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Preface
The purpose of this book is to provide an introduction to space mechanics for undergraduate engineer-

ing students. It is not directed toward graduate students, researchers, and experienced practitioners,

who may nevertheless find useful review material within the book’s contents. The intended readers

are those who are studying the subject for the first time and have completed courses in physics, dy-

namics, and mathematics through differential equations and applied linear algebra. I have tried my best

to make the text readable and understandable to that audience. In pursuit of that objective I have in-

cluded a large number of example problems that are explained and solved in detail. Their purpose is not

to overwhelm but to elucidate. I find that students like the “teach by example” method. I always assume

that the material is being seen for the first time and, wherever possible, I provide solution details so as to

leave little to the reader’s imagination. The numerous figures throughout the book are also intended to

aid comprehension. All of the more labor-intensive computational procedures are accompanied by

MATLAB® code.

For this, the fourth edition, I have retained the content and style of the previous editions and

corrected all the errors discovered by me or reported to me by readers. Except for the new

Chapter 9 on basic lunar trajectories and an expanded discussion of quaternions in Chapter 11 the book

remains essentially the same. Adding the new chapter required the following reshuffling:

Topic This edition Previous edition
Lunar trajectories
 Chapter 9
 Absent
Introduction to orbital perturbations
 Chapter 10
 Chapter 12
Rigid body dynamics
 Chapter 11
 Chapter 9
Satellite attitude dynamics
 Chapter 12
 Chapter 10
Rocket vehicle dynamics
 Chapter 13
 Chapter 11
The organization of the book remains the same as that of the third edition. Chapter 1 is a review of

vector kinematics in three dimensions and of Newton’s laws of motion and gravitation. It also focuses

on the issue of relative motion, crucial to the topics of rendezvous and satellite attitude dynamics. The

material on ordinary differential equation solvers will be useful for students who are expected to code

numerical simulations in MATLAB or other programming languages. Chapter 2 presents the vector-

based solution of the classical two-body problem, resulting in a host of practical formulas for the anal-

ysis of orbits and trajectories of elliptical, parabolic, and hyperbolic shape. The restricted three-body

problem is covered to introduce the notion of Lagrange points and to present the numerical solution of a

lunar trajectory problem. Chapter 3 derives Kepler’s equations, which relate position to time for the

different kinds of orbits. The universal variable formulation is also presented. Chapter 4 is devoted

to describing orbits in three dimensions. Coordinate transformations and the Euler elementary rotation

sequences are defined. Procedures for transforming back and forth between the state vector and the

classical orbital elements are addressed. The effect of the earth’s oblateness on the motion of an orbit’s

ascending node and eccentricity vector is described, pending amore detailed explanation in Chapter 10.

Chapter 5 is an introduction to preliminary orbit determination, including Gibbs’ and Gauss’ methods

and the solution of Lambert’s problem. Auxiliary topics include topocentric coordinate systems, Julian
xiii
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day numbering, and sidereal time. Chapter 6 presents the common means of transferring from one orbit

to another by impulsive delta-v maneuvers, including Hohmann transfers, phasing orbits, and plane

changes. Chapter 7 is a brief introduction to relative motion in general and to the two-impulse rendez-

vous problem in particular. The latter is analyzed using the Clohessy-Wiltshire equations, which are

derived in this chapter. Chapter 8 is an introduction to interplanetary mission design using patched

conics. Chapter 9 extends the patched conic method and the restricted three-body approach to lunar

trajectory analysis. Chapter 10 is an introduction to common orbital perturbations: drag, nonspherical

gravitational field, solar radiation pressure, and lunar and solar gravity. Chapter 11 presents those el-

ements of rigid body dynamics required to characterize the attitude of a space vehicle. Euler’s equa-

tions of rotational motion are derived and applied in a number of example problems. Euler angles, yaw-

pitch-roll angles, and quaternions are presented as ways to describe the attitude of rigid body.

Chapter 12 describes the methods of controlling, changing, and stabilizing the attitude of spacecraft

by means of thrusters, gyros, and other devices. Chapter 13 is a brief introduction to the characteristics

and design of multistage launch vehicles.

Chapters 1 through 4 form the core of a first orbital mechanics course. The time devoted to

Chapter 1 depends on the background of the student. It might be surveyed briefly and used thereafter

simply as a reference. What follows Chapter 4 depends on the objectives of the course.

Chapters 5 through 10 carry on with the subject of orbital mechanics. Chapter 6 on orbital maneu-

vers should be included in any case. Coverage of Chapters 5, 7, 8, and 9 is optional. However, if

Chapters 8 and 9 on interplanetary and lunar missions is to form a part of the course, then the solution

of Lambert’s problem (Section 5.3) must be studied beforehand.

Chapter 10 is appropriate for a course devoted exclusively to orbital mechanics with an introduction

to perturbations, which is a whole topic unto itself.

Chapters 11 and 12 must be covered if the course objectives include an introduction to spacecraft

dynamics. In that case Chapters 5, 7, 8, and 9 would probably not be studied in depth.

Chapter 13 is optional if the engineering curriculum requires a separate course in propulsion includ-

ing rocket dynamics.

The important topic of spacecraft control systems is omitted. However, the material in this book and

a course in control theory provide the basis for the study of spacecraft attitude control.

To understand the material and to solve problems requires using a lot of undergraduate mathemat-

ics. Mathematics, of course, is the language of engineering. Students must not forget that the English

mathematician and physicist Sir Isaac Newton (1642–1727) had to invent calculus so he could solve

orbital mechanics problems in more than just a heuristic way. Newton’s 1687 publication Mathemat-
ical Principles of Natural Philosophy (“the Principia”) is one of the most influential scientific works of

all time. It must be noted that his contemporary, the German mathematician Gottfried Wilhelm von

Leibnitz (1646–1716) is credited with inventing infinitesimal calculus independently of Newton in

the 1670s.

In addition to honing their math skills, students are urged to take advantage of computers (which,

incidentally, use the binary numeral system developed by Leibnitz). There are many commercially

available mathematics software packages for personal computers. Wherever possible they should be

used to relieve the burden of repetitive and tedious calculations. Computer-programming skills can

and should be put to good use in the study of orbital mechanics. The elementary MATLAB programs

referred to in Appendix D of this book illustrate how many of the procedures developed in the text can
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be implemented in software. All the scripts were developed and tested using MATLAB version 9.2

(release 2017a). Information about MATLAB, which is a registered trademark of The MathWorks,

Inc., may be obtained from

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2089, USA

www.mathworks.com

Appendix A presents some tables of physical data and conversion factors. Appendix B is a road map

through the first three chapters, showing how the most fundamental equations of orbital mechanics are

related. Appendix C shows how to set up the n-body equations of motion and program them in

MATLAB. Appendix D contains listings of all the MATLAB algorithms and example problems

presented in the text. Appendix E shows that the gravitational field of a spherically symmetric body

is the same as if the mass were concentrated at its center. Appendix F explains how to deal with a

computational issue that arises in some perturbation analyses.
SUPPLEMENTS TO THE TEXT
For purchasers of the book, copies of the MATLAB M-files listed in Appendix D can be freely down-

loaded from this book’s companion website. Also available on the companion website are a set of an-

imations that accompany the text. To access these files, please visit https://www.elsevier.com/books-

and-journals/book-companion/9780081021330.

For instructors using this book for a course, please visit www.textbooks.elsevier.com to register for

access to the solutions manual, PowerPoint lecture slides, and other resources.
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helpful criticism, suggestions, and advice from many sources locally and worldwide. I thank them all
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CHAPTER
DYNAMICS OF POINT MASSES
 1

1.1 INTRODUCTION
This chapter serves as a self-contained reference on the kinematics and dynamics of point masses as

well as some basic vector operations and numerical integration methods. The notation and concepts

summarized here will be used in the following chapters. Those familiar with the vector-based dynamics

of particles can simply page through the chapter and then refer back to it later as necessary. Those who

need a bit more in the way of review will find that the chapter contains all the material they need to

follow the development of orbital mechanics topics in the upcoming chapters.

We begin with a review of vectors and some vector operations, after which we proceed to the prob-

lem of describing the curvilinear motion of particles in three dimensions. The concepts of force and

mass are considered next, along with Newton’s inverse-square law of gravitation. This is followed

by a presentation of Newton’s second law of motion (“force equals mass times acceleration”) and

the important concept of angular momentum.

As a prelude to describing motion relative to moving frames of reference, we develop formulas for

calculating the time derivatives of moving vectors. These are applied to the computation of relative

velocity and acceleration. Example problems illustrate the use of these results, as does a detailed con-

sideration of how the earth’s rotation and curvature influence our measurements of velocity and accel-

eration. This brings in the curious concept of Coriolis force. Embedded in exercises at the end of the

chapter is practice in verifying several fundamental vector identities that will be employed frequently

throughout the book.

The chapter concludes with an introduction to numerical methods, which can be called upon to

solve the equations of motion when an analytical solution is not possible.
1.2 VECTORS
A vector is an object that is specified by both a magnitude and a direction. We represent a vector graph-

ically by a directed line segment (i.e., an arrow pointing in the direction of the vector). The end opposite

the arrow is called the tail. The length of the arrow is proportional to the magnitude of the vector. Ve-

locity is a good example of a vector. We say that a car is traveling eastward at 80 km/h. The direction is

east and the magnitude, or speed, is 80 km/h. We will use boldface type to represent vector quantities

and plain type to denote scalars. Thus, whereas B is a scalar, B is a vector.
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00001-5
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FIG. 1.1

All of these vectors may be denoted A, since their magnitudes and directions are the same.

FIG. 1.2

Parallelogram rule of vector addition. A + B ¼ C.
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Observe that a vector is specified solely by its magnitude and direction. If A is a vector, then all

vectors having the same physical dimensions, the same length, and pointing in the same direction as A

are denoted A, regardless of their line of action, as illustrated in Fig. 1.1. Shifting a vector parallel to

itself does not mathematically change the vector. However, the parallel shift of a vector might produce

a different physical effect. For example, an upward 5-kN load (force vector) applied to the tip of an

airplane wing gives rise to quite a different stress and deflection pattern in the wing than the same load

acting at the wing’s midspan.

The magnitude of a vector A is denoted kAk, or, simply A.
Multiplying a vector B by the reciprocal of its magnitude produces a vector that points in the di-

rection of B, but it is dimensionless and has a magnitude of one. Vectors having dimensionless mag-

nitude are called unit vectors.We put a hat ( )̂ over the letter representing a unit vector. Then we can tell

simply by inspection that, for example, û is a unit vector, as are B̂ and ê.

It is convenient to denote the unit vector in the direction of the vectorA as ûA. As pointed out above,

we obtain this vector from A as follows:

ûA¼A

A
(1.1)

Likewise, ûC¼C=C, ûF¼F=F, etc.
The sum or resultant of two vectors is defined by the parallelogram rule (Fig. 1.2). LetC be the sum

of the two vectors A and B. To form that sum using the parallelogram rule, the vectors A and B are



FIG. 1.3

Three-dimensional, right-handed Cartesian coordinate system.
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shifted parallel to themselves (leaving them unaltered) until the tail ofA touches the tail of B. Drawing

dotted lines through the head of each vector parallel to the other completes a parallelogram. The

diagonal from the tails of A and B to the opposite corner is the resultant C. By construction, vector

addition is commutative; that is,

A+B¼B +A (1.2)

A Cartesian coordinate system in three dimensions consists of three axes, labeled x, y, and z,
which intersect at the origin O. We will always use a right-handed Cartesian coordinate system,

which means if you wrap the fingers of your right hand around the z axis, with the thumb

pointing in the positive z direction, your fingers will be directed from the x axis toward the y axis.

Fig. 1.3 illustrates such a system. Note that the unit vectors along the x, y, and z axes are, respectively,
î, ĵ, and k̂.

In terms of its Cartesian components, and in accordance with the above summation rule, a vector A

is written in terms of its components Ax, Ay, and Az as

A¼Ax̂i+Ay ĵ+Azk̂ (1.3)

The projection of A on the xy plane is a vector denoted Axy. It follows that

Axy¼Ax̂i+Ay ĵ

According to the Pythagorean theorem, the magnitude of A in terms of its Cartesian components is

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
x +A

2
y +A

2
z

q
(1.4)

From Eqs. (1.1) and (1.3), the unit vector in the direction of A is

ûA¼ cos θx̂i+ cos θy ĵ+ cos θzk̂ (1.5)



FIG. 1.4

Direction angles in three dimensions.
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where

cos θx¼Ax

A
cos θy¼Ay

A
cos θz¼Az

A
(1.6)

The direction angles θx, θy, and θz are illustrated in Fig. 1.4, and they are measured between the vector

and the positive coordinate axes. Note carefully that the sum of θx, θy, and θz is not in general known a
priori and cannot be assumed to be, say, 180 degrees.
EXAMPLE 1.1
Calculate the direction angles of the vector A¼ î� 4̂j+ 8k̂.

Solution
First, compute the magnitude of A by means of Eq. (1.4),

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 + �4ð Þ2 + 82

q
¼ 9

Then Eq. (1.6) yields

θx¼ cos�1
Ax

A

� �
¼ cos�1

1

9

� �
) θx¼ 83:62degrees

θy¼ cos�1
Ay

A

� �
¼ cos�1

�4
9

� �
) θy¼ 116:4degrees

θz¼ cos�1
Az

A

� �
¼ cos�1

8

9

� �
) θz¼ 27:27degrees

Observe that θx + θy + θz ¼ 227.3 degrees.
Multiplication and division of two vectors are undefined operations. There are no rules for com-

puting the product AB and the ratio A/B. However, there are two well-known binary operations on
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vectors: the dot product and the cross product. The dot product of two vectors is a scalar defined as

follows:

A �B¼AB cos θ (1.7)

where θ is the angle between the heads of the two vectors, as shown in Fig. 1.5. Clearly,

A �B¼B �A (1.8)

If two vectors are perpendicular to each other, then the angle between them is 90 degrees. It follows

from Eq. (1.7) that their dot product is zero. Since the unit vectors î, ĵ, and k̂ of a Cartesian coordinate

system are mutually orthogonal and of magnitude 1, Eq. (1.7) implies that

î � î¼ ĵ � ĵ¼ k̂ � k̂¼ 1

î � ĵ¼ î � k̂¼ ĵ � k̂¼ 0
(1.9)

Using these properties, it is easy to show that the dot product of the vectors A and B may be found in

terms of their Cartesian components as

A �B¼AxBx +AyBy +AzBz (1.10)

If we set B ¼ A, then it follows from Eqs. (1.4) and (1.10) that

A¼
ffiffiffiffiffiffiffiffiffiffi
A �A
p

(1.11)

The dot product operation is used to project one vector onto the line of action of another. We can

imagine bringing the vectors tail to tail for this operation, as illustrated in Fig. 1.6. If we drop a per-

pendicular line from the tip of B onto the direction of A, then the line segment BA is the orthogonal

projection of B onto the line of action of A. BA stands for the scalar projection of B onto A. From trig-

onometry, it is obvious from the figure that

BA¼B cos θ
FIG. 1.6

Projecting the vector B onto the direction of A.

FIG. 1.5

The angle between two vectors brought tail to tail by parallel shift.
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Let ûA be the unit vector in the direction of A. Then,

B � ûA¼ Bk k ûAk k
zffl}|ffl{¼1

cos θ¼B cos θ

Comparing this expression with the preceding one leads to the conclusion that

BA¼B � ûA¼B � A
A

(1.12)

where ûA is given by Eq. (1.1). Likewise, the projection of A onto B is given by

AB¼A � B
B

Observe that AB ¼ BA only if A and B have the same magnitude.
EXAMPLE 1.2
Let A¼ î+ 6̂j+ 18k̂ and B¼ 42̂i�69̂j+ 98k̂: Calculate

(a) the angle between A and B;

(b) the projection of B in the direction of A;

(c) the projection of A in the direction of B.

Solution
First, we make the following individual calculations.

A �B¼ 1ð Þ 42ð Þ + 6ð Þ �69ð Þ + 18ð Þ 98ð Þ¼ 1392 (a)

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ð Þ2 + 6ð Þ2 + 18ð Þ2

q
¼ 19 (b)

B¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42ð Þ2 + �69ð Þ2 + 98ð Þ2

q
¼ 127 (c)

(a) According to Eq. (1.7), the angle between A and B is

θ¼ cos�1
A �B
AB

� �
Substituting Eqs. (a), (b), and (c) yields

θ¼ cos�1
1392

19 � 127
� �

¼ 54:77degrees

(b) From Eq. (1.12), we find the projection of B onto A.

BA ¼B � A
A
¼A �B

A

Substituting Eqs. (a) and (b) we get

BA ¼ 1392

19
¼ 73:26

(c) The projection of A onto B is

AB ¼A � B
B
¼A �B

B
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Substituting Eqs. (a) and (c) we obtain

AB¼ 1392

127
¼ 10:96
The cross product of two vectors yields another vector, which is computed as follows:

A�B¼ AB sinθð Þn̂AB (1.13)

where θ is the angle between the heads ofA andB, and n̂AB is the unit vector normal to the plane defined

by the two vectors. The direction of n̂AB is determined by the right-hand rule. That is, curl the fingers of

the right hand from the first vector (A) toward the second vector (B), and the thumb shows the direction

of n̂AB (Fig. 1.7). If we use Eq. (1.13) to compute B � A, then n̂AB points in the opposite direction,

which means

B�A¼� A�Bð Þ (1.14)

Therefore, unlike the dot product, the cross product is not commutative.

The cross product is obtained analytically by resolving the vectors into Cartesian components.

A�B¼ Ax̂i+Ay ĵ+Azk̂
� �

� Bx̂i+By ĵ+Bzk̂
� �

(1.15)

Since the set î ĵ k̂ is a mutually perpendicular triad of unit vectors, Eq. (1.13) implies that

î� î¼ 0 ĵ� ĵ¼ 0 k̂� k̂¼ 0

î� ĵ¼ k̂ ĵ� k̂¼ î k̂� î¼ ĵ
(1.16)

Expanding the right-hand side of Eq. (1.15), substituting Eq. (1.16), and making use of Eq. (1.14)

leads to

A�B¼ AyBz�AzBy

� 	̂
i� AxBz�AzBxð Þ̂j+ AxBy�AyBx

� 	
k̂ (1.17)

It may be seen that the right-hand side is the determinant of the matrix

î ĵ k̂
Ax Ay Az

Bx By Bz

24 35
. 1.7

B is normal to both A and B and defines the direction of the cross product A � B.
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Thus, Eq. (1.17), can be written as

A�B¼
î ĵ k̂

Ax Ay Az

Bx By Bz














 (1.18)

where the two vertical bars stand for the determinant. Obviously, the rule for computing the cross prod-

uct, though straightforward, is a bit lengthier than that for the dot product. Remember that the dot prod-

uct yields a scalar whereas the cross product yields a vector.

The cross product provides an easy way to compute the normal to a plane. Let A and B be any two

vectors lying in the plane, or, let any two vectors be brought tail to tail to define a plane, as shown in

Fig. 1.7. The vector C ¼ A � B is normal to the plane of A and B. Therefore, n̂AB¼C=C, or

n̂AB¼ A�B

A�Bk k (1.19)
EXAMPLE 1.3
Let A5� 3̂i+ 7̂j+ 9k̂ and B56̂i� 5̂j+ 8k̂. Find a unit vector that lies in the plane of A and B and is perpendicular to A.

Solution
The plane of vectorsA andB is determined by parallel-shifting the vectors so that they meet tail to tail. Calculate the vector

D ¼ A � B.

D¼
î ĵ k̂
�3 7 9

6 �5 8














¼ 101̂i+ 78̂j�27k̂

Note that A and B are both normal to D. We next calculate the vector C ¼ D � A.

C¼
î ĵ k̂

101 78 �27
�3 7 9














¼ 891̂i�828̂j+ 941k̂

C is normal to D as well as to A. A, B, and C are all perpendicular to D. Therefore, they are coplanar. Thus, C is not only

perpendicular toA, but it also lies in the plane ofA and B. Therefore, the unit vector we are seeking is the unit vector in the

direction of C. That is

ûC¼C

C
¼ 891̂i�828̂j+ 941k̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8912 + �828ð Þ2 + 9412
q

ûC¼ 0:5794̂i�0:5384̂j+ 0:6119k̂
In the chapters to follow, we will often encounter the vector triple product, A � (B � C). By resolving

A,B, andC into their Cartesian components, it can easily be shown that the vector triple product can be

expressed in terms of just the dot products of these vectors as follows:

A� B�Cð Þ¼B A �Cð Þ�C A �Bð Þ (1.20)

Because of the appearance of the letters on the right-hand side, this is often referred to as the “bac–cab
rule.”
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EXAMPLE 1.4
If F ¼ E � {D � [A � (B � C)]}, use the bac–cab rule to reduce this expression to one involving only dot products.

Solution
First, we invoke the bac–cab rule to obtain

F¼E� D� B A �Cð Þ�C A �Bð Þ½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{bac�cab rule8><>:

9>=>;
Expanding and collecting terms leads to

F¼ A �Cð Þ E� D�Bð Þ½ �� A �Bð Þ E� D�Cð Þ½ �
We next apply the bac–cab rule twice on the right-hand side.

F¼ A �Cð Þ D E �Bð Þ�B E �Dð Þ½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{bac�cab rule

� A �Bð Þ D E �Cð Þ�C E �Dð Þ½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{bac�cab rule

Expanding and collecting terms yields the sought-for result.

F¼ A �Cð Þ E �Bð Þ� A �Bð Þ E �Cð Þ½ �D� A �Cð Þ E �Dð ÞB+ A �Bð Þ E �Dð ÞC
Another useful vector identity is the “interchange of the dot and the cross”:

A � B�Cð Þ¼ A�Bð Þ �C (1.21)

It is so-named because interchanging the operations in the expression A � B � C yields A � B � C.
The parentheses in Eq. (1.21) are required to show which operation must be carried out first, according

to the rules of vector algebra. (For example, (A � B) � C, the cross product of a scalar and a vector,

is undefined.) It is easy to verify Eq. (1.21) by substituting A¼Ax̂i +Ay ĵ+Azk̂, B¼Bx̂i +By ĵ+Bzk̂,

and C¼Cx̂i +Cy ĵ+Czk̂ and observing that both sides of the equal sign reduce to the same expression.
1.3 KINEMATICS
To track the motion of a particle P through Euclidean space, we need a frame of reference, consisting of

a clock and a nonrotating Cartesian coordinate system. The clock keeps track of time t, and the xyz axes
of the Cartesian coordinate system are used to locate the spatial position of the particle. In nonrelativ-

istic mechanics, a single “universal” clock serves for all possible Cartesian coordinate systems. So when

we refer to a frame of reference, we need to think only of the mutually orthogonal axes themselves.

The unit of time used throughout this book is the second (s). The unit of length is the meter (m), but

the kilometer (km) will be the length unit of choice when large distances and velocities are involved.

Conversion factors between kilometers, miles, and nautical miles are listed in Table A.3.

Given a frame of reference, the position of the particle P at a time t is defined by the position vector
r(t) extending from the originO of the frame out to P itself, as illustrated in Fig. 1.8. The components of

r(t) are just the x, y, and z coordinates,

r tð Þ¼ x tð Þ̂i+ y tð Þ̂j+ z tð Þk̂



FIG. 1.8

Position, velocity, and acceleration vectors.
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The distance of P from the origin is the magnitude or length of r, denoted krk or just r,
rk k¼ r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
As in Eq. (1.11), the magnitude of r can also be computed by means of the dot product operation,

r¼ ffiffiffiffiffiffiffiffi
r � rp

The velocity v and acceleration a of the particle are the first and second time derivatives of the position

vector,

v tð Þ¼ dx tð Þ
dt

î+
dy tð Þ
dt

ĵ+
dy tð Þ
dt

k̂¼ vx tð Þ̂i+ vy tð Þ̂j+ vz tð Þk̂

a tð Þ¼ dvx tð Þ
dt

î+
dvy tð Þ
dt

ĵ+
dvz tð Þ
dt

k̂¼ ax tð Þ̂i+ ay tð Þ̂j+ az tð Þk̂

The derivatives of î, ĵ, and k̂ are zero since axes of the Cartesian frame have fixed directions. It is con-

venient to represent the time derivative by means of an overhead dot. In this shorthand notation, if ( ) is

any quantity, then

ð Þ
�
¼ dð Þ

dt
ð Þ
� �
¼ d2ð Þ

dt2
ð Þ
⋯
¼ d3ð Þ

dt3
etc:

Thus, for example,

v¼ _r

a¼ _v¼€r

vx¼ _x vy¼ _y vz¼ _z

ax¼ _vx¼ €x ay¼ _vy¼ €y az¼ _vz¼ €z

The locus of points that a particle occupies as it moves through space is called its path or trajectory.

If the path is a straight line, then the motion is rectilinear. Otherwise, the path is curved, and the motion
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is called curvilinear. The velocity vector v is tangent to the path. If ût is the unit vector tangent to the

trajectory, then

v¼ vût (1.22)

where the speed v is the magnitude of the velocity v. The distance ds that P travels along its path in the

time interval dt is obtained from the speed by

ds¼ vdt

In other words,

v¼ _s

The distance s, measured along the path from some starting point, is what the odometers in our auto-

mobiles record. Of course, _s, our speed along the road, is indicated by the dial of the speedometer.

Note carefully that v 6¼ _r (i.e., the magnitude of the derivative of r does not equal the derivative of
the magnitude of r).
EXAMPLE 1.5
The position vector in meters is given as a function of time in seconds as

r¼ 8t2 + 7t+ 6
� 	̂

i+ 5t3 + 4
� 	̂

j+ 0:3t4 + 2t2 + 1
� 	

k̂ mð Þ (a)

At t ¼ 10 s, calculate (a) v (the magnitude of the derivative of r) and (b) _r (the derivative of the magnitude of r).

Solution
(a) The velocity v is found by differentiating the given position vector with respect to time,

v¼ dr

dt
¼ 16t+ 7ð Þ̂i+ 15t2 ĵ+ 1:2t3 + 4t

� 	
k̂

The magnitude of this vector is the square root of the sum of the squares of its components,

v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:44t6 + 234:6t4 + 272t2 + 224t+ 49
p

Evaluating this at t ¼ 10 s, we get

v¼ 1953:3m=s

(b) Calculating the magnitude of r in Eq. (a) leads to

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:09t8 + 26:2t6 + 68:6t4 + 152t3 + 149t2 + 84t+ 53
p

The time derivative of this expression is

_r ¼ dr

dt
¼ 0:36t7 + 78:6t5 + 137:2t3 + 228t2 + 149t+ 42ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:09t8 + 26:2t6 + 68:6t4 + 152t3 + 149t2 + 84t+ 53
p

Substituting t ¼ 10 s yields

_r ¼ 1935:5m=s
If v is given, then we can find the components of the unit tangent ût in the Cartesian coordinate

frame of reference by means of Eq. (1.22):

ût¼ v

v
¼ vx

v
î+

vy
v
ĵ+

vz
v
k̂ v¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x + v

2
y + v

2
z

q� �
(1.23)
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The acceleration may be written as

a¼ atût + anûn (1.24)

where at and an are the tangential and normal components of acceleration, given by

at¼ _v ¼ €sð Þ an¼ v2

ρ
(1.25)

where ρ is the radius of curvature, which is the distance from the particle P to the center of curvature of

the path at that point. The unit principal normal ûn is perpendicular to ût and points toward the center of
curvature C, as shown in Fig. 1.9. Therefore, the position of C relative to P, denoted rC/P, is

rC=P¼ ρûn (1.26)

The orthogonal unit vectors ût and ûn form a plane called the osculating plane. The unit normal to the

osculating plane is ûb, the binormal, and it is obtained from ût and ûn by taking their cross product:

ûb¼ ût� ûn (1.27)

From Eqs. (1.22), (1.24), and (1.27), we have

v�a¼ vût� atût + anûnð Þ¼ van ût� ûnð Þ¼ vanûb¼ v�ak kûb
That is, an alternative to Eq. (1.27) for calculating the binormal vector is

ûb¼ v�a

v�ak k (1.28)

Note that ût, ûn, and ûb form a right-handed triad of orthogonal unit vectors. That is

ûb� ût¼ ûn ût� ûn¼ ûb ûn� ûb¼ ût (1.29)
FIG. 1.9

Orthogonal triad of unit vectors associated with the moving point P.
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The center of curvature lies in the osculating plane. When the particle Pmoves an incremental distance

ds, the radial from the center of curvature to the path sweeps out a small angle, dϕ, measured in the

osculating plane. The relationship between this angle and ds is

ds¼ ρdϕ

so that _s¼ ρ _ϕ, or

_ϕ¼ v

ρ
(1.30)
EXAMPLE 1.6
Relative to a Cartesian coordinate system, the position, velocity, and acceleration of a particle P at a given instant are

r¼ 250̂i+ 630̂j + 430k̂ mð Þ (a)

v¼ 90̂i+ 125̂j + 170k̂ m=sð Þ (b)

a¼ 16̂i+ 125̂j+ 30k̂ m=s2
� 	

(c)

Find the coordinates of the center of curvature at that instant.

Solution
The coordinates of the center of curvature C are the components of its position vector rC. Consulting Fig. 1.9, we observe

that

rC¼ r+ ρûn (d)

where r is the position vector of the point P, ρ is the radius of curvature, and ûn is the unit principal normal vector. The

position vector r is given in Eq. (a), but ρ and ûn are unknowns at this point. We must use the geometry of Fig. 1.9 to

find them.

We begin by seeking the value of ûn, using the first of Eqs. (1.29),

ûn¼ ûb� ût (e)

The unit tangent vector ût is found at once from the velocity vector in Eq. (b) by means of Eq. 1.23,

ût¼ v

v

where

v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
902 + 1252 + 1702

p
¼ 229:4 m=s (f)

Thus,

ût¼ 90̂i+ 125̂j+ 170k̂

229:4
¼ 0:39233̂i+ 0:54490̂j+ 0:74106k̂ (g)

To find the binormal ûb we insert the given velocity and acceleration vectors into Eq. (1.28),

ûb¼ v�a

v�ak k¼

î ĵ k̂

90 125 170

16 125 30


















v�ak k ¼ �17,500̂i+ 20̂j + 9250k̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�17, 500ð Þ2 + 202 + 92502

q
¼�0:88409̂i+ 0:0010104̂i+ 0:46731k̂

(h)
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Substituting Eqs. (g) and (h) back into Eq. (e) finally yields the unit principal normal

ûn¼
î ĵ k̂

�0:88409 0:0010104 0:46731
0:39233 0:5449 0:74106














¼�0:25389̂i+ 0:8385̂j�0:48214k̂ (i)

The only unknown remaining in Eq. (d) is ρ, for which we appeal to Eq. (1.25),

ρ¼ v2

an
(j)

The normal acceleration an is calculated by projecting the acceleration vector a onto the direction of the unit normal ûn,

an¼ a � ûn¼ 16̂i+ 125̂j + 30k̂
� �

� �0:25389̂i+ 0:8385̂j�0:48214k̂
� �

¼ 86:287m=s2 (k)

Putting the values of v and an from Eqs. (f) and (k) into Eq. ( j) yields the radius of curvature,

ρ¼ 229:42

86:287
¼ 609:89m (l)

Upon substituting Eqs. (a), (i), and (l) into Eq. (d), we obtain the position vector of the center of curvature C,

rC¼ 250̂i+ 630̂j+ 430k̂
� �

+ 609:89 �0:25389̂i+ 0:8385̂j�0:48214k̂
� �

¼ 95:159̂i+ 1141:4̂j+ 135:95k̂ mð Þ
Therefore, the coordinates of C are

x¼ 95:16m y¼ 1141m z¼ 136:0m
1.4 MASS, FORCE, AND NEWTON’S LAW OF GRAVITATION
Mass, like length and time, is a primitive physical concept: it cannot be defined in terms of any other

physical concept. Mass is simply the quantity of matter. More practically, mass is a measure of the

inertia of a body. Inertia is an object’s resistance to changing its state of motion. The larger its inertia

(the greater its mass), the more difficult it is to set a body into motion or bring it to rest. The unit of mass

is the kilogram (kg).

Force is the action of one physical body on another, either through direct contact or through a dis-

tance. Gravity is an example of force acting through a distance, as are magnetism and the force between

charged particles. The gravitational force Fg between two masses m1 and m2 having a distance r be-
tween their centers is

Fg¼G
m1m2

r2
(1.31)

This is Newton’s law of gravity, in which G, the universal gravitational constant, has the value

G ¼ 6.6742(10�11)m3/(kg � s2). Due to the inverse-square dependence on distance, the force of gravity
rapidly diminishes with the amount of separation between the two masses. In any case, the force of

gravity is minuscule unless at least one of the masses is extremely big.

The force of a large mass (such as the earth) on a mass many orders of magnitude smaller (such as a

person) is called weight,W. If the mass of the large object isM and that of the relatively tiny one is m,
then the weight of the small body is

W¼G
Mm

r2
¼m

GM

r2

� �
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or

W¼mg (1.32)

where

g¼GM

r2
(1.33)

g has units of acceleration (m/s2) and is called the acceleration of gravity. If planetary gravity is the only

force acting on a body, then the body is said to be in free fall. The force of gravity draws a freely falling

object toward the center of attraction (e.g., center of the earth) with an acceleration g. Under ordinary
conditions, we sense our own weight by feeling contact forces acting on us in opposition to the force of

gravity. In free fall, there are, by definition, no contact forces, so there can be no sense of weight. Even

though the weight is not zero, a person in free fall experiences weightlessness, or the absence of gravity.

Let us evaluate Eq. (1.33) at the surface of the earth, whose radius according to Table A.1 is

6378 km. Letting g0 represent the standard sea level value of g, we get

g0¼GM

R2
E

(1.34)

In SI units,

g0¼ 9:807m=s2 (1.35)

Substituting Eq. (1.34) into Eq. (1.33) and letting z represent the distance above the earth’s surface, so
that r ¼ RE + z, we obtain

g¼ g0
R2
E

RE + zð Þ2¼
g0

1 + z=REð Þ2 (1.36)
FIG. 1.10

Variation of the acceleration of gravity with altitude.
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Commercial airliners cruise at altitudes on the order of 10 km (6 miles). At that height, Eq. (1.36)

reveals that g (and hence weight) is only three-tenths of a percent less than its sea level value.

Thus, under ordinary conditions, we ignore the variation of g with altitude. A plot of Eq. (1.36) out

to a height of 2000 km (the upper limit of low earth orbit operations) is shown in Fig. 1.10. The var-

iation of g over that range is significant. Even so, at space station altitude (400 km), weight is only

about 10% less than it is on the earth’s surface. The astronauts experience weightlessness, but they

clearly are not weightless.
EXAMPLE 1.7
Show that in the absence of an atmosphere, the shape of a low-altitude ballistic trajectory is a parabola. Assume the ac-

celeration of gravity g is constant and neglect the earth’s curvature.

Solution
Fig. 1.11 shows a projectile launched at t ¼ 0 s with a speed v0 at a flight path angle γ0 from the point with coordinates

(x0, y0).

Since the projectile is in free fall after launch, its only acceleration is that of gravity in the negative y direction:

€x¼ 0

€y¼�g
Integrating with respect to time and applying the initial conditions leads to

x¼ x0 + v0 cos γ0ð Þt (a)

y¼ y0 + v0 sin γ0ð Þt�1

2
gt2 (b)

Solving Eq. (a) for t and substituting the result into Eq. (b) yields

y¼ y0 + x�x0ð Þ tan γ0�
1

2

g

v20 cos
2 γ0

x�x0ð Þ2 (c)

This is the equation of a second-degree curve, a parabola, as sketched in Fig. 1.11.
FIG. 1.11

Flight of a low-altitude projectile in free fall (no atmosphere).
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EXAMPLE 1.8
An airplane flies a parabolic trajectory like that in Fig. 1.11 so that the passengers will experience free fall (weightlessness).

What is the required variation of the flight path angle γ with speed v? Ignore the curvature of the earth.

Solution
Fig. 1.12 reveals that for a “flat” earth, dγ ¼ � dϕ. That is,

_γ ¼� _ϕ

It follows from Eq. (1.30) that

ρ _γ ¼�v (1.37)

The normal acceleration an is just the component of the gravitational acceleration g in the direction of the unit principal

normal to the curve (from P toward C). From Fig. 1.12, then,

an¼ g cos γ (a)

Substituting the second of Eqs. (1.25) into Eq. (a) and solving for the radius of curvature yields

ρ¼ v2

gcos γ
(b)

Combining Eqs. (1.37) and (b), we find the time rate of change of the flight path angle,

_γ ¼�g cos γ
v

FIG. 1.12
1.5 NEWTON’S LAW OF MOTION
Force is not a primitive concept like mass because it is intimately connected with the concepts of mo-

tion and inertia. In fact, the only way to alter the motion of a body is to exert a force on it. The degree to

which the motion is altered is a measure of the force. Newton’s second law of motion quantifies this. If

the resultant or net force on a body of mass m is Fnet, then

Fnet¼ma (1.38)

Relationship between dγ and dϕ for a “flat” earth.
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In this equation, a is the absolute acceleration of the center of mass. The absolute acceleration is mea-

sured in a frame of reference that itself has neither translational nor rotational acceleration relative to

the fixed stars. Such a reference is called an absolute or inertial frame of reference.

Force is related to the primitive concepts of mass, length, and time by Newton’s second law. The

unit of force, appropriately, is the Newton, which is the force required to impart an acceleration of 1 m/

s2 to a mass of 1 kg. Amass of 1 kg therefore weighs 9.807 N at the earth’s surface. The kilogram is not

a unit of force.

Confusion can arise when mass is expressed in units of force, as frequently occurs in US engineer-

ing practice. In common parlance either the pound or the ton (2000 lb) is more likely to be used to

express the mass. The pound of mass is officially defined precisely in terms of the kilogram, as shown

in Table A.3. Since 1 lb of mass weighs 1 lb of force where the standard sea level acceleration of gravity

(Eq. 1.35) exists, we can use Newton’s second law to relate the pound of force to the Newton:

11b forceð Þ¼ 0:4536kg�9:807m=s2¼ 4:448N

The slug is the quantity of matter accelerated at 1 ft/s2 by a force of 1 lb. We can again use Newton’s

second law to relate the slug to the kilogram. Noting the relationship between feet and meters in

Table A.3, we find

1 slug¼ 1lb

1ft=s2
¼ 4:448N

0:3048m=s2
¼ 14:59

kg �m=s2

m=s2
¼ 14:59kg
EXAMPLE 1.9
On aNASAmission, the space shuttleAtlantis orbiter was reported to weigh 239,255 lb just prior to liftoff. On orbit 18 at an
altitude of about 350 km, the orbiter’s weight was reported to be 236,900 lb. (a) What was the mass, in kilograms, of

Atlantis on the launchpad and in orbit? (b) If no mass was lost between launch and orbit 18, what would have been the

weight of Atlantis, in pounds?

Solution
(a) The given data illustrate the common use of weight in pounds as a measure of mass. The “weights” given are actually

the mass in pounds of mass. Therefore, prior to launch

mlaunchpad¼ 239,255lb massð Þ� 0:4536kg

1lb massð Þ¼ 108,500kg

In orbit,

morbit 18 ¼ 236,900lb massð Þ� 0:4536kg

1lb massð Þ¼ 107,500kg

The decrease in mass is the propellant expended by the orbital maneuvering and reaction control rockets on the orbiter.

(b) Since the space shuttle launchpad at the Kennedy Space Center is essentially at sea level, the launchpad weight of

Atlantis in pounds (force) was numerically equal to its mass in pounds (mass). With no change in mass, the force of

gravity at 350km would be, according to Eq. (1.36),

W¼ 239,255lb forceð Þ� 1

1 +
350

6378

0B@
1CA

2

¼ 215,000lb forceð Þ
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The integral of a force F over a time interval is called the impulse of the force,

I ¼
ðt2
t1

Fdt (1.39)

Impulse is a vector quantity. From Eq. (1.38) it is apparent that if the mass is constant, then

I net¼
ðt2
t1

m
dv

dt
dt¼mv2�mv1 (1.40)

That is, the net impulse on a body yields a change mΔv in its linear momentum, so that

Δv¼I net

m
(1.41)

If Fnet is constant, then I net¼FnetΔt, in which case Eq. (1.41) becomes

Δv¼Fnet

m
Δt if Fnet is constantð Þ (1.42)

Let us conclude this section by introducing the concept of angular momentum. The moment of the

net force about O in Fig. 1.13 is

MOÞnet¼ r�Fnet

Substituting Eq. (1.38) yields

MOÞnet¼ r�ma¼ r�m
dv

dt
(1.43)

But, keeping in mind that the mass is constant,

r�m
dv

dt
¼ d

dt
r�mvð Þ� dr

dt
�mv

� �
¼ d

dt
r�mvð Þ� v�mvð Þ

Since v � mv ¼ m(v � v) ¼ 0, it follows that Eq. (1.43) can be written

MOÞnet¼
dHO

dt
(1.44)
FIG. 1.13

The absolute acceleration of a particle is in the direction of the net force.
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where HO is the angular momentum about O,

HO¼ r�mv (1.45)

Thus, just as the net force on a particle changes its linear momentummv, the moment of that force about

a fixed point changes the moment of its linear momentum about that point. Integrating Eq. (1.44) with

respect to time yields ðt2
t1

MOÞnet¼HOÞ2�HOÞ1 (1.46)

The integral on the left is the net angular impulse. This angular impulse-momentum equation is the

rotational analog of the linear impulse-momentum relation given above in Eq. (1.40).
EXAMPLE 1.10
A particle of massm is attached to pointO by an inextensible string of length l, as illustrated in Fig. 1.14. Initially, the string

is slack when m is moving to the left with a speed v0 in the position shown. Calculate (a) the speed of m just after the string

becomes taut and (b) the average force in the string over the small time interval Δt required to change the direction of the
particle’s motion.

Solution
(a) Initially, the position and velocity of the particle are

r1¼ ĉi+ dĵ v1¼�v0 î
The angular momentum about O is

H1¼ r1�mv1¼
î ĵ k̂
c d 0

�mvo 0 0














¼mvodk̂ (a)

Just after the string becomes taut,

r2¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�d2
p

î+ dĵ v2¼ vx î+ vy ĵ (b)

and the angular momentum is

H2¼ r2�mv2 ¼
î ĵ k̂

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�d2
p

d 0

mvx mvy 0














¼ �mvxd�mvy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�d2
p� �

k̂ (c)

Initially, the force exerted onm by the slack string is zero. When the string becomes taut, the force exerted onm passes

through O. Therefore, the moment of the net force on m about O remains zero. According to Eq. (1.46),

H2¼H1
FIG. 1.14

Particle attached to O by an inextensible string.
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Substituting Eqs. (a) and (c) yields

vxd +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�d2
p

vy¼�vod (d)

The string is inextensible, so the component of the velocity of m along the string must be zero:

v2 � r2 ¼ 0

Substituting v2 and r2 from Eq. (b) and solving for vy, we get

vy¼ vx

ffiffiffiffiffiffiffiffiffiffiffiffi
l2

d2
�1

r
(e)

Solving Eqs. (d) and (e) for vx and vy leads to

vx¼�d
2

l2
vo vy¼�

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

l2

r
d

I
vo (f)

Thus, the speed, v¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx2 + vy2

p
, after the string becomes taut is

v¼ d

l
vo

(b) From Eq. (1.40), the impulse on m during the time it takes the string to become taut is

I ¼m v2�v1ð Þ¼m �d
2

l2
vo î�

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

l2

r
d

l
vo ĵ

 !
� �vo î
� �" #

¼ 1�d2

l2

� �
mvo î�

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

l2

r
d

l
mvo ĵ

The magnitude of this impulse, which is directed along the string, is

I ¼ Ik k¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

l2

r
mvo

Hence, the average force in the string during the small time interval Δt required to change the direction of the velocity
vector turns out to be

Favg¼ IΔt¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

l2

s
mvo
Δt
1.6 TIME DERIVATIVES OF MOVING VECTORS
Fig. 1.15(a) shows a vectorA inscribed in a rigid body B that is in motion relative to an inertial frame of

reference (a rigid, Cartesian coordinate system, which is fixed relative to the fixed stars). The magni-

tude of A is fixed. The body B is shown at two times, separated by the differential time interval dt. At
time t + dt, the orientation of vectorA differs slightly from that at time t, but its magnitude is the same.

According to one of the many theorems of the prolific 18th-century Swiss mathematician Leonhard

Euler (1707–1783), there is a unique axis of rotation about which B, and therefore A, rotates during

the differential time interval. If we shift the two vectors A(t) and A(t + dt) to the same point on the

axis of rotation, so that they are tail to tail, as shown in Fig. 1.15(b), we can assess the difference

dA between them caused by the infinitesimal rotation. Remember that shifting a vector to a parallel

line does not change the vector. The rotation of the body B is measured in the plane perpendicular

to the instantaneous axis of rotation. The amount of rotation is the angle dθ through which a line

element normal to the rotation axis turns in the time interval dt. In Fig. 1.15(b) that line element is



FIG. 1.15

Displacement of a rigid body. (a) Change in orientation of an embedded vector A. (b) Differential rotation of A

about the instantaneous rotation axis.
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the component of A normal to the axis of rotation. We can express the difference dA between A(t) and
A(t + dt) as

dA¼ Ak k � sinϕð Þdθ½ �
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{magnitude of dA

n̂ (1.47)

where n̂ is the unit normal to the plane defined byA and the axis of rotation, and it points in the direction

of the rotation. The angle ϕ is the inclination of A to the rotation axis. By definition,

dθ¼ ωk kdt (1.48)

where ω is the angular velocity vector, which points along the instantaneous axis of rotation, and its

direction is given by the right-hand rule. That is, wrapping the right hand around the axis of rotation,

with the fingers pointing in the direction of dθ, results in the thumb defining the direction of ω. This is
evident in Fig. 1.15(b). It should be pointed out that the time derivative ofω is the angular acceleration,

usually given the symbol α. Thus,

α¼ dω
dt

(1.49)

Substituting Eq. (1.48) into Eq. (1.47), we get

dA¼ Ak k � sinϕ � ωk kdt � n̂¼ ωk k � Ak k � sinϕð Þn̂dt (1.50)

By definition of the cross product, ω�A is the product of the magnitude of ω, the magnitude of A, the

sine of the angle between ω and A, and the unit vector normal to the plane of ω and A, in the rotation

direction. That is,

ω�A¼ ωk k � Ak k � sinϕ � n̂ (1.51)

Substituting Eq. (1.51) into Eq. (1.50) yields

dA¼ω�Adt
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Dividing through by dt, we finally obtain

dA

dt
¼ω�A if

d

dt
Ak k¼ 0

� �
(1.52)

Eq. (1.52) is a formula we can use to compute the time derivative of any vector of constant magnitude.
EXAMPLE 1.11
Calculate the second time derivative of a vector A of constant magnitude, expressing the result in terms of ω and its de-

rivatives and A.

Solution
Differentiating Eq. (1.52) with respect to time, we get

d2A

dt2
¼ d

dt

dA

dt
¼ d

dt
ω�Að Þ¼ dω

dt
�A+ω�dA

dt

Using Eqs. (1.49) and (1.52), this can be written

d2A

dt2
¼α�A+ω� ω�Að Þ (1.53)
EXAMPLE 1.12
Calculate the third derivative of a vector A of constant magnitude, expressing the result in terms of ω and its derivatives

and A.

Solution

d3A

dt3
¼ d

dt

d2A

dt2
¼ d

dt
α�A +ω� ω�Að Þ½ �

¼ d

dt
α�Að Þ+ d

dt
ω� ω�Að Þ½ �

¼ dα
dt
�A+α�dA

dt

� �
+

dω
dt
� ω�Að Þ +ω� d

dt
ω�Að Þ

� �
¼ dα

dt
�A+α� ω�Að Þ

� �
+ α� ω�Að Þ +ω� dω

dt
�A+ω�dA

dt

� �� �
¼ dα

dt
�A+α� ω�Að Þ

� �
+ α� ω�Að Þ +ω� α�A +ω� ω�Að Þ½ �f g

¼ dα
dt
�A+α� ω�Að Þ +α� ω�Að Þ +ω� α�Að Þ +ω� ω� ω�Að Þ½ �

¼ dα
dt
�A+ 2α� ω�Að Þ +ω� α�Að Þ +ω� ω� ω�Að Þ½ �

d3A

dt3
¼ dα

dt
�A+ 2α� ω�Að Þ+ω� α�A+ω� ω�Að Þ½ �
Let XYZ be a rigid inertial frame of reference and xyz a rigid moving frame of reference, as shown in

Fig. 1.16. The moving frame can be moving (translating and rotating) freely on its own accord, or it can



FIG. 1.16

Fixed (inertial) and moving rigid frames of reference.
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be attached to a physical object, such as a car, an airplane, or a spacecraft. Kinematic quantities mea-

sured relative to the fixed inertial frame will be called absolute (e.g., absolute acceleration), and those

measured relative to the moving system will be called relative (e.g., relative acceleration). The unit

vectors along the inertial XYZ system are Î, Ĵ, and K̂, whereas those of the moving xyz system are

î, ĵ, and k̂. The motion of the moving frame is arbitrary, and its absolute angular velocity isΩ. If, how-

ever, the moving frame is rigidly attached to an object, so that it not only translates but also rotates with

it, then the frame is called a body frame and the axes are referred to as body axes. A body frame clearly

has the same angular velocity as the body to which it is bound.

Let B be any time-dependent vector. Resolved into components along the inertial frame of refer-

ence, it is expressed analytically as

B¼BX Î+BY Ĵ +BZK̂

where BX,BY, and BZ are functions of time. Since Î, Ĵ, and K̂ are fixed, the time derivative ofB is simply

dB

dt
¼ dBX

dt
Î +

dBY

dt
Ĵ +

dBZ

dt
K̂

dBX/dt, dBY/dt, and dBZ/dt are the components of the absolute time derivative of B.

B may also be resolved into components along the moving xyz frame, so that, at any instant,

B¼Bx̂i+By ĵ+Bzk̂ (1.54)

Using this expression to calculate the time derivative of B yields

dB

dt
¼ dBx

dt
î+

dBy

dt
ĵ+

dBz

dt
k̂ +Bx

d̂i

dt
+By

d̂j

dt
+Bz

dk̂

dt
(1.55)

The orthogonal unit vectors î, ĵ, and k̂ are not fixed in space but are continuously changing

direction; therefore, their time derivatives are not zero. They obviously have a constant magnitude
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(unity) and, being attached to the xyz frame, they all have the angular velocity Ω. It follows from

Eq. (1.52) that

d̂i

dt
¼Ω� î

d̂j

dt
¼Ω� ĵ

dk̂

dt
¼Ω� k̂

Substituting these on the right-hand side of Eq. (1.55) yields

dB

dt
¼ dBx

dt
î+

dBy

dt
ĵ+

dBz

dt
k̂+Bx Ω� î

� �
+By Ω� ĵ

� �
+Bz Ω� k̂

� 	
¼ dBx

dt
î+

dBy

dt
ĵ+

dBz

dt
k̂+ Ω�Bx̂i
� �

+ Ω�By ĵ
� �

+ Ω�Bzk̂
� 	

¼ dBx

dt
î+

dBy

dt
ĵ+

dBz

dt
k̂+Ω� Bx̂i+By ĵ+Bzk̂

� �
In view of Eq. (1.54), this can be written as

dB

dt
¼ dB

dt

�
rel

+Ω�B (1.56)

where

dB

dt

�
rel

¼ dBx

dt
î+

dBy

dt
ĵ+

dBz

dt
k̂ (1.57)

dB/dt)rel is the time derivative of B relative to the moving frame. Eq. (1.56) shows how the absolute

time derivative is obtained from the relative time derivative. Clearly, dB/dt ¼ dB/dt)rel only when the

moving frame is in pure translation (Ω ¼ 0).

Eq. (1.56) can be used recursively to compute higher order time derivatives. Thus, differentiating

Eq. (1.56) with respect to t, we get

d2B

dt2
¼ d

dt

dB

dt

�
rel

+
dΩ
dt
�B +Ω�dB

dt

Using Eq. (1.56) in the last term yields

d2B

dt2
¼ d

dt

dB

dt

�
rel

+
dΩ
dt
�B +Ω� dB

dt

�
rel

+Ω�B

� �
(1.58)

Eq. (1.56) also implies that

d

dt

dB

dt

�
rel

¼ d2B

dt2

�
rel

+Ω�dB

dt

�
rel

(1.59)

where

d2B

dt2

�
rel

¼ d2Bx

dt2
î+

d2By

dt2
ĵ+

d2Bz

dt2
k̂

Substituting Eq. (1.59) into Eq. (1.58) yields

d2B

dt2
¼ d2B

dt2

�
rel

+Ω�dB

dt

�
rel

� �
+
dΩ
dt
�B +Ω� dB

dt

�
rel

+Ω�B

� �
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Collecting terms, this becomes

d2B

dt2
¼ d2B

dt2

�
rel

+ _Ω�B +Ω� Ω�Bð Þ+ 2Ω�dB

dt

�
rel

(1.60)

where _Ω� dΩ=dt is the absolute angular acceleration of the xyz frame.

Formulas for higher order time derivatives are found in a similar fashion.
1.7 RELATIVE MOTION
Let P be a particle in arbitrary motion. The absolute position vector of P is r and the position of P
relative to the moving frame is rrel. If rO is the absolute position of the origin of the moving frame,

then it is clear from Fig. 1.17 that

r¼ rO + rrel (1.61)

Since rrel is measured in the moving frame,

rrel¼ x̂i+ ŷj+ zk̂ (1.62)

where x, y, and z are the coordinates of P relative to the moving reference.

The absolute velocity v of P is dr/dt, so that from Eq. (1.61) we have

v¼ vO +
drrel

dt
(1.63)

where vO ¼ drO/dt is the (absolute) velocity of the origin of the xyz frame. From Eq. (1.56), we can write

drrel

dt
¼ vrel +Ω�rrel (1.64)

where vrel is the velocity of P relative to the xyz frame (so that î, ĵ, and k̂ are held fixed):

vrel¼ drrel

dt

�
rel

¼ dx

dt
î+

dy

dt
ĵ+

dz

dt
k̂ (1.65)
FIG. 1.17

Absolute and relative position vectors.
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Substituting Eq. (1.64) into Eq. (1.63) yields

v¼ vO +Ω�rrel + vrel (1.66)

The absolute acceleration a of P is dv/dt, so that from Eq. (1.63) we have

a¼ aO +
d2rrel

dt2
(1.67)

where aO ¼ dvO/dt is the absolute acceleration of the origin of the xyz frame. We evaluate the second

term on the right using Eq. (1.60).

d2rrel

dt2
¼ d2rrel

dt2

�
rel

+ _Ω�rrel +Ω� Ω�rrelð Þ+ 2Ω�drrel

dt

�
rel

(1.68)

Since vrel ¼ drrel/dt)rel and arel ¼ d2rrel/dt
2)rel, this can be written

d2rrel

dt2
¼ arel + _Ω�rrel +Ω� Ω�rrelð Þ + 2Ω�vrel (1.69)

Upon substituting this result into Eq. (1.67), we find

a¼ aO + _Ω�rrel +Ω� Ω�rrelð Þ+ 2Ω�vrel + arel (1.70)

The cross product 2Ω � vrel is called the Coriolis acceleration after Gustave Gaspard de Coriolis

(1792–1843), the French mathematician who introduced this term (Coriolis, 1835). Because of the

number of terms on the right, Eq. (1.70) is sometimes referred to as the five-term acceleration formula.
EXAMPLE 1.13
At a given instant, the absolute position, velocity, and acceleration of the origin O of a moving frame are

rO ¼ 100Î+ 200Ĵ + 300K̂ mð Þ
vO¼�50Î+ 30Ĵ�10K̂ m=sð Þ
aO¼�15Î+ 40Ĵ+ 25K̂ m=s2

� 	
9>>=>>; givenð Þ (a)

The angular velocity and acceleration of the moving frame are

Ω¼ 1:0Î�0:4Ĵ + 0:6K̂ rad=sð Þ
_Ω¼�1:0Î�0:3Ĵ�0:4K̂ rad=s2

� 	) givenð Þ (b)

The unit vectors of the moving frame are

î¼ 0:5571Î + 0:7428Ĵ + 0:3714K̂

ĵ¼�0:06331Î + 0:4839Ĵ�0:8728K̂

k̂¼�0:8280Î + 0:4627Ĵ + 0:3166K̂

9>>=>>; givenð Þ (c)

The absolute position, velocity, and acceleration of P are

r¼ 300Î�100Ĵ + 150K̂ mð Þ
v¼ 70Î + 25Ĵ�20K̂ m=sð Þ
a¼ 7:5Î�8:5Ĵ + 6:0K̂ m=s2

� 	
9>>=>>; givenð Þ (d)

Find (a) the velocity vrel and (b) the acceleration arel of P relative to the moving frame.
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Solution
Let us first use Eq. (c) to solve for Î, Ĵ, and K̂ in terms of î, ĵ, and k̂ (three equations in three unknowns):

Î ¼ 0:5571̂i�0:06331̂j�0:8280k̂

Ĵ ¼ 0:7428̂i+ 0:4839̂j + 0:4627k̂

K̂¼ 0:3714̂i� 0:8728̂j�0:3166k̂

(e)

(a) The relative position vector is

rrel ¼ r�rO¼ 300Î�100Ĵ+ 150K̂
� 	� 100Î+ 200Ĵ+ 300K̂

� 	¼ 200Î�300Ĵ�150K̂ mð Þ (f)

From Eq. (1.66), the relative velocity vector is

vrel¼ v�vO�Ω�rrel

¼ 70Î+ 25Ĵ�20K̂
� 	� �50Î + 30Ĵ�10K̂

� 	� Î Ĵ K̂

1:0 �0:4 0:6

200 �300 �150


















¼ 70Î+ 25Ĵ�20K̂
� 	� �50Î + 30Ĵ�10K̂

� 	� 240Î+ 270Ĵ�220K̂
� 	

or

vrel ¼�120Î�275Ĵ + 210K̂ m=sð Þ (g)

To obtain the components of the relative velocity along the axes of the moving frame, substitute Eq. (e) into Eq. (g),

vrel ¼�120 0:5571̂i�0:06331̂j�0:8280k̂
� �

�275 0:7428̂i+ 0:4839̂j+ 0:4627k̂
� �

+ 210 0:3714̂i�0:8728̂j+ 0:3166k̂
� �

so that

vrel ¼�193:1̂i�308:8̂j+ 38:60k̂ m=sð Þ (h)

Alternatively, in terms of the unit vector ûv in the direction of vrel,

vrel¼ 366:2ûv m=sð Þ ûv¼�0:5272̂i�0:8432̂j + 0:1005k̂
� �

(i)

(b) To find the relative acceleration, we use the five-term acceleration formula, Eq. (1.70):

arel¼ a�aO� _Ω�rrel�Ω� Ω�rrelð Þ�2 Ω�vrelð Þ

¼ a�aO�
Î Ĵ K̂

�1:0 0:3 �0:4
200 �300 �150
















�Ω�

Î Ĵ K̂

1:0 �0:4 0:6

200 �300 �150
















�2

Î Ĵ K̂

1:0 �0:4 0:6

�120 �275 210


















¼ a�aO� �165Î�230Ĵ + 240K̂
� 	� Î Ĵ K̂

1:0 �0:4 0:6

240 270 �220
















� 162Î�564Ĵ�646K̂
� 	

¼ 7:5Î�8:5Ĵ + 6K̂
� 	� �15Î+ 40Ĵ+ 25K̂� 	� �165Î�230Ĵ+ 240K̂

� 	
� �74Î+ 364Ĵ+ 366K̂� 	� 162Î�564Ĵ�646K̂

� 	
arel ¼ 99:5Î + 381:5Ĵ + 21:0K̂ m=sð Þ2 (j)

The components of the relative acceleration along the axes of the moving frame are found by substituting Eq. (e) into

Eq. ( j):

arel ¼ 99:5 0:5571̂i�0:06331̂j�0:8282k̂
� �

+ 381:5 0:7428̂i+ 0:4839̂j+ 0:4627k̂
� �

+ 21:0 0:3714̂i�0:8728̂j+ 0:3166k̂
� �

arel ¼ 346:6̂i+ 160:0̂j+ 100:8k̂ m=s2ð Þ (k)
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Or, in terms of the unit vector ûa in the direction of arel,

arel ¼ 394:8ûa m=s2ð Þ ûa¼ 0:8778̂i+ 0:4052̂j+ 0:2553k̂
� �

(l)
Fig. 1.18 shows the nonrotating inertial frame of reference XYZ with its origin at the center C of the

earth, which we shall assume to be a sphere. That assumption will be relaxed in Chapter 5. Embedded in

the earth and rotating with it is the orthogonal x0y0z0 frame, also centered at C, with the z0 axis parallel to
Z, the earth’s axis of rotation. The x0 axis intersects the equator at the prime meridian (0 degree

longitude), which passes through Greenwich in London, England. The angle between X and x0 is
θG, and the rate of increase of θG is just the angular velocity Ω of the earth. P is a particle (e.g., an

airplane or spacecraft), which is moving in an arbitrary fashion above the surface of the earth. rrel is

the position vector of P relative to C in the rotating x0y0z0 system. At a given instant, P is directly over

point O, which lies on the earth’s surface at longitude Λ and latitude ϕ. Point O coincides instanta-

neously with the origin of what is known as a topocentric-horizon coordinate system xyz. For our
purposes, x and y are measured positive eastward and northward along the local latitude and meridian,
. 1.18

rth-centered inertial frame (XYZ); earth-centered noninertial x
0
y
0
z
0
frame embedded in and rotating with the

rth; and a noninertial, topocentric-horizon frame xyz attached to a point O on the earth’s surface.
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respectively, through O. The tangent plane to the earth’s surface at O is the local horizon. The z axis is
the local vertical (straight up), and it is directed radially outward from the center of the earth. The unit

vectors of the xyz frame are î̂jk̂, as indicated in Fig. 1.18. Keep in mind thatO remains directly below P,
so that asPmoves, so do the xyz axes. Thus, the î̂jk̂ triad, which comprises the unit vectors of a spherical

coordinate system, varies in direction as P changes location, thereby accounting for the curvature of

the earth.

Let us find the absolute velocity and acceleration of P. It is convenient to first obtain the velocity

and acceleration of P relative to the nonrotating earth, and then use Eqs. (1.66) and (1.70) to calculate

their inertial values.

The relative position vector can be written

rrel¼ RE + zð Þk̂ (1.71)

where RE is the radius of the earth, and z is the height of P above the earth (i.e., its altitude). The time

derivative of rrel is the velocity vrel relative to the nonrotating earth,

vrel¼ drrel

dt
¼ _zk̂ + RE + zð Þdk̂

dt
(1.72)

To calculate dk̂=dt, we must use Eq. (1.52). The angular velocity ω of the xyz frame relative to the

nonrotating earth is found in terms of the rates of change of latitude ϕ and longitude Λ,

ω¼� _ϕ î+ _Λ cosϕĵ+ _Λ sinϕk̂ (1.73)

Thus,

dk̂

dt
¼ω� k̂¼ _Λ cos ϕ̂i+ _ϕ ĵ (1.74)

Let us also record the following for future use:

d̂j

dt
¼ω� ĵ¼� _Λ sin ϕ̂i� _ϕk̂ (1.75)

d̂i

dt
¼ω� î¼� _Λ sinϕĵ� _Λ cosϕk̂ (1.76)

Substituting Eq. (1.74) into Eq. (1.72) yields the velocity in the nonrotating frame resolved along the

topocentric-horizon axes,

vrel¼ _x î+ _y ĵ+ _zk̂ (1.77a)

where

_x¼ RE + zð Þ _Λ cosϕ _y¼ RE + zð Þ _ϕ (1.77b)

It is convenient to use these results to express the rates of change of latitude and longitude in terms of

the components of relative velocity over the earth’s surface,

_ϕ¼ _y

RE + z
_Λ¼ _x

RE + zð Þcosϕ (1.78)
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The time derivatives of these two expressions are

€ϕ¼ RE + zð Þ€y� _y _z

RE + zð Þ2
€Λ¼ RE + zð Þ €xcosϕ� _z cosϕ� _y sinϕð Þ _x

RE + zð Þ2 cos2ϕ (1.79)

The acceleration of P relative to the nonrotating earth is found by taking the time derivative of vrel.

From Eqs. (1.77a) and (1.77b) we thereby obtain

arel¼ €x̂i+ €ŷj+ €zk̂+ _x
d̂i

dt
+ _y

d̂j

dt
+ _z

dk̂

dt

¼ _z _Λ cosϕ + RE + zð Þ€Λcosϕ� RE + zð Þ _ϕ _Λ sinϕ
 �̂

i+ _z _ϕ + RE + zð Þ€ϕ �̂
j+ €zk̂

+ RE + zð Þ _Λ cosϕ ω� î
� �

+ RE + zð Þ _ϕ ω� ĵ
� �

+ _z ω� k̂
� 	

Substituting Eq. (1.74) through Eq. (1.76) together with Eqs. (1.78) and (1.79) into this expression

yields, upon simplification,

arel¼ €x+
_x _z� _y tanϕð Þ

RE + z

� �̂
i+ €y+

_y _z + _x2 tanϕ

RE + z

� �
ĵ+ €z� _x2 + _y2

RE + z

� �
k̂ (1.80)

Observe that the curvature of the earth’s surface is neglected by letting RE + z become infinitely large,

in which case

arelÞneglecting earth’s curvature¼ €x̂i+ €ŷj+ €zk̂

That is, for a “flat earth,” the components of the relative acceleration vector are just the derivatives of

the components of the relative velocity vector.

For the absolute velocity we have, according to Eq. (1.66),

v¼ vC +Ω�rrel + vrel (1.81)

From Fig. 1.18, it can be seen that K̂¼ cosϕĵ+ sinϕk̂, which means the angular velocity of the earth is

Ω¼ΩK̂¼Ω cosϕĵ+Ω sinϕk̂ (1.82)

Substituting this, together with Eqs. (1.71) and (1.77a) and the fact that vC ¼ 0, into Eq. (1.81) yields

v¼ _x +Ω RE + zð Þcosϕ½ �̂i+ _y ĵ+ _zk̂ (1.83)

From Eq. (1.70) the absolute acceleration of P is

a¼ aC + _Ω�rrel +Ω� Ω�rrelð Þ+ 2Ω�vrel + arel

Since aC¼ _Ω¼ 0, we find, upon substituting Eqs. (1.71), (1.77a), (1.80), and (1.82), that

a¼ €x+
_x _z� _y tanϕð Þ

RE + z
+ 2Ω _z cosϕ� _y sinϕð Þ

� �̂
i

+ €y+
_y _z + _x2 tanϕ

RE + z
+Ωsinϕ Ω RE + zð Þcosϕ + 2 _x½ �

� �
ĵ

+ €z� _x2 + _y2

RE + z
�Ωcosϕ Ω RE + zð Þcosϕ+ 2 _x½ �

� �
k̂

(1.84)
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Some special cases of Eqs. (1.83) and (1.84) follow.

Straight and level, unaccelerated flight: _z¼ €z¼ €x¼ €y¼ 0

v¼ _x +Ω RE + zð Þcosϕ½ �̂i+ _y ĵ (1.85a)

a¼� _x _y tanϕ

RE + z
+ 2Ω _y sinϕ

� �̂
i+

_x2 tanϕ

RE + z
+Ω sinϕ Ω RE + zð Þcosϕ+ 2 _x½ �

� �
ĵ

� _x2 + _y2

RE + z
+Ω cosϕ Ω RE + zð Þcosϕ+ 2 _x½ �

� �
k̂

(1.85b)

Flight due north (y) at a constant speed and altitude: _z¼ €z¼ _x¼ €x¼ €y¼ 0

v¼Ω RE + zð Þcos ϕ̂i+ _y ĵ (1.86a)

a¼�2Ω _y sin ϕ̂i+Ω2 RE + zð Þsinϕ cosϕĵ� _y2

RE + z
+Ω2 RE + zð Þcos2ϕ

� �
k̂ (1.86b)

Flight due east (x) at a constant speed and altitude: _z¼ €z¼ €x¼ _y¼ €y¼ 0

v¼ _x +Ω RE + zð Þcosϕ½ �̂i (1.87a)

a¼ _x2 tanϕ

RE + z
+Ω sinϕ Ω RE + zð Þcosϕ+ 2 _x½ �

� �
ĵ

� _x2

RE + z
+Ω cosϕ Ω RE + zð Þcosϕ+ 2 _x½ �

� �
k̂

(1.87b)

Flight straight up (z): _x¼ €x¼ _y¼ €y¼ 0

v¼Ω RE + zð Þcos ϕ̂i+ _zk̂ (1.88a)

a¼ 2Ω _z cosϕð Þ̂i+Ω2 RE + zð Þsinϕ cosϕĵ+ €z�Ω2 RE + zð Þcos2ϕ �
k̂ (1.88b)

Stationary: _x¼ €x¼ _y¼ €y¼ _z¼ €z¼ 0

v¼Ω RE + zð Þcos ϕ̂i (1.89a)

a¼Ω2 RE + zð Þsinϕ cosϕ ĵ�Ω2 RE + zð Þcos2ϕk̂ (1.89b)
EXAMPLE 1.14
An airplane of mass 70,000 kg is traveling due north at a latitude 30°N, at an altitude of 10 km (32,800 ft), with a speed of

300 m/s (671 mph). Calculate (a) the components of the absolute velocity and acceleration along the axes of the

topocentric-horizon reference frame and (b) the net force on the airplane. Assume the winds aloft are zero.

Solution
(a) First, using the sidereal rotation period of the earth in Table A.1, we note that the earth’s angular velocity is

Ω¼ 2π radians

sidereal day
¼ 2π radians

23:93h
¼ 2π radians

86,160 s
¼ 7:292�10�5 radians=s

From Eq. (1.86a), the absolute velocity is

v¼Ω RE + zð Þcos ϕ̂i+ _y ĵ¼ 7:292�10�5
� 	 � 6378 + 10ð Þ � 103 cos 30∘ �̂

i+ 300̂j



FIG. 1.19

Components of the net force on the airplane.

331.7 RELATIVE MOTION
or

v¼ 403:4̂i+ 300̂j m=sð Þ
The 403.4 m/s (901 mph) component of velocity to the east (x direction) is due entirely to the earth’s rotation.

From Eq. (1.86b), the absolute acceleration is

a¼�2Ω _y sin ϕ̂i+Ω2 RE + zð Þsinϕ cosϕĵ� _y2

RE + z
+Ω2 RE + zð Þcos2ϕ

� �
k̂

¼�2 7:292�10�5
� 	 � 300 � sin 30∘ î

+ 7:292�10�5
� 	2 � 6378 + 10ð Þ � 103 � sin30∘ � cos30∘ ĵ
� 3002

6378 + 10ð Þ � 103 + 7:292�10�5
� 	2 � 6378 + 10ð Þ � 103 � cos230∘

� �
k̂

or

a¼�0:02187̂i+ 0:01471̂j�0:03956k̂ m=s2ð Þ
The westward (negative x) acceleration of 0.02187m/s2 is the Coriolis acceleration.

(b) Since the acceleration in part (a) is the absolute acceleration, we can use it in Newton’s law to calculate the net force on

the airplane,

Fnet¼ma¼ 70,000 �0:02187̂i+ 0:01471̂j�0:03956k̂
� �

¼ �1531̂i+ 1029̂j�2769k̂ Nð Þ
Fig. 1.19 shows the components of this relatively small force. The forward (y) and downward (negative z) forces are in

the directions of the airplane’s centripetal acceleration, caused by the earth’s rotation and, in the case of the downward

force, by the earth’s curvature as well. The westward force is in the direction of the Coriolis acceleration, which is due

to the combined effects of the earth’s rotation and the motion of the airplane. These net external forces must exist if the

airplane is to fly in the prescribed path.

In the vertical direction, the net force is that of the upward lift L of the wings plus the downward weightW of the

aircraft, so that

FnetÞz¼ L�W¼�2769 ) L¼W�2769N
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Thus, the effect of the earth’s rotation and curvature is to apparently produce an outward centrifugal force, reducing the
weight of the airplane a bit, in this case by about 0.4%. The fictitious centrifugal force also increases the apparent drag

in the flight direction by 1029 N. That is, in the flight direction

FnetÞy¼ T�D¼ 1029N

where T is the thrust and D is the drag. Hence

T¼D+ 1029 Nð Þ
The 1531-N force to the left, produced by crabbing the airplane very slightly in that direction, is required to balance

the fictitious Coriolis force, which would otherwise cause the airplane to deviate to the right of its flight path.
1.8 NUMERICAL INTEGRATION
Analysis of the motion of a spacecraft leads to ordinary differential equations with time as the inde-

pendent variable. It is often impractical if not impossible to solve them exactly. Therefore, the ability to

solve differential equations numerically is important. In this section, we will take a look at a few com-

mon numerical integration schemes and investigate their accuracy and stability by applying them to

some problems that do have an analytical solution.

Particle mechanics is based on Newton’s second law (Eq. 1.38), which may be written as

€r¼ F

m
(1.90)

This is a second-order, ordinary differential equation for the position vector r as a function of time.

Depending on the complexity of the force function F, there may or may not be a closed-form, analytical

solution of Eq. (1.90). In the most trivial case, the force vector F and the mass m are constant, which

means we can use elementary calculus to integrate Eq. (1.90) twice to get

r¼ F

2m
t2 +C1t+C2 F andm constantð Þ (1.91)

C1 andC2 are the two vector constants of integration. Since each vector has three components, there are

a total of six scalar constants of integration. If the position and velocity are both specified at time t ¼ 0

to be r0 and _r0, respectively, then we have an initial value problem. Applying the initial conditions to

Eq. (1.91), we find C1¼ _r0 and C2 ¼ r0, which means

r¼ F

2m
t2 + _r0t+ r0 F andm constantð Þ

On the other hand, we may know the position r0 at t ¼ 0 and the velocity _rf at a later time t ¼ tf. These
are boundary conditions and this is an example of a boundary value problem. Applying the boundary

conditions to Eq. (1.91) yields C1¼ _rf� F=mð Þtf and C2 ¼ r0, which means

r¼ F

2m
t2 + _rf� F

m
tf

� �
t+ r0 F andm constantð Þ

For the remainder of this section we will focus on the numerical solution of initial value problems only.
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In general, the function F in Eq. (1.90) is not constant but is instead a function of time t, position r,
and velocity _r. That is,F¼F t, r, _rð Þ. Let us resolve the vector r and its derivatives as well as the force F
into their Cartesian components in three-dimensional space:

r¼ x̂i+ ŷj+ zk̂ _r¼ _x î+ _y ĵ+ _zk̂ €r¼ €x̂i+ €ŷj+ €zk̂ F¼Fx̂i+Fy ĵ +Fzk̂

The three components of Eq. (1.90) are

€x¼Fx t, r, _rð Þ
m

€y¼Fy t, r, _rð Þ
m

€z¼Fz t, r, _rð Þ
m

(1.92)

These are three second-order differential equations. For the purpose of numerical solution, theymust be

reduced to six first-order differential equations. This is accomplished by introducing six auxiliary vari-

ables y1 through y6, defined as follows:

y1¼ x y2¼ y y3¼ z
y4¼ _x y5¼ _y y6¼ _z

(1.93)

In terms of these auxiliary variables, the position and velocity vectors are

r¼ y1̂i+ y2 ĵ+ y3k̂ _r¼ y4̂i+ y5 ĵ+ y6k̂

Taking the derivative d/dt of each of the six expressions in Eq. (1.93) yields

dy1=dt¼ _x dy2=dt¼ _y dy3=dt¼ _z
dy4=dt¼ €x dy5=dt¼ €y dy6=dt¼ €z

Upon substituting Eqs. (1.92) and (1.93), we arrive at the six first-order differential equations

_y1¼ y4
_y2¼ y5
_y3¼ y6

_y4¼
Fx t, y1, y2, y3,y4,y5,y6ð Þ

m

_y5¼
Fy t, y1, y2, y3,y4,y5,y6ð Þ

m

_y6¼
Fz t, y1, y2, y3,y4,y5,y6ð Þ

m

(1.94)

These equations are coupled because the right-hand side of each one contains variables that belong to

other equations as well. Eq. (1.94) can be written more compactly in vector notation as

_y¼ f t, yð Þ (1.95)

where the column vectors y, _y, and f are

y¼

y1
y2
y3
y4
y5
y6

8>>>>><>>>>>:

9>>>>>=>>>>>;
_y¼

_y1
_y2
_y3
_y4
_y5
_y6

8>>>>><>>>>>:

9>>>>>=>>>>>;
f¼

y4
y5
y6

Fx t, yð Þ=m
Fy t, yð Þ=m
Fz t, yð Þ=m

8>>>>><>>>>>:

9>>>>>=>>>>>;
(1.96)
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Note that in this case f(t,y) is shorthand for f(t,y1,y2,y3,y4,y5,y6). Any set of one or more ordinary

differential equations of any order can be cast in the form of Eq. (1.95).
EXAMPLE 1.15
Write the third-order nonlinear differential equation

x
…�x€x+ _x2¼ 0 (a)

as three first-order differential equations.

Solution
Introducing the three auxiliary variables

y1¼ x y2¼ _x y3¼ €x (b)

we take the derivative of each one to get

dy1=dt¼ dx=dt¼ _x
dy2=dt¼ d _x=dt¼ €x

dy3=dt¼ d€x=dt¼ x
… ¼z}|{From að Þ

x€x� _x2

Substituting Eq. (b) on the right of these expressions yields

_y1¼ y2
_y2¼ y3
_y3¼ y1y3�y22

(c)

This is a system of three first-order, coupled ordinary differential equations. It is an autonomous system, since time t does

not appear explicitly on the right-hand side. The three equations can therefore be written compactly as _y¼ f yð Þ.
Before discussing some numerical integration schemes, it will be helpful to review the concept of

the Taylor series, named after the English mathematician Brook Taylor (1685–1731). Recall from cal-

culus that if we know the value of a function g(t) at time t and wish to approximate its value at a neigh-

boring time t + h, we can use the Taylor series to express g(t + h) as an infinite power series in h,

g t+ hð Þ¼ g tð Þ+ c1h + c2h2 + c3h3 +⋯+ cnh
n +O hn+ 1

� 	
(1.97)

The coefficients cm are found by taking successively higher order derivatives of g(t) according to the

formula

cm¼ 1

m!

dmg tð Þ
dtm

(1.98)

O(hn+1) (“order of h to the n+1”) means that the remaining terms of this infinite series all have hn+1 as a
factor. In other words,

lim
h!0

O hn+ 1ð Þ
hn+ 1

¼ cn+ 1

O(hn+1) is the truncation error due to retaining only terms up to hn. The order of a Taylor series expan-
sion is the highest power of h retained. The more terms of the Taylor series that we keep, the more

accurate will be the representation of the function g(t + h) in the neighborhood of t. Reducing h lowers
the truncation error. For example, if we reduce h to h/2, then O(hn) goes down by a factor of (1/2)n.
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EXAMPLE 1.16
Expand the function sin(t + h) in a Taylor series about t ¼ 1. Plot the Taylor series of order 1, 2, 3, and 4 and compare them

with sin(1 + h) for �2 < h < 2.

Solution
The nth-order Taylor power series expansion of sin(t+h) is written

sin t+ hð Þ¼ pn hð Þ
where, according to Eqs. (1.97) and (1.98), the polynomial pn is given by

pn hð Þ¼
Xn
m¼0

hm

m!

dm sin t

dtm

Thus, the zeroth- through fourth-order Taylor series polynomials in h are

p0 ¼ h0

0!

d0 sin t

dt0
¼ sin t

p1 ¼ p0 +
h

1!

dsin t

dt
¼ sin t+ h cos t

p2 ¼ p1 +
h2

2!

d2 sin t

dt2
¼ sin t+ h cos t�h2

2
sin t

p3 ¼ p2 +
h3

3!

d3 sin t

dt3
¼ sin t+ h cos t�h2

2
sin t�h3

6
cos t

p4 ¼ p3 +
h4

4!

d4 sin t

dt4
¼ sin t+ h cos t�h2

2
sin t�h3

6
cos t+

h4

24
sin t

For t ¼ 1, p1 through p4 as well as sin(t + h) are plotted in Fig. 1.20. As expected, we see that the higher degree Taylor

polynomials for sin(1+h) lie closer to sin(1+h) over a wider range of h.
FIG. 1.20

Plots of zeroth- to fourth-order Taylor series expansions of sin(1 + h).
The numerical integration schemes that we shall examine are designed to solve first-order ordinary

differential equations of the form shown in Eq. (1.95). To obtain a numerical solution of _y¼ f t, yð Þ
over the time interval t0 to tf, we divide or “mesh” the interval into N discrete times t1, t2, t3, … ,

tN, where t1 ¼ t0 and tN ¼ tf. The step size h is the difference between two adjacent times on the mesh
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(i.e., h ¼ ti+1 � ti). h may be constant for all steps across the entire time span t0 to tf. Modern methods

have adaptive step size control in which h varies from step to step to provide better accuracy and

efficiency.

Let us denote the values of y and _y at time ti as yi and fi, respectively, where fi ¼ f(ti,yi). In an initial
value problem, the values of all components of y at the initial time t0 together with Eq. (1.95) provide

the information needed to determine y at the subsequent discrete times.
1.8.1 RUNGE-KUTTA METHODS
The Runge-Kutta (RK) methods were originally developed by the German mathematicians Carl Runge

(1856–1927) and Martin Kutta (1867–1944). In the explicit, single-step RK methods, yi+1 at ti + h is

obtained from yi at ti by the formula

yi + 1¼ yi + hϕ ti,yi, hð Þ (1.99)

The increment function ϕ is an average of the derivative dy/dt over the time interval ti to ti + h. This
average is obtained by evaluating the derivative f(t,y) at several points or “stages” within the time

interval. The order of an RK method reflects the accuracy to which ϕ is computed, compared with

a Taylor series expansion. An RK method of order p is called an RKp method. An RKp method is

as accurate in computing yi from Eq. (1.99) as is the pth-order Taylor series

y ti + hð Þ¼ yi + c1h + c2h
2 +⋯cph

p (1.100)

An attractive feature of the RK schemes is that only the first derivative f(t,y) is required, and it is avail-
able from the differential equation itself (Eq. (1.95)). By contrast, the pth-order Taylor series expansion
in Eq. (1.100) requires computing all derivatives of y through order p.

The higher the RK order, the more stages there are and the more accurate isϕ. The number of stages

equals the order of the RKmethod if the order is less than 5. If the number of stages is s, then there are s
times et within the interval ti to ti + h at which we evaluate the derivatives f(t,y). These times are given

by specifying numerical values of the nodes am in the expressionetm¼ ti + amh m¼ 1,2,…,s

At each of these times the value of ey is obtained by providing numerical values for the coupling co-

efficients bmn in the formula

eym¼ yi + h
Xm�1
n¼1

bmnefn m¼ 1,2,…,s (1.101)

The vector of derivatives efm is evaluated at stage m by substituting etm and eym into Eq. (1.95),efm¼ f etm, eym� 	
m¼ 1,2,…,s (1.102)

The increment function ϕ is a weighted sum of the derivatives efm over the s stages within the time

interval ti to ti + h,

ϕ¼
Xs
m¼1

cmefm (1.103)
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The coefficients cm are known as the weights. Substituting Eq. (1.103) into Eq. (1.99) yields

yi + 1¼ yi + h
Xs
m¼1

cmefm (1.104)

The numerical values of the coefficients am, bmn, and cm depend on which RKmethod is being used. It is

convenient to write these coefficients as arrays, so that

af g¼
a1
a2
⋮
as

8>><>>:
9>>=>>; b½ � ¼

b11
b21 b22
⋮ ⋮ ⋯
bs1 bs2 ⋯ bs,s�1

2664
3775 cf g¼

c1
c2
⋮
cs

8>><>>:
9>>=>>; (1.105)

where s is the number of stages, and [b] is undefined if s ¼ 1. The nodes {a}, coupling coefficients [b],

and weights {c} for a given RKmethod are not necessarily unique, although research favors the choice

of some sets over others. Details surrounding the derivation of these coefficients as well as in-depth

discussions of not only RK but also the numerous other common numerical integration techniques

may be found in numerical analysis textbooks, such as the one by Butcher (2008).

For RK orders 1–4, we list below the commonly used values of the coefficients (Eq. 1.105), the

resulting formula for the derivatives ef at each stage (Eq. 1.102), and the formula for the difference

yi+1 � yi (Eq. 1.104). These RK schemes all use a uniform step size h.

RK1 (Euler’s method)

af g¼ 0f g cf g¼ 1f gef1¼ f ti, yið Þ
yi+ 1¼ yi + hef1

(1.106)

RK2 (Heun’s method)

af g¼ 0

1

� �
b½ � ¼ 0

1

� �
cf g¼ 1=2

1=2

� �
ef1¼ f ti, yið Þ ef2¼ f ti + h, yi + hef1� �

yi + 1¼ yi + h
1

2
ef1 + 1

2
ef2� � (1.107)

RK3

af g¼
0

1=2

1

8><>:
9>=>; b½ � ¼

0 0

1=2 0

�1 2

264
375 cf g¼

1=6

2=3

1=6

8><>:
9>=>;

ef1¼ f ti,yið Þ ef2¼ f ti +
1

2
h, yi +

1

2
hef1� � ef3¼ f ti + h, yi + h �ef1 + 2ef2h i� �

yi + 1¼ yi + h
1

6
ef1 + 2

3
ef2 + 1

6
ef3� �

(1.108)
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RK4

af g¼

0

1=2

1=2

1

8>>><>>>:
9>>>=>>>; b½ � ¼

0 0 0

1=2 0 0

0 1=2 0

0 0 1

26664
37775 cf g¼

1=6

1=3

1=3

1=6

8>>><>>>:
9>>>=>>>;

ef1¼ f ti,yið Þ ef2¼ f ti +
1

2
h, yi +

1

2
hef1� � ef3¼ f ti +

1

2
h, yi +

1

2
hef2� �

ef4¼ f ti + h, yi + hef3� �
yi+ 1¼ yi + h

1

6
ef1 + 1

3
ef2 + 1

3
ef3 + 1

6
ef4� �

(1.109)

Observe that in each of the four cases the sum of the components of {c} is 1 and the sum of each row of

[b] equals the value in that row of {a}. This is a characteristic of the RK methods.

ALGORITHM 1.1

Given the vector y at time t, the derivatives f(t,y), and the step size h, use one of the methods RK1
through RK4 to find y at time t + h. See Appendix D.2 for a MATLAB implementation of this al-

gorithm in the form of the function rk1_4.m. rk1_4.m executes any of the four RK methods accord-

ing to whether the variable rk passed to the function has the value 1, 2, 3, or 4.

1. Evaluate the derivatives ef1,ef2,…,efs at stages 1 through s by means of Eq. (1.102).

2. Use Eq. (1.104) to compute y t + hð Þ¼ y tð Þ+ hPs
m¼1efm.

Repeat these steps to obtain y at subsequent times t + 2h, t + 3h, etc.
FIG. 1.21

A damped spring-mass system with a forcing function applied to the mass. (a) At rest. (b) In motion under the

action of the applied force F(t). (c) Free body diagram at any instant.
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Let us employ the RK methods and Algorithm 1.1 to solve for the motion of the well-known vis-

cously damped spring-mass system pictured in Fig. 1.21. The spring has an unstretched length l0 and
a spring constant k. The viscous damping coefficient is c and the mass of the block, which slides on

a frictionless surface, is m. A forcing function F(t) is applied to the mass. From the free body diagram

in part (c) of the figure, we obtain the equation of motion of this one-dimensional system in the x
direction.

�Fs�Fd +F tð Þ¼m€x (1.110)

where Fs and Fd are the forces of the spring and dashpot, respectively. Since Fs ¼ kx and Fd ¼ c _x,
Eq. (1.110), after dividing through by the mass, can be rewritten as

€x+
c

m
_x +

k

m
x¼F tð Þ

m
(1.111)

The spring rate k and the mass m determine the natural circular frequency of vibration of the system,

ωn¼
ffiffiffiffiffiffiffiffiffi
k=m

p
(radians per second). Furthermore, the damping coefficient c may be expressed as

c ¼ 2ζmωn, where ζ is the dimensionless damping factor (ζ � 0). Making these substitutions in

Eq. (1.111), we get the standard form

€x+ 2ζωn _x +ωn
2x¼F tð Þ

m
(1.112)

If the forcing function is sinusoidal with amplitude F0 and circular frequency ω, then Eq. (1.112)

becomes

€x+ 2ζωn _x +ωn
2x¼F0

m
sinωt (1.113)

This second-order ordinary differential equation has a closed-form solution, which is found using pro-

cedures taught in a differential equations course. If the system is underdamped, which means ζ < 1,

then it can be verified by substitution that the solution of Eq. (1.113) is

x¼ e�ζωnt A sinωdt+Bcosωdtð Þ

+
F0=m

ωn
2�ω2ð Þ2 + 2ωωnζð Þ ωn

2�ω2
� 	

sinωt�2ωωnζ cosωt
 � (1.114a)

where ωd ¼ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p
is the damped natural frequency. The initial conditions determine the values of

the coefficients A and B. If at t ¼ 0, x ¼ x0, and _x¼ _x0, it turns out that

A¼ ζ
ωn

ωd
x0 +

_x0
ωd

+
ω2 + 2ζ2�1

� 	
ω2
n

ωn
2�ω2ð Þ2 + 2ωωnζð Þ2

ω

ωd

F0

m

B¼ x0 +
2ωωnζ

ωn
2�ω2ð Þ2 + 2ωωnζð Þ2

F0

m

(1.114b)

The transient term with the exponential factor in Eq. (1.114a) dies out eventually, leaving only the

steady-state solution, which persists as long as the forcing function acts.



42 CHAPTER 1 DYNAMICS OF POINT MASSES
EXAMPLE 1.17
Plot Eq. (1.114a). from t ¼ 0 to t ¼ 110 s if m ¼ 1 kg, ωn ¼ 1 rad/s, ζ ¼ 0.03, F0 ¼ 1 N, ω ¼ 0.4rad/s and the initial con-

ditions are x¼ _x¼ 0.

Solution
Substituting the given values into Eq. (1.114) yields

x¼ e�0:03t 0:03399 cos 0:9995tð Þ�0:4750 sin 0:9995tð Þ½ � + 1:190 sin 0:4tð Þ�0:03399cos 0:4tð Þ½ � (1.115)

This function is plotted over the time span 0–110 s in Fig. 1.22. Observe that after about 80 s, the transient has damped out and

the system vibrates at the same frequency as the forcing function (although slightly out of phase due to the small viscosity).
FIG. 1.22

Over time only the steady-state solution of Eq. (1.123) remains.
EXAMPLE 1.18
Solve Eq. (1.113) numerically, using the RKmethod and the data of Example 1.17. Compare the RK solution with the exact

one, given by Eq. (1.115).

Solution
We must first reduce Eq. (1.113) to two first-order differential equations by introducing the two auxiliary variables

y1¼ x tð Þ (a)

y2 ¼ _x tð Þ (b)

Differentiating Eq. (a) we find

_y1 ¼ _x tð Þ¼ y2 tð Þ (c)

Differentiating Eq. (b) and using Eq. (1.113) yields

_y2¼ €x tð Þ¼F0

m
sinωt�ω2

ny1 tð Þ�2ζωny2 tð Þ (d)

Systems (c) and (d) can be written compactly in standard vector notation as

_y¼ f t, yð Þ (e)

where

y¼ y1
y2

� �
_y¼ _y1

_y2

� �
f t, yð Þ¼

y2 tð Þ
F0

m
sinωt�ωn

2y1 tð Þ�2ζωny2 tð Þ

( )
(1.116)

Eq. (1.116) is what we need to implement Algorithm 1.1 for this problem.
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We will use the two MATLAB functions listed in Appendix D.2 (namely, Example_1_18.m and rk1_4.m). Exam-
ple_1_18.m passes the data of Example 1.17 to the function rk1_4.m, which executes Algorithm 1.1 for RK1, RK2,

RK3, and RK4 over the time interval from 0 to 110 s. In each case, the problem is solved for two different values of

the time step h. The subfunction rates within Example_1_18.m calculates the derivatives f(t,y) given in Eq. (1.1163).

The exact solution (Eq. 1.115) along with the four RK solutions is nondimensionalized and plotted at each time step in

Fig. 1.23.
FIG. 1.23

x/xmax versus t/tmax for the RK1 through RK4 solutions of Eq. (1.123) using the data of Example 1.17. The

exact solution is at the top.
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We see that all the RK solutions agree closely with the analytical one for a sufficiently small step size. The figure shows,

as expected, that to obtain accuracy, the uniform step size h must be reduced as the order of the RK method is reduced.

Likewise, the figure suggests that a step size that yields inaccurate results for a given RK order may work just fine for the

next higher order procedure.
1.8.2 HEUN’S PREDICTOR-CORRECTOR METHOD
As we have seen, the RK1 method (Eq. 1.106) uses just ef1, the derivative of y at the beginning of the

time interval, to approximate the value of y at the end of the interval. The use of Eq. (1.106) for ap-

proximate numerical integration of nonlinear functions was introduced by Leonhard Euler in 1768 and

is therefore known as Euler’s method. RK2 (Eq. 1.107) improves the accuracy by using the average of

the derivativesef1 andef2 at each end of the time interval. The predictor-corrector method due originally

to the German mathematician Karl Heun (1859–1929) employs this idea.

First, we use RK1 to estimate the value of y at ti+1, labeling that approximation yi+1* :

y∗i+ 1¼ yi + hf ti, yið Þ predictorð Þ (1.117a)

yi+1* is then used to compute the derivative f at t + h, whereupon the average of the two derivatives is

used to correct the estimate

yi + 1¼ yi + h
f ti, yið Þ+ f ti + h, y

∗
i+ 1

� 	
2

correctorð Þ (1.117b)

We can iteratively improve the estimate of yi+1 by making the substitution yi+1*  yi+1 (where means

“is replaced by”) and computing a new value of yi+1 from Eq. (1.117b). That process is repeated until

the difference between yi+1 and yi+1* becomes acceptably small.

ALGORITHM 1.2

Given the vector y at time t and the derivatives f(t,y), use Heun’s method to find y at time t + h. See
Appendix D.3 for a MATLAB implementation of this algorithm (heun.m):

1. Evaluate the vector of derivatives f(t,y).
2. Compute the predictor y*(t + h) ¼ y(t) + f(t,y)h.
3. Compute the corrector y t + hð Þ¼ y tð Þ+ h

2
f t, yð Þ+ f t + h, y* t + hð Þ½ �f g.

4. Make the substitution y*(t + h) y(t + h) and use Step 3 to recompute y(t + h).
5. Repeat Step 4 until y(t + h) � y*(t + h) to within a given tolerance.

Repeat these steps to obtain y at subsequent times t + 2h, t + 3h, etc.
EXAMPLE 1.19
Employ Heun’s method to solve Eq. (1.113) using the data provided in Example 1.17. Use two different time steps, h ¼ 1 s

and h ¼ 0.1 s, and compare the results.

Solution
We use the MATLAB functions Example_1_19.m and heun.m listed in Appendix D.3. The function Example_1_19.m

passes the given data to the function heun.m, which uses the subfunction rates within Example_1_19.m to compute the



FIG. 1.24

Numerical solution of Eq. (1.123) using Heun’s method with two different step sizes.
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derivatives f(t,y) in Eq. (1.1163). heun.m executes Algorithm 1.2 over the time interval from 0 to 110 s, once for h ¼ 1 s and

again for h ¼ 0.1 s, and plots the output in each case, as illustrated in Fig. 1.24.

The graph shows that for h ¼ 0.1 s, Heun’s method yields a curve identical to the exact solution (whereas the RK1

method diverged for this time step in Fig. 1.23). Even for the rather large time step h ¼ 1 s, the Heun solution, although

it starts out a bit ragged, proceeds after 60 s (about the time the transient dies out) to settle down and coincide thereafter very

well with the exact solution. For this problem, Heun’smethod is a decidedly better choice thanRK1 and competes withRK2

and RK3.
1.8.3 RUNGE-KUTTA WITH VARIABLE STEP SIZE
Using a constant step size to integrate a differential equation can be inefficient. The value of h in those
regions where the solution varies slowly should be larger than in regions where the variation is more

rapid, which requires h to be small to maintain accuracy. Methods for automatically adjusting the step

size have been developed. They involve combining two adjacent-order RKmethods into one and using

the difference between the higher and lower order solution to estimate the truncation error in the lower

order solution. The step size h is adjusted to keep the truncation error in bounds.

A common example is the embedding of RK4 into RK5 to produce the RKF4(5) method. The F is

added in recognition of E. Fehlberg’s contribution to this extension of the RK method. The procedure

has six stages, and the Fehlberg coefficients are (Fehlberg, 1969)
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af g¼

0

1=4

3=8

12=13

1

1=2

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;

b½ � ¼

0 0 0 0 0

1=4 0 0 0 0

3=32 9=32 0 0 0

1932=2197 �7200=2197 7296=2197 0 0

439=216 �8 3680=513 �845=4104 0

�8=27 2 �3544=2565 1859=4104 �11=40

266666664

377777775

(1.118)

c*f g¼

25=216
0

1408=2565
2197=4104
�1=5
0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
cf g¼

16=135
0

6656=12825
28561=56430
�9=50
2=55

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
(1.119)

Using asterisks to indicate that RK4 is the lower order of the two, we have from Eq. (1.104)

y∗i+ 1¼ yi + h c∗1ef1 + c∗2ef2 + c∗3ef3 + c∗4ef4 + c∗5ef5 + c∗6ef6� �
Low-order solution RK4ð Þ (1.120)

yi+ 1¼ yi + h c1ef1 + c2ef2 + c3ef3 + c3ef4 + c5ef5 + c6ef6� �
High-order solution RK5ð Þ (1.121)

where, from Eqs. (1.100), (1.101), and (1.102), the derivatives at the six stages are

ef1¼ f ti, yið Þef2¼ f ti + a2h, yi + hb21ef1� �
ef3¼ f ti + a3h, yi + h b31ef1 + b32ef2h i� �
ef4¼ f ti + a4h, yi + h b41ef1 + b42ef2 + b43ef3h i� �
ef5¼ f ti + a5h, yi + h b51ef1 + b52ef2 + b53ef3 + b54ef4h i� �
ef6¼ f ti + a6h, yi + h b61ef1 + b62ef2 + b63ef3 + b64ef4 + b65ef5h i� �

(1.122)

Observe that, although the low- and high-order solutions have different weights ({c*} and {c}, respec-
tively), they share the same nodes {a} and coupling coefficients [b], and, hence, the same values of the

derivatives ef. This is another convenient feature of the Runge-Kutta-Fehlberg (RKF) method.

The truncation vector e is the difference between the higher order solution yi+1 and the lower order
solution yi+1* ,

e¼ yi + 1�y∗i + 1

¼ h c1�c∗1
� 	ef1 + c2�c∗2

� 	ef2 + c3�c∗3
� 	ef3 + c4�c∗4

� 	ef4 + c5�c∗5
� 	ef5 + c6�c∗6

� 	ef6h i (1.123)
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The number of components of e equals N, the number of first-order differential equations in the system

(e.g., three in Example 1.15 and two in Example 1.18). The scalar truncation error e is the largest of the
absolute values of the components of e,

e¼maximum of theset e1j j, e2j j, e3j j,⋯, eNj jð Þ (1.124)

We set up a tolerance tol, which the truncation error cannot exceed. Instead of using the same h for

every step of the numerical integration process, we can adjust the step size so as to keep the error e
from exceeding tol. A simple strategy for adaptive step size control is to update h after each time step

using a formula derived, for example, in Bond and Allman (1996),

hnew¼ hold
tol

e

� �
1

p+ 1 (1.125)

where p is the lower of the two orders in an RKFp(p+1) method. For RKF4(5), p ¼ 4. According to

Eq. (1.125), if e> tol, then hnew < hold, whereas if e < tol, then hnew > hold. A factor β is commonly

added so that

hnew¼ holdβ
tol

e

� �
1

p+ 1 (1.126)

where β may be 0.8 or 0.9, depending on the computer program.

ALGORITHM 1.3

Given the vector yi at time ti, the derivative functions f(t,y), the time step h, and the tolerance tol, use
the RKF4(5) method with adaptive step size control to find yi+1 at time ti+1. See Appendix D.4 for

rkf45.m, a MATLAB implementation of this algorithm.

1. Evaluate the derivatives ef1 through ef6 using Eq. (1.122).

2. Calculate the truncation vector using Eq. (1.123).

3. Compute the scalar truncation error e using Eq. (1.124).

4. If e > tol then replace h by hβ(tol/e)1/5 and return to Step 1.

5. Replace t by t+h and calculate yi+1 using Eq. (1.121).

6. Replace h by hβ(tol/e)1/5.

Repeat these steps to obtain yi+2, yi+3, etc.
EXAMPLE 1.20
A spacecraft S of mass m travels in a straight line away from the center C of the earth, as illustrated in Fig. 1.25. If at a

distance of 6500 km from C its outbound velocity is 7.8 km/s, what will be its position and velocity 70 min later?

Solution
Solving this problem requires writing down and then integrating the equations of motion. Starting with the free body di-

agram of S, shown in Fig. 1.25, we find that Newton’s second law (Eq. 1.38) for the spacecraft is

�Fg¼m€x (a)

The variable force of gravity Fg on the spacecraft is its mass m times the local acceleration of gravity, given by Eq. (1.8).

That is,



FIG. 1.25

Spacecraft S in rectilinear motion relative to the earth.

FIG. 1.26

Position and velocity versus time. The solution points are circled.
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Fg¼mg¼m
g0R

2
E

x2
(b)

RE is the earth’s radius (6378 km), and g0 is the sea level acceleration of gravity (9.807m/s2). Combining Eqs. (a) and (b)

yields

€x+
g0R

2
E

x2
¼ 0 (1.127)
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This differential equation for the rectilinear motion of the spacecraft has an analytical solution, which we shall not go into

here. Instead, we will solve it numerically using Algorithm 1.3 and the given initial conditions. For that, we must as usual

introduce the auxiliary variables y1 ¼ x and y2¼ _x to obtain the two differential equations

_y1¼ y2

_y2¼�
g0R

2
E

y21

(c)

The initial conditions in this case are

y1 0ð Þ¼ 6500km y2 0ð Þ¼ 7:8km=s2 (d)

The MATLAB programs Example_1_20.m and rkf45.m, both in Appendix D.4, were used to produce Fig. 1.26, which

shows the position and velocity of the spacecraft over the requested time span. Example_1_20.m passes the initial condi-

tions and time span to rkf4.m, which uses the subroutine rates within Example_1_20.m to compute the derivatives _x and €x.

Fig. 1.26 reveals that the spacecraft takes 35 min to coast out to twice its original 6500 km distance from C before

reversing the direction and returning 35 min later to where it started with a speed of 7.8 km/s. The nonuniform spacing

between the solution points shows how rkf4.m controlled the step size such that h was smaller during rapid variations

of the solution but larger elsewhere.
PROBLEMS

Section 1.2

1.1 Given the three vectors A¼Ax̂i +Ay ĵ+Azk̂, B¼Bx̂i +By ĵ+Bzk̂, and C¼Cx̂i +Cy ĵ+Czk̂, show

analytically that
(a) A � A ¼ A2

(b) A � (B � C) ¼ (A � B) � C (interchangeability of the dot and cross)

(c) A � (B � C) ¼ B(A � C) � C(A � B) (the bac-cab rule)

(Hint: Simply compute the expressions on each side of the ¼ signs and demonstrate conclusively

that they are the same.) Do not substitute numbers to “prove” your point. Use Eqs. (1.9) and (1.16).
1.2 Use just the vector identities in Problem 1.1 to show that

A�Bð Þ � C�Dð Þ¼ A �Cð Þ B �Dð Þ� A �Dð Þ B �Cð Þ

Let A¼ 8̂i + 9̂j+ 12k̂, B¼ 9̂i + 6̂j+ k̂, and C¼ 3̂i + 5̂j+ 10k̂. Calculate the (scalar) projection CAB
1.3
of C onto the plane of A and B (see illustration below).
(Hint: C2 ¼ Cn
2 + CAB

2 )

{Ans.: CAB ¼ 11.58}
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Section 1.3
1.4 Since ût and ûn are perpendicular and ût � ûn ¼ ûb, use the bac-cab rule to show that ûb � ût ¼ ûn
and ûn � ûb ¼ ût, thereby verifying Eq. (1.29).

1.5 The x, y, and z coordinates (in meters) of a particle P as a function of time (in seconds) are

x ¼ sin 3t, y ¼ cos t, and z ¼ sin 2t. At t ¼ 3s, determine:
(a) The velocity v in Cartesian coordinates.

(b) The speed v.
(c) The unit tangent vector ût.

(d) The angles θx, θy, and θz that v makes with the x, y, and z axes.
(e) The acceleration a in Cartesian coordinates.

(f) The unit binormal vector ûb.

(g) The unit normal vector ûn.

(h) The angles ϕx, ϕy, and ϕz that a makes with the x, y, and z axes.
(i) The tangential component at of the acceleration.
(j) The normal component at of the acceleration.
(k) The radius of curvature of the path of P.
(l) The Cartesian coordinates of the center of curvature of the path.

{Partial Ans.: (b) 2.988 m/s; (d) θx ¼ 139.7deg; (j) an ¼ 5.398 m/s2; (l) xC ¼ � 0.4068m}
Section 1.4
1.6 An 80-kg man and 50-kg woman stand 0.5 m from each other. What is the force of gravitational

attraction between the couple?
{Ans.: 36.04 μN}

1.7 If a person’s weight isW on the surface of the earth, calculate the earth’s gravitational pull on that

person at a distance equal to the moon’s orbit.
{Ans.: 275(10�6)W}
1.8 If a person’s weight is W on the surface of the earth, calculate what it would be, in terms ofW, at

the surface of
(a) the moon;

(b) Mars;

(c) Jupiter.

{Partial Ans.: (c) 2.53W}
Section 1.5
1.9 A satellite of mass m is in a circular orbit around the earth, whose mass is M. The orbital radius
from the center of the earth is r. Use Newton’s second law of motion, together with Eqs. (1.25)

and (1.31), to calculate the speed v of the satellite in terms of M, r, and the gravitational

constant G. ffiffiffiffiffiffiffiffiffiffiffiffip

{Ans.: v¼ GM=r}
1.10 If the earth takes 365.25 days to complete its circular orbit of radius 149.6(106)km around the

sun, use the result of Example 1.9 to calculate the mass of the sun.
{Ans.: 1.988(1030)kg}
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Section 1.6
1.11 F is a force vector of fixedmagnitude embedded on a rigid body in planemotion (in the xy plane).
At a given instant,ω¼ 2k̂ rad=s, _ω¼�5k̂ rad=s2, €ω¼ 3k̂ rad=s3, and F ¼ (15 + 10) (N). At that

instant, calculate F
…

.
…

{Ans.: F ¼ 500̂i + 225̂j N=s3ð Þ}

Section 1.7
1.12 The absolute position, velocity, and acceleration of O are

r0¼�16Î+ 84Ĵ+ 59K̂ mð Þ
v0¼ 7Î+ 9Ĵ+ 4K̂ m=sð Þ
a0¼ 3Î� 7Ĵ + 4K̂ m=s2

� 	

The angular velocity and acceleration of the moving frame are
Ω¼�0:8Î+ 0:7Ĵ + 0:4K̂ rad=sð Þ _Ω¼�0:4Î+ 0:9Ĵ�1:0K̂ rad=s2
� 	
The unit vectors of the moving frame are
î¼�0:15670Î�0:31235Ĵ + 0:93704K̂

ĵ¼�0:12940Î+ 0:94698Ĵ+ 0:29409K̂
k̂¼�0:97922Î�0:075324Ĵ�0:18831K̂
The absolute position of P is
r¼ 51Î�45Ĵ + 36 K̂ mð Þ

The velocity and acceleration of P relative to the moving frame are
vrel¼ 31̂i�68̂j�77k̂ m=sð Þ arel¼ 2̂i� 6̂j+ 5 k̂ m=s2ð Þ

Calculate the absolute velocity vP and acceleration aP of P.
{Ans.: vP¼ 156:4ûv m=sð Þ ûv¼ 0:7790Î�0:3252Ĵ + 0:5360K̂

aP¼ 85:13ûa m=s2ð Þ ûa¼�0:3229Î+ 0:8284Ĵ�0:4576K̂}
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1.13 An airplane in level flight at an altitude h and a uniform speed v passes directly over a radar

tracking station A. Calculate the angular velocity _θ and angular acceleration €θ of the radar

antenna as well as the rate _r at which the airplane is moving away from the antenna. Use the

equations of this chapter (rather than polar coordinates, which you can use to check your work).

Attach the inertial frame of reference to the ground and assume a nonrotating earth. Attach the

moving frame to the antenna, with the x axis pointing always from the antenna toward the

airplane.
{Ans.: (a) _θ ¼ vcos2θ=h, (b) €θ¼�2v2 cos3θ sinθ=h2, (c) vrel ¼ v sin θ}
At 30°N latitude, a 1000-kg (2205-lb) car travels due north at a constant speed of 100 km/h
1.14
(62 mph) on a level road at sea level. Taking into account the earth’s rotation, calculate:
(a) the lateral (sideways) force of the road on the car;

(b) the normal force of the road on the car.

{Ans.: (a) Flateral ¼ 2.026N, to the left (west); (b) Fnormal ¼ 9784N}
1.15 At 29°N latitude, what is the deviation d from the vertical of a plumb bob at the end of a 30-m

string, due to the earth’s rotation?
{Ans.: 44.1 mm to the south}
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Section 1.8
1.16 Verify by substitution that Eq. (1.114a) is the solution of Eq. (1.113).

1.17 Verify that Eq. (1.114b) are valid.

1.18 Numerically solve the fourth-order differential equation

d4y=dt4 + 2d2y=dt2 + y¼ 0
for y at t ¼ 20, if the initial conditions are y ¼ 1 and dy=dt¼ d2y=dt2¼ d3y=dt3¼ 0 at t ¼ 0.

{Ans.: y(20) ¼ 9.545}
1.19 Numerically solve the differential equation

d4y=dt4 + 3d3y=dt3�4dy=dt�12y¼ te2t
for y at t ¼ 3, if, at t ¼ 0, y¼ dy=dt¼ d2y=dt2¼ 0.

{Ans.: y(3) ¼ 66.62}
1.20 Numerically solve the differential equation

t€y+ t2 _y�2y¼ 0
to obtain y at t ¼ 4 if the initial conditions are y ¼ 0 and _y¼ 1 at t ¼ 1.

{Ans.: y(4) ¼ 1.29}
1.21 Numerically solve the system

_x +
1

2
y� z¼ 0

�1
2
x+ _y +

1ffiffiffi
2
p z¼ 0

1

2
x� 1ffiffiffi

2
p y+ _z¼ 0
to obtain x, y, and z at t ¼ 20. The initial conditions are x ¼ 1 and y ¼ z ¼ 0 at t ¼ 0.

{Ans.: x(20) ¼ 0.704, y(20) ¼ 0.665, z(20) ¼ � 0.246}
1.22 Use one of the numerical methods discussed in this section to solve Eq. (1.127) for the time

required for the moon to fall to the earth after it is somehow stopped in its orbit while the earth

remains fixed in space. (This will require a trial-and-error procedure known formally as a

shooting method. It is not necessary for this problem to code the procedure. Simply guess a

time and let the solver compute the final radius. On the basis of the deviation of that result

from the earth’s radius (6378 km), revise your time estimate and rerun the problem to

compute a new final radius. Repeat this process in a logical fashion until your time estimate

yields a final radius that is accurate to at least three significant figures.) Compare your

answer with the analytical solution,

t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

2g0R2
E

r
π

4
r0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r r0� rð Þ

p
+
r0
2
sin�1

r0�2r

r0

� �� �

where t is the time, r0 is the initial radius, r is the final radius (r < r0), g0 is the sea level

acceleration of earth’s gravity, and RE is the radius of the earth.
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1.23 Use an RK solver such as rkf45 in Appendix D.4 or MATLAB’s ode45 to solve the nonlinear

Lorenz equations, due to the American meteorologist and mathematician E.N. Lorenz (1917–
2008):

_x¼ σ y�xð Þ
_y¼ x ρ� zð Þ� y

_z¼ xy�βz
Start off by using the values Lorenz (1963) used in his paper (namely, σ ¼ 10, β ¼ 8/3, and

ρ ¼ 28). For initial conditions use x ¼ 0, y ¼ 1, and z ¼ 0 at t ¼ 0. Let t range to a value of at

least 20. Plot the phase trajectory x ¼ x(t), y ¼ y(t), z ¼ z(t) in three dimensions to see the now-

famous “Lorenz attractor.” The Lorenz equations are a simplified model of the two-dimensional

convective motion within a fluid layer due to a temperature differenceΔT between the upper and

lower surfaces. The equations are chaotic in nature. For one thing, this means that the solutions

are extremely sensitive to the initial conditions. A minute change yields a completely different

solution in the long run. Check this out yourself. (x represents the intensity of the convective

motion of the fluid, y is proportional to the temperature difference between rising and falling

fluid, and z represents the nonlinearity of the temperature profile across the depth. σ is a fluid

property (the Prandtl number), ρ is proportional to ΔT, β is a geometrical parameter, and t is a
nondimensional time.)
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CHAPTER
THE TWO-BODY PROBLEM
 2

2.1 INTRODUCTION
This chapter presents the vector-based approach to the classical problem of determining the motion of

two bodies due solely to their own mutual gravitational attraction. We show that the path of one of the

masses relative to the other is a conic section (circle, ellipse, parabola, or hyperbola) whose shape is

determined by the eccentricity. Several fundamental properties of the different types of orbits are de-

veloped with the aid of the laws of conservation of angular momentum and energy. These properties

include the period of elliptical orbits, the escape velocity associated with parabolic paths, and the char-

acteristic energy of hyperbolic trajectories. Following the presentation of the four types of orbits, the

perifocal frame is introduced. This frame of reference is used to describe orbits in three dimensions,

which is the subject of Chapter 4.

In this chapter, the perifocal frame provides the backdrop for developing the Lagrange f and g co-

efficients. By means of the Lagrange f and g coefficients, the position and velocity on a trajectory can

be found in terms of the position and velocity at an initial time. These functions are needed in the orbit

determination algorithms of Lambert and Gauss presented in Chapter 5.

The chapter concludes with a discussion of the restricted three-body problem to provide a basis for

understanding the concepts of Lagrange points and the Jacobi constant. This material is optional.

In studying this chapter, it would be well from time to time to review the road map provided in

Appendix B.
2.2 EQUATIONS OF MOTION IN AN INERTIAL FRAME
Fig. 2.1 shows two-point masses acted upon only by the mutual force of gravity between them. The

positions R1 and R2 of their centers of mass are shown relative to an inertial frame of reference

XYZ. In terms of the coordinates of the two points

R1¼X1Î+ Y1Ĵ +Z1K̂

R2¼X2Î+ Y2Ĵ +Z2K̂
(2.1)

The originO of the inertial frame may move with a constant velocity (relative to the fixed stars), but the

axes do not rotate. Each of the two bodies is acted upon by the gravitational attraction of the other. F12 is

the force exerted on m1 by m2, and F21 is the force exerted on m2 by m1.
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FIG. 2.1

(a) Two masses located in an inertial frame. (b) Free-body diagrams.
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The position vectorRG of the center of mass (or barycenter)G of the system in Fig. 2.1(a) is defined

by the formula

RG¼m1R1 +m2R2

m1 +m2

(2.2)

Therefore, the absolute velocity and the absolute acceleration of G are

vG¼ _RG¼m1
_R1 +m2

_R2

m1 +m2

(2.3)

aG¼ €RG¼m1
€R1 +m2

€R2

m1 +m2

(2.4)

The adjective “absolute” means that the quantities are measured relative to an inertial frame of

reference.

Let r be the position vector of m2 relative to m1. Then,

r¼R2�R1 (2.5)

Or, using Eq. (2.1),

r¼ X2�X1ð ÞÎ+ Y2�Y1ð ÞĴ+ Z2�Z1ð ÞK̂ (2.6)

Furthermore, let ûr be the unit vector pointing from m1 toward m2, so that

ûr ¼ r

r
(2.7)

where r is the magnitude of r,

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�X1ð Þ2 + Y2�Y1ð Þ2 + Z2�Z1ð Þ2

q
(2.8)
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The body m1 is acted upon only by the force of gravitational attraction toward m2. The force of grav-

itational attraction, Fg, which acts along the line joining the centers of mass of m1 and m2, is given by

Eq. (1.40). Therefore, the force exerted on m1 by m2 is

F12¼Gm1m2

r2
ûr (2.9)

where ûr accounts for the fact that the force vector F12 is directed from m1 toward m2. (Do not confuse

the symbol G, used in this context to represent the universal gravitational constant, with its use else-

where in the book to denote the center of mass.) By Newton’s third law (the action–reaction principle),
the force F21 exerted on m2 by m1 is �F12, so that

F21¼�Gm1m2

r2
ûr (2.10)

Newton’s second law of motion as applied to a body m1 is F12¼m1
€R1, where €R1 is the absolute ac-

celeration of m1. Combining this with Newton’s law of gravitation Eq. (2.9) yields

m1
€R1¼Gm1m2

r2
ûr (2.11)

Likewise, by substituting F21¼m2
€R2 into Eq. (2.10) we get

m2
€R2¼�Gm1m2

r2
ûr (2.12)

It is apparent upon forming the sum of Eqs. (2.11) and (2.12) that m1
€R1 +m2

€R2¼ 0. According to

Eq. (2.4), this means that the acceleration of the center of mass G of the system of two bodies m1

and m2 is zero. Therefore, as is true for any system that is free of external forces, Gmoves in a straight

line through space with a constant velocity vG. Its position vector relative to XYZ is given by

RG¼RGÞ0 + vGt (2.13)

whereRG)0 is the position ofG at time t ¼ 0. The nonaccelerating center of mass of a two-body system

may serve as the origin of an inertial frame.
EXAMPLE 2.1
Use the two-body equations of motion to show why orbiting astronauts experience weightlessness.

Solution
We sense weight by feeling the contact forces that develop wherever our body is supported. Consider an astronaut of mass

mA strapped into a spacecraft of mass mS, in orbit about the earth. The distance between the center of the earth and the

spacecraft is r, and the mass of the earth isME. Since the only external force is that of gravity, FS)g, the equation of motion

of the spacecraft is

FSÞg¼mSaS (a)

where aS is measured in an inertial frame. According to Eq. (2.10),

FSÞg¼�
GMEmS

r2
ûr (b)

where ûr is the unit vector pointing outward from the earth toward the orbiting spacecraft. Thus, Eqs. (a) and (b) imply that

the absolute acceleration of the spacecraft is

aS ¼�GME

r2
ûr (c)
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The equation of motion of the astronaut is

FAÞg +CA ¼mAaA (d)

In this expressionFA)g is the force of gravity on (i.e., the weight of) the astronaut,CA is the net contact force on the astronaut

from restraints (e.g., seat, seat belt), and aA is the astronaut’s absolute acceleration. According to Eq. (2.10),

FAÞg¼�
GMEmA

r2
ûr (e)

Since the astronaut is moving with the spacecraft, we have, noting Eq. (c),

aA ¼ aS¼�GME

r2
ûr (f)

Substituting Eqs. (e) and (f) into Eq. (d) yields

�GMEmA

r2
ûr +CA¼mA �GME

r2
ûr

� �
from which it is clear that

CA ¼ 0

The net contact force on the astronaut is zero. With no reaction to the force of gravity exerted on the body, there is no

sensation of weight.
The potential energy V of the gravitational force F between two point masses m1 and m2 separated

by a distance r is given by

V¼�Gm1m2

r
(2.14)

A conservative force, like gravity, can be obtained from its potential energy function V by means of the

gradient operator,

F¼�rV (2.15)

where, in Cartesian coordinates,

r¼ ∂

∂x
î+

∂

∂y
ĵ+

∂

∂z
k̂ (2.16)

For the two-body system in Fig. 2.1 we have, by combining Eqs. (2.8) and (2.14),

V¼� Gm1m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�X1ð Þ2 + Y2�Y1ð Þ2 + Z2�Z1ð Þ2

q (2.17)

The attractive forces F12 and F21 in Eq. (2.6) are derived from Eq. (2.17) as follows:

F12¼� ∂V

∂X2

î+
∂V

∂Y2
ĵ+

∂V

∂Z2
k̂

� �
F21¼� ∂V

∂X1

î+
∂V

∂Y1
ĵ+

∂V

∂Z1
k̂

� �
In Appendix E, we show that the gravitational potential V, and hence the gravitational force outside a

sphere with a spherically symmetric mass distributionM, is the same as that of a point massM located

at the center of the sphere. Therefore, the two-body problem applies not only to point masses but also to

spherical bodies (as long as, of course, they do not come into contact!).
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Let us return to Eqs. (2.11) and (2.12), the equations of motion of the two-body system relative to

the XYZ inertial frame. We can divide m1 out of Eq. (2.11) and m2 out of Eq. (2.12) and then substitute

Eq. (2.7) into both results to obtain

€R1¼Gm2

r

r3
(2.18a)

€R2¼Gm1

r

r3
(2.18b)

These are the final forms of the equations of motion of the two bodies in inertial space. With the aid of

Eqs. (2.1), (2.6), and (2.8) we can express these equations in terms of the components of the position

and acceleration vectors in the inertial XYZ frame:

€X1¼Gm2

X2�X1

r2
€Y1¼Gm2

Y2�Y1
r3

€Z1¼Gm2

Z2�Z1
r3

(2.19a)

€X2¼Gm1

X1�X2

r3
€Y2¼Gm1

Y1�Y2
r3

€Z2¼Gm1

Z1�Z2
r3

(2.19b)

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�X1ð Þ2 + Y2�Y1ð Þ2 + Z2�Z1ð Þ2

p
.

The position vector R and velocity vector V of a particle are referred to collectively as its state

vector. The fundamental problem before us is to find the state vectors of both particles of the two-body

system at a given time given the state vectors at an initial time. The numerical solution procedure is

outlined in Algorithm 2.1.

ALGORITHM 2.1

Numerically compute the state vectors R1, V1 and R2, V2 of the two-body system as a function of

time, given their initial valuesR1
0,V1

0andR2
0,V2

0. This algorithm is implemented in MATLAB as the

function twobody3d.m, which is listed in Appendix D.5.

1. Form the vector consisting of the components of the state vectors at time t0,

y0¼ X0
1 Y0

1 Z0
1 X0

2 Y0
2 Z0

2
_X
0

1
_Y
0

1
_Z
0

1
_X
0

2
_Y
0

2
_Z
0

2

j k

Provide y0 and the final time tf to Algorithms 1.1, 1.2, or 1.3, along with the vector that
2.

comprises the components of the state vector derivatives

f t, yð Þ¼ _X1
_Y1

_Z1
_X2

_Y2
_Z2

€X1
€Y1

€Z1
€X2

€Y2
€Z2

� �

where the last six components, the accelerations, are given by Eqs. (2.19a) and (2.19b).
3. The selected algorithm solves the system _y¼ f t, yð Þ for the system state vector

y¼ X1 Y1 Z1 X2 Y2 Z2 _X1
_Y1

_Z1
_X2

_Y2
_Z2

� �

at n discrete times tn from t0 through tf.
4. The state vectors of m1 and m2 at the discrete times are

R1¼X1Î Y1Ĵ + Z1K̂ V1¼ _X1Î+ _Y1Ĵ+ _Z1K̂

R2¼X2Î Y2Ĵ + Z2K̂ V2¼ _X2Î+ _Y2Ĵ+ _Z2K̂
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EXAMPLE 2.2
A system consists of twomassive bodiesm1 andm2 each having a mass of 1026 kg. At time t ¼ 0 the state vectors of the two

particles in an inertial frame are

R
0ð Þ
1 ¼ 0 V

0ð Þ
1 ¼ 10Î+ 20Ĵ+ 30K̂ km=sð Þ

R
0ð Þ
2 ¼ 3000Î kmð Þ V

0ð Þ
2 ¼ 40Ĵ km=sð Þ
FIG. 2.2

The motion of two identical bodies acted on only by their mutual gravitational attraction, as viewed from the

inertial frame of reference.
Use Algorithm 2.1 and the RKF4(5) method (Algorithm 1.3) to numerically determine the motion of the two masses due

solely to their mutual gravitational attraction from t ¼ 0 to t ¼ 480 s.

(a) Plot the motion of m1 and m2 relative to the inertial frame.

(b) Plot the motion of m2 and G relative to m1.

(c) Plot the motion of m1 and m2 relative to the center of mass G of the system.

Solution
The MATLAB function twobody3d.m in Appendix D.5 contains within it the data for this problem. Embedded in the

program is the subfunction rates, which computes the accelerations given by Eqs. (2.19a) and (2.19b). twobody3d.m
uses the solution vector from rkf45.m to plot Figs. 2.2 and 2.3, which summarize the results requested in the problem

statement.

In answer to part (a), Fig. 2.2 shows the motion of the two-body system relative to the inertial frame.m1 andm2 are soon

established in a periodic helical motion around the straight-line trajectory of the center of mass G through space. This

pattern continues indefinitely.

Fig. 2.3(a) relates to part (b) of the problem. The very same motion appears rather less complex when viewed from m1.

In fact, we see thatR2(t) � R1(t), the trajectory ofm2 relative tom1, appears to be an elliptical path. So doesRG(t) � R1(t),
the path of the center of mass around m1.

Finally, for part (c) of the problem, Fig. 2.3(b) reveals that bothm1 andm2 follow apparently elliptical paths around the

center of mass.



FIG. 2.3

The motion in Fig 2.2: (a) as viewed relative to m1 (or m2); (b) as viewed from the center of mass.
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One may wonder what the motion looks like if there are more than two bodies moving only under

the influence of their mutual gravitational attraction. The n-body problem with n > 2 has no closed-

form solution, which is complex and chaotic in nature. The three-body problem is briefly addressed in

Appendix C, where the equations of motion of the system are presented. Appendix C lists the

MATLAB program threebody.m that is used to solve the equations of motion for given initial condi-

tions. Fig. 2.4 shows the results for three particles of equal mass, equally spaced initially along the

X axis of an inertial frame. The central mass has an initial velocity in the XY plane, while the other



FIG. 2.4

The motion of three identical masses as seen from the inertial frame in whichm1 andm3 are initially at rest, while

m2 has an initial velocity v0 directed upward and to the right, as shown.

FIG. 2.5

The same motion as Fig. 2.4, as viewed from the inertial frame attached to the center of mass G.
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two are at rest. As time progresses, we see no periodic behavior as was evident in the two-body motion

in Fig. 2.2. The chaos is more obvious if the motion is viewed from the center of mass of the three-body

system, as shown in Fig. 2.5. The computer simulation reveals that the masses all eventually collide.
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2.3 EQUATIONS OF RELATIVE MOTION
Let us differentiate Eq. (2.5) twice with respect to time to obtain the relative acceleration vector,

€r¼ €R2� €R1

Substituting Eqs. (2.18a) and (2.18b) into the right-hand side of this expression yields

€r¼�G m1 +m2ð Þ
r2

ûr (2.20)

The gravitational parameter μ is defined as

μ¼G m1 +m2ð Þ (2.21)

The units of μ are cubic kilometers per square second. Using Eq. (2.21) we can write Eq. (2.20) as

€r¼� μ

r3
r (2.22)

This nonlinear second-order differential equation governs the motion of m2 relative to m1. It

has two vector constants of integration, each having three scalar components. Therefore,

Eq. (2.22) has six constants of integration. Note that interchanging the roles of m1 and m2 amounts

to simply multiplying Eq. (2.22) through by �1, which, of course, changes nothing. Thus, the mo-

tion of m2 as seen from m1 is precisely the same as the motion of m1 as seen from m2. The motion

of the moon as observed from the earth appears the same as that of the earth as viewed from

the moon.

The relative position vector r in Eq. (2.22) was originally defined in the inertial frame (Eq. 2.6). It is

convenient, however, to measure the components of r in a frame of reference attached to and

moving with m1. In a comoving reference frame, such as the xyz system illustrated in Fig. 2.6, r

has the expression

r¼ x̂i+ ŷj + zk̂

The relative velocity _rrel and acceleration €rrel in the comoving frame are found by simply taking the

derivatives of the coefficients of the unit vectors, which themselves are fixed in the moving xyz
system. Thus,

_rrel¼ x̂i+ _y ĵ+ _zk̂ €rrel¼ €x î+ €y ĵ+ €z k̂

From Eq. (1.69), we know that the relationship between absolute acceleration €r and relative acceler-

ation €rrel is

€r¼€rrel + _Ω�r +Ω� Ω�rð Þ + 2Ω� _rrel

where Ω and _Ω are the absolute angular velocity and angular acceleration of the moving

frame of reference. Thus, €r¼€rrel only if Ω¼ _Ω¼ 0. That is to say, the relative acceleration



FIG. 2.6

Moving reference frame xyz attached to the center of mass of m1.
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may be used on the left of Eq. (2.22) as long as the comoving frame in which it is measured is not

rotating.

In the remainder of this chapter and those that follow, the analytical solution of the two-body equa-

tion of relative motion (Eq. 2.22) will be presented and applied to a variety of practical problems in

orbital mechanics. Pending an analytical solution, we can solve Eq. (2.22) numerically in a manner

similar to Algorithm 2.1.

To begin, we imagine a nonrotating Cartesian coordinate system attached to m1, as illustrated in

Fig. 2.6. Resolve €r¼� μ=r3ð Þr into components in this moving frame of reference to obtain the relative

acceleration components

€x¼� μ

r3
x €y¼� μ

r3
y €z¼� μ

r3
z (2.23)

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
. The components of the state vector (r¼ x̂i + ŷj+ zk̂, v¼ _x î+ _yĵ+ _zk̂) are listed

in the vector y,

y¼ x y z _x _y _zb c

The time derivative of this vector comprises the state vector rates,

_y¼ _x _y _z €x €y €zb c

where the last three components, the accelerations, are given by Eq. (2.23).
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ALGORITHM 2.2

Numerically compute the state vector r, v of m1 relative to m2 as a function of time, given the initial

values r0, v0. This algorithm is implemented in MATLAB as the function orbit.m, which is listed in
Appendix D.6.

1. Form the vector comprising the components of the state vector at time t0,

y0¼ x0 y0 z0 _x0 _y0 _z0b c

Provide the state vector derivatives
2.

f t, yð Þ¼ _x _y _z � μ

r3
x � μ

r3
y � μ

r3
z

j k

together with y0 and the final time tf to Algorithms 1.1, 1.2, or 1.3.
3. The selected algorithm solves the system _y¼ f t, yð Þ for the state vector

y¼ x y z _x _y _zb c

at n discrete times from t0 through tf.
4. The position and velocity at the discrete times are

r¼ x̂i + ŷj+ zk̂ v¼ _x î + _y ĵ+ _zk̂
EXAMPLE 2.3
Relative to a nonrotating frame of reference with origin at the center of the earth, a 1000-kg satellite’s initial position vector

is r¼ 8000̂i+ 6000̂i kmð Þ, and its initial velocity vector is v¼ 7̂j km=sð Þ. Use Algorithm 2.2 and the RKF4(5) method to

solve for the path of the spacecraft over the next 4 h. Determine its minimum and maximum distance from the earth’s

surface during that time.

Solution
The MATLAB function orbit.m in Appendix D.6 solves this problem. The initial value of the vector y is

y0 ¼ 8000 km 0 6000 km 0 5 km=s 5 km=sb c
The program provides these initial conditions to the function rkf45 (Appendix D.4), which integrates the system _y ¼ f t, yð Þ.
rkf45 uses the function rates embedded in orbit.m to calculate f(t,y) at each time step. The command window output of

orbit.m in Appendix D.6 shows that

The minimum altitude is 3622 km, and the speed at that point is 7 km=s
The maximum altitude is 9560 km, and the speed at that point is 4:39 km=s

The minimum altitude in this case is at the starting point of the orbit. The maximum altitude occurs 2 h later on the opposite

side of the earth.

The script orbit.m uses some MATLAB plotting features to generate Fig. 2.7. Observe that the orbit is inclined to the

equatorial plane and has an apparently elliptical shape. The satellite moves eastwardly in the same direction as the earth’s

rotation.



FIG. 2.7

The computed earth orbit. The beginning of the path is labeled t0 and tf marks the end of the path 4 h later.
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As pointed out earlier, since the center of massG has zero acceleration, we can use it as the origin of

an inertial reference frame. Let r1 and r2 be the position vectors of m1 and m1, respectively, relative to

the center of mass G in Fig. 2.1(a). The equation of motion of m2 relative to the center of mass is

�Gm1m2

r2
ûr ¼m2€r2 (2.24)

where, as before, r is the magnitude of r, the position vector of m2 relative to m1. In terms of r1 and r2,

r¼ r2�r1 (2.25)

Since the position vector of the center of mass relative to itself is zero, it follows from Eq. (2.1) that

m1r1 +m2r2¼ 0

Therefore,

r1¼�m2

m1

r2 (2.26)

Substituting Eq. (2.26) into Eq. (2.25) yields

r¼m1 +m2

m1

r2

Substituting this back into Eq. (2.24) and using the fact that in this case ûr ¼ r2/r2, we get

�G m1
3m2

m1 +m2ð Þ2r23
r2¼m2€r2
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Upon simplification, this becomes

� m1

m1 +m2

� �3 μ

r23
r2¼€r2 (2.27)

where μ is the gravitational parameter given by Eq. (2.21). If we let

μ0 ¼ m1

m1 +m2

� �3

μ

then Eq. (2.27) reduces to

€r2¼� μ0

r23
r2

which is identical in form to Eq. (2.22).

In a similar fashion, the equation of motion of m1 relative to the center of mass is found to be

€r1¼� μ00

r13
r1

in which

μ00 ¼ m2

m1 +m2

� �3

μ

Since the equations of motion of either particle relative to the center of mass have the same form as the

equations of motion relative to either one of the bodies, m1 or m2, it follows that the relative motion as

viewed from these different perspectives must be similar, as illustrated in Fig. 2.3.
2.4 ANGULAR MOMENTUM AND THE ORBIT FORMULAS
The angular momentum of bodym2 relative tom1 is the moment ofm2

0s relative linear momentumm2 _r
(cf. Eq. 1.45),

H2=1¼ r�m2 _r

where _r¼ v is the velocity of m2 relative to m1. Let us divide this equation through by m2 and let

h ¼ H2/1/m2, so that

h¼ r� _r (2.28)

where h is the relative angular momentum of m2 per unit mass (i.e., the specific relative angular mo-

mentum). The units of h are square kilometers per second.

Taking the time derivative of h yields

dh

dt
¼ _r� _r + r�€r

But _r� _r¼ 0. Furthermore, €r¼� μ=r3ð Þr, according to Eq. (2.22), so that

r�€r¼ r� � μ

r3
r

� �
¼� μ

r3
r�rð Þ¼ 0
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Therefore, angular momentum is conserved,

dh

dt
¼ 0 or r� _r¼ constantð Þ (2.29)

If the position vector r and the velocity vector _r are parallel, then it follows from Eq. (2.28) that the

angular momentum is zero and, according to Eq. (2.29), it remains zero at all points of the trajectory.

Zero angular momentum characterizes rectilinear trajectories whereon m2 moves toward or away from

m1 in a straight line (see Example 1.20).

At any point of a curvilinear trajectory, the position vector r and the velocity vector _r lie in the same

plane, as illustrated in Fig. 2.8. Their cross product r� _r is perpendicular to that plane. Since r� _r¼ h,

the unit vector normal to the plane is

ĥ¼h

h
(2.30)

By the conservation of angular momentum (Eq. 2.29), this unit vector is constant. Thus, the path of m2

around m1 lies in a single plane.

Since the orbit of m2 around m1 forms a plane, it is convenient to orient oneself above that plane

and look down upon the path, as shown in Fig. 2.9. Let us resolve the relative velocity vector _r into

components vr ¼ vrûr and v? ¼ v?û? along the outward radial from m1 and perpendicular to it,
FIG. 2.8

The path of m2 around m1 lies in a plane whose normal is defined by h.

FIG. 2.9

Components of the velocity of m2, viewed above the plane of the orbit.



FIG. 2.10

Differential area dA swept out by the relative position vector r during time interval dt.
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respectively, where ûr and û? are the radial and perpendicular (azimuthal) unit vectors. Then, we can

write Eq. (2.28) as

h¼ r�v¼ rûr� vrûr + v?û?ð Þ¼ rv?ĥ

That is,

h¼ rv? (2.31)

Clearly, the angular momentum depends only on the azimuthal component of the relative velocity.

During the differential time interval dt the position vector r sweeps out an area dA, as shown in

Fig. 2.10. From the figure it is clear that the triangular area dA is given by

dA¼ 1

2
�base�altitude¼ 1

2
�vdt� r sinϕ¼ 1

2
r v sinϕð Þdt¼ 1

2
rv?dt

Therefore, using Eq. (2.31) we have

dA

dt
¼ h

2
(2.32)

dA/dt is called the areal velocity, and according to Eq. (2.32) it is constant. Named after the German

astronomer Johannes Kepler (1571–1630), this result is known as Kepler’s second law: equal areas are
swept out in equal times.

Before proceeding with an effort to integrate Eq. (2.22), recall the bac–cab rule (Eq. 1.20):

A� B�Cð Þ¼B A�Cð Þ�C A�Bð Þ (2.33)

Recall as well from Eq. (1.11) that

r � r¼ r2 (2.34)

so that

d

dt
r � rð Þ¼ 2r

dr

dt
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But

d

dt
r � rð Þ¼ r � dr

dt
+
dr

dt
� r¼ 2r � dr

dt

Thus, we obtain the important identity

r � _r¼ r _r (2.35a)

Since _r¼ v and r ¼ krk, this can be written alternatively as

r � v¼ rk kd rk k
dt

(2.35b)

Now let us take the cross product of both sides of Eq. (2.22) [€r ¼� μ=r3ð Þr] with the specific angular
momentum h:

€r�h¼� μ

r3
r�h (2.36)

Since
d

_r�hð Þ¼€r�h+ _r� _h, the left-hand side can be written as

dt

€r�h¼ d

dt
_r�hð Þ� _r� _h

But, according to Eq. (2.29), the angular momentum is constant ( _h¼ 0), so this reduces to

€r�h¼ d

dt
_r�hð Þ (2.37)

The right-hand side of Eq. (2.36) can be transformed by the following sequence of substitutions:

1

r3
r�h¼ 1

r3
r� r� _rð Þ½ � Eq: 2:18 h¼ r� _r½ �ð Þ

¼ 1

r3
r r � _rð Þ� _r r � rð Þ½ � Eq: 2:23 bac�cab rule½ �ð Þ

¼ 1

r3
r r _rð Þ� _rr2
	 


Eqs: 2:34and 2:35að Þ

¼ r _r� _rr

r2

But

d

dt

r

r

� �
¼ r _r�r _r

r2
¼�r _r� r _r

r2

Therefore,

1

r3
r�h¼� d

dt

r

r

� �
(2.38)

Substituting Eqs. (2.37) and (2.38) into Eq. (2.36), we get

d

dt
_r�hð Þ¼ d

dt
μ
r

r

� �
or

d

dt
_r�h�μ

r

r

� �
¼ 0
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That is,

_r�h�μ
r

r
¼C (2.39)

where the vector C, called the Laplace vector after the French mathematician Pierre-Simon Laplace

(1749–1827), is a constant having the dimensions of μ. Eq. (2.39) is the first integral of the equation
of motion, €r¼� μ=r3ð Þr. Taking the dot product of both sides of Eq. (2.39) with the vector h yields a

scalar equation

_r�hð Þ � h�μ
r � h
r
¼C � h

Since _r�h is perpendicular to both _r and h, it follows that _r�hð Þ � h¼ 0. Likewise, since h¼ r� _r is
perpendicular to both r and _r, it is true that r � h ¼ 0. Therefore, we have C � h ¼ 0 (i.e., C is perpen-

dicular to h, which is normal to the orbital plane). That of course means that the Laplace vector must lie

in the orbital plane.

Let us rearrange Eq. (2.39) and write it as

r

r
+ e¼ _r�h

μ
(2.40)

where e ¼ C/μ. The dimensionless vector e is called the eccentricity vector. The line defined by the

vector e is commonly called the apse line. To obtain a scalar equation, let us take the dot product

of both sides of Eq. (2.40) with r:

r � r
r

+ r � e¼ r � _r�hð Þ
μ

(2.41)

We can simplify the right-hand side by employing the vector identity presented in Eq. (1.21),

A � B�Cð Þ¼ A�Bð Þ �C (2.42)

from which we obtain

r � _r�hð Þ¼ r� _rð Þ � h¼ h � h¼ h2 (2.43)

Substituting this expression into the right-hand side of Eq. (2.41), and substituting r � r ¼ r2 on the left
yields

r + r � e¼ h2

μ
(2.44)

Observe that by following the steps leading from Eqs. (2.40) to (2.44) we have lost track of the variable

time. This occurred at Eq. (2.43), because h is constant. Finally, from the definition of the dot product

we have

r � e¼ re cos θ

where e is the eccentricity (themagnitude of the eccentricity vector e), and θ is the true anomaly. θ is the
angle between the fixed vector e and the variable position vector r, as illustrated in Fig. 2.11. (Other

symbols used to represent true anomaly include the Greek letters ν and ϕ and the Latin letters f and v.)
In terms of the eccentricity and the true anomaly, we may therefore write Eq. (2.44) as

r + recos θ¼ h2

μ



FIG. 2.11

The true anomaly θ is the angle between the eccentricity vector e and the position vector r.
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or

r¼ h2

μ

1

1 + ecosθ
(2.45)

This is the orbit equation, and it defines the path of the body m2 around m1, relative to m1. Remember

that μ, h, and e are constants. Observe as well that there is no significance to negative values of eccen-
tricity (i.e., e � 0). Since the orbit equation describes conic sections, including ellipses, it is a math-

ematical statement of Kepler’s first law (namely, that the planets follow elliptical paths around the sun).

Two-body orbits are often referred to as Keplerian orbits.

In Section 2.3, it was pointed out that integration of the equation of relative motion (Eq. 2.22) leads

to six constants of integration. In this section, it would seem that we have arrived at those constants

(namely, the three components of the angular momentum h and the three components of the eccentric-

ity vector e). However, we showed that h is perpendicular to e. This places a condition (namely,

h � e ¼ 0) on the components of h and e, so that we really have just five independent constants of in-

tegration. The sixth constant of motion will arise when we work time back into the picture in the next

chapter.

The angular velocity of the position vector r is _θ, the rate of change of the true anomaly. The com-

ponent of velocity normal to the position vector is found in terms of the angular velocity by the formula

v? ¼ r _θ (2.46)

Substituting this into Eq. (2.31) (h ¼ rv?) yields the specific angular momentum in terms of the angular

velocity,

h¼ r2 _θ (2.47)

It is convenient to have formulas for computing the radial and azimuthal components of velocity,

shown in Fig. 2.12. From h ¼ rv? we of course obtain

v? ¼ h

r

Substituting r from Eq. (2.45) readily yields

v? ¼ μ

h
1 + e cosθð Þ (2.48)



FIG. 2.12

Position and velocity ofm2 in polar coordinates centered atm1, with the eccentricity vector being the reference for

true anomaly (polar angle) θ. γ is the flight path angle.
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Since vr ¼ _r , we take the derivative of Eq. (2.45) to get

_r ¼ dr

dt
¼ d

dt

h2

μ

1

1 + ecosθ

� �
¼ h2

μ
� e � _θ sinθ

 �
1 + ecosθð Þ2

" #
¼ h2

μ

esinθ

1 + ecosθð Þ2
h

r2

where we made use of the fact that _θ ¼ h=r2, from Eq. (2.47). Substituting Eq. (2.45) once again and

simplifying finally yields

vr ¼ μ

h
esinθ (2.49)

We see from Eq. (2.45) that m2 comes closest to m1 (r is smallest) when θ ¼ 0 (unless e ¼ 0, in

which case the distance between m1 and m2 is constant). The point of closest approach lies on the apse

line and is called periapsis. The distance rp to periapsis, as shown in Fig. 2.12, is obtained by setting the
true anomaly equal to zero,

rp¼ h2

μ

1

1 + e
(2.50)

From Eq. (2.49) it is clear that the radial component of velocity is zero at periapsis. For 0 < θ < 180°, vr
is positive, which means m2 is moving away from periapsis. On the other hand, Eq. (2.49) shows that if

180° < θ < 360°, then vr is negative, which means m2 is moving toward periapsis.
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The flight path angle γ is illustrated in Fig. 2.12. It is the angle that the velocity vector v¼ _r makes

with the normal to the position vector. The normal to the position vector points in the direction of v?,
and is called the local horizon. From Fig. 2.12 it is clear that

tanγ¼ vr
v?

(2.51)

Substituting Eqs. (2.48) and (2.49) leads at once to the expression

tanγ¼ e sinθ

1 + ecosθ
(2.52)

The flight path angle, like vr, is positive (velocity vector directed above the local horizon) when the

spacecraft is moving away from periapsis and is negative (velocity vector directed below the local ho-

rizon) when the spacecraft is moving toward periapsis.

Since cos(�θ) ¼ cos θ, the trajectory described by the orbit equation is symmetric about the apse

line, as illustrated in Fig. 2.13, which also shows a chord, the straight line connecting any two points on

the orbit. The latus rectum is the chord through the center of attraction perpendicular to the apse line. By

symmetry, the center of attraction divides the latus rectum into two equal parts, each of length p, known
historically as the semilatus rectum. In modern parlance, p is called the parameter of the orbit. From

Eq. (2.45) it is apparent that

p¼ h2

μ
(2.53)

Since the curvilinear path of m2 around m1 lies in a plane, for the time being we will for simplicity

continue to view the trajectory from above the plane. Unless there is a reason to do otherwise, we will

assume that the eccentricity vector points to the right and that m2 moves counterclockwise around m1,

which means that the true anomaly is measured positive counterclockwise, consistent with the usual

polar coordinate sign convention.
FIG. 2.13

Illustration of latus rectum, semilatus rectum p, and the chord between any two points on an orbit.
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2.5 THE ENERGY LAW
By taking the cross product of Eq. (2.22), €r¼� μ=r3ð Þr (Newton’s second law of motion), with the

relative angular momentum per unit mass h, we were led to Eq. (2.39), and from that we obtained

the orbit formula (i.e., Eq. 2.45). Now let us see what results from taking the dot product of

Eq. (2.22) with the relative linear momentum per unit mass. The relative linear momentum per unit

mass is just the relative velocity,

m2 _r

m2

¼ _r

Thus, carrying out the dot product in Eq. (2.22) yields

€r � _r¼�μr � _r
r3

(2.54)

For the left-hand side we observe that

€r � _r¼ 1

2

d

dt
_r � _rð Þ¼ 1

2

d

dt
v � vð Þ¼ 1

2

d

dt
v2
 �¼ d

dt

v2

2

� �
(2.55)

For the right-hand side of Eq. (2.54) we have, recalling that r � _r¼ r _r and that d(1/r)/dt ¼ (�1/r2)dr/dt,
μ
r � _r
r3
¼ μ

r _r

r3
¼ μ

_r

r2
¼� d

dt

μ

r

� �
(2.56)

Substituting Eqs. (2.55) and (2.56) into Eq. (2.54) yields

d

dt

v2

2
�μ

r

� �
¼ 0

or

v2

2
�μ

r
¼ ε constantð Þ (2.57)

where ε is a constant, v2/2 is the relative kinetic energy per unit mass, and (�μ/r) is the potential energy
per unit mass of the bodym2 in the gravitational field ofm1. The total mechanical energy per unit mass ε
is the sum of the kinetic and potential energies per unit mass. Eq. (2.57) is a statement of the conser-

vation of energy (namely, that the specific mechanical energy is the same at all points of the trajectory).

Eq. (2.57) is also known as the vis viva (“living force”) equation. It is valid for any trajectory, including

rectilinear ones.

For curvilinear trajectories, we can evaluate the constant ε at periapsis (θ ¼ 0),

ε¼ εp¼
v2p
2
� μ

rp
(2.58)

where rp and vp are the position and speed at periapsis. Since vr ¼ 0 at periapsis, the only component of

velocity is v?, which means vp ¼ v? ¼ h/rp. Thus,

ε¼ 1

2

h2

r2p
� μ

rp
(2.59)

Substituting the formula for periapse radius (Eq. 2.50) into Eq. (2.59) yields an expression for the or-

bital specific energy in terms of the orbital constants h and e,
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ε¼�1
2

μ2

h2
1�e2
 �

(2.60)

Clearly, the orbital energy is not an independent orbital parameter.

Note that the energy E of a spacecraft of massm is obtained from the specific energy ε by the formula

E ¼mε (2.61)
2.6 CIRCULAR ORBITS (e 5 0)
Setting e ¼ 0 in the orbital equation r ¼ (h2/μ)/(1 + e cos θ) yields

r¼ h2

μ
(2.62)

That is, r ¼ constant, which means the orbit of m2 around m1 is a circle. Since the radial velocity _r is
zero, it follows that v ¼ v? so that the angular momentum formula h ¼ rv? becomes simply h ¼ rv for a
circular orbit. Substituting this expression for h into Eq. (2.62) and solving for v yields the velocity of a
circular orbit,

vcircular¼
ffiffiffi
μ

r

r
(2.63)

The time T required for one orbit is known as the period. Because the speed is constant, the period of a

circular orbit is easy to compute.

T¼Circumference

Speed
¼ 2πrffiffiffiffiffiffiffi

μ=r
p

so that

Tcircular¼ 2πffiffiffi
μ
p r3=2 (2.64)

The specific energy of a circular orbit is found by setting e ¼ 0 in Eq. (2.60),

ε¼�1
2

μ2

h2

Employing Eq. (2.62) yields

εcircular¼� μ

2r
(2.65)

Obviously, the energy of a circular orbit is negative. As the radius goes up, the energy becomes less

negative (i.e., it increases). In other words, the larger the orbit is, the greater is its energy.

To launch a satellite from the surface of the earth into a circular orbit requires increasing its specific

energy ε. This energy comes from the rocket motors of the launch vehicle. Since the energy of a satellite

of mass m is E ¼mε, a propulsion system that can place a large mass in a low earth orbit (LEO) can

place a smaller mass in a higher earth orbit.

The space shuttle orbiters were the largest man-made satellites so far placed in orbit with a single

launch vehicle. For example, on NASA mission STS-82 in February 1997, the orbiter Discovery ren-
dezvoused with the Hubble Space Telescope to repair and refurbish it. The altitude of the nearly circular



772.6 CIRCULAR ORBITS (e ¼ 0)
orbit was 580 km (360 miles). Discovery’s orbital mass early in the mission was 106,000 kg (117 ton).

That was only 6% of the total mass of the shuttle prior to launch (comprising the orbiter’s dry mass, plus

that of its payload and fuel, plus the two solid rocket boosters (SRBs), plus the external fuel tank filled

with liquid hydrogen and oxygen). This mass of about 2 million kilograms (2200 ton) was lifted off the

launchpad by a total thrust in the vicinity of 35,000 kN (7.8 million pounds). Eighty-five percent of the

thrust was furnished by the SRB’s, which were depleted and jettisoned about twominutes into the flight.

The remaining thrust came from the three liquid rockets (space shuttle main engines (SSMEs)) on the

orbiter. These were fueled by the external tank, which was jettisoned just after the SSMEs were shut

down at MECO (main engine cut off), about 8.5 min after liftoff.

Manned orbital spacecraft and a host of unmanned remote-sensing, imaging and navigation satel-

lites occupy nominally circular LEOs. An LEO is one whose altitude lies between about 150 km (100

miles) and about 2000 km (1200 miles). An LEO is well above the nominal outer limits of the drag-

producing atmosphere (about 80 km or 50 miles), and well below the hazardous Van Allen radiation

belts, the innermost of which begins at about 2400 km (1500 miles).

Nearly all our applications of the orbital equations will be for the analysis ofman-made spacecraft, all

of which have amass that is insignificant comparedwith the sun and planets. For example, since the earth

is nearly 20 orders of magnitude more massive than the largest conceivable artificial satellite, the center

of mass of the two-body system lies at the center of the earth, and the constant μ in Eq. (2.21) becomes

μ¼G mearth +msatelliteð Þ¼Gmearth

The value of the earth’s gravitational parameter to be used throughout this book is found in Table A.2,

μearth¼ 398,600km3=s2 (2.66)
EXAMPLE 2.4
Plot the speed v and period T of a satellite in a circular LEO as a function of altitude z.

Solution
Eqs. (2.63) and (2.64) give the speed and period, respectively, of the satellite:

v¼
ffiffiffi
μ

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
μ

RE + z

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

6378+ z

r
T¼ 2πffiffiffi

μ
p r

3
2¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

398,600
p 6378 + zð Þ32

These relations are graphed in Fig. 2.14.
FIG. 2.14
Circular orbital speed (a) and period (b) as a function of altitude.
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If a satellite remains always above the same point on the earth’s equator, then it is in a circular,

geostationary equatorial orbit (GEO). For GEO, the radial from the center of the earth to the satellite

must have the same angular velocity as the earth itself (namely, 2π radians per sidereal day). A sidereal

day is the time it takes the earth to complete one rotation relative to inertial space (the fixed stars). The

ordinary 24-h day, or synodic day, is the time it takes the sun to apparently rotate once around the earth,

from high noon one day to high noon the next. Synodic and sidereal days would be identical if the earth

stood still in space. However, while the earth makes one absolute rotation around its axis, it advances

2π/365.26 radians along its solar orbit. Therefore, its inertial angular velocity ωE is [(2π + 2π/365.26)
radians]/(24 h). That is,

ωE¼ 72:9218 10�6
 �

rad=s (2.67)

Communication satellites and global weather satellites are placed in geostationary orbit because of the

large portion of the earth’s surface visible from that altitude and the fact that ground stations do not

have to track the satellite, which appears motionless in the sky.
EXAMPLE 2.5
Calculate the altitude zGEO and speed vGEO of a geostationary earth satellite.

Solution
From Eq. (2.63), the speed of the satellite in its circular GEO of radius rGEO is

vGEO¼
ffiffiffiffiffiffiffiffiffiffi
μ

rGEO

r
(a)

On the other hand, the speed vGEO along its circular path is related to the absolute angular velocity ωE of the earth by the

kinematics formula

vGEO¼ωErGEO

Equating these two expressions and solving for rGEO yields

rGEO¼
ffiffiffiffiffiffiffiffi
μ

ωE
2

3

r
Substituting Eqs. (2.66) and (2.67), we get

rGEO¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

398,600

72:9218�10�6
 �23

s
¼ 42,164km (2.68)

Therefore, the distance of the satellite above the earth’s surface is

zGEO¼ rGEO�RE¼ 42,164�6378

zGEO¼ 35,786km 22, 241milesð Þ
Substituting Eq. (2.68) into Eq. (a) yields the speed,

vGEO¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

42,164

r
¼ 3:075km=s (2.69)
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EXAMPLE 2.6
Calculate the maximum latitude and the percentage of the earth’s surface visible from GEO.

Solution
To find the maximum viewable latitude ϕ, use Fig. 2.15, from which it is apparent that

ϕ¼ cos�1
RE

r
(a)

where RE ¼ 6378km and, according to Eq. (2.68), r ¼ 42, 164km. Therefore,

ϕ¼ cos�1
6378

42,164

ϕ¼ 81:30∘ Maximum visible north or south latitude (b)

The surface area A visible from the GEO is the shaded region illustrated in Fig. 2.16. It can be shown that the area A is

given by

A¼ 2πR2
E 1� cosϕð Þ
FIG. 2.15

Satellite in GEO.

FIG. 2.16

Surface area A visible from GEO.
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where 2πRE
2 is the area of the hemisphere. Therefore, the percentage of the hemisphere visible from the GEO is

A

2πR2
E

�100¼ 1� cos 81:30∘ð Þ�100¼ 84:9%

which of course means that 42:4% of the total surface of the earth can be seen from GEO.
Fig. 2.17 is a photograph taken from geosynchronous equatorial orbit by one of the National Oceanic

and Atmospheric Administration’s Geostationary Operational Environmental Satellites (GOES).
. 2.17

e view from GEO.
2.7 ELLIPTICAL ORBITS (0 < e < 1)
If 0 < e < 1, then the denominator of Eq. (2.45) varies with the true anomaly θ, but it remains positive,

never becoming zero. Therefore, the relative position vector remains bounded, having its smallest mag-

nitude at the periapsis rp, given by Eq. (2.50). The maximum value of r is reached when the



FIG. 2.18

Elliptical orbit. m1 is at the focus F. F0 is the unoccupied empty focus.
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denominator of r ¼ (h2/μ)/(1 + e cos θ) obtains its minimum value, which occurs at θ ¼ 180°. That
point is called the apoapsis, and its radial coordinate, denoted by ra, is

ra¼ h2

μ

1

1�e
(2.70)

The curve defined by Eq. (2.45) in this case is an ellipse.

Let 2a be the distance measured along the apse line from periapsis P to apoapsis A, as illustrated in
Fig. 2.18. Then,

2a¼ rp + ra

Substituting Eqs. (2.50) and (2.70) into this expression we get

a¼ h2

μ

1

1�e2
(2.71)

where a is the semimajor axis of the ellipse. Solving Eq. (2.71) for h2/μ and putting the result into

Eq. (2.45) yields an alternative form of the orbit equation,

r¼ a
1�e2

1 + e cos θ
(2.72)

In Fig. 2.18, let F denote the location of the body m1, which is the origin of the r, θ polar coordinate

system. The center C of the ellipse is the point lying midway between the apoapsis and the periapsis.

The distance CF from the center C to the focus F is

CF¼ a�FP¼ a� rp
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But from Eq. (2.72), evaluated at θ ¼ 0,

rp¼ a 1�eð Þ (2.73)

Therefore, CF ¼ ae, as indicated in Fig. 2.18.

Let B be the point on the orbit that lies directly above C, on the perpendicular bisector of the major

axis AP. The distance b from C to B is the semiminor axis. If the true anomaly of point B is β, then
according to Eq. (2.72), the radial coordinate of B is

rB¼ a
1�e2

1 + e cos β
(2.74)

The projection of rB onto the apse line is ae. That is,

ae¼ rB cos 180°�β
 �¼�rB cosβ¼� a

1�e2

1 + e cosβ

� �
cosβ

Solving this expression for e, we obtain

e¼�cosβ (2.75)

Substituting this result into Eq. (2.74) reveals the interesting fact that

rB¼ a

According to the Pythagorean theorem,

b2¼ r2B� aeð Þ2¼ a2�a2e2

which means that the semiminor axis is found in terms of the semimajor axis and the eccentricity of the

ellipse as

b¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

(2.76)

Let an xyCartesian coordinate system be centered atC, as shown in Fig. 2.19. In terms of r and θ, we
see from the figure that the x coordinate of a point on the orbit is

x¼ ae + r cos θ¼ ae+ a
1�e2

1 + e cosθ

� �
cos θ¼ a

e+ cos θ

1 + e cosθ
FIG. 2.19

Cartesian coordinate description of the orbit.



832.7 ELLIPTICAL ORBITS (0 < e < 1)
From this, we have

x

a
¼ e+ cosθ

1 + e cos θ
(2.77)

For the y coordinate, we make use of Eq. (2.76) to obtain

y¼ r sinθ¼ a
1�e2

1 + e cosθ

� �
sinθ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

1 + e cosθ
sinθ

Therefore,

y

b
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

1 + e cos θ
sin θ (2.78)

Using Eqs. (2.77) and (2.78), we find that

x2

a2
+
y2

b2
¼ 1

1 + e cosθð Þ2 e+ cos θð Þ2 + 1�e2
 �

sin2θ
h i

¼ 1

1 + e cosθð Þ2 e2 + 2e cos θ + cos2θ + sin2θ�e2 sin2θ
	 


¼ 1

1 + e cosθð Þ2 e2 + 2e cos θ + 1�e2 sin2θ
	 


¼ 1

1 + e cosθð Þ2 e2 1� sin2θ
 �

+ 2e cos θ + 1
	 


¼ 1

1 + e cosθð Þ2 e2 cos2θ + 2e cos θ + 1
	 


¼ 1

1 + e cosθð Þ2 1 + e cosθð Þ2

That is,

x2

a2
+
y2

b2
¼ 1 (2.79)

This is the familiar Cartesian coordinate formula for an ellipse centered at the origin, with x intercepts
at �a and y intercepts at �b. If a ¼ b, Eq. (2.79) describes a circle, which is really an ellipse whose

eccentricity is zero.

The specific energy of an elliptical orbit is negative, and it is found by substituting the angular mo-

mentum and eccentricity into Eq. (2.60),

ε¼�1
2

μ2

h2
1�e2
 �

According to Eq. (2.71), h2 ¼ μa(1 � e2), so that

ε¼� μ

2a
(2.80)
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This shows that the specific energy is independent of the eccentricity and depends only on the semi-

major axis of the ellipse. For an elliptical orbit, the conservation of energy (Eq. 2.57) may therefore be

written
v2

2
�μ

r
¼� μ

2a
(2.81)

The area of an ellipse is found in terms of its semimajor and semiminor axes by the formula A ¼ πab
(which reduces to the formula for the area of a circle if a ¼ b). To find the period T of the elliptical orbit,
we employ Kepler’s second law, dA/dt ¼ h/2, to obtain

ΔA¼ h

2
Δt

For one complete revolution, ΔA ¼ πab and Δt ¼ T. Thus, πab ¼ (h/2)T, or

T¼ 2πab

h

Substituting Eqs. (2.71) and (2.76), we get

T¼ 2π

h
a2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

¼ 2π

h

h2

μ

1

1�e2

� �2 ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

so that the formula for the period of an elliptical orbit, in terms of the orbital parameters h and e,
becomes

T¼ 2π

μ2
hffiffiffiffiffiffiffiffiffiffiffiffi

1�e2
p
� �3

(2.82)

We can once again appeal to Eq. (2.71) to substitute h¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa 1� e2ð Þp

into this equation, thereby

obtaining an alternative expression for the period,

T¼ 2πffiffiffi
μ
p a3=2 (2.83)

This expression, which is identical to that of a circular orbit of radius a (Eq. 2.64), reveals that, like en-
ergy, the period of an elliptical orbit is independent of the eccentricity (Fig. 2.20). Eq. (2.83) embodies

Kepler’s third law: the period of a planet is proportional to the three-half power of its semimajor axis.

Finally, observe that dividing Eq. (2.50) by Eq. (2.70) yields

rp
ra
¼ 1�e

1 + e

Solving this for e results in a useful formula for calculating the eccentricity of an elliptical orbit. Namely

e¼ ra� rp
ra + rp

(2.84)

From Fig. 2.18, it is apparent that ra� rp¼F0F is the distance between the foci. As previously noted,

ra + rp ¼ 2a. Thus, Eq. (2.84) has the geometrical interpretation,

Eccentricity¼Distance between the foci

Length of the major axis



FIG. 2.20

Since all five ellipses have the same major axis, their periods and energies are identical.

852.7 ELLIPTICAL ORBITS (0 < e < 1)
A rectilinear ellipse is characterized as having a zero angular momentum and an eccentricity of 1.

That is, the distance between the foci equals the finite length of the major axis, along which the relative

motion occurs. Since only the length of the semimajor axis determines orbital-specific energy,

Eq. (2.80) applies to rectilinear ellipses as well.

What is the average distance of m2 from m1 in the course of one complete orbit? To answer this

question, we divide the range of the true anomaly (2π) into n equal segments Δθ, so that

n¼ 2π

Δθ

We then use r ¼ (h2/μ)/(1 + e cos θ) to evaluate r(θ) at the n equally spaced values of the true anomaly,

θ1¼ 0, θ2¼Δθ, θ3¼ 2Δθ,…, θn¼ n�1ð ÞΔθ
starting at the periapsis. The average of this set of n values of r is given by

rθ ¼ 1

n

Xn
i¼1

r θið Þ¼Δθ
2π

Xn
i¼1

r θið Þ¼ 1

2π

Xn
i¼1

r θið ÞΔθ (2.85)

Now, let n become very large, such that Δθ becomes very small. In the limit as n!∞, Eq. (2.85)

becomes

rθ ¼ 1

2π

ð2π
0

r θð Þdθ (2.86)

Substituting Eq. (2.72) into the integrand yields

rθ ¼ 1

2π
a 1�e2
 � ð2π

0

dθ

1 + e cos θ
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The integral in this expression can be found in integral tables (e.g., Zwillinger, 2018), from which we

obtain

rθ ¼ 1

2π
a 1�e2
 � 2πffiffiffiffiffiffiffiffiffiffiffiffi

1�e2
p
� �

¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

(2.87)

Comparing this result with Eq. (2.76), we see that the true anomaly-averaged orbital radius equals the

length of the semiminor axis b of the ellipse. Thus, the semimajor axis, which is the average of the

maximum and minimum distances from the focus, is not the mean distance. Since, from Eq. (2.72),

rp ¼ a(1 � e) and ra ¼ a(1 + e), Eq. (2.87) also implies that

rθ ¼ ffiffiffiffiffiffiffiffi
rpra
p

(2.88)

The mean distance is the one-half power of the product of the maximum and minimum distances from

the focus and not one-half of their sum.
EXAMPLE 2.7
An earth satellite is in an orbit with a perigee altitude zp ¼ 400km and an apogee altitude za ¼ 4000km, as shown in

Fig. 2.21. Find each of the following quantities:

(a) eccentricity, e

(b) angular momentum, h
FIG. 2.21

The orbit of Example 2.7.
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(c) perigee velocity, vp
(d) apogee velocity, va
(e) semimajor axis, a

(f) period of the orbit, T
(g) true anomaly-averaged radius rθ
(h) true anomaly when r¼ rθ
(i) satellite speed when r¼ rθ
(j) flight path angle γ when r¼ rθ
(k) maximum flight path angle γmax and the true anomaly at which it occurs.

Recall from Eq. (2.66) that μ ¼ 398, 600km3/s2 and also that RE, the radius of the earth, is 6378 km.

Solution
The strategy is always to seek the primary orbital parameters (eccentricity e and angular momentum h) first. All the other

orbital parameters are obtained from these two.

(a) The formula that involves the unknown eccentricity e as well as the given perigee and apogee data is Eq. (2.84). We

must not forget to convert the given altitudes to radii:

rp¼RE + zp ¼ 6378 + 400¼ 6778km

ra¼RE + za ¼ 6378 + 4000¼ 10,378km
Then
e¼ ra� rp
ra + rp

¼ 10,378�6778

10,378 + 6778
e¼ 0:2098
Now that we have the eccentricity, we need an expression containing it and the unknown angular momentum h and
(b)

any other given data. That would be Eq. (2.50), the orbit formula evaluated at perigee (θ ¼ 0),

rp ¼ h2

μ

1

1 + e
We use this to compute the angular momentum
6778¼ h2

398,600

1

1 + 0:2098
h¼ 57,172km2=s
The angular momentum h and the perigee radius rp can be substituted into the angular momentum formula (Eq. 2.31)
(c)

to find the perigee velocity vp,

vp ¼ v?Þperigee¼
h

rp
¼ 57,172

6778
vp¼ 8:435km=s
Since h is a constant, the angular momentum formula can also be employed to obtain the apogee speed va,
(d)

va¼ h

ra
¼ 57,172

10,378
va¼ 5:509km=s
The semimajor axis is the average of the perigee and apogee radii (Fig. 2.18),
(e)

a¼ rp + ra
2
¼ 6778 + 10,378

2

a¼ 8578km
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(f) Since the semimajor axis a has been found, we can use Eq. (2.83) to calculate the period T of the orbit:

T¼ 2πffiffiffi
π
p a3=2¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

398,600
p 85783=2¼ 7907s

T¼ 2:196h

Alternatively, we could have used Eq. (2.82) for T, since both h and e were calculated above.

(g) Either Eq. (2.87) or Eq. (2.88) may be used at this point to find the true anomaly-averaged radius. Choosing the latter,

we get

rθ ¼ ffiffiffiffiffiffiffiffi
rpra
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6778 � 10,378

p
rθ ¼ 8387km

(h) To find the true anomaly when r¼ rθ , we have only one choice, namely, the orbit formula (Eq. 2.45):

rθ ¼ h2

μ

1

1 + ecosθ

Substituting h and e, the primary orbital parameters found above, together with rθ , we get

8387¼ 57,1722

398,600

1

1 + 0:2098 cos θ
from which

cosθ¼�0:1061
This means that the true anomaly-averaged radius occurs at θ¼ 96:09° , where the satellite passes through rθ on its

way from the perigee, and at θ¼ 263:9° , where the satellite passes through rθ on its way toward the perigee.

(i) To find the speed of the satellite when r¼ rθ , it is simplest to use the energy equation for the ellipse (Eq. 2.81),

v2

2
� μ

rθ
¼� μ

2a

v2

2
�398,600

8387
¼�398,600

2 � 8578
v¼ 6:970km=s

(j) Eq. (2.52) gives the flight path angle in terms of the true anomaly of the average radius rθ . Substituting the smaller of

the two angles found in part (h) above yields

tanγ¼ esinθ

1 + ecosθ
¼ 0:2098 � sin96:09∘
1 + 0:2098 � cos96:09∘ ¼ 0:2134

This means that γ¼ 12:05° when the satellite passes through rθ on its way from the perigee.

(k) To find where γ is a maximum, we must take the derivative of

γ¼ tan�1
esinθ

1 + ecosθ
(a)

with respect to θ and set the result equal to zero. Using the rules of calculus,

dγ

dθ
¼ 1

1 +
esinθ

1 + ecosθ

� �2

d

dθ

esinθ

1 + ecosθ

� �
¼ e e+ cosθð Þ

1 + ecosθð Þ2 + e2 sin2θ

For e < 1, the denominator is positive for all values of θ. Therefore, dγ/dθ ¼ 0 only if the numerator vanishes (i.e., if

cosθ ¼ � e). Recall from Eq. (2.75) that this true anomaly locates the end point of the minor axis of the ellipse. The

maximum positive flight path angle therefore occurs at the true anomaly,

θ¼ cos�1 �0:2098ð Þ
θ¼ 102:1°
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Substituting this into Eq. (a), we find the value of the flight path angle to be

γmax ¼ tan�1
0:2098 � sin 102:1°ð Þ

1 + 0:2098 � cos 102:1°ð Þ
γmax ¼ 12:11°

After attaining this greatest magnitude, the flight path angle starts to decrease steadily toward its value of zero at the

apogee.
EXAMPLE 2.8
At two points on a geocentric orbit, the altitude and true anomaly are z1 ¼ 1545km, θ1 ¼ 126° and z2 ¼ 852km, θ2 ¼ 58°,
respectively. Find (a) the eccentricity, (b) the altitude of perigee, (c) the semimajor axis, and (d) the period.

Solution
The first objective is to find the primary orbital parameters e and h, since all other orbital data can be deduced from them.

(a) Before proceeding, we must remember to add the earth’s radius to the given altitudes so that we are dealing with orbital

radii. The radii of the two points are

r1¼RE + z1¼ 6378+ 1545¼ 7923km

r2¼RE + z2¼ 6378+ 852¼ 7230km

The only formula we have that relates the orbital position to the orbital parameters e and h is the orbit formula,

Eq. (2.45). Writing that equation down for each of the two given points on the orbit yields two equations for e and

h. For point 1, we obtain

r1¼ h2

μ

1

1 + ecosθ1

7923¼ h2

398,600

1

1 + ecos 126°

h2¼ 3:158 109
 ��1:856 109

 �
e

(a)

For point 2,

r2¼ h2

μ

1

1 + ecosθ2

7230¼ h2

398,600

1

1 + ecos58°

h2¼ 2:882 109
 �

+ 1:527 109
 �

e

(b)

Equating Eqs. (a) and (b), the two expressions for h2, yields a single equation for the eccentricity e,

3:158 109
 ��1:856 109

 �
e¼ 2:882 109

 �
+ 1:527 109

 �
e

or

3:384 109
 �

e¼ 276:2 106
 �

Therefore,

e¼ 0:08164 an ellipseð Þ (c)

By substituting the eccentricity back into Eq. (a) (or Eq. (b)), we find the angular momentum,

h2¼ 3:158 109
 ��1:856 109

 � � 0:08164) h¼ 54,830km2=s (d)
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(b) With the eccentricity and angular momentum available, we can use the orbit equation to obtain the perigee radius

(Eq. 2.50),

rp ¼ h2

μ

1

1 + e
¼ 54,8302

398,600

1

1 + 0:08164
¼ 6974km (e)

From this we find the perigee altitude,

zp¼ rp�RE¼ 6974�6378

zp ¼ 595:5km

(c) The semimajor axis is the average of the perigee and apogee radii. We just found the perigee radius above in Eq. (e).

Thus, we need only to compute the apogee radius and that is accomplished by using Eq. (2.70), which is the orbit

formula evaluated at the apogee.

ra ¼ h2

μ

1

1�e
¼ 54,8302

398,600

1

1�0:08164
¼ 8213km (f)

From Eqs. (e) and (f) it follows that

a¼ rp + ra
2
¼ 8213 + 6974

2

a¼ 7593km

(d) Since the semimajor axis has been determined, it is convenient to use Eq. (2.83) to find the period.

T¼ 2πffiffiffi
μ
p a

3
2 ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

398,600
p 7593

3
2 ¼ 6585s

T¼ 1:829h
2.8 PARABOLIC TRAJECTORIES (e 5 1)
If the eccentricity equals 1, then the orbit formula (Eq. 2.45) becomes

r¼ h2

μ

1

1 + cosθ
(2.89)

As the true anomaly θ approaches 180 degrees, the denominator approaches zero, so that r tends toward
infinity. According to Eq. (2.60), the energy of a trajectory for which e ¼ 1 is zero, so that for a par-

abolic trajectory the conservation of energy (Eq. 2.57) is

v2

2
�μ

r
¼ 0

In other words, the speed anywhere on a parabolic path is

v¼
ffiffiffiffiffi
2μ

r

r
(2.90)

If the body m2 is launched on a parabolic trajectory, it will coast to infinity, arriving there with zero

velocity relative to m1. It will not return. Parabolic paths are therefore called escape trajectories. At a

given distance r from m1, the escape velocity is given by Eq. (2.90),

vesc¼
ffiffiffiffiffi
2μ

r

r
(2.91)



912.8 PARABOLIC TRAJECTORIES (e ¼ 1)
Let vc be the speed of a satellite in a circular orbit of radius r. Then, from Eqs. (2.63) and (2.91), we

have

vesc¼
ffiffiffiffiffiffiffi
2vc

p
(2.92)

That is, to escape from a circular orbit requires a velocity boost of 41.4%. However, remember our

assumption is that m1 and m2 are the only objects in the universe. A spacecraft launched from the earth

with a velocity vesc (relative to the earth) will not coast to infinity (i.e., leave the solar system) because it

will eventually succumb to the gravitational influence of the sun and, in fact, end up in the same orbit as

the earth. This will be discussed in more detail in Chapter 8.

For the parabola, Eq. (2.52) for the flight path angle takes the form

tanγ¼ sinθ

1 + cosθ

Using the trigonometric identities

sinθ¼ 2sin
θ

2
cos

θ

2
cosθ¼ 2cos2

θ

2
�1

we can write

tanγ¼
2sin

θ

2
cos

θ

2

2cos2
θ

2

¼
sin

θ

2

cos
θ

2

¼ tan
θ

2

It follows that

γ¼ θ

2
(2.93)

That is, on parabolic trajectories the flight path angle is always one-half of the true anomaly (Fig. 2.22).
FIG. 2.22

Parabolic trajectory around the focus F.



FIG. 2.23

Parabola with focus at the origin of the Cartesian coordinate system.
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Eq. (2.53) gives the parameter p of an orbit. Let us substitute that expression into Eq. (2.89) and then
plot r ¼ p/(1 + cos θ) in a Cartesian coordinate system centered at the focus, as illustrated in Fig. 2.23.

From the figure, it is clear that

x¼ rcosθ¼ p
cosθ

1 + cosθ
y¼ r sinθ¼ p

sinθ

1 + cosθ
(2.94)

Therefore,

x

p=2
+

y

p

� �2

¼ 2
cosθ

1 + cosθ
+

sin2θ

1 + cosθð Þ2

Working to simplify the right-hand side, we get

x

p=2
+

y

p

� �2

¼ 2cosθ 1 + cosθð Þ+ sin2θ

1 + cosθð Þ2 ¼ 2cosθ + 2cos2θ + 1� cos2θð Þ
1 + cosθð Þ2

¼ 1 + 2cosθ + cos2θ

1 + cosθð Þ2 ¼ 1 + cosθð Þ2
1 + cosθð Þ2¼ 1

It follows that

x¼ p

2
� y2

2p
(2.95)

This is the equation of a parabola in a Cartesian coordinate system whose origin serves as the focus.
EXAMPLE 2.9
The perigee radius of a satellite in a parabolic geocentric trajectory of Fig. 2.24 is 7000 km. Find the distance d between

points P1 and P2 on the orbit, which are 8000km and 16, 000km, respectively, from the center of the earth.



FIG. 2.24

Parabolic geocentric trajectory.
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Solution
This would be a simple trigonometry problem if we knew the angle Δθ between the radials to P1 and P2. We can find that

angle by first determining the true anomalies of the two points. The true anomalies are obtained from the orbit formula,

Eq. (2.89), once we have determined the angular momentum h.

We calculate the angular momentum of the satellite by evaluating the orbit equation at perigee,

rp ¼ h2

μ

1

1 + cos 0ð Þ¼
h2

2μ

from which

h¼ ffiffiffiffiffiffiffiffiffi
2μrp

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600 � 7000

p
¼ 74,700km2=s (a)

Substituting the radii and the true anomalies of points P1 and P2 into Eq. (2.89), we get

8000¼ 74,7002

398,600

1

1 + cosθ1
) cosθ1¼ 0:75) θ1¼ 41:41°

16,000¼ 74,7002

398,600

1

1 + cosθ2
) cosθ2¼�0:125) θ2¼ 97:18°

The difference between the two angles θ1 and θ2 is Δθ ¼ 97.18 � 41.41 ¼ 55.78°.
The length of the chord P1P2 can now be found by using the law of cosines from trigonometry,

d2¼ 80002 + 16,0002�2 � 8000 � 16,000 cosΔθ
d¼ 13,270km
2.9 HYPERBOLIC TRAJECTORIES (e > 1)
If e > 1, the orbit formula,

r¼ h2

μ

1

1 + ecosθ
(2.96)

describes the geometry of the hyperbola shown in Fig. 2.25. The system consists of two symmetric

curves. The orbiting body occupies one of them. The other one is its empty mathematical image.



FIG. 2.25

Hyperbolic trajectory.
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Clearly, the denominator of Eq. (2.96) goes to zero when cosθ ¼ � 1/e. We denote this value of true

anomaly as

θ∞¼ cos�1 �1=eð Þ (2.97)

since the radial distance approaches infinity as the true anomaly approaches θ∞. θ∞ is known as the true

anomaly of the asymptote. Observe that θ∞ lies between 90 and 180 degrees. From the trig identity

sin2θ∞ + cos2θ∞ ¼ 1 it follows that

sinθ∞¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1

e

r
(2.98)

For �θ∞ < θ < θ∞, the physical trajectory is the occupied hyperbola I shown on the left in Fig. 2.25.

For θ∞ < θ < (360° � θ∞), hyperbola II, the vacant orbit around the empty focus F’, is traced out.

(The vacant orbit is physically impossible, because it would require a repulsive gravitational force.)

Periapsis P lies on the apse line on the physical hyperbola I, whereas apoapsis A lies on the apse

line on the vacant orbit. The point halfway between periapsis and apoapsis is the center C of the

hyperbola. The asymptotes of the hyperbola are the straight lines toward which the curves tend as they

approach infinity. The asymptotes intersect at C, making an acute angle β with the apse line, where

β ¼ 180°� θ∞. Therefore, cosβ ¼ �cos θ∞, which means

β¼ cos�1 1=eð Þ (2.99)

The angle δ between the asymptotes is called the turn angle. This is the angle through which the ve-

locity vector of the orbiting body is rotated as it rounds the attracting body at F and heads back toward

infinity. From the figure, we see that δ ¼ 180° � 2β, so that
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sin
δ

2
¼ sin

180∘�2β

2

� �
¼ sin 90∘�βð Þ¼ cosβ ¼z}|{Eq: 2:99ð Þ

1

e

or

δ¼ 2sin�1 1=eð Þ (2.100)

Eq. (2.50) gives the distance rp from the focus F to the periapsis,

rp¼ h2

μ

1

1 + e
(2.101)

Just as for an ellipse, the radial coordinate ra of the apoapsis is found by setting θ ¼ 180° in

Eq. (2.45),

ra¼ h2

μ

1

1�e
(2.102)

Observe that ra is negative, since e > 1 for the hyperbola. This means the apoapsis lies to the right of the

focus F. From Fig. 2.25 we see that the distance 2a from periapsis P to apoapsis A is

2a¼ raj j� rp¼�ra� rp

Substituting Eqs. (2.101) and (2.102) yields

2a¼�h
2

μ

1

1�e
+

1

1 + e

� �
From this it follows that a, the semimajor axis of the hyperbola, is given by an expression that is nearly

identical to that for an ellipse (Eq. 2.72),

a¼ h2

μ

1

e2�1
(2.103)

Therefore, Eq. (2.96) may be written for the hyperbola

r¼ a
e2�1

1 + ecosθ
(2.104)

This formula is analogous to Eq. (2.72) for the elliptical orbit. Furthermore, from Eq. (2.104) it follows

that

rp¼ a e�1ð Þ (2.105a)

ra¼�a e+ 1ð Þ (2.105b)

The distance b from periapsis to an asymptote, measured perpendicular to the apse line, is the

semiminor axis of the hyperbola. From Fig. 2.25, we see that the length b of the semiminor axis

PM is

b¼ a tanβ¼ a
sinβ

cosβ
¼ a

sin 180°�θ∞
 �

cos 180°�θ∞
 �¼ a

sinθ∞
�cosθ∞¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

e

� �1
e

� �



96 CHAPTER 2 THE TWO-BODY PROBLEM
so that for the hyperbola,

b¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

(2.106)

This relation is analogous to Eq. (2.76) for the semiminor axis of an ellipse.

The distance Δ between the asymptote and a parallel line through the focus is called the aiming

radius, which is illustrated in Fig. 2.25. From this figure we see that

Δ¼ rp + a
 �

sinβ

¼ aesinβ Eq:2:105að Þ

¼ ae

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

e
Eq:2:99ð Þ

¼ ae sin θ∞ Eq:2:98ð Þ
¼ ae

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2θ∞
p

trig identityð Þ

¼ ae

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

e2

r
Eq:2:97ð Þ

or

Δ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

(2.107)

Comparing this result with Eq. (2.106), it is clear that the aiming radius equals the length of the semi-

minor axis of the hyperbola.

As with the ellipse and the parabola, we can express the polar form of the equation of the hyperbola

in a Cartesian coordinate systemwhose origin is in this case midway between the two foci, as illustrated

in Fig. 2.26. From the figure, it is apparent that

x¼�a� rp + rcosθ (2.108a)

y¼ r sinθ (2.108b)

Using Eqs. (2.104) and (2.105a) in Eq. (2.108a), we obtain

x¼�a�a e�1ð Þ+ a e2�1

1 + ecosθ
cosθ¼�a e+ cosθ

1 + ecosθ

Substituting Eqs. (2.104) and (2.106) into Eq. (2.108b) yields

x¼�a�a e�1ð Þ+ a e2�1

1 + ecosθ
cosθ¼�a e+ cosθ

1 + ecosθ

It follows that

x2

a2
� y2

b2
¼ e+ cosθ

1 + e cosθ

� �2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�1sinθ
p

1 + ecosθ

 !2

¼ e2 + 2ecosθ + cos2θ� e2�1ð Þ 1� cos2θð Þ
1 + ecosθð Þ2

¼ 1 + 2ecosθ + e2 cos2θ

1 + ecosθð Þ2 ¼ 1 + ecosθð Þ2
1 + ecosθð Þ2



FIG. 2.26

Plot of Eq. (2.104) in a Cartesian coordinate system with origin O midway between the two foci.
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That is,

x2

a2
� y2

b2
¼ 1 (2.109)

This is the familiar equation of a hyperbola that is symmetric about the x and y axes, with intercepts on
the x axis.

Eq. (2.60) gives the specific energy of the hyperbolic trajectory. Substituting Eq. (2.103) into that

expression yields

ε¼ μ

2a
(2.110)

The specific energy of a hyperbolic orbit is clearly positive and independent of the eccentricity. The

conservation of energy for a hyperbolic trajectory is

v2

2
�μ

r
¼ μ

2a
(2.111)

Let v∞ denote the speed at which a body on a hyperbolic path arrives at infinity. According to

Eq. (2.111)

v∞¼
ffiffiffi
μ

a

r
(2.112)
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v∞ is called the hyperbolic excess speed. In terms of v∞ we may write Eq. (2.111) as

v2

2
�μ

r
¼ v2∞

2

Substituting the expression for escape speed, vesc¼
ffiffiffiffiffiffiffiffiffiffi
2μ=r

p
(Eq. 2.91), we obtain for a hyperbolic

trajectory

v2¼ v2esc + v
2
∞ (2.113)

This equation clearly shows that the hyperbolic excess speed v∞ represents the excess kinetic energy

over that which is required to simply escape from the center of attraction. The square of v∞ is denoted

C3, and is known as the characteristic energy,

C3¼ v2∞ (2.114)

C3 is a measure of the energy required for an interplanetary mission, and C3 is also a measure of the

maximum energy a launch vehicle can impart to a spacecraft of a given mass. Obviously, to match a

launch vehicle with a mission, C3)launch vehicle > C3)mission.

Note that the hyperbolic excess speed can also be obtained from Eqs. (2.49) and (2.98),

v∞¼ μ

h
esinθ∞¼ μ

h

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

(2.115)

Finally, for purposes of comparison, Fig. 2.27 shows a range of trajectories, from a circle through

hyperbolas, all having a common focus and periapsis. The parabola is the demarcation between the

closed, negative energy orbits (ellipses) and open, positive energy orbits (hyperbolas).
FIG. 2.27

Orbits of various eccentricities, having a common focus F and periapsis P.



992.9 HYPERBOLIC TRAJECTORIES (e > 1)
At this point, the reader may be understandably overwhelmed by the number of formulas for Kep-

lerian orbits (conic sections) that have been presented thus far in this chapter. As summarized in the

Road Map in Appendix B, there is just a small set of equations from which all the others are derived.

Here is a “toolbox” of the only equations necessary for solving two-dimensional curvilinear orbital

problems that do not involve time, which is the subject of Chapter 3.

All orbits:

h¼ rv? Eq: 2:31ð Þ
r¼ h2

μ

1

1 + e cosθ
Eq: 2:45ð Þ

vr¼ μ

h
esinθ Eq: 2:49ð Þ

tanγ¼ vr
v?

Eq: 2:51ð Þ

v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r + v

2
?

p
Ellipses (0 � e < 1):

a¼ rp + ra
2
¼ h2

μ

1

1�e2
Eq: 2:71ð Þ

v2

2
�μ

r
¼� μ

2a
Eq: 2:81ð Þ

T¼ 2πffiffiffi
μ
p a3=2 Eq: 2:83ð Þ

e¼ ra� rp
ra + rp

Eq: 2:84ð Þ

Parabolas (e ¼ 1):

v2

2
�μ

r
¼ 0 Eq: 2:90ð Þ

Hyperbolas (e > 1):

θ∞¼ cos�1 �1
e

� �
Eq: 2:97ð Þ

δ¼ 2sin�1
1

e

� �
Eq: 2:100ð Þ

a¼ h2

μ

1

e2�1
Eq: 2:103ð Þ

Δ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

Eq: 2:107ð Þ
v2

2
�μ

r
¼ μ

2a
Eq: 2:111ð Þ

Note that we can rewrite Eqs. (2.103) and (2.111) as follows (where a is positive),

�a¼ h2

μ

1

1�e2
v2

2
�μ

r
¼� μ

2 �að Þ
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That is, if we assume that the semimajor axis of a hyperbola has a negative value, then the semimajor

axis formula and the vis viva equation become identical for ellipses and hyperbolas. There is no ad-

vantage at this point in requiring hyperbolas to have negative semimajor axes. However, doing so will

be necessary for the universal variable formulation to be presented in the next chapter.
EXAMPLE 2.10
At a given point of a spacecraft’s geocentric trajectory, the radius is 14,600 km, the speed is 8.6 km/s, and the flight path

angle is 50°. Show that the path is a hyperbola and calculate the following:

(a) angular momentum

(b) eccentricity

(c) true anomaly

(d) radius of the perigee

(e) semimajor axis

(f) C3

(g) turn angle

(h) aiming radius

This problem is illustrated in Fig. 2.28.

Solution
Since both the radius and the speed are given, we can determine the type of trajectory by comparing the speed with the

escape speed (of a parabolic trajectory) at the given radius:

vesc¼
ffiffiffiffiffi
2μ

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600
14,600

r
¼ 7:389km=s

The escape speed is less than the spacecraft’s speed of 8.6 km/s, which means the path is a hyperbola.

(a) Before embarking on a quest for the required orbital data, remember that everything depends on the primary orbital

parameters, angular momentum h, and eccentricity e. These are among the list of five unknowns for this problem: h, e,

θ, vr, and v?. From the “toolbox” we have five equations involving these five quantities and the given data:

r¼ h2

μ

1

1 + ecosθ
(a)

vr ¼ μ

h
e sinθ (b)

v? ¼ h

r
(c)

v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r + v

2
?

q
(d)

tanγ¼ vr
v?

(e)

From Eq. (e)

vr ¼ v? tan50∘¼ 1:1918v? (f)

Substituting this and the given speed into Eq. (d) yields

8:62 ¼ 1:11918v?ð Þ2 + v2? ) v? ¼ 5:528km=s (g)

The angular momentum may now be found from Eq. (c),

h¼ 14,600 � 5:528¼ 80,708km2=s

(b) Substituting h into Eq. (f) we get the radial velocity component,

vr ¼ 1:1918 � 5:528¼ 6:588km=s



FIG. 2.28

Solution of Example 2.10.
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Substituting h and vr into Eq. (b) yields an expression involving the eccentricity and the true anomaly,

6:588¼ 398,600

80,708
esinθ ) esinθ¼ 1:3339 (h)

Similarly, substituting h and r into Eq. (a) we find

14,600¼ 80,7082

398,600

1

1 + ecosθ
) ecosθ¼ 0:1193 (i)

By squaring the expressions in Eqs. (h) and (i) and then summing them, we obtain the eccentricity,

e2 sin2θ + cos2θ
 �zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{¼1

¼ 1:7936

e¼ 1:3393

(c) To find the true anomaly, substitute the value of e into Eq. (i),

1:3393cosθ¼ 0:1193 ) θ¼ 84:889° or θ¼ 275:11°
We choose the smaller of the angles because Eqs. (h) and (i) imply that both sinθ and cosθ are positive, which means

that θ lies in the first quadrant (θ � 90°). Alternatively, we may note that the given flight path angle (50°) is positive,
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whichmeans the spacecraft is flying away from the perigee, so that the true anomalymust be less than 180°. In any case,
the true anomaly is given by θ¼ 84:889° .

(d) The radius of perigee can now be found from the orbit equation (Eq. a)

rp¼ h2

μ

1

1 + ecos 0ð Þ¼
80,7102

398,600

1

1 + 1:339
¼ 6986km

(e) The semimajor axis of the hyperbola is found in Eq. (2.103),

a¼ h2

μ

1

e2�1
¼ 80,7102

398,600

1

1:3392�1
¼ 20,590km

(f) The hyperbolic excess velocity is found using Eq. (2.113),

v2∞¼ v2�v2esc¼ 8:62�7:3892¼ 19:36km2=s2

From Eq. (2.114) it follows that

C3 ¼ 19:36km2=s2

(g) The formula for turn angle is Eq. (2.100), from which

δ¼ 2 sin�1
1

e

� �
¼ 2sin�1

1

1:339

� �
¼ 96:60∘

(h) According to Eq. (2.107), the aiming radius is

Δ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

¼ 20,590
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:3392�1

p
¼ 18,340km
2.10 PERIFOCAL FRAME
The perifocal frame is the “natural frame” for an orbit. It is a Cartesian coordinate system fixed in space

and centered at the focus of the orbit. Its xy plane is the plane of the orbit, and its x axis is directed from
the focus through the periapsis, as illustrated in Fig. 2.29. The unit vector along the x axis (the apse line)
is denoted p̂. The y axis, with unit vector q̂, lies at 90° true anomaly to the x axis. The z axis is normal to

the plane of the orbit in the direction of the angular momentum vector h. The z unit vector is ŵ,

ŵ¼ h

h
(2.116)

In the perifocal frame, the position vector r is written (Fig. 2.30)

r¼ xp̂ + yq̂ (2.117)

where

x¼ rcosθ y¼ r sin θ (2.118)

and r, the magnitude of r, is given by the orbit equation, r ¼ (h2/μ)[1/(1 + e cos θ)]. Thus, we may

write Eq. (2.117) as

r¼ h2

μ

1

1 + ecosθ
cos θp̂ + sinθq̂ð Þ (2.119)



FIG. 2.29

Perifocal frame p̂q̂ŵ.

FIG. 2.30

Position and velocity relative to the perifocal frame.
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The velocity is found by taking the time derivative of r,

v¼ _r¼ _xp̂ + _yq̂ (2.120)

From Eq. (2.118) we obtain

_x¼ _r cosθ� r _θ sinθ _y¼ _r sinθ + r _θ cosθ (2.121)
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_r is the radial component of velocity, vr. Therefore, according to Eq. (2.49),

_r ¼ μ

h
esinθ (2.122)

From Eqs. (2.46) and (2.48), we have

r _θ ¼ v? ¼ μ

h
1 + ecosθð Þ (2.123)

Substituting Eqs. (2.122) and (2.123) into Eq. (2.121) and simplifying the results yields

_x¼�μ
h
sinθ _y¼ μ

h
e+ cosθð Þ (2.124)

Hence, Eq. (2.120) becomes

v¼ μ

h
�sinθp̂ + e+ cosθð Þq̂½ � (2.125)

Formulating the kinematics of orbital motion in the perifocal frame, as we have done here, is a prelude

to the study of orbits in three dimensions (Chapter 4). We also need Eqs. (2.117) and (2.120) in the next

section.
EXAMPLE 2.11
An earth orbit has an eccentricity of 0.3, an angular momentum of 60, 000km2/s, and a true anomaly of 120°. What are the

position vector r and velocity vector v in the perifocal frame of reference?

Solution
From Eq. (2.119) we have

r¼ h2

μ

1

1 + ecosθ
cosθp̂+ sinθq̂ð Þ¼ 60,0002

398,600

1

1 + 0:3cos 120∘
cos120∘p̂+ sin120∘q̂ð Þ

r¼�5312:7p̂+ 9201:9q̂ kmð Þ
Substituting the given data into Eq. (2.125) yields

v¼ μ

h
�sinθp̂+ e+ cosθð Þq̂½ � ¼ 398,600

60,000
�sin120∘p̂+ 0:3 + cos120∘ð Þq̂½ �

v¼�5:7533p̂�1:3287q̂ km=sð Þ
EXAMPLE 2.12
An earth satellite has the following position and velocity vectors at a given instant:

r¼ 7000p̂+ 9000q̂ kmð Þ
v¼�3:3472p̂+ 9:1251q̂ km=sð Þ

Calculate the specific angular momentum h, the true anomaly θ, and the eccentricity e.
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Solution
This problem is obviously the reverse of the situation presented in the previous example. From Eq. (2.28) the angular mo-

mentum is

h¼ r�v¼
p̂ q̂ ŵ

7000 9000 0

�3:3472 9:1251 0

������
������¼ 94,000ŵ km2=s

 �
Hence, the magnitude of the angular momentum is

h¼ 94,000 km2=s

The true anomaly is measured from the positive x axis. By definition of the dot product, r � p̂¼ rcosθ. Thus,

cosθ¼ r

r
� p̂¼ 7000p̂+ 9000q̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

70002 + 90002
p � p̂¼ 7000

11,402
¼ 0:61394

which means θ ¼ 52.125° or θ ¼ � 52.125°. Since the y component of r is positive, the true anomaly must lie between 0°
and 180°. It follows that

θ¼ 52:125∘

Finally, the eccentricity may be found from the orbit formula, r ¼ (h2/μ)/(1 + e cos θ):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
70002 + 90002

p
¼ 94,0002

398,6000

1

1 + ecos 52:125∘

e¼ 1:538

The trajectory is a hyperbola.
2.11 THE LAGRANGE COEFFICIENTS
In this section, we will establish what may seem intuitively obvious: if the position and velocity of an

orbiting body are known at a given instant, then the position and velocity at any later time are found in

terms of the initial values. Let us start with Eqs. (2.117) and (2.120),

r¼ xp̂+ yq̂ (2.126)

v¼ _r¼ _xp̂ + _yq̂ (2.127)

Attach a subscript “zero” to quantities evaluated at time t ¼ t0. Then the expressions for r and v

evaluated at t ¼ t0 are

r0¼ x0p̂+ y0q̂ (2.128)

v0¼ _x0p̂ + _y0q̂ (2.129)

The angular momentum h is constant, so let us calculate it using the initial conditions. Substituting

Eqs. (2.128) and (2.129) into Eq. (2.28) yields

h¼ r0�v0¼
p̂ q̂ ŵ

x0 y0 0
_x0 _y0 0

������
������¼ ŵ x0 _y0� y0 _x0

 �
(2.130)
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Recall that ŵ is the unit vector in the direction of h (Eq. 2.116). Therefore, the coefficient of ŵ on the

right-hand side of Eq. (2.130) must be the magnitude of the angular momentum. That is,

h¼ x0 _y0� y0 _x0 (2.131)

Now let us solve Eqs. (2.128) and (2.129) for the unit vectors p̂ and q̂ in terms of r0 and v0. From

Eq. (2.128) we get

q̂¼ 1

y0
r0� x0

y0
p̂ (2.132)

Substituting this into Eq. (2.129), combining terms, and using Eq. (2.131) yields

v0¼ _x0p̂+ _y0
1

y0
r0� x0

y0
p̂

� �
¼ y0 _x0� x0 _y0

y0
p̂+

_y0
y0
r0¼� h

y0
p̂ +

_y

y0
r0

Solve this for p̂ to obtain

p̂¼
_y0
h
r0� y0

h
v0 (2.133)

Putting this result back into Eq. (2.132) gives

q̂¼ 1

y0
r0� x0

y0

_y0
h
r0� y0

h
v0

� �
¼ h� x0 _y0

y0
r0 +

x0
h
v0

Upon replacing h with the right-hand side of Eq. (2.131) we get

q̂¼�
_x0
h
r0 +

x0
h
v0 (2.134)

Eqs. (2.133) and (2.134) give p̂ and q̂ in terms of the initial state vector. Substituting those two

expressions back into Eqs. (2.126) and (2.127) yields, respectively

r¼ x
_y0
h
r0� y0

h
v0

� �
+ y �

_x0
h
r0 +

x0
h
v0

� �
¼ x _y0� y _x0

h
r0 +
�xy0 + yx0

h
v0

v¼ _x
_y0
h
r0� y0

h
v0

� �
+ _y �

_x0
h
r0 +

x0
h
v0

� �
¼

_x _y0� _yx0
h

r0 +
� _xy0 + _yx0

h
v0

Therefore,

r¼ f r0 + gv0 (2.135)

v¼ _f r0 + _gv0 (2.136)

where f and g are given by

f ¼ x _y0� y _x0
h

(2.137a)

g¼�xy0 + yx0
h

(2.137b)

together with their time derivatives

_f ¼
_x _y0� _y _x0

h
(2.138a)
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_g¼�
_xy0 + _yx0

h
(2.138b)

The f and g functions are referred to as the Lagrange coefficients after Joseph-Louis Lagrange (1736–
1813), an Italian mathematical physicist whose numerous contributions include calculations of plan-

etary motion.

From Eqs. (2.135) and (2.136) we see that the position and velocity vectors r and v are indeed linear

combinations of the initial position and velocity vectors. The Lagrange coefficients and their time de-

rivatives in these expressions are themselves functions of time and the initial conditions.

Before proceeding, let us show that the conservation of angular momentum h imposes a condition

on f and g and their time derivatives _f and _g. Calculate h using Eqs. (2.135) and (2.136),

h¼ r�v¼ f r0 + gv0ð Þ� _f r0 + _gv0
 �

Expanding the right-hand side yields

h¼ f r0� _f r0
 �

+ f r0� _gv0ð Þ + gv0� _f r0
 �

+ gv0� _gv0ð Þ
Factoring out the scalars f, g, _f , and _g, we get

h¼ f _f r0�r0ð Þ + f _g r0�v0ð Þ + _f g v0�r0ð Þ+ g _g v0�v0ð Þ
But r0 � r0 ¼ v0 � v0 ¼ 0, so

h¼ f _g r0�v0ð Þ + _f g v0�r0ð Þ
Since

v0�r0¼� r0�v0ð Þ
this reduces to

h¼ f _g� _f g
 �

r0�v0ð Þ
or

h¼ f _g� _f g
 �

h0

where h0 ¼ r0 � v0, which is the angular momentum at t ¼ t0. But the angular momentum is constant

(recall Eq. 2.29), which means h ¼ h0, so that

h¼ f _g� _f g
 �

h

Since h cannot be zero (unless the body is traveling in a straight line toward the center of attraction), it

follows that

f _g� _f g¼ 1 Conservation of angular momentumð Þ (2.139)

Thus, if any three of the functions f, g, _f , and _g are known, the fourth may be found from Eq. (2.139).

Let us use Eqs. (2.137) and (2.138) to evaluate the Lagrange coefficients and their time derivative in

terms of the true anomaly. First of all, note that evaluating Eq. (2.118) at time t ¼ t0 yields

x0¼ r0 cos θ0

y0¼ r0 sin θ0
(2.140)
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Likewise, from Eq. (2.124) we get

_x0¼�μ
h
sin θ0

_y0¼
μ

h
e + cos θ0ð Þ

(2.141)

To evaluate the function, f we substitute Eqs. (2.118) and (2.141) into Eq. (2.137a),

f ¼ x _y0� y _x0
h

¼ 1

h
r cos θ

μ

h
e + cos θ0ð Þ

h i
� r sin θ �μ

h
sin θ0

� �n o
¼ μr

h2
e cos θ + cos θ cos θ0 + sin θ sin θ0ð Þ½ �

(2.142)

If we invoke the trig identity

cos θ�θ0ð Þ¼ cos θ cos θ0 + sin θ sin θ0 (2.143)

and let Δθ represent the difference between the current and initial true anomalies,

Δθ¼ θ�θ0 (2.144)

then Eq. (2.142) reduces to

f ¼ μr

h2
e cos θ + cosΔθð Þ (2.145)

Finally, from Eq. (2.45), we have

e cos θ¼ h2

μr
�1 (2.146)

Substituting this into Eq. (2.145) leads to

f ¼ 1�μr

h2
1� cosΔθð Þ (2.147)

We obtain r from the orbit formula (Eq. 2.45) in which the true anomaly θ appears, whereas the

difference in the true anomalies occurs on the right-hand side of Eq. (2.147). However, we can express

the orbit equation in terms of the difference in true anomalies as follows. From Eq. (2.144), we have

θ ¼ θ0 + Δθ, which means we can write the orbit equation as

r¼ h2

μ

1

1 + e cos θ0 +Δθð Þ (2.148)

By replacing θ0 with �Δθ in Eq. (2.143), Eq. (2.148) becomes

r¼ h2

μ

1

1 + e cos θ0 cosΔθ�e sin θ0 sinΔθ
(2.149)

To remove θ0 from this expression, observe first of all that Eq. (2.146) implies that, at t ¼ t0,

e cos θ0¼ h2

μr0
�1 (2.150)
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Furthermore, from Eq. (2.49) for the radial velocity we obtain

e sin θ0¼ hvrÞ0
μ

(2.151)

Substituting Eqs. (2.150) and (2.151) into Eq. (2.149) yields

r¼ h2

μ

1

1 +
h2

μr0
�1

� �
cosΔθ�hvrÞ0

μ
sinΔθ

(2.152)

Using this form of the orbit equation, we can find r in terms of the initial conditions and the change in

the true anomaly. Thus f in Eq. (2.147) depends only on Δθ.
The Lagrange coefficient g is found by substituting Eqs. (2.118) and (2.140) into Eq. (2.137b),

g¼�xy0 + yx0
h

¼ 1

h
�rcosθð Þ r0 sinθ0ð Þ + r sinθð Þ rcosθ0ð Þ½ �

¼ rr0
h

sinθcosθ0� cosθ sinθ0ð Þ

(2.153)

Making use of the trig identity

sin θ�θ0ð Þ¼ sin θ cos θ0� cos θ sin θ0

together with Eq. (2.144), we find

g¼ rr0
h

sin Δθð Þ (2.154)

To obtain _g, substitute Eqs. (2.124) and (2.140) into Eq. (2.138b),

_g¼�
_xy0 + _yx0

h
¼ 1

h
� �μ

h
sinθ

h i
r0 sinθ0½ �+ μ

h
e+ cosθð Þ

h i
r0 cosθ0ð Þ

n o
¼ μr0

h2
ecosθ0 + cosθcosθ0 + sinθ sinθ0ð Þ½ �

With the aid of Eqs. (2.143) and (2.150), this reduces to

_g¼ 1�μr0
h2

1� cosΔθð Þ (2.155)

_f can be found using Eq. (2.139). Thus,

_f ¼ 1

g
f _g�1ð Þ (2.156)

Substituting Eqs. (2.147), (2.153), and (2.155) results in

_f ¼ 1
rr0
h

sinΔθ
1�μr

h2
1� cosΔθð Þ

h i
1�μr0

h2
1� cosΔθð Þ

h i
�1

n o

¼ 1
rr0
h

sinΔθ

h2μrr0
h4

1� cosΔθð Þ2 μ
h2
� 1� cosΔθð Þ 1

r0
+
1

r

� �� �
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or

_f ¼ μ

h

1� cosΔθ
sinΔθ

μ

h2
1� cosΔθð Þ� 1

r0
�1

r

� �
(2.157)

To summarize, the Lagrange coefficients in terms of the change in true anomaly are:

f ¼ 1�μr

h2
1� cosΔθð Þ (2.158a)

g¼ rr0
h

sinΔθ (2.158b)

_f ¼ μ

h

1� cosΔθ
sinΔθ

μ

h2
1� cosΔθð Þ� 1

r0
�1

r

� �
(2.158c)

_g¼ 1�μr0
h2

1� cosΔθð Þ (2.158d)

where r is given by Eq. (2.152).

The implementation of these four functions in MATLAB is presented in Appendix D.7.

Observe that using the Lagrange coefficients to determine the position and velocity from the initial

conditions does not require knowing the type of orbit we are dealing with (ellipse, parabola, or hyper-

bola), since the eccentricity does not appear in Eqs. (2.152) and (2.158). However, the initial position

and velocity give us that information. From r0 and v0 we obtain the angular momentum h ¼ kr0 � v0k.
The initial radius r0 is just the magnitude of the vector r0. The initial radial velocity vr)0 is the projection
of v0 onto the direction of r0,

vrÞ0¼ v0:
r0

r0

From Eqs. (2.45) and (2.49) we have

r0¼ h2

μ

1

1 + e cos θ0
vrÞ0¼

μ

h
e sin θ0

These two equations can be solved for the eccentricity e and for the true anomaly of the initial point θ0.

ALGORITHM 2.3

Given r0 and v0, find r and v after the true anomaly changes by Δθ. See Appendix D.8 for an im-

plementation of this procedure in MATLAB.

1. Compute the f and g functions and their derivatives by the following steps:
(a) Calculate the magnitude of r0 and v0:
r0¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r0 � r0p

v0¼ ffiffiffiffiffiffiffiffiffiffiffiffi
v0 � v0p
Calculate the radial component of v0 by projecting it onto the direction of r0:
(b)
vrÞ0¼
r0 � v0
r0
Calculate the magnitude of the constant angular momentum:
(c)
h¼ r0v?Þ0¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20� vrÞ02

q
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Substitute r0, vr)0, h, and Δθ in Eq. (2.152) to calculate r.
(d)

(e) Substitute r, r0, h, and Δθ into Eqs. (2.158a) and (2.158b) to find f, g, _f , and _g.
2. Use Eqs. (2.135) and (2.136) to calculate r and v.
EXAMPLE 2.13
An earth satellite moves in the xy plane of an inertial frame with the origin at the earth’s center. Relative to that frame, the

position and velocity of the satellite at time t0 are

r0¼ 8182:4̂i�6865:9̂j kmð Þ
v0 ¼ 0:47572̂i+ 8:8116̂j km=sð Þ (a)

Use Algorithm 2.3 to compute the position and velocity vectors after the satellite has traveled through a true anomaly

of 120°.

Solution
Step 1:

(a) r0¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r0 � r0p ¼ 10:861km v0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

v0 � v0p ¼ 8:8244km=s

(b) vrÞ0¼ v0:
r0

r0
¼

0:47572̂i+ 8:8116̂j
� �

: 8182:4̂i�6865:9̂j
� �

10,681
¼�5:2996km=s

(c) h¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20�v2r0

q
¼ 10,861

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:82442� �5:2996ð Þ2

q
¼ 75,366 km2=s

(d) r¼ h2

μ

1

1 +
h2

μr0
�1

� �
cosΔθ�hvrÞ0

μ
sinΔθ

¼ 75,3662

398,600

1

1 +
75,3662

398,600:10,681
�1

� �
cos 120°�75,366 � �5:2996ð Þ

398,600
sin 120°

¼ 8378:8km

(e) f ¼ 1�μr

h2
1� cosΔθð Þ

¼ 1�398,600 � 8378:8
75,3662

1� cos 120°ð Þ¼ 0:11802 dimensionlessð Þ

g¼ rr0
h

sin Δθð Þ¼ 8378:8 �10,681
75,366

sin120°¼ 1028:4s

_f ¼ μ

h

1� cosΔθ
sinΔθ

μ

h2
1� cosΔθð Þ� 1

r0
�1

r

� �
¼ 398,600

75,366

1� cos120°
sin120°

398,600

75,3662
1� cos120°ð Þ� 1

10,681
� 1

8378:9

� �
¼�9:8666 10�4

 �
s�1



FIG. 2.31

The initial and final position and velocity vectors and the perigee location for Examples 2.13 and 2.14.
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Step 2:

r¼ f r0 + gv0

¼ 0:118802 8182:4̂i�6865:9̂j
� �

+ 1028:4 0:47572̂i+ 8:8116̂j
� �

¼ 1454:9̂i+ 8251:6̂j kmð Þ
v¼ _f r0 + _gv0

¼ �9:8666�10�4
 �

8182:4̂i�6865:9̂j
� �

+ �0:12435ð Þ 0:47572̂i+ 8:8116̂j
� �

¼ �8:1323̂i+ 5:6785̂j km=sð Þ
These results are shown in Fig. 2.31.
EXAMPLE 2.14
Find the eccentricity of the orbit in Example 2.13 as well as the true anomaly at the initial time t0 and, hence, the location of

the perigee for this orbit.
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Solution
In Example 2.13, we found

r0¼ 10:861km vrÞ0¼�5:2996km=s h¼ 75,366km2=s (a)

Since vr)0 is negative, we know that the spacecraft is approaching the perigee, which means that

180°< θ0 < 360° (b)

The orbit formula and the radial velocity formula (Eqs. 2.45 and 2.49) evaluated at t0 are

r0¼ h2

μ

1

1 + e cos θ0
vrÞ0¼

μ

h
e sin θ0

Substituting the numerical values from Eqs. (a) into these formulas yields

10,861¼ 75,3663

398,600

1

1 + e cos θ0
�5:2996¼ 398,600

75,366
e sin θ0

From these, we obtain two equations for the two unknowns e and θ0:

e cos θ0 ¼ 0:3341 e sin θ0¼�1:002 (c)

Summing the squares of these two expressions gives

e2 sin2θ0 + cos2θ0
 �¼ 1:1157

Recalling the trig identity sin2x + cos2x ¼ 1, we get

e¼ 1:0563 hyperbolað Þ
The eccentricity may be substituted back into either of the two expressions in Eq. (c) to find the true anomaly θ0. Choosing
Eq. (c)1, we find

cos θ0¼ 0:3341

1:0563
¼ 0:3163

This means either θ0 ¼ 71.56° (moving away from the perigee) or θ0 ¼ 288.44° (moving toward the perigee). From Eq. (a)

we know that the motion is toward perigee, so that

θ0¼ 288:44°

Fig. 2.31 shows the computed location of the perigee relative to the initial and final position vectors.
To use the Lagrange coefficients to find the position and velocity as a function of time instead of

true anomaly, we need to come up with a relation between Δθ and time. We deal with that complex

problem in Chapter 3. Meanwhile, for times t that are close to the initial time t0, we can obtain poly-

nomial expressions for f and g in which the variable Δθ is replaced by the time interval Δt ¼ t � t0.
To do so, we expand the position vector r(t), considered to be a function of time, in a Taylor series

about t ¼ t0. As pointed out previously (Eqs. 1.97 and 1.98), the Taylor series is given by

r tð Þ¼
X∞
n¼0

1

n!
r nð Þ t0ð Þ t� t0ð Þn (2.159)

where r(n)(t0) is the nth time derivative of r(t), evaluated at t0,

r nð Þ t0ð Þ¼ dnr

dtn

� �
t¼t0

(2.160)
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Let us truncate this infinite series at four terms. Then, to that degree of approximation,

r tð Þ¼ r t0ð Þ+ dr

dt

� �
t¼t0

Δt+
1

2

d2r

dt2

� �
t¼t0

Δt2 +
1

6

d3r

dt3

� �
t¼t0

Δt3 +
1

24

d4r

dt4

� �
t¼t0

Δt4 (2.161)

where Δt ¼ t � t0. To evaluate the four derivatives, we note first that (dr/dt)t¼t0 is just the velocity v at
t ¼ t0,

dr

dt

� �
t¼t0
¼ v0 (2.162)

(d2r/dt2)t¼t0 is evaluated using Eq. (2.22),

€r¼� μ

r3
r (2.163)

Thus,

d2r

dt2

� �
t¼t0
¼� μ

r30
r0 (2.164)

(d3r/dt3)t¼t0 is evaluated by differentiating Eq. (2.163),

d3r

dt3
¼�μ d

dt

r

r3

� �
¼�μ r3v�3rr2 _r

r6

� �
¼�μ v

r3
+ 3μ

_rr

r4
(2.165)

From Eq. (2.35a) we have

_r ¼ r � v
r

(2.166)

Hence, Eq. (2.165), evaluated at t ¼ t0, is

d3r

dt3

� �
t¼t0
¼�μv0

r30
+ 3μ

r0:v0

r50
r0 (2.167)

Finally, (d4r/dt4)t¼t0 is found by first differentiating Eq. (2.165),

d4r

dt4
¼ d

dt
�μ _r

r3
+ 3μ

_rr

r4

� �
¼�μ r3€r�3r2 _r _r

r6

� �
+ 3μ

r4 €rr+ _r _rð Þ�4r3 _r2r

r8

� �
(2.168)

€r is found in terms of r and v by differentiating Eq. (2.166) and making use of Eq. (2.163). This leads to

the expression

€r¼ d

dt

r � _r
r

� �
¼ v2

r
� μ

r2
� r � vð Þ2

r3
(2.169)

Substituting Eqs. (2.163), (2.166), and (2.169) into Eq. (2.168), combining terms, and evaluating the

result at t ¼ t0 yields

d4r

dt4

� �
t¼t0
¼ �2μ

2

r60
+ 3μ

v20
r50
�15μ

r0:v0ð Þ2
r70

" #
r0 + 6μ

r0:v0ð Þ
r50

v0 (2.170)
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After substituting Eqs. (2.162), (2.164), (2.167), and (2.170) into Eq. (2.161), rearranging, and collect-

ing terms, we obtain

r tð Þ¼ 1� μ

2r30
Δt2 +

μ

2

r0:v0

r50
Δt3 +

μ

24
�2 μ

r60
+ 3

v20
r50
�15

r0:v0ð Þ2
r70

" #
Δt4

( )
r0

+ Δt�1

6

μ

r30
Δt3 +

μ

4

r0:v0ð Þ
r50

Δt4
� �

v0

(2.171)

Comparing this expression with Eq. (2.135), we see that, to the fourth order in Δt,

f ¼ 1� μ

2r30
Δt2 +

μ

2

r0:v0

r50
Δt3 +

μ

24
�2 μ

r60
+ 3

v20
r50
�15

r0:v0ð Þ2
r70

" #
Δt4

g¼Δt�1

6

μ

r30
Δt3 +

μ

4

r0:v0

r50
Δt4

(2.172)

For small values of elapsed time Δt these f and g series may be used to calculate the position of an

orbiting body from the initial conditions.
EXAMPLE 2.15
The orbit of an earth satellite has an eccentricity e ¼ 0.2 and a perigee radius of 7000 km. Starting at the perigee, plot the

radial distance as a function of time using the f and g series and compare the curve with the exact solution.

Solution
Since the satellite starts at the perigee, t0 ¼ 0, and we have, using the perifocal frame,

r0 ¼ 7000p̂ kmð Þ (a)

The orbit equation evaluated at the perigee is Eq. (2.50), which in the present case becomes

7000¼ h2

398,600

1

1 + 0:2

Solving for the angular momentum, we get h ¼ 57, 864km2/s . Then, using the angular momentum formula, Eq. (2.31), we

find that the speed at the perigee is v0 ¼ 8.2663 km/s, so that

v0¼ 8:2663q̂ km=sð Þ (b)

Clearly, r0 � v0 ¼ 0. Hence, with μ ¼ 398, 600 km3/s2, the two Lagrange series in Eq. (2.172) become (setting Δt ¼ t)

f ¼ 1�5:8105 10�7
 �

t2 + 9:0032 10�14
 �

t4

g¼ t�1:9368 10�7
 �

t3

where the units of t are seconds. Substituting f and g into Eq. (2.135) yields

r¼ 1�5:8105 10�7
 �

t2 + 9:0032 10�14
 �

t4
	 


7000p̂ð Þ + t�1:9368 10�7
 �

t3
	 


8:2663q̂ð Þ
From this we obtain

r¼ rk k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49 106
 �

+ 11:389t2�1:103 10�6
 �

t4�2:5633 10�12
 �

t6 + 3:9718 10�19
 �

t8
q

(c)

For the exact solution of r versus time we must appeal to the methods presented in Chapter 3. The exact solution and the

series solution (Eq. (c)) are plotted in Fig. 2.32. As can be seen, the series solution begins to seriously diverge from the exact

solution after about 10 min.



FIG. 2.32

Exact and series solutions for the radial position of the satellite.
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If we include terms of fifth and higher orders in the f and g series (Eq. 2.172), then the approximate

solution in the above example will agree with the exact solution for a longer time interval than that

indicated in Fig. 2.32. However, there is a time interval beyond which the series solution will diverge

from the exact one no matter how many terms we include. This time interval is called the radius of

convergence. According to Bond and Allman (1996), for the elliptical orbit of Example 2.15, the radius

of convergence is 1700 s (not quite half an hour), which is one-fifth of the period of that orbit. This

further illustrates the fact that the series forms of the Lagrange coefficients are applicable only over

small time intervals. For arbitrary time intervals, the closed form of these functions, presented in

Chapter 3, must be employed.
2.12 CIRCULAR RESTRICTED THREE-BODY PROBLEM
Consider two bodies m1 and m2 moving under the action of just their mutual gravitation, and let their

orbit around each other be a circle of radius r12. Consider as well a noninertial, comoving frame of

reference xyz whose origin lies at the center of mass G of the two-body system, with the x axis directed
towardm2, as shown in Fig. 2.33. The y axis lies in the orbital plane, to which the z axis is perpendicular.
In this rotating frame of reference, m1 and m2 appear to be at rest, the force of gravity on each one



FIG. 2.33

Primary bodies m1 and m2 in circular orbit around each other, plus a secondary mass m.
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seemingly balanced by the fictitious centripetal force required to hold it in its circular path around the

system center of mass. We shall henceforth assume that m1 > m2, so that body 1 might be the earth and

body 2 its moon.

The constant, inertial angular velocity Ω is given by

Ω¼Ωk̂ (2.173)

where

Ω¼ 2π

T

and T is the period of the orbit (Eq. 2.64),

T¼ 2πffiffiffi
μ
p r12

3=2

Thus,

Ω¼
ffiffiffiffiffiffiffiffi
μ

r123

r
(2.174)

Recall that if M is the total mass of the system,

M¼m1 +m2 (2.175)

then

μ¼GM (2.176)

m1 andm2 lie in the orbital plane, so that their y and z coordinates are zero. To determine their locations

on the x axis, we use the definition of the center of mass (Eq. 2.2) to write

m1x1 +m2x2¼ 0
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Since m2 is at a distance of r12 from m1 in the positive x direction, it is also true that

x2¼ x1 + r12

From these two equations, we obtain

x1¼�π2r12 (2.177a)

x2¼ π1r12 (2.177b)

where the dimensionless mass ratios π1 and π2 are given by

π1¼ m1

m1 +m2

π2¼ m2

m1 +m2

(2.178)

Since m1 and m2 have the same period in their circular orbits aroundG, the larger mass (the one closest

to G) has the greater orbital speed and hence the greatest centripetal force.

We now introduce a third body of mass m, which is vanishingly small compared with the primary

masses m1 and m2, like the mass of a spacecraft compared with that of a planet or moon of the solar

system. This is called the circular restricted three-body problem (CRTBP), because the secondary mass

m is assumed to be so small that it has no effect on the circular motion of the primary bodies around each

other. We are interested in the motion ofm due to the gravitational fields ofm1 andm2. Unlike the two-

body problem, there is no general, closed-form solution for this motion. However, we can set up the

equations of motion and draw some general conclusions from them.

In the comoving coordinate system, the position vector of the secondary mass m relative to m1 is

given by

r1¼ x�x1ð Þ̂i+ ŷj+ zk̂¼ x+ π2r12ð Þ̂i+ ŷj+ zk̂ (2.179)

Relative to m2 the position of m is

r2¼ x�π1r12ð Þ̂i+ ŷj+ zk̂ (2.180)

Finally, the position vector of the secondary body relative to the center of mass is

r¼ x̂i+ ŷj+ zk̂ (2.181)

The inertial velocity of m is found by taking the time derivative of Eq. (2.181). However, relative to

inertial space, the xyz coordinate system is rotating with the angular velocity Ω, so that the time

derivatives of the unit vectors î and ĵ are not zero. To account for the rotating frame, we use

Eq. (1.66) to obtain
_r¼ vG +Ω�r+ vrel (2.182)

where vG is the inertial velocity of the center of mass (the origin of the xyz frame), and vrel is the velocity

of m as measured in the moving xyz frame. That is

vrel¼ _x î+ _y ĵ+ _zk̂ (2.183)

The absolute acceleration of m is found using the “five-term” relative acceleration formula (Eq. 1.70)

€r¼ aG + _Ω�r+Ω� Ω�rð Þ+ 2Ω�vrel + arel (2.184)
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Recall from Section 2.2 that the velocity vG of the center of mass is constant, so that aG ¼ 0.

Furthermore, _Ω¼ 0 since the angular velocity of the circular orbit is constant. Therefore,

Eq. (2.184) reduces to

€r¼Ω� Ω�rð Þ+ 2Ω�vrel + arel (2.185)

where

arel¼ €x î+ €y ĵ+ €z k̂ (2.186)

Substituting Eqs. (2.173), (2.181), (2.183), and (2.186) into Eq. (2.185) yields

€r¼ Ωkð Þ� Ωk̂
 �� x̂i+ ŷj+ zk̂

� �h i
+ 2 Ωk̂
 �� _x î+ _y ĵ+ _zk̂

� �
+ €x î+ €y ĵ+ €z k̂

¼�Ω2 x̂i+ ŷj
� �

+ 2Ω _x ĵ�2Ω _y î+ €x î+ €y ĵ+ €z k̂

Collecting terms we find

€r¼ €x�2Ω _y�Ω2x
 �̂

i+ €y+ 2Ω _x�Ω2y
 �̂

j+ €z k̂ (2.187)

Now that we have an expression for the inertial acceleration in terms of quantities measured in the

rotating frame, let us observe that Newton’s second law for the secondary body is

m€r¼F1 +F2 (2.188)

F1 and F2 are the gravitational forces exerted onm bym1 andm2, respectively. Recalling Eq. (2.10), we

have

F1¼�Gm1m

r12
ûrÞ1¼�

μ1m

r13
r1

F2¼�Gm2m

r22
ûrÞ2¼�

μ2m

r23
r2

(2.189)

where

μ1¼Gm1 μ2¼Gm2 (2.190)

Substituting Eq. (2.189) into Eq. (2.188) and canceling out m yields

€r¼� μ1
r13

r1� μ2
r23

r2 (2.191)

Finally, we substitute Eq. (2.187) on the left and Eqs. (2.179) and (2.180) on the right to obtain

€x�2Ω _y�Ω2x
 �̂

i+ €y+ 2Ω _x�Ω2y
 �̂

j+ €z k̂¼� μ1
r13

x + π2r12ð Þ̂i+ ŷj+ zk̂
h i

� μ2
r23

x�π1r12ð Þ̂i+ ŷj+ zk̂
h i

Equating the coefficients of î, ĵ, and k̂ on each side of this equation yields the three scalar equations of

motion for the circular restricted three-body problem:

€x�2Ω _y�Ω2x¼� μ1
r13

x+ π2r12ð Þ� μ2
r23

x�π1r12ð Þ (2.192a)
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€y+ 2Ω _x�Ω2y¼� μ1
r13

y� μ2
r23

y (2.192b)

€z¼� μ1
r13

z� μ2
r23

z (2.192c)
2.12.1 LAGRANGE POINTS
Although Eqs. (2.192a), (2.192b), and (2.192c) have no closed-form analytical solution, we can use

them to determine the location of the equilibrium points. These are the locations in space where the

secondary mass m would have zero velocity and zero acceleration (i.e., where m would appear perma-

nently at rest relative tom1 andm2and therefore appear to an inertial observer to move in circular orbits

around m1 and m2). Once placed at an equilibrium point (also called libration point or Lagrange point),

a body will presumably stay there. The equilibrium points are therefore defined by the conditions

_x¼ _y¼ _z¼ 0 and €x¼ €y¼ €z¼ 0

Substituting these conditions into Eqs. (2.192a), (2.192b), and (2.192c) yield

�Ω2x¼� μ1
r13

x+ π2r12ð Þ� μ2
r23

x�π1r12ð Þ (2.193a)

�Ω2y¼� μ1
r13

y� μ2
r23

y (2.193b)

0¼� μ1
r13

z� μ2
r23

z (2.193c)

From Eq. (2.193c), we have

μ1
r13

+
μ2
r23

� �
z¼ 0 (2.194)

Since μ1=r1
3 > 0 and μ2=r2

3 > 0, it must therefore be true that z ¼ 0. That is, the equilibrium points lie

in the orbital plane.

From Eq. (2.178), it is clear that

π1¼ 1�π2 (2.195)

Using this, along with Eq. (2.174), and assuming y 6¼ 0, we can write Eqs. (2.193a) and (2.193b) as

1�π2ð Þ x+ π2r12ð Þ 1
r13

+ π2 x+ π2r12� r12ð Þ 1
r23
¼ x

r123

1�π2ð Þ 1
r13

+ π2
1

r23
¼ 1

r123

(2.196)

where we made use of the fact that

π1¼ μ1=μ π2¼ μ2=μ (2.197)

Treating Eq. (2.196) as two linear equations in 1/r1
3 and 1/r2

3 we, solve them simultaneously to find that

1

r13
¼ 1

r23
¼ 1

r123
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or

r1¼ r2¼ r12 (2.198)

Using this result, together with z ¼ 0 and Eq. (2.195), we obtain from Eqs. (2.179) and (2.180),

respectively,

r12
2¼ x+ π2r12ð Þ2 + y2 (2.199)

r12
2¼ x + π2r12�π12ð Þ2 + y2 (2.200)

Equating the right-hand sides of these two equations leads at once to the conclusion that

x¼ r12
2
�π2r12 (2.201)

Substituting this result into Eq. (2.199) or Eq. (2.200) and solving for y yields

y¼�
ffiffiffi
3
p

2
r12

We have thus found two of the equilibrium points, the Lagrange points L4 and L5. As Eq. (2.198)
shows, these points are at the same distance r12 from the primary bodies m1 and m2 that the primary

bodies are from each other, and in the comoving coordinate system, their coordinates are

L4,L5 : x¼ r12
2
�π2r12 y¼�

ffiffiffi
3
p

2
r12 z¼ 0 (2.202)

Therefore, the two primary bodies and these two Lagrange points lie at the vertices of equilateral tri-

angles, as illustrated in Fig. 2.36.

The remaining three equilibrium points L1, L2, and L3, are found by setting y ¼ 0 as well as z ¼ 0,

which satisfy both Eqs. (2.193b) and (2.193c). For these values, Eqs. (2.179) and (2.180) become

r1¼ x+ π2r12ð Þ̂i
r2¼ x�π1r12ð Þ̂i¼ x+ π2r12� r12ð Þ̂i

Therefore

r1¼ x + π2r12j j
r2¼ x + π2r12� r12j j

Substituting these together with Eqs. (2.174), (2.195), and (2.197) into Eq. (2.193a) yields

1�π2ð Þ x+ π2r12

x+ π2r12j j3 + π2
x+ π2r12� r12

x+ π2r12� r12j j3�
1

r123
x¼ 0 (2.203)

Further simplification is obtained by nondimensionalizing x,

ξ¼ x

r12

In terms of ξ, Eq. (2.203) becomes f(π2,ξ) ¼ 0, where

f π2, ξð Þ¼ 1�π2ð Þ ξ+ π2

ξ+ π2j j3 + π2
ξ+ π2�1

ξ + π2�1j j3�ξ (2.204)



FIG. 2.34

Contour plot of f(π2,ξ) ¼ 0 for the collinear equilibrium points of the restricted three-body problem. π2 ¼ 0.01215

for the earth-moon system.
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Fig. 2.34 shows the plot of an S-shaped contour, which is the locus of points (π2,ξ) at which f is
zero. The horizontal lines ξ ¼ � 1 and ξ ¼ 1 divide the contour into three curves labeled L1, L2,
and L3. For a given value of the mass ratio π2 (0 < π2 < 1), the figure reveals that there are three

values for the Lagrange point coordinate ξ, one for each of the three subregions L1, L2, and L3. The
two straight lines labeled m1 and m2 in Fig. 2.34 are graphs of the nondimensional forms of

Eq. (2.177),

m1 : ξ+ π2¼ 0

m2 : ξ+ π2�1¼ 0

These relate the nondimensional coordinates ξ1 and ξ2 of the primary masses m1 and m2 to the mass

ratio π2. Clearly, the curve labeled L3 in Fig. 2.34 lies below that form1; L1 lies betweenm1 andm2; and

L2 lies above m2. That is, assuming as in Fig. 2.33 that mass m2 is positioned to the right of m1, one of

the collinear Lagrange points (L3) lies to the left of m1, another (L1) lies between m1 and m2, and the

third (L2) lies beyond m2 to the right (see Fig. 2.36).

For a given π2, we cannot read the three values of the Lagrange point coordinates precisely from

Fig. 2.34, but we can use the approximate values as starting points of an iterative solution for the roots

of the function f(π2,ξ) in Eq. (2.204). The bisection method is a simple, though not very efficient, pro-

cedure that we can employ here as well as in other problems that require the root of a nonlinear

function.

If r is a root of the function f(x), then f(r) ¼ 0. To find r by the bisection method, we first select two

values of x that we know lie close to and on each side of the root. Label these values xl and xu, where



FIG. 2.35

Determining a root by the bisection method.
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xl < r and xu > r. Since the function f changes sign at a root, it follows that f(xl) and f(xu) must be of

opposite sign, which means f(xl) � f(xu) < 0. For the sake of argument, suppose f(xl) < 0 and f(xu) > 0,

as in Fig. 2.35. Bisect the interval from xl to xu by computing xm ¼ (xl + xu)/2. If f(xm) is positive, then
the root r lies between xl and xm, so (xl,xm) becomes our new search interval. If instead f(xm) is
negative, then (xm,xu) becomes our search interval. In either case, we bisect the new search interval

and repeat the process over and over again, the search interval becoming smaller and smaller, until

we eventually converge to r within a desired accuracy E. To achieve that accuracy from the starting

values of xl and xu requires no more than n iterations, where n is the smallest integer such that

(Hahn, 2002)

n>
1

ln 2
ln

xu�xlj j
E

� �

Let us summarize the procedure as follows:

ALGORITHM 2.4

Find a root r of the function f(x) using the bisection method. See Appendix D.9 for a MATLAB

implementation of this procedure in the script named bisect.m.
1. Select values xl and xu that are known to be fairly close to r and such that xl < r and xu > r.
2. Choose a tolerance E and determine the number of iterations n from the above formula.

3. Repeat the following steps n times:
(a) Compute xm ¼ (xl + xu)/2.
(b) If f(xl) � f(xu) > 0, then xl xm; otherwise, xr xm.
(c) Return to a.
4. r ¼ xm.
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EXAMPLE 2.16
Locate the five Lagrange points for the earth–moon system.

Solution
From Table A.1 we find

m1 ¼ 5:974 1024
 �

kg earthð Þ
m2 ¼ 7:348 1022

 �
kg moonð Þ

r12 ¼ 3:844 105
 �

km distance between the earth and moonð Þ
(2.205)

We know that Lagrange points L4 and L5 lie on the moon’s orbit around the earth, L4 is 60° ahead of the moon, and L5 lies

60° behind the moon, as illustrated in Fig. 2.36.

To find L1, L2, and L3 requires finding the roots of Eq. (2.204), in which, for the case at hand, the mass ratio is

π2 ¼ m2

m1 +m2

¼ 0:01215

Using Algorithm 2.4, we proceed as follows.

Step 1:

FIG. 2.36

Location of the five Lagrange points of the earth-moon system. These points orbit the Earth with the same

period as the moon.
Ste
For the above value of π2, Fig. 2.34 shows that L3 lies near ξ ¼ � 1, whereas L1 and L2 lie on the low and high side,

respectively, of ξ ¼ + 1. We cannot read these values precisely off the graph, but we can use them to select the

starting values for the bisection method. For L3, we choose ξl ¼ � 1.1 and ξu ¼ � 0.9.
p 2:
Choose an error tolerance of E ¼ 10�6, which sets the number of iterations,
n>
1

ln2
ln

ξu�ξlj j
E

� �
¼ l

ln2
ln
�0:9� �1:1ð Þj j

10�6

� �
¼ 17:61



Ste

Table 2.1 Steps of the bisection method leading to ξ 5 2 1.0050 for L3

n ξl ξu ξm
Sign of
f(π2,ξl) � f(π2, ξu)

1 �1.1 �0.9 �1 <0

2 �1.1 �1 �1.05 >0

3 �1.05 �1 �1.025 >0

4 �1.025 �1 �1.0125 >0

5 �1.0125 �1 �1.00625 >0

6 �1.00625 �1 �1.003125 <0

7 �1.00625 �1.003125 �1.0046875 <0

8 �1.00625 �1.0046875 �1.00546875 >0

9 �1.00546875 �1.0046875 �1.005078125 >0

10 �1.005078125 �1.0046875 �1.0049882812 <0

11 �1.005078125 �1.0049882812 �1.004980469 <0

12 �1.004980469 �1.0049882812 �1.005029297 >0

13 �1.005029297 �1.0049882812 �1.005004883 >0

14 �1.005004883 �1.0049882812 �1.004992676 <0

15 �1.005004883 �1.004992676 �1.004998779 >0

16 �1.004998779 �1.004992676 �1.004995728 >0

17 �1.004995728 �1.004992676 �1.004994202 <0

18 �1.004995728 �1.004994202 �1.004994965 >0
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That is, n ¼ 18.
p 3:
This is summarized in Table 2.1.
We conclude that, to five significant figures, ξ3 ¼ � 1.0050.

The values of ξ for the Lagrange points L1 and L2 are found the same way using Algorithm 2.4, starting with the

estimates obtained from Fig. 2.34. Rather than repeating the lengthy hand computations, see instead Appendix D.9 for

the MATLAB program Example_2_16.m, which carries out the calculations of all the three roots. It uses the program bi-
sect.m to do the iterations, leading to ξ1 ¼ 0.8369 and ξ2 ¼ 1.156, as well as ξ3 ¼ � 1.005 computed in Table 2.1.

Multiplying each dimensionless root by r12 yields the x coordinates (relative to the center of mass) of the collinear

Lagrange points in kilometers.

L1 : x¼ 0:8369r12¼ 3:217 105
 �

km

L2 : x¼ 1:156r12 ¼ 4:444 105
 �

km

L3 : x¼�1:005r12¼�3:863 105
 �

km

(2.206)

The locations of the five Lagrange points for the earth–moon system are shown in Fig. 2.36. For convenience, all their

positions are shown relative to the center of the earth, instead of the center of mass. As can be seen from Eq. (2.177a), the

center of mass of the earth–moon system is only 4670 km from the center of the earth. That is, it lies within the earth at 73%

of its radius. Since the Lagrange points are fixed relative to the earth and the moon, they follow circular orbits around the

earth with the same period as the moon.
If an equilibrium point is stable, then a small mass occupying that point will tend to return to that

point if nudged out of position. The perturbation results in a small oscillation (orbit) about the
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equilibrium point. Thus, objects can be placed in small orbits (called halo orbits) around stable

equilibrium points without requiring much in the way of station keeping. On the other hand, if a body

located at an unstable equilibrium point is only slightly perturbed, it will oscillate in a divergent fash-

ion, drifting eventually completely away from that point. It turns out (Battin, 1987) that the collinear

Lagrange points L1, L2, and L3 are unstable, whereas L4 and L5, which lie 60° ahead of m2 and 60°
behind m2 in its orbit, are stable if

m1

m2

+
m2

m1

� 25

This will be true as long as the ratio m1/m2 exceeds 24.96. For the earth–moon system that ratio is 81.3.

However, L4 and L5 are destabilized by the influence of the sun’s gravity, so that in actuality station

keeping would be required to maintain position in the neighborhood of those points of the earth–moon

system.

Solar observation spacecraft have been placed in halo orbits around the L1 point of the sun–earth
system. L1 lies about 1.5 million km from the earth (1/100 the distance to the sun) and well outside the

earth’s magnetosphere. Three such missions were the International Sun–Earth Explorer 3 launched in

August 1978, the Solar and Heliocentric Observatory launched in December 1995, and the Advanced

Composition Explorer launched in August 1997.

In June 2001, the 830-kgWilkinson Microwave Anisotropy Probe (WMAP) was launched aboard a

Delta II rocket on a 3-month journey to sun–earth Lagrange point L2, which lies 1.5 million km from the

earth in the opposite direction from L1. WMAP’s several-year mission was to measure the cosmic mi-

crowave background radiation. The 6500-kg James Webb Space Telescope is currently scheduled for a

2020 launch aboard an Ariane 5 to an orbit around L2. This successor to the Hubble Space Telescope,

which is in low earth orbit, will use a 6.5-m mirror to gather data in the infrared spectrum over a period

of 5–10 years.
2.12.2 JACOBI CONSTANT
Multiply Eq. (2.192a) by _x, Eq. (2.192b) by _y, and Eq. (2.192c) by _z to obtain

€x _x�2Ω _x _y�Ω2x _x¼� μ1
r13

x _x + π2r12 _xð Þ� μ2
r23

x _x�π1r12 _xð Þ

€y _y + 2Ω _x _y�Ω2y _y¼� μ1
r13

y _y� μ2
r23

y _y

€z _z¼� μ1
r13

z _z� μ2
r23

z _z

Sum up the left-hand and right-hand sides of these equations to get

€x _x + €y _y + €z _z�Ω2 x _x + y _yð Þ¼� μ1
r13

+
μ2
r23

� �
x _x + y _y + z _zð Þ + r12 π1μ2

r23
�π2μ1

r13

� �
_x

or, by rearranging terms,

€x _x + €y _y + €z _z�Ω2 x _x + y _yð Þ¼� μ1
r13

x _x + y _y + z _z + π2r12 _xð Þ� μ2
r23

x _x + y _y + z _z�π1r12 _xð Þ (2.207)
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Note that

€x _x + €y _y + €z _z¼ 1

2

d

dt
_x2 + _y2 + _z2
 �¼ 1

2
v2 (2.208)

where v is the speed of the secondary mass relative to the rotating frame. Similarly,

x _x + y _y¼ 1

2

d

dt
x2 + y2
 �

(2.209)

From Eq. (2.179) we obtain

r1
2¼ x+ π2r12ð Þ2 + y2 + z2

Therefore

2r1
dr1
dt
¼ 2 x+ π2r12ð Þ _x + 2y _y + 2z _z

or

dr1
dt
¼ 1

r1
π2r12 _x + x _x + y _y + z _zð Þ

It follows that

d

dt

1

r1
¼� 1

r12
dr1
dt
¼� 1

r13
x _x + y _y + z _z + π2r12 _xð Þ (2.210)

In a similar fashion, starting with Eq. (2.180), we find

d

dt

1

r2
¼� 1

r23
x _x + y _y + z _z + π1r12 _xð Þ (2.211)

Substituting Eqs. (2.208)–(2.211) into Eq. (2.207) yields

1

2

d

dt
v2�1

2
Ω2 d

dt
x2 + y2
 �¼ μ1

d

dt

1

r1
+ μ2

d

dt

1

r2

Alternatively, upon rearranging terms

d

dt

1

2
v2�1

2
Ω2 x2 + y2
 ��μ1

r1
�μ2
r2

� �
¼ 0

which means the bracketed expression is a constant

1

2
v2�1

2
Ω2 x2 + y2
 ��μ1

r1
�μ2
r2
¼C (2.212)

v2/2 is the kinetic energy per unit mass relative to the rotating frame. �μ1/r1 and �μ2/r2 are the grav-
itational potential energies of the two primary masses. �Ω2(x2 + y2)/2 may be interpreted as the po-

tential energy of the centrifugal force per unit mass Ω2ðx̂i + ŷjÞ induced by the rotation of the

reference frame. The constant C (which is frequently written as �C/2 in the literature) is known as

the Jacobi constant, after the German mathematician Carl Gustav Jacobi (1804–1851), who discovered
it in 1836. Jacobi’s constant may be interpreted as the total energy of the secondary particle relative to
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the rotating frame. C is a constant of the motion of the secondary mass just like energy and angular

momentum are constants of the relative motion in the two-body problem.

Solving Eq. (2.212) for v2 yields

v2¼Ω2 x2 + y2
 �

+
2μ1
r1

+
2μ2
r2

+ 2C (2.213)

If we restrict the motion of the secondary mass to lie in the plane of motion of the primary

masses, then

r1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x+ π2r12ð Þ2 + y2

q
r2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�π1r12ð Þ2 + y2

q
(2.214)

For a given value of the Jacobi constant, v2 is a function only of position in the rotating frame. Since v2

cannot be negative, it must be true that

Ω2 x2 + y2
 �

+
2μ1
r1

+
2μ2
r2

+ 2C� 0 (2.215)

Trajectories of the secondary body in regions where this inequality is violated are not allowed. The

boundaries between forbidden and allowed regions of motion are found by setting v2 ¼ 0. That is

Ω2 x2 + y2
 �

+
2μ1
r1

+
2μ2
r2

+ 2C¼ 0 (2.216)

For a given value of the Jacobi constant the curves of zero velocity are determined by this equation.

These boundaries cannot be crossed by a secondary mass (spacecraft) moving within an allowed

region.

Since the first three terms on the left of Eq. (2.216) are all positive, it follows that the zero velocity

curves correspond to negative values of the Jacobi constant. Large negative values of C mean that the

secondary body is far from the system center of mass (x2 + y2 is large) or that the body is close to one of
the primary bodies (r1 is small or r2 is small).

Let us consider again the earth–moon system. From Eqs. (2.174–2.176), (2.190), and (2.205) we

have

Ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G m1 +m2ð Þ

r123

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:67259 10�20

 � � 6:04748 1024
 �

384,4003

s
¼ 2:66538 10�6

 �
rad=s

μ1¼Gm1¼ 6:67259 10�20
 � � 5:9742 1024

 �¼ 398,620km3=s2

μ2¼Gm2¼ 6:67259 10�20
 � � 7:348 1022

 �¼ 4903:02km3=s2

(2.217)

Substituting these values into Eq. (2.216), we can plot the zero velocity curves for different values of

Jacobi’s constant. The curves bound regions in which the motion of a spacecraft is not allowed.

For C ¼ � 1.8km2/s2, the allowable regions are circles surrounding the earth and the moon, as

shown in Fig. 2.37(a). A spacecraft launched from the earth with this value ofC cannot reach the moon,

to say nothing of escaping the earth–moon system.

Substituting the coordinates of the Lagrange points L1, L2, and L3 into Eq. (2.216), we obtain the

successively larger values (smaller nrgative values) of the Jacobi constants C1, C2, and C3 that are



FIG. 2.37

Forbidden regions (shaded) within the earth-moon system for increasing values of Jacobi’s constant (km2/s2).
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required to arrive at those points with zero velocity. These are shown along with the allowable regions

in Fig. 2.37. From part (c) of that figure we see that C2 represents the minimum energy for a spacecraft

to escape the earth–moon system via a narrow corridor around the moon. Increasing C widens that

corridor, and at C3 escape becomes possible in the opposite direction from the moon. The last vestiges

of the forbidden regions surround L4 and L5. A further increase in Jacobi’s constant makes the entire

earth–moon system and beyond accessible to an earth-launched spacecraft.

For a given value of the Jacobi constant, the relative speed at any point within an allowable region

can be found using Eq. (2.213).
EXAMPLE 2.17
The earth-orbiting spacecraft in Fig. 2.38 has a relative burnout velocity vbo at an altitude of d ¼ 200 km on a radial for

which ϕ ¼ �90°. Find the value of vbo for each of the six scenarios depicted in Fig. 2.37.

Solution
From Eqs. (2.177) and (2.205), we have

π1 ¼ m1

m1 +m2

¼ 5:947 1024
 �

6:047 1024
 �¼ 0:9878 π2¼ 1�π1¼ 0:01215

x1 ¼�π1r12¼�0:9878 � 384,400¼�4670:6km
Therefore, the coordinates of the burnout point are

x¼�4670:6km y¼�6578km
Substituting these values along with the Jacobi constant into Eqs. (2.213) and (2.214) yields the relative burnout speed vbo.

For the six Jacobi constants in Fig. 2.38 we obtain

C¼�1:8000km2=s2 : vbo ¼ 10:84518km=s
C¼�1:6735km2=s2 : vbo ¼ 10:85683km=s
C¼�1:6649km2=s2 : vbo ¼ 10:85762km=s
C¼�1:5810km2=s2 : vbo ¼ 10:86535km=s
C¼�1:5683km2=s2 : vbo ¼ 10:86652km=s
C¼�1:5600km2=s2 : vbo ¼ 10:86728km=s
FIG. 2.38

Spacecraft S burnout position and velocity relative to the rotating earth–moon frame.



1312.12 CIRCULAR RESTRICTED THREE-BODY PROBLEM
These burnout velocities all differ less than 1.5% from the escape velocity (Eq. 2.91) at 200 km altitude,

vese¼
ffiffiffiffiffi
2μ

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

6578

r
¼ 11:01km=s

Observe that a change in vbo of less than 10m/s can have a significant influence on the regions of the earth–moon space

accessible to the spacecraft.
EXAMPLE 2.18
For the spacecraft in Fig. 2.38 the initial conditions (t ¼ 0) are d ¼ 200km, ϕ ¼ � 90°, γ ¼ 20°, and vbo ¼ 10.9148 km/s.

Use Eqs. (2.192a), (2.192b), and (2.192c) the circular restricted three-body equations of motion, to determine the trajectory

and locate its position at t ¼ 3.16689 days.

Solution
Since z and _z are initially zero, Eq. (2.192c) implies that z remains zero. The motion is therefore confined to the xy

plane and is governed by Eqs. (2.192a) and (2.192b). These have no analytical solution, so we must use a numerical

approach.

To get Eqs. (2.192a) and (2.192b) into the standard form for numerical solution (Section 1.8), we introduce the auxiliary

variables

y1 ¼ x y2 ¼ y y3¼ _x y4 ¼ _y (a)

The time derivatives of these variables are

_y1¼ y3

_y2¼ y4

_y3¼ 2Ωy4 +Ω
2y1� μ1

r13
y1 + π2r12ð Þ� μ2

r23
y1�π1r12ð Þ Eq: 2:192að Þ

_y4¼�2Ωy3 +Ω
2y2� μ1

r13
y2� μ2

r23
y2 Eq:2:192bð Þ

(b)

where, from Eqs. (2.179) and (2.180),

r1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 + π2r12ð Þ2 + y22

q
r2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1�π1r12ð Þ2 + y22

q
(c)

Eqs. (b) are of the form _y ¼ f t, yð Þ given by Eq. (1.105).

To solve this system let us use the Runge–Kutta–Fehlberg 4(5) method and Algorithm 1.3, which is implemented in

MATLAB as the program rkf45.m in Appendix D.4. The MATLAB function named Example_2_18.m in Appendix D.10

contains the data for this problem, the given initial conditions, and the time range. To perform the numerical integration,

Example_2_18.m calls rkf45.m, which uses the subfunction rates, which is embedded within Example_2_18.m, to compute

the derivatives in Eq. (b) above. Running Example_2_18.m yields the plot of the trajectory shown in Fig. 2.39. After coast-

ing 3.16689 days as specified in the problem statement,

The spacecraft arrives at the far side of the moon

on the earth�moon line at an altitude of 256km

For comparison, the 1969 Apollo 11 translunar trajectory, which differed from this one in many details (including the use of

midcourse corrections), required 3.04861 days to arrive at the lunar orbit insertion point.



FIG. 2.39

Translunar coast trajectory computed numerically from the restricted three-body differential equations
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using the RKF4(5) method.
PROBLEMS

For man-made earth satellites use μ ¼ 398, 600km3/s2 and RE ¼ 6378km (Tables A.1 and A.2).

Section 2.2

2.1 Two particles of identical mass m are acted on only by the gravitational force of one upon the

other. If the distance d between the particles is constant, what is the angular velocity of the line

joining them? Use Newton’s second law with the center of mass of the system as the origin of the

inertial frame.
{Ans.: ω¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gm=d3

p
}

2.2 Three particles of identical massm are acted on only by their mutual gravitational attraction. They

are located at the vertices of an equilateral triangle with sides of length d. Consider the motion of

any one of the particles about the system center of mass G and, usingG as the origin of the inertial
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frame, employ Newton’s second law to determine the angular velocity ω required for d to remain

constant.
{Ans.: ω¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Gm=d3

p
}

Section 2.3

2.3 Consider the two-body problem illustrated in Fig. 2.1. If a force T (such as rocket thrust) acts on

m2 in addition to the mutual force of gravitation F21, show that
(a) Eq. (2.22) becomes
€r¼� μ

r3
r+

T

m2
If the thrust vector T has a magnitude T and is aligned with the velocity vector v, then
(b)
T¼ T
v

v

2.4 At a given instant t0, a 1000-kg earth-orbiting satellite has the inertial position and velocity

vectors r0¼ 3207̂i + 5459̂j+ 2714k̂ kmð Þ and v0¼�6:532̂i + 0:7835̂j+ 6:142k̂ km=sð Þ. Solve
Eq. (2.22) numerically to find the maximum altitude reached by the satellite and the time at which

it occurs.
{Ans.: Using MATLAB’s ode45, the maximum altitude ¼ 9670 km at 1.66 h after t0}
2.5 At a given instant, a 1000-kg earth-orbiting satellite has the inertial position and velocity vectors

r0¼ 6600̂i kmð Þ and v0¼ 12̂j km=sð Þ. Solve Eq. (2.22) numerically to find the distance of the

spacecraft from the center of the earth and its speed 24 h later.
{Ans.: Using MATLAB’s ode45, distance ¼ 456,500 km, speed ¼ 5 km/s}
Section 2.4

2.6 If r, in meters, is given byr¼ tsin t̂I+ t2 cos tĴ+ t3 sin2tK̂ , where t is the time in seconds, calculate

(a) _r (where r¼ _rk k) and (b) _rk k at t ¼ 2s.
{Ans.: (a) _r ¼ 4:894m=s; (b) _rk k¼ 6:563m=s}
2.7 Starting with Eq. (2.35a), prove that _r ¼ v � û and interpret this result.

2.8 Show that ûr � dûr/dt ¼ 0, where ûr ¼ r/r. Use only the fact that ûr is a unit vector. Interpret this
result.

2.9 Show that v¼ μ=hð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2e cos θ + e2
p

for any orbit.

2.10 Relative to a nonrotating, earth-centered Cartesian coordinate system, the position and velocity

vectors of a spacecraft are r¼ 7000̂i�2000̂j�4000k̂ kmð Þ and v¼ 3̂i� 6̂j+ 5k̂ km=sð Þ.
Calculate the orbit’s (a) eccentricity vector and (b) the true anomaly.
{Ans.: (a) e¼ 0:2888̂i + 0:08523̂j�0:3840k̂; (b) θ ¼ 33.32°}
2.11 Show that the eccentricity is 1 for rectilinear orbits (h ¼ 0).
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2.12 Relative to a nonrotating, earth-centered Cartesian coordinate system, the velocity of a

spacecraft is v¼�4̂i + 3̂j�5k̂ km=sð Þ and the unit vector in the direction of the radius r is

ûr ¼ 0:26726̂i + 0:53452̂j+ 0:80178k̂. Calculate (a) the radial component of velocity vr, (b) the
azimuth component of velocity v?, and (c) the flight path angle γ.
{Ans.: (a) �3.474 km/s; (b) 6.159 km/s; (c) �29.43°}
Section 2.5

2.13 If the specific energy ε of the two-body problem is negative, show thatm2 cannot move outside a

sphere of radius μ/jε j centered at m1.

2.14 Relative to a nonrotating Cartesian coordinate frame with the origin at the centerO of the earth, a

spacecraft in a rectilinear trajectory has the velocity v¼ 2̂i + 3̂j+ 4k̂ km=sð Þ when its distance

from O is 10,000 km. Find the position vector r when the spacecraft comes to rest.
{Ans.: r¼ 5837:4̂i + 8756:1̂j+ 11,675k̂ kmð Þ}

Section 2.6

2.15 The specific angular momentum of a satellite in circular earth orbit is 60,000 km2/s. Calculate

the period.
{Ans.: 2.372 h}
2.16 A spacecraft is in a circular orbit of Mars at an altitude of 200 km. Calculate its speed and its

period.
{Ans.: 3.451 km/s; 1 h 49 min}
Section 2.7

2.17 Calculate the area A swept out during the time t ¼ T/4 since periapsis, where T is the period of the
elliptical orbit.
{Ans.: 0.7854ab}
2.18 Determine the true anomaly θ of the point(s) on an elliptical orbit at which the speed equals the

speed of a circular orbit with the same radius (i.e., vellipse ¼ vcircle).
{Ans.: θ ¼ cos�1(�e), where e is the eccentricity of the ellipse}
Calculate the flight path angle at the locations found in Problem 2.19.
2.19 ffiffiffiffiffiffiffiffiffiffiffiffip� �

{Ans.: γ¼ tan�1 e= 1� e2 }
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An unmanned satellite orbits the earth with a perigee radius of 10,000 km and an apogee radius
2.20
of 100,000 km. Calculate:
(a) the eccentricity of the orbit;

(b) the semimajor axis of the orbit (km);

(c) the period of the orbit (h);

(d) the specific energy of the orbit (km2/s2);

(e) the true anomaly (degrees) at which the altitude is 10,000 km;

(f) vr and v? (km/s) at the points found in part (e);

(g) the speed at perigee and apogee (km/s).
{Partial Ans.: (c) 35.66 h; (e) 82.26°; (g) 8.513 km/s, 0.8513 km/s}
2.21 A spacecraft is in a 400-km-by-600-km low earth orbit. How long (in minutes) does it take to

coast from the perigee to the apogee?
{Ans.: 48.34 min}
2.22 The altitude of a satellite in an elliptical orbit around the earth is 2000 km at apogee and 500 km

at perigee. Determine:
(a) the eccentricity of the orbit;

(b) the orbital speeds at perigee and apogee;

(c) the period of the orbit.
{Ans.: (a) 0.09832; (b) vp ¼ 7.978 km/s, va ¼ 6.550 km/s; (c) T ¼ 110.5 min}
2.23 A satellite is placed into an earth orbit at perigee at an altitude of 500 km with a speed of

10 km/s. Calculate the flight path angle γ and the altitude of the satellite at a true anomaly of

120°.
{Ans.: γ ¼ 44.60°, z ¼ 12, 247 km}
2.24 A satellite is launched into earth orbit at an altitude of 1000 km with a speed of 10 km/s and a

flight path angle of 15°. Calculate the true anomaly of the launch point and the period of

the orbit.
{Ans.: θ ¼ 32.48°; T ¼ 30.45 h}
2.25 A satellite has perigee and apogee altitudes of 500 and 21,000 km. Calculate the orbit period,

eccentricity, and the maximum speed.
{Ans.: 6.20 h, 0.5984, 9.625 km/s}



136 CHAPTER 2 THE TWO-BODY PROBLEM
2.26 A satellite is launched parallel to the earth’s surface with a speed of 7.6 km/s at an altitude of

500 km. Calculate the period.
{Ans.: 1.61 h}
2.27 A satellite in orbit around the earth has a speed of 8 km/s at a given point of its orbit. If the period

is 2 h, what is the altitude at that point?
{Ans.: 648 km}
2.28 A satellite in polar orbit around the earth comes within 200 km of the north pole at its point of

closest approach. If the satellite passes over the pole once every 100 min, calculate the

eccentricity of its orbit.
{Ans.: 0.07828}
2.29 For an earth orbiter, the altitude is 1000 km at a true anomaly of 40° and 2000 km at a true

anomaly of 150°. Calculate

(a) the eccentricity;

(b) the perigee altitude (km);

(c) the semimajor axis (km).
{Partial Ans.: (c) 7863 km}
2.30 An earth satellite has a speed of 7.5 km/s and a flight path angle of 10° when its radius is

8000 km. Calculate
(a) the true anomaly (degrees);

(b) the eccentricity of the orbit.
{Ans.: (a) 63.82°; (b) 0.2151}
2.31 For an earth satellite, the specific angular momentum is 70, 000 km2/s and the specific energy is

�10 km2/s2. Calculate the apogee and perigee altitudes.
{Ans.: 25,889 and 1214.9 km}
2.32 A rocket launched from the surface of the earth has a speed of 7 km/s when the powered flight

ends at an altitude of 1000 km. The flight path angle at this time is 10°. Determine the

eccentricity and the period of the orbit.
{Ans.: 0.1963 and 92.0 min}
2.33 If the perigee velocity is c times the apogee velocity, calculate the eccentricity of the orbit in

terms of c.
{Ans.: e ¼ (c � 1)/(c + 1)}
Section 2.8

2.34 At what true anomaly does the speed on a parabolic trajectory equal α times the speed at the

periapsis, where α � 1?
{Ans.: cos�1(2α2�1)}
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2.35 What velocity, relative to the earth, is required to escape the solar system on a parabolic path

from earth’s orbit?
{Ans.: 12.34 km/s}
Section 2.9

2.36 A hyperbolic earth departure trajectory has a perigee altitude of 250 km and a perigee speed of

11 km/s. Calculate:
(a) the hyperbolic excess speed (km/s);

(b) the radius (km) when the true anomaly is 100°;
(c) vr and v? (km/s) when the true anomaly is 100°.
{Partial Ans.: (b) 16,179 km}
2.37 Ameteoroid is first observed approaching the earth when it is 402,000 km from the center of the

earth with a true anomaly of 150°. If the speed of the meteoroid at that time is 2.23 km/s,

calculate:
(a) the eccentricity of the trajectory;

(b) the altitude at closest approach;

(c) the speed at the closest approach.
{Ans.: (a) 1.086; (b) 5088 km; (c) 8.516 km/s}
2.38 If α is a number between 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + eð Þ= 1� eð Þp

, calculate the true anomaly at which the speed

on a hyperbolic trajectory is α times the hyperbolic excess speed.� �� �

Ans:: cos�1

α2�1ð Þ e2�1ð Þ�2
2e
For a hyperbolic orbit, find the eccentricity in terms of the radius at periapsis r and the
2.39 p

hyperbolic excess speed v∞.
{Ans.: e ¼ 1 + rpv∞
2 /μ}
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2.40 A space vehicle has a velocity of 10 km/s in the direction shown when it is 10,000 km from the

center of the earth. Calculate its true anomaly.
{Ans.: 51°}
2.41 A spacecraft at a radius r has a speed v and a flight path angle γ. Find an expression for the

eccentricity of its orbit in terms of r, v, and γ.
{Ans.: e¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ σ�2ð Þcos2γp

, where σ ¼ rv2/μ}
2.42 For an orbiting spacecraft, r ¼ r1 when θ ¼ θ1, and r ¼ r2 when θ ¼ θ2. What is the eccentricity?
{Ans.: e ¼ (r1 � r2)/(r2 cos θ2 � r1 cos θ1)}
Section 2.11

2.43 At a given instant, a spacecraft has the position and velocity vectors r0¼ 7000̂i kmð Þ and v0¼
7̂i + 7̂j km=sð Þ relative to an earth-centered nonrotating frame.
(a) What is the position vector after the true anomaly increases by 90°?
(b) What is the true anomaly of the initial point?

{Ans.: (a) r¼ 43,180̂j kmð Þ; (b) θ ¼ 99.21°}
2.44 Relative to an earth-centered, nonrotating frame the position and velocity vectors of a spacecraft

are r0¼ 3450̂i�1700̂j+ 7750k̂ kmð Þ and v0¼ 5:4̂i�5:4̂j+ 1:0k̂ km=sð Þ, respectively.

(a) Find the distance and speed of the spacecraft after the true anomaly changes by 82°.
(b) Verify that the specific angular momentum h and total energy ε are conserved.

{Partial Ans.: (a) r ¼ 19, 266 km, v ¼ 2.925 km/s}
2.45 Relative to an earth-centered, nonrotating frame the position and velocity vectors of a spacecraft

are r0¼ 6320̂i + 7750k̂ kmð Þand v0¼ 11̂j km=sð Þ.

(a) Find the position vector 10 min later.

(b) Calculate the change in true anomaly over the 10-min time span.

{Ans.: (a) r¼ 5320̂i�6194̂j+ 3073k̂ kmð Þ; (b) 45°}
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Section 2.12

2.46 For the sun–earth system, find the distance of the collinear Lagrange points L1, L2, and L3 from
the barycenter.
{Ans.: x1 ¼ 148.108(106) km, x2 ¼ 151.101(106) km, and x3 ¼ � 149.600(106) km (opposite

side of the sun)}
2.47 Write a program, like that for Example 2.18, to compute the trajectory of a spacecraft using the

restricted three-body equations of motion. Use the program to design a trajectory from the earth

to the earth–moon Lagrange point L4, starting at a 200-km altitude burnout point. The path

should take the coasting spacecraft to within 500 km of L4 with a relative speed of not more than

1 km/s.
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CHAPTER
ORBITAL POSITION AS A
FUNCTION OF TIME
 3

3.1 INTRODUCTION
In Chapter 2, we found the relationship between position and true anomaly for the two-body problem.

The only place time appeared explicitly was in the expression for the period of an ellipse. Obtaining

position as a function of time is a simple matter for circular orbits. For elliptical, parabolic, and

hyperbolic paths, we are led to the various forms of Kepler’s equation relating position to time. These

transcendental equations must be solved iteratively using a procedure like Newton’s method, which is

presented and illustrated in this chapter.

The different forms of Kepler’s equation are combined into a single universal Kepler’s equation

by introducing universal variables. Implementation of this appealing notion is accompanied by the

introduction of an unfamiliar class of functions known as Stumpff functions. The universal variable

formulation is required for the Lambert and Gauss orbit determination algorithms in Chapter 5.

The road map of Appendix B may aid in grasping how the material presented here depends on that

of Chapter 2.
3.2 TIME SINCE PERIAPSIS
The orbit formula, r ¼ (h2/μ)/(1 + ecos θ), gives the position of body m2 in its orbit around m1 as a

function of the true anomaly. For many practical reasons, we need to be able to determine the position

of m2 as a function of time. For elliptical orbits, we have a formula for the period T (Eq. 2.82), but

we cannot yet calculate the time required to fly between any two true anomalies. The purpose of this

section is to come up with the formulas that allow us to do that calculation.

The one equation we have that relates true anomaly directly to time is Eq. (2.47), h¼ r2 _θ, which can
be written as

dθ

dt
¼ h

r2

Substituting r ¼ (h2/μ)/(1 + ecos θ) we find, after separating variables,

μ2

h3
dt¼ dθ

1 + ecosθð Þ2
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Integrating both sides of this equation yields

μ2

h3
t� tp
� �¼ ðθ

0

dϑ

1 + ecosϑð Þ2 (3.1)

where the constant of integration tp is the time at periapsis passage, where by definition θ ¼ 0. tp is the
sixth constant of the motion that was missing in Chapter 2. The origin of time is arbitrary. It is con-

venient to measure time from periapsis passage, so we will usually set tp ¼ 0. In that case we have

μ2

h3
t¼
ðθ
0

dϑ

1 + ecosϑð Þ2 (3.2)

The integral on the right may be found in any standard mathematical handbook, such as Zwillinger

(2018), in which we findð
dx

a + bcosxð Þ2¼
1

a2�b2ð Þ3=2
2a tan�1

ffiffiffiffiffiffiffiffiffiffi
a�b

a+ b

r
tan

x

2

 !
�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2 sinx
p

a + bcosx

" #
b< að Þ (3.3)

ð
dx

a+ bcosxð Þ2¼
1

a2
1

2
tan

x

2
+
1

6
tan3 x

2

� �
b¼ að Þ (3.4)

ð
dx

a+ bcosxð Þ2¼
1

b2�a2ð Þ3=2
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�a2 sinx
p

a+ bcosx
�a ln

ffiffiffiffiffiffiffiffiffiffi
b + a
p

+
ffiffiffiffiffiffiffiffiffiffi
b�a
p

tan
x

2

� �
ffiffiffiffiffiffiffiffiffiffi
b + a
p � ffiffiffiffiffiffiffiffiffiffi

b�a
p

tan
x

2

� �
0B@

1CA
264

375 b> að Þ (3.5)
3.3 CIRCULAR ORBITS (e 5 0)
If e ¼ 0, the integral in Eq. (3.2) is simply

Ðθ
0

dθ, which means

t¼ h3

μ2
θ

Recall that for a circle (Eq. 2.62), r ¼ h2/μ. Therefore h3 ¼ r3/2μ3/2, so that

t¼ r3=2ffiffiffiffiffi
μ2

p θ

Finally, substituting the formula (Eq. 2.64) for the period T of a circular orbit, T¼ 2πr3=2=
ffiffiffi
μ
p

, yields

t¼ θ

2π
T

or

θ¼ 2π

T
t

The reason that t is directly proportional to θ in a circular orbit is simply that the angular velocity 2π/T is
constant. Therefore, the time Δt to fly through a true anomaly of Δθ is (Δθ/2π)T.
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Because the circle is symmetric about any diameter, the apse line—and therefore the periapsis—can

be chosen arbitrarily (Fig. 3.1).
FIG. 3.1

Time since periapsis is directly proportional to true anomaly in a circular orbit.
3.4 ELLIPTICAL ORBITS (e < 1)
Set a ¼ 1 and b ¼ e in Eq. (3.3) to obtain

ðθ
0

dϑ

1 + ecosϑð Þ2¼
1

1�e2ð Þ3=2
2tan�1

ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2

 !
� e

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

sinθ

1 + ecosθ

" #

Therefore, Eq. (3.2) in this case becomes

μ2

h3
t¼ 1

1�e2ð Þ3=2
2tan�1

ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2

 !
� e

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

sinθ

1 + ecosθ

" #
or

Me¼ 2tan�1
ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2

 !
�e

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

sinθ

1 + ecosθ
(3.6)

where

Me¼ μ2

h3
1�e2
� �3=2

t (3.7)

Me is called the mean anomaly. The subscript e reminds us that this is for an ellipse and not for

parabolas and hyperbolas, which have their own “mean anomaly” formulas. Eq. (3.6) is plotted in

Fig. 3.2. Observe that for all values of the eccentricity e, Me is a monotonically increasing function

of the true anomaly θ.
From Eq. (2.82), the formula for the period T of an elliptical orbit, we have μ2(1 � e2)3/2/h3 ¼ 2π/T,

so that the mean anomaly can be written much more simply as

Me¼ 2π

T
t (3.8)



FIG. 3.2

Mean anomaly vs. true anomaly for ellipses of various eccentricities.
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The angular velocity of the position vector of an elliptical orbit is not constant, but since 2π radians are

swept out per period T, the ratio 2π/T is the average angular velocity, which is given the symbol n and
called the mean motion,

n¼ 2π

T
(3.9)

In terms of the mean motion, Eq. (3.8) can be written simpler still,

Me¼ nt

The mean anomaly is the azimuth position (in radians) of a fictitious body moving around the ellipse at

the constant angular speed n. For a circular orbit, the mean anomaly Me and the true anomaly θ are

identical.

It is convenient to simplify Eq. (3.6) by introducing an auxiliary angle E called the eccentric anom-

aly, which is shown in Fig. 3.3. This is done by circumscribing the ellipse with a concentric auxiliary

circle having a radius equal to the semimajor axis a of the ellipse. Let S be that point on the ellipse

whose true anomaly is θ. Through point S we pass a perpendicular to the apse line, intersecting the

auxiliary circle at point Q and the apse line at point V. The angle between the apse line and the radius

drawn from the center of the circle toQ on its circumference is the eccentric anomaly E. Observe that E
lags the true anomaly θ from periapsis P to apoapsis A (0 � θ < 180°), whereas it leads θ from A to P
(180° � θ < 360°).

To find E as a function of θ, we first observe from Fig. 3.3 that, in terms of the eccentric anomaly,

OV¼ acosE, whereas in terms of the true anomaly, OV¼ ae+ rcosθ. Thus,

acosE¼ ae+ rcosθ

Using Eq. (2.72), r ¼ a(1 � e2)/(1 + e cos θ), we can write this as

acosE¼ ae+
a 1�e2ð Þcosθ
1�ecosθ



FIG. 3.3

Ellipse and the circumscribed auxiliary circle.
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Simplifying the right-hand side, we get

cosE¼ e+ cosθ

1 + ecosθ
(3.10a)

Solving this for cosθ we obtain the inverse relation,

cosθ¼ e� cosE

ecosE�1
(3.10b)

Substituting Eq. (3.10a) into the trigonometric identity sin2E + cos2E ¼ 1 and solving for sinE yields

sinE¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

sinθ

1 + ecosθ
(3.11)

Eq. (3.10a) would be fine for obtaining E from θ, except that, given a value of cosE between�1 and 1,
there are two values of E between 0° and 360°, as illustrated in Fig. 3.4. The same comments hold

for Eq. (3.11). To resolve this quadrant ambiguity, we use the following trigonometric identity:

tan2E

2
¼ sin2E=2

cos2E=2
¼
1� cosE

2
1 + cosE

2

¼ 1� cosE

1 + cosE
(3.12)

From Eq. (3.10a)

1� cosE¼ 1� cosθ

1 + ecosθ
1�eð Þ and 1 + cosE¼ 1 + cosθ

1 + ecosθ
1 + eð Þ



FIG. 3.4

For 0 < cos E < 1, E can lie in the first or fourth quadrant. For �1 < cos E < 0, E can lie in the second or third

quadrant.
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Therefore,

tan2E

2
¼ 1�e

1 + e
� 1� cosθ

1 + cosθ
¼ 1�e

1 + e
tan2 θ

2

where the last step required applying the trig identity in Eq. (3.12) to the term (1 � cos θ)/(1 + cos θ).
Finally, therefore, we obtain

tan
E

2
¼

ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2
(3.13a)

or

E¼ 2tan�1
ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2

 !
(3.13b)

Observe from Fig. 3.5 that for any value of tan(E/2), there is only one value of E between 0° and 360°.
There is no quadrant ambiguity.
FIG. 3.5

To any value of tan(E/2), there corresponds a unique value of E in the range 0 to 2π.



FIG. 3.6

Plot of Kepler’s equation for an elliptical orbit.
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Substituting Eqs. (3.11) and (3.13b) into Eq. (3.6) yields Kepler’s equation,

Me¼E�esinE (3.14)

This monotonically increasing relationship between mean anomaly and eccentric anomaly is plotted

for several values of eccentricity in Fig. 3.6.

Given the true anomaly θ, we calculate the eccentric anomalyE using Eq. (3.13). Substituting E into

Kepler’s formula, Eq. (3.14) yields the mean anomaly directly. From the mean anomaly and the period

T we find the time (since periapsis) from Eq. (3.8),

t¼Me

2π
T (3.15)

On the other hand, if we are given the time, then Eq. (3.15), yields the mean anomalyMe. Substituting

Me into Kepler’s equation, we get the following expression for the eccentric anomaly:

E�esinE¼Me

We cannot solve this transcendental equation directly for E. A rough value of E might be read from

Fig. 3.6. However, an accurate solution requires an iterative, trial-and-error procedure.

Newton’s method, or one of its variants, is one of the more common and efficient ways of finding

the root of a well-behaved function. To find a root of the equation f(x) ¼ 0 in Fig. 3.7, we estimate it to

be xi and evaluate the function f(x) and its first derivative f
0(x) at that point. We then extend the tangent

to the curve at f(xi) until it intersects the x axis at xi+1, which becomes our updated estimate of the root.

The intercept xi+1 is found by setting the slope of the tangent line equal to the slope of the curve at xi;
that is,

f 0 xið Þ¼ 0� f xið Þ
xi+ 1�xi



FIG. 3.7

Newton’s method for finding a root of f(x) ¼ 0.
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from which we obtain

xi + 1¼ xi� f xið Þ
f 0 xið Þ (3.16)

The process is repeated, using xi+1 to estimate xi+2, and so on, until the root has been found to the desired
level of precision.

To apply Newton’s method to the solution of Kepler’s equation, we form the function

f Eð Þ¼E�esinE�Me

and seek the value of eccentric anomaly that makes f(E) ¼ 0. Since

f 0 Eð Þ¼ 1�ecosE

for this problem, Eq. (3.16) becomes

Ei+ 1¼Ei�Ei�esinEi�Me

1�ecosEi
(3.17)

ALGORITHM 3.1
Solve Kepler’s equation for the eccentric anomaly E given the eccentricity e and the mean anomaly
Me. See Appendix D.11 for the implementation of this algorithm in MATLAB.

1. Choose an initial estimate of the root E as follows (Prussing and Conway, 2013). IfMe < π, then
E ¼ Me + e/2. IfMe > π, then E ¼Me � e/2. Remember that the angles E andMe are in radians.

(When using a handheld calculator, be sure that it is in the radian mode.)

2. At any given step, having obtained Ei from the previous step, calculate f(Ei) ¼
Ei � e sin Ei � Me and f 0(Ei) ¼ 1 � e cos Ei.

3. Calculate ratioi ¼ f(Ei)/f
0(Ei).
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4. If j ratioi j exceeds the chosen tolerance (e.g., 10�8), then calculate an updated value of E,
FI

G

Ei+1 ¼ Ei � ratioi
Return to Step 2.
5. If j ratioi j is less than the tolerance, then accept Ei as the solution to within the chosen accuracy.
EXAMPLE 3.1
A geocentric elliptical orbit has a perigee radius of 9600 km and an apogee radius of 21,000 km, as shown in Fig. 3.8.

Calculate the time to fly from perigee P to a true anomaly of 120°.

Solution
Before anything else, let us find the primary orbital parameters e and h. The eccentricity is readily obtained from the perigee

and apogee radii by means of Eq. (2.84),

e¼ ra� rp
ra + rp

¼ 21,000�9600

21,000 + 9600
¼ 0:37255 (a)

We find the angular momentum using the orbit equation,

9600¼ h2

398,600

1

1 + 0:37255cos 0ð Þ) h¼ 72,472km2=s

With h and e, the period of the orbit is obtained from Eq. (2.82),

T¼ 2π

μ2
hffiffiffiffiffiffiffiffiffiffiffiffi

1�e2
p
� �3

¼ 2π

398,6002
72,472ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�0:372552
p
� �3

¼ 18,834s (b)

Eq. (3.13b) yields the eccentric anomaly from the true anomaly,

E¼ 2 tan�1
ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2

 !
¼ 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:37255

1 + 0:37255

r
tan

120°
2

 !
¼ 1:7281rad

Then Kepler’s equation (Eq. 3.14) is used to find the mean anomaly,

Me¼ 1:7281�0:37255 sin 1:7281¼ 1:3601rad

Finally, the time follows from Eq. (3.15),
G. 3.8

eocentric elliptical orbit.
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t =
Me

2π
T =

1.3601

2π
⋅18,834 = 4077s (1.132h)
EXAMPLE 3.2
In the previous example, find the true anomaly at 3 h after perigee passage.

Solution
Since the time (10,800 s) is greater than one-half the period, the true anomaly must be greater than 180°.

First, we use Eq. (3.8) to calculate the mean anomaly for t ¼ 10,800s.

Me¼ 2π
t

T
¼ 2π

10,800

18,830
¼ 3:6029rad (a)

Kepler’s equation, E � e sin (E) ¼Me (with all angles in radians) is then employed to find the eccentric anomaly. This

transcendental equation will be solved using Algorithm 3.1 with an error tolerance of 10�6. SinceMe > π, a good starting
value for the iteration is E0 ¼Me � e/2 ¼ 3.4166. Executing the algorithm yields the following steps:

Step 1:

E0 ¼ 3:4166

f E0ð Þ ¼ �0:085124
f 0 E0ð Þ ¼ 1:3585

ratio ¼ �0:085124
1:3585

¼ �0:062658
ratioj j > 10�6 ; repeat

Step 2:

E1 ¼ 3:4166� �0:062658ð Þ ¼ 3:4793

f E1ð Þ ¼ �0:0002134
f 0 E1ð Þ ¼ 1:3515

ratio ¼ �0:0002134
1:3515

¼ �1:5778�10�4

ratioj j > 10�6 ;repeat

Step 3:

E2 ¼ 3:4793� �1:5778�10�4
� � ¼ 3:4794

f E2ð Þ ¼ �1:5366�10�9

f 0 E2ð Þ ¼ 1:3515

ratio ¼ �1:5366�10�9

1:3515
¼ �1:137�10�9

ratioj j < 10�6 ;stop

Convergence to even more than the desired accuracy occurred after just two iterations. With E ¼ 3.4794, the true anomaly

is found from Eq. (3.13a) to be

tan
θ
2

=
1+ e

1− e
tan

E

2
=

1+ 0.37255
1− 0.37255

tan
3.4794

2
= −8.6721 θ = 193.2°
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EXAMPLE 3.3
Let a satellite be in a 500 km by 5000 km orbit with its apse line parallel to the line from the earth to the sun, as shown in

Fig. 3.9. Find the time that the satellite is in the earth’s shadow if

(a) the apogee is toward the sun

(b) the perigee is toward the sun.

Solution
We start by using the given data to find the primary orbital parameters, e and h. The eccentricity is obtained from

Eq. (2.84),

e¼ ra� rp
ra + rp

¼ 6378 + 5000ð Þ� 6378 + 5000ð Þ
6378 + 5000ð Þ+ 6378 + 5000ð Þ ¼ 0:24649 (a)

The orbit equation can then be used to find the angular momentum

rp¼ h2

μ

1

1 + ecos 0ð Þ) 6878¼ h2

398,600

1

1 + 0:24649
) h¼ 58,458km2=s

The semimajor axis may be found from Eq. (2.71),

a¼ h2

μ

1

1�e2
¼ 58,4582

398,600

1

1�0:246492
¼ 9128km (b)

or from the fact that a ¼ (rp + ra)/2. The period of the orbit follows from Eq. (2.83),

T¼ 2πffiffiffi
μ
p a3=2¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

398,600
p 91283=2 ¼ 86791:1s 2:4109hð Þ

(a) If the apogee is toward the sun, as in Fig. 3.9, then the satellite is in earth’s shadow between points a and b on its orbit.
These are two of the four points of intersection of the orbit with the lines that are parallel to the earth-sun line, and lie at

a distance RE from the center of the earth. The true anomaly of b is therefore given by sinθ ¼ RE/r, where r is the radial

position of the satellite. It follows that the radius of b is

r¼ RE

sinθ
(c)

From Eq. (2.72), we also have

r¼ a 1�e2ð Þ
1 + ecosθ

(d)
FIG. 3.9

Satellite passing in and out of the earth’s shadow.
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Substituting Eq. (c) into Eq. (d), collecting terms, and simplifying yields an equation in θ,

ecosθ� 1�e2
� � a

RE
sinθ + 1¼ 0 (e)

Substituting Eqs. (a) and (b) together with RE ¼ 6378km into Eq. (e) yields

0:24649 cosθ�1:3442 sinθ¼�1
This equation is of the form

Acosθ +Bsinθ¼C

It has two roots, which are given by (see Problem 3.12):

θ¼ tan�1
B

A
� cos�1

C

A
cos tan�1

B

A

� �	 

For the case at hand,

θ¼ tan�1
�1:3442
0:24649

� cos�1
�1

0:24649
cos tan�1

�1:3442
0:24649

� �	 

¼�79:607°�137:03°

That is

θb¼ 57:423°
θc¼�216:64° +143:36°ð Þ

For apogee toward the sun, the flight from perigee to point bwill be in shadow. To find the time of flight from perigee to

point b, we first compute the eccentric anomaly of b using Eq. (3.13b):

Eb¼ 2 tan�1
ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θb
2

 !
¼ 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:24649

1 + 0:24649

r
tan

57:423°

2

 !
¼ 0:80521rad

From this we find the mean anomaly using Kepler’s equation,

Me¼E�esinE¼ 0:80521�0:24649 sin 0:80521¼ 0:62749rad

Finally, Eq. (3.5) yields the time at b,

tb ¼Me

2π
T¼ 0:62749

2π
8679:1¼ 866:77s

The total time in shadow, from a to b, during which the satellite passes through perigee, is

t¼ 2tb ¼ 1734s 28:98minð Þ (f)

(b) If the perigee is toward the sun, then the satellite is in shadow near apogee, from point c (θc ¼ 143.36°) to d on the orbit.
Following the same procedure as above, we obtain (see Problem 3.13),

Ec¼ 2:3364rad

Mc ¼ 2:1587rad

tc¼ 2981:8s

The total time in shadow, from c to d, is

t¼T�2tc¼ 8679:1�2ð2981:8Þ¼ 2716s 45:26minð Þ
The time is longer than that given by Eq. (f) since the satellite travels slower near apogee.
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We have observed that there is no closed-form solution for the eccentric anomaly E in Kepler’s

equation, E � e sin E ¼ Me. However, there exist infinite series solutions. One of these, due to

Lagrange (Battin, 1987), is a power series in the eccentricity e,

E¼Me +
X∞
n¼1

ane
n (3.18)

where the coefficients an are given by the somewhat intimidating expression

an¼ 1

2n�1
Xfloor n=2ð Þ

k¼0
�1ð Þk 1

n�kð Þ!k! n�2kð Þn�1 sin n�2kð ÞMe½ � (3.19)

where floor(x) means x rounded to the next lowest integer (e.g., floor(0.5) ¼ 0, floor(π) ¼ 3). If e is

sufficiently small, then the Lagrange series converges. This means that by including enough terms

in the summation, we can obtain E to any desired degree of precision. Unfortunately, if e exceeds

0.6627434193, the series diverges, which means taking more and more terms yields worse and worse

results for some values of M.

The limiting value for the eccentricity was discovered by the French mathematician Pierre-Simone

Laplace (1749–1827) and is called the Laplace limit.

In practice, we must truncate the Lagrange series to a finite number of terms N, so that

E¼Me +
XN
n¼1

ane
n (3.20)

For example, setting N ¼ 3 and calculating each an by means of Eq. (3.19) leads to

E¼Me + esinMe +
e2

2
sin2Me +

e3

8
3sin3Me� sinMeð Þ (3.21)

For small values of the eccentricity e, this yields good agreement with the exact solution of Kepler’s

equation (plotted in Fig. 3.6). However, as we approach the Laplace limit, the accuracy degrades unless

more terms of the series are included. Fig. (3.10) shows that for an eccentricity of 0.65, just below the

Laplace limit, Eq. (3.21) (N ¼ 3) yields a solution that oscillates around the exact solution but is fairly

close to it everywhere. Setting N ¼ 10 in Eq. (3.20) produces a curve that, at the given scale, is

indistinguishable from the exact solution. On the other hand, for an eccentricity of 0.90, far above

the Laplace limit, Fig. 3.11 reveals that Eq. (3.21) is a poor approximation to the exact solution,

and using N ¼ 10 makes matters even worse.

Another infinite series for E (Battin, 1987) is given by

E¼Me +
X∞
n¼1

2

n
Jn neð ÞsinnMe (3.22)

where the coefficients Jn are Bessel functions of the first kind, attributable to German astronomer

Friedrich Bessel (1784–1846). They are defined by the infinite series

Jn xð Þ¼
X∞
k¼0

�1ð Þk
k! n + kð Þ!

x

2

� �n+ k
(3.23)



FIG. 3.10

Comparison of the exact solution of Kepler’s equation with the truncated Lagrange series solution (N ¼ 3

and N ¼ 10) for an eccentricity of 0.65.

FIG. 3.11

Comparison of the exact solution of Kepler’s equation with the truncated Lagrange series solution (N ¼ 3

and N ¼ 10) for an eccentricity of 0.90.
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FIG. 3.12

Bessel functions of the first kind.
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J1 through J5 are plotted in Fig. 3.12. Clearly, they are oscillatory in appearance and tend toward zero

with increasing x.
It turns out that, unlike the Lagrange series, the Bessel function series solution converges for all

values of the eccentricity <1. Fig. 3.13 shows how the truncated Bessel series solutions

E¼Me +
XN
n¼1

2

n
Jn neð ÞsinnMe (3.24)

for N ¼ 3 and N ¼ 10 compare with the exact solution of Kepler’s equation for the very large elliptical

eccentricity of e ¼ 0.99. It can be seen that the case N ¼ 3 yields a poor approximation for all but a few

values of Me. Increasing the number of terms in the series to N ¼ 10 obviously improves the approx-

imation, and adding even more terms will make the truncated series solution indistinguishable from the

exact solution at the given scale.

Observe that we can combine Eqs. (3.10) and (2.72) as follows to obtain the orbit equation for the

ellipse in terms of the eccentric anomaly:

r¼ a 1�e2ð Þ
1 + ecosθ

¼ a 1�e2ð Þ
1 + e

e� cosE

ecosE�1

� �
From this it is easy to see that

r¼ a 1�ecosEð Þ (3.25)



FIG. 3.13

Comparison of the exact solution of Kepler’s equation with the truncated Bessel series solution (N ¼ 3

and N ¼ 10) for an eccentricity of 0.99.
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In Eq. (2.86), we defined the true anomaly-averaged radius rθ of an elliptical orbit. Alternatively,

the time-averaged radius rt of an elliptical orbit is defined as

rt¼ 1

T

ðT
0

rdt (3.26)

According to Eqs. (3.14) and (3.15),

t¼ T

2π
E�esinEð Þ

Therefore,

dt¼ T

2π
1�ecosEð ÞdE

Upon using this relationship to change the variable of integration from t to E and substituting Eq. (3.25),

Eq. (3.26) becomes



1573.5 PARABOLIC TRAJECTORIES (e ¼ 1)
rt¼ 1

T

ð2π
0

a 1�ecosEð Þ½ � T

2π
1�ecosEð Þ

	 

dE

¼ a

2π

ð2π
0

1�ecosEð Þ2dE

¼ a

2π

ð2π
0

1�2ecosE + e2 cos2E
� �

dE

¼ a

2π
2π�0 + e2π
� �

so that

rt¼ a 1 +
e2

2

� �
Time-averaged radius of an elliptical orbit (3.27)

Comparing this result with Eq. (2.87) reveals, as we should have expected, that rt > rθ. In fact, com-

bining Eqs. (2.87) and (3.27) yields

rθ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2

rt
a

r
(3.28)
3.5 PARABOLIC TRAJECTORIES (e 5 1)
For the parabola, Eq. (3.2) becomes

μ2

h3
t¼
ðθ
0

dϑ

1 + cosϑð Þ2 (3.29)

Setting a ¼ b ¼ 1 in Eq. (3.4) yields

ðθ
0

dϑ

1 + cosϑð Þ2¼
1

2
tan

θ

2
+
1

6
tan3 θ

2

Therefore, Eq. (3.29) may be written as

Mp¼ 1

2
tan

θ

2
+
1

6
tan3 θ

2
(3.30)

where

Mp¼ μ2t

h3
(3.31)

Mp is dimensionless, and it may be thought of as the “mean anomaly” for the parabola. Eq. (3.30) is

plotted in Fig. 3.14. Eq. (3.30) is also known as Barker’s equation, after Thomas Barker (1722–1809), a
British meteorologist.



FIG. 3.14

Graph of Barker’s equation.
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Given the true anomaly θ, we find the time directly from Eqs. (3.30) and (3.31). If time is the given

variable, then we must solve the cubic equation

1

6
tan

θ

2

� �3

+
1

2
tan

θ

2
�Mp¼ 0

which has but one real root, namely,

tan
θ

2
¼ z�1

z
(3.32a)

where

z¼ 3Mp +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 3Mp

� �2q� �1=3

(3.32b)
EXAMPLE 3.4
A geocentric parabola has a perigee velocity of 10 km/s. How far is the satellite from the center of the earth 6 h after perigee

passage?

Solution
The first step is to find the orbital parameters e and h. Of course, we know that e ¼ 1. To get the angular momentum, we can

use the given perigee speed and Eq. (2.90) (the energy equation) to find the perigee radius,

rp¼ 2μ

v2p
¼ 2 � 398,600

102
¼ 7972km

It follows from Eq. (2.31) that the angular momentum is

h¼ rpvp¼ 7972:10¼ 79,720km2=s

We can now calculate the parabolic mean anomaly by means of Eq. (3.31),

Mp¼ μ2t

h3
¼ 398,6002 � 6 � 3600ð Þ

79,7203
¼ 6:7737rad
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Therefore, 3Mp ¼ 20.321rad, which, when substituted into Eqs. (3.32), yields the true anomaly,

z¼ 20:321 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 20:3212
p� �1=3

¼ 3:4388

tan
θ

2
¼ 3:4388� 1

3:4388
¼ 3:1480 ) θ¼ 144:75°

Finally, we substitute the true anomaly into the orbit equation to find the radius,

r =
79,7202

398,600 1+ cos(144.75°)

1
= 86,899km
3.6 HYPERBOLIC TRAJECTORIES (e > 1)
Setting a ¼ 1 and b ¼ e in Eq. (3.5) yields

ðθ
0

dϑ

1 + ecosϑð Þ2¼
1

e2�1

esinθ

1 + ecosθ
� 1ffiffiffiffiffiffiffiffiffiffiffiffi

e2�1
p ln

ffiffiffiffiffiffiffiffiffi
e+ 1
p

+
ffiffiffiffiffiffiffiffiffiffi
e�1
p

tan θ=2ð Þffiffiffiffiffiffiffiffiffi
e + 1
p � ffiffiffiffiffiffiffiffiffiffi

e�1
p

tan θ=2ð Þ

" #( )

Therefore, for the hyperbola, Eq. (3.1) becomes

μ2

h3
t¼ 1

e2�1

esinθ

1 + ecosθ
� 1

e2�1ð Þ3=2
ln

ffiffiffiffiffiffiffiffiffi
e+ 1
p

+
ffiffiffiffiffiffiffiffiffiffi
e�1
p

tan θ=2ð Þffiffiffiffiffiffiffiffiffi
e+ 1
p � ffiffiffiffiffiffiffiffiffiffi

e�1
p

tan θ=2ð Þ

" #

Multiplying both sides by (e2 � 1)3/2, we get

Mh¼ e
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

sinθ

1 + ecosθ
� ln

ffiffiffiffiffiffiffiffiffi
e+ 1
p

+
ffiffiffiffiffiffiffiffiffiffi
e�1
p

tan θ=2ð Þffiffiffiffiffiffiffiffiffi
e+ 1
p � ffiffiffiffiffiffiffiffiffiffi

e�1
p

tan θ=2ð Þ

" #
(3.33)

where

Mh¼ μ2

h3
e2�1
� �3=2

t (3.34)

Mh is the hyperbolic mean anomaly. Eq. (3.33) is plotted in Fig. 3.15. Recall that θ cannot exceed θ∞
(Eq. 2.97).

We can simplify Eq. (3.33) by introducing an auxiliary angle analogous to the eccentric anomaly E
for the ellipse. Consider a point on a hyperbola whose polar coordinates are r and θ. Referring
to Fig. 3.16, let x be the horizontal distance of the point from the center C of the hyperbola, and let

y be its distance above the apse line. The ratio y/b defines the hyperbolic sine of the dimensionless

variable F that we will use as the hyperbolic eccentric anomaly. That is, we define F to be such that

sinhF¼ y

b
(3.35)

In view of the equation of a hyperbola,



FIG. 3.15

Plots of Eq. (3.33) for several different eccentricities.

FIG. 3.16

Hyperbola parameters.
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x2

a2
� y2

b2
¼ 1

it is consistent with the definition of sinhF to define the hyperbolic cosine as

coshF¼ x

a
(3.36)

(It should be recalled that sinhx ¼ (ex � e�x)/2 and coshx ¼ (ex + e� x)/2, and that, therefore,

cosh2x � sinh2x ¼ 1.)
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From Fig. 3.16 we see that y ¼ r sin θ. Substituting this into Eq. (3.35), along with r ¼ a(e2 � 1)/

(1 + e cos θ) (Eq. 2.104) and b¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

(Eq. 2.106), we get

sinhF¼ 1

b
r sinθ¼ 1

a
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p a e2�1ð Þ

1 + ecosθ
sinθ

so that

sinhF¼ sinθ
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

1 + ecosθ
(3.37)

This can be used to obtain F in terms of the true anomaly,

F¼ sinh�1
sinθ

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

1 + ecosθ

 !
(3.38)

Using the formula sinh�1x¼ ln x+
ffiffiffiffiffiffiffiffiffiffiffi
x2 + 1
p� �

we can, after simplifying the algebra, write

Eq. (3.38) as

F¼ ln
sinθ

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

+ cosθ + e

1 + ecosθ

 !

Substituting the trigonometric identities,

sinθ¼ 2tan θ=2ð Þ
1 + tan2 θ=2ð Þ cosθ¼ 1� tan2 θ=2ð Þ

1 + tan2 θ=2ð Þ
and doing some more algebra yields

F¼ ln
1 + e+ e�1ð Þ tan2 θ=2ð Þ+ 2tan θ=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

1 + e+ 1�eð Þ tan2 θ=2ð Þ

" #

Fortunately, but not too obviously, the numerator and the denominator in the brackets have a common

factor, so that this expression for the hyperbolic eccentric anomaly reduces to

F¼ ln

ffiffiffiffiffiffiffiffiffi
e + 1
p

+
ffiffiffiffiffiffiffiffiffiffi
e�1
p

tan θ=2ð Þffiffiffiffiffiffiffiffiffi
e+ 1
p � ffiffiffiffiffiffiffiffiffiffi

e�1
p

tan θ=2ð Þ

" #
(3.39)

Substituting Eqs. (3.37) and (3.39) into Eq. (3.33) yields Kepler’s equation for the hyperbola,

Mh¼ esinhF�F (3.40)

This equation is plotted for several different eccentricities in Fig. 3.17.

If we substitute the expression for sinhF (Eq. 3.37) into the hyperbolic trig identity

cosh2F� sinh2F¼ 1

we get

cosh2F¼ 1 +
sinθ

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

1 + ecosθ

 !2



FIG. 3.17

Plot of Kepler’s equation for the hyperbola.
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A few steps of algebra lead to

cosh2F¼ cosθ + e

1 + ecosθ

� �2

so that

coshF¼ cosθ + e

1 + ecosθ
(3.41a)

Solving this for cosθ, we obtain the inverse relation,

cosθ¼ coshF�e

1�ecoshF
(3.41b)

The hyperbolic tangent is found in terms of the hyperbolic sine and cosine by the formula

tanhF¼ sinhF

coshF

In mathematical handbooks, we can find the hyperbolic trig identity,

tanh
F

2
¼ sinhF

1 + coshF
(3.42)

Substituting Eqs. (3.37) and (3.41a) into this formula and simplifying yields

tanh
F

2
¼

ffiffiffiffiffiffiffiffiffiffi
e�1

e+ 1

r
sinθ

1 + cosθ
(3.43)

Interestingly enough, Eq. (3.42) holds for ordinary trig functions, too; that is,

tan
θ

2
¼ sinθ

1 + cosθ
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Therefore, Eq. (3.43) can be written

tanh
F

2
¼

ffiffiffiffiffiffiffiffiffiffi
e�1

e+ 1

r
tan

θ

2
(3.44a)

This is a somewhat simpler alternative to Eq. (3.39) for computing eccentric anomaly from true anom-

aly, and it is a whole lot simpler to invert:

tan
θ

2
¼

ffiffiffiffiffiffiffiffiffiffi
e+ 1

e�1

r
tanh

F

2
(3.44b)

If time is the given quantity, then Eq. (3.40)—a transcendental equation—must be solved for F by

an iterative procedure, as was the case for the ellipse. To apply Newton’s procedure to the solution of

Kepler’s equation for the hyperbola, we form the function

f Fð Þ¼ esinhF�F�Mh

and seek the value of F that makes f(F) ¼ 0. Since

f 0 Fð Þ¼ ecoshF�1

Eq. (3.16) becomes

Fi+ 1¼Fi� esinhFi�Fi�Mh

ecoshFi�1
(3.45)

All quantities in this formula are dimensionless (radians, not degrees).

ALGORITHM 3.2

Solve Kepler’s equation for the hyperbola for the hyperbolic eccentric anomaly F given the

eccentricity e and the hyperbolic mean anomaly Mh. See Appendix D.12 for the implementation

of this algorithm in MATLAB.

1. Choose an initial estimate of the eccentric anomaly F.

a. For hand computations, read a rough value of F0 (no more than two significant figures) from

Fig. 3.17 to keep the number of iterations to a minimum.

b. In computer software, let F0 ¼Mh, an inelegant choice that may result in many iterations but

will nevertheless rapidly converge on today’s high-speed desktops and laptops.
2. At any given step, having obtained Fi from the previous step, calculate f(Fi) ¼
e sinh Fi � Fi � Mh and f 0(Fi) ¼ e cosh Fi � 1.

3. Calculate ratioi ¼ f(Fi)/f
0(Fi).

4. If j ratioi j exceeds the chosen tolerance (e.g., 10�8), then calculate an updated value of Fi.
Return to Step 2.
5. If j ratioi j is less than the tolerance, then accept Fi as the solution to within the desired accuracy.
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EXAMPLE 3.5
A geocentric trajectory has a perigee velocity of 15 km/s and a perigee altitude of 300 km. Find

(a) the radius and the time when the true anomaly is 100°;
(b) the position and speed 3 h later.

Solution
We first calculate the primary orbital parameters e and h. The angular momentum is calculated from Eq. (2.31) and the

given perigee data:
h¼ rpvp¼ 6378 + 300ð Þ � 15¼ 100,170km2=s

The eccentricity is found by evaluating Eq. (2.50), the orbit equation, r ¼ (h2/μ)/(1 + e cos θ), at perigee (θ ¼ 0°):

6378+ 300¼ 100,1702

398,600

1

1 + e
) e¼ 2:7696

(a) Since e > 1, the trajectory is a hyperbola. Note that the true anomaly of the asymptote of the hyperbola is, according to

Eq. (2.97),

θ∞¼ cos�1 � 1

2:7696

� �
¼ 111:17°

Evaluating the orbit equation at the given true anomaly, θ ¼ 100°, yields
To find the time since perigee passage at θ ¼ 100°, we first use Eq. (3.44a) to calculate the hyperbolic eccentric

anomaly,

tanh
F

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:7696�1

2:7696 + 1

r
tan

100°
2
¼ 0:81653)F¼ 2:2927rad

Kepler’s equation for the hyperbola then yields the mean anomaly,

Mh ¼ esinhF�F¼ 2:7696 sinh 2:2927�2:2927¼ 11:279rad

The time since perigee passage is found from Eq. (3.34),

t =
h3

μ2

1

e2 − 1( )3 2
Mh =

100,1703

398,6002

1

2.76962 − 1( )3 2
11.279 = 4141.4 s

(b) After 3 h, the time since perigee passage is

t¼ 4141:4 + 3 �3600¼ 14,941s 4:15hð Þ
The corresponding mean anomaly, from Eq. (3.34), is

Mh¼ 398,6002

100,1703
2:76962�1
� �3=2

14, 941ð Þ¼ 40:690rad

We will use Algorithm 3.2 with an error tolerance of 10�6 to find the hyperbolic eccentric anomaly F. Referring to

Fig. 3.17, we see that for Mh ¼ 40.69 and e ¼ 2.7696, F lies between 3 and 4. Let us arbitrarily choose F0 ¼ 3 as

our initial estimate of F. Executing the algorithm yields the following steps:

F0 ¼ 3
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Step 1:

f F0ð Þ ¼ �15:944494
f 0 F0ð Þ ¼ 26:883397

ratio ¼ �0:59309818
F1 ¼ 3� �0:59309818ð Þ¼ 3:5930982

ratioj j > 10�6 ;repeat:

Step 2:

f F1ð Þ ¼ 6:0114484

f 0 F1ð Þ ¼ 49:370747

ratio ¼ �0:12176134
F2 ¼ 3:5930982� �0:12176134ð Þ¼ 3:4713368

ratioj j > 10�6 ;repeat:

Step 3:

f F2ð Þ ¼ 0:35812370

f 0 F2ð Þ ¼ 43:605527

ratio ¼ 8:2128052�10�3

F3 ¼ 3:4713368� 8:2128052�10�3
� �¼ 3:4631240

ratioj j > 10�6 ;repeat:

Step 4:

f F3ð Þ ¼ 1:4973128�10�3

f 0 F3ð Þ ¼ 43:241398

ratio ¼ 3:4626836�10�5

F4 ¼ 3:4631240� 3:4626836�10�5
� �¼ 3:4630894

ratioj j > 10�6 ;repeat:

Step 5:

f F4ð Þ ¼ 2:6470781�10�3

f 0 F4ð Þ ¼ 43:239869

ratio ¼ 6:1218459�10�10

F5 ¼ 3:4630894� 6:1218459�10�10
� �¼ 3:4630894

ratioj j < 10�6 ;accept F¼ 3:4631 as the solution:

We substitute this final value of F into Eq. (3.44b) to find the true anomaly,

tan
θ

2
¼

ffiffiffiffiffiffiffiffiffiffi
e+ 1

e�1

r
tanh

F

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:7696 + 1

2:7696�1

r
tanh

3:4631

2
¼ 1:3708) θ¼ 107:78°

With the true anomaly, the orbital equation yields the radial coordinate at the final time

r =
h2

μ
1

1+ ecosθ
=

100,1702

398,600

1

1 + 2.7696 cos 107.78°
= 163,180 km

The velocity components are obtained from Eq. (2.31),

v? ¼ h

r
¼ 100,170

163,180
¼ 0:61386km=s

and Eq. (2.49),

vr ¼ μ

h
esinθ¼ 398,600

100,170
2:7696 sin 107:78°¼ 10:496km=s



FIG. 3.18

Given and computed data for Example 3.5.
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Therefore, the speed of the spacecraft is

v = vr
2 + v⊥

2 = 10.4942 + 0.613862 = 10.51km/ s

Note that the hyperbolic excess speed for this orbit is

v∞¼ μ

h
esinθ∞¼ 398,600

100,170
� 2:7696 � sin111:7°¼ 10:277km=s

The results of this analysis are shown in Fig. 3.18.
When determining orbital position as a function of time with the aid of Kepler’s equation, it is con-

venient to have position r as a function of eccentric anomaly F. This is obtained by substituting

Eq. (3.41b) into Eq. (2.104),

r¼ a e2�1ð Þ
1 + ecosθ

¼ a e2�1ð Þ
1 + e

cosF�e

1�ecosF

� �
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This reduces to

r¼ a ecoshF�1ð Þ (3.46)
3.7 UNIVERSAL VARIABLES
The equations for elliptical and hyperbolic trajectories are very similar, as can be seen from Table 3.1.

Observe, for example, that the hyperbolic mean anomaly is obtained from that of the ellipse as follows:

Mh¼ μ2

h3
e2�1
� �3=2

t

¼ μ2

h3
�1ð Þ 1�e2

� �� �3=2
t

¼ μ2

h3
�1ð Þ3=2 1�e2

� �3=2
t

¼ μ2

h3
t �ið Þ 1�e2

� �3=2
t

¼�i μ2

h3
1�e2
� �3=2

t

	 

¼�iMe

In fact, the formulas for the hyperbola can all be obtained from those of the ellipse by replacing the

variables in the ellipse equations according to the following scheme, wherein “ ” means “replace

by” and i¼ ffiffiffiffiffiffiffi�1p
:

a  �a
b  ib
Me �iMh

E  iF
Table 3.1 Comparison of some of the orbital formulas for the ellipse and hyperbola

Equation Ellipse (e < 1) Hyperbola (e > 1)

1. Orbit equation vs. true anomaly
r¼ h2

μ

1

1 + ecosθ

Same

2. Conic equation in Cartesian coordinates x2

a2
+
y2

b2
¼ 1

x2

a2
� y2

b2
¼ 1

3. Semimajor axis
a¼ h2

μ

1

1�e2
a¼ h2

μ

1

e2�1

4. Semiminor axis b¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

b¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1
p

5. Energy equation v2

2
�μ

r
¼� μ

2a

v2

2
�μ

r
¼ μ

2a
6. Mean anomaly

Me¼ μ2

h3
1�e2
� �3=2

t Mh¼ μ2

h3
e2�1
� �3=2

t

7. Kepler’s equation Me ¼ E � e sin E Mh ¼ e sinh F � F

8. Orbit equation vs. eccentric anomaly r ¼ a(1 � cos E) r ¼ a(e cosh F � 1)
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Note in this regard that sin(iF) ¼ i sinh F and cos(iF) ¼ cosh F. Relations among the circular and

hyperbolic trig functions are found in mathematics handbooks, such as Zwillinger (2018).

In the universal variable approach, the semimajor axis of the hyperbola is considered to have a

negative value, so that the energy equation (row 5 of Table 3.1) has the same form for any type of orbit,

including the parabola, for which a ¼∞. In this formulation, the semimajor axis of any orbit is found

using (row 3),

a¼ h2

μ

1

1�e2
(3.47)

If the position r and velocity v are known at a given point on the path, then the energy equation (row 5)

is convenient for finding the semimajor axis of any orbit,

a¼ 1

2

r
� v2

μ

(3.48)

Kepler’s equation may also be written in terms of a universal variable, or universal anomaly χ, that
is valid for all orbits. See, for example, Prussing and Conway, 2013, Battin, 1987, and Bond and

Allman, 1996. If t0 is the time when the universal variable is zero, then the value of χ at time

t0 + Δt is found by iterative solution of the universal Kepler’s equation

ffiffiffi
μ
p

Δt¼ r0vrÞ0ffiffiffi
μ
p χ2C αχ2

� �
+ 1�αr0ð Þχ3S αχ2

� �
+ r0χ (3.49)

where r0 and vr)0 are the radius and radial velocity, respectively, at t ¼ t0, and α is the reciprocal of the

semimajor axis

α¼ 1

a
(3.50)

α < 0, α ¼ 0, and α > 0 for hyperbolas, parabolas, and ellipses, respectively. The units of χ are km1/2

(so αχ2 is dimensionless). The functions C(z) and S(z) belong to the class known as Stumpff functions,

named for the German astronomer Karl Stumpff (1895–1970). They are defined by the infinite series,

S zð Þ¼
X∞
k¼0
�1ð Þk zk

2k + 3ð Þ!¼
1

6
� z

120
+

z2

5040
� z3

362,880
+⋯ (3.51a)

C zð Þ¼
X∞
k¼0
�1ð Þk zk

2k + 2ð Þ!¼
1

2
� z

24
+

z2

720
� z3

40,320
+⋯ (3.51b)

C(z) and S(z) are related to the circular and hyperbolic trig functions as follows:

S zð Þ¼

ffiffi
z
p � sin

ffiffi
z
pffiffi

z
pð Þ3

z> 0ð Þ

sinh
ffiffiffiffiffiffi�zp � ffiffiffiffiffiffi�zpffiffi
z
pð Þ3

z< 0ð Þ z¼ αχ2ð Þ

1

6
z¼ 0ð Þ

8>>>>>>>><>>>>>>>>:
(3.52)



FIG. 3.19

A plot of the Stumpff functions C(z) and S(z).
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C zð Þ¼

1� cos
ffiffi
z
p

z
z> 0ð Þ

cosh
ffiffiffiffiffiffi�zp �1

�z z< 0ð Þ z¼ αχ2ð Þ
1

2
z¼ 0ð Þ

8>>>>>>><>>>>>>>:
(3.53)

Clearly, z < 0, z ¼ 0, and z > 0 for hyperbolas, parabolas, and ellipses, respectively. It should be

pointed out that if C(z) and S(z) are computed by the series expansions (Eqs. 3.51), then the forms

of C(z) and S(z), depending on the sign of z, are selected, so to speak, automatically. C(z) and S(z) be-
have as shown in Fig. 3.19. Both C(z) and S(z) are nonnegative functions of z. They increase without

bound as z approaches �∞ and tend toward zero for large positive values of z. As can be seen from

Eq. (3.53), for z > 0, C(z) ¼ 0 when cos
ffiffi
z
p ¼ 1; that is, when z ¼ (2π)2, (4π)2, (6π)2, ⋯.

The price we pay for using the universal variable formulation is having to deal with the relatively

unknown Stumpff functions. However, Eqs. (3.52) and (3.53) are easy to implement in both computer

programs and programmable calculators. See Appendix D.13 for the implementation of these expres-

sions in MATLAB.

To gain some insight into how Eq. (3.49) represents the Kepler equations for all the conic sections,

let t0 be the time at periapse passage and let us set t0 ¼ 0, as we have assumed previously. Then Δt ¼ t,
vr)0 ¼ 0, and r0¼rp, the periapsis radius. In that case Eq. (3.49) reduces toffiffiffi

μ
p

t¼ 1�αrp
� �

χ3S αχ2ð Þ+ rpχ time¼ 0 at periapse passageð Þ (3.54)

Consider first the parabola. In this case α ¼ 0, and S ¼ S(0) ¼ 1/6, so that Eq. (3.54) becomes a

cubic polynomial in χ,

ffiffiffi
μ
p

t¼ 1

6
χ3 + rpχ

Multiply this equation through by
ffiffiffi
μ
p

=h
� �3

to obtain

μ2

h3
t¼ 1

6

χ
ffiffiffi
μ
p
h

� �3

+ rpχ

ffiffiffi
μ
p
h

� �3
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Since rp ¼ h2/2μ for a parabola, we can write this as

μ2

h3
t¼ 1

6

χ
ffiffiffi
μ
p
h

� �3

+
1

2

ffiffiffi
μ
p
h

χ

� �
(3.55)

Upon setting χ¼ h tan θ=2ð Þ= ffiffiffi
μ
p

, Eq. (3.55) becomes identical to Eq. (3.30), the time vs. true anomaly

relation for the parabola.

Kepler’s equation for the ellipse can be obtained by multiplying Eq. (3.54) throughout byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ 1� e2ð Þp

=h
� �3

:

μ2

h3
1�e2
� �3=2

t¼ χ

ffiffiffi
μ
p
h

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p� �3

1�αrp
� �

S zð Þ+ rpχ
ffiffiffi
μ
p
h

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p� �3

z¼ αχ2ð Þ (3.56)

Recall that for the ellipse, rp ¼ h2/[μ(1 + e)] and α ¼ 1/a ¼ μ(1 � e2)/h2. Using these two expressions

in Eq. (3.56), along with S zð Þ¼ ffiffiffi
α
p

χ� sin
ffiffiffi
α
p

χð Þ½ �= ffiffiffi
α
p

χð Þ3 (from Eq. 3.52), and working through the

algebra ultimately leads to

Me¼ χffiffiffi
a
p �esin

χffiffiffi
a
p
� �

Comparing this with Kepler’s equation for an ellipse (Eq. 3.14) reveals that the relationship between

the universal variable χ and the eccentric anomaly E is χ¼ ffiffiffi
a
p

E. Similarly, it can be shown for

hyperbolic orbits that χ¼ ffiffiffiffiffiffiffi�ap
F. In summary, the universal anomaly χ is related to the previously

encountered anomalies as follows:

χ¼

hffiffiffi
μ
p tan

θ

2
parabolaffiffiffi

a
p

E ellipse t¼ 0 at periapseð Þffiffiffiffiffiffiffi�ap
F hyperbola

8>>><>>>: (3.57)

When t0 is the time at a point other than periapsis, such that Eq. (3.49) applies, then Eq. (3.57) becomes

χ¼

hffiffiffi
μ
p tan

θ

2
� tan

θ0
2

� �
parabolaffiffiffi

a
p

E�E0ð Þ ellipseffiffiffiffiffiffiffi�ap
F�F0ð Þ hyperbola

8>>><>>>: (3.58)

As before, we can use Newton’s method to solve Eq. (3.49) for the universal anomaly χ, given the
time interval Δt. To do so, we form the function

f χð Þ¼ r0vrÞ0ffiffiffi
μ
p χ2C αχ2

� �
+ 1�αr0ð Þχ3S αχ2

� �
+ r0χ� ffiffiffi

μ
p

Δt (3.59)

and its derivative

df χð Þ
dχ
¼ 2

r0vrÞ0ffiffiffi
μ
p χC zð Þ+ r0vrÞ0ffiffiffi

μ
p χ2

dC zð Þ
dz

dz

dχ

+ 3 1�αr0ð Þχ2S zð Þ+ 1�αr0ð Þχ3 dS zð Þ
dz

dz

dχ
+ r0

(3.60)
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where it is to be recalled that

z¼ αχ2 (3.61)

which means of course that

dz

dχ
¼ 2αχ (3.62)

It turns out that

dS zð Þ
dz
¼ 1

2z
C zð Þ�3S zð Þ½ �

dC zð Þ
dz
¼ 1

2z
1� zS zð Þ�2C zð Þ½ �

(3.63)

Substituting Eqs. (3.61–3.63) into Eq. (3.60) and simplifying the result yields

df χð Þ
dχ
¼ r0vrÞ0ffiffiffi

μ
p χ 1�αχ2S zð Þ� �

+ 1�αr0ð Þχ2C zð Þ+ r0 (3.64)

With Eqs. (3.59) and (3.64), Newton’s algorithm (Eq. 3.16) for the universal Kepler’s equation

becomes

χi + 1¼ χi�
r0vrÞ0ffiffiffi

μ
p χi

2C zið Þ+ 1�αr0ð Þχi3S zið Þ + r0χ� ffiffiffi
μ
p

Δt

r0vrÞ0ffiffiffi
μ
p χi 1�αχi

2S zið Þ
� �

+ 1�αr0ð Þχi2C zið Þ + r0
zi¼ αχi

2ð Þ (3.65)

According to Chobotov (2002), a reasonable estimate for the starting value χ0 is

χ0¼
ffiffiffi
μ
p

αj jΔt (3.66)

ALGORITHM 3.3

Solve the universal Kepler’s equation for the universal anomaly χ given Δt, r0, vr)0, and α. See
Appendix D.14 for an implementation of this procedure in MATLAB.

1. Use Eq. (3.66) for an initial estimate of χ0.
2. At any given step, having obtained χi from the previous step, calculate

f χið Þ¼
r0vrÞ0ffiffiffi

μ
p χi

2C zið Þ+ 1�αr0ð Þχi3S zið Þ+ r0χi�
ffiffiffi
μ
p

Δt

and

f 0 χið Þ¼
r0vrÞ0ffiffiffi

μ
p χi 1�αχi

2S zið Þ
� �

+ 1�αr0ð Þχi2C zið Þ + r0

where zi¼ αχi
2.

3. Calculate ratioi ¼ f(χi)/f
0
(χi).



172 CHAPTER 3 ORBITAL POSITION AS A FUNCTION OF TIME
4. If j ratioi j exceeds the chosen tolerance (e.g., 10�8), then calculate an updated value of χ,

χi+ 1¼ χi� ratioi

Return to Step 2.

5. If j ratioi j is less than the tolerance, then accept χi as the solution to within the desired accuracy.
EXAMPLE 3.6
An earth satellite has an initial true anomaly of θ ¼ 30°, a radius of r0 ¼ 10, 000km, and a speed of v0 ¼ 10km/s. Use the

universal Kepler’s equation to find the change in universal anomaly χ after 1 h and use that information to determine

the true anomaly θ at that time.

Solution
Using the initial conditions, let us first determine the angular momentum and the eccentricity of the trajectory. From the

orbit formula (Eq. 2.45) we have

h¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μr0 1 + ecosθ0ð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600 � 10,000 � 1 + ecos30°ð Þ

p
¼ 63,135

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:86602e
p

(a)

This, together with the angular momentum formula (Eq. 2.31), yields

v?Þ0¼
h

r0
¼ 63,135

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:86602e
p

10,000
¼ 6:3135

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:86602e
p

Using the radial velocity relation (Eq. 2.49) we find

vrÞ0¼
μ

h
esinθ0¼ 398,600

63,135
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:86602e
p esin30°¼ 3:1567

effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:86602e
p (b)

Since vrÞ02 + v?Þ02 ¼ v0
2, it follows that

3:1567
effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + 0:86602e
p

� �2

+ 6:3135
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:86602e
p� �2

¼ 102

which simplifies to become 39.86e2 � 17.563e � 60.14 ¼ 0. The only positive root of this quadratic equation is

e¼ 1:4682

Since e is greater than 1, the orbit is a hyperbola. Substituting this value of the eccentricity back into Eqs. (a) and (b) yields
the angular momentum

h¼ 95,154km2=s

as well as the initial radial speed

vrÞ0¼ 3:0752km=s

The hyperbolic eccentric anomaly F0 for the initial conditions may now be found from Eq. (3.44a),

tanh
F0

2
¼

ffiffiffiffiffiffiffiffiffiffi
e�1

e+ 1

r
tan

θ0
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4682�1

1:4682 + 1

r
tan

30°
2
¼ 0:16670

Solving for F0 yields

F0 ¼ 0:23448rad (c)

In the universal variable formulation, we calculate the semimajor axis of the orbit by means of Eq. (3.47),
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a¼ h2

μ

1

1�e2
¼ 95,1542

398,600

1

1�1:46822
¼�19,655km (d)

The negative value is consistent with the fact that the orbit is a hyperbola. From Eq. (3.50) we get

α¼ 1

a
¼ 1

�19,655¼�5:0878 10�5
� �

km�1

which appears throughout the universal Kepler’s equation.

We will use Algorithm 3.3 with an error tolerance of 10�6 to find the universal anomaly. From Eq. (3.66), our initial

estimate is

χ0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p
� �5:0878 10�5

� �  � 3600¼ 115:6

Executing the algorithm yields the following steps:

χ0¼ 115:6

Step 1:

f χ0ð Þ ¼ �370,650:01
f 0 χ0ð Þ ¼ 26,956:300

ratio ¼ �13:750033
χ1 ¼ 115:6� �13:750033ð Þ¼ 129:35003

ratioj j > 10�6 ;repeat

Step 2:

f χ1ð Þ ¼ 25,729:002

f 0 χ1ð Þ ¼ 30,776:401

ratio ¼ 0:83599669

χ2 ¼ 129:35003�0:83599669¼ 128:51404

ratioj j > 10�6 ;repeat

Step 3:

f χ2ð Þ ¼ 102:83891

f 0 χ2ð Þ ¼ 30,530:672

ratio ¼ 3:3683800 10�3
� �

χ3 ¼ 128:51404�3:3683800 10�3
� �¼ 128:51067

ratioj j > 10�6 ;repeat

Step 4:

f χ3ð Þ ¼ 1:6614116 10�3
� �

f 0 χ3ð Þ ¼ 30,529:686

ratio ¼ 5:4419545 10�8
� �

χ4 ¼ 128:51067�5:4419545 10�8
� �¼ 128:51067

ratioj j < 10�6 ;stop

So we accept

χ¼ 128:51km1=2

as the solution after four iterations. Substituting this value of χ together with the semimajor axis (Eq. d) into Eq. (3.58)

yields

F�F0¼ χffiffiffiffiffiffiffi�ap ¼ 128:51ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �19, 655ð Þp ¼ 0:91664

It follows from Eq. (c) that the hyperbolic eccentric anomaly after 1 h is
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F¼ 0:23448 + 0:91664¼ 1:1511

Finally, we calculate the corresponding true anomaly using Eq. (3.44b),

tan
θ

2
¼

ffiffiffiffiffiffiffiffiffiffi
e + 1

e�1

r
tanh

F

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4682+ 1

1:4682�1

r
tanh

1:1511

2
¼ 1:1926

which means that after 1 h

θ¼ 100:04°
Recall from Section 2.11 that the position r and velocity v on a trajectory at any time t can be found
in terms of the position r0 and velocity v0 at time t0 by means of the Lagrange f and g coefficients and
their first derivatives,

r¼ f r0 + gv0 (3.67)

v¼ _f r0 + _gv0 (3.68)

Eqs. (2.158) give f, g, _f , and _g explicitly in terms of the change in true anomaly Δθ over the time interval

Δt ¼ t � t0. The Lagrange coefficients can also be derived in terms of changes in the eccentric anomaly

ΔE for elliptical orbits, ΔF for hyperbolas, orΔtan(θ/2) for parabolas. However, if we take advantage of
the universal variable formulation, we can cover all these cases with the same set of Lagrange coef-

ficients. In terms of the universal anomaly χ and the Stumpff functions C(z) and S(z), the Lagrange

coefficients are (Bond and Allman, 1996)

f ¼ 1� χ2

r0
C αχ2
� �

(3.69a)

g¼Δt� 1ffiffiffi
μ
p χ3S αχ2

� �
(3.69b)

_f ¼
ffiffiffi
μ
p
rr0

αχ3S αχ2
� ��χ

� �
(3.69c)

_g¼ 1� χ2

r
C αχ2
� �

(3.69d)

The implementation of these four functions in MATLAB is found in Appendix D.15.

ALGORITHM 3.4
Given r and v , find r and v at a time Δt later. See Appendix D.16 for an implementation of this
0 0

procedure in MATLAB.

1. Use the initial conditions to find:
a. The magnitude of r0 and v0,
r0¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r0 � r0p

v0¼ ffiffiffiffiffiffiffiffiffiffiffiffi
v0 � v0p

b. The radial component of velocity vr)0 by projecting v0 onto the direction of r0,
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vrÞ0¼
v0 � r0
r0

c. The reciprocal α of the semimajor axis, using Eq. (3.48),

α¼ 2

r0
� v0

2

μ

The sign of α determines whether the trajectory is an ellipse (α > 0), parabola (α ¼ 0), or
hyperbola (α < 0).
2. With r0, vr)0, α, and Δt, use Algorithm 3.3 to find the universal anomaly χ.
3. Substitute α, r0, Δt, and χ into Eqs. (3.69a) and (3.69b) to obtain f and g.
4. Use Eq. (3.67) to compute r followed by its magnitude r.
5. Substitute α, r0, r, and χ into Eqs. (3.69c) and (3.69d) to obtain _f and _g.
6. Use Eq. (3.68) to compute v.
EXAMPLE 3.7
An earth satellite moves in the xy plane of an inertial frame with origin at the earth’s center. Relative to that frame, the

position and velocity of the satellite at time t0 are

r0¼ 7000:0̂i�12,124̂j kmð Þ
v0¼ 2:6679̂i+ 4:6210̂j km=sð Þ (a)

Compute the position and velocity vectors of the satellite 60 min later using Algorithm 3.4.

Solution
Step 1:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7000:02 + �12, 124ð Þ2

q
¼ 14,000km

vrÞ0 ¼
2:6679 � 7000:0 + 4:6210 � �12, 124ð Þ

14,000
¼ �2:6679km=s

α ¼ 2

14,000
� 5:33592

398,600
¼ 7:1429 10�5

� �
km�1

The trajectory is an ellipse, because α is positive.

Step 2:

Using the results of Step 1, Algorithm 3.3 yields

χ¼ 253:53km1=2

which means

z¼αχ2¼ 7:1429 10�5
� � � 253:532¼ 4:5911

Step 3:

Substituting the above values of χ and z into Eqs. (3.69a) and (3.69b), we find
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f ¼ 1�χ2

r0
C αχ2
� � ¼ 1�253:532

14,000
C 4:5911ð Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{0:3357

¼ �0:54123

g ¼ Δt� 1ffiffiffi
μ
p χ3S αχ2

� � ¼ 3600� 253:533ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600
p S 4:5911ð Þ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{0:13233

¼ 184:35 s

Step 4:

r = fr0 + gv0

= −0.54123( ) 7000.0î − 12.124ĵ( ) + 184.35 2.6679î + 4.6210ĵ( )
= − 3296.8î + 7413.9ĵ km( )

Therefore, the magnitude of r is

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3296:8ð Þ2 + 7413:9ð Þ2

q
¼ 8113:9km

Step 5:

_f ¼
ffiffiffi
μ
p
rr0

αχ3S αχ2
� ��χ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600
p

8113:9 � 14,000 7:1429 105
� � � 253:533 � S 4:5911ð Þ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{0:13233

�253:53

264
375

¼ �0:00055298 s�1

_g ¼ 1�χ2

r
C αχ2
� �¼ 1�253:532

8113:9
C 4:5911ð Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{0:3357

¼�1:6593
. 3.20

itial and final points on the geocentric trajectory of Example 3.7.
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Step 6:

v = fr0 + gv0

= (−0.00055298) (−1.6593)(7000.0     12.124 )î − + 2.6679î + 4.6210ĵ( )
= − 8.2977î − 0.96309 ĵ km( )

ĵ

/ s

The initial and final position and velocity vectors, as well as the trajectory, are accurately illustrated in Fig. 3.20.
PROBLEMS

Section 3.2

3.1 If f ¼ 1
2
tan x

2
+ 1

6
tan3 x

2
, then show that df/dx ¼ 1/(1 + cos x)2, thereby verifying the integral in

Eq. (3.4).

Section 3.4
3.2 Find the three positive roots of the equation 10esinx ¼ x2 � 5x + 4 to eight significant figures. Use
(a) Newton’s method.

(b) Bisection method.
3.3 Find the first four nonnegative roots of the equation tan(x) ¼ tanh (x) to eight significant figures.
Use
(a) Newton’s method.

(b) Bisection method.
3.4 In terms of the eccentricity e, the period T, and the angles α and β (in radians), find the time t
required to fly from point 1 to point 2 on the ellipse. C is the center of the ellipse.
Ans: : t¼ T

2π
β�α�2ecos

β + α

2
sin

β�α

2

� �� �
3.5 Calculate the time required to fly from P to B, in terms of the eccentricity e and the period T. B lies

on the minor axis.� �� �

Ans: :

1

4
� e

2π
T
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3.6 If the eccentricity of the elliptical orbit is 0.3, calculate, in terms of the period T, the time required

to fly from P to B.
{Ans.: 0.156 T}
3.7 If the eccentricity of the elliptical orbit is 0.5, calculate, in terms of the period T, the time required

to fly from P to B.
{Ans.: 0.170 T}
3.8 A satellite is in earth orbit for which the perigee altitude is 200 km and the apogee altitude is

600 km. Find the time interval during which the satellite remains above an altitude of 400 km.
{Ans.: 47.15 min}
3.9 An earth-orbiting satellite has a perigee radius of 7000 km and an apogee radius of 10,000 km.
(a) What true anomaly Δθ is swept out between t ¼ 0.5 h and t ¼ 1.5 h after perigee passage?

(b) What area is swept out by the position vector during that time interval?
{An

{An
s.: (a) 128.7°; (b) 1.03(108) km2}
3.10 An earth-orbiting satellite has a period of 14 h and a perigee radius of 10,000 km. At time

t ¼ 10 h after perigee passage, determine
(a) The radial position.

(b) The speed.

(c) The radial component of the velocity.
s.: (a) 42,356 km; (b) 2.303 km/s; (c) �1.271 km/s}
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3.11 A satellite in earth orbit has perigee and apogee radii of rp ¼ 7500km and ra ¼ 16,000km,

respectively. Find its true anomaly 40 min after passing the true anomaly of 80°.
{Ans.: 174.7°}
3.12 Show that the solution to a cos θ + b sin θ ¼ c, where a, b, and c are given, is� �

θ¼ϕ� cos�1 c

a cosϕ
where tanϕ ¼ b/a.
3.13 Verify the results of part (b) of Example 3.3.

Section 3.5
3.14 Calculate the time required for a spacecraft launched into a parabolic trajectory at a perigee

altitude of 200 km to leave the earth’s sphere of influence (see Table A.2).
{Ans.: 7.77 days}
3.15 A spacecraft on a parabolic trajectory around the earth has a perigee radius of 6600 km.
(a) How long does it take to coast from θ ¼ � 90° to θ ¼ + 90°?
(b) How far is the spacecraft from the center of the earth 36 h after passing through

perigee?
{An

{An

{Par
s.: (a) 0.8897 h; (b) 304,700 km}
n 3.6
Sectio

3.16 A spacecraft on a hyperbolic trajectory around the earth has a perigee radius of 6600 km and a

perigee speed of 1.2vesc.

(a) How long does it take to coast from θ ¼ � 90° to θ ¼ + 90°?
(b) How far is the spacecraft from the center of the earth 24 h after passing through

perigee?
s.: (a) 0.9992 h; (b) 656,610 km}
3.17 A trajectory has a perigee velocity 1.1vesc and a perigee altitude of 200 km. If at 10 a.m. the

satellite is traveling toward the earth with a speed of 8 km/s, how far will it be from the earth’s

surface at 5 p.m. the same day?
{Ans.: 136,250 km}
3.18 An incoming object is sighted at an altitude of 100,000 km with a speed of 6 km/s and a flight

path angle of �80°.

(a) Will it impact the earth or fly by?

(b) What is the time to impact or to closest approach?
tial Ans.: (b) 4 h 29 min}
n 3.7
Sectio

3.19 At a given instant, the radial position of an earth-orbiting satellite is 7200 km and its radial

speed is 1 km/s. If the semimajor axis is 10,000 km, use Algorithm 3.3 to find the universal

anomaly 60 min later. Check your result using Eq. (3.58).
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3.20 At a given instant, a space object has the following position and velocity vectors relative to an

earth-centered inertial frame of reference:
r0¼ 20,000̂i�105,000̂j�19,000k̂ kmð Þ
v0¼ 0:9000̂i�3:4000̂j�1:5000k̂ km=sð Þ

Use Algorithm 3.4 to find r and v 2 h later.

{Ans.: r¼ 26,338̂i�128,750̂j�29,656k̂ kmð Þ,
v¼ 0:86280̂i�3:2116̂j�1:4613k̂ km=sð Þ}
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CHAPTER
ORBITS IN THREE DIMENSIONS
 4

4.1 INTRODUCTION
The discussion of orbital mechanics up to now has been confined to two dimensions (i.e., to the plane of

the orbits themselves). This chapter explores the means of describing orbits in three-dimensional space,

which, of course, is the setting for real missions and orbital maneuvers. Our focus will be on the orbits

of earth satellites, but the applications are to any two-body trajectories, including interplanetary mis-

sions to be discussed in Chapters 8 and 9.

We begin with a discussion of the ancient concept of the celestial sphere and the use of right as-

cension and declination to define the location of stars, planets, and other celestial objects on the sphere.

This leads to the establishment of the inertial geocentric equatorial frame of reference and the concept

of state vector. The six components of this vector give the instantaneous position and velocity of an

object relative to the inertial frame and define the characteristics of the orbit. Following this discussion

is a presentation of the six classical orbital elements, which also uniquely define the shape and orien-

tation of an orbit and the location of a body on it. We then show how to transform the state vector into

orbital elements, and vice versa, taking advantage of the perifocal frame introduced in Chapter 2.

We go on to summarize two of the major perturbations of earth orbits due to the earth’s nonspherical

shape. These perturbations are exploited to place satellites in sun-synchronous andMolniya orbits. The

various perturbations of spacecraft trajectories are presented in more detail in Chapter 10.

The chapter concludes with a discussion of ground tracks and how to compute them.
4.2 GEOCENTRIC RIGHT ASCENSION-DECLINATION FRAME
The coordinate system used to describe earth orbits in three dimensions is defined in terms of earth’s

equatorial plane, the ecliptic plane, and the earth’s axis of rotation. The ecliptic is the plane of the

earth’s orbit around the sun, as illustrated in Fig. 4.1. The earth’s axis of rotation, which passes through

the north and south poles, is not perpendicular to the ecliptic. It is tilted away by an angle known as the

obliquity of the ecliptic, ε. For the earth, ε is approximately 23.4°. Therefore, the earth’s equatorial

plane and the ecliptic intersect along a line, which is known as the vernal equinox line. On the calendar,

“vernal equinox” is the first day of spring in the northern hemisphere, when the noontime sun crosses

the equator from south to north. The position of the sun at that instant defines the location of a point in

the sky called the vernal equinox, for which the symbol γ is used. On the day of the vernal equinox, the
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00004-0
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FIG. 4.1

The earth’s orbit around the sun, viewed from above the ecliptic plane, showing the change of seasons in the

northern hemisphere.

FIG. 4.2

Secondary (perturbing) gravitational forces on the earth.
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number of hours of daylight and darkness are equal; hence, the word equinox. The other equinox occurs

precisely half a year later, when the sun crosses back over the equator from north to south, thereby

defining the first day of autumn. The vernal equinox lies today in the constellation Pisces, which is

visible in the night sky during the fall. The direction of the vernal equinox line is from the earth toward

γ, as shown in Fig. 4.1.

For many practical purposes, the vernal equinox line may be considered fixed in space. However, it

actually rotates slowly because the earth’s tilted spin axis precesses westward around the normal to the

ecliptic at the rate of about 1.4° per century. This slow precession is due primarily to the action of the

sun and the moon on the nonspherical distribution of mass within the earth. Due to the centrifugal force

of rotation about its own axis, the earth bulges very slightly outward at its equator. This effect is shown

highly exaggerated in Fig. 4.2. One of the bulging sides is closer to the sun than the other, so the force of
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the sun’s gravity f1 on its mass is slightly larger than the force f2 on the opposite side, farthest from the

sun. The forces f1 and f2, along with the dominant force F on the spherical mass, comprise the total

force of the sun on the earth, holding it in its solar orbit. Taken together, f1 and f2 produce a net clock-

wise moment (a vector into the page) about the center of the earth. That moment would rotate the

earth’s equator into alignment with the ecliptic if it were not for the fact that the earth has an angular

momentum directed along its south-to-north polar axis due to its spin around that axis at an angular

velocity ωE of about 360° per day. The effect of the moment is to rotate the angular momentum vector

in the direction of the moment (into the page). The result is that the spin axis is forced to precess in a

counterclockwise direction around the normal to the ecliptic, sweeping out a cone as illustrated in the

figure. The moon exerts a torque on the earth for the same reason, and the combined effect of the sun

and the moon is a precession of the spin axis, and hence γ, with a period of about 26,000 years. The

moon’s action also superimposes a small nutation on the precession. This causes the obliquity ε to vary
with a maximum amplitude of 0.0025° over a period of 18.6 years.

About 4000 years ago, when the first recorded astronomical observations were being made, γ was
located in the constellation Aries, the ram. The Greek letter γ resembles the ancient symbol represent-

ing the head of a ram (♈).

To the human eye, objects in the night sky appear as points on a celestial sphere surrounding the

earth, as illustrated in Fig. 4.3. The north and south poles of this fixed sphere correspond to those of the

earth rotating within it. Coordinates of latitude and longitude are used to locate points on the celestial
FIG. 4.3

The celestial sphere, with grid lines of right ascension and declination]
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sphere in much the same way as on the surface of the earth. The projection of the earth’s equatorial

plane outward onto the celestial sphere defines the celestial equator. The vernal equinox γ, which lies

on the celestial equator, is the origin for measurement of longitude, which in astronomical parlance is

called right ascension. Right ascension (RA or α) is measured along the celestial equator in degrees east

from the vernal equinox (astronomers measure right ascension in hours instead of degrees, where 24 h

equals 360°). Latitude on the celestial sphere is called declination. Declination (Dec or δ) is measured

along a meridian in degrees, positive to the north of the equator and negative to the south. Fig. 4.4 is a

sky chart showing how the heavenly grid appears from a given point on the earth. Notice that the sun is

located at the intersection of the equatorial and ecliptic planes, so this must be the first day of spring.

Stars are so far away from the earth that their positions relative to each other appear stationary on the

celestial sphere. Planets, comets, satellites, etc., move on the fixed backdrop of the stars. A table of the

coordinates of celestial bodies as a function of time is called an ephemeris [e.g., the Astronomical Al-
manac (Department of the Navy, 2018)]. Table 4.1 is an abbreviated ephemeris for the moon and for

Venus. An ephemeris depends on the location of the vernal equinox at a given time or epoch, for we

know that even the positions of the stars relative to the equinox change slowly with time. For example,

Table 4.2 shows the celestial coordinates of the star Regulus at five epochs since AD 1700. Currently,

the position of the vernal equinox in the year 2000 is used to define the standard grid of the celestial

sphere. In 2025, the position will be updated to that of the year 2050, and so on at 25-year intervals.
FIG. 4.4

A view of the sky above the eastern horizon from 0° longitude on the equator at 9 a.m. local time, March 20, 2004

(precession epoch AD 2000).



Table 4.1 Venus and moon ephemeris for 0 h universal time (precession epoch: 2000 AD)

Venus Moon

Date RA Dec RA Dec

1 Jan 2004 21h 05.0min �18° 360 1h 44.9min +8° 470

1 Feb 2004 23h 28.0min �04° 300 4h 37.0min +24° 110

1 Mar 2004 01h 30.0min +10° 260 6h 04.0min +08° 320

1 Apr 2004 03h 37.6min +22° 510 9h 18.7min +21° 080

1 May 2004 05h 20.3min +27° 440 11h 28.8min +07° 530

1 Jun 2004 05h 25.9min +24° 430 14h 31.3min �14° 480

1 Jul 2004 04h 34.5min +17° 480 17h 09.0min �26° 080

1 Aug 2004 05h 37.4min +19° 040 21h 05.9min �21° 490

1 Sep 2004 07h 40.9min +19° 160 00h 17.0min �00° 560

1 Oct 2004 09h 56.5min +12° 420 02h 20.9min +14° 350

1 Nov 2004 12h 15.8min +00° 010 05h 26.7min +27° 180

1 Dec 2004 14h 34.3min �13° 210 07h 50.3min +26° 140

1 Jan 2005 17h 12.9min �22° 150 10h 49.4min +11° 390

Table 4.2 Variation of the coordinates of the star Regulus due to precession of the

equinox

Precession epoch RA Dec

1700 AD 9h 52.2min (148.05°) +13° 250

1800 AD 9h 57.6min (149.40°) +12° 560

1900 AD 10h 3.0min (150.75°) +12° 270

1950 AD 10h 5.7min (151.42°) +12° 130

2000 AD 10h 8.4min (152.10°) +11° 580

1854.3 STATE VECTOR AND THE GEOCENTRIC EQUATORIAL FRAME
Since observations are made relative to the actual orientation of the earth, these measurements must be

transformed into the standardized celestial frame of reference. As Table 4.2 suggests, the adjustments

will be small if the current epoch is within 25 years of the standard precession epoch.
4.3 STATE VECTOR AND THE GEOCENTRIC EQUATORIAL FRAME
At any given time, the state vector of a satellite comprises its velocity v and orbital acceleration a.
Orbital mechanics is concerned with specifying or predicting state vectors over intervals of time. From

Chapter 2, we know that the equation governing the state vector of a satellite traveling around the earth

is, under the familiar assumptions,

€r¼� μ

r3
r (4.1)



FIG. 4.5

The geocentric equatorial frame.
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where r is the position vector of the satellite relative to the center of the earth. The components of r,

and especially, those of its time derivatives _r¼ v and €r¼ a, must be measured in a nonrotating frame

attached to the earth. A commonly used nonrotating right-handed Cartesian coordinate system is

the geocentric equatorial frame shown in Fig. 4.5. The X axis points in the vernal equinox direction.

The XY plane is the earth’s equatorial plane, and the Z axis coincides with the earth’s axis of rotation

and points northward. The unit vectors Î, Ĵ, and K̂ form a right-handed triad. The nonrotating geocen-

tric equatorial frame serves as an inertial frame for the two-body earth satellite problem, as embodied in

Eq. (4.1). It is not truly an inertial frame, however, since the center of the earth is always accelerating

toward a third body, the sun (to say nothing of the moon), a fact that we ignore in the two-body

formulation.

In the geocentric equatorial frame, the state vector is given in component form by

r¼XÎ+YĴ+ZK̂ (4.2)

v¼ vX Î+ vY Ĵ+ vZK̂ (4.3)

If r is the magnitude of the position vector, then

r¼ rûr (4.4)

Fig. 4.5 shows that the components of ûr (the direction cosines l,m, and n of ûr) are found in terms of the

right ascension α and declination δ as follows:

ûr ¼ l̂I+mĴ+ nK̂¼ cosδcosαÎ+ cosδsinαĴ + sinδK̂ (4.5)

From this we see that the declination is obtained as δ ¼ sin�1n. There is no quadrant ambiguity since,

by definition, the declination lies between�90° and +90°, which is precisely the range of the principal
values of the arcsine function. It follows that cosδ cannot be negative. Eq. (4.5) also reveals that
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l ¼ cos δ cos α. Hence, we find the right ascension from α ¼ cos�1(l/ cos δ), which yields two values
of α between 0° and 360°. To determine the correct quadrant for α, we check the sign of the

direction cosine, m¼cosδsinα. Since cosδ cannot be negative, the sign of m is the same as the sign

of sinα. If sinα > 0, then α lies in the range 0° to 180°, whereas sinα < 0 means that α lies between

180° and 360°.

ALGORITHM 4.1

Given the position vector r¼XÎ+ YĴ + ZK̂, calculate the right ascension α and declination δ. This
procedure is implemented in MATLAB as ra_and_dec_ from_r.m, which appears in Appendix

D.17.

1. Calculate the magnitude of r: r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 + Y2 + Z2

p
.

2. Calculate the direction cosines of r: l¼X=r m¼ Y=r n¼ Z=r

3. Calculate the declination: δ ¼ sin�1n
4. Calculate the right ascension: α¼ cos�1 l=cosδð Þ m> 0ð Þ
360°� cos�1 l=cosδð Þ m� 0ð Þ

�

Although the position vector furnishes the right ascension and declination, the right ascension and dec-

lination alone do not furnish r. For that we need the distance r to obtain the position vector from

Eq. (4.4).
EXAMPLE 4.1
If the position vector of the International Space Station in the geocentric equatorial frame is r¼�5368Î�1784Ĵ +

3691K̂ kmð Þ, what are its right ascension and declination?

Solution
We employ Algorithm 4.1.

Step 1:

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5368ð Þ2 + �1784ð Þ2 + 36912

q
¼ 6754km

Step 2:

l¼�5368

6754
¼�0:7947 m¼�1784

6754
¼�0:2642 n¼ 3691

6754
¼ 0:5462

Step 3:

δ¼ sin�10:5464¼ 33:12°

Step 4:

Since the direction cosine m is negative,

α¼ 360°� cos�1 l

cosδ

� �
¼ 360°� cos�1 �0:7947

cos33:12°

� �
¼ 360°�161:6°¼ 198:4°
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From Section 2.11 we know that if we are provided the state vector (r0,v0) at a given instant, then

we can determine the state vector at any other time in terms of the initial vector by means of the

expressions

r¼ f r0 + gv0
v¼ _f r0 + _gv0

(4.6)

where the Lagrange coefficients f and g and their time derivatives are given in Eq. (3.69). Specifying

the total of six components of r0 and v0 therefore completely determines the size, shape, and orientation

of the orbit.
EXAMPLE 4.2
At time t0, the state vector of an earth satellite is

r0 ¼ 1600Î + 5310Ĵ + 3800K̂ kmð Þ (a)

v0 ¼�7:350Î+ 0:4600Ĵ+ 2:470K̂ km=sð Þ (b)

Determine the position and velocity vectors 3200 s later and plot the orbit in three dimensions.

Solution
We will use the universal variable formulation and Algorithm 3.4, which was illustrated in detail in Example 3.7. There-

fore, only the results of each step are presented here.

Step 1: (α here is not to be confused with right ascension)

α¼ 1:4613 10�4
� �

km�1

Since this is positive, the orbit is an ellipse.

Step 2:

χ¼ 294:42km1=2

Step 3:

f ¼�0:94843 and g¼�354:89 s�1

Step 4:

r¼ 1090:9Î�5199:4Ĵ�4480:6K̂ kmð Þ ) r¼ 6949:8km

Step 5:

_f ¼ 0:00045324 s�1 and _g¼�0:88479

Step 6:

v¼ 7:2284Î+ 1:9997Ĵ�0:46311K̂ km=sð Þ
To plot the elliptical orbit, we observe that one complete revolution means a change in the eccentric anomaly E of 2π

radians. According to Eq. (3.57), the corresponding change in the universal anomaly is

χ¼ ffiffiffi
a

p
E¼

ffiffiffi
1

α

r
E¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

0:00014613

r
� 2π¼ 519:77km1=2

Letting χ vary from 0 to 519.77 in small increments, we employ the Lagrange coefficient formulation (Eq. 3.67 plus

Eqs. 3.69a and 3.69b) to compute

r¼ 1�χ2

r0
C αχ2
� �� 	

r0 + Δt� 1ffiffiffi
μ

p χ3S αχ2
� �� 	

v0



FIG. 4.6

The orbit corresponding to the initial conditions given in Eqs. (a) and (b) of Example 4.2.
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where Δt for a given value of χ is given by Eq. (3.49). Using a computer to plot the points obtained in this fashion yields

Fig. 4.6, which also shows the state vectors at t0 and t0 + 3200s.
The previous example illustrates the fact that the six quantities or orbital elements comprising the

state vector r and v completely determine the orbit. Other elements may be chosen. The classical orbital

elements are introduced and related to the state vector in the next section.
4.4 ORBITAL ELEMENTS AND THE STATE VECTOR
To define an orbit in the plane requires two parameters: eccentricity and angular momentum. Other

parameters, such as the semimajor axis, the specific energy, and (for an ellipse) the period are obtained

from these two. To locate a point on the orbit requires a third parameter, the true anomaly, which leads

us to the time since perigee. Describing the orientation of an orbit in three dimensions requires three

additional parameters, called the Euler angles, which are illustrated in Fig. 4.7.

First, we locate the intersection of the orbital plane with the equatorial (XY) plane. This line is called
the node line. The point on the node line where the orbit passes above the equatorial plane from below it

is called the ascending node. The node line vector N extends outward from the origin through the as-

cending node. At the other end of the node line, where the orbit dives below the equatorial plane, is the

descending node. The angle between the positive X axis and the node line is the first Euler angleΩ, the



FIG. 4.7

Geocentric equatorial frame and the orbital elements.
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right ascension of the ascending node. Recall from Section 4.2 that right ascension is a positive number

lying between 0° and 360°.
The dihedral angle between the orbital plane and the equatorial plane is the inclination i, measured

according to the right-hand rule (i.e., counterclockwise around the node line vector from the equator

to the orbit). The inclination is also the angle between the positive Z axis and the normal to the plane

of the orbit. The two equivalent means of measuring i are indicated in Fig. 4.7. Recall from Chapter 2

that the angular momentum vector h is normal to the plane of the orbit. Therefore, the inclination

i is the angle between the positive Z axis and h. The inclination is a positive number between 0°
and 180°.

It remains to locate the perigee of the orbit. Recall that perigee lies at the intersection of the eccen-

tricity vector e with the orbital path. The third Euler angle ω, the argument of perigee, is the angle

between the node line vector N and the eccentricity vector e, measured in the plane of the orbit.

The argument of perigee is a positive number between 0° and 360°.
In summary, the six orbital elements are

h specific angular momentum

i inclination

Ω right ascension of the ascending node

e eccentricity

ω argument of perigee

θ true anomaly.

The angular momentum h and true anomaly θ are frequently replaced by the semimajor axis a and
the mean anomaly M, respectively.

Given the position r and velocity v of a spacecraft in the geocentric equatorial frame, how do we

obtain the orbital elements? The step-by-step procedure is outlined next in Algorithm4.2. Note that

each step incorporates results obtained in the previous steps. Several steps require resolving the quad-

rant ambiguity that arises in calculating the arccosine (recall Fig. 3.4).
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ALGORITHM 4.2

Obtain orbital elements from the state vector. A MATLAB version of this procedure appears in

Appendix D.18. Applying this algorithm to orbits around other planets or the sun amounts to

defining the frame of reference and substituting the appropriate gravitational parameter μ.
1. Calculate the distance, r¼ ffiffiffiffiffiffiffi

r � rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 + Y2 + Z2

p
.

2. Calculate the speed, v¼ ffiffiffiffiffiffiffiffi
v �vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2X + v

2
Y + v

2
Z

p
.

3. Calculate the radial velocity, vr ¼ r � v/r ¼ (XvX + YvY + ZvZ)/r.

Note that if vr > 0, the spacecraft is flying away from perigee. If vr < 0, it is flying toward

perigee.
4. Calculate the specific angular momentum,

h¼ r�v¼
Î Ĵ K̂

X Y Z
vX vY vZ















Calculate the magnitude of the specific angular momentum, h¼ ffiffiffiffiffiffiffiffi
h �hp

.
5.
This is the first orbital element.
6. Calculate the inclination,

i¼ cos�1 hZ=hð Þ (4.7)
This is the second orbital element. Recall that imust lie between 0° and 180°, which is precisely
the range (principal values) of the arccosine function. Hence, there is no quadrant ambiguity to

contend with here. If 90° < i � 180°, the angular momentum h points in a southerly direction.

In that case, the orbit is retrograde, which means that the motion of the satellite around the earth

is opposite to earth’s rotation.
7. Calculate

N¼ K̂�h¼
Î Ĵ K̂

0 0 1

hX hY hZ














 (4.8)
This vector defines the node line. ffiffiffiffiffiffiffiffiffiffip

8. Calculate the magnitude of N, N¼ N �N.
9. Calculate the right ascension of the ascending node, Ω ¼ cos�1(NX/N). This is the third orbital

element. If NX > 0, then Ω lies in either the first or fourth quadrant. If NX < 0, then Ω lies in

either the second or third quadrant. To place Ω in the proper quadrant, observe that the

ascending node lies on the positive side of the vertical XZ plane (0 � Ω < 180°) if NY > 0. On

the other hand, the ascending node lies on the negative side of the XZ plane (180° � Ω < 360°)
if NY < 0. Therefore, NY > 0 implies that 0 � Ω < 180°, whereas NY < 0 implies that

180° � Ω < 360°. In summary,

Ω¼
cos�1 NX

N

� �
NY � 0ð Þ

360°� cos�1 NX

N

� �
NY < 0ð Þ

8>><>>: (4.9)
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Calculate the eccentricity vector. Starting with Eq. (2.40),
10.

e¼ 1

μ
v�h�μ

r

r

h i
¼ 1

μ
v� r�vð Þ�μ

r

r

h i
¼ 1

μ
rv2�v r � vð Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{bac�cab rule

�μ
r

r

2664
3775
so that
e¼ 1

μ
v2�μ

r

� 
r� rvrv

h i
(4.10)
Calculate the eccentricity, e¼ ffiffiffiffiffiffiffiffi
e � ep

, which is the fourth orbital element. Substituting
11.

Eq. (4.10) leads to a form depending only on the scalars obtained thus far,

e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

h2

μ2
v2�2μ

r

� �s
(4.11)
Calculate the argument of perigee,
12.

ω¼ cos�1 N

N
� e
e

� �

This is the fifth orbital element. If N�e > 0, then ω lies in either the first or fourth quadrant. If

N�e < 0, then ω lies in either the second or third quadrant. To place ω in the proper quadrant,

observe that perigee lies above the equatorial plane (0° � ω < 180°) if e points up (in the pos-
itive Z direction) and that perigee lies below the plane (180° � ω < 360°) if e points down.

Therefore, eZ � 0 implies that 0° < ω < 180°, whereas eZ < 0 implies that 180° < ω <
360°. To summarize,
ω¼
cos�1 N � e

Ne

� �
eZ � 0ð Þ

360°� cos�1 N � e
Ne

� �
eZ < 0ð Þ

8>><>>: (4.12)
Calculate the true anomaly,
13.

θ¼ cos�1 e

e
� r
r

� 

This is the sixth and final orbital element. If e � r > 0, then θ lies in the first or fourth quadrant.
If e � r < 0, then θ lies in the second or third quadrant. To place θ in the proper quadrant, note

that if the satellite is flying away from perigee (r � v � 0), then 0 � θ < 180°, whereas if the
satellite is flying toward perigee (r � v < 0), then 180° � θ < 360°. Therefore, using the results
of Step 3 above
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θ¼
cos�1 e

e
� r
r

� 
vr � 0ð Þ

360°� cos�1 e

e
� r
r

� 
vr < 0ð Þ

8<: (4.13a)
Substituting Eq. (4.10) yields an alternative form of this expression,
θ¼
cos�1 1

e

h2

μr
�1

� �� 	
vr � 0ð Þ

360°� cos�1 1

e

h2

μr
�1

� �� 	
vr < 0ð Þ

8>><>>: (4.13b)
The procedure described above for calculating the orbital elements is not unique.
EXAMPLE 4.3
Given the state vector,

r¼�6045Î�3490Ĵ+ 2500K̂ kmð Þ
v¼�3:457Î+ 6:618Ĵ + 2:533K̂ km=sð Þ

find the orbital elements h, i, Ω, e, ω, and θ using Algorithm 4.2.

Solution
Step 1:

r¼ ffiffiffiffiffiffiffi
r � rp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6045ð Þ2 + �3490ð Þ2 + 25002

q
¼ 7414km

Step 2:

v¼ ffiffiffiffiffiffiffiffi
v �vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3:457ð Þ2 + 6:6182 + 2:5332

q
¼ 7:884km=s

Step 3:

vr ¼ v � r
r

¼ �3:457ð Þ � �6045ð Þ + 6:618 � �3490ð Þ + 2:533 �2500
7414

¼ 0:5575km=s (a)

Since vr > 0, the satellite is flying away from perigee.

Step 4:

h¼ r�v¼
Î Ĵ K̂

�6045 �3490 2500

�3:457 6:618 2:533














¼�25,380Î + 6670Ĵ�52,070K̂ km2=s

� �
Step 5:

h¼
ffiffiffiffiffiffiffiffi
h �h

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�25, 380ð Þ2 + 66702 + �52, 070ð Þ2

q
) h¼ 58,310km2=s

Step 6:

i¼ cos�1 hZ
h
¼ cos�1 �52,070

58,310

� �
) i¼ 153:2°

Since i is greater than 90°, this is a retrograde orbit.
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Step 7:

N¼ K̂�h¼
Î Ĵ K̂

0 0 1

�25,380 6670 �52,070














¼�6670Î�25,380Ĵ km2=s

� �
(b)

Step 8:

N¼
ffiffiffiffiffiffiffiffiffiffi
N �N

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6670ð Þ2 + �25, 380ð Þ2

q
¼ 26,250km2=s

Step 9:

Ω¼ cos�1NX

N
¼ cos�1 �6670

26,250

� �
¼ 104:7° or 255:3°

From Eq. (b) we know that NY < 0; therefore, Ω must lie in the third quadrant,

Ω¼ 255:3°

Step 10:

e¼ 1

μ
v2�μ

r

� 
r� rvrv

h i
¼ 1

398,600
7:8842�398,600

7414

� �
�6045Î�3490Ĵ + 2500K̂
� ��

� 7414ð Þ 0:5575ð Þ �3:457Î+ 6:618Ĵ+ 2:533K̂
� ��

e¼�0:09160Î�0:1422Ĵ + 0:02644K̂

(c)

Step 11:

e¼ ffiffiffiffiffiffiffi
e � ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:09160ð Þ2 + �0:1422ð Þ2 + 0:02644ð Þ2

q
) e¼ 0:1712

Clearly, the orbit is an ellipse.

Step 12:

ω¼ cos�1N � e
Ne

¼ cos�1 �6670ð Þ �0:09160ð Þ + �25, 380ð Þ �0:1422ð Þ + 0ð Þ 0:02644ð Þ
26, 250ð Þ 0:1712ð Þ

� 	
¼ 20:07° or 339:9°

ω lies in the first quadrant if eZ > 0, which is true in this case, as we see from Eq. (c). Therefore,

ω¼ 20:07°

Step 13:

θ¼ cos�1 e � r
er

� 
¼ cos�1 �0:09160ð Þ �6045ð Þ + �0:1422ð Þ � �3490ð Þ+ 0:02644ð Þ 2500ð Þ

0:1712ð Þ 7414ð Þ
� 	

¼ 28:45° or 331:6°

From Eq. (a) we know that vr > 0, which means 0° � θ < 180°. Therefore,

θ¼ 28:45°

Having found the six orbital elements, we can go on to compute other parameters. The perigee and apogee radii are

rp ¼ h2

μ

1

1 + ecos 0ð Þ¼
58,3102

398,600

1

1 + 0:1712
¼ 7284km

ra ¼ h2

μ

1

1 + ecos 180°ð Þ¼
58,3102

398,600

1

1�0:1712
¼ 10,290km

From these it follows that the semimajor axis of the ellipse is

a¼ 1

2
rp + ra
� �¼ 8788km



FIG. 4.8

A plot of the orbit identified in Example 4.3.
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This leads to the period,

T¼ 2πffiffiffi
μ

p a3=2 ¼ 2:278h

The orbit is illustrated in Fig. 4.8.
We have seen how to obtain the orbital elements from the state vector. To arrive at the state vector,

given the orbital elements, requires performing coordinate transformations, which are discussed in

the next section.
4.5 COORDINATE TRANSFORMATION
The Cartesian coordinate system was introduced in Section 1.2. Fig. 4.9 shows two such coordinate

systems: the unprimed system with axes xyz, and the primed system with axes x0y0z0. The orthogonal
unit basis vectors for the unprimed system are î, ĵ, and k̂. The fact they are unit vectors means

î � î¼ ĵ � ĵ¼ k̂ � k̂¼ 1 (4.14)

Since they are orthogonal,

î � ĵ¼ î � k̂¼ ĵ � k̂¼ 0 (4.15)



FIG. 4.9

Two sets of Cartesian reference axes, xyz and x0y0z0.
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The orthonormal basis vectors î0, ĵ0, and k̂0 of the primed system share these same properties.

That is,

î0 � î0 ¼ ĵ0 � ĵ0 ¼ k̂0 � k̂0 ¼ 1 (4.16)

and

î0 � ĵ0 ¼ î0 � k̂0 ¼ ĵ0 � k̂0 ¼ 0 (4.17)

We can express the unit vectors of the primed system in terms of their components in the unprimed

system as follows:

î0 ¼Q11 î+Q12 ĵ+Q13k̂

ĵ0 ¼Q21̂i+Q22 ĵ+Q23k̂

k̂0 ¼Q31̂i+Q32 ĵ+Q33k̂

(4.18)

The Q0s in these expressions are just the direction cosines of î0, ĵ0, and k̂0. Fig. 4.9 illustrates the com-

ponents of k̂0, which are, of course, the projections of k̂0 onto the x, y, and z axes. The unprimed unit

vectors may be resolved into components along the primed system to obtain a set of equations similar to

Eq. (4.18).

î¼Q0
11 î

0 +Q0
12 ĵ

0 +Q0
13k̂

0

ĵ¼Q0
21 î

0 +Q0
22 ĵ

0 +Q0
23k̂

0

k̂¼Q0
31 î

0 +Q0
32 ĵ

0 +Q0
33k̂

0
(4.19)

However, î0 � î¼ î � î0 , so that, from Eqs. (4.18) and (4.19), we find Q11 ¼ Q11
0. Likewise, î0 � ĵ¼ ĵ � î0,

which, according to Eqs. (4.18) and (4.19), means Q12 ¼ Q21
0. Proceeding in this fashion, it is clear
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that the direction cosines in Eq. (4.18) may be expressed in terms of those in Eq. (4.19). That is,

Eq. (4.19) may be written

î¼Q11̂i
0 +Q21 ĵ

0 +Q31k̂
0

ĵ¼Q12 î
0 +Q22 ĵ

0 +Q32k̂
0

k̂¼Q13̂i
0 +Q23 ĵ

0 +Q33k̂
0

(4.20)

Substituting Eq. (4.20) into Eq. (4.14) and making use of Eqs. (4.16) and (4.17), we get the three

relations

î � î¼ 1 ) Q2
11 +Q

2
21 +Q

2
31 ¼ 1

ĵ � ĵ¼ 1 ) Q2
12 +Q

2
22 +Q

2
32 ¼ 1

k̂ � k̂¼ 1 ) Q2
13 +Q

2
23 +Q

2
33 ¼ 1

(4.21)

Substituting Eq. (4.20) into Eq. (4.15) and, again, making use of Eqs. (4.16) and (4.17), we obtain the

three equations

î � ĵ¼ 0 ) Q11Q12 +Q21Q22 +Q31Q32 ¼ 0

î � k̂¼ 0 ) Q11Q13 +Q21Q23 +Q31Q33 ¼ 0

ĵ � k̂¼ 0 ) Q12Q13 +Q22Q23 +Q32Q33 ¼ 0

(4.22)

Let [Q] represent the matrix of direction cosines of î0, ĵ0, and k̂0 relative to î, ĵ, and k̂, as given by

Eq. (4.18). [Q] is referred to as the direction cosine matrix (DCM).

Q½ � ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

264
375¼

î0 � î î0 � ĵ î0 � k̂
ĵ0 � î ĵ0 � ĵ ĵ0 � k̂
k̂0 � î k̂0 � ĵ k̂0 � k̂

264
375 (4.23)

The transpose of the matrix [Q], denoted [Q]T, is obtained by interchanging the rows and columns of

[Q]. Thus,

Q½ �T ¼
Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

264
375¼

î � î0 î � ĵ0 î � k̂0
ĵ � î0 ĵ � ĵ0 ĵ � k̂0
k̂ � î0 k̂ � ĵ0 k̂ � k̂0

264
375 (4.24)

Forming the product [Q]T[Q], we get

Q½ �T Q½ � ¼
Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

264
375 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

264
375

¼
Q11

2 +Q21
2 +Q31

2 Q11Q12 +Q21Q22 +Q31Q32 Q11Q13 +Q21Q23 +Q31Q33

Q12Q11 +Q22Q21 +Q32Q31 Q12
2 +Q22

2 +Q31
2 Q12Q13 +Q22Q23 +Q32Q33

Q13Q11 +Q23Q21 +Q33Q31 Q13Q12 +Q23Q22 +Q33Q32 Q13
2 +Q23

2 +Q33
2

2664
3775

From this we obtain, with the aid of Eqs. (4.21) and (4.22),

Q½ �T Q½ � ¼ 1½ � (4.25)
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where

1½ � ¼
1 0 0

0 1 0

0 0 1

2664
3775

[1] stands for the identity matrix or unit matrix.

In a similar fashion, we can substitute Eq. (4.18) into Eqs. (4.16) and (4.17) and make use of

Eqs. (4.14) and (4.15) to finally obtain

Q½ � Q½ �T ¼ 1½ � (4.26)

Since [Q] satisfies Eqs. (4.25) and (4.26), it is called an orthogonal matrix.

Let v be a vector. It can be expressed in terms of its components along the unprimed system

v¼ vx̂i+ vy ĵ+ vzk̂

or along the primed system

v¼ v0x î
0 + v0y ĵ

0 + v0zk̂
0

These two expressions for v are equivalent (v ¼ v) since a vector is independent of the coordinate sys-

tem used to describe it. Thus,

v0x î
0 + v0y ĵ

0 + v0zk̂
0 ¼ vx̂i+ vy ĵ+ vzk̂ (4.27)

Substituting Eq. (4.20) into the right-hand side of Eq. (4.27) yields

v0x î
0 + v0y ĵ

0 + v0zk̂
0 ¼ Q11 î

0 +Q21 ĵ
0 +Q31k̂

0
� 

vx

+ Q12̂i
0 +Q22 ĵ

0 +Q32k̂
0

� 
vy + Q13 î

0 +Q23 ĵ
0 +Q33k̂

0
� 

vz

On collecting terms on the right, we get

v0x î
0 + v0y ĵ

0 + v0zk̂
0 ¼ Q11vx +Q12vy +Q13vz
� �̂

i0

+ Q21vx +Q22vy +Q23vz
� �̂

j0 + Q31vx +Q32vy +Q33vz
� �

k̂0

Equating the components of like unit vectors on each side of the equals sign yields

v0x ¼Q11vx +Q12vy +Q13vz

v0y ¼Q21vx +Q22vy +Q23vz

v0z ¼Q31vx +Q32vy +Q33vz

(4.28)

In matrix notation, this may be written

v0f g¼ Q½ � vf g (4.29)
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where

v0f g¼
v0x

v0y

v0z

8>><>>:
9>>=>>; vf g¼

vx

vy

vz

8>><>>:
9>>=>>; (4.30)

and [Q] is given by Eq. (4.23). Eq. (4.28) (or Eq. 4.29) shows how to transform the components of the

vector v in the unprimed system into its components in the primed system. The inverse transformation,

from primed to unprimed, is found by multiplying Eq. (4.29) throughout by [Q]T:

Q½ �T v0f g¼ Q½ �T Q½ � vf g
But, according to Eq. (4.25), [Q][Q]T ¼ [1], so that

Q½ �T v0f g¼ 1½ � vf g
Since [1]{v} ¼ {v}, we obtain

vf g¼ Q½ �T v0f g (4.31)

Therefore, to go from the unprimed system to the primed system we use [Q], and in the reverse

direction—from primed to unprimed—we use [Q]T.
EXAMPLE 4.4
In Fig. 4.10, the x0 axis is defined by the line segment O0P. The x0y0 plane is defined by the intersecting line segments O0P
and O0Q. The z0 axis is normal to the plane of O0P and O0Q and obtained by rotating O0P toward O0Q and using the right-

hand rule.

(a) Find the direction cosine matrix [Q].

(b) If vf g¼ 2 4 6b cT , find {v0}.
(c) If v0f g¼ 2 4 6b cT , find {v}.

Solution
(a) Resolve the directed line segments O0P

�!
and O0Q

�!
into components along the unprimed system:

O0P
�!

¼ �5�3ð Þ̂i+ 5�1ð Þ̂j+ 4�2ð Þk̂¼�8̂i+ 4̂j+ 2k̂

O0Q
�!

¼ �6�3ð Þ̂i+ 3�1ð Þ̂j+ 5�2ð Þk̂¼�9̂i+ 2̂j + 3k̂
FIG. 4.10

Defining a unit triad from the coordinates of three noncollinear points, O0, P, and Q.
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Taking the cross product of O0P
!

into O0Q
!

yields a vector Z0, which lies in the direction of the desired positive z0

axis:

Z0 ¼O0P
!

�O0Q
!

¼ 8̂i+ 6̂j+ 20k̂

Taking the cross product of Z0 into O0P
!

then yields a vector Y0, which points in the positive y0 direction:

Y0 ¼Z0�O0P
!

¼�68̂i+ 176̂j+ 80k̂

Normalizing the vectors O0P
!

, Y0, and Z0 produces the î0, ĵ0, and k̂0 unit vectors, respectively. Thus

î0 ¼O0P
!

= O0P
!��� ���¼�0:8729̂i+ 0:4364̂j + 0:2182k̂

ĵ0 ¼Y0= Y0k k¼�0:3318̂i�0:8588̂j+ 0:3904k̂

k̂0 ¼Z0= Z0k k¼ 0:3578̂i+ 0:2683̂j + 0:8944k̂

The components of î0 , ĵ0, and k̂0 are the rows of the direction cosine matrix [Q]. Thus,

Q½ � ¼
�0:8729 0:4364 0:2182

�0:3318 �0:8588 0:3904

0:3578 0:2683 0:8944

24 35
(b)

v0f g¼ Q½ � vf g¼
�0:8729 0:4364 0:2182

�0:3318 �0:8588 0:3904

0:3578 0:2683 0:8944

24 35 2

4

6

8<:
9=; ) v0f g¼

1:309

�1:756

7:155

8<:
9=;

(c)

vf g¼ Q½ �T v0f g¼
�0:8729 �0:3318 0:3578

0:4364 �0:8588 0:2683

0:2182 0:3904 0:8944

24 35 2

4

6

8<:
9=; ) vf g¼

�0:9263

�0:9523

7:364

8<:
9=;
Let us consider the special case in which the coordinate transformation involves a rotation about

only one of the coordinate axes, as shown in Fig. 4.11. If the rotation is about the x axis, then according
to Eqs. (4.18) and (4.23),

î0 ¼ î

ĵ0 ¼ ĵ0 � ĵ
� 

ĵ+ ĵ0 � k̂
� 

k̂¼ cosϕĵ+ cos 90°�ϕð Þk̂¼ cosϕĵ+ sinϕk̂

k̂0 ¼ k̂0 � ĵ
� 

ĵ+ k̂0 � k̂� �
k̂¼ cos 90°+ϕð Þ̂j+ cosϕk̂¼�sinϕĵ+ cosϕk̂

or

î0

ĵ0

k̂0

8><>:
9>=>;¼

1 0 0

0 cosϕ sinϕ

0 �sinϕ cosϕ

24 35 î

ĵ

k̂

8><>:
9>=>;

The transformation from the xyz coordinate system to the x0y0z0 system having a common x axis is given
by the direction cosine matrix on the right. Since this is a rotation through the angle ϕ about the x axis,
we denote this matrix by [R1(ϕ)], in which the subscript 1 stands for axis 1 (the x axis). Thus,



FIG. 4.12

Rotation about the y axis.

FIG. 4.11

Rotation about the x axis.

2014.5 COORDINATE TRANSFORMATION
R1 ϕð Þ½ � ¼
1 0 0

0 cosϕ sinϕ
0 �sinϕ cosϕ

24 35 (4.32)

If the rotation is about the y axis, as shown in Fig. 4.12, then Eq. (4.18) yields

î0 ¼ î0 � î
� ̂

i+ î0 � k̂
� 

k̂¼ cos ϕ̂i+ cos ϕ+ 90°ð Þk̂¼ cos ϕ̂i� sinϕk̂

ĵ0 ¼ ĵ

k̂0 ¼ k̂0 � î
� ̂

i+ k̂0 � k̂� �
k̂¼ cos 90°�ϕð Þ̂i+ cosϕk̂¼ sin ϕ̂i+ cosϕk̂

or, more compactly,

î0

ĵ0

k̂0

8<:
9=;¼

cosϕ 0 �sinϕ
0 1 0

sinϕ 0 cosϕ

24 35 î

ĵ
k̂

8<:
9=;



FIG. 4.13

Rotation about the z axis.
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We represent this transformation between two Cartesian coordinate systems having a common y axis
(axis 2) as [R2(ϕ)]. Therefore,

R2 ϕð Þ½ � ¼
cosϕ 0 �sinϕ
0 1 0

sinϕ 0 cosϕ

24 35 (4.33)

Finally, if the rotation is about the z axis, as shown in Fig. 4.13, then we have from Eq. (4.18) that

î0 ¼ î0 � î
� ̂

i+ î0 � ĵ
� 

ĵ¼ cos ϕ̂i+ cos 90°�ϕð Þ̂j¼ cos ϕ̂i+ sinϕĵ

ĵ0 ¼ ĵ0 � î
� ̂

i+ ĵ0 � ĵ
� 

ĵ¼ cos 90°+ϕð Þ̂i+ cosϕĵ¼�sin ϕ̂i+ cosϕĵ

k̂0 ¼ k̂

or

î0

ĵ0

k̂0

8<:
9=;¼

cosϕ sinϕ 0

�sinϕ cosϕ 0

0 0 1

24 35 î
ĵ

k̂

8<:
9=;

In this case, the rotation is around axis 3, the z axis, so

R3 ϕð Þ½ � ¼
cosϕ sinϕ 0

�sinϕ cosϕ 0

0 0 1

24 35 (4.34)

The single transformation between the xyz and x0y0z0 Cartesian coordinate frames can be viewed as a

sequence of three coordinate transformations, starting with xyz:

xyz !z}|{α

x1y1z1 !z}|{β x2y2z2 !z}|{γ x0y0z0
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Each coordinate system is obtained from the previous one by means of a rotation about one of the axes

of the previous frame. Two successive rotations cannot be about the same axis. The first rotation angle

is α, the second one is β and the final one is γ. In specific applications, the Greek letters that are tra-

ditionally used to represent the three rotations are not α, β, and γ. For those new to the subject, however,

it might initially be easier to remember that the first, second, and third rotation angles are represented

by the first, second, and third letters of the Greek alphabet (αβγ). Each one of the three transformations

has the direction cosine matrix [Ri(ϕ)], where i¼ 1, 2, or 3 andϕ¼ α, β or γ. The sequence of three such
elementary rotations relating two different Cartesian frames of reference is called an Euler angle se-

quence. Each of the 12 possible Euler angle sequences has a direction cosine matrix [Q], which is the

product of three elementary rotation matrices. The six symmetric Euler sequences are those that begin

and end with rotation about the same axis:

R1 γð Þ½ � R2 βð Þ½ � R1 αð Þ½ � R1 γð Þ½ � R3 βð Þ½ � R1 αð Þ½ �
R2 γð Þ½ � R1 βð Þ½ � R2 αð Þ½ � R2 γð Þ½ � R3 βð Þ½ � R2 αð Þ½ �
R3 γð Þ½ � R1 βð Þ½ � R3 αð Þ½ � R3 γð Þ½ � R2 βð Þ½ � R3 αð Þ½ �

(4.35)

The asymmetric Euler sequences involve rotations about all three axes:

R1 γð Þ½ � R2 βð Þ½ � R3 αð Þ½ � R1 γð Þ½ � R3 βð Þ½ � R2 αð Þ½ �
R2 γð Þ½ � R3 βð Þ½ � R1 αð Þ½ � R2 γð Þ½ � R1 βð Þ½ � R3 αð Þ½ �
R3 γð Þ½ � R1 βð Þ½ � R2 αð Þ½ � R3 γð Þ½ � R2 βð Þ½ � R1 αð Þ½ �

(4.36)

One of the symmetric sequences that has frequent application in space mechanics is the “classical”

Euler angle sequence,

Q½ � ¼ R3 γð Þ½ � R1 βð Þ½ � R3 αð Þ½ � 0� α< 360° 0� β� 180° 0� γ< 360°ð Þ (4.37)

which is is underlined in Eq. (4.35) and illustrated in Fig. 4.14. The first rotation is around the z axis,
through the angle α. It rotates the x and y axes into the x1 and y1 directions. Viewed down the z axis, this
rotation appears as shown in the insert at the top of the figure. The direction cosine matrix associated

with this rotation is [R3(α)]. The subscript means that the rotation is around the current (3) direction,

which was the z axis (and is now the z1 axis). The second rotation, represented by [R1(β)], is around the
x1 axis through the angle β required to rotate the z1 axis into the z2 axis, which coincides with the target
z0 axis. Simultaneously, y1 rotates into y2. The insert in the lower right of Fig. 4.14 shows how this

rotation appears when viewed from the x1 direction. [R3(γ)] represents the third and final rotation,

which rotates the x2 axis (formerly the x1 axis) and the y2 axis through the angle γ around the z0 axis,
so that they become aligned with the target x0 and y0 axes, respectively. This rotation appears from the z0

direction as shown in the insert on the left of Fig. 4.14.

Applying the transformation in Eq. (4.37) to the xyz components {b}x of the vector

b¼ bx̂i + by ĵ+ bzk̂ yields the components of the same vector in the x0y0z0 frame

bf gx0 ¼ Q½ � bf gx b¼ bx0 î
0 + by0 ĵ0 + bz0 k̂0

� 
That is

Q½ � bf gx ¼ R3 γð Þ½ � R1 βð Þ½ � R3 αð Þ½ � bf gx
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{bf gx1

¼ R3 γð Þ½ � R1 βð Þ½ � bf gx1
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{bf gx2

¼ R3 γð Þ½ � bf gx2
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{bf gx0



FIG. 4.14

Classical Euler sequence of three rotations transforming xyz into x0y0z0. The “eye” viewing down an axis sees the

illustrated rotation about that axis.
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The column vector {b}x1 contains the components of the vector b b¼ bx1 î1 + by1 ĵ1 + bz1 k̂1

� 
in the

first intermediate frame x1y1z1. The column vector {b}x2 contains the components of the vector

b b¼ bx2 î2 + by2 ĵ2 + bz2 k̂2

� 
in the second intermediate frame x2y2z2. Finally, the column vector

{b}x0 contains the components in the target x0y0z0 frame.

Substituting Eqs. (4.32) and (4.34) into Eq. (4.37) yields the direction cosine matrix of the classical

Euler sequence [R3(γ)][R1(β)][R3(α)],

Q½ � ¼
�sinαcosβ sinγ + cosαcosγ cosαcosβ sinγ + sinαcosγ sinβ sinγ

�sinαcosβ sinγ� cosαcosγ cosαcosβ sinγ� sinαcosγ sinβcosγ

sinαsinβ �cosαsinβ cosβ

2664
3775 (4.38)
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From this we can see that, given a direction cosine matrix [Q], the angles of the classical Euler sequence

may be found as follows:

tanα¼ Q31

�Q32

cosβ¼Q33 tanγ¼Q13

Q23

Classical Euler angle sequenceð Þ (4.39)

We see that β ¼ cos�1Q33. There is no quadrant uncertainty because the principal values of the arc-

cosine function coincide with the range of the angle β given in Eq. (4.37) (0° to 180°). Finding α
and γ involves computing the inverse tangent (arctan), whose principal values lie in the range �90°
to +90°, whereas the range of both α and γ is 0° to 360°. Placing tan�1(y/x) in the correct quadrant

is accomplished by taking into consideration the signs of x and y. The MATLAB function

atan2d_0_360.m in Appendix D.19 does just that.

ALGORITHM 4.3
Given the direction cosine matrix

Q½ � ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

24 35
find the angles αβγ of the classical Euler rotation sequence. This algorithm is implemented by the

MATLAB function dcm_to_euler.m in Appendix D.20.

1. α¼ tan�1 �Q31=Q32ð Þ 0� α< 360°ð Þ
2. β ¼ cos�1Q33 (0 � β � 180°)

3. γ¼ tan�1 Q13=Q23ð Þ 0� γ< 360°ð Þ
EXAMPLE 4.5
If the direction cosine matrix for the transformation from xyz to x0y0z0 is

Q½ � ¼
0:64050 0:75309 �0:15038
0:76737 �0:63530 0:086823

�0:30152 �0:17101 �0:98481

24 35
find the angles α, β, and γ of the classical Euler sequence.

Solution
We should first verify that the matrix is indeed orthogonal by checking Eq. (4.25) (or Eq. 4.26).

Q½ �T Q½ � ¼
1 �3:5042 10�7

� �
4:2773 10�7

� �
�3:5042 10�7

� �
1 3:4866 10�6

� �
4:2773 10�7

� �
3:4866 10�6

� �
1

24 35
The off-diagonal elements should all be zero, but they are not due to truncation of the numbers in the original matrix. Since

their magnitudes are very much smaller than unity, we may deem [Q] as very close to being orthogonal.

Use Algorithm 4.3.

Step 1:

α¼ tan�1 Q31

�Q32

� �
¼ tan�1 �0:030152

� �0:17101½ �
� �
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Since the numerator is negative and the denominator is positive, α must lie in the fourth quadrant. Thus

tan�1 �0:030152

� �0:17101½ �
� �

¼ tan�1 �0:17632ð Þ¼�10° ) α¼ 350°

Step 2:

β¼ cos�1Q33 ¼ cos�1 �0:98481ð Þ¼ 170:0°

Step 3:

γ¼ tan�1Q13

Q23

¼ tan�1 �0:15038

0:086823

� �
The numerator is negative and the denominator is positive, so γ lies in the fourth quadrant,

tan�1 �0:15038

0:086824

� �
¼ tan�1 �0:17320ð Þ¼�60° ) γ¼ 300°
Another commonly used set of Euler angles for rotating xyz into alignment with x0y0z0 is the asym-

metric “yaw, pitch, and roll” sequence underlined in Eq. 4.36,

Q½ � ¼ R1 γð Þ½ � R2 βð Þ½ � R3 αð Þ½ � 0� α< 360° �90°< β< 90° 0� γ< 360°ð Þ (4.40)

It is illustrated in Fig. 4.15.

The first rotation [R3(α)] is about the z axis through the angle α. It carries the y axis into the y1 axis
normal to the plane of z and x0, while rotating the x axis into x1. This rotation appears as shown in the

insert at the top right of Fig. 4.15. The second rotation [R2(β)], shown in the auxiliary view at the bot-

tom right of the figure, is a pitch around y1 through the angle β. This carries the x1 axis into x2, lined up
with the target x0 direction, and rotates the original z axis (now z1) into z2. The final rotation [R1(γ)] is a
roll through the angle γ around the x2 axis so as to carry y2 (originally y1) and z2 into alignment with the

target y0 and z0 axes.
Substituting Eqs. (4.32)–(4.34) into Eq. (4.40) yields the direction cosine matrix for the yaw, pitch,

and roll sequence,

Q½ � ¼
cosαcosβ sinαcosβ �sinβ

cosαsinβ sinγ� sinαcosβ sinαsinβ sinγ + cosαcosγ cosβ sinγ

cosαsinβcosγ + sinαsinγ sinαsinβcosγ� cosαsinγ cosβcosγ

2664
3775 (4.41)

From this it is apparent that

tanα¼Q12

Q11

sinβ¼�Q13 tanγ¼Q23

Q33

Yaw, pitch and roll sequenceð Þ (4.42)

For β we simply compute sin�1(�Q13). There is no quadrant uncertainty because the principal values

of the arcsine function coincide with the range of the pitch angle (�90° < β < 90°). Finding α and γ
involves computing the inverse tangent, so we must once again be careful to place the results of these

calculations in the range 0°–360°. As pointed out previously, the MATLAB function atan2d_0_360.m
in Appendix D.19 takes care of that.



FIG. 4.15

Yaw, pitch, and roll sequence transforming xyz into x0y0z0.
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ALGORITHM 4.4
Given the direction cosine matrix

Q½ � ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

2664
3775
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Find the angles αβγ of the yaw, pitch, and roll sequence. This algorithm is implemented by the

MATLAB function dcm_to_ypr.m in Appendix D.21.

1. α¼ tan�1ðQ12=Q11Þ 0� α< 360°ð Þ
2. β¼ sin�1 �Q13ð Þ �90°< β< 90°ð Þ
3. γ¼ tan�1ðQ23=Q33Þ 0� γ< 360°ð Þ
EXAMPLE 4.6
If the direction cosine matrix for the transformation from xyz to x0y0z0 is the same as it was in Example 4.5,

Q½ � ¼
0:64050 0:75309 �0:15038

0:76737 �0:63530 0:086823

�0:30152 �0:17101 �0:98481

2664
3775

find the angles α, β, and γ of the yaw, pitch, and roll sequence.

Solution
Use Algorithm 4.4.

Step 1:

α¼ tan�1Q12

Q11

¼ tan�1 0:75309

0:64050

� �
Since both the numerator and the denominator are positive, α must lie in the first quadrant. Thus,

tan�1 0:75309

0:64050

� �
¼ tan�11:1758¼ 49:62°

Step 2:

β¼ sin�1 �Q13ð Þ¼ sin�1 � �0:15038ð Þ½ � ¼ sin�1 0:15038ð Þ¼ 8:649°

Step 3:

γ¼ tan�1Q23

Q33

¼ tan�1 0:086823

�0:98481

� �
The numerator is positive and the denominator is negative, so γ lies in the second quadrant,

tan�1 0:086823

�0:98481

� �
¼ tan�1 �0:088162ð Þ¼�5:0383° ) γ¼ 174:96°
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4.6 TRANSFORMATION BETWEEN GEOCENTRIC EQUATORIAL AND
PERIFOCAL FRAMES
The perifocal frame of reference for a given orbit was introduced in Section 2.10. Fig. 4.16 illustrates

the relationship between the perifocal and geocentric equatorial frames. Since the orbit lies in the xy
plane, the components of the state vector of a body relative to its perifocal reference are, according to

Eqs. (2.119) and (2.125),

r¼ xp̂ + yq̂¼ h2

μ

1

1 + ecosθ
cosθp̂ + sinθq̂ð Þ (4.43)

v¼ _xp̂+ _yq̂¼ μ

h
�sinθp̂ + e+ cosθð Þq̂½ � (4.44)

In matrix notation, these may be written

rf gx ¼
h2

μ

1

1 + ecosθ

cosθ
sinθ
0

8<:
9=; (4.45)

vf gx ¼
μ

h

�sinθ
e+ cosθ

0

8<:
9=; (4.46)

The subscript x is shorthand for “the xyz coordinate system” and is used to indicate that the components

of these vectors are given in the perifocal frame, as opposed to, say, the geocentric equatorial frame

(Eqs. 4.2 and 4.3).
FIG. 4.16

Perifocal x y zð Þ and geocenric equatorial (XYZ) frames.
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The transformation from the geocentric equatorial frame into the perifocal frame may be accom-

plished by the classical Euler angle sequence [R3(γ)][R1(β)][R3(α)] in Eq. (4.37) (see Fig. 4.7). In this
case, the first rotation angle isΩ, the right ascension of the ascending node. The second rotation is i, the
orbital inclination angle, and the third rotation angle is ω, the argument of perigee. Ω is measured

around the Z axis of the geocentric equatorial frame, i is measured around the node line, and ω is mea-

sured around the z axis of the perifocal frame. Therefore, the direct cosine matrix Q½ �Xx of the trans-
formation from XYZ to x y z is

Q½ �Xx ¼ R3 ωð Þ½ � R1 ið Þ½ � R3 Ωð Þ½ � (4.47)

From Eq. (4.38) we get

Q½ �Xx ¼
�sinΩcos isinω+ cosΩcosω cosΩcos isinω+ sinΩcosω sin isinω
�sinΩcos icosω� cosΩsinω cosΩcos icosω� sinΩsinω sin icosω

sinΩsin i �cosΩsin i cos i

24 35 (4.48)

Remember that this is an orthogonal matrix, which means that the inverse transformation Q½ �xX from

x y z to XYZ, is given by Q½ �xX ¼ Q½ �Xx
� �T

, or

Q½ �xX ¼
�sinΩcos isinω + cosΩcosω �sinΩcos icosω� cosΩsinω sinΩsin i
cosΩcos isinω + sinΩcoω cos cos icosω� sinΩsinω �cosΩsin i

sin isinω sin icosω cos i

24 35 (4.49)

If the components of the state vector are given in the geocentric equatorial frame,

rf gX ¼
X
Y
Z

8<:
9=; vf gX ¼

vX
vY
vZ

8<:
9=;

then the components in the perifocal frame are found by carrying out the matrix multiplications

rf gx ¼
x
y
0

8<:
9=;¼ Q½ �Xx rf gX vf gx ¼

_x
_y
0

8<:
9=;¼ Q½ �Xx vf gX (4.50)

Likewise, the transformation from perifocal to geocentric equatorial components is

rf gX ¼ Q½ �xX rf gx vf gX ¼ Q½ �xX vf gx (4.51)
ALGORITHM 4.5
Given the orbital elements h, e, i, Ω, ω, and θ, compute the state vectors r and v in the geocentric

equatorial frame of reference. A MATLAB implementation of this procedure is listed in Appendix

D.22. This algorithm can be applied to orbits around other planets or the sun.

1. Calculate position vector rf gx in perifocal coordinates using Eq. (4.45).

2. Calculate velocity vector vf gx in perifocal coordinates using Eq. (4.46).

3. Calculate the matrix Q½ �xX of the transformation from perifocal to geocentric equatorial

coordinates using Eq. (4.49).

4. Transform rf gx and vf gx into the geocentric frame by means of Eq. (4.51).



2114.6 GEOCENTRIC EQUATORIAL AND PERIFOCAL FRAMES
EXAMPLE 4.7
For a given earth orbit, the elements are h ¼ 80, 000km2/s, e ¼ 1.4, i ¼ 30°, Ω ¼ 40°, ω ¼ 60°, and θ ¼ 30°. Using Al-

gorithm 4.5, find the state vectors r and v in the geocentric equatorial frame.

Solution
Step 1:

rf gx ¼
h2

μ

1

1 + ecosθ

cosθ
sinθ
0

8<:
9=;¼ 80,0002

398,600

1

1 + 1:4cos30°

cos30°
sin30°

0

8<:
9=;¼

6285:0
3628:6

0

8<:
9=; kmð Þ

Step 2:

vf gx ¼
μ

h

�sinθ
e+ cosθ

0

8<:
9=;¼ 398,600

80,000

�sin30°
1:4 + cos30°

0

8<:
9=;¼

�2:4913
11:290

0

8<:
9=; km=sð Þ

Step 3:

Q½ �Xx ¼
cosω sinω 0

�sinω cosω 0

0 0 1

264
375 1 0 0

0 cos i sin i

0 �sin i cos i

264
375 cosΩ sinΩ 0

�sinΩ cosΩ 0

0 0 1

264
375

¼
cos60° sin60° 0

�sin60° cos60° 0

0 0 1

264
375 1 0 0

0 cos30° sin30°

0 �sin 30° cos30°

264
375 cos40° sin40° 0

�sin40° cos40° 0

0 0 1

264
375

¼
�0:099068 0:89593 0:43301

�0:94175 �0:22496 0:25000

0:32139 �0:38302 0:86603

264
375

This is the direction cosine matrix for XYZ! x y z. The transformation matrix for x y z!XYZ is the transpose,

Q½ �xX ¼
�0:099068 �0:94175 0:32139

0:89593 �0:22496 �0:38302

0:43301 0:25000 0:86603

24 35
Step 4:

The geocentric equatorial position vector is

rf gX ¼ Q½ �xX rf gx

¼
�0:099068 �0:94175 0:32139

0:89593 �0:22496 �0:38302

0:43301 0:25 0:86603

264
375 6285:0

3628:6

0

8><>:
9>=>;¼

�4040

4815

3629

8><>:
9>=>; kmð Þ

(a)

whereas the geocentric equatorial velocity vector is

vf gX ¼ Q½ �xX vf gx

¼
�0:099068 �0:94175 0:32139

0:89593 �0:22496 �0:38302

0:43301 0:25 0:86603

264
375 �2:4913

11:290

0

8><>:
9>=>;¼

�10:39

�4:772

1:744

8><>:
9>=>; km=sð Þ

The state vectors r and v are shown in Fig. 4.17. By holding all the orbital parameters except the true anomaly fixed and

allowing θ to take on a range of values, we generate a sequence of position vectors rf gx from Eq. (4.45). Each of these is



FIG. 4.17

A portion of the hyperbolic trajectory of Example 4.7.
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projected into the geocentric equatorial frame as in Eq. (a), using repeatedly the same transformation matrix Q½ �xX . By
connecting the end points of all the position vectors {r}X, we trace out the trajectory illustrated in Fig. 4.17.
4.7 EFFECTS OF THE EARTH’S OBLATENESS
The earth, like all planets with comparable or higher rotational rates, bulges out at the equator because

of centrifugal force. The earth’s equatorial radius is 21 km (13 miles) larger than the polar radius. This

flattening at the poles is called oblateness, which is defined as follows:

Oblateness¼Equatorial radius�Polar radius

Equatorial radius

The earth is an oblate spheroid, lacking the perfect symmetry of a sphere (a basketball can be made an

oblate spheroid by sitting on it). This lack of symmetry means that the force of gravity on an orbiting

body is not directed toward the center of the earth. Although the gravitational field of a perfectly spher-

ical planet depends only on the distance from its center, oblateness causes a variation also with latitude

(i.e., the angular distance from the equator (or pole)). This is called a zonal variation. The dimension-

less parameter that quantifies the major effects of oblateness on orbits is J2, the second zonal harmonic.

J2 is not a universal constant. Each planet has its own value, as illustrated in Table 4.3, which lists

variations of J2 as well as oblateness.
Table 4.3 Oblateness and second zonal harmonics

Planet Oblateness J2

Mercury 0.000 60(10�6)

Venus 0.000 4.458(10�6)

Earth 0.003353 1.08263(10�3)

Mars 0.00648 1.96045(10�3)

Jupiter 0.06487 14.736(10�3)

Saturn 0.09796 16.298(10�3)

Uranus 0.02293 3.34343(10�3)

Neptune 0.01708 3.411(10�3)

(Moon) 0.0012 202.7(10�6)
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Oblateness causes the right ascension Ω and the argument of periapsis ω to vary significantly with

time. In Chapter 10, we will show that the average rates of change of these two angles are

_Ω¼� 3

2

ffiffiffi
μ

p
J2R

2

1�e2ð Þ2a7=2

" #
cos i (4.52)

and

_ω¼� 3

2

ffiffiffi
μ

p
J2R

2

1�e2ð Þ2a7=2

" #
5

2
sin2i�2

� �
(4.53)

where R and μ are the radius and gravitational parameter of the planet, respectively; a and e are the

semimajor axis and eccentricity of the orbit, respectively; and i is the orbit’s inclination.
In Eq. (4.52), observe that if 0 � i < 90°, then _Ω< 0. That is, for prograde orbits, the node line

drifts westward. Since the right ascension of the node continuously decreases, this phenomenon is

called regression of the nodes. If 90° < i � 180°, we see that _Ω> 0. The node line of retrograde orbits

therefore advances eastward. For polar orbits (i ¼ 90°), the node line is stationary.

In Eq. (4.53), we see that if 0° � i < 63.4° or 116.6° < i � 180°, then _ω is positive, which means

the perigee advances in the direction of the motion of the satellite (hence, the name “advance of

perigee” for this phenomenon). If 63.4° < i � 116.6°, the perigee regresses, moving opposite to the

direction of motion. i ¼ 63.4° and i ¼ 116.6° are the critical inclinations at which the apse line does

not move.

Observe that the coefficient of the trigonometric terms in Eqs. (4.52) and (4.53) are identical, so that

_ω¼ _Ω
5=2ð Þsin2i�2

cos i
(4.54)

Fig. 4.18 is a plot of Eqs. (4.52) and (4.53) for several circular low earth orbits. The effect of oblateness

on both _Ω and _ω is greatest at low inclinations, for which the orbit is near the equatorial bulge for longer

portions of each revolution. The effect decreases with increasing semimajor axis because the satellite
FIG. 4.18

Regression of the node and advance of perigee for nearly circular orbits of altitudes 300–1100 km.
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becomes farther from the bulge and its gravitational influence. Obviously, _Ω¼ _ω¼ 0 if J2 ¼ 0 (no

equatorial bulge).

It turns out (Chapter 10) that the J2 effect produces zero time-averaged variations of the inclination,

eccentricity, angular momentum, and semimajor axis.
EXAMPLE 4.8
A spacecraft is in a 280 km by 400 km orbit with an inclination of 51.43°. Find the rates of node regression and perigee

advance.

Solution
The perigee and apogee radii are

rp ¼ 6378 + 280¼ 6658km ra ¼ 6378 + 400¼ 6778km

Therefore, the eccentricity and semimajor axis are

e¼ ra� rp
ra + rp

¼ 0:008931 a¼ ra + rp
2

¼ 6718km

From Eq. (4.52), we obtain the rate of node line regression.

_Ω¼� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p �0:0010826�63782

1�0:00893122
� �2�67187=2

" #
cos51:43°¼�1:0465 10�6

� �
rad=s

or

_Ω¼ 5:181degrees per day to the west

From Eq. 4.54,

_ω ¼�1:0465 10�6
� � � 5

2
sin251:43°�2

� �
¼ + 7:9193 10�7

� �
rad=s

or

_ω¼ 3:920degrees per day in the flight direction
The effect of orbit inclination on node regression and advance of perigee is taken advantage of for

two very important types of orbits. Sun-synchronous orbits are those whose orbital plane makes a con-

stant angle α with the radial from the sun, as illustrated in Fig. 4.19. For that to occur, the orbital plane

must rotate in inertial space with the angular velocity of the earth in its orbit around the sun, which is

360° per 365.26 days, or 0.9856° per day. With the orbital plane precessing eastward at this rate, the

ascending node will lie at a fixed local time. In the illustration, it happens to be 3 p.m. During every

orbit, the satellite sees any given swath of the planet under nearly the same conditions of daylight or

darkness day after day. The satellite also has a constant perspective on the sun. Sun-synchronous sat-

ellites, like the NOAA Polar-orbiting Operational Environmental Satellites and those of the Defense

Meteorological Satellite Program, are used for global weather coverage, while Landsat and the French

SPOT series are intended for high-resolution earth observation.



FIG. 4.19

Sun-synchronous orbit.
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EXAMPLE 4.9
A satellite is to be launched into a sun-synchronous circular orbit with a period of 100 min. Determine the required altitude

and inclination of its orbit.

Solution
We find the altitude z from the period relation for a circular orbit, Eq. (2.64):

T¼ 2πffiffiffi
μ

p RE + zð Þ3=2 ) 100�60¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p 6378 + zð Þ3=2 ) z¼ 758:63km

For a sun-synchronous orbit, the ascending node must advance at the rate

_Ω¼ 2π rad

365:26�24�3600s
¼ 1:991 10�7

� �
rad=s

Substituting this and the altitude into Eq. (4.47), we obtain,

1:991�10�7 ¼� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p �0:00108263�63782

1�02
� �2

6378+ 758:63ð Þ7=2

" #
cos i ) cos i¼�0:14658

Thus, the inclination of the orbit is

i¼ 98:43∘

This illustrates the fact that sun-synchronous orbits are very nearly polar orbits (i ¼ 90°).
If a satellite is launched into an orbit with an inclination of 63.4° (prograde) or 116.6° (retrograde),
then Eq. (4.53) shows that the apse line will remain stationary. The Russian space program made this a



FIG. 4.20

A typical Molniya orbit (to scale).
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key element in the design of the system of Molniya (“lightning”) communications satellites. All the

Russian launch sites are above 45° latitude, with the northernmost, Plesetsk, being located at

62.8°N. As we shall see in Chapter 6, launching a satellite into a geostationary orbit would involve

a costly plane change maneuver. Furthermore, recall from Example 2.4 that a geostationary satellite

cannot view effectively the far northern latitudes into which Russian territory extends.

The Molniya telecommunications satellites are launched from Plesetsk into 63° inclination orbits

having a period of 12 h. From Eq. (2.83), we conclude that the major axis of these orbits is 53,000 km

long. Perigee (typically 500 km altitude) lies in the southern hemisphere, while apogee is at an altitude

of 40,000 km (25,000 miles) above the northern latitudes, farther out than the geostationary satellites.

Fig. 4.20 illustrates a typical Molniya orbit. A Molniya “constellation” consists of eight satellites in

planes separated by 45°. Each satellite is above 30°N latitude for over 8 h, coasting toward and away

from apogee.
EXAMPLE 4.10
Determine the perigee and apogee for an earth satellite whose orbit satisfies all the following conditions: it is sun synchro-

nous, its argument of perigee is constant, and its period is 3 h.

Solution
The period determines the semimajor axis,

T¼ 2πffiffiffi
μ

p a3=2 ) 3 � 3600¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p a3=2 ) a¼ 10,560km
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For the apse line to be stationary, we know from Eq. (4.53) that i¼ 64.435° or i¼ 116.57°. However, an inclination of less
than 90° causes a westward regression of the node, whereas a sun-synchronous orbit requires an eastward advance, which i
¼ 116.57° provides. Substituting this, the semimajor axis and the _Ω in radians per second for a sun-synchronous orbit (cf.

Example 4.9) into Eq. (4.52), we get

1:991�10�7 ¼�3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p �0:0010826�63782

1�e2ð Þ2�10,5607=2
cos116:57° ) e¼ 0:3466

Now we can find the angular momentum from the period expression (Eq. 2.82)

T¼ 2π

μ2
hffiffiffiffiffiffiffiffiffiffiffiffi

1�e2
p
� �3

) 3 � 3600¼ 2π

398,6002
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�0:346552
p
� �3

) h¼ 60,850km2=s

Finally, to obtain the perigee and apogee radii, we use the orbit formula:

zp + 6378¼ h2

μ

1

1 + e
¼ 60,8602

398,600

1

1 + 0:34655
) zp ¼ 522:6km

za + 6378¼ h2

μ

1

1 + e
) za ¼ 7842km
EXAMPLE 4.11
Given the following state vector of a satellite in geocentric equatorial coordinates,

r¼�3670Î�3870Ĵ + 4400K̂km

v¼ 4:7Î�7:4Ĵ + 1K̂km=s

find the state vector after 4 days (96 h) of coasting flight, assuming that there are no perturbations other than the influence of

the earth’s oblateness on Ω and ω.

Solution
A time interval of 4 days is long enough for us to take into consideration not only the change in true anomaly, but also the

regression of the ascending node and the advance of perigee. First, wemust determine the orbital elements at the initial time

using Algorithm 4.2, which yields

h¼ 58,930km2=s

i¼ 39:687°

e¼ 0:42607 The orbit is an ellipseð Þ
Ω0 ¼ 130:32°

ω0 ¼ 42:373°

θ0 ¼ 52:404°

We use Eq. (2.71) to determine the semimajor axis,

a¼ h2

μ

1

1�e2
¼ 58,9302

398,600

1

1�0:42612
¼ 10,640km

so that, according to Eq. (2.83), the period is

T¼ 2πffiffiffi
μ

p a3=2 ¼ 10,928s
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From this we obtain the mean motion

n¼ 2π

T
¼ 0:00057495rad=s

The initial value E0 of eccentric anomaly is found from the true anomaly θ0 using Eq. (3.13a),

tan
E0

2
¼

ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ0
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:42607

1 + 0:42607

r
tan

52:404°
2

) E0 ¼ 0:60520rad

With E0, we use Kepler’s equation to calculate the time t0 since perigee at the initial epoch,

nt0 ¼E0�esinE0 ) 0:00057495t0 ¼ 0:60520�0:42607sin0:60520 ) t1 ¼ 631:00s

Now we advance the time to tf, that of the final epoch, given as 96 h later. That is, Δt ¼ 345,600 s, so that

tf ¼ t1 +Δt¼ 631:00 + 345,600¼ 346,230s

The number of periods nP since passing perigee in the first orbit is

nP ¼ tf
T
¼ 346,230

10,928
¼ 31:682

From this we see that the final epoch occurs in the 32nd orbit, whereas t0 was in orbit 1. Time since passing perigee in the

32nd orbit, which we will denote t32, is

t32 ¼ 31:682�31ð ÞT ) t32 ¼ 7455:7s

The mean anomaly corresponding to that time in the 32nd orbit is

M32 ¼ nt32 ¼ 0:00057495�7455:7¼ 4:2866rad

Kepler’s equation yields the eccentric anomaly:

E32�esinE32 ¼M32

E32�0:42607sinE32 ¼ 4:2866
E32 ¼ 3:9721rad Algorithm3:1ð Þ

The true anomaly follows in the usual way,

tan
θ32
2

¼
ffiffiffiffiffiffiffiffiffiffi
1 + e

1�e

r
tan

E32

2
) θ32 ¼ 211:25°

At this point, we use the newly found true anomaly to calculate the state vector of the satellite in perifocal coordinates.

Thus, from Eq. (4.43)

r¼ rcosθ32p̂+ r sinθ32q̂¼�11,714p̂�7108:8q̂ kmð Þ
or, in matrix notation,

rf gx ¼
�11,714

�7108:8
0

8<:
9=; kmð Þ

Likewise, from Eq. (4.44),

v¼ μ

h
sinθ32p̂+

μ

h
e + cosθ32ð Þq̂¼ 3:5093p̂�2:9007q̂ km=sð Þ

or

vf gx ¼
3:5093

�2:9007
0

8<:
9=; km=sð Þ
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Before we can project r and v into the geocentric equatorial frame, we must update the right ascension of the node and

the argument of perigee. The regression rate of the ascending node is

_Ω¼� 3

2

ffiffiffi
μ

p
J2R

2

1�e2ð Þ2a7=2

" #
cos i¼�3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p �0:00108263�63782

1�0:426072
� �2�10,6447=2

cos39:69°

¼�3:8514�10�7 rad=s

or

_Ω¼�2:2067�10�5 deg=s

Therefore, right ascension at epoch in the 32nd orbit is

Ω32 ¼Ω0 + _ΩΔt¼ 130:32 + �2:2067�10�5
� ��345,600¼ 122:70°

Likewise, the perigee advance rate is

_ω¼� 3

2

ffiffiffi
μ

p
J2R

2

1�e2ð Þ2a7=2

" #
5

2
sin2i�2

� �
¼ 4:9072�10�7 rad=s¼ 2:8116�10�5 deg=s

which means the argument of perigee at epoch in the 32nd orbit is

ω32 ¼ω0 +ωΔt¼ 42:373 + 2:8116�10�5�345,600¼ 52:090°

Substituting the updated values of Ω and ω, together with the inclination i, into Eq. (4.47) yields the updated direction
cosine matrix from geocentric equatorial to the perifocal frame,

Q½ �Xx ¼
cosω32 sinω32 0

�sinω32 cosω32 0

0 0 1

264
375 1 0 0

0 cos i sin i

0 �sin i cos i

264
375 cosΩ32 sinΩ32 0

�sinΩ32 cosΩ32 0

0 0 1

264
375

¼
cos52:09° sin52:09° 0

�sin52:09° cos52:09° 0

0 0 1

264
375 �

1 0 0

0 cos39:687° sin39:687°

0 �sin39:687° cos39:687°

264
375 �

cos122:70° sin122:70° 0

�sin122:70° cos122:70° 0

0 0 1

264
375

or

Q½ �Xx ¼
�0:84285 0:18910 0:50383
0:028276 �0:91937 0:39237
0:53741 0:34495 0:76955

24 35
For the inverse transformation, from perifocal to geocentric equatorial, we need the transpose of this matrix,

Q½ �xX ¼
�0:84285 0:18910 0:50383
0:028276 �0:91937 0:39237
0:53741 0:34495 0:76955

24 35T

¼
�0:84285 0:028276 0:53741
0:18910 �0:91937 0:34495
0:50383 0:39237 0:76955

24 35
Thus, according to Eq. 4.51, the final state vector in the geocentric equatorial frame is

rf gX ¼ Q½ �xX rf gx ¼
�0:84285 0:028276 0:53741
0:18910 �0:91937 0:34495
0:50383 0:39237 0:76955

24 35 �11,714

�7108:8
0

8<:
9=;¼

9672

4320

�8691

8<:
9=; kmð Þ

vf gX ¼ Q½ �xX vf gx ¼
�0:84285 0:028276 0:53741
0:18910 �0:91937 0:34495
0:50383 0:39237 0:76955

24 35 3:5093
�2:9007
0

8<:
9=;¼

�3:040
3:330
0:6299

8<:
9=; km=sð Þ

or, in vector notation,

r¼ 9672Î + 4320Ĵ�8691K̂ kmð Þ v¼�3:040Î + 3:330Ĵ + 0:6299K̂ km=sð Þ



FIG. 4.21

The initial and final position vectors.
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The two orbits are plotted in Fig. 4.21.
4.7.1 GROUND TRACKS
The projection of a satellite’s orbit onto the earth’s surface is called its ground track. At a given instant,

we can imagine a radial line drawn outward from the center of the earth to the satellite. Where this line

pierces the earth’s spherical surface is a point on the ground track. We locate this point by giving its

latitude and longitude relative to the earth. As the satellite moves around the earth, the trace of these

points is its ground track.

Because the satellite reaches a maximum and minimum latitude (“amplitude”) during each orbit,

while passing over the equator twice, on a Mercator projection, the ground track of a satellite in low

earth orbit often resembles a sine curve. If the earth did not rotate, there would be just one sinusoid-like

track, traced repeatedly as the satellite orbits the earth. However, the earth rotates eastward beneath the

satellite orbit at 15.04 deg/h, so the ground track advances westward at that rate. Fig. 4.22 shows about

two and a half orbits of a satellite, with the beginning and end of this portion of the ground track labeled.

The distance between two successive crossings of the equator is measured to be 23.2°, which is the

amount of earth rotation in one orbit of the spacecraft. Therefore, the ground track reveals that the pe-

riod of the satellite is

T¼ 23:2°
15:04°=h

¼ 1:54h¼ 92:6min

This is a typical low earth orbital period.

Given a satellite’s position vector r, we can use Algorithm 4.1 to find its right ascension and dec-

lination relative to the geocentric equatorial XYZ frame, which is fixed in space. The earth rotates at an

angular velocity ωE relative to this system. Let us attach an x0y0z0 Cartesian coordinate system to the



FIG. 4.22

Ground track of a satellite.
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earth with its origin located at the earth’s center, as illustrated in Fig. 1.18. The x0y0 axes lie in the equa-
torial plane and the z0 axis points north. (In Fig. 1.18 the x0 axis is directed toward the prime meridian,

which passes through Greenwich, England.) The XYZ and x0y0z0 axes differ only by the angle θ between
the stationary X axis and the rotating x0 axis. If the X and x0 axes line up at time t0, then at any time t
thereafter the angle θ will be given by ωE(t � t0). The transformation from XYZ to x0y0z0 is represented
by the elementary rotation matrix (recall Eq. 4.34),

R3 θð Þ½ � ¼
cosθ sinθ 0

�sinθ cosθ 0

0 0 1

24 35 θ¼ωE t� t0ð Þ (4.55)

Thus, if the components of the position vector r in the inertial XYZ frame are given by {r}X, its com-

ponents {r}x0 in the rotating, earth-fixed x0y0z0 frame are

rf gx0 ¼ R3 θð Þ½ � rf gX (4.56)

Knowing {r}x0, we use Algorithm 4.1 to determine the right ascension (longitude east of x0) and dec-

lination (latitude) in the earth-fixed system. These points are usually plotted on a rectangular Mercator

projection of the earth’s surface, as in Fig. 4.22.

ALGORITHM 4.6
Given the initial orbital elements (h, e, a, T, i, ω0,Ω0, and θ0) of a satellite relative to the geocentric
equatorial frame, compute the right ascension α and declination δ relative to the rotating earth after
a time interval Δt. This algorithm is implemented in MATLAB as the script ground_track.m in

Appendix D.23.

1. Compute _Ω and _ω from Eqs. (4.52) and (4.53).
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2. Calculate the initial time t0 (time since perigee passage):
a. Find the eccentric anomaly E0 from Eq. (3.13b).

b. Find the mean anomaly M0 from Eq. (3.14).

c. Find t0 from Eq. (3.15).
3. At time t ¼ t0 + Δt, calculate α and δ.

a. Calculate the true anomaly:

i. Find M from Eq. (3.8).

ii. Find E from Eq. (3.14) using Algorithm 3.1.

iii. Find θ from Eq. (3.13a).

b. Update Ω and ω: Ω¼Ω0 + _ΩΔt ω¼ω0 + _ωΔt .
c. Find {r}X using Algorithm 4.5.

d. Find {r}x0 using Eqs. (4.55) and (4.56).

e. Use Algorithm 4.1 to compute α and δ from {r}x0.
4. Repeat Step 3 for additional times (t ¼ t0 + 2Δt, t ¼ t0 + 3Δt, etc.).
EXAMPLE 4.12
An earth satellite has the following orbital parameters:

rp ¼ 6700km Perigee

ra ¼ 10,000km Apogee

θ0 ¼ 230° True anomaly

Ω0 ¼ 270° Right ascension of the ascending node

i0 ¼ 60° Inclination

ω0 ¼ 45° Argument of perigee

Calculate the right ascension (longitude east of x0) and declination (latitude) relative to the rotating earth 45 min later.

Solution
First, we compute the semimajor axis a, eccentricity e, the angular momentum h, the semimajor axis a, and the period T. For
the semimajor axis, we recall that

a¼ rp + ra
2

¼ 6700 + 10,000

2
¼ 8350km

From Eq. (2.84) we get the eccentricity,

e¼ ra� rp
ra + rp

¼ 10,000�6700

10,000 + 6700
¼ 0:19760

Eq. (2.50) yields the angular momentum

h¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μrp 1 + eð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600 � 6700 � 1 + 0:19760ð Þ

p
¼ 56,554km2=s

Finally, we obtain the period from Eq. (2.83),

T¼ 2πffiffiffi
μ

p a3=2 ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p 83503=2 ¼ 7593:5s
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Now we can proceed with Algorithm 4.6.

Step 1:

_Ω¼� 3

2

ffiffiffi
μ

p
J2R

2

1�e2ð Þa7=2
� 	

cos i¼� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p � 0:0010836 � 63782
1�0:197602
� � � 83507=2

" #
cos60°¼�2:3394 10�7

� �
°=s

_ω¼ _Ω
5=2ð Þsin2i�2

cos i
¼�2:3394�10�5 5=2ð Þsin260°�2

cos60°

� 	
¼ 5:8484 10�6

� �
°=s

Step 2:

(a) E¼ 2tan�1 tan
θ

ffiffiffiffiffiffiffiffiffiffi
1�e

r !
¼ 2tan�1 tan

230°
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:19760

r !
¼�2:1059rad
2 1 + e 2 1 + 0:19760

(b) M ¼ E � e sin E ¼ � 2.1059 � 0.19760 sin (�2.1059) ¼ � 1.9360rad

(c) t0 ¼ M

2π
T¼�1:9360

2π
� 7593:5¼�2339:7s ;2339:7 seconds until perigeeð Þ

Step 3: t ¼ t0 + 45 min ¼ � 2339.7 + (45 � 60) ¼ 360.33s (360.33s after perigee)

(a)

M¼ 2π
t

T
¼ 2π

360:33

7593:5
¼ 0:29815rad

E�0:19760sinE¼ 0:29815 )z}|{Algorithm3:1

E¼ 0:36952rad

θ¼ 2 tan�1 tan
E

2

ffiffiffiffiffiffiffiffiffiffi
1 + e

1�e

r !
¼ 2tan�1 tan

0:36952

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:19760

1�0:19760

r !
¼ 25:723°

(b) Ω¼Ω0 + _ΩΔt¼ 270°+ �2:3394�10�5°=s
� �

2700sð Þ¼ 269:94°

ω¼ω0 + _ωΔt¼ 45°+ 5:8484�10�6°=s
� �

2700sð Þ¼ 45:016°

(c)

rf gX ¼z}|{Algorithm4:5 3212:6
�2250:5
5568:6

8<:
9=; kmð Þ

(d)

θ¼ωEΔt¼
360° 1 +

1

365:26

� �
24 � 3600s � 2700s¼ 11:28°

R3 θð Þ½ � ¼
cos11:281° sin11:281° 0

�sin11:281° cos11:281° 0

0 0 1

24 35¼
0:98068 0:19562 0

�0:19562 0:98068 0

0 0 1

24 35
rf gx0 ¼ R3 θð Þ½ � rf gX ¼

0:98068 0:19562 0

�0:19562 0:98068 0

0 0 1

24 35 3212:6
�2250:5
5568:6

8<:
9=;¼

2710:3
�2835:4
5568:6

8<:
9=; kmð Þ

(e)

r¼ 2710:3̂i0 �2835:4̂j0 + 5568:6k̂0 )z}|{Algorithm4:1

2α¼ 313:7° δ¼ 54:84°
The script ground_track.m in Appendix D.23 can be used to plot ground tracks. For the data of

Example 4.12, the ground track for 3.25 periods appears in Fig. 4.23. The ground track for one orbit

of a Molniya satellite is featured more elegantly in Fig. 4.24.



FIG. 4.23

Ground track for 3.25 orbits of the satellite in Example 4.12.

FIG. 4.24

Ground track for two orbits of a Molniya satellite with a 12-h period. Tick marks are 1 h apart.
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PROBLEMS

Section 4.3

4.1 For each of the following geocentric equatorial position vectors (in kilometers) find the right

ascension and declination.

r¼�3000Î�6000Ĵ�9000K̂ (a)

r¼�3000Î�6000Ĵ�9000K̂ (b)

r¼�9000Î�3000Ĵ�6000K̂ (c)

r¼ 6000Î�9000Ĵ�3000K̂ (d)
{Partial Ans.: (b) α ¼ 243.4°, δ ¼ � 53.30°}

4.2 At a given instant, a spacecraft is 500 km above the earth, with a right ascension of 300° and a

declination of �20° relative to the geocentric equatorial frame. Its velocity is 10 km/s directly

north, normal to the equatorial plane. Find α and δ 30 min later.
{Ans.: α ¼ 120°, δ ¼ � 29.98°}
Section 4.4
4.3 Find the orbital elements of a geocentric satellite whose inertial position and velocity vectors in a

geocentric equatorial frame are

r¼ 2500Î+ 16,000Ĵ + 4000K̂ kmð Þ
v¼�3Î� Ĵ + 5K̂ km=sð Þ
{Ans.: e ¼ 0.4658, h ¼ 98, 623km2/s, i ¼ 62.52°, Ω ¼ 73.74°, ω ¼ 22.08°, θ ¼ 353.6°}

4.4 At a given instant, the position r and velocity v of a satellite in the geocentric equatorial frame are

r¼�13,000K̂ kmð Þ
v¼ 4Î + 5̂j+ 6K̂ km=sð Þ
Find the orbital elements.

{Ans.: e ¼ 1.298, h ¼ 83, 240 km2/s, i ¼ 90°, Ω ¼ 51.34°, ω ¼ 344.9°, θ ¼ 285.1°}

4.5 At time t0 (relative to perigee passage) the position r and velocity v of a satellite in the geocentric

equatorial frame are

r¼ 6500Î�7500Ĵ�2500K̂ kmð Þ
v¼ 4Î+ 3Ĵ�3K̂ km=sð Þ
Find the orbital elements.

{Ans.: e ¼ 0.2226, h ¼ 58, 656 km2/s, i ¼ 32.44°, Ω ¼ 107.6°, ω ¼ 72.36°, θ ¼ 134.7°}

4.6 With respect to the geocentric equatorial frame, the position vector of a spacecraft is

r¼�6000Î�1000Ĵ�5000K̂ kmð Þ and the orbit’s eccentricity vector is e¼ 0:4Î+ 0:5̂j+ 0:6K̂.

Calculate the true anomaly θ if the satellite is approaching perigee.
{Ans.: 328.6°}

4.7 Given that, relative to the geocentric equatorial frame, r¼�6600Î�1300Ĵ�5200K̂ kmð Þ, the

eccentricity vector is e¼�0:4Î�0:5Ĵ�0:6K̂, and the satellite is flying toward perigee, calculate

the inclination of the orbit.
{Ans.: 43.3°}
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Section 4.5
4.8 The right-handed, Cartesian coordinate system x0y0z0 is defined by the three points A, B, and C.
The x0y0 plane is defined by the plane ABC. The x0 axis runs from A through B. The z0 axis is
defined by the cross product of the vector AB

!
into the vector AC

!
, so that the +y0 axis lies on the

same side of the x0 axis as point C.

(a) Find the direction cosine matrix [Q] relating the two coordinate bases.

(b) If the components of a vector v in the primed system are 2 �1 3b cT , find the components

of v in the unprimed system.

{Partial Ans.: (b) �1:307 2:390 2:565b cT}
The unit vectors in a uvw Cartesian coordinate frame have the following components in the xyz
4.9
frame: ^ ^ ^
û¼ 0:26726i+ 0:53452j+ 0:80178k

v̂¼�0:44376̂i+ 0:80684̂j+ 0:38997k̂

ŵ¼�0:85536̂i+ 0:25158̂j+ 0:45284k̂
If, in the xyz frameV¼�50̂i + 100̂j+ 75k̂, find the components of the vectorV in the uvw frame.

{Ans.: V¼ 100:2û+ 73:62v̂ + 51:57ŵ}

4.10 Calculate the direction cosine matrix [Q] for the sequence of two rotations: α ¼ 40° about the

positive X axis, followed by β ¼ 25° about the positive y0 axis. The result is that the XYZ axes are

rotated into the x00y0z00 axes.

{Partial Ans.: Q11 ¼ 0.9063 Q12 ¼ 0.2716 Q13 ¼ � 0.3237 }
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4.11 For the direction cosine matrix

Q½ � ¼
0:086824 �0:77768 0:62264

�0:49240 �0:57682 �0:65178
0:86603 �0:25000 �0:43301

24 35

calculate:

(a) The classical Euler angle sequence.

(b) The yaw, pitch, and roll angle sequence.

{Ans.: (a) α ¼ 73.90° β ¼ 115.7° γ ¼ 136.31°
(b) α ¼ 276.37° β ¼ � 38.51° γ ¼ 236.40°}
4.12 What yaw, pitch, and roll sequence yields the same direction cosine matrix as the classical Euler

sequence α ¼ 350°, β ¼ 170°, γ ¼ 300°?

{Ans.: α ¼ 49.62°, β ¼ 8.649°, γ ¼ 175.0°}
4.13 What classical Euler angle sequence yields the same direction cosine matrix as the yaw, pitch,

and roll sequence α ¼ 300°, β ¼ �80°, γ ¼ 30°?

{Ans.: α ¼ 240.4°, β ¼ 81.35°, γ ¼ 84.96°}
Section 4.6
4.14 At time t0 (relative to perigee passage), the position r and velocity v of a satellite in the geocentric
equatorial frame are

r¼�5000Î�8000Ĵ�2100K̂ kmð Þ
v¼�4Î+ 3:5Ĵ�3K̂ km=sð Þ
Find r and v at time t0 + 50min.

{Ans.: r¼�1717Î+ 7604Ĵ�2101K̂ kmð Þ; v¼ 6:075Î+ 1:925Ĵ+ 3:591K̂ km=sð Þ}

4.15 At time t0 (relative to perigee passage), a spacecraft has the following orbital parameters: e¼ 1.5;

perigee altitude ¼ 300 km; i ¼ 35°; Ω ¼ 130°; and ω ¼ 115°. Calculate r and v at perigee

relative to
(a) The perifocal reference frame.

(b) The geocentric equatorial frame.

{Ans.: (a) r¼ 6678p̂ kmð Þ, v¼ 12:22q̂ km=sð Þ
(b) r¼�1984Î�5348Ĵ+ 3471K̂ kmð Þ, v¼ 10:36Î�5:763Ĵ�2:961K̂ km=sð Þ }
4.16 For the spacecraft of Problem 4.15, calculate r and v at two hours past perigee relative to
(a) The perifocal reference frame.

(b) The geocentric equatorial frame.

{Ans.: (a) r¼�25,010p̂+ 48,090q̂ kmð Þ, v¼�4:335p̂ + 5:075q̂ km=sð Þ
(b) r¼ 48,200Î�2658Ĵ�24,660K̂ kmð Þ, v¼ 5:590Î + 1:078Ĵ�3:484K̂ km=sð Þ}
4.17 Calculate r and v relative to the geocentric equatorial frame for the satellite in Problem 4.15 at

time t0 + 50min.
{Ans.: r¼ 23,047Î�6972:4Ĵ�9219:6K̂ kmð Þ
v¼ 6:6563Î+ 0:88638Ĵ�3:9680 km=sð Þ}
4.18 For a spacecraft, the following orbital parameters are given: e¼ 1.2; perigee altitude¼ 200 km; i
¼ 50°; Ω ¼ 75°; and ω ¼ 80°. Calculate r and v at perigee relative to
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(a) The perifocal reference frame.

(b) The geocentric equatorial frame.

{Ans. (a) r¼ 6578p̂ kmð Þ, v¼ 11:55q̂ km=sð Þ
(b) r¼�3726Î+ 2181Ĵ+ 4962K̂ kmð Þ

v¼�4:188Î�10:65Ĵ+ 1:536K̂ km=sð Þ}

4.19 For the spacecraft of Problem 4.18, calculate r and v at 2 h past perigee relative to
(a) The perifocal reference frame.

(b) The geocentric equatorial frame.

{Ans.: (a) r¼�26,340p̂+ 37,810q̂ kmð Þ, v¼�4:306p̂ + 3:298q̂ km=sð Þ
(b) r¼ 1207Î�43,600Ĵ�14,840K̂ kmð Þ

v¼ 1:243Î�4:4700Ĵ�2:810 km=sð Þ}

4.20 Given that e ¼ 0.7, h ¼ 75, 000km2/s, and θ ¼ 25°, calculate the components of velocity in the

geocentric equatorial frame if

Q½ �Xx ¼
�:83204 �:13114 0:53899
0:02741 �:98019 �:19617
0:55403 �:14845 0:81915

24 35

{Ans.: v¼ 2:103Î�8:073Ĵ�2:885K̂ km=sð Þ}
4.21 The apse line of the elliptical orbit lies in the XY plane of the geocentric equatorial frame, whose

Z axis lies in the plane of the orbit. At B (for which θ ¼ 140°), the perifocal velocity vector is

vf gx ¼ �3:208 �0:8288 0b cT km=sð Þ. Calculate the geocentric equatorial components of the

velocity at B.

{Ans.: vf gX ¼ �1:604 �2:778 �0:8288b cT km=sð Þ}
A satellite in earth orbit has the following orbital parameters: a ¼ 7016 km, e ¼ 0.05, i ¼ 45°,
4.22
Ω ¼ 0°, ω ¼ 20°, and θ ¼ 10°. Find the position vector in the geocentric equatorial frame.
{Ans.: r¼ 5776:4Î+ 2358:2Ĵ + 2358:2K̂ kmð Þ}
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Section 4.7
4.23 Calculate the orbital inclination required to place an earth satellite in a 300 km by 600 km sun-

synchronous orbit.
{Ans.: 97.21°}.

4.24 A satellite in a circular, sun-synchronous low earth orbit passes over the same point on the equator

once each day, at 12 o’clock noon. Calculate the inclination, altitude, and period of the orbit.
{Ans.: This problem has more than one solution.}
4.25 The orbit of a satellite around an unspecified planet has an inclination of 45°, and its perigee

advances at the rate of 6° per day. At what rate does the node line regress?
{Ans.: _Ω¼ 5:656°=day}

4.26 At a given time, the position and velocity of an earth satellite in the geocentric equatorial frame

are r¼�2429:1Î+ 4555:1Ĵ + 4577:0K̂ kmð Þ and v¼�4:7689Î�5:6113Ĵ+ 3:0535K̂ km=sð Þ.
Find r and v precisely 72 h later, taking into consideration the node line regression and the

advance of perigee.
{Ans.: r¼ 4596Î+ 5759Ĵ�1266K̂ kmð Þ, v¼�3:601Î + 3:179Ĵ+ 5:617K̂ km=sð Þ}

Section 4.8
4.27 A spacecraft is in a circular orbit of 180 km altitude and inclination 30°. What is the spacing, in

kilometers, between successive ground tracks at the equator, including the effect of earth’s

oblateness?
{Ans.: 2511 km}
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CHAPTER
PRELIMINARY ORBIT
DETERMINATION
 5
5.1 INTRODUCTION
In this chapter, we will consider some (by no means all) of the classical ways in which the orbit of

a satellite can be determined from earth-bound observations. All the methods presented here are

based on the two-body equations of motion. As such, they must be considered preliminary orbit deter-

mination techniques because the actual orbit is influenced over time by other phenomena (perturba-

tions), such as the gravitational force of the moon and sun, atmospheric drag, solar wind, and the

nonspherical shape and nonuniformmass distribution of the earth. We took a brief look at the dominant

effects of the earth’s oblateness in Section 4.7. To accurately propagate an orbit into the future from a

set of initial observations requires taking the various perturbations, as well as instrumentation errors

themselves, into account. More detailed considerations, including themeans of updating the orbit based

on additional observations, are beyond our scope. Introductory discussions may be found elsewhere.

See Bate et al. (1971), Boulet (1991), Prussing and Conway (2013), and Wiesel (2010), to name but

a few.

We begin with the Gibbs method of predicting an orbit using three geocentric position vectors.

This is followed by a presentation of Lambert’s problem, in which an orbit is determined from two

position vectors and the time between them. Both the Gibbs and Lambert procedures are based on

the fact that two-body orbits lie in a plane. The Lambert problem is more complex and requires using

the Lagrange f and g functions introduced in Chapter 2 as well as the universal variable formulation

introduced in Chapter 3. The Lambert algorithm is employed in Chapter 8 to analyze interplanetary

missions.

In preparation for explaining how satellites are tracked, the Julian day (JD) numbering scheme is

introduced along with the notion of sidereal time. This is followed by a description of the topocentric

coordinate systems and the relationships among topocentric right ascension/declination angles and

azimuth/elevation angles. We then describe how orbits are determined from measuring the range

and the angular orientation of the line of sight, together with their rates. The chapter concludes with

a presentation of the Gauss method of angles-only orbit determination.
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00005-2

# 2020 Elsevier Ltd. All rights reserved.
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5.2 GIBBS METHOD OF ORBIT DETERMINATION FROM THREE POSITION
VECTORS
Suppose that from the observations of a space object at the three successive times t1, t2, and t3
(t1 < t2 < t3) we have obtained the geocentric position vectors r1, r2, and r3. The problem is to deter-

mine the velocities v1, v2, and v3 at t1, t2, and t3 assuming that the object is in a two-body orbit. The

solution using purely vector analysis is due to J.W. Gibbs (1839–1903), an American scholar who is

known primarily for his contributions to thermodynamics. Our explanation is based on that in Bate et al.

(1971).

We know that the conservation of angular momentum requires that the position vectors of an orbit-

ing body must all lie in the same plane. In other words, the unit vector normal to the plane of r2 and r3
must be perpendicular to the unit vector in the direction of r1. Thus, if ûr1 ¼ r1=r1 and

Ĉ23 ¼ r2� r3ð Þ= r2� r3k k, then the dot product of these two unit vectors must vanish:

ûr1 � Ĉ23 ¼ 0

Furthermore, as illustrated in Fig. 5.1, the fact that r1, r2, and r3 lie in the same plane means we can

apply scalar factors c1 and c3 to r1 and r3 so that r2 is the vector sum of c1r1 and c3r3:

r2 ¼ c1r1 + c3r3 (5.1)

The coefficients c1 and c3 are readily obtained from r1, r2, and r3, as we shall see in Section 5.10

(Eqs. 5.89 and 5.90).

To find the velocity v corresponding to any of the three given position vectors r we start with

Eq. (2.40), which may be written as

v�h¼ μ
r

r
+ e

� �
where h is the angular momentum, and e is the eccentricity vector. To isolate the velocity, take the cross

product of this equation with the angular momentum,

h� v�hð Þ¼ μ
h�r

r
+h�e

� �
(5.2)

By means of the bac–cab rule (Eq. 2.33), the left-hand side becomes

h� v�hð Þ¼ v h � hð Þ�h h � vð Þ
FIG. 5.1

Any one of a set of three coplanar vectors (r1, r2, r3) can be expressed as the vector sum of the other two.
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But h � h ¼ h2, and v � h ¼ 0, since v is perpendicular to h. Therefore,

h� v�hð Þ¼ h2v

which means that Eq. (5.2) may be written as

v¼ μ

h2
h�r

r
+h�e

� �
(5.3)

In Section 2.10, we introduced the perifocal coordinate system, in which the unit vector p̂ lies in the

direction of the eccentricity vector e, and ŵ is the unit vector normal to the orbital plane, in the direction

of the angular momentum vector h. Thus, we can write

e¼ ep̂ (5.4a)

h¼ hŵ (5.4b)

so that Eq. (5.3) becomes

v¼ μ

h2
hŵ�r

r
+ hŵ�ep̂

� �
¼ μ

h

ŵ�r

r
+ e ŵ� p̂ð Þ

� �
(5.5)

Since p̂, q̂, and ŵ form a right-handed triad of unit vectors, it follows that p̂� q̂¼ ŵ, q̂� ŵ¼ p̂, and

ŵ� p̂¼ q̂ (5.6)

Therefore, Eq. (5.5) reduces to

v¼ μ

h

ŵ�r

r
+ eq̂

� �
(5.7)

This is an important result, because if we can somehow use the position vectors r1, r2, and r3 to cal-

culate q̂, ŵ, h, and e, then the velocities v1, v2, and v3 will each be determined by this formula.

So far, the only condition we have imposed on the three position vectors is that they are coplanar

(Eq. 5.1). To bring in the fact that they describe an orbit, let us take the dot product of Eq. (5.1) with the

eccentricity vector e to obtain the scalar equation

r2 � e¼ c1r1 � e + c3r3 � e (5.8)

According to Eq. (2.44), the orbit equation, we have the following relations among h, e, and each of the
position vectors:

r1 � e¼ h2

μ
� r1 r2 � e¼ h2

μ
� r2 r3 � e¼ h2

μ
� r3 (5.9)

Substituting these equations into Eq. (5.8) yields

h2

μ
� r2 ¼ c1

h2

μ
� r1

� �
+ c3

h3

μ
� r3

� �
(5.10)

To eliminate the unknown coefficients c1 and c3 from this expression, let us take the cross product of

Eq. (5.1) first with r1 and then with r3. This results in two equations, both having r3 � r1 on the right,

r2�r1 ¼ c3 r3�r1ð Þ r2�r3 ¼�c1 r3�r1ð Þ (5.11)
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Now multiply Eq. (5.10) through by the vector r3 � r1 to obtain

h2

μ
r3�r1ð Þ� r2 r3�r1ð Þ¼ c1 r3�r1ð Þ h2

μ
� r1

� �
+ c3 r3�r1ð Þ h2

μ
� r3

� �
Using Eq. (5.11), this becomes

h2

μ
r3�r1ð Þ� r2 r3�r1ð Þ¼� r2�r3ð Þ h2

μ
� r1

� �
+ r2�r1ð Þ h2

μ
� r3

� �
Observe that c1 and c3 have been eliminated. Rearranging the terms, we get

h2

μ
r1�r2 + r2�r3 + r3�r1ð Þ¼ r1 r2�r3ð Þ+ r2 r3�r1ð Þ+ r3 r1�r2ð Þ (5.12)

This is an equation involving the given position vectors and the unknown angular momentum h. Let us
introduce the following notation for the vectors on each side of Eq. (5.12),

N¼ r1 r2�r3ð Þ+ r2 r3�r1ð Þ+ r3 r1�r2ð Þ (5.13)

and

D¼ r1�r2 + r2�r3 + r3�r1 (5.14)

Then, Eq. (5.12) may be written more simply as

N¼ h2

μ
D

from which we obtain

N¼ h2

μ
D (5.15)

where N ¼ kNk and D ¼ kDk. It follows from Eq. (5.15) that the angular momentum h is determined

from r1, r2, and r3 by the formula

h¼
ffiffiffiffiffiffiffi
μ
N

D

r
(5.16)

Since r1, r2, and r3 are coplanar, all of the cross products r1 � r2, r2 � r3, and r3 � r1 lie in the

same direction (namely, normal to the orbital plane). Therefore, it is clear from Eq. (5.14) that D must

be normal to the orbital plane. In the context of the perifocal frame, we use ŵ to denote the orbit unit

normal. Therefore,

ŵ¼D

D
(5.17)

So far, we have found h and ŵ in terms of r1, r2, and r3. We need likewise to find an expression for q̂

to use in Eq. (5.7). From Eqs. (5.4a), (5.6), and (5.17), it follows that

q̂¼ ŵ� p̂¼ 1

De
D�eð Þ (5.18)
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Substituting Eq. (5.14), we get

q̂¼ 1

De
r1�r2ð Þ�e + r2�r3ð Þ�e+ r3�r1ð Þ�e½ � (5.19)

We can apply the bac–cab rule to the right-hand side by noting

A�Bð Þ�C¼�C� A�Bð Þ¼B A �Cð Þ�A B �Cð Þ
Using this vector identity, we obtain

r2�r3ð Þ�e¼ r3 r2 � eð Þ� r2 r3 � eð Þ
r3�r1ð Þ�e¼ r1 r3 � eð Þ� r3 r1 � eð Þ
r1�r2ð Þ�e¼ r2 r1 � eð Þ� r1 r2 � eð Þ

Once again employing Eq. (5.9), these become

r2�r3ð Þ�e¼ r3
h2

μ
� r2

� �
�r2

h2

μ
� r3

� �
¼ h2

μ
r3�r2ð Þ+ r3r2� r2r3

r3�r1ð Þ�e¼ r1
h2

μ
� r3

� �
�r3

h2

μ
� r1

� �
¼ h2

μ
r1�r3ð Þ+ r1r3� r3r1

r1�r2ð Þ�e¼ r2
h2

μ
� r1

� �
�r1

h2

μ
� r2

� �
¼ h2

μ
r2�r1ð Þ+ r2r1� r1r2

Summing up these three equations, collecting the terms, and substituting the result into Eq. (5.19)

yields

q̂¼ 1

De
S (5.20)

where

S¼ r1 r2� r3ð Þ+ r2 r3� r1ð Þ+ r3 r1� r2ð Þ (5.21)

Finally, we substitute Eqs. (5.16), (5.17), and (5.20) into Eq. (5.7) to obtain

v¼ μ

h

ŵ�r

r
+ eq̂

� �
¼ μffiffiffiffiffiffiffi

μ
N

D

r D

D
�r

r
+ e

1

De
S

� �264
375

Simplifying this expression for the velocity yields

v¼
ffiffiffiffiffiffiffi
μ

ND

r
D�r

r
+S

� �
(5.22)

All the terms on the right depend only on the given position vectors r1, r2, and r3.

The Gibbs method may be summarized as outlined in the following algorithm.
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ALGORITHM 5.1

Given the spacecraft position vectors r1, r2, and r3, determine the orbital elements. A MATLAB

implementation of this procedure is found in Appendix D.24.

1. Calculate r1, r2, and r3.
2. Calculate C12 ¼ r1 � r2, C23 ¼ r2 � r3, and C31 ¼ r3 � r1.

3. Verify that ûr1 � Ĉ23 ¼ 0.

4. Calculate N, D, and S using Eqs. (5.13), (5.14), and (5.21), respectively.

5. Calculate v2 using Eq. (5.22): v2 ¼ D� r2=r2 + Sð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ= N �Dð Þp

.

6. Use r2 and v2 to compute the orbital elements by means of Algorithm 4.2.
EXAMPLE 5.1
The geocentric position vectors of a space object at three successive times are

r1 ¼�294:32Î + 4265:1Ĵ + 5986:7K̂ kmð Þ
r2 ¼�1365:5Î + 3637:6Ĵ + 6346:8K̂ kmð Þ
r3 ¼�2940:3Î + 2473:7Ĵ + 6555:8K̂ kmð Þ

Determine the classical orbital elements using Gibbs method.

Solution
We employ Algorithm 5.1.

Step 1:

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�294:32ð Þ2 + 4265:12 + 5986:72

q
¼ 7356:5km

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1365:5ð Þ2 + 3637:62 + 6346:82

q
¼ 7441:7km

r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2940:3ð Þ2 + 2473:72 + 6555:82

q
¼ 7598:9km

Step 2:

C12 ¼
Î Ĵ K̂

�294:32 4265:1 5986:7

�1365:5 3637:6 6346:8

							
							¼ 5:2925Î�6:3068Ĵ+ 4:7534K̂

 �

106

 �

km2

 �

C23 ¼
Î Ĵ K̂

�1365:5 3637:6 6346:8

�294:32 2473:7 6555:8

							
							¼ 8:1473Î�9:7096Ĵ+ 7:3178K̂

 �

106

 �

km2

 �

C31 ¼
Î Ĵ K̂

�2940:3 2473:7 6555:8

�294:32 4265:1 5986:7

							
							¼ �1:3152Î+ 1:5673Ĵ�1:1813K̂

 �

107

 �

km2

 �

Step 3:

Ĉ23 ¼ C23

C23k k¼
8:1473Î�9:7096Ĵ + 7:3178K̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:14732 + �9:7096ð Þ2 + 7:31782

q ¼ 0:55667Î�0:66342Ĵ+ 0:5000K̂
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Therefore,

ûr1 � Ĉ23 ¼ �294:32Î + 4265:1Ĵ + 5986K̂

7356:5

 !
: 0:55667Î�0:66342Ĵ+ 0:5000K̂

 �

¼�6:1181 10�6

 �

This is close enough to zero for our purposes. The three vectors r1, r2, and r3 are coplanar.

Step 4:

N¼ r1C23 + r2C31 + r3C12

¼ 7356:5 8:1473Î�9:7096Ĵ + 7:3178K̂

 �

106

 �

+ 7441:7 �1:3152Î + 1:5673Ĵ�1:1813K̂

 �

106

 �

+ 7598:9 5:2925Î�6:3068Ĵ + 4:7534K̂

 �

106

 �

or

N¼ 2:2811Î�2:7186Ĵ+ 2:0481K̂

 �

109

 �

km3

 �

so that

N¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:28112 + �2:7186ð Þ2 + 2:04812
h i

1018

 �r

¼ 4:0975 109

 �

km3

 �

D¼C12 +C23 +C31

¼ 5:295Î�6:3068Ĵ+ 4:7534K̂

 �

106

 �

+ 8:1473Î�9:7096Ĵ+ 7:3178K̂

 �

106

 �

+ �1:3152Î + 1:5673Ĵ�1:1813K̂

 �

106

 �

or

D¼ 2:8797Î�3:4321Ĵ+ 2:5866K̂

 �

105

 �

km2

 �

so that

D¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:87972 + �3:4321ð Þ2 + 2:58562
h i

1010

 �r

¼ 5:1728 105

 �

km2

 �

Lastly,

S¼ r1 r2� r3ð Þ + r2 r3� r1ð Þ + r3 r1� r2ð Þ
¼ �294:32Î+ 4265:1Ĵ+ 5986:7K̂

 �

7441:7�7598:9ð Þ
+ �1365:5Î+ 3637:6Ĵ + 6346:8K̂

 �

7598:9�7356:5ð Þ
+ �2940:3Î+ 2473:7Ĵ + 6555:8K̂

 �

7356:5�7441:7ð Þ
or

S¼�34,276Î+ 478:57Ĵ + 38,810K̂ km2

 �

Step 5:

v2 ¼
ffiffiffiffiffiffiffi
μ

ND

r
D�r2

r2
+S

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

4:0971 109

 �
 �

5:1728 103

 �
 �s

�

Î Ĵ K̂

2:8797ð106Þ �3:4321ð106Þ 2:5856ð106Þ
�1365:5 3637:6 6346:8

							
							

7441:7
+ �34, 276Î+ 478:57Ĵ+ 38, 810K̂

 �

2666666664

3777777775



FIG. 5.2

Sketch of the orbit of Example 5.1.
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or

v2 ¼�6:2174Î�4:0122Ĵ+ 1:5990K̂ km=sð Þ
Step 6:

Using r2 and v2, Algorithm 4.2 yields the orbital elements:

a¼ 8000km

e¼ 0:1

i¼ 60°

Ω¼ 40°

ω¼ 30°

θ¼ 50° for position vectorr2ð Þ
The orbit is sketched in Fig. 5.2.
5.3 LAMBERT’S PROBLEM
Suppose we know the position vectors r1 and r2 of two points P1 and P2 on the path of mass m around

mass M, as illustrated in Fig. 5.3. r1 and r2 determine the change in the true anomaly Δθ, since

cosΔθ¼ r1 � r2
r1r2

(5.23)



FIG. 5.3

Lambert’s problem.
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where

r1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r1 � r1p

r2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2p

(5.24)

However, if cosΔθ > 0, then Δθ lies in either the first or fourth quadrant; whereas if cosΔθ < 0, then

Δθ lies in the second or third quadrant (recall Fig. 3.4). The first step in resolving this quadrant

ambiguity is to calculate the Z component of r1 � r2,

r1�r2ð ÞZ ¼ K̂ � r1�r2ð Þ¼ K̂ � r1 r2 sinΔθŵð Þ¼ r1 r2 sinΔθ K̂ � ŵ
 �
where ŵ is the unit normal to the orbital plane. Therefore, K̂ � ŵ¼ cos i, where i is the inclination of the
orbit, so that

r1�r2ð ÞZ ¼ r1 r2 sinΔθcos i (5.25)

We use the sign of the scalar (r1 � r2)Z to determine the correct quadrant for Δθ.
There are two cases to consider: prograde trajectories (0 < i < 90°) and retrograde trajectories

(90° < i < 180°).
For prograde trajectories (like the one illustrated in Fig. 5.3), cosi > 0, so that if (r1 � r2)Z > 0, then

Eq. (5.25) implies that sinΔθ > 0, which means 0° < Δθ < 180°. Since Δθ therefore lies in the first or
second quadrant, it follows that Δθ is given by cos�1(r1 � r2/r1r2). On the other hand, if (r1 � r2)Z < 0,

Eq. (5.25) implies that sinΔθ < 0, which means 180° < Δθ < 360°. In this case, Δθ lies in the third or
fourth quadrant and is given by 360° � cos�1(r1 � r2/r1r2). For retrograde trajectories, cosi < 0. Thus,

if (r1 � r2)Z > 0, then sinΔθ < 0, which places Δθ in the third or fourth quadrant. Similarly, if

(r1 � r2)Z > 0, Δθ must lie in the first or second quadrant.
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This logic can be expressed more concisely as follows:

Δθ¼

cos�1 r1 � r2
r1r2

� �
if r1�r2ð ÞZ � 0

360°� cos�1 r1 � r2
r1r2

� �
if r1�r2ð ÞZ < 0

prograde trajectory

cos�1 r1 � r2
r1r2

� �
if r1�r2ð ÞZ < 0

360°� cos�1 r1 � r2
r1r2

� �
if r1�r2ð ÞZ � 0

retrograde trajectory

8>>>>>>>>>>><>>>>>>>>>>>:
(5.26)

J.H. Lambert (1728–1777) was a French-born German astronomer, physicist, and mathematician.

Lambert proposed that the transfer time Δt from P1 to P2 in Fig. 5.3 is independent of the orbit’s

eccentricity and depends only on the sum r1 + r2 of the magnitudes of the position vectors, the semi-

major axis a, and the length c of the chord joining P1 and P2. It is noteworthy that the period (of an

ellipse) and the specific mechanical energy are also independent of the eccentricity (Eqs. 2.83, 2.80,

and 2.110).

If we know the time of flight Δt from P1 to P2, then Lambert’s problem is to find the trajectory

joining P1 and P2. The trajectory is determined once we find v1, because, according to Eqs. (2.135)

and (2.136), the position and velocity of any point on the path are determined by r1 and v1. That is,

in terms of the notation in Fig. 5.3,

r2 ¼ f r1 + gv1 (5.27a)

v2 ¼ _f r1 + _gv1 (5.27b)

Solving the first of these for v1 yields

v1 ¼ 1

g
r2� f r1ð Þ (5.28)

Substitute this result into Eq. (5.27b) to get

v2 ¼ _f r1 +
_g

g
r2� f r1ð Þ¼ _g

g
r2� f _g� f _g

g
r1

However, according to Eq. (2.139), f _g� _f g¼ 1. Hence,

v2 ¼ 1

g
_gr2�r1ð Þ (5.29)

By means of Algorithm 4.2, we can find the orbital elements from either r1 and v1 or r2 and v2. Clearly,

Lambert’s problem is solved once we determine the Lagrange coefficients f, g, and _g.
The Lagrange f and g coefficients and their time derivatives are listed as functions of the change in

true anomaly Δθ in Eq. (2.158),

f ¼ 1�μr2
h2

1� cosΔθð Þ g� r1r2
h

1� sinΔθð Þ (5.30a)

_f ¼ μ

h

1� cosΔθ
sinΔθ

μ

h2
1� cosΔθð Þ� 1

r1
� 1

r2

� �
_g¼ 1�μr1

h2
1� cosΔθð Þ (5.30b)
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Eq. (3.69) express these quantities in terms of the universal anomaly χ,

f ¼ 1� χ2

r1
C zð Þ g¼Δt� 1ffiffiffi

μ
p χ3S zð Þ (5.31a)

_f ¼
ffiffiffi
μ

p
r1r2

χ zS zð Þ�1½ � _g¼ 1� χ2

r2
C zð Þ (5.31b)

where z ¼ αχ2. The f and g functions do not depend on the eccentricity, which would seem to make

them an obvious choice for the solution of Lambert’s problem.

The unknowns on the right of the above sets of equations are h, χ, and z, whereas Δθ, Δt, r1, and r2
are given. Equating the four pairs of expressions for f, g, _f , and _g in Eqs. (5.30) and (5.31) yields four

equations in the three unknowns h, χ, and z. However, because of the fact that f _g� _f g¼ 1, only three of

these equations are independent. We must solve them for h, χ, and z to evaluate the Lagrange coeffi-

cients and thereby obtain the solution to Lambert’s problem.Wewill follow the procedure presented by

Bate et al. (1971) and Bond and Allman (1996).

While Δθ appears throughout Eqs. (5.30a) and (5.30b), the time interval Δt does not. However, Δt
does appear in Eqs. (5.31a) and (5.31b). A relationship between Δθ and Δt can therefore be found by

equating the two expressions for g,

r1r2
h

sinΔθ¼Δt� 1ffiffiffi
μ

p χ3S zð Þ (5.32)

To eliminate the unknown angular momentum h, equate the expressions for f in Eqs. (5.30a) and

(5.31a),

1�μr2
h2

1� cosΔθð Þ¼ 1� χ2

r1
C zð Þ

Upon solving this for h, we obtain

h¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μr1r2 1� cosΔθð Þ

χ2C zð Þ

s
(5.33)

(Equating the two expressions for _g leads to the same result.) Substituting Eq. (5.33) into Eq. (5.32),

simplifying, and rearranging the terms yields

ffiffiffi
μ

p
Δt¼ χ3S zð Þ+ χ

ffiffiffiffiffiffiffiffiffi
C zð Þ

p
sinΔθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2

1� cosΔθ

r� �
(5.34)

The term in parentheses on the right is a constant that comprises solely the given data. Let us assign it

the symbol A,

A¼ sinΔθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1r2
1� cosΔθ

r
(5.35)

Then, Eq. (5.34) assumes the simpler formffiffiffi
μ

p
Δt¼ χ3S zð Þ +Aχ

ffiffiffiffiffiffiffiffiffi
C zð Þ

p
(5.36)
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The right-hand side of this equation contains both of the unknown variables χ and z. We cannot use the

fact that z ¼ αχ2 to reduce the unknowns to one since α is the reciprocal of the semimajor axis of the as

yet unknown orbit.

To find a relationship between z and χ that does not involve orbital parameters, we equate the ex-

pressions for _f (Eqs. 5.30b and 5.31b) to obtain

μ

h

1� cosΔθ
sinΔθ

μ

h2
1� cosΔθð Þ� 1

r1
� 1

r2

� �
¼

ffiffiffi
μ

p
r1r2

χ zS zð Þ�1½ �

Multiplying through by r1r2 and substituting for the angular momentum using Eq. (5.33) yields

μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μr1 r2 1� cosΔθð Þ

χ2C zð Þ

s 1� cosΔθ
sinΔθ

μ
μr1 r2 1� cosΔθð Þ

χ2C zð Þ
1� cosΔθð Þ� r1� r2

2664
3775¼ ffiffiffi

μ
p

χ zS zð Þ�1½ �

Simplifying and dividing out the common factors leads toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosΔθ

pffiffiffiffiffiffiffiffi
r1 r2

p
sinΔθ

ffiffiffiffiffiffiffiffiffi
C zð Þ

p
χ2C zð Þ� r1� r2
� ¼ zS zð Þ�1

We recognize the reciprocal of A on the left, so we can rearrange this expression to read as

follows:

χ2C zð Þ¼ r1 + r2 +A
zS zð Þ�1ffiffiffiffiffiffiffiffiffi

C zð Þp
The right-hand side depends exclusively on z. Let us call that function y(z), so that

χ¼
ffiffiffiffiffiffiffiffiffi
y zð Þ
C zð Þ

s
(5.37)

where

y zð Þ¼ r1 + r2 +A
zS zð Þ�1ffiffiffiffiffiffiffiffiffi

C zð Þp (5.38)

Eq. (5.37) is the relation between χ and z that we were seeking. Substituting it back into Eq. (5.36)

yields

ffiffiffi
μ

p
Δt¼ y zð Þ

C zð Þ
� �3=2

S zð Þ+A
ffiffiffiffiffiffiffiffi
y zð Þ

p
(5.39)

We can use this equation to solve for z, given the time interval Δt. It must be done iteratively.

Using Newton’s method, we form the function

F zð Þ¼ y zð Þ
C zð Þ
� �3=2

S zð Þ +A
ffiffiffiffiffiffiffiffi
y zð Þ

p
� ffiffiffi

μ
p

Δt (5.40)
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and its derivative

F0 zð Þ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y zð ÞC5 zð Þ

p 2C zð ÞS0 zð Þ�3C0 zð ÞS zð Þ½ �y2 zð Þ+ AC5=2 zð Þ+ 3C zð ÞS zð Þy zð Þ
h i

y0 zð Þ
n o

(5.41)

in which C0(z) and S0(z) are the derivatives of the Stumpff functions, which are given by Eq. (3.63). y0(z)
is obtained by differentiating y(z) in Eq. (5.38),

y0 zð Þ¼ A

2C zð Þ3=2
1� zS zð Þ½ �C0 zð Þ+ 2 S zð Þ+ zS0 zð Þ½ �C zð Þf g

If we substitute Eq. (3.63) into this expression, a much simpler form is obtained; namely

y0 zð Þ¼A

4

ffiffiffiffiffiffiffiffiffi
C zð Þ

p
(5.42)

This result can be worked out by using Eqs. (3.52) and (3.53) to express C(z) and S(z) in terms of the

more familiar trig functions. Substituting Eq. (5.42) along with Eq. (3.63) into Eq. (5.41) yields

F0 zð Þ¼

y zð Þ
C zð Þ
� �3=2

1

2z
C zð Þ�3

2

S zð Þ
C zð Þ

� �
+
3

4

S zð Þ2
C zð Þ

( )
+
A

8
3
S zð Þ
C zð Þ

ffiffiffiffiffiffiffiffi
y zð Þ

p
+A

ffiffiffiffiffiffiffiffiffi
C zð Þ
y zð Þ

s" #
z 6¼ 0ð Þffiffiffi

2
p

40
y 0ð Þ3=2 + A

8

ffiffiffiffiffiffiffiffiffi
y 0ð Þ

p
+A

ffiffiffiffiffiffiffiffiffiffiffi
1

2y 0ð Þ

s" #
z¼ 0ð Þ

8>>>><>>>>: (5.43)

Evaluating F0(z) at z¼ 0must be done carefully (and is therefore shown as a special case) because of

the z in the denominator within the curly brackets. To handle z ¼ 0, we assume that z is very small

(almost but not quite zero), so that we can retain just the first two terms in the series expansions of

C(z) and S(z) (Eq. 3.51),

C zð Þ¼ 1

2
� z

24
+⋯ S zð Þ¼ 1

6
� z

120
+⋯

Then, we evaluate the term within the curly brackets as follows:

1

2z
C zð Þ�3

2

S zð Þ
C zð Þ

� �
� 1

2z

1

2
� z

24

� �
�3

2

1

6
� z

120

� �
1

2
� z

24

� �
2664

3775
¼ 1

2z

1

2
� z

24

� �
�3

1

6
� z

120

� �
1� z

12

� ��1
� �

� 1

2z

1

2
� z

24

� �
�3

1

6
� z

120

� �
1 +

z

12

� �� �
¼ 1

2z
� 7z

120
+

z2

480

� �
¼� 7

240
+

z

960

In the third step, we used the familiar binomial expansion theorem,

a+ bð Þn ¼ an + nan�1b+
n n�1ð Þ

2!
an�2b2 +

n n�1ð Þ n�2ð Þ
3!

an�3b3 +⋯ (5.44)
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to set (1 � z/12)�1 � 1 + z/12, which is true if z is close to zero. Thus, when z is actually zero,

1

2z
C zð Þ�3

2

S zð Þ
C zð Þ

� �
¼� 7

240

Evaluating the other terms in F0(z) presents no difficulties.

F(z) in Eq. (5.40) and F0(z) in Eq. (5.43) are used in Newton’s formula (Eq. 3.16) for the iterative

procedure,

zi + 1 ¼ zi� F zið Þ
F0 zið Þ (5.45)

For choice of a starting value for z, recall that z ¼ (1/a)χ2. According to Eq. (3.57), z ¼ E2 for an ellipse

and z ¼ � F2 for a hyperbola. Since we do not know what the orbit is, setting z0 ¼ 0 seems a reason-

able, simple choice. Alternatively, we can plot or tabulate F(z) and choose z0 to be a point near where
F(z) changes sign.

Substituting Eqs. (5.37) and (5.39) into Eqs. (5.31a) and (5.31b) yields the Lagrange coefficients as

functions of z alone.

f ¼ 1�

ffiffiffiffiffiffiffiffiffi
y zð Þ
C zð Þ

s" #2
r1

C zð Þ¼ 1� y zð Þ
r1

(5.46a)

g¼ 1ffiffiffi
μ

p y zð Þ
C zð Þ
� �3=2

S zð Þ+A
ffiffiffiffiffiffiffiffi
y zð Þ

p( )
� 1ffiffiffi

μ
p y zð Þ

C zð Þ
� �3=2

S zð Þ¼A

ffiffiffiffiffiffiffiffi
y zð Þ
μ

s
(5.46b)

_f ¼
ffiffiffi
μ

p
r1 r2

ffiffiffiffiffiffiffiffiffi
y zð Þ
C zð Þ

s
zS zð Þ�1½ � (5.46c)

_g¼ 1�

ffiffiffiffiffiffiffiffiffi
y zð Þ
C zð Þ

s" #2
r2

C zð Þ¼ 1�y zð Þ
r2

(5.46d)

We are now in a position to present the solution of Lambert’s problem in universal variables, following

Bond and Allman (1996).

ALGORITHM 5.2

To solve Lambert’s problem use the MATLAB implementation that appears in Appendix D.25.

Given r1, r2, and Δt, the steps are as follows:

1. Calculate r1 and r2 using Eq. (5.24).

2. Choose either a prograde or a retrograde trajectory and calculate Δθ using Eq. (5.26).

3. Calculate A in Eq. (5.35).

4. By iteration, using Eqs. (5.40), (5.43), and (5.45), solve Eq. (5.39) for z. The sign of z tells us
whether the orbit is a hyperbola (z < 0), parabola (z ¼ 0), or ellipse (z ¼ 0).

5. Calculate y using Eq. (5.38).

6. Calculate the Lagrange f, g, and _g functions using Eqs. (5.46a), (5.46b), (5.46c), and (5.46d).
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7. Calculate v1 and v2 from Eqs. (5.28) and (5.29).

8. Use r1 and v1 (or r2 and v2) in Algorithm 4.2 to obtain the orbital elements.
FIG

Gr
EXAMPLE 5.2
The position of an earth satellite is first determined to be

r1 ¼ 5000Î+ 10,000Ĵ + 2100K̂ kmð Þ
After 1 h the position vector is

r2 ¼�14,600Î+ 2500Ĵ + 7000K̂ kmð Þ
Determine the orbital elements and find the perigee altitude and the time since perigee passage of the first sighting.

Solution
We must first execute the steps of Algorithm 5.2 to find v1 and v2.

Step 1:

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50002 + 10,0002 + 21002

q
¼ 11,375 km

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�14, 600ð Þ2 + 25002 + 70002

q
¼ 16,383 km

Step 2: Assume a prograde trajectory.

r1�r2 ¼ 64:75Î�65:66Ĵ + 158:5K̂

 �

106

 �

km2

 �

cos�1 r1 � r2
r1 r2

¼ 100:29° or 259:71°

Since the trajectory is prograde and the z component r1 � r2 is positive, it follows from Eq. (5.26) that

Δθ¼ 100:29°

Step 3:

A¼ sinΔθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 r2
1� cosΔθ

r
¼ sin100:29°

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11,375�16,383

1� cos100:29°

r
¼ 12,372km

Step 4:

Using this value of A and Δt ¼ 3600 s, we can evaluate the functions F(z) and F0(z) given by Eqs. (5.40) and (5.43),

respectively. Let us first plot F(z) to estimate where it crosses the z axis. As can be seen from Fig. 5.4, F(z)¼ 0 near z¼ 1.5.

With z0 ¼ 1.5 as our initial estimate, we execute Newton’s procedure (Eq. 5.45), zi+1 ¼ zi � F(zi)/F
0(zi):
. 5.4

aph of F(z).
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z1 ¼ 1:5��14,476:4

362,642
¼ 1:53991

z2 ¼ 1:53991� 23:6274

363,828
¼ 1:53985

z3 ¼ 1:53985�6:29457�10�5

363,826
¼ 1:53985

Thus, to five significant figures z ¼ 1.5398. The fact that z is positive means the orbit is an ellipse.

Step 5:

y¼ r1 + r2 +A
zS zð Þ�1ffiffiffiffiffiffiffiffiffi

C zð Þp ¼ 11,375 + 16,383 + 12,372
1:5398S 1:5398ð Þ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{0:154296

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 1:5398ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

0:439046

s ¼ 13,523km

Step 6:

Eqs. (5.46a)–(5.46d) yields the Lagrange functions

f ¼ 1� y

r1
¼ 1�13,523

11,375
¼�0:18877

g¼A

ffiffiffi
y

μ

r
¼ 12,372

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13,523

398,600

r
¼ 2278:9s

_g ¼ 1� y

r2
¼ 1�13,523

16,383
¼ 0:17457

Step 7:

v1 ¼ 1

g
r2� f r1ð Þ

¼ 1

2278:9
�14, 600Î+ 2500Ĵ + 7000K̂

 �� �0:18877ð Þ 5000Î+ 10, 000Ĵ + 2100K̂


 �� 
¼�5:9925Î+ 1:9254Ĵ+ 3:2456K̂ km=sð Þ

v2 ¼ 1

g
_gr2�r1ð Þ

¼ 1

2278:9
0:17457ð Þ �14, 600Î+ 2500Ĵ+ 7000K̂


 �� 5000Î+ 10, 000Ĵ + 2100K̂

 �� 

¼�3:3125Î�4:1966Ĵ�0:38529K̂ km=sð Þ
Step 8:

Using r1 and v1, Algorithm 4.2 yields the orbital elements:

h¼ 80,470km2=s

a¼ 20,000km

e¼ 0:4335

Ω¼ 44:60°

i¼ 30:19°

ω¼ 30:71°

θ1 ¼ 350:8°

This elliptical orbit is plotted in Fig. 5.5. The perigee of the orbit is

rp ¼ h2

μ

1

1 + e cos 0ð Þ¼
80,4702

398,600

1

1 + 0:4335
¼ 11,330 km

Therefore, the perigee altitude is 11, 330 � 6378 ¼ 4952km .



FIG. 5.5

The solution of Example 5.2 (Lambert’s problem).
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To find the time of the first sighting, we first calculate the eccentric anomaly by means of Eq. (3.13b),

E1 ¼ 2tan�1

ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2

 !
¼ 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:4335

1 + 0:4335

r
tan

350:8°
2

 !
¼ 2tan�1 �0:05041ð Þ

¼�0:1007rad

Then using Kepler’s equation for the ellipse (Eq. 3.14), we find the mean anomaly,

Me1 ¼E1�esinE1 ¼�0:1007�0:4335sin �0:1007ð Þ¼�0:05715rad

so that from Eq. (3.7), the time since perigee passage is

t1 ¼ h3

μ2
1

1�e2ð Þ3=2
Me1 ¼

80,4703

398,6002
1

1� :43352

 �3=2 �0:05715ð Þ¼�256:1s

The minus sign means that, after the initial sighting, there are 256.1 s until perigee encounter.
EXAMPLE 5.3
Ameteoroid is sighted at an altitude of 267,000 km. After 13.5 h and a change in true anomaly of 5°, the altitude is observed
to be 140,000 km. Calculate the perigee altitude and the time to perigee after the second sighting.

Solution
We have

P1: r1 ¼ 6378 + 267,000¼ 273,378km

P2: r2 ¼ 6378 + 140,000¼ 146,378km

Δt¼ 13:5�3600¼ 48,600s

Δθ¼ 5°



FIG. 5.6

Solution of Example 5.3 (Lambert’s problem).
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Since r1, r2, and Δθ are given, we can skip to Step 3 of Algorithm 5.2 and compute

A¼ 2:8263 105

 �

km

Then, solving for z as in the previous example, we obtain

z¼�0:17344

Since z is negative, the path of the meteoroid is a hyperbola.

With z available, we evaluate the Lagrange functions,

f ¼ 0:95846

g¼ 47,708s

_g¼ 0:92241

(a)

Step 7 requires the initial and final position vectors. Therefore, for the purposes of this problem, let us define a geo-

centric coordinate systemwith the x axis alignedwith r1 and the y axis at 90° thereto in the direction of themotion (Fig. 5.6).

The z axis is therefore normal to the plane of the orbit. Then,

r1 ¼ r1 î¼ 273,378̂i kmð Þ
r2 ¼ r2 cosΔθ̂i+ r2 sinΔθ ĵ¼ 145,820̂i+ 12,758̂j kmð Þ

(b)

With Eqs. (a) and (b), we obtain the velocity at P1,

v1 ¼ 1

g
r2� f r1ð Þ

¼ 1

47,708
145, 820̂i+ 12, 758̂j
� �

�0:95846 273, 378̂i
� �h i

¼�2:4356̂i+ 0:26741̂j km=sð Þ
Using r1 and v1, Algorithm 4.2 yields

h¼ 73,105km2=s e¼ 1:0506 θ1 ¼ 205:06°

The orbit is now determined except for its orientation in space, for which no information was provided. In the plane of

the orbit, the trajectory is as shown in Fig. 5.6.
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The perigee radius is

rp ¼ h2

μ

1

1 + ecos 0ð Þ¼ 6538:2km

which means the perigee altitude is dangerously low for a large meteoroid,

zp ¼ 6538:2�6378¼ 160:2km 100milesð Þ
To find the time of flight from P2 to perigee, we note that the true anomaly of P2 is

θ2 ¼ θ1 + 5°¼ 210:16°

The hyperbolic eccentric anomaly F2 follows from Eq. (3.44a),

F2 ¼ 2 tanh�1

ffiffiffiffiffiffiffiffiffiffi
e�1

e+ 1

r
tan

θ2
2

 !
¼�1:3347rad

Substituting this value into Kepler’s equation (Eq. 3.40) yields the mean anomaly,

Mh2 ¼ e sin h F2ð Þ�F2 ¼�0:52265rad

Finally, Eq. (3.34) yields the time

t2 ¼ Mh2h
3

μ2 e2�1ð Þ3=2
¼�38,396s

The minus sign means that 38,396 s (a scant 10.6 h) remain until the meteoroid passes through perigee.
5.4 SIDEREAL TIME
To deduce the orbit of a satellite or celestial body from observations requires, among other things, re-

cording the time of each observation. The time we use in everyday life, the time we set our clocks by, is

the solar time. It is reckoned by the motion of the sun across the sky. A solar day is the time required for

the sun to return to the same position overhead (i.e., to lie on the same meridian). A solar day—from

high noon to high noon—comprises 24 h. Universal time (UT) is determined by the sun’s passage

across the Greenwich meridian, which is 0° terrestrial longitude (see Fig. 1.18). At noon UT, the

sun lies on the Greenwich meridian. Local standard time, or civil time, is obtained from UT by adding

1 h for each time zone between Greenwich and the site, measured westward.

Sidereal time is measured by the rotation of the earth relative to the fixed stars (i.e., the celestial

sphere, Fig. 4.3). The time it takes for a distant star to return to its same position overhead (i.e., to lie on

the same meridian) is one sidereal day (24 sidereal hours). As illustrated in Fig. 4.20, the earth’s orbit

around the sun results in the sidereal day being slightly shorter than the solar day. One sidereal day is 23

h and 56 min. To put it another way, the earth rotates 360° in one sidereal day, whereas it rotates

360.986° in a solar day.

Local sidereal time θ (not to be confused with true anomaly θ) of a site is the time elapsed since the

local meridian of the site passed through the vernal equinox. The number of degrees (measured east-

ward) between the vernal equinox and the local meridian is the sidereal time multiplied by 15. To know

the location of a point on the earth at any given instant relative to the geocentric equatorial frame re-

quires knowing its local sidereal time. The local sidereal time of a site is found by first determining the

Greenwich sidereal time θG (the sidereal time of the Greenwich meridian) and then adding the east

longitude (or subtracting the west longitude) of the site. Algorithms for determining sidereal time rely

on the notion of Julian day.
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The Julian day number is the number of days since noon UT on January 1, 4713 BCE. The origin of

this timescale is placed in antiquity so that, except for prehistoric events, we do not have to deal with

positive and negative dates. The Julian day count is uniform and continuous and does not involve leap

years or different numbers of days in different months. The number of days between two events is found

by simply subtracting the Julian day of one from that of the other. The Julian day begins at noon rather

than at midnight so that astronomers observing the heavens at night would not have to deal with a

change of date during their watch.

The Julian day numbering system is not to be confused with the Julian calendar, which the

Roman emperor Julius Caesar introduced in 46 BCE. The Gregorian calendar, introduced in 1583,

has largely supplanted the Julian calendar and is in common civil use today throughout much of

the world.

J0 is the symbol for the Julian day number at 0 h UT (which is halfway into the Julian day). At any

other UT, the Julian day is given by

JD¼ J0 +
UT

24
(5.47)

Algorithms and tables for obtaining J0 from the ordinary year (y), month (m), and day (d) exist in the

literature and on the World Wide Web. One of the simplest formulas is found in Boulet (1991),

J0 ¼ 367y� INT

7 y+ INT
m+ 9

12

� �� �
4

8>><>>:
9>>=>>;+ INT

275m

9

� �
+ d + 1,721,013:5 (5.48)

where y, m, and d are integers lying in the following ranges:

1901� y� 2099

1�m� 12

1� d� 31

INT(x) means retaining only the integer portion of x, without rounding (or, in other words, round to-

ward zero). For example, INT(�3.9) ¼ �3 and INT(3.9) ¼ 3. Appendix D.26 lists a MATLAB imple-

mentation of Eq. (5.48).
EXAMPLE 5.4
What is the Julian day number for May 12, 2004, at 14:45:30 UT?

Solution
In this case y ¼ 2004, m ¼ 5, and d ¼ 12. Therefore, Eq. (5.48) yields the Julian day number at 0 h UT,

J0 ¼ 367�2004� INT

7 2004 +
5 + 9

12

� �� �
4

8>><>>:
9>>=>>;+ INT

275�5

9

� �
+ 12 + 1,721,013:5

¼ 735,468� INT
7 2004+ 1½ �

4

� �
+ 152+ 12+ 1,721,013:5

¼ 735,468�3508 + 152 + 12+ 1,721,013:5
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or
J0 ¼ 2,453,137:5days

The universal time, in hours, is

UT¼ 14 +
45

60
+

30

3600
¼ 14:758h

Therefore, from Eq. (5.47), we obtain the Julian day number at the desired universal time,

JD¼ 2,453,137:5 +
14:758

24
¼ 2,453,138:115days
EXAMPLE 5.5
Find the elapsed time between October 4, 1957 UT 19:26:24, and the date of the previous example.

Solution
Proceeding as in Example 5.4 we find that the Julian day number of the given event (the launch of the first man-made

satellite, Sputnik I) is

JD1 ¼ 2,436,116:3100days

The Julian day of the previous example is

JD2 ¼ 2,453,138:1149days

Hence, the elapsed time is

ΔJD¼ 2,453,138:1149�2,436,116:3100¼ 17,021:805days 46years,220days
The current Julian epoch is defined to have been noon on January 1, 2000. This epoch is denoted

J2000 and has the exact Julian day number 2,451,545.0. Since there are 365.25 days in a Julian year, a

Julian century has 36,525 days. It follows that the time T0 in Julian centuries between the Julian day J0
and J2000 is

T0 ¼ J0�2,451,545

36,525
(5.49)

The Greenwich sidereal time θG0
at 0 h UT may be found in terms of this dimensionless time

(Seidelmann, 1992, Section 2.24). θG0
is in degrees and is given by the series

θG0
¼ 100:4606184 + 36,000:77004T0 + 0:000387933T

2
0 �2:583 10�8


 �
T3
0 degreesð Þ (5.50)

This formula can yield a value outside the range 0 � θG0
� 360°. If so, then the appropriate integer

multiple of 360° must be added or subtracted to bring θG0
into that range.

Once θG0
has been determined, the Greenwich sidereal time θG at any other UT is found using the

relation

θG ¼ θG0
+ 360:98564724

UT

24
(5.51)

where UT is in hours. The coefficient of the second term on the right is the number of degrees the earth

rotates in 24 h (solar time).



FIG. 5.7

Schematic of the relationship among θG0
, θG, Λ, and θ.
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Finally, the local sidereal time θ of a site is obtained by adding its east longitude Λ to the Greenwich

sidereal time,

θ¼ θG +Λ (5.52)

Here again, it is possible for the computed value of θ to exceed 360°. If so, it must be reduced to within

that limit by subtracting the appropriate integer multiple of 360°. Fig. 5.7 illustrates the relationship

among θG0
, θG, Λ, and θ.

ALGORITHM 5.3

Calculate the local sidereal time, given the date, the local time, and the east longitude of the site.

This is implemented in MATLAB in Appendix D.27.

1. Using the year, month, and day, calculate J0 using Eq. (5.48).

2. Calculate T0 by means of Eq. (5.49).

3. Compute θG0
from Eq. (5.50). If θG0

lies outside the range 0° � θG0
� 360°, then subtract the

multiple of 360° required to place θG0
in that range.

4. Calculate θG using Eq. (5.51).

5. Calculate the local sidereal time θ by means of Eq. (5.52), adjusting the final value so it lies

between 0° and 360°.
EXAMPLE 5.6
Use Algorithm 5.3 to find the local sidereal time (in degrees) of Tokyo, Japan, on March 3, 2004, at 4:30:00 UT. The east

longitude of Tokyo is 139.80°. (This places Tokyo nine time zones ahead of Greenwich, so the local time is 1:30 in the

afternoon.)
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Step 1:

J0 ¼ 367�2004� INT

7 2004+ INT
3+ 9

12

� �� �
4

8>><>>:
9>>=>>;+ INT

275�3

9

� �
+ 3 + 1,721,013:5

¼ 2,453,067:5days

Recall that the 0.5 means that we are halfway into the Julian day, which began at noon UT of the previous day.

Step 2:

T0 ¼ 2,453,067:5�2,451,545

36,525
¼ 0:041683778

Step 3:

θG0
¼ 100:4606184+ 36,000:77004 0:041683778ð Þ
+ 0:000387933 0:041683778ð Þ2�2:583 10�8


 �
0:041683778ð Þ3

¼ 1601:1087°

The right-hand side is too large. We must reduce θG0
to an angle that does not exceed 360°. To that end, observe that

INT 1601:1087=360ð Þ¼ 4

Hence,

θG0
¼ 1601:1087�4�360¼ 161:10873° (a)

Step 4:

The UT of interest in this problem is

UT¼ 4 +
30

60
+

0

3600
¼ 4:5h

Substitute this and Eq. (a) into Eq. (5.51) to get the Greenwich sidereal time.

θG ¼ 161:10873 + 360:98564724
4:5

24
¼ 228:79354°

Step 5:

Add the east longitude of Tokyo to this value to obtain the local sidereal time,

θ¼ 228:79354 + 139:80¼ 368:59°
To reduce this result into the range 0 � θ � 360°, we must subtract 360° to get

θ¼ 368:59�360¼ 8:59° 0:573h

Note that the right ascension of a celestial body lying on Tokyo’s meridian is 8.59°.
5.5 TOPOCENTRIC COORDINATE SYSTEM
A topocentric coordinate system is one that is centered at the observer’s location on the surface of the

earth. Consider an object B, a satellite or celestial body, and an observer O on the earth’s surface, as il-

lustrated in Fig. 5.8. r is the position of the body B relative to the center of attraction C;R is the position

vector of the observer relative to C; and ρ is the position vector of the body B relative to the observer.

r, R, and ρ comprise the fundamental vector triangle. The relationship among these three vectors is

r¼R+ ρ (5.53)

As we know, the earth is not a sphere but a slightly oblate spheroid. This ellipsoidal shape is ex-

aggerated in Fig. 5.8. The location of the observation site O is determined by specifying its east lon-

gitude Λ and latitude ϕ. East longitude Λ is measured positive eastward from the Greenwich meridian to

the meridian throughO. The angle between the vernal equinox direction (XZ plane) and the meridian of



FIG. 5.8

Oblate spheroidal earth (exaggerated).
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O is the local sidereal time θ. Likewise, θG is the Greenwich sidereal time. Once we know θG, then the
local sidereal time is given by Eq. (5.52).

Latitude ϕ is the angle between the equator and the normal n̂ to the earth’s surface at O. Since the
earth is not a perfect sphere, the position vectorR, directed from the center C of the earth toO, does not
point in the direction of the normal except at the equator and the poles.

The oblateness, or flattening f, was defined in Section 4.7,

f ¼Re�Rp

Re

where Re is the equatorial radius, and Rp is the polar radius. (Review from Table 4.3 that f ¼ 0.003353

for the earth.) Fig. 5.9 shows the ellipse of the meridian through O. Obviously, Re and Rp are, respec-

tively, the semimajor and semiminor axes of the ellipse. According to Eq. (2.76),

Rp ¼Re

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p

It is easy to show from the above two relations that flattening and eccentricity are related as follows:

e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f � f 2

p
f ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p

As illustrated in Fig. 5.8 and again in Fig. 5.9, the normal n̂ to the earth’s surface at O intersects the

polar axis at a point C0 that lies below the center C of the earth (ifO is in the northern hemisphere). The

angle ϕ between the normal and the equator is called the geodetic latitude, as opposed to geocentric

latitude ϕ0, which is the angle between the equatorial plane and the line joining O to the center of the



FIG. 5.9

The relationship between geocentric latitude (ϕ
0
) and geodetic latitude (ϕ).
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earth. The distance from C to C0 is Rϕe
2 sin ϕ, where Rϕ, the distance from C0 to O, is a function of

latitude (Seidelmann, 1992, Section 5.2.4)

Rϕ ¼ Reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2 sin2ϕ

p ¼ Reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2f � f 2ð Þsin2ϕ

p (5.54)

Thus, the meridional coordinates of O are

x0O ¼Rϕ cosϕ

z0O ¼ 1�e2

 �

Rϕ sinϕ¼ 1� fð Þ2Rϕ sinϕ

If the observation point O is at an elevation H above the ellipsoidal surface, then we must add

H cos ϕ to xO
0 and H sin ϕ to zO

0 to obtain

x0O ¼Rc cosϕ z0O ¼Rs sinϕ (5.55a)

where

Rc ¼Rϕ +H Rs ¼ 1� fð Þ2Rϕ +H (5.55b)

Observe that, whereas Rc is the distance ofO from point C0 on the earth’s axis, Rs is the distance fromO
to the intersection of the line OC0 with the equatorial plane.

The geocentric equatorial coordinates of O are

X¼ x0O cos θ Y¼ x0O sinθ Z¼ z0O

where θ is the local sidereal time given in Eq. (5.52). Hence, the position vector R shown in Fig. 5.8 is

R¼Rc cosϕcosθÎ +Rc cosϕsinθĴ+Rs sinϕK̂

Substituting Eqs. (5.54) and (5.55b) yields
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R¼ Reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2f � f 2ð Þsin2ϕ

p +H

" #
cosϕ cosθÎ+ sinθĴ


 �
+

Re 1� fð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2f � f 2ð Þsin2ϕ

p +H

" #
sinϕK̂

(5.56)

In terms of the geocentric latitude ϕ0,

R¼Re cos ϕ
0 cos θÎ+Re cosϕ

0 sin θĴ +Re sinϕ
0K̂

By equating these two expressions for R and setting H ¼ 0, it is easy to show that at sea level the geo-

detic latitude is related to geocentric latitude ϕ0 as follows:

tanϕ0 ¼ 1� fð Þ2 tanϕ
5.6 TOPOCENTRIC EQUATORIAL COORDINATE SYSTEM
The topocentric equatorial coordinate systemwith the origin at pointO on the surface of the earth uses a

nonrotating set of xyz axes through O that coincide in direction with the XYZ axes of the geocentric

equatorial frame, as illustrated in Fig. 5.10. As can be inferred from the figure, the relative position

vector ρ in terms of the topocentric right ascension and declination is

ρ¼ ρcosδcosαÎ+ ρcosδsinαĴ + ρsinδK̂

since at all times î¼ Î, ĵ¼ Ĵ, and k̂¼ K̂ for this frame of reference. We can write ρ as

ρ5ρρ̂
FIG. 5.10

Topocentric equatorial coordinate system.
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where ρ is the slant range and ρ̂ is the unit vector in the direction of the position vector ρ,

ρ̂¼ cosδcosαÎ+ cosδsinαĴ+ sinδK̂ (5.57)

Since the origins of the geocentric and topocentric systems do not coincide, the direction cosines of the

position vectors r and ρ will in general differ. In particular, the topocentric right ascension and dec-

lination of an earth-orbiting body B will not be the same as the geocentric right ascension and decli-

nation. This is an example of parallax. On the other hand, if krk 	 kRk, then the difference between

the geocentric and topocentric position vectors, and hence, the right ascension and declination, is neg-

ligible. This is true for distant planets and stars.
EXAMPLE 5.7
At the instant the Greenwich sidereal time is θG ¼ 126.7°, the geocentric equatorial position vector of the International

Space Station is

r¼�5368Î�1784Ĵ + 3691K̂ kmð Þ
Find its topocentric right ascension and declination at sea level (H ¼ 0), latitude ϕ ¼ 20°, and east longitude Λ ¼ 60°.

Solution
According to Eq. (5.52), the local sidereal time at the observation site is

θ¼ θG +Λ¼ 126:7°+ 60°¼ 186:7°

Substituting Re ¼ 6378km, f ¼ 0.003353 (Table 4.3), θ ¼ 186.7°, and ϕ ¼ 20° into Eq. (5.56) yields the geocentric po-

sition vector of the site,

R¼�5955Î�699:5Ĵ + 2168K̂ kmð Þ
Having found R, we obtain the position vector of the space station relative to the site from Eq. (5.53),

ρ¼ r�R

¼ �5368Î�1784Ĵ + 3691K̂

 �� �5955Î�699:5Ĵ + 2168K̂


 �
¼ 586:8Î�1084Ĵ + 1523K̂ kmð Þ

Applying Algorithm 4.1 to this vector yields

α¼ 298:4° δ¼ 51:01°

Compare these with the geocentric right ascension α0 and declination δ0, which were computed in Example 4.1,

α0 ¼ 198:4° δ0 ¼ 33:12°
5.7 TOPOCENTRIC HORIZON COORDINATE SYSTEM
The topocentric horizon coordinate system was introduced in Section 1.7 and is illustrated again in

Fig. 5.11. It is centered at the observation point O whose position vector is R. The xy plane is the local
horizon, which is the plane tangent to the ellipsoid at point O. The z axis is normal to this plane and is

directed outward toward the zenith. The x axis is directed eastward and the y axis points north. Because
the x axis points east, this may be referred to as an ENZ (east–north–zenith) frame. In the SEZ topo-

centric reference frame the x axis points toward the south and the y axis toward the east. The SEZ frame

is obtained from the ENZ frame by rotating it 90° clockwise around the zenith. Therefore, the matrix of

the transformation from NEZ to SEZ is [R3(�90°)], where [R3(ϕ)] is found in Eq. (4.34).



FIG. 5.11

Topocentric horizon (xyz) coordinate system on the surface of the oblate earth.
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The position vector ρ of a body B relative to the topocentric horizon system in Fig. 5.11 is

ρ¼ ρcosasin Âi+ ρcosacosAĵ+ ρsinak̂

where ρ is the range, A is the azimuth measured positive clockwise from due north (0° � A � 360°),
and a is the elevation angle or altitude measured from the horizontal to the line of sight of the body B
(�90° � a � 90°). The unit vector ρ̂ in the line-of-sight direction is

ρ̂¼ cosasin Âi+ cosacosAĵ+ sinak̂ (5.58)

The transformation between geocentric equatorial and topocentric horizon systems is found by first

determining the projections of the topocentric base vectors î ĵ k̂ onto those of the geocentric equatorial

frame. From Fig. 5.11, it is apparent that

k̂¼ cosϕî0 + sinϕK̂

and

î0 ¼ cosθÎ+ sinθĴ

where î0 lies in the local meridional plane and is normal to the Z axis. Hence,

k̂¼ cosϕcosθÎ+ cosϕsinθĴ + sinϕK̂ (5.59)

The eastward-directed unit vector î may be found by taking the cross product of K̂ into the unit

normal k̂,
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î¼ K̂� k̂

K̂� k̂
�� ��¼�cosϕsinθÎ + cosϕcosθĴffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2ϕ sin2θ + cos2θð Þp ¼�sinθÎ + cosθĴ (5.60)

Finally, crossing k̂ into î yields ĵ,

ĵ¼ k̂� î¼
Î Ĵ K̂

cosϕcosθ cosϕsinθ sinϕ
�sinθ cosθ 0

						
						¼�sinϕcosθÎ� sinϕsinθĴ+ cosϕK̂ (5.61)

Let us denote the matrix of the transformation from the geocentric equatorial to the topocentric

horizon as [Q]Xx. Recall from Section 4.5 that the rows of this matrix comprise the direction cosines

of î, ĵ, and k̂, respectively. It follows from Eqs. (5.59)–(5.61) that

Q½ �Xx ¼
�sinθ cosθ 0

�sinϕcosθ �sinϕsinθ cosϕ
cosϕcosθ cosϕsinθ sinϕ

24 35 (5.62a)

The reverse transformation, from the topocentric horizon to the geocentric equatorial, is represented by

the transpose of this matrix,

Q½ �xX ¼
�sinθ �sinϕcosθ cosϕcosθ
cosθ �sinϕsinθ cosϕsinθ
0 cosϕ sinϕ

24 35 (5.62b)

Observe that these matrices also represent the transformation between the topocentric horizon and the

topocentric equatorial frames, because the unit basis vectors of the latter coincide with those of the

geocentric equatorial coordinate system.
EXAMPLE 5.8
The east longitude and latitude of an observer near San Francisco are Λ ¼ 238° and ϕ ¼ 38°, respectively. The local si-
dereal time is θ ¼ 215.1° (14 h 20 min). At that time, the planet Jupiter is observed by means of a telescope to be located at

azimuth A ¼ 214.3° and angular elevation a ¼ 43°. What are Jupiter’s right ascension and declination in the topocentric

equatorial system?

Solution
The given information allows us to formulate the matrix of the transformation from the topocentric horizon to the topo-

centric equatorial using Eq. (5.62b),

Q½ �xX ¼
�sin215:1° �sin38cos215:1° cos38cos215:1°

cos215:1° �sin38sin215:1° cos38sin215:1°

0 cos38° sin38°

264
375

¼
0:5750 0:5037 �0:6447

�0:8182 0:3540 �0:4531

0 0:7880 0:6157

264
375

From Eq. (5.58), we have

ρ̂¼ cosasin Âi+ cosacosAĵ+ sinak̂

¼ cos43°sin214:3°̂i+ cos43°cos214:3°̂j + sin43°k̂

¼�0:4121̂i�0:6042̂j + 0:6820k̂

Therefore, in matrix notation, the topocentric horizon components of ρ̂ are
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ρ̂f gx ¼
�0:4121

�0:6042

0:6820

8><>:
9>=>;

We obtain the topocentric equatorial components ρ̂f gX by the matrix operation

ρ̂f gX ¼ Q½ �xX ρ̂f gx ¼
0:5750 0:5037 �0:6447

�0:8182 0:3540 �0:4531

0 0:7880 0:6157

264
375 �0:4121

0:6042

0:6820

8><>:
9>=>;¼

�0:9810

�0:1857

�0:05621

8><>:
9>=>;

so that the topocentric equatorial line-of-sight unit vector is

ρ̂¼�0:9810Î�0:1857Ĵ�0:05621K̂

Using this vector in Algorithm 4.1 yields the topocentric equatorial right ascension and declination,

α¼ 190:7° δ¼�3:222°

Jupiter is sufficiently far away that we can ignore the radius of the earth in Eq. (5.53). That is, to our level of precision,

there is no distinction between the topocentric equatorial and geocentric equatorial systems:

r� ρ

Therefore, the topocentric right ascension and declination computed above are the same as the geocentric equatorial values.
EXAMPLE 5.9
At a given time, the geocentric equatorial position vector of the International Space Station is

r¼�2032:4Î + 4591:2Ĵ�4544:8K̂ kmð Þ
Determine the azimuth and elevation angle relative to a sea level (H ¼ 0) observer whose latitude is ϕ¼�40° and local

sidereal time is θ ¼ 110°.

Solution
Using Eq. (5.56), we find the position vector of the observer to be

R¼�1673Î + 4598Ĵ�4078K̂ kmð Þ
For the position vector of the space station relative to the observer, we have (Eq. 5.53)

ρ¼ r�R

¼ �2032Î + 4591Ĵ�4545K̂

 �� �1673Î + 4598Ĵ�4078K̂


 �
¼�359:0Î�6:342Ĵ�466:9K̂ kmð Þ

or, in matrix notation,

ρf gX ¼
�359:0

�6:342

�466:9

8><>:
9>=>; kmð Þ

To transform these geocentric equatorial components into the topocentric horizon system, we need the transformation

matrix [Q]Xx, which is given by Eq. (5.62a),
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Q½ �Xx ¼
�sinθ cosθ 0

�sinϕcosθ �sinϕsinθ cosϕ

cosϕcosθ cosϕsinθ sinϕ

264
375

¼
�sin110° cos110° 0

�sin �40°ð Þcos110° �sin �40°ð Þsin110° cos �40°ð Þ
cos �40°ð Þcos110° cos �40°ð Þsin110° sin �40°ð Þ

264
375

Thus,

ρf gx ¼ Q½ �Xx ρf gX ¼
�0:9397 �0:3420 0

�0:2198 0:6040 0:7660
�0:2620 0:7198 �0:6428

24 35 �359:0
�6:342
�466:9

8<:
9=;¼

339:5
�282:6
389:6

8<:
9=; kmð Þ

or, reverting to vector notation,

ρ¼ 339:5̂i�282:6̂j + 389:6k̂ kmð Þ
The magnitude of this vector is ρ ¼ 589.0 km. Hence, the unit vector in the direction of ρ is

ρ̂¼ ρ
ρ
¼ 0:5765̂i�0:4787̂j+ 0:6615k̂

Comparing this with Eq. (5.58), we see that sina ¼ 0.6615, so that the angular elevation is

a¼ sin�10:6615¼ 41:41°

Furthermore,

sinA¼ 0:5765

cosa
¼ 0:7687

cosA¼�0:4787

cosa
¼�0:6397

It follows that

A¼ cos�1 �0:6397ð Þ¼ 129:8° second quadrantð Þ or 230:2° third quadrantð Þ
A must lie in the second quadrant because sinA > 0. Thus, the azimuth is

A¼ 129:8°
5.8 ORBIT DETERMINATION FROM ANGLE AND RANGE MEASUREMENTS
We know that an orbit around the earth is determined once the state vectors r and v in the inertial geo-

centric equatorial frame are provided at a given instant of time (epoch). Satellites are of course ob-

served from the earth’s surface and not from its center. Let us briefly consider how the state vector

is determined from measurements by an earth-based tracking station.

The fundamental vector triangle formed by the topocentric position vector ρ of a satellite relative to
a tracking station, the position vector R of the station relative to the center of attraction C, and the

geocentric position vector r was illustrated in Fig. 5.8 and is shown again schematically in

Fig. 5.12. The relationship among these three vectors is given by Eq. (5.53), which can be written as

r¼R+ ρρ̂ (5.63)

where the range ρ is the distance of the body B from the tracking site, and ρ̂ is the unit vector containing
the directional information about B. By differentiating Eq. (5.63) with respect to time, we obtain the

velocity v and acceleration a,



FIG. 5.12

Earth-orbiting body B tracked by an observer O.
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v¼ _r¼ _R + ρ _̂ρ + _ρ ρ̂ (5.64)

a¼€r¼ €R+ €ρρ̂+ 2 _ρ _̂ρ + ρ €̂ρ (5.65)

The vectors in these equations must all be expressed in the common basis ÎĴK̂

 �

of the inertial (non-

rotating) geocentric equatorial frame.

Since R is a vector fixed in the earth, whose constant angular velocity is Ω¼ωEK̂ (Eq. 2.67), it

follows from Eqs. (1.52) and (1.53) that

_R¼Ω�R (5.66)

€R¼Ω� Ω�Rð Þ (5.67)

If LX, LY, and LZ are the topocentric equatorial direction cosines, then the direction cosine vector ρ̂ is

ρ̂¼ LX Î+ LY Ĵ+LZK̂ (5.68)

and its first and second derivatives are

_̂ρ¼ _LX Î+ _LY Ĵ+ _LZK̂ (5.69)

and

€̂ρ¼ €LX Î + €LY Ĵ+ €LZK̂ (5.70)

Comparing Eqs. (5.57) and (5.68) reveals that the topocentric equatorial direction cosines in terms of

the topocentric right ascension α and declination δ are
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LX
LY
LZ

8<:
9=;¼

cosαcosδ
sinαcosδ

sinδ

8<:
9=; (5.71)

Differentiating this equation twice yields

_LX
_LY
_LZ

8<:
9=;¼

� _α sinαcosδ� _δ cosαsinδ
_α cosαcosδ� _δ sinαsinδ

_δ cosδ

8<:
9=; (5.72)

and

€LX
€LY
€LZ

8<:
9=;¼

�€αsinαcosδ� €δcosαsinδ� _α2 + _δ
2

� �
cosαcosδ+ 2 _α _δ sinαsinδ

€αcosαcosδ� €δsinαsinδ� _α2 + _δ
2

� �
sinαcosδ�2 _α _δ cosαsinδ

€δcosδ� _δ
2
sinδ

8>><>>:
9>>=>>; (5.73)

Eqs. (5.71)–(5.73) show how the direction cosines and their rates are obtained from right ascension and

declination and their rates.

In the topocentric horizon system, the relative position vector is written as

ρ̂¼ lx̂i+ ly ĵ+ lzk̂ (5.74)

where, according to Eq. (5.58), the direction cosines lx, ly, and lz are found in terms of the azimuth A and

elevation a as

lx
ly
lz

8<:
9=;¼

sinAcosa
cosAcosa

sina

8<:
9=; (5.75)

LX, LY, and LZ are obtained from lx, ly, and lz by the coordinate transformation

LX
LY
LZ

8<:
9=;¼ Q½ �xX

lx
ly
lz

8<:
9=; (5.76)

where [Q]xX is given by Eq. (5.62b). Thus,

LX
LY
LZ

8<:
9=;¼

�sinθ �cosθ sinφ cosθcosφ
cosθ �sinθ sinφ sinθcosφ
0 cosφ sinφ

24 35 sinAcosa
cosAcosa

sina

8<:
9=; (5.77)

Substituting Eq. (5.71) we see that topocentric right ascension/declination and azimuth/elevation are

related by

cosαcosδ
sinαcosδ

sinδ

8<:
9=;¼

�sinθ �cosθ sinφ cosθcosφ
cosθ �sinθ sinφ sinθcosφ
0 cosφ sinφ

24 35 sinAcosa
cosAcosa

sina

8<:
9=;

Expanding the right-hand side and solving for sin δ, sin α, and cos α, we get

sinδ¼ cosϕcosAcosa+ sinϕsina (5.78a)
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sinα¼ cosϕsina� cosAcosasinϕð Þsinθ + cosθ sinAcosa

cosδ
(5.78b)

cosα¼ cosϕsina� cosAcosasinϕð Þcosθ� sinθ sinAcosa

cosδ
(5.78c)

We can simplify Eqs. (5.78b) and (5.78c) by introducing the hour angle h,

h¼ θ�α (5.79)

where h is the angular distance between the object and the local meridian. If h is positive, the object is
west of the meridian; if h is negative, the object is east of the meridian.

Using well-known trig identities, we have

sin θ�αð Þ¼ sinθcosα� cosθ sinα (5.80a)

cos θ�αð Þ¼ cosθcosα+ sinθ sinα (5.80b)

Substituting Eqs. (5.78b) and (5.78c) on the right of Eq. (5.80a) and simplifying yields

sin hð Þ¼� sinAcosa

cosδ
(5.81)

Likewise, Eq. (5.80b) leads to

cos hð Þ¼ cosϕsina� sinϕcosAcosa

cosδ
(5.82)

We calculate h from this equation, resolving quadrant ambiguity by checking the sign of sin(h). That is,

h¼ cos�1 cosϕsina� sinϕcosAcosa

cosδ

� �
if sin(h) is positive. Otherwise, we must subtract h from 360°. Since both the elevation angle a and the
declination δ lie between �90° and +90°, neither cosa nor cosδ can be negative. It follows from

Eq. (5.81) that the sign of sin(h) depends only on that of sinA.
To summarize, given the topocentric azimuth A and altitude a of the target together with the sidereal

time θ and latitude ϕ of the tracking station, we compute the topocentric declination δ and right ascen-
sion α as follows:

δ¼ sin�1 cosϕcosAcosa+ sinϕsinað Þ (5.83a)

h¼
360°� cos�1 cosϕsina� sinϕcosAcosa

cosδ

� �
0°<A< 180°

cos�1 cosϕsina� sinϕcosAcosa

cosδ

� �
180°�A� 360°

8>><>>: (5.83b)

α¼ θ�h (5.83c)

If A and a are provided as functions of time, then α and δ are found as functions of time by means of

Eqs. (5.83a)–(5.83c). The rates _α, €α, _δ, and €δ are determined by differentiating α(t) and δ(t) and
substituting the results into Eqs. (5.68)–(5.73) to calculate the direction cosine vector ρ̂ and its rates
_̂ρ and €̂ρ.
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It is a relatively simple matter to find _α and _δ in terms of _A and _a. Differentiating Eq. (5.78a) with
respect to time yields

_δ¼ 1

cosδ
� _A cosφsinAcosa + _a sinφcosa� cosφcosAsinað Þ� 

(5.84)

Differentiating Eq. (5.81), we get

_h cos hð Þ¼� 1

cos2δ
_A cosAcosa� _a sinAsina

 �

cosδ+ _δ sinAcosasinδ
� 

Substituting Eq. (5.82) and simplifying leads to

_h¼�
_A cosAcosa� _a sinAsina+ _δ sinAcosa tanδ

cosϕsina� sinϕcosAcosa

But _h¼ _θ� _α¼ωE� _α, so that finally,

_α¼ωE +
_A cosAcosa� _a sinAsina+ _δ sinAcosa tanδ

cosϕsina� sinϕcosAcosa
(5.85)
ALGORITHM 5.4

Given the range ρ, azimuth A, and angular elevation a together with the rates _ρ, _A, and _a relative to

an earth-based tracking station (for which the altitude H, latitude ϕ, and local sidereal time are

known), calculate the state vectors r and v in the geocentric equatorial frame. A MATLAB script

of this procedure appears in Appendix D.28.

1. Using the altitude H, latitude ϕ, and local sidereal time θ of the site, calculate its geocentric
position vector R from Eq. (5.56).

2. Calculate the topocentric declination δ using Eq. (5.83a).

3. Calculate the topocentric right ascension α from Eqs. (5.83b) and (5.83c).

4. Calculate the direction cosine unit vector ρ̂ from Eqs. (5.68) and (5.71),

ρ̂¼ cosδ cosαÎ+ sinαĴ

 �

+ sinδK̂
Calculate the geocentric position vector r from Eq. (5.63).
5.

6. Calculate the inertial velocity _R of the site from Eq. (5.66).

7. Calculate the declination rate _δ using Eq. (5.84).

8. Calculate the right ascension rate _α by means of Eq. (5.85).

9. Calculate the direction cosine rate vector _̂ρ from Eqs. (5.69) and (5.72).

10. Calculate the geocentric velocity vector v from Eq. (5.64).
EXAMPLE 5.10
At θ ¼ 300° local sidereal time a sea level (H¼ 0) tracking station at a latitude ofϕ ¼ 60° detects a space object and obtains
the following data:
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Slant range: ρ¼ 2551km

Azimuth: A¼ 90°

Elevation: a¼ 30°

Range rate: _ρ¼ 0

Azimuth rate: _A¼ 1:973 10�3

 �

rad=s 0:1130°=sð Þ
Elevation rate: _a¼ 9:864 10�4


 �
rad=s 0:05651°=sð Þ

What are the orbital elements of the object?

Solution
We must first employ Algorithm 5.4 to obtain the state vectors r and v to compute the orbital elements by means of Al-

gorithm 4.2.

Step 1:

The equatorial radius of the earth is Re ¼ 6378 km and the flattening factor is f ¼ 0.003353. It follows from Eq. (5.56)

that the position vector of the observer is

R¼ 1598Î�2769Ĵ + 5500K̂ kmð Þ
Step 2:

δ¼ sin�1 cosϕcosAcosa+ sinϕsinað Þ
¼ sin�1 cos60°cos90°cos30°+ sin60°sin30°ð Þ
¼ 25:66°

Step 3:

Since the given azimuth lies between 0° and 180°, Eq. (5.83b) yields

h¼ 360°� cos�1 cosϕsina� sinϕcosAcosa

cosδ

� �
¼ 360°� cos�1 cos60°sin30°� sin60°cos90°cos30°

cos25:66°

� �
¼ 360°�73:90°¼ 286:1°

Therefore, the right ascension is

α¼ θ�h¼ 300°�286:1°¼ 13:90°

Step 4:

ρ̂¼ cosδ cosαÎ+ sinαĴ

 �

+ sinδK̂

¼ cos25:66° cos13:90°̂I + sin13:90°Ĵ

 �

+ sin25:66°K̂

¼ 0:8750Î + 0:2165Ĵ + 0:4330K̂

Step 5:

r¼R+ ρρ̂
¼ 1598Î�2769Ĵ + 5500K̂

 �

+ 2551 0:8750Î+ 0:2165Ĵ+ 0:4330K̂

 �

¼ 3831Î�2216Ĵ + 6605K̂ kmð Þ
Step 6:

Recalling from Eq. (2.67) that the angular velocity ωE of the earth is 72.92(10�6) rad/s,

_R¼Ω�R

¼ 72:92 10�6

 �

K̂� 1598Î�2769Ĵ+ 5500K̂

 �

¼ 0:2019Î + 0:1166Ĵ km=sð Þ
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Step 7:

_δ¼ 1

cosδ
� _A cosϕsinAcosa + _a sinϕcosa� cosϕcosAsinað Þ� 

¼ 1

cos25:66°
�1:973 10�3


 �
cos60°sin90°cos30°+ 9:864 10�4


 �
sin60°cos30°� cos60°cos90°sin30°ð Þ� 

¼�1:2696 10�4

 �

rad=sð Þ
Step 8:

_α�ωE ¼
_A cosAcosa� _a sinAsina+ _δ sinAcosa tanδ

cosφsina� sinφcosAcosa

¼ 1:973 10�3

 �

cos90°cos30°�9:864 10�4

 �

sin90°sin30°+ �1:2696 10�4

 �� 

sin90°cos30° tan25:66°
cos60°sin30°� sin60°cos90°cos30°

¼�0:002184

; _α¼ 72:92 10�6

 ��0:002184¼�0:002111 rad=sð Þ

Step 9:

_̂ρ¼ � _α sinαcosδ� _δ cosαsinδ

 �

Î+ _α cosαcosδ� _δ sinαsinδ

 �

Ĵ + _δ cosδK̂

¼ � �0:002111ð Þsin13:90°cos25:66°� �0:1270ð Þcos13:90°sin25:66°½ �̂I
+ �0:002111ð Þcos13:90°cos25:66°� �0:1270ð Þsin13:90°sin25:66°½ �Ĵ
+ �0:1270cos25:66°½ �K̂

; _̂ρ¼ 0:5104Î�1:834Ĵ�0:1144K̂

 �

10�3

 �

rad=sð Þ
Step 10:

v¼ _R + _ρρ̂ + ρ _̂ρ
¼ 0:2019Î + 0:1166Ĵ

 �

+ 0: 0:8750Î+ 0:2165Ĵ+ 0:4330K̂

 �

+ 2551 0:5104 10�3

 �

Î�1:834�10�3Ĵ�0:1144�10�3K̂
� 

;v¼ 1:504Î�4:562Ĵ�0:2920K̂ km=sð Þ
Using the position and velocity vectors from Steps 5 and 10, the reader can verify that Algorithm 4.2 yields the fol-

lowing orbital elements of the tracked object:

a¼ 5170km

i¼ 113:4°

Ω¼ 109:8°

e¼ 0:619

ω¼ 309:8°

θ¼ 165:3°

This is a highly elliptical orbit with a semimajor axis less than the earth’s radius, so the object will impact the earth (at a true

anomaly of 216°).
For objects orbiting the sun (planets, asteroids, comets, and man-made interplanetary probes), the

fundamental vector triangle is as illustrated in Fig. 5.13. The tracking station is on the earth, but, of

course, the sun rather than the earth is the center of attraction. The procedure for finding the heliocentric

state vector r and v is similar to that outlined above. Because of the vast distances involved, the ob-

server can usually be imagined to reside at the center of the earth. Dealing with R is different in this



FIG. 5.13

An object B orbiting the sun and tracked from earth.
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case. The daily position of the sun relative to the earth (�R in Fig. 5.13) may be found in ephemerides,

such as the Astronomical Almanac (Department of the Navy, 2018). A discussion of interplanetary tra-

jectories appears in Chapter 8 of this text.
5.9 ANGLES-ONLY PRELIMINARY ORBIT DETERMINATION
To determine an orbit requires specifying six independent quantities. These can be the six classical

orbital elements or all six components of the state vector, r and v, at a given instant. To determine

an orbit solely from observations therefore requires six independent measurements. In the previous

section, we assumed the tracking station was able to measure simultaneously the six quantities: range

and range rate, azimuth and azimuth rate, plus elevation and elevation rate. These data led directly to

the state vector and, hence, to a complete determination of the orbit. In the absence of the capability to

measure range and range rate, as with a telescope, we must rely on measurements of just the two angles,

azimuth and elevation, to determine the orbit. A minimum of three observations of azimuth and ele-

vation is therefore required to accumulate the six quantities we need to predict the orbit. We shall

henceforth assume that the angular measurements are converted to topocentric right ascension α
and declination δ, as described in the previous section.

We shall consider the classical method of angles-only orbit determination due to Carl Friedrich

Gauss (1777–1855), a German mathematician who many consider was one of the greatest mathema-

ticians ever. This method requires gathering angular information over closely spaced intervals of time

and yields a preliminary orbit determination based on those initial observations.
5.10 GAUSS METHOD OF PRELIMINARY ORBIT DETERMINATION
Suppose we have three observations of an orbiting body at times t1, t2, and t3, as shown in Fig. 5.14. At
each time, the geocentric position vector r is related to the observer’s position vector R, the slant range

ρ, and the topocentric direction cosine vector ρ̂ by Eq. (5.63),



FIG. 5.14

Center of attraction C, observer O, and the tracked body B.
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r1 ¼R1 + ρ1ρ̂1 (5.86a)

r2 ¼R2 + ρ2ρ̂2 (5.86b)

r3 ¼R3 + ρ3ρ̂3 (5.86c)

The positions R1, R2, and R3 of the observer O are known from the location of the tracking station

and the time of the observations. ρ̂1, ρ̂2, and ρ̂3 are obtained by measuring the right ascension α and

declination δ of the body at each of the three times (recall Eq. 5.57). Eqs. (5.86a), (5.86b), and (5.86c)

are three vector equations, and therefore there are nine scalar equations, in 12 unknowns: the three

components of each of the three vectors r1, r2, and r3, plus the three slant ranges ρ1, ρ2, and ρ3.
An additional three equations are obtained by recalling from Chapter 2 that the conservation of

angular momentum requires the vectors r1, r2, and r3 to lie in the same plane. As in our discussion

of the Gibbs method in Section 5.2, this means that r2 is a linear combination r1 and r3.

r2 ¼ c1r1 + c3r3 (5.87)

Adding this equation to those in Eqs. (5.86) introduces two new unknowns, c1 and c3. At this point, we
therefore have 12 scalar equations in 14 unknowns.

Another consequence of the two-body equation of motion (Eq. 2.22) is that the state vectors r and v

of the orbiting body can be expressed in terms of the state vectors at any given time by means of the

Lagrange coefficients, Eqs. (2.135) and (2.136). For the case at hand, this means we can express the

position vectors r1 and r3 in terms of the position r2 and velocity v2 at the intermediate time t2 as follows:

r1 ¼ f1r2 + g1v2 (5.88a)

r3 ¼ f3r2 + g3v2 (5.88b)

where f1 and g1 are the Lagrange coefficients evaluated at t1, and f3 and g3 are those same functions

evaluated at time t3. If the time intervals between the three observations are sufficiently small, then
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Eqs. (2.172) reveal that f and g depend approximately only on the distance from the center of attraction

at the initial time. For the case at hand that means the coefficients in Eqs. (5.88) depend only on r2.
Hence, Eqs. (5.88a) and (5.88b) add 6 scalar equations to our previous list of 12 while adding to

the list of 14 unknowns only 4: the three components of v2 and the radius r2. We have arrived at

18 equations in 18 unknowns, so the problem is well posed and we can proceed with the solution.

The ultimate objective is to determine the state vector (r2,v2) at the intermediate time t2.
Let us start out by solving for c1 and c3 in Eq. (5.87). First, take the cross product of each term in that

equation with r3,

r2�r3 ¼ c1 r1�r3ð Þ + c3 r3�r3ð Þ
Since r3 � r3 ¼ 0, this reduces to

r2�r3 ¼ c1 r1�r3ð Þ
Taking the dot product of this result with r1 � r3 and solving for c1 yields

c1 ¼ r2�r3ð Þ � r1�r3ð Þ
r1�r3k k2 (5.89)

In a similar fashion, by forming the dot product of Eq. (5.87) with r1, we are led to

c3 ¼ r2�r1ð Þ � r3�r1ð Þ
r1�r3k k2 (5.90)

Let us next use Eqs. (5.88a) and (5.88b) to eliminate r1 and r3 from the expressions for c1 and c3.
First of all,

r1�r3 ¼ f1r2 + g1v2ð Þ� f3r2 + g3v2ð Þ¼ f1g3 r2�v2ð Þ + f3g1 v2�r2ð Þ
But r2 � v2 ¼ h, where h is the constant angular momentum of the orbit (Eq. 2.28). It follows that

r1�r3 ¼ f1g3� f3g1ð Þh (5.91)

and, of course,

r3�r1 ¼� f1g3� f3g1ð Þh (5.92)

Therefore

r1�r3k k2 ¼ f1g3� f3g1ð Þ2h2 (5.93)

Similarly

r2�r3 ¼ r2� f3r2 + g3v2ð Þ¼ g3h (5.94)

and

r2�r1 ¼ r2� f1r2 + g1v2ð Þ¼ g1h (5.95)

Substituting Eqs. (5.91), (5.93) and (5.94) into Eq. (5.89) yields

c1 ¼ g3h � f1g3� f3g1ð Þh
f1g3� f3g1ð Þ2h2 ¼ g3 f1g3� f3g1ð Þh2

f1g3� f3g1ð Þ2h2
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or

c1 ¼ g3
f1g3� f3g1

(5.96)

Likewise, substituting Eqs. (5.92), (5.93), and (5.95) into Eq. (5.90) leads to

c3 ¼� g1
f1g3� f3g1

(5.97)

The coefficients in Eq. (5.87) are now expressed solely in terms of the Lagrange functions, and so far no

approximations have been made. However, we will have to make some approximations to proceed.

We must approximate c1 and c2 under the assumption that the times between observations of the

orbiting body are small. To that end, let us introduce the notation

τ1 ¼ t1� t2 τ3 ¼ t3� t2 (5.98)

where τ1 and τ3 are the time intervals between the successive measurements of ρ̂1, ρ̂2, and ρ̂3. If the time

intervals τ1 and τ3 are small enough, we can retain just the first two terms of the series expressions for

the Lagrange coefficients f and g in Eq. (2.172), thereby obtaining the approximations

f1 � 1�1

2

μ

r23
τ1

2 f3 � 1�1

2

μ

r23
τ3

2 (5.99)

and

g1 � τ1�1

6

μ

r23
τ1

3 g3 � τ3�1

6

μ

r23
τ3

3 (5.100)

We want to exclude all terms in f and g beyond the first two, so that only the unknown r2 appears in
Eqs. (5.99) and (5.100). We can see from Eq. (2.172) that the higher order terms include the unknown

v2 as well.

Using Eqs. (5.99) and (5.100), we can calculate the denominator in Eqs. (5.96) and (5.97),

f1g3� f3g1 ¼ 1�1

2

μ

r23
τ1

2

� �
τ3�1

6

μ

r23
τ3

3

� �
� 1�1

2

μ

r23
τ3

2

� �
τ1�1

6

μ

r23
τ1

3

� �
Expanding the right-hand side and collecting the terms yields

f1g3� f3g1 ¼ τ3� τ1ð Þ�1

6

μ

r23
τ3� τ1ð Þ3 + 1

12

μ2

r26
τ1

2τ3
3� τ1

3τ3
2


 �
Retaining terms of at most the third order in the time intervals τ1 and τ3, and setting

τ¼ τ3� τ1 (5.101)

reduces this expression to

f1g3� f3g1 � τ�1

6

μ

r23
τ3 (5.102)

From Eq. (5.98) observe that τ is just the time interval between the first and last observations.

Substituting Eqs. (5.100) and (5.102) into Eq. (5.96), we get

c1 �
τ3�1

6

μ

r23
τ3

3

τ�1

6

μ

r23
τ3

¼ τ3
τ

1�1

6

μ

r23
τ3

2

� �
� 1�1

6

μ

r23
τ2

� ��1

(5.103)
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We can use the binomial theorem to simplify (linearize) the last term on the right. Setting a ¼ 1,

b¼�μτ2=ð6r23Þ, and n ¼ � 1 in Eq. (5.44), and neglecting terms of higher order than 2 in τ, yields

1�1

6

μ

r23
τ2

� ��1

� 1 +
1

6

μ

r23
τ2

Hence, Eq. (5.103) becomes

c1 � τ3
τ

1 +
1

6

μ

r23
τ2� τ3

2

 �� �

(5.104)

where only second-order terms in the time have been retained. In precisely the same way we can

show that

c3 ��τ1
τ

1 +
1

6

μ

r23
τ2� τ1

2

 �� �

(5.105)

Finally, we have managed to obtain approximate formulas for the coefficients in Eq. (5.87) in terms

of just the time intervals between observations and the as yet unknown distance r2 from the center of

attraction at the central time t2.
The next stage of the solution for r2 and v2 is to seek formulas for the slant ranges ρ1, ρ2, and ρ3 in

terms of c1 and c2. To that end substitute Eqs. (5.86) into Eq. (5.87) to get

R2 + ρ2ρ̂2 ¼ c1 R1 + ρ1ρ̂1ð Þ+ c3 R3 + ρ3ρ̂3ð Þ
which we rearrange into the form

c1ρ1ρ̂1�ρ2ρ̂2 + c3ρ3ρ̂3 ¼�c1R1 +R2�c3R3 (5.106)

Let us isolate the slant ranges ρ1, ρ2, and ρ3 in turn by taking the dot product of this equation with

appropriate vectors. To isolate ρ1, take the dot product of each term in this equation with ρ̂2� ρ̂3, which
gives

c1ρ1ρ̂1 � ρ̂2� ρ̂3ð Þ�ρ2ρ̂2 � ρ̂2� ρ̂3ð Þ + c3ρ3ρ̂3 � ρ̂2� ρ̂3ð Þ
¼�c1R1 � ρ̂2� ρ̂3ð Þ +R2 � ρ̂2� ρ̂3ð Þ�c3R3 � ρ̂2� ρ̂3ð Þ

Since ρ̂2 � ρ̂2� ρ̂3ð Þ¼ ρ̂3 � ρ̂2� ρ̂3ð Þ¼ 0, this reduces to

c1ρ1ρ̂1 � ρ̂2� ρ̂3ð Þ¼ �c1R1 +R2�c3R3ð Þ � ρ̂2� ρ̂3ð Þ (5.107)

Let D0 represent the scalar triple product of ρ̂1, ρ̂2, and ρ̂3,
D0 ¼ ρ̂1 � ρ̂2� ρ̂3ð Þ (5.108)

We will assume that D0 is not zero, which means that ρ̂1, ρ̂2, and ρ̂3 do not lie in the same plane. Then,

we can solve Eq. (5.107) for ρ1 to get

ρ1 ¼
1

D0

�D11 +
1

c1
D21� c3

c1
D31

� �
(5.109a)

where the Ds stand for the scalar triple products

D11 ¼R1 � ρ̂2� ρ̂3ð Þ D21 ¼R2 � ρ̂2� ρ̂3ð Þ D31 ¼R3 � ρ̂2� ρ̂3ð Þ (5.109b)
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In a similar fashion, by taking the dot product of Eq. (5.106) with ρ̂1� ρ̂3 and then ρ̂1� ρ̂2, we obtain ρ2
and ρ3,

ρ2 ¼
1

D0

�c1D12 +D22�c3D32ð Þ (5.110a)

where

D12 ¼R1 � ρ̂1� ρ̂3ð Þ D22 ¼R2 � ρ̂1� ρ̂3ð Þ D32 ¼R3 � ρ̂1� ρ̂3ð Þ (5.110b)

and

ρ3 ¼
1

D0

�c1
c3
D13 +

1

c3
D23�D33

� �
(5.111a)

where

D13 ¼R1 � ρ̂1� ρ̂2ð Þ D23 ¼R2 � ρ̂1� ρ̂2ð Þ D33 ¼R3 � ρ̂1� ρ̂2ð Þ (5.111b)

To obtain these results, we used the fact that ρ̂2 � ρ̂1� ρ̂3ð Þ¼�D0 and ρ̂3 � ρ̂1� ρ̂2ð Þ¼D0 (Eq. 1.21).

Substituting Eqs. (5.104) and (5.105) into Eq. (5.110a) yields the slant range ρ2,

ρ2 ¼A +
μB

r23
(5.112a)

where

A¼ 1

D0

�D12

τ3
τ
+D22 +D32

τ1
τ

� �
(5.112b)

B¼ 1

6D0

D12 τ3
2� τ2


 �τ3
τ
+D32 τ2� τ1

2

 �τ1

τ

h i
(5.112c)

On the other hand, making the same substitutions into Eqs. (5.109a), (5.109b) (5.111a), and (5.111b)

leads to the following expressions for the slant ranges ρ1 and ρ3:

ρ1 ¼
1

D0

6 D31

τ1
τ3

+D21

τ

τ3

� �
r2

3 + μD31 τ2� τ12ð Þτ1
τ3

6r23 + μ τ2� τ32ð Þ �D11

2664
3775 (5.113)

ρ3 ¼
1

D0

6 D13

τ3
τ1
�D23

τ

τ1

� �
r2

3 + μD13 τ2� τ32ð Þτ3
τ1

6r23 + μ τ2� τ12ð Þ �D33

2664
3775 (5.114)

Eq. (5.112a) is a relation between the slant range ρ2 and the geocentric radius r2. Another expression
relating these two variables is obtained from Eq. (5.86b),

r2 � r2 ¼ R2 + ρ2ρ̂2ð Þ � R2 + ρ2ρ̂2ð Þ
or

r2
2 ¼ ρ2

2 + 2Eρ2 +R2
2 (5.115a)
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where

E¼R2 � ρ̂2 (5.115b)

Substituting Eq. (5.112a) into Eq. (5.115a) gives

r2
2 ¼ A +

μB

r22

� �2

+ 2E A+
μB

r22

� �
+R2

2

Expanding and rearranging terms leads to an eighth-degree polynomial,

x8 + ax6 + bx3 + c¼ 0 (5.116)

where x ¼ r2 and the coefficients are

a¼� A2 + 2AE+R2
2


 �
b¼�2μB A+Eð Þ c¼�μ2B2 (5.117)

We solve Eq. (5.116) for r2 and substitute the result into Eqs. (5.112)–(5.114) to obtain the slant

ranges ρ1, ρ2, and ρ3. Then Eqs. (5.86) yield the position vectors r1, r2, and r3. Recall that finding

r2 was one of our objectives.

To attain the other objective, the velocity v2, we first solve Eq. (5.88a) for r2,

r2 ¼ 1

f1
r1�g1

f1
v2

Substitute this result into Eq. (5.88b) to get

r3 ¼ f3
f1
r1 +

f1g3� f3g1
f1

� �
v2

Solving this for v2 yields

v2 ¼ 1

f1g3� f3g1
�f3r1 + f1r3ð Þ (5.118)

in which we employ the approximate Lagrange functions appearing in Eqs. (5.99) and (5.100).

The approximate values we have found for r2 and v2 are used as the starting point for iteratively

improving the accuracy of the computed r2 and v2 until convergence is achieved. The entire step-by-

step procedure is summarized in Algorithms 5.5 and 5.6 (see also Appendix D.29).

ALGORITHM 5.5

The Gauss method of preliminary orbit determination

Given the direction cosine vectors ρ̂1, ρ̂2, and ρ̂3 and the observer’s position vectors R1, R2, and

R3 at the times t1, t2, and t3, compute the orbital elements.

1. Calculate the time intervals τ1, τ3, and τ using Eqs. (5.98) and (5.101).

2. Calculate the cross products p1 ¼ ρ̂2� ρ̂3, p2 ¼ ρ̂1� ρ̂3, and p3 ¼ ρ̂1� ρ̂2.
3. Calculate D0 ¼ ρ̂1 � p1 (Eq. 5.108).
4. From Eqs. (5.109b), (5.110b), and (5.111b) compute the nine scalar quantities

D11 ¼R1 � p1 D12 ¼R1 � p2 D13 ¼R1 � p3
D21 ¼R2 � p1 D22 ¼R2 � p2 D23 ¼R2 � p3
D31 ¼R3 � p1 D32 ¼R3 � p2 D33 ¼R3 � p3
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Calculate A and B using Eqs. (5.112b) and (5.112c).
5.

6. Calculate E using Eq. (5.115b), and calculate R2
2 ¼R2 �R2.

7. Calculate a, b, and c from Eq. (5.117).

8. Find the roots of Eq. (5.116) and select the most reasonable one as r2. Newton’s method can

be used, in which case Eq. (3.16) becomes

xi+ 1 ¼ xi� xi
8 + axi

6 + bxi
3 + c

8xi7 + 6axi5 + 3bxi
2

(5.119)
We must first print or graph the function F ¼ x8 + ax6 + bx3 + c for x > 0 and choose as an

initial estimate a value of x near the point where F changes sign. If there is more than one

physically reasonable root, then each one must be used and the resulting orbit checked

against the knowledge that may already be available about the general nature of the orbit.

Alternatively, the analysis can be repeated using additional sets of observations.
9. Calculate ρ1, ρ2, and ρ3 using Eqs. (5.113), (5.112a), and (5.114).

10. Use Eq. (5.86) to calculate r1, r2, and r3.
11. Calculate the Lagrange coefficients f1, g1, f3, and g3 from Eqs. (5.99) and (5.100).

12. Calculate v2 using Eq. (5.118).

13. (a) Use r2 and v2 from Steps 10 and 12 to obtain the orbital elements from Algorithm 4.2.
(b) Alternatively, proceed to Algorithm 5.6 to improve the preliminary estimate of the orbit.
ALGORITHM 5.6
Iterative improvement of the orbit determined by Algorithm 5.5
Use the values of r2 and v2 obtained from Algorithm 5.5 to compute the “exact” values of the f
and g functions from their universal formulation as follows.

1. Calculate the magnitude of r2 r2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2p
 �

and v2 v2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2p
 �

.

2. Calculate α, the reciprocal of the semimajor axis: α¼ 2=r2� v22=μ:
3. Calculate the radial component of v2: vr)2 ¼ v2 � r2/r2.
4. Use Algorithm 3.3 to solve the universal Kepler equation (Eq. 3.49) for the universal

variables χ1 and χ3 at times t1 and t3, respectively:ffiffiffi
μ

p
τ1 ¼ r2vrÞ2ffiffiffi

μ
p χ1

2C αχ1
2


 �
+ 1�αr2ð Þχ13S αχ1

2

 �

+ r2χ1ffiffiffi
μ

p
τ3 ¼ r2vrÞ2ffiffiffi

μ
p χ3

2C αχ3
2


 �
+ 1�αr2ð Þχ33S αχ3

2

 �

+ r2χ3
Use χ1 and χ3 to calculate f1, g1, f3, and g3 from Eqs. (3.69):
5.

f1 ¼ 1� χ21
r2
C αχ21

 �

g1 ¼ τ1� 1ffiffiffi
μ

p χ31S αχ21

 �

f3 ¼ 1� χ23
r2
C αχ23

 �

g3 ¼ τ3� 1ffiffiffi
μ

p χ33S αχ23

 �
Use these values of f1, g1, f3, and g3 to calculate c1 and c3 from Eqs. (5.96) and (5.97).
6.

7. Use c1 and c3 to calculate updated values of ρ1, ρ2, and ρ3 from Eqs. (5.109), (5.110), and

(5.111).
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8. Calculate updated r1, r2, and r3 from Eqs. (5.86).

9. Calculate updated v2 using Eq. (5.118) and the f and g values computed in Step 5.

10. Go back to Step 1 and repeat until, to the desired degree of precision, there is no further

change in ρ1, ρ2, and ρ3.
11. Use r2 and v2 to compute the orbital elements by means of Algorithm 4.2.
EXAMPLE 5.11
A tracking station is located at ϕ ¼ 40°N latitude at an altitude of H ¼ 1 km. Three observations of an earth satellite yield

the values for the topocentric right ascension and declination listed in Table 5.1, which also shows the local sidereal time θ
of the observation site.

Use the Gauss Algorithm 5.5 to estimate the state vector at the second observation time. Recall that μ ¼ 398,

600km3/s2.

Solution
Recalling that the equatorial radius of the earth is Re ¼ 6378km and the flattening factor is f ¼ 0.003353, we substitute

ϕ ¼ 40°, H¼ 1 km, and the given values of θ into Eq. (5.56) to obtain the inertial position vector of the tracking station at
each of the three observation times.

R1 ¼ 3489:8Î+ 3430:2Ĵ + 4078:5K̂ kmð Þ
R2 ¼ 3460:1Î+ 3460:1Ĵ + 4078:5K̂ kmð Þ
R3 ¼ 3429:9Î+ 3490:1Ĵ + 4078:5K̂ kmð Þ

Using Eq. (5.57), we compute the direction cosine vectors at each of the three observation times from the right ascen-

sion and declination data

ρ̂1 ¼ cos �8:7833°ð Þcos43:537°Î+ cos �8:7833°ð Þsin43:537°Ĵ+ sin �8:7833°ð ÞK̂
¼ 0:71643Î + 0:68074Ĵ�0:15270K̂

ρ̂2 ¼ cos �12:074°ð Þcos54:420°Î+ cos �12:074°ð Þsin54:420°Ĵ+ sin �12:074°ð ÞK̂
¼ 0:56897Î + 0:79531Ĵ�0:20917K̂

ρ̂3 ¼ cos �15:105°ð Þcos64:318°Î+ cos �15:105°ð Þsin64:318°Ĵ+ sin �15:105°ð ÞK̂
¼ 0:41841Î + 0:87007Ĵ�0:26059K̂

We can now proceed with Algorithm 5.5.

Step 1:

τ1 ¼ 0�118:10¼�118:10s

τ3 ¼ 237:58�118:10¼ 119:47s

τ¼ 119:47� �118:1ð Þ¼ 237:58s
Table 5.1 Data for Example 5.11

Observation Time (s) Right ascension, α (°) Declination, δ (°) Local sidereal time, θ (°)

1 0 43.537 �8.7833 44.506

2 118.10 54.420 �12.074 45.000

3 237.58 64.318 �15.105 45.499
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Step 2:

p1 ¼ ρ̂2� ρ̂3 ¼�0:025258Î + 0:060753Ĵ+ 0:16229K̂

p2 ¼ ρ̂1� ρ̂3 ¼�0:044538Î + 0:12281Ĵ+ 0:33853K̂

p3 ¼ ρ̂1� ρ̂2 ¼�0:020950Î + 0:062977Ĵ+ 0:18246K̂

Step 3:

D0 ¼ ρ̂1 � p1 ¼�0:0015198

Step 4:

D11 ¼R1 �p1 ¼ 782:15km D12 ¼R1 �p2 ¼ 1646:5km D13 ¼R1 � p3 ¼ 887:10km

D21 ¼R2 �p1 ¼ 784:72km D22 ¼R2 �p2 ¼ 1651:5km D23 ¼R2 � p3 ¼ 889:60km

D31 ¼R3 �p1 ¼ 787:31km D32 ¼R3 �p2 ¼ 1656:6km D33 ¼R3 � p3 ¼ 892:13km

Step 5:

A¼ 1

�0:0015198
�1646:5

119:47

237:58
+ 1651:5 + 1656:6

�118:10ð Þ
237:58

� �
¼�6:6858km

B¼ 1

6 �0:0015198ð Þ 1646:5 119:472�237:582

 �119:47

237:58

�
+1656:6 237:582� �118:10ð Þ2

h i �118:10ð Þ
237:58

�
¼ 7:6667 109


 �
km � s2

Step 6:

E¼R2 � ρ̂2 ¼ 3867:5km

R2
2 ¼R2 �R2 ¼ 4:058 107


 �
km2

Step 7:

a¼� 6:6858ð Þ2 + 2 �6:6858ð Þ 3875:8ð Þ + 4:058�107
h i

¼�4:0528�107km2

b¼�2 389, 600ð Þ 7:6667�109

 � �6:6858 + 3875:8ð Þ¼�2:3597�1019km5

c¼� 398, 600ð Þ2 7:6667�109

 �2 ¼�9:3387�1030km8

Step 8:

F xð Þ¼ x8�4:0528�107x6�2:3597�1019x3�9:3387�1030 ¼ 0

The graph of F(x) in Fig. 5.15 shows that it changes sign near x ¼ 9000km. Let us use that as the starting value in

Newton’s method for finding the roots of F(x). For the case at hand, Eq. (5.119) is

xi+ 1 ¼ xi�
x8i �4:0528 107


 �
x6i �2:3622 1019


 �
x3i �9:3186 1030


 �
8x7i �2:4317 108


 �
x5i �7:0866 1019


 �
x2i

Stepping through Newton’s iterative procedure yields

x0 ¼ 9000

x1 ¼ 9000� �276:93ð Þ¼ 9276:9

x2 ¼ 9276:9�34:526¼ 9242:4

x3 ¼ 9242:4�0:63428¼ 9241:8

x4 ¼ 9241:8�0:00021048¼ 9241:8



FIG. 5.15

Graph of the polynomial F(x) in Step 8.
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Thus, after four steps we converge to

r2 ¼ 9241:8km

The other roots are either negative or complex and are therefore physically unacceptable.

Step 9:

ρ1 ¼
1

�0:0015198

�
6 787:31

�118:10

119:47
+ 784:72

237:58

119:47

� �
9241:83 + 398,600 � 787:31 � 237:582� �118:10ð Þ2

h i�118:10

19:47

6 � 9241:83 + 398,600 237:582�119:472

 � �782:15

8>><>>:
9>>=>>;

¼ 3639:1km

ρ2 ¼�6:6858 +
398,600 � 7:6667 109


 �
9241:83

¼ 3864:8km

ρ3 ¼
1

�0:0015198

�
6 887:10

119:47

�118:10
�889:60

237:58

�118:10

� �
9241:83 + 398,600 � 887:10 237:582�119:472


 � 119:47

�118:10

6 � 9241:83 + 398,600 237:582� �118:10ð Þ2
h i �892:13

2664
3775

¼ 4172:8km

Step 10:

r1 ¼ 3489:8Î+ 3430:2Ĵ + 4078:5K̂

 �

+ 3639:1 0:71643Î+ 0:68074Ĵ�0:15270K̂

 �

¼ 6096:9Î + 5907:5Ĵ + 3522:9K̂ kmð Þ
r2 ¼ 3460:1Î+ 3460:1Ĵ + 4078:5K̂


 �
+ 3864:8 0:56897Î+ 0:79531Ĵ�0:20917K̂


 �
¼ 5659:1Î + 6533:8Ĵ + 3270:1K̂ kmð Þ

r3 ¼ 3429:9Î+ 3490:1Ĵ + 4078:5K̂

 �

+ 4172:8 0:41841Î+ 0:87007Ĵ�0:26059K̂

 �

¼ 5175:8Î + 7120:8Ĵ + 2991:1K̂ kmð Þ
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Step 11:

f1 � 1�1398,600

29241:83
�118:10ð Þ2 ¼ 0:99648

f3 � 1�1398,600

29241:83
119:47ð Þ2 ¼ 0:99640

g1 ��118:10�1

6
� 398,600
9241:83

�118:10ð Þ3 ¼�117:97

g3 � 119:47�1

6
� 398,600
69241:83

119:47ð Þ3 ¼ 119:33

Step 12:

v2 ¼
�0:99640 6096:9Î + 5907:5Ĵ + 3522:9K̂


 �
+ 0:99648 5175:8Î + 7120:8Ĵ + 2991:1K̂


 �
0:99648 � 119:33�0:99640 �117:97ð Þ

¼�3:8800Î+ 5:1156Ĵ�2:2397K̂ km=sð Þ
In summary, the state vector at time t2 is, approximately,

r2 ¼ 5659:1Î+ 6533:8Ĵ + 3270:1K̂ kmð Þ
v2 ¼�3:8800Î+ 5:1156Ĵ�2:2387K̂ km=sð Þ
EXAMPLE 5.12
Starting with the state vector determined in Example 5.11, use Algorithm 5.6 to improve the vector to five significant

figures.

Step 1:

r2 ¼ r2k k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5659:12 + 6533:82 + 3270:12

p
¼ 9241:8km

v2 ¼ v2k k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3:8800ð Þ2 + 5:1156 + �2:2397ð Þ2

q
¼ 6:7999km=s

Step 2:

α¼ 2

r2
�v22

μ
¼ 2

9241:8
� 6:79992

398,600
¼ 1:0154 10�4


 �
km�1

Step 3:

vrÞ2 ¼
v2 � r2
r2

¼ �3:8800ð Þ � 5659:1 + 5:1156 � 6533:8 + �2:2397ð Þ � 3270:1
9241:8

¼ 0:44829km=s

Step 4:

The universal Kepler equation at times t1 and t3, respectively, becomesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p
τ1 ¼ 9241:8:0 � 44829ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

398,600
p χ21C 1:0040�10�4χ21


 �
+ 1�1:0040�10�4 � 9241:8
 �

χ31S 1:0040�10�4χ21

 �

+ 9241:8χ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p
τ3 ¼ 9241:8 � 0:44829ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

398,600
p χ23C 1:0040�10�4χ23


 �
+ 1�1:0040�10�4 � 9241:8
 �

χ33S 1:0040�10�4χ23

 �

+ 9241:8χ3
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or

631:35τ1 ¼ 6:5622χ21C 1:0040�10�4χ21

 �

+ 0:072085χ31S 1:0040�10�4χ21 + 9241:8χ1

 �

631:35τ3 ¼ 6:5622χ23C 1:0040�10�4χ23

 �

+ 0:072085χ31S 1:0040�10�4χ23 + 9241:8χ3

 �

Applying Algorithm 3.3 to each of these equations yields

χ1 ¼�8:0908
ffiffiffiffiffiffiffi
km

p

χ3 ¼ 8:1375
ffiffiffiffiffiffiffi
km

p

Step 5:

f1 ¼ 1�χ21
r2
C αχ21

 �¼ 1� �8:0908ð Þ2

9241:8
� C 1:0040�10�4 �8:0908½ �2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{0:49973

¼ 0:99646

g1 ¼ τ1� 1ffiffiffi
μ

p χ31S αχ21

 �

¼�118:1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p �8:0908ð Þ3 � S 1:0040�10�4 �8:0908½ �2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{0:16661

¼�117:96s

and

f3 ¼ 1�χ23
r2
C αχ23

 �¼ 1�8:13752

9241:8
� C 1:0040�10�4 � 8:13752
 �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{0:49972

¼ 0:99642

g3 ¼ τ3� 1ffiffiffi
μ

p χ33S αχ23

 �

¼�118:1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p 8:13753 � S 1:0040�10�4 � 8:13752
 �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{0:16661

¼ 119:33

It turns out that the procedure converges more rapidly if the Lagrange coefficients are set equal to the average of those

computed for the current step and those computed for the previous step. Thus, we set

f1 ¼ 0:99648 + 0:99646

2
¼ 0:99647

g1 ¼�117:97 + �117:96ð Þ
2

¼�117:96s

f3 ¼ 0:99642 + 0:99641

2
¼ 0:99641

g3 ¼ 119:33 + 119:33

2
¼ 119:34s

Step 6:

c1 ¼ 119:33

0:99647ð Þ 119:33ð Þ� 0:99641ð Þ �117:96ð Þ¼ 0:50467

c3 ¼ �117:96

0:99647ð Þ 119:33ð Þ� 0:99641ð Þ �117:96ð Þ¼ 0:49890

Step 7:

ρ1 ¼
1

�0:0015198
�782:15 +

1

0:50467
787:72�0:49890

0:50467
787:31

� �
¼ 3650:6km

ρ2 ¼
1

�0:0015198
�0:50467 � 1646:5 + 1651:5�0:49890 � 1656:6ð Þ¼ 3877:2km

ρ3 ¼
1

�0:0015198
�0:50467

0:49890
887:10 +

1

0:49890
889:60�892:13

� �
¼ 4186:2km



Table 5.2 Key results at each step of the iterative procedure

Step χ 1 χ 3 f1 g1 f3 g3 ρ1 ρ2 ρ3

1 �8.0908 8.1375 0.99647 �117.97 0.99641 119.33 3650.6 3877.2 4186.2

2 �8.0818 8.1282 0.99647 �117.96 0.996 42 119.33 3643.8 3869.9 4178.3

3 �8.0871 8.1337 0.99647 �117.96 0.996 42 119.33 3644.0 3870.1 4178.6

4 �8.0869 8.1336 0.99647 �117.96 0.996 42 119.33 3644.0 3870.1 4178.6
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Step 8:

r1 ¼ 3489:8Î + 3430:2Ĵ + 4078:5K̂

 �

+ 3650:6 0:71643Î + 0:68074Ĵ�0:15270K̂

 �

¼ 6105:2Î + 5915:3Ĵ+ 3521:1K̂ kmð Þ
r2 ¼ 3460:1Î + 3460:1Ĵ + 4078:5K̂


 �
+ 3877:2 0:56897Î + 0:79531Ĵ�0:20917K̂


 �
¼ 5666:6Î + 6543:7Ĵ+ 3267:5K̂ kmð Þ

r3 ¼ 3429:9Î + 3490:1Ĵ + 4078:5K̂

 �

+ 4186:2 0:41841Î + 0:87007Ĵ�0:26059K̂

 �

¼ 5181:4Î + 7132:4Ĵ+ 2987:6K̂ kmð Þ

Step 9:

v2 ¼ 1

0:99647 � 119:33�0:99641 �117:96ð Þ
� �0:99641 6105:2Î+ 5915:3Ĵ+ 3521:1K̂


 �
+ 0:99647 5181:4Î+ 7132:4Ĵ+ 2987:6K̂


 �� 
¼�3:8856Î + 5:1214Ĵ�2:2434K̂ km=sð Þ

This completes the first iteration.

The updated position r2 and velocity v2 are used to repeat the procedure beginning at Step 1. The results of the first and

subsequent iterations are shown in Table 5.2. Convergence to five significant figures in the slant ranges ρ1, ρ2, and ρ3 occurs
in four steps, at which point the state vector is

r2 ¼ 5662:1Î+ 6538:0Ĵ + 3269:0K̂ kmð Þ
v2 ¼�3:8856Î+ 5:1214Ĵ�2:2433K̂ km=sð Þ

Using r2 and v2 in Algorithm 4.2, we find that the orbital elements are

a¼ 10,000km h¼ 62, 818km2=s

 �

e¼ 0:1000

i¼ 30°

Ω¼ 270°

ω¼ 90°

θ¼ 45:01°
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PROBLEMS

Section 5.2

5.1 The geocentric equatorial position vectors of a satellite at three separate times are

r1 ¼ 5887Î�3520Ĵ�1204K̂ kmð Þ
r2 ¼ 5572Î�3457Ĵ�2376K̂ kmð Þ
r3 ¼ 5088Î�3289Ĵ�3480K̂ kmð Þ
Use Gibbs method to find v2.

{Partial Ans.: v2 ¼ 7.59km/s}
5.2 Calculate the orbital elements and perigee altitude of the space object in the previous problem.
{Partial Ans.: zp ¼ 567 km}
Section 5.3
5.3 At a given instant, the altitude of an earth satellite is 400 km. Some 30 min later, the altitude is

1000 km, and the true anomaly has increased by 120°. Find the perigee altitude.
{Ans.: 270.4 km}
5.4 At a given instant, the geocentric equatorial position vector of an earth satellite is

r1 ¼ 3600Î+ 4600Ĵ+ 3600K̂ kmð Þ

Some 30 min later, the position is
r2 ¼�5500Î+ 6240Ĵ+ 5200K̂ kmð Þ

Find the specific energy of the orbit.

{Ans.: �19.871 (km/s)2}
5.5 Compute the perigee altitude and the inclination of the orbit in the previous problem.
{Ans.: 483.59km, 44.17°}

5.6 At a given instant, the geocentric equatorial position vector of an earth satellite is

r1 ¼ 5644Î+ 2830Ĵ+ 4170K̂ kmð Þ

Some 20 min later, the position is
r2 ¼�2240Î+ 7320Ĵ+ 4980K̂ kmð Þ

Calculate v1 and v2.
{Partial Ans.: v1 ¼ 10.84km/s, v2 ¼ 9.970km/s}
5.7 Compute the orbital elements and perigee altitude for the previous problem.
{Partial Ans.: zp ¼ 224km}
Section 5.4
5.8 Calculate the Julian day number for the following epochs:
(a) 5:30 UT on August 14, 1914.

(b) 14:00 UT on April 18, 1946.

(c) 0:00 UT on September 1, 2010.
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(d) 12:00 UT on October 16, 2007.

(e) Noon today, your local time.

{Ans.: (a) 2,420,358.729, (b) 2,431,929.083, (c) 2,455,440.500, (d) 2,454,390.000}
5.9 Calculate the number of days from 12:00 UT on your date of birth to 12:00 UT on today’s date.

5.10 Calculate the local sidereal time (in degrees) at
(a) Stockholm, Sweden (east longitude 18°030) at 12:00 UT on January 1, 2008.

(b) Melbourne, Australia (east longitude 144°580) at 10:00 UT on December 21, 2007.

(c) Los Angeles, California (west longitude 118°150) at 20:00 UT on July 4, 2005.

(d) Rio de Janeiro, Brazil (west longitude 43°060) at 3:00 UT on February 15, 2006.

(e) Vladivostok, Russia (east longitude 131°560) at 8:00 UT on March 21, 2006.

(f) At noon today, your local time and place.

{Ans.: (a) 298.6°, (b) 24.6°, (c) 104.7°, (d) 146.9°, (e) 70.6°}
Section 5.8
5.11 Relative to a tracking station whose local sidereal time is 117° and latitude is +51°, the azimuth

and elevation angle of a satellite are 27.5156° and 67.5556°, respectively. Calculate the
topocentric right ascension and declination of the satellite.
{Ans.: α ¼ 145.3°, δ ¼ 68.24°}

5.12 A sea level tracking station whose local sidereal time is 40° and latitude is 35° makes the

following observations of a space object:
Azimuth: 36.0°
Azimuth rate: 0.590°/s
Elevation: 36.6°
Elevation rate: �0.263°/s
Range: 988 km

Range rate: 4.86 km/s

What is the state vector of the object?

{Partial Ans.: r ¼ 7003.3 km, v ¼ 10.922 km/s}
5.13 Calculate the orbital elements of the satellite in the previous problem.
{Partial Ans.: e ¼ 1.1, i ¼ 40°}

5.14 A tracking station at latitude �20° and elevation 500 m makes the following observations of a

satellite at the given times.
Time (min)
 Local sidereal time (°)
 Azimuth (°)
 Elevation angle (°)
 Range (km)
0
 60.0
 165.931
 9.53549
 1214.89
2
 60.5014
 145.967
 45.7711
 421.441
4
 61.0027
 2.40962
 21.8825
 732.079
Use the Gibbs method to calculate the state vector of the satellite at the central observation time.

{Partial Ans.: r2 ¼ 6684km, v2 ¼ 7.7239km/s}
5.15 Calculate the orbital elements of the satellite in the previous problem.
{Partial Ans.: e ¼ 0.001, i ¼ 95°}
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Section 5.10
5.16 A sea level tracking station at latitude +29°makes the following observations of a satellite at the

given times.
Time (min)
 Local sidereal time (°)
 Topocentric right ascension (°)
 Topocentric declination (°)
0.0
 0
 0
 51.5110
1.0
 0.250684
 65.9279
 27.9911
2.0
 0.501369
 79.8500
 14.6609
Use the Gauss method without iterative improvement to estimate the state vector of the satellite

at the middle observation time.

{Partial Ans.: r ¼ 6700.9 km, v ¼ 8.0757 km/s}
5.17 Refine the estimate in the previous problem using iterative improvement.
{Partial Ans.: r ¼ 6701.5 km, v ¼ 8.0881 km/s}
5.18 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial Ans.: e ¼ 0.10, i ¼ 30°}

5.19 A sea level tracking station at latitude +29°makes the following observations of a satellite at the

given times.
Time (min)
 Local sidereal time (°)
 Topocentric right ascension (°)
 Topocentric declination (°)
0.0
 90
 15.0394
 20.7487
1.0
 90.2507
 25.7539
 30.1410
2.0
 90.5014
 48.6055
 43.8910
Use the Gauss method without iterative improvement to estimate the state vector of the satellite.

{Partial Ans.: r ¼ 6999.1 km, v ¼ 7.5541 km/s}
5.20 Refine the estimate in the previous problem using iterative improvement.
{Partial Ans.: r ¼ 7000.0 km, v ¼ 7.5638 km/s}
5.21 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial Ans.: e ¼ 0.0048, i ¼ 31°}

5.22 The position vectorR of a tracking station and the direction cosine vector ρ̂ of a satellite relative

to the tracking station at three times are as follows:
t1 ¼ 0min

R1 ¼�1825:96Î+ 3583:66Ĵ+ 4933:54K̂ kmð Þ
ρ̂1 ¼�0:301687Î+ 0:200673Ĵ+ 0:932049K̂

t2 ¼ 1min

R2 ¼�1816:30Î+ 3575:63Ĵ+ 4933:54K̂ kmð Þ
ρ̂2 ¼�0:793090Î�0:210324Ĵ + 0:571640K̂

t3 ¼ 2min

R3 ¼�1857:25Î+ 3567:54Ĵ+ 4933:54K̂ kmð Þ
ρ̂3 ¼�0:873085Î�0:362969Ĵ + 0:325539K̂
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se the Gauss method without iterative improvement to estimate the state vector of the satellite

t the central observation time.

Partial Ans.: r ¼ 6742.3 km, v ¼ 7.6799 km/s}
{

5.23 Refine the estimate in the previous problem using iterative improvement.
{Partial Ans.: r ¼ 6743.0 km, v ¼ 7.6922 km/s}
5.24 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial Ans.: e ¼ 0.001, i ¼ 52°}

5.25 A tracking station at latitude 60°N and 500-m elevation obtains the following data:
Time (min)
 Local sidereal time (°)
 Topocentric right ascension (°)
 Topocentric declination (°)
0.0
 150
 157.783
 24.2403
5.0
 151.253
 159.221
 27.2993
10.0
 152.507
 160.526
 29.8982
Use the Gauss method without iterative improvement to estimate the state vector of the satellite.

{Partial Ans.: r ¼ 25,132 km, v ¼ 6.0588 km/s}
5.26 Refine the estimate in the previous problem using iterative improvement.
{Partial Ans.: r ¼ 25,169 km, v ¼ 6.0671 km/s}
5.27 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial Ans.: e ¼ 1.09, i ¼ 63°}

5.28 The position vector R of a tracking station and the direction cosine vector ρ̂ of a satellite relative

to the tracking station at three times are as follows:

t1 ¼ 0min

R1 ¼ 5582:84Î + 3073:90K̂ kmð Þ
ρ̂1 ¼ 0:846428Î+ 0:532504K̂

t2 ¼ 5min

R2 ¼ 5581:50Î + 122:122Ĵ + 3073:90K̂ kmð Þ
ρ̂2 ¼ 0:749290Î + 0:463023Ĵ + 0:473470K̂

t3 ¼ 10min

R3 ¼ 5577:50Î + 244:186Ĵ + 3073:90K̂ kmð Þ
ρ̂3 ¼ 0:529447Î�0:777163Ĵ+ 0:340152K̂
Use the Gauss method without iterative improvement to estimate the state vector of the satellite.

{Partial Ans.: r ¼ 9729.6 km, v ¼ 6.0234 km/s}
5.29 Refine the estimate in the previous problem using iterative improvement.
{Partial Ans.: r ¼ 9759.8 km, v ¼ 6.0713 km/s}
5.30 Calculate the orbital elements from the state vector obtained in the previous problem.
{Partial Ans.: e ¼ 0.1, i ¼ 30°}
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CHAPTER
ORBITAL MANEUVERS
 6

6.1 INTRODUCTION
Orbital maneuvers transfer a spacecraft from one orbit to another. Orbital changes can be dramatic,

such as the transfer from a low earth parking orbit to an interplanetary trajectory. They can also be

quite small, as in the final stages of the rendezvous of one spacecraft with another. Changing orbits

requires the firing of onboard rocket engines. We will be concerned primarily with impulsive maneu-

vers in which the rockets fire in relatively short bursts to produce the required velocity change (delta-v).

We start with the classical, energy-efficient Hohmann transfer maneuver and generalize it to the

bielliptic Hohmann transfer to see if even more efficiency can be obtained. The phasing maneuver,

a form of Hohmann transfer, is considered next. This is followed by a study of non-Hohmann transfer

maneuvers with and without rotation of the apse line. We then analyze chase maneuvers, which re-

quires solving Lambert’s problem as explained in Chapter 5. Energy-demanding chase maneuvers

may be impractical for low earth orbits, but they are necessary for interplanetary missions, as we shall

see in Chapter 8. After having focused on impulsive transfers between coplanar orbits, we finally turn

our attention to plane change maneuvers and their delta-v requirements, which can be very large.

The chapter concludes with a brief consideration of some orbital transfers in which the propulsion

system delivers the impulse during a finite (perhaps very long) time interval instead of instantaneously.

This makes it difficult to obtain closed-form solutions, so we illustrate the use of the numerical inte-

gration techniques presented in Chapter 1 as an alternative.
6.2 IMPULSIVE MANEUVERS
Impulsive maneuvers are those in which brief firings of onboard rocket motors change the magnitude

and direction of the velocity vector instantaneously. During an impulsive maneuver, the position of the

spacecraft is considered to be fixed; only the velocity changes. The impulsive maneuver is an ideal-

ization by means of which we can avoid having to solve the equations of motion (Eq. 2.22) with the

rocket thrust included. The idealization is satisfactory for those cases in which the position of the space-

craft changes only slightly during the time that the maneuvering rockets fire. This is true for high-thrust

rockets with burn times that are short compared with the coasting time of the vehicle.

Each impulsive maneuver results in a changeΔv in the velocity of the spacecraft.Δv can represent a
change in the magnitude (pumping maneuver) or the direction (cranking maneuver) of the velocity
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00006-4
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vector, or both. The magnitude Δv of the velocity increment is related to Δm, the mass of propellant

consumed, by the ideal rocket equation (see Eq. 13.30).

Δm
m

¼ 1�e
Δv
Ispg0 (6.1)

wherem is the mass of the spacecraft before the burn, g0 is the sea level standard acceleration of gravity,
and Isp is the specific impulse of the propellants. Specific impulse is defined as follows:

Isp ¼ Thrust

Sea-level weight rate of fuel consumption

Specific impulse has units of seconds, and it is a measure of the performance of a rocket propulsion

system. Isp for some common propellant combinations is shown in Table 6.1. Fig. 6.1 is a graph of

Eq. (6.1) for a range of specific impulses. Note that for Δv’s on the order of 1 km/s or higher, the re-

quired propellant exceeds 25% of the spacecraft mass before the burn.

There are presently no refueling stations in space, so a mission’s delta-v schedule must be carefully

planned to minimize the propellant mass carried aloft in favor of payload.
Table 6.1 Some typical specific impulses

Propellant Isp (s)

Cold gas 50

Monopropellant hydrazine 230

Solid propellant 290

Nitric acid/monomethylhydrazine 310

Liquid oxygen/liquid hydrogen 455

Ion propulsion >3000

FIG. 6.1

Propellant mass fraction versus Δv for typical specific impulses.
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6.3 HOHMANN TRANSFER
Walter Hohmann (1880–1945) was a German engineer whose interest in early rocketry led him to dis-

cover the orbital transfer maneuver that now bears his name. In a book published in 1925 (Hohmann,

1925), he showed that the Hohmann transfer is the most energy-efficient two-impulse maneuver for

transferring between two coplanar circular orbits sharing a common focus. The Hohmann transfer

is an elliptical orbit tangent to both circles on its apse line, as illustrated in Fig. 6.2. The periapsis

and apoapsis of the transfer ellipse are the radii of the inner and outer circles, respectively. Obviously,

only one-half of the ellipse is flown during the maneuver, which can occur in either direction, from the

inner to the outer circle, or vice versa.

It may be helpful in sorting out orbit transfer strategies to use the fact that the energy of an orbit

depends only on its semimajor axis a. Recall that for an ellipse (Eq. 2.80), the specific energy is

negative,

ε¼� μ

2a

Increasing the energy requires reducing its magnitude, to make ε less negative. Therefore, the larger the
semimajor axis, the more energy the orbit has. In Fig. 6.2, the energies increase as we move from the

inner circle to the outer circle.

Starting atA on the inner circle, a velocity incrementΔvA in the direction of flight is required to boost
the vehicle onto the higher energy elliptical trajectory. After coasting from A to B, another forward
velocity increment ΔvB places the vehicle on the still higher energy, outer circular orbit. Without

the latter delta-v burn, the spacecraft would, of course, remain on the Hohmann transfer ellipse and re-

turn to A. The total energy expenditure is reflected in the total delta-v requirement,Δvtotal ¼ ΔvA + ΔvB.
The same total delta-v is required if the transfer begins at B on the outer circular orbit. Since moving

to the lower energy inner circle requires lowering the energy of the spacecraft, the Δv’s must be ac-

complished by retrofires. That is, the thrust of the maneuvering rocket is directed opposite to the flight

direction to act as a brake on the motion. Since Δv represents the same propellant expenditure regard-

less of the direction the thruster is aimed, when summing up Δv’s, we are concerned only with their

magnitudes.
FIG. 6.2

Hohmann transfer.
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Recall that the eccentricity of an elliptical orbit is found from its radius to periapsis rp and its radius
to apoapsis ra by means of Eq. (2.84),

e¼ ra� rp
ra + rp

The radius to periapsis is given by Eq. (2.50),

rp ¼ h2

μ

1

1 + e

Combining these last two expressions yields

rp ¼ h2

μ

1

1 +
ra� rp
ra + rp

¼ h2

μ

ra + rp
2ra

Solving for the angular momentum h, we get

h¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffi
rarp
ra + rp

r
(6.2)

This is a useful formula for analyzing Hohmann transfers, because knowing h we can find the apsidal

velocities from Eq. (2.31). Note that for circular orbits (ra ¼ rp), Eq. (6.2) yields

h¼ ffiffiffiffiffi
μr

p
circular orbitð Þ

Alternatively, one may prefer to compute the velocities by means of the energy equation (Eq. 2.81) in

the form

v¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r
� 1

2a

r
(6.3)

This of course yields Eq. (2.63) for circular orbits.
EXAMPLE 6.1
A 2000-kg spacecraft is in a 480 km by 800 km earth orbit (orbit 1 in Fig. 6.3). Find

(a) The Δv required at perigee A to place the spacecraft in a 480 km by 16,000 km transfer ellipse (orbit 2).

(b) The Δv (apogee kick) required at B of the transfer orbit to establish a circular orbit of 16,000 km altitude (orbit 3).

(c) The total required propellant if the specific impulse is 300 s.

Solution
Since we know the perigee and apogee of all three of the orbits, let us first use Eq. (6.2) to calculate their angular momenta.

Orbit 1: rp ¼ 6378 + 480 ¼ 6858km ra ¼ 6378 + 800 ¼ 7178km

;h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7178 � 6858
7178+ 6858

r
¼ 52,876:5km=s2 (a)

Orbit 2: rp ¼ 6378 + 480 ¼ 6858km ra ¼ 6378 + 16, 000 ¼ 22, 378km

;h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22,378 � 6858
22,378 + 6858

r
¼ 64,689:5km=s2 (b)

Orbit 3: ra ¼ rp ¼ 22, 378km

;h3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600 � 22,378

p
¼ 94,445:1km=s2 (c)



FIG. 6.3

Hohmann transfer between two earth orbits.
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(a) The speed on orbit 1 at point A is

vAÞ1 ¼
h1
rA

¼ 52,876

6858
¼ 7:71019km=s

The speed on orbit 2 at point A is

vAÞ2 ¼
h2
rA

¼ 64,689:5

6858
¼ 9:43271km=s

Therefore, the delta-v required at point A is

ΔvA ¼ vAÞ2�vAÞ1 ¼ 1:7225km=s

(b) The speed on orbit 2 at point B is

vBÞ2 ¼
h2
rB

¼ 64,689:5

22,378
¼ 2:89076km=s

The speed on orbit 3 at point B is

vBÞ3 ¼
h3
rB

¼ 94,445:1

22,378
¼ 4:22044km=s

Hence, the apogee kick required at point B is

ΔvB ¼ vBÞ3�vBÞ2 ¼ 1:3297km=s

(c) The total delta-v requirement for this Hohmann transfer is

Δvtotal ¼ ΔvAj j+ ΔvBj j ¼ 1:7225 + 1:3297¼ 3:0522km=s

According to Eq. (6.1) (converting velocity to m/s),

Δm
m

¼ 1�e�
3052:2

300 � 9:807 ¼ 0:64563

Therefore, the mass of propellant expended is

Δm¼ 0:64563 � 2000¼ 1291:3kg
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In the previous example the initial orbit of the Hohmann transfer sequence was an ellipse rather than

a circle. Since no real orbit is perfectly circular, we must generalize the notion of a Hohmann transfer to

include two-impulse transfers between elliptical orbits that are coaxial (i.e., share the same apse line),

as shown in Fig. 6.4. The transfer ellipse must be tangent to both the initial and target ellipses 1 and 2.

As can be seen, there are two such transfer orbits, 3 and 30. It is not immediately obvious which of the

two requires the lowest energy expenditure.

To find out which is the best transfer orbit in general, we must calculate the individual total delta-v

requirement for orbits 3 and 30. This requires finding the velocities at A, A0, B, and B0 for each pair of

orbits having those points in common. We employ Eq. (6.2)to evaluate the angular momentum of each

of the four orbits in Fig. 6.4.

h1 ¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rArA0

rA + rA0

r
h2 ¼

ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rBrB0

rB + rB0

r
h3 ¼

ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
rArB
rA + rB

r
h30 ¼

ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA0rB0

rA0 + rB0

r
From these we obtain the velocities,

vAÞ1 ¼
h1
rA

vAÞ3 ¼
h3
rA

vBÞ2 ¼
h2
rB

vBÞ3 ¼
h3
rB

vA0 Þ1 ¼
h1
rA0

vA0 Þ30 ¼
h30

rA0

vB0 Þ2 ¼
h2
rB0

vB0 Þ30 ¼
h30

rB0
FIG. 6.4

Hohmann transfers between coaxial elliptical orbits. In this illustration, rA0 /rA ¼ 3, rB/rA ¼ 8, and rB0 /rA ¼ 4.



FIG. 6.5

Contour plots of Δvtotal)30/Δvtotal)3 for different relative sizes of the ellipses in Fig. 6.4. Note that rB > rA0 and

rB0 > rA.
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These lead to the delta-v’s

ΔvA ¼ vAÞ3�vAÞ1
�� �� ΔvB ¼ vBÞ2�vBÞ3

�� �� ΔvA0 ¼ vA0 Þ30 �vA0 Þ1
�� �� ΔvB0 ¼ vB0 Þ2�vB0 Þ30

�� ��
and, finally, to the total delta-v requirement for the two possible transfer trajectories,

ΔvtotalÞ3 ¼ΔvA +ΔvB ΔvtotalÞ30 ¼ΔvA0 +ΔvB0

If Δvtotal)30/Δvtotal)3 > 1, then orbit 3 is the most efficient. On the other hand, if Δvtotal)30/Δvtotal)3 < 1,

then orbit 30 is more efficient than orbit 3.

Three contour plots of Δvtotal)30/Δvtotal)3 are shown in Fig. 6.5, for three different shapes of inner

orbit 1 of Fig. 6.4. Fig. 6.5a is for rA0/rA ¼ 3, which is the situation represented in Fig. 6.4, in which

point A is the periapsis of the initial ellipse. In Fig. 6.5b rA0/rA ¼ 1, which means the starting ellipse is a

circle. Finally, in Fig. 6.5c rA0/rA ¼ 1/3, which corresponds to an initial orbit of the same shape as orbit

1 in Fig. 6.4, but with point A being the apoapsis instead of periapsis.

Fig. 6.5a, for which rA0 > rA, implies that if point A is the periapsis of orbit 1, then transfer orbit 3 is

the most efficient. Fig. 6.5c, for which rA0 < rA, shows that if point A
0 is the periapsis of orbit 1, then

transfer orbit 30 is the most efficient. Together, these results lead us to conclude that it is most efficient

for the transfer orbit to begin at the periapsis on inner orbit 1, where its kinetic energy is greatest, re-

gardless of the shape of the outer target orbit. If the starting orbit is a circle, then Fig. 6.5b shows that

transfer orbit 30 is the most efficient if rB0 > rB. That is, from an inner circular orbit, the transfer ellipse

should terminate at apoapsis of the outer target ellipse, where the speed is slowest.

If Hohmann transfer is in the reverse direction (i.e., to a lower energy inner orbit), the above anal-

ysis still applies, since the same total delta-v is required whether the Hohmann transfer runs forward or

backward. Thus, from an outer circle or ellipse, to an inner ellipse the most energy-efficient transfer

ellipse terminates at periapsis of the inner target orbit. If the inner orbit is a circle, the transfer ellipse

should start at apoapsis of the outer ellipse.

We close this section with an illustration of the careful planning required for one spacecraft to ren-

dezvous with another at the end of a Hohmann transfer.



294 CHAPTER 6 ORBITAL MANEUVERS
EXAMPLE 6.2
A spacecraft returning from a lunar mission approaches earth on a hyperbolic trajectory. At its closest approach A it is at an

altitude of 5000 km, traveling at 10 km/s. At A retrorockets are fired to lower the spacecraft into a 500-km-altitude circular

orbit, where it is to rendezvous with a space station. Find the location of the space station at retrofire so that rendezvous will

occur at B (Fig. 6.6).
FIG. 6.6

Relative position of spacecraft and space station at beginning of the transfer ellipse.
Solution
The time of flight from A to B is one-half the period T2 of elliptical transfer orbit 2. While the spacecraft coasts from A to B,

the space station coasts through the angle ϕCB from C to B. Hence, this mission has to be carefully planned and executed,

going all the way back to lunar departure, so that the two vehicles meet at B.
According to Eq. (2.83), to find the period T2 we need to only determine the semimajor axis of orbit 2. The apogee and

perigee of orbit 2 are

rA ¼ 5000+ 6378¼ 11,378 km rB ¼ 500 + 6378¼ 6878km

Therefore, the semimajor axis is

a¼ 1

2
rA + rBð Þ¼ 9128km

From this we obtain

T2 ¼ 2πffiffiffi
μ

p a3=2 ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p 91283=2 ¼ 8679:1s (a)

The period of circular orbit 3 is

T3 ¼ 2πffiffiffi
μ

p rB
3=2 ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

398,600
p 68783=2 ¼ 5676:8s (b)

The time of flight from C to B on orbit 3 must equal the time of flight from A to B on orbit 2.

ΔtCB ¼ 1

2
T2 ¼ 1

2
� 8679:1¼ 4339:5s
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Since orbit 3 is a circle, its angular velocity, unlike an ellipse, is constant. Therefore, we can write

ϕCB

ΔtCB
¼ 360°

T3
) ϕCB ¼

4339:5

5676:8
� 360¼ 275:2°

(The reader should verify that the total delta-v required to lower the spacecraft from the hyperbola into the parking orbit is

5.749 km/s. According to Eq. (6.1), that means over 85% of the returning spacecraft mass must consist of propellant!)
6.4 BIELLIPTIC HOHMANN TRANSFER
A Hohmann transfer from circular orbit 1 to circular orbit 4 in Fig. 6.7 is the dotted ellipse lying inside

the outer circle, outside the inner circle, and tangent to both. A bielliptic Hohmann transfer uses two

coaxial semiellipses, 2 and 3, which extend beyond the outer target orbit. Each of the two ellipses is

tangent to one of the circular orbits, and they are tangent to each other at B, which is the apoapsis of

both. The idea is to place B sufficiently far from the focus that the ΔvB will be very small. In fact, as rB
approaches infinity (where the orbital speed is zero), ΔvB approaches zero. For the bielliptic scheme to

be more energy efficient than a Hohmann transfer, it must be true that

ΔvtotalÞbielliptical <ΔvtotalÞHohmann

Let v0 be speed in circular inner orbit 1,

v0 ¼
ffiffiffiffiffi
μ

rA

r
Then calculating the total delta-v requirements of the Hohmann and bielliptic transfers leads to the

following two expressions, respectively,

ΔvH ¼ 1ffiffiffi
α

p �
ffiffiffi
2

p
1�αð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α 1 + αð Þp �1

ΔvBE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 α+ βð Þ

αβ

s
�1 +

ffiffiffi
α

pffiffiffi
α

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

β 1 + βð Þ

s
1�βð Þ

(6.4a)
. 6.7

elliptic transfer from inner orbit 1 to outer orbit 4.



FIG. 6.8

Orbits for which a bielliptic transfer is either less efficient or more efficient than a Hohmann transfer.
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where the nondimensional terms are

ΔvH ¼Δvtotal
v0

�
Hohmann

ΔvBE ¼Δvtotal
v0

�
bielliptical

α¼ rC
rA

β¼ rB
rA

(6.4b)

Plotting the difference between ΔvH and ΔvBE as a function of α and β reveals the regions in which the
difference is positive, negative, or zero. These are shown in Fig. 6.8.

From the figure we see that if the radius of the outer circular target orbit (rC) is less than 11.94 times

that of the inner one (rA), then the standard Hohmann maneuver is the more energy efficient. If the ratio

exceeds 15.58, then the bielliptic strategy is better in that regard. Between those two ratios, large values

of the apoapsis radius rB favor bielliptic transfer, while smaller values favor Hohmann transfer.

Small gains in energy efficiency may be more than offset by the much longer flight times around

bielliptic trajectories compared with the time of flight on the single semiellipse of Hohmann transfer.
EXAMPLE 6.3
Find the total delta-v requirement for bielliptic Hohmann transfer from a geocentric circular orbit of 7000 km radius to one

of 105,000 km radius. Let the apogee of the first ellipse be 210,000 km. Compare the delta-v schedule and total flight time

with that for an ordinary single Hohmann transfer ellipse (see Fig. 6.9).

Solution
Since

rA ¼ 7000km rB ¼ 210,000km and rC ¼ rD ¼ 105,000km

we have rB/rA ¼ 30 and rC/rA ¼ 15, so that from Fig. 6.8 it is apparent right away that bielliptic transfer will be the more

energy efficient.

To do the delta-v analysis requires analyzing each of the five orbits.

Orbit 1:

Since this is a circular orbit, we have, simply,

vAÞ1 ¼
ffiffiffiffiffi
μ

rA

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

7000

r
¼ 7:546km=s (a)



FIG. 6.9

Bielliptic transfer.
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Orbit 2:

For this transfer ellipse, Eq. (6.2) yields

h2 ¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
rArB
rA + rB

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7000 � 210,000
7000 + 210,000

r
¼ 73,487km2=s

Therefore,

vAÞ2 ¼
h2
rA

¼ 73,487

7000
¼ 10:498km=s (b)

vBÞ2 ¼
h2
rB

¼ 73,487

210,000
¼ 0:34994km=s (c)

Orbit 3:

For the second transfer ellipse, we have

h3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105,000 � 210,000
105,000 + 210,000

r
¼ 236,230km2=s

From this we obtain

vBÞ3 ¼
h3
rB

¼ 236,230

210,000
¼ 1:1249km=s (d)

vCÞ3 ¼
h3
rC

¼ 236,230

105,000
¼ 2:2498km=s (e)

Orbit 4:

The target orbit, like orbit 1, is a circle, which means

vCÞ4 ¼ vDÞ4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

105,000

r
¼ 1:9484km=s (f)

For the bielliptic maneuver, the total delta-v is, therefore,

ΔvtotalÞbielliptical ¼ΔvA +ΔvB +ΔvC

¼ vAÞ2�vAÞ1
�� ��+ vBÞ3�vBÞ2

�� �� + vCÞ4�vCÞ3
�� ��

¼ 10:498�7:546j j+ 1:1249�0:34994j j+ 1:9484�2:2498j j
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or

ΔvtotalÞbielliptical ¼ 4:0285km=s (g)

The semimajor axes of transfer orbits 2 and 3 are

a2 ¼ 1

2
7000 + 210, 000ð Þ¼ 108,500km a3 ¼ 1

2
105, 000 + 210, 000ð Þ¼ 157,500km

With this information and the period formula, Eq. (2.83), the time of flight for the two semiellipses of the bielliptic transfer

is found to be

tbielliptical ¼ 1

2

2πffiffiffi
μ

p a2
3=2 +

2πffiffiffi
μ

p a3
3=2

� �
¼ 488,870s¼ 5:66days (h)

For the Hohmann transfer ellipse 5,

h5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7000 � 105,000
7000 + 105,000

r
¼ 72,330km2=s

Hence,

vAÞ5 ¼
h5
rA

¼ 72,330

7000
¼ 10:333km=s (i)

vDÞ5 ¼
h5
rD

¼ 72,330

105,000
¼ 0:68886km=s (j)

It follows that

ΔvtotalÞHohmann ¼ vAÞ5�vAÞ1
�� ��+ vDÞ5�vDÞ1

�� ��
¼ 10:333�7:546ð Þ+ 1:9484�0:68886ð Þ
¼ 2:7868 + 1:2595

or

ΔvtotalÞHohmann ¼ 4:0463km=s (k)

This is only slightly (0.44%) larger than that of the bielliptic transfer.

Since the semimajor axis of the Hohmann semiellipse is

a5 ¼ 1

2
7000 + 105, 000ð Þ¼ 56,000km

the time of flight from A to D is

tHohmann ¼ 1

2

2πffiffiffi
μ

p a5
3=2

� �
¼ 65,942s¼ 0:763days (l)

The time of flight of the bielliptic maneuver is over seven times longer than that of the Hohmann transfer.
6.5 PHASING MANEUVERS
A phasing maneuver is a two-impulse Hohmann transfer from and then back to the same orbit, as il-

lustrated in Fig. 6.10. The Hohmann transfer ellipse is the phasing orbit with a period selected to return

the spacecraft to the main orbit within a specified time. Phasing maneuvers are used to change the po-

sition of a spacecraft in its orbit. If two spacecraft, destined to rendezvous, are at different locations in

the same orbit, then one of them may perform a phasing maneuver to catch the other one. Communi-

cations and weather satellites in geostationary earth orbit use phasing maneuvers to move to new



FIG. 6.10

Main orbit (0) and examples of two phasing orbits: faster (1) and slower (2). T0 is the period of the main orbit.
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locations above the equator. In that case, the rendezvous is with an empty point in space rather than with

a physical target. In Fig. 6.10, phasing orbit 1 might be used to return to P in less than one period of the

main orbit. This would be appropriate if the target is ahead of the chasing vehicle. Note that a retrofire is

required to enter orbit 1 at P. That is, it is necessary to slow the spacecraft down to speed it up, relative

to the main orbit. If the chaser is ahead of the target, then phasing orbit 2 with its longer period might be

appropriate. A forward fire of the thruster boosts the spacecraft’s speed to slow it down.

Once the period T of the phasing orbit is established, then Eq. (2.8) should be used to determine the

semimajor axis of the phasing ellipse,

a¼ T
ffiffiffi
μ

p
2π

� �2=3

(6.5)

With the semimajor axis established, the radius of point A opposite to P is obtained from the fact that

2a ¼ rP + rA. Eq. (6.2) may then be used to obtain the angular momentum.
EXAMPLE 6.4
Spacecraft at A and B are in the same orbit (1). At the instant shown in Fig. 6.11 the chaser vehicle at A executes a phasing

maneuver so as to catch the target spacecraft back at A after just one revolution of the chaser’s phasing orbit (2). What is the

required total delta-v?

Solution
Wemust find the angular momenta of orbits 1 and 2 so that we can use Eq. (2.31) to find the velocities on orbits 1 and 2 at

point A. (We can alternatively use energy, Eq. (2.81), to find the speeds at A.) These velocities furnish the delta-v required

to leave orbit 1 for orbit 2 at the beginning of the phasing maneuver and to return to orbit 1 at the end.



FIG. 6.11

Phasing maneuver.
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Angular momentum of orbit 1

From Fig. 6.11 we observe that perigee and apogee radii of orbit 1 are, respectively,

rA ¼ 6800km rC ¼ 13,600 km

It follows from Eq. (6.2) that the orbit’s angular momentum is

h1 ¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
rArC
rA + rC

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6800 � 13,600
6800+ 13,600

r
¼ 60,116km=s2

Angular momentum of orbit 2

The phasing orbit must have a period T2 equal to the time it takes the target vehicle at B to coast around to point A on

orbit 1. That flight time equals the period of orbit 1 minus the flight time tAB from A to B. That is,

T2 ¼T1� tAB (a)

The period of orbit 1 is found by computing its semimajor axis,

a1 ¼ 1

2
rA + rCð Þ¼ 10,200km

and substituting that result into Eq. (2.83),

T1 ¼ 2πffiffiffi
μ

p a1
3=2 ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

398,600
p 10,2003=2 ¼ 10,252s (b)

The flight time from the perigee A of orbit 1 to point B is obtained from Kepler’s equation (Eqs. 3.8 and 3.14),

tAB ¼ T1
2π

EB�e1 sinEBð Þ (c)

Since the eccentricity of orbit 1 is

e1 ¼ rC� rA
rC + rA

¼ 0:33333 (d)

and the true anomaly of B is 90°, it follows from Eq. (3.13b) that the eccentric anomaly of B is

EB ¼ 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θB
2

� �
¼ 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:33333

1 + 0:33333

r
tan

90°
2

 !
¼ 1:2310rad (e)
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Substituting Eqs. (b), (d), and (e) into Eq. (c) yields

tAB ¼ 10,252

2π
1:231�0:33333 � sin1:231ð Þ¼ 1495:7s

It follows from Eq. (a) that

T2 ¼ 10,252�1495:7¼ 8756:3s

This, together with the period formula (Eq. 2.83), yields the semimajor axis of orbit 2,

a2 ¼
ffiffiffi
μ

p
T2

2π

� �2=3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p � 8756:2
2π

� �2=3

¼ 9182:1km

Since 2a2 ¼ rA + rD, we find that the apogee of orbit 2 is

rD�2a2� rA ¼ 2:9182:1�6800¼ 11,564km

Finally, Eq. (6.2) yields the angular momentum of orbit 2,

h2 ¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rArD
rA + rD

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6800 � 11,564
6800 + 11,564

r
¼ 58,426km=s2

Velocities at A
Since A is the perigee of orbit 1, there is no radial velocity component there. The speed, directed entirely in the trans-

verse direction, is found from the angular momentum formula,

vAÞ1 ¼
h1
rA

¼ 60,116

6800
¼ 8:8406km=s

Likewise, the speed at the perigee of orbit 2 is

vAÞ2 ¼
h2
rA

¼ 58,426

6800
¼ 8:5921km=s

At the beginning of the phasing maneuver, the velocity change required to drop into phasing orbit 2 is

ΔvA ¼ vAÞ2�vAÞ1 ¼ 8:5921�8:8406¼�0:24851km=s

At the end of the phasing maneuver, the velocity change required to return to orbit 1 is

ΔvA ¼ vAÞ1�vAÞ2 ¼ 8:8406�8:5921¼ 0:24851km=s

The total delta-v required for the chaser to catch up with the target is

Δvtotal ¼ �0:24851j j+ 0:24851j j ¼ 0:4970km=s
The delta-v requirement for a phasing maneuver can be lowered by reducing the difference between

the period of the main orbit and that of the phasing orbit. In the previous example, we could makeΔvtotal
smaller by requiring the chaser to catch the target after n revolutions of the phasing orbit instead of just
one. In that case, we would replace Eq. (a) of Example 6.4 by T2 ¼ T1 � tAB/n.
EXAMPLE 6.5
It is desired to shift the longitude of a GEO satellite 12° westward in three revolutions of its phasing orbit. Calculate the

delta-v requirement.

Solution
This problem is illustrated in Fig. 6.12. It may be recalled from Eqs. (2.67)–(2.69) that the angular velocity of the earth, the
radius to GEO, and the speed in GEO are, respectively



FIG. 6.12

GEO repositioning.
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ωE ¼ωGEO ¼ 72:922 10�6
� �

rad=s

rGEO ¼ 42,164km

VGEO ¼ 3:0747km=s

(a)

LetΔΛ be the change in longitude in radians. Then the period T2 of the phasing orbit can be obtained from the following

formula,

ωE 3T2ð Þ¼ 3 � 2π +ΔΛ (b)

which states that after three circuits of the phasing orbit, the original position of the satellite will beΔΛ radians east of P. In
other words, the satellite will end up ΔΛ radians west of its original position in GEO, as desired. From Eq. (b) we obtain,

T2 ¼ 1

3

ΔΛ+ 6π

ωE
¼ 1

3

12° � π

180°
+ 6π

72:922�10�6
¼ 87,121s

Note that the period of GEO is

TGEO ¼ 2π

ωGEO

¼ 86,163s

The satellite in its slower phasing orbit appears to drift westward at the rate

_Λ¼ΔΛ
3T2

¼ 8:0133�10�7 rad=s¼ 3:9669degrees=day

Having the period, we can use Eq. (6.5) to obtain the semimajor axis of orbit 2,

a2 ¼
T2

ffiffiffi
μ

p
2π

� �2=3

¼ 87,121
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p

2π

� �2=3

¼ 42,476km

From this we find the radius to the apogee C of the phasing orbit,

2a2 ¼ rp + rC ) rC ¼ 2 � 42,476�42,164¼ 42,788km

The angular momentum of the orbit is given by Eq. (6.2),

h2 ¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
rBrC
rB + rC

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42,164 � 42,748
42,164 + 42,788

r
¼ 130,120km2=s

At P the speed in orbit 2 is

vPÞ2 ¼
130,120

42,164
¼ 3:0859km=s
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Therefore, at the beginning of the phasing orbit,

Δv¼ vPÞ2�vGEO ¼ 3:0859�3:0747¼ 0:01126km=s

At the end of the phasing maneuver,

Δv¼ vGEO�vPÞ2 ¼ 3:0747�3:08597¼�0:01126km=s

It follows that,

Δvtotal ¼ 0:01126j j + �0:01126j j ¼ 0:02252km=s
6.6 NON-HOHMANN TRANSFERS WITH A COMMON APSE LINE
Fig. 6.13 illustrates a transfer between two coaxial, coplanar elliptical orbits in which the transfer tra-

jectory shares the apse line but is not necessarily tangent to either the initial or target orbit. The problem

is to determine whether there exists such a trajectory joining points A and B, and, if so, to find the total
delta-v requirement.

The radials rA and rB are already known, as are the true anomalies θA and θB. Because of the com-

mon apse line assumption, θA and θB are the true anomalies of points A and B on the transfer orbit as

well. Applying the orbit equation to A and B on the transfer orbit yields

rA ¼ h2
μ

1

1 + ecosθA
rB ¼ h2

μ

1

1 + ecosθB

Solving these two equations for e and h, we get

e¼ rA� rB
rA cosθA� rB cosθB

(6.6a)

h¼ ffiffiffiffiffiffiffiffiffiffiffi
μrArB

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosθA� cosθB

rA cosθA� rB cosθB

r
(6.6b)
. 6.13

n-Hohmann transfer between two coaxial elliptical orbits.



FIG. 6.14

Vector diagram of the change in velocity and flight path angle at the intersection of two orbits (plus a reminder of

the law of cosines).
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With these orbital elements, the transfer orbit is determined and the velocity may be found at any true

anomaly. Note that for a Hohmann transfer, in which θA ¼ 0 and θB ¼ π, Eqs. 6.6 become

e¼ rB� rA
rB� rA

h¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
rArB
rA + rB

r
Hohmann transferð Þ (6.7)

When a delta-v calculation is done for an impulsive maneuver at a point that is not on the apse line,

care must be taken to include the change in direction as well as the magnitude of the velocity vector.

Fig. 6.14 shows a point where an impulsive maneuver changes the velocity vector from v1 on orbit 1 to

v2 on coplanar orbit 2. The difference in length of the two vectors shows the change in the speed, and

the difference in the flight path angles γ2 and γ1 indicates the change in the direction. It is important to

observe that the Δv we seek is the magnitude of the change in the velocity vector, not the change in its

magnitude (speed). That is, from Eq. (1.11),

Δv¼ Δvk k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2�v1ð Þ � v2�v1ð Þ

p
Expanding under the radical we get

Δv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1 � v1 + v2 � v2�2v1 � v2

p
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Again, according to Eq. (1.11), v1 �v1 ¼ v1
2 and v2 �v2 ¼ v2

2. Furthermore, since γ2 � γ1 is the angle
between v1 and v2, Eq. (1.7) implies that

v1 � v2 ¼ v1v2 cosΔγ

where Δγ ¼ γ2 � γ1. Therefore,

Δv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 + v

2
2�2v1v2 cosΔγ

p
impulsive maneuver, coplanar orbitsð Þ (6.8)

This is the familiar law of cosines from trigonometry. Only if Δγ ¼ 0, which means that v1 and v2 are

parallel (as in a Hohmann transfer), is it true that Δv ¼ jv2 � v1 j. If v2 ¼ v1 ¼ v, then Eq. (6.8) yields

Δv¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cosΔγð Þ

p
pure rotation of the velocity vector in the orbital planeð Þ (6.9)

Therefore, fuel expenditure is required to change the direction of the velocity even if its magnitude

remains the same.

The direction of Δv in Fig. 6.14 shows the required alignment of the thruster that produces the im-

pulse. The orientation of Δv relative to the local horizon is found by replacing vr and v? in Eq. (2.51)

with Δvr and Δv?, so that

tanϕ¼ Δvr
Δv?

(6.10)

where ϕ is the angle from the local horizon to the Δv vector.

Finally, recall from Eq. (2.57) that the specific mechanical energy of a spacecraft is,

ε¼ v � v
2

�μ

r

An impulsive maneuver changes the velocity v but not the position vector r. It follows that

Δε¼ v +Δvð Þ � v +Δvð Þ
2

�v � v
2

¼ v �Δv + 1

2
Δv2

The angle between v and Δv is Δγ (Fig. 6.14, with v1 ¼ v). Therefore, v � Δv ¼ vΔv cos Δγ and we

obtain

Δε¼ vΔvcosΔγ +
1

2
Δv2 (6.11)

This shows that, for a given Δv, the change in specific energy is larger when the spacecraft is moving

fastest and when Δv is aligned with the original velocity (Δγ � 0). The larger the Δε associated with a
givenΔv, the more efficient the maneuver. As we know, a spacecraft has its greatest speed at periapsis.
EXAMPLE 6.6
A geocentric satellite in orbit 1 of Fig. 6.15 executes a delta-v maneuver at A, which places it on orbit 2, for reentry at D.

Calculate Δv at A and its direction relative to the local horizon.

Solution
From the figure we see that

rB ¼ 20,000km rC ¼ 10,000km rD ¼ 6378km



FIG. 6.15

Non-Hohmann transfer with a common apse line.
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Orbit 1:

The eccentricity is

e1 ¼ rB� rC
rB + rC

¼ 0:33333

The angular momentum is obtained from Eq. (6.2), noting that point C is perigee:

h1 ¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
rBrC
rB + rC

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 398,600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20,000 � 10,000
20,000 + 10,000

r
¼ 72,902km2=s

With the angular momentum and the eccentricity, we can use the orbit equation to find the radial coordinate of point A,

rA ¼ 72,9022

398,600

1

1 + 0:33333 � cos150°¼ 18,744km

Eqs. (2.31) and (2.49) yield the transverse and radial components of velocity at A on orbit 1,

v?A
Þ1 ¼

h1
rA

¼ 3:8893km=s

vrA Þ1 ¼
μ

h1
e1 sin150°¼ 0:91127km=s

From these we find the speed at A,

vAÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v?A

Þ12 + vrA Þ12
q

¼ 3:9946km=s

and the flight path angle,

γ1 ¼ tan�1 vrA Þ1
v?A

Þ1
¼ tan�1 0:91127

3:8893
¼ 13:187°
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Orbit 2:
The radius and true anomaly of points A and D on orbit 2 are known. From Eqs. (6.6) we find

e2 ¼ rD� rA
rD cosθD� rA cosθA

¼ 6378�18,744

6378cos0�18,744cos150°
¼ 0:5469

h2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
μrArD

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosθD� cosθA

rD cosθD� rA cosθA
¼

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600 � 18,744 � 6378

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos0� cos150°

6378cos0�18,744cos150°

r
¼ 62,711km2=s

Now we can calculate the radial and perpendicular components of velocity on orbit 2 at point A.

v?A
Þ2 ¼

h2
rA

¼ 3:3456km=s

vrA Þ2 ¼
μ

h2
e2 sin150°¼ 1:7381km=s

Hence, the speed and flight path angle at A on orbit 2 are

vAÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v?A

Þ22 + vrA Þ22
q

¼ 3:7702km=s

γ2 ¼ tan�1 vrA Þ2
v?A

Þ2
¼ tan�1 1:7381

3:3456
¼ 27:453°

The change in the flight path angle as a result of the impulsive maneuver is

Δγ¼ γ2� γ1 ¼ 27:453°�13:187°¼ 14:266°

With this we can use Eq. (6.8) to finally obtain ΔvA,

ΔvA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vAÞ12 + vAÞ22�2vAÞ1vAÞ2 cosΔγ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:99462 + 3:77022�2 � 3:9946 � 3:7702 � cos 14:266°

p
ΔvA ¼ 0:9896km=s

Note that ΔvA is the magnitude of the change in velocity vector ΔvA at A. That is not the same as the change in the

magnitude of the velocity (i.e., the change in speed), which is

vAÞ2�vAÞ1 ¼ 3:7702�3:9946¼�0:2244km=s

To find the orientation of ΔvA, we use Eq. (6.10),

tanϕ¼ ΔvrA
Δv?A

¼ vrA Þ2�vrA Þ1
v?A

Þ2�v?A
Þ1
¼ 1:7381�0:9113

3:3456�3:8893
¼�1:5207

so that

ϕ¼ 123:3°
. 6.16

ientation of ΔvA to the local horizon.
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This angle is illustrated in Fig. 6.16. Before firing, the spacecraft would have to be rotated so that the centerline of the rocket

motor coincides with the line of action of ΔvA, with the nozzle aimed in the opposite direction.
6.7 APSE LINE ROTATION
Fig. 6.17 shows two intersecting orbits that have a common focus, but their apse lines are not collinear.

A Hohmann transfer between them is clearly impossible. The opportunity for transfer from one orbit to

the other by a single impulsive maneuver occurs where they intersect, at points I and J in this case. As
can be seen from the figure, the rotation η of the apse line is the difference between the true anomalies

of the point of intersection, measured from periapsis of each orbit. That is,

η¼ θ1�θ2 (6.12)

We will consider two cases of apse line rotation.

The first case is that in which the apse line rotation η is given as well as the orbital parameters e and
h of both orbits. The problem is then to find the true anomalies of I and J relative to both orbits. The

radius of the point of intersection I is given by either of the following:

rIÞ1 ¼
h1

2

μ

1

1 + e1 cosθ1
rIÞ2 ¼

h2
2

μ

1

1 + e2 cosθ2

Since rI)1 ¼ rI)2, we can equate these two expressions and rearrange terms to get

e1h2
2 cosθ1�e2h1

2 cosθ2 ¼ h1
2�h2

2

Setting θ2 ¼ θ1 � η and using the trig identity cos(θ1 � η) ¼ cos θ1 cos η + sin θ1 sin η leads to an

equation for θ1,

acosθ1 + bsinθ1 ¼ c (6.13a)

where

a¼ e1h2
2�e2h1

2 cosη b¼�e2h1
2 sinη c¼ h1

2�h2
2 (6.13b)
. 6.17

o intersecting orbits whose apse lines do not coincide.
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Eq. (6.13a) has two roots (see Problem 3.12), corresponding to the two points of intersection I and J of
the two orbits:

θ1 ¼ϕ� cos�1 c

a
cosϕ

� 	
(6.14a)

where

ϕ¼ tan�1 b

a
(6.14b)

Having found θ1 we obtain θ2 from Eq. (6.12).Δv for the impulsive maneuver may then be computed as

illustrated in the following example.
FIG

Δv
EXAMPLE 6.7
An earth satellite is in an 8000 km by 16,000 km radius orbit (orbit 1 of Fig. 6.18). Calculate the delta-v and the true anom-

aly θ1 required to obtain a 7000 km by 21,000 km radius orbit (orbit 2) whose apse line is rotated 25° counterclockwise.
Indicate the orientation ϕ of Δv to the local horizon.

Solution
The eccentricities of the two orbits are

e1 ¼ rA1
� rP1

rA1
+ rP1

¼ 16,000�8000

16,000 + 8000
¼ 0:33333

e2 ¼ rA2
� rP2

rA2
+ rP2

¼ 21,000�7000

21,000 + 7000
¼ 0:5

(a)

The orbit equation yields the angular momenta

rP1
¼ h1

2

μ

1

1 + e1 cos 0ð Þ ) 8000¼ h1
2

398,600

1

1 + 0:33333
) h1 ¼ 65,205km2=s

rP2
¼ h2

2

μ

1

1 + e2 cos 0ð Þ ) 7000¼ h2
2

398,600

1

1 + 0:5
) h2 ¼ 64,694km2=s

(b)
. 6.18

produces a rotation of the apse line.
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Using these orbital parameters and the fact that η ¼ 25°, we calculate the terms in Eq. (6.13b):

a¼ e1h
2
2�e2h

2
1 cosη¼ 0:3333 � 64,6942�0:5 � 65,2052 � cos 25°¼�5:3159 108

� �
km4=s2

b¼�e2h
2
1 sinη ¼�0:5 � 65,2052 sin 25° ¼�8:9843 108

� �
km4=s2

c¼ h22�h22 ¼ 65,2052�64,6942 ¼ 6:6433 107
� �

km4=s2

Then Eq. (6.14) yields

ϕ¼ tan�1�8:9843 108
� �

�5:3159 108
� �¼ 59:388°

θ1 ¼ 59:388°� cos�1 6:6433 107
� �

�5:3159 108
� � cos 59:388°" #

¼ 59:388°�93:649°

Thus, the true anomaly of point I, the point of interest, is

θ1 ¼ 153:04° (c)

(For point J, θ1 ¼ 325.74°.)
With the true anomaly available, we can evaluate the radial coordinate of the maneuver point,

r¼ h1
2

μ

1

1 + e1 cos153:04°
¼ 15,175km

The velocity components and flight path angle for orbit 1 at point I are

v?1
¼ h1

r
¼ 65,205

15,175
¼ 4:2968km=s

vr1 ¼
μ

h1
e1 sin153:04°¼ 398,600

65,205
� 0:33333 � sin 153:04°¼ 0:92393km=s

γ1 ¼ tan�1 vr1
v?1

¼ 12:135°

The speed of the satellite in orbit 1 is, therefore,

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr1

2 + v?1
2

q
¼ 4:3950km=s

Likewise, for orbit 2,

v?2
¼ h2

r
¼ 64,694

15,175
¼ 4:2631km=s

vr2 ¼
μ

h2
e2 sin 153:04°�25°ð Þ¼ 398,600

64,694
� 0:5 � sin 128:04°¼ 2:4264km=s

γ2 ¼ tan�1 vr2
v?2

¼ 29:647°

v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr2

2 + v?2
2

q
¼ 4:9053km=s

Eq. (6.8) is used to find Δv,

Δv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 + v

2
2�2v1v2 cos γ2� γ1ð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:39502 + 4:90532�2 � 4:3950 � 4:9053 cos 29:647°�12:135°ð Þ

q
Δv¼ 1:503km=s

The angle ϕ that the vector Δv makes with the local horizon is given by Eq. (6.10),

ϕ¼ tan�1 Δvr
Δv?

¼ tan�1 vr2 �vr1
v?2

�v?1

¼ tan�1 2:4264�0:92393

4:2631�4:2968
¼ 91:28°
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The second case of apse line rotation is that in which the impulsive maneuver takes place at a given

true anomaly θ1 on orbit 1. The problem is to determine the angle of rotation η and the eccentricity e2 of
the new orbit.

The impulsive maneuver creates a change in the radial and transverse velocity components at point I
of orbit 1. From the angular momentum formula, h ¼ rv?, we obtain the angular momentum of orbit 2,

h2 ¼ r v? +Δv?ð Þ¼ h1 + rΔv? (6.15)

The formula for radial velocity, vr ¼ (μ/h)e sin θ, applied to orbit 2 at point I, where vr2 ¼ vr1 + Δvr
and θ2 ¼ θ1 � η, yields

vr1 +Δvr ¼
μ

h2
e2 sinθ2

Substituting Eq. (6.15) into this expression and solving for sinθ2 leads to

sinθ2 ¼ 1

e2

h1 + rΔv?ð Þ μe1 sinθ1 + h1Δvrð Þ
μh1

(6.16)

From the orbit equation, we have at point I

r¼ h1
2

μ

1

1 + e1 cosθ1
orbit1ð Þ

r¼ h2
2

μ

1

1 + e2 cosθ2
orbit2ð Þ

Equating these two expressions for r, substituting Eq. (6.15), and solving for cosθ2, yields

cosθ2 ¼ 1

e2

h1 + rΔv?ð Þ2e1 cosθ1 + 2h1 + rΔv?ð ÞrΔv?
h21

(6.17)

Finally, by substituting Eqs. (6.16) and (6.17) into the trigonometric identity tanθ2 ¼ sin θ2/ cos θ2 we
obtain a formula for θ2 that does not involve the eccentricity e2,

tanθ2 ¼ h1
μ

h1 + rΔv?ð Þ μe1 sinθ1 + h1Δvrð Þ
h1 + rΔv?ð Þ2e1 cosθ1 + 2h1 + rΔvj?

� �
rΔv?

(6.18a)

Eq. (6.18a) can be simplified a bit by replacing μe1 sin θ1 with h1vr1 and h1 with rv?1
, so that

tanθ2 ¼ v?1
+Δv?ð Þ vr1 +Δvrð Þ

v?1
+Δv?ð Þ2e1 cosθ1 + 2v?1

+Δv?ð ÞΔv? μ=rð Þ (6.18b)

Eqs. (6.18) show how the apse line rotation, η ¼ θ1 � θ2, is completely determined by the components

of Δv imparted at the true anomaly θ1. Notice that if Δvr ¼ �vr1, then θ2 ¼ 0, which means that the

maneuver point is on the apse line of the new orbit.

After solving Eq. (6.18a) or (6.18b), we substitute θ2 into either Eq. (6.16) or (6.17) to calculate the
eccentricity e2 of orbit 2. Therefore, with h2 from Eq. (6.15), the rotated orbit 2 is completely specified.

If the impulsive maneuver takes place at the periapsis of orbit 1, so that θ1 ¼ vr ¼ 0, and if it is also

true that Δv? ¼ 0, then Eq. (6.18b) yields

tanη¼ rv?1

μe1
Δvr with radial impulse at periapsisð Þ
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Thus, if the velocity vector is given an outward radial component at periapsis, then η < 0, which means

the apse line of the resulting orbit is rotated clockwise relative to the original one. That makes sense,

since having acquired vr > 0 means that the spacecraft is now flying away from its new periapsis. Like-

wise, applying an inward radial velocity component at periapsis rotates the apse line counterclockwise.
EXAMPLE 6.8
An earth satellite in orbit 1 of Fig. 6.19 undergoes the indicated delta-v maneuver at its perigee. Determine the rotation η of
its apse line as well as the new perigee and apogee.

Solution
From Fig. 6.19 the apogee and perigee of orbit 1 are

rA1
¼ 17,000km rP1

¼ 7000km

Therefore, the eccentricity of orbit 1 is

e1 ¼ rA1
� rP1

rA1
+ rP1

¼ 0:41667 (a)

As usual, we use the orbit equation to find the angular momentum,

rP1
¼ h1

2

μ

1

1 + e1 cos 0ð Þ ) 7000¼ h1
2

398,600

1

1 + 0:41667
) h1 ¼ 62,871km2=s
FIG. 6.19

Apse line rotation maneuver.
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At the maneuver point P1, the angular momentum formula and the fact that P1 is the perigee of orbit 1 (θ1 ¼ 0) imply that

v?1
¼ h1
rP1

¼ 62,871

7000
¼ 8:9816km=s

vr1 ¼ 0

(b)

From Fig. 6.19 it is clear that

Δv? ¼Δvcos60°¼ 1km=s

Δvr ¼Δvsin60°¼ 1:7321km=s
(c)

The angular momentum of orbit 2 is given by Eq. (6.15),

h2 ¼ h1 + rΔv? ¼ 62,871 + 7000 � 1¼ 69,871km2=s

To compute θ2, we use Eq. (6.18b) together with Eqs. (a)–(c):

tanθ2 ¼ v?1
+Δv?ð Þ vr1 +Δvrð Þ

v?1
+Δv?ð Þ2e1 cosθ1 + 2v?1

+Δv?ð ÞΔv?
v?1

2

μ=rP1
ð Þ

¼ 8:9816 + 1ð Þ 0 + 1:7321ð Þ
8:9816 + 1ð Þ2 � 0:41667 � cos 0ð Þ + 2 � 8:9816 + 1ð Þ � 1

8:98162

398, 600=7000ð Þ
¼ 0:4050

It follows that θ2 ¼ 22.05°, so that Eq. (6.12) yields

η¼�22:05°

This means that the rotation of the apse line is clockwise, as indicated in Fig. 6.19.

From Eq. (6.17) we obtain the eccentricity of orbit 2,

e2 ¼ h1 + rP1
Δv?ð Þ2e1 cosθ1 + 2h1 + rP1

Δv?ð ÞrP1
Δv?

h21 cosθ2

¼ 62, 871 + 7000:1ð Þ2 � 0:41667 � cos 0ð Þ+ 2 � 62, 871 + 7000 � 1ð Þ � 7000 � 1
62,8712 � cos22:05°

¼ 0:80883

With this and the angular momentum we find using the orbit equation that the perigee and apogee radii of orbit 2 are

rP2
¼ h2

2

μ

1

1 + e2
¼ 69,8712

398,600

1

1 + 0:80883
¼ 6771:1km

rA2
¼ 69,8712

398,600

1

1�0:80883
¼ 64;069km
6.8 CHASE MANEUVERS
Whereas Hohmann transfers and phasing maneuvers are leisurely, energy-efficient procedures that re-

quire some preconditions (e.g., coaxial elliptical, orbits) to work, a chase or intercept trajectory is one

that answers the question, “How do I get from point A to point B in space in a given amount of time?”

The nature of the orbit lies in the answer to the question rather than being prescribed at the outset.

Intercept trajectories near a planet are likely to require delta-v’s beyond the capabilities of today’s tech-

nology, so they are largely of theoretical rather than practical interest. We might refer to them as “star

wars maneuvers.” Chase trajectories can be found as solutions to Lambert’s problem (Section 5.3),

which is useful and practical for interplanetary mission design (Chapter 8).
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EXAMPLE 6.9
Spacecraft B and C are both in the geocentric elliptical orbit (1) shown in Fig. 6.20, from which it can be seen that the true

anomalies are θB ¼ 45° and θC ¼ 150°. At the instant shown, spacecraft B executes a delta-v maneuver, embarking upon a

trajectory (2), which will intercept and rendezvous with vehicle C in precisely one hour. Find the orbital parameters (e and
h) of the intercept trajectory and the total delta-v required for the chase maneuver.

Solution
First, we must determine the parameters of orbit 1 in the usual way. The eccentricity is found using the orbit’s perigee and

apogee, shown in Fig. 6.20,

e1 ¼ 18,900�8100

18,900 + 8100
¼ 0:4000

From Eq. (6.2),

h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:398 600

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8100 � 18,900
8100 + 18,900

r
¼ 67,232km2=s

Using Eq. (2.82) yields the period,

T1 ¼ 2π

μ2
h1ffiffiffiffiffiffiffiffiffiffiffiffi
1�e21

p !3

¼ 2π

398,6002
67,232ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:42

p
� �3

¼ 15,610s

In perifocal coordinates (Eq. 2.119) the position vector of B is

rB ¼ h1
2

μ

1

1 + e1 cosθB
cosθBp̂+ sinθBq̂ð Þ¼ 67,2322

398,600

1

1 + 0:4 cos 45°
cos 45°p̂+ sin 45°q̂ð Þ

or

rB ¼ 6250:6p̂+ 6250:6q̂ kmð Þ (a)
FIG. 6.20

Intercept trajectory (2) required for B to catch C in 1 h.
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Likewise, according to Eq. (2.125), the velocity at B on orbit 1 is

vBÞ1 ¼
μ

h
�sinθBp̂+ e+ cosθBð Þq̂½ � ¼ 398,600

67,232
�sin45°p̂+ 0:4 + cos45°ð Þq̂½ �

so that

vBÞ1 ¼�4:1922p̂+ 6:5637q̂ km=sð Þ (b)

Now we need to move spacecraft C along orbit 1 to the position C0 that it will occupy one hour later, when it will

presumably be met by spacecraft B. To do that, we must first calculate the time since perigee passage at C. Since we know
the true anomaly, the eccentric anomaly follows from Eq. (3.13b),

EC ¼ 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θC
2

� �
¼ 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:4

1 + 0:4

r
tan

150°
2

 !
¼ 2:3646rad

Substituting this value into Kepler’s equation (Eqs. 3.8 and 3.14) yields the time since perigee passage,

tC ¼ T1
2π

EC�e1 sinECð Þ¼ 15,610

2π
2:3646�0:4 � sin2:3646ð Þ¼ 5178s

An hour later (Δt ¼ 3600s), the spacecraft will be in intercept position at C0,

tC0 ¼ tC +Δt¼ 5178+ 3600¼ 8778s

The corresponding mean anomaly is

MeÞC0 ¼ 2π
tC0

T1
¼ 2π

8778

15,610
¼ 3:5331rad

With this value of the mean anomaly, Kepler’s equation becomes

EC0 �e1 sinEC0 ¼ 3:5331

Applying Algorithm 3.1 to the solution of this equation we get

EC0 ¼ 3:4223rad

Substituting this result into Eq. (3.13a) yields the true anomaly at C0,

tan
θC0

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 04

1�04

r
tan

3:4223

2
¼�10:811) θC0 ¼ 190:57°

We are now able to calculate the perifocal position and velocity vectors at C0 on orbit 1

rC0 ¼ 67,2322

398,600

1

1 + 0:4cos190:57°
cos190:57°p̂+ sin190:57°q̂ð Þ

¼�18,372p̂�3428:1q̂ kmð Þ

vC0 Þ1 ¼
398,600

67,232
�sin190:57°p̂+ 0:4 + cos190:57°ð Þq̂½ �

¼ 1:0875p̂�3:4566q̂ km=sð Þ
(c)

The intercept trajectory connecting points B and C0 is found by solving Lambert’s problem. Substituting rB and rC0 along

with Δt ¼ 3600s, into Algorithm 5.2 yields

vBÞ2 ¼�8:1349p̂+ 4:0506q̂ km=sð Þ (d)

vC0 Þ2 ¼�3:4745p̂�4:7943q̂ km=sð Þ (e)

These velocities are most easily obtained by running the following MATLAB script, which executes Algorithm 5.2 by

means of the function M-file lambert.m (Appendix D.25).
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clear
global mu
deg = pi/180;
mu = 398600;
e = 0.4;
h = 67232;
theta1 = 45*deg;
theta2 = 190.57*deg;
delta_t
= 3600;
rB = ĥ2/mu/(1 + e * cos(theta1))...

* [cos(theta1),sin(theta1),0];
rC_prime
= ĥ2/mu/(1 + e * cos(theta2))...

* [cos(theta2),sin(theta2),0];
string = ‘pro’;
[vB2 vC_prime_2] = lambert(rB, rC_prime, delta_t, string)

From Eqs. (b) and (d) we find

ΔvB ¼ vBÞ2�vBÞ1 ¼�3:9326p̂�2:5132q̂ km=sð Þ

whereas Eqs. (c) and (e) yield

ΔvC0 ¼ vC0 Þ1�vC0 Þ2 ¼�4:5620p̂ + 1:3376q̂ km=sð Þ

The anticipated, extremely large delta-v requirement for this chase maneuver is the sum of the magnitudes of these two

vectors,

Δv¼ ΔvBk k+ ΔvC0k k¼ 4:6755 + 4:7540¼ 9:430km=s

We know that orbit 2 is an ellipse, because the magnitude of vB)2 (9.088 km/s) is less than the escape speed

(
ffiffiffiffiffiffiffiffiffiffiffiffi
2μ=rB

p ¼ 9:496km=s) at B. To pin it down a bit more, we can use rB and vB)2 to obtain the orbital elements from Al-

gorithm 4.2, which yields

h2 ¼ 76,167km2=s

e2 ¼ 0:8500

a2 ¼ 52,449km

θBÞ2 ¼ 319:52°

These may be found quickly by running the following MATLAB script, in which the M-function coe_from_sv.m im-

plements Algorithm 4.2 (see Appendix D.18):

clear
global mu
mu = 398600;
rB = [6250.6,6250.6,0];
vB2 = [-8.1349,4.0506,0];
orbital_elements = coe_from_sv(rB, vB2);

The details of the intercept trajectory and the delta-v maneuvers are shown in Fig. 6.21. A far less dramatic though

more leisurely (and realistic) way for B to catch up with C would be to use a phasing maneuver.



FIG

(a)

FIG. 6.21

Details of the large elliptical orbit, a portion of which serves as the intercept trajectory.
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6.9 PLANE CHANGE MANEUVERS
Orbits having a common focus F need not, and generally do not, lie in a common plane. Fig. 6.22 shows

two such orbits and their line of intersection BD. A and P denote the apoapses and periapses. Since the

common focus lies in every orbital plane, it must lie on the line of intersection of any two orbits. For a

spacecraft in orbit 1 to change its plane to that of orbit 2 by means of a single delta-v maneuver
. 6.22

Two noncoplanar orbits about F. (b) A view down the line of intersection of the two orbital planes.
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(cranking maneuver), it must do so when it is on the line of intersection of the orbital planes. Those two

opportunities occur only at points B and D in Fig. 6.22a.

A view down the line of intersection, from B toward D, is shown in Fig. 6.22b. Here we can see in

true view the dihedral angle δ between the two planes. The transverse component of velocity v? at B is

evident in this perspective, whereas the radial component vr, lying as it does on the line of intersection,

is normal to the view plane (thus appearing as a dot). It is apparent that changing the plane of orbit 1

requires simply rotating v? around the intersection line, through the dihedral angle. If v? and vr remain

unchanged in the process, then we have a rigid body rotation of the orbit. That is, except for its new

orientation in space, the orbit remains unchanged. If the magnitudes of vr and v? change in the process,

then the rotated orbit acquires a new size and shape.

To find the delta-v associated with a plane change, let v1 be the velocity before and v2 the velocity

after the impulsive maneuver. Then

v1 ¼ vr1 ûr + v?1
û?1

v2 ¼ vr2 ûr + v?2
û?2

where ûr is the radial unit vector directed along the line of intersection of the two orbital planes. ûr does

not change during the maneuver. As we know, the transverse unit vector û? is perpendicular to ûr and

lies in the orbital plane. Therefore, it rotates through the dihedral angle δ from its initial orientation û?1

to its final orientation û?2
.

The change Δv in the velocity vector is

Δv¼ v2�v1 ¼ vr2 �vr1ð Þûr + v?2
û?2

�v?1
û?1

The magnitude Δv is found by taking the dot product of Δv with itself,

Δv2 ¼Δv �Δv¼ vr2 �vr1ð Þûr + v?2
û?2

�v?1
û?1

½ � � vr2 �vr1ð Þûr + v?2
û?2

�v?1
û?1

½ �
Carrying out the dot products while noting that ûr � ûr ¼ û?1

� û?1
¼ û?2

� û?2
¼ 1 and

ûr � û?1
¼ û?1

� û?2
¼ 0 yields

Δv2 ¼ vr2 �vr1ð Þ2 + v?1

2 + v?2

2�2v?1
v?2

û?1
� û?2

ð Þ
But û?1

� û?2
¼ cosδ, so that we finally obtain a general formula for Δv with plane change,

Δv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr2 �vr1ð Þ2 + v?1

2 + v?2
2�2v?1

v?2
cosδ

q
(6.19)

From the definition of the flight path angle (cf. Fig. 2.12),

vr1 ¼ v1 sinγ1 v?1
¼ v1 cosγ1

vr2 ¼ v2 sinγ2 v?2
¼ v2 cosγ2

Substituting these relations into Eq. (6.19), expanding and collecting terms, and using the trigonometric

identities,

sin2γ1 + cos2γ1 ¼ sin2γ2 + cos2γ2 ¼ 1

cos γ2� γ1ð Þ¼ cosγ2 cosγ1 + sinγ2 sinγ1

leads to another version of Eq. (6.19),

Δv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 + v

2
2�2v1v2 cosΔγ� cosγ2 cosγ1 1� cosδð Þ½ �

q
(6.20)
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where Δγ ¼ γ2 � γ1. If there is no plane change (δ ¼ 0), then cosδ ¼ 1 and Eq. (6.20) reduces to

Δv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 + v

2
2�2v1v2 cosΔγ

q
Noplane changeð Þ

which is the cosine law we have been using to compute Δv in coplanar maneuvers. Therefore, not sur-

prisingly, Eq. (6.19) contains Eq. (6.8) as a special case.

To keep Δv at a minimum, it is clear from Eq. (6.19) that the radial velocity should remain

unchanged during a plane change maneuver. For the same reason, it is apparent that the maneuver

should occur where v? is smallest, which is at apoapsis. Fig. 6.23 illustrates a plane change maneuver

at the apoapsis of both orbits. In this case vr1 ¼ vr2 ¼ 0, so that v?1
¼ v1 and v?2

¼ v2, thereby reducing
Eq. (6.19) to

Δv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 + v

2
2�2v1v2 cosδ

q
(6.21)

Eq. (6.21) is for a speed change accompanied by a plane change, as illustrated in Fig. 6.24a. Using the

trigonometric identity

cosδ¼ 1�2sin2 δ

2

we can rewrite Eq. (6.21) as follows,

ΔvI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2�v1ð Þ2 + 4v1v2 sin2

δ

2

r
Rotation about the common apse lineð Þ (6.22)
FIG. 6.23

Impulsive plane change maneuver at apoapsis.

FIG. 6.24

The orbital plane rotates about the common apse line. (a) Speed change accompanied by plane change. (b) Plane

change followed by speed change. (c) Speed change followed by plane change.
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If there is no change in the speed, so that v2 ¼ v1, then Eq. (6.22) yields

Δvδ ¼ 2vsin
δ

2
Pure rotation of the velocity vectorð Þ (6.23)

The subscript δ reminds us that this is the delta-v for a pure rotation of the velocity vector through the

angle δ.
Another plane change strategy, illustrated in Fig. 6.24b, is to rotate the velocity vector and then

change its magnitude. In that case, the delta-v is

ΔvII ¼ 2v1 sin
δ

2
+ v2�v1j j

Yet another possibility is to change the speed first, and then rotate the velocity vector (Fig. 6.24c). Then

ΔvIII ¼ v2�v1j j+ 2v2 sin δ
2

Since the sum of the lengths of any two sides of a triangle must be greater than the length of the third

side, it is evident from Fig. 6.24 that both ΔvII and ΔvIII are greater than ΔvI. It follows that plane
change accompanied by speed change is the most efficient of the above three maneuvers.

Eq. (6.23), the delta-v formula for pure rotation of the velocity vector, is plotted in Fig. 6.25, which

shows why significant plane changes are so costly in terms of propellant expenditure. For example, a

plane change of just 24° requires a delta-v equal to that needed for an escape trajectory (41.4% velocity

boost). A 60° plane change requires a delta-v equal to the speed of the spacecraft itself, which in earth
orbit operations is about 7.5 km/s. For such a maneuver in LEO, the most efficient chemical propulsion

system would require that well over 80% of the spacecraft mass consist of propellant. The space shuttle

was capable of a plane change in orbit of only about 3°, a maneuver which would exhaust its entire

orbital-maneuvering fuel capacity. Orbit plane adjustments are therefore made during the powered as-

cent phase when the energy is available to do so.

For some missions, however, plane changes must occur in orbit. A common example is the maneu-

vering of GEO satellites into position. These must orbit the earth in the equatorial plane, but it is im-

possible to throw a satellite directly into an equatorial orbit from a launch site that is not on the equator.

That is not difficult to understand when we realize that the plane of the orbit must contain the center of

the earth (the focus) as well as the point at which the satellite is inserted into orbit, as illustrated in

Fig. 6.26. So if the insertion point is anywhere but on the equator, the plane of the orbit will be tilted
FIG. 6.25

Δv required to rotate the velocity vector through an angle δ.



FIG. 6.26

Two views of the orbit of a satellite launched directly east at 28.6°N latitude. (a) Edge-on view of the orbital plane.

(b) View toward insertion point meridian.
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away from the earth’s equator. As we know from Chapter 4, the angle between the equatorial plane and

the plane of the orbiting satellite is called the inclination i.
Launching a satellite due east takes full advantage of the earth’s rotational velocity, which is

0.46 km/s (about 1000 miles per hour) at the equator and diminishes toward the poles according to

the formula

vrotational ¼ vequatorial cosϕ

where ϕ is the latitude. Fig. 6.26 shows a spacecraft launched due east into low earth orbit at a latitude

of 28.6°N, which is the latitude of the Kennedy Space Flight Center (KSC). As can be seen from the

figure, the inclination of the orbit will be 28.6°. One-fourth of the way around the earth the satellite will
cross the equator. Halfway around the earth it reaches its southernmost latitude, ϕ ¼ 28.6°S. It then
heads north, crossing over the equator at the three-quarters point, and returning after one complete rev-

olution to ϕ ¼ 28.6°N .

Launch azimuth A is the flight direction at insertion, measured clockwise from north on the local

meridian. Thus A ¼ 90° is due east. If the launch direction is not directly eastward, then the orbit will

have an inclination greater than the launch latitude, as illustrated in Fig. 6.27 for ϕ ¼ 28.6°N. North-
easterly (0 < A < 90°) or southeasterly (90° < A < 180°) launches take only partial advantage of the

earth’s rotational speed and both produce an inclination i greater than the launch latitude but less than
90°. Since these orbits have an eastward velocity component, they are called prograde orbits. Launches
FIG. 6.27

(a) Northeasterly launch (0 < A < 90°) from a latitude of 28.6°N. (b) Southeasterly launch (90° < A < 270°).



FIG. 6.28

Orbit inclination i versus launch azimuth A for several latitudes ϕ.
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to the west produce retrograde orbits with inclinations between 90° and 180°. Launches directly north
or directly south result in polar orbits.

Spherical trigonometry is required to obtain the relationship between orbital inclination i, launch
platform latitude ϕ, and launch azimuth A. It turns out that

cos i¼ cosϕsinA (6.24)

From this, we verify, for example, that i ¼ ϕwhen A¼ 90°, as pointed out above. A plot of this relation

is presented in Fig. 6.28, while Fig. 6.29 illustrates the orientation of orbits for a range of launch

azimuths at ϕ ¼ 28°.
FIG. 6.29

Variation of orbit inclinations with launch azimuth at ϕ ¼ 28°. Note the retrograde orbits for A > 180°.
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EXAMPLE 6.10
Determine the required launch azimuth for the sun-synchronous satellite of Example 4.9 if it is launched fromVandenburgh

AFB on the California coast (latitude ¼ 34.5°N).

Solution
In Example 4.9 the inclination of the sun-synchronous orbit was determined to be 98.43°. Eq. (6.24) is used to calculate the
launch azimuth,

sinA¼ cos i

cos l
¼ cos98:43°

cos34:5°
¼�0:1779

From this A ¼ 190.2°, a launch to the south, or A ¼ 349.8°, a launch to the north.
Fig. 6.30 shows the effect that the choice of launch azimuth has on the sun-synchronous orbit of

Example 6.10. It does not change the fact that the orbit is retrograde; it simply determines whether

the ascending node will be in the same hemisphere as the launch site or on the opposite side of the

earth. Actually, a launch to the north from Vandenburgh is not an option because of the safety hazard

to the populated land lying below the ascent trajectory. Launches to the south, over open water, are

not a hazard. Working this problem for Kennedy Space Center (latitude 28.6°N) yields nearly the

same values of A. Since safety considerations on the Florida east coast limit launch azimuths to

between 35° and 120°, polar and sun-synchronous satellites cannot be launched from the eastern

test range.
. 6.30

ect of launch azimuth on the position of the orbit.
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EXAMPLE 6.11
Find the delta-v required to transfer a satellite from a circular, 300-km-altitude low earth orbit of 28° inclination to a geo-
stationary equatorial orbit. Circularize and change the inclination at altitude. Compare that delta-v requirement with the one

in which the plane change is done in the low earth orbit.

Solution
Fig. 6.31 shows the 28° inclined low earth parking orbit (1), the coplanar Hohmann transfer ellipse (2), and the coplanar

GEO orbit (3). From the figure we see that

rB ¼ 6678km rC ¼ 42,164km

Orbit 1:

For this circular orbit the speed at B is

vBÞ1 ¼
ffiffiffiffiffi
μ

rB

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

6678

r
¼ 7:7258km=s

Orbit 2:

We first obtain the angular momentum by means of Eq. (6.2),

h2 ¼
ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
rBrC
rB + rC

r
¼ 67,792km=s
FIG. 6.31

Transfer from LEO to GEO in an orbit of 28° inclination.
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The velocities at perigee and apogee of orbit 2 are, from the angular momentum formula,

vBÞ2 ¼
h2
rB

¼ 10:152km=s vCÞ2 ¼
h2
rC

¼ 1:6078km=s

At this point we can calculate ΔvB,

ΔvB ¼ vBÞ2�vBÞ1 ¼ 10:152�7:7258¼ 2:4258km=s

Orbit 3:

For this GEO orbit, which is circular, the speed at C is

vCÞ3 ¼
ffiffiffiffiffi
μ

rC

r
¼ 3:0747km=s

The spacecraft in orbit 2 arrives at Cwith a velocity of 1.6078 km/s inclined at 28° to orbit 3. Therefore, both its orbital
speed and inclination must be changed at C (Fig. 6.32). The most efficient strategy is to combine the plane change with the

speed change (Eq. 6.21), so that

ΔvC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vCÞ22 + vCÞ32�2vCÞ2vCÞ3 cosΔi

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:60782 + 3:07472�2 � 1:6078 � 3:0747 � cos28°

p
¼ 1:8191km=s

Therefore, the total delta-v requirement is

Δvtotal ¼ΔvB +ΔvC ¼ 2:4258 + 1:819¼ 4:2449km=s Plane change atCð Þ

Suppose we make the plane change at LEO instead of at GEO. In that case, Eq. (6.21) provides the initial delta-v,

ΔvB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBÞ12 + vBÞ22�2vBÞ1vBÞ2 cosΔi

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:72582 + 10:1522�2 � 7:7258 � 10:152 � cos28°

p
¼ 4:9242km=s

The spacecraft travels to C in the equatorial plane, so that when it arrives, the delta-v requirement at C is simply
FIG. 6.32

Plane change maneuver required after the Hohmann transfer.
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ΔvC ¼ vCÞ3�vCÞ2 ¼ 3:0747�1:6078¼ 1:4668km=s

Therefore, the total delta-v is

Δvtotal ¼ΔvB +ΔvC ¼ 4:9242 + 1:4668¼ 6:3910km=s Plane change atBð Þ
This is a 50% increase over the total delta-v with plane change at GEO. Clearly, it is best to do plane change maneuvers at

the largest possible distance (apoapsis) from the primary attractor, where the velocities are smallest.
EXAMPLE 6.12
Suppose in the previous example that part of the plane change, Δi, takes place at B, the perigee of the Hohmann transfer

ellipse, and the remainder, 28° � Δi, occurs at the apogee C. What is the value of Δi that results in the minimum Δvtotal?

Solution
We found in Example 6.11 that if Δi ¼ 0, then Δvtotal ¼ 4.2449km/s, whereas Δi¼ 28°made Δvtotal ¼ 6.3910km/s. Here

we are to determine if there is a value of Δi between 0° and 28° that yields a Δvtotal that is smaller than either of those two.

In this case a plane change occurs at both B and C. The most efficient strategy is to combine the plane change with the

speed change, so that the delta-v’s at those points are (Eq. 6.21)

ΔvB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBÞ12 + vBÞ22�2vBÞ1vBÞ2 cosΔi

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:72582 + 10:1522�2 � 7:7258 � 10:152 � cosΔi

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
162:74�156:86cosΔi

p

and

ΔvC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vCÞ22 + vCÞ32�2vCÞ2vCÞ3 cos 28°�Δið Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:60782 + 3:07472�2 � 1:1078 � 3:0747 � cos 28°�Δið Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:039�9:8874cos 28°�Δið Þ

p
Thus,

Δvtotal ¼ΔvB +ΔvC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
162:74�156:86cosΔi

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:039�9:8874cos 28°�Δið Þ

p
(a)

To determine if there is a Δi that minimizes Δvtotal, we take its derivative with respect to Δi and set it equal to zero:

dΔvtotal
dΔi

¼ 78:43sinΔiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
162:74�156:86cosΔi

p � 4:9435sin 28°�Δið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:039�9:8871cos 28°�Δið Þp ¼ 0

This is a transcendental equation, which must be solved iteratively. The solution, as the reader may verify, is

Δi¼ 2:1751° (b)

That is, an inclination change of 2.1751° should occur in low earth orbit, while the rest of the plane change, 25.825°, is done
at GEO. Substituting Eq. (b) into Eq. (a) yields

Δvtotal ¼ 4:2207km=s

This is only very slightly smaller (less than 1%) than the lowest vtotal computed in Example 6.11.
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EXAMPLE 6.13
A spacecraft is in a 500 km by 10,000 km altitude geocentric orbit that intersects the equatorial plane at a true anomaly of

120° (see Fig. 6.33). If the orbit’s inclination to the equatorial plane is 15°, what is the minimum velocity increment re-

quired to make this an equatorial orbit?

Solution
The orbital parameters are

e¼ rA� rP
rA + rP

¼ 6378 + 10, 000ð Þ� 6378+ 500ð Þ
6378 + 10, 000ð Þ+ 6378+ 500ð Þ ¼ 0:4085

h¼ ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
rArP
rA + rP

r
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 398,600p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16,378 � 6878
16,378 + 6878

r
¼ 62,141km=s

The radial position and velocity components at points B and C, on the line of intersection with the equatorial plane, are

rB ¼ h2

μ

1

1 + ecosθB
¼ 62,1412

398,600

1

1 + 0:4085 � cos120°¼ 12,174km

v?B
¼ h

rB
¼ 62,141

12,174
¼ 5:1043km=s

vrB ¼
μ

h
esinθ¼ 398,600

62,141
� 0:4085 � sin120°¼ 2:2692km=s

and

rC ¼ h2

μ

1

1 + ecosθC
¼ 62,1412

398,600

1

1 + 0:4085 � cos300°¼ 8044:6km

v?C
¼ h

rC
¼ 62,141

8044:6
¼ 7:7246km=s

vrC ¼
μ

h
esinθC ¼ 398,600

62,141
� 0:4085 � sin300°¼�2:2692km=s

These are all shown in Fig. 6.33.
FIG. 6.33

An orbit that intersects the equatorial plane along line BC. The equatorial plane makes an angle of 15° with
the plane of the page.



328 CHAPTER 6 ORBITAL MANEUVERS
All we wish to do here is to rotate the plane of the orbit rigidly around the node line BC. The impulsive maneuver must

occur at either B orC. Eq. (6.19) applies, and since the radial and transverse velocity components remain fixed, it reduces to

Δv¼ v?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cosδð Þ

p
¼ 2v? sin

δ

2

where δ ¼ 15°. For the minimumΔv, the maneuver must be done where v? is smallest, which is at B, the point farthest from

the center of attraction F. Thus,

Δv¼ 2 � 5:1043 � sin 15°
2

¼ 1:3325km=s
EXAMPLE 6.14
Orbit 1 in Fig. 6.34 has angular momentum h and eccentricity e. The direction of motion is shown. Calculate the Δv re-
quired to rotate the orbit 90° about its latus rectum BCwithout changing h and e. The required direction of motion in orbit 2

is shown.

Solution
By symmetry, the requiredmaneuver may occur at eitherB orC, and it involves a rigid body rotation of the ellipse, so that vr
and v? remain unaltered. Because of the directions of motion shown, the true anomalies of B on the two orbits are

θBÞ1 ¼�90° θBÞ2 ¼ + 90°

The radial coordinate of B is

rB ¼ h2

μ

1

1 + ecos �90ð Þ¼
h2

μ

For the velocity components at B, we have

v?B
Þ1 ¼ v?B

Þ2 ¼
h

rB
¼ μ

h

vrB Þ1 ¼
μ

h
esinθBÞ1 ¼�μe

h

vrB Þ2 ¼
μ

h
esinθBÞ2 ¼

μe

h

Substituting these into Eq. (6.19), yields
FIG. 6.34

Identical ellipses intersecting at 90° along their common latus rectum, BC.
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ΔvB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrB Þ2�vrB Þ1

 �2

+ v?B
Þ12 + v?B

Þ22�2v?B
Þ1v?B

Þ2 cos90°
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μe

h
� �μe

h

� 	h i2
+

μ

h

� 	2
+

μ

h

� 	2
�2

μ

h

� 	 μ

h

� 	
0ð Þ

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
μ2

h2
e2 + 2

μ2

h2

s

so that

ΔvB ¼
ffiffiffi
2

p
μ

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2e2

p
(a)

If the motion on ellipse 2 were opposite to that shown in Fig. 6.34, then the radial velocity components at B (and C)
would be in the same rather than in the opposite direction on both ellipses, so that instead of Eq. (a) we would find a smaller

velocity increment,

ΔvB ¼
ffiffiffiffiffi
2μ

p
h

6.10 NONIMPULSIVE ORBITAL MANEUVERS
Up to this point we have assumed that delta-v maneuvers take place in zero time, altering the velocity

vector but leaving the position vector unchanged. In nonimpulsive maneuvers the thrust acts over a

significant time interval and must be included in the equations of motion. According to Problem

2.3, adding an external force F to the spacecraft yields the following equation of relative motion:

€r¼�μ
r

r3
+
F

m
(6.25)

where m is the mass of the spacecraft. This of course reduces to Eq. (2.22) when F ¼ 0. If the external

force is a thrust T in the direction of the velocity vector v, then F ¼ T(v/v) and Eq. (6.25) becomes

€r¼�μ
r

r3
+
T

m

v

v
v¼ _rð Þ (6.26)

(Drag forces act opposite to the velocity vector, and so does thrust during a retrofire maneuver.) The

Cartesian component form of Eq. (6.26) is

€x¼�μ
x

r3
+
T

m

_x

v
€y¼�μ

y

r3
+
T

m

_y

v
€z¼�μ

z

r3
+
T

m

_z

v
(6.27a)

where

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
v¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 + _y2 + _z2

p
(6.27b)

While the rocket motor is firing, the spacecraft mass decreases, because propellant combustion prod-

ucts are being discharged into space through the nozzle. According to elementary rocket dynamics (cf.

Section 13.3), the mass decreases at a rate given by the formula

dm

dt
¼� T

Ispg0
(6.28)

where T and Isp are the thrust and the specific impulse of the propulsion system, and g0 is the sea level
acceleration of gravity.



330 CHAPTER 6 ORBITAL MANEUVERS
If the thrust is not zero, then Eqs. (6.27a) may not have a straightforward analytical solution. In any

case, they can be solved numerically using methods such as those discussed in Section 1.8. For that

purpose, Eqs. (6.27a), (6.27b), and (6.28) must be rewritten as a system of linear differential equations

in the form

_y¼ f t, yð Þ (6.29)

For the case at hand, the vector y consists of the six components of the state vector (position and ve-

locity vectors) plus the mass. Therefore, with the aid of Eqs. (6.27a), (6.27b), and (6.28), we have

y¼

x
y
z
_x
_y
_z
m

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
_y¼

_x
_y
_z
€x
€y
€z
_m

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
f t, yð Þ¼

y4
y5
y6

�μ
y1
r3

+
T

m

y4
v

�μ
y2
r3

+
T

m

y5
v

�μ
y3
r3

+
T

m

y6
v

� T

Ispgo

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(6.30)

The numerical solution of Eq. (6.30) is illustrated in the following examples.
EXAMPLE 6.15
Suppose the spacecraft in Example 6.1 (see Fig. 6.3) has a restartable onboard propulsion systemwith a thrust of 10 kN and

specific impulse of 300 s. Assuming that the thrust vector remains aligned with the velocity vector, solve Example 6.1

without using impulsive (zero time) delta-v burns. Compare the propellant expenditures for the two solutions.

Solution
Refer to Fig. 6.3 as an aid to visualizing the solution procedure described below. Let us assume that the plane of Fig. 6.3 is

the xy plane of an earth-centered inertial frame with the z axis directed out of the page. The apse line of orbit 1 is the x axis,
which is directed to the right, and y points upward toward the top of the page.

Transfer from perigee of orbit 1 to apogee of orbit 2

According to Example 6.1, the state vector just before the first delta-v maneuver is

y0 ¼

x
y
z
_x
_y
_z
m

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
t¼0

¼

6858km

0

0

0

7:7102km=s
0

2000

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
(a)

Using this together with an assumed burn time tburn, we numerically integrate Eq. (6.29) from t ¼ 0 to t ¼ tburn. This yields

r, v, and the mass m at the start of the coasting trajectory (orbit 2). We can find the true anomaly θ at the start of orbit 2 by
substituting these values of r and v into Algorithm 4.2. The spacecraft must coast through a true anomaly ofΔθ ¼ 180° � θ
to reach apogee. Substituting r, v, and Δθ into Algorithm 2.3 yields the state vector (ra and va) at apogee.

The apogee radius ra is the magnitude of ra. If ra does not equal the target value of 22,378 km, then we assume a new

burn time and repeat the above steps to calculate a new ra. This trial-and-error process is repeated until ra is acceptably close

to 22,378 km.

The calculations are done in the MATLAB M-function integrate_thrust.m, which is listed in Appendix D.30. rkf45.m

(see Appendix D.4) was chosen as the numerical integrator. The initial conditions y0 in Eq. (a) are passed to rkf45, which
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solves the system of Eq. (6.29) at discrete times between 0 and tburn. rkf45.m employs the subfunction rates, embedded in

integrate_thrust.m, to calculate the vector of derivatives f in Eq. (6.30). Output is to the command window, and a revised

burn time was entered into the code in the MATLAB editor after each calculation of ra.

The following output of integrate_thrust.m shows that a burn time of 261.1127 s (4.352 min), with a propellant ex-

penditure of 887.5 kg, is required to produce a coasting trajectory with an apogee of 22,378 km. Due to the finite burn

time, the apse line in this case is rotated 8.336° counterclockwise from that in Example 6.1 (line BCA in Fig. 6.3). Notice

that the speed boost Δv imparted by the burn is 9.38984 � 7.71020 ¼ 1.6796km/s, compared with the impulsive

ΔvA ¼ 1.7725km/s in Example 6.1.

Before ignition:
Mass = 2000 kg
State vector:

r = [ 6858, 0, 0] (km)
Radius = 6858

v = [ 0, 7.7102, 0] (km/s)
Speed = 7.7102

Thrust = 10 kN
Burn time = 261.112700 s
Mass after burn = 1.112495E+03 kg

End-of-burn state vector:
r = [ 6551.56, 2185.85, 0] (km)
Radius = 6906.58

v = [ -2.42229, 9.07202, 0] (km/s)
Speed = 9.38984

Postburn trajectory:
Eccentricity = 0.530257
Semimajor axis = 14623.7 km
Apogee state vector:

r = [-2.21416E+04, -3.24453E+03, 0.00000E+00] (km)
Radius = 22378

v = [ 4.19390E-01, -2.86203E+00, -0.00000E+00] (km/s)
Speed = 2.8926

Transfer from apogee of orbit 2 to the circular target orbit 3

The spacecraft mass and state vector at apogee, given by the above MATLAB output (under “Postburn trajec-
tory”), are entered as new initial conditions in integrate_thrust.m, and the manual trial-and-error process described above

is carried out. It is not possible to transfer from the 22,378-km apogee of orbit 2 to a circular orbit of radius 22,378 km using

a single finite-time burn. Therefore, the objective in this case is to make the semimajor axis of the final orbit equal to

22,378 km. This was achieved with a burn time of 118.88 s and a propellant expenditure of 404.05 kg, and it yields a nearly

circular orbit having an eccentricity of 0.00867 and an apse line rotated 80.85° clockwise from the x axis.

The computed spacecraft mass at the end of the second delta-v maneuver is 708.44 kg. Therefore, the total propellant

expenditure is 2000� 708.44¼ 1291.6 kg. This is essentially the same as the propellant requirement (1291.3 kg) calculated

in Example 6.1, in which the two delta-v maneuvers were impulsive.
Let us take the dot product of both sides of Eq. (6.26) with the velocity v, to obtain

€r � v¼� μ

r3
r � v + T

m

v � v
v

(6.31)

In Section 2.5, we showed that
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€r � v¼ 1

2

dv2

dt
and

μ

r3
r � v¼� d

dt

μ

r

� 	
Substituting these together with v � v ¼ v2 into Eq. (6.31) yields the energy equation,

d

dt

v2

2
�μ

r

� �
¼ T

m
v (6.32)

This equation may be applied to the approximate solution of a constant tangential thrust orbit transfer

problem. If the spacecraft is in a circular orbit, then applying a very low constant thrust T in the forward
direction will cause its total energy ε ¼ v2/2 � μ/r to slowly increase over time according to Eq. (6.32).

This will raise the height after each revolution, resulting in a slow outward spiral (or inward spiral if the

thrust is directed aft). If we assume that the speed at any radius of the closely spaced spiral trajectory is

essentially that of a circular orbit of that radius (Wiesel, 2010), then we can replace v by
ffiffiffiffiffiffiffi
μ=r

p
to obtain

an approximate version of Eq. (6.32),

d

dt

1

2

μ

r
�μ

r

� �
¼ T

m

ffiffiffi
μ

r

r
Simplifying and separating variables leads to

d μ=rð Þffiffiffiffiffiffiffi
μ=r

p ¼�2
T

m
dt (6.33)

The spacecraft mass is a function of time
m¼m0� _met (6.34)

where m0 is the mass at the start of the orbit transfer (t ¼ 0), and _me is the constant rate at which pro-

pellant is expended. Thus
d μ=rð Þffiffiffiffiffiffiffi

μ=r
p ¼�2

T

m0� _met
dt (6.35)

Integrating both sides of this equation and setting r ¼ r0 when t ¼ 0 results inffiffiffiffiffiffiffi
μ

r
�

r ffiffiffiffi
μ

r0

r
¼ T

_me
ln 1� _me

m0

t

� �
(6.36)

Finally, since _me ¼�dm=dt, Eq. (6.28) implies that we can replace _me with T/(Ispg0), so thatffiffiffi
μ

r

r
�

ffiffiffiffi
μ

r0

r
¼ Ispg0 ln 1� T

m0g0Isp
t

� �
(6.37)

We may solve this equation for either r or t to get

r¼ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

r0
+ Ispg0 ln 1� T

m0g0Isp
t

� �s" #2 (6.38)

t¼m0g0Isp
T

1� exp

ffiffiffi
μ

p
Ispg0

ffiffiffi
1

r

r
�

ffiffiffiffi
1

r0

r !" #( )
(6.39)

where exp(x) ¼ ex. Although this scalar analysis yields the radius in terms of the elapsed time, it does

not provide us the state vector components r and v.
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EXAMPLE 6.16
A 1000-kg spacecraft is in a 6678-km (300-km-altitude) circular equatorial earth orbit. Its ion propulsion system, which has

a specific impulse of 10,000 s, exerts a constant tangential thrust of 2500(10�6)kN.

(a) How long will it take the spacecraft to reach GEO (42,164 km)?

(b) How much fuel will be expended?

Solution
(a) Using Eq. (6.39), and remembering to express the acceleration of gravity in km/s2, the flight time is

t¼ 1000 � 0:009807 � 10,000
2500 10�6

� � 1� exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

p
10,000 � 0:009807

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

42,164

r
�

ffiffiffiffiffiffiffiffiffiffi
1

6678

r !" #( )
t¼ 1,817,000s¼ 21:03days

(b) The propellant mass mp used is

mp ¼ _met¼ T

Ispg0
t¼ 2500 10�6

� �
10,000 � 0:009807 � 1,817,000

mp ¼ 46:32kg
In Example 6.11, we found that the total delta-v for a Hohmann transfer from 6678 km to GEO

radius, with no plane change, is 3.893 km/s. Assuming a typical chemical rocket specific impulse

of 300 s, Eq. (6.1) reveals that the propellant requirement would be 734 kg if the initial mass is

1000 kg. This is almost 16 times that required for the hypothetical ion-propelled spacecraft of Example

6.12. Because of their efficiency (high specific impulse), ion engines—typically using xenon as the

propellant—will play an increasing role in deep-space missions and satellite station keeping. However,

these extremely low-thrust devices cannot replace chemical rockets in high-acceleration applications,

such as launch vehicles.
EXAMPLE 6.17
What will be the orbit after the ion engine in Example 6.16 shuts down upon reaching GEO radius?

Solution
This requires a numerical solution using theMATLABM-function integrate_thrust.m, listed in Appendix D.30. According

to the data of Example 6.16, the initial state vector in geocentric equatorial coordinates can be written

r0 ¼ 6678Î kmð Þ v0 ¼
ffiffiffiffi
μ

r0

r
Ĵ¼ 7:72584Ĵ km=sð Þ

Using these as the initial conditions, we start by assuming that the elapsed time is 21.03 days, as calculated in Example 6.16.

integrate_thrust.m computes the final radius for that burn time and outputs the results to the command window. Depending

on whether the radius is smaller or greater than 42,164 km, we reenter a slightly larger or slightly smaller time in the

MATLAB editor and run the program again. Several of these manual trial-and-error steps yield the following MATLAB

output:

Before ignition:
Mass = 1000 kg
State vector:

r = [ 6678, 0, 0] (km)
Radius = 6678
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v = [ 0, 7.72584, 0] (km/s)
Speed = 7.72584

Thrust = 0.0025 kN
Burn time = 21.037600 days
Mass after burn = 9.536645E+02 kg
End-of-burn state vector:

r = [ -19028, -37625.9, 0] (km)
Radius = 42163.6

v = [ 2.71001, -1.45129, 0] (km/s)
Speed = 3.07415

Postburn trajectory:
Eccentricity = 0.0234559
Semimajor axis = 42149.2 km
Apogee state vector:

r = [ 3.77273E+04, -2.09172E+04, 0.00000E+00] (km)
Radius = 43137.9

v = [ 1.45656E+00, 2.62713E+00, 0.00000E+00] (km/s)
Speed = 3.0039

From the printout it is evident that to reach GEO radius requires the following time and propellant expenditure:

(a) t¼ 21.0376days

(b) mp ¼ 46:34kg

These are very nearly the same as the values found in the previous example. However, this numerical solution in addition

furnishes the end-of-burn state vector, which shows that the postburn orbit is slightly elliptical, having an eccentricity of

0.02346 and a semimajor axis that is only 15 km less than GEO radius.
PROBLEMS

Section 6.2

6.1 A large spacecraft has a mass of 125,000 kg. Its orbital-maneuvering engines produce a thrust of

50 kN. The orbiter is in a 400-km circular earth orbit. A delta-v maneuver transfers the spacecraft

to a coplanar 300 km by 400 km elliptical orbit. Neglecting propellant loss and using elementary

physics (linear impulse equals change in linear momentum, distance equals speed times time):
(a) Estimate the time required for the Δv burn.
(b) Estimate the distance traveled by the spacecraft during the burn.

(c) Calculate the ratio of your answer for (b) to the circumference of the initial circular orbit.

(d) What percent of the initial mass was expelled as combustion products?

{Ans.: (a) Δt ¼ 71 s; (b) 548 km; (c) 1.3%; (d) 1%}
6.2 A satellite traveling 8 km/s at a perigee altitude of 500 km fires a retrorocket. What delta-v is

necessary to reach a minimum altitude of 200 km during the next orbit?
{Ans.: �473 m/s}
6.3 A spacecraft is in a 500-km-altitude circular earth orbit. Neglecting the atmosphere, find the delta-

v required at A to impact the earth at (a) point B and (b) point C.

{Ans.: (a) �0.192 km/s; (b) �7.61 km/s}
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A satellite is in a circular orbit at an altitude of 250 km above the earth’s surface. If an onboard
6.4
rocket provides a delta-v of 200m/s in the direction of the satellite’s motion, calculate the altitude

of the new orbit’s apogee.
{Ans.: 981 km}
6.5 A spacecraft S is in a geocentric hyperbolic trajectory with a perigee radius of 7000 km and a

perigee speed of 1.3vesc. At perigee, the spacecraft releases a projectile B with a speed of 7.1 km/s

parallel to the spacecraft’s velocity. How far d from the earth’s surface is S at the instant B impacts

the earth? Neglect the atmosphere.
{Ans.: d ¼ 8978 km}
A spacecraft is in a 200-km circular earth orbit. At t ¼ 0, it fires a projectile in the direction
6.6
opposite to the spacecraft’s motion. Some 30 min after leaving the spacecraft, the projectile

impacts the earth. What delta-v was imparted to the projectile? Neglect the atmosphere.
{Ans.: Δv ¼ 77.2 /s}
6.7 A spacecraft is in a circular orbit of radius r and speed v around an unspecified planet. A rocket on

the spacecraft is fired, instantaneously increasing the speed in the direction of motion by the

amount Δv ¼ αv, where α > 0. Calculate the eccentricity of the new orbit.
{Ans.: e ¼ α(α + 2)}
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Section 6.3
6.8 A spacecraft is in a 300-km circular earth orbit. Calculate
(a) The total delta-v required for a Hohmann transfer to a 3000-km coplanar circular earth orbit.

(b) The transfer orbit time.

{Ans.: (a) 1.198 km/s; (b) 59 min 39 s}
A space vehicle in a circular orbit at an altitude of 500 km above the earth executes a Hohmann
6.9
transfer to a 1000-km circular orbit. Calculate the total delta-v requirement.
{Ans.: 0.2624 km/s}
Assuming the orbits of earth and Mars are circular and coplanar, calculate
6.10

(a) The time required for a Hohmann transfer from earth orbit to Mars orbit.

(b) The initial position of Mars (α) in its orbit relative to earth for interception to occur.

Radius of earth orbit ¼ 1.496(108) km.

Radius of Mars orbit ¼ 2.279(108) km.

μSun ¼ 1.327(1011)km3/s2.

{Ans.: (a) 259 days; (b) α ¼ 44.3°}
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Calculate the total delta-v required for a Hohmann transfer from the smaller circular orbit to the
6.11
larger one.
{Ans.: 0.394v1, where v1 is the speed in orbit 1}
With a ΔvA of 1.500 km/s, a spacecraft in the circular 6700-km geocentric orbit 1 initiates a
6.12
Hohmann transfer to the larger circular orbit 3. CalculateΔvB at apogee of the Hohmann transfer

ellipse 2.
{Ans.: ΔvB ¼ 1.874 km/s}
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6.13 Two geocentric elliptical orbits have common apse lines and their perigees are on the same side

of the earth. The first orbit has a perigee radius of rp ¼ 7000 km and e ¼ 0.3, whereas for the
second orbit rp ¼ 32, 000 km and e ¼ 0.5.
(a) Find the minimum total delta-v and the time of flight for a transfer from the perigee of the

inner orbit to the apogee of the outer orbit.

(b) Do part (a) for a transfer from the apogee of the inner orbit to the perigee of the outer orbit.

{Ans.: (a) Δvtotal ¼ 2.388km/s, time of flight (TOF) ¼ 16.2 h; (b) Δvtotal ¼ 3.611km/s, TOF ¼
4.66 h}
The space shuttle was launched on a 15-day mission. There were four orbits after injection, all of
6.14
them at 39° inclination.
Orbit 1: 302 km by 296 km

Orbit 2 (day 11): 291 km by 259 km

Orbit 3 (day 12): 259 km circular

Orbit 4 (day 13): 255 km by 194 km

Calculate the total delta-v, which should be as small as possible, assuming Hohmann transfers.

{Ans.: Δvtotal ¼ 43.5m/s }
6.15 Calculate the total delta-v required for a Hohmann transfer from a circular orbit of radius r to a

circular orbit of radius 12r.ffiffiffiffiffiffiffip

{Ans.: 0:5342 μ=r}
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Section 6.4
6.16 A spacecraft in circular orbit 1 of radius r leaves for infinity on parabolic trajectory 2 and returns
from infinity on a parabolic trajectory 3 to a circular orbit 4 of radius 12r. Find the total delta-v

required for this non-Hohmann orbit change maneuver.ffiffiffiffiffiffiffip

{Ans.: 0:5338 μ=r}
A spacecraft is in a 300-km circular earth orbit. Calculate
6.17

(a) The total delta-v required for the bielliptical transfer to the 3000-km-altitude coplanar

circular orbit shown.

(b) The total transfer time.

{Ans.: (a) 2.039km/s; (b) 2.86 h}
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Verify Eq. (6.4).
6.18

Section 6.5
6.19 The space station and spacecraft A and B are all in the same circular earth orbit of 350 km

altitude. Spacecraft A is 600 km behind the space station and spacecraft B is 600 km ahead of the

space station. At the same instant, both spacecraft apply aΔv? so as to arrive at the space station

in one revolution of their phasing orbits.
(a) Calculate the time required for each spacecraft to reach the space station.

(b) Calculate the total delta-v requirement for each spacecraft.

{Ans.: (a) SpacecraftA, 90.2min; spacecraftB, 92.8min; (b)ΔvA ¼ 73.9m/s;ΔvB ¼ 71.5m/s}
Satellites A and B are in the same circular orbit of radius r. B is 180° ahead of A. Calculate the
6.20
semimajor axis of a phasing orbit in which A will rendezvous with B after just one revolution in

the phasing orbit.
{Ans.: a ¼ 0.63r}
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Two spacecraft are in the same elliptical earth orbit with perigee radius 8000 km and apogee
6.21
radius 13,000 km. Spacecraft 1 is at perigee and spacecraft 2 is 30° ahead. Calculate the total
delta-v required for spacecraft 1 to intercept and rendezvous with spacecraft 2 when spacecraft 2

has traveled 60°.

{Ans.: Δvtotal ¼ 6.24km/s}
At the instant shown, spacecraft S is at point A of circular orbit 1 and spacecraft S is at point B of
6.22 1 2

circular orbit 2. At that instant, S1 executes a Hohmann transfer so as to arrive at point C of orbit

2. After arriving at C, S1 immediately executes a phasing maneuver to rendezvous with S2 after
one revolution of its phasing orbit. What is the total delta-v requirement?
{Ans.: 2.159 km/s}
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Spacecraft B andC, which are in the same elliptical earth orbit 1, are located at the true anomalies
6.23
shown. At this instant, spacecraft B executes a phasing maneuver so as to rendezvous with

spacecraft C after one revolution of its phasing orbit 2. Calculate the total delta-v required. Note

that the apse line of orbit 2 is at 45° to that of orbit 1.
{Ans.: 3.405 km/s}
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Section 6.6
6.24 (a) With a single delta-v maneuver, the earth orbit of a satellite is to be changed from a circle of
radius 15,000 km to a collinear ellipse with perigee altitude of 500 km and apogee radius of

22,000 km. Calculate the magnitude of the required delta-v and the change in the flight path

angle Δγ.
(b) What is the minimum total delta-v if the orbit change is accomplished instead by a Hohmann

transfer?

{Ans.: (a) kΔvk ¼ 2.77km/s, Δγ ¼ 31.51°; (b) ΔvHohmann ¼ 1.362 km/s}
An earth satellite has a perigee altitude of 1270 km and a perigee speed of 9 km/s. It is required to
6.25
change its orbital eccentricity to 0.4, without rotating the apse line, by a delta-v maneuver at

θ ¼ 100°. Calculate the magnitude of the required Δv and the change in flight path angle Δγ.

{Ans.: kΔvk ¼ 0.915km/s; Δγ ¼ �8.18°}
6.26 The velocities at points A and B on orbits 1, 2, and 3, respectively, are (relative to the perifocal

frame)

vAÞ1 ¼�3:7730p̂+ 6:5351q̂ km=sð Þ
vAÞ2 ¼�3:2675p̂+ 8:1749q̂ km=sð Þ
vBÞ2 ¼�3:2675p̂�3:1442q̂ km=sð Þ
vBÞ3 ¼�2:6679p̂�4:6210q̂ km=sð Þ
Calculate the total Δv for a transfer from orbit 1 to orbit 3 by means of orbit 2.

{Ans.: 3.310 km/s}
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Trajectories 1 and 2 are ellipses with eccentricity 0.4 and the same angular momentum h. Their
6.27
speed at B is v. Calculate, in terms of v, the Δv required at B to transfer from orbit 1 to orbit 2.
{Ans.: Δv ¼ 0.7428v}
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Section 6.7

6.28 A satellite is in a circular earth orbit of altitude 400 km. Determine the new perigee and apogee

altitudes if the satellite’s onboard rocket
(a) provides a delta-v in the tangential direction of 240 m/s.

(b) provides a delta-v in the radial (outward) direction of 240 m/s.

{Ans.: (a) za ¼ 1320km, zp ¼ 400km; (b) za ¼ 619km, zp ¼ 194km}
6.29 At point A on its earth orbit, the radius, speed, and flight path angle of a satellite are rA ¼ 12,

756km, vA ¼ 6.5992km/s, and γA ¼ 20°. At point B, at which the true anomaly is 150°, an
impulsive maneuver causes Δv? ¼ + 0.75820km/s and Δvr ¼ 0.
(a) What is the time of flight from A to B?
(b) What is the rotation of the apse line as a result of this maneuver?

{Ans.: (a) 2.045 h; (b) 43.39° counterclockwise}

6.30 A satellite is in elliptical orbit 1. Calculate the true anomaly θ (relative to the apse line of orbit 1)

of an impulsive maneuver that rotates the apse line an angle η counterclockwise but leaves the

eccentricity and the angular momentum unchanged.
{Ans.: θ ¼ η/2}
A satellite in orbit 1 undergoes a delta-v maneuver at perigee P1 such that the new orbit 2 has the
6.31
same eccentricity e, but its apse line is rotated 90° clockwise from the original one. Calculate the

specific angular momentum of orbit 2 in terms of that of orbit 1 and the eccentricity e.ffiffiffiffiffiffiffiffiffip

{Ans.: h2 ¼ h1= 1 + e}
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6.32 Calculate the delta-v required at A in orbit 1 for a single impulsive maneuver to rotate the apse

line 180° counterclockwise (to become orbit 2), but keep the eccentricity e and the angular

momentum h the same.
{Ans.: Δv ¼ 2μe/h}
Section 6.8

6.33 Spacecraft A and B are in concentric, coplanar circular orbits 1 and 2, respectively. At the instant

shown, spacecraft A executes an impulsive delta-v maneuver to embark on orbit 3 to intercept

and rendezvous with spacecraft B in a time equal to the period of orbit 1. Calculate the total delta-

v required.
{Ans.: 3.795 km/s}
Spacecraft A is in orbit 1, a 10,000-km-radius equatorial earth orbit. Spacecraft B is in elliptical
6.34
polar orbit 2, having eccentricity 0.5 and perigee radius 16,000 km. At the instant shown, both

spacecraft are in the equatorial plane and B is at its perigee. At that instant, spacecraft A executes

an impulsive delta-v maneuver to intercept spacecraft B 1 h later at point C.Calculate the delta-v
required for A to switch to the intercept trajectory 3.
{Ans.: 8.117 km/s}
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Spacecraft B andC are in the same elliptical orbit 1, characterized by a perigee radius of 7000 km
6.35
and an apogee radius of 10,000 km. The spacecraft are in the positions shownwhen B executes an

impulsive transfer to orbit 2 to catch and rendezvous with Cwhen C arrives at apogee A. Find the
total delta-v requirement.
{Ans.: 5.066 km/s}
At time t ¼ 0, manned spacecraft a and unmanned spacecraft b are at the positions shown in
6.36
circular earth orbits 1 and 2, respectively. For assigned values of θ0

(a) and θ0
(b), design a series of

impulsive maneuvers by means of which spacecraft a transfers from orbit 1 to orbit 2 so as to
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rendezvous with spacecraft b (i.e., occupy the same position in space). The total time and total

delta-v required for the transfer should be as small as possible. Consider earth’s gravity only.
Section 6.9
6.37 What must the launch azimuth be if the satellite in Example 4.8 is launched from
(a) Kennedy Space Center (latitude ¼ 28.5°N);
(b) Vandenburgh AFB (latitude ¼ 34.5°N);
(c) Kourou, French Guiana (latitude ¼ 5.5°N).

{Ans.: (a) 329.4° or 210.6°; (b) 327.1° or 212.9°; (c) 333.3° or 206.7°}

6.38 The state vector of a spacecraft in the geocentric equatorial frame is r¼ rÎ and v¼ vĴ. At that

instant an impulsive maneuver produces the velocity change Δv¼ 0:5vÎ+ 0:5vK̂. What is the

inclination of the new orbit?
{Ans.: 26.57°}

6.39 An earth satellite has the following orbital elements: a ¼ 15, 000 km, e ¼ 0.5,Ω ¼ 45°,ω ¼ 30°,

and i ¼ 10°. What minimum delta-v is required to reduce the inclination to zero?
{Ans.: 0.588 km/s}
6.40 With a single impulsive maneuver, an earth satellite changes from a 400-km circular orbit

inclined at 60° to an elliptical orbit of eccentricity e ¼ 0.5 with an inclination of 40°. Calculate
the minimum required delta-v.
{Ans.: 3.41 km/s}
6.41 An earth satellite is in an elliptical orbit of eccentricity 0.3 and angular momentum 60, 000km2/s.

Find the delta-v required for a 90° change in inclination at apogee (no change in speed).
{Ans.: 6.58 km/s}
6.42 A spacecraft is in a circular, equatorial orbit (1) of radius r0 about a planet. At point B it

impulsively transfers to polar orbit (2), whose eccentricity is 0.25 and whose perigee is directly

over the north pole. Calculate the minimum delta-v required at B for this maneuver.ffiffiffiffiffiffiffiffiffip

{Ans.: 1:436 μ=r0}
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A spacecraft is in a circular, equatorial orbit (1) of radius r0 and speed v0 about an unknown
6.43
planet (μ 6¼ 398, 600km3/s2). At point C it impulsively transfers to orbit (2), for which the

ascending node is point C, the eccentricity is 0.1, the inclination is 30°, and the argument of

periapsis is 60°. Calculate, in terms of v0, the single delta-v required at C for this maneuver.
{Ans.: Δv ¼ 0.5313v0}
A spacecraft is in a 300-km circular parking orbit. It is desired to increase the altitude to 600 km
6.44
and change the inclination by 20°. Find the total delta-v required if
(a) the plane change is made after insertion into the 600-km orbit (so that there are a total of

three delta-v burns).

(b) the plane change and insertion into the 600-km orbit are accomplished simultaneously (so

that the total number of delta-v burns is two).

(c) the plane change is made upon departing the lower orbit (so that the total number of delta-v

burns is two).

{Ans.: (a) 2.793 km/s; (b) 2.696 km/s; (c) 2.783 km/s}
Section 6.10

6.45 Calculate the total propellant expenditure for Problem 6.3 using finite-time delta-v maneuvers.

The initial spacecraft mass is 4000 kg. The propulsion system has a thrust of 30 kN and a specific

impulse of 280 s.
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6.46 Calculate the total propellant expenditure for Problem 6.14 using finite-time delta-v maneuvers.

The initial spacecraft mass is 4000 kg. The propulsion system has a thrust of 30 kN and a specific

impulse of 280 s.

6.47 At a given instant t0, a 1000-kg earth-orbiting satellite has the inertial position and velocity

vectors
r0 ¼ 436̂i+ 6083̂j+ 2529k̂ kmð Þ v0 ¼�7:340̂i�0:5125̂j+ 2:497k̂ km=sð Þ
About 89 min later a rocket motor with Isp ¼ 300s and 10 kN thrust aligned with the velocity

vector ignites and burns for 120 s. Use numerical integration to find the maximum altitude

reached by the satellite and the time it occurs.
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CHAPTER
RELATIVE MOTION AND
RENDEZVOUS
 7

7.1 INTRODUCTION
Up to now we have mostly referenced the motion of orbiting objects to a nonrotating coordinate system

fixed to the center of attraction (e.g., the center of the earth). This platform served as an inertial frame of

reference, in which Newton’s second law can be written as

Fnet¼maabsolute

An exception to this rule was the discussion of the restricted three-body problem at the end of

Chapter 2, in which we made use of the relative motion equations developed in Chapter 1. In a

rendezvous maneuver two orbiting vehicles observe one another from each of their own free-falling,

rotating, clearly noninertial frames of reference. To base impulsive maneuvers on observations made

from a moving platform requires transforming relative velocity and acceleration measurements into an

inertial frame. Otherwise, the true thrusting forces cannot be sorted out from the fictitious “inertial

forces” that appear in Newton’s law when it is written incorrectly as

Fnet¼marel

The purpose of this chapter is to use relative motion analysis to gain some familiarity with the prob-

lem of maneuvering one spacecraft relative to another, especially when they are in close proximity.
7.2 RELATIVE MOTION IN ORBIT
A rendezvous maneuver usually involves a target vehicle A, which is passive and nonmaneuvering, and

a chase vehicle B, which is active and performs the maneuvers required to bring itself alongside the

target. An obvious example was the Space Shuttle, the chaser, rendezvousing with the International

Space Station, the target. The position vector of target A in the geocentric equatorial frame is rA. This

radial is sometimes called the “r-bar.” The moving frame of reference has its origin at the target, as

illustrated in Fig. 7.1. The x axis is directed along the outward radial rA to the target. Therefore,

the unit vector î along the moving x axis is

î¼ rA

rA
(7.1)
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00007-6
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FIG. 7.1

Comoving reference frame attached to A, from which body B is observed.
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The z axis is normal to the orbital plane of the target spacecraft and therefore lies in the direction of

A’s angular momentum vector. It follows that the unit vector along the z axis of the moving frame is

given by

k̂¼hA

hA
(7.2)

The y axis is perpendicular to both î and k̂ and points in the direction of the target satellite’s local

horizon. Therefore, both the x and y axes lie in the target’s orbital plane, with the y unit vector com-

pleting a right triad; that is,

ĵ¼ k̂� î (7.3)

We may refer to the comoving xyz frame defined here as a local vertical/local horizontal

(LVLH) frame.

The position, velocity, and acceleration of B relative to A, measured in the comoving frame, are

given by

rrel¼ x̂i+ ŷj+ zk̂ (7.4a)

vrel¼ _x î+ _y ĵ+ _zk̂ (7.4b)

arel¼ €x î+ €ŷj+ €zk̂ (7.4c)

The angular velocity vectorΩ of the xyz axes attached to the target is just the angular velocity of the
target’s position vector. It is obtained with the aid of Eqs. (2.31) and (2.46) from the fact that

hA¼ rA�vA¼ rAvA?ð Þk̂¼ rA
2Ω

� �
k̂¼ rA

2Ω

from which we obtain

Ω¼ hA

rA2
¼ rA�vA

rA2
(7.5)
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To find the angular acceleration vector _Ω of the xyz frame we take the time derivative ofΩ in Eq. (7.5)

and use the fact that the angular momentum hA of the passive target is constant,

_Ω¼ hA
d

dt

1

rA2
¼�2 hA

rA3
_rA

Recall from Eq. (2.35a) that _rA¼ vA � rA=rA, so this may be written as

_Ω¼�2vA � rA
rA4

hA¼�2vA � rA
rA2

Ω (7.6)

After first calculating

rrel¼ rB�rA (7.7)

we use Eqs. (7.5) and (7.6) to determine the angular velocity and angular acceleration of the comoving

frame, both of which are required in the relative velocity and acceleration formulas (Eqs. 1.66

and 1.70),

vrel¼ vB�vA�Ω�rrel (7.8)

arel¼ aB�aA� _Ω�rrel�Ω� Ω�rrelð Þ�2Ω�vrel (7.9)

The vectors in Eqs. (7.7)–(7.9) are all referred to the inertial XYZ frame in Fig. 7.1. To find their

components in the accelerating xyz frame at any instant we must first form the orthogonal direction

cosine matrix [Q]Xx, as discussed in Section 4.5. The rows of this matrix comprise the direction cosines

of each of the xyz axes with respect to the XYZ axes. That is, from Eqs. (7.1)–(7.3) we find

î¼ lxÎ+mxĴ+ nxK̂
ĵ¼ lyÎ+myĴ+ nyK̂

k̂¼ lz Î+mzĴ+ nzK̂

(7.10)

where the ls, ms, and ns are the direction cosines. Then,

Q½ �Xx¼
lx mx nx
ly my ny
lz mz nz

24 35 components of î

 components of ĵ
 components of k̂

(7.11)

The components of the relative position, velocity, and acceleration are computed as follows:

rrelf gx¼ Q½ �Xx rrelf gX (7.12a)

vrelf gx¼ Q½ �Xx vrelf gX (7.12b)

arelf gx¼ Q½ �Xx arelf gX (7.12c)

in which

rrelf gX ¼
XB�XA

YB�YA
ZB�ZA

8<:
9=; (7.13a)
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vrelf gX ¼
_XB� _XA +ΩZ YB�YAð Þ�ΩY ZB�ZAð Þ
_YB� _YA�ΩZ XB�XAð Þ +ΩX ZB�ZAð Þ
_ZB� _ZA +ΩY XB�XAð Þ�ΩX YB�YAð Þ

8><>:
9>=>; (7.13b)

arelf gX ¼

€XB� €XA + 2ΩZ
_YB� _YA

� ��2ΩY
_ZB� _ZA

� �
⋯

� ΩY
2 +ΩZ

2
� �

XB�XAð Þ + ΩXΩY + aΩZð Þ YB�YAð Þ + ΩXΩZ�aΩYð Þ ZB�ZAð Þ
€YB� €YA�2ΩZ

_XB� _XA

� �
+ 2ΩX

_ZB� _ZA

� �
⋯

+ ΩXΩY�aΩZð Þ XB�XAð Þ� ΩX
2 +ΩZ

2
� �

YB�YAð Þ+ ΩYΩZ + aΩXð Þ ZB�ZAð Þ
€ZB� €ZA + 2ΩY

_XB� _XA

� ��2ΩX
_YB� _YA

� �
⋯

+ ΩXΩZ + aΩYð Þ XB�XAð Þ+ ΩYΩZ�aΩXð Þ YB�YAð Þ� ΩX
2 +ΩY

2
� �

ZB�ZAð Þ

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
(7.13c)

The components of Ω are obtained from Eq. (7.5), and _Ω¼ aΩ, where, according to Eq. (7.6),

a¼�2vA �rA=rA2.

ALGORITHM 7.1

Given the state vectors (rA,vA) of target spacecraft A and (rB,vB) of chaser spacecraft B, find the

position {rrel}x, velocity {vrel}x, and acceleration {arel}x of B relative to A along the LVLH axes

attached to A. See Appendix D.31 for an implementation of this procedure in MATLAB.

1. Calculate the angular momentum of A, hA ¼ rA � vA.

2. Calculate the unit vectors î, ĵ, and k̂ of the comoving frame by means of Eqs. (7.1)–(7.3).
3. Calculate the orthogonal direction cosine matrix [Q]Xx using Eq. (7.11).

4. Calculate Ω and _Ω from Eqs. (7.5) and (7.6).

5. Calculate the absolute accelerations of A and B using Eq. (2.22).

aA¼� μ

rA3
rA aB¼� μ

rB3
rB

6. Calculate rrel using Eq. (7.7).

7. Calculate vrel using Eq. (7.8).

8. Calculate arel using Eq. (7.9).

9. Calculate {rrel}x, {vrel}x, and {arel}x using Eqs. (7.12).
EXAMPLE 7.1
In Fig. 7.2, spacecraft A is in an elliptical earth orbit having the following parameters:

h¼ 52,059 km2=s e¼ 0:025724 i¼ 60° Ω¼ 40° ω¼ 30° θ¼ 40° (a)

Spacecraft B is likewise in an earth orbit with these parameters:

h¼ 52,362km2=s e¼ 0:0072696 i¼ 50° Ω¼ 40° ω¼ 120° θ¼ 40° (b)

Calculate the position rrel)x, velocity vrel)x, and acceleration arel)x of spacecraft B relative to spacecraft A, measured along

the xyz axes of the comoving coordinate system of spacecraft A, as defined in Fig. 7.1.



FIG. 7.2

Spacecraft A and B in slightly different orbits.
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Solution
From the orbital elements in Eqs. (a) and (b) we can use Algorithm 4.5 to find the position and the velocity of both space-

craft relative to the geocentric equatorial reference frame. Omitting those familiar calculations here, the reader can verify

that for spacecraft A

rA¼�266:77Î + 3865:8Ĵ + 5426:2K kmð Þ rA ¼ 6667:8kmð Þ (c)

vA ¼�6:4836Î�3:6198Ĵ+ 2:4156K̂ km=sð Þ vA¼ 7:8087km=sð Þ (d)

and for spacecraft B

rB ¼�5890:7Î�2979:8Ĵ+ 1792:2K̂ kmð Þ rB¼ 6840:4kmð Þ (e)

vB¼ 0:93583Î�5:2403Ĵ�5:5009K̂ km=sð Þ vB ¼ 7:6548km=sð Þ (f)

Having found the state vectors we can proceed with Algorithm 7.1.

Step 1:

hA¼ rA�vA ¼
Î Ĵ K̂

�266:77 3865:8 5426:2

�6:4836 �3:6198 2:4156

�������
�������

¼ 28,980Î�34,537Ĵ + 26,029K̂ km2=s
� �

hA¼ 52, 059km2=s
� �

Step 2:

î¼ rA

rA
¼�0:040009Î+ 0:57977Ĵ + 0:81380K̂

k̂¼hA

hA
¼ 0:55667Î�0:66341Ĵ + 0:5000K̂

ĵ¼
Î Ĵ K̂

0:55667 �0:66341 0:5000

�0:040008 0:57977 0:81380

�������
�������¼�0:82977Î�0:47302Ĵ + 0:29620K̂
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Step 3:

Q½ �Xx ¼
�0:040009 0:57977 0:81380

�0:82977 �0:47302 0:29620

0:55667 �0:66341 0:5000

264
375

Step 4:

Ω¼ hA

rA2
¼ 0:00065183Î�0:00077682Ĵ + 0:00058547K̂ rad=sð Þ

_Ω¼�2vA � rA
rA2

Ω¼�2:47533 10�8
� �

Î + 2:9500 10�8
� �

Ĵ�2:2233 10�8
� �

K̂ rad=s2
� �

Step 5:

aA ¼�μ rA

rA3
¼ 0:00035870Î�0:00051980Ĵ�0:0072962K̂ km=s2

� �
aB ¼�μ rB

rB3
¼ 0:0073359Î�0:0037108Ĵ�0:0022319K̂ km=s2

� �
Step 6:

rrel ¼ rB�rA¼�5623:9Î�6845:5Ĵ�3634:0K̂ kmð Þ
Step 7:

vrel ¼ vB�vA�Ω�rrel

¼ 0:93583Î�5:2403Ĵ�5:5009K̂
� �� �6:4836Î�3:6198Ĵ + 2:4156K̂

� �
�

Î Ĵ K̂

0:00065183 �0:00077682 0:00058547

�5623:9 �6845:5 �3634:0

�������
�������

vrel ¼ 0:58855Î�0:69663Ĵ+ 0:91436K̂ km=sð Þ
Step 8:

arel ¼ aB�aA� _Ω�rrel�Ω� Ω�rrelð Þ�2Ω�vrel

¼ 0:0073359Î+ 0:0037108Ĵ�0:0022319K̂
� �� 0:00035870Î+ 0:0051980Ĵ�0:0072962K

� �

�
Î Ĵ K̂

�2:4753 10�8
� �

2:9500 10�8
� � �2:2233 10�8

� �
�5623:9 �6845:5 �3634:0

��������
��������

� 0:00065183Î�0:00077682Ĵ + 0:0005854K̂
� ��

Î Ĵ K̂

0:00065183 �0:00077682 0:00058547

�5623:9 �6845:5 �3634:0

��������
��������

�2

Î Ĵ K̂

0:00065183 �0:00077682 0:00058547

0:58855 �0:69663 0:91436

��������
��������

arel ¼ 0:00044050Î�0:00037900Ĵ + 0:00001858K̂ km=s2
� �
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Step 9:

rrel )x =
−0.040008 0.57977 0.81380
−0.82977 −0.47302 0.29620
0.55667 −0.66341 0.5000

−5623.9
−6845.5
−3634.0

rrel )x =
−6701.2
6828.3
−406.26

(km)

v rel )x =
−0.040008 0.57977 0.81380
−0.82977 −0.47302 0.29620
0.55667 −0.66341 0.5000

0.58855
−0.69663
0.91436

v rel)x =
0.31667
0.11199
1.2470

(km/ s)

arel )x =
−0.040008 0.57977 0.81380
−0.82977 −0.47302 0.29620
0.55667 −0.66341 0.5000

0.00044050
−0.00037900
0.000018581

arel )x =
−0.00022222
−0.00018074
0.00050593

(km/ s2)

See Appendix D.31 for the MATLAB solution to this problem.
The motion of one spacecraft relative to another in orbit may be hard to visualize at first. Fig. 7.3 is

offered as an assist. Orbit 1 is circular, and orbit 2 is elliptical with an eccentricity of 0.125. Both

coplanar orbits were chosen to have the same semimajor axis length, so they both have the same period.

A comoving frame is shown attached to the observers A in circular orbit 1. At the initial time I the
spacecraft B in elliptical orbit 2 is directly below the observers. In other words, A must draw an arrow

in the negative local x direction to determine the position vector of B in the lower orbit. The figure

shows eight different instants (I, II, III, …, VIII), equally spaced around the circular orbit, at which

observers A construct the position vector pointing from them toward B in the elliptical orbit. Of course,

A’s frame is rotating, because its x axis must always be directed away from the earth. Observers A
cannot sense this rotation and record the set of observations in their (to them) fixed xy coordinate

system, as shown at the bottom of the figure. Coasting at a uniform speed along this circular orbit,

observers A see the other vehicle orbiting them clockwise in a sort of bean-shaped path. The distance

between the two spacecraft in this case never becomes so great that the earth intervenes.

If observersA declared theirs to be an inertial frame of reference, they would be faced with the task of

explaining the physical origin of the force holding B in its bean-shaped orbit. Of course, there is no such

force. The apparent path is due to the actual, combinedmotion of both spacecraft in their free fall around

the earth. When B is below A (having a negative x coordinate), conservation of angular momentum

demands that Bmove faster than A, thereby speeding up in A’s positive y direction until the orbits cross
(x ¼ 0) between III and IV. When B’s x coordinate becomes positive (i.e., B is above A) the laws of

momentum dictate that B slow down, which it does, progressing in A‘s negative y direction until the



FIG. 7.3

Spacecraft B in elliptical orbit 2 appears to orbit the observer A in circular orbit 1.
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next crossing of the orbits between VI and VII. B then falls below A and begins to pick up speed. The

process repeats over and over again. From inertial space the process is the motion of two satellites on

intersecting orbits, appearing not at all like the orbiting motion seen by the moving observers A.
EXAMPLE 7.2
Plot the motion of spacecraft B relative to spacecraft A in Example 7.1.

Solution
In Example 7.1 we found rrel)x at a single time. To plot the path of B relative to A we must find rrel)x at a large number of

times, so that when we “connect the dots” in three-dimensional space a smooth curve results. Let us outline an algorithm

and implement it in MATLAB.

1. Given the orbital elements of spacecraft A and B, calculate their state vectors (rA0
,vA0

) and (rB0
,vB0

) at the initial time t0
using Algorithm 4.5 (as we did in Example 7.1).

2. Calculate the period TA of A’s orbit from Eq. (2.82). (For the data of Example 7.1, TA ¼ 5585s.)

3. Let the final time tf for the plot be t0 + mTA, where m is an arbitrary integer.

4. Let n be the number of points to be plotted, so that the time step is Δt ¼ (tf � t)/n.

5. At time t � t0:
a. Calculate the state vectors (rA,vA) and (rB,vB) using Algorithm 3.4.

b. Calculate rrel)x using Algorithm 7.1.

c. Plot the point (xrel,yrel, zrel).

6. Let t t + Δt and repeat Step 5 until t ¼ tf.
This algorithm is implemented in the MATLAB script Example_7_02.m listed in Appendix D.32. The resulting plot of the

relative motion for a time interval of 60 periods of spacecraft A is shown in Fig. 7.4. The arrow drawn from A to B is the

initial position vector rrel)x found in Example 7.1. As can be seen the trajectory of B is a looping, clockwise motion around a

circular path about 14,000 km in diameter. The closest approach of B to A is 105.5 km at an elapsed time of 25.75 h.



FIG. 7.4

Trajectory of spacecraftB relative to spacecraft A for the data in Example 7.1. The total time is 60 periods of

A’s orbit (93.1 h).

FIG

Po
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7.3 LINEARIZATION OF THE EQUATIONS OF RELATIVE MOTION IN ORBIT
Fig. 7.5, similar to Fig. 7.1, shows two spacecraft in earth orbit. Let the inertial position vector of the

target vehicle A be denoted R and that of the chase vehicle B be denoted r. The position vector of

the chase vehicle relative to the target is δr, so that

r¼R+ δr (7.14)
. 7.5

sition of chaser B relative to the target A.
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The symbol δ is used here to represent the fact that the relative position vector has a magnitude that is

very small compared with the magnitude of R (and r); that is,

δr

R
≪1 (7.15)

where δr ¼ kδrk and R ¼ kRk. This is true if the two vehicles are in close proximity to each other, as is

the case in a rendezvous maneuver or close formation flight. Our purpose in this section is to seek the

equations of motion of the chase vehicle relative to the target when they are close together. Since

the relative motion is seen from the target vehicle, its orbit is also called the reference orbit.

The equation of motion of the chase vehicle B relative to the inertial geocentric equatorial frame is

Eq. (2.22),

€r¼�μ r

r3
(7.16)

where r ¼ krk. Substituting Eq. (7.14) into Eq. (7.16) and writing δ€r¼ d2=dt2
� �

δr yields the equation
of motion of the chaser relative to the target,

δ€r¼�€R�μ
R+ δr

r3
where r¼ R+ δrk kð Þ (7.17)

We will simplify this equation by making use of the fact that kδrk is very small, as expressed in

Eq. (7.15).

First, note that

r2¼ r � r¼ R+ δrð Þ � R+ δrð Þ¼R �R+ 2R � δr+ δr � δr
Since R � R ¼ R2 and δr � δr ¼ δr2, we can factor out R2 on the right to obtain

r2¼R2 1 +
2R � δr
R2

+
δr

R

� �2
" #

By virtue of Eq. (7.15) we can neglect the last term in the brackets, so that

r2¼R2 1 +
2R � δr
R2

� �
(7.18)

In fact, we will neglect all powers of δr/R greater than unity wherever they appear. Since r�3 ¼ (r2)�3/2

it follows from Eq. (7.18) that

r�3¼R�3 1 +
2R � δr
R2

� ��3=2
(7.19)

Using the binomial theorem (Eq. 5.44) and neglecting terms of higher order than 1 in δr/R, we obtain

1 +
2R � δr
R2

� ��3=2
¼ 1 + �3

2

� �
2R � δr
R2

� �
Therefore, to our level of approximation, Eq. (7.19) becomes

r�3¼R�3 1� 3

R2
R � δr

� �
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which can be written as

1

r3
¼ 1

R3
� 3

R5
R � δr (7.20)

Substituting Eq. (7.20) into Eq. (7.17) (the equation of motion), we get

δ€r¼�€R�μ
1

R3
� 3

R5
R � δr

� �
R+ δrð Þ

¼�€R�μ
R+ δr

R3
� 3

R5
R � δrð Þ R+ δrð Þ

� �

¼�€R�μ
R

R3
+
δr

R3
� 3

R5
R � δrð ÞR+ terms of higher order than 1 in δr

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{neglect
264

375
That is, to our degree of approximation,

δ€r¼�€R�μ
R

R3
� μ

R3
δr� 3

R2
R � δrð ÞR

� �
(7.21)

But the equation of motion of the reference orbit is

€R¼�μ R

R3
(7.22)

Substituting this into Eq. (7.21) finally yields

δ€r¼� μ

R3
δr� 3

R2
R � δrð ÞR

� �
(7.23)

This is the linearized version of Eq. (7.17), the equation that governs the motion of the chaser with

respect to the target. The expression is linear because the unknown δr appears only in the numerator

and only to the first power throughout. We achieved this by dropping a lot of terms that are insignificant

when Eq. (7.15) is valid. Eq. (7.23) is nonlinear inR, which is not an unknown because it is determined

independently by solving Eq. (7.22).

In the comoving frame of Fig. 7.5 the x axis lies along the radial R, so that

R¼ R̂i (7.24)

In terms of its components in the comoving frame the relative position vector δr in Fig. 7.5 is (cf.

Eq. 7.4a)

δr¼ δx̂i+ δŷj+ δzk̂ (7.25)

Substituting Eqs. (7.24) and (7.25) into Eq. (7.23) yields

δ€r¼� μ

R3
δx̂i+ δŷj+ δzk̂


 �
� 3

R2
R̂i


 �
� δx̂i+ δŷj + δzk̂

 �h i

R̂i

 �� �

After expanding the dot product on the right and collecting terms, we find that the linearized equation of

relative motion takes a rather simple form when the components ofR and δr are given in the comoving

frame,

δ€r¼� μ

R3
�2δx̂i+ δŷj+ δzk̂


 �
(7.26)
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Recall that δ€r is the acceleration of chaser B relative to target A as measured in the inertial frame.

That is,

δ€r¼ d2

dt2
δr¼ d2

dt2
rB�rAð Þ¼€rB�€rA¼ aB�aA

δ€r is not to be confused with δarel, which is the relative acceleration measured in the comoving frame.

These two quantities are related by Eq. (7.9),

δarel¼ δ€r� _Ω�δr�Ω� Ω�δrð Þ�2Ω�δvrel (7.27)

Since we arrived at an expression for δ€r in Eq. (7.26), let us proceed to evaluate each of the three terms

on the right that involve Ω and _Ω. First, recall that the angular momentum of A h¼R� _R
� �

is normal

to A’s orbital plane, and so is the z axis of the comoving frame. Therefore, h¼ hk̂. It follows that

Eqs. (7.5) and (7.6) may be written as

Ω¼ h

R2
k̂ (7.28)

and

_Ω¼�2 V �Rð Þh
R4

k̂ (7.29)

where V ¼ Ṙ.
From Eqs. (7.25)–(7.29), we find

_Ω�δr¼ �2 V �Rð Þh
R4

k̂

� �
� δx̂i+ δŷj+ δzk̂

 �

¼ 2 V �Rð Þh
R4

δŷi�δx̂j

 �

(7.30)

and

Ω� Ω�δrð Þ¼ h

R2
k̂� h

R2
k̂� δx̂i+ δŷj+ δzk̂


 �� �
¼� h2

R4
δx̂i+ δŷj


 �
(7.31)

According to Eq. (7.4b), δvrel¼ δ _x î + δ _yĵ+ δ _zk̂ where δ _x¼ d=dtð Þδx, etc. It follows that

2Ω�δvrel¼ 2
h

R2
k̂� δ _x î+ δ _y ĵ+ δ _zk̂


 �
¼ 2

h

R2
δ _x ĵ�δ _yk̂


 �
(7.32)

Substituting Eq. (7.26) along with Eqs. (7.30)–(7.32) into Eq. (7.27) yields

δarel¼� μ

R3
�2δx̂i+ δŷj+ δzk̂


 �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{δ€r

�2 V �Rð Þh
R4

δŷi�δx̂j

 �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{_Ω�δr

� � h2

R4
δx̂i+ δŷj


 �� �zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ω� Ω�δrð Þ

�2
h

R2
δ _x ĵ+ δ _y î


 �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{2Ω�δvrel
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Referring to Eq. (7.4c) we set δarel¼ δ€x̂i + δ€ŷj+ δ€zk̂ (where δ€x¼ d2=dt2
� �

δx, etc.) and collect the

terms on the right to obtain

δ€x̂i+ δ€ŷj + δ€zk̂¼ 2μ

R3
+
h2

R4

� �
δx�2 V �Rð Þh

R4
δy+ 2

h

R2
δ _y

� �̂
i

+
h2

R4
� μ

R3

� �
δy+

2 V �Rð Þh
R4

δx�2
h

R2
δ _x

� �̂
j

� μ

R3
δzk̂

(7.33)

Finally, by equating the coefficients of the three unit vectors î, ĵ, and k̂, this vector equation yields the

three scalar equations,

δ€x� 2μ

R3
+
h2

R4

� �
δx +

2 V �Rð Þh
R4

δy�2
h

R2
δ _y¼ 0 (7.34a)

δ€y+
μ

R3
� h2

R4

� �
δy�2 V �Rð Þh

R4
δx+ 2

h

R2
δ€x¼ 0 (7.34b)

δ€z +
μ

R3
δz¼ 0 (7.34c)

This set of linear second-order differential equations must be solved to obtain the relative position

coordinates δx, δy, and δz as a function of time. Eqs. (7.34a) and (7.34b) are coupled since δx and

δy appear in each one of them. δz appears by itself in Eq. (7.34c) and nowhere else, which means

the relative motion in the z direction is independent of that in the other two directions. If the ref-

erence orbit is an ellipse, then R and V vary with time (although the angular momentum h of the

reference orbit is constant). In that case the coefficients in Eq. (7.34) are time dependent, so there is

no easy analytical solution. However, we can solve Eq. (7.34) numerically using the methods in

Section 1.8.

To that end we recast Eq. (7.34) as a set of first-order differential equations in the standard

form

_y¼ f t, yð Þ (7.35)

where

y¼

δx

δy

δz

δ _x

δ _y

δ _z

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;
_y¼

δ _x

δ _y

δ _z

δ€x

δ€y

δ€z

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
f t, yð Þ¼

y4

y5

y6

2μ

R3
+
h2

R4

� �
y1�2 V �Rð Þh

R4
y2 + 2

h

R2
y5

h2

R4
� μ

R3

� �
y2 +

2 V �Rð Þh
R4

y1�2
h0
R2

y4

� μ

R3
y3

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(7.36)
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These can be solved by Algorithm 1.1 (Runge-Kutta), Algorithm 1.2 (Heun), or Algorithm 1.3 (Runge-

Kutta-Fehlberg). In any case, the state vector of the target orbit must be updated at each time step to

provide the current values of R and V. This is done with the aid of Algorithm 3.4. (Alternatively,

Eq. (7.22), the equations of motion of the target, can be integrated along with Eq. (7.36) to provide

R and V as a function of time.)
EXAMPLE 7.3
At time t ¼ 0 the orbital parameters of target vehicle A in an equatorial earth orbit are

rp¼ 6678km e¼ 0:1 i¼Ω¼ω¼ θ¼ 0° (a)

where rp is the perigee radius. At that same instant the state vector of the chaser vehicle B relative to A is

δr0¼�1̂i kmð Þ δvrelÞ0¼ 2n̂j km=sð Þ (b)

where n is the mean motion of A. Plot the path of B relative to A in the comoving frame for five periods of the

reference orbit.

Solution
1. Use Algorithm 4.5 to obtain the initial state vector (R0,V0) of the target vehicle from the orbital parameters given in

Eq. (a).

2. Starting with the initial conditions given in Eq. (b), use Algorithm 1.3 to integrate Eq. (7.36) over the specified time

interval. Use Algorithm 3.4 to obtain the reference orbit state vector (R, V) at each time step in order to evaluate the

coefficients in Eq. (7.36).

3. Graph the trajectory δy(t) vs. δx(t).
This procedure is implemented in the MATLAB function Example_7_03.m listed in Appendix D.33. The output of

the program is shown in Fig. 7.6. Observe that since δz0 ¼ δ _z0 ¼ 0, no movement develops in the z direction.

The motion of the chaser therefore lies in the plane of the target vehicle’s orbit. Fig. 7.6 shows that B rapidly moves

away from A along the y direction and that the amplitude of its looping motion about the x axis continuously

increases. The accuracy of this solution degrades over time because eventually the criterion in Eq. (7.15) is no longer

satisfied.

It is interesting to note that if we change the eccentricity of A to zero, so that the reference orbit is a circle,

then Fig. 7.7 results. That is, for the same initial conditions, B orbits the target vehicle instead of drifting away

from it.
FIG. 7.6

Trajectory of B relative to A in the comoving frame during five of the target’s orbits. Eccentricity of the target

orbit is 0.1.



FIG. 7.7

Trajectory of B relative to A in the comoving frame during five of the target’s orbits. Eccentricity of the target

3657.4 CLOHESSY-WILTSHIRE EQUATIONS
orbit is 0.
7.4 CLOHESSY-WILTSHIRE EQUATIONS
If the orbit of the target vehicle A in Fig. 7.5 is a circle, then our LVLH frame is called a Clohessy-

Wiltshire (CW) frame (Clohessy) (Clohessy and Wiltshire, 1960). In such a frame Eq. (7.34) simplifies

considerably. For a circular target orbitV � R ¼ 0 and h¼ ffiffiffiffiffiffi
μR
p

. Substituting these into Eqs. (7.34) yields

δ€x�3
μ

R3
δx�2

ffiffiffiffiffi
μ

R3

r
δ _y ¼ 0

δ€y+ 2

ffiffiffiffiffi
μ

R3

r
δ _x ¼ 0

δ€z+
μ

R3
δz ¼ 0

(7.37)

It is furthermore true for circular orbits that the angular velocity (mean motion) is

n¼V

R
¼

ffiffiffiffiffiffiffiffi
μ=R

p
R
¼

ffiffiffiffiffi
μ

R3

r
Therefore, Eq. (7.37) may be written as

δ€x�3n2δx�2nδ _y¼ 0 (7.38a)

δ€y+ 2nδ _x¼ 0 (7.38b)

δ€y+ 2nδ _x¼ 0 (7.38c)
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These are known as the Clohessy-Wiltshire (CW) equations. Unlike Eq. (7.34), where the target orbit is an

ellipse, the coefficients in Eq. (7.38) are constant. Therefore, a straightforward analytical solution exists.

We start with the first two equations, which are coupled and define the motion of the chaser in the xy
plane of the reference orbit. First, observe that Eq. (7.38b) can be written as d=dtð Þ δ _y + 2nδxð Þ¼ 0,

which means that δ _y + 2nδx¼C1, where C1 is a constant. Therefore,

δ _y¼C1�2nδx (7.39)

Substituting this expression into Eq. (7.38a) yields

δ€x+ n2δx¼ 2nC1 (7.40)

This familiar differential equation has the following solution,which canbe easily verified by substitution:

δx¼ 2

n
C1 +C2 sinnt+C3 cos nt (7.41)

Differentiating this expression with respect to time gives the x component of the relative velocity,

δ _x¼C2ncosnt�C3nsinnt (7.42)

Substituting Eq. (7.41) into Eq. (7.39) yields the y component of the relative velocity

δ _y¼�3C1�2C2nsinnt�2C3ncosnt (7.43)

Integrating this equation with respect to time yields

δy¼�3C1t+ 2C2 cosnt�2C3 sinnt+C4 (7.44)

The constants C1 through C4 are found by applying the initial conditions; namely,

At t¼ 0 δx¼ δx0 δy¼ δy0 δ _x¼ δ _x0 δ _y¼ δ _y0

Evaluating Eqs. (7.41)–(7.44), respectively, at t ¼ 0 we get

2

n
C1 +C3¼ δx0

C2n¼ δ _x0

�3C1�2C3n¼ δ _y0

2C2 +C4¼ δy0

Solving for C1 through C4 yields

C1¼ 2nδx0 + δ _y0 C2¼ 1

n
δ _x0 C3¼�3δx0�2

n
δ _y0 C4¼�2

n
δ _x0 + δy0 (7.45)

Finally, we turn our attention to Eq. (7.38c), which governs the relative motion normal to the plane of

the circular reference orbit. Eq. (7.38c) has the same form as Eq. (7.40) with C1 ¼ 0. Therefore, its so-

lution is

δz¼C5 sinnt+C6 cosnt (7.46)

It follows that the relative velocity normal to the reference orbit is

δ _z¼C5ncosnt�C6nsinnt (7.47)
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The initial conditions are δz ¼ δz0 and δ _z¼ δ _z0 at t ¼ 0, which means

C5¼ δ _z0
n

C6¼ δz0 (7.48)

Substituting Eqs. (7.45) and (7.48) into Eqs. (7.41), (7.44), and (7.46) yields the trajectory of the

chaser in the CW frame,

δx¼ 4δx0 +
2

n
δ _y0 +

δ _x0
n

sin nt� 3δx0 +
2

n
δ _y0

� �
cos nt (7.49a)

δy¼ δy0�2

n
δ _x0�3 2nδx0 + δ _y0ð Þt+ 2 3δx0 +

2

n
δ _y0

� �
sin nt+

2

n
δ _x0 cos nt (7.49b)

δz¼ 1

n
δ _z0 sinnt+ δz0 cosnt (7.49c)

Observe that all the three components of δr oscillate with a frequency equal to the frequency of rev-

olution (mean motion n) of the CW frame. Only δy has a secular term, which grows linearly with time.

Therefore, unless 2nδx0 + δ _y0¼ 0, the chaser will drift away from the target and the distance δr will
increase without bound. The accuracy of Eqs. (7.49) will consequently degrade as the criterion

(Eq. 7.15) on which this solution is based eventually ceases to be valid. Fig. 7.8 shows the motion

of a particle relative to a CW frame with an orbital radius of 6678 km. The particle started at the origin

with a velocity of 0.01 km/s in the negative y direction. This delta-v dropped the particle into a lower

energy, a slightly elliptical orbit. The subsequent actual relative motion of the particle in the CW frame

is graphed in Fig. 7.8 as is the motion given by Eqs. (7.49), the linearized CW solution. Clearly, the two

solutions diverge markedly after one orbit of the reference frame, when the distance of the particle from

the origin exceeds 150 km.

Now that we have finished solving the CW equations, let us simplify our notation a bit and denote

the x, y, and z components of relative velocity in the moving frame as δu, δv, and δw, respectively. That
is, let

δu¼ δ _x δv¼ δ _y δw¼ δ _z (7.50a)

The initial conditions on the relative velocity components are then written as

δu0¼ δ _x0 δv0¼ δ _y0 δw0¼ δ _z0 (7.50b)
FIG. 7.8

Relative motion of a particle and its Clohessy-Wiltshire approximation.
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Using this notation in Eq. (7.49) and rearranging the terms we get

δx¼ 4�3cos ntð Þδx0 + sinnt

n
δu0 +

2

n
1� cosntð Þδv0

δy¼ 6 sinnt�ntð Þδx0 + δy0 + 2

n
cosnt�1ð Þδu0 + 1

n
4sinnt�3ntð Þδv0

δz¼ cosntδz0 +
1

n
sin ntδw0

(7.51a)

Differentiating each of these with respect to time and using Eq. (7.50a) yields

δu¼ 3n sin ntδx0 + cos ntδu0 + 2sin ntδv0

δv¼ 6n cos nt�1ð Þδx0�2sin ntδu0 + 4cos nt�3ð Þδv0
δw¼�n sin ntδz0 + cos ntδw0

(7.51b)

Let us introduce matrix notation to define the relative position and velocity vectors

δr tð Þf g¼
δx tð Þ
δy tð Þ
δz tð Þ

8<:
9=; δv tð Þf g¼

δu tð Þ
δv tð Þ
δw tð Þ

8<:
9=;

and their initial values (at t ¼ 0)

δr0f g¼
δx0
δy0
δz0

8<:
9=; δv0f g¼

δu0
δv0
δw0

8<:
9=;

In matrix notation, Eqs. (7.51) appear more compactly as

δr tð Þf g¼ Φrr tð Þ½ � δr0f g+ Φrv tð Þ½ � δv0f g (7.52a)

δv tð Þf g¼ Φvr tð Þ½ � δr0f g Φvv tð Þ½ � δv0f g (7.52b)

where the “Clohessy-Wiltshire matrices” comprise the coefficients in Eqs. (7.51):
0

cos nt

6(sin nt – nt)[Frr(t)] =

4 – 3 cos nt 00

1

00

(7.53a)
0

0

00

1
sin nt (1– cos nt)

(cos nt – 1)

–
n

1
sin nt–

n

1
(4sin nt – 3nt)–

n

2
–
n

2
–
n

[Frv(t)] = (7.53b)
[Fvr(t)] = 6n(cos nt – 1)

3n sin nt 0 0

00

00 –n sin nt

(7.53c)
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[Fvv(t)] =

cos nt

cos nt

4 cos nt – 3

0

0

0

02sin nt

–2sin nt (7.53d)
The subscripts on Φ remind us which of the vectors δr and δv is related by that matrix to which of the

initial conditions δr0 and δv0. For example, Φrv½ � relates δr to δv0. The partition lines remind us that

motion in the xy plane is independent of that in the z direction normal to the target’s orbit. In problems

where there is no motion in the z direction (δz0 ¼ δw0 ¼ 0), we need only use the upper left 2 by 2

corners of CW matrices. Finally, note also that

Φvr tð Þ½ � ¼ d

dt
Φrr tð Þ½ � and Φvv tð Þ½ � ¼ d

dt
Φrv tð Þ½ �
7.5 TWO-IMPULSE RENDEZVOUS MANEUVERS
Fig. 7.9 illustrates the rendezvous problem. At time t ¼ 0� (the instant preceding t ¼ 0) the position δr0
and velocity δv0

� of the chase vehicle B relative to target A are known. At t ¼ 0 an impulsive maneuver

instantaneously changes the relative velocity to δv0
+ at t ¼ 0+ (the instant after t ¼ 0). The components

of δv0
+ are shown in Fig. 7.9. We must determine the values of δu0

+, δv0
+, and δw0

+ at the beginning of the
FIG. 7.9

Rendezvous with a target A in the neighborhood of the chase vehicle B.
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rendezvous trajectory, so that B will arrive at the target in a specified time tf. The delta-v required to

place B on the rendezvous trajectory is

Δv0¼ δv+
0 �δv�0 ¼ δu+

0 �δu�0
� �̂

i+ δv +
0 �δv�0

� �̂
j+ δw+

0 �δw�0
� �

k̂ (7.54)

At time tf, B arrives at A, at the origin of the CW frame, which means δrf ¼ δr(tf) ¼ 0. Evaluating

Eq. (7.52a) at tf we find

0f g¼ Φrr tf
� � �

δr0f g + Φrv tf
� � �

δv +
0

� �
(7.55)

Solving this for {δv0
+} yields

δv +
0

� �¼� Φrv tf
� � ��1 Φrr tf

� � �
δr0f g δv +

0 ¼ δu +
0 î+ δv

+
0 ĵ+ δw

+
0 k̂


 �
(7.56)

where Φrv tf
� � ��1

is the matrix inverse of Φrv tf
� � �

. Thus, we now have the velocity δv0
+ at the begin-

ning of the rendezvous path. We substitute Eq. (7.56) into Eq. (7.52b) to obtain the velocity δvf
� at

t ¼ tf
�, when B arrives at target A:

δv�f
n o

¼ Φvr tf
� � �

δr0f g + Φvv tf
� � �

δv+
0

� �
¼ Φvr tf

� � �
δr0f g + Φvv tf

� � � � Φrv tf
� � ��1 Φrr tf

� � �
δr0f g


 �
Collecting terms we get

δv�f
n o

¼ eΦvr

h i
δr0f g δv�f ¼ δu�f î+ δv

�
f ĵ+ δw

�
f k̂


 �
(7.57a)

where

eΦvr

h i
¼ Φvr tf

� � �� Φvv tf
� � �

Φrv tf
� � ��1 Φrr tf

� � �
(7.57b)

Obviously, an impulsive delta-v maneuver is required at t ¼ tf to bring vehicle B to rest relative to A
(δvf

+ ¼ 0):

Δvf ¼ δv+
f �δv�f ¼ 0�δv�f ¼�δv�f (7.58)

Note that in Eqs. (7.54) and (7.58) we are using the difference between relative velocities to

calculate delta-v, which is the difference in absolute velocities. To show that this is valid use

Eq. (1.75) to write

v� ¼ v�0 +Ω��r�rel + v
�
rel

v +¼ v +
0 +Ω+�r +

rel + v
+
rel

(7.59)

Since the target is passive, the impulsive maneuver has no effect on its state of motion, which means

v0
+ ¼ v0

� andΩ+ ¼ Ω�. Furthermore, by definition of an impulsive maneuver, there is no change in the

position; that is, rrel
+ ¼ rrel

� . It follows from Eq. (7.59) that

v +�v� ¼ v+
rel�v�rel or Δv¼Δvrel
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EXAMPLE 7.4
A space station and another spacecraft are in orbits with the following parameters:

Space station Spacecraft

Perigee � apogee (altitude) 300 km circular 320.06 km � 513.86 km

Period (computed using above data) 1.5086 h 1.5484 h

True anomaly, θ 60° 349.65°

Inclination, i 40° 40.130°

RA of ascending node, Ω 20° 19.819°

Argument of perigee, ω 0° (arbitrary) 70.662°
Compute the total delta-v required for an 8-h, two-impulse rendezvous trajectory.

Solution
We substitute the given data into Algorithm 4.5 to obtain the state vectors of the two spacecraft in the geocentric

equatorial frame.

Space station:
R¼ 1622:39Î + 5305:10Ĵ + 3717:44K̂ kmð Þ
V¼�7:29936Î + 0:492329Ĵ+ 2:48304K̂ km=sð Þ

Spacecraft:

r¼ 1612:75Î + 5310:19Ĵ+ 3750:33K̂ kmð Þ
v¼�7:35170Î+ 0:463828Ĵ + 2:46906K̂ km=sð Þ

The space station reference frame unit vectors (at this instant) are, by definition,

î¼ R

Rk k¼ 0:242945Î + 0:794415Ĵ+ 0:556670K̂

ĵ¼ V

Vk k¼�0:944799Î + 0:063725Ĵ + 0:321394K̂

k̂¼ î� ĵ¼ 0:219846Î�0:604023Ĵ + 0:766044K̂

Therefore, the direction cosine matrix of the transformation from the geocentric equatorial frame into the space station

frame is (at this instant)

Q½ �Xx¼
0:242945 0:794415 0:556670

�0:944799 0:063725 0:321394

0:219846 �0:604023 0:766044

264
375

The position vector of the spacecraft relative to the space station (in the geocentric equatorial frame) is

δr¼ r�R¼�9:64015Î+ 5:08235Ĵ+ 32:8822K̂ kmð Þ
The relative velocity is given by the formula (Eq. 7.8)

δv¼ v�V�Ωspace station�δr

where Ωspace station¼ nk̂ and n, the mean motion of the space station, is

n¼V

R
¼ 7:72627

6678
¼ 0:00115691rad=s (a)
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Thus,

δv¼�7:35170Î + 0:463828Ĵ+ 2:46906K̂
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{v

� �7:29936Î + 0:492329Ĵ+ 2:48304K̂� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{V

� 0:00115691ð Þ
Î Ĵ K̂

0:219846 �0:604023 0:766044

�9:64015 5:08235 32:8822

��������
��������

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ωspace station�δr

so that

δv¼�0:024854Î�0:01159370Ĵ�0:00853575K̂ km=sð Þ
In space station coordinates the relative position vector δr0 at the beginning of the rendezvous maneuver is

δr0f g¼ Q½ �Xx δrf g¼
0:242945 0:794415 0:556670

�0:944799 0:063725 0:321394

0:219846 �0:604023 0:766044

264
375 �9:64015

5:08235

32:8822

8><>:
9>=>;¼

20

20

20

8><>:
9>=>; kmð Þ (b)

Likewise, the relative velocity δv0
� just before launch into the rendezvous trajectory is

δv�0
� �¼ Q½ �Xx δvf g¼

0:242945 0:794415 0:556670

�0:944799 0:063725 0:321394

0:219846 �0:604023 0:766044

2664
3775

�0:024854
�0:0115937
�0:00853575

8>><>>:
9>>=>>;

¼
�0:02000
0:02000

�0:005000

8>><>>:
9>>=>>; km=sð Þ

The Clohessy-Wiltshire matrices, for t ¼ tf ¼ 8h ¼ 28,800s and n ¼ 0.00115691rad/s (from Eq. (a)), are

Φrr½ � ¼
4�3cos nt 0 0

6 sin nt�ntð Þ 1 0

0 0 cos nt

24 35¼ 4:97849 0 0

�194:242 1:000 0

0 0 �0:326163

24 35

Φrv½ � ¼

1

n
sin nt

2

n
1� cos ntð Þ 0

2

n
cos nt�1ð Þ 1

n
4sin nt�3ntð Þ 0

0 0
1

n
sin nt

2666664

3777775¼
817:102 2292:60 0

�2292:60 �83131:6 0

0 0 817:103

24 35

Φvr½ � ¼
3nsin nt 0 0

6n cos nt�1ð Þ 0 0

0 0 �n sin nt

24 35¼ 0:00328092 0 0

�0:00920550 0 0

0 0 �0:00109364

24 35

Φvv½ � ¼
cos nt 2sin nt 0

�2sin nt 4cos nt�3 0

0 0 cos nt

24 35¼ �0:326164 1:89063 0

�1:89063 �4:30466 0

0 0 �0:326164

24 35
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From Eqs. (7.56) and (b) we find δv0
+:

δu +
0

δv+0
δw+

0

8><>:
9>=>;¼�

817:102 2292:60 0

�2292:60 �83131:6 0

0 0 817:103

264
375
�1

4:97849 0 0

�194:242 1:000 0

0 0 �0:326163

264
375 20

20

20

8><>:
9>=>;

¼�
817:102 2292:60 0

�2292:60 �83131:6 0

0 0 817:103

264
375
�1

99:5698

�3864:84
�6:52386

264
375¼ 0:00930458

�0:0467472
0:00798343

8><>:
9>=>; km=sð Þ

(c)

From Eq. (7.52b), evaluated at t ¼ tf, we have

δv�f
n o

¼ Φvr tf
� � �

δr0f g+ Φvv tf
� � �

δv +
0

� �
Substituting Eqs. (b) and (c),

δu�f
δv�f
δw�f

8><>:
9>=>;¼

0:00328092 0 0

�0:00920550 0 0

0 0 �0:00109364

264
375 20

20

20

8><>:
9>=>;

+

�0:326164 1:89063 0

�1:89063 �4:30466 0

0 0 �0:326164

264
375 0:00930458

�0:0467472
0:00798343

8><>:
9>=>;

δu�f
δv�f
δw�f

8<:
9=;¼

�0:0257978
�0:000470870
�0:0244767

8<:
9=; km=sð Þ (d)

The delta-v at the beginning of the rendezvous maneuver is found as

Δv0f g¼ δv +
0

� �� δv�0
� �¼ 0:00930458

�0:0467472
0:00798343

8<:
9=;�

�0:02
0:02

�0:005

8<:
9=;¼

0:0293046

�0:0667472
0:0129834

8<:
9=; km=sð Þ

The delta-v at the conclusion of the maneuver is

Δvf
� �¼ δv+

f

n o
� δv�f
n o

¼
0

0

0

8<:
9=;�

�0:0257978
�0:000470870
�0:0244767

8<:
9=;¼

�0:0257978
�0:000470870
0:0244767

8<:
9=; km=sð Þ

The total delta-v requirement is

Δutotal = Δv0 + Δv f = 0.0740440+ 0.0355649 = 0.109609km/ s = 109.6m/ s

From Eq. (7.52a) we have, for 0 < t < tf,

δx tð Þ
δy tð Þ
δz tð Þ

8><>:
9>=>;¼

4�3cos nt 0 0

6 sin nt�ntð Þ 1 0

0 0 cos nt

264
375 20

20

20

8><>:
9>=>;

+

1

n
sin nt

2

n
1� cos ntð Þ 0

2

n
cos nt�1ð Þ 1

n
4sin nt�3ntð Þ 0

0 0
1

n
sin nt

26666664

37777775
0:00930458

�0:0467472
0:00798343

8><>:
9>=>;

Substituting n from Eq. (a) we obtain the relative position vector as a function of time. It is plotted in Fig. 7.10.
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Rendezvous trajectory of the chase vehicle relative to the target.
EXAMPLE 7.5
A target and a chase vehicle are in the same 300-km circular earth orbit. The chaser is 2 km behind the target when the

chaser initiates a two-impulse rendezvous maneuver so as to rendezvous with the target in 1.49 h. Find the total delta-v

requirement.

Solution
For the circular reference orbit

v¼
ffiffiffiffiffiffiffiffi
μ

r
¼

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

6378 + 300

r
¼ 7:7258km=s (a)

so that the mean motion is

n¼ v

r
¼ 7:7258

6678
¼ 0:0011569rad=s (b)

For this mean motion and the rendezvous trajectory time t ¼ 1.49 h ¼ 5364 s, the Clohessy-Wiltshire matrices are

0

0

–66.946

5.1928

–5.1928

–66.946

–16360

0.987980.15490

0.99700

1.0090

–37.699

–2.6881(10–4)

–2.0851(10–5)

8.9603(10–5)

–0.15490

0.99700

00

1 0

0

0

0

00

0000

00 0.99700

0

0

0

[Frr] =

[Fvr] =

[Frv] =

[Fvv] =

(c)
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The initial and final positions of the chaser in the CW frame are

δr0f g¼
0

�2
0

8><>:
9>=>; kmð Þ δrf

� �¼ 0

0

0

8><>:
9>=>; kmð Þ (d)

Since δz0 ¼ δw0 ¼ 0 there is no motion in the z direction [δz(t) ¼ 0], so we need employ only the upper left 2 by 2

corners of the Clohessy-Wiltshire matrices and treat this as a two-dimensional problem in the plane of the reference orbit.

Thus solving the first CW equation, δrf
� �¼ Φrr½ � δr0f g + Φrv½ � δv+

0

� �
, for {δv0

+} we get

δv +
0

� �¼� Φrv½ ��1 Φrr½ � δr0f g¼�
�0:014937 �4:7412 10�6

� �
4:7412 10�6

� � �6:1124 10�5
� �" #

1:0090 0

�37:699 1

" #
0

�2

( )

¼ �9:4824�10�6

�1:2225�10�4

( )
or

δv +
0 ¼�9:4824 10�6

� �̂
i�1:2225 10�4

� �̂
j km=sð Þ (e)

Therefore, the second CW equation, δv�f
n o

¼ Φvr½ � δr0f g+ Φvv½ � δv+
0

� �
, yields

δv�f
n o

¼
�2:6881 10�4

� �
0

�2:0851 10�5
� �

0

" #
0

�2

( )
+

0:99700 �0:15490
0:15490 0:98798

" # �9:4824 10�6
� �

�1:2225 10�4
� �( )

¼
9:4824 10�6

� �
�1:2225 10�4

� �( )

or

δv�f ¼ 9:4824 10�6
� �̂

i�1:2225 10�4
� �̂

j km=sð Þ (f)

Since the chaser is in the same circular orbit as the target, its relative velocity is initially zero; that is, δv0
� ¼ 0. (See also

Eq. 7.68 at the end of the next section.) Thus,

Δv0¼ δv+
0 �δv�0 ¼ �9:4824�10�6 î�1:2225�10�4 ĵ


 �
�0

¼�9:4824�10�6 î�1:2225�10�4 ĵ km=sð Þ
which implies

Δv0k k¼ 0:1226m=s (g)

At the end of the rendezvous maneuver, δvf
+ ¼ 0, so that

Δvf ¼ δv +
f �δv�f ¼ 0� 9:4824�10�6 î�1:2225�10�4 ĵ


 �
¼�9:4824�10�6 î�1:2225�10�4 ĵ km=sð Þ

Therefore,

Δvf
�� ��¼ 0:1226m=s (h)

The total delta-v required is

Δvtotal = Δv0 + Δv f = 0.2452 m/ s (i)

The coplanar rendezvous trajectory relative to the CW frame is sketched in Fig. 7.11. Notice that in the CW frame

circular orbits appear as straight lines parallel to the y axis. This is due to the linearization we did, based on Eq. (7.15).
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7.6 RELATIVE MOTION IN CLOSE-PROXIMITY CIRCULAR ORBITS
Fig. 7.12 shows two spacecraft in coplanar circular orbits. Let us calculate the velocity δv of the chase
vehicle B relative to target A when they are in close proximity. “Close proximity” means that

δr

R
<< 1

Motion of the chaser relative to the target.
FIG. 7.12

Two spacecraft in close proximity.
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To solve this problem we must use the relative velocity equation,

vB¼ vA +Ω�δr+ δv (7.60)

where Ω is the angular velocity of the Clohessy-Wiltshire frame attached to A,

Ω¼ nk̂

n is the mean motion of the target vehicle,

n¼ vA
R

(7.61)

where, by virtue of the circular orbit,

vA¼
ffiffiffi
μ

R

r
(7.62)

Solving Eq. (7.60) for the relative velocity δv yields

δv¼ vB�vA� nk̂
� ��δr (7.63)

Since the chase orbit is circular, we have for the first term on the right-hand side of Eq. (7.63)

vB¼
ffiffiffi
μ

r

r
û? ¼

ffiffiffi
μ

r

r
k̂� ûr
� �¼ ffiffiffi

μ
p

k̂� 1ffiffi
r
p r

r

� �
(7.64)

Since, as is apparent from Fig. 7.12, r ¼ R + δr we can write this expression for vB as follows:

vB¼ ffiffiffi
μ
p

k̂� r�3=2 R+ δrð Þ (7.65)

Now

r�3=2¼ r2
� ��3=4¼ R2 1 +

2R � δr
R2

� �zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{See Eq:7:18
266664

377775
�3=4

¼R�3=2 1 +
2R � δr
R2

� ��3=4
(7.66)

Using the binomial theorem (Eq. 5.44), and retaining terms at most linear in δr, we find

1 +
2R � δr
R2

� ��3=4
¼ 1�3

2

R � δr
R2

Substituting this into Eq. (7.66) leads to

r�3=2¼R�3=2�3

2

R � δr
R7=2

Upon substituting this result into Eq. (7.65) we get

vB¼ ffiffiffi
μ
p

k̂� R+ δrð Þ R�3=2�3

2

R � δr
R7=2

� �
Retaining terms at most linear in δr we can write this as

vB¼ k̂�
ffiffiffi
μ

R

r
R

R
+

ffiffiffiffiffiffiffiffi
μ=R

p
R

δr�3

2

ffiffiffiffiffiffiffiffi
μ=R

p
R

R

R

� �
� δr

� �
R

R

( )
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Using Eqs. (7.61) and (7.62), together with the facts that δr¼ δx̂i + δŷj and R=R¼ î, this reduces to

vB¼ k̂� vA î+
vA
R

δx̂i+ δŷj

 �

�3

2

vA
R

î � δx̂i+ δŷj

 �̂

i
h i� �

¼ vA ĵ+ �nδŷi+ nδx̂j

 �

�3

2
nδx̂j

so that

vB¼�nδŷi+ vA�1

2
nδx

� �
ĵ (7.67)

This is the absolute velocity of the chaser resolved into components in the target’s CW frame.

Substituting Eq. (7.67) into Eq. (7.63) and using the fact that vA¼ vAĵ yields

δv¼ �nδŷi+ vA�1

2
nδx

� �
ĵ

� �
� vA ĵ

 �

� nAk̂
� �� δx̂i+ δŷj


 �
¼�nδŷi+ vA ĵ�1

2
nδx̂j�vA ĵ�nδx̂j+ nδŷi

so that

δv¼�3
2
nδx̂j (7.68)

This is the velocity of the chaser as measured in the moving reference frame of the neighboring target.

Keep in mind that circular orbits were assumed at the outset.

In the Clohessy-Wiltshire frame, neighboring coplanar circular orbits appear to be straight lines

parallel to the y axis, which is the orbit of the origin. Fig. 7.13 illustrates this point, showing also

the linear velocity variation according to Eq. (7.68).
FIG. 7.13

Circular orbits, with relative velocity directions, in the vicinity of the Clohessy-Wiltshire frame.
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PROBLEMS

Section 7.3

7.1 Two manned spacecraft, A and B (see the figure), are in circular polar (i ¼ 90°) orbits around the
earth. A’s orbital altitude is 300 km, B’s is 250 km. At the instant shown (A over the equator, B
over the North Pole), calculate (a) the position, (b) velocity, and (c) the acceleration of B relative to

A. A’s y axis points always in the flight direction and its x axis is directed radially outward at

all times.
{Ans.: (a) rrelÞxyz¼�6678̂i + 6628̂j kmð Þ; (b) vrelÞxyz¼�0:08693̂i km=sð Þ;
(c) arelÞxyz¼�1:140 10�6

� �̂
j km=s2ð Þ}
7.2 Spacecraft A and B are in coplanar, circular geocentric orbits. The orbital radii are shown in the

figure. When B is directly below A, as shown, calculate B’s acceleration arel)xyz relative to A.

{Ans.: arelÞxyz¼�0:268̂i m=s2ð Þ}
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Section 7.3

7.3 Use the order-of-magnitude analysis in this chapter as a guide to answer the following questions:ffiffip ffiffiffiffiffiffiffiffip

(a) If r ¼ R + δr, express r (where r¼ r � r) to the first order in δr (i.e., to the first order in the

components of δr¼ δx̂i+ δŷj+ δzk̂). In other words, find O(δr), such that
ffiffi
r
p ¼ ffiffiffi

R
p

+O δrð Þ,
where O(δr) is linear in δr.

(b) For the special case R¼ 3̂i + 4̂j+ 5k̂ and δr¼ 0:01̂i�0:01̂j+ 0:03k̂, calculate
ffiffi
r
p � ffiffiffi

R
p

and

compare that result with O(δr).
(c) Repeat Part (b) using δr¼ î� ĵ+ 3k̂ and compare the results.ffiffip ffiffiffip� �

{An
s.: (a) O(δr) ¼ R � δr/(2R3/2); (b) O δrð Þ= r� R ¼ 0:998 ;

(c) O δrð Þ= ffiffi
r
p � ffiffiffi

R
p� �¼ 0:903}
7.4 Write the expression r¼ a 1�e2ð Þ
1 + ecosθ as a linear function of e, valid for small values of e (e≪ 1).

Section 7.4

7.5 Given €x+ 9x¼ 10, with the initial conditions x ¼ 5 and _x¼�3 at t ¼ 0, find x and _x at t ¼ 1.2.
{Ans.: x(1.2) ¼ � 1.934, _x 1:2ð Þ¼ 7:853}

7.6 Given that

€x+ 10x+ 2 _y¼ 0

€y+ 3 _x¼ 0

with initial conditions x(0) ¼ 1, y(0) ¼ 2, _x 0ð Þ¼�3, and _y 0ð Þ¼ 4, find x and y at t ¼ 5.

{Ans.: x(5) ¼ � 6.460, y(5) ¼ 97.31}

7.7 A space station is in an earth orbit with a 90-min period. At t ¼ 0 a satellite has the

following position and velocity components relative to a CW frame attached to the space

station: δr¼ 1̂i kmð Þ, δv¼ 10̂j m=sð Þ. How far is the satellite from the space station

15 min later?
{Ans.: 11.2 km}
7.8 Spacecraft A and B are in the same circular earth orbit with a period of 2 h. B is 6 km ahead of A. At
t ¼ 0, B applies an in-track delta-v (retrofire) of 3 m/s. Using a CW frame attached to A, determine

the distance between A and B at t ¼ 30min and the velocity of B relative to A at that instant.
{Ans.: δr ¼ 10.9km, δv ¼ 10.8m/s}
7.9 The CW coordinates and velocities of a spacecraft upon entering a rendezvous trajectory with the

target vehicle are shown. The spacecraft orbits are coplanar. Calculate the distance d of the
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spacecraft from the target when t ¼ π/(2n), where n is the mean motion of the target’s

circular orbit.
{Ans.: 0.900δr}
7.10 At time t ¼ 0 a particle is at the origin of a CW frame with a relative velocity δv0¼ v̂j. What will

be the relative speed of the particle after a time equal to one-half the orbital period of the

CW frame?
{Ans.: 7v}

7.11 The chaser and the target are in close-proximity, coplanar circular orbits. At t ¼ 0 the position

of the chaser relative to the target is δr0¼ r̂i + âj, where a is given and r is unknown. The relative
velocity at t ¼ 0+ is δv +

0 ¼ v0ĵ (v0 is unknown), and the chaser ends up at δrf ¼�âi when
t ¼ π/n, where n is the mean motion of the target. Use the Clohessy-Wiltshire equations to find

the required value of the orbital spacing r.

{Ans.: 1.424a}
Section 7.5
7.12 A space station is in a circular earth orbit of radius 6600 km. An approaching spacecraft executes

a delta-v burn when its position vector relative to the space station is δr0¼ î + ĵ+ k̂ kmð Þ.
Just before the burn the relative velocity of the spacecraft was δv0

� ¼ 5(m/s). Calculate the total
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delta-v required for the spacecraft to rendezvous with the station in a time equal to one-third

period of the space station’s orbit.
{Ans.: 6.21 m/s}
7.13 A space station is in circular orbit 2 of radius R. A spacecraft is in coplanar circular orbit 1 of

radius R + δr. At t ¼ 0 the spacecraft executes an impulsive maneuver to rendezvous with the

space station at time tf ¼ one-half the period T0 of the space station. If δu0
+ ¼ 0 find

(a) The initial position of the spacecraft relative to the space station.

(b) The relative velocity of the spacecraft when it arrives at the target. Sketch the rendezvous

trajectory relative to the target.

{Ans.: (a) δr0¼ δr̂i+ 3πδr=4ð Þ̂j; (b) δv�f ¼ πδr= 2T0ð Þ̂j}
7.14 If δu0
+ ¼ 0, calculate the total delta-v required for rendezvous if δr0¼ δy0 ĵ, δv0

� ¼ 0, and tf ¼ the

period T of the circular target orbit. Sketch the rendezvous trajectory relative to the target.
{Ans.: Δvtot ¼ 2δyo/(3T)}

7.15 A GEO satellite strikes some orbiting debris and is found 2 h afterward to have drifted to the

position δr¼�10̂i + 10̂j kmð Þ relative to its original location. At that time the only slightly

damaged satellite initiates a two-impulse maneuver to return to its original location in 6 h. Find

the total delta-v for this maneuver.
{Ans.: 3.5 m/s}
7.16 A space station is in a 245-km circular earth orbit inclined at 30°. The right ascension of its node
line is 40°. Meanwhile, a spacecraft has been launched into a 280-km-by-250-km orbit inclined

at 30.1°, with a nodal right ascension of 40° and argument of perigee equal to 60°. When the

spacecraft’s true anomaly is 40° the space station is 99° beyond its node line. At that instant

the spacecraft executes a delta-v burn to rendezvous with the space station in (precisely) tf hours,
where tf is either selected by you or assigned by the instructor. Calculate the total delta-v required
and sketch the projection of the rendezvous trajectory on the xy plane of the space station

coordinates.

7.17 The target A is in a circular earth orbit with mean motion n. The chaser B is directly above A in a

slightly larger circular orbit having the same plane as A. What relative initial velocity δv0
+ is

required so that B arrives at target A at time tf ¼ one-half the target’s period?
{Ans.: δv+
0 ¼�0:589nδx0̂i�1:75nδx0}
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Section 7.6

7.18 The space station is in a circular earth orbit of radius 6600 km. Another spacecraft is also in a

circular orbit in the same plane as the space station. At the instant that the position of the

spacecraft relative to the space station, in Clohessy-Wiltshire coordinates, is δr¼ 5̂i kmð Þ, what is
the relative velocity δv of the spacecraft in meters/s?
{Ans.: 8.83 m/s}
7.19 A spacecraft and the space station are in coplanar circular orbits. The space station has an orbital

radius R and a mean motion n. The spacecraft’s radius is R � d (d ≪ R). If a two-impulse

rendezvous maneuver with tf ¼ π/(4n) is initiated with zero relative velocity in the x direction
(δu0

+ ¼ 0), calculate the total delta-v.
{Ans.: 4.406nd}
7.20 The chaser and the target are in close-proximity, coplanar circular orbits. At t ¼ 0 the position of

the chaser relative to the target is δr0¼ âi. Use the CW equations to find the total delta-v required
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for the chaser to end up in circular orbit 2 at δrf ¼�âiwhen t ¼ π/n, where n is the mean motion

of the target.
{Ans.: na}
REFERENCE
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CHAPTER
INTERPLANETARY TRAJECTORIES
 8

8.1 INTRODUCTION
In this chapter, we consider some basic aspects of planning interplanetary missions. We begin by con-

sidering Hohmann transfers, which are the easiest to analyze and the most energy efficient. The orbits

of the planets involved must lie in the same plane and the planets must be positioned just right for a

Hohmann transfer to be used. The time between such opportunities is derived. The method of patched

conics is employed to divide the mission up into three parts: the hyperbolic departure trajectory relative

to the home planet, the cruise ellipse relative to the sun, and the hyperbolic arrival trajectory relative to

the target planet.

The use of patched conics is justified by calculating the radius of a planet’s sphere of influence and

showing how small it is on the scale of the solar system. Matching the velocity of the spacecraft at the

home planet’s sphere of influence to that required to initiate the outbound cruise phase and then spec-

ifying the periapse radius of the departure hyperbola determines the delta-v requirement at departure.

The sensitivity of the target radius to the burnout conditions is discussed. Matching the velocities at the

target planet’s sphere of influence and specifying the periapse of the arrival hyperbola yields the delta-v

at the target for a planetary rendezvous or the direction of the outbound hyperbola for a planetary flyby.

Flyby maneuvers are discussed, including the effect of leading- and trailing-side flybys, and some note-

worthy examples of the use of gravity assist maneuvers are presented.

The chapter concludes with an analysis of the situation in which the planets’ orbits are not coplanar

and the transfer ellipse is tangent to neither orbit. This is akin to the chase maneuver in Chapter 6 and

requires the solution of Lambert’s problem using Algorithm 5.2.
8.2 INTERPLANETARY HOHMANN TRANSFERS
As can be seen from Table A.1, the orbits of most of the planets in the solar system lie very close to the

earth’s orbital plane (the ecliptic plane). The innermost planet, Mercury, and the formerly outermost

planet, Pluto (which was reclassified by the International Astronomical Union as a dwarf planet in
2006), differ most in inclination (7° and 17°, respectively). The orbital planes of the other planets

lie within 3.5° degrees of the ecliptic. It is also evident from Table A.1 that most of the planetary orbits

have small eccentricities, the exceptions once again being Mercury and Pluto.
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00008-8

# 2020 Elsevier Ltd. All rights reserved.
385

https://doi.org/10.1016/B978-0-08-102133-0.00008-8


386 CHAPTER 8 INTERPLANETARY TRAJECTORIES
Besides Pluto, there are currently four other IAU-recognized dwarf planets orbiting the Sun (namely,

Ceres (the smallest), Haumea, Makemake, and Eris (the largest)). Ceres lies in the asteroid belt between

Mars and Jupiter. Reclassified as a dwarf planet in 2006, it was visited by NASA’s Dawn spacecraft in
2015. The three other dwarfs lie at the outer reaches of the solar system, beyond Neptune’s orbit. Eris is

roughly the size of Pluto, but its highly elliptical orbit takes it far beyond that of Pluto. All of the dwarf

planets have orbits that are significantly inclined to the ecliptic, from 10.6° for Ceres to 44.2° for Eris.
To simplify the beginning of our study of interplanetary trajectories, we will focus on the eight

major planets and assume that all of their orbits are circular and coplanar. In Section 8.10, we will relax

this assumption.

The most energy-efficient way for a spacecraft to transfer from one planet’s orbit to another is to use

a Hohmann transfer ellipse (Section 6.3). Consider Fig. 8.1, which shows a Hohmann transfer from an

inner planet 1 to an outer planet 2. The departure point D is at periapsis (perihelion) of the transfer

ellipse and the arrival point is at apoapsis (aphelion). The circular orbital speed of planet 1 relative

to the sun is given by Eq. (2.63),

V1 ¼
ffiffiffiffiffiffiffiffi
μsun
R1

r
(8.1)

The specific angularmomentum h of the transfer ellipse relative to the sun is found fromEq. (6.2), so

that the heliocentric speed VD
(v) of the space vehicle on the transfer ellipse at the departure point D is

V
vð Þ
D ¼ h

R1

¼
ffiffiffiffiffiffiffiffiffiffi
2μsun

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

R1 R1 +R2ð Þ

s
(8.2)
FIG. 8.1

Hohmann transfer from inner planet 1 to outer planet 2. VD
(v) > V1 and VA

(v) < V2.



FIG. 8.2

Hohmann transfer from outer planet 1 to inner planet 2. VD
(v) < V1 and VA

(v) > V2.
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This is greater than the speed V1 of the planet. Therefore, the required spacecraft delta-v at D is

ΔVD ¼V
vð Þ
D �V1 ¼

ffiffiffiffiffiffiffiffi
μsun
R1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R2

R1 +R2

r
�1

� �
(8.3)

Likewise, the delta-v at the arrival point A is

ΔVA ¼V2�V
vð Þ
A ¼

ffiffiffiffiffiffiffiffi
μsun
R2

r
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1

R1 +R2

r� �
(8.4)

This velocity increment, like that at pointD, is positive since planet 2 is traveling faster than the space-
craft at point A.

For amission from an outer planet to an inner planet, as illustrated in Fig. 8.2, the delta-v’s computed

using Eqs. (8.3) and (8.4) will both be negative instead of positive. This is because the departure point

and the arrival point are now at aphelion and perihelion, respectively, of the transfer ellipse. The speed

of the spacecraft must be reduced for it to drop into the lower energy transfer ellipse at the departure

point D, and it must be reduced again at point A to arrive in the lower energy circular orbit of planet 2.
8.3 RENDEZVOUS OPPORTUNITIES
The purpose of an interplanetary mission is for the spacecraft to not only intercept a planet’s orbit but

also to rendezvous with the planet when it gets there. For rendezvous to occur at the end of a Hohmann

transfer, the location of planet 2 in its orbit at the time of the spacecraft’s departure from planet 1 must



FIG. 8.3

Planets in circular orbits around the sun. (a) Planet 2 outside the orbit of planet 1. (b) Planet 2 inside the orbit of

planet 1.
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be such that planet 2 arrives at the apse line of the transfer ellipse at the same time as the spacecraft

does. Phasing maneuvers (Section 6.5) are clearly not practical, especially for manned missions, due to

the large periods of the heliocentric orbits.

Consider planet 1 and planet 2 in circular orbits around the sun, as shown in Fig. 8.3. Since the orbits

are circular, we can choose a common horizontal apse line from which to measure the true anomaly θ.
The true anomalies of planets 1 and 2, respectively, are

θ1 ¼ θ1Þ0 + n1t (8.5)

θ2 ¼ θ2Þ0 + n2t (8.6)

where n1 and n2 are the mean motions (angular velocities) of the planets and θ1)0, and θ2)0 are their

true anomalies at time t ¼ 0. The phase angle between the position vectors of the two planets is

defined as

ϕ¼ θ2�θ1 (8.7)

ϕ is the angular position of planet 2 relative to planet 1. Substituting Eqs. (8.5) and (8.6) into Eq. (8.7)

we get

ϕ¼ϕ0 + n2�n1ð Þt (8.8)

where ϕ0 is the phase angle at time zero, and n2 � n1 is the orbital angular velocity of planet 2 relative
to planet 1. If the orbit of planet 1 lies inside that of planet 2, as in Fig. 8.3a, then n1 > n2. Therefore, the
relative angular velocity n2 � n1 is negative, which means planet 2 moves clockwise relative to planet

1. On the other hand, if planet 1 is outside planet 2, then n2 � n1 is positive, so that the relative motion is

counterclockwise.
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The phase angle obviously varies linearly with time according to Eq. (8.8). If the phase angle is ϕ0

at t ¼ 0, how long will it take to become ϕ0 again? The answer: when the position vector of planet 2

rotates through 2π radians relative to planet 1. The time required for the phase angle to return to its

initial value is called the synodic period, which is denoted Tsyn. For the case shown in Fig. 8.3a, in

which the relative motion is clockwise, Tsyn is the time required for ϕ to change from ϕ0 to

ϕ0 � 2π. From Eq. (8.8) we have

ϕ0�2π¼ϕ0 + n2�n1ð ÞTsyn
so that

Tsyn ¼ 2π

n1�n2
n1 > n2ð Þ

For the situation illustrated in Fig. 8.3b (n2 > n1), Tsyn is the time required for ϕ to go from ϕ0 to

ϕ0 + 2π, in which case Eq. (8.8) yields

Tsyn ¼ 2π

n2�n1
n2 > n1ð Þ

Both cases are covered by writing

Tsyn ¼ 2π

n1�n2j j (8.9)

Recalling Eq. (3.9), we can write n1 ¼ 2π/T1 and n2 ¼ 2π/T2. Thus, in terms of the orbital periods of the

two planets,

Tsyn ¼ T1T2
T1�T2j j (8.10)

Observe that Tsyn is the orbital period of planet 2 relative to planet 1.
EXAMPLE 8.1
Calculate the synodic period of Mars relative to that of the earth.

Solution
In Table A.1 we find the orbital periods of earth and Mars:

Tearth ¼ 365:26days 1yearð Þ
TMars ¼ 1year plus 321:73days¼ 687:99 days

Hence,

Tsyn ¼ TearthTMars

Tearth�TMarsj j ¼
365:26�687:99

365:26�687:99j j ¼ 777:9days

These are earth days (1 day¼ 24 h). Therefore, it takes 2.13 years for a given configuration of Mars relative to the earth to

occur again.
Fig. 8.4 depicts a mission from planet 1 to planet 2. Following a heliocentric Hohmann transfer, the

spacecraft intercepts and undergoes rendezvous with planet 2. Later it returns to planet 1 by means of

another Hohmann transfer. The major axis of the heliocentric transfer ellipse is the sum of the radii of



FIG. 8.4

Round trip mission, with layover, to planet 2. (a) Departure and rendezvous with planet 2. (b) Return and

rendezvous with planet 1.
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the two planets’ orbits, R1 + R2. The time t12 required for the transfer is one-half the period of the el-

lipse. Hence, according to the period formula (Eq. 2.83),

t12 ¼ πffiffiffiffiffiffiffiffi
μsun

p R1 +R2

2

� �3=2

(8.11)

During the time it takes the spacecraft to fly from orbit 1 to orbit 2, through an angle of π radians,

planet 2 must move around its circular orbit and end up at a point directly opposite planet 1’s position

when the spacecraft departed. Since planet 2’s angular velocity is n2, the angular distance traveled by

the planet during the spacecraft’s trip is n2t12. Hence, as can be seen from Fig. 8.4a, the initial phase

angle ϕ0 between the two planets is

ϕ0 ¼ π�n2t12 (8.12)

When the spacecraft arrives at planet 2, the phase angle will be ϕf, which is found using Eqs. (8.8)

and (8.12).

ϕf ¼ϕ0 + n2�n1ð Þt12 ¼ π�n2t12ð Þ+ n2�n1ð Þt12
ϕf ¼ π�n1t12

(8.13)

For the situation illustrated in Fig. 8.4, planet 2 ends up being behind planet 1 by an amount equal to the

magnitude of ϕf.

At the start of the return trip, illustrated in Fig. 8.4b, planet 2 must be ϕ0
0 radians ahead of planet 1.

Since the spacecraft flies the same Hohmann transfer trajectory back to planet 1, the time of flight is t12,
the same as the outbound leg. Therefore, the distance traveled by planet 1 during the return trip is the

same as the outbound leg, which means

ϕ0
0 ¼�ϕf (8.14)
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In any case, the phase angle at the beginning of the return trip must be the negative of the phase angle at

arrival from planet 1. The time required for the phase angle to reach its proper value is called the wait

time, twait. Setting time equal to zero at the instant we arrive at planet 2, Eq. (8.8) becomes

ϕ¼ϕf + n2�n1ð Þt
ϕ becomes �ϕf after the time twait. That is,

�ϕf ¼ϕf + n2�n1ð Þtwait
or

twait ¼
�2ϕf

n2�n1
(8.15)

where ϕf is given by Eq. (8.13). Eq. (8.15) may yield a negative result, which means the desired phase

relation occurred in the past. Therefore, we must add or subtract an integral multiple of 2π to the nu-

merator to get a positive value for twait. Specifically, if N ¼ 0, 1, 2, …, then

twait ¼
�2ϕf �2πN

n2�n1
n1 > n2ð Þ (8.16)

twait ¼
�2ϕf + 2πN

n2�n1
n1 < n2ð Þ (8.17)

where N is chosen to make twait positive. twait would probably be the smallest positive number thus

obtained.
EXAMPLE 8.2
Calculate the minimum wait time for initiating a return trip from Mars to earth.

Solution
From Tables A.1 and A.2 we have

Rearth ¼ 149:6�106km

RMars ¼ 227:9�106km

μsun ¼ 132:71�109km3=s2

According to Eq. (8.11), the time of flight from earth to Mars is

t12 ¼ πffiffiffiffiffiffiffiffi
μsun

p Rearth +RMars

2

� �3=2

¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
132:71�109

p 149:6�106 + 227:9�106

2

� �3=2

¼ 2:2362�107 s

or
t12 ¼ 258:82days

From Eq. (3.9) and the orbital periods of earth and Mars (see Example 8.1 above) we obtain the mean motions of the earth

and Mars

nearth ¼ 2π

365:26
¼ 0:017202rad=day

nMars ¼ 2π

687:99
¼ 0:0091327rad=day
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The phase angle between earth and Mars when the spacecraft reaches Mars is given by Eq. (8.13).

ϕf ¼ π�neartht12 ¼ π�0:017202 � 258:82¼�1:3107rad

Since nearth > nMars, we choose Eq. (8.16) to find the wait time

twait ¼
�2ϕf �2πN

nMars�nearth
¼ �2 �1:3107ð Þ�2πN

0:0091327�0:017202
¼ 778:65N�324:85days

N ¼ 0 yields a negative value, which we cannot accept. Setting N ¼ 1, we find

twait ¼ 453:8days

This is the minimum wait time (1.24 years). Obviously, we could set N ¼ 2, 3, … to obtain longer wait times.
For a spacecraft to depart on a mission toMars by means of a Hohmann (minimum energy) transfer,

the phase angle between earth and Mars must be that given by Eq. (8.12). Using the results of Example

8.2, we find it to be

ϕ0 ¼ π�nMarst12 ¼ π�0:0091327 � 258:82¼ 0:7778rad¼ 44:57°

This opportunity occurs once every synodic period, which we found to be 2.13 years in Example 8.1. In

Example 8.2, we found that the time to fly to Mars is 258.8 days, followed by a wait time of 453.8 days,

followed by a return trip time of 258.8 days. Hence, the minimum total time for a manned Mars mis-

sion, using Hohmann transfers is

ttotal ¼ 258:8 + 453:8 + 258:8¼ 971:4days¼ 2:66years
8.4 SPHERE OF INFLUENCE
The sun, of course, is the dominant celestial body in the solar system. It is over 1000 times more

massive than the largest planet, Jupiter, and has a mass of over 300,000 earths. The sun’s gravitational

pull holds all the planets in its grasp according to Newton’s law of gravity (Eq. 1.31). However,

near a given planet, the influence of its own gravity exceeds that of the sun. For example, at its

surface the earth’s gravitational force is over 1600 times greater than the sun’s. The inverse-square

nature of the law of gravity means that the force of gravity Fg drops off rapidly with distance r from
the center of attraction. If Fg0 is the gravitational force at the surface of a planet with radius r0,
then Fig. 8.5 shows how rapidly the force diminishes with distance. At 10 body radii, the force is

1% of its value at the surface. Eventually, the force of the sun’s gravitational field overwhelms that

of the planet.

To estimate the radius of a planet’s gravitational sphere of influence, consider the three-body sys-

tem comprising a planet p of massmp, the sun s of mass ms, and a space vehicle v of mass mv illustrated

in Fig. 8.6. The position vectors of the planet and spacecraft relative to an inertial frame centered at the

sun are R and Rv, respectively. The position vector of the space vehicle relative to the planet is r.
(Throughout this chapter we will use uppercase letters to represent position, velocity, and acceleration

measured relative to the sun and lowercase letters when they are measured relative to a planet.)

The gravitational force exerted on the vehicle by the planet is denoted Fp
(v), and that exerted by the



FIG. 8.5

Decrease of gravitational force with distance from a planet’s surface.

FIG. 8.6

Relative position and gravitational force vectors among the three bodies.
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sun is Fs
(v). Likewise, the forces on the planet are Fs

(p) and Fv
(p), whereas on the sun we have Fv

(s) and Fp
(s).

According to Newton’s law of gravitation (Eq. 2.10), these forces are

F vð Þ
p ¼�Gmvmp

r3
r (8.18a)

F vð Þ
s ¼�Gmvms

Rv
3

Rv (8.18b)

F pð Þ
s ¼�Gmpms

R3
R (8.18c)

Observe that

Rv ¼R+ r (8.19)
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From Fig. 8.6 and the law of cosines we see that the magnitude of Rv is

Rv ¼ R2 + r2�2Rrcosθ
� �1=2 ¼R 1�2 r=Rð Þcosθ + r=Rð Þ2

h i1=2
(8.20)

We expect that within the planet’s sphere of influence, r/R ≪ 1. In that case, the terms involving r/R in

Eq. (8.20) can be neglected, so that, approximately,

Rv ¼R (8.21)

The equation of motion of the spacecraft relative to the sun-centered inertial frame is

mv
€Rv ¼F vð Þ

s +F vð Þ
p

Solving for €Rv and substituting the gravitational forces given by Eqs. (8.18a) and (8.18b), we get

€Rv ¼ 1

mv
�Gmvms

Rv
3

Rv

� �
+

1

mv
�Gmvmp

r3
r

� �
¼�Gms

Rv
3
Rv�Gmp

r3
r (8.22)

Let us write this as

€Rv ¼As +Pp (8.23)

where

As ¼�Gms

Rv
3
Rv Pp ¼�Gmp

r3
r (8.24)

As is the primary gravitational acceleration of the vehicle due to the sun, and Pp is the secondary or

perturbing acceleration due to the planet. The magnitudes of As and Pp are

As ¼Gms

R2
Pp ¼Gmp

r2
(8.25)

where wemade use of the approximation given by Eq. (8.21). The ratio of the perturbing acceleration to

the primary acceleration is, therefore,

Pp

As
¼
Gmp

r2
Gms

R2

¼mp

ms

R

r

� �2

(8.26)

The equation of motion of the planet relative to the inertial frame is

mp
€R¼F pð Þ

v +F pð Þ
s

Solving for €R, noting that Fv
(p) ¼ � Fp

(v), and using Eqs. (8.18b) and (8.18c) yields

€R¼ 1

mp

Gmvmp

r3
r

� �
+

1

mp
�Gmpms

R3
R

� �
¼Gmv

r3
r�Gms

R3
R (8.27)

Subtracting Eq. (8.27) from Eq. (8.22) and collecting terms, we find

€Rv� €R¼�Gmp

r3
r 1 +

mv

mp

� �
�Gms

Rv
3

Rv� Rv

R

� �3

R

" #
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Recalling Eq. (8.19), we can write this as

€r¼�Gmp

r3
r 1 +

mv

mp

� �
�Gms

Rv
3

r+ 1� Rv

R

� �3
" #

R

( )
(8.28)

This is the equation of motion of the vehicle relative to the planet. By using Eq. (8.21) and the fact that

mv ≪ mp, we can write this in approximate form as

€r¼ ap +ps (8.29)

where

ap ¼�Gmp

r3
r ps ¼�Gms

R3
r (8.30)

In this case ap is the primary gravitational acceleration of the vehicle due to the planet and ps is the

perturbation caused by the sun. The magnitudes of these vectors are

ap ¼Gmp

r2
ps ¼Gms

R3
r (8.31)

The ratio of the perturbing acceleration to the primary acceleration is

ps
ap

¼
Gms

r

R3

Gmp

r2

¼ms

mp

r

R

� �3
(8.32)

For motion relative to the planet, the ratio ps/ap is a measure of the deviation of the vehicle’s orbit from

the Keplerian orbit arising from the planet acting by itself (ps/ap ¼ 0). Likewise, Pp/As is a measure of

the planet’s influence on the orbit of the vehicle relative to the sun. If

ps
ap

<
Pp

As
(8.33)

then the perturbing effect of the sun on the vehicle’s orbit around the planet is less than the perturbing

effect of the planet on the vehicle’s orbit around the sun. We say that the vehicle is therefore within the

planet’s sphere of influence. Substituting Eqs. (8.26) and (8.32) into Eq. (8.33) yields

ms

mp

r

R

� �3
<
mp

ms

R

r

� �2

which means

r

R

� �5
<

mp

ms

� �2

or

r

R
<

mp

ms

� �2=5

Let rSOI be the radius of the sphere of influence. Within the planet’s sphere of influence, defined by

rSOI
R

¼ mp

ms

� �2=5

(8.34)
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the motion of the spacecraft is determined by its equations of motion relative to the planet (Eq. 8.28).

Outside the sphere of influence, the path of the spacecraft is computed relative to the sun (Eq. 8.22).

The sphere of influence radius presented in Eq. (8.34) is not an exact quantity. It is simply a rea-

sonable estimate of the distance beyond which the sun’s gravitational attraction dominates that of a

planet. The spheres of influence of all the planets and the earth’s moon are listed in Table A.2.
EXAMPLE 8.3
Calculate the radius of the earth’s sphere of influence.

Solution
In Table A.1 we find

mearth ¼ 5:974 1024
� �

kg

msun ¼ 1:989 1030
� �

kg

Rearth ¼ 149:6 106
� �

km

Substituting these data into Eq. (8.34) yields

rSOI ¼ 149:6�106
5:974�1024

1:989�1024

� �2=5

¼ 925�106km

Since the radius of the earth is 6378 km,

rSOI ¼ 145earth radii

Relative to the earth, its sphere of influence is very large. However, relative to the sun it is tiny, as illustrated in Fig. 8.7.

FIG. 8.7

The earth’s sphere of influence and the sun, drawn to scale.
8.5 METHOD OF PATCHED CONICS
“Conics” refers to the fact that two-body, or Keplerian, orbits are conic sections with the focus at the

attracting body. To study an interplanetary trajectory, we assume that when the spacecraft is outside the

sphere of influence of a planet it follows an unperturbed Keplerian orbit around the sun. Because inter-

planetary distances are so vast, for heliocentric orbits we may neglect the size of the spheres of influ-

ence and consider them, like the planets they surround, to be just points in space coinciding with the

planetary centers. Within each planetary sphere of influence, the spacecraft travels an unperturbed

Keplerian path about the planet. While the sphere of influence appears as a mere speck on the scale

of the solar system, from the point of view of the planet it is very large indeed and may be considered

to lie at infinity.

To analyze a mission from planet 1 to planet 2 using the method of patched conics, we first deter-

mine the heliocentric trajectory, such as the Hohmann transfer ellipse discussed in Section 8.2, that will
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intersect the desired positions of the two planets in their orbits. This trajectory takes the spacecraft from

the sphere of influence of planet 1 to that of planet 2. At the spheres of influence, the heliocentric ve-

locities of the transfer orbit are computed relative to the planet to establish the velocities “at infinity,”

which are then used to determine planetocentric departure trajectory at planet 1 and arrival trajectory at

planet 2. In this way, we “patch” together the three conics, one centered at the sun and the other two

centered at the planets in question.

Whereas the method of patched conics is remarkably accurate for interplanetary trajectories, such is

not the case for lunar rendezvous and return trajectories. The orbit of the moon is determined primarily

by the earth, whose sphere of influence extends well beyond the moon’s 384,400-km orbital radius.

To apply patched conics to lunar trajectories we ignore the sun and consider the motion of a spacecraft

as influenced by just the earth and moon, as in the restricted three-body problem discussed in

Section 2.12. The size of the moon’s sphere of influence is found using Eq. (8.34), with the earth play-

ing the role of the sun:

rSOI ¼R
mmoon

mearth

� �2=5

where R is the radius of the moon’s orbit. Thus, using Table A.1,

rSOI ¼ 384,400
73:48 1021

� �
5974 1021

� �" #2=5
¼ 66,200km

as recorded in Table A.2. The moon’s sphere of influence extends out to over one-sixth of the distance

to the earth. We can hardly consider it to be a mere speck relative to the earth. Another complication is

the fact that the earth and the moon are somewhat comparable in mass, so that their center of mass lies

almost three-quarters of an earth radius from the center of the earth. The motion of the moon cannot be

accurately described as rotating around the center of the earth.

Complications such as these place the analysis of cislunar trajectories beyond the scope of this chap-

ter. (In Example 2.18, we did a lunar trajectory calculation not by using patched conics but by inte-

grating the equations of motion of a spacecraft within the context of the restricted three-body

problem.) We extend the patched conic technique to lunar trajectories in Chapter 9.
8.6 PLANETARY DEPARTURE
To escape the gravitational pull of a planet, the spacecraft must travel a hyperbolic trajectory relative to

the planet, arriving at its sphere of influence with a relative speed v∞ (hyperbolic excess speed) greater

than zero. On a parabolic trajectory, according to Eq. (2.91), the spacecraft will arrive at the sphere of

influence (r ¼ ∞) with a relative speed of zero. In that case, the spacecraft remains in the same orbit as

the planet and does not embark upon a heliocentric elliptical path.

Fig. 8.8 shows a spacecraft departing on a Hohmann trajectory from planet 1 toward a target planet

2, which is farther away from the sun (as in Fig. 8.1). On crossing the sphere of influence, the helio-

centric velocity VD
(v) of the spacecraft is parallel to the asymptote of the departure hyperbola as well as

to the planet’s heliocentric velocity vectorV1.VD
(v) andV1 must be parallel and in the same direction for



FIG. 8.8

Departure of a spacecraft on a mission from an inner planet to an outer planet.
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a Hohmann transfer such that ΔVD in Eq. (8.3) is positive. Clearly, ΔVD is the hyperbolic excess speed

of the departure hyperbola,

v∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μsun
R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R2

R1 +R2

r
�1

� �s
(8.35)

It would be well at this point for the reader to review Section 2.9 on hyperbolic trajectories and compare

Fig. 8.8 and Fig. 2.25. Recall that point C is the center of the hyperbola.

A space vehicle is ordinarily launched into an interplanetary trajectory from a circular parking orbit.

The radius of this parking orbit equals the periapse radius rp of the departure hyperbola. According to

Eq. (2.50), the periapsis radius is given by

rp ¼ h2

μ1

1

1 + e
(8.36)

where h is the angular momentum of the departure hyperbola (relative to the planet), e is the eccen-
tricity of the hyperbola, and μ1 is the planet’s gravitational parameter. The hyperbolic excess speed is

found in Eq. (2.115), from which we obtain

h¼ μ1
ffiffiffiffiffi
e2

p
�1

v∞
(8.37)
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Substituting this expression for the angular momentum into Eq. (8.36) and solving for eccentricity

yields

e¼ 1 +
rpv∞

2

μ1
(8.38)

We place this result back into Eq. (8.37) to obtain the following expression for the angular momentum:

h¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞2 +

2μ1
rp

s
(8.39)

Since the hyperbolic excess speed is specified by the mission requirements (Eq. 8.35), choosing a de-

parture periapsis rp yields the parameters e and h of the departure hyperbola. From the angular momen-

tum, we get the periapsis speed,

vp ¼ h

rp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞2 +

2μ1
rp

s
(8.40)

which can also be found from an energy approach using Eq. (2.113). With Eq. (8.40) and the speed of

the circular parking orbit (Eq. 2.63),

vc ¼
ffiffiffiffiffi
μ1
rp

r
(8.41)

we can calculate the delta-v required to put the vehicle onto the hyperbolic departure trajectory,

Δv¼ vp�vc ¼ vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 +

v∞
vc

� �2
s

�1

0@ 1A (8.42)

The location of periapsis, where the delta-v maneuver must occur, is found using Eq. (2.99) and

Eq. (8.38),

β¼ cos�1 1

e

� �
¼ cos�1 1

1 +
rpv∞

2

μ1

0BB@
1CCA (8.43)

β gives the orientation of the apse line of the hyperbola to the planet’s heliocentric velocity vector.

It should be pointed out that the only requirement on the orientation of the plane of the departure

hyperbola is that it must contain the center of mass of the planet as well as the relative velocity vector

v∞. Therefore, as shown in Fig. 8.9, the hyperbola can be rotated about a line A–A, which passes

through the planet’s center of mass and is parallel to v∞ (or V1, which of course is parallel to v∞
for Hohmann transfers). Rotating the hyperbola in this way sweeps out a surface of revolution on which

all possible departure hyperbolas lie. The periapsis of the hyperbola traces out a circle which, for the

specified periapsis radius rp, is the locus of all possible points of injection into a departure trajectory

toward the target planet. This circle is the base of a cone with its vertex at the center of the planet. From

Fig. 2.25 we can determine that its radius is rp sin β, where β is given just above in Eq. (8.43).

The plane of the parking orbit, or direct ascent trajectory, must contain the line A–A and the launch

site at the time of launch. The possible inclinations of a prograde orbit range from a minimum of imin,

where imin is the latitude of the launch site, to imax, which cannot exceed 90°. Launch site safety



FIG. 8.9

Locus of possible departure trajectories for a given v∞ and rp.

FIG. 8.10

Parking orbits and departure trajectories for a launch site at a given latitude.
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considerations may place additional limits on this range. For example, orbits originating from the

Kennedy Space Center in Florida (latitude 28.5°), are limited to inclinations between 28.5° and

52.5°. For the scenario illustrated in Fig. 8.10, the location of the launch site limits access to just

the departure trajectories having periapses lying between a and b. The figure shows that there are

two times per day—when the planet rotates the launch site through positions 1 and 10—that a spacecraft

can be launched into a parking orbit. These times are closer together (the launch window is smaller), the

lower the inclination of the parking orbit.

Once a spacecraft is established in its parking orbit, then an opportunity for launch into the depar-

ture trajectory occurs at each orbital circuit.

If the mission is to send a spacecraft from an outer planet to an inner planet, as in Fig. 8.2, then the

spacecraft’s heliocentric speed VD
(v) at departure must be less than that of the planet. That means the



FIG. 8.11

Departure of a spacecraft on a trajectory from an outer planet to an inner planet.
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spacecraft must emerge from the backside of the sphere of influence with its relative velocity vector v∞
directed opposite to V1, as shown in Fig. 8.11. Figs. 8.9 and 8.10 apply to this situation as well.
EXAMPLE 8.4
A spacecraft is launched on a mission to Mars starting from a 300-km circular parking orbit. Calculate (a) the delta-v re-

quired, (b) the location of perigee of the departure hyperbola, and (c) the amount of propellant required as a percentage of

the spacecraft mass before the delta-v burn, assuming a specific impulse of 300 s.

Solution
From Tables A.1 and A.2, we obtain the gravitational parameters for the sun and the earth,

μsun ¼ 1:327 1011
� �

km3=s2

μearth ¼ 398,600km3=s2

and the orbital radii of the earth and Mars,

Rearth ¼ 149:6 106
� �

km

RMars ¼ 227:9 106
� �

km
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(a) According to Eq. (8.35), the hyperbolic excess speed is

v∞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
μsun
Rearth

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RMars

Rearth +RMars

r
�1

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:327 1011

� �
149:6 106

� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 227:9 106

� �
149:6 106

� �
+ 227:9 106

� ��1

s !
from which

v∞ ¼ 2:943km=s

The speed of the spacecraft in its 300-km circular parking orbit is given by Eq. (8.41),

vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μearth
rearth + 300

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

6678

r
¼ 7:726km=s

Finally, we use Eq. (8.42) to calculate the delta-v required to step up to the departure hyperbola

Δv¼ vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 +

v∞
vc

� �2
s

�1

 !
¼ 7:726

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 +

2:943

7:726

� �2
s

�1

 !
Δv¼ 3:590km=s

(b) Perigee of the departure hyperbola, relative to the earth’s orbital velocity vector, is found using Eq. (8.43),

β¼ cos�1 1

1 +
rpv∞

2

μearth

0BB@
1CCA¼ cos�1 1

1 +
6678 � 2:9432
368,600

0BB@
1CCA

β¼ 29:16°

Fig. 8.12 shows that the perigee can be located on either the sunlit or the dark side of the earth. It is likely that the

parking orbit would be a prograde orbit (west to east), which would place the burnout point on the dark side.

(c) From Eq. (6.1), we have

Δm
m

¼ 1� exp � Δv
lspg0

� �
FIG. 8.12

Departure trajectory to Mars initiated from (a) the dark side and (b) the sunlit side of the earth

(Example 8.4).
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Substituting Δv ¼ 3.590km/s, Isp ¼ 300s, and g0 ¼ 9.81(10�3)km/s2, this yields

Δm
m

¼ 0:705

That is, prior to the delta-v maneuver over, 70% of the spacecraft mass must be propellant.
8.7 SENSITIVITY ANALYSIS
The initial maneuvers required to place a spacecraft on an interplanetary trajectory occur well within

the sphere of influence of the departure planet. Since the sphere of influence is just a point on the scale

of the solar system, we may ask what effects small errors in position and velocity at the maneuver point

have on the trajectory. Assuming the mission is from an inner to an outer planet, let us consider the

effect that small changes in the burnout velocity vp and radius rp have on the target radius R2 of the

heliocentric Hohmann transfer ellipse (see Figs. 8.1 and 8.8).

R2 is the radius of aphelion, so we use Eq. (2.70) to obtain

R2 ¼ h2

μsun

1

1�e

Substituting h ¼ R1 VD
(v) and e ¼ (R2 � R1)/(R2 + R1), and solving for R2, yields

R2 ¼
R2
1 V

vð Þ
D

� �2
2μsun�R1 V

vð Þ
D

� �2 (8.44)

(This expression holds as well for a mission from an outer to an inner planet.) The change δR2 in R2 due

to a small variation δVD
(v) of VD

(v) is

δR2 ¼ dR2

dV
vð Þ
D

δV vð Þ
D ¼ 4R2

1μsun

2μsun�R1 V
vð Þ
D

� �2	 
2V vð Þ
D δV vð Þ

D

Dividing this equation by Eq. (8.44) leads to

δR2

R2

¼ 2

1�
R1 V

vð Þ
D

� �2
2μsun

δV vð Þ
D

V
vð Þ
D

(8.45)

The departure speed VD
(v) of the space vehicle is the sum of the planet’s speed V1 and excess speed v∞

V
vð Þ
D ¼V1 + v∞

We can solve Eq. (8.40) for v∞,

v∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vp2�2μ1

rp

s
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Hence

V
vð Þ
D ¼V1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vp2�2μ1

rp

s
(8.46)

The change in VD
(v) due to variations δrp and δvp of the burnout position (periapse) rp and speed vp is

given by

δV vð Þ
D ¼ ∂V

vð Þ
D

∂rp
δrp +

∂V
vð Þ
D

∂vp
δvp (8.47)

From Eq. (8.46), we obtain

∂V
vð Þ
D

∂rp
¼ μ1
v∞r2p

∂V
vð Þ
D

∂vp
¼ vp
v∞

Therefore,

δV vð Þ
D ¼ μ1

v∞r2p
δrp +

vp
v∞

δv

Once again making use of Eq. (8.40), this can be written as follows:

δV vð Þ
D

V
vð Þ
D

¼ μ1

V
vð Þ
D v∞rp

δrp
rp

+

v∞ +
2μ1
rpv∞

V
vð Þ
D

δvp
vp

(8.48)

Substituting this into Eq. (8.45) finally yields the desired result: an expression for the variation of R2

due to variations in rp and vp

δR2

R2

¼ 2

1�
R1 V

vð Þ
D

� �2
2μsun

μ1

V
vð Þ
D v∞rp

δrp
rp

+

v∞ +
2μ1
rpv∞

V
vð Þ
D

δvp
vp

0BB@
1CCA (8.49)

Consider a mission from earth to Mars, starting from a 300-km parking orbit. We have

μsun ¼ 1:327 1011
� �

km3=s2

μ1 ¼ μearth ¼ 398,600km3=s2

R1 ¼ 149:6 106
� �

km

R2 ¼ 227:9 106
� �

km

rp ¼ 6678km

In addition, from Eqs. (8.1) and (8.2),

V1 ¼Vearth ¼
ffiffiffiffiffiffiffiffi
μsun
R1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:327 1011

� �
149:6 106

� �s
¼ 29:78km=s

V
vð Þ
D ¼

ffiffiffiffiffiffiffiffiffiffi
2μsun

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

R1 R1 +R2ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1:327 1011

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
227:9 106

� �
149:6 106

� �
149:6 106

� �
+ 227:9 106

� �� �s
¼ 32:73km=s
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Therefore,

v∞ ¼V
vð Þ
D �Vearth ¼ 2:943km=s

and, from Eq. (8.40),

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞2 +

2μearth
rp

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:9432 +

2 � 398,600
6678

r
¼ 11:32km=s

Substituting these values into Eq. (8.49) yields

δR2

R2

¼ 3:127
δrp
rp

+ 6:708
δvp
vp

This expression shows that a 0.01% variation (1.1 m/s) in the burnout speed vp changes the target radius
R2 by 0.067% or 153,000 km! Likewise, an error of 0.01% (0.67 km) in burnout radius rp produces an
error of over 70,000 km. Thus, small errors that are likely to occur in the launch phase of the mission

must be corrected by midcourse maneuvers during the coasting flight along the elliptical transfer

trajectory.
8.8 PLANETARY RENDEZVOUS
A spacecraft arrives at the sphere of influence of the target planet with a hyperbolic excess velocity v∞
relative to the planet. In the case illustrated in Fig. 8.1, a mission from an inner planet 1 to an outer

planet 2 (e.g., earth to Mars), the spacecraft’s heliocentric approach velocity VA
(v) is smaller in magni-

tude than that of the planet, V2. Therefore, it crosses the forward portion of the sphere of influence, as

shown in Fig. 8.13. For a Hohmann transfer,VA
(v) andV2 are parallel, so the magnitude of the hyperbolic

excess velocity is, simply,

v∞ ¼V2�V
vð Þ
A (8.50)

If the mission is as illustrated in Fig. 8.2, from an outer planet to an inner one (e.g., earth to Venus), then

VA
(v) is greater than V2, and the spacecraft must cross the rear portion of the sphere of influence, as shown

in Fig. 8.14. In that case

v∞ ¼V
vð Þ
A �V2 (8.51)

What happens after crossing the sphere of influence depends on the nature of the mission. If the goal

is to impact the planet (or its atmosphere), the aiming radiusΔ of the approach hyperbola must be such

that the hyperbola’s periapsis radius rp equals essentially the radius of the planet. If the intent is to go

into orbit around the planet, thenΔmust be chosen so that the delta-v burn at periapsis will occur at the

correct altitude above the planet. If there is no impact with the planet and no drop into a capture orbit

around the planet, then the spacecraft will simply continue past periapsis on a flyby trajectory, exiting

the sphere of influence with the same relative speed v∞ as it entered, but with the velocity vector rotated

through the turn angle δ, given by Eq. (2.100),

δ¼ 2sin�1 1

e

� �
(8.52)



FIG. 8.13

Spacecraft approach trajectory for a Hohmann transfer to an outer planet from an inner one. P is the periapse of

the approach hyperbola.
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With the hyperbolic excess speed v∞ and the periapse radius rp specified, the eccentricity of the

approach hyperbola is found from Eq. (8.38),

e¼ 1 +
rpv∞

2

μ2
(8.53)

where μ2 is the gravitational parameter of planet 2. Hence, the turn angle is

δ¼ 2sin�1 1

1 +
rpv∞

2

μ2

0BB@
1CCA (8.54)

We can combine Eqs. (2.103) and (2.107) to obtain the following expression for the aiming radius:

Δ¼ h2

μ2

1ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1

p (8.55)

The angular momentum of the approach hyperbola relative to the planet is found using Eq. (8.39),

h¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞2 +

2μ2
rp

s
(8.56)



FIG. 8.14

Spacecraft approach trajectory for a Hohmann transfer to an inner planet from an outer one. P is the periapse of

the approach hyperbola.
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)

Substituting Eqs. (8.53) and (8.56) into Eq. (8.55) yields the aiming radius in terms of the periapse

radius and the hyperbolic excess speed,

Δ¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

2μ2
rpv∞2

s
(8.57

Just as we observed when discussing departure trajectories, the approach hyperbola does not lie in a

unique plane.We can rotate the hyperbolas illustrated in Figs. 8.11 and 8.12 about a line A–A parallel to

v∞ and passing through the target planet’s center of mass, as shown in Fig. 8.15. The approach hyper-

bolas in that figure terminate at the circle of periapses. Fig. 8.16 is a plane through the solid of rev-

olution revealing the shape of hyperbolas having a common v∞ but varying Δ.
Let us suppose that the purpose of the mission is to enter an elliptical orbit of eccentricity e around

the planet. This will require a delta-v maneuver at periapsis P (Figs. 8.13 and 8.14), which is also peri-

apsis of the ellipse. The speed in the hyperbolic trajectory at periapsis is given by Eq. (8.40),

vpÞhyp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞2 +

2μ2
rp

s
(8.58)



FIG. 8.15

Locus of approach hyperbolas to the target planet.

FIG. 8.16

Family of approach hyperbolas having the same v∞ but different Δ.
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The velocity at periapsis of the capture orbit is found by setting h ¼ rpvp in Eq. (2.50) and solving for vp

vpÞcapture ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 1 + eð Þ

rp

s
(8.59)

Hence, the required delta-v is

Δv¼ vpÞhyp�vpÞcapture ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞2 +

2μ2
rp

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 1 + eð Þ

rp

s
(8.60)
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For a given v∞, Δv clearly depends on the choice of periapse radius rp and capture orbit eccentricity e.
Requiring the maneuver point to remain the periapsis of the capture orbit means that Δv is maximum

for a circular capture orbit and decreases with increasing eccentricity until Δv ¼ 0, which, of course,

means no capture (flyby).

To determine optimal capture radius, let us write Eq. (8.60) in nondimensional form as

Δv
v∞

¼
ffiffiffiffiffiffiffiffiffiffi
1 +

2

ξ

s
�

ffiffiffiffiffiffiffiffiffi
1 + e

ξ

s
(8.61)

where

ξ¼ rpv∞
2

μ2
(8.62)

The first and second derivatives of Δv/v∞ with respect to ξ are

d

dξ

Δv
v∞

¼ � 1ffiffiffiffiffiffiffiffiffi
ξ + 2

p +

ffiffiffiffiffiffiffiffiffi
1 + e

p

2

� �
1

ξ3=2
(8.63)

d2

dξ2
Δv
v∞

¼ 2ξ+ 3

ξ+ 2ð Þ3=2
�3

4

ffiffiffiffiffiffiffiffiffi
1 + e

p !
1

ξ5=2
(8.64)

Setting the first derivative equal to zero and solving for ξ yields

ξ¼ 2
1�e

1 + e
(8.65)

Substituting this value of ξ into Eq. (8.64), we get

d2

dξ2
Δv
v∞

¼
ffiffiffi
2

p

64

1 + eð Þ3
1�eð Þ3=2

(8.66)

This expression is positive for elliptical orbits (0 � e < 1), which means that when ξ is given by

Eq. (8.65), Δv is a minimum. Therefore, from Eq. (8.62), the optimal periapse radius as far as fuel

expenditure is concerned is

rp ¼ 2μ2
v∞2

1�e

1 + e
(8.67)

We can combine Eqs. (2.50) and (2.70) to get

1�e

1 + e
¼ rp
ra

(8.68)

where ra is the apoapsis radius. Thus, Eq. (8.67) implies

ra ¼ 2μ2
v∞2

(8.69)

That is, the apoapsis of this capture ellipse is independent of the eccentricity and equals the radius of the

optimal circular orbit.
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Substituting Eq. (8.65) back into Eq. (8.61) yields the minimum Δv,

Δv¼ v∞

ffiffiffiffiffiffiffiffiffiffi
1�e

2

r
(8.70)

Finally, placing the optimal rp into Eq. (8.57) leads to an expression for the aiming radius required for

minimum Δv,

Δ¼ 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffi
1�e

p

1 + e

μ2
v∞2

¼
ffiffiffiffiffiffiffiffiffiffi
2

1�e

r
rp (8.71)

Clearly, the optimal Δv (and periapsis height) are reduced for highly eccentric elliptical capture orbits
(e!1). However, it should be pointed out that the use of optimal Δvmay have to be sacrificed in favor

of a variety of other mission requirements.
EXAMPLE 8.5
After a Hohmann transfer from earth to Mars, calculate

(a) the minimum delta-v required to place a spacecraft in orbit with a period of 7 h

(b) the periapsis radius

(c) the aiming radius

(d) the angle between periapsis and Mars’ velocity vector.

Solution
The following data are required from Tables A.1 and A.2:

μsun ¼ 1:327 1011
� �

km3=s2

μMars ¼ 42,830km3=s2

Rearth ¼ 149:6 106
� �

km

RMars ¼ 227:9 106
� �

km

rMars ¼ 3396km

(a) The hyperbolic excess speed is found using Eq. (8.4),

v∞ ¼ΔVA ¼
ffiffiffiffiffiffiffiffiffiffiffi
μsun
RMars

r
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rearth

Rearth +RMars

r� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:327 1011

� �
227:9 106

� �s
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 149:6 106

� �
149:6 106

� �
+ 227:9 106

� �s !
;v∞ ¼ 2:648km=s

We can use Eq. (2.83) to express the semimajor axis a of the capture orbit in terms of its period T,

a¼ T
ffiffiffiffiffiffiffiffiffiffi
μMars

p
2π

� �2=3

Substituting T ¼ 7�3600s yields

a¼ 25,200
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42,830

p
2π

� �2=3

¼ 8832km

From Eq. (2.73) we obtain

a¼ rp
1�e

On substituting the optimal periapsis radius (Eq. 8.67) this becomes

a¼ 2μMars

v∞2

1

1 + e



FIG. 8.17

An optimal approach to a Mars capture orbit with a 7-h period (rMars ¼ 3396 km).
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from which

e¼ 2μMars

av∞2
�1¼ 2 � 42,830

8832 � 2:6482�1¼ 0:3833

Thus, using Eq. (8.70), we find

Δv¼ v∞

ffiffiffiffiffiffiffiffiffiffi
1�e

2

r
¼ 2:648

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�03833

2

r
¼ 1:470km=s

(b) From Eq. (8.66), we obtain the periapse radius

rp ¼ 2μMars

v∞2

1�e

1 + e
¼ 2 � 42,830

2:6482
1�0:3833

1 + 0:3833
¼ 5447km

(c) The aiming radius is given by Eq. (8.71),

Δ¼ rp

ffiffiffiffiffiffiffiffiffiffi
2

1�e

r
¼ 5447

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1�0:3833

r
¼ 9809km

(d) Using Eq. (8.43), we get the angle to periapsis

β¼ cos�1 1

1 +
rpv∞

2

μMars

0BB@
1CCA¼ cos�1 1

1 +
5447 � 2:6482

42,830

0BB@
1CCA¼ 58:09°

Mars, the approach hyperbola, and the capture orbit are shown to scale in Fig. 8.17. The approach could also be made

from the dark side of the planet instead of the sunlit side. The approach hyperbola and capture ellipse would be the

mirror image of that shown, as is the case in Fig. 8.12.
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8.9 PLANETARY FLYBY
A spacecraft that enters a planet’s sphere of influence and does not impact the planet or go into orbit

around it will continue in its hyperbolic trajectory through periapsis P and exit the sphere of influence.

Fig. 8.18 shows a hyperbolic flyby trajectory along with the asymptotes and apse line of the hyperbola.

It is a leading-side flyby because the periapsis is on the side of the planet facing into the direction of the

planet’s motion. Likewise, Fig. 8.19 illustrates a trailing-side flyby. At the inbound crossing point, the

heliocentric velocity V1
(v) of the space vehicle equals the planet’s heliocentric velocity V plus the hy-

perbolic excess velocity v∞1
of the spacecraft (relative to the planet),

V
vð Þ
1 ¼V+ v∞1

(8.72)

Similarly, at the outbound crossing, we have

V
vð Þ
2 ¼V+ v∞2

(8.73)
FIG. 8.18

Leading-side planetary flyby.



FIG. 8.19

Trailing-side planetary flyby.
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The change ΔV(v) in the spacecraft’s heliocentric velocity is

ΔV vð Þ ¼V
vð Þ
2 �V

vð Þ
1 ¼ V+ v∞2

ð Þ� V+ v∞1
ð Þ

which means

ΔV vð Þ ¼ v∞2
�v∞1

¼Δv∞ (8.74)

The hyperbolic excess velocities v∞1
and v∞2

lie along the asymptotes of the hyperbola and are

therefore inclined at the same angle β to the apse line (see Fig. 2.25), with v∞1
pointing toward and

v∞2
pointing away from the center C. They both have the same magnitude v∞, with v∞2

having simply

rotated relative to v∞1
by the turn angle δ. Hence,Δv∞—and thereforeΔV(v)—is a vector that lies along

the apse line and always points away from periapsis, as illustrated in Figs. 8.18 and 8.19. From these

figures it can be seen that, in a leading-side flyby, the component of ΔV(v) in the direction of the

planet’s velocity is negative, whereas for the trailing-side flyby, it is positive. This means that a
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leading-side flyby results in a decrease in the spacecraft’s heliocentric speed. On the other hand, a

trailing-side flyby increases that speed.

To analyze a flyby problem, we proceed as follows. First, let ûV be the unit vector in the direction of

the planet’s heliocentric velocity V and let ûS be the unit vector pointing from the planet to the sun. At

the inbound crossing of the sphere of influence, the heliocentric velocity V1
(v) of the spacecraft is

V
vð Þ
1 ¼V

vð Þ
1

�
V
ûV +V

vð Þ
1

�
S
ûS (8.75)

where the scalar components of V1
(v) are

V
vð Þ
1

�
V
¼V

vð Þ
1 cosα1 V

vð Þ
1

�
S
¼V

vð Þ
1 sinα1 (8.76)

α1 is the angle between V1
(v) and V. All angles are measured positive counterclockwise. Referring to

Fig. 2.12, we see that the magnitude of α1 is the flight path angle γ of the spacecraft’s heliocentric

trajectory when it encounters the planet’s sphere of influence (a mere speck) at the planet’s distance

R from the sun. Furthermore,

V
vð Þ
1

�
V
¼V

vð Þ
?1

V
vð Þ
1

�
S
¼�V vð Þ

r1
(8.77)

V?1

(v) and Vr1
(v) are furnished by Eqs. (2.48) and (2.49),

V
vð Þ
?1

¼ μsun
h1

1 + e1 cosθ1ð Þ V vð Þ
r1

¼ μsun
h1

e1 sinθ1 (8.78)

in which e1, h1, and θ1 are the eccentricity, angular momentum, and true anomaly of the heliocentric

approach trajectory, respectively.

The velocity of the planet relative to the sun is

V¼VûV (8.79)

where V¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
μsun=R

p
. At the inbound crossing of the planet’s sphere of influence, the hyperbolic excess

velocity of the spacecraft is obtained from Eq. (8.72),

v∞1
¼V

vð Þ
1 �V

Using this we find
v∞1

¼ v∞1
ÞV ûV + v∞1

ÞSûS (8.80)

where the scalar components of v∞1
are

v∞1
ÞV ¼V

vð Þ
1 cosα1�V v∞1

ÞS ¼V
vð Þ
1 sinα1 (8.81)

v∞ is the magnitude of v∞1
,

v∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞1

� v∞1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

vð Þ
1

� �2
+V2�2V

vð Þ
1 V cosα1

r
(8.82)

At this point, v∞ is known, so that upon specifying the periapsis radius rp we can compute the angular

momentum and eccentricity of the flyby hyperbola (relative to the planet), using Eqs. (8.38) and (8.39).

h¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞2 +

2μ

rp

s
e¼ 1 +

rpv∞
2

μ
(8.83)
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where μ is the gravitational parameter of the planet.

The angle between v∞1
and the planet’s heliocentric velocity V is ϕ1. It is found using the compo-

nents of v∞1
shown in Eq. (8.81),

ϕ1 ¼ tan�1 v∞1
ÞS

v∞1
ÞV

¼ tan�1 V
vð Þ
1 sinα1

V
vð Þ
1 cosα1�V

(8.84)

At the outbound crossing, the angle between v∞2
and V is ϕ2, where

ϕ2 ¼ϕ1 + δ (8.85)

For the leading-side flyby in Fig. 8.18, the turn angle δ is positive (counterclockwise), whereas in

Fig. 8.19 it is negative. Since the magnitude of v∞2
is v∞, we can express v∞2

in components as

v∞2
¼ v∞ cosϕ2ûV + v∞ sinϕ2ûS (8.86)

Therefore, the heliocentric velocity of the spacecraft at the outbound crossing is

V
vð Þ
2 ¼V+ v∞2

¼V
vð Þ
2

�
V
ûV +V

vð Þ
2

�
S
ûS (8.87)

where the components of V2
(v) are

V
vð Þ
2

�
V
¼V + v∞ cosϕ2 V

vð Þ
2

�
S
¼ v∞ sinϕ2 (8.88)

From this we obtain the spacecraft’s radial and transverse heliocentric velocity components,

V
vð Þ
?2

¼V
vð Þ
2

�
V

V vð Þ
r2

¼�V
vð Þ
2

�
S

(8.89)

From these, we finally obtain the three elements e2, h2, and θ2 of the new heliocentric departure

trajectory by means of Eq. (2.21),

h2 ¼RV
vð Þ
?2

(8.90)

Eq. (2.45),

R¼ h22
μsun

1

1 + e2 cosθ2
(8.91)

and Eq. (2.49),

V vð Þ
r2

¼ μsun
h2

e2 sin θ2 (8.92)

Notice that the flyby is considered to be an impulsive maneuver during which the heliocentric radius

of the spacecraft, which is confined within the planet’s sphere of influence, remains fixed at R. The
heliocentric velocity analysis is similar to that described in Section 6.7.
EXAMPLE 8.6
A spacecraft departs earth with a velocity perpendicular to the sun line on a flyby mission to Venus. Encounter occurs at a

true anomaly in the approach trajectory of �30°. Periapsis altitude is to be 300 km.

(a) For an approach from the dark side of the planet, show that the postflyby orbit is as illustrated in Fig. 8.20.



FIG. 8.20

Spacecraft orbits before and after a flyby of Venus, approaching from the dark side.
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(b) For an approach from the sunlit side of the planet, show that the postflyby orbit is as illustrated in Fig. 8.21.

Solution
The following data are found in Tables A.1 and A.2:

μsun ¼ 1:3271 1011
� �

km3=s2

μVenus ¼ 324,900km3=s2

Rearth ¼ 149:6 106
� �

km

RVenus ¼ 108:2 106
� �

km

rVenus ¼ 6052km

Preflyby ellipse (orbit 1)
Evaluating the orbit formula (Eq. 2.45) at aphelion of orbit 1 yields

Rearth ¼ h1
2

μsun

1

1�e1

Thus,

h1
2 ¼ μsunRearth 1�e1ð Þ (a)

At intercept,

RVenus ¼ h1
2

μsun

1

1 + e1 cos θ1ð Þ
Substituting Eq. (a) and θ1 ¼ �30° into this expression and solving the resulting expression for e1 leads to

e1 ¼ Rearth�RVenus

Rearth +RVenus cos θ1ð Þ¼
149:6 106

� ��108:2 106
� �

149:6 106
� �

+ 108:2 106
� �

cos �30°ð Þ¼ 0:1702



FIG. 8.21

Spacecraft orbits before and after a flyby of Venus, approaching from the sunlit side.
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With this result, and Eq. (a) yields

h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:327 1011

� � � 149:6 106
� �

1�0:1702ð Þ
q

¼ 4:059 109
� �

km2=s

Now we can use Eqs. (2.31) and (2.49) to calculate the radial and transverse components of the spacecraft’s heliocentric

velocity at the inbound crossing of Venus’ sphere of influence

V
vð Þ
?1

¼ h1
RVenus

¼ 4:059 109
� �

108:2 106
� �¼ 37:51km=s

V
vð Þ
r1 ¼ μsun

h1
e1 sin θ1ð Þ¼ 1:327 1011

� �
4:059 109

� � � 0:1702 � sin �30°ð Þ¼�2:782km=s

The flight path angle, from Eq. (2.51), is

γ1 ¼ tan�1V
vð Þ
r1

V
vð Þ
?1

¼ tan�1 �2:782

37:51

� �
¼�4:241°

The negative sign is consistent with the fact that the spacecraft is flying toward perihelion of the preflyby elliptical tra-

jectory (orbit 1).

The speed of the space vehicle at the inbound crossing is

V
vð Þ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

vð Þ
r1

� �2
+ V

vð Þ
?1

� �2r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2:782ð Þ2 + 37:512

q
¼ 37:62km=s (b)

Flyby hyperbola

From Eqs. (8.75) and (8.77), we obtain

V
vð Þ
1 ¼ 37:51ûV + 2:782ûS km=sð Þ

The velocity of Venus in its presumed circular orbit around the sun is

V¼
ffiffiffiffiffiffiffiffiffiffiffiffi
μsun
RVenus

r
ûV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:327 10ð Þ11
108:2 10ð Þ6

s
ûV ¼ 35:02u

_
V km=sð Þ (c)
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Hence

v∞1
¼V

vð Þ
1 �V¼ 37:51ûV + 2:782ûSð Þ�35:02ûV ¼ 2:490ûV + 2:782ûS km=sð Þ (d)

It follows that

v∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞1

� v∞1

p ¼ 3:733km=s

The periapsis radius is

rp ¼ rVenus + 300¼ 6352km

Eqs. (8.38) and (8.39) are used to compute the angular momentum and eccentricity of the planetocentric hyperbola.

h¼ 6352

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞2 +

2μVenus
6352

r
¼ 6352

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:7332 +

2 � 324,900
6352

r
¼ 68,480km2=s

e¼ 1 +
rpv∞

2

μVenus
¼ 1 +

6352 � 3:7332
324,900

¼ 1:272

The turn angle and true anomaly of the asymptote are

δ¼ 2sin�1 1

e

� �
¼ 2sin�1 1

1:272

� �
¼ 103:6°

θ∞ ¼ cos�1 �1

e

� �
¼ cos�1 � 1

1:272

� �
¼ 141:8°

From Eqs. (2.50), (2.103), and (2.107), the aiming radius is

Δ¼ rp

ffiffiffiffiffiffiffiffiffiffi
e+ 1

e�1

r
¼ 6352

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:272+ 1

1:272�1

r
¼ 18,340km (e)

Finally, from Eqs. (8.84) and (d) we obtain the angle between v∞1
and V,

ϕ1 ¼ tan�1 v∞1
ÞS

v∞1
ÞV

¼ tan�1 2:782

2:490
¼ 48:17° (f)

There are two flyby approaches, as shown in Fig. 8.22. In the dark-side approach, the turn angle is counterclockwise

(+102.9°), whereas for the sunlit-side, approach it is clockwise (�102.9°).

(a) Dark-side approach

According to Eq. (8.85), the angle between v∞ and VVenus at the outbound crossing is

ϕ2 ¼ϕ1 + δ¼ 48:17°+ 103:6°¼ 151:8°

Hence, by Eq. (8.86),

v∞2
¼ 3:733 cos151:8°ûV + sin151:8°ûSð Þ¼�3:289ûV + 1:766ûS km=sð Þ

Using this and Eq. (c), we compute the spacecraft’s heliocentric velocity at the outbound crossing.

V
vð Þ
2 ¼V + v∞2

¼ 31:73ûV + 1:766ûS km=sð Þ
It follows from Eq. (8.89) that

V
vð Þ
?2

¼ 31:73km=s V vð Þ
r2

¼�1:766km=s (g)

The speed of the spacecraft at the outbound crossing is

V
vð Þ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

vð Þ
r2

� �2
+ V

vð Þ
?2

� �2r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1:766ð Þ2 + 31:732

q
¼ 31:78km=s

This is 5.83 km/s less than the inbound speed.



FIG. 8.22

Initiation of a sunlit-side approach and dark-side approach at the inbound crossing.
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Postflyby ellipse (orbit 2) for the dark-side approach

For the heliocentric postflyby trajectory, labeled orbit 2 in Fig. 8.20, the angular momentum is found using Eq. (8.90)

h2 ¼RVenusV
vð Þ
?2

¼ 108:2 10ð Þ6 � 31:73¼ 3:434 109
� �

km2=s
� �

(h)

From Eq. (8.91),

e cosθ2 ¼ h2
2

μsunRVenus

�1¼ 3:434 109
� �� �2

1:327 1011
� � � 108:2 106

� ��1¼�0:1790 (i)

and from Eq. (8.92)

e sin θ2 ¼V
vð Þ
r2 h2
μsun

¼�1:766 � 3:434 10ð Þ9
1:327 1011

� � ¼�0:04569 (j)

Thus

tan θ2 ¼ esinθ2
ecosθ2

¼�0:04569

�0:1790
¼ 0:2553 (k)

which means

θ2 ¼ 14:32° or 194:32° (l)

But θ2 must lie in the third quadrant since, according to Eqs. (i) and (j), both the sine and cosine are negative. Hence,

θ2 ¼ 194:32° (m)

With this value of θ2, we can use either Eq. (i) or Eq. (j) to calculate the eccentricity,

e2 ¼ 0:1847 (n)



FIG. 8.23

Hyperbolic flyby trajectories for (i) the dark-side approach and (ii) the sunlit-side approach.

420 CHAPTER 8 INTERPLANETARY TRAJECTORIES
Perihelion of the departure orbit lies 194.32° clockwise from the encounter point (so that aphelion is 14.32° therefrom), as

illustrated in Fig. 8.20. The perihelion radius is given by Eq. (2.50),

Rperihelion ¼ h2
2

μsun

1

1 + e2
¼ 3:434 109

� �� �2
1:327 1011

� � 1

1 + 0:1847
¼ 74:98 106

� �
km

which is well within the orbit of Venus.

(b) Sunlit-side approach

In this case, the angle between v∞ and VVenus at the outbound crossing is

ϕ2 ¼ϕ1�δ¼ 48:17°�103:6°¼�55:44°

Therefore,

v∞2
¼ 3:733 cos �55:44°ð ÞûV + sin �55:44°ð ÞûS½ � ¼ 2:118ûV �3:074ûS km=sð Þ

The spacecraft’s heliocentric velocity at the outbound crossing is

V
vð Þ
2 ¼VVenus + v∞2

¼ 37:14ûV �3:074ûS km=sð Þ
which means

V
vð Þ
?2

¼ 37:14km=s V vð Þ
r2

¼ 3:074km=s

The speed of the spacecraft at the outbound crossing is

V
vð Þ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

vð Þ
r2

� �2
+ V

vð Þ
?2

� �2r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:0502 + 37:142

p
¼ 37:27km=s

This speed is just 0.348 km/s less than the inbound crossing speed. The relatively small speed change is due to the fact that

the apse line of this hyperbola is nearly perpendicular to Venus’ orbital track, as shown in Fig. 8.23. Nevertheless, the

periapses of both hyperbolas are on the leading side of the planet.
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Postflyby ellipse (orbit 2) for the sunlit-side approach
To determine the heliocentric postflyby trajectory, labeled orbit 2 in Fig. 8.21, we repeat Steps (h) through (n) above.

h2 ¼RVenusV
vð Þ
?2

¼ 108:2 106
� � � 37:14¼ 4:019 109

� �
km2=s
� �

ecosθ2 ¼ h22
μsunRVenus

�1¼ 4:019 109
� �� �2

1:327 1011
� � � 108:2 106

� ��1¼ 0:1246 (o)

esinθ2 ¼V
vð Þ
r2 h2
μsun

¼ 3:074 � 4:019 109
� �

1:327 1011
� � ¼ 0:09309 (p)

tanθ2 ¼ esinθ2
ecosθ2

¼ 0:09309

0:1246
¼ 0:7469) θ2 ¼ 36:76° or 216:76°

θ2 must lie in the first quadrant since both the sine and cosine are positive. Hence,

θ2 ¼ 36:76° (q)

With this value of θ2, we can use either Eq. (o) or (p) to calculate the eccentricity,

e2 ¼ 0:1556

Perihelion of the departure orbit lies 36.76° clockwise from the encounter point as illustrated in Fig. 8.21. The perihelion

radius is

Rperihelion ¼ h2
2

μsun

1

1 + e2
¼ 4:019 109

� �� �2
1:327 1011

� � 1

1 + 0:1556
¼ 105:3 106

� �
km

which is just within the orbit of Venus. Aphelion lies between the orbits of earth and Venus.
Gravity assist maneuvers are used to add momentum to a spacecraft over and above that available

from a spacecraft’s onboard propulsion system. A sequence of flybys of planets can impart the delta-v

needed to reach regions of the solar system that would be inaccessible using only existing propulsion

technology. The technique can also reduce the flight time. Interplanetary missions using gravity assist

flybys must be carefully designed to take advantage of the relative positions of planets.

Pioneer 11, a 260-kg spacecraft launched from Cape Canaveral, Florida, in April 1973, used a

December 1974 flyby of Jupiter to gain the momentum required to carry it to the first ever flyby en-

counter with Saturn on September 1, 1979. Contact with Pioneer 11 was finally lost in September 1995.

Mariner 10 was a 503-kg spacecraft launched from Cape Canaveral on a mission to Mercury on

November 3, 1973. It flew by Venus once and Mercury three times. It was deactivated on March

29, 1974, and is probably still in orbit around the sun.

Following its September 1977 launch from Cape Canaveral, the 826-kg Voyager 1, like Pioneer 11

before it, used a flyby of Jupiter (March 1979) to reach Saturn in November 1980. In August 1977,

Voyager 2 was launched on its “grand tour” of the outer planets and beyond. This involved gravity

assist flybys of Jupiter (July 1979), Saturn (August 1981), Uranus (January 1986), and Neptune

(August 1989), after which the spacecraft departed the solar system at an angle of 30° to the ecliptic.

With a mass nine times that of Pioneer 11, the dual-spin Galileo spacecraft was launched from the

space shuttle Atlantis, departing on October 18, 1989 for an extensive international exploration of Ju-

piter and its satellites that lasted until the spacecraft was deorbited on September 21, 2003. Galileo used

gravity assist flybys of Venus (February 1990), earth (December 1990), and earth again (December

1992) before arriving at Jupiter in December 1995.



FIG. 8.24

Cassini’s 7-year mission to Saturn.
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Ulysses was a 370-kg international spacecraft launched from the space shuttle Discovery in 1990.

Its flyby of Jupiter in early February 1992 increased its heliocentric orbital inclination to over 80°. With

a period of about six years, this orbit allowed Ulysses to expore the polar regions of the sun until it was

decommisioned in June 2009.

The international Cassini mission to Saturn made extensive use of gravity assist flyby maneuvers.

The 5712-kg Cassini spacecraft was launched on October 15, 1997, from Cape Canaveral, Florida, and

arrived at Saturn nearly 7 years later, on July 1, 2004. The mission involved four flybys, as illustrated in

Fig. 8.24. A little over 8 months after launch, on April 26, 1998, Cassini flew by Venus at a periapsis

altitude of 284 km and received a speed boost of about 7 km/s. This placed the spacecraft in an orbit that

sent it just outside the orbit of Mars (but well away from the planet) and returned it to Venus on June 24,

1999, for a second flyby, this time at an altitude of 600 km. The result was a trajectory that vectored

Cassini toward the earth for an August 18, 1999, flyby at an altitude of 1171 km. The 5.5-km/s speed

boost at earth sent the spacecraft toward Jupiter for its next flyby maneuver. This occurred on Decem-

ber 30, 2000, at a distance of 9.7 million km from Jupiter, boosting Cassini’s speed by about 2 km/s and

adjusting its trajectory so as to rendezvous with Saturn about three and a half years later. After 13 years

in orbit, on September 12, 2015, its fuel exhausted, the Cassini mission ended with the spacecraft

plunging into Saturn’s upper atmosphere.

Messenger was a 1108-kg spacecraft launched from Cape Canaveral, Florida, on August 3, 2004. It

flew by earth, Venus, and Mercury on its way finally to orbit insertion aroundMercury onMarch 2011.

Messenger deorbited four years later.
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8.10 PLANETARY EPHEMERIS
The state vector (R, V) of a planet is defined relative to the heliocentric ecliptic frame of reference, as

illustrated in Fig. 8.25. This is very similar to the geocentric equatorial frame of Fig. 4.7. The sun re-

places the earth as the center of attraction, and the plane of the ecliptic replaces the earth’s equatorial

plane. The vernal equinox continues to define the inertial X axis.

To design realistic interplanetary missions, we must be able to determine the state vector of a planet

at any given time. Table 8.1 provides the orbital elements of the planets and their rates of change per

century (Cy) with respect to the J2000 epoch (January 1, 2000, 12 h UT). The table, covering the years

1800–2050, is sufficiently accurate for our needs. Alternatively, one can use JPL’s online HORIZONS
system (JPL Horizons Web-Interface, 2018) or, within MATLAB, the function planetEphemeris.

From the orbital elements, we can infer the state vector using Algorithm 4.5.

To interpret Table 8.1, observe the following:

• One astronomical unit (1 AU) is 1.49597871(108)km, the average distance between the earth and

the sun.

• One arcsecond (100) is 1/3600 of a degree.

• a is the semimajor axis.

• e is the eccentricity.

• i is the inclination to the ecliptic plane.

• Ω is the right ascension of the ascending node (relative to the J2000 vernal equinox).

• ϖ, the longitude of perihelion, is defined as ϖ ¼ ω + Ω, where ω is the argument of perihelion.
FIG. 8.25

Planetary orbit in the heliocentric ecliptic frame.



Table 8.1 Planetary orbital elements and their centennial rates

a (AU)
_a AU=Cyð Þ

e
_e 1=Cyð Þ

i (°)
_i °=Cyð Þ

Ω (°)
_Ω °=Cyð Þ

ϖ (°)
_ϖ °=Cyð Þ

L (°)
_L °=Cyð Þ

Mercury 0.38709927 0.20563593 7.00497902 48.33076593 77.45779628 252.25032350

0.00000037 0.00001906 �0.00594749 �0.12534081 0.16047689 149,472.67411175

Venus 0.72333566 0.00677672 3.39467605 76.67984255 131.60246718 181.97909950

0.00000390 �0.00004107 �0.00078890 �0.27769418 0.00268329 58,517.81538729

Earth 1.00000261 0.01671123 �0.00001531 0.0 102.93768193 100.46457166

0.00000562 �0.00004392 �0.01294668 0.0 0.32327364 35,999.37244981

Mars 1.52371034 0.09339410 1.84969142 49.55953891 –23.94362959 �4.55343205

0.0001847 0.00007882 �0.00813131 �0.29257343 0.44441088 19,140.30268499

Jupiter 5.20288700 0.04838624 1.30439695 100.47390909 14.72847983 34.39644501

�0.00011607 –0.00013253 �0.00183714 0.20469106 0.21252668 3034.74612775

Saturn 9.53667594 0.05386179 2.48599187 113.66242448 92.59887831 49.95424423

�0.00125060 �0.00050991 0.00193609 �0.28867794 �0.41897216 1222.49362201

Uranus 19.18916464 0.04725744 0.77263783 74.01692503 170.95427630 313.23810451

�0.00196176 �0.00004397 �0.00242939 0.04240589 0.40805281 428.48202785

Neptune 30.06992276 0.00859048 1.77004347 131.78422574 44.96476227 �55.12002969

0.00026291 0.00005105 0.00035372 �0.00508664 �0.32241464 218.45945325

(Pluto) 39.48211675 0.24882730 17.14001206 110.30393684 224.06891629 238.92903833

�0.00031596 0.00005170 0.00004818 �0.01183482 �0.04062942 145.20780515

Reproduced with permission from Standish et al. (2013).
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• L, the mean longitude, is defined as L ¼ ϖ + M, where M is the mean anomaly.

• _a, _e, _Ω, etc., are the rates of change of the above orbital elements per Julian century. One century

(Cy) equals 36,525 days.

ALGORITHM 8.1

Determine the state vector of a planet at a given date and time. All angular calculations must be

adjusted so that they lie in the range 0° to 360°. Recall that the gravitational parameter of the

sun is μ ¼ 1.327(1011) km3/s2. This procedure is implemented in MATLAB as the function plane-
t_elements_and_sv.m in Appendix D.35.

1. Use Eqs. (5.47) and (5.48) to calculate the Julian day number JD.
2. Calculate T0, the number of Julian centuries between J2000 and the date in question

(Eq. 5.49).

T0 ¼ JD�2,451,545:0

36,525
IfQ is any one of the six planetary orbital elements listed in Table 8.1, then calculate its value
3.

at JD by means of the formula

Q¼Q0 + _QT0 (8.93b)
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where Q0 is the value listed for J2000, and _Q is the tabulated rate. All angular quantities

must be adjusted to lie in the range 0°–360°.

4. Use the semimajor axis a and the eccentricity e to calculate the angular momentum h at JD

from Eq. (2.71)

h¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa 1� e2ð Þ

p

Obtain the argument of perihelion ω and mean anomalyM at JD from the results of Step 3 by
5.

means of the definitions

ω¼ϖ�Ω
M¼ L�ϖ
Substitute the eccentricity e and the mean anomalyM at JD into Kepler’s equation (Eq. 3.14)
6.

and calculate the eccentric anomaly E.
7. Calculate the true anomaly θ using Eq. (3.13).

8. Use h, e,Ω, i, ω, and θ to obtain the heliocentric position vectorR and velocity V by means of

Algorithm 4.5, with the heliocentric ecliptic frame replacing the geocentric equatorial frame.
EXAMPLE 8.7
Find the distance between earth and Mars at 12 h UT on August 27, 2003. Use Algorithm 8.1.

Step 1:

According to Eq. (5.48), the Julian day number J0 for midnight (0h UT) of this date is

J0 ¼ 367 � 2003� INT

7 2003+ INT
8 + 9

12

� �	 

4

8>><>>:
9>>=>>;+ INT

275 � 8
9

� �
+ 27 + 1,721,013:5

¼ 735,101�3507 + 244 + 27 + 1,721,013:5

¼ 2,452,878:5

At UT ¼ 12, the Julian day number is

JD¼ 2,452,878:5 +
12

24
¼ 2,452,879:0

Step 2:

The number of Julian centuries between J2000 and this date is

T0 ¼ JD�2,451,545

36,525
¼ 2,452,879�2,451,545

36,525
¼ 0:036523Cy

Step 3:

Table 8.1 and Eq. (8.93b) yield the orbital elements of earth and Mars at 12 h UT on August 27, 2003:

a (km) e i (°) Ω (°) ϖ (°) L (°)

Earth 1.4960(108) 0.016710 �0.00048816 0.0 102.95 335.27

Mars 2.2794(108) 0.093397 1.8494 49.549 336.07 334.51
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Step 4:

hearth ¼ 4:4451 109
� �

km2=s

hMars ¼ 5:4760 109
� �

km2=s

Step 5:

ωearth ¼ ϖ�Ωð Þearth ¼ 102:95�0¼ 102:95°

ωMars ¼ ϖ�Ωð ÞMars ¼ 336:07�49:549¼ 286:52°

Mearth ¼ L�ϖð Þearth ¼ 335:27�102:95¼ 232:32°

MMars ¼ L�ϖð ÞMars ¼ 334:51�336:07¼�1:56° 358:43°ð Þ

Step 6:

Eearth�0:016710sinEearth ¼ 232:32° π=180ð Þ)Eearth ¼ 231:57°

EMars�0:093397sinEMars ¼ 358:43° π=180ð Þ)EMars ¼ 358:27°

Step 7:

θearth ¼ 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:016710

1�0:016710

r
tan

231:57°
2

 !
¼�129:18) θearth ¼ 230:8°

θMars ¼ 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:093397

1�0:093397

r
tan

358:27°
2

 !
¼�1:8998°) θMars ¼ 358:10°

Step 8:

From Algorithm 4.5,

Rearth ¼ 135:59Î�66:803Ĵ�0:00056916K̂
� �

106
� �

kmð Þ

Vearth ¼ 12:680Î�26:610Ĵ�0:00022672K̂
� �

km=sð Þ

RMars ¼ 185:95Î�89:959Ĵ�6:4534K̂
� �

106
� �

kmð Þ

VMars ¼ 11:478Î�23:881Ĵ�0:21828K̂ kmð Þ

The distance d between the two planets is therefore

d¼ RMars�Rearthk k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
185:95�135:59ð Þ2 + �89:959� �66:803ð Þ½ �2 + �6:4534�0:00056916ð Þ2

q
106
� �

or

d¼ 55:80 106
� �

km

The positions of earth and Mars are illustrated in Fig. 8.26. It is a rare event for Mars to be in opposition (lined up with

earth on the same side of the sun) when Mars is at or near perihelion. The two planets had not been this close in recorded

history.
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. 8.26

rth and Mars on August 27, 2003. Angles shown are heliocentric latitude, measured in the plane of the eclipt

unterclockwise from the vernal equinox of J2000.
8.11 NON-HOHMANN INTERPLANETARY TRAJECTORIES
To implement a systematic patched conic procedure for three-dimensional trajectories, we will use vec-

tor notation and the procedures described in Sections 4.4 and 4.6 (Algorithms 4.2 and 4.5), together

with the solution of Lambert’s problem presented in Section 5.3 (Algorithm 5.2). The mission is to

send a spacecraft from planet 1 to planet 2 in a specified time t12. As previously discussed in this chap-
ter, we break the mission down into three parts: the departure phase, the cruise phase, and the arrival

phase. We start with the cruise phase.

The frame of reference that we use is the heliocentric ecliptic frame, as shown in Fig. 8.27. The first

step is to obtain the state vector of planet 1 at departure (time t) and the state vector of planet 2 at arrival
(time t + t12). This is accomplished by means of Algorithm 8.1.

The next step is to determine the spacecraft’s transfer trajectory from planet 1 to planet 2. We first

observe that, according to the patched conic procedure, the heliocentric position vector of the space-

craft at time t is that of planet 1 (R1) and at time t + t12 its position vector is that of planet 2 (R2). With

R1, R2, and the time of flight t12 we can use Algorithm 5.2 (Lambert’s problem) to obtain the space-

craft’s departure and arrival velocities VD
(v) and VA

(v) relative to the sun. Either of the state vectors (R1,

VD
(v)) or (R2,VA

(v)) can be used to obtain the transfer trajectory’s six orbital elements by means of Al-

gorithm 4.2.

The spacecraft’s hyperbolic excess velocity on exiting the sphere of influence of planet 1 is

v∞ÞDeparture ¼V
vð Þ
D �V1 (8.94a)

and its excess speed is

v∞ÞDeparture ¼ V
vð Þ
D �V1

  (8.94b)



FIG. 8.27

Heliocentric orbital elements of a three-dimensional transfer trajectory from planet 1 to planet 2.
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Likewise, at the sphere of influence crossing at planet 2,

v∞ÞArrival ¼V
vð Þ
A �V2 (8.95a)

v∞ÞArrival ¼ V
vð Þ
A �V2

  (8.95b)
ALGORITHM 8.2

Given the departure and arrival dates (and, therefore, the time of flight), determine the trajectory for

a mission from planet 1 to planet 2. This procedure is implemented as the MATLAB function inter-
planetary.m in Appendix D.36.

1. Use Algorithm 8.1 to determine the state vector (R1,V1) of planet 1 at departure and the state

vector (R2,V2) of planet 2 at arrival.

2. Use R1, R2, and the time of flight in Algorithm 5.2 to find the spacecraft velocityVD
(v) at

departure from planet 1’s sphere of influence and its velocity VA
(v) upon arrival at planet 2’s

sphere of influence.

3. Calculate the hyperbolic excess velocities at departure and arrival using Eqs. (8.94) and

(8.95).
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EXAMPLE 8.8
A spacecraft departs earth’s sphere of influence on November 7, 1996 (0 h UT), on a prograde coasting flight to Mars,

arriving at Mars’ sphere of influence on September, 12, 1997 (0 h UT). Use Algorithm 8.2 to determine the trajectory

and then compute the hyperbolic excess velocities at departure and arrival.

Solution
Step 1:

Algorithm 8.1 yields the state vectors for earth and Mars

Rearth ¼ 1:0499 108
� �

Î+ 1:0465 108
� �

Ĵ + 716:93K̂ kmð Þ Rearth ¼ 1:4824 108
� �

km
� �

Vearth ¼�21:515Î + 20:958Ĵ + 0:00014376K̂ km=sð Þ Vearth ¼ 30:055km=sð Þ
RMars ¼�2:0858 107

� �
Î�2:1842 108

� �
Ĵ + 4:06244 106

� �
K̂ kmð Þ RMars ¼ 2:1945 108

� �
km

� �
VMars ¼ 25:037Î + 0:22311Ĵ�0:62018K̂ km=sð Þ VMars ¼ 25:046km=sð Þ

Step 2:

The position vector R1 of the spacecraft at crossing the earth’s sphere of influence is just that of the earth,

R1 ¼Rearth ¼ 1:0499 108
� �

Î + 1:0465 108
� �

Ĵ+ 716:93K̂ kmð Þ

On arrival at Mars’ sphere of influence, the spacecraft’s position vector is

R2 ¼Rmars ¼�2:0858 107
� �

Î�2:1842 108
� �

Ĵ�4:06244 106
� �

K̂ kmð Þ

According to Eqs. (5.47) and (5.48)

JDDeparture ¼ 2,450,394:5

JDArrival ¼ 2,450,703:5

Hence, the time of flight is

t12 ¼ 2,450,703:5�2,450,394:5¼ 309days

Entering R1, R2, and t12 into Algorithm 5.2 yields

V
vð Þ
D ¼�24:429Î+ 21:782Ĵ+ 0:94810K̂ km=sð Þ V

vð Þ
D ¼ 32:743km=s

� �
V

vð Þ
A ¼ 22:157Î+ 0:19959Ĵ+ 0:45793K̂ km=sð Þ V

vð Þ
A ¼ 22:162km=s

� �
Using the state vector (R1,VD

(v)), we employ Algorithm 4.2 to find the orbital elements of the heliocentric transfer

trajectory.

h¼ 4:8456 106
� �

km2=s

e¼ 0:20581

Ω¼ 44:898°

i¼ 1:6622°

ω¼ 19:973°

θ1 ¼ 340:04°

a¼ 1:8475 108
� �

km
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Step 3:

At departure, the hyperbolic excess velocity is

v∞ÞDeparture ¼V
vð Þ
D �Vearth ¼�2:9138Î + 0:79525Ĵ+ 0:94796K̂ km=sð Þ

Therefore, the hyperbolic excess speed is

v∞ÞDeparture ¼ v∞k ÞDeparturek¼ 3:1656km=s (a)

Likewise, at arrival

v∞ÞArrival ¼V
vð Þ
A �VMars ¼�2:58805Î+ 0:023514Ĵ + 0:16254K̂ km=sð Þ

so that

v∞ÞArrival ¼ v∞k ÞArrivalk¼ 2:8852km=s (b)
For the previous example, Fig. 8.28 shows the orbits of earth, Mars, and the spacecraft from directly

above the ecliptic plane. Dotted lines indicate the portions of an orbit that are below the plane. λ is the
heliocentric longitude measured counterclockwise from the vernal equinox of J2000. Also shown are

the position of Mars at departure and the position of the earth at arrival.

The transfer orbit resembles that of the Mars Global Surveyor, which departed earth on November

7, 1996, and arrived at Mars 309 days later, on September 12, 1997.
. 8.28

e transfer trajectory of Example 8.8, together with the orbits of earth and Mars, as viewed from directly above

e plane of the ecliptic.
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EXAMPLE 8.9
In Example 8.8, calculate the delta-v required to launch the spacecraft onto its cruise trajectory from a 180-km circular

parking orbit. Sketch the departure trajectory.

Solution
Recall that

rearth ¼ 6378km

μearth ¼ 398,600km3=s2

The radius to periapsis of the departure hyperbola is the radius of the earth plus the altitude of the parking orbit,

rp ¼ 6378 + 180¼ 6558km

Substituting this and Eq. (a) fromExample 8.8 into Eq. (8.40) we get the speed of the spacecraft at periapsis of the departure

hyperbola,

vp
�
Departure ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½v∞ÞDeparture�2þ

2μearth
rp

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:16512 +

2:398,600

6558

r
¼ 11:47km=s

The speed of the spacecraft in its circular parking orbit is

vc ¼
ffiffiffiffiffiffiffiffiffiffi
μearth
rp

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

6558

r
¼ 7:796km=s

Hence, the delta-v requirement is

Δv¼ vpÞDeparture�vc ¼ 3:674km=s

The eccentricity of the hyperbola is given by Eq. (8.38),

e¼ 1þ
rp v∞ÞDeparture
h i2

μearth
¼ 1þ6558 � 3:16562

398,600
¼ 1:165

If we assume that the spacecraft is launched from a parking orbit of 28° inclination, then the departure appears as shown in
the three-dimensional sketch in Fig. 8.29.

FIG. 8.29

The departure hyperbola, assumed to be at 28° inclination to earth’s equator.
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EXAMPLE 8.10
In Example 8.8, calculate the delta-v required to place the spacecraft in an elliptical capture orbit around Mars with a peri-

apsis altitude of 300 km and a period of 48 h. Sketch the approach hyperbola.

Solution
From Tables A.1 and A.2, we know that

rMars ¼ 3380km

μMars ¼ 42,830km3=s2

The radius to periapsis of the arrival hyperbola is the radius of Mars plus the periapsis of the elliptical capture orbit,

rp ¼ 3380+ 300¼ 3680km

According to Eq. (8.40) and Eq. (b) of Example 8.8, the speed of the spacecraft at periapsis of the arrival hyperbola is

vpÞArrival ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∞½ ÞArrival�2 +

2μMars

rp

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:88522 +

2 � 42,830
3680

r
¼ 5:621km=s

To find the speed vp)ellipse at periapsis of the capture ellipse, we use the required period (48 h) to determine the ellipse’s

semimajor axis, using Eq. (2.83),

aellipse ¼
T
ffiffiffiffiffiffiffiffiffiffi
μMars

p
2π

� �3=2

¼ 48 � 3600 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42,830

p
2π

� �3=2

¼ 31,880km

From Eq. (2.73), we obtain

eellipse ¼ 1� rp
aellipse

¼ 1� 3680

31,880
¼ 0:8846

Then Eq. (8.59) yields

vpÞellipse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μMars

rp
1 + eellipse
� �r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42,830

3680
1 + 0:8846ð Þ

r
¼ 4:683km=s

Hence, the delta-v requirement is

Δv¼ vpÞArrival�vpÞellipse ¼ 0:9382km=s

The eccentricity of the approach hyperbola is given by Eq. (8.38),

e¼ 1 +
rp v∞ð ÞArrival

�2
μMars

¼ 1 +
3680 � 2:88522

42,830
¼ 1:715

Assuming that the capture ellipse is a polar orbit of Mars, then the approach hyperbola is as illustrated in Fig. 8.30. Note

that Mars’ equatorial plane is inclined 25° to the plane of its orbit around the sun. Furthermore, the vernal equinox of Mars

lies at an angle of 85° from that of the earth.
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FIG. 8.30

The Mars approach hyperbola and capture ellipse.
PROBLEMS

Section 8.2

8.1 Find the total delta-v required for a Hohmann transfer from earth’s orbit to Saturn’s orbit.
[Ans.: 15.74 km/s]
8.2 Find the total delta-v required for a Hohmann transfer from Mars’ orbit to Jupiter’s orbit.
[Ans.: 10.15 km/s]
Section 8.3
8.3 Calculate the synodic period of Venus relative to the earth.
{Ans.: 583.9 days}
8.4 Calculate the synodic period of Jupiter relative to Mars.
{Ans.: 816.6 days}
Section 8.4
8.5 Calculate the radius of the spheres of influence of Mercury, Venus, Mars, and Jupiter.
{Ans.: See Table A.2}
8.6 Calculate the radius of the spheres of influence of Saturn, Uranus, and Neptune.
{Ans.: See Table A.2}
Section 8.6
8.7 On a date when the earth was 147.4(106) km from the sun, a spacecraft parked in a 200-km-

altitude circular earth orbit was launched directly into an elliptical orbit around the sun with

perihelion of 120(106) km and aphelion equal to the earth’s distance from the sun on the launch

date. Calculate the delta-v required and v∞ of the departure hyperbola.
{Ans.: Δv ¼ 3.34 km/s, v∞ ¼ 1.579 km/s}
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8.8 Calculate the propellant mass required to launch a 2000-kg spacecraft from a 180-km-altitude

circular earth orbit on a Hohmann transfer trajectory to the orbit of Saturn. Calculate the time

required for the mission and compare it with that of Cassini. Assume the propulsion system has a

specific impulse of 300 s.
{Ans.: 6.03 yr; 21,810 kg}
Section 8.7
8.9 An earth orbit has a perigee radius of 7000 km and a perigee velocity of 9 km/s. Calculate the

change in apogee radius due to a change of
(a) 1 km in the perigee radius

(b) 1 m/s in the perigee speed.

{Ans.: (a) 13.27 km; (b) 10.99 km}
8.10 An earth orbit has a perigee radius of 7000 km and a perigee velocity of 9 km/s. Calculate the

change in apogee speed due to a change of
(a) 1 km in the perigee radius

(b) 1 m/s in the perigee speed.

{Ans.: (a) �1.81 m/s; (b) �0.406 m/s}
Section 8.8
8.11 Estimate the total delta-v requirement for a Hohmann transfer from earth to Mercury, assuming a

150-km-altitude circular parking orbit at earth and a 150-km circular capture orbit at Mercury.

Furthermore, assume that the planets have coplanar circular orbits with radii equal to the

semimajor axes listed in Table A.1.
{Ans.: 13.08 km/s}
Section 8.9
8.12 Suppose a spacecraft approaches Jupiter on a Hohmann transfer ellipse from earth. If the

spacecraft flies by Jupiter at an altitude of 200,000 km on the sunlit side of the planet, determine

the orbital elements of the postflyby trajectory and the delta-v imparted to the spacecraft by

Jupiter’s gravity. Assume that all the orbits lie in the same (ecliptic) plane.
{Ans.: ΔV ¼ 10.6 km/s, a ¼ 4.79(106)km, e ¼ 0.8453}
Section 8.10
8.13 Use Table 8.1 to verify the orbital elements for earth and Mars presented in Example 8.7.

8.14 Use Table 8.1 to determine the day of the year 2005 when the earth was farthest from the sun.
{Ans.: July 4}
Section 8.11
8.15 On December 1, 2005, a spacecraft left a 180-km-altitude circular orbit around the earth on a

mission to Venus. It arrived at Venus 121 days later on April 1, 2006, entering a 300-km-by-

9000-km capture ellipse around the planet. Calculate the total delta-v requirement for this

mission.
{Ans.: 6.75 km/s}
8.16 On August 15, 2005, a spacecraft in a 190-km, 52°-inclination circular parking orbit around the
earth departed on a mission to Mars, arriving at the red planet on March 15, 2006, whereupon

retrorockets placed it into a highly elliptic orbit with a periapsis of 300 km and a period of 35 h.

Determine the total delta-v required for this mission.
{Ans.: 4.86 km/s}
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CHAPTER
LUNAR TRAJECTORIES
 9

9.1 INTRODUCTION
The orbit of the moon around the earth is an ellipse having a small eccentricity (e¼ 0.0549) and perigee

and apogee radii of rp ¼ 363,400km and ra ¼ 405,500km, respectively. Therefore, the semimajor axis

a of the moon’s orbit is

a¼ ra + rp
2

¼ 384,400km (9.1)

A circular orbit of this radius has the same period as the moon’s elliptical orbit (see Eq. 2.83). Therefore,

to simplify our analysis, let us assume that the moon’s path around the earth is a circle of radiusD, where

D¼ 384,400km (9.2)

Recalling that the earth’s gravitational parameter is

μe ¼ 398,600km3=s2

Eq. (2.63) gives the circular orbital speed vm of the moon as

vm ¼
ffiffiffiffiffi
μe
D

r
¼ 1:0183km=s (9.3)

Imagine that a spacecraft has been placed in a circular earth orbit of 320 km altitude (radius

rc ¼ 6698km) and that its orbit is coplanar with that of the moon. The speed of the vehicle in this cir-

cular parking orbit is

vc ¼
ffiffiffiffiffi
μe
rc

r
¼ 7:7143km=s

To most efficiently transfer the spacecraft from the low earth orbit out to lunar orbit requires a Hoh-

mann transfer (namely, orbit 2 in Fig. 9.1).

At its perigee orbit 2 is tangent to the circular low earth orbit, so that rp ¼ 6698km, and at apogee it

is tangent to the moon’s orbit, which means that ra ¼ 384, 400km. Therefore, the semimajor axis of this

transfer ellipse is

a¼ ra + rp
2

¼ 195,549 km
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00009-X
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FIG. 9.1

Several strategies for reaching themoon’s orbit from low earth orbit. The perigee speeds of the orbits (in kilometers

per second) are: (1) 10.8, (2) 10.815, (3) 10.85, (4) 10.9, and (5) 11.2. Clearly, the energy of orbit 1 is too low to

reach the moon.
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According to Eq. (2.84), the eccentricity e of the orbit is

e¼ ra� rp
ra + rp

¼ 0:96575

and its period T is given by Eq. (2.83),

T¼ 2πffiffiffiffiffi
μe

p a3=2 ¼ 8:6059 105
� �

s¼ 239:05h

If follows that the time of flight tF for this Hohmann transfer is

tF ¼ T

2
¼ 119:52h 4:98 daysð Þ

The angular momentum of the transfer ellipse is given by Eq. (6.2),

h¼ ffiffiffiffiffiffiffi
2μe

p ffiffiffiffiffiffiffiffiffiffiffiffi
rarp
ra + rp

r
¼ 72,444km2=s

We use the angular momentum to find the speeds vp and va at perigee and apogee, respectively,

vp ¼ h

rp
¼ 10:815km=s va ¼ h

ra
¼ 0:18846km=s

The delta-v required to transfer from the initial circular parking orbit to the Hohmann transfer trajectory

at its perigee is

Δvp ¼ vp�vc ¼ 10:815�7:7143¼ 3:1007km=s
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The delta-v required to finally transfer from the Hohmann ellipse to the moon’s orbit is

Δva ¼ vm�va ¼ 1:0183�0:18846¼ 0:82984km=s

The total delta-v is the sum of these two,

Δvtotal ¼ 3:1007 + 0:82984¼ 3:9305km=s

To reduce the flight time to lunar orbit from the same departure point and the same departure flight

path angle (zero degrees), we must increase the injection speed to a value greater than 10.815 km/s. Let

us choose orbit 3 in Fig. 9.1, for which vp ¼ 10.85km/s, which is still below the escape speed of

10.91 km/s (see Eq. 2.91). The angular momentum of orbit 3 is

h¼ rpvp ¼ 6698 � 10:85¼ 72,673km2=s

Solving Eq. (2.50) for the eccentricity e yields

e¼ h2

μerp
�1¼ 0:97819

The new semimajor axis a is obtained from Eq. (2.71),

a¼ h2

μe

1

1�e2
¼ 307,104km

and from this we find the period

T¼ 2πffiffiffiffiffi
μe

p a3=2 ¼ 470:48h

Next, we set r ¼ 384, 400km in Eq. (2.45) and solve for the true anomaly at which transfer ellipse 3

first crosses the moon’s orbit,

θ¼ cos�1 1

e

h2

μer
�1

� �� �
¼ 170:77°

From Eqs. (3.13b), (3.14), and (3.15), the flight time tF (since perigee) to lunar orbit crossing is

tF ¼ T

2π
2tan�1

ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2

 !
�esin 2tan�1

ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2

 !" #( )
Substituting θ ¼ 170.77°, e ¼ 0.97819, and T ¼ 470.48 h yields

tF ¼ 66:343h

This is a little over half the time required to reach the moon’s orbit on the Hohmann transfer ellipse

(orbit 2).

The radial (vr) and transverse (v?) components of spacecraft velocity on orbit 3 at the lunar orbit

crossing are found using Eqs. (2.49) and (2.31),

vr ¼ μe
h
esinθ¼ 398,600

72,673
� 0:97819sin170:77°¼ 0:86025km=s

v? ¼ h

r
¼ 72,673

384,400
¼ 0:18906km=s
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Therefore, the speed is

v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr2 + v?2

p
¼ 0:88078km=s

and, according to Eq. (2.51), the flight path angle γ is

γ¼ tan�1 vr
v?

� �
¼ 77:605°

From Eq. (9.3) we know that the speed vm in the circular lunar orbit is 1.0183km/s, and the flight path

angle is zero. The delta-v required to transfer to the lunar orbit from orbit 3 is given by Eq. (6.8),

ΔvF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 + vm2�2vvm cosΔγ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:880782 + 1:01832�2 � 0:88078 � 1:0183cos 0�77:605°ð Þ

q
¼ 1:1949km=s

We previously calculated the speed of the initial circular parking orbit as 7.7143km/s. Therefore, the

necessary delta-v for translunar injection on orbit 3 is

Δv0 ¼ 10:85�7:7143¼ 3:1357km=s

It follows that the total delta-v required to enter the moon’s earth orbit after the 66-h flight is

Δvtotal ¼Δv0 +ΔvF ¼ 3:1357 + 1:1949¼ 4:3306km=s

This is about ten percent more than the total delta-v that we found for the nearly 120 hour Hohmann

transfer strategy (orbit 2).

Increasing the perigee speed to 10.9 and 11.2km/s yields, respectively, orbits 4 and 5 in Fig. 9.1.

These orbits have still smaller flight times but larger delta-v requirements. On the other hand, orbit 1,

with a perigee speed of only 10.8 km/s, cannot reach lunar orbit.

An obvious omission from our brief analysis so far is the moon itself. The goal of a lunar mission is

not to simply reach the moon’s orbit but to go into orbit around the moon or to either impact or land on

its surface. Thus, as a spacecraft approaches the moon’s orbit, the moon should be nearing the same

position. That means lunar gravity will increasingly affect the spacecraft’s trajectory, bending it more

and more toward the moon. In this chapter we show how the method of patched conics, employed in

Chapter 8 for interplanetary trajectories, can be applied to lunar trajectories.

We conclude this chapter with a numerical integration approach to lunar trajectory analysis.
9.2 COPLANAR PATCHED CONIC LUNAR TRAJECTORIES
In this section we shall for simplicity continue to assume that the moon’s orbit is a circle and, further-

more, that the spacecraft’s translunar trajectory lies in the moon’s orbital plane, as illustrated in

Fig. 9.2, which is a not-to-scale view looking down on that plane. Our approach is similar to those

of Bate et al. (1971), Chobotov (1996), and Brown (1998). The x axis of the earth-centered, nonrotating
xyz coordinate system is directed toward the position of the moon at the instant the spacecraft crosses

the moon’s sphere of influence (SOI), so that the moon’s position vector rm at that instant is

rm ¼ D̂i (9.4)



FIG. 9.2

Coplanar translunar trajectory from earth orbit to crossing of the moon’s sphere of influence. The earth-centered

xy axes do not rotate. Not to scale.
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The z axis points out of the plane, and the y axis completes the right-handed triad, which means the

moon’s circular velocity vm at this instant is

vm ¼ vm ĵ (9.5)

We calculated the circular orbital speed vm of the moon in Eq. (9.3).

As shown in Fig. 9.2, the position vector r0 of the spacecraft at translunar injection (TLI), when it

departs earth orbit, is

r0 ¼�r0 cosα0̂i� r0 sinα0 ĵ (9.6)

where r0 is the distance from the earth, and α0 is its angular position relative to the earth-moon line.

When the spacecraft arrives at the moon’s SOI, its position vector r2 relative to the moon is

r2 ¼�RS cos λ̂i+RS sin λ̂j (9.7)

where λ is the lunar arrival angle. The radius RS of the SOI is given by Eq. (8.34),

RS ¼D mm=með Þ2=5 (9.8)

where mm and me are the mass of the moon and the earth, respectively. Since me ¼ 5.974(1024)kg and

mm ¼ 7.348(1022)kg, it follows that

RS ¼ 0:172D¼ 66,183km (9.9)

From Fig. 9.2 it is clear that the position vector r1 of the patch point relative to the earth is

r1 ¼ rm + r2 (9.10)

Substituting Eqs. (9.3) and (9.7) into this expression yields

r1 ¼ D�RS cosλð Þ̂i+RS sin λ̂j (9.11)
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Clearly, the position vectors r0 and r1 of both the TLI point and the patch point are known if we provide

values for the parking orbit radius r0 and the angles α0 and λ. We can then find the velocities v0 and v1 at

those same two points by means of Eqs. (5.28) and (5.29),

v0 ¼ 1

g
r1� f r0ð Þ (9.12a)

v1 ¼ 1

g
_gr1�r0ð Þ (9.12b)

The Lagrange coefficients f, g, and _g are listed in Eqs. (5.30),

f ¼ 1�μer1
h1

2
1� cosΔθð Þ (9.13a)

g¼ r0r1
h1

sinΔθ (9.13b)

_g¼ 1�μer0
h1

2
1� cosΔθð Þ (9.13c)

where h1 is the angular momentum of the departure trajectory andΔθ is the difference θ1 � θ0 between
the true anomalies of the position vectors r0 and r1. We will refer to this difference as the “sweep

angle.” The sweep angle is found by means of Eq. (5.23),

cosΔθ¼ ûr0 � ûr1 (9.14)

where the radial unit vectors at each end of the departure trajectory are

ûr0 ¼
r0

r0
ûr1 ¼

r1

r1
(9.15)

It remains to find an expression for the angular momentum h1 that appears in Eqs. (9.13a)–(9.13c).
To that end, we first use Eq. (9.12a) to calculate the radial component of the TLI velocity,

vr0 ¼ ûr0 �v0 ¼ ûr0 �
1

g
r1ûr1 � fr0ûr0ð Þ¼ 1

g
r1ûr0 �ur1 � fr0ûr0 � ûr0ð Þ

so that, with the aid of Eq. (9.14), we get

vr0 ¼
1

g
r1 cosΔθ� fr0ð Þ (9.16)

Combining Eqs. (2.31) and (2.51), we can calculate the radial component of the velocity v0 by the formula

vr0 ¼
h1
r0

tanγ0

where γ0 is the flight path angle at TLI. Substituting this expression into Eq. (9.16) yields

h1
r0

tanγ0 ¼
1

g
r1 cosΔθ� fr0ð Þ (9.17)

Replacing f and g by their expressions in Eqs. (9.13a)–(9.13c) leads to

tanγ0 ¼
1

r1 sinΔθ
r1 cosΔθ� 1�μer1

h1
2

1� cosΔθð Þ
� �

r0
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Finally, solving this equation for the angular momentum h1 yields

h1 ¼ ffiffiffiffiffiffiffiffiffi
μer0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cosΔθ
r0
r1

+ sinΔθ tanγ0� cosΔθ

vuut (9.18)

Clearly, by specifying the initial and final position vectors r0 and r1 (and hence, Δθ) as well as the
initial flight path angle γ0, we are able to find the angular momentum h1 of the translunar trajectory.
Then Eqs. (9.12a), (9.12b), and (9.13a)–(9.13c) provide the initial and final velocities, v0 and v1, so that
the orbit is completely determined. Note that the radial components of the velocities at the end points of

the translunar trajectory are

vr0 ¼ v0 � ûr0 vr1 ¼ v1 � ûr1 (9.19)

Since h1 ¼ r0v?)0 ¼ v0r0 cos γ0 and vescÞ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μe=r0

p
, Eq. (9.18) can be written alternatively as

v

vesc

�
0

¼ 1ffiffiffi
2

p
cosγ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosΔθ

r0
r1

+ sinΔθ tanγ0� cosΔθ

vuut
This equation limits the range of the sweep angle Δθ to those values for which the denominator in the

radical is positive. That is,

r0
r1

+ sinΔθ tanγ0� cosΔθ> 0 (9.20)

Within that range, only those Δθ0s for which v/vesc)0 < 1 yield elliptical orbits. For example,

if r0 ¼ 6700km and r1 ¼ 335,000km (r0/r1 ¼ 0.02), the allowable values of γ0 and Δθ lie within

the triangular shaded region shown in Fig. 9.3. Observe that larger sweep angles require smaller initial

flight path angles.

If prior to departing for the moon the spacecraft is in a circular parking orbit of radius r0, then its

speed is vc ¼
ffiffiffiffiffiffiffiffiffiffiffi
μe=r0

p
(see Eq. 2.63). The magnitude of the TLI velocity in Eq. (9.12a) is

v0 ¼ v0k k¼ 1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2r02 + r12�2fr0r1 cosΔθ

p
(9.21)

This speed is reached by supplying a delta-v given by Eq. (6.2),

Δv0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vc2 + v02�2vcv0 cosγ0

p
(9.22)

The eccentricity vector of the translunar trajectory can be obtained from Eq. (4.10),

e1 ¼ 1

μe
v0

2�μe
r0

� �
r0� r0vr0v0

� �
(9.23)

The magnitude e1 of this vector is the orbit’s eccentricity, and since the orbit must be an ellipse, e1 must

be less than unity. From the angular momentum h1 and the eccentricity e1 we obtain the semimajor axis

and the period by means of Eqs. (2.71) and (2.83), respectively,

a1 ¼ h1
2

μe

1

1�e12
(9.24)



FIG. 9.3

Allowable values of flight path angle γ0 and sweep angle Δθ if r0/r1 ¼ 0.02.
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T1 ¼ 2π

ffiffiffiffiffiffiffi
a13

μe

s
(9.25)

The perifocal unit vectors (see Figs. 2.29 and 2.30) of the translunar trajectory are

p̂1 ¼
e1

e1
ŵ1 ¼ r1�v1

h1
q1 ¼ ŵ1� p̂1 (9.26)

The true anomaly θ0 at TLI is the angle between perigee and the radial r0. Therefore, we obtain θ0 from
the formula

θ0 ¼ cos�1 p̂1 � r0=r0ð Þ (9.27)

This true anomaly is less than 180°, because the spacecraft is flying outbound toward apogee, which

lies beyond the patch point. Since the trajectory is an ellipse, we find the time t0 at TLI by means of the

sequence of calculations listed in Eqs. (3.13b), (3.14), and (3.15), which yield

t0 ¼ T1
2π

2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θ0
2

� �
�e1 sin 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θ0
2

� �� �	 

(9.28)

Having found the true anomaly at TLI, the true anomaly θ1 at the patch point follows from

θ1 ¼ θ0 +Δθ (9.29)
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where the sweep angle Δθ was obtained from Eq. (9.14). The time t1 at the patch point follows by

replacing θ0 with θ1 in Eq. (9.28),

t1 ¼ T1
2π

2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θ1
2

� �
�e1 sin 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θ1
2

� �� �	 

(9.30)

The total flight time Δt1 from TLI to the SOI is

Δt1 ¼ t1� t0 (9.31)

When the spacecraft arrives at the patch point, its velocity v2 relative to the moon is

v2 ¼ v1�vm (9.32)

where the geocentric velocities vm and v1 are found in Eqs. (9.5) and (9.12b), respectively.

Within the SOI, the spacecraft moves under the influence of the moon’s gravity exclusively

(according to the patched conic approximation). At the patch point, its specific angular momentum

h2 relative to the moon is

h2 ¼ r2�v2 h2 ¼ h2k k (9.33)

where r2 is given by Eq. (9.7). We know that all points on this coasting orbit around the moon have the

same angular momentum h2. According to Eq. (2.40) the eccentricity vector of the lunar approach tra-

jectory is

e2 ¼ v2�h2

μm
� ûr2 (9.34)

where μm ¼ 4902.8km3/s2, and ûr2 ¼ r2=r2 ¼�cos λ̂i + sin λ̂j. The magnitude of e2 is the orbit’s eccen-

tricity e2, and since the approach trajectory is a hyperbola, e2 must exceed unity. Observe that if

ĥ2 � k̂< 0, then the motion around the moon is retrograde (clockwise), whereas ĥ2 � k̂> 0 means the

motion is posigrade. For rectilinear motion directly toward the center of the moon, ĥ2 � k̂¼ 0. At

the patch point, the angle between the probe’s relative velocity vector v2 and the moon’s position

(�r1) relative to the probe is labeled δ in Fig. 9.2. This deviation angle may be computed from the

fact that

cosδ¼ �r1=r1ð Þ � v2=v2ð Þ (9.35)

Clearly, δ ¼ 0 is another indication that the probe is destined for lunar impact.

Eq. (2.50) gives us the perilune radius rp2 of the approach hyperbola,

rp2 ¼
h2

2

μm

1

1 + e2
(9.36)

To get the perilune altitude zp2, we subtract the moon’s radius Rm ¼ 1737km,

zp2 ¼ rp2 �Rm (9.37)

If zp2 < 0, then the spacecraft impacts the lunar surface. From Eq. (9.36) and the fact that h2 ¼ rp2vp2, we
find that the perilune speed of the lunar approach orbit is

vp2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 + e2

p ffiffiffiffiffiffi
μm
rp2

r
(9.38)
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If the objective is to enter a circular orbit at perilune, then the delta-v required at that point is

Δv2 ¼
ffiffiffiffiffiffi
μm
rp2

r
�vp2 ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1 + e2

p� � ffiffiffiffiffiffi
μm
rp2

r
The total delta-v for this scenario, starting at TLI, is

Δv¼Δv0 +Δv2 (9.39)

The unit vectors of the approach hyperbola’s perifocal frame are

p̂2 ¼
e2

e2
ŵ2 ¼ h2

h2
q̂2 ¼ ŵ2� p̂2 (9.40)

According to Eq. (4.13a), the true anomaly θ2 of the patch point relative to perilune is

θ2 ¼ 360°� cos�1 p̂2 � ûr2ð Þ (9.41)

because the spacecraft is flying toward perilune (vr2 < 0). Given the true anomaly θ2, we find the time t2
at the patch point of the hyperbolic lunar orbit by means of the following calculation (see Eqs. 3.34,

3.40, and 3.44a),

t2 ¼ h2
3

μm2 e22�1ð Þ3=2
e2 sinh 2tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1

e2 + 1

r
tan

θ2
2

� �� �
�2tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1

e2 + 1

r
tan

θ2
2

� �	 

(9.42)

According to Eq. (3.2), time is zero at the periapsis of an orbit. In the present case, as the spacecraft flies

from the patch point to perilune, time increases from t2 to zero. Hence, t2 must be negative. The flight

time from patch point to perilune is
Δt2 ¼ 0� t2 Δt2 > 0ð Þ (9.43)

The total flight time Δt from translunar injection to perilune is

Δt¼Δt1 +Δt2 (9.44)

Keep in mind that we describe the motion of the spacecraft within the moon’s SOI relative to a

rotating frame of reference that is attached to the moon with its origin at the center of the moon.

Let us label the axes of this rotating moon-fixed frame x0y0z0 to distinguish them from the xyz axes
of the earth-fixed system shown in Fig. 9.2. (The z axes of both frames are normal to the moon’s orbital

plane and therefore coincide.) As illustrated in Fig. 9.4, the x0 axis lies on the rotating earth–moon radial

and is directed away from the earth. The y0 axis is perpendicular to x0 and points in the direction of the
moon’s velocity relative to the earth. The angle ϕ between the x and x0 axes increases at a rate equal to
the moon’s angular velocity, and it is zero at the instant the spacecraft crosses the moon’s SOI.

According to Eq. (2.119), the position vector of the spacecraft relative to the rotating moon-fixed

x0y0z0 frame is

rrel ¼ rcosθ p̂2 + r sinθq̂2 r¼ h2
2= μm 1 + ecosθð Þ½ � (9.45)

where p̂2 and q̂2 are given by Eq. (9.40). The angle between p̂2 and the x
0 axis (the argument of perilune)

is ωp, which is constant. Therefore,

p̂2 ¼ cosωp̂i
0
+ sinωp ĵ

0

q̂2 ¼�sinωp̂i
0
+ cosωp ĵ

0 (9.46)



FIG. 9.4

Within the sphere of influence, the orbit and its apse line appear fixed relative to the moon. Not to scale.
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Substituting these into Eq. (9.45) yields

rrel ¼ rrelÞx0 î
0
+ rrelÞy0 ĵ

0

where

rrelÞx0 ¼ rcosθcosωp� r sinθ sinωp

rrelÞy0 ¼ rcosθsinωp + r sinθcosωp

In matrix notation

rrelf gx0y0z0 ¼
rrelÞx0
rrelÞy0
rrelÞz0

8<:
9=;¼

rcosθcosωp� r sinθsinωp

rcosθ sinωp + r sinθcosωp

0

8<:
9=;

At a given instant, the direction cosine matrix [Q] of the transformation from xyz into x0y0z0 is found in
Eq. (4.34),

Q½ � ¼ R3 ϕð Þ½ � ¼
cosϕ sinϕ 0

�sinϕ cosϕ 0

0 0 1

24 35 (9.47)
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The components rrel)x and rrel)y of the relative position vector resolved along the fixed xyz axes are
obtained from those projected onto the rotating x0y0z0 frame by means of Eq. (4.31),

rrelf gxyz ¼ Q½ �T rrelf gx0y0z0 ¼
rrelÞx
rrelÞy
0

8<:
9=; (9.48)

so that, in vector notation,

rrel ¼ rrelÞx î+ rrelÞy ĵ
At any instant, during its hyperbolic orbit around the moon, the position of the spacecraft relative to the

earth is

r¼ rm + rrel (9.49)

The components of each vector in this expression are along the earth-fixed xyz frame.

According to Eq. (2.125), the velocity of the spacecraft relative to the moon is

vrel ¼�μm
h2

sinθp̂2 +
μm
h2

e2 + cosθð Þq̂2

Substituting Eq. (9.46), we get

vrel ¼ vrelÞx0 î
0
+ vrelÞy0 ĵ

0

where

vrelÞx0 ¼�μm
h2

sinθcosωp�μm
h2

e2 + cosθð Þsinωp

vrelÞy0 ¼�μm
h2

sinθ sinωp +
μm
h2

e2 + cosθð Þcosωp

In matrix notation

vrelf gx0y0z0 ¼
vrelÞx0
vrelÞy0
vrelÞz0

8<:
9=;¼

�μm
h2

sinθcosωp�μm
h2

e2 + cosθð Þsinωp

�μm
h2

sinθ sinωp +
μm
h2

e2 + cosθð Þcosωp

0

8>><>>:
9>>=>>;

The components vrel)x and vrel)y of this relative velocity vector in the fixed xyz system are obtained from

those in the rotating x0y0z0 frame as in Eq. (9.48), by the operation

vrelf gxyz ¼ Q½ �T vrelf gx0y0z0 ¼
vrelÞx
vrelÞy
0

8<:
9=; (9.50)

so that

vrel ¼ vrelÞx î+ vrelÞy ĵ
According to Eq. (1.66), the absolute velocity of the spacecraft within the SOI is

v
z}|{

absolute

velocity

¼ vm
z}|{

velocity of origin

of moving frame

+ ωm

z}|{
angular velocity

of moving frame

� rrel
z}|{

position vector relative

to moving frame

+ vrel
z}|{

velocity relative

to moving frame

(9.51)
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Since we are assuming that the position vector rm of the moon’s orbit has constant magnitude, it follows

from Eq. (1.52) that vm ¼ωm� rm. Therefore, v¼ωm� rm + rrelð Þ + vrel, or
v¼ωm�r+ vrel (9.52)

where r is given by Eq. (9.49). Within the moon’s SOI we use this formula to determine the absolute

velocity of the spacecraft from its velocity relative to the moon. All vector components in Eq. (9.52) are

along the earth-fixed xyz frame.
EXAMPLE 9.1
A spacecraft is in a circular earth orbit of 320 km altitude. When α0 ¼ 28°, it is launched into a translunar trajectory with a
flight path angle of γ0 ¼ 6° (see Fig. 9.2). The lunar arrival angle is λ ¼ 55°. Find the perilune altitude and the total flight
time from TLI to perilune.

Solution
Since r0 ¼ 6378 + 320 ¼ 6698km, the position vector of the spacecraft at TLI is, according to Eq. (9.6),

r0 ¼�r0 cosα0 î� r0 sinα0 ĵ

¼�6698cos28°̂i�6698sin28°̂j

¼�5914:0̂i�3144:5̂j kmð Þ
so that

ûr0 ¼
r0

r0
¼�0:88295̂i�0:46947̂j

Likewise, since r2 ¼ RS ¼ 66,183km, it follows from Eq. (9.7) that

r2 ¼�RS cos λ̂i+RS sin λ̂j

¼�66,183cos55°̂i+ 66,183sin55°̂j

¼�37,961̂i+ 54,214̂j kmð Þ

;ûr2 ¼
r2

r2
¼�0:57358̂i+ 0:81915̂j (a)

From Eq. (9.2) we know that rm ¼ 384,400̂i kmð Þ at SOI encounter, so that, according to Eq. (9.10), the position vector r1
of the patch point relative to the earth is

r1 ¼ rm + r2

¼ 384,400̂i+ �37, 961̂i+ 54, 214̂j
� �

¼ 346,440̂i+ 54,214̂j kmð Þ
r1 ¼ 350,655km

;ûr1 ¼
r1

r1
¼ 0:98798̂i+ 0:15461̂j

Using Eq. (9.14) we find

cosΔθ¼ �0:88295̂i�0:46947̂j
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ûr0

� 0:98798̂i+ 0:15461̂j
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ûr1

¼�0:94491

which means the sweep angle is

Δθ¼ 160:89°
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We can now use Eq. (9.18) to find the angular momentum h1 of the translunar orbit,

h1 ¼ ffiffiffiffiffiffiffiffiffi
μer0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cosΔθ
r0
r1

+ sinΔθ tanγ0� cosΔθ

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600 � 6698

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �0:94491ð Þ

6698

350,655
+ sin160:89° � tan6°� �0:94491ð Þ

vuuut
¼ 72,117km2=s

Eqs. (9.13a)–(9.13c) then yield the values of the Lagrange coefficients,

f ¼ 1�μer1
h1

2
1� cosΔθð Þ ¼ 1�398,600 � 350,655

72,1172
1� �0:94491ð Þ½ �¼�51:269

g¼ r0r1
h1

sinΔθ ¼ 6698 � 350,655
72,117

sin160:89° ¼ 10,660s

_g¼ 1�μer0
h1

2
1� cosΔθð Þ¼ 1�398,600 � 6698

72,1172
1� �0:94491ð Þ½ � ¼ 0:0015816

From Eq. (9.12a) and (9.12b) we finally obtain the spacecraft velocities v0 and v1 at the beginning and the end of the geo-

centric departure trajectory:

v0 ¼ 1

10,660
346, 440̂i+ 54, 214̂j
� �

� �51:269ð Þ �5914:0̂i�3144:5̂j
� �h izfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

1

g
r1� f r0ð Þ

¼ 4:05556̂i�10:0379̂j km=sð Þ
v0 ¼ 10:826km=s

vr0 ¼ v0 � ûr0 ¼ 1:1316km=s> 0

(b)

v1 ¼ 1

10,660
0:0015816 346, 440̂i+ 54, 214̂j

� �
� �5914:0̂i�3144:5̂j
� �h izfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

1

g
_gr1�r0ð Þ

¼ 0:60618̂i+ 0:30302̂j km=sð Þ
v1 ¼ 0:67770km=s

vr1 ¼ v1 � ûr1 ¼ 0:64574km=s> 0

It follows from Eq. (9.23) that the eccentricity vector is

e1 ¼ 1

μe
v0

2�μe
r0

� �
r0� r0vr0v0

� �
¼ 1

398,600
10:8262�398,600

6698

� �
�5914:0̂i�3:1445̂j
� �

�6698 � 1:1316 4:0556̂i�10:038̂j
� �� �

¼�0:93315̂i�0:26428̂j

;e1 ¼ 0:96985

From Eq. (9.26), the perifocal unit vectors of the elliptical translunar trajectory are

p̂1 ¼
e1

e1
¼�0:93315̂i�0:26428̂j

0:96985
¼�0:96216̂i�0:27249̂j

ŵ1 ¼ r0�v0

h1
¼ 72,117k̂

72,117
¼ k̂

q̂1 ¼ ŵ1� p̂1 ¼ k̂� �0:96216̂i�0:27249̂j
� �

¼ 0:27249̂i�0:96216̂j



4519.2 COPLANAR PATCHED CONIC LUNAR TRAJECTORIES
Eqs. (9.24) and (9.25) yield the semimajor axis a1 and the period T1,

a1 ¼ h1
2

μe

1

1�e12
¼ 72,1172

398,600

1

1�0:969852
¼ 219,714km

T1 ¼ 2π

ffiffiffiffiffiffiffi
a1

3

μe

s
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
219,7143

398,600

s
¼ 1:0249 106

� �
s¼ 11:863days

According to Eq. (9.27), the true anomaly θ0 of the injection point is

θ0 ¼ cos�1 p̂1 � ûr0ð Þ

¼ cos�1 �0:96216̂i�0:27249̂j
� �

� �0:88295̂i�0:46957̂j
� �h i

¼ cos�10:97746

;θ0 ¼ 12:187°

From this we find the time t0 by means of Eq. (9.28),

t0 ¼ T1
2π

2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θ0
2

� �
�e1 sin 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θ0
2

� �� �	 


¼ 1:0249 106
� �

2π
2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:96985

1 + 0:96985

r
tan

12:187°
2

 !(

�0:96985sin 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:96985

1 + 0:96985

r
tan

12:187°
2

 !" #)
¼ 130:37s

Since we know that the sweep angle is 160.89°, it follows from Eq. (9.29) that the true anomaly θ1 at the patch point is

θ1 ¼ 12:187°+ 160:89°
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{θ0 +Δθ

¼ 173:08°

Then Eq. (9.30) yields t1, the time at the patch point:

t1 ¼ T1
2π

2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θ1
2

� �
�e1 sin 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e1
1 + e1

r
tan

θ1
2

� �� �	 


¼ 1:0249 106
� �

2π
2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:96985

1 + 0:96985

r
tan

173:08°
2

 !(

�0:96985sin 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:96985

1 + 0:96985

r
tan

173:08°
2

 !" #)
¼ 239,370 s

From Eq. (9.31) we obtain the flight time Δt1 from TLI to the patch point,

Δt1 ¼ 239,370�130:38
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{t1�t0

¼ 239,236s¼ 66:454h

The counterclockwise angular velocity ωm of the moon in its assumed circular orbit around the earth is

ωm ¼ vm
D

¼ 1:0183km=s

384,400km
¼ 2:6491 10�6

� �
rad=s¼ 0:5464 deg=h (c)

Multiplying this by the time interval Δt1 yields the moon’s lead angle of 36.31°, as shown in Fig. 9.5. The moon moves

through this angle as the spacecraft flies to the patch point along its geocentric departure trajectory.



FIG. 9.5

Translunar trajectory of the spacecraft and concomitant motion of the moon. Drawn to scale.
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At the patch point, the velocity v2 of the spacecraft relative to the moon is obtained from Eqs. (9.5) and (9.32)

v2 ¼ð0:60618̂i+ 0:30302̂jÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{v1

�1:0183̂j
zfflfflfflffl}|fflfflfflffl{vm

¼ 0:60618̂i�0:71528̂j km=sð Þ
v2 ¼ 0:93759km=s

We use ûr2 from Eq. (a) above to calculate the radial component vr2 of the relative velocity at the patch point,

vr2 ¼ 0:60618̂i�0:71528̂j
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{v2

� �0:57358̂i+ 0:81915̂j
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ûr2

¼�0:93361km=s (d)

The negative sign indicates, as it should, that the spacecraft is flying toward perilune. From Eq. (9.33), the probe’s angular

momentum relative to the moon is

h2 ¼ �37;961̂i+ 54;214̂j
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{r2

� 0:60616̂i�0:71528̂j
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{v2

¼�5710:78k̂ km2=s
� �

h2 ¼ 5710:78km2=s

The fact that h2 points toward the orbital plane (in the negative z direction) means that the motion of the spacecraft is

retrograde (i.e., clockwise around the moon).
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The eccentricity vector e2 may now be calculated by using Eq. (9.34)

e2 ¼ v2�h2

μm
� ûr2

¼
0:60618̂i�0:71528̂j
� �

� �5710:78k̂
� �

4902:8
� �0:57358̂i+ 0:81915̂j
� �

¼ 1:4067̂i�0:11307̂j

;e2 ¼ 1:44127

Since the eccentricity exceeds unity, the inbound orbit is indeed a hyperbola, relative to the moon. The perifocal unit vector

p̂2 directed from the center of the moon through perilune of the hyperbolic approach trajectory is, from Eq. (9.40),

p̂2 ¼
1:4067̂i�0:11307̂j

1:44127

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{e2=e2

¼ 0:99678̂i�0:080122̂j

Substituting this into Eq. (9.41) and using the fact that vr2 < 0, we find the true anomaly of the patch point on the lunar

approach hyperbola, measured positive clockwise from perilune,

θ2 ¼ 360°� cos�1 0:99678̂i�0:080122̂j
� �

� �0:57358̂i+ 0:81915̂j
� �h izfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p̂2 � ûr2

¼ 360°�129:60°

¼ 230:40°

(e)

We find the time relative to perilune at this point on the hyperbola by means of Eq. (9.42),

t2 ¼ h2
3

μm2 e22�1ð Þ3=2
e2 sinh 2tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1

e2 + 1

r
tan

θ2
2

� �� �
�2tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffi
e2�1

e2 + 1

r
tan

θ2
2

� �	 


¼ 5710:773

4902:82 1:411262�1
� �3=2 1:41126sinh 2tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:41127�1

1:41127 + 1

r
tan

230:40°
2

 !" #(

�2tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:41127�1

1:41127+ 1

r
tan

230:40°
2

 !)
¼�63,116 s¼�17:532h

(f)

The minus sign means that t2 is the time until perilune. The elapsed time Δt2 from patch point to perilune is

Δt2 ¼ tperilune � t2 ¼ 0 � (�17.532h) ¼ 17.532h. The total time from translunar injection to perilune passage is

Δttotal ¼ 66:454
zfflfflffl}|fflfflffl{Δt1

+ 17:532
zfflfflffl}|fflfflffl{Δt2

¼ 83:986h¼ 3:4994days

According to Eqs. (9.36) and (9.37), the perilune radius rp2 and altitude are zp2

rp2 ¼
h2

2

μm

1

1 + e2
¼ 5710:82

4902:8

1

1 + 1:41127
¼ 2758:67km

zp2 ¼ 2758:67�1737
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{rp2�Rm

¼ 1021:67km

From Eq. (9.38) we know that the spacecraft’s speed at perilune relative to the moon is

vp2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 + e2

p ffiffiffiffiffiffi
μm
rp2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1:41127

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4902:8

2758:67

r
¼ 2:07012km=s



FIG. 9.6

Motion of the spacecraft within the lunar sphere of influence, relative to the moon-fixed frame of reference.

Drawn to scale.
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Therefore, the delta-v required at perilune to enter a circular lunar orbit of radius rp2 is

Δv2 ¼
ffiffiffiffiffiffi
μm
rp2

r
�vp2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4902:8

2758:67

r
�2:07012¼�0:73698km=s

Fig. 9.6 shows the hyperbolic path of the spacecraft within the moon’s SOI, relative to the moon. Also shown is the

small circular capture orbit with a radius equal to that of perilune. If there is no delta-v maneuver at perilune, then the

spacecraft continues on its hyperbolic path around the moon and leaves the SOI 17.548 h after perilune passage with

the same relative speed at which it entered.

The moon-fixed hyperbolic flyby trajectory pictured in Fig. 9.6 is plotted relative to the stationary, earth-fixed

coordinates in Fig. 9.7. The position vector of each point of the hyperbola is transformed into the earth-fixed

xy frame using Eqs. (9.48) and (9.49). The result is a flyby trajectory that resembles a partial figure eight (between “SOI en-

trance”and“SOIexit” inFig. 9.7) andbears little resemblance to thehyperbolaas seen from themoon’s perspective inFig. 9.6.

To determine the trajectory of the spacecraft after leaving the moon’s SOI on a flyby, we must first calculate the geo-

centric state vector at the SOI exit (namely, the position vector r3 and velocity vector v3 relative to the earth). The true

anomaly on the hyperbola at SOI entrance was found in Eq. (e) to be θ2 ¼ � 129.6°, measured counterclockwise from

perilune. The time of that initial SOI crossing was t2 ¼ �17.532h, according to Eq. (f). Therefore, the time and true anom-

aly of the SOI exit are



FIG. 9.7

The complete coplanar ballistic trajectory consisting of TLI, coast to moon, flyby, and coasting return to

earth, all relative to the earth-fixed reference frame. Drawn to scale.
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t3 ¼ + 17:532h¼ 63;115s

θ3 ¼ + 129:6°
(g)

Recall that the moon’s position angle ϕ is zero at the initial SOI encounter, so that the xyz and x0y0z0 axes instantaneously
coincide. The angular position of the moon at the end of the hyperbolic fly-around is

ϕ¼ωm t3� t2ð Þ¼ 2:6491 10�6
� � rad

s

� �
126, 230sð Þ¼ 0:33439rad¼ 19:159°

From Fig. 9.4 we see that the position vector rm of the moon is

rm ¼D cos ϕ̂i+ sinϕĵ
� �

Substituting D ¼ 384,400km and ϕ ¼ 19.159° yields

rm ¼ 363,107̂i+ 126,160̂j kmð Þ (h)

The position of the spacecraft relative to the moon is given by Eq. (9.45),

rrelÞx0y0z0 ¼
h2

2

μm

1

1 + e2 cosθ3
cosθ3p̂2 + sinθ3q̂2ð Þ

where, in terms of the rotating but moon-fixed unit vectors î
0
ĵ
0
k̂
0
,

p̂2 ¼
e2

e2
¼ 1:4067̂i

0 �0:11307̂j
0

1:41127
¼ 0:99678̂i

0 �0:080122̂j
0

ŵ2 ¼ r2�v2

h2
¼�5710:8k̂

5710:8
¼�k̂

q̂2 ¼ ŵ2� p̂2¼�k̂� 0:99678̂i
0 �0:080122̂j

0� �
¼�0:080122̂i

0 �0:99678̂j
0
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so that

rrelÞx0y0z0 ¼
5710:82

4902:8

1

1 + 1:4113cos129:6°
cos129:6° 0:99678̂i

0 �0:080122̂j
0� �h

+sin129:6° �0:080122̂i
0 �0:99678̂j

0� �i
¼�46,133̂i

0 �47,454̂j
0
kmð Þ

The direction cosine matrix for transforming vector components from the rotating x0y0z0 to the fixed xyz is given in

Eq. (9.47),

Q½ � ¼
cosϕ sinϕ 0

�sinϕ cosϕ 0

0 0 1

24 35¼ cos19:160° sin19:160° 0

�sin19:160° cos19:160° 0

0 0 1

24 35¼
0:94461 0:32820 0

�0:32820 0:94461 0

0 0 1

24 35
Therefore, according to Eq. (9.48),

rrelf gxyz ¼ Q½ �T rrelf gx0y0z0 ¼
0:94461 �0:32820 0

0:32820 0:94461 0

0 0 1

24 35 �46,133

�47,454

0

8<:
9=;¼

�28,003

�59,967

0

8<:
9=; kmð Þ

or

rrel ¼�28,003̂i�59,967̂j kmð Þ
Substituting this along with Eq. (h) into Eq. (9.49) yields the spacecraft position vector at SOI exit, relative to the earth-

fixed frame

r3 ¼ 335,104̂i+ 66194̂j kmð Þ (i)

The velocity of the spacecraft at SOI exit relative to the moon is

vrelÞx0y0z0 ¼
μm
h2

�sinθ3p̂2 + e2 + cosθ3ð Þq̂2½ �

That is,

vrelÞx0y0z0 ¼
4902:8

5710:8
�sin129:6° 0:99678̂i

0 �0:080122̂j
0� �h

+ e2 + cos129:6°ð Þ �0:080122̂i
0 �0:99678̂j

0� �i
¼�0:71265̂i

0 �0:60927̂j
0
km=sð Þ

We use Eq. (9.50) to obtain the components of vrel in the xyz frame,

vrelf gxyz ¼ Q½ �T vrelf gx0y0z0 ¼
0:94461 �0:32820 0

0:32820 0:94461 0

0 0 1

24 35 �0:71265
�0:60927

0

8<:
9=;¼

�0:47321
�0:80941

0

8<:
9=; km=sð Þ

or

vrel ¼�0:47321̂i�0:80941̂j km=sð Þ
Substituting this expression along with Eq. (i) and the angular velocity of the moon (Eq. c) into Eq. (9.52) yields

v3 ¼ωm�r3 + vrel

¼ 2:6491 10�6
� �

k̂� 335, 104̂i+ 66194̂j
� �

+ �0:47321̂i�0:80941̂j
� �

Therefore, the absolute velocity of the spacecraft at the SOI exit is

v3 ¼�0:64856̂i+ 0:078302̂j km=sð Þ (j)
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From the state vector (r3,v3), we obtain the transearth trajectory’s orbital elements. That is,

h3 ¼ r3�v3 ¼ 69,170k̂ km2=s
� �

h3 ¼ 69,170km2=s

e3 ¼ 1

μe
v3�h3ð Þ� r3

r3
¼�0:967456̂i�0:0812406̂j

e3 ¼ 0:970860

With this information, we can plot the geocentric return trajectory, as shown in Fig. 9.7. Its perigee is

rp3 ¼
h3

2

μe

1

1 + e3
¼ 69,1702

398,600

1

1 + 0:97086
¼ 6090:4km

Since this is less than the radius of the earth, the spacecraft will impact the atmosphere.

The path followed by the spacecraft in this example is called a free return trajectory because the single delta-vmaneuver

at TLI yields a lunar flyby followed by a return to earth.
9.3 A SIMPLIFIED LUNAR EPHEMERIS
We will employ the geocentric equatorial XYZ frame (Section 4.3) to describe the three-dimensional

translunar trajectory of a spacecraft as well as the motion of the moon around the earth. The state vector

of the moon at any time is found by means of a lunar ephemeris. High-precision ephemerides are found

in the Jet Propulsion Laboratory’s authoritative DE (development ephemeris) series. These currently

may be accessed online at the JPL Horizons ephemeris system website (JPL Horizons Web-Interface,

2018) and within MATLAB by means of the function planetEphemeris. Simpson (1999) developed a

simplified lunar ephemeris, which is a curve fit of JPL’s 1984 DE200 ephemeris model. It is easy to use

and the precision is sufficient for our needs.

Simpson’s lunar ephemeris yields the geocentric equatorial coordinates X, Y, and Z of the moon in

kilometers for any year in the range CE 2000 through CE 2100, according to the formula

Xi ¼
X7
j¼1

aij sin bijt+ cij
� �

i¼ 1, 2, 3ð Þ (9.54)

where X1 ¼ X, X2 ¼ Y, X3 ¼ Z, and t is the time in Julian centuries since J2000 (see Eq. 5.49),

t¼ JD�2,451,545

36,525
centuriesð Þ (9.55)

and JD is the Julian date (in days). The components of the 3-by-7 matrices [a], [b], and [c] are

a½ � ¼
383,000 31,500 10,600 6,200 3,200 2,300 800

351,000 28,900 13,700 9,700 5,700 2,900 2,100

153,200 31,500 12,500 4,200 2,500 3,000 1,800

264
375 kmð Þ

b½ � ¼
8399:685 70:990 16728:377 1185:622 7143:070 15613:745 8467:263

8399:687 70:997 8433:466 16728:380 1185:667 7143:058 15613:755

8399:672 8433:464 70:996 16728:364 1185:645 104:881 8399:116

264
375 rad=centuryð Þ

c½ � ¼
5:381 6:169 1:453 0:481 5:017 0:857 1:010

3:811 4:596 4:766 6:165 5:164 0:300 5:565

3:807 1:629 4:595 6:162 5:167 2:555 6:248

264
375 radð Þ
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The moon’s geocentric equatorial velocity components _X, _Y , and _Z are found by simply differen-

tiating Eq. (9.53) with respect to time,

_Xi ¼ 1

tC

X7
j¼1

aijbij cos bijt+ cij
� �

i¼ 1, 2, 3ð Þ

The conversion factor tC is required to convert kilometers per century to kilometers per second

tC ¼ 36, 525
d

cy

� �
� 24

h

d

� �
� 3600

s

h

� �
¼ 3:15576 109

� � s

cy

A MATLAB implementation of Simpson’s lunar ephemeris is listed in Appendix D.37.
EXAMPLE 9.2
Use Simpson’s ephemeris to find the variation of the moon’s inclination to the earth’s equatorial plane from January 1,

2000, UT 12:00:00 through January 1, 2100, UT 12:00:00.

Solution
The following MATLAB script computes and plots the inclinations.

clear all; close all; clc
%
%...Initial and final Julian dates (jd1 & jd2):
jd1 = julian_day(2000,1,1,12,0,0); %January 1,2000 UT 12:00:00
jd2 = julian_day(2100,1,1,12,0,0); %January 1,2100 UT 12:00:00
%
%...The following initially empty column vectors will contain the lunar
% inclinations and the Julian day for which each one is evaluated:
incl = [];
days = [];
%
%...Loop through the sequence of Julian days, one at a time:
for jd = jd1 : jd2 + 20*365.25

days = [days; jd - jd1]; %Store the elapsed
% time in the
% days array.

[r_,v_] = simpsons_lunar_ephemeris(jd); %Compute the
% position and
% velocity vectors,
% r_ and v_.

h_ = cross(r_,v_); %h_ is the angular
% momentum vector.

h = norm(h_); %h is its magnitude.
incl = [incl; acosd(h_(3)/h)]; %Compute the

% inclination from
% Eq. 4.7 and add
% it to the
% incl array.
end
%
%...Smooth out the high frequency content with MATLAB's
% smoothdata function using a Savitzky-Golay filter:
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incl_smooth = smoothdata(incl, 'sgolay');
%
%...Plot the computed values of incl against the elapsed time
% in years:
plot(days/365.25,incl_smooth,'b') %(365.25 days per Julian year)
title('Variation of lunar inclination from J2000 to J2100')
axis([0 100 15 30])
xlabel('Elapsed time, years')
ylabel('Inclination, degrees')
grid on
hold on
plot([0 100],[28.5 28.5], '--r')
plot([0 100],[18.4 18.4], '--r')
Fig. 9.8 shows the output of the above script. Clearly, the angle between the moon’s orbital plane

and the earth’s equator varies from 18.4° to 28.5° over a period of 18.6 years.

The moon’s orbital plane is inclined to the ecliptic plane by an angle (obliquity) of 5.14°, whereas
the earth’s obliquity is 23.4°. Due primarily to solar gravity, the moon’s orbital plane precesses
. 9.8

riation of the moon’s orbital inclination with time (Simpson’s ephemeris).



FIG. 9.9

Precession of the lunar orbit around the normal to the ecliptic plane.

Table 9.1 Apollo translunar orbit inclinations and lunar orbit inclination at the time

Manned lunar mission Date Orbit inclination (°) Moon’s inclination (°)

Apollo 8 December 21–27, 1968 30.6 28.4

Apollo 10 May 18–26, 1969 31.7 28.5

Apollo 11 July 16–24, 1969 31.4 28.5

Apollo 12 November 14–24, 1969 30.4 28.4

Apollo 13 April 11–17, 1970 31.8 28.4

Apollo 14 January 31–February 9, 1971 30.8 27.9

Apollo 15 July 26–August 7, 1971 29.7 27.4

Apollo 16 April 16–27, 1972 32.5 26.4

Apollo 17 December 7–19, 1972 28.5 25.5
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westward at the rate of one revolution in 18.6 years. The earth’s orbital plane is stationary in compar-

ison (one revolution per 26,000 years). Thus, during the course of 18.6 years, the inclination of the

moon’s orbit to the earth’s equatorial plane varies between (23.4° � 5.14°) and (23.4° + 5.14°), as
revealed in Fig. 9.8 and further illustrated in Fig. 9.9.

According to Eq. (6.24), launching a spacecraft due east (azimuth A = 90°), to take full advantage of
the earth’s eastward rotational velocity, yields an orbit whose inclination equals the latitude ϕ of the

launch site. Since the latitude of Kennedy Space Center (KSC) is 28.5°N, the smallest orbital inclina-

tion i of a launch from that site is 28.5°. Therefore, a coplanar lunar mission from KSC, like that de-

scribed in Example 9.1, can only occur during that part of the 18.6-year cycle when the moon’s

inclination is at or near 28.5°. Table 9.1 compares the orbital inclination of each Apollo lunar mission

(Orloff, 2000) with the moon’s inclination at the time, which is obtained from the JPL ephemeris.
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9.4 PATCHED CONIC LUNAR TRAJECTORIES IN THREE DIMENSIONS
In Section 9.2 we cast the procedure for coplanar patched conic lunar trajectory analysis in vector

format. Therefore, the notation and procedure for three dimensions remains essentially the same.

We simply drop the assumption that the paths of the spacecraft and the moon lie in the same

plane. We obtain the position and velocity of the moon from an accurate lunar ephemeris, instead

of assuming that the moon moves around the earth in a circular path. The plane of the translunar tra-

jectory is not that of the moon’s orbit, but is determined by the spacecraft’s position vector r0 at TLI and

the position vector rm of the moon when the spacecraft crosses into the moon’s SOI. We continue to

assume that the motion of the spacecraft after TLI is ballistic, which means there are no midcourse

propulsive maneuvers prior to lunar encounter. As in Section 9.2, let us do the trajectory analysis

in four parts.

I. After TLI, travel a ballistic geocentric trajectory until entering the moon’s SOI.

II. Determine the spacecraft trajectory inside the moon’s SOI, relative to the rotating moon-

fixed frame.

III. Transform the trajectory in II into the inertial geocentric equatorial frame.

IV. If flyby occurs, then determine the geocentric trajectory after departing the moon’s SOI.

We will use a numerical example and simply outline the procedure, since the details were mostly

covered in Section 9.2.

I. Translunar trajectory up to the moon’s SOI (Fig. 9.10)

Recall that μe = 398, 600km3/s2.

1. Choose values for the independent variables of the problem.

a. Select the date for the moon’s position at SOI intercept.

May 4, 2020, 12:00:00 UT. Julian day: 2,458,974.

b. Select the value for the arrival angle λ (i.e., the angle between the radials from moon to

earth and from moon to spacecraft at the moon’s SOI) (see Fig. 9.10).
λ¼ 50°
c. Select the probe’s radius r0, right ascension αL, declination δL, and flight path angle γ0 at
TLI:
r0 ¼ 6698km αL ¼ 40° δL ¼ 10° γ0 ¼ 10°
2. Use an ephemeris to determine the moon’s geocentric equatorial state vector (rm,vm) on the

date in I.1.a.
rm ¼�359,984Î�25,810:2Ĵþ22,885:4K̂ kmð Þ rm ¼ 361,835km

vm ¼ 0:0805809Î�0:990137Ĵ�0:437526K̂ km=sð Þ vm ¼ 1:08558km=s
3. Calculate ŝ, the unit vector along the earth-to-moon radial:
ŝ¼ rm

rmk k ;ŝ¼�0:994882Î�0:0787934Ĵþ0:0632482K̂



FIG. 9.10

Translunar trajectory up to encounter of moon’s sphere of influence.
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4. Calculate ωm, the instantaneous angular velocity of the moon at the time of SOI intercept:
ωm ¼ rm�vm

rm2
;ωm ¼ 0:268368Î�1:18891Ĵþ2:740245K̂

� �
10�6
� �

rad=sð Þ
ωm ¼ 2:99908 10�6

� �
rad=s
Calculate the geocentric position vector r0 at TLI using Eqs. (4.4) and (4.5) and the data in I.1.c:
5.
r0 ¼ r0 cosαL cosδLÎþ sinαL cosδLĴþ sinδLK̂
� �¼ 5053:02Îþ4239:98Ĵþ1163:10K̂ kmð Þ

r0 ¼ 6698kmð Þ

Calculate ŵ1, the unit normal to the plane of the translunar trajectory:
6.
ŵ1 ¼ r0�rm

r0�rmk k ;ŵ1 ¼ 0:0875163Î�0:359180Ĵþ0:929156K̂
Calculate b̂, the unit normal to the plane of ŝ and ŵ1. b̂ lies in the plane of the translunar
7.

trajectory (see Fig. 9.10):
b̂¼ ŵ1� ŝ

ŵ1� ŝk k ;b̂¼ 0:0504938Î�0:929936Ĵ�0:364238K̂
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8. Calculate n̂, the unit vector from the center of the moon to the SOI patch point:
n̂¼�cosλŝþ sinλb̂ ;n̂¼ 0:678179Î�0:661725Ĵ�0:319678K̂
Calculate r2, the position vector of the patch point relative to the moon:
9.
r2 ¼RSn̂ ;r2 ¼ 44,883:7Î�43,794:8Ĵ�21,157:2K̂ kmð Þ
r2 ¼ 66,183km
Calculate r1, the position vector of the patch point relative to the earth:
10.
r1 ¼ rmþr2 ;r1 ¼�315,100Î�72,305:0Ĵþ1728:29K̂ kmð Þ
r1 ¼ 323,294km
Use Eq. (9.14) to calculate the sweep angle Δθ:
11.
cosΔθ¼ r0=r0ð Þ � r1=r1ð Þ ) Δθ¼ 151:156°
Calculate the angular momentum h1 of the translunar trajectory using Eq. (9.18):
12.
h1 ¼ 71,426:1km2=s
Calculate the Lagrange coefficients f, g, and _g from Eqs. (9.13a)–(9.13c):
13.
f ¼�46:3848 g¼ 14625:9s _g¼ 0:0182827
Calculate the velocity v0 at TLI and the velocity v1 at the patch point bymeans of Eqs. (9.12a)
14.

and (9.12b):
v0 ¼�5:51878Îþ8:503129Ĵþ3:80683K̂ km=sð Þ
v1 ¼�0:739368Î�0:380279Ĵ�0:0773628K̂ km=sð Þ
Calculate the radial component of velocity vr at TLI:
15.
0

vr0 ¼ v0 � r0=r0ð Þ ;vr0 ¼ 1:88031km=s positiveð Þ

Using the TLI state vector (r0,v0), calculate the eccentricity vector e1 of the translunar
16.

trajectory from Eq. (2.40). The eccentricity, e1 = ke1k, must be less than 1:
e1 ¼ v0� r0�v0ð Þ
μe

� r0

r0
;e1 ¼ 0:906360Îþ0:345541Ĵþ0:0482052K̂

e1 ¼ 0:971190
Calculate the semimajor axis a1 and the period T1 of the translunar trajectory from Eqs. (9.24)
17.

and (9.25), respectively:
a1 ¼ 225,375km T1 ¼ 1,064,806s¼ 12:3241d
Calculate the triad of perifocal unit vectors p̂1, q̂1, and ŵ1 for the translunar trajectory:
18.
p̂1 ¼
e1

e1
;p̂1 ¼ 0:933246Îþ0:355791Ĵþ0:0496352K̂

ŵ1 ¼ 0:0875163Î�0:359180Ĵþ0:929156K̂ Calculated in Step I:6 above:ð Þ
q̂1 ¼ ŵ1� p̂1 ;q̂1 ¼�0:348413Îþ0:862788Ĵþ0:366341K̂
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19. Calculate the true anomaly θ0 at the TLI point using Eq. (9.27) and noting from Step I.16 that

vr0 > 0 at TLI:
θ0 ¼ 20:2998°
Calculate the time t0 since perigee at the TLI point using Eq. (9.28):
20.
t0 ¼ 213:532s
Calculate the true anomaly θ1 at the patch point, θ1 = θ0 + Δθ, where we found the sweep
21.

angle Δθ in Step I.11:
θ1 ¼ 20:2998°þ151:156°¼ 171:455°
Calculate the time t1 since perigee at the patch point using Eq. (9.30):
22.
t1 ¼ 54:8899h
Calculate the flight time Δt1 from TLI to the patch point, Δt1 = t1 � t0:
23.
Δt1 ¼ 54:8306h
II. Determine the lunar approach trajectory within the moon’s SOI, relative to the moon.

Recall that the gravitational parameter and the radius of the moon are μm = 4902.8km3/s2 and

Rm = 1727 km, respectively.

1. Calculate the velocity v2 of the spacecraft relative to the moon at the patch point:
v2 ¼ v1�vm ;v2 ¼�0:819949Îþ0:609957Ĵþ0:360164K̂ km=sð Þ
v2 ¼ 1:08355km=s
vm was obtained in Step I.2.
2. Calculate the radial speed vr2 relative to the moon at the patch point:
vr2 ¼ v2 � r2=r2ð Þ ;vr2 ¼�1:07483km=s r2 was found in Step I:9ð Þ

Calculate the angular momentum h2 of the trajectory relative to the moon:
3.
h2 ¼ r2�v2 ;h2 ¼�2868:33Îþ1182:29Ĵ�8532:32Ĵ km2=s
� �

h2 ¼ 9078:86km2=s
Use Eq. (2.40) to calculate the eccentricity vector e2 of the trajectory, relative to the moon. e2
4.

must be greater than 1:
e2 ¼ 1

μm
v2�h2� r2

r2

� �
;e2 ¼�1:82654Î�0:975939Ĵþ0:478800K̂

e2 ¼ 2:12554
Calculate the perilune radius rp and altitude zp of the hyperbolic lunar approach
5.
2 2

trajectory:
rp2 ¼
h2

2

μm

1

1þe2
¼ 5378:89km ;zp2 ¼ rp2 �Rm ¼ 3641:9km
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6. Calculate the perifocal unit vectors p̂2, q̂2, and ŵ2 of the hyperbolic lunar approach trajectory:
p̂2 ¼
e2

e2
;p̂2 ¼�0:859326Î�0:459147Ĵþ0:225260K̂

ŵ2 ¼ h2

h2
;ŵ2 ¼�0:315936Îþ0:130224Ĵ�0:939801K̂

q̂2 ¼ ŵ2� p̂2 ;q̂2 ¼�0:402173Îþ0:878763Ĵþ0:256966K̂
Calculate the triad of orthogonal unit vectors î, ĵ, and k̂ directed along the rotating xyzmoon-
7.

fixed Cartesian coordinate axes at the instant the spacecraft crosses the lunar SOI. Note that

the z axis lies in the direction of the moon’s angular velocity vector ωm, which we computed

in Step I.4.
î¼ rm

rm
;î¼�0:994882Î�0:0787934Ĵþ0:0632482K̂

k̂¼ωm

ωm
;k̂¼ 0:0894832Î�0:396426Ĵþ0:913695K̂

ĵ¼ k̂� î ;ĵ¼ 0:0469199Î�0:914679Ĵ�0:401448K̂
Use the above geocentric equatorial components of î, ĵ, and k̂ to calculate the instantaneous
8.

direction cosine matrix [Q] of the transformation from the geocentric equatorial XYZ frame to

the moon-fixed xyz frame (see Eq. 4.23):
Q½ � ¼
iX iY iZ

jX jY jZ

kX kY kZ

264
375 ; Q½ � ¼

�0:994882 �0:0787934 0:0632482

0:0469199 �0:914679 �0:401448

0:0894832 �0:396426 0:913695

264
375
Calculate the components of the perifocal unit vectors p̂2 and q̂2 (calculated in the XYZ frame
9.

in II.6) in the rotating xyz moon-fixed frame:
p̂2f gxyz ¼ Q½ � p̂2f gXYZ ; p̂2f gxyz ¼ 0:905354̂iþ0:289223̂jþ0:310942k̂

q̂2f gxyz ¼ Q½ � q̂2f gXYZ ; q̂2f gxyz ¼ 0:347127̂i�0:925815̂j�0:149563k̂
Calculate the time t2 (t2 < 0) at the patch point on the hyperbolic approach trajectory using
10.

Eqs. (9.41) and (9.42):
t2 ¼�15:8112h
The elapsed time from the patch point to perilune is Δt2 = tperilune � t2 = 0 � t2. The total

time from TLI to perilune is Δt = Δt1 + Δt2. If the spacecraft proceeds from perilune on a

flyby, it will exit the SOI at the time t3 = � t2 = 15.8112h by virtue of the symmetry of the

flyby hyperbola, which is illustrated in Fig. 9.11.
III. At any time t within the moon’s SOI (t2 � t � t3), evaluate the spacecraft’s geocentric equatorial
position vector r and velocity vector v. For example, let us choose t = 0 (perilune).
1. For the time t, use a lunar ephemeris to calculate the moon’s position vector rm and velocity

vector vm relative to the geocentric equatorial frame.



FIG. 9.11

Hyperbolic trajectory within the sphere of influence.
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The perilune time t = 0 is 15.8112 h after passing the patch point, which means the Julian

date at perilune is 2,458,974.66 and for that time the JPL Horizons ephemeris yields:
rm ¼�350,457Î�84,251:0Ĵ�2235:54K̂ kmð Þ ;rm ¼ 360,448km

vm ¼ 0:253698Î�0:963737Ĵ�0:443114K̂ km=sð Þ ;vm ¼ 1:09064km=s
2. Calculate the angular velocity of the moon, ωm ¼ rm�vmð Þ=rm2, at the instant t:
ωm ¼ 0:270763Î�1:19963Ĵþ2:76412K̂
� �

10�6
� �

rad=sð Þ
;ωm ¼ 3:02535 10�6

� �
rad=s
3. Calculate the triad of orthogonal unit vectors î, ĵ, and k̂ directed along the rotating xyz moon-

fixed Cartesian coordinate axes at the instant the spacecraft is at perilune:
î¼ rm=rm î¼�0:972280Î�0:233739Ĵ�0:00620221K̂

k̂¼ωm=ωm k̂¼ 0:0894979Î�0:396525Ĵþ0:913651K̂

ĵ¼ k̂� î ĵ ¼ 0:216015Î�0:887769Ĵ�0:406453K̂
4. Use the geocentric equatorial components of î, ĵ, and k̂ to calculate the instantaneous direction

cosine matrix [Q] of the transformation from the geocentric equatorial XYZ frame to the moon-

fixed xyz frame (see Eq. 4.23):
Q½ � ¼
iX iY iZ

jX jY jZ

kX kY kZ

264
375 ; Q½ � ¼

�0:972280 �0:233739 �0:00620212

0:216015 �0:887769 �0:406453

0:0894979 �0:396525 0:913651

264
375
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5. Calculate the components of the perifocal unit vectors p̂2 and q̂2 (found in the XYZ frame in

II.6) in the rotating xyz moon-fixed frame:
p̂2f gxyz ¼ Q½ � p̂2f gXYZ ; p̂2f gxyz ¼ 0:905354̂iþ0:289223̂jþ0:310942k̂

q̂2f gxyz ¼ Q½ � q̂2f gXYZ ; q̂2f gxyz ¼ 0:347127̂i�0:925815̂j�0:149563k̂
6. Determine the true anomaly θ at the time t, which is perilune in this example, so that t = 0:
M¼ μm
2

h2
3

e2
2�1

� �3=2
t M¼ μm

2

h2
3

e2
2�1

� �3=2
0ð Þ ;M¼ 0

e2 sinhF�F¼M e2 sinhF�F¼ 0 ;F¼ 0

θ¼ 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
e2þ1

e2�1

r
tanh

F

2

� �
θ¼ 2tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
e2þ1

e2�1

r
tanh 0ð Þ

� �
;θ¼ 0
7. Calculate the components of the position vector rrel ¼ x̂iþ ŷjþ zk̂ and the velocity vector

vrel ¼ _x îþ _y ĵþ _zk̂ of the spacecraft relative to the moon-fixed xyz frame:
rrelf gxyz ¼
h2

2

μm

1

1þe2 cosθ
cosθ p̂2f gxyzþ sinθ q̂2f gxyz
� �

¼ 9078:862

4902:8

1

1þ2:12554cos 0ð Þ cos 0ð Þ p̂2f gxyzþ sin 0ð Þ q̂2f gxyz
� �

¼ 5378:90 p̂2f gxyz
;rrel ¼ 5378:90 0:905354̂iþ0:289223̂jþ0:310942k̂

� �
¼ 4869:80̂iþ1555:70̂jþ1672:52k̂ kmð Þ

vrelf gxyz ¼�μm
h2

sinθ p̂2f gxyzþ
μm
h2

e2þ cosθ½ � q̂2f gxyz

¼� 4902:8

9078:86
sin 0ð Þ p̂2f gxyzþ

4902:8

9078:86
2:12554þ cos 0ð Þ½ � q̂2f gxyz

¼ 1:68787 q̂2f gxyz
;vrel ¼ 1:68786 0:347127̂i�0:925815̂j�0:149563k̂

� �
¼ 0:585904̂i�1:56265̂j�0:252443k̂ km=sð Þ
8. Obtain the components of the relative position vector rrel and the relative velocity vrel in the

geocentric equatorial XYZ frame:
rrelf gXYZ ¼ Q½ �T rrelf gxyz ¼
�0:972280 0:2160154 0:0894979

�0:233739 �0:887769 �0:396525

�0:00620212 �0:4064527 0:913651

264
375 4869:81

1555:70

1672:53

8><>:
9>=>;

;rrel ¼�4249:06Î�3182:56Ĵþ865:578K̂ kmð Þ

vrelf gXYZ ¼ Q½ �T vrelf gxyz ¼
�0:972280 0:2160154 0:0894979

�0:233739 �0:887769 �0:396525

�0:00620212 �0:4064527 0:913651

264
375 0:585904

�1:56265

�0:252442

8><>:
9>=>;

;vrel ¼�0:929814Îþ1:35043Ĵþ0:400866K̂ km=sð Þ
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9. Calculate the absolute position vector r and the absolute velocity vector v of the spacecraft in

the geocentric equatorial XYZ frame:
r¼ rmþrrel

¼ �350, 457Î�84, 251:0Ĵ�2235:54K̂
� �þ �4249:06Î�3182:56Ĵþ865:578K̂

� �
¼�354,706Î�87433:6Ĵ�1369:97K̂ kmð Þ

r¼ 365,325km
For the velocity we must use Eq. (9.51) instead of (9.52), because the radius of the moon’s

orbit is not constant as we assumed previously (which means vm 6¼ωm� rm):
v
z}|{

absolute

velocity of probe

¼ vm
z}|{

velocity of the

moon

þ ωm

z}|{
angular velocity

of the moon

� rrel
z}|{

position vector of

probe relative to the moon

þ vrel
z}|{

velocity of the probe

relative to the moon
vm and ωm are given in Steps III.1 and III.2, respectively, whereas rrel and vrel were calculated

in Step III.8. Making these substitutions and noting that
ωm�rrel ¼ 0:270763Î�1:19963Ĵþ2:76412K̂
� �

10�6
� �� �� �4249:06Î�3182:56Ĵþ865:578K̂

� �
¼ 0:00775859Î�0:0119792Ĵ�0:00595901K̂ km=sð Þ
we get
v¼ 0:253698Î�0:963737Ĵ�0:443114K̂
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{vm

þ 0:00775859Î�0:0119792Ĵ�0:00595901K̂
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ωm�rrel

þ �0:929814Îþ1:35043Ĵþ0:400866K̂
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{vrel
or
v¼�0:668357Îþ0:374711Ĵ�0:0482070K̂ km=sð Þ
v¼ 0:767746km=s
Repeating the calculations of r in Steps III.1 through III.9 for a sufficient number of times

between t2 = � 15.81h and t3 = + 15.81h and “connecting the dots” yields the three-

dimensional trace of the position vector r within the moon’s SOI, relative to the earth. This is

the portion of the curve in Fig. 9.12 between “Enter SOI” and “Exit SOI”.
IV. Determine the spacecraft’s geocentric orbit upon departing the SOI after a lunar flyby.

1. Evaluate the geocentric equatorial state vector (r3,v3) at t3 (the SOI exit), and use Algorithm

4.2 to determine the geocentric orbital elements of the lunar departure trajectory.

2. If earth is the return target, determine the delta-v required for an acceptable perigee. In this

particular case, an in-track delta-v of –0.1225 km/s is required upon exiting the SOI to

establish the return trajectory shown in Fig. 9.12. Just after that maneuver the state vector is
r3 ¼�357,478Î�77,874:4Ĵ�16,825:7K̂ kmð Þ r3 ¼ 366,249km

v3 ¼ 0:0700313Îþ0:0736792Ĵ�0:1821388K̂ km=sð Þ v3 ¼ 0:208585km=s



FIG. 9.12

Translunar injection followed by translunar coast, lunar flyaround, and transearth return.
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and the orbital elements are
θ3 ¼ 180:802° e3 ¼ 0:965378 h3 ¼ 71,192:1km2=s

i3 ¼ 107:059° Ω3 ¼ 13:0981° ω3 ¼ 1:95243
Upon return to earth, the perigee altitude is 91.65km, and its right ascension and declination

are αp = 12.52° and δp = 1.866°, respectively.
9.5 LUNAR TRAJECTORIES BY NUMERICAL INTEGRATION
In this section we will put aside the notion of sphere of influence and assume that a spacecraft moving

within the earth–moon environment is always attracted to both bodies. For simplicity, we ignore the

gravity of the sun as well as that of all other members of the solar system. This leaves us with a three-

body system, as illustrated in Fig. 9.13.

The equations of motion of each member of a three-body system are given in Appendix C. As

shown in Fig. 9.13, we choose the geocentric equatorial frame as our inertial reference and denote

the position vector of the spacecraft by r. According to Section 10.10, it follows from Eq. (C.2) that

the equation of motion of the spacecraft relative to the earth is Eq. (2.22), with a term p added to ac-

count for the acceleration due to lunar gravity. Thus,

€r¼�μe
r

r3
þp (9.57)



FIG. 9.13

Three-body system of earth, moon, and spacecraft.
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where μe is earth’s gravitational parameter. The moon’s gravitational parameter μm appears in the term

p¼ μm
rm=s

rm=s3
� rm

rm3

� �
(9.58)

As shown in Fig. 9.13, rm is the position vector of the moon relative to the earth. rm/s is the position

vector of the moon relative to the spacecraft, so that

rm=s ¼ rm�r (9.59)

rm is obtained from an accurate lunar ephemeris, as discussed in Section 9.3. Therefore, unlike the

circular restricted three-body problem in Section 2.12, we assume neither that the moon’s orbit around

the earth is circular nor that it is coplanar with the spacecraft’s.

To numerically integrate Eq. (9.57), we follow the procedure introduced in Section 1.8 and rewrite

the second-order differential equation as a system of first-order differential equations. To that end, let

y1 ¼ r (9.60a)

y2 ¼ _r (9.60b)

y1 and y2, the position and velocity vectors, form the state vector of the spacecraft,

y¼ y1
y2

	 

(9.61)

It follows from Eqs. (9.60a) and (9.60b) that

_y1 ¼ y2
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Differentiating Eq. (9.60b) and substituting Eq. (9.57) along with r = y1, we find

_y2 ¼�μe
r

r3
þp¼�μe

y1

y1k k3þp

Using Eqs. (9.58), (9.59), and (9.60a), the expression for the lunar gravitational acceleration p becomes

p¼ μm
rm tð Þ�y1

rm tð Þ�y1k k3�
rm tð Þ
rm tð Þ3

 !

In summary, the two first-order, nonlinear differential equations of motion are

_y1 ¼ y2

_y2 ¼�μe
y1

y1k k3þμm
rm tð Þ�y1

rm tð Þ�y1k k3�
rm tð Þ
rm tð Þ3

 !

This system of equations may be written more compactly in the standard form

_y¼ f t, yð Þ (9.62)

where the components of the state vector y are found in Eq. (9.61) and the rate functions f are

f t, yð Þ¼
y2

�μe
y1

y1k k3þμm
rm tð Þ�y1

rm tð Þ�y1k k3�
rm tð Þ
rm tð Þ3

 !8><>:
9>=>;

Keep in mind that the lunar position vector rm(t), obtained from an ephemeris, is a known function

of time.

Any of the well-known numerical integrators designed to solve Eq. (9.62), such as those described

in Section 1.8, can be brought to bear upon the problem of determining a lunar trajectory from the initial

conditions in low earth orbit.
EXAMPLE 9.3
A spacecraft in low earth orbit is launched on a ballistic lunar trajectory so as to arrive at the moon onMay 4, 2020, at 12:00

UT after a 3-day flight. The conditions at TLI are (see Fig. 4.5)

Altitude: z = 320 km

Right ascension: α = 90°
Declination: δ = 15°
Flight path angle: γ = 40°
Speed: v = 10.8267km/s

If the objective is to simply fly around the moon, determine the perilune altitude, and find the location of the spacecraft

5.67 days after perilune passage.

Solution
From Eqs. (4.4) and (4.5) the geocentric equatorial position vector of the spacecraft at TLI is

r0 ¼ r0 cosδcosαÎþ cosδsinαĴþ sinδK̂
� �

¼ 6378þ320ð Þ cos15°cos90°Îþ cos15°sin90°Ĵþ sin15°K̂
� �

¼ 6469:77Ĵþ1733:57K̂ kmð Þ
(a)

Substituting y = 2020, m = 5, d = 4, and UT = 12 into Eqs. (5.47) and (5.48) yields the Julian day of the arrival time,

JD¼ 2,458,974days
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This together with Eqs. (9.54) and (9.55) determines the moon’s geocentric equatorial position vector rm three days after

TLI,

rm ¼�358,887Î�32,072:3Ĵþ18,358:9K̂ kmð Þ
rm ¼ 360,785km

Both of the position vectors r0 and rm define the initial plane of the translunar trajectory, which means that the unit normal

ŵ to that orbital plane may be found by normalizing the cross product of r0 into rm,

ŵ¼ r0�rm

r0�rmk k¼ 0:0723516Î�0:258141Ĵþ0:963394K̂

The unit vector ûr in the direction of r0 is

ûr ¼ r0

r0
¼ 0:965926Ĵþ0:248819K̂

Let û?be the unit vector that is normal to both of the orthogonal vectors ûr and ŵ and therefore lies in the plane of the

translunar trajectory. û? is simply the cross product of the unit vector ŵ into the unit vector ûr ,

û? ¼ ŵ� ûr ¼�0:997379Î�0:0187260Ĵþ0:0698863K̂

The radial and transverse components of the TLI velocity v0 are found from the initial speed v0 and the flight path angle γ

vr0 ¼ v0 sinγ v?0
¼ v0 cosγ

Therefore, the velocity vector v0 may be written

v0 ¼ v0 sinγûr þv0 cosγû?

¼ 10:8267sin40° 0:965926Ĵþ0:248819K̂
� �

þ10:8267cos40° �0:997379Î�0:0187260Ĵþ0:0698863K̂
� �

or

v0 ¼�8:27203Îþ6:56685Ĵþ2:38082K̂ km=sð Þ (b)

The initial value of the state vector y in Eq. (9.61) comprises r0 and v0, as given here in Eqs. (a) and (b).

Starting with the state vector y0 at time t0 and using Simpson’s ephemeris for the moon (Section 9.3), we numerically

integrate Eq. (9.62) to obtain the values yi of the state vector at n discrete times ti between t0 and the final time tf. Using

MATLAB’s ode45with t0 = 0 and tf = 5.667 days, and with both the relative and absolute tolerances set to 10�10, we obtain

the free return trajectory shown in Fig. 9.14.
. 9.14

llistic lunar flyaround trajectory obtained from numerical integration of the restricted three-body equations of

otion.
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It may be convenient to view the motion from a noninertial xyz framewith origin at the center of the earth, but having an

x axis that always points to the moon. The x axis is therefore defined by the moon’s instantaneous position vector rm.

The z axis lies in the direction of the normal to the moon’s orbital plane, which is defined by the cross product rm � vm,

where vm is the moon’s instantaneous velocity. The y axis is normal to the x and the z axes, according to the right-hand rule.
The instantaneous unit vectors î, ĵ, and k̂ of the rotating frame are therefore obtained from rm and vm as follows:

î¼ rm

rm
k̂¼ rm�vm

rm�vmk k ĵ¼ k̂� î (c)

As we know from Chapter 4, the direction cosine matrix [Q]Xx of the transformation from the geocentric equatorial XYZ
frame to the rotating moon-fixed xyz frame is

Q½ �Xx ¼
iX iY iZ
jX jY jZ
kX kY kZ

24 35
where the rows of this matrix comprise the components of each rotating unit vector in Eq. (c) along the axes of the inertial

frame. Thus, if the coordinates of a point in the geocentric inertial frame are bX Y Zc, then the coordinates of that same

point in the moon-fixed frame are x y zb c, where
x
y
z

8<:
9=;¼ Q½ �Xx

X
Y
Z

8<:
9=;

Applying this transformation to each point of the spacecraft andmoon trajectories in Fig. 9.14 yields the trajectory shown in

Fig. 9.15, in which the moon simply oscillates between the points on the x axis defined by the perigee and apogee of its

noncircular orbit.

The MATLAB listing of the code for this example is found in Appendix D.38.

FIG. 9.15

The lunar trajectory of Fig. 9.14 viewed relative to the rotating earth-centered frame whose x axis is the

earth-moon line.



FIG. 9.16

Variation of inclination with distance from the moon for the orbit of Fig. 9.14.
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The curve in Fig. 9.14 is not a Keplerian orbit because it results from the gravitational force of not

one, but two bodies (the earth and the moon) on the spacecraft. Therefore, the trajectory does not lie in a

single plane. Instead, each point of the trajectory has its own osculating plane, which is defined by the
velocity and acceleration vectors of that point (see Fig. 1.9). The unit normal b̂ to the osculating plane is

called the binormal. The binormal of each point of the orbit is found by means of the cross product

operation,

b̂¼ v�a

v�ak k (9.63)

Knowing the binormal, we can find the local inclination i,

i¼ cos�1 b̂Z
� �

(9.64)

just as we used Eq. (4.7) for the inclination of Keplerian orbits, in which case ĥ and b̂ coincide. Plotting

Eq. (9.64) for the trajectory of Fig. 9.14, from TLI to perilune, yields Fig. 9.16, in which rms is the
distance between the probe and the moon’s center and RS is the radius of the moon’s SOI (Eq. 9.9).

Fig. 9.16 shows that the inclination is steady at about 18° for most of the early part of the trajectory,

so that the orbit is prograde relative to the earth. However, as the probe nears SOI, the inclination in-

creases dramatically, soon exceeding 90°, at which point the orbit becomes retrograde, with the probe

beginning to curve to the right, eventually passing behind the moon to reach perilune.



475PROBLEMS
PROBLEMS

Section 9.2

9.1 A spacecraft in a circular 160-km earth orbit, coplanar with that of the moon, is launched at perigee

onto an elliptical trajectory whose apogee lies on the moon’s SOI. Calculate the Δv required to

boost the spacecraft onto this trajectory.
{Ans.: 3.122 km/s}
9.2 If δ = 5° at the patch point, determine the eccentricity e and the relative speed v2 required for the

perilune altitude to be 100 km.
{Ans.: e = 1.164; v2 = 0.7653km/s}
9.3 At the patch point, v2 = 0.7km/s, λ = 30°, and δ = � 15°. Calculate the angle λp between the earth-
moon line and perilune.
{Ans.: 101.4° clockwise}

9.4 Perilune of a lunar approach trajectory is 250 km. If v2 = 0.5km/s, calculate the required value of δ

and the Δv at perilune required to place the probe in a circular prograde lunar orbit.
{Ans.: δ = � 7.745°, Δv = � 673m/s}
9.5 A spacecraft is launched from a circular earth orbit of 300 km altitude onto a Hohmann transfer

trajectory to Mars.
(a) What is the burnout speed relative to the earth?

(b) How long does it take the probe to reach the moon’s orbit on its way to Mars?

(c) What is the speed of the probe relative to the earth when it crosses the moon’s orbit?

(d) Through what angle does the moon move in the time it takes for the probe to coast to

lunar orbit?

{Ans.: (a) 11.04 km/s; (b) 40.51 h; (c) 2.15 km/s; (d) 22.1°}

9.6 A lunar probe in a prograde translunar trajectory arrives at the moon’s SOI with λ = 0°. Its speed

and flight path angle relative to the earth are 0.7 km/s and 45°, respectively.

(a) Find the perilune radius.

(b) How long does the probe remain within the SOI?

{Ans.: (a) 45,177 km; (b) 39 h}
9.7 In Fig. 9.2, the altitude of TLI is 320 km, its right ascension to the earth-moon line is α0 = 37°, and
the flight path angle is γ0 = 10°. If λ = 45°, use the patched conic method to find the perilune

altitude for a ballistic, coplanar translunar trajectory. Assume the moon’s orbit is circular.
{Ans.: 202.3 km}
9.8 In Fig. 9.2, the following are given: TLI altitude = 185 km, α0 = 20°, γ0 = 17.18°, and λ = � 60°.
Use the patched conic method to find the perilune altitude for a ballistic, coplanar translunar

trajectory, assuming the moon’s orbit is circular.
{Ans.: 491.2 km}
Section 9.3
9.9 Use Simpson’s lunar ephemeris to find, for November 2034:
(a) The day and the UT of the moon’s perigee.

(b) The perigee’s distance.

(c) The perigee’s right ascension and declination.

{Partial Ans.: (b) 357,400 km}
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9.10 Find the radial speed of the moon on April 30, 2025, at 06:00:00 UT.
{Ans.: 56.7 m/s}
9.11 Verify the entries in the last column of Table 9.1.

Section 9.4
9.12 A lunar probe is launched on a ballistic lunar flyaround trajectory from an earth altitude of

180 km with a flight path angle of γ0 = 13°. TLI is located at right ascension α0 = 42° and
declination δ0 = 9°. Upon reaching the moon’s SOI the phase angle between earth and the probe

is λ = 47°, and the moon’s geocentric state vector is

rmoon ¼�387,639Î�4443:51Ĵþ11,750:5K̂ kmð Þ
vmoon ¼�0:0603414Î�0:955154Ĵ�0:321928K̂ km=sð Þ
(a) Show that the path around the moon is retrograde and find.

(b) Find the perilune altitude .

(c) Determine the flight time from TLI to perilune.

{Ans.: (b) 71.2 km; (c) 3.20 days}
9.13 At TLI the geocentric state vector of a ballistic lunar probe is

r0 ¼ 3340:59Îþ5346:06Ĵþ1807:63K̂ kmð Þ
v0 ¼�6:97237Îþ7:92687Ĵþ3:09093K̂ km=sð Þ
From TLI to the moon’s SOI requires 44.101 h. If the moon’s state vector at SOI encounter is the

same as in Problem 9.11, calculate

(a) The lunar arrival angle λ.
(b) The additional time required to reach perilune.

(c) The perilune altitude.

{Ans.: (a) 31°; (b) 12.14 h; (c) 73.5 km}
9.14 At TLI the geocentric state vector of a ballistic lunar probe is

r0 ¼�5716:11Î�3168:49Ĵ�571:785K̂ kmð Þ
v0 ¼ 3:95652Î�9:76084Ĵ�2:91477K̂ km=sð Þ
It arrives at the lunar SOI with a phase angle of λ = 61° when the moon’s state vector is
rmoon ¼ 359,880Î�9215:13Ĵ�21,798:5K̂ kmð Þ
vmoon ¼ 0:068456Îþ1:03141Ĵþ0:35269K̂ km=sð Þ
Calculate the perilune altitude.

{Ans.: 100.4 km}
Section 9.5
9.15 A lunar probe is launched on a ballistic trajectory to reach the moon onMay 4, 2020, at 12:00 UT

after a 3-day flight from TLI to perilune. The conditions at TLI are:
Altitude: z = 180 km

Right ascension: α = 70°
Declination: δ = 20°



477REFERENCES
Flight path angle: γ = 30°
Speedv = 10.9395 km/s

Determine the perilune altitude and show that the path around the moon is retrograde.

{Ans.: 205 km}
9.16 A lunar probe is launched on a ballistic trajectory to reach the moon on June 13, 2035, at 12:00

UT after a 3.3-day flight from TLI to perilune. The conditions at TLI are:
Altitude: z = 180 km

Right ascension: α = 65°
Declination: δ = 25°
Flight path angle: γ = 30°
Speed v = 10.9472 km/s

Determine the perilune altitude and show that the path around the moon is retrograde.

{Ans.: 174 km. Trajectory becomes retrograde at 2.4 days after TLI}
9.17 Show that Eq. (9.63) becomes b̂¼ h=h for a Keplerian orbit.
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CHAPTER
INTRODUCTION TO ORBITAL
PERTURBATIONS
 10
10.1 INTRODUCTION
Keplerian orbits are the closed-form solutions of the two-body equation of relative motion (Eq. 2.22),

€r¼�μ r

r3
(10.1)

This equation is based on the assumption that there are only two objects in space, and that their spher-

ically symmetric gravitational fields are the only source of interaction between them. Any effect that

causes the motion to deviate from a Keplerian trajectory is known as a perturbation. Common pertur-

bations of two-body motion include a nonspherical central body, atmospheric drag, propulsive thrust,

solar radiation pressure, and gravitational interactions with celestial objects like the moon and the sun.

To account for perturbations, we add a term p to the right-hand side of Eq. (10.1) to get

€r¼�μ r

r3
+p (10.2)

The vector p is the net perturbative acceleration from all sources other than the spherically symmetric

gravitational attraction between the two bodies. The magnitude of p is usually small compared with the

primary gravitational acceleration a0 ¼ μ/r2. An exception is atmospheric drag which, at an altitude of

about 100 km, is large enough to deorbit a satellite. The drag effect decreases rapidly with altitude and

becomes negligible (pdrag < 10�10a0) above 1000 km. The other effects depend on the altitude to var-

ious extents or, in the case of solar radiation pressure, not at all. At 1000 km altitude, their disturbing

accelerations in decreasing order are (Fortescue et al., 2011; Montenbruck and Eberhard, 2000)

pearth’s oblateness � 10�2a0
plunar gravity� psolar gravity� 10�7a0
psolar radiation � 10�9a0

(10.3)

Starting with a set of initial conditions (r0,v0) and the functional form of the perturbation p, we can

numerically integrate Eq. (10.2) to find the position r and velocity v at any time thereafter. The classical

orbital elements at any instant are then furnished by Algorithm 4.2. Conversely, we can numerically

integrate what are known as Lagrange’s planetary equations to obtain the orbital elements instead of the

state vector as functions of time. From the orbital elements, we obtain the state vector (r,v) at any in-

stant by using Algorithm 4.5.
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00010-6
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We start this chapter with a look at the concept of osculating orbits and the two classical techniques

for numerically integrating Eq. (10.2) (namely, Cowell’s method and Encke’s method). These methods

are then used to carry out special perturbations analyses of the effects of atmospheric drag and the

earth’s oblateness. Next, we discuss the method of variation of parameters, which is familiar to all stu-

dents of a first course in differential equations. The method is applied to the solution of Eq. (10.2) to

obtain the conditions that are imposed on the osculating elements of a perturbed trajectory. These con-

ditions lead to Lagrange’s planetary equations, a set of differential equations, that govern the time var-

iation of the osculating orbital elements. A variant of Lagrange’s planetary equations, Gauss’

variational equations, will be derived in detail and used for our special perturbations analyses in the

rest of this chapter. We will employ Gauss’ variational equations to obtain the analytical expressions

for the rates of change of the osculating elements. For geopotential perturbations, the method of av-

eraging will be applied to these equations to smooth out the short-period variations, leaving us with

simplified formulas for only long-term secular variations. The chapter concludes with applications

of Gauss’ variational equations to the special perturbations analysis of the effects of solar radiation

pressure, lunar gravity, and solar gravity.
10.2 COWELL’S METHOD
Philip H. Cowell (1870–1949) was a British astronomer whose name is attached to the method of direct

numerical integration of Eq. (10.2). Cowell’s work at the turn of the 20th century (e.g., predicting the

time of the closest approach to the sun of Halley’s Comet upon its return in 1910) relied entirely on

hand calculations to numerically integrate the equations of motion using classical methods dating from

Isaac Newton’s time. Today, of course, we have high-speed digital computers on which modern, ex-

tremely accurate integration algorithms can be easily implemented. A few of these methods were pre-

sented in Section 1.8.

We used Cowell’s method in Chapter 2 to integrate the three-body equations (derived in Appendix

C) for the particular scenario depicted in Figs. 2.4 and 2.5. In Section 6.10, we set p ¼ (T/m)(v/v) in
Eq. (10.2) to simulate tangential thrust, and then we numerically integrated the ordinary differential

equations to obtain the results in Example 6.15 for a high-thrust situation and in Example 6.17 for

a low-thrust application.

Upon solving Eq. (10.2) for the state vector of the perturbed path at any time t, the orbital elements

may be found by means of Algorithm 4.2. However, these orbital elements describe the osculating
orbit, not the perturbed orbit. The osculating orbit is the two-body trajectory that would be followed

after time t if at that instant the perturbing acceleration p were to suddenly vanish, thereby making

Eq. (10.1) valid. Since the state vectors of both the perturbed orbit and the osculating orbit are identical

at time t, the two orbits touch and are tangential at that point. (It is interesting to note that osculate has
its roots in the Latin word for kiss.) Every point of a perturbed trajectory has its own osculating

trajectory.

We illustrate the concept of osculating orbits in Fig. 10.1, which shows the earth orbit of a space-

craft containing an onboard rocket engine that exerts a constant tangential thrust T starting at O. The
continuous addition of energy causes the trajectory to spiral outward away from the earth. The thrust is

the perturbation that forces the orbit to deviate from a Keplerian (elliptical) path. If at time t1 the engine



FIG 10.1

Osculating orbits 1 through 4 corresponding to times t1 through t4, respectively, on the powered, spiral trajectory

that starts at point O. The circled labels are centered at each orbit’s apogee.
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were to shut down, then the spacecraft would enter the elliptical osculating orbit 1 shown in the figure.

Also shown are the osculating orbits 2, 3, and 4 at times t2, t3, and t4. Observe that the thruster not only
increases the semimajor axis but also causes the apse line to rotate counterclockwise, in the direction of

the orbital motion.
10.3 ENCKE’S METHOD
In the method developed originally by the German astronomer Johann Franz Encke (1791–1865), the
two-body motion due solely to the primary attractor is treated separately from that due to the pertur-

bation. The two-body osculating orbit rosc(t) is used as a reference orbit upon which the unknown de-

viation δr(t) due to the perturbation is superimposed to obtain the perturbed orbit r(t).
Let (r0,v0) be the state vector of an orbiting object at time t0. The osculating orbit at that time is

governed by Eq. (10.1),

€rosc¼�μrosc
r3

(10.4)

with the initial conditions rosc(t0) ¼ r0 and vosc(t0) ¼ v0. For times t > t0, the state vector (rosc,vosc) of
the osculating, two-body trajectory may be found analytically using Lagrange’s coefficients (Eqs. 3.67

and 3.68),

rosc tð Þ ¼ f tð Þr0 + g tð Þv0
vosc tð Þ¼ _f tð Þr0 + _g tð Þv0 (10.5)



FIG 10.2

Perturbed and osculating orbits.
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After the initial time t0, the perturbed trajectory r(t) will increasingly deviate from the osculating path

rosc(t), so that, as illustrated in Fig. 10.2,

r tð Þ¼ rosc tð Þ+ δr tð Þ (10.6)

Substituting rosc ¼ r � δr into Eq. (10.4) and setting δa¼ δ€r yields

δa¼€r+ μ
r�δr

r3

We may then substitute Eq. (10.2) into this expression to get

δa¼�μ r

r3
+ μ

r�δr

rosc3
+ p¼� μ

rosc3
δr+ μ

1

rosc3
� 1

r3

� �
r+p

A final rearrangement of the terms leads to

δa¼� μ

rosc3
δr� 1� rosc

3

r3

� �
r

� �
+ p (10.7)

As is evident from Fig. 10.3, rosc and r may become very nearly equal, in which case accurately cal-

culating the difference F ¼ 1 � (rosc/r)
3 can be problematic for a digital computer. In that case, we

refer to Appendix F to rewrite Eq. (10.7) as

δa¼�μ δr�F qð Þ½ �=r3osc +p
where q ¼ δr � (2r � δr)/r2, and F(q) is given by Eq. (F.3).

Recall that p is the perturbing acceleration, which is a known function of time. In Encke’s method,

we integrate Eq. (10.7) to obtain the deviation δr(t). This is added to the osculating motion rosc(t) to
obtain the perturbed trajectory from Eq. (10.6). If at any time the ratio δr/r exceeds a preset tolerance,
then the osculating orbit is redefined to be that of the perturbed orbit at time t. This process, which is

called rectification, is illustrated in Fig. 10.3.

The following is an implementation of Encke’s method in which rectification occurs at the begin-

ning of every time stepΔt. Other implementations may be found in textbooks such as Bate et al. (1971)

(Section 9.3), Vallado (2007) (Section 8.3), and Schaub and Junkins (2009) (Section 10.2).



FIG. 10.3

Resetting the reference orbit at time tR.

48310.4 ATMOSPHERIC DRAG
ALGORITHM 10.1

Given the functional form of the perturbing acceleration p, and the state vector components r0 and v0
at time t, calculate r and v at time t + Δt.

1. Set δr ¼ 0 and δv ¼ 0.
2. For the time span t to t + Δt, execute Algorithm 1.3 (or another numerical integration

procedure), with y ¼ bδr δvcT and f¼ δv δab cT , to obtain δr(t + Δt) and δv(t + Δt). At each
step i of the numerical integration from t to t + Δt:

(a) δri and δvi are available from the previous step.

(b) Compute rosci and vosci from r0 and v0 using Algorithm 3.4.

(c) Compute ri ¼ rosci + δri from Eq. (10.6).

(d) Compute vi ¼ vosci + δvi.
(e) Compute δai from Eq. (10.7).

(f) δvi and δai are used to furnish δr and δv for the next step of the numerical integration.
3. r0 r(t + Δt) and v0 v(t + Δt). (Rectification)

10.4 ATMOSPHERIC DRAG
For the earth, the commonly accepted altitude at which space “begins” is 100 km (60 miles). Although

over 99.9999% of the earth’s atmosphere lies below 100 km, the air density at that altitude is never-

theless sufficient to exert drag and cause aerodynamic heating on objects moving at orbital speeds.

(Recall from Eq. 2.63 that the speed required for a circular orbit at 100 km altitude is 7.8 km/s.)

The drag will lower the speed and the height of a spacecraft, and the heating can produce temperatures

of 2000°C or more. A spacecraft will likely burn up unless it is protected with a heat shield. Note that

the altitude (entry interface) at which the thermally protected space shuttle orbiter entered the atmo-

sphere on its return from space was considered to be 120 km.



FIG. 10.4

US Standard Atmosphere 1976: density versus attitude.
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There are a number of models that describe the variation of atmospheric properties with altitude

(AIAA, 2010). One of them is USSA76, the US Standard Atmosphere 1976 (NOAA/NASA/USAF,

1976). Fig. 10.4 shows the US Standard Atmosphere density profile from sea level to an altitude of

1000 km. This figure was obtained by selecting the density ρi at 28 altitudes zi in the USSA76 table

and interpolating between them with the exponential functions ρ(z) ¼ ρi exp [�(z � zi)/Hi], where

zi � z < zi+1, and Hi ¼ (zi+1 � zi)/ ln (ρi+1/ρi). The simple procedure is implemented in the MATLAB

function atmosphere.m, which is listed in Appendix D.39. For several equispaced altitudes (kilome-

ters), atmosphere.m yields the following densities (kilograms per cubic meter):

>>

z = logspace(0,3,6);

for i = 1:6

altitude = z(i);

density = atmosphere(z(i));

fprintf(‘%12.3f km %12.3e kg/m 3̂\n’, altitude, density)

end

1.000 km 1.068e+00 kg/m^3

3.981 km 7.106e–01 kg/m^3

15.849 km 1.401e–01 kg/m^3
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63.096 km 2.059e–04 kg/m^3

251.189 km 5.909e–11 kg/m^3

1000.000 km 3.561e–15 kg/m^3

>>

According to USSA76, the atmosphere is a spherically symmetric 1000-km-thick gaseous shell sur-

rounding the earth. Its properties throughout are steady state and are consistent with a period of mod-

erate solar activity. The hypothetical variation of properties with altitude approximately represents the

year-round conditions at midlatitudes averaged over many years. Themodel provides realistic values of

atmospheric density that, however, may not match the actual values at a given place or time.

Drag affects the life of an orbiting spacecraft. Sputnik 1, the world’s first artificial satellite, had a

perigee altitude of 228 km, where the air density is about five orders of magnitude greater than at its

apogee altitude of 947 km. The drag force associatedwith repeated passage through the thicker air even-

tually robbed the spherical, 80-kg Sputnik of the energy needed to stay in orbit. It fell from orbit and

burned up on January 4, 1958, almost 3 months to the day after it was launched by the Soviet Union.

Soon thereafter, on January 31, the United States launched its first satellite, the cylindrical, 14-kg Ex-

plorer 1, into a 358-km-by-2550-km orbit. In this higher orbit, Explorer experienced less drag than Sput-

nik, and it remained in orbit for 18 years. The current International Space Station’s nearly circular orbit

is about 400 km above the earth. At that height, drag causes orbital decay that requires frequent reboosts,

usually provided by the propulsion systems of visiting supply vehicles. The altitude of theHubble Space

Telescope’s circular orbit is 560 km, and it is also degraded by drag. Between 1993 and 2009, space

shuttle orbiters visited Hubble five times to service it and boost its orbit. With no propulsion system

of its own, the venerable Hubble is expected to deorbit around 2025, 35 years after it was launched.

If the inertial velocity of a spacecraft is v and that of the atmosphere at that point is vatm, then the

spacecraft velocity relative to the atmosphere is

vrel¼ v�vatm (10.8)

If the atmosphere rotates with the earth, whose angular velocity is ωE, then relative to the origin O of

the geocentric equatorial frame, vatm¼ωE� r, where r is the spacecraft position vector. Thus,

vrel¼ v�ωE�r (10.9)

Since the drag force D on an object acts in the direction opposite to the relative velocity vector, we

can write

D¼�Dv̂rel (10.10)

where v̂rel¼ vrel=vrel is the unit vector in the direction of the relative velocity, and

D¼ 1

2
ρv2relCDA (10.11)

where ρ is the atmospheric density, A is the frontal area of the spacecraft (the area normal to the relative

velocity vector), and CD is the dimensionless drag coefficient. If the mass of the spacecraft is m, then
the perturbing acceleration due to the drag force is p ¼ D/m, so that

p¼�1
2
ρvrel

CDA

m

� �
vrel (10.12)
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There apparently is no universal agreement on the name of the quantity in parentheses. We will call it

the ballistic coefficient,

B¼CDA

m
(10.13)

The reader may encounter alternative definitions of the ballistic coefficient, such as the reciprocal,

m/(CDA).
EXAMPLE 10.1
A small spherical earth satellite has a diameter of 1 m and a mass of 100 kg. At a given time t0, its orbital parameters are

Perigee radius: rp¼ 6593km 215kmaltitudeð Þ
Apogee radius: ra¼ 7317km 939kmaltitudeð Þ
Right ascension of the ascending node: Ω¼ 340°
Inclination: i¼ 65:1°
Argument of perigee: ω¼ 58°
True anomaly: θ¼ 332°

Assuming a drag coefficient of CD ¼ 2.2 and using the 1976 US Standard Atmosphere rotating with the earth, employ

Cowell’s method to find the time for the orbit to decay to 100 km. Recall from Eq. (2.67) that the angular velocity of

the earth is 72.9211(10�6)rad/s.

Solution
Let us first use the given data to compute some additional orbital parameters, recalling that for the earth, μ ¼ 398,

600 km3/s2:

Eccentricity: e¼ ra� rp
� �

= ra + rp
� � ¼ 0:052049

Semimajor axis: a¼ ra + rp
� �

=2 ¼ 6955km

Angular momentum: h¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa 1�e2ð Þp ¼ 52,580:1km2=s

Period: T¼ 2π
ffiffiffiffiffiffiffiffiffiffi
a3=μ

p ¼ 96:207min

Now we can use the six elements h, e, i, Ω, ω, and θ in Algorithm 4.5 to obtain the state vector (r0,v0) at the initial time,

relative to the geocentric equatorial frame,

r0¼ 5873:40Î�658:522Ĵ + 3007:49K̂ kmð Þ
v0 ¼�2:89641Î+ 4:94010Ĵ+ 6:14446K̂ km=sð Þ (a)

Referring to Section 1.8, we next write Eq. (10.2), a second-order differential equation in r, as two first-order ordinary

differential equations in r and _r ¼ vð Þ,

d

dt

r

v

( )
¼

v

a

( )
¼

v

�μ r

r3
+ ρ

8><>:
9>=>; (b)

The drag acceleration p is given by Eq. (10.12) along with Eq. (10.9). With Eq. (a) as the initial conditions, we can solve for

r and v on the time interval [t0, tf] using, for example, MATLAB’s built-in numerical integrator ode45. From the solution,

we obtain the satellite’s altitude, which oscillates with time between the extreme values at perigee and apogee. It is a simple

matter to extract just the extrema and plot them, as shown in Fig. 10.5, for t0 ¼ 0 and tf ¼ 120 days.

The orbit decays to 100km in 108days

Observe that the apogee starts to decrease immediately, whereas the perigee remains nearly constant until the very end.

As the apogee approaches perigee, the eccentricity approaches zero. We say that atmospheric drag tends to circularize an

elliptical orbit.



FIG. 10.5

Perigee and apogee versus time.
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The MATLAB script Example_10_01.m for this problem is located in Appendix D.40.
10.5 GRAVITATIONAL PERTURBATIONS
In Appendix E, we show that if the central attractor (e.g., the earth) is a sphere of radius Rwith a spher-

ically symmetric mass distribution, then its external gravitational potential field will be spherically

symmetric, acting as though all of the mass were concentrated at the center O of the sphere. The grav-

itational potential energy per unit mass (m ¼ 1 in Eq. E.10) is

V¼�μ
r

(10.14)

where μ ¼ GM, G is the universal gravitational constant, M is the sphere’s mass, and r is the distance
from O to a point outside the sphere (r > R). Here r is the magnitude of the position vector r, which, in

Cartesian coordinates centered at O, is given by

r¼ x̂i+ ŷj + zk̂



488 CHAPTER 10 INTRODUCTION TO ORBITAL PERTURBATIONS
Equipotential surfaces (those on which V is constant) are concentric spheres. The force on a unit mass

placed at r is the acceleration of gravity, which is given by a ¼ �rV, wherer is the gradient operator.

In Cartesian coordinates with the origin at O,

r¼ ∂

∂x
î+

∂

∂y
ĵ+

∂

∂z
k̂

� �
Thus, a ¼ �r(�μ/r), or

a¼ μ
∂ 1=rð Þ
∂x

î+
∂ 1=rð Þ
∂y

ĵ+
∂ 1=rð Þ
∂z

k̂

� �
¼� μ

r2
∂r

∂x
î+

∂r

∂y
ĵ+

∂r

∂z
k̂

� �
But

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
(10.15)

from which we can easily show that

∂r

∂x
¼ x

r

∂r

∂y
¼ y

r

∂r

∂z
¼ z

r
(10.16)

Therefore, we have the familiar result (cf. Eq. 2.22)

a¼�μ r

r3
(10.17)

As we first observed in Section 4.7, the earth and other spinning celestial bodies are not perfect

spheres. Many resemble oblate spheroids. For such a planet, the spin axis is the axis of rotational sym-

metry of its gravitational field. Because of the equatorial bulge caused by centrifugal effects, the grav-

itational field varies with the latitude as well as radius. This more complex gravitational potential is

dominated by the familiar point mass contribution given by Eq. (10.14), on which is superimposed the

perturbation due to oblateness.

It is convenient to use the spherical coordinate system shown in Fig. 10.6. The origin O is at the

planet’s center of mass, and the z axis of the associated Cartesian coordinate system is the axis of

rotational symmetry. (The rotational symmetry means that our discussion is independent of the choice

of Cartesian coordinate frame as long as each shares a common z axis.) r is the distance of a point P
from O, ϕ is the polar angle measured from the positive z axis to the radial, and θ is the azimuth angle

measured from the positive x axis to the projection of the radial onto the xy plane. Observe that

ϕ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
z

(10.18)

Since the gravitational field is rotationally symmetric, it does not depend on the azimuth angle θ. There-
fore, the gravitational potential may be written as

V r, ϕð Þ¼�μ
r
+Φ r, ϕð Þ (10.19)

where Φ is the perturbation of the gravitational potential due to the planet’s oblateness.

The rotationally symmetric perturbation Φ(r,ϕ) is given by the infinite series (Battin, 1999)

Φ r, ϕð Þ¼ μ

r

X∞
k¼2

Jk
R

r

� �k

Pk cosϕð Þ (10.20)



FIG. 10.6

Spherical coordinate system.

48910.5 GRAVITATIONAL PERTURBATIONS
where Jk are the zonal harmonics of the planet, R is its equatorial radius (R/r < 1), and Pk are the Le-

gendre polynomials (see below). The zonal harmonics are dimensionless numbers that are not derived

from mathematics but are inferred from observations of satellite motion around a planet, and they are

unique to that planet. The summation starts at k ¼ 2 instead of k ¼ 1 because J1 ¼ 0, due to the fact that

the origin of the spherical coordinate system is at the planet center of mass. For the earth, the next six

zonal harmonics are (Vallado, 2007)

J2¼ 0:00108263 J3¼�2:33936 10�3
� �

J2
J4¼�1:49601 10�3

� �
J2 J5¼�0:20995 10�3

� �
J2 Earth zonal harmonics

J6¼ 0:49941 10�3
� �

J2 J7¼ 0:32547 10�3
� �

J2

(10.21)

This set of zonal harmonics is clearly dominated by J2. For k > 7 the zonal harmonics all remain more

than three orders of magnitude smaller than J2.
The Legendre polynomials are named for the French mathematician Adrien-Marie Legendre

(1752–1833). The polynomial Pk(x) may be obtained from a formula derived by another French math-

ematician Olinde Rodrigues (1795–1851), as part of his 1816 doctoral thesis,

Pk xð Þ¼ 1

2kk!

dk

dxk
x2�1
� �k

Rodrigues’ formula (10.22)

UsingRodrigues’ formula,wecancalculate the first fewLegendrepolynomials that appear inEq. (10.20),

P2 xð Þ¼ 1

2
3x2�1
� �

P3 xð Þ¼ 1

2
5x3�3x
� �

P4 xð Þ¼ 1

8
35x4�30x2 + 3
� �

P5 xð Þ¼ 1

8
63x5�70x3 + 15x
� �

P6 xð Þ¼ 1

16
231x6�315x4 + 105x2�5
� �

P7 xð Þ¼ 1

16
429x7�693x5 + 315x3�35x
� � (10.23)



FIG. 10.7

Legendre polynomials P2 through P7.
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These are plotted in Fig. 10.7.

Since J2 is by far the largest zonal harmonic, we shall in the interest of simplicity focus only on its

contribution to the gravitational perturbation, thereby ignoring all but the J2 term in the series for

Φ(r,ϕ). In that case, Eq. (10.20) yields

Φ r, ϕð Þ¼ J2
2

μ

r

R

r

� �2

3cos2ϕ�1
� �

(10.24)

Observe that Φ ¼ 0 when cosϕ¼ ffiffiffiffiffiffiffiffi
1=3

p
, which corresponds to about �35° geocentric latitude. This

band reflects the earth’s equatorial bulge (oblateness). The perturbing acceleration is the negative of the

gradient of Φ,
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p¼�rΦ¼�∂Φ
∂x

î�∂Φ

Φy
ĵ�∂Φ

∂z
k̂ (10.25)

Noting that ∂Φ/∂θ ¼ 0, we have from the chain rule of calculus that

∂Φ

∂x
¼ ∂Φ

∂r

∂r

∂x
+
∂Φ

∂ϕ

∂ϕ

∂x

∂Φ

∂y
¼ ∂Φ

∂r

∂r

∂y
+
∂Φ

∂ϕ

∂ϕ

∂y

∂Φ

∂z
¼ ∂Φ

∂r

∂r

∂z
+
∂Φ

∂ϕ

∂ϕ

∂z
(10.26)

Differentiating Eq. (10.24), we obtain

∂Φ

∂r
¼�3

2
J2

μ

r2
R

r

� �2

3cos2ϕ�1
� �

∂Φ

∂ϕ
¼�3

2
J2
μ

r

R

r

� �2

sinϕcosϕ

(10.27)

Use Eq. (10.18) to find the required partial derivatives of ϕ:

∂ϕ

∂x
¼ xz

x2 + y2 + z2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + y2
p ¼ xz

r3 sinϕ

∂ϕ

∂y
¼ yz

x2 + y2 + z2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + y2
p ¼ yz

r3 sinϕ

∂ϕ

∂z
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
x2 + y2 + z2

¼ sinϕ

r

(10.28)

Substituting Eqs. (10.16), (10.27), and (10.28) into Eq. (10.26) and using the fact that cosϕ ¼ z/r leads
to the following expressions for the gradient of perturbing potential Φ:

∂Φ

∂x
¼�3

2
J2

μ

r2
R

r

� �2 x

r
5

z

r

	 
2
�1

� �
∂Φ

∂y
¼�3

2
J2

μ

r2
R

r

� �2 y

r
5

z

r

	 
2
�1

� �
∂Φ

∂z
¼�3

2
J2

μ

r2
R

r

� �2 z

r
5

z

r

	 
2
�3

� �
(10.29)

The perturbing gravitational acceleration p due to J2 is found by substituting these equations into

Eq. (10.25), yielding the vector

p¼ 3

2

J2μR2

r4
x

r
5
z2

r2
�1

� �̂
i+

y

r
5
z2

r2
�1

� �
ĵ+

z

r
5
z2

r2
�3

� �
k̂

� �
(10.30)

The perturbing accelerations for higher zonal harmonics may be evaluated in a similar fashion. Schaub

and Junkins (2009) (p. 553) lists the accelerations for J3 through J6.
Irregularities in the earth’s geometry and its mass distribution cause the gravitational field to vary

not only with latitude ϕ but with longitude θ as well. To mathematically account for this increased

physical complexity, the series expansion of the potential functionΦ in Eq. (10.19) must be generalized

to include the azimuth angle θ. As a consequence, it turns out that we can identify sectorial harmonics,
which account for the longitudinal variation over domains of the earth resembling segments of an



492 CHAPTER 10 INTRODUCTION TO ORBITAL PERTURBATIONS
orange. We also discover a tile-like patchwork of tesseral harmonics, which model how specific re-

gions of the earth deviate locally from a perfect, homogeneous sphere. Incorporating these additional

levels of detail into the gravitational model is essential for accurate long-term prediction of satellite

orbits (e.g., global positioning satellite constellations). For an in-depth treatment of this subject, includ-

ing the mathematical details, see Vallado (2007).
EXAMPLE 10.2
At time t ¼ 0, an earth satellite has the following orbital parameters:

Perigee radius: rp¼ 6678km 300kmaltitudeð Þ
Apogee radius: ra¼ 9940km 3062kmaltitudeð Þ
Right ascension of the ascending node: Ω¼ 45°

Inclination: i¼ 28°

Argument of perigee: ω¼ 30°

True anomaly: θ¼ 40°

Use Encke’s method to determine the effect of J2 perturbation on the variation of right ascension of the node, argument of

perigee, angular momentum, eccentricity, and inclination over the next 48 hours.

Solution
Using Fig. 2.18 along with Eqs. (2.83), (2.84), and (2.71), we can find other orbital parameters in addition to the ones given.

In particular, recalling that μ ¼ 398, 600 km3/s2 for the earth,

Eccentricity: e¼ ra� rp
� �

= ra + rp
� �¼ 0:17136

Semimajor axis: a¼ ra + rp
� �

=2¼ 8059km

Period: T¼ 2π
ffiffiffiffiffiffiffiffiffiffi
a3=μ

p ¼ 7200s 2hð Þ
Angular momentum: h¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μa 1�e2ð Þp ¼ 55,839km2=s

The six elements h, e, i,Ω, ω, and θ together with Algorithm 4.5 yield the state vector (r0,v0) at the initial time, relative to

the geocentric equatorial frame,

r0¼�2384:46Î + 5729:01Ĵ+ 3050:46K̂ kmð Þ
v0 ¼�7:36138Î�2:98997Ĵ+ 1:64354K̂ km=sð Þ

(a)

Using this state vector as a starting point, with t0 ¼ 0, tf ¼ 48 � 3600 s, and Δt ¼ (tf � t0)/1000, we enter the Encke pro-

cedure (Algorithm 10.1) with MATLAB’s ode45 as the numerical integrator to find r and v at each of the 1001 equally

spaced times. At these times, we then use Algorithm 4.2 to compute the right ascension of the node and the argument of

perigee, which are plotted in Fig. 10.8.

Fig. 10.8 shows that the J2 perturbation causes a drift in both Ω and ω over time. For this particular orbit, Ω
decreases whereas ω increases. We see that both parameters have a straight line or secular variation on which a small

or short-periodic variation is superimposed. Approximate average values of the slopes of the curves for Ω and ω are most
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simply found by dividing the difference between the computed values at tf and t0 by the time span tf � t0. In this way, we

find that

�_Ω ¼�0:172 deg=h (b)

�_ω ¼ 0:282 deg=h (c)

As pointed out in Section 4.7, the decrease in the node angle Ω with time is called regression of the node, whereas the

increase of argument of perigee ω with time is called the advance of perigee.

The computed time histories of h, e, and i are shown in Fig. 10.9. Clearly, none of these osculating elements shows a

secular variation due to the earth’s oblateness. They are all constant except for the short-periodic perturbations evident in all

three plots.

The MATLAB script Example_10_02.m for this problem is in Appendix D.41.

FIG. 10.8

Histories of the right ascension of the ascending node and the argument of perigee for a time span of 48 h.

The plotted points were obtained using Encke’s method.
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. 10.9

stories of the J2 perturbed angular momentum, eccentricity, and inclination for a time span of 48 h.
The results obtained in the above example follow from the specific initial conditions that we

supplied to the Encke numerical integration procedure. We cannot generalize the conclusions of this

special perturbation analysis to other orbits. In fact, whether or not the node line and the eccentricity

vector advance or regress depends on the nature of the particular orbit. We can confirm this by means of

repeated numerical analyses with different initial conditions. Obtaining formulas that describe pertur-

bation phenomena for general cases is the object of general perturbation analysis, which is beyond the

scope of this book. However, a step in that direction is to derive expressions for the time variations of

the osculating elements. These are Lagrange’s planetary equations or their variants, Gauss’ variational

equations. Both are based on the variation-of-parameters approach to solving differential equations.
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10.6 VARIATION OF PARAMETERS
For the two-body problem, the equation of motion (Eq. 2.22)

€r+ μ
r

r3
¼ 0 (10.31)

yields the position vector r as a function of time t and six parameters or orbital elements c,

r¼ f c, tð Þ (10.32)

where c stands for the set of six parameters (c1,c2, … ,c6). Keep in mind that the vector f has three

scalar components.
EXAMPLE 10.3
At time t0, the state vector of a spacecraft in two-body motion is br0 v0c. What is f(c, t) in this case?

Solution
The constant orbital elements c are the six components of the state vector,

c¼ r0 v0b c
By means of Algorithm 3.4, we find

r¼ f tð Þr0 + g tð Þv0 (a)

where the time-dependent Lagrange f and g functions are given by Eq. (3.69) (Examples 3.7 and 4.2). Thus,

f c, tð Þ¼ f tð Þr0 + g tð Þv0
As we know from Section 4.4, the orbital parameters that may alternatively be selected as the clas-

sical elements at time t0, are the longitude of the node Ω, inclination i, argument of periapse ω, eccen-
tricity e, angular momentum h (or semimajor axis a), and true anomaly θ (or the mean anomalyM or the

eccentric anomaly E). For t > t0, only the anomalies vary with time, a fact that is reflected by the pres-

ence of the argument t in f(c,t) above. As pointed out in Section 3.2, we could use time of periapse

passage tp as the sixth orbital parameter instead of true anomaly. The advantage of doing so in the pre-

sent context would be that tp is a constant for Keplerian orbits. (Up to now we have usually set that

constant equal to zero.)

The velocity v is the time derivative of the position vector r, so that from Eq. (10.32),

v¼ d

dt
f c, tð Þ¼ ∂

∂t
f c, tð Þ+

X6
α¼1

∂

∂cα
f c, tð Þdcα

dt
(10.33)

Since the orbital elements are constant in two-body motion, their time derivatives are zero,

dcα
dt
¼ 0 α¼ 1,…,6

Therefore, Eq. (10.33) becomes simply

v¼ ∂

∂t
f c, tð Þ Two�body motion (10.34)

We find the acceleration by taking the time derivative of v in Eq. (10.34) while holding c constant,

a¼ ∂
2

∂t2
f c, tð Þ Two�body motion
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Substituting this and Eq. (10.32) into Eq. (10.31) yields

∂
2

∂t2
f c, tð Þ + μ f c, tð Þ

f c, tð Þk k3¼ 0 (10.35)

A perturbing force produces a perturbing acceleration p that results in a perturbed motion rp for

which the equation of motion is

€rp + μ
rp

rp3
¼ p (10.36)

The variation-of-parameters method requires that the solution to Eq. (10.36) have the same mathemat-

ical form f as it does for the two-body problem, except that the six constants c in Eq. (10.32) are

replaced by six functions of time u(t), so that

rp¼ f u tð Þ, tð Þ (10.37)

where u(t) stands for the set of six functions u1(t), u2(t),… , u6(t). The six parameters u(t) are the orbital
elements of the osculating orbit that is tangent to rp at time t.

We find the velocity vector vp for the perturbed motion by differentiating Eq. (10.37) with respect to

time and using the chain rule,

vp¼ drp

dt
¼ ∂f u, tð Þ

∂t
+
X6
β¼1

∂f u, tð Þ
∂uβ

duβ
dt

(10.38)

For vp to have the same mathematical form as v for the unperturbed case (Eq. 10.34), we impose the

following three conditions on the osculating elements u(t):

X6
β¼1

∂f u, tð Þ
∂uβ

duβ
dt
¼ 0 (10.39)

Eq. (10.38) therefore becomes simply

vp¼ ∂f u, tð Þ
∂t

(10.40)

To find €rp, the acceleration of the perturbed motion, we differentiate the velocity vp with respect to

time. It follows from Eq. (10.40) that

€rp¼ dvp

dt
¼ ∂

2f u, tð Þ
∂t2

+
X6
β¼1

∂
2f u, tð Þ
∂uβ∂t

duβ
dt

(10.41)

Substituting Eqs. (10.37) and (10.41) into Eq. (10.36) yields

∂
2f u, tð Þ
∂t2

+
X6
β¼1

∂f2 u, tð Þ
∂uβ∂t

duβ
dt

+ μ
f u, tð Þ
f u, tð Þk k3¼ p (10.42)

But

∂
2f u, tð Þ
∂t2

+ μ
f u, tð Þ
f u, tð Þk k3¼ 0 (10.43)
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because the six osculating orbital elements u evaluated at any instant of time define a Keplerian orbit

for which Eq. (10.31) is valid. That means Eq. (10.42) reduces to

X6
β¼1

∂
2f u, tð Þ
∂uβ∂t

duβ
dt
¼ p (10.44)

These are three conditions on the six functions u(t) in addition to the three conditions listed above in

Eq. (10.39). If we simplify our notation by letting r ¼ f(u, t) and v ¼ ∂ f(u, t)/∂ t, then the six formulas

(Eqs. 10.39 and 10.44), respectively, become

X6
β¼1

∂r

∂uβ

duβ
dt
¼ 0 (10.45a)

X6
β¼1

∂v

∂uβ

duβ
dt
¼ p (10.45b)

These are the six osculating conditions imposed by the variation of parameters to ensure that the os-

culating orbit at each point of a perturbed trajectory is Keplerian (two body) in nature.

In matrix form, Eqs. (10.45) may be written as

L½ � _uf g¼ Pf g (10.46a)

where

L½ � ¼ ∂xi=∂uα
∂vi=∂uα

� �
_uf g¼ _uαf g Pf g¼ 0

pi

� �
i¼ 1,2,3

α¼ 1,2,…,6
(10.46b)

where [L] is the 6-by-6 Lagrangian matrix, and x1, x2, and x3 are the xyz components of the position

vector r in a Cartesian inertial reference. Likewise, v1, v2, and v3 are the inertial velocity components,

whereas p1, p2, and p3 are the xyz components of the perturbing acceleration. The solution of

Eqs. (10.46) yields the time variations of the osculating elements

_uf g¼ L½ ��1 Pf g (10.47)

An alternative straightforward manipulation of Eqs. (10.45) reveals that the Lagrange matrix [L] and

the acceleration vector {P} may be written as

L½ � ¼
X3
i¼1

∂xi
∂uα

∂vi
∂uβ
� ∂vi
∂uα

∂xi
∂uβ

� �" #
Pf g¼

X3
i¼1

pi
∂xi
∂uα

( )
α,β¼ 1,2,…,6 (10.48)

These are the forms attributable to Lagrange, and in that case Eqs. (10.48) are known as Lagrange’s

planetary equations. If the perturbing forces, and hence the perturbing accelerations, are conservative,

like gravity, then p is the spatial gradient of a scalar potential function R. That is,

pi¼ ∂R

∂xi
i¼ 1,2,3

It follows from Eqs. (10.48) that {P} is the gradient of a function of the orbital elements,

fPg¼
X3
i¼1

∂R

∂xi

∂xi
∂uα

( )
¼ ∂R

∂uα

� �
α¼ 1,2,…,6 (10.49)
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Lagrange’s planetary equations for the variation of the six classical orbital elements a, e, tp,Ω, i, and ω,
as derived by Battin (1999) and others, may be written as follows:

da

dt
¼�2a

2

μ

∂R

∂tp
(10.50a)

de

dt
¼�

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p ffiffiffiffiffiffiffiffi

μae
p ∂R

∂ω
�a 1�e2ð Þ

μe

∂R

∂tp
(10.50b)

dtp
dt
¼ 2a2

μ

∂R

∂a
+
a 1�e2ð Þ

μe

∂R

∂e
(10.50c)

dΩ
dt
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μa 1�e2ð Þsin ip ∂R

∂i
(10.50d)

di

dt
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μa 1�e2ð Þp 1

tan i

∂R

∂ω
� 1

sin i

∂R

∂Ω

� �
(10.50e)

dω

dt
¼� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μa 1�e2ð Þ tan ip ∂R

∂i
+

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p ffiffiffiffiffiffiffiffi

μae
p ∂R

∂e
(10.50f)

Lagrange’s planetary equations were obtained by writing the state vector components r and v in

terms of the orbital parameters u, then taking partial derivatives to form the Lagrangian matrix [L],

and finally inverting [L] to find the time variations of u, as in Eqs. (10.50). The more direct Gauss

approach is to obtain the orbital elements u from the state vector, as in Algorithm 4.2, and then dif-

ferentiate those expressions with respect to time to get the equations of variation. Gauss’ form of

Lagrange’s planetary equations relaxes the requirement for perturbations to be conservative and avoids

the lengthy though systematic procedure devised by Lagrange for computing the Lagrange matrix [L]

in Eq. (10.48). We will pursue the Gauss approach in the next section.
10.7 GAUSS’ VARIATIONAL EQUATIONS
Let u be an osculating element. Its time derivative is

du

dt
¼ ∂u

∂r
� dr
dt

+
∂u

∂v
� dv
dt

(10.51)

The acceleration dv/dt consists of the two-body part plus that due to the perturbation,

dv

dt
¼�μ r

r3
+p (10.52)

Therefore, Eq. (10.51) becomes

du

dt
¼ ∂u

∂r
� dr
dt

+
∂u

∂v
� �μ r

r3

	 

+
∂u

∂v
� p

or

du

dt
¼ du

dt

�
two-body

+
∂u

∂v
� p (10.53)
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Except for the true, mean, and eccentric anomalies, the Keplerian elements are constant, so that

du/dt)two-body ¼ 0, whereas

dθ

dt

�
two-body

¼ h

r2
(10.54)

dM

dt

�
two-body

¼ n (10.55)

dE

dt

�
two-body

¼ na

r
(10.56)

We usually do orbital mechanics and define the orbital elements relative to a Cartesian inertial

frame with origin at the center of the primary attractor. For earth-centered missions, we have employed

the geocentric equatorial frame extensively throughout this book. Although not necessary, it may be

convenient to imagine it as our inertial frame in what follows. The orthogonal unit vectors of the inertial

frame are Î, Ĵ, and K̂. As illustrated in Fig. 4.7, they form a right-hand triad, so that K̂¼ Î� Ĵ.

Another Cartesian inertial reference that we have employed for motion around a central attractor is

the perifocal frame, as illustrated in Fig. 2.29. The orthogonal unit vectors along its x, y, and z axes are
p̂, q̂, and ŵ, respectively. The unit vector p̂ (not to be confused with the perturbing acceleration p) lies

in the direction of the eccentricity vector of the orbiting body, ŵ is normal to the orbital plane, and q̂

completes the right-handed triad: ŵ¼ p̂� q̂. Eq. (4.48), repeated here, gives the direction cosine matrix

for the transformation from XYZ to xyz:

Q½ �Xx¼
�sinΩcos isinω+ cosΩcosω cosΩcos isinω+ sinΩcosω sin i sinω

�sinΩcos isinω + cosΩ sinω cosΩcos icosω+ sinΩsinω sin i cosω

sinΩsin i �cosΩsin i cos i

264
375 (10.57)

Ω, ω, and i are, respectively, the right ascension of the ascending node, argument of periapsis, and

inclination.

We have also made use of noninertial local vertical/local horizontal (LVLH) frames in connection

with the analysis of relative motion (see Fig. 7.1). It will be convenient to use such a reference for the

perturbation analysis in this section. The orthogonal unit vectors of this frame are r̂, ŝ, and ŵ. r̂ is di-

rected radially outward from the central attractor to the orbiting body and defines the direction of the

local vertical. As in the perifocal frame, ŵ is the unit vector normal to the osculating orbital plane of the

orbiting body. ŵ lies in the direction of the angular momentum vector h, so that ŵ¼ h=h. The trans-
verse unit vector ŝ (which we have previously denoted û?) is normal to both r̂ and ŵ and therefore

points in the direction of the orbiting body’s local horizon: ŝ¼ ŵ� r̂. The rsw and pqr frames are

illustrated in Fig. 10.10.

The transformation from pqw to rsw is simply a rotation about the normal ŵ through the true anom-

aly θ. According to Eq. (4.34), the direction cosine matrix for this rotation is

R3 θð Þ½ � ¼
cosθ sinθ 0

�sinθ cosθ 0

0 0 1

264
375

Therefore, the transformation from XYZ to rsw is represented by Q½ �Xr ¼ R3 θð Þ½ � Q½ �Xx. Carrying out

matrix multiplication and using the trig identities



FIG. 10.10

The perifocal pqw frame and the local vertical/local horizontal rsw frame. u is the argument of latitude.
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sin ω+ θð Þ¼ sinωcosθ + cosωsinθ

cos ω + θð Þ¼ cosωcosθ� sinωsinθ

leads to

Q½ �Xr ¼
�sinΩcos isinu+ cosΩcosu cosΩcos isinu+ sinΩcosu sin isinu
�sinΩcos isinu� cosΩsinu cosΩcos icosu� sinΩsinu sin icosu

sinΩsin i �cosΩsin i cos i

24 35 (10.58)

where u ¼ ω + θ. u is known as the argument of latitude. The direction cosine matrix [Q]Xr could of

course be obtained from Eq. (10.57) by simply replacing the argument of periapsisωwith the argument

of latitude u.
In terms of its components in the inertial XYZ frame, the perturbing acceleration p is expressed

analytically as follows:

p¼ pX Î+ pY Ĵ + pZK̂ (10.59)

whereas in the noninertial rsw frame

p¼ pr r̂ + psŝ + pwŵ (10.60)

The transformation between these two sets of components is

pr
ps
pw

8<:
9=;¼ Q½ �Xr

pX
pY
pZ

8<:
9=; (10.61)

and

pX
pY
pZ

8<:
9=;¼ Q½ �TXr

pr
ps
pw

8<:
9=; (10.62)
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where [Q]Xr
T is the transpose of the direction cosine matrix in Eq. (10.58).

Each row of [Q]Xr comprises the direction cosines of the unit vectors r̂, ŝ, and ŵ, respectively, rel-

ative to the inertial XYZ axes. Therefore, from Eq. (10.58), it is apparent that

r̂¼ �sinΩcos isinu + cosΩcosuð ÞÎ+ cosΩcos isinu + sinΩcosuð ÞĴ+ sin isinuK̂ (10.63a)

ŝ¼ �sinΩcos icosu� cosΩcosuð ÞÎ + cosΩcos isinu� sinΩcosuð ÞĴ+ sin icosuK̂ (10.63b)

ŵ¼ sinΩsin îI� cosΩsin iĴ+ cos iK̂ (10.63c)

These will prove useful in the following derivation of the time derivatives of the osculating orbital

elements h, e, θ, Ω, i, and ω. The formulas that we obtain for these derivatives will be our version

of Gauss’ planetary equations.

We will employ familiar orbital mechanics formulas from Chapters 1, 2, and 4 to find the time de-

rivatives that we need. The procedure involves the use of basic differential calculus, some vector op-

erations, and a lot of algebra. Those who prefer not to read through the derivations can skip to the

summary listing of Gauss’ planetary equations in Eq. (10.84).
10.7.1 VARIATION OF THE SPECIFIC ANGULAR MOMENTUM H
The time derivative of the angular momentum h ¼ r � v due to the perturbing acceleration p is

dh

dt
¼ dr

dt
�v+ r�dv

dt
¼ v�v + r� �μ r

r3
+p

	 

But v � v ¼ r � r ¼ 0, so this becomes

dh

dt
¼ r�p (10.64)

Since the magnitude of the angular momentum is h¼ ffiffiffiffiffiffiffiffiffi
h � hp

, its time derivative is

dh

dt
¼ d

dt

ffiffiffiffiffiffiffiffiffi
h � h
p

¼ 1

2

1ffiffiffiffiffiffiffiffiffi
h � hp 2h � dh

dt

� �
¼ h

h
� dh
dt
¼ ŵ � dh

dt

Substituting Eq. (10.64) yields

dh

dt
¼ ŵ � r�pð Þ (10.65)

Using the vector identity in Eq. (1.21) (interchange of the dot and the cross), we can modify this to read

dh

dt
¼ ŵ�rð Þ � p

Since r¼ rr̂ and ŵ� r̂¼ ŝ, it follows that

dh

dt
¼ rps (10.66)

where ps¼ p � ŝ. Clearly, the variation of the angular momentum with time depends only on perturba-

tion components that lie in the transverse (local horizon) direction.
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10.7.2 VARIATION OF THE ECCENTRICITY e
The eccentricity may be found from Eq. (4.11),

e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

h2

μ2
v2�2μ

r

� �s
(10.67)

To find its time derivative, we will use Eq. (10.53),

de

dt
¼ ∂e

∂v
� p (10.68)

since de/dt)two-body ¼ 0. Differentiating Eq. (10.67) with respect to v and using ∂v2/∂v ¼ 2v together

with ∂h2/∂v ¼ 2h � r, yields

∂e

∂v
¼ 1

2e

∂

∂v

h2

μ2
v2�2μ

r

� �� �
¼ 1

μ2e
h2v+ v2�2μ

r

� �
h�rð Þ

� �
Substituting v¼ vr r̂+ vsŝ and h� r¼ hŵ� rr̂¼ hrŝ we get

∂e

∂v
¼ 1

μ2e
h2vr r̂+ hr v2�2μ

r

� �
+ h2vs

� �
ŝ

� �
Keeping in mind that vs is the same as v?, we can use Eq. (2.31) (vs ¼ h/r) along with Eq. (2.49)

(vr ¼ μe sin θ/h) to write this as

∂e

∂v
¼ h

μ
sinθr̂+

h

μ2e
r v2�2μ

r

� �
+
h2

r

� �
ŝ (10.69)

According to Problem 2.10, v¼ μ=hð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2ecosθ + e2
p

. Using the orbit formula (Eq. 2.45) in the form

e cos θ ¼ (h2/μr) � 1, we can write this as v¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=r�μ2 1� e2ð Þ=h2p

and substitute it into Eq. (10.69)

to get

∂e

∂v
¼ h

μ
sinθr̂+

1

μh
h2 + μr
� �

cosθ + μer
 �

ŝ

Finally, it follows from Eq. (10.68) that

de

dt
¼ h

μ
sinθpr +

1

μh
h2 + μr
� �

cosθ + μer
 �

ps (10.70)

where pr ¼ p � r̂ and ps¼ p � ŝ. Clearly, the eccentricity is affected only by perturbations that lie in the

orbital plane.
10.7.3 VARIATION OF THE TRUE ANOMALY θ
According to Eqs. (10.53) and (10.54),

dθ

dt
¼ h

r2
+
∂θ

∂v
� p (10.71)

To find ∂θ/∂v, we start with the orbit formula (Eq. 2.45), writing it as

μer¼ h2�μr

cosθ
(10.72)
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Another basic equation containing the true anomaly is the radial speed formula (Eq. 2.49), from which

we obtain

μer¼ hr � v
sinθ

(10.73)

Equating these two expressions for μer yields

h2�μr
� �

sinθ¼ h r � vð Þcosθ
Applying the partial derivative with respect to v and rearranging the terms leads to

h2�μr
� �

cosθ + h r � vð Þsinθ �∂θ
∂v
¼ h

∂ r � vð Þ
∂v

cosθ + r � vð Þcosθ�2hsinθ½ �∂h
∂v

The use of Eqs. (10.72) and (10.73) simplifies the square brackets on each side, so that

μer
∂θ

∂v
¼ h

∂ r � vð Þ
∂v

cosθ� h2 + μr
� � sinθ

h

∂h

∂v

Making use of ∂(r � v)/∂v ¼ r and ∂h/∂v ¼ (h � r)/h yields

∂θ

∂v
¼ h

μe
cosθr̂�1

e

h2

μ
+ r

� �
sinθ

h
ŝ (10.74)

where it is to be recalled that ŝ¼ ŵ� r̂. Substituting this expression for ∂θ/∂v into Eq. (10.71) finally

yields the time variation of true anomaly,

dθ

dt
¼ h

r2
+

1

eh

h2

μ
cosθpr� h2

μ
+ r

� �
sin θps

� �
(10.75)

Like the eccentricity, true anomaly is unaffected by perturbations that are normal to the orbital plane.
10.7.4 VARIATION OF RIGHT ASCENSION Ω
As we know, and as can be seen from Fig. 10.10, the right ascension of the ascending node is the angle

between the inertial X axis and the node line vector N. Therefore, it may be found by using the vector

dot product,

cosΩ¼ Nffiffiffiffiffiffiffiffiffiffi
N �Np � Î

We employed this formula in Algorithm 4.2. Alternatively, it should be evident from Fig. 10.11 that we

can use the equation tanΩ ¼ � hX/hY. Since hX¼ h � Î and hY ¼ h � Ĵ, this can be written as

tanΩ¼�h � Î
h � Ĵ (10.76)

The time derivative of Eq. (10.76) is

1

cos2
dΩ

dt
¼�

h � Ĵ� � dh

dt
� Î

� �
� h � Î� � dh

dt
� Ĵ

� �
h � Ĵ� �2 ¼�

hY
dh

dt
� I

� �
�hX

dh

dt
� Ĵ

� �
h2Y



FIG. 10.11

Relation between the components of angular momentum and the node angle Ω.
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or, more simply,

dΩ

dt
¼ cos2Ω

dh

dt
� hXĴ�hY Î

hY
2

(10.77)

Since h¼ hŵ and ŵ is given by Eq. (10.63c), we have

h¼ hsinΩsin îI�hcosΩsin iĴ + hcos iK̂

This shows that hX ¼ h sin Ω sin i and hY ¼ � h cos Ω sin i, so that Eq. (10.77) becomes

dΩ

dt
¼ dh

dt
� h sin i cosΩÎ + sinΩĴ

� �
hsin ið Þ2 ¼ 1

hsin i
N̂ � dh

dt

in which N̂ is the unit vector along the node line. Recalling from Eq. (10.64) that dh/dt ¼ r � p yields

dΩ

dt
¼ 1

hsin i
N̂ � r�pð Þ¼ 1

hsin i
N̂�r
� � � p (10.78)

where we interchanged the dot and the cross by means of the identity in Eq. (1.21). The angle between

the node line N̂ and the radial r is the argument of latitude u, and since ŵ is normal to the plane of N̂ and

r, it follows from the definition of the cross product operation that N̂� r¼ r sinuŵ. Therefore,
Eq. (10.78) may be written as

dΩ

dt
¼ r sinu

hsin i
ŵ � p (10.79)
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or, since ŵ � p¼ pw,

dΩ

dt
¼ r sinu

hsin i
pw (10.80)

Clearly, the variation of right ascension Ω is influenced only by perturbations that are normal to the

orbital plane.
10.7.5 VARIATION OF THE INCLINATION i
The orbital inclination, which is the angle i between the Z axis and the normal to the orbital plane

(Fig. 10.10), may be found from Eq. (4.7),

cos i¼ h � K̂
h

Differentiating this expression with respect to time yields

�di
dt
sin i¼ 1

h

dh

dt
� K̂� 1

h2
dh

dt
h � K̂� �

Using Eqs. (10.64) and (10.65), along with h � K̂¼ hcos i, we find that

di

dt
sin i¼ r

h
ŵcos i� K̂
� � � r̂�pð Þ

Replacing ŵ by the expression in Eq. (10.63c) yields

di

dt
¼ r

h
sinΩcos îI� cosΩcos iJ� sin iK̂
� � � r̂�pð Þ

¼ r

h
sinΩcos îI� cosΩcos iĴ� sin iK̂
� �� r̂
 � � p

where we once again used Eq. (1.21) to interchange the dot and the cross. Replacing the unit vector r̂ by

Eq. (10.63a) and using the familiar determinant formula for the cross product, we get

di

dt
¼ r

h

Î Ĵ K̂

sinΩcos i �cosΩcos i �sin i
�sinΩcos isinu + cosΩcosu cosΩcos isinu+ sinΩcosu sin isinu

������
������ � p

Expanding the determinant and recognizing ŵ from Eq. (10.63c), we find

di

dt
¼ r

h
cosu sinΩsin îI� cosΩsin iĴ + cos iK̂

� � � p¼ r

h
cosu ŵ � pð Þ

Since ŵ � p¼ pw,

di

dt
¼ r

h
cos u

	 

pw (10.81)

Like Ω, the orbital inclination is affected only by perturbation components that are normal to the

orbital plane.
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10.7.6 VARIATION OF ARGUMENT OF PERIAPSIS ω
The arguments of periapsis and latitude are related byω ¼ u � θ. Let us first seek an expression for du/
dt and then obtain the variation dω/dt from the fact that dω/dt ¼ du/dt � dθ/dt, where we found dθ/dt
above in Eq. (10.75).

Since the argument of latitude is the angle u between the node line vector N and the position vector

r, it is true that cosu¼ r̂ � N̂. Differentiating this expression with respect to the velocity vector v and

noting that N̂¼ cosΩÎ+ sinΩĴ, we get

∂u

∂v
¼� 1

sinu
r̂ � ∂N̂

∂v
¼ 1

sinu
r̂ � ÎsinΩ� r̂ � ĴcosΩ� �∂Ω

∂v

Using the expression for the radial unit vector r̂ in Eq. (10.63a), we conclude that

r̂ � ÎsinΩ� r̂ � ĴcosΩ¼�cos isinu
which simplifies our result,

∂u

∂v
¼�cos i∂Ω

∂v
(10.82)

From Eq. (10.53), we know that dΩ/dt ¼ (∂Ω/∂v) � p, whereas according to Eq. (10.79),

dΩ=dt¼ r sinu=hsin ið Þŵ � p. It follows that
∂Ω

∂v
¼ r sinu

hsin i
ŵ

Therefore, Eq. (10.82) yields

∂u

∂v
¼�r sin u

h tan i
ŵ

Finally, since du/dt ¼ (∂u/∂v) � p, we conclude that

du

dt
¼�r sinu

h tan i
pw

Substituting this result into dω/dt ¼ du/dt � dθ/dt and making use of Eq. (10.74) (the variation of θ due
solely to perturbations) yields

dω

dt
¼� 1

eh

h2

μ
cosθpr� r +

h2

μ

� �
sinθps

� �
� r sin ω + θð Þ

h tan i
pw (10.83)

We see that dω/dt depends on all three components of the perturbing acceleration.

For convenience, let us summarize the Gauss form of the planetary equations that govern variations

in the orbital elements: angular momentum h, eccentricity e, true anomaly θ, node angleΩ, inclination

i, and argument of periapsis ω.

dh

dt
¼ rps (10.84a)

de

dt
¼ h

μ
sinθpr +

1

μh
h2 + μr
� �

cosθ + μer
 �

ps (10.84b)
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dθ

dt
¼ h

r2
+

1

eh

h2

μ
cosθpr� r +

h2

μ

� �
sinθps

� �
(10.84c)

dΩ

dt
¼ r

hsin i
sin ω+ θð Þpw (10.84d)

di

dt
¼ r

h
cos ω+ θð Þpw (10.84e)

dω

dt
¼� 1

eh

h2

μ
cosθpr� r +

h2

μ

� �
sinθps

� �
� r sin ω+ θð Þ

h tan i
pw (10.84f)

where, from Eq. (2.45), r ¼ h2/[μ(1 + e cos θ)].
Given the six orbital elements h0, e0, θ0, Ω0, i0, and ω0 at time t0 and the functional form of the

perturbing acceleration p, we can numerically integrate the six planetary equations to obtain the os-

culating orbital elements and therefore the state vector at subsequent times. Formulas for the variations

of alternative orbital elements can be derived, but it is not necessary here because at any instant all other

osculating orbital parameters are found in terms of the six listed above. For example,

Semimajor axis Eq:2:72ð Þ: a¼ h2

μ

1

1�e2

Eccentric anomaly Eq:3:13ð Þ: E¼ 2tan�1
ffiffiffiffiffiffiffiffiffiffi
1�e

1 + e

r
tan

θ

2

 !

Mean anomaly Eq:3:6ð Þ: M¼ 2tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e

1 + e
tan

r
θ

2

 !
�e

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

sinθ

1 + ecos
EXAMPLE 10.4
Obtain the form of Gauss’ planetary equations for a perturbing force that is tangent to the orbit.

Solution
If the perturbing force is tangent to the orbit, then the perturbing acceleration p lies in the direction of the velocity vector v,

p¼ pv
v

v

The radial and transverse components of the perturbing acceleration are found by projecting p onto the radial and transverse

directions

pr ¼ pv
v

v

	 

� r̂¼ pv

v
v̂ � r̂ð Þ¼ pv

v
vr

ps ¼ pv
v

v

	 

� ŝ¼ pv

v
v � ŝð Þ¼ pv

v
vs

The component pw normal to the orbital plane is zero. From Eqs. (2.31) and (2.49), we have

vs¼ h

r
vr ¼ μ

h
esinθ

Therefore, for a tangential perturbation, the rsw components of acceleration are

pr ¼ μ

vh
epv sinθ ps¼ h

vr
pv pw¼ 0
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Substituting these expressions into Eq. (10.84) leads to Gauss’ planetary equations for tangential perturbations,

dh

dt
¼ h

v
pv

de

dt
¼ 2

v
e+ cosθð Þpv dθ

dt
¼ h

r2
� 2

ev
pv sinθ

dΩ

dt
¼ 0

di

dt
¼ 0

dω

dt
¼ 2

ev
ps sinθ

Tangential perturbation (10.85)

Clearly, the right ascension and the inclination are unaffected.
If the perturbing acceleration is due to a tangential thrust T, then pv ¼ T/m, where m is the instan-

taneous mass of the spacecraft. If the thrust is in the direction of the velocity v, then pv is positive and
tends to speed up the spacecraft, producing an outwardly spiraling trajectory like that shown in

Fig. 10.1. According to Eq. (10.85), a positive tangential acceleration causes the eccentricity to increase

and the perigee to advance (rotating the apse line counterclockwise). Both of these effects are evident in

Fig. 10.1. If the thrust is opposite to the direction of v, then the effects are opposite: the spacecraft slows

down, spiraling inward.

Atmospheric drag acts opposite to the direction of motion. If we neglect the rotation of the atmo-

sphere, then according to Eq. (10.12), the tangential acceleration is

pv¼�1
2
pv2B (10.86)

where v is the inertial speed, and B is the ballistic coefficient. Substituting this expression into

Eq. (10.85) yields Gauss’ planetary equations for atmospheric drag,

dh

dt
¼�B

2
hρv

de

dt
¼�B e+ cosθð Þρv dθ

dt
¼ h

r2
+B

ρv

e
sinθ

dΩ

dt
¼ 0

di

dt
¼ 0

dω

dt
¼�Bρv

e
sinθ

(10.87)
EXAMPLE 10.5
Find the components pr, ps, and pw of the gravitational perturbation of Eq. (10.30) in the rsw frame of Fig. 10.10.

Solution
The transformation from XYZ to rsw is given by Eq. (10.61). Using the direction cosine matrix in Eq. (10.58) we therefore

have

pr
ps
pw

8<:
9=;¼ 3

2

J2μR2

r4

�sinΩcos isinu+ cosΩcosu cosΩcos isinu + sinΩcosu sin isinu
�sinΩcos icosu� cosΩsinu cosΩcos icosu� sinΩsinu sin icosu

sinΩsin i �cosΩsin i cos i

24 35 �
X

r
5
Z2

r2
�1

� �
Y

r
5
Z2

r2
�1

� �
Z

r
5
Z2

r2
�3

� �

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
(a)

Before carrying out the multiplication, note that in the spherical coordinate system of Fig. 10.12,

Z¼ r sinδ X¼ rcosδcosα Y¼ rcosδsinα (b)



FIG. 10.12

Spherical coordinates and the geocentric equatorial frame.

50910.7 GAUSS’ VARIATIONAL EQUATIONS
where α is the azimuth angle measured in the XY plane positive from the X axis. (We use α instead of the traditional θ to

avoid confusion with true anomaly.) The declination δ is the complement of the usual polar angle ϕ, which is measured

positive from the polar (Z) axis toward the equator. As shown in Fig. 10.12, δ is measured positive northward from the

equator. Using δ instead of ϕ makes it easier to take advantage of spherical trigonometry formulas. The angle β in

Fig. 10.12 is the difference between the azimuth angle α and the right ascension of the ascending node,

β¼α�Ω (c)

On the unit sphere, the angles i, u, β, and δ appear as shown in Fig. 10.12. Spherical trigonometry (Zwillinger, 2012) yields

the following relations among these four angles:

sinδ¼ sin isinu (d)

cosu¼ cosδcosβ (e)

sinβ¼ tanδcot i (f)

cosu¼ cosδcosβ (g)

From Eqs. (d) and (f), we find

sinβ¼ sinδ=cosδð Þ cos i=sin ið Þ¼ sin isinu=cosδð Þ cos i=sin ið Þ
or

sinβ¼ sinucos i

cosδ
(h)

whereas Eq. (g) may be written as

cosβ¼ cosu

cosδ
(i)
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Using Eqs. (b), Eq. (a) becomes

pr
ps
pw

8<:
9=;¼ 3

2

J2μR2

r4

�sinΩcos isinu+ cosΩcosu cosΩcos isinu + sin cosu sin isinu
�sinΩcos icosu� cosΩsinu cosΩcos icosu� sinΩsinu sin icosu

sinΩsin i �cosΩsin i cos i

24 35
�

cosδcosα 5sin2δ�1ð Þ
cosδsinα 5sin2δ�1ð Þ

sinδ 5sin2δ�3ð Þ

8<:
9=;

(j)

Carrying out the multiplication on the right for pr yields

pr ¼ 3

2

J2μR2

r4
cosδ cosucosβ + cos isinu sinβð Þ 1�5sin2δ

� �
+ sin2δ 3�5sin2δ

� � �
Substituting Eqs. (h) and (i) leads to

pr ¼ 3

2

J2μR2

r4
cos2u+ cos2isin2u
� �

1�5sin2δ
� �

+ sin2δ 3�5sin2δ
� � �

After substituting Eq. (d) and the identity cos2i ¼ 1 � sin2i and simplifying we get

pr ¼�3
2

J2μR2

r2
1�3sin2 i sin2u
� �

In a similar fashion we find ps and pw, so that in summary

pr ¼�3
2

J2μR2

r4
1�3sin2i � sin2 ω+ θð Þ �

ps¼�3
2

J2μR2

r4
sin2i � sin2 ω + θð Þ

pw¼�3
2

J2μR2

r4
sin2i � sin ω + θð Þ

(10.88)
We may now substitute pr, ps, and pw from Eq. (10.88) into Gauss’ planetary equations (Eq. 10.84)

to obtain the variation of the osculating elements due to the J2 gravitational perturbation (keeping in

mind that u ¼ ω + θ). After some straightforward algebraic manipulations, we obtain:

dh

dt
¼�3

2

J2μR2

r3
sin2isin2u (10.89a)

de

dt
¼ 3

2

J2μR2

hr3
h2

μr
sinθ 3sin2isin2u�1

� �� sin2usin2i 3 + ecosθð Þcosθ + e½ �
� �

(10.89b)

dθ

dt
¼ h

r2
+
3

2

J2μR2

ehr3
h2

μr
cosθ 3sin2i sin2u�1

� �
+ 2+ ecosθð Þsin2usin2isinθ

� �
(10.89c)
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dΩ

dt
¼�3J2μR

2

hr3
sin2ucos i (10.89d)

di

dt
¼�3

4

J2μR2

hr3
sin2usin2i (10.89e)

dω

dt
¼ 3

2

J2μR2

ehr3
h2

μr
cosθ 1�3sin2isin2u

� �� 2 + ecosθð Þsin2usin2isinθ + 2ecos2isin2u

� �
(10.89f)
EXAMPLE 10.6
At time t ¼ 0, an earth satellite has the following orbital parameters:

Perigee radius: rp ¼ 6678km 300kmaltitudeð Þ
Apogee radius: ra¼ 9440km 3062kmaltitudeð Þ

Right ascension of the ascending node: Ω¼ 45° (a)

Inclination: i¼ 28° (b)

Argument of perigee: ω¼ 30° (c)

True anomaly: θ¼ 40° (d)

Use Gauss’ variational equation (Eqs. 10.89) to determine the effect of the J2 perturbation on the variation of orbital el-

ements h, e, Ω, i, and ω over the next 48 hours.

Solution
From the given information, we find the eccentricity and the angular momentum from Eqs. (2.84) and (2.50) with μ ¼ 398,

600km3/s2,

e¼ ra� rp
ra + rp

¼ 0:17136 (e)

h¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ 1 + eð Þrp

q
¼ 55,839km2=s (f)

We write the differential equations in Eqs. (10.89) as dy/dt ¼ f(y), where

y¼ h e θ Ω i ωb cT
f¼ _h _e _θ _Ω _i _ω
� �T

and the rates _h, _e, etc., are given explicitly in Eqs. (10.89), with r ¼ h2/[μ(1 + e cos θ)] and u ¼ ω + θ. With Eqs. (a)

through (f) comprising the initial conditions for vector y0, we can solve for y on the time interval [t0, tf] using MATLAB’s

numerical integrator ode45 (or one of those described in Section 1.8). For t0 ¼ 0 and tf ¼ 48h, the solutions are plotted in

Fig. 10.13. The MATLAB script Example_10_06.m for this example is in Appendix D.42.

The data for this problem are the same as for Example 10.2, wherein the results are identical to what we found here. In

Example 10.2, the perturbed state vector (r,v) was found over a 2-day time interval, at each point of which the osculating

elements were then derived from Algorithm 4.2. Here, on the other hand, we directly obtained the osculating elements,

from which at any time on the solution interval we can calculate the state vector by means of Algorithm 4.5.



FIG

Va

512 CHAPTER 10 INTRODUCTION TO ORBITAL PERTURBATIONS
. 10.13

riation of the osculating elements due to J2 perturbation.
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10.8 METHOD OF AVERAGING
One advantage of Gauss’ planetary equations for the J2 perturbation is that they show explicitly the

dependence of the element variations on the elements themselves and the position of the spacecraft

in the gravitational field. We see in Eqs. (10.89) that the short-period “ripples” superimposed on

the long-term secular trends are due to the presence of the trigonometric terms in the true anomaly

θ. To separate the secular terms from the short-period terms the method of averaging is used. Let f
be an osculating element and _f its variation as given in Eqs. (10.89). Since _f ¼ df=dθð Þ _θ, the average
of _f over one orbit is

�_f ¼ df

dθ
n (10.90)

where n is the mean motion (Eq. 3.9)

n¼ �_θ ¼ 1

T

ðT
0

dθ

dt
dt¼

ð2π
0

dθ¼ 2π

T

Substituting the formula for the period (Eq. 2.83), we can write n as

n¼
ffiffiffiffiffi
μ

a3

r
(10.91)

For the average value of df/dθ we have

df

dθ
¼ 1

2π

ð2π
0

df

dθ
dθ¼ 1

2π

ð2π
0

df

dt

1

_θ
dθ¼ 1

2π

ð2π
0

df

dt

r2

h
dθ

where we made use of Eq. (2.47). Substituting this into Eq. (10.90) yields a formula for the time-

averaged variation,

�_f ¼ n

2π

ð2π
0

df

dt

r2

h
dθ (10.92)

In doing the integral, the only variable is θ, all the other orbital elements are held fixed.

Let us use Eq. (10.92) to compute the orbital averages of each of the rates in Eqs. (10.89). In doing

so, we will make frequent use of the orbit formula r ¼ h2/[μ(1 + e cos θ)].
10.8.1 ORBITAL-AVERAGED ANGULAR MOMENTUM VARIATION

�_h ¼ n

2π

ð2π
0

dh

dt

r2

h
dθ¼ n

2π

ð2π
0

�3
2

J2μR2

r3
sin2isin2u

� �
r2

h
dθ

¼ n

2π
�3
2

J2μR2

h
sin2i

� �ð2π
0

1

r
sin2u

� �
dθ

¼ n

2π
�3
2

J2μ2R2

h3
sin2i

� �ð2π
0

1 + ecosθð Þsin2 ω + θð Þdθ
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Evaluate the integral as follows, remembering to hold the orbital element ω constant:ð2π
0

1 + ecosθð Þsin2 ω + θð Þdθ¼
ð2π
0

1 + ecosθð Þ sin2ωcos2θ + cos2ωsin2θð Þdθ

¼ sin2ω

ð2π
0

cos2θdθ + cos2ω

ð2π
0

sin2θdθ

+ e sin 2ω

ð2π
0

cosθcos2θdθ + ecos2ω

ð2π
0

cosθ sin2θdθ

The four integrals on the right are all zero,

ð2π
0

cos2θdθ¼ sin2θ

2

����2π
0

¼ 0

ð2π
0

sin2θdθ¼�cos2θ
2

����2π
0

¼ 0

ð2π
0

cosθcos2θdθ¼ sinθ

2
+
sin 3θ

6

� �����2π
0

¼ 0

ð2π
0

cosθ sin2θdθ¼� cosθ

2
+
cos 3θ

6

� �����2π
0

¼ 0

Therefore,
�_h ¼ 0.
10.8.2 ORBITAL-AVERAGED ECCENTRICITY VARIATION

�_e ¼ n

2π

ð2π
0

de

dt

r2

h
dθ

¼ n

2π

ð2π
0

3

2

J2μR2

hr3
h2

μr
sinθ 3sin2isin2u�1

 �� 2 + ecosθð Þcosθ + e½ �sin2usin2i

� �
r2

h
dθ

¼ n

2π

3

2

J2μR2

h2

� � ð2π
0

1

r

h2

μr
sinθ 3sin2isin2u�1

 �� 2 + ecosθð Þcosθ + e½ �sin2usin2i

� �
dθ

¼ n

2π

3

2

J2μ2R2

h4

� � ð2π
0

1 + ecosθð Þ 1 + ecosð Þsinθ 3sin2isin2u�1
 ��

� 2 + ecosθð Þcosθ + e½ �sin2usin2i
�
dθ

But

ð2π
0

1 + ecosθð Þ 1 + ecosθð Þsinθ 3sin2isin2u�1
 �� 2 + ecos θð Þcosθ + e½ �sin2usin2i

� �
dθ¼ 0

A convenient way to evaluate this lengthy integral is to use MATLAB’s symbolic math feature, as

illustrated in the following Command Window session, in which w and q represent ω and θ,
respectively:
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syms w q e i positive

f = (1+e*cos(q))*((1+e*cos(q))*sin(q)*(3*sin(i)^2*sin(w+q)^2-1) ...

–((2+e*cos(q))*cos(q)[Note +e)*sin(2*(w+q))*sin(i)^2);

integral = int(f, q, 0, 2*pi)

integral =

0

It follows that �_e ¼ 0.
10.8.3 ORBITAL-AVERAGED TRUE ANOMALY VARIATION

�_θ ¼ n

2π

ð2π
0

dθ

dt

r2

h
dθ

¼ n

2π

ð2π
0

h

r2
+
3

2

J2μR2

ehr3
h2

μr
cosθ 3sin2isin2u�1

� �
+ 2+ ecosθð Þsin2usin2isinθ

� �� �
r2

h
dθ

¼ n

2π

ð2π
0

1 +
3

2

J2μR2

eh2r

h2

μr
cosθ 3sin2isin2u�1

� �
+ 2+ ecosθð Þsin2usin2isinθ

� �� �
dθ

¼ n +
n

2π

3

2

J2μ2R2

eh4

ð2π
0

1 + ecosθð Þ 1 + ecosθð Þcosθ 3sin2isin2u�1
� � ��

+ 2+ ecosθð Þsin2usin2isinθ
�
dθ

The integral evaluates to (1 � 3cos2i)πe, as we see in this MATLAB Command Window session:

syms w q e i positive

f = (1+e*cos(q))*((1+e*cos(q))*cos(q)*(3*sin(i)^2*sin(w+q)^2-1) ...

+(2+e*cos(q))*sin(2*(w+q))*sin(i)^2*sin(q));

f = collect(expand(f));

integral = int(f, q, 0, 2*pi)

integral =

pi*e - 3*pi*e*cos(i)^2

Thus,

�_θ ¼ n 1 +
3

4

J2μ2R2

h4
1�3cos2i
� �� �

Substituting Eq. (10.91), h2 ¼ μa(1 � e2), and cos2i ¼ 1 � sin2i, we can write this as

�_θ ¼ n+
3

4

J2R
2 ffiffiffi

μ
p

a7=2 1�e2ð Þ2 3sin2i�2
� �
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10.8.4 ORBITAL-AVERAGED RIGHT ASCENSION OF ASCENDING NODE VARIATION

�_Ω ¼ n

2π

ð2π
0

dΩ

dt

r2

h
dθ

¼ n

2π

ð2π
0

�3J2μR
2

hr3
sin2ucos i

� �
r2

h
dθ

¼�3n

2π

J2μR2

h2
cos i

ð2π
0

1

r
sin2udθ

¼�3n

2π

J2μ2R2

h4
cos i

ð2π
0

1 + ecosθð Þsin2 ω + θð Þdθ

But

ð2π
0

1 + ecosθð Þsin2 ω+ θð Þdθ¼ π

as is evident from the MATLAB session:

syms w q e positive

f = (1 + e*cos(q))*sin(w + q)^2;

integral = int(f, q, 0, 2*pi)

integral =

pi

>>

Hence,

�_Ω ¼�3n
2

J2μ2R2

h4
cos i

Substituting Eq. (10.91) along with h4 ¼ μ2a2(1 � e2)2 from Eq. (2.71), we obtain

�_Ω ¼� 3

2

J2
ffiffiffi
μ
p

R2

a7=2 1�e2ð Þ2
" #

cos i
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10.8.5 ORBITAL-AVERAGED INCLINATION VARIATION

�_i ¼ n

2π

ð2π
0

di

dt

r2

h2
dθ

¼ n

2π

ð2π
0

�3
4

J2μR2

hr3
sin2usin2i

� �
r2

h
dθ

¼� n

2π

3

4

J2μR2

h2
sin2i

ð2π
0

1

r
sin2udθ

¼� n

2π

3

4

J2μ2R2

h4
sin2i

ð2π
0

1 + ecosθð Þsin2 ω+ θð Þdθ

Using MATLAB, we see that the integral vanishes:

syms w q e positive

f = (1 + e*cos(q))*sin(2*(w + q));

integral = int(f, q, 0, 2*pi)

integral =

0

Therefore, �_i ¼ 0.
10.8.6 ORBITAL-AVERAGED ARGUMENT OF PERIGEE VARIATION

�_ω ¼ n

2π

ð2π
0

dω

dt

r2

h
dθ

¼ n

2π

ð2π
0

3

2

J2μR2

ehr3
h2

μr
cosθ 1�3sin2isin2u

� �� 2 + ecosθð Þsin2usin2isinθ + 2ecos2isin2u

� �
r2

h
dθ

¼ n

2π

3

2

J2μR2

eh2

ð2π
0

1

r

h2

μr
cosθ 1�3sin2isin2u

� �� 2 + ecosθð Þsin2usin2isinθ + 2ecos2isin2u

� �
dθ

¼ n

2π

3

2

J2μR2

eh4

ð2π
0

1 + ecosθð Þ cosθ 1 + ecosθð Þ 1�3sin2isin2u
� �

� 2 + ecosθð Þsin2usin2isinθ + 2ecos2isin2u
�
dθ

With the aid of MATLAB, we find that the integral evaluates to πe(5cos2i � 1).

syms w q e i positive

f = (1+e*cos(q))*...
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((1+e*cos(q))*cos(q)*(1-3*sin(i)^2*sin(w+q)^2)...

–(2+e*cos(q))*sin(2*(w+q))*sin(i)^2*sin(q)...

+ 2*e*cos(i)^2*sin(w+q)^2);

f = collect(expand(f));

integral = int(f, q, 0, 2*pi)

integral =

5*pi*e*cos(i)^2 – pi*e

Therefore,

�_ω ¼ 3

2

J2μ2R2

h4
n

2
5cos2i�1
� �

Substituting Eq. (10.91), along with h4 ¼ μ2a2(1 � e2)2 from Eq. (2.71) and the trig identity

cos2i ¼ 1 � sin2i, we obtain

�_ω ¼� 3

2

J2
ffiffiffi
μ
p

R2

a7=2 1�e2ð Þ2
5

2
sin2i�2

� �" #

Let us summarize our calculations of the average rates of variation of the orbital elements due to the

J2 perturbation:

�_h ¼ �_e ¼ �_i ¼ 0 (10.93a)

�_Ω ¼� 3

2

J2
ffiffiffi
μ
p

R2

a7=2 1�e2ð Þ2
" #

cos i (10.93b)

�_ω ¼� 3

2

J2
ffiffiffi
μ
p

R2

a7=2 1�e2ð Þ2
" #

5

2
sin2i�2

� �
(10.93c)

�_θ ¼ n� 3

2

J2
ffiffiffi
μ
p

R2

a7=2 1�e2ð Þ2
" #

1�3

2
sin2i

� �
(10.93d)

Formulas such as these for the average rates of variation of the orbital elements are useful for the

design of frozen orbits. Frozen orbits are those whose size, shape, and/or orientation remain, on aver-

age, constant over long periods of time. Careful selection of the orbital parameters can minimize or

eliminate the drift caused by perturbations. For example, the apse line will be frozen in space
�_ω ¼ 0ð Þ if the orbital inclination i is such that sin i¼ ffiffiffiffiffiffiffiffi

4=5
p

. Similarly, the J2 gravitational perturbation
on the mean motion

�_θ vanishes if sin i¼ ffiffiffiffiffiffiffiffi
2=3

p
. The precession �_Ω of an orbital plane is prevented if

cosi ¼ 0. Practical applications of Molniya, sun-synchronous, and polar orbits are discussed in

Section 4.7.

Eq. (10.93) agrees with the plotted results of Examples 10.2 and 10.6. We can average out the high-

frequency components (“ripples”) of the curves in Figs. 10.8, 10.9, and 10.13 with a numerical smooth-

ing technique such as that presented by Garcia (2010), yielding the curves in Fig. 10.14.



FIG. 10.14

Long term variations of the osculating elements due to J2.
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10.9 SOLAR RADIATION PRESSURE
According to quantum physics, solar radiation comprises photons, which are massless elementary par-

ticles traveling at the speed of light (c ¼ 2.998 � 108m/s). Even though a photon’s mass is zero, its

energy and momentum are not. The energy (in Joules) of a photon is hf, where f is the frequency of

its electromagnetic wave (in Hertz), and h is the Planck constant (h ¼ 6.626 � 10�34J � s). Themomen-

tum of a photon is hf/c, its energy divided by the speed of light.

The visible surface of the sun is the photosphere, which acts like a blackbody emitting radiation that

spans most of the electromagnetic spectrum, from low-energy radio waves on up the visible spectrum

and beyond to high-energy ultraviolet light and X-rays. According to the Stefan–Boltzmann law, the

intensity of radiated power is σT4, where T is the absolute temperature of the blackbody, and σ is the

Stefan–Boltzmann constant,

σ¼ 5:670 10�8
� �

W=m2K4

The effective temperature of the photosphere is 5777 K, so that at its surface the radiated power inten-

sity is

S0¼ 5:670 10�8
� �

5777ð Þ4¼ 63:15 106
� �

W=m2

Electromagnetic radiation follows the inverse square law. That is, if R0 is the radius of the photosphere,

then the radiation intensity S at a distance R from the sun’s center is

S¼ S0
R0

R

� �2

The radius of the photosphere is 696,000 km and the mean earth–sun distance is 149.6(106) km (1 AU).

It follows that at the earth’s orbit the radiation intensity S, known as the solar constant, is

S¼ 63:15 106
� � 696,000

149:6 106
� �" #2

¼ 1367W=m2 (10.94)

This is the energy flux (the energy per unit time per unit area) transported by photons across a surface

normal to the radiation direction. As mentioned above, we must divide S by the speed of light to find the
momentum flux, which is the solar radiation pressure PSR,

PSR¼ S

c
¼ 1367 N �m=sð Þ=m2

2:998 108
� �

m=s
¼ 4:56 10�6

� �
N=m2 4:56μPað Þ (10.95)

Compare this with sea level atmospheric pressure (101 kPa), which exceeds PSR by more than 10 or-

ders of magnitude.

In the interest of simplicity, let us adopt the cannonball model for solar radiation, which assumes

that the satellite is a sphere of radius R. Then the perturbing force F on the satellite due to the radiation

pressure S/c is

F¼�νS
c
CRAscû (10.96)

where û is the unit vector pointing from the satellite toward the sun. The negative sign shows that the

solar radiation force is directed away from the sun. Asc is the absorbing area of the spacecraft,

which is πR2 for the cannonball model. ν is the shadow function, which has the value 0 if the sat-

ellite is in the earth’s shadow; otherwise, ν ¼ 1. CR is the radiation pressure coefficient, which lies
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between 1 and 2. CR equals 1 if the surface is a blackbody, absorbing all of the momentum of the

incident photon stream and giving rise to the pressure in Eq. (10.95). When CR equals 2, all the

incident radiation is reflected, so that the incoming photon momentum is reversed in direction, dou-

bling the force on the satellite.

Because the sun is so far from the earth, the angle between the earth—sun line and the satellite—sun

line is less than 0.02 degrees, even for geostationary satellites. Therefore, it will be far simpler and

sufficiently accurate for our purposes to let û in Eq. (10.96) be the unit vector pointing toward the

sun from the earth instead of from the satellite. Then û tracks only the relative motion of the sun around

the earth and does not include the motion of the satellite around the earth.

If m is the mass of the satellite, then the perturbing acceleration p due to solar radiation is F/m, or

p¼�pSRû (10.97)

where the magnitude of the perturbation is

pSR¼ ν
S

c

CRAsc

m
(10.98)

The magnitude of the solar radiation pressure perturbation clearly depends on the satellite’s area-to-

mass ratio Asc/m. Very large spacecraft with a very low mass (like solar sails) are the most affected by

solar radiation pressure. Extreme examples of such spacecraft were the Echo 1, Echo 2, and Pageos

passive communication balloon satellites launched by the United States in the 1960s. They were very

thin–walled, highly reflective spheres about 100 ft (30 m) in diameter, and they had area-to-mass ratios

on the order of 10 m2/kg.

The influence of solar radiation pressure is more pronounced at higher orbital altitudes where at-

mospheric drag is comparatively negligible. To get an idea of where the tradeoff between the two per-

turbations occurs, set the magnitude of the drag perturbation equal to that of the solar radiation

perturbation, pD ¼ pSR, or

1

2
ρv2

CDA

m

� �
¼ S

c

CRAsc

m

Solving for the atmospheric density and assuming that the orbit is circular (v2 ¼ μ/r), we get

ρ¼ 2
Asc

A

CR

CD

S=c

μ
r

If Asc/A ¼ 1, CR ¼ 1, CD ¼ 2, and r ¼ 6378 + z, where z is the altitude in kilometers, then this becomes

ρ¼ 2 � 1 � 1
2
� 4:56 10�6

� �
kg= m � s2ð Þ �

398:6 1012
� �

m3=s2
6378 + zð Þ kmð Þ½ � 1000m=kmð Þ

or 3
� � �17� �

ρ kg=m ¼ 1:144 10 6378 + zð Þ kmð Þ

When z ¼ 625km, this formula gives ρ ¼ 8.01(10�14)kg/m3, whereas according to the US Standard

Atmosphere, ρ ¼ 7.998(10�14)kg/m3 at that altitude. So 625 km is a rough estimate of the altitude

of the transition from the dominance of the perturbative effect of atmospheric drag to that of solar ra-

diation pressure. This estimate is about 20% lower than the traditionally accepted value of 800 km

(Vallado, 2007).

Recall from Section 4.2 that the angle between earth’s equatorial plane and the ecliptic plane is the

obliquity of the ecliptic ε. The obliquity varies slowly with time and currently is 23.44°. Therefore, the
planeof the sun’s apparentorbit around theearth is inclined23.44° to theearth’sequator. In thegeocentric
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ecliptic (X
0
Y
0
Z
0
) frame, the Z

0
axis is normal to the ecliptic and theX

0
axis lies along the vernal equinox di-

rection. In this frame, theunit vector ûalong theearth-sun line isprovidedby the solarecliptic longitudeλ,

û¼ cos λÎ
0
+ sin λĴ

0
(10.99)

where λ is the angle between the vernal equinox line and the earth-sun line.

The geocentric equatorial frame (XYZ) and the geocentric ecliptic frame (X
0
Y
0
Z
0
) share the vernal

equinox line as their common X axis. Transformation from one frame to the other is therefore simply a

rotation through the obliquity ε around the positive X axis. The transformation from X
0
Y
0
Z
0
to XYZ is

represented by the direction cosine matrix found in Eq. (4.32) with ϕ ¼ � ε. It follows that the com-

ponents in XYZ of the unit vector û in Eq. (10.99) are

ûf gXYZ ¼ R1 �εð Þ½ � ûf gX0 Y0 Z0 ¼
1 0 0

0 cosε �sinε
0 sinε cosε

24 35 cosλ
sinλ
0

8<:
9=;¼

cosλ
cosε sinλ
sinε sinλ

8<:
9=; (10.100)

Substituting this vector expression back into Eq. (10.97) yields the components of the solar radiation

perturbation in the geocentric equatorial frame,

pf gXYZ ¼�pSR
cosλ

cosε sinλ
sinε sinλ

8<:
9=; (10.101)

To use Gauss’ planetary equations (Eq. 10.84) to determine the effects of solar radiation pressure on

variation of the orbital elements, we must find the components of the perturbation p in the rsw frame of

Fig. (10.10). To do so, we use Eq. (10.61),

pr
ps
pw

8<:
9=;¼ Q½ �Xr

�pSR cosλ
�pSR sinλcosε
�pSR sinλsinε

8<:
9=; (10.102)

The direction cosine matrix [Q]Xr of the transformation from XYZ to rsw is given by Eq. (10.58). Thus,

pr

ps

pw

8><>:
9>=>;¼�pSR

�sinΩ cos isin u+ cosΩ cos u cosΩ cos isin u+ sinΩ cos u sin i sin u

�sinΩ cos i cos u� cosΩ sin u cosΩ cos icos u� sinΩ sin u sin i cos u

sinΩsin i �cosΩsin i cos i

264
375

�
cosλ

sinλcosε

sinλsinε

8><>:
9>=>;

(10.103)

Carrying out the matrix multiplications leads to

pr ¼�pSRur ps¼�pSRus pw¼�pSRuw (10.104)

where ur, us, and uw are components of the unit vector û in the rsw frame. Namely,

ur ¼ sinλcosεcosΩcos isinu+ sinλcosεsinΩcosu

� cosλsinΩcos isinu+ cosλcosΩcosu+ sinλsinεsin isinu
(10.105a)

us¼ sinλcosεcosΩcos icosu� sinλcosεsinΩsinu

� cosλsinΩcos icosu� cosλcosΩsinu+ sinλsinεsin icosu
(10.105b)

uw¼�sinλcosεcosΩsin i+ cosλsinΩsin i+ sinλsinεcos i (10.105c)
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Substituting Eq. (10.104) into Eq. (10.84) yields Gauss’ planetary equations for solar radiation pres-

sure, where it should be recalled from Eq. (10.98) that pSR ¼ ν(S/c)CR(Asc/m):

dh

dt
¼�pSRrus (10.106a)

de

dt
¼�pSR h

μ
sinθur +

1

μh
h2 + μr
� �

cosθ + μer
 �

us

� �
(10.106b)

dθ

dt
¼ h

r2
�pSR

eh

h2

μ
cosθur� r +

h2

μ

� �
sinθus

� �
(10.106c)

dΩ

dt
¼�pSR r

hsin i
sin ω+ θð Þuw (10.106d)

di

dt
¼�pSR r

h
cos ω + θð Þuw (10.106e)

dω

dt
¼�pSR � 1

eh

h2

μ
cosθur� r +

h2

μ

� �
sinθus

� �
� r sin ω+ θð Þ

h tan i
uw

� �
(10.106f)

To numerically integrate Eqs. (10.106) requires thatweknow the timevariation of the obliquity ε and solar
ecliptic longitude λ, both of which appear throughout the expressions for ur, us, and uw. We also need the

time history of the earth-sun distance r⊙ (⊙ is the astronomical symbol for the sun) to compute the geo-

centric equatorial position vector of the sun (namely, r⊙¼ r⊙û). r⊙ together with the geocentric position

vector of the satellite allow us to determinewhen the satellite is in the earth’s shadow (ν ¼ 0 in Eq. 10.98).

According to The Astronomical Almanac (National Almanac Office, 2018), the apparent solar

ecliptic longitude (in degrees) is given by the formula

λ¼ L + 1:915°sinM + 0:0200°sin2M 0°� λ� 360°ð Þ (10.107)

where L and M are, respectively, the mean longitude and mean anomaly of the sun, both in degrees:

L ¼ 280:459°+ 0:98564736°n 0°� L� 360°ð Þ (10.108)

M¼ 357:529°+ 0:98560023°n 0°�M� 360°ð Þ (10.109)

n is the number of days since J2000,

n¼ JD�2,451,545:0 (10.110)

The concepts of Julian day number JD and the epoch J2000 are explained in Section 5.4. The above

formulas for L, M, and λ may deliver angles outside the range 0° to 360°. In those cases, the angle

should be reduced by appropriate multiples of 360°, so as to place it in that range. (If the angle is

a number, then the MATLAB function mod(angle,360) yields a number in the range 0° to 360°.)
In terms of n, the obliquity is

ε¼ 23:439°�3:56 10�7
� �

n (10.111)

Finally, The Astronomical Almanac gives the distance rS from the earth to the sun in terms of the mean

anomaly,
r⊙¼ 1:00014�0:01671cosM�0:000140cos2Mð ÞAU (10.112)

where AU is the astronomical unit (1 AU ¼ 149,597,870.691 km).

The following algorithm delivers ε, λ, and r⊙.
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ALGORITHM 10.2

Given the year, month, day, and universal time, calculate the obliquity of the ecliptic ε, ecliptic lon-
gitude of the sun λ, and the geocentric position vector of the sun r⊙:

1. Compute the Julian day number JD using Eqs. (5.47) and (5.48).

2. Calculate n, the number of days since J2000 from Eq. (10.110).

3. Calculate the mean anomaly M using Eq. (10.109).

4. Calculate the mean solar longitude L by means of Eq. (10.108).

5. Calculate the longitude λ using Eq. (10.107).

6. Calculate the obliquity ε from Eq. (10.111).

7. Calculate the unit vector û from the earth to the sun (Eq. 10.100):

û¼ cosλÎ+ sinλcosεĴ+ sinλsinεK̂
Calculate the distance r⊙ of the sun from the earth using Eq. (10.112).
8.

9. Calculate the sun’s geocentric position vector r⊙ ¼ r⊙ û.
EXAMPLE 10.7
Use Algorithm 10.2 to find the geocentric position vector of the sun at 08:00 UT on July 25, 2013.

Solution
Step 1:

According to Eq. (5.48), with y ¼ 2013, m ¼ 7, and d ¼ 25, the Julian day number at 0 h UT is

J0¼ 2,456,498:5

Therefore, from Eq. (5.47), the Julian day number at 08:00 UT is

JD¼ 2,456,498:5 +
8

24
¼ 2,456,498:8333days

Step 2:

n¼ 2,456,498:8333�2,451,545:0¼ 4953:8333

Step 3:

M¼ 357:529°+ 0:98560023° 4953:8333ð Þ¼ 5240:03° 200:028°ð Þ
Step 4:

L¼ 280:459°+ 0:98564736° 4953:8333ð Þ¼ 5163:19° 123:192°ð Þ
Step 5:

λ¼ 123:192°+ 1:915°sin 200:028°ð Þ + 0:020° 2 � 200:028°ð Þ¼ 122:549°

Step 6:

ε¼ 23:439°�3:56° 10�7
� �

4953:8333ð Þ¼ 23:4372°

Step 7:

û¼ cos122:549°̂I + sin122:549°ð Þ cos23:4372°ð ÞĴ + sin122:549°ð Þ sin23:4372°ð ÞK̂
¼�0:538017Î + 0:773390Ĵ + 0:335269K̂
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Step 8:

r⊙¼ 1:00014�0:01671cos200:028°�0:000140cos 2 � 200:028°ð Þ½ � 149, 597, 870:691ð Þ
¼ 151,951,387km

Step 9:

r⊙¼ 151, 951, 387ð Þ �0:5380167Î + 0:7733903Ĵ+ 0:3352693K̂� �
¼ �81,752,385Î + 117,517,729Ĵ + 50,944,632K̂ kmð Þ
To determine when a satellite is in the earth’s shadow (so that the solar radiation pressure pertur-

bation is “off”), we can use the following elementary procedure (Vallado, 2007). First, consider two

spacecraft A and B orbiting a central body of radius R. The two position vectors rA and rB define a plane,
which is the plane of Fig. 10.15. That plane contains the circular profileC of the central body. The angle

θ between the two position vectors may be found from the dot product operation,
. 10.15

AB is tangent to the central body (θ1 + θ2 ¼ θ). (b) AB intersects the central body (θ1 + θ2 ¼ θ).
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θ¼ cos�1
rA � rB
rArB

� �
(10.113)

In Fig. 10.15A, T1 andT2 are points of tangency toC of lines drawn from A and B, respectively. The radii
OT1 and OT2 along with the tangent lines AT1 and BT2 and the position vectors rA and rB comprise the

two right triangles OAT1 and OBT2. The angles at the vertex O of these two triangles are obtained from

θ1¼ cos�1
R

rA
θ2¼ cos�1

R

rB
(10.114)

If, as in Fig. 10.15A, the line AB intersects the central body, which means there is no line of sight, then

θ1 + θ2 < θ. If the AB is tangent toC (Fig. 10.15B) or lies outside it, then θ1 + θ2 	 θ and there is line of
sight.

ALGORITHM 10.3

Given the position vector r¼XÎ+ YĴ+ ZK̂ of a satellite and the apparent position vector

r⊙¼X⊙Î+ Y⊙Ĵ+ Z⊙K̂ of the sun, both in the geocentric equatorial frame, determine the value

of ν (0 or 1) of the shadow function. R ¼ 6378 km(the radius of the earth):

1. r ¼ krk r⊙ ¼ kr⊙k
2. θ¼ cos�1 r⊙ � r

r⊙r

	 

3. θ1¼ cos�1 R=rð Þ θ2¼ cos�1 R=r⊙ð Þ
4. If θ1 + θ2 � θ, then ν ¼ 0. Otherwise, ν ¼ 1.
EXAMPLE 10.8
At a given instant, the geocentric position vector of an earth satellite is

r¼ 2817:899Î�14,110:473Ĵ�7502:672K̂ kmð Þ
and the geocentric position vector of the sun is

r⊙¼�11,747,041Î+ 139,486,985Ĵ+ 60,472,278K̂ kmð Þ
Determine whether or not the satellite is in earth’s shadow.

Solution
Step 1:

r¼ 2817:899Î�14, 110:473Ĵ�7502:672K̂
�� ��¼ 16,227:634km

r⊙¼ �11, 747, 041Î+ 139, 486, 985Ĵ+ 60, 472, 278K̂
�� ��¼ 152,035,836km

Step 2:

θ¼ cos�1
2817:899Î�14, 110:473Ĵ�7502:672K̂
� � � �11, 747, 041Î+ 139, 486, 985Ĵ+ 60, 472, 278K̂� �

16, 227:634ð Þ 152, 035, 836ð Þ

¼ cos�1
�2:4252 1012

� �
2:4672 1012

� �" #
¼ 169:420°
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Step 3:

θ1¼ cos�1
6378

16,227:634
¼ 66:857° θ2¼ cos�1

6378

152,035,836
¼ 89:998°

Step 4:

θ1 + θ2¼ 156:85°< θ: Therefore, the spacecraft is in earth’s shadow
EXAMPLE 10.9
A spherical earth satellite has an absorbing area-to-mass ratio (Asc/m) of 2m

2/kg. At time t0 (Julian date JD0 ¼ 2, 438,

400.5) its orbital parameters are

Angular momentum: h0 ¼ 63,383:4km2=s (a)

Eccentricity: e0¼ 0:025422 (b)

Right ascension of the node: Ω0 ¼ 45:3812° (c)

Inclination: i0¼ 88:3924° (d)

Argument of perigee: ω0 ¼ 227:493° (e)

True anomaly: θ0¼ 343:427° (f)

Use numerical integration to plot the variation of these orbital parameters over the next 3 years (tf ¼ 1095 days) due just to

solar radiation pressure. Assume that the radiation pressure coefficient is 2.

Solution
We write the system of differential equations in Eq. (10.106) as dy/dt ¼ f(y, t), where the components of y are the orbital

elements

y¼ h e θ Ω i ωb cT (g)

and

f¼ _h _e _θ _Ω _i _ω
� �T

(h)

The osculating element rates in f are found on the right-hand side of Eqs. (10.106) with pSR ¼ ν(S/c)CR(Asc/m).

The initial conditions vector y0 comprises Eqs. (a)–(f). We can solve the system dy/dt ¼ f(y, t) for y on the interval

[t0, tf] by using a numerical integrator such as MATLAB’s ode45. At each time step, the integrator relies on a subroutine

to compute the rates f from the current values of y and the time t, as follows:

Update the Julian day number: JD JD0 + t(days).

Use y to compute the position vector r of the satellite by means of Algorithm 4.5.

Compute the magnitude of r (r5 krk).
Using JD, compute the sun’s apparent ecliptic longitude λ, the obliquity of the ecliptic ε, and the geocentric equatorial
position vector r⊙ of the sun by means of Algorithm 10.2.
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Compute the components ur, us, and uw of the earth–sun unit vector from Eqs. (10.105).

Calculate the value of the shadow function ν from r and r⊙ using Algorithm 10.3.

Compute the solar radiation perturbation pSR ¼ ν(S/c)CR(Asc/m).

Calculate the components of f in Eq. (h).

Plots of the orbital parameter variations h(t) � h0, e(t) � e0, etc., are shown in Fig. 10.16. The MATLAB M-file

Example_10_09.m is listed in Appendix D.45.

. 10.16

lar radiation perturbations of h, e, a, Ω, i, and ω during a 3-year interval following Julian date 2438400.5

January 1964).
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10.10 LUNAR GRAVITY
Fig. C.1 of Appendix C shows a three-body system comprising masses m1, m2, and m3. The position

vectors of the three masses relative to the origin of an inertial XYZ frame are R1, R2, and R3, respec-

tively. Eq. (C.2) give the absolute accelerations a1 ¼ d2R1/dt
2, a2 ¼ d2R2/dt

2, and a2 ¼ d2R2/dt
2 of the

three masses due to the mutual gravitational attraction among them. The acceleration a2/1 of body 2

relative to body 1 is a2 � a1. Therefore, from Eqs. (C.2a) and (C.2b), we obtain

a2=1¼ Gm1

R1�R2

R1�R2k k3 +Gm3

R3�R2

R3�R2k k3
 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{a2

� Gm2

R2�R1

R2�R1k k3 +Gm3

R3�R1

R3�R1k k3
 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{a1

Rearranging terms yields

a2=1¼�μ R2�R1

R2�R1k k3 + μ3
R3�R2

R3�R2k k3�
R3�R1

R3�R1k k3
 !

(10.115)

where μ ¼ G(m1 + m2) and μ3 ¼ Gm3.

Suppose body 1 is the earth, body 2 is an artificial earth satellite (s), and body 3 is the moon (m). Let

us simplify the notation so that, as pictured in Fig. 10.17,

r ¼ R2 � R1 Position of the spacecraft relative to the earth

€r ¼ a2=1 Acceleration of the spacecraft relative to the earth

rm ¼ R3 � R1 Position of the moon relative to the earth

rm/s ¼ R3 � R2 ¼ rm � r Position of the moon relative to the spacecraft
FIG. 10.17

Perturbation of a spacecraft orbit by a third body (the moon).
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Then, Eq. (10.115) becomes

€r¼�μ r

r3
+ μm

rm=s

rm=s
3
� rm

rm3

� �
(10.116)

where μ ¼ μearth ¼ 398, 600 km3/s2 and μm ¼ μmoon ¼ 4903 km3/s2. The last term in this equation is the

perturbing acceleration due to lunar gravity,

p¼ μm
rm=s

rm=s
3
� rm

rm3

� �
(10.117)

If p ¼ 0, then Eq. (10.116) reduces to Eq. (2.22), the fundamental equation of Keplerian motion.

The unit vector û from the center of the earth to that of the moon is given in the geocentric ecliptic

frame by an expression similar to Eq. (10.99),

û¼ cosδcosλÎ
0
+ cosδsinλĴ

0
+ sinδK̂

0
(10.118)

where λ is the lunar ecliptic longitude, and δ is the lunar ecliptic latitude. If δ ¼ 0, then this expression

reduces to that for the sun, which does not leave the ecliptic plane. The components of û in the geo-

centric equatorial (XYZ) system are found as in Eq. (10.100),

ûf gXYZ ¼ R1 �εð Þ½ � ûf gX0 Y0 Z0 ¼
1 0 0

0 cosε �sinε
0 sinε cosε

264
375 cosδcosλ

cosδ sinλ

sinδ

8><>:
9>=>;

¼
cosδcosλ

cosεcosδsinλ� sinεsinδ

sinεcosδsinλ+ cosεsinδ

8><>:
9>=>;

(10.119)

The geocentric equatorial position of the moon is rm ¼ rmû, so that

rm¼ rm cosδcosλÎ+ rm cosεcosδsinλ� sinεsinδð ÞĴ
+ rm sinεcosδsinλ+ cosεsinδð ÞK̂

(10.120)

The distance to the moon may be obtained from the formula

rm¼ RE

sinHP
(10.121)

where RE is the earth’s equatorial radius (6378 km), and HP is the horizontal parallax, defined in

Fig. 10.18.
FIG. 10.18

Horizontal parallax HP.
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The formulas presented in The Astronomical Almanac (National Almanac Office, 2018) for the

time variation of lunar ecliptic longitude λ, lunar ecliptic latitude δ, and lunar horizontal parallax

HP are

λ¼ b0 + c0T0 +
X6
i¼1

ai sin bi + ciT0ð Þ 0°� λ< 360°ð Þ (10.122)

δ¼
X4
i¼1

di sin ei + fiT0ð Þ 0°� λ< 360°ð Þ (10.123)

HP¼ g0 +
X4
i¼1

gi cos hi + kiT0ð Þ 0°� λ< 180°ð Þ (10.124)

where T0 is the number of Julian centuries since J2000 for the current Julian day JD,

T0¼ JD�2,451,545:0

36,525
(10.125)

The coefficients in these formulas are listed in Table 10.1.

Recall from the previous section that for the apparent motion of the sun around the earth The As-
tronomical Almanac uses n, the number of days since J2000, for the time variable instead of the number

of centuries T0 that is employed for the moon’s motion. It is obvious from Eqs. (10.110) and (10.125)

that the relation between n and T0 is simply

n¼ 36,525T0 (10.126)

In terms of T0, the formula for obliquity of the ecliptic (Eq. 10.111) is

ε¼ 23:439°�0:0130042T0 (10.127)
Table 10.1 Coefficients for computing lunar position

i

Longitude, λ Latitude, δ Horizontal parallax, HP

ai bi ci di ei fi gi hi ki

0 – 218.32 481267.881 – – – 0.9508 – –

1 6.29 135.0 477198.87 5.13 93.3 483202.03 0.0518 135.0 477198.87

2 �1.27 259.3 �413335.36 0.28 220.2 960400.89 0.0095 259.3 �413335.38
3 0.66 235.7 890534.22 �0.28 318.3 6003.15 0.0078 253.7 890534.22

4 0.21 269.9 954397.74 �0.17 217.6 �407332.21 0.0028 269.9 954397.70

5 �0.19 357.5 35999.05 – – – – – –

6 �0.11 106.5 966404.03 – – – – – –
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ALGORITHM 10.4

Given the year, month, day, and universal time, calculate the geocentric position vector of the moon:

1. Compute the Julian day number JD using Eqs. (5.47) and (5.48).

2. Calculate T0, the number of Julian centuries since J2000, using Eq. (10.125).

3. Calculate the obliquity ε using Eq. (10.127).

4. Calculate the lunar ecliptic longitude λ by means of Eq. (10.122).

5. Calculate the lunar ecliptic latitude δ using Eq. (10.123).

6. Calculate the lunar horizontal parallax HP by means of Eq. (10.124).

7. Calculate the distance rm from the earth to the moon using Eq. (10.121).

8. Compute the geocentric equatorial position rm of the moon from Eq. (10.120).
EXAMPLE 10.10
Use Algorithm 10.4 to find the geocentric equatorial position vector of the moon at 08:00 UT on July 25, 2013. This is the

same epoch as used to compute the sun’s apparent position in Example 10.7.

Solution
Step 1:

According to Step 1 of Example 10.7, the Julian day number is

JD¼ 2,456,498:8333days

Step 2:

T0¼ 2,456,498:8333�2,451,545:0

36,525
¼ 0:135629Cy

Step 3:

ε¼ 23:439°�0:0130042 0:135629ð Þ¼ 23:4375°

Step 4:

λ¼ b0 + c0 0:135629ð Þ+
X6
i¼1

ai sin bi + ci 0:135629ð Þ½ � ¼ 338:155°

Step 5:

δ¼
X4
i¼1

di sin ei + fi 0:135629ð Þ½ � ¼ 4:55400°

Step 6:

HP¼ g0 +
X4
i¼1

gi cos hi + ki 0:135629ð Þ½ � ¼ 0:991730°

Step 7:

rm¼ 6378

sin 0:991730°ð Þ¼ 368,498km
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Step 8:

rm¼ 368, 498ð Þ cos 4:55400°ð Þ cos 338:155°ð Þ Î� �
+ cos 23:4375°ð Þ cos 4:55400°ð Þ sin 338:155°ð Þ� sin 23:4375°ð Þ sin 4:55400°ð Þ½ �Ĵ

+ sin 23:4375°ð Þ cos 4:55400°ð Þ sin 338:155°ð Þ+ cos 23:4375°ð Þ sin 4:55400°ð Þ½ �K̂

rm¼ 340,958Î�137,043Ĵ�27,521:3K̂ kmð Þ
EXAMPLE 10.11
The orbital parameters of three earth satellites at time t0 (Julian date JD0 ¼ 2, 454, 283.0) are as follows. For each orbit, find

the variation of Ω, ω, and i over the following 60 days due to lunar gravity.

Low earth orbit (LEO) Highly elliptic earth orbit (HEO) Geostationary earth orbit (GEO)

h0 ¼ 51,591.1km2/s h0 ¼ 69,084.1 km2/s h0 ¼ 129,640km2/s (a)

e0 ¼ 0.01 e0 ¼ 0.741 e0 ¼ 0.0001 (b)

Ω0 ¼ 0° Ω0 ¼ 0° Ω0 ¼ 0° (c)

i0 ¼ 28.5° i0 ¼ 63.4° i0 ¼ 1° (d)

ω0 ¼ 0° ω0 ¼ 270° ω0 ¼ 0° (e)

θ0 ¼ 0° θ0 ¼ 0° θ0 ¼ 0° (f)

a0 ¼ 6678.126km a0 ¼ 26,553.4km a0 ¼ 42,164km (g)

T0 ¼ 1.50866h T0 ¼ 11.9616h T0 ¼ 23.9343h (h)
For each orbit, find the variation of Ω, ω, and i over the following 60 days due to lunar gravity.

Solution
For each orbit in turn we write the system of differential equations given by Eq. (10.84) as dy/dt ¼ f(y, t), where the six

components of y are the orbital elements

y¼ h e θ Ω i ωb cT (i)

and

f¼ _h _e _θ _Ω _i _ω
� �T

(j)

The six time rates are found on the right-hand side of Gauss’ planetary equations (Eqs. 10.84).

The initial conditions vector y0 for each of the three orbits consists of Eqs. (a) through (f). The system dy/dt ¼ f(y, t) is

solved for y on the interval [t0, tf] using a numerical integrator such as MATLAB’s ode45. At each time step, the integrator

relies on a subroutine to compute the rates f from the current values of y and the time t, as follows:

Update the Julian day number: JD JD0 + t(days).
Using JD, compute the geocentric equatorial position vector rm of the moon by means of Algorithm 10.4.

Use y to compute the state vector (r,v) of the satellite by means of Algorithm 4.5.

Compute the position of the moon relative to the satellite: rm/s ¼ rm � r.

Compute the perturbing acceleration of the moon: p¼ μm rm=s=rm=s
3�rm=rm

3
� �

.
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Compute the unit vectors of the rsw frame (Fig. 10.10):

r̂¼ r

rk k ŵ¼ r�v

r�vk k ŝ¼ ŵ� r̂

ŵ� r̂k k
pute the components of the perturbing acceleration along the rsw axes:
Com

pr ¼p � r̂ ps¼p � ŝ pw¼p � ŵ
Eq. (10.84) to calculate the components of f in Eq. (j).
Use

Plots of the orbital parameter variations δΩ ¼ Ω(t) � Ω0, δi ¼ i(t) � i0, and δω ¼ ω(t) � ω0 are shown in Fig. 10.19.

The MATLAB M-file Example_10_11.m is listed in Appendix D.47.

. 10.19

nar gravity perturbations of Ω, i, and ω of the three orbits during a 60-day interval following Julian date

54283.0 (1 July 2007).
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10.11 SOLAR GRAVITY
The special perturbations approach to assessing the sun’s influence on the orbits of earth satellites pro-

ceeds as it did for the moon in the previous section. The sun replaces the moon as the third body, as

illustrated in Fig. 10.20, in which ⊙ represents the sun and “s” stands for spacecraft. The perturbing

acceleration of the sun may be inferred from that of the moon in Eq. (10.117),

p¼ μ⊙
r⊙=s

r⊙=s
3
� r⊙

r⊙3

� �
(10.128)

According to Table A.2, the gravitational parameter μ⊙ of the sun is 132.712(109) km3/s2. The sun’s

geocentric position vector r⊙ in its apparent motion around the earth is found by using Algorithm 10.2,

as we did in our study of solar radiation pressure effects.

Using the fact that r⊙ ¼ r + r⊙/s, we may rewrite Eq. (10.128) as

p¼ μ⊙
r⊙=s

3
r⊙ 1� r⊙=s

3

r⊙3

� �
�r

� �
(10.129)

FIG. 10.20

Perturbation of a spacecraft’s earth orbit by solar gravity.
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Because the sun is so far from the earth, the ratio r⊙=s=r⊙
� �3

is very nearly 1. Therefore, evaluating

Eq. (10.129) involves subtracting two nearly equal numbers, which should be avoided in a digital com-

puter. We do so by referring to Appendix F to write Eq. (10.129) as

p¼ μ⊙
r⊙=s

3
F qð Þr⊙�r½ � (10.130)

where, according to Eq. (F.4),

q¼ r � 2r⊙�rð Þ
r⊙2

(10.131)

and F(q) is given by Eq. (F.3).
EXAMPLE 10.12
For the three orbits of Example 10.11, find the variation of the node angleΩ, argument of perigeeω, and inclination i due to
solar gravity for a period of 720 days following the given initial conditions.

Solution
Wewill useMATLAB’s function ode45 to numerically integrate the system dy/dt ¼ f(y, t) on the interval [t0, tf], where t0 is

Julian day 2,454,283.0 and tf is t0 + 720 days. y is the six-component vector of orbital elements,

y¼ h e θ Ω i ωb cT (a)

The vector f,

f¼ _h _e _θ _Ω _i _ω
� �T

(b)

contains the time derivatives of the orbital elements as given by Gauss’ planetary equations (Eq. 10.84). The initial con-

ditions vector y0 for each of the three orbits consists of Eqs. (a) through (f) of Example 10.11.

At each time step, a numerical integrator like ode45 relies on a subroutine to compute the rates f of the osculating

elements from their current y and the time t, as follows:

Update the Julian day number: JD JD0 + t (days).

Using JD, compute the geocentric equatorial position vector r⊙ of the sun by means of Algorithm 10.2.

Use y to compute the state vector (r,v) of the satellite by means of Algorithm 4.5.

Compute the position vector of the sun relative to the satellite: r⊙/s ¼ r⊙ � r.

Compute q from Eq. (10.131): q¼ r � 2r⊙�rð Þ=r⊙2.

Compute F(q) from Eq. (F.3): F(q) ¼ q(q2 � 3q + 3)/[1 + (1 � q)3/2].
Compute the perturbing acceleration of the sun: p¼ μ⊙ F qð Þr⊙�r½ �=r⊙=s

3.

Compute the unit vectors of the rsw frame (Fig. 10.10):

r̂¼ r

rk k ŵ¼ r�v

r�vk k ŝ¼ ŵ� r̂

ŵ� r̂k k

pute the components of the perturbing acceleration along the rsw axes:
Com

pr ¼p � r̂ ps¼p � ŝ pw¼p � ŵ

Eq. (10.84) to calculate the components of f.
Use

Plots of the orbital parameter variations δΩ ¼ Ω(t) � Ω0, δi ¼ i(t) � i0, and δω ¼ ω(t) � ω0 are shown in Fig. 10.21.

The MATLAB script file Example_10_12.m is listed in Appendix D.48.



FIG. 10.21

Solar gravity perturbations of Ω, i, and ω of the three orbits in Example 12.11 during a 720-day interval

fol
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lowing Julian date 2454283.0 (1 July 2007).
PROBLEMS

Section 10.2

10.1 In Fig. 10.1, the radius at perigee O is 7000 km and the speed is v0¼
ffiffiffiffiffiffiffiffiffi
μ=r0

p
. The initial mass of

the spacecraft is m0 ¼ 2000kg and the thrust of the propulsion system is 0.5 kN. Using Cowell’s

method and ode45, find the perigee and the eccentricity of the osculating orbits at the following
times after t0: (a) 1 h; (b) 1.2 h; (c) 1.4 h; (d) 1.6 h.
{Ans.: (a) 0.1856, 7903 km; (b) 0.2046, 8450 km; (c) 0.2272, 9123 km; (d) 0.2825, 9895 km}
Section 10.3
10.2 Repeat Problem 10.1 using ode45 and Encke’s method.
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Section 10.4
10.3 Solve Example 10.1 using Encke’s method.

Section 10.5
10.4 Find the zeros of each of the Legendre polynomials in Fig. 10.7.

10.5 Use Rodrigues’ formula to calculate Legendre polynomials P8(x)and P9(x).
10.6 Plot and find the zeros of the Legendre polynomials found in Problem 10.5.

10.7 Verify that the third zonal harmonic of the perturbing gravitational potential is

Φ¼ J3
2

μ

r

R

r

� �3

5cos3ϕ�3cosϕ
� �
Show that the perturbing acceleration p ¼ �rΦ due to the J3 zonal harmonic is
10.8

p¼ 1

2

J3μR3

r5
5
x

r
7

z

r

	 
3
�3

z

r

� �̂
i+ 5

y

r
7

z

r

	 
3
�3

z

r

� �̂
j + 3

35

3

z

r

	 
4
�10

z

r

	 
2
+ 1

� �
k̂

� �

where z/r ¼ cos ϕ.
10.9 For the orbit of Example 10.2, use Cowell’s method to determine the J3 effect on the orbital

parameters Ω, ω, h, e, and i for 48 h after the initial epoch.

Section 10.6
10.10 Use the method of variation of parameters to solve Eq. (1.113).

10.11 Use the method of variation of parameters to solve the differential equation €x+ 2 _x + 2x¼ tsin t.

{Ans.: x ¼ a1e

� t sin t + a2e
� t cos t + (�2t/5 + 14/25) cos t + (t/5 � 2/25) sin t, where a1 and

a2 are constants of integration that are determined from the initial conditions}
10.12 Show that the variation of parameters solution of the differential equation €x+ a1 tð Þ _x + a2 tð Þx¼
f tð Þ is x ¼ u1(t)x1(t) + u2(t)x2(t), where

u1¼
ð

x2f tð Þ
x2x1�x2x1

dt+C1 u2¼
ð

x1f tð Þ
x1x2�x1x2

dt+C2
where x1 and x2 are solutions of the reduced homogeneous equation €x+ a1 tð Þ _x + a2 tð Þx¼ 0, and

C1 and C2 are constants. P

10.13 Using the definition of the dot product of two vectors (b � c ¼ i¼1

3 bici) it is easy to see from

Eq. (10.48) that the 36 components of the Lagrange matrix, called Lagrange brackets, may be

written

Lαβ ¼ ∂r

∂uα
� ∂v
∂uβ
� ∂v

∂uα
� ∂r
∂uβ

α,β¼ 1,…,6
Show that Lαβ ¼ � Lβα and that Lαβ ¼ 0 when α ¼ β, so that there are only 15 independent

Lagrange brackets.
10.14 Using the facts that ∂r/∂ t ¼ v and ∂v/∂ t ¼ a, where v is the velocity and a is the acceleration,

show that the time derivative of Lαβ in Problem 10.13 is

∂Lαβ
∂t
¼ ∂a

∂uβ
� ∂r
∂uα
� ∂a

∂uα
� ∂r
∂uβ
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10.15 If a is the two-body relative acceleration vector, a ¼ � μr/r3, show that

∂a

∂uα
¼� μ

r3
∂r

∂uα
�3

r

r

∂r

∂uα

� �
where uα (α ¼ 1, … , 6) are a set of osculating orbital elements.
10.16 Use the formula for ∂a/∂uα in Problem 10.15 plus the fact that r � (∂r/∂uβ) ¼ r(∂r/∂uβ) to verify
that

∂a

∂uα
� ∂r
∂uβ
¼� μ

r3
∂r

∂uα
� ∂r
∂uβ
�3

∂r

∂uα

∂r

∂uβ

� �
Combine the results of Problems 10.14 and 10.16 to show that
10.17

∂Lαβ
∂t
¼ 0 α,β¼ 1,…,6
That is, on a given osculating orbit (i.e., for a given set of orbital elements uα), the Lagrangian
brackets are constant. This means that [L] may be computed at a point where the orbit formulas

have their simplest algebraic form, which usually is at periapsis (as it was for obtaining the

specific energy formula in Section 2.6).
10.18 For the orbital elements

u1¼ h u2¼ e u3¼ θ u4¼Ω u5¼ i u6¼ω
it can be shown that the Lagrange matrix is
L½ � ¼

0 0 �1�e

1 + e
�cos i 0 �1

0 0 � eh

1 + eð Þ2 0 0 0

1�e

1 + e

eh

1 + eð Þ2 0 0 0 0

cos i 0 0 0 �hsin i 0

0 0 0 hsin i 0 0

1 0 0 0 0 0

26666666666664

37777777777775

Solve Eq. (10.47), where
Pf g¼ ∂R=∂h ∂R=∂e ∂R=∂θ ∂R=∂Ω ∂R=∂ω ∂R=∂ib cT
for the element rates, _h, _e, _θ, _Ω, and _ω.

10.19 For the orbital elements

u1¼Ω u2¼ i u3¼ω u4¼ a u5¼ e u6¼ tp
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where tp is the time of periapse passage, it can be shown that the Lagrange matrix is
L½ � ¼

0 �nabsin i 0
1

2
nbcos i �na

3e

b
cos i 0

nabsin i 0 0 0 0 0

0 0 0
1

2
nb �na

3e

b
0

�1
2
nbcos i 0 �1

2
nb 0 0

1

2
n2a

na3e

b
cos i 0

na3e

b
0 0 0

0 0 0 �1
2
n2a 0 0

266666666666666664

377777777777777775

where a and b are the semimajor and semiminor axes, and n is the mean motion. Solve

Eq. (10.47) with
Pf g¼ ∂R=∂Ω ∂R=∂i ∂R=∂ω ∂R=∂α ∂R=∂ε ∂R=∂tpb cT
to obtain Lagrange’s planetary equations listed in Eq. (10.50).
Section 10.7
10.20 Show that dr/dt ¼ 0 implies that dr/dt ¼ 0.

10.21 Verify that for unperturbed two-body motion, dθ/dt ¼ h/r2.
10.22 Verify that for unperturbed two-body motion, dM/dt ¼ n.
10.23 Verify that for unperturbed two-body motion, dE/dt ¼ na/r.
10.24 Show that da=dtð Þ¼ 2a2=hð Þ esin θpr + h2ps= μrð Þ½ �.
10.25 Show that there is no time-averaged J3 perturbation of the semimajor axis (da=dt¼ 0).

10.26 Show that ∂v2/∂v ¼ 2v.

10.27 Show that ∂(r � v)/∂v ¼ r.

10.28 Show that ∂h/∂v ¼ (h � r)/h.
10.29 Show that ∂h2/∂v ¼ 2h � r.

10.30 Find Gauss’ variational equation for drp/dt.
10.31 Find Gauss’ variational equation for dra/dt.
10.32 Find Gauss’ variational equations for a radial acceleration perturbation, p¼ pr r̂.
10.33 Show that for a tangential perturbing acceleration pv, the variation of the semimajor axis is

da/dt ¼ (2a2/μ)(pv/v).
10.34 Numerically integrate Gauss’ planetary equations for a given perturbation p and set of initial

conditions.

10.35 Find the pr, ps, and pw components in the rsw frame of the J3 gravitational perturbation p found

in Problem 10.8.

10.36 Find the expression for dh/dt due to J3.
10.37 Find the expression for de/dt due to J3.
10.38 Find the expression for dΩ/dt due to J3.
10.39 Find the expression for di/dt due to J3.
10.40 Find the expression for dω/dt due to J3.
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Section 10.8
10.41–10.45 Find the orbital averages of the J3 rates found in Problems 10.35–10.39.

Section 10.9
10.46 An earth satellite has the following orbital parameters on Julian date 2,456,793 (May 15, 2014):

rp¼ 10,000 km ra¼ 15,000km θ¼ 40° Ω¼ 300° ω¼ 110° i¼ 55°

Assuming an absorbing area-to-mass ratio of 2m2/kg and a radiation pressure coefficient of 2,

use Cowell’s method and MATLAB’s ode45 (or similar) to plot the variation of these orbital

parameters over the next 3 years due just to solar radiation pressure.
Section 10.10
10.47 Solve Problem 10.46, neglecting solar radiation pressure and including only the perturbing

effect of lunar gravity.

10.48 Solve Problem 10.46, retaining the effect of solar radiation pressure and adding that of lunar

gravity as well.

10.49 For the orbits of Example 10.11, plot the variations a, e, and θ over the same time interval.

10.50 For the orbits of Example 10.11, plot the variations of rp and ra over the same time interval.

10.51 For the data of Example 10.11, use Cowell’s method to integrate Eq. (10.2) with lunar gravity as

the perturbation and then use Algorithm 4.2 to obtain the time histories of the orbital

parameters. Compare the results with Fig. 10.19.

10.52 For the data of Example 10.11, use Encke’s method to integrate Eq. (10.2) with lunar gravity as

the perturbation and then use Algorithm 4.2 to obtain the time histories of the orbital

parameters. Compare the results with Fig. 10.19.

Section 10.11
10.53 Solve Problem 10.46, neglecting solar radiation pressure and including only the perturbing

effect of solar gravity.

10.54 Solve Problem 10.46, retaining the effect of solar radiation pressure and adding that of solar

gravity as well.

10.55 Solve Problem 10.46, retaining the effect of solar radiation pressure and adding those of lunar

and solar gravity as well.

10.56 Plot the variation of a, e, and θ in Example 10.12.

10.57 Plot the variations of rp and ra in Example 10.12.

10.58 For the data of Example 10.12, use Cowell’s method to integrate Eq. (10.2) with solar gravity as

the perturbation and then use Algorithm 4.2 to obtain the time histories of the orbital

parameters. Compare the results with Fig. 10.21.

10.59 For the data of Example 10.12, use Encke’s method to integrate Eq. (10.2) with solar gravity as

the perturbation and then use Algorithm 4.2 to obtain the time histories of the orbital

parameters. Compare the results with Fig. 10.21.
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CHAPTER
RIGID BODY DYNAMICS
 11

11.1 INTRODUCTION
Just as Chapter 1 provides a foundation for development of the equations of orbital mechanics, this

chapter serves as a basis for developing the equations of satellite attitude dynamics. Chapter 1 deals

with particles, whereas here we are concerned with rigid bodies. Those familiar with rigid body

dynamics can move on to the next chapter, perhaps returning from time to time to review concepts.

The kinematics of rigid bodies is presented first. The subject depends on a theorem of the French

mathematician Michel Chasles (1793–1880). Chasles’ theorem states that the motion of a rigid body

can be described by the displacement of any point of the body (the base point) plus a rotation about a

unique axis through that point. The magnitude of the rotation does not depend on the base point. Thus,

at any instant, a rigid body in a general state of motion has an angular velocity vector whose direction is

that of the instantaneous axis of rotation. Describing the rotational component of the motion of a rigid

body in three dimensions requires taking advantage of the vector nature of angular velocity and know-

ing how to take the time derivative of moving vectors, which is explained in Chapter 1. Several ex-

amples in the current chapter illustrate how this is done.

We then move on to study the interaction between the motion of a rigid body and the forces acting

on it. Describing the translational component of the motion requires simply concentrating all of the

mass at a point known as the center of mass and applying the methods of particle mechanics to deter-

mine its motion. Indeed, our study of the two-body problem up to this point has focused on the motion

of their centers of mass without regard to the rotational aspect. Analyzing the rotational dynamics re-

quires computing the body’s angular momentum, and that in turn requires accounting for how the mass

is distributed throughout the body. The mass distribution is described by the six components of the

moment of inertia tensor.

Writing the equations of rotational motion relative to coordinate axes embedded in the rigid body

and aligned with the principal axes of inertia yields the nonlinear Euler equations of motion, which are

applied to a study of the dynamics of a spinning top (or one-axis gyro).

The expression for the kinetic energy of a rigid body is derived because it will be needed in the

following chapter.

The chapter next describes the two sets of three angles commonly employed to specify the orien-

tation of a body in three-dimensional space. One of these comprises the Euler angles, which are the

same as the right ascension of the node (Ω), the argument of periapsis (ω), and the inclination (i). These
were introduced in Chapter 4 to orient orbits in space. The other set comprises the yaw, pitch, and roll
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00011-8
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angles, which are suitable for describing the orientation of an airplane. Both the Euler angles and the

yaw, pitch, and roll angles will be employed in Chapter 12.

The chapter concludes with a brief discussion of quaternions and an example of how they are used to

describe the evolution of the attitude of a rigid body.
11.2 KINEMATICS
Fig. 11.1 shows a moving rigid body and its instantaneous axis of rotation, which defines the direction

of the absolute angular velocity vector ω. The XYZ axes are a fixed, inertial frame of reference. The

position vectors RA and RB of two points on the rigid body are measured in the inertial frame. The

vector RB/A drawn from point A to point B is the position vector of B relative to A. Since the body

is rigid, RB/A has a constant magnitude even though its direction is continuously changing. Clearly,

RB ¼RA +RB=A

Differentiating this equation through with respect to time, we get

_RB ¼ _RA +
dRB=A

dt
(11.1)

where _RA and _RB are the absolute velocities vA and vB of points A and B. Because the magnitude ofRB/A

does not change, its time derivative is given by Eq. (1.52). That is,

dRB=A

dt
¼ω�RB=A

Thus, Eq. (11.1) becomes

vB ¼ vA +ω�RB=A (11.2)

Taking the time derivative of Eq. (11.1) yields

€RB ¼ €RA +
d2RB=A

dt2
(11.3)
FIG. 11.1

Rigid body and its instantaneous axis of rotation.
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where €RA and €RB are the absolute accelerations aA and aB of the two points of the rigid body, while from

Eq. (1.53) we have

d2RB=A

dt2
¼α�RB=A +ω� ω�RB=A

� �
where α is the angular acceleration, α¼ dω=dt. Therefore, Eq. (11.3) can be written

aB ¼ aA +α�RB=A +ω� ω�RB=A

� �
(11.4)

Eqs. (11.2) and (11.4) are the relative velocity and acceleration formulas. Note that all quantities in

these expressions are measured in the same inertial frame of reference.

When the rigid body under consideration is connected to and moving relative to another rigid body,

computation of its inertial angular velocity ω and angular acceleration α must be done with care. The

key is to remember that angular velocity is a vector. It may be found as the vector sum of a sequence of

angular velocities, each measured relative to another, starting with one measured relative to an absolute

frame, as illustrated in Fig. 11.2. In that case, the absolute angular velocity ω of body 4 is

ω¼ω1 +ω2=1 +ω3=2 +ω4=3 (11.5)
FIG. 11.2

Angular velocity is the vector sum of the relative angular velocities starting with ω1, measured relative to the

inertial frame.
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Each of these angular velocities is resolved into components along the axes of the moving frame of

reference xyz as shown in Fig. 11.2, so that the vector sum may be written as

ω¼ωx̂i+ωy ĵ+ωzk̂ (11.6)

The moving frame is chosen for convenience of analysis, and its own inertial angular velocity vec-

tor is denoted as Ω, as discussed in Section 1.6. According to Eq. (1.56), the absolute angular accel-

eration α¼ dω=dt is obtained from Eq. (11.6) by means of the following calculation:

α¼ dω
dt

�
rel

+Ω�ω (11.7)

where

dω
dt

�
rel

¼ _ω x̂i+ _ωy ĵ+ _ωzk̂ (11.8)

and _ωx ¼ dωx=dt.
Being able to express the absolute angular velocity vector in an appropriately chosen moving ref-

erence frame, as in Eq. (11.6), is crucial to the analysis of rigid body motion. Once we have the com-

ponents of ω, we simply differentiate each of them with respect to time to arrive at Eq. (11.8). Observe

that the absolute angular acceleration α and dω=dtÞrel, the angular acceleration relative to the moving

frame, are the same if and only ifΩ¼ω. That occurs if the moving reference is a body-fixed frame (i.e.,

a set of xyz axes imbedded in the rigid body itself).
EXAMPLE 11.1
The airplane in Fig. 11.3 flies at a constant speed v while simultaneously undergoing a constant yaw rate ωyaw about a

vertical axis and describing a circular loop in the vertical plane with a radius ρ. The constant propeller spin rate is ωspin

relative to the airframe. Find the velocity and acceleration of the tip P of the propeller relative to the hub H, when P is

directly above H. The propeller radius is ‘.

Solution
The xyz axes are rigidly attached to the airplane. The x axis is aligned with the propeller’s spin axis. The y axis is vertical,

and the z axis is in the spanwise direction, so that xyz forms a right-handed triad. Although the xyz frame is not inertial, we

can imagine it to instantaneously coincide with an inertial frame.
FIG. 11.3

Airplane with attached xyz body frame.
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The absolute angular velocity of the airplane has two components, the yaw rate and the counterclockwise pitch angular

velocity v/ρ of its rotation in the circular loop,

ωairplane ¼ωyaw ĵ+ωpitchk̂¼ωyaw ĵ+
v

ρ
k̂

The angular velocity of the body-fixed moving frame is that of the airplane, Ω¼ωairplane, so that

Ω¼ωyaw ĵ+
v

ρ
k̂ (a)

The absolute angular velocity of the propeller is that of the airplane plus the angular velocity of the propeller relative to the

airplane

ωprop ¼ωairplane +ωspin î¼Ω+ωspin î

which means

ωprop ¼ωspin î+ωyaw ĵ+
v

ρ
k̂ (b)

From Eq. (11.2), the velocity of point P on the propeller relative to point H on the hub, vP/H, is given by

vP=H ¼ vP�vH ¼ωprop�rP=H

where rP/H is the position vector of P relative to H at this instant,

rP=H ¼ ‘̂j (c)

Thus, using Eqs. (b) and (c),

vP=H ¼ ωspin î+ωyaw ĵ +
v

ρ
k̂

� �
� ‘̂j
� �

from which

vP=H ¼�v

ρ
‘̂i+ωspin‘k̂

The absolute angular acceleration of the propeller is found by substituting Eqs. (a) and (b) into Eq. (11.7),

αprop ¼ dωprop

dt

�
rel

+Ω�ωprop

¼ dωspin

dt
î+

dωyaw

dt
ĵ +

d v=ρð Þ
dt

k̂

� �
+ ωyaw ĵ+

v

ρ
k̂

� �
� ωspin î+ωyaw ĵ +

v

ρ
k̂

� �
Since ωspin, ωyaw, v, and ρ are all constant, this reduces to

αprop ¼ ωyaw ĵ+
v

ρ
k̂

� �
� ωspin î+ωyaw ĵ+

v

ρ
k̂

� �
Carrying out the cross product yields

αprop ¼ v

ρ
ωspin ĵ�ωyawωspink̂ (d)

From Eq. (11.4), the acceleration of P relative to H, aP/H, is given by

aP=H ¼ aP�aH ¼αprop�rP=H +ωprop� ωprop�rP=H
� �

Substituting Eqs. (b), (c), and (d) into this expression yields

aP=H ¼ v

ρ
ωspin ĵ�ωyawωspink̂

� �
� ‘ ĵ
� �

+ ωspin î+ωyaw ĵ+
v

ρ
k̂

� �
� ωspin î+ωyaw ĵ+

v

ρ
k̂

� �
� ‘ ĵ
� �� 	
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From this we find that

aP=H ¼ ωyawωspin‘̂i
� �

+ ωspin î+ωyaw ĵ+
v

ρ
k̂

� �
� �v

ρ
‘̂i+ωspin‘k̂

� 	
¼ ωyawωspin‘̂i
� �

+ ωyawωspin‘̂i� v2

ρ2
+ωspin

2

� �
‘̂j+ωyaw

v

ρ
‘k̂

� 	
so that finally,

aP=H ¼ 2ωyawωspin‘̂i� v2

ρ2
+ωspin

2

� �
‘̂j +ωyaw

v

ρ
‘k̂
EXAMPLE 11.2
The satellite in Fig. 11.4 is rotating about the z axis at a constant rateN. The xyz axes are attached to the spacecraft, and the z

axis has a fixed orientation in inertial space. The solar panels rotate at a constant rate _θ in the direction shown. Relative to

point O, which lies at the center of the spacecraft and on the centerline of the panels, calculate for point A on the panel

(a) its absolute velocity and

(b) its absolute acceleration.

Solution
(a) Since the moving xyz frame is attached to the body of the spacecraft, its angular velocity is

Ω¼Nk̂ (a)

The absolute angular velocity of the panel is the absolute angular velocity of the spacecraft plus the angular velocity of

the panel relative to the spacecraft,

ωpanel ¼� _θ ĵ+Nk̂ (b)

The position vector of A relative to O is

rA=O ¼�w

2
sin θ̂i+ dĵ+

w

2
cosθk̂ (c)

According to Eq. (11.2), the velocity of A relative to O is

vA=O ¼ vA�vO ¼ωpanel�rA=O ¼
î ĵ k̂

0 � _θ N

�w

2
sinθ d

w

2
cosθ



















FIG. 11.4

Rotating solar panel on a rotating satellite.
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from which we get

vA=O ¼� w

2
_θ cosθ +Nd

� �̂
i�w

2
N sinθĵ�w

2
_θ sinθk̂

(b) The absolute angular acceleration of the panel is found by substituting Eqs. (a) and (b) into Eq. (11.7),

αpanel ¼ dωpanel

dt

�
rel

+Ω�ωpanel

¼ d � _θ
� �
dt

ĵ+
dN

dt
k̂

" #
+ Nk̂
� �� � _θ ĵ+Nk̂

� �
Since N and _θ are constants, this reduces to

αpanel ¼ _θN î (d)

To find the acceleration of A relative to O, we substitute Eqs. (b) through (d) into Eq. (11.4),

aA=O ¼ aA�aO ¼αpanel�rA=O +ωpanel� ωpanel�rA=O
� �

¼
î ĵ k̂

_θN 0 0

�w

2
sinθ d

w

2
cosθ


















 + � _θ ĵ+Nk̂
� �

�
î ĵ k̂

0 � _θ N

�w

2
sinθ d

w

2
cosθ




















¼ �w

2
N _θ cosθĵ+N _θdk̂

� �
+

î ĵ k̂

0 � _θ N

�w

2
_θ cosθ�Nd �N

w

2
sinθ �w

2
_θ sinθ




















which leads to

aA=O ¼w

2
N2 + _θ

2
� �

sin θ̂i�N Nd +w _θ cosθ
� �̂

j�w

2
_θ
2
cosθk̂
EXAMPLE 11.3
The gyro rotor illustrated in Fig. 11.5 has a constant spin rateωspin around axis b–a in the direction shown. TheXYZ axes are
fixed. The xyz axes are attached to the gimbal ring, whose angle θ with the vertical is increasing at a constant rate _θ in the

direction shown. The assembly is forced to precess at a constant rate N around the vertical. For the rotor in the position

shown, calculate

(a) the absolute angular velocity and

(b) the absolute angular acceleration.

Express the results in both the fixed XYZ frame and the moving xyz frame.

Solution
(a) We will need the instantaneous relationship between the unit vectors of the inertial XYZ axes and the comoving xyz

frame, which on inspecting Fig. 11.6 can be seen to be

Î¼�cosθĵ+ sinθk̂

Ĵ¼ î

K̂¼ sinθĵ+ cosθk̂

(a)

so that the matrix of the transformation from xyz to XYZ is (Section 4.5)

Q½ �xX ¼
0 �cosθ sinθ
1 0 0

0 sinθ cosθ

24 35 (b)



FIG. 11.5

Rotating, precessing, nutating gyro.

FIG. 11.6

Orientation of the fixed XZ axes relative to the rotating xz axes.
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The absolute angular velocity of the gimbal ring is that of the base (NK̂) plus the angular velocity of the gimbal

relative to the base ( _θ î), so that

ωgimbal ¼NK̂+ _θ î¼N sinθĵ+ cosθk̂
� �

+ _θ î¼ _θ î+N sinθĵ+N cosθk̂ (c)

where we made use of Eq. (a)3 above. Since the moving xyz frame is attached to the gimbal, Ω¼ωgimbal, so that

Ω¼ _θ î+N sinθĵ+N cosθk̂ (d)

The absolute angular velocity of the rotor is its spin relative to the gimbal, plus the angular velocity of the gimbal,

ωrotor ¼ωgimbal +ωspink̂ (e)

From Eq. (c), it follows that

ωrotor ¼ _θ î+N sinθĵ+ N cosθ +ωspin

� �
k̂ (f)

Because î, ĵ, and k̂ move with the gimbal, expression (f) is valid for any time, not just the instant shown in Fig. 11.5.

Alternatively, applying the vector transformation

ωrotorf gXYZ ¼ Q½ �xX ωrotorf gxyz (g)

we obtain the angular velocity of the rotor in the inertial frame, but only at the instant shown in the figure (i.e., when the

x axis aligns with the Y axis):

ωX

ωY

ωZ

8<:
9=;¼

0 �cosθ sinθ
1 0 0

0 sinθ cosθ

24 35 _θ
N sinθ

N cosθ +ωspin

8<:
9=;¼

ωspin sinθ
_θ

N +ωspin cosθ

8<:
9=;

or

ωrotor ¼ωspin sinθÎ+ _θ Ĵ + N +ωspin cosθ
� �

K̂ (h)

(b) The angular acceleration of the rotor can be found by substituting Eqs. (d) and (f) into Eq. (11.7), recalling thatN, _θ , and
ωspin are independent of time:

αrotor ¼ dωrotor

dt

�
rel

+Ω�ωrotor

¼ d _θ
� �
dt

î+
d N sinθð Þ

dt
ĵ+

d N cosθ +ωspin

� �
dt

k̂

" #
+

î ĵ k̂

_θ N sinθ N cosθ

_θ N sinθ N cosθ +ωspin




















¼ N _θ cosθĵ�N _θ sinθk̂
� �

+ Nωspin sin θ̂i�ωspin
_θ ĵ+ 0ð Þk̂

h i
Upon collecting terms, we get

αrotor ¼Nωspin sin θ̂i+ _θ N cosθ�ωspin

� �̂
j�N _θ sinθk̂ (i)

This expression, like Eq. (f), is valid at any time.

The components of αrotor along the XYZ axes are found in the same way as for ωrotor,

αrotorf gXYZ ¼ Q½ �xX αrotorf gxyz
which means

αX

αY

αZ

8><>:
9>=>;¼

0 �cosθ sinθ

1 0 0

0 sinθ cosθ

264
375 Nωspin sinθ

_θ N cosθ�ωspin

� �
�N _θ sinθ

8><>:
9>=>;¼

_θωspin cosθ�N _θ

Nωspin sinθ

� _θωspin sinθ

8><>:
9>=>;



FIG

Fo
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or

αrotor ¼ _θ ωspin cosθ�N
� �

Î +Nωspin sinθĴ� _θωspin sinθK̂ (j)

Note carefully that Eq. (j) is not simply the time derivative of Eq. (h). Eqs. (h) and (j) are valid only at the instant that the

xyz and XYZ axes have the alignments shown in Fig. 11.5.
11.3 EQUATIONS OF TRANSLATIONAL MOTION
Fig. 11.7 again shows an arbitrary, continuous, three-dimensional body of mass m. “Continuous”
means that as we zoom in on a point it remains surrounded by a continuous distribution of matter having

the infinitesimal mass dm in the limit. The point never ends up in a void. In particular, we ignore the

actual atomic and molecular microstructure in favor of this continuum hypothesis, as it is called. Mo-

lecular microstructure does bear on the overall dynamics of a finite body. We will use G to denote the

center of mass. The position vectors of points relative to the origin of the inertial frame will be des-

ignated by capital letters. Thus, the position of the center of mass is RG, defined as

mRG ¼
ð
m

Rdm (11.9)

R is the position of a mass element dmwithin the continuum. Each element of mass is acted on by a net

external force dFnet and a net internal force dfnet. The external force comes from direct contact with

other objects and from action at a distance, such as gravitational attraction. The internal forces are those

exerted fromwithin the body by neighboring particles. These are the forces that hold the body together.

For each mass element, Newton’s second law (Eq. 1.38) is written as

dFnet + dfnet ¼ dm€R (11.10)

Writing this equation for the infinite number of mass elements of which the body is composed, and then

summing them all together, leads, to the integralð
m

dFnet +

ð
m

dfnet ¼
ð
m

€Rdm
. 11.7

rces on the mass element dm of a continuous medium.
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Because the internal forces occur in action–reaction pairs,
Ð
mdfnet ¼ 0. (External forces on the body are

those without an internal reactant; the reactant lies outside the body and, hence, is outside our purview.)

Thus,

Fnet ¼
ð
m

€Rdm (11.11)

where Fnet is the resultant external force on the body, Fnet ¼
Ð
mdFnet. From Eq. (11.9),ð

m

€Rdm¼m€RG

where €RG ¼ aG, the absolute acceleration of the center of mass. Therefore, Eq. (11.11) can be written as

Fnet ¼m€RG (11.12)

We are therefore reminded that the motion of the center of mass of a body is determined solely by the

resultant of the external forces acting on it. So far, our study of orbiting bodies has focused exclusively

on the motion of their centers of mass. In this chapter, we turn our attention to rotational motion around

the center of mass. To simplify things, we ultimately assume that the body is not only continuous but

that it is also rigid. This means all points of the body remain at a fixed distance from each other and

there is no flexing, bending, or twisting deformation.
11.4 EQUATIONS OF ROTATIONAL MOTION
Our development of the rotational dynamics equations does not require at the outset that the body under

consideration be rigid. It may be a solid, fluid, or gas.

Point P in Fig. 11.8 is arbitrary; it need not be fixed in space nor attached to a point on the body.

Then the moment about P of the forces on mass element dm (cf. Fig. 11.7) is

dMP ¼ r�dFnet + r�dfnet

where r is the position vector of the mass element dm relative to the point P. Writing the right-hand side

as r � (dFnet + dfnet), substituting Eq. (11.10), and integrating over all the mass elements of the body

yields

MPÞnet ¼
ð
m

r� €Rdm (11.13)

where €R is the absolute acceleration of dm relative to the inertial frame and

MPÞnet ¼
ð
m

r�dFnet +

ð
m

r�dfnet

But
Ð
mr � dfnet ¼ 0 because the internal forces occur in action–reaction pairs. Thus,

MPÞnet ¼
ð
m

r�dFnet

which means the net moment includes only the moment of all the external forces on the body.



FIG. 11.8

Position vectors of a mass element in a continuum from several key reference points.
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From the product rule of calculus, we know that d r� _R
� �

=dt¼ r� €R+ _r� _R, so that the integrand

in Eq. (11.13) may be written as

r� €R¼ d

dt
r� _R
� �� _r� _R (11.14)

Furthermore, Fig. 11.8 shows that r ¼ R � RP, whereRP is the absolute position vector of P. It follows
that

_r� _R¼ _R� _RP

� �� _R¼� _RP� _R (11.15)

Substituting Eq. (11.15) into Eq. (11.14) and then moving that result into Eq. (11.13), yields

MPÞnet ¼
d

dt

ð
m

r� _Rdm+ _RP�
ð
m

_Rdm (11.16)

Now, r� _Rdm is the moment of the absolute linear momentum of mass element dm about P. The
moment of momentum, or angular momentum, of the entire body is the integral of this cross product

over all of its mass elements. That is, the absolute angular momentum of the body relative to point P is

HP ¼
ð
m

r� _Rdm (11.17)

Observing from Fig. 11.8 that r ¼ rG/P + ρ, we can write Eq. (11.17) as

HP ¼
ð
m

rG=P + ρ
� �� _Rdm¼ rG=P�

ð
m

_Rdm+

ð
m

ρ� _Rdm (11.18)

The last term is the absolute angular momentum relative to the center of mass G,

HG ¼
ð
m

ρ� _Rdm (11.19)
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Furthermore, by the definition of center of mass (Eq. 11.9),ð
m

_Rdm¼m _RG (11.20)

Eqs. (11.19) and (11.20) allow us to write Eq. (11.18) as

HP ¼HG + rG=P�mvG (11.21)

This useful relationship shows how to obtain the absolute angular momentum about any point P once

HG is known.

For calculating the angular momentum about the center of mass, Eq. (11.19) can be cast in a much

more useful form by making the substitution (cf. Fig. 11.8) R ¼ RG + ρ, so that

HG ¼
ð
m

ρ� _RG + _ρ
� �

dm¼
ð
m

ρ� _RGdm+

ð
m

ρ� _ρdm

In the two integrals on the right, the variable is ρ. _RG is fixed and can therefore be factored out of the

first integral to obtain

HG ¼
ð
m

ρdm
� �

� _RG +

ð
m

ρ� _ρdm

By definition of the center of mass,
Ð
mρdm ¼ 0 (the position vector of the center of mass relative to

itself is zero), which means

HG ¼
ð
m

ρ� _ρdm (11.22)

Since ρ and _ρ are the position and velocity vectors relative to the center of mass G,
Ð
mρ� _ρdm is the

total moment about the center of mass of the linear momentum relative to the center of mass,HG)rel. In

other words,

HG ¼HGÞrel (11.23)

This is a rather surprising fact, hidden in Eq. (11.19), and is true in general for no other point of

the body.

Another useful angular momentum formula, similar to Eq. (11.21), may be found by substituting

R ¼ RP + r into Eq. (11.17),

HP ¼
ð
m

r� _RP + _r
� �

dm¼
ð
m

rdm

� �
� _RP +

ð
m

r� _rdm (11.24)

The term on the far right is the net moment of relative linear momentum about P,

HPÞrel ¼
ð
m

r� _rdm (11.25)

Also,
Ð
mrdm ¼ mrG/P, where rG/P is the position vector of the center of mass relative to P. Thus,

Eq. (11.24) can be written as

HP ¼HPÞrel + rG=P�mvP (11.26)
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Finally, substituting this into Eq. (11.21), solving for HP)rel, and noting that vG � vP ¼ vG/P, yields

HPÞrel ¼HG + rG=P�mvG=P (11.27)

This expression is useful when the absolute velocity vG of the center of mass, which is required in

Eq. (11.21), is not available.

So far, we have written down some formulas for calculating the angular momentum about an ar-

bitrary point in space and about the center of mass of the body itself. Let us now return to the problem of

relating angular momentum to the applied torque. Substituting Eqs. (11.17) and (11.20) into

Eq. (11.16), we obtain

MPÞnet ¼ _HP + _RP�m _RG

Thus, for an arbitrary point P,

MPÞnet ¼ _HP + vP�mvG (11.28)

where vP and vG are the absolute velocities of points P and G, respectively. This expression is appli-

cable to two important special cases.

If the point P is at rest in inertial space (vP ¼ 0), then Eq. (11.28) reduces to

MPÞnet ¼ _HP (11.29)

This equation holds as well if vP and vG are parallel (e.g., if P is the point of contact of a wheel rolling

while slipping in the plane). Note that the validity of Eq. (11.29) depends neither on the body being

rigid nor on it being in pure rotation about P. If point P is chosen to be the center of mass, then, since

vG � vG ¼ 0, Eq. (11.28) becomes

MGÞnet ¼ _HG (11.30)

This equation is valid for any state of motion.

If Eq. (11.30) is integrated over a time interval, then we obtain the angular impulse–momentum

principle, ðt2
t1

MGÞnetdt¼HGÞ2�HGÞ1 (11.31)

A similar expression follows from Eq. (11.29).
Ð
Mdt is the angular impulse. If the net angular impulse

is zero, thenΔH ¼ 0, which is a statement of the conservation of angular momentum. Keep in mind that

the angular impulse–momentum principle is not valid for just any reference point.

Additional versions of Eqs. (11.29) and (11.30) can be obtained that may prove useful in

special circumstances. For example, substituting the expression for HP (Eq. 11.21) into Eq. (11.28)

yields

MPÞnet ¼ _HG +
d

dt
rG=P�mvG
� �� 	

+ vP�mvG

¼ _HG +
d

dt
rG�rPð Þ�mvG½ �+ vP�mvG

¼ _HG + vG�vPð Þ�mvG + rG=P�maG + vP�mvG
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or, finally,

MPÞnet ¼ _HG + rG=P�maG (11.32)

This expression is useful when it is convenient to compute the net moment about a point other than the

center of mass. Alternatively, by simply differentiating Eq. (11.27) we get

_HP

�
rel
¼ _HG + vG=P�mvG=P

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{¼0

+ rG=P�maG=P

Solving for _HG, invoking Eq. (11.30), and using the fact that aP/G ¼ � aG/P leads to

MGÞnet ¼ _HP

�
rel
+ rG=P�maP=G (11.33)

Finally, if the body is rigid, the magnitude of the position vector ρ of any point relative to the center

of mass does not change with time. Therefore, Eq. (1.52) requires that _ρ5ω�ρ, leading us to conclude
from Eq. (11.22) that

HG ¼
ð
m

ρ� ω�ρð Þdm Rigid bodyð Þ (11.34)

Again, the absolute angular momentum about the center of mass depends only on the absolute angular

velocity and not on the absolute translational velocity of any point of the body.

No such simplification of Eq. (11.17) exists for an arbitrary reference point P. However, if the point
P is fixed in inertial space and the rigid body is rotating about P, then the position vector r from P to any

point of the body is constant. It follows from Eq. (1.52) that _r¼ω� r. According to Fig. 11.8,

R¼RP + r

Differentiating with respect to time gives

_R¼ _RP + _r¼ 0 +ω�r¼ω�r

Substituting this into Eq. (11.17) yields the formula for angular momentum in this special case as

HP ¼
ð
m

r� ω�rð Þdm Rigid body rotating about fixed pointPð Þ (11.35)

Although Eqs. (11.34) and (11.35) are mathematically identical, we must keep in mind the notation

of Fig. 11.8. Eq. (11.35) applies only if the rigid body is in pure rotation about a stationary point in

inertial space, whereas Eq. (11.34) applies unconditionally to any situation.
11.5 MOMENTS OF INERTIA
To use Eq. (11.29) or Eq. (11.30) to solve problems, the vectors within them have to be resolved into

components. To find the components of angular momentum, we must appeal to its definition. We focus

on the formula for angular momentum of a rigid body about its center of mass (Eq. (11.34)) because the

expression for fixed point rotation (Eq. (11.35)) is mathematically the same. The integrand of

Eq. (11.34) can be rewritten using the bac–cab vector identity presented in Eq. (2.33),

ρ� ω�ρð Þ¼ωρ2�ρ ω �ρð Þ (11.36)



FIG. 11.9

Comoving xyz frame used to compute the moments of inertia.
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Let the origin of a comoving xyz coordinate system be attached to the center of mass G, as shown in
Fig. 11.9. The unit vectors of this frame are î, ĵ, and k̂. The vectors ρ and ω can be resolved into com-

ponents in the xyz directions to get ρ¼ x̂i + ŷj+ zk̂ and ω¼ωx̂i +ωy ĵ+ωzk̂. Substituting these vector

expressions into the right-hand side of Eq. (11.36) yields

ρ� ω�ρð Þ¼ ωx̂i+ωy ĵ+ωzk̂
� �

x2 + y2 + z2
� �� x̂i+ ŷj+ zk̂

� �
ωxx+ωyy+ωzz
� �

Expanding the right-hand side and collecting the terms having the unit vectors î, ĵ, and k̂ in common,

we get

ρ� ω�ρð Þ¼ y2 + z2
� �

ωx�xyωy�xzωz

� ̂
i+ �yxωx + x2 + z2

� �
ωy�yzωz

� ̂
j

+ �zxωx� zyωy + x2 + y2
� �

ωz

� 
k̂

(11.37)

We put this result into the integrand of Eq. (11.34) to obtain

HG ¼Hx̂i+Hy ĵ+Hzk̂ (11.38)

where

Hx

Hy

Hz

8<:
9=;¼

Ix Ixy Ixz
Iyx Iy Iyz
Izx Izy Iz

24 35 ωx

ωy

ωz

8<:
9=; (11.39a)

or, in matrix notation,

Hf g¼ I½ � ωf g (11.39b)

The nine components of the moment of inertia matrix [I] about the center of mass are

Ix ¼
ð
m

y2 + z2ð Þdm Ixy ¼�
ð
m

xydm Ixz ¼�
ð
m

xzdm

Iyx ¼�
ð
m

yxdm Iy ¼
ð
m

x2 + z2ð Þdm Iyz ¼�
ð
m

yzdm

Izx ¼�
ð
m

zxdm Izy ¼�
ð
m

zydm Iz ¼
ð
m

x2 + y2ð Þdm

(11.40)
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Since Iyx ¼ Ixy, Izx ¼ Ixz, and Izy ¼ Iyz, it follows that [I] is a symmetric matrix (i.e., [I]T ¼ [I]). There-

fore, [I] has just six independent components instead of nine. Observe that, whereas the products of

inertia Ixy, Ixz, and Iyz can be positive, negative, or zero, the moments of inertia Ix, Iy, and Iz are always
positive (never zero or negative) for bodies of finite dimensions. For this reason, [I] is a symmetric

positive definite matrix. Keep in mind that Eqs. (11.38) and (11.39) are valid as well for axes attached

to a fixed point P about which the body is rotating.

The moments of inertia reflect how the mass of a rigid body is distributed. They manifest a body’s

rotational inertia (i.e., its resistance to being set into rotary motion or stopped once rotation is under

way). It is not an object’s mass alone but how that mass is distributed that determines how the body will

respond to applied torques.

If the xy plane is a plane of symmetry, then for any x and y within the body there are identical mass

elements located at +z and�z. This means the products of inertia with z in the integrand vanish. Similar

statements are true if xz or yz are symmetry planes. In summary, we conclude

If the xy plane is a plane of symmetry of the body, then Ixz ¼ Iyz ¼ 0.

If the xz plane is a plane of symmetry of the body, then Ixy ¼ Iyz ¼ 0.

If the yz plane is a plane of symmetry of the body, then Ixy ¼ Ixz ¼ 0.

It follows that if the body has two planes of symmetry relative to the xyz frame of reference, then all

three products of inertia vanish, and [I] becomes a diagonal matrix such that,

I½ � ¼
A 0 0

0 B 0

0 0 C

24 35 (11.41)

where A, B, and C are the principal moments of inertia (all positive), and the xyz axes are the body’s
principal axes of inertia or principal directions. In this case, relative to either the center of mass or a

fixed point of rotation, as appropriate, we have

Hx ¼Aωx Hy ¼Bωy Hz ¼Cωz (11.42)

In general, the angular velocity vector ω and the angular momentum vector H are not parallel

ω�H 6¼ 0ð Þ. However, if, for example,ω¼ ω̂i, then according to Eq. (11.42),H¼Aω. In other words,
if the angular velocity is aligned with a principal direction, so is the angular momentum. In that case,

the two vectors ω and H are indeed parallel.

Each of the three principal moments of inertia can be expressed as follows:

A¼mkx
2 B¼mky

2 C¼mkz
2 (11.43)

where m is the mass of the body and kx, ky, and kz are the three radii of gyration. One may imagine the

mass of a body to be concentrated around a principal axis at a distance equal to the radius of gyration.

The moments of inertia for several common shapes are listed in Fig. 11.10. By symmetry, their

products of inertia vanish for the coordinate axes used. Formulas for other solid geometries can be

found in engineering handbooks and in dynamics textbooks.

For a mass concentrated at a point, the moments of inertia in Eq. (11.40) are just the mass times the

integrand evaluated at the point. That is, themoment of inertia matrix [I(m)] of a point massm is given by

I mð Þ
h i

¼
m y2 + z2ð Þ �mxy �mxz
�mxy m x2 + z2ð Þ �myz
�mxz �myz m x2 + y2ð Þ

24 35 (11.44)



FIG. 11.10

Moments of inertia for three common homogeneous solids of mass m. (a) Solid circular cylinder. (b) Circular

cylindrical shell. (c) Rectangular parallelepiped.
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EXAMPLE 11.4
The following table lists the mass and coordinates of seven point masses. Find the center of mass of the system and the

moments of inertia about the origin.
Point, i Mass, mi (kg) xi (m) yi (m) zi (m)

1 3 �0.5 0.2 0.3

2 7 0.2 0.75 �0.4

3 5 1 �0.8 0.9

4 6 1.2 �1.3 1.25

5 2 �1.3 1.4 �0.8

6 4 �0.3 1.35 0.75

7 1 1.5 �1.7 0.85
Solution
The total mass of this system is

m¼
X7
i¼1

mi ¼ 28 kg

For concentrated masses, the integral in Eq. (11.9) is replaced by the mass times its position vector. Therefore, in this case,

the three components of the position vector of the center of mass are xG ¼ (1/m)
P

i¼1
7 mixi, yG ¼ (1/m)

P
i¼1
7 miyi, and

zG ¼ (1/m)
P

i¼1
7 mizi, so that

xG ¼ 0:35 m yG ¼ 0:01964 m zG ¼ 0:4411 m
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The total moment of inertia is the sum over all the particles of Eq. (11.44) evaluated at each point. Thus,

I½ � ¼
0:39 0:3 0:45

0:3 1:02 �0:18

0:45 �0:18 0:87

264
375

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{1ð Þ

+

5:0575 �1:05 0:56

�1:05 1:4 2:1

0:56 2:1 4:2175

264
375

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2ð Þ

+

7:25 4 �4:5

4 9:05 3:6

�4:5 3:6 8:2

264
375

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{3ð Þ

+

19:515 9:36 �9

9:36 18:015 9:75

�9 9:75 18:78

264
375

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{4ð Þ

+

5:2 3:64 �2:08

3:64 4:66 2:24

�2:08 2:24 7:3

264
375

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{5ð Þ

+

9:54 1:62 0:9

1:62 2:61 �4:05

0:9 �4:05 7:65

264
375

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{6ð Þ

+

3:6125 2:55 �1:275

2:55 2:9725 1:445

�1:275 1:445 5:14

264
375

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{7ð Þ

or

I½ � ¼
50:56 20:42 �14:94
20:42 39:73 14:90

�14:94 14:90 52:16

24 35 kg �m2ð Þ
EXAMPLE 11.5
Calculate the moments of inertia of a slender, homogeneous straight rod of length ‘ and mass m shown in Fig. 11.11. One

end of the rod is at the origin and the other has coordinates (a, b, c).

Solution
A slender rod is one whose cross-sectional dimensions are negligible compared with its length. The mass is concentrated

along its centerline. Since the rod is homogeneous, the mass per unit length ρ is uniform and given by

ρ¼m

‘
(a)

The length of the rod is

‘¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2 + c2

p

FIG. 11.11

Uniform slender bar of mass m and length ‘.
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Starting with Ix we have from Eq. (11.40),

Ix ¼
ð‘
0

y2 + z2
� �

ρds

in which we replaced the element of mass dm by ρds, where ds is the element of length along the rod. The distance s is

measured from end A of the rod, so that the x, y, and z coordinates of any point along it are found in terms of s by the

following relations:

x¼ s

‘
a y¼ s

‘
b z¼ s

‘
c

Thus,

Ix ¼
ð‘
0

s

‘2
b2 +

s

‘2
c2

� �
ρds¼ ρ

b2 + c2

‘2

ð‘
0

s2ds¼ 1

3
ρ b2 + c2
� �

‘

Substituting Eq. (a) yields

Ix ¼ 1

3
m b2 + c2
� �

In precisely the same way, we find

Iy ¼ 1

3
m a2 + c2
� �

Iz ¼ 1

3
m a2 + b2
� �

For Ixy we have

Ixy ¼�
ð‘
0

xyρds¼�
ð‘
0

s

‘
a

� � s

‘
b

� �
ρds¼�ρ

ab

‘2

ð‘
0

s2ds¼�1

3
ρab‘

Once again using Eq. (a),

Ixy ¼�1

3
mab

Likewise,

Ixz ¼�1

3
mac Iyz ¼�1

3
mbc
EXAMPLE 11.6
The gyro rotor (Fig. 11.12) in Example 11.3 has a mass m of 5 kg, radius r of 0.08 m, and thickness t of 0.025 m. If

N ¼ 2.1 rad/s, _θ ¼ 4 rad=s, ω ¼ 10.5 rad/s, and θ ¼ 60°, calculate
(a) the angular momentum of the rotor about its center of mass G in the body-fixed xyz frame and

(b) the angle between the rotor’s angular velocity vector and its angular momentum vector.

Solution
Eq. (f) from Example 11.3 gives the components of the absolute angular velocity of the rotor in the moving xyz frame.

ωx ¼ _θ ¼ 4 rad=s

ωy ¼N sinθ¼ 2:1:sin60°¼ 1:819 rad=s

ωz ¼ωspin +N cosθ¼ 10:5 + 2:1:cos60°¼ 11:55 rad=s

(a)

Therefore,

ω¼ 4̂i+ 1:819̂j+ 11:55k̂ rad=sð Þ (b)



FIG. 11.12

Rotor of the gyroscope in Fig. 11.4.
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All three coordinate planes of the body-fixed xyz frame contain the center of mass G and all are planes of symmetry of the

circular cylindrical rotor. Therefore, Ixy ¼ Ixz ¼ Iyz ¼ 0.

From Fig. 11.10A, we see that the nonzero diagonal entries in the moment of inertia tensor are

A¼B¼ 1

12
mt2 +

1

4
mr2 ¼ 1

12
5ð Þ 0:025ð Þ2 + 1

4
5ð Þ 0:08ð Þ2 ¼ 0:008260 kg �m2

C¼ 1

2
mr2 ¼ 1

2
5ð Þ 0:08ð Þ2 ¼ 0:0160 kg �m2

(c)

We can use Eq. (11.42) to calculate the angular momentum, because the origin of the xyz frame is the rotor’s center of mass

(which in this case also happens to be a fixed point of rotation, which is another reason why we can use Eq. 11.42).

Substituting Eqs. (a) and (c) into Eq. (11.42) yields

Hx ¼Aωx ¼ 0:008260ð Þ 4ð Þ¼ 0:03304 kg �m2=s

Hy ¼Bωy ¼ 0:008260ð Þ 1:819ð Þ¼ 0:0150 kg �m2=s

Hz ¼Cωz ¼ 0:0160ð Þ 11:55ð Þ¼ 0:1848 kg �m2=s

(d)

so that

H¼ 0:03304̂i+ 0:0150̂j+ 0:1848k̂ kg �m2=sð Þ (e)

The angle ϕ between H and ω is found by taking the dot product of the two vectors,

ϕ¼ cos�1 H �ω
Hω

� �
¼ cos�1 2:294

0:1883 � 12:36
� �

¼ 9:717° (f)

As this problem illustrates, the angular momentum and the angular velocity are in general not collinear.
Consider a Cartesian coordinate system x0y0z0 with the same origin as xyz but a different orientation. Let
[Q] be the orthogonal matrix ([Q]�1 ¼ [Q]T) that transforms the components of a vector from the xyz
system to the x0y0z0 frame. Recall from Section 4.5 that the rows of [Q] are the direction cosines of the

x0y0z0 axes relative to xyz. If {H0} comprises the components of the angular momentum vector along the

x0y0z0 axes, then {H0} is obtained from its components {H} in the xyz frame by the relation

H0f g¼ Q½ � Hf g
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From Eq. (11.39), we can write this as

H0f g¼ Q½ � I½ � ωf g (11.45)

where [I] is the moment of inertia matrix (Eqs. 11.39a and 11.39b) in xyz coordinates. Like the angular
momentum vector, the components ωf g of the angular velocity vector in the xyz system are related to

those in the primed system ( ω0f g) by the expression

ω0f g¼ Q½ � ωf g
The inverse relation is simply

ωf g¼ Q½ ��1 ω0f g¼ Q½ �T ω0f g (11.46)

Substituting this into Eq. (11.45), we get

H0f g¼ Q½ � I½ � Q½ �T ω0f g (11.47)

But the components of angular momentum and angular velocity in the x0y0z0 frame are related by an

equation of the same form as Eq. (11.39), so that

H0f g¼ I0½ � ω0f g (11.48)

where [I0] comprises the components of the inertia matrix in the primed system. Comparing the right-

hand sides of Eqs. (11.47) and (11.48), we conclude that

I0½ � ¼ Q½ � I½ � Q½ �T (11.49a)

That is,

Ix0 Ix0y0 Ix0z0

Iy0x0 Iy0 Iy0z0

Iz0x0 Iz0y0 Iz0

2664
3775¼

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

2664
3775

Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz

2664
3775

Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

2664
3775 (11.49b)

This shows how to transform the components of the inertia matrix from the xyz coordinate system to

any other orthogonal system with a common origin. Thus, for example,

Ix0 ¼ Q11 Q12 Q13b c
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Row1b c Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz

264
375 Q11

Q12

Q13

8><>:
9>=>;

zfflfflfflffl}|fflfflfflffl{Row1b cT

Iy0z0 ¼ Q21 Q22 Q23b c
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Row2b c Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz

264
375 Q31

Q32

Q33

8><>:
9>=>;

zfflfflfflffl}|fflfflfflffl{Row3b cT
(11.50)

etc.

Any object represented by a square matrix whose components transform according to Eq. (11.49) is

called a second-order tensor. We may therefore refer to [I] as the inertia tensor.
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EXAMPLE 11.7
Find the mass moment of inertia of the system of point masses in Example 11.4 about an axis from the origin through the

point with coordinates (2 m, �3 m, 4 m).

Solution
From Example 11.4, the moment of inertia tensor for the system of point masses is

I½ � ¼
50:56 20:42 �14:94

20:42 39:73 14:90

�14:94 14:90 52:16

2664
3775 kg �m2
� �

The vector V connecting the origin with (2 m, �3 m, 4 m) is

V¼ 2̂i� 3̂j+ 4k̂

The unit vector in the direction of V is

ûV ¼ V

Vk k¼ 0:3714̂i�0:5571̂j+ 0:7428k̂

Wemayconsider ûV as theunitvector along thex
0 axisof a rotatedCartesiancoordinate system.Then, fromEq. (11.50)weget

IV0 ¼ 0:3714 �0:5571 0:7428b c
50:56 20:42 �14:94

20:42 39:73 14:90

�14:94 14:90 52:16

2664
3775

0:3714

�0:5571

0:7428

2664
3775

¼ 0:3714 �0:5571 0:7428b c
�3:695

�3:482

24:90

8>><>>:
9>>=>>;¼ 19:06 kg �m2
EXAMPLE 11.8
For the satellite of Example 11.2, which is reproduced in Fig. 11.13, the data are as follows: N ¼ 0.1 rad/s and
_θ ¼ 0:01 rad=s, in the directions shown. θ ¼ 40° and d0 ¼ 1.5 m. The length, width, and thickness of the panel are

‘ ¼ 6 m, w ¼ 2 m, and t ¼ 0.025 m. The uniformly distributed mass of the panel is 50 kg. Find the angular momentum

of the panel relative to the center of mass O of the satellite.
FIG. 11.13

Satellite and solar panel.
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Solution
We can treat the panel as a thin parallelepiped. The panel’s xyz axes have their origin at the center of massG of the panel and

are parallel to its three edge directions. According to Fig. 11.10C, the moments of inertia of the panel relative to the xyz

coordinate system are

IGÞx ¼
1

12
m ‘2 + t2
� �¼ 1

12
� 50 � 62 + 0:0252

� �¼ 150:0 kg �m2

IGÞy ¼
1

12
m w2 + t2
� �¼ 1

12
� 50 � 22 + 0:0252

� �¼ 16:67 kg �m2

IGÞz ¼
1

12
m w2 + ‘2
� �¼ 1

12
� 50 � 22 + 62

� �¼ 166:7 kg �m2

IGÞxy ¼ IGÞxz ¼ IGÞyz ¼ 0

(a)

In matrix notation,

IG½ � ¼
150:0 0 0

0 16:67 0

0 0 166:7

24 35 kg �m2
� �

(b)

The unit vectors of the satellite’s x0y0z0 system are related to those of the panel’s xyz frame by inspection.

î
0 ¼�sin θ̂i+ cosθk̂¼�0:6428̂i+ 0:7660k̂

ĵ
0 ¼�ĵ

k̂
0 ¼ cos θ̂i+ sinθk̂¼ 0:7660̂i+ 0:6428k̂

(c)

The matrix [Q] of the transformation from xyz to x0y0z0 comprises the direction cosines of î
0
, ĵ

0
, and k̂

0
, which we infer from

Eqs. (c),

Q½ � ¼
�0:6428 0 0:7660

0 �1 0

0:7660 0 0:6428

24 35 (d)

In Example 11.2, we found that the absolute angular velocity of the panel, in the satellite’s x0y0z0 frame of reference, is

ω¼� _θ ĵ
0
+Nk̂

0 ¼�0:01̂j
0
+ 0:1k̂

0
rad=sð Þ

That is,

ω0f g¼
0

�0:01
0:1

8<:
9=; rad=sð Þ (e)

To find the absolute angular momentum {H0
G} of the panel in the satellite system requires the use of Eq. (11.39),

H0
G

� �¼ I0G
� 

ω0f g (f)

Before doing so, we must transform the components of the moments of the inertia tensor in Eq. (b) from the unprimed

(panel) system to the primed (satellite) system, by means of Eq. (11.49),

I0G
� ¼ Q½ � IG½ � Q½ �T

¼
�0:6428 0 0:7660

0 �1 0

0:7660 0 0:6428

264
375 150 0 0

0 16:67 0

0 0 166:7

264
375 �0:6428 0 0:7660

0 �1 0

0:7660 0 0:6428

264
375

so that

I0G
� ¼ 159:8 0 8:205

0 16:67 0

8:205 0 156:9

24 35 kg �m2
� �

(g)
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Then Eq. (f) yields

H0
G

� �¼ 159:8 0 8:205

0 16:67 0

8:205 0 156:9

2664
3775

0

�0:01

0:1

8>><>>:
9>>=>>;¼

0:8205

�0:1667

15:69

8>><>>:
9>>=>>; kg �m2=s
� �

or, in vector notation,

HG ¼ 0:8205̂i
0 �0:1667̂j

0
+ 15:69k0 kg �m2=s

� �
(h)

This is the absolute angular momentum of the panel about its own center of massG, and it is used in Eq. (11.27) to calculate

the angular momentum HO)rel relative to the satellite’s center of mass O,

HOÞrel ¼HG + rG=O�mvG=O (i)

rG/O is the position vector from O to G,

rG=O ¼ dO +
‘

2

� �
ĵ
0 ¼ 1:5 +

6

2

� �
ĵ
0 ¼ 4:5̂j

0
mð Þ (j)

The velocity of G relative to O, vG/O, is found from Eq. (11.2),

vG=O ¼ωsatellite�rG=O ¼Nk̂
0 �rG=O ¼ 0:1k̂

0 �4:5̂j
0 ¼�0:45̂i

0
m=sð Þ (k)

Substituting Eqs. (h), (j), and (k) into Eq. (i) finally yields

HOÞrel ¼ 0:8205̂i
0 �0:1667̂j

0
+ 15:69k̂

0� �
+ 4:5̂j

0 � 50 �0:45̂i
0� �h i

¼ 0:8205̂i
0 �0:1667̂j

0
+ 116:9k̂

0
kg �m2=sð Þ

(l)

Note that we were unable to use Eq. (11.21) to find the absolute angular momentumHO because that requires knowing

the absolute velocity vG, which in turn depends on the absolute velocity of O, which was not provided.
How can we find the direction cosine matrix [Q] such that Eq. (11.49) will yield a moment of inertia

matrix [I0] that is diagonal (i.e., of the form given by Eq. (11.41))? In other words, how do we find the

principal directions (eigenvectors) and the corresponding principal values (eigenvalues) of the moment

of inertia tensor?

Let the angular velocity vectorω be parallel to the principal direction defined by the vector e, so that

ω¼ βe, where β is a scalar. Since ω points in the principal direction of the inertia tensor, so must H,

which meansH is also parallel to e. Therefore,H ¼ αe, where α is a scalar. From Eq. (11.39), it follows

that

α ef g¼ If g β ef gð Þ
or

I½ � ef g¼ λ ef g
where λ ¼ α/β (a scalar). That is,

Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz

2664
3775

ex

ey

ez

8>><>>:
9>>=>>;¼ λ

ex

ey

ez

8>><>>:
9>>=>>;
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This can be written

Ix�λ Ixy Ixz

Ixy Iy�λ Iyz

Ixz Iyz Iz�λ

24 35 ex

ey

ez

8<:
9=;¼

0

0

0

8<:
9=; (11.51)

The trivial solution of Eq. (11.51) is e ¼ 0, which is of no interest. The only way that Eq. (11.51)

will not yield the trivial solution is if the coefficient matrix on the left is singular. That will occur if its

determinant vanishes. That is, if

Ix�λ Ixy Ixz

Ixy Iy�λ Iyz
Ixz Iyz Iz�λ














¼ 0 (11.52)

Expanding the determinant, we find

Ix�λ Ixy Ixz

Ixy Iy�λ Iyz

Ixz Iyz Iz�λ














¼�λ3 + J1λ

2�J2λ + J3 (11.53)

where

J1 ¼ Ix + Iy + Iz J2 ¼
Ix Ixy
Ixy Iy





 



 + Ix Ixz

Ixz Iz





 



 + Iy Iyz
Iyz Iz





 



 J3 ¼
Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz














 (11.54)

J1, J2, and J3 are invariants (i.e., they have the same value in every Cartesian coordinate system).

Eqs. (11.52) and (11.53) yield the characteristic equation of the tensor [I],

λ3�J1λ
2 + J2λ�J3 ¼ 0 (11.55)

The three roots λp (p ¼ 1, 2, 3) of this cubic equation are real, since [I] is symmetric; furthermore, they

are all positive, since [I] is a positive definite matrix. We substitute each root, or eigenvalue, λp back
into Eq. (11.51) to obtain

Ix�λp Ixy Ixz

Ixy Iy�λp Iyz

Ixz Iyz Iz�λp

24 35 e pð Þ
x

e
pð Þ
y

e pð Þ
z

8><>:
9>=>;¼

0

0

0

8<:
9=; p¼ 1, 2, 3ð Þ (11.56)

Solving this system yields the three eigenvectors e(p) corresponding to each of the three eigenvalues λp.
The three eigenvectors are orthogonal, also due to the symmetry of matrix [I]. Each eigenvalue is a

principal moment of inertia and its corresponding eigenvector is a principal direction.
EXAMPLE 11.9
Find the principal moments of inertia and the principal axes of inertia of the inertia tensor

I½ � ¼
100 �20 �100

�20 300 �50

�100 �50 500

264
375kg �m2
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Solution
We seek the nontrivial solutions of the system [I]{e} ¼ λ{e}. That is,

100�λ �20 �100

�20 300�λ �50

�100 �50 500�λ

24 35 ex
ey
ez

8<:
9=;¼

0

0

0

8<:
9=; (a)

From Eq. (11.54),

J1 ¼ 100+ 300+ 500¼ 900

J2 ¼
100 �20

�20 300





 



 + 100 �100

�100 500





 



 + 300 �50

�50 500





 



¼ 217,100

J3 ¼
100 �20 �100

�20 300 �50

�100 �50 500
















¼ 11,350,000

(b)

Thus, the characteristic equation is

λ3�900λ2 + 217,100λ�11,350,000¼ 0 (c)

The three roots are the principal moments of inertia, which are found to be

λ1 ¼ 532:052 λ2 ¼ 295:840 λ3 ¼ 72:1083 kg �m2
� �

(d)

We substitute each of these, in turn, back into Eq. (a) to find its corresponding principal direction.

Substituting λ1 ¼ 532.052 kg �m2 into Eq. (a) we obtain

�432:052 �20:0000 �100:0000

�20:0000 �232:052 �50:0000

�100:0000 �50:0000 �32:0519

264
375 e 1ð Þ

x

e
1ð Þ
y

e 1ð Þ
z

8><>:
9>=>;¼

0

0

0

8><>:
9>=>; (e)

Since the determinant of the coefficient matrix is zero, at most two of the three equations in Eq. (e) are independent. Thus, at

most, two of the three components of the vector e(1) can be found in terms of the third. We can therefore arbitrarily set

ex
(1) ¼ 1 and solve for ey

(1) and ez
(1) using any two of the independent equations in Eq. (e). With ex

(1) ¼ 1, the first two of

Eq. (e) become

�20:0000e 1ð Þ
y �100:000e 1ð Þ

z ¼ 432:052

�232:052e 1ð Þ
y �50:000e 1ð Þ

z ¼ 20:0000
(f)

Solving these two equations for ey
(1) and ez

(1) yields, together with the assumption that ex
(1) ¼ 1,

e 1ð Þ
x ¼ 1:00000 e 1ð Þ

y ¼ 0:882793 e 1ð Þ
z ¼�4:49708 (g)

The unit vector in the direction of e(1) is

ê1 ¼ e 1ð Þ

e 1ð Þk k¼
1:00000̂i+ 0:882793̂j�4:49708k̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:000002 + 0:8827932 + �4:49708ð Þ2

q
or

ê1 ¼ 0:213186̂i+ 0:188199̂j�0:958714k̂ λ1 ¼ 532:052 kg �m2ð Þ (h)

Substituting λ2 ¼ 295.840 kg �m2 into Eq. (a) and proceeding as above we find that

ê2 ¼ 0:17632̂i�0:972512̂j�0:151609k̂ λ2 ¼ 295:840 kg �m2ð Þ (i)

The two unit vectors ê1 and ê2 define two of the three principal directions of the inertia tensor. Observe that ê1 � ê2 ¼ 0, as

must be the case for symmetric matrices.
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To obtain the third principal direction ê3, we can substitute λ3 ¼ 72.1083 kg �m2 into Eq. (a) and proceed as above.

However, since the inertia tensor is symmetric, we know that the three principal directions are mutually orthogonal, which

means ê3 ¼ ê1� ê2. Substituting Eqs. (h) and (i) into this cross product, we find that

ê3 ¼�0:960894̂i�0:137114̂j�0:240587k̂ λ3 ¼ 72:1083 kg �m2ð Þ (j)

We can check our work by substituting λ3 and ê3 into Eq. (a) and verify that it is indeed satisfied:

100�72:1083 �20 �100

�20 300�72:1083 �50

�100 �50 500�72:1083

24 35 �0:960894
�0:137114
�0:240587

8<:
9=; ¼verify

0

0

0

8<:
9=; (k)

The components of the vectors ê1, ê2, and ê3 define the three rows of the orthogonal transformation [Q] from the xyz

system into the x0y0z0 system that is aligned along the three principal directions:

Q½ � ¼
0:213186 0:188199 �0:958714
0:176732 �0:972512 �0:151609

�0:960894 �0:137114 �0:240587

24 35 (l)

Indeed, if we apply the transformation in Eq. (11.49), [I0] ¼ [Q][I][Q]T, we find

I0½ � ¼
0:213186 0:188199 �0:958714

0:176732 �0:972512 �0:151609

�0:960894 �0:137114 �0:240587

264
375 100 �20 �100

�20 300 �50

�100 �50 500

264
375

�
0:213186 0:176732 �0:960894

0:188199 �0:972512 �0:137114

�0:958714 �0:151609 �0:240587

264
375

¼
532:052 0 0

0 295:840 0

0 0 72:1083

264
375 kg �m2
� �
An alternative to the above hand calculations in Example 11.9 is to type the following lines in the

MATLAB Command Window:

I = [ 100 –20 –100

–20 300 –50

–100 –50 500];

[eigenVectors, eigenValues] = eig(I)

Hitting the Enter (or Return) key yields the following output to the Command Window:

eigenVectors =

0.9609 0.1767 –0.2132

0.1371 –0.9725 –0.1882

0.2406 –0.1516 0.9587

eigenValues =

72.1083 0 0

0 295.8398 0

0 0 532.0519



57111.5 MOMENTS OF INERTIA
Two of the eigenvectors delivered by MATLAB are opposite in direction to those calculated in

Example 11.9. This illustrates the fact that we can determine an eigenvector only to within an arbitrary

scalar factor. To show this, suppose e is an eigenvector of the tensor [I] so that [I]{e} ¼ λ{e}. Mul-

tiplying this equation through by an arbitrary scalar a yields ([I]{e})a ¼ (λ{e})a, or [I]{ae} ¼ λ
{ae}, which means that {ae} is an eigenvector corresponding to the same eigenvalue λ.
11.5.1 PARALLEL AXIS THEOREM
Suppose the rigid body in Fig. 11.14 is in pure rotation about point P. Then, according to Eq. (11.39),

HPÞrel
� �¼ IP½ � ωf g (11.57)

where [IP] is the moment of inertia tensor about P, given by Eq. (11.40) with

x¼ xG=P + ξ y¼ yG=P + η z¼ zG=P + ζ

On the other hand, we have from Eq. (11.27) that

HPÞrel ¼HG + rG=P�mvG=P (11.58)

The vector rG/P � mvG/P is the angular momentum about P of the concentrated mass m located at the

center of mass G. Using matrix notation, it is computed as follows:

rG=P�mvG=P
� ��H

mð Þ
P

�
rel
¼ I

mð Þ
P

h i
ωf g (11.59)

where [IP
(m)], the moment of inertia of the point mass m about P, is obtained from Eq. (11.44), with

x ¼ xG/P, y ¼ yG/P, and z ¼ zG/P. That is,
FIG. 11.14

The moments of inertia are to be computed at P, given their values at G.
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I
mð Þ
P

h i
¼

m y2G=P + z
2
G=P

� �
�mxG=PyG=P �mxG=PzG=P

�mxG=PyG=P m x2G=P + z
2
G=P

� �
�myG=PzG=P

�mxG=PzG=P �myG=PzG=P m x2G=P + y
2
G=P

� �
26664

37775 (11.60)

Of course, Eq. (11.39) require

HGf g¼ IG½ � ωf g
Substituting this together with Eqs. (11.57) and (11.59) into Eq. (11.58) yields

IP½ � ωf g¼ IG½ � ωf g+ I
mð Þ
P

h i
ωf g¼ IG + I

mð Þ
P

h i
ωf g

From this, we may infer the parallel axis theorem,

IP ¼ IG + I
mð Þ
P (11.61)

The moment of inertia about P is the moment of inertia about the parallel axes through the center of

mass plus the moment of inertia of the center of mass about P. That is,

IPx
¼ IGx

+m y2G=P + z
2
G=P

� �
IPy

¼ IGy
+m y2G=P + x

2
G=P

� �
IPz

¼ IGz
+m x2G=P + y

2
G=P

� �
IPxy

¼ IGxy
�mxG=PyG=P IPxz

¼ IGxz
�mxG=PzG=P IPyz

¼ IGyz
�myG=PzG=P

(11.62)
EXAMPLE 11.10
Find the moments of inertia of the rod in Example 11.5 (Fig. 11.15) about its center of mass G.

Solution
From Example 11.5,

IA½ � ¼

1

3
m b2 + c2
� � �1

3
mab �1

3
mac

�1

3
mab

1

3
m a2 + c2
� � �1

3
mbc

�1

3
mac �1

3
mbc

1

3
m a2 + b2
� �

2666664

3777775
Using Eq. (11.62)1 and noting the coordinates of the center of mass in Fig. 11.15,
FIG. 11.15

Uniform slender rod.
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IGx
¼ IAx

�m yG�0ð Þ2 + zG�0ð Þ2
h i

¼ 1

3
m b2 + c2
� ��m

b

2

� �2

+
c

2

� �2" #
¼ 1

12
m b2 + c2
� �

Eq. (11.62)4 yields

IGxy
¼ IAxy

+m xG�0ð Þ yG�0ð Þ¼�1

3
mab+m � a

2
� b
2
¼� 1

12
mab

The remaining four moments of inertia are found in a similar fashion, so that

IG½ � ¼

1

12
m b2 + c2
� � �1

2
mab � 1

12
mac

� 1

12
mab

1

12
m a2 + c2
� � � 1

12
mbc

� 1

12
mac � 1

12
mbc

1

12
m a2 + b2
� �

2666664

3777775 (11.63)
EXAMPLE 11.11
Calculate the principal moments of inertia about the center of mass and the corresponding principal directions for the bent

rod in Fig. 11.16. Its mass is uniformly distributed at 2 kg/m.

Solution
The mass of each of the four slender rod segments is

m1 ¼ 2 � 0:4¼ 0:8kg m2 ¼ 2 � 0:5¼ 1kg m3 ¼ 2 � 0:3¼ 0:6kg m4 ¼ 2 � 0:2¼ 0:4kg (a)

The total mass of the system is

m¼
X4
i¼1

mi ¼ 2:8kg (b)

The coordinates of each segment’s center of mass are

xG1
¼ 0 yG1

¼ 0 zG1
¼ 0:2m

xG2
¼ 0 yG2

¼ 0:25m zG2
¼ 0:2m

xG3
¼ 0:15m yG3

¼ 0:5m zG3
¼ 0

xG4
¼ 0:3m yG4

¼ 0:4m zG4
¼ 0

(c)
FIG. 11.16

Bent rod for which the principal moments of inertia are to be determined.
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If the slender rod in Fig. 11.15 is aligned with, say, the x axis, then a ¼ ‘ and b ¼ c ¼ 0, so that according to Eq. (11.63),

IG½ � ¼

0 0 0

0
1

12
m‘2 0

0 0
1

12
m‘2

26664
37775

That is, the moment of inertia of a slender rod about the axes normal to the rod at its center of mass is m‘2/12, wherem and

‘ are the mass and length of the rod, respectively. Since the mass of a slender bar is assumed to be concentrated along the

axis of the bar (its cross-sectional dimensions are infinitesimal), the moment of inertia about the centerline is zero. By

symmetry, the products of inertia about the axes through the center of mass are all zero. Using this information and

the parallel axis theorem, we find the moments and products of inertia of each rod segment about the origin O of the

xyz system as follows:

Rod 1:

I 1ð Þ
x ¼ I

1ð Þ
G1

�
x
+m1 y2G1

+ z2G1

� �
¼ 1

12
� 0:8 � 0:42 + 0:8 0 + 0:22

� �¼ 0:04267 kg �m2

I
1ð Þ
y ¼ I

1ð Þ
G1

�
y
+m1 x2G1

+ z2G1

� �
¼ 1

12
� 0:8 � 0:42 + 0:8 0 + 0:22

� �¼ 0:04267 kg �m2

I 1ð Þ
z ¼ I

1ð Þ
G1

�
z
+m1 x2G1

+ y2G1

� �
¼ 0 + 0:8 0 + 0ð Þ¼ 0

I
1ð Þ
xy ¼ I

1ð Þ
G1

�
xy
�m1xG1

yG1
¼ 0�0:8 0ð Þ 0ð Þ¼ 0

I 1ð Þ
xz ¼ I

1ð Þ
G1

�
xz
�m1xG1

zG1
¼ 0�0:8 0ð Þ 0:2ð Þ¼ 0

I 1ð Þ
xz ¼ I

1ð Þ
G1

�
yz
�m1yG1

zG1
¼ 0�0:8 0ð Þ 0ð Þ¼ 0

Rod 2:

I 2ð Þ
x ¼ I

2ð Þ
G2

�
x
+m2 y2G2

+ z2G2

� �
¼ 1

12
� 1:0 � 0:52 + 1:0 0 + 0:252

� �¼ 0:08333 kg �m2

I
2ð Þ
y ¼ I

2ð Þ
G2

�
y
+m2 x2G2

+ z2G2

� �
¼ 0 + 1:0 0 + 0ð Þ¼ 0

I 2ð Þ
z ¼ I

2ð Þ
G2

�
z
+m2 x2G2

+ y2G2

� �
¼ 1

12
� 1:0 � 0:52 + 1:0 0 + 0:52

� �¼ 0:08333 kg �m2

I
2ð Þ
xy ¼ I

2ð Þ
G2

�
xy
�m2xG2

yG2
¼ 0�1:0 0ð Þ 0:5ð Þ¼ 0

I 2ð Þ
xz ¼ I

2ð Þ
G2

�
xz
�m2xG2

zG2
¼ 0�1:0 0ð Þ 0ð Þ¼ 0

I
2ð Þ
yz ¼ I

2ð Þ
G2

�
yz
�m2yG2

zG2
¼ 0�1:0 0:5ð Þ 0ð Þ¼ 0

Rod 3:

I 3ð Þ
x ¼ I

3ð Þ
G3

�
x
+m3 y2G3

+ z2G3

� �
¼ 0 + 0:6 0:52 + 0

� �¼ 0:15 kg �m2

I
3ð Þ
y ¼ I

2ð Þ
G3

�
y
+m3 x2G3

+ z2G3

� �
¼ 1

12
� 0:6 � 0:32 + 0:6 0:152 + 0

� �¼ 0:018 kg �m2

I 3ð Þ
z ¼ I

3ð Þ
G3

�
z
+m3 x2G3

+ y2G3

� �
¼ 1

2
� 0:6 � 0:32 + 0:6 0:152 + 0:52

� �¼ 0:1680 kg �m2

I
3ð Þ
xy ¼ I

3ð Þ
G3

�
xy
�m3xG3

yG3 ¼ 0�0:6 0:15ð Þ 0:5ð Þ¼�0:045 kg �m2

I 3ð Þ
xz ¼ I

3ð Þ
G3

�
xz
�m3xG3

zG3
¼ 0�0:6 0:15ð Þ 0ð Þ¼ 0

I
3ð Þ
yz ¼ I

3ð Þ
G3

�
yz
�m3yG3

zG3
¼ 0�0:6 0:5ð Þ 0ð Þ¼ 0
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Rod 4:

I 4ð Þ
x ¼ I

4ð Þ
G4

�
x
+m4 y2G4

+ z2G4

� �
¼ 1

12
� 0:4 � 0:22 + 0:4 0:42 + 0

� �¼ 0:06533 kg �m2

I
4ð Þ
y ¼ I

4ð Þ
G4

�
y
+m4 x2G4

+ z2G4

� �
¼ 0 + 0:4 0:32 + 0

� �¼ 0:0360 kg �m2

I 4ð Þ
z ¼ I

4ð Þ
G4

�
z
+m4 x2G4

+ y2G4

� �
¼ 1

12
� 0:4 � 0:22 + 0:4 0:32 + 0:42

� �¼ 0:1013 kg �m2

I
4ð Þ
xy ¼ I

4ð Þ
G4

�
xy
�m4xG4yG4 ¼ 0�0:4 0:3ð Þ 0:4ð Þ¼�0:0480 kg �m2

I 4ð Þ
xz ¼ I

4ð Þ
G4

�
xz
�m4xG4

zG4
¼ 0�0:4 0:3ð Þ 0ð Þ¼ 0

I
4ð Þ
yz ¼ I

4ð Þ
G4

�
yz
�m4yG4

zG4
¼ 0�0:4 0:4ð Þ 0ð Þ¼ 0

The total moments of inertia for all the four rods about O are

Ix ¼
X4
i¼1

I ið Þ
x ¼ 0:3413 kg �m2 Iy ¼

X4
i¼1

I ið Þ
y ¼ 0:09667 kg �m2 Iz ¼

X4
i¼1

I ið Þ
z ¼ 0:3527 kg �m2

Ixy ¼
X4
i¼1

I ið Þ
xy ¼ 0:0930 kg �m2 Ixz ¼

X4
i¼1

I ið Þ
xz ¼ 0 Iyz ¼

X4
i¼1

I ið Þ
yz ¼ 0

(d)

The coordinates of the center of mass of the system of four rods are, from Eqs. (a) through (c),

xG ¼ 1

m

X4
i¼1

mixGi ¼
1

2:8
� 0:21¼ 0:075m

yG ¼ 1

m

X4
i¼1

miyGi
¼ 1

2:8
� 0:71¼ 0:2536m

zG ¼ 1

m

X4
i¼1

mizGi
¼ 1

2:8
� 0:16¼ 0:05714m

(e)

We use the parallel axis theorems to shift the moments of inertia in Eq. (d) to the center of mass G of the system

IGx
¼ Ix�m y2G + z2G

� �¼ 0:3413�0:1892¼ 0:1522 kg �m2

IGy
¼ Iy�m x2G + z2G

� �¼ 0:09667�0:02489¼ 0:17177 kg �m2

IGz ¼ Iz�m x2G + y2G
� �¼�0:3527�0:1958¼ 0:1569 kg �m2

IGxy ¼ Ixy +mxGyG ¼�0:093 + 0:05325¼�0:03975 kg �m2

IGxz
¼ Ixz +mxGzG ¼ 0 + 0:012¼ 0:012 kg �m2

IGyz
¼ Iyz +myGzG ¼ 0 + 0:04057¼ 0:04057 kg �m2

Therefore, the inertia tensor, relative to the center of mass, is

I½ � ¼
IGx

IGxy
IGxz

IGxy
IGy

IGyz

IGxz
IGyz

IGz

264
375¼ 0:1522 �0:03975 0:012

�0:03975 0:07177 0:04057

0:012 0:04057 0:1569

264
375 kg �m2
� �

(f)

To find the three principal moments of inertia, we may proceed as in Example 11.9, or simply enter the following lines in

the MATLAB Command Window:

IG = [ 0.1522 –0.03975 0.012
–0.03975 0.07177 0.04057
0.012 0.04057 0.1569];

[eigenVectors, eigenValues] = eig(IG)

to obtain



576 CHAPTER 11 RIGID BODY DYNAMICS
eigenVectors =
0.3469 –0.8482 –0.4003
0.8742 0.1378 0.4656

–0.3397 –0.5115 0.7893
eigenValues =

0.0402 0 0
0 0.1658 0
0 0 0.1747

Hence, the three principal moments of inertia and their principal directions are

λ1 ¼ 0:04023 kg �m2 e 1ð Þ ¼ 0:3469̂i+ 0:8742̂j�0:3397k̂

λ2 ¼ 0:1658 kg �m2 e 2ð Þ ¼�0:8482̂i+ 0:1378̂j�0:5115k̂

λ3 ¼ 0:1747 kg �m2 e 3ð Þ ¼�0:4003̂i+ 0:4656̂j+ 0:7893k̂
11.6 EULER EQUATIONS
For either the center of massG or for a fixed point P about which the body is in pure rotation, we know

from Eqs. (11.29) and (11.30) that

Mnet ¼ _H (11.64)

Using a comoving coordinate system, with angular velocity Ω and its origin located at the point (G or

P), the angular momentum has the analytical expression

H¼Hx̂i+Hy ĵ+Hzk̂ (11.65)

For simplicity, we shall henceforth assume

að Þ the moving xyz axes are the principal axes of inertia; (11.66a)

bð Þ the moments of inertia relative to xyz are constant in time: (11.66b)

Eqs. (11.42) and (11.66a) imply that

H¼Aωx̂i+Bωy ĵ+Cωzk̂ (11.67)

where A, B, and C are the principal moments of inertia.

According to Eq. (1.56), the time derivative of H is _H¼ _HÞrel +Ω�H, so that Eq. (11.64) can be

written as

Mnet ¼ _HÞrel +Ω�H (11.68)

Keep in mind that, whereas Ω (the angular velocity of the moving xyz coordinate system) and ω (the

angular velocity of the rigid body itself) are both absolute kinematic quantities, Eq. (11.68) contains

their components as projected onto the axes of the noninertial xyz frame given by

ω¼ωx̂i+ωy ĵ+ωzk̂

Ω¼Ωx̂i+Ωy ĵ+Ωzk̂
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The absolute angular acceleration α is obtained using Eq. (1.56) as

α¼ _ω¼ _ω x̂i+ _ωy ĵ+ _ωzk̂

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{αrel

+Ω�ω

That is,

α¼ _ωx +Ωy _ωz�Ωzωy

� �̂
i+ _ωy +Ωzωx�Ωxωz

� �̂
j+ _ωz +Ωxωy�Ωyωx

� �
k̂ (11.69)

Clearly, it is generally true that
αx 6¼ _ωx αy 6¼ _ωy αz 6¼ _ωz

From Eq. (1.57) and Eq. (11.67),

_HÞrel ¼ d Aωxð Þ
dt

î+
d Bωy

� �
dt

ĵ+
d Cωzð Þ

dt
k̂

Since A, B, and C are constant, this becomes

_HÞrel ¼A _ω x̂i+B _ωy ĵ+C _ωzk̂ (11.70)

Substituting Eqs. (11.67) and (11.70) into Eq. (11.68) yields

Mnet ¼A _ω x̂i+B _ωy ĵ+C _ωzk̂ +
î ĵ k̂

Ωx Ωy Ωz

Aωx Bωy Cωz
















Expanding the cross product and collecting the terms leads to

MxÞnet ¼A _ωx +CΩyωz�BΩzωy

My

�
net

¼B _ωy +AΩzωx�CΩzωz

MzÞnet ¼C _ωz +BΩxωy�AΩyωx

(11.71)

If the comoving frame is a body-fixed frame, then its angular velocity vector is the same as that of the

body (i.e., Ω¼ω). In that case, Eq. (11.68) reduces to the classical Euler equation of motion; namely,

Mnet ¼ _HÞrel +ω�H (11.72a)

the three components of which are obtained from Eq. (11.71) as

MxÞnet ¼A _ωx + C�Bð Þωyωz

My

�
net

¼B _ωy + A�Cð Þωzωx

MzÞnet ¼C _ωz + B�Að Þωxωy

(11.72b)

Eq. (11.68) is sometimes referred to as the modified Euler equation.

When Ω¼ω, it follows from Eq. (11.69) that

_ωx ¼ αx _ωy ¼ αy _ωz ¼ αz (11.73)

That is, the relative angular acceleration equals the absolute angular acceleration when Ω¼ω. Rather
than calculating the time derivatives _ωx, _ωy, and _ωz for use in Eq. (11.72), we may in this case first

compute α in the absolute XYZ frame

α¼ dω
dt

¼ dωX

dt
Î+

dωY

dt
Ĵ+

dωz

dt
K̂
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and then project these components onto the xyz body frame, so that

_ωx

_ωy

_ωz

8<:
9=;¼ Q½ �Xx

dωX=dt
dωY=dt
dωZ=dt

8<:
9=; (11.74)

where [Q]Xx is the time-dependent orthogonal transformation from the inertial XYZ frame to the non-

inertial xyz frame.
EXAMPLE 11.12
Calculate the net moment on the solar panel of Examples 11.2 and 11.8 (Fig. 11.17).

Solution
Since the comoving frame is rigidly attached to the panel, the Euler equation (Eq. 11.72a) applies to this problem. That is

MGÞnet ¼ _HGÞrel +ω�HG (a)

where

HG ¼Aωx̂i+Bωy ĵ+Cωzk̂ (b)

and

_HG

�
rel
¼A _ω x̂i+B _ωy ĵ +C _ωzk̂ (c)

In Example 11.2, the angular velocity of the panel in the satellite’s x0y0z0 frame was found to be

ω¼� _θ ĵ
0
+Nk̂

0
(d)

In Example 11.8, we showed that the direction cosine matrix for the transformation from the panel’s xyz frame to that of the

satellite is

Q½ � ¼
�sinθ 0 cosθ

0 �1 0

cosθ 0 sinθ

24 35 (e)

We use the transpose of [Q] to transform the components of ω into the panel frame of reference,

ωf gxyz ¼ Q½ �T ωf gx0y0z0 ¼
�sinθ 0 cosθ

0 �1 0

cosθ 0 sinθ

24 35 0

� _θ
N

8<:
9=;¼

N cosθ
_θ

N sinθ

8<:
9=;
FIG. 11.17

Free body diagram of the solar panel in Examples 11.2 and 11.8.
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or

ωx ¼N cosθ ωy ¼ _θ ωz ¼N sinθ (f)

In Example 11.2, N and _θ were said to be constant. Therefore, the time derivatives of Eq. (f) are

_ωx ¼ d N cosθð Þ
dt

¼�N _θ sinθ _ωx ¼ d _θ

dt
¼ 0 _ωz ¼ d N sinθð Þ

dt
¼N _θ cosθ (g)

In Example 11.8, the moments of inertia in the panel frame of reference were listed as

A¼ 1

12
m ‘2 + t2
� �

B¼ 1

12
m w2 + t2
� �

C¼ 1

12
m w2 + ‘2
� �

IGÞxy ¼ IGÞxz ¼ IGÞyz ¼ 0 (h)

Substituting Eqs. (b), (c), (f), (g), and (h) into Eq. (a) yields

MGÞnet ¼
1

12
m ‘2 + t2
� � �N _θ sinθ

� �̂
i+

1

12
m w2 + t2
� �

0ð Þ̂j+ 1

12
m w2 + ‘2
� �

N _θ cosθ
� �

k̂

+

î ĵ k̂

N cosθ _θ N sinθ

1

12
m ‘2 + t2
� �

N cosθð Þ 1

12
m w2 + t2
� �

_θ
1

12
m w2 + ‘2
� �

N sinθð Þ






















Upon expanding the cross product determinant and collecting terms, this reduces to

MGÞnet ¼�1

6
mt2N _θ sin θ̂i+

1

24
m t2�w2
� �

N2 sin2θĵ+
1

6
mw2N _θ cosθk̂

Using the numerical data of Example 11.8 (m ¼ 50 kg, N ¼ 0.1 rad/s, θ ¼ 40°, _θ ¼ 0:01 rad=s, ‘ ¼ 6 m, w ¼ 2 m, and

t ¼ 0.025 m), we find

MGÞnet ¼�3:348 10�6
� �̂

i�0:08205̂j+ 0:02554k̂ N �mð Þ
EXAMPLE 11.13
Calculate the net moment on the gyro rotor of Examples 11.3 and 11.6.

Solution
Fig. 11.18 is a free body diagram of the rotor. Since in this case the comoving frame is not rigidly attached to the rotor, we

must use Eq. (11.68) to find the net moment about G. That is

MGÞnet ¼ _HGÞrel +Ω�HG (a)

where

HG ¼Aωx î+Bωy ĵ+Cωzk̂ (b)

and

_HGÞrel ¼A _ωx
_i +B _ωy ĵ+C _ωzk̂ (c)

From Eq. (f) of Example 11.3, we know that the components of the angular velocity of the rotor in the moving reference

frame are

ωx ¼ _θ ωy ¼N sinθ ωz ¼ωspin +N cosθ (d)



FIG. 11.18

Free body diagram of the gyro rotor of Examples 11.6 and 11.3.
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Since, as specified in Example 11.3, _θ , N, and ωspin are all constant, it follows that

_ωx ¼ d _θ

dt
¼ 0

_ωy ¼ d N sinθð Þ
dt

¼N _θ cosθ

_ωz ¼
d ωspin +Ncosθ
� �

dt
¼�N _θ sinθ

(e)

The angular velocityΩ of the comoving xyz frame is that of the gimbal ring, which equals the angular velocity of the rotor

minus its spin. Therefore,

Ωx ¼ _θ Ωy ¼N sinθ Ωz ¼N cosθ (f)

In Example 11.6, we found that

A¼B¼ 1

12
mt2 +

1

4
mr2 C¼ 1

2
mr2 (g)

Substituting Eqs. (b) through (g) into Eq. (a), we get

MGÞnet ¼
1

12
mt2 +

1

4
mr2

� �
0ð Þ̂i+ 1

12
mt2 +

1

4
mr2

� �
N _θ cosθ
� �̂

j+
1

2
mr2 �N _θ sinθ
� �

k̂

+

î ĵ k̂

_θ N sinθ N cosθ
1

12
mt2 +

1

4
mr2

� �
_θ

1

12
mt2 +

1

4
mr2

� �
N sinθ

1

2
mr2 ωspin +N cosθ
� �






















Expanding the cross product, collecting terms, and simplifying leads to

MGÞnet ¼
1

2
ωspin +

1

12
3� t2

r2

� �
N cosθ

� 	
mr2N sin θ̂i

+
1

6

t2

r2
N cosθ�1

2
ωspin

� �
mr2 _θ ĵ�1

2
N _θ sinθmr2k̂

(h)
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In Example 11.3, the following numerical data were provided:m ¼ 5 kg, r ¼ 0.08 m, t ¼ 0.025 m, N ¼ 2.1 rad/s, θ ¼ 60°,
_θ ¼ 4 rad=s, and ωspin ¼ 105rad/s. For this set of numbers, Eq. (h) becomes

MGÞnet ¼ 0:3203̂i�0:6698̂j�0:1164k̂ Nmð Þ
11.7 KINETIC ENERGY
The kinetic energy T of a rigid body is the integral of the kinetic energy (1/2)v2dm of its individual mass

elements,
T¼

ð
m

1

2
v2dm¼

ð
m

1

2
v:vdm (11.75)

where v is the absolute velocity _R of the element of mass dm. From Fig. 11.8, we infer that _R¼ _RG + _ρ.
Furthermore, Eq. (1.52) requires that _ρ5ω�ρ. Thus, v¼ vG +ω� _ρ, which means

v � v¼ vG +ω�ρð Þ � vG +ω�ρð Þ¼ vG
2 + 2vG � ω�ρð Þ+ ω�ρð Þ � ω�ρð Þ

We can apply the vector identity introduced in Eq. (1.21), namely

A � B�Cð Þ¼B � C�Að Þ (11.76)

to the last term to get

v � v¼ vG
2 + 2vG � ω�ρð Þ+ω � ρ� ω�ρð Þ½ �

Therefore, Eq. (11.75) becomes

T¼
ð
m

1

2
vG

2dm+ vG � ω�
ð
m

ρdm
� �

+
1

2
ω �
ð
m

ρ� ω�ρð Þdm

Since the position vector ρ is measured from the center of mass,
Ð
m ρdm ¼ 0. Recall that, according to

Eq. (11.34), ð
m

ρ� ω�ρð Þdm¼HG

It follows that the kinetic energy may be written as

T¼ 1

2
mvG

2 +
1

2
ω �HG (11.77)

The second term is the rotational kinetic energy TR,

TR ¼ 1

2
ω �HG (11.78)

If the body is rotating about a point P that is at rest in inertial space, we have from Eq. (11.2) and

Fig. 11.8 that

vG ¼ vP +ω�rG=P ¼ 0+ω�rG=P ¼ω�rG=P

It follows that

vG
2 ¼ vG � vG ¼ ω�rG=P

� � � ω�rG=P
� �
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Making use once again of the vector identity in Eq. (11.76), we find

vG
2 ¼ω � rG=P� ω�rG=P

� �� ¼ω � rG=P�vG
� �

Substituting this into Eq. (11.77) yields

T¼ 1

2
ω � HG + rG=P�mvG
� 

Eq. (11.21) shows that this can be written as

T¼ 1

2
ω �HP (11.79)

In this case, of course, all the kinetic energy is rotational.

In terms of the components of ω and H, whether it is HP or HG, the rotational kinetic energy ex-

pression becomes, with the aid of Eq. (11.39),

TR ¼ 1

2
ωxHx +ωyHy +ωyHz

� �¼ 1

2
ωx ωy ωz

� � Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz

264
375 ωx

ωy

ωz

8><>:
9>=>;

Expanding, we obtain

TR ¼ 1

2
Ixωx

2 +
1

2
Iyωy

2 +
1

2
Izω

2
z + Ixyωxωy + Ixzωxωz + Iyzωyωz (11.80)

Obviously, if the xyz axes are principal axes of inertia, then Eq. (11.80) simplifies considerably,

TR ¼ 1

2
Aωx

2 +
1

2
Bωy

2 +
1

2
Cωz

2 (11.81)
EXAMPLE 11.14
A satellite in a circular geocentric orbit of 300 km altitude has a mass of 1500 kg and the moments of inertia relative to a

body frame with origin at the center of mass G are

I½ � ¼
2000 �1000 2500

�1500 3000 �1500

2500 �1500 4000

264
375 kg �m2
� �

If at a given instant the components of angular velocity in this frame of reference are

ω¼ 1i�0:9̂j+ 1:5k̂ rad=sð Þ
calculate the total kinetic energy of the satellite.

Solution
The speed of the satellite in its circular orbit is

v¼
ffiffiffiffiffiffiffiffi
μ

r
¼

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
398,600

6378 + 300

r
¼ 7:7258km=s



FIG

Sim

58311.8 THE SPINNING TOP
The angular momentum of the satellite is

HGf g¼ IG½ � ωf g¼
2000 �1000 2500

�1500 3000 �1500

2500 �1500 4000

24 35 1

�0:9
1:5

8<:
9=;¼

6650

�5950

9850

8<:
9=; kg �m2=s
� �

Therefore, the total kinetic energy is

T¼ 1

2
mvG

2 +
1

2
ω �HG ¼ 1

2
1500ð Þ 7:7258�103

� �2zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{44:766 109ð ÞJ

+
1

2
1 �0:9 1:5b c

6650

�5950

9850

8<:
9=;

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{13,390J

T¼ 44:766GJ

Obviously, the kinetic energy is dominated by that due to the orbital motion.
11.8 THE SPINNING TOP
Let us analyze the motion of the simple axisymmetric top in Fig. 11.19. It is constrained to rotate about

point O, which is fixed in space.

Themoving xyz coordinate system is chosen to have its origin atO. The z axis is alignedwith the spin
axis of the top (the axis of rotational symmetry). The x axis is the node line, which passes throughO and

is perpendicular to the plane defined by the inertial Z axis and the spin axis of the top. The y axis is then
perpendicular to x and z, such that ĵ¼ k̂� î. By symmetry, the moment of inertia matrix of the top rel-

ative to the xyz frame is diagonal, with Ix ¼ Iy ¼ A and Iz ¼ C. From Eqs. (11.68) and (11.70), we have

MOÞnet ¼A _ω x̂i+A _ωy ĵ+C _ωzk̂+
î ĵ k̂

Ωx Ωy Ωz

Aωx Aωy Cωz














 (11.82)
. 11.19

ple top rotating about the fixed point O.
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The angular velocityω of the top is the vector sum of the spin rate ωs and the rates of precession ωp and

nutation ωn, where

ωp ¼ _ϕ ωn ¼ _θ (11.83)

Thus,

ω¼ωn̂i+ωpK̂+ωsk̂

From the geometry, we see that

K̂¼ sinθĵ+ cosθk̂ (11.84)

Therefore, relative to the comoving system,

ω¼ωn̂i+ωp sinθĵ+ ωs +ωp cosθ
� �

k̂ (11.85)

From Eq. (11.85), we see that

ωx ¼ωn ωy ¼ωp sinθ ωz ¼ωs +ωp cosθ (11.86)

Computing the time rates of these three expressions yields the components of angular acceleration

relative to the xyz frame, given by

_ωx ¼ _ωn _ωy ¼ _ωp sinθ +ωpωn cosθ _ωz ¼ _ωs + _ωp cosθ�ωpωn sinθ (11.87)

The angular velocity Ω of the xyz system is Ω¼ωpK̂ +ωn̂i, so that, using Eq. (11.84),

Ω¼ωn̂i+ωp sinθĵ+ωp cosθk̂ (11.88)

From Eq. (11.88), we obtain

Ωx ¼ωn Ωy ¼ωp sinθ Ωz ¼ωp cosθ (11.89)

In Fig. 11.19, the moment about O is that of the weight vector acting through the center of mass G:

MOÞnet ¼ dk̂
� �� �mgK̂

� �¼�mgdk̂� sinθĵ+ cosθk̂
� �

or

MOÞnet ¼mgd sin θ̂i (11.90)

Substituting Eqs. (11.86) through (11.90) into Eq. (11.82), we get

mgd sin θ̂i¼A _ω n̂i+A _ωp sinθ + _ωp _ωn cosθ
� �̂

j+C _ωs + _ωp cosθ� _ωp _ωn sinθ
� �

k̂

+

î ĵ k̂

ωn ωp sinθ ωp cosθ

Aωn Aωp sinθ C ωs +ωp cosθ
� �


















(11.91)

Let us consider the special case in which θ is constant (i.e., there is no nutation), so thatωn ¼ _ωn ¼ 0.

Then, Eq. (11.91) reduces to

mgd sin θ̂i¼A _ωp sinθĵ+C _ωs + _ωp cosθ
� �

k̂+
î ĵ k̂
0 ωp sinθ ωp cosθ
0 Aωp sinθ C ωs +ωp cosθ

� �














 (11.92)
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Expanding the determinant yields

mgd sin θ̂i¼A _ωp sinθĵ+C _ωs + _ωp cosθ
� �

k̂ + Cωpωs sinθ + C�Að Þωp
2 cosθsinθ

� ̂
i

Equating the coefficients of î, ĵ, and k̂ on each side of this equation and assuming that 0° < θ < 180°
leads to

mgd¼Cωpωs + C�Að Þωp
2 cosθ (11.93a)

A _ωp ¼ 0 (11.93b)

C _ωs + _ωp cosθ
� �¼ 0 (11.93c)

Eq. (11.93b) implies _ωp ¼ 0, and from Eq. (11.93c) it follows that _ωs ¼ 0. Therefore, the rates of spin

and precession are both constant. From Eq. (11.93a), we find

A�Cð Þcosθωp
2�Cωsωp +mgd¼ 0 (11.94)

If the spin rate is zero, Eq. (11.94) yields

ωp

�
ωs¼0

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mgd

C�Að Þcosθ

s
if C�Að Þcosθ> 0 (11.95)

In this case, the top rotates about O at this rate, without spinning. If A > C (prolate), its symmetry axis

must make an angle between 90° and 180° to the vertical; otherwise, ωp is imaginary. On the other

hand, if A < C (oblate), the angle lies between 0° and 90°. Thus, in steady rotation without spin,

the top’s axis sweeps out a cone that lies either below the horizontal plane (A > C) or above the plane
(A < C).

In the special case where (A � C) cos θ ¼ 0, Eq. (11.94) yields a steady precession rate that is in-

versely proportional to the spin rate,

ωp ¼mgd

Cωs
if A�Cð Þcosθ¼ 0 (11.96)

If A ¼ C, this precession apparently occurs irrespective of tilt angle θ. If A 6¼ C, this rate of precession
occurs at θ ¼ 90° (i.e., the spin axis is perpendicular to the precession axis).

In general, Eq. (11.94) is a quadratic equation in ωp, so we can use the quadratic formula to find

ωp ¼ C

2 A�Cð Þcosθ ωs�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωs

2�4mgd A�Cð Þcosθ
C2

r !
(11.97)

Thus, for a given spin rate and tilt angle θ (θ 6¼ 90°), there are two rates of precession _ϕ.
Observe that if (A � C) cos θ > 0, then ωp is imaginary when ωs

2 < 4mgd A�Cð Þcosθ=C2. There-

fore, the minimum spin rate required for steady precession at a constant inclination θ is

ωsÞmin ¼
2

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mgd A�Cð Þcosθ

p
if A�Cð Þcosθ> 0 (11.98)

If (A � C) cos θ < 0, the radical in Eq. (11.97) is real for all ωs. In this case, as ωs ! 0, ωp approaches

the value given above in Eq. (11.95).
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EXAMPLE 11.15
Calculate the precession rateωp for a toy top like that in Fig. 11.19 ifm ¼ 0.5 kg, A(¼Ix ¼ Iy) ¼ 12(10�4)kg �m2, C (¼Iz) ¼
4.5(10�4)kg �m2, and d ¼ 0.05 m.

Solution
For an inclination of, say, 60°, (A � C) cos θ > 0, so that Eq. (11.98) requiresωs)min ¼ 407.01 rpm. Let us choose the spin

rate to beωs ¼ 1000 rpm ¼ 104.7 rad/s. Then, fromEq. (11.97), the steady precession rate as a function of the inclination θ
is given by either one of the following formulas:

ωp ¼ 31:42
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:3312cosθ

p

cosθ
and ωp ¼ 31:42

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:3312cosθ

p

cosθ
(a)

These are plotted in Fig. 11.20. For θ ¼ 60°, the high-energy precession rate is 1148.1 rpm, which exceeds the spin rate,

whereas the low-energy precession rate is a leisurely 51.93 rpm.

FIG. 11.20

(a) High-energy precession rate (unlikely to be observed). (b) Low-energy precession rate (the one almost

always seen).
Fig. 11.21 shows an axisymmetric rotor mounted so that its spin axis (z) remains perpendicular to

the precession axis (y). In that case, Eq. (11.85) with θ ¼ 90° yields

ω¼ωp ĵ+ωsk̂ (11.99)

Likewise, from Eq. (11.88), the angular velocity of the comoving xyz system is Ω¼ωpĵ. If we assume

that the spin rate and precession rate are constant (dωp/dt ¼ dωs/dt ¼ 0), then Eq. (11.68), written for

the center of mass G, becomes

MGÞnet ¼Ω�H¼ ωp ĵ
� �

� Aωp ĵ+Cωsk̂
� �

(11.100)

where A and C are the moments of inertia of the rotor about the x and z axes, respectively. Setting
Cωsk̂¼Hs, the spin angular momentum, and ωpĵ¼ωp, we obtain

MGÞnet ¼ωp�Hs Hs ¼Cωskð Þ (11.101)

Since the center of mass is the reference point, there is no restriction on the motion G for which

Eq. (11.101) is valid. Observe that the net gyroscopic moment MG)net exerted on the rotor by its sup-

ports is perpendicular to the plane of the spin and the precession vectors. If a spinning rotor is forced to



FIG. 11.21

A spinning rotor on a rotating platform.
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precess, the gyroscopic momentMG)net develops. Or, if a moment is applied normal to the spin axis of a

rotor, it will precess so as to cause the spin axis to turn toward the moment axis.
EXAMPLE 11.16
A uniform cylinder of radius r, length L, and mass m spins at a constant angular velocity ωs. It rests on simple supports

(which cannot exert couples), mounted on a platform that rotates at an angular velocity ofωp. Find the reactions at A and B.

Neglect the weight (i.e., calculate the reactions due just to the gyroscopic effects).

Solution
The net vertical force on the cylinder is zero, so the reactions at each end must be equal and opposite in direction, as shown

on the free body diagram insert in Fig. 11.22. Noting that the moment of inertia of a uniform cylinder about its axis of

rotational symmetry is mr2/2, Eq. (11.101) yields

RL̂i¼ ωp ĵ
� �

� mr2

2
ωsk̂

� �
¼ 1

2
mr2ωρωŝi

so that

R¼mr2ωρωs

2L

FIG. 11.22

Illustration of the gyroscopic effect.
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11.9 EULER ANGLES
Three angles are required to specify the orientation of a rigid body relative to an inertial frame. The

choice is not unique, but there are two sets in common use: Euler angles and yaw, pitch, and roll angles.

We will discuss each of them in turn. The reader is urged to review Section 4.5 on orthogonal coor-

dinate transformations and, in particular, the discussion of Euler angle sequences.

The threeEuler anglesϕ,θ, andψ shown inFig. 11.23give theorientationof abody-fixedxyz frameof

reference relative to theXYZ inertial frameof reference. The xyz frame is obtained from theXYZ frame by

a sequence of rotations through each of the Euler angles in turn. The first rotation is around the Z (¼z1)
axis through the precession angle ϕ. This takes X into x1 and Y into y1. The second rotation is around the
x2 (¼x1) axis through the nutation angle θ. This carries y1 and z1 into y2 and z2, respectively. The third and
final rotation is around the z (¼z2) axis through the spin angle ψ , which takes x2 into x and y2 into y.

The matrix [Q]Xx of the transformation from the inertial frame to the body-fixed frame is given by

the classical Euler angle sequence (Eq. 4.37):

Q½ �Xx ¼ R3 ψð Þ½ � R1 θð Þ½ � R3 ϕð Þ½ � (11.102)

From Eqs. (4.32) and (4.34), we have

R3 ψð Þ½ � ¼
cosψ sinψ 0

�sinψ cosψ 0

0 0 1

24 35 R1 θð Þ½ � ¼
1 0 0

0 cosθ sinθ
0 �sinθ cosθ

24 35 R3 ϕð Þ½ � ¼
cosϕ sinϕ 0

�sinϕ cosϕ 0

0 0 1

24 35 (11.103)

According to Eq. (4.38), the direction cosine matrix is

Q½ �Xx ¼
�sinϕcosθ sinψ + cosϕcosψ cosϕcosθ sinψ + sinϕcosψ sinθsinψ
�sinϕcosθcosγ� cosϕsinψ cosϕcosθcosψ� sinϕsinψ sinθcosψ

sinψ sinθ �cosϕsinθ cosθ

24 35 (11.104)
FIG. 11.23

Classical Euler angle sequence (see also fig. 4.14).
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Since this is an orthogonal matrix, the inverse transformation from xyz to XYZ is [Q]xX ¼ [Q]Xx
T ,

Q½ �xX ¼
�sinϕcosθ sinψ + cosϕcosψ �sinϕcosθcosγ� cosϕsinψ sinψ sinθ
cosϕcosθ sinψ + sinϕcosψ cosϕcosθcosψ� sinϕsinψ �cosϕsinθ

sinθ sinψ sinθcosψ cosθ

24 35 (11.105)

Algorithm 4.3 is used to find the three Euler angles θ, ϕ, and ψ from a given direction cosine matrix

[Q]Xx.
EXAMPLE 11.17
The direction cosine matrix of an orthogonal transformation from XYZ to xyz is

Q½ � ¼
�0:32175 0:89930 �0:29620
0:57791 �0:061275 �0:81380

�0:75000 �0:43301 �0:5000

24 35
Use Algorithm 4.3 to find the Euler angles ϕ, θ, and ψ for this transformation.

Solution
Step 1 (precession angle, ϕ):

ϕ¼ tan�1 Q31

�Q32

� �
¼ tan�1 �0:75000

0:43301

� �
0�ϕ< 360°ð Þ

Since the numerator is negative and the denominator is positive, the angle ϕ lies in the fourth quadrant:

ϕ¼ tan�1 �1:7320ð Þ¼ 300°

Step 2 (nutation angle, θ):

θ¼ cos�1Q33 ¼ cos�1 �0:5000ð Þ 0� θ� 180°ð Þ
θ¼ 120°

Step 3 (spin angle, ψ):

ψ ¼ tan�1Q13

Q23

¼ tan�1 �0:29620

�0:81380

� �
0�ψ < 360°ð Þ

Since both the numerator and denominator are negative, the angle ψ lies in the third quadrant:

ψ ¼ tan�1 0:36397ð Þ¼ 200°
The time rates of change of the Euler angles ϕ, θ, and ψ are, respectively, the precession rate ωp, the

nutation rate ωn, and the spin ωs. That is,

ωp ¼ _ϕ ωn ¼ _θ ωs ¼ _ψ (11.106)

The absolute angular velocity ω of a rigid body can be resolved into components ωx, ωy, and ωz along

the body-fixed xyz axes, so that

ω¼ωx̂i+ωy ĵ +ωzk̂ (11.107)

Fig. 11.23 shows that precession is measured around the inertial Z axis (unit vector K̂), nutation is mea-

sured around the intermediate x1 axis (node line) with unit vector î1, and spin is measured around the



590 CHAPTER 11 RIGID BODY DYNAMICS
body-fixed z axis (unit vector k̂). Therefore, the absolute angular velocity can alternatively be written in
terms of the nonorthogonal Euler angle rates as

ω¼ωpK̂+ωn̂i1 +ωsk̂ (11.108)

To find the relationship between the body rates ωx, ωy, and ωz and the Euler angle rates ωp, ωn, and ωs,

we must express K̂ and î1 in terms of the unit vectors î̂jk̂ of the body-fixed frame. To accomplish that,

we proceed as follows.

The first rotation [R3(ϕ)] in Eq. (11.102) rotates the unit vectors î̂jk̂ of the inertial frame into the unit

vectors î1 ĵ1k̂1 of the intermediate x1y1z1 axes in Fig. 11.23. Hence î1ĵ1k̂1 are rotated into î̂jk̂ by the

inverse transformation given by

Î

Ĵ

K̂

8><>:
9>=>;¼ R3 ϕð Þ½ �T

î1

ĵ1

k̂1

8><>:
9>=>;¼

cosϕ �sinϕ 0

sinϕ cosϕ 0

0 0 1

264
375 î1

ĵ1

k̂1

8><>:
9>=>; (11.109)

The second rotation [R1(θ)] rotates î1 ĵ1k̂1 into the unit vectors î2 ĵ2k̂2 of the second intermediate frame

x2y2z2 in Fig. 11.23. The inverse transformation rotates î2 ĵ2k̂2 back into î1 ĵ1k̂1:

î1

j1

k̂1

8><>:
9>=>;¼ R1 θð Þ½ �T

î2

ĵ2

k̂2

8><>:
9>=>;¼

1 0 0

0 cosθ �sinθ

0 sinθ cosθ

264
375 î2

ĵ2

k̂2

8><>:
9>=>; (11.110)

Finally, the third rotation [R3(ψ)] rotates î2ĵ2k̂2 into î̂jk̂, the target unit vectors of the body-fixed xyz
frame. î2ĵ2k̂2 are obtained from î̂jk̂ by the reverse rotation,

î2

ĵ2

k̂2

8><>:
9>=>;¼ R3 ψð Þ½ �T

î

ĵ

k̂

8><>:
9>=>;¼

cosψ �sinψ 0

sinψ cosψ 0

0 0 1

264
375 î

ĵ

k̂

8><>:
9>=>; (11.111)

From Eqs. (11.109) through (11.111), we observe that

K̂ ¼z}|{11:109

k̂1 ¼z}|{11:110

sinθĵ2 + cosθk̂2 ¼z}|{11:111

sinθ sinψ î+ cosψ ĵ
� �

+ cosθk̂

or

K̂¼ sinθ sinψ î+ sinθcosψ ĵ+ cosθk̂ (11.112)

Similarly, Eqs. (11.110) and (11.111) imply that

î1 ¼ î2 ¼ cosψ î� sinψ ĵ (11.113)

Substituting Eqs. (11.112) and (11.113) into Eq. (11.108) yields

ω¼ωp sinθ sinψ î+ sinθcosψ ĵ+ cosθk̂
� �

+ωn cosψ î� sinψ ĵ
� �

+ωsk̂

or

ω¼ ωp sinθ sinψ +ωn cosψ
� �̂

i+ ωp sinθcosψ�ωn sinψ
� �̂

j+ ωs +ωp cosθ
� �

k̂ (11.114)



59111.9 EULER ANGLES
Comparing the coefficients of î̂jk̂ in this equation with those in Eqs. (11.107), we see that

ωx ¼ωp sinθ sinψ +ωn cosψ

ωy ¼ωp sinθcosψ�ωn sinψ

ωz ¼ωs +ωp cosθ

(11.115a)

or

ωx

ωy

ωz

8><>:
9>=>;¼

sinθ sinψ cosψ 0

sinθ sinψ �sinψ 0

cosθ 1

264
375 ωp

ωn

ωs

8><>:
9>=>; (11.115b)

(Note that the precession angle ϕ does not appear.) We solve these three equations to obtain the Euler

rates in terms of ωx, ωy, and ωz:

ωp

ωn

ωs

8><>:
9>=>;¼

sinψ=sinθ cosψ=sinθ 0

cosψ �sinψ 0

�sinψ= tanθ �cosψ= tanθ 1

264
375 ωx

ωy

ωz

8><>:
9>=>; (11.116a)

or

ωp ¼ _ϕ¼ 1

sinθ
ωx sinψ +ωy cosψ
� �

ωn ¼ _θ ¼ωx cosψ�ωy sinψ

ωs ¼ _ψ ¼� 1

tanθ
ωx sinψ +ωy cosψ
� �

+ωz

(11.116b)

Observe that if ωx, ωy, and ωz are given functions of time, found by solving the Euler equations of

motion (Eq. 11.72), then Eq. (11.116b) are three coupled differential equations that may be solved

to obtain the three time-dependent Euler angles, namely

ϕ¼ϕ tð Þ θ¼ θ tð Þ ψ ¼ψ tð Þ
With this solution, the orientation of the xyz frame, and hence the body to which it is attached, is known

for any given time t. Note, however, that Eq. (11.116) “blow up” when θ ¼ 0 (i.e., when the xy plane is
parallel to the XY plane).
EXAMPLE 11.18
At a given instant, the unit vectors of a body frame are

î¼ 0:40825Î�0:40825Ĵ+ 0:81649K̂

ĵ¼�0:10102Î�0:90914Ĵ�0:40405K̂

k̂¼ 0:90726Î+ 0:082479Ĵ�0:41240K̂

(a)

and the angular velocity is

ω¼�3:1Î + 2:5Ĵ + 1:7K̂ rad=sð Þ (b)

Calculate ωp, ωn, and ωs (the precession, nutation, and spin rates) at this instant.
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Solution
Wewill ultimately use Eq. (11.116) to findωp,ωn, andωs. To do so wemust first obtain the Euler angles ϕ, θ, and ψ as well

as the components of the angular velocity in the body frame.

The three rows of the direction cosine matrix [Q]Xx comprise the components of the given unit vectors î, ĵ, and k̂,

respectively,

Q½ �Xx ¼
0:40825 �0:40825 0:81649

�0:10102 �0:90914 �0:40405

0:90726 0:082479 �0:41240

264
375 (c)

Therefore, the components of the angular velocity in the body frame are

ωf gx ¼ Q½ �Xx ωf gX ¼
0:40825 �0:40825 0:81649

�0:10102 �0:90914 �0:40405

0:90726 0:082479 �0:41240

264
375 �3:1

2:5

1:7

8><>:
9>=>;¼

�0:89817

�2:6466

�3:3074

8><>:
9>=>;

or

ωx ¼�0:89817rad=s ωy ¼�2:6466rad=s ωz ¼�3:3074rad=s (d)

To obtain the Euler angles ϕ, θ, and ψ from the direction cosine matrix in Eq. (c), we use Algorithm 4.3, as was il-

lustrated in Example 11.17. That algorithm is implemented as the MATLAB function dcm_to_Euler.m in Appendix D.20.

Typing the following lines in the MATLAB Command Window:

Q = [ .40825 –.40825 .81649
–.10102 –.90914 –.40405
.90726 .082479 –.41240];

[phi theta psi] = dcm_to_euler(Q)

produces the following output:

phi =
95.1945

theta =
114.3557

psi =
116.3291

Substituting θ ¼ 114.36° and ψ ¼ 116.33° together with the angular velocities of Eq. (d) into Eqs. (11.116a) and

(11.116b) yields

ωp ¼ 1

sin114:36∘
�0:89817 � sin116:33∘ + �2:6466ð Þ � cos116:33∘½ �

¼ 0:40492rad=s

ωn ¼�0:89817 � cos116:33∘� �2:6466ð Þ � sin116:33∘

¼ 2:7704rad=s

ωs ¼� 1

tan114:36∘
�0:89817 � sin116:33∘ + �2:6466ð Þ � cos116:33∘½ �+ �3:3074ð Þ

¼ �3:1404rad=s
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EXAMPLE 11.19
The mass moments of inertia of a body about the principal body frame axes with origin at the center of mass G are

A¼ 1000 kg �m2 B¼ 2000 kg �m2 C¼ 3000 kg �m2 (a)

The Euler angles in radians are given as functions of time in seconds as follows:

ϕ¼ 2te�0:05t

θ¼ 0:02 + 0:3sin0:25t

ψ ¼ 0:6t

(b)

At t ¼ 10 s, find

(a) the net moment about G and

(b) the components αX, αY, and αZ of the absolute angular acceleration in the inertial frame.

Solution
(a) We must use Euler equations (Eq. 11.72) to calculate the net moment, which means we must first obtain

ωx,ωy,ωz, _ωx, _ωy, and _ωz. Since we are given the Euler angles as function of time, we can compute their time

derivatives and then use Eq. (11.115) to find the body frame angular velocity components and their derivatives. Starting

with the first of Eqs. (b), we get

ωp ¼ dϕ

dt
¼ d

dt
2te�0:05t
� �¼ 2e�0:05t�0:1te�0:05t

_ωp ¼ dωp

dt
¼ d

dt
2e�0:05t�0:1e�0:05t
� �¼�0:2e�0:05t + 0:005te�0:05t

Proceeding to the remaining two Euler angles leads to

ωn ¼ dθ

dt
¼ d

dt
0:02 + 0:3sin0:25tð Þ¼ 0:075cos0:25t

_ωn ¼ dωn

dt
¼ d

dt
0:075cos0:25tð Þ¼�0:01875sin0:25t

ωs ¼ dψ

dt
¼ d

dt
0:6tð Þ¼ 0:6

_ωs ¼ dωs

dt
¼ 0

Evaluating all these quantities, including those in Eqs. (b), at t ¼ 10 s yields

ϕ¼ 335:03∘ ωp ¼ 0:60653rad=s _ωp ¼�0:09098rad=s2

θ¼ 11:433∘ ωn ¼�0:060086rad=s _ω¼�0:011221rad=s2

ψ ¼ 343:77 ωs ¼ 0:6rad=s _ωs ¼ 0

(c)

Eq. (11.115) relates the Euler angle rates to the angular velocity components,

ωx ¼ωp sinθ sinψ +ωn cosψ

ωy ¼ωp sinθcosψ�ωn sinψ

ωz ¼ωs +ωp cosθ

(d)

Taking the time derivative of each of these equations in turn leads to the following three equations:

_ωx ¼ωpωn cosθ sinψ +ωpωs sinθcosψ�ωnωs sinψ + _ωp sinθ sinψ + _ωn cosψ

_ωy ¼ωpωn cosθcosψ�ωpωs sinθsinψ�ωnωs cosψ + _ωp sinθcosψ� _ωn sinψ

_ωz ¼�ωpωn sinθ + _ωp cosθ + _ωs

(e)
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Substituting the data in Eqs. (c) into Eqs. (d) and (e) yields

ωx ¼�0:091286rad=s ωy ¼ 0:098649rad=s ωz ¼ 1:1945rad=s

_ωx ¼ 0:063435rad=s2 _ωy ¼ 2:2346 10�5
� �

rad=s2 _ωz ¼�0:08195rad=s2
(f)

With Eqs. (a) and (f) we have everything we need for the Euler equations, namely,

MxÞnet ¼A _ωx + C�Bð Þωyωz

My

�
net

¼B _ωy + A�Cð Þωzωx

MzÞnet ¼C _ωz + B�Að Þωxωy

from which we find
MxÞnet ¼ 181:27 N m

My

�
net

¼ 218:12 N m

MzÞnet ¼�254:86 N m

(b) Since the comoving xyz frame is a body frame, rigidly attached to the solid, we know from Eq. (11.74) that

aX
aY
aZ

8<:
9=;¼ Q½ �xX

_ωx

_ωy

_ωz

8<:
9=; (g)

In other words, the absolute angular acceleration and the relative angular acceleration of the body are the same. All we

have to do is project the components of relative acceleration in Eqs. (f), onto the axes of the inertial frame. The required

orthogonal transformation matrix is given in Eq. (11.105),

Q½ �xX ¼
�sinϕcosθ sinψ + cosϕcosψ �sinϕcosθcosγ� cosϕsinψ sinϕsinθ

cosϕcosθ sinψ + sinϕcosψ cosϕcosθcosψ� sinϕsinψ �cosϕsinθ

sinθ sinψ sinθcosψ cosθ

264
375

Upon substituting the numerical values of the Euler angles from Eqs. (c), this becomes

Q½ �xX ¼
0:75484 0:65055 �0:083668

�0:65356 0:73523 �0:17970

�0:055386 0:19033 0:98016

264
375

Substituting this and the relative angular velocity rates from Eqs. (f) into Eq. (g) yields

αX

αY

αZ

8><>:
9>=>;¼

0:75484 0:65055 �0:083668

�0:65356 0:73523 �0:17970

�0:055386 0:19033 0:98016

264
375 0:063435

2:2345 10�5
� �

�0:08195

8><>:
9>=>;

¼
0:054755

�0:026716

�0:083833

8><>:
9>=>; rad=s2ð Þ
EXAMPLE 11.20
Fig. 11.24 shows a rotating platform onwhich ismounted a rectangular parallelepiped shaft (with dimensions b, h, and ‘) spin-
ning about the inclined axis DE. If the mass of the shaft is m, and the angular velocities ωp and ωs are constant, calculate the

bearing forces atD and E as a function ofϕ and ψ . Neglect gravity, since we are interested only in the gyroscopic forces. (The
small extensions shown at each end of the parallelepiped are just for clarity; the distance between the bearings atD and E is ‘.)

Solution
The inertial XYZ frame is centered at O on the platform, and it is right handed Î� Ĵ¼ K̂

� �
. The origin of the right-handed

comoving body frame xyz is at the shaft’s center of mass G, and it is aligned with the symmetry axes of the parallelepiped.



FIG. 11.24

Spinning block mounted on rotating platform.

FIG. 11.25

Free body diagram of the block in Fig. 11.24.
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The three Euler angles ϕ, θ, and ψ are shown in Fig. 11.24. Since θ is constant, the nutation rate is zero (ωn ¼ 0). Thus,

Eq. (11.115) reduce to

ωx ¼ωp sinθ sinψ ωy ¼ωp sinθcosψ ωz ¼ωp cos θ +ωs (a)

Since ωp, ωs, and θ are constant, it follows (recalling Eq. 11.106) that

_ωx ¼ωpωs sinθcosψ _ωy ¼�ωpωs sinθ sinψ _ωz ¼ 0 (b)

The principal moments of inertia of the parallelepiped are (Fig. 11.10C)

A¼ Ix ¼ 1

12
m h2 + ‘2
� �

B¼ Iy ¼ 1

12
m b2 + l2
� �

C¼ Iz ¼ 1

12
m b2 + h2
� �

(c)

Fig. 11.25 is a free body diagram of the shaft. Let us assume that the bearings atD and E are such as to exert just the six

body frame components of force shown. Thus, D is a thrust bearing to which the axial torque TD is applied from, say, a

motor of some kind. At E, there is a simple journal bearing.

From Newton’s laws of motion, we have Fnet ¼ maG. But G is fixed in inertial space, so aG ¼ 0. Thus,

Dx̂i+Dy ĵ+Dzk̂
� �

+ Ex̂i+Ey ĵ
� �

¼ 0

It follows that

Ex ¼�Dx Ey ¼�Dy Dz ¼ 0 (d)
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Summing moments about G we get

MGÞnet ¼
‘

2
k̂� Ex̂i+Ey ĵ

� �
+ � ‘

2
k̂

� �
� Dx̂i+Dy ĵ
� �

+TDk̂

¼ Dy
‘

2
�Ey

‘

2

� �̂
i+ �Dx

‘

2
+Ex

‘

2

� �
ĵ+TDk̂

¼Dy ‘̂i�Dx‘̂j+ TDk̂

where we made use of Eq. (d)2. Thus,

MxÞnet ¼Dy‘ My

�
net

¼�Dx‘ MzÞnet ¼ TD (e)

We substitute Eqs. (a) through (c) and (e) into the Euler equations (Eqs. 11.72a and 11.72b):

MxÞnet ¼A _ωx + C�Bð Þωyωz

My

�
net

¼B _ωy + A�Cð Þωxωz

MzÞnet ¼C _ωz + B�Að Þωxωy

(f)

After making the substitutions and simplifying, the first Euler equation, Eq. (f)1, becomes

Dy ¼ 1

12

m

‘
h2� l2
� �

ωp cosθ + 2h
2ωs

� 
ωp sinθcosψ (g)

Likewise, from Eq. (f)2 we obtain

Dx ¼ 1

12

m

‘
b2� l2
� �

ωp cosθ + 2b
2ωs

� 
ωp sinθ sinψ (h)

Finally, Eq. (f)3 yields

TD ¼ 1

24
m b2�h2
� �

ωp
2 sin2θ sin2ψ (i)

This completes the solution, since Ey ¼ �Dy and Ez ¼ �Dz. Note that the resultant transverse bearing load V atD (and E) is

V¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx

2 +Dy
2

q
(j)

As a numerical example, let

‘¼ 1m h¼ 0:1m b¼ 0:025m θ¼ 30° m¼ 10kg

and
ωp ¼ 100rpm¼ 10:47rad=s ωs ¼ 2000rpm¼ 209:4rad=s

For these numbers, the variation of V and TD with ψ are as shown in Fig. 11.26.

. 11.26

) Transverse bearing load. (B) Axial torque at D.
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11.10 YAW, PITCH, AND ROLL ANGLES
The problem of Euler angle relations (Eq. 11.116) becoming singular when the nutation angle θ is zero
can be alleviated by using the yaw, pitch, and roll angles discussed in Section 4.5. As in the classical

Euler sequence, the yaw–pitch–roll sequence rotates the inertial XYZ axes into the triad of body-fixed

xyz axes triad by means of a series of three elementary rotations, as illustrated in Fig. 11.27. Like the

classical Euler sequence, the first rotation is around the Z (¼z1) axis through the yaw angle ϕ. This
takes X into x1 and Y into y1. The second rotation is around the y2 (¼y1) axis through the pitch angle

θ. This carries x1 and z1 into x2 and z2, respectively. The third and final rotation is around the x (¼x2)
axis through the roll angle ψ , which takes y2 into y and z2 into z.

Eq. (4.40) gives the matrix [Q]Xx of the transformation from the inertial frame into the body-fixed

frame,

Q½ �Xx ¼ R1 ψð Þ½ � R2 θð Þ½ � R3 ϕð Þ½ � (11.117)

From Eqs. (4.32) through (4.34), the elementary rotation matrices are
FIG. 11.27

Yaw, pitch, and roll sequence (see also fig. 4.15).
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R1 ψð Þ½ � ¼
1 0 0

0 cosψ sinψ

0 �sinψ cosψ

264
375 R2 θð Þ½ � ¼

cosθ 0 �sinθ

0 1 0

sinθ 0 cosθ

264
375

R3 ϕð Þ½ � ¼
cosϕ sinϕ 0

�sinϕ cosϕ 0

0 0 1

264
375

(11.118)

According to Eq. (4.41), the multiplication on the right of Eq. (11.117) yields the following direction

cosine matrix for the yaw, pitch, and roll sequence:

Q½ �Xx ¼
cosϕcosθ sinϕcosθ �sinθ

cosϕsinθ sinψ� sinϕcosψ sinϕsinθsinψ + cosϕcosψ cosθ sinψ

cosϕsinθcosψ + sinϕsinψ sinϕsinθcosψ� cosϕsinψ cosθcosψ

264
375 (11.119)

The inverse matrix [Q]xX, which transforms xyz into XYZ, is just the transpose

Q½ �xX ¼
cosϕcosθ cosϕsinθ sinψ� sinϕcosψ cosϕsinθcosψ + sinϕsinψ

sinϕcosθ sinϕsinθ sinψ + cosϕcosψ sinϕsinθ sinψ� cosϕsinψ

�sinθ cosθ sinψ cosθcosψ

264
375 (11.120)

Algorithm 4.4 (dcm_to_ypr.m in Appendix D.21) is used to determine the yaw, pitch, and roll angles for

a given direction cosine matrix. The following brief MATLAB session reveals that the yaw, pitch, and

roll angles for the direction cosine matrix in Example 11.17 are ϕ ¼ 109.69°, θ ¼ 17.230°, and
ψ ¼ 238.43°.

Q = [–0.32175 0.89930 –0.29620

0.57791 –0.061275 –0.81380

–0.75000 –0.43301 –0.5000];

[yaw pitch roll] = dcm_to_ypr(Q)

yaw =

109.6861

pitch =

17.2295

roll =

238.4334

Fig. 11.27 shows that yaw ϕ is measured around the inertial Z axis (unit vector K̂), pitch θ is mea-

sured around the intermediate y1 axis (unit vector ĵ1), and roll ψ is measured around the body-fixed x
axis (unit vector î). The angular velocity ω, expressed in terms of the rates of yaw, pitch, and roll, is

ω¼ωyawK̂+ωpitch ĵ2 +ωroll̂i (11.121)

in which

ωyaw ¼ _ϕ ωpitch ¼ _θ ωroll ¼ _ψ (11.122)
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The first rotation [R3(ϕ)] in Eq. (11.117) rotates the unit vectors ÎĴK̂ of the inertial frame into the

unit vectors î1 ĵ1k̂1 of the intermediate x1y1z1 axes in Fig. 11.27. Thus, î1 ĵ1k̂1 are rotated into ÎĴK̂ by the

inverse transformation

Î

Ĵ

K̂

8><>:
9>=>;¼

cosϕ �sinϕ 0

sinϕ cosϕ 0

0 0 1

264
375 î1

ĵ1

k̂1

8><>:
9>=>; (11.123)

The second rotation [R2(θ)] rotates î1ĵ1k̂1 into the unit vectors î2 ĵ2k̂2 of the second intermediate frame

x2y2z2 in Fig. 11.27. The inverse transformation rotates î2ĵ2k̂2 back into î1 ĵ1k̂1:

î1

ĵ1

k̂1

8><>:
9>=>;¼

cosθ 0 sinθ

0 1 0

�sinθ 0 cosθ

264
375 î2

ĵ2

k̂2

8><>:
9>=>; (11.124)

Lastly, the third rotation [R1(ψ)] rotates î2ĵ2k̂2 into î̂jk̂, the unit vectors of the body-fixed xyz frame.

î2ĵ2k̂2 are obtained from î̂jk̂ by the reverse transformation,

î2

ĵ2

k̂2

8><>:
9>=>;¼

1 0 0

0 cosψ �sinψ

0 sinψ cosψ

264
375 î

ĵ

k̂

8><>:
9>=>; (11.125)

From Eqs. (11.123) through (11.125), we see that

K̂ ¼z}|{11:123

k̂1 ¼z}|{11:124

�sin θ̂i2 + cosθk̂2 ¼z}|{11:125

�sin θ̂i+ cosθ sinψ ĵ+ cosψ k̂
� �

or

K̂¼�sin θ̂i+ cosθ sinψ ĵ+ cosθcosψ k̂ (11.126)

From Eq. (11.125),

ĵ2 ¼ cosψ ĵ� sinψ k̂ (11.127)

Substituting Eqs. (11.126) and (11.127) into Eq. (11.121) yields

ω¼ωyaw �sin θ̂i+ cosθ sinψ ĵ+ cosθcosψ k̂
� �

+ωpitch cosψ ĵ� sinψ k̂
� �

+ωroll̂i

or

ω¼ �ωyaw sinθ +ωroll

� �̂
i+ ωyaw cosθ sinψ +ωpitch cosψ
� �̂

j

+ ωyaw cosθcosψ�ωpitch sinψ
� �

k̂
(11.128)

Comparing the coefficients of î̂jk̂ in Eqs. (11.107) and (11.128), we conclude that the body angular

velocities are related to the yaw, pitch, and roll rates as follows:

ωx ¼ωroll�ωyaw sinθpitch

ωy ¼ωyaw cosθpitch sinψ roll +ωpitch cosψ roll

ωz ¼ωyaw cosθpitch cosψ roll�ωpitch sinψ roll

(11.129a)
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or
ωx

ωy

ωz

8><>:
9>=>;¼

�sinθpitch 0 1

cosθpitch sinψ roll cosψ roll 0

cosθpitch cosψ roll �sinψ roll 0

264
375 ωyaw

ωpitch

ωroll

8><>:
9>=>; (11.129b)

wherein the subscript on each symbol helps us remember the physical rotation it describes. Note that

ϕyaw does not appear. The inverse of these equations is

ωyaw

ωpitch

ωroll

8><>:
9>=>;¼

0 sinψ roll=cosθpitch cosψ roll=cosθpitch

0 cosψ roll �sinψ roll

1 sinψ roll tanθpitch cosψ roll tanθpitch

264
375 ωx

ωy

ωz

8><>:
9>=>; (11.130a)

or

ωyaw ¼ 1

cosθpitch
ωy sinψ roll +ωz cosψ roll

� �
ωpitch ¼ωy cosψ roll�ωz sinψ roll

ωroll ¼ωx +ωy tanθpitch sinψ roll +ωz tanθpitch cosψ roll

(11.130b)

Note that this system becomes singular (cosθpitch ¼ 0) when the pitch angle is �90°.
11.11 QUATERNIONS
In Chapter 4, we showed that the transformation from any Cartesian coordinate frame to another having

the same origin can be accomplished by three Euler angle sequences, each being an elementary rotation

about one of the three coordinate axes. We have focused on the commonly used classical Euler angle

sequence [R3(γ)][R1(β)][R3(α)] and the yaw–pitch–roll sequence [R1(γ)][R2(β)][R3(α)].
Another of Euler’s theorems, which we used in Section 1.6, states that any two Cartesian coordinate

frames are related by a unique rotation about a single line through their common origin. This line is

called the Euler axis and the angle is referred to as the principal angle.

Let û be the unit vector along the Euler axis. A vector v can be resolved into orthogonal components

v? normal to û and vk parallel to û, so that we may write

v¼ vk + v? (11.131)

The component of v along û is given by v � û. That is,
vk ¼ v � ûð Þû (11.132)

From Eqs. (11.131) and (11.132), we have

v? ¼ v� v � ûð Þû (11.133)

Let v0 be the vector obtained by rotating v through an angle θ around û, as illustrated in Fig. 11.28.
This rotation leaves the magnitude of v? and its component along û unchanged. That is

v0?
�� ��¼ v?k k (11.134)

v0k ¼ v � ûð Þû (11.135)



FIG. 11.28

Rotation of a vector through an angle θ about an axis with unit vector û.

60111.11 QUATERNIONS
v0?, having been rotated about û, has the component v0?
�� �� cos θ along the original vector v? and the

component v0?
�� �� sin θ along the vector normal to the plane of û and v. Let ŵ be the unit vector normal

to that plane. Then,

ŵ¼ û� v?
v?k k (11.136)

Thus,

v0? ¼ v0?
�� ��cosθ v?

v?k k + v0?
�� ��sinθ û�v?

v?k k
According to Eq. (11.134), this reduces to

v0? ¼ cos θv? + sin θ û�v? (11.137)

Observe that
û�v? ¼ û� v�vk

� �¼ û�v

since vk is parallel to û. This, together with Eq. (11.133), means we can write Eq. (11.137) as

v0? ¼ cosθ v� v � ûð Þû½ � + sinθ û�vð Þ (11.138)

Since v0 ¼ v0? + v0k, we find, upon substituting Eqs. (11.135) and (11.138) and collecting terms, that

v0 ¼ cosθv + 1� cosθð Þ û � vð Þû + sinθ û�vð Þ (11.139)

This is known as Rodrigues’ rotation formula, named for the same French mathematician who gave us

the Rodrigues’ formula for Legendre polynomials (Eq. 10.22). Eq. (11.139) is useful for determining

the result of rotating a vector about a line.

We can obtain the body-fixed xyz Cartesian frame from the inertial XYZ frame by a single rotation

through the principal angle θ about the Euler axis û. The unit vectors ÎĴK̂ are thereby rotated into î̂jk̂.

The two sets of unit vectors are related by Eq. (11.139). Thus,

î¼ cosθÎ+ 1� cosθð Þ û � Î� �
û + sinθû� Î

ĵ¼ cosθĴ+ 1� cosθð Þ û � Ĵ� �
û + sinθû� Ĵ

k̂¼ cosθK̂+ 1� cosθð Þ û � K̂� �
û + sinθû� K̂

(11.140)
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Let us express the unit vector û in terms of its direction cosines l, m, and n along the original XYZ axes.

That is

û¼ l̂I+mĴ + nK̂ l2 +m2 + n2 ¼ 1 (11.141)

Substituting these into Eq. (11.140), carrying out the vector operations, and collecting the terms yields

î¼ l2 1� cosθð Þ+ cosθ
� 

Î+ lm 1� cosθð Þ+ nsinθ½ �Ĵ+ ln 1� cosθð Þ�msinθ½ �K̂
ĵ¼ lm 1� cosθð Þ� sinθ½ �̂I+ m2 1� cosθð Þ+ cosθ

� 
Ĵ + mn 1� cosθð Þ+ lsinθ½ �K̂

k̂¼ ln 1� cosθð Þ +msinθ½ �̂I + mn 1� cosθð Þ� lsinθ½ �Ĵ + n2 1� cosθð Þ+ cosθ
� 

K̂

(11.142)

Recall that the rows of the matrix [Q]Xx of the transformation from XYZ to xyz comprise the direction

cosines of the unit vectors î, ĵ, and k̂, respectively. That is,

Q½ �Xx ¼
l2 1� cosθð Þ + cosθ lm 1� cosθð Þ + nsinθ ln 1� cosθð Þ�msinθ
lm 1� cosθð Þ�nsinθ m2 1� cosθð Þ + cosθ mn 1� cosθð Þ+ lsinθ
ln 1� cosθð Þ+msinθ mn 1� cosθð Þ� lsinθ n2 1� cosθð Þ+ cosθ

24 35 (11.143)

The direction cosine matrix is thus expressed in terms of the Euler axis direction cosines and the

principal angle.

Quaternions (also known as Euler symmetric parameters) were introduced in 1843 by the Irish

mathematician Sir William R. Hamilton (1805–65). They provide an alternative to the use of direction
cosine matrices for describing the orientation of a body frame in three-dimensional space. Quaternions

can be used to avoid encountering the singularities we observed for the classical Euler angle sequence

when the nutation angle θ becomes zero (Eqs. 11.116a and 11.116b) or for the yaw, pitch, and roll

sequence when the pitch angle θ approaches 90° (Eq. (11.126)).
As the name implies, a quaternion q

_
comprises four numbers:

q =

q1

q2

q3

q4

=
q

q4

(11.144)

where q is called the vector part q¼ q1̂i + q2 ĵ+ q3k̂
� �

, and q4 is the scalar part. (It is common to see the

scalar part denoted q0 and listed first, in which case .) Regardless, a quaternion whose scalar

part is zero is called a pure quaternion.

The norm q
_�� �� of the quaternion q

_
is defined as

q
_�� ��¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qk k2 + q24
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q �q+ q24

q
(11.145)

Obviously, the norm of a pure quaternion (q4 ¼ 0) is just the norm of its vector part. A unit quaternion is

one whose norm is unity ( q
_�� ��¼ 1).

Quaternions obey the familiar vector rules of addition and scalar multiplication. That is,

p +q =
p +q

p4 + q4

ap =
ap

ap4



60311.11 QUATERNIONS
Addition is both associative and commutative, so that

p
_
+ q

_
� �

+ r
_¼ p

_
+ q

_
+ r

_
� �

p
_
+ q

_¼ q
_
+ p

_

We use the special symbol	 to denote the product or “composition” of two quaternions. The somewhat

complicated rule for quaternion multiplication involves ordinary scalar multiplication as well as the

familiar vector dot product and cross product operations,

p q =
p4q +

−

q4p + p q

p4q4 p q
(11.146)

Switching the order of multiplication yields

q p =
q4p +

−

p4q +q p

q4p4 q p

We are familiar with the fact that q � p ¼ �(p � q), which means that quaternion multiplication is

generally not commutative,

p
_	q

_ 6¼ q
_	p

_

EXAMPLE 11.21
Find the product of the quaternions

p 1

j

4 q
0.5i

1

0.5j 0.75k

4

q
q

p
p ++== (a)

Solution

p q
q

q

q p p

p

p

p

q

q

+

–
=

=

=

+

+

+

+ +

–

+

+

+

+

+

++

–

+ +×

+ +

×4

4

4

4

0.5i

0.5i

0.5 0.5 1.0

0.5

0.75

1

1 1
1

0.5j

i

0.5i

0.5i 0.5j

0.75

0.5

0.75k

0.75k

k0.5

0.5j0.75k 1

–0.5k 0.75i0.5j j

j

j

j

j

0.75k
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or

p q 1.25i 1.5j 0.25k

0.5

++=
The conjugate q
_
* of a quaternion q

_
is found by simply multiplying its vector part by �1, thereby

changing the signs of its vector components:

q
q

q

–*

4
= (11.147)

The identity quaternion 1
_

has zero for its vector part and 1 for its scalar part,

0
1

1 = (11.148)

The product of any quaternion with 1
_
is commutative and yields the original quaternion,

q 1 1 q
q 0 0

0

q

q

q
q

q+ +

–

×1

1
4

q4 q4

Multiplication of a quaternion by its conjugate is also a commutative operation that yields a quaternion

proportional to 1
_
,

q q q q
q4

q4

q q q4 q q
q

qq4 q q
1

0
(11.149)

The inverse q
_�1

of a quaternion is defined as

q
_�1 ¼ q

_
*

q
_�� ��2 (11.150)

Substituting q
_
*¼ q

_�� ��2q_�1
into Eq. (11.149) yields

q
_	q

_�1 ¼ q
_�1	q

_¼ 1
_

(11.151)

Clearly, for unit quaternions the inverse and the conjugate are the same, q
_
*¼ q

_�1
, and

q
_	q

_
*¼ q

_
*	q

_¼ 1
_

if q
_�� ��¼ 1

� �
(11.152)
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Let us restrict our attention to unit quaternions, in which case

q
sin /2q u

/2qcos
(11.153)

where û is the unit vector along the Euler axis around which the inertial reference frame is rotated into

the body-fixed frame, and θ is the Euler principal rotation angle. Recalling Eq. (11.141), we observe

that

q1 ¼ lsin θ=2ð Þ q2 ¼msin θ=2ð Þ q3 ¼ nsin θ=2ð Þ q4 ¼ cos θ=2ð Þ (11.154)

The conjugate quaternion q
_
* is found by reversing the sign of the vector part of q

_
, so that

q
sin– /2q u

cos /2q
(11.155)

Employing these and the trigonometric identities

cosθ¼ cos2 θ=2ð Þ� sin2 θ=2ð Þ sinθ¼ 2cos θ=2ð Þsin θ=2ð Þ (11.156)

we show in Appendix G that the direction cosine matrix [Q]Xx of the body frame in Eq. (11.143) is

obtained from the quaternion q
_

by means of the following algorithm.

ALGORITHM 11.1
_

Obtain the direction cosine matrix [Q]Xx from the unit quaternion q . This procedure is implemented

in the MATLAB function dcm_from_q.m in Appendix D.49.

1. Write the quaternion as

q

q1

q2

q3

q4
where q1 q2 q3b cT is the vector part, q4 is the scalar part, and q
_�� ��¼ 1.
2. Compute the direction cosine matrix of the transformation from XYZ to xyz as follows:

Q½ �Xx ¼
q21�q22�q23 + q

2
4 2 q1q2 + q3q4ð Þ 2 q1q3�q2q4ð Þ

2 q2q1�q3q4ð Þ �q21 + q
2
2�q23 + q

2
4 2 q2q3 + q1q4ð Þ

2 q3q1 + q2q4ð Þ 2 q3q2�q1q4ð Þ �q21�q22 + q
2
3 + q

2
4

24 35 (11.157)
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Note that every element of the matrix [Q]Xx in Eq. (11.157) contains products of two components

of q
_
. Since q

_
and�q

_
therefore yield the same direction cosinematrix, they represent the same rotation.

We can verify by carrying out the matrix multiplication and using Eq. (11.145) that [Q]Xx in Eq. (11.157)

exhibits the required orthogonality property,

Q½ �Xx Q½ �XxT ¼ Q½ �XxT Q½ �Xx ¼ 1½ �
To find the unit quaternion (q1

2 + q2
2 + q3

2 + q4
2 ¼ 1) for a given direction cosine matrix, we observe

from Eq. (11.157) that

q4 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +Q11 +Q22 +Q33

p
q1 ¼Q23�Q32

4q4
q2 ¼Q31�Q13

4q4
q3 ¼Q12�Q21

4q4

(11.158)

This procedure obviously fails for pure quaternions (q4 ¼ 0). The following algorithm (Bar-Itzhack,

2000) avoids having to deal with this situation.

ALGORITHM 11.2

Obtain the (unit) quaternion from the direction cosine matrix [Q]Xx. This procedure is implemented

as the MATLAB function q_ from_dcm.m in Appendix D.50.

1. Form the 4-by-4 symmetric matrix

K½ � ¼ 1

3

Q11�Q22�Q33 Q21 +Q12 Q31 +Q13 Q23�Q32

Q21 +Q12 �Q11 +Q22�Q33 Q32 +Q23 Q31�Q13

Q31 +Q13 Q32 +Q23 �Q11�Q22 +Q33 Q12�Q21

Q23�Q32 Q31�Q13 Q12�Q21 Q11 +Q22 +Q33

2664
3775 (11.159)
Solve the eigenvalue problem [K]{e} ¼ λ{e} for the largest eigenvalue λmax. Then o
2.

corresponding eigenvector is the quaternion, q
_ ¼ ef g. Since we are interested in only the

dominant eigenvalue of [K], we can use the iterative power method (Jennings, 1977), which

converges to λmax. Thus, starting with an estimate {e0} of the eigenvector, we normalize it,

ê0f g¼ e0f g
e0k k
and use ê0f g to compute an updated normalized estimate
ê1f g¼ K½ � ê0f g
K½ � ê0f gk k ê1k k¼ 1ð Þ
We estimate the corresponding eigenvalue by using the Rayleigh quotient,
r1 ¼ ê1f gT K½ � ê1f g
ê1k k2 ¼ ê1f gT K½ � ê1f g
We repeat this process, using ê1 to compute an updated normalized estimate ê2 followed

by using the Rayleigh quotient to find r2, and so on, over and over again. After n steps
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we have ên and rn. As n increases, rn converges toward λmax, themaximum eigenvalue of [K].

When j(rn � rn�1)/rn�1 j < ε, where ε is our chosen tolerance, we terminate the iteration and

declare that λmax ¼ rn and that ên is the corresponding eigenvector.

Of course, instead of the power method we can take advantage of commercial software,

such as MATLAB’s eigenvalue extraction program eig.
EXAMPLE 11.22
(a) Write down the unit quaternion for a rotation about the x axis through an angle θ.
(b) Obtain the corresponding direction cosine matrix.

Solution
(a) According to Eq. (11.151),

q¼ sin θ=2ð Þ̂i q4 ¼ cos θ=2ð Þ (a)

so that

q

sin

0

0

q /2

cos q /2

(b)

(b) Substituting q1 ¼ sin (θ/2), q2 ¼ q3 ¼ 0, and q4 ¼ cos (θ/2) into Eq. (11.152) yields

Q½ � ¼
sin2 θ=2ð Þ+ cos2 θ=2ð Þ 0 0

0 �sin2 θ=2ð Þ+ cos2 θ=2ð Þ 2sin θ=2ð Þcos θ=2ð Þ
0 �2sin θ=2ð Þcos θ=2ð Þ �sin2 θ=2ð Þ+ cos2 θ=2ð Þ

264
375 (c)

From trigonometry, we have

sin2 θ

2
+ cos2

θ

2
¼ 1 2sin

θ

2
cos

θ

2
¼ sinθ cos2

θ

2
� sin2 θ

2
¼ cosθ

Therefore, Eq. (c) becomes

Q½ � ¼
1 0 0

0 cosθ sinθ
0 �sinθ cosθ

24 35 (d)

We recognize this as the direction cosine matrix [R1(θ)] for a rotation θ around the x axis (Eq. 4.33).
EXAMPLE 11.23
For the yaw–pitch–roll sequence ϕyaw ¼ 50°, θpitch ¼ 90°, and ψ roll ¼ 120°, calculate
(a) the quaternion and

(b) the rotation angle and the axis of rotation.
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Solution
(a) Substituting the given angles into Eq. (11.119) yields the direction cosine matrix

Q½ �Xx ¼
0 0 �1

0:93969 0:34202 0

0:34202 �0:93969 0

2664
3775 (a)

Substituting the components of [Q]Xx into Eq. (11.159), we get

K½ � ¼

�0:11401 0:31323 �0:21933 0:31323

0:31323 0:11401 �0:31323 0:44734

�0:21933 �0:31323 �0:11401 �0:31323

0:31323 0:44734 �0:31323 0:11401

2666664

3777775 (b)

The following is a MATLAB script that implements the power method described in Algorithm 11.2.
K = [-0.11401 0.31323 -0.21933 0.31323
0.31323 0.11401 -0.31323 0.44734

-0.21933 -0.31323 -0.11401 -0.31323
0.31323 0.44734 -0.31323 0.11401];

v0 = [1 1 1 1]0; %Initial estimate of the eigenvector.
v0 = v0/norm(v0); %Normalize it.
lamda_new = v00*K*v0; %Rayleigh quotient (norm(v0) = 1)

% estimate of the eigenvalue.
lamda_old = 10*lamda_new; %Just to begin the iteration.
no_iterations = 0; %Count the number of iterations.
tolerance = 1.e-10;

while abs((lamda_new - lamda_old)/lamda_old) > tolerance
no_iterations = no_iterations + 1;
lamda_old = lamda_new;
v = v0;
vnew = K*v/norm(K*v);
lamda_new = vnew0*K*vnew; %Rayleigh quotient (norm(vnew) = 1).
v0 = vnew;

end

no_iterations = no_iterations
disp(‘ ‘)
lamda_max = lamda_new
eigenvector = vnew

The output of this program to the Command Window is as follows:

no_iterations =
12

lamda_max =
1

eigenvector =
0.40558
0.57923

-0.40558
0.57923
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The quaternion is the eigenvector associated with λmax, so that

0.40558

0.57923

0.40558

0.57923

q

Observe that q
_�� ��¼ 1. q

_
must be a unit quaternion.

(b) From Eq. (11.146), we find that the principal angle is

θ¼ 2cos�1 q4ð Þ¼ 2cos�1 0:57923ð Þ¼ 54:604°

and the Euler axis is

û¼ 0:40558Î + 0:57923Ĵ�0:40558K̂

sin 54:604°=2ð Þ ¼ 0:4975Î + 0:71056Ĵ�0:49754K̂
We have seen that a unit quaternion of Eq. (11.153) represents a rotation about the unit vector û

through the angle θ. Let us show that the Rodrigues’ formula (Eq. 11.139) for rotating the vector v

into the vector v0 may be written in terms of quaternions as follows:

v
_0 ¼ q

_	v
_	q

_
* (11.160)

where the conjugate quaternion q
_
* is given by Eq. (11.155), and v

_
and v

_0 are the pure quaternions

having v and v0 as their vector parts,

v v v v
00

(11.161)

Eq. (11.160) is implemented in MATLAB as the function quat_rotate.m in Appendix D.51.

Using Eq. (11.146) we first calculate the product of q
_
and v

_
,

q v
/2qcos v sin /2q vu

–sin /2q u v

Multiply this quaternion on the right by q
_
* to get

v q v q
v

4

(11.162)

where v0 and v4
0 are, respectively, the vector and scalar parts of the quaternion v

_0.
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Once again we employ Eq. (11.146) to obtain

v0 ¼ �sin θ=2ð Þ û �vð Þ½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{q

_	v
_ð Þ

4

�sin θ=2ð Þûð Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{q*

+ cos θ=2ð Þ
zfflfflfflfflffl}|fflfflfflfflffl{q*4

cos θ=2ð Þv+ sin θ=2ð Þ û�vð Þ½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{q	v

+ cos θ=2ð Þv+ sin θ=2ð Þ û�vð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q	v

� �sin θ=2ð Þûð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
q*

¼ sin2 θ=2ð Þû û �vð Þ + cos2 θ=2ð Þv+ cos θ=2ð Þsin θ=2ð Þ û�vð Þ� 
+ cos θ=2ð Þsin θ=2ð Þ û�vð Þ� sin2 θ=2ð Þ û�vð Þ� û

According to the bac–cab rule (Eq. 1.20), û�vð Þ� û¼ v� û û �vð Þ. Substituting this into the above

equation and collecting terms we get

v0 ¼ v cos2 θ=2ð Þ� sin2 θ=2ð Þ� 
+ û û � vð Þ 2sin2 θ=2ð Þ� 

+ û�vð Þ 2cos θ=2ð Þsin θ=2ð Þ½ �
But

cos2 θ=2ð Þ� sin2 θ=2ð Þ¼ cosθ 2sin2 θ=2ð Þ¼ 1� cosθ 2cos θ=2ð Þsin θ=2ð Þ¼ sinθ

so that finally

v0 ¼ vcosθ + û û � vð Þ 1� cosθð Þ + û�vð Þsinθ (11.163)

According to Eq. (11.146), the scalar part v4 of the quaternion product in Eq. (11.162) is

v04 ¼ �sin θ=2ð Þ û �vð Þ½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{q

_	v
_ð Þ

4

cos θ=2ð Þ½ �
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{q*4

� cos θ=2ð Þv + sin θ=2ð Þ û�vð Þ½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{q	v

� �sin θ=2ð Þû½ �
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{q*

¼�sin θ=2ð Þcos θ=2ð Þ û �vð Þ+ cos θ=2ð Þsin θ=2ð Þ û �vð Þ+ sin2 θ=2ð Þ û�vð Þ � û
¼ 0

Thus, the scalar part of v
_0 vanishes, which means that v

_0 is a pure quaternion whose vector part v0 is
identical to Eq. (11.139). We have therefore shown that the quaternion operation q

_	v
_	q

_
* indeed

rotates the vector v around the axis of the quaternion (the Euler axis) through the angle θ. In the same

way we can show that the operation q
_
*	v

_	q
_
rotates the vector v through the angle �θ. In fact, if we

follow the operation q
_	v

_	q
_
* (rotation through +θ) with the operation q

_
*	v

_	q
_
(rotation through

�θ) we end up where we started (namely, with the pure quaternion v
_
):

q
_	 q

_
*	v

_	q
_

� �
	q

_
*¼ q

_	q
_
*

� �
	v

_	 q
_	q

_
*

� �
¼ 1

_	v
_	1

_¼ 1
_	v

_
� �

	1
_¼ v

_	1
_¼ v

_

The operation in Eq. (11.160) is a vector rotation. The frame of reference remains fixed while the

vector v is rotated into the vector v0. On the other hand, the familiar operation {v}x0 ¼ [Q]xx0{v} is a

frame rotation (a coordinate transformation), in which the vector v remains fixed while the reference

frame is rotated. We can easily illustrate this by revisiting Example 11.22.
EXAMPLE 11.24
Consider the vector v¼ v̂j. Using the quaternion and corresponding direction cosine matrix in Example 11.22, carry out the

following operations and interpret the results geometrically:

(i) v
_0 ¼ q

_	v
_	q

_
*
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(ii) v0f g¼ Q½ � vf g
where

v
j

q
sin i/2q

cos /2q
Q

1 0 0
0
0

cosq sinq
sinq cosq

Solution
(i) We do the two quaternion products one after the other using Eq. (11.146). The first product is

vq
cos 0 sin i/2q j /2q sin /2q i j

cos /2q 0 sin /2q i j

cos /2q j sin /2q k

0

Following this by the second product, we get

20

cos

cos

sin

sin

2 2q q

i j k kj i

ij

j

kv

q 2sin q 2sin q

k

k
kj

2sin q

2sin q

i2sin q

q

cos

cos

2 2q

q

cos
cos2q q q

2q cos 2q

cos 20 q

cos 2q

jcos 2q

cos 2q0

q

sin 2

0
0

q sin

sin
sin2q

q

sin 2q

Finally, therefore,

v0 ¼ vcosθĵ+ vsinθk̂ (a)

(ii)

v0f g¼
1 0 0

0 cosθ sinθ
0 �sinθ cosθ

24 35 0

v
0

8<:
9=;¼

0

vcosθ
�vsinθ

8<:
9=;

or

v0 ¼ vcosθĵ�vsinθk̂ (b)

These two results are illustrated in Fig. 11.29.
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FIG. 11.29

Vector rotation vs frame rotation.
The Euler equations of motion for a rigid body (Eq. 11.72) provide the angular velocity rates _ωx, _ωy,

and _ωz as functions of time. We can integrate those equations to find the time history of the angular ve-

locitiesωx,ωy, andωz. In addition, toobtain theorientationhistoryof thebody,weneed the timehistoryof

the Euler angles ϕ, θ, and ψ . These are found by integrating Eq. (11.116),

_ϕ

_θ

_ψ

8>><>>:
9>>=>>;¼

sinψ

sinθ

cosψ

sinθ
0

cosψ �sinψ 0

� sinψ

tanθ
� cosψ

tanθ
1

2666664

3777775
ωx

ωy

ωz

8>><>>:
9>>=>>;

which provide the Euler angle rates (precession, nutation, and spin) in terms of the angular velocities. If

we elect to use quaternions instead of Euler angles to describe the attitude of the body, then we need a

formula for the rate of change of q
_

in terms of the angular velocities.

To find the time derivative of a pure quaternion q
_
, we simply differentiate Eq. (11.153) to get

d
dt

d
dt

sin

sin

cos

cos

2q

2q 2q

2q2q

2q
q

usin 2qu u

The Euler axis unit vector û is constant in magnitude, but not in direction. According to Gelman (1971)

and Hughes (2004), its time derivative is

_̂u¼ 1

2
û�ω� cot θ=2ð Þû� û�ωð Þ½ � (11.164)

where ω is the angular velocity vector. Clearly, if the instantaneous axis of rotation and the Euler axis

happen to coincide (i.e., if ω¼ωû), then _̂u¼ 0, because in that case û�ω¼ 0. However, in general
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_̂u does not vanish. Substituting Eq. (11.164) into the expression for
_
q
_
, we find after expanding and

collecting terms that

2 2sin

cossin

q

2q2q

q

w w
=

1
q

u
(11.165)

From Eq. (11.153) we know that ûsin θ=2ð Þ¼ q and cos(θ/2) ¼ q4. Observing furthermore that _θ is the

component of the angular velocity ω along the Euler axis ( _θ ¼ω � û), the expression for
_
q
_

becomes

q4q
1
2

=
q

q

w w
w

(11.166)

According to the quaternion composition rule (Eq. 11.146), this may be written

_
q
_¼ 1

2
q
_	ω_

where is the pure quaternion version of the angular velocity vector. Substituting

q¼ q1̂i + q2 ĵ+ q3k̂ andω¼ω1̂i+ω2ĵ+ω3k̂ into Eq. (11.166) and expanding the vector and scalar prod-

ucts leads to

1
2

= =
1
2

q2w3 – q3w2 + q4w1 q1

q2
q3

q4

w3

w1

w1

w2

w2

–w1

–w1 –w2 –w3

w3

–w2

–w3

0

0

0

0

+ q4w2

+ q4w3

q3w1 – q1w3

q1w2 – q2w1

–w1q1 –w2q2 –w3q3

q

That is,

d

dt
q
_
n o

¼ 1

2
Ω½ � q

_
n o

(11.167)

where

0

0

0

3

3 1 2

2 1 3

1 2 3

2 1

0

(11.168)

ω1, ω2, and ω3 are the x, y, and z components of angular velocity in the body-fixed frame.

If the components of the angular velocity are constant, then the matrix [Ω] is constant and we can

readily integrate Eq. (11.167) to obtain

q
_
n o

¼ exp
Ω½ �
2
t

� �
q
_

0

n o
(11.169)
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where q
_
0

n o
is the value of the quaternion at time t ¼ 0. This expression may be inferred directly from

scalar calculus, in which we know that if c is a constant, then the solution of the differential equation

dx/dt ¼ cx is simply x ¼ x0e
ct. In linear algebra we learn that a 4-by-4 matrix [A] has four eigenvalues λi

and four corresponding eigenvectors {ei}, satisfying the equation

A½ � eif g¼ λi eif g i¼ 1,…,4

It turns out that

exp A½ �ð Þ ¼ V½ �exp Λ½ �ð Þ V½ ��1
(11.170)

where [Λ] is the 4-by-4 diagonal matrix of eigenvalues,

Λ½ � ¼
λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

2664
3775

and [V] is the 4-by-4 matix whose columns comprise the four distinct eigenvectors {ei},

V½ � ¼ e1f g e2f g e3f g e4f g½ �

Using, for example, MATLAB’s symbolic math feature, we find that the eigenvalues and correspond-

ing eigenvectors of the matrix [Ω] in Eq. (11.168) are

λ1 ¼ λ2 ¼ωi: e1 ¼

ωyωi�ωxωz

� �
=ωxy

2

� ωxωi+ωyωz

� �
=ωxy

2

1

0

8>>><>>>:
9>>>=>>>; e2 ¼

� ωxωi+ωyωz

� �
=ωxy

2

�ωyωi+ωxωz

� �
=ωxy

2

0

1

8>>><>>>:
9>>>=>>>;

λ3 ¼ λ4 ¼�ωi: e3 ¼

� ωyωi+ωxωz

� �
=ωxy

2

ωxωi�ωyωz

� �
=ωxy

2

1

0

8>>><>>>:
9>>>=>>>; e4 ¼

ωxωi�ωyωz

� �
=ωxy

2

ωyωi+ωxωz

� �
=ωxy

2

0

1

8>>><>>>:
9>>>=>>>;

where ω¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωx

2 +ωy
2 +ωz

2
p

(the magnitude of the angular velocity vector), ωxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωx

2 +ωy
2

p
, and

i¼ ffiffiffiffiffiffiffi�1
p

. Substituting these results into Eq. (11.170) yields, again with the considerable aid of

MATLAB,

exp
Ω½ �
2
t

� �
¼

cos
ωt

2

ωz

ω
sin

ωt

2
�ωy

ω
sin

ωt

2

ωx

ω
sin

ωt

2

�ωz

ω
sin

ωt

2
cos

ωt

2

ωx

ω
sin

ωt

2

ωy

ω
sin

ωt

2
ωy

ω
sin

ωt

2
�ωx

ω
sin

ωt

2
cos

ωt

2

ωz

ω
sin

ωt

2

�ωx

ω
sin

ωt

2
�ωy

ω
sin

ωt

2
�ωz

ω
sin

ωt

2
cos

ωt

2

266666664

377777775 (11.171)
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We know that for Eq. (11.171) to be valid, the angular velocity components must all be constant.

The rigid body equations of motion (Eq. 11.72) show that _ωx ¼ _ωy ¼ _ωz ¼ 0 if the net torque on the

body is zero and the principal moments of inertia are all the same. Whereas torque-free motion

(Chapter 12) is quite common for space vehicles, spherical symmetry (A ¼ B ¼ C) is not. Thus, we
cannot make much practical use of Eqs. (11.169) and (11.171). In general, we must instead use numer-

ical integration to obtain the angular velocities from the Euler equations and the quaternions from

Eq. (11.167).
EXAMPLE 11.25
At time t ¼ 0 the body-fixed axes and inertial angular velocity of a rigid body are those given in Example 11.18, namely

î0 ¼ 0:40825Î�0:40825Ĵ+ 0:81649K̂

ĵ0 ¼�0:10102Î�0:90914Ĵ�0:40405K̂

k̂0 ¼ 0:90726Î+ 0:082479Ĵ�0:41240K̂

(a)

and

ωX ¼�3:1Î+ 2:5Ĵ+ 1:7K̂ rad=sð Þ (b)

If the angular velocity is constant, find the time histories of the Euler angles and the quaternion.

Solution
Because the angular velocity is constant, themotion of the bodywill be pure rotation about the fixed axis of rotation defined

by the angular velocity vector. Once we find the direction cosine matrix as a function of time, we can use Algorithm 4.3 to

obtain the Euler angles at each time.

Step 1:

As in Example 11.18, we find that the direction cosine matrix at time t ¼ 0 is

Q0½ �Xx ¼
0:40825 �0:40825 0:81649

�0:10102 �0:90914 �0:40405
0:90726 0:082479 �0:41240

24 35 (c)

Step 2:

As in Example 11.18, use [Q0]Xx to project the angular velocity ωX onto the axes of the body-fixed frame

ωf gx ¼ Q0½ �Xx ωf gX ¼
0:40825 �0:40825 0:81649

�0:10102 �0:90914 �0:40405
0:90726 0:082479 �0:41240

24 35 �3:1
2:5
1:7

8<:
9=;

so that

ωx ¼�0:89817rad=s ωy ¼�2:6466rad=s ωz ¼�3:3074rad=s (d)

The magnitude of the constant angular velocity is

ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωx

2 +ωy
2 +ωz

2

q
¼ 4:3301rad=s (e)

The period of the rotation is T ¼ 2π/ω ¼ 1.451 s.

Step 3:

Use the angular velocities in (d) to form the matrix [Ω] in Eq. (11.168),

Ω½ � ¼
0 �3:3074 2:6466 �0:89817
3:3074 0 �0:89817 �2:6466

�2:6466 0:89817 0 �3:3074
0:89817 2:6466 3:3074 0

2664
3775 (f)
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[Ω] remains constant.

Step 4:

Use Algorithm 11.2 to obtain the quaternion at t ¼ 0 from the direction cosine matrix in (c).

q0

–0.82610
  0.15412
–0.52165
0.14724

(g)

Step 5

At each time through tfinal:
Compute the quaternion q

_
tð Þ from Eqs. (11.169) and (11.171).

Use q
_

tð Þ to update the direction cosine matrix [Q(t)]Xx using Algorithm 11.1.

Use [Q(t)]Xx to calculate the Euler angles ϕ(t), θ(t), and ψ(t)by means of Algorithm 4.3.

Fig. 11.30 shows the time variation of the four components of q
_
during one rotation of the body. The variation of the

three Euler angles is shown in Fig. 11.31. Observe that their values at t ¼ 0 agree with those found in Example 11.18.

Fig. 11.32 shows the initial orientation of the orthonormal body-fixed xyz axes given in Eq. (a). The dotted lines trace

out the subsequent motion of their end points as they rotate at 4.33rad/s about the fixed angular velocity vector ω. Finally,
Fig. 11.33 shows the initial position of the Euler axis û and its subsequent motion during rotation of the body. The unit

vector û is obtained from the unit quaternion q
_

tð Þ at any instant by means of Eq. (11.146),

û tð Þ¼ q tð Þ
sin cos�1 q4 tð Þ½ �f g

where q(t) is the vector part of q
_

tð Þ. Fig. 11.33 amply illustrates the fact that the unit vectors ω̂ and û are not the same.
FIG. 11.30

History of the components of q
_

for one rotation of the body.



FIG. 11.31

History of the three Euler angles for one rotation of the body.
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FIG. 11.32

The motion of three orthogonal lines during rotation of the body.
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FIG. 11.33

Motion of the Euler axis during one rotation of the body.
EXAMPLE 11.26
Solve the spinning top problem of Example 11.15 numerically, using quaternions. Use the low-energy precession rate,

ωp ¼ 51.93rpm.

Solution
We will use Eq. (11.72) (the Euler equations) to compute the body frame angular velocity derivatives:

dωx

dt
¼Mx

A
�C�B

A
ωyωz

dωy

dt
¼My

B
�A�C

B
ωzωx

dωz

dt
¼Mz

C
�B�A

C
ωxωy

(a)

These require that the moving xyz axes are all rigidly attached to the top. In Example 11.15 only the x axis was fixed to the

top along its spin axis; the y and z axes did not rotate with the top.
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The moments in Eq. (a) must be expressed in components along the body-fixed axes. From Fig. 11.19, the moment of

the weight vector about O is

M¼ dk̂� �mgK̂
� �¼�mgd k̂� K̂

� �
(b)

where, recalling Eq. (4.18)3

k̂¼Q31 Î+Q32Ĵ +Q33K̂ (c)

The Qs are the time-dependent components of the direction cosine matrix [Q]Xx in Eq. (11.157). Carrying out the cross

product in Eq. (b) yields the components of M along the XYZ axes of the fixed space frame,

Mf gX ¼
�mgdQ32

mgdQ31

0

8<:
9=;

To obtain the components of M in the body-fixed frame, we perform the transformation

Mf gx ¼ Q½ �Xx Mf gX ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

264
375 �mgdQ32

mgdQ31

0

8<:
9=;¼mgd

Q12Q31�Q32Q11

Q22Q31�Q32Q21

0

8<:
9=; (d)

It can be shown that (Problem 11.27)

Q12Q31�Q32Q11 ¼Q23 Q22Q31�Q32Q21 ¼�Q13

Therefore, at any instant the moments in Eq. (a) are

Mx ¼mgdQ23 My ¼�mgdQ13 Mz ¼ 0 (e)

The MATLAB implementation of the following procedure is listed in Appendix D.51.

Step 1:

Specify the initial orientation of the xyz axes of the body frame, thereby defining the initial value of the direction cosine

matrix [Q]Xx.

According to Fig. 11.19, the body z axis is the top’s spin axis, and we shall assume here that it initially lies in the global

YZ plane, tilted 60° away from the Z axis, as it is in Example 11.15. Let the body x axis be initially aligned with the global X
axis. The body y axis is then found from the cross product ĵ¼ k̂� î. Thus,

k̂¼�sin60°Ĵ + cos60°K̂

î¼ Î

ĵ¼ k̂� î¼ cos60°Ĵ+ sin60°K̂

It follows that the direction cosine matrix relating XYZ to xyz at the start of the simulation is

Q0½ �Xx ¼
1 0 0

0 cos60° sin60°
0 �sin60° cos60°

24 35¼ 1 0 0

0 1=2
ffiffiffi
3

p
=2

0 � ffiffiffi
3

p
=2 1=2

24 35 (f)
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Step 2:

Compute the initial quaternion q
_
0 using Algorithm 11.2. Substituting Eq. (f) into Eq. (11.150) yields

K½ � ¼
0 0 0 0:57735
0 �0:33333 0 0

0 0 �0:33333 0

0:57735 0 0 0:66667

2664
3775

Rather than finding the dominant eigenvector by means of the power method, as we did in Example 11.23, we shall here

use MATLAB’s eig function, which obtains all of the eigenpairs. The snippet of MATLAB code for doing so is:

[eigvectors, eigvalues] = eig(K);
%Find the dominant eigenvalue and the column of ‘eigvectors’ that
% contains its eigenvector:
[dominant_eigvalue,column] = max(max(abs(eigvalues)));
dominant_eigenvector = eigvectors(:,column)

The output of this code is,

dominant_eigenvector =
0.5
0
0
0.86603

Therefore, the initial value of the quaternion is

0.86603
0

q0
0

0.5

(g)

Step 3:

Specify the initial values of the body frame components of angular velocity ω0 ¼ ωxÞ0 ωy

�
0

ωzÞ0
� �T

:

Recall that Eq. (11.115) relate these body frame angular velocities to the initial values of the top’s Euler angles and their

rates,

ωxÞ0 ¼ωp

�
0
sinθ0 sinψ0 +ωnÞ0 cosψ0

ωy

�
0
¼ωp

�
0
sinθ0 cosψ0�ωnÞ0 sinψ0

ωzÞ0 ¼ωsÞ0 +ωp

�
0
cosθ0

(h)

The top is released from rest with a given tilt angle θ0 and spin rate ωs)0. According to Example 11.15,

θ0 ¼ 60°

ψ0 ¼ 0

ωsÞ0 ¼ 1000rpm¼ 104:72 rad=s

ωp

�
0
¼ 51:93rpm¼ 5:438 rad=s lowenergy precession rateð Þ

ωnÞ0 ¼ 0

(i)

Substituting these into Eq. (h) we find

ω0 ¼ 0 4:7095 107:44b cT rad=sð Þ (j)
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Step 4:

Supplyω0 and q
_
0 as initial conditions to, say, the Runge–Kutta–Fehlberg 4(5) numerical integration procedure (Algorithm

1.3) to solve the system _yf g¼ ff g, where
yf g¼ ωx ωy ωz q1 q2 q3 q4

� �T
ff g¼ dωx=dt dωy=dt dωz=dt dq1=dt dq2=dt dq3=dt dq4=dt

� �T (k)

thereby obtaining the angular velocity ω and quaternion q
_
as functions of time. At each step of the numerical integration

process:

(i) Use the current value of q
_

to compute [Q]Xx from Algorithm 11.1.

(ii) Use the current value of [Q]Xx and ω to compute dω=dt from (a), (d), and (e).

(iii) Use the current value of q
_
and ω to compute dq

_
=dt from Eqs. (11.164).

Step 5:

At each solution time:

(i) Use Algorithm 11.1 to compute the direction cosine matrix [Q]Xx.

(ii) Use Algorithm 4.3 to compute the Euler angles ϕ (precession), θ (nutation), and ψ(spin).
(iii) Use Eq. (11.116) to compute the Euler angle rates _ϕ, _θ , and _ψ .
Step 6:

Plot the time histories of the Euler angles and their rates.

Fig. 11.34 shows the numerical solution for the precession, nutation, and spin angles as well as their rates as functions of

time. We see that the constant precession rate (51.93 rpm) and spin rate (1000 rpm) are in agreement with Example 11.15,
. 11.34

ecession (ϕ), nutation (θ), and spin (ψ) angles and their rates for the top in Example 11.15.

¼ B ¼ 0.0012 kg �m2, C ¼ 0.00045 kg �m2.
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as is the nutation angle, which is fixed at 60°. The sawtooth appearance of the spin angle ψ(t) reflects the fact that it is
confined to the range 0 to 360°.

Clearly , the solution of the steady-state spinning top problem by numerical integration yields no new insight into the

top’s motion and may be deemed a waste of effort. However, suppose we solve the same problem, but release the top from

rest with zero precession rate, so that instead of Eqs. (i), the initial conditions are

θ0 ¼ 60°

ψ0 ¼ 0

ωsÞ0 ¼ 1000rpm¼ 104:72 rad=s

ωp

�
0
¼ 0

ωnÞ0 ¼ 0

(l)

The initial orientation of the top is unchanged, so the initial quaternion q
_
0 remains as shown in Eq. (g). On the other hand,

the initially zero precession rate yields a different initial angular velocity vector, namely,

ω0 ¼ 0 0 104:72b cT rad=sð Þ (m)

With only this change, the above numerical integration procedure yields the results shown in Fig. 11.35.
. 11.35

ecession (ϕ), nutation (θ), and spin (ψ) angles and their rates for the top in Fig. 11.19, released from rest with

tially zero precession. A ¼ B ¼ 0.0012 kg �m2, C ¼ 0.00045 kg �m2.
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This is an example of unsteady precession, in which we see that the spin axis, instead of making a constant angle of 60° to
the vertical, nutates between 60° and 75.4° at a rate of about 5.7 Hz, while the spin rate itself varies between 975 and

1000 rpm at the same frequency. The precession rate oscillates between 0 and 99.4 rpm, also at a frequency of 5.7 Hz,

with an average rate of 51.9 rpm, which happens to be the steady-state precession rate (Fig. 11.34).

These numerical results can be compared with formulas from the classical analysis of tops in unsteady precession. For

example, it can be shown (Greenwood, 1988) that the relationship between the minimum and maximum nutation angles is

cosθmax ¼ λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2�2λcosθmin + 1

q
where λ¼C2ωz

2= 4Amgdð Þ. For the data of this problem, λ ¼ 1.887, so that

cosθmax ¼ 1:887�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:8872�2 � 1:887 � cos60°+ 1

p
¼ 0:2518

θmax ¼ 75:41°

This is precisely what we observe for the nutation angle in Fig. 11.35. By the way,ωz remains constant at its initial value of

104.72rad/s because the top is axisymmetric (A ¼ B) and Mz ¼ 0 (Eq. (e)3), so that dωz/dt ¼ 0 (Eq. (a)3).
PROBLEMS

Section 2

11.1 Rigid, bent shaft 1 (ABC) rotates at a constant angular velocity of 2K̂ rad=s around the positive Z
axis of the inertial frame. Bent shaft 2 (CDE) rotates around BC with a constant angular velocity

of 3̂j rad=s, relative to BC. Spinner 3 at E rotates around DE with a constant angular velocity of

4̂j rad=s relative toDE. Calculate the magnitude of the absolute angular acceleration vector α3 of

the spinner at the instant shown.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

{Ans.: α3k k¼ 180 + 64sin2θ�144cosθ rad=s2ð Þ}
All the spin rates shown are constant. Calculate the magnitude of the absolute angular
11.2
acceleration vectorα3 of the spinner at the instant shown (i.e., at the instant when the unit vector î

is parallel to the X axis and the unit vector ĵ is parallel to the Y axis).
{Ans.: α3k k¼ 63 rad=s2}



624 CHAPTER 11 RIGID BODY DYNAMICS
The body-fixed xyz frame is attached to the cylinder as shown. The cylinder rotates around the
11.3
inertial Z axis, which is collinear with the z axis, with a constant absolute angular velocity _θk̂.
Rod AB is attached to the cylinder and aligned with the y axis. Rod BC is perpendicular to AB and

rotates around AB with the constant angular velocity _ϕ ĵ relative to the cylinder. Rod CD is

perpendicular to BC and rotates around BCwith the constant angular velocity _νm̂ relative to BC,
where m̂ is the unit vector in the direction of BC. The plate abcd rotates around CD with a

constant angular velocity _ψ n̂ relative toCD, where the unit vector n̂ points in the direction ofCD.
Thus, the absolute angular velocity of the plate is ωplate ¼ _θk̂+ _ϕ ĵ+ _νm̂ + _ψ n̂. Show that
(a) ωplate ¼ _ν sinϕ� _ψ cosϕsinνð Þ̂i+ _ϕ + _ψ cosν
� �̂

j+ _θ + _ν cosϕ+ _ψ sinϕsinν
� �

k̂

(b) α ¼ dωplate ¼ _ν _ϕ cosϕ� _ψ cosϕcosν
� �

+ _ψ _ϕ sinϕsinν� _ψ _θ cosν� _ϕ _θ
� ̂

i
plate

dt� �� 
+ _ν _θ sinϕ� _ψ sinν � _ψ _θ cosϕsinν ĵ

+ _ψ _ν cosνsinϕ+ _ψ _ϕ cosϕsinν� _ϕ _ν sin _φ
� �

k̂� �

aC ¼�l _ϕ2 + _θ2

� �
sin ϕ̂i+ 2l _ϕ _θ cosϕ�5

l _θ2 ĵ� l _ϕ2 cosϕk̂
(c)

4
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11.4 The mass center G of a rigid body has a velocity v¼ t3̂i+ 4̂j m=sð Þ and an angular velocity

ω¼ 2t2k̂ rad=sð Þ, where t is time in seconds. The î, ĵ, k̂ unit vectors are attached to and rotate

with the rigid body. Calculate the magnitude of the acceleration aG of the center of mass at

t ¼ 2 s.
{Ans.: aG ¼�20̂i + 64̂j m=s2ð Þ}
A rigid body is in pure rotation with angular velocity ω¼ω î +ω ĵ+ω k̂ about the origin of the
11.5 x y z

inertial xyz frame. If point A with position vector rA ¼ 2̂i + 2̂j�2k̂ mð Þ has velocity
vA ¼ î + 2̂j+ 3k̂ m=sð Þ, what is the magnitude of the velocity of the point B with position vector

rB ¼ î + ĵ� k̂ mð Þ?

{Ans.: 1.871 m/s}
11.6 The inertial angular velocity of a rigid body is ω¼ωx̂i +ωy ĵ+ωzk̂, where î, ĵ, and k̂ are the unit

vectors of a comoving frame whose inertial angular velocity is ω¼ωx̂i +ωy ĵ. Calculate the

components of angular acceleration of the rigid body in the moving frame, assuming that ωx, ωy,

and ωz are all constant.
{Ans.: α¼ωyωẑi�ωxωzĵ}
Section 5
11.7 Find the moments of inertia about the center of mass of the system of six point masses listed in

the table.
Point, i
 Mass, mi (kg)
 xi (m)
 yi (m)
 zi (m)
1
 10
 1
 1
 1
2
 10
 �1
 �1
 �1
3
 8
 4
 �4
 4
4
 8
 �2
 2
 �2
5
 12
 3
 �3
 �3
6
 12
 �3
 3
 3
{Ans.: IG½ � ¼
783:5 351:7 40:27
351:7 783:5 �80:27
40:27 �80:27 783:5

24 35 kg �m2ð Þg
11.8 Find the mass moment of inertia of the configuration of Problem 11.7 about an axis through

the origin and the point with coordinates (1, 2, 2 m).
{Ans.: 898.7 kg �m2}
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11.9 A uniform slender rod of mass m and length l lies in the xy plane inclined to the x axis by an

angle θ. Use the results of Example 11.10 to find the mass moments of inertia about the xyz
axes passing through the center of mass G.2 3

{Ans.: IG½ � ¼ 1

12
ml2

sin2θ �1

2
sin2θ 0

�1

2
sin2θ cos2θ 0

0 0 1

6664 7775}
The uniform rectangular box has a mass of 1000 kg. The dimensions of its edges are shown.
11.10

(a) Find the mass moments of inertia about the xyz axes.
{Ans.: IO½ � ¼
1666:7 �1500 �750

�1500 3333:3 �500

�750 �500 4333:3

24 35 kg �m2ð Þ}
(b) Find the principal moments of inertia and the principal directions about the xyz axes
through O.

{Partial Ans.: I1 ¼ 568:9 kg �m2, ê1 ¼ 0:8366̂i + 0:4960̂j+ 0:2326k̂}
(c) Find the moment of inertia about the line through O and the point with coordinates (3 m,

2 m, 1 m).
{Ans.: 583.3 kg �m2}
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11.11 A taxiing airplane turns about its vertical axis with an angular velocity Ω while its propeller

spins at an angular velocityω¼ _θ. Determine the components of the angular momentum of the

propeller about the body-fixed xyz axes centered at P. Treat the propeller as a uniform slender

rod of mass m and length l. � �

{Ans.: Hp ¼ 1

12
mωl2̂i� 1

24
mΩl2 sin2θĵ+ 1

12
ml2 cos2θ +md2 Ωk̂}
Relative to an xyz frame of reference the components of angular momentum H are given by
11.12

Hf g¼
1000 0 �300

0 1000 500

�300 500 1000

24 35 ωx

ωy

ωz

8<:
9=; kg �m2=s
� �
where ωx, ωy, and ωz are the components of the angular velocity vector ω. Find the

components ω such that Hf g¼ 1000 ωf g, where the magnitude of ω is 20 rad/s.

{Ans.: ω¼ 174:15̂i + 10:29̂j rad=sð Þ} 2 3

11.13 Relative to a body-fixed xyz frame IG½ � ¼

10 0 0

0 20 0

0 0 30

4 5 kg �m2ð Þ and

ω¼ 2t2̂i + 4̂j+ 3tk̂ rad=sð Þ, where t is the time in seconds. Calculate the magnitude of the net

moment about the center of mass G at t ¼ 3 s.
{Ans.: 3374 N m}
11.14 In Example 11.11, the system is at rest when a 100-N force is applied to point A as shown.

Calculate the inertial components of angular acceleration at that instant.
{Ans.: αX ¼ 143.9 rad/s2, αY ¼ 553.1 rad/s2, αZ ¼ 7.61 rad/s2}
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11.15 The body-fixed xyz axes pass through the center of massG of the airplane and are the principal

axes of inertia. The moments of inertia about these axes are A, B, and C, respectively. The
airplane is in a level turn of radius R with a speed v.

(a) Calculate the bank angle θ.
(b) Use the Euler equations to calculate the rolling moment My that must be applied by the

aerodynamic surfaces.

{Ans.: (a) θ ¼ tan�1v2/Rg; (b) My ¼ v2 sin 2θ(C � A)/2R2}
he airplane in Problem 11.15 is spinning with an angular velocity ω about the vertical Z axis.
11.16 T Z

The nose is pitched down at the angle α. What external moments must accompany this

maneuver?
{Ans.: My ¼ Mz ¼ 0, Mx ¼ωZ
2 sin2α C�Bð Þ=2}
Two identical slender rods of mass m and length l are rigidly joined together at an angle θ at
11.17
point C, their 2/3 point. Determine the bearing reactions at A and B if the shaft rotates at a

constant angular velocityω. Neglect gravity and assume that the only bearing forces are normal

to rod AB.

{Ans.: kFAk ¼ mω2l sin θ(1 + 2 cos θ)/18, kFBk ¼ mω2l sin θ(1 � cos θ)/9}
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The flywheel (A ¼ B ¼ 5 kg �m2, C ¼ 10 kg �m2) spins at a constant angular velocity of
11.18
ωs ¼ 100k̂ rad=sð Þ. It is supported by a massless gimbal that is mounted on the platform as

shown. The gimbal is initially stationary relative to the platform, which rotates with a constant

angular velocity ofωp ¼ 0:5̂j rad=sð Þ. What will be the gimbal’s angular acceleration when the

torquer applies a torque of 600̂i N mð Þ to the flywheel?
{Ans.: 70̂i rad=s2ð Þ}
A uniform slender rod of length L and massm is attached by a smooth pin atO to a vertical shaft
11.19
that rotates at constant angular velocityω. Use the Euler equations and the body frame shown to

calculate ω at the instant shown.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

{Ans.: ω¼ 3g= 2Lcosθð Þ}
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A uniform, thin circular disk of mass 10 kg spins at a constant angular velocity of 630 rad/s
11.20
about axis OG, which is normal to the disk and pivots about the frictionless ball joint at O.
Neglecting the mass of the shaft OG, determine the rate of precession ifOG remains horizontal

as shown. Gravity acts down, as shown. G is the center of mass and the y axis remains fixed in

space. The moments of inertia about G are IG)z ¼ 0.02812 kg �m2 and

IG)x ¼ IG)y ¼ 0.01406 kg �m2
.

{Ans.: 1.38 rad/s}
Section 7
11.21 Consider a rigid body experiencing rotational motion associated with an angular velocity

vector ω. The inertia tensor (relative to body-fixed axes through the center of mass G) is

20 �10 0

�10 30 0

0 0 40

24 35 kg �m2
� �
and ω¼ 10̂i+ 20̂j+ 30k̂ rad=sð Þ. Calculate
(a) the angular momentum HG and

(b) the rotational kinetic energy (about G).

{Partial Ans.: (b) TR ¼ 23, 000 J}
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Section 8
11.22 At the end of its takeoff run, an airplane with retractable landing gear leaves the runway

with a speed of 130 km/h. The gear rotates into the wing with an angular velocity of 0.8 rad/

s with the wheels still spinning. Calculate the gyroscopic bending moment in the wheel

bearing B. The wheels have a diameter of 0.6 m, a mass of 25 kg, and a radius of gyration of

0.2 m.
{Ans.: 96.3 N m}
The gyro rotor, including shaft AB, has a mass of 4 kg and a radius of gyration 7 cm around AB.
11.23
The rotor spins at 10,000 rpm while also being forced to rotate around the gimbal axis CC at

2 rad/s. What are the transverse forces exerted on the shaft at A and B? Neglect gravity.
{Ans.: 1.03 kN}
A jet aircraft is making a level, 2.5-km radius turn to the left at a speed of 650 km/h. The rotor of
11.24
the turbojet engine has a mass of 200 kg, a radius of gyration of 0.25 m, and rotates at

15,000 rpm clockwise as viewed from the front of the airplane. Calculate the gyroscopic

moment that the engine exerts on the airframe and explain why it tends to pitch the nose up

or down.
{Ans.: 1.418 kN m; pitch down}
A cylindrical rotor of mass 10 kg, radius 0.05 m, and length 0.60 m is simply supported at each
11.25
end in a cradle that rotates at a constant 20 rad/s counterclockwise as viewed from above.

Relative to the cradle, the rotor spins at 200 rad/s counterclockwise as viewed from the right
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(from B toward A). Assuming that there is no gravity, calculate the bearing reactions RA and RB.

Use the comoving xyz frame shown, which is attached to the cradle but not to the rotor.
{Ans.: RA ¼ � RB ¼ 83.3 N}
Section 9
11.26 The Euler angles of a rigid body are ϕ ¼ 50°, θ ¼ 25°, and ψ ¼ 70°. Calculate the angle (a

positive number) between the body-fixed x axis and the inertial X axis.
{Ans.: 115.6°}
Section 11
11.27 Let î̂jk̂ and ÎĴK̂ be two right-handed triads of orthogonal unit vectors related as in Eq. (4.18) by

the direction cosine matrix [Q], so that

î¼Q11Î +Q12Ĵ +Q13K̂

ĵ¼Q21 Î+Q22Ĵ +Q23K̂
k̂¼Q31 Î+Q32Ĵ+Q33K̂
Show that î¼ ĵ� k̂ implies that Q13 ¼ Q32Q21 � Q22Q31, whereas ĵ¼ k̂� î implies that
Q23 ¼Q12Q31�Q32Q11:
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CHAPTER
SPACECRAFT ATTITUDE
DYNAMICS
 12

12.1 INTRODUCTION
In this chapter, we apply the equations of rigid body motion presented in Chapter 11 to the study of the

attitude dynamics of satellites. We begin with spin-stabilized spacecraft. Spinning a satellite around its

axis is a very simple way to keep the vehicle pointed in a desired direction. We investigate the stability

of a spinning satellite to show that only oblate spinners are stable over long times. Overcoming this

restriction on the shape of spin-stabilized spacecraft led to the development of dual-spin vehicles,

which consist of two interconnected segments rotating at different rates about a common axis. We con-

sider the stability of that type of configuration as well. The nutation damper and its effect on the sta-

bility of spin-stabilized spacecraft are covered next.

The rest of the chapter is devoted to some of the common means of changing the attitude or motion

of a spacecraft by applying external or internal forces or torques. The coning maneuver changes the

attitude of a spinning spacecraft by using thrusters to apply impulsive torque, which alters the angular

momentum and hence the orientation of the spacecraft. The much-used yo-yo despin maneuver reduces

or eliminates the spin rate by releasing small masses attached to cords initially wrapped around the

cylindrical vehicle.

An alternative to spin stabilization is three-axis stabilization by gyroscopic attitude control. In this

case, the vehicle does not continuously rotate. Instead, the desired attitude is maintained by the spin of

small wheels within the spacecraft. These are called reaction wheels or momentum wheels. If allowed

to pivot relative to the vehicle, they are known as control moment gyros. The attitude of the vehicle can

be changed by varying the speed or orientation of these internal gyros. Small thrusters may also be used

to supplement gyroscopic attitude control and to hold the spacecraft orientation fixed when it is nec-

essary to despin or reorient the gyros that have become saturated (reached their maximum spin rate or

deflection) over time.

The chapter concludes with a discussion of how the earth’s gravitational field by itself can stabilize

the attitude of large satellites in low earth orbits.
12.2 TORQUE-FREE MOTION
Gravity is the only force acting on a satellite coasting in orbit (if we neglect secondary drag forces and

the gravitational influence of bodies other than the planet being orbited). Unless the satellite is
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00012-X

# 2020 Elsevier Ltd. All rights reserved.
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unusually large, the gravitational force is concentrated at the center of mass G. Since the net moment

about the center of mass is zero, the satellite is torque free and according to Eq. (11.30),

_HG¼ 0 (12.1)

The angular momentum HG about the center of mass does not depend on time. It is a vector fixed in

inertial space. We will use HG to define the Z axis of an inertial frame, as shown in Fig. 12.1. The xyz
axes in the figure comprise the principal body frame, centered at G. The angle between the z axis and
HG is (by definition of the Euler angles) the nutation angle θ. Let us determine the conditions for which

θ is constant. From the dot product operation, we know that

cos θ¼ HG

HGk k � k̂

Differentiating this expression with respect to time, keeping in mind Eq. (12.1), we get

dcos θ

dt
¼ HG

HGk k �
dk̂

dt

But dk̂=dt¼ω� k̂, according to Eq. (1.52), so

dcos θ

dt
¼HG � ω� k̂

� �
HGk k (12.2)

Now,

ω� k̂¼ ωx̂i+ωy ĵ+ωzk̂
� �

� k̂¼ωŷi�ωx ĵ

Furthermore, we know from Eq. (11.67) that the angular momentum is related to the angular velocity in

the principal body frame by the expression

HG¼Aωx̂i+Bωy ĵ+Cωzk̂

Thus,

HG � ω� k̂
� �¼ Aωx̂i+Bωy ĵ+Cωzk̂

� �
� ωŷi�ωx ĵ
� �

¼ A�Bð Þωxωy
FIG. 12.1

Rotationally symmetric satellite in torque-free motion.
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so that Eq. (12.2) can be written as

_θ ¼ωn¼� A�Bð Þωxωy

HGk ksinθ (12.3)

From this, we see that the nutation rate _θ vanishes only if A ¼ B. If A 6¼ B, the nutation angle θ will not
in general be constant.

Relative to the body frame, Eq. (12.1) is written (cf. Eq. 1.56) as

_HG

�
rel
+ω�HG¼ 0

This is the Euler equation with MG)net ¼ 0, and its components are given by Eq. (11.72b),

A _ωx + C�Bð Þωzωy¼ 0

B _ωy + A�Cð Þωxωz¼ 0

C _ωz + B�Að Þωyωx¼ 0

(12.4)

In the interest of simplicity, let us consider the special case illustrated in Fig. 12.1 (namely, that in

which the z axis is an axis of rotational symmetry), so that A ¼ B. Then Eq. (12.4) may be written

A _ωx + C�Að Þωyωz¼ 0

A _ωy + A�Cð Þωzωx¼ 0

C _ωz¼ 0

(12.5)

From Eq. (12.53) we see that the body frame z component of the angular velocity is constant.

ωz¼ωo constantð Þ (12.6)

The assumption of rotational symmetry therefore reduces the three differential equations in Eq. (12.4)

to just the first two in Eq. (12.5). Substituting Eq. (12.6) into Eqs. (12.51) and (12.52) and introducing

the notation

λ¼A�C

A
ωo (12.7)

they can be written as

_ωx�λωy¼ 0

_ωy + λωx¼ 0
(12.8)

Note that the sign of λ depends on the relative values of the principal moments of inertia A and C.
To reduce Eq. (12.8) in ωx and ωy to just one equation in ωx, we first differentiate Eq. (12.81) with

respect to time to get

€ωx�λ _ωy¼ 0 (12.9)

We then solve Eq. (12.82) for _ωy and substitute the result into Eq. (12.9), which leads to

€ωx + λ
2ωx¼ 0 (12.10)

The solution of this well-known differential equation is

ωx¼ωxy sin λt (12.11)
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where the constant amplitude ωxy (ωxy 6¼ 0) has yet to be determined. (Without loss of generality, we

have set the phase angle, the other constant of integration, equal to zero.) Substituting Eq. (12.11) back

into Eq. (12.81) yields the solution for ωy,

ωy¼ 1

λ

dωx

dt
¼ 1

λ

d

dt
ωxy sin λt
� �

or

ωy¼ωxy cos λt (12.12)

Eqs. (12.6), (12.11), and (12.12) give the components of the absolute angular velocity vector ω
along the three principal body axes,

ω¼ωxy sin λt̂i+ωxy cos λt̂j +ωok̂

or

ω¼ω? +ωok̂ (12.13)

where

ω? ¼ωxy sin λt̂i+ cos λt̂j
� �

(12.14)

ω? (omega-perp) is the component of ω normal to the z axis. It sweeps out a circle of radius ωxy in

the xy plane at an angular velocity λ. Thus, ω sweeps out a cone, as illustrated in Fig. 12.2.

If ωo is positive, then the body has an inertial counterclockwise rotation around the positive

z axis (λ > 0) if A > C. However, an observer fixed in the body would see the world rotating in the

opposite direction, clockwise around positive z, as the figure shows. Of course, the situation is reversed
if A < C.
x

y

z

xy

Cone swept out by ω
in the body frame

o k̂

t

ω

ω

γ

λw⊥

w

FIG. 12.2

Components of the angular velocity ω in the body frame.
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From Eq. (11.116), the three Euler orientation angles (and their rates) are related to the body frame

angular velocity components ωx, ωy, and ωz by

ωp¼ _ϕ¼ 1

sin θ
ωx sinψ +ωy cosψ
� �

ωn¼ _θ ¼ωx cosψ�ωy sinψ

ωs¼ _ψ ¼� 1

tan θ
ωx sinψ +ωy cosψ
� �

+ωz

Substituting Eqs. (12.6), (12.11), and (12.12) into these three equations yields

ωp¼ ωxy

sin θ
cos λt�ψð Þ

ωn¼ωxy sin λt�ψð Þ
ωs¼ωo� ωxy

tan θ
cos λt�ψð Þ

(12.15)

Since A ¼ B, we know from Eq. (12.3) that ωn ¼ 0. It follows from Eq. (12.152) that

ψ ¼ λt (12.16)

(Actually, λt � ψ ¼ nπ, n ¼ 0, 1, 2, …. We can set n ¼ 0 without loss of generality.) Substituting

Eq. (12.16) into Eqs. (12.151) and (12.153) yields

ωp¼ ωxy

sin θ
(12.17)

and

ωs¼ωo� ωxy

tan θ
(12.18)

We have thus obtained the Euler angle rates ωp and ωs in terms of the components of the angular ve-

locity ω in the body frame.

Differentiating Eq. (12.16) with respect to time shows that

λ¼ _ψ ¼ωs (12.19)

That is, the rate λ at which ω rotates around the body’s z axis equals the spin rate. Substituting the spin
rate for λ in Eq. (12.7) shows that ωs is related to ωo alone,

ωs¼A�C

A
ωo (12.20)

Observe that ωs and ωo are opposite in sign if A < C.
Eliminating ωs from Eqs. (12.18) and (12.20) yields the relationship between the magnitudes of the

orthogonal components of the angular velocity in Eq. (12.13),

ωxy¼C

A
ωo tan θ (12.21)

A similar relationship exists between ωp and ωs, which generally are not orthogonal. Substitute
Eq. (12.21) into Eq. (12.17) to obtain

ωo¼ A

C
ωp cos θ (12.22)
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Placing this result in Eq. (12.20) leaves an expression involving only ωp and ωs, from which we get a

useful formula relating the precession of a torque-free body to its spin,

ωp¼ C

A�C

ωs

cos θ
(12.23)

Observe that if A > C (i.e., the body is prolate, like a soup can or an American football), thenωp has the

same sign as ωs, which means the precession is prograde. For an oblate body (like a tuna fish can or a

frisbee), A < C and the precession is retrograde.

The components of angular momentum along the body frame axes are obtained from the body frame

components of ω,

HG¼Aωx̂i+Aωy ĵ+Cωzk̂

or

HG¼H? +Cωok̂ (12.24)

where

H? ¼Aωxy sinωst̂i+ cosωst̂j
� �

¼Aω? (12.25)

Since ωok̂ and Cωok̂ are collinear, as are ω? and Aω?, it follows that k̂, ω, and HG all lie on the same

plane.HG andω both rotate around the z axis at the same rateωs. These details are illustrated in Fig. 12.3.

See how the precession and spin angular velocities, ωp and ωs, add up vectorially to give ω. Note also
that from the point of view of inertial space, whereHG is fixed, ω and k̂ rotate aroundHG with angular

velocity ωp.
FIG. 12.3

Angular velocity and angular momentum vectors in the body frame (A > C).



FIG. 12.4

Space and body cones for a rotationally symmetric body in torque-free motion. (a) Prolate body and

(b) oblate body.
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Let γ be the angle between the angular velocity vector ω and the spin axis z, as shown in Figs. 12.2
and 12.3. γ is sometimes referred to as the wobble angle. From the figures, it is clear that tan γ ¼ ωxy/ω0

and tanθ ¼ Aωxy/Cω0. It follows that

tan θ¼ A

C
tan γ (12.26)

From this, we conclude that if A > C, then γ < θ, whereas C > A means γ > θ. That is, the angular

velocity vector ω lies between the z axis and the angular momentum vector HG when A > C (prolate

body). On the other hand, when C > A (oblate body), HG lies between the z axis and ω. These two

situations are illustrated in Fig. 12.4, which also shows the body cone and space cone. The space cone

is swept out in inertial space by the angular velocity vector as it rotates with angular velocity ωp around

HG, whereas the body cone is the trace of ω in the body frame as it rotates with angular velocity ωs

about the z axis. From inertial space, the motion may be visualized as the body cone rolling on the space

cone, with the line of contact being the angular velocity vector. From the body frame, it appears as

though the space cone rolls on the body cone. Fig. 12.4 graphically confirms our deduction from

Eq. (12.23) (namely, that precession and spin are in the same direction for prolate bodies and opposite

in direction for oblate shapes).

Finally, we know from Eqs. (12.24) and (12.25) that the magnitude kHGk of the angular momentum

is

HGk k¼HG¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ωxy

2 +C2ωo
2

q
Using Eqs. (12.17) and (12.22), we can write this as

HG¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 ωp sin θ
� �2

+C2
A

C
ωp cos θ

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ωp sin2θ + cos2θð Þ

q
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so that we obtain a surprisingly simple formula for the magnitude of the angular momentum in torque-

free motion,

HG¼Aωp (12.27)
EXAMPLE 12.1
The cylindrical shell in Fig. 12.5 is rotating in torque-freemotion about its longitudinal axis. If the axis is wobbling slightly,

determine the ratios of l/r for which the precession will be prograde or retrograde.

Solution
Fig. 11.10 shows the moments of inertia of a thin-walled circular cylinder,

C¼mr2 A¼ 1

2
mr2 +

1

12
ml2

According to Eq. (12.23) and Fig. 12.4, direct or prograde precession exists if A > C. That is, if

1

2
mr2 +

1

12
ml2 >mr2

or

1

12
ml2 >

1

2
mr2

Thus,

l> 2:45r ) Direct precession

l< 2:45r ) Rectrograde precession
FIG. 12.5
Cylindrical shell in torque-free motion.
EXAMPLE 12.2
In the previous example, let r ¼ 1 m, l ¼ 3 m, m ¼ 100 kg, and let the nutation angle θ be 20°. How long does it take the

cylinder to precess through 180° if the spin rate is 2π rad/min?
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Solution
Since l > 2.45r, the precession is direct. Furthermore,

C¼mr2 ¼ 100 � 12 ¼ 100 kg �m2

A¼ 1

2
mr2 +

1

12
ml2 ¼ 1

2
� 100 � 12 + 1

12
100 � 32¼ 125 kg �m2

Thus, Eq. (12.23) yields

ωp¼ C

A�C

ωs

cos θ
¼ 100

125�100

2π

cos 20°
¼ 26:75 rad=min

At this rate, the time for the spin axis to precess through an angle of 180° is

t¼ π
ωp
¼ 0:1175 min
EXAMPLE 12.3
What is the torque-free motion of a spacecraft for which A ¼ B ¼ C?

Solution
If A ¼ B ¼ C, the spacecraft is spherically symmetric. Any orthogonal triad at the center of mass G is a principal body

frame, so HG and ω are collinear,

HG¼Cω

Substituting this and MG)net ¼ 0 into the Euler equations (Eq. 11.72) yields

C
dω
dt

+ω� Cωð Þ¼ 0

That is, ω is constant. The angular velocity vector of a spherically symmetric spacecraft in torque-free motion is fixed in

magnitude and direction. We considered this problem in more detail in Example 11.25.
EXAMPLE 12.4
The inertial components of the angular momentum of a torque-free rigid body are

HG¼ 320Î�375Ĵ+ 450K̂ kg �m2=s
� �

(a)

The Euler angles are

ϕ¼ 20° θ¼ 50° ψ ¼ 75° (b)

If the inertia tensor in the body-fixed principal frame is

IG½ � ¼
1000 0 0

0 2000 0

0 0 3000

24 35 kg �m2
� �

(c)

calculate the inertial components of the (absolute) angular acceleration.

Solution
Substituting the Euler angles from Eq. (b) into Eq. (11.104), we obtain the direction cosine matrix of the transformation

from the inertial frame to the body-fixed frame,
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Q½ �Xx¼
0:03086 0:6720 0:7399
�0:9646 �0:1740 0:1983
0:2620 �0:7198 0:6428

24 35 (d)

We use this to obtain the components of HG in the body frame,

HGf gx¼ Q½ �Xx HGf gX ¼
0:03086 0:6720 0:7399

�0:9646 �0:1740 0:1983

0:2620 �0:7198 0:6428

264
375 320

�375
450

8><>:
9>=>;

¼
90:86

�154:2
643:0

8><>:
9>=>; kg �m2=s
� � (e)

In the body frame {HG}x ¼ [IG]{ω}x, where {ω}x comprises the components of angular velocity in the body frame. Thus,

90:86
�154:2
643:0

8<:
9=;¼

1000 0 0

0 2000 0

0 0 3000

24 35 ωf gx

or, solving for {ω}x,

ωf gx¼
1000 0 0

0 2000 0

0 0 3000

24 35�1 90:86
�154:2
643:0

8<:
9=;¼

0:09086
�0:07709
0:2144

8<:
9=; rad=sð Þ (f)

Euler’s equations of motion (Eq. 11.72a) may be written for the case at hand as

IG½ � αf gx + ωf gx� IG½ � ωf gx
� �¼ 0f g (g)

where {α}x is the absolute acceleration in body frame components. Substituting Eqs. (c) and (f) into this expression, we get

1000 0 0

0 2000 0

0 0 3000

24 35 αf gx +
0:09086
�0:07709
0:2144

8<:
9=;�

1000 0 0

0 2000 0

0 0 3000

24 35 0:09086
�0:07709
0:2144

8<:
9=;

0@ 1A¼ 0

0

0

8<:
9=;

1000 0 0

0 2000 0

0 0 3000

24 35 αf gx +
�16:52
�38:95
�7:005

8<:
9=;¼

0

0

0

8<:
9=;

so that, finally,

αf gx¼�
1000 0 0

0 2000 0

0 0 3000

24 35�1 �16:52
�38:95
�7:005

8<:
9=;¼

0:01652
0:01948
0:002335

8<:
9=; rad=s2
� �

(h)

These are the components of the angular acceleration in the body frame (xyz). To transform them into the inertial frame

(XYZ) we use

αf gX ¼ Q½ �xX αf gx ¼ Q½ �Xx
� �T αf gx

¼
0:03086 �0:9646 0:2620

0:6720 �0:1740 �0:7198
0:7399 0:1983 0:6428

264
375 0:01652

0:01948

0:002335

8><>:
9>=>;¼

�0:01766
0:006033

0:01759

8><>:
9>=>; rad=s2
� �

That is,

α¼�0:01766̂i+ 0:006033̂j+ 0:01759k̂ rad=s2ð Þ
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12.3 STABILITY OF TORQUE-FREE MOTION
Let a rigid body be in torque-free motion with its angular velocity vector directed along the principal

body z axis, so that ω¼ωok̂, where ωo is constant. The nutation angle is zero, and there is no preces-

sion. Let us perturb the motion slightly, as illustrated in Fig. 12.6, so that

ωx¼ δωx ωy¼ δωy ωz¼ωo + δωz (12.28)

As in Chapter 7, δmeans a very small quantity. In this case, δωx ≪ ωo and δωy ≪ ωo. Thus, the angular

velocity vector has become slightly inclined to the z axis. For torque-free motion,

MG)x ¼MG)y ¼ MG)z ¼ 0, so that the Euler equations (Eq. 11.72b) are

A _ωx + C�Bð Þωyωz¼ 0

B _ωy + A�Cð Þωxωz¼ 0

C _ωz + B�Að Þωxωy¼ 0

(12.29)

Observe that we have not assumed A ¼ B, as we did in the previous section. Substituting Eq. (12.28)

into Eq. (12.29) and keeping in mind our assumption that _ωο¼ 0, we get

Aδ _ωx + C�Bð Þωoδωy + C�Bð Þδωyδωz¼ 0

Bδ _ωy + A�Cð Þωoδωx + C�Bð Þδωxδωz¼ 0

Cδ _ωz + B�Að Þδωxδωy¼ 0

(12.30)

Neglecting all the products of the δωs (because they are arbitrarily small), Eq. 12.30 becomes

Aδ _ωx + C�Bð Þωoδωy¼ 0

Bδ _ωy + A�Cð Þωoδωx¼ 0

Cδ _ωz¼ 0

(12.31)

Eq. (12.313) implies that δωz is constant.
FIG. 12.6

Principal body axes of a rigid body rotating primarily about the body z axis.
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Differentiating Eq. (12.311) with respect to time, we get

Aδ €ωx + C�Bð Þωoδ _ωy¼ 0 (12.32)

Solving Eq. (12.312) for δ _ωy yields δ _ωy¼� A�Cð Þ=B½ �ωoδωx, and substituting this into Eq. (12.32)

gives

δ €ωx� A�Cð Þ C�Bð Þ
AB

ω2
oδωx¼ 0 (12.33)

Likewise, differentiating Eq. (12.312) and then substituting δ _ωx from Eq. (12.311) yields

δ €ωy� A�Cð Þ C�Bð Þ
AB

ω2
oδωy¼ 0 (12.34)

If we define

k¼ A�Cð Þ B�Cð Þ
AB

ω2
o (12.35)

then both Eqs. (12.33) and (12.34) may be written in the form

δ €ω + kδω¼ 0 (12.36)

If k > 0, then δω¼ c1e
i
ffiffiffi
kt
p

+ c2e
�i ffiffiffiktp , which means δωx and δωy vary sinusoidally with small am-

plitude. The motion is therefore bounded and neutrally stable. That means the amplitude does not die

out with time, but it does not exceed the small amplitude of the perturbation. Observe from Eq. (12.35)

that k > 0 if C is larger than both A and B or if C is smaller than both A and B. This means that the spin

axis (z axis) is either the major axis of inertia or the minor axis of inertia. That is, if the spin axis is either

the major or minor axis of inertia, the motion is stable. The stability is neutral for a rigid body, because

there is no damping.

On the other hand, if k < 0, then δω¼ c1e
ffiffiffi
kt
p

+ c2e
� ffiffiffiktp , which means that the initially small pertur-

bations δωx and δωy increase without bound. The motion is unstable. From Eq. (12.35) we see that

k < 0 if either A > C > B orA < C < B. This means that the spin axis is the intermediate axis of inertia.

If the spin axis is the intermediate axis of inertia, the motion is unstable.
EXAMPLE 12.5
A homogeneous, box-shaped satellite in torque-free motion has mass moments of inertia A ¼ 1000 kg �m2,

B ¼ 300 kg �m2, and C ¼ 800 kg �m2, relative to its body-fixed principal xyz axes. The angular velocity relative to the

body-fixed frame is

ω¼ 1:0k̂+ωxy rad=sð Þ (a)

where ωxy¼ î+ ĵ
� �

10�8
� �

. Therefore, the spacecraft is an intermediate-axis spinner with an extremely small (essentially

zero) transverse component of angular velocity. Solve the Euler equations to verify that the transverse perturbations will

grow in time, so that the motion of Eq. (a) is unstable (Fig. 12.7).

Solution
First note that according to Eq. (11.67), the angular momentum vector starts out as

HG¼Cωzk̂¼ 800k̂ kg �m2=s



FIG. 12.7

Spacecraft as an intermediate axis spinner.
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if we neglect ωxy. Because the net external moment is zero, HG must remain constant and aligned with the inertial z di-

rection. The development of a significant transverse component of angular velocity will result in the spin axis (the z axis)

precessing around HG, as shown in Fig. 12.4.

The Euler equations (Eq. 12.4) for this case are

_ωx¼B�C

A
ωyωz¼�0:5000ωyωz _ωy¼�0:6667ωzωx _ωz¼ 0:8750ωxωy (b)

We use the methods of Section 1.8 to numerically integrate this set of coupled, nonlinear, ordinary differential equations.

To obtain Eq. (1.95), we set y1 ¼ ωx, y2 ¼ ωy, and y3 ¼ ωz, and write the system (b) as _y ¼ f yð Þ, where

y¼
y1
y2
y3

8<:
9=; f yð Þ¼

�0:5000y2y3
�0:6667y3y1
0:875y1y2

8<:
9=; (c)

Observe that the time t does not appear explicitly here. The initial conditions are

y0 ¼ 10�8
� �

10�8
� �

1:0
	 
T

(d)

The following MATLAB code integrates Eq. (b) over a 450-s time interval and plots the results.

y0 = [1.e-8; 1.e-8; 1.0000]; % Set the initial conditions
tspan = linspace(0,450,1000); % Set the solution time interval
[t,y] = ode45(@f, tspan, w0); % Integrate the equations dydt in ’f’ below
figure(’color’,’w’)
%...Plot the angular velocity histories:
subplot(2,1,1)
plot(t,y(:,3)); grid on; axis([0 450 -1.2 1.2])
xlabel(’time (s)’)
ylabel(’\omega_z (rad/s)’)

subplot(2,1,2)
plot(t,sqrt(y(:,1). 2̂ + y(:,2). 2̂)); grid on; axis([0 450 -0.2 1.2])
xlabel(’time (s)’)
ylabel(’\omega_{xy} (rad/s)’)



FIG. 12.8

Histories of the axial (upper) and transverse (lower) components of angular velocity for the spinning body in

Fig. 12.7.
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%�������������������������
function dydt = f(t,y)
%––––––––––––––––––––––––––––––––
%...Angular velocities in:
wx = y(1); wy = y(2); wz = y(3);

%...Angular accelerations out:
wx_dot = -0.5000*wy*wz;
wy_dot = -0.6667*wz*wx;
wz_dot = 0.8750*wx*wy;
dydt = [wx_dot; wy_dot; wz_dot];

end %f
The variations of ωz and the transverse component ωxy¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωx

2 +ωy
2

p
are shown in Fig. 12.8. Clearly, the spin is not

asymptotically stable since ωz is not constant but changes sign about once every 43 s. That means the body and its

embedded spin axis periodically reverse their spatial orientation, as illustrated in Fig. 12.9. Likewise, the amplitude of

the transverse angular velocity rises from zero to over 1 rad/s during the time when the body flips upside down. The com-

plex transitional motion is dictated by the fact that the angular momentum vector must retain its original orientation in

inertial space.



64712.3 STABILITY OF TORQUE-FREE MOTION
FIG. 12.9

The two semistable states of spin of the body in Fig. 12.7.
If the angular velocity vector of a satellite lies in the direction of its major axis of inertia, the

satellite is called a major-axis spinner or oblate spinner. A minor-axis spinner or prolate spinner

has its minor axis of inertia aligned with the angular velocity vector. Intermediate-axis spinners

are unstable, causing a continual 180° reorientation of the spin axis, if the satellite is a rigid body.

However, the flexibility inherent in any real satellite leads to an additional instability, as we shall

now see.

Consider again the rotationally symmetric satellite in torque-free motion discussed in Section 12.2.

From Eqs. (12.24) and (12.25), we know that angular momentum HG is given by

HG¼Aω? +Cωzk̂ (12.37)

Hence,

HG
2¼A2ω?2 +C2ωz

2 ω? ¼ωxy

� �
(12.38)

Differentiating this equation with respect to time yields

dHG
2

dt
¼A2 dω?

2

dt
+ 2C2ωz _ωz (12.39)

But, according to Eq. (12.1), HG is constant, so that dHG
2 /dt ¼ 0 and Eq. (12.39) can be written

dω?2

dt
¼�2C

2

A2
ωz _ωz (12.40)

The rotary kinetic energy of a rotationally symmetric body (A ¼ B) is found using Eq. (11.81),

TR¼ 1

2
Aωx

2 +
1

2
Aωy

2 +
1

2
Cωz

2¼ 1

2
A ωx

2 +ωy
2

� �
+
1

2
Cωz

2

From Eq. (12.13), we know that ωx
2 +ωy

2¼ω?2, which means

TR¼ 1

2
Aω?2 +

1

2
Cωz

2 (12.41)
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The time derivative of TR is, therefore,

_TR¼ 1

2
A
dω?2

dt
+Cωz _ωz

Solving this for _ωz, we get

_ωz¼ 1

Cωz

_TR�1

2
A
dω?2

dt

� �
Substituting this expression for _ωz into Eq. (12.40) and solving for dω?2=dt yields

dω?2

dt
¼ 2

C

A

_TR

C�A
(12.42)

Real bodies are not completely rigid, and their flexibility, however slight, gives rise to small dissipative

effects, which cause the kinetic energy to decrease over time. That is,

_TR < 0 For spacecraft with dissipation (12.43)

Substituting this inequality into Eq. (12.42) leads us to conclude that

dω?2

dt
< 0 if C>A oblate spinnerð Þ

dω?2

dt
> 0 if C<A prolate spinnerð Þ

(12.44)

If dω?2=dt is negative, the spin is asymptotically stable. Should a nonzero value of ω? develop for

some reason, it will drift back to zero over time, so that once again the angular velocity lies completely

in the spin direction. On the other hand, if dω?2=dt is positive, the spin is unstable. ω? does not damp

out, and the angular velocity vector drifts away from the spin axis as ω? increases without bound. We

pointed out above that spin about a minor axis of inertia is stable with respect to small disturbances.

Now we see that only major-axis spin is stable in the long run if dissipative mechanisms exist.

For some additional insight into this phenomenon, solve Eq. (12.38) for ω?2,

ω?2¼HG
2�C2ωz

2

A2

and substitute this result into the expression for kinetic energy (Eq. 12.41) to obtain

TR¼ 1

2

HG
2

A
+
1

2

A�Cð ÞC
A

ωz
2 (12.45)

According to Eq. (12.24),

ωz¼HGÞz
C
¼HG cos θ

C

Substituting this into Eq. (12.45) yields the kinetic energy as a function of just the inclination angle θ,

TR¼ 1

2

HG
2

A
1 +

A�C

C
cos2θ

� �
(12.46)

The extreme values of TR occur at θ ¼ 0 or θ ¼ π,

TR¼ 1

2

HG
2

C
major axis spinnerð Þ
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and θ ¼ π/2,

TR¼ 1

2

HG
2

A
minor axis spinnerð Þ

Clearly, the kinetic energy of a torque-free satellite is smallest when the spin is around the major axis of

inertia. We may think of a satellite with dissipation (dTR/dt < 0) as seeking the state of minimum ki-

netic energy, which occurs when it spins about its major axis.
EXAMPLE 12.6
A rigid spacecraft is modeled by the solid cylinder B, which has a mass of 300 kg, and the slender rod R, which passes

through the cylinder and has a mass of 30 kg. Which of the principal axes x, y, and z can be an axis about which stable

torque-free rotation can occur (Fig. 12.10)?

Solution
For the solid cylinder B, we have

rB¼ 0:5 m lB ¼ 1:0 m mB ¼ 300 kg

The principle moments of inertia about the center of mass are found in Fig. 11.10a,

IBÞx ¼
1

4
mBrB

2 +
1

12
mBlB

2 ¼ 43:75 kg �m2

IBÞy ¼ IBÞx¼ 43:75 kg �m2

IBÞz¼
1

2
mBr

2
B ¼ 37:5 kg �m2

The properties of the transverse slender rod are

lR¼ 1:0 m mR ¼ 30 kg

Fig. 11.10a, with r ¼ 0, yields the moments of inertia,

IRÞy¼ 0
FIG. 12.10

Built-up satellite structure.
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IRÞz¼ IRÞx¼
1

12
mAr

2
A¼ 10:0 kg �m2

The moments of inertia of the assembly is the sum of the moments of inertia of the cylinder and the rod,

Ix¼ IBÞx + IRÞx¼ 53:75 kg �m2

Iy¼ IBÞy + IRÞy¼ 43:75 kg �m2

Iz¼ IBÞz + IRÞz¼ 47:50 kg �m2

Since Iz is clearly the intermediate mass moment of inertia, rotation about the z axis is unstable. With energy dissipation,

rotation is stable in the long term only about the major axis, which in this case is the x axis.
12.4 DUAL-SPIN SPACECRAFT
If a satellite is to be spin-stabilized, it must be an oblate spinner. The diameter of the spacecraft is re-

stricted by the cross-section of the launch vehicle’s upper stage, and its length is limited by stability

requirements. Therefore, oblate spinners cannot take full advantage of the payload volume available in

a given launch vehicle, which after all are slender, prolate shapes for aerodynamic reasons. The dual-

spin design permits spin stabilization of a prolate shape.

The axisymmetric, dual-spin configuration, or gyrostat, consists of an axisymmetric rotor and a

smaller axisymmetric platform joined together along a common longitudinal spin axis at a bearing,

as shown in Fig. 12.11. The platform and rotor have their own components of angular velocity, ωp

and ωr, respectively, along the spin axis direction k̂. The platform spins at a much slower rate than

the rotor. The assembly acts like a rigid body as far as transverse rotations are concerned (i.e., the rotor

and the platform have the transverse angular velocityω? in common). An electric motor integrated into

the axle bearing connecting the two components acts to overcome frictional torque that would other-

wise eventually cause the relative angular velocity between the rotor and platform to go to zero. If that
. 12.11

isymmetric, dual-spin spacecraft.
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should happen, the satellite would become a single-spin unit, probably an unstable prolate spinner,

since the rotor of a dual-spin spacecraft is likely to be prolate.

The first dual-spin satellite was OSO-I (Orbiting Solar Observatory), which NASA launched in

1962. It was a major-axis spinner. The first prolate dual-spin spacecraft was the two-story-tall TAC-

SAT I (Tactical Communications Satellite). It was launched into geosynchronous orbit by the US Air

Force in 1969. Typical of many of today’s communications satellites, TACSAT’s platform rotated at

1 rev/day to keep its antennas pointing toward the earth. The rotor spun at about 1 rev/s. Of course, the

axis of the spacecraft was normal to the plane of its orbit. The first dual-spin interplanetary spacecraft

was Galileo, which we discussed briefly in Section 8.9. Galileo’s platform was completely despun to

provide a fixed orientation for cameras and other instruments. The rotor spun at 3 rpm.

The equations of motion of a dual-spin spacecraft will be developed later on in Section 12.9. Let us

determine the stability of the motion by following the same “energy sink” procedure employed in the

previous section for a single-spin-stabilized spacecraft. The angular momentum of the dual-spin con-

figuration about the spacecraft center of mass G is the sum of the angular momenta of the rotor (r) and
the platform (p) about G,

HG¼H
pð Þ
G +H

rð Þ
G (12.47)

The angular momentum of the platform about the spacecraft center of mass is

H
pð Þ
G ¼Cpωpk̂ +Apω? (12.48)

where Cp is the moment of inertia of the platform about the spacecraft spin axis, and Ap is its transverse

moment of inertia about G (not Gp). Likewise, for the rotor,

H
rð Þ
G ¼Crωrk̂ +Arω? (12.49)

where Cr and Ar are its longitudinal and transverse moments of inertia about axes throughG. Substitut-
ing Eqs. (12.48) and (12.49) into Eq. (12.47) yields

HG¼ Crωr +Cpωp

� �
k̂+A?ω? (12.50)

where A? is the total transverse moment of inertia,

A? ¼Ap +Ar

From this, it follows that

H2
G¼ Crωr +Cpωp

� �2
+A?2ω?2

For torque-free motion, _HG¼ 0, so that dHG
2 /dt ¼ 0, or

2 Crωr +Cpωp

� �
Cr _ωr +Cp _ωp

� �
+A?2

dω?2

dt
¼ 0 (12.51)

Solving this for dω?2=dt yields
dω?2

dt
¼� 2

A?2
Crωr +Cpωp

� �
Cr _ωr +Cp _ωp

� �
(12.52)

The total rotational kinetic energy T of the dual-spin spacecraft is that of the rotor plus that of the

platform,

T¼ 1

2
Crωr

2 +
1

2
Cpωp

2 +
1

2
A?ω?2
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Differentiating this expression with respect to time and solving for dω?2=dt yields

dω?2

dt
¼ 2

A?
_T �Crωr _ωr�Cpωp _ωp

� �
(12.53)

where _T is the sum of the power P(r) dissipated in the rotor and the power P(p) dissipated in the platform,

_T ¼P rð Þ +P pð Þ (12.54)

Substituting Eq. (12.54) into Eq. (12.53) we find

dω?2

dt
¼ 2

A?
P rð Þ �Crωr _ωr +P

pð Þ �Cpωp _ωp

� �
(12.55)

Equating the two expressions for dω?2=dt in Eqs. (12.52) and (12.55) yields

2

A?
_T �Crωr _ωr�Cpωp _ωp

� �¼� 2

A?2
Crωr +Cpωp

� �
Cr _ωr +Cp _ωp

� �
Solve this for _T to obtain

_T ¼ Cr

A?
A?�Crð Þωr�Cpωp

� �
_ωr +

Cp

A?
A?�Cp

� �
ωp�Crωr

� �
_ωp (12.56)

Following Likins (1967), we identify the terms containing _ωr and _ωp as the power dissipation in the

rotor and platform, respectively. That is, comparing Eqs. (12.54) and (12.56),

P rð Þ ¼ Cr

A?
A?�Crð Þωr�Cpωp

� �
_ωr (12.57a)

P pð Þ ¼ Cp

A?
A?�Cp

� �
ωp�Crωr

� �
_ωp (12.57b)

Solving these two expressions for _ωr and _ωp, respectively, yields

_ωr ¼A?
Cr

P rð Þ

A?�Crð Þωr�Cpωp
(12.58a)

_ωp¼A?
Cp

P pð Þ

A?�Cp

� �
ωp�Crωr

(12.58b)

Substituting these results into Eq. (12.55) leads to

dω?2

dt
¼ 2

A?

P rð Þ

Cp
ωp

ωr
� A?�Crð Þ

+
P pð Þ

Cr� A?�Cp

� �ωp

ωr

264
375 Cr +Cp

ωp

ωr

� �
(12.59)

As pointed out above, for geosynchronous dual-spin communication satellites,

ωp

ωr
� 2π rad=day

2π rad=s
� 10�5

whereas for interplanetary dual-spin spacecraft, ωp ¼ 0. Therefore, there is an important class of spin-

stabilized spacecraft for which ωp/ωr � 0. For a despun platform wherein ωp is zero (or nearly so),

Eq. (12.59) yields
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dω?2

dt
¼ 2

A?
P pð Þ +

Cr

Cr�A?
P rð Þ

 �
(12.60)

If the rotor is oblate (Cr > A?), then, since P
(r) and P(p) are both negative, it follows from Eq. (12.60)

that dω?2=dt< 0. That is, the oblate dual-spin configuration with a despun platform is unconditionally

stable. In practice, however, the rotor is likely to be prolate (Cr < A?), so that

Cr

Cr�A?
P rð Þ> 0

In that case, dω?2=dt< 0 only if the dissipation P(p) in the platform is significantly greater than that of

the rotor. Specifically, for a prolate design, it must be true that

P pð Þ�� ��> Cr

Cr�A?
P rð Þ

���� ����
The platform dissipation rate P(p) can be augmented by adding nutation dampers, which are discussed

in the next section.

For the despun prolate dual-spin configuration, Eqs. (12.58) imply

_ωr ¼ P rð Þ

A?�Crð Þ
A?
Crωr

_ωp¼�P
pð Þ

Cp

A?
Crωr

Clearly, the signs of _ωr and _ωp are opposite. If ωr > 0, then dissipation causes the spin rate of the rotor

to decrease and that of the platform to increase. Were it not for the action of the motor on the shaft

connecting the two components of the spacecraft, eventually ωp ¼ ωr. That is, the relative motion be-

tween the platform and rotor would cease and the dual-spinner would become an unstable single-spin

spacecraft. Setting ωp ¼ ωr in Eq. (12.59) yields

dω?2

dt
¼ 2

Cr +Cp

A?

P rð Þ +P pð Þ

Cr +Cp

� ��A?

which is the same as Eq. (12.42), the energy sink conclusion for a single-spinner.
12.5 NUTATION DAMPER
Nutation dampers are passive means of dissipating energy. A common type consists essentially of a tube

filled with viscous fluid and containing a mass attached to springs, as illustrated in Fig. 12.12. Dampers

may contain just fluid, only partially filling the tube so that it can slosh around. In either case, the purpose

is to dissipate energy through fluid friction. The wobbling of the spacecraft due to nonalignment of the

angular velocity with the principal spin axis induces accelerations throughout the satellite, giving rise to

the sloshing of fluids and the, stretching and flexing of nonrigid components, etc., all of which dissipate

energy to one degree or another. Nutation dampers are added to deliberately increase energy dissipation,

which is desirable for stabilizing oblate single-spinners and dual-spin spacecraft (Fig. 12.12).

Let us focus on the motion of the mass within the nutation damper of Fig. 12.12 to gain some insight

into how relative motion and deformation are induced by the satellite’s precession. Note that point P is

the center of mass of the rigid satellite body itself. The center of mass G of the satellite-damper mass

combination lies between P and m, as shown in Fig. 12.9. We suppose that the tube is lined up with the



FIG. 12.12

(a) Precessing oblate spacecraft with a nutation damper aligned with the z axis. (b) Free-body diagram of the

moving mass in the nutation damper.
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z axis of the body-fixed xyz frame, as shown. The massm in the tube is therefore constrained by the tube

walls to move only in the z direction. When the springs are undeformed, the mass lies in the xy plane. In
general, the position vector of m in the body frame is

r¼ R̂i+ zmk̂ (12.61)

where zm is the z coordinate of m, and R is the distance of the damper from the centerline of the space-

craft. The velocity and acceleration of m relative to the satellite are, therefore,

vrel¼ _zmk̂ (12.62)

arel¼ €zmk̂ (12.63)

The absolute angular velocity ω of the satellite (and, therefore, of the body-fixed frame) is

ω¼ωx̂i+ωy ĵ+ωzk̂ (12.64)

Recall Eq. (11.73), which states that when ω is given in a body frame, we find the absolute angular

acceleration by taking the time derivative of ω, holding the unit vectors fixed. Thus,

_ω¼ _ω x̂i+ _ωy ĵ+ _ωzk̂ (12.65)

The absolute acceleration of m is found using Eq. (1.70), which for the case at hand becomes

a¼ aP + _ω�r+ω� ω�rð Þ + 2ω�vrel + arel (12.66)

where aP is the absolute acceleration of the reference point P. Substituting Eqs. (12.61)–(12.65) into
Eq. (12.66), carrying out the vector operations, combining terms, and simplifying leads to the following

expressions for the three components of the inertial acceleration of m,

ax¼ aPÞx�R ωy
2 +ωz

2
� �

+ zm _ωy + zmωxωz + 2 _zmωy

ay¼ aPÞy +R _ωz +Rωxωy� zm _ωx + zmωyωz�2 _zmωx

az¼ aPÞz� zm ωx
2 +ωy

2
� ��R _ωy +Rωxωz + €zm

(12.67)
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Fig. 12.9b shows the free body diagram of the damper massm. In the x and y directions, the forces onm
are the components of the force of gravity (Wx and Wy) and the components Nx and Ny of the force of

contact with the smooth walls of the damper tube. The directions assumed for these components are, of

course, arbitrary. In the z direction, we have the z component Wz of the weight, plus the force of the

springs and the viscous drag of the fluid. The spring force (�kzm) is directly proportional and opposite
in direction to the displacement zm. k is the net spring constant. Viscous drag �c _zmð Þ is directly pro-

portional and opposite in direction to the velocity _zm ofm relative to the tube. c is the damping constant.

Thus, the three components of the net force on the damper mass m are

FnetÞx¼Wx�Nx

FnetÞy¼Wy�Ny

FnetÞz¼Wz�kzm�c _zm

(12.68)

Substituting Eqs. (12.67) and (12.68) into Newton’s second law, Fnet ¼ ma, yields

Nx¼mR ωy
2 +ωz

2
� ��mzm _ωy�mzmωxωy�2m _zmωy + Wx�maPÞx

� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{¼0

Ny¼�mR _ωz�mRωxωy +mzm _ωx�mzmωyωz + 2m _zmωx + Wy�maPÞy
h izfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{¼0

m€zm + c _zm + k�m ωx
2 +ωy

2
� �� �

zm¼mR _ωy�ωxωz

� �
+ Wz�maPÞz
� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{¼0

(12.69)

The last terms in parentheses in each of these expressions vanish if the acceleration of gravity is the

same at m as at the reference point P of the spacecraft. This will be true unless the satellite is of

enormous size.

If the damper mass m is vanishingly small compared with the massM of the rigid spacecraft body,

then it will have little effect on the rotary motion. If the rotational state is that of an axisymmetric sat-

ellite in torque-free motion, then we know from Eqs. (12.13), (12.14), and (12.19) that

ωx¼ωxy sinωst ωy¼ωxy cosωst ωz¼ωo

_ωx¼ωxyωs cosωst _ωy¼�ωxyωs sinωst _ωz¼ 0

in which case Eq. (12.69) becomes

Nx¼mR ωo
2 +ωxy

2 cos2ωst
� �

+m ωs�ωoð Þωxyzm sinωst�2mωxy _zm cosωst
Ny¼�mRωxy

2 cosωst sinωst+m ωs�ωoð Þωxyzm cosωst+ 2mωxy _zm sinωst
m€zm + c _zm + k�mωxy

2
� �

zm¼�mR ωs +ωoð Þωxy sinωst
(12.70)

Eq. (12.703) is that of a single-degree-of-freedom, damped oscillator with a sinusoidal forcing function,

which was discussed in Section 1.8. The precession produces a force of amplitudem(ωo + ωs)ωxyR and

frequency ωs, which causes the damper mass m to oscillate back and forth in the tube such that (see the

steady-state part of Eq. 1.114a)

zm¼ mRωxy ωs +ωoð Þ
k�m ωs

2 +ωxy
2

� �� �2
cωsð Þ2

cωs cosωst� k�m ωs
2 +ωxy

2
� �

sinωst
� �� �
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Observe that the contact forces Nx and Ny depend exclusively on the amplitude and frequency of the

precession. If the angular velocity lines up with the spin axis, so thatωxy ¼ 0 (precession vanishes), then

Nx¼mωo
2R

Ny¼ 0 No precession

zm¼ 0

If precession is eliminated so that there is pure spin around the principal axis, then the time-varying

motions and forces vanish throughout the spacecraft, which thereafter rotates as a rigid body with

no energy dissipation.

Now, the whole purpose of a nutation damper is to interact with the rotational motion of the space-

craft so as to damp out any tendencies to precess. Therefore, its mass should not be ignored in the equa-

tions of motion of the spacecraft. We will derive the equations of motion of the rigid spacecraft with a

nutation damper to show how rigid bodymechanics is brought to bear upon the problem, and, simply, to

discover precisely what we are up against even in this extremely simplified system.We will continue to

use P as the origin of our body frame. Since a moving mass has been added to the rigid spacecraft and

since we are not using the center of mass of the system as our reference point, we cannot use the Euler

equations. Applicable to the case at hand is Eq. (11.33), according to which the equation of rotational

motion of the system of satellite plus damper is

_HP

�
rel
+ rG=P� M +mð ÞaP=G¼MGÞnet (12.71)

The angular momentum of the satellite body plus that of the damper mass, relative to point P on the

spacecraft, is

HPÞrel¼Aωx̂i+Bωy ĵ+Cωzk̂

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{body of the spacecraft

+ r�m _r
zfflfflffl}|fflfflffl{damper mass

(12.72)

where the position vector r is given by Eq. (12.61). According to Eq. (1.56),

_r¼ dr

dt

�
rel

+ω�r¼ _zmk̂ +
î ĵ k̂
ωx ωy ωz

R 0 z

������
������¼ωyzm î+ ωzR�ωxzmð Þ̂j+ _zm�ωyR

� �
k̂

After substituting this into Eq. (12.72) and collecting terms, we obtain

HPÞrel¼ A +mzm
2

� �
ωx�mRzmωz

� �̂
i+ B +mR2 +mzm

2
� �

ωy�mR _zm
� �̂

j

+ C +mR2
� �

ωz�mRzmωx

� �
k̂

(12.73)

To calculate _HP

�
rel

we again use Eq. (1.56),

_HP

�
rel
¼HPÞrel

dt

�
rel

+ω�HPÞrel

Substituting Eq. (12.73) and carrying out the operations on the right leads eventually to

_HP

�
rel
¼ A+mzm

2
� �

_ωx�mRzm _ωz + C�B�mzm
2

� �
ωyωz�mRzmωxωy + 2mzm _zmωx

� �̂
i

+ B+mR2 +mzm
2

� �
_ωy +mRzm ωx

2�ωz
2

� �
+ A +mzm

2� C +mR2
� �� �

ωxωz

�
+ 2mzm _zmωy�mR€zm

�
ĵ

+ �mRzm _ωx + C +mR2
� �

_ωz + B +mR2�A
� �

ωxωy +mRzmωyωz�2mR _zmωx

� �
k̂

(12.74)
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To calculate the second term on the left of Eq. (12.71), we keep in mind that P is the center of mass of

the body of the satellite and first determine the position vector of the center of mass G of the vehicle

plus damper relative to P,

M +mð ÞrG=P¼M �0 +mr (12.75)

where r, the position of the damper mass m relative to P, is given by Eq. (12.61). Thus,

rG=P¼ m

m+M
r¼ μr¼ μ R̂i+ zmk̂

� �
(12.76)

in which

μ¼ m

m+M
(12.77)

Thus,

rG=P� M +mð ÞaP=G¼ m

M +m

� �
r� M +mð ÞaP=G¼ r�maP=G (12.78)

The acceleration of P relative to G is found with the aid of Eq. (1.60),

aP=G¼�€rG=P¼�μd
2r

dt
¼�μ d2r

dt2

 �
rel

+ _ω�r+ω� ω�rð Þ+ 2ω�dr

dt

�
rel

�
(12.79)

where
dr

dt

�
rel

¼ dR

dt
î+

dzm
dt

k̂¼ _zmk̂ (12.80)

and

d2r

dt2

�
rel

¼ d2R

dt2
î+

d2zm
dt2

k̂¼ €zmk̂ (12.81)

Substituting Eqs. (12.61), (12.64), (12.65), (12.80), and (12.81) into Eq. (12.79) yields

aP=G¼ μ �zm _ωy +R ωy
2 +ωz

2
� �� zmωxωz�2 _zmωy

� �̂
i

+ μ zm _ωx�R _ωz�Rωxωy� zmωyωz + 2 _zmωx

� �̂
j

+ μ R _ωy + zm ωx
2 +ωy

2
� ��Rωxωz� €zm

� �
k̂

(12.82)

We move this expression into Eq. (12.78) to get

rG=P� M +mð ÞaP=G¼ μm �zm2 _ωx�2zm _zmωx +Rzm ωxωy + _ωz

� �
+ zm

2ωyωz

� �̂
i

+ μm � R2 + zm
2

� �
_ωy�2zm _zmωy +Rzm ωz

2�ωx
2

� �
+ R2� zm

2
� �

ωxωz +R€zm
� �̂

j

+ μm Rzm _ωx�R2 _ωz + 2R _zmωx�R2ωxωy�Rzmωyωz

� �
k̂

Placing this result and Eq. (12.74) in Eq. (12.71) and using the fact that MG)net ¼ 0 yields a vector

equation whose three components are

A _ωx + C�Bð Þωyωz + 1�μð Þm zm
2 _ωx�ωyωz

� ��Rzm _ωz +ωxωy

� �
+ 2zm _zmωx

� �¼ 0

B+mR2
� ��μmR2
� �

_ωy + A+ μmR2
� �� C+mR2

� �� �
ωxωz

+ 1�μð Þm zm
2 ωxωz + _ωy

� �
+ 2zm _zmωy�R€zm +Rzm ωx

2�ωz
2ð Þ� �¼ 0

C+mR2
� ��μmR2
� �

_ωz + B +mR2
� �� A+ μmR2

� �� �
ωxωy

+ 1�μð ÞmR zm ωyωz� _ωx

� ��2 _zmωx

� �¼ 0

(12.83)
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These are three equations in the four unknowns ωx, ωy, ωz, and zm. The fourth equation is that of the

motion of the damper mass m in the z direction,

Wz�kzm�c _zm¼maz (12.84)

where az is given by Eq. (12.673), in which aP)z ¼ aP)z � aG)z + aG)z ¼ aP/G)z + aG)z, so that

az¼ aP=G
�
z
+ aGÞz� zm ωx

2 +ωy
2

� ��R _ωy +Rωxωz + €zm (12.85)

Substituting the z component of Eq. (12.82) into this expression and that result into Eq. (12.84) leads

(with Wz ¼ maG)z) to

1�μð Þm€zm + c _zm + k� 1�μð Þm ωx
2 +ωy

2
� �� �

zm¼ 1�μð ÞmR _ωy�ωxωz

� �
(12.86)

Compare Eq. (12.693) with this expression, which is the fourth equation of motion we need.

Eqs. (12.83) and (12.86) are a rather complicated set of nonlinear, second-order differential equa-

tions that must be solved (numerically) to obtain a precise description of the motion of the semirigid

spacecraft. The procedures of Section 1.8 may be employed. To study the stability of Eqs. (12.83) and

(12.86), we can linearize them in much the same way as we did in Section 12.3. (Note that Eqs. 12.83

reduce to Eqs. 12.29 when m ¼ 0.) With that as our objective, we assume that the spacecraft is in pure

spin with angular velocity ωo about the z axis and that the damper mass is at rest (zm ¼ 0). This motion

is slightly perturbed, in such a way that

ωx¼ δωx ωy¼ δωy ωz¼ωo + δωz zm¼ δzm (12.87)

It will be convenient for this analysis to introduce operator notation for the time derivative, D ¼ d/dt.
Thus, given a function of time f(t), for any integer n, Dnf ¼ dnf/dtn and D0f(t) ¼ f(t). Then, the various
time derivatives throughout the equations will, in accordance with Eq. (12.87), be replaced as follows:

_ωx¼Dδωx _ωy¼Dδωy _ωz¼Dδωz _zm¼Dδzm €zm¼D2δzm (12.88)

Substituting Eqs. (12.87) and (12.88) into Eqs. (12.83) and (12.86) and retaining only those terms that

are at most linear in the small perturbations leads to

ADδωx + C�Bð Þωoδωy¼ 0

A�C� 1�μð ÞmR2
� �

ωoδωx + B+ 1�μð ÞmR2
� �

Dδωy� 1�μð ÞmR D2 +ωo
2ð Þδzm¼ 0

C + 1�μð ÞmR2
� �

Dδωz¼ 0

ADδωx + C�Bð Þωoδωy¼ 0

(12.89)

δωz appears only in the third equation, which states that δωz ¼ constant. The first, second, and fourth

equations may be combined in matrix notation,

AD C�Bð Þωo 0

A�C� 1�μð ÞmR2
� �

ωo B+ 1�μð ÞmR2
� �

D � 1�μð ÞmR D2 +ωo
2ð Þ

1�μð ÞmRωo � 1�μð ÞmRD 1�μð ÞmD2 + cD + k

24 35 δωx

δωy

δzm

8<:
9=;¼

0

0

0

8<:
9=; (12.90)

This is a set of three linear differential equations in the perturbations δωx, δωy, and δzm. We will not try

to solve them, since all we are really interested in is the stability of the satellite-damper system. It can be

shown that the determinant Δ of the 3-by-3 matrix in Eq. (12.90) is

Δ¼ a4D
4 + a3D

3 + a2D
2 + a1D+ ao (12.91)
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in which the coefficients of the characteristic equation Δ ¼ 0 are

a4¼ 1�μð ÞmAB
a3¼ cA B + 1�μð ÞmR2

� �
a2¼ k B + 1�μð ÞmR2

� �
A+ 1�μð Þm A�Cð Þ B�Cð Þ� 1�μð ÞAmR2

� �
ωo

2

a1¼ c A�C� 1�μð ÞmR2
� �

B�Cð Þ� �
ωo

2

a0¼ k A�C� 1�μð ÞmR2
� �

B�Cð Þ� �
ωo

2 + B�Cð Þ 1�μð Þ2
h i

m2R2ωo
4

(12.92)

According to the Routh-Hurwitz stability criteria (see any text on control systems, e.g., Palm, 1983)

the motion represented by Eq. (12.90), is asymptotically stable if and only if the signs of all of the

following quantities, defined in terms of the coefficients of the characteristic equation, are the same

r1¼ a4 r2¼ a3 r3¼ a2�a4a1
a3

r4¼ a1� a3
2a0

a3a2�a4a1
r5¼ a0 (12.93)
EXAMPLE 12.7
A satellite is spinning about the z axis of its principal body frame at 2π rad/s. The principal moments of inertia about its

center of mass are

A¼ 300 kg �m2 B¼ 400 kg �m2 C¼ 500 kg �m2 (a)

For the nutation damper, the following properties are given:

R¼ 1 m μ¼ 0:01 m¼ 10 kg k¼ 10,000 N=m c¼ 150 N s=m (b)

Use the Routh-Hurwitz stability criteria to assess the stability of the satellite as a major-axis spinner, a minor-axis spinner,

and an intermediate-axis spinner.

Solution
The data in Eq. (a) are for a major-axis spinner. Substituting into Eqs. (12.92) and (12.93), we find

r1¼ + 1:188 106
� �

kg3 m4

r2¼ + 18:44 106
� �

kg3 m4=s

r3¼ + 1:228 109
� �

kg3 m4=s2

r4¼ + 92,820 kg3 m4=s3

r5¼ + 8:271 109
� �

kg3 m4=s4

(c)

Since every r is positive, spin about the major axis is asymptotically stable. As we know from Section 12.3, without the

damper the motion is neutrally stable.

For spin about the minor axis,

A¼ 500 kg �m2 B¼ 400 kg �m2 C¼ 300 kg �m2 (d)

For these moment of inertia values, we obtain

r1¼ + 1:980 106
� �

kg3 m4

r2¼ + 30:74 106
� �

kg3 m4=s

r3¼ + 2:048 109
� �

kg3 m4=s2

r4¼�304,490 kg3 m4=s3

r5¼ + 7:520 109
� �

kg3 m4=s4

(e)
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Since the rs are not all of the same sign, spin about the minor axis is not asymptotically stable. Recall that for the rigid

satellite, such a motion was neutrally stable.

Finally, for spin about the intermediate axis,

A¼ 300 kg �m2 B¼ 500 kg �m2 C¼ 400 kg �m2 (f)

We know this motion is unstable, even without the nutation damper, but doing the Routh-Hurwitz stability check anyway,

we get

r1¼ + 1:485 106
� �

kg3 m4

r2¼ + 22:94 106
� �

kg3 m4=s

r3¼ + 1:529 109
� �

kg3 m4=s2

r4¼�192,800 kg3 m4=s3

r5¼�4:323 109
� �

kg3 m4=s4

(g)

The motion, as we expected, is not stable.
12.6 CONING MANEUVER
Like the use of nutation dampers, the coning maneuver is an example of the attitude control of spinning

spacecraft. In this case, the angular momentum is changed by the use of onboard thrusters (small

rockets) to apply pure torques.

Consider a spacecraft in pure spin with angular velocity ω0 about its body-fixed z axis, which is an
axis of rotational symmetry. The angular momentum isHGÞ0¼Cω0k̂. Suppose we wish to maintain the

magnitude of the angular momentum but change its direction by rotating the spin axis through an angle

θ, as illustrated in Fig. 12.13. Recall from Section 11.4 that to change the angular momentum of the

spacecraft requires applying an external moment,

ΔHG¼
ðΔt
0

MGdt
. 12.13

pulsive coning maneuver.
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Thrusters may be used to provide the external impulsive torque required to produce an angular momen-

tum increment ΔHG)1 normal to the spin axis. Since the spacecraft is spinning, this induces coning

(precession) of the spacecraft about an axis at an angle of θ/2 to the direction ofHG)0. Since the external

couple is normal to the z axis, the maneuver produces no change in the z component of the angular

velocity, which remains ω0. However, after the impulsive moment, the angular velocity comprises

a spin component ωs and a precession component ωp. Whereas before the impulsive moment ωs ¼ ω0,

afterward, during coning, the spin component is given by Eq. (12.20),

ωs¼A�C

A
ω0

The precession rate is given by Eq. (12.22),

ωp¼C

A

ω0

cos θ=2ð Þ (12.94)

Note that before the impulsive maneuver, the magnitude of the angular momentum is Cω0. After-

ward, it has increased to

HG¼Aωp¼ Cω0

cos θ=2ð Þ
After precessing 180°, an angular momentum incrementΔHG)2 normal to the spin axis and in the same

direction relative to the spacecraft as the initial torque impulse, with kΔHG)2k ¼ kΔHG)1k, stabilizes
the spin vector in the desired direction. Since the spin rate ωs, is not in general the same as the pre-

cession rate ωp the second angular impulse must be delivered by another pair of thrusters, that have

rotated into the position to apply the torque impulse in the proper direction. With only one pair of

thrusters both the spin axis and the spacecraft must rotate through 180° in the same time interval, which

means ωp ¼ ωs. That is,

A�C

A
ω0¼C

A

ω0

cos θ=2ð Þ
This requires the deflection angle to be

θ¼ 2 cos�1
C

A�C

� �
and limits the values of the moments of inertia A and C to those that do not cause the magnitude of the

cosine to exceed unity.

The time required for an angular reorientation θ using a single coning maneuver is found by simply

dividing the precession angle, π rad, by the precession rate ωp,

t1¼ π
ωp
¼ π

A

Cω0

cos
θ

2
(12.95)

Propellant expenditure is reflected in the magnitude of the individual angular momentum incre-

ments, in obvious analogy to delta-v calculations for orbital maneuvers. The total delta-H required

for the single coning maneuver is therefore given by

ΔHtotal¼ ΔHGÞ1
�� �� + ΔHGÞ2

�� ��¼ 2 HGÞ0
�� �� tan θ

2

� �
(12.96)



FIG. 12.14

A sequence of small coning maneuvers.

FIG. 12.15

Ratio of delta-H for a sequence of small coning maneuvers to that for a single coning maneuver, as a function of

the angle of swing of the spin axis.
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Fig. 12.14 illustrates the fact that ΔHtotal can be reduced by using a sequence of small coning ma-

neuvers (small θs) rather than one big θ. The large number of small ΔHs approximates a circular arc of

radius kHG)0k, subtended by the angle θ. Therefore, approximately,

ΔHtotal¼ 2 HGÞ0
�� ��θ

2

� �
¼ HGÞ0
�� ��θ (12.97)

This expression becomes more precise as the number of intermediate maneuvers increases.

Fig. 12.15 reveals the extent to which the multiple coning maneuver strategy reduces energy require-

ments. The difference is quite significant for large reorientation angles.

One of the prices to be paid for the reduced energy of the multiple coning maneuver is time. (The

other is the complexity mentioned above, to say nothing of the risk involved in repeating the maneuver

over and over again.) From Eq. (12.95), the time required for n small-angle coningmaneuvers through a

total angle of θ is

tn¼ nπ
A

Cω0

cos
θ

2n
(12.98)



FIG. 12.16

Time for a coning maneuver vs. the number of intermediate steps.
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The ratio of this to the time t1 required for a single coning maneuver is

tn
t1
¼ n

cos
θ

2n

cos
θ

2

(12.99)

The time is directly proportional to the number of intermediate coning maneuvers, as illustrated in

Fig. 12.16.
12.7 ATTITUDE CONTROL THRUSTERS
As mentioned above, thrusters are small jets mounted in pairs on a spacecraft to control its rotational

motion about the center of mass. These thruster pairs may be mounted in principal planes (planes nor-

mal to the principal axes) passing through the center of mass. Fig. 12.17 illustrates a pair of thrusters for

producing a torque about the positive y axis. These would be accompanied by another pair of reaction

motors pointing in the opposite directions to exert torque in the negative y direction. If the position

vectors of the thrusters relative to the center of mass are r and �r, and if T is their thrust, then the

impulsive moment they exert during a brief time interval Δt is

M¼ r�TΔt+ �rð Þ� �TΔtð Þ¼ 2r�TΔt (12.100)

If the angular velocity was initially zero, then after the firing, according to Eq. (11.31), the angular

momentum becomes

H¼ 2r�TΔt (12.101)

For H in the principal y direction, as in the figure, the corresponding angular velocity acquired by the

vehicle is, from Eq. (11.67),

ωy¼ Hk k
B

(12.102)



FIG. 12.17

Pair of attitude control thrusters mounted in the xz plane of the principal body frame.
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EXAMPLE 12.8
A spacecraft of massm and with the dimensions shown in Fig. 12.18 is spinningwithout precession at the rateω0 about the z

axis of the principal body frame. At the instant shown in part (a) of the figure, the spacecraft initiates a coning maneuver to

swing its spin axis through 90°, so that at the end of the maneuver the vehicle is oriented as illustrated in Fig. 12.18a.

Calculate the total delta-H required and compare it with that required for the same reorientation without coning. Motion

is to be controlled exclusively by the pairs of attitude thrusters shown, all of which have identical thrust T.

Solution
According to Fig. 11.10c, the moments of inertia about the principal body axes are

A¼B¼ 1

12
m w2 +

w

3

� �2 �
¼ 5

54
mw2 C¼ 1

12
m w2 +w2
� �¼ 1

6
mw2

The initial angular momentum HG)1 points in the spin direction, along the positive z axis of the body frame,

HGÞ1¼Cωzk̂¼ 1

6
mw2ω0k̂
FIG. 12.18

(a) Initial orientation of spinning spacecraft. (b) Final configuration, with spin axis rotated 90°.
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We can presume that in the initial orientation, the body frame happens to coincide instantaneously with the inertial

frame XYZ. The coning motion is initiated by briefly firing the pair of thrusters RCS-1 and RCS-2, aligned with the body

z axis and lying in the yz plane. The impulsive torque will cause a change ΔHG)1 in angular momentum directed normal to

the plane of the thrusters, in the positive body x direction. The resultant angular momentum vector must lie at 45° to the

x and z axes, bisecting the angle between the initial and final angular momenta. Thus,

ΔHGÞ1
�� ��¼ HGÞ1

�� �� tan 45°¼ 1

6
mw2ω0

After the coning is under way, the body axes of course move away from the XYZ frame. Since the spacecraft is oblate

(C > A), the precession of the spin axis will be opposite to the spin direction, as indicated in Fig. 12.15. When the spin

axis, after 180° of precession, lines up with the X axis, the thrusters must fire again for the same duration as before so as to

produce the angular momentum change ΔHG)2, equal in magnitude but perpendicular to ΔHG)1, so that

HGÞ1 +ΔHGÞ1 +ΔHGÞ2¼HGÞ2
where

HGÞ2¼ HGÞ1
�� ��Î¼ 1

6
mw2ω0k̂

For this to work, the plane of thrusters RCS-1 and RCS-2 (the yz plane) must be parallel to the XY plane when they fire, as

illustrated in Fig. 12.18b. Since the thrusters can fire fore or aft, it does not matter which of them ends up on the top or

bottom. The vehicle must therefore spin through an integral number n of half rotations while it precesses to the desired

orientation. That is, the total spin angle ψ between the initial and final configurations is

ψ ¼ nπ¼ωst (a)

where ωs is the spin rate, and t is the time for the proper final configuration to be achieved. In the meantime, the precession

angle ϕ must be π or 3π or 5π, or, in general,

ϕ¼ 2m�1ð Þπ¼ωpt (b)

where m is an integer, and t is, of course, the same as that in Eq. (a). Eliminating t from both Eqs. (a) and (b) yields

nπ¼ 2m�1ð Þπωs

ωp

Substituting Eq. (12.23), with θ ¼ π/4, gives

n¼ 1�2mð Þ4
9

1ffiffiffi
2
p (c)

Obviously, this equation cannot be valid if both m and n are integers. However, by tabulating n as a function of m, we find

that when m ¼ 18, n ¼ � 10.999. The minus sign simply reminds us that spin and precession are in opposite directions.

Thus, the 18th time that the spin axis lines up with the X axis the thrusters may be fired to almost perfectly align the angular

momentum vector with the body z axis. The slight misalignment due to the fact that jn j is not precisely 11 would probably
occur in reality anyway. Passive or active nutation damping can drive this deviation to zero.

Since kHG)1k ¼ kHG)2k, we conclude that

ΔHtotal¼ 2
1

6
mw2ω0

� �
¼ 2

3
mw2ω0 (d)

An obvious alternative to the coning maneuver is to use thrusters RCS-3 and RCS-4 to despin the craft completely,

thrusters RCS-5 and RCS-6 to initiate roll around the y axis and stop it after 90°, and then RCS-3 and RCS-4 to respin

the spacecraft to ω0 around the z axis. The combined delta-H for the first and last steps equals that of Eq. (d). Additional

fuel expenditure is required to start and stop the roll around the y axis. Hence, the coning maneuver is more fuel efficient.
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12.8 YO-YO DESPIN MECHANISM
A simple, inexpensive way to despin an axisymmetric spacecraft is to deploy small masses attached to

cords wound around the girth of the spacecraft near the transverse plane through the center of mass. As

the masses unwrap in the direction of the spacecraft angular velocity, they exert centrifugal force

through the cords on the periphery of the vehicle, creating a moment opposite to the spin direction,

thereby slowing down the rotational motion. The cord forces are internal to the system of spacecraft

plus weights, so that as the strings unwind, the total angular momentummust remain constant. Since the

total moment of inertia increases as the yo-yo masses spiral farther away, the angular velocity must

drop. Not only angular momentum but also rotational kinetic energy is conserved during this process.

Yo-yo despin devices were introduced early in unmanned space flight (e.g., 1959 Transit 1-A) and

continued to be used thereafter (e.g., 1996 Mars Pathfinder, 1998 Mars Climate Orbiter, 1999 Mars

Polar Lander, 2003 Mars Exploration Rover, and 2007 Dawn spacecraft).

The problem is to determine the length of cord required to reduce the spacecraft angular velocity a

specified amount. Because it is easier than solving the equations of motion, we will apply the principles

of conservation of energy and angular momentum to the system comprising the spacecraft and the yo-

yomasses. Tomaintain the position of the center of mass, two identical yo-yomasses are wound around

the spacecraft in a symmetric fashion, as illustrated in Fig. 12.19. Both masses are released simulta-

neously by explosive bolts and unwrap in the manner shown (for only one of the weights) in the figure.

In so doing, the point of tangency T moves around the circumference toward the split hinge device

where the cord is attached to the spacecraft. When T and T0 reach the hinges H and H0, the cords au-
tomatically separate from the spacecraft.

Let each yo-yo weight have mass m/2. By symmetry, we need to track only one of the masses, to

which we can ascribe the total massm. Let the xyz system be a body frame rigidly attached to the space-

craft, as shown in Fig. 12.19. As usual, the z axis lies in the spin direction, pointing out of the page. The
x axis is directed from the center of mass of the system through the initial position of the yo-yo mass.
FIG. 12.19

Two identical string and mass systems wrapped symmetrically around the periphery of an axisymmetric

spacecraft. For simplicity, only one is shown being deployed.
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The spacecraft and the yo-yo masses, prior to release, are rotating as a single rigid body with angular

velocity ω0¼ω0k̂. The moment of inertia of the satellite, excluding the yo-yo mass, is C, so that the

angular momentum of the satellite by itself is Cω0. The concentrated yo-yo masses are fastened at a

distance R from the spin axis, so that their total moment of inertia is mR2. Therefore, the initial angular

momentum of the satellite plus yo-yo system is

HGÞ0¼Cω0 +mR
2ω0

It will be convenient to write this as

HGÞ0¼KmR2ω0 (12.103)

where the nondimensional factor K is defined as

K¼ 1 +
C

mR2
(12.104)ffiffiffiffi

K
p

R is the initial radius of gyration of the system.

The initial rotational kinetic energy of the system, before the masses are released, is

T0¼ 1

2
Cω0

2 +
1

2
mR2ω0

2¼ 1

2
KmR2ω0

2 (12.105)

At any state between the release of the weights and the release of the cords at the hinges, the velocity

of the yo-yo mass must be found to compute the new angular momentum and kinetic energy. Observe

that when the string has unwrapped an angle ϕ, the free length of string (between the point of tangency
T and the yo-yo mass P) is Rϕ. From the geometry shown in Fig. 12.19, the position vector of the mass

relative to the body frame is seen to be

r¼ R cos ϕ̂i+R sinϕĵ
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{rT=G

+ Rϕ sin ϕ̂i�Rϕ cosϕĵ
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{rP=T

¼ R cosϕ+Rϕ sinϕð Þ̂i+ R sinϕ�Rϕ cosϕð Þ̂j

(12.106)

Since r is measured in the moving reference, the absolute velocity v of the yo-yo mass is found using

Eq. (1.56),

v¼ dr

dt

�
rel

+Ω�r (12.107)

whereΩ is the angular velocity of the xyz axes, which, of course, is the angular velocityω of the space-

craft at that instant,

Ω¼ω (12.108)

To calculate dr/dt)rel, we hold î and ĵ constant in Eq. (12.106), obtaining

dr

dt

�
rel

¼ �R _ϕ sinϕ+R _ϕ sinϕ +Rϕ _ϕ cosϕ
� �̂

i+ R _ϕ cosϕ�R _ϕ cosϕ+Rϕ _ϕ sinϕ
� �̂

j

¼Rϕ _ϕ cos ϕ̂i+Rϕ _ϕ sinϕĵ
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Thus,

v¼Rϕ _ϕ cos ϕ̂i+Rϕ _ϕ sinϕĵ+
î ĵ k̂
0 0 ω

R cosϕ+Rϕ sinϕ R sinϕ�Rϕ cosϕ 0

������
������

or

v¼ Rϕ ω + _ϕ
� �

cosϕ�Rω sinϕ
� �̂

i+ Rω cosϕ +Rϕ ω+ _ϕ
� �

sinϕ
� �̂

j (12.109)

From this, we find the speed of the yo-yo weights,

v¼ ffiffiffiffiffiffiffiffi
v � vp ¼R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + ω + _ϕ

� �2
ϕ2

q
(12.110)

The angular momentum of the spacecraft plus the weights at an intermediate stage of the despin

process is

HG¼Cωk̂ + r�mv

¼Cωk̂ +m

î ĵ k̂

R cosϕ+Rϕ sinϕ R sinϕ�Rϕ cosϕ ω

Rϕ ω+ _ϕ
� �

cosϕ�Rω sinϕ Rω cosϕ+Rϕ ω + _ϕ
� �

sinϕ 0

�������
�������

Carrying out the cross product, combining terms, and simplifying leads to

HG¼Cω+mR2 ω+ ω + _ϕ
� �

ϕ2
� �

which, using Eq. (12.104), can be written as

HG¼mR2 Kω+ ω + _ϕ
� �

ϕ2
� �

(12.111)

The kinetic energy of the spacecraft plus the yo-yo mass is

T¼ 1

2
Cω2 +

1

2
mv2

Substituting the speed from Eq. (12.110) and making use again of Eq. (12.104), we find

T¼ 1

2
mR2 Kω2 + ω + _ϕ

� �2
ϕ2

h i
(12.112)

By the conservation of angular momentum, HG ¼ HG0
, we obtain from Eqs. (12.103) and (12.111),

mR2 Kω + ω+ _ϕ
� �

ϕ2
� �¼KmR2ω0

which we can write as

K ω0�ωð Þ¼ ω + _ϕ
� �

ϕ2 Conservation of angular momentum (12.113)

Eqs. (12.105) and (12.112) and the conservation of kinetic energy, T ¼ T0, combine to yield

1

2
mR2 Kω2 + ω+ _ϕ

� �2
ϕ2

h i
¼ 1

2
KmR2ω2

0

or

K ω0
2�ω2ð Þ¼ ω+ _ϕ

� �2
ϕ2 Conservation of energy (12.114)
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Since ω0
2�ω2¼ ω0 +ωð Þ ω0 +ωð Þ, this can be written as

K ω0�ωð Þ ω0 +ωð Þ¼ ω+ _ϕ
� �2

ϕ2

Replacing the factor K(ω0 � ω) on the left using Eq. (12.113) yields

ω+ _ϕ
� �

ϕ2 ω0 +ωð Þ¼ ω + _ϕ
� �2

ϕ2

After canceling terms, we find ω0 +ω¼ω+ _ϕ, or, simply

_ϕ¼ω0 Conservation of energy and momentum (12.115)

In other words, the cord unwinds at a constant rate (relative to the spacecraft), equal to the vehicle’s

initial angular velocity. Thus, at any time t after the release of the weights,

ϕ¼ω0t (12.116)

By substituting Eq. (12.115) back into Eq. (12.113),

K ω0�ωð Þ¼ ω+ω0ð Þϕ2

we find that

ϕ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
ω0�ω

ω0 +ω

r
Partial despin (12.117)

Recall that the unwrapped length l of the cord is Rϕ, which means

l¼R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
ω0�ω

ω0 +ω

r
Partial despin (12.118)

We use Eq. (12.118) to find the length of the cord required to despin the spacecraft from ω0 toω. To
remove all of the spin (ω ¼ 0),

ϕ¼ ffiffiffiffi
K
p ) l¼R

ffiffiffiffi
K
p

Complete despin (12.119)

Surprisingly, the length of the cord required to reduce the angular velocity to zero is independent of the

initial angular velocity.

We can solve Eq. (12.117) for ω in terms of ϕ,

ω¼ 2K

K +ϕ2
�1

� �
ω0 (12.120)

By means of Eq. (12.116), this becomes an expression for the angular velocity as a function of time,

ω¼ 2K

K +ω0
2t2
�1

� �
ω0 (12.121)

Alternatively, since ϕ ¼ l/R, Eq. (12.120) yields the angular velocity as a function of the cord

length,

ω¼ 2KR2

KR2 + l2
�1

� �
ω0 (12.122)



FIG. 12.20

Free body diagram of the satellite during the despin process.
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Differentiating ω with respect to time in Eq. (12.121) gives us an expression for the angular acceler-

ation of the spacecraft,

α¼ dω

dt
¼� 4Kω0

3t

K +ω0
2t2ð Þ2 (12.123)

whereas integrating ωwith respect to time yields the angle rotated by the spacecraft since release of the

yo-yo mass,

θ¼ 2
ffiffiffiffi
K
p

tan�1
ω0tffiffiffiffi
K
p �ω0t¼ 2

ffiffiffiffi
K
p

tan�1
ϕffiffiffiffi
K
p �ϕ (12.124)

For complete despin, this expression, together with Eq. (12.119), yields

θ¼
ffiffiffiffi
K
p π

2
�1

� �
(12.125)

From the free body diagram of the spacecraft shown in Fig. 12.20, it is clear that the torque exerted

by the yo-yo weights is

MGÞz¼�2RN (12.126)

where N is the tension in the cord. From the Euler equations of motion (Eq. 11.72b)

MGÞz¼Cα (12.127)

Combining Eqs. (12.123), (12.126), and (12.127) leads to a formula for tension in the yo-yo cables,

N¼C

R

2Kω0
3t

K +ω0
2t2ð Þ2¼

Cω0
2

R

2Kϕ

K +ϕ2
� �2 (12.128)
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12.8.1 RADIAL RELEASE
Finally, we note that instead of releasing the yo-yo masses when the cables are tangent at the split

hinges (H and H0), they can be forced to pivot about the hinge and released when the string is directed

radially outward, as illustrated in Fig. 12.18. The above analysis must be then extended to include the

pivoting of the cord around the hinges. It turns out that in this case, the length of the cord as a function of

the final angular velocity is

l¼R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0�ωð ÞK +ω½ �2
ω0

2�ω2ð ÞK +ω2

s
�1

 !
Partial despin, radial release (12.129)

so that for ω ¼ 0 (Fig. 12.21),

l¼R
ffiffiffiffi
K
p �1
� �

Complete despin, radial release (12.130)
FIG. 12.21

Radial vs. tangential release of yo-yo masses.
EXAMPLE 12.9
A satellite is to be completely despun using a two-mass yo-yo device with tangential release. Assume the spin axis moment

of inertia of the satellite is C ¼ 200 kg �m2 and the initial spin rate is ω0 ¼ 5 rad/s. The total yo-yo mass is 4 kg, and the

radius of the spacecraft is 1 m. Find

(a) the required cord length l;

(b) the time t to despin;

(c) the maximum tension in the yo-yo cables;

(d) the speed of the masses at release;

(e) the angle rotated by the satellite during despin; and

(f) the cord length required for radial release.

Solution
(a) From Eq. (12.104),

K¼ 1 +
C

mR2
¼ 1 +

200

4 � 12¼ 51 (a)



FIG. 12.22

Variation of cable tension N up to the point of release.
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From Eq. (12.119) it follows that the cord length required for complete despin is

l¼R
ffiffiffiffi
K
p
¼ 1 �

ffiffiffiffiffi
51
p
¼ 7:1441 m (b)

(b) The time for complete despin is obtained from Eqs. (12.116) and (12.119),

ω0t¼
ffiffiffiffi
K
p

) t¼
ffiffiffiffi
K
p

ω0

¼
ffiffiffiffiffi
51
p

5
¼ 1:4283 s

(c) A graph of Eq. (12.128) is shown in Fig. 12.19, from which we see that

The maximum tension is 455 N

which occurs at 0.825 s (Fig. 12.22).

(d) From Eq. (12.110), the speed of the yo-yo masses is

v¼R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + ω+ _ϕ

� �2
ϕ2

q
According to Eq. (12.115), _ϕ¼ω0, and at the time of release (ω ¼ 0) Eq. (12.117) states that ϕ¼ ffiffiffiffi

K
p

. Thus,

v¼R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + ω+ω0ð Þ2

ffiffiffiffi
K
p 2

q
¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 + 0 + 5ð Þ2

ffiffiffiffiffi
51
p 2

q
¼ 35:71 m=s

(e) The angle through which the satellite rotates before coming to rotational rest is given by Eq. (12.125),

θ¼
ffiffiffiffi
K
p π

2
�1

� �
¼

ffiffiffiffiffi
51
p π

2
�1

� �
¼ 4:076 rad 233:5°ð Þ

(f) Allowing the cord to detach radially reduces the cord length required for complete despin from 7.141 m to (Eq. 12.130)

l¼R
ffiffiffiffi
K
p
�1

� �
¼ 1 �

ffiffiffiffiffi
51
p
�1

� �
¼ 6:141 m
12.9 GYROSCOPIC ATTITUDE CONTROL
Momentum exchange systems (gyros) are used to control the attitude of a spacecraft without throwing

consumable mass overboard, as occurs with the use of thruster jets. A momentum exchange system is

illustrated schematically in Fig. 12.23. n flywheels, labeled 1, 2, 3, etc., are attached to the body of the



FIG. 12.23

Several attitude control flywheels, each with their own angular velocity, attached to the body of a spacecraft.
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spacecraft at various locations. The mass of flywheel i is mi. The mass of the body of the spacecraft is

m0. The total mass of the entire system (the “vehicle”) is m,

m¼m0 +
Xn
i¼1

mi

The vehicle’s center of mass isG, through which pass the three axes xyz of the vehicle’s body-fixed
frame. The center of mass Gi of each flywheel is connected rigidly to the spacecraft, but the wheel,

driven by electric motors, rotates more or less independently, depending on the type of gyro. The body

of the spacecraft has the angular velocity vector ω. The angular velocity vector of the ith flywheel is

ω(i), and it differs from that of the body of the spacecraft unless the gyro is “caged.” A caged gyro has no

spin relative to the spacecraft, in which case ω(i) ¼ ω.
According to Eq. (11.39b), the angular momentum of the body itself relative to G is

H
bodyð Þ
G

n o
¼ I

bodyð Þ
G

h i
ωf g (12.131)

where IG
(body) is the moment of inertia tensor of the body about G and ω is the angular velocity of

the body.

Eq. (11.27) gives the angular momentum of flywheel i relative to G as

H
ið Þ
G ¼H

ið Þ
Gi
+ ρi� _ρimi (12.132)

H
ið Þ
Gi

is the angular momentum vector of the flywheel i about its own center of mass Gi. Its components

in the body frame are found from the expression

H
ið Þ
Gi

n o
¼ I

ið Þ
Gi

h i
ω ið Þ
n o

(12.133)

where I
ið Þ
Gi

is the moment of inertia tensor of the flywheel about its own center of mass Gi, rel-

ative to axes that are parallel to the body-fixed xyz axes. Since a momentum wheel might be one

that pivots on gimbals relative to the body frame, the inertia tensor I
ið Þ
Gi

may be time dependent.

The vector ρi� _ρimi in Eq. (12.132) is the angular momentum of the concentrated mass mi of the
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flywheel about the system center of mass G. According to Eq. (11.59), the components of ρi�
_ρimi in the body frame are given by

ρi� _ρ imif g¼ I ið Þ
mG

h i
ωf g (12.134)

where I ið Þ
mG
, the moment of inertia tensor of the point mass mi about G, is given by Eq. (11.44). Using

Eqs. (12.133) and (12.134), Eq. (12.132) can be written as

H
ið Þ
G

n o
¼ I

ið Þ
Gi

h i
ω ið Þ
n o

+ I ið Þ
mG

h i
ωf g (12.135)

The total angular momentum of the system in Fig. 12.20 about G is that of the body plus all of the n
flywheels,

HG¼H
bodyð Þ
G +

Xn
i¼1

H
ið Þ
G

Substituting Eqs. (12.131) and (12.135), we obtain

HGf g¼ I
bodyð Þ
G

h i
ωf g+

Xn
i¼1

I
ið Þ
Gi

h i
ω ið Þ
n o

+ I ið Þ
mG

h i
ωf g

� �
or

HGf g¼ I
bodyð Þ
G +

Xn
i¼1

I ið Þ
mG

" #
ωf g+

Xn
i¼1

I
ið Þ
Gi

h i
ω ið Þ
n o

(12.136)

Let

I
vð Þ
G ¼ I

bodyð Þ
G +

Xn
i¼1

I ið Þ
mG

(12.137)

where IG
(v) is the time-independent total moment of inertia of the vehicle v (i.e., that of the body plus the

concentrated masses of all the flywheels). Thus,

HGf g¼ I
vð Þ
G

h i
ωf g+

Xn
i¼1

I
ið Þ
Gi

h i
ω ið Þ
n o

(12.138)

If ωrel
(i) is the angular velocity of the ith flywheel relative to the spacecraft, then its inertial angular ve-

locity ω(i) is given by Eq. (11.5),

ω ið Þ ¼ω +ω ið Þ
rel (12.139)

where ω is the inertial angular velocity of the spacecraft body. Substituting Eq. (12.139) into

Eq. (12.138) yields

HGf g¼ I
vð Þ
G

h i
ωf g+

Xn
i¼1

I
ið Þ
Gi

h i
ω +ω ið Þ

rel

n o
or

HGf g¼ I
vð Þ
G +

Xn
i¼1

I
ið Þ
Gi

" #
ωf g+

Xn
i¼1

I
ið Þ
Gi

h i
ω ið Þ

rel

n o
(12.140)
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An alternative form of this expression may be obtained by substituting Eq. (12.137):

HGf g¼ I
bodyð Þ
G +

Xn
i¼1

I ið Þ
mG

+
Xn
i¼1

I
ið Þ
Gi

" #
ωf g+

Xn
i¼1

I
ið Þ
Gi

h i
ω ið Þ

rel

n o
¼ I

bodyð Þ
G +

Xn
i¼1

I
ið Þ
Gi
+ I ið Þ

mG

� �" #
ωf g+

Xn
i¼1

I
ið Þ
Gi

h i
ω ið Þ

rel

n o (12.141)

But, according to the parallel axis theorem (Eq. 11.61),

I
ið Þ
G ¼ I

ið Þ
Gi
+ I ið Þ

mG

where IG
(i) is the moment of inertia of the ith flywheel around the center of mass of the body of the

spacecraft. Hence, we can write Eq. (12.141) as

HGf g¼ I
bodyð Þ
G +

Xn
i¼1

I
ið Þ
G

" #
ωf g +

Xn
i¼1

I
ið Þ
Gi

h i
ω ið Þ

rel

n o
(12.142)

The equation of motion of the system is given by Eqs. (11.30) and (1.56),

MGÞnet external¼
dHG

dt

�
rel

+ω�HG (12.143)

If MG)net external ¼ 0, then HG ¼ constant.
EXAMPLE 12.10
Adisk isattachedtoaplateat theircommoncenterofmass(Fig.12.24).Betweenthe twoisamotormountedontheplate,which

drives thedisk into rotation relative to theplate.The systemrotates freely in thexyplane ingravity-free space.Themomentsof

inertia of the plate and the disk about the z axis through G are Ip and Iw, respectively. Determine the change in the relative

angular velocity ωrel of the disk required to cause a given change in the inertial angular velocity ω of the plate.

Solution
The plate plays the role of the body of a spacecraft and the disk is a momentum wheel. At any given time, the angular

momentum of the system about G is given by Eq. (12.142),

HG¼ Ip + Iw
� �

ω + Iwωrel

At a later time (denoted by primes), after the torquing motor is activated, the angular momentum is

H0G¼ Ip + Iw
� �

ω0 + Iwω0rel
FIG. 12.24

Plate p and disk w attached at their common center of mass G.
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Since the torque is internal to the system, we have conservation of angular momentum, HG
0 ¼ HG, which means

Ip + Iw
� �

ω0 + Iwω0rel ¼ Ip + Iw
� �

ω+ Iwωrel

Rearranging terms we get

Iw ω0rel�ωrel

� �¼� Ip + Iw
� �

ω0 �ωð Þ
Letting Δω ¼ ω0 � ω, this can be written as

Δωrel ¼� 1 +
Ip
Iw

� �
Δω

The change Δωrel in the relative rotational velocity of the disk is due to the torque applied to the disk at G by the motor

mounted on the plate. An equal torque in the opposite direction is applied to the plate, producing the angular velocity

change Δω opposite in direction to Δωrel.

Notice that if Ip ≫ Iw, which is true in an actual spacecraft, then the change in angular velocity of the momentumwheel

must be very much larger than the required change in angular velocity of the body of the spacecraft.
EXAMPLE 12.11
Use Eq. (12.142) to obtain the equations of motion of a torque-free, axisymmetric dual-spin satellite, such as the one shown

in Fig. 12.25.

Solution
In this case, we have only one “reaction wheel” (namely, the platform p). The “body” is the rotor r. In Eq. (12.142), we

make the following substitutions ( means “is replaced by”):

ω ω rð Þ

ω ið Þ
rel ω pð Þ

rel

I
bodyð Þ
G  I

rð Þ
GXn

i¼1
I
ið Þ
G  I

pð Þ
G

Xn
i¼1

I
ið Þ
Gi

h i
ω ið Þ

rel

n o
 I

pð Þ
Gp

h i
ω pð Þ

rel

n o
. 12.25

al-spin spacecraft.
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so that Eq. (12.142) becomes

HGf g¼ I
rð Þ
G + I

pð Þ
G

h i
ω rð Þ
n o

+ I
pð Þ
Gp

h i
ω pð Þ

rel

n o
(a)

Since MG)net external ¼ 0, Eq. (12.143) yields

I
rð Þ
G + I

pð Þ
G

h i
_ω rð Þ

n o
+ I

pð Þ
Gp

h i
_ω pð Þ
rel

n o
+ ω rð Þ
n o

� I
rð Þ
G + I

pð Þ
G

h i
ω rð Þ
n o

+ I
pð Þ
Gp

h i
ω pð Þ

rel

n o� �
¼ 0f g (b)

The components of the matrices and vectors in Eq. (b) relative to the principal xyz body frame axes attached to the rotor are

I
rð Þ
G

h i
¼

Ar 0 0

0 Ar 0

0 0 Cr

264
375 I

pð Þ
G

h i
¼

Ap 0 0

0 Ap 0

0 0 Cp

264
375 I

pð Þ
Gp

h i
¼

Ap 0 0

0 Ap 0

0 0 Cp

264
375 (c)

and

ω rð Þ� �¼ ω rð Þ
x

ω rð Þ
y

ω rð Þ
z

8><>:
9>=>; ω pð Þ

rel

n o
¼

0

0

ωp

8><>:
9>=>; (d)

whereAr,Cr,Ap, andCp are the rotor and platform principal moments of inertia about the vehicle center of massG, andAp is

the moment of inertia of the platform about its own center of massGp. We also used the fact thatCp ¼Cp, which of course is

due to the fact thatG andGp both lie on the z axis. This notation is nearly identical to that employed in our consideration of

the stability of dual-spin satellites in Section 12.4 (wherein ωr ¼ ωz
(r) and ω? ¼ω rð Þ

x î+ω rð Þ
y ĵ). Substituting Eqs. (c) and (d)

into each of the four terms in Eq. (b), we get

I
rð Þ
G + I

pð Þ
G

h i
_ω rð Þ

n o
¼

Ar +Ap 0 0

0 Ar +Ap 0

0 0 Cr +Cp

24 35 _ω rð Þ
x

_ω rð Þ
y

_ω rð Þ
z

8><>:
9>=>;¼

Ar +Ap

� �
_ω rð Þ
x

Ar +Ap

� �
_ω rð Þ
y

Cr +Cp

� �
_ω rð Þ
z

8>><>>:
9>>=>>; (e)

ω rð Þ
n o

� I
rð Þ
G + I

pð Þ
G

h i
ω rð Þ
n o

¼
ω rð Þ
x

ω rð Þ
y

ω rð Þ
z

8><>:
9>=>;�

Ar +Ap

� �
ω rð Þ
x

Ar +Ap

� �
ω rð Þ
y

Cr +Cp

� �
ω rð Þ
z

8><>:
9>=>;¼

Cp�Ap

� �
+ Cr�Arð Þ� �

ω rð Þ
y ω rð Þ

z

Ap�Cp

� �
+ Ar�Crð Þ� �

ω rð Þ
x ω rð Þ

z

0

8><>:
9>=>; (f)

I
pð Þ
Gp

h i
_ω pð Þ
rel

n o
¼

Ap 0 0

0 Ap 0

0 0 Cp

264
375 0

0

_ωp

8<:
9=;¼

0

0

Cp _ωp

8<:
9=; (g)

ω rð Þ
n o

� I
pð Þ
Gp

h i
ω pð Þ

rel

n o
¼

ω rð Þ
x

ω rð Þ
y

ω rð Þ
z

8><>:
9>=>;�

Ap 0 0

0 Ap 0

0 0 Cp

264
375 0

0

ωp

8<:
9=;¼

Cpω
rð Þ
y ωp

�Cpω rð Þ
x ωp

0

8><>:
9>=>; (h)

With these four expressions, Eq. (b) becomes

Ar +Ap

� �
_ω rð Þ
x

Ar +Ap

� �
_ω rð Þ
y

Cr +Cp

� �
_ω rð Þ
z

8><>:
9>=>;+

Cp�Ap

� �
+Cr +Ar

� �
ω rð Þ
y ω rð Þ

z

Ap�Cp

� �
+Ar +Cr

� �
ω rð Þ
x ω rð Þ

z

0

8><>:
9>=>;+

0

0

Cp _ωp

8<:
9=;+

Cpω
rð Þ
y ωp

�Cpω rð Þ
x ωp

0

8><>:
9>=>;¼

0

0

0

8<:
9=; (i)

Summing the four vectors on the left-hand side and then extracting the three components of the vector equation, finally

yields the three scalar equations of motion of the dual-spin satellite in the body frame,

A _ω rð Þ
x + C�Að Þω rð Þ

y ω rð Þ
z +Cpω

rð Þ
y ωp¼ 0

A _ω rð Þ
y + A�Cð Þω rð Þ

x ω rð Þ
z �Cpω rð Þ

x ωp¼ 0

C _ω rð Þ
z +Cp _ωp¼ 0

(j)
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where A and C are the combined transverse and axial moments of inertia of the dual-spin vehicle about its center of mass,

A¼Ar +A C¼Cr +Cp (k)

The three equations (j) involve four unknowns, ωx
(r), ωy

(r), ωz
(r), and ωp. A fourth equation is required to account for the

means of providing the relative velocity ωp between the platform and the rotor. Friction in the axle bearing between

the platform and the rotor would eventually cause ωp to go to zero, as pointed out in Section 12.4. We may assume that

the electric motor in the bearing acts to keep ωp constant at a specified value, so that _ωp¼ 0. Then, Eq. (j)3 implies that ωz
(r)

is constant as well. Thus,ωp andωz
(r) are removed from our list of unknowns, leavingωx

(r) andωy
(r) to be governed by the first

two equations in Eq. (j). Note that we actually employed Eq. (j)3 in the solution of Example 12.10.
EXAMPLE 12.12
A spacecraft has three identical momentum wheels with their spin axes aligned with the vehicle’s principal body axes. The

spin axes of momentum wheels 1, 2, and 3 are aligned with the x, y, and z axes, respectively. The inertia tensors of the

rotationally symmetric momentum wheels about their centers of mass are, therefore,

I
1ð Þ
G1

h i
¼

I 0 0

0 J 0

0 0 J

24 35 I
2ð Þ
G2

h i
¼

J 0 0

0 I 0

0 0 J

24 35 I
3ð Þ
G3

h i
¼

J 0 0

0 J 0

0 0 I

24 35 (a)

The spacecraft moment of inertia tensor about the vehicle (v) center of mass is

I
vð Þ
G

h i
¼

A 0 0

0 B 0

0 0 C

24 35 (b)

Calculate the spin accelerations of the momentum wheels in the presence of external torque.

Solution
For n ¼ 3, Eq. (12.140) becomes

HGf g¼ I
vð Þ
G + I

1ð Þ
G1

+ I
2ð Þ
G2

+ I
3ð Þ
G3

h i
ωf g+ I

1ð Þ
G1

h i
ω 1ð Þ

rel

n o
+ I

2ð Þ
G2

h i
ω 2ð Þ

rel

n o
+ I

3ð Þ
G3

h i
ω 3ð Þ

rel

n o
(c)

The absolute angular velocityω of the spacecraft and the angular velocitiesωrel
(1),ωrel

(2),ωrel
(3) of the three flywheels relative to

the spacecraft are

ωf g¼
ωx

ωy

ωz

8<:
9=; ω 1ð Þ

rel

n o
¼

ω 1ð Þ

0

0

8<:
9=; ω 2ð Þ

rel

n o
¼

0

ω 2ð Þ

0

8<:
9=; ω 3ð Þ

rel

n o
¼

0

0

ω 3ð Þ

8<:
9=; (d)

Substituting Eqs. (a), (b), and (d) into Eq. (c) yields

HGf g¼
A 0 0

0 B 0

0 0 C

264
375+ I 0 0

0 J 0

0 0 J

264
375 +

J 0 0

0 I 0

0 0 J

264
375 +

J 0 0

0 J 0

0 0 I

264
375

0B@
1CA ωx

ωy

ωz

8><>:
9>=>;

+

I 0 0

0 J 0

0 0 J

264
375 ω 1ð Þ

0

0

8><>:
9>=>;+

J 0 0

0 I 0

0 0 J

264
375 0

ω 2ð Þ

0

8><>:
9>=>;+

J 0 0

0 J 0

0 0 I

264
375 0

0

ω 3ð Þ

8><>:
9>=>;

or

HGf g¼
A+ I + 2J 0 0

0 B+ I + 2J 0

0 0 C+ I + 2J

24 35 ωx

ωy

ωz

8<:
9=;+

I 0 0

0 I 0

0 0 I

24 35 ω 1ð Þ

ω 2ð Þ

ω 3ð Þ

8<:
9=; (e)
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Substituting this expression for {HG} into Eq. (12.143), we get

I 0 0

0 I 0

0 0 I

264
375 _ω 1ð Þ

_ω 2ð Þ

_ω 3ð Þ

8><>:
9>=>;+

A+ I + 2J 0 0

0 B+ I + 2J 0

0 0 C+ I + 2J

264
375 _ωx

_ωy

_ωz

8><>:
9>=>;

+

ωx

ωy

ωz

8><>:
9>=>;�

I 0 0

0 I 0

0 0 I

264
375 ω 1ð Þ

ω 2ð Þ

ω 3ð Þ

8><>:
9>=>;+

A+ I + 2J 0 0

0 B+ I + 2J 0

0 0 C+ I + 2J

264
375 ωx

ωy

ωz

8><>:
9>=>;

0B@
1CA¼ MGÞx

MGÞy
MGÞz

8><>:
9>=>;

(f)

Expanding and collecting terms yield the time rates of change of the flywheel spins (relative to the spacecraft) in terms of

those of the spacecraft absolute angular velocity components,

_ω 1ð Þ ¼MGÞx
I

+
B�C

I
ωyωz� 1 +

A

I
+ 2

J

I

� �
_ωx +ω

2ð Þωz�ω 3ð Þωy

_ω 2ð Þ ¼MGÞy
I

+
C�A

I
ωxωz� 1 +

B

I
+ 2

J

I

� �
_ωy +ω

3ð Þωx�ω 1ð Þωz

_ω 3ð Þ ¼MGÞz
I

+
A�B

I
ωxωy� 1 +

C

I
+ 2

J

I

� �
_ωz +ω

1ð Þωy�ω 2ð Þωx

(g)
EXAMPLE 12.13
A communication satellite is in a circular earth orbit of period T. The body z axis lies on the outward radial from the earth’s

center to the spacecraft, so the angular velocity about the body y axis is 2π/T. The angular velocities about the body x and z
axes are zero. The attitude control system consists of three momentumwheels 1, 2, and 3 aligned with the principal x, y, and
z axes of the satellite. A variable torque is applied to each wheel by its own electric motor. At time t ¼ 0, the angular

velocities of the three wheels relative to the spacecraft are all zero. A small, constant environmental torque M0 acts on

the spacecraft. Determine the axial torques C(1), C(2), and C(3) that the three motors must exert on their wheels so that

the angular velocity ω of the satellite will remain constant. The moment of inertia tensors of the reaction wheels about

their centers of mass are given by Eq. (a) of Example 12.12 (Fig. 12.26).

Solution
The absolute angular velocity vector of the xyz frame is given by

ω¼ω0 ĵ (a)
. 12.26

ree-axis stabilized satellite.
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where ω0 ¼ 2π/T, a constant. At any instant, the absolute angular velocities of the three reaction wheels are, accordingly,

ω 1ð Þ ¼ω 1ð Þ̂i+ω0 ĵ

ω 2ð Þ ¼ω 2ð Þ ĵ+ω0 ĵ

ω 3ð Þ ¼ω 3ð Þk̂+ω0 ĵ

(b)

From Eq. (a), it is clear that ωx¼ωz¼ _ωx¼ _ωy¼ _ωz¼ 0. Therefore, Eqs. (g) of Example 12.12 become, for the case at

hand,

_ω 1ð Þ ¼MGÞx
I

+
B�C

I
�ω0 � 0ð Þ� 1 +

A

I
+ 2

J

I

� �
� 0ð Þ +ω 2ð Þ � 0ð Þ�ω 3ð Þ �ω0

_ω 2ð Þ ¼MGÞy
I

+
A�C

I
� 0ð Þ � 0ð Þ� 1 +

B

I
+ 2

J

I

� �
� 0ð Þ+ω 3ð Þ � 0ð Þ�ω 1ð Þ � 0ð Þ

_ω 3ð Þ ¼MGÞz
I

+
A�B

I
� 0ð Þ �ω0� 1 +

C

I
+ 2

J

I

� �
� 0ð Þ +ω 1ð Þ �ω0�ω 2ð Þ � 0ð Þ

which reduce to the following set of three first-order differential equations:

_ω 1ð Þ +ω0ω
3ð Þ ¼MGÞx

I

_ω 2ð Þ ¼MGÞy
I

_ω 3ð Þ �ω0ω
1ð Þ ¼MGÞz

I

(c)

Eq. (c)2 implies that ω(2) ¼MG)yt/I + constant, and since ω(2) ¼ 0 at t ¼ 0, this means that for time t thereafter,

ω 2ð Þ ¼MGÞy
I

t (d)

Differentiating Eq. (c)3 with respect to t and solving for _ω 1ð Þ yields _ω 1ð Þ ¼ €ω 3ð Þ=ω0. Substituting this result into Eq. (c)1
we get

€ω 3ð Þ +ω0
2ω 3ð Þ ¼ω0MGÞx

I

The well-known solution of this familiar differential equation is

ω 3ð Þ ¼ a cosω0t+ b sinω0t+
MGÞx
Iω0

where a and b are constants of integration. According to the problem statement, ω(3) ¼ 0 when t ¼ 0. This initial condition

requires a ¼ �MG)x/ω0I, so that

ω 3ð Þ ¼ b sinω0t+
MGÞx
Iω0

1� cosω0tð Þ (e)

From this, we obtain _ω 3ð Þ ¼ bω0 cosω0t+ MGÞx=I
� �

sinω0t, which, when substituted into Eq. (c)3, yields

ω 1ð Þ ¼ b cosω0t+
MGÞx
Iω0

sinωot�MGÞz
Iω0

(f)

Since ω(1) ¼ 0 at t ¼ 0, this implies b ¼ MG)z/Iω0. In summary, therefore, the angular velocities of wheels 1, 2, and 3 rel-

ative to the satellite are

ω 1ð Þ ¼MGÞx
Iω0

sinωot+
MGÞz
Iω0

cosω0t�1ð Þ

ω 2ð Þ ¼MGÞy
I

t

ω 3ð Þ ¼MGÞz
Iω0

sinωot+
MGÞx
Iω0

1� cosω0tð Þ

(g)
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The angular momenta of the reaction wheels are

H
1ð Þ
G1
¼ Iω 1ð Þ

x î+ Jω 1ð Þ
y ĵ+ Jω 1ð Þ

z k̂

H
2ð Þ
G2
¼ Jω 2ð Þ

x î+ Iω 2ð Þ
y ĵ+ Jω 2ð Þ

z k̂

H
3ð Þ
G3
¼ Jω 3ð Þ

x î+ Jω 3ð Þ
y ĵ+ Iω 3ð Þ

z k̂

(h)

According to Eq. (b), the components of the flywheels’ angular velocities are

ω 1ð Þ
x ¼ω 1ð Þ ω 1ð Þ

y ¼ω0 ω 1ð Þ
z ¼ 0

ω 2ð Þ
x ¼ 0 ω 2ð Þ

y ¼ω 2ð Þ +ω0 ω 2ð Þ
z ¼ 0

ω 3ð Þ
x ¼ 0 ω 3ð Þ

y ¼ω0 ω 3ð Þ
z ¼ω 3ð Þ

so that Eq. (h) becomes

H
1ð Þ
G1
¼ Iω 1ð Þ̂i+ Jω0 ĵ

H
2ð Þ
G2
¼ I ω 2ð Þ +ω0

� �̂
j

H
3ð Þ
G3
¼ Jω0 ĵ+ Iω 3ð Þk̂

(i)

Substituting Eq. (g) into these expressions yields the angular momenta of the wheels as a function of time,

H
1ð Þ
G1
¼ MGÞx

ω0

sinω0t+
MGÞz
ω0

cosω0t�1ð Þ
 �

î+ Jω0 ĵ

H
2ð Þ
G2
¼ MGÞyt+ Iω0

h î
j

H
3ð Þ
G3
¼ Jω0 ĵ+

MGÞz
ω0

sinω0t+
MGÞx
ω0

1� cosω0tð Þ
 �

k̂

(j)

The torque on the reaction wheels is found by applying the Euler equation to each one. Thus, for wheel 1

MG1
Þnet¼

dH
1ð Þ
G1

dt

!
rel

+ω�H
1ð Þ
G1

¼ MGÞx cosω0t�MGÞx sinω0t
� �̂

i+ MGÞx 1� cosω0tð Þ�MGÞx sinω0t
� �

k̂

Since the axis of wheel 1 is in the x direction, the torque is the x component of this moment (the z component being a

gyroscopic bending moment),

C 1ð Þ ¼MGÞx cosω0t�MGÞz sinω0t

For wheel 2,

MG2
Þnet¼

dH
2ð Þ
G2

dt

!
rel

+ω�H
2ð Þ
G2
¼MGÞy ĵ

Thus,

C 2ð Þ ¼MGÞy
Finally, for wheel 3,

MG3
Þnet¼

dH
3ð Þ
G3

dt

!
rel

+ω�H
3ð Þ
G3

¼ MGÞx 1� cosω0tð Þ +MGÞz sinω0t
� �̂

i+ MGÞx sinω0t+MGÞz cosω0t
� �

k̂

For this wheel, the torque direction is the z axis, so

C 3ð Þ ¼MGÞx sinω0t+MGÞz cosω0t
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The external torques on the spacecraft of the previous example may be due to thruster misalignment

or they may arise from environmental effects such as gravity gradients, solar pressure, or interaction

with the earth’s magnetic field. The example assumed that these torques were constant, which is the

simplest means of introducing their effects, but they actually vary with time. In any case, their mag-

nitudes are extremely small, typically<10�3N m for ordinary-sized, unmanned spacecraft. Eq. (g)2 of

the example reveals that a small torque normal to the satellite’s orbital plane will cause the angular

velocity of momentum wheel 2 to slowly but constantly increase. Over a long-enough period of time,

the angular velocity of the gyro might approach its design limits, whereupon it is said to be saturated. At

that point, attitude jets on the satellite would have to be fired to produce a torque around the y axis while
the wheel is “caged” (i.e., its angular velocity reduced to zero or to its nonzero bias value). Finally, note

that if all of the external torques were zero, none of the momentum wheels in the example would be

required. The constant angular velocity ω¼ 2π=Tð Þ̂j of the vehicle, once initiated, would continue

unabated.

So far, we have dealt with momentum wheels, which are characterized by the fact that their axes are

rigidly aligned with the principal axes of the spacecraft, as shown in Fig. 12.27. The speed of the elec-

trically driven wheels is varied to produce the required rotation rates of the vehicle in response to ex-

ternal torques. Depending on the spacecraft, the nominal speed of a momentumwheel may be from zero

to several thousand revolutions per minute.

Momentum wheels that are free to pivot on one or more gimbals are called control moment gyros.

Fig. 12.28 illustrates a double-gimbaled control moment gyro. These gyros spin at several thousand

revolutions per minute. The motor-driven speed of the flywheel is constant, and moments are exerted

on the vehicle when torquers (electric motors) tilt the wheel about a gimbal axis. The torque direction is

normal to the gimbal axis.

Set n ¼ 1 in Eq. (12.140) and replace i with w (representing “wheel”) to obtain

HGf g¼ I
vð Þ
G

h i
ωf g + I

wð Þ
Gw

h i
ωf g + ω wð Þ

rel

n o� �
(12.144)

The relative angular velocity of the rotor is

ω wð Þ
rel ¼ωp +ωn +ωs (12.145)
FIG. 12.27

Momentum wheel aligned with a principal body axis.



FIG. 12.28

Two-gimbal control moment gyro.
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whereωp,ωn, andωs are the precession, nutation, and spin angular velocities of the gyro relative to the

vehicle. Substituting Eq. (12.145) into Eq. (12.144) yields

HGf g¼ I
vð Þ
G

h i
ωf g+ I

wð Þ
Gw

h i
ω +ωp +ωn +ωs

� �
(12.146)

The spin rate of the gyro is three or more orders of magnitude greater than any of the other rates.

That is, under conditions in which a control moment gyro is designed to operate,

ωsk k≫ ωk k ωsk k≫ ωp

�� �� ωsk k≫ ωp

�� ��
Therefore,

HGf g� I
vð Þ
G

h i
ωf g+ I

wð Þ
Gw

h i
ωsf g (12.147)

Since the spin axis of a gyro is an axis of symmetry, about which the moment of inertia is C(w), this can

be written as

HGf g¼ I
vð Þ
G

h i
ωf g +C wð Þωs n̂sf g (12.148)

where

I
vð Þ
G

h i
¼

A 0 0

0 B 0

0 0 C

24 35
and n̂s is the unit vector along the spin axis, as illustrated in Fig. 12.29. Relative to the body frame axes

of the spacecraft, the components of n̂s appear as follows:

n̂s¼ sin θ cos ϕ̂i+ sin θ sinϕĵ+ cos θ k̂ (12.149)



FIG. 12.29

Inclination angles of the spin vector of a gyro.
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Thus, Eq. (12.148) becomes

HGf g¼
A 0 0

0 B 0

0 0 C

264
375 ωx

ωy

ωz

8><>:
9>=>;+C wð Þωs

sin θ cosϕ

sin θ sinϕ

cos θ

8><>:
9>=>;¼

Aωx +C
wð Þωs sin θ cosϕ

Bωy +C
wð Þωs sin θ sinϕ

Cωz +C
wð Þωs cos θ

8><>:
9>=>; (12.150)

It follows that

d

dt
HGf g¼ d

dt

Aωx +C
wð Þωs sin θ cosϕ

Bωy +C
wð Þωs sin θ sinϕ

Cωz +C
wð Þωs cos θ

8><>:
9>=>;+

ωx

ωy

ωz

8><>:
9>=>;�

Aωx +C
wð Þωs sin θ cosϕ

Bωy +C
wð Þωs sin θ sinϕ

Cωz +C
wð Þωs cos θ

8><>:
9>=>; (12.151)

Expanding the right-hand side, collecting terms, and setting the result equal to the net external moment,

we find

A _ωx +C
wð Þωs

_θ cosϕcosθ�C wð Þωs
_ϕ sinϕsinθ +C wð Þ _ωs cosϕsinθ

+ C wð Þωs cosθ +Cωz

� �
ωy� C wð Þωs sinϕsinθ +Bωy

� �
ωz¼MGÞx

(12.152a)

B _ωy +C
wð Þωs

_θ sinϕcosθ +C wð Þωs
_ϕ cosϕsinθ +C wð Þ _ωs sinϕsinθ

� C wð Þωs cosθ +Cωz

� �
ωx + C wð Þωs cosϕsinθ +Aωx

� �
ωz¼MGÞy

(12.152b)

C _ωz +C
wð Þωs

_θ sinθ +C wð Þ _ωs cosθ� C wð Þωs cosϕsinθ +Aωx

� �
ωy

+ C wð Þωs sinϕsinθ +Bωy

� �
ωx¼MGÞz

(12.152c)

Additional gyros are accounted for by adding the spin inertia, spin rate, and inclination angles for

each one into Eqs. (12.152).
EXAMPLE 12.14
A satellite is in torque-freemotion,MG)net ¼ 0. A nongimbaled gyro (momentumwheel) is alignedwith the vehicle’s x axis

and is spinning at the rate ωs)0. The spacecraft angular velocity isω¼ωx̂i. If the spin of the gyro is increased at the rate _ωs,

find the angular acceleration of the spacecraft.

Solution
Using Fig. 12.29 as a guide, we set ϕ ¼ 0 and θ ¼ 90° to align the spin axis with the x axis. Since there is no gimbaling,
_θ ¼ _ϕ¼ 0. Eqs. (12.152) then yield
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A _ωx +C
wð Þ _ωs¼ 0

B _ωy¼ 0

C _ωz¼ 0

Clearly, the angular velocities around the y and z axes remain zero, whereas

_ωx ¼C wð Þ

A
_ωs

Thus, a change in the vehicle’s roll rate around the x axis can be initiated by accelerating the momentum wheel in the

opposite direction (see Example 12.10).
EXAMPLE 12.15
A satellite is in torque-free motion. A control moment gyro, spinning at the constant rate ωs, is gimbaled about the space-

craft y and z axes, with ϕ ¼ 0 and θ ¼ 90° (cf. Fig. 12.29). The spacecraft angular velocity isω¼ωzk̂. If the spin axis of the

gyro, initially along the x direction, is rotated around the y axis at the rate _θ , what is the resulting angular acceleration of the
spacecraft?

Solution
Substituting ωx¼ωy¼ _ωy¼ _ϕ¼ 0 and θ ¼ 90° into Eqs. (12.152a)–(12.152c) gives

A _ωx¼ 0

B _ωy +C
wð Þωs ωz + _ϕ

� �¼ 0

C _ωz�H wð Þ _θ ¼ 0

Thus, the components of vehicle angular acceleration are

_ωx¼ 0 _ωy¼�C
wð Þ

B
ωs ωz + _ϕ
� �

_ωz¼C wð Þ

C
ωs

_θ

We see that pitching the gyro at the rate _θ around the vehicle y axis alters only ωz, leavingωx unchanged. However, to keep

ωy ¼ 0 clearly requires that _ϕ¼�ωz. In other words, for the control moment gyro to control the angular velocity about only

one vehicle axis, it must therefore be able to precess around that axis (the z axis in this case). That is why the control mo-

ment gyro must have two gimbals.
12.10 GRAVITY GRADIENT STABILIZATION
Consider a satellite in circular orbit, as shown in Fig. 12.30. Let r be the position vector of a mass

element dm relative to the center of attraction, R the position vector of the center of mass G, and ρ
the position vector of dm relative to G. The force of gravity on dm is

dFg¼�GMdm

r3
r¼�μ r

r3
dm (12.153)

whereM is the mass of the central body, and μ ¼ GM. The net moment of the gravitational force around

G is

MGÞnet¼
ð
m

ρ�dFgdm (12.154)



FIG. 12.30

Rigid satellite in a circular orbit. xyz is the principal body frame.
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Since r ¼ R + ρ and

R¼Rx̂i+Ry ĵ +Rzk̂

ρ¼ x̂i+ ŷj+ zk̂
(12.155)

we have

ρ�dFg¼�μdm
r3

ρ� R+ ρð Þ¼�μdm
r3

ρ�R¼�μdm
r3

î ĵ k̂

x y z
Rx Ry Rz

24 35
Thus,

ρ�dFg¼�μdm
r3

Rzy�Ryz
� �̂

i�μ
dm

r3
Rxz�Rzxð Þ̂j�μ

dm

r3
Ryx�Rxy
� �

k̂

Substituting this back into Eq. (12.154) yields

MGÞnet¼ �μRz

ð
m

y

r3
dm+ μRy

ð
m

z

r3
dm

0@ 1Aî+ �μRz

ð
m

z

r3
dm+ μRz

ð
m

x

r3
dm

0@ 1Aĵ

+ �μRy

ð
m

x

r3
dm+ μRx

ð
m

y

r3
dm

0@ 1Ak̂

or

MGÞx¼�μRz

ð
m

y

r3
dm+ μRy

ð
m

z

r3
dm

MGÞy¼�μRx

ð
m

z

r3
dm+ μRz

ð
m

x

r3
dm

MGÞz¼�μRy

ð
m

x

r3
dm+ μRz

ð
m

y

r3
dm

(12.156)
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Now, since kρk≪ kRk, it follows from Eq. (7.20) that

1

r3
¼ 1

R3
� 3

R5
R � ρ

or

1

r3
¼ 1

R3
� 3

R5
Rxx +Ryy +Rzz
� �

Therefore, ð
m

x

r3
dm¼ 1

R3

ð
m

xdm�3Rx

R5

ð
m

x2 dm�3Ry

R5

ð
m

xydm�3Rz

R5

ð
m

xzdm

But the center of mass lies at the origin of the xyz axes, which are principal moments of inertia direc-

tions. That means ð
m

xdm¼
ð
m

xydm¼
ð
m

xzdm¼ 0

so that ð
m

x

r3
dm¼�3Rx

R5

ð
m

x2dm (12.157)

In a similar fashion, we can show that ð
m

y

r3
dm¼�3Ry

R5

ð
m

y2dm (12.158)

and ð
m

z

r3
dm¼�3Rz

R5

ð
m

z2 dm (12.159)

Substituting these last three expressions into Eq. (12.156) leads to

MGÞx¼
3μRyRz

R5

ð
m

y2dm�
ð
m

z2dm

0@ 1A
MGÞy¼

3μRxRz

R5

ð
m

z2dm�
ð
m

x2dm

0@ 1A
MGÞz¼

3μRxRy

R5

ð
m

x2dm�
ð
m

y2 dm

0@ 1A
(12.160)

From Section 11.5, we recall that the moments of inertia are defined as

A¼
ð
m

y2dm+

ð
m

z2dm B¼
ð
m

x2dm+

ð
m

z2dm C¼
ð
m

x2dm+

ð
m

y2dm (12.161)
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from which we may write

B�A¼
ð
m

x2dm�
ð
m

y2dm A�C¼
ð
m

z2dm�
ð
m

x2dm C�B¼
ð
m

y2dm�
ð
m

z2dm

It follows that Eq. (12.160) reduce to

MGÞx¼
3μRyRz

R5
C�Bð Þ

MGÞy¼
3μRxRz

R5
A�Cð Þ

MGÞz¼
3μRxRy

R5
B�Að Þ

(12.162)

These are the components, in the spacecraft body frame, of the gravitational torque produced by the

variation of the earth’s gravitational field over the volume of the spacecraft. To get an idea of these

torque magnitudes, note first of all that Rx/R, Ry/R, and Rz/R are the direction cosines of the position

vector of the center of mass, so that their magnitudes do not exceed 1. For a satellite in a low earth orbit

of radius 6700 km, 3μ/R3 � 4(10�6) s�2, which is therefore the maximum order of magnitude of the

coefficients of the inertia terms in Eq. (12.162). The moments of inertia of the space shuttle were

on the order of 106 kg �m2, so the gravitational torques on that large vehicle were on the order of 1 N m.

Substituting Eq. (12.162) into Euler’s equations of motion (Eq. 11.72b), we get

A _ωx + C�Bð Þωyωz¼ 3μRyRz

R5
C�Bð Þ

B _ωy + A�Cð Þωzωx¼ 3μRxRz

R5
A�Cð Þ

C _ωz + B�Að Þωxωy¼ 3μRxRy

R5
B�Að Þ

(12.163)

Now consider the local vertical/local horizontal orbital reference frame shown in Fig. 12.31. It is

actually the Clohessy-Wiltshire frame of Chapter 7, with the axes relabeled. The z0 axis points radially
FIG. 12.31

Orbital reference frame x0y0z0 attached to the center of mass of the satellite.



FIG. 12.32

Satellite body frame slightly misaligned with the orbital frame x0y0z0.
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outward from the center of the earth, the x0 axis is in the direction of the local horizon, and the y0

axis completes the right-handed triad by pointing in the direction of the orbit normal. This frame

rotates around the y0 axis with an angular velocity equal to the mean motion n of the circular orbit.

Suppose we align the satellite’s principal body frame axes xyz with x0y0z0, respectively. When the body

x axis is aligned with the x0 direction, it is called the roll axis. The body y axis, when aligned with the y0

direction, is the pitch axis. The body z axis, pointing outward from the earth in the z0 direction, is the
yaw axis. These directions are illustrated in Fig. 12.32.With the spacecraft aligned in this way, the body

frame components of the inertial angular velocity vector ω are ωx ¼ ωz ¼ 0 and ωy ¼ n. The compo-

nents of the position vector R are Rx ¼ Ry ¼ 0 and Rz ¼ R. Substituting these data into Eq. (12.163)

yields

_ωx¼ _ωy¼ _ωz¼ 0

That is, the spacecraft will orbit the planet with its principal axes remaining aligned with the orbital

frame. If this motion is stable under the influence of gravity alone, without the use of thrusters, gyros, or

other devices, then the spacecraft is gravity-gradient-stabilized. We need to assess the stability of this

motion so that we can determine how to orient a spacecraft to take advantage of this type of passive

attitude stabilization.

Let the body frame xyz be slightly misaligned with the orbital reference frame, so that the yaw,

pitch, and roll angles between the xyz axes and the x0y0z0 axes, respectively, are very small, as suggested

in Fig. 12.32. The absolute angular velocity ω of the spacecraft is the angular velocity ωrel relative to

the orbital reference frame plus the inertial angular velocity Ω of the x0y0z0 frame,

ω¼ωrel +Ω

The components of ωrel in the body frame are found using the yaw, pitch, and roll relations

(Eq. 11.129). In so doing, it must be kept in mind that all angles and rates are assumed to be so small

that their squares and products may be neglected. Recalling that sinα ¼ α and cosα ¼ 1, when α≪ 1,

we therefore obtain
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ωrelÞx¼ωroll�ωyaw sin θpitch
zfflfflfflffl}|fflfflfflffl{¼θpitch

¼ _ψ roll� _ϕyawθpitch

zfflfflfflfflffl}|fflfflfflfflffl{neglect product

¼ _ψ roll (12.164)

ωrelÞy¼ωyaw cos θpitch
zfflfflfflfflffl}|fflfflfflfflffl{¼1

sinψ roll

zfflfflfflffl}|fflfflfflffl{¼ψ roll

+ωpitch cosψ roll

zfflfflfflffl}|fflfflfflffl{¼1

¼ _ϕyawψ roll

zfflfflfflfflffl}|fflfflfflfflffl{neglect product

+ _θpitch¼ _θpitch (12.165)

ωrelÞz¼ωyaw cos θpitch
zfflfflfflfflffl}|fflfflfflfflffl{¼1

cosψ roll

zfflfflfflffl}|fflfflfflffl{¼1

�ωpitch sinψ roll

zfflfflfflffl}|fflfflfflffl{¼ψ roll

¼ _ϕyaw� _θpitchψ roll

zfflfflfflfflffl}|fflfflfflfflffl{neglect product

¼ _ϕyaw (12.166)

The orbital frame’s angular velocity is the mean motion n of the circular orbit, so that

Ω¼ n̂j
0

To obtain the orbital frame’s angular velocity components along the body frame, we must use the trans-

formation rule

Ωf gx¼ Q½ �x0x Ωf gx0 (12.167)

where [Q]x0x is given by Eq. (11.119). (Keep in mind that x0y0z0 are playing the role of XYZ in

Fig. 11.27.) Using the above small-angle approximations in Eq. (11.119) leads to

Q½ �x0x¼
1 ϕyaw �θpitch

�ϕyaw 1 ψ roll

θpitch �ψ roll 1

264
375

With this, Eq. (12.167) becomes

Ωx

Ωy

Ωz

8><>:
9>=>;¼

1 ϕyaw �θpitch
�ϕyaw 1 ψ roll

θpitch �ψ roll 1

264
375 0

n

0

8><>:
9>=>;¼

nϕyaw

n

�nψ roll

8><>:
9>=>;

Now we can calculate the components of the satellite’s inertial angular velocity along the body frame

axes,

ωx¼ωrelÞx +Ωx¼ _ψ roll + nϕyaw

ωy¼ωrelÞy +Ωy¼ _θpitch + n

ωz¼ωrelÞz +Ωz¼ _ϕyaw�nψ roll

(12.168)

Differentiating these with respect to time, remembering that the meanmotion n is constant for a circular
orbit, gives the components of inertial angular acceleration in the body frame,

_ωx¼ €ψ roll + n _φyaw

_ωy¼ €θpitch

_ωz¼ €ϕyaw�n _ψ roll

(12.169)

The position vector of the satellite’s center of mass lies along the z0 axis of the orbital frame,

R¼Rk̂
0



69112.10 GRAVITY GRADIENT STABILIZATION
To obtain the components of R in the body frame, we once again use the transformation matrix [Q]x0x,

Rx

Ry

Rz

8<:
9=;¼

1 ϕyaw �θpitch
�ϕyaw 1 ψ roll

θpitch �ψ roll 1

24 35 0

0

R

8<:
9=;¼

�Rθpitch
Rψ roll

R

8<:
9=; (12.170)

Substituting Eqs. (12.168)–(12.170), together with n¼ ffiffiffiffiffiffiffiffiffiffi
μ=R3

p
into Eq. (12.163) and setting

A¼ Iroll B¼ Ipitch C¼ Iyaw (12.171)

yields

Iroll €ψ roll + n _ϕyaw

� �
+ Iyaw� Ipitch
� �

_θpitch + n
� �

_ϕyaw�nψ roll

� �¼ 3 Iyaw� Ipitch
� �

n2ψ roll

Ipitch€θpitch + Iroll� Iyaw
� �

_ψ roll + nϕyaw

� �
_ϕyaw�nψ roll

� � ¼�3 Iroll� Iyaw
� �

n2θpitch
Iyaw €ϕyaw�n _ψ roll

� �
+ Ipitch� Iroll
� �

_θpitch + n
� �

_ψ roll + nϕyaw

� �¼�3 Ipitch� Iroll
� �

n2θpitchψ roll

Expanding terms and retaining terms at most linear in all angular quantities and their rates yields

Iyaw €ϕyaw + Ipitch� Iroll
� �

n2ϕyaw + Ipitch� Iroll� Iyaw
� �

n _ψ roll¼ 0 (12.172)

Iroll €ψ roll + Iroll� Ipitch + Iyaw
� �

n _ϕyaw + 4 Ipitch� Iyaw
� �

n2ψ roll¼ 0 (12.173)

Ipitch€θpitch + 3 Iroll� Iyaw
� �

n2θpitch ¼ 0 (12.174)

These are the differential equations governing the influence of gravity gradient torques on the small

angles and rates of misalignment of the body frame with the orbital frame.

Eq. (12.174), governing the pitching motion around the y0 axis, is not coupled to the other two equa-
tions. We make the classical assumption that the solution is of the form

θpitch¼Pept (12.175)

where P and p are constants, and P is the amplitude of the small disturbance that initiates the pitching

motion. Substituting Eq. (12.175) into Eq. (12.174) yields [Ipitchp
2 + 3(Iroll � Iyaw)n

2]Pept ¼ 0 for all

values of t, which implies that the bracketed term must vanish, and that means pmust have either of the

two values

p1,2¼�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

Iroll� Iyaw
� �

n2

Ipitch

s
i¼ ffiffiffiffiffiffiffi�1p� �

Thus,

θpitch¼P1e
p1t +P2e

p2t

yields the stable, small-amplitude, steady-state harmonic oscillator solution only if p1 and p2 are imag-

inary. That is, if

Iroll > Iyaw For stability in pitch (12.176)

The stable pitch oscillation frequency is

ωf

�
pitch
¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Iroll� Iyaw

Ipitch

s
(12.177)
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(If Iyaw > Iroll, then p1 and p2 are both real, one positive, the other negative. The positive root causes

θpitch!∞, which is the undesirable, unstable case.)

Let us now turn our attention to Eqs. (12.172) and (12.173), which govern yaw and roll motions

under gravity gradient torque. Again, we assume the solution is exponential in form,

ϕyaw¼ Yeqt ψ roll¼ Reqt (12.178)

Substituting these into Eqs. (12.172) and (12.173) yields

Ipitch� Iroll
� �

n2 + Iyawq
2

� �
Y + Ipitch� Iroll� Iyaw

� �
nq

� �
R ¼ 0

Iroll� Ipitch + Iyaw
� �

nq
� �

Y + 4 Ipitch� Iyaw
� �

n2 + Irollq
2

� �
R¼ 0

In the interest of simplification, we can factor Iyaw out of the first equation and Iroll out of the second one
to get

Ipitch� Iroll
Iyaw

n2 + q2
� �

Y +
Ipitch� Iroll

Iyaw
�1

� �
nqR ¼ 0

1� Ipitch� Iyaw
Iroll

� �
nqY + 4

Ipitch� Iyaw
Iroll

n2 + q2
� �

R¼ 0

(12.179)

Let

kY ¼ Ipitch� Iroll
Iyaw

kR¼ Ipitch� Iyaw
Iroll

(12.180)

It is easy to show from Eqs. (12.161), (12.171), and (12.180) that

kY ¼

ð
m

x2dm=

ð
m

y2dm

� �
�1ð

m

x2dm=

ð
m

y2dm

� �
+ 1

kR¼

ð
m

z2dm=

ð
m

y2dm

� �
�1ð

m

z2dm=

ð
m

y2dm

� �
+ 1

which means

kYj j< 1 kRj j< 1

Using the definitions in Eqs. (12.180), we can write Eq. (12.179) more compactly as

kYn
2 + q2ð ÞY + kY�1ð ÞnqR¼ 0

1�kRð ÞnqY + 4kRn
2 + q2ð ÞR¼ 0

or, using matrix notation,

kYn
2 + q2 kY�1ð Þnq

1�kRð Þnq 4kRn
2 + q2

 �
Y
R

� �
¼ 0

0

� �
(12.181)

To avoid the trivial solution (Y ¼ R ¼ 0), the determinant of the coefficient matrix must be zero.

Expanding the determinant and collecting terms yields the characteristic equation for q,

q4 + bn2q2 + cn4¼ 0 (12.182)

where

b¼ 3kR + kYkR + 1 c¼ 4kYkR (12.183)
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This quartic equation has four roots which, when substituted back into Eq. (12.178), yields

ϕyaw¼ Y1e
q1 t +Y2e

q2t + Y3e
q3 t +Y4e

q4t

ψ roll¼R1e
q1t +R2e

q2 t +R3e
q3t +R4e

q4t

For these solutions to remain finite in time, the roots q1, … , q4 must all be negative (solution decays to

zero) or imaginary (steady oscillation at the initial small amplitude).

To reduce Eq. (12.182) to a quadratic equation, let us introduce a new variable λ and write

q¼�n
ffiffiffi
λ
p

(12.184)

Then, Eq. (12.182) becomes

λ2 + bλ + c¼ 0 (12.185)

the familiar solution of which is

λ1¼�1
2

b +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4c
p� �

λ2¼�1
2

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4c
p� �

(12.186)

To guarantee that q in Eq. (12.184) does not take a positive value, we must require that λ be real and
negative (so q will be imaginary). For λ to be real requires that b> 2

ffiffiffi
c
p

, or

3kR + kYkR + 1> 4
ffiffiffiffiffiffiffiffiffi
kYkR

p
(12.187)

For λ to be negative requires that b2 > b2 � 4c, which will be true if c > 0. That is,

kYkR > 0 (12.188)

Eqs. (12.187) and (12.188) are the conditions required for yaw and roll stability under gravity gra-

dient torques, to which we must add Eq. (12.176) for pitch stability. Observe that we can solve

Eq. (12.180) to obtain

Iyaw¼ 1�kR
1�kYkR

Ipitch Iroll¼ 1�kY
1�kYkR

Ipitch (12.189)

By means of these relationships, the pitch stability criterion, Iroll/Iyaw > 1, becomes

1�kY
1�kR

> 1

In view of the fact that jkR j < 1, this means

kY < kR (12.190)

Fig. 12.30 shows those regions I and II on the kY � kR plane in which all three stability criteria

(Eqs. (12.187), (12.188), and (12.190)) are simultaneously satisfied, along with the requirement that

the three moments of inertia Ipitch, Iroll, and Iyaw are positive (Fig. 12.33).

In the small sliver of region I, kY < 0 and kR < 0; therefore, according to Eq. (12.189), Iyaw > Ipitch
and Iroll > Ipitch, which together with Eq. (12.176), yield Iroll > Iyaw > Ipitch. Remember that the gravity

gradient spacecraft is slowly “spinning” about the minor pitch axis (normal to the orbit plane) at an

angular velocity equal to the mean motion of the orbit. So this criterion makes the spacecraft a “mi-

nor-axis spinner,” the roll axis (flight direction) being the major axis of inertia. With energy dissipation,

we know that this orientation is not stable in the long run. On the other hand, in region II, kY and kR are



FIG. 12.33

Regions in which the values of kY and kR yield neutral stability in yaw, pitch, and roll of a gravity gradient satellite.
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both positive, so that Eq. (12.189) implies Ipitch > Iyaw and Ipitch > Iroll. Thus, along with the pitch

criterion (Iroll > Iyaw), we have Ipitch > Iroll > Iyaw. In this, the preferred, configuration, the gravity

gradient spacecraft is a “major-axis spinner” about the pitch axis, and the minor yaw axis is the

minor axis of inertia. It turns out that all the known gravity-gradient-stabilized moons of the solar

system, like the earth’s, whose “captured” rate of rotation equals the orbital period, are major-axis

spinners.

In Eq. (12.177), we presented the frequency of the gravity gradient pitch oscillation. For complete-

ness, we should also point out that the coupled yaw and roll motions have two oscillation frequencies,

which are obtained from Eqs. (12.184) and (12.186),

ωfyaw�roll
�
1,2
¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4c
p� �r

(12.190)

Recall that b and c are found in Eq. (12.183).

We have assumed throughout this discussion that the orbit of the gravity gradient satellite is cir-

cular. Kaplan (1976) shows that the effect of a small eccentricity turns up only in the pitching motion.

In particular, the natural oscillation expressed by Eq. (12.176) is augmented by a forced oscillation

term,

θpitch¼P1e
p1t +P2e

p2 t +
2e sin nt

3 Iroll� Iyaw
� �

=Ipitch�1
(12.191)

where e is the (small) eccentricity of the orbit. From this, we see that there is a pitch resonance. When

(Iroll � Iyaw)/Ipitch approaches 1/3, the amplitude of the last term grows without bound.
EXAMPLE 12.16
A uniform, monolithic 10,000-kg slab, having the dimensions shown in Fig. 12.34, is in a circular low earth orbit. Deter-

mine the orientation of the satellite in its orbit for gravity gradient stabilization, and compute the periods of the pitch and

yaw/roll oscillations in terms of the orbital period T.



FIG. 12.34

Parallelepiped satellite.
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According to Fig. 11.9C, the principal moments of inertia around the xyz axes through the center of mass are

A¼ 10,000

12
12 + 92
� �¼ 68,333 kg �m2

B¼ 10,000

12
32 + 92
� �¼ 75,000 kg �m2

C¼ 10,000

12
32 + 12
� �¼ 8333:3 kg �m2

Solution
Let us first determine whether we can stabilize this object as a minor-axis spinner. In that case,

Ipitch¼C¼ 8333:3 kg �m2 Iyaw¼A¼ 68,333 kg �m2 Iroll¼B¼ 75,000 kg �m2

Since Iroll > Iyaw, the satellite would be stable in pitch. To check yaw/roll stability, we first compute

kY ¼ Ipitch� Iroll
Iyaw

¼�0:97561 kR¼ Ipitch� Iyaw
Iroll

¼�0:8000

We see that kYkR > 0, which is one of the two requirements. The other one is found in Eq. (12.187), but in this case

1 + 3kR + kYkR�4
ffiffiffiffiffiffiffiffiffi
kYkR

p
¼�4:1533< 0

so that the condition is not met. Hence, the object cannot be gravity-gradient-stabilized as a minor-axis spinner. As a major-

axis spinner, we must have

Ipitch¼B¼ 75,000 kg �m2 Iyaw¼C¼ 8333:3 kg �m2 Iroll¼A¼ 68,333 kg �m2

Then Iroll > Iyaw, so the pitch stability condition is satisfied. Furthermore, since

kY ¼ Ipitch� Iroll
Iyaw

¼ 0:8000 kR ¼ Ipitch� Iyaw
Iroll

¼ 0:97561

we have

kYkR¼ 0:7805> 0

1 + 3kR + kYkR�4
ffiffiffiffiffiffiffiffiffi
kYkR
p ¼ 1:1735> 0

which means the two criteria for stability in the yaw and roll modes are met. The satellite should therefore be orbited as

shown in Fig. 12.32, with its minor axis aligned with the radial from the earth’s center, the plane abcd lying in the orbital

plane, and the body x axis aligned with the local horizon (Fig. 12.35).



FIG. 12.35

Orientation of the parallelepiped for gravity gradient stabilization.
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According to Eq. (12.177), the frequency of the pitch oscillation is

ωfpitch ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Iroll� Iyaw

Ipitch

s

¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
68,333�8333:3

75,000

r
¼ 1:5492n

where n is the mean motion. Hence, the period of this oscillation, in terms of that of the orbit, is

Tpitch¼ 2π

ωfpitch

¼ 0:6455
2π

n
¼ 0:6455T

For the yaw/roll frequencies, we use Eq. (12.190),

ωfyaw=roll

�
1
¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
b +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4c
p� �r

where
b¼ 1 + 3kR + kYkR¼ 4:7073 and c¼ 4kYkR¼ 3:122

Thus,

ωfyaw=roll

�
1
¼ 2:3015n

Likewise,

ωfyaw=roll

�
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
b+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4c
p� �r

¼ 1:977n

From these, we obtain

Tyaw=roll
�
1
¼ 0:5058T Tyaw=roll

�
2
¼ 0:4345T

Finally, observe that
Iroll� Iyaw

Ipitch
¼ 0:8

so that we are far from the pitch resonance condition that exists if the orbit has a small eccentricity.
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PROBLEMS

Section 12.2

12.1 An axisymmetric satellite has axial and transverse mass moments of inertia about axes through the mass

centerG of C ¼ 1200 kg �m2 and A ¼ 2600 kg �m2, respectively. If it is spinning at ωs ¼ 6 rad/s when it is

launched, determine its angular momentum. Precession occurs about the inertial Z axis.
{Ans.: ║HG║ ¼ 13,450 kg �m2/s}
A spacecraft is symmetric about its body-fixed z axis. Its principal mass moments of inertia are
12.2
A ¼ B ¼ 300 kg �m2 and C ¼ 500 kg �m2. The z axis sweeps out a cone with a total vertex angle of 10° as it
precesses around the angular momentum vector. If the spin velocity is 6 rad/s, compute the period of

precession.
{Ans.: 0.417 s}
A thin ring tossed into the air with a spin velocity ofωs has a very small nutation angle θ (in radians). What is
12.3
the precession rate ωp?
{Ans.: ωp ¼ 2ωs(1 + θ2/2), retrograde}
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12.4 For an axisymmetric rigid satellite,

IG½ � ¼
A 0 0

0 B 0

0 0 C

24 35¼ 1000 0 0

0 1000 0

0 0 5000

24 35kg �m2
It is spinning about the body z axis in torque-free motion, precessing around the angular momentum vectorH

at the rate of 2 rad/s. Calculate the magnitude of H.

{Ans.: 2000 kg �m2/s}
At a given instant, a box-shaped 500-kg satellite (in torque-free motion) has an absolute angular velocity
12.5
ω¼ 0:01̂i¼ :03̂j+ 0:02k̂ rad=sð Þ. Its moments of inertia about the principal body axes xyz are
A ¼ 385.4 kg �m2, B ¼ 416.7 kg �m2, and C ¼ 52.08 kg �m2, respectively. Calculate the magnitude of its

absolute angular acceleration.
{Ans.: 6.167(10�4) rad/s2}
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An 8-kg thin ring in torque-free motion is spinning with an angular velocity of 30 rad/s and a constant
12.6
nutation angle of 15°. Calculate the rotational kinetic energy if A ¼ B ¼ 0.36 kg �m2, C ¼ 0.72 kg �m2.
{Ans.: 370.5 J}
A rectangular block has an angular velocityω¼ 1:5ω0̂i+ 0:8ω0 ĵ+ 0:6ω0k̂, where ω0 has units of radians per
12.7
second.
(a) Determine the angular velocity ω of the block if it spins around the body z axis with the same rotational

kinetic energy.

(b) Determine the angular velocity ω of the block if it spins instead around the body z axis with the same

angular momentum.

{Ans.: (a) ω ¼ 1.31ω0; (b) ω ¼ 1.04ω0}
A solid right circular cylinder of mass 500 kg is set into torque-free motion with its symmetry axis initially
12.8
aligned with the fixed spatial line a-a. Due to an injection error, the vehicle’s angular velocity vector ω is
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misaligned 5° (the wobble angle) from the symmetry axis. Calculate the maximum angle ϕ between fixed

line a-a and the axis of the cylinder.
{Ans.: 30.96°}
Section 12.3
12.9 For a rigid axisymmetric satellite, the mass moment of inertia about its long axis is 1000 kg �m2, and the

moment of inertia about transverse axes through the center of mass is 5000 kg �m2. It is spinning about the

minor principal body axis in torque-free motion at 6 rad/s with the angular velocity lined up with the

angular momentum vector H. Over time, the energy degrades due to internal effects and the satellite is

eventually spinning about a major principal body axis with the angular velocity lined up with the angular

momentum vector H. Calculate the change in rotational kinetic energy between the two states.
{Ans.: �14.4 kJ}

12.10 Let the object in Example 11.11 be a highly dissipative torque-free satellite, whose angular velocity at the

instant shown is ω¼ 10̂i rad=s. Calculate the decrease in kinetic energy after it becomes, as eventually it

must, a major-axis spinner.
{Ans.: �0.487 J}
A dissipative torque-free cylindrical satellite has the initial spin state shown. A ¼ B ¼ 320 kg �m2 and
12.11
C ¼ 560 kg �m2. Calculate the magnitude of the angular velocity when it reaches its stable spin state.
{Ans.: 1.419 rad/s}
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Section 12.4
12.12 For a nonprecessing, dual-spin satellite, Cr ¼ 1000 kg �m2 and Cp ¼ 500 kg �m2. The angular velocity of

the rotor is 3k̂ rad=s and the angular velocity of the platform relative to the rotor is 1k̂ rad=s. If the relative
angular velocity of the platform is reduced to 0:5k̂ rad=s, what is the new angular velocity of the rotor?
{Ans.: 3.17 rad/s}
Section 12.6
12.13 For a rigid axisymmetric satellite, the mass moment of inertia about its long axis is 1000 kg �m2, and the

moment of inertia about transverse axes through the center of mass is 5000 kg �m2. It is initially spinning

about the minor principal body axis in torque-free motion atωs ¼ 0.1 rad/s, with the angular velocity lined

up with the angular momentum vector H0. A pair of thrusters exert an external impulsive torque on the

satellite, causing an instantaneous change ΔH of angular momentum in the direction normal toH0, so that

the new angular momentum isH1, at an angle of 20° toH0, as shown in the figure. How long does it take the

satellite to precess (cone) through an angle of 180° around H1?
{Ans.: 147.6 s}
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Section 12.7
12.14 A satellite is spinning at 0.01 rev/s. The moment of inertia of the satellite about the spin axis is

2000 kg �m2. Paired thrusters are located at a distance of 1.5 m from the spin axis. They deliver their thrust

in pulses, each thruster producing an impulse of 15 N s per pulse. At what rate will the satellite be spinning

after 30 pulses?
{Ans.: 0.1174 rev/s}
12.15 A satellite has moments of inertia A ¼ 2000 kg �m2, B ¼ 4000 kg �m2, and C ¼ 6000 kg �m2 about its

principal body axes xyz. Its angular velocity is ω¼ 0:1̂i+ 0:3̂j+ 0:5k̂ rad=sð Þ. If thrusters cause the angular
momentum vector to undergo the change ΔHG¼ 50̂i�100̂j+ 300k̂ kg �m2=sð Þ, what is the magnitude of

the new angular velocity?
{Ans.: 1.045 rad/s}
12.16 The body-fixed xyz axes are principal axes of inertia passing through the center of mass of a 300-kg

cylindrical satellite, which is spinning at 1 rev/s about the z axis. What impulsive torque about the y axis
must the thrusters impart to cause the satellite to precess at 5 rev/s?
{Ans.: 6740 N m s}
Section 12.8
12.17 A satellite is to be despun bymeans of a tangential release yo-yo mechanism consisting of twomasses, 3 kg

each, wound around the midplane of the satellite. The satellite is spinning around its axis of symmetry with

an angular velocity ωs ¼ 5 rad/s. The radius of the cylindrical satellite is 1.5 m and the moment of inertia

about the spin axis is C ¼ 300 kg �m2.
(a) Find the cord length and the deployment time to reduce the spin rate to 1 rad/s.

(b) Find the cord length and time to reduce the spin rate to zero.

{Ans.: (a) l ¼ 5.902 m, t ¼ 0.787 s; (b) l ¼ 7.228 m, t ¼ 0.964 s}
12.18 A cylindrical satellite of radius 1 m is initially spinning about the axis of symmetry at the rate of 2 rad/s

with a nutation angle of 15°. The principal moments of inertia are A ¼ B ¼ 30 kg �m2 and C ¼ 60 kg �m2.

An energy dissipation device is built into the satellite, so that it eventually ends up in pure spin around

the z axis.
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(a) Calculate the final spin rate about the z axis.
(b) Calculate the loss of kinetic energy.

(c) A tangential release yo-yo despin device is also included in the satellite. If the two yo-yo masses are

each 7 kg, what cord length is required to completely despin the satellite? Is it wrapped in the proper

direction in the figure?

{Ans.: (a) 2.071 rad/s; (b) 8.62 J; (c) 2.3 m}
Section 12.9

12.19 A communications satellite is in a geostationary equatorial orbit with a period of 24 h. The spin rate ωs

about its axis of symmetry is 1 rpm, and the moment of inertia about the spin axis is 550 kg �m2. The

moment of inertia about transverse axes through the mass centerG is 225 kg �m2. If the spin axis is initially

pointed toward the earth, calculate the magnitude and direction of the applied torqueMG required to keep

the spin axis pointed always toward the earth.
{Ans.: 0.00420 N m, about the negative x axis}
The moments of inertia of a satellite about its principal body axes xyz are A ¼ 1000 kg �m2,
12.20
B ¼ 600 kg �m2, and C ¼ 500 kg �m2, respectively. The moments of inertia of a momentum wheel at the

center of mass of the satellite and aligned with the x axis are Ix ¼ 20 kg �m2 and Iy ¼ Iz ¼ 6 kg �m2. The

absolute angular velocity of the satellite with the momentum wheel locked is ω0¼ 0:1̂i+ 0:05̂j rad=s:
Calculate the angular velocity ωf of the momentum wheel (relative to the satellite) required to reduce the x
component of the absolute angular velocity of the satellite to 0.003 rad/s.
{Ans.: 4.95 rad/s}
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A solid circular cylindrical satellite of radius 1 m, length 4 m, and mass 250 kg is in a circular earth orbit
12.21
with a period of 90 min. The cylinder is spinning at 0.001 rad/s (no precession) around its axis, which is

aligned with the y axis of the Clohessy-Wiltshire frame. Calculate the magnitude of the external torque

required to maintain this attitude.
{Ans.: �0:00014544̂i N mð Þ}
Section 12.10
12.22 A satellite has principal moments of inertia A ¼ 300 kg �m2, B ¼ 400 kg �m2, and C ¼ 500 kg �m2.

Determine the permissible orientations in a circular orbit for gravity gradient stabilization. Specify which

axes may be aligned in the pitch, roll, and yaw directions. Recall that, relative to a Clohessy-Wiltshire

frame at the center of mass of a satellite, yaw is about the x axis (outward radial from earth’s center), roll is

about the y axis (velocity vector), and pitch is about the z axis (normal to orbital plane).
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CHAPTER
ROCKET VEHICLE DYNAMICS
 13
13.1 INTRODUCTION
In previous chapters, we have made frequent reference to delta-v maneuvers of spacecraft. These re-

quire a propulsion system of some sort whose job is to throw vehicle mass (in the form of propellants)

overboard. Newton’s balance of momentum principle dictates that when mass is ejected from a system

in one direction, the mass left behind must acquire a velocity in the opposite direction. The familiar and

oft-quoted example is the rapid release of air from an inflated toy balloon. Another is that of a diver

leaping off a small boat at rest in the water, causing the boat to acquire a motion of its own. The un-

fortunate astronaut who becomes separated from his ship in the vacuum of space cannot with any

amount of flailing of arms and legs “swim” back to safety. If he has tools or other expendable objects

of equipment, accurately throwing them in the direction opposite to his spacecraft may do the trick.

Spewing compressed gas from a tank attached to his back through a nozzle pointed away from the

spacecraft would be a better solution.

The purpose of a rocket motor is to use the chemical energy of solid or liquid propellants to steadily

and rapidly produce a large quantity of hot high-pressure gas, which is then expanded and accelerated

through a nozzle. This large mass of combustion products flowing out of the nozzle at supersonic speed

possesses a lot of momentum and, leaving the vehicle behind, causes the vehicle itself to acquire a

momentum in the opposite direction. This is represented as the action of the force we know as thrust.

The design and analysis of rocket propulsion systems is well beyond our scope.

This chapter contains a necessarily brief introduction to some of the fundamentals of rocket vehicle

dynamics. The equations of motion of a launch vehicle in a gravity turn trajectory are presented first.

This is followed by a simple development of the thrust equation, which brings in the concept of specific

impulse. The thrust equation and the equations of motion are then combined to produce the rocket equa-

tion, which relates delta-v to propellant expenditure and specific impulse. The sounding rocket pro-

vides an important but relatively simple application of the concepts introduced to this point. After a

computer simulation of a gravity turn trajectory, the chapter concludes with an elementary consider-

ation of multistage launch vehicles.

Those seeking a more detailed introduction to the subject of rockets and rocket performance will

find the texts by Wiesel (2010), Hale (1994), and Sutton and Biblarz (2017) useful.
Orbital Mechanics for Engineering Students. https://doi.org/10.1016/B978-0-08-102133-0.00013-1
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13.2 EQUATIONS OF MOTION
Fig. 13.1 illustrates the trajectory of a satellite launch vehicle and the forces acting on it during the

powered ascent. Rockets at the base of the booster produce the thrust T, which acts along the vehicle’s

axis in the direction of the velocity vector v. The aerodynamic drag force D is directed opposite to the

velocity, as shown. Its magnitude is given by

D¼ qACD (13.1)

where q ¼ ρv2/2 is the dynamic pressure, in which ρ is the density of the atmosphere and v is the speed
(i.e., themagnitude) of v,A is the frontal area of the vehicle, andCD is the coefficient of drag.CD depends

on the speed and the external geometry of the rocket. The force of gravity on the booster ismg, wherem is

its mass, and g is the local gravitational acceleration vector, pointing toward the center of the earth. As
discussed in Section 1.3, at any point of the trajectory, the velocity v defines the direction of the unit tan-

gent ût to the path. The unit normal ûn is perpendicular to v and points toward the center of curvatureC.
The distance of point C from the path is ρ (not to be confused with density). ρ is the radius of curvature.

In Fig. 13.1, the vehicle and its flight path are shown relative to the earth. In the interest of simplicity

we will ignore the earth’s spin and write the equations of motion relative to a nonrotating earth. The

small-acceleration terms required to account for the earth’s rotation can be added for a more refined

analysis. Let us resolve Newton’s second law, Fnet ¼ ma, into components along the path directions ût
and ûn. Recall from Section 1.3 that the acceleration along the path is

at ¼ dv

dt
(13.2)

and the normal acceleration is an ¼ v2/ρ (where ρ is the radius of curvature). It was shown in Example

1.8 (Eq. 1.37) that for flight over a flat surface, v/ρ ¼ � dγ/dt, in which case the normal acceleration

can be expressed in terms of the flight path angle γ as

an ¼�v
dγ

dt
FIG. 13.1

Launch vehicle boost trajectory. γ is the flight path angle.
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To account for the curvature of the earth, as was done in Section 1.7, we can use polar coordinates

with origin at the earth’s center to show that a term must be added to this expression, so that it becomes

an ¼�v
dγ

dt
+

v2

RE + h
cosγ (13.3)

where RE is the radius of the earth, and h (instead of z as in previous chapters) is the altitude of the

rocket. Thus, in the direction of ût, Newton’s second law requires

T�D�mg sin γ¼mat (13.4)

whereas in the ûn direction

mg cosγ¼man (13.5)

After substituting Eqs. (13.2) and (13.3), the latter two expressions may be written:

dv

dt
¼ T

m
�D

m
�g sinγ (13.6)

v
dγ

dt
¼� g� v2

RE + h

� �
cosγ (13.7)

To these we must add the equations for downrange distance x and altitude h,

dx

dt
¼ RE

RE + h
vcosγ

dh

dt
¼ v sin γ (13.8)

Recall that the variation of g with altitude is given by Eq. (1.36). Numerical methods must be used

to solve Eqs. (13.6), (13.7), and (13.8). To do so, we must account for the variation of the thrust, booster

mass, atmospheric density, the drag coefficient, and the acceleration of gravity. Of course, the vehicle

mass continuously decreases as propellants are consumed to produce the thrust, which we shall discuss

in the following section.

The free body diagram in Fig. 13.1 does not include a lifting force, which, if the vehicle were an

airplane, would act normal to the velocity vector. Launch vehicles are designed to be strong in length-

wise compression, like a column. To save weight they are, unlike an airplane, made relatively weak in

bending, shear, and torsion, which are the kinds of loads induced by lifting surfaces. Transverse lifting

loads are held closely to zero during powered ascent through the atmosphere by maintaining a zero

angle of attack, that is, by keeping the axis of the booster aligned with its velocity vector (the relative

wind). Pitching maneuvers are done early in the launch, soon after the rocket clears the launch tower,

when its speed is still low. At the high speeds acquired within a minute or so after launch, the slightest

angle of attack can produce destructive transverse loads in the vehicle. The Space Shuttle orbiter had

wings so that it could act as a glider after reentry into the atmosphere. However, the launch configu-

ration of the orbiter was such that its wings were at the zero lift angle of attack throughout the ascent.

Satellite launch vehicles take off vertically and, at injection into orbit, must be flying parallel to the

earth’s surface. During the initial phase of the ascent, the rocket builds up speed on a nearly vertical

trajectory taking it above the dense lower layers of the atmosphere. While it transitions to the thinner

upper atmosphere, the trajectory bends over, trading vertical speed for horizontal speed so that the

rocket can achieve orbital perigee velocity at burnout. The gradual transition from vertical to horizontal

flight, as illustrated in Fig. 13.1, is caused by the force of gravity, and it is called a gravity turn

trajectory.
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At liftoff the rocket is vertical, and the flight path angle γ is 90�. After clearing the tower and gaining
speed, vernier thrusters or gimbaling of the main engines produce a small, programmed pitchover,

establishing an initial flight path angle γ0, slightly less than 90
�. Thereafter, γ will continue to decrease

at a rate dictated by Eq. (13.7). (For example, if γ ¼ 85°, v ¼ 110 m/s (250 mph), and h ¼ 2 km, then

dγ/dt ¼� 0.44 deg /s). As the speed v of the vehicle increases, the coefficient of cosγ in Eq. (13.7)

decreases, which means the rate of change of the flight path angle becomes increasingly smaller, tend-

ing toward zero as the booster approaches orbital speed, vcircular orbit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g= RE + hð Þp

. Ideally, the vehi-

cle is flying horizontally (γ ¼ 0) at that point.

The gravity turn trajectory is just one example of a practical trajectory, tailored for satellite

boosters. On the other hand, sounding rockets fly straight up from launch through burnout. Rocket-

powered guided missiles must execute high-speed pitch and yaw maneuvers as they careen toward

moving targets and require a rugged structure to withstand the accompanying side loads.
13.3 THE THRUST EQUATION
To discuss rocket performance requires an expression for the thrust T in Eq. (13.6). It can be obtained

by a simple one-dimensional momentum analysis. Fig. 13.2a shows a system consisting of a rocket and

its propellants. The exterior of the rocket is surrounded by the static pressure pa of the atmosphere ev-

erywhere except at the rocket nozzle exit, where the pressure is pe. pe acts over the nozzle exit area Ae.

The value of pe depends on the design of the nozzle. For simplicity, we assume that no other forces act

on the system. At time t the mass of the system is m and the absolute velocity in its axial direction is v.
The propellants combine chemically in the rocket’s combustion chamber, and during the small time

interval Δt a small mass Δm of combustion products is forced out of the nozzle, to the left. Because

of this expulsion, the velocity of the rocket changes by the small amount Δv, to the right. The absolute
velocity of Δm is ve, assumed to be to the left. According to Newton’s second law of motion,

Momentum of the systemat t+Δtð Þ� Momentum of the systemat tð Þ¼Net external impulse

or

m�Δmð Þ v +Δvð Þ̂i+Δm �vêi
� �h i

�mv̂i¼ pe�pað ÞAeΔt̂i (13.9)
FIG. 13.2

(a) System of rocket and propellant at time t. (b) The system an instant later, after ejection of a small elementΔm of

combustion products.
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Let _me (a positive quantity) be the rate at which exhaust mass flows across the nozzle exit plane. The

massm of the rocket decreases at the rate dm/dt, and conservation of mass requires the decrease of mass

to equal the mass flow rate out of the nozzle. Thus,

dm

dt
¼� _me (13.10)

Assuming _me is constant, the vehicle mass as a function of time (from t ¼ 0) may therefore be written

m tð Þ¼m0� _met (13.11)

where m0 is the initial mass of the vehicle. Since Δm is the mass that flows out in the time interval Δt,
we have

Δm¼ _meΔt (13.12)

Let us substitute this expression into Eq. (13.9) to obtain

m� _meΔtð Þ v+Δvð Þ̂i+ _meΔt �vêi
� �h i

�mv̂i¼ pe�pað ÞAeΔt̂i

Collecting terms, we get

mΔv̂i� _meΔt ve + vð Þ̂i� _meΔtΔv̂i¼ pe�pað ÞAeΔt̂i

Dividing through by Δt, taking the limit as Δt ! 0, and canceling the common unit vector leads to

m
dv

dt
� _meca ¼ pe�pað ÞAe (13.13)

where ca is the speed of the exhaust relative to the rocket,

ca ¼ ve + v (13.14)

Rearranging terms, Eq. (13.13) may be written

_meca + pe�pað ÞAe ¼m
dv

dt
(13.15)

The left-hand side of this equation is the unbalanced force responsible for the acceleration dv/dt of the
system in Fig. 13.2. This unbalanced force is the thrust T,

T¼ _meca + pe�pað ÞAe (13.16)

where _meca is the jet thrust, and (pe � pa)Ae is the pressure thrust. We can write Eq. (13.16) as

T¼ _me ca +
pe�pað ÞAe

_me

� �
(13.17)

The term in brackets is called the effective exhaust velocity c,

c¼ ca +
pe�pað ÞAe

_me
(13.18)

In terms of the effective exhaust velocity, the thrust may be expressed simply as

T¼ _mec (13.19)
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The specific impulse Isp is defined as the thrust per sea level weight rate (per second) of propellant

consumption. That is,

Isp ¼ T

_meg0
(13.20)

where g0 is the standard sea level acceleration of gravity. The unit of specific impulse is force �
(force/s) or seconds. Together, Eqs. (13.19) and (13.20) imply that

c¼ Ispg0 (13.21)

Obviously, we can infer the jet velocity directly from the specific impulse. Specific impulse is an im-

portant performance parameter for a given rocket engine and propellant combination. However, a large

specific impulse equates to a large thrust only if the mass flow rate is large, which is true of chemical

rocket engines. The specific impulse of chemical rockets typically lies in the range 200–300 s for solid

fuels and 250–450 s for liquid fuels. Ion propulsion systems have very high specific impulse (>104 s),

but their very low mass flow rates produce much smaller thrust than chemical rockets.
13.4 ROCKET PERFORMANCE
From Eqs. (13.10) and (13.20) we have

T¼�Ispg0
dm

dt
(13.22)

or
dm

dt
¼� T

Ispg0

If the thrust and specific impulse are constant, then the integral of this expression over the burn time

Δt is

Δm¼� T

Ispg0
Δt

from which we obtain.

Δt¼ Ispg0
T

m0�mf

	 
¼ Ispg0
T

m0 1�mf

m0

� �
(13.23)

wherem0 andmf are the mass of the vehicle at the beginning and end of the burn, respectively. The mass

ratio n is defined as the ratio of the initial mass to final mass,

n¼m0

mf
(13.24)

Clearly, the mass ratio is always greater than unity. In terms of the mass ratio, Eq. (13.23) may be

written.

Δt¼ n�1

n

Isp
T= m0g0ð Þ (13.25)
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T/(mg0) is the thrust-to-weight ratio. The thrust-to-weight ratio for a launch vehicle at liftoff is typically
in the range 1.3 to 2.

Substituting Eq. (13.22) into Eq. (13.6), we get.

dv

dt
¼�Ispg0

dm=dt

m
�D

m
�gsinγ

Integrating with respect to time, from t0 to tf, yields.

Δv¼ Ispg0 ln
m0

mf
�ΔvD�ΔvG (13.26)

where the drag loss ΔvD and the gravity loss ΔvG are given by the integrals.

ΔvD ¼
ðtf
t0

D

m
dt ΔvG ¼

ðtf
t0

g sin γdt (13.27)

Since the dragD, acceleration of gravity g, and flight path angle γ are unknown functions of time, these

integrals cannot be computed. (Eqs. (13.6)–(13.8) must be integrated numerically to obtain v(t) and
γ(t), and Δv would follow from those results.) Eq. (13.26) can be used for rough estimates where pre-

vious data and experience provide a basis for choosing conservative values ofΔvD andΔvG. Obviously,
if drag can be neglected, then ΔvD ¼ 0. This would be a good approximation for the last stage of a

satellite booster, for which it can also be said that ΔvG ¼ 0, since γ � 0° when the satellite is injected

into orbit.

Sounding rockets are launched vertically and fly straight up to their maximum altitude before fall-

ing back to earth, usually by parachute. Their purpose is to measure remote portions of the earth’s at-

mosphere. (“Sound” in this context means to measure or investigate.) If for a sounding rocket γ ¼ 90°,
then ΔvG � g0(tf � t0), since g is within 90% of g0 up to 300 km altitude.
EXAMPLE 13.1
A sounding rocket of initial mass m0 and mass mf after all propellant is consumed is launched vertically (γ ¼ 90°). The
propellant mass flow rate _me is constant.

(a) Neglecting drag and the variation of gravity with altitude, calculate the speed vbo, the altitude hbo at burnout, and the

maximum height hmax attained by the rocket.

(b) For what flow rate is the greatest altitude reached?

Solution
The vehicle mass as a function of time, up to burnout, is

m¼m0� _met (a)

At burnout, m ¼ mf, so the burnout time tbo is

tbo ¼m0�mf

_me
(b)

The drag loss ΔvD is assumed to be zero, and the gravity loss for g ¼ g0 ¼ constant is

ΔvG ¼
ðtbo
0

g0 sin 90°ð Þdt¼ g0tbo
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Recalling that Ispg0 ¼ c and usingEq. (a), it follows fromEq. (13.26) that, up to burnout, the velocity as a functionof time is

v¼ c ln
m0

m0� _met
�g0t�

ðt
t0

D

m
dt

zfflffl}|fflffl{¼0

(c)

Since dh/dt ¼ v, the altitude as a function of time is.

h¼
ðt
0

vdt¼
ðt
0

c ln
m0

m0� _met
�g0t

� �
dt¼ c

_me
m0� _metð Þ lnm0� _met

m0

+ _met

� �
�1

2
g0t

2 (d)

The height at burnout hbo is found by substituting Eq. (b) into this expression,

hbo ¼ c

_me

mf ln
mf

m0

+m0�mf

� �
�1

2

m0�mf

_me

� �2

g0 (e)

Likewise, the burnout velocity is obtained by substituting tbo from Eq. (b) into Eq. (c),

vbo ¼ c ln
m0

mf
� g0

_me
m0�mf

	 

(f)

After burnout, the rocket coasts upward with the constant downward acceleration of gravity, so that

v¼ vbo�g0 t� tboð Þ
h¼ hbo + vbo t� tboð Þ�1

2
g0 t� tboð Þ2

Substituting Eqs. (b), (e), and (f) into these two expressions yields, for t > tbo,

v¼ c ln
m0

mf
�g0t

h¼ c

_me
m0 ln

mf

m0

+m0�mf

� �
+ ct ln

m0

mf
�1

2
g0t

2 (g)

The maximum height hmax is reached when v ¼ 0,

c ln
m0

mf
�g0tmax ¼ 0 ) tmax ¼ c

g0
ln
m0

mf
(h)

Substituting t ¼ tmax into Eq. (g) leads to our result,

hmax ¼ 1

2

c2

g0
ln2n�cm0

_me

n lnn� n�1ð Þ
n

(i)

where n is the mass ratio (n > 1). Since n ln n is greater than n � 1, it follows that the second term in this expression is

positive. Hence, hmax can be increased by increasing the mass flow rate _me. In fact,

The greatest height is achieved when _me !∞

In that extreme, all the propellant is expended at once, like a mortar shell.

Since we neglected both drag and the variation of gravity with altitude, our results (Eqs. e, f, and i) are not accurate, but

only estimates.
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EXAMPLE 13.2
The data for a single-stage rocket are as follows:

Launch mass: m0 ¼ 68,000 kg

Mass ratio: n ¼ 7

Specific impulse: Isp ¼ 390 s

Thrust: T ¼ 933.91 kN

It is launched into a vertical trajectory, like a sounding rocket. Neglecting drag and assuming that the gravitational accel-

eration is constant at its sea level value g0 ¼ 9.81 m/s2, estimate.

(a) the time until burnout;

(b) the burnout altitude;

(c) the burnout velocity; and

(d) the maximum altitude reached.

Solution
(a) From Eq. (b) of Example 13.1, the burnout time tbo is

tbo ¼m0�mf

_me
(a)

The burnout mass mf is obtained from Eq. (13.24),

mf ¼m0

n
¼ 68,000

7
¼ 9714:3kg (b)

The propellant mass flow rate _me is given by Eq. (13.20),

_me ¼ T

Ispg0
¼ 933,910

390 � 9:81¼ 244:10kg=s (c)

Substituting Eqs. (b) and (c), and m0 ¼ 68, 000 kg into Eq. (a) yields the burnout time,

tbo ¼ 68,000�9714:3

244:10
¼ 238:8 s

(b) The burnout altitude is given by Eq. (e) of Example 13.1,

hbo ¼ c

_me
mf ln

mf

m0

+m0�mf

� �
�1

2

m0�mf

_me

� �2

g0 (d)

The exhaust velocity c is found in Eq. (13.21),

c¼ lspg0 ¼ 390 � 9:81¼ 3825:9m=s (e)

Substituting Eqs. (b), (c), and (e), along with m0 ¼ 68,000 kg and g0 ¼ 9.81 m/s2, into Eq. (d), we get

hbo ¼ 3825:9

244:1
9714:3 ln

9714:3

68,000
+ 68, 000�9714:3

� �
�1

2

68,000�9714:3

244:1

� �2

� 9:81

hbo ¼ 337:6km

(c) From Eq. (f) of Example 13.1, we find

vbo ¼ c ln
m0

mf
� go

_me
m0�mf

	 
¼ 3825:9 ln
68,000

9714:3
� 9:81

244:1
68, 000�9714:3ð Þ

vbo ¼ 5:102km=s

(d) To find hmax, where the speed of the rocket falls to zero, we use Eq. (i) of Example 13.1,

hmax ¼ 1

2

c2

g0
ln2n�cm0

_me

n lnn� n�1ð Þ
n

¼ 1

2

3825:92

9:81
ln27�3825:9 � 68,000

244:1
� 7 ln7� 7�1ð Þ

7

hmax ¼ 1664:6km

Note that the rocket coasts to a height nearly five times the burnout altitude.
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We can employ the integration schemes introduced in Section 1.8 to solve Eqs. (13.6)–(13.8) nu-
merically. This permits a more accurate accounting of the effects of gravity and drag. It also yields the

trajectory.
EXAMPLE 13.3
The rocket in Example 13.2 has a diameter of 5 m. It is to be launched on a gravity turn trajectory. Pitchover begins at an

altitude of 130 m with an initial flight path angle γ0 of 89.85°. What are the altitude h and speed v of the rocket at burnout
(tbo ¼ 260 s)? What are the velocity losses due to drag and gravity (cf. Eq. 13.27)?

Solution
The MATLAB program Example_13_03.m in Appendix D.53 finds the speed v, the flight path angle γ, the altitude h, and
the downrange distance x as a function of time. It does so by using the ordinary differential equation solver rkf_45.m (Ap-

pendix D.4) to numerically integrate Eqs. (13.6)–(13.8), namely

dv

dt
¼ T

m
�D

m
�gsinγ (a)

dγ

dt
¼�1

v
g� v2

RE + h

� �
cosγ (b)

dh

dt
¼ vsinγ (c)

dx

dt
¼ RE

RE + h
v cos γ (d)

The variable massm is given in terms of the initial massm0 ¼ 68,000 kg and the constant mass flow rate _me by Eq. (13.11),

m¼m0� _met (e)

The thrust T ¼ 933.913 kN is assumed constant, and _me is obtained from T and the specific impulse Isp ¼ 390s by

means of Eq. (13.20),

_me ¼ T

Ispg0
(f)

The drag force D in Eq. (a) is given by Eq. (13.1),

D¼ 1

2
ρv2ACD (g)

The drag coefficient is assumed to have the constant value CD ¼ 0.5. The frontal area A ¼ πd2/4 is found from the

rocket diameter d ¼ 5 m. The atmospheric density profile is assumed to be exponential,

ρ¼ ρ0e
�h=h0 (h)

where ρ0 ¼ 1.225 kg/m3 is the sea level atmospheric density, and h0 ¼ 7.5 km is the scale height of the atmosphere. (The

scale height is the altitude at which the density of the atmosphere is about 37% of its sea level value.)

Finally, the acceleration of gravity varies with altitude h according to Eq. (1.36),

g¼ g0

1 + h=REð Þ2 RE ¼ 6378 km, g0 ¼ 9:81m=s2ð Þ (i)

The drag loss and gravity loss are found by numerically integrating Eqs. (13.27).

Between liftoff and pitchover, the flight path angle γ is held at 90°. Pitchover begins at the altitude hp ¼ 130 m with the

flight path angle set at γ0 ¼ 89.85°.
We write the above system of equations in the standard form

_y¼ f t, yð Þ (j)
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where

y¼ v γ x h vD vGb cT

f¼ T

m
�D

m
�gsinγ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{_v

�1

v
g� v2

RE + h

� �
cosγ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{_γ

RE

RE + h
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For the input data described above, the output of Example_13_03.m is listed below. The solution is very sensitive to the

choice of hp and γ0.
TheMach number is the vehicle speed v divided by the speed of sound a, which as a function of altitude h is found from

the International Standard Atmosphere model that MATLAB provides as the function atmosisa.

Initial flight path angle = 89.850 deg
Pitchover altitude = 130.000 m
Burn time = 238.776 s
Maximum dynamic pressure = 0.156 atm

Time = 1.110 min
Speed = 0.302 km/s
Altitude = 9.424 km
Mach number = 0.999

At burnout:
Speed = 5.737 km/s
Flight path angle = 9.154 deg
Altitude = 110.324 km
Downrange distance = 318.364 km
Drag loss = 0.298 km/s
Gravity loss = 1.410 km/s

Thus, at burnout

Altitude¼ 110:3km

Speed¼ 5:737km=s

The speed losses are

Due to drag: 0:298km=s
Due to gravity: 1:410km=s

Note that the drag loss is much less than the gravity loss.

Fig. 13.3 shows thecomputedgravity turn trajectory and thedynamicpressurevariation.Themaximumdynamic pressure,

qmax ¼ 15.8 kPa (0.156 atm), occurs 66.6 s into the flight at an altitude of 9.42 km and a speed of 0.302 km/s (Mach 1). By

comparison, thedynamic pressure of thewindonyour hand stickingout of a carwindow traveling80 km/h is about 0.003 atm.
. 13.3

Gravity turn trajectory for the data given in Examples 13.2 and 13.3.

(Continued)
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. 13.3, cont’d

) Dynamic pressure variation with altitude (1 atm ¼ 101.3 kPa).
13.5 RESTRICTED STAGING IN FIELD-FREE SPACE
In field-free space, we neglect drag and gravitational attraction. In that case, Eq. (13.26) becomes

Δv¼ Ispg0 ln
m0

mf
(13.28)

This is at best a poor approximation for high-thrust rockets, but it will suffice to shed some light on the

rocket-staging problem. Observe that we can solve this equation for the mass ratio to obtain

m0

mf
¼ eΔv= Ispg0ð Þ (13.29)

The amount of propellant expended to produce the velocity increment Δv is m0 � mf. If we let

Δm ¼ m0 � m, then Eq. (13.29) can be written as.

Δm

m0

¼ 1�e�Δv= Ispg0ð Þ (13.30)

This relation is used to compute the propellant required to produce a given delta-v.

The gross mass m0 of a launch vehicle consists of the empty mass mE, the propellant mass mp, and

the payload mass mPL,

m0 ¼mE +mp +mPL (13.31)

The empty mass comprises the mass of the structure, the engines, fuel tanks, control systems, etc.mE is

also called the structural mass, although it embodies much more than just structure. Dividing

Eq. (13.31) through by m0, we obtain

πE + πp + πPL ¼ 1 (13.32)
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where the mass ratios πE ¼ mE/m0, πp ¼ mp/m0, and πPL ¼ mPL/m0 are the structural fraction, propel-

lant fraction, and payload fraction, respectively. It is convenient to define the payload ratio λ,

λ¼ mPL

mE +mp

¼ mPL

m0�mPL

(13.33)

and the structural ratio ε,

ε¼ mE

mE +mp

¼ mE

m0�mPL

(13.34)

Themass ratio nwas introduced in Eq. (13.24). Assuming that all of the propellant is consumed, that

may now be written

n¼mE +mp +mPL

mE +mPL

(13.35)

λ, ε, and n are not independent. From Eq. (13.34) we have

mE ¼ ε

1� ε
mp (13.36)

whereas Eq. (13.33) gives

mPL ¼ λ mE +mp

	 
¼ λ
ε

1� ε
mp +mp

� �
¼ λ

1� ε
mp (13.37)

Substituting Eqs. (13.36) and (13.37) into Eq. (13.35) leads to

n¼ 1 + λ

ε + λ
(13.38)

Thus, given any two of the ratios λ, ε, and n, we obtain the third from Eq. (13.38). Using this relation in

Eq. (13.28) and settingΔv equal to the burnout speed vbo, when the propellants have been used up, yields

vbo ¼ Ispg0 ln n¼ Ispg0 ln
1 + λ

ε+ λ
(13.39)

This equation is plotted in Fig. 13.4 for a range of structural ratios. Clearly, for a given empty mass,

the greatest possibleΔv occurs when the payload is zero. However, what we want to do is maximize the

amount of payload while keeping the structural weight to a minimum. Of course, the mass of load-

bearing structure, rocket motors, pumps, piping, etc. cannot be made arbitrarily small. Current mate-

rials technology places a lower limit on ε of about 0.1. For this value of the structural ratio and λ ¼ 0.05,

Eq. (13.39) yields.

vbo ¼ 1:94Ispg0 ¼ 0:019Isp km=sð Þ
The specific impulse of a typical chemical rocket is about 300 s, which in this case would provide

Δv ¼ 5.7 km/s. However, the circular orbital velocity at the earth’s surface is 7.905 km/s. Therefore,

this booster by itself could not orbit the payload. The minimum specific impulse required for a single

stage to orbit would be 416 s. Only today’s most advanced liquid hydrogen/liquid oxygen engines (e.g.,

the Space Shuttle main engines), have had this kind of performance. Practicality and economics would

likely dictate going the route of a multistage booster.

Fig. 13.5 shows a series or tandem two-stage rocket configuration, with one stage sitting on top of

the other. Each stage has its own engines and propellant tanks. The dividing lines between the stages are



FIG. 13.4

Dimensionless burnout speed vs. payload ratio.

FIG. 13.5

Tandem two-stage booster.
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FIG. 13.6

Parallel staging.
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where they separate during flight. The first stage drops off first, the second stage next, etc. The payload

of an N-stage rocket is actually stage N + 1. Indeed, satellites commonly carry their own propulsion

systems into orbit. The payload of a given stage is everything above it. Therefore, as

illustrated in Fig. 13.5, the initial mass m0 of stage 1 is that of the entire vehicle. After stage 1 expels

all its fuel, the mass mf that remains is stage 1’s empty mass mE plus the mass of stage 2 and the

payload. After separation of stage 1, the process continues likewise for stage 2, with m0 being its

initial mass.

Titan II, the launch vehicle for the Gemini program, had the two-stage, tandem configuration. So

did the Saturn 1B, used to launch earth orbital flights early in the Apollo program, as well as to send

crews to Skylab and an Apollo spacecraft to dock with a Russian Soyuz in 1975.

Fig. 13.6 illustrates the concept of parallel staging. Two or more solid or liquid rockets are attached

(“strapped on”) to a core vehicle carrying the payload. In the tandem arrangement, the motors in a

given stage cannot ignite until separation of the previous stage, whereas all the rockets ignite at

once in the parallel-staged vehicle. The strap-on boosters fall away after they burn out early in the

ascent. The Space Shuttle was a most obvious example of parallel staging. Its two solid rocket

boosters were mounted on the external tank, which fueled the three “main” engines built into the

orbiter. The solid rocket boosters and the external tank were cast off after they were depleted. In more

common use is the combination of parallel and tandem staging, in which solid or liquid propellant
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boosters are strapped to the first stage of a multistage stack. A few of the many examples from several

countries include:
China:
 Long March series
Europe:
 Later versions in the Ariane series
India:
 Geosynchronous and Polar Satellite launch vehicles
Japan:
 H-2 and H-3 series
Russia:
 Soyuz and Proton series
United States:
 Later versions of the Atlas, Delta, Titan, and Falcon
The venerable Atlas, used in many variants to, among other things, launch the orbital flights of the

Mercury program, had three main liquid-fuel engines at its base. They all fired simultaneously at

launch, but several minutes into the flight, the outer two “boosters” dropped away, leaving the central

sustainer engine to burn the rest of the way to orbit. Since the booster engines shared the sustainer’s

propellant tanks, the Atlas exhibited partial staging and is sometimes referred to as a one-and-a-half-

stage rocket.

We will for simplicity focus on tandem staging, although parallel-staged systems are handled in a

similar way (Wiesel, 2010). Restricted staging involves the simple but unrealistic assumption that all

stages are similar. That is, each stage has the same specific impulse Isp, the same structural ratio ε, and
the same payload ratio λ. From Eq. (13.38), it follows that the mass ratios n are identical too. Let us

investigate the effect of restricted staging on the final burnout speed vbo for a given payload mass mPL

and overall payload fraction

πPL ¼mPL

m0

(13.40)

where m0 is the total mass of the tandem-stacked vehicle.

For a single-stage vehicle, the payload ratio is

λ¼ mPL

m0�mPL

¼ 1
m0

mPL

�1
¼ πPL
1�πPL

(13.41)

so that, from Eq. (13.38), the mass ratio is

n¼ 1

πPL 1� εð Þ+ ε (13.42)

According to Eq. (13.39), the burnout speed is.

vbo ¼ Ispg0 ln
1

πPL 1� εð Þ + ε (13.43)

Let m0 be the total mass of the two-stage rocket of Fig. 13.5. That is,

m0 ¼m0Þ1 (13.44)

The payload of stage 1 is the entire mass m0 of stage 2. Thus, for stage 1 the payload ratio is

λ1 ¼ m0Þ2
m0Þ1�m0Þ2

¼ m0Þ2
m0�m0Þ2

(13.45)
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The payload ratio of stage 2 is

λ2 ¼ mPL

m0Þ2�mPL

(13.46)

By virtue of the two stages being similar, λ1 ¼ λ2, or

m0Þ2
m0�m0Þ2

¼ mPL

m0Þ2�mPL

Solving this equation for m0 yields

m0Þ2 ¼
ffiffiffiffiffiffi
m0

p ffiffiffiffiffiffiffiffi
mPL

p

But m0 ¼ mPL/πPL, so the gross mass of the second stage is

m0Þ2 ¼
ffiffiffiffiffiffiffi
1

πPL

r
mPL (13.47)

Putting this back into Eq. (13.45) or Eq. (13.46), we obtain the common two-stage payload ratio

λ ¼ λ1 ¼ λ2,

λ2-stage ¼ πPL1=2

1�πPL1=2
(13.48)

This together with Eq. (13.38) and the assumption that ε1 ¼ ε2 ¼ ε leads to the common mass ratio for

each stage,

n2-stage ¼ 1

πPL1=2 1� εð Þ+ ε (13.49)

If stage 2 ignites immediately after burnout of stage 1, the final velocity of the two-stage vehicle is the

sum of the burnout velocities of the individual stages,

vbo ¼ vboÞ1 + vboÞ2
or

vbo2-stage ¼ Ispg0 ln n2-stage + Ispg0 ln n2-stage ¼ 2Ispg0 ln n2-stage

so that, with Eq. (13.49), we get

vbo2-stage ¼ Ispg0 ln
1

πPC1=2 1� εð Þ+ ε
� �2

(13.50)

The empty mass of each stage can be found in terms of the payload mass using the common struc-

tural ratio ε,

mEÞ1
m0Þ1�m0Þ2

¼ ε
mEÞ2

m0Þ2�mPL

¼ ε

Substituting Eqs. (13.40) and (13.44) together with Eq. (13.47) yields.

mEÞ1 ¼
1�πPL1=2
	 


ε

πPL
mPL mEÞ2 ¼

1�πPL1=2
	 


ε

πPL1=2
mPL (13.51)
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Likewise, we can find the propellant mass for each stage from the expressions

mp



1
¼m0Þ1� mEÞ1 +m0Þ2

� 
mp



2
¼m0Þ2� mEÞ2 +mPL

� 
(13.52)

Substituting Eqs. (13.40) and (13.4), together with Eqs. (13.47) and (13.51), we get

mp



1
¼ 1�πPL1=2
	 


1�εð Þ
πPL

mPL mp



2
¼ 1�πPL1=2
	 


1� εð Þ
πPL1=2

mPL (13.53)
EXAMPLE 13.4
The following data are given:

mPL ¼ 10,000kg πPL ¼ 0:05 ε¼ 0:15 Isp ¼ 350 s g0 ¼ 0:00981km=s2

Calculate the payload velocity vbo at burnout, the empty mass of the launch vehicle, and the propellant mass for.

(a) a single-stage vehicle; and.

(b) a restricted, two-stage vehicle.

Solution
(a) From Eq. (13.43), we find

vbo ¼ 350 � 0:00981 � ln 1

0:05 1�0:15ð Þ + 0:15¼ 5:657 km=s

Eq. (13.40) yields the gross mass

m0 ¼ 10,000

0:05
¼ 200,000kg

from which we obtain the empty mass using Eq. (13.34),

mE ¼ ε m0�mPLð Þ¼ 0:15 200, 000�10, 000ð Þ¼ 28,500 kg

The mass of propellant is

mp ¼m0�mE�mPL ¼ 200,000�28,500�10,000¼ 161,500 kg

(b) For a restricted two-stage vehicle, the burnout speed is given by Eq. (13.50),

vboÞ2-stage ¼ 350 � 0:00981 ln
1

0:051=2 1�0:15ð Þ + 0:15

" #2
¼ 7:407km=s

The empty mass of each stage is found using Eq. (13.51),

mEÞ1 ¼
1�0:051=2
� �

� 0:15
0:05

� 10,000¼ 23,292kg

mEÞ2 ¼
1�0:051=2
� �

� 0:15
0:051=2

� 10,000¼ 5208kg

For the propellant masses, we turn to Eq. (13.53),

mp



1
¼

1�0:051=2
� �

� 1�0:15ð Þ
0:05

� 10,000¼ 131,990kg

mp



2
¼

1�0:051=2
� �

� 1�0:15ð Þ
0:051=2

� 10,000¼ 29,513kg

The total empty mass, mE ¼ mE)1 + mE)2, and the total propellant mass, mp ¼ mp)1 + mp)2, are the same as for the

single-stage rocket. The mass of the second stage, including the payload, is 22.4% of the total vehicle mass.



FIG. 13.7

Tandem three-stage launch vehicle.
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Observe in the previous example that, although the total vehicle mass was unchanged, the burnout

velocity increased 31% for the two-stage arrangement. The reason is that the second stage is lighter and

can therefore be accelerated to a higher speed. Let us determine the velocity gain associated with add-

ing another stage, as illustrated in Fig. 13.7.

The payload ratios of the three stages are

λ1 ¼ m0Þ2
m0Þ1�m0Þ2

λ2 ¼ m0Þ3
m0Þ2�m0Þ3

λ3 ¼ mPL

m0Þ3�mPL

Since the stages are similar, these payload ratios are all the same. Setting λ1 ¼ λ2 and recalling that

m0)1 ¼ m0, we find

m0Þ22�m0Þ3m0 ¼ 0

Similarly, λ1 ¼ λ3 yields

m0Þ2m0Þ3�m0mPL ¼ 0

These two equations imply that.

m0Þ2 ¼
mPL

πPL2=3
m0Þ3 ¼

mPL

πPL1=3
(13.54)
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Substituting these results back into any one of the above expressions for λ1, λ2, or λ3 yields the common

payload ratio for the restricted three-stage rocket,

λ3-stage ¼ πPL1=3

1�πPL1=3

With this result and Eq. (13.38), we find the common mass ratio,

nthree-stage ¼ 1

πPL1=3 1� εð Þ+ ε (13.55)

Since the payload burnout velocity is vbo ¼ vbo)1 + vbo)2 + vbo)3, we have

vboÞ3-stage ¼ 3Ispg0 lnn3-stage ¼ Ispg0 ln
1

πPL1=3 1� εð Þ+ ε
� �3

(13.56)

Because of the common structural ratio across each stage,

mEÞ1
m0Þ1�m0Þ2

¼ ε
mEÞ2

m0Þ2�m0Þ3
¼ ε

mEÞ3
m0Þ3�mPL

¼ ε

Substituting Eqs. (13.40) and (13.54) and solving the resultant expressions for the empty stage masses

yields

mEÞ1 ¼
1�πPL1=3
	 


ε

πPL
mPL mEÞ2 ¼

1�πPL1=3
	 


ε

πPL2=3
mPL mEÞ3 ¼

1�πPL1=3
	 


ε

πPL1=3
mPL (13.57)

The stage propellant masses are

mp



1
¼m0Þ1� mEÞ1 +m0Þ2

� 
mp



2
¼m0Þ2� mEÞ2 +m0Þ3

� 
mp



3
¼m0Þ3� mEÞ3 +mPL

� 
Substituting Eqs. (13.40), (13.54), and (13.57) leads to

mp



1
¼ 1�πPL1=3
	 


1� εð Þ
πPL

mPL

mp



2
¼ 1�πPL1=3
	 


1� εð Þ
πPL2=3

mPL

mp



2
¼ 1�πPL1=3
	 


1� εð Þ
πPL1=3

mPL

(13.58)
EXAMPLE 13.5
Repeat Example 13.4 for the restricted three-stage launch vehicle.

Solution
Eq. (13.56) gives the burnout velocity for three stages.

vbo ¼ 350 � 0:00981 � ln 1

0:051=3 1�0:15ð Þ + 0:15

" #3
¼ 7:928 km=s
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Substituting mPL ¼ 10, 000 kg, πPL ¼ 0.05, and ε ¼ 0.15 into Eqs. (13.57) and (13.58) yields

mEÞ1 ¼ 18,948 kg mEÞ2 ¼ 6980 kg mEÞ3 ¼ 2572 kg

mp



1
¼ 107,370 kg mp



2
¼ 39,556 kg mp



3
¼ 14,573 kg

Again, the total empty mass and total propellant mass are the same as for the single- and two-stage vehicles. Note that the

velocity increase over the two-stage rocket is just 7%, which is much less than the advantage the two-stage vehicle had over

the single-stage vehicle.
Looking back over the velocity formulas for one-, two-, and three-stage vehicles (Eqs. 13.43, 13.50,

and 13.56), we can induce that for an N-stage rocket,

vboÞN-stage ¼ Ispg0 ln
1

πPL1=N 1� εð Þ+ ε
� �N

¼ Ispg0N ln
1

πPL1=N 1� εð Þ+ ε
� �

(13.59)

What happens as we letN become very large? First of all, it can be shown using Taylor series expansion

that, for large N,

πPL
1=N � 1 +

1

N
lnπPL (13.60)

Substituting this into Eq. (13.59), we find that

vboÞN-stage � Ispg0N ln
1

1 +
1

N
1� εð Þ lnπPL

264
375

Since the term 1
N 1� εð Þ lnπPL is arbitrarily small, we can use the fact that

1

1 + x
¼ 1�x+ x2�x3 +⋯

to write

1

1 +
1

N
1� εð Þ lnπPL

� 1� 1

N
1� εð Þ lnπPL

which means

vboÞN-stage � Ispg0N ln 1� 1

N
1� εð Þ lnπPL

� �
Finally, since ln(1 � x) ¼ � x � x2/2 � x3/3 � x4/4 �⋯, we can write this as

vboÞN-stage � Ispg0N � 1

N
1� εð Þ lnπPL

� �
Therefore, as N, the number of stages, tends toward infinity, the burnout velocity approaches

vboÞ∞ ¼ Ispg0 1�εð Þ ln 1

πPL
(13.61)



FIG. 13.8

Burnout velocity vs. number of stages (Eq. 13.59).
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Thus, no matter how many similar stages we use, for a given specific impulse, payload fraction, and

structural ratio, we cannot exceed this burnout speed. For example, using Isp ¼ 350 s, πPL ¼ 0.05, and

ε ¼ 0.15 from the previous two examples yields vbo)∞ ¼ 8.743 km/s, which is only 10% greater than

vbo of a three-stage vehicle. The trend of vbo toward this limiting value is illustrated by Fig. 13.8.

Our simplified analysis does not take into account the added weight and complexity accompanying

additional stages. Practical reality has limited the number of stages of actual launch vehicles to rarely

more than three.
13.6 OPTIMAL STAGING
Let us now abandon the restrictive assumption that all stages of a tandem-stacked vehicle are similar.

Instead, we will specify the specific impulse Ispi and structural ratio εii of each stage i and then seek the
minimum-mass N-stage vehicle that will carry a given payload mPL to a specified burnout velocity vbo.
To optimize the mass requires using the Lagrange multiplier method, which we shall briefly review.
13.6.1 LAGRANGE MULTIPLIER
Consider a bivariate function f on the xy plane. Then z ¼ f(x,y) is a surface lying above or below the

plane, or both. f(x,y) is stationary at a given point if it takes on a local maximum or a local minimum

(i.e., an extremum) at that point. For f to be stationary means df ¼ 0. That is,

∂f

∂x
dx +

∂f

∂y
dy¼ 0 (13.62)

where dx and dy are independent and not necessarily zero. It follows that for an extremum to exist,

∂f

∂x
¼ ∂f

∂y
¼ 0 (13.63)
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Now let g(x,y) ¼ 0 be a curve in the xy plane. Let us find the points on the curve g ¼ 0 at which f is
stationary. That is, rather than searching the entire xy plane for extreme values of f, we confine our

attention to the curve g ¼ 0, which is therefore a constraint. Since g ¼ 0, it follows that dg ¼ 0, or

∂g

∂x
dx+

∂g

∂y
dy¼ 0 (13.64)

If Eqs. (13.62) and (13.64) are both valid at a given point, then

dy

dx
¼�∂f=∂x

∂f=∂y
¼�∂g=∂x

∂g=∂y

That is,

∂f=∂x

∂g=∂x
¼ ∂f=∂y

∂g=∂y
¼�η

From this we obtain

∂f

∂x
+ η

∂g

∂x
¼ 0

∂f

∂y
+ η

∂g

∂y
¼ 0

But these, together with the constraint g(x,y) ¼ 0, are the very conditions required for the function

h x, y, ηð Þ¼ f x, yð Þ + ηg x, yð Þ (13.65)

to have an extremum, namely,

∂h

∂x
¼ ∂f

∂x
+ η

∂g

∂x
¼ 0

∂h

∂y
¼ ∂f

∂y
+ η

∂g

∂y
¼ 0

∂h

∂η
¼ g¼ 0

(13.66)

where η is the Lagrange multiplier. The procedure generalizes to functions of any number of variables.

One can determine mathematically whether the extremum is a maximum or a minimum by check-

ing the sign of the second differential d2h of the function h in Eq. (13.65),

d2h¼ ∂
2h

∂x2
dx2 + 2

∂
2h

∂x∂y
dx dy+

∂
2h

∂y2
dy2 (13.67)

If d2h < 0 at the extremum for all dx and dy satisfying the constraint condition (Eq. 13.64), then the

extremum is a local maximum. Likewise, if d2h > 0, then the extremum is a local minimum.
EXAMPLE 13.6
(a) Find the extrema of the function z ¼ � x2 � y2. (b) Find the extrema of the same function under the constraint

y ¼ 2x + 3.

Solution
(a) To find the extremawemust use Eq. (13.63). Since ∂z/∂x ¼ �2x and ∂z/∂y ¼ �2y, it follows that ∂z/∂x ¼ ∂z/∂y ¼ 0 at

x ¼ y ¼ 0, at which point z ¼ 0. Since z is negative everywhere else (Fig. 13.9), it is clear that the extreme value is the

maximum value.



FIG. 13.9

Location of the point on the line y ¼ 2� + 3 at which the surface z ¼ �x2 � y2 is closest to the xy plane.
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(b) The constraint may be written g ¼ y � 2x � 3. Clearly, g ¼ 0.Multiply the constraint by the Lagrange multiplier η and
add the result (zero!) to the function �(x2 + y2) to obtain

h¼� x2 + y2
	 


+ η y�2x�3ð Þ
This is a function of the three variables x, y, and η. For it to be stationary, the partial derivatives with respect to all three
of these variables must vanish. First, we have

∂h

∂x
¼�2x�2η

Setting this equal to zero yields

x¼�η (a)

Next,

∂h

∂y
¼�2y+ η

For this to be zero means

y¼ η

2
(b)

Finally,

∂h

∂η
¼ y�2x�3
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Setting this equal to zero gives us back the original constraint condition,

y�2x�3¼ 0 (c)

Substituting Eqs. (a) and (b) into Eq. (c) yields η ¼ 1.2, from which Eqs. (a) and (b) imply,

x¼�1:2 y¼ 0:6 (d)

These are the coordinates of the point on the line y ¼ 2x + 3 at which z ¼ �x2 � y2 is stationary. Using Eqs. (d), we find

that z ¼ �1.8 at this point.

Fig. 13.9 is an illustration of this problem, and shows that the computed extremum (a maximum, in the sense that

small negative numbers exceed large negative numbers) is where the surface z ¼ �x2 � y2 is closest to the line y ¼ 2x

+ 3, as measured in the z direction. Note that in this case, Eq. (13.67) yields d2h ¼ �2dx2 � 2dy2, which is negative,

confirming our conclusion that the extremum is a maximum.
Now let us return to the optimal staging problem. It is convenient to introduce the step massmi of the

ith stage. The step mass is the empty mass plus the propellant mass of the stage, exclusive of all the

other stages,

mi ¼mEÞi +mp



i

(13.68)

The empty mass of stage i can be expressed in terms of its step mass and its structural ratio εi as follows:

mEÞi ¼ εi mEÞi +mp



i

h i
¼ εimi (13.69)

The total mass of the rocket excluding the payload is M, which is the sum of all the step masses,

M¼
XN
i¼1

mi (13.70)

Thus, recalling that m0 is the total mass of the vehicle, we have

m0 ¼M +mPL (13.71)

Our goal is to minimize m0.

For simplicity, we will deal first with a two-stage rocket, and then generalize our results toN stages.

For a two-stage vehicle, m0 ¼ m1 + m2 + mPL, so we can write,

m0

mPL

¼m1 +m2 +mPL

m2 +mPL

� m2 +mPL

mPL

(13.72)

The mass ratio of stage 1 is

n1 ¼ m0Þ1
mEÞ1 +m2 +mPL

¼ m1 +m2 +mPL

ε1m1 +m2 +mPL

(13.73)

where Eq. (13.69) was used. Likewise, the mass ratio of stage 2 is

n2 ¼ m0Þ2
ε2m2 +mPL

¼ m2 +mPL

ε2m2 +mPL

(13.74)
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We can solve Eqs. (13.73) and (13.74) to obtain the step masses from the mass ratios,

m2 ¼ n2�1

1�n2ε2
mPL

m1 ¼ n1�1

1�n1ε1
m2 +mPLð Þ

(13.75)

Now,

m1 +m2 +mPL

m2 +mPL

¼ 1� ε1
1� ε1

� m1 +m2 +mPL

m2 +mPL + ε1m1� ε1m1ð Þ �
1

ε1m1 +m2 +mPL

1

ε1m1 +m2 +mPL

These manipulations leave the right-hand side unchanged. Carrying out the multiplications proceeds as

follows:

m1 +m2 +mPL

m2 +mPL

¼ 1� ε1ð Þ m1 +m2 +mPLð Þ
ε1m1 +m2 +mPL� ε1 m1 +m2 +mPLð Þ �

1

ε1m1 +m2 +mPL

1

ε1m1 +m2 +mPL

¼
1� ε1ð Þ m1 +m2 +mPL

ε1m1 +m2 +mPL
ε1m1 +m2 +mPL

ε1m1 +m2 +mPL

� ε1
m1 +m2 +mPL

ε1m1 +m2 +mPL

Finally, with the aid of Eq. (13.73), this algebraic trickery reduces to

m1 +m2 +mPL

m2 +mPL

¼ 1� ε1ð Þn1
1� ε1n1

(13.76)

Likewise,
m2 +mPL

mPL

¼ 1� ε2ð Þn2
1� ε2n2

(13.77)

so that Eq. (13.72) may be written in terms of the stage mass ratios instead of the step masses as

mo

mPL

¼ 1� ε1ð Þn1
1� ε1n1

� 1� ε2ð Þn2
1� ε2n2

(13.78)

Taking the natural logarithm of both sides of this equation, we get

ln
m0

mPL

¼ ln
1� ε1ð Þn1
1� ε1n1

+ ln
1� ε2ð Þn2
1� ε2n2

Expanding the logarithms on the right-hand side leads to

ln
m0

mPL

¼ ln 1� ε1ð Þ+ lnn1� ln 1� ε1n1ð Þ½ �+ ln 1� ε2ð Þ+ lnn2� ln 1� ε2n2ð Þ½ � (13.79)

Observe that for mPL fixed, ln(m0/mPL) is a monotonically increasing function of m0,

d

dm0

ln
m0

mPL

� �
¼ 1

m0

> 0

Therefore, ln(m0/mPL) is stationary when m0 is.
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From Eqs. (13.21) and (13.39), the burnout velocity of the two-stage rocket is.

vbo ¼ vboÞ1 + vboÞ2 ¼ c1 lnn1 + c2 lnn2 (13.80)

which means that, given vbo, our constraint equation is

vbo�c1 lnn1�c2 lnn2 ¼ 0 (13.81)

Introducing the Lagrange multiplier η, we combine Eqs. (13.79) and (13.81) to obtain

h¼ ln 1� ε1ð Þ + lnn1� ln 1� ε1n1ð Þ½ � + ln 1� ε2ð Þ+ lnn2� ln 1� ε2n2ð Þ½ �+ η vbo�c1 lnn1�c2 lnn2ð Þ
(13.82)

Finding the values of n1 and n2 for which h is stationary will extremize ln (m0/mPL) (and, hence,m0) for

the prescribed burnout velocity vbo. h is stationary when ∂h/∂n1 ¼ ∂h/∂n2 ¼ ∂h/∂η ¼ 0. Thus,

∂h

∂n1
¼ 1

n1
+

ε1
1� ε1n1

�η
c1
n1

¼ 0

∂h

∂n2
¼ 1

n2
+

ε2
1� ε2n2

�η
c2
n2

¼ 0

∂h

∂η
¼ vbo�c1 lnn1�c2 lnn2 ¼ 0

These three equations yield, respectively,

n1 ¼ c1η�1

c1ε1η
n2 ¼ c2η�1

c2ε2η
vbo ¼ c1 lnn1 + c2 lnn2 (13.83)

Substituting n1 and n2 into the expression for vbo, we get

c1 ln
c1η�1

c1ε1η

� �
+ c2 ln

c2η�1

c2ε2η

� �
¼ vbo (13.84)

This equation must be solved iteratively for η, after which η is substituted into Eq. (13.83) to obtain the
stage mass ratios n1 and n2. These mass ratios are then used in Eq. (13.75) together with the assumed

structural ratios, exhaust velocities, and payload mass to obtain the step masses of each stage.

We can now generalize the optimization procedure to an N-stage vehicle, for which Eq. (13.82)

becomes

h¼
XN
i¼1

ln 1� εið Þ+ lnni� ln 1� εinið Þ½ ��η vbo�
XN
i¼1

ci lnni

 !
(13.85)

At the outset, we know the required burnout velocity vbo and the payload mass mPL, and for every stage

we have the structural ratio εi and the exhaust velocity ci (i.e., the specific impulse). The first step is to

solve for the Lagrange parameter η using Eq. (13.84), which, for N stages is written

XN
i¼1

ci ln
ciη�1

ciεiη
¼ vbo

Expanding the logarithm, this can be written

XN
i¼1

ci ln ciη�1ð Þ� lnη
XN
i¼1

ci�
XN
i¼1

ci lnciεi ¼ vbo (13.86)
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After solving this equation iteratively for η, we use that result to calculate the optimum mass ratio for

each stage (cf. Eq. 13.83),

ni ¼ ciη�1

ciεiη
i¼ 1,2,…,N (13.87)

Of course, each ni must be greater than 1.

Referring to Eq. (13.75), we next obtain the step masses of each stage, beginning with stage N and

working our way down the stack to stage 1,

mN ¼ nN �1

1�nNεN
mPL

mN�1 ¼ nN�1�1

1�nN�1εN�1

mN +mPLð Þ

mN�2 ¼ nN�2�1

1�nN�2εN�2

mN�1 +mN +mPLð Þ
⋮

m1 ¼ n1�1

1�n1ε1
m2 +m3 +⋯mPLð Þ

(13.88)

Having found each step mass, each empty stage mass is

mEÞi ¼ εimi (13.89)

and each stage propellant mass is

mp



i
¼mi�mEÞi (13.90)

For the function h in Eq. (13.85), it is easily shown that

∂
2h

∂ni∂nj
¼ 0 i, j¼ 1,…,N i 6¼ jð Þ

It follows that the second differential of h is

d2h¼
XN
i¼1

XN
j¼1

∂
2h

∂ni∂nj
dnidnj ¼

XN
i¼1

∂
2h

∂ni2
dnið Þ2 (13.91)

where it can be shown, again using Eq. (13.85), that

∂
2h

∂ni2
¼ ηci εini�1ð Þ2 + 2εini�1

εini�1ð Þ2ni2
(13.92)

For h to be minimum at the mass ratios ni given by Eq. (13.87), it must be true that d2h > 0. Eqs. (13.91)

and (13.92) indicate that this will be the case if

ηci εini�1ð Þ2 + 2εini�1> 0 i¼ 1,…,N (13.93)
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EXAMPLE 13.7
Find the optimal mass for a three-stage launch vehicle that is required to lift a 5000-kg payload to a speed of 10 km/s. For

each stage, we are given that

Stage 1: Isp)1 ¼ 400 s (c1 ¼ 3.924 km/s) ε1 ¼ 0.10

Stage 2: Isp)2 ¼ 350 s (c2 ¼ 3.434 km/s) ε2 ¼ 0.15

Stage 3: Isp)3 ¼ 300 s (c3 ¼ 2.943 km/s) ε2 ¼ 0.20

Solution
Substituting these data into Eq. (13.86), we get

3:924 ln 3:924η�1ð Þ + 3:434 ln 3:434η�1ð Þ+ 2:943 ln 2:943η�1ð Þ�10:30 lnη+ 7:5089¼ 10

As can be checked by substitution, the iterative solution of this equation is

η¼ 0:4668

Substituting η into Eq. (13.87) yields the optimum mass ratios,

n1 ¼ 4:541 n2 ¼ 2:507 n3 ¼ 1:361

For the step masses, we appeal to Eq. (13.88) to obtain

m1 ¼ 165,700kg m2 ¼ 18,070 kg m3 ¼ 2477kg

The total mass of the vehicle is

m0 ¼m1 +m2 +m3 +mPL ¼ 191,200 kg

Using Eqs. (13.89) and (13.90), the empty masses and propellant masses are found to be

mEÞ1 ¼ 16,570kg mEÞ2 ¼ 2710kg mEÞ3 ¼ 495:4kg
mp



1
¼ 149,100 kg mp



2
¼ 15,360kg mp



3
¼ 1982kg

The payload ratios for each stage are

λ1 ¼m2 +m3 +mPL

m1

¼ 0:1542

λ2 ¼m3 +mPL

m2

¼ 0:4139

λ3 ¼mPL

m3

¼ 2:018

The overall payload fraction is

πPL ¼mPL

m0

¼ 5000

191,200
¼ 0:0262

Finally, let us check Eq. (13.93),

ηc1 ε1n1�1ð Þ2 + 2ε1n1�1¼ 0:4541

ηc2 ε2n2�1ð Þ2 + 2ε2n2�1¼ 0:3761

ηc3 ε3n3�1ð Þ2 + 2ε3n3�1¼ 0:2721

A positive number in every instance means that we have indeed found a local minimum of the function in Eq. (13.85).
PROBLEMS

Section 13.4

13.1 A two-stage, solid-propellant sounding rocket has the following properties:
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First stage: m0 ¼ 249.5 kg mf ¼ 170.1 kg _me ¼ 10:61kg=s Isp ¼ 235 s

Second stage: m0 ¼ 113.4 kg mf ¼ 58.97 kg _me ¼ 4:053 kg=s Isp ¼ 235 s

The delay time between burnout of first stage and ignition of second stage is 3 s. As a

preliminary estimate, neglect drag and the variation of earth’s gravity with altitude to calculate

the maximum height reached by the second stage after burnout.

{Ans.: 322 km}
13.2 A two-stage launch vehicle has the following properties.
First stage: Two solid-propellant rockets, each with a total mass of 525,000 kg, 450,000

kg of which is propellant, and Isp ¼ 290 s.

Second stage: Two liquid rockets with Isp ¼ 450 s, dry mass ¼ 30,000 kg, and propellant

mass ¼ 600,000 kg.

Calculate the payload mass to a 300-km orbit if launched due east from Kennedy Space

Center. Let the total gravity and drag loss be 2 km/s.

{Ans.: 114,000 kg}
Section 13.5
13.3 Suppose a spacecraft in permanent orbit around the earth is to be used for delivering payloads

from low earth orbit (LEO) to geostationary equatorial orbit (GEO). Before each flight from

LEO, the spacecraft is refueled with propellant, which it uses up in its round trip to GEO. The

outbound leg requires four times as much propellant as the inbound return leg. The delta-v for

transfer from LEO to GEO is 4.22 km/s. The specific impulse of the propulsion system is 450 s. If

the payload mass is 3500 kg, calculate the empty mass of the vehicle.
{Ans.: 2733 kg}
13.4 Consider a rocket comprising three similar stages (i.e., each stage has the same specific impulse,

structural ratio, and payload ratio). The common specific impulse is 310 s. The total mass of the

vehicle is 150,000 kg, the total structural mass (empty mass) is 20,000 kg, and the payload mass

is 10,000 kg. Calculate
(a) the mass ratio n and the total Δv for the three-stage rocket.
{Ans.: n ¼ 2.04, Δv ¼ 6.50 km/s}
(b) mp)1, mp)2, and mp)3.

(c) mE)1, mE)2 and mE)3.

(d) m0)1, m0)2 and m0)3.

Section 13.6

13.5 Find the extrema of the function z ¼ (x + y)2 subject to y and z lying on the circle

(x � 1)2 + y2 ¼ 1.
{Ans.: z ¼ 0.1716 at (x,y) ¼ (0.2929,�0.7071);

z ¼ 5.828 at (x,y) ¼ (1.707,0.7071); and

z ¼ 0 at (x,y) ¼ (0,0) and (x,y) ¼ (1,�1)}
13.6 A small two-stage vehicle is to propel a 10-kg payload to a speed of 6.2 km/s. The properties of

the stages are as follows. For the first stage, Isp ¼ 300 s and ε ¼ 0.2. For the second stage,

Isp ¼ 235 s and ε ¼ 0.3. Estimate the optimum mass of the vehicle.
{Ans.: 1125 kg}
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APPENDIX
PHYSICAL DATA
 A

Tables A.1–A.3 contain information that is commonly available and may be found in the literature and

on the World Wide Web.
Table A.1 Astronomical data for the sun, the planets, and the moon

Object

Radius

(km) Mass (kg)

Sidereal

rotation

period

Inclination of

equator to

orbit plane

Semimajor

axis of orbit

(km)

Orbit

eccentricity

Inclination of

orbit to the

ecliptic plane

Orbit

sidereal

period

Sun 696,000 1.989 � 1030 25.38d 7.25° – – – –

Mercury 2440 330.2 � 1021 58.65d 0.01° 57.91 � 106 0.2056 7.00° 87.97d

Venus 6052 4.869 � 1024 243da 177.4° 108.2 � 106 0.0067 3.39° 224.7d

Earth 6378 5.974 � 1024 23.9345h 23.45° 149.6 � 106 0.0167 0.00° 365.256d

(Moon) 1737 73.48 � 1021 27.32d 6.68° 384.4 � 103 0.0549 5.145° 27.322d

Mars 3396 641.9 � 1021 24.62h 25.19° 227.9 � 106 0.0935 1.850° 1.881y

Jupiter 71,490 1.899 � 1027 9.925h 3.13° 778.6 � 106 0.0489 1.304° 11.86y

Saturn 60,270 568.5 � 1024 10.66h 26.73° 1.433 � 109 0.0565 2.485° 29.46y

Uranus 25,560 86.83 � 1024 17.24ha 97.77° 2.872 � 109 0.0457 0.772° 84.01y

Neptune 24,764 102.4 � 1024 16.11h 28.32° 4.495 � 109 0.0113 1.769 164.8y

(Pluto) 1187 13.03 � 1021 6.387da 122.5° 5.906 � 109 0.2488 17.16° 247.9y

aRetrograde.
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Table A.3 Some conversion factors

1 ft ¼ 0.3048 m

1 mile (mi) ¼ 1.609 km

1 nautical mile (n mi) ¼1.151 mi ¼ 1.852 km

1 mi/h ¼ 0.0004469 km/s

1 lb (mass) ¼ 0.4536 kg

1 lb (force) ¼ 4.448 N

1 psi ¼ 6895 kPa

1 astronomical unit (AU) ¼ 149,597,870.700 km

Table A.2 Gravitational parameter (μ) and sphere of influence (SOI) radius for the sun, the

planets, and the moon

Celestial body μ (km3/s2) SOI radius (km)

Sun 132,712,440,018 –

Mercury 22,032 112,000

Venus 324,859 616,000

Earth 398,600 925,000

Earth’s moon 4905 66,100

Mars 42,828 577,000

Jupiter 126,686,534 48,200,000

Saturn 37,931,187 54,800,000

Uranus 5,793,939 51,800,000

Neptune 6,836,529 86,600,000

Pluto 871 3,080,000
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APPENDIX
A ROAD MAP
 B

Fig. B.1 is a road map through Chapters 1, 2, and 3. Those who from time to time feel they have lost

their bearings may find it useful to refer to this flow chart, which shows how the various concepts and

results are interrelated. The pivotal influence of Sir Isaac Newton is obvious. All the equations of clas-

sical orbital mechanics (the two-body problem) are derived from those listed here.
Kepler's
Second Law

Conservation of
mechanical energy

The orbit formula
(Kepler's First Law)

Newton's Laws

Definition

2-body equation
of relative motion

Kepler's
Third Law

Kepler's equations
relating true anomaly

to time

F = ma

Fg = G
m1m2

r2 u r

v2
2 r =const

vr =
h

esin

t = h3
2

d

1+ ecos( )20

r = h2 1
1 ecos+

r =
r3

r

T = 2 a3 2

dA
dt

= h
2

v = h
r

h = r r

FIG. B.1

Logic flow for the major outcomes of Chapters 1, 2, and 3.
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APPENDIX
C
NUMERICAL INTEGRATION OF
THE N-BODY EQUATIONS OF
MOTION
Without loss of generality we shall derive the equations of motion of the three-body system illustrated

in Fig. C.1. The equations of motion for n bodies can easily be generalized from those of a three-body

system.

Each mass of a three-body system experiences the force of gravitational attraction from the other

members of the system. As shown in Fig. C.1, the forces exerted on body 1 by bodies 2 and 3 are F12 and

F13, respectively. Likewise, body 2 experiences the forces F21 and F23 whereas the forces F31 and F32

act on body 3. These gravitational forces can be inferred from Eq. (2.9):

F12 ¼�F21 ¼Gm1m2 R2�R1ð Þ
R2�R1k k3 (C.1a)
FIG. C.1

Three-body problem.
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F13 ¼�F31 ¼Gm1m3 R3�R1ð Þ
R3�R1k k3 (C.1b)

F23 ¼�F32 ¼Gm2m3 R3�R2ð Þ
R3�R2k k3 (C.1c)

Relative to an inertial frame of reference the accelerations of the bodies are

ai ¼ €Ri i¼ 1,2,3

where Ri is the absolute position vector of body i. The equation of motion of body 1 is

F12 +F13 ¼m1a1

Substituting Eqs. (C.1a) and (C.1b) yields

a1 ¼Gm2 R2�R1ð Þ
R2�R1k k3 +

Gm3 R3�R1ð Þ
R3�R1k k3 (C.2a)

For bodies 2 and 3 we find in a similar fashion that

a2 ¼Gm1 R1�R2ð Þ
R1�R2k k3 +

Gm3 R3�R2ð Þ
R3�R2k k3 (C.2b)

a3 ¼Gm1 R1�R3ð Þ
R1�R3k k3 +

Gm2 R2�R3ð Þ
R2�R3k k3 (C.2c)

The velocities are related to the accelerations by

dvi
dt

¼ ai i¼ 1,2,3 (C.3)

and the position vectors are likewise related to the velocities,

dRi

dt
¼ vi i¼ 1,2,3 (C.4)

Eqs. (C.2)–(C.4) constitute a system of ordinary differential equations (ODEs) in variable time.

Given the initial positions Ri0
and initial velocities vi0, we must integrate Eq. (C.3) to find vi as a

function of time and substitute those results into Eq. (C.4) to obtain Ri as a function of time. The

integrations must be done numerically.

To do this using MATLAB, we first resolve all the vectors into their three components along the

XYZ axes of the inertial frame and write them as column vectors,

R1 ¼
X1

Y1

Z1

8><
>:

9>=
>;

R2 ¼
X2

Y2

Z2

8><
>:

9>=
>;

R3 ¼
X3

Y3

Z3

8><
>:

9>=
>;

(C.5)

v1 ¼
_X1

_Y 1

_Z1

8><
>:

9>=
>;

v2 ¼
_X2

_Y 2

_Z2

8><
>:

9>=
>;

v3 ¼
_X3

_Y 3

_Z3

8><
>:

9>=
>;

(C.6)
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According to Eqs. (C.2),

a1 ¼
€X1

€Y1

€Z1

8<
:

9=
;¼

Gm2 X2�X1ð Þ
R12

3
+
Gm3 X3�X1ð Þ

R13
3

Gm2 Y2�Y1ð Þ
R12

3
+
Gm3 Y3�Y1ð Þ

R13
3

Gm2 Z2�Z1ð Þ
R12

3
+
Gm3 Z3�Z1ð Þ

R13
3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(C.7a)

a2 ¼
€X2

€Y2

€Z2

8<
:

9=
;¼

Gm1 X1�X2ð Þ
R12

3
+
Gm3 X3�X2ð Þ

R13
3

Gm1 Y1�Y2ð Þ
R12

3
+
Gm3 Y3�Y2ð Þ

R13
3

Gm1 Z1�Z2ð Þ
R12

3
+
Gm3 Z3�Z2ð Þ

R13
3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(C.7b)

a3 ¼
€X3

€Y3

€Z3

8<
:

9=
;¼

Gm1 X1�X3ð Þ
R12

3
+
Gm2 X2�X3ð Þ

R13
3

Gm1 Y1�Y3ð Þ
R12

3
+
Gm2 Y2�Y3ð Þ

R13
3

Gm1 Z1�Z3ð Þ
R12

3
+
Gm2 Z2�Z3ð Þ

R13
3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(C.7c)

where

R12 ¼ R2�R1k k R13 ¼ R3�R1k k R23 ¼ R3�R2k k (C.8)

Next, we form the 18-component column vector

y¼ R1 R2 R3 v1 v2 v3b cT (C.9)

The first derivatives of the components of this vector comprise the column vector

_y¼ f¼ v1 v2 v3 a1 a2 a3b cT (C.10)

According to Eqs. (C.8), the accelerations are functions of R1, R2, and R3. Hence, Eq. (C.10) is of the

form

_y¼ f t, yð Þ (C.11)

given in Eq. (1.95), although in this case time t does not appear explicitly. Eq. (C.11) can be employed

in procedures, such as Algorithms 1.1, 1.2, or 1.3, to obtain a numerical solution for R1(t), R2(t), and
R3(t). We shall choose MATLAB’s ode45 Runge-Kutta solver.

For simplicity, we will solve the three-body problem in the plane. That is, we will restrict ourselves

to only the XY components of the vectorsR, v, and a. The reader can use these scripts as a starting point
for investigating more complex n-body problems.

The MATLAB function threebody.m contains the subfunction rates, which computes the acceler-

ations given above in Eqs. (C.7). That information together with the initial conditions are passed to

ode45, which integrates the system given by Eq. (C.11) and finally plots the solutions. The results

of this program were used to create Figs. 2.4 and 2.5.



744 APPENDIX C NUMERICAL INTEGRATION OF THE N-BODY EQUATIONS
Function file threebody:m

% ������������������������������������������������������������
function threebody

% ����������������
%{

This program presents the graphical solution of the motion of three

bodies in the plane for data provided in the input definitions below.

MATLAB’s ode45 Runge-Kutta solver is used.

G - gravitational constant (km 3̂/kg/s 2̂)

t0, tf - initial and final times (s)

m1, m2, m3 - masses of the three bodies (kg)

m - total mass (kg)

X1,Y1; X2,Y2; X3,Y3 - coordinates of the three masses (km)

VX1,VY1; VX2,VY2; VX3,VY3 - velocity components of the three

masses (km/s)

XG, YG - coordinates of the center of mass (km)

y0 - column vector of the initial conditions

t - column vector of times at which the solution

was computed

y - matrix, the columns of which contain the

position and velocity components evaluated at

the times t(:):

y(:,1) , y(:, 2) = X1(:), Y1(:)

y(:,3) , y(:, 4) = X2(:), Y2(:)

y(:,5) , y(:, 6) = X3(:), Y3(:)

y(:,7) , y(:, 8) = VX1(:), VY1(:)

y(:,9) , y(:,10) = VX2(:), VY2(:)

y(:,11), y(:,12) = VX3(:), VY3(:)

User M-functions required: none

User subfunctions required: rates, plotit

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

clear all

close all

clc

G = 6.67259e-20;

%...Input data:

m1 = 1.e29; m2 = 1.e29; m3 = 1.e29;



745APPENDIX C NUMERICAL INTEGRATION OF THE N-BODY EQUATIONS
t0 = 0; tf = 67000;

X1 = 0; Y1 = 0;

X2 = 300000; Y2 = 0;

X3 = 2*X2; Y3 = 0;

VX1 = 0; VY1 = 0;

VX2 = 250; VY2 = 250;

VX3 = 0; VY3 = 0;

%...End input data

m = m1 + m2 + m3;

y0 = [X1 Y1 X2 Y2 X3 Y3 VX1 VY1 VX2 VY2 VX3 VY3]’;

%...Pass the initial conditions and time interval to ode45, which

% calculates the position and velocity of each particle at discrete

% times t, returning the solution in the column vector y. ode45 uses

% the subfunction ’rates’ below to evaluate the accelerations at each

% integration time step.

[t,y] = ode45(@rates, [t0 tf], y0);

X1 = y(:,1); Y1 = y(:,2);

X2 = y(:,3); Y2 = y(:,4);

X3 = y(:,5); Y3 = y(:,6);

%...Locate the center of mass at each time step:

XG = []; YG = [];

for i = 1:length(t)

XG = [XG; (m1*X1(i) + m2*X2(i) + m3*X3(i))/m];

YG = [YG; (m1*Y1(i) + m2*Y2(i) + m3*Y3(i))/m];

end

%...Coordinates of each particle relative to the center of mass:

X1G = X1 - XG; Y1G = Y1 - YG;

X2G = X2 - XG; Y2G = Y2 - YG;

X3G = X3 - XG; Y3G = Y3 - YG;

plotit

return

% ������������������������������������������������������������
function dydt = rates(t,y)

% ��������������������������
%{

This function evaluates the acceleration of each member of a planar

3-body system at time t from their positions and velocities

at that time.
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t - time (s)

y - column vector containing the position and

velocity components of the three masses

at time t

R12 - cube of the distance between m1 and m2 (km 3̂)

R13 - cube of the distance between m1 and m3 (km 3̂)

R23 - cube of the distance between m2 and m3 (km 3̂)

AX1,AY1; AX2,AY2; AX3,AY3 - acceleration components of each mass (km/s 2̂)

dydt - column vector containing the velocity and

acceleration components of the three

masses at time t

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

X1 = y( 1);

Y1 = y( 2);

X2 = y( 3);

Y2 = y( 4);

X3 = y( 5);

Y3 = y( 6);

VX1 = y( 7);

VY1 = y( 8);

VX2 = y( 9);

VY2 = y(10);

VX3 = y(11);

VY3 = y(12);

%...Equations C.8:

R12 = norm([X2 - X1, Y2 - Y1]) 3̂;

R13 = norm([X3 - X1, Y3 - Y1]) 3̂;

R23 = norm([X3 - X2, Y3 - Y2]) 3̂;

%...Equations C.7:

AX1 = G*m2*(X2 - X1)/R12 + G*m3*(X3 - X1)/R13;

AY1 = G*m2*(Y2 - Y1)/R12 + G*m3*(Y3 - Y1)/R13;

AX2 = G*m1*(X1 - X2)/R12 + G*m3*(X3 - X2)/R23;

AY2 = G*m1*(Y1 - Y2)/R12 + G*m3*(Y3 - Y2)/R23;

AX3 = G*m1*(X1 - X3)/R13 + G*m2*(X2 - X3)/R23;

AY3 = G*m1*(Y1 - Y3)/R13 + G*m2*(Y2 - Y3)/R23;

dydt = [VX1 VY1 VX2 VY2 VX3 VY3 AX1 AY1 AX2 AY2 AX3 AY3]’;
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end %rates

% ������������������������������������������������������������

% �������������
function plotit

% –––––––––––––

%...Plot the motions relative to the inertial frame (Figure 2.4):

figure(1)

title(’Figure 2.4: Motion relative to the inertial frame’, ...

’Fontweight’, ’bold’, ’FontSize’, 12)

hold on

plot(XG, YG, ’--k’, ’LineWidth’, 0.25)

plot(X1, Y1, ’r’, ’LineWidth’, 0.5)

plot(X2, Y2, ’g’, ’LineWidth’, 0.75)

plot(X3, Y3, ’b’, ’LineWidth’, 1.00)

xlabel(’X(km)’); ylabel(’Y(km)’)

grid on

axis(’equal’)

%...Plot the motions relative to the center of mass (Figure 2.5):

figure(2)

title(’Figure 2.5: Motion relative to the center of mass’, ...

’Fontweight’, ’bold’, ’FontSize’, 12)

hold on

plot(X1G, Y1G, ’r’, ’LineWidth’, 0.5)

plot(X2G, Y2G, ’--g’, ’LineWidth’, 0.75)

plot(X3G, Y3G, ’b’, ’LineWidth’, 1.00)

xlabel(’X(km)’); ylabel(’Y(km)’)

grid on

axis(’equal’)

end %plotit

% �������������

end %threebody
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MATLAB SCRIPTS
 D

APPENDIX OUTLINE
D.1 Introduction

Chapter 1: Dynamics of Point Masses
D.2
 rkf1_4.m
 Algorithm 1.1: Numerical integration of a system of first-order differential

equations by choice of Runge-Kutta methods RK1, RK2, RK3. or RK4.
Example_1_18.m
 Example of Algorithm 1.1.
D.3
 heun.m
 Algorithm 1.2: Numerical integration of a system of first-order differential

equations by Heun’s predictor-corrector method.
Example 1.19.m
 Example of Algorithm 1.2.
D.4
 rk45.m
 Algorithm 1.3: Numerical integration of a system of first-order differential

equations by the Runge-Kutta-Fehlberg 4(5) method with adaptive step

size control.
Example_1_20.m
 Example of Algorithm 1.3.
Chapter 2: The Two-body Problem
D.5
 twobody3d.m
 Algorithm 2.1: Numerical solution for the motion of two bodies relative to

an inertial frame. Includes the data for Example 2.2.
D.6
 orbit.m
 Algorithm 2.2: Numerical solution of the two-body relative motion

problem. Includes the data for Example 2.3.
D.7
 f_and_g_ta.m
 Calculates the Lagrange coefficients f and g in terms of change in true

anomaly.
fDot_and_gDot_ta.m
 Calculates the Lagrange coefficient derivatives _f and _g in terms of change

in true anomaly.
D.8
 rv_from_r0v0_ta.m
 Algorithm 2.3: Calculate the state vector given the initial state vector and

the change in true anomaly.
Example_2_13.m
 Example of Algorithm 2.3
D.9
 bisect.m
 Algorithm 2.4: Find the root of a function using the bisection method.
Example_2_16.m
 Example of Algorithm 2.4.
D.10
 Example_2_18.m
 Translunar trajectory as a circular restricted three-body problem.
Continued

e1
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Chapter 3: Orbital Position as a Function of Time
D.11
 kepler_E.m
 Algorithm 3.1: Solution of Kepler’s equation by Newton’s method.
Example_3_02.m
 Example of Algorithm 3.1.

D.12
 kepler_H.m
 Algorithm 3.2: Solution of Kepler’s equation for the hyperbola using

Newton’s method.
Example_3_05.m
 Example of Algorithm 3.2.
D.13
 stumpS.m
 Calculation of the Stumpff function S(z) and C(z)
stumpC.m
 Calculation of the Stumpff function C(z).
D.14
 kepler_U.m
 Algorithm 3.3: Solution of the universal Kepler’s equation using Newton’s

method.
Example_3_06.m
 Example of Algorithm 3.3.
D.15
 f_and_g.m
 Calculation of the Lagrange coefficients f and g and their time derivatives

in terms of change in universal anomaly.
D.16
 rv_from_r0v0.m
 Algorithm 3.4: Calculation of the state vector given the initial state vector

and the time lapse Δt.

Example_3_07.m
 Example of Algorithm 3.4.
Chapter 4: Orbits in Three Dimensions
D.17
 ra_and_dec_from_r.m
 Algorithm 4.1: Obtain right ascension and declination from the position

vector.
Example_4_01.m
 Example of Algorithm 4.1.
D.18
 coe_from_sv.m
 Algorithm 4.2: Calculation of the orbital elements from the state vector.
Example_4_03.m
 Example of Algorithm 4.2.
D.19
 atan2d_0_360.m
 Calculation of tan�1(y/x) to lie in the range 0° to 360°. (MATLAB’s atan2d
result lies in the range 0° to �180°.)
D.20
 dcm_to_euler.m
 Algorithm 4.3: Obtain the classical Euler angle sequence from a DCM.
D.21
 dcm_to_ypr.m
 Algorithm 4.4: Obtain the yaw, pitch, and roll angles from a DCM.
D.22
 sv_from_coe.m
 Algorithm 4.5: Calculation of the state vector from the orbital elements.
Example_4_07.m
 Example of Algorithm 4.5
D.23
 ground_track.m
 Algorithm 4.6: Calculate the ground track of a satellite from its orbital

elements. Contains the data for Example 4.12.
Chapter 5: Preliminary Orbit Determination
D.24
 gibbs.m
 Algorithm 5.1: Gibbs’ method of preliminary orbit determination.
Example_5_01.m
 Example of Algorithm 5.1.
D.25
 lambert.m
 Algorithm 5.2: Solution of Lambert’s problem.
Example_5_02.m
 Example of Algorithm 5.2.
D.26
 J0.m
 Calculation of Julian day number at 0 hr UT.
Example_5_04.m
 Example of Julian day calculation.
D.27
 LST.m
 Algorithm 5.3: Calculation of local sidereal time.
Example_5_06.m
 Example of Algorithm 5.3.
D.28
 rv_from_observe.m
 Algorithm 5.4: Calculation of the state vector frommeasurements of range,

angular position, and their rates.
Example_5_10.m
 Example of Algorithm 5.4.
D.29
 gauss.m
 Algorithms 5.5 and 5.6: Gauss’ method of preliminary orbit determination

with iterative improvement.
Example_5_11.m
 Example of Algorithms 5.5 and 5.6.
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Chapter 6: Orbital Maneuvers
D.30
 integrate_thrust.m
 Calculate the state vector at the end of a finite time, constant thrust delta-v

maneuver. Contains the data for Example 6.15.
Chapter 7: Relative Motion and Rendezvous
D.31
 rva_relative.m
 Algorithm 7.1: Find the position, velocity, and acceleration of B relative to

A’s comoving frame.
Example_7_01.m
 Example of Algorithm 7.1.
D.32
 Example_7_02.m
 Plot the position of one spacecraft relative to another.
D.33
 Example_7_03.m
 Solve the linearized equations of relative motion with an elliptical

reference orbit.
Chapter 8: Interplanetary Trajectories
D.34
 month_planet_names.m
 Convert the numerical designation of a month or a planet into its name.
D.35
 planet_elements_and_sv.m
 Algorithm 8.1: Calculation of the heliocentric state vector of a planet at a

given epoch.
Example_8_07.m
 Example of Algorithm 8.1.
D.36
 interplanetary.m
 Algorithm 8.2: Calculate the spacecraft trajectory from planet 1 to planet 2.
Example_8_08.m
 Example of Algorithm 8.2.
Chapter 9: Lunar Trajectories
D.37
 simpsons_lunar_ephemeris.
m

Lunar state vector vs. time.
D.38
 Example_9_03.m
 Numerical calculation of lunar trajectory.
Chapter 10: Introduction to Orbital Perturbations
D.39
 atmosphere.m
 US Standard Atmosphere 1976.
D.40
 Example_10_01.m
 Time for orbit decay using Cowell’s method.
D.41
 Example_10_02.m
 J2 perturbation of an orbit using Encke’s method.
D.42
 Example_10_06.m
 Using Gauss’ variational equations to assess the J2 effect on orbital

elements.
D.43
 solar_position.m
 Algorithm 10.2: Calculate the geocentric position of the sun at a given

epoch.
D.44
 los.m
 Algorithm 10.3: Determine whether or not a satellite is in earth’s shadow.
D.45
 Example_10_09.m
 Use the Gauss’ variational equations to determine the effect of solar

radiation pressure on an earth satellite’s orbital parameters.
D.46
 lunar_position.m
 Algorithm 10.4: Calculate the geocentric position of the moon at a given

epoch.
Example_10_10.m
 Example of Algorithm 10.4.
D.47
 Example_10_11.m
 Use the Gauss’ variational equations to determine the effect of lunar

gravity on an earth satellite’s orbital parameters.
D.48
 Example_10_12.m
 Use the Gauss’ variational equations to determine the effect of solar gravity

on an earth satellite’s orbital parameters.
Continued
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Chapter 11: Rigid Body Dynamics
D.49
 dcm_from_q.m
 Algorithm 11.1: Calculate the direction cosine matrix from the quaternion.
D.50
 q_from_dcm.m
 Algorithm 11.2: Calculate the quaternion from the direction cosine matrix.
D.51
 quat_rotate.m
 Quaternion vector rotation operation (Eq. 11.160).
D.52
 Example_11_26.m
 Solution of the spinning top problem.
Chapter 12: Spacecraft Attitude Dynamics

Chapter 13: Rocket Vehicle Dynamics
D.53
 Example_13_03.m
 Example 11.3: Calculation of a gravity turn trajectory.
D.1 INTRODUCTION
This appendix lists MATLAB scripts that implement all the numbered algorithms presented throughout

the text. The programs use only the most basic features of MATLAB and are liberally commented so as

to make reading the code as easy as possible. To “drive” the various algorithms, we can use MATLAB

to create graphical user interfaces (GUIs). However, in the interest of simplicity and keeping our focus

on the algorithms rather than elegant programming techniques, GUIs were not developed. Furthermore,

the scripts do not use files to import and export data. Data are defined in declaration statements within

the scripts. All output is to the screen (i.e., to the MATLAB Command Window). It is hoped that in-

terested students will embellish these simple scripts or use them as a springboard toward generating

their own programs.

Each algorithm is illustrated by a MATLAB coding of a related example problem in the text. The

actual output of each of these examples is also listed. These programs are presented solely as an alter-

native to carrying out otherwise lengthy hand computations and are intended for academic use only.

They are all based exclusively on the introductory material presented in this text. Should it be necessary

to do so, it is a fairly simple matter to translate these programs into other software languages.

It would be helpful to have MATLAB documentation at hand. There are many practical references

on the subject in bookstores and online, including those at The MathWorks website (www.mathworks.

com).
CHAPTER 1: DYNAMICS OF POINT MASSES

D.2 ALGORITHM 1.1: NUMERICAL INTEGRATION BY RUNGE-KUTTA
METHODS RK1, RK2, RK3, OR RK4
FUNCTION FILE rkf1_4.m

% ������������������������������������������������������������
function [tout, yout] = rk1_4(ode_function, tspan, y0, h, rk)

% ������������������������������������������������������������

http://www.mathworks.com
http://www.mathworks.com
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%{

This function uses a selected Runge-Kutta procedure to integrate

a system of first-order differential equations dy/dt = f(t,y).

y - column vector of solutions

f - column vector of the derivatives dy/dt

t - time

rk - = 1 for RK1; = 2 for RK2; = 3 for RK3; = 4 for RK4

n_stages - the number of points within a time interval that

the derivatives are to be computed

a - coefficients for locating the solution points within

each time interval

b - coefficients for computing the derivatives at each

interior point

c - coefficients for the computing solution at the end of

the time step

ode_function - handle for user M-function in which the derivatives f

are computed

tspan - the vector [t0 tf] giving the time interval for the

solution

t0 - initial time

tf - final time

y0 - column vector of initial values of the vector y

tout - column vector of times at which y was evaluated

yout - a matrix, each row of which contains the components of y

evaluated at the correponding time in tout

h - time step

ti - time at the beginning of a time step

yi - values of y at the beginning of a time step

t_inner - time within a given time step

y_inner - values of y within a given time step

User M-function required: ode_function

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

%...Determine which of the four Runge-Kutta methods is to be used:

switch rk

case 1

n_stages = 1;

a = 0;

b = 0;

c = 1;

case 2

n_stages = 2;

a = [0 1];

b = [0 1]’;

c = [1/2 1/2];



e6 MATLAB scripts
case 3

n_stages = 3;

a = [0 1/2 1];

b = [ 0 0

1/2 0

–1 2];

c = [1/6 2/3 1/6];

case 4

n_stages = 4;

a = [0 1/2 1/2 1];

b = [ 0 0 0

1/2 0 0

0 1/2 0

0 0 1];

c = [1/6 1/3 1/3 1/6];

otherwise

error(’The parameter rk must have the value 1, 2, 3 or 4.’)

end

t0 = tspan(1);

tf = tspan(2);

t = t0;

y = y0;

tout = t;

yout = y’;

while t < tf

ti = t;

yi = y;

%...Evaluate the time derivative(s) at the ’n_stages’ points within the

% current interval:

for i = 1:n_stages

t_inner = ti + a(i)*h;

y_inner = yi;

for j = 1:i-1

y_inner = y_inner + h*b(i,j)*f(:,j);

end

f(:,i) = feval(ode_function, t_inner, y_inner);

end

h = min(h, tf-t);

t = t + h;

y = yi + h*f*c’;

tout = [tout;t]; % adds t to the bottom of the column vector tout

yout = [yout;y’]; % adds y’ to the bottom of the matrix yout

end

end

% ������������������������������������������������������������
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FUNCTION FILE: Example_1_18.m

% ������������������������������������������������������������
function Example_1_18

% ���������������
%{

This function uses the RK1 through RK4 methods with two

different time steps each to solve for and plot the response

of a damped single degree of freedom spring-mass system to

a sinusoidal forcing function, represented by

x’’ + 2*z*wn*x’ + wn 2̂*x = (Fo/m)*sin(w*t)

The numerical integration is done by the external

function ’rk1_4’, which uses the subfunction ’rates’

herein to compute the derivatives.

This function also plots the exact solution for comparison.

x - displacement (m)

’ - shorthand for d/dt

t - time (s)

wn - natural circular frequency (radians/s)

z - damping factor

wd - damped natural frequency

Fo - amplitude of the sinusoidal forcing function (N)

m - mass (kg)

w - forcing frequency (radians/s)

t0 - initial time (s)

tf - final time (s)

h - uniform time step (s)

tspan - a row vector containing t0 and tf

x0 - value of x at t0 (m)

x_dot0 - value of dx/dt at t0 (m/s)

f0 - column vector containing x0 and x_dot0

rk - = 1 for RK1; = 2 for RK2; = 3 for RK3; = 4 for RK4

t - solution times for the exact solution

t1, ...,t4 - solution times for RK1,...,RK4 for smaller

t11,...,t41 - solution times for RK1,...,RK4 for larger h

f1, ...,f4 - solution vectors for RK1,...,RK4 for smaller h

f11,...,f41 - solution vectors for RK1,...,RK4 for larger h

User M-functions required: rk1_4

User subfunctions required: rates

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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clear all; close all; clc

%...Input data:

m = 1;

z = 0.03;

wn = 1;

Fo = 1;

w = 0.4*wn;

x0 = 0;

x_dot0 = 0;

f0 = [x0; x_dot0];

t0 = 0;

tf = 110;

tspan = [t0 tf];

%...End input data

%...Solve using RK1 through RK4, using the same and a larger

% time step for each method:

rk = 1;

h = .01; [t1, f1] = rk1_4(@rates, tspan, f0, h, rk);

h = 0.1; [t11, f11] = rk1_4(@rates, tspan, f0, h, rk);

rk = 2;

h = 0.1; [t2, f2] = rk1_4(@rates, tspan, f0, h, rk);

h = 0.5; [t21, f21] = rk1_4(@rates, tspan, f0, h, rk);

rk = 3;

h = 0.5; [t3, f3] = rk1_4(@rates, tspan, f0, h, rk);

h = 1.0; [t31, f31] = rk1_4(@rates, tspan, f0, h, rk);

rk = 4;

h = 1.0; [t4, f4] = rk1_4(@rates, tspan, f0, h, rk);

h = 2.0; [t41, f41] = rk1_4(@rates, tspan, f0, h, rk);

output

return

% ������������������������
function dfdt = rates(t,f)

% ––––––––––––––––––––––––––––––

%{

This function calculates first and second time derivatives

of x as governed by the equation

x’’ + 2*z*wn*x’ + wn 2̂*x = (Fo/m)*sin(w*t)



e9MATLAB scripts
Dx - velocity (x’)

D2x - acceleration (x’’)

f - column vector containing x and Dx at time t

dfdt - column vector containing Dx and D2x at time t

User M-functions required: none

%}

% ������������������������

x = f(1);

Dx = f(2);

D2x = Fo/m*sin(w*t) - 2*z*wn*Dx - wn 2̂*x;

dfdt = [Dx; D2x];

end %rates

% ����������
function output

% –––––––––––––

%...Exact solution:

wd = wn*sqrt(1 - z 2̂);

den = (wn 2̂ - w 2̂) 2̂ + (2*w*wn*z) 2̂;

C1 = (wn 2̂ - w 2̂)/den*Fo/m;

C2 = -2*w*wn*z/den*Fo/m;

A = x0*wn/wd + x_dot0/wd +(w 2̂ + (2*z 2̂ - 1)*wn 2̂)/den*w/wd*Fo/m;

B = x0 + 2*w*wn*z/den*Fo/m;

t = linspace(t0, tf, 5000);

x = (A*sin(wd*t) + B*cos(wd*t)).*exp(-wn*z*t) ...

+ C1*sin(w*t) + C2*cos(w*t);

%...Plot solutions

% Exact:

subplot(5,1,1)

plot(t/max(t), x/max(x), ’k’, ’LineWidth’,1)

grid off

axis tight

title(’Exact’)

% RK1:

subplot(5,1,2)

plot(t1/max(t1), f1(:,1)/max(f1(:,1)), ’-r’, ’LineWidth’,1)

hold on

plot(t11/max(t11), f11(:,1)/max(f11(:,1)), ’-k’)

grid off

axis tight

title(’RK1’)

legend(’h = 0.01’, ’h = 0.1’)
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% RK2:

subplot(5,1,3)

plot(t2/max(t2), f2(:,1)/max(f2(:,1)), ’-r’, ’LineWidth’,1)

hold on

plot(t21/max(t21), f21(:,1)/max(f21(:,1)), ’-k’)

grid off

axis tight

title(’RK2’)

legend(’h = 0.1’, ’h = 0.5’)

% RK3:

subplot(5,1,4)

plot(t3/max(t3), f3(:,1)/max(f3(:,1)), ’-r’, ’LineWidth’,1)

hold on

plot(t31/max(t31), f31(:,1)/max(f31(:,1)), ’-k’)

grid off

axis tight

title(’RK3’)

legend(’h = 0.5’, ’h = 1.0’)

% RK4:

subplot(5,1,5)

plot(t4/max(t4), f4(:,1)/max(f4(:,1)), ’-r’, ’LineWidth’,1)

hold on

grid off

plot(t41/max(t41), f41(:,1)/max(f41(:,1)), ’-k’)

axis tight

title(’RK4’)

legend(’h = 1.0’, ’h = 2.0’)

end %output

end %Example_1_18

% ������������������������������������������������������������
D.3 ALGORITHM 1.2: NUMERICAL INTEGRATION BY HEUN’S
PREDICTOR-CORRECTOR METHOD
FUNCTION FILE: heun.m

% ������������������������������������������������������������
function [tout, yout] = heun(ode_function, tspan, y0, h)

% �������������������������������������������
%{

This function uses the predictor-corrector method to integrate a system

of first-order differential equations dy/dt = f(t,y).

y - column vector of solutions

f - column vector of the derivatives dy/dt
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ode_function - handle for the user M-function in which the derivatives

f are computed

t - time

t0 - initial time

tf - final time

tspan - the vector [t0 tf] giving the time interval for the

solution

h - time step

y0 - column vector of initial values of the vector y

tout - column vector of the times at which y was evaluated

yout - a matrix, each row of which contains the components of y

evaluated at the correponding time in tout

feval - a built-in MATLAB function which executes ’ode_function’

at the arguments t and y

tol - Maximum allowable relative error for determining

convergence of the corrector

itermax - maximum allowable number of iterations for corrector

convergence

iter - iteration number in the corrector convergence loop

t1 - time at the beginning of a time step

y1 - value of y at the beginning of a time step

f1 - derivative of y at the beginning of a time step

f2 - derivative of y at the end of a time step

favg - average of f1 and f2

y2p - predicted value of y at the end of a time step

y2 - corrected value of y at the end of a time step

err - maximum relative error (for all components) between y2p

and y2 for given iteration

eps - unit roundoff error (the smallest number for which

1 + eps > 1). Used to avoid a zero denominator.

User M-function required: ode_function

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

tol = 1.e-6;

itermax = 100;

t0 = tspan(1);

tf = tspan(2);

t = t0;

y = y0;

tout = t;

yout = y’;

while t < tf

h = min(h, tf-t);
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t1 = t;

y1 = y;

f1 = feval(ode_function, t1, y1);

y2 = y1 + f1*h;

t2 = t1 + h;

err = tol + 1;

iter = 0;

while err > tol && iter <= itermax

y2p = y2;

f2 = feval(ode_function, t2, y2p);

favg = (f1 + f2)/2;

y2 = y1 + favg*h;

err = max(abs((y2 - y2p)./(y2 + eps)));

iter = iter + 1;

end

if iter > itermax

fprintf(’\n Maximum no. of iterations (%g)’,itermax)

fprintf(’\n exceeded at time = %g’,t)

fprintf(’\n in function ’’heun.’’\n\n’)

return

end

t = t + h;

y = y2;

tout = [tout;t]; % adds t to the bottom of the column vector tout

yout = [yout;y’]; % adds y’ to the bottom of the matrix yout

end

% ������������������������������������������������������������
FUNCTION FILE: Example_1_19.m

% ������������������������������������������������������������
function Example_1_19

% ���������������
%{

This program uses Heun’s method with two different time steps to solve

for and plot the response of a damped single degree of freedom

spring-mass system to a sinusoidal forcing function, represented by

x’’ + 2*z*wn*x’ + wn 2̂*x = (Fo/m)*sin(w*t)

The numerical integration is done in the external function ’heun’,

which uses the subfunction ’rates’ herein to compute the derivatives.

x - displacement (m)

’ - shorthand for d/dt

t - time (s)
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wn - natural circular frequency (radians/s)

z - damping factor

Fo - amplitude of the sinusoidal forcing function (N)

m - mass (kg)

w - forcing frequency (radians/s)

t0 - initial time (s)

tf - final time (s)

h - uniform time step (s)

tspan - row vector containing t0 and tf

x0 - value of x at t0 (m)

Dx0 - value of dx/dt at t0 (m/s)

f0 - column vector containing x0 and Dx0

t - column vector of times at which the solution was computed

f - a matrix whose columns are:

column 1: solution for x at the times in t

column 2: solution for x’ at the times in t

User M-functions required: heun

User subfunctions required: rates

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

clear all; close all; clc

%...System properties:

m = 1;

z = 0.03;

wn = 1;

Fo = 1;

w = 0.4*wn;

%...Time range:

t0 = 0;

tf = 110;

tspan = [t0 tf];

%...Initial conditions:

x0 = 0;

Dx0 = 0;

f0 = [x0; Dx0];

%...Calculate and plot the solution for h = 1.0:

h = 1.0;

[t1, f1] = heun(@rates, tspan, f0, h);

%...Calculate and plot the solution for h = 0.1:

h = 0.1;

[t2, f2] = heun(@rates, tspan, f0, h);
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output

return

% �������������������
function dfdt = rates(t,f)

% �������������������
%

% This function calculates first and second time derivatives of x

% for the forced vibration of a damped single degree of freedom

% system represented by the 2nd order differential equation

%

% x’’ + 2*z*wn*x’ + wn 2̂*x = (Fo/m)*sin(w*t)

%

% Dx - velocity

% D2x - acceleration

% f - column vector containing x and Dx at time t

% dfdt - column vector containing Dx and D2x at time t

%

% User M-functions required: none

% –––––––––––––––––––––––––

x = f(1);

Dx = f(2);

D2x = Fo/m*sin(w*t) - 2*z*wn*Dx - wn 2̂*x;

dfdt = [Dx; D2x];

end %rates

% ����������
function output

% ����������
plot(t1, f1(:,1), ’-r’, ’LineWidth’,0.5)

xlabel(’time, s’)

ylabel(’x, m’)

grid

axis([0 110 -2 2])

hold on

plot(t2, f2(:,1), ’-k’, ’LineWidth’,1)

legend(’h = 1.0’,’h = 0.1’)

end %output

end %Example_1_19

% ������������������������������������������������������������
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D.4 ALGORITHM 1.3: NUMERICAL INTEGRATION OF A SYSTEM OF
FIRST-ORDER DIFFERENTIAL EQUATIONS BY THE RUNGE-KUTTA-FEHLBERG
4(5) METHOD WITH ADAPTIVE SIZE CONTROL
FUNCTION FILE: rkf45.m

% �������������������������������������������������
function [tout, yout] = rkf45(ode_function, tspan, y0, tolerance)

% �������������������������������������������������
%{

This function uses the Runge-Kutta-Fehlberg 4(5) algorithm to

integrate a system of first-order differential equations

dy/dt = f(t,y).

y - column vector of solutions

f - column vector of the derivatives dy/dt

t - time

a - Fehlberg coefficients for locating the six solution

points (nodes) within each time interval.

b - Fehlberg coupling coefficients for computing the

derivatives at each interior point

c4 - Fehlberg coefficients for the fourth-order solution

c5 - Fehlberg coefficients for the fifth-order solution

tol - allowable truncation error

ode_function - handle for user M-function in which the derivatives f

are computed

tspan - the vector [t0 tf] giving the time interval for the

solution

t0 - initial time

tf - final time

y0 - column vector of initial values of the vector y

tout - column vector of times at which y was evaluated

yout - a matrix, each row of which contains the components of y

evaluated at the correponding time in tout

h - time step

hmin - minimum allowable time step

ti - time at the beginning of a time step

yi - values of y at the beginning of a time step

t_inner - time within a given time step

y_inner - values of y witin a given time step

te - trucation error for each y at a given time step

te_allowed - allowable truncation error

te_max - maximum absolute value of the components of te

ymax - maximum absolute value of the components of y

tol - relative tolerance

delta - fractional change in step size

eps - unit roundoff error (the smallest number for which

1 + eps > 1)

eps(x) - the smallest number such that x + eps(x) = x
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User M-function required: ode_function

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

a = [0 1/4 3/8 12/13 1 1/2];

b = [ 0 0 0 0 0

1/4 0 0 0 0

3/32 9/32 0 0 0

1932/2197 -7200/2197 7296/2197 0 0

439/216 -8 3680/513 -845/4104 0

-8/27 2 -3544/2565 1859/4104 -11/40];

c4 = [25/216 0 1408/2565 2197/4104 -1/5 0 ];

c5 = [16/135 0 6656/12825 28561/56430 -9/50 2/55];

if nargin < 4

tol = 1.e-8;

else

tol = tolerance;

end

t0 = tspan(1);

tf = tspan(2);

t = t0;

y = y0;

tout = t;

yout = y’;

h = (tf - t0)/100; % Assumed initial time step.

while t < tf

hmin = 16*eps(t);

ti = t;

yi = y;

%...Evaluate the time derivative(s) at six points within the current

% interval:

for i = 1:6

t_inner = ti + a(i)*h;

y_inner = yi;

for j = 1:i-1

y_inner = y_inner + h*b(i,j)*f(:,j);

end

f(:,i) = feval(ode_function, t_inner, y_inner);

end
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%...Compute the maximum truncation error:

te = h*f*(c4’ - c5’); % Difference between 4th and

% 5th order solutions

te_max = max(abs(te));

%...Compute the allowable truncation error:

ymax = max(abs(y));

te_allowed = tol*max(ymax,1.0);

%...Compute the fractional change in step size:

delta = (te_allowed/(te_max + eps)) (̂1/5);

%...If the truncation error is in bounds, then update the solution:

if te_max <= te_allowed

h = min(h, tf-t);

t = t + h;

y = yi + h*f*c5’;

tout = [tout;t];

yout = [yout;y’];

end

%...Update the time step:

h = min(delta*h, 4*h);

if h < hmin

fprintf([’\n\n Warning: Step size fell below its minimum\n’...

’ allowable value (%g) at time %g.\n\n’], hmin, t)

return

end

end

% ������������������������������������������������������������
FUNCTION FILE: Example_1_20.m

% ������������������������������������������������������������
function Example_1_20

% ���������������
%{

This program uses RKF4(5) with adaptive step size control

to solve the differential equation

x’’ + mu/x 2̂ = 0

The numerical integration is done by the function ’rkf45’ which uses

the subfunction ’rates’ herein to compute the derivatives.

x - displacement (km)

’ - shorthand for d/dt

t - time (s)
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mu - = go*RE 2̂ (km 3̂/s 2̂), where go is the sea level gravitational

acceleration and RE is the radius of the earth

x0 - initial value of x

v0 = initial value of the velocity (x’)

y0 - column vector containing x0 and v0

t0 - initial time

tf - final time

tspan - a row vector with components t0 and tf

t - column vector of the times at which the solution is found

f - a matrix whose columns are:

column 1: solution for x at the times in t

column 2: solution for x’ at the times in t

User M-function required: rkf45

User subfunction required: rates

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

clear all; close all; clc

mu = 398600;

minutes = 60; %Conversion from minutes to seconds

x0 = 6500;

v0 = 7.8;

y0 = [x0; v0];

t0 = 0;

tf = 70*minutes;

[t,f] = rkf45(@rates, [t0 tf], y0);

plotit

return

% �������������������
function dfdt = rates(t,f)

% ––––––––––––––––––––––––

%{

This function calculates first and second time derivatives of x

governed by the equation of two-body rectilinear motion.

x’’ + mu/x 2̂ = 0

Dx - velocity x’

D2x - acceleration x’’

f - column vector containing x and Dx at time t

dfdt - column vector containing Dx and D2x at time t
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User M-functions required: none

%}

% ������������������������
x = f(1);

Dx = f(2);

D2x = -mu/x 2̂;

dfdt = [Dx; D2x];

end %rates

% ����������
function plotit

% ����������

%...Position vs time:

subplot(2,1,1)

plot(t/minutes,f(:,1), ’-ok’)

xlabel(’time, minutes’)

ylabel(’position, km’)

grid on

axis([-inf inf 5000 15000])

%...Velocity versus time:

subplot(2,1,2)

plot(t/minutes,f(:,2), ’-ok’)

xlabel(’time, minutes’)

ylabel(’velocity, km/s’)

grid on

axis([-inf inf -10 10])

end %plotit

end %Example_1_20

% ������������������������������������������������������������
CHAPTER 2: THE TWO-BODY PROBLEM

D.5 ALGORITHM 2.1: NUMERICAL SOLUTION OF THE TWO-BODY PROBLEM
RELATIVE TO AN INERTIAL FRAME
FUNCTION FILE: twobody3d.m

% ������������������������������������������������������������
function twobody3d

% ������������������������������������������������������������
%{

This function solves the inertial two-body problem in three dimensions

numerically using the RKF4(5) method.
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G - universal gravitational constant (km 3̂/kg/s 2̂)

m1,m2 - the masses of the two bodies (kg)

m - the total mass (kg)

t0 - initial time (s)

tf - final time (s)

R1_0,V1_0 - 3 by 1 column vectors containing the components of tbe

initial position (km) and velocity (km/s) of m1

R2_0,V2_0 - 3 by 1 column vectors containing the components of the

initial position (km) and velocity (km/s) of m2

y0 - 12 by 1 column vector containing the initial values

of the state vectors of the two bodies:

[R1_0; R2_0; V1_0; V2_0]

t - column vector of the times at which the solution is found

X1,Y1,Z1 - column vectors containing the X,Y and Z coordinates (km)

of m1 at the times in t

X2,Y2,Z2 - column vectors containing the X,Y and Z coordinates (km)

of m2 at the times in t

VX1, VY1, VZ1 - column vectors containing the X,Y and Z components

of the velocity (km/s) of m1 at the times in t

VX2, VY2, VZ2 - column vectors containing the X,Y and Z components

of the velocity (km/s) of m2 at the times in t

y - a matrix whose 12 columns are, respectively,

X1,Y1,Z1; X2,Y2,Z2; VX1,VY1,VZ1; VX2,VY2,VZ2

XG,YG,ZG - column vectors containing the X,Y and Z coordinates (km)

the center of mass at the times in t

User M-function required: rkf45

User subfunctions required: rates, output

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

clc; clear all; close all

G = 6.67259e-20;

%...Input data:

m1 = 1.e26;

m2 = 1.e26;

t0 = 0;

tf = 480;

R1_0 = [ 0; 0; 0];

R2_0 = [3000; 0; 0];

V1_0 = [ 10; 20; 30];

V2_0 = [ 0; 40; 0];

%...End input data

y0 = [R1_0; R2_0; V1_0; V2_0];
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%...Integrate the equations of motion:

[t,y] = rkf45(@rates, [t0 tf], y0);

%...Output the results:

output

return

% �������������������
function dydt = rates(t,y)

% �������������������
%{

This function calculates the accelerations in Equations 2.19.

t - time

y - column vector containing the position and velocity vectors

of the system at time t

R1, R2 - position vectors of m1 & m2

V1, V2 - velocity vectors of m1 & m2

r - magnitude of the relative position vector

A1, A2 - acceleration vectors of m1 & m2

dydt - column vector containing the velocity and acceleration

vectors of the system at time t

%}

% ––––––––––––––––––––––––

R1 = [y(1); y(2); y(3)];

R2 = [y(4); y(5); y(6)];

V1 = [y(7); y(8); y(9)];

V2 = [y(10); y(11); y(12)];

r = norm(R2 - R1);

A1 = G*m2*(R2 - R1)/r 3̂;

A2 = G*m1*(R1 - R2)/r 3̂;

dydt = [V1; V2; A1; A2];

end %rates

% ������������������

% ����������
function output

% ����������
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%{

This function calculates the trajectory of the center of mass and

plots

(a) the motion of m1, m2 and G relative to the inertial frame

(b) the motion of m2 and G relative to m1

(c) the motion of m1 and m2 relative to G

User subfunction required: common_axis_settings

%}

% –––––––––––––

%...Extract the particle trajectories:

X1 = y(:,1); Y1 = y(:,2); Z1 = y(:,3);

X2 = y(:,4); Y2 = y(:,5); Z2 = y(:,6);

%...Locate the center of mass at each time step:

XG = []; YG = []; ZG = [];

for i = 1:length(t)

XG = [XG; (m1*X1(i) + m2*X2(i))/(m1 + m2)];

YG = [YG; (m1*Y1(i) + m2*Y2(i))/(m1 + m2)];

ZG = [ZG; (m1*Z1(i) + m2*Z2(i))/(m1 + m2)];

end

%...Plot the trajectories:

figure (1)

title(’Figure 2.3: Motion relative to the inertial frame’)

hold on

plot3(X1, Y1, Z1, ’-r’)

plot3(X2, Y2, Z2, ’-g’)

plot3(XG, YG, ZG, ’-b’)

common_axis_settings

figure (2)

title(’Figure 2.4a: Motion of m2 and G relative to m1’)

hold on

plot3(X2 - X1, Y2 - Y1, Z2 - Z1, ’-g’)

plot3(XG - X1, YG - Y1, ZG - Z1, ’-b’)

common_axis_settings

figure (3)

title(’Figure 2.4b: Motion of m1 and m2 relative to G’)

hold on

plot3(X1 - XG, Y1 - YG, Z1 - ZG, ’-r’)

plot3(X2 - XG, Y2 - YG, Z2 - ZG, ’-g’)

common_axis_settings
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% ���������������������
function common_axis_settings

% ���������������������
%{

This function establishes axis properties common to the several plots.

%}

% –––––––––––––––––––––––––––

text(0, 0, 0, ’o’)

axis(’equal’)

view([2,4,1.2])

grid on

axis equal

xlabel(’X (km)’)

ylabel(’Y (km)’)

zlabel(’Z (km)’)

end %common_axis_settings

end %output

end %twobody3d

% ������������������������������������������������������������
D.6 ALGORITHM 2.2: NUMERICAL SOLUTION OF THE TWO-BODY
RELATIVE MOTION PROBLEM
FUNCTION FILE: orbit.m

% ������������������������������������������������������������
function orbit

% ���������
%{

This function computes the orbit of a spacecraft by using rkf45 to

numerically integrate Equation 2.22.

It also plots the orbit and computes the times at which the maximum

and minimum radii occur and the speeds at those times.

hours - converts hours to seconds

G - universal gravitational constant (km 3̂/kg/s 2̂)

m1 - planet mass (kg)

m2 - spacecraft mass (kg)

mu - gravitational parameter (km 3̂/s 2̂)

R - planet radius (km)

r0 - initial position vector (km)

v0 - initial velocity vector (km/s)

t0,tf - initial and final times (s)

y0 - column vector containing r0 and v0

t - column vector of the times at which the solution is found
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y - a matrix whose columns are:

columns 1, 2 and 3:

The solution for the x, y and z components of the

position vector r at the times in t

columns 4, 5 and 6:

The solution for the x, y and z components of the

velocity vector v at the times in t

r - magnitude of the position vector at the times in t

imax - component of r with the largest value

rmax - largest value of r

imin - component of r with the smallest value

rmin - smallest value of r

v_at_rmax - speed where r = rmax

v_at_rmin - speed where r = rmin

User M-function required: rkf45

User subfunctions required: rates, output

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

clc; close all; clear all

hours = 3600;

G = 6.6742e-20;

%...Input data:

% Earth:

m1 = 5.974e24;

R = 6378;

m2 = 1000;

r0 = [8000 0 6000];

v0 = [0 7 0];

t0 = 0;

tf = 4*hours;

%...End input data

%...Numerical integration:

mu = G*(m1 + m2);

y0 = [r0 v0]’;

[t,y] = rkf45(@rates, [t0 tf], y0);

%...Output the results:

output

return
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% �������������������
function dydt = rates(t,f)

% �������������������
%{

This function calculates the acceleration vector using Equation 2.22.

t - time

f - column vector containing the position vector and the

velocity vector at time t

x, y, z - components of the position vector r

r - the magnitude of the the position vector

vx, vy, vz - components of the velocity vector v

ax, ay, az - components of the acceleration vector a

dydt - column vector containing the velocity and acceleration

components

%}

% ––––––––––––––––––––––––

x = f(1);

y = f(2);

z = f(3);

vx = f(4);

vy = f(5);

vz = f(6);

r = norm([x y z]);

ax = -mu*x/r 3̂;

ay = -mu*y/r 3̂;

az = -mu*z/r 3̂;

dydt = [vx vy vz ax ay az]’;

end %rates

% ����������
function output

% ����������
%{

This function computes the maximum and minimum radii, the times they

occur and and the speed at those times. It prints those results to

the command window and plots the orbit.

r - magnitude of the position vector at the times in t

imax - the component of r with the largest value

rmax - the largest value of r

imin - the component of r with the smallest value

rmin - the smallest value of r

v_at_rmax - the speed where r = rmax

v_at_rmin - the speed where r = rmin
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User subfunction required: light_gray

%}

% –––––––––––––

for i = 1:length(t)

r(i) = norm([y(i,1) y(i,2) y(i,3)]);

end

[rmax imax] = max(r);

[rmin imin] = min(r);

v_at_rmax = norm([y(imax,4) y(imax,5) y(imax,6)]);

v_at_rmin = norm([y(imin,4) y(imin,5) y(imin,6)]);

%...Output to the command window:

fprintf(’\n\n––––––––––––––––––––––––––––––––––––––--–––––––––––––––––––––––

\n’)

fprintf(’\n Earth Orbit\n’)

fprintf(’ %s\n’, datestr(now))

fprintf(’\n The initial position is [%g, %g, %g] (km).’,...

r0(1), r0(2), r0(3))

fprintf(’\n Magnitude = %g km\n’, norm(r0))

fprintf(’\n The initial velocity is [%g, %g, %g] (km/s).’,...

v0(1), v0(2), v0(3))

fprintf(’\n Magnitude = %g km/s\n’, norm(v0))

fprintf(’\n Initial time = %g h.\n Final time = %g h.\n’,0,tf/hours)

fprintf(’\n The minimum altitude is %g km at time = %g h.’,...

rmin-R, t(imin)/hours)

fprintf(’\n The speed at that point is %g km/s.\n’, v_at_rmin)

fprintf(’\n The maximum altitude is %g km at time = %g h.’,...

rmax-R, t(imax)/hours)

fprintf(’\n The speed at that point is %g km/s\n’, v_at_rmax)

fprintf(’\n––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––\n\n’)

%...Plot the results:

% Draw the planet

[xx, yy, zz] = sphere(100);

surf(R*xx, R*yy, R*zz)

colormap(light_gray)

caxis([-R/100 R/100])

shading interp

% Draw and label the X, Y and Z axes

line([0 2*R], [0 0], [0 0]); text(2*R, 0, 0, ’X’)

line( [0 0], [0 2*R], [0 0]); text( 0, 2*R, 0, ’Y’)

line( [0 0], [0 0], [0 2*R]); text( 0, 0, 2*R, ’Z’)



e27MATLAB scripts
% Plot the orbit, draw a radial to the starting point

% and label the starting point (o) and the final point (f)

hold on

plot3( y(:,1), y(:,2), y(:,3),’k’)

line([0 r0(1)], [0 r0(2)], [0 r0(3)])

text( y(1,1), y(1,2), y(1,3), ’o’)

text( y(end,1), y(end,2), y(end,3), ’f’)

% Select a view direction (a vector directed outward from the origin)

view([1,1,.4])

% Specify some properties of the graph

grid on

axis equal

xlabel(’km’)

ylabel(’km’)

zlabel(’km’)

% ������������������
function map = light_gray

% ������������������
%{

This function creates a color map for displaying the planet as light

gray with a black equator.

r - fraction of red

g - fraction of green

b - fraction of blue

%}

% –––––––––––––––––––––––

r = 0.8; g = r; b = r;

map = [r g b

0 0 0

r g b];

end %light_gray

end %output

end %orbit

% ������������������������������������������������������������
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D.7 CALCULATION OF THE LAGRANGE F AND G FUNCTIONS AND THEIR TIME
DERIVATIVES IN TERMS OF CHANGE IN TRUE ANOMALY
FUNCTION FILE: f_and_g_ta.m

% �����������������������������������
function [f, g] = f_and_g_ta(r0, v0, dt, mu)

% �����������������������������������
%{

This function calculates the Lagrange f and g coefficients from the

change in true anomaly since time t0.

mu - gravitational parameter (km 3̂/s 2̂)

dt - change in true anomaly (degrees)

r0 - position vector at time t0 (km)

v0 - velocity vector at time t0 (km/s)

h - angular momentum (km 2̂/s)

vr0 - radial component of v0 (km/s)

r - radial position after the change in true anomaly

f - the Lagrange f coefficient (dimensionless)

g - the Lagrange g coefficient (s)

User M-functions required: None

%}

% ––––––––––––––––––––––––––––––––––––––––––––

h = norm(cross(r0,v0));

vr0 = dot(v0,r0)/norm(r0);

r0 = norm(r0);

s = sind(dt);

c = cosd(dt);

%...Equation 2.152:

r = h 2̂/mu/(1 + (h 2̂/mu/r0 - 1)*c - h*vr0*s/mu);

%...Equations 2.158a & b:

f = 1 - mu*r*(1 - c)/h 2̂;

g = r*r0*s/h;

end

% ���������������������������������
FUNCTION FILE: fDot_and_gDot_ta.m

% ���������������������������������������������
function [fdot, gdot] = fDot_and_gDot_ta(r0, v0, dt, mu)

% ���������������������������������������������
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%{

This function calculates the time derivatives of the Lagrange

f and g coefficients from the change in true anomaly since time t0.

mu - gravitational parameter (km 3̂/s 2̂)

dt - change in true anomaly (degrees)

r0 - position vector at time t0 (km)

v0 - velocity vector at time t0 (km/s)

h - angular momentum (km 2̂/s)

vr0 - radial component of v0 (km/s)

fdot - time derivative of the Lagrange f coefficient (1/s)

gdot - time derivative of the Lagrange g coefficient (dimensionless)

User M-functions required: None

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––

h = norm(cross(r0,v0));

vr0 = dot(v0,r0)/norm(r0);

r0 = norm(r0);

c = cosd(dt);

s = sind(dt);

%...Equations 2.158c & d:

fdot = mu/h*(vr0/h*(1 - c) - s/r0);

gdot = 1 - mu*r0/h 2̂*(1 - c);

end

% ���������������������������������������������
D.8 ALGORITHM 2.3: CALCULATE THE STATE VECTOR FROM THE INITIAL
STATE VECTOR AND THE CHANGE IN TRUE ANOMALY
FUNCTION FILE: rv_from_r0v0_ta.m

% ��������������������������������������
function [r,v] = rv_from_r0v0_ta(r0, v0, dt, mu)

% ��������������������������������������
%{

This function computes the state vector (r,v) from the

initial state vector (r0,v0) and the change in true anomaly.

mu - gravitational parameter (km 3̂/s 2̂)

r0 - initial position vector (km)

v0 - initial velocity vector (km/s)
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dt - change in true anomaly (degrees)

r - final position vector (km)

v - final velocity vector (km/s)

User M-functions required: f_and_g_ta, fDot_and_gDot_ta

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

%global mu

%...Compute the f and g functions and their derivatives:

[f, g] = f_and_g_ta(r0, v0, dt, mu);

[fdot, gdot] = fDot_and_gDot_ta(r0, v0, dt, mu);

%...Compute the final position and velocity vectors:

r = f*r0 +g*v0;

v = fdot*r0 + gdot*v0;

end

% �������������������������������������
SCRIPT FILE: Example_2_13.m

% ���������������������������������������
% Example_2_13

% ����������
%{

This program computes the state vector [R,V] from the initial

state vector [R0,V0] and the change in true anomaly, using the

data in Example 2.13

mu - gravitational parameter (km 3̂/s 2̂)

R0 - the initial position vector (km)

V0 - the initial velocity vector (km/s)

r0 - magnitude of R0

v0 - magnitude of V0

R - final position vector (km)

V - final velocity vector (km/s)

r - magnitude of R

v - magnitude of V

dt - change in true anomaly (degrees)

User M-functions required: rv_from_r0v0_ta

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––
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clear all; clc

mu = 398600;

%...Input data:

R0 = [8182.4 -6865.9 0];

V0 = [0.47572 8.8116 0];

dt = 120;

%...End input data

%...Algorithm 2.3:

[R,V] = rv_from_r0v0_ta(R0, V0, dt, mu);

r = norm(R);

v = norm(V);

r0 = norm(R0);

v0 = norm(V0);

fprintf(’––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 2.13 \n’)

fprintf(’\n Initial state vector:\n’)

fprintf(’\n r = [%g, %g, %g] (km)’, R0(1), R0(2), R0(3))

fprintf(’\n magnitude = %g\n’, norm(R0))

fprintf(’\n v = [%g, %g, %g] (km/s)’, V0(1), V0(2), V0(3))

fprintf(’\n magnitude = %g’, norm(V0))

fprintf(’\n\n State vector after %g degree change in true anomaly:\n’, dt)

fprintf(’\n r = [%g, %g, %g] (km)’, R(1), R(2), R(3))

fprintf(’\n magnitude = %g\n’, norm(R))

fprintf(’\n v = [%g, %g, %g] (km/s)’, V(1), V(2), V(3))

fprintf(’\n magnitude = %g’, norm(V))

fprintf(’\n––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% ���������������������������������������
OUTPUT FROM Example_2_13.m

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 2.13

Initial state vector:

r = [8182.4, -6865.9, 0] (km)

magnitude = 10681.4

v = [0.47572, 8.8116, 0] (km/s)

magnitude = 8.82443
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State vector after 120 degree change in true anomaly:

r = [1454.99, 8251.47, 0] (km)

magnitude = 8378.77

v = [-8.13238, 5.67854, -0] (km/s)

magnitude = 9.91874

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
D.9 ALGORITHM 2.4: FIND THE ROOT OF A FUNCTION USING THE
BISECTION METHOD
FUNCTION FILE: bisect.m

% ����������������������������������������������
function root = bisect(fun, xl, xu)

% ��������������������������
%{

This function evaluates a root of a function using

the bisection method.

tol - error to within which the root is computed

n - number of iterations

xl - low end of the interval containing the root

xu - upper end of the interval containing the root

i - loop index

xm - mid-point of the interval from xl to xu

fun - name of the function whose root is being found

fxl - value of fun at xl

fxm - value of fun at xm

root - the computed root

User M-functions required: none

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

tol = 1.e-6;

n = ceil(log(abs(xu - xl)/tol)/log(2));

for i = 1:n

xm = (xl + xu)/2;

fxl = feval(fun, xl);

fxm = feval(fun, xm);

if fxl*fxm > 0

xl = xm;

else

xu = xm;

end

end
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root = xm;

end

% �����������������������������������
FUNCTION FILE: Example_2_16.m

% �����������������������������������
function Example_2_16

% ���������������
%{

This program uses the bisection method to find the three roots of

Equation 2.204 for the earth-moon system.

m1 - mass of the earth (kg)

m2 - mass of the moon (kg)

r12 - distance from the earth to the moon (km)

p - ratio of moon mass to total mass

xl - vector containing the low-side estimates of the three roots

xu - vector containing the high-side estimates of the three roots

x - vector containing the three computed roots

User M-function required: bisect

User subfunction requred: fun

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

%...Input data:

m1 = 5.974e24;

m2 = 7.348e22;

r12 = 3.844e5;

xl = [-1.1 0.5 1.0];

xu = [-0.9 1.0 1.5];

%...End input data

p = m2/(m1 + m2);

for i = 1:3

x(i) = bisect(@fun, xl(i), xu(i));

end

%...Output the results

output

return
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% �����������������
function f = fun(z)

% –––––––––––––––––

%{

This subroutine evaluates the function in Equation 2.204

z - the dimensionless x - coordinate

p - defined above

f - the value of the function

%}

% �����������������
f = (1 - p)*(z + p)/abs(z + p) 3̂ + p*(z + p - 1)/abs(z + p - 1) 3̂ - z;

end %fun

% �����������
function output

% �����������
%{

This function prints out the x coordinates of L1, L2 and L3

relative to the center of mass.

%}

%...Output to the command window:

fprintf(’\n\n––––––––––––––––––––––––––––––––––––––--––––––\n’)

fprintf(’\n For\n’)

fprintf(’\n m1 = %g kg’, m1)

fprintf(’\n m2 = %g kg’, m2)

fprintf(’\n r12 = %g km\n’, r12)

fprintf(’\n the 3 colinear Lagrange points (the roots of\n’)

fprintf(’ Equation 2.204) are:\n’)

fprintf(’\n L3: x = %10g km (f(x3) = %g)’,x(1)*r12, fun(x(1)))

fprintf(’\n L1: x = %10g km (f(x1) = %g)’,x(2)*r12, fun(x(2)))

fprintf(’\n L2: x = %10g km (f(x2) = %g)’,x(3)*r12, fun(x(3)))

fprintf(’\n\n––––––––––––––––––––––––––––––––––––––--––––––\n’)

end %output

end %Example_2_16

% �����������������������������������
OUTPUT FROM Example_2_16.m

–––––––––––––––––––––––––––––––––––––––––––––

For

m1 = 5.974e+24 kg

m2 = 7.348e+22 kg

r12 = 384400 km
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The 3 colinear Lagrange points (the roots of

Equation 2.204) are:

L3: x = -386346 km (f(x3) = -1.55107e-06)

L1: x = 321710 km (f(x1) = 5.12967e-06)

L2: x = 444244 km (f(x2) = -4.92782e-06)

–––––––––––––––––––––––––––––––––––––––––––––
D.10 MATLAB SOLUTION OF EXAMPLE 2.18
FUNCTION FILE: Example_2_18.m

% ����������������������������������
function Example_2_18

% ���������������
%{

This program uses the Runge-Kutta-Fehlberg 4(5) method to solve the

earth-moon restricted three-body problem (Equations 2.192a and 2.192b)

for the trajectory of a spacecraft having the initial conditions

specified in Example 2.18.

The numerical integration is done in the external function ’rkf45’,

which uses the subfunction ’rates’ herein to compute the derivatives.

days - converts days to seconds

G - universal graviational constant (km 3̂/kg/s 2̂)

rmoon - radius of the moon (km)

rearth - radius of the earth (km)

r12 - distance from center of earth to center of moon (km)

m1,m2 - masses of the earth and of the moon, respectively (kg)

M - total mass of the restricted 3-body system (kg)

mu - gravitational parameter of earth-moon system (km 3̂/s 2̂)

mu1,mu2 - gravitational parameters of the earth and of the moon,

respectively (km 3̂/s 2̂)

pi_1,pi_2 - ratios of the earth mass and the moon mass, respectively,

to the total earth-moon mass

W - angular velocity of moon around the earth (rad/s)

x1,x2 - x-coordinates of the earth and of the moon, respectively,

relative to the earth-moon barycenter (km)

d0 - initial altitude of spacecraft (km)

phi - polar azimuth coordinate (degrees) of the spacecraft

measured positive counterclockwise from the earth-moon line

v0 - initial speed of spacecraft relative to rotating earth-moon

system (km/s)
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gamma - initial flight path angle (degrees)

r0 - intial radial distance of spacecraft from the earth (km)

x,y - x and y coordinates of spacecraft in rotating earth-moon

system (km)

vx,vy - x and y components of spacecraft velocity relative to

rotating earth-moon system (km/s)

f0 - column vector containing the initial valus of x, y, vx and vy

t0,tf - initial time and final times (s)

t - column vector of times at which the solution was computed

f - a matrix whose columns are:

column 1: solution for x at the times in t

column 2: solution for y at the times in t

column 3: solution for vx at the times in t

column 4: solution for vy at the times in t

xf,yf - x and y coordinates of spacecraft in rotating earth-moon

system at tf

vxf, vyf - x and y components of spacecraft velocity relative to

rotating earth-moon system at tf

df - distance from surface of the moon at tf

vf - relative speed at tf

User M-functions required: rkf45

User subfunctions required: rates, circle

%}

% –––––––––––––––––––––––––––––––––––––––––––––

clear all; close all; clc

days = 24*3600;

G = 6.6742e-20;

rmoon = 1737;

rearth = 6378;

r12 = 384400;

m1 = 5974e21;

m2 = 7348e19;

M = m1 + m2;;

pi_1 = m1/M;

pi_2 = m2/M;

mu1 = 398600;

mu2 = 4903.02;

mu = mu1 + mu2;

W = sqrt(mu/r12 3̂);

x1 = -pi_2*r12;

x2 = pi_1*r12;
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%...Input data:

d0 = 200;

phi = -90;

v0 = 10.9148;

gamma = 20;

t0 = 0;

tf = 3.16689*days;

r0 = rearth + d0;

x = r0*cosd(phi) + x1;

y = r0*sind(phi);

vx = v0*(sind(gamma)*cosd(phi) - cosd(gamma)*sind(phi));

vy = v0*(sind(gamma)*sind(phi) + cosd(gamma)*cosd(phi));

f0 = [x; y; vx; vy];

%...Compute the trajectory:

[t,f] = rkf45(@rates, [t0 tf], f0);

x = f(:,1);

y = f(:,2);

vx = f(:,3);

vy = f(:,4);

xf = x(end);

yf = y(end);

vxf = vx(end);

vyf = vy(end);

df = norm([xf - x2, yf - 0]) - rmoon;

vf = norm([vxf, vyf]);

%...Output the results:

output

return

% �������������������
function dfdt = rates(t,f)

% �������������������
%{

This subfunction calculates the components of the relative acceleration

for the restricted 3-body problem, using Equations 2.192a and 2.192b

ax,ay - x and y components of relative acceleration (km/s 2̂)

r1 - spacecraft distance from the earth (km)

r2 - spacecraft distance from the moon (km)

f - column vector containing x, y, vx and vy at time t
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dfdt - column vector containing vx, vy, ax and ay at time t

All other variables are defined above.

User M-functions required: none

%}

% ––––––––––––––––––––––––

x = f(1);

y = f(2);

vx = f(3);

vy = f(4);

r1 = norm([x + pi_2*r12, y]);

r2 = norm([x - pi_1*r12, y]);

ax = 2*W*vy + W 2̂*x - mu1*(x - x1)/r1 3̂ - mu2*(x - x2)/r2 3̂;

ay = -2*W*vx + W 2̂*y - (mu1/r1 3̂ + mu2/r2 3̂)*y;

dfdt = [vx; vy; ax; ay];

end %rates

% ����������
function output

% ����������
%{

This subfunction echos the input data and prints the results to the

command window. It also plots the trajectory.

User M-functions required: none

User subfunction required: circle

%}

% –––––––––––––

fprintf(’––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 2.18: Lunar trajectory using the restricted’)

fprintf(’\n threebody equations.\n’)

fprintf(’\n Initial Earth altitude (km) = %g’, d0)

fprintf(’\n Initial angle between radial’)

fprintf(’\n and earth-moon line (degrees) = %g’, phi)

fprintf(’\n Initial flight path angle (degrees) = %g’, gamma)

fprintf(’\n Flight time (days) = %g’, tf/days)

fprintf(’\n Final distance from the moon (km) = %g’, df)

fprintf(’\n Final relative speed (km/s) = %g’, vf)

fprintf(’\n––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

%...Plot the trajectory and place filled circles representing the earth

% and moon on the the plot:
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plot(x, y)

% Set plot display parameters

xmin = -20.e3; xmax = 4.e5;

ymin = -20.e3; ymax = 1.e5;

axis([xmin xmax ymin ymax])

axis equal

xlabel(’x, km’); ylabel(’y, km’)

grid on

hold on

%...Plot the earth (blue) and moon (green) to scale

earth = circle(x1, 0, rearth);

moon = circle(x2, 0, rmoon);

fill(earth(:,1), earth(:,2),’b’)

fill( moon(:,1), moon(:,2),’g’)

% ���������������������������
function xy = circle(xc, yc, radius)

% ���������������������������
%{

This subfunction calculates the coordinates of points spaced

0.1 degree apart around the circumference of a circle

x,y - x and y coordinates of a point on the circumference

xc,yc - x and y coordinates of the center of the circle

radius - radius of the circle

xy - an array containing the x coordinates in column 1 and the

y coordinates in column 2

User M-functions required: none

%}

% ––––––––––––––––––––––––––––––––––

x = xc + radius*cosd(0:0.1:360);

y = yc + radius*sind(0:0.1:360);

xy = [x’, y’];

end %circle

end %output

end %Example_2_18

% ����������������������������������
OUTPUT FROM Example_2_18.m

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 2.18: Lunar trajectory using the restricted

Three body equations.
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Initial Earth altitude (km) = 200

Initial angle between radial

and earth-moon line (degrees) = -90

Initial flight path angle (degrees) = 20

Flight time (days) = 3.16689

Final distance from the moon (km) = 255.812

Final relative speed (km/s) = 2.41494

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

CHAPTER 3: ORBITAL POSITION AS A FUNCTION OF TIME

D.11 ALGORITHM 3.1: SOLUTION OF KEPLER’S EQUATION BY
NEWTON’S METHOD
FUNCTION FILE: kepler_E.m

% �����������������������������������
function E = kepler_E(e, M)

% ���������������������
%{

This function uses Newton’s method to solve Kepler’s

equation E - e*sin(E) = M for the eccentric anomaly,

given the eccentricity and the mean anomaly.

E - eccentric anomaly (radians)

e - eccentricity, passed from the calling program

M - mean anomaly (radians), passed from the calling program

pi - 3.1415926...

User m-functions required: none

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

%...Set an error tolerance:

error = 1.e-8;

%...Select a starting value for E:

if M < pi

E = M + e/2;

else

E = M - e/2;

end

%...Iterate on Equation 3.17 until E is determined to within

%...the error tolerance:

ratio = 1;

while abs(ratio) > error

ratio = (E - e*sin(E) - M)/(1 - e*cos(E));
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E = E - ratio;

end

end %kepler_E

% �����������������������������������
SCRIPT FILE: Example_3_02.m

% �����������������������������������
% Example_3_02

% ����������
%{

This program uses Algorithm 3.1 and the data of Example 3.2 to solve

Kepler’s equation.

e - eccentricity

M - mean anomaly (rad)

E - eccentric anomaly (rad)

User M-function required: kepler_E

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

%...Data declaration for Example 3.2:

e = 0.37255;

M = 3.6029;

%...

%...Pass the input data to the function kepler_E, which returns E:

E = kepler_E(e, M);

%...Echo the input data and output to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 3.2\n’)

fprintf(’\n Eccentricity = %g’,e)

fprintf(’\n Mean anomaly (radians) = %g\n’,M)

fprintf(’\n Eccentric anomaly (radians) = %g’,E)

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_3_02.m

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 3.2

Eccentricity = 0.37255

Mean anomaly (radians) = 3.6029
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Eccentric anomaly (radians) = 3.47942

–––––––––––––––––––––––––––––––––––––––––––––––––––––
D.12 ALGORITHM 3.2: SOLUTION OF KEPLER’S EQUATION FOR THE
HYPERBOLA USING NEWTON’S METHOD
FUNCTION FILE: kepler_H.m

% �����������������������������������
function F = kepler_H(e, M)

% ���������������������
%{

This function uses Newton’s method to solve Kepler’s equation

for the hyperbola e*sinh(F) - F = M for the hyperbolic

eccentric anomaly, given the eccentricity and the hyperbolic

mean anomaly.

F - hyperbolic eccentric anomaly (radians)

e - eccentricity, passed from the calling program

M - hyperbolic mean anomaly (radians), passed from the

calling program

User M-functions required: none

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

%...Set an error tolerance:

error = 1.e-8;

%...Starting value for F:

F = M;

%...Iterate on Equation 3.45 until F is determined to within

%...the error tolerance:

ratio = 1;

while abs(ratio) > error

ratio = (e*sinh(F) - F - M)/(e*cosh(F) - 1);

F = F - ratio;

end

end %kepler_H

% �����������������������������������
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SCRIPT FILE: Example_3_05.m

% �����������������������������������
% Example_3_05

% ���������
%{

This program uses Algorithm 3.2 and the data of

Example 3.5 to solve Kepler’s equation for the hyperbola.

e - eccentricity

M - hyperbolic mean anomaly (dimensionless)

F - hyperbolic eccentric anomaly (dimensionless)

User M-function required: kepler_H

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear

%...Data declaration for Example 3.5:

e = 2.7696;

M = 40.69;

%...

%...Pass the input data to the function kepler_H, which returns F:

F = kepler_H(e, M);

%...Echo the input data and output to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 3.5\n’)

fprintf(’\n Eccentricity = %g’,e)

fprintf(’\n Hyperbolic mean anomaly = %g\n’,M)

fprintf(’\n Hyperbolic eccentric anomaly = %g’,F)

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_3_05.m

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 3.5

Eccentricity = 2.7696

Hyperbolic mean anomaly = 40.69

Hyperbolic eccentric anomaly = 3.46309

–––––––––––––––––––––––––––––––––––––––––––––––––––––
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D.13 CALCULATION OF THE STUMPFF FUNCTIONS S(Z) AND C(Z)
The following scripts implement Eqs. (3.52) and (3.53) for use in other programs.

FUNCTION FILE: stumpS.m

% �����������������������������������
function s = stumpS(z)

% �����������������
%{

This function evaluates the Stumpff function S(z) according

to Equation 3.52.

z - input argument

s - value of S(z)

User M-functions required: none

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

if z > 0

s = (sqrt(z) - sin(sqrt(z)))/(sqrt(z)) 3̂;

elseif z < 0

s = (sinh(sqrt(-z)) - sqrt(-z))/(sqrt(-z)) 3̂;

else

s = 1/6;

end

% �����������������������������������
FUNCTION FILE: stumpC.m

% �����������������������������������
function c = stumpC(z)

% �����������������
%{

This function evaluates the Stumpff function C(z) according

to Equation 3.53.

z - input argument

c - value of C(z)

User M-functions required: none

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

if z > 0

c = (1 - cos(sqrt(z)))/z;

elseif z < 0

c = (cosh(sqrt(-z)) - 1)/(-z);
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else

c = 1/2;

end

% �����������������������������������
D.14 ALGORITHM 3.3: SOLUTION OF THE UNIVERSAL KEPLER’S EQUATION
USING NEWTON’S METHOD
FUNCTION FILE: kepler_U.m

% �����������������������������������
function x = kepler_U(dt, ro, vro, a)

% �����������������������������
%{

This function uses Newton’s method to solve the universal

Kepler equation for the universal anomaly.

mu - gravitational parameter (km 3̂/s 2̂)

x - the universal anomaly (km 0̂.5)

dt - time since x = 0 (s)

ro - radial position (km) when x = 0

vro - radial velocity (km/s) when x = 0

a - reciprocal of the semimajor axis (1/km)

z - auxiliary variable (z = a*x 2̂)

C - value of Stumpff function C(z)

S - value of Stumpff function S(z)

n - number of iterations for convergence

nMax - maximum allowable number of iterations

User M-functions required: stumpC, stumpS

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

global mu

%...Set an error tolerance and a limit on the number of iterations:

error = 1.e-8;

nMax = 1000;

%...Starting value for x:

x = sqrt(mu)*abs(a)*dt;

%...Iterate on Equation 3.65 until until convergence occurs within

%...the error tolerance:

n = 0;

ratio = 1;

while abs(ratio) > error && n <= nMax

n = n + 1;

C = stumpC(a*x 2̂);
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S = stumpS(a*x 2̂);

F = ro*vro/sqrt(mu)*x 2̂*C + (1 - a*ro)*x 3̂*S + ro*x - sqrt(mu)*dt;

dFdx = ro*vro/sqrt(mu)*x*(1 - a*x 2̂*S) + (1 - a*ro)*x 2̂*C + ro;

ratio = F/dFdx;

x = x - ratio;

end

%...Deliver a value for x, but report that nMax was reached:

if n > nMax

fprintf(’\n **No. iterations of Kepler’s equation = %g’, n)

fprintf(’\n F/dFdx = %g\n’, F/dFdx)

end

% �����������������������������������
SCRIPT FILE: Example_3_06.m

% �����������������������������������
% Example_3_06

% ����������
%{

This program uses Algorithm 3.3 and the data of Example 3.6

to solve the universal Kepler’s equation.

mu - gravitational parameter (km 3̂/s 2̂)

x - the universal anomaly (km 0̂.5)

dt - time since x = 0 (s)

ro - radial position when x = 0 (km)

vro - radial velocity when x = 0 (km/s)

a - semimajor axis (km)

User M-function required: kepler_U

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

global mu

mu = 398600;

%...Data declaration for Example 3.6:

ro = 10000;

vro = 3.0752;

dt = 3600;

a = -19655;

%...

%...Pass the input data to the function kepler_U, which returns x

%...(Universal Kepler’s requires the reciprocal of semimajor axis):

x = kepler_U(dt, ro, vro, 1/a);
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%...Echo the input data and output the results to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 3.6\n’)

fprintf(’\n Initial radial coordinate (km) = %g’,ro)

fprintf(’\n Initial radial velocity (km/s) = %g’,vro)

fprintf(’\n Elapsed time (seconds) = %g’,dt)

fprintf(’\n Semimajor axis (km) = %g\n’,a)

fprintf(’\n Universal anomaly (km 0̂.5) = %g’,x)

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_3_06.m

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 3.6

Initial radial coordinate (km) = 10000

Initial radial velocity (km/s) = 3.0752

Elapsed time (seconds) = 3600

Semimajor axis (km) = -19655

Universal anomaly (km 0̂.5) = 128.511

–––––––––––––––––––––––––––––––––––––––––––––––––––––
D.15 CALCULATION OF THE LAGRANGE COEFFICIENTS F AND G AND THEIR
TIME DERIVATIVES IN TERMS OF CHANGE IN UNIVERAL ANOMALY
The following scripts implement Equations 3.69 for use in other programs.
FUNCTION FILE: f_and_g.m

% �����������������������������������
function [f, g] = f_and_g(x, t, ro, a)

% �����������������������������
%{

This function calculates the Lagrange f and g coefficients.

mu - the gravitational parameter (km 3̂/s 2̂)

a - reciprocal of the semimajor axis (1/km)

ro - the radial position at time to (km)

t - the time elapsed since ro (s)

x - the universal anomaly after time t (km 0̂.5)

f - the Lagrange f coefficient (dimensionless)

g - the Lagrange g coefficient (s)

User M-functions required: stumpC, stumpS

%}

% ––––––––––––––––––––––––––––––––––––––––––––––
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global mu

z = a*x 2̂;

%...Equation 3.69a:

f = 1 - x 2̂/ro*stumpC(z);

%...Equation 3.69b:

g = t - 1/sqrt(mu)*x 3̂*stumpS(z);

end

% �����������������������������������
FUNCTION FILE: fDot_and_gDot.m

% ���������������������������������������
function [fdot, gdot] = fDot_and_gDot(x, r, ro, a)

% ���������������������������������������
%{

This function calculates the time derivatives of the

Lagrange f and g coefficients.

mu - the gravitational parameter (km 3̂/s 2̂)

a - reciprocal of the semimajor axis (1/km)

ro - the radial position at time to (km)

t - the time elapsed since initial state vector (s)

r - the radial position after time t (km)

x - the universal anomaly after time t (km 0̂.5)

fdot - time derivative of the Lagrange f coefficient (1/s)

gdot - time derivative of the Lagrange g coefficient (dimensionless)

User M-functions required: stumpC, stumpS

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––

global mu

z = a*x 2̂;

%...Equation 3.69c:

fdot = sqrt(mu)/r/ro*(z*stumpS(z) - 1)*x;

%...Equation 3.69d:

gdot = 1 - x 2̂/r*stumpC(z);

% ���������������������������������������
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D.16 ALGORITHM 3.4: CALCULATION OF THE STATE VECTOR GIVEN THE
INITIAL STATE VECTOR AND THE TIME LAPSE ΔT
FUNCTION FILE: rv_from_r0v0.m

% �����������������������������������
function [R,V] = rv_from_r0v0(R0, V0, t)

% �������������������������������
%{

This function computes the state vector (R,V) from the

initial state vector (R0,V0) and the elapsed time.

mu - gravitational parameter (km 3̂/s 2̂)

R0 - initial position vector (km)

V0 - initial velocity vector (km/s)

t - elapsed time (s)

R - final position vector (km)

V - final velocity vector (km/s)

% User M-functions required: kepler_U, f_and_g, fDot_and_gDot

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

global mu

%...Magnitudes of R0 and V0:

r0 = norm(R0);

v0 = norm(V0);

%...Initial radial velocity:

vr0 = dot(R0, V0)/r0;

%...Reciprocal of the semimajor axis (from the energy equation):

alpha = 2/r0 - v0 2̂/mu;

%...Compute the universal anomaly:

x = kepler_U(t, r0, vr0, alpha);

%...Compute the f and g functions:

[f, g] = f_and_g(x, t, r0, alpha);

%...Compute the final position vector:

R = f*R0 + g*V0;

%...Compute the magnitude of R:

r = norm(R);

%...Compute the derivatives of f and g:
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[fdot, gdot] = fDot_and_gDot(x, r, r0, alpha);

%...Compute the final velocity:

V = fdot*R0 + gdot*V0;

% �����������������������������������
SCRIPT FILE: Example_3_07.m

% �����������������������������������
% Example_3_07

% ���������
%

% This program computes the state vector (R,V) from the initial

% state vector (R0,V0) and the elapsed time using the data in

% Example 3.7.

%

% mu - gravitational parameter (km 3̂/s 2̂)

% R0 - the initial position vector (km)

% V0 - the initial velocity vector (km/s)

% R - the final position vector (km)

% V - the final velocity vector (km/s)

% t - elapsed time (s)

%

% User m-functions required: rv_from_r0v0

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

global mu

mu = 398600;

%...Data declaration for Example 3.7:

R0 = [ 7000 -12124 0];

V0 = [2.6679 4.6210 0];

t = 3600;

%...

%...Algorithm 3.4:

[R V] = rv_from_r0v0(R0, V0, t);

%...Echo the input data and output the results to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 3.7\n’)

fprintf(’\n Initial position vector (km):’)

fprintf(’\n r0 = (%g, %g, %g)\n’, R0(1), R0(2), R0(3))

fprintf(’\n Initial velocity vector (km/s):’)

fprintf(’\n v0 = (%g, %g, %g)’, V0(1), V0(2), V0(3))

fprintf(’\n\n Elapsed time = %g s\n’,t)

fprintf(’\n Final position vector (km):’)
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fprintf(’\n r = (%g, %g, %g)\n’, R(1), R(2), R(3))

fprintf(’\n Final velocity vector (km/s):’)

fprintf(’\n v = (%g, %g, %g)’, V(1), V(2), V(3))

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_3_07

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 3.7

Initial position vector (km):

r0 = (7000, -12124, 0)

Initial velocity vector (km/s):

v0 = (2.6679, 4.621, 0)

Elapsed time = 3600 s

Final position vector (km):

r = (-3297.77, 7413.4, 0)

Final velocity vector (km/s):

v = (-8.2976, -0.964045, -0)

–––––––––––––––––––––––––––––––––––––––––––––––––––––

CHAPTER 4: ORBITS IN THREE DIMENSIONS

D.17 ALGORITHM 4.1: OBTAIN THE RIGHT ASCENSION AND DECLINATION
FROM THE POSITION VECTOR
FUNCTION FILE: ra_and_dec_from_r.m

% ������������������������������
function [ra dec] = ra_and_dec_from_r(r)

% ������������������������������
%{

This function calculates the right ascension and the

declination from the geocentric equatorial position vector.

r - position vector

l, m, n - direction cosines of r

ra - right ascension (degrees)

dec - declination (degrees)

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

l = r(1)/norm(r);

m = r(2)/norm(r);
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n = r(3)/norm(r);

dec = asind(n);

if m > 0

ra = acosd(l/cosd(dec));

else

ra = 360 - acosd(l/cosd(dec));

end

% �����������������������������������
SCRIPT FILE: Example_4_01.m

% ������������������������������������
% Example 4.1

% ���������
%{

This program calculates the right ascension and declination

from the geocentric equatorial position vector using the data

in Example 4.1.

r - position vector r (km)

ra - right ascension (deg)

dec - declination (deg)

User M-functions required: ra_and_dec_from_r

%}

% –––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

r = [-5368 -1784 3691];

[ra dec] = ra_and_dec_from_r(r);

fprintf(’\n –––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

fprintf(’\n Example 4.1\n’)

fprintf(’\n r = [%g %g %g] (km)’, r(1), r(2), r(3))

fprintf(’\n right ascension = %g deg’, ra)

fprintf(’\n declination = %g deg’, dec)

fprintf(’\n\n –––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% ������������������������������������
OUTPUT FROM Example_4_01.m

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 4.1
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r = [-5368 -1784 3691] (km)

right ascension = 198.384 deg

declination = 33.1245 deg

–––––––––––––––––––––––––––––––––––––––––––––––––––––
D.18 ALGORITHM 4.2: CALCULATION OF THE ORBITAL ELEMENTS FROM
THE STATE VECTOR
FUNCTION FILE: coe_from_sv.m

% ����������������������������������
function coe = coe_from_sv(R,V,mu)

% ���������������������������
%{

% This function computes the classical orbital elements (coe)

% from the state vector (R,V) using Algorithm 4.1.

%

mu - gravitational parameter (km 3̂/s 2̂)

R - position vector in the geocentric equatorial frame (km)

V - velocity vector in the geocentric equatorial frame (km)

r, v - the magnitudes of R and V

vr - radial velocity component (km/s)

H - the angular momentum vector (km 2̂/s)

h - the magnitude of H (km 2̂/s)

incl - inclination of the orbit (rad)

N - the node line vector (km 2̂/s)

n - the magnitude of N

cp - cross product of N and R

RA - right ascension of the ascending node (rad)

E - eccentricity vector

e - eccentricity (magnitude of E)

eps - a small number below which the eccentricity is considered

to be zero

w - argument of perigee (rad)

TA - true anomaly (rad)

a - semimajor axis (km)

pi - 3.1415926...

coe - vector of orbital elements [h e RA incl w TA a]

User M-functions required: None

%}

% –––––––––––––––––––––––––––––––––––––––––––––

eps = 1.e-10;

r = norm(R);

v = norm(V);
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vr = dot(R,V)/r;

H = cross(R,V);

h = norm(H);

%...Equation 4.7:

incl = acos(H(3)/h);

%...Equation 4.8:

N = cross([0 0 1],H);

n = norm(N);

%...Equation 4.9:

if n �= 0

RA = acos(N(1)/n);

if N(2) < 0

RA = 2*pi - RA;

end

else

RA = 0;

end

%...Equation 4.10:

E = 1/mu*((v 2̂ - mu/r)*R - r*vr*V);

e = norm(E);

%...Equation 4.12 (incorporating the case e = 0):

if n �= 0

if e > eps

w = acos(dot(N,E)/n/e);

if E(3) < 0

w = 2*pi - w;

end

else

w = 0;

end

else

w = 0;

end

%...Equation 4.13a (incorporating the case e = 0):

if e > eps

TA = acos(dot(E,R)/e/r);

if vr < 0

TA = 2*pi - TA;

end

else
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cp = cross(N,R);

if cp(3) >= 0

TA = acos(dot(N,R)/n/r);

else

TA = 2*pi - acos(dot(N,R)/n/r);

end

end

%...Equation 4.62 (a < 0 for a hyperbola):

a = h 2̂/mu/(1 - e 2̂);

coe = [h e RA incl w TA a];

end %coe_from_sv

% ����������������������������������
SCRIPT FILE: Example_4_03.m

% �����������������������������������
% Example_4_03

% ����������
%{

This program uses Algorithm 4.2 to obtain the orbital

elements from the state vector provided in Example 4.3.

pi - 3.1415926...

deg - factor for converting between degrees and radians

mu - gravitational parameter (km 3̂/s 2̂)

r - position vector (km) in the geocentric equatorial frame

v - velocity vector (km/s) in the geocentric equatorial frame

coe - orbital elements [h e RA incl w TA a]

where h = angular momentum (km 2̂/s)

e = eccentricity

RA = right ascension of the ascending node (rad)

incl = orbit inclination (rad)

w = argument of perigee (rad)

TA = true anomaly (rad)

a = semimajor axis (km)

T - Period of an elliptic orbit (s)

User M-function required: coe_from_sv

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

deg = pi/180;

mu = 398600;

%...Data declaration for Example 4.3:
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r = [ -6045 -3490 2500];

v = [-3.457 6.618 2.533];

%...

%...Algorithm 4.2:

coe = coe_from_sv(r,v,mu);

%...Echo the input data and output results to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 4.3\n’)

fprintf(’\n Gravitational parameter (km 3̂/s 2̂) = %g\n’, mu)

fprintf(’\n State vector:\n’)

fprintf(’\n r (km) = [%g %g %g]’, ...

r(1), r(2), r(3))

fprintf(’\n v (km/s) = [%g %g %g]’, ...

v(1), v(2), v(3))

disp(’ ’)

fprintf(’\n Angular momentum (km 2̂/s) = %g’, coe(1))

fprintf(’\n Eccentricity = %g’, coe(2))

fprintf(’\n Right ascension (deg) = %g’, coe(3)/deg)

fprintf(’\n Inclination (deg) = %g’, coe(4)/deg)

fprintf(’\n Argument of perigee (deg) = %g’, coe(5)/deg)

fprintf(’\n True anomaly (deg) = %g’, coe(6)/deg)

fprintf(’\n Semimajor axis (km): = %g’, coe(7))

%...if the orbit is an ellipse, output its period (Equation 2.73):

if coe(2)<1

T = 2*pi/sqrt(mu)*coe(7) 1̂.5;

fprintf(’\n Period:’)

fprintf(’\n Seconds = %g’, T)

fprintf(’\n Minutes = %g’, T/60)

fprintf(’\n Hours = %g’, T/3600)

fprintf(’\n Days = %g’, T/24/3600)

end

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_4_03

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 4.3

Gravitational parameter (km 3̂/s 2̂) = 398600

State vector:

r (km) = [-6045 -3490 2500]

v (km/s) = [-3.457 6.618 2.533]
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Angular momentum (km 2̂/s) = 58311.7

Eccentricity = 0.171212

Right ascension (deg) = 255.279

Inclination (deg) = 153.249

Argument of perigee (deg) = 20.0683

True anomaly (deg) = 28.4456

Semimajor axis (km): = 8788.1

Period:

Seconds = 8198.86

Minutes = 136.648

Hours = 2.27746

Days = 0.0948942

–––––––––––––––––––––––––––––––––––––––––––––––––––––
D.19 CALCULATION OF ARCTAN (Y/X) TO LIE IN THE RANGE 0º TO 360°
FUNCTION FILE: atan2d_0_360.m

% �����������������������������������
function t = atan2d_0_360(y,x)

% ����������������������
%{

This function calculates the arc tangent of y/x in degrees

and places the result in the range [0, 360].

t - angle in degrees

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

if x == 0

if y == 0

t = 0;

elseif y > 0

t = 90;

else

t = 270;

end

elseif x > 0

if y >= 0

t = atand(y/x);

else

t = atand(y/x) + 360;

end

elseif x < 0

if y == 0
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t = 180;

else

t = atand(y/x) + 180;

end

end

end

% �����������������������������������
D.20 ALGORITHM 4.3: OBTAIN THE CLASSICAL EULER ANGLE SEQUENCE
FROM A DIRECTION COSINE MATRIX
FUNCTION FILE: dcm_to_euler.m

% ������������������������������������
function [alpha beta gamma] = dcm_to_euler(Q)

% ����������������������������������
%{

This function finds the angles of the classical Euler sequence

R3(gamma)*R1(beta)*R3(alpha) from the direction cosine matrix.

Q - direction cosine matrix

alpha - first angle of the sequence (deg)

beta - second angle of the sequence (deg)

gamma - third angle of the sequence (deg)

User M-function required: atan2d_0_360

%}

% –––––––––––––––––––––––––––––––––––––––––––––––

alpha = atan2d_0_360(Q(3,1), -Q(3,2));

beta = acosd(Q(3,3));

gamma = atan2d_0_360(Q(1,3), Q(2,3));

end

% ������������������������������������
D.21 ALGORITHM4.4: OBTAIN THE YAW, PITCH, AND ROLL ANGLES FROMA
DIRECTION COSINE MATRIX
FUNCTION FILE: dcm_to_ypr.m

% ������������������������������������
function [yaw pitch roll] = dcm_to_ypr(Q)

% �������������������������������
%{

This function finds the angles of the yaw-pitch-roll sequence
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R1(gamma)*R2(beta)*R3(alpha) from the direction cosine matrix.

Q - direction cosine matrix

yaw - yaw angle (deg)

pitch - pitch angle (deg)

roll - roll angle (deg)

User M-function required: atan2d_0_360

%}

% –––––––––––––––––––––––––––––––––––––––

yaw = atan2d_0_360(Q(1,2), Q(1,1));

pitch = asind(-Q(1,3));

roll = atan2d_0_360(Q(2,3), Q(3,3));

end

% ����������������������������
D.22 ALGORITHM 4.5: CALCULATION OF THE STATE VECTOR FROM THE
ORBITAL ELEMENTS
FUNCTION FILE: sv_from_coe.m

% �����������������������������������
function [r, v] = sv_from_coe(coe,mu)

% �����������������������������
%{

This function computes the state vector (r,v) from the

classical orbital elements (coe).

mu - gravitational parameter (km 3̂/s 2̂)

coe - orbital elements [h e RA incl w TA]

where

h = angular momentum (km 2̂/s)

e = eccentricity

RA = right ascension of the ascending node (rad)

incl = inclination of the orbit (rad)

w = argument of perigee (rad)

TA = true anomaly (rad)

R3_w - Rotation matrix about the z-axis through the angle w

R1_i - Rotation matrix about the x-axis through the angle i

R3_W - Rotation matrix about the z-axis through the angle RA

Q_pX - Matrix of the transformation from perifocal to geocentric

equatorial frame

rp - position vector in the perifocal frame (km)

vp - velocity vector in the perifocal frame (km/s)

r - position vector in the geocentric equatorial frame (km)

v - velocity vector in the geocentric equatorial frame (km/s)



e60 MATLAB scripts
User M-functions required: none

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

h = coe(1);

e = coe(2);

RA = coe(3);

incl = coe(4);

w = coe(5);

TA = coe(6);

%...Equations 4.45 and 4.46 (rp and vp are column vectors):

rp = (h 2̂/mu) * (1/(1 + e*cos(TA))) * (cos(TA)*[1;0;0] + sin(TA)*[0;1;0]);

vp = (mu/h) * (-sin(TA)*[1;0;0] + (e + cos(TA))*[0;1;0]);

%...Equation 4.34:

R3_W = [ cos(RA) sin(RA) 0

-sin(RA) cos(RA) 0

0 0 1];

%...Equation 4.32:

R1_i = [1 0 0

0 cos(incl) sin(incl)

0 -sin(incl) cos(incl)];

%...Equation 4.34:

R3_w = [ cos(w) sin(w) 0

-sin(w) cos(w) 0

0 0 1];

%...Equation 4.49:

Q_pX = (R3_w*R1_i*R3_W)’;

%...Equations 4.51 (r and v are column vectors):

r = Q_pX*rp;

v = Q_pX*vp;

%...Convert r and v into row vectors:

r = r’;

v = v’;

end

% �����������������������������������
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SCRIPT FILE: Example_4_07.m

% �����������������������������������
% Example_4_07

% ���������
%{

This program uses Algorithm 4.5 to obtain the state vector from

the orbital elements provided in Example 4.7.

pi - 3.1415926...

deg - factor for converting between degrees and radians

mu - gravitational parameter (km 3̂/s 2̂)

coe - orbital elements [h e RA incl w TA a]

where h = angular momentum (km 2̂/s)

e = eccentricity

RA = right ascension of the ascending node (rad)

incl = orbit inclination (rad)

w = argument of perigee (rad)

TA = true anomaly (rad)

a = semimajor axis (km)

r - position vector (km) in geocentric equatorial frame

v - velocity vector (km) in geocentric equatorial frame

User M-function required: sv_from_coe

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

deg = pi/180;

mu = 398600;

%...Data declaration for Example 4.5 (angles in degrees):

h = 80000;

e = 1.4;

RA = 40;

incl = 30;

w = 60;

TA = 30;

%...

coe = [h, e, RA*deg, incl*deg, w*deg, TA*deg];

%...Algorithm 4.5 (requires angular elements be in radians):

[r, v] = sv_from_coe(coe, mu);

%...Echo the input data and output the results to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 4.7\n’)

fprintf(’\n Gravitational parameter (km 3̂/s 2̂) = %g\n’, mu)
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fprintf(’\n Angular momentum (km 2̂/s) = %g’, h)

fprintf(’\n Eccentricity = %g’, e)

fprintf(’\n Right ascension (deg) = %g’, RA)

fprintf(’\n Argument of perigee (deg) = %g’, w)

fprintf(’\n True anomaly (deg) = %g’, TA)

fprintf(’\n\n State vector:’)

fprintf(’\n r (km) = [%g %g %g]’, r(1), r(2), r(3))

fprintf(’\n v (km/s) = [%g %g %g]’, v(1), v(2), v(3))

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_4_05

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 4.7

Gravitational parameter (km 3̂/s 2̂) = 398600

Angular momentum (km 2̂/s) = 80000

Eccentricity = 1.4

Right ascension (deg) = 40

Argument of perigee (deg) = 60

True anomaly (deg) = 30

State vector:

r (km) = [-4039.9 4814.56 3628.62]

v (km/s) = [-10.386 -4.77192 1.74388]

–––––––––––––––––––––––––––––––––––––––––––––––––––––
D.23 ALGORITHM 4.6: CALCULATE THE GROUND TRACK OF A SATELLITE
FROM ITS ORBITAL ELEMENTS
[B] FUNCTION FILE: ground_track.m

% �����������������������������������
function ground_track

% ���������������
%{

This program plots the ground track of an earth satellite

for which the orbital elements are specified

mu - gravitational parameter (km 3̂/s 2̂)

deg - factor that converts degrees to radians

J2 - second zonal harmonic

Re - earth’s radius (km)

we - earth’s angular velocity (rad/s)

rP - perigee of orbit (km)

rA - apogee of orbit (km)

TA, TAo - true anomaly, initial true anomaly of satellite (rad)
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RA, RAo - right ascension, initial right ascension of the node (rad)

incl - orbit inclination (rad)

wp, wpo - argument of perigee, initial argument of perigee (rad)

n_periods - number of periods for which ground track is to be plotted

a - semimajor axis of orbit (km)

T - period of orbit (s)

e - eccentricity of orbit

h - angular momentum of orbit (km 2̂/s)

E, Eo - eccentric anomaly, initial eccentric anomaly (rad)

M, Mo - mean anomaly, initial mean anomaly (rad)

to, tf - initial and final times for the ground track (s)

fac - common factor in Equations 4.53 and 4.53

RAdot - rate of regression of the node (rad/s)

wpdot - rate of advance of perigee (rad/s)

times - times at which ground track is plotted (s)

ra - vector of right ascensions of the spacecraft (deg)

dec - vector of declinations of the spacecraft (deg)

TA - true anomaly (rad)

r - perifocal position vector of satellite (km)

R - geocentric equatorial position vector (km)

R1 - DCM for rotation about z through RA

R2 - DCM for rotation about x through incl

R3 - DCM for rotation about z through wp

QxX - DCM for rotation from perifocal to geocentric equatorial

Q - DCM for rotation from geocentric equatorial

into earth-fixed frame

r_rel - position vector in earth-fixed frame (km)

alpha - satellite right ascension (deg)

delta - satellite declination (deg)

n_curves - number of curves comprising the ground track plot

RA - cell array containing the right ascensions for each of

the curves comprising the ground track plot

Dec - cell array containing the declinations for each of

the curves comprising the ground track plot

User M-functions required: sv_from_coe, kepler_E, ra_and_dec_from_r

%}

% �����������������������������������
clear all; close all; clc

global ra dec n_curves RA Dec

%...Constants

deg = pi/180;

mu = 398600;

J2 = 0.00108263;

Re = 6378;

we = (2*pi + 2*pi/365.26)/(24*3600);
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%...Data declaration for Example 4.12:

rP = 6700;

rA = 10000;

TAo = 230*deg;

Wo = 270*deg;

incl = 60*deg;

wpo = 45*deg;

n_periods = 3.25;

%...End data declaration

%...Compute the initial time (since perigee) and

% the rates of node regression and perigee advance

a = (rA + rP)/2;

T = 2*pi/sqrt(mu)*a (̂3/2);

e = (rA - rP)/(rA + rP);

h = sqrt(mu*a*(1 - e 2̂));

Eo = 2*atan(tan(TAo/2)*sqrt((1-e)/(1+e)));

Mo = Eo - e*sin(Eo);

to = Mo*(T/2/pi);

tf = to + n_periods*T;

fac = -3/2*sqrt(mu)*J2*Re 2̂/(1-e 2̂) 2̂/a (̂7/2);

Wdot = fac*cos(incl);

wpdot = fac*(5/2*sin(incl) 2̂ - 2);

find_ra_and_dec

form_separate_curves

plot_ground_track

print_orbital_data

return

% ������������������
function find_ra_and_dec

% ������������������
% Propagates the orbit over the specified time interval, transforming

% the position vector into the earth-fixed frame and, from that,

% computing the right ascension and declination histories

% ––––––––––––––––––––––

%

times = linspace(to,tf,1000);

ra = [];

dec = [];

theta = 0;

for i = 1:length(times)

t = times(i);

M = 2*pi/T*t;

E = kepler_E(e, M);

TA = 2*atan(tan(E/2)*sqrt((1+e)/(1-e)));

r = h 2̂/mu/(1 + e*cos(TA))*[cos(TA) sin(TA) 0]’;
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W = Wo + Wdot*t;

wp = wpo + wpdot*t;

R1 = [ cos(W) sin(W) 0

-sin(W) cos(W) 0

0 0 1];

R2 = [1 0 0

0 cos(incl) sin(incl)

0 -sin(incl) cos(incl)];

R3 = [ cos(wp) sin(wp) 0

-sin(wp) cos(wp) 0

0 0 1];

QxX = (R3*R2*R1)’;

R = QxX*r;

theta = we*(t - to);

Q = [ cos(theta) sin(theta) 0

-sin(theta) cos(theta) 0

0 0 1];

r_rel = Q*R;

[alpha delta] = ra_and_dec_from_r(r_rel);

ra = [ra; alpha];

dec = [dec; delta];

end

end %find_ra_and_dec

% ���������������������
function form_separate_curves

% ���������������������
% Breaks the ground track up into separate curves which start

% and terminate at right ascensions in the range [0,360 deg].

% –––––––––––––––––––––––––––

tol = 100;

curve_no = 1;

n_curves = 1;

k = 0;

ra_prev = ra(1);

for i = 1:length(ra)

if abs(ra(i) - ra_prev) > tol
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curve_no = curve_no + 1;

n_curves = n_curves + 1;

k = 0;

end

k = k + 1;

RA{curve_no}(k) = ra(i);

Dec{curve_no}(k) = dec(i);

ra_prev = ra(i);

end

end %form_separate_curves

% �������������������
function plot_ground_track

% �������������������
hold on

xlabel(’East longitude (degrees)’)

ylabel(’Latitude (degrees)’)

axis equal

grid on

for i = 1:n_curves

plot(RA{i}, Dec{i})

end

axis ([0 360 -90 90])

text( ra(1), dec(1), ’o Start’)

text(ra(end), dec(end), ’o Finish’)

line([min(ra) max(ra)],[0 0], ’Color’,’k’) %the equator

end %plot_ground_track

% ��������������������
function print_orbital_data

% ��������������������
coe = [h e Wo incl wpo TAo];

[ro, vo] = sv_from_coe(coe, mu);

fprintf(’\n ––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

fprintf(’\n Angular momentum = %g km 2̂/s’ , h)

fprintf(’\n Eccentricity = %g’ , e)

fprintf(’\n Semimajor axis = %g km’ , a)

fprintf(’\n Perigee radius = %g km’ , rP)

fprintf(’\n Apogee radius = %g km’ , rA)

fprintf(’\n Period = %g hours’ , T/3600)

fprintf(’\n Inclination = %g deg’ , incl/deg)

fprintf(’\n Initial true anomaly = %g deg’ , TAo/deg)

fprintf(’\n Time since perigee = %g hours’ , to/3600)

fprintf(’\n Initial RA = %g deg’ , Wo/deg)

fprintf(’\n RA_dot = %g deg/period’ , Wdot/deg*T)

fprintf(’\n Initial wp = %g deg’ , wpo/deg)



e67MATLAB scripts
fprintf(’\n wp_dot = %g deg/period’ , wpdot/deg*T)

fprintf(’\n’)

fprintf(’\n r0 = [%12g, %12g, %12g] (km)’, ro(1), ro(2), ro(3))

fprintf(’\n magnitude = %g km\n’, norm(ro))

fprintf(’\n v0 = [%12g, %12g, %12g] (km)’, vo(1), vo(2), vo(3))

fprintf(’\n magnitude = %g km\n’, norm(vo))

fprintf(’\n ––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

end %print_orbital_data

end %ground_track

% �����������������������������������

CHAPTER 5: PRELIMINARY ORBIT DETERMINATION

D.24 ALGORITHM 5.1: GIBBS’ METHOD OF PRELIMINARY ORBIT
DETERMINATION
FUNCTION FILE: gibbs.m

% �������������������������������
function [V2, ierr] = gibbs(R1, R2, R3)

% �������������������������������
%{

This function uses the Gibbs method of orbit determination to

to compute the velocity corresponding to the second of three

supplied position vectors.

mu - gravitational parameter (km 3̂/s 2̂)

R1, R2, R3 - three coplanar geocentric position vectors (km)

r1, r2, r3 - the magnitudes of R1, R2 and R3 (km)

c12, c23, c31 - three independent cross products among

R1, R2 and R3

N, D, S - vectors formed from R1, R2 and R3 during

the Gibbs’ procedure

tol - tolerance for determining if R1, R2 and R3

are coplanar

ierr - = 0 if R1, R2, R3 are found to be coplanar

= 1 otherwise

V2 - the velocity corresponding to R2 (km/s)

User M-functions required: none

%}

% –––––––––––––––––––––––––––––––––––––––

global mu

tol = 1e-4;

ierr = 0;
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%...Magnitudes of R1, R2 and R3:

r1 = norm(R1);

r2 = norm(R2);

r3 = norm(R3);

%...Cross products among R1, R2 and R3:

c12 = cross(R1,R2);

c23 = cross(R2,R3);

c31 = cross(R3,R1);

%...Check that R1, R2 and R3 are coplanar; if not set error flag:

if abs(dot(R1,c23)/r1/norm(c23)) > tol

ierr = 1;

end

%...Equation 5.13:

N = r1*c23 + r2*c31 + r3*c12;

%...Equation 5.14:

D = c12 + c23 + c31;

%...Equation 5.21:

S = R1*(r2 - r3) + R2*(r3 - r1) + R3*(r1 - r2);

%...Equation 5.22:

V2 = sqrt(mu/norm(N)/norm(D))*(cross(D,R2)/r2 + S);

% ����������������������������
end %gibbs
SCRIPT FILE: Example_5_01.m

% �����������������������������������
% Example_5_01

% ���������
%{

This program uses Algorithm 5.1 (Gibbs method) and Algorithm 4.2

to obtain the orbital elements from the data provided in Example 5.1.

deg - factor for converting between degrees and radians

pi - 3.1415926...

mu - gravitational parameter (km 3̂/s 2̂)

r1, r2, r3 - three coplanar geocentric position vectors (km)

ierr - 0 if r1, r2, r3 are found to be coplanar

1 otherwise

v2 - the velocity corresponding to r2 (km/s)

coe - orbital elements [h e RA incl w TA a]

where h = angular momentum (km 2̂/s)

e = eccentricity

RA = right ascension of the ascending node (rad)
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incl = orbit inclination (rad)

w = argument of perigee (rad)

TA = true anomaly (rad)

a = semimajor axis (km)

T - period of elliptic orbit (s)

User M-functions required: gibbs, coe_from_sv

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

deg = pi/180;

global mu

%...Data declaration for Example 5.1:

mu = 398600;

r1 = [-294.32 4265.1 5986.7];

r2 = [-1365.5 3637.6 6346.8];

r3 = [-2940.3 2473.7 6555.8];

%...

%...Echo the input data to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 5.1: Gibbs Method\n’)

fprintf(’\n\n Input data:\n’)

fprintf(’\n Gravitational parameter (km 3̂/s 2̂) = %g\n’, mu)

fprintf(’\n r1 (km) = [%g %g %g]’, r1(1), r1(2), r1(3))

fprintf(’\n r2 (km) = [%g %g %g]’, r2(1), r2(2), r2(3))

fprintf(’\n r3 (km) = [%g %g %g]’, r3(1), r3(2), r3(3))

fprintf(’\n\n’);

%...Algorithm 5.1:

[v2, ierr] = gibbs(r1, r2, r3);

%...If the vectors r1, r2, r3, are not coplanar, abort:

if ierr == 1

fprintf(’\n These vectors are not coplanar.\n\n’)

return

end

%...Algorithm 4.2:

coe = coe_from_sv(r2,v2,mu);

h = coe(1);

e = coe(2);

RA = coe(3);

incl = coe(4);
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w = coe(5);

TA = coe(6);

a = coe(7);

%...Output the results to the command window:

fprintf(’ Solution:’)

fprintf(’\n’);

fprintf(’\n v2 (km/s) = [%g %g %g]’, v2(1), v2(2), v2(3))

fprintf(’\n\n Orbital elements:’);

fprintf(’\n Angular momentum (km 2̂/s) = %g’, h)

fprintf(’\n Eccentricity = %g’, e)

fprintf(’\n Inclination (deg) = %g’, incl/deg)

fprintf(’\n RA of ascending node (deg) = %g’, RA/deg)

fprintf(’\n Argument of perigee (deg) = %g’, w/deg)

fprintf(’\n True anomaly (deg) = %g’, TA/deg)

fprintf(’\n Semimajor axis (km) = %g’, a)

%...If the orbit is an ellipse, output the period:

if e < 1

T = 2*pi/sqrt(mu)*coe(7) 1̂.5;

fprintf(’\n Period (s) = %g’, T)

end

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_5_01

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 5.1: Gibbs Method

Input data:

Gravitational parameter (km 3̂/s 2̂) = 398600

r1 (km) = [-294.32 4265.1 5986.7]

r2 (km) = [-1365.4 3637.6 6346.8]

r3 (km) = [-2940.3 2473.7 6555.8]

Solution:

v2 (km/s) = [-6.2176 -4.01237 1.59915]

Orbital elements:

Angular momentum (km 2̂/s) = 56193

Eccentricity = 0.100159

Inclination (deg) = 60.001

RA of ascending node (deg) = 40.0023

Argument of perigee (deg) = 30.1093

True anomaly (deg) = 49.8894
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Semimajor axis (km) = 8002.14

Period (s) = 7123.94

–––––––––––––––––––––––––––––––––––––––––––––––––––––
D.25 ALGORITHM 5.2: SOLUTION OF LAMBERT’S PROBLEM
FUNCTION FILE: lambert.m

% ������������������������������������
function [V1, V2] = lambert(R1, R2, t, string)

% ������������������������������������
%{

This function solves Lambert’s problem.

mu - gravitational parameter (km 3̂/s 2̂)

R1, R2 - initial and final position vectors (km)

r1, r2 - magnitudes of R1 and R2

t - the time of flight from R1 to R2 (a constant) (s)

V1, V2 - initial and final velocity vectors (km/s)

c12 - cross product of R1 into R2

theta - angle between R1 and R2

string - ’pro’ if the orbit is prograde

’retro’ if the orbit is retrograde

A - a constant given by Equation 5.35

z - alpha*x 2̂, where alpha is the reciprocal of the

semimajor axis and x is the universal anomaly

y(z) - a function of z given by Equation 5.38

F(z,t) - a function of the variable z and constant t,

- given by Equation 5.40

dFdz(z) - the derivative of F(z,t), given by Equation 5.43

ratio - F/dFdz

tol - tolerance on precision of convergence

nmax - maximum number of iterations of Newton’s procedure

f, g - Lagrange coefficients

gdot - time derivative of g

C(z), S(z) - Stumpff functions

dum - a dummy variable

User M-functions required: stumpC and stumpS

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

global mu

%...Magnitudes of R1 and R2:

r1 = norm(R1);

r2 = norm(R2);
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c12 = cross(R1, R2);

theta = acos(dot(R1,R2)/r1/r2);

%...Determine whether the orbit is prograde or retrograde:

if nargin < 4 jj (�strcmp(string,’retro’) & (�strcmp(string,’pro’)))

string = ’pro’;

fprintf(’\n ** Prograde trajectory assumed.\n’)

end

if strcmp(string,’pro’)

if c12(3) <= 0

theta = 2*pi - theta;

end

elseif strcmp(string,’retro’)

if c12(3) >= 0

theta = 2*pi - theta;

end

end

%...Equation 5.35:

A = sin(theta)*sqrt(r1*r2/(1 - cos(theta)));

%...Determine approximately where F(z,t) changes sign, and

%...use that value of z as the starting value for Equation 5.45:

z = -100;

while F(z,t) < 0

z = z + 0.1;

end

%...Set an error tolerance and a limit on the number of iterations:

tol = 1.e-8;

nmax = 5000;

%...Iterate on Equation 5.45 until z is determined to within the

%...error tolerance:

ratio = 1;

n = 0;

while (abs(ratio) > tol) & (n <= nmax)

n = n + 1;

ratio = F(z,t)/dFdz(z);

z = z - ratio;

end

%...Report if the maximum number of iterations is exceeded:

if n >= nmax

fprintf(’\n\n **Number of iterations exceeds %g \n\n ’,nmax)

end
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%...Equation 5.46a:

f = 1 - y(z)/r1;

%...Equation 5.46b:

g = A*sqrt(y(z)/mu);

%...Equation 5.46d:

gdot = 1 - y(z)/r2;

%...Equation 5.28:

V1 = 1/g*(R2 - f*R1);

%...Equation 5.29:

V2 = 1/g*(gdot*R2 - R1);

return

% ����������������������������
% Subfunctions used in the main body:

% ����������������������������

%...Equation 5.38:

function dum = y(z)

dum = r1 + r2 + A*(z*S(z) - 1)/sqrt(C(z));

end

%...Equation 5.40:

function dum = F(z,t)

dum = (y(z)/C(z)) 1̂.5*S(z) + A*sqrt(y(z)) - sqrt(mu)*t;

end

%...Equation 5.43:

function dum = dFdz(z)

if z == 0

dum = sqrt(2)/40*y(0) 1̂.5 + A/8*(sqrt(y(0)) + A*sqrt(1/2/y(0)));

else

dum = (y(z)/C(z)) 1̂.5*(1/2/z*(C(z) - 3*S(z)/2/C(z)) ...

+ 3*S(z) 2̂/4/C(z)) + A/8*(3*S(z)/C(z)*sqrt(y(z)) ...

+ A*sqrt(C(z)/y(z)));

end

end

%...Stumpff functions:

function dum = C(z)

dum = stumpC(z);

end
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function dum = S(z)

dum = stumpS(z);

end

end %lambert

% �����������������������������������
SCRIPT FILE: Example_5_02.m

% ����������������������������������
% Example_5_02

% ���������
%{

This program uses Algorithm 5.2 to solve Lambert’s problem for the

data provided in Example 5.2.

deg - factor for converting between degrees and radians

pi - 3.1415926...

mu - gravitational parameter (km 3̂/s 2̂)

r1, r2 - initial and final position vectors (km)

dt - time between r1 and r2 (s)

string - = ’pro’ if the orbit is prograde

= ’retro if the orbit is retrograde

v1, v2 - initial and final velocity vectors (km/s)

coe - orbital elements [h e RA incl w TA a]

where h = angular momentum (km 2̂/s)

e = eccentricity

RA = right ascension of the ascending node (rad)

incl = orbit inclination (rad)

w = argument of perigee (rad)

TA = true anomaly (rad)

a = semimajor axis (km)

TA1 - Initial true anomaly (rad)

TA2 - Final true anomaly (rad)

T - period of an elliptic orbit (s)

User M-functions required: lambert, coe_from_sv

%}

% –––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

global mu

deg = pi/180;

%...Data declaration for Example 5.2:

mu = 398600;

r1 = [ 5000 10000 2100];
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r2 = [-14600 2500 7000];

dt = 3600;

string = ’pro’;

%...

%...Algorithm 5.2:

[v1, v2] = lambert(r1, r2, dt, string);

%...Algorithm 4.1 (using r1 and v1):

coe = coe_from_sv(r1, v1, mu);

%...Save the initial true anomaly:

TA1 = coe(6);

%...Algorithm 4.1 (using r2 and v2):

coe = coe_from_sv(r2, v2, mu);

%...Save the final true anomaly:

TA2 = coe(6);

%...Echo the input data and output the results to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 5.2: Lambert’’s Problem\n’)

fprintf(’\n\n Input data:\n’);

fprintf(’\n Gravitational parameter (km 3̂/s 2̂) = %g\n’, mu);

fprintf(’\n r1 (km) = [%g %g %g]’, ...

r1(1), r1(2), r1(3))

fprintf(’\n r2 (km) = [%g %g %g]’, ...

r2(1), r2(2), r2(3))

fprintf(’\n Elapsed time (s) = %g’, dt);

fprintf(’\n\n Solution:\n’)

fprintf(’\n v1 (km/s) = [%g %g %g]’, ...

v1(1), v1(2), v1(3))

fprintf(’\n v2 (km/s) = [%g %g %g]’, ...

v2(1), v2(2), v2(3))

fprintf(’\n\n Orbital elements:’)

fprintf(’\n Angular momentum (km 2̂/s) = %g’, coe(1))

fprintf(’\n Eccentricity = %g’, coe(2))

fprintf(’\n Inclination (deg) = %g’, coe(4)/deg)

fprintf(’\n RA of ascending node (deg) = %g’, coe(3)/deg)

fprintf(’\n Argument of perigee (deg) = %g’, coe(5)/deg)

fprintf(’\n True anomaly initial (deg) = %g’, TA1/deg)

fprintf(’\n True anomaly final (deg) = %g’, TA2/deg)

fprintf(’\n Semimajor axis (km) = %g’, coe(7))

fprintf(’\n Periapse radius (km) = %g’, coe(1) 2̂/mu/(1 + coe(2)))

%...If the orbit is an ellipse, output its period:

if coe(2)<1
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T = 2*pi/sqrt(mu)*coe(7) 1̂.5;

fprintf(’\n Period:’)

fprintf(’\n Seconds = %g’, T)

fprintf(’\n Minutes = %g’, T/60)

fprintf(’\n Hours = %g’, T/3600)

fprintf(’\n Days = %g’, T/24/3600)

end

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% ����������������������������������
OUTPUT FROM Example_5_02

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 5.2: Lambert’s Problem

Input data:

Gravitational parameter (km 3̂/s 2̂) = 398600

r1 (km) = [5000 10000 2100]

r2 (km) = [-14600 2500 7000]

Elapsed time (s) = 3600

Solution:

v1 (km/s) = [-5.99249 1.92536 3.24564]

v2 (km/s) = [-3.31246 -4.19662 -0.385288]

Orbital elements:

Angular momentum (km 2̂/s) = 80466.8

Eccentricity = 0.433488

Inclination (deg) = 30.191

RA of ascending node (deg) = 44.6002

Argument of perigee (deg) = 30.7062

True anomaly initial (deg) = 350.83

True anomaly final (deg) = 91.1223

Semimajor axis (km) = 20002.9

Periapse radius (km) = 11331.9

Period:

Seconds = 28154.7

Minutes = 469.245

Hours = 7.82075

Days = 0.325865

–––––––––––––––––––––––––––––––––––––––––––––––––––––
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D.26 CALCULATION OF JULIAN DAY NUMBER AT 0 HR UT
The following script implements Equation 5.48 for use in other programs.
FUNCTION FILE: J0.m

% ���������������������������
function j0 = J0(year, month, day)

% ���������������������s������
%{

This function computes the Julian day number at 0 UT for any year

between 1900 and 2100 using Equation 5.48.

j0 - Julian day at 0 hr UT (Universal Time)

year - range: 1901 - 2099

month - range: 1 - 12

day - range: 1 - 31

User m-functions required: none

%}

% ––––––––––––––––––––––––––––––––––

j0 = 367*year - fix(7*(year + fix((month + 9)/12))/4) ...

+ fix(275*month/9) + day + 1721013.5;

% �����������������������
end %J0
SCRIPT FILE: Example_5_04.m

% �����������������������������������
% Example_5_04

% ����������
%{

This program computes J0 and the Julian day number using the data

in Example 5.4.

year - range: 1901 - 2099

month - range: 1 - 12

day - range: 1 - 31

hour - range: 0 - 23 (Universal Time)

minute - rage: 0 - 60

second - range: 0 - 60

ut - universal time (hr)

j0 - Julian day number at 0 hr UT

jd - Julian day number at specified UT

User M-function required: J0

%}

% ––––––––––––––––––––––––––––––––––––––––––––––
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clear all; clc

%...Data declaration for Example 5.4:

year = 2004;

month = 5;

day = 12;

hour = 14;

minute = 45;

second = 30;

%...

ut = hour + minute/60 + second/3600;

%...Equation 5.46:

j0 = J0(year, month, day);

%...Equation 5.47:

jd = j0 + ut/24;

%...Echo the input data and output the results to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 5.4: Julian day calculation\n’)

fprintf(’\n Input data:\n’);

fprintf(’\n Year = %g’, year)

fprintf(’\n Month = %g’, month)

fprintf(’\n Day = %g’, day)

fprintf(’\n Hour = %g’, hour)

fprintf(’\n Minute = %g’, minute)

fprintf(’\n Second = %g\n’, second)

fprintf(’\n Julian day number = %11.3f’, jd);

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_5_04

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 5.4: Julian day calculation

Input data:

Year = 2004

Month = 5

Day = 12

Hour = 14

Minute = 45

Second = 30
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Julian day number = 2453138.115

––––––––––––––––––––––––––––––––––––––––––––––––––––
D.27 ALGORITHM 5.3: CALCULATION OF LOCAL SIDEREAL TIME
FUNCTION FILE: LST.m

% �����������������������������������
function lst = LST(y, m, d, ut, EL)

% ���������������������������
%{

This function calculates the local sidereal time.

lst - local sidereal time (degrees)

y - year

m - month

d - day

ut - Universal Time (hours)

EL - east longitude (degrees)

j0 - Julian day number at 0 hr UT

j - number of centuries since J2000

g0 - Greenwich sidereal time (degrees) at 0 hr UT

gst - Greenwich sidereal time (degrees) at the specified UT

User M-function required: J0

User subfunction required: zeroTo360

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

%...Equation 5.48;

j0 = J0(y, m, d);

%...Equation 5.49:

j = (j0 - 2451545)/36525;

%...Equation 5.50:

g0 = 100.4606184 + 36000.77004*j + 0.000387933*j 2̂ - 2.583e-8*j 3̂;

%...Reduce g0 so it lies in the range 0 - 360 degrees

g0 = zeroTo360(g0);

%...Equation 5.51:

gst = g0 + 360.98564724*ut/24;

%...Equation 5.52:

lst = gst + EL;
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%...Reduce lst to the range 0 - 360 degrees:

lst = lst - 360*fix(lst/360);

return

% ��������������������
function y = zeroTo360(x)

% ��������������������
%{

This subfunction reduces an angle to the range 0 - 360 degrees.

x - The angle (degrees) to be reduced

y - The reduced value

%}

% –––––––––––––––––––––––––

if (x >= 360)

x = x - fix(x/360)*360;

elseif (x < 0)

x = x - (fix(x/360) - 1)*360;

end

y = x;

end %zeroTo360

end %LST

% �����������������������������������
SCRIPT FILE: Example_5_06.m

% �����������������������������������
% Example_5_06

% ���������
%{

This program uses Algorithm 5.3 to obtain the local sidereal

time from the data provided in Example 5.6.

lst - local sidereal time (degrees)

EL - east longitude of the site (west longitude is negative):

degrees (0 - 360)

minutes (0 - 60)

seconds (0 - 60)

WL - west longitude

year - range: 1901 - 2099

month - range: 1 - 12

day - range: 1 - 31

ut - universal time

hour (0 - 23)

minute (0 - 60)

second (0 - 60)
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User m-function required: LST

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

%...Data declaration for Example 5.6:

% East longitude:

degrees = 139;

minutes = 47;

seconds = 0;

% Date:

year = 2004;

month = 3;

day = 3;

% Universal time:

hour = 4;

minute = 30;

second = 0;

%...

%...Convert negative (west) longitude to east longitude:

if degrees < 0

degrees = degrees + 360;

end

%...Express the longitudes as decimal numbers:

EL = degrees + minutes/60 + seconds/3600;

WL = 360 - EL;

%...Express universal time as a decimal number:

ut = hour + minute/60 + second/3600;

%...Algorithm 5.3:

lst = LST(year, month, day, ut, EL);

%...Echo the input data and output the results to the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 5.6: Local sidereal time calculation\n’)

fprintf(’\n Input data:\n’);

fprintf(’\n Year = %g’, year)

fprintf(’\n Month = %g’, month)

fprintf(’\n Day = %g’, day)

fprintf(’\n UT (hr) = %g’, ut)

fprintf(’\n West Longitude (deg) = %g’, WL)
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fprintf(’\n East Longitude (deg) = %g’, EL)

fprintf(’\n\n’);

fprintf(’ Solution:’)

fprintf(’\n’);

fprintf(’\n Local Sidereal Time (deg) = %g’, lst)

fprintf(’\n Local Sidereal Time (hr) = %g’, lst/15)

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_5_06

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 5.6: Local sidereal time calculation

Input data:

Year = 2004

Month = 3

Day = 3

UT (hr) = 4.5

West Longitude (deg) = 220.217

East Longitude (deg) = 139.783

Solution:

Local Sidereal Time (deg) = 8.57688

Local Sidereal Time (hr) = 0.571792

–––––––––––––––––––––––––––––––––––––––––––––––––––––
D.28 ALGORITHM 5.4: CALCULATION OF THE STATE VECTOR FROM
MEASUREMENTS OF RANGE, ANGULAR POSITION, AND THEIR RATES
FUNCTION FILE: rv_from_observe.m

% ���������������������������������������������������������
function [r,v] = rv_from_observe(rho, rhodot, A, Adot, a, ...

adot, theta, phi, H)

% ���������������������������������������������������������
%{

This function calculates the geocentric equatorial position and

velocity vectors of an object from radar observations of range,

azimuth, elevation angle and their rates.

deg - conversion factor between degrees and radians

pi - 3.1415926...
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Re - equatorial radius of the earth (km)

f - earth’s flattening factor

wE - angular velocity of the earth (rad/s)

omega - earth’s angular velocity vector (rad/s) in the

geocentric equatorial frame

theta - local sidereal time (degrees) of tracking site

phi - geodetic latitude (degrees) of site

H - elevation of site (km)

R - geocentric equatorial position vector (km) of tracking site

Rdot - inertial velocity (km/s) of site

rho - slant range of object (km)

rhodot - range rate (km/s)

A - azimuth (degrees) of object relative to observation site

Adot - time rate of change of azimuth (degrees/s)

a - elevation angle (degrees) of object relative to observation site

adot - time rate of change of elevation angle (degrees/s)

dec - topocentric equatorial declination of object (rad)

decdot - declination rate (rad/s)

h - hour angle of object (rad)

RA - topocentric equatorial right ascension of object (rad)

RAdot - right ascension rate (rad/s)

Rho - unit vector from site to object

Rhodot - time rate of change of Rho (1/s)

r - geocentric equatorial position vector of object (km)

v - geocentric equatorial velocity vector of object (km)

User M-functions required: none

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

global f Re wE

deg = pi/180;

omega = [0 0 wE];

%...Convert angular quantities from degrees to radians:

A = A *deg;

Adot = Adot *deg;

a = a *deg;

adot = adot *deg;

theta = theta*deg;

phi = phi *deg;
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%...Equation 5.56:

R = [(Re/sqrt(1-(2*f - f*f)*sin(phi) 2̂) + H)*cos(phi)*cos(theta), ...

(Re/sqrt(1-(2*f - f*f)*sin(phi) 2̂) + H)*cos(phi)*sin(theta), ...

(Re*(1 - f) 2̂/sqrt(1-(2*f - f*f)*sin(phi) 2̂) + H)*sin(phi)];

%...Equation 5.66:

Rdot = cross(omega, R);

%...Equation 5.83a:

dec = asin(cos(phi)*cos(A)*cos(a) + sin(phi)*sin(a));

%...Equation 5.83b:

h = acos((cos(phi)*sin(a) - sin(phi)*cos(A)*cos(a))/cos(dec));

if (A > 0) & (A < pi)

h = 2*pi - h;

end

%...Equation 5.83c:

RA = theta - h;

%...Equations 5.57:

Rho = [cos(RA)*cos(dec) sin(RA)*cos(dec) sin(dec)];

%...Equation 5.63:

r = R + rho*Rho;

%...Equation 5.84:

decdot = (-Adot*cos(phi)*sin(A)*cos(a) + adot*(sin(phi)*cos(a) ...

- cos(phi)*cos(A)*sin(a)))/cos(dec);

%...Equation 5.85:

RAdot = wE ...

+ (Adot*cos(A)*cos(a) - adot*sin(A)*sin(a) ...

+ decdot*sin(A)*cos(a)*tan(dec)) ...

/(cos(phi)*sin(a) - sin(phi)*cos(A)*cos(a));

%...Equations 5.69 and 5.72:

Rhodot = [-RAdot*sin(RA)*cos(dec) - decdot*cos(RA)*sin(dec),...

RAdot*cos(RA)*cos(dec) - decdot*sin(RA)*sin(dec),...

decdot*cos(dec)];

%...Equation 5.64:

v = Rdot + rhodot*Rho + rho*Rhodot;

end %rv_from_observe

% ���������������������������������������������������������



e85MATLAB scripts
SCRIPT FILE: Example_5_10.m

% ���������������������������������������������������������
% Example_5_10

% ����������
%

% This program uses Algorithms 5.4 and 4.2 to obtain the orbital

% elements from the observational data provided in Example 5.10.

%

% deg - conversion factor between degrees and radians

% pi - 3.1415926...

% mu - gravitational parameter (km 3̂/s 2̂)

% Re - equatorial radius of the earth (km)

% f - earth’s flattening factor

% wE - angular velocity of the earth (rad/s)

% omega - earth’s angular velocity vector (rad/s) in the

% geocentric equatorial frame

% rho - slant range of object (km)

% rhodot - range rate (km/s)

% A - azimuth (deg) of object relative to observation site

% Adot - time rate of change of azimuth (deg/s)

% a - elevation angle (deg) of object relative to observation site

% adot - time rate of change of elevation angle (degrees/s)

% theta - local sidereal time (deg) of tracking site

% phi - geodetic latitude (deg) of site

% H - elevation of site (km)

% r - geocentric equatorial position vector of object (km)

% v - geocentric equatorial velocity vector of object (km)

% coe - orbital elements [h e RA incl w TA a]

% where

% h = angular momentum (km 2̂/s)

% e = eccentricity

% RA = right ascension of the ascending node (rad)

% incl = inclination of the orbit (rad)

% w = argument of perigee (rad)

% TA = true anomaly (rad)

% a = semimajor axis (km)

% rp - perigee radius (km)

% T - period of elliptical orbit (s)

%

% User M-functions required: rv_from_observe, coe_from_sv

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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clear all; clc

global f Re wE

deg = pi/180;

f = 1/298.256421867;

Re = 6378.13655;

wE = 7.292115e-5;

mu = 398600.4418;

%...Data declaration for Example 5.10:

rho = 2551;

rhodot = 0;

A = 90;

Adot = 0.1130;

a = 30;

adot = 0.05651;

theta = 300;

phi = 60;

H = 0;

%...

%...Algorithm 5.4:

[r,v] = rv_from_observe(rho, rhodot, A, Adot, a, adot, theta, phi, H);

%...Algorithm 4.2:

coe = coe_from_sv(r,v,mu);

h = coe(1);

e = coe(2);

RA = coe(3);

incl = coe(4);

w = coe(5);

TA = coe(6);

a = coe(7);

%...Equation 2.40

rp = h 2̂/mu/(1 + e);

%...Echo the input data and output the solution to

% the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 5.10’)

fprintf(’\n\n Input data:\n’);

fprintf(’\n Slant range (km) = %g’, rho);

fprintf(’\n Slant range rate (km/s) = %g’, rhodot);

fprintf(’\n Azimuth (deg) = %g’, A);

fprintf(’\n Azimuth rate (deg/s) = %g’, Adot);
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fprintf(’\n Elevation (deg) = %g’, a);

fprintf(’\n Elevation rate (deg/s) = %g’, adot);

fprintf(’\n Local sidereal time (deg) = %g’, theta);

fprintf(’\n Latitude (deg) = %g’, phi);

fprintf(’\n Altitude above sea level (km) = %g’, H);

fprintf(’\n\n’);

fprintf(’ Solution:’)

fprintf(’\n\n State vector:\n’);

fprintf(’\n r (km) = [%g, %g, %g]’, ...

r(1), r(2), r(3));

fprintf(’\n v (km/s) = [%g, %g, %g]’, ...

v(1), v(2), v(3));

fprintf(’\n\n Orbital elements:\n’)

fprintf(’\n Angular momentum (km 2̂/s) = %g’, h)

fprintf(’\n Eccentricity = %g’, e)

fprintf(’\n Inclination (deg) = %g’, incl/deg)

fprintf(’\n RA of ascending node (deg) = %g’, RA/deg)

fprintf(’\n Argument of perigee (deg) = %g’, w/deg)

fprintf(’\n True anomaly (deg) = %g\n’, TA/deg)

fprintf(’\n Semimajor axis (km) = %g’, a)

fprintf(’\n Perigee radius (km) = %g’, rp)

%...If the orbit is an ellipse, output its period:

if e < 1

T = 2*pi/sqrt(mu)*a 1̂.5;

fprintf(’\n Period:’)

fprintf(’\n Seconds = %g’, T)

fprintf(’\n Minutes = %g’, T/60)

fprintf(’\n Hours = %g’, T/3600)

fprintf(’\n Days = %g’, T/24/3600)

end

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% ���������������������������������������������������������
OUTPUT FROM Example_5_10

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 5.10

Input data:

Slant range (km) = 2551

Slant range rate (km/s) = 0

Azimuth (deg) = 90

Azimuth rate (deg/s) = 0.113

Elevation (deg) = 5168.62
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Elevation rate (deg/s) = 0.05651

Local sidereal time (deg) = 300

Latitude (deg) = 60

Altitude above sea level (km) = 0

Solution:

State vector:

r (km) = [3830.68, -2216.47, 6605.09]

v (km/s) = [1.50357, -4.56099, -0.291536]

Orbital elements:

Angular momentum (km 2̂/s) = 35621.4

Eccentricity = 0.619758

Inclination (deg) = 113.386

RA of ascending node (deg) = 109.75

Argument of perigee (deg) = 309.81

True anomaly (deg) = 165.352

Semimajor axis (km) = 5168.62

Perigee radius (km) = 1965.32

Period:

Seconds = 3698.05

Minutes = 61.6342

Hours = 1.02724

Days = 0.0428015

–––––––––––––––––––––––––––––––––––––––––––––––––––––
D.29 ALGORITHMS 5.5 AND 5.6: GAUSS’ METHOD OF PRELIMINARY ORBIT
DETERMINATION WITH ITERATIVE IMPROVEMENT
FUNCTION FILE: gauss.m

% ��������������������������������������������
function [r, v, r_old, v_old] = ...

gauss(Rho1, Rho2, Rho3, R1, R2, R3, t1, t2, t3)

% ��������������������������������������������
%{

This function uses the Gauss method with iterative improvement

(Algorithms 5.5 and 5.6) to calculate the state vector of an

orbiting body from angles-only observations at three

closely spaced times.

mu - the gravitational parameter (km 3̂/s 2̂)

t1, t2, t3 - the times of the observations (s)
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tau, tau1, tau3 - time intervals between observations (s)

R1, R2, R3 - the observation site position vectors

at t1, t2, t3 (km)

Rho1, Rho2, Rho3 - the direction cosine vectors of the

satellite at t1, t2, t3

p1, p2, p3 - cross products among the three direction

cosine vectors

Do - scalar triple product of Rho1, Rho2 and Rho3

D - Matrix of the nine scalar triple products

of R1, R2 and R3 with p1, p2 and p3

E - dot product of R2 and Rho2

A, B - constants in the expression relating slant range

to geocentric radius

a,b,c - coefficients of the 8th order polynomial

in the estimated geocentric radius x

x - positive root of the 8th order polynomial

rho1, rho2, rho3 - the slant ranges at t1, t2, t3

r1, r2, r3 - the position vectors at t1, t2, t3 (km)

r_old, v_old - the estimated state vector at the end of

Algorithm 5.5 (km, km/s)

rho1_old,

rho2_old, and

rho3_old - the values of the slant ranges at t1, t2, t3

at the beginning of iterative improvement

(Algorithm 5.6) (km)

diff1, diff2,

and diff3 - the magnitudes of the differences between the

old and new slant ranges at the end of

each iteration

tol - the error tolerance determining

convergence

n - number of passes through the

iterative improvement loop

nmax - limit on the number of iterations

ro, vo - magnitude of the position and

velocity vectors (km, km/s)

vro - radial velocity component (km)

a - reciprocal of the semimajor axis (1/km)

v2 - computed velocity at time t2 (km/s)

r, v - the state vector at the end of Algorithm 5.6

(km, km/s)

User m-functions required: kepler_U, f_and_g

User subfunctions required: posroot

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––
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global mu

%...Equations 5.98:

tau1 = t1 - t2;

tau3 = t3 - t2;

%...Equation 5.101:

tau = tau3 - tau1;

%...Independent cross products among the direction cosine vectors:

p1 = cross(Rho2,Rho3);

p2 = cross(Rho1,Rho3);

p3 = cross(Rho1,Rho2);

%...Equation 5.108:

Do = dot(Rho1,p1);

%...Equations 5.109b, 5.110b and 5.111b:

D = [[dot(R1,p1) dot(R1,p2) dot(R1,p3)]

[dot(R2,p1) dot(R2,p2) dot(R2,p3)]

[dot(R3,p1) dot(R3,p2) dot(R3,p3)]];

%...Equation 5.115b:

E = dot(R2,Rho2);

%...Equations 5.112b and 5.112c:

A = 1/Do*(-D(1,2)*tau3/tau + D(2,2) + D(3,2)*tau1/tau);

B = 1/6/Do*(D(1,2)*(tau3 2̂ - tau 2̂)*tau3/tau ...

+ D(3,2)*(tau 2̂ - tau1 2̂)*tau1/tau);

%...Equations 5.117:

a = -(A 2̂ + 2*A*E + norm(R2) 2̂);

b = -2*mu*B*(A + E);

c = -(mu*B) 2̂;

%...Calculate the roots of Equation 5.116 using MATLAB’s

% polynomial ’roots’ solver:

Roots = roots([1 0 a 0 0 b 0 0 c]);

%...Find the positive real root:

x = posroot(Roots);

%...Equations 5.99a and 5.99b:

f1 = 1 - 1/2*mu*tau1 2̂/x 3̂;

f3 = 1 - 1/2*mu*tau3 2̂/x 3̂;

%...Equations 5.100a and 5.100b:
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g1 = tau1 - 1/6*mu*(tau1/x) 3̂;

g3 = tau3 - 1/6*mu*(tau3/x) 3̂;

%...Equation 5.112a:

rho2 = A + mu*B/x 3̂;

%...Equation 5.113:

rho1 = 1/Do*((6*(D(3,1)*tau1/tau3 + D(2,1)*tau/tau3)*x 3̂ ...

+ mu*D(3,1)*(tau 2̂ - tau1 2̂)*tau1/tau3) ...

/(6*x 3̂ + mu*(tau 2̂ - tau3 2̂)) - D(1,1));

%...Equation 5.114:

rho3 = 1/Do*((6*(D(1,3)*tau3/tau1 - D(2,3)*tau/tau1)*x 3̂ ...

+ mu*D(1,3)*(tau 2̂ - tau3 2̂)*tau3/tau1) ...

/(6*x 3̂ + mu*(tau 2̂ - tau1 2̂)) - D(3,3));

%...Equations 5.86:

r1 = R1 + rho1*Rho1;

r2 = R2 + rho2*Rho2;

r3 = R3 + rho3*Rho3;

%...Equation 5.118:

v2 = (-f3*r1 + f1*r3)/(f1*g3 - f3*g1);

%...Save the initial estimates of r2 and v2:

r_old = r2;

v_old = v2;

%...End of Algorithm 5.5

%...Use Algorithm 5.6 to improve the accuracy of the initial estimates.

%...Initialize the iterative improvement loop and set error tolerance:

rho1_old = rho1; rho2_old = rho2; rho3_old = rho3;

diff1 = 1; diff2 = 1; diff3 = 1;

n = 0;

nmax = 1000;

tol = 1.e-8;

%...Iterative improvement loop:

while ((diff1 > tol) & (diff2 > tol) & (diff3 > tol)) & (n < nmax)

n = n+1;

%...Compute quantities required by universal kepler’s equation:

ro = norm(r2);

vo = norm(v2);

vro = dot(v2,r2)/ro;

a = 2/ro - vo 2̂/mu;
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%...Solve universal Kepler’s equation at times tau1 and tau3 for

% universal anomalies x1 and x3:

x1 = kepler_U(tau1, ro, vro, a);

x3 = kepler_U(tau3, ro, vro, a);

%...Calculate the Lagrange f and g coefficients at times tau1

% and tau3:

[ff1, gg1] = f_and_g(x1, tau1, ro, a);

[ff3, gg3] = f_and_g(x3, tau3, ro, a);

%...Update the f and g functions at times tau1 and tau3 by

% averaging old and new:

f1 = (f1 + ff1)/2;

f3 = (f3 + ff3)/2;

g1 = (g1 + gg1)/2;

g3 = (g3 + gg3)/2;

%...Equations 5.96 and 5.97:

c1 = g3/(f1*g3 - f3*g1);

c3 = -g1/(f1*g3 - f3*g1);

%...Equations 5.109a, 5.110a and 5.111a:

rho1 = 1/Do*( -D(1,1) + 1/c1*D(2,1) - c3/c1*D(3,1));

rho2 = 1/Do*( -c1*D(1,2) +D(2,2) - c3*D(3,2));

rho3 = 1/Do*(-c1/c3*D(1,3) + 1/c3*D(2,3) - D(3,3));

%...Equations 5.86:

r1 = R1 + rho1*Rho1;

r2 = R2 + rho2*Rho2;

r3 = R3 + rho3*Rho3;

%...Equation 5.118:

v2 = (-f3*r1 + f1*r3)/(f1*g3 - f3*g1);

%...Calculate differences upon which to base convergence:

diff1 = abs(rho1 - rho1_old);

diff2 = abs(rho2 - rho2_old);

diff3 = abs(rho3 - rho3_old);

%...Update the slant ranges:

rho1_old = rho1; rho2_old = rho2; rho3_old = rho3;

end

%...End iterative improvement loop

fprintf(’\n( **Number of Gauss improvement iterations = %g)\n\n’,n)
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if n >= nmax

fprintf(’\n\n **Number of iterations exceeds %g \n\n ’,nmax);

end

%...Return the state vector for the central observation:

r = r2;

v = v2;

return

% ���������������������
function x = posroot(Roots)

% ���������������������
%{

This subfunction extracts the positive real roots from

those obtained in the call to MATLAB’s ’roots’ function.

If there is more than one positive root, the user is

prompted to select the one to use.

x - the determined or selected positive root

Roots - the vector of roots of a polynomial

posroots - vector of positive roots

User M-functions required: none

%}

% ����������������

%...Construct the vector of positive real roots:

posroots = Roots(find(Roots>0 & �imag(Roots)));

npositive = length(posroots);

%...Exit if no positive roots exist:

if npositive == 0

fprintf(’\n\n ** There are no positive roots. \n\n’)

return

end

%...If there is more than one positive root, output the

% roots to the command window and prompt the user to

% select which one to use:

if npositive == 1

x = posroots;

else

fprintf(’\n\n ** There are two or more positive roots.\n’)

for i = 1:npositive

fprintf(’\n root #%g = %g’,i,posroots(i))

end
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fprintf(’\n\n Make a choice:\n’)

nchoice = 0;

while nchoice < 1 j nchoice > npositive

nchoice = input(’ Use root #? ’);

end

x = posroots(nchoice);

fprintf(’\n We will use %g .\n’, x)

end

end %posroot

end %gauss

% ��������������������������������������������
SCRIPT FILE: Example_5_11.m

% ����������������������������������
% Example_5_11

% ���������
%{

This program uses Algorithms 5.5 and 5.6 (Gauss’s method) to compute

the state vector from the data provided in Example 5.11.

deg - factor for converting between degrees and radians

pi - 3.1415926...

mu - gravitational parameter (km 3̂/s 2̂)

Re - earth’s radius (km)

f - earth’s flattening factor

H - elevation of observation site (km)

phi - latitude of site (deg)

t - vector of observation times t1, t2, t3 (s)

ra - vector of topocentric equatorial right ascensions

at t1, t2, t3 (deg)

dec - vector of topocentric equatorial right declinations

at t1, t2, t3 (deg)

theta - vector of local sidereal times for t1, t2, t3 (deg)

R - matrix of site position vectors at t1, t2, t3 (km)

rho - matrix of direction cosine vectors at t1, t2, t3

fac1, fac2 - common factors

r_old, v_old - the state vector without iterative improvement (km, km/s)

r, v - the state vector with iterative improvement (km, km/s)

coe - vector of orbital elements for r, v:

[h, e, RA, incl, w, TA, a]

where h = angular momentum (km 2̂/s)

e = eccentricity

incl = inclination (rad)

w = argument of perigee (rad)

TA = true anomaly (rad)
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a = semimajor axis (km)

coe_old - vector of orbital elements for r_old, v_old

User M-functions required: gauss, coe_from_sv

%}

% –––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

global mu

deg = pi/180;

mu = 398600;

Re = 6378;

f = 1/298.26;

%...Data declaration for Example 5.11:

H = 1;

phi = 40*deg;

t = [ 0 118.104 237.577];

ra = [ 43.5365 54.4196 64.3178]*deg;

dec = [-8.78334 -12.0739 -15.1054]*deg;

theta = [ 44.5065 45.000 45.4992]*deg;

%...

%...Equations 5.64, 5.76 and 5.79:

fac1 = Re/sqrt(1-(2*f - f*f)*sin(phi) 2̂);

fac2 = (Re*(1-f) 2̂/sqrt(1-(2*f - f*f)*sin(phi) 2̂) + H)*sin(phi);

for i = 1:3

R(i,1) = (fac1 + H)*cos(phi)*cos(theta(i));

R(i,2) = (fac1 + H)*cos(phi)*sin(theta(i));

R(i,3) = fac2;

rho(i,1) = cos(dec(i))*cos(ra(i));

rho(i,2) = cos(dec(i))*sin(ra(i));

rho(i,3) = sin(dec(i));

end

%...Algorithms 5.5 and 5.6:

[r, v, r_old, v_old] = gauss(rho(1,:), rho(2,:), rho(3,:), ...

R(1,:), R(2,:), R(3,:), ...

t(1), t(2), t(3));

%...Algorithm 4.2 for the initial estimate of the state vector

% and for the iteratively improved one:

coe_old = coe_from_sv(r_old,v_old,mu);

coe = coe_from_sv(r,v,mu);
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%...Echo the input data and output the solution to

% the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 5.11: Orbit determination by the Gauss method\n’)

fprintf(’\n Radius of earth (km) = %g’, Re)

fprintf(’\n Flattening factor = %g’, f)

fprintf(’\n Gravitational parameter (km 3̂/s 2̂) = %g’, mu)

fprintf(’\n\n Input data:\n’);

fprintf(’\n Latitude (deg) = %g’, phi/deg);

fprintf(’\n Altitude above sea level (km) = %g’, H);

fprintf(’\n\n Observations:’)

fprintf(’\n Right’)

fprintf(’ Local’)

fprintf(’\n Time (s) Ascension (deg) Declination (deg)’)

fprintf(’ Sidereal time (deg)’)

for i = 1:3

fprintf(’\n %9.4g %11.4f %19.4f %20.4f’, ...

t(i), ra(i)/deg, dec(i)/deg, theta(i)/deg)

end

fprintf(’\n\n Solution:\n’)

fprintf(’\n Without iterative improvement...\n’)

fprintf(’\n’);

fprintf(’\n r (km) = [%g, %g, %g]’, ...

r_old(1), r_old(2), r_old(3))

fprintf(’\n v (km/s) = [%g, %g, %g]’, ...

v_old(1), v_old(2), v_old(3))

fprintf(’\n’);

fprintf(’\n Angular momentum (km 2̂/s) = %g’, coe_old(1))

fprintf(’\n Eccentricity = %g’, coe_old(2))

fprintf(’\n RA of ascending node (deg) = %g’, coe_old(3)/deg)

fprintf(’\n Inclination (deg) = %g’, coe_old(4)/deg)

fprintf(’\n Argument of perigee (deg) = %g’, coe_old(5)/deg)

fprintf(’\n True anomaly (deg) = %g’, coe_old(6)/deg)

fprintf(’\n Semimajor axis (km) = %g’, coe_old(7))

fprintf(’\n Periapse radius (km) = %g’, coe_old(1) 2̂ ...

/mu/(1 + coe_old(2)))

%...If the orbit is an ellipse, output the period:

if coe_old(2)<1

T = 2*pi/sqrt(mu)*coe_old(7) 1̂.5;

fprintf(’\n Period:’)

fprintf(’\n Seconds = %g’, T)

fprintf(’\n Minutes = %g’, T/60)

fprintf(’\n Hours = %g’, T/3600)

fprintf(’\n Days = %g’, T/24/3600)

end
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fprintf(’\n\n With iterative improvement...\n’)

fprintf(’\n’);

fprintf(’\n r (km) = [%g, %g, %g]’, ...

r(1), r(2), r(3))

fprintf(’\n v (km/s) = [%g, %g, %g]’, ...

v(1), v(2), v(3))

fprintf(’\n’);

fprintf(’\n Angular momentum (km 2̂/s) = %g’, coe(1))

fprintf(’\n Eccentricity = %g’, coe(2))

fprintf(’\n RA of ascending node (deg) = %g’, coe(3)/deg)

fprintf(’\n Inclination (deg) = %g’, coe(4)/deg)

fprintf(’\n Argument of perigee (deg) = %g’, coe(5)/deg)

fprintf(’\n True anomaly (deg) = %g’, coe(6)/deg)

fprintf(’\n Semimajor axis (km) = %g’, coe(7))

fprintf(’\n Periapse radius (km) = %g’, coe(1) 2̂ ...

/mu/(1 + coe(2)))

%...If the orbit is an ellipse, output the period:

if coe(2)<1

T = 2*pi/sqrt(mu)*coe(7) 1̂.5;

fprintf(’\n Period:’)

fprintf(’\n Seconds = %g’, T)

fprintf(’\n Minutes = %g’, T/60)

fprintf(’\n Hours = %g’, T/3600)

fprintf(’\n Days = %g’, T/24/3600)

end

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% �����������������������������������
OUTPUT FROM Example_5_11

( **Number of Gauss improvement iterations = 14)

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 5.11: Orbit determination by the Gauss method

Radius of earth (km) = 6378

Flattening factor = 0.00335278

Gravitational parameter (km 3̂/s 2̂) = 398600

Input data:

Latitude (deg) = 40

Altitude above sea level (km) = 1

Observations:

Right Local

Time (s) Ascension (deg) Declination (deg) Sidereal time (deg)

0 43.5365 -8.7833 44.5065
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118.1 54.4196 -12.0739 45.0000

237.6 64.3178 -15.1054 45.4992

Solution:

Without iterative improvement...

r (km) = [5659.03, 6533.74, 3270.15]

v (km/s) = [-3.8797, 5.11565, -2.2397]

Angular momentum (km 2̂/s) = 62705.3

Eccentricity = 0.097562

RA of ascending node (deg) = 270.023

Inclination (deg) = 30.0105

Argument of perigee (deg) = 88.654

True anomaly (deg) = 46.3163

Semimajor axis (km) = 9959.2

Periapse radius (km) = 8987.56

Period:

Seconds = 9891.17

Minutes = 164.853

Hours = 2.74755

Days = 0.114481

With iterative improvement...

r (km) = [5662.04, 6537.95, 3269.05]

v (km/s) = [-3.88542, 5.12141, -2.2434]

Angular momentum (km 2̂/s) = 62816.7

Eccentricity = 0.0999909

RA of ascending node (deg) = 269.999

Inclination (deg) = 30.001

Argument of perigee (deg) = 89.9723

True anomaly (deg) = 45.0284

Semimajor axis (km) = 9999.48

Periapse radius (km) = 8999.62

Period:

Seconds = 9951.24

Minutes = 165.854

Hours = 2.76423

Days = 0.115176

–––––––––––––––––––––––––––––––––––––––––––––––––––––
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CHAPTER 6: ORBITAL MANEUVERS

D.30 CALCULATE THE STATE VECTOR AFTER A FINITE TIME, CONSTANT
THRUST DELTA-V MANEUVER
FUNCTION FILE: integrate_thrust.m

% ����������������������������������
function integrate_thrust

% �������������������
%{

This function uses rkf45 to numerically integrate Equation 6.26 during

the delta-v burn and then find the apogee of the post-burn orbit.

The input data are for the first part of Example 6.15.

mu - gravitational parameter (km 3̂/s 2̂)

RE - earth radius (km)

g0 - sea level acceleration of gravity (m/s 2̂)

T - rated thrust of rocket engine (kN)

Isp - specific impulse of rocket engine (s)

m0 - initial spacecraft mass (kg)

r0 - initial position vector (km)

v0 - initial velocity vector (km/s)

t0 - initial time (s)

t_burn - rocket motor burn time (s)

y0 - column vector containing r0, v0 and m0

t - column vector of the times at which the solution is found (s)

y - a matrix whose elements are:

columns 1, 2 and 3:

The solution for the x, y and z components of the

position vector r at the times t

columns 4, 5 and 6:

The solution for the x, y and z components of the

velocity vector v at the times t

column 7:

The spacecraft mass m at the times t

r1 - position vector after the burn (km)

v1 - velocity vector after the burn (km/s)

m1 - mass after the burn (kg)

coe - orbital elements of the post-burn trajectory

(h e RA incl w TA a)

ra - position vector vector at apogee (km)

va - velocity vector at apogee (km)

rmax - apogee radius (km)

User M-functions required: rkf45, coe_from_sv, rv_from_r0v0_ta

User subfunctions required: rates, output
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%}

% –––––––––––––––––––––––––––––––––––––––––––––

%...Preliminaries:

clear all; close all; clc

global mu

deg = pi/180;

mu = 398600;

RE = 6378;

g0 = 9.807;

%...Input data:

r0 = [RE+480 0 0];

v0 = [ 0 7.7102 0];

t0 = 0;

t_burn = 261.1127;

m0 = 2000;

T = 10;

Isp = 300;

%...end Input data

%...Integrate the equations of motion over the burn time:

y0 = [r0 v0 m0]’;

[t,y] = rkf45(@rates, [t0 t_burn], y0, 1.e-16);

%...Compute the state vector and mass after the burn:

r1 = [y(end,1) y(end,2) y(end,3)];

v1 = [y(end,4) y(end,5) y(end,6)];

m1 = y(end,7);

coe = coe_from_sv(r1,v1,mu);

e = coe(2); %eccentricity

TA = coe(6); %true anomaly (radians)

a = coe(7); %semimajor axis

%...Find the state vector at apogee of the post-burn trajectory:

if TA <= pi

dtheta = pi - TA;

else

dtheta = 3*pi - TA;

end

[ra,va] = rv_from_r0v0_ta(r1, v1, dtheta/deg, mu);

rmax = norm(ra);

output
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%...Subfunctions:

% �������������������
function dfdt = rates(t,f)

% �������������������
%{

This function calculates the acceleration vector using Equation 6.26.

t - time (s)

f - column vector containing the position vector, velocity

vector and the mass at time t

x, y, z - components of the position vector (km)

vx, vy, vz - components of the velocity vector (km/s)

m - mass (kg)

r - magnitude of the the position vector (km)

v - magnitude of the velocity vector (km/s)

ax, ay, az - components of the acceleration vector (km/s 2̂)

mdot - rate of change of mass (kg/s)

dfdt - column vector containing the velocity and acceleration

components and the mass rate

%}

% ––––––––––––––––––––––––

x = f(1); y = f(2); z = f(3);

vx = f(4); vy = f(5); vz = f(6);

m = f(7);

r = norm([x y z]);

v = norm([vx vy vz]);

ax = -mu*x/r 3̂ + T/m*vx/v;

ay = -mu*y/r 3̂ + T/m*vy/v;

az = -mu*z/r 3̂ + T/m*vz/v;

mdot = -T*1000/g0/Isp;

dfdt = [vx vy vz ax ay az mdot]’;

end %rates

% ����������
function output

% ����������
fprintf(’\n\n––––––––––––––––––––––––––––––––––––––--–––––––––––––––––\n’)

fprintf(’\nBefore ignition:’)

fprintf(’\n Mass = %g kg’, m0)

fprintf(’\n State vector:’)

fprintf(’\n r = [%10g, %10g, %10g] (km)’, r0(1), r0(2), r0(3))

fprintf(’\n Radius = %g’, norm(r0))

fprintf(’\n v = [%10g, %10g, %10g] (km/s)’, v0(1), v0(2), v0(3))
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fprintf(’\n Speed = %g\n’, norm(v0))

fprintf(’\nThrust = %12g kN’, T)

fprintf(’\nBurn time = %12.6f s’, t_burn)

fprintf(’\nMass after burn = %12.6E kg\n’, m1)

fprintf(’\nEnd-of-burn-state vector:’)

fprintf(’\n r = [%10g, %10g, %10g] (km)’, r1(1), r1(2), r1(3))

fprintf(’\n Radius = %g’, norm(r1))

fprintf(’\n v = [%10g, %10g, %10g] (km/s)’, v1(1), v1(2), v1(3))

fprintf(’\n Speed = %g\n’, norm(v1))

fprintf(’\nPost-burn trajectory:’)

fprintf(’\n Eccentricity = %g’, e)

fprintf(’\n Semimajor axis = %g km’, a)

fprintf(’\n Apogee state vector:’)

fprintf(’\n r = [%17.10E, %17.10E, %17.10E] (km)’, ra(1), ra(2), ra(3))

fprintf(’\n Radius = %g’, norm(ra))

fprintf(’\n v = [%17.10E, %17.10E, %17.10E] (km/s)’, va(1), va(2), va(3))

fprintf(’\n Speed = %g’, norm(va))

fprintf(’\n\n––––––––––––––––––––––––––––––––––––––--–––––––––––––––––\n\n’)

end %output

end %integrate_thrust

CHAPTER 7: RELATIVE MOTION AND RENDEZVOUS

D.31 ALGORITHM 7.1: FIND THE POSITION, VELOCITY, AND ACCELERATION
OF B RELATIVE TO A’S LVLH FRAME
FUNCTION FILE: rva_relative.m

% ��������������������������������������������������
function [r_rel_x, v_rel_x, a_rel_x] = rva_relative(rA,vA,rB,vB)

% ��������������������������������������������������
%{

This function uses the state vectors of spacecraft A and B

to find the position, velocity and acceleration of B relative

to A in the LVLH frame attached to A (see Figure 7.1).

rA,vA - state vector of A (km, km/s)

rB,vB - state vector of B (km, km/s)

mu - gravitational parameter (km 3̂/s 2̂)

hA - angular momentum vector of A (km 2̂/s)

i, j, k - unit vectors along the x, y and z axes of A’s

LVLH frame

QXx - DCM of the LVLH frame relative to the geocentric

equatorial frame (GEF)

Omega - angular velocity of the LVLH frame (rad/s)
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Omega_dot - angular acceleration of the LVLH frame (rad/s 2̂)

aA, aB - absolute accelerations of A and B (km/s 2̂)

r_rel - position of B relative to A in GEF (km)

v_rel - velocity of B relative to A in GEF (km/s)

a_rel - acceleration of B relative to A in GEF (km/s 2̂)

r_rel_x - position of B relative to A in the LVLH frame

v_rel_x - velocity of B relative to A in the LVLH frame

a_rel_x - acceleration of B relative to A in the LVLH frame

User M-functions required: None

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

global mu

%...Calculate the vector hA:

hA = cross(rA, vA);

%...Calculate the unit vectors i, j and k:

i = rA/norm(rA);

k = hA/norm(hA);

j = cross(k,i);

%...Calculate the transformation matrix Qxx:

QXx = [i; j; k];

%...Calculate Omega and Omega_dot:

Omega = hA/norm(rA) 2̂; % Equation 7.5

Omega_dot = -2*dot(rA,vA)/norm(rA) 2̂*Omega;% Equation 7.6

%...Calculate the accelerations aA and aB:

aA = -mu*rA/norm(rA) 3̂;

aB = -mu*rB/norm(rB) 3̂;

%...Calculate r_rel:

r_rel = rB - rA;

%...Calculate v_rel:

v_rel = vB - vA - cross(Omega,r_rel);

%...Calculate a_rel:

a_rel = aB - aA - cross(Omega_dot,r_rel)...

- cross(Omega,cross(Omega,r_rel))...

- 2*cross(Omega,v_rel);

%...Calculate r_rel_x, v_rel_x and a_rel_x:

r_rel_x = QXx*r_rel’;
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v_rel_x = QXx*v_rel’;

a_rel_x = QXx*a_rel’;

end %rva_relative

% ��������������������������������������������������
SCRIPT FILE: Example_7_01.m

% ��������������������������������������������������
% Example_7_01

% ����������
%{

This program uses the data of Example 7.1 to calculate the position,

velocity and acceleration of an orbiting chaser B relative to an

orbiting target A.

mu - gravitational parameter (km 3̂/s 2̂)

deg - conversion factor from degrees to radians

Spacecraft A & B:

h_A, h_B - angular momentum (km 2̂/s)

e_A, E_B - eccentricity

i_A, i_B - inclination (radians)

RAAN_A, RAAN_B - right ascension of the ascending node (radians)

omega_A, omega_B - argument of perigee (radians)

theta_A, theta_A - true anomaly (radians)

rA, vA - inertial position (km) and velocity (km/s) of A

rB, vB - inertial position (km) and velocity (km/s) of B

r - position (km) of B relative to A in A’s

co-moving frame

v - velocity (km/s) of B relative to A in A’s

co-moving frame

a - acceleration (km/s 2̂) of B relative to A in A’s

co-moving frame

User M-function required: sv_from_coe, rva_relative

User subfunctions required: none

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

global mu

mu = 398600;

deg = pi/180;

%...Input data:
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% Spacecraft A:

h_A = 52059;

e_A = 0.025724;

i_A = 60*deg;

RAAN_A = 40*deg;

omega_A = 30*deg;

theta_A = 40*deg;

% Spacecraft B:

h_B = 52362;

e_B = 0.0072696;

i_B = 50*deg;

RAAN_B = 40*deg;

omega_B = 120*deg;

theta_B = 40*deg;

%...End input data

%...Compute the initial state vectors of A and B using Algorithm 4.5:

[rA,vA] = sv_from_coe([h_A e_A RAAN_A i_A omega_A theta_A],mu);

[rB,vB] = sv_from_coe([h_B e_B RAAN_B i_B omega_B theta_B],mu);

%...Compute relative position, velocity and acceleration using

% Algorithm 7.1:

[r,v,a] = rva_relative(rA,vA,rB,vB);

%...Output

fprintf(’\n\n––––––––––––––––––––––––––––––––––––––--–––––––––––––––––\n\n’)

fprintf(’\nOrbital parameters of spacecraft A:’)

fprintf(’\n angular momentum = %g (km 2̂/s)’, h_A)

fprintf(’\n eccentricity = %g’ , e_A)

fprintf(’\n inclination = %g (deg)’ , i_A/deg)

fprintf(’\n RAAN = %g (deg)’ , RAAN_A/deg)

fprintf(’\n argument of perigee = %g (deg)’ , omega_A/deg)

fprintf(’\n true anomaly = %g (deg)\n’ , theta_A/deg)

fprintf(’\nState vector of spacecraft A:’)

fprintf(’\n r = [%g, %g, %g]’, rA(1), rA(2), rA(3))

fprintf(’\n (magnitude = %g)’, norm(rA))

fprintf(’\n v = [%g, %g, %g]’, vA(1), vA(2), vA(3))

fprintf(’\n (magnitude = %g)\n’, norm(vA))

fprintf(’\nOrbital parameters of spacecraft B:’)

fprintf(’\n angular momentum = %g (km 2̂/s)’, h_B)

fprintf(’\n eccentricity = %g’ , e_B)

fprintf(’\n inclination = %g (deg)’ , i_B/deg)

fprintf(’\n RAAN = %g (deg)’ , RAAN_B/deg)
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fprintf(’\n argument of perigee = %g (deg)’ , omega_B/deg)

fprintf(’\n true anomaly = %g (deg)\n’ , theta_B/deg)

fprintf(’\nState vector of spacecraft B:’)

fprintf(’\n r = [%g, %g, %g]’, rB(1), rB(2), rB(3))

fprintf(’\n (magnitude = %g)’, norm(rB))

fprintf(’\n v = [%g, %g, %g]’, vB(1), vB(2), vB(3))

fprintf(’\n (magnitude = %g)\n’, norm(vB))

fprintf(’\nIn the co-moving frame attached to A:’)

fprintf(’\n Position of B relative to A = [%g, %g, %g]’, ...

r(1), r(2), r(3))

fprintf(’\n (magnitude = %g)\n’, norm(r))

fprintf(’\n Velocity of B relative to A = [%g, %g, %g]’, ...

v(1), v(2), v(3))

fprintf(’\n (magnitude = %g)\n’, norm(v))

fprintf(’\n Acceleration of B relative to A = [%g, %g, %g]’, ...

a(1), a(2), a(3))

fprintf(’\n (magnitude = %g)\n’, norm(a))

fprintf(’\n\n––––––––––––––––––––––––––––––––––––––--–––––––––––––––––\n\n’)

% ���������������������������������������������������������
OUTPUT FROM Example_7_01.m

––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Orbital parameters of spacecraft A:

angular momentum = 52059 (km 2̂/s)

eccentricity = 0.025724

inclination = 60 (deg)

RAAN = 40 (deg)

argument of perigee = 30 (deg)

true anomaly = 40 (deg)

State vector of spacecraft A:

r = [-266.768, 3865.76, 5426.2]

(magnitude = 6667.75)

v = [-6.48356, -3.61975, 2.41562]

(magnitude = 7.8086)

Orbital parameters of spacecraft B:

angular momentum = 52362 (km 2̂/s)

eccentricity = 0.0072696

inclination = 50 (deg)

RAAN = 40 (deg)

argument of perigee = 120 (deg)

true anomaly = 40 (deg)
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State vector of spacecraft B:

r = [-5890.71, -2979.76, 1792.21]

(magnitude = 6840.43)

v = [0.935828, -5.2403, -5.50095]

(magnitude = 7.65487)

In the co-moving frame attached to A:

Position of B relative to A = [-6701.15, 6828.27, -406.261]

(magnitude = 9575.79)

Velocity of B relative to A = [0.316667, 0.111993, 1.24696]

(magnitude = 1.29141)

Acceleration of B relative to A = [-0.000222229, -0.000180743, 0.000505932]

(magnitude = 0.000581396)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––
D.32 PLOT THE POSITION OF ONE SPACECRAFT RELATIVE TO ANOTHER
SCRIPT FILE: Example_7_02.m

% ����������������������������������
% Example_7_02

% ���������
%{

This program produces a 3D plot of the motion of spacecraft B

relative to A in Example 7.1. See Figure 7.4.

User M-functions required: rv_from_r0v0 (Algorithm 3.4)

sv_from_coe (Algorithm 4.5)

rva_relative (Algorithm 7.1)

%}

% –––––––––––––––––––––––––––––––––––––––––––––

clear all; close all; clc

global mu

%...Gravitational parameter and earth radius:

mu = 398600;

RE = 6378;

%...Conversion factor from degrees to radians:

deg = pi/180;

%...Input data:

% Initial orbital parameters (angular momentum, eccentricity,
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% inclination, RAAN, argument of perigee and true anomaly).

% Spacecraft A:

h_A = 52059;

e_A = 0.025724;

i_A = 60*deg;

RAAN_A = 40*deg;

omega_A = 30*deg;

theta_A = 40*deg;

% Spacecraft B:

h_B = 52362;

e_B = 0.0072696;

i_B = 50*deg;

RAAN_B = 40*deg;

omega_B = 120*deg;

theta_B = 40*deg;

vdir = [1 1 1];

%...End input data

%...Compute the initial state vectors of A and B using Algorithm 4.5:

[rA0,vA0] = sv_from_coe([h_A e_A RAAN_A i_A omega_A theta_A],mu);

[rB0,vB0] = sv_from_coe([h_B e_B RAAN_B i_B omega_B theta_B],mu);

h0 = cross(rA0,vA0);

%...Period of A:

TA = 2*pi/mu 2̂*(h_A/sqrt(1 - e_A 2̂)) 3̂;

%...Number of time steps per period of A’s orbit:

n = 100;

%...Time step as a fraction of A’s period:

dt = TA/n;

%...Number of periods of A’s orbit for which the trajectory

% will be plotted:

n_Periods = 60;

%...Initialize the time:

t = - dt;

%...Generate the trajectory of B relative to A:

for count = 1:n_Periods*n

%...Update the time:
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t = t + dt;

%...Update the state vector of both orbits using Algorithm 3.4:

[rA,vA] = rv_from_r0v0(rA0, vA0, t);

[rB,vB] = rv_from_r0v0(rB0, vB0, t);

%...Compute r_rel using Algorithm 7.1:

[r_rel, v_rel, a_rel] = rva_relative(rA,vA,rB,vB);

%...Store the components of the relative position vector

% at this time step in the vectors x, y and z, respectively:

x(count) = r_rel(1);

y(count) = r_rel(2);

z(count) = r_rel(3);

r(count) = norm(r_rel);

T(count) = t;

end

%...Plot the trajectory of B relative to A:

figure(1)

plot3(x, y, z)

hold on

axis equal

axis on

grid on

box off

view(vdir)

% Draw the co-moving x, y and z axes:

line([0 4000], [0 0], [0 0]); text(4000, 0, 0, ’x’)

line( [0 0], [0 7000], [0 0]); text( 0, 7000, 0, ’y’)

line( [0 0], [0 0], [0 4000]); text( 0, 0, 4000, ’z’)

% Label the origin of the moving frame attached to A:

text (0, 0, 0, ’A’)

% Label the start of B’s relative trajectory:

text(x(1), y(1), z(1), ’B’)

% Draw the initial position vector of B:

line([0 x(1)], [0 y(1)], [0 z(1)])

% ����������������������������������
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D.33 SOLUTION OF THE LINEARIZED EQUATIONS OF RELATIVE MOTION
WITH AN ELLIPTICAL REFERENCE ORBIT
FUNCTION FILE: Example_7_03.m

% ����������������������������������
function Example_7_03

% ���������������
%{

This function plots the motion of chaser B relative to target A

for the data in Example 7.3. See Figures 7.6 and 7.7.

mu - gravitational parameter (km 3̂/s 2̂)

RE - radius of the earth (km)

Target orbit at time t = 0:

rp - perigee radius (km)

e - eccentricity

i - inclination (rad)

RA - right ascension of the ascending node (rad)

omega - argument of perigee (rad)

theta - true anomaly (rad)

ra - apogee radius (km)

h - angular momentum (km 2̂/s)

a - semimajor axis (km)

T - period (s)

n - mean motion (rad/s)

dr0, dv0 - initial relative position (km) and relative velocity (km/s)

of B in the co-moving frame

t0, tf - initial and final times (s) for the numerical integration

R0, V0 - initial position (km) and velocity (km/s) of A in the

geocentric equatorial frame

y0 - column vector containing r0, v0

%}

% User M-functions required: sv_from_coe, rkf45

% User subfunctions required: rates

% –––––––––––––––––––––––––––––––––––––––––––––

clear all; close all; clc

global mu

mu = 398600;

RE = 6378;

%...Input data:

% Prescribed initial orbital parameters of target A:
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rp = RE + 300;

e = 0.1;

i = 0;

RA = 0;

omega = 0;

theta = 0;

% Additional computed parameters:

ra = rp*(1 + e)/(1 - e);

h = sqrt(2*mu*rp*ra/(ra + rp));

a = (rp + ra)/2;

T = 2*pi/sqrt(mu)*a 1̂.5;

n = 2*pi/T;

% Prescribed initial state vector of chaser B in the co-moving frame:

dr0 = [-1 0 0];

dv0 = [ 0 -2*n*dr0(1) 0];

t0 = 0;

tf = 5*T;

%...End input data

%...Calculate the target’s initial state vector using Algorithm 4.5:

[R0,V0] = sv_from_coe([h e RA i omega theta],mu);

%...Initial state vector of B’s orbit relative to A

y0 = [dr0 dv0]’;

%...Integrate Equations 7.34 using Algorithm 1.3:

[t,y] = rkf45(@rates, [t0 tf], y0);

plotit

return

% �������������������
function dydt = rates(t,f)

% �������������������
%{

This function computes the components of f(t,y) in Equation 7.36.

t - time

f - column vector containing the relative position and

velocity vectors of B at time t

R, V - updated state vector of A at time t

X, Y, Z - components of R

VX, VY, VZ - components of V

R_ - magnitude of R
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RdotV - dot product of R and V

h - magnitude of the specific angular momentum of A

dx , dy , dz - components of the relative position vector of B

dvx, dvy, dvz - components of the relative velocity vector of B

dax, day, daz - components of the relative acceleration vector of B

dydt - column vector containing the relative velocity

and acceleration components of B at time t

User M-function required: rv_from_r0v0

%}

% ––––––––––––––––––––––––

%...Update the state vector of the target orbit using Algorithm 3.4:

[R,V] = rv_from_r0v0(R0, V0, t);

X = R(1); Y = R(2); Z = R(3);

VX = V(1); VY = V(2); VZ = V(3);

R_ = norm([X Y Z]);

RdotV = dot([X Y Z], [VX VY VZ]);

h = norm(cross([X Y Z], [VX VY VZ]));

dx = f(1); dy = f(2); dz = f(3);

dvx = f(4); dvy = f(5); dvz = f(6);

dax = (2*mu/R_ 3̂ + h 2̂/R_ 4̂)*dx - 2*RdotV/R_ 4̂*h*dy + 2*h/R_ 2̂*dvy;

day = -(mu/R_ 3̂ - h 2̂/R_ 4̂)*dy + 2*RdotV/R_ 4̂*h*dx - 2*h/R_ 2̂*dvx;

daz = -mu/R_ 3̂*dz;

dydt = [dvx dvy dvz dax day daz]’;

end %rates

% �����������
function plotit

% �����������
%...Plot the trajectory of B relative to A:

% –––––––––––––

hold on

plot(y(:,2), y(:,1))

axis on

axis equal

axis ([0 40 -5 5])

xlabel(’y (km)’)

ylabel(’x (km)’)

grid on

box on

%...Label the start of B’s trajectory relative to A:
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text(y(1,2), y(1,1), ’o’)

end %plotit

end %Example_7_03

% ����������������������������������

CHAPTER 8: INTERPLANETARY TRAJECTORIES

D.34 CONVERT THE NUMERICAL DESIGNATION OF A MONTH OR A PLANET
INTO ITS NAME
The following trivial script can be used in programs that input numerical values for a month and/or a

planet.
FUNCTION FILE: month_planet_names.m

% �������������������������������������������������������
function [month, planet] = month_planet_names(month_id, planet_id)

% �������������������������������������������������������
%{

This function returns the name of the month and the planet

corresponding, respectively, to the numbers "month_id" and

"planet_id".

months - a vector containing the names of the 12 months

planets - a vector containing the names of the 9 planets

month_id - the month number (1 - 12)

planet_id - the planet number (1 - 9)

User M-functions required: none

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

months = [’January ’

’February ’

’March ’

’April ’

’May ’

’June ’

’July ’

’August ’

’September’

’October ’

’November ’

’December ’];
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planets = [’Mercury’

’Venus ’

’Earth ’

’Mars ’

’Jupiter’

’Saturn ’

’Uranus ’

’Neptune’

’Pluto ’];

month = months (month_id, 1:9);

planet = planets(planet_id, 1:7);

% �������������������������������������������������������
end %month_planet_names
D.35 ALGORITHM 8.1: CALCULATION OF THE HELIOCENTRIC STATE
VECTOR OF A PLANET AT A GIVEN EPOCH
FUNCTION FILE: planet_elements_and_sv.m

% ������������������������������������������������������
function [coe, r, v, jd] = planet_elements_and_sv ...

(planet_id, year, month, day, hour, minute, second)

% ������������������������������������������������������
%{

This function calculates the orbital elements and the state

vector of a planet from the date (year, month, day)

and universal time (hour, minute, second).

mu - gravitational parameter of the sun (km 3̂/s 2̂)

deg - conversion factor between degrees and radians

pi - 3.1415926...

coe - vector of heliocentric orbital elements

[h e RA incl w TA a w_hat L M E],

where

h = angular momentum (km 2̂/s)

e = eccentricity

RA = right ascension (deg)

incl = inclination (deg)

w = argument of perihelion (deg)

TA = true anomaly (deg)

a = semimajor axis (km)

w_hat = longitude of perihelion ( = RA + w) (deg)

L = mean longitude ( = w_hat + M) (deg)

M = mean anomaly (deg)

E = eccentric anomaly (deg)
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planet_id - planet identifier:

1 = Mercury

2 = Venus

3 = Earth

4 = Mars

5 = Jupiter

7 = Uranus

8 = Neptune

9 = Pluto

year - range: 1901 - 2099

month - range: 1 - 12

day - range: 1 - 31

hour - range: 0 - 23

minute - range: 0 - 60

second - range: 0 - 60

j0 - Julian day number of the date at 0 hr UT

ut - universal time in fractions of a day

jd - julian day number of the date and time

J2000_coe - row vector of J2000 orbital elements from Table 9.1

rates - row vector of Julian centennial rates from Table 9.1

t0 - Julian centuries between J2000 and jd

elements - orbital elements at jd

r - heliocentric position vector

v - heliocentric velocity vector

User M-functions required: J0, kepler_E, sv_from_coe

User subfunctions required: planetary_elements, zero_to_360

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

global mu

deg = pi/180;

%...Equation 5.48:

j0 = J0(year, month, day);

ut = (hour + minute/60 + second/3600)/24;

%...Equation 5.47

jd = j0 + ut;

%...Obtain the data for the selected planet from Table 8.1:

[J2000_coe, rates] = planetary_elements(planet_id);
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%...Equation 8.93a:

t0 = (jd - 2451545)/36525;

%...Equation 8.93b:

elements = J2000_coe + rates*t0;

a = elements(1);

e = elements(2);

%...Equation 2.71:

h = sqrt(mu*a*(1 - e 2̂));

%...Reduce the angular elements to within the range 0 - 360 degrees:

incl = elements(3);

RA = zero_to_360(elements(4));

w_hat = zero_to_360(elements(5));

L = zero_to_360(elements(6));

w = zero_to_360(w_hat - RA);

M = zero_to_360((L - w_hat));

%...Algorithm 3.1 (for which M must be in radians)

E = kepler_E(e, M*deg);

%...Equation 3.13 (converting the result to degrees):

TA = zero_to_360...

(2*atan(sqrt((1 + e)/(1 - e))*tan(E/2))/deg);

coe = [h e RA incl w TA a w_hat L M E/deg];

%...Algorithm 4.5 (for which all angles must be in radians):

[r, v] = sv_from_coe([h e RA*deg incl*deg w*deg TA*deg],mu);

return

% ������������������������������������������������
function [J2000_coe, rates] = planetary_elements(planet_id)

% ������������������������������������������������
%{

This function extracts a planet’s J2000 orbital elements and

centennial rates from Table 8.1.

planet_id - 1 through 9, for Mercury through Pluto

J2000_elements - 9 by 6 matrix of J2000 orbital elements for the nine

planets Mercury through Pluto. The columns of each

row are:
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a = semimajor axis (AU)

e = eccentricity

i = inclination (degrees)

RA = right ascension of the ascending

node (degrees)

w_hat = longitude of perihelion (degrees)

L = mean longitude (degrees)

cent_rates - 9 by 6 matrix of the rates of change of the

J2000_elements per Julian century (Cy). Using "dot"

for time derivative, the columns of each row are:

a_dot (AU/Cy)

e_dot (1/Cy)

i_dot (arcseconds/Cy)

RA_dot (arcseconds/Cy)

w_hat_dot (arcseconds/Cy)

Ldot (arcseconds/Cy)

J2000_coe - row vector of J2000_elements corresponding

to "planet_id", with au converted to km

rates - row vector of cent_rates corresponding to

"planet_id", with au converted to km and

arcseconds converted to degrees

au - astronomical unit (km)

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

J2000_elements = ...

[ 0.38709893 0.20563069 7.00487 48.33167 77.45645 252.25084

0.72333199 0.00677323 3.39471 76.68069 131.53298 181.97973

1.00000011 0.01671022 0.00005 -11.26064 102.94719 100.46435

1.52366231 0.09341233 1.85061 49.57854 336.04084 355.45332

5.20336301 0.04839266 1.30530 100.55615 14.75385 34.40438

9.53707032 0.05415060 2.48446 113.71504 92.43194 49.94432

19.19126393 0.04716771 0.76986 74.22988 170.96424 313.23218

30.06896348 0.00858587 1.76917 131.72169 44.97135 304.88003

39.48168677 0.24880766 17.14175 110.30347 224.06676 238.92881];

cent_rates = ...

[ 0.00000066 0.00002527 -23.51 -446.30 573.57 538101628.29

0.00000092 -0.00004938 -2.86 -996.89 -108.80 210664136.06

-0.00000005 -0.00003804 -46.94 -18228.25 1198.28 129597740.63

-0.00007221 0.00011902 -25.47 -1020.19 1560.78 68905103.78

0.00060737 -0.00012880 -4.15 1217.17 839.93 10925078.35

-0.00301530 -0.00036762 6.11 -1591.05 -1948.89 4401052.95

0.00152025 -0.00019150 -2.09 -1681.4 1312.56 1542547.79
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-0.00125196 0.00002514 -3.64 -151.25 -844.43 786449.21

-0.00076912 0.00006465 11.07 -37.33 -132.25 522747.90];

J2000_coe = J2000_elements(planet_id,:);

rates = cent_rates(planet_id,:);

%...Convert from AU to km:

au = 149597871;

J2000_coe(1) = J2000_coe(1)*au;

rates(1) = rates(1)*au;

%...Convert from arcseconds to fractions of a degree:

rates(3:6) = rates(3:6)/3600;

end %planetary_elements

% ����������������������
function y = zero_to_360(x)

% ����������������������
%{

This function reduces an angle to lie in the range 0 - 360 degrees.

x - the original angle in degrees

y - the angle reduced to the range 0 - 360 degrees

%}

% –––––––––––––––––––––––––––

if x >= 360

x = x - fix(x/360)*360;

elseif x < 0

x = x - (fix(x/360) - 1)*360;

end

y = x;

end %zero_to_360

end %planet_elements_and_sv

% ���������������������������������������������������������
SCRIPT FILE: Example_8_07.m

% ���������������������������������������������������������
% Example_8_07

% ���������
%

% This program uses Algorithm 8.1 to compute the orbital elements

% and state vector of the earth at the date and time specified
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% in Example 8.10. To obtain the same results for Mars, set

% planet_id = 4.

%

% mu - gravitational parameter of the sun (km 3̂/s 2̂)

% deg - conversion factor between degrees and radians

% pi - 3.1415926...

%

% coe - vector of heliocentric orbital elements

% [h e RA incl w TA a w_hat L M E],

% where

% h = angular momentum (km 2̂/s)

% e = eccentricity

% RA = right ascension (deg)

% incl = inclination (deg)

% w = argument of perihelion (deg)

% TA = true anomaly (deg)

% a = semimajor axis (km)

% w_hat = longitude of perihelion ( = RA + w) (deg)

% L = mean longitude ( = w_hat + M) (deg)

% M = mean anomaly (deg)

% E = eccentric anomaly (deg)

%

% r - heliocentric position vector (km)

% v - heliocentric velocity vector (km/s)

%

% planet_id - planet identifier:

% 1 = Mercury

% 2 = Venus

% 3 = Earth

% 4 = Mars

% 5 = Jupiter

% 6 = Saturn

% 7 = Uranus

% 8 = Neptune

% 9 = Pluto

%

% year - range: 1901 - 2099

% month - range: 1 - 12

% day - range: 1 - 31

% hour - range: 0 - 23

% minute - range: 0 - 60

% second - range: 0 - 60

%

% User M-functions required: planet_elements_and_sv,

% month_planet_names

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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global mu

mu = 1.327124e11;

deg = pi/180;

%...Input data

planet_id = 3;

year = 2003;

month = 8;

day = 27;

hour = 12;

minute = 0;

second = 0;

%...

%...Algorithm 8.1:

[coe, r, v, jd] = planet_elements_and_sv ...

(planet_id, year, month, day, hour, minute, second);

%...Convert the planet_id and month numbers into names for output:

[month_name, planet_name] = month_planet_names(month, planet_id);

%...Echo the input data and output the solution to

% the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)

fprintf(’\n Example 8.7’)

fprintf(’\n\n Input data:\n’);

fprintf(’\n Planet: %s’, planet_name)

fprintf(’\n Year : %g’, year)

fprintf(’\n Month : %s’, month_name)

fprintf(’\n Day : %g’, day)

fprintf(’\n Hour : %g’, hour)

fprintf(’\n Minute: %g’, minute)

fprintf(’\n Second: %g’, second)

fprintf(’\n\n Julian day: %11.3f’, jd)

fprintf(’\n\n’);

fprintf(’ Orbital elements:’)

fprintf(’\n’);

fprintf(’\n Angular momentum (km 2̂/s) = %g’, coe(1));

fprintf(’\n Eccentricity = %g’, coe(2));

fprintf(’\n Right ascension of the ascending node (deg) = %g’, coe(3));

fprintf(’\n Inclination to the ecliptic (deg) = %g’, coe(4));

fprintf(’\n Argument of perihelion (deg) = %g’, coe(5));

fprintf(’\n True anomaly (deg) = %g’, coe(6));

fprintf(’\n Semimajor axis (km) = %g’, coe(7));
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fprintf(’\n’);

fprintf(’\n Longitude of perihelion (deg) = %g’, coe(8));

fprintf(’\n Mean longitude (deg) = %g’, coe(9));

fprintf(’\n Mean anomaly (deg) = %g’, coe(10));

fprintf(’\n Eccentric anomaly (deg) = %g’, coe(11));

fprintf(’\n\n’);

fprintf(’ State vector:’)

fprintf(’\n’);

fprintf(’\n Position vector (km) = [%g %g %g]’, r(1), r(2), r(3))

fprintf(’\n Magnitude = %g\n’, norm(r))

fprintf(’\n Velocity (km/s) = [%g %g %g]’, v(1), v(2), v(3))

fprintf(’\n Magnitude = %g’, norm(v))

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% ��������������������������������������������������������
[OUTPUT FROM Example_8_07

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 8.7

Input data:

Planet: Earth

Year : 2003

Month : August

Day : 27

Hour : 12

Minute: 0

Second: 0

Julian day: 2452879.000

Orbital elements:

Angular momentum (km 2̂/s) = 4.4551e+09

Eccentricity = 0.0167088

Right ascension of the ascending node (deg) = 348.554

Inclination to the ecliptic (deg) = -0.000426218

Argument of perihelion (deg) = 114.405

True anomaly (deg) = 230.812

Semimajor axis (km) = 1.49598e+08

Longitude of perihelion (deg) = 102.959

Mean longitude (deg) = 335.267
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Mean anomaly (deg) = 232.308

Eccentric anomaly (deg) = 231.558

State vector:

Position vector (km) = [1.35589e+08 -6.68029e+07 286.909]

Magnitude = 1.51152e+08

Velocity (km/s) = [12.6804 26.61 -0.000212731]

Magnitude = 29.4769

–––––––––––––––––––––––––––––––––––––––––––––––––––––
D.36 ALGORITHM 8.2: CALCULATION OF THE SPACECRAFT TRAJECTORY
FROM PLANET 1 TO PLANET 2
FUNCTION FILE: interplanetary.m

% ���������������������������������������������������������
function ...

[planet1, planet2, trajectory] = interplanetary(depart, arrive)

% ���������������������������������������������������������
%{

This function determines the spacecraft trajectory from the sphere

of influence of planet 1 to that of planet 2 using Algorithm 8.2

mu - gravitational parameter of the sun (km 3̂/s 2̂)

dum - a dummy vector not required in this procedure

planet_id - planet identifier:

1 = Mercury

2 = Venus

3 = Earth

4 = Mars

5 = Jupiter

6 = Saturn

7 = Uranus

8 = Neptune

9 = Pluto

year - range: 1901 - 2099

month - range: 1 - 12

day - range: 1 - 31

hour - range: 0 - 23

minute - range: 0 - 60

second - range: 0 - 60

jd1, jd2 - Julian day numbers at departure and arrival

tof - time of flight from planet 1 to planet 2 (s)
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Rp1, Vp1 - state vector of planet 1 at departure (km, km/s)

Rp2, Vp2 - state vector of planet 2 at arrival (km, km/s)

R1, V1 - heliocentric state vector of spacecraft at

departure (km, km/s)

R2, V2 - heliocentric state vector of spacecraft at

arrival (km, km/s)

depart - [planet_id, year, month, day, hour, minute, second]

at departure

arrive - [planet_id, year, month, day, hour, minute, second]

at arrival

planet1 - [Rp1, Vp1, jd1]

planet2 - [Rp2, Vp2, jd2]

trajectory - [V1, V2]

User M-functions required: planet_elements_and_sv, lambert

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

global mu

planet_id = depart(1);

year = depart(2);

month = depart(3);

day = depart(4);

hour = depart(5);

minute = depart(6);

second = depart(7);

%...Use Algorithm 8.1 to obtain planet 1’s state vector (don’t

%...need its orbital elements ["dum"]):

[dum, Rp1, Vp1, jd1] = planet_elements_and_sv ...

(planet_id, year, month, day, hour, minute, second);

planet_id = arrive(1);

year = arrive(2);

month = arrive(3);

day = arrive(4);

hour = arrive(5);

minute = arrive(6);

second = arrive(7);

%...Likewise use Algorithm 8.1 to obtain planet 2’s state vector:

[dum, Rp2, Vp2, jd2] = planet_elements_and_sv ...
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(planet_id, year, month, day, hour, minute, second);

tof = (jd2 - jd1)*24*3600;

%...Patched conic assumption:

R1 = Rp1;

R2 = Rp2;

%...Use Algorithm 5.2 to find the spacecraft’s velocity at

% departure and arrival, assuming a prograde trajectory:

[V1, V2] = lambert(R1, R2, tof, ’pro’);

planet1 = [Rp1, Vp1, jd1];

planet2 = [Rp2, Vp2, jd2];

trajectory = [V1, V2];

end %interplanetary

% ���������������������������������������������������������
SCRIPT FILE: Example_8_08.m

% ����������������������������������
% Example_8_08

% ����������
%{

This program uses Algorithm 8.2 to solve Example 8.8.

mu - gravitational parameter of the sun (km 3̂/s 2̂)

deg - conversion factor between degrees and radians

pi - 3.1415926...

planet_id - planet identifier:

1 = Mercury

2 = Venus

3 = Earth

4 = Mars

5 = Jupiter

6 = Saturn

7 = Uranus

8 = Neptune

9 = Pluto

year - range: 1901 - 2099

month - range: 1 - 12

day - range: 1 - 31

hour - range: 0 - 23

minute - range: 0 - 60

second - range: 0 - 60
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depart - [planet_id, year, month, day, hour, minute, second]

at departure

arrive - [planet_id, year, month, day, hour, minute, second]

at arrival

planet1 - [Rp1, Vp1, jd1]

planet2 - [Rp2, Vp2, jd2]

trajectory - [V1, V2]

coe - orbital elements [h e RA incl w TA]

where

h = angular momentum (km 2̂/s)

e = eccentricity

RA = right ascension of the ascending

node (rad)

incl = inclination of the orbit (rad)

w = argument of perigee (rad)

TA = true anomaly (rad)

a = semimajor axis (km)

jd1, jd2 - Julian day numbers at departure and arrival

tof - time of flight from planet 1 to planet 2 (days)

Rp1, Vp1 - state vector of planet 1 at departure (km, km/s)

Rp2, Vp2 - state vector of planet 2 at arrival (km, km/s)

R1, V1 - heliocentric state vector of spacecraft at

departure (km, km/s)

R2, V2 - heliocentric state vector of spacecraft at

arrival (km, km/s)

vinf1, vinf2 - hyperbolic excess velocities at departure

and arrival (km/s)

User M-functions required: interplanetary, coe_from_sv,

month_planet_names

%}

% –––––––––––––––––––––––––––––––––––––––––––––

clear all; clc

global mu

mu = 1.327124e11;

deg = pi/180;

%...Data declaration for Example 8.8:

%...Departure

planet_id = 3;
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year = 1996;

month = 11;

day = 7;

hour = 0;

minute = 0;

second = 0;

depart = [planet_id year month day hour minute second];

%...Arrival

planet_id = 4;

year = 1997;

month = 9;

day = 12;

hour = 0;

minute = 0;

second = 0;

arrive = [planet_id year month day hour minute second];

%...

%...Algorithm 8.2:

[planet1, planet2, trajectory] = interplanetary(depart, arrive);

R1 = planet1(1,1:3);

Vp1 = planet1(1,4:6);

jd1 = planet1(1,7);

R2 = planet2(1,1:3);

Vp2 = planet2(1,4:6);

jd2 = planet2(1,7);

V1 = trajectory(1,1:3);

V2 = trajectory(1,4:6);

tof = jd2 - jd1;

%...Use Algorithm 4.2 to find the orbital elements of the

% spacecraft trajectory based on [Rp1, V1]...

coe = coe_from_sv(R1, V1, mu);

% ... and [R2, V2]

coe2 = coe_from_sv(R2, V2, mu);

%...Equations 8.94 and 8.95:

vinf1 = V1 - Vp1;

vinf2 = V2 - Vp2;

%...Echo the input data and output the solution to

% the command window:

fprintf(’–––––––––––––––––––––––––––––––––––––––––––––––––––––’)
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fprintf(’\n Example 8.8’)

fprintf(’\n\n Departure:\n’);

fprintf(’\n Planet: %s’, planet_name(depart(1)))

fprintf(’\n Year : %g’, depart(2))

fprintf(’\n Month : %s’, month_name(depart(3)))

fprintf(’\n Day : %g’, depart(4))

fprintf(’\n Hour : %g’, depart(5))

fprintf(’\n Minute: %g’, depart(6))

fprintf(’\n Second: %g’, depart(7))

fprintf(’\n\n Julian day: %11.3f\n’, jd1)

fprintf(’\n Planet position vector (km) = [%g %g %g]’, ...

R1(1),R1(2), R1(3))

fprintf(’\n Magnitude = %g\n’, norm(R1))

fprintf(’\n Planet velocity (km/s) = [%g %g %g]’, ...

Vp1(1), Vp1(2), Vp1(3))

fprintf(’\n Magnitude = %g\n’, norm(Vp1))

fprintf(’\n Spacecraft velocity (km/s) = [%g %g %g]’, ...

V1(1), V1(2), V1(3))

fprintf(’\n Magnitude = %g\n’, norm(V1))

fprintf(’\n v-infinity at departure (km/s) = [%g %g %g]’, ...

vinf1(1), vinf1(2), vinf1(3))

fprintf(’\n Magnitude = %g\n’, norm(vinf1))

fprintf(’\n\n Time of flight = %g days\n’, tof)

fprintf(’\n\n Arrival:\n’);

fprintf(’\n Planet: %s’, planet_name(arrive(1)))

fprintf(’\n Year : %g’, arrive(2))

fprintf(’\n Month : %s’, month_name(arrive(3)))

fprintf(’\n Day : %g’, arrive(4))

fprintf(’\n Hour : %g’, arrive(5))

fprintf(’\n Minute: %g’, arrive(6))

fprintf(’\n Second: %g’, arrive(7))

fprintf(’\n\n Julian day: %11.3f\n’, jd2)

fprintf(’\n Planet position vector (km) = [%g %g %g]’, ...

R2(1), R2(2), R2(3))

fprintf(’\n Magnitude = %g\n’, norm(R1))

fprintf(’\n Planet velocity (km/s) = [%g %g %g]’, ...

Vp2(1), Vp2(2), Vp2(3))
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fprintf(’\n Magnitude = %g\n’, norm(Vp2))

fprintf(’\n Spacecraft Velocity (km/s) = [%g %g %g]’, ...

V2(1), V2(2), V2(3))

fprintf(’\n Magnitude = %g\n’, norm(V2))

fprintf(’\n v-infinity at arrival (km/s) = [%g %g %g]’, ...

vinf2(1), vinf2(2), vinf2(3))

fprintf(’\n Magnitude = %g’, norm(vinf2))

fprintf(’\n\n\n Orbital elements of flight trajectory:\n’)

fprintf(’\n Angular momentum (km 2̂/s) = %g’,...

coe(1))

fprintf(’\n Eccentricity = %g’,...

coe(2))

fprintf(’\n Right ascension of the ascending node (deg) = %g’,...

coe(3)/deg)

fprintf(’\n Inclination to the ecliptic (deg) = %g’,...

coe(4)/deg)

fprintf(’\n Argument of perihelion (deg) = %g’,...

coe(5)/deg)

fprintf(’\n True anomaly at departure (deg) = %g’,...

coe(6)/deg)

fprintf(’\n True anomaly at arrival (deg) = %g\n’, ...

coe2(6)/deg)

fprintf(’\n Semimajor axis (km) = %g’,...

coe(7))

% If the orbit is an ellipse, output the period:

if coe(2) < 1

fprintf(’\n Period (days) = %g’, ...

2*pi/sqrt(mu)*coe(7) 1̂.5/24/3600)

end

fprintf(’\n–––––––––––––––––––––––––––––––––––––––––––––––––––––\n’)

% ����������������������������������
OUTPUT FROM Example_8_08

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 8.8

Departure:

Planet: Earth

Year : 1996

Month : November
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Day : 7

Hour : 0

Minute: 0

Second: 0

Julian day: 2450394.500

Planet position vector (km) = [1.04994e+08 1.04655e+08 988.331]

Magnitude = 1.48244e+08

Planet velocity (km/s) = [-21.515 20.9865 0.000132284]

Magnitude = 30.0554

Spacecraft velocity (km/s) = [-24.4282 21.7819 0.948049]

Magnitude = 32.7427

v-infinity at departure (km/s) = [-2.91321 0.79542 0.947917]

Magnitude = 3.16513

Time of flight = 309 days

Arrival:

Planet: Mars

Year : 1997

Month : September

Day : 12

Hour : 0

Minute: 0

Second: 0

Julian day: 2450703.500

Planet position vector (km) = [-2.08329e+07 -2.18404e+08 -4.06287e+06]

Magnitude = 1.48244e+08

Planet velocity (km/s) = [25.0386 -0.220288 -0.620623]

Magnitude = 25.0472

Spacecraft Velocity (km/s) = [22.1581 -0.19666 -0.457847]

Magnitude = 22.1637

v-infinity at arrival (km/s) = [-2.88049 0.023628 0.162776]

Magnitude = 2.88518
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Orbital elements of flight trajectory:

Angular momentum (km 2̂/s) = 4.84554e+09

Eccentricity = 0.205785

Right ascension of the ascending node (deg) = 44.8942

Inclination to the ecliptic (deg) = 1.6621

Argument of perihelion (deg) = 19.9738

True anomaly at departure (deg) = 340.039

True anomaly at arrival (deg) = 199.695

Semimajor axis (km) = 1.84742e+08

Period (days) = 501.254

–––––––––––––––––––––––––––––––––––––––––––––––––––––

CHAPTER 9: LUNAR TRAJECTORIES

D.37 LUNAR STATE VECTOR VS. TIME
FUNCTION FILE: simpsons_lunar_ephemeris.m

% ��������������������������������������
function [pos,vel] = simpsons_lunar_ephemeris(jd)

% ��������������������������������������
%{

David G. Simpson, "An Alternative Ephemeris Model for

On-Board Flight Software Use," Proceedings of the 1999 Flight Mechanics

Symposium, NASA Goddard Space Flight Center, pp. 175 - 184.

This function computes the state vector of the moon at a given time

relative to the earth’s geocentric equatorial frame using a curve fit

to JPL’s DE200 (1982) ephemeris model.

jd - julian date (days)

pos - position vector (km)

vel - velocity vector (km/s)

a - matrix of amplitudes (km)

b - matrix of frequencies (rad/century)

c - matrix of phase angles (rad)

t - time in centuries since J2000

tfac - no. of seconds in a Julian century (36525 days)

User M-functions required: None

%}

% –––––––––––––––––––––––––––––––––––––––––––––
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tfac = 36525*3600*24;

t = (jd - 2451545.0)/36525;

a = [ 383.0 31.5 10.6 6.2 3.2 2.3 0.8

351.0 28.9 13.7 9.7 5.7 2.9 2.1

153.2 31.5 12.5 4.2 2.5 3.0 1.8]*1.e3;

b = [8399.685 70.990 16728.377 1185.622 7143.070 15613.745 8467.263

8399.687 70.997 8433.466 16728.380 1185.667 7143.058 15613.755

8399.672 8433.464 70.996 16728.364 1185.645 104.881 8399.116];

c = [ 5.381 6.169 1.453 0.481 5.017 0.857 1.010

3.811 4.596 4.766 6.165 5.164 0.300 5.565

3.807 1.629 4.595 6.162 5.167 2.555 6.248];

pos = zeros(3,1);

vel = zeros(3,1);

for i = 1:3

for j = 1:7

pos(i) = pos(i) + a(i,j)*sin(b(i,j)*t + c(i,j));

vel(i) = vel(i) + a(i,j)*cos(b(i,j)*t + c(i,j))*b(i,j);

end

vel(i) = vel(i)/tfac;

end

end %simpsons_lunar_ephemeris

% –––––––––––––––––––––––––––––––––––––––––––––
D.38 NUMERICAL CALCULATION OF LUNAR TRAJECTORY
SCRIPT FILE: Example_9_03.m

% ���������������������������������������������������������
% example_9_03

% ����������
%{

This program presents the graphical solution of the motion of a

spacecraft in the gravity fields of both the earth and the moon for

the initial data provided in the input declaration below.

MATLAB’s ode45 Runge-Kutta solver is used.

deg - conversion factor, degrees to radians

days - conversion factor, days to seconds

Re, Rm - radii of earth and moon, respectively (km)

m_e, m_m - masses of earth and moon, respectively (kg)

mu_e, mu_m - gravitational parameters of earth and moon,

respectively (km 3̂/s 2̂)

D - semimajor axis of moon’s orbit (km)
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I_, J_, K_ - unit vectors of ECI frame

RS - radius of moon’s sphere of influence (km)

year, month, hour, minute

second - Date and time of spacecraft’s lunar arrival

t0 - initial time on the trajectory (s)

z0 - initial altitude of the trajectory (km)

alpha0, dec0 - initial right ascension and declination of

spacecraft (deg)

gamma0 - initial flight path angle (deg)

fac - ratio of spaccraft’s initial speed to the

escape speed.

ttt - predicted time to perilune (s)

tf - time at end of trajectory (s)

jd0 - julian date of lunar arrival

rm0, vm0 - state vector of the moon at jd0 (km, km/s)

RA, Dec - right ascension and declination of the moon

at jd0 (deg)

hmoon_, hmoon - moon’s angular momentum vector and magnitude

at jd0 (km 2̂/s)

inclmoon - inclination of moon’s orbit earth’s

equatorial plane (deg)

r0 - initial radius from earth’s center to

probe (km)

r0_ - initial ECI position vector of probe (km)

vesc - escape speed at r0 (km/s)

v0 - initial ECI speed of probe (km/s)

w0_ - unit vector normal to plane of translunar

orbit at time t0

ur_ - radial unit vector to probe at time t0

uperp_ - transverse unit vector at time t0

vr - initial radial speed of probe (km/s)

vperp - initial transverse speed of probe (km/s)

v0_ - initial velocity vector of probe (km/s)

uv0_ - initial tangential unit vector

y0 - initial state vector of the probe (km, km/s)

t - vector containing the times from t0 to tf at

which the state vector is evaluated (s)

y - a matrix whose 6 columns contain the inertial

position and velocity components evaluated

at the times t(:) (km, km/s)

X, Y, Z - the probe’s inertial position vector history

vX, vY, VZ - the probe’s inertial velocity history

x, y, z - the probe’s position vector history in the

Moon-fixed frame

Xm, Ym, Zm - the Moon’s inertial position vector history

vXm, vYm, vZm - the Moon’s inertial velocity vector history

ti - the ith time of the set [t0,tf] (s)
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r_ - probe’s inertial position vector at time ti

(km)

r - magnitude of r_ (km)

jd - julian date of corresponding to ti (days)

rm_, vm_ - the moon’s state vector at time ti (km,km/s)

x_, y_, z_ - vectors along the axes of the rotating

moon-fixed at time ti (km)

i_, j_, k_ - unit vectors of the moon-fixed rotating frame

at time ti

Q - DCM of transformation from ECI to moon-fixed

frame at time ti

rx_ - probe’s inertial position vector in moon-

fixed coordinates at time ti (km)

rmx_ - Moon’s inertial position vector in moon-

fixed coordinates at time ti (km)

dist_ - position vector of probe relative to the moon

at time ti (km)

dist - magnitude of dist_ (km)

dist_min - perilune of trajectory (km)

rmTLI_ - Moon’s position vector at TLI

RATLI, DecTLI - Moon’s right ascension and declination at

TKI (deg)

v_atdmin_ - Probe’s velocity vector at perilune (km/s)

rm_perilume, vm_perilune - Moon’s state vector when the probe is at

perilune (km, km/s)

rel_speed - Speed of probe relative to the Moon at

perilune (km/s)

RA_at_perilune - Moon’s RA at perilune arrival (deg)

Dec_at_perilune - Moon’s Dec at perilune arrival (deg)

target_error - Distance between Moon’s actual position at

perilune arrival and its position after the

predicted flight time, ttt (km).

rms_ - position vector of moon relative to

spacecraft (km)

rms - magnitude of rms_ (km)

aearth_ - acceleration of spacecraft due to

earth (km/s 2̂)

amoon_ - acceleration of spacecraft due to

moon (km/s 2̂)

atot_ - aearth_ + amoon_ (km/s 2̂)

binormal_ - unit vector normal to the osculating plane

incl - angle between inertial Z axis and the

binormal (deg)

rend_ - Position vector of end point of trajectory

(km)

alt_end - Altitude of end point of trajectory (km)

ra_end, dec_end - Right ascension and declination of end point

of trajectory (km)
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User M-functions required: none

User subfunctions required: rates, plotit_XYZ, plotit_xyz

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

clear all; close all; clc

fprintf(’\nlunar_restricted_threebody.m %s\n\n’, datestr(now))

global jd0 days ttt mu_m mu_e Re Rm rm_ rm0_

%...general data

deg = pi/180;

days = 24*3600;

Re = 6378;

Rm = 1737;

m_e = 5974.e21;

m_m = 73.48e21;

mu_e = 398600.4;

mu_m = 4902.8;

D = 384400;

RS = D*(m_m/m_e) (̂2/5);

%...

%...Data declaration for Example 9.03

Title = ’Example 9.3 4e’;

% Date and time of lunar arrival:

year = 2020;

month = 5;

day = 4;

hour = 12;

minute = 0;

second = 0;

t0 = 0;

z0 = 320;

alpha0 = 90;

dec0 = 15;

gamma0 = 40;

fac = .9924; %Fraction of Vesc

ttt = 3*days;

tf = ttt + 2.667*days;

%...End data declaration

%...State vector of moon at target date:

jd0 = juliandate(year, month, day, hour, minute, second);

[rm0_,vm0_] = simpsons_lunar_ephemeris(jd0);

%[rm0_,vm0] = planetEphemeris(jd0, ’Earth’, ’Moon’, ’430’);

[RA, Dec] = ra_and_dec_from_r(rm0_);
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distance = norm(rm0_);

hmoon_ = cross(rm0_,vm0_);

hmoon = norm(hmoon_);

inclmoon = acosd(hmoon_(3)/hmoon);

%...Initial position vector of probe:

I_ = [1;0;0];

J_ = [0;1;0];

K_ = cross(I_,J_);

r0 = Re + z0;

r0_ = r0*(cosd(alpha0)*cosd(dec0)*I_ + ...

sind(alpha0)*cosd(dec0)*J_ + ...

sind(dec0)*K_);

vesc = sqrt(2*mu_e/r0);

v0 = fac*vesc;

w0_ = cross(r0_,rm0_)/norm(cross(r0_,rm0_));

%...Initial velocity vector of probe:

ur_ = r0_/norm(r0_);

uperp_ = cross(w0_,ur_)/norm(cross(w0_,ur_));

vr = v0*sind(gamma0);

vperp = v0*cosd(gamma0);

v0_ = vr*ur_ + vperp*uperp_;

uv0_ = v0_/v0;

%...Initial state vector of the probe:

y0 = [r0_(1) r0_(2) r0_(3) v0_(1) v0_(2) v0_(3)]’;

%...Pass the initial conditions and time interval to ode45, which

% calculates the position and velocity of the spacecraft at discrete

% times t, returning the solution in the column vector y. ode45 uses

% the subfunction ’rates’ below to evaluate the spacecraft acceleration

% at each integration time step.

options = odeset(’RelTol’, 1.e-10, ’AbsTol’, 1.e-10,’Stats’, ’off’);

[t,y] = ode45(@rates, [t0 tf], y0, options);

%...Spacecraft trajectory

% in ECI frame:

X = y(:,1); Y = y(:,2); Z = y(:,3);

vX = y(:,4); vY = y(:,5); vZ = y(:,6);

% in Moon-fixed frame:

x = []; y = []; z = [];

%...Moon trajectory

% in ECI frame:

Xm = []; Ym = []; Zm = [];
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vXm = []; vYm = []; vZm = [];

% in Moon-fixed frame:

xm = []; ym = []; zm = [];

%...Compute the Moon’s trajectory from an ephemeris, find perilune of the

% probe’s trajectory, and project the probe’s trajectory onto the axes

% of the Moon-fixed rotating frame:

dist_min = 1.e30; %Starting value in the search for perilune

for i = 1:length(t)

ti = t(i);

%...Probe’s inertial position vector at time ti:

r_ = [X(i) Y(i) Z(i)]’;

%...Moon’s inertial position and velocity vectors at time ti:

jd = jd0 - (ttt - ti)/days;

[rm_,vm_] = simpsons_lunar_ephemeris(jd);

%...Moon’s inertial state vector at time ti:

Xm = [ Xm;rm_(1)]; Ym = [ Ym;rm_(2)]; Zm = [ Zm;rm_(3)];

vXm = [vXm;vm_(1)]; vYm = [vYm;vm_(2)]; vZm = [vZm;vm_(3)];

%...Moon-fixed rotating xyz frame:

x_ = rm_;

z_ = cross(x_,vm_);

y_ = cross(z_,x_);

i_ = x_/norm(x_);

j_ = y_/norm(y_);

k_ = z_/norm(z_);

%...DCM of transformation from ECI to moon-fixed frame:

Q = [i_’; j_’; k_’];

%...Components of probe’s inertial position vector in moon-fixed frame:

rx_ = Q*r_;

x = [x;rx_(1)]; y = [y;rx_(2)]; z = [z;rx_(3)];

%...Components of moon’s inertial position vector in moon-fixed frame:

rmx_ = Q*rm_;

xm = [xm;rmx_(1)]; ym = [ym;rmx_(2)]; zm = [zm;rmx_(3)];

%...Find perilune of the probe:

dist_ = r_ - rm_;

dist = norm(dist_);

if dist < dist_min

imin = i;
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dist_min_ = dist_;

dist_min = dist;

end

end

%...Location of the Moon at TLI:

rmTLI_ = [Xm(1); Ym(1); Zm(1)];

[RATLI, DecTLI] = ra_and_dec_from_r(rmTLI_);

%...Spacecraft velocity at perilune:

v_atdmin_ = [vX(imin);vY(imin);vZ(imin)];

%...State vector and celestial position of moon when probe is at perilune:

rm_perilune_ = [Xm(imin) Ym(imin) Zm(imin)]’;

vm_perilune_ = [vXm(imin) vYm(imin) vZm(imin)]’;

[RA_at_perilune, Dec_at_perilune] = ra_and_dec_from_r(rm_perilune_);

target_error = norm(rm_perilune_ - rm0_);

%...Speed of probe relative to Moon at perilune:

rel_speed = norm(v_atdmin_ - vm_perilune_);

%...End point of trajectory:

rend_ = [X(end); Y(end); Z(end)];

alt_end = norm(rend_) - Re;

[ra_end, dec_end] = ra_and_dec_from_r(rend_);

%...Find the history of the trajectory’s binormal:

for i = 1:imin

time(i) = t(i);

r_ = [X(i) Y(i) Z(i)]’;

r = norm(r_);

v_ = [vX(i) vY(i) vZ(i)]’;

rm_ = [Xm(i) Ym(i) Zm(i)]’;

rm = norm(rm_);

rms_ = rm_ - r_;

rms(i) = norm(rms_);

aearth_ = -mu_e*r_/r 3̂;

amoon_ = mu_m*(rms_/rms(i) 3̂ - rm_/rm 3̂);

atot_ = aearth_ + amoon_;

binormal_ = cross(v_,atot_)/norm(cross(v_,atot_));

binormalz = binormal_(3);

incl(i) = acosd(binormalz);

end

%...Output:

fprintf(’\n\n%s\n\n’, Title)
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fprintf(’Date and time of arrival at moon: ’)

fprintf(’%s/%s/%s %s:%s:%s’, ...

num2str(month), num2str(day), num2str(year), ...

num2str(hour), num2str(minute), num2str(second))

fprintf(’\nMoon’’s position: ’)

fprintf(’\n Distance = %11g km’ , distance)

fprintf(’\n Right Ascension = %11g deg’ , RA)

fprintf(’\n Declination = %11g deg ’ , Dec)

fprintf(’\nMoon’’s orbital inclination = %11g deg\n’ , inclmoon)

fprintf(’\nThe probe at earth departure (t = %g sec):’, t0)

fprintf(’\n Altitude = %11g km’ , z0)

fprintf(’\n Right ascension = %11g deg’ , alpha0)

fprintf(’\n Declination = %11g deg’ , dec0)

fprintf(’\n Flight path angle = %11g deg’ , gamma0)

fprintf(’\n Speed = %11g km/s’ , v0)

fprintf(’\n Escape speed = %11g km/s’ , vesc)

fprintf(’\n v/vesc = %11g’ , v0/vesc)

fprintf(’\n Inclination of translunar orbit = %11g deg\n’ , ...

acosd(w0_(3)))

fprintf(’\nThe moon when the probe is at TLI:’)

fprintf(’\n Distance = %11g km’ , norm(rmTLI_))

fprintf(’\n Right ascension = %11g deg’, RATLI)

fprintf(’\n Declination = %11g deg’, DecTLI)

fprintf(’\nThe moon when the probe is at perilune: ’)

fprintf(’\n Distance = %11g km’ , ...

norm(rm_perilune_))

fprintf(’\n Speed = %11g km/s’, ...

norm(vm_perilune_))

fprintf(’\n Right ascension = %11g deg’ ,RA_at_perilune)

fprintf(’\n Declination = %11g deg’ ,Dec_at_perilune)

fprintf(’\n Target error = %11g km’ , target_error)

fprintf(’\n\nThe probe at perilune:’)

fprintf(’\n Altitude = %11g km’ , dist_min - Rm)

fprintf(’\n Speed = %11g km/s’,norm(v_atdmin_))

fprintf(’\n Relative speed = %11g km/s’,rel_speed)

fprintf(’\n Inclination of osculating plane = %11g deg’ ,incl(imin))

fprintf(’\n Time from TLI to perilune = %11g hours (%g days)’ ...

abs(t(imin))/3600 ...

abs(t(imin))/3600/24)

fprintf(’\n\nTotal time of flight = %11g days’ , t(end)/days)

fprintf(’\nTime to target point = %11g days’ , ttt/days)
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fprintf(’\nFinal earth altitude = %11g km’ , alt_end)

fprintf(’\nFinal right ascension = %11g deg’ , ra_end)

fprintf(’\nFinal declination = %11g deg\n’ , dec_end)

%...End output

%...Graphical output"

% Plot the trajectory relative to the inertial frame:

plotit_XYZ(X,Y,Z,Xm,Ym,Zm,imin)

% Plot inclination of the osculating plane vs distance from the Moon

figure

hold on

plot(rms/RS,incl)

line([0 6][90 90],’Linestyle’,’–’,’color’,’red’)

title(’Osculating Plane Inclination vs Distance from Moon’)

xlabel(’r_{ms}/R_s’)

ylabel(’Inclination deg)’)

grid on

grid minor

% Plot the trajectory relative to the rotating Moon-fixed frame:

plotit_xyz(x,y,z,xm,ym,zm,imin)

%...End graphical output

return

% ������������������������������������������������������������
function dydt = rates(t,y)

% ��������������������
%{

This function evaluates the 3D acceleration of the spacecraft in a

restricted 3-body system at time t from its position and velocity

and the position of the moon at that time.

t - time (s)

ttt - flight time, TLI to target point (s)

jd0 - Julian Date on arrival at target (days)

jd - Julian Date at time t (days)

X, Y, Z - Components of spacecraft’s geocentric position vector (km)

vX, vY, vZ - Components of spacecraft’s geocentric velocity vector (km/s)

aX, aY, aZ - Components of spacecraft’s geocentric acceleration

vector (km/s 2̂)

y - column vector containing the geocentric position and

velocity components of the spacecraft at time t

r_ - geocentric position vector [X Y Z] of the spacecraft

rm_ - geocentric position vector of the moon

rms_ - rm_ - r_, the position of the moon relative to the

spacecraft
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aearth_ - spacecraft acceleration vector due to earth’s gravity

amoon_ - spacecraft acceleration vector due to lunar gravity

a_ - total spacececraft acceleration vector

dydt - column vector containing the geocentric velocity and

acceleration components of the spacecraft at time t

%}

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

global jd0 days mu_m mu_e ttt

jd = jd0 - (ttt - t)/days;

X = y(1);

Y = y(2);

Z = y(3);

vX = y(4);

vY = y(5);

vZ = y(6);

r_ = [X Y Z]’;

r = norm(r_);

[rm_,�] = simpsons_lunar_ephemeris(jd);

%[rm_,�] = planetEphemeris(jd0, ’Earth’, ’Moon’, ’430’);

rm = norm(rm_);

rms_ = rm_ - r_;

rms = norm(rms_);

aearth_ = -mu_e*r_/r 3̂;

amoon_ = mu_m*(rms_/rms 3̂ - rm_/rm 3̂);

a_ = aearth_ + amoon_;

aX = a_(1);

aY = a_(2);

aZ = a_(3);

dydt = [vX vY vZ aX aY aZ]’;

end %rates

% ������������������������������������������������������������

% ������������������������������
function plotit_XYZ(X,Y,Z,Xm,Ym,Zm,imin)

% ––––––––––––––––––––––––––––––––––––––

global Re Rm

figure (’Name’,’Trajectories of Spacecraft (red) and Moon (green)’, ...

’Color’, [1 1 1])
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[xx, yy, zz] = sphere(128);

hold on

%...Geocentric inertial coordinate axes:

L = 20*Re;

line([0 L], [0 0], [0 0],’color’,’k’)

text(L,0,0, ’X’, ’FontSize’,12, ’FontAngle’,’italic’,’FontName’,’Palatino’)

line([0 0], [0 L], [0 0],’color’,’k’)

text(0,L,0, ’Y’, ’FontSize’,12, ’FontAngle’,’italic’,’FontName’,’Palatino’)

line([0 0], [0 0], [0 L],’color’,’k’)

text(0,0,L, ’Z’, ’FontSize’,12, ’FontAngle’,’italic’,’FontName’,’Palatino’)

%...Earth:

Earth = surfl(Re*xx, Re*yy, Re*zz);

set(Earth, ’FaceAlpha’, 0.5);

shading interp

%...Spacecraft at TLI

plot3(X(1), Y(1), Z(1), ’o’, ...

’MarkerEdgeColor’,’k’, ’MarkerFaceColor’,’k’, ’MarkerSize’,3)

%...Spacecraft at closest approach

plot3(X(imin), Y(imin), Z(imin), ’o’, ...

’MarkerEdgeColor’,’k’, ’MarkerFaceColor’,’k’, ’MarkerSize’,2)

%...Spacecraft at tf

plot3(X(end), Y(end), Z(end), ’o’, ...

’MarkerEdgeColor’,’r’, ’MarkerFaceColor’,’r’, ’MarkerSize’,3)

%...Moon at TLI:

text(Xm(1), Ym(1), Zm(1), ’Moon at TLI’)

Moon = surfl(Rm*xx + Xm(1), Rm*yy + Ym(1), Rm*zz + Zm(1));

set(Moon, ’FaceAlpha’, 0.99)

shading interp

%...Moon at closest approach:

Moon = surfl(Rm*xx + Xm(imin), Rm*yy + Ym(imin), Rm*zz + Zm(imin));

set(Moon, ’FaceAlpha’, 0.99)

shading interp

%...Moon at end of simulation:

Moon = surfl(Rm*xx + Xm(end), Rm*yy + Ym(end), Rm*zz + Zm(end));

set(Moon, ’FaceAlpha’, 0.99)

shading interp

%...Spacecraft trajectory

plot3( X, Y, Z, ’r’, ’LineWidth’, 1.5)
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%...Moon trajectory

plot3(Xm, Ym, Zm, ’g’, ’LineWidth’, 0.5)

axis image

axis off

axis vis3d

view([1,1,1])

end %plotit_XYZ

% ����������

% ������������������������������
function plotit_xyz(x,y,z,xm,ym,zm,imin)

% ––––––––––––––––––––––––––––––––––––––

global Re Rm Rm0_ Q0

figure (’Name’,’Spacecraft trajectory in Moon-fixed rotating frame’, ...

’Color’, [1 1 1])

[xx, yy, zz] = sphere(128);

hold on

%...Spacecraft trajectory:

plot3( x, y, z, ’r’, ’LineWidth’, 2.0)

%...Moon trajectory:

plot3(xm, ym, zm, ’g’, ’LineWidth’, 0.5)

%...Earth:

Earth = surfl(Re*xx, Re*yy, Re*zz);

set(Earth, ’FaceAlpha’, 0.5);

shading interp

%...Geocentric moon-fixed coordinate axes:

L1 = 63*Re; L2 = 20*Re; L3 = 29*Re;

line([0 L1], [0 0], [0 0],’color’,’k’)

text(L1, 0, 0, ’x’,’FontSize’, 12, ’FontAngle’, ’italic’,’FontName’,’Palatino’)

line([0 0], [0 L2], [0 0],’color’,’k’)

text(0, L2, 0, ’y’,’FontSize’, 12, ’FontAngle’, ’italic’,’FontName’,’Palatino’)

line([0 0], [0 0], [0 L3],’color’,’k’)

text(0, 0, L3, ’z’,’FontSize’, 12, ’FontAngle’, ’italic’,’FontName’,’Palatino’)

%...Spacecraft at TLI

plot3(x(1), y(1), z(1), ’o’, ...

’MarkerEdgeColor’,’k’, ’MarkerFaceColor’,’k’, ’MarkerSize’,3)

%...Spacecraft at closest approach

plot3(x(imin), y(imin), z(imin), ’o’, ...
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’MarkerEdgeColor’,’k’, ’MarkerFaceColor’,’k’, ’MarkerSize’,2)

%...Spacecraft at tf

plot3(x(end), y(end), z(end), ’o’, ...

’MarkerEdgeColor’,’r’, ’MarkerFaceColor’,’r’, ’MarkerSize’,3)

%...Moon at TLI:

text(xm(1), ym(1), zm(1),’Moon at TLI’)

Moon = surfl(Rm*xx + xm(1), Rm*yy + ym(1), Rm*zz + zm(1));

set(Moon, ’FaceAlpha’, 0.99)

shading interp

%...Moon at spacecraft closest approach:

Moon = surfl(Rm*xx + xm(imin), Rm*yy + ym(imin), Rm*zz + zm(imin));

set(Moon, ’FaceAlpha’, 0.99)

shading interp

%...Moon at end of simulation:

Moon = surfl(Rm*xx + xm(end), Rm*yy + ym(end), Rm*zz + zm(end));

set(Moon, ’FaceAlpha’, 0.99)

shading interp

axis image

axis vis3d

axis off

view([1,1,1])

end %plotit_xyz

% ������������
%end example_9_03
OUTPUT FROM Example_9_03.m

Example 9.3 4e

Date and time of arrival at moon: 5/4/2020 12:0:0

Moon’s position:

Distance = 360785 km

Right Ascension = 185.107 deg

Declination = 2.91682 deg

Moon’s orbital inclination = 23.6765 deg

The probe at earth departure (t = 0 sec):

Altitude = 320 km

Right ascension = 90 deg

Declination = 15 deg

Flight path angle = 40 deg

Speed = 10.8267 km/s

Escape speed = 10.9097 km/s
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v/vesc = 0.9924

Inclination of translunar orbit = 15.5505 deg

The moon when the probe is at TLI:

Distance = 372242 km

Right ascension = 143.743 deg

Declination = 18.189 deg

The moon when the probe is at perilune:

Distance = 361064 km

Speed = 1.07674 km/s

Right ascension = 183.482 deg

Declination = 3.62118 deg

Target error = 11143.9 km

The probe at perilune:

Altitude = 1258.93 km

Speed = 1.03454 km/s

Relative speed = 2.11055 km/s

Inclination of osculating plane = 155.393 deg

Time from TLI to perilune = 69.1257 hours (2.88024 days)

Total time of flight = 5.667 days

Time to target point = 3 days

Final earth altitude = 1035.43 km

Final right ascension = 263.608 deg

Final declination = -27.4236 deg

>>

CHAPTER 10: INTRODUCTION TO ORBITAL PERTURBATIONS

D.39 US STANDARD ATMOSPHERE 1976
FUNCTION FILE: atmosphere.m

% �����������������������������������������������������������
function density = atmosphere(z)

%

% ATMOSPHERE calculates density for altitudes from sea level

% through 1000 km using exponential interpolation.

% �����������������������������������������������������������

%...Geometric altitudes (km):

h = ...

[ 0 25 30 40 50 60 70 ...

80 90 100 110 120 130 140 ...

150 180 200 250 300 350 400 ...

450 500 600 700 800 900 1000];
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%...Corresponding densities (kg/m 3̂) from USSA76:

r = ...

[1.225 4.008e-2 1.841e-2 3.996e-3 1.027e-3 3.097e-4 8.283e-5 ...

1.846e-5 3.416e-6 5.606e-7 9.708e-8 2.222e-8 8.152e-9 3.831e-9 ...

2.076e-9 5.194e-10 2.541e-10 6.073e-11 1.916e-11 7.014e-12 2.803e-12 ...

1.184e-12 5.215e-13 1.137e-13 3.070e-14 1.136e-14 5.759e-15 3.561e-15];

%...Scale heights (km):

H = ...

[ 7.310 6.427 6.546 7.360 8.342 7.583 6.661 ...

5.927 5.533 5.703 6.782 9.973 13.243 16.322 ...

21.652 27.974 34.934 43.342 49.755 54.513 58.019 ...

60.980 65.654 76.377 100.587 147.203 208.020];

%...Handle altitudes outside of the range:

if z > 1000

z = 1000;

elseif z < 0

z = 0;

end

%...Determine the interpolation interval:

for j = 1:27

if z >= h(j) && z < h(j+1)

i = j;

end

end

if z == 1000

i = 27;

end

%...Exponential interpolation:

density = r(i)*exp(-(z - h(i))/H(i));

end %atmopshere

% ������������������������������������������������������������
D.40 TIME FOR ORBIT DECAY USING COWELL’S METHOD
FUNCTION FILE: Example_10_01.m

% ������������������������������������������������������������
function Example_10_01

% �����������������
%

% This function solves Example 10.1 by using MATLAB’s ode45 to numerically

% integrate Equation 10.2 for atmospheric drag.

%
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% User M-functions required: sv_from_coe, atmosphere

% User subfunctions required: rates, terminate

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

%...Preliminaries:

close all, clear all, clc

%...Conversion factors:

hours = 3600; %Hours to seconds

days = 24*hours; %Days to seconds

deg = pi/180; %Degrees to radians

%...Constants;

mu = 398600; %Gravitational parameter (km 3̂/s 2̂)

RE = 6378; %Earth’s radius (km)

wE = [ 0 0 7.2921159e-5]’; %Earth’s angular velocity (rad/s)

%...Satellite data:

CD = 2.2; %Drag codfficient

m = 100; %Mass (kg)

A = pi/4*(1 2̂) ; %Frontal area (m 2̂)

%...Initial orbital parameters (given):

rp = RE + 215; %perigee radius (km)

ra = RE + 939; %apogee radius (km)

RA = 339.94*deg; %Right ascencion of the node (radians)

i = 65.1*deg; %Inclination (radians)

w = 58*deg; %Argument of perigee (radians)

TA = 332*deg; %True anomaly (radians)

%...Initial orbital parameters (inferred):

e = (ra-rp)/(ra+rp); %eccentricity

a = (rp + ra)/2; %Semimajor axis (km)

h = sqrt(mu*a*(1-e 2̂)); %angular momentrum (km 2̂/s)

T = 2*pi/sqrt(mu)*a 1̂.5; %Period (s)

%...Store initial orbital elements (from above) in the vector coe0:

coe0 = [h e RA i w TA];

%...Obtain the initial state vector from Algorithm 4.5 (sv_from_coe):

[R0 V0] = sv_from_coe(coe0, mu); %R0 is the initial position vector

%V0 is the initial velocity vector

r0 = norm(R0); v0 = norm(V0); %Magnitudes of R0 and V0

%...Use ODE45 to integrate the equations of motion d/dt(R,V) = f(R,V)

% from t0 to tf:

t0 = 0; tf = 120*days; %Initial and final times (s)
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y0 = [R0 V0]’; %Initial state vector

nout = 40000; %Number of solution points to output

tspan = linspace(t0, tf, nout); %Integration time interval

% Set error tolerances, initial step size, and termination event:

options = odeset(’reltol’, 1.e-8, ...

’abstol’, 1.e-8, ...

’initialstep’, T/10000, ...

’events’, @terminate);

global alt %Altitude

[t,y] = ode45(@rates, tspan, y0,options); %t is the solution times

%y is the state vector history

%...Extract the locally extreme altitudes:

altitude = sqrt(sum(y(:,1:3). 2̂,2)) - RE; %Altitude at each time

[max_altitude,imax,min_altitude,imin] = extrema(altitude);

maxima = [t(imax) max_altitude]; %Maximum altitudes and times

minima = [t(imin) min_altitude]; %Minimum altitudes and times

apogee = sortrows(maxima,1); %Maxima sorted with time

perigee = sortrows(minima,1); %Minima sorted with time

figure(1)

apogee(1,2) = NaN;

%...Plot perigee and apogee history on the same figure:

plot(apogee(:,1)/days, apogee(:,2),’b’,’linewidth’,2)

hold on

plot(perigee(:,1)/days, perigee(:,2),’r’,’linewidth’,2)

grid on

grid minor

xlabel(’Time (days)’)

ylabel(’Altitude (km)’)

ylim([0 1000]);

%...Subfunctions:

% ������������������������������������������������������������
function dfdt = rates(t,f)

% ��������������������
%

% This function calculates the spacecraft acceleration from its

% position and velocity at time t.

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

R = f(1:3)’; %Position vector (km/s)

r = norm(R); %Distance from earth’s center (km)

alt = r - RE; %Altitude (km)

rho = atmosphere(alt); %Air density from US Standard Model (kf/m 3̂)

V = f(4:6)’; %Velocity vector (km/s)

Vrel = V - cross(wE,R); %Velocity relative to the atmosphere (km/s)
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vrel = norm(Vrel); %Speed relative to the atmosphere (km/s)

uv = Vrel/vrel; %Relative velocity unit vector

ap = -CD*A/m*rho*... %Acceleration due to drag (m/s 2̂)

(1000*vrel) 2̂/2*uv; %(converting units of vrel from km/s to m/s)

a0 = -mu*R/r 3̂; %Gravitational ecceleration (km/s 2̂)

a = a0 + ap/1000; %Total acceleration (km/s 2̂)

dfdt = [V a]’; %Velocity and the acceleraion returned to ode45

end %rates

% ������������������������������������������������������������

% ������������������������������������������������������������
function [lookfor stop direction] = terminate(t,y)

% ���������������������������������������
%

% This function specifies the event at which ode45 terminates.

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

lookfor = alt - 100; % = 0 when altitude = 100 km

stop = 1; % 1 means terminate at lookfor = 0; Otherwise 0

direction = -1; % -1 means zero crossing is from above

end %terminate

% ������������������������������������������������������������

end %Example_10_01

% ������������������������������������������������������������
D.41 J2 PERTURBATION OF AN ORBIT USING ENCKE’S METHOD
FUNCTION FILE: Example_10_02.m

% ������������������������������������������������������������
function Example_10_02

% ����������������
%

% This function solves Example 10.2 by using Encke’s method together

% with MATLAB’s ode45 to integrate Equation 10.2 for a J2 gravitational

% perturbation given by Equation 10.30.

%

% User M-functions required: sv_from_coe, coe_from_sv, rv_from_r0v0

% User subfunction required: rates

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

%...Preliminaries:

clc, close all, clear all

%...Conversion factors:

hours = 3600; %Hours to seconds

days = 24*hours; %Days to seconds

deg = pi/180; %Degrees to radians
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%...Constants:

global mu

mu = 398600; %Gravitational parameter (km 3̂/s 2̂)

RE = 6378; %Earth’s radius (km)

J2 = 1082.63e-6;

%...Initial orbital parameters (given):

zp0 = 300; %Perigee altitude (km)

za0 = 3062; %Apogee altitude (km)

RA0 = 45*deg; %Right ascension of the node (radians)

i0 = 28*deg; %Inclination (radians)

w0 = 30*deg; %Argument of perigee (radians)

TA0 = 40*deg; %True anomaly (radians)

%...Initial orbital parameters (inferred):

rp0 = RE + zp0; %Perigee radius (km)

ra0 = RE + za0; %Apogee radius (km)

e0 = (ra0 - rp0)/(ra0 + rp0); %Eccentricity

a0 = (ra0 + rp0)/2; %Semimajor axis (km)

h0 = sqrt(rp0*mu*(1+e0)); %Angular momentum (km 2̂/s)

T0 = 2*pi/sqrt(mu)*a0 1̂.5; %Period (s)

t0 = 0; tf = 2*days; %Initial and final time (s)

%...end Input data

%Store the initial orbital elements in the array coe0:

coe0 = [h0 e0 RA0 i0 w0 TA0];

%...Obtain the initial state vector from Algorithm 4.5 (sv_from_coe):

[R0 V0] = sv_from_coe(coe0, mu); %R0 is the initial position vector

%R0 is the initial position vector

r0 = norm(R0); v0 = norm(V0); %Magnitudes of T0 and V0

del_t = T0/100; %Time step for Encke procedure

options = odeset(’maxstep’, del_t);

%...Begin the Encke integration;

t = t0; %Initialize the time scalar

tsave = t0; %Initialize the vector of solution times

y = [R0 V0]; %Initialize the state vector

del_y0 = zeros(6,1); %Initialize the state vector perturbation

t = t + del_t; %First time step

% Loop over the time interval [t0, tf] with equal increments del_t:

while t <= tf + del_t/2



e150 MATLAB scripts
% Integrate Equation 12.7 over the time increment del_t:

[dum,z] = ode45(@rates, [t0 t], del_y0, options);

% Compute the osculating state vector at time t:

[Rosc,Vosc] = rv_from_r0v0(R0, V0, t-t0);

% Rectify:

R0 = Rosc + z(end,1:3);

V0 = Vosc + z(end,4:6);

t0 = t;

% Prepare for next time step:

tsave = [tsave;t];

y = [y; [R0 V0]];

t = t + del_t;

del_y0 = zeros(6,1);

end

% End the loop

t = tsave; %t is the vector of equispaced solution times

%...End the Encke integration;

%...At each solution time extract the orbital elements from the state

% vector using Algorithm 4.2:

n_times = length(t); %n_times is the number of solution times

for j = 1:n_times

R = [y(j,1:3)];

V = [y(j,4:6)];

r(j) = norm(R);

v(j) = norm(V);

coe = coe_from_sv(R,V, mu);

h(j) = coe(1);

e(j) = coe(2);

RA(j) = coe(3);

i(j) = coe(4);

w(j) = coe(5);

TA(j) = coe(6);

end

%...Plot selected osculating elements:

figure(1)

subplot(2,1,1)

plot(t/3600,(RA - RA0)/deg)

title(’Variation of Right Ascension’)

xlabel(’hours’)

ylabel(’{\it\Delta\Omega} (deg)’)
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grid on

grid minor

axis tight

subplot(2,1,2)

plot(t/3600,(w - w0)/deg)

title(’Variation of Argument of Perigee’)

xlabel(’hours’)

ylabel(’{\it\Delta\omega} (deg)’)

grid on

grid minor

axis tight

figure(2)

subplot(3,1,1)

plot(t/3600,h - h0)

title(’Variation of Angular Momentum’)

xlabel(’hours’)

ylabel(’{\it\Deltah} (km 2̂/s)’)

grid on

grid minor

axis tight

subplot(3,1,2)

plot(t/3600,e - e0)

title(’Variation of Eccentricity’)

xlabel(’hours’)

ylabel(’\it\Deltae’)

grid on

grid minor

axis tight

subplot(3,1,3)

plot(t/3600,(i - i0)/deg)

title(’Variation of Inclination’)

xlabel(’hours’)

ylabel(’{\it\Deltai} (deg)’)

grid on

grid minor

axis tight

%...Subfunction:

% ������������������������������������������������������������
function dfdt = rates(t,f)

% �������������������
%

% This function calculates the time rates of Encke’s deviation in position
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% del_r and velocity del_v.

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

del_r = f(1:3)’; %Position deviation

del_v = f(4:6)’; %Velocity deviation

%...Compute the state vector on the osculating orbit at time t

% (Equation 12.5) using Algorithm 3.4:

[Rosc,Vosc] = rv_from_r0v0(R0, V0, t-t0);

%...Calculate the components of the state vector on the perturbed orbit

% and their magnitudes:

Rpp = Rosc + del_r;

Vpp = Vosc + del_v;

rosc = norm(Rosc);

rpp = norm(Rpp);

%...Compute the J2 perturbing acceleration from Equation 12.30:

xx = Rpp(1); yy = Rpp(2); zz = Rpp(3);

fac = 3/2*J2*(mu/rpp 2̂)*(RE/rpp) 2̂;

ap = -fac*[(1 - 5*(zz/rpp) 2̂)*(xx/rpp) ...

(1 - 5*(zz/rpp) 2̂)*(yy/rpp) ...

(3 - 5*(zz/rpp) 2̂)*(zz/rpp)];

%...Compute the total perturbing ecceleration from Equation 12.7:

F = 1 - (rosc/rpp) 3̂;

del_a = -mu/rosc 3̂*(del_r - F*Rpp) + ap;

dfdt = [del_v(1) del_v(2) del_v(3) del_a(1) del_a(2) del_a(3)]’;

dfdt = [del_v del_a]’; %Return the deviative velocity and acceleration

%to ode45.

end %rates

% ���������������������

end %Example_10_02

% ������������������������������������������������������������
D.42 EXAMPLE 10.6: USING GAUSS’ VARIATIONAL EQUATIONS TO ASSESS
J2 EFFECT ON ORBITAL ELEMENTS
FUNCTION FILE: Example_10_06.m

% ������������������������������������������������������������
function Example_10_6

% ���������������
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%

% This function solves Example 10.6 by using MATLAB’s ode45 to numerically

% integrate Equations 10.89 (the Gauss planetary equations) to determine

% the J2 perturbation of the orbital elements.

%

% User M-functions required: None

% User subfunctions required: rates

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

%...Preliminaries:

close all; clear all; clc

%...Conversion factors:

hours = 3600; %Hours to seconds

days = 24*hours; %Days to seconds

deg = pi/180; %Degrees to radians

%...Constants:

mu = 398600; %Gravitational parameter (km 3̂/s 2̂)

RE = 6378; %Earth’s radius (km)

J2 = 1082.63e-6; %Earth’s J2

%...Initial orbital parameters (given):

rp0 = RE + 300; %perigee radius (km)

ra0 = RE + 3062; %apogee radius (km

RA0 = 45*deg; %Right ascencion of the node (radians)

i0 = 28*deg; %Inclination (radians)

w0 = 30*deg; %Argument of perigee (radians)

TA0 = 40*deg; %True anomaly (radians)

%...Initial orbital parameters (inferred):

e0 = (ra0 - rp0)/(ra0 + rp0); %eccentricity

h0 = sqrt(rp0*mu*(1 + e0)); %angular momentrum (km 2̂/s)

a0 = (rp0 + ra0)/2; %Semimajor axis (km)

T0 = 2*pi/sqrt(mu)*a0 1̂.5; %Period (s)

%...Store initial orbital elements (from above) in the vector coe0:

coe0 = [h0 e0 RA0 i0 w0 TA0];

%...Use ODE45 to integrate the Gauss variational equations (Equations

% 12.89) from t0 to tf:

t0 = 0;

tf = 2*days;

nout = 5000; %Number of solution points to output for plotting purposes

tspan = linspace(t0, tf, nout);

options = odeset(...

’reltol’, 1.e-8, ...

’abstol’, 1.e-8, ...

’initialstep’, T0/1000);
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y0 = coe0’;

[t,y] = ode45(@rates, tspan, y0, options);

%...Assign the time histories mnemonic variable names:

h = y(:,1);

e = y(:,2);

RA = y(:,3);

i = y(:,4);

w = y(:,5);

TA = y(:,6);

%...Plot the time histories of the osculatinig elements:

figure(1)

subplot(5,1,1)

plot(t/3600,(RA - RA0)/deg)

title(’Right Ascension (degrees)’)

xlabel(’hours’)

grid on

grid minor

axis tight

subplot(5,1,2)

plot(t/3600,(w - w0)/deg)

title(’Argument of Perigee (degrees)’)

xlabel(’hours’)

grid on

grid minor

axis tight

subplot(5,1,3)

plot(t/3600,h - h0)

title(’Angular Momentum (km 2̂/s)’)

xlabel(’hours’)

grid on

grid minor

axis tight

subplot(5,1,4)

plot(t/3600,e - e0)

title(’Eccentricity’)

xlabel(’hours’)

grid on

grid minor

axis tight
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subplot(5,1,5)

plot(t/3600,(i - i0)/deg)

title(’Inclination (degrees)’)

xlabel(’hours’)

grid on

grid minor

axis tight

%...Subfunction:

% ���������������������������������������������������
function dfdt = rates(t,f)

% �������������������
%

% This function calculates the time rates of the orbital elements

% from Gauss’s variational equations (Equations 12.89).

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

%...The orbital elements at time t:

h = f(1);

e = f(2);

RA = f(3);

i = f(4);

w = f(5);

TA = f(6);

r = h 2̂/mu/(1 + e*cos(TA)); %The radius

u = w + TA; %Argument of latitude

%...Orbital element rates at time t (Equations 12.89):

hdot = -3/2*J2*mu*RE 2̂/r 3̂*sin(i) 2̂*sin(2*u);

edot = ...

3/2*J2*mu*RE 2̂/h/r 3̂*(h 2̂/mu/r ...

*(sin(u)*sin(i) 2̂*(3*sin(TA)*sin(u) - 2*cos(TA)*cos(u)) - sin(TA)) ...

-sin(i) 2̂*sin(2*u)*(e + cos(TA)));

edot = 3/2*J2*mu*RE 2̂/h/r 3̂ ...

*(h 2̂/mu/r*sin(TA)*(3*sin(i) 2̂*sin(u) 2̂ - 1) ...

-sin(2*u)*sin(i) 2̂*((2+e*cos(TA))*cos(TA)+e));

TAdot = h/r 2̂ + 3/2*J2*mu*RE 2̂/e/h/r 3̂ ...

*(h 2̂/mu/r*cos(TA)*(3*sin(i) 2̂*sin(u) 2̂ - 1) ...

+ sin(2*u)*sin(i) 2̂*sin(TA)*(h 2̂/mu/r + 1));

RAdot = -3*J2*mu*RE 2̂/h/r 3̂*sin(u) 2̂*cos(i);
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idot = -3/4*J2*mu*RE 2̂/h/r 3̂*sin(2*u)*sin(2*i);

wdot = 3/2*J2*mu*RE 2̂/e/h/r 3̂ ...

*(-h 2̂/mu/r*cos(TA)*(3*sin(i) 2̂*sin(u) 2̂ - 1) ...

- sin(2*u)*sin(i) 2̂*sin(TA)*(2 + e*cos(TA)) ...

+ 2*e*cos(i) 2̂*sin(u) 2̂);

%...Pass these rates back to ODE45 in the array dfdt:

dfdt = [hdot edot RAdot idot wdot TAdot]’;

end %rates

% ������������������������������������������������������������

end %Example_10_6

% ������������������������������������������������������������
D.43 ALGORITHM 10.2: CALCULATE THE GEOCENTRIC POSITION OF THE
SUN AT A GIVEN EPOCH
FUNCTION FILE: solar_position.m

% ������������������������������������������������������������
function [lamda eps r_S] = solar_position(jd)

%

% This function alculates the geocentric equatorial position vector

% of the sun, given the julian date.

%

% User M-functions required: None

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

%...Astronomical unit (km):

AU = 149597870.691;

%...Julian days since J2000:

n = jd - 2451545;

%...Julian centuries since J2000:

cy = n/36525;

%...Mean anomaly (deg{:

M = 357.528 + 0.9856003*n;

M = mod(M,360);

%...Mean longitude (deg):

L = 280.460 + 0.98564736*n;

L = mod(L,360);
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%...Apparent ecliptic longitude (deg):

lamda = L + 1.915*sind(M) + 0.020*sind(2*M);

lamda = mod(lamda,360);

%...Obliquity of the ecliptic (deg):

eps = 23.439 - 0.0000004*n;

%...Unit vector from earth to sun:

u = [cosd(lamda); sind(lamda)*cosd(eps); sind(lamda)*sind(eps)];

%...Distance from earth to sun (km):

rS = (1.00014 - 0.01671*cosd(M) - 0.000140*cosd(2*M))*AU;

%...Geocentric position vector (km):

r_S = rS*u;

end %solar_position

% ������������������������������������������������������������
D.44 ALGORITHM 10.3: DETERMINE WHETHER OR NOT A SATELLITE IS IN
EARTH’S SHADOW
FUNCTION FILE: los.m

% ����������������������������������������������������
function light_switch = los(r_sat, r_sun)

%

% This function uses the ECI position vectors of the satellite (r_sat)

% and the sun (r_sun) to determine whether the earth is in the line of

% sight between the two.

%

% User M-functions required: None

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

RE = 6378; %Earth’s radius (km)

rsat = norm(r_sat);

rsun = norm(r_sun);

%...Angle between sun and satellite position vectore:

theta = acosd(dot(r_sat, r_sun)/rsat/rsun);

%...Angle between the satellite position vector and the radial to the point

% of tangency with the earth of a line from the satellite:

theta_sat = acosd(RE/rsat);

%...Angle between the sun position vector and the radial to the point

% of tangency with the earth of a line from the sun:

theta_sun = acosd(RE/rsun);

%...Determine whether a line from the sun to the satellite
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% intersects the earth:

if theta_sat + theta_sun <= theta

light_switch = 0; %yes

else

light_switch = 1; %no

end

end %los

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
D.45 EXAMPLE 10.9: USE GAUSS’ VARIATIONAL EQUATIONS TO
DETERMINE THE EFFECT OF SOLAR RADIATION PRESSURE ON AN EARTH
SATELLITE’S ORBITAL PARAMETERS
FUNCTION FILE: Example_10_09.m

% ������������������������������������������������������������
function Example_10_09

%

% This function solve Example 10.9 the Gauss planetary equations for

% solar radiation pressure (Equations 10.106).

%

% User M-functions required: sv_from_coe, los, solar_position

% User subfunctions required: rates

% The M-function rsmooth may be found in Garcia, D: “Robust Smoothing of Gridded

Data in One and Higher Dimensions with Missing Values,” Computational Statistics

and Data Analysis, Vol. 54, 1167-1178, 2010.

% ������������������������������������������������������������

global JD %Julian day

%...Preliminaries:

close all

clear all

clc

%...Conversion factors:

hours = 3600; %Hours to seconds

days = 24*hours; %Days to seconds

deg = pi/180; %Degrees to radians

%...Constants;

mu = 398600; %Gravitational parameter (km 3̂/s 2̂)

RE = 6378; %Eath’s radius (km)

c = 2.998e8; %Speed of light (m/s)

S = 1367; %Solar constant (W/m 2̂)

Psr = S/c; %Solar pressure (Pa);
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%...Satellite data:

CR = 2; %Radiation pressure codfficient

m = 100; %Mass (kg)

As = 200; %Frontal area (m 2̂);

%...Initial orbital parameters (given):

a0 = 10085.44; %Semimajor axis (km)

e0 = 0.025422; %eccentricity

incl0 = 88.3924*deg; %Inclination (radians)

RA0 = 45.38124*deg; %Right ascencion of the node (radians)

TA0 = 343.4268*deg; %True anomaly (radians)

w0 = 227.493*deg; %Argument of perigee (radians)

%...Initial orbital parameters (inferred):

h0 = sqrt(mu*a0*(1-e0 2̂)); %angular momentrum (km 2̂/s)

T0 = 2*pi/sqrt(mu)*a0 1̂.5; %Period (s)

rp0 = h0 2̂/mu/(1 + e0); %perigee radius (km)

ra0 = h0 2̂/mu/(1 - e0); %apogee radius (km)

%...Store initial orbital elements (from above) in the vector coe0:

coe0 = [h0 e0 RA0 incl0 w0 TA0];

%...Use ODE45 to integrate Equations 12.106, the Gauss planetary equations

% from t0 to tf:

JD0 = 2438400.5; %Initial Julian date (6 January 1964 0 UT)

t0 = 0; %Initial time (s)

tf = 3*365*days; %final time (s)

y0 = coe0’; %Initial orbital elements

nout = 4000; %Number of solution points to output

tspan = linspace(t0, tf, nout); %Integration time interval

options = odeset(...

’reltol’, 1.e-8, ...

’abstol’, 1.e-8, ...

’initialstep’, T0/1000);

[t,y] = ode45(@rates, tspan, y0, options);

%...Extract or compute the orbital elements’ time histories from the

% solution vector y:

h = y(:,1);

e = y(:,2);

RA = y(:,3);

incl = y(:,4);

w = y(:,5);

TA = y(:,6);

a = h. 2̂/mu./(1 - e. 2̂);
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%...Smooth the data to remove short period variations:

h = rsmooth(h);

e = rsmooth(e);

RA = rsmooth(RA);

incl = rsmooth(incl);

w = rsmooth(w);

a = rsmooth(a);

figure(2)

subplot(3,2,1)

plot(t/days,h - h0)

title(’Angular Momentum (km 2̂/s)’)

xlabel(’days’)

axis tight

subplot(3,2,2)

plot(t/days,e - e0)

title(’Eccentricity’)

xlabel(’days’)

axis tight

subplot(3,2,4)

plot(t/days,(RA - RA0)/deg)

title(’Right Ascension (deg)’)

xlabel(’days’)

axis tight

subplot(3,2,5)

plot(t/days,(incl - incl0)/deg)

title(’Inclination (deg)’)

xlabel(’days’)

axis tight

subplot(3,2,6)

plot(t/days,(w - w0)/deg)

title(’Argument of Perigee (deg)’)

xlabel(’days’)

axis tight

subplot(3,2,3)

plot(t/days,a - a0)

title(’Semimajor axis (km)’)

xlabel(’days’)

axis tight

%...Subfunctions:

% ������������������������������������������������������������
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function dfdt = rates(t,f)

% �������������������
%...Update the Julian Date at time t:

JD = JD0 + t/days;

%...Compoute the apparent position vector of the sun:

[lamda eps r_sun] = solar_position(JD);

%...Convert the ecliptic latitude and the obliquity to radians:

lamda = lamda*deg;

eps = eps*deg;

%...Extract the orbital elements at time t

h = f(1);

e = f(2);

RA = f(3);

i = f(4);

w = f(5);

TA = f(6);

u = w + TA; %Argument of latitude

%...Compute the state vector at time t:

coe = [h e RA i w TA];

[R, V] = sv_from_coe(coe,mu);

%...Calculate the manitude of the radius vector:

r = norm(R);

%...Compute the shadow function and the solar radiation perturbation:

nu = los(R, r_sun);

pSR = nu*(S/c)*CR*As/m/1000;

%...Calculate the trig functions in Equations 12.105.

sl = sin(lamda); cl = cos(lamda);

se = sin(eps); ce = cos(eps);

sW = sin(RA); cW = cos(RA);

si = sin(i); ci = cos(i);

su = sin(u); cu = cos(u);

sT = sin(TA); cT = cos(TA);

%...Calculate the earth-sun unit vector components (Equations 12.105):

ur = sl*ce*cW*ci*su + sl*ce*sW*cu - cl*sW*ci*su ...

+ cl*cW*cu + sl*se*si*su;

us = sl*ce*cW*ci*cu - sl*ce*sW*su - cl*sW*ci*cu ...

- cl*cW*su + sl*se*si*cu;
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uw = - sl*ce*cW*si + cl*sW*si + sl*se*ci;

%...Calculate the time rates of the osculating elements from

% Equations 12.106:

hdot = -pSR*r*us;

edot = -pSR*(h/mu*sT*ur ...

+ 1/mu/h*((h 2̂ + mu*r)*cT + mu*e*r)*us);

TAdot = h/r 2̂ ...

- pSR/e/h*(h 2̂/mu*cT*ur - (r + h 2̂/mu)*sT*us);

RAdot = -pSR*r/h/si*su*uw;

idot = -pSR*r/h*cu*uw;

wdot = -pSR*(-1/e/h*(h 2̂/mu*cT*ur - (r + h 2̂/mu)*sT*us) ...

- r*su/h/si*ci*uw);

%...Return the rates to ode45:

dfdt = [hdot edot RAdot idot wdot TAdot]’;

end %rates

end %Example_10_9

% ������������������������������������������������������������
D.46 ALGORITHM 10.4: CALCULATE THE GEOCENTRIC POSITION OF THE
MOON AT A GIVEN EPOCH
FUNCTION FILE: lunar_position.m

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

function r_moon = lunar_position(jd)

%

%...Calculates the geocentric equatorial position vector of the moon

% given the Julian day.

%

% User M-functions required: None

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

%...Earth’s radius (km):

RE = 6378;

% ––––––––––––––––––––––––– implementation –––––––––––––––––

%...Time in centuries since J2000:
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T = (jd - 2451545)/36525;

%...Ecliptic longitude (deg):

e_long = 218.32 + 481267.881*T ...

+ 6.29*sind(135.0 + 477198.87*T) - 1.27*sind(259.3 - 413335.36*T)...

+ 0.66*sind(235.7 + 890534.22*T) + 0.21*sind(269.9 + 954397.74*T)...

- 0.19*sind(357.5 +35999.05*T) - 0.11*sind(186.5 + 966404.03*T);

e_long = mod(e_long,360);

%...Ecliptic latitude (deg):

e_lat = 5.13*sind( 93.3 + 483202.02*T) + 0.28*sind(228.2 + 960400.89*T)...

- 0.28*sind(318.3 +6003.15*T) - 0.17*sind(217.6 - 407332.21*T);

e_lat = mod(e_lat,360);

%...Horizontal parallax (deg):

h_par = 0.9508 ...

+ 0.0518*cosd(135.0 + 477198.87*T) + 0.0095*cosd(259.3 - 413335.36*T)...

+ 0.0078*cosd(235.7 + 890534.22*T) + 0.0028*cosd(269.9 + 954397.74*T);

h_par = mod(h_par,360);

%...Angle between earth’s orbit and its equator (deg):

obliquity = 23.439291 - 0.0130042*T;

%...Direction cosines of the moon’s geocentric equatorial position vector:

l = cosd(e_lat) * cosd(e_long);

m = cosd(obliquity)*cosd(e_lat)*sind(e_long) - sind(obliquity)*sind(e_lat);

n = sind(obliquity)*cosd(e_lat)*sind(e_long) + cosd(obliquity)*sind(e_lat);

%...Earth-moon distance (km):

dist = RE/sind(h_par);

%...Moon’s geocentric equatorial position vector (km):

r_moon = dist*[l m n];

end %lunar_position

% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
D.47 EXAMPLE 10.11: USE GAUSS’ VARIATIONAL EQUATIONS TO
DETERMINE THE EFFECT OF LUNAR GRAVITY ON AN EARTH SATELLITE’S
ORBITAL PARAMETERS
FUNCTION FILE: Example_10_11.m

% ������������������������������������������������������������
function Example_10_11

% This function solves Example 10.11 by using MATLAB’s ode45 to integrate

% Equations 10.84, the Gauss variational equations, for a lunar

% gravitational perturbation.
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%

% User M-functions required: sv_from_coe, lunar_position

% User subfunctions required: solveit rates

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

global JD %Julian day

%...Preliminaries:

close all

clear all

clc

%...Conversion factors:

hours = 3600; %Hours to seconds

days = 24*hours; %Days to seconds

deg = pi/180; %Degrees to radians

%...Constants;

mu = 398600; %Earth’s gravitational parameter (km 3̂/s 2̂)

mu3 = 4903; %Moon’s gravitational parameter (km 3̂/s 2̂)

RE = 6378; %Earth’s radius (km)

%...Initial data for each of the three given orbits:

type = {’GEO’ ’HEO’ ’LEO’};

%...GEO

n = 1;

a0 = 42164; %semimajor axis (km)

e0 = 0.0001; %eccentricity

w0 = 0; %argument of perigee (rad)

RA0 = 0; %right ascension (rad)

i0 = 1*deg; %inclination (rad)

TA0 = 0; %true anomaly (rad)

JD0 = 2454283; %Julian Day

solveit

%...HEO

n = 2;

a0 = 26553.4;

e0 = 0.741;

w0 = 270;

RA0 = 0;

i0 = 63.4*deg;

TA0 = 0;

JD0 = 2454283;

solveit
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%...LEO

n = 3;

a0 = 6678.136;

e0 = 0.01;

w0 = 0;

RA0 = 0;

i0 = 28.5*deg;

TA0 = 0;

JD0 = 2454283;

solveit

%...Subfunctions:

% ����������������������������������������
function solveit

%

% Calculations and plots common to all of the orbits

%

% –––––––––––––––––––––––––––––––––––––––––––––––––––

%

%...Initial orbital parameters (calculated from the given data):

h0 = sqrt(mu*a0*(1-e0 2̂)); %angular momentum (km 2̂/s)

T0 = 2*pi/sqrt(mu)*a0 1̂.5; %Period (s)

rp0 = h0 2̂/mu/(1 + e0); %perigee radius (km)

ra0 = h0 2̂/mu/(1 - e0); %apogee radius (km)

%...Store initial orbital elements (from above) in the vector coe0:

coe0 = [h0;e0;RA0;i0;w0;TA0];

%...Use ODE45 to integrate the Equations 12.84, the Gauss variational

% equations with lunar gravity as the perturbation, from t0 to tf:

t0 = 0;

tf = 60*days;

y0 = coe0; %Initial orbital elements

nout = 400; %Number of solution points to output

tspan = linspace(t0, tf, nout); %Integration time interval

options = odeset(...

’reltol’, 1.e-8, ...

’abstol’, 1.e-8);

[t,y] = ode45(@rates, tspan, y0, options);

%...Time histories of the right ascension, inclination and argument of

% perigee:

RA = y(:,3);

i = y(:,4);

w = y(:,5);
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%...Smooth the data to eliminate short period variations:

RA = rsmooth(RA);

i = rsmooth(i);

w = rsmooth(w);

figure(n)

subplot(1,3,1)

plot(t/days,(RA - RA0)/deg)

title(’Right Ascension vs Time’)

xlabel(’{\itt} (days)’)

ylabel(’{\it\Omega} (deg)’)

axis tight

subplot(1,3,2)

plot(t/days,(i - i0)/deg)

title(’Inclination vs Time’)

xlabel(’{\itt} (days)’)

ylabel(’{\iti} (deg)’)

axis tight

subplot(1,3,3)

plot(t/days,(w - w0)/deg)

title(’Argument of Perigee vs Time’)

xlabel(’{\itt} (days)’)

ylabel(’{\it\omega} (deg)’)

axis tight

drawnow

end %solveit

% �������������������

% �������������������
function dfdt = rates(t,f)

% �������������������
%...The orbital elements at time t:

h = f(1);

e = f(2);

RA = f(3);

i = f(4);

w = f(5);

TA = f(6);

phi = w + TA; %argument of latitude

%...Obtain the state vector at time t from Algorithm 4.5:

coe = [h e RA i w TA];

[R, V] = sv_from_coe(coe,mu);
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%...Obtain the unit vectors of the rsw system:

r = norm(R);

ur = R/r; %radial

H = cross(R,V);

uh = H/norm(H); %normal

s = cross(uh, ur);

us = s/norm(s); %transverse

%...Update the Julian Day:

JD = JD0 + t/days;

%...Find and normalize the position vector of the moon:

R_m = lunar_position(JD);

r_m = norm(R_m);

R_rel = R_m - R; %R_rel = position vector of moon wrt satellite

r_rel = norm(R_rel);

%...See Appendix F:

q = dot(R,(2*R_m - R))/r_m 2̂;

F = (q 2̂ - 3*q + 3)*q/(1 + (1-q) 1̂.5);

%...Gravitationl perturbation of the moon (Equation 12.117):

ap = mu3/r_rel 3̂*(F*R_m - R);

%...Perturbation components in the rsw system:

apr = dot(ap,ur);

aps = dot(ap,us);

aph = dot(ap,uh);

%...Gauss variational equations (Equations 12.84):

hdot = r*aps;

edot = h/mu*sin(TA)*apr ...

+ 1/mu/h*((h 2̂ + mu*r)*cos(TA) + mu*e*r)*aps;

RAdot = r/h/sin(i)*sin(phi)*aph;

idot = r/h*cos(phi)*aph;

wdot = - h*cos(TA)/mu/e*apr ...

+ (h 2̂ + mu*r)/mu/e/h*sin(TA)*aps ...

- r*sin(phi)/h/tan(i)*aph;

TAdot = h/r 2̂ ...

+ 1/e/h*(h 2̂/mu*cos(TA)*apr - (r + h 2̂/mu)*sin(TA)*aps);
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%...Return rates to ode45 in the array dfdt:

dfdt = [hdot edot RAdot idot wdot TAdot]’;

end %rates

% �����������������

end %Example_10_11

% ������������������������������������������������������������
D.48 EXAMPLE 10.12: USE GAUSS’ VARIATIONAL EQUATIONS TO
DETERMINE THE EFFECT OF SOLAR GRAVITY ON AN EARTH SATELLITE’S
ORBITAL PARAMETERS
FUNCTION FILE: Example_10_12.m

% ������������������������������������������������������������
function Example_10_12

% This function solves Example 10.12 by using MATLAB’s ode45 to integrate

% Equations 10.84, the Gauss variational equations, for a solar

% gravitational perturbation.

%

% User M-functions required: sv_from_coe, lunar_position

% User subfunctions required: solveit rates

% ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

global JD %Julian day

%...Preliminaries:

close all

clear all

clc

%...Conversion factors:

hours = 3600; %Hours to seconds

days = 24*hours; %Days to seconds

deg = pi/180; %Degrees to radians

%...Constants;

mu = 398600; %Earth’s gravitational parameter (km 3̂/s 2̂)

mu3 = 132.712e9; %Sun’s gravitational parameter (km 3̂/s 2̂)

RE = 6378; %Earth’s radius (km)

%...Initial data for each of the three given orbits:

type = {’GEO’ ’HEO’ ’LEO’};

%...GEO

n = 1;
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a0 = 42164; %semimajor axis (km)

e0 = 0.0001; %eccentricity

w0 = 0; %argument of perigee (rad)

RA0 = 0; %right ascension (rad)

i0 = 1*deg; %inclination (rad)

TA0 = 0; %true anomaly (rad)

JD0 = 2454283; %Julian Day

solveit

%...HEO

n = 2;

a0 = 26553.4;

e0 = 0.741;

w0 = 270;

RA0 = 0;

i0 = 63.4*deg;

TA0 = 0;

JD0 = 2454283;

solveit

%...LEO

n = 3;

a0 = 6678.136;

e0 = 0.01;

w0 = 0;

RA0 = 0;

i0 = 28.5*deg;

TA0 = 0;

JD0 = 2454283;

solveit

%...Subfunctions:

% ����������������������������������������
function solveit

%

% Calculations and plots common to all of the orbits

%

% –––––––––––––––––––––––––––––––––––––––––––––––––––

%

%...Initial orbital parameters (calculated from the given data):

h0 = sqrt(mu*a0*(1-e0 2̂)); %angular momentum (km 2̂/s)

T0 = 2*pi/sqrt(mu)*a0 1̂.5; %Period (s)

rp0 = h0 2̂/mu/(1 + e0); %perigee radius (km)

ra0 = h0 2̂/mu/(1 - e0); %apogee radius (km)

%...Store initial orbital elements (from above) in the vector coe0:

coe0 = [h0;e0;RA0;i0;w0;TA0];
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%...Use ODE45 to integrate the Equations 12.84, the Gauss variational

% equations with lunar gravity as the perturbation, from t0 to tf:

t0 = 0;

tf = 720*days;

y0 = coe0; %Initial orbital elements

nout = 400; %Number of solution points to output

tspan = linspace(t0, tf, nout); %Integration time interval

options = odeset(...

’reltol’, 1.e-8, ...

’abstol’, 1.e-8);

[t,y] = ode45(@rates, tspan, y0, options);

%...Time histories of the right ascension, inclination and argument of

% perigee:

RA = y(:,3);

i = y(:,4);

w = y(:,5);

%...Smooth the data to eliminate short period variations:

RA = rsmooth(RA);

i = rsmooth(i);

w = rsmooth(w);

figure(n)

subplot(1,3,1)

plot(t/days,(RA - RA0)/deg)

title(’Right Ascension vs Time’)

xlabel(’{\itt} (days)’)

ylabel(’{\it\Omega} (deg)’)

axis tight

subplot(1,3,2)

plot(t/days,(i - i0)/deg)

title(’Inclination vs Time’)

xlabel(’{\itt} (days)’)

ylabel(’{\iti} (deg)’)

axis tight

subplot(1,3,3)

plot(t/days,(w - w0)/deg)

title(’Argument of Perigee vs Time’)

xlabel(’{\itt} (days)’)

ylabel(’{\it\omega} (deg)’)

axis tight
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drawnow

end %solveit

% �������������������

% �������������������
function dfdt = rates(t,f)

% �������������������
%...The orbital elements at time t:

h = f(1);

e = f(2);

RA = f(3);

i = f(4);

w = f(5);

TA = f(6);

phi = w + TA; %argument of latitude

%...Obtain the state vector at time t from Algorithm 4.5:

coe = [h e RA i w TA];

[R, V] = sv_from_coe(coe,mu);

%...Obtain the unit vectors of the rsw system:

r = norm(R);

ur = R/r; %radial

H = cross(R,V);

uh = H/norm(H); %normal

s = cross(uh, ur);

us = s/norm(s); %transverse

%...Update the Julian Day:

JD = JD0 + t/days;

%...Find and normalize the position vector of the sun:

[lamda eps R_S] = solar_position(JD);

r_S = norm(R_S);

R_rel = R_S’ - R; %R_rel = position vector of sun wrt satellite

r_rel = norm(R_rel);

%...See Appendix F:

q = dot(R,(2*R_S’ - R))/r_S 2̂;

F = (q 2̂ - 3*q + 3)*q/(1 + (1-q) 1̂.5);;

%...Gravitationl perturbation of the sun (Equation 12.130):

ap = mu3/r_rel 3̂*(F*R_S’ - R);

%...Perturbation components in the rsw system:

apr = dot(ap,ur);

aps = dot(ap,us);

aph = dot(ap,uh);
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%...Gauss variational equations (Equations 12.84):

hdot = r*aps;

edot = h/mu*sin(TA)*apr ...

+ 1/mu/h*((h 2̂ + mu*r)*cos(TA) + mu*e*r)*aps;

RAdot = r/h/sin(i)*sin(phi)*aph;

idot = r/h*cos(phi)*aph;

wdot = - h*cos(TA)/mu/e*apr ...

+ (h 2̂ + mu*r)/mu/e/h*sin(TA)*aps ...

- r*sin(phi)/h/tan(i)*aph;

TAdot = h/r 2̂ ...

+ 1/e/h*(h 2̂/mu*cos(TA)*apr - (r + h 2̂/mu)*sin(TA)*aps);

%...Return rates to ode45 in the array dfdt:

dfdt = [hdot edot RAdot idot wdot TAdot]’;

end %rates

% ���������������

end %Example_10_12

% ������������������������������������������������������������
CHAPTER 11: RIGID BODY DYNAMICS

D.49 ALGORITHM 11.1: CALCULATE THE DIRECTION COSINE MATRIX FROM
THE QUATERNION
FUNCTION FILE: dcm_from_q.m

% �����������������������������������
function Q = dcm_from_q(q)

% �������������������
%{

This function calculates the direction cosine matrix

from the quaternion.

q - quaternion (where q(4) is the scalar part)

Q - direction cosine matrix

%}

% ––––––––––––––––––––––––––––––––––––––––––––––
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q1 = q(1); q2 = q(2); q3 = q(3); q4 = q(4);

Q = [q1 2̂-q2 2̂-q3 2̂+q4 2̂, 2*(q1*q2+q3*q4), 2*(q1*q3-q2*q4);

2*(q1*q2-q3*q4), -q1 2̂+q2 2̂-q3 2̂+q4 2̂, 2*(q2*q3+q1*q4);

2*(q1*q3+q2*q4), 2*(q2*q3-q1*q4), -q1 2̂-q2 2̂+q3 2̂+q4 2̂ ];

end %dcm_from_q

% �����������������������������������
D.50 ALGORITHM 11.2: CALCULATE THE QUATERNION FROM THE
DIRECTION COSINE MATRIX
FUNCTION FILE: q_from_dcm.m

% �����������������������������������
function q = q_from_dcm(Q)

% �������������������
%{

This function calculates the quaternion from the direction

cosine matrix.

Q - direction cosine matrix

q - quaternion (where q(4) is the scalar part)

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

K3 = ...

[Q(1,1)-Q(2,2)-Q(3,3), Q(2,1)+Q(1,2), Q(3,1)+Q(1,3), Q(2,3)-Q(3,2);

Q(2,1)+Q(1,2), Q(2,2)-Q(1,1)-Q(3,3), Q(3,2)+Q(2,3), Q(3,1)-Q(1,3);

Q(3,1)+Q(1,3), Q(3,2)+Q(2,3), Q(3,3)-Q(1,1)-Q(2,2), Q(1,2)-Q(2,1);

Q(2,3)-Q(3,2), Q(3,1)-Q(1,3), Q(1,2)-Q(2,1), Q(1,1)+Q(2,2)+Q(3,3)]/3;

[eigvec, eigval] = eig(K3);

[x,i] = max(diag(eigval));

q = eigvec(:,i);

end %q_from_dcm

% �����������������������������������
D.51 QUATERNION VECTOR ROTATION OPERATION (EQ. 11.160)
FUNCTION FILE: quat_rotate.m

% ����������������������������������������
function r = quat_rotate(q,v)

% ���������������������
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%{

quat_rotate rotates a vector by a unit quaternion.

r = quat_rotate(q,v) calculates the rotated vector r for a

quaternion q and a vector v.

q is a 1-by-4 matrix whose norm must be 1. q(1) is the scalar part

of the quaternion.

v is a 1-by-3 matrix.

r is a 1-by-3 matrix.

The 3-vector v is made into a pure quaternion 4-vector V = [0 v]. r is

produced by the quaternion product R = q*V*qinv. r = [R(2) R(3) R(4)].

MATLAB M-functions used: quatmultiply, quatinv.

%}

% –––––––––––––––––––––––––––––––––––––––––––––––––––

qinv = quatinv(q);

r = quatmultiply(quatmultiply(q,[0 v]),qinv);

r = r(2:4);

end %quat_rotate

% ����������������������������������������
D.52 EXAMPLE 11.26: SOLUTION OF THE SPINNING TOP PROBLEM
FUNCTION FILE: Example_11_23.m

% ������������������������
function Example_11_26

% ����������������
%{

This program numerically integrates Euler’s equations of motion

for the spinning top (Example 11.26, Equations (a)). The

quaternion is used to obtain the time history of the top’s

orientation. See Figures 11.34 and 11.35.

User M-functions required: rkf45, q_from_dcm, dcm_from_q, dcm_to_euler

User subfunction required: rates

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all; close all; clc

%...Data from Example 11.15:

g = 9.807; % Acceleration of gravity (m/s 2̂)

m = 0.5; % Mass in kg

d = 0.05; % Distance of center of mass from pivot point (m)

A = 12.e-4; % Moment of inertia about body x (kg-m 2̂)

B = 12.e-4; % Moment of inertia about body y (kg-m 2̂)

C = 4.5e-4; % Moment of inertia about body z (kg-m 2̂)
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ws0 = 1000*2*pi/60; % Spin rate (rad/s)

wp0 = 51.93*2*pi/60;% Precession rate (rad/s) Use to obtain Fig. 11.33

wp0 = 0; % Use to obtain Fig, 11.34

wn0 = 0; % Nutation rate (deg/s)

theta = 60; % Initial nutation angle (deg)

z = [0 -sind(theta) cosd(theta)]; % Initial z-axis direction:

p = [1 0 0]; % Initial x-axis direction

% (or a line defining x-z plane)

%...

y = cross(z,p); % y-axis direction (normal to x-z plane)

x = cross(y,z); % x-axis direction (normal to y-z plane)

i = x/norm(x); % Unit vector along x axis

j = y/norm(y); % Unit vector along y axis

k = z/norm(z); % Unit vector along z axis

QXx = [i; j; k]; % Initial direction cosine matrix

%...Initial precession, nutation, and spin angles (deg):

[phi0 theta0 psi0] = dcm_to_euler(QXx);

%...Initial quaternion (column vector):

q0 = q_from_dcm(QXx);

%...Initial body-frame angular velocity, column vector (rad/s):

w0 = [wp0*sind(theta0)*sin(psi0) + wn0*cosd(psi0), ...

wp0*sind(theta0)*cos(psi0) - wn0*sind(psi0), ...

ws0 + wp0*cosd(theta0)]’;

t0 = 0; % Initial time (s)

tf = 1.153; % Final time (s) (for 360 degrees of precession)

f0 = [q0; w0]; % Initial conditions vector (quaternion & angular

% velocities)

%...RKF4(5) numerical ODE solver. Time derivatives computed in

% function ’rates’ below.

[t,f] = rkf45(@rates, [t0,tf], f0);

%...Solutions for quaternion and angular velocities at ’nsteps’ times

% from t0 to tf

q = f(:,1:4);

wx = f(:,5);

wy = f(:,6);

wz = f(:,7);

%...Obtain the direction cosine matrix, the Euler angles and the Euler

% angle rates at each solution time:
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for m = 1:length(t)

%...DCM from the quaternion:

QXx = dcm_from_q(q(m,:));

%...Euler angles (deg) from DCM:

[prec(m) ...

nut(m) ...

spin(m)] = dcm_to_euler(QXx);

%...Euler rates from Eqs. 11.116:

wp(m) = (wx(m)*sind(spin(m)) + wy(m)*cosd(spin(m)))/sind(nut(m));

wn(m) = wx(m)*cosd(spin(m)) - wy(m)*sind(spin(m));

ws(m) = -wp(m)*cosd(nut(m)) + wz(m);

end

plotit

% �������������������
function dfdt = rates(t,f)

% �������������������
q = f(1:4); % components of quaternion

wx = f(5); % angular velocity along x

wy = f(6); % angular velocity along y

wz = f(7); % angular velocity along z

q = q/norm(q); % normalize the quaternion

Q = dcm_from_q(q); % DCM from quaternion

%...Body frame components of the moment of the weight vector

% about the pivot point:

M = Q*[-m*g*d*Q(3,2)

m*g*d*Q(3,1)

0];

%...Skew-symmetric matrix of angular velocities:

Omega = [ 0 wz -wy wx

-wz 0 wx wy

wy -wx 0 wz

-wx -wy -wz 0];

q_dot = Omega*q/2; % time derivative of quaternion

%...Euler’s equations:

wx_dot = M(1)/A - (C - B)*wy*wz/A; % time derivative of wx

wy_dot = M(2)/B - (A - C)*wz*wx/B; % time derivative of wy

wz_dot = M(3)/C - (B - A)*wx*wy/C; % time derivative of wz

%...Return the rates in a column vector:

dfdt = [q_dot; wx_dot; wy_dot; wz_dot];

end %rates
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% �����������
function plotit

% �����������

figure(’Name’, ’Euler angles and their rates’, ’color’, [1 1 1])

subplot(321)

plot(t, prec )

xlabel(’time (s)’)

ylabel(’Precession angle (deg)’)

axis([-inf, inf, -inf, inf])

axis([-inf, inf, -inf, inf])

grid

subplot(322)

plot(t, wp*60/2/pi)

xlabel(’time (s)’)

ylabel(’Precession rate (rpm)’)

axis([0, 1.153, 51, 53])

axis([-inf, inf, -inf, inf])

grid

subplot(323)

plot(t, nut)

xlabel(’time (s)’)

ylabel(’Nutation angle (deg)’)

axis([0, 1.153, 59, 61])

axis([-inf, inf, -inf, inf])

grid

subplot(324)

plot(t, wn*180/pi)

xlabel(’time (s)’)

ylabel(’Nutation rate (deg/s)’)

axis([-inf, inf, -inf, inf])

grid

subplot(325)

plot(t, spin)

xlabel(’time (s)’)

ylabel(’Spin angle (deg)’)

axis([-inf, inf, -inf, inf])

grid

subplot(326)

plot(t, ws*60/2/pi)
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xlabel(’time (s)’)

ylabel(’Spin rate (rpm)’)

axis([-inf, inf, -inf, inf])

grid

end %plotit

end %Example

% ������������������������
CHAPTER 12: SPACECRAFT ATTITUDE DYNAMICS

[There are no scripts for Chapter 12.]
CHAPTER 13: ROCKET VEHICLE DYNAMICS

D.53 EXAMPLE 13.3: CALCULATION OF A GRAVITY TURN TRAJECTORY
FUNCTION FILE: Example_13_03.m

% �����������������������������������
function Example_13_03

% ����������������
%{

This program numerically integrates Equations 13.6 through

13.8 for a gravity turn trajectory.

M-functions required: atmosisa

User M-functions required: rkf45

User subfunction requred: rates

%}

% ––––––––––––––––––––––––––––––––––––––––––––––

clear all;close all;clc

deg = pi/180; % ...Convert degrees to radians

g0 = 9.81; % ...Sea-level acceleration of gravity (m/s)

Re = 6378e3; % ...Radius of the earth (m)

hscale = 7.5e3; % ...Density scale height (m)

rho0 = 1.225; % ...Sea level density of atmosphere (kg/m 3̂)

diam = 196.85/12 ...

*0.3048; % ...Vehicle diameter (m)

A = pi/4*(diam) 2̂; % ...Frontal area (m 2̂)

CD = 0.5; % ...Drag coefficient (assumed constant)

m0 = 149912*.4536; % ...Lift-off mass (kg)

n = 7; % ...Mass ratio
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T2W = 1.4; % ...Thrust to weight ratio

Isp = 390; % ...Specific impulse (s)

mfinal = m0/n; % ...Burnout mass (kg)

Thrust = T2W*m0*g0; % ...Rocket thrust (N)

m_dot = Thrust/Isp/g0; % ...Propellant mass flow rate (kg/s)

mprop = m0 - mfinal; % ...Propellant mass (kg)

tburn = mprop/m_dot; % ...Burn time (s)

hturn = 130; % ...Height at which pitchover begins (m)

t0 = 0; % ...Initial time for the numerical integration

tf = tburn; % ...Final time for the numerical integration

tspan = [t0,tf]; % ...Range of integration

% ...Initial conditions:

v0 = 0; % ...Initial velocity (m/s)

gamma0 = 89.85*deg; % ...Initial flight path angle (rad)

x0 = 0; % ...Initial downrange distance (km)

h0 = 0; % ...Initial altitude (km)

vD0 = 0; % ...Initial value of velocity loss due

% to drag (m/s)

vG0 = 0; % ...Initial value of velocity loss due

% to gravity (m/s)

%...Initial conditions vector:

f0 = [v0; gamma0; x0; h0; vD0; vG0];

%...Call to Runge-Kutta numerical integrator ’rkf45’

% rkf45 solves the system of equations df/dt = f(t):

[t,f] = rkf45(@rates, tspan, f0);

%...t is the vector of times at which the solution is evaluated

%...f is the solution vector f(t)

%...rates is the embedded function containing the df/dt’s

% ...Solution f(t) returned on the time interval [t0 tf]:

v = f(:,1)*1.e-3; % ...Velocity (km/s)

gamma = f(:,2)/deg; % ...Flight path angle (degrees)

x = f(:,3)*1.e-3; % ...Downrange distance (km)

h = f(:,4)*1.e-3; % ...Altitude (km)

vD = -f(:,5)*1.e-3; % ...Velocity loss due to drag (km/s)

vG = -f(:,6)*1.e-3; % ...Velocity loss due to gravity (km/s)

%...Dynamic pressure vs time:

for i = 1:length(t)

Rho = rho0 * exp(-h(i)*1000/hscale); %...Air density (kg/m 3̂)
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q(i) = 1/2*Rho*(v(i)*1.e3) 2̂; %...Dynamic pressure (Pa)

[dum a(i) dum dum] = atmosisa(h(i)*1000); %...Speed of sound (m/s)

M(i) = 1000*v(i)/a(i); %...Mach number

end

%...Maximum dynamic pressure and corresponding time, speed, altitude and

% Mach number:

[maxQ,imax] = max(q); %qMax

tQ = t(imax); %Time

vQ = v(imax); %Speed

hQ = h(imax); %Altitude

[dum aQ dum dum] = atmosisa(h(imax)*1000); %Speed of sound at altitude

MQ = 1000*vQ/aQ;

output

return

% �������������������
function dydt = rates(t,y)

% �������������������
% Calculates the time rates dy/dt of the variables y(t)

% in the equations of motion of a gravity turn trajectory.

% –––––––––––––––––––––––––

%...Initialize dydt as a column vector:

dydt = zeros(6,1);

v = y(1); % ...Velocity

gamma = y(2); % ...Flight path angle

x = y(3); % ...Downrange distance

h = y(4); % ...Altitude

vD = y(5); % ...Velocity loss due to drag

vG = y(6); % ...Velocity loss due to gravity

%...When time t exceeds the burn time, set the thrust

% and the mass flow rate equal to zero:

if t < tburn

m = m0 - m_dot*t; % ...Current vehicle mass

T = Thrust; % ...Current thrust

else

m = m0 - m_dot*tburn; % ...Current vehicle mass

T = 0; % ...Current thrust

end

g = g0/(1 + h/Re) 2̂; % ...Gravitational variation

% with altitude h
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rho = rho0*exp(-h/hscale); % ...Exponential density variation

% with altitude

D = 0.5*rho*v 2̂*A*CD; % ...Drag [Equation 13.1]

%...Define the first derivatives of v, gamma, x, h, vD and vG

% ("dot" means time derivative):

%v_dot = T/m - D/m - g*sin(gamma); % ...Equation 13.6

%...Start the gravity turn when h = hturn:

if h <= hturn

gamma_dot = 0;

v_dot = T/m - D/m - g;

x_dot = 0;

h_dot = v;

vG_dot = -g;

else

v_dot = T/m - D/m - g*sin(gamma);

gamma_dot = -1/v*(g - v 2̂/(Re + h))*cos(gamma);% ...Equation 13.7

x_dot = Re/(Re + h)*v*cos(gamma); % ...Equation 13.8(1)

h_dot = v*sin(gamma); % ...Equation 13.8(2)

vG_dot = -g*sin(gamma); % ...Gravity loss rate

end % Equation 13.27(1)

vD_dot = -D/m; % ...Drag loss rate

% Equation 13.27(2)

%...Load the first derivatives of y(t) into the vector dydt:

dydt(1) = v_dot;

dydt(2) = gamma_dot;

dydt(3) = x_dot;

dydt(4) = h_dot;

dydt(5) = vD_dot;

dydt(6) = vG_dot;

end %rates

% �����������
function output

% �����������
fprintf(’\n\n –––––––––––––––––––––––––––––––––––\n’)

fprintf(’\n Initial flight path angle = %10.3f deg ’,gamma0/deg)

fprintf(’\n Pitchover altitude = %10.3f m ’,hturn)

fprintf(’\n Burn time = %10.3f s ’,tburn)

fprintf(’\n Maximum dynamic pressure = %10.3f atm ’,maxQ*9.869e-6)

fprintf(’\n Time = %10.3f min ’,tQ/60)

fprintf(’\n Speed = %10.3f km/s’,vQ)

fprintf(’\n Altitude = %10.3f km ’,hQ)

fprintf(’\n Mach Number = %10.3f ’,MQ)

fprintf(’\n At burnout:’)
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fprintf(’\n Speed = %10.3f km/s’,v(end))

fprintf(’\n Flight path angle = %10.3f deg ’,gamma(end))

fprintf(’\n Altitude = %10.3f km ’,h(end))

fprintf(’\n Downrange distance = %10.3f km ’,x(end))

fprintf(’\n Drag loss = %10.3f km/s’,vD(end))

fprintf(’\n Gravity loss = %10.3f km/s’,vG(end))

fprintf(’\n\n –––––––––––––––––––––––––––––––––––\n’)

figure(’Name’,’Trajectory and Dynamic Pressure’)

subplot(2,1,1)

plot(x,h)

title(’(a) Altitude vs Downrange Distance’)

axis equal

xlabel(’Downrange Distance (km)’)

ylabel(’Altitude (km)’)

axis([-inf, inf, -inf, inf])

grid

subplot(2,1,2)

plot(h, q*9.869e-6)

title(’(b) Dynamic Pressure vs Altitude’)

xlabel(’Altitude (km)’)

ylabel(’Dynamic pressure (atm)’)

axis([-inf, inf, -inf, inf])

xticks([0:10:120])

grid

end %output

end %Example_13_03

% �����������������������������������



APPENDIX
GRAVITATIONAL POTENTIAL OF A
SPHERE
 E

Fig. E.1 shows a point massmwith Cartesian coordinates (x,y, z) as well a system ofN point massesm1,

m2,m3,⋯,mN. The ith one of these particles has massmi and coordinates (xi,yi, zi). The total mass of the

N particles is M,

M¼
XN
i¼1

mi (E.1)

The position vector drawn from mi to m is ri and the unit vector in the direction of ri is

ûi ¼ ri

ri
FIG. E.1

A system of point masses and a neighboring test mass m.
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The gravitational force exerted on m by mi is opposite in direction to ri, and is given by

Fi ¼�Gmmi

ri2
ûi ¼�Gmmi

ri3
ri

The potential energy of this force is

Vi ¼�G
mmi

ri
(E.2)

The total gravitational potential energy of the system due to the gravitational attraction of all the N
particles is

V¼
XN
i¼1

Vi (E.3)

Therefore, the total force of gravity F on the mass m is

F¼�rV¼� ∂V

∂x
î+

∂V

∂y
ĵ+

∂V

∂z
k̂

� �
(E.4)

where r is the gradient operator.

Consider the solid sphere of massM and radius R0 illustrated in Fig. E.2. Instead of a discrete system

as above, we have a continuum with mass density ρ. Each “particle” is a differential element dM ¼ ρdv
of the total mass M. Eq. (E.1) becomes

M¼
ððð
v

ρ dv (E.5)
FIG. E.2

Sphere with a spherically symmetric mass distribution.
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where dv is the volume element, and v is the total volume of the sphere. In this case, Eq. (E.2) becomes

dV¼�G
m dM

r
¼�Gm

ρ dv

r

where r is the distance from the differential mass dM to the finite point massm. Eq. (E.3) is replaced by

V¼�Gm

ððð
v

ρ dv

r
(E.6)

Let the mass of the sphere have a spherically symmetric distribution, which means that the mass density

ρ depends only on r0, the distance from the centerC of the sphere. An element of mass dM has spherical

coordinates (r0,θ,ϕ), where the angle θ is measured in the xy plane of a Cartesian coordinate system

with origin at C, as shown in Fig. E.2. In spherical coordinates the volume element is

dv¼ r02 sinϕ dϕ dr0 dθ (E.7)

Therefore Eq. (E.5) becomes

M¼
ð2π

θ¼0

ðR0

r0¼0

ðπ
ϕ¼0

ρr02 sinϕ dϕ dr0 dθ¼
ð2π
0

dθ

0@ 1A ðπ
0

sinϕ dϕ

0@ 1A ðR0

0

ρr02 dr0

0@ 1A¼ 2πð Þ 2ð Þ
ðR0

0

ρr02 dr0

0@ 1A
so that the mass of the sphere is given by

M¼ 4π

ðR0

r0¼0

ρr02 dr0 (E.8)

Substituting Eq. (E.7) into Eq. (E.6) yields

V¼�Gm

ð2π
θ¼0

ðR0

r0¼0

ðπ
ϕ¼0

ρr02 sinϕ dϕ dr0 dθ
r

¼�2πGm

ðR0

0

ðπ
0

sinϕ dϕ

r

0@ 1Aρr02 dr0

24 35 (E.9)

The distance r is found by using the law of cosines,

r¼ R2 + r02�2r0Rcosϕ
� �1=2

where R is the distance from the center of the sphere to the mass m. Differentiating this equation with

respect to ϕ, holding r0 constant, yields

dr

dϕ
¼ 1

2
R2 + r02�2r0Rcosϕ

� ��1=2

2r0Rsinϕ dϕð Þ¼ r0Rsinϕ
r

so that

sinϕ dϕ¼ r dr

r0R
It follows that ðπ

ϕ¼0

sinϕ dϕ

r
¼ 1

r0R

ðR + r0

R�r0

dr¼ 2

R
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Substituting this result along with Eq. (E.8) into Eq. (E.9) yields

V¼�GMm

R
(E.10)

We conclude that the gravitational potential energy, and hence (from Eq. E.4) the gravitational force, of

a sphere with a spherically symmetric mass distributionM is the same as that of a point massM located

at the center of the sphere.





APPENDIX
F
COMPUTING THE DIFFERENCE
BETWEEN NEARLY EQUAL
NUMBERS
Let a, b, and c be vectors such that c ¼ b � a and a≪ b. Clearly, c � b. To calculate

F� 1�c3=b3 (F.1)

we may first define

q� 1�c2=b2 (F.2)

It follows that

F¼ 1� c2=b2
� �3=2 ¼ 1� 1�qð Þ3=2 ¼ 1� 1�qð Þ3=2

h i1 + 1�qð Þ3=2
1 + 1�qð Þ3=2

¼ 1� 1�qð Þ3
1 +

ffiffiffiffiffiffiffiffiffiffi
1�q

pð Þ3

or

F qð Þ¼ q2�3q + 3

1 + 1�qð Þ3=2
q (F.3)

Using this formula to compute F does not require finding the difference between nearly equal numbers,

as in Eq. (F.1). However, that problem persists when using Eq. (F.2) to calculate q. We can work around

that issue by observing that

q¼ b2�c2

b2
¼ b�cð Þ � b + cð Þ

b2

or, since c ¼ b � a,

q¼ a � 2b�að Þ
b2

(F.4)

Computing q by means of this formula and substituting the result into Eq. (F.3) avoids roundoff error

that may occur by calculating F using Eq. (F.1) when c/b � 1 (Battin, 1987).
REFERENCE
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New York.
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APPENDIX
G
DIRECTION COSINE MATRIX IN
TERMS OF THE UNIT
QUATERNION
By means of Eq. (11.154) we can rewrite the direction cosine matrix (Eq. 11.143) entirely in terms of

the components of the unit quaternion q
_
.

Let us deal with each of the nine components of [Q]Xx in turn, starting with Q11. From Eq. (11.143)

we have

Q11 ¼ l2 1� cosθð Þ+ cosθ

Substituting the trig identity cosθ ¼ cos2(θ/2) � sin2(θ/2) from Eq. (11.156), and then expanding and

rearranging terms yields

Q11 ¼ l2� l2 cos2 θ=2ð Þ� sin2 θ=2ð Þ+ l2 sin2 θ=2ð Þ + cos2 θ=2ð Þ� �
Since cos2(θ/2) ¼ 1 � sin2(θ/2), we may write this as

Q11 ¼ l2�1
� �

sin2 θ=2ð Þ+ l2 sin2 θ=2ð Þ + cos2 θ=2ð Þ� �
From Eq. (11.141) we have l2 � 1 ¼ � m2 � n2, so that, making use of Eq. (11.154),

Q11 ¼ l2 sin2 θ=2ð Þ�m2 sin2 θ=2ð Þ�n2 sin2 θ=2ð Þ+ cos2 θ=2ð Þ

¼ l2 sin2 θ=2ð Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{q1

2

�m2 sin2 θ=2ð Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{q2

2

�n2 sin2 θ=2ð Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{q3

2

+ cos2 θ=2ð Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{q4

2

Therefore,

Q11 ¼ q1
2�q2

2�q3
2 + q4

2

Likewise, for the remaining two diagonal components of [Q]Xx we find that

Q22 ¼�q1
2 + q2

2�q3
2 + q4

2

Q33 ¼�q1
2�q2

2 + q3
2 + q4

2

For the off-diagonal components of [Q]Xx, we start with Q12 and observe from Eq. (11.143) that

Q12 ¼ lm 1� cosθð Þ + nsinθ
Replacing sinθ and cosθ by the trig identities in Eq. (11.156), we get

Q12 ¼ lm 1� cos2 θ=2ð Þ+ sin2 θ=2ð Þ� �
+ 2nsin θ=2ð Þcos θ=2ð Þ½ �
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_

Employing the identity cos2(θ/2) ¼ 1 � sin2(θ/2) yields

Q12 ¼ 2lmsin2 θ=2ð Þ + 2nsin θ=2ð Þcos θ=2ð Þ

¼ 2 � lsin θ=2ð Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{q1

� msin θ=2ð Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{q2

+ 2 � nsin θ=2ð Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{q3

� cos θ=2ð Þ
zfflfflfflfflffl}|fflfflfflfflffl{q4

so that

Q12 ¼ 2 q1q2 + q3q4ð Þ
Following the same line of reasoning for the five remaining off-diagonal components, leads to

Q13 ¼ 2 q1q3�q2q4ð Þ
Q21 ¼ 2 q1q2�q3q4ð Þ
Q23 ¼ 2 q2q3 + q1q4ð Þ
Q31 ¼ 2 q1q3 + q2q4ð Þ
Q32 ¼ 2 q2q3�q1q4ð Þ

This shows that Eq. (11.157) is indeed a valid formula for the direction cosine matrix [Q]Xx in terms of

the unit quaternion q
_
.
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Note: Page numbers followed by f indicate figures, t indicate tables, and b indicate boxes.
A
Absolute

acceleration, 18, 19f, 23–24, 27, 31, 33, 56–58, 63, 118, 529,
544–545, 553, 641–642, 654

angular acceleration, 26, 546–552, 577–581, 594, 654
angular velocity, 23–24, 63–64, 78, 544–552, 557, 562–563,

566–567, 589–590, 624, 636, 654, 678–681, 689
frame (inertial frame), 545

velocity, 26, 30–32, 56, 378, 448–457, 468, 556, 566–567,
581, 667, 708

Acceleration of gravity, 15–16, 15f, 18, 47–49, 287–288, 329,
333, 488, 655, 707, 710–712, 714

Acceleration vector, 10f, 13–14, 31, 59, 63, 353, 474, 497, 539,
706

Advance of periapsis, 213–215, 213f
Aiming radius of a hyperbola, 96, 102, 405–407, 410–411
Angles-only orbit determination, 268

Angular acceleration vector, 353

Angular impulse, 20–21, 556, 661
Angular impulse-momentum principle, 556

Angular momentum

about a fixed point, 557, 563

about center of mass in, 554–555, 557, 565–567, 582–583,
634, 638–645, 647, 651, 660–661, 664–668, 673–676

of a continuum, (AU: The term is not referred in the text.

Please check.)

central force motion, (AU: The term is not referred in the text.

Please check.)

for hyperbolic arrival, 387

for hyperbolic departure, 386, 398–399, 439, 442
Angular velocity vector, 22, 352, 543–544, 546–552, 559, 564,

567, 577, 612–618, 622, 636, 639, 641, 643, 647–648,
673, 679–681, 688–689

Apparent solar ecliptic longitude, 523

Apse line, 71, 73–74, 81–82, 94–95, 102, 143–144, 213,
215–217, 289, 303–308, 306f, 387–388, 399, 412–414,
447f, 518

Apse line rotation, 308–309f, 309–313, 312f, 319, 319f, 331,
480–481, 508

Argument of periapsis, 213, 499–500, 506–513
Arrival trajectory

interplanetary, 385–387, 391, 396–397, 427–430, 432–433
lunar, 441, 449

Astronomical unit (AU), 386f, 423, 520, 523

Atmospheric drag, 479–480, 483–487, 508–510, 521
Attitude change by coning, 660–663, 660f, 662–663f
Attitude change using thrusters, 663–665, 664f
Averaging of osculating elements, 513

B
Bac-cab rule (vector identity), 8–9, 69, 232, 235, 557, 610
Ballistic coefficient, 486–487, 508–510
Barker’s equation for the parabola, 157, 158f

Bessel functions, 153, 155, 155f

Bielliptic Hohmann transfer, 287, 295–298, 295–297f
Binomial expansion theorem, 243

Binormal, 12–14, 474
Bisection method, 122–124, 123f, 125t
Blackbody, 520–521
Body-fixed frame, 546–552, 577, 588, 590, 597, 605, 613, 619,

641–642, 644, 654, 673
Burnout velocity, 130, 130f, 403, 711–712, 723–726, 726f, 731

C
Cannonball model, 520–521
Cartesian coordinate system, 3, 3f, 9, 13, 21–22, 64, 82, 92–93,

92f, 96, 97f, 102, 186, 195, 202, 220–221, 488, 563, 565,
568, 751

Cartesian coordinate transformations, 202, 600

Celestial sphere, 183–185, 183f, 249
Center of curvature, 12–14, 706
Center of mass, 18, 56–58, 60–62, 61–62f, 64f, 66–67, 77,

116–119, 125, 128, 397, 399, 407, 488–489, 543,
552–563, 565–567, 571–576, 581–582, 584, 586–588,
593–595, 633–634, 641, 649–651, 653–654, 656–657,
659, 663, 666–667, 673–678, 675f, 685, 687–688, 688f,
690, 695

Characteristic energy, 98

Characteristic equation, 568–569, 659–660, 692
Chase maneuver, 287, 313–317
Chasles’ theorem, 543

Circular orbit

energy, 76, 387

period, 74f, 76, 118, 125, 175–176
speed, 74f, 91, 294, 357, 386, 437, 441, 483, 582–583, 708

Classical Euler angle sequence, 203, 210, 588, 588f, 600, 602

Clohessy-Wiltshire (CW) equations, 365–369, 365f, 372,
374–375

Clohessy-Wiltshire (CW) frame orbital elements from the

state vector, 378, 378f

Comoving reference frame, 56f, 63
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Coning of spinning spacecraft conservative force, 660–663,
660f, 662–663f

Continuous medium, 552f

Control moment gyro, 633, 682–683, 683f, 685
Coordinate transformation, 195–208, 196f, 263, 588, 610–612
Coriolis acceleration, 27–29, 33
Coriolis force, 1, 34

Cowell’s method, 480–481, 481f, 486
Cranking maneuver, 287–288, 317–318
Cross product, 4–5
Circular restricted 3-body problem, 116–132
equations of motion, 118–120
D
Direction cosine matrix (DCM)

for Euler angles, 204–206, 205–206b, 553
from quaternion, 755–756
for yaw-pitch-roll angles, 206, 207–208b, 598

Declination, 181–188, 183f, 220–223, 256–257, 259–260,
262–264, 269, 276, 508–510

Delta-v

for Hohmann transfers, 292–293, 295–298, 296–298b,
333–334

for non-Hohmann transfers, 303–304, 305–308b
for plane change, 317–318, 320, 324–326b, 326
for a rocket, 287, 705, 716

Departure trajectory

interplanetary, 385–388, 390f, 396–403, 401–403b, 407, 415,
427, 429–431b

lunar, 294, 439, 442, 449–451
Derivative of a moving vector, 21–26
Diagonal matrix, 559, 614

Direction angles, 4, 4f

Dissipative effects, 648

Distance along path, 11

Dot product, 4–5
Drag coefficient, 485

Drag loss, 711–712, 714
Dual-spin spacecraft, 421, 633, 650–653, 650f, 676–678b, 676f
E
Earth-centered inertial frame, 29f

Earth-centered rotating frame, 29f, 473f

Earth’s oblateness, 212–224, 212t, 213f, 217–220b
Eccentric anomaly

ellipse, 155, 159

hyperbola, 159, 161, 163

Eccentricity, 55, 60, 71–72, 82–85, 87, 89–90, 97, 100,
112–113b, 153, 155, 189–190, 240–241, 254, 290, 311,
398–399, 406–407, 409, 414, 437–439, 443–445, 495,
502, 508, 514–515
Eccentricity vector, 71–72, 72–73f, 74, 190, 232–233, 443, 445,
494, 499

Ecliptic plane, 182f, 183–184, 223, 385, 459–460, 460f,
521–522, 530

Effective exhaust velocity, 709

Eigenvalues, 567–570
Eigenvectors, 567–571, 613–614
Elementary rotation matrices, 203, 597–598
Elliptical orbit

energy, 83

period, 84, 143

Elliptic mean anomaly, 144, 182f

Elliptic orbit equation., 72

Encke’s method, 481–483, 482–483f, 493f, 494
Energy sink method of stability analysis, 651, 653

Ephemeris, 184–185, 185t, 423–427, 457–461, 459f
Equations of motion

control moment gyros, 682

dual-spin spacecraft, 651

gravity turn trajectory, 705

gyro-stabilized spacecraft, 672–685
rigid body rotation, 553–557
spinning top, 583–588

Equilibrium points (Lagrange points), 120–126, 122f
Escape velocity (parabolic orbital speed), 90, 130–131
Euler angle rates vs. angular velocities, 593

Euler angles, 189–190, 206, 543–544, 588–597, 612,
617f

Euler angle sequences

asymmetric, 203

symmetric, 203

Euler axis, 600–603, 605, 610, 612–613, 618f
Euler symmetric parameters (quaternion), 602

Euler’s equations for torque-free motion, 641–642
Euler’s equations of motion, 688

Euler’s modified equations of motion, 577

Euler’s numerical integration method, 39

Exhaust velocity, 709, 731
F
Fehlberg coefficients, 45–46
Flattening factor, 266, 276

Flight path angle, 16–17, 73f, 74, 88, 91, 134–136,
138, 304f, 307–308, 318, 343, 440, 443, 444f,
706, 708, 711

Force, 1, 14, 18

Frame of reference, 9, 11, 18, 21–24, 29–30, 52, 55–56, 60f,
63–64, 116–117, 181, 191–193, 209, 256, 351,
357–359, 423, 427, 446, 454f, 544–546, 559, 588,
610–612, 627, 742

Frozen orbits, 518
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G
Gauss method, 231, 268–282
iterative improvement, 274–282, 284

Gauss planetary equations, 501, 507–508b, 510–513, 522–523,
533, 536, 540

Gauss variational equations, 480, 494, 498–513
Geocentric ecliptic plane, 522, 530

Geocentric equatorial frame, 181, 185–189, 190f, 209–212, 249,
256, 258, 261–262, 351, 360, 423, 461, 469, 485, 499,
509f, 522

Geocentric latitude, 254–256, 255f, 490–491
Geocentric right ascension-declination frame, 181–185
Geodetic latitude, 254–256, 255f
Geopotential perturbations, 480

Geostationary equatorial orbit (GEO), 78–80, 79–80f, 302f,
320–321, 324–326, 324f, 333–334, 533t, 703, 734

Gibbs method, 231–238, 269, 283t
Gradient operator, 58, 488, 750

Gravitational constant, 14, 50, 57, 487

Gravitational parameter, 63, 67, 77–78, 191–193, 213, 398,
401–403, 406, 415, 437, 464–465, 470, 535, 738t

Gravitational perturbations, 487–494, 518, 540
Gravitational potential energy, 127–128, 487, 750, 752
Gravitational torque, 688

Gravity assist flyby, 421–422
Gravity-gradient stabilization, 685–697, 696f, 704
Gravity loss, 711, 714–715
Gravity turn trajectory, 705, 707–708, 715–716, 715–716f
Greenwich meridian, 29–30, 249, 253–254
Greenwich sidereal time, 249, 251–254, 257
Ground tracks, 181, 220–224, 224f
Gyroscopic moment, 586–588, 631
Gyrostat, 650–651

H
Halo orbits, 125–126
Heliocentric ecliptic frame, 423, 423f, 425, 427

Heliocentric orbits, 387–388, 396
Heliocentric state vector, 267–268
Heun’s predictor-corrector method, 44–45
Hohmann transfer, 289–295, 308, 313–317, 325f, 337
Horizontal parallax, 530–531, 530f
Hour angle, 581

Hyperbolic excess speed, 98, 137, 166, 397–399, 402, 406–407,
410, 430

Hyperbolic mean anomaly, 159, 163, 167

Hyperbolic orbit, 97, 137, 170, 448

I
Impulse of a force, 19

Impulsive maneuvers, 287–288, 305, 308–311, 318, 345, 347,
351, 369–376, 415–421, 661
Impulsive moment and coning, 661

Inclination of an orbit, 213–215, 225, 239, 321, 322f, 460t
Inertia, 14

Instantaneous axis of rotation, 21–22, 543–544, 544f, 612–613
Interchange of the dot and cross (vector identity), 9, 49, 501

Interplanetary Hohmann transfers, 385–387

J
J2000, 251, 423–425, 427f, 430, 457, 523, 531
Jacobi constant, 55, 126–132
Jet thrust, 709

JPL Horizons online planetary ephemeris, 457, 466

Julian day (JD), 231, 249–251, 523, 531

K
Keplerian orbit, 72, 99, 395–396, 474, 479, 495, 497
Kepler’s equation for the ellipse, 147, 147f, 155, 170

series solution, 148–153
Kepler’s equation for the hyperbola, 161, 162f, 163

Kepler’s first law, 72, 739

Kepler’s second law, 69, 84, 739

Kepler’s third law, 84, 739

Kinetic energy of a rigid body, 543, 581–583

L
Lagrange brackets, 538

Lagrange f and g functions, 231, 495

series expansion, (AU: The term is not found in the text.

Please check.)

Lagrange matrix, 497–498, 538–539
Lagrange multiplier technique, 726–733
Lagrange planetary equations, 479

Lagrange points (equilibrium points), 55, 120–126, 128–130,
139

Lambert’s problem, 231, 238–249, 239f, 247–248f, 287,
313–317, 385, 427

Laplace limit, 153

Laplace vector, 71

Latitude, 29–30, 32, 79–80, 183–184, 212, 215–216, 220–223,
253–256, 259, 264–266, 283–285, 321–329, 321–322f,
348, 399–400, 400f, 427f, 460, 488, 490–494, 500, 500f,
504, 506, 530–531

Latus rectum, 74, 74f, 328, 328f

Launch azimuth, 321–329, 322–323f, 348
Leading-side flyby, 412–415
Legendre polynomials, 489, 490f, 538, 601

Linear momentum, 19–20, 67, 75, 334, 554–555
Linearized equations of relative motion, 361

Local horizon, 29–30, 74, 257, 305, 307f, 309, 352, 499, 501,
688–689, 695

Longitude, 29–30, 183–184, 184f, 249, 523, 530
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Low earth orbit, 16–17, 76–77, 126, 135, 213–214, 220, 229,
287, 320–321, 324–326, 324f, 437, 438f, 471–474, 633,
688, 694, 734

Lunar ecliptic latitude, 530–531
Lunar ecliptic longitude, 530–531
Lunar ephemeris, 457–461, 465, 470, 475
Lunar gravity perturbation, 534f

Lunar inclination vs. time, 458–459b, 459f
Lunar position algorithm, 531t

Lunar trajectories by numerical integration, 469–474
Lunar trajectory as a circular restricted three body problem,

116–132, 470
LVLH frame, 352, 365, 499

M
Magnitude of a vector, 2

Major axis spinner, 647, 651, 659, 693–694, 700
Mass, 1, 14–18, 66, 76–77, 118, 122, 182–183, 287–288, 487,

521, 543, 552–553, 557, 559–563, 593, 634, 653–655,
664, 666–667, 672–673, 717, 722

Mass flow rate, 709–714
Mass ratio (rockets), 118, 122, 124–125, 646–647, 650–651,

656–660, 710–711, 716–717, 720, 734
Mean anomaly

ellipse, 143–144, 167
hyperbola, 143, 164

Mean anomaly of the Sun, 523

Mean longitude of the Sun, 523

Mean motion, 144, 217–219, 364–365, 367, 371, 374–375, 377,
380–383, 388, 391–392, 513, 518, 539, 688–690,
693–694, 696

Method of averaging, 480, 513–519
Minor axis spinner, 647, 659, 693–695
Modified Euler equations of motion, 543, 591, 612, 670

Molniya orbit, 181, 216–220, 216f
Moment of a force, 19–20
Moment of inertia tensor of a rigid body

principal directions of inertia, 559

principal moments of inertia, 559, 568–570, 573
Momentum exchange systems, 672–673
Momentum wheels (reaction wheels), 633, 673–676, 678–679,

682, 682f, 684–685, 703
Moon-fixed frame, 446, 454f, 465, 467, 473

Moving reference frames, 64f, 378, 546–552, 579–581

N
Net external force on a continuum, 552

Net external moment on a continuum, 644–645, 684
Net internal force on a continuum, 552

Net internal moment on a continuum, 552

Newton’s law of gravitation, 14–17, 57, 392–393
Newton’s method for finding roots, 148f, 276–278
Newton’s second law of motion, 1, 17, 50, 57, 75, 708

Node line, 189–191, 210, 213–214, 229, 328, 382, 494,
503–504, 506, 583, 589–590

Nn-Hohmann interplanetary trajectories, 427–433
Non-Hohmann transfers, 287, 303–308, 303f, 306f
Non-impulsive orbital maneuvers, 329–334
Normal acceleration, 13–14, 17, 706
Numerical integration, 1, 34–49, 131, 287, 350, 440, 469–474,

472f, 480, 483, 494, 527, 615–623, 741–743, 745–747
Nutation angle, 588–589, 597, 602, 621–623, 634–635, 640,

643, 697, 699, 702

Nutation damper, 633, 653–660

O
Oblate spheroid, 212, 253–254, 254f, 488
Oblate spinner, 633, 647, 650

Oblateness (flattening), 212–224, 231, 254, 480, 488, 490–491,
493

Obliquity of the ecliptic, 181–182, 521–522, 524, 527, 531–535
Optimal N-stage rocket mass, 726

Optimal rocket staging, 726–733
Orbit equation, 72, 74, 81, 90, 93, 102, 108–109, 115, 149–151,

155, 164, 233, 303, 306–307, 309–313
Orbital elements, 181, 189–195, 210, 217–219, 221–222, 225,

236–238, 240, 245, 266–268, 275–276, 282–285, 296,
316, 348, 355, 358, 423–427, 424t, 428f, 429, 434,
454–457, 468, 475, 479–480, 495–499, 501, 506–508,
511, 513–514, 518, 522, 527, 533, 536, 539

Orbital energy, 76

Orbital inclination vs launch azimuth, 322

Orbits from angle and range data, 261–268
Orthogonal matrix, 198, 563, 589

Orthogonal triad, 12f, 63

Osculating orbit, 480–482, 481–482f, 496–497, 499, 501,
507–508, 537, 539

Osculating orbital elements, 480, 497, 501, 507–508, 539
Osculating plane, 12–13, 474

P
Parabolic mean anomaly, 158–159
Parabolic orbit, 157–159
Parabolic orbital speed (escape velocity), 55, 90, 130–131
Parabolic orbit equation, 90–93
Parallel axis theorem, 571–576, 587, 675
Parallelogram rule, 2–3, 2f
Parallel staging, 719–720, 719f
Parameter of an orbit, 76, 84, 87–90, 92
Patched conic method

interplanetary missions, 385, 387–388, 421, 423
lunar missions, 440, 460, 460t

Patch point, 441–442, 444–446, 449–454, 463–466, 475
Path (trajectory), 10–11
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Payload burnout velocity vs. number of rocket

stages, 724

Payload mass, 716, 720–721, 731, 734
Payload ratio, 716–717, 718f, 720–721, 723–724, 733–734
Periapsis, 73–75, 80–81, 85, 94–95, 98, 98f, 102, 134, 136–137,

141–144, 143f, 147, 169–170, 213, 289–290, 293,
305–308, 311–313, 349, 386, 398–399, 405, 407–418,
422, 431–432, 434, 446, 499–500, 506–513, 543–544

Perifocal frame, 55, 102–105, 103f, 115, 209–212, 217–219,
234, 343, 446, 499

Period, 32, 55, 60–62, 76–77, 77f, 84, 85f, 88–90, 116–118, 124f,
126, 141–144, 147, 149–151, 177–178, 182–183, 189,
194–195, 215–220, 222–223, 224f, 240, 294, 297–303,
299f, 314–316, 346, 357, 359f, 380–382, 387–392,
410, 411f, 422, 437–439, 443–444, 449–451, 459, 463,
480, 485, 513, 518, 615, 679, 682, 693–694, 697,
703–704

Perturbation

of angular momentum, 78

of angular momentum, averaged, 104

of argument of periapsis, 90–93
of argument of periapsis, averaged, 517–519
of right ascension, 67, 87–89
of right ascension, averaged, 111–112
of true anomaly, 80–90
of true anomaly, averaged, 105–116

Perturbation of earth orbit

due to atmospheric drag, 60

due to lunar gravity, 80–81f, 125t, 130–131, 533t
due to second zonal harmonic, 212, 212t

due to solar gravity, 85–86f, 535–537
due to solar radiation, 79f, 116–132

Perturbation of orbital parameters, 75–76
Phasing maneuvers, 287, 298–303, 300f, 313–317, 342,

387–388
Photon energy, 520

Photon momentum, 94–95
Photosphere of the Sun, 520

Planck constant, 520

Plane change maneuver, 215–216, 287, 317–329, 319f, 325f
Planetary ephemeris formulas, 423–427
Planetary flyby, 385, 412–422, 412–413f
Position vector, 8–11, 13, 26, 26f, 28–30, 34, 56–57, 59–61, 63,

65–66, 68–69, 69f, 72, 74, 80–81, 102, 113, 118, 144,
178, 186–187, 211–212, 220–221, 220f, 231–238, 240,
245, 248, 253–254, 256–258, 261, 263, 268–269, 305,
314–316, 329, 351–352, 357, 359, 361, 371–373,
388–389, 392–393, 427, 429, 440–443, 446, 448,
454–457, 461–463, 465, 467–473, 485, 487, 495, 497,
506, 523–526, 529, 532, 535, 544, 547–548, 552–555,
554f, 557, 560–561, 581, 625, 653–654, 656–657, 663,
667, 685, 688–690, 742, 749
Precession angle, 588–589, 591, 661, 664–665
Precession of a spinning top, 583–588, 586f
Precession of the vernal equinox, 182–185, 185t
Precession rate in torque-free motion, 633–642, 639f
Principal angle, 600–602, 609
Principal directions of inertia, 559, 567, 569, 576, 626

Principal moments of inertia, 559, 568–570, 576, 626
Principal normal, 12–14, 17
Prograde orbit, 213, 321–322, 399–400, 402
Prolate spinner, 647–648, 650–651
Propellant mass, 288, 288f, 333, 434, 711, 713, 716, 722,

724–725, 729, 732–733
Pumping maneuver, 287–288
Pythagorean theorem, 3, 82

Q
Quadrant ambiguity, 145–146, 186–188, 190–193, 239, 264
Quadratic equation, 172, 585, 693

Quaternion

addition, 602–603
from direction cosine matrix, 602, 605–608, 610–611,

615–616, 619, 621
multiplication, 602–604
norm, 602

rotation operation, 607, 609–610
time derivative, 612–613

R
Radial velocity, 76, 100, 109–110, 113, 168, 172, 191, 301,

311–313, 319, 328–329
Radiation pressure coefficient, 520–521, 527, 541
Radius of curvature, 12–14, 17, 50, 706
Radius of gyration, 559, 631, 667

Rayleigh quotient, 606

Reaction wheel (momentum wheel), 633, 673–679, 682, 682f,
684–685, 703

Rectification in Encke’s method, 482–483
Rectilinear trajectory, 134

Reference orbit, 360–361, 363–364, 366, 481, 483f
Regression of the node, 213, 213f, 216–217, 492–493
Relative acceleration, 23–24, 28, 31, 63–64, 118, 362, 539, 594
Relative acceleration equation, 594

Relative angular acceleration, 577–581, 594
Relative angular velocity, 388, 594, 650–651, 675, 682, 701
Relative motion in orbit, 351–365
Relative velocity, 1, 28, 30–31, 63, 68–69, 75, 351, 353,

366–367, 369–372, 375, 377, 378f, 381–383, 399–403,
445, 448, 452, 467, 485, 545

Relative velocity equation, 377

Relative velocity in close proximity circular orbits, 376–378
Restricted rocket staging, 716–726
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Retrograde orbit, 193, 195f, 213, 321–322, 322f
Right ascension, 181–190, 183f, 210, 213, 220–223, 231,

256–257, 262–263, 266, 268–269, 276, 382, 423, 461,
493f, 499, 503–505, 508–510, 516, 543–544

Right ascension of the ascending node, 189–191, 210, 222, 423,
486, 493f, 499, 503, 508–510

Rigid body, 21–22, 22f, 543–623, 663
Rigid body kinetic energy, 581–583
Rocket equation, 287–288, 705
Rodrigues’ formulas

for Legendre polynomials, 489, 601

for vector rotation, 601, 609

Routh-Hurwitz stability criteria, 659–660
Runge-Kutta numerical integration method

adaptive step size, 47

first order, 42, 47

fourth order, 53

second order, 41

third order, 36

S
Sectorial harmonics, 491–494
Secular terms, 367, 513

Semilatus rectum, 74, 74f

Semimajor axis

ellipse, 81, 84, 144, 194–195
hyperbola, 95, 100–102, 168

Semiminor axis

ellipse, 82, 86, 96

hyperbola, 95–96
Sensitivity of trajectory to initial errors, 403–405
Series solutions of Kepler’s equation, 153

Shadow function, 520–521, 526, 528
Sidereal time, 231, 249–253, 255, 257, 264–265
Slant range, 257, 268–269, 272–274, 281
Solar constant, 520

Solar ecliptic longitude, 521–523
Solar radiation, 520–521
Solar radiation pressure, 479–480, 520–528, 535
Sounding rocket, 705, 708, 711–714
Space and body cones, 639, 639f

Specific impulse, 287–288, 288t, 288f, 329–330, 333–334, 401,
705, 710, 717, 720, 726, 731

Speed, 1, 11, 75–76, 78, 90, 118, 127, 166, 172, 291, 295, 304,
319f, 320, 386–387, 397–398, 407, 422, 437, 438f,
439–440, 483, 508, 520, 633, 668, 682, 706–708

Sphere of influence, 179, 385, 392–398, 403, 405, 412, 414,
427–430, 440, 441f, 447f, 454f, 462f, 466f, 469

Spinning top

nutation rate, 584

precession rate, 584

Spin rate in torque-free motion, 697
Spin stabilization, 633, 650

Stability of a dual-spin spacecraft, 651

Stability of a spin-stabilized spacecraft, 651

Stable orientations for gravity-gradient

stabilization, 689, 693–695
State vector, 59–61, 64, 181, 185–195, 209, 261, 268, 276, 279,

281, 333–334, 423, 427–428, 457, 461, 468, 470–472,
480–481, 498

State vector from the orbital elements, 181, 189–195
Stefan-Boltzman constant, 520

Stefan-Boltzman law, 520

Step mass of rocket, 729–733
Structural ratio of a rocket, 716–717, 720–721, 724, 726, 729,

731

Stumpff functions, 141, 168–169, 169f, 174, 243
Sun-synchronous orbit, 214–215, 215f, 323–329
Sweep angle, 442–443, 444f, 445, 449–451
Synodic period, 389, 392

T
Tandem stage rockets, 717–719, 718f
Tangential acceleration, 508

Tangent vector, 13–14, 50
Taylor series, 36–38, 113
Tesseral harmonics, 491–494
Three-axis stabilization, 633, 679f

Thrust equation, 705, 708–710
Thrust-to-weight ratio, 710–711
Time vs. position

circular orbit, 142–143
elliptical orbit, 143–157
hyperbolic orbit, 159–167
parabolic orbit, 157–159

Topocentric coordinate system, 231, 253–256
Topocentric equatorial coordinate system, 256–257
Topocentric horizon coordinate system, 29–30, 257–261
Trailing-side flyby, 385, 412–414, 413f
Trajectory (path), 10–11
Translunar injection (TLI), 440–442, 444, 446, 455f, 461, 469f
Transverse velocity, 311, 328

True anomaly, 71, 72f, 90, 141, 143–144f, 189, 444, 502–503
True anomaly of the asymptote (hyperbola), 94, 164

Turn angle of a hyperbola, 94–95
Two-body vector equation

of absolute motion, 56

of relative motion, 63–67
Two-impulse rendezvous maneuvers, 369–376

U
Unit quaternion, 602, 604–606, 609, 617f, 755–756
Unit vector, 2–3, 12f, 102
Universal gravitational constant, 14, 57, 487



763Index
Universal Kepler’s equation, 141, 168, 171–172
Universal variablesiables, 141, 167–177, 244–249
US Standard Atmosphere, 484–485, 484f, 521

V
Vector, 1–9
Vector addition, 2–3, 2f
Velocity vector, 10–11, 112f, 304, 312–313, 320, 320f
Vernal equinox, 181–182, 184–186, 249, 427f, 430, 522

W
Wait times, 391–392
Wobble angle, 639, 699
Y
Yaw-pitch-roll rates vs. angular velocities, 597f, 598

Yaw-pitch-roll sequence, 597, 597f

Yo-yo mechanism for despin, 666–672
cord length required, 669, 671–672
radial release, 671–672, 671f
tangential release, 671, 671f
Z
Zonal harmonics, 212, 489–491
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