = new VIPMember("Yvonne", 6, 2013);

That’s all there is for the InheritanceDemo class.

Changes to the sub classes

Finally, let’s move on to the subclasses. As abstract methods have to be
implemented by subclasses, we need to ensure that we have implemented the

calculateAnnualFee() method in both our subclasses.

In our previous example, we have already implemented this method in both
of the subclasses. Hence, we do not need to make any changes to the
subclasses.

We are now ready to save and run the program. Everything should run
normally as before except for the output for last member (Yvonne). The
annual fee should now be $1200 as shown below.

Member Name: Yvonne

Member ID: 6

Member Since 2013

Annual Fee: 1200.0

This is the gist of abstract classes. In summary, an abstract class is a special
type of base class that cannot be instantiated. It can contain abstract methods
that have no implementation details and MUST be implemented in the child
class.

8.4 Interfaces

Next, let’s look at interfaces. Interfaces are much like abstract classes in that
they cannot be instantiated. Instead, they must be implemented by classes or
extended by other interfaces. When a class implements an interface, it has to
implement all the abstract methods in that interface.

Up until Java 7, interfaces can only contain abstract methods (i.e. methods
with no bodies) and constants (i.e. fields declared as final). All methods in
an interface are implicitly public while all constant values are implicitly
public, static, and final. You do not have to specify these modifiers.

One of the key differences between an abstract class and an interface is that a
class can only extend one abstract class but can implement multiple
interfaces. However, we won’t be showing an example of multiple interfaces
implementation in this book as that is an advanced topic beyond the scope of

the book.

Another difference between an abstract class and an interface is that an
interface can only contain abstract methods (up until Java 7) while an abstract
class can contain non-abstract methods.

Let us first look at an example of how interface works up until Java 7.

Launch NetBeans and create a new Java Project called InterfaceDemo.
Replace the code in InterfaceDemo.java with the following:

1 package interfacedemo;

2

3 public class InterfaceDemo {

4

5 public static void main(String[] args) {

6 MyClass a = new MyClass();

7 a.someMethod();

8

9 System.out.println("The value of the constant is " +

MyInterface.myInt);

10 }

11 }

12

13 class MyClass implements MyInterface

14 {

15 @Override

16 public void someMethod()

17 {

18 System.out.println("This is a method implemented in

MyClass");

19 }

20 }

21

22 interface MyInterface{

23

24 int myInt = 5;

25 void someMethod();

26

27 }

In the example above, the interface is declared on lines 22 to 27. On line 24,

we declared a field (which is implicitly public, static and final) and on
line 25, we declared a method. There is no need to use the abstract keyword
when declaring a method in an interface. It is abstract by default.

On lines 13 to 20, we have a class called MyClass that implements the
interface. We use the implement keyword to indicate this relationship. Inside
the class, we implement the method someMethod() from line 15 to 19.

From line 3 to 11, we have the InterfaceDemo class which contains the
main() method. Inside the main() method, we instantiated a MyClass object
and use that to invoke someMethod() on line 7. On line 9, we printed out the
value of the constant myInt. Note that because constants in interfaces are
static, we access them using the name of the interface
(MyInterface.myInt) and not the name of the MyClass object.

If you run this program, you’ll get

This is a method implemented in MyClass

The value of the constant is 5

The example above shows a simple example of how interfaces work up until
Java 7. However, things changed a bit in Java 8.

Prior to Java 8, an interface can only contain abstract methods. In Java 8,
Java added support for default and static methods in interfaces.

To see how default and static methods work, add the following two methods
to MyInterface. Note that both methods are implemented in the interface
itself.

public static void someStaticMethod()

{

System.out.println("This is a static method in an interface");

}

public default void someDefaultMethod()

{

System.out.println("This is a default method in an

interface");

}

Next, add the following lines to the main() method.

a.someDefaultMethod();

MyInterface.someStaticMethod();

Now, save and run the program. You’ll get the following output:
This is a method implemented in MyClass

The value of the constant is 5

This is a default method in an interface

This is a static method in an interface

This is how interfaces work from Java 8 onwards. We are now allowed to add
method implementations in our interfaces. However, only default and static
methods can be implemented in an interface.

Java added default and static methods in interfaces mainly to ensure binary
compatibility. Simply stated, binary compatibility means that when you
change your interface, you do not need to make any changes to the classes
that implement it.

For instance, suppose we want to add a new method to our interface
MyInterface. If we simply add the method declaration to the interface as
shown below, we will get an error.

interface MyInterface{

int myInt = 5;

void someMethod();

void someNewMethod();

}

This is because the class that implements this interface (MyClass) did not
implement the new method. A class that implements an interface must
implement all the abstract methods in the interface. Hence, if you add an
abstract method to your interface, you need to ensure that all classes that

implement your interface implement the new method. This is often
impossible to do as you may have no idea which classes implemented your
interface.

To overcome this problem, Java added support for default and static methods
for interfaces. This allows us to add methods to our interfaces without having
to make any changes to the classes that implemented it.

8.5 Access Modifiers Revisited

Now that we have covered various topics related to inheritance, let us take a
second look at the concept of access modifiers in object oriented
programming. Earlier, we learnt that an access modifier is like a gate-keeper.
It controls who has access to a certain field or method. Java comes with 3
access modifiers: private, public and protected. If an access modifier is
not stated, the access level is taken to be package-private.

To understand how private, public, protected and package-private work,
let’s consider the example below. We’ll be using fields to demonstrate the
concept. The same applies to methods.

Create a new NetBeans project and name it ModifierDemo. Replace the code
in ModiferDemo.java with the following

package modifierdemo;

public class ModifierDemo {

public int publicNum = 2;

protected int protectedNum = 3;

int packagePrivateNum = 4;

private int privateNum = 1;

}

Now create another class in the modifierdemo package and name it
ClassesInSamePackage. Replace the code in ClassesInSamePackage.java

with the following

package modifierdemo;

public class ClassesInSamePackage

{

//just an empty class

}

class ClassA extends ModifierDemo

{

public void printMessages()

{

 //This is ok

 System.out.println(publicNum);

 //This is ok

 System.out.println(protectedNum);

 //This is ok

 System.out.println(packagePrivateNum);

 //This is NOT ok

 System.out.println(privateNum);

}

}

class ClassB

{

public void printMessages()

{

 ModifierDemo p = new ModifierDemo();

 //This is ok

 System.out.println(p.publicNum);

 //This is ok

 System.out.println(p.protectedNum);

 //This is ok

 System.out.println(p.packagePrivateNum);

 //This is NOT ok

 System.out.println(p.privateNum);

}

}

In the code above, we added two classes to the ClassesInSamePackage.java
file. ClassA extends the ModifierDemo class while ClassB does not.

In ClassA, the first two println() statements will not give us any error as a
derived class can access any public and protected fields in the parent class. In
addition, the third println() statement will also not give us an error as both
files (ModifierDemo.java and ClassesInSamePackage.java) are inside the
same package. By default, a field declared without any access modifier is
package-private. A package-private field is accessible to all files in the same
package.

However, the fourth statement gives us an error as privateNum is a private
field and is thus only accessible in ModifierDemo itself.

In ClassB, as the class is not derived from ModifierDemo, we need to
instantiate a ModifierDemo object p in order to access the fields of
ModifierDemo.

As before, the first and third println() statements do not give us any error.
This is because a public field can be accessed by any class while a package-
private field can be accessed by any class in the same package.

The second println() statements also does not give us any errors. Even
though ClassB is not derived from ModifierDemo, it can access
protectedNum as protected fields are not only accessible to all subclasses of
the class in which they are declared, they are also accessible to all classes in
the same package (similar to package-private).

The fourth println() statement gives us an error as a private field is only
accessible in the class that it is declared.

Now, let’s look at what happens when two classes are not in the same
package. Create a new package for the project.

To do that, right click on the project name in the Project Explorer and select
New > Java Package… (refer to image below). Name this package
anotherpackage.

When you create a new package for the ModifierDemo project, you are
essentially creating a sub-folder under the main project folder.

If you browse to the main project folder now, you’ll see two sub-folders
created – one for the default package modifierdemo (which was created by
NetBeans when you created the project) and the other for the newly created
package, anotherpackage. If you can’t find the main folder, you can right-
click on the project name in the Project Explorer in NetBeans and select
Properties. This will bring up a dialogue box that shows where your project
is stored.

Now, add a new class to this package. To do that, right-click on the
anotherpackage package in the Project explorer and select New > Java
Class… You may need to click on the + sign in the Project Explorer if you
do not see this package. It is very important that you click on the correct
package when creating a new class in NetBeans.

Name this class ClassesInAnotherPackage. If you have done it correctly,
you should see the following structure in your Project explorer.

Replace the code in ClassesInAnotherPackage.java with the following:

package anotherpackage;

import modifierdemo.ModifierDemo;

public class ClassesInAnotherPackage

{

//just an empty class

}

class MyClassC extends ModifierDemo{

public void printMessages()

{

 //This is ok

 System.out.println(publicNum);

 //This is ok

 System.out.println(protectedNum);

 //This is NOT ok

 System.out.println(packagePrivateNum);

 //This is NOT ok

 System.out.println(privateNum);

}

}

class MyClassD {

public void printMessages()

{

 ModifierDemo p = new ModifierDemo();

 //This is ok

 System.out.println(p.publicNum);

 //This is NOT ok

 System.out.println(p.protectedNum);

 //This is NOT ok

 System.out.println(p.packagePrivateNum);

 //This is NOT ok

 System.out.println(p.privateNum);

}

}

In the example above, ClassC can access publicNum and protectedNum but
not packagePrivateNum and privateNum. It can access protectedNum
because it is a child class of ModifierDemo even though it is not in the same
package as ModifierDemo. On the other hand, it cannot access
packagePrivateNum because this field is only accessible by classes in the
same package as ModifierDemo.

Next, for ClassD, it can only access publicNum. It cannot access
protectedNum as it is neither a subclass of ModifierDemo nor in the same
package. Similarly, it cannot access packagePrivateNum and privateNum.

In short, anything that is declared as public is accessible everywhere; there

are no restrictions on accessing public fields. On the other hand, anything
declared as private is only accessible within the class in which it is declared.
Anything declared as protected is accessible within the class in which it is
declared, any class that is derived from it and any class that is in the same
package as the class that it is declared in. Finally, anything declared without
an access modifier is package-private and is only accessible within the
package in which it is declared.

Chapter 9: Collections

Congratulations on making it thus far. We’ve come a long way.

In the last two chapters, you learned how to write your own classes and
instantiate objects.

In this chapter, we are going to look at a framework that Java provides to
enable us to easily store and manipulate these objects. Specifically, we’ll be
looking at the Java Collections Framework.

9.1 The Java Collections Framework

The Java Collections Framework is a set of pre-written classes and interfaces
that Java provides to help us organise and manipulate groups of objects.
Using the Collections Framework, we can choose to organise our objects in
different formats such as lists, sets, queues or maps.

We’ll be looking at how to use lists in this chapter.

The Java Collections Framework standardizes the way in which groups of
objects are handled. Hence, once you know how to use lists, you’ll find it
easier to learn other collections such as sets or queues.

9.2 Autoboxing and Unboxing

Before we can discuss the Java Collections Framework, we need to first
discuss the concept of autoboxing and unboxing.

Previously in Chapter 3, we learned about the 8 primitive types in Java.
These 8 primitive types are basic data types and not objects.

However, Java is an object-oriented language and much of language revolves
around the idea of treating everything as an object. Hence, oftentimes, we

find it necessary to convert a primitive type into an object.

To facilitate this conversion, Java provides us with what is known as wrapper
classes. Each primitive type in Java has a corresponding wrapper class. These
wrapper classes contain a number of useful methods that we can use. The
wrapper classes for

boolean, char, byte, short, int, long, float and double

are

Boolean, Character, Byte, Short, Integer, Long, Float and Double
respectively.

Converting from a primitive data type into a wrapper class object is easy.

For instance, to convert int into an Integer object, we do the following:

Integer intObject = new Integer(100);

Here, we declare and instantiate an Integer object by passing an int value of
100 to the Integer class constructor. This constructor accepts the value and
creates an Integer object based on that value.

If we want to convert the Integer object back to an int, we use the
intValue() method. The code is as follows:

int m = intObject.intValue();

The intValue() method returns an int type which we assign to m.

As you can see, converting from a primitive data type to an object and vice
versa is relatively straightforward. However in practice, it is actually simpler
than what is shown above. Java provides us with two mechanisms known as
autoboxing and unboxing. This allows for automatic conversion.

To convert from int to Integer, instead of writing

Integer intObject = new Integer(100);

we can simply write

Integer intObject = 100;

Here, we simply assign the value 100 to intObject. We do not need to pass
this int value to the Integer constructor; Java does it for us behind the
scene. This process is known as autoboxing.

To convert from Integer to int, instead of writing

int m = intObject.intValue();

we can simply write

int m = intObject;

We do not need to explicitly use the intValue() method. When we assign an
Integer object to an int variable, Java automatically converts the Integer
object to int type. This process is known as unboxing.

As we can see, wrapper classes provide us with a convenient way to convert
primitive types into objects and vice verse. Besides this purpose, wrapper
classes also have another major use – they provide us with methods for
converting strings into primitive types. Suppose you want to convert a string
into an int, you can use the parseInt() method in the Integer class as
shown below:

int n = Integer.parseInt("5");

Note that "5" is a string as we use double quotes. The
Integer.parseInt("5") method returns the int value 5, which we then
assign to n.

If the string cannot be converted into an int, the method will throw a
NumberFormatException. For instance, the statement below will give us an
error:

int p = Integer.parseInt("ABC");

In addition to converting a string into an int, we can also convert a string
into a double using the parseDouble() method found in the Double class:

double q = Double.parseDouble("5.1");

Similarly, we’ll get an error if the string cannot be converted into a double.

9.3 Lists

Now that we are familiar with wrapper classes, let us look at lists. A list is
very similar to an array, but is more flexible. Specifically, its size can be
changed.

Previously, in Chapter 4, we learned that the size of an array cannot be
changed once we initialize the array or if we state the number of elements
when declaring it.

For instance, if you declare the array as
int[] myArray = new int[10];

myArray can only hold 10 values. If you write myArray[10] (which refers to
the 11th value since array index starts from zero), you will get an error.

If you need greater flexibility in your program, you can use a list. Java comes
with a pre-written List interface that is part of the Java Collections
Framework. This interface is implemented by a few classes. The most
commonly used classes that implement the List interface are the ArrayList
and LinkedList classes. We’ll look at ArrayList first.

9.4 ArrayList

The ArrayList class is a pre-written class that implements the List interface.
Like all other collections in the Java Collections Framerwork, an ArrayList
can only be used to store objects (not primitive data types). Hence, if we want
to declare a list of integers, we have to use Integer instead of int.

Whenever you use an ArrayList, you have to import the
java.util.ArrayList class using the statement below

import java.util.ArrayList;

The syntax for declaring and instantiating an ArrayList is as follows:

ArrayList<Type> nameOfArrayList = new ArrayList<>();

For instance, to declare and instantiate an ArrayList of Integer objects, we
write

ArrayList<Integer> userAgeList = new ArrayList<>();

On the left side of the statement, we declared an ArrayList variable.

ArrayList is a keyword to indicate that you are declaring an ArrayList

<Integer> indicates that this ArrayList is used to store Integer objects

userAgeList is the name of the ArrayList.

On the right side, we instantiate a new ArrayList object using the new
keyword and assign it to userAgeList.

If you want the ArrayList to store String objects instead, you declare and
instantiate it as

ArrayList<String> userNameList = new ArrayList<>();

In both examples above, we specifically declared an ArrayList and assigned
an ArrayList to it. However, if you prefer, you can also choose to declare a
List instead and assign an ArrayList to it.

This is allowed because List is the superinterface of ArrayList.

To declare a List and assign an ArrayList to it, we write

List<String> userNameList2 = new ArrayList<>();

You need to import java.util.List if you do it this way.

9.4.1 ArrayList Methods

The ArrayList class comes with a large number of pre-written methods that
we can use. All methods discussed below can be used whether you declared
an ArrayList or you declared a List and assigned an ArrayList to it.

add()

To add members to a list, use the add() method.

userAgeList.add(40);

userAgeList.add(53);

userAgeList.add(45);

userAgeList.add(53);

userAgeList now has 4 members.

You can use System.out.println() to print out the members of a list. If you
write

System.out.println(userAgeList);

you’ll get

[40, 53, 45, 53]

as the output.

To add members at a specific position, do the following:

userAgeList.add(2, 51);

This inserts the number 51 into index 2 (i.e. the third position).

userAgeList now becomes [40, 53, 51, 45, 53].

set()

To replace an element at a specified position with another element, use the
set() method.

For instance, to change the element at index 3 to 49, do the following:

userAgeList.set(3, 49);

The first argument is the index of the element that you want to replace and
the second argument is the value that you want to replace it with.

userAgeList now becomes [40, 53, 51, 49, 53].

remove()

To remove member at a specific position from the list, use the remove()
method. The remove() method takes in the index of the item to be removed
as argument. For instance, if we write

userAgeList.remove(3);

The element at index 3 is removed.

userAgeList becomes [40, 53, 51, 53].

get()

To get the element at a specific position, use the get() method.

userAgeList.get(2);

gives us the number 51.

size()

To find out the number of elements in the list, use the size() method.

userAgeList.size() gives us 4 as there are 4 elements in the ArrayList at
the moment.

contains()

To check if a list contains a certain member, use the contains() method.

To check if userAgeList contains ‘51’, we write

userAgeList.contains(51);

we will get true as the result.
If we write

userAgeList.contains(12);

we will get false as the result.

indexOf()

To get the index of the first occurrence of a certain element, use the
indexOf() method. If the element does not exist in the ArrayList, the
method returns -1.

For instance, if we write

userAgeList.indexOf(53);

we’ll get 1 as the result. Even though 53 appears in the ArrayList twice,
we’ll only get the index of the first occurrence.

If we write

userAgeList.indexOf(12);

we’ll get -1 as the number 12 does not exist in the ArrayList.

toArray()

To get all the elements in the ArrayList, use the toArray() method. This
method returns an array of Object type containing all of the elements in the
ArrayList in proper sequence (from first to last element).

For instance, we can write

Object[] myArray = userAgeList.toArray();

to convert userAgeList to an Object[] array. (Recall that the Object class is
the parent class of all classes in Java.)

If you want toArray() to return a specific type of array instead, you can pass
the type of array in as an argument. For instance, if you want toArray() to
return an Integer[] array instead of the default Object[] array, you can

write

Integer[] myIntArray = userAgeList.toArray(new Integer[0]);

Here we pass an Integer array of size 0 (new Integer[0]) to the toArray()
method.

When we do this, the toArray() method returns an Integer array which we
can then assign to myIntArray.

clear()

To remove all items in a list, use the clear() method. If we write

userAgeList.clear();

we will have no elements left in the list.

For a complete list of all the ArrayList methods available in Java, check out
this page https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

9.5 LinkedList

Next, let’s look at LinkedList.

A LinkedList is very similar to an ArrayList and is thus very similar to use.
They both implement the List interface.

The main difference between a LinkedList and an ArrayList is their
implementation. An ArrayList is implemented as a resizable array. As more
elements are added, its size is increased dynamically. Whenever we add a
new element to the middle of an ArrayList, all the elements after it have to
be shifted. For instance, if myArrayList has three elements as shown below

myArrayList = {"Hello", "Good", "Morning"};

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

and we want to insert the string “World” into position 1 (i.e. after “Hello”),
all the elements after “Hello” have to be shifted.

Similarly, when we delete an element from an ArrayList, all the elements
after the deleted element have to be shifted up. This can result in a significant
delay if the ArrayList is large.

If there is a need for frequent addition and deletion of elements from a List,
it is better to use a LinkedList. A LinkedList stores the addresses of the
elements before and after each element. For instance, suppose a LinkedList
has three elements "Hello", "Good" and "Morning" at addresses 111, 122 and
133 respectively. The diagram below shows how a LinkedList is
implemented.

As “Hello” is the first element, there is no element before it. Hence the box
on the left shows an arrow pointing to null (null simply means it is pointing
to nothing). The box on the right stores the address 122, which is the address
of the next element.

For the element “Good”, the box on the left stores the address 111 (the
address of the previous element) and the box on the right stores the address
133 (the address of the next element).

Now suppose we delete the element “Good”. The diagram below shows how
the addresses are updated (the underlined addresses).

For the element “Hello”, the box on the right now stores the address 133,
which is the address of the element “Morning”.

When the List is implemented as such, there is no need to shift any element
when elements are added or deleted. The addresses are simply updated when
necessary

Since there is now no element pointing to the element “Good”, the Java
Virtual Machine will eventually delete this element so as to free up any
memory that it may be using.

When to use a LinkedList over an ArrayList?

Generally, we use a LinkedList when there is a need to add or remove
elements frequently.

In addition, the LinkedList class implements the Queue and Deque interfaces
on top of the List interface. Queue and Deque are two other interfaces in the
Java Collections Framework. Hence, you will have to use a LinkedList
instead of an ArrayList if you want to use any of the methods from these
two interfaces (such as offer(), peek(), poll(), getFirst(), getLast()
etc).

However, note that a LinkedList has higher memory consumption than an
ArrayList as memory is needed to store the addresses of the neighbouring
elements. It is also more time-consuming to find a specific element in a
LinkedList as you have to start from the first element in the list and follow
the references until you get to that item. This is in contrast to an ArrayList

where the address of each element can be calculated based on the address of
the first element. Therefore, it is not advisable to use a LinkedList if
memory is a concern or if there is a frequent need to search for an element.

Now, let’s look at how we can declare and instantiate a LinkedList. The
syntax is as follows:

LinkedList<Type> nameOfLinkedList = new LinkedList<>();

For instance, to declare and instantiate a LinkedList of Integer objects, we
write

LinkedList<Integer> userAgeLinkedList = new LinkedList<>();

This is very similar to how you declare and instantiate an ArrayList. The
only difference is you change the word ArrayList to LinkedList. You need
to import the LinkedList class when using a LinkedList. To do so, use the
import statement below:

import java.util.LinkedList;

Similar to an ArrayList, you can also choose to declare a List and assign a
LinkedList to it. To do that, you write

List<Integer> userAgeLinkedList2 = new LinkedList<>();

If you do it this way, you need to import the List class too.

9.5.1 LinkedList Methods

The LinkedList class comes with a large number of pre-written methods that
we can use. However, as both the LinkedList and ArrayList classes
implement the List interface, they share a lot of the same methods. In fact,
all the methods covered in the ArrayList section can be used with a
LinkedList.

That means you can use the add(), set(), get(), size(), remove(),
contains(), indexOf(), toArray() and clear() methods in the same way
for both ArrayList and LinkedList. To appreciate this fact, launch
NetBeans and start a new Project called ListDemo.

Replace the code with the code below:

package listdemo;

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.List;

public class ListDemo {

public static void main(String[] args) {

 List<Integer> userAgeList = new ArrayList<>();

 userAgeList.add(40);

 userAgeList.add(53);

 userAgeList.add(45);

 userAgeList.add(53);

 userAgeList.add(2, 51);

 System.out.println(userAgeList.size());

 userAgeList.remove(3);

 System.out.println(userAgeList.contains(12));

 System.out.println(userAgeList.indexOf(12));

 System.out.println(userAgeList.get(2));

 Integer[] userAgeArray = userAgeList.toArray(new

Integer[0]);

 System.out.println(userAgeArray[0]);

 System.out.println(userAgeList);

}

}

This code demonstrates some of the methods mentioned in the ArrayList
section. If you run the code, you’ll get

5

false

-1

51

40

[40, 53, 51, 53]

Now, change the statement

List<Integer> userAgeList = new ArrayList<>();

to

List<Integer> userAgeList = new LinkedList<>();

and run the program again.

What do you notice? Everything runs perfectly and you get the same output
right?

That’s because both the ArrayList class and LinkedList class implement the
List interface. Hence a lot of methods are common to both classes.

However, as mentioned above, in addition to implementing the List
interface, the LinkedList class also implements the Queue and Deque
interface. Therefore, it has some additional methods that are missing in the
List interface and the ArrayList class.

If you want to use these methods, you have to specifically declare a
LinkedList instead of a List. Change the statement

List<Integer> userAgeList = new LinkedList<>();

to

LinkedList<Integer> userAgeList = new LinkedList<>();

to try the methods below.

poll()

The poll() method returns the first element (also known as the head) of the
list and removes the element from the list. It returns null if the list is empty.

If userAgeList is currently [40, 53, 51, 53] and you write

System.out.println(userAgeList.poll());

you’ll get

40

as the output since the first element in userAgeList is 40. If you print out the
elements of the userAgeList again, you’ll get

[53, 51, 53].

The first element is removed from the list.

peek()

The peek() method is similar to the poll() method. It returns the first
element of the list but does not remove the element from the list. It returns
null if the list is empty.
getFirst()

The getFirst() method is almost identical to the peek() method. It returns
the first element of the list and does not remove the element. However, it
gives a NoSuchElementException exception when the list is empty.

getLast()

The getLast() method returns the last element of the list and does not

remove the element. It gives a NoSuchElementException exception when the
list is empty.

For a complete list of all the LinkedList methods available in Java, check
out this page
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

9.6 Using Lists in our Methods

Now that we are familiar with two of the most commonly used lists in Java,
let us look at how we can use these lists in our methods. Using lists in our
methods is very similar to how we use arrays in our methods. In the examples
below, we’ll use an ArrayList of Integer objects to demonstrate. The same
syntax applies for other types of collections.

To accept an ArrayList<Integer> as a parameter, we declare the method as

public void methodOne(ArrayList<Integer> m)

{

//Some implementation code

}

To return an ArrayList<Integer> from a method, we declare the method as

public ArrayList<Integer> methodTwo()

{

ArrayList<Integer> a = new ArrayList<>();

//Some implementation code

return a;

}

Suppose both methodOne() and methodTwo() are in a class called MyClass
and

MyClass mc = new MyClass();

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

To call methodOne(), we pass in an ArrayList as argument

ArrayList<Integer> b = new ArrayList<>();

mc.methodOne(b);

To call methodTwo(), we assign the result to an ArrayList.

ArrayList<Integer> c = mc.methodTwo();

Chapter 10: File Handling

We’ve come a long way. By now, you are familiar with quite a few core
concepts in Java. In this chapter, we are going to cover another important
topic in Java - reading and writing to an external file.

In Chapter 5 previously, we learned how to get input from users using
methods like nextInt(), nextDouble() and nextLine() etc. However, in
some cases, getting users to enter data into our program may not be practical,
especially if our program needs to work with large amounts of data. In cases
like this, a more convenient way is to prepare the needed information as an
external file and get our programs to read the information from the file.

Java provides us with a number of classes and methods to work with files.
The purpose of this chapter is to introduce you to one of the numerous ways
to do so. The classes that we are going to look at in this chapter are the File,
BufferedReader, FileReader, BufferedWriter and FileWriter classes. All
these classes are available in the java.io package. To use the methods in this
chapter, you have to add the following import statement:

import java.io.*;

to your program.

* indicates that we are importing the entire java.io package which contains
all the classes that we are going to use. Alternatively, you can import the
individual classes one by one if you prefer.

10.1 Reading a Text File

To read data from a text file, we use the FileReader class. The FileReader
class reads the contents of a file as a stream of characters, reading in one
character at a time.
In theory, this is all that is needed to read from a file. Once you create a

FileReader object, you are ready to read data from the file. However, in
practice, this is not the most efficient way to do it. A more efficient way is to
wrap a BufferedReader object around the FileReader object.

Like the name suggests, a BufferedReader object provides buffering for our
file reading operation. This concept is similar to video buffering when we
view videos online. Instead of reading one character at a time from the
network or disk, the BufferedReader object reads a larger block at a time so
as to speed up the process.

Suppose we want to read data from the file myFile.txt located in the same
folder as your project. The example below shows how it can be done. To try
this example, launch NetBeans and create a new project called
FileHandlingDemo. Replace the code with the code below:

1 package filehandlingdemo;

2 import java.io.*;

3

4 public class FileHandlingDemo {

5

6 public static void main(String[] args) {

7

8 String line;

9 BufferedReader reader = null;

10

11 try

12 {

13 reader = new BufferedReader(new

FileReader("myFile.txt"));

14 line = reader.readLine();

15 while (line != null)

16 {

17 System.out.println(line);

18 line = reader.readLine();

19 }

20 }

21 catch (IOException e)

22 {

23 System.out.println(e.getMessage());

24 }

25 finally

26 {

27 try

28 {

29 if (reader != null)

30 reader.close();

31 }

32 catch (IOException e)

33 {

34 System.out.println(e.getMessage());

35 }

36 }

37 }

38 }

In the code above, we use a try-catch-finally statement to handle our file
operations. This is because when working with files, errors can occur. For
instance, when we try to open the file, the system may not be able to find the
file. This will then generate an error which will be caught in the catch block.

Let’s look at the try block now.

On line 13, we have the following statement:

reader = new BufferedReader(new FileReader("myFile.txt"));

Here, we first create a FileReader object (the underlined portion) by passing
in the path of the file that we want to read. As this file is in the same folder as
the project, the path is simply "myFile.txt".

After creating the FileReader object, we create a new BufferedReader
object by passing in the FileReader object as an argument to the
BufferedReader constructor. This is what we mean when we say “wrap a
BufferedReader object around a FileReader object”. This is necessary
because the BufferedReader object needs to know what data stream to
buffer.

After creating the BufferedReader object, we assign it to the variable
reader. Now, we are ready to read from the file.

On line 14, we use the readLine() method provided by the BufferedReader
class to read the first line in the file. We do that using the statement

line = reader.readerLine();

If line is not null (i.e. data exists), the while statement from 15 to 19 will be
executed. Inside the while statement, we first use the println() method to
display the line read onto the screen. We then use another readLine()
statement (on line 18) to read the next line. This loop continues running until
the last line is read.

Next, from line 21 to 24, we have the catch block. This block simply
displays an error message if an exception occurs.

From line 25 to 36, we have the finally block. Inside this block, we use an
inner try block (lines 27 to 31) to try closing the BufferedReader object so
as to release any system resources that the object might be using. You should
always close your BufferedReader object once you no longer need it. If for
any reason, we fail to close the object correctly, the inner catch block from
line 32 to 35 will catch this error and display the corresponding error
message.

That’s it. That’s how you read a text file in Java. To run this program, first
create a text file named myFile.txt and save the file in the same folder as the
project. If you can’t find the project folder, you can right-click on the project
name in the Project Explorer in NetBeans and select Properties. This will
bring up a dialogue box that shows where your project is stored.
You can also save your file somewhere else, but remember to update the path
in the program. For instance, if you are using Windows and you saved it in
your Documents folder, the path will look something like

C:\\Users\\<UserName>\\Documents\\myFile.txt

where <UserName> should be replaced with your own user name. We have

to use double slashes \\ when writing this path. This is because if we only use
a single slash, the compiler will think the single slash is the beginning of an
escape sequence and interpret \U, \D etc as escape sequences. This will result
in an error.

Now try running the program. You’ll see the content of the text file displayed
as output on your screen. Not too complex right?

In fact, there is an even simpler way to read a file in Java. The preceding
section is included because there is a lot of legacy code that still uses this old
method. However, if you are using Java 7 or beyond, you can use what is
known as a try-with-resources statement. This statement will
automatically close the BufferedReader object for us so that we do not have
to call the close() method explicitly. To try out this method, replace the
previous code in the main() method with the code below.

String line;

try (BufferedReader reader = new BufferedReader(new

FileReader("myFile.txt")))

{

line = reader.readLine();

while (line != null)

{

 System.out.println(line);

 line = reader.readLine();

}

}

catch (IOException e)

{

System.out.println(e.getMessage());

}

Notice that we moved the statement

BufferedReader reader = new BufferedReader(new

FileReader("myFile.txt"))

and placed it within a pair of parenthesis after the try keyword? If you do it

this way, you do not have to explicitly close the BufferedReader object. Java
will automatically close the object for us when it is no longer needed. This
makes the code much shorter and is also safer as it eliminates the risk of us
forgetting to close the object. Try running this new program. It works the
same way as the previous program.

10.2 Writing to a Text File

Next, let us look at how to write to a text file. Writing to a file is very similar
to reading from it.

To write to a text file, we use the BufferdWriter and FileWriter class. The
code below shows how it can be done. Replace the code in the main()
method from the example above with the code below.

String text = "Hello World";

try (BufferedWriter writer = new BufferedWriter(new

FileWriter("myFile2.txt", true)))

{

writer.write(text);

writer.newLine();

}

catch (IOException e)

{

System.out.println(e.getMessage());

}

Notice that the code above is very similar to the code we wrote when we
wanted to read from a file? Indeed, the main difference is that we create a
BufferedWriter and a FileWriter object here instead.

In addition, when we create the FileWriter object, we passed in two
arguments – the path of the file and the value true.

When we create a FileWriter object this way, the program will create the
file myFile2.txt in your project folder if it does not exist. If the file exists, the
program will append whatever new data you want to write to the original file
(because we indicated true for the second argument).

If you want to overwrite any existing data in the file instead, you create a
FileWriter object like this:

new FileWriter("myFile2.txt", false)

or like this

new FileWriter("myFile2.txt")

When the second argument is omitted, the program will overwrite any
existing data by default.

Next, after we create the FileWriter object, we pass it as an argument to the
BufferedWriter constructor to create a new BufferedWriter object. We
then use the write() and newLine() methods to write to the file.

The write() method writes the text to the file. The newLine() method moves
the cursor to a new line.

Try running this code. If the file myFile2.txt does not already exist, a new file
will be created in your project folder. Double click on the file created and
you’ll see the words “Hello World” written on it.

Now run the program again. You’ll see a second “Hello World” line added to
it.

If you prefer not to append new data, change the statement

try (BufferedWriter writer = new BufferedWriter(new

FileWriter("myFile2.txt", true)))

to

try (BufferedWriter writer = new BufferedWriter(new

FileWriter("myFile2.txt")))

Run the program twice and see what happens. When the program is run a
second time, only one “Hello World” line is shown on the file. This is
because the previous “Hello World” line has been overwritten.

In the example above, we used the try-with-resources statement to create
our BufferedWriter object. Hence, we do not have to explicitly close the
BufferedWriter object. If you are using a Java version earlier than Java 7,
you’ll have to close the BufferedWriter object in the finally block. The
way to do it is very similar to what’s shown in the first example for this
chapter. You can refer to it for help if you are unsure how to do it.

10.3 Renaming and Deleting Files

Now that we know how to read and write to files, let’s look at how to rename
and delete files in Java. To rename and delete files, we use two pre-written
methods found in the File class.

To rename a file, we need to create two File objects. For instance, if we want
to rename myFile.txt to myNewFile.txt, we create two File objects with the
two file names as shown below:

File f = new File("myFile.txt");

File nf = new File("myNewFile.txt");

We can then rename the file by writing

f.renameTo(nf);

The renameTo() method returns true if the file is successfully renamed, and
false if it is not successful.

If you want to delete a file instead, we use the delete() method as shown
below:

nf.delete();

This method returns true if the file is successfully deleted. Otherwise, it
returns false.

We’ll be using these two methods in your project later.

Chapter 11: Advanced Java Topics

Congratulations! We’ve come to the last chapter before the project. In this
chapter, we are going to briefly cover a few advanced topics in Java, namely:
Generics, Lambda Expressions and Functional Interfaces.

11.1 Generics

First, let’s look at generics.

We have already used generics when we discussed LinkedList and
ArrayList in Chapter 9. Recall that in Chapter 9, you learned to declare an
ArrayList of Integer using the following statement

ArrayList<Integer> myArrayList = new ArrayList();

We mentioned that you write Integer inside the angle brackets < > to
indicate that the ArrayList contains Integer objects. In contrast, if you want
to declare an ArrayList of String objects, you write

ArrayList<String> myArrayList = new ArrayList();

This is the gist of generics. Generics allow us to create classes (such as the
ArrayList class), interfaces and methods in which the type of the data that
they operate on is specified as a parameter in angle brackets.

To understand how this works, let’s write our own generic class. We’ll start
with a normal class first.

Launch NetBeans and create a new Project called GenericsDemo.

Replace the code with the code below.

package genericsdemo;

public class GenericsDemo {

public static void main(String[] args) {

 MyGenericsClass g = new MyGenericsClass();

 g.setMyVar(6);

 g.printValue();

}

}

class MyGenericsClass{

private Integer myVar;

void setMyVar (Integer i){

 myVar = i;

}

void printValue(){

 System.out.println("The value of myVar is " + myVar);

}

}

In the code above, we created a class called MyGenericsClass. This class
contains a private field (myVar) and two methods called setMyVar() and
printValue() which sets and prints the value of myVar respectively.

In the main() method, we instantiated a MyGenericsClass object. Next, we
set the value of myVar to 6 and print out its value using the printValue()
method. If you run this program, everything will work fine and you’ll get the
following output:

The value of myVar is 6

However, let’s suppose you want to set the value of myVar to 6.1 instead. Try
changing the line

g.setMyVar(6);

to

g.setMyVar(6.1);

and run the program again. What happens? You get an error right? This is
because myVar is declared to be of Integer type in MyGenericsClass. Since
6.1 is not of Integer type, we get an error.

What if you want your class and method to work with both Integer and
Double types? In this case, you can use generics. To do that, you have to
make two changes to MyGenericsClass.

Firstly, you need to change the class declaration to

class MyGenericsClass<T>

T is known as a type parameter. In other words, it is a parameter for
specifying the type of data that the class will operate on. It is a convention to
use the uppercase letter T to represent a type parameter.

Next, you need to change all the Integer keywords in myGenericsClass to T.

In other words, you need to change

private Integer myVar;

to

private T myVar;

and

void setMyVar (Integer i)

to

void setMyVar (T i)

Now try to run the program again. What happens?

The program works now right? In fact, you can set the value of myVar to a
string and the program will still work. Try changing the line

g.setMyVar(6.1);

to

g.setMyVar("Java");

and run the program again. It’ll still work.

This, in essence, is how generics work. Generics allow us to create a single
class, interface or method that automatically works with different types of
data.

Simple enough, right?

However, this is not the sole advantage of using generics. Another advantage
of generics is it allows for type-checking.

In our example above, we’ve just seen that MyGenericsClass works with
Integer, Double and String type. In fact, it will work with any reference
type. While this makes our code more flexible, it can also lead to errors.

For instance, suppose myVar is actually used to store the number of students
in a class. If there are ten students in the class and we write

g.setMyVar(10);

all is good. However, suppose we make a mistake and write

g.setMyVar(10.2);

the compiler will not be able to spot this error since setMyVar() is a generic
method. This leads to logical errors that can be very difficult to detect in large
programs. To overcome this problem, Java provides us with a solution.
Instead of declaring g using the statement below,

MyGenericsClass g = new MyGenericsClass();

we’ll be more specific and declare it as follows:

MyGenericsClass<Integer> g = new MyGenericsClass();

When we add <Integer> to the declaration, the compiler will know that the
type parameter T for MyGenericsClass should be replaced with Integer
when we are working with g.

Hence, if we write

g.setMyVar(10.2);

we’ll get an error.

In short, generics provide us with a way to write classes, interfaces and
methods that work with different types of data. Hence, we do not need to
write a new class for each data type that we want it to work with.

In addition, when we instantiate an object, we can specify what data type we
want the object to work with. This allows the compiler to check for any errors
that can arise if we use the wrong data type.

11.1.1 Bounded Types

In the previous section, we discussed how generics work in general. The type
parameter T in MyGenericClass can accept any data type as long as it is a
reference type (generics does not work with primitive types).

In this section, we’ll look at how we can be more specific when using

generics. Sometimes, it may be useful to limit the data types that can be
passed to a type parameter. For instance, we may want to create a generic
class that only works with numbers. This generic class may contain methods
that calculate the sum and average of these numbers. For cases like these, we
can use a bounded type parameter. This can be done using the extends
clause.

If you specify the type parameter as

<T extends A>

T can only accept data types that are subtypes of A.

All numeric classes in Java (e.g. Integer and Double) are subclasses of the
Number class. If we want our class to only work with numeric data types, we
can declare the class as

class MyGenericsClass2 <T extends Number>

{

}

Now, if we instantiate a MyGenericsClass2 object as follows,

MyGenericsClass2<String> g2 = new MyGenericsClass2();

we’ll get an error as String is not a subclass of Number.

In contrast, the statements

MyGenericsClass2<Integer> g3 = new MyGenericsClass2();

MyGenericsClass2<Double> g4 = new MyGenericsClass2();

are fine as Integer and Double are both subclasses of Number.

We’ve just covered a brief introduction of generics. A complete discussion
will require a full chapter and is beyond the scope of this book.

Next, let us move on to functional interfaces and lambda expressions.

11.2 Functional Interfaces and Lambda Expressions

The concept of functional interfaces and lambda expressions go hand in hand.
First, let’s look at the concept of a functional interface.

A functional interface is simply an interface that contains one and only one
abstract method. It can contain other static and default methods, but there
must only be one abstract method.

Consider the following interface:

@FunctionalInterface

interface MyNumber{

double getValue();

}

This interface contains one abstract method (recall that there is no need to use
the abstract modifier here as methods in interfaces are abstract by default).
Since this interface only contains one abstract method, it is known as a
functional interface. In a functional interface, the abstract method specifies
the intended purpose of the interface. In this example, the function of the
interface is to return a certain value that is of double type.

You can add the @FunctionalInterface annotation to inform the compiler
that this is a functional interface as shown in our example above.

Now that we have defined what a functional interface is, let’s look at how we
can implement this interface. Previously, we learned how we can use a class
to implement an interface. In this chapter, we are going to learn how we can
use lambda expressions to implement the interface.

The syntax of a lambda expression is as follows

(parameter list) -> lambda body

This syntax probably looks meaningless at the moment. Let us look at some
examples to illustrate how it’s used.

Suppose you want to implement the getValue() method as follows:

double getValue()

{

return 12.3;

}

This method has no parameter and simply returns the value 12.3. We can
rewrite the method as the following lambda expression:

() -> 12.3;

The left side of the lambda expression shows an empty pair of parenthesis
which indicates that the method has no parameter. The right side simply
consists of the number 12.3. This is equivalent to the statement

return 12.3;

with the return keyword omitted.

Let’s look at another example. Suppose you want to implement getValue()
as

double getValue()

{

return 2 + 3;

}

This method has no parameter and returns the sum of 2 and 3. We can rewrite
the method as a lambda expression as shown below:

() -> 2 + 3;

Next, let’s look at a more complex example.

Supposed you want to implement getValue() as

double getValue()

{

int counter = 1;

int sum = 0;

while (counter<5)

{

 sum = sum + counter;

 counter++;

}

return sum;

}

You can rewrite it as the following lambda expression:

() -> {

 int counter = 1;

 int sum = 0;

 while (counter<5)

 {

 sum = sum + counter;

 counter++;

 }

 return sum;

};

Notice that this lambda expression is slightly different from the previous two.
Firstly, the lambda body - the right side of the lambda expression - is not
made up of a single expression (such as 12.3 and 2+3 in the previous two
examples). Instead it contains a while statement. The previous two lambda
bodies are known as expression bodies because they consist of single
expressions. In contrast, the lambda body in the third example is known as a
block body.

A block body allows the body of a lambda expression to contain multiple

statements. To create a block body, you simply have to enclose the
statements in braces as shown in the example above. In addition, you have to
add a semi-colon after the closing brace. Finally, as the block body has more
than one expression, it is necessary to use the return keyword to return a
value. This is in contrast to the first two examples where the return keyword
is omitted.

Now that we are familiar with how lambda expressions with no parameters
work, let’s look at some examples of lambda expressions that involve
parameters. Supposed we have another functional interface called
MyNumberPara as shown below:

@FunctionalInterface

interface MyNumberPara{

double getValue2(int n, int m);

}

This interface has a method called getValue2() that has two int parameters
n and m.

If you want to implement getValue2() as:

double getValue2(int n, int m)

{

return n + m;

}

We can rewrite the method as the following lambda expression:

(n, m) -> n + m;

The left side of this lambda expression contains two parameters and the right
side shows the expression for computing the return value. It is not necessary
for us to explicitly state the data type of the parameters when we use lambda
expressions. However, when we invoke the getValue2() method, we must
pass in the correct data type. We’ll look at how to invoke the getValue2()
method later.

Next, supposed we want to implement getValue2() as:

double getValue2(int n, int m)

{

if (n > 10)

 return m;

else

 return m+1;

}

We can rewrite the method as the following lambda expression:

(n, m) -> {

 if (n > 10)

 return m;

 else

 return m+1;

};

Now that we are familiar with some basic lambda expressions, let’s look at
how we can invoke these methods. To invoke these methods, we have to do
two things:

First, we need to declare a reference to each of the functional interfaces. We
do that by writing

MyNumber num1;

MyNumberPara num2;

Recall that we cannot instantiate an interface, hence we cannot write
something like

MyNumber num1 = new MyNumber();

but declaring a reference to it is fine.

After declaring the references, we can assign multiple lambda expressions to
them.

We’ll assign the lambda expressions with no parameter to num1 and the
lambda expressions with two parameters to num2.

Following that, we can use num1 and num2 to call the getValue() and
getValue2() methods using the dot operator. Let’s look at a complete
example of how this works.

Launch NetBeans and create a new project called LambdaDemo.

Replace the code with the following code:

1 package lambdademo;

2

3 public class LambdaDemo {

4

5 public static void main(String[] args) {

6

7 MyNumber num1;

8

9 num1 = () -> 12.3;

10 System.out.println("The value is " + num1.getValue());

11

12 num1 = () -> 2 + 3;

13 System.out.println("The value is " + num1.getValue());

14

15 num1 = () -> {

16 int counter = 1;

17 int sum = 0;

18 while (counter<5)

19 {

20 sum = sum + counter;

21 counter++;

22 }

23

24 return sum;

25 };

26 System.out.println("The value is " + num1.getValue());

27

28 MyNumberPara num2;

29

30 num2 = (n, m) -> n + m;

31 System.out.println("The value is " + num2.getValue2(2,

3));

32

33 num2 = (n, m) -> {

34 if (n > 10)

35 return m;

36 else

37 return m+1;

38 };

39 System.out.println("The value is " + num2.getValue2(3,

9));

40 //System.out.println("The value is " +

num2.getValue2(3, 9.1));

41 }

42

43 }

44

45 @FunctionalInterface

46 interface MyNumber{

47 double getValue();

48 }

49

50 @FunctionalInterface

51 interface MyNumberPara{

52 double getValue2(int n, int m);

53 }

From line 45 to 48, we declared the functional interface MyNumber. From line
50 to 53, we declared another functional interface MyNumberPara.

From line 5 to 41, we have the main() method. Inside the main() method, we
declare a reference (num1) to MyNumber on line 7. Next, we assign a lambda
expression to num1 on line 9. On line 10, we invoke the getValue() method
by writing num1.getValue(). We then use the println() method to print the
value returned by the getValue() method.

From line 12 to 26, we include other examples of different lambda
expressions and how we invoke the getValue() method. From line 28 to 39,

we show examples of lambda expressions that take in two int arguments. We
invoke the getValue2() method by passing in two int values.

If you run the program above, you’ll get the following output:

The value is 12.3

The value is 5.0

The value is 10.0

The value is 5.0

The value is 10.0

Note that on line 40, we commented out the statement

System.out.println("The value is " + num2.getValue2(3, 9.1));

This is because in this statement, we tried to pass in the values 3 and 9.1 to
the getValue2() method for num2. However, the declaration of getValue2()
in MyNumberPara states that getValue2() has two int parameters. Hence, we
get an error as 9.1 is not of int type. Try removing the // in front of this
statement and run the program again. You’ll get an error.

Chapter 12: Project

Congratulations!! We’ve come to the last chapter of the book where we’ll be
working on a project together.

In this final chapter, we are going to get our feet wet by coding a complete
console application that demonstrates the different concepts that you just
learned.

Ready?

12.1 Overview

For this project, we will be working on a basic membership management
program for a fitness centre. This fitness centre has three outlets: Club
Mercury, Club Neptune and Club Jupiter. It also has two types of members:
Single Club Members and Multi Club Members.

A single club member has access to only one of the three clubs. A multi club
member, on the other hand, has access to all three clubs.

The membership fee of a member depends on whether he/she is a single club
or a multi club member. For single club members, the fees also depend on
which club he/she has access to.

Finally, multi club members are awarded membership points for joining the
club. Upon sign up, they are awarded 100 points which they can use to
redeem gifts and drinks from the store. Our program will not handle the
redemption process. All that we’ll do is add 100 points to the multi club
member’s account.

This application uses a csv file to store information about each member.
Whenever we launch the application, we’ll read the information from the csv
file and transfer it to a LinkedList. When we add a member to the LinkedList

or remove a member from it, we’ll update the csv file.

Let’s start coding our application.

This application consists of six classes and one interface as shown below.

Classes

Member

SingleClubMember extends Member

MultiClubMember extends Member

MembershipManagement

FileHandler

Java Project

Interface

Calculator

12.2 The Member Class

We’ll start with the Member class. This class contains basic information about
each member. It serves as a parent class from which two other classes will be
derived.

Launch NetBeans and create a new project called JavaProject. Add a new
class to the javaproject package and name it Member.

Fields

This class has four private fields. The fields are memberType, memberID, name
and fees, which are of char, int, String and double type respectively.

Try declaring the fields yourself.

Constructor

Next, let’s create the constructor for the Member class. This class has one
constructor with four parameters, pMemberType (char), pMemberID (int),
pName (String) and pFees (double). Inside the constructor, we assign the
four parameters to the appropriate fields. Try coding this constructor
yourself.

Methods

Now, we shall create the setter and getter methods for the four private fields
above. All setter and getter methods are public.

Each setter method has an appropriate parameter and assigns the parameter to
the field. Each getter method returns the value of the field. An example is
shown below:

public void setMemberType(char pMemberType)

{

memberType = pMemberType;

}

public char getMemberType()

{

return memberType;

}

Try coding the remaining setter and getter methods yourself.

Finally, let’s write a toString() method for the class. As mentioned earlier
in Chapter 8, all classes in Java are derived from a base class known as the
Object class. The toString() method is a pre-written method in the Object
class that returns a string representing the object. However, the default
toString() method is not very informative. Hence, it is customary (and
expected of us) to override this method for our own classes.

The method is declared as

@Override

public String toString(){

}

You are encouraged to add the @Override annotation to inform the compiler
that you are overriding a method.

This method only does one thing: it returns a string that provides information
about a particular member. For instance, the method may return a string with
the following information:

"S, 1, Yvonne, 950.0"

where S, 1, Yvonne and 950.0 are values of the memberType, memberID, name
and fees fields respectively for this particular member.

Try coding this method yourself.

If you are stuck, you can refer to the example below that shows how you can
return a string with the first two fields (memberType and memberID).

return memberType + ", " + memberID;

Try modifying this statement to return a string with all the four fields.

Once you are done with this method, the Member class is complete.

The list below shows a summary of the Member class.

Fields

private char memberType;

private int memberID;

private String name;

private double fees;

Constructor

Member(char pMemberType, int pMemberID, String pName, double

pFees)

Methods

public void setMemberType(char pMemberType)

public void setMemberID(int pMemberID)

public void setName(String pName)

public void setFees(double pFees)

public char getMemberType()

public int getMemberID()

public String getName()

public double getFees()

public String toString()

12.3 The SingleClubMember Class

Next, we’ll code a subclass for the Member class. Add a new class to the
javaproject package and name it SingleClubMember.

First, we need to indicate that this class extends the Member class by changing
the class declaration to

public class SingleClubMember extends Member{

}

Fields

The SingleClubMember class has one private int field called club. Try
declaring this field yourself.

Constructor

Next, let’s code the constructor for the SingleClubMember class. This class
has one constructor with five parameters, pMemberType (char), pMemberID
(int), pName (String), pFees (double) and pClub (int). Inside the
constructor, we first use the super keyword to call the constructor in the
parent class. We pass in pMemberType, pMemberID, pName and pFees to the
parent constructor. Next, we assign the parameter pClub to the club field.

Try coding this constructor yourself.

Methods

Now, let’s add a getter and setter method for the club field. The setter method
has an appropriate parameter and assigns the parameter to the field. The
getter method returns the value of the field. Both methods are public. Try
coding these methods yourself.

Finally, we’ll code a toString() method for this class as well. This method
is public. It is similar to the toString() method in the parent class, but
displays an additional piece of information – the club that the member
belongs to.

For instance, the method may return a string with the following information:

"S, 1, Yvonne, 950.0, 2"

where S, 1, Yvonne, 950.0 and 2 are values of the memberType, memberID,
name, fees and club fields respectively.

We can make use of the toString() method in the parent class to help us
generate the string in the child class.

To use a method in the parent class, we use the super keyword just like we
did when we called the parent class’ constructor. To call the toString()

method in the parent class, we write

super.toString()

Recall that this method returns a string? We can then concatenate this string
with other substrings to display additional information.

Try coding this method yourself.
Once you are done, the SingleClubMember class is complete. The table below
shows a summary of the class.

Fields

private int club

Constructor

SingleClubMember(char pMemberType, int pMemberID, String pName,

double pFees, int pClub)

Methods

public void setClub(int pClub)

public int getClub()

public String toString()

12.4 The MultiClubMember Class

Besides the SingleClubMember class, we’ll also extend another class from the
Member base class. Add a new class to the javaproject package and name it
MultiClubMember. Use the extends keyword to indicate that this class
extends the Member class.

Fields

The MultiClubMember class has one field – a private int field called
membershipPoints. Try declaring this field yourself.

Constructor

Next, code the constructor for the MultiClubMember class. This constructor is
very similar to the constructor for SingleClubMember. It also has 5
parameters. The main difference is the last parameter is pMembershipPoints
(int) instead of pClub. Inside the constructor, we’ll use the super keyword to
call the parent constructor. In addition, we’ll assign pMembershipPoints to
the field membershipPoints.

Methods

Next, we’ll code the getter and setter methods for the membershipPoints
field. In addition, we’ll add a toString() method to override the toString()
method in the parent class. This method prints out the following information:

"M, 2, Eric, 1320.0, 100"

where M, 2, Eric, 1320.0 and 100 are values of the memberType, memberID,
name, fees and membershipPoints fields respectively.

Try coding these methods yourself. All methods are public.

Once you are done, the MultiClubMember class is complete. A summary of
the class is shown below:

Fields

private int membershipPoints

Constructor

MultiClubMember(char pMemberType, int pMemberID, String pName,

double pFees, int pMembershipPoints)

Methods

public void setMembershipPoints(int pMembershipPoints)

public int getMembershipPoints()

public String toString()

12.5 The Calculator Interface

Now that we are done with the Member class and its subclasses, let us move
on to code a functional interface that we’ll be using in the project. This
interface is a generic interface. You are advised to re-read the previous
chapter if you are not familiar with Java generics and functional interfaces.

Create a new Java interface in the javaproject package and name it
Calculator. To do that, right-click on the package name in the Project
explorer and select New > Java Interface.

This interface only works with numerical data types. Hence, it accepts a
bounded type parameter. Try declaring the interface yourself.

Refer to the section on “Bounded Types” in Chapter 11.1.1 if you have
forgotten what a bounded type parameter is. The example in that section
shows how we declare a generic class. The syntax for declaring a generic
interface is similar, except that we use the keyword “interface” instead of
“class”.

After declaring the interface, we’ll add a method to it. The Calculator
interface is a functional interface and hence only contains one abstract
method. This method is called calculateFees(). It takes in one parameter
called clubID and returns a double value. Try declaring this method yourself.
Once you are done, the interface is complete. A summary for the interface is

shown below:

Method

double calculateFees(T clubID)

12.6 The FileHandler Class

Next, we are ready to move on to code the FileHandler class. Add a new
class to the javaproject package and name this class FileHandler.

The class consists of three public methods - readFile(), appendFile() and
overWriteFile().

We need to import the following two packages for the class:

import java.util.LinkedList;

import java.io.*;

Try importing them yourself.

Methods

readFile()

We shall first code the readFile() method. This public method has no
parameter and returns a LinkedList of Member objects. Try declaring this
method yourself. You can refer to Chapter 9.6 for help.

Next, let us implement the method. The readFile() method reads from a csv
file that contains the details of each member. It then adds each member to a
LinkedList and returns the LinkedList. The format of the csv file is:

Member Type, Member ID, Member Name, Membership Fees, Club ID

for single club members and

Member Type, Member ID, Member Name, Membership Fees, Membership
Points

for multi club members.

An example is

S, 1, Yvonne, 950.0, 2

M, 2, Sharon, 1200.0, 100

For the first row, the values “S”, “1”, “Yvonne”, “950.0” and “2” represent
the Member Type, Member ID, Member Name, Membership Fees and Club
ID for that particular member. The letter “S” indicates that this member is a
single club member.

For the second row, the values “M”, “2”, “Sharon”, “1200.0” and “100”
represent the Member Type, Member ID, Member Name, Membership Fees
and Membership Points for that particular member. The letter “M” indicates
that this member is a multi club member.
The name of the text file is members.csv and is stored in the same folder as
the project. Hence, the path to the file is simply "members.csv" (as it is in the
same folder as the project).

Let’s start coding the method. We need to declare four local variables as
shown below:

LinkedList<Member> m = new LinkedList();

String lineRead;

String[] splitLine;

Member mem;

After declaring the variables, we’ll use a try-with-resources statement to
create a BufferedReader object. We’ll name the BufferedReader object
reader.

reader accepts a FileReader object that reads from members.csv. The code
for creating a BufferedReader object using a try-with-resources statement
is shown below. You can refer to Chapter 10.1 if you have forgotten what
this statement means.

try (BufferedReader reader = new BufferedReader(new

FileReader("members.csv")))

{

//Code inside try block

}

catch (IOException e)

{

//Code inside catch block

}

Within the try block, we’ll use the reader.readLine() method to read the
first line of the csv file. We’ll then assign the result to the local String
variable lineRead. Try coding this statement yourself.

Next, we’ll use a while statement to process the file line by line while
lineRead is not null.

while (lineRead != null)

{

}

Within the while statement, we use the split() method to split lineRead
into a String array using ", " as the separator (refer to Chapter 4.1.1). We
then assign this result to the local String array splitLine. Try doing this
yourself.

Next, we use the equals() method to compare the first element of the
splitLine array. You can refer to Chapter 4.1.1 if you have forgotten how to
use the equals() method.

If splitLine[0] is equal to "S", we instantiate a SingleClubMember object.

Else, we instantiate a MultiClubMember object. To do that, we use the if-
else statement below:

if (splitLine[0].equals("S"))

{

//Instantiate a SingleClubMember

}else

{

//Instantiate a MultiClubMember

}

Within the if block, we use the constructor for the SingleClubMember class
to instantiate a new SingleClubMember object. We then assign that to the
local variable mem. As SingleClubMember is a subclass of the Member class, it
is alright for us to assign a SingleClubMember object to the Member class
variable mem. The statement for instantiating and assigning a
SingleClubMember object is shown below:

mem = new SingleClubMember('S', Integer.parseInt(splitLine[1]),

splitLine[2], Double.parseDouble(splitLine[3]),

Integer.parseInt(splitLine[4]));

Recall that the constructor for the SingleClubMember class has 5 parameters:
char pMemberType, int pMemberID, String pName, double pFees and int
pClub?

As some parameters are of int and double type while the values in the
splitLine array are all of String type, we have to use the
Integer.parseInt() and Double.parseDouble() methods to parse the
String values to int and double values respectively as shown above.

Add the statement above to the if block. Once you are done, you can move
on to the else block.

In the else block, we instantiate a MultiClubMember object and assign it to
mem. The constructor of the MultiClubMember class has 5 parameters: char
pMemberType, int pMemberID, String pName, double pFees and int

pMembershipPoints. Try instantiating a MultiClubMember object and
assigning it to mem yourself.

Once you are done, the if-else statement is complete. We can then add mem
to our LinkedList m. The statement below shows how this can be done (refer
to Chapter 9.5.1).

m.add(mem);

Next, we call the reader.readLine() method again to read the next line and
use it to update the lineRead variable.

This is the last step for the while statement. You can now exit the while
statement. Next, exit the try block as well. After exiting the try block, we’ll
work on the catch block to catch any IOException error. This block simply
prints out the error. Try coding this catch block yourself.

After the catch block, we’ll return the LinkedList m and close the method.

That’s all there is to the readFile() method. Try coding this method
yourself.

appendFile()

Now, let us move on to the appendFile() method. This method appends a
new line to the members.csv file whenever a new member is added. It has a
String parameter called mem and does not return anything. Try declaring the
method yourself.

Within the method, we’ll use a try-with-resources statement to create a
BufferedWriter object and name it writer. As we want to append to the file
instead of overwriting it, we pass the following FileWriter object to the
BufferedWriter constructor:

new FileWriter("members.csv", true)

Recall that the second argument (true) indicates that we want to append to
the file.

Try creating the BufferedWriter object yourself. You can refer to the
previous method for guidance. Creating a BufferedWriter object is very
similar to creating a BufferedReader object, with some slight modifications.

After creating the BufferedWriter object, we’ll use the writer.write()
method in the try block to append the string mem to the members.csv file.
However, as we want to move the cursor to the next line after we append
mem, we’ll concatenate "\n" to mem before passing it as an argument to the
write() method. In other words, we use the statement below:

writer.write(mem + "\n");

If we do not do this, we’ll end up with

S, 1, Yvonne, 950.0, 2M, 2, Sharon, 1200.0, 100

instead of

S, 1, Yvonne, 950.0, 2

M, 2, Sharon, 1200.0, 100

After calling the write() method, we can exit the try block. Next, we add a
catch block to catch any IOException error. This block simply prints out the
error. After the catch block, the method is complete. Try coding this method
yourself.

overwriteFile()

We are now ready to move on to the overwriteFile() method. This method
has a LinkedList<Member> parameter called m and does not return anything.
Try declaring the method yourself.

This method is called whenever we want to remove a member from the club.
When we remove a member, we need to update our csv file. Unfortunately,
there is no method in Java that allows us to easily remove a line from a file.
We can only write or append to it, but not remove data from it.

Hence, we need to create a temporary file instead. This is a fairly common
practice in programming. Here’s how it works.

Every time we want to remove a member from our club, we’ll remove it from
the LinkedList first. Next, we’ll pass this LinkedList as an argument to the
overwriteFile() method.

Inside the overwriteFile() method, we’ll create a temporary file called
members.temp and write all the data in the LinkedList to this temporary file.
Note that we do not write to the members.csv file directly. This is to prevent
any error from corrupting the file. If everything goes well, we’ll delete the
original members.csv file and rename members.temp to members.csv.

In order to achieve what is stated above, we’ll first declare a local variable in
the overwriteFile() method as shown below:

String s;

Next, we’ll use a try-with-resources statement to create a BufferedWriter
object called writer and pass the following FileWriter object to its
constructor.

new FileWriter("members.temp", false)

Here, we state that we want the BufferedWriter object to overwrite any
existing data in the members.temp file by passing in false as the second
argument.

Try coding this try-with-resources statement yourself.

After creating the BufferedWriter object, we can start coding the try block.
The try block starts with a for statement as shown below:

for (int i=0; i< m.size(); i++)

{

}

This for statement is used to loop through the elements in the LinkedList
that is passed in. Inside the for statement, we first use the get() method to
get the element at index i (refer to Chapter 9.5.1). We then use the
toString() method to get a string representation of the element and assign it
to the local variable s. Recall that we mentioned in Chapter 6.2.3 that you can
call two methods in the same statement? We’ll do that here to call the get()
and toString() methods in the same statement as shown below:

s = m.get(i).toString();

Due to polymorphism (refer to Chapter 8.2), the correct toString() method
will be invoked based on the run time type of the element. For instance, if the
first element in the LinkedList is a SingleClubMember object, the
toString() method from the SingleClubMember class will be invoked.

After getting a string representation of the element, we use the statement

writer.write(s + "\n");

to write the string s to the members.temp file.

Once you are done, you can exit the for statement and the try block.

Next, code a simple catch block to catch any IOException error and display
the error message.

Once you are done, the method is almost complete.

What is left is to delete the original members.csv file and rename
members.temp to members.csv. To do that, add a try-catch statement after
the previous try-with-resources statement.

Within the try block, we’ll declare two File objects f and tf as shown
below:

File f = new File("members.csv");

File tf = new File("members.temp");

Next, we’ll use the delete() method to delete f and use the renameTo()
method to rename tf. Refer to Chapter 10.3 if you have forgotten how to do
this.

Once you are done, you can close the try block. The catch block that
follows simply catches any general exceptions and prints out the error
message. Try coding the catch block yourself.

After completing the catch block, the overwriteFile() method is complete.
This is also the end of the FileHandler class. We are now ready to code the
MembershipManagement class. A summary of the FileHandler class is shown
below:

Methods

public LinkedList<Member> readFile()

public void appendFile(String mem)

public void overwriteFile(LinkedList<Member> m)

12.7 The MembershipManagement Class

The MembershipManagement class is the main focus of the program. This
class handles the process of adding and removing members. It also has a
method that allows users to display information about a member.

Add a new class to the javaproject package and name it

MembershipManagement.

Next, import the following three packages to our file:

import java.util.InputMismatchException;

import java.util.LinkedList;

import java.util.Scanner;

We’ll first declare a Scanner object inside the class and use it to read user
input. We’ll call the object reader and declare it as final and private as
shown below:

final private Scanner reader = new Scanner(System.in);

We declare reader as final because we will not be assigning any new
reference to it later in our code. We also declare it as private because we’ll
only be using it in our MembershipManagement class.

Next, let us write two private methods. We declare them as private because
these methods are only needed in the MembershipManagement class.

getIntInput()

The first method is called getIntInput(). This method is called whenever
any method in the MembershipManagement class uses the
System.out.println() statement to prompt users to enter an int value. The
method tries to read the int value entered. If the user fails to enter an int
value, the method keeps prompting the user to enter a new value until it gets
a valid input from the user. It does not have any parameter and returns an int
value. Try declaring this method yourself.

Within the method, we’ll first declare a local int variable called choice and
initialize it to zero. Next, we’ll use a try-catch statement to try reading in an
integer from the user. This try-catch statement is placed inside a while
statement. The while statement repeatedly prompts the user to enter an
integer as long as the try block fails to get a valid value from the user. The

while statement is shown below:

while (choice == 0)

{

try

{

 //Code to try reading an integer from the user

}

catch (InputMismatchException e)

{

 //Code to prompt the user to enter a new value

}

}

Within the try block, we’ll do three things:

First, we’ll use the reader.nextInt() method to try reading in an integer
from the user and assign it to the local variable choice.

Next, we want to throw an InputMismatchException error if the user
enters 0. This is necessary because if the user enters 0, the while statement
will keep looping. We want the catch block to be executed in that case so
that the user will be prompted to enter a new value. The catch block is where
we’ll prompt users to enter a new value. To throw an exception, we use the
statement below:

if (choice == 0)

throw new InputMismatchException();

Refer to Chapter 6.5.2 if you have forgotten what this statement means.

After throwing this exception, the final thing to do is to add a
reader.nextLine() statement to the try block. This is for reading in the
newline character that is not consumed by the nextInt() method (refer to
Chapter 5.4 for more details).

That’s all for the try block.

After the try block, we have a catch block that catches an
InputMismatchException exception. It does two things:

First, it uses reader.nextLine() to read in any input that has not been
consumed yet. This is necessary because as the try block has failed, the input
entered by the user has not been fully consumed yet.

Next, the catch block displays the following error message to prompt the
user to try again.

ERROR: INVALID INPUT. Please try again:

As long as the code in the try block is not executed successfully, the code in
the catch block will be executed. This means that the value for the local
variable choice will not be updated as we did not update it in the catch
block. Hence, the condition

choice == 0

remains true and the while statement will keep looping. Only when the user
enters a valid integer value will the while statement exit.

Once the while statement exits, we’ll return the value of choice and exit the
method.

That’s all for the getIntInput() method. Try coding this method yourself.

printClubOptions()

Next, let us move on to the printClubOptions() method. This method is
relatively straightforward. It has no parameters and does not return any value.
The method simply uses a series of System.out.println() statements to
print out the following text:

1) Club Mercury

2) Club Neptune

3) Club Jupiter

4) Multi Clubs

Try coding this method.

getChoice()

Now, we shall code four more methods for this class. All four methods are
public methods. The first is a public method called getChoice(). It has no
parameters and returns an int value.

The getChoice() method is relatively easy. It has a local int variable called
choice and uses a series of System.out.println() or System.out.print()
statements to print out the following text:

WELCOME TO OZONE FITNESS CENTER

================================

1) Add Member

2) Remove Member

3) Display Member Information

Please select an option (or Enter -1 to quit):

Next, it calls the getIntInput() method to read the user’s input and assigns
the user input to the variable choice.

Finally, it returns the value of choice. Try coding this method yourself.

addMembers()

Now, let us move on to the next public method. This method is called
addMembers(). It takes in a LinkedList of Member objects and adds a new
member to this LinkedList. After adding the member to the LinkedList, it
returns a string that contains information about the member added.

The method is declared as

public String addMembers(LinkedList<Member> m)

{

}

and consists of 7 local variables as shown below:

String name;

int club;

String mem;

double fees;

int memberID;

Member mbr;

Calculator<Integer> cal;

Note that the last variable is a reference to the Calculator interface that we
coded earlier.

After declaring the local variables, we are ready to start collecting
information about the new member.

Getting the member’s name

First, we’ll use a System.out.print() statement to prompt the user to enter
the member’s name. We’ll then use the reader.nextLine() method to read
in the input and assign the result to the local variable name. Try coding these
two statements yourself.

Getting the member’s club access

Next, we’ll get information about the club(s) that the member has access to.

We’ll first call the printClubOptions() method. Next, we’ll prompt the user
to enter the club ID that the member has access to. Finally, we’ll use the
getIntInput() method that we coded earlier to read in the user’s choice and
assign the value to the local variable club.

The valid values for club are 1 to 4. Try writing a while statement to
repeatedly prompt the user to enter the club ID as long as the value entered is
not valid. You can refer to the hint below for help:

while (club < 1 || club > 4)

{

//inform user the value is invalid

//and prompt user to enter new value

//read the new value and use it to update club

}

Calculating the member ID

Now, let us move on to calculate the member ID for the new member. The
member ID is an auto-incremented number that is assigned to each new
member.

In other words, if the previous member has an ID of 10, the new member will
have an ID of 11.

The member ID is calculated using the if statement below:

if (m.size() > 0)

memberID = m.getLast().getMemberID() + 1;

else

memberID = 1;

We first check if the LinkedList is empty. If it is not, we use the getLast()
method to get the last element in the LinkedList. We then use the
getMemberID() method that we coded in the Member class to get the memberID
field of that element. Finally, we increase the value by 1 and assign it to
memberID for the new member.

If the LinkedList is empty, the member ID is simply 1. That means the
member that we are adding is the first member in the LinkedList.

Adding the member to the LinkedList

Now that we have gotten the member’s name, club ID and member ID, we
are ready to add the member to the LinkedList m.

We’ll use the following if-else statement:

if (club != 4)

{

//Add a single club member

}

else

{

//Add a multi club member

}

We add a member based on the variable club. If the value of club is 1, 2 or
3, the member is a single club member. If the value is 4, the member is a
multi club member.

Adding a Single Club Member

Let’s first look at how we add a single club member. The code for the
discussion below should be added to the if block of the if-else statement
above.

We need to first calculate the membership fee of a single club member. To do
that, we’ll use a lambda expression to implement the calculateFees()
method in the Calculator interface we coded earlier. The method has one
parameter – clubID.

The club IDs and fees for each club are shown below:

Club Mercury
ID = 1, Fees = 900

Club Neptune

ID = 2, Fees = 950

Club Jupiter
ID = 3, Fees = 1000

The code below shows the implementation of the calculateFees() method
for a single club member:

cal = (n)-> {

switch (n)

{

 case 1:

 return 900;

 case 2:

 return 950;

 case 3:

 return 1000;

 default:

 return -1;

}

};

Here, we use a switch statement to implement the method. If the club ID is 1,
we return the value 900. If it is 2 or 3, we return the value 950 and 1000
respectively. If it is not 1, 2 or 3, we return the value -1. You can refer to
Chapter 11.2 for more information on lambda expressions if you have
forgotten how to use them.

After coding this lambda expression, we’ll use the statement

fees = cal.calculateFees(club);

to calculate the membership fee of the single club member and assign it to the
variable fees.

Next, we’ll instantiate a new SingleClubMember object by passing in the char
value ‘S’, and the variables memberID, name, fees and club to the
SingleClubMember constructor. We’ll then assign this object to the local

Member variable mbr as shown below.

mbr = new SingleClubMember('S', memberID, name, fees, club);

After this, we use the add() method to add mbr to the LinkedList m. Try
doing this yourself. You can refer to the readFile() method in the
FileHandler class if you have forgotten how to add a member to the
LinkedList.

After adding the new member, we generate a string representing the new
member and assign it to the local variable mem. To do this, we simply use mbr
to call the toString() method in the SingleClubMember class. Try coding
this statement yourself.

We’ll use this String variable to update the csv file later.

Finally, we use the statement below to inform the user that the member is
added successfully.

System.out.println("\nSTATUS: Single Club Member added\n");

This brings us to the end of the if block.

Adding a Multi Club Member

Now, let’s work on the else block to add a multi club member to the
LinkedList. First, we need to write a new lambda expression to calculate the
fee of a multi-club member. This expression should return the value 1200 if
the argument passed in is 4. Else, it should return the value -1.

After coding the lambda expression, we’ll use it to calculate the fee for a
multi club member and assign it to the variable fees.

Next, we’ll instantiate a new MultiClubMember object. Recall that the
constructor for MultiClubMember has the following 5 parameters: char

pMemberType, int pMemberID, String pName, double pFees and int
pMembershipPoints?

We’ll pass in the char value ‘M’, the variables memberID, name and fees, and
the value 100 to the constructor to create the MultiClubMember object and
assign it to mbr.

Next, we’ll add mbr to the LinkedList m.

We then generate a string to represent the new member and assign it to mem.
Finally, we’ll display a message on the screen to inform our user that the new
multi club member is added.

Try coding this else block yourself. The else block is very similar to the if
block above. You can refer to it for reference.

Returning the value of mem

Once you finish coding the else block, you can close the else block and
simply return the value of mem.

With that, you have finished coding the most complex method of the class.
Give yourself a pat on the shoulder.

removeMember()

Next, we are ready to move on to the third public method – removeMember().
This method does not return anything. It takes in a LinkedList of Member
objects and removes a member from this LinkedList. We’ll call this
LinkedList m. Try declaring the method yourself.

Within the method, we’ll first declare a local int variable called memberID.

Next, we’ll prompt the user to enter the Member ID of the member that
he/she wants to remove. Next, we use the getIntInput() method to read the

input and assign it to the variable memberID. Once that is done, we’ll use the
for statement below to loop through the LinkedList.

for (int i = 0; i<m.size();i++)

{

}

Within the for statement, we use the if statement below to compare the
memberID of each element with the member ID that the user entered.

if (m.get(i).getMemberID() == memberID)

{

}

If the member ID matches, we do three things inside the if block:

First, we use the m.remove(i) method to remove the element at index i from
the LinkedList.

Next, we use a System.out.println() statement to inform the user that the
member has been removed. Finally, we use the return statement below to exit
the method

return;

We want to exit the method once a matching member ID is found. This is to
prevent time wasted on looping through the remaining elements in the
LinkedList. This example shows how you can use the return statement to
exit a method without returning any value from it (refer to Chapter 7.2.2).

Once you are done with the if statement, you can close the if statement and
the for statement.

Once we are outside the for statement, it means the program has iterated

through the entire LinkedList and not found a match for the member ID. At
this stage, you’ll simply use a System.out.println() statement to inform
the user that the Member ID is not found. Try coding this yourself.

With that, we’ve come to the end of the removeMember() method. We are
now ready to code the last public method – printMemberInfo().

printMemberInfo()

This method is very similar to the removeMember() method. It also takes in a
LinkedList of Member objects and does not return anything. Try declaring the
method yourself.

Within the method, we do the same as what we did for the removeMember()
method, except that instead of using the remove() method to remove a
member, we use the toString() method to get information about a particular
member.

After we have the String representation of the member, we use the split()
method to split this string into a String array, using ", " as the separator.
The resulting array is then assigned to a local String array called
memberInfo. The statement below shows how this can be done in one step.

String[] memberInfo = m.get(i).toString().split(", ");

After getting this String array, we use it to display information of the
requested member using a series of System.out.println() statements. If the
member is a single club member, the information displayed should look like
what is shown below:

Member Type = S

Member ID = 1

Member Name = Yvonne

Membership Fees = 950.0

Club ID = 2

If the member is a multi club member, the information displayed should look
as follows:

Member Type = M

Member ID = 2

Member Name = Sharon

Membership Fees = 1200.0

Membership Points = 100

You’ll need to use an if statement to test whether the member is a single club
member or a multi club member. You can refer to readFile() method in the
FileHandler class if you do not know how to do this.

Try modifying the previous removeMember() method and code the
printMemberInfo() method yourself.

Once you are done with that, we’ve come to the end of the
MembershipManagement class. We are now ready to work on the final class –
the JavaProject class.

A summary of the MembershipManagement class is shown below:

Fields

final private Scanner reader

Methods

private int getIntInput()

private void printClubOptions()

public int getChoice()

public String addMembers(LinkedList<Member> m)

public void removeMember(LinkedList<Member> m)

public void printMemberInfo(LinkedList<Member> m)

12.8 The JavaProject class

Switch over to the JavaProject.java file to start working on this class. We
need to import the LinkedList class. Try importing the class yourself.

The JavaProject class only has one method – the main() method.

We’ll use the default declaration for the main() method:

public static void main(String[] args) {

}

Within the main() method, we have five variables as shown below:

String mem;

MembershipManagement mm = new MembershipManagement();

FileHandler fh = new FileHandler();

LinkedList<Member> members = fh.readFile();

int choice = mm.getChoice();

The first is a String variable called mem.

Next, we have a MembershipManagement and FileHandler object called mm
and fh respectively.
After this, we declare a LinkedList of Member objects. We use the fh object
to call the readFile() method in the FileHandler class. This method reads
from the members.csv file and converts the information into a LinkedList of
Member objects. This LinkedList is then returned to the caller. We assign this
LinkedList to the local variable members.

Finally, we declare an int variable called choice. We use the mm object to
call the getChoice() method in the MembershipManagement class. This
method displays a list of options for users to choose and returns the user’s
choice to the caller. The options are as follows:

1) Add Member

2) Remove Member

3) Display Member Information

Alternatively, the user can also enter -1 to exit the program.

Once we get the user’s choice, we are ready to perform the action that the
user wants. To do this, we’ll use a switch statement inside a while statement
as shown below:

while (choice != -1)

{

switch (choice)

{

}

choice = mm.getChoice();

}

The while statement repeatedly prompts the user to enter a choice after each
task is completed. For instance, the user may enter 1 for the first time. After
we successfully add a member to the LinkedList, we’ll display the options
again and prompt the user to enter another choice (or -1 to exit). As long as
the user does not enter -1, the while statement will continue to run.

Within the while statement, we use a switch statement. This switch
statement consists of 4 cases.

If choice is 1, we’ll use the addMembers() method in the
MembershipManagement class to add a member to our LinkedList. The
addMembers() method will prompt the user for information about the new
member and use that to update the LinkedList that we pass in. In addition,
it’ll return a string that represents the member added. We’ll assign this string
to the local variable mem. Next, we’ll use the appendFile() method in the
FileHandler class to add the member to our members.csv file. This method
does not return any value.

If choice is 2, we’ll use the removeMember() method to remove the member
and use the overwriteFile() method to update the csv file.

If choice is 3, we’ll use the printMemberInfo() method to display the
information about the member.

Finally, for the default case, we’ll simply notify the user that he/she has
selected an invalid option.

Try coding this switch statement yourself.

Once you are done with this, our main() method is almost complete. We can
now exit the switch statement. Once we are outside the switch statement, we
simply use the statement

choice = mm.getChoice();

to prompt users to select a new option.

After this statement, we can exit the while statement. Once we are outside
the while statement, it means the user has entered -1. Hence, we’ll simply
print a statement to bid the user good bye. Try coding this statement yourself.

With that, we’ve come to the end of the main() method and the end of the
JavaProject class.

If you have successfully coded the main() program, congratulations! You
have just successfully coded a complete program in Java. Well done!

If you have problems coding it, keep trying. You can refer to the suggested
solution in Appendix A for reference.

You are now ready to run your program. Excited? Let’s do it!

Click on the “Start” button to run the program and key in the values
requested.

Try making errors and keying in alphabetical letters instead of numbers. Play
around with the program to see how it works. The members.csv file is found
in the same folder as the project. If you can’t find the project folder, you can
right-click on the project name in the Project Explorer in NetBeans and select
Properties. This will bring up a dialogue box that shows where your project
is stored.

Does everything work as expected? If it does, great! You have done an
excellent job!

If your code does not work, compare it with the sample answer and try to
figure out what went wrong. You’ll learn a lot by analysing your mistakes.
Problem solving is where the fun lies and where the reward is the greatest.
Have fun and never give up! The sample answer can be found in Appendix
A.

Appendix A
The source code for this program can be downloaded at
http://www.learncodingfast.com/java.

Member Class

package javaproject;

public class Member {

 char memberType;

 int memberID;

 String name;

 double fees;

 Member(char pMemberType, int pMemberID, String pName, double pFees){

 memberType = pMemberType;

 memberID = pMemberID;

 name = pName;

 fees = pFees;

 }

 public void setMemberType(char pMemberType)

 {

 memberType = pMemberType;

 }

 public char getMemberType()

 {

 return memberType;

 }

 public void setMemberID(int pMemberID)

 {

 memberID = pMemberID;

 }

 public int getMemberID()

 {

 return memberID;

 }

 public void setName(String pName)

 {

 name = pName;

 }

 public String getName()

 {

 return name;

 }

 public void setFees(double pFees)

http://www.learncodingfast.com/java

 {

 fees = pFees;

 }

 public double getFees()

 {

 return fees;

 }

 @Override

 public String toString(){

 return memberType + ", " + memberID + ", " + name + ", " + fees;

 }

}

SingleClubMember Class

package javaproject;

public class SingleClubMember extends Member{

 private int club;

 SingleClubMember(char pMemberType, int pMemberID, String pName, double pFees, int

pClub){

 super(pMemberType, pMemberID, pName, pFees);

 club = pClub;

 }

 public void setClub(int pClub){

 club = pClub;

 }

 public int getClub(){

 return club;

 }

 @Override

 public String toString(){

 return super.toString() + ", " + club;

 }

}

MultiClubMember Class

package javaproject;

public class MultiClubMember extends Member {

 private int membershipPoints;

 MultiClubMember(char pMemberType, int pMemberID, String pName, double pFees, int

pMembershipPoints){

 super(pMemberType, pMemberID, pName, pFees);

 membershipPoints = pMembershipPoints;

 }

 public void setMembershipPoints(int pMembershipPoints){

 membershipPoints = pMembershipPoints;

 }

 public int getMembershipPoints()

 {

 return membershipPoints;

 }

 @Override

 public String toString(){

 return super.toString() + ", " + membershipPoints;

 }

}

Calculator Interface

package javaproject;

public interface Calculator <T extends Number> {

 double calculateFees(T clubID);

}

FileHandler Class

package javaproject;

import java.util.LinkedList;

import java.io.*;

public class FileHandler {

 public LinkedList<Member> readFile(){

 LinkedList<Member> m = new LinkedList();

 String lineRead;

 String[] splitLine;

 Member mem;

 try (BufferedReader reader = new BufferedReader(new

FileReader("members.csv")))

 {

 lineRead = reader.readLine();

 while (lineRead != null)

 {

 splitLine = lineRead.split(", ");

 if (splitLine[0].equals("S"))

 {

 mem = new SingleClubMember('S', Integer.parseInt(splitLine[1]),

splitLine[2], Double.parseDouble(splitLine[3]), Integer.parseInt(splitLine[4]));

 }else

 {

 mem = new MultiClubMember('M', Integer.parseInt(splitLine[1]),

splitLine[2], Double.parseDouble(splitLine[3]),

Integer.parseInt(splitLine[4]));

 }

 m.add(mem);

 lineRead = reader.readLine();

 }

 }

 catch (IOException e)

 {

 System.out.println(e.getMessage());

 }

 return m;

 }

 public void appendFile(String mem){

 try (BufferedWriter writer = new BufferedWriter(new FileWriter("members.csv",

true)))

 {

 writer.write(mem + "\n");

 }

 catch (IOException e)

 {

 System.out.println(e.getMessage());

 }

 }

 public void overwriteFile(LinkedList<Member> m){

 String s;

 try(BufferedWriter writer = new BufferedWriter(new FileWriter("members.temp",

false))){

 for (int i=0; i< m.size(); i++)

 {

 s = m.get(i).toString();

 writer.write(s + "\n");

 }

 }catch(IOException e){

 System.out.println(e.getMessage());

 }

 try{

 File f = new File("members.csv");

 File tf = new File("members.temp");

 f.delete();

 tf.renameTo(f);

 }catch(Exception e){

 System.out.println(e.getMessage());

 }

 }

}

MembershipManagement Class

package javaproject;

import java.util.InputMismatchException;

import java.util.LinkedList;

import java.util.Scanner;

public class MembershipManagement {

 final private Scanner reader = new Scanner(System.in);

 private int getIntInput(){

 int choice = 0;

 while (choice == 0)

 {

 try

 {

 choice = reader.nextInt();

 if (choice == 0)

 throw new InputMismatchException();

reader.nextLine();

 }

 catch (InputMismatchException e)

 {

 reader.nextLine();

 System.out.print("\nERROR: INVALID INPUT. Please try again:

");

 }

 }

 return choice;

 }

 private void printClubOptions(){

 System.out.println("\n1) Club Mercury");

 System.out.println("2) Club Neptune");

 System.out.println("3) Club Jupiter");

 System.out.println("4) Multi Clubs");

 }

 public int getChoice(){

 int choice;

 System.out.println("\nWELCOME TO OZONE FITNESS CENTER");

 System.out.println("================================");

 System.out.println("1) Add Member");

 System.out.println("2) Remove Member");

 System.out.println("3) Display Member Information");

 System.out.print("\nPlease select an option (or Enter -1 to quit): ");

 choice = getIntInput();

 return choice;

 }

 public String addMembers(LinkedList<Member> m)

 {

 String name;

 int club;

 String mem;

 double fees;

 int memberID;

 Member mbr;

 Calculator<Integer> cal;

 System.out.print("\nPlease enter the member's name: ");

 name = reader.nextLine();

 printClubOptions();

 System.out.print("\nPlease enter the member's clubID: ");

 club = getIntInput();

 while (club < 1 || club > 4)

 {

 System.out.print("\nInvalid Club ID. Please try again: ");

 club = getIntInput();

 }

 if (m.size() > 0)

 memberID = m.getLast().getMemberID() + 1;

 else

 memberID = 1;

 if (club != 4)

 {

 cal = (n)-> {

 switch (n)

 {

 case 1:

 return 900;

 case 2:

 return 950;

 case 3:

 return 1000;

 default:

 return -1;

 }

 };

 fees = cal.calculateFees(club);

 mbr = new SingleClubMember('S', memberID, name, fees, club);

 m.add(mbr);

 mem = mbr.toString();

 System.out.println("\nSTATUS: Single Club Member added\n");

 }

 else

 {

 cal = (n) -> {

 if (n == 4)

 return 1200;

 else

 return -1;

 };

 fees = cal.calculateFees(club);

 mbr = new MultiClubMember('M', memberID, name, fees, 100);

 m.add(mbr);

 mem = mbr.toString();

 System.out.println("\nSTATUS: Multi Club Member added\n");

 }

 return mem;

 }

 public void removeMember(LinkedList<Member> m){

 int memberID;

 System.out.print("\nEnter Member ID to remove: ");

 memberID = getIntInput();

 for (int i = 0; i<m.size();i++)

 {

 if (m.get(i).getMemberID() == memberID)

 {

 m.remove(i);

 System.out.print("\nMember Removed\n");

 return;

 }

 }

 System.out.println("\nMember ID not found\n");

 }

 public void printMemberInfo(LinkedList<Member> m){

 int memberID;

 System.out.print("\nEnter Member ID to display information: ");

 memberID = getIntInput();

 for (int i = 0; i<m.size();i++)

 {

 if (m.get(i).getMemberID() == memberID)

 {

 String[] memberInfo = m.get(i).toString().split(", ");

 System.out.println("\n\nMember Type = " +

memberInfo[0]);

 System.out.println("Member ID = " + memberInfo[1]);

 System.out.println("Member Name = " + memberInfo[2]);

 System.out.println("Membership Fees = " + memberInfo[3]);

 if (memberInfo[0].equals("S"))

 {

 System.out.println("Club ID = " +

memberInfo[4]);

 }else

 {

 System.out.println("Membership Points = " +

memberInfo[4]);

 }

 return;

 }

 }

 System.out.println("\nMember ID not found\n");

 }

}

JavaProject Class

package javaproject;

import java.util.LinkedList;

public class JavaProject {

 public static void main(String[] args) {

 String mem;

 MembershipManagement mm = new MembershipManagement();

 FileHandler fh = new FileHandler();

 LinkedList<Member> members = fh.readFile();

 int choice = mm.getChoice();

 while (choice != -1)

 {

 switch (choice)

 {

 case 1:

 mem = mm.addMembers(members);

 fh.appendFile(mem);

 break;

 case 2:

 mm.removeMember(members);

 fh.overwriteFile(members);

 break;

 case 3:

 mm.printMemberInfo(members);

 break;

 default:

 System.out.print("\nYou have selected an invalid option.\n\n");

 break;

 }

 choice = mm.getChoice();

 }

 System.out.println("\nGood Bye");

 }

}

Index

A
abstract, abstract
access modifier, access modifier
annotation, annotation
arguments, arguments
base class
binary compatibility
BufferedReader class
BufferedWriter class
bytecode
Class
close()
concatenate, concatenate
constructor, constructor
data type
default
default method
Deque, Deque
derived class
displaying outputs

print()
printf()
println()

encapsulation
extends, extends
field, field
File class
FileReader class
FileWriter class
final, final
format specifiers
getter, getter
import

inheritance
intellisense
Java Collections Framework
Java Virtual Machine, Java Virtual Machine
local variable
logical operators
main(), main(), main(), main()
method, method
modulus
narrowing primitive conversion
newline, newline, newline, newline
null, null
Number class
Object class, Object class
object oriented programming, object oriented programming
overloading
override
package, package, package
package-private, package-private
parameters
platform independent
polymorphism
primitive type, primitive type, primitive type
private, private, private
protected, protected, protected, protected
public, public, public
Queue, Queue, Queue
reference type, reference type
return, return, return
run time
Scanner, Scanner

nextDouble()
nextInt()
nextLine()

setter
signature

static, static, static
super, super
toString(), toString(), toString()
toUpperCase(), toUpperCase()
try statement

try-catch-finally
try-catch-finally
try-with-resources

type casting, type casting
type parameter, type parameter
void
widening primitive conversion
wrapper classes

	Chapter 1: Introduction to Java
	1.1 What is Java?
	1.2 Why Learn Java?
	Chapter 2: Getting Ready for Java
	2.1 Installing the JDK + NetBeans Bundle
	2.1.1 What is JDK?
	2.1.2 What is NetBeans?
	2.2 How to use this book?
	2.3 Your First Java Program
	2.4 Basic Structure of a Java Program
	2.4.1 Package
	2.4.2 The HelloWorld Class
	2.4.3 The main() Method
	2.5 Comments
	Chapter 3: The World of Variables and Operators
	3.1 What are variables?
	3.2 Primitive Data Types in Java
	3.3 Naming a Variable
	3.4 Initializing a Variable
	3.5 The Assignment Operator
	3.6 Basic Operators
	3.7 More Assignment Operators
	3.8 Type Casting In Java
	Chapter 4: Arrays and Strings
	4.1 String
	4.1.1 String Methods
	4.2 Array
	4.2.1 Array Methods
	4.2.2 Finding Array Length
	4.3 Primitive Type vs. Reference Type
	4.4 Strings are Immutable
	Chapter 5: Making our Program Interactive
	5.1 Displaying Output
	5.2 Escape Sequences
	5.3 Formatting Outputs
	5.3.1 Converters
	5.3.2 Flags
	5.4 Accepting User Input
	Chapter 6: Control Flow Statements
	6.1 Comparison Operators
	6.2 Decision Making Statements
	6.2.1 If Statement
	6.2.2 Ternary Operator
	6.2.3 Switch Statement
	6.3 Looping Statements
	6.3.1 For Statement
	6.3.2 Enhanced For Statement
	6.3.4 Do-while Statement
	6.4 Branching Statements
	6.4.1 Break Statement

