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Preface

The nonparametric approach is the preferred methodology for statisticians and other
scientists. We list some of its advantages in Section 1.1. In the third edition, we retain
our emphasis on applications to real-world situations. We want our readers to learn how to
apply nonparametric techniques in a variety of settings and to understand the assumptions
underlying the methods.

In this third edition, we have improved the 11 chapters of the second edition and
added five new chapters. The new chapters cover topics of recent and current interest,
namely, density estimation, wavelets, smoothing, ranked set sampling, and Bayesian
nonparametrics. R programs are now used to perform calculations. See Section 1.5 for a
description of R.

The second edition was used primarily for a one-semester senior undergraduate/first-
year graduate course for students having had a prior course in statistics. With the added
coverage here, there is ample material for a two-semester course. Nevertheless, we expect
most teachers will still opt for a one-semester course and choose specific chapters in
accordance with their interests and those of their students.

Many friends and colleagues have helped us with this project.
Grant Schneider, a graduate student at the Ohio State University, provided invaluable

support in the conversion from complete reliance on null distribution tables in our second
edition to the exclusive use of R programs to obtain appropriate critical values and
compute associated P-values in this third edition. He wrote new R programs for all of
the statistical procedures in Chapter 15 and for a majority of the many procedures in
Chapters 5–7, and modified existing programs for the other procedures in those three
chapters, leading to significantly improved computational speed in most cases. He also
organized all of the R programs used in this third edition into a documented collection
that is formally registered as an R package specifically linked to this third edition. We owe
Grant a special thanks for his leadership role in this important aspect of our new edition.

Rachel Becvarik wrote new R programs for Chapters 11 and 16 and provided a
spark.

Jelani Wiltshire and Michael Rosenthal assisted with LaTeX typesetting.
James Stricherz provided computing support and Pamela McGhee and Marylou Tatis

provided office support.
Our editors Steve Quigley, Susanne Steitz-Filler, and Sari Friedman were dedicated

from the inception to the completion. Our production manager Melissa Yanuzzi carefully
guided the manuscript through the production process.

To all these helpmates, we are very grateful.

MYLES HOLLANDER
DOUGLAS A. WOLFE

ERIC CHICKEN

Tallahassee, Florida
Columbus, Ohio
Tallahassee, Florida
August 2013
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Chapter 1

Introduction

1.1 ADVANTAGES OF NONPARAMETRIC METHODS

Roughly speaking, a nonparametric procedure is a statistical procedure that has certain
desirable properties that hold under relatively mild assumptions regarding the underlying
populations from which the data are obtained. The rapid and continuous development
of nonparametric statistical procedures over the past 7 1

2 decades is due to the following
advantages enjoyed by nonparametric techniques:

1. Nonparametric methods require few assumptions about the underlying populations
from which the data are obtained. In particular, nonparametric procedures forgo
the traditional assumption that the underlying populations are normal.

2. Nonparametric procedures enable the user to obtain exact P-values for tests,
exact coverage probabilities for confidence intervals, exact experimentwise error
rates for multiple comparison procedures, and exact coverage probabilities for
confidence bands without relying on assumptions that the underlying populations
are normal.

3. Nonparametric techniques are often (although not always) easier to apply than
their normal theory counterparts.

4. Nonparametric procedures are often quite easy to understand.

5. Although at first glance most nonparametric procedures seem to sacrifice too much
of the basic information in the samples, theoretical efficiency investigations have
shown that this is not the case. Usually, the nonparametric procedures are only
slightly less efficient than their normal theory competitors when the underlying
populations are normal (the home court of normal theory methods), and they can
be mildly or wildly more efficient than these competitors when the underlying
populations are not normal.

6. Nonparametric methods are relatively insensitive to outlying observations.

7. Nonparametric procedures are applicable in many situations where normal theory
procedures cannot be utilized. Many nonparametric procedures require just the
ranks of the observations, rather than the actual magnitude of the observations,
whereas the parametric procedures require the magnitudes.

8. The Quenouille–Tukey jackknife (Quenouille (1949), Tukey (1958, 1962)) and
Efron’s computer-intensive (1979) bootstrap enable nonparametric approaches
to be used in many complicated situations where the distribution theory

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 Chapter 1 Introduction

needed to support parametric methods is intractable. See Efron and Tibshirani
(1994).

9. Ferguson’s Dirichlet process (1973) paved the way to combine the advantages
of nonparametric methods and the use of prior information to form a Bayesian
nonparametric approach that does not require distributional assumptions.

10. The development of computer software has facilitated fast computation of exact
and approximate P -values for conditional nonparametric tests.

1.2 THE DISTRIBUTION-FREE PROPERTY

The term nonparametric, introduced in Section 1.1, is imprecise. The related term
distribution-free has a precise meaning. The distribution-free property is a key aspect
of many nonparametric procedures. In this section, we informally introduce the concept
of a distribution-free test statistic. The related notions of a distribution-free confidence
interval, distribution-free multiple comparison procedure, distribution-free confidence
band, asymptotically distribution-free test statistic, asymptotically distribution-free mul-
tiple comparison procedure, and asymptotically distribution-free confidence band are
introduced at appropriate points in the text.

Distribution-Free Test Statistic

We introduce the concept of a distribution-free test statistic by referring to the two-sample
Wilcoxon rank sum statistic, which you will encounter in Section 4.1.

The data consist of a random sample of m observations from a population with
continuous probability distribution F1 and an independent random sample of n obser-
vations from a second population with continuous probability distribution F2. The null
hypothesis to be tested is

H0 : F1 = F2 = F, F unspecified.

The null hypothesis asserts that the two random samples can be viewed as a single
sample of size N = m + n from a common population with unknown distribution F .
The Wilcoxon (1945) statistic W is obtained by ranking the combined sample of N
observations jointly from least to greatest. The test statistic is W , the sum of the ranks
obtained by the Y ’s in the joint ranking.

When H0 is true, the distribution of W does not depend on F ; that is, when H0

is true, for all a-values, the probability that W ≤ a , denoted by P0(W ≤ a), does not
depend on F .

P0(W ≤ a) does not depend on F . (1.1)

The distribution-free property given by (1.1) enables one to obtain the distribution
of W under H0 without specifying the underlying F . It further enables one to exactly
specify the type I error probability (the probability of rejecting H0 when H0 is true)
without making distributional assumptions, such as the assumption that F is a normal
distribution; this assumption is required by the parametric t-test.

The details concerning how to perform the Wilcoxon test are given in Section 4.1.
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1.3 SOME REAL-WORLD APPLICATIONS

This book stresses the application of nonparametric techniques to real data. The following
10 examples are a sample of the type of problems you will learn to analyze using
nonparametric methods.

EXAMPLE 1.1 Dose–Response Relationship.

In many situations, a dose–response relationship may not be monotonic in the dosage.
For example, with in vitro mutagenicity assays, experimental organisms may not survive
the toxic side effects of high doses of the test agent, so there may be a reduction in
the number of organisms at risk of mutation. This would lead to a downturn (i.e., an
umbrella pattern) in the dose–response curve. The data in Table 6.10 were considered by
Simpson and Margolin (1986) in a discussion of the analysis of the Ames test results.
Plates containing Salmonella bacteria of strain TA98 were exposed to various doses
of Acid Red 114. Table 6.10 gives the number of visible revertant colonies on the
18 plates in the study, three plates for each of the six doses (in μg/ml): 0, 100, 333,
1000, 3333, and 10,000. How can we test the hypothesis of equal population median
numbers at each dose against the alternative that the peak of the dose–response curve
occurs at 1000 μg/ml? How can we determine which particular pairs of doses, if any,
significantly differ from one another in the number of revertant colonies? Which particular
doses, out of 100, 333, 1000, 3333, and 10,000, differ significantly from the 0 dose
in terms of the number of revertant colonies? For doses that significantly differ, how
can we estimate the magnitude of the difference? How can we simultaneously estimate
all 15 “contrasts,” τ1 − τ2, τ1 − τ3, τ1 − τ4, τ1 − τ5, τ1 − τ6, τ2 − τ3, τ2 − τ4, τ2 − τ5, τ2 −
τ6, τ3 − τ4, τ3 − τ5, τ3 − τ6, τ4 − τ5, τ4 − τ6, τ5 − τ6, where, for example, τ1 − τ2 denotes
the difference between the population medians at dose 0 and dose 100. The methods in
Chapter 6 can be used to answer these questions.

EXAMPLE 1.2 Shelterbelts.

Shelterbelts are long rows of tree plantings across the direction of prevailing winds. They
are used in developed countries to protect crops and livestock from the effects of the
wind. A study was performed by Ujah and Adeoye (1984) to see if shelterbelts would
limit severe losses from droughts regularly experienced in the arid and semiarid zones
of Nigeria. Droughts are considered to be a leading factor in declining food production
in Nigeria and in the neighboring countries. Ujah and Adeoye studied the effect of
shelterbelts on a number of factors related to drought conditions, including wind velocity,
air and soil temperatures, and soil moisture. Their experiment was conducted at two
locations about 3 1

2 km apart, near Dambatta. Table 7.7 presents the wind velocity data,
averaged over the two locations, at various distances leeward of the shelterbelt. The data
are given as percent wind speed reduction relative to the wind velocity on the windward
side of the shelterbelt. The data are given for 9 months (data were not available for July,
November, and December) and five leeward distances, namely, 20, 40, 100, 150, and
250 m, from the shelterbelt. Does the percent reduction in average wind speed tend to
decrease as the leeward distance from a shelterbelt increases? Which particular leeward
distances, if any, significantly differ from one another in percent reduction in average
wind speed? How can the difference in percent reduction for two leeward distances be
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estimated? Chapter 7 presents nonparametric methods that will enable you to analyze the
data and answer these questions.

EXAMPLE 1.3 Nasal Brushing.

In order to study the effects of pharmaceutical and chemical agents on mucociliary clear-
ance, doctors often use the ciliary beat frequency (CBF) as an index of ciliary activity.
One accepted way to measure CBF in a subject is through the collection and analysis
of an endobronchial forceps biopsy specimen. This technique is, however, a rather inva-
sive method for measuring CBF. In a study designed to assess the effectiveness of less
invasive procedures for measuring CBF, Low et al. (1984) considered the alternative
technique of nasal brushing. The data in Table 8.10 are a subset of the data collected
by Low et al. during their investigation. The subjects in the study were all men under-
going bronchoscopy for the diagnosis of a variety of pulmonary problems. The CBF
values reported in Table 8.10 are averages of 10 consecutive measurements on each
subject.

How can we test the hypothesis of independence versus the alternative that the CBF
measurements corresponding to nasal brushing and endobronchial forceps are positively
associated? If there is evidence that the alternative is true, this would support the notion
that nasal brushing is an acceptable substitute to measure CBF for the more invasive
endobronchial forceps biopsy technique. How can we obtain an estimate of a measure
of the strength of association between the two techniques’ CBF values? How can we
compute confidence intervals for such a measure? These questions can be answered by
the methods described in Chapter 8.

EXAMPLE 1.4 Coastal Sediments.

Coastal sediments are an important reservoir for organic nitrogen (ON). The degradation
of ON is bacterially mediated. The mineralization of ON involves several distinct steps,
and it is possible to measure the rates of these processes at each step. During the first
stage of ON remineralization, ammonium is generated by heterotrophic bacteria during a
process called ammonification. Ammonium can then be released to the environment or can
be microbially transformed to other nitrogenous species. The data in Table 9.4 are from
the work by Mortazavi (1997) and are based on four sediment cores that were collected
in Apalachicola Bay, Florida, in April 1995 and brought back to the main campus at the
Florida State University for analysis. The flux of ammonium to the overlying water was
measured in each core during a 6-h incubation period. It is desired to know if there is a
significant difference in ammonium flux between the cores. This is a regression problem,
and it can be studied using the methods in Chapter 9.

EXAMPLE 1.5 Care Patterns for Black and White Patients with Breast Cancer.

Diehr et al. (1989) point out that it is well known that the survival rate of women
with breast cancer tends to be lower in Blacks than Whites. Diehr and her colleagues
sought to determine if these survival differences could be accounted for by differences in
diagnostic methods and treatments. Diehr et al. reported on various breast cancer patterns;
one pattern of interest was liver scan. Did patients with local or regional disease have a
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liver scan or CT scan of the liver? The data are given in Table 10.14. The data are for
the 19 hospitals (out of 107 hospitals participating in the study) that had enough Black
patients for individual analysis. How can we determine, for a specific hospital, if there
was a significant difference between the chance of a White patient receiving a scan and
the chance of a Black patient receiving a scan? How can the data from the 19 hospitals
be utilized to get an overall assessment? The methods in Chapter 10 provide the means
to answer these questions.

EXAMPLE 1.6 Times to First Review.

The data in Table 11.18, from Hollander, McKeague, and Yang (1997), relate to 432
manuscripts submitted to the Theory and Methods Section of the Journal of the American
Statistical Association (JASA) in the period January 1, 1994, to December 13, 1994. Of
interest is the time (in days) to first review. When the data were studied on December 13,
1994, 158 papers had not yet received the first review. For example, for a paper received
by the JASA on November 1, 1994, and still awaiting the first review on December
13, 1994, we know on December 13 that its time to review is greater than 33 days, but
at that point we do not know the actual time to review. The observation is said to be
censored. How can we use the censored and uncensored observations (i.e., the ones for
which we know the exact times to first review) to estimate the distribution of the time
to first review? Chapter 11 shows how to estimate distributions when some of the data
are censored.

EXAMPLE 1.7 Spatial Ability Scores of Students.

In a study examining the relation between student mathematical performance and their
preference for solving problems, Haciomeroglu and Chicken (2011) gathered data on a
student’s spatial ability using four tests of visualization. For each student, these four test
scores were combined into a single score representing their overall measure of spatial
ability. High scores are associated with students with strong spatialization skills, while
low scores reflect weak spatialization. The spatial ability scores for 68 female and 82 male
high school students enrolled in advanced placement calculus classes in Florida are given
in Tables 12.1 and 12.3, respectively. What is the distribution of spatial ability scores
for the population represented by this sample of data? Does the distribution for the male
students appear to possess different characteristics than that of the female students? These
questions are problems in density estimation. Methods on this are given in Chapter 12.

EXAMPLE 1.8 Sunspots.

Andrews and Herzberg (1985) provide data on mean monthly sunspot observations
collected at the Swiss Federal Observatory in Zurich and the Tokyo Astronomical Obser-
vatory from the years 1749 to 1983. The data display excessive variability over time,
obscuring any underlying trend in the cycle of sunspot appearances. The data do not
follow any apparent analytical form or simple parametric model so a general nonpara-
metric regression setting is appropriate. A powerful method for obtaining the trend from
a noisy set of observations in cases such as this is by the use of wavelet estimation
and thresholding. Wavelet analysis will provide a smoothed and accurate estimate of
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the noise-free trend underlying the observed data. Chapter 13 provides details on using
wavelet methods for this type of problem.

EXAMPLE 1.9 Effective Auditing to Detect Fraud.

Account auditing is one of the most important ways to ensure that a company’s stated
records accurately represent the true financial transactions of the business. Being able
to detect fraudulent accounting practices is vital to the integrity of the business and
its management. Statistical sampling is a well-established approach for conducting such
audits, as in almost all settings, the number of accounts of interest is far too large for a
complete census. One major concern with statistical audits is that assessing the true values
of the accounts selected to be part of the statistical sample can be quite time-intensive
and, hence, expensive. It is therefore of interest to limit the number of accounts sampled
for audit, while still providing adequate assurance that we gather enough information
to accurately assess the reliability of the company’s financial records. A ranked set
sampling approach to select representative observations from a population allows an
auditor to formally audit fewer accounts while maintaining the desired level of precision
in his or her assessment. This leads to time savings and overall cost reduction for the
auditing process. Tackett (2012) provided a collection of sales invoice records data for an
electrical/plumbing distribution center that contained some fraudulent accounts where the
charges (stated book values) for transactions were larger than the audited values for the
materials actually delivered in those transactions. These data are given in Table 15.1. The
ranked set sampling techniques described in Chapter 15 provide an effective mechanism
for minimizing the auditing expense in assessing the fraudulent nature of these sales
invoice records.

EXAMPLE 1.10 Times to Death with Cardiovascular Disease.

The Framingham Heart Study is a well-known ongoing longitudinal study of cardiovascu-
lar disease. The original study cohort consisted of a random sample of 5209 adults aged
28 through 62 years residing in Framingham, Massachusetts between 1948 and 1951.
The data in Table 16.1 were provided by McGee (2010) and consist of an extinct cohort
of 12 men who were 67 years and over at the time of the fourth exam. How can we
estimate the survival distribution underlying this population? How can we incorporate
expert opinion concerning the remaining life for men under those or similar situations?
This is a survival problem that incorporates prior information. It can be studied using
the methods of Chapter 16.

1.4 FORMAT AND ORGANIZATION

The basic data, assumptions, and procedures are described precisely in each chapter
according to the following format. Data and Assumptions are specified before the
group of particular procedures discussed. Then, for each technique, we include (when
applicable) the following subsections: Procedure, Large-Sample Approximation, Ties,
Example, Comments, Properties, and Problems. We now describe the purpose of each
subsection.
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Procedure

This subsection contains a description of how to apply the procedure under discussion.

Large-Sample Approximation

This subsection contains an approximation to the method described in Procedure. The
approximation is intended for use when the sample size (or sample sizes, as the case
may be) is large. Our R programs enable small-sample and large-sample applications.

Ties

A common assumption in the development of nonparametric procedures is that the under-
lying population(s) is (are) continuous. This assumption implies that the probability of
obtaining tied observations is zero. Nevertheless, tied observations do occur in practice.
These ties may arise when the underlying population is not continuous. They may even
arise if the continuity assumption is valid. We simply may be unable, owing to inaccura-
cies in measurement, to distinguish between two very close observations (temperatures,
lengths, etc.) that emanate from a continuous population. The Ties subsection contains
a prescription to adjust the necessary steps in the Procedure in order that we may treat
tied observations. The adjusted procedure should then be viewed as an approximation.

Example

This subsection is basic to our text. We present a problem in which the procedure under
discussion is applicable. The reader has a set of data he or she may use to apply each
step of the Procedure, to become familiar with our notation, and to gain familiarity in
performing the method. In many examples, computations are done directly and using R

commands. In addition to practice, the example provides the first step toward developing
an appreciation for the simplicity (difficulty) of the procedure and toward developing
an intuitive feeling of how the procedure summarizes the data. The enthusiastic reader
can seek out the journal article on which the example is based to obtain a more detailed
specification of the experiment (in some cases our descriptions of the experiments are
simplified so that the examples can be easily explained) and to question whether the
Assumptions underlying the nonparametric method are indeed satisfied.

Comments

The comments supplement the text. In the comments, we may discuss the underlying
assumptions, give an intuitive motivation for the method being considered, relate the
method to other procedures in different parts of the book, provide helpful computational
hints, or single out certain references including historical references.

Properties

This subsection is primarily intended as a set of directions for the reader who wishes to
probe the theoretical aspects of the subject and, in particular, the theory of the procedure



8 Chapter 1 Introduction

under discussion. No theory is presented, but the citations guide the reader to sources
furnishing the basic properties and their derivations.

Problems

Typically, the first problem of each Problems subsection provides practice in applying the
procedure just introduced. Some problems require a comparison of an exact procedure
with its large-sample approximation. Other problems are more thought provoking. We
sometimes ask the reader to find or create an example that illustrates a desirable or
undesirable property of the procedure under discussion.

There are occasional deviations from the format. For example, in many of the sections
devoted to estimators and confidence intervals, there is no need for a Ties subsection,
because the procedures described are well defined even when ties observations occur. In
some chapters, the Assumptions are given before the particular (group of) sections that
contain procedures based on those Assumptions.

Efficiency

How do the nonparametric procedures we present compare with their classical competi-
tors, which are based on parametric assumptions such as the assumption of normality for
the underlying populations? The answer depends on the particular problem and proce-
dures under consideration. When possible, we indicate a partial answer in an efficiency
section at the end of each chapter.

1.5 COMPUTING WITH R

In many of our Example subsections, we not only illustrate the direct computation of the
procedure but also provide the output obtained using various commands in the statistical
computing package R. R is a general-purpose statistical package that provides a wide
range of data analysis capabilities. It is an open source program that is available for a
variety of computing platforms. Users may obtain the software free of charge through the
Comprehensive R Archive Network (CRAN). CRAN is a network of ftp and web servers
that provide all the necessary files and instructions for downloading and installing R. It
also contains numerous manuals and FAQs to assist users.

One of the strengths of R is its openness. Individuals around the world may create
packages of statistical commands and routines to be distributed to any other interested
users through CRAN. The standard distribution of R contains the resources to perform
many of the nonparametric methods described in this book. Additional packages are
readily available that perform more specialized analyses such as the density estimation
procedures and wavelet analyses in the book’s later chapters. Whenever a command is
referenced that is not a part of the standard installation of R but instead comes from an
add-on package, we make a note of this and specify which package is needed to perform
the analysis.

R is also a programming language. If one cannot find an existing statistical method-
ology within R that will perform a suitable analysis, it is possible to program unique
commands to fill this void. This falls under the topic of programming, rather than sta-
tistical analysis. As such, programming within R is not covered. The main procedures
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discussed in this book have specific sets of existing commands that will perform the
appropriate actions.

Many analyses include graphical as well as numeric output. R has a significant
number of built-in graphing functions and is very flexible in that it allows users to create
unique and detailed graphs to suit their specific needs.

The results of statistical analyses performed using R may vary slightly from those
presented in the text. When they exist, these differences will be minor and will depend
on the hardware configuration of the machine used to run the analyses. We also note
that, for large sample sizes, many of the programs will use Monte Carlo approximations
by default. Specifying methods="Exact", while more computationally intensive, will
ensure that the user’s output matches the text.

1.6 HISTORICAL BACKGROUND

Binomial probability calculations were used early in the eighteenth century by the British
physician Arbuthnott (1710) (see Comment 2.13). Nevertheless, Savage (1953) (also see
Savage (1962)) designated 1936 as the true beginning of the subject of nonparametric
statistics, marked by the publication of the Hotelling and Pabst (1936) paper on rank
correlation. Scheffé (1943), in a survey paper, pointed to (among others) the articles
by Pearson (1900, 1911) and the presence of the sign test in Fisher’s first edition of
“Statistical Methods for Research Workers” Fisher (1925). Other important papers, in
the late 1930s, include those by Friedman (1937), Kendall (1938), and Smirnov (1939).
Wilcoxon (1945), in a paper that is brief, yet elegant in its simplicity and usefulness,
introduced his now-famous two-sample rank sum test and paired-sample signed rank
test. The rank sum test was given by Wilcoxon only for equal sample sizes, but Mann
and Whitney (1947) treated the general case. Wilcoxon’s procedures played a major
role in stimulating the development of rank-based procedures in the 1950s and 1960s,
including rank procedures for multivariate situations. Further momentum was provided
by Pitman (1948), Hodges and Lehmann (1956), and Chernoff and Savage (1958), who
showed that nonparametric rank tests have desirable efficiency properties relative to
parametric competitors. An important advance that enabled nonparametric methods to be
used in a variety of situations was the jackknife, introduced by Quenouille (1949) as a
bias-reduction technique and extended by Tukey (1958, 1962) to provide approximate
significance tests and confidence intervals.

There was major nonparametric research in the 1960s, and the most important contri-
bution was that of Hodges and Lehmann (1963). They showed how to derive estimators
from rank tests and established that these estimators have desirable properties. Their work
paved the way for the nonparametric approach to be used to derive estimators in exper-
imental design settings and for nonparametric testing and estimation in regression. Two
seminal papers in the 1970s are those by Cox (1972) and Ferguson (1973). Cox’s paper
sparked research on nonparametric models and methods for survival analysis. Ferguson
(1973) presented an approach (based on his Dirichlet process prior) to nonparametric
Bayesian methods that combines the advantages of the nonparametric approach and the
use of prior information incorporated in Bayesian procedures. Susarla and van Ryzin
(1976) used Ferguson’s approach to derive nonparametric Bayesian estimators of survival
curves. Dykstra and Laud (1981) used a different prior, the gamma process, to develop
a Bayesian nonparametric approach to reliability. Hjort (1990b) proposed nonparamet-
ric Bayesian estimators based on using beta processes to model the cumulative hazard
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function. In the late 1980s and the 1990s, there was a surge of activity in Bayesian
methods due to the Markov chain Monte Carlo (MCMC) methods (see, for example,
Gelfand and Smith (1990), Gamerman (1991), West (1992), Smith and Roberts (1993),
and Arjas and Gasbarra (1994)). Gilks, Richardson, and Spiegelhalter (1996) give a prac-
tical review. Key algorithms for developing and implementing modern Bayesian methods
include the Metropolis–Hastings–Green algorithm (see Metropolis et al. (1953), Hastings
(1970), and Green (1995)) and the Tanner–Wong (1987) data augmentation algorithm.

One of the important advances in nonparametric statistics in the past 3 1
2 decades

is Efron’s (1979) bootstrap. Efron’s computer-intensive method makes use of the (ever-
increasing) computational power of computers to provide standard errors and confidence
intervals in many settings, including complicated situations where it is difficult, if not
impossible, to use a parametric approach (see Efron and Tibshirani (1994)).

In the new millennium, the development of nonparametric techniques continues at a
vigorous pace. The Journal of Nonparametric Statistics is solely devoted to nonparamet-
ric methods and nonparametric articles are prevalent in most statistical journals. A special
issue of Statistical Science (Randles, Hettmansperger, and Casella, 2004) contains papers
written by nonparametric experts on a wide variety of topics. These include articles
on robust analysis of linear models (McKean, 2004), comparing variances and other
dispersion measures (Boos and Brownie, 2004), use of sign statistics in one-way lay-
outs (Elmore, Hettmansperger, and Xuan, 2004), density estimation (Sheather, 2004),
multivariate nonparametric tests (Oja and Randles, 2004), quantile–quantile (QQ) plots
(Marden, 2004), survival analysis (Akritas, 2004), spatial statistics (Chang, 2004), ranked
set sampling (Wolfe, 2004), reliability (Hollander and Peña, 2004), data modeling via
quantile methods (Parzen, 2004), kernel smoothers (Schucany, 2004), permutation-based
inference (Ernst, 2004), data depth tests for location and scale differences for multivariate
distributions (Li and Liu, 2004), multivariate signed rank tests in time series problems
(Hallin and Paindaveine, 2004), and rank-based analyses of crossover studies (Putt and
Chinchilli, 2004).

Books dealing with certain topics in nonparametrics include those on survival anal-
ysis (Kalbfleisch and Prentice, 2002 and Klein and Moeschberger, 2003), density esti-
mation, smoothers and wavelets (Wasserman, 2006), rank-based methods (Lehmann and
D’Abrera, 2006), reliability (Gámiz, Kulasekera, Limnios, and Lindquist, 2011), and
categorical data analysis (Agresti, 2013).

We delineated advantages of the nonparametric approach in Section 1.1. In addition
to those practical advantages, the theory supporting nonparametric methods is elegant, and
researchers find it challenging to advance the theory. The primary reasons for the success
and use of nonparametric methods are the wide applicability and desirable efficiency
properties of the procedures and the realization that it is sound statistical practice to
use methods that do not depend on restrictive parametric assumptions because such
assumptions often fail to be valid.



Chapter 2

The Dichotomous Data Problem

INTRODUCTION

In this chapter the primary focus is on the dichotomous data problem. The data consists
of n independent repeated Bernoulli trials having constant probability of success p. On
the basis of these outcomes, we wish to make inferences about p. Section 2.1 introduces
the binomial distribution and presents a binomial test for the hypothesis p = p0, where
p0 is a specified success probability. Section 2.2 gives a point estimator p̂ for p. Section
2.3 presents confidence intervals for p. Section 2.3 also contains the generalization of the
binomial distribution to the multinomial distribution, confidence intervals for multinomial
probabilities and a test that the multinomial probabilities are equal to specified values.
Section 2.4 presents Bayesian competitors to the frequentist estimator p̂ of Section 2.2.
The Bayesian estimators incorporate prior information.

Data. We observe the outcomes of n independent repeated Bernoulli trials.

Assumptions

A1. The outcome of each trial can be classified as a success or a failure.

A2. The probability of a success, denoted by p, remains constant from trial to trial.

A3. The n trials are independent.

2.1 A BINOMIAL TEST

Procedure

To test
H0 : p = p0, (2.1)

where p0 is some specified number, 0 < p0 < 1, set

B = number of successes. (2.2)

a. One-Sided Upper-Tail Test. To test

H0 : p = p0

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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versus

H1 : p > p0

at the α level of significance,

Reject H0 if B ≥ bα; otherwise do not reject, (2.3)

where the constant bα is chosen to make the type I error probability equal to α.
The number bα is the upper α percentile point of the binomial distribution with
sample size n and success probability p0. Due to the discreteness of the binomial
distribution, not all values of α are available (unless one resorts to randomization).
Comment 3 explains how to obtain the bα values. See also Example 2.1.

b. One-Sided Lower-Tail Test. To test

H0 : p = p0

versus

H2 : p < p0

at the α level of significance,

Reject H0 if B ≤ cα; otherwise do not reject. (2.4)

Values of cα can be determined as described in Comment 3. Here, cα is the lower
α percentile point of the binomial distribution with sample size n and success
probability p0. For the special case of testing p = 1

2 ,

cα = n − bα. (2.5)

Equation 2.5 is explained in Comment 4.

c. Two-Sided Test. To test

H0 : p = p0

versus

H3 : p �= p0

at the α level of significance,

Reject H0 if B ≥ bα1 or B ≤ cα2; otherwise do not reject, (2.6)

where bα1 is the upper α1 percentile point, cα2 is the lower α2 percentile point,
and α1 + α2 = α. See Comment 3.
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Large-Sample Approximation

The large-sample approximation is based on the asymptotic normality of B , suitably
standardized. To standardize, we need to know the mean and variance of B when the
null hypothesis is true. When H0 is true, the mean and variance of B are, respectively,

Ep0(B) = np0, (2.7)

varp0(B) = np0(1 − p0). (2.8)

Comment 8 gives the derivations for (2.7) and (2.8).
The standardized version of B is

B∗ = B − Ep0(B)

{varp0(B)}1/2
= B − np0

{np0(1 − p0)}1/2
. (2.9)

When H0 is true, B∗ has, as n tends to infinity, an asymptotic N (0, 1) distribution.
Let zα denote the upper α percentile point of the N (0, 1) distribution. To find zα , we
use the qnorm(1-α,0,1). For example, to find z.05, we apply qnorm(.95,0,1) and obtain
z.05 = 1.645.

The normal approximation to procedure (2.3) is

Reject H0 if B∗ ≥ zα; otherwise do not reject. (2.10)

The normal approximation to procedure (2.4) is

Reject H0 if B∗ ≤ −zα; otherwise do not reject. (2.11)

The normal approximation to procedure (2.6), with α1 = α2 = α/2, is

Reject H0 if |B∗| ≥ zα/2; otherwise do not reject. (2.12)

EXAMPLE 2.1 Canopy Gap Closure.

Dickinson, Putz, and Canham (1993) investigated canopy gap closure in thickets of the
clonal shrub Cornus racemosa. Shrubs often form dense clumps where tree abundance
has been kept artificially low (e.g., on power-line right of ways). These shrub clumps
then retard reinvasion of the sites by trees. Individual clumps may persist for many years.
Clumps outlast the lives of the individual stems of which they are formed; stems die and
leave temporary holes in the canopies of the clumps. Closure of the hope (gap) left by
dead stems occurs in part by the lateral growth of stems that surround the hole. Opening of
the gap often occurs when individual branches of hole-edge stems die. Between sample
dates, more branches in six out of seven gaps in clumps, at a site with nutrient-poor
and dry soil, died than lived. Let us say we have a success if more branches die than
live in the gaps in clumps. Let p denote the corresponding probability of success. We
suppose that the success probability for sites that are nutrient rich with moist soil has
been established by previous studies to be 15%. Do the nutrient-poor and dry soil sites
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have the same success probability as the nutrient-rich and moist soil sites or is it larger?
This reduces to the hypothesis-testing problem

H0 : p = .15

versus
H1 : p > .15.

Our sample size is n = 7 and we observe B = 6 successes. From the R command
round(pbinom(0:7,7,.15,lower.tail=F),4), we obtain, rounded to four
places, the probabilities P.15(B > x) for x = 0, . . . , 7. (The notation P.15(B > x) is
shorthand for the probability that B > x , computed under the assumption that the true
success probability is .15.) The P.15(B > x) probabilities are

x 0 1 2 3 4 5 6 7

P.15(B > x) .6794 .2834 .0738 .0121 .0012 .0001 .0000 .0000

To find P.15(B ≥ x) note P.15(B ≥ x) = P.15(B > x − 1). Reasonable possible
choices for α are .0738, .0121, .0012, .0001. Suppose we choose to use α = .0121. We
note P(B > 3) = P(B ≥ 4) = .0121 and thus we see b.0121 = 4. Thus the α = .0121
test is

Reject H0 if B ≥ 4; otherwise do not reject.

Our observed value is B = 6 and thus we reject H0 at α = .0121. To find the
P -value, which is P.15(B ≥ 6), we can find P.15(B > 5) using the R command
pbinom(5,7,.15,lower.tail=F). Alternatively, we can find the P -value using
the R command binom.test(6,7,.15,"g"). We find P = .000069, or rounded to
four places, P is .0001. This is the smallest significance level at which we can reject
H0 (in favor of the alternative p > .15) with our observed value of B . We conclude that
there is strong evidence against H0 favoring the alternative. For more on the P -value,
see Comment 9.

EXAMPLE 2.2 Sensory Difference Tests.

Sensory difference tests are often used in quality control and quality evaluation. The tri-
angle test (cf. Bradley, 1963) is a sensory difference test that provides a useful application
of the binomial model. In its simplest form, the triangle procedure is as follows. To each
of n panelists, three test samples are presented in a randomized order. Two of the samples
are known to be identical; the third is different. The panelist is then supposed to select
the odd sample, perhaps on the basis of a specified sensory attribute. If the panelists are
homogeneous trained judges, the experiment can be viewed as n independent repeated
Bernoulli trials, where a success corresponds to a correct identification of the odd sam-
ple. (If the panelists are not homogeneous trained judges, we may question the validity
of Assumption A2.) Under the hypothesis that there is no basis for discrimination, the
probability p of success is 1

3 , whereas a basis for discrimination would correspond to
values of p that exceed 1

3 .
Byer and Abrams (1953) considered triangular bitterness tests in which each taster

received three glasses, two containing the same quinine solution and the third a different
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quinine solution. In their first bitterness test, the solutions contained .0075% and .0050%,
respectively, of quinine sulfate. The six presentation orders, LHH, HLH, HHL, HLL,
LHL, and LLH (L denotes the lower concentration, H the higher concentration), were
randomly distributed among the tasters. Out of 50 trials, there were 25 correct selections
and 25 incorrect selections.

We consider the binomial test of H0 : p = 1
3 versus the one-sided alternative p >

1
3 and use the large-sample approximation to (2.3). We set α = .05 for purposes of
illustration. To find z.05, the 95th quantile of the N (0, 1) distribution, we use the R

command qnorm(.95,0,1), and find z.05 = 1.645. Thus approximation (2.10), at the
α = .05 level, reduces to

Reject H0 if B∗ ≥ 1.645; otherwise do not reject.

From the data we have n = 50 and B (the number of correct identifications) = 25. Thus
from (2.9), with p0 = 1

3 , we obtain

B∗ = 25 − 50
( 1

3

){
50
( 1

3

) ( 2
3

)}1/2 = 2.5.

The large sample approximation value B∗ = 2.5 > 1.645 and thus we reject H0 : p = 1
3

in favor of p > 1
3 at the approximate α = .05 level. Thus there is evidence of a basis for

discrimination in the taste bitterness test. To find the P -value corresponding to B∗ = 2.5,
one can use the R command pnorm(2.5). The P -value is 1-pnorm(2.5)=.0062.
Thus, the smallest significance level at which we reject H0 in favor of p > 1

3 using the
large-sample approximation is .0062. (Note the exact P -value in this case is given by R
as 1-pbinom(24,50,1/3)=.0108.)

Comments

1. Binomial Test Procedures. Assumptions A1–A3 are the general assumptions
underlying a binomial experiment. Research problems possessing these
assumptional underpinnings are common, and thus the binomial test procedures
find frequent use. A particularly important special case in which procedures
(2.3), (2.4), and (2.6) are applicable occurs when we wish to test hypotheses
about the unknown median, θ , of a population. The application of binomial
theory to this problem leads to a test statistic, B , that counts the number of
sample observations larger than a specified null hypothesis value of θ , say θ0.
For this particular special case, the statistic B is referred to as the sign statistic,
and the associated test procedures are referred to as sign test procedures. See
Sections 3.4 and 3.8 for a more detailed discussion of the sign test procedures
corresponding to (2.3), (2.4), and (2.6).

2. Distribution-Free Test. The critical constant bα of (2.3) is chosen so that the
probability of rejecting H0, when H0 is true, is α. We can control this type I
error because Assumptions A1–A3 and a specification of p (the null hypothesis
specifies p to be equal to p0) determine, without further assumptions regarding the
underlying populations from which the dichotomous data emanate, the probability
distribution of B . Thus, under Assumptions A1–A3, the test given by (2.3) is
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said to be a distribution-free test of H0. The same statement can be made for tests
(2.4) and (2.6).

3. Illustration of Lower-Tail and Two-Tailed Tests. Suppose n = 8 and we wish to
test H0 : p = .4 versus p > .4 via procedure (2.3). Using the methods illustrated
in Example 2.1 to obtain binomial tail probabilities, we can find

b 0 1 2 3 4 5 6 7 8

P.4(B ≥ b) 1 .9832 .8936 .6846 .4059 .1737 .0498 .0085 .0007

(Recall that the P.4 notation indicates that the probabilities are computed
under the assumption that p = .4.) Hence, we can find constants bα that satisfy the
equation P.4{B ≥ bα} = α only for certain values of α. For α = .0085, b.0085 = 7.
For α = .0498, b.0498 = 6. As α increases, the critical constant bα decreases. Thus,
when we increase α, it is easier to reject H0; hence, we increase the power or,
equivalently, decrease the probability of a type II error for our test (against a
particular alternative). Similarly, if we lower α, we raise the probability of a type
II error. This is illustrated in Comment 9.

Again consider the case n = 8 and suppose we want to test p = .4 versus
the alternative p < .4. We can use the lower-tail test described by (2.4). For
example, suppose we want α = .1064. Then P.4{B ≥ 2} = .8936 and P.4{B ≤ 1}
= 1 − .8936 = .1064. Thus, in (2.4), c.1064 = 1 and this yields the α = .1064
test; namely, reject H0 if B ≤ 1 and accept H0 if B > 1.

We close this comment with an example of the two-sided test described by
(2.6). For convenience, we stay with the case n = 8 and test H0 : p = .4. Note 6
is the upper .0498 percentile point of the null distribution of B and 1 is the lower
.1064 percentile point. Thus the test that rejects H0 when B ≥ 6 or when B ≤ 1
and accepts H0 when 1 < B < 6 is an α = .0498 + .1064 = .1562 two-tailed
test.

4. Binomial Distribution. The statistic B has been defined as the number of successes
in n independent Bernoulli trials, each trial having a success probability equal to
p. The distribution of the random variable B is known as the binomial distribution
with parameters n and p.

For the special case when p = 1
2 , it can be shown that the distribution of B

is symmetric about its mean n/2. This implies that

P.5{B ≥ x} = P.5{B ≤ (n − x)} for x = 0, . . . , n. (2.13)

Equation (2.13) implies that the lower α percentile point of the binomial
distribution, with p = .5, is equal to n minus the upper α percentile point.
This result was expressed by (2.5) after we introduced the lower-tail test given
by (2.4).

5. Motivation for the Test Based on B. The statistic B/n is an estimator (see Section
2.2) of the true unknown parameter p. Thus, if p > p0, B/n will tend to be larger
than p0. This suggests rejecting H0 : p = p0 in favor of p > p0 for large values
of B and serves as partial motivation for (2.3).
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6. An Example of the Exact Distribution of B. The exact distribution of B can be
obtained from the equation

B =
n∑

i=1

ψi , (2.14)

where

ψi =
{

1, if the i th Bernoulli trial is a success,

0, if the i th Bernoulli trial is failure.

We consider the 2n possible outcomes of the configurations (ψ1, . . . , ψn ) and use
the fact that under H0, any outcome with b 1’s and (n − b) 0’s has probabil-
ity pb(1 − p)n−b . For example, in the case n = 2, p = 1

4 , the 22 = 4 possible
outcomes for (ψ1, ψ2) and associated values of B are as follows:

(ψ1, ψ2) P.25{(ψ1, ψ2)} B = ψ1 + ψ2

(0, 0)
( 1

4

)0 ( 3
4

)2−0 = 9
16 0

(0, 1)
( 1

4

)1 ( 3
4

)2−1 = 3
16 1

(1, 0)
( 1

4

)1 ( 3
4

)2−1 = 3
16 1

(1, 1)
( 1

4

)2 ( 3
4

)2−2 = 1
16 2

Thus, for example, P.25{B ≥ 1} = P.25{B = 1} + P.25{B = 2} = 6
16 + 1

16 = 7
16 .

7. The Exact Distribution of B. By methods similar to the particular case illustrated
in Comment 6, it can be shown that for each of the n + 1 possible values of B
(namely, b = 0, . . . , n), we have

Pp{B = b} =
(

n

b

)
pb(1 − p)n−b . (2.15)

In (2.15), the symbol
(n

b

)
(read “binomial n, b”) is given by(

n

b

)
= n!

b!(n − b)!
, (2.16)

where the symbol m! (read “m factorial”) is, for positive integers, defined as
m! = m(m − 1)(m − 2) . . . (3)(2)(1), and 0! is defined to be equal to 1. The
number

(n
b

)
is known as the number of combinations of n things taken b at a

time. It is equal to the number of subsets of size b that may be formed from
the members of a set of size n . The distribution given by (2.15) is known as the
binomial distribution with parameters n and p.

8. The Asymptotic Distribution of B. Using representation (2.14), we find the mean
B is

Ep(B) = Ep

(
n∑

i=1

ψi

)
=

n∑
i=1

Ep(ψi ) = np,
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where we have used the calculation

Ep(ψi ) = 1 · P(ψi = 1) + 0 · P(ψi = 0) = 1 · p + 0 · (1 − p) = p.

Then, using the fact that ψ1, ψ2, . . . , ψn are independent,

varp(B) = varp

(
n∑

i=1

ψi

)
=

n∑
i=1

varp(ψi ). (2.17)

The variance of any one of the indicator random variables ψi is determined as
follows. Note ψ2

i = ψi and thus

Ep(ψ
2
i ) = Ep(ψi ) = p,

and
varp(ψi ) = Ep(ψ

2
i ) − {Ep(ψi )}2 = p − p2 = p(1 − p).

Hence, from (2.17),

varp(B) =
n∑

i=1

p(1 − p) = np(1 − p).

The random variable B is a sum of independent and identically distributed random
variables and hence the central limit theorem (cf. Casella and Berger, 2002,
p. 236) establishes that, as n → ∞, (B − np)/

√
np(1 − p) has a limiting N (0, 1)

distribution.

9. The P-Value. Rather than specify an α level and report whether the test rejects at
that specific α level, it is more informative to state the lowest significance level at
which we can reject with the observed data. This is called the P-value. Consider
the α = .0085 test (test T1, say) and the α = .0498 test (T2) of H0 : p = .4 versus
p > .4 for the case n = 8. Suppose in an actual experiment that our observed
value of B is 7. Then with test T2 we reject H0 because the critical region for
test T2 consists of the values {B = 6, B = 7, B = 8} and our observed value 7
is in the critical region. Thus, it is correct for us to state that the value B = 7
is significant at the α = .0498 level. But the value B = 7 is also significant at
the α = .0085 level. If we simply state that we reject H0 at the .0498 level,
we do not convey the additional information that, with the value B = 7, we
also can reject H0 at the .0085 level. To remedy this, the following approach is
suggested.

Suppose, as in the previous example, large values of some statistic S (say)
lead to rejection of the null hypothesis. Let s denote the observed value of S .
Compute P0{S ≥ s}, the probability, under the null hypothesis, that S will be
greater than or equal to s . This is the lowest level at which we can reject H0.
The observation S = s will be significant at all levels greater than or equal to
P0{S ≥ s} and not significant at levels less than P0{S ≥ s}.

To further illustrate this point, consider the test of p = 1
3 versus p > 1

3 of
Example 2.2. We apply procedure (2.10), based on the large-sample approxi-
mation to the null distribution of B . The (approximate) α = .05 test rejects if
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B∗ ≥ 1.645 and accepts otherwise. The observed value of B∗ is B∗ = 2.5 and
thus we can reject p = 1

3 in favor of p > 1
3 at the .05 level. In Example 2.2, we

found z.0062 = 2.5. Thus, the smallest significance level at which we can reject is
approximately .0062, and this statement is more informative than the statement
that the .05 test leads to rejection.

10. Calculating Power. Take n = 8, and consider the following two tests of
H0 : p = .4 versus p > .4, based on (2.3). Test T1, corresponding to α = .0085,
rejects H0 if B ≥ 7 and accepts otherwise. Test T2, corresponding to α = .0498,
rejects H0 if B ≥ 6 and accepts otherwise. Suppose, in fact, that the alternative
p = .5 is true. Let R1 denote the power of the test T1 (for this alternative)
and let R2 denote the power of the test T2. Thus, R1 is the probability of
rejecting H0 with test T1 and R2 is the probability of rejecting H0 with
test T2. These powers are to be calculated when the alternative p = .5
is true. Using the R commands pbinom(6,8,.5,lower.tail=F) and
pbinom(5,8,.5,lower.tail=F), we obtain

R1 = P.5{B ≥ 7} = P.5{B > 6} = .0352

R2 = P.5{B ≥ 6} = P.5{B > 5} = .1445

For the alternative p = .5, let β1 denote the probability of a type II error
using test T1 and let β2 denote the probability of a type II error using test T2. We
find

β1 = 1 − R1 = .9648, β2 = 1 − R2 = .8555.

Test T1 has a lower probability of a type I error than test T2, but the probability
of a type II error for test T1 exceeds that of test T2. Incidentally, the reader should
not be shocked at the very high values of β1 and β2. The alternative p = .5 is
quite close to the null hypothesis value p = .4 and a sample of size 8 is simply
not large enough to make a better (in terms of power) distinction between the
hypothesis and alternative.

11. More Power Calculations. We return to Example 2.2 concerning sensory differ-
ence tests. Suppose we have n = 50 and we decide to employ the approximate
α = .05 level test of H0 : p = 1

3 versus H1 : p > 1
3 . Recall that test rejects H0 if

B − n
( 1

3

)
{n ( 1

3

) ( 2
3

)}1/2
> 1.645

and accepts H0 otherwise. What is the power of this test if in fact p = .6? We
approximate the power using the asymptotic normality of B , suitably standardized.
If p = .6, then

B − n(.6)

{n(.6)(.4)}1/2

has an approximate N (0, 1) distribution. Using this, we find
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Power = P.6

{
B − n

( 1
3

){
n
( 1

3

) ( 2
3

)}1/2 > 1.645

}

= P.6

{
B >
[
(1.645)

{
n
( 1

3

) ( 2
3

)}1/2
]

+ n
( 1

3

)}

= P.6

{
B − n(.6)

{n(.6)(.4)}1/2
>

[
(1.645)

{
n
( 1

3

) ( 2
3

)}1/2 + n
( 1

3

)− n(.6)

{n(.6)(.4)}1/2

]}

=̇ P {Z > −2.27} ,

where Z = {B − n(.6)}/{n(.6)(.4)}1/2 is approximately a N (0, 1) random variable
and −2.27 is the value, when n = 50, of the term in large square brackets. Using
1-pnorm(-2.27), we find power =̇P{Z > −2.27} = .9884.

12. Counting Failures Instead of Successes. Define B− to be the number of fail-
ures in the n Bernoulli trials. Note that B− could be defined by (2.14) with ψi

replaced by (1 − ψi ), for i = 1, . . . , n . Test procedures (2.3), (2.4), and (2.6)
could equivalently be based on B−, because B− = n − B .

13. Some History. The binomial distribution has been utilized for statistical inferences
about dichotomous data for more than 300 years. Binomial probability calcula-
tions were used by the British physician Arbuthnott (1710) in the early eighteenth
century as an argument for the sexual balance maintained by Divine Providence
and against the practice of polygamy. Bernoulli trials are so named in honor of
Jacques Bernoulli. His book “Ars Conjectandi” (1713) contains a profound study
of such trials and is viewed as a milestone in the history of probability theory.
(LeCam and Neyman (1965) reported that the original Latin edition was followed
by several in modern languages; the last reproduction, in German, appeared in
1899 in No. 107 and No. 108 of the series Ostwald’s Klassiker der exakten
Wissenschaften, Wilhelm Engelman, Leipzig.) Today, the binomial procedures
remain one of the easiest and most useful sets of procedures in the statistical
catalog.

Properties

1. Consistency. Test procedures (2.3), (2.4), and (2.6) will be consistent against
alternatives for which p >,<, and �= p0, respectively.

Problems

1. Stanton (1969) investigated the problem of paroling criminal offenders. He studied the behav-
ior of all male criminals paroled from New York’s correctional institutions to original parole
supervision during 1958 and 1959 (exclusive of those released to other warrants or to depor-
tation). The parolees were observed for 3 years following their releases or until they exhibited
some delinquent parole behavior. In a study involving a very large number of subjects, Stanton
considered criminals convicted of crimes other than first- or second-degree murder. He found
that approximately 60% of these parolees did not have any delinquent behavior during the 3
years following their releases.
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During the same period, Stanton found that 56 of the 65 paroled murderers (first- or
second-degree murderers who were also original parolees) in the study had no delinquent
parole behavior. Let a success correspond to a male murderer on original parole who does
not exhibit any delinquent parole behavior in the 3-year observation period. Note that we
could question Assumptions A2 in this context; parolees convicted of first-degree murder may
have a different success probability than parolees convicted of second-degree murder. Even
the parolees in the first-degree (or second-degree) group may have different individual success
probabilities. For pedagogical purposes, we proceed as if Assumption A2 is valid and denote
the common success probability by p.

It is of interest to investigate whether murderers are better risks as original
parolees than are criminals convicted of lesser crimes. This suggests testing H0 : p = .6
against the alternative p > .6. Perform this test using the large-sample approximation to
procedure (2.3).

2. Describe a situation in which Assumptions A1 and A2 hold but Assumption A3 is violated.

3. Describe a situation in which Assumptions A1 and A3 hold but Assumption A2 is violated.

4. Suppose that 10 Bernoulli trials satisfying Assumptions A1–A3 result in 8 successes. Inves-
tigate the accuracy of the large-sample approximation by comparing the smallest significance
level at which we would reject H0 : p = 1

2 in favor of p > 1
2 when using procedure (2.3) with

the corresponding smallest significance level for the large-sample approximation to procedure
(2.3) given by (2.10).

5. Return to the α = .0121 test of Example 2.1. Recall that the test of H0 : p = .15 versus
H1 : p > .15 rejects H0 if in n = 7 trials there are 4 or more successes and accepts H0 if there
are 3 or fewer successes. What is the power of that test when (a) p = .4, (b) p = .6, and (c)
p = .8?

6. A standard surgical procedure has a success rate of .7. A surgeon claims a new technique
improves the success rate. In 20 applications of the new technique, there are 18 successes. Is
there evidence to support the surgeon’s claim?

7. A multiple-choice quiz contains ten questions. For each question there are one correct answer
and four incorrect answers. A student gets three correct answers on the quiz. Test the hypothesis
that the student is guessing.

8. Return to Example 2.2 and, in the case of n = 50, approximate the power of the α = .05 test
when p = .5.

9. Forsman and Lindell (1993) studied swallowing performance of adders (snakes). Captive
snakes were fed with dead field voles (rodents) of differing body masses and the number of
successful swallowing attempts was recorded. Out of 67 runs resulting in swallowing attempts,
58 where successful and 9 failed. (A failure was easy to detect because the fur of a partly
swallowed and regurgitated vole is slick and sticks to the anterior part of the body.) Test the
hypothesis that p = .6 against the alternative p > .6.

10. Table 2.1 gives numbers of deaths in US airline accidents from 2000 to 2010. (The entry for
2001 does not include the death toll in the September 11, 2001 plane hijackings.) See the
TODAY article by Levin (2011), which cites data from the National Transportation Board.

Suppose you view each trial year as a success if there are no U.S. Airline deaths and
a failure otherwise. Discuss the validity of Assumptions A1 and A2. (Mann’s test for trend,
covered in Comment 8.14, can be used to obtain an approximate P -value for assessing the
degree of trend in deaths.)

Table 2.1 Deaths in US Airlines Accidents

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
89 266 0 22 13 22 50 0 0 50 0

Source: A. Levin (2011).
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2.2 AN ESTIMATOR FOR THE PROBABILITY
OF SUCCESS

Procedure

The estimator of the probability of success p, associated with the statistic B , is

p̂ = B

n
. (2.18)

EXAMPLE 2.3 Example 2.2 Continued.

Consider the triangle test data of Example 2.2. Then p̂ = B/n = (25/50) = .5. Thus our
point estimate of p, the probability of correctly identifying the odd sample, is p̂ = .5.

Comments

14. Observed Relative Frequency of Success. The statistic p̂ is simply the observed
relative frequency of success in n Bernoulli trials satisfying Assumptions A1-A3.
Thus p̂ qualifies as a natural estimator of p, the unknown probability of success
in a single Bernoulli trial. That is, we estimate the true unknown probability of
success by the observed frequency of success.

15. Standard Deviation of p̂. We have shown in Comment 8 that the variance of B is
np(1 − p), where p is the success probability. It follows that the variance of p̂ is

var(̂p) = p(1 − p)

n
. (2.19)

The standard deviation of p̂ is

sd (̂p) =
√

p(1 − p)

n
. (2.20)

Note that sd (̂p) cannot be computed unless we know the value of p, but it can
be estimated by substituting p̂ for p in (2.20). This quantity, which we denote
as ŝd (̂p), is a consistent estimator of sd (̂p). The quantity ŝd (̂p) is also known as
the standard error of p̂. We have

ŝd (̂p) =
√

p̂(1 − p̂)

n
. (2.21)

Rather than simply stating the value of p̂ when reporting an observed relative
frequency of success, it is important to also report the value of ŝd (̂p), which (as
does var(̂p)) measures the variability of the estimate.

Thus, for the adder data of Problem 9, we could report

p̂ = 58

67
= .87; ŝd (̂p) =

√√√√√
(

58

67

)(
9

67

)
67

= .04.
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Alternatively, we could use a confidence interval for p (see Section 2.3).

16. Sample Size Determination. Suppose we want to choose the sample size n so that
p̂ is within a distance D of p, with probability 1 − α. That is, we want

Pp (−D < p̂ − p < D) = 1 − α.

This is equivalent to

Pp

⎛⎜⎜⎝ −D√
p(1 − p)

n

<
p̂ − p√
p(1 − p)

n

<
D√

p(1 − p)

n

⎞⎟⎟⎠ =̇1 − α.

The variable (̂p − p)/
√

p(1 − p)/n has an asymptotic N (0, 1) distribution and
thus we know

P

⎛⎜⎜⎝−zα/2 <
p̂ − p√
p(1 − p)

n

< zα/2

⎞⎟⎟⎠ =̇1 − α.

From the two previous equations, we see that

D√
p(1 − p)

n

=̇zα/2.

Solving for n yields

n=̇ (zα/2)
2p(1 − p)

D2
(2.22)

Expression (2.22) requires a guess or estimate for p because p is not known. The
function p(1 − p) is maximized at p = 1

2 and decreases to zero as p approaches
0 or 1. Thus we obtain the most conservative sample size by substituting 1

2 for p
in (2.22). This yields

n = (zα/2)
2

4D2
(2.23)

17. Competing Estimators. Suppose you observe B = 0 in n trials. Depending on
the situation, you may have little faith in the estimate p̂ = 0. For example, you
take a random sample of 10 smokers on a college campus and find no one in
the sample smokes. You do not, however, believe that the probability is 0 that a
randomly selected student is a smoker. A similar dilemma occurs when B = n .
One alternative estimator of p is p̃ defined by (2.24) and presented in Section
2.3 on confidence intervals for p. Other alternative estimators use the Bayes
estimators presented in Section 2.4.
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Properties

1. Maximum Likelihood Estimator. The estimator p̂ is the maximum likelihood esti-
mator.

2. Standard Deviation. For the standard deviation of p̂ see Comment 15.

3. Asymptotic Normality. For asymptotic normality, see Casella and Berger (2002,
p 236).

Problems

11. Calculate p̂ for the parolee data of Problem 1 and obtain an estimate of the standard deviation
of p̂.

12. Obtain an estimate for the standard deviation of the estimate p̂ calculated in Example 2.1.

13. Suppose n = 7. What are the possible values for p̂ ? When α = .05, what are the possible
values for p̃ defined by (2.24)?

14. Suppose you are designing a study to estimate a success probability p. Determine the sample
size n so that p̂ is within a distance .05 of p with probability .99.

2.3 A CONFIDENCE INTERVAL FOR THE PROBABILITY
OF SUCCESS (WILSON)

Procedure

Set

p̃ = p̂

(
n

n + z 2
α/2

)
+ 1

2

(
z 2
α/2

n + z 2
α/2

)
, (2.24)

pW
L (α) = p̃ − zα/2V ∗ (2.25)

pW
U (α) = p̃ + zα/2V ∗, (2.26)

where

V ∗ =
{

1

n + z 2
α/2

[
p̂(1 − p̂)

(
n

n + z 2
α/2

)
+
(

1

2

)(
1

2

)( z 2
α/2

n + z 2
α/2

)]}1/2

. (2.27)

With pL(α) and pU(α) defined by (2.25) and (2.26),

Pp{pW
L (α) < p < pW

U (α)} ≈ 1 − α. (2.28)

The classical large-sample confidence interval (see Comment 19) is centered at p̂.
The Wilson confidence interval is centered at p̃ which is a weighted average of p̂ and
1/2 (see Comment 18 and (2.24)).
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EXAMPLE 2.4 Tempting Fate.

Risen and Gilovich (2008) conducted a number of studies designed to explore the notion
that it is bad luck to tempt fate. In one study, participants were read a scenario in which a
student had recently finished applying to graduate school and his top choice was Stanford
University. In the scenario, the student’s optimistic mother sent him a Stanford T-shirt
in the mail. Risen and Gilovich asked a group of 20 participants to consider that the
student could either stuff the T-shirt in a drawer while waiting for Stanford’s admission
decision or could wear the shirt the next day. The question asked of the 20 participants
was would a person be more upset receiving a rejection from Stanford after having
worn the Stanford shirt than after having stuffed the shirt in a drawer. Eighteen of the
20 participants thought the person would be more upset having worn the shirt. (The
person when he wears the shirt “tempts fate” but it is more of a superstitious nature
than, for example, tempting fate by walking outside in the middle of a storm replete with
lightening. The latter actually increases your chance of a serious accident while wearing
the shirt does not affect the chance of admission.) Let p denote the probability that a
participant thought the person would be more upset having worn the shirt.

To directly find the Wilson interval for this tempting fate data, we can use the function
binom.confint from the library binom. If we enter binom.confint(x = 18, n

= 20, conf.level = .95, methods = "all") we obtain the Wilson interval
along with a number of other confidence intervals including the Laplace–Wald interval
of Comment 19, the Agresti–Coull interval of Comment 20, and the Clopper–Pearson
interval of Comment 21. The Wilson 95% interval is (.699, .972).

The null hypothesis of no effect underlying the Risen and Glovich studies is that peo-
ple are unconcerned about tempting fate, which, in terms of p, is H0 : p = 1/2. With B =
18, n = 20, we find the one-sided P -value is P1/2(B ≥ 18) = .0002. Thus there is strong
evidence that the participants feel people will avoid tempting fate. The P -value of .0002
can be obtained directly from the R function pbinom(18,20,.5,lower.tail=F)

or equivalently from 1-pbinom(18,20,.5).

Comments

18. The Wilson Confidence Interval. In general, confidence intervals can be obtained
by inverting tests. For a general parameter θ , a two-sided 100(1 − α)% confi-
dence interval consists of those θ0 values for which the two-sided test of θ = θ0

does not reject the null hypothesis θ = θ0. The confidence interval given by
(2.25) and (2.26) is due to Wilson (1927) (see also Agresti and Caffo (2000),
Agresti and Coull (1998), Brown, Cai and DasGupta (2001), and Agresti (2013)).
It is also called the score interval (see Agresti (2013). The interval is the set
of p0 values for which |̂p − p0|/{(p0(1 − p0)/n)}1/2 < zα/2. The midpoint p̃ of
the interval is a weighted average of p̂ and 1/2 with the weights n/(n + z 2

α/2)

and z 2
α/2(n + z 2

α/2), respectively. This midpoint equals the sample proportion
obtained if z 2

α/2/2 pseudo observations are added to the number of successes
and z 2

α/2/2 pseudo observations are added to the number of failures. We can
write this midpoint p̃ as

p̃ = B + z 2
α/2/2

n + z 2
α/2

,

which is equivalent to (2.24).
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The quantity (V ∗)2 (see (2.27)) is a weighted average of the variance of a
sample proportion when p = p̂ and the variance of a sample proportion when
p = 1/2, where n + z 2

α/2 is used in place of the sample size n .
Brown, Cai, and DasGupta (2001) studied various confidence intervals for p.

For n ≤ 40, they recommended the Wilson interval and an alternative interval
due to Jeffreys. For n > 40 they found that the Wilson interval, the Jeffreys
interval, and the Agresti–Coull interval (see Comment 20) are comparable.

19. The Laplace–Wald Confidence Interval. This interval can be obtained by invert-
ing large-sample Wald tests (cf. Agresti, 2013). The approximate 100(1 − α)%
interval is the set of p0 values for which |̂p − p0|/{̂p(1 − p̂)/n}1/2 < zα/2. The
interval is

pLW
L (α) = p̂ − zα/2{(̂p(1 − p̂))/n}1/2, (2.29)

pLW
U (α) = p̂ + zα/2{(̂p(1 − p̂))/n}1/2, (2.30)

where p̂ = B/n . The interval was used by Laplace (1812), and here, we denote
it as the LW interval.

Brown, Cai, and DasGupta (2001) highlight disadvantages of the LW inter-
val. There exist pairs (p, n), which they call unlucky pairs, for which the
coverage probability is much smaller than the nominal coverage probability
1 − α. The phenomenon of oscillation occurs in n for fixed p and in p for fixed
n . They also note that severe changes in the coverage occur in nearby p for
fixed n and in nearby n for fixed p. Furthermore, even for large sample sizes,
significant changes in coverage probabilities occur in nearby p and in many
cases the coverage of the LW interval is strictly smaller than the nominal level.
In particular, Brown, Cai, and DasGupta (2001) show for all n ≤ 45, the actual
coverage of the 99% LW interval is strictly less than the nominal level for all
0 < p < 1. See their Examples 1–5.

The LW interval can be found directly using the R function binom.

confint. For the tempting fate data, if we enter binom.confint(x=18,
n=20,conf. level=.95,methods="all"), the output for the LW interval
(labeled the “asymptotic” interval in the output) is (.769, 1.031). The parameter
p must be between 0 and 1. Thus the upper value 1.031 should be changed to 1.

20. The Agresti–Coull Confidence Interval. The Agresti–Coull interval is also cen-
tered at p̃. Let q̃ = 1 − p̃. The Agresti–Coull (1998) two-sided confidence
interval for p with confidence coefficient approximately 1 − α is

pAC
L (α) = p̃ − zα/2(p̃q̃)1/2ñ−1/2 (2.31)

pAC
U (α) = p̃ + zα/2(p̃q̃)1/2ñ−1/2 (2.32)

With pL(α) and pU(α) defined by (2.31) and (2.32),

Pp{pAC
L (α) < p < pAC

U (α)} ≈ 1 − α. (2.33)

The Agresti–Coull interval is an alternative to the classical Laplace–Wald
interval; one with a better centering point (p̃ instead of p̂). For the case when
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α = .05, if you substitute “2” for z.025 = 1.96, it can be thought of as the
“add two successes and two failures” interval. Brown, Cai, and DasGupta
(2001) recommend the Agresti–Coull interval for practical use when n ≥ 40,
although it is never shorter than the Wilson interval. Its relative simplicity
and ease of description make it particularly attractive for an introductory
course. See Brown, Cai, and DasGupta (2001) for comparisons of various
confidence intervals for the binomial parameter. The Agresti–Coull interval
can be found directly from the R function binom.confint. For the tempting
fate data if we enter binom.confint(x=18, n=20, conf.level=.95,

methods="all"), we find the approximate 95% interval to be (.687, .984).

21. The Clopper–Pearson Confidence Interval. The Clopper–Pearson (1934)
confidence interval is obtained by inverting the equal-tail binomial test. That
is, if B = b is observed, the Clopper–Pearson interval is defined by pCP

L (α),
pCP

U (α), where pCP
L (α) and pCP

U (α) are, respectively, the solutions in p to the
equations

Pp(B ≥ b) = α/2, Pp(B ≤ b) = α/2.

The endpoints of the 100(1 − α)% confidence interval are defined by the fol-
lowing equations:

pCP
L (α) = B

B + (n − B + 1)fα/2,2(n−B+1),2B
(2.34)

pCP
U (α) = 1 − pα

L (n , n − B), (2.35)

where B is the number of successes in the n Bernoulli trials and fγ ,n1,n2 is the
upper γ th percentile for the F distribution with n1 degrees of freedom in the
numerator and n2 degrees of freedom in the denominator.

The Clopper–Pearson interval is conservative,

Pp{pCP
L (α) < p < pCP

U (α)} ≥ 1 − α. (2.36)

The conservativeness can be extreme in that for any fixed p, the true coverage
probability can be much larger than 1 − α unless n is quite large.

The Clopper–Pearson interval can be found directly from the R function
binom.confint. For the tempting fate data we apply binom.confint(

x=18,n=20,conf.level=.95,methods="all") and find the CP interval
is (.683, .987). In the output the CP interval is labeled as “exact”.

22. Equivariance. Binomial confidence interval procedures that satisfy (2.35) are
said to be equivariant (Casella, 1986). The motivation for the term equivari-
ance is that the binomial distribution is invariant under the transformations
B → n − B and p → 1 − p. See Casella (1986) for further details. The Clop-
per–Pearson intervals are equivariant but they are not the only ones that enjoy
the equivariance property. Casella (1986) gives a method for refining equivari-
ant binomial confidence intervals to obtain new intervals with uniformly shorter
lengths for the same confidence coefficient.

23. The Multinomial Distribution. The binomial distribution given by (2.15) can be
extended to situations where an experiment has k (k ≥ 2) possible outcomes
or categories, say A1, A2, . . . , Ak , which are mutually exclusive and exhaustive.
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We let P(Ai ) = pi , i = 1, . . . , k , where
∑k

i=1 pi = 1. Furthermore, let Xi be
the number of times Ai occurs in the n trials. The k variables X1, X2, . . . , Xk

are said to have the multinomial distribution with parameter n , p, where p =
(p1, p2, . . . , pk ). The distribution is given by

P(X1 = x1, X2 = x2, . . . , Xk = xk ) =
(

n

x1, x2, . . . , xk

)
px1

1 px2
2 . . . pxk

k , (2.37)

where (
n

x1, x2, . . . , xk

)
= n!

x1!x2! . . . xk !
. (2.38)

The quantity
( n

x1,x2,...,xk

)
is known as the multinomial coefficient. It is equal to the

number of distinguishable arrangements of x1 A1’s, x2 A2’s, . . ., xk Ak ’s. The
mean and variance of Xi are

E (Xi ) = npi , var(Xi ) = npi (1 − pi ), i = 1, . . . k .

The covariance between Xi and Xj is

cov(Xi , Xj ) = −npi pj .

24. Some Examples Where the Multinomial Arises.
Example A: In Paradise Paved, Florida, 44% of the voters are Democrats,

42% are Republican, and 14% are in some other category (Independent, Tea
Party, etc.). Suppose a random sample of 20 voters are polled yielding X1

Democrats, X2 Republicans, and X3 in the other category. Then, (X1, X2, X3)

has a multinomial distribution with parameters n = 20 and p = (.44, .42, .14).
Example B: Cohen and Bloom (2010) report on data from the National

Health Interview Survey, 2008. The distribution of health insurance status for
male adults aged 20–29 years was 57.5% had private insurance, 5.6% were on
Medicaid, 1.6% had some other form of insurance, and 35.3% were uninsured.
Suppose a random sample of 40 was obtained from this population yielding
X1 on private insurance, X2 on Medicaid, X3 on some other coverage, and X4

uninsured. Then, (X1, X2, X3, X4) has a multinomial distribution with parameters
n = 40 and p = (.575, .056, .016, .353).

25. Estimation for the Multinomial Distribution. For the multinomial distribution,
if we observe the frequencies X1, X2, . . . , Xk , where Xi is the number of times
the event Ai occurs in n experiments, the standard frequentist estimators of
p1, p2, . . . , pk are the sample proportions

p̂i = Xi /n , i = 1, . . . , k . (2.39)

With k ≥ 2, asymptotic 100(1 − α)% simultaneous confidence intervals
for the M = k(k − 1)/2 pairwise differences {pi − pj }, 1 ≤ i < j ≤ k , can be
obtained using Bonferroni’s inequality. They are

p(i ,j )
L = p̂i − p̂j − zα/2M {[p̂i + p̂j − (p̂i − p̂j )

2]/n}1/2, (2.40)

p(i ,j )
U = p̂i − p̂j + zα/2M {[p̂i + p̂j − (p̂i − p̂j )

2]/n}1/2, (2.41)
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where p̂i = Xi /n , i = 1, . . . , k . The M intervals given by (2.40) and (2.41)
satisfy, for large n ,

P{p(i ,j )
L < pi − pj < p(i ,j )

U , 1 ≤ i < j ≤ k} ≈ 1 − α. (2.42)

That is, the probability is approximately 1 − α that the M intervals simultane-
ously contain the M differences {pi − pj , i < j }.

Asymptotic 100(1 − α)% simultaneous confidence intervals for
pi , i = 1, . . . , k , based on Bonferroni’s inequality, are obtained by solving

(p̂i − pi )
2 = (zα/2k )

2pi (1 − pi )/n (2.43)

for lower and upper limits p(i )
L , p(i )

U (see Goodman (1965), Miller (1981a), Fitz-
patrick and Scott (1987) and Agresti (2013)).

26. Pearson’s Chi-Squared Goodness-of-Fit Test for Specified Multinomial Proba-
bilities. Pearson’s (1900) chi-squared statistic can be used to test, on the basis
of n experiments with frequencies X1, X2, . . . , Xk corresponding to the k cate-
gories, the hypothesis that the multinomial probabilities p1, p2, . . . , pk are equal
to specified or known values p0

1 , p0
2 , . . . , p0

k . Pearson’s chi-squared statistic is

χ2 =
k∑

i=1

{
(Xi − np0

i )2

np0
i

}
(2.44)

Note deviations of the Xi ’s from their hypothesis expected values (the np0
i ,s)

are magnified by the (Xi − np0
i )2 terms leading to large values of χ2. That is,

significantly large values of χ2 indicate a deviation from the hypothesis

H0 : p1 = p0
1 , p2 = p0

2 , . . . , pk = p0
k (2.45)

in favor of the alternative

H1 : pi �= p0
i for at least on value of i . (2.46)

If one computes χ2 = χ2
obs (the observed value), one can find the cor-

responding P -value, the probability under the null hypothesis that χ2 ≥ χ2
obs ,

by summing the probabilities given by (2.37) over all possible multinomial out-
comes yielding χ2 ≥ χ2

obs . It is more convenient, however, to use a large-sample
approximation.

Pearson showed that when H0 is true, the distribution of χ2 as n → ∞,
is that of a chi-squared distribution with k − 1 degrees of freedom. Thus, an
approximate α-level test is

Reject H0 if χ2 ≥ χ2
α,k−1; otherwise do not reject. (2.47)

The P -value is found by referring the observed value of χ2 to the χ2
k−1 distri-

bution.
The χ2 approximation is good when each of the np0

i ’s is not too small.
A general foot rule is it’s good if np0

i ≥ 5 for each value of i .
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Table 2.2 Outcomes of Pea Plant Experiments

Trait Dominant Recessive χ2 P -value Expected Ratio

Seed shape Round 5474 Angular 1850 .2629 .6081 3:1
Cotyledon color Yellow 6022 Green 2001 .015 .9025 3:1
Seed coat color Colored 705 White 224 .3907 .5319 3:1
Pod shape Inflated 882 Constricted 299 .0635 .801 3:1
Pod color Green 428 Yellow 152 .4506 .5021 3:1
Flower position Axial 651 Terminal 207 .3497 .5543 3:1
Stem length Long 787 Short 277 .6065 .4361 3:1

Source: D.J. Fairbanks and B. Rytting (2001).

27. Checking for Data Fudging: The Fit May be Too Good. The chi-squared statistic
rejects the goodness-of-fit null hypothesis (2.45) if χ2 is too large. Small values
in the lower tail of the null distribution of χ2, however, can give an indication
that the fit is too good and that perhaps the data have been “cooked” so that
they would appear to support the hypothesized model values.

A classic example of the use of Pearson’s χ2 involves Gregor Mendel’s
famous genetics experiments on pea plants. Mendel, a European monk whom
many biologists regard as the father of genetics, cross-pollinated purebred plants
with specific traits and observed and recorded the results over many generations.
Table 2.2, based on data in Fairbanks and Rytting (2001), gives the f2 generation
(the second offspring of cross-pollinated purebred plants) pertaining to seven
pea characteristics: (1) seed shape (round or angular), (2) cotyledon (part of the
embryo within the seed) color (yellow or green), (3) seed coat color (colored or
white), (4) pod shape (inflated or constricted), (5) pod color (green or yellow),
(6) flower position (axial or terminal), (7) stem length (long or short).

All of the χ2 statistics in Table 2.2 are based on one degree of freedom (df ).
The sum of seven independent χ2 statistics with one df follows a χ2 distribution
with df = 7. (More generally, the sum

∑
i χ2 of independent χ2 statistics, with

the i th having df = mi , follows a χ2 distribution with df =∑mi .) Summing
the seven χ2 values in column 6 of Table 2.1 yields

∑7
i=1 χ2 = 2.1389 and

P(
∑7

i=1 χ2 ≤ 2.1389) = .0482. Thus the value 2.1389 falls in the lower tail of
the distribution and arouses suspicion that the fit is too good.

Mendel did many more experiments than those represented in Table 2.2.
Agresti (2013) and Fisher (1936) summarized Mendel’s experiments and
obtained a χ2 value of 42 based on df = 84. We find P(χ2

84 ≤ 42) = .000035.
This chi-square value is extremely small and it is smaller than would be expected
when the model fits. Fisher suspected that an overzealous assistant might have
biased the data. Other possibilities include the “several left-in-the drawer”
theory in which Mendel may have only reported the “best” results and omitted
the results of other experiments. Nevertheless, over time the works of Mendel
and many others have led to acceptance of Mendel’s genetic theories. Pires and
Branco investigate a model that may alleviate the controversy. See their paper
and Box (1978) for more details about the history of the Mendel-Fisher difficulty.

The χ2 values can be readily obtained from R functions. For example,
the χ2 = .2629 value given in the first row of Table 2.2 is obtained from
chisq.test(c(5474,1850), p=c(.75,.25)) yielding the output χ2 =
.2629, df = 1, P-value=.6081. The lower-tail probability P(χ2

84 ≤ 42) =
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.000035 corresponding to the value χ2
84 = 42 is obtained by the R function

pchisq(42,84).

28. Testing Equal Probabilities. In the case when the multinomial probabilities are
specified to be equal, that is H0 is taken to be p1 = 1/k , . . ., pk = 1/k , the
chi-squared statistic reduces to

χ2 =
{

(k/n)

k∑
i=1

X 2
i

}
− n. (2.48)

29. The Case k = 2. When k = 2, the multinomial setting reduces to the binomial
setting and Pearson’s χ2 test is a test of p = p0. In this case, the approximate
test defined by (2.47) is equivalent to the approximate two-sided test of p = p0

versus the alternative p �= p0 given by (2.12).

Properties

1. Distribution-Freeness. For Bernoulli trails satisfying Assumptions A1–A3, (2.36)
holds. Thus, (pCP

L (α), pCP
U (α)) is a confidence interval for p with confidence

coefficient at least 1 − α.

Problems

15. For the parolee data of Problem 1, obtain the Wilson, Laplace–Wald, Agresti–Coull, and
Clopper–Pearson confidence intervals for p, each with an approximate confidence coefficient
of .96. Compare the four intervals.

16. Shlafer and Karow (1971) considered some of the problems involved with cardiac preservation.
In particular, they were interested in the morphological and physiological injury occurring in
hearts that had been frozen to various temperatures without the benefit of a cryoprotectant.
Hearts from adult rats were perfused with a balanced salt solution in vitro for 20 min, and
during this time, contractions were noted. After disconnection from the perfusion apparatus,
each heart, surrounded by a plastic shield, was inserted into a metal canister and chilled by an
acetone bath (maintained at −20 ◦C by addition of dry ice) until the lowest desired temperature
was attained. The individual hearts were then thawed (in 1 min or less) by removing the metal
canister and running 35 ◦C tap water over the plastic shields, being careful to prevent water
from flowing directly over the hearts. After thawing, the hearts were again perfused with the
balanced salt solution. Hearts spontaneously resuming coordinated atrioventricular contractions
within 20 min of thawing were considered to be “survivors” of the freeze–thawing process.

The authors conducted experiments where the lowest attained temperatures were −10,
−12, −17, and −20 ◦C. We focus here on the data for the −12 ◦C investigation, in which
the authors found that of six hearts frozen to −12 ◦C, three were survivors. If we let success
denote survival, then p represents the probability that a rat heart frozen to −12 ◦C will spon-
taneously resume coordinated atrioventricular contractions within 20 min after thawing and
perfusion with a balanced salt solution. Obtain the Wilson, Laplace–Wald, Agresti–Coull, and
Clopper–Pearson confidence intervals for p, each with an approximate confidence coefficient
of .90. Compare the intervals.

17. Many materials that are satisfactory for use in air will ignite and burn in pure oxygen when
subjected to mechanical impact. This problem is of vital concern to the aerospace industry,
which uses enormous amounts of both liquid and gaseous oxygen. In particular, there is a need
for guidelines to aid the designer in selecting materials to be employed in pressurized oxygen
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systems. In order to provide an appropriate method for determining gaseous oxygen-material
compatibility, the Kennedy Space Center developed a gaseous oxygen impact test procedure.
Jamison (1971) reported on the use of this testing scheme to analyze the gaseous oxygen-
material compatibility for 33 Apollo spacecraft test materials. One such material tested, silicone
elastomer 342, failed the gaseous oxygen impact test (i.e., the material ignited) in 4 out of 20
trials. Let p denote the probability of ignition for silicone elastomer 342 when subjected to the
conditions employed in the gaseous oxygen impact test. Obtain the Wilson, Laplace–Wald,
Agresti–Coull, and Clopper–Pearson confidence intervals for p, each with an approximate
confidence coefficient .95. Compare the intervals.

18. Ehlers (1995) performed a 1-year follow-up study of panic disorder. As partial motivation for
the study, the author offered the following quote from Wolfe and Maser (1994, 241): “Little
is known about the long-term course of disorder. The limited findings to date suggest that in
most cases it is a chronic disorder that waxes and wanes in severity. However, some people
may have a limited period of dysfunction that never recurs, while others tend to have a more
severe and complicated course.” In this study, diagnoses were made by trained interviewers
(either the author, Ehlers, or trained graduate students) according to the criteria of the revised
third edition of the “Diagnostic and Statistical Manual of Mental Disorders” (DSM-III-R;
American Psychiatric Association, 1987). One year after initial assessments, participants were
mailed a questionnaire for the purpose of assessing their current symptoms. In this problem,
we discuss one small portion of the data that were obtained. Out of 46 people who were
initially diagnosed as “infrequent panickers,” 23 experienced panic attacks during follow-up.
Obtain the approximate 95% Wilson, Laplace–Wald, Agresti–Coull, and Clopper–Pearson
confidence intervals for p, the probability that an infrequent panicker will experience panic
attacks during a 1-year follow-up period. Compare the intervals.

19. For the triangle bitterness tests data of Example 2.2, obtain the Wilson, Laplace–Wald,
Agresti–Coull, and Clopper–Pearson confidence intervals for p, each at an approximate con-
fidence coefficient of .90. Compare the intervals.

20. Consider the study in Problem 17 and describe the inherent sources for error when one uses
a mailed questionnaire.

21. Consider the study in Problem 18 and discuss the possibility of unintentional bias entering the
study, because some of the diagnoses were made by the author of the study.

22. A table of random numbers contains randomly generated digits that have been generated so
that the following two properties are satisfied.

(I) Equal Likelihood Property. Focus on any particular spot in the table, such as the second
digit in the fourth row. The probability it will be a 0 equals the probability it will be a 1 . . .

equals the probability it will be a 9. More succinctly, P(0) = P(1) = . . . = P(9) = 1/10.
(II) Mutual Independence Property. Focus on any particular spot in the table, such as the

third digit in the second row. Knowing some or even all of the digits in the table, except for
the one you are considering, does not change the probability it will be a 0, or a 1, . . ., or a 9.
This probability remains a 1/10.

For the 400 randomly generated digits in Table 2.3, test the equal likelihood property.

Table 2.3 Four Hundred Random Digits

24253 39427 80642 36718 92164 77732 69754 01291 53704 33054
34302 60309 27186 22418 59962 13934 67591 17476 21559 73437
76809 84341 74012 50947 83214 19967 44219 75929 13182 34858
85183 35958 04301 49628 91493 66103 65699 04241 82441 38112
27541 79187 99777 22894 83283 56218 86183 74497 21070 78935
74188 09083 54938 79920 27158 24864 31116 33173 43032 52000
13270 57457 30968 65978 67679 91216 47969 39204 46030 93954
89150 53922 40537 23169 46948 05519 72171 85417 31580 98102
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23. Devore (1991) gives an example from the paper “Linkage Studies of the Tomato” (Tran.
Royal Canadian Inst., 1931, pp 1-19) on phenotypes from a dihybrid cross of tall, cut-leaf
tomatoes with dwarf, potato-leaf tomatoes. Dihybrid crosses arise as follows. If two different
characteristics of an organism are each controlled by a single gene, and a pure strain having
genotype AABB is crossed with a pure strain having genotype aabb (A,B are dominant alleles;
a,b are recessive), the resulting genotype is AaBb. A dihybrid cross occurs when the first-
generation organisms are crossed among themselves. The data for a dihybrid cross of tall,
cut-leaf tomatoes with dwarf, potato-leaf tomatoes, based on a sample of n=1611, are as
follows: Tall, cut-leaf (926); tall, potato-leaf (288); dwarf, cut-leaf (293); dwarf, potato-leaf
(104) (tall is dominant for size, cut-leaf is dominant for leaf type). Mendelian inheritance
theory predicts that there are four categories of probabilities occurring, 9/16, 3/16, 3/16,
1/16. Test if the data support Mendelian theory.

24. Consider the National Health Interview Survey of Example B of Comment 24. Suppose a
random sample of 100 from that population yielded the results: 60 males on private insurance,
5 on Medicaid, 4 on some other form of insurance, and 31 uninsured. Is such a sample
consistent with the specified population probabilities?

25. For the data of Example B of Comment 24, find approximate 90% confidence intervals for the
six pairwise differences p1 − p2, p1 − p3, p1 − p4, p2 − p3, p2 − p4, p3 − p4.

26. Establish the expression for χ2 given by (2.48), Comment 28.

27. Show the equivalence of the two tests described in Comment 29.

2.4 BAYES ESTIMATORS FOR THE PROBABILITY
OF SUCCESS

The estimator p̂ of Section 2.2 is a frequentist estimator of p; it does not utilize prior
information. In this section, we consider Bayes estimators of p that make use of prior
information. The estimators are based on the Beta class Beta(r , s) (r > 0, s > 0) of
prior distributions for p. In the Bayesian approach p is considered a random variable.
Guidance for the choice of the prior distribution is presented in Comments 30–33.

Procedure

For squared-error loss, the Bayes estimator of p when using the prior distribution
Beta(r , s), is the mean of the posterior distribution of p, given B = b. This mean can
be denoted as

E (p|B = b) = b + r

r + s + n
(2.49)

Note that the Bayes estimator can be rewritten as

E (p|B = b) =
(

n

n + r + s

)
b

n
+
(

r + s

n + r + s

)
r

r + s
. (2.50)

In the form (2.50), we can see that the Bayes estimator is a weighted average of the
observed proportion of successes b/n and the prior guess at p, namely E (p) = r/(r + s).
The weights are n/(n + r + s) and (r + s)/(n + r + s). Note that as n gets large, the
second term in (2.50) tends to 0 and the first term tends to b/n . This is a reflection of the
fact that as the sample size gets large, the observed data dominate the prior information.
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EXAMPLE 2.5 Percentage of Smokers.

In May 2010, E. Chicken polled his two statistics courses to investigate the percentage of
students who smoke cigarettes. The classes were STA 4321 Introduction to Mathematical
Statistics and STA 4502-5507 Applied Nonparametric Statistics. The 4321 class had 27
students comprising 5 females and 22 males. The 5507 class had 17 students comprising
5 females and 12 males. In STA 4321, there was one smoker, a female. In STA 5507,
there were five smokers, three females and two males. To have a large sample size,
the two classes were combined. Thus, out of a total of 44 students, 6 were smokers.
The classical frequentist estimator for the true proportion p of smokers in the college
population is p̂ = 6/44 = .136 or 13.6%.

A Bayesian approach can effectively be employed because there are many studies
concerning smoking rates. For example, a National Health Interview Survey (NHIS)
(2008) estimated the smoking rates to be 23.1% for men and 18.3% for women. We will
illustrate Bayesian approaches using a noninformative prior (see Comment 31) and an
informative prior (see Comments 32 and 33). Using the noninformative Bayes–Laplace
prior Beta(1, 1) (see Comment 31), we find from (2.49) with n = 44, b = 6, r = 1,
s = 1,

E (p|B = 6) = 6 + 1

2 + 44
= 7

46
= .152

or 15.2%.
We can also use an informative prior such as the one mentioned in Comment 32.

From the NHIS (2008) results, it is reasonable to take p∗ = .20 as a good guess at the
percentage of smokers. Setting

p∗ = .20 = r/r + s

as in (2.56), and taking σ ∗ = .05, we have from (2.57),

(.05)2 = rs

(r + s)2(r + s + 1)

Solving the previous two equations for r and s yields

r = 12.6, s = 50.4,

and from (2.49)

E (p|B = 6) = 6 + 12.6

12.6 + 50.4 + 44
= .174

or 17.4%.
Note that in this example, both Bayesian estimators, one based on a noninformative

prior and the other on an informative prior, are closer to what might have been expected,
considering the results of the NHIS survey. Yet times change, you are not reading this
in 2008, and there are strong efforts in the United States to reduce the incidence of
smoking. Furthermore, statisticians have played a prominent role in discovering and
assessing the increased risks of various health problems (e.g., lung cancer, heart disease,
and emphysema) associated with smoking, so it is not surprising that in statistics classes
in a college population the incidence may be less than that in broader populations.
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Comments

30. Bayes Estimators. The Bayesian approach incorporates prior information into
the estimation procedure. One starts with a prior density for p, which is viewed
as a random variable. After observing the data B = b, the prior and the data
are used to compute the posterior density of p. The conjugate prior for p is the
beta distribution, Beta(r , s). A random variable Y has a beta distribution with
parameters r , s (r > 0, s > 0) if Y has the density function

f (y) = 
(r + s)


(r)
(s)
yr−1(1 − y)s−1, 0 < y < 1

= 0 otherwise.
(2.51)

The mean of the distribution is

E (y) = r

r + s
(2.52)

and the variance is
var(Y ) = rs

(r + s)2(r + s + 1)
. (2.53)

Figure 2.1 shows various beta densities.
The posterior distribution of p, given B = b, is readily shown to be

Beta(b + r , n − b + s), that is, a beta distribution with parameters b + r and
n − b + s . For squared-error loss, the Bayes estimator of p is the mean of this
posterior distribution as given in (2.49), namely,

E (p|B = b) = b + r

b + r + n − b + s
= b + r

r + s + n
(2.54)
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beta (1, 1)
beta (12.6, 50.4)
beta (7, 3)

Figure 2.1 Three beta densities.



36 Chapter 2 The Dichotomous Data Problem

As we have noted in the Procedure subsection, the Bayes estimator can be
rewritten as

E (p|B = b) =
(

n

n + r + s

)
b

n
+
(

r + s

n + r + s

)
r

r + s
(2.55)

In the form (2.55), we see that the Bayes estimator is a weighted average of the
observed proportion of successes b/n and the prior guess E (p) = r/(r + s).

31. Choice of Prior When Minimal Information is Available. When there is lit-
tle information about the parameter of interest, Bayesians, who still want to
employ the Bayesian structure and machinery, favor using a noninformative
prior. A noninformative prior, roughly speaking, contains little information about
the parameter of interest, or favors no possible value of that parameter over other
possible values (see Berger (1985, p. 82)). In the case we are discussing in this
chapter, namely, where the parameter of interest is p, the probability of success,
Berger (1985, p. 89) considers the following priors to be reasonable nonin-
formative priors (i) f1(p) = 1, the uniform prior corresponding to Beta(1, 1),
is often referred to as the Bayes–Laplace prior. (ii) f2(p) = p−1(1 − p)−1 is
known as the Haldane prior. It can be roughly viewed as Beta(0, 0) and yields
as the Bayes estimator p̂ = B/n , (iii) f3(p) proportional to [p(1 − p)]−1/2 is
the Beta(1/2, 1/2) prior due to Jeffreys (1961), and (iv) f4(p) proportional to
pp(1 − p)1−p , a prior not in the Beta family and one that arises from an approach
due to Zellner (1977). Berger points out that f1 is a proper density, as are f3 and
f4 suitably normalized, whereas f2 is improper.

32. Choice of Prior when Prior Information is Available. The Beta family is often
used and is quite flexible for characterizing prior information. If one has a good
guess, p∗ say, from a prior experiment perhaps, about the location of p, it is
reasonable to set p∗ equal to the mean of the Beta distribution, namely,

p∗ = r

r + s
(2.56)

If a reasonable choice for the standard deviation, say σ ∗, is also available then
set

(σ ∗)2 = rs

(r + s)2(r + s + 1)
, (2.57)

the Beta variance, and solve (2.56) and (2.57) for r and s , to obtain r∗, s∗ say,
then use Beta(r∗, s∗). This is illustrated in Example 2.5.

33. Choice of Prior in the Case of Zero Events. Tuyl, Gerlach, and Mengerson (2008)
consider the case of zero observed events, that is, B = 0 (or equivalently B = n).
Their paper considers the four noninformative priors discussed by Berger (1985,
p. 89) and mentioned in Comment 31. They recommend the Bayes–Laplace
prior as a consensus noninformative prior. They also note that the use of a Beta
prior with small Beta parameters, namely, r , s , < 1 should be avoided, both
for noninformative and informative priors. One of their examples suggests that
when p is known to be very small, an informative prior from Beta(1, s) with
s > 1 seems appropriate but a Beta(r , s) with r < 1 can be too informative.
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34. The Prior Should Have Support on the Entire Parameter Space. A prior distri-
bution should not be so restrictive that it prevents the data from telling the true
story. For example, in our problem of estimating p, if one chooses a prior that
puts all of its probability on a proper subset of [0, 1] and the true value of p is
outside of that subset, the resulting Bayes estimator will not converge to the true
value as the sample size grows. Thus, for example, if you put a uniform prior
on the interval [0, 1/2] and the true value of p is greater than 1/2, the Bayes
procedure will not converge to the true value.

We want, for large samples, the data to have most of the influence. If you
have a spread out prior that covers the parameter space, then for large samples
the data will dominate and your posterior distribution will not be too influenced
by your prior distribution.

35. Bayesian Updating. Suppose your prior distribution is Beta(r , s), and suppose
that you observe b successes in n binomial trials. Then, as noted in Comment 30,
your posterior distribution is Beta(b + r , n − b + s) and the Bayes estimator is
(b + r)/(r + s + n). Now suppose you obtain a second sample of size m and,
in that second sample, you have c successes and m − c failures. From your
first sample, your new prior is Beta(b + r , n − b + s), and after observing c
successes, your new posterior is Beta(b + r + c, s + m + n − b − c) and your
Bayes estimator is (b + r + c)/(b + r + c + s + m + n − b − c) or (b + r +
c)/(r + s + m + n). This agrees with what you would obtain by pooling the two
samples of n and m with successes b and c, respectively. For if you start with
a Beta(r , s) prior, then obtain b + c successes in a combined sample of n + m ,
the posterior based on the pooled sample is Beta(r + b + c, s + m + n − b − c)

with corresponding Bayes estimator (r + b + c)/(r + b + c + s + m + n − b −
c) or (r + b + c)/(r + s + m + n).

36. Bayes Estimation for the Multinomial Distribution. For the Bayesian approach,
the conjugate density is the Dirichlet distribution with parameters β1, . . . , βk ;
letting p = (p1, . . . , pk ), the density is

f (p) = 
(β0)∏k
i=1 
(βi )

·
k∏

i=1

pβi −1
i , 0 < pi < 1,

k∑
i=1

pi = 1,

where βi > 0 and β0 =∑k
i=1 βi . We continue with this density in Chapter 16,

where the Dirichlet distribution is generalized to the Dirichlet process.
The mean and variance of the Dirichlet are

E (pi ) = βi

β0
, var(pi ) = βi (β0 − βi )

β2
0 (β0 + 1)

. (2.58)

The posterior density is Dirichlet with parameters Xi + βi , i = 1, . . . , k so
that the posterior mean is

E (pi |X1, . . . , Xk ) = Xi + βi

n + β0
. (2.59)

The Bayes estimator, for the loss function L(p, a) =∑k
i=1(pi − ai )

2, is the pos-
terior mean given by (2.59). Note that the Bayes estimator given by (2.59) can



38 Chapter 2 The Dichotomous Data Problem

be rewritten as

E (pi |X1, . . . , Xk ) =
(

n

n + β0

)
Xi

n
+
(

β0

n + β0

)
βi

β0
, (2.60)

which is a weighted average of the observed sample proportion Xi /n and the
prior guess at pi , βi /β0. Note that as n gets large, the Bayes estimator approaches
the frequentist estimator given by (2.39).

Properties

1. Bayes Optimality of E (p|B = b). For the Beta(r , s) prior and squared-error loss,
E (p|B = b) minimizes the Bayes risk.

2. Bayes Optimality of E (pi |X1, . . . , Xk ). For the Dirichlet distribution prior and sum
of squared-error loss, E (pi |X1, . . . , Xk ) minimizes the Bayes risk.

Problems

28. Consider the canopy gap closure data of Example 2.1. Determine a Bayes estimate for p.
Explain how you obtained your prior distribution.

29. Consider the cardiac preservation data of Problem 16. Determine a Bayes estimate for p.
Explain how you obtained your prior distribution.

30. Consider the silicone elastomer data of Problem 17. Determine a Bayes estimate for p. Explain
how you obtained your prior distribution.

31. Consider the panic attack data of Problem 18. Determine a Bayes estimate for p. Explain how
you obtained your prior distribution.

32. Consider the tempting fate data of Example 2.4. Determine a Bayes estimate for p. Explain
how you obtained your prior distribution.

33. Consider the data on smokers in Example 2.5. Suppose the data from STA 5507 is not available
so that you only have the data from the STA 4321 class. Determine a Bayes estimate for p.
Explain how you obtained your prior distribution.

34. Consider the tomato data of Problem 23. Determine a Bayes estimate for p = (p1, p2, p3, p4).
Explain how you obtained your prior distribution.

35. Consider the insurance data of Problem 24, Determine a Bayes estimate for p = (p1, p2, p3, p4).
Explain how you obtained your prior distribution.

36. Describe three situations in which the costs associated with obtaining sample observations are
exorbitant and thus in those situations the Bayesian approach is particularly appealing.



Chapter 3

The One-Sample Location Problem

INTRODUCTION

The procedures of this chapter are designed for statistical analyses in which primary
interest is centered on the location (median) of a population. We encounter two types
of data for which such analyses are important. The first of these, referred to as paired
replicates data, represents pairs of “pretreatment” and “posttreatment” observations; here,
we are concerned with a shift in location due to the application of the “treatment.” The
second type of data, referred to as one-sample data, consists of observations from a single
population about whose location we wish to make inferences.

In Sections 3.1–3.3, procedures are considered for analyzing paired replicates data
using signed ranks. In particular, Section 3.1 presents a distribution-free signed rank test;
Section 3.2, a point estimator associated with the signed rank statistic; and Section 3.3, a
related distribution-free confidence interval. In Section 3.7, these procedures are applied
to some one-sample data. An asymptotically distribution-free test for symmetry of the
underlying population (one of the assumptions in Sections 3.1–3.3 and 3.7) is considered
in Section 3.9. A distribution-free test for exchangeability of the paired replicates data is
discussed in Section 3.10.

Procedures for analyzing paired replicates data using signs are discussed in
Sections 3.4–3.6. A distribution-free sign test is considered in Section 3.4, a point
estimator associated with the sign statistic in Section 3.5, and a related distribution-free
confidence interval in Section 3.6. These sign procedures are applied to some one-sample
data in Section 3.8.

The asymptotic relative efficiencies for translation alternatives of the procedures
based on the signed rank statistic and those based on the sign statistic with respect
to their normal theory counterparts based on the sample mean are discussed in
Section 3.11.

PAIRED REPLICATES ANALYSES BY WAY OF SIGNED
RANKS

Data. We obtain 2n observations, two observations on each of n subjects (blocks,
patients, etc.).

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Subject i Xi Yi

1 X1 Y1

2 X2 Y2

· · ·
· · ·
· · ·
n Xn Yn

Assumptions

A1. We let Zi = Yi − Xi , for i = 1, . . . , n . The differences Z1, . . . , Zn are mutually
independent.

A2. Each Z , i = 1, . . . , n , comes from a continuous population (not necessarily the
same one) that is symmetric about a common median θ . If Fi represents the
distribution function for Zi , i = 1, . . . n , this assumption requires that

Fi (θ + t) + Fi (θ − t) = 1, for every t and i = 1, . . . , n.

The parameter θ is referred to as the treatment effect.

3.1 A DISTRIBUTION-FREE SIGNED RANK TEST
(WILCOXON)

Hypothesis

The null hypothesis of interest here is that of zero shift in location due to the treatment,
namely,

H0 : θ = 0. (3.1)

This null hypothesis asserts that each of the distributions (not necessarily the same) for the
differences (posttreatment minus pretreatment observations) is symmetrically distributed
about 0, corresponding to no shift in location due to the treatment.

Procedure

To compute the Wilcoxon signed rank statistic T +, form the absolute values |Z1|, . . . , |Zn |
of the differences and order them from least to greatest. Let Ri denote the rank of
|Zi |, i = 1, . . . , n , in this ordering. Define indicator variables ψi , i = 1, . . . , n , where

ψi =
{

1, if Zi > 0,

0, if Zi < 0,
(3.2)

and obtain the n products R1ψ1, . . . , Rnψn . The product Ri ψi is known as the positive
signed rank of Zi . It takes on the value zero if Zi is negative and is equal to the rank of
|Zi | when Zi is positive. The Wilcoxon signed rank statistic T + is then the sum of the
positive signed ranks, namely,

T + =
n∑

i=1

Ri ψi . (3.3)
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a. One-Sided Upper-Tail Test. To test

H0 : θ = 0

versus
H1 : θ > 0

at the α level of significance,

Reject H0 if T + ≥ tα; otherwise do not reject, (3.4)

where the constant tα is chosen to make the type I error probability equal to α.

b. One-Sided Lower-Tail Test. To test

H0 : θ = 0

versus
H2: θ < 0

at the α level of significance,

Reject H0 if T + ≤ n(n + 1)

2
− tα; otherwise do not reject. (3.5)

c. Two-Sided Test. To test
H0 : θ = 0

versus
H3 : θ �= 0

at the α level of significance,

Reject H0 if T + ≥ tα/2 or T + ≤ n(n + 1)

2
− tα/2; otherwise do not reject. (3.6)

This two-sided procedure is the two-sided symmetric test with α/2 probability in
each tail of the null distribution of T +.

The tests can be performed using the R command wilcox.test (see
Example 3.1). The tα critical values can be obtained from the R command
psignrank (see Comment 5).

Large-Sample Approximation

The large-sample approximation is based on the asymptotic normality of T +, suitably
standardized. We first need to know the expected value and variance of T + when the
null hypothesis is true. When H0 is true, the expected value and variance of T + are

E0(T
+) = n(n + 1)

4
(3.7)
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and

var0(T
+) = n(n + 1)(2n + 1)

24
, (3.8)

respectively. These expressions for E0(T +) and var0(T +) are verified by direct calcula-
tions in Comment 6 for the special case of n = 3. General derivations of both expressions
are presented in Comment 7.

The standardized version of T + is

T ∗ = T + − E0(T +)

{var0(T +)}1/2 =
T + −

{
n(n + 1)

4

}
{n(n + 1)(2n + 1)/24}1/2 . (3.9)

When H0 is true, T ∗ has, as n tends to infinity, an asymptotic N (0, 1) distribution (see
Comment 7 for indications of the proof). The normal theory approximation for procedure
(3.4) is

Reject H0 if T ∗ ≥ zα; otherwise do not reject; (3.10)

the normal theory approximation for procedure (3.5) is

Reject H0 if T ∗ ≤ −zα; otherwise do not reject; (3.11)

and the normal theory approximation for procedure (3.6) is

Reject H0 if |T ∗| ≥ zα/2; otherwise do not reject. (3.12)

Ties

If there are zero values among the Z ’s, discard the zero values and redefine n to be
the number of nonzero Z ’s. If there are ties among the (nonzero) |Z |’s, assign each
of the observations in a tied group the average of the integer ranks that are associated
with the tied group. After computing T + with these average ranks for nonzero Z ’s, use
procedure (3.4), (3.5), or (3.6). Note, however, that this test associated with tied |Z |’s
is only approximately, and not exactly, of significance level α. (To get an exact level α

test even in this tied setting, see Comment 11.)
When applying the large-sample approximation, an additional factor must be taken

into account. Although ties in the nonzero |Z |’s do not affect the null expected value of
T +, its null variance is reduced to

var0(T
+) = (24)−1

⎡⎣n(n + 1)(2n + 1) − 1

2

g∑
j=1

tj (tj − 1)(tj + 1)

⎤⎦ , (3.13)

where g denotes the number of tied groups of nonzero |Z |’s and tj is the size of the tied
group j . We note that an untied observation is considered to be a tied “group” of size 1.
In particular, if there are no ties among the |Z |’s, then g = n and tj = 1 for j = 1, . . . , n .
In this case, each term in (3.13) of the form tj (tj − 1)(tj + 1) reduces to zero, and the
variance expression in (3.13) reduces to the usual null variance of T + when there are no
ties, as given in (3.8). Note that the term (48)−1∑g

j=1 tj (tj − 1)(tj + 1) represents the
reduction in the null variance of T + due to the presence of tied nonzero Z ’s.



3.1 A Distribution-Free Signed Rank Test 43

As a consequence of the effect that ties have on the null variance of T +, the following
modification is needed to apply the large-sample approximation when there are tied
nonzero Z ’s. Compute T + using average ranks and set

T ∗ =
T + −

{
n(n + 1)

4

}
{var0(T +)}1/2 , (3.14)

where var0(T +) is now given by display (3.13). With this modified value of T ∗, approx-
imations (3.10), (3.11), or (3.12) can be applied.

EXAMPLE 3.1 Hamilton Depression Scale Factor IV.

The data in Table 3.1 are a portion of the data obtained by Salsburg (1970). These data,
based on nine patients who received tranquilizer T , were taken from a double-blind
clinical trial involving two tranquilizers. The measure used was the Hamilton (1960)
depression scale factor IV (the “suicidal” factor). The X (pre) value was obtained at the
first patient visit after initiation of therapy, whereas the Y (post) value was obtained at
the second visit after initiation of therapy. The patients had been diagnosed as having
mixed anxiety and depression.

In this example, an improvement due to tranquilizer T corresponds to a reduction in
factor IV values. Hence, we apply test (3.5), which is designed to detect the alternative
θ < 0. One obtains the value of T + by first calculating the nine Zi = Yi − Xi differences,
then ranking from least to greatest the nine absolute values |Z1|, . . . , |Z9|, and finally
adding the ranks of the |Z |’s that emanated from positive Z difference.

To perform the test using R, set

pre<-c(1.83, .50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30),

post<-c(.878, .647, .598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29).

Then apply wilcox.test(pre,post, paired=TRUE, alterative = "less")

to obtain T + = 5 with a P -value of .02.

Table 3.1 The Hamilton Depression
Scale Factor IV Values

Patient i Xi Yi

1 1.83 0.878
2 0.50 0.647
3 1.62 0.598
4 2.48 2.05
5 1.68 1.06
6 1.88 1.29
7 1.55 1.06
8 3.06 3.14
9 1.30 1.29

Source: D. S. Salsburg (1970).
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i Zi |Zi | Ri ψi Ri ψi

1 −0.952 0.952 8 0 0
2 0.147 0.147 3 1 3
3 −1.022 1.022 9 0 0
4 −0.430 0.430 4 0 0
5 −0.620 0.620 7 0 0
6 −0.590 0.590 6 0 0
7 −0.490 0.490 5 0 0
8 0.080 0.080 2 1 2
9 −0.010 0.010 1 0 0

T + = 5

For the large-sample approximation, we find (since there are no ties) from (3.9) that

T ∗ = 5 − (9(10)/4)

{9(10)(19)/24}1/2
= −2.07.

From pnorm(-2.07)=.0192, the smallest significance level at which we can reject
H0 in favor of θ < 0 using the normal approximation is .0192. Both the exact test and
the large-sample approximation indicate that there is strong evidence that tranquilizer
T does lead to patient improvement, as measured by a reduction in the Hamilton scale
factor IV values.

EXAMPLE 3.2 Government versus Private Sector Salaries.

In an annual survey to determine whether federal pay scales were commensurate with
private sector salaries, government and private workers were matched as closely as pos-
sible (with respect to type of job, educational background, years experience, etc.) and the
salaries of the matched pairs were obtained. The data in Table 3.2 are the annual salaries
(in dollars) for 12 such matched pairs, as reported by McClave and Benson (1978).

Letting X correspond to the government worker’s salary and Y to the matched private
sector salary, the tabular presentation of the associated positive signed ranks (using
average ranks to break ties) is as follows:

Table 3.2 Annual Salaries

Pair i Private Government

1 12,500 11,750
2 22,300 20,900
3 14,500 14,800
4 32,300 29,900
5 20,800 21,500
6 19,200 18,400
7 15,800 14,500
8 17,500 17,900
9 23,300 21,400

10 42,100 43,200
11 16,800 15,200
12 14,500 14,200

Source: J. T. McClave and G. Benson (1978).
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i zi |Zi | Ri ψi Ri ψi

1 750 750 5 1 5
2 1400 1400 9 1 9
3 −300 300 1.5 0 0
4 2400 2400 12 1 12
5 −700 700 4 0 0
6 800 800 6 1 6
7 1300 1300 8 1 8
8 −400 400 3 0 0
9 1900 1900 11 1 11

10 −1100 1100 7 0 0
11 1600 1600 10 1 10
12 300 300 1.5 1 1.5

To test H0 versus the alternative that government workers are generally paid less
than their counterparts in the private sector, we use the signed rank test of H0 : θ = 0
versus H0 : θ > 0. From the signed rank computational array, we see that

T + = 5 + 9 + 12 + 6 + 8 + 11 + 10 + 1.5 = 62.5.

Using the R command psignrank(62,12,lower.tail=F), we find that the
smallest significance level at which these data lead to rejection of H0 : θ = 0 in favor of
H1 : θ > 0 (i.e., the one-sided P -value) is α = .0320. Hence, there is moderate evidence
to indicate that federal government workers (at least in the type of jobs considered in this
survey) are, indeed, paid less than their private sector counterparts. (We point out that the
P -value for these data is only approximate, due to the tied $300 absolute differences. For a
discussion of how to obtain the exact conditional P -value in this case, see Comment 11.)

For the normal approximation with the data in Table 3.2, we need to use the
ties-corrected version of T ∗ given in (3.14). For the salary data, we have g = 11 and (arbi-
trarily labeling the tied groups in the order of increasing ranks) t1 = 2, t2 = t3 = . . . =
t10 = t11 = 1. Using the ties-corrected formula (3.13) for var0(T +), we obtain

T ∗ =
62.5 − 12(13)

4{
12(12 + 1)(2(12) + 1) − 1

2 (2)(1)(3)

24

}1/2 = 62.5 − 39{
3897

24

}1/2 = 1.84.

To find the P -value associated with this normal approximation, we obtain
1-pnorm(1.84)=.0329, which is in good agreement with the value of .0320
obtained without using the normal approximation.

Comments

1. Motivation for the Test. When θ is greater than 0, there will tend to be a
large proportion of positive Z differences and they will tend to have the larger
absolute values. Hence, when θ is greater than 0, we would expect a higher
proportion of positive signed ranks with relatively large sizes, leading to a big
value of T +. This suggests rejecting H0 in favor of θ >0 for large values of T +
and motivates procedures (3.4) and (3.10). Similar rationales lead to procedures
(3.5), (3.6), (3.11), and (3.12).
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2. Assumptions. There is no requirement that the individual Xi and Yi be independent,
only that the pairs (X1, Y1), . . . , (Xn , Yn), and therefore the resulting differences
Z1, . . . , Zn , be mutually independent. Indeed, in most applications, the individual
Xi and Yi are dependent. For paired replicates data, the symmetry part of Assump-
tion A2 is often inherently satisfied. In particular, if each Xi and Yi , i = 1, . . . , n ,
arise from populations differing only in location (i.e., the only treatment “effect”
is a change in location), then the (Zi − θ )’s come from populations that are
symmetric about zero. (This is, in fact, true under more general conditions.)

3. Testing θ Equal to Some Specified Nonzero Value. Procedures (3.4), (3.5), and
(3.6) and the corresponding normal approximations (3.10), (3.11), and (3.12) are
for testing θ equal to zero. To test θ = θ0, where θ0 is some specified nonzero
number, subtract θ0 from each of the differences Z1, . . . , Zn to form a modified
sample Z ′

1 = Z1 − θ0, . . . , Z ′
n= Z n−θ0. Then compute T + as the sum of the

positive signed ranks for these Z ′
i s. Procedures (3.4), (3.5), and (3.6) and their

corresponding large-sample approximations (3.10), (3.11), and (3.12) are then
applied as previously described.

4. Equivalent Form. It may appear that some of the information in the ranking
of the sample Z-differences is being lost by using only the positive signed
ranks to compute T +. Such is not the case. If we define T − to be the sum of
ranks (of the absolute values) corresponding to the negative Z observations,
then T − =∑n

i=1(1 − ψi )Ri . It follows that T + + T − =∑n
i=1 Ri = n(n + 1)/2.

Thus, the test procedures defined in procedures (3.4), (3.5), and (3.6) and the
corresponding approximations (3.10), (3.11), and (3.12) could equivalently be
based on T − = [n(n + 1)/2] − T +.

5. Derivation of the Distribution of T + under H0 (No Ties Case). Let B be the
number of positive Z ’s and let r1 < · · · < rB denote the ordered ranks of the
absolute values of these positive Z ’s. Then the null (H0) distribution can be
obtained directly from the representation T + =∑B

i=1 ri . Under the assumption
that the underlying Zi distributions are all continuous, the probabilities are zero
that there are ties among the absolute values of the Z ’s or that any of the Z ’s
are exactly zero. In addition, under H0, these underlying Zi distributions are
all symmetric about θ = 0. It follows that under H0, each of the 2n possible
outcomes for the ordered configuration (r1, . . . , rB ) occurs with equal probability( 1

2

)n
. For example, in the case of n = 3, the 23 = 8 possible outcomes for

(r1, . . ., rB ) and associated values of T + are given in the following table.

B (r1, r2, . . . , rB ) Probability under H0 T + =∑B
i=1 ri

0 1
8 0

1 r1 = 1 1
8 1

1 r1 = 2 1
8 2

1 r1 = 3 1
8 3

2 r1 = 1, r2 = 2 1
8 3

2 r1 = 1, r2 = 3 1
8 4

2 r1 = 2, r2 = 3 1
8 5

3 r1 = 1, r2 = 2, r3 = 3 1
8 6
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Thus, for example, the probability is 2
8 under H0 that T + is equal to

3, since T + = 3 when either of the exclusive outcomes B = 1, r1 = 3 or
B = 2, (r1 = 1, r2 = 2) occurs and each of these outcomes has null probability
1
8 . Simplifying, we obtain the null distribution.

Possible value of T + Probability under H0

0 1
8

1 1
8

2 1
8

3 2
8

4 1
8

5 1
8

6 1
8

The probability, under H0, that T + is greater than or equal to 5, for example,
is therefore

P0(T
+ ≥ 5) = P0(T

+ = 5) + P0(T
+ = 6)

= .125 + .125 = .25.

This agrees with what is obtained from psignrank(4,3,lower.tail=F)

which gives, for n = 3, the probability under the null hypothesis that
T + > 4.

Note that we have derived the null distribution of T + without specifying the
forms of the underlying Z populations under H0 beyond the point of requiring
that they be continuous and symmetric about zero. This is why the test procedures
based on T + are called distribution-free procedures. From the null distribution of
T + we can determine the critical value tα and control the probability α of falsely
rejecting H0 when H0 is true, and this error probability does not depend on the spe-
cific forms of the underlying continuous and symmetric (about 0) Z distributions.

6. Calculation of the Mean and Variance of T + under the Null Hypothesis H0. In
displays (3.7) and (3.8) we presented formulas for the mean and variance of
T + when the null hypothesis is true. In this comment, we illustrate a direct
calculation of E0(T +) and var0(T +) in the particular case of n = 3, using the
null distribution of T + obtained in Comment 5. (Later, in Comment 7, we
present general derivations of E0(T +) and var0 (T +).) The null mean, E0(T +), is
obtained by multiplying each possible value of T + with its probability under H0.
Thus,

E0(T
+) = 0(.125) + 1(.125) + 2(.125) + 3(.25) + 4(.125) + 5(.125)

+ 6(.125) = 3.
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This is in agreement with what we obtain using (3.7), namely,

E0(T
+) = n(n + 1)

4
= 3(3 + 1)

4
= 3.

A check on the expression for var0(T +) is also easily performed, using the
well-known fact that

var0(T
+) = E0[(T +)2] − {E0(T

+)}2.

The value of E0[(T +)2], the second moment of the null distribution of T +, is
again obtained by multiplying possible values (in this case, values of (T +)2) by
the corresponding probabilities under H0. We find

E0[(T +)2] = [(0 + 1 + 4)(.125) + 9(.25) + (16 + 25 + 36)(.125)] = 12.5.

Thus,
var0(T

+) = 12.5 − (3)2 = 3.5,

which agrees with what we obtain using (3.8) directly, namely,

var0(T
+) = 3(3 + 1)(2(3) + 1)

24
= 3.5.

7. Large-Sample Approximation. In view of the representation T + =∑B
i=1 ri , it

follows from the discussion in Comment 5 that T +d
∑n

i=1 Vi , where the symbol
d means “has the same distribution as” and V1, . . . , Vn are mutually independent
dichotomous random variables with probability distributions

P(Vi = i ) = P(Vi = 0) = 1

2
,

for i = 1, . . . , n . From this distributionally equivalent form, we can immediately
use well-known expressions for the mean and variance of a sum of mutually
independent random variables to obtain

E0(T
+) = E

[
n∑

i=1

Vi

]
=

n∑
i=1

E [Vi ] (3.15)

and

var0(T
+) = var

(
n∑

i=1

Vi

)
=

n∑
i=1

var(Vi ). (3.16)

Since Vi is a dichotomous variable, we have, for i = 1, . . . , n , that

E0(Vi ) = i

(
1

2

)
+ 0

(
1

2

)
= i

2
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and

var0(Vi ) = E0(V
2

i ) − [E0(Vi )]
2 =
[

i 2
(

1

2

)
+ 02
(

1

2

)]
−
[

i

2

]2

= i 2

2
− i 2

4
= i 2

4
.

Using these results, along with the closed-form expressions for the sum of the
first n positive integers and the sum of the squares of the first n positive integers,
in (3.15) and (3.16), we obtain

E0(T
+) = 1

2

n∑
i=1

i = 1

2

[
n(n + 1)

2

]
= n(n + 1)

4

and

var0(T
+) = 1

4

n∑
i=1

i 2 = 1

4

[
n(n + 1)(2n + 1)

6

]
= n(n + 1)(2n + 1)

24
,

which agree with the general expressions stated in (3.7) and (3.8), respectively.
Also using the distributional equality between T + and

∑n
i=1 Vi , the

asymptotic normality of the standardized form

T ∗ = T + − E0(T +)

{var0(T +)}1/2 =
T + − n(n + 1)

4{
n(n + 1)(2n + 1)

24

}1/2

follows from standard theory for sums of mutually independent, but not
identically distributed, random variables, such as the Liapounov central limit
theorem (cf. Randles and Wolfe (1979, p. 423)). Asymptotic normality results
are also obtainable under general alternatives to H0. See, for example, the
Hoeffding (1948a) U -statistic theorem as stated and applied to the Wilcoxon
signed rank statistic on pages 82–85 of Randles and Wolfe (1979).

8. Symmetry of the Distribution of T + under the Null Hypothesis. When H0 is true,
the distribution of T + is symmetric about its mean n(n + 1)/4. (See Comment 5
for verification of this when n = 3.) This implies that

P0(T
+ ≤ x) = P0

(
T + ≥ n(n + 1)

2
− x

)
, (3.17)

for x = 0, 1, . . . , n(n + 1)/2.

9. Zero Z Values. We have recommended dealing with zero values among the Z ’s
by discarding them and redefining n to be the number of nonzero Z ’s. This
approach is satisfactory as long as the zero values are a very small percentage
of the Z differences. If, however, there is a relatively large number of zero Z ’s,
it would be advisable to consider an appropriate statistical procedure designed
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for analyzing such discrete data. See, for example, Chapter 10 or a book on
categorical data analysis, such as Agresti (2013).

We should also point out that there are methods other than elimination that
have been proposed for dealing with zero Z values. One could use individual
randomization (e.g., flipping a fair coin) to decide whether each of the zero
Z values is to be counted as positive or negative in the construction of T +.
(Although this approach maintains many of the nice properties of T + that hold
when there are no zeros, it introduces extraneous randomness that could quite
easily have a direct effect on the outcome of any subsequent inferences based on
such a modified T +.) A second alternative approach in the case of the one-sided
test procedures (3.4), (3.5), (3.10), and (3.11) is to be conservative about
rejecting the null hypothesis H0; that is, we could count all the zero Z values
as if they were in favor of not rejecting H0. Thus, for example, in applying
either procedure (3.4) or (3.10) to test H0 against the alternative θ >0, we
would treat all of the zero Z ’s as if they were negative (in favor of not rejecting
H0) in the calculation of T +. (In the case of procedures (3.5) and (3.11), zero
Z ’s would be considered positive in the calculation of T+.) Any rejection of
H0 with this conservative approach to deal with zero Z values could then be
viewed as providing strong evidence in favor of the appropriate alternative.
For a more detailed discussion of methods for handling zero observations, see
Pratt (1959).

10. Tied Nonzero Absolute Z Values. Methods for dealing with tied nonzero absolute
Z values other than using average ranks have been discussed in the literature.
These include analogs to the randomization and conservative approaches
mentioned in Comment 9 with regard to zero Z values. For further discussion
of these alternative methods for dealing with tied nonzero absolute Z ’s, see
Pratt (1959).

11. Exact Conditional Distribution of T + with Ties Among the Nonzero Absolute Z
Values. To have a test with exact significance level even in the presence of tied
absolute Z ’s (assuming there are no zero Z values or they have been discarded
and n reduced accordingly), one considers all 2n possible outcomes for the
ordered configuration (r1, . . . , rB ), where B represents the number of positive Z ’s
as in Comment 5 but where r1 < · · · < rB now denote the ordered ranks of the
absolute values of the positive Z ’s using average ranks to break the ties. As in
Comment 5, it still follows that under H0, each of the 2n possible outcomes for
the ordered configurations (r1, . . . , rB ) based on using average ranks to break ties
occurs with the probability ( 1

2 )n . For each such configuration, the value of T + is
computed and the results are tabulated. We illustrate this construction for n = 4
and the data Z1 = −12, Z2 = −10, Z3 = 10, Z4 = 12. Using average ranks to
break ties, the associated absolute value ranks are R1 = 3.5, R2 = 1.5, R3 = 1.5,
and R4 = 3.5. Thus, B = 2 and the ordered ties-broken-ranks for the positive
Z ’s are r1 = 1.5 and r2 = 3.5, leading to an attained value of T + = 5. To assess
the significance of T +, we obtain its conditional distribution by considering the
24 = 16 equally likely (under H0 ) possible values of (r1, . . . , rB ) for the given
tied rank vector (1.5,1.5,3.5,3.5). These 16 values of (r1, . . . , rB ) and associated
values of T + are shown in the following table.
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Probability Value

B (r1, r2, . . . , rB ) under H0 of T +

0 1
16 0

1 r1 = 1.5 1
16 1.5

1 r1 = 1.5 1
16 1.5

1 r1 = 3.5 1
16 3.5

1 r1 = 3.5 1
16 3.5

2 r1 = 1.5, r2 = 1.5 1
16 3

2 r1 = 1.5, r2 = 3.5 1
16 5

2 r1 = 1.5, r2 = 3.5 1
16 5

2 r1 = 1.5, r2 = 3.5 1
16 5

2 r1 = 1.5, r2 = 3.5 1
16 5

2 r1 = 3.5, r2 = 3.5 1
16 7

3 r1 = 1.5, r2 = 1.5, r3 = 3.5 1
16 6.5

3 r1 = 1.5, r2 = 1.5, r3 = 3.5 1
16 6.5

3 r1 = 1.5, r2 = 3.5, r3 = 3.5 1
16 8.5

3 r1 = 1.5, r2 = 3.5, r3 = 3.5 1
16 8.5

4 r1 = 1.5, r2 = 1.5, r3 = 3.5, r4 = 3.5 1
16 10

This yields the null tail probabilities

P0(T
+ ≥ 10) = 1

16
,

P0(T
+ ≥ 8.5) = 3

16
,

P0(T
+ ≥ 7) = 4

16
,

P0(T
+ ≥ 6.5) = 6

16
,

P0(T
+ ≥ 5) = 10

16
,

P0(T
+ ≥ 3.5) = 12

16
,

P0(T
+ ≥ 3) = 13

16
,

P0(T
+ ≥ 1.5) = 15

16
,

P0(T
+ ≥ 0) = 1.
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This distribution is called the conditional distribution or the permutation
distribution of T +, given the set of tied ranks {1.5,1.5,3.5,3.5}. For the particular
observed value T + = 5, we have P0(T + ≥ 5) = 10

16 , so that such a value does
not indicate a deviation from H0 in the direction of θ >0.

12. Some Power Results for the Wilcoxon Signed Rank Test. We consider the
upper-tail α-level test of H0 : θ = 0 versus H1 : θ > 0 given by procedure (3.4).
Under the additive shift model (see Assumption A2) and common underlying
distribution F1 ≡ F2 ≡ · · · ≡ Fn ≡ F for the Z differences, the power, or
probability of correctly rejecting H0, for median θ0 values “near” the null
hypothesis value of 0 can be approximated by

Power =̇ �(AF ), (3.18)

where �(AF ) is the area under a standard normal density to the left of the point

AF =
{

n(n − 1)f ∗(0) + nf (0)

[n(n + 1)(2n + 1)/24]1/2

}
θ − zα , (3.19)

where f (0) is the common density function, evaluated at 0, for the Z differences
and f ∗(0) is the density function, also evaluated at 0, of the sum of two
independent random variables drawn from the Z population having distribution
F (cf. Lehmann (1975, 167 and 403)).

When F is normal with standard deviation σ , we have f (0) = (σ
√

2π)−1

and f ∗(0) = (2σ
√

π)−1. Under this setting, AF in (3.19) reduces to

Anormal =
{

(n(n − 1)/2) + n/
√

2

[n(n + 1)(2n + 1)/24]1/2

}
θ

σ
√

π
− zα. (3.20)

Thus, when F is normal, the approximate power for the additive shift model
depends on θ and σ only through their ratio θ/σ . This implies, for example,
that the approximate power for the pair (θ = .5, σ = 4) is the same as the
approximate power for the pair (θ = 1, σ = 8).

For the purpose of illustration, suppose that the additive shift model holds,
with the common underlying population F taken to be normal with variance
σ 2 = 4 and treatment effect θ = 1.5. For the case where n = 10 and α = .053,
the test rejects H0 if and only if T + ≥ 44. Substituting the appropriate values in
(3.20), we obtain

Anormal =
{

10(9)/2 + 10/
√

2

[10(11)(21)/24]1/2

}
1.5

2
√

π
− 1.62 = .61

Thus, the approximate power of this test at θ = 1.5 (and σ 2 = 4 ) is

Power =̇ pnorm(.61) = .73.

This compares with the exact power of .70 as given in Table 1 of Klotz (1963).
Additional exact power values for the one-sided Wilcoxon signed rank test and
sample sizes 5(1)10 can be found in Klotz (1963) for normal shift alternatives
and in Arnold (1965) for shifted t-distributions with ν = 1

2 , 1, 2, and 4 degrees
of freedom.
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13. Sample Size Determination. The Wilcoxon signed rank test detects a more
general class of alternatives than the location-shift alternatives associated with
model Assumption A2. When Z1, . . . , Zn are a random sample from a single
continuous, symmetric population F , the one-sided upper-tail test defined by
procedure (3.4) is consistent (i.e., has power tending to 1 as n tends to infinity)
against those F populations for which η > 1

2 , with

η = P(Z1 + Z2 > 0), (3.21)

where Z1 and Z2 are independent and identically distributed as F . The parameter
η is the probability that a Z1 randomly selected from the continuous and
symmetric F will be greater than the negative of a second independent Z2 also
randomly selected from the same distribution F .

Noether (1987) shows how to determine an approximate sample size n so
that the α-level one-sided test given by procedure (3.4) will have approximate
power 1 − β against an alternative value of η greater than 1

2 . This approximate
value of n is

n =̇ (zα + zβ)2

3
(
η − 1

2

)2 . (3.22)

As an illustration of the use of (3.22), suppose we are testing H0 and we desire
to have an upper-tail level α = .025 test with power 1 − β of at least .95 against
an alternative for which η = P(Z1 + Z2 > 0) = .8 (recall that under H0, η = .5).
Since zα = z.025 = qnorm(.975) = 1.96 and Zβ = Z.05 = qnorm(.95) = 1.65,
we find that the approximate required sample size for the alternative η = .8 is

n =̇ (1.96 + 1.65)2

3(.8 − .5)2 = 48.3.

To be conservative, we would take n = 49.

14. Consistency of the T + Test. Under the assumption that Z1, . . . , Zn is a random
sample from a single continuous population F , the consistency of the tests based
on T + depends on the parameter

η∗ = P(Z1 + Z2 > 0) − 1

2
,

where Z1 and Z2 are independent and identically distributed as F . The test
procedures defined by (3.4), (3.5), and (3.6) are consistent against the classes of
alternatives corresponding to η� >, <, and �= 0, respectively.

Properties

1. Consistency. For our consistency statement we strengthen Assumption A2 to
require that each Z has the same continuous population that is symmetric about
θ . Then the tests defined by (3.4), (3.5), and (3.6) are consistent against the
alternatives θ >, <, and �= 0, respectively. (See also Comment 14.)

2. Asymptotic Normality. See Randles and Wolfe (1979, pp. 83–85).

3. Efficiency. See Section 3.11.
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Problems

1. The data in Table 3.3 are a subset of the data obtained by Kaneto, Kosaka, and Nakao
(1967). The experiment investigated the effect of vagal nerve stimulation on insulin secre-
tion. The subjects were mongrel dogs with varying body weights. Table 3.3 gives the amount
of immunoreactive insulin in pancreatic venous plasma just before stimulation of the left
vagus nerve (X ) and the amount measured 5 min after stimulation (Y ) for seven dogs. Test the
hypothesis of no effect against the alternative that stimulation of the vagus nerve increases the
blood level of immunoreactive insulin.

2. Change the value of X3, in Table 3.1, from 1.62 to 16.2. What effect does this outlying
observation have on the calculations performed in Example 3.1? What does this suggest about
the relative insensitivity of the signed rank tests to outliers? Construct an example in which
changing one observation has a marked effect on the final decision regarding rejection or
acceptance of H0.

3. Let T − =∑n
i=1 Ri (1 − ψi ), where ψi = 1 if Zi > 0, and 0 otherwise. Verify directly, or

illustrate using the data of Table 3.1, the equation T + + T − = n(n + 1)/2.

4. August, Hung, and Houck (1974) studied collagen metabolism in children deficient in growth
hormone before and after growth hormone therapy. The data in Table 3.4 are the values of
heat-insoluble hydroxyproline in the skin of children before and 3 months after growth hormone

Table 3.3 Blood Levels of Immunoreac-
tive Insulin (μU/ml)

Dog i Xi Yi

1 350 480
2 200 130
3 240 250
4 290 310
5 90 280
6 370 1450
7 240 280

Source: A. Kaneto, K. Kosaka, and K. Nakao
(1967).

Table 3.4 Heat-Insoluble Hydroxyproline
Micromoles per Gram of Dry Weight

Child i Before After

1 349 425
2 400 533
3 520 362
4 490 628
5 574 463
6 427 427
7 435 449

Source: G. P. August, W. Hung, and J. C. Houck
(1974).
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therapy. Can we conclude on the basis of these data that growth hormone therapy increases
heat-insoluble hydroxyproline in the skin?

5. Assume that the additive shift model (see Assumption A2) holds with the common underly-
ing distribution F1 ≡ F2 ≡ · · · ≡ Fn ≡ F . If we have 15 observations and F is normal with
variance 16, what is the approximate power of the level α = .076 test of H0 : θ = 0 versus
the alternative θ > 0 when the treatment effect is θ = 1.25?

6. For arbitrary number of observations n , what are the smallest and largest possible values for
T +? Justify your answers.

7. Consider the case n = 8 and use the R command psignrank(0:18,8,lower.tail=T) to
produce the lower-tail probabilities of the null distribution of T +. What are the possible α

values between .05 and .10? Compare the α = .055 test of H0 : θ = 0 versus H2 : θ < 0 with
the corresponding α = .055 test based on the large-sample approximation.

8. Consider a level α = .05 test of H0 : θ = 0 versus the alternative θ > 0 based on T + and let
η be as given in (3.21). If our data Z1, . . . , Zn are a random sample from a single continuous,
symmetric distribution F (·), how many observations n will we need to collect in order to have
an approximate power of at least .84 against an alternative for which η = .7 ?

9. Suppose n = 5 and we observe the data Z1 = −1.3, Z2 = 2.4, Z3 = 1.3, Z4 = 1.3, and Z5 =
2.4. What is the conditional probability distribution of T + under H0 : θ = 0 when average
ranks are used to break ties among the absolute values of the Z ’s? How extreme is the
observed value of T + in this conditional null distribution?

10. Apply the large-sample approximation test of H0 : θ = 5 versus H1 : θ > 5 based on T + to
the beak-clapping data in Table 3.5. What is the P -value?

11. Consider procedure (3.6) with n observations for testing H0: θ = 0 versus H1 : θ �= 0. If your
critical region consists of the four values T + = 0, 1, [n(n + 1)/2] − 1, n(n + 1)/2, what is the
significance level for your test?

12. Apply the one-sided upper-tail test based on T + to the data on Stanford Profile Scales of
hypnotic susceptibility in Table 3.6. What is the P -value obtained?

13. For the case n = 5 untied Z observations, use the representation for T + discussed in Com-
ment 5 to obtain the form of the exact null (H0) distribution of T +.

14. Let Z1 and Z2 be independent, identically distributed continuous random variables with a com-
mon probability distribution that is symmetric about 0. What is the value of η∗ in Comment 14
for this setting?

15. Consider the test of H0: θ = 0 versus H1 : θ > 0 based on T + for the following n = 10 Z
observations: Z1 = 2.5, Z2 = 3.7, Z3 = 0, Z4 = −0.6, Z5 = 4.7, Z6 = 0, Z7 = 1.4, Z8 = 0, Z9 =
1.9, Z10 = 5.2. Compute the P -values for the competing T + procedures based on either (i)
discarding the zero Z values and reducing n accordingly, as recommended in the Ties portion
of this section, or (ii) treating the zero Z values in a conservative manner, as presented in
Comment 9. Discuss the results.

16. Suppose you desire an upper-tail test of H0 : θ = 0 versus H1 : θ > 0 based on T + and you
want the test to have α = .05 and a power of at least .90 when the distribution of Z = Y − X
is N(.5,1). Find the approximate required sample size.

17. What are the possible values of T + when n = 8? Suppose you are testing H0 : θ = 0
versus H2 : θ < 0 and you want your α level to be between .05 and .10. What are the tests
available?
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3.2 AN ESTIMATOR ASSOCIATED WITH WILCOXON’S
SIGNED RANK STATISTIC (HODGES–LEHMANN)

Procedure

To estimate the treatment effect θ , form the M = n(n+1)/2 averages (Zi + Zj )/2, for
i ≤ j = 1, . . . , n . The estimator of θ associated with the Wilcoxon signed rank statistic
T + is (see Comment 15)

θ̂ = median

{
Zi + Zj

2
, i ≤ j = 1, . . . , n

}
. (3.23)

Let W (1) ≤ · · · ≤ W (M ) denote the ordered values of (Zi + Zj )/2. Then if M is odd, say
M = 2k+1, we have k = (M − 1)/2 and

θ̂ = W (k+1), (3.24)

the value that occupies position k+ 1 in the list of the ordered (Zi + Zj ) /2 averages. If
M is even, say M = 2k , then k = M /2 and

θ̂ = W (k) + W (k+1)

2
. (3.25)

That is, when M is even, θ̂ is the average of the two (Zi + Zj )/2 values that occupy
positions k and k+ 1 in the ordered list of the M (Zi + Zj )/2 averages. The (Zi + Zj )/2
averages are known as the Walsh averages (see Walsh (1949)).

EXAMPLE 3.3 Continuation of Example 3.1.

To estimate θ for the Hamilton depression scale factor IV data in Table 3.1, we first
calculate the M = 9(10)/2 = 45 (Zi + Zj )/2 averages. To facilitate this computation and
eventual ordering of these averages, we first obtain the individual ordered Z values,
denoted by Z (1) ≤ · · · ≤ Z (9), and place them as the headings for a 9 × 9 upper triangular
array. The (i , j )th entry in this array then corresponds to the value of the sum (Z (i ) + Z j ),
for i ≤ j = 1, 2, . . . , 9. This representation for the Hamilton depression scale factor IV
data is as follows:

−1.022 −0.952 −0.620 −0.590 −0.490 −0.430 −0.010 0.080 0.147

−1.022 −2.044 −1.974 −1.642 −1.612 −1.512 −1.452 −1.032 −0.942 −0.875

−0.952 −1.904 −1.572 −1.542 −1.442 −1.382 −0.962 −0.872 −0.805

−0.620 −1.240 −1.210 −1.110 −1.050 −0.630 −0.540 −0.473

−0.590 −1.180 −1.080 −1.020 −0.600 −0.510 −0.443

−0.490 −0.980 −0.920 −0.500 −0.410 −0.343

−0.430 −0.860 −0.440 −0.350 −0.283

−0.010 −0.020 0.070 0.137

0.080 0.160 0.227

0.147 0.294
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Thus, for example, the entry in the fourth row and sixth column of the array
(i = 4, j = 6) is Z (4) + Z (6) = −.590 − .430 = −1.020. The remaining 44 entries
are calculated similarly. The ordered Z (i ) + Z (j ) sums are then obtained by
observation in this array, moving carefully from the upper left (the (1, 1) entry)
across and down the array to the lower right (the (9,9) entry). The ordered
Z (i ) + Z (j ) sums for these data are as follows: −2.044, −1.974, −1.904, −1.642,
−1.612, −1.572, −1.542, −1.512, −1.452, −1.442, −1.382, −1.240, −1.210, −1.180,
−1.110, −1.080, −1.050, −1.032, −1.020, −.980, −.962, −.942, −.920, −.875, −.872,
−.860, −.805, −.630, −.600, −.540, −.510, −.500, −.473, −.443, −.440, −.410, −.350,
−.343, −.283, −.020, .070, .137, .160, .227, .294. The ordered values of the (Zi + Zj )/2
averages, namely, W (1) ≤ · · · ≤ W (45), then correspond to these ordered Z (i ) + Z (j )

sums divided by 2. As M = 45 is odd, we use (3.24) with k = (45 − 1)/2 = 22 to
obtain the estimate θ̂ = W (23) = −.920/2 = −.460 for the treatment effect θ . Thus, we
estimate that a typical patient of the type included in this study will have a drop in
the Hamilton depression scale factor IV value of roughly .460 due to treatment with
tranquilizer T .

We can use the R command owa to compute the ordered Walsh averages and the
Hodges–Lehmann estimator. Use owa(pre,post).

[1] −1.0220 −0.9870 −0.9520 −0.8210 −0.8060 −0.7860 −0.7710 −0.7560 −0.7260
[10] −0.7210 −0.6910 −0.6200 −0.6050 −0.5900 −0.5550 −0.5400 −0.5250 −0.5160
[19] −0.5100 −0.4900 −0.4810 −0.4710 −0.4600 −0.4375 −0.4360 −0.4300 −0.4025
[28] −0.3150 −0.3000 −0.2700 −0.2550 −0.2500 −0.2365 −0.2215 −0.2200 −0.2050
[37] −0.1750 −0.1715 −0.1415 −0.0100 0.0350 0.0685 0.0800 0.1135 0.1470

Comments

15. Motivation for the Hodges–Lehmann Estimator. The Hodges–Lehmann estima-
tor θ̂ , defined by (3.23), is associated with the Wilcoxon signed rank test. When
θ = 0, the distribution of the statistic T + is symmetric about its mean, n(n+ l)/4
(see Comment 8). A natural estimator of θ is the amount θ̂ (say) that should be
subtracted from each Zi so that the value of T +, when applied to the shifted sam-
ple Z1 − θ̂ , . . . , Zn − θ̂ , is as close to n(n+ l)/4 as possible. Roughly speaking,
we estimate θ by the amount (θ̂) that the Z sample should be shifted in order
that Z1 − θ̂ , . . . , Zn − θ̂ appears (when “viewed” by the signed rank statistic T +)

as a sample from a population with median 0. (Under Assumptions Al and A2,
each of the Z1 − θ , . . . , Zn − θ variables is from a population with median 0.)

The Hodges–Lehmann method can be applied to a large class of statistics
containing T +. However, the forms of the resulting estimators for other members
of this class are not always as convenient for calculation as is θ̂ . See Hodges
and Lehmann (1983) for an expository article on their method.

16. Sensitivity to Gross Errors. The estimator θ̂ is relatively insensitive to outliers.
This is not the case with the classical estimator Z̄ =∑n

i=1 Zi /n . Thus the use
of θ̂ provides protection against gross errors.

17. The Walsh Averages. Each of the n(n+ l)/2 averages (Zi + Zj )/2, i ≤ j =
1, . . . , n , is called a Walsh average (see Walsh (1949)). If we define W + to be
the number of positive Walsh averages, then (when there are no ties among the
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|Z |’s and none of the Z ’s is zero) the statistic W + is identical to T + (3.3).
(See Problem 22.) This result is due to Tukey (1949).

18. Zero and Tied Absolute Z ’s. Note that in calculating the estimator θ̂ we use
all of the Z differences in computing the (Zi + Zj )/2 averages. Although we
recommend (see Ties in Section 3.1) discarding the zero Z values (and reducing
n accordingly) prior to applying the signed rank test to the data, it is not neces-
sary to do so when calculating θ̂ . In fact, the zero Z values contain important
information about the magnitude of the treatment effect. This is also the case
when we consider (Section 3.3) confidence intervals and bounds for θ .

19. Pseudomedian. A pseudomedian (cf. Høyland (1965)) of a distribution F is
defined to be a median of the distribution of (Z1 + Z2)/2, where Z1 and Z2 are
independent, each with the same distribution F . We assume here that our F is
such that both the median and the pseudomedian of F are unique. The estimator
θ̂ (3.23) is a consistent estimator of the pseudomedian, which in general may
differ from the median θ . However, when F is symmetric as assumed in this
section, the median and the pseudomedian coincide.

Properties

1. Standard Deviation of θ̂ . For the asymptotic standard deviation of θ̂ (3.23), see
Hodges and Lehmann (1963), Lehmann (1963c), and Comment 24.

2. Asymptotic Normality. See Hodges and Lehmann (1963) and Ramachandramurty
(1966a).

3. Efficiency. See Hodges and Lehmann (1963), Bickel (1965), Høyland (1968),
Gastwirth and Rubin (1969), and Section 3.11.

Problems

18. Consider the data of Table 3.2. Using the X and Y associations from Example 3.2, estimate θ

for the salary data of that example.

19. Estimate θ for the blood-level data of Table 3.3.

20. Change the value of X3, as given in Table 3.1, from 1.62 to 16.2. How does this affect the
value of Z̄ =∑9

i=1 Zi /9? How does it affect the estimate of θ given by θ̂ ? Interpret these
calculations in light of Comment 16.

21. Estimate θ for the heat-insoluble hydroxyproline data of Table 3.4.

22. Verify directly, or illustrate using the data of Table 3.1, that (when there are no ties among the
absolute values of the Z ’s and none of the Z ’s is zero) T + is equal to the number of positive
Walsh averages W +. (See Comment 17.)

23. (a) What happens to θ̂ when we add a number b to each of the sample values Z1, . . . , Zn ?
(b) What happens to θ̂ when we multiply each sample value Zi , . . . , Zn by a number d?
(c) Let k be a positive integer such that n > 2k . What happens to θ̂ when we discard the k

largest and the k smallest Z values from the sample?

24. (a) Do we need to calculate all of the n(n + 1)/2 Walsh averages in order to compute the
value of θ̂? Explain.

25. Explain why the Hodges–Lehmann estimator is less influenced by outlying observations than
is the sample mean of the Z ’s.

26. Use R to obtain the Hodges–Lehmann estimator for the salary data of Table 3.2.
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3.3 A DISTRIBUTION-FREE CONFIDENCE INTERVAL
BASED ON WILCOXON’S SIGNED RANK TEST (TUKEY)

Procedure

For a symmetric two-sided confidence interval for θ , with confidence coefficient 1 − α,
set

Cα = n(n + 1)

2
+ 1 − tα/2, (3.26)

where tα/2 is the upper (α/2)th percentile point of the null distribution of T +. The
percentile points can be found using the R function psignrank.

The 100(1 − α)% confidence interval (θL, θU) for θ that is associated with the two-
sided Wilcoxon signed rank test (see Comment 20) of H0 : θ = 0 is then given by

θL = W (Cα), θU = W (M +1−Cα) = W (tα/2), (3.27)

where M = n(n+1)/2 and W (1) ≤ · · · ≤ W (M ) are the ordered values of the (Zi + Zj )/2
averages, 1 ≤ i ≤ j ≤ n , used in computing the point estimator θ̂ (3.23); that is, θL is the
(Zi + Zj )/2 average (i.e., the Walsh average; see Comment 17) that occupies position Cα

in the list of M ordered (Zi + Zj )/2 averages. The upper end point θU is the (Zi + Zj )/2
average that occupies the position M + 1 − Cα = tα/2 in this ordered list. With θL and
θU given by display (3.27), we have

Pθ (θL < θ < θU) = 1 − α for all θ. (3.28)

(For upper or lower confidence bounds for θ associated with the appropriate one-sided
Wilcoxon signed rank tests of H0: θ = 0, see Comment 21.)

Large-Sample Approximation

For large n , the integer Cα may be approximated by

Cα ≈ n(n + 1)

4
− zα/2

{
n(n + 1)(2n + 1)

24

}1/2

. (3.29)

In general, the value of the right-hand side of (3.29) is not an integer. To be conservative,
take Cα to be the largest integer that is less than or equal to the right-hand side of (3.29).

EXAMPLE 3.4 Continuation of Examples 3.1 and 3.3.

Consider the Hamilton depression scale factor IV data of Table 3.1. We illustrate
how to obtain the 96% confidence interval for θ . With 1 − α = .96, α/2 = .02. From
psignrank(0:22,9,lower.tail=T), we find P0(T + ≤ 6) = P0(T + ≥ 40) = .02.
Thus, t.02 = 40. From (3.26), it follows that

C.04 =
[

9(9 + 1)

2
+ 1 − 40

]
= 6.
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Using these values of C.04 = 6 and t.02 = 40 in display (3.27), we see that

θL = W (6) = −.786 and θU = W (40) = −.010.

The value θL = −.786 is the sixth smallest Walsh average and can be found from the
list of ordered Walsh averages at the end of Example 3.3. Similarly, θU = −.010 is the
sixth largest Walsh average (or 40th ordered).

If we choose to apply the large-sample approximation, we find from approximation
(3.29) that

C.04 ≈
[

9(9 + 1)

4

]
− 2.05

{
9(9 + 1)(2(9) + 1)

24

}1/2

= 5.2.

Thus, with a conservative approach and the large-sample approximation, we set C.04 = 5
and find that

(θL, θU) = (W (5), W (41)) = (−.806, .035)

is the approximate 96% confidence interval for θ .
The exact 96% confidence internal can be found from the R command

wilcox.test(post-pre,conf.int=T, conf.level=.96) yielding (−.786,
−.010).

Comments

20. Relationship of Confidence Interval to Two-Sided Test. The 100 (1 − α)% confi-
dence interval for θ given by display (3.27) can be obtained from the two-sided
signed rank test as follows. The confidence interval (θL, θU) consists of those θ0

values for which the two-sided α-level test of θ = θ0 (see Comment 3) does not
reject the hypothesis θ = θ0. The confidence interval given by display (3.27) was
defined by way of a graphical procedure by Lincoln Moses (who attributed it to
John Tukey) in Chapter 18 of Walker and Lev (1953). See Lehmann (1986, p.
90) for a general result relating confidence intervals and acceptance regions of
tests, and see Lehmann (1963c) for the specific result involving the signed rank
test.

21. Confidence Bounds. In many settings, we are interested only in making one-
sided confidence statements about the parameter θ ; that is, we wish to assert
with specified confidence that θ is no larger (or, in other settings, no smaller)
than some upper (lower) confidence bound based on the sample data. To obtain
such one-sided confidence bounds for θ , we proceed as follows. For the specified
confidence coefficient 1 − α, set

C ∗
α = n(n + 1)

2
+ 1 − tα , (3.30)

where tα is the upper αth percentile point of the null distribution of T +.
The 100(1 − α)% lower confidence bound θ∗

L for θ that is associated with the one-
sided Wilcoxon signed rank test of H0 : θ = 0 against the alternative H1 : θ > 0
is then given by

(θ∗
L, ∞) = (W (C ∗

α ), ∞), (3.31)
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where, as before, M = n(n + 1)/2 and W (1) ≤ · · · ≤ W (M ) are the ordered values
of the (Zi + Zj )/2 averages, 1 ≤ i ≤ j ≤ n . With θ∗

L given by display (3.31), we
have

Pθ (θ
∗
L < θ < ∞) = 1 − α for all θ. (3.32)

The corresponding 100(1 − α)% upper confidence bound θ∗
U for θ that is asso-

ciated with the one-sided Wilcoxon signed rank test of H0 : θ = 0 against the
alternative H1 : θ < 0 is given by

(−∞, θ∗
U) = (−∞, W (M +1−C ∗

α )) = (−∞, W (ta )), (3.33)

where C ∗
α is given in (3.30). It follows that

Pθ (−∞ < θ < θ∗
U) = 1 − α for all θ. (3.34)

For large n , the integer C ∗
α may be approximated by

C ∗
α ≈ n(n + 1)

4
− zα

{
n(n + 1)(2n + 1)

24

}1/2

. (3.35)

As with Cα (3.29) and the confidence interval for θ , the value of the right-
hand side of (3.35) is not an integer. To be conservative, take C ∗

α to be the largest
integer that is less than or equal to the right-hand side of (3.35).

The 100(1 − α)% lower and upper confidence bounds θ∗
L (3.31) and θ∗

U (3.33)
are related to the acceptance regions of the one-sided Wilcoxon signed rank tests
of H0 : θ = θ0 against the alternatives θ > θ0 and θ < θ0, respectively, in the
same way that the confidence interval (θL, θU) is related to the acceptance region
of the two-sided Wilcoxon signed rank test of H0 : θ = θ0. (See Comment 20.)

22. Zero and Tied Absolute Z ’s. Note that in calculating the confidence interval (θL, θu)
from display (3.27) or the confidence bounds θ∗

L (3.31) or θ∗
U (3.33) for θ , we use

all the Z differences in computing the (Zi + Zj )/2 averages. This is in common
with our recommendation (see Comment 18) for computing the point estimator
θ̂ (3.23), but different from the recommended policy (see Ties in Section 3.1)
of discarding the zero Z values (and reducing n accordingly) prior to applying
the signed rank test to the data. However, if there are zero Z ’s in the data, the
equivalence (discussed in Comments 20 and 21) between the acceptance regions
of the one-sided and two-sided signed rank tests and the appropriate confidence
bound and confidence interval, respectively, are no longer valid. In addition, in
cases with tied absolute Z ’s, the nominal confidence coefficient 1 − α used in
displays (3.27), (3.31), and (3.33) is no longer exact. (See Comment 11.)

23. Midpoint of Confidence Interval as an Estimator. The midpoint of the interval
(3.27), namely, [W (Cα) + W (M +1−Cα)]/2, suggests itself as a reasonable estima-
tor of θ . (Note that this actually yields a class of estimators depending on the value
of α.) In general, this midpoint is not the same as θ̂ (3.23). Lehmann (1963c) has
also derived an asymptotically distribution-free confidence interval centered at θ̂ .
This asymptotically distribution-free confidence interval is based on the assump-
tion that each of the n Zi ’s comes from the same continuous population that is
symmetric about θ . This assumption is more restrictive than Assumption A2.
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24. Estimating the Asymptotic Standard Deviation of θ̂ . Replace Assumption A2 by
the stronger Assumption A2′: each Z comes from the same continuous population
that is symmetric about θ . Then, it follows from Lehmann (1963c) that the statistic
(θU − θL)/2zα/2, where (θL, θU) is the 100(1 − α)% confidence interval for θ

defined by display (3.27), is a consistent estimator for the asymptotic standard
deviation of the point estimator θ̂ (3.23).

Properties

1. Distribution-Freeness. For populations satisfying Assumptions Al and A2, (3.28)
holds. Hence, we can control the coverage probability to be 1 − α without having
more specific knowledge about the forms of the underlying Z distributions. Thus,
(θL, θU) is a distribution-free confidence interval for θ over a very large class of
populations.

2. Efficiency. See Lehmann (1963c) and Section 3.11.

Problems

27. For the blood-level data of Table 3.3, obtain a confidence interval for θ with the exact confi-
dence coefficient .954.

28. For the heat-insoluble hydroxyproline data of Table 3.4, obtain a confidence interval for θ with
the exact confidence coefficient .922.

29. For the blood-level data of Table 3.3 and α = .078, calculate the point estimator of θ defined
in Comment 23. Compare with the value of θ̂ obtained in Problem 19.

30. Use the results of Example 3.4 to obtain an estimate of the asymptotic standard deviation of
θ̂ for the Hamilton depression scale factor IV data of Table 3.1 (see Comment 24).

31. For the Hamilton depression scale factor IV data of Table 3.1, find an upper confidence bound
for θ with the exact confidence coefficient .973 (see Comment 21).

32. For the salary data of Table 3.2, use (3.31) in Comment 21 and find a lower confidence bound
for θ with approximate confidence coefficient .936. Why is the confidence coefficient only
approximate and not exact?

33. Consider the 1 − α confidence interval for θ defined by display (3.27). Let Z(1) ≤ · · · ≤ Z(n)

be the ordered Z ’s. Show that when α = 2/2n ,

θL = Z(1) and θU = Z(n).

34. Consider the 1 − α upper confidence bound for θ given in (3.33) in Comment 21. If Z(1)

≤ · · · ≤ Z(n) denote the ordered Z ’s and α = 2/2n , show that

θ∗
U = Z(n−1) + Z(n)

2
.

35. Consider the 1 − α confidence interval for θ defined by display (3.27). Let Z(1) ≤ · · · ≤ Z(n)

be the ordered Z ’s. If α = 4/2n , express the length (θU − θL) of the confidence interval in
terms of Z(1), . . . , Z(n).

36. How does varying α affect the length of the confidence interval defined by display (3.27)?
How does it affect the point estimator defined in Comment 23?

37. Consider the blood-level data of Table 3.3. Obtain an approximate 95% confidence interval for
θ using the large-sample approximation of this section. Compare this approximate confidence
interval with the exact 95.4% confidence interval obtained in Problem 27.
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38. Consider the salary data of Table 3.2. Use the large-sample approximation of this section to
obtain an approximate 90% confidence interval for θ .

39. Consider the heat-insoluble hydroxyproline data of Table 3.4. Use the large-sample approxi-
mation to obtain an approximate 99% lower confidence bound for θ . (See Comment 21.)

40. Consider the case n = 10 and compare the length of the exact 95.2% confidence interval for
θ given by display (3.27) with the length of the approximate 95.2% confidence interval for θ

obtained using the large-sample approximation of this section.

41. Consider the case n = 15 and compare the exact 96.8% upper confidence bound for θ given
by (3.33) with the approximate 96.8% upper confidence bound for θ obtained from the large-
sample approximation in Comment 21.

42. Use (3.26) and (3.27) to show that, for a fixed value of n , as α decreases the width of the
confidence interval increases. Explain this trade-off.

PAIRED REPLICATES ANALYSES BY WAY OF SIGNS

Data. We obtain 2n observations, two observations on each of the n subjects (blocks,
patients, etc.)

Subject i Xi Yi

1 X1 Y1

2 X2 Y2
...

...
...

n Xn Yn

Assumptions

B1. We let Zi = Yi − Xi , for i = 1, . . . , n . The differences Z1, . . . , Zn are mutually
independent.

B2. Each Zi , i = 1, . . . , n , comes from a continuous population (not necessarily the
same) that has a common median θ . If Fi represents the distribution function
for Zi , i = 1, . . . , n , this assumption requires that

Fi (θ) = P(Zi ≤ θ) = P(Zi > θ) = 1 − Fi (θ), for i = 1, . . . , n. (3.36)

The parameter θ is referred to as the unknown treatment effect.

3.4 A DISTRIBUTION-FREE SIGN TEST (FISHER)

Hypothesis

The null hypothesis of interest here is that of zero shift in location due to the treatment,
namely,

H0 : θ = 0. (3.37)

This null hypothesis asserts that each of the distributions (not necessarily the same) for the
differences (posttreatment minus pretreatment observations) has median 0, corresponding
to no shift in location due to the treatment.
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Procedure

To compute the sign statistic B , define indicator variables ψi , i = 1, . . . , n , where

ψi =
{

1, if Zi > 0

0, if Zi < 0,
(3.38)

and set

B =
n∑

i=1

ψi . (3.39)

The sign statistic B is the number of positive Z ’s.

a. One-Sided Upper-Tail Test. To test

H0 : θ = 0

versus
H1 : θ > 0,

at the α level of significance,

Reject H0 if B ≥ bα,1/2; otherwise do not reject, (3.40)

where the constant bα,1/2 is chosen to make the type I error probability equal to
α and is the upper αth percentile point for the binomial distribution with sample
size n and p = 1

2 . Values of bα,1/2 are found with the R command qbinom.

b. One-Sided Lower-Tail Test. To test

H0: θ = 0

versus
H2: θ < 0,

at the α level of significance,

Reject H0 if B ≤ n − bα,1/2; otherwise do not reject. (3.41)

c. Two-Sided Test. To test
H0: θ = 0

versus
H3: θ �= 0,

at the α level of significance,

Reject H0 if B ≥ bα/2,1/2 or B ≤ n − bα/2,1/2; otherwise do not reject. (3.42)

This two-sided procedure is the two-sided symmetric test with α/2 probability in
each tail of the null distribution of B .
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Large-Sample Approximation

The large-sample approximation is based on the asymptotic normality of B , suitably
standardized. As the distribution of B under the null hypothesis H0: θ = 0 is binomial
with parameters n and p = 1

2 , we know that

E0(B) = n

2
(3.43)

and
var0(B) = n

4
. (3.44)

The standardized version of B is then

B∗ = B − E0(B)

{var0(B)}1/2 = B − (n/2)

{n/4}1/2 . (3.45)

When H0 is true, B∗ has, as n tends to infinity, an asymptotic N (0, 1) distribution.
(See Comment 32 for indications of the proof.) The normal theory approximation for
procedure (3.40) is

Reject H0 if B∗ ≥ zα; otherwise do not reject, (3.46)

the normal theory approximation for procedure (3.41) is

Reject H0 if B∗ ≤ −zα; otherwise do not reject, (3.47)

and the normal theory approximation for procedure (3.42) is

Reject H0 if |B∗| ≥ zα/2; otherwise do not reject. (3.48)

Ties

If there are zero values among the Z ’s, discard the zero values and redefine n to be the
number of nonzero Z ’s.

EXAMPLE 3.5 Beak-Clapping Counts.

The data in Table 3.5 are a subset of the data obtained by Oppenheim (1968) in an
experiment investigating light responsivity in chick embryos. The subjects were white
leghorn chick embryos, and the behavioral response measured in the investigation was
beak-clapping (i.e., the rapid opening and closing of the beak that occurs during the
latter one-third of incubation in chick embryos). (Gottlieb (1965) had previously shown
that changes in the rate of beak-clapping constituted a sensitive indicator of auditory
responsiveness in chick embryos.) The embryos were placed in a dark chamber 30 min
before the initiation of testing. Then ten 1-min readings were taken in the dark, and
at the end of this 10-min period, a single reading was obtained for a 1-min period of
illumination. Table 3.5 gives the average number of claps per minute during the dark
period (X ) and the corresponding rate during the period of illumination (Y ) for 25 chick
embryos.
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Table 3.5 Beak-Clapping Counts per Minute

Embryo i Xi (Dark period) Yi (Illumination) Zi = Yi − Xi ψi

1 5.8 5 −0.8 0
2 13.5 21 7.5 1
3 26.1 73 46.9 1
4 7.4 25 17.6 1
5 7.6 3 −4.6 0
6 23.0 77 54.0 1
7 10.7 59 48.3 1
8 9.1 13 3.9 1
9 19.3 36 16.7 1

10 26.3 46 19.7 1
11 17.5 9 −8.5 0
12 17.9 25 7.1 1
13 18.3 59 40.7 1
14 14.2 38 23.8 1
15 55.2 70 14.8 1
16 15.4 36 20.6 1
17 30.0 55 25.0 1
18 21.3 46 24.7 1
19 26.8 25 −1.8 0
20 8.1 30 21.9 1
21 24.3 29 4.7 1
22 21.3 46 24.7 1
23 18.2 71 52.8 1
24 22.5 31 8.5 1
25 31.1 33 1.9 1

Source: R. W. Oppenheim (1968).

As responsivity of a chick embryo to a light stimulus is expected to correspond
to positive Z differences, we apply procedure (3.40), which is designed to detect the
alternative θ > 0. To implement the sign test, one may use qbinom directly in procedure
(3.40). If setting α = .05, the appropriate command is

qbinom(p=0.05, size=25, prob=l/2, lower.tail=F)

where the argument p is α and size and prob are n and p, respectively, in the binomial
distribution. The resulting value is 17. Recall that the argument lower.tail=F provides
probabilities that are strictly greater than a specified value. Therefore, to be consistent
with (3.40), one must use the value bα,1/2 = 18. Procedure (3.40) is then given by

Reject H0 if B ≥ 18.

Note that the critical value 18 given by R results in a significance level of α = .022, not
.05. Now, the sample value of B can be obtained directly from the indicator variables
ψ1, . . . , ψ25 listed in Table 3.5.

We find that B =∑25
i=1 ψi = (number of positive Z ’s) = 21. As this value of B is

greater than the critical value 18, we reject H0 in favor of θ > 0 at the α = .05 level.
(We note that the actual magnitudes of the Z differences are not needed to calculate

B . We require only the information as to whether or not Yi is larger than Xi , for i =
1, . . . , n , and this information is contained entirely in the indicator variables ψ1, . . . , ψn .
However, the actual magnitude of the Zi ’s will be necessary in Sections 3.5 and 3.6
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to obtain point and interval estimates, respectively, of θ associated with the sign test.)
It is simpler to use the R command SIGN.test from package BSDA (Arnholt, 2012).
Running

SIGN.test(y, x, alt=‘‘greater’’),

where y is the vector of illumination data and x is the vector of dark period data from
Table 3.5, results in a test statistic of B = 21 (the output actually uses S as the name of
the test statistic rather than B ) and a P -value of .0005. The P -value may also be found
using the pbinom command. Partial output from SIGN.test is shown below:

Dependent-samples Sign-Test

data: y and x
S = 21, p-value =.0004553
alternative hypothesis: true median difference is greater

than 0
95 percent confidence interval:
7.4519 Inf
sample estimates:
median of x-y
17.6

For the large-sample approximation, we find from (3.45) that

B∗ = 21 − ( 25
2

)( 25
4

)1/2 = 3.40.

Thus, the smallest significance level at which we can reject H0 in favor of θ > 0 using
the normal approximation (i.e., the approximate P -value) is .0003. Clearly, both the exact
test and the large-sample approximation indicate that there is strong evidence that chick
embryos are indeed responsive to a light stimulus, as measured by an increase in the
frequency of beak-claps.

Comments

25. Motivation for the Test. When θ is greater than 0, there will tend to be a large
number of positive Z differences, leading to a big value of B . This suggests
rejecting H0 in favor of θ >0 for large values of B and motivates the procedures
(3.40) and (3.46). Similar rationales lead to procedures (3.41), (3.42), (3.47), and
(3.48).

26. Assumptions. Assumption B2 is implied by Assumption A2, but the converse
is not true. Thus, Assumption B2 is less stringent than Assumption A2—an
advantage of the sign test over the signed rank test. We can, when testing θ = 0,
weaken Assumption B2 further to Assumption B2’, namely, P(Zi < 0) =
P(Zi > 0) = 1

2 , i = 1, . . . , n , when θ is the hypothesized value 0. When testing
θ = θ0 (see Comment 28), for θ0 �= 0, Assumption B2 can be replaced by the
weaker Assumption B′′

2, namely, P(Zi < θ0) = P(Zi > θ0) = 1
2 , i = 1, . . . , n ,

when θ is the hypothesized value θ0.
We also note that there is no requirement that the individual Xi and Yi

be independent, only that the pairs (X1, Y1), . . . , (Xn , Yn), and therefore the
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resulting differences Z1, . . ., Zn , be mutually independent. Indeed, in most
applications, the individual Xi and Yi are dependent.

27. Binomial Test. The test procedures based on the sign statistic B are actually
special cases of the general binomial test procedures considered in Chapter 2.
The sign test procedures are simply binomial procedures, with “success”
corresponding to a positive Z difference, “failure” corresponding to a negative
Z difference, and p = P (“success”) = P(Zi > 0) assuming the value p0 = 1

2
when the null hypothesis H0 : θ = 0 is true.

28. Testing θ Equal to Some Specified Nonzero Value. Procedures (3.40), (3.41),
and (3.42) and the corresponding normal approximations in (3.46), (3.47), and
(3.48) are for testing θ equal to zero. To test H0: θ = θ0, where θ0 is some
specified nonzero number, subtract θ0 from each of the differences Z1, . . . , Zn

to form a modified sample Z ′
1 = Z1 − θ0, . . . , Z ′

n = Zn−θ0. Then compute B
as the number of these Z ′

i s that are positive. Procedures (3.40), (3.41), and
(3.42) and their corresponding large-sample approximations in (3.46), (3.47),
and (3.48) are then applied as previously described.

29. Equivalent Form. The statistic B (3.39) is the number of positive Z differ-
ences. If we define B− to be the number of negative Z differences, then
B− =∑n

i=1(1 − ψi ) = n −∑n
i=1 ψi = n − B . Thus, the test procedures

(3.40), (3.41), and (3.42) and (3.46), (3.47), and (3.48) could equivalently be
based on B− = (n − B). (We point out that B− also (as does B) has a binomial
distribution with sample size n and p = 1

2 when H0 : θ = 0 is true.)

30. Derivation of the Distribution of B under H0 (When There Are No Zero Z
Values). The null (H0) distribution of B can be obtained directly from the
representation B =∑n

i=1 ψi . Under the assumption that the underlying Zi

distributions are all continuous, the probabilities are zero that any of the Zi ’s are
zero. Hence, under H0, each of the 2n possible outcomes for the configuration
(ψ1, . . . , ψn) occurs with the probability

( 1
2

)n
. For example, in the case of

n = 3, the 23 = 8 possible outcomes for (ψ1, ψ2, ψ3) and the associated values
of B are given in the following table.

(ψ1, ψ2, ψ3) Probability under H0 B =∑3
i=1 ψi

(0,0,0) 1
8 0

(0,0,1) 1
8 1

(0,1,0) 1
8 1

(1,0,0) 1
8 1

(0,1,1) 1
8 2

(1,0,1) 1
8 2

(1,1,0) 1
8 2

(1,1,1) 1
8 3

Thus, for example, the probability is 3
8 under H0 that B is equal to 2, as

B = 2 when any of the three exclusive outcomes (ψ1, ψ2, ψ3) = (0, 1, 1),
(1, 0, 1), or (1, 0, 1) occurs, and each of these outcomes has null probability 1

8 .
Simplifying, we obtain the null distribution.
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Possible value of B Probability under H0

0 1
8

1 3
8

2 3
8

3 1
8

The probability, under H0, that B is greater than or equal to 2, for example,
is therefore

P0(B ≥ 2) = P0(B = 2) + P0(B = 3)

= .375 + .125 = .50.

(We note that this null distribution of B could alternatively be obtained from the
binomial probability distribution in (2.15) in Comment 2.7 by taking P0 = 1

2 .)
Note that we have derived the null distribution of B without specifying the

forms of the underlying Z populations under H0 beyond the requirement that
they be continuous and have common median 0. This is why the test procedures
based on B are called distribution-free procedures. From the null distribution
of B we can determine the critical value bα/2,1/2 and control the probability
α of falsely rejecting H0 when H0 is true, and this error probability does not
depend on the specific forms of the underlying continuous Z distributions with
common median 0.

31. Calculation of the Mean and Variance of B under the Null Hypothesis H0. In
displays (3.43) and (3.44), we presented formulas for the mean and variance
of B when the null hypothesis is true. In this comment, we illustrate a direct
calculation of E0(B) and var0(B) in the particular case of n = 3, using the null
distribution of B obtained in Comment 30. (Later, in Comment 32, we present
the general derivations of E0(B) and var0(B).) The null mean, E0(B), is obtained
by multiplying each possible value of B with its probability under H0. Thus,

E0(B) = 0(.125) + 1(.375) + 2(.375) + 3(.125) = 1.5.

This is in agreement with what we obtain using (3.43), namely,

E0(B) = n

2
= 3

2
= 1.5.

A check on the expression for var0(B) is also easily performed using the
well-known fact that

var0(B) = E0(B
2) − {E0(B)}2.

The value of E0(B2), the second moment of the null distribution of B , is
again obtained by multiplying possible values (in this case, value of B2) by the
corresponding probabilities under H0. We find

E0(B
2) = 0(.125) + 1(.375) + 4(.375) + 9(.125) = 3.0.
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Thus,
var0(B) = 3.0 − (1.5)2 = 0.75,

which agrees with what we obtain using (3.44) directly, namely,

var0(B) = n

4
= 3

4
= 0.75.

32. Large-Sample Approximation. Under Assumption B1, the variables Z1, . . . , Zn

are mutually independent. The variable ψi is a function of Zi only, for
i = 1, . . . , n , therefore ψ1, . . . , ψn are also mutually independent variables.
In view of the representation B =∑n

i=1 ψ1 in (3.39), we can immediately
use well-known expressions for the mean and variance of a sum of mutually
independent random variables to obtain

E0(B) = E0

[
n∑

i=1

ψi

]
=

n∑
i=1

E0(ψi ) (3.49)

and

var0(B) = var0

(
n∑

i=1

ψi

)
=

n∑
i=1

var0(ψi ). (3.50)

Now, under H0, the ψi ’s are also identically distributed, each following the
Bernoulli probability distribution with p = 1

2 . Thus, for i = 1, . . . , n , we see that

E0(ψi ) = 0

(
1

2

)
+ 1

(
1

2

)
= 1

2

and

var0(ψi ) = E0(ψ
2
i ) − [E0(ψi )]

2

= 02
(

1

2

)
+ 12
(

1

2

)
−
(

1

2

)2

= 1

2
− 1

4
= 1

4
.

Using these results in (3.49) and (3.50), we obtain

E0(B) =
n∑

i=1

(
1

2

)
= n

2

and

var0(B) =
n∑

i=1

(
1

4

)
= n

4
,

which agree with the general expressions stated in (3.43) and (3.44).
The asymptotic normality of the standardized form

B∗ = B − E0(B)

{var0(B)}1/2 = B − n
2{

n
4

}1/2
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follows from standard central limit theory for sums of mutually independent,
identically distributed random variables (cf. Randles and Wolfe (1979, p. 421)).
Asymptotic normality results are also obtainable under general alternatives to
H0. (See Comment 35.)

33. Symmetry of the Distribution of B under the Null Hypothesis. When H0 is true,
the distribution of B is symmetric about its mean n/2. (See Comment 30 for
verification of this when n = 3.) This implies that

P0(B ≤ x) = P0(B ≥ n − x), (3.51)

for x = 0, 1, . . . , n .
Equation (3.51) is used directly to convert upper-tail probabilities to

lower-tail probabilities.

34. Zero Z Values. We have recommended discarding zero Z values and redefining
n to be the number of nonzero Z ’s. This approach is satisfactory as long as
the zero values do not represent a sizable percentage of the total number of
Z differences. If, however, there is a relatively large number of zero Z ’s, it
would be advisable to consider an appropriate statistical procedure designed
specifically for analyzing such discrete data. See, for example, Chapter 10 or
a book on categorical data analysis such as Agresti (2013).

We should also point out that there are methods other than elimination that
have been proposed for dealing with zero Z values. One could use individual
randomization (e.g., flipping a fair coin) to decide whether each of the zero Z
values is to be counted as positive or negative in the computation of B . (Although
this approach maintains many of the nice theoretical properties of B that hold
when there are no zeros, it introduces extraneous randomness that could quite
easily have a direct effect on the outcome of any subsequent inferences based on
such a modified B .) A second alternative approach in the case of the one-sided
test procedures in (3.40), (3.41), (3.46), and (3.47) is to be conservative about
rejecting the null hypothesis H0; that is, we could count all the zero Z values as
if they were in favor of not rejecting H0. Thus, for example, in applying either
procedure (3.41) or (3.47) to test H0 against the alternative θ < 0, we would
treat all the zero Z ’s as if they were “positive” (in favor of not rejecting H0) in
the calculation of B . (In the case of procedures (3.40) and (3.46), zero Z values
would be considered “negative” in the calculation of B .) Any rejection of H0

with this conservative approach to dealing with zero Z values could be viewed
as providing strong evidence in favor of the appropriate alternative. For a more
detailed discussion of methods for handling zero observations, see Pratt (1959).

35. Some Power Results for the Sign Test. We consider the upper-tail α-level test
of H0: θ = 0 versus H1 : θ > 0 given by procedure (3.40). When we have
a common underlying distribution with median θ and distribution function
F1 ≡ F2 ≡ · · · ≡ Fn≡ F for the Z differences, the sign statistic B has a
binomial distribution with parameters n and pθ = Pθ (Z1 > 0) = 1 − F (0).
It follows (see (2.15) in Comment 2.7) that the exact power of the sign test
procedure (3.40) against the alternative θ > 0 is given by the expression

Powerθ =
n∑

t=bα,1/2

(
n
t

)
pt

θ (1 − pθ )
n−t =

n∑
t=bα,1/2

(
n
t

)
[1 − F (0)]t [F (0)]n−t. (3.52)
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(As pθ = 1 − F (0) > 1 − F (θ) = 1 − 1
2 = 1

2 for all θ > 0, it follows that
Powerθ > Power0 = α for all alternatives θ > 0.) Evaluation of Powerθ for
a moderate sample size n and particular value of θ > 0 (and associated
pθ = 1 − F (0) > 1

2 ) can thus be accomplished by direct computation.
For large sample sizes, we can make use of the standard central limit

theorem for sums of mutually independent and identically distributed random
variables to conclude that

B − npθ

[npθ (1 − pθ )]1/2
= B − n(1 − F (0))

[n(1 − F (0))(F (0))]1/2
(3.53)

has an asymptotic (n −→ ∞) standard normal distribution. Thus, for large n ,
we can approximate the exact power in (3.52) by

Powerθ ≈ 1 − �

(
bα,1/2 − npθ

[npθ (1 − pθ )]1/2

)
= 1 − �

(
bα,1/2 − n(1 − F (0))

[n(1 − F (0))(F (0))]1/2

)
, (3.54)

where �(t) is the area under a standard normal density to the left of t .
We note that both the exact power (3.52) and the approximate power (3.54)

against an alternative θ > 0 depend on the common distribution only through
the value of its distribution function F (z ) at z = 0. Thus, if two distributions
have a common median θ > 0 and distribution functions F1 and F2 such
that F1(0) = F2(0), then the exact power (3.52) of the sign test against the
alternative θ > 0 will be the same for both distributions F1 and F2. (The same
is, of course, true for the approximate power in (3.54).)

For the purpose of illustration, consider the case where n = 10 and
α = .05. Then using qbinom, we see that b.05,1/2 = 9 and the test (3.40) rejects
H0 if and only if B ≥ 9. If F is the distribution function for a probability
distribution with median θ = 2 (i.e., F (2) = 1

2 ) and F (0) = 1
4 , then from

(3.52), the exact power of the sign test in this setting is

Powerθ=2 =
10∑

t=9

(
10
t

)(
3

4

)t(1

4

)10−t

= pbinom(8,size = 10, prob = 3/4, lower.tail = F)

= .2440.

The approximate power for the same setting is seen from (3.54) to be

Powerθ=2 ≈ 1 − �

(
9 − 10

( 3
4

)[
10
( 3

4

) ( 1
4

)]1/2

)

= 1 − �

(
1.5[ 30

16

]1/2

)
= .1367.

Thus, for n as small as 10 and pθ = 3
4 , the agreement between the exact

power (3.52) and the approximate power (3.54) is not too good. (We note
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that for an underlying normal distribution F with mean θ = 2 and variance
σ 2, the condition F (0) = 1

4 corresponds to �((0 − 2)/σ ) = 1
4 , which in

turn corresponds to (−2/σ) = z.75 = −.675, or σ = (2/.675) = 2.96. More
generally, the test (3.40) for n = 10 and α = .05 has an exact power of
.2440 against any normal distribution with mean θ and variance σ 2 for which
−(θ/σ ) = z.75 = −6.75, or θ = .675σ . Although we specified α = .05 in this
example, the upper tail probability for B ≥ 9 is actually .01.

36. Sample Size Determination. When Z1, . . . , Zn are a random sample from a
single continuous F , the one-sided upper-tail test defined by procedure (3.40)
is consistent (i.e., has power tending to 1 as n tends to infinity) against those
F populations for which p > 1

2 , with

p = P(Z > 0), (3.55)

where Z is distributed as F .
Noether (1987), among others, shows how to determine an approximate

sample size n so that the α-level one-sided test given by procedure (3.40) will
have approximate power 1 − β against an alternative value of p (3.55) greater
than 1

2 . This approximate value of n is

n
.= (zα + zβ)2

4
(
p − 1

2

)2 . (3.56)

As an illustration of the use of (3.56), suppose we are testing H0 and we wish
to have an upper-tail level α = .04 test with power 1 − β of at least .975
against an alternative for which p = P(Z > 0) = .7 (recall that p = .5 under
H0). The critical values are zα = z.04 = 1.75 and zβ = Z.025 − 1.96, and we
find that the required sample size for the alternative p = .7 is

n =̇ (1.75 + 1.96)2

4(.7 − .5)2 = 86.03.

To be conservative, we take n = 87.

37. Consistency of the B Test. Under the assumption that Z1, . . . , Zn are a random
sample from a single continuous population F , the consistency of the tests
based on B depends on the parameter

p∗ = P(Z1 > 0) − 1

2
. (3.57)

The test procedures defined by (3.40), (3.41), and (3.42) are consistent against
the classes of alternatives corresponding to p∗ >, <, and �= 0, respectively.

Properties

1. Consistency. For our consistency statement, we strengthen Assumption B2 to
require that each Z has the same continuous population with median θ . Then the
test procedures defined by (3.40), (3.41), and (3.42) are consistent against the
alternatives θ >, <, and �= 0, respectively. (See also Comment 37.)
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2. Asymptotic Normality. Under a strengthened Assumption B2 that requires that
each Z has the same continuous population with median θ , the asymptotic nor-
mality of the standardized form of the B statistic follows from the standard central
limit theorem for sums of mutually independent and identically distributed random
variables. (See also Comment 35.)

3. Efficiency. See Section 3.11.

Problems

43. The data in Table 3.6 are a portion of the data obtained by Cooper et al. (1967). The pur-
pose of their investigation was to determine whether hypnotic susceptibility as measured on
objective scales can be changed with practice and training. The objective measures used were
the Stanford Profile Scales of Hypnotic Susceptibility, forms I and II (Hilgard, Lauer, and
Morgan (1963)). The subjects were administered these Profile Scales, both forms I and II, by
a hypnotist other than the experimenter. Each subject was then seen by one of the authors for
an extensive period of “hypnotic training.” After these sessions were concluded, each subject
was retested by a different hypnotist (again not the experimenter) using equivalent forms of
the Profile Scales, forms I′ and II′. Table 3.6 gives the average score obtained on forms I and
II prior to hypnotic training (X ) and the corresponding average score obtained on forms I′ and
II′ after the training (Y ) for the six subjects. Note that a high (or low) score on the Profile
Scales indicates a high (or low) degree of hypnotic susceptibility.

Test the hypothesis of no change in hypnotic susceptibility versus the alternative that
hypnotic susceptibility (as measured by the Profile Scales) can be increased with practice and
training.

44. Change the value of Y3 in Table 3.5 from 73 to 173. What effect does this outlying obser-
vation have on the calculations performed in Example 3.5? What does this suggest about the
relative insensitivity of the sign tests to outliers? Construct an example in which changing one
observation has an effect on the final decision regarding rejection or acceptance of H0.

45. Suppose n = 25. Compare the exact P -value of test of H0 : θ = 0 versus H1 : θ < 0 based on
B = 8, with the P -value found using the large-sample approximation.

46. In an investigation to determine the effect of aspirin on bleeding time and platelet adhesion,
Bick, Adams, and Schmalhorst (1976) studied the reactions of normal subjects to aspirin.
A subset of their data is presented in Table 3.7, where the X observation for each subject is
the bleeding time (in seconds) before ingestion of 600 mg of aspirin and the Y observation is
the bleeding time (again in seconds) 2 h after administration of the aspirin.

Table 3.6 Average Scores on
the Stanford Profile Scales of
Hypnotic Susceptibility

Subject i Xi Yi

1 10.5 18.5
2 19.5 24.5
3 7.5 11.0
4 4.0 2.5
5 4.5 5.5
6 2.0 3.5

Source: L. M. Cooper, E. Schubot,
S. A. Banford, and C. T. Tart
(1967).
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Perform the appropriate test of the hypothesis that a 600-mg dose of aspirin has no
effect on bleeding time versus the alternative that it typically leads to an increase in bleeding
time.

47. Assume that we have a common underlying distribution F1 ≡ F2 ≡ · · · ≡ Fn ≡ F (in Assump-
tion B2). If we have 20 observations, what is the exact power of the level α = .05 test of
H0 : θ = 0 versus the alternative θ > 0 when F (0) = .3?

48. Assume that we have a common underlying distribution F1 ≡ F2 ≡ · · · ≡ Fn ≡ F (in Assump-
tion B2). If we have 18 observations and F is normal with variance 4, what is the exact power
of the level α = .01 test of H0 : θ = 0 versus the alternative θ < 0 when the treatment effect
is θ = −2?

49. Consider a level α = .025 test of H0 : θ = 0 versus the alternative θ > 0 based on B . If our
data Z1, . . . , Zn are a random sample from a single, continuous distribution F (·), how many
n observations will we need to collect in order to have an approximate power of at least .75
against an alternative for which F (0) = .20?

50. Apply the appropriate form of the test based on B to the Hamilton depression scale factor IV
data in Table 3.1.

51. Assume that we have a common underlying distribution F1 ≡ F2 ≡ · · · ≡ Fn ≡ F (in Assump-
tion B2). If we have 20 observations, what is the approximate power of the level α = .05 test
of H0 : θ = 0 versus the alternative θ > 0 when F (0) = .3? Compare this approximate power
with the exact power from Problem 47.

52. Apply the large-sample approximation test of H0 : θ = 1000 versus H1 : θ > 1000 based on
B to the salary data in Table 3.2.

53. For the case of n = 5 nonzero Z values, use the approach discussed in Comment 30 to obtain
the form of the exact null (H0) distribution of B . Verify numerically that this null distribution
is, indeed, the binomial distribution with parameters n = 5 and p0 = .5.

54. Consider the test of H0 : θ = 0 versus H1 : θ > 0 based on B for the following n = 15 Z obser-
vations: Z1 = 2.5, Z2 = 0, Z3 = 3.7, Z4 = −0.6, Z5 = 1.7, Z6 = 0, Z7 = 5.9, Z8 = 4.6, Z9 = 0,
Z10 = −1.4, Z11 = 5.4, Z12 = 4.6, Z13 = 3.1, Z14 = −2.0, and Z15 = 6.3. Compute the
P -values for the competing B procedures based on either (i) discarding the zero Z values and
reducing n accordingly, as recommended in the Ties portion of this section, or (ii) treating

Table 3.7 Bleeding Time
(in seconds)

Subject i Xi Yi

1 270 525
2 150 570
3 270 190
4 420 395
5 202 370
6 255 210
7 165 490
8 220 250
9 305 360

10 210 285
11 240 630
12 300 385
13 300 195
14 70 295

Source: R. L. Bick, T. Adams,
and W. R. Schmalhorst (1976).
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the zero Z values in a conservative manner, as presented in Comment 34. Discuss the
results.

55. Consider the same setting as in Problem 54. Suppose that you had decided to use randomization
to deal with the three zero Z values in the data (see Comment 34). Consider the various
possible outcomes for this randomization process and compute the associated P -value for
each of these outcomes. Discuss the implication of these findings in conjunction with the
results of Problem 54.

56. Obtain the exact P -value for the test based on B for the bleeding time data in Table 3.7.
Compare this to the P -value obtained using the large sample approximation.

57. Obtain the exact P -value for the test of H0 : θ = 1000 versus H1 : θ > 1000 based on B for
the salary data in Table 3.2.

3.5 AN ESTIMATOR ASSOCIATED WITH THE SIGN
STATISTIC (HODGES–LEHMANN)

Procedure

To estimate the treatment effect θ , order the sample observations and let Z (1) ≤ · · · ≤ Z (n)

denote these ordered items. The estimator of θ associated with the sign statistic (see
Comment 38) is

θ̃ = median{Zi , 1 ≤ i ≤ n}. (3.58)

Thus, if n is odd, say n = 2k + 1, we have k = (n − 1)/2 and

θ̃ = Z (k+1), (3.59)

the value that occupies position k + 1 in the list of the ordered Zi values. If n is even,
say n = 2k , then k = n/2 and

θ̃ = Z (k) + Z (k+1)

2
; (3.60)

that is, when n is even, θ̃ is the average of the two Zi values that occupy positions k
and k + 1 in the ordered list of the n data values.

EXAMPLE 3.6 Continuation of Example 3.5.

To estimate θ for the beak-clapping data in Table 3.5, we first form the n = 25 ordered Z
values, namely, Z (1) ≤ · · · ≤ Z (25) : −8.5, −4.6, −1.8, −0.8, 1.9, 3.9, 4.7, 7.1, 7.5, 8.5,
14.8, 16.7, 17.6, 19.7, 20.6, 21.9, 23.8, 24.7, 24.7, 25.0, 40.7, 46.9, 48.3, 52.8, and 54.0.
The sample size n = 25 is odd, so we use (3.59) with k = (25 − 1)/2 = 12 to obtain
the estimate θ̃ = Z (13) = 17.6 for the treatment effect θ . Thus, we estimate that a typical
chick embryo of the type included in this study will produce 17.6 more beak-claps per
minute during periods of illumination than during periods of darkness.
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The SIGN.test command will provide this value automatically as seen in the R

output in Example 3.5. Alternatively, one may use the command median(z) directly
on the difference data Zi = Yi − Xi .

Comments

38. Motivation for the Hodges–Lehmann Estimator. The estimator θ̃ defined by
(3.58) is associated with the sign test in the same way as the estimator θ̃ (3.23)
is associated with the signed rank test (see Comment 15). When θ = 0, the
distribution of the statistic B (3.39) is symmetric about its mean n/2 (see
Comment 33). A natural estimator of θ is the amount θ̃ (say) that should be
subtracted from each Zi so that the value of B , when applied to the shifted
sample Z1 − θ̃ , . . . , Zn − θ̃ , is as close to n/2 as possible. Intuitively, we esti-
mate θ by the amount (θ̃) that the Z sample should be shifted in order that
Z1 − θ̃ , . . . , Zn − θ̃ appears (when “viewed” by the sign statistic B ) as a sample
from a population with median 0. (Under Assumptions B1 and B2, each of the
Z1 − θ , . . . , Zn − θ variables is from a population with median 0.)

The Hodges–Lehmann method can be applied to a large class of statistics
containing both B and T + (3.3). However, the forms of the resulting estimator
for other members of this class are not always as convenient for calculation as
are θ̃ (3.58) or θ̃ (3.23). See Hodges and Lehmann (1983) for an expository
article on their method of estimation.

39. Simplicity. One of the virtues of θ̃ (3.58) is its simplicity. While many estimators
associated with distribution-free test statistics are tedious to compute (e.g., θ̃

(3.23) requires computing the median of n(n + 1)/2 values), θ̃ requires only
that we find the median of the n Z observations. However, although the signs
of the Z differences provide sufficient information to conduct a sign test, the
magnitudes of these differences are needed to obtain the value of the estimator θ̃ .

40. Sensitivity to Gross Errors. The estimator θ̃ (3.58) is even less sensitive to
outliers than the estimator θ̂ (3.23) associated with the signed rank statistic T +
(3.3). (See Comment 16 and Problems 20 and 60.) As a result, θ̃ protects well
against gross errors. However, all the information contained in the collected
sample is not utilized in computing θ̃ . Consequently, θ̃ is rather inefficient for
many populations.

41. Zero Z Values. Note that in calculating the estimator θ̃ , we use all the Z dif-
ferences. Although we recommend (see Ties in Section 3.4) discarding the zero
Z values (and reducing n accordingly) prior to applying the sign test to the
data, it is not necessary to do so when calculating θ̃ . In fact, the zero Z values
contain important information about the magnitude of the treatment effect. This
is also the case when we consider (Section 3.6) confidence intervals and bounds
for θ .

42. Historical Perspective. The use of the estimator θ̃ predates most of the recent
unified developments in the field of nonparametric statistics. A. T. Craig (1932)
first found the sampling distribution of θ̃ , and its asymptotic properties were
developed shortly thereafter by Smirnov (1935).

43. Quasimedians. Let Z (1) ≤ · · · ≤ Z (n) be the ordered sample observations, as
in step 1 of the Procedure. Hodges and Lehmann (1967) defined the sample
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quasimedians by

θ̃i =

⎧⎪⎪⎨⎪⎪⎩
Z (k+1−i ) + Z (k+1+i )

2
, if n = 2k + 1

Z (k−i ) + Z (k+1+i )

2
, if n = 2k ,

for i = 0, 1, . . . , k if n = 2k + 1, or i = 0, 1, . . . , k − 1 if n = 2k ; that is, each
quasimedian θ̃i is an average of two symmetrically situated, ordered Z obser-
vations. (Note that this definition of a quasimedian generalizes the concept of a
sample median, as the sample median θ̃ (3.58) is equal to θ̃0.) These quasime-
dians are natural estimators for the parameter θ (see Comment 52) and were
considered by Hodges and Lehmann (1967), who investigated some of the
asymptotic properties of this class of statistics.

44. Linear Combinations of Order Statistics. Let Z (1) ≤ · · · ≤ Z (n) be the ordered
sample observations, as in step 1 of the Procedure. Under the additional assump-
tion that we have a common underlying distribution F1 ≡ F2 ≡ · · · ≡ Fn ≡ F
(in Assumption B2), the n variables Z (1), . . . , Z (n) are called the order statistics
for the random sample Z1, . . . , Zn . The estimator θ̃ (3.58) is a special case of a
general class of estimators of θ based on linear combinations of these sample
order statistics, corresponding to estimators of the form

θ̃b =
n∑

i=1

bi Z
(i ), (3.61)

where b = (b1, . . . , bn) is a vector of n nonnegative constants such that∑n
i=1 bi = 1. For a more detailed discussion about estimators of the form θ̃b

(3.61), see, for example, David and Nagaraja (2003) or Arnold, Balakrishnan,
and Nagaraja (1992).

45. Variance Approximation. Hodges and Lehmann (1967) obtained an approxima-
tion for the variance of the estimator θ̃ (3.58) under the additional assumption
that we have a common underlying distribution F1 ≡ F2 ≡ · · · ≡ Fn ≡ F (in
Assumption B2). (See equation (1.4) of their paper.) They point out that, up to
the accuracy of their approximation, it is not wise to compute the sample median
θ̃ using an odd number of observations, say n = 2k + 1. The next smaller even
number, n = 2k , yields a sample median that is just as accurate. This conclu-
sion does not depend on the shape of the underlying population except that it
be symmetric, although the degree of accuracy of the approximation is affected
by the shape.

46. Estimating the Asymptotic Standard Deviation of θ̃ . Assume that we have a
common underlying distribution F1 ≡ F2 ≡ · · · ≡ Fn ≡ F (in Assumption B2)
and set

D =
n∑

i=1

ai ,

where

ai =
{

1, if
[
θ̃ − (n)−1/5

]
≤ Zi ≤

[
θ̃ + (n)−1/5

]
0, otherwise,
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for i = 1, . . . , n. Let A = maximum {1, D}. Under the additional assumption
on the common distribution F that the probability of obtaining a Z observation
in any (sufficiently) small interval I centered at the median θ is greater than
or equal to some fixed constant (not depending on I ) times the length of I ,
the statistic C = n3/10A−1 is a consistent estimator of the asymptotic standard
deviation of the point estimator θ̃ (3.58). The statistic C is related to general
classes of estimators of probability density functions considered by Rosenblatt
(1956), Parzen (1962), and Gupta (1967). The consistency of C follows directly
from the results in Korwar (1971).

47. Relative Merits of θ̂ and θ̃ . The point estimator θ̃ (3.58) associated with the sign
test statistic B is to be preferred to the point estimator θ̃ (3.23) associated with
the signed rank test statistic T + when ease of computation is a consideration
(see Comment 39). Generally (but not always), θ̂ is more efficient than θ̃ . (See
Comment 40 and Section 3.11.)

Properties

1. Standard Deviation of θ̃ . For the asymptotic standard deviation of θ̃ (3.58), see
Fisz (1963, p. 383) and Comment 46.

2. Asymptotic Normality. See Fisz (1963, p. 383).

3. Efficiency. See Hodges and Lehman (1963) and Section 3.11.

Problems

58. Using the designated X and Y associations, estimate θ for the average Profile Scales data of
Table 3.6.

59. Estimate θ for the bleeding time data of Table 3.7.

60. Change the value of Y3 in Table 3.5 from 73 to 173. What effect does this have on the value
of Z̄ =∑25

i=1 Zi /25? What is the new value of θ̃ (3.58)? Interpret these calculations. (See
Comment 40.)

61. Calculate θ̃ for the heat-insoluble hydroxyproline data of Table 3.4. Compare with the value
of θ̂ obtained in Problem 21.

62. (a) What happens to θ̃ when we add a number b to each of the sample values Z1, . . . , Zn ?

(b) What happens to θ̃ when we multiply each sample value by the number textitd?

(c) What happens to θ̃ when we discard the k largest and k smallest values from the
sample (assume n > 2k )? Compare your answers with the corresponding answers to
Problem 23.

63. Calculate θ̃ for the blood-level data of Table 3.3. Compare with the value of θ̂ obtained in
Problem 19.

64. Calculate θ̃ for the salary data in Table 3.2. Compare with the value of θ̂ obtained in
Problem 18.

65. Calculate θ̃ for the Hamilton depression scale factor IV data in Table 3.1. Compare with the
value of θ̃ obtained in Example 3.3.

66. Find the vector b = (b1, . . . , bn) to show that θ̃ can be written as a linear combination of the
sample order statistics Z (1) ≤ · · · ≤ Z (n), as discussed in Comment 44.



80 Chapter 3 The One-Sample Location Problem

67. Show that the class of quasimedian estimators of θ (see Comment 43) is a subset of the class of
estimators of θ based on linear combinations of the sample order statistics Z (1) ≤ · · · ≤ Z (n),
as discussed in Comment 44.

68. Find the sample quasimedians (see Comment 43) for the data in Table 3.2. How do these
values compare with θ̃?

69. Find the sample quasimedians (see Comment 43) for the data in Table 3.7. How do these
values compare with θ̃?

3.6 A DISTRIBUTION-FREE CONFIDENCE INTERVAL
BASED ON THE SIGN TEST (THOMPSON, SAVUR)

Procedure

For a symmetric two-sided confidence interval for θ , with confidence coefficient 1 − α,
first obtain the upper (α/2)nd percentile point bα/2,1/2 of the null distribution of B from
qbinom. Set

Cα = n + 1 − bα/2,1/2. (3.62)

The 100(1 − α)% confidence interval (θL, θU) for θ that is associated with the two-
sided sign test (see Comment 48) of H0 : θ = 0 is then given by

θL = Z (Cα), θU = Z (n+1−Cα) = Z (bα/2,1/2), (3.63)

where Z (1) ≤ · · · ≤ Z (n) are the ordered sample observations; that is, θL is the sample
observation that occupies position Cα in the list of ordered sample data. The upper end
point θU is the sample observation that occupies position n+1 − Cα = bα/2,1/2 in this
ordered list. With θL and θU given by display (3.63), we have

Pθ (θL < θ < θU) = 1 − α for all θ. (3.64)

(For upper or lower confidence bounds for θ associated with appropriate one-sided sign
tests of H0: θ = 0, see Comment 49.)

Large-Sample Approximation

For large n , the integer Cα may be approximated by

Cα ≈ n

2
− zα/2

(n

4

)1/2
. (3.65)

In general, the value of the right-hand side of (3.65) is not an integer. To be conserva-
tive, take Cα to be the largest integer that is less than or equal to the right-hand side
of (3.65).
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EXAMPLE 3.7 Continuation of Examples 3.5 and 3.6.

Consider the beak-clapping data in Table 3.5. We illustrate how to obtain the 95% con-
fidence interval for θ . With 1 − α = .95, n = 25, and p = 1/2 we see that bα,1/2 =
b0.025,1/2 = 18. From (3.62), it follows that

Cα = 25 + 1 − 18 = 8.

Using Cα and bα,1/2 in (3.63), we see that

θL = Z (8) = 7.1 and θU = Z (18) = 24.7

so that the 95% confidence interval for θ is

(θL, θU) = (Z (8), Z (18)
) = (7.1, 24.7).

The size of this confidence interval is the same as the probability a binomial random
variable with parameters n = 25 and p = 1/2 is in the interval (8,18). Using pbinom,
this is .9567. Thus, the actual confidence level is not α =.05, but α = .0433. This is
due to the discrete nature of the statistic. SIGN.test provides this confidence inter-
val. The value of 1 − α is specified through the argument conf.level. In the output
below, three confidence intervals are provided. As it is not possible to get an interval
with exactly .05 in the tails, intervals bracketing this α are given. The lower achieved
interval is the exact intervals with α = 1 − .8922, the upper achieved interval is the exact
interval with α = 1 − .9567 found above. The interpolated interval is found by linearly
interpolating the lower and upper end points on 1 − α. Two-sided confidence intervals
are provided when the alternative hypothesis is two-sided. This is done with the argument
alternative="two.sided" in SIGN.test.

Conf.Level L.E.pt U.E.pt
Lower Achieved CI .8922 7.5000 23.8000
Interpolated CI .9500 7.1417 24.6063
Upper Achieved CI .9567 7.1000 24.7000

Comments

48. Relationship of Confidence Interval to Two-Sided Test. The 100(1 − α)% confi-
dence interval for θ given by display (3.63) can be obtained from the two-sided
sign test as follows. The confidence interval (θL, θU) consists of those θ0 values
for which the two-sided α-level test of θ = θ0 (see Comment 28) does not reject
the hypothesis θ = θ0.

49. Confidence Bounds. Often we are interested only in making one-sided confi-
dence statements about the parameter θ ; that is, we wish to assert with specified
confidence that θ is no larger (or, in other settings, no smaller) than some upper
(lower) confidence bound based on the sample data. To obtain such one-sided
confidence bounds for θ , we proceed as follows. For the specified confidence
coefficient 1 − α, find the upper αth (not (α/2)nd, as for the confidence interval)
percentile point bα,1/2 of the null distribution of B . Set

C ∗
α = n+1 − bα,1/2. (3.66)
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The 100(1 − α)% lower confidence bound θ∗
L for θ that is associated with the

one-sided sign test of H0 : θ = θ0 against the alternative H1 : θ > θ0 is then
given by

(θ∗
L, ∞) = (Z (C ∗

α ), ∞), (3.67)

where, as before, Z (1) ≤ · · · ≤ Z (n) are the ordered sample observations. With
θ∗

L given by display (3.67), we have

Pθ (θ
∗
L < θ < ∞) = 1 − α for all θ. (3.68)

The corresponding 100(1 − α)% upper confidence bound θ�
U for θ that is asso-

ciated with the one-sided sign test of H0 : θ = θ0 against the alternative H1 :
θ < θ0 is given by

(−∞, θ∗
U) = (−∞, Z (n+1−C ∗

α )) = (−∞, Z (bα,1/2)
)

, (3.69)

where C ∗
α is given in (3.66). It follows that

Pθ (−∞ < θ < θ∗
U) = 1 − α for all θ. (3.70)

For large n , the integer C ∗
α may be approximated by

C ∗
α ≈ n

2
− zα

(n

4

)1/2
. (3.71)

As with Cα (3.65) and the confidence interval for θ , the value of the right-hand
side of (3.71) is not an integer. To be conservative, take C ∗

α to be the largest
integer that is less than or equal to the right-hand side of (3.71).

The 100(1 − α)% lower and upper confidence bounds θ∗
L (3.67) and θ∗

U
(3.69) are related to the acceptance regions of the one-sided sign tests of H0: θ =
θ0 against the alternatives θ > θ0 and θ < θ0, respectively, in the same way that
the confidence interval (θL, θU) is related to the acceptance region of the two-
sided sign test of H0: θ = θ0 (see Comment 48). When using SIGN.test, one-
sided confidence intervals are produced by specifying a one-sided alternative.

50. Zero Z Values. Note that in calculating the confidence interval (θL, θU) from dis-
play (3.63) or the confidence bounds θ∗

L (3.67) or θ�
U (3.69) for θ , we use all the

Z differences. This is in common with our recommendation (see Comment 41)
for computing the point estimator θ̃ (3.58), but differs from the recommended
policy (see Ties in Section 3.4) of discarding the zero Z values (and reducing
n accordingly) prior to applying the sign test to the data. However, if there
are zero Z ’s in the data, the equivalence (discussed in Comments 48 and 49)
between the acceptance regions of the one-sided and two-sided sign tests and
the appropriate confidence bound and confidence interval, respectively, are no
longer valid.

51. Necessity of Magnitudes. The confidence interval and bounds (see Comment 49)
for θ based on the sign tests are simple to compute, as the end points depend
only on the ordered sample Z observations. However, for such a computation,
knowledge of the signs of the Z differences is no longer sufficient as it was for
the computation of B (3.39) for the various sign tests. We need the observation
magnitudes to obtain θL, θU, θ∗

L, or θ∗
U.
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52. Midpoint of the Confidence Interval as an Estimator. The midpoint of the interval
(3.63), namely, [Z (Cα) + Z (n+1−Cα)]/2, is also a natural estimator of θ . (Note that
this actually yields a class of estimators, depending on the value of α.) In general,
this midpoint is not the same as θ̃ (3.58). (See Hodges and Lehmann (1967) and
Comment 43 for additional discussion of this midpoint class of estimators.)

53. Comparison of Sign and Signed Rank Confidence Intervals for θ . The confidence
interval (3.63) for θ associated with the sign test and based on the n ordered
Z differences is easier to compute than the confidence interval (3.27) for θ

associated with the signed rank test and based on the n(n + 1)/2 ordered Walsh
averages (see Comment 17). However, the signed rank confidence interval (3.27)
is generally (but not always) more efficient than the sign confidence interval
(3.63). (See Section 3.11.)

54. Extension to Discrete Distributions. Consider the closed version [θL, θU] =
[Z (Cα), Z (n+1−Cα)] of the 100(1 − α)% confidence interval for θ given in
display (3.63) under the alternative (to Assumptions B1 and B2) assumption
that Z1, . . . , Zn are a random sample from an underlying distribution F (·) with
a unique median θ . Suppose that this common distribution F (·) is such that in
any bounded interval of the real line there are at most a finite number (could
be zero) of values having positive probability. (If F (·) is continuous, this is
trivially satisfied because in that case no real number has positive probability.
However, the large majority of discrete probability distributions also satisfy
this mild assumption.) Under these weakened conditions on the common F (·),
the closed interval [θL, θU] remains a conservative 100(1 − α)% confidence
interval for θ in the sense that

Pθ (θL ≤ θ ≤ θU) ≥ 1 − α for all θ

is guaranteed for every such F (·). The closed versions of the upper and lower
confidence bounds (see Comment 49), namely, (−∞, θ�

U] = (−∞, Z (bα,1/2)]
and [θ�

L, ∞) = [Z (C �
α ), ∞), respectively, also remain conservative 100(1 − α)%

bounds over this expanded class of common distributions F (·). (For more
details on the extension of these confidence intervals and bounds to common
discrete distributions, see Scheffé and Tukey (1945) and Noether (1967a).)

Properties

1. Distribution-Freeness. For populations satisfying Assumptions B1 and B2, (3.64)
holds. Hence, we can control the coverage probability to be 1 − α without having
more specific knowledge about the forms of the underlying Z distributions. Thus,
(θL, θU) is a distribution-free confidence interval for θ over a very large class of
populations. (See also Comment 54.)

2. Efficiency. See Section 3.11.

Problems

70. For the Profile Scales data of Table 3.6, obtain a confidence interval for θ with the exact
confidence coefficient .9688.
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71. For the bleeding time data in Table 3.7, obtain a confidence interval for θ with the exact
confidence coefficient .9426.

72. For the beak-clapping data of Table 3.5, obtain an estimate for the asymptotic standard devi-
ation of θ̃ . (See Comment 46.)

73. For the beak-clapping data of Table 3.5 and α = .1078, calculate the point estimator of θ

defined in Comment 52. Compare with the value of θ̃ obtained in Example 3.6.

74. For the Hamilton depression scale factor IV data of Table 3.1, find a confidence interval for
θ with the exact confidence coefficient .9610.

75. For the bleeding time data in Table 3.7, obtain an approximate 94.26% confidence interval for
θ using the large-sample approximation of this section. Compare this approximate confidence
interval with the exact 94.26% confidence interval obtained in Problem 71.

76. How does varying α affect the length of the confidence interval defined by display (3.63)?
How does it affect the point estimator of θ defined in Comment 52?

77. For the beak-clapping data of Table 3.5, find a lower confidence bound for θ with the exact
confidence coefficient .9461. (See Comment 49.)

78. Consider the Stanford Profile Scores data of Table 3.6. Obtain an upper confidence bound for
θ with the exact confidence coefficient .8906. (See Comment 49.)

79. For the salary data in Table 3.2, find a lower confidence bound for θ with the exact confidence
coefficient .9270. How does this compare with the approximate 93.6% lower confidence bound
for θ obtained in Problem 32?

80. Consider the beak-clapping data of Table 3.5. Use the large-sample approximation to obtain an
approximate 95% lower confidence bound for θ (see Comment 49). Compare this approximate
bound with the exact 94.61% lower confidence bound obtained in Problem 77.

81. Consider the bleeding time data of Table 3.7. Use the large-sample approximation to find an
approximate 92% upper confidence bound for θ . (See Comment 49.)

82. Consider the case n = 15 and compare the length of the exact 96.48% confidence interval for
θ given by display (3.63), with the length of the approximate 96.48% confidence interval for
θ obtained using the large-sample approximation of this section.

83. Consider the case n = 25 and compare the exact 94.61% lower confidence bound for θ given
by (3.67), with the approximate 94.61% lower confidence bound for θ obtained from the
large-sample approximation in Comment 49.

84. For the bleeding time data in Table 3.7 and α = 0.05, find the estimate of θ as described in
Comment 52. Compare this with the estimate found in Problem 59.

85. Consider the two-sided confidence interval found in Problem 74. What range of α values
results in the same upper and lower bounds?

86. Consider the one-sided confidence interval found in Problem 77. What range of α values
results in the same lower bound?

ONE-SAMPLE DATA∗

3.7 PROCEDURES BASED ON THE SIGNED RANK
STATISTIC

Data. We obtain n observations Z1, . . . , Zn .

∗Sections 3.7–3.10 are optional. The contents of these sections are not used in the sequel.
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Table 3.8 Estimated Values of θ from the
Mariner and the Pioneer Spacecraft

Spacecraft θ

Mariner 2 (Venus) 81.3001
Mariner 4 (Mars) 81.3015
Mariner 5 (Venus) 81.3006
Mariner 6 (Mars) 81.3011
Mariner 7 (Mars) 81.2997
Pioneer 6 81.3005
Pioneer 7 81.3021

Source: J. D. Anderson, L. Efron, and S. K. Wong
(1970).

Assumptions

C1. The Z ’s are mutually independent.

C2. Each Z comes from a population (not necessarily the same) that is continuous
and symmetric about θ .

Procedures

To test H0 : θ = θ0, where θ0 is some specified number, we create the modified observa-
tions Z ′

i = Zi − θ0, for i = 1, . . . , n . Then we apply any of the test procedures of Section
3.1 to these modified Z ′ observations.

To obtain a point estimator of θ or a confidence interval for θ , we apply the pro-
cedures of Sections 3.2 and 3.3 directly to the Z observations without modification.

EXAMPLE 3.8 The Mariner and the Pioneer Spacecraft Data.

The data in Table 3.8 were reported by Anderson, Efron, and Wong (1970). The seven
observations represent average measurements of θ , the ratio of the mass of the Earth to
that of the moon, obtained from seven different spacecraft.

On the basis of the previous (2–3 years earlier) Ranger spacecraft findings, sci-
entists had considered the value of θ to be approximately 81.3035. Thus, with the
data of Table 3.8, we are interested in testing H0 : θ = 81.3035 versus the alterna-
tive θ �= 81.3035, and we perform test procedure (3.6). With α = .078, we see that
t.078/2 = 26.

Now, we form the modified Z ′ observations as follows.

i Zi Z ′
i = Zi − 81.3035

1 81.3001 −.0034
2 81.3015 −.0020
3 81.3006 −.0029
4 81.3011 −.0024
5 81.2997 −.0038
6 81.3005 −.0030
7 81.3021 −.0014
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Using the computational setup of Section 3.1 on the Z ′ observations, we
calculate T + = 0. Thus, we reject H0 : θ = 81.3035 at the α = .078 level, since
T += 0 ≤ [28−t.039] = 2. The P -value for this symmetric test based on T + is
2 * psignrank(0, n=7, lower.tail=T)=.0156. This test is implemented
with wilcox.test. For this example,

wilcox.test(z, mu=81.3035)

results in the output

Wilcoxon signed rank test

data: z
V = 0, p-value = .01563
alternative hypothesis: true location is not equal to

81.3035

Note the use of the symbol V in place of T +
For the large-sample approximation, we see from (3.9) that

T ∗ = 0 − [7(8)/4]

[7(8)(15)/24]1/2
= −2.366.

Thus, the smallest significance level at which we could reject H0 by using a symmet-
ric test based on the normal approximation is .018. This means that both the exact test
and the large-sample approximation indicate the existence of strong evidence to reject
the findings of the earlier Ranger spacecraft that θ = 81.3035.

The ordered values of (Zi + Zj )/2 are W (1) ≤ · · · ≤ W (28): 81.2997, 81.2999,
81.3001, 81.3001, 81.30015, 81.3003, 81.30035, 81.3004, 81.3005, 81.30055,
81.3006, 81.3006, 81.3006, 81.3008, 81.3008, 81.30085, 81.3009, 81.3010, 81.30105,
81.3011, 81.3011, 81.3013, 81.3013, 81.30135, 81.3015, 81.3016, 81.3018, and
81.3021. If M = 7(8)/2 = 28, we see that M = 2k with k = 14. Thus, from (3.25),
we have

θ̂ = W (14) + W (15)

2
= 81.3008 + 81.3008

2
= 81.3008.

With n = 7 and α = .046, we find that tα/2 = t.023 = 27. Thus, C.046 = {7(8)/2} + 1 −
t.023 = 28 + 1 − 27 = 2.

From (3.27), it follows that

θL = W (2) = 81.2999 and θU = W (27) = 81.3018

so that our 95.4% confidence interval for θ is

(θL, θU) = (81.2999, 81.3018).

The above results may be produced in R through the function call

wilcox,test(z, mu=81.3035, exact=T, conf.int=T,
conf.level=l-.046)
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where z is a vector containing the seven measurements from Table 3.8. The above
function call extends the R output given in Example 3.8:

Wilcoxon signed rank test

data: z
V = 0, p-value = .01563
alternative hypothesis: true location is not equal to

81.3035
95.4 percent confidence interval:
81.2999 81.3018
sample estimates:
(pseudo)median
81.3008

Applying the large-sample approximation, we find from (3.29) that

C.046 ≈ [7(8)/4] − 1.996[7(8)(15)/24]1/2 ≈ 2,

resulting in the same interval.
It is important to comment that in applying the procedures based on the signed rank

statistic T + (3.3), we made the assumption that the population of average θ measurements
for each of the satellites was symmetric about θ . (For a test of this basic assumption,
see Section 3.9.) We also note that this set of data provides an example in which the
populations of the Z observations are probably not the same (see Assumption C2).

Comments

55. Assumptions. Note that Assumption Al for the paired replicates procedures based
on the signed rank statistic is not necessary for the one-sample data because these
data need not consist of differences for paired observations.

Properties

1. The properties of the one-sample procedures based on the signed rank statistic are
essentially the same as those of the corresponding paired replicates procedures. An
exception occurs in the efficiencies of the procedures and is due to the difference
in the type of data for the two problems. See Section 3.11 for a discussion of
the difference in efficiencies of the procedures of Sections 3.1–3.3 when they are
applied to single-sample problems.

Problems

87. The data in Table 3.9 are a subset of the data reported by Ijzermans (1970) from an investi-
gation on the susceptibility to corrosion of 18Cr 10Ni 2Mo stainless steel (i.e., stainless steel
containing 18% chromium, 10% nickel, and 2% molybdenum by weight).

Twelve specimens of steel were selected for use in the corrosion study. Although Ijzer-
mans’ experiment was directed toward corrosion, we are concerned here with the quality of
the steel from which the stainless steel samples were chosen. Table 3.9 gives the percentage
of chromium in the 12 samples used by Ijzermans.
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Test the hypothesis that the median percentage of chromium content (θ ) of the steel is
18% against the alternative that it is not 18%. Obtain a point estimate of θ and find a confidence
interval for θ with the confidence coefficient .936.

88. For the percentage of chromium data in Table 3.9, obtain a point estimate of θ from the
midpoint of the confidence interval calculated in Problem 87 (see Comment 23). Compare
with the point estimate obtained in Problem 87.

89. Compute θ̂ for the settling velocity data of Table 3.12 and compare with the value of θ̃ obtained
in Example 3.9.

90. Lamp (1976) studied the age distribution of a common mayfly species, Stenacron interpuncta-
tum, among various habitats in Big Darby Creek, Ohio. One of the measurements considered
was head width (in micrometer divisions, 1 division = .0345 mm); a subset of Lamp’s data
from the mayflies in habitat A is presented in Table 3.10.

Test the hypothesis that the median head width for mayflies from habitat A (θ ) is 22 μm
divisions against the alternative that it is greater than 22 μm. Obtain a point estimate of θ and
find a lower confidence bound (see Comment 21) for θ with the confidence coefficient .976.

91. The data in Table 3.11 are a subset of the data obtained by Poland et al. (1970) in an experi-
ment concerned with the effect of occupational exposure to DDT on human drug and steroid
metabolism. The DDT-exposed subjects were employees of the Montrose Chemical Corpora-
tion, who had been working in the DDT plant at Torrance, California, for more than 5 years.

Table 3.9 Percentage of Chromium
in the Stainless Steel Samples

Steel sample % of Cr

1 17.4
2 17.9
3 17.6
4 18.1
5 17.6
6 18.9
7 16.9
8 17.5
9 17.8

10 17.4
11 24.6
12 26.0

Source: A. B. Ijzermans (1970).

Table 3.10 Mayfly Head Width,
Habitat A (Micrometer Divisions)

Mayfly i Zi

1 36
2 31
3 30
4 27
5 20
6 33
7 27
8 18
9 19

10 28

Source: W. O. Lamp (1976).
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Table 3.11 6β-Hydroxycortisol Excretion
(μg/24 h)

Worker i Zi

1 254
2 171
3 345
4 134
5 190
6 447
7 106
8 173
9 449

10 198

Source: A. Poland, D. Smith, R. Kuntzman, M.
Jacobson, and A. H. Conney (1970).

Table 3.12 Settling Velocities at 22 ◦C

Sample i Zi , cm/s

1 12.9
2 13.7
3 14.5
4 13.3
5 12.8
6 13.8
7 13.4

Source: J. D. Smith (1969).

Table 3.13 Oxidant Content of Dew
Water, Port Burwell, 1960

Sample i Zi , ppm ozone

1 .32
2 .21
3 .28
4 .15
5 .08
6 .22
7 .17
8 .35
9 .20

10 .31
11 .17
12 .11

Source: A. F. W. Cole and M. Katz (1966).

All these individuals had received moderate to intense occupational exposure to DDT, and all
were in good health. One of the measures used in the study was the 24-h urinary excretion of
6β-hydroxycortisol.

Test the hypothesis that the median 6β-hydroxycortisol excretion rate for subjects with
occupational exposure to DDT similar to the workers in this study (θ ) is 175 μg/24 h against
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the alternative that it is greater than 175. Obtain a point estimate of θ and find a confidence
interval for θ with the confidence coefficient .916.

92. Consider the oxidant content of dew water data in Table 3.13. Use the computer software R

to test the hypothesis that the median oxidant content of dew water (θ) was .25 against the
alternative that it was less than .25. Also use R to obtain a point estimate of θ and find an upper
confidence bound (see Comment 21) for θ with the confidence coefficient .961. Compare with
the answers to Problem 94.

93. Consider the settling velocity data of Table 3.12. Use the computer software R to test the
hypothesis that the median settling velocity for the Middle Ground sand ridge (θ) was 14 cm/s
against the alternative that it was not equal to 14 cm/s. Also use R to obtain a point estimate
of θ and find a confidence interval for θ with the confidence coefficient .890. Compare with
the results obtained in Example 3.9.

3.8 PROCEDURES BASED ON THE SIGN STATISTIC
Data. We obtain n observations Z1, . . . , Zn .

Assumptions

D1. The Z ’s are mutually independent.

D2. Each Z comes from the same continuous population with median θ , so that
P(Zi > θ) = P(Zi > θ) = 1

2 , i = 1, . . . , n .

Procedures

To test H0 : θ = θ0, where θ0 is some specified number, we form the modified obser-
vations Z ′

i = Zi − θ0, for i = 1, . . . , n . Then we can apply any of the test procedures
of Section 3.4 to these modified Z ′ observations. (In the test of H0, we can weaken
Assumption D2 to D2′, namely, that each Z comes from a population, not necessarily
the same population, such that P(Zi < θ0) = P(Zi > θ0) = 1

2 , i = 1, . . . , n , when θ is
equal to the hypothesized value θ0.)

To obtain a point estimator of θ or a confidence interval for θ , we apply the pro-
cedures of Sections 3.5 and 3.6 directly to the Z observations without modification.

EXAMPLE 3.9 Sediment Settling Velocities.

The data in Table 3.12 are a subset of the data obtained by Smith (1969) in an experiment
investigating the geomorphology of the Middle Ground sand ridge, which is located in
Vineyard Sound, Massachusetts.

Seven samples were obtained from a particular portion of the ridge using a Van Veen
grab. One of the objective measurements reported by Smith was the settling velocity of
the sediment at 22 ◦C. For sediment from a sand-wave crest section of a sand ridge, the
settling velocity has a typical value of 14 cm/s. Table 3.12 gives the settling velocities
for the seven sediment samples collected from a particular portion of the Middle Ground
sand ridge.

We would like to detect whether the seven sediment samples came from a sand-wave
crest section of the Middle Ground sand ridge. Let θ denote the median settling velocity
for the population of sediment samples from this portion of Middle Ground. Then we are
interested in testing H0 : θ = 14 cm/s versus the alternative θ �= 14 cm/s, and we perform
test procedure (3.42). With α = .02, we see that b.02/2,1/2 = 7.
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Now, we create the modified Z ′ observations using the following setup.

i Zi Z ′
i = Zi − 14

1 12.9 −1.1
2 13.7 −0.3
3 14.5 0.5
4 13.3 −0.7
5 12.8 −1.2
6 13.8 −0.2
7 13.4 −0.6

Using the computational setup of Section 3.4 on the Z ′ observations, we calculate
B = 1. Thus, we accept H0 : θ = 14 cm/s at the α = .02 level, since [7 − b.02/2,1/2] =
0 < B < 7 = b.02/2,1/2. The above results may be reproduced in R through the function
call

SIGN.test(z, md=14)

where z is a vector containing the seven measurements from Table 3.12. This command
also provides the P -value and, optionally, confidence intervals. For the current data and
test, the P -value is .125. The partial R output of the above command is

One-sample Sign-Test

data: z
s = 1, p-value = .125
alternative hypothesis: true median is not equal to 14
sample estimates:
median of x
13.4

For the large-sample approximation, we see from (3.45) that

B∗ = 1 − ( 7
2

)( 7
4

)1/2 ≈ −1.89.

Thus the smallest significance level at which we could reject H0 using a symmetric test
based on the normal approximation is .0588.

The ordered Z observations are Z (1)≤ · · · ≤ Z (7):12.8, 12.9, 13.3, 13.4, 13.7, 13.8,
and 14.5. The sample size n is (2k + 1) with k = 3, therefore (3.59) implies that

θ̃ = Z (4) = 13.4.

With n = 7 and α = .1250, we find that bα/2,1/2 = b.0625,1/2 = 6. Thus, C.1250 = 7 + 1 −
6 = 2. From (3.63), it follows that

θL = Z (2) = 12.9 and θU = Z (6) = 13.8,

so that our 87.50% confidence interval for θ is

(θL, θU) = (12.9, 13.8).

The confidence interval for θ is found with

SIGN.test(z, md=14, conf.level=l-.125)
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This results in the following output being appended to the output give above:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI .8750 12.9 13.8
Interpolated CI .8750 12.9 13.8
Upper Achieved CI .9844 12.8 14.5

Note that the lower achieved interval is the desired interval for this α.
Applying the large-sample approximation, we find from (3.65) that

C.1250 ≈
(

7

2

)
− 1.534

(
7

4

)1/2

≈ 1,

and as Z (1) = 12.8 and Z (n+1−1) = Z (7) = 14.5, the approximate 87.50% confidence
interval for θ is (12.8, 14.5).

Comments

56. Assumptions. Note that Assumption B1 for the paired replicates procedures based
on the sign statistic is not necessary for the one-sample data because these data
do not consist of differences for paired observations.

57. Procedures for Population Quantiles Other than the Median. For one-sample
data, the theory underlying the sign statistic can also be used to construct
distribution-free test procedures for population quantiles other than the median.
Such test procedures are similar to procedures (3.40), (3.41), and (3.42), but
they have different P -values in the null hypothesis binomial distribution. For
example, let Z1, . . . , Zn be a random sample from a population II. Define μξ to
be the unknown ξ quantile of the population. (For convenience, let us assume
that μξ is unique.) Consider the problem of testing H0 : μξ = μ0 (specified)
versus the one-sided alternative μξ > μ0. Define B to be the number of Z ′s that
are greater than μ0. Under H0, B has the binomial distribution with parameters
n and p = 1 − ξ . Large values of B indicate that μξ > μ0, so an appropri-
ate one-sided α-level test is to reject H0 in favor of μξ > μ0 if B ≥ bα,1−ξ

and accept H0 if B < bα,1−ξ . One-sided tests against μξ < μ0 and two-sided
tests for alternatives μξ �= μ0 are constructed in a similar manner. The natural
point estimator of the parameter P(Z > μ0) is the statistic B/n . Approximate
confidence intervals for μξ can also be obtained (cf. Conover (1999)).

Let Z1, Z2, . . . , Zn be a random sample of size n from an unknown distribu-
tion. Let zp denote the pth quantile of the distribution. Hayter (2013) constructs
simultaneous confidence intervals for zpi , 1 ≤ i ≤ k , 0 < p1 < p2 < · · · < pk <

1. The intervals are of the form

zpi ε [Z(li ), Z(ui +1)], 1 ≤ i ≤ k ,

where Z(1), Z(2) . . . , Z(n) are the order statistics. The integers li and ui are suitably
chosen as described by Hayter to provide an overall simultaneous confidence
level of at least 1 − α, with the lower limits being −∞ if li = 0 and the upper
limits being ∞ if ui = n . See Hayter (2013) for his methodology and for specific
examples with α = .05 and n = 20, 50 and 80.
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Properties

1. The properties of the one-sample procedures based on the sign statistic are essen-
tially the same as those of the corresponding paired replicates procedures. An
exception occurs in the efficiencies of the procedures and is due to the difference
in the type of data for the two problems. See Section 3.11 for a discussion of the
difference in efficiencies for the procedures of Sections 3.4–3.6 when they are
applied to single-sample problems.

Problems

94. The data in Table 3.13 are a subset of the data obtained by Cole and Katz (1966). They were
investigating the relation between ozone concentrations and weather fleck damage to tobacco
crops in southern Ontario, Canada. One of the objective measurements reported was oxidant
content of dew water in parts per million (ppm) ozone. Twelve samples of dew were collected
during the period August 25–30, 1960, at Port Burwell, Ontario; the resulting oxidant contents
are given in Table 3.13.

Test the hypothesis that the median oxidant content (θ ) of dew water was .25 against the
alternative that it was less than .25. Obtain a point estimate of θ and find a confidence interval
for θ with the confidence coefficient .9614.

95. For the oxidant content data of Table 3.13, obtain a point estimate of θ from the midpoint of
the confidence interval calculated in Problem 94 (see Comment 52). Compare with θ̃ obtained
in Problem 94.

96. Compute θ̃ for the mass ratio data of Table 3.8 and compare with the value of θ̂ obtained in
Example 3.8.

97. Maxson (1977) studied the activity patterns of female ruffed grouse with broods. Using surveil-
lance techniques, he recorded the movements of seven female ruffed grouse with broods over
a fixed period. The percentage of time that these grouse were in active movement is recorded
in Table 3.14.

Test the hypothesis that the median percentage time active for female ruffed grouse
with broods (θ) is 50% against the alternative that it is greater than 50%. Obtain a point
estimate of θ and find a lower confidence bound (see Comment 49) for θ with the confidence
coefficient .99.

98. The data in Table 3.15 are a subset of the data obtained by Flores and Zohman (1970) in an
experiment investigating the effect of the method of bed-making on the oxygen consumption
for patients assigned to complete or modified bed rest. The subjects were inpatients of the
Rehabilitation Medicine Service, Montefiore Hospital and Medical Center, Bronx, New York.

Table 3.14 Ruffed Grouse, Percentage Time in
Active Movement

Grouse i Zi (% time active)

1 52.7
2 51.5
3 58.4
4 56.9
5 58.5
6 54.4
7 47.1

Source: S. J. Maxson (1977).
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Table 3.15 Net Oxygen Consumption (cc)

Patient i Zi

1 339
2 349
3 387
4 159
5 579
6 586
7 519
8 275

Source: A. M. Flores and L. R. Zohman (1970).

The measure used was net oxygen consumption for the patients during bed-making. The data
in Table 3.15 are the net oxygen consumptions (in cc) for the eight patients in the study during
a cardiac top-to-bottom bed-making procedure, consisting of moving the patient to a sitting
position and changing the sheets from the top to the bottom of the bed.

Test the hypothesis that the median oxygen consumption rate during cardiac bed-making
for patients assigned to complete or modified bed rest (θ ) is 350 cc against the alternative that
it is not 350 cc. Obtain a point estimate of θ and find a confidence interval for θ with the
confidence coefficient .95.

99. Consider the 6β-hydroxycortisol excretion data in Table 3.11. Use the computer software R

to test the hypothesis that the median 6β-hydroxycortisol excretion rate for subjects with
occupational exposure to DDT similar to the workers in the Poland et al. (1970) study (θ ) is
175 μg/24 h against the alternative that it is greater than 175 μg/24 h. Obtain a point estimate
of θ and find a confidence interval for θ with the confidence coefficient .925. Compare with
the answers to Problem 91.

100. Consider the mayfly head width data in Table 3.10. Let μ.75 be the 75th percentile for the
distribution of mayfly head widths in habitat A studied by Lamp (1976). Test the hypothesis
that μ.75 = 25 against the alternative that μ.75 is greater than 25. (See Comment 57.)

3.9 AN ASYMPTOTICALLY DISTRIBUTION-FREE TEST
OF SYMMETRY (RANDLES–FLIGNER– POLICELLO–
WOLFE, DAVIS–QUADE)

Data. We obtain n observations Z1, . . . , Zn .

Assumptions

E1. The Z ’s are mutually independent.

E2. Each Z comes from the same continuous population having distribution function
F and unknown median θ . This assumption requires that F (θ) = 1

2 .

Hypothesis

The null hypothesis of interest here is that the common underlying distribution for the
Z observations is symmetric about θ . This hypothesis of symmetry can be written as

H0 : [F (θ + b) + F (θ − b) = 1, for every b], (3.72)

and it is equivalent to the statement that P(0 < Z − θ < b) = P(−b < Z− θ < 0) for
all b > 0.
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Procedure

For each triple of observations (Zi , Zj , Zk ), 1 ≤ i < j < k ≤ n , obtain the value of

f ∗(Zi , Zj , Zk ) = [sign (Zi + Zj − 2Zk )] + sign (Zi + Zk − 2Zj )

+ sign (Zj + Zk − 2Zi )], (3.73)

where sign (t) = −1, 0, 1 as t <, =, > 0. (Note that there are n(n−1)(n − 2)/6 distinct
triples in the sample.) We say that (Zi , Zj , Zk ) forms a right triple (looks skewed to
the right) if f ∗(Zi , Zj , Zk ) = 1. (Note that being a right triple is equivalent to the middle
ordered observation in (Zi , Zj , Zk ) being closer to the smallest of the three observations
than it is to the largest of them.) Conversely, (Zi , Zj , Zk ) is said to be a left triple
(looks skewed to the left) if f ∗(Zi , Zj , Zk ) = −1 (i.e., the middle ordered observation in
(Zi , Zj , Zk ) is closer to the largest than to the smallest of the three observations). Finally,
when f ∗(Zi , Zj , Zk ) = 0, the triple (Zi , Zj , Zk ) is neither right nor left.

For the data Z1, . . . , Z n , set

T =
∑∑∑
1≤i<j<k≤n

f ∗(Zi ,Zj , Zk )

= {[number of right triples] − [number of left triples]}. (3.74)

For each fixed t = 1, . . . , n , let

Bt = {[number of right triples involving Zt ] − [number of left triples involving Zt ]}

=
⎡⎣ n−1∑

j=t+1

n∑
k=j+1

f ∗(Zt , Zj , Zk ) +
t−1∑
j=1

n∑
k=t+1

f ∗(Zj , Zt , Zk ) +
t−2∑
j=1

t−1∑
k=j+1

f ∗(Zj , Zk , Zt )

⎤⎦ .

(3.75)

For each fixed integer pair (s , t) such that 1 ≤ s < t ≤ n , define

Bs ,t = {[number of right triples involving Zs and Zt ]

− [number of left triples involving Zs and Zt ]}

=
⎡⎣s−1∑

j=1

f ∗(Zj , Zs , Zt ) +
t−1∑

j=s+1

f ∗(Zs , Zj , Zt ) +
n∑

j=t+1

f ∗(Zs , Zt , Zj )

⎤⎦ . (3.76)

Using the expressions for Bt (3.75), Bs ,t (3.76), and the triple statistic T (3.74), set

V = T

σ̂
, (3.77)
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where

σ̂ 2 =
[

(n − 3)(n − 4)

(n − 1)(n − 2)

n∑
t=1

B2
t + (n − 3)

(n − 4)

n−1∑
s=1

n∑
t=s+1

B2
s ,t

+n(n − 1)(n − 2)

6
−
{

1 − (n − 3)(n − 4)(n − 5)

n(n − 1)(n − 2)

}
T 2

]
. (3.78)

When H0 is true and the underlying distribution is symmetric, V has, as n tends to
infinity, an asymptotic N (0, 1) distribution. (In order for this normal approximation to
be reasonably effective, the sample size n should be at least 10. For further discussion
along these lines, see Comment 60.)

To test H0 (3.72), corresponding to symmetry of the underlying distribution, versus
the general alternative of asymmetry, corresponding to

H1 : [P(Z ≤ θ + b) + P(Z ≤ θ − b) �= 1 for at least one b], (3.79)

at the approximate (n large) α level of significance,

Reject H0 if |V | ≥ zα/2; otherwise do not reject. (3.80)

Ties

The test procedure in (3.80) is well-defined when zeros occur in the (Zi + Zj − 2Zk )

variables and further adjustments are not necessary.

EXAMPLE 3.10 Percentage Chromium in Stainless Steel.

In order to clearly illustrate the details of the rather involved calculations necessary to
obtain the value of the test statistic V (3.77), we consider the application of the test for
symmetry to the first five (i.e., n = 5) percentage chromium data values in Table 3.9,
namely, Z1 = 17.4, Z2 = 17.9, Z3 = 17.6, Z4 = 18.1, and Z5 = 17.6. (We emphasize that
this application is for illustrative purposes only. The test for symmetry is totally inef-
fective at detecting asymmetry for sample sizes as small as n = 5. See Comment 60 for
related discussion.) We must calculate n(n − 1)(n − 2)/6 = 5(4)(3)/6 = 10 values of
the triple indicator f ∗(Zi , Zj , Zk ) given by (3.73). We have that

f ∗(Z1, Z2, Z3) = [sign (17.4 + 17.9 − 2(17.6)) + sign (17.4 + 17.6

− 2(17.9)) + sign (17.9 + 17.6 − 2(17.4))]

= [sign (.1) + sign (−.8) + sign (.7)] = 1 − 1 + 1 = 1. (3.81)

Similarly, we obtain

f ∗(Z1, Z2, Z5) = f ∗(Z1, Z3, Z4) = f ∗(Z1, Z4, Z5)

= f ∗(Z2, Z3, Z5) = f ∗(Z3, Z4, Z5) = 1 (3.82)



3.9 An Asymptotically Distribution-Free Test of Symmetry 97

and

f ∗(Z1, Z2, Z4) = f ∗(Z1, Z3, Z5) = f ∗(Z2, Z3, Z4)

= f ∗(Z2, Z4, Z5) = −1. (3.83)

Hence, from (3.74) we have that

T =
∑∑∑
1≤i<j<k≤5

f ∗(Zi , Zj , Zk ) = 6 − 4 = 2. (3.84)

For the calculation of σ̂ 2, we first need to obtain the values of B1, . . . , B5 and Bs ,t

for 1 ≤ s < t ≤ 5. From (3.75), (3.81), (3.82), and (3.83), we have that

B1 =
4∑

j=2

5∑
k=j+1

f ∗(Z1, Zj , Zk ) = [1 − 1 + 1 + 1 − 1 + 1] = 2,

B2 =
⎡⎣ 4∑

j=3

5∑
k=j+1

f ∗(Z2, Zj , Zk ) +
5∑

k=3

f ∗(Z1, Z2, Zk )

⎤⎦
= [(−1 + 1 − 1) + (1 − 1 + 1)] = 0,

B3 =
⎡⎣f ∗(Z3, Z4, Z5) +

2∑
j=1

5∑
k=4

f ∗(Zj , Z3, Zk ) + f ∗(Z1, Z2, Z3)

⎤⎦
= [1 + (1 − 1 − 1 + 1) + 1] = 2,

B4 =
⎡⎣ 3∑

j=1

f ∗(Zj , Z4, Z5) +
2∑

j=1

3∑
k=j+1

f ∗(Zj , Zk , Z4)

⎤⎦
= [(1 − 1 + 1) + (−1 + 1 − 1)] = 0,

and

B5 =
3∑

j=1

4∑
k=j+1

f ∗(Zj ,Zk , Z5) = [1 − 1 + 1 + 1 − 1 + 1] = 2.

It follows that
5∑

t=1

B2
t = [22 + 02 + 22 + 02 + 22] = 12. (3.85)

Furthermore, using (3.76), (3.81), (3.82), and (3.83), we obtain

B1,2 =
5∑

j=3

f ∗(Z1, Z2, Zj ) = [1 − 1 + 1] = 1,
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B1,3 = f ∗(Z1, Z2, Z3) +
5∑

j=4

f ∗(Z1, Z3, Zj ) = [1 + (1 − 1)] = 1,

B1,4 =
3∑

j=2

f ∗(Z1, Zj , Z4) + f ∗(Z1, Z4, Z5) = [(−1 + 1) + 1] = 1,

B1,5 =
4∑

j=2

f ∗(Z1, Zj ,Z5) = [1 − 1 + 1] = 1,

B2,3 = f ∗(Z1, Z2, Z3) +
5∑

j=4

f ∗(Z2, Z3, Zj ) = [1 + (−1 + 1)] = 1,

B2,4 = f ∗(Z1, Z2, Z4) + f ∗(Z2, Z3, Z4) + f ∗(Z2, Z4, Z5)

= [−1 − 1 − 1] = −3,

B2,5 = f ∗(Z1, Z2, Z5) +
4∑

j=3

f ∗(Z2, Zj , Z5) = [1 + (1 − 1)] = 1,

B3,4 =
2∑

j=1

f ∗(Zj , Z3, Z4) + f ∗(Z3, Z4, Z5) = [(1 − 1) + 1] = 1,

B3,5 =
2∑

j=1

f ∗(Zj , Z3, Z5) + f ∗(Z3, Z4, Z5) = [(−1 + 1) + 1] = 1,

and

B4,5 =
3∑

j=1

f ∗(Zj , Z4, Z5) = [1 − 1 + 1] = 1.

These Bs ,t values yield

4∑
s=1

5∑
t=s+1

B2
s ,t = [12 + 12 + 12 + 12 + 12 + (−3)2 + 12 + 12 + 12 + 12]

= 18. (3.86)

Using the computational results from (3.84), (3.85), and (3.86) in the formula for σ̂ 2

(3.78), we obtain

σ̂ 2 =
[

2(1)

4(3)
(12) + 2

1
(18) + 5(4)(3)

6
−
{

1 − 2(1)(0)

5(4)(3)

}
(2)2
]

= [2 + 36 + 10 − 4] = 44.

Finally, from (3.77), we have

V = T

σ̂
= 2

(44)1/2 = .30.
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(We note that the R command RFPW(z) can also be used to obtain the value
of the test statistic V = T

σ̂
for the data z. For this example, we have n = 5,

z = (17.4, 17.9, 17.6, 18.1, 17.6), and RFPW(z) =.30.)
With significance level α = .05, we use the R command qnorm(.) to obtain the crit-

ical value z.025 = 1.96 from the fact that qnorm(1-.025) = qnorm(.975)=1.96.
Since |V | = .30 is less than 1.96, we cannot reject the null hypothesis of symmetry for
the underlying distribution. In fact, using the R command pnorm (.), we see that the
smallest significance level at which we could reject this distributional symmetry (i.e., the
two-sided P -value for these data) is

α = 2P (standard normal variable exceeds .30)

= 2(1 − pnorm(.30))

= 2(.3821) = .7642,

clearly indicating that there is virtually no evidence in this subset of the percentage
chromium data to indicate asymmetry in the underlying probability distribution. (Remem-
ber, however, that this subset was a sample of only five observations. These are simply
not sufficient data to detect asymmetry even if it were present. See Comment 60.)

Comments

58. Motivation. A right triple is indicative of skewness to the right and a left
triple is indicative of skewness to the left. The absolute value of the statistic T
(3.74) is the difference between the numbers of right and left triples among the
n(n − 1)(n − 2)/6 triples in the sample. When the null hypothesis H0 (3.72) of
symmetry is true, we would expect half of the sample triples to be right triples
and the other half to be left triples. Thus, when H0 is true, we would expect
T to be near zero. A substantial deviation in either direction from zero for T
is therefore indicative of asymmetry in the population and serves as a partial
motivation for the procedure defined in (3.80).

59. Asymptotic Distribution-Freeness. Asymptotically (i.e., for infinitely large sam-
ples), the true level of the test defined by (3.80) will agree with the nominal level.
Subject to Assumptions E1 and E2, this asymptotic result does not depend on the
underlying population of the Z ’s. More precisely, subject to Assumptions E1 and
E2, V has an asymptotic N (0, 1) distribution when H0 is true. Since this asymp-
totic distribution does not depend on the underlying population of the Z ’s, we say
that the test based on V is asymptotically distribution-free. Of course, in practice,
we do not have the luxury of infinite samples. Thus in any particular case, with
n large, we hope the level of a test based on V is close to the nominal level α but
it may not be exactly equal to a. The closeness of the approximation depends
on n and α and, for fixed α, the closeness generally improves as n increases.
In the case of the V test, the reader is warned that the question of how large
n should be, in order for the approximation to be good, is unanswered. Exact
null distribution critical values for V cannot be provided because, for a specified
value of n , the exact null distribution of V depends on the underlying Z popu-
lation; thus exact critical values would vary with the form of the Z population.
The procedure in (3.80) based on V , therefore, is not (strictly) distribution-free.
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60. Sample Size Requirement. As noted in Comment 59, the test of symmetry
described in (3.80) is not an exact distribution-free procedure. The nominal
significance level α is guaranteed only asymptotically, as the number of
observations, n , becomes infinite. In addition, symmetry is a rather complex
property of a probability distribution. It is, therefore, virtually impossible to
deny its presence without at least a moderate sample size. It is simply difficult
to “see” asymmetry in a small number of sample observations. Both Randles
et al. (1980) and Davis and Quade (1978) found this to be the case. They
concluded that the symmetry test (3.80) is not effective at detecting asymmetry
in the underlying population unless the sample size (n) is at least 20.

61. One-Sided Tests for Right-Skewness or Left-Skewness. The test procedure in
(3.80) is a two-sided test of symmetry against a very general class of asymmetric
alternatives. However, one-sided tests of symmetry versus specific classes of
right-skewed (or left-skewed) asymmetric alternatives can also be based on the
statistic V (3.77). In particular, a one-sided (approximate) level α test of H0

(3.72) (symmetry) versus the specific class of right-skewed alternatives satisfying

F (θ + b) ≤ [1 − F (θ − b)], for every b > 0,

with strict inequality for at least one positive b, (3.87)

is given by
Reject H0 if V ≥ zα; otherwise do not reject. (3.88)

Similarly, a one-sided (approximate) level α test of H0 (3.72) versus the
specific class of left-skewed alternatives satisfying

F (θ + b) ≥ [1 − F (θ − b)], for every b > 0,

with strict inequality for at least one positive b, (3.89)

is given by

Reject H0 if V ≤ −zα; otherwise do not reject. (3.90)

These one-sided hypothesis tests in (3.88) and (3.90) are asymptotically
distribution-free in the same sense as the two-sided test given by (3.80). See
Comment 59 for further discussion of this property.

62. Signed Rank Procedures. One of the critical assumptions permitting the
application of signed rank procedures to one-sample data is that of underlying
distributional symmetry (see Assumption C2 in Section 3.7). Under this sym-
metry assumption, procedures based on the signed rank statistic T + (3.3) for
one-sample data are used to make inferences about the median of a population.
Procedure (3.80), on the other hand, is used to test for the symmetry of a
population and is not directly concerned with the numerical value of the median
of the population. Therefore, in an appropriate one-sample location problem
we might wish to apply procedure (3.80) (to check the symmetry assumption)
prior to using the signed rank procedures of Section 3.7 for making inferences
about the actual value of the unknown median of the population. Procedure
(3.80) is appropriate, but the known median test mentioned in Comment 63
is inappropriate as a pretest in this situation. (For the paired-replicates data
in Sections 3.1–3.3, we remind the reader that the symmetry assumption
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is most often inherently satisfied through the nature of the pairing. See
Comment 2.)

63. Case of Known Median. For the situation when the median of the underlying
population is known to be a specified value θ0 (say), Gupta (1967) proposed a
procedure for testing the hypothesis of symmetry about θ0. However, situations
in which the median of the underlying population is known but the symmetry
of the distribution is not known are encountered considerably less frequently
than situations in which both the median and the symmetry are not known
(see Comment 62). (Gupta (1967) also proposed a test for symmetry when the
underlying median is not known. His procedure in this case is a competitor to
the test given by (3.80). He investigated the loss of efficiency that results from
using his test for symmetry with unknown median when his known median
procedure is applicable.)

64. Alternative Determination of Right and Left Triples. The original definitions of
right and left triples in this section involve the sign function f ∗(Zi , Zj , Zk ) in
(3.73). A more intuitive interpretation is associated with the comparison of two
common sample measures of location. For a triple (Zi , Zj , Zk ), let Z̄ = (Zi +
Zj + Zk )/3 and Z̃ = median {Zi , Zj , Zk } be the average and median, respectively,
for the observations in the triple. Then the triple (Zi , Zj , Zk ) is a right triple if
Z̄ > Z̃ and it is a left triple if Z̄ < Z̃ . (It is neither right nor left if Z̄ = Z̃ .)
This formulation provides a very natural interpretation of what it means to be a
right or left triple, as we know that the population mean is greater than or less
than the population median according to whether the population is skewed to the
right or left, respectively. If the population is symmetric, its mean and median
are equal and it would be a toss up as to which of Z̄ or Z̃ would be greater. This
should lead to about an equal number of right and left triples in the sample.

65. Consistent Estimator of the Asymptotic Variance of
√

nT . In order to insure that
V (3.77) is asymptotically distribution-free, nσ̂ 2 (3.78) is taken to be a consistent
estimator of the asymptotic null variance of n1/2T . The consistency of this
estimator nσ̂ 2 follows from a standard body of theory about a class of statistics
introduced by Hoeffding (1948a) and referred to as U -statistics. (For more details
about U -statistics and their application in the triples test, see Randles and Wolfe
(1979).) The asymptotic normality (and, thereby, the asymptotic distribution-
freeness) for V (3.77) follows from standard U -statistics theory and Slutsky’s
theorem (see, for example, Theorem A.3.13 in Randles and Wolfe (1979)).

66. Consistency of the V Test. Under Assumptions El and E2, the consistency of
the tests based on V depend on the parameter

p∗ = P(Z1 + Z2 − 2Z3 > 0) − 1

2
. (3.91)

The two-sided test defined by (3.80) is consistent against the class of asymmetric
alternatives corresponding to p∗ �= 0. We point out that while asymmetry of a
probability distribution implies that p∗ �= 0 for that distribution, the converse is
not necessarily true; that is, there are asymmetric probability distributions for
which p∗ = 0 and against which, therefore, the two-sided test (3.80) based on
V will not be consistent. Randles et al. (1980) note, however, that the class of
distributions with this property is quite small. (The one-sided tests discussed in
Comment 61 and defined by (3.88) and (3.90) are consistent against the classes
of asymmetric alternatives corresponding to p∗ > 0 and < 0, respectively.)
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Properties

1. Consistency. See Comment 66 and Randles et al. (1980).

2. Asymptotic Normality. See Randles and Wolfe (1979, pp. 99–101).

Problems

101. Consider the percentage chromium data in Table 3.9. Test the hypothesis of symmetry versus
general asymmetry. (Note that some of the necessary calculations for this test have been
completed in Example 3.10.)

102. Show that a triple (Z1, Z2, Z3) is a right triple if and only if Z̄ = (Z1 + Z2+Z3)/3 is greater
than Z̃ = median (Z1, Z2, Z3). (See also Comment 64.)

103. Consider the oxidant content data of Table 3.13. Test the hypothesis of symmetry versus
general asymmetry.

104. What effect does the addition of a number b to each of the Z observations have on the value
of the V (3.77) statistic? Comment on this as a desirable property for a test of population
symmetry.

105. What effect does the multiplication of each of the Z observations by a number b have on the
absolute value of the V (3.77) statistic? Comment on this as a desirable property for a test
of population symmetry versus general asymmetry.

106. Consider the settling velocity data in Table 3.12. Test the hypothesis of symmetry against the
alternative that the population of settling velocities is skewed to the right. (See Comment 61.)

107. Consider the Z differences for the beak-clapping data in Table 3.5. Test the hypothesis of
symmetry against the alternative that the population of beak-clapping differences is skewed
to the left. (See Comment 61.)

108. For n observations Z1, . . . , Zn , what is the maximum possible value for T (3.74)? What is the
minimum possible value for T ? For n = 4, construct examples where these extreme values
for T are achieved.

109. Consider the four observations Z1 = 2, Z2 = 2.4, Z3 = 3, and Z4 = 3.5. Compute the value of
T (3.74) for these data. Indicate how to change only one of the sample observations in such
a way that T achieves its maximum value (see Problem 108) on the altered data. Similarly,
indicate how to change only one of the sample observations in such a way that T achieves
its minimum value (see Problem 108) on the altered data.

BIVARIATE DATA

3.10 A DISTRIBUTION-FREE TEST FOR BIVARIATE
SYMMETRY (HOLLANDER)

Data. We obtain 2n observations, two observations on each of n subjects.

Subject i Xi Yi

1 X1 Y1

2 X2 Y2
...

...
...

n Xn Yn
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Assumptions

F1. The n bivariate observations (X1, Y1), . . . , (Xn , Yn) are mutually independent.

F2. Each (Xi , Yi ), i = 1, . . . , n , comes from the same bivariate population with joint
distribution function F (x , y).

Hypothesis

The null hypothesis of interest here is that the X and Y variables are exchangeable
or, equivalently, that there is no treatment effect (see Comment 67). This hypothesis of
exchangeability can be written as

H0 : [F (x , y) = F (y , x), for all (x , y)]. (3.92)

(Another way to state this exchangeability property is that the pairs (X , Y ) and (Y , X )

have the same joint bivariate distribution.)

Procedure

For each observation pair (Xi , Yi ), i = 1, . . . , n , let

ai = min(Xi , Yi ), bi = max(Xi , Yi ), (3.93)

where, without loss of generality, we take a1 ≤ a2 ≤ · · · ≤ an . (We may simply rela-
bel the n (X , Y ) pairs so that the a’s defined by (3.93) are increasing.) Define the n
(observed) r values r1, r2, . . . , rn by

ri =
{

1, if Xi = ai < bi = Yi

0, if Xi = bi ≥ ai = Yi .
(3.94)

That is, ri is defined to be 1 if Xi < Yi and 0 if Xi ≥ Yi . (Note that the designation
ri = 0 for those cases where Xi = Yi is purely arbitrary, because such a tied situation
makes no contribution to the overall test statistic to be defined by (3.98).)

Define the n2 values dij , for i , j = 1, . . . , n , by

dij =
{

1, if aj < bi ≤ bj and ai ≤ aj

0, otherwise.
(3.95)

For j = 1, . . . , n , set

Tj =
n∑

i=1

si dij , (3.96)

where dij is given by (3.95) and
si = 2r i − 1. (3.97)
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Let Aobs, to be read as “A observed,” be defined as

Aobs =
n∑

j=1

T 2
j

n2
. (3.98)

Now, in addition to our observed r configuration (r1, . . . , rn) defined by (3.94), there
are 2n − 1 other possible r configurations, corresponding to the cases in which each ri

can be either 0 or 1 and excluding the observed configuration (see Comment 68). For
each of these 2n − 1 additional r configurations, calculate the corresponding value of A
using (3.96) to (3.98). It is important to note that the d ’s defined by (3.95) remain the
same for each of these additional calculations of Aobs.

Let
A(1) ≤ A(2) ≤ · · · ≤ A(2n ) (3.99)

denote the 2n ordered values of the A’s. (Note that Aobs will be one of these ordered
A’s.) Set

m = 2n − [[2nα]], (3.100)

where [[2nα]] is the greatest integer less than or equal to 2nα. Define M1 to be the
number of ordered values A(1) ≤ · · · ≤ A(2n ) that are greater than A(m) and take M2 to be
the number of A(1) ≤ · · · ≤ A(2n ) values that are equal to A(m), where A(m) is determined
by (3.99) and (3.100).

To test H0 (3.92), corresponding to the exchangeability of the X and Y variables,
versus the general (two-sided) alternative that they are not exchangeable, corresponding
to

H1 : [F (x , y) �= F (y , x) for at least one(x , y)], (3.101)

at the exact α level of significance,

Reject H0 if Aobs > A(m); do not reject H0 if Aobs < A(m); (3.102)

and
If Aobs = A(m), make a randomized decision to reject H0

with probability q and to not reject H0 with probability 1 − q ,

where

q = 2nα − M1

M2
. (3.103)

The R program HollBivSym computes the statistic A given by (3.98). The R pro-
gram pHollBivSym returns A and the exact P -value for n ≤ 20. By default, if n > 20,
the program uses a Monte Carlo approximation with 100,000 samples. The user can
change both the number of Monte Carlo samples and the largest number of pairs for
which he or she is willing to wait for the exact calculation (see Example 3.11).

Koziol (1979) developed a large-sample approximation but Kepner and Randles
(1984) and Hilton and Gee (1997a) found that the large-sample approximation does not
perform well. Thus one can use pHollBivSym understanding that it is exact for n ≤ 20
but only approximate when n ≥ 21.
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Ties

No adjustment for ties is necessary. The calculation of Aobs (3.98) is well defined when
ties occur. As a result, the procedure (3.102) handles ties automatically.

EXAMPLE 3.11 Inulin Clearance in Kidney Transplants.

The data in Table 3.16 are a subset of the data obtained by Shelp et al. (1970) in a
study of renal transplants. Part of their study dealt with living related donor kidneys
and pertained to a comparison of clearance capacity of the donor and recipient after the
transplant was done. Table 3.16 gives inulin clearance values for seven recipients and
their corresponding donors. (We note that Assumption F2 may not be satisfied because
the subjects are not homogeneous. They differ in various factors that may be pertinent
to clearance, such as the basic disease, age when the transplant was performed, age of
the donor, and sex of the donor. In order to illustrate the bivariate symmetry test, we
neglect this heterogeneity of subjects.)

From (3.93) and Table 3.16, we find

a1 = 61.4, a2 = 63.3, a3 = 63.7, a4 = 67.1, a5 = 77.3,

a6 = 84.0, a7 = 88.1 (3.104)

b1 = 70.8, b2 = 89.2, b3 = 65.8, b4 = 88.0, b5 = 87.3,

b6 = 85.1, b7 = 105.0. (3.105)

Our observed r configuration is, from (3.94),

r1 = 1, r2 = 1, r3 = 1, r4 = 0, r5 = 1, r6 = 1, r7 = 0. (3.106)

Table 3.16 Inulin Clearance of Living Donors and Recipients of
Their Kidneys

Insulin clearance, ml/min
Patienta Recipient, Xi Donor, Yi

1′ 61.4 70.8
2′ 63.3 89.2
3′ 63.7 65.8
4′ 80.0 67.1
5′ 77.3 87.3
6′ 84.0 85.1
7′ 105.0 88.1

Source: W. D. Shelp, F. H. Bach, W. A. Kisken, M. Newton, R. E. Rieselbach,
and A. B. Weinstein (1970).
a The primes on the patient numbers indicate that our numbering is different
from that in the study. We have renumbered so that the a’s defined by (3.93)
are in the order a1 < a2 < a3 < a4 < a5 < a6 < a7.
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We next calculate the 72 = 49 d values using (3.95). We have

d11 = 1, d12 = 1, d13 = 0, d14 = 1, d15 = 0, d16 = 0, d17 = 0,

d21 = 0, d22 = 1, d23 = 0, d24 = 0, d25 = 0, d26 = 0, d27 = 1,

d31 = 0, d32 = 0, d33 = 1, d34 = 0, d35 = 0, d36 = 0, d37 = 0,

d41 = 0, d42 = 0, d43 = 0, d44 = 1, d45 = 1, d46 = 0, d47 = 0, (3.107)

d51 = 0, d52 = 0, d53 = 0, d54 = 0, d55 = 1, d56 = 0, d57 = 0,

d61 = 0, d62 = 0, d63 = 0, d64 = 0, d65 = 0, d66 = 1, d67 = 0,

d71 = 0, d72 = 0, d73 = 0, d74 = 0, d75 = 0, d76 = 0, d77 = 1.

From (3.97) and (3.106), we have

s1 = 1, s2 = 1, s3 = 1, s4 = −1, s5 = 1, s6 = 1, s7 = −1. (3.108)

From (3.96), (3.107), and (3.108) we obtain

T1 = d11s1 + d21s2 + d31s3 + d41s4 + d51s5 + d61s6 + d71s7

= 1(1) + 0(1) + 0(1) + 0(−1) + 0(1) + 0(1) + 0(−1) = 1,

T2 = d12s1 + d22s2 + d32s3 + d42s4 + d52s5 + d62s6 + d72s7

= 1(1) + 1(1) + 0(1) + 0(−1) + 0(1) + 0(1) + 0(−1) = 2,

T3 = d13s1 + d23s2 + d33s3 + d43s4 + d53s5 + d63s6 + d73s7

= 0(1) + 0(1) + 1(1) + 0(−1) + 0(1) + 0(1) + 0(−1) = 1,

T4 = d14s1 + d24s2 + d34s3 + d44s4 + d54s5 + d64s6 + d74s7

= 1(1) + 0(1) + 0(1) + 1(−1) + 0(1) + 0(1) + 0(−1) = 0,

T5 = d15s1 + d25s2 + d35s3 + d45s4 + d55s5 + d65s6 + d75s7

= 0(1) + 0(1) + 0(1) + 1(−1) + 1(1) + 0(1) + 0(−1) = 0,

T6 = d16s1 + d26s2 + d36s3 + d46s4 + d56s5 + d66s6 + d76s7

= 0(1) + 0(1) + 0(1) + 0(−1) + 0(1) + 1(1) + 0(−1) = 1,

T7 = d17s1 + d27s2 + d37s3 + d47s4 + d57s5 + d67s6 + d77s7

= 0(1) + 1(1) + 0(1) + 0(−1) + 0(1) + 0(1) + 1(−1) = 0.

(3.109)

Equation (3.98) then yields

Aobs = T 2
1 + T 2

2 + T 2
3 + T 2

4 + T 2
5 + T 2

6 + T 2
7

49

= 1 + 4 + 1 + 0 + 0 + 1 + 0

49
= 7

49
. (3.110)
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Now, to apply the exact procedure given by (3.102), we need to obtain the additional
27 − 1 = 127 A values, corresponding to the other 127 possible r configurations. The 128
possible r configurations, including r observed, which is given by (3.106), are displayed
in Table 3.17.

The parenthetical values to the right of each r configuration in Table 3.17 are the
corresponding values of 49A. These values are calculated in the same way we calculated
Aobs in (3.107) to (3.110). The s’s corresponding to (3.108) must be recalculated for
each r configuration for use in the Tj equations, but the d ’s remain the same for each
calculation. The ordered A’s defined by (3.99) are A(1) ≤ · · · ≤ A(128).

We now list the ordered values of 49A : 49A(1) = · · · = 49A(8) = 3, 49A(9) = · · · =
49A(40) = 7, 49A(41) = · · · = 49A(88) = 11, 49A(89) = · · · = 49A(120) = 15, 49A(121) =
· · · = 49A(128) = 19.

Let us illustrate the α = 8
128 = .0625 test. The value of m (3.100) is

m = 27 −
[[

27
(

8

128

)]]
= 128 − 8 = 120,

and thus A(m) = A(120) = ( 15
49

)
. We then have

M1 = number of A values greater than
15

49
= 8,

M2 = number of A values equal to
15

49
= 32,

and

q1 =
(

128

(
8

128

)
− 8

)
= 0.

Hence, procedure (3.102) reduces to, at the α = .0625 level,

Reject H0 if Aobs >
15

49
. (3.111)

As Aobs = 7
49 , we do not reject the hypothesis of bivariate symmetry at the .0625 level.

Furthermore, because there are 120 configurations (including the one corresponding to
Aobs) that yield a value greater than or equal to Aobs, the lowest level at which we can
reject using a nonrandomized test based on A is 120

128 = .9375.
To perform the A test using R let

x < -c(61.4, 63.3, 63.7, 80, 77.3, 84, 105)

y < -c(70.8, 89.2, 65.8, 67.1, 87.3, 85.1, 88.1)

Then HollBivSym(x, y) returns A = .1429 and pHollBivSym(x, y) returns A =
.1429 and the P -value .9375.

The command pHollBivSym(x, y, approx=7) signifies that the user is
willing to use the approximate P -value when n ≥ 7. Furthermore, the command
pHollBivSym(x, y, approx=7, n.mc=200,000) changes the default from
100,000 to 200,000 Monte Carlo samples.
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Table 3.17 The 128 Possible r Configurations and Corresponding Values of 49A

r1 r2 r3 r4 r5 r6 r7 (49A)

1 1 1 1 1 1 1 (19)
1 1 1 1 1 1 0 (15)
1 1 1 1 1 0 1 (19)
1 1 1 1 1 0 0 (15)
1 1 1 1 0 1 1 (15)
1 1 1 1 0 1 0 (11)
1 1 1 1 0 0 1 (15)
1 1 1 1 0 0 0 (11)
1 1 1 0 1 1 1 (11)
1 1 1 0 1 0 1 (11)
1 1 1 0 1 1 0a (7)
1 1 1 0 1 0 0 (7)
1 1 1 0 0 1 1 (15)
1 1 1 0 0 0 1 (15)
1 1 1 0 0 1 0 (11)
1 1 1 0 0 0 0 (11)
1 1 0 1 1 1 1 (19)
1 1 0 1 1 1 0 (15)
1 1 0 1 1 0 1 (19)
1 1 0 1 1 0 0 (15)
1 1 0 1 0 1 1 (15)
1 1 0 1 0 1 0 (11)
1 1 0 1 0 0 1 (15)
1 1 0 1 0 0 0 (11)
1 1 0 0 1 1 1 (11)
1 1 0 0 1 0 1 (11)
1 1 0 0 1 1 0 (7)
1 1 0 0 1 0 0 (7)
1 1 0 0 0 1 1 (15)
1 1 0 0 0 0 1 (15)
1 1 0 0 0 1 0 (11)
1 1 0 0 0 0 0 (11)
1 0 1 1 1 1 1 (11)
1 0 1 1 1 1 0 (15)
1 0 1 1 1 0 1 (11)
1 0 1 1 1 0 0 (15)
1 0 1 1 0 1 1 (7)
1 0 1 1 0 1 0 (11)
1 0 1 1 0 0 1 (7)
1 0 1 1 0 0 0 (11)
1 0 1 0 1 1 1 (3)
1 0 1 0 1 0 1 (3)
1 0 1 0 1 1 0 (7)
1 0 1 0 1 0 0 (7)
1 0 1 0 0 1 1 (7)
1 0 1 0 0 0 1 (7)
1 0 1 0 0 1 0 (11)
1 0 1 0 0 0 0 (11)
1 0 0 1 1 1 1 (11)
1 0 0 1 1 1 0 (15)
1 0 0 1 1 0 1 (11)
1 0 0 1 1 0 0 (15)
1 0 0 1 0 1 1 (7)
1 0 0 1 0 1 0 (11)
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Table 3.17 (Continued)

r1 r2 r3 r4 r5 r6 r7 (49A)

1 0 0 1 0 0 1 (7)
1 0 0 1 0 0 0 (11)
1 0 0 0 1 1 1 (3)
1 0 0 0 1 0 1 (3)
1 0 0 0 1 1 0 (7)
1 0 0 0 1 0 0 (7)
1 0 0 0 0 1 1 (7)
1 0 0 0 0 0 1 (7)
1 0 0 0 0 1 0 (11)
1 0 0 0 0 0 0 (11)
0 1 1 1 1 1 1 (11)
0 1 1 1 1 1 0 (7)
0 1 1 1 1 0 1 (11)
0 1 1 1 1 0 0 (7)
0 1 1 1 0 1 1 (7)
0 1 1 1 0 1 0 (3)
0 1 1 1 0 0 1 (7)
0 1 1 1 0 0 0 (3)
0 1 1 0 1 1 1 (11)
0 1 1 0 1 0 1 (11)
0 1 1 0 1 1 0 (7)
0 1 1 0 1 0 0 (7)
0 1 1 0 0 1 1 (15)
0 1 1 0 0 0 1 (15)
0 1 1 0 0 1 0 (11)
0 1 1 0 0 0 0 (11)
0 1 0 1 1 1 1 (11)
0 1 0 1 1 1 0 (7)
0 1 0 1 1 0 1 (11)
0 1 0 1 1 0 0 (7)
0 1 0 1 0 1 1 (7)
0 1 0 1 0 1 0 (3)
0 1 0 1 0 0 1 (7)
0 1 0 1 0 0 0 (3)
0 1 0 0 1 1 1 (11)
0 1 0 0 1 0 1 (11)
0 1 0 0 1 1 0 (7)
0 1 0 0 1 0 0 (7)
0 1 0 0 0 1 1 (15)
0 1 0 0 0 0 1 (15)
0 1 0 0 0 1 0 (11)
0 1 0 0 0 0 0 (11)
0 0 1 1 1 1 1 (11)
0 0 1 1 1 1 0 (15)
0 0 1 1 1 0 1 (11)
0 0 1 1 1 0 0 (15)
0 0 1 1 0 1 1 (7)
0 0 1 1 0 1 0 (11)
0 0 1 1 0 0 1 (7)
0 0 1 1 0 0 0 (11)
0 0 1 0 1 1 1 (11)
0 0 1 0 1 0 1 (11)
0 0 1 0 1 1 0 (15)
0 0 1 0 1 0 0 (15)
0 0 1 0 0 1 1 (15)

(continued)
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Table 3.17 (Continued)

r1 r2 r3 r4 r5 r6 r7 (49A)

0 0 1 0 0 0 1 (15)
0 0 1 0 0 1 0 (19)
0 0 1 0 0 0 0 (19)
0 0 0 1 1 1 1 (11)
0 0 0 1 1 1 0 (15)
0 0 0 1 1 0 1 (11)
0 0 0 1 1 0 0 (15)
0 0 0 1 0 1 1 (7)
0 0 0 1 0 1 0 (11)
0 0 0 1 0 0 1 (7)
0 0 0 1 0 0 0 (11)
0 0 0 0 1 1 1 (11)
0 0 0 0 1 0 1 (11)
0 0 0 0 1 1 0 (15)
0 0 0 0 1 0 0 (15)
0 0 0 0 0 1 1 (15)
0 0 0 0 0 0 1 (15)
0 0 0 0 0 1 0 (19)
0 0 0 0 0 0 0 (19)

a Note that (1,1,1,0,1,1,0) was our observed configuration (see (3.106)).

Comments

67. Motivation. The hypothesis H0 (3.92) is a natural one when an experimenter is
testing for a treatment effect and finds it convenient (or necessary) to have the
same subjects receive the treatment and also act as controls. Since (Xi , Yi ) then
represent two observations on the same subject, it is unrealistic to assume that
Xi and Yi are independent. The hypothesis of no treatment effect is precisely
H0. Terms used by various workers to describe H0 include exchangeability,
interchangeability, and bivariate symmetry. (See Hollander (1971).)

68. Conditional Nature of the Test. The hypothesis H0 implies that the r’s defined
by (3.94) are independent and identically distributed, each ri assuming values
1 and 0 with probabilities 1

2 and 1
2 , respectively. This leads to a conditional

distribution Pc that assigns probability
( 1

2

)n
to each of the A-values associated

with each of the possible 2n r configurations. (In the foregoing statement, we
implicitly distinguish between all A-values, although, as we see in Example 3.11,
two different r’s may yield the same value of A.) The test defined by (3.102)
investigates how large Aobs is with respect to this conditional distribution. For
further information on conditional tests of this nature (which are known as
permutation tests), see Hoeffding (1952), Box and Andersen (1955), Lehmann
(1959), and Scheffé (1959).

69. Alternative Computation of the d’s. In computing the d ’s defined by (3.95), life
can be made easier by observing:

(i) dij = 0 for all j , if ai = bi .
(ii) dii = 1 if ai �= bi , and dii = 0 if ai = bi .

(iii) When i > j , if ai �= aj , then dij = 0.
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70. Parametric Representation of the Null Hypothesis (H0). Consider (3.92) and
define

A∗(x , y) = P(X ≤ x and Y ≤ y) − P(X ≤ y and Y ≤ x). (3.112)

The hypothesis H0 (3.92) is true if and only if A∗(x , y) = 0 for all (x , y).
The statistic (A/n) estimates the parameter

�(F ) = EF {A∗(X ′, Y ′)}2, (3.113)

where (X ′, Y ′) is a random member from the underlying bivariate population
with distribution F . We may view A∗(x , y) as a measure of the deviation from
H0 at the point (x , y) and �(F ) (3.113) as the average value of the square of
this deviation.

71. Consistency: Comparison of A Test and Signed Rank Test. The A test was
designed by Hollander (1971) to detect a broad class of alternatives to the
hypothesis of no treatment effect. Thus, although the A test will detect
alternatives of the form associated with nonzero (θ �= 0) treatment effects as
discussed for paired replicates data in Section 3.1, it will also be sensitive to
differences in dispersion in the (marginal) X and Y populations, as well as to
more general deviations from H0. Of course, a price must be paid for this more
general type of protection; namely, we cannot expect the A test to have power
as good as that of, say, the Wilcoxon signed rank test (3.6) when the location
model of Section 3.1 is true, because the signed rank test is directed to location
changes. On the other hand, there are many alternatives to H0 for which the
signed rank test will have power remaining at α (for any sample size), whereas
the A test will have power tending to 1 (as n tends to infinity). In fact, under
mild conditions on the nature of the underlying bivariate population F , the A
test is consistent when H0 is false.

72. Other Nonparametric Tests. Other nonparametric tests for bivariate symmetry
are proposed in Kepner and Randles (1984). See Randles and Kepner (1984)
and Hilton and Gee (1997a) for power comparisons of A versus competitors
when F is bivariate normal and when F is bivariate exponential. See Hilton and
Gee (1997b) for an efficient algorithm for conducting the exact test based on A.

Properties

1. Consistency. The test defined by (3.102) is consistent against populations for
which the parameter �(F ) defined by (3.113) is positive. For conditions on F
insuring that �(F ) will be positive, see Hollander (1971).

2. Asymptotic Distribution. See Koziol (1979).

Problems

110. Cain, Mayer, and Jones (1970) have studied albumin and fibrinogen metabolism using the
carbonate-14C method to measure the synthetic rate of liver-produced plasma proteins before
and after a 13-day course of prednisolone. The eight subjects were patients with hepatocellular
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Table 3.18 Intravascular Albumin Pool Before and
After Prednisolone

Intravascular albumin pool (g)
Patient Before, Xi After, Yi

1 74.4 83.8
2 100.0 97.5
3 82.5 77.4
4 84.3 87.2
5 91.4 116.2
6 92.8 88.2
7 104.2 115.1
8 58.3 50.5

Source: G. D. Cain, G. Mayer, and E. A. Jones (1970).

disease as established by needle biopsy. Part of the study was related to changes in the
intravascular albumin pool. Table 3.18 is based on a subset of the Cain–Mayer–Jones data.

Use R to find the exact conditional P -value for these data achieved by the test based
on A.

111. Consider the intravascular albumin data in Table 3.18. Use R to determine an approximate
P -value for these data based on the A test. Compare with the exact conditional P -value for
these data as found in Problem 110.

112. Verify directly, or illustrate with a numerical example, remarks (i)–(iii) of Comment 69.

113. Consider the immunoreactive insulin blood-level data of Table 3.3. Use R to find the exact
conditional P -value obtained by the A test for those data.

114. Consider the immunoreactive insulin blood-level data of Table 3.3. Use R to find an approx-
imate P -value and compare it with the exact conditional P -value for these data as found in
Problem 113.

115. Calculate �(F ) for the bivariate population having joint distribution function F (x , y) = 0 for
x < 0, y < 0; = xy2 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1; = 1 for x > 1, y > 1.

3.11 EFFICIENCIES OF PAIRED REPLICATES
AND ONE-SAMPLE LOCATION PROCEDURES

Recall the normal theory one-sample t-test based on the statistic

V =
√

nZ̄

Sz
, (3.114)

where Z̄ =∑n
i=1 Zi /n and S 2

z =∑n
i=1 (Zi − Z̄ )

2
/(n − 1). The Pitman asymptotic rela-

tive efficiency of the one-sample test procedure (one- or two-sided) based on the signed
rank statistic T + (3.3) with respect to the corresponding normal theory test based on V
is

e(T +, V ) = 12σ 2
F

⎧⎨⎩
∞∫

−∞
f 2(u)du

⎫⎬⎭
2

, (3.115)

where σ 2
F is the variance of the common (continuous and symmetric) distribution F (·)

of Z1, . . . , Z n and f (·) is the probability density function corresponding to F (·). The
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parameter
∫∞
−∞ f 2(u)du is the area under the curve associated with f 2(·), the square of

the common probability density function.
The expression in (3.115) was first obtained by Pitman (1948) in the context of

hypothesis testing. Hodges and Lehmann (1963) showed that the same expression,
e(T +, V ), also pertains to the asymptotic relative efficiency of the point estimator θ̂

(see (3.23)) with respect to θ̄ = Z̄ . Finally, Lehmann (1963c) established that (3.115)
also provides the asymptotic relative efficiency of the confidence interval (or bound) for
θ derived from T + (see Section 3.3) relative to the corresponding confidence interval
(or bound) for θ associated with the one-sample t-test based on V (3.114).

Hodges and Lehmann (1956) demonstrated that within the class of continuous and
symmetric F (·), e(T +, V ) is always at least .864. Thus, in this class of distributions,
the most efficiency that can be lost when employing a procedure (test, point estimator,
or confidence interval/bound) based on T + instead of the corresponding normal theory
procedure associated with V (3.114) is about 14%. Even when F (·) is normal (the proper
setting for procedures based on V ), e(T +, V ) = .955 and there is only a minor loss (4.5%)
in efficiency from using a T +-based procedure rather than the optimal procedure based
on V . On the other hand, e(T +, V ) exceeds 1 for many populations and it can be infinite
(e.g., when F (·) is Cauchy). Some values of e(T +, V ) for selected F (·) are

Double
F : Normal Uniform Logistic Exponential Cauchy

e(T +, V ) : .955 1.000 1.097 1.500 ∞ (3.116)

The Pitman asymptotic relative efficiency of the one-sample test procedure (one- or
two-sided) based on the sign statistic B (3.39) with respect to the corresponding normal
theory test based on V (3.114) is

e(B , V ) = 4σ 2
F f 2(0), (3.117)

where σ 2
F is the variance and f (·) is the probability density function for the common

(continuous and symmetric) distribution F (·) of the Z observations.
Pitman (1948) established the general efficiency expression in (3.117) for the hypoth-

esis tests based on B and V , although Cochran (1937) had previously obtained the
particular efficiency value of .637 for the case of an underlying (F ) normal distribu-
tion. Hodges and Lehmann (1963) showed that the expression e(B , V ) also holds for
the asymptotic relative efficiency of the point estimator θ̃ (see (3.58)) with respect to
θ̄ = Z̄ , and the results in Lehmann (1963c) lead to the same conclusion for the confi-
dence interval (or bound) for θ based on B (see Section 3.6) relative to the corresponding
confidence interval (or bound) for θ associated with the one-sample t-test based on V
(3.114).

Hodges and Lehmann (1956) found that within a certain class of populations, e(B , V )

is always at least 1
3 and it can be infinite. Some values of e(B , V ) for selected F (·) are

Double
F : Normal Uniform Logistic Exponential Cauchy

e(B , V ) : .637 .333 .822 2.000 ∞ (3.118)

We note that for the paired replicates problem, each Z is actually a difference of two
observations. For the efficiency calculation, the common F in the parameters e(T +, V )
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and e(B , V ) is a distribution for a difference of two independent and identically dis-
tributed random variables. Since neither all continuous distributions nor all continuous
and unimodal distributions can be distributions for such a difference, the lower bounds
for e(T +, V ) and e(B , V ) for paired replicates data are obtained over smaller classes of
distributions than for the one-sample data. In particular, in the paired case, Hollander
(1967a) proved that the lower bound of .864 for e(T +, V ) is no longer attainable. Sim-
ilarly, Puri and Sen (1968) demonstrated that the lower bound of 1

3 for e(B , V ) is not
attainable in the paired case.

For the paired replicates data, the values of e(T +, V ) and e(B , V ) remain the same
as given in expressions (3.116) and (3.118), respectively, for an underlying (F ) normal,
logistic, double exponential, or Cauchy distribution. However, the uniform distribution
cannot be a distribution for a difference of two independent and identically distributed
random variables (see Puri and Sen (1968)).

We do not know of any results for the asymptotic efficiencies of the Randles et
al. test for distributional symmetry (Section 3.9) or Hollander’s bivariate symmetry test
(Section 3.10).



Chapter 4

The Two-Sample Location Problem

INTRODUCTION

In this chapter the data consist of two random samples, a sample from the control
population and an independent sample from the treatment population. On the basis of
these samples, we wish to investigate the presence of a treatment effect that results in a
shift of location. The basic hypothesis is that of no treatment effect; that is, the samples
can be thought of as a single sample from one population.

Section 4.1 presents a distribution-free rank sum test for the hypothesis of no treat-
ment effect; Section 4.2, a point estimator associated with the rank sum statistic; and
Section 4.3, a related distribution-free confidence interval that emanates from the rank
sum test. The basic model for Sections 4.1, 4.2 and 4.3 assumes the populations differ
only by a location shift. In Section 4.4 we present a test for location differences that
allows the population dispersions to differ. Section 4.5 considers the asymptotic relative
efficiencies for translation alternatives of the procedures based on the rank sum statistic
with respect to their normal theory counterparts based on sample means.

Data. We obtain N = m + n observations X1, . . . , Xm and Y1, . . . , Yn .

Assumptions

A1. The observations X1, . . . , Xm are a random sample from population 1; that is,
the X ’s are independent and identically distributed. The observations Y1, . . . , Yn

are a random sample from population 2; that is, the Y ’s are independent and
identically distributed.

A2. The X ’s and Y ’s are mutually independent. Thus, in addition to assumptions of
independence within each sample, we also assume independence between the
two samples.

A3. Populations 1 and 2 are continuous populations.

4.1 A DISTRIBUTION-FREE RANK SUM TEST
(WILCOXON, MANN AND WHITNEY)

Hypothesis

Let F be the distribution function corresponding to population 1 and let G be the distri-
bution function corresponding to population 2.

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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The null hypothesis is

H0 : F (t) = G(t), for every t . (4.1)

The null hypothesis asserts that the X variable and the Y variable have the same proba-
bility distribution, but the common distribution is not specified.

The alternative hypothesis in a two-sample location problem typically specifies that
Y tends to be larger (or smaller) than X . One model that is useful to describe such
alternatives is the translation model—also called the location-shift model. The location-
shift model is

G(t) = F (t − �), for every t . (4.2)

Model (4.2) says that population 2 is the same as population 1 except it is shifted by the
amount �. Another way of writing this is

Y
d= X + �

where the symbol
d= means “has the same distribution as.” The parameter � is called

the location shift. It is also known as the treatment effect. If X is a randomly selected
value from population 1, the control population, and Y is a randomly selected value from
population 2, the treatment population, then � is the expected effect due to the treatment.
If � is positive, it is the expected increase due to the treatment, and if � is negative, it
is the expected decrease due to the treatment. If the mean E (X ) of population 1 exists,
then letting E (Y ) denote the mean of population 2,

� = E (Y ) − E (X ),

the difference in population means. In terms of the location-shift model, the null hypoth-
esis H0 reduces to

H0 : � = 0,

the hypothesis that asserts the population means are equal or, equivalently, that the
treatment has no effect.

We note that although we find it convenient to use the “treatment” and “control” ter-
minology, many situations will arise in which we want to compare two random samples,
neither one of which can be described as a sample from a control population. The proce-
dures of this chapter are applicable even when there are no natural control or treatment
designations.

Procedure

To compute the Wilcoxon two-sample rank sum statistic W , order the combined sample
of N = m + n X -values and Y -values from least to greatest. Let S1 denote the rank of
Y1, . . . , Sn denote the rank of Yn in this joint ordering. W is the sum of the ranks assigned
to the Y -values. That is,

W =
n∑

j=1

Sj . (4.3)
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a. One-Sided Upper-Tail Test. To test

H0 : � = 0

versus
H1 : � > 0

at the α level of significance,

Reject H0 if W ≥ wα; otherwise do not reject, (4.4)

where the constant wα is chosen to make the type I error probability equal to α.
Values of wα can be obtained from the R functions pwilcox and qwilcox as
illustrated in Example 4.1 and Comment 3.

b. One-Sided Lower-Tail Test. To test

H0 : � = 0

versus
H2 : � < 0

at the α level of significance,

Reject H0 if W ≤ n(m + n + 1) − wα; otherwise do not reject. (4.5)

c. Two-Sided Test. To test
H0 : � = 0

versus
H3 : � �= 0

at the α level of significance,

Reject H0 if W ≥ wα/2 or if W ≤ n(m + n + 1) − wα/2; otherwise do not reject.
(4.6)

The two-sided procedure given by (4.6) is the two-sided symmetric test with
the α/2 probability in each tail of the distribution.

Large-Sample Approximation

The large-sample approximation is based on the asymptotic normality of W , suitably
standardized. We first need to know the mean and variance of W when the null hypothesis
is true. When H0 is true, the mean and variance of W are, respectively,

E0(W ) = n(m + n + 1)

2
(4.7)

var0(W ) = mn(m + n + 1)

12
. (4.8)

Comment 4 gives direct calculations of E0(W ) and var0(W ) in the special case where
m = 3, n = 2. Comment 6 gives general derivations.



118 Chapter 4 The Two-Sample Location Problem

The standardized version of W is

W ∗ = W − E0(W )

{var0(W )}1/2
= W − {n(m + n + 1)/2}

{mn(m + n + 1)/12}1/2
. (4.9)

When H0 is true, W ∗ has, as min(m , n) tends to infinity, an asymptotic N (0, 1) distribu-
tion.

The normal theory approximation to procedure (4.4) is

Reject H0 if W ∗ ≥ zα; otherwise do not reject. (4.10)

The normal theory approximation to procedure (4.5) is

Reject H0 if W ∗ ≤ −zα; otherwise do not reject. (4.11)

The normal theory approximation to procedure (4.6) is

Reject H0 if |W ∗| ≥ zα/2; otherwise do not reject. (4.12)

Ties

If there are ties, give tied observations the average of the ranks for which those observa-
tions are competing. After computing W using average ranks, use procedure (4.4), (4.5),
or (4.6). Now, however, the test is approximate rather than exact. (To get an exact test,
even in the tied case, see Comment 5.)

When applying the large-sample approximation, the following modification should
be made. What there are ties, the null mean of W is unaffected, but the null variance is
reduced to

var0(W ) = mn

12

[
m + n + 1 −

∑g
j=1(tj − 1)tj (tj + 1)

(m + n)(m + n − 1)

]
, (4.13)

or, equivalently,

var0(W ) = mn(N + 1)

12
−
⎧⎨⎩ mn

12N (N − 1)
·

g∑
j=1

(tj − 1)tj (tj + 1)

⎫⎬⎭ . (4.14)

In displays (4.13) and (4.14) g denotes the number of tied groups and tj is the size of
tied group j . Furthermore, an untied observation is considered to be a tied “group” of
size 1. In particular, if there are no tied observations, g = N , tj = 1 for j = 1, . . . , N ,
and thus each term of the form (tj − 1)(tj )(tj + 1) reduces to 0 and var0(W ) reduces to
mn(m + n + 1)/12, the null variance of W when there are no ties. Note also that the
term in curly braces on the right-hand side of display (4.14) measures the reductions in
the null variance due to the presence of ties.

To apply the large-sample approximation when ties are present, compute W using
average ranks and compute

W ∗ = W − [n(m + n + 1)/2]

{var0(W )}1/2
,

where var0(W ) is given by display (4.13). With this modified value of W ∗, approxima-
tions (4.10), (4.11), and (4.12) can be applied.
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The Mann–Whitney Statistic

Procedures (4.4), (4.5), and (4.6) based on the rank sum statistic can also be performed
using the Mann–Whitney statistic. Let

U =
m∑

i=1

n∑
j=1

φ(Xi , Yj ), (4.15)

where

φ(Xi , Yj ) =
{

1 if Xi < Yj ,

0 otherwise.

The statistic U counts the number of “X before Y ” predecessors. It is easy to show (see
Comment 7) that

W = U + n(n + 1)

2
. (4.16)

Thus tests based on W and U are equivalent. For example, the one-sided test given by
(4.4) that rejects if W ≥ wα is equivalent to the one-sided test that rejects if U ≥ uα where
uα is the upper α percentile point of the null distribution of U . From (4.16) it follows that
wα = uα + (n(n + 1)/2). Some textbooks and some software find it more convenient to
use U rather than W . For example, the R functions wilcox.test, pwilcox, and
qwilcox, illustrated in Comment 3 and Example 4.1, utilize

U ′ = U − mn , (4.17)

the number of Y before X predecessors. The possible values of U and U ′ are 0, 1, . . . ,
mn . Furthermore, when H0 is true, the mean and variance of U and U ′ are, respectively,

E0(U ) = E0(U
′) = mn/2 (4.18)

Var0(U ) = Var0(U
′) = mn(m + n + 1)/12. (4.19)

The null distributions of U and U ′ are symmetric about the mean mn/2.

EXAMPLE 4.1 Water Transfer in Placental Membrane.

The data in Table 4.1 are a portion of the data obtained by Lloyd et al. (1969). Among
other things, these authors investigated whether there is a difference in the transfer of
tritiated water (water containing tritium, a radioactive isotope of hydrogen) across the
tissue layers in the term human chorioamnion (a placental membrane) and in the human
chorioamnion between 3- and 6-months’ gestational age. The objective measure used
was the permeability constant Pd of the human chorioamnion to water. The tissues used
for the study were obtained within 5 min of delivery from the placentas of healthy,
uncomplicated pregnancies in the following two gestational age categories: (a) between
12 and 26 weeks following termination of pregnancy via abdominal hysterotomy (surgical
incision of the uterus) for psychiatric indications and (b) term, uncomplicated vaginal
deliveries. Tissues from 10 term pregnancies and five terminated pregnancies were used in
the experiment. Table 4.1 gives the average permeability constant (in units of 10−4 cm/s)
for six measurements on each of the 15 tissues in the study.
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Table 4.1 Tritiated Water Diffusion Across Human
Chorioamnion

Pd(10−4 cm/s)

At term 12–26 Weeks gestational age

0.80 1.15
0.83 0.88
1.89 0.90
1.04 0.74
1.45 1.21
1.38
1.91
1.64
0.73
1.46

Source: S.J. Lloyd, K.D. Garlid, R.C. Reba and A.E. Seeds
(1969).

In this example, the alternative of interest is greater permeability of the human
chorioamnion for the term pregnancy. Thus, if we let X correspond to the Pd values
of tissues from term pregnancies and Y to the Pd values of tissues from terminated
pregnancies, we perform a one-sided test designed to detect the alternative � < 0.

We list the combined sample in increasing order to facilitate the joint ranking. The
ranks are given in parentheses

X Y X X Y Y X Y
0.73 0.74 0.80 0.83 0.88 0.90 1.04 1.15
(1) (2) (3) (4) (5) (6) (7) (8)

Y X X X X X X
1.21 1.38 1.45 1.46 1.64 1.89 1.91
(9) (10) (11) (12) (13) (14) (15)

We see that the Y -ranks are 2, 5, 6, 8, and 9 and thus

W = 2 + 5 + 6 + 8 + 9 = 30.

From (4.16) we find

U = W − n(n + 1)/2 = 30 − 15 = 15.

The R function wilcox.test computes the value of U ′ = U − mn and gives the
P -value corresponding to U ′. In the R output, U ′ is denoted by W , which is not to be
confused with our use of W for the sum of the Y -ranks. Since U = 15, U ′ = 50 − 15 =
35, and that is the value (labeled W ) provided by wilcox.test. If you let

at.term<−c (.80, .83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, .73, 1.46),

gest.age<−c (1.15, .88, .90, .74, 1.21)

and perform wilcox.test (at.term, gest.age, alternative="t", conf.

int=T) you get the two-sided P -value .2544 and the one-sided P -value for the test of
� < 0 is .127. This one-sided P -value is also obtained using wilcox.test (x, y,

alt="g").
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The function wilcox.test not only performs the test but also provides the
Hodges–Lehmann estimator of Section 4.2 and the confidence interval of Section 4.3.

There is no need to perform the large-sample approximation because we have the
result for the exact test. Nevertheless, it is informative to see how close the P -value
given by the large-sample approximation is to the exact P -value. From (4.9) we find
W ∗ = −1.225 and the R function pnorm gives pnorm (−1.225) = .110. Thus, the one-
sided P -value based on the large-sample approximation is .110 compared to the exact
one-sided P -value of .127.

Both the exact test and the large-sample approximation indicate that there is no
sufficiently strong evidence to support the hypothesis that human chorioamnion is more
permeable to water transfer at term than at 12–26 weeks’ gestational age.

EXAMPLE 4.2 Alcohol Intakes.

Eriksen, Björnstad, and Götestam (1986) studied a social skills training program for alco-
holics. Twenty-four “alcohol-dependent” male inpatients at an alcohol treatment center
were randomly assigned to two groups. The control group patients were given a traditional
treatment program. The treatment group patients were given the traditional treatment pro-
gram plus a class in social skills training (SST). After being discharged from the program,
each patient reported—in 2-week intervals—the quantity of alcohol consumed, the num-
ber of days prior to his first drink, the number of sober days, the days worked, the times
admitted to an institution, and the nights slept at home. Reports were verified by other
sources (wives or family members). (Such data can be unreliable!) One patient in the SST
group, discovered to be an opiate addict, disappeared after discharge and submitted no
reports. The remaining 23 patients reported faithfully for a year. The results for alcohol
intake are given in Table 4.2. The ranks in the joint ranking of the 23 observations are
given in parentheses in Table 4.2 and we find that the sum of the SST ranks is W = 81.

To test H0 versus the alternative that the SST group tends to have lower alcohol
intakes, we need to test H0 : � = 0 versus H2 : � < 0. We will use the R function
wilcox.test. Let

x<−c(1042, 1617, 1180, 973, 1552, 1251, 1151, 1511, 728, 1079, 951, 1319)

y<−c(874, 389, 612, 798, 1152, 893, 541, 741, 1064, 862, 213)

Table 4.2 Alcohol Intake for 1 Year (Centiliter of Pure Alcohol)

Control SST

1042 (13) 874 (9)
1617 (23) 389 (2)
1180 (18) 612 (4)
973 (12) 798 (7)

1552 (22) 1152 (17)
1251 (19) 893 (10)
1151 (16) 541 (3)
1511 (21) 741 (6)
728 (5) 1064 (14)

1079 (15) 862 (8)
951 (11) 213 (1)

1319 (20)

Source: L. Eriksen, S. Björnstad, and K. G. Götestam (1986).
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The alternative that the SST groups tend to have lower alcohol intakes would be
reflected in small W values or, in terms of the function wilcox.test, which uses
U′ = U-mn, large values of U. Thus we use wilcox.test (x, y, alt="g"). This
yields a one-sided P -value of .00049. Thus there is strong evidence that the SST class
in combination with the traditional treatment program tends to lower alcohol intake in
alcoholics.

Comments

1. Motivation for the Test. When � is greater than 0, the Y -values will tend to be
larger than the X -values, and thus the Y -ranks will tend to be larger than the
X -ranks. Hence the value of W will tend to be large. This suggests rejecting
H0 in favor of � > 0 for large values of W and motivates procedure (4.4). An
analogous motivation leads to procedure (4.5).

The test based on W was introduced by Wilcoxon in 1945. An equivalent
test based on the number of X before Y occurrences in the jointly ordered sample
(see Comment 7) was proposed by Mann and Whitney (1947). Kruskal (1957)
gives a detailed history of the Wilcoxon statistic dating back to 1914.

2. Testing � is Equal to Some Specified Nonzero Value. Procedures (4.4), (4.5), and
(4.6) and the corresponding large-sample approximations given by procedures
(4.10), (4.11), and (4.12) are for testing if � is equal to zero. To test � = �0,
where �0 is some specified nonzero number, subtract �0 from each Y -value to
form a pseudosample, namely, Y ′

1 = Y1 − �0, Y ′
2 = Y2 − �0, . . . , Y ′

n = Yn − �0.
Then compute W as the sum of the Y ′-ranks in the joint ranking of the m X -
values and the n Y ′-values. Then procedures (4.4), (4.5), and (4.6), and their
corresponding large-sample approximations given by displays (4.10), (4.11), and
(4.12), can be applied as described earlier.

3. Derivation of the Distribution of W under H0 (No-Ties Case). Assume that the
underlying distribution under H0 is continuous so that ties have probability zero of
occurring. Then under H0, all

(
N
n

)
possible assignments for the Y -ranks are equally

likely, each having probability 1/
(

N
n

)
. For example, in the case of m = 3, n = 2,

the
(

5
2

) = 10 possible outcomes for the ranks attained by the two Y observations
and the corresponding values of W are given in the following table.

Y -ranks Probability W

1, 2 1
10 3

1, 3 1
10 4

1, 4 1
10 5

1, 5 1
10 6

2, 3 1
10 5

2, 4 1
10 6

2, 5 1
10 7

3, 4 1
10 7

3, 5 1
10 8

4, 5 1
10 9
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Thus, for example, under H0, the probability is 2
10 that W is equal to 5,

because W = 5 when either Y -rank configuration {1, 4} or Y -rank configuration
{2, 3} occurs, each has a 1

10 chance of occurring (and, of course, they cannot both
occur simultaneously). Simplifying, we obtain the null distribution.

Possible value of W Probability of value

3 .1
4 .1
5 .2
6 .2
7 .2
8 .1
9 .1

Thus, for example, under H0, the probability that W is greater than or equal
to 7 is

P0(W ≥ 7) = P0(W = 7) + P0(W = 8) + P0(W = 9)

= .2 + .1 + .1 = .4.

The R command pwilcox enumerates the null distribution of U ′, which is
the same as the null distribution of U . The command pwilcox(0:6,2,3,

lower.tail=T) gives the lower tail probabilities, that is, the cumulative dis-
tribution, corresponding to the six possible values of U . The output is .1, .2, .4,
.6, .8, .9, and 1.0; that is,

P(U < 0) = .1, P(U < 1) = .2, P(U < 2) = .4,

P(U < 3) = .6, P(U < 4) = .8, P(U < 5) = .9, P(U < 6) = 1.0.

Recall that W = U + n(n + 1)/2 = U + 3 to verify that this output agrees with
results for W .

Observe that we have derived the null distribution of W (and equivalently
U ) without specifying the common underlying continuous distribution of the two
populations. This is why the procedures based on W are called distribution-free
procedures. From the null distribution of W , we can determine the critical values
wα and control the probability α of falsely rejecting H0 when H0 is true, and this
error probability does not depend on the common underlying distribution.

4. Calculation of the Mean and Variance of W under the Null Hypothesis. In displays
(4.7) and (4.8), we presented formulas for the mean and variance of W when the
null hypothesis is true. In this comment, we illustrate a direct calculation of E0(W )

and var0(W ) in a particular case. We use the null distribution of W obtained in
Comment 3. (Later, in Comment 6, we present general derivations of E0(W ) and
var0(W ).) Comment 3 treated the case where m = 3, n = 2. The null mean of W ,
E0(W ), is obtained by multiplying each possible value of W with its probability
under H0. Thus

E0(W ) = 3(.1) + 4(.1) + 5(.2) + 6(.2) + 7(.2) + 8(.1) + 9(.1) = 6.
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This is in agreement with what we obtain using (4.7), namely,

E0(W ) = n(m + n + 1)

2
= 2(3 + 2 + 1)

2
= 6.

A check on the expression for var0(W ) is also easily performed. Recall

var0(W ) = E0(W
2) − {E0(W )}2,

where E0(W 2), the second moment of the distribution of W , is again obtained
by multiplying possible values (in this case, values of W 2) by the corresponding
probabilities under H0. We find

E0(W
2) = 9(.1) + 16(.1) + 25(.2) + 36(.2) + 49(.2) + 64(.1) + 81(.1) = 39.

Thus
var0(W ) = 39 − (6)2 = 3.

This agrees with what we obtain using (4.8) directly, namely,

var0(W ) = 3(2)(3 + 2 + 1)

12
= 3.

5. Exact Conditional Distribution of W with Ties. To get an exact test in the presence
of ties, we consider all

(
N
n

)
possible assignments of the N observations with n

observations serving as Y ’s and m observations serving as X ’s. For each such
assignment, we compute a value of W . Then we see how extreme our observed
value of W is in this “built-up” conditional distribution. To keep computations
simple, we illustrate for the n = 2, m = 3 data

Y X X Y X

.7 1.2 1.7 1.7 2.8

(1) (2) (3.5) (3.5) (5)

Note that the two tied 1.7 values get the average ranks 3.5. We then find that W ,
the sum of the Y -ranks, is

W = 1 + 3.5 = 4.5.

To assess the significance of W , we obtain a conditional distribution by consid-
ering the

(
5
2

) = 10 possible assignments of the observations

.7, 1.2, 1.7, 1.7, 2.8,

to serve as three X -values and two Y -values, or, equivalently, the 10 possible
assignments of the ranks

1, 2, 3.5, 3.5, 5,

to serve as three X -ranks and two Y -ranks. These 10 assignments and the corre-
sponding values of W are shown in the following table.
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Y -ranks Probability W

1, 2 1
10 3

1, 3.5 1
10 4.5

1, 3.5 1
10 4.5

1, 5 1
10 6

2, 3.5 1
10 5.5

2, 3.5 1
10 5.5

2, 5 1
10 7

3.5, 3.5 1
10 7

3.5, 5 1
10 8.5

3.5, 5 1
10 8.5

Then, for the tail probabilities, we obtain

P0(W ≥ 8.5) = 2
10 ,

P0(W ≥ 7) = 4
10 ,

P0(W ≥ 6) = 5
10 ,

P0(W ≥ 5.5) = 7
10 ,

P0(W ≥ 4.5) = 9
10 ,

P0(W ≥ 3) = 1.

This distribution is called the conditional distribution or the permutation distri-
bution of W . For the particular observed value W = 4.5, we see P0(W ≤ 4.5) =
1 − P0(W ≥ 5.5) = 3

10 , and such a value would not indicate a deviation from H0.
The R package coin contains the program wilcox test that computes

the P -value attained by referring W to its conditional distribution. For our
n = 2, m = 3 data, let x<-c(1.2, 1.7, 2.8) and y<-c(.7, 1.7). Then the com-
mand wilcox test(c(x,y)∼factor(c(0, 0, 0, 1, 1)), distri-
bution = "exact", alt = "g") yields the P -value .3 agreeing with
what we obtained by enumeration.

6. Large-Sample Approximation. The statistic W /n is the average of the Y -ranks.
All
(

N
n

)
possible outcomes of the Y -ranks are equally likely under H0. It follows

that the null distribution of W /n is the same as the distribution of the sample
mean of a random sample of size n drawn without replacement from the finite
population {1, 2, . . . , N } of the first N integers. Next, we use results (i) and
(ii), which are basic results from finite population theory concerning the mean
and variance of the distribution of the sample mean of a sample of size n drawn
without replacement from a finite population of N elements:

(i) The mean is equal to the mean μpop of the finite population.
(ii) The variance is equal to

σ 2
pop

n
× N − n

N − 1
,
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where σ 2
pop denotes the variance of the finite population and the factor (N −

n)/(N − 1) is the finite population correction factor.
For the finite population {1, 2, . . . , N }, direct calculations establish

(iii) μpop = 1 + 2 + · · · + N

N
= N + 1

2
,

(iv) σ 2
pop = 1

N
{12 + 22 + · · · + N 2} −

(
N + 1

2

)2

= (N − 1)(N + 1)

12
.

From (i), (ii), (iii), and (iv), we then obtain

E0

(
W

n

)
= N + 1

2
,

var0

(
W

n

)
= (N − 1)(N + 1)

12n
× N − n

N − 1
= m(N + 1)

12n
,

and it follows that

var0(W ) = mn(N + 1)

12
.

Asymptotic normality of

W ∗ = W − n(N +1)
2√

mn(N +1)
12

= W − E0(W )

σ0(W )

follows from standard theory for the mean of a sample from a finite population
(cf. Wilks, 1962, p. 268).

Asymptotic normality results are also obtainable under general alternatives.
See, for example, Lehmann’s (1951) extension of Hoeffding’s (1948a) U -statistic
theorem as stated and applied to the Wilcoxon statistic on pages 92–94 of Randles
and Wolfe (1979).

7. The Mann–Whitney U Statistic. For testing the hypothesis H0 : � = 0, Mann and
Whitney (1947) proposed the statistic U given by (4.15),

U =
m∑

i=1

n∑
j=1

φ(Xi , Yj ),

where

φ(Xi , Yj ) =
{

1, if Xi < Yj ,

0, otherwise.

The statistic U can be computed as follows. For each pair of values Xi and Yj ,
observe which is smaller. If the Xi value is smaller, score 1 for that pair; if the
Yj value is smaller, score 0 for that pair. Add up the 0’s and 1’s and call the sum
U . Mann and Whitney showed that, in the case of no ties,

W = U + n(n + 1)

2
. (4.20)

This implies that tests based on U are equivalent to tests based on W .
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To establish (4.20), write

W =
n∑

j=1

R(Yj ), (4.21)

where R(Yj ) denotes the rank of Yj in the joint ranking of the m + n X ’s and Y ’s.
Since the rank of Yj is equal to the number of X ’s less than Yj plus the number
of Y ’s less than Yj plus 1, write

R(Yj ) =
m∑

i=1

φ(Xi , Yj ) +
n∑

j ′=1

φ(Yj ′ , Yj ) + 1. (4.22)

Substituting (4.22) into (4.21) yields

W =
n∑

j=1

m∑
i=1

φ(Xi , Yj ) +
n∑

j=1

n∑
j ′=1

φ(Yj ′ , Yj ) + n. (4.23)

In (4.23), the first term on the right is U . The second term on the right is equal to
the number of Y ’s less than the smallest Y plus the number of Y ’s less than the
second smallest Y plus . . . plus the number of Y ’s less than the largest Y , that is
0 + 1 + · · · + n − 1. Thus

W = U + {1 + 2 + · · · + n − 1} + n = U + n(n + 1)

2
,

recalling that the sum of the first n integers is equal to n(n + 1)/2.
We illustrate the computation of U for the diffusion data of Table 4.1. The

first row below counts the number of X -values less than 1.15, the second row
counts the number of X -values less than .88, the third row the number of X -values
less than .90, the fourth row the number of X -values less than .74, and the fifth
row the number of X -values less than 1.21. The counts are given in brackets;
each count is simply the number of 1s in the particular row. U is then obtained
by summing the counts, which is equivalent to summing all the 1s.

U = 1 + 1 + 0 + 1 + 0 + 0 + 0 + 0 + 1 + 0 [4]

+ 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 [3]

+ 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 [3]

+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 [1]

+ 1 + 1 + 0 + 1 + 0 + 0 + 0 + 0 + 1 + 0 [4]

= 15.

Recall that in Example 4.1 we found W = 30. We could alternatively obtain W
by computing U as before and then using (4.16) to find

W = 15 + 5(6)

2
= 30.
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There is a generalization of (4.16) that holds when there are ties. If W is computed
using average ranks and U is computed via

U =
m∑

i=1

n∑
j=1

φ∗(Xi , Yj ),

where

φ∗(Xi , Yj ) =

⎧⎪⎪⎨⎪⎪⎩
1, if Xi < Yj

1
2 , if Xi = Yj

0, if Xi > Yj ,

then we still have W = U + n(n + 1)/2. In other words, when there are ties,
instead of scoring 1 if X is less than Y and 0 otherwise, compute U by scoring
1 if X is less than Y , 1

2 if X equals Y , and 0 if X is greater than Y .
Bohn and Wolfe (1992, 1994) developed statistical procedures based on an

analog of the Mann–Whitney statistic U for data obtained under the structure
of ranked-set sampling. This form of data collection is a preferable alternative
to simple random sampling when the actual sample measurements are costly
and/or difficult to obtain, but ranking a small set of items is relatively easy and
inexpensive.

Bohn (1996) provides a nice review of the general concept of ranked-set
sampling, as well as an overview of the related nonparametric literature in this
area of research. See Chapter 15 for more on ranked-set sampling.

8. Symmetry of the Distribution of W under the Null Hypothesis. When H0 is true,
the distribution of W is symmetric about its mean. This implies that when H0 is
true,

P(W ≤ x) = P(W ≥ n(m + n + 1) − x), (4.24)

for x = n(n + 1)/2, . . . , n(2m + n + 1)/2.
Equation (4.24) is useful for converting upper-tail probabilities to lower-tail

probabilities.

9. Some Power Results for the Wilcoxon Test. We consider the upper-tail α-level
test of H0 : � = 0 versus H1 : � > 0 given by procedure (4.4). Suppose that the
Y -population is the X -population shifted by an amount �, so that model (4.2)
holds. Recall that

Power = probability of rejecting H0, given that H0 is false.

Then for � values “near” the null hypothesis value of 0, the power can be
approximated as

Power
.= �(AF ), (4.25)

where �(AF ) is the area under a standard normal density to the left of the point

AF =
[(

12mn

N + 1

)1/2

· f ∗(0) · �

]
− zα , (4.26)
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where f ∗(0) is the density function, evaluated at 0, of the difference between
two independent values drawn from the X -population having distribution F (cf.
Lehmann (1975, p. 72, 403)).

When F is normal with standard deviation σ , f ∗(0) = 1/{2σ(π)1/2} and AF

reduces to

Anormal =
(√

3mn

(N + 1)π
· �

σ

)
− zα. (4.27)

Equation (4.27) shows that when F is normal, the approximate power depends
on � and σ only through their ratio �/σ . (This is also true of the exact power.)
Thus, for example, the power for the pair (� = 1, σ = 2) is the same as the
power for the pair (� = .5, σ = 1).

Exact power values for the one-sided Wilcoxon test for model (4.2) when
F is normal are given in Table B-1 of Milton (1970). Exact power values for
the two-sided Wilcoxon test when F is normal are given in Table B-2 of Milton
(1970). Milton’s tables give power values for all sample sizes 2 ≤ n ≤ m ≤ 7
that yield nontrivial results. If the sample of size m (or n) is from a normal
population with mean μ1 (or μ2), μ2 > μ1, and variance σ 2, the location-shift
alternative is defined in terms of d = {(μ2 − μ1)/σ } = �/σ . Values are given for
d = .2(.2)1.0, 1.5, 2.0, 3.0. Entries in the tables are ordered according to increas-
ing values of m + n , from 2 ≤ m + n ≤ 14. In Tables B-1 and B-2, the nominal
levels of α are α = .25, .10, .05, .025, .01, .005. The α’s appearing in the tables
are the attainable levels of significance nearest to but less than the nominal α’s.

We suppose, for purposes of illustration, that model (4.2) holds with the
underlying population F taken to be normal with variance σ 2 = 16 and the treat-
ment effect � = 4. Suppose further that we wish to determine, in a case where
m = 7 and n = 7, the power of the α = .082 test that rejects H0 if W ≥ 64 and
accepts H0 if W < 64. Substituting into (4.26) yields

Anormal =
{(√

3(7)(7)

(15)π
·
(

4

4

)
− 1.39

)}
= .376

and thus the power is approximately

Power
.= �(.376) = 1 − .35 = .65.

The exact power in this case is found from Table B-1 of Milton (1970) to be
.635.

10. Sample-Size Determination. The Wilcoxon rank sum test detects a more general
class of alternatives than the location-shift alternatives described by model (4.2).
The one-sided upper-tail test defined by procedure (4.4) is consistent (i.e., has
power tending to 1 as m , n tend to infinity) against those (F , G) populations for
which δ > 1

2 , where
δ = P(X < Y ). (4.28)

The parameter δ defined by (4.28) is the probability that an X randomly selected
from the distribution F will be less than an independent Y randomly selected
from the distribution G . We say more about δ in Comment 18.
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Noether (1987) shows how to determine an approximate total sample size N
so that the α-level one-sided test given by procedure (4.4) will have an approxi-
mate power 1 − β against an alternative value δ, where δ is greater than 1

2 . With
m = cN , the approximate value of N is

N
.= (zα + zβ)2

12c(1 − c)(δ − 1
2 )2

. (4.29)

We illustrate the use of (4.29). Suppose we are testing H0 and we desire to use
an upper-tail α = .05 test with power = 1 − β at least .90 against an alternative
where δ = P(X < Y ) = .7 (recall that under H0, δ = .5). For simplicity, we take
m = n so that c = .5. From (4.29) with zα = z.05 = 1.65, zβ = z.10 = 1.28, and
δ = .7, we find

N
.= (1.65 + 1.28)2

12(.5)(.5)(.7 − .5)2
= 71.54, m = n = N

2
= 35.8.

To be conservative take m = n = 36 rather than 35.

11. Robustness of Level. The significance level of the rank sum test is not preserved
if the two populations differ in dispersion or shape. This is also the case for
the normal theory two-sample t-test. For the effect of shape differences between
the populations on the level of the rank sum test and other two-sample location
procedures, see Pratt (1964). For a test of location differences that does not assume
equal dispersions, see Fligner and Policello (1981) and Section 4.4.

The level of the rank sum test is not preserved if dependencies exist among
the X ’s or among the Y ’s, or if the X ’s are not independent of the Y ’s. Recall
we have assumed that the NX ’s and Y ’s are mutually independent. For the effect
on the level when this assumption is relaxed so that dependencies are allowed,
see Serfling (1968); Hollander, Pledger, and Lin (1974) and Pettitt and Siskind
(1981).

There are other situations and designs in which the exact conditional random-
ization distribution of the Wilcoxon statistic is different than the usual Wilcoxon
null distribution, and different approaches need to be used to obtain a P -value for
comparing two treatments. See, for example, Efron’s (1971) biased coin design
and other restricted randomization designs considered by Hollander and Peña
(1988) and Mehta, Patel, and Wei (1988).

12. van der Waerden’s Test. The van der Waerden’s rank statistic is

c =
n∑

j=1

�−1
(

Sj

N + 1

)
, (4.30)

where, as before, S1, . . . , Sn are the Y -ranks and �−1(t) is the t th percentile of the
N (0, 1) distribution. That is, �−1(t) is the point such that the area under a N (0, 1)

curve to the left of �−1(t) is equal to t . The test of H0 based on c has competitive
efficiency properties versus the test based on W (see Section 4.5) and therefore is
a popular competitor of W . To test H0 : � = 0 versus H1 : � > 0, reject H0 for
significantly large values of c. To test H0 : � = 0 versus H1 : � < 0, reject H0

for significantly small values of c. To test H0 : � = 0 versus H3 : � �= 0, reject
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H0 for significantly large values of |c|. Under H0, the distribution of c is symmet-
ric about 0. Tables of critical values are given by van der Waerden and Nievergelt
(1956). The R package agricolae contains the program waerden.test, which
gives P -values for van der Waerden’s test. We illustrate using the water transfer
data of Table 4.1. Let at.term <-c(.80, .83, 1.89, 1.04, 1.45,

1.38, 1.91, 1.64, .73, 1.46) and gest.age <-c(1.15, .88,

.90, .74, 1.21). Then, the R command waerden.test (c(at.term,

gest.age), factor (c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

1, 1, 1)), group = T) yields the two-sided P -value .26, which is in agree-
ment with the one-sided P -value .13, which we illustrate in the following text.

The large-sample approximation is easy to perform. Under H0, c has mean
0 and variance

var0(c) =
mn
[∑N

i=1{�−1(i/(N + 1))}2
]

N (N − 1)
. (4.31)

The normal theory approximation to the distribution of

c∗ = c√
var0(c)

, (4.32)

treats c∗ as an approximate N (0, 1) random variable for large m , n .
We illustrate the large-sample test based on c∗ using the chorioamnion

permeability data of Table 4.1 for which m = 10, n = 5, and N = 15. From the
symmetry of the normal distribution, we note �−1(i/16) = −�−1((16 − i )/16)

for i = 1, . . . , 7, and �−1
( 8

16

) = �−1
( 1

2

) = 0. The values of �−1(i/16)

are found by using the R command qnorm(x, 0, 1). For example,
qnorm(1/16, 0, 1) = -1.534 and so forth.

i : 1 2 3 4 5 6 7 8
�−1(i/16) : −1.534 −1.150 −.887 −.674 −.489 −.319 −.157 0

i : 9 10 11 12 13 14 15
�−1(i/16) : .157 .319 .489 .674 .887 1.150 1.534.

Recall that the Y -ranks for the data of Table 4.1 are 2, 5, 6, 8, and 9. From
(4.30) we obtain

c = �−1 ( 2
16

)+ �−1 ( 5
16

)+ �−1 ( 6
16

)+ �−1( 8
16 ) + �−1 ( 9

16

)
= −1.150 − .489 − .319 + 0 + .157 = −1.80.

From (4.31) we obtain

var0(c) = 10(5)

15(14)
{(−1.534)2 + (−1.150)2 + (−.887)2 + (−.674)2

+ (−.489)2 + (−.319)2 + (−.157)2 + (.157)2 + (.319)2 + (.489)2

+ (.674)2 + (.887)2 + (1.150)2 + (1.534)2} = 2.52.
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Then from (4.28) we find

c∗ = −1.80√
2.52

= −1.14,

with a one-sided P -value of .13.
Note that the results based on c are very close to those based on W that we

found in Example 4.1. The large-sample approximation based on W gave a one-
sided P -value of .11 and the exact P -value from W is P = P0(W ≤ 30) = .127.

A test that is asymptotically equivalent to the test based on c is the
Fisher–Yates–Terry–Hoeffding (cf. Terry (1952), Hoeffding (1951)) test based on

c1 =
n∑

j=1

E (V (Sj )),

where V (1) < V (2) < · · · < V (N ) are the order statistics of a sample of size N
from a N (0, 1) distribution and S1, . . . , Sn are the Y -ranks. Values of E (V (i )),
i = 1, . . . , N for N ≤ 100 and some larger sizes are given in Harter (1961). Exact
tables can be found in Terry (1952) and Klotz (1964). Under H0, the distribution
of c1 is symmetric about 0. The large-sample normal theory approximation treats

c∗
1 = c1√

var0(c1)
,

as a N (0, 1) random variable under H0, where

var0(c1) = mn
∑N

i=1{E (V (i ))}2

N (N − 1)
.

Because E (V (i ))
.= �−1(i/(N + 1)), it can be shown that tests based on c and c1

are asymptotically equivalent. Both tests are often referred to as the normal scores
test. Exact power values for the one-sided and two-sided tests based on c1 for
model (4.2) when F is normal are given in Tables B-3 and B-4 of Milton (1970).

13. The Location-Shift Function. Model (4.2) implies that the treatment effect is
the same constant value � for each possible value of X . In some instances,
it will be more appropriate to use a model that allows the treatment effects to
be a function �(X ) that is allowed to vary with X . For example, the treatment
effect may be the expected increase (decrease) in systolic blood pressure due
to taking a tranquilizer. In such a case, �(X ) would depend on the patient’s
pretranquilizer blood pressure level X . This suggests the model

Y
d= X + �(X ), (4.33)

where Y is systolic blood pressure after taking the tranquilizer. Model (4.33)
was introduced by Lehmann (1975, p. 68). The function �(X ) is called the
location-shift function. Properties of �(X ) were developed by Doksum (1974)
and Switzer (1976). Doksum and Sievers (1976) derived simultaneous confidence
bands for �(X ). Hollander and Korwar (1982) and Wells and Tiwari (1989)
extended the results of Doksum (1974) and Switzer (1976) to a nonparametric
Bayesian framework. Lu, Wells, and Tiwari (1994) studied the location-shift
function when the two samples are censored.
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14. Consistency of the W Test. Under Assumptions A1–A3, the consistency of the
tests based on W depends on the parameter

δ∗ = P(X < Y ) − 1
2 .

The test procedures defined by (4.4), (4.5), and (4.6) are consistent against
the alternatives for which δ∗ >, <, and �= 0, respectively.

Properties

1. Consistency. For the location-shift model defined by (4.2), the tests defined by
(4.4), (4.5), and (4.6) are consistent against the alternatives � >, <, and �= 0,
respectively. Also, see Comment 14.

2. Asymptotic Normality. See Lehmann (1975, pp. 365–366).

3. Efficiency. See Section 4.5.

Problems

1. The data in Table 4.3 are a subset of the data obtained by Thomas and Simmons (1969),
who investigated the relation of sputum histamine levels to inhaled irritants or allergens. The
histamine content was reported in micrograms per gram of dry weight of sputum. The subjects
for this portion of the study consisted of 22 smokers; 9 of them were allergics and the remaining
13 were asymptomatic (nonallergic) individuals. Care was taken to avoid people who carried
out part of their daily work in an atmosphere of noxious gases or other respiratory toxicants.
Table 4.3 gives the ordered sputum histamine levels for the 22 individuals in the study.

Test the hypothesis of equal levels versus the alternative that allergic smokers have higher
sputum histamine levels than nonallergic smokers. Use the large-sample approximation.

2. Let W ′ be the sum of the ranks of the X observations. Verify directly, or illustrate using the
chorioamnion permeability data of Table 4.1, the equation W + W ′ = (m + n)(m + n + 1)/2.

Table 4.3 Sputum Histamine Levels (μg/g Dry
Weight Sputum)

Allergics Nonallergics

1651.0 48.1
1112.0 48.0
102.4 45.5
100.0 41.7
67.6 35.4
65.9 34.3
64.7 32.4
39.6 29.1
31.0 27.3

18.9
6.6
5.2
4.7

Source: H. V. Thomas and E. Simmons (1969).
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3. Suppose a sixth Y observation is added to the five Y ’s of Table 4.1, and assume that the value
W = 30 based on the original 10 X ’s and five Y ’s has already been calculated. How would
you calculate the new value of W ? Compare the method of reranking (to obtain new Y ranks)
with a method based on using the Mann–Whitney statistic U in conjunction with the equation
relating U and W (see Comment 7). Generalize the problem to different m and n values and
make the same comparison.

4. Let U ′ denote the number of (Xi , Yj ) pairs for which Xi > Yj . Assume that there are no X = Y
ties, and either establish directly or illustrate with the chorioamnion permeability data of Table
4.1, the relation U ′ + U = mn .

5. Molitor (1989) conducted a study to see if children who watched TV or film violence were
significantly more tolerant of “real-life” violent behavior than children who instead watched
a nonviolent TV show or film. Half of the 42 children in the study were shown violent TV
(an edited version of The Karate Kid), whereas the other half watched exciting but nonvi-
olent sports (highlights from the 1984 Summer Olympic Games). Each child was asked to
“watch over” two younger children, supposedly in the next room, via a television monitor.
Each child was instructed to go and get the research assistant (who stated she had to leave
for an emergency) if the younger children “got into trouble.” What each child witnessed,
while alone, was actually a videotaped sequence depicting two small children first play with
blocks and then progressively get more violent. That is, they called each other names, then
pushed each other, chased each other, fought, and then supposedly broke a video camera while
fighting.

Toleration of violence was measured by the time (in seconds) each child stayed in the
room after he or she witnessed the two younger children’s first act of violence. As soon as
the subject child left the room, the timing clock was stopped. Each child was subsequently
assured that an adult had entered the room where the two children were and that they were
not hurt and the video camera was not damaged.

Do the data of Table 4.4 indicate that the children who viewed the violent TV tend to
take longer to seek help (were more tolerant) than the children who viewed the nonviolent
sports-action TV? Use Wilcoxon’s W .

6. Assume that model (4.2) holds and that F is normal with variance 13. We have eight X
observations and eight Y observations. If we use the α = .065 test of H0 : � = 0 versus the
alternative � > 0, what is the approximate power of this test when the treatment effect is
� = 2?

7. For testing H0 : � = 0 versus the alternative � > 0, you choose to use a type I error probability
α = .10. Using equal sample sizes, what should the common value of m , n be to have power
at least .88 against an alternative where δ = .8?

8. We observe X1 = 2.1, X2 = 1.9, X3 = 2.6, X4 = 3.3, Y1 = 1.9, Y2 = 2.6, and Y3 = 3.7. What is
the conditional distribution of W obtained by considering all

(
7
3

)
possible choices of three data

points to serve as the Y -values? How extreme is the observed value of W in this conditional
distribution?

9. Apply van der Waerden’s test based on c to the data of Table 4.4. Compare your result with
that obtained in Problem 5 using Wilcoxon’s W .

10. Apply the test based on W to the plasma glucose data of Table 4.6.

11. Apply the test based on c to the plasmas glucose data of Table 4.6. Compare with the results
obtained in Problem 10.

12. Show directly, or illustrate via an example, that the maximum value of W is n(2m + n + 1)/2.
What is the minimum value of W ?

13. Suppose you reject H0 if W = n(2m + n + 1)/2 or if W = n(n + 1)/2, and you accept H0

otherwise. What is α for this test?

14. Suppose m = n = 7. Compare the exact α = .049 test of H0 : � = 0 versus H1 : � > 0
based on W with its corresponding test based on large-sample approximation. What is the
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Table 4.4 Seconds Spent in Room after Witnessing Violence

Olympics watchers Karate Kid watchers

12 37
44 39
34 30
14 7
9 13

19 139
156 45
23 25
13 16
11 146
47 94
26 16
14 23
33 1
15 290
62 169
5 62
8 145
0 36

154 20
146 13

Source: F. T. Molitor (1989).

exact α value of the test based on the large-sample approximation whose nominal α value
is .049?

15. Phadke et al. (2006) conducted a study to evaluate the soleus Hoffman reflex (H-reflex) for two
different leg loading conditions on people who have not experienced spinal cord injuries (non-
injured subjects) and people with incomplete spinal cord injuries (i-SCI subjects). The Phadke
et al. (2006) paper was selected by Erin Easton (2006) for her term project in M. Hollander’s
2006 Applied Nonparametric Statistics class. This problem is based on a portion of her anal-
ysis. Decreasing the load of weight on the leg is one way that patients with SCI undergo
rehabilitation in order to relearn how to stand and walk. Leg loading is controlled through a
body weight support (BWS) system that consists of a harness and a suspension system. The
typical setting for BWS during rehabilitation for post-SCI patients is 60% leg loading (or 40%
BWS). In the Phadke et al. study, 40% BWS was compared to 0% BWS (or 100% leg loading)
for both i-SCI and noninjured subjects in order to determine whether a change in percent BWS
changed the soleus H-reflex response for subjects in a standing position. Here, we focus on a
portion of their data comparing noninjured to i-SCI subjects for 40% BWS.

The soleus muscle is one of the muscles that run from the just below the back of the knee
down to the heel, and contraction of this muscle results in plantar flexion of the foot (pointing
of the toes) and in maintenance of the body in a stable standing position. The H-reflex is an
involuntary response (or flexion) in a muscle on electrical stimulation of the nerves that controls
contraction and relaxation of the muscle. The tibialis anterior muscle is a muscle that runs
along the front side of the tibia from below the knee to the top of the foot, and contraction of
this muscle results in the dorsal flexion of the foot (rise of the foot toward the front of the leg).
The tibial nerve runs along the entire back side of the leg, and it supplies electrical impulses to
the muscles of the back of the leg, including the soleus. An electromyogram (EMG) is used to
measure the electrical current in a muscle. The current is generally proportional to the activity
level of the muscle, where an inactive muscle has no current. The H/M ratio is the ratio of the
maximum soleus H-reflex to the maximum soleus muscle potential (or to a preset percentage
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Table 4.5 H/M Ratios of Noninjured Subjects and i-SCI Subjects For 40% BWS

Noninjured H/M ratios Ranks i-SCI H/M ratios Ranks

.19 4 .89 13

.14 3 .76 10

.02 1.5 .63 8

.44 6 .69 9

.37 5 .58 7
.79 11.5
.02 1.5
.79 11.5

Source: C.P. Phadke, S.S. Wu, F.J. Thompson, and A.L. Behrman (2006).

of the maximum potential). Table 4.5 gives the H/M ratios for five noninjured subjects and
eight i-SCI subjects for 40% BWS.

Is there evidence, for this 40% BWS situation, that the H/M ratios of the i-SCI subjects
are significantly larger than the H/M ratios of the noninjured subjects? What is the approximate
P -value achieved by your test.

16. Apply the exact conditional test based on W (see Comment 5) to the H/M ratios data of
Table 4.5. Compare your result with that obtained in Problem 15.

17. Apply van der Waerden’s test to the H/M ratios data of Table 4.5. Compare your result with
the results of Problems 15 and 16.

4.2 AN ESTIMATOR ASSOCIATED WITH WILCOXON’S
RANK SUM STATISTIC (HODGES–LEHMANN)

Procedure

To estimate � of model (4.2), form the mn differences Yj − Xi , for i = 1, . . . , m and
j = 1, . . . , n . The estimator of � associated with the Wilcoxon rank sum statistic (see
Comment 15) is

�̂ = median{(Yj − Xi ), i = 1, . . . , m; j = 1, . . . , n}. (4.34)

Let U (1) ≤ · · · ≤ U (mn) denote the ordered values of Yj − Xi . Then if mn is odd, say
mn = 2k + 1, we have k = (mn − 1)/2 and

�̂ = U (k+1), (4.35)

the value that occupies the position k + 1 in the list of the ordered Y − X differences.
If mn is even, say mn = 2k , then k = mn/2 and

�̂ = U (k) + U (k+1)

2
. (4.36)

That is, �̂ is the average of the two Y − X differences that occupy the positions k and
k + 1 in the ordered list of the mn differences.
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EXAMPLE 4.3 Continuation of Example 4.1.

To estimate � for the chorioamnion permeability data of Table 4.1, we obtain, using R,
the ordered values U (1) ≤ · · · ≤ U (50).

diff<-numeric(0); m<-10; n<-5
for (i in 1:m) for (j in 1:n) diff<-c(diff,
gest.age[j]-at.term[i])
diff<-sort(diff)

Then we obtain the 50 ordered Yj − Xi differences displayed in Table 4.6.
The value of mn = 50 is even and thus we use (4.36) with k = 50

2 = 25 to obtain

�̂ = U (25) + U (26)

2
= −.31 − .30

2
= −.305.

The estimate �̂ = −.305 is directly available from the R command wilcox.test.
If you perform wilcox.test(at.term, gest.age, alternative="t",

conf.int=T), the output .305 is the estimate for the difference in location
because wilcox.test computes the median of the X -Y differences. To get the
median of the Y -X differences perform wilcox.test(gest.age, at.term,

alternative="t", conf.int=T) and obtain �̂ = −.305.

Comments

15. Motivation for the Hodges–Lehmann Estimator. The Hodges–Lehmann (1963)
estimator �̂ defined by (4.34) is associated with the Wilcoxon rank sum test.
When � = 0, the distribution of the statistic W is symmetric about its mean
n(m + n + 1)/2 (see Comment 8). A reasonable estimator of � is the amount
�̂ (say) that should be subtracted from each Yj so that the value of W , when
applied to the aligned samples X1, . . . , Xm , Y1 − �̂, . . . , Yn − �̂, is n(m + n +
1)/2. Roughly speaking, we estimate � by the amount (�̂) that the Y sample
should be shifted in order that X1, . . . , Xm and Y1 − �̂, . . . , Yn − �̂ appear (when
“viewed” by the rank sum statistic W ) as two samples from the same population.
(Under Assumptions A1–A3, the variables X1, . . . , Xm and Y1 − �, . . . , Yn −
� can be taken as a single sample of size N = m + n from the underlying
population.)

The Hodges–Lehmann method can be applied to large classes of statistics,
which, for example, include van der Waerden’s V . The forms of the resulting

Table 4.6 Ordered Y -X Differences for the Chorioamnion Permeability Data

U (1) ≤ U (2) ≤ · · · ≤ U (50)

−1.17 −1.15 −1.03 −1.01 −1.01 −0.99 −0.90 −0.76 −0.76 −0.74 −0.74 −0.72
−0.71 −0.70 −0.68 −0.64 −0.58 −0.57 −0.56 −0.55 −0.50 −0.49 −0.48 −0.43
−0.31 −0.30 −0.30 −0.25 −0.24 −0.23 −0.17 −0.16 −0.14 −0.09 −0.06 0.01

0.05 0.07 0.08 0.10 0.11 0.15 0.17 0.17 0.32 0.35 0.38 0.41
0.42 0.48
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estimators are not always as convenient for calculation as in the case of �̂.
See Hodges and Lehmann (1983) for an expository article on their method. See
McKean and Ryan (1977) for an algorithm for computing �̂.

16. Sensitivity to Gross Errors. The estimator �̂ is less sensitive to gross errors than
its normal theory analog Y − X , the difference of the sample averages.

17. Competing Estimators. Observe that the estimator �̂ cannot be written as a
difference of a statistic based on the Y observations only and a second statistic
based on the X observations only. The classical estimator � = Y − X can be
written as such a difference. When the underlying population is symmetric,
Lehmann (1963a) proposed to estimate � by

̂̂� = θ̂2 − θ̂1,

where θ̂1(θ̂2) is the estimator (3.10) associated with the signed rank statistic
T + for estimating the location of the population corresponding to the X (Y )

observations. That is,

̂̂� = median

{
Yi + Yj

2
, 1 ≤ i ≤ j ≤ n

}
− median

{
Xi + Xj

2
, 1 ≤ i ≤ j ≤ m

}
.

(4.37)

The standard deviation of ̂̂� can be estimated by

σ̂̂̂� =
{(

θ2U − θ2L

2zα2/2

)2

+
(

θ1U − θ1L

2zα1/2

)2
}1/2

, (4.38)

where θ2U and θ2L are the upper and lower endpoints, respectively, of the
100(1 − α2)% confidence interval obtained from the method of Section 3.3 by
replacing the Z ’s of Section 3.3 by the n Y ’s of sample 2. Similarly, θ1U and
θ1L are the end points of the 100(1 − α1)% confidence interval obtained by
the method of Section 3.3 by replacing the Z ’s of Section 3.3 by the m X ’s of
sample 1.

An approximate confidence interval for �, with the confidence coefficient
1 − α, is

�� = ̂̂� − zα/2σ̂̂̂�, �u = ̂̂� + zα/2σ̂̂̂�. (4.39)

Lehmann (1963a), Høyland (1965), and Ramachandramurty (1966a) investigated
the properties of �, �̂ and ̂̂� for various deviations from the assumptions,
including asymmetry and non-location-differences between the populations.

Other competing estimators of �̂ include those in classes initiated by Ser-
fling (1984), Akritas (1986), and Serfling (1992).

18. The Probability That X Is Less Than Y. A quantity of interest in the two-sample
location problem is the parameter δ = P(X1 < Y1), where X1 is a random mem-
ber from the X population, Y1 is a random member from the Y population, and
X1 and Y1 are independent; that is, δ is the probability that a single Y obser-
vation will be larger than a single X observation. Pitman (1948) and Birnbaum
(1956) discussed a point estimator for δ given by δ̂ = U /mn , where U is the
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Mann–Whitney form of the rank sum statistic (see Comment 7). Upper bounds
for the variance of U , which are useful when using δ̂ as a point estimator for
δ, were obtained in terms of δ by van Dantzig (1951). See Birnbaum and Klose
(1957) for lower bounds. Lehmann (1951) showed that δ̂ is the uniform mini-
mum variance unbiased estimator of δ over the class of continuous populations
(also see Blyth (1950)). For the use of the sign statistic in obtaining a point
estimator for δ, see Saxena (1969).

Many statisticians, including Wolfe and Hogg (1971), have emphasized the
importance of natural parameters such as δ. Consider a medical application in
which X represents the response to treatment A and Y is the response to treatment
B . Let μ1, μ2 be the respective means of the X and Y populations and let σ

denote the (assumed) common standard deviation. Then, P(X < Y ) = .76 will
usually make more sense to a doctor than the statement {(μ2 − μ1)/σ } = 1. (If X
and Y are normal, and independent, with means μ1, μ2, and common standard
deviation σ , then {(μ2 − μ1)/σ } = 1 implies P(X < Y ) = .76.) Furthermore,
we are often more interested in the probability that X is less than Y than,
say, in the difference between the Y and X means. This is true in a good
deal of biological research, where, for example, a large liver is a large liver,
but how large it is makes little difference except possibly in comparison with
other livers (rather than in comparison with scale measurements on a weighing
machine). In situations such as these, the estimator δ̂ may be more useful than the
estimator �̂.

Birnbaum (1956) and Birnbaum and McCarty (1958) considered a
distribution-free upper confidence bound for δ = P(X1 < Y1) based on the
Mann–Whitney U when the underlying populations are continuous. Owen,
Craswell, and Hanson (1964) extended this to discrete populations, and Govin-
darajulu (1968) sharpened the Birnbaum–McCarty upper bound and provided
corresponding two-sided distribution-free confidence intervals for δ. Sen
(1967) and Govindarajulu (1968) considered asymptotically distribution-free
confidence bounds for δ based on consistent estimators of the variance of
the Mann–Whitney U . Saxena (1969) discussed distribution-free confidence
bounds for δ based on the sign statistic.

The parameter δ also arises naturally in reliability. Let X be the stress on a
component and let Y be the strength of the component. Then, δ = P(X < Y ) is
the probability that the component functions properly. Johnson (1988) surveys
many of the methods referenced in this comment in the context of reliability.
His focus is on getting estimators and confidence bounds on system reliability
in reliability systems such as “k out of n” systems.

Sen’s (1967) asymptotic nonparametric interval for δ is relatively easy to
obtain. Sen’s interval is based on the asymptotic normality of

√
n0(̂δ − δ)/s ,

where n0 = mn/(m + n). Here, s is a consistent estimator of the standard devi-
ation of

√
n0δ̂. Many estimators are available. A particularly convenient one

defined by Sen is

s2 = nS 2
10 + mS 2

01

m + n
,

where

S 2
10 =

∑m
i=1(Ri − i )2 − m(R − (m + 1)/2)2

(m − 1)n2
,
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and

S 2
01 =

∑n
j=1(Sj − j )2 − n(S − (n + 1)/2)2

(n − 1)m2
.

Here, Ri is the rank of X(i ) in the joint ranking of the X ’s and Y ’s, Sj is the
rank of Y(j ) in the joint ranking of the X ’s and Y ’s, R =∑m

i=1 Ri /m , and S =∑n
j=1 Sj /n . Recall that X(1) ≤ · · · ≤ X(m) are the ordered X -values and Y(1) ≤

· · · ≤ Y(n) are the ordered Y -values. The lower and upper end points, δL and δU,
respectively, of the asymptotic 1 − α confidence interval are

δS
L = δ̂ − zα/2

√
nS 2

10 + mS 2
01

mn
,

δS
U = δ̂ + zα/2

√
nS 2

10 + mS 2
01

mn
. (4.40)

A competing interval has been proposed by Halperin, Gilbert, and Lachin (1987).
Their 1 − α confidence interval is

δH
L = A − B

C
, δH

U = A + B

C
, (4.41)

where

A = δ̂ + γ z 2
α/2

2mn
,

B =
(

(̂δ(1 − δ̂)γ z 2
α/2 + γ 2z 4

α/2/4mn)

mn

)1/2

,

C = 1 + γ z 2
α/2

mn
,

γ = θ̂ (m + n − 2) + 1,

θ̂ =
K̂ + 2(n − 1)̂δ

m + n − 2
− δ̂2

δ̂(1 − δ̂)
,

K̂ =
{∑n

j=1 r1j (r1j − 1)

mn

}
+
{∑m

i=1 s1i (s1i − 1)

mn

}
− (n − 1),

where r1j is the number of X -observations that are less than Y(j ) and s1i is the
number of Y -observations that are less than X(i ).

Halperin, Gilbert, and Lachin point out that δH
U is less than 1 and δU

L is greater than
0. Also, θ̂ ≤ 1 if δ̂ is neither 0 nor 1, but for some samples, θ̂ may be less than 0. If that
happens, take θ̂ = 0 in the definition of γ . If δ̂ = 0 or 1, take θ̂ = 1.
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Halperin, Gilbert, and Lachin did simulations that indicated their method generally
yields coverage probabilities closer to the nominal 1 − α than does the Sen method.

For the chorioamnion permeability data of Table 4.1, the approximate 95% Sen
confidence interval for δ and the approximate 95% Halperin–Gilbert–Lachin confidence
interval for δ are as follows. Recall that for these data, we have found (see Comment 7)
U = 15 and thus

δ̂ = 15

10(5)
= .3.

For the Sen interval,
S 2

10 = .171, S 2
01 = .015.

From display (4.40), we obtain, with α = .05,

δS
L = .02, δS

U = .58.

For the Halperin–Gilbert–Lachin interval, with α = .05, we find

K̂ = −.76, θ̂ = .172, γ = 3.24

A = .424, B = .260, C = 1.25.

From display (4.41), we obtain

δH
L = .13, δH

U = .55.

Properties

1. Standard Deviation of �̂. For the asymptotic standard deviation of �̂, see Hodges
and Lehmann (1963), Lehmann (1963c), and Comment 21.

2. Asymptotic Normality. See Hodges and Lehmann (1963) and Ramachandramurty
(1966a).

3. Efficiency. See Hodges and Lehmann (1963), Høyland (1965), Ramachandramurty
(1966a), and Section 4.5.

Problems

18. Consider the data of Table 4.3. Associate the Y ’s (X ’s) with the allergies (nonallergies) and
estimate � of model (4.2) using �̂.

19. Again consider the data of Table 4.3. Estimate � using ̂̂� and compare your estimate with �̂

obtained in Problem 15.

20. Consider the data of Table 4.3. Use display (4.35) to obtain an approximate 95% confidence
interval for �.

21. Consider the data of Table 4.3. Estimate δ = P(X < Y ) and determine an approximate 90%
confidence interval for δ.

22. Consider the data of Table 4.4. Estimate � of model (4.2) using �̂.

23. Consider the data of Table 4.4. Estimate � using ̂̂� and compare your estimate with �̂ obtained
in Problem 22.



142 Chapter 4 The Two-Sample Location Problem

24. Consider the data of Table 4.4. Use Comment 17 to obtain an approximate 93% confidence
interval for �.

25. Consider the data of Table 4.4. Estimate δ = P(X < Y ) and determine (a) an approximate
93% confidence interval for δ using the Sen’s interval and (b) an approximate 93% confidence
interval for δ using the Halperin–Gilbert–Lachin interval.

26. Change the value 102.4, appearing in Table 4.3, to 1024. How does this affect the estimate of
� given by �̂? How does this affect the estimate of � given by � = Y − X ?

27. (a) What happens to �̂ when we add a number b to each of the m X values and a number c
to each of the n Y values? In particular, what happens when b = c?

(b) What happens to �̂ when we multiply each of the X and Y values by the same number
d?

28. Answer parts (a) and (b) of Problem 27 with �̂ replaced by ̂̂�.

29. Do you need to calculate the values of all mn Y − X differences in order to compute the value
of �̂? Explain.

4.3 A DISTRIBUTION-FREE CONFIDENCE INTERVAL
BASED ON WILCOXON’S RANK SUM TEST (MOSES)

Procedure

For a symmetric two-sided confidence interval for �, with the confidence coefficient
1 − α, let wα/2 denote the upper α/2 percentile point of the null distribution of W .

Then with

Cα = n(2m + n + 1)

2
+ 1 − wα/2, (4.42)

the 1 − α confidence interval (�L, �U) is given by

�L = U (Cα), �U = U (mn+1−Cα). (4.43)

That is, �L is the Y − X difference that occupies the position Cα in the list of the mn
ordered Y − X differences. The upper endpoint �U is the Y − X difference that occupies
the position mn + 1 − Cα in the ordered list. With �L and �U given by display (4.43),
we have, for all �,

P�(�L < � < �U) = 1 − α. (4.44)

The confidence interval is found directly from the R command wilcox.test. We
illustrate this in Example 4.4.

Large-Sample Approximation

For large m and n , the integer Cα may be approximated by

Cα ≈ mn

2
− zα/2

{
mn(m + n + 1)

12

}1/2

. (4.45)

In general, the value of the right-hand side of (4.45) is not an integer. To be conserva-
tive, take Cα to be the largest integer that is less than or equal to the right-hand side
of (4.45).
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EXAMPLE 4.4 Continuation of Example 4.1.

Consider the chorioamnion permeability data of Table 4.1. We will illustrate how
to obtain the 96% confidence interval for �. Use the R command wilcox.test

(gest.age, at.term, conf.int = T, conf.level = .96) to obtain the
interval �L = −.76, �U = .15. Note �L = U (9) and �U = U (42) (see Table 4.6).

Applying the large-sample approximation, we find from approximation (4.45)

C.04 ≈ 10(5)

2
− 2.05

{
10(5)(10 + 5 + 1)

12

}1/2

= 8.3.

Thus, with the large-sample approximation, we set C.04 equal to 8 and

�L = U (8) = −.76, �U = U (43) = .17.

Comments

19. Relationship of Confidence Interval to Test. The 1 − α confidence interval given
by display (4.43) can be obtained from the two-sided rank sum test as follows.
The confidence interval (�L, �U) consists of those �0 values for which the
two-sided α-level test of � = �0 (see Comment 2) accepts the hypothesis � =
�0. The confidence interval given by display (4.43) was defined by way of a
graphical procedure by Lincoln Moses in Chapter 18 of Walker and Lev (1953).
See Lehmann (1986, p. 90) for a general result relating confidence intervals
and acceptance regions of tests, and see Lehmann (1963c) for the specific result
involving the rank sum test.

20. Midpoint of Confidence Interval as an Estimator. The midpoint of the inter-
val (4.43), namely, {U (Cα) + U (mn+1−Cα)}/2, suggests itself as a reasonable
estimator of �. (Note that this actually yields a class of estimators depend-
ing on the value of α.) In general this midpoint is not the same as �̂. Lehmann
(1963b) has also dealt with an asymptotically distribution-free confidence inter-
val for � centered at �̂, and Lehmann (1963c) has shown that the asymptotically
distribution-free confidence interval has the same asymptotic behavior as the
distribution-free confidence interval given by display (4.43).

21. Estimating the Asymptotic Standard Deviation of �̂. The quantity (�U

− �L)/(2zα/2), where (�L, �U) is the 1 − α confidence interval defined by
display (4.43), provides us with a consistent estimator for the asymptotic
standard deviation of the point estimator �̂ (see Lehmann, (1963c)).

22. Confidence Bounds. To obtain a lower confidence bound for �, with the confi-
dence coefficient 1 − α, set

C ∗
α = n(2m + n + 1)

2
+ 1 − wα , (4.46)

where wα , the upper α percentile point of the null distribution of W . The 100(1 −
α)% lower confidence bound �∗

L for � that is associated with the one-sided
Wilcoxon rank sum test of H0 : � = 0 against the alternative H1 : � > 0 is
given by

(�∗
L, ∞) = (U (C ∗

α ), ∞), (4.47)
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where U (1) ≤ · · · ≤ U (mn) are the ordered values of Yj − Xi . With �∗
L defined

by (4.47), we have, for all �,

P�(�∗
L < � < ∞) = 1 − α. (4.48)

The 100(1 − α)% upper confidence bound �∗
U for � that is associated with

the one-sided Wilcoxon rank sum test of H0 : � = 0 against the alternative
H1 : � < 0 is given by

(−∞, �∗
U) = (−∞, U (mn+1−C ∗

α )), (4.49)

where C ∗
α is given by (4.46). With �∗

U defined by (4.49), we have, for all �,

P�(−∞ < � < �∗
U) = 1 − α. (4.50)

For large m , n , the integer C ∗
α can be approximated by

C ∗
α

∼= mn

2
− zα

{
mn(m + n + 1)

12

}1/2

. (4.51)

Properties

1. Under Assumptions A1–A3 and model (4.2), (4.44) holds. Hence, we can control
the coverage probability to be 1 − α without having more specific knowledge
about the form of the underlying distribution. Thus (�L, �U) is a distribution-free
confidence interval for � over a very large class of populations.

2. Efficiency. See Lehmann (1963c) and Section 4.5.

Problems

30. Refer to Problem 18 and obtain a confidence interval for � with approximate confidence
coefficient .95.

31. For the chorioamnion permeability data of Table 4.1, compute an estimate of � utilizing the
estimator defined in Comment 20. Compare with the value of �̂ obtained in Example 4.3.

32. Use the results of Example 4.4 to obtain an estimate for the asymptotic standard deviation of
�̂ (see Comment 21).

33. Consider the 1 − α confidence interval defined by display (4.43). Show that when α = 2/
(

N
n

)
,

�L = Y(1) − X(m), �U = Y(n) − X(1),

where X(1) ≤ . . . ≤ X(m) are the ordered X ’s and Y(1) ≤ · · · ≤ Y(n) are the ordered Y ’s.

34. Consider the 1 − α confidence interval defined by display (4.43). Show that when α = 4/
(

N
n

)
,

�L = minimum{Y(2) − X(m), Y(1) − X(m−1)},
�U = maximum{Y(n) − X(2), Y(n−1) − X(1)}.
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35. Consider the data of Table 4.3. Obtain an approximate 95% confidence interval for � using
the large-sample approximation of this section. Compare your result with the approximate 95%
confidence interval obtained in Problem 20.

36. Consider the data of Table 4.2 and obtain an approximate 90% confidence interval for � using
the large-sample approximation of this section.

37. Consider the data of Table 4.4 and obtain an approximation 99% confidence interval for �

using the large-sample approximation of this section.

38. Consider the case m = n = 8 and compare the exact 91.8% confidence interval given by
display (4.43) with that obtained by the large-sample approximation.

39. Consider the case m = n = 10 and compare the exact 91% confidence interval given by display
(4.43) with that obtained by the large-sample approximation.

40. Consider the data of Table 4.5 and obtain a 95% confidence interval for �.

4.4 A ROBUST RANK TEST FOR THE BEHRENS–FISHER
PROBLEM (FLIGNER–POLICELLO)

Hypothesis

In this section we introduce new assumptions. Let X1, . . . , Xm and Y1, . . . , Yn be inde-
pendent random samples from continuous distributions that are symmetric about the
population medians θx and θy , respectively. Note that we do not require the X and Y
populations to have the same distributional form nor do we assume that the variances of
the two populations are equal. We are interested in testing H ′

0 : θx = θy versus θx < θy

[or θx > θy or θx �= θy ]. This problem of testing H ′
0 : θx = θy without assuming equal

variances is often referred to as the Behrens–Fisher problem.

Procedure

Let
Pi = [number of sample Y observations less than Xi ], (4.52)

for i = 1, . . . , m . Similarly, set

Qj = [number of sample X observations less than Yj ], (4.53)

for j = 1, . . . , n . We call Pi and Qj the placements of Xi and Yj , respectively. Compute

P = 1

m

m∑
i=1

Pi = average X sample placement, (4.54)

and

Q = 1

n

n∑
j=1

Qj = average Y sample placement. (4.55)

Let

V1 =
m∑

i=1

(Pi − P)2 and V2 =
n∑

j=1

(Qj − Q)2, (4.56)
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and set

Û =
∑n

j=1 Qj −∑m
i=1 Pi

2(V1 + V2 + P Q)1/2
. (4.57)

a. One-Sided Upper-Tail Test. For a one-sided test of H ′
0 : θx = θy versus the one-

sided alternative H ′
1 : θy > θx at the approximate α level of significance,

Reject H ′
0 if Û ≥ uα; otherwise do not reject, (4.58)

where uα is a constant satisfying P0(Û ≥ uα) ≈ α.

b. One-Sided Lower-Tail Test. For a one-sided test of H ′
0 : θx = θy versus the alter-

native H ′
2 : θy < θx at the approximate α level of significance, we

Reject H ′
0 if Û ≤ −uα; otherwise do not reject. (4.59)

c. Two-Sided Test. For a two-sided test of H ′
0 : θx = θy versus the alternative H ′

3 :
θy �= θx at the approximate α level of significance, we

Reject H ′
0 if |Û | ≥ uα/2; otherwise do not reject. (4.60)

Any uα can be computed exactly or estimated using Monte Carlo simulation for large m
and n using the R command cFligPoli.

Large-Sample Approximation

When H ′
0 : θx = θy is true, the statistic Û has an asymptotic (min(m , n) tending to infinity)

N (0, 1) distribution. Thus the normal theory approximations to procedures (4.58), (4.59),
and (4.60) are obtained by replacing uα and uα/2 by zα and zα/2, respectively.

The R function pFligPoli (with method="Monte carlo") performs a Monte
Carlo approximation to the P-value of the statistic Û and the R function pFligPoli

(with method="Asymptotic") performs the large-sample approximation.

Ties

If there are ties among the N sample observations, replace the placement formulas (4.52)
and (4.53) by

Pi =
{

[number of sample Y observations less than Xi ]

+ 1
2 [number of sample Y observations equal to Xi ]

}
(4.61)

and

Qj =
{

[number of sample X observations less than Yj ]

+ 1
2 [number of sample X observations equal to Yj ]

}
, (4.62)

respectively.
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Table 4.7 Plasma Glucose Values

Healthy geese Lead-poisoned geese

297 293
340 291
325 289
227 430
277 510
337 353
250 318
290

Source: G. L. March, T. M. John, B. A. McKeown, L. Sileo
and J. C. George (1976).

EXAMPLE 4.5 Plasma Glucose in Geese.

March et al. (1976) were interested in, among other things, examining the differences
between healthy (normal) and lead-poisoned Canadian geese. In particular, one of the
measures examined was plasma glucose (mg/100 ml plasma). The data they obtained for
eight healthy and seven lead-poisoned geese are given in Table 4.7.

Labeling the lead-poisoned geese as the Y -sample (because there are fewer lead-
poisoned observations), the authors were interested in testing H ′

0 : θx = θy versus H ′
1 :

θy > θx ; that is, do lead-poisoned Canadian geese tend to have larger plasma glucose
values than healthy geese? Computing the placements for the X and Y observations,
we obtain

P1 = 3, P2 = 4, P3 = 4, P4 = 0, P5 = 0, P6 = 4, P7 = 0, P8 = 1

and

Q1 = 4, Q2 = 4, Q3 = 3, Q4 = 8, Q5 = 8, Q6 = 8, Q7 = 5.

Thus,

P = 3 + 4 + 4 + 0 + 0 + 4 + 0 + 1

8
= 2

and

Q = 4 + 4 + 3 + 8 + 8 + 8 + 5

7
= 40

7
.

Using the values in (4.56), we have

V1 = [(3 − 2)2 + (4 − 2)2 + (4 − 2)2 + (0 − 2)2 + (0 − 2)2

+ (4 − 2)2 + (0 − 2)2 + (1 − 2)2] = 26
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and

V2 =
[(

4 − 40

7

)2

+
(

4 − 40

7

)2

+
(

3 − 40

7

)2

+
(

8 − 40

7

)2

+
(

8 − 40

7

)2

+
(

8 − 40

7

)2

+
(

5 − 40

7

)2
]

= 206

7
.

Combining these quantities, we obtain

Û = (40 − 16)

2
[
26 + 206

7 + 2
( 40

7

)]1/2 = 1.468.

From the R commands cFligPoli(alpha=0.05035),m=8,n=7 and
cFligPolio(alpha= 0.1001, m=8,n=7), we find u.05035 = 1.807 and
u.1001 = 1.310. Thus for these data, the P-value obtained for testing H ′

0 : θx = θy versus
H ′

1 : θy = θx is between .05035 and .1001. Also see Comment 27.

Comments

23. Relationship of Û to U . The statistic Û defined by (4.57) is of the form

Û = n1/2
{
(U /mn) − 1

2

}
σ̂

, (4.63)

where U is the Mann–Whitney statistic defined by (4.15) and

σ̂ 2 =
∑n

j=1(Qj − Q)2 +∑m
i=1(Pi − P)2 + PQ

m2n
.

Fligner and Policello (1981) point out that when written in the form (4.57),
namely,

Û =
∑n

j=1 Qj −∑m
i=1 Pi

2{V1 + V2 + P Q}1/2
,

Û resembles Welch’s t statistic (Welch 1937, 1947) for the normal theory
Behrens–Fisher problem.

24. Symmetry of the Distribution of Û . When H0: [Identical X and Y distributions]
is true, the distribution of Û is symmetric about its mean 0, which implies that

P0(Û ≥ x) = P0(Û ≤ −x)

for every x . From this, it follows that the lower αth percentile for the null H0

distribution of Û is −uα; hence, its use in the test of H ′
0 versus H ′

2 defined by
(4.59).

25. Maintaining Levels. The test procedures in (4.58), (4.59), and (4.60) have exact
significance levels equal to α for testing H0: [Identical X and Y distributions].
However, they also maintain approximate level α for the more general null
hypothesis H ′

0 : θx = θy , without requiring equal variances or identical distribu-
tional forms for the two underlying population.



4.5 Efficiencies of Two-Sample Location Procedures 149

26. Consistency of the Test Based on Û . Fligner and Policello (1981) consider the
consistency of their test based on Û . To test H0 : θx = θy versus θx < θy , it is
necessary to impose conditions on F and G to ensure that whenever θx = θy , we
have P(X < Y ) = 1

2 and whenever θx < θy , we have P(X < Y ) > 1
2 . Fligner

and Policello point out that a sufficient condition is that F and G be symmetric.

27. Exact Fligner-Policello test. The exact P-value for the Fligner-Policello test can
be obtained from the R function pFligPoli. The R function pFligPoli com-
putes the P-value of the statistic Û based on the exact calculations, a Monte
Carlo simulation, or the large-sample approximation. By default, the exact calcu-
lations are used when

(m+n
n

) ≤ 10,000 and a Monte Carlo simulation otherwise.
The user may specify which method to use by the method=option and, if
applicable, the number of Monte Carlo samples to use by the n.mc=option.
Applying pFligPoli to the plasma glucose data of Table 4.7 yields an exact
P-value of .0808.

Properties

1. Consistency. Assuming F , G are symmetric, the tests defined by (4.58), (4.59),
and (4.60) are consistent against the alternatives for which θx < θy , θx > θy , and
θx �= θy , respectively.

2. Asymptotic Normality. See Fligner and Policello (1981).

3. Efficiency. See Fligner and Policello (1981) and Section 4.5.

Problems

41. Apply the test based on Û to the data of Table 4.1. Compare your results with those of
Example 4.1.

42. Apply the test based on Û to the data of Table 4.2. Compare your results with those of
Example 4.2.

43. Apply the test based on Û to the data of Table 4.3. Compare your results with those of
Problem 1.

44. Apply the test based on Û to the data of Table 4.4. Compare your results with those of
Problem 5.

45. Apply the test based on Û to the data of Table 4.5. Compare your results with those of
Problems 15, 16, and 17.

46. Establish (4.63) directly or illustrate it using an example.

47. Show that Û is a rank statistic. That is, show that you can compute Û from knowledge of
S1, . . . , Sn , where Sj = rank of Yj in the joint ranking of the N X ’s and Y ’s.

4.5 EFFICIENCIES OF TWO-SAMPLE
LOCATION PROCEDURES

Recall the normal theory t-test based on

t = Y − X

sp

√
m+n
mn

,
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where

s2
p =
∑m

i=1(Xi − X )2 +∑n
j=1(Yj − Y )2

m + n − 2

is the pooled variance. The Pitman asymptotic relative efficiency of the test based on W
versus the test based on t is

E (W , t) = 12σ 2
F

{∫
f 2
}2

. (4.64)

In (4.64), σ 2
F is the variance of the population with distribution F and f is the probability

density corresponding to F . The parameter
∫

f 2 is the area under the curve of f 2.
Equation (4.64) was derived by Pitman (1948) in the testing context and shown by

Hodges and Lehmann (1963) to hold also for the asymptotic relative efficiency of the
point estimator �̂ with respect to � = Y − �. Lehmann (1963c) showed that (4.64) also
gives the asymptotic relative efficiency of the confidence interval derived from W to that
of the confidence interval derived from Y − X .

Hodges and Lehmann (1956) showed that for all populations, E (W , t) is at least
.864. Thus the most efficiency one can lose when employing the Wilcoxon test instead
of the t-test is about 14%. When F is the normal distribution (the home turf of the t-test),
E (W , t) = .955. For many populations, E (W , t) exceeds 1, and it can be infinite, as it
is in the case when F is Cauchy. Some values of E (W , t) are in the following table.

F Normal Uniform Logistic Double exponential Cauchy Exponential

E (W , t) .955 1.000 1.097 1.500 ∞ 3.00

Some asymptotic relative efficiency values of van der Waerden’s c test relative to
the test based on W are in the following table.

F Normal Uniform Logistic Double exponential Cauchy Exponential

E (c, W ) 1.047 ∞ .955 .847 .708 ∞

These values are also the values of the asymptotic relative efficiency E (c1, W ),
where c1 is the Fisher–Yates–Terry–Hoeffding statistic.

Chernoff and Savage (1958) showed that for all populations, the asymptotic relative
efficiency of the Fisher–Yates–Terry–Hoeffding test with respect to the t-test is always
greater than or equal to 1. It equals 1 when F is normal.

For model (4.2), the asymptotic relative efficiency of the Fligner–Policello test based
on Û with respect to W is 1 for all F .



Chapter 5

The Two-Sample Dispersion
Problem and Other Two-Sample
Problems

INTRODUCTION

In this chapter the data once again consist of two independent random samples,
one sample from each of two underlying populations. This is the same as the data
setting considered in Chapter 4, where we discussed procedures designed for statistical
analyses in which the primary interest was on possible differences in the locations
(medians) of the populations. In this chapter we deal with statistical procedures
designed to make inferences about possible differences other than location between two
populations.

In Section 5.1 we present a distribution-free rank test for the hypothesis of equal scale
parameters when the two underlying populations have a common median. Section 5.2
is devoted to an asymptotically distribution-free test for equality of scale parameters
when the assumption of common medians is not justified. In Section 5.3 we consider
a distribution-free rank test for the dual hypothesis of equal location and equal scale
parameters for the underlying populations. Section 5.4 contains a distribution-free test of
the general hypothesis that two populations are identical in all respects. Some aspects of
the asymptotic relative efficiencies of the procedures in this chapter with respect to their
normal theory counterparts are discussed in Section 5.5.

Data. We obtain N = m + n observations X1, . . . , Xm and Y1, . . . , Yn .

Assumptions

A1. The observations X1, . . . , Xm are a random sample from a continuous population
1; that is, the X ’s are mutually independent and identically distributed. The
observations Y1, . . . , Yn are a random sample from a continuous population 2,
so that the Y ’s are also mutually independent and identically distributed.

A2. The X ’s and Y ’s are mutually independent. Thus, in addition to assumptions of
independence within each sample, we also assume independence between the
two samples.

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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5.1 A DISTRIBUTION-FREE RANK TEST FOR
DISPERSION—MEDIANS EQUAL (ANSARI–BRADLEY)

Hypothesis

Let F and G be the distribution functions corresponding to populations 1 and 2, respec-
tively. The null hypothesis of interest here is that the X and Y variables have the same
probability distribution but that their common distribution is not specified. Formally
stated, this null hypothesis is

H0 : [F (t) = G(t), for every t]. (5.1)

The typical alternative hypothesis in a two-sample dispersion problem specifies that
the Y population has greater (or less) variability associated with it than does the X
population. One model that is often used to describe such alternatives is the location-
scale parameter model. In our two-sample setting, this location-scale parameter model
corresponds to taking

F (t) = H

(
t − θ1

η1

)
and G(t) = H

(
t − θ2

η2

)
, −∞ < t < ∞, (5.2)

where H (u) is the distribution function for a continuous distribution with median 0, so
that F (θ1) = G(θ2) = 1

2 . Thus, θ1 and θ2 are the population medians for the X and Y
distributions, respectively. Moreover, η1 and η2 are the scale parameters associated with
the X and Y distributions, respectively. Model (5.2) states that the Y population has the
same general form as the X population, but they could have different medians and scale
parameters. Another way to express this is to write

X − θ1

η1

d= Y − θ2

η2
, (5.3)

where the symbol
d= means “has the same distribution as.”

This two-sample location-scale problem will be further discussed in this most general
context in Sections 5.2 and 5.3. In this section, however, we impose the further restriction
that θ1 = θ2; that is, we also assume

A3. The median (θ1) of the X population is equal to the median (θ2) of the Y
population.

Under this additional assumption, A3, the equal-in-distribution statement in (5.3)
simplifies to

X − θ

η1

d= Y − θ

η2
, (5.4)

where θ is the common median and the only possible difference between the X and
Y populations is in their respective scale parameters, as illustrated in Figure 5.1. (If the
medians θ1 and θ2 of the X and Y populations are not necessarily equal but are known, the
shifted variables X1 − θ1, . . . , Xm − θ1 and Y1 − θ2, . . . , Yn − θ2 will satisfy Assumptions
A1, A2, and A3. In such a situation, the procedures of this section can be applied to the
shifted (X − θ1) and (Y − θ2) sample observations. For more about this known medians
setting, see Comment 1.)
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−4 −2 0
x

2 4

Figure 5.1 Probability distributions with the same general form and equal medians but different scale
parameters.

Under Assumptions A1–A3, the parameter of interest in this section is the ratio of
the scale parameters, γ = (η1/η2) (see Comment 3). If the variance of population 1,
var(X ), exists and (5.4) is satisfied, then the variance of population 2, var(Y ), also exists
and

γ 2 =
[

var(X )

var(Y )

]
, (5.5)

the ratio of population variances (also see Comment 7). In terms of this location-scale
parameter model with equal location parameters, as given in (5.4), the null hypothesis
H0 (5.1) reduces to H0 : γ 2 = 1, corresponding to the assertion that the population scale
parameters are equal.

Procedure

To compute the Ansari–Bradley two-sample scale statistic C , order the combined sample
of N = (m + n) X -values and Y -values from least to greatest. Assign the score 1 to both
the smallest and largest observations in this combined sample, assign the score 2 to the
second smallest and second largest, and continue in the manner. If N is an even integer,
the array of assigned scores is 1, 2, 3, . . . , N /2, N /2, . . . , 3, 2, 1. If N is an odd integer,
the array of assigned scores is 1, 2, 3, . . . , (N − 1)/2, (N + 1)/2, (N − 1)/2, . . . , 3, 2, 1.
Let Rj denote the score assigned in this manner to Yj , for j = 1, . . . , n , and set

C =
n∑

j=1

Rj . (5.6)

Thus the statistic C is the sum of the scores assigned via this scheme to the Y observa-
tions.

a. One-Sided Upper-Tail Test. To test

H0 : γ 2 = 1
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versus

H1 : γ 2 > 1,

at the α level of significance,

Reject H0 if C ≥ cα; otherwise do not reject, (5.7)

where the constant cα is chosen to make the type I error probability equal to α.
The constant cα is the upper α percentile for the null (γ 2 = 1) distribution of C .
Comment 4 explains how to obtain the critical value cα for sample sizes m and
n and available levels of α.

b. One-Sided Lower-Tail Test. To test

H0 : γ 2 = 1

versus

H2 : γ 2 < 1,

at the α level of significance,

Reject H0 if C ≤ [c1−α − 1]; otherwise do not reject, (5.8)

where, as with the upper-tail test in (5.7), the appropriate value of c1−α is obtained
as stipulated in Comment 4.

c. Two-Sided Test. To test

H0 : γ 2 = 1

versus

H3 : γ 2 �= 1,

at the α level of significance,

Reject H0 if C ≥ cα1 or C ≤ [c1−α2 − 1]; otherwise do not reject, (5.9)

where α1 + α2 = α and the appropriate values of cα1 and c1−α2 are obtained as
directed in Comment 4. We note that the null distribution of C is symmetric
when N = (m + n) is an even number (see Comment 5). In such a case, it
is most natural to place an equal amount of probability in each tail of the null
distribution of C , corresponding to setting α1 = α2 = α/2. Thus, when N is even,
the two-sided symmetric version of procedure (5.9) uses the critical values cα/2

and [c1−(α/2) − 1].



5.1 A Distribution-Free Rank Test for Dispersion—Medians Equal (Ansari–Bradley) 155

Large-Sample Approximation

The large-sample approximation is based on the asymptotic normality of C , suitably
standardized. For this purpose we first need to know the expected value and variance of
C when the null hypothesis is true. Since the set of scores being assigned to the jointly
ranked sample X and Y observations (see Procedure) depends on whether N is an even
or odd integer, it is not surprising that the form of the mean and variance for C also
depends on whether N is even or odd. When H0 is true and N = m + n is an even
number, the expected value and variance of C are

E0(C ) = n(N + 2)

4
(5.10)

and

var0(C ) = mn(N + 2)(N − 2)

48(N − 1)
, (5.11)

respectively. When N is an odd integer, the null expected value and variance of
C are

E0(C ) = n(N + 1)2

4N
(5.12)

and

var0(C ) = mn(N + 1)(3 + N 2)

48N 2
, (5.13)

respectively. These expressions for E0(C ) and var0(C ) are verified by direct calculations
in Comment 8 for the special cases of m = n = 2 (where N = 4 is even) and m = 3,
n = 2 (where N = 5 is odd). General derivations of the null expected value and variance
expressions in (5.10), (5.11), (5.12), and (5.13) are presented in Comment 9.

For general N (even or odd), the standardized version of C is given by

C ∗ = C − E0(C )

{var0(C )}1/2
, (5.14)

where E0(C ) and var0(C ) correspond to expressions (5.10) and (5.11), respectively, if N
is even or to expressions (5.12) and (5.13), respectively, if N is odd. In either case, when
H0 is true, C ∗ has, as min(m , n) tends to infinity, an asymptotic N (0, 1) distribution
(see Comment 9 for indications of the proof). The normal theory approximation for
procedure (5.7) is

Reject H0 if C ∗ ≥ zα; otherwise do not reject, (5.15)

the normal theory approximation for procedure (5.8) is

Reject H0 if C ∗ ≤ −zα; otherwise do not reject, (5.16)

and the normal theory approximation for procedure (5.9) is

Reject H0 if |C ∗| ≥ zα/2; otherwise do not reject. (5.17)
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Ties

If there are ties among the X and/or Y observations, assign each of the observations in
a tied group the average of the integer scores that are associated with the tied group.
After computing C with these average scores for tied observations, use the appropriate
procedure (5.7), (5.8), or (5.9) with this tie-averaged value of C . Note, however, that
this test associated with tied X and/or Y observations is only approximately, and not
exactly, of significance level α. (To get an exact level α test even in this tied setting, see
Comment 11.)

When applying the large-sample approximation, an additional factor must be taken
into account. Although ties among the X and/or Y observations do not affect the null
expected value of C , its null variance is reduced to

var0(C ) =
mn
[
16
∑g

j=1 tj r2
j − (N )(N + 2)2

]
16N (N − 1)

(5.18)

in the presence of ties when N is even and to

var0(C ) =
mn
[
16N
∑g

j=1 tj r2
j − (N + 1)4

]
16N 2(N − 1)

(5.19)

when N is odd, where in (5.18) and (5.19) g denotes the number of tied groups among
the N sample observations, tj is the size of tied group j , and rj is the average score
associated with the observations in tied group j . We note that an untied observation is
considered to be a tied “group” of size 1. In particular, if there are no ties among the
X ’s and/or Y ’s, then g = N and tj = 1 for j = 1, . . . , N . In this case of no tied sample
observations, we have

g∑
j=1

tj r
2
j = 2

N /2∑
j=1

j 2 = 2
(

N
2

) (
N
2 + 1

) (
2
(

N
2

)+ 1
)

6
= N (N + 1)(N + 2)

12
,

when N is an even integer, and

g∑
j=1

tj r
2
j = 2

(N −1)/2∑
j=1

j 2 +
(

N + 1

2

)2

= 2

6

(
N − 1

2

)(
N − 1

2
+ 1

)(
2

(
N − 1

2

)
+ 1

)
+
(

N + 1

2

)2

=
(

N + 1

12

)
(N 2 + 2N + 3),

when N is an odd integer. Using these expressions for
∑g

j=1 tj r2
j , the associated ties-

adjusted expressions for var0(C ) given in (5.18) and (5.19) reduce to the correspond-
ing untied null variances in (5.11) and (5.13), respectively, in the case of no tied
observations.
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As a consequence of the effect that ties have on the null variance of C , the following
modification is needed to apply the large-sample approximation when there are ties among
the X and/or Y observations. Compute C using average scores and set

C ∗ = C − E0(C )

{var0(C )}1/2
, (5.20)

where E0(C ) and var0(C ) are now given by displays (5.10) and (5.18), respectively, if
N is even or by displays (5.12) and (5.19), respectively, if N is odd. With this modified
form of C ∗, approximations (5.15), (5.16), or (5.17) can be applied.

EXAMPLE 5.1 Serum Iron Determination.

The data in Table 5.1 are a portion of the data obtained by Jung and Parekh (1970) in
a study concerned with techniques for direct determination of serum iron. In particular,
they attempted to eliminate some of the problems associated with other commonly used
methods, which often result in turbidity of the analyzed serum, as well as requiring
large samples and slow, tedious analyses. To accomplish this, the authors proposed an
improved method for serum iron determination based on a different detergent. One of
the purposes of their investigation was to study the accuracy of their method for serum
iron determination in comparison to a method due to Ramsay (1957). Twenty duplicate
analyses were made, each by the proposed method and by the method of Ramsay, using
Hyland control sera containing 105 μg of serum iron per 100 ml. Table 5.1 gives the
serum iron detected (in μg/100 ml) for the 40 analyses in the study.

From the point of view of procedural technique, the Jung–Parekh method competes
favorably with the Ramsay method for serum iron determination. An additional concern,

Table 5.1 Serum Iron (μg/100 ml) Determination
Using Hyland Control Sera

Ramsay method Jung–Parekh method

111 107
107 108
100 106
99 98

102 105
106 103
109 110
108 105
104 104
99 100

101 96
96 108
97 103

102 104
107 114
113 114
116 113
113 108
110 106
98 99

Source: D.H. Jung and A.C. Parekh (1970).
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however, is whether there is a loss of accuracy when the Jung–Parekh procedure is
used instead of the Ramsay procedure. As a result, the alternative of interest in this
example is greater dispersion or variation for the Jung–Parekh method of serum iron
determination than for the method of Ramsay. Hence, letting Y correspond to the Ramsay
determinations and X to the Jung–Parekh determinations, we are interested in a one-
sided test designed to detect the alternative H1 : γ 2 > 1. Since there are ties among the
X and Y sample observations and N = m + n = 20 + 20 = 40 is an even integer, we
will apply the large-sample approximation (with ties), as detailed in (5.15) and (5.20),
to procedure (5.7).

For the purpose of illustration, we consider the approximate level α = .05. Hence,
using the R command pnorm(·), we set 1-pnorm(z.05) = .05 and obtain z.05 = 1.645,
and the large-sample approximation to procedure (5.7) is given by

Reject H0 if
C − E0(C )

{var0(C )}1/2
≥ 1.645,

where E0(C ) and var0(C ) are given by expressions (5.10) and (5.18), respectively.
To calculate C (5.6) we need the Ansari–Bradley ranks of the 20 Y (Ramsay) obser-

vations. In the following display we list in order (from least to greatest) the combined
sample of 40 X (Jung–Parekh) and Y (Ramsay) values and assign the ranks according
to the Ansari–Bradley scheme.

Ansari–Bradley Ranking Scheme for the Data of Table 5.1

Y X Y Y X Y Y X X Y
96 96 97 98 98 99 99 99 100 100
1.5 1.5 3 4.5 4.5 7 7 7 9.5 9.5

Y Y Y X X X Y X X X
101 102 102 103 103 104 104 104 105 105
11 12.5 12.5 14.5 14.5 17 17 17 19.5 19.5

X X Y Y X Y Y X X X
106 106 106 107 107 107 108 108 108 108
19 19 19 16 16 16 12.5 12.5 12.5 12.5

Y X Y Y X Y Y X X Y
109 110 110 111 113 113 113 114 114 116
10 8.5 8.5 7 5 5 5 2.5 2.5 1

Thus C =∑20
i=1 Ri = 185.5. In order to calculate C ∗, we need to evaluate expres-

sions (5.10) and (5.18). We illustrate the calculation of
∑g

j=1 tj r2
j in the following table,

where for our data there are g = 19 tied groups.
Thus, we have

∑19
j=1 tj r2

j = 5721, and from (5.10) and (5.18), we obtain

C ∗ = 185.5 − [20(42)/4]

{(20)(20)[16(5721) − 40(42)2]/[16(40)(39)]}1/2
= −1.34,

which tells us not to reject H0 at the approximate α = .05 level, since C ∗ = −1.34 <

1.645 = z.05. Hence, there is not sufficient evidence to indicate loss of accuracy when
the Jung–Parekh method is used instead of the Ramsay method.
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Tied group tj r2
j tj r2

j

1 2 2.25 4.5
2 1 9 9
3 2 20.25 40.5
4 3 49 147
5 2 90.25 180.5
6 1 121 121
7 2 156.25 312.5
8 2 210.25 420.5
9 3 289 867

10 2 380.25 760.5
11 3 361 1083
12 3 256 768
13 4 156.25 625
14 1 100 100
15 2 72.25 144.5
16 1 49 49
17 3 25 75
18 2 6.25 12.5
19 1 1 1

Since the one-sided P -value for these data is the lowest significance level at which
we can reject H0 in favor of γ 2 > 1 with the observed value of the test statistic C ∗,
we see, using the R command pnorm(·), that the P -value for these data is approxi-
mately P0(C ∗ ≥ −1.34) ≈ 1 − pnorm(-1.34) = (1 − .0901) = .9099. Thus, there is
absolutely no evidence in the sample data to indicate any loss of accuracy with the
Jung–Parekh method. In fact, the C ∗ value of −1.34 actually provides evidence point-
ing in the other direction, namely, γ 2 < 1, corresponding to improved accuracy with the
Jung–Parekh method.

Comments

1. Known Population Medians. When the population median, θ2, for the Y obser-
vations is known to be equal to θ1 + ξ , where θ1 is the population median for
the X observations and ξ is a known constant, we can create modified observa-
tions X ′

i = Xi + ξ , i = 1, . . . , m and apply the Ansari–Bradley procedures of this
section to the modified X ′ observations and the unchanged Y observations.

2. Testing γ 2 Equal to Some Specified Value Other Than One. To test the hypothesis
γ 2 = γ 2

0 , where γ 2
0 is some specified positive number different from 1, when

the common median for the underlying X and Y populations has known value
θ0, we obtain the modified observations X ′

i = (Xi − θ0)/γ0, for i = 1, . . . , m , and
Y ′

j = (Yj − θ0), for j = 1, . . . , n , and compute C (5.6) using the X ′’s and Y ′’s
(instead of the X ’s and Y ’s). Procedures (5.7), (5.8), or (5.9) or the corresponding
large-sample approximations (5.15), (5.16), or (5.17) may then be applied as
described.
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3. Motivation for the Test. Under Assumptions A1– A3, the X and Y populations
have the same median. Suppose, for example, that γ 2 is greater than 1. Then
the X values would tend to be more spread out than the Y values. Thus, the
Y ’s would tend to get larger scores than the X ’s from the scheme described in
the Procedure and C (5.6) would tend to be larger. (Visualize an extreme sample
where the sample values, when ordered, fall in the pattern XXYYYXX.) This serves
as partial motivation for the one-sided upper-tail test procedure given in (5.7).

4. Derivation of the Distribution of C under H0 (No-Ties Case). Under H0 (5.1),
each of the

(
N
n

)
possible “meshings” of the X ’s and Y ’s has probability 1/

(
N
n

)
.

This fact can be used to obtain the null distribution of C (5.6). We illustrate
the steps involved in constructing this null distribution for the two cases m = 3,
n = 2 (where N = 5 is odd) and m = 2, n = 2 (where N = 4 is even). First, for
m = 3 and n = 2, we use the set of scores {1, 1, 2, 2, 3}. Let R(1) < R(2) denote
the ordered Y scores so that C = R1 + R2 = R(1) + R(2). The

(
5
2

) = 10 possible
meshings and associated values of (R(1), R(2)) and C are given in the following
table.

Meshing Probability (R(1), R(2)) C = R(1) + R(2)

YYXXX 1
10 (1, 2) 3

YXYXX 1
10 (1, 3) 4

YXXYX 1
10 (1, 2) 3

YXXXY 1
10 (1, 1) 2

XYYXX 1
10 (2, 3) 5

XYXYX 1
10 (2, 2) 4

XYXXY 1
10 (1, 2) 3

XXYYX 1
10 (2, 3) 5

XXYXY 1
10 (1, 3) 4

XXXYY 1
10 (1, 2) 3

Thus, for example, the probability is 3
10 under H0 that C is equal to 4,

because C = 4 when either of the exclusive outcomes (R(1), R(2)) = (1, 3) or
(R(1), R(2)) = (2, 2) occurs. These two outcomes for (R(1), R(2)) are associated
with three mutually exclusive meshings, each with null probability 1

10 . Hence, it
follows that P0(C = 4) = 3( 1

10 ). Proceeding in the same manner for all possible
values for C and simplifying, we obtain the null distribution.

Possible value of C Probability under H0

2 1
10

3 4
10

4 3
10

5 2
10
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The probability, under H0, that C is greater than or equal to 4, for example, is
therefore

P0(C ≥ 4) = P0(C = 4) + P0(C = 5) = .3 + .2 = .5,

so that c.5 = 4. Note also that c.2 = 5.
For the case of m = n = 2 (where N = 4 is even), we use the set of scores

{1, 1, 2, 2}. The
(

4
2

) = 6 possible meshings, as well as the associated ordered Y -
scores (R(1), R(2)) and values of C are given in the following table.

Meshing Probability (R(1), R(2)) C = R(1) + R(2)

XXYY 1
6 (1, 2) 3

XYXY 1
6 (1, 2) 3

YXXY 1
6 (1, 1) 2

XYYX 1
6 (2, 2) 4

YXYX 1
6 (1, 2) 3

YYXX 1
6 (1, 2) 3

Proceeding as for the previous case of m = 3, n = 2, we obtain the null distri-
bution for C .

Possible value of C Probability under H0

2 1
6

3 4
6

4 1
6

Note that we have derived the null distribution of C without specifying the
form of the common (under H0) underlying X and Y populations beyond the
point of requiring that they be continuous. This is why the test procedures based
on C are called distribution-free procedures. From the null distribution of C ,
we can determine the critical value cα and control the probability α of falsely
rejecting H0 when H0 is true, and this error probability does not depend on the
specific form of the common underlying continuous distribution for the X and Y
observations.

For given sample sizes m and n , the R command cAnsBrad(α, m , n) can be
used to find the available upper-tail critical values cα for possible values of C .
For a given available significance level α, the critical value cα then corresponds
to P0(C ≥ cα) = α and is given by cAnsBrad(α, m, n) = cα . Thus, for example,
for m = 8 and n = 4, we have P0(C ≥ 20) = .0283 so that c.0283 = 20 for m = 8
and n = 4.

5. Symmetry of the Distribution of C under the Null Hypothesis When N = m + n
Is Even. When H0 is true and N = m + n is an even integer, the distribution of
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C is symmetric about its mean n(N + 2)/4. (See Comment 4 for verification of
this when m = n = 2.) This implies that when N is even

P0(C ≤ x) = P0

(
C ≥ n(N + 2)

2
− x

)
, (5.21)

for every possible value of x .
Equation (5.21) is directly used to convert upper-tail probabilities, as obtained

from cAnsBrad(·, m, n), to lower-tail probabilities when N is even. Thus, the
lower-tail critical value [c1−α − 1] used in test procedures (5.8) or (5.9) can be
expressed in terms of the upper-tail critical value cα by

[c1−α − 1] =
[

n(N + 2)

2
− cα

]
, (5.22)

when N is even.

6. Equivalent Form. The statistic C (5.6) is the sum of the scores assigned to the Y
observations by the Ansari–Bradley scoring scheme described in the Procedure.
Test procedures (5.7), (5.8), and (5.9) could equivalently be based on the statistic
C ′ = [sum of the scores assigned by this scheme to the X observations], because
C ′ = [N (N + 2)/4] − C when N = m + n is even and C ′ = [(N − 1)2/4] − C
when N is odd (see Problem 6).

7. Assumptions. We can use the Ansari–Bradley test procedures in (5.7), (5.8), or
(5.9) without even requiring that the variances for the X and Y populations exist.
Indeed, our Assumptions A1–A3 for this section do not specify anything about
the existence of even the first moments of the X and Y populations. However,
when the first two moments (and, therefore, the variance) for the underlying
distributional model H (u) in (5.2) exist, we see from the equal-in-distribution
statement in (5.3) that

var

(
X

η1

)
= var

(
Y

η2

)
,

which, in turn, implies that

[var(X )]/η2
1 = [var(Y )]/η2

2.

Thus, when the variances exist, we see that γ 2 = [η2
1/η

2
2] = [var(X )/var(Y )].

Assumptions A1–A3 do imply that the only possible difference between
the X and Y populations is the difference in scale parameters. In particular, these
assumptions imply that the two populations do not differ in location, as they have
a common median θ (see Comment 1 for a slight relaxation of this condition).
While the requirement of equal medians is not necessary for the classical F-test
based on the ratio of the X and Y sample variances, this requirement is essential
for the Ansari–Bradley test. For example, suppose that m = 5, n = 4, and the
X and Y probability distributions are such that P(X < Y ) = 0. Then, for all
possible X and Y samples, the joint ordering of the five X observations and four
Y observations would always result in a value of C = 10, regardless of the scale
parameters for the two populations. That is, in such a setting, no information
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about γ 2 can be obtained from the joint ranking and the Ansari–Bradley scoring
scheme.

Moses (1963) has emphasized this bizarre behavior of tests for dispersion
based on joint rankings of the sample X and Y observations and has shown that
such tests are inadequate unless strong assumptions (such as equal or known
medians) are made concerning the locations of the X and Y populations. For an
asymptotically distribution-free test that does not require equal or known medians,
see Section 5.2.

8. Calculation of the Mean and Variance of C under the Null Hypothesis, H0. In
(5.10) and (5.11), we presented formulas for the mean and variance of C when the
null hypothesis is true and N = (m + n) is an even number. The corresponding
expressions for the null mean and variance of C when N is an odd number are
given in (5.12) and (5.13). In this comment, we illustrate a direct calculation of
E0(C ) and var0(C ) in the particular cases of m = 3, n = 2 (where N = 5 is odd)
and m = n = 2 (where N = 4 is even), using the null distributions of C obtained
in Comment 4. (Later, in Comment 9, we present general derivations of E0(C )

and var0(C ).) The null mean, E0(C ), is obtained by multiplying each possible
value of C by its probability under H0. Thus, for m = 3, n = 2, we have

E0(C ) = 2(.1) + 3(.4) + 4(.3) + 5(.2) = 3.6.

This is in agreement with what we obtain using (5.12), namely.

E0(C ) = n(N + 1)2

4N
= 2(5 + 1)2

4(5)
= 3.6.

Similarly, for m = n = 2, we have by direct computation from the null distribu-
tion of C in Comment 4 that

E0(C ) = 2

(
1

6

)
+ 3

(
4

6

)
+ 4

(
1

6

)
= 3,

in agreement with the value obtained from (5.10), namely,

E0(C ) = n(N + 2)

4
= 2(4 + 2)

4
= 3.

Checks on the expressions for var0(C ) are also easily performed, using the well-
known fact that

var0(C ) = E0(C
2) − {E0(C )}2.

The required values of E0(C 2), the second moment of the null distribution of C ,
are again obtained by multiplying the possible values of C 2 by the corresponding
probabilities under H0. For the case of m = 3, n = 2, we find that

E0(C
2) = 22(.1) + 32(.4) + 42(.3) + 52(.2) = 13.8,

yielding

var0(C ) = 13.8 − (3.6)2 = 13.8 − 12.96 = .84,
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which is in agreement with the value obtained from (5.13), namely,

var0(C ) = mn(N + 1)(3 + N 2)

48N 2

= 3(2)(5 + 1)(3 + 52)

48(5)2
= .84.

Similarly, for m = n = 2, we have by direct computation from the null distribu-
tion in Comment 4 that

E0(C
2) = 22

(
1

6

)
+ 32
(

4

6

)
+ 42
(

1

6

)
= 56

6
,

yielding

var0(C ) = 56
6 − (3)2 = 1

3 ,

which is in agreement with the value obtained from (5.11), namely,

var0(C ) = mn(N + 2)(N − 2)

48(N − 1)

= 2(2)(4 + 2)(4 − 2)

48(4 − 1)
= 1

3
.

9. Large-Sample Approximation. The statistic C /n is the average of the scores
assigned to the Y observations. Since all

(
N
n

)
possible distributions of the

appropriate scores (depending on whether N is even or odd) to the X and
Y observations are equally likely under H0, the null distribution of C /n is
the same as the distribution of the sample mean for a random sample of
size n drawn without replacement from the finite population of scores SN ,
where SN = {1, 2, 3, . . . , N /2, N /2, . . . , 3, 2, 1} if N is an even number and
SN = {1, 2, 3, . . . , (N − 1)/2, (N + 1)/2, (N − 1)/2, . . . , 3, 2, 1} if N is odd.

From basic results for a random sample of size n drawn without replacement
from a finite population of N elements, we know that

(i) the expected value of the sample average is equal to the average, μpop , of the
finite population,

(ii) the variance of the sample average is equal to

σ 2
pop

n

(
N − n

N − 1

)
,

where σ 2
pop is the variance of the finite population and the factor (N −

n)/(N − 1) is known as the finite population correction factor.
For the case of N even and the finite population SN = {1, 2, 3, . . . , N /2,

N /2, . . . , 3, 2, 1}, we see that
(iii)

μpop = 2

N

N /2∑
i=1

i = (N /2)[(N /2) + 1]

2(N /2)
= N + 2

4

and
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(iv)

σ 2
pop =

⎡⎣ 2

N

⎛⎝N /2∑
i=1

i 2

⎞⎠−
(

N + 2

4

)2
⎤⎦

=
[

(N /2)[(N /2) + 1][2(N /2) + 1]

6(N /2)
−
(

N + 2

4

)2
]

=
[
(N + 2)(N + 1)

12
− (N + 2)(N + 2)

16

]
= (N + 2)(N − 2)

48
.

From (i), (ii), (iii), and (iv), it follows that

E0

(
C

n

)
= N + 2

4

and

var0

(
C

n

)
=
[
(N + 2)(N − 2)

48n

] [
N − n

N − 1

]
= m(N + 2)(N − 2)

48n(N − 1)
.

Thus,

E0(C ) = nE0

(
C

n

)
= n(N + 2)

4

and

var0(C ) = n2var0

(
C

n

)
= mn(N + 2)(N − 2)

48(N − 1)
,

in agreement with the formulas in (5.10) and (5.11). The corresponding expres-
sions for E0(C ) and var0(C ) when N is an odd integer, as given in (5.12) and
(5.13), respectively, can be similarly obtained using the expressions in (i) and (ii)
and the finite population

SN =
{

1, 2, 3, . . . ,
N − 1

2
,

N + 1

2
,

N − 1

2
, . . . , 3, 2, 1

}
.

For any N (even or odd), the asymptotic normality under H0 of the standardized

C ∗ = C − E0(C )√
var0(C )

follows from standard theory for the mean of a sample from a finite population
(cf. Wilks, 1962, p. 268). Asymptotic normality results for C ∗ are also available
under general alternatives to H0 (see, for example, Ansari and Bradley (1960),
Randles and Wolfe (1979), or Hájek and Šidák (1967)).

10. Lower-Tail Critical Values. In the expression for the one-sided lower-tail test in
(5.9), the critical value is given to be c1−α − 1, where c1−α is the upper (1 − α)th
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percentile of the null distribution of C . This means that

P0(C ≤ c1−α − 1) = 1 − P0(C > c1−α − 1) = 1 − P0(C ≥ c1−α),

where the last equality follows from the fact that C is a discrete random variable
assuming only positive integer values. Since c1−α is the upper (1 − α)th percentile
for the null distribution of C , it follows that

P0(C ≤ c1−α − 1) = 1 − (1 − α) = α.

Hence, c1−α − 1 is, indeed, the lower αth percentile for the null distribution of C ,
as required for the level α one-sided lower-tail test procedure in expression (5.8).

When N is an even integer, we have already noted in Comment 5 that the
null distribution of C is symmetric about its mean, n(N + 2)/4. It follows that
[c1−α − 1] = [{n(N + 2)/2} − cα] when N is even.

11. Exact Conditional Distribution of C with Ties. To have a test with exact signif-
icance level even in the presence of ties among the X ’s and/or Y ’s, we need to
consider all

(
N
n

)
possible assignments of the N observations with n observations

serving as Y ’s and m observations serving as X ’s. As in Comment 4, it still fol-
lows that, under H0 (5.1), each of the

(
N
n

)
possible “meshings” of the X ’s and Y ’s

has probability 1/
(

N
n

)
. The only difference in the case of ties is that we now use

average scores in the computation of C for each of these
(

N
n

)
“meshings” leading

to the tabulation of the null distribution. We illustrate this construction for N odd
(a similar approach will work for N even) and the following m = 3, n = 2 data:
X1 = 3.2, X2 = 5.7, X3 = 6.3, Y1 = 1.9, Y2 = 6.3. The associated average scores
assignments (taking into account the tie between X3 and Y2) are 2, 3, 1.5, 1, and
1.5, respectively, and the corresponding value of C , the sum of the scores for
the Y observations, is C = 1.5 + 1 = 2.5. To assess the significance of this value
of C , we obtain its conditional distribution by considering the

(
5
2

) = 10 possible
assignments of the observations 1.9, 3.2, 5.7, 6.3, and 6.3 to serve as three X
observations and two Y observations, or, equivalently the 10 possible assignments
of the average scores 1, 1.5, 1.5, 2, and 3 to serve as three X scores and two Y
scores. These 10 assignments and the corresponding values of C are as follows.

Y scores Probability under H0 Value of C

1, 1.5 1
10 2.5

1, 1.5 1
10 2.5

1, 2 1
10 3

1, 3 1
10 4

1.5, 1.5 1
10 3

1.5, 2 1
10 3.5

1.5, 3 1
10 4.5

1.5, 2 1
10 3.5

1.5, 3 1
10 4.5

2, 3 1
10 5
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This yields the null tail probabilities

P0(C ≥ 5) = 1
10 ,

P0(C ≥ 4.5) = 3
10 ,

P0(C ≥ 4) = 4
10 ,

P0(C ≥ 3.5) = 6
10 ,

P0(C ≥ 3) = 8
10 ,

P0(C ≥ 2.5) = 1.

This distribution is called the conditional null distribution or the permutation
null distribution of C , given the set of tied scores {1, 1.5, 1.5, 2, 3}. For the
particular observed value C = 2.5, we have P0(C ≥ 2.5) = 1, so that such a
value does not indicate a deviation from H0 in the direction of γ 2 > 1 (although
it would provide marginal support for the alternative γ 2 < 1).

12. Confidence Intervals, Confidence Bounds, and Point Estimators for γ 2. The
Ansari–Bradley statistic, C (5.6), is a member of a large class of rank statistics
(referred to as linear rank statistics in the literature; see, for example, Section 9.3
of Randles and Wolfe (1979)) that can be used to test for equality of scale
parameters under the strict assumption of equal or known medians for the X
and Y populations. Bauer (1972) has shown how to invert some of these linear
rank tests of γ 2 = 1, including the Ansari–Bradley procedure, to obtain point
estimators and confidence intervals or bounds for γ 2 in such a setting.

13. Unequal and Unknown Medians. If the medians of the X and Y populations
are not known and it is questionable whether or not they are equal, Ansari
and Bradley (1960) suggested the following modification to their test pro-
cedures. Define the adjusted observations X ′

i = Xi − X̃ , i = 1, . . . , m , and
Y ′

j = Yj − Ỹ , j = 1, . . . , n , where X̃ and Ỹ are the sample medians for the X
and Y observations, respectively. Let C ′ be C (5.6) calculated for these adjusted
X ′ and Y ′ observations. Depending on the alternative to H0 : γ 2 = 1 that is of
interest, the appropriate procedure (5.7), (5.8), or (5.9), or the corresponding
large-sample approximation, can then be applied directly to the modified statistic
C ′ instead of C . Such tests based on C ′ are no longer strictly distribution-free.
However, Gross (1966) has given sufficient conditions under which such
procedures are asymptotically distribution-free. Under such conditions, the
various tests based on C ′ maintain an approximate (both m and n large)
significance level α over a large class of continuous underlying distributions.

14. Consistency of the C-Tests. Under Assumptions A1–A3, the consistency of the
tests based on C depends on the parameter

�∗ = [P(X > Y > θ) + P(X < Y < θ) − 1
4

]
.

The test procedures defined by (5.7), (5.8), and (5.9) are consistent against the
alternatives corresponding to �∗ >, <, and �= 0, respectively.
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15. More General Alternatives. In many two-sample situations, we are interested in
simultaneously detecting either location or scale differences between the X and
Y populations. One solution to this broader problem is to use a test procedure
designed to detect quite general alternatives. One such test procedure based
on the two-sample Kolmogorov (1933)–Smirnov (1939) statistic is discussed
in Section 5.4. A second approach is to conduct simultaneously a test such as
the Wilcoxon rank sum procedure based on W (4.3) for detecting differences in
location and a second test such as the Ansari–Bradley procedure based on C
(5.6) for detecting differences in scale. One such simultaneous testing approach,
due to Lepage (1971, 1973), for dealing with general alternatives is the topic of
Section 5.3. Randles and Hogg (1971) have shown that in such a situation, W
and C are uncorrelated and, in fact, asymptotically independent when H0 (5.1)
is true. This implies, among other things, that if we conduct the Wilcoxon rank
sum test at a significance level α1, and the Ansari–Bradley test at a significance
level α2, then the probability of incorrectly rejecting with at least one of the two
tests, given that H0 (5.1) is true, is approximately α1 + α2 − α1α2.

Properties

1. Consistency. For our statement, we consider the more stringent location-scale
parameter model described in (5.4). Then the tests defined by (5.7), (5.8), and
(5.9) are consistent against the alternative γ 2 >, <, and �= 1, respectively. See
also Comment 14.

2. Asymptotic Normality. See Randles and Wolfe (1979, pp. 315–320).

3. Efficiency. See Section 5.5.

Problems

1. Consider the chorioamnion permeability data in Table 4.1. In Section 4.1 we saw that a test
procedure based on the Wilcoxon rank sum statistic did not reject the null hypothesis that the
human chorioamnion is as permeable to water transfer at 12–26 weeks gestational age as it
is at term. With this in mind and using the same data, test the hypothesis of equal dispersions
versus the alternative that the variation in tritiated water diffusion across human chorioamnion
is different at term than at 12–26 weeks gestational age.

2. Find or construct an example in which there exists a level α and a constant d such that
when C (5.6) is computed for the original data X1, . . . , Xm , Y1, . . . , Yn , the level α procedure
in (5.7) does not lead to rejection of H0 : γ 2 = 1, but when C is computed for the values
X1, . . . , Xm , Y1 + d , . . . , Yn + d , the level α procedure in (5.7) does lead to rejection of H0.
Note that such an example exposes an undesirable aspect of the test procedures based on C .
Let Y be a random member from a population II. Then, the population II∗ formed by adding
the constant d to each member of II must, by any reasonable definition of dispersion, have the
same dispersion as the II population. Thus, the difference in dispersions between the X and
Y populations must be the same as the difference in dispersions between the X and Y + d
populations. Yet the tests based on C , applied to the data X1, . . . , Xm , Y1 + d , . . . , Yn + d ,
can yield a decision that differs from the one that results from applying the same C -test to
X1, . . . , Xm , Y1, . . . , Yn . (For a related discussion, see Comment 7.)

3. Consider the television-viewing behavior data in Table 4.4. For these data, use the R command
pAnsBrad(x,y) to find the P -value for an appropriate test of the hypothesis of equal dis-
persions versus the alternative that there is more variability in the time spent in the room after
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witnessing the violent behavior for those children who had previously watched the Karate Kid
than for those children who had previously watched parts of the 1984 Summer Olympic Games.
Comment on the importance of the results of Problem 4.5 in relationship to this dispersion test.

4. Verify the expressions for E0(C ) and var0(C ) in (5.12) and (5.13), respectively, when
N = (m + n) is an odd integer. (See Comment 9 for guidance.)

5. Consider the following two-sample data for m = 3, n = 3 : X1 = −3.7, X2 = 4.6, X3 = 1.5,
Y1 = 1.5, Y2 = 4.6, Y3 = 1.5. Here, N = 3 + 3 = 6 is an even integer. Using the approach
discussed in Comment 11, find the exact conditional null distribution of the Ansari–Bradley
statistic, C (5.6). Compare and contrast this conditional null distribution with the null
distribution of C for m = n = 3 and no tied observations.

6. Let C ′ be the sum of the scores assigned to the X observations by the Ansari–Bradley
scoring scheme described in the Procedure. Verify directly, or illustrate using the serum iron
determination data in Table 5.1, that C ′ = [N (N + 2)/4] − C , when N = (m + n) is even.

7. For an arbitrary total number of observations N = (m + n), find an expression for the
smallest and largest possible values of C . Consider the two cases of N even and N odd.

8. Let X and Y be independent, identically distributed continuous random variables with a
common probability distribution with median θ . What is the value of �∗ in Comment 14 for
this setting?

9. Consider the alcoholic intake data in Table 4.2. In Example 4.2 the Wilcoxon rank sum test
procedure led to the rejection of H0 : � = 0 in favor of H1 : � < 0. What does this result
imply about the appropriateness of the Ansari–Bradley procedure in (5.9) or its approximate
large-sample counterpart in (5.17) as a test of H0 : γ 2 = 1 versus H1 : γ 2 �= 1 for these data?
In view of this fact, find the approximate P -value for an appropriate modification of the
large-sample procedure in (5.17) to test for possible differences in dispersions between the
control and SST data. (See Comment 13.)

10. Consider the television-viewing behavior data in Table 4.4. Without the assumption of equal
medians, find the approximate P -value for an appropriate test (see Comment 13) of the
hypothesis of equal dispersions versus the alternative that there is more variability in the time
spent in the room after witnessing the violent behavior for those children who had previously
watched the Karate Kid than for those children who had previously watched parts of the 1984
Summer Olympic Games. Compare the P -value obtained here with the one found in Problem
3. Interpret the similarity or lack thereof between the two P -values.

11. Suppose m = n = 10. Compare the critical region for the exact level α = .056 test of
H0 : γ 2 = 1 versus H1 : γ 2 > 1 based on C with the critical region for the corresponding
nominal level α = .056 test based on the large-sample approximation. What is the exact
significance level of this .056 nominal level test based on the large-sample approximation?

12. Generate the conditional permutation distribution of C (see Comments 4 and 11), given the
set of tied values for the serum iron data in Example 5.1. From this conditional permutation
distribution of C , obtain the exact conditional P -value, P0(C ≥ 185.5), for the corresponding
test of H0 : γ 2 = 1 versus H1 : γ 2 > 1. Compare this exact conditional P -value with the
approximate P -value for the large-sample test procedure applied to these data in Example 5.1.

5.2 AN ASYMPTOTICALLY DISTRIBUTION-FREE TEST
FOR DISPERSION BASED ON THE JACKKNIFE–MEDIANS
NOT NECESSARILY EQUAL (MILLER)

Hypothesis

Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples satisfying Assumptions
A1 and A2 from continuous populations with distribution functions F and G , respectively,
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satisfying the location-scale parameter model relationship in (5.2) and (5.3). In addition,
we assume that the continuous distribution associated with the distribution function H (·)
in (5.2) has finite fourth moment; that is, we assume

A4. If V is a continuous random variable with distribution function H , then
E (V 4) < ∞.

Under Assumptions A1, A2, and A4, but without the equal median Assumption
A3, we are once again interested in the ratio of scale parameters γ = (η1/η2). In view
of Assumption A4 (see Comment 7), we note that γ 2 = [var(X )/var(Y )], the ratio of
population variances. We are interested in testing the null hypothesis H0 (5.1), which
reduces to H0 : γ 2 = 1, corresponding to the assertion that the population variances are
equal, under the location-scale parameter model (5.2).

Procedure

Consider the X sample data with the first observation deleted and set

X̄1 =
m∑

s=2

Xs

m − 1
and D2

1 =
m∑

s=2

(Xs − X̄1)
2

m − 2
. (5.23)

Thus, X̄1 and D2
1 are the sample average and sample variance for the data X2, . . . , Xm ,

corresponding to the X sample less X1. Similarly, let

X̄i =
m∑

s �=i

Xs

m − 1
and D2

i =
m∑

s �=i

(Xs − X̄i )
2

m − 2
(5.24)

be the sample average and sample variance, respectively, for the data X1, . . . , Xi−1,
Xi+1, . . . , Xm , corresponding to the X sample less Xi , for i = 1, . . . , m . In the same
fashion, let

Ȳj =
n∑

t �=j

Yt

n − 1
and E 2

j =
n∑

t �=j

(Yt − Ȳj )
2

n − 2
(5.25)

be the sample average and sample variance, respectively, for the data Y1, . . . , Yj−1,
Yj+1, . . . , Yn , corresponding to the Y sample less Yj , for j = 1, . . . , n . Define S1, . . . , Sm

and T1, . . . , Tn by
Si = ln D2

i , i = 1, . . . , m , (5.26)

and
Tj = ln E 2

j , j = 1, . . . , n. (5.27)

In addition, let

S0 = ln

[
m∑

s=1

(Xs − X̄0)
2

m − 1

]
(5.28)

and

T0 = ln

[
n∑

t=1

(Yt − Ȳ0)
2

n − 1

]
, (5.29)
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where X̄0 =∑m
s=1 Xs/m and Ȳ0 =∑n

t=1 Yt/n , be the corresponding statistics for the
complete samples X1, . . . , Xm and Y1, . . . , Yn , respectively. Compute

Ai = mS0 − (m − 1)Si , for i = 1, . . . , m , (5.30)

and
Bj = nT0 − (n − 1)Tj , for j = 1, . . . , n. (5.31)

(This is what is referred to as the jackknifing process, as applied to the sample variance.)
Set

Ā =
m∑

i=1

Ai

m
and B̄ =

n∑
j=1

Bj

n
, (5.32)

and compute

V1 =
m∑

i=1

(Ai − Ā)2

m(m − 1)
(5.33)

and

V2 =
n∑

j=1

(Bj − B̄)2

n(n − 1)
. (5.34)

Finally, set

Q = Ā − B̄√
V1 + V2

. (5.35)

a. One-Sided Upper-Tail Test. To test

H0 : γ 2 = 1

versus

H1 : γ 2 > 1,

at the approximate α level of significance,

Reject H0 if Q ≥ zα; otherwise do not reject, (5.36)

where, as previously, zα is the upper αth percentile for the standard normal dis-
tribution.

b. One-Sided Lower-Tail Test. To test

H0 : γ 2 = 1

versus

H1 : γ 2 < 1,

at the approximate α level of significance,

Reject H0 if Q ≤ −zα; otherwise do not reject. (5.37)
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c. Two-Sided Test. To test

H0 : γ 2 = 1

versus

H1 : γ 2 �= 1,

at the approximate α level of significance,

Reject H0 if |Q | ≥ zα/2; otherwise do not reject. (5.38)

This two-sided procedure is the two-sided symmetric test with α/2 probability in
each tail of the approximating standard normal distribution.

When m and n are small and equal, the approximate level α test proce-
dures given by (5.36), (5.37), and (5.38) can be improved slightly by replacing zα

and zα/2 by tm+n−2,α and tm+n−2,α/2, respectively, where tm+n−2,α is the upper
α percentile point of the t distribution with m + n − 2 degrees of freedom.
To find tm+n−2,α for given sample sizes m and n , we use the R command
qt(1-α,m+n-2). For example, to find t14,.05, we apply qt(.95,14) and obtain
t14,.05 = 1.761.

Ties

The jackknife procedures are well defined when ties within or between the X ’s and Y ’s
occur and further adjustments are not necessary.

EXAMPLE 5.2 Southern Armyworm and Pokeweed.

Burnett and Jones (1973) investigated the idea of coevolution between the southern
armyworm and pokeweed. They suspected that armyworms might have developed a
greater resistance to the toxins from pokeweed populations that lie within their geographic
range than to the toxins of pokeweeds found in other areas of the country. Pokeweed
plants from Florida populations (within the range of southern armyworms) and Kentucky
populations (well north of the range of southern armyworms) were raised under similar
conditions in greenhouses for the study. Larval southern armyworms were then used in
feeding experiments to determine whether they would eat less of the Kentucky pokeweed
possessing toxins to which they are not resistant. Five samples of Kentucky pokeweed
and five samples of Florida pokeweed were used, with each such sample being exposed
to 10 separate southern armyworm larvae. (There were 100 different larvae used in
the experiment.) Following an individual larva’s 24-h feeding period (in darkness at
25 ± 1 ◦C) on a moist filter paper in a disposable petri dish, the fecal material of the
larva was dried overnight in an oven and weighed the following day. This was then
used as a measure of quantity of the plant material ingested by the armyworm larva
during its feeding. The data in Table 5.2 are the average (over the 10 armyworm larvae
replications) dry feces weights (in milligrams) for the five Kentucky pokeweed and five
Florida pokeweed plant samples.
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Table 5.2 Average Dry Feces Weight (mg)

Kentucky pokeweed Florida pokeweed

6.2 9.5
5.9 9.8
8.9 9.5
6.5 9.6
8.6 10.3

Source: W. C. Burnett, Jr., and S. B. Jones, Jr. (1973).

It is clear from the data in Table 5.2 that the southern armyworm larvae had a
tendency to eat more (on the average) of the Florida pokeweed than the Kentucky poke-
weed. As a result, if we are interested in assessing whether there is any difference in the
variability or dispersion of the southern armyworm’s consumption of the two pokeweed
varieties, it would not be appropriate to directly apply one of the Ansari–Bradley proce-
dures discussed in Section 5.1, because they require equality of the respective population
medians. However, the jackknifed variances procedure of this section makes no such
assumption and can be applied directly to the sample data.

Letting X correspond to the Kentucky pokeweed observations and Y to the Florida
pokeweed data, we consider testing the null hypothesis of no difference in dispersion
against the alternative that the variability is greater for Kentucky pokeweed; that is, we
want to use procedure (5.36) to test H0 : γ 2 = 1 against the alternative H1 : γ 2 > 1.

The five Kentucky pokeweed subgroups of four observations each, corresponding to
the five different ways to delete a single measurement, are given by

G1 = {6.2, 5.9, 8.9, 6.5}, G2 = {6.2, 5.9, 8.9, 8.6}, G3 = {6.2, 5.9, 6.5, 8.6},

G4 = {6.2, 8.9, 6.5, 8.6} and G5 = {5.9, 8.9, 6.5, 8.6}.

Following (5.23), the sample average and sample variance associated with subgroup G1

are

X̄1 = 6.2 + 5.9 + 8.9 + 6.5

4
= 6.875 (5.39)

and

D2
1 = (6.2 − 6.875)2 + (5.9 − 6.875)2 + (8.9 − 6.875)2 + (6.5 − 6.875)2

3
= 1.8825.

(5.40)
In a similar manner, it follows from (5.24) that the sample averages and sample variances
for the other four Kentucky pokeweed subgroups are

Subgroup Gi X̄i D2
i

G2 7.4 2.46
G3 6.8 1.50
G4 7.55 1.95
G5 7.475 2.2425

(5.41)
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Proceeding in the same fashion with the Florida pokeweed data, we obtain the five
deleted-observation subgroups

H1 = {9.5, 9.8, 9.5, 9.6}, H2 = {9.5, 9.8, 9.5, 10.3}, H3 = {9.5, 9.8, 9.6, 10.3},

H4 = {9.5, 9.5, 9.6, 10.3}, and H5 = {9.8, 9.5, 9.6, 10.3}.

Using (5.25), we obtain the associated subgroup sample means and sample variances to
be

Subgroup Hj Ȳj E 2
j

H1 9.6 .02
H2 9.775 .1425
H3 9.8 .1267
H4 9.725 .1492
H5 9.8 .1267

(5.42)

Taking natural logarithms of the D2
i ’s (in (5.40) and (5.41)) and the E 2

j ’s (in (5.42)), it
follows from (5.26) and (5.27) that

S1 = .6326, S2 = .9002, S3 = .4055, S4 = .6678, S5 = .8076 (5.43)

and

T1 = −3.9120, T2 = −1.9484, T3 = −2.0662, T4 = −1.9027, T5 = −2.0662.

(5.44)
Finally, using all five of the X sample observations, we see from (5.28) that

X̄0 = 7.22 and S0 = ln

[
5∑

s=1

(Xs − 7.22)2

4

]
= ln 2.007 = .6966.

Similarly, using all five of the Y sample observations, it follows from (5.29) that

Ȳ0 = 9.74 and T0 = ln

[
5∑

t=1

(Yt − 9.74)2

4

]
= ln .113 = −2.1804.

Combining these complete sample values with the subgroup calculations in (5.43) and
(5.44) via the jackknifing process in (5.30) and (5.31), we obtain

A1 = 5(.6966) − 4(.6326) = .9526, A2 = 5(.6966) − 4(.9002) = −.1178,

A3 = 5(.6966) − 4(.4055) = 1.861, (5.45)

A4 = 5(.6966) − 4(.6678) = .8118, A5 = 5(.6966) − 4(.8076) = .2526
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and

B1 = 5(−2.1804) − 4(−3.9120) = 4.746,

B2 = 5(−2.1804) − 4(−1.9484) = −3.1084,

B3 = 5(−2.1804) − 4(−2.0662) = −2.6372, (5.46)

B4 = 5(−2.1804) − 4(−1.9027) = −3.2912,

B5 = 5(−2.1804) − 4(−2.0662) = −2.6372.

From (5.32), (5.33), and (5.45), we see that

Ā = .7520 and V1 =
5∑

i=1

(Ai − Ā)2

5(4)
= .1140.

Similarly, from (5.32), (5.34), and (5.46), we have

B̄ = −1.3856 and V2 =
5∑

j=1

(Bj − B̄)2

5(4)
= 2.3664.

It then follows from (5.35) that

Q = .7520 − (−1.3856)

(.1140 + 2.3664)1/2
= 1.36.

(We note that the R command MillerJack(pokeweed$x, pokeweed$y) can also
be used to obtain the value Q = 1.36 for the (x, y) data in Table 5.2.)

Hence, from (5.36) and the R command pnorm( · ), we see that the low-
est significance level at which we can reject H0 in favor of γ 2 > 1 with the
observed value of the test statistic Q (i.e., the one-sided P -value) is approximately
1 − pnorm(1.36) = .0869. (Since the sample sizes m = n = 5 are small and
equal, we can also use the t-distribution with m + n − 2 = 5 + 5 − 2 = 8 degrees of
freedom to approximate the P -value. Using the R command pt(·), we have P -value
≈ 1 − pt(1.36, 8) = 1 - .8945 = .1055, in general agreement with the
normal approximation.) Thus, there is only mild evidence in the sample data to indicate
greater variability for the Kentucky pokeweed population.

Comments

16. Assumptions. Note that Assumptions A1, A2, and A4 do not impose the severe
condition that the two underlying populations have equal medians. Although
these assumptions do require that the two underlying populations have finite
fourth moments, this is not a serious restriction for most common data collection
settings. This means that the Miller procedures are applicable in more general
settings than the Ansari–Bradley procedures based on C (5.6). (See Comment 7.)
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17. Testing γ 2 Equal to Some Specified Value Other Than One. To test the
hypothesis γ 2 = γ 2

0 , where γ 2
0 is some specific positive number different

from 1, we obtain the modified observations Y ′
j = γ0Yj , j = 1, . . . , n , and

compute Q(5.35) using the X ’s and the Y ′’s (instead of the X ’s and the Y ’s).
The appropriate procedure (5.36), (5.37), or (5.38) may then he applied as
described.

18. Asymptotic Distribution-Freeness. Asymptotically (i.e., for infinitely large sam-
ples) the true level of the tests defined by (5.36), (5.37), and (5.38) will agree
with the nominal level α. Subject to Assumptions A1, A2, and A4, this asymp-
totic result does not depend on the underlying populations of the X ’s and Y ’s.
More precisely, subject to Assumptions A1, A2, and A4, Q(5.35) has an asymp-
totic N (0,1) distribution when H0 is true. Since this asymptotic distribution does
not depend on the underlying populations of the X ’s and Y ’s, we say that the
tests based on Q are asymptotically distribution-free. Of course, in practice, we
do not have the luxury of infinite samples. Thus, in any particular setting with m
and n large, although the level of any of the tests based on Q is not necessarily
exactly equal to the nominal level α, we hope it is close to it. The closeness of
this approximation depends on m , n , α, and the underlying populations, but, for
fixed α, the closeness generally improves as m and n increase, regardless of the
underlying populations. In the case of the Q tests, the reader is cautioned that the
question of how large m and n should be, in order for the normal approximation
to be good, is relatively unanswered. Exact null distribution tables for Q cannot
be provided for specified values of m and n , because the exact null distribution
of Q depends on the underlying X and Y populations; thus, exact critical points
would vary with the forms of the X and Y populations. The procedures (5.36),
(5.37), and (5.38) based on Q , therefore, are not (strictly) distribution-free.

19. Alternative Method of Calculation. For i = 1, . . . , m , Si is the natural log of
the sample variance for the (m − 1) X observations X1, . . . , Xi−1, Xi+1, . . . , Xm .
Similarly, for j = 1, . . . , n , Tj is the natural log of the sample variance for the
(n − 1) Y observations Y1, . . . , Yj−1, Yj+1, . . . , Yn . The following equivalent
formulas for D2

i (5.24) and E 2
j (5.25), namely,

D2
i =
∑m

s �=i X 2
s −
(∑m

s �=i Xs

)2

m − 1
m − 2

and

E 2
j =
∑n

t �=j Y 2
t −
(∑n

t �=j Yt

)2

n − 1
n − 2

,

are computationally more convenient than the definitions given in (5.24) and
(5.25), respectively.

20. General Jackknife Technique. The jackknife technique applied in this section
to the problem of testing two-sample dispersion hypotheses is a tool that
can be used successfully in certain statistical problems to accomplish two



5.2 Asymptotically Distribution-Free Jackknife Test 177

goals: (a) reducing the bias of point estimators and (b) generating broadly
applicable and reasonably powerful test procedures for problems where classical
test procedures are sensitive to nonnormality of the underlying populations.
Although the jackknife technique is not always effective in achieving these
goals (see Miller (1964)), it performs well in the two-sample dispersion
problem, providing us with asymptotically distribution-free test procedures
for a problem where deviations from normality of the underlying populations
can be disastrous for the classical F-test for equal variances (cf. Box (1953),
Shorack (1969), and Comment 26) and where distribution-free rank tests for
the problem are limited in their applicability (see Comment 7 and Moses
(1963)). Miller (1968) discussed in detail the advantages gained by applying
the jackknife technique to this two-sample dispersion problem. (See also
Comment 21.)

21. Motivation. The jackknife is an extension of an idea due to Quenouille (1949)
and is designed to reduce the bias of an estimator. Suppose we have a sample
of N independent observations, each from the same distribution that depends
on an unknown parameter θ . Assume that we have a general method for
estimating θ and let θ̂ denote this estimator based on all N observations. Divide
the data into n groups of size k . Let θ̂−i , i = 1, . . . , n , denote the estimator
of θ obtained by deleting the i th group and estimating θ from the remaining
(n − 1)k observations. Define θ̃i = n θ̂ − (n − 1)θ̂−i . The jackknife estimator
of θ is θ̃ =∑n

i=1 θ̃i /n . In certain situations, the jackknife can be shown to be
less biased than the estimator θ̂ . Tukey (1958, 1962) extended the jackknife to
construct approximate significance tests and confidence intervals for θ .

The traditional estimator of the variance of θ̃ , in the case of k = 1, is

V̂ 2 = 1

N (N − 1)

N∑
i=1

(θ̂−i − θ̂ )2.

Asymptotic 100(1 − α)% confidence intervals for θ are then

(θ̃ − zα/2V̂ , θ̃ + zα/2V̂ ).

Under certain conditions (i.e., when θ̂ is not “sufficiently smooth”), V̂ 2 may
be inconsistent. One such situation is when θ̂ is a sample quantile (see, e.g.,
Miller (1974)). To overcome this difficulty, Shao (1988), Shao and Wu (1989),
and Wu (1990) have studied a “delete-d” jackknife variance estimator. See also
Maesono (1996) for further details.

In the dispersion problem, Miller jackknifed the natural logs of the sample
variances rather than the sample variances themselves because the natural log
transformation tends to stabilize the variance and create a distribution that
is “closer” to the normal distribution. The statistic B̄ (5.32) is an estimator
of ln{var(Y )}, the statistic Ā (5.32) is an estimator of ln{var(X )}, and
Ā − B̄ estimates ln{var(X )/var(Y )} = ln γ 2. The quantity (V1 + V2)

1/2 in the
denominator of Q (5.35) is an estimator of the standard deviation of Ā − B̄ . If,
for example, the X ’s are more disperse than the Y ’s, Ā − B̄ would tend to be
large, and this is partial motivation for procedure (5.36).
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22. Generalization. In its most general formulation (see Comment 21), the jackknife
process can be applied to any randomly selected partition of the data set into
subsets of size k each, where k can be any positive integer that is a factor of
the number of observations in the data set. In fact, Miller (1968) discussed the
test for dispersion based on jackknifing the natural logs of the sample variances
in the context of this most general formulation. However, for any integer
k > 1, the associated Miller jackknifed variances procedures have the rather
severe deficiency that it is possible for two different people to arrive at different
conclusions when analyzing the same data set with the same test and at the same
significance level. This possibility arises because of the variety of ways that
the data set could be randomly partitioned into subsets of size k each. To avoid
this undesirable feature, we have chosen to discuss the jackknifed variances
procedure only for k = 1. In this case, there is no flexibility in partitioning
a data set and the associated Miller test procedures are unambiguous in their
conclusions.

23. t Distribution Approximation. The standard normal percentiles used in (5.36)
to (5.38) should be replaced by the corresponding percentile points for a t
distribution with m + n − 2 degrees of freedom only when m and n are small
and equal. For other situations, the matter of which t distribution (i.e., what
degrees of freedom) should be used to find the approximating percentile is
somewhat ambiguous.

24. Point Estimators and Confidence Intervals and Bounds for γ 2. Point estimators
of and approximate confidence intervals and bounds for γ 2 can be readily
obtained from the jackknife procedures. In particular, the estimator for γ 2

associated with the jackknifed variances procedures is

γ̃ 2 = eĀ−B̄ . (5.47)

Moreover, an asymptotically distribution-free confidence interval for γ 2, with
approximate confidence coefficient 1 − α, based on the jackknifed variances
procedures is given by

(γ 2
L , γ 2

U ), (5.48)

where
γ 2

L = e[(Ā−B̄)−zα/2(V1+V2)1/2] (5.49)

and
γ 2

U = e[(Ā−B̄)+zα/2(V1+V2)1/2]. (5.50)

With γ 2
L and γ 2

U given by (5.49) and (5.50), we have

Pγ 2{γ 2
L < γ 2 < γ 2

U } ≈ 1 − α. (5.51)

The corresponding asymptotically distribution-free approximate 100 (1 − α)%
lower and upper confidence bounds for γ 2 based on the jackknifed variances
procedures are

γ ∗2
L = e[(Ā−B̄)−zα(V1+V2)1/2] (5.52)
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and
γ ∗2

U = e[(Ā−B̄)+zα(V1+V2)1/2], (5.53)

respectively, satisfying

Pγ 2{γ ∗2
L < γ 2} ≈ 1 − α and Pγ 2{γ 2 < γ ∗2

U } ≈ 1 − α. (5.54)

For the armyworm/pokeweed data in Example 5.2, the point estimate of γ 2 is
γ̃ 2 = e[.7520−(−1.3856)] = e2.1376 = 8.479 and, with α = .0548, the approximate
94.52% lower confidence bound for γ 2 is

γ ∗2
L = e[(.7520−(−1.3856))−1.6(.1140+2.3664)1/2]

= e−.3823 = .6823.

25. Asymptotic Coverage Probability. Asymptotically (i.e., for infinitely large sam-
ples), the true coverage probabilities of the confidence interval defined by (5.48)
and the confidence bounds defined by (5.52) and (5.53) will agree with the nom-
inal confidence coefficient 1 − α. Subject to Assumptions A1, A2, and A4, this
asymptotic result does not depend on the form of the distribution function H (·)
in (5.2). Hence, we say that the interval given by (5.48) and the bounds given
by (5.52) and (5.53) are an asymptotically distribution-free confidence interval
and asymptotically distribution-free confidence bounds, respectively, for γ 2.

The interval (5.48) has also been defined so that it is “asymptotically
symmetric.” Here, the word symmetric refers to the equal-tail probabilities
of α/2. The 1 − α confidence interval for γ 2 defined by (5.48) can be called
asymptotically symmetric, because it is constructed so that Pγ 2(γ 2

U ≤ γ 2) ≈
Pγ 2(γ 2

L ≥ γ 2) ≈ α/2. The approximation is a result of approximating the true
distribution of the statistic Ā − B̄ by its asymptotic normal distribution.

26. Lack of Robustness of the Classical F-Test for Equal Variances. The classical
normal theory F-test for equality of variances is not robust with respect to the
assumption of normality in the sense that when the underlying populations are
not normal, the true level of an F-test that is supposed to be of size α may be
quite far from α. Box (1953) gave examples in which the level of the F-test
is specified to be .05, although the actual level is as large as .166 or as small
as .0056. Furthermore, there exist nonnormal populations in which, even with
large samples, the level of the F-test will not be what it is supposed to be.
This nonrobustness, which was pointed out as early as 1931 by Pearson (1931),
has been emphasized by Box (1953) and more recently by Miller (1968) and
Shorack (1969).

Properties

1. Consistency. The tests given by (5.36), (5.37), and (5.38) are consistent against
the alternatives γ 2 >, <, and �= 1, respectively.

2. Asymptotic Normality. See Miller (1968).

3. Efficiency. See Miller (1968) and Section 5.5.
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Problems

13. The data in Table 5.3 are a portion of those collected by Bugyi et al. (1969) in a study concerned
with ascertaining sodium ion content in erythrocytes (red blood cells). Such determinations are
helpful in the diagnoses of certain diseases, where merely knowing the sodium ion content in
plasma does not provide sufficient information. However, erythrocyte sodium ion determination
is extremely variable and subject to error. This prompted the authors to propose using the
flame photometric method to determine sodium ion content in erythrocytes, with the hope of
providing better accuracy than can be obtained with the inefficient procedures commonly used
at that time.

One of the ways to assess the accuracy of the proposed method is to compare the variation
in erythrocyte sodium ion measurements with the variation in plasma sodium ion determina-
tions, where it is known that the measurement variation for the flame photometric method is
acceptably low. Sodium ion determinations were obtained by the flame photometric method
on each of 10 plasma and 10 erythrocyte samples. Table 5.3 gives the sodium ion content in
mequiv/l for the 20 samples.

Use a Miller jackknife procedure to test the hypothesis of equal dispersions for the plasma
and erythrocyte sodium ion measurements against the alternative of interest in the study. Find
the approximate P -value for the test.

14. Consider the chorioamnion permeability data given in Table 4.1. Find the approximate P -value
for the Miller jackknife test of the hypothesis of equal dispersions versus the alternative that
the variation in tritiated water diffusion across human chorioamnion is different at term than at
12–26 weeks gestational age. Compare your findings with those obtained in Problem 1 using
an Ansari–Bradley procedure to analyze the data.

15. Consider the television-viewing behavior data in Table 4.4. Find the approximate P -value for
the Miller jackknife test of equal dispersions versus the alternative that there is more variability
in the time spent in the room after witnessing the violent behavior for those children who had
previously watched the Karate Kid than for those children who had previously watched parts
of the 1984 Summer Olympic Games. Comment on your analysis in conjunction with the
findings of Problems 3 and 4.5.

16. Consider the alcoholic intake data in Table 4.2. Find the approximate P -value for the Miller
jackknife test of whether there is any difference in dispersions for the control and SST data.
Comment on your analysis relative to the findings in Problem 9 and Example 4.2.

17. For the sodium ion determination data of Table 5.3, compute the value of the estimator γ̃ 2

defined in expression (5.47).

18. For the chorioamnion permeability data given in Table 4.1, obtain the value of the estimator
γ̃ 2 defined in expression (5.47).

Table 5.3 Sodium Ion Content (mequiv/l)

Plasma Erythrocytes

147.0 10.3
147.0 12.2
146.0 16.5
145.0 19.3
146.5 8.3
161.0 15.2
141.0 27.0
146.5 26.3
145.0 17.5
153.5 21.7

Source: H. I. Bugyi, E. Magnier, W. Joseph, and G. Frank (1969).
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19. Obtain the value of the estimator γ̃ 2 defined in expression (5.47) for the television-viewing
behavior data in Table 4.4.

20. Compute the value of the estimator γ̃ 2 defined in expression (5.47) for the alcoholic intake
data in Table 4.2.

21. With respect to the chorioamnion permeability data given in Table 4.1, find an approximate
96.6% confidence interval for γ 2 utilizing the procedure discussed in Comment 24.

22. Consider the alcoholic intake data in Table 4.2. Using the procedure discussed in Comment 24,
find an approximate 93.72% confidence interval for γ 2.

23. Consider the television-viewing behavior data in Table 4.4. Labeling the Olympic watchers
data as the X sample, use the procedure discussed in Comment 24 to find an approximate
98.96% upper confidence bound for γ 2.

24. Consider the sodium ion determination data of Table 5.3. Labeling the erythrocyte sodium
ion measurements as the X sample, use the procedure discussed in Comment 24 to find an
approximate 91.92% lower confidence bound for γ 2.

5.3 A DISTRIBUTION-FREE RANK TEST FOR EITHER
LOCATION OR DISPERSION (LEPAGE)

Hypothesis

Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples satisfying Assumptions Al
and A2 from continuous populations with distribution functions F and G , respectively,
satisfying the location-scale parameter model relationships in (5.2) and (5.3).

Under these assumptions, we are interested in assessing whether there are differ-
ences in either the location parameters (i.e., medians) θ1 and θ2 or the scale parameters
η1 and η2 for the X and Y populations. Thus, we are interested in testing the null
hypothesis H0 (5.1) versus the general alternative H1: [θ1 �= θ2 and/or η1 �= η2]. Note
that under the location-scale parameter model, as stated in (5.2) and (5.3), the null
hypothesis H0 (5.1) reduces to H0: [θ1 = θ2 and η1 = η2], corresponding to the asser-
tion that both the population location parameters and the population scale parameters are
equal.

Procedure

To compute the Lepage two-sample location-scale statistic D , order the combined sample
of N = (m + n) X -values and Y -values from least to greatest. Let Sj denote the combined
samples rank of Yj , for j = 1, . . . , n , and let W =∑n

j=1 Sj be the Wilcoxon rank sum
statistic defined in (4.3). In addition, for j = 1, . . . , n , let Rj be the score assigned to Yj

by the Ansari–Bradley scoring scheme discussed in the Procedure of Section 5.2 and let
C =∑n

j=1 Rj be the Ansari–Bradley scale statistic defined in (5.6). The Lepage rank
statistic is then defined by

D = [W − E0(W )]2

var0(W )
+ [C − E0(C )]2

var0(C )
, (5.55)

where E0(W ) and var0(W ) are the expected value and variance of W under H0

(5.1), as given in (4.7) and (4.8), respectively, and E0(C ) and var0(C ) are the
corresponding expected value and variance of C under H0 (5.1), as stated in (5.10) and
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(5.11), respectively, when N = (m + n) is an even number, or in (5.12) and (5.13),
respectively, when N is odd. Thus, if we let W ∗ (4.9) and C ∗ (5.20) represent the
standardized forms for the Wilcoxon rank sum statistic and Ansari–Bradley scale
statistic, respectively, then the Lepage statistic D can be written as

D = (W ∗)2 + (C ∗)2. (5.56)

To test H0 (5.1), corresponding to the equality of both the location and the scale
parameters for the X and Y populations, versus the general alternatives that the
location parameters are different or the scale parameters are different or both, cor-
responding to

H1 : [θ1 �= θ2 and/or η1 �= η2], (5.57)

at the α level of significance,

Reject H0 if D ≥ dα; otherwise do not reject, (5.58)

where the constant dα is chosen to make the type I error probability equal to α. The
constant dα is the upper α percentile for the null H0(5.1) distribution of D . Comment
28 explains how to obtain the critical value dα for sample sizes m and n and available
values of α.

Large-Sample Approximation

The large-sample approximation is based on the fact that when H0 (5.1) is true, the
statistic D has, as min(m , n) tends to infinity, a chi-square distribution with 2 degrees of
freedom (see Comment 31 for indications of the proof). The large-sample approximation
for the exact level α procedure in (5.58) is

Reject H0 if D ≥ χ2
2,α; otherwise do not reject, (5.59)

where χ2
2,α is the upper α percentile point of the chi-square distribution with 2 degrees

of freedom. To find χ2
2,α , we use the R command qchisq(1 - α, 2). For example, to

find χ2
2,.05 we apply qchisq(.95, 2) and obtain χ2

2,.05 = 5.991.

Ties

If there are ties among the X and/or Y observations, we modify the standardized Wilcoxon
rank sum statistic W ∗ and the standardized Ansari–Bradley scale statistic C ∗ in the man-
ners prescribed for the large-sample approximations in the Ties portions of Sections 4.1
and 5.1, respectively. When applying either the small-sample procedure in (5.58) or the
large-sample approximation in (5.59), the Lepage statistic D should be computed using
these ties-modified versions of W ∗ and C ∗. The corresponding modified version of proce-
dure (5.58) in the case of ties among the X and/or Y observations is only approximately,
and not exactly, of significance level α. (To get an exact level α test even in this tied
setting, see Comment 32.)
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EXAMPLE 5.3 Effect of Maternal Steroid Therapy on Platelet Counts of
Newborn Infants.

Autoimmune thrombocytopenic purpura (ATP) is a disease in which the patient produces
antibodies to his/her own platelets. Due to transplacental passage of antiplatelet anti-
bodies during pregnancy, children of women with ATP are often born with low platelet
counts. For this reason, there is medical concern that a vaginal delivery for a mother
with ATP could result in intracranial hemorrhage for the infant. However, the proper
obstetrical management of pregnant women with ATP is controversial. Most doctors have
advocated cesarean section as the preferable method of delivery for mothers with ATP.
Others suggest that cesarean section, with its obvious complications for both mother and
infant, be avoided unless there is some additional obstetrical reason for it. Karpatkin,
Porges, and Karpatkin (1981) studied the effect of administering the corticosteroid
prednisone to pregnant women with ATP with the intent of raising the infants’ platelet
counts to safe levels during their deliveries. The rationale for this treatment is the fact
that steroids, in general, increase the platelet counts in patients with ATP by blocking
splenic destruction of antibody-coated platelets. In theory, then, the corticosteroid
prednisone should cross the placenta, enter the infant’s circulation, and prevent splenic
removal of those infant’s platelets that are coated by the mother’s antibodies.

The data in Table 5.4 are a subset of the data obtained by Karpatkin et al. in their
study of the effect that administration of prednisone to pregnant women with ATP had
on their infants’ platelet counts. All the infants included in this example were delivered
vaginally. Table 5.4 gives the platelet counts (per cubic millimeter) of 10 infants whose
mothers received the steroid prednisone prior to delivery and 6 infants whose mothers
were not treated with prednisone prior to delivery. All 16 mothers in the study were
diagnosed with ATP.

The primary interest in the study is in whether or not the predelivery administration
of prednisone typically leads to an increased newborn platelet count. Thus, the principal
statistical issue in the study is that of a possible difference in locations for the prednisone
and nonprednisone populations. However, there is some concern that the administration
of predelivery prednisone could also lead to a rather large increase in variability in the
newborn platelet counts. (Such a finding would certainly affect our interpretation of any
possible increase in typical platelet count resulting from the prednisone.) As a result, we
will apply the Lepage test procedure to test H0 (5.1) versus the general alternative H1

5.57). For the purposes of illustration, we consider the exact procedure (5.58) with level of

Table 5.4 Platelet Counts of Newborn Infants (per Millimeter3)

Mothers given prednisone Mothers not given prednisone

120,000 12,000
124,000 20,000
215,000 112,000
90,000 32,000
67,000 60,000
95,000 40,000

190,000
180,000
135,000
399,000

Source: M. Karpatkin, R. F. Porges, and S. Karpatkin (1981).
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significance α = .02. For convenience, we take the infant platelet count data for mothers
given prednisone to be the Y sample (n = 10) and the corresponding control (nonpred-
nisone) data to be the X sample (m = 6). Using the R command cLepage(.02, 6,

10), we obtain d.02 = 6.903 so that procedure (5.58) is

Reject H0 if D ≥ 6.903. (5.60)

To calculate D , we need first to calculate the standardized versions of the Wilcoxon
rank sum and Ansari–Bradley statistics. Proceeding as in (4.3), we note that the combined
samples ranks for the 10 Y observations are 10, 11, 16, 7, 6, 8, 14, 13, 12, and 15, yielding
a value of

W = 10 + 11 + 16 + 7 + 6 + 8 + 14 + 13 + 12 + 15 = 112

for the Wilcoxon rank sum statistic. Since there are no ties among the 16 X and Y
observations, it follows from (4.7), (4.8), and (4.9) that the standardized form of W for
the data in Table 5.4 is

W ∗ = 112 − {10(6 + 10 + 1)/2}
{6(10)(6 + 10 + 1)/12}1/2

= 2.929. (5.61)

For the calculation of the standardized Ansari–Bradley statistic C ∗, we observe that
the Ansari–Bradley scores (as defined in the Procedure of Section 5.1) for the 10 Y
observations are 7, 6, 2, 7, 6, 8, 3, 4, 5, and 1. From (5.6), this produces a value of

C = 7 + 6 + 2 + 7 + 6 + 8 + 3 + 4 + 5 + 1 = 49.

Since N = 6 + 10 = 16 is an even number and there are no ties among the 16 X and Y
observations, it follows from (5.10), (5.11), and (5.14) that the standardized form of C
for the data in Table 5.4 is

C ∗ = 49 − {10(16 + 2)/4}{
10(6)(16 + 2)(16 − 2)

48(16 − 1)

}1/2 = .873. (5.62)

Using these values of W ∗ (5.61) and C ∗ (5.62) in (5.56) yields

D = (2.929)2 + (.873)2 = 9.34, (5.63)

which, in view of expression (5.60), tells us to reject H0 at the α = .02 level, because
D = 9.34 > d.02 = 6.903. Hence, there is rather strong evidence that there are dif-
ferences in locations or scales (or both) between the prednisone and control infant
platelet count populations. In fact, using the R command pLepage(platelet.counts$x,
platelet.counts$y), the P -value for these data with observed value D = 9.34 is given by
P -value = pLepage(platelet.counts$x, platelet.counts$y) = .0035, providing an even
stronger statement in favor of the alternative H1 (5.57).

For the large-sample approximation, we see from (5.59) that the approximate P -value
for these data is

P -value ≈ P(Q ≥ 9.34),



5.3 A Distribution-Free Rank Test for Either Location or Dispersion (Lepage) 185

where Q has a chi-square distribution with 2 degrees of freedom. This approximate P -
value is then given by 1 − pchisq(9.34, 2) = 1 − .9906 = .0094, in general agree-
ment with the exact P -value of .0035 previously obtained.

We conclude this example by noting that the large value of D is due primarily
to a large value of W ∗. This would suggest intuitively that the rejection of H0 is due
primarily to a difference in locations between the infant platelet counts for the prednisone
and control populations. However, we emphasize that such a conclusion is not statistically
justified through the application of the general Lepage procedure (5.58). The only valid
conclusion based on the Lepage procedure is that of the general alternative H1 (5.57).
(If you do, however, apply the Wilcoxon rank sum procedure of Section 4.1 to the
data in Table 5.4, you would be able to conclude that there is, indeed, a difference in
locations between the infant platelet counts for the prednisone and control populations.
In view of this fact, would it be legitimate to then apply the Ansari–Bradley procedure
of Section 5.1 directly to the data in Table 5.4 to test for possible scale differences in
the two populations?)

Comments

27. Motivation for the Test. From Section 4.1 we know that a large value of (W ∗)2

is indicative of a possible difference in locations for the X and Y populations.
We also know from Section 5.1 that a large value of (C ∗)2 is indicative of a
possible difference in dispersions for the X and Y populations. Since D (5.56)
will be large if and only if (W ∗)2 is large or (C ∗)2 is large or both, then such
a large value of D is indicative of θ1 �= θ2 or η1 �= η2 or both. This serves as
partial motivation for the test procedure given by (5.58).

28. Derivation of the Distribution of D under H0 (No-Ties Case). Under H0 (5.1),
each of the

(
N
n

)
possible “meshings” of the X ’s and Y ’s has probability 1/

(
N
n

)
.

This fact can be used to obtain the null distribution of D (5.56). We illustrate the
steps involved in constructing this null distribution for the simple case m = 2,
n = 2. Since N = 4, we must consider

(
4
2

) = 6 possible meshings of the X and Y
observations. For this setting, it follows from (4.7) and (4.8) that E0(W ) = 2(2 +
2 + 1)/2 = 5 and var0(W ) = 2(2)(2 + 2 + 1)/12 = 5

3 . Similarly, from (5.10)
and (5.11), we have E0(C ) = 2(4 + 2)/4 = 3 and var0(C ) = [2(2)(4 + 2)(4 −
2)]/48(4 − 1) = 1

3 . Thus, for m = n = 2, we have (W ∗)2 = 3(W − 5)2/5 and
(C ∗)2 = 3(C − 3)2. Using these facts and the same approach taken in Com-
ments 4.3 and 5.4 for the calculations of W and C , respectively, the values of
D for these six meshings are given in the following table.

Meshing Probability D = (W ∗)2 + (C ∗)2

XXYY 1
6 2.4

XYXY 1
6 .6

YXXY 1
6 3.0

XYYX 1
6 3.0

YXYX 1
6 .6

YYXX 1
6 2.4
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Thus, for example, the probability is 1
3 under H0 that D is equal to .6,

since D = .6 when either of the exclusive meshings XYXY or YXYX occurs and
each of these meshings has null probability 1

6 . Proceeding in the same manner
for all possible values for D and simplifying, we obtain the null distribution.

Value of D Probability under H0

0.6 1
3

2.4 1
3

3.0 1
3

Thus, for example, the probability under H0 that D is greater than or equal
to 3 is, therefore, P0(D ≥ 3) = 1

3 , which implies that d1/3 = 3 for the setting
m = n = 2.

Note that we have derived the null distribution of D without specifying the
form of the common (under H0) underlying X and Y populations beyond the
point of requiring that they be continuous. This is why the test procedure based
on D is called a distribution-free procedure. From the null distribution of D
we can determine the critical value dα and control the probability α of falsely
rejecting H0 when H0 is true, and this error probability does not depend on the
specific form of the common underlying distribution for the X and Y populations.

For given sample sizes m and n , the R command cLepage(α,m,n) can
be used to find the available upper-tail critical values dα for possible values
of D . For a given available significance level α, the critical value dα then
corresponds to P0(D ≥ dα) = α and is given by cLepage(α,m,n) = dα. Thus,
for example, for m = 5 and n = 8, we have P0(D ≥ 6.875) = .0194 so that
d.0194 = cLepage(.0194, 5, 8) = 6.875 for m = 5 and n = 8.

29. Equivalent Form. In computing the Wilcoxon rank sum statistic W (4.3),
we use the combined samples ranks of the Y observations. In computing
the Ansari–Bradley statistic C (5.6), we use the scores assigned to the Y
observations by the Ansari–Bradley outside-in scoring scheme. However, both
W and C , and therefore D (5.55), can be computed solely from knowledge of
the combined samples ranks of the Y observations. This follows directly from
the fact that the Ansari–Bradley statistic can also be represented (in the case
of no tied X and/or Y observations) as

C = n(N + 1)

2
−

n∑
j=1

∣∣∣∣Sj − N + 1

2

∣∣∣∣ , (5.64)

where, as in the calculation of W , Sj is the combined samples rank of Yj , for
j = 1, . . . , n . In fact, both W and C are members of a very large class of statis-
tics based solely on the combined samples ranks in a special way. This collection
is referred to as the class of two-sample linear rank statistics, and they have
been extensively studied in the literature (see, e.g., Randles and Wolfe (1979)).

Thus, although the Ansari–Bradley scoring scheme is useful in helping
to motivate the statistic C as one appropriate for assessing possible scale
differences in the X and Y populations, we could, in view of (5.64), just as
easily have initially defined C in terms of the combined samples ranks as we
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did for W (4.3). This means, of course, that D (5.55) is also a function of the
X and Y observations only through their combined samples ranks.

30. Assumptions. We can use the Lepage test procedure in (5.58) without even
requiring that the variances for the X and Y populations exist. Indeed, neither
Assumptions A1 and A2 nor the location-scale parameter model in (5.2) and
(5.3) specify anything about the existence of even the first moments of the X
and Y populations. However, when the first two moments (and, therefore, the
variance) for the underlying distributional model H (u) in (5.2) exist, we see
from the equal-in-distribution statement in (5.3) that

var

(
X

η1

)
= var

(
Y

η2

)
,

which, in turn, implies that

var(X )

η2
1

= var(Y )

η2
2

.

Thus, when the variances exist, we see that γ 2 = [η2
1/η

2
2] = [var(X )/var(Y )].

It also follows from (5.3) that

E

[
X − θ1

η1

]
= E

[
Y − θ2

η2

]
,

provided only that the first moment exists for H (u) in (5.2). Thus, if this first
moment exists, we have the relationship

E [Y ] − θ2 = η2

η1
{E [X ] − θ1}.

As a result, if γ 2 = η2
1/η

2
2 = 1, then E [Y ] − E [X ] = θ2 − θ1, corresponding

to the standard interpretation of a location-only difference between two
populations. This is the setting previously considered in Chapter 4 with the
identification � = θ2 − θ1. (We emphasize, however, that the existence of the
first moment is not a necessary assumption for any of the statistical procedures
developed in Chapter 4.)

31. Large-Sample Approximation. We have previously seen that both W ∗ (see
Comment 4.6) and C ∗ (see Comment 9) have asymptotic standard normal distri-
butions under H0 (5.1) as min(m , n) becomes infinite. Moreover, it can be shown
(see, e.g., Lepage (1971)) that W ∗ and C ∗ are asymptotically independent under
H0 (5.1) as min(m , n) becomes infinite. The conclusion that the statistic D (5.56)
has, as min(m , n) tends to infinity, an asymptotic distribution under H0 (5.1) that
is chi-square with 2 degrees of freedom then follows from the properties (i) the
square of a standard normal variable has a chi-square distribution with 1 degree
of freedom and (ii) the sum of independent chi-square variables with degrees of
freedom f1 and f2 has a chi-square distribution with f1 + f2 degrees of freedom.

32. Exact Conditional Distribution of D with Ties. To have a test with exact
significance level even in the presence of ties among the X ’s and/or Y ’s,
we need to consider all

(
N
n

)
possible assignments of the N observations,
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with n observations serving as Y ’s and m observations serving as X ’s. As
in Comment 28, it still follows that under H0 (5.1), each of the

(
N
n

)
possible

“meshings” of the X ’s and Y ’s has probability 1/
(

N
n

)
. The only difference in

the case of ties (see Ties in this section) is that we now use average scores and
the appropriately modified var0(C ) in the computation of C ∗ and average ranks
and the appropriately modified var0(W ) in the computation of W ∗ to calculate
the value of D for each of these

(
N
n

)
meshings leading to the tabulation of the

exact conditional null distribution of D .
An example illustrating how to obtain such a conditional null distribution of

D for a specific case of tied observations is not included here, because the details
are much the same as those provided in Comments 4.5 and 11 for the conditional
null distributions of W and C , respectively, in the presence of tied observations.

33. More General Alternatives. In his original discussion of the test procedure
based on D , Lepage (1971) considered a slightly more general setting than
that dictated by the location-scale parameter model in (5.2). In addition to
Assumptions A1 and A2, he required that the X distribution function F and
the Y distribution function G be related by the equation

G(t) = F (at + b), for every t , (5.65)

for some constants a > 0 and −∞ < b < ∞. He then considered tests of
H ∗

0 : [a = 1, b = 0] versus H ∗
1 : [a �= 1 or b �= 0 or both]. His null hypothesis H ∗

0
is, of course, identical to H0 (5.1) considered in this section. However, his alter-
native H ∗

1 is more general than the location-scale parameter alternative H1 (5.57)
discussed here. The alternative H1 (5.57) represents a slightly reduced subset of
H ∗

1 corresponding to the identifications a = η1/η2 and b = (η2θ1 − η1θ2)/η2.

34. Consistency of the D Tests. Let δ∗ = [P(X < Y ) − 1
2 ] and �∗

θ = [P(X >

Y > θ) + P(X < Y < θ) − 1
4 ]. Under the minimal Assumptions A1 and A2

only, the test procedure (5.58) based on D is consistent if either δ∗ �= 0 or
θ1 = θ2 = θ and �∗

θ �= 0. (See Comments 4.14 and 14.)
Under Assumptions A1, A2, and the additional general distributional

relationship given by (5.65), the test procedure (5.58) based on D is consistent
against any alternative for which either a �= 1 or b �= 0.

Properties

1. Consistency. For our statement we consider the more stringent location-scale
parameter model described in (5.2). Then the test defined by (5.58) is consistent
against alternatives for which either η1 �= η2 or θ1 �= θ2. (See also Comment 34.)

2. Asymptotic Chi-Squareness. See Lepage (1971) and Comment 31.

3. Efficiency. See Section 5.5.

Problems

25. It has long been generally accepted by medical doctors that exercise tends to stimulate the
release of growth hormones in adolescents. However, little previous research had been directed
toward assessment of possible effects that various medications might have on this phenomenon.
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This fact led Falkner et al. (1981) to investigate whether the use of the drug clonidine to
treat hypertension in adolescents has any effect on this exercise-induced release of growth
hormones. Two groups of adolescents were involved in the study. The first was a control
group consisting of 10 teenagers who had been diagnosed as hypertensive but were not being
treated with clonidine. (Note that the “control” group considered by Falkner et al. included an
additional seven nonhypertensive teenagers. In order not to possibly confound the effects of
hypertension itself and the treatment clonidine on the release of the growth hormone during
exercise, these seven subjects are not included in the control group presented in the problem.
In addition, two subjects studied both as controls and again later after clonidine treatment
are included here only in the control sample.) The second treatment group consisted of 13
hypertensive teenagers who were being treated with clonidine.

The experiment proceeded as follows. First, the basal level of growth hormone in the
blood was measured for each of the subjects prior to exercising. Then each subject exercised
on a treadmill until attaining a heart rate of 180–200 beats/min, at which time the blood level
of growth hormone was once again obtained. The data in Table 5.5 represent these pre- and
postexercise growth hormone blood levels (ng/ml) for the 23 subjects in the study.

Use an appropriate nonparametric test procedure to assess whether there are signifi-
cant location or dispersion differences between the control hypertension population and the
clonidine-treated population in their increases in growth hormone levels following exercise.
Find the approximate P -value for the test.

26. In Example 5.3 we used a Lepage test procedure to assess whether or not the administration
of the corticosteroid prednisone to pregnant women with ATP resulted in any location or
dispersion changes in the platelet counts of their newborn infants. It would also be of interest
to know whether there were any baseline (predelivery) differences in the platelet counts of
those mothers in the study who were given the prednisone and those who served as the

Table 5.5 Growth Hormone Level (ng/ml)

Preexercise Postexercise

Control
1 1.3 19.0
2 1.3 40.0
3 5.8 3.8
4 2.0 6.5
5 2.7 16.0
6 1.7 13.0
7 1.8 18.0
8 1.7 2.6
9 1.8 18.0

10 4.7 5.8
Clonidine-treated

1 1.2 5.1
2 1.2 7.2
3 5.8 14.0
4 .3 4.0
5 3.3 25.0
6 2.2 15.0
7 4.1 10.0
8 1.2 7.6
9 6.4 10.0

10 1.8 10.0
11 1.8 8.0
12 5.2 40.0
13 1.3 21.0

Source: B. Falkner, G. Onesti, T. Moshang, Jr., and D. T. Lowenthal (1981).
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Table 5.6 Maternal Platelet Counts (per mm3)

Mothers given prednisone Mothers not given prednisone

12,000 15,000
25,000 44,000
30,000 52,000
38,000 64,000
50,000 65,000
80,000 80,000
85,000

126,000
130,000
180,000

Source: M. Karpatkin, R. F. Porges, and S. Karpatkin (1981).

no-prednisone control group. The platelet count (per cubic millimeter) data for the mothers
are given in Table 5.6.

Find the P -value for an appropriate nonparametric test procedure to assess whether are
any significant location or dispersion differences in the predelivery maternal platelet counts
for the control and prednisone-treated groups.

27. When there are no tied X and/or Y observations, show that the representation for C given in
(5.64) in Comment 29 is indeed equivalent to the original definition of C in (5.6).

28. Generate the exact null distribution of D for the setting m = 2, n = 3. (See Comment 28.)

29. Consider the general relationship between the distribution functions for the X and Y popu-
lations prescribed in (5.65) of Comment 33. Verify that the location-scale parameter model
relationship given in (5.2) corresponds to the special case of (5.65) with a = η1/η2 and
b = (η2θ1 − η1θ2)/η2.

30. Consider the television-viewing behavior data in Table 4.4. For these data, find the approximate
P -value for an appropriate test of whether there are either location or dispersion differences
in the time spent in the room after witnessing the violent behavior of those children who had
previously watched the Karate Kid versus those children who had previously watched parts
of the 1984 Summer Olympic Games. Comment on your finding in view of the results of
Problems 3 and 4.5.

31. Consider the alcoholic intake data in Table 4.2. For these data, find the P -value for an appro-
priate test of whether there are either location or dispersion differences between the control
and SST data. Discuss the result in conjunction with the previous findings in Example 4.2 and
Problem 9.

32. Consider the following two-sample data for m = 3, n = 3: X1 = −3.7, X2 = 4.6, X3 = 1.5,
Y1 = 1.5, Y2 = 4.6, Y3 = 1.5. Using the approach discussed in Comment 32, find the exact
conditional null distribution of the Lepage statistic D (5.55). Compare and contrast the upper
α = .10 percentile for this exact conditional null distribution with the corresponding upper
α = .10 percentile for the null distribution of D for m = n = 3 and no tied observations.

5.4 A DISTRIBUTION-FREE TEST FOR GENERAL
DIFFERENCES IN TWO POPULATIONS
(KOLMOGOROV–SMIRNOV)

Hypothesis

Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples satisfying Assumptions
A1 and A2 from continuous populations with distribution functions F and G , respectively.
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Under these assumptions we are interested in assessing whether there are any differences
whatsoever between the X and Y probability distributions. Thus, we are interested in
testing the null hypothesis H0 (5.1) against the most general alternative possible, namely,

H1 : [F (t) �= G(t) for at least one t]. (5.66)

Procedure

To compute the two-sided two-sample Kolmogorov–Smirnov general alternative statistic
J , we first need to obtain the empirical distribution functions for the X and Y samples.
For every real number t , let

Fm(t) = number of sample X ’s ≤ t

m
(5.67)

and

Gn(t) = number of sample Y ’s ≤ t

n
. (5.68)

(The functions Fm(t) and Gn(t) are called the empirical distribution functions for the X
and Y samples, respectively.) Let

d = greatest common divisor of m and n (5.69)

and set
J = mn

d
max

(−∞<t<∞)
{|Fm(t) − Gn(t)|}. (5.70)

The statistic J is the two-sided two-sample Kolmogorov–Smirnov statistic. To actually
calculate J for the given X and Y samples, we use the fact that Fm(t) and Gn(t) are step
functions changing functional values only at the observed X and Y sample observations,
respectively. Thus, if we let Z(1) ≤ · · · ≤ Z(N ) denote the N = (m + n) ordered values
for the combined sample of X1, . . . , Xm and Y1, . . . , Yn , then we can rewrite J (5.70) in
the computational form

J = mn

d
max

i=1,...,N
{|Fm(Z(i )) − Gn(Z(i ))|}. (5.71)

To test H0 (5.1), corresponding to identical X and Y probability distributions, versus
the general alternative H1 (5.66), corresponding to any possible difference between the
X and Y probability distributions, at the α level of significance,

Reject H0 if J ≥ jα; otherwise do not reject, (5.72)

where the constant jα is chosen to make the type I error probability equal to α. The
constant jα is the upper α percentile for the null H0(5.1) distribution of J . Comment
38 explains how to obtain the critical value jα for sample sizes m and n and available
values of α.
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Large-Sample Approximation

The large-sample approximation is based on the asymptotic distribution of J , suitably
normalized, as min(m , n) tends to infinity. Set

J ∗ =
(mn

N

)1/2
max

i=1,...,N
{|Fm(Z(i )) − Gn(Z(i ))|} = d

(mnN )1/2
J . (5.73)

As min(m , n) tends to infinity,

P0(J
∗ < s) −→

∞∑
k=−∞

(−1)k e−2k2s2
, 0 for s >, ≤ 0. (5.74)

Defining the function Q(s) by

Q(s) = 1 −
∞∑

k=−∞
(−1)k e−2k2s2

, s > 0, (5.75)

the large-sample approximation to procedure (5.72) based on (5.74) and (5.75) is

Reject H0 if J ∗ ≥ q∗
α; otherwise do not reject, (5.76)

where q∗
α is defined by

Q(q∗
α) = α. (5.77)

To find q∗
α , we use the R command qKolSmirnLSA(α). For example, to find q∗

.05, we
apply qKolSmirnLSA(.05) and obtain q∗

.05 = 1.358.

Ties

The empirical distribution functions Fm(t) and Gn(t), given by (5.67) and (5.68), respec-
tively, are well defined in the case of ties and no adjustments are necessary in the
calculation of J (5.70). (See Comment 39.) The test is then conducted using the same crit-
ical point jα (5.72) as specified for the untied case. This approach is conservative; it yields
a test with a significance level that does not exceed the nominal level α (see Hájek and
Šidák (1967, p. 123), Noether (1963), and Walsh (1963)). For different methods of treating
ties when using the Kolmogorov–Smirnov statistic J , see Hájek (1969, p. 134, 145).

EXAMPLE 5.4 Effect of Feedback on Salivation Rate.

The effect of enabling a subject to hear himself salivate while trying to increase or
decrease his salivary rate has been studied by Delse and Feather (1968). Two groups of
subjects were told to attempt to increase their salivary rates upon observing a light to the
left and decrease their salivary rates upon observing a light to the right. The apparatus
for collecting and recording the amounts of saliva was described by Delse and Feather
(1968) and also Feather and Wells (1966). Members of the feedback group received
a 0.2-s, 1000-cps tone for each drop collected, whereas members of the no-feedback
group did not receive any indication of their salivary rates. Table 5.7 gives differences of
the form mean number of drops over 13 increase signals minus mean number of drops
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Table 5.7 Mean Drop Differences

Feedback group No-Feedback group

−.15 2.55
8.60 12.07
5.00 .46
3.71 .35
4.29 2.69
7.74 −.94
2.48 1.73
3.25 .73

−1.15 −.35
8.38 −.37

Source: F. C. Delse and B. W. Feather (1968).

over 13 decrease signals for the feedback group and the no-feedback group, each group
consisting of 10 subjects.

Since both sample sizes are equal to 10, we arbitrarily choose to label the feedback
group data as the X sample and the no-feedback group data as the Y sample. Thus,
we have m = n = 10, N = (10 + 10) = 20, and d = 10. We simultaneously illustrate
the calculation of the values of the empirical distribution functions F10(t) and G10(t)
at the ordered combined sample values Z(1) ≤ · · · ≤ Z(20) from Table 5.7, as well as the
absolute differences |F10(Z(i )) − G10(Z(i ))|, in the following display.

i Z(i ) F10(Z(i )) G10(Z(i )) |F10(Z(i )) − G10(Z(i ))|

1 −1.15 1
10

0
10

1
10

2 −.94 1
10

1
10 0

3 −.37 1
10

2
10

1
10

4 −.35 1
10

3
10

2
10

5 −.15 2
10

3
10

1
10

6 .35 2
10

4
10

2
10

7 .46 2
10

5
10

3
10

8 .73 2
10

6
10

4
10

9 1.73 2
10

7
10

5
10

10 2.48 3
10

7
10

4
10

11 2.55 3
10

8
10

5
10

12 2.69 3
10

9
10

6
10

13 3.25 4
10

9
10

5
10

14 3.71 5
10

9
10

4
10

15 4.29 6
10

9
10

3
10

16 5.00 7
10

9
10

2
10

17 7.74 8
10

9
10

1
10

18 8.38 9
10

9
10 0

19 8.60 10
10

9
10

1
10

20 12.07 10
10

10
10 0
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For example, consider the evaluation of F10(Z(4)). We must count the number of
X ’s less than or equal to Z(4) = −.35, and divide this count by 10. From Table 5.7, we
find that only one of the X values (−1.15) is less than −.35, none is equal to −.35, and
thus F10(Z(4)) = 1

10 . Similarly, G10(Z(4)) is equal to {the number of Y ’s that are less than
or equal to −.35}/10. From Table 5.7, we find two Y -values (−.94 and −.37) that are
less than −.35 and one Y -value that is equal to −.35; thus, G10(Z(4)) = 3

10 . From this
computational Table for the |F10(Z(i )) − G10(Z(i ))| values, we find

max
i=1,...,20

{|F10(Z(i )) − G10(Z(i ))|} = 6
10 ,

corresponding to Z(12). It follows from (5.71) that J = [(10)(10)/10](6/10) = 6.
Applying the R command pKolSmirn(mean.drop$x,mean.drop$y), we find

that pKolSmirn(mean.drop$x,mean.drop$y) = P0(J ≥ 6) = .0524. That is, in
the notation of (5.72) with m = n = 10, we have j.0524 = 6. Thus, the lowest level at
which we can reject H0 (5.1) with our observed value of J = 6 (i.e., the P -value for the
data) using procedure (5.72) is .0524, indicating some marginal evidence in the samples
that feedback might have an effect on salivation rate.

To perform the large-sample approximation, we compute J ∗ (5.73). We find that
J ∗ = {10/[10(10)(20)]1/2}(6) = 1.34. Since qKolSmirnLSA(.0551) = J ∗ = 1.34,
the smallest significance level at which we reject H0, using the large-sample
approximation to the Kolmogorov–Smirnov test, is approximately .0551.

Comments

35. Motivation for the Test. The empirical distribution functions Fm(t) (5.67) and
Gn(t) (5.68) are estimators of the underlying distribution functions F (t) =
P{X ≤ t} and G(t) = P{Y ≤ t}, respectively. Thus, dJ /mn may be viewed as
an estimator of max−∞<t<∞ |F (t) − G(t)| = max−∞<t<∞ |P{X ≤ t} − P{Y ≤
t}|, and this parameter is zero when H0 (5.1) is true. Hence, large J values
indicate a deviation from H0 in the direction of the general alternative specified
by (5.66).

36. Equivalent Form. In the case of no ties among the N combined Z(i ) values, there
is an alternative counting formulation for the test statistic J (5.70). Define the
variables δi , i = 1, . . . , N , by

δi =
{

1, if Z(i ) is an X observation,

0, if Z(i ) is a Y observation.
(5.78)

Set

sj =
[

jm

N
− δ1 − · · · − δj

]
, j = 1, . . . , N . (5.79)

Then the Kolmogorov–Smirnov statistic J (5.70) can also be expressed as

J = (N /d) max{|s1|, . . . , |sN |}. (5.80)

(We note that, unlike expression (5.70), the formulation in (5.80) is not well
defined in the case of ties among the Z(i )’s.)
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37. Equal Sample Sizes. In settings where m = n , the computational expression for
J (5.71) can be simplified to

J = max
i=1,...,N

|Q(Z(i )) − S (Z(i ))|, (5.81)

where, for every real number t ,

Q(t) = mFm(t) = [number of sample X ’s ≤ t] (5.82)

and
S (t) = nGn(t) = [number of sample Y ’s ≤ t]. (5.83)

Thus, for the salivation data in Example 5.4, we have

J = |Q(Z(12)) − S (Z(12))| = |3 − 9| = 6,

in agreement with the value obtained via (5.71).

38. Derivation of the Distribution of J under H0 (No-Ties Case). The null (H0)
distribution of J in the case of no ties can be obtained by using the fact that
under H0 (5.1) all possible

(
N
n

)
meshings of the X ’s and Y ’s are equally likely,

each having probability 1/
(

N
n

)
. In the ensuing illustration, we derive the null

distribution of J (5.70) for the sample sizes m = 1, n = 3. Here, N = 4, d = 1,
and thus J = 3 maxi=1,...,4 |F1(Z(i )) − G3(Z(i ))|. We now list the

(
4
1

) = 4 possible
meshings, and for each of these meshings we give the associated values of
(F1(Z(1)), . . . , F1(Z(4))), the associated values of (G3(Z(1)), . . . , G3(Z(4))), and
finally the values of J . Thus, P0{J = 2} = ( 2

4

) = .5 and P0{J = 3} = .5.

Meshings (F1(Z(1)), . . . , F1(Z(4))) (G3(Z(1)), . . . , G3(Z(4))) J

XYYY (1,1,1,1)
(
0, 1

3 , 2
3 , 1
)

3

YXYY (0,1,1,1)
( 1

3 , 1
3 , 2

3 , 1
)

2

YYXY (0,0,1,1)
( 1

3 , 2
3 , 2

3 , 1
)

2

YYYX (0,0,0,1)
( 1

3 , 2
3 , 1, 1

)
3

For given sample sizes m and n , the R command cKolSmirn(α, m , n) can
be used to find the available upper-tail critical values jα for possible values of
J . For a given available significance level α, the critical value jα then corre-
sponds to P0(J ≥ jα) = α and is given by cKolSmirn(α, m , n) = jα . Thus, for
example, for m = 4 and n = 6, we have cKolSmirn(.04762,4,6) = 10 so
that P0(J ≥ 10) = .04762 and j.04762 = 10 for m = 4 and n = 6.

39. Ties. To illustrate how the computational formula for J given in expression
(5.71) is well defined in the case of ties, we consider the following artificial
set of tied data: X1 = 3, X2 = 3, X3 = 5, X4 = 7, X5 = 9 and Y1 = 3, Y2 = 4,
Y3 = 4, Y4 = 6, Y5 = 7, Y6 = 8, Y7 = 10, Y8 = 10, Y9 = 11, Y10 = 12. Here we
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have m = 5, n = 10, N = 15, and d = 5. Following the tabular approach of
Example 5.4 for computation of J , we obtain

i Z(i ) F5(Z(i )) G10(Z(i )) |F5(Z(i )) − G10(Z(i ))|

1 3 2
5

1
10

3
10

2 3 2
5

1
10

3
10

3 3 2
5

1
10

3
10

4 4 2
5

3
10

1
10

5 4 2
5

3
10

1
10

6 5 3
5

3
10

3
10

7 6 3
5

4
10

3
10

8 7 4
5

5
10

3
10

9 7 4
5

5
10

3
10

10 8 4
5

6
10

2
10

11 9 5
5

6
10

4
10

12 10 5
5

8
10

2
10

13 10 5
5

8
10

2
10

14 11 5
5

9
10

1
10

15 12 5
5

10
10 0

Thus, the empirical distribution function F5(t) for the X sample jumps from
0 to 2

5 at Z(1) = Z(2) = Z(3) = 3, since two of the five X values are 3’s. Similarly,
the empirical distribution function G10(t) for the Y sample jumps from 1

10 to 3
10

and 6
10 to 8

10 at Z(4) = Z(5) = 4 and Z(12) = Z(13) = 10, respectively, since there
are two 4’s and two 10’s among the Y observations. For these tied data, we find

max
i=1,...,15

|F5(Z(i )) − G10(Z(i ))| = |F5(Z(11)) − G10(Z(11))| = 4
10 .

From (5.71) it then follows (as in the case of no ties) that J =
[

5(10)
5

] ( 4
10

) = 4.

40. Exact Conditional Distribution of J with Ties. To have a test with exact sig-
nificance level even in the presence of ties among the X ’s and/or Y ’s, we
need to consider all

(
N
n

)
possible assignments of the N observations with n

observations serving as Y ’s and m observations serving as X ’s. As in Com-
ment 38, it still follows that, under H0 (5.1), each of the

(
N
n

)
possible mesh-

ings of the X ’s and Y ’s has probability 1/
(

N
n

)
. The only difference in the

case of ties is that now in the computation of J for each of these
(

N
n

)
mesh-

ings, the jumps in the X and Y empirical distribution functions can occur at
common observations and the sizes of these jumps can be greater than 1/m
or 1/n , respectively. We illustrate this construction for the following m =
2, n = 3 data: X1 = 3.2, X2 = 6.3, Y1 = 1.9, Y2 = 1.9, Y3 = 6.3. The associated
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ordered Z(i ) values are Z(1) = Z(2) = 1.9 < Z(3) = 3.2 < Z(4) = Z(5) = 6.3 and
the corresponding value of J (5.71) is 2(3)

1 |F2(Z(1)) − G3(Z(1))| = 6|F2(Z(2)) −
G3(Z(2))| = 6|F2(1.9) − G3(1.9)| = 6|0 − 2

3 | = 4. To assess the significance of
this value of J , we obtain its conditional distribution by considering the

(
5
3

) = 10
possible assignments of the observations 1.9, 1.9, 3.2, 6.3, and 6.3 to serve as
two X observations and three Y observations. These 10 assignments and the
corresponding values of J are

X observations Y observations Probability under H0 Value of J

1.9, 1.9 3.2, 6.3, 6.3 1
10 6

1.9, 3.2 1.9, 6.3, 6.3 1
10 4

1.9, 3.2 1.9, 6.3, 6.3 1
10 4

1.9, 6.3 1.9, 3.2, 6.3 1
10 1

1.9, 6.3 1.9, 3.2, 6.3 1
10 1

1.9, 6.3 1.9, 3.2, 6.3 1
10 1

1.9, 6.3 1.9, 3.2, 6.3 1
10 1

3.2, 6.3 1.9, 1.9, 6.3 1
10 4

3.2, 6.3 1.9, 1.9, 6.3 1
10 4

6.3, 6.3 1.9, 1.9, 3.2 1
10 6

This yields the null tail probabilities

P0(J ≥ 6) = 2
10 , P0(J ≥ 4) = 6

10 , P0(J ≥ 1) = 1.

This distribution is called the conditional null distribution or the permutation
null distribution of J , given the set of tied observations {1.9, 1.9, 3.2, 6.3, 6.3}.
For the particular observed value J = 4, we have that P0(J ≥ 4) = 6

10 . (Note
that the particular observed X and Y sample values are not important to the
calculation of this conditional null distribution of J . It is critical only that the
two smallest observations are tied in value, the middle ordered value is untied,
and the two largest observations are tied. Thus, for example, the two sets of
sample observations {X1 = 3.2, X2 = 6.3, Y1 = 1.9, Y2 = 1.9, Y3 = 6.3} and
{X1 = −12.1, X2 = 13.7, Y1 = −12.1, Y2 = 0, Y3 = 13.7} yield the same exact
conditional null distribution of J .)

41. Large-Sample Approximation. Smirnov (1939) derived the asymptotic (min
(m , n) tending to infinity) distribution of the standardized Kolmogorov–Smirnov
statistic J ∗ (5.73) using the work of Kolmogorov (1933) on the asymptotic (m
tending to infinity) distribution of the one-sample statistic

J0 = √
m max−∞<a<∞ |Fm(a) − F0(a)|, (5.84)

where Fm(·) is the empirical distribution function for a random sample of size
m from the (assumed) continuous distribution with distribution function F (a) =
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P(X ≤ a) and F0(a) is a completely specified distribution function. The statistic
J0 can be used to test the goodness-of-fit hypothesis that the random sample
X1, . . . , Xm has been drawn from a population with distribution function F0,
namely,

H ′
0 : [P(X ≤ a) = F0(a) for all − ∞ < a < ∞], (5.85)

versus the broad alternative that the population from which the sample was
drawn does not have distribution function F0.

42. Test Based on the One-Sample Limit of the Wilcoxon Rank Sum Statistic. It is of
interest to note that the two-sample Wilcoxon test discussed in Section 4.1 can
be reduced to a test of H ′

0 (5.85) by allowing one of the sample sizes, say n , to
become infinite. Moses (1964) showed how this leads to a test based on W0 =∑m

j=1 F0(Xj ). (The normal approximation to W0 treats [W0 − (m/2)]/(m/12)1/2

as an approximate N (0, 1) random variable under H ′
0.) Moses pointed out that

a test based on W0 is particularly convenient when F0 is known but is specified
by tabular data, such as demographic data on age of death distributions, rather
than being given by a mathematical expression.

43. Consistency of the J Tests. Define the class C of pairs of distribution functions
F and G by

C = {(F , G) : F (x) �= G(x) for at least one x}. (5.86)

Under the minimal Assumptions A1 and A2 only, the test procedure (5.72) is
consistent for any (F , G) ∈ C; that is, the test is consistent against any differences
between the F and G distributions (i.e., whenever H0 (5.1) is false). In gaining
this extra protection against all differences, we do, however, sacrifice power
against specific subclasses of alternatives (such as location shifts or differences
in dispersions).

Properties

1. Consistency. See Comment 43.

2. Asymptotic Distribution. See Smirnov (1939) and Comment 41.

3. Efficiency. See Capon (1965), Ramachandramurty (1966b), Yu (1971), and
Section 5.5.

Problems

33. The data in Table 5.8 are a subset of the data obtained by Friedman et al. (1971) in an
experiment comparing the average concentrations of human plasma growth hormone both
resting and after arginine hydrochloride infusion in relatively coronary-prone subjects (persons
with type A behavior patterns) with the corresponding concentrations of relatively coronary-
resistant individuals (subjects with type B behavior patterns). Type A behavior is characterized
by an excessive sense of time urgency, drive, and competitiveness; type B denotes a converse
type of behavior. Earlier studies (cf. Friedman and Rosenman (1959)) indicated that type A
individuals may be more prone to coronary heart disease than type B individuals.
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Table 5.8 Peak Levels of Human Plasma Growth Hormone
after Arginine Hydrochloride Infusion (Initial Test, ng/ml)

Type A subjects Type B subjects

3.6 16.2
2.6 17.4
4.7 8.5
8.0 15.6
3.1 5.4
8.8 9.8
4.6 14.9
5.8 16.6
4.0 15.9
4.6 5.3

10.5

Source: M. Friedman, S. O. Byers, R. H. Rosenman, and R. Neuman
(1971).

Find the P -value for an appropriate test of whether there is any difference between the
probability distribution of peak level human plasma growth hormone (after arginine hydrochlo-
ride infusion) for type A subjects and that for type B subjects.

34. Consider the alcoholic intake data in Table 4.2. For these data, find the P -value for an appro-
priate test of whether there are any differences between the control and SST probability
distributions. Discuss this result in conjunction with the previous findings in Example 4.2,
Problem 9, and Problem 31.

35. Verify directly, or illustrate with a numerical example, that representations (5.71) and (5.80)
for J are indeed equivalent.

36. When m = n , show that both representations (5.71) and (5.80) for J are equivalent to the
expression

J = max{|t1|, |t2|, . . . , |tN |}, (5.87)

where
tj = (1 − 2δ1) + (1 − 2δ2) + · · · + (1 − 2δj ), (5.88)

and the δ’s are given by (5.78).

37. Calculate the value of J for the salivation data in Table 5.7 using the equivalent (when m = n)
expression in (5.87).

38. Apply the two-sided Wilcoxon rank sum test procedure from Section 4.1 to the salivation data
in Table 5.7 by finding the appropriate P -value. Compare the conclusion indicated by this
Wilcoxon rank sum procedure with that indicated by the Kolmogorov–Smirnov procedure in
Example 5.4. Comment on your findings.

39. Generate the exact null distribution of J (5.70) for the setting m = 3, n = 3. (See
Comment 38.)

40. Consider the growth hormone level data found in Table 5.5. Use the Kolmogorov–Smirnov
test procedure to assess whether there are significant differences of any kind between the con-
trol hypertension population and the clonidine-treated population in their increases in growth
hormone levels following exercise. Find the appropriate P -value for the test and compare it
with the P -value obtained in Problem 25.

41. Consider the following two-sample data for m = 3, n = 3: X1 = −3.7, X2 = 4.6, X3 = 1.5,
Y1 = 1.5, Y2 = 4.6, Y3 = 1.5. Using the approach discussed in Comment 40, find the exact
conditional null distribution of the Kolmogorov–Smirnov statistic J (5.70). Compare and
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contrast this exact conditional null distribution with the corresponding null distribution of J
for m = n = 3 and no tied observations, as obtained in Problem 39.

42. Consider the serum iron data in Table 5.1. Use the Kolmogorov–Smirnov test procedure to
assess whether there are significant differences of any kind between the distribution of serum
iron values obtained by the Ramsay method and the distribution of serum iron values obtained
by the Jung–Parekh method. Find the P -value for the test and compare it with the results
discussed in Example 5.1.

5.5 EFFICIENCIES OF TWO-SAMPLE DISPERSION
AND BROAD ALTERNATIVES PROCEDURES

Recall the classical normal theory F-test for equality of variances based on the statistic

D = S 2
x

S 2
y

, (5.89)

where S 2
x =∑m

i=1(Xi − X̄ )2/(m − 1), S 2
y =∑n

j=1(Yj − Ȳ )2/(n − 1), X̄ =∑m
i=1 Xi /m ,

and Ȳ =∑n
j=1 Yj /n . The significance level of this F-test is extremely sensitive to

nonnormality. (See Comment 26.) This is also true of the coverage probability of the
confidence intervals for σ 2

2 /σ 2
1 that are based on the ratio of sample variances and

derived from the F-test. The Box–Andersen (1955) test “adjusts” the F-test to remedy
this difficulty. Since this Box–Andersen approach has desirable properties, we report
asymptotic efficiencies of the test procedures of Sections 5.1 and 5.2, as well as the
point estimators and confidence intervals/bounds associated with the jackknife approach
(see Comment 24), with respect to the corresponding Box–Andersen procedures. (The
specific Box–Andersen procedures that we refer to are (a) the APF test of Shorack
(1969), which is a slight variation of the test used by Box and Andersen for the case
where the parameters θ1 and θ2 of model (5.2) are known; (b) an associated estimator
given by Shorack (1965); and (c) the associated confidence interval and bounds
discussed in Shorack (1969).)

The Pitman asymptotic relative efficiency for scale alternatives of the
Ansari–Bradley test based on C (5.6) relative to the Box–Andersen adjusted
F-test based on D (5.89) is

e(C , D) = 12(βG − 1)

[∫ 0

−∞
xg2(x)dx −

∫ ∞

0
xg2(x)dx

]2

, (5.90)

where

βG =
∫∞
−∞(x − μ)4g(x)dx{∫∞
−∞(x − μ)2g(x)dx

}2
is the kurtosis and μ = ∫∞

−∞ xg(x)dx is the mean of the population with distribution
function G(·) and probability density function g(·).

The expression in (5.90) was obtained by Ansari and Bradley (1960). Some values
of e(C , D) for selected G(·) are

G Normal Uniform Double exponential

e(C , D) .61 .60 .94
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Miller (1968) pointed out that the asymptotic relative efficiency of the jackknife
procedures (tests, point estimators, and confidence intervals/bounds) with respect to the
Box–Andersen procedures has the value 1 for any underlying distribution F (·); that is,
e(Q , D) ≡ 1, where Q is given by (5.35) and D represents the Box–Andersen adjusted
F-test procedures.

We do not know of any results for the asymptotic efficiencies of the Lepage test for
location or scale differences (Section 5.3).

The determination of asymptotic relative efficiencies for the Kolmogorov–Smirnov
test based on J (5.70) is difficult, owing to the complicated form of the asymptotic
distribution of the Kolmogorov–Smirnov statistic. Capon (1965) obtained lower bounds
for the asymptotic relative efficiency of the Kolmogorov–Smirnov test. In particular, for
normal translation alternatives, Capon derived the lower bound of .637 for the asymptotic
relative efficiency of the Kolmogorov–Smirnov test with respect to the normal theory
two-sample t test (see Section 4.5 and also Ramachandramurty (1966b) and Yu (1971)).
For related efficiency results using different notions of asymptotic efficiency, see Klotz
(1967), Hájek and Šidák (1967, p. 272), and Anděl (1967).



Chapter 6

The One-Way Layout

INTRODUCTION

The procedures of this chapter are designed for statistical analyses in which primary
interest is centered on the relative locations (medians) of three or more populations.
This development represents a direct generalization of the two-sample location problem
(discussed in Chapter 4) to situations in which the data consist of k(≥ 3) random sam-
ples, one sample from each of k populations. The basic null hypothesis of interest in
that of no differences in locations (medians), under which the k samples can be treated
as a single (combined) sample from one population. The alternatives considered here
correspond to a variety of restricted nonnull relationships between the locations (medi-
ans). We encounter two types of data for which such analyses are important. The first
of these corresponds to a general setting of k populations (referred to as treatments for
convenience) with no additional conditions. The second deals with the setting where
one of the treatments represents a control (or placebo) population, and we are inter-
ested in detecting which, if any, of the other (k − 1) treatments are different from this
control.

Section 6.1 presents a distribution-free test directed at general alternatives for the
setting of k treatments. A distribution-free test designed for detecting ordered alternatives
among k treatments is considered in Section 6.2 and generalized in Section 6.3 to
the broader class of umbrella alternatives. In Section 6.4 a distribution-free test
procedure is presented for the simultaneous comparison of (k − 1) treatments with a
control. In Sections 6.5–6.7 we introduce multiple comparison procedures designed
to detect which particular populations, if any, differ from one another. Sections 6.5
and 6.6 are devoted to procedures for making the total of

(k
2

)
pairwise comparisons

between all k treatments in the general and ordered alternatives settings, respectively.
Section 6.7 presents multiple comparison procedures based on simple random samples
for deciding which, if any, of (k − 1) treatments are different from a control. Section 6.8
considers estimators of contrasts in the treatment effects, and Section 6.9 deals
with simultaneous confidence intervals for simple contrasts. The asymptotic relative
efficiencies for translation alternatives of the procedures discussed in this chapter with
respect to their normal theory counterparts based on sample averages are discussed in
Section 6.10.

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Data. The data consist of N =∑k
j=1 nj observations, with nj observations from the j th

treatment, j = 1, . . . , k .

Treatments

1 2 . . . k

X11 X12 . . . X1k

X21 X22 . . . X2k

...
...

...

Xn11 Xn22 . . . Xnk k

Assumptions

A1. The N random variables {X1j , X2j , . . . , Xnj j }, j = 1, . . . , k , are mutually inde-
pendent.

A2. For each fixed j ∈ {1, . . . , k}, the nj random variables {X1j , X2j , . . . , Xnj j } are a
random sample from a continuous distribution with distribution function Fj .

A3. The distribution functions F1, . . . , Fk are connected through the relationship

Fj (t) = F (t − τj ), −∞ < t < ∞, (6.1)

for j = 1, . . . , k , where F is a distribution function for a continuous distri-
bution with unknown median θ and τj is the unknown treatment effect for the
j th population.

We note that Assumptions A1–A3 correspond directly to the usual one-way layout
model commonly associated with normal theory assumptions; that is, Assumptions A1–
A3 are equivalent to the representation

Xij = θ + τj + eij , i = 1, . . . , nj , j = 1, . . . , k ,

where θ is the overall median, τj is the treatment j effect, and the N e’s form a
random sample from a continuous distribution with median 0. (Under the additional
assumption of normality, the medians θ and 0 are, of course, also the respective
means.)

Hypothesis

The null hypothesis of interest in Sections 6.1–6.4 of this chapter is that of no differences
among the treatment effects τ1, . . . , τk , namely,

H0 : [τ1 = · · · = τk ]. (6.2)

This null hypothesis asserts that each of the underlying distributions F1, . . . , Fk is the
same, corresponding to F1 ≡ F2 ≡ · · · ≡ Fk ≡ F in (6.1).
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6.1 A DISTRIBUTION-FREE TEST FOR GENERAL
ALTERNATIVES (KRUSKAL–WALLIS)

In this section, we present a procedure for testing H0 (6.2) against the general alternative
that at least two of the treatment effects are not equal, namely,

H1 : [τ1, . . . , τk not all equal]. (6.3)

Procedure

To compute the Kruskal–Wallis statistic, H , we first combine all N observations from
the k samples and order them from least to greatest. Let rij denote the rank of Xij in this
joint ranking and set

Rj =
nj∑

i=1

rij and R.j = Rj

nj
, j = 1, . . . , k . (6.4)

Thus, for example, R1 is the sum of the joint ranks received by the treatment 1 obser-
vations and R.1 is the average rank for these same observations. The Kruskal–Wallis
statistic H is then given by

H = 12

N (N + 1)

k∑
j=1

nj

(
R.j − N + 1

2

)2

=
⎛⎝ 12

N (N + 1)

k∑
j=1

R2
j

nj

⎞⎠− 3(N + 1), (6.5)

where (N + 1)/2 =
(∑k

j=1

∑nj
i=1 rij /N

)
is the average rank assigned in the joint

ranking.
To test

H0 : [τ1 = · · · = τk ]

versus the general alternative

H1 : [τ1, . . . , τk not all equal],

at the α level of significance,

Reject H0 if H ≥ hα; otherwise do not reject, (6.6)

where the constant hα is chosen to make the type I error probability equal to α. The
constant hα is the upper α percentile for the null (τ1 = · · · = τk ) distribution of H .
Comment 6 explains how to obtain the critical value hα for k treatments and sample
sizes n1, . . . , nk and available levels of α.
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Large-Sample Approximation

When H0 is true, the statistic H has, as min(n1, . . . , nk ) tends to infinity, an asymp-
totic chi-square (χ2) distribution with k − 1 degrees of freedom (see Comment 9 for
indications of the proof). The chi-square approximation for procedure (6.6) is

Reject H0 if H ≥ χ2
k−1,α; otherwise do not reject, (6.7)

where χ2
k−1,α is the upper α percentile point of a chi-square distribution with k − 1

degrees of freedom. To find χ2
k−1,α , we use the R command qchisq(1− α, k − 1). For

example, to find χ2
4,.025, we apply qchisq (.975, 4) and obtain χ2

4,.025 = 11.143.

Ties

If there are ties among the N X ’s, assign each of the observations in a tied group the
average of the integer runks that are associated with the tied group and compute H with
these average ranks. As a consequence of the effect that ties have on the null distribution
of H, the following modification is needed to apply either procedure (6.6) or the large-
sample approximation in procedure (6.7) when there are tied X ’s. In either of these
procedures, we replace H by

H ′ = H

1 −
(∑g

j=1

(
t3
j − tj

)
/[N 3 − N ]

) , (6.8)

where, in (6.8), H is computed using average ranks, g denotes the number of tied X
groups, and tj is the size of tied group j . We note that an united observation is considered
to be a tied group of size 1. In particular, if there are no ties among the X ’s then g = N
and tj = 1 for j = 1, . . . , N . In this case, each term in (6.8) of he form t3

j − tj reduces
to zero, the denominator of the right-hand side of expression (6.8)) reduces to 1, and H ′
(6.8) reduces to H , as given in (6.5).

We note that even the small-sample procedure (6.6) is only approximately, and not
exactly, of the significance level α in the presence of tied X observations. To get an
exact level α test in this tied setting, see Comment 8.

EXAMPLE 6.1 Half-Time of Mucociliary Clearance.

Thomson and Short (1969) have assessed mucociliary efficiency from the rate of removal
of dust in normal subjects, subjects with obstructive airway disease, and subjects with
asbestosis. Table 6.1 is based on a subset of the Thomson–Short data. The joint ranks
(rij ’s) of the observations are given in Table 6.1 in parentheses after the data values and
the treatment rank sums (R1, R2, and R3) are provided at the bottom of the columns.

We are interested in using procedure (6.6) to test if there are any differences in
median mucociliary clearance half-times for the three subject populations. For purpose
of illustration, we take the significance level to be α = .0502. Applying the R command
cKW(α, n), we find cKW(.0502, c(5, 4, 5), "Exact") = 5.643; that is, P0(H ≥
5.643) = .0502, and, in the notation of (6.6) with k = 5, n1 = 5, n2 = 4, and n3 = 5, we
have h.0502 = 5.643 and procedure (6.6) reduces to

Reject H0 if H ≥ 5.643.
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Table 6.1 Half-Time of Mucociliary Clearance (h)

Subjects with

Normal subjects Obstructive airways disease Asbestosis

2.9 (8) 3.8 (13) 2.8 (7)
3.0 (9) 2.7 (6) 3.4 (11)
2.5 (4) 4.0 (14) 3.7 (12)
2.6 (5) 2.4 (3) 2.2 (2)
3.2 (10) 2.0 (1)

R1 = 36 R2 = 36 R3 = 33

Source: M. L. Thomson and M. D. Short (1969).

Now, we illustrate the computations leading to the sample value of H (6.5). For
these data, we have n1 = n3 = 5, n2 = 4, and N = 14. Combining these facts with the
treatment rank sums in Table 6.1, we find from (6.5) that

H = 12

14(14 + 1)

(
(36)2

5
+ (36)2

4
+ (33)2

5

)
− 3(14 + 1) = .771.

As this value of H is less than the critical value 5.643, we do not reject
H0 at the α = .0502 level. In fact, from the observed value H = .771, we see,
using the R command pKW(mucociliary,"Exact"), that P0(H ≥ .771) =
pKW(mucociliary,"Exact") = .7108. Thus, the lowest significance level at which
we can reject H0 in favor of H1 with the observed value of the test statistic H = .771
is .7108.

For the large-sample approximation, we compare the value of H (because there are
no ties) to the chi-square distribution with k − 1 = 2 degrees of freedom. Using the R

command 1 − pchisq(.771, 2), we find that the observed value of H = .771 is
approximately the .68 upper percentile for the chi-square distribution with two degrees
of freedom. Thus, the approximate P -value for these data and test procedure (6.7) is .68.
Both the exact test and the large-sample approximation indicate that there is virtually no
sample evidence in support of significant differences in mucociliary clearance half-times
for the three subject populations.

Comments

1. More General Setting. We could replace Assumptions A1–A3 and H0 (6.2) with
the more general null hypothesis that all N !/

(
�k

j=1nj !
)

assignments of n1 ranks
to the treatment 1 observations, n2 ranks to the treatment 2 observations, and
. . . , nk ranks to the treatment k observations are equally likely.

2. Motivation for the Test. Under Assumptions A1–A3 and H0 (6.2), the rank vector
R∗ = (r11, . . . , rn11, r22, . . . , rn22, . . . , r1k , . . . , rnk k ) has a uniform distribution over
the set of all N ! permutations of the vector of integers (1, 2, . . . , N ). It follows
that

E0(rij ) = 1

N !
(N − 1)!

N∑
i=1

i = N + 1

2
,
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the average rank being assigned in the joint ranking. Thus,

E0(R.j ) = E0

(
1

nj

nj∑
i=1

rij

)
= 1

nj

nj∑
i=1

E0(rij )

= nj (N + 1)

2nj
= N + 1

2
, for j = 1, 2, . . . , k ,

and we would expect the R.j ’s to be close to (N + 1)/2 when H0 is true.
As the test statistic H (6.5) is a constant times a weighted sum of squared
differences between the observed treatment average ranks, R.j , and their null
expected values, E0(R.j ) = (N + 1)/2, small values of H represent agreement
with H0 (6.2). When the τ ’s are not all equal, we would expect a portion of
the associated treatment average ranks to differ from their common null expec-
tation, (N + 1)/2, with some tending to be larger and some smaller. The net
result (after squaring the observed differences to obtain the (R.j − (N + 1)/2)2

terms) would be a large value of H . This suggests rejecting H0 in favor of H1

(6.3) for large values of H and motivates procedures (6.6) and (6.7) (see also
Comment 3).

3. Connection to Normal Theory Test. The Kruskal–Wallis test can also be motivated
by considering the usual analysis of variance F statistic calculated using the
ranks, rather than the original observations. The F statistic can be written as
F = c(SSB)/(SST − SSB), where c is a constant depending only on the sample
sizes, SST is the total sum of squares, and SSB is the between sum of squares.
The statistic SSB reduces to

∑k
j=1 nj (R.j − (N + 1)/2)2 when applied to the

ranks rather than the original observations and SST becomes a fixed constant
when calculated on the ranks. Using these facts, it can be shown that when F is
calculated for the ranks, F is an increasing function of H .

4. Assumptions. It is important to point out that Assumption A3 stipulates that the k
treatment distributions F1, . . . , Fk can differ at most in their locations (medians).
In particular, Assumption A3 requires that the k underlying distributions belong
to the same general family (F ) and that they do not differ in scale parameters
(variability). (For a discussion of methodology designed for a more general setting
where differences in scale parameters are permitted, see Comment 11.)

5. Special Case of Two Treatments. For the case of k = 2 treatments, the procedures
in (6.6) and (6.7) are equivalent to the exact and large-sample approximation
forms, respectively, of the two-sided Wilcoxon rank sum test, as discussed in
Section 4.1.

6. Derivation of the Distribution of H under H0 (No-Ties Case). The null distribution
of H (6.5) can be obtained using the fact that under H0 (6.2), all N !/

(
�k

j=1 nj !
)

assignments of n1 ranks to the treatment 1 observations, n2 ranks to the treat-
ment 2 observations, and . . . , nk ranks to the treatment k observations are equally
likely. We illustrate how the null distribution can be derived in the particular
case k = 3, n1 = n2 = n3 = 2. In this case, we have H = [{12/[6(7)]}{(R2

1 +
R2

2 + R2
3)/2} − 21] = [(A/7) − 21], where A = R2

1 + R2
2 + R2

3 . We next enumer-
ate 15 of the total possible {6!/[(2!)(2!)(2!)]} = 90 rank assignments and their
corresponding values of A and H .
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(a) I II III (b) I II III
1 3 5 A = 179 1 3 4 A = 173
2 4 6 H = 4.57 2 5 6 H = 3.71

(c) I II III (d) I II III
1 3 4 A = 171 1 2 5 A = 173
2 6 5 H = 3.43 3 4 6 H = 3.71

(e) I II III (f) I II III
1 2 4 A = 165 1 2 4 A = 161
3 5 6 H = 2.57 3 6 5 H = 2

(g) I II III (h) I II III
1 2 3 A = 155 1 2 5 A = 171
4 5 6 H = 1.14 4 3 6 H = 3.43

(i) I II III (j) I II III
1 2 3 A = 153 1 2 4 A = 161
4 6 5 H = .86 5 3 6 H = 2

(k) I II III (l) I II III
1 2 3 A = 153 1 2 3 A = 149
5 4 6 H = .86 5 6 4 H = .29

(m) I II III (n) I II III
1 2 4 A = 155 1 2 3 A = 149
6 3 5 H = 1.14 6 4 5 H = .29

(o) I II III
1 2 4 A = 147
6 5 3 H = 0

For each of the foregoing rank configurations, there are five other configu-
rations (corresponding to the six permutations of the names of the samples I, II,
and III), which yield the same value of H . This covers the complete total of 90
possible rank assignments. Thus,

P0{H = 4.57} = 1/15, P0{H = 3.71} = 2/15, P0{H = 3.43} = 2/15,

P0{H = 2.57} = 1/15, P0{H = 2} = 2/15, P0{H = 1.14} = 2/15,

P0{H = .86} = 2/15, P0{H = .29} = 2/15, P0{H = 0} = 1/15.

The probability, under H0, that H is greater than or equal to 3.71, for example,
is therefore

P0{H ≥ 3.71} = P0{H = 3.71} + P0{H = 4.57}
= 1

15 + 2
15 = .20.

Note that we have derived the null distribution of H without specifying the
common from (F ) of the underlying distribution function for the X ’s under H0

beyond the point of requiring that it be continuous. This is why the test procedure
(6.6) based on H is called a distribution-free procedure. From the null distribution
of H , we can determine the critical value hα and control the probability α of
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falsely rejecting H0 when H0 is true, and this error probability does not depend
on the specific form of the common underlying continuous X distribution.

For a given number of treatments k and sample sizes n1, . . . , nk , the R com-
mand cKW(α, n) can be used to find the available upper-tail critical values hα

for possible values of H . For a given available significance level α, the critical
value hα then corresponds to P0(H ≥ hα) = α and is given by cKW(α, n). Thus,
for example, for k = 5, n1 = 3, n2 = 2, n3 = 3, n4 = 2, and n5 = 3, we have
P0(H ≥ 8.044) = .0492, so that h.0492 = 8.044 for k = 5, n1 = 3, n2 = 2, n3 =
3, n4 = 2, and n5 = 3.

7. Exact Conditional Distribution of H with Ties among the X-Values. To have a test
with the exact significance level even in the presence of tied X ’s, we need to con-
sider all N !/

(∏k
j=1nj !

)
assignments of n1 ranks to the treatment 1 observations,

n2 ranks to the treatment 2 observations, . . . , nk ranks to the treatment k observa-
tions, where now these joint ranks are obtained by using average ranks to break the
ties. As in Comment 6, it still follows that under H0 each of these N !/

(∏k
j=1 nj !

)
assignments is equally likely. For each such assignment, the value of H is com-
puted and the results are tabulated. We illustrate this construction for k = 3 and
n1 = n2 = 2, n3 = 1 and the data X11 = 1.3, X21 = 1.7, X12 = 1.3, X22 = 2.0, and
X13 = 2.0. Using average ranks to break the ties, the observed rank vector is
(r11, r21, r12, r22, r13) = (1.5, 3, 1.5, 4.5, 4.5). Thus, R1 = 4.5, R2 = 6, R3 = 4.5,
and the attained value of H is

H =
[

12

5(6)

{
(4.5)2

2
+ (6)2

2
+ (4.5)2

1

}
− 3(6)

]
= 1.35.

To assess the significance of H , we obtain its conditional null distribution by
considering the [5!/(2! 2! 1!)] = 30 equally likely (under H0) possible assignments
of the observed rank vector (1.5, 3, 1.5, 4.5, 4.5) to the three treatments. These
30 assignments and associated values of H are in the following table

I II III I I III

1.5 4.5 1.5 1.5 4.5 1.5
3 4.5 H = 3.15 3 4.5 H = 3.15
1.5 3 1.5 1.5 3 1.5
4.5 4.5 H = 1.35 4.5 4.5 H = 1.35
1.5 3 1.5 1.5 3 1.5
4.5 4.5 H = 1.35 4.5 4.5 H = 1.35
3 1.5 1.5 3 1.5 1.5
4.5 4.5 H = 1.35 4.5 4.5 H = 1.35
3 1.5 1.5 3 1.5 1.5
4.5 4.5 H = 1.35 4.5 4.5 H = 1.35
4.5 1.5 1.5 4.5 1.5 1.5
4.5 3 H = 3.15 4.5 3 H = 3.15
1.5 4.5 3 1.5 1.5 3
1.5 4.5 H = 3.60 4.5 4.5 H = 0
1.5 1.5 3 1.5 1.5 3
4.5 4.5 H = 0 4.5 4.5 H = 0
1.5 1.5 3 4.5 1.5 3
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I II III I I III

4.5 4.5 H = 0 4.5 1.5 H = 3.60
1.5 3 4.5 1.5 3 4.5
1.5 4.5 H = 3.15 1.5 4.5 H = 3.15
1.5 1.5 4.5 1.5 1.5 4.5

3 4.5 H = 1.35 3 4.5 H = 1.35
1.5 1.5 4.5 1.5 1.5 4.5

3 4.5 H = 1.35 3 4.5 H = 1.35
1.5 1.5 4.5 1.5 1.5 4.5
4.5 3 H = 1.35 4.5 3 H = 1.35
1.5 1.5 4.5 1.5 1.5 4.5
4.5 3 H = 1.35 4.5 3 H = 1.35

3 1.5 4.5 3 1.5 4.5
4.5 1.5 H = 3.15 4.5 1.5 H = 3.15

As each of these values for H has null probability 1
30 , it follows that

P0(H = 3.60) = 2
30 P0(H = 1.35) = 16

30

P0(H = 3.15) = 8
30 P0(H = 0) = 4

30 .

This distribution is called the conditional distribution or the permutation distribu-
tion of H , given the set of tied ranks {1.5, 1.5, 3, 4.5, and 4.5}. For the particular
observed value H = 1.35, we have P0(H ≥ 1.35) = 28

30 , so that such a value does
not indicate a deviation from H0.

8. Large-Sample Approximation. Define the random variables Tj = R.j − E0(R.j ) =
R.j − (N + 1)/2, for j = 1, 2, . . . , k . As each R.j =∑nj

i=1 rij /nj is an average,
it is not surprising (see Kruskal and Wallis (1952), e.g., for justification) that a
properly standardized version of the vector T∗ = (T1, . . . , Tk−1) has an asymptotic
(min(n1, . . . , nk ) tending to infinity) (k − 1)-variate normal distribution with mean
vector 0 = (0, . . . , 0) and appropriate covariance matrix � when the null hypoth-
esis H0 is true. (Note that T∗ does not include Tk = R.k − (N + 1)/2, because
Tk can be expressed as a linear combination of T1, . . . , Tk−1. This is the reason
that the asymptotic normal distribution is (k − 1)-variate and not k -variate.) As
the test statistic H (6.5) is a quadratic form in the variables (T1, . . . , Tk−1), it
is therefore quite natural that H has an asymptotic (min(n1, . . . , nk ) tending to
infinity) chi-square distribution with k − 1 degrees of freedom.

9. Family Monotonicity. Gabriel (1969) introduced a desirable property of a testing
family called monotonicity and pointed out that the H statistic does not enjoy the
property. We refer the interested user to Gabriel’s paper, but we briefly mention
here that the problem arises because it is possible that the H statistic computed
for a subset can exceed the H statistic computed for a set containing the subset.
Gabriel gave the following example. The sample 1 ranks are 8, 9, 10, and 11, the
sample 2 ranks are 1, 2, 6, and 7, and the sample 3 ranks are 3, 4, 5, and12. Then
H based on samples 1 and 2(k = 2) is 5.33, whereas H based on samples 1, 2,
and 3 (k = 3) is 4.77. The same anomaly can arise with the Friedman statistic
(Section 7.1).
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10. k-Sample Behrens–Fisher Problem. Two of the implicit requirements associated
with Assumptions A1–A3 are that the underlying distributions belong to the same
common family (F ) and that they differ within this family at most in their medi-
ans. The less restrictive setting, where these assumptions are relaxed to permit
the possibility of differences in scale parameters as well as medians (but still
requiring the same common family F ), is generally referred to as the k-sample
Behrens–Fisher problem. (Note that this is a direct k -sample extension of the cor-
responding two-sample Behrens–Fisher problem considered in Section 4.4.) The
Kruskal–Wallis procedure (6.6) is no longer distribution-free under these relaxed
assumptions permitting unequal scale parameters. Rust and Fligner (1984) pro-
posed a modification of the Kruskal–Wallis statistic H (6.5) to deal with this
broader Behrens–Fisher setting. Their procedure is designed as a test for the less
restrictive null and alternative hypotheses

H ∗
0 : [δij = 1

2 for all i �= j = 1, . . . , k ] (6.9)

and
H ∗

1 : [δij �= 1
2 for at least one i �= j = 1, . . . , k ], (6.10)

respectively, where

δij = P(X1i > X1j ), for i �= j = 1, . . . , k .

The Rust–Fligner modification of the Kruskal–Wallis statistic provides a test
procedure that is still exactly distribution-free under the more restrictive null
hypothesis H0 (6.2). However, their modified procedure is also asymptotically
(min(n1, . . . , nk ) tending to infinity) distribution-free under the considerably
broader null hypothesis H ∗

0 (6.9) so long as the underlying populations
(not necessarily of the same form) are all symmetric. In the special case of
k = 2 populations, the Rust–Fligner procedure reduces approximately to the
Fligner–Policello modifications to the Mann–Whitney–Wilcoxon two-sample test
procedure discussed in Section 4.4.

11. Pairwise Rankings. The Kruskal–Wallis statistic H (6.5) is based on the treatment
rank sums R1, . . . , Rk associated with the joint ranking of all N sample observa-
tions. As an alternative approach, one could just as well choose to compare the
k treatments through a combination of all k(k − 1)/2 pairwise rankings. Fligner
(1985) proposed such a pairwise ranking analog of the Kruskal–Wallis statistic
and demonstrated that the associated pairwise ranking test procedure has some
nice efficiency properties. Such pairwise rankings (as opposed to joint rankings)
have also proved useful in certain multiple comparison settings (see Sections 6.5
and 6.10 for more in this regard).

12. Consistency of the H Test. Replace Assumptions A1–A3 by the less restrictive
Assumptions A1′: the X ’s are mutually independent and A2′ : X1j , . . ., Xnj j come
from the same continuous population �j , j = 1, . . . , k , but where �1, . . . , �k are
not assumed to be identical. Then Kruskal and Wallis (1952) pointed out that
(roughly speaking) the test defined by (6.6) is consistent if (and only if) “. . . there
be at least one of the populations for which the limiting probability is not one-
half that a random observation from this population is greater than an independent
random member of the N sample observations.”
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Properties

1. Consistency. Under Assumptions A1–A3 and equal sample sizes (n1 = · · · = nk ),
the test defined by (6.6) is consistent against the alternative for which τi �= τj for
at least one i �= j = 1, . . . , k . For arbitrary sample sizes, see Kruskal (1952) and
Comment 12.

2. Asymptotic Chi-Squareness. See Kruskal and Wallis (1952) and Hettmansperger
(1984, pp. 184–185).

3. Efficiency. See Andrews (1954), Hodges and Lehmann (1956), and Section 6.10.

Problems

1. Pretherapy training of clients has been shown to have beneficial effects on the process and
outcome of counseling and psychotherapy. Sauber (1971) investigated four different approaches
to pretherapy training:

1. Control (no treatment).
2. Therapeutic reading (TR) (indirect learning).
3. Vicarious therapy pretraining (VTP) (videotaped, vicarious learning).
4. Group, role induction interview (RII) (direct learning).

Treatment conditions 2–4 were expected to enhance the outcome of counseling and psychother-
apy as compared with a control group, those subjects receiving no prior set of structuring
procedures. One of the major variables of the study was that of “psychotherapeutic attraction.”
The basic data in Table 6.2 consist of the raw scores for this measure according to each of
the four experimental conditions. Apply procedure (6.7), with the correction for ties given
by (6.8).

2. Show that the two expressions for H in (6.5) are indeed equivalent.

3. Show directly, or illustrate by means of an example, that the maximum value of H is Hmax =
{N 3 −∑k

j=1 n3
j }/{N (N + 1)}. For what rank configurations is this maximum achieved?

4. To determine the number of game fish to stock in a given system and to set appropriate catch
limits, it is important for fishery managers to be able to assess potential growth and survival of
game fish in that system. Such growth and survival rates are closely related to the availability
of appropriately sized prey. Young-of-year (YOY) gizzard shad (Dorosoma cepedianum) are
the primary food source for game fish in many Ohio environments. However, because of their
fast growth rate, YOY gizzard shad can quickly become too large for predators to swallow.

Table 6.2 Raw Scores Indicating the Degree of Psychotherapeutic
Attraction for Each Experimental Condition

Control Reading (TR) Videotape (VTP) Group (RII)

0 0 0 1
1 6 5 5
3 7 8 12
3 9 9 13
5 11 11 19

10 13 13 22
13 20 16 25
17 20 17 27
26 24 20 29

Source: S. R. Sauber (1971).
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Table 6.3 Length of YOY Gizzard Shad from Kokosing
Lake, Ohio, Sampled in Summer, 1984 (mm)

Site I Site II Site III Site IV

46 42 38 31
28 60 33 30
46 32 26 27
37 42 25 29
32 45 28 30
41 58 28 25
42 27 26 25
45 51 27 24
38 42 27 27
44 52 27 30

Source: B. Johnson (1984).

Thus to be able to predict predator growth rates in such settings, it is useful to know both
the density and the size structure of the resident YOY shad populations. With this in mind,
Johnson (1984) sampled the YOY gizzard shad population at four different sites in Kokosing
Lake (Ohio) in summer 1984. The data in Table 6.3 are lengths (mm) for a subset of the YOY
gizzard shad sampled by Johnson.

Apply procedure (6.7), with the correction for ties given in (6.8), to assess whether there
are any differences between the median lengths for the YOY gizzard shad populations in the
four Kokosing Lake sites.

5. Suppose k = 3 and n1 = 2, n2 = n3 = 6. Compare the critical region for the exact level α =
.050 test of H0 (6.2) based on H with the critical region for the corresponding nominal level
α = .050 test based on the large-sample approximation. What is the exact significance level
of this .050 nominal level test based on the large-sample approximation?

6. Suppose k = 4, n1 = n2 = n3 = 1, and n4 = 2. Obtain the form of the exact null (H0) distri-
bution of H for the case of no tied X observations.

7. Suppose k = 3, n1 = n2 = n3 = 2, and we observe the data X11 = 2.7, X21 = 3.4, X12 = 2.7,
X22 = 4.5, X13 = 4.9, and X23 = 2.7. What is the conditional probability distribution of H
under H0 (6.2) when average ranks are used to break the ties among the X ’s? How extreme
is the observed value of H in this conditional null distribution? Compare this fact with that
obtained by taking the observed value of H to the (incorrect) unconditional null distribution
of H .

8. Leukemia is a disease characterized by proliferation of the white blood cells or leukocytes.
One form of chemotherapy used in the treatment of leukemia involves the administration of
corticosteroids. Some researchers suggested that forms of leukemia characterized by leuko-
cytes with a large number of glucocorticoid receptor (GR) sites per cell are more effectively
controlled by corticosteroids. Other researchers questioned this relationship. In an effort to aid
in the resolution of this controversy, Kontula et al. (1980) developed a method for determining
more accurately the number of GR sites per cell. In this research and later work by Kontula
et al. (1982), this new methodology was used to count the number of GR sites for samples
of leukocyte cells from normal subjects, as well as patients with hairy-cell leukemia, chronic
lymphatic leukemia, chronic myelocytic leukemia, or acute leukemia. The data in Table 6.4
are a subset of the data considered by the authors in these two publications.

Use these data to assess whether there are any differences between the median numbers
of GR sites per leukocyte cell for the population of normal subjects and the populations of
patients with hairy-cell leukemia, chronic lymphatic leukemia, chronic myelocytic leukemia,
or acute leukemia.
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Table 6.4 Number of Glucocorticoid Receptor (GR) Sites per Leukocyte
Cell

Chronic Chronic
Normal Hairy-cell lymphatic myelocytic Acute
subjects anemia leukemia leukemia leukemia

3,500 5,710 2,930 6,320 3,230
3,500 6,110 3,330 6,860 3,880
3,500 8,060 3,580 11,400 7,640
4,000 8,080 3,880 14,000 7,890
4,000 11,400 4,280 8,280
4,000 5,120 16,200
4,300 18,250
4,500 29,900
4,500
4,900
5,200
6,000
6,750
8,000

Source: K. Kontula, L. C. Andersson, T. Paavonen, G. Myllyla, L. Teerenhovi, and
P. Vuopio (1980) and K. Kontula, T. Paavonen, R. Vuopio, and L. C. Andersson (1982).

9. Generate the conditional permutation distribution of H using only the last two sample lengths
from each of the four sites for the gizzard shad data in Table 6.3. From this conditional permu-
tation distribution of H, obtain the exact conditional P -value for a test of H0 (6.2) versus H1

(6.3) with this subset of data from Table 6.3. Compare this exact conditional P -value with the
approximate P -value associated with taking the observed value of H to the unadjusted (for
ties) unconditional null distribution of H .

10. Habitat plays an important role in fish behavior, particularly feeding, spawning, and protec-
tion/security. One of the modern methods of fisheries management is habitat modification in
large, constructed reservoirs. Previous studies have shown that the type of structure introduced
is an important factor in such habitat modifications. Of particular relevance in many settings
is the size openings or interstices in the introduced structure. The data in Table 6.5 represent a
subset of that obtained by Kayle (1984) from Alum Creek Lake in Westerville, Ohio, in a study
to determine the relative effectiveness of three species of pine trees for habitat modification.

Table 6.5 Mean Interstitial Lengths (mm)

Scotch pine Blue spruce White pine

52.2 46.7 75.2
56.4 60.5 63.7
57.1 58.9 73.2
46.9 82.9 66.2
49.1 65.8 67.4
52.5 93.3 69.4
63.0 66.9 70.4
52.0 70.9 72.3
61.1 73.7 63.6
55.3 65.8 61.9
46.2 90.2 74.4
57.2 68.9 70.1

Source: K. A. Kayle (1984).
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The measurements in Table 6.5 are averages (mm) of interstitial lengths (distances between
midpoints) of 10 pairs of secondary branches for each of 12 scotch pine, 12 blue spruce, and
12 white pine trees. Use an appropriate procedure to test whether there are any differences in
median interstitial lengths between secondary branches for the three studied species of pine.

6.2 A DISTRIBUTION-FREE TEST FOR ORDERED
ALTERNATIVES (JONCKHEERE–TERPSTRA)

In many practical settings, the treatments are such that the appropriate alternatives to
no differences in treatment effects (H0) are those of increasing (or decreasing) treatment
effects according to some natural labeling for the treatments. Examples of such settings
include “treatments” corresponding to degrees of knowledge of performance, quality or
quantity of materials, severity of disease, amount of practice, drug dosage levels, intensity
of a stimulus, and temperature. We note that the Kruskal–Wallis procedure (6.6) does not
utilize any such partial prior information regarding a postulated alternative ordering. The
statistic H (6.5) takes on the same value for all k ! possible labelings of the treatments.
In this section, we consider a procedure for testing H0 (6.2) against the a priori ordered
alternatives

H2 : [τ1 ≤ τ2 ≤ · · · ≤ τk , with at least one strict inequality]. (6.11)

The Jonckheere (1954a, 1954b) and Terpstra (1952) test of this section is preferred
to the Kruskal–Wallis test in Section 6.1 when the treatments can be labeled a priori
in such a way that the experimenter expects any deviation from H0 (6.2) to be in the
particular direction associated with H2 (6.11). We emphasize, however, that the labeling
of the treatments so that the ordered alternatives (6.11) are appropriate cannot depend
on the observed sample observations. This labeling must correspond completely to a
factor(s) implicit in the nature of the experimental design and not the observed data.

Procedure

First, we must label the treatments so that they are in the expected order associated
with the alternative H2 (6.11). (This labeling must be done prior to data collection.) To
compute the Jonckheere–Terpstra statistic, J, we calculate the k(k − 1)/2 Mann–Whitney
(see Comment 4.7) counts Uuv given by

Uuv =
nu∑

i=1

nv∑
j=1

φ(Xiu , Xjv), 1 ≤ u < v ≤ k , (6.12)

where φ(a , b) = 1 if a < b, 0 otherwise. (Thus, Uuv is the number of sample u before
sample v precedences.) The Jonckheere–Terpstra statistic, J , is then the sum of these
k(k − 1)/2 Mann–Whitney counts,

J =
v−1∑
u=1

k∑
v=2

Uuv. (6.13)

To test
H0 : [τ1 = · · · = τk ]
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versus the ordered alternative

H2 : [τ1 ≤ τ2 ≤ · · · ≤ τk , with at least one strict inequality],

at the α level of significance,

Reject H0 if J ≥ jα; otherwise do not reject, (6.14)

where the constant jα is chosen to make the type I error probability equal to α. The
constant jα is the upper α percentile for the null (τ1 = · · · = τk ) distribution of J . Com-
ment 17 explains how to obtain the critical value jα for k treatments and sample sizes
n1, . . . , nk and available levels of α.

Large-Sample Approximation

The large-sample approximation is based on the asymptotic (min(n1, n2, . . . , nk ) tending
to infinity) normality of J , suitably standardized. We first need to know the expected
value and variance of J when the null hypothesis is true. Under H0, the expected value
and variance of J are:

E0(J ) = N 2 −∑k
j=1 n2

j

4
(6.15)

and

var0(J ) = N 2(2N + 3) −∑k
j=1 n2

j (2nj + 3)

72
, (6.16)

respectively. These expressions for E0(J ) and var0(J ) are verified by direct calculations
in Comment 18 for the special case of k = 3, n1 = n2 = 1, n3 = 2. General derivations
of both expressions are outlined in Comment 19.

The standardized version of J is

J ∗ = J − E0(J )√
var0(J )

=
J −
[

N 2−∑k
j=1 n2

j
4

]
{[

N 2(2N + 3) −∑k
j=1 n2

j (2nj + 3)
]/

72
}1/2 . (6.17)

When H0 is true, J ∗ has, as min(n1, . . . , nk ) tends to infinity, an asymptotic N (0, 1) distri-
bution (see Comment 19 for indications of the proof). The normal theory approximation
for procedure (6.14) is

Reject H0 if J ∗ ≥ zα; otherwise do not reject. (6.18)

Ties

If there are ties among the N X ’s, replace φ(a , b) in the calculation of the Mann–
Whitney counts Uuv by φ∗(a , b) = 1, 1

2 , 0 if a <, =, or > b, respectively, so that for
each between-sample comparison where there is a tie, the contribution to the appropriate
Mann–Whitney count will be 1

2 . After computing J with these modified Mann–Whitney
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counts, use procedure (6.14). Note, however, that this test associated with tied X ’s is
only approximately, and not exactly, of the significance level α.

When applying the large-sample approximation, an additional factor must be taken
into account. Although ties in the X ’s do not affect the null expected value of J , its null
variance is reduced to

var0(J )

=
⎧⎨⎩ 1

72

⎡⎣N (N − 1)(2N + 5) −
k∑

i=1

ni (ni − 1)(2ni + 5) −
g∑

j=1

tj (tj − 1)(2tj + 5)

⎤⎦

+ 1

36N (N − 1)(N − 2)

[
k∑

i=1

ni (ni − 1)(ni − 2)

]⎡⎣ g∑
j=1

tj (tj − 1)(tj − 2)

⎤⎦

+ 1

8N (N − 1)

[
k∑

i=1

ni (ni − 1)

]⎡⎣ g∑
j=1

tj (tj − 1)

⎤⎦⎫⎬⎭ , (6.19)

where, in (6.19), g denotes the number of tied X groups and tj is the size of tied group
j . We note that an untied observation is considered to be a tied group of size 1. In
particular, if there are no ties among the X ’s, then g = N and tj = 1, for j = 1, . . . , N .
In this case, each term in (6.19) that involves the factor (tj − 1) reduces to zero and (as
you are asked to show in Problem 19) the variance expression in (6.19) reduces to the
usual null variance of J when there are no ties, as given previously in (6.16).

As a consequence of the effect that ties have on the null variance of J , the following
modification is needed to apply the large-sample approximation when there are tied X ’s.
Compute J using the modified Mann–Whitney counts and set

J ∗ =
J −
[

N 2−∑k
j=1 n2

j
4

]
{var0(J )}1/2

, (6.20)

where var0(J ) is now given by display (6.19). With this modified value of J ∗, the
approximation (6.18) can be applied.

EXAMPLE 6.2 Motivational Effect of Knowledge of Performance.

Hundal (1969) described a study designed to assess the purely motivational effects of
knowledge of performance in a repetitive industrial task. The task was to grind a metallic
piece to a specified size and shape. Eighteen male workers were divided randomly into
three groups. The subjects in the control group, A, received no information about their
output, subjects in group B were given a rough estimate of their output, and subjects in
group C were given an accurate information about their output and could check it further
by referring to a figure that was placed before them. The basic data in Table 6.6 consist
of the numbers of pieces processed by each subject in the experimental period.

We apply the Jonckheere–Terpstra test with the notion that a deviation from H0 is
likely to be in the direction of increased output with increased degree of knowledge of
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Table 6.6 Number of Pieces Processed

Control Group B Group C
(no information) (rough information) (accurate information)

40 (5.5)a 38 (2.5) 48 (18)
35 (1) 40 (5.5) 40 (5.5)
38 (2.5) 47 (17) 45 (15)
43 (10.5) 44 (13) 43 (10.5)
44 (13) 40 (5.5) 46 (16)
41 (8) 42 (9) 44 (13)

Source: P. S. Hundal (1969).
a Although we do not need to perform the joint ranking to compute the
Jonckheere–Terpstra statistic, we give these ranks here for use in Sections 6.4
and 6.7.

performance. Thus, we are interested in using procedure (6.14) with the treatment labels 1
≡ control (no information), 2 ≡ group B (rough information), and 3 ≡ group C (accurate
information). For purpose of illustration, we take the significance level to be α = .0490.
Applying the R command cJCK(α, n), we find cJCK(.0490,c(6,6,6)) = 75; that
is, P0(J ≥ 75) = .0490, and, in the notation of (6.14) with k = 3, n1 = n2 = n3 = 6, we
have j.0490 = 75, and procedure (6.14) reduces to

Reject H0 if J ≥ 75.

We now illustrate the computations leading to the sample value of J (6.13). As there
are ties in the sample data, we use φ∗(a , b) = 1, 1

2 , 0 if a <, =, or > b, respectively, to
compute the 3(2)/2 = 3 Mann–Whitney counts. We obtain

U12 = 1.5 + 2.5 + 6 + 5.5 + 2.5 + 4 = 22,

U13 = 6 + 2.5 + 6 + 4.5 + 6 + 5.5 = 30.5,

and
U23 = 6 + 2 + 5 + 4 + 5 + 4.5 = 26.5.

From (6.13), it follows that

J = 22 + 30.5 + 26.5 = 79.

As this value of J is greater than the critical value 75, we reject H0 at the
.0490 level. In fact, from the observed value J = 79, we see that the R command
pJCK(motivational.effect) that P0(J ≥ 79) = pJCK(motivational.effect)

= .0231. Thus, the lowest significance level at which we can reject H0 in favor of H2

with the observed value of J = 79 is the P -value .0231.
For the large-sample approximation, we need to compute the standardized form of J ∗

using (6.19) and (6.20), because there are ties in the data. The null expected value for J is
E0(J ) = [(18)2 − (62 + 62 + 62)]/4 = 54. For the ties-corrected null variance of J , we
note that g = 11 and t1 = 1, t2 = 2, t3 = 4, t4 = 1, t5 = 1, t6 = 2, t7 = 3, t8 = 1, t9 = 1,
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t10 = 1, t11 = 1, for the Hundal data. Hence, using the ties correction in (6.19), we
have

var0(J ) =
{

1

72
[18(17)(41) − 3(6)(5)(17) − 2(2)(1)(9) − 3(2)(11) − 4(3)(13)]

+ 1

36(18)(17)(16)
[3(6)(5)(4)][3(2)(1) + 4(3)(2)]

+ 1

8(18)(17)
[3(6)(5)][2(2)(1) + 1(3)(2) + 1(4)(3)]

}
= 150.29,

from which it follows that the ties-corrected value of J ∗ (6.20) is

J ∗ = 79 − 54

{150.29}1/2
= 2.04.

Thus, using the approximate procedure (6.18) with the ties-corrected value of J ∗ = 2.04
and the R command pnorm(·), we see that the approximate P -value for these data is
P0(J ∗ ≥ 2.04) ≈ 1−pnorm(2.04) = .0207. Both the exact test and the large-sample
approximation indicate that strong evidence in support of increased output with increase
in degree of knowledge of performance for the task considered by Hundal.

Comments

13. More General Setting. As with the Kruskal–Wallis procedure in Section 6.1,
we could replace Assumptions A1–A3 and H0 (6.2) with the more general null
hypothesis that all N !/

(∏k
j=1 nj !

)
assignments of n1 joint ranks to the treatment

1 observations, n2 joint ranks to the treatment 2 observations, . . . , nk joint ranks
to the treatment k observations are equally likely.

14. Motivation for the Test. Consider J (6.13) and note that the term
∑v−1

u=1

∑k
v=2 Uuv

takes the postulated ordering into account. Consider, for simplicity, the case k =
3. Then

∑v−1
u=1

∑3
v=2 Uuv = U12 + U13 + U23 and if τ1 < τ2 < τ3, U12 would

tend to be larger than n1n2/2 (its null expectation); U13 would tend to be
larger than n1n3/2; U23 would tend to be larger than n2n3/2; and, consequently,
J = U12 + U13 + U23 would tend to be larger than its null expectation (n1n2 +
n1n3 + n2n3)/2 = {[N 2 − (n2

1 + n2
2 + n2

3 )]/4}. This serves as partial motivation
for the J test.

15. Assumptions. It is once again (as with the Kruskal–Wallis procedure in Section
6.1) important to point out that Assumption A3 stipulates that the k treatment
distributions F1, . . . , Fk can differ at most in their locations (medians) (see also
Comment 4).

16. Special Case of Two Treatments. When there are only two treatments, the proce-
dures in (6.14) and (6.18) are equivalent to the exact and large-sample approxi-
mation forms, respectively, of the one-sided upper-tail Wilcoxon rank sum test,
as discussed in Section 4.1.

17. Derivation of the Distribution of J under H0 (No-Ties Case). A little thought
will convince the reader that J can be computed from the joint ranking of all
N =∑k

j=1 nj observations. That is, although we do not need to perform this
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joint ranking in order to compute J , given the ranking, we can, without the
knowledge of the actual Xij values, retrieve the value of J . Thus, one way to
obtain the null distribution of J is to follow the method of Comment 6; namely,
use the fact that under H0 (6.2) all N !/

(
�k

j=1nj !
)

rank assignments are equally
likely, and compute the associated value of J for each possible ranking. Consider
how this would work in the small-sample-size case of k = 3, n1 = 1, n2 = 1, and
n3 = 2. The 4!/[1! 1! 2!] = 12 possible assignments of the joint ranks 1, 2, 3,
and 4 to the three treatments and their associated values of J (6.13) are as
follows:

(a) I II III (b) I II III (c) I II III
1 2 3 2 1 3 1 3 2

4 4 4
J = 5 J = 4 J = 4

(d) I II III (e) I II III (f) I II III
3 1 2 1 4 2 4 1 2

4 3 3
J = 3 J = 3 J = 2

(g) I II III (h) I II III (i) I II III
2 3 1 3 2 1 2 4 1

4 4 3
J = 3 J = 2 J = 2

(j) I II III (k) I II III (l) I II III
4 2 1 3 4 1 4 3 1

3 2 2
J = 1 J = 1 J = 0

Thus, the null distribution for J for n1 = 1, n2 = 1, n3 = 2, and k = 3 is
given by

P0{J = 0} = 1
12 , P0{J = 1} = 2

12 , P0{J = 2} = 3
12 ,

P0{J = 3} = 3
12 , P0{J = 4} = 2

12 , P0{J = 5} = 1
12 .

The probability, under H0, that J is greater than or equal to 4, for example, is
therefore

P0{J ≥ 4} = P0{J = 4} + P0{J = 5}
= 1

12 + 2
12 = .25.

Note that we have derived the null distribution of J without specifying the
common form (F ) of the underlying distribution function for the X ’s under H0

beyond the requirement that it be continuous. This is why the test procedure
(6.14) based on J is called a distribution-free procedure. From the null distribu-
tion of J , we can determine the critical value jα and control the probability α of



6.2 A DIstribution-Free Test for Ordered Alternatives (Jonckheere–Terpstra) 221

falsely rejecting H0 when H0 is true, and this error probability does not depend
on the specific form of the common underlying continuous X distribution.

For a given number of treatments k and sample sizes n1, . . . , nk , the R

command cJCK(α, n) can be used to find the available upper-tail critical values
jα for possible values of J . For a given available significance level α, the critical
value jα then corresponds to P0(J ≥ jα) = α and is given by cJCK(α, n). Thus,
for example, for k = 3, n1 = 6, n2 = 5, and n3 = 7, we have P0(J ≥ 79) =
.0204, so that j.0204 = 79 for k = 3, n1 = 6, n2 = 5, and n3 = 7.

18. Calculation of the Mean and Variance of J under the Null Hypothesis H0. In dis-
plays (6.15) and (6.16), we presented formulas for the mean and variance of J
when the null hypothesis is true. In this comment, we illustrate a direct calcula-
tion of E0(J ) and var0(J ) in the particular case of k = 3 and n1 = n2 = 1, n3 = 2
and no tied observations, using the null distribution of J obtained in Comment
17. (Later, in Comment 19, we present arguments for the general derivations
of E0(J ) and var0(J ).) The null mean, E0(J ), is obtained by multiplying each
possible value of J with its probability under H0. Thus,

E0(J ) = 0
( 1

12

)+ 1
( 2

12

)+ 2
( 3

12

)+ 3
( 3

12

)+ 4
( 2

12

)+ 5
( 2

12

) = 2.5.

This is in agreement with what we obtain using (6.15), namely,

E0(J ) = 42 − {12 + 22 + 12}
4

= 2.5.

A check on the expression for var0(J ) is also easy, using the well-known fact
that

var0(J ) = E0(J
2) − {E0(J )}2.

The value of E0(J 2), the second moment of the null distribution of J , is again
obtained by multiplying possible values (in this case, of J 2) by the corresponding
probabilities under H0. We find

E0(J
2) = 02 ( 1

12

)+ 12 ( 2
12

)+ 22 ( 3
12

)+ 32 ( 3
12

)+ 42 ( 2
12

)+ 52 ( 1
12

) = 49
6 .

Thus,

var0(J ) = 49
6 − (2.5)2 = 23

12 = 1.92,

which agrees with what we obtain using (6.16) directly, namely,

var0(J ) = {42(2(4) + 3) − [12(2(1) + 3) + 12(2(1) + 3) + 22(2(2) + 3)]}
72

= 1.92.
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19. Large-Sample Approximation. From the definition of J (6.13) and Uuv (6.12),
we see that

E (J ) = E

[
v−1∑
u=1

k∑
v=2

Uuv

]
= E

⎡⎣v−1∑
u=1

k∑
v=2

nu∑
i=1

nv∑
j=1

φ(Xiu , Xjv)

⎤⎦
=

v−1∑
u=1

k∑
v=2

nu∑
i=1

nv∑
j=1

E [φ(Xiu , Xjv)]

=
v−1∑
u=1

k∑
v=2

nu∑
i=1

nv∑
j=1

P(Xiu < Xjv)

=
v−1∑
u=1

k∑
v=2

nunvP(X1u < X1v). (6.21)

Under the null hypothesis H0 (6.2), P0(X1u < X1v) = 1
2 for every 1 ≤ u < v ≤

k . It follows that

E0(J ) =
v−1∑
u=1

k∑
v=2

(nunv)

2
= 1

4

k∑
u=1

k∑
v=1

u �=v

nunv

= 1

4

[
k∑

u=1

k∑
v=1

nunv −
k∑

t=1

n2
t

]

= 1

4

[
N 2 −

k∑
t=1

n2
t

]
,

which agrees with the general expression stated in (6.15).
It also follows from (6.12) and (6.13) that

var(J ) = var

(
v−1∑
u=1

k∑
v=2

Uuv

)

=
v−1∑
u=1

k∑
v=2

var(Uuv) +
v−1∑
u=1

k∑
v=2

t−1∑
s=1

k∑
t=2

(u ,v)�=(s ,t)

cov(Uuv , Ust ). (6.22)

Under H0 (6.2), it can be shown (we will not here) that

var0(Uuv) = nunv(nu + nv + 1)

12
, for 1 ≤ u < v ≤ k , (6.23)

cov0(Uuv , Ust ) = 0, for all distinct u , v, s , t in {1, . . . , k}, (6.24)
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cov0(Uuv , Uut ) = nunvnt

12
, for 1 ≤ u < v, t ≤ k , v �= t , (6.25)

cov0(Uuv , Usu) = −ns nunv

12
, for 1 ≤ s < u < v ≤ k , (6.26)

cov0(Uuv , Uvt ) = −nunvnt

12
, for 1 ≤ u < v < t ≤ k , (6.27)

cov0(Uuv , Usv) = nunvns

12
, for 1 ≤ u , s < v ≤ k , u �= s . (6.28)

Combining the results in (6.23)–(6.27), and (6.28) with the expression for var(J )

in (6.22), it follows after significant algebraic manipulation that

var0(J ) = N 2(2N + 3) −∑k
j=1 n2

j (2nj + 3)

72
,

which agrees with the general expression stated in (6.16).
The null asymptotic normality of the standardized form

J ∗ = J − E0(J )

{var0(J )}1/2
=

J −
[

N 2−∑k
j=1 n2

j (2nj +3)

4

]
{ [

N 2(2N + 1) −∑k
t=1 n2

t (2nt + 3)
]/

72
}1/2

follows from the fact that J can be expressed as a sum of certain mutually
independent combined-samples Mann–Whitney statistics and standard theory for
such sums of mutually independent, but not necessarily identically distributed,
random variables (see, e.g., Terpstra (1952) or Section 12.1 of Randles and
Wolfe (1979)). Asymptotic normality results for J under general alternatives to
H0 are obtainable from standard results in the k -sample U -statistics theory (see,
e.g., Lehmann (1975, pp. 401–402)).

20. Power of the Jonckheere–Terpstra Test. The Jonckheere–Terpstra procedures
(6.14) and (6.18) are quite superior to the Kruskal–Wallis procedures in (6.6) and
(6.7) when the conjectured ordering of the treatment effects (τ1 ≤ τ2 ≤ · · · ≤ τk )
is, indeed, appropriate. In addition, small violations in the conjectured ordering
for τi and τj do not seriously affect the power of the Jonckheere–Terpstra tests
if i and j correspond to treatment labels near the middle of the conjectured
orderings. However, if i and j are both near 1 or k , the effect of such violations
can be rather substantial, especially if the magnitude of the difference |τj − τi |
is fairly large. Mack and Wolfe (1981) presented the results of a small-sample
power study that illustrates this phenomenon about the power of the Jonckheere–
Terpstra procedures. In Section 6.3, we will discuss test procedures designed
to deal with this possibility of early or late violations of the conjectured order-
ings τ1 ≤ τ2 ≤ · · · ≤ τk . The Jonckheere–Terpstra procedures will turn out to be
special cases of this class of tests designed for the more general form of alterna-
tives τ1 ≤ τ2 ≤ · · · ≤ τp−1 ≤ τp ≥ τp+1 ≥ · · · ≥ τk , known in the literature as
umbrella orderings for the pictorial shape of the graphed treatment effects.

21. k-Sample Behrens–Fisher Problem. Two of the implicit requirements associated
with Assumptions A1–A3 are that the underlying distributions belong to the same



224 Chapter 6 The One-Way Layout

common family (F ) and that they differ within this family at most in their medi-
ans. The less restrictive setting where these assumptions are relaxed to permit
the possibility of differences in scale parameters as well as medians within the
common family F is referred to as the k-sample Behrens–Fisher problem. The
Jonckheere–Terpstra procedure (6.14) is no longer distribution-free under this
more relaxed Behrens–Fisher setting. Chen and Wolfe (1990a) suggested a modi-
fication of the Jonckheere–Terpstra statistic J (6.13) to deal with this less restric-
tive setting. Their approach is similar to that used by Rust and Fligner (1984) to
modify the Kruskal–Wallis statistic H for the same setting (see Comment 10).

22. Consistency of the J Test. Replace Assumptions A1–A3 by the less restrictive
Assumptions A1′: the X ’s are mutually independent and A2′ : X1j , . . . , Xnj j

come from the same continuous population �j , j = 1, . . . , k . The populations
�1, . . . , �k need not be identical, but we do assume that

δij = P(X1j > X1i ) ≥ 1
2 , for 1 ≤ i < j ≤ k .

Then, roughly speaking, the test defined by (6.14) is consistent if and only if
there is at least one pair (i , j ), with i < j , such that δij > 1

2 .

Properties

1. Consistency. The condition nj /N tends to λj , 0 < λj < 1, j = 1, . . . , k , is suffi-
cient to ensure that the test defined by (6.14) is consistent against the H2 (6.11)
alternatives. For a more general consistency statement, see Terpstra (1952) and
Comment 22.

2. Asymptotic Normality. See Randles and Wolfe (1979, pp. 396–397) and Lehmann
(1975, pp. 401–402).

3. Efficiency. See Puri (1965) and Section 6.10.

Problems

11. Apply the Jonckheere–Terpstra test to the psychotherapeutic attraction data of Table 6.2 using
the postulated ordering τ1 ≤ τ2 ≤ τ3 ≤ τ4. Compare and contrast this result with that obtained
for the Kruskal–Wallis test in Problem 1.

12. The statistic J can be computed either from (a) the joint ranking of the N =∑k
j=1 nj obser-

vations or from (b) k(k − 1)/2 “two-sample” rankings. Explain.

13. What are the minimum and maximum values for J ? Justify your answer.

14. Suppose k = 3 and n1 = 4, n2 = 7, n3 = 8. Compare the critical region for the exact level
α = .0444 test of H0 (6.2) based on J with the critical region for the corresponding nominal
level α = .0444 test based on the large-sample approximation. What is the nominal probability
of a type I error assigned by the large-sample approximation to the exact level α = .0444
critical region?

15. Suppose k = 4, n1 = n2 = n3 = 1, and n4 = 2. Obtain the form of the exact null (H0) distri-
bution of J for the case of no tied observations.

16. Use (6.23)–(6.27), and (6.28) to show that the expression for var0(J ) in (6.16) follows, under
H0, from the general expression for var (J ) in (6.22).
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Table 6.7 Average Basal Area Increment (BAI) Values
for Oak Stands in Southeastern Ohio

Growing site index interval

66–68 69–71 72–74 75–77 78–80

1.91 2.44 2.45 2.52 2.78
1.53 2.04 2.36 2.88
2.08 1.60 2.73 2.10
1.71 2.37 1.66

Source: M. Dale (1984).

17. In a project designed to study stand density (i.e., number of trees in a fixed area) and its
relationship to other important features of a timber area such as tree growth, wood quality,
and total wood production, Dale (1984) collected data on a quantity (related to yearly growth
increment in a tree) known as basal area increment (BAI ) for 16 stands of mixed species of
oak trees in southeastern Ohio. The 16 stands were grouped according to the value of a second
factor called growing site index. This index ranges in value from the low 50s to 100s for oak
species, and as the value of the site index increases, the growing environment becomes more
favorable for a stand of trees. The data in Table 6.7 are a subset of the data obtained by Dale
and represent average BAI values for the 16 stands in his study. The BAI data are grouped
into five distinct categories according to the associated growing site index values.

Use an appropriate test procedure to evaluate the conjecture that the average basal area
increment for a given stand of oak trees is an increasing function of the value of the stand’s
growing site index.

18. Apply the Kruskal–Wallis test to the knowledge of performance data in Table 6.6. Compare
and contrast this result with that obtained by the Jonckheere–Terpstra test in Example 6.2.

19. Show that the expression given in (6.19) for the null variance of J in the case of tied X
observations reduces to the usual null variance of J when there are no ties, as given in (6.16).

6.3 DISTRIBUTION-FREE TESTS FOR UMBRELLA
ALTERNATIVES (MACK–WOLFE)

In Section 6.2, we introduced the idea of designing test procedures to be especially
effective against a restricted class of alternatives. There we considered the special class
of monotonically ordered alternatives. In this section, we extend that idea to a broader
class of alternatives, which includes the ordered alternatives of Section 6.2 as a special
case.

Let p ∈ {1, 2, . . . , k} be a fixed treatment label. In this section, we consider pro-
cedures for testing H0 (6.2) against the class of umbrella alternatives corresponding
to

H3 : [τ1 ≤ τ2 ≤ · · · ≤ τp−1 ≤ τp ≥ τp+1 ≥ · · · ≥ τk ,

with at least one strict inequality]. (6.29)

(The label umbrella was given to these alternatives by Mack and Wolfe (1981) because
of the pictorial configuration of the τ ’s.) The umbrella in (6.29) is said to have a peak
at population p. (Note that the ordered alternatives of Section 6.2 are simply a special
case of umbrella alternatives with peak at p = k .) These umbrella alternatives are one-
way layout analogs to a quadratic regression setting and are appropriate, for example, in



226 Chapter 6 The One-Way Layout

evaluating marginal gain in performance efficiency as a function of time, crop yield as a
function of fertilizer applied, reaction to increasing drug dosage levels where a downturn
in effect may occur after the optimal dosage is exceeded, effect of age on responses
to certain stimuli, etc. (These umbrella alternatives can be effectively used in place of
ordered alternatives when one is concerned about possible violations of the monotonic
ordering at either the beginning or the end of the sequence of treatment effects. See
Comment 20 for further discussions along these lines.)

In Section 6.3A, we present a procedure specifically designed to test H0 (6.2) against
the umbrella alternatives H3 (6.29), where the peak, p, of the conjectured umbrella is
known prior to data collection. This procedure is preferred to the general alternatives
Kruskal–Wallis test in Section 6.1 when the treatments can be labeled a priori in such
a way that the experimenter expects any deviation from H0 (6.2) to be in the particular
direction of H3 (6.29) with known p. In Section 6.3B, we extend the idea of umbrella
alternatives to the more practical setting where it is not necessary to specify the peak, p, of
the umbrella configuration prior to data collection. Here, we present a procedure designed
to test H0 (6.2) against the class of umbrella alternatives with peak (p) unspecified,
namely,

H4 : [τ1 ≤ · · · ≤ τp−1 ≤ τp ≥ τp+1 ≥ · · · ≥ τk ,

with at least one strict inequality, for some p ∈ {1, 2, . . . , k}]. (6.30)

The Mack–Wolfe procedure in Section 6.3B is preferred to the peak-known procedure
presented in Section 6.3A for the more common settings when umbrella alternatives
are appropriate but where there is some uncertainty about the treatment at which the
maximum effect is expected to occur if H0 (6.2) is not true.

As, with the ordered alternatives in Section 6.2, we emphasize that the labeling of the
treatments so that either of the umbrella alternatives H3 (6.29) or H4 (6.30) is appropriate
cannot depend on the observed sample values. This labeling must correspond to a factor
(s) associated with the experimental design and not on the sample data. In Section 6.2B,
however, the peak of the conjectured umbrella needs not be specified prior to data
collection.

6.3A A DISTRIBUTION-FREE TEST FOR UMBRELLA
ALTERNATIVES, PEAK KNOWN (MACK–WOLFE)

In this subsection, we present a procedure for testing H0 (6.2) against the peak-known
(at p) umbrella alternatives given by H3 (6.29).

Procedure

First, we must label the treatments so that they are in the prescribed ordered relationships
to the known peak, p, corresponding to the umbrella configuration in H3 (6.29). To
calculate the known-peak umbrella statistic, Ap , we first compute the p(p − 1)/2 Mann–
Whitney counts Uuv (6.12) for every pair of treatments with labels less than or equal
to the hypothesized peak (i.e., for 1 ≤ u < v ≤ p). In addition, we compute the (k −
p + 1)(k − p)/2 reverse Mann–Whitney counts Uvu (6.12) for every pair of treatments
with labels greater than or equal to the hypothesized peak (i.e., for p ≤ u < v ≤ k ).
(Thus, Uvu is the number of sample v before sample u precedences. Note that if there
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are no ties between the uth sample and vth sample observations, p ≤ u < v ≤ k , then
Uvu = nunv − Uuv.) The Mack–Wolfe peak-known statistic, Ap , is then the sum of the
Mann–Whitney counts to the left of the peak and the reverse Mann–Whitney counts to
the right of the peak (as appropriate for the umbrella alternatives H3 (6.29)), namely,

Ap =
v−1∑
u=1

p∑
v=2

Uuv +
v−1∑
u=p

k∑
v=p+1

Uvu . (6.31)

To test
H0 : [τ1 = · · · = τk ]

versus the peak-known (at p ∈ {1, . . . , k}) umbrella alternative

H3 : [τ1 ≤ τ2 ≤ · · · ≤ τp−1 ≤ τp ≥ τp+1 ≥ · · · ≥ τk ,

with at least one strict inequality],

at the α level of significance,

Reject H0 if Ap ≥ ap,α; otherwise do not reject, (6.32)

where the constant ap,α is chosen to make the type I error probability equal to α. The
constant ap,α is the upper α percentile for the null (τ1 = · · · = τk ) distribution of Ap .
Comment 25 explains how to obtain the critical value ap,α for k treatments, known peak
p, and sample sizes n1, . . . , nk and available levels of α.

Large-Sample Approximation

The large-sample approximation is based on the asymptotic (min(n1, . . . , nk ) tending
to infinity) normality of Ap , suitably standardized. For this purpose, we need to know
the expected value and variance of Ap when the null hypothesis is true. Under H0, the
expected value and variance of Ap are

E0(Ap) = N 2
1 + N 2

2 −∑k
i=1 n2

i − n2
p

4
(6.33)

and

var0(Ap) = 1

72

{
2(N 3

1 + N 3
2 ) + 3(N 2

1 + N 2
2 ) −

k∑
i=1

n2
i (2ni + 3)

− n2
p (2np + 3) + 12npN1N2 − 12n2

p N

}
, (6.34)

respectively, with N1 =∑p
i=1 ni and N2 =∑k

i=p ni . (Note that N = N1 + N2 − np ,
because the observations in the peak treatment p are counted in both N1 and N2.) These
expressions for E0(Ap) and var0(Ap) are verified by direct calculations in Comment 27
for the special case of k = 4, p = 3, n1 = n2 = n4 = 1, n3 = 2. General derivations of
both expressions are outlined in Comment 28.
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The standardized version of Ap is

A∗
p = Ap − E0(Ap)√

var0(Ap)

=
{

Ap −
[

N 2
1 + N 2

2 −∑k
i=1 n2

i − n2
p

4

]}

÷
{[

2(N 3
1 + N 3

2 ) + 3(N 2
1 + N 2

2 ) −
k∑

i=1

n2
i (2ni + 3)

− n2
p (2np + 3) + 12npN1N2 − 12n2

p N

]/
72

}1/2

. (6.35)

When H0 is true, A∗
p has, as min(n1, . . . , nk ) tends to infinity, an asymptotic N (0, 1) distri-

bution (see Comment 28 for indications of the proof). The normal theory approximation
to procedure (6.32) is

Reject H0 if A∗
p ≥ zα; otherwise do not reject. (6.36)

Ties

If there are ties among either the N1 X ’s in treatments 1, . . . , p or the N2 X ’s in treatments
p, . . . , k , replace φ(a , b) in the calculations of the appropriate Mann–Whitney counts Uuv

or reverse Mann–Whitney counts Uvu by φ∗(a , b) = 1, 1
2 , 0 if a <, =, or > b, respec-

tively, so that for each between-sample comparison where there is a tie, the contribution
to the appropriate Mann–Whitney or reverse Mann–Whitney count will be 1

2 . After com-
puting Ap with these modified counts, use procedure (6.32) with this tie-modified value
of Ap . Note, however, that this test associated with tied X ’s is only approximately, and
not exactly, of the significance level α.

When applying the large-sample approximation, an additional factor should be taken
into account. Although ties in the X ’s do not affect the null expected value of Ap , its
true null variance is smaller in the case of ties than the numerical value given by the
expression in (6.34). However, the appropriate expression for the exact variance of Ap

in the case of ties is not available. Therefore, in the case of tied X ’s and large-sample
sizes, we recommend computing Ap using the modified Mann–Whitney counts and then
A∗

p via (6.35). With this modified value of A∗
p , the approximation (6.36) can be applied.

However, the associated approximate P -value will be larger than what we would obtain
if the appropriate expression for the ties-corrected null variance of Ap was available to
use in the computation of A∗

p .

EXAMPLE 6.3 Fasting Metabolic Rate of White-Tailed Deer.

Seasonal energy requirements of deer are an important consideration when evaluating
wildlife plans for certain habitats. Both nutritional quality of the range and the physio-
logical demands of the deer must be studied in order to prevent starvation during critical
seasons and to select optimum harvest strategies. Some aspects of the energy demand
were considered by Silver et al. (1969) as they studied the fasting metabolic rate (FMR)



6.3A A Distribution-Free Test for Umbrella Alternatives, Peak Known (Mack–Wolfe) 229

Table 6.8 Fasting Metabolic Rate (FMR) for White-Tailed Deer (kcal/kg/day)

Two-Month Period

January– March– May– July– September– November–
February April June August October December

36.0 39.9 44.6 53.8 44.3 31.7
33.6 29.1 54.4 53.9 34.1 22.1
26.9 43.4 48.2 62.5 35.7 30.7
35.8 55.7 46.6 35.6
30.1 50.0
31.2
35.3

Source: H. Silver, N. F. Colovos, J. B. Holter, and H. H. Hayes (1969).

of white-tailed deer. In particular, one of the questions of interest was whether or not
FMR is an increasing function of environmental temperature, for which they collected
the data in Table 6.8.

For these data, we expect any deviation from H0 (6.2) to be in the direction of
increasing FMR values from the January–February period up through the warmest
2-month period, July–August, with declining FMR values from July–August through
the November–December period. Thus, we are interested in testing H0 against the
peak-known umbrella alternatives (6.29) with treatment labels 1 ≡ January–February,
2 ≡ March–April, 3 ≡ May–June, 4 ≡ July–August, 5 ≡ September–October,
6 ≡ November–December, and known umbrella peak at p = 4, corresponding to the
warmest (July–August) 2-month period. For the purpose of illustration, we take the
significance level to be α = .0101. Applying the R command cUmbrPK(α, n , p), we
find cUmbrPK(.0101,c(7,3,5,4,4,3),4) = 125; that is, P0(A4 ≥ 125) = .0101,
and, in the notation of (6.32) with k = 6, p = 4, n1 = 7, n2 = 3, n3 = 5, n4 = 4, n5 =
4, and n6 = 3, we have a4,.0101 = 125 and procedure (6.32) reduces to

reject H0 if A4 ≥ 125.

We now illustrate the computations leading to the sample value of A4 (6.31). For this
purpose, we first need to compute the 4(3)/2 = 6 Mann–Whitney counts Uuv , for 1 ≤
u < v ≤ 4, and the 3(2)/2 = 3 reverse Mann–Whitney counts Uvu , for 4 ≤ u < v ≤ 6.
We obtain

U12 = 7 + 1 + 7 = 15, U13 = 7 + 7 + 7 + 7 + 7 = 35,

U14 = 7 + 7 + 7 + 7 = 28, U23 = 3 + 3 + 3 + 3 + 3 = 15,

U24 = 3 + 3 + 3 + 3 = 12, U34 = 3 + 3 + 5 + 1 = 12,

U54 = 4 + 4 + 4 + 4 = 16, U64 = 3 + 3 + 3 + 3 = 12,

U65 = 3 + 3 + 3 + 3 = 12.

From (6.31), it follows that

A4 = U12 + U13 + U14 + U23 + U24 + U34 + U65 + U64 + U54

= 15 + 35 + 28 + 15 + 12 + 12 + 12 + 12 + 16 = 157.
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As this value of A4 is greater than the critical value a4,.0101 = 125, we reject
H0 at the α = .0101 level. In fact, from the observed value A4 = 157, we see,
using the R command pUmbrPK(metabolic.rate, 4) that P0(A4 ≥ 157) =
pUmbrPK(metabolic.rate, 4). Thus, the lowest significance level at which we
can reject H0 in favor of H3 with the observed value of the test statistic A4 = 157 is
<< .0001.

For the large-sample approximation, we have n1 = 7, n2 = 3, n3 = 5, n4 = 4, n5 = 4,
and n6 = 3, so that N1 = (7 + 3 + 5 + 4) = 19, N2 = 3 + 4 + 4 = 11, and N = (7 + 3 +
5 + 4 + 4 + 3) = 26. Using these figures in expressions (6.33) and (6.34) for E0(A4) and
var0(A4), respectively, we see that

E0(A4) = (19)2 + (11)2 − [(7)2 + (3)2 + (5)2 + (4)2 + (4)2 + (3)2 + (4)2]

4
= 85.5

and

var0(A4) = 1
72 {2[(19)3 + (11)3] + 3[(19)2 + (11)2]

−[(7)2(2(7) + 3) + (3)2(2(3) + 3)

+(5)2(2(5) + 3) + (4)2(2(4) + 3)

+(4)2(2(4) + 3) + (3)2(2(3) + 3)]

−(4)2(2(4) + 3) + 12(4)(19)(11) − 12(4)2(26)}

= 21,018

72
= 291.92.

Thus, from (6.35), we obtain

A∗
4 = A4 − E0(A4)√

var0(A4)
= 157 − 85.5√

291.92
= 4.18.

Using the R command pnorm(·), the smallest approximate level at which we can
reject H0 in favor of H3 with the observed value of A∗

4 = 4.18 (i.e., the approximate
P -value) is then given by P0(A∗

4 ≥ 4.18) ≈ 1 − pnorm(4.18) = 1 − .99999 = .00001.
Both the exact test and the large-sample approximate test provide very strong evidence in
support of the claim that FMR for white-tailed deer is an increasing function of environ-
mental temperature. (We note that the Jonckheere–Terpstra procedure from Section 6.2
would not be appropriate for these FMR data even with relabeled treatments, because,
e.g., it would be difficult to properly order the temperatures of the March–April and
September–October periods.)

Comments

23. Motivation for the Test. Notice that the statistic Ap can be viewed as the simple
sum of two Jonckheere–Terpstra statistics, one (Jup) on treatments 1 through p
with the postulated ordering τ1 ≤ · · · ≤ τp and the second (Jdown) on treatments
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k through p with the postulated reverse ordering τk ≤ τk−1 ≤ · · · ≤ τp . Thus,
the statistic Ap = Jup + Jdown will be large if either Jup or Jdown (or both) is
large. In view of Comment 14, this serves as partial motivation for the Ap

test.

24. Special Case of Three Treatments. When there are only k = 3 treatments, the
umbrella statistic Ap can be viewed in a special way. If p = 3, then A3 =
U12 + U13 + U23 is just the usual Jonckheere–Terpstra statistic for the ordered
alternatives τ1 ≤ τ2 ≤ τ3. If p = 1, we have A1 = U31 + U32 + U21, which is the
Jonckheere–Terpstra statistic for the reverse ordered alternatives τ3 ≤ τ2 ≤ τ1. In
either of these cases, all the properties of the Jonckheere–Terpstra test procedure
(including null distribution and critical values) discussed in Section 6.2 apply
directly to tests based on A1 or A3, add as appropriate. For the third umbrella
setting with p = 2, we see that A2 = U12 + U32, which is the same as a single
Mann–Whitney statistic comparing the peak sample (treatment 2) with the com-
bined set of data from treatments 1 and 3. (Thus, A2 is the number of sample l
or sample 3 before sample 2 precedences.) As a result, if p = 2 and k = 3, the
procedures in (6.32) and (6.36) for sample sizes n1, n2, and n3 are equivalent to
the exact and large-sample approximation forms, respectively, of the one-sided
upper-tail two-sample Wilcoxon rank sum test (as discussed in Section 4.1) for
sample sizes m = n1 + n3 and n = n2.

25. Derivation of the Distribution of Ap under H0 (No Ties). As with the Jonckheere–
Terpstra statistic J (see Comment 17), it is clear that the umbrella peak-known
statistic Ap can be computed from the joint ranking of all N =∑k

i=1 ni obser-
vations. Thus, one way to obtain the null distribution of Ap is to follow the
method of Comments 6 and 17, namely, to compute the value of Ap for each of
the N !/(

∏k
j=1 = nj !) equally likely (under H0) rank assignments. We illustrate

how this works in the small-sample-size case of k = 4, p = 3, n1 = n2 = n4 =
1, n3 = 2. The 5!/[1! 1! 1! 2!] = 60 possible assignments of the joint ranks 1,
2, 3, 4, and 5 to the four treatments and their associated values of A3 (6.31) are
as follows:

1. I II III IV 2. I II III IV
1 2 4 3 2 1 4 3

5 5
A3 = 7 A3 = 6

3. I II III IV 4. I II III IV
1 3 4 2 3 1 4 2

5 5
A3 = 7 A3 = 6

5. I II III IV 6. I II III IV
2 3 4 1 3 2 4 1

5 5
A3 = 7 A3 = 6

7. I II III IV 8. I II III IV
1 2 3 4 2 1 3 4

5 5
A3 = 6 A3 = 5
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9. 1 II III IV 10. I II III IV
1 4 3 2 4 1 3 2

5 5
A3 = 6 A3 = 5

11. I II III IV 12. I II III IV
2 4 3 1 4 2 3 1

5 5
A3 = 6 A3 = 5

13. I II III IV 14. I II III IV
1 3 2 4 3 1 2 4

5 5
A3 = 5 A3 = 4

15. I II III IV 16. I II III IV
1 4 2 3 4 1 2 3

5 5
A3 = 5 A3 = 4

17. I II III IV 18. I II III IV
3 4 2 1 4 3 2 1

5 5
A3 = 5 A3 = 4

19. I II III IV 20. I II III IV
2 3 1 4 3 2 1 4

5 5
A3 = 4 A3 = 3

21. 1 II III IV 22. I II III IV
2 4 1 3 4 2 1 3

5 5
A3 = 4 A3 = 3

23. I II III IV 24. I II III IV
3 4 1 2 4 3 1 2

5 5
A3 = 4 A3 = 3

25. I II III IV 26. I II III IV
1 2 3 5 2 1 3 5

4 4
A3 = 5 A3 = 4

27. I II III IV 28. I II III IV
1 5 3 2 5 1 3 2

4 4
A3 = 5 A3 = 4

29. I II III IV 30. I II III IV
2 5 3 1 5 2 3 1

4 4
A3 = 5 A3 = 4
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31. I II III IV 32. I II III IV
1 3 2 5 3 1 2 5

4 4
A3 = 4 A3 = 3

33. I II III IV 34. I II III IV
1 5 2 3 5 1 2 3

4 4
A3 = 4 A3 = 3

35. I II III IV 36. I II III IV
3 5 2 1 5 3 2 1

4 4
A3 = 4 A3 = 3

37. I II III IV 38. I II III IV
2 3 1 5 3 2 1 5

4 4
A3 = 3 A3 = 2

39. I II III IV 40. I II III IV
2 5 1 3 5 2 1 3

4 4
A3 = 3 A3 = 2

41. I II III IV 42. I II III IV
3 5 1 2 5 3 1 2

4 4
A3 = 3 A3 = 2

43. I II III IV 44. I II III IV
1 4 2 5 4 1 2 5

3 3
A3 = 3 A3 = 2

45. I II III IV 46. I II III IV
1 5 2 4 5 1 2 4

3 3
A3 = 3 A3 = 2

47. I II III IV 48. I II III IV
4 5 2 1 5 4 2 1

3 3
A3 = 3 A3 = 2

49. I II III IV 50. I II III IV
2 4 1 5 4 2 1 5

3 3
A3 = 2 A3 = 1

51. I II III IV 52. I II III IV
2 5 1 4 5 2 1 4

3 3
A3 = 2 A3 = 1



234 Chapter 6 The One-Way Layout

53. I II III IV 54. I II III IV
4 5 1 2 5 4 1 2

3 3
A3 = 2 A3 = 1

55. I II III IV 56. I II III IV
3 4 1 5 4 3 1 5

2 2
A3 = 1 A3 = 0

57. I II III IV 58. I II III IV
3 5 1 4 5 3 1 4

2 2
A3 = 1 A3 = 0

59. I II III IV 60. I II III IV
4 5 1 3 5 4 1 3

2 2
A3 = 1 A3 = 0

Thus, the null distribution for A3 when k = 3, n1 = n2 = n4 = 1, and n3 = 2
is given by

P0{A3 = 0} = 3
60 , P0{A3 = 1} = 6

60 , P0{A3 = 2} = 9
60

P0{A3 = 3} = 12
60 , P0{A3 = 4} = 12

60 , P0{A3 = 5} = 9
60

P0{A3 = 6} = 6
60 , P0{A3 = 7} = 3

60 .

The probability, under H0, that A3 is greater than or equal to 5, for example, is

P0{A3 ≥ 5} = P0{A3 = 5} + P0{A3 = 6} + P0{A3 = 7} = 9 + 6 + 3

60
= .3.

Note that we have derived the null distribution of A3 without specifying the
common form (F ) of the underlying distribution function for the X ’s under
H0 beyond the requirement that it be continuous. This is why the test proce-
dure (6.32) based on Ap is called a distribution-free procedure. From the null
distribution of Ap , we can determine the critical value ap,α and control the prob-
ability α of falsely rejecting H0 when H0 is true, and this error probability
does not depend on the specific form of the common underlying continuous
X distribution.

For a given number of treatments k , peak p, and sample sizes n1, . . . , nk , the
R command cUmbrPK(α, n , p) can be used to find the available upper-tail critical
values ap,α for possible values of Ap . For a given available significance level α,
the critical value ap,α then corresponds to P0(Ap ≥ ap,α) = α and is given by
cUmbrPK(α, n , p). Thus, for example, for k = 5, p = 3, n1 = n2 = n3 = n4 =
n5 = 4, we have P0(A3 ≥ 68) = .0475, so that a3,.0475 = 68 for k = 5, p = 3,
and n1 = n2 = n3 = n4 = n5 = 4.

26. Calculation of the Mean and Variance of Ap under the Null Hypothesis H0. In
displays (6.33) and (6.34), we presented formulas for the mean and variance
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of Ap when the null hypothesis is true. In this comment, we provide a direct
calculation of E0(Ap) and var0(Ap) in the specific case of k = 4, p = 3, n1 =
n2 = n4 = 1, n3 = 2 and no tied observations using the null distribution of A3

obtained in Comment 25. (Later, in Comment 27, we discuss general derivations
of E0(Ap) and var0(Ap).) From the null distribution provided in Comment 25,
we see that

E0(A3) = [0 ( 3
60

)+ 1
( 6

60

)+ 2
( 9

60

)+ 3
( 12

60

)+ 4
( 12

60

)
+5
( 9

60

)+ 6
( 6

60

)+ 7
( 3

60

)]
= 3.5.

This is in agreement with what we obtain using (6.33), namely,

E0(A3) = {(1 + 1 + 2)2 + (2 + 1)2 − [12 + 12 + 22 + 12 + 22]}
4

= 16 + 9 − 11

4
= 3.5.

Again using the null distribution in Comment 25, we have

E0(A
2
3) = [02 ( 3

60

)+ 12 ( 6
60

)+ 22 ( 9
60

)+ 32 ( 12
60

)+ 42 ( 12
60

)
+52 ( 9

60

)+ 62 ( 6
60

)+ 72 ( 3
60

)]
= 15.5.

Using the well-known expression for var0(A3), it follows that

var0(A3) = E0(A
2
3) − {E0(A3)}2 = 15.5 − (3.5)2 = 3.25,

which agrees with what we obtain using (6.34) directly, namely,

var0(A3) = {2(43 + 33) + 3(42 + 32) + [(3)(1)2(2(1) + 3) + 2(2)2(2(2) + 3)]

+12(2)(4)(3) − 12(2)2(5)}/72

= 182 + 75 − 71 + 288 − 240

72
= 3.25.

27. Large-Sample Approximation. As noted in Comment 23, the umbrella statistic
Ap can be expressed as Ap = Jup + Jdown, where Jup is the Jonckheere–Terpstra
statistic on treatments 1 through p with the postulated ordering τ1 ≤ · · · ≤ τp

and Jdown is the Jonckheere–Terpstra statistic on treatments k through p with the
postulated ordering τk ≤ τk−1 ≤ · · · ≤ τp . Thus, using the previous development
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for the Jonckheere–Terpstra statistic in Comment 19, we see that

E0(Ap) = E0(Jup) + E0(Jdown)

= 1

4

[
N 2

1 −
p∑

t=1

n2
t

]
+ 1

4

[
N 2

2 −
k∑

t=p

n2
t

]

= 1

4

[
N 2

1 + N 2
2 −

k∑
t=1

n2
t − n2

p

]
,

which agrees with the general expression stated in (6.33).
It also follows from the representation Ap = Jup + Jdown that

var0(Ap) = var0(Jup + Jdown)

= var0(Jup) + var0(Jdown) + 2cov0(Jup, Jdown). (6.37)

Now,

cov0(Jup, Jdown) = cov0

⎛⎝v−1∑
u=1

p∑
v=2

Uuv ,
t−1∑
s=p

k∑
t=p+1

Uts

⎞⎠
= cov0

⎛⎝v−1∑
u=1

p−1∑
v=2

Uuv +
p−1∑
u=1

Uup ,
t−1∑

s=p+1

k∑
t=p+2

Uts +
k∑

t=p+1

Utp

⎞⎠
=
⎡⎣cov0

⎛⎝v−1∑
u=1

p−1∑
v=2

Uuv ,
t−1∑

s=p+1

k∑
t=p+2

Uts

⎞⎠
+cov0

⎛⎝v−1∑
u=1

p−1∑
v=2

Uuv ,
k∑

t=p+1

Utp

⎞⎠
+cov0

⎛⎝p−1∑
u=1

Uup ,
t−1∑

s=p+1

k∑
t=p+2

Uts

⎞⎠
+cov0

⎛⎝p−1∑
u=1

Uup ,
k∑

t=p+1

Utp

⎞⎠⎤⎦ . (6.38)

The term
∑v−1

u=1

∑p−1
v=2 Uuv involves only X observations from the first (p −

1) samples, whereas the terms
∑t−1

s=p+1

∑k
t=p+2 Uts and

∑k
t=p+1 Utp involve only

X observations from samples p + 1, p + 2, . . . , k and p, p + 1, . . . , k , respec-
tively. As the X observations are mutually independent, it follows that

cov0

⎛⎝v−1∑
u=1

p−1∑
v=2

Uuv ,
t−1∑

s=p+1

k∑
t=p+2

Uts

⎞⎠ = cov0

⎛⎝v−1∑
u=1

p−1∑
v=2

Uuv ,
k∑

t=p+1

Utp

⎞⎠ = 0.

(6.39)
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Similarly, the term
∑p−1

u=1 Uup involves only X observations from the first p
samples, and the term

∑t−1
s=p+1

∑k
t=p+2 Uts involves only X observations from

samples p + 1, p + 2, . . . , k , leading to

cov0

⎛⎝p−1∑
u=1

Uup

t−1∑
s=p+1

k∑
t=p+2

Uts

⎞⎠ = 0. (6.40)

(Note that (6.39) and (6.40) are a consequence of the fact that the sample obser-
vations from the peak treatment p are the only data used in both Jup and Jdown.)
Combining (6.38), (6.39), and (6.40) with a well-known result about covariances
of sums, we obtain

cov0(Jup, Jdown) = cov0

⎛⎝p−1∑
u=1

Uup ,
K∑

t=p+1

Utp

⎞⎠
=

p−1∑
u=1

k∑
t=p+1

cov0(Uup , Utp). (6.41)

From (6.28), it follows that

cov0(Jup, Jdown) = np

12

p−1∑
u=1

k∑
t=p+1

nunt = np

12

⎛⎝p−1∑
u=1

nu

⎞⎠⎛⎝ k∑
t=p+1

nt

⎞⎠
= np(N1 − np)(N2 − np)

12
. (6.42)

Combining (6.37) and (6.42), we see that

var0(Ap) = var0(Jup) + var0(Jdown) + np(N1 − np)(N2 − np)

6
. (6.43)

Using the expression in (6.16) for both var0(Jup) and var0(Jdown), it follows
from (6.43) after some algebraic manipulation (see Problem 28) that

var0(Ap) = 1

72

{
2(N 3

1 + N 3
2 ) + 3(N 2

1 + N 2
2 ) −

k∑
i=1

n2
i (2ni + 3)

− n2
p (2np + 3) + 12npN1N2 − 12n2

p N

}
,

which agrees with the general expression stated in (6.34).
The null asymptotic normality of the standardized form

A∗
p = Ap − E0(Ap)

{var0(Ap)}1/2

follows from the fact that Ap can be expressed as a sum of certain mutually
independent combined-samples Mann–Whitney statistics and standard theory for
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such sums of mutually independent, but not necessarily identically distributed,
random variables (see, e.g., Mack and Wolfe (1981)). Asymptotic normality
results for Ap under general alternatives to H0 follow directly from work by
Archambault, Mack, and Wolfe (1977) on a large class of k -sample statistics.

28. k-Sample Behrens–Fisher Problem. Two of the implicit requirements associated
with Assumptions A1–A3 are that the underlying distributions belong to the
same common family (F ) and that they differ within this family at most in their
medians. The less restrictive setting where these assumptions are relaxed to per-
mit the possibility of differences in scale parameters as well as medians within
the common family F is referred to as the k-sample Behrens–Fisher problem.
The Mack–Wolfe procedure (6.32) is no longer distribution-free under this more
relaxed Behrens–Fisher setting. Chen and Wolfe (1990a) suggested a modifi-
cation of the Mack–Wolfe statistic Ap (6.31) to deal with this less restrictive
setting. Their approach is similar to that used by Rust and Fligner (1984) to
modify the Kruskal–Wallis statistic H for the same setting (see Comment 10).

29. Consistency of the Ap Test. Replace Assumptions A1–A3 by the less restric-
tive Assumptions A1′: the X ’s are mutually independent and A2′ : X1j , . . . , Xnj j

come from the same continuous population �j , j = 1, . . . , k . The populations
�1, . . . , �k need not be identical, but they are restricted to conform with the
umbrella alternatives. Letting δij = P(X1j > X1i ), for 1 ≤ i < j ≤ k , we do
assume that

δij ≥ 1
2 , for 1 ≤ i < j ≤ p

δij ≤ 1
2 , for p ≤ i < j ≤ k , (6.44)

with no restrictions on δij for i < p and j > p. Under these conditions on
�1, . . . , �k , the test defined by (6.32) is, roughly speaking, consistent if and
only if at least one of the inequalities in (6.44) is strict.

Properties

1. Consistency. The condition nj /N tends to λj , 0 < λj < 1, j = 1, . . . , k , is suffi-
cient to insure that the test defined by (6.32) is consistent against the umbrella
alternatives H3 (6.29). For a more general consistency statement, see Mack and
Wolfe (1981) and Comment 29.

2. Asymptotic Normality. See Mack and Wolfe (1981).

3. Efficiency. See Mack and Wolfe (1981) and Section 6.10.

Problems

20. Survival of stocked tiger muskellunge (Esox masquinongy), like other stocked sportfish, is
variable to poor in Ohio reservoirs. Previous research with this species suggests three possible
reasons for poor survival: (i) predation by largemouth bass, (ii) inability to forage, and (iii)
stress-related mortality associated with the stocking process. Among other things, Mather
(1984) studied the effect on mortality of three components of the stocking process: netting,
confinement, and temperature increase. One portion of her study dealt with the glucose response
to the stress of an increase in temperature. A sample of 40 tiger muskellunge were transferred
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Table 6.9 Plasma Glucose (mg%)

Hours after 12 ◦C temperature increase

0 1 4 24 96

61.08 95.45 205.96 67.74 61.76
86.21 169.19 82.55 79.84 69.12
90.15 216.16 116.60 78.23 77.45
72.91 141.92 107.23 90.23 73.45
83.74 116.16 103.83 64.92 71.08
76.35 172.22 96.60 65.73 52.45
91.63 126.26 112.77 49.60 71.57
56.65 177.78 140.85 77.42 54.90

Source: M. Mather (1984).

from a 15 ◦C holding tank into a test tank (also held at 15 ◦C) and allowed 24 h to recover.
(This is the period of time that previous experimenters have found to be necessary for the
fish’s plasma glucose level to return to normal after a dipnet stressor.) Then, a random sample
of eight fish were removed from the tank, anesthetized, blood collected, and plasma glucose
determined. These data serve as a baseline or control sample. Next, the stressor (a 12 ◦C
temperature increase) was applied to the test tank and blood samples were collected (in the
way previously described) for random samples of eight additional fish at each of the time
periods 1, 4, 24, and 96 h after the temperature increase. These plasma glucose measurements
(mg%) are given in Table 6.9 for the 40 fish in the study.

In anticipation that a 24-h period is also necessary for a tiger muskellunge’s plasma
glucose level to recover from the 12 ◦C temperature increase stressor, test the hypothesis of
interest using a significance level of .048. What is the P -value for these data?

21. (a) The statistic Ap can be computed from the joint ranking of all N observations. Explain.
(b) The statistic Ap can also be computed from pairwise two-sample rankings. Explain.
(c) How many different two-sample rankings are required in (b) to compute Ap?

22. In Example 6.2, we used the Jonckheere–Terpstra procedure to analyze the knowledge of per-
formance data. It is quite reasonable to postulate that “too much information” (e.g., supervisor
looking over your shoulder commenting at each step of the process) might actually lead to a
downturn in the number of satisfactory pieces produced. Suppose that the following data were
collected under such a too much information scenario.

Group D
(too much information)

38
41
37
46
39
42

Use both the Jonckheere–Terpstra procedure and the Mack–Wolfe procedure with p = 3
to analyze the performance data with these added group D data. Discuss your findings.

23. What are the minimum and maximum values for Ap? Justify your answers.
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24. Notice that the statistic Ap (6.31) does not include any Mann–Whitney comparisons between
samples from pairs of treatments on opposite sides of the peak treatment p. Discuss the pros
and cons of this fact in relation to the Mack–Wolfe test procedure based on Ap .

25. Consider the umbrella statistic Ap for k treatments.

(a) Which value(s) of p requires computation of the maximum number of Mann–Whitney
statistics? How many Mann–Whitney statistics are required?

(b) Which value(s) of p requires computation of the fewest number of Mann–Whitney statis-
tics? How many Mann–Whitney statistics are required?

26. Suppose k = 4, n1 = n3 = n4 = 1, and n2 = 2. Obtain the form of the exact null (H0) dis-
tribution of A2 for the case of no tied observations. Compare the null distribution of A2 for
k = 4, n1 = n3 = n4 = 1, n2 = 2 with the null distribution of A3 for k = 4, n1 = n2 = n4 = 1,
n3 = 2, as obtained in Comment 25. Discuss the differences.

27. Suppose k = 4, n1 = n4 = 1, and n2 = n3 = 2. Obtain the form of the exact null (H0) distri-
bution of A2 for the case of no tied observations.

28. Show that the expression for the null variance (no ties) of Ap given in (6.43) is indeed the
same as that stated in (6.34).

29. In many settings, a dose–response relationship needs not be monotonic in the dosage. In
in vitro mutagenicity assays, for example, experimental organisms may not survive the toxic
side effects of high doses of the test agent, thereby actually reducing the number of organisms at
risk of mutation and leading to a downturn (i.e., umbrella pattern) in the dose–response curve.
The date in Table 6.10 are a subset of the data considered by Simpson and Margolin (1986)
in a discussion of the analysis of Ames test results. Plates containing Salmonella bacteria of
strain TA98 were exposed to various doses of Acid Red 114. The tabled observations are the
numbers of visible revertant colonies on the 18 plates in the study.

Test the null hypothesis H0 (6.2) against the alternative that the peak of the dose–response
curve for Salmonella bacteria of strain TA98 exposure to Acid Red 114 occurs at dosage level
1000 μg/ml.

30. For the Salmonella bacteria strain TA98 data in Table 6.10, test the null hypothesis H0 (6.2)
against the alternative that the peak of the dose–response curve for Salmonella bacteria of
strain TA98 exposure to Acid Red 114 occurs at dosage level 333 μg/ml. Compare the result
with that from Problem 29.

31. For the Salmonella bacteria strain TA98 data in Table 6.10, test the null hypothesis H0 (6.2)
against the alternative that the number of revertant colonies of the bacteria is a monotone
increasing function of the dose level of Acid Red 114 over the range of exposure in Table 6.10.
Compare this result with those obtained in Problems 29 and 30.

32. For the Salmonella bacteria strain TA98 data in Table 6.10, use the Kruskal–Wallis procedure
to test H0 (6.2) against the general alternatives H1 (6.3). Compare this result with those obtained
in Problems 29, 30, and 31.

Table 6.10 Number of Revertant Colonies of Salmonella Bacteria of
Strain TA98 under Exposure to Various Doses of Acid Red 114, with
Hamster Liver Activation

Dose, μg/ml

0 100 333 1000 3333 10,000

22 60 98 60 22 23
23 59 78 82 44 21
35 54 50 59 33 25

Source: D. G. Simpson and B. H. Margolin (1986).
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6.3B A DISTRIBUTION-FREE TEST FOR UMBRELLA
ALTERNATIVES, PEAK UNKNOWN (MACK–WOLFE)

In this section, we present a procedure for testing H0 (6.2) against the general peak-
unknown umbrella alternatives H4 (6.30).

Procedure

We label the treatments so that they are in the proper umbrella relationship to the unknown
peak treatment p. To calculate the Mack–Wolfe statistic for this unknown peak setting, we
first use the sample data to estimate which of the treatments is most likely to correspond to
the peak of the umbrella; that is, we first estimate p from the sample data. To accomplish
this, we calculate k combined-samples Mann–Whitney statistics

U.q =
∑
i �=q

Uiq , for q = 1, . . . , k , (6.45)

where Uiq = (number of i th sample observations that precede q th sample observations)
is the usual Mann–Whitney statistic for the i th and q th samples. Thus, U.q is itself simply
a single Mann–Whitney statistic computed between the q th sample and the remaining
(k − 1) samples combined (i.e., it equals the number of times an observation from the
q th sample exceeds an observation from the other (k − 1) combined samples). Next,
we standardize each of the U.q ’s by subtracting off its expected value under the null
hypothesis H0 (6.2) and dividing by its null standard deviation (see Comment 35) to
obtain

U ∗
.q = U.q − E0(U.q )

{var0(U.q )}1/2
= U.q − [nq (N − nq )/2]{

nq (N − nq )(N + 1)

12

}1/2 , q = 1, . . . , k . (6.46)

Let r equal the number of treatments that are tied for having the maximum U ∗
.q value

and let B be the subset of {1, 2, . . . , k} that corresponds to the r treatments tied for the
maximum U ∗

.q value. (As U ∗
.1, . . . , U ∗

.k are discrete random variables, there are sample
size configurations for which the probability is positive that r will be greater than 1.
See also Comment 31 and Problem 35). The Mack–Wolfe peak-unknown statistic is then
given by

A∗
p̂ = 1

r

∑
j∈B

[
Aj − E0(Aj )

{var0(Aj )}1/2

]
, (6.47)

where Aj (6.31) is the peak-known statistic with the peak at the j th treatment group and
E0(Aj ) and var0(Aj ) are the null expected value and null variance of Aj given by (6.33)
and (6.34), respectively. (Thus, A∗

p̂ is equal to the average of the r standardized peak-
known statistics corresponding to peaks at each of the r samples tied for the maximum
U ∗

.q . In most cases, r = 1 and A∗
p̂ is equal to the single standardized peak-known statistic

with the peak at the indicated treatment group.)
To test

H0 : [τ1 = · · · = τk ]
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versus the peak-unknown umbrella alternatives

H4 : [τ1 ≤ · · · ≤ τp−1 ≤ τp ≥ τp+1 ≥ · · · ≥ τk ,

with at least one strict inequality, for some p ∈ {1, 2, . . . , k}]

at the α level of significance,

Reject H0 if A∗
p̂ ≥ a∗

p̂.α; otherwise do not reject, (6.48)

where the constant a∗
p̂,α is chosen to make the type I error probability equal to α. The

constant a∗
p̂,α is the upper α percentile for the null (τ1 = · · · = τk ) distribution of A∗

p̂ .
Comment 36 explains how to obtain the critical value a∗

p̂,α for k treatments, and sample
sizes n1, . . . , nk and available levels of α.

Ties

If there are ties among the N X ’s, replace φ(a , b) in the calculation of the associated
Mann–Whitney counts Uuv or reverse Mann–Whitney counts Uvu by φ∗(a , b) = 1, 1

2 , 0
if a <, =, or > b, respectively, so that for each between-sample comparison where there
is a tie, the contribution to the appropriate Mann–Whitney or reverse Mann–Whitney
count will be 1

2 . After computing the U.q ’s (6.46) and A∗
p̂ (6.47) with these modified

counts, use procedure (6.48) with this tie-modified value of A∗
p̂ . Note, however, that this

test associated with tied X ’s is only approximately, and not exactly, of the significance
level α.

EXAMPLE 6.4 Learning Comprehension and Age.

It is generally believed that the ability to comprehend ideas and learn is an increasing
function of age up to a certain point, and then it declines with increasing age. The data in
Table 6.11 are values in the range typically obtained on the Wechsler Adult Intelligence
Scale (WAIS) by males of various ages. (Actually the averages of the five samples agree
with the corresponding age group means in Norman (1966).)

With k = 5 and n1 = · · · = n5 = 3, we wish to test

H0(6.2) versus H4 : [τ1 ≤ · · · ≤ τp ≥ τp+1 ≥ · · · ≥ τ5,

with at least one strict inequality, for some p ∈ {1, 2, . . . , 5}],

Table 6.11 The Wechsler Adult Intelligence Scale (WAIS)
Values

Age group

16–19 20–34 35–54 55–69 ≥ 70

8.62 9.85 9.98 9.12 4.80
9.94 10.43 10.69 9.89 9.18
10.06 11.31 11.40 10.57 9.27

Source: R. D. Norman (1966).
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where the five age groups are numbered as treatments in order of increasing age. For
the purpose of illustration, we consider the significance level α = .0495. Applying the
R command cUmbrPU(α, n), we find cUmbrPU(.0495, c(3, 3, 3, 3, 3)) =
2.226; that is, P0(A∗

p̂ ≥ 2.226) = .0495, and, in the notation of (6.48) with k = 5 and
n1 = n2 = n3 = n4 = n5 = 3, we have a∗

p̂,.0495 = 2.226 and procedure (6.48) reduces to

reject H0 if A∗
p̂ ≥ 2.226.

We now illustrate the computations leading to the sample value of A∗
p̂ (6.47). First,

we compute all of the 5(4)/2 = 10 possible Mann–Whitney statistics, obtaining

U12 = 1 + 3 + 3 = 7, U13 = 2 + 3 + 3 = 8, U14 = 1 + 1 + 3 = 5,

U15 = 0 + 1 + 1 = 2, U23 = 1 + 2 + 3 = 6, U24 = 0 + 1 + 2 = 3,

U25 = 0 + 0 + 0 = 0, U34 = 0 + 0 + 1 = 1,

U35 = 0 + 0 + 0 = 0, U45 = 0 + 1 + 1 = 2.

In order to estimate the age group at which WAIS values peak, we next need to compute
the combined-samples Mann–Whitney statistics U.q (6.45), for q = 1, . . . , 5. Using the
fact that Uvu = nunv − Uuv (because there are no ties in the data), for u , v = 1, . . . , 5,
we find that

U.1 = U21 + U31 + U41 + U51

= {[3(3) − U12] + [3(3) − U13] + [3(3) − U14] + [3(3) − U15]}
= (9 − 7) + (9 − 8) + (9 − 5) + (9 − 2) = 14.

U.2 = U12 + U32 + U42 + U52

= U12 + [3(3) − U23] + [3(3) − U24] + [3(3) − U25]

= 7 + (9 − 6) + (9 − 3) + (9 − 0) = 25,

U.3 = U13 + U23 + U43 + U53

= U13 + U23 + [3(3) − U34] + [3(3) − U35]

= 8 + 6 + (9 − 1) + (9 − 0) = 31,

U.4 = U14 + U24 + U34 + U54

= U14 + U24 + U34 + [3(3) − U45]

= 5 + 3 + 1 + (9 − 2) = 16,

and
U.5 = U15 + U25 + U35 + U45 = 2 + 0 + 0 + 2 = 4.

For this study, we have equal sample sizes n1 = · · · = n5 = 3. This implies that each of
the combined-samples Mann–Whitney statistics has the same null mean and null variance;
that is, for q = 1, . . . , 5, we have

E0(U.q ) = 3(15 − 3)

2
= 18, var0(U.q ) = 3(15 − 3)(15 + 1)

12
= 48.
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As a result, for this equal-sample-sizes setting, we do not need to compute the standard-
ized forms U ∗

.q (6.46), as the treatment group with the largest U.q value will also be the
one with the largest U ∗

.q value (see also Comment 31). Therefore, the third age group
(35–54) is estimated to be the unique peak group (i.e., p̂ = 3 and r = 1), because

U.3 = max{U.1, U.2, U.3, U.4, U.5} = 31.

The Mack–Wolfe peak-unknown statistic A∗
p̂ (6.47) with r = 1 and p̂ = 3 becomes

A∗
p̂ = A3 − E0(A3)

{var0(A3)}1/2
.

Using the computational formula (6.35) for the peak-known setting in Section 6.3A, we
obtain

A3 = 45, E0(A3) = 27, var0(A3) = 58.5,

which yields

A∗
p̂ = 45 − 27√

58.5
= 2.353.

As this value is greater than the critical value a∗
p̂,.0495 = 2.226, we reject H0 at the

.0495 level and conclude that there is sufficient evidence in support of the claim that
the ability to comprehend ideas and learn is an increasing function of age up through
the age group 35–54, from which point it declines with further age. In fact, from the
observed value A∗

p̂ = 2.353, we see, using the R command pUmbrPU(wechsler), that
P0(A∗

p̂ ≥ 2.353) = pUmbrPU(wechsler) =.034. Thus, the smallest significance level
at which we can reject H0 in favor of H4 with the observed value of the test statistic
A∗

p̂ = 2.353 is .034.

Comments

30. Motivation for the Test. The combined-samples Mann–Whitney statistic U.q rep-
resents the number of times an observation from the q th sample exceeds an
observation from the other (k − 1) combined samples. If the sample sizes are all
equal and τ1 < τ2 < · · · < τp−1 < τp > τp+1 > · · · > τk , then we would expect
U.p to be the largest of the k combined-samples Mann–Whitney statistics. Such
an outcome would lead to the selection of the pth treatment as the peak group
and to A∗

p̂ = [Ap − E0(Ap)]/{var0(Ap)}1/2. In view of Comment 23, this provides
partial motivation for the A∗

p̂ test when we have equal sample sizes (see also
Comment 31.)

31. Equal versus Unequal Sample Sizes. The number of individual comparisons
required to produce the value of U.q (6.45) is nq (N − nq ). If the sample sizes
are not all equal, then we will have differing numbers of comparisons leading
to the various U.q values. This leads to the undesirable situation where even
under the null hypothesis (H0) those treatments with more sample observations
are more likely to be selected as the estimated peak if we use the U.q statistics
directly. One way to address this problem is to first standardize the U.q ’s by
subtracting off their null expected values and then dividing by their null standard
derivations. The use of these standardized U ∗

.q statistics to select the peak results
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in each treatment having as nearly as possible an equal chance of being selected
as the peak under H0.

If the sample sizes are all equal, say n1 = · · · = nk = n∗, then we have

E0(U.q ) = n∗(N − n∗)
2

and var0(U.q ) = n∗(N − n∗)(N + 1)

12

for every q = 1, . . . , k . Thus, in order to obtain the standardized U ∗
.q in such a

setting, we would be subtracting the same quantity from each U.q and dividing
each of the resulting differences by the same value. The rank order of the
resulting U ∗

.q ’s would be identical with the rank order of the original U.q ’s; that
is, if we have equal sample sizes and t is such that

U.t = maximum{U.1, . . . , U.k }

then it is also true that

U ∗
.t = maximum{U ∗

.1, . . . , U ∗
.k }.

As a result, the standardization to obtain the U ∗
.q ’s is not necessary in the case

of all equal sample sizes as the U.q ’s themselves can be directly used to select
the peak p̂.

32. More General Setting. As with the other procedures in this chapter, we could
replace Assumptions A1–A3 and H0 (6.2) for the Mack–Wolfe umbrella proce-
dures (both peak-known and peak-unknown) with the more general null hypoth-
esis that all N !/(

∏k
j=1 nj !) assignments of n1 joint ranks to the treatment 1

observations, n2 joint ranks to the treatment 2 observations, . . . , nk joint ranks
to the treatment k observations are equally likely.

33. Assumptions. As with the other procedures in this chapter, it is important to
point out that for the Mack–Wolfe umbrella procedures (both the peak-known
and peak-unknown) the k treatment distributions F1, . . . , Fk can differ at most
in their locations (medians) (see also Comment 4).

34. Estimation of the Umbrella Peak. In situations where there is a unique, single
treatment label, say t , for which

U ∗
.t = maximum{U ∗

.1, . . . , U ∗
.k },

then r = 1 in (6.47) and

A∗
p̂ = At − E0(At )

{var0(At )}1/2
.

In this setting, t also provides us with a point estimator for the unknown peak
p (i.e., p̂ = t).

Pan (1996) developed a distribution-free confidence procedure designed to
identify those treatments that yield the optimal effects in a one-way layout
with umbrella configuration. It utilizes the theory of U -statistics and isotonic
regression to provide a random confidence subset of the treatments that contains
all the unknown peaks (optimal treatments) within an umbrella ordering with
prespecified confidence level.
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35. Null Mean and Variance of Combined-Samples Mann–Whitney Statistics. The
combined-samples statistic U.q (6.45) can be viewed as a single Mann–Whitney
statistic between the q-th sample with nq observations and the remaining k − 1
samples combined with N − nq observations. Thus, from the standard formu-
las for the null mean and null variance of a Mann–Whitney statistic (see the
derivation in Comment 19, e.g., particularly (6.23)), we see that

E0(U.q ) = nq (N − nq )

2
and var0(U.q ) = nq (N − nq )(N + 1)

12
,

which agree with the expressions used in (6.46).

36. Derivation of the Distribution of A∗
p̂ under H0 (No Ties). As with the peak-known

statistic Ap , the peak-unknown statistic A∗
p̂ can also be computed from the joint

ranking of all N =∑k
i=1 ni observations. Thus, one way to obtain the null

distribution of A∗
p̂ is to follow the method of Comments 6, 17, and 25, namely,

to compute the value of A∗
p̂ for each of the N !/

(
�k

j=1nj !
)

equally likely (under
H0) rank assignments. We illustrate the development in the specific case of
k = 3, n1 = 1, n2 = 2, and n3 = 1. The 4!/[1! 2! 1!] = 12 possible assignments
of the joint ranks 1, 2, 3, and 4 to the three treatments and the associated values
of A∗

p̂ are as follows:

1. I II III 2. I II III
1 2 4 4 2 1

3 3
A∗

p̂ = 1.806 A∗
p̂ = 1.806

3. I II III 4. I II III
I 2 3 3 2 1

4 4
A∗

p̂ = 0.775 A∗
p̂ = 0.775

5. I II III 6. I II III
3 1 4 4 1 3

2 2
A∗

p̂ = 0.361 A∗
p̂ = 0.361

7. I II III 8. I II III
2 1 4 4 1 2

3 3
A∗

p̂ = 1.084 A∗
p̂ = 1.084

9. I II III 10. I II III
2 1 3 3 1 2

4 4
A∗

p̂ = 0.361 A∗
p̂ = 0.361

11. I II III 12. I II III
1 3 2 2 3 1

4 4
A∗

p̂ = 1.549 A∗
p̂ = 1.549
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Thus, the null distribution for A∗
p̂ when k = 3, n1 = n3 = 2, and n2 = 1 is

given by

P0{A∗
p̂ = 0.361} = 4

12 , P0{A∗
p̂ = 0.775} = 2

12 , P0{A∗
p̂ = 1.084} = 2

12

P0{A∗
p̂ = 1.549} = 2

12 , P0{A∗
p̂ = 1.806} = 2

12 .

The probability, under H0, that A∗
p̂ is greater than or equal to 1.549, for

example, is therefore

P0{A∗
p̂ ≥ 1.549} = P0{A∗

p̂ = 1.549} + P0{A∗
p̂ = 1.806} = 2+2

12 = 1
3 .

Note that we have derived the null distribution of A∗
p̂ without specifying the

common form (F ) of the underlying distribution function for the X ’s under
H0 beyond the requirement that it be continuous. This is why the test procedure
(6.48) based on A∗

p̂ is called a distribution-free procedure. From the null distribu-
tion of A∗

p̂ , we can determine the critical value a∗
p̂,α and control the probability α

of falsely rejecting H0 when H0 is true, and this error probability does not depend
on the specific form of the common underlying continuous X distribution.

For a given number of treatments k and sample sizes n1, . . . , nk , the R

command cUmbrPU(α, n) can be used to find the available upper-tail critical
values a∗

p̂,α for possible values of A∗
p̂ . For a given available significance level α,

the critical value a∗
p̂,α then corresponds to P0(A∗

p̂ ≥ a∗
p̂,α) = α and is given by

cUmbrPU(α, n). Thus, for example, for k = 5, n1 = 3, n2 = 2, n3 = 4, n4 =
3, and n5 = 3, we have P0(A∗

p̂ ≥ 2.216) = .0483, so that a∗
p̂,.0483 = 2.216 for

k = 5, n1 = 3, n2 = 2, n3 = 4, n4 = 3, and n5 = 3.

37. Powers of the Mack–Wolfe Umbrella Tests. The Mack–Wolfe unknown-peak
umbrella procedure (6.48) based on A∗

p̂ is generally much superior to the
Kruskal–Wallis procedures in (6.6) and (6.7) when the treatment effects do,
indeed, follow an umbrella pattern. When the peak is known a priori to be at
treatment p, then the peak-known test (6.32) based on Ap has even better power
properties. However, if there is serious uncertainty concerning the location of
the true peak, the A∗

p̂ procedure is preferable because the power of the Ap test
can be somewhat diminished when p is not the correct peak. Mack and Wolfe
(1981) presented the results of a small-sample power study comparing the
relative performances of the Kruskal–Wallis, the Jonckheere–Terpstra, and the
two Mack–Wolfe procedures for settings where umbrella alternatives pertain.

38. Inverted Umbrella Alternatives. The Mack–Wolfe procedures in this section can
easily be adapted to provide tests for “inverted umbrella” alternatives of the form
τ1 ≥ · · · ≥ τp−1 ≥ τp ≤ τp+1 ≤ · · · ≤ τk , with at least one strict inequality, for
both p-known and p-unknown situations. To test for such inverted umbrella
alternatives, simply redefine the peak-known statistics to be

Ap =
v−1∑
u=1

p∑
v=2

Uvu +
v−1∑
u=p

k∑
v=p+1

Uuv , for p = 1, . . . , k ,
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and for the peak-unknown case, redefine the peak selectors to be “valley” selec-
tors of the form

Uq . =
∑
i �=q

Uqi , q = 1, 2, . . . , k .

Everything else remains unchanged, including the necessary null distribution
tables.

39. k-Sample Behrens–Fisher Problem. Two of the implicit requirements associated
with Assumptions A1–A3 are that the underlying distributions belong to the same
common family (F ) and that they differ within this family at most in their medi-
ans. The less restrictive setting where these assumptions are relaxed to permit
the possibility of differences in scale parameters as well as medians within the
common F is referred to as the k-sample Behrens–Fisher problem. The Mack–
Wolfe peak-unknown procedure (6.48) is no longer distribution-free under this
more relaxed Behrens–Fisher setting. Chen and Wolfe (1990a) proposed a mod-
ification of the Mack–Wolfe statistic A∗

p̂ (6.47) to deal with this less restrictive
setting. Their approach is similar to that used by Rust and Fligner (1984) to
modify the Kruskal–Wallis statistic H for the same setting (see Comment 10).

40. Ordered versus Umbrella Alternatives. In this section and Section 6.2, we have
considered procedures for testing the null hypothesis H0 (6.2) of no differences
in treatment effects against either ordered or, more generally, umbrella alterna-
tives. In some settings, however, what is actually of interest is the ability to
distinguish directly between a strictly upward trend (ordered alternatives) and
an early upward trend with an eventual downturn (umbrella alternatives). This
is frequently the case with dose–response data. Simpson and Margolin (1986)
proposed a recursive procedure based on the Jonckheere–Terpstra statistic for
dealing with such problems.

41. An Alternative Approach Based on Maximums. The Mack–Wolfe approach to the
setting of umbrella alternatives with unknown peak is to first use the data to esti-
mate the unknown peak and then to base the test of H0 (6.2) on the peak-known
statistic with peak at this estimated value. An alternative approach would be to
bypass the first step of estimating the unknown peak and simply assess directly
which of the treatments provides the most evidence of an umbrella alternative.
To this effect, Chen and Wolfe (1990b) studied competitor test procedures to
procedure (6.48) based on the extreme statistic Amax = max{A∗

1, . . . , A∗
k }, with

A∗
p given by (6.35). Hettmansperger and Norton (1987) considered similar com-

petitors to (6.48) based on the maximum of certain linear rank statistics. The
results of a substantial small-sample power study of these competitors (as well
as the Simpson and Margolin (1986) procedure mentioned in Comment 40) are
provided in Chen and Wolfe (1990b).

Problems

33. Consider the tiger muskellunge data in Table 6.9. Test the hypothesis of no differences in the
plasma glucose values over time against a general umbrella alternative using an approximate
significance level of .01. Compare your result with that obtained in Problem 20.
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34. Consider the fasting metabolic rate (FMR) data on white-tailed deer in Table 6.8. Test the
hypothesis of no difference in FMR over the 2-month periods against a general umbrella alter-
native. Use an approximate significance level of .01. Compare your result with that obtained
in Example 6.3.

35. (a) The statistic A∗
p̂ can be computed from the joint ranking of all N observations. Explain.

(b) The statistic A∗
p̂ can also be computed from pairwise two-sample rankings. Explain.

36. Suppose k = 3, n1 = n2 = 1, and n3 = 2. Obtain the form of the exact null (H0) distribution
of A∗

p̂ for the case of no tied observations. Compare this null distribution with that of A∗
p̂ for

k = 3, n1 = n3 = 1, and n2 = 2, as obtained in Comment 36.

37. Construct a set of data with no tied observations for which r > 1 in the definition of A∗
p̂ (6.47).

Discuss the implications this has for estimation of the umbrella peak.

38. Consider the Acid Red 114 revertant colonies data in Table 6.10. Test the hypothesis of
no differences in the number of revertant colonies over the dosage levels against a general
umbrella alternative. Use a significance level of .05. Compare this result with those obtained
in Problems 29, 30, 31, and 32.

6.4 A DISTRIBUTION-FREE TEST FOR TREATMENTS
VERSUS A CONTROL (FLIGNER–WOLFE)

In this section, we discuss a test procedure specifically designed for the setting where
one of the treatments corresponds to a control or baseline set of conditions and we are
interested in assessing which, if any, of the treatments is better than the control. Without
loss of generality, we label the treatments so that the control corresponds to treatment 1.
In this setting, the null hypothesis of interest is still H0 (6.2), but now it corresponds to the
statement that none of the treatments 2, . . . , k is different from the control (treatment 1).
This is usually expressed as

H0 : [τi = τ1, i = 2, . . . , k ]. (6.49)

(Note that the expression in (6.49) is, indeed, equivalent to the original expression for
H0 (6.2).)

Procedure

To compute the Fligner–Wolfe statistic FW, we first combine all N observations from
the k samples and order them from least to greatest. Letting rij denote the rank of Xij

in this joint ranking, the Fligner–Wolfe statistic FW is then the sum of these joint ranks
for the noncontrol treatments, namely,

FW =
k∑

j=2

nj∑
i=1

rij . (6.50)

a. One-Sided Upper-Tail Test. To test

H0 : [τi = τ1, for i = 2, . . . , k ]

versus

H5 : [τi ≥ τ1, for i = 2, . . . , k , with at least one strict inequality], (6.51)
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at the α level of significance,

Reject H0 if FW ≥ fα; otherwise do not reject, (6.52)

where the constant fα is chosen to make the type I error probability equal to α.
In order to determine the critical value fα , we note that the statistic FW can be
viewed as a two-sample Wilcoxon rank sum statistic (see Section 4.1) computed
for the n1 control treatment observations (playing the role of the X ’s in the two-
sample setting) and the N ∗ =∑k

j=2 nj combined observations from treatments
2, . . . , k (playing the role of the Y ’s in the two-sample setting). As a result, the
null distribution of FW is the same as that of the Wilcoxon rank sum statistic W
with sample sizes m = n1 and n = N ∗. Thus, the critical value fα is just the upper
αth percentile wα for the null distribution of the Wilcoxon rank sum statistic with
sample sizes m = n1 and n = N ∗. Values of fα = wα in this case can be obtained
using the R command pwilcom, as indicated in Comment 4.3.

b. One-Sided Lower-Tail Test. To test

H0 : [τi = τ1, for i = 2, . . . , k ]

versus

H6 : [τi ≤ τ1, for i = 2, . . . , k , with at least one strict inequality], (6.53)

at the α level of significance,

Reject H0 if FW ≤ N ∗(N + 1) − fα; otherwise do not reject. (6.54)

Large-Sample Approximation

As previously noted, when H0 is true, the statistic FW has the same probability distri-
bution as the null distribution of the two-sample Wilcoxon rank sum statistic W with
sample sizes m = n1 and n = N ∗. Hence, it follows directly from the Large-Sample
Approximation discussion of Section 4.1 that the standardized version of FW, namely,

FW∗ = FW − E0(FW)

{var0(FW)}1/2
= FW − {N ∗(N + 1)/2}

{n1N ∗(N + 1)/12}1/2
(6.55)

has, as min(n1, N ∗) tends to infinity, an asymptotic N (0, 1) distribution when H0 is true.
The normal theory approximation for procedure (6.52) is

Reject H0 if FW∗ ≥ zα; otherwise do not reject, (6.56)

and the normal theory approximation for procedure (6.54) is

Reject H0 if FW∗ ≤ −zα; otherwise do not reject. (6.57)
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Ties

If there are ties among the X ’s, assign each of the observations in a tied group the
average of the integer ranks that are associated with the tied group. After computing FW
with these average ranks, use procedure (6.52) or (6.54) with this tie-averaged value of
FW. Note, however, that this test associated with tied X ’s is only approximately, and not
exactly, of the significance level α. (To get an exact level α test even in this tied setting,
see Comment 45.)

When applying the large-sample approximation, an additional factor must be taken
into account. Although ties in the X ’s do not affect the null expected value of FW, its
null variance is reduced to

var0(FW) = n1N ∗

12

[
N + 1 −

∑g
j=1 tj (tj − 1)(tj + 1)

N (N − 1)

]
, (6.58)

where g denotes the number of tied groups and tj is the size of the tied group j . We
note that an united observation is considered to be a tied group of size 1. In particular,
if there are no ties among the X ’s, then g = N and tj = 1 for j = 1, . . . , N . In this
case, each term in (6.58) of the form tj (tj − 1)(tj + 1) reduces to zero and the vari-
ance expression in (6.58) reduces to the usual null variance of FW when there are no
ties, as given previously in (6.55). Note that the term [n1N ∗/12N (N − 1)]

∑g
j=1 tj (tj −

1)(tj + 1) represents the reduction in the null variance of FW due to the presence of the
tied X ’s.

As a consequence of the effect that ties have on the null variance of FW, the following
modification is needed to apply the large-sample approximation when there are tied X ’s.
Compute FW using average ranks and set

FW∗ =
FW −

{
N ∗(N +1)

2

}
{var0(FW)}1/2 , (6.59)

where var0(FW) is now given by display (6.58). With this modified value of FW∗,
approximation (6.56) or (6.57) can be applied.

EXAMPLE 6.5 Motivational Effect of Knowledge of Performance—Example 6.2
Continued.

For Hundal’s (1969) study to assess the motivational effects of knowledge of perfor-
mance, the no information category clearly serves as a control population, and it is very
natural to ask if additional performance information of either type (rough or accurate)
leads to improved performance as measured by an increase in the number of pieces pro-
cessed. Thus, we will apply the Fligner–Wolfe procedure (6.51) to the data in Table 6.6
to assess whether there is a deviation from H0 in the direction of τ2 > τ1 and/or τ3 > τ1,
where the treatment numbers are the same as those taken in Example 6.2. For the purpose
of illustration, we take the significance level to be α = .0415. With m = N ∗ = n2 + n3 =
6 + 6 = 12 and n = n1 = 6, we find using the R command pwilcox (see Comment 4.3)
that f.0415 = 133 and procedure (6.52) reduces to

Reject H0 if FW ≥ 133.
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Using the joint ranks provided in parentheses beside the data in Table 6.6, we see that

FW = [2.5 + 5.5 + 17 + 13 + 5.5 + 9 + 18 + 5.5 + 15 + 10.5 + 16 + 13] = 130.5.

As this value of FW is smaller than the critical value 133, we do not reject H0 at the .0415
level. (This example illustrates the added power of the Jonckheere–Terpstra procedure
relative to that of the Fligner–Wolfe procedure when we are able to utilize the additional
piece of information that τ3 ≥ τ2. From Example 6.2, the P -value for the Jonckheere–
Terpstra procedure applied to these Hundal data is .0231, indicating rejection of H0 at
α = .0415.)

For the large-sample approximation, we need to compute the standardized form of
FW∗ using (6.59) because there are ties in the data. The null expected value for FW is
E0(FW) = 12(18 + 1)/2 = 114. For the ties-corrected null variance of FW, we note that
g = 11 and t1 = 1, t2 = 2, t3 = 4, t4 = 1, t5 = 1, t6 = 2, t7 = 3, t8 = 1, t9 = 1, t10 =
1, and t11 = 1 for the Hundal data. Hence, using the ties correction in (6.58), we have
that

var0(FW) = 6(12)

12

{
18 + 1 −

[
2(2)(1)(3) + 3(2)(4) + 4(3)(5)

18(17)

]}
= 6

(
19 − 16

51

)
= 112.12,

from which it follows that the ties-corrected value of FW∗ (6.59) is

FW∗ = 130.5 − 114

{112.12}1/2
= 1.56.

Thus, using the approximate procedure (6.56) with the ties-corrected value of
FW∗ = 1.56, we see that the approximate P -value for these data is P0(FW∗ ≥ 1.56) ≈
1 − pnorm(1.56) = 1 − .9406 = .0594. Thus, we have marginal evidence from
the Fligner–Wolfe treatments-versus-control procedure that additional performance
knowledge (either rough or accurate) leads to an increase in the number of pieces
produced.

Comments

42. More General Setting. As with the other procedures of this chapter, we could
replace Assumptions A1–A3 and H0 (6.2) with the more general null hypothesis
that all N !/

(∏k
j=1 nj !

)
assignments of n1 joint ranks to the control observations,

n2 joint ranks to the treatment 2 observations, . . . , nk joint ranks to the treatment
k observations are equally likely.

43. Motivation for the Test. The statistic FW (6.50) is the sum of the joint ranks
assigned to the noncontrol treatments. When some of the τi ’s are strictly greater
than the control effect τ1, we would expect the joint ranks for the observations
from those treatments to be larger than the joint ranks for the control observa-
tions. The net result would be a larger value of FW. This suggests rejecting H0

in favor of H5 (6.51) for large values of FW and motivates procedures (6.52)
and (6.56). A similar motivation leads to procedures (6.54) and (6.57). (See also
Comment 47.)
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44. Assumptions. As with the other test procedures of this chapter, Assumption A3
requires that the control and the (k − 1) treatment distributions F1, . . . , Fk can
differ at most in their locations (medians). (See also Comments 4 and 50.)

45. Exact Conditional Distribution of FW with Ties among the Data. To get an exact
level α test in the presence of ties, we rely on the fact that the null distribution
of FW conditional on the observed configuration of joint tied ranks is the same
as the corresponding conditional tied ranks null distribution of the Wilcoxon
rank sum statistic W with sample sizes m = n1 and n = N ∗. Therefore, the
approach discussed and illustrated in Comment 4.5 can be used to get the exact
conditional null distribution of FW and associated exact level α test in the case
of ties among the data.

46. Two-Sided Test. We note that we have not discussed a test based on the FW
statistic that is designed for a two-sided alternative. The “natural” two-sided
alternative for this treatment versus control setting corresponds to [either τi ≥
τ1 for all i = 2, . . . , k or τi ≤ τ1 for all i = 2, . . . , k , with at least one strict
inequality]. We feel that it is rather unlikely that we would find ourselves in
such a setting where either all the treatments are better than the control or all the
treatments are worse than the control, but we have no idea which of the two cases
pertains. As a result, a two-sided test based on FW is not presented in this section.

47. Limitations. The test procedures in (6.52) and (6.54) deal with very restricted
alternatives where all the treatments are either at least as good as the control
(i.e., τi ≥ τ1 for all i = 2, . . . , k ) or all the treatments are no better than the
control (i.e., τi ≤ τ1 for all i = 2, . . . , k ), respectively. They are not appropriate
tests when the possibility exists that some of the treatments might be better
(τi > τ1) and some might be worse (τi < τ1) than the control. For such mixed
alternatives, one would need to use the general alternatives Kruskal–Wallis
procedure presented in Section 6.1.

48. Comparisons Between Treatments. The Fligner–Wolfe procedure (6.52) is a test
designed to decide if any of treatments 2, . . . , k are better (i.e., τi > τ1) than
the control. It involves no direct comparisons between the various treatments
observations themselves. In order to reach conclusions about whether there
are any differences among the treatment effects τ2, . . . , τk , one would need
to apply the Kruskal–Wallis procedure of Section 6.1 (or, if appropriate, the
Jonckheere–Terpstra ordered alternatives or Mack–Wolfe umbrella alternatives
procedures of Sections 6.2 and 6.3, respectively) to the sample data from
treatments 2, . . . , k . Under the null hypothesis H0 (6.2), the Fligner–Wolfe
statistic FW is independent of the Kruskal–Wallis statistic H (and also of the
Jonckheere–Terpstra statistic J and the Mack–Wolfe statistics Ap and A∗

p̂). This
implies, for example, that if we conduct the Fligner–Wolfe test (6.52) at a sig-
nificance level α1 and the Kruskal–Wallis test (6.6) (or the Jonckheere–Terpstra
test (6.14), Mack–Wolfe peak-known test (6.32), or Mack–Wolfe peak-unknown
test (6.48)) on treatments 2, . . . , k at the significance level α2, then the prob-
ability of incorrectly rejecting H0 when it is true with at least one of the two
tests is exactly α1 + α2 − α1α2. A similar comment applies to procedure (6.54).

49. Multiple Comparisons. If test procedure (6.52) leads to rejection of H0 (6.2),
we are led to the conclusion that at least one treatment has a greater effect
than the control. However, procedure (6.52) does not address the question of
exactly how many treatment effects are greater than that of the control, or does
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it provide us information as to which specific treatments are better than the
control. For answers to such questions, we turn to treatments-versus-control
multiple comparison procedures, as discussed in Sections 6.7 and 6.8. Similar
comments apply to the lower-tail test procedure in (6.54).

50. The Treatments-versus-Control Behrens–Fisher Problem. Two of the implicit
requirements imposed by Assumptions A1–A3 are that the underlying
distributions belong to the same common family (F ) and that they differ
within this family at most in their medians. The less restrictive setting where
these assumptions are relaxed to permit the possibility of differences in
scale parameters as well as medians within the common family F is referred
to as the k-sample treatments-versus-control Behrens–Fisher problem. The
Fligner–Wolfe procedures (6.52) and (6.54) are no longer distribution-free
under this more general Behrens–Fisher setting. If we replace Assumption A3
by the less restrictive Assumption A3∗: [The treatments’ distribution functions
F2, . . . , Fk are connected through the relationship

Fi (t) = F ∗(t − τj ), −∞ < t < ∞,

for i = 2, . . . , k , where F ∗ is a distribution function for a continuous
distribution that is symmetric about its median θ and, in addition, the control
distribution (F1) is continuous and symmetric about its median θ + τ1.], then
the Fligner–Policello two-sample robust rank procedure discussed in Section
4.4 can be adapted to provide distribution-free tests of H0 (6.2) against either
H5 (6.51) or H6 (6.53) under these more general treatments-versus-control
Behrens–Fisher Assumptions A1, A2, and A3∗.

51. Treatments-versus-Control under Umbrella Configurations. In many settings
where we are interested in comparing a number of treatments with a control,
we will have additional a priori information regarding the relative magnitude
of the treatment effects. One such piece of information might be that the
treatment effects are known to follow an umbrella pattern (see Section 6.3)
τ1 ≤ · · · ≤ τp−1 ≤ τp ≥ τp+1 ≥ · · · ≥ τk with either known or unknown peak p.
(Remember that the ordered pattern of Section 6.2 corresponds to p = k or 1.)
In a drug study, for instance, increasing dosage levels may be compared with a
zero-dose control. If the treatment effects are not identical to that of the control,
then it is often reasonable to assume that the higher the dose of the drug applied,
the better (say, higher) will be the resulting effect on a patient, corresponding to
monotonically ordered treatment effects. However, it may also be the case that a
subject might potentially succumb to toxic effects at high doses, thereby actually
decreasing the associated treatment effects. Such a setting would correspond to
an ordering in the treatment effects that is monotonically increasing up to a point,
followed by a monotonic decrease; that is, an umbrella pattern on the treatment
effects. Chen and Wolfe (1993) considered a test procedure designed specifically
to compare a number of treatments with a single control under this basic umbrella
pattern for the treatment effects. Their test requires an equal number of observa-
tions in each of the treatments (i.e., n2 = · · · = nk = n∗), but permits a differing
number (n1) of observations from the control setting. The necessary null distribu-
tion critical values are provided for a variety of k , n1, and n∗ combinations, and
the results of a substantial Monte Carlo simulation power study are presented.
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(An example of the type of data for which this Chen–Wolfe procedure would be
appropriate is provided by the muskellunge plasma glucose data in Table 6.9.)

52. Consistency of the FW test. Replace Assumptions A1–A3 by the less restrictive
Assumptions A1′: The X ’s are mutually independent and A2′ : X1j , . . . , Xnj j

come from the same continuous population �j , j = 1, . . . , k . The populations
�1, . . . , �k need not be identical, but we do assume that

δij = P(X1j > X11) ≥ 1
2 , for j = 2, . . . , k .

Then, roughly speaking, the test defined by (6.52) is consistent if and only if
there is at least one j ∈ {2, 3 . . . , k} for which δ1j > 1

2 .

Properties

1. Consistency. The condition nj /N tends to λj , 0 < λj < 1, j = 1, . . . , k , is suffi-
cient to ensure that the tests defined by (6.52) and (6.54) are consistent against the
H5 (6.51) and H6 (6.53) alternatives, respectively. For a more general consistency
statement, see Comment 52.

2. Asymptotic Normality. See Fligner and Wolfe (1982).

3. Efficiency. See Fligner and Wolfe (1982) and Section 6.10.

Problems

39. Apply the appropriate Fligner–Wolfe test to the psychotherapeutic attraction data of Table 6.2.
Compare and contrast this result with that obtained for the Kruskal–Wallis test in Problem 1.

40. Apply the appropriate Fligner–Wolfe procedure to the glucocorticoid receptor data for the
leukemia patients in Table 6.4, using the normal subjects as the control. Compare and contrast
with the result obtained from the Kruskal–Wallis test in Problem 8.

41. Apply the appropriate Fligner–Wolfe test to the muskellunge plasma glucose data in Table 6.9.
Compare and contrast with the result obtained from the Mack–Wolfe test in Problem 20. (See
also Comment 51.)

RATIONALE FOR MULTIPLE COMPARISON PROCEDURES

In Sections 6.1–6.4 of this chapter, we have discussed procedures designed to test the
null hypothesis H0 (6.2) against a variety of alternative hypotheses. Upon rejection of H0

with one of these test procedures for a given set of data, our conclusions range from the
general statement that there are some unspecified differences among the treatment effects
(associated with the Kruskal–Wallis procedure discussed in Section 6.1) to the more
informative relationships between the treatment effects associated with test procedures
designed for the ordered or umbrella alternatives or the treatments-versus-control setting.
However, in none of these test procedures are our conclusions pair-specific; that is,
the tests in Sections 6.1–6.4 are not designed to enable us to reach conclusions about
specific pairs of treatment effects. The relative sizes of the specific treatment effects τ1

and τ2, for example, cannot be inferred from the conclusions reached by any of the test
procedures in Sections 6.1–6.4. To elicit such pairwise specific information, we turn to
the class of multiple comparison procedures. In Section 6.5 we present such two-sided
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all-treatments multiple comparison procedures for the omnibus setting corresponding to
the general alternatives H1 (6.3). In Section 6.6 we deal with one-sided all-treatments
multiple comparison procedures associated with the restricted ordered alternatives H2

(6.11). Finally, in Section 6.7 we discuss an approach for making treatments-versus-
control multiple comparison decisions.

6.5 DISTRIBUTION-FREE TWO-SIDED ALL-TREATMENTS
MULTIPLE COMPARISONS BASED ON PAIRWISE
RANKINGS—GENERAL CONFIGURATION (DWASS,
STEEL, AND CRITCHLOW–FLIGNER)

In this section we present a multiple comparison procedure based on pairwise two-sample
rankings that is designed to make decisions about individual differences between pairs
of treatment effects (τi , τj ), for i < j , in a setting where general alternatives H1 (6.3)
are of interest. Thus, the multiple comparison procedure of this section would generally
be applied to one-way layout data after rejection of H0 (6.2) with the Kruskal–Wallis
procedure from Section 6.1. In this setting, it is important to reach conclusions about all(k

2

) = k(k − 1)/2 pairs of treatment effects, and these conclusions are naturally two-sided
in nature.

Procedure

For each pair of treatments (i , j ), let

Wij =
nj∑

b=1

Rib , for 1 ≤ i < j ≤ k , (6.60)

where Ri1, . . . , Rinj are the ranks of X1j , . . . , Xnj j , respectively, among the combined i th
and j th samples; that is, Wij is the Wilcoxon rank sum of the j th sample ranks in the
joint two-sample ranking of the i th and j th sample observations. Compute

W ∗
ij =

√
2

[
Wij − E0(Wij )

{var0(Wij )}1/2

]
= Wij − nj (ni +nj +1)

2

{ni nj (ni + nj + 1)/24}1/2
, for 1 ≤ i < j ≤ k . (6.61)

(Thus, W ∗
ij is the standardized (under H0) version of Wij multiplied by

√
2.)

At an experimentwise error rate of α, the Steel–Dwass–Critchlow–Fligner two-sided
all-treatments multiple comparison procedure reaches its k(k − 1)/2 pairwise decisions,
corresponding to each (τu , τv) pair 1 ≤ u < v ≤ k , by the criterion

Decide τu �= τv if|W ∗
uv| ≥ w∗

α; otherwise decide τu = τv , (6.62)

where the constant w∗
α is chosen to make the experimentwise error rate equal to α; that

is, w∗
α satisfies the restriction

P0(|W ∗
uv| < w∗

α , u = 1, . . . , k − 1; v = u + 1, . . . , k) = 1 − α, (6.63)

where the probability P0(·) is computed under H0 (6.2). Equation (6.63) stipulates that
the k(k − 1)/2 inequalities |W ∗

uv| < w∗
α , corresponding to all pairs (u , v) of treatments



6.5 Distribution-Free Two-Sided All-Treatments Multiple Comparisons 257

with u < v, hold simultaneously with probability 1 − α when H0 (6.2) is true. Comment
55 explains how to obtain the critical value w∗

α for k treatments, sample sizes n1, . . . , nk ,
and available experimentwise error rates α.

Large-Sample Approximation

When H0 is true, the [k(k − 1)/2]-component vector (W ∗
12, W ∗

13, . . . , W ∗
k−1,k ) has, as

min(n1, . . . , nk ) tends to infinity, an asymptotic multivariate normal distribution with
mean vector 0. It then follows (see Comment 58 for indications of the proof) that w∗

α

can be approximated for large-sample sizes by qα , where qα is the upper αth percentile
point for the distribution of the range of k independent N (0, 1) variables. Thus, the
large-sample approximation for procedure (6.62) is

Decide τu �= τv if |W ∗
uv| ≥ qα; otherwise decide τu = τv. (6.64)

To find qα for k treatments, we use the R command cRangekNorm(α, k). For example,
to find q.05 for k = 6 treatments, we apply cRangekNorm(.05, 6) and obtain q.05 =
4.031.

Ties

If there are ties among the X observations, use average ranks in computing the individual
Wilcoxon rank sum statistics Wij (6.60). In addition, replace the term var0(Wij )/2 =
ni nj (ni + nj + 1)/24 in the denominator of W ∗

ij (6.61) by

var0(Wij )

2
= ni nj

24

[
ni + nj + 1 −

∑gij
b=1(tb − 1)tb(tb + 1)

(ni + nj )(ni + nj − 1)

]
, (6.65)

where, for 1 ≤ i < j ≤ k , gij denotes the number of tied groups in the joint rank-
ing of the i th and j th sample observations and tb is the size of tied group b in this
joint ranking. Furthermore, an untied observation is considered to be a tied group of
size 1. In particular, if there are no tied observations in the i th and j th combined
samples, then gij = ni + nj and tb = 1 for b = 1, . . . , ni + nj , in which case each term
of the form (tb − 1)tb(tb + 1) reduces to 0 and var0(Wij )/2 reduces to ni nj (ni + nj +
1)/24, the appropriate expression when there are no ties in the i th and j th combined
samples.

EXAMPLE 6.6 Length of YOY Gizzard Shad.

Consider the length of YOY gizzard shad data discussed in Problem 4. Applying the
Kruskal–Wallis procedure to the length data from the four sites in Kokosing Lake yields
highly significant differences between the median YOY lengths at the four sites. To exam-
ine which particular sites differ in median YOY lengths, we apply the approximate pro-
cedure (6.64) with the appropriate corrections for ties given in (6.65). For this study, we
have k = 4, n1 = n2 = n3 = n4 = 10, and we must compute k(k − 1)/2 = 4(3)/2 = 6
standardized W ∗

ij statistics. For the sake of illustration, we take our experimentwise error
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rate to be α = .01. With k = 4, we find q.01 = cRangekNorm(.01, 4) = 4.404 and
procedure (6.64) reduces to

Decide τu �= τv if |W ∗
uv| ≥ 4.404.

Next, we compute the six W ∗
ij statistics. For the sample observations from sites I and

II (populations 1 and 2, respectively), the combined-samples ranking yields the sum of
ranks for the site II data to be

W12 = 9.5 + 20 + 3.5 + 9.5 + 13.5 + 19 + 1 + 17 + 9.5 + 18 = 120.5.

For this pair of samples, there are tied observations, and we have g12 = 14 and t1 =
t2 = 1, t3 = 2, t4 = t5 = t6 = 1, t7 = 4, t8 = 1, t9 = t10 = 2, and t11 = t12 = t13 =
t14 = 1. From (6.65), we find

var0(W12)

2
= 10(10)

24

[
10 + 10 + 1 − 3(1)(2)(3) + (3)(4)(5)

(10 + 10)(10 + 10 − 1)

]

= 25

6

[
7, 980 − 78

380

]
= 86.64.

Using this result in (6.61), we obtain

W ∗
12 = [120.5 − 10(21)/2]√

86.64
= 1.67.

For the other five population pairs, similar calculations yield the following:
Site I and Site III

W13 = 13.5 + 11 + 2.5 + 1 + 8 + 8 + 2.5 + 5 + 5 + 5 = 61.5,

g13 = 13, t1 = 1, t2 = 2, t3 = t4 = 3, t5 = t6 = t7 = 1, t8 = 2,

t9 = t10 = t11 = t12 = 1, t13 = 2,

var0(W13) = 10(10)

24

[
10 + 10 + 1 − 3(1)(2)(3) + 2(2)(3)(4)

(10 + 10)(10 + 10 − 1)

]
= 86.78,

W ∗
13 = [61.5 − 10(21)/2]√

86.78
= −4.67.

Site I and Site IV

W14 = 11 + 9 + 4.5 + 7 + 9 + 2.5 + 2.5 + 1 + 4.5 + 9 = 60,

g14 = 15, t1 = 1, t2 = t3 = 2, t4 = t5 = 1, t6 = 3,

t7 = t8 = t9 = t10 = t11 = t12 = t13 = t14 = 1, t15 = 2,

var0(W14) = 10(10)

24

[
10 + 10 + 1 − 3(1)(2)(3) + 2(3)(4)

(10 + 10)(10 + 10 − 1)

]
= 87.04,

W ∗
14 = [60 − 10(21)/2]√

87.04
= −4.82.
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Site II and Site III

W23 = 12 + 11 + 2.5 + 1 + 8.5 + 8.5 + 2.5 + 5.5 + 5.5 + 5.5 = 62.5,

g23 = 13, t1 = 1, t2 = 2, t3 = 4, t4 = 2, t5 = t6 = t7 = 1, t8 = 3,

t9 = t10 = t11 = t12 = t13 = 1,

var0(W23) = 10(10)

24

[
10 + 10 + 1 − 2(1)(2)(3) + 2(3)(4) + 3(4)(5)

(10 + 10)(10 + 10 − 1)

]
= 86.45,

W ∗
23 = [62.5 − 10(21)/2]√

86.45
= −4.57.

Site II and Site IV

W24 = 11 + 9 + 5 + 7 + 9 + 2.5 + 2.5 + 1 + 5 + 9 = 61,

g24 = 13, t1 = 1, t2 = 2, t3 = 3, t4 = 1, t5 = 3, t6 = t7 = 1, t8 = 3,

t9 = t10 = t11 = t12 = t13 = 1,

var0(W24) = 10(10)

24

[
10 + 10 + 1 − 1(2)(3) + 3(2)(3)(4)

(10 + 10)(10 + 10 − 1)

]
= 86.64,

W ∗
24 = [61 − 10(21)/2]√

86.64
= −4.73.

Site III and Site IV

W24 = 18 + 16 + 9 + 14 + 16 + 3 + 3 + 1 + 9 + 16 = 105,

g34 = 10, t1 = 1, t2 = 3, t3 = 2, t4 = 5, t5 = 2, t6 = 1,

t7 = 3, t8 = t9 = t10 = 1,

var0(W34) = 10(10)

24

[
10 + 10 + 1 − 2(1)(2)(3) + 2(2)(3)(4) + 4(5)(6)

(10 + 10)(10 + 10 − 1)

]
= 85.53,

W ∗
34 = [105 − 10(21)/2]√

85.53
= 0.

Taking absolute values and referring them to the critical value q.01 = 4.403, we see that

|W ∗
12| = 1.67 < 4.404 =⇒ decide τ1 = τ2,

|W ∗
13| = 4.67 > 4.404 =⇒ decide τ1 �= τ3,

|W ∗
14| = 4.82 > 4.404 =⇒ decide τ1 �= τ4,

|W ∗
23| = 4.57 > 4.404 =⇒ decide τ2 �= τ3,

|W ∗
24| = 4.73 > 4.404 =⇒ decide τ2 �= τ4,

|W ∗
34| = 0 < 4.404 =⇒ decide τ3 = τ4.
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Thus, at an experimentwise error rate of .01, the six multiple comparison decisions
can be summarized by the statement (τ1 = τ2) �= (τ3 = τ4). This multiple comparison
procedure provides more detailed information about the lengths of the YOY gizzard
shad population in Kokosing Lake. We now know that sites I and II may be viewed as
providing similar living environments for gizzard shad. The same conclusion holds for
sites III and IV. However, we also know that the common living environment at sites I
and II is significantly different from the common living environment at sites III and IV.

Comments

53. Rationale for Multiple Comparison Procedures. We think of the methods of this
section as multiple comparison procedures. The aim of applying such proce-
dures goes beyond the point of deciding whether the treatments are equivalent
to the (often more important) problem of selecting which, if any, treatments
differ from one another. Thus, the user makes k(k − 1)/2 decisions, one for
each pair of treatments. Equation (6.63) states that the probability of mak-
ing all correct decisions when H0 is true is controlled to be 1 − α. That is,
when using procedure (6.62), the probability of at least one incorrect decision,
when H0 is true, is controlled to be α. This error rate is derived under the
assumption that H0 is true, but it does not depend on the particular underlying
distribution F . This is why we call (6.62) a distribution-free multiple comparison
procedure.

Multiple comparison procedures can be interpreted as hypothesis tests. If
we consider the test that rejects H0 if the inequality of (6.62) holds for at least
one (u , v) pair and accepts H0 if, for every (u , v) pair, the inequality of (6.62)
is not satisfied, this is a distribution-free test of size α for H0 (6.2).

54. Experimentwise Error Rate. The use of an experimentwise error rate repre-
sents a very conservative approach to multiple comparisons. We are insist-
ing that the probability of making only correct decisions be 1 − α when the
hypothesis H0 (6.2)) of treatment equivalence is true. Thus, we have a high
degree of protection when H0 is true, but we often apply such techniques
when we have evidence (perhaps based on a priori information or perhaps
obtained by applying the Kruskal–Wallis test, as in Example 6.6) that H0 is not
true.

This protection under H0 also makes it harder for the procedure to judge
treatments as differing significantly when in fact H0 is false, and this difficulty
becomes more severe as k increases. We justify our use of an experimentwise
error rate in much the same way as Kurtz et al. (1965). The rate provides a
precise measure of a level of uncertainty, and statements at higher or lower
levels are readily obtained.

Anscombe (1965), although not advocating the use of such rates, mentioned
an interesting hypothetical situation (which he attributed to Richard Olshen) in
defense of such a conservative approach. Anscombe was commenting on simul-
taneous confidence intervals proposed by Kurtz et al., but his statements would
also apply to multiple comparison procedures of the type discussed here. We
quote from his comments. “A panacea manufacturer advertises on television that
trials have shown his product to be more effective than any other leading brand.
Such trials (if they are not a downright fabrication) certainly seem to present
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a situation of the third type.∗ Their objective is not to help the manufacturer
reach a decision, but hopefully to permit him to make a multiple comparison
statement that will impress the public and boost sales. He could appropriately
use the simultaneous confidence intervals of this paper; indeed, the Food and
Drug Administration could appropriately require him to do so. The more equally
ineffective other leading brands there were, the harder would it be for him to
obtain the evidence he needed, and the more trials he would have to conduct and
suppress before achieving a favorable one. Thus would Statistics and Economics
go hand in hand to protect the public.”

55. Critical Values w∗
α . The w∗

α critical values can be obtained by using the fact
that under H0 (6.2), all N !/(

∏k
j=1 nj !) joint (of all N sample observations)

rank assignments of n1 ranks to the treatment 1 observations, n2 ranks to
the treatment 2 observations, . . . , nk ranks to the treatment k observations
are equally likely. (Although the standardized pairwise Wilcoxon statistics
W ∗

ij (6.61) are formally defined in terms of pairwise two-sample ranks, it
is clear that all k(k − 1)/2 W ∗

ij values can also be computed from the joint
ranks of all N observations.) Thus, to obtain the probability, under H0, that
|W ∗

uv| < c, for all u < v, we simply count the number of configurations
for which the event A = {|W ∗

uv| < c, for all u < v} occurs, and divide this

count by N !/
[∏k

j=1 nj !
]
. For an illustration, we return to Comment 6 and

use the 15 joint rank configurations displayed there for the case k = 3 and
n1 = n2 = n3 = 2. (Again, we can reduce the number of configurations that
need to be considered from 90 to 15 by the same reasoning as in Comment 6.)
For each of these 15 configurations, we now display the values of |W ∗

12|, |W ∗
13|,

and |W ∗
23|.

(a) |W ∗
12| = 2.1909 (b) |W ∗

12| = 2.1909 (c) |W ∗
12| = 2.1909

|W ∗
13| = 2.1909 |W ∗

13| = 2.1909 |W ∗
13| = 2.1909

|W ∗
23| = 2.1909 |W ∗

23| = 1.0954 |W ∗
23| = 0

(d) |W ∗
12| = 1.0954 (e) |W ∗

12| = 1.0954 (f) |W ∗
12| = 1.0954

|W ∗
13| = 2.1909 |W ∗

13| = 2.1909 |W ∗
13| = 2.1909

|W ∗
23| = 2.1909 |W ∗

23| = 1.0954 |W ∗
23| = 0

(g) |W ∗
12| = 1.0954 (h) |W ∗

12| = 0 (i) |W ∗
12| = 1.0954

|W ∗
13| = 1.0954 |W ∗

13| = 2.1909 |W ∗
13| = 1.0954

|W ∗
23| = 1.0954 |W ∗

23| = 2.1909 |W ∗
23| = 0

(j) |W ∗
12| = 0 (k) |W ∗

12| = 0 (l) |W ∗
12| = 1.0954

|W ∗
13| = 1.0954 |W ∗

13| = 1.0954 |W ∗
13| = 0

|W ∗
23| = 2.1909 |W ∗

23| = 1.0954 |W ∗
23| = 0

(m) |W ∗
12| = 0 (n) |W ∗

12| = 0 (o) |W ∗
12| = 0

|W ∗
13| = 0 |W ∗

13| = 0 |W ∗
13| = 0

|W ∗
23| = 2.1909 |W ∗

23| = 1.0954 |W ∗
23| = 0

∗ The term third type is used by Anscombe to refer to experiments intended to give fundamental knowledge
or insight into some phenomenon but not to aid in a particular job of decision making.
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Thus, for example,

P0{|w∗
uv| < 2.1909, (u , v) = (1, 2), (1, 3), (2, 3)}

= P0{|W ∗
12| < 2.1909; |W ∗

13| < 2.1909; |W ∗
23| < 2.1909}

= 6
15 = 1 − .6,

because for 6 of the 15 configurations—[(g), (i), (k), (1), (n), and (o)]—the
event {|W ∗

12| < 2.1909; |W ∗
13| < 2.1909; |W ∗

23| < 2.1909} occurs. Similarly,
P0{|W ∗

uv| < 1.0954, (u , v) = (1, 2), (1, 3), (2, 3)} = 1
15 = 1 − .9333, as the event

{|W ∗
12| < 1.0954; |W ∗

13| < 1.0954; |W ∗
23| < 1.0954} occurs only for the sin-

gle configuration (o). Hence, for k = 3 and n1 = n2 = n3 = 2, we have
w∗

.6000 = 2.1909 and w∗
.9333 = 1.0954, and the values .6000 and .9333 are the

only available experimentwise error rates for the Dwass–Steel–Critchlow–
Fligner procedure (6.62) in this setting.

For a given number of treatments k and sample sizes n1, . . . , nk , the R

command cSDCFlig(α,n) can be used to find the available critical values w∗
α .

For a given available experimentwise error rate α, the critical value w∗
α is given

by cSDCFlig(α,n). Thus, for example, for k = 3 and n1 = 3, n2 = 5, and
n3 = 7, we have w∗

.0331 =cSDCFlig(.0331,c(3,5,7)) = 3.330.

56. Historical Development. The multiple comparison procedures (6.62) and (6.64)
based on the Wilcoxon rank sum statistics were first proposed independently
by Steel (1960, 1961) and Dwass (1960) for the setting of equal sample sizes
n1 = · · · = nk . Critchlow and Fligner (1991) presented a natural generalization
of these Steel–Dwass procedures when the ni are not all equal and provided the
exact critical values w∗

α for k = 3 and 2 ≤ n1 ≤ n2 ≤ n3 ≤ 7.

57. Maximum Type I Error Rate. The multiple comparison procedure (6.62) is
designed so that the experimentwise error rate (see Comment 54) is controlled
to be equal to α; that is, the probability of falsely declaring any pair of
treatment effects to be different, when in fact all of the treatment effects are
the same, is equal to α. However, it also satisfies the more stringent maximum
type I error rate requirement that the probability of falsely declaring any pair
of treatment effects to be different, regardless of the values of the other k − 2
treatment effects, is no larger than the stated α. This requires controlling the
probability of making false declarations about treatment effect differences even
in situations when not all of the treatment effects are the same. For example,
if τ1 < τ2 = τ3, the probability of incorrectly deciding that τ2 �= τ3 is still
controlled to be α by multiple comparison procedure (6.62). Similar comments
apply to the approximate procedure in (6.64).

58. Large-Sample Approximation. Let W∗ = (W ∗
12, W ∗

13, . . . , W ∗
k−1,k

)
, where W ∗

ij
is given by (6.61) for 1 ≤ i < j ≤ k . Then it can be shown that W∗ has, as
min(n1, . . . , nk ) tends to infinity, an asymptotic multivariate normal distribution
with mean vector 0 and appropriate covariance matrix � (see Miller (1981a) for
further details). It follows directly from this result (again, see Miller (1981a))
that the procedure in (6.64) has an asymptotic experimentwise error rate equal
to α when n1 = n2 = · · · = nk . Critchlow and Fligner (1991) used a result by
Hayter (1984) to establish the fact that the asymptotic experimentwise error



6.5 Distribution-Free Two-Sided All-Treatments Multiple Comparisons 263

rate for procedure (6.64) is also bounded above by α when we have unequal
sample sizes.

When H0 is true and n1 = n2 = · · · = nk , the asymptotic correlation matrix
�1 (say) of the

(k
2

)
Wij ’s is the same as the correlation matrix �2 (say) of

the
(k

2

)
differences Zi − Zj , 1 ≤ i < j ≤ k , where Z1, . . . , Zk are independent

N (0, 1) random variables (cf. Miller (1966), pp. 155–156). It follows that the
asymptotic distribution of

√
2 max

1≤i<j≤k

{ |Wij − E0(Wij )|
[var0(Wij )]1/2

}
= max

1≤i<j≤k
|W ∗

ij |

can be approximated by the distribution of

max
1≤i<j≤k

|Zi − Zj | = range (Z1, . . . , Zk ).

The
√

2 occurs because the variance of Zi − Zj equals 2. This justifies the
use of approximation (6.64) in the equal-sample-size case. When the sample
sizes are unequal, the asymptotic correlation matrix of the

(k
2

)
Wij ’s will not

in general agree with �2, but (6.64)) can be justified via a Tukey–Kramer
approximation (see, e.g., Tukey (1953), Kramer (1956, 1957) and pages 91–93
of Hochberg and Tamhane (1987)).

59. Joint Ranking Approach. The multiple comparison procedure discussed in this
section is based on k(k − 1)/2 separate two-sample rankings. However, it
is also reasonable to consider all-treatments multiple comparisons based on
a single joint ranking of all N observations. Let R.j (6.4), j = 1, . . . , k , be
the average rank for the j th treatment sample in the joint ranking of all N
observations. The joint ranking analog to procedure (6.62) is then given by

Decide τu �= τv if N ∗|R.u − R.v| ≥ yα; otherwise decide τu = τv , (6.66)

where N ∗ is the least common multiple of n1, . . . , nk and the constant yα is
chosen to make the experimentwise error rate equal to α; that is, yα satisfies
the restriction

P0(N
∗|R.u − R.v| < yα , u = 1, . . . , k − 1; v = u + 1, . . . , k) = 1 − α, (6.67)

where the probability P0(·) is computed under H0 (6.2). As with the multiple
comparison procedures based on pairwise rankings, (6.67) stipulates that the
k(k − 1)/2 inequalities N ∗|R.u − R.v| < yα , corresponding to all pairs (u , v)
of treatments with u < v, hold simultaneously with probability 1 − α when H0

(6.2) is true.
Nemenyi (1963) first proposed procedure (6.67) for the special case of

equal sample sizes, in which case N ∗|R.u − R.v| = |Ru − Rv|, where Rj (6.4) is
the sum of the joint ranks for the treatment j observations. The general form of
(6.67) for arbitrary sample sizes was considered by Damico and Wolfe (1987).

The yα critical values can be obtained in exactly the same way as
the w∗

α values for procedure (6.63). Proceeding as in Comment 55, we
simply count the number of joint rank configurations for which the event
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B = {N ∗|R.u − R.v| < c, for all u < v} occurs and divide this count by
N !/
[
�k

j=1nj !
]

to obtain the probability, under H0, that N ∗|R.u − R.v| < c for
all u < v. For an illustration, we again return to Comment 6 and use the 15 joint
rank configurations displayed there for the case k = 3 and n1 = n2 = n3 = 2.
(For this setting, N ∗|R.u − R.v| = |Ru − Rv|, and we can once again reduce
the number of configurations that need to be considered from 90 to 15 by the
same reasoning as in Comment 6.) For each of these 15 configurations, we
now display the values of |R1 − R2|, |R1 − R3|, and |R2 − R3|.

(a) |R1 − R2| = 4 (b) |R1 − R2| = 5 (c) |R1 − R2| = 6
|R1 − R3| = 8 |R1 − R3| = 7 |R1 − R3| = 6
|R2 − R3| = 4 |R2 − R3| = 2 |R2 − R3| = 0

(d) |R1 − R2| = 2 (e) |R1 − R2| = 3 (f) |R1 − R2| = 4
|R1 − R3| = 7 |R1 − R3| = 6 |R1 − R3| = 5
|R2 − R3| = 5 |R2 − R3| = 3 |R2 − R3| = 1

(g) |R1 − R2| = 2 (h) |R1 − R2| = 0 (i) |R1 − R2| = 3
|R1 − R3| = 4 |R1 − R3| = 6 |R1 − R3| = 3
|R2 − R3| = 2 |R2 − R3| = 6 |R2 − R3| = 0

(j) |R1 − R2| = 1 (k) |R1 − R2| = 0 (l) |R1 − R2| = 2
|R1 − R3| = 4 |R1 − R3| = 3 |R1 − R3| = 1
|R2 − R3| = 5 |R2 − R3| = 3 |R2 − R3| = 1

(m) |R1 − R2| = 2 (n) |R1 − R2| = 1 (o) |R1 − R2| = 0
|R1 − R3| = 2 |R1 − R3| = 1 |R1 − R3| = 0
|R2 − R3| = 4 |R2 − R3| = 2 |R2 − R3| = 0

Thus, for example,

P0{|Ru − Rv| < 8, (u , v) = (1, 2), (1, 3), (2, 3)}
= P0{|R1 − R2| < 8; |R1 − R3| < 8; |R2 − R3| < 8}
= 14

15 = 1 − .067,

because for 14 of the configurations—all but configuration (a)—the
event {|R1 − R2| < 8; |R1 − R3| < 8; |R2 − R3| < 8} occurs. Similarly,
P0{|Ru − Rv| < 7; (u , v) = (1, 2), (1, 3), (2, 3)} = 12

15 = .80, because the
event {|R1 − R2| < 7; |R1 − R3| < 7; |R2 − R3| < 7} occurs for 12 of the
configurations—all but (a), (b), and (d). Hence, for k = 3 and n1 = n2 = n3 = 2,
we have y.067 = 8 and y.200 = 7. Values of yα are available in Damico and
Wolfe (1987) for available experimentwise error rates (α) closest to but not
exceeding .001, .005, .01 (.005) .05 (.01) .15 and most useful combinations of
either k = 3, 1 ≤ n1 ≤ n2 ≤ n3 ≤ 6 or k = 4, 1 ≤ n1 ≤ n2 ≤ n3 ≤ n4 ≤ 6. For
the special cases of equal sample sizes, these tabled values agree with those
previously given by Nemenyi (1963) and McDonald and Thompson (1967).
An approximation to yα for large common sample size is discussed in Miller
(1966). A related approximate procedure based on joint ranks and appropriate
for large unequal sample size is suggested by Dunn (1964).
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The joint ranking multiple comparison procedure given by (6.66) is a good
deal simpler computationally than the corresponding pairwise ranking multiple
comparison procedure in (6.62). Both procedures maintain the designated exper-
imentwise error rate α. However, the joint ranking procedure does not provide
the additional maximum type I error rate protection level α guarantee associated
with the pairwise ranking procedure (see Comment 57). A second drawback for
the joint ranking procedure is the fact that the absolute differences |R.u − R.v|
depend on the values of the observations from the other k − 2 treatments, in addi-
tion to the observations from treatments u and v. Thus, in the case of k = 3, the
decision concerning treatments 1 and 2, for example, depends on the treatment
3 observations. This difficulty is discussed in Miller (1966) and Gabriel (1969).

Properties

1. Asymptotic Multivariate Normality. See Hayter (1984) and Critchlow and Fligner
(1991).

2. Efficiency. See Sherman (1965) and Section 6.10.

Problems

42. Apply procedure (6.62) to the mean interstitial length data of Table 6.5.

43. Procedure (6.62) is defined specifically in terms of the k(k − 1)/2 pairwise two-sample rank-
ings. However, it can be applied to settings where only the joint ranks of all N observations
are available. Explain.

44. Apply procedure (6.62) to the half-time of mucociliary clearance data of Table 6.1.

45. Apply the approximate procedure (6.64) to the glucocorticoid receptor data of Table 6.4.

46. For the case k = 3, α = .05, and n1 = n2 = n3 = 6, compare procedures (6.62) and (6.64).

47. Apply the approximate procedure (6.64) to the psychotherapeutic attraction data of Table 6.2.

48. Find the totality of all available experimentwise error rates α and the associated critical values
w∗

α for procedure (6.62) when k = 4, n1 = 1, and n2 = n3 = n4 = 2.

49. Consider the joint ranking procedure (6.66) discussed in Comment 59. Find the totality of all
available experimentwise error rates α and the associated critical values yα for this procedure
when k = 4, n1 = 1 and n2 = n3 = n4 = 2.

50. Consider the YOY gizzard shad data discussed in Example 6.6. Find the smallest (available)
approximate experimentwise error rate at which the most significant difference in treatment
effects (i.e., that between site I and site IV) would be detected.

51. Consider the mean interstitial length data in Table 6.5. Find the smallest (available) approx-
imate experimentwise error rate at which we would declare that the typical mean interstitial
length for white pines is different from that for Scotch pines.

6.6 DISTRIBUTION-FREE ONE-SIDED ALL-TREATMENTS
MULTIPLE COMPARISONS BASED ON PAIRWISE
RANKINGS-ORDERED TREATMENT EFFECTS
(HAYTER–STONE)

In this section, we discuss a multiple comparison procedure based on pairwise two-sample
rankings that is designed to make decisions about individual differences between pairs of
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treatment effects (τi , τj ), for i < j , in a setting where ordered alternatives H2 (6.11) are of
interest. Thus, the multiple comparison procedure of this section would be appropriate for
one-way layout data after rejection of H0 (6.2) with the Jonckheere–Terpstra procedure
from Section 6.2. As with the procedure for general alternatives discussed in Section 6.5,
we will once again reach conclusions about all

(k
2

) = k(k − 1)/2 pairs of treatment
effects. However, here these conclusions are naturally one-sided, in accordance with the
ordered alternatives setting.

Procedure

For each pair of treatments (i , j ), 1 ≤ i < j ≤ k , let Wij be defined by expression (6.60);
that is, Wij is the Wilcoxon rank sum of the j th sample ranks in the two-sample ranking
of the i th and j th sample observations. Compute the standardized form W ∗

ij given in
(6.61) for each treatment pair combination (i , j ) with i < j .

At an experimentwise error rate of α, the Hayter–Stone one-sided all-treatments
multiple comparison procedure reaches its k(k − 1)/2 pairwise decisions, corresponding
to each (τu , τv) pair, 1 ≤ u < v ≤ k , by the criterion

Decide τv > τu if W ∗
uv ≥ c∗

α; otherwise decide τu = τv , (6.68)

where the constant c∗
α is chosen to make the experimentwise error rate equal to α; that

is, c∗
α satisfies the restriction

P0(W
∗

uv < c∗
α , u = 1, . . . , k − 1; v = u + 1, . . . , k) = 1 − α, (6.69)

where the probability P0(·) is computed under H0 (6.2). Equation (6.69) requires that the
k(k − 1)/2 inequalities W ∗

uv < c∗
α , corresponding to all pairs (u , v) of treatments with

u < v, hold simultaneously with probability 1 − α when H0 (6.2) is true. Comment 62
explains how to obtain the critical value c∗

α for k treatments, sample sizes n1, . . . , nk , and
available experimentwise error rates α.

Large-Sample Approximation

When H0 is true, the k(k − 1)/2 component vector (W ∗
12, W ∗

13, . . . , W ∗
k−1,k ) has, as

min(n1, . . . , nk ) tends to infinity, an asymptotic multivariate normal distribution with
mean vector 0. It then follows (see Hayter and Stone (1991), e.g., for an indication of
the proof) that c∗

α can be approximated for large sample sizes by dα , where dα is the
upper αth percentile point for the distribution of

D = maximum
1≤i<j≤k

⎡⎢⎢⎢⎣ Zj − Zi{
ni + nj

2ni nj

}1/2

⎤⎥⎥⎥⎦ ,

where Z1, . . . , Zk are mutually independent and Zi has an N (0, 1/ni ) distribution, for
i = 1, . . . , k . Thus, the large-sample approximation for procedure (6.68) is

Decide τv > τu if W ∗
uv ≤ dα; otherwise decide τu = τv. (6.70)



6.6 Distribution-Free One-Sided All-Treatments Multiple Comparisons 267

To find dα for k treatments, we use the R command cHayStonLSA(α, k). For example,
to find d.05 for k = 6 treatments, we apply cHayStonLSA(.05, 6) and obtain d.05 =
3.719 (see also Comment 64).

Ties

If there are ties among the X observations, use average ranks in computing the individual
Wilcoxon rank sum statistics Wij (6.60). In addition, replace the term Var0(Wij )/2 =
ni nj (ni + nj + 1)/24 in the denominator of W ∗

ij (6.61) by the expression in (6.65).

EXAMPLE 6.7 Motivational Effect of Knowledge of Performance–Example 6.2
Continued.

For Hundal’s (1969) study to assess the motivational effects of knowledge of perfor-
mance, we found in Example 6.2 (using the Jonckheere–Terpstra test procedure) that
there was sufficient evidence in the sample data to conclude that τ1 ≤ τ2 ≤ τ3 with at
least one strict inequality. To examine which of the types of information (none, rough, or
accurate) lead to differences in median numbers of pieces processed, we apply procedure
(6.68) with the appropriate corrections for ties, as given in (6.65). For this study, we have
k = 3, n1 = n2 = n3 = 6, and we must compute k(k − 1)/2 = 3(2)/2 = 3 standardized
W ∗

ij statistics. For the sake of illustration, we take our experimentwise error rate to
be α = .0553. With k = 3 and n1 = n2 = n3 = 6, we find c∗

.0553 =cHaySton(.0553,

c(6, 6, 6)) = 2.9439 and procedure (6.68) reduces to

Decide τv > τu if W ∗
uv ≥ 2.9439.

Next, we compute the three W ∗
ij statistics. For the control (no information) and

group B (partial information) sample observations, the combined-samples ranking yields
the sum of ranks for the group B data to be

W12 = 2.5 + 5 + 12 + 10.5 + 5 + 8 + 43.

For this pair of samples, there are tied observations and we have g12 = 8 and t1 = 1, t2 =
2, t3 = 3, t4 = t5 = t6 = 1, t7 = 2, and t8 = 1. From (6.65), we obtain

var0(W12)

2
= 6(6)

24

[
6 + 6 + 1 − 2(1)(2)(3) + 2(3)(4)

(6 + 6)(6 + 6 − 1)

]
= 3

2

[
1716 − 36

132

]
= 19.09.

Using this result in (6.61), we find

W ∗
12 = [43 − 6(13)/2]√

19.09
= .92.

For the other two population pairs, similar calculations lead to the following.
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Control (No Information) and Group C (Accurate Information)

W13 = 12 + 3.5 + 10 + 6.5 + 11 + 8.5 = 51.5,

g13 = 9, t1 = t2 = 1, t3 = 2, t4 = 1, t5 = t6 = 2, t7 = t8 = t9 = 1,

var0(W13) = 6(6)

24

[
6 + 6 + 1 − 3(1)(2)(3)

(6 + 6)(6 + 6 − 1)

]
= 19.30,

W ∗
13 = [51.5 − 6(13)/2]√

19.30
= 2.85.

Group B (Partial Information) and Group C (Accurate Information)

W23 = 12 + 3 + 9 + 6 + 10 + 7.5 = 47.5,

g23 = 9, t1 = 1, t2 = 3, t3 = t4 = 1, t5 = 2, t6 = t7 = t8 = t9 = 1,

var0(W23) = 6(6)

24

[
6 + 6 + 1 − 1(2)(3) + 2(3)(4)

(6 + 6)(6 + 6 − 1)

]
= 19.16,

W ∗
23 = [47.5 − 6(13)/2]√

19.16
= 1.94.

Referring these W ∗
ij values to the critical point c∗

.0553 = 2.9439, we see that

W ∗
12 = .92 < 2.9439 ⇒ decide τ1 = τ2,

W ∗
13 = 2.85 < 2.9439 ⇒ decide τ1 = τ3,

W ∗
23 = 1.94 < 2.9439 ⇒ decide τ2 = τ3.

Thus, at an experimentwise error rate of .0553, we have reached the conclusion that
τ1 = τ2 = τ3 (i.e., there are no differences in median numbers of pieces processed
between the different levels of information), in contradiction with the conclusion from
the Jonckheere–Terpstra test that τ1 ≤ τ2 ≤ τ3 with at least one strict inequality. Even
though the P -value for the Jonckheere–Terpstra test procedure for these data is .0231,
we are not able to detect any individual differences between treatment effects with the
multiple comparison procedure (6.68), even with an experimentwise error rate as high
as .0553. Such occurrences are, unfortunately, rather common in practice because of the
conservative nature of the multiple comparison procedures (see Comment 54). For this
reason, we often conduct our multiple comparison procedure at an experimentwise error
rate that is higher than a typical significance level (such as .01 or .05) for a hypothesis
test. If we have previously conducted a hypothesis test (such as the Jonckheere–Terpstra
test in the example) and rejected H0, we would at least like to know the most significant
difference between pairs of treatment effects. For this reason, it is always informative
in such cases to find the smallest experimentwise error rate at which the first pairwise
difference in treatment effects would become significant. For the Hundal data, that cor-
responds to treatments 1 (no information) and 3 (accurate information) with an observed
value W ∗

13 = 2.85. Using the R command pHaySton(motivational.effect), we
find that the smallest experimentwise error rate (among the limited number available) at
which we would decide τ3 > τ1 (and thus conclude that accurate information is more
effective than no information) is pHaySton(motivational.effect)$p.val [2]

= .0850.
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Comments

60. Rationale for Multiple Comparison Procedures. The general rationale for the
multiple comparison procedures of this section is the same as that given in
Comment 53 for the two-sided-all-treatments multiple comparison procedures
of Section 6.5. The only additional factor here is that the procedures of this
section yield decisions that are one-sided by nature in line with their association
with the ordered restriction (τ1 ≤ · · · ≤ τk ) on the treatment effects.

61. Experimentwise Error Rate. The use of an experimentwise error rate represents
a very conservative approach to multiple comparisons. We are insisting that the
probability of making only correct decisions be 1 − α when the hypothesis H0

(6.2) of treatment equivalence is true. Thus, we have a high degree of protection
when H0 is true, but we often apply the techniques of this section when we have
evidence (perhaps based on a priori information or perhaps obtained by apply-
ing the Jonckheere–Terpstra test, as in Example 6.7) that H0 is not true. (For
additional general remarks about experimentwise error rates, see Comment 54.)

62. Critical Values c∗
α . The c∗

α critical values can be obtained by using the fact

that under H0 (6.2), all N !/
(∏k

j=1 nj !
)

joint (of all N sample observations)
rank assignments of n1 ranks to the treatment 1 observations, n2 ranks to
the treatment 2 observations, . . . , nk ranks to the treatment k observations are
equally likely. (Although the standardized pairwise Wilcoxon statistics W ∗

ij
(6.61) are formally defined in terms of pairwise two-sample ranks, it is clear
that all k(k − 1)/2 W ∗

ij statistics can also be computed from the joint ranks of
all N observations.) Thus, to obtain the probability, under H0, that W ∗

uv < t , for
all u < v, we simply count the number of configurations for which the event
A = {W ∗

uv < t , for all u < u} occurs and divide this count by N !/
[∏k

j=1 nj !
]
.

For an illustration, we return to Comment 17 and use the 12 joint rank configu-
rations displayed there for the case k = 3, n1 = 1, n2 = 1, and n3 = 2. For each
of these 12 configurations, we now display the values of W ∗

12, W ∗
13, and W ∗

23.

(a) W ∗
12 = 1.4142 (b) W ∗

12 = −1.4142 (c) W ∗
12 = 1.4142

W ∗
13 = 1.7321 W ∗

13 = 1.7321 W ∗
13 = 1.7321

W ∗
23 = 1.7321 W ∗

23 = 1.7321 W ∗
23 = 0

(d) W ∗
12 = −1.4142 (e) W ∗

12 = 1.4142 (f) W ∗
12 = −1.4142

W ∗
13 = 0 W ∗

13 = 1.7321 W ∗
13 = −1.7321

W ∗
23 = 1.7321 W ∗

23 = −1.7321 W ∗
23 = 1.7321

(g) W ∗
12 = 1.4142 (h) W ∗

12 = −1.4142 (i) W ∗
12 = 1.4142

W ∗
13 = 0 W ∗

13 = 0 W ∗
13 = 0

W ∗
23 = 0 W ∗

23 = 0 W ∗
23 = −1.7321

(j) W ∗
12 = −1.4142 (k) W ∗

12 = 1.4142 (l) W ∗
12 = −1.4142

W ∗
13 = −1.7321 W ∗

13 = −1.7321 W ∗
13 = −1.7321

W ∗
23 = 0 W ∗

23 = −1.7321 W ∗
23 = −1.7321
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Thus, for example,

P0{W ∗
uv < 1.7321, (u , v) = (1, 2), (1, 3), (2, 3)}

= P0{W ∗
12 < 1.7321; W ∗

13 < 1.7321; W ∗
23 < 1.7321}

= 6
12 = 1 − .5,

because for 6 of the 12 configurations—(g), (h), (i), (j), (k), and (l)—the event
{W ∗

12 < 1.7321; W ∗
13 < 1.7321; W ∗

23 < 1.7321} occurs. Similarly, P0{W ∗
uv <

1.4142, (u , v) = (1, 2), (1, 3), (2, 3)} = 3
12 = 1 − .75, because the event {W ∗

12 <

1.4142; W ∗
13 < 1.4142; W ∗

23 < 1.4142} occurs only for the three configura-
tions (h), (j), and (l). Finally, P0{W ∗

uv < 0, (u , v) = (1, 2), (1, 3), (2, 3)} =
1

12 = 1 − .9167, corresponding to the single configuration (l). Hence, for
k = 3, n1 = 1, n2 = 1, and n3 = 2, we have c∗

.5000 = 1.7321, c∗
.7500 = 1.4142,

and c∗
.9167 = 0, and the values .5000, .7500, and .9167 are the only available

experimentwise error rates for the Hayter–Stone procedure (6.68) in this
setting.

For a given number of treatments k and sample sizes n1, . . . , nk , the R

command cHaySton(α, n) can be used to find the available critical values c∗
α .

For a given available experimentwise error rate α, the critical value c∗
α is given

by cHaySton(α, n). Thus, for example, for k = 3 and n1 = 3, n2 = 4, and
n3 = 6, we have c∗

.0295 =cHaySton(.0295,c(3,4,6)) = 3.015.

63. Maximum Type I Error Rate. The multiple comparison procedure (6.68) is
designed so that the experimentwise error rate (see Comment 61) is controlled
to be equal to α; that is, the probability of falsely declaring any pair of
treatment effects to be different, when in fact all the treatment effects are the
same, is equal to α. However, it also satisfies the more stringent maximum type
I error rate requirement that the probability of falsely declaring any pair of
treatment effects to be different, regardless of the values of the other k − 2
treatment effects, is no larger than the stated α. This requires controlling the
probability of making false declarations about treatment effect differences even
in situations when not all the treatment effects are the same. For example,
if τ1 < τ2 = τ3 the probability of incorrectly deciding that τ2 �= τ3 is still
controlled to be α by multiple comparison procedure (6.68). Similar comments
apply to the approximate procedure in (6.70).

64. Large and Unequal Sample Sizes. In order to obtain the large-sample approxi-
mate critical values dα for use in procedure (6.70) when we have an unbalanced
setting (i.e., where the sample sizes are not all equal), we must evaluate a
(k − 1)-dimensional integral expression. In view of this difficulty (even with the
availability of high-speed computers) and the fact that there is a large number of
possible unequal-sample-size combinations for each fixed k and N , the evalua-
tion of these approximate critical values is practically feasible only for a small
percentage of the necessary cases. To make matters even more complicated, the
use of an appropriate equal-sample-size asymptotic critical value when we actu-
ally have unequal sample sizes does not result in a conservative procedure, as it
does for the Dwass–Steel–Critchlow–Fligner two-sided all-treatments multiple
comparison procedure in Section 6.5 (see, e.g., Comment 58). In the case of the
Hayter–Stone one-sided procedure (6.70), use of a particular equal-sample-size
asymptotic critical value dα may result in either a conservative or liberal (i.e.,
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experimentwise error rate ≤ α or > α, respectively) procedure, depending on
the particular unequal sample size configurations involved. Thus, for k and
unequal (n1, . . . , nk ) configurations beyond those for which the exact critical
values c∗

α can reasonably be obtained from the R program cHaySton(α, n),
Hayter and Stone (1991) recommended that computer simulation techniques be
used to obtain appropriate asymptotic critical values.

Properties

1. Asymptotic Multivariate Normality. See Hayter (1984) and Hayter and Stone (1991).

Problems

52. Apply procedure (6.70) to the psychotherapeutic attraction data of Table 6.2 using the postu-
lated order τ1 ≤ τ2 ≤ τ3 ≤ τ4.

53. Procedure (6.68) is defined specifically in terms of the k(k − 1)/2 pairwise two-sample rank-
ings. However, it can be applied to settings where only the joint ranks of all N observations
are available. Explain.

54. Apply procedure (6.68) to the average basal area increment data in Table 6.7. Use only the
growing site index intervals 72–74, 75–77, and 78–80 with the postulated ordering τ72−74 ≤
τ75−77 ≤ τ78−80.

55. For the case k = 3, α = .05, and n1 = n2 = n3 = 6, compare procedures (6.68) and (6.70).

56. Find the totality of all available experimentwise error rates α and the associated critical values
c∗
α for procedure (6.68) when k = 4, n1 = 1, and n2 = n3 = n4 = 2.

57. Consider the psychotherapeutic attraction data of Table 6.2 with the postulated ordering τ1 ≤
τ2 ≤ τ3 ≤ τ4. Find the smallest (available) approximate experimentwise error rate at which the
most significant difference in treatment effects would be detected.

58. Consider the average basal area increment data in Table 6.7. Using only the growing site
index intervals 72–74, 75–77, and 78–80 with the postulated ordering τ72−74 ≤ τ75−77 ≤
τ78−80, find the smallest available experimentwise error rate at which we would declare
τ78−80 > τ72−74.

6.7 DISTRIBUTION-FREE ONE-SIDED TREATMENTS-
VERSUS-CONTROL MULTIPLE COMPARISONS BASED
ON JOINT RANKINGS (NEMENYI, DAMICO–WOLFE)

In this section our attention turns to a multiple comparison procedure designed to make
decisions about individual differences between the median effect for a single, baseline
control population and the median effects for each of the remaining k − 1 treatments.
This treatment versus control multiple comparison procedure is based on the joint ranking
of all N sample observations and can be applied to one-way layout data containing a
single control sample after rejection of H0 (6.2) with any of the test procedures in
Sections 6.1–6.4. Its application leads to conclusions about the differences between each
of the k − 1 treatment effects and the control effect, and these conclusions are naturally
one-sided in nature.
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Procedure

For simplicity of notation, we let treatment 1 assume the role of the single baseline
control. In addition, let N ∗ be the least common multiple of the sample sizes n1, . . . , nk .
Jointly rank all N of the sample observations and let R.1, . . . , R.k be the averages of these
joint ranks associated with treatments 1, . . . , k , respectively. (Thus, R.1, . . . , R.k are as
originally defined in (6.4) in conjunction with the Kruskal–Wallis statistic.) For each of
the k − 1 noncontrol treatments, calculate the difference R.u − R.1, u = 2, . . . , k .

At an experimentwise error rate of α, the Nemenyi–Damico–Wolfe one-sided
treatments-versus-control multiple comparison procedure (see Comment 65) reaches
its k − 1 pairwise decisions, corresponding to each (τ1, τu ) pair, u = 2, . . . , k , by the
criterion

Decide τu > τ1 if N ∗(R.u − R.1) ≥ y∗
α; otherwise decide τu = τ1, (6.71)

where the constant y∗
α is chosen to make the experimentwise error rate equal to α; that

is, y∗
α satisfies the restriction

P0{N ∗(R.u − R.1) < y∗
α , u = 2, . . . , k} = 1 − α, (6.72)

where the probability P0(·) is computed under H0 (6.2). Equation (6.72) stipulates that
the k − 1 inequalities N ∗(R.u − R.1) < y∗

α , corresponding to all pairs (1, u) of noncontrol
treatments (u = 2, . . . , k ) with the control treatment 1, hold simultaneously with probabil-
ity 1 − α when H0 (6.2) is true. Comment 68 explains how to obtain the critical value y∗

α

for (k − 1) noncontrol treatments, sample sizes n1, . . . , nk , and available experimentwise
error rates α.

Large-Sample Approximations

When H0 is true, the (k − 1) component vector (R.2 − R.1, R.3 − R.1, . . . , R.k − R.1) has,
as min(n1, . . . , nk ) tends to infinity, an asymptotic (k − 1)-variate normal distribution
with mean vector 0. (For an indication of the proof, see Miller (1966).) For the special
case of n1 = b and n2 = · · · = nk = n , with both n and b large, the critical value y∗

α can
be approximated by [N (N + 1)/12]1/2[(1/b) + (1/n)]1/2N ∗m∗

α , where m∗
α is the upper

αth percentile point for the distribution of the maximum of (k − 1)N (0, 1) variables with
common correlation ρ = n/(b + n). Thus, the large-sample approximation for procedure
(6.71) when we have equal treatment sample sizes n2 = · · · = nk = n (possibly different
from b = n1) is

Decide τu > τ1 if (R.u − R.1) ≥ m∗
α

[
N (N + 1)

12

]1/2 ( 1

b
+ 1

n

)1/2

;

otherwise decide τu = τ1, u = 2, . . . , k . (6.73)

To find m∗
α for k − 1 noncontrol treatments, number of control observations b and an

equal number, n , of observations from each of the noncontrol treatments, we use the
R command cMaxNorm(α,k - 1,n/(b+n)). For example, to find m∗

.0310 for k − 1 =
4 noncontrol treatments, b = 9, and n = 3, we have ρ = 3/(9 + 3) = .25 and apply
cMaxNorm(.0310, 4, 0.25) to obtain m∗

.0310 = 2.40.
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For the general setting of arbitrary (not necessarily equal) treatments sample sizes,
Dunn (1964) used Bonferroni’s Inequality to provide the large-sample approximation to
procedure (6.71) given by

Decide τu > τ1 if (R.u − R.1) ≥ zα∗

[
N (N + 1)

12

]1/2 ( 1

n1
+ 1

nu

)1/2

;

otherwise decide τu = τ1, u = 2, . . . , k , (6.74)

where α∗ = α/(k − 1). (We note that this general approximate procedure can often be
quite conservative in practice, as a direct result of the conservative nature of the Bon-
ferroni Inequality.)

Ties

If there are ties among the X observations, use average ranks in computing the individual
treatment sums of ranks R1, . . . , Rk .

EXAMPLE 6.8 Motivational Effect of Knowledge of Performance—Example 6.2
Continued.

Once again we consider Hundal’s (1969) study to assess the motivational effects of
knowledge of performance. We previously found in Example 6.2 (using the Jonckheere–
Terpstra test procedure) that there was sufficient evidence in the sample data to conclude
that τ1 ≤ τ2 ≤ τ3 with at least one strict inequality. To further investigate which (if
either) of the two types of additional information (rough or accurate) lead to differences
in median numbers of pieces processed relative to the no information control (treatment
1), we apply procedure (6.71). Here, we have k = 3 and n1 = n2 = n3 = N ∗ = 6. For
the sake of illustration, we take our experimentwise error rate to be α = .0554. With
k = 3 and n1 = n2 = n3 = 6, we find y∗

.0554 = cNDWol(.0554, c(6, 6, 6)) = 35
and procedure (6.71) reduces to

Decide τu > τi if 6(R.u − R.1) = (Ru − R1) ≥ 35.

Using the joint ranks (with average ranks to break ties among the observations) provided
in parentheses beside the data in Table 6.6, we see that

R1 = 5.5 + 1 + 2.5 + 10.5 + 13 + 8 = 40.5,

R2 = 2.5 + 5.5 + 17 + 13 + 5.5 + 9 = 52.5,

and
R3 = 18 + 5.5 + 15 + 10.5 + 16 + 13 = 78.

Thus, (R2 − R1) = (52.5 − 40.5) = 12 and (R3 − R1) = (78 − 40.5) = 37.5. Referring
these rank sum differences to the critical point y∗

.0554 = 35, we see that

(R2 − R1) = 12 < 35 ⇒ decide τ2 = τ1,

(R3 − R1) = 37.5 ≥ 35 ⇒ decide τ3 > τ1.
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Thus at an experimentwise error rate of .0554, we have reached the conclusion that
accurate information leads to significantly more pieces processed than the no information
control. (We note that the smallest experimentwise error rate at which we would reach this
conclusion is .0426, as y∗

.0426 = cNDWol(.0426, c(6, 6, 6)) = 37 and y∗
.0371 =

cNDWol(.0371, c(6, 6, 6)) = 38.)
For the sake of illustration for the associated large-sample approximation (with equal

sample sizes) procedure in (6.73), we note that ρ = n/(b + n) = 6/(6 + 6) = 1
2 (which

is always the case with equal sample sizes in the control and the noncontrol treatments).
Using an approximate experimentwise error rate of α = .05183 with (k − 1) = 2, we see
that cMaxNorm(.05183, 2, 0.5) = m∗

.05183 = 1.90. Thus, we have that

[
N (N + 1)

12

]1/2 ( 1

b
+ 1

n

)1/2

m∗
.05183 =

[
18(19

12

]1/2 (1

6
+ 1

6

)1/2

(1.90) = 5.856

and procedure (6.73) becomes

Decide τu > τ1 if (R.u − R.1) ≥ 5.856

or, equivalently,

Decide τu > τ1 if (Ru − R1) = 6(R.u − R.1) ≥ 6(5.856) = 35.14.

Thus, for k = 3 and n1 = n2 = n3 = 6, the exact procedure (6.71) and the large-sample
approximation (6.73) are virtually identical and lead to the same conclusions that τ2 = τ1

and τ3 > τ1.
We note that the treatment-versus-control procedure (6.71) yields the conclusion that

τ3 > τ1 at a considerably smaller experimentwise error rate (as low as .0426) than is the
case with the Hayter–Stone one-sided all-treatments multiple comparison procedure (as
detailed in Example 6.7), where the smallest experimentwise error rate leading to this
conclusion is .0850. This situation is due primarily to the fact that the Hayter–Stone
procedure is required to make an additional decision about the relative magnitude of τ2

and τ3, which, for these data, do not appear to be significantly different.

Comments

65. Rationale for Treatments-versus-Control Multiple Comparison Procedures. The
general rationale for the multiple comparison procedures of this section is the
same as that given in Comment 53 for the two-sided all-treatments multiple
comparison procedures of Section 6.5. The only additional factor here is that
the treatment-versus-control procedures of this section do not compare all treat-
ments, but only each noncontrol treatment with the control on a directional bias.
This situation arises, for example, in drug screening in the examination of many
new treatments in hopes of improving on a standard, and there is no initial rea-
son to perform between treatment comparisons. Of course, similar comparisons
would be carried out later between treatments that were selected as being better
than the control.
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66. Experimentwise Error Rate. The use of an experimentwise error rate represents
a very conservative approach to multiple comparisons. We are insisting that the
probability of making only correct decisions be 1 − α when the hypothesis H0

(6.2) of treatment equivalence is true. Thus, we have a high degree of protection
when H0 is true, but we often apply the techniques of this section when we have
evidence (perhaps based on a priori information or perhaps obtained by applying
a previous test procedure, as in Example 6.8) that H0 is not true. (For additional
general remarks about experimentwise error rates, see Comment 54.)

67. Opposite Direction Decisions. Procedures (6.71), (6.73), and (6.74) are designed
for the one-sided case where the decisions are τu > τ1 versus τu = τ1, u =
2, . . . , k . To handle the analogous one-sided situation where the decisions involve
τu < τ1 versus τu = τ1, u = 2, . . . , k , we use (6.71), (6.73), and (6.74) with
(R.u − R.1) replaced by (R.1 − R.u) for u = 2, . . . , k .

68. Critical Values y∗
α . The y∗

α critical values can be obtained by using the fact
that under H0 (6.2), all N !/

[∏k
j=1nj !

]
rank assignments are equally likely.

However, in this one-sided treatments-versus-control setting, we must work a
little harder than in the two-sided all-treatments case (see Comments 55 and 59
in Section 6.5) as the values R.u − R.1, u = 2, . . . , k , are, in general, changed
when we relabel the control treatment. (In either of the previous two-sided
all-treatments cases, the relevant statistic is unaffected by treatment relabel-
ings.) As a result, we will have to take the complete enumeration approach
employed in Comment 62 for the one-sided all-treatments setting, where the
relevant statistic is also not invariant with respect to treatment relabelings.

For an illustration, we return to Comment 17 and use the 12 rank config-
urations displayed there for the case k = 3, n1 = 1, n2 = 1, and n3 = 2. (Here,
N ∗ = 2.) For each of these 12 configurations, we now display the values of
2(R.2 − R.1) and 2(R.3 − R.1).

(a) 2(R.2 − R.1) = 2 (b) 2(R.2 − R.1) = −2 (c) 2(R.2 − R.1) = 4

2(R.3 − R.1) = 5 2(R.3 − R.1) = 3 2(R.3 − R.1) = 4

(d) 2(R.2 − R.1) = −4 (e) 2(R.2 − R.1) = 6 (f) 2(R.2 − R.1) = −6

2(R.3 − R.1) = 0 2(R.3 − R.1) = 3 2(R.3 − R.1) = −3

(g) 2(R.2 − R.1) = 2 (h) 2(R.2 − R.1) = −2 (i) 2(R.2 − R.1) = 4

2(R.3 − R.1) = 1 2(R.3 − R.1) = −1 2(R.3 − R.1) = 0

(j) 2(R.2 − R.1) = −4 (k) 2(R.2 − R.1) = 2 (l) 2(R.2 − R.1) = −2

2(R.3 − R.1) = −4 2(R.3 − R.1) = −3 2(R.3 − R.1) = −5

Thus, for example,

P0{2(R.u − R.1) < 6, u = 2, 3}

= P0{2(R.2 − R.1) < 6 and 2(R.3 − R.1) < 6}

= 11
12 = 1 − .0833,
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because the event {2(R.2 − R.1) < 6 and 2(R.3 − R.1) < 6} occurs for all but
configuration (e). Similarly, P0{2(R.u − R.1) < 2, u = 2, 3} = 5

12 = 1 − .5833,
because the event {2(R.2 − R.1) < 2 and 2(R.3 − R.1) < 2} occurs only for the
five configurations (d), (f), (h), (j), and (l). Hence, for k = 3, n1 = 1, n2 = 1, and
n3 = 2, we have y∗

.0833 = 6 and y∗
.5833 = 2. The other possible experimentwise

error rates (there are 10, including 1, all together) and the associated critical
values for this setting are obtained through the same type of enumeration.

For a given number of noncontrol treatments k − 1 and sample sizes
n1, . . . , nk, the R command cNDWol(α, n) can be used to find the available
critical values y∗

α . For a given available experimentwise error rate α, the
critical value y∗

α is given by cNDWol(α, n). Thus, for example, for k = 3 and
n1 = n2 = n3 = 6, we have y∗

.0795 = cNDWol(.0795, c(6,6,6)) = 32.

69. Interpretation as Hypothesis Tests. Procedures (6.71), (6.73), and (6.74) can also
be interpreted as hypothesis tests of H0 (6.2). (For example, the procedure that
rejects H0 if at least one of the k − 1 inequalities of (6.71) holds is a distribution-
free test of level α for H0.) However, they are generally more effective at
detecting differences between individual treatment effects when applied to data
for which the null hypothesis H0 has previously been rejected by one of the test
procedures is Sections 6.1–6.4.

70. Dependence on Observations from Other Noninvolved Treatments. The differ-
ences (R.u − R.1) depend on the values of the observations from the other k − 2
treatments, in addition to the observations from the control and treatment u .
Thus, the multiple comparison procedures in (6.71), (6.73), and (6.74) all have
the disadvantage that the decision concerning treatment u and the control can
be affected by changes only in the observations from one or more of the other
k − 2 noninvolved treatments. This difficulty has been emphasized by Miller
(1966) and Gabriel (1969).

71. Two-Sided Treatments-versus-Control Multiple Comparison Procedures. All the
multiple comparison procedures of this section are one-sided by nature, resulting
in decisions between τu = τ1 and τu > τ1 for every u = 2, . . . , k (or between
τu = τ1 and τu < τ1 for every u = 2, . . . , k , as noted in Comment 67). We view
such one-sided comparisons to be the most natural approach for treatments-
versus-control settings. In such situations, we are generally interested in seeing
which, if any, of the proposed new treatments are better than a standard control
or placebo. In most practical applications, better is synonymous with one-sided
comparisons (all in one direction or all in the other)—thus our emphasis on
such procedures in this section. However, a two-sided treatments-versus-control
analog to procedure (6.71) has been developed in the literature and corresponds
to the criterion

Decide τu �= τ1 if N ∗|R.u − R.1| ≥ y∗∗
α ; otherwise decide τu = τ1, (6.75)

where the constant y∗∗
α is chosen to make the experimentwise error rate equal

to α; that is,

P0{N ∗|R.u − R.1| < y∗∗
α , u = 2, . . . , k} = 1 − α,

where the probability P0(·) is computed under H0 (6.2). However, the required
critical values y∗∗

α are available only in a very limited fashion. Leach (1972) has
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provided such critical values y∗∗
α for the very special case of k = 3 and equal

sample sizes n1 = n2 = n3 = 2(1)6. Associated large-sample approximations to
(6.75) for equal and unequal noncontrol treatment sample sizes have been con-
sidered by Miller (1966) and Dunn (1964), respectively. For further discussion
of these two-sided treatments-versus-control multiple comparison procedures,
see Miller (1966).

72. Pairwise Ranking Approach. The treatments-versus-control multiple comparison
procedures discussed in this section are based on the joint ranking of all N
of the sample observations. They suffer from the same drawbacks as do other
one-way layout multiple comparison procedures based on joint rankings. For
example, they do not provide the maximum type I error rate protection level
α guarantee and decisions between treatment u and the control depend on the
values of the observations from the other k − 2 treatments (for more details,
see, e.g., Fligner (1984)).

Steel (1959) developed a competitor of these Nemenyi–Damico–Wolfe
procedures that takes the pairwise ranking approach discussed in Sections 6.5
and 6.6. His procedure is based on k − 1 separate two-sample rankings between
the control sample and each of the k − 1 noncontrol samples and has the form

Decide τu > τ1 if W ∗
1u ≥ b∗

α; otherwise decide τu = τ1, u = 2, . . . , k , (6.76)

where W ∗
12, . . . , W ∗

1k are defined by (6.61) and b∗
α is chosen to make the experi-

mentwise error rate equal to α. This pairwise ranking treatments-versus-control
procedure has many of the nice properties of the analogous pairwise rankings
all-treatments multiple comparison procedures discussed in Sections 6.5 and
6.6, including proper control of the maximum type I error rate (see Comments
57 and 63).

Properties

1. Asymptotic Multivariate Normality. See Miller (1966).

2. Efficiency. See Sherman (1965) and Section 6.10.

Problems

59. Apply the approximate procedure (6.73) to the psychotherapeutic attraction data in Table 6.2.

60. For the case k = 3, α = .01, n1 = n2 = n3 = 6, compare procedures (6.71) and (6.73).

61. For the psychotherapeutic attraction data in Table 6.2, find the smallest approximate experi-
mentwise error rate at which we would decide τ4 > τ1 using procedure (6.73).

62. Consider the mucociliary clearance data in Table 6.1. Use procedure (6.71) to decide whether or
not either obstructive airways disease or asbestosis (or both) lead to a deterioration (slowdown)
in median mucociliary clearance half-times.

63. Apply the approximate procedure (6.74) to the glucocorticoid receptor site data in Table 6.4.

64. For the glucocorticoid receptor site data in Table 6.4, find the smallest approximate experi-
mentwise error rate at which we would decide τ5 > τ1 using procedure (6.74).

65. Apply the approximate procedure (6.73) to the plasma glucose data in Table 6.9.
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66. For the plasma glucose data in Table 6.9, find the smallest approximate experimentwise error
rate at which we would decide τ3 > τ1 using procedure (6.73).

67. For the plasma glucose data in Table 6.9, find the smallest approximate experimentwise error
rate at which we would decide τ5 < τ1 with an appropriate treatments-versus-control multiple
comparison procedure (see Comment 67).

68. Apply the approximate procedure (6.73) to the revertant colonies data in Table 6.10.

69. For the revertant colonies data in Table 6.10, find the smallest approximate experimentwise
error rate at which we would decide τ4 > τ1 using procedure (6.73).

70. Consider the revertant colonies data in Table 6.10. Find the smallest approximate experiment-
wise error rate at which the most significant difference in treatment (dosage) effects would be
detected.

71. Find the totality of all available experimentwise error rates α and the associated critical values
y∗
α for procedure (6.71) when k = 4, n1 = 1, and n2 = n3 = n4 = 2.

6.8 CONTRAST ESTIMATION BASED ON
HODGES–LEHMANN TWO-SAMPLE ESTIMATORS
(SPJøTVOLL)

In this section we discuss a method for the point estimation of certain linear combinations
of treatment effects known in the literature as contrasts. We define such a contrast in the
treatment effects τ1, . . . , τk to be any linear combination of the form

θ =
k∑

i=1

ai τi , (6.77)

where a1, . . . , ak are any specified set of constants such that
∑k

i=1 ai = 0. Equivalently,
we can write θ in terms of the individual differences in treatment effects (known in the
literature as simple contrasts)

�hj = τh − τj , h = 1, . . . , k; j = 1, . . . , k , (6.78)

by noting that

θ =
k∑

h=1

k∑
j=1

dhj �hj , (6.79)

where

dhj = ah

k
, h = 1, . . . , k; j = 1, . . . , k . (6.80)

For a given setting, decisions about which contrasts to estimate can be related either to
a priori interest in particular linear combinations of the τ ’s or the results of one of the
multiple comparison procedures discussed in Sections 6.5–6.7.
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Procedure

For each pair of treatments (h , j ), h �= j = 1, . . . , k , define the pairwise estimators

Zhj = median {Xαh − Xβj , α = 1, . . . , nh;β = 1, . . . , nj }. (6.81)

As Zhj = −Zjh , we need to calculate only the k(k − 1)/2 estimators Zhj corresponding
to h < j . We refer to Zhj as the raw or unadjusted estimator of the simple contrast
�hj = τh − τj . (Note that Zhj is exactly the Hodges–Lehmann two-sample estimator
defined in Section 4.2, as applied to the hth sample (playing the role of the Y ’s) and the
j th sample (playing the role of the X ’s). For example, Z13 is simply the median of the
n1n3 differences Xα1 − Xβ3 obtained from the treatments 1 and 3 observations.) Next, we
obtain the set �1, . . . , �k of individual weighted average of these unadjusted estimators
Zhj corresponding to

�h =
k∑

j=1

(nj

N

)
Zhj , h = 1, . . . , k , (6.82)

where we note that Zhh = 0 for h = 1, . . . , k .
The weighted-adjusted estimator of the contrast θ (6.77) is given by

θ̂ =
k∑

i=1

ai �i , (6.83)

or, equivalently,

θ̂ =
k∑

h=1

k∑
j=1

dhj (�h − �j ) =
k∑

h=1

k∑
j=1

dhj Whj , (6.84)

where
Whj = �h − �j = �̂hj (6.85)

is the weighted-adjusted estimator of the simple contrast �hj = τh − τj . We note that in
the special case n1 = n2 = · · · = nk , �h (6.82) reduces to

Zh. =
∑k

j=1 Zhj

k
, h = 1, . . . , k , (6.86)

and Whj = �h − �j (6.85) can be simplified to

Whj = Zh. − Zj ., h �= j = 1, . . . , k . (6.87)

EXAMPLE 6.9 Motivational Effect of Knowledge of
Performance—Examples 6.2 and 6.8 Continued.

Consider the Hundal knowledge of performance data originally presented in Example 6.2.
In the application of the Nemenyi–Damico–Wolfe one-sided treatments-versus-control
multiple comparison procedure (Example 6.8) to these data, we concluded that the group
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receiving accurate information about their output produced significantly more (experi-
mentwise error rate .0554) pieces than the group that received no information. Thus, it is
of interest to use the knowledge of performance data in Table 6.6 to estimate the simple
contrast θ = τaccurate information − τno information = τ3 − τ1, thereby providing an idea of the
increased output that might be expected for this task by providing accurate information
to the workers.

From Table 6.6 and (6.81), the three pairwise estimators are

Z12 = median{2, 0, −7, −4, 0, −2, −3, −5, −12, −9, −5, −7, 0, −2, −9,

−6, −2, −4, 5, 3, −4, −1, 3, 1, 6, 4, −3, 0, 4, 2, 3, 1, −6, −3, 1, −1}
= −1.5,

Z13 = median{−8, 0, −5, −3, −6, −4, −13, −5, −10, −8, −11, −9, −10, −2, −7,

−5, −8, −6, −5, 3, −2, 0, −3, −1, −4, 4, −1, 1, −2, 0, −7, 1, −4, −2, −5, −3}
= −4,

and

Z23 = median{−10, −2, −7, −5, −8, −6, −8, 0, −5, −3, −6, −4, −1, 7, 2,

4, 1, 3, −4, 4, −1, 1, −2, 0, −8, 0, −5, −3, −6, −4, −6, 2, −3, −1, −4, −2}
= −3.

From expression (6.82), or equivalently (as n1 = n2 = n3 = 6) from (6.86), we have

�1 = Z11 + Z12 + Z13

3
= 0 − 1.5 − 4

3
= −11

6
,

�2 = Z21 + Z22 + Z23

3
= 1.5 + 0 − 3

3
= −.5,

and

�3 = Z31 + Z32 + Z33

3
= 4 + 3 + 0

3
= 7

3
.

(Note that in calculating �2 and �3, we have used the fact that Z21 = −Z12, Z31 = −Z13,
and Z32 = −Z23.) The weighted-adjusted estimator of θ = τ3 − τ1 is now obtained from
(6.83) with a1 = −1, a2 = 0, and a3 = 1. We find

θ̂ = W31 = �3 − �1 = 7
3 − (− 11

6

) = 25
6 = 4.17 pieces.

(We note that the values of the raw estimator Z31 and the classical estimator X 3 − X 1

are 4.00 and 4.17, respectively, for these data.)
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Comments

73. Ambiguities with the Unadjusted Estimators. The unadjusted estimators Zhj

(6.81) lead to ambiguities in contrast estimation because they do not satisfy
the linear relations that are satisfied by the contrasts they estimate. For
example, �13 = τ1 − τ3 = (τ1 − τ2) + (τ2 − τ3) = �12 + �23, but in general
Z13 �= Z12 + Z23. Thus, the two “reasonable” estimators Z13 and Z12 + Z23 of
�13 = τ1 − τ3 can give different estimates. This was pointed out by Lehmann
(1963a), who called the unadjusted estimators incompatible.

74. Compatible, but Inconsistent Estimators. Lehmann (1963a) removed the incom-
patibility difficulty discussed in Comment 73 by using the estimators Whj =
Zh. − Zj . (6.87). These estimators are obtained by minimizing the sum of squares∑∑

h �=j [Zhj − (τh − τj )]2. Although these estimators are compatible, Lehmann
also pointed out that two additional difficulties now arise. First, the estimator
Zh. − Zj . of �hj = τh − τj depends, in addition to the observations from samples
h and j , on the observations from the other k − 2 samples. Furthermore, in the
case of k = 3, for example, the estimator Z1. − Z2. (of τ1 − τ2) is not consistent
when n1 and n2 tend to infinity unless n3 also tends to infinity.

75. Consistency. Spjøtvoll (1968) removed the nonconsistency difficulty by obtain-
ing the weighted-adjusted estimators Whj = �h − �j (6.85). These estimators
minimize the sum of squares N −2∑∑

h �=j nhnj [Zhj − (τh − τj )]2. Spjøtvoll’s
estimators do, however, retain the disadvantage that the estimator of τh − τj

depends on unrelated observations from the other samples.

76. Competitor Contrast Estimator. Spjøtvoll (1968) also proposed weighted-
adjusted estimators that minimize

∑∑
h �=j

(
N

nh
+ N

nj

)−1

[Zhj − (τh − τj )]
2, (6.88)

using the asymptotic variances of the Zhj ’s as weights in the sum of squares.
These estimators are more difficult to compute than the estimators Whj (6.85).
Furthermore, Spjøtvoll showed that the weighted-adjusted estimators Whj (6.85)
and those obtained by minimizing (6.88) have the same asymptotic properties
when nj tends to infinity in such a way that (nj /N ) tends to λj with 0 < λj < 1,
for j = 1, . . . , k .

77. Equivalence with Equal Sample Sizes. Spjøtvoll pointed out that the estimator
of �hj obtained by minimizing (6.88) and the estimator Whj (6.85) both reduce
to Lehmann’s estimator Zh. − Zj . (6.88) when n1 = n2 = · · · = nk .

Properties

1. Standard Deviation of θ̂ (6.83). For the asymptotic standard deviation of θ̂ (6.83),
see Spjøtvoll (1968).

2. Asymptotic Normality. See Spjøtvoll (1968) and Lehmann (1963a).

3. Efficiency. See Spjøtvoll (1968), Lehmann (1963a), and Section 6.10.
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Problems

72. Estimate the simple contrast θ = τ4 − τ1 for the psychotherapeutic attraction data in Table 6.2.

73. Estimate the simple contrasts θ1 = τ2 − τ1, θ2 = τ4 − τ1, and θ3 = τ5 − τ1 for the glucocorti-
coid receptor sites data in Table 6.4.

74. Estimate all possible simple contrasts for the mean interstitial lengths data in Table 6.5.

75. Estimate the simple contrasts τ2 − τ1, τ4 − τ1, and τ5 − τ1 for the BAI data in Table 6.7.

76. Take k = 4 and construct a data example where Z13 + Z24 �= Z14 + Z23. (Note that �13 +
�24 = �14 + �23. See also Comment 73.)

77. As suggested by the application of the Dwass–Steel–Critchlow–Fligner multiple compari-
son procedure (in Example 6.6), estimate the contrast θ = [ 1

2 (τ1 + τ2) − 1
2 (τ3 + τ4)] for the

gizzard shad data in Table 6.3.

78. Estimate the contrast θ = [ 1
3 (τ2 + τ3 + τ4) − 1

3 (τ1 + τ5 + τ6)] for the revertant colonies data
in Table 6.10.

79. Estimate the simple contrasts τ2 − τ1 and τ3 − τ1 for the plasma glucose data in Table 6.9.

80. Estimate all contrasts found to be of interest in Problem 59 for the psychotherapeutic attraction
data in Table 6.2.

6.9 SIMULTANEOUS CONFIDENCE INTERVALS FOR ALL
SIMPLE CONTRASTS (CRITCHLOW–FLIGNER)

A contrast θ (6.77) is said to be a simple contrast if it involves only two treatment effects
(i.e., all but two of the ai coefficients are zero). In this section, we present a method for
obtaining simultaneous confidence intervals for the entire collection, C , of all

(k
2

)
simple

contrasts given by

C = {�uv : �uv = τv − τu , 1 ≤ u < v ≤ k}. (6.89)

Procedure

For each pair of treatments (u , v), u �= v = 1, . . . , k , define the sample differences

Duv
ij = Xjv − Xiu , i = 1, . . . , n∗

u ; j = 1, . . . , nv. (6.90)

Let Duv
(1) ≤ Duv

(2) ≤ · · · ≤ Duv
(nu nv) denote the ordered values of the nunv Duv

ij differences, for
u �= v = 1, . . . , k . Let w∗

α be the upper αth percentile for the distribution of maximum
{|W ∗

uv|, u �= v = 1, . . . , k} under H0 (6.2), where W ∗
uv is the standardized two-sample

rank sum statistic (multiplied by
√

2) for the uth and vth samples, as defined previously
in (6.61) for the two-sided all-treatments multiple comparisons setting. Comment 55
explains how to obtain the critical values w∗

α for k treatments, sample sizes n1, . . . , nk ,
and available experimentwise error rates α.

For 1 ≤ u < v ≤ k , set

auv = nunv

2
− w∗

α

[
nunv(nu + nv + 1)

24

]1/2

+ 1 (6.91)
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and
buv = auv − 1. (6.92)

The simultaneous 100(1 − α)% confidence intervals for the collection C (6.89) of all
simple contrasts are then

{[Duv
(〈auv〉), Duv

(nu nv−〈buv〉)), 1 ≤ u < v ≤ k}, (6.93)

where 〈t〉 denotes the greatest integer less than or equal to t . This set of intervals satisfies
the condition

Pτ1,...,τk (D
uv
(〈auv〉) ≤ τv − τu < Duv

(nu nv−〈buv〉), for 1 ≤ u < v ≤ k)

= 1 − α, for all − ∞ < τi < ∞, i = 1, . . . , k . (6.94)

(For simultaneous lower confidence bounds for the collection C that are appropriate
under the ordered alternatives setting of Section 6.2, see Comment 79.)

Large-Sample Approximation

When H0 is true, the [k(k − 1)/2]-component vector (W ∗
12, W ∗

13, . . . , W ∗
k−1,k ) has, as min

(n1, . . . , nk ) tends to infinity, an asymptotic multivariate normal distribution with mean
vector 0. It then follows (see Comment 58) that w∗

α can be approximated for large sample
sizes by qα , where qα is the upper αth percentile point for the distribution of the range
of k independent N (0, 1) variables. Thus, the large-sample approximate simultaneous
100(1 − α)% confidence intervals for C (6.89) are given by (6.93) with w∗

α replaced by
qα in the expressions for auv (6.91) and buv (6.92). To find qα for k treatments, we use
the R command cRangekNorm(α, k). For example, to find q.05 for k = 6 treatments,
we apply cRangekNorm(.05, 6) and obtain q.05 = 4.30.

EXAMPLE 6.10 Motivational Effect of Knowledge of Performance—Examples
6.2, 6.8, and 6.9 Continued.

Consider the Hundal knowledge of performance data originally presented in Example 6.2.
In this example, we wish to find simultaneous 100(1 − α)% confidence intervals for the
3(2)/2 = 3 simple contrasts

C = {τ2 − τ1, τ3 − τ1, τ3 − τ2}.

For the sake of illustration, we take α = .1041. Using the R program cSDCFlig(α, n)
with k = 3 and n1 = n2 = n3 = 6, we have w∗

.1041 = cSDCFlig(.1041,c(6, 6, 6)) =
2.9439. It follows from expressions (6.91) and (6.92) that

a12 = a13 = a23 = 6(6)

2
− 2.944

[
6(6)(6 + 6 + 1)

24

]1/2

+ 1 ≈ 6.00
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and
b12 = b13 = b23 = 6.00 − 1 = 5.00.

Thus, the simultaneous 89.51% confidence intervals for the simple contrasts
�12 = τ2 − τ1, �13 = τ3 − τ1, and �23 = τ3 − τ2 correspond to [D12

(〈6〉), D12
(36−〈5〉)) =

[D12
(6), D12

(31)), [D13
(6), D13

(31)), and [D23
(6), D23

(31)), respectively. Using the individual differ-
ences already computed in Example 6.9 to obtain a point estimate of the contrast
τ3 − τ1 = τaccurate information − τno information, we see that the three sets of nunv = 36
ordered Duv

(t) ’s are given by

D12
(t) : {−6, −5, −4, −4, −3, −3, −3, −2, −2, −1, −1, −1, 0, 0, 0, 0, 1, 1,

2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 9, 9, 12},

D13
(t) : {−4, −3, −1, −1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4,

4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 13},

and

D23
(t) : {−7, −4, −4, −3, −2, −2, −1, −1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3,

3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 8, 8, 8, 10}.

Hence, the simultaneous 89.51% confidence intervals for the simple contrasts �12 =
τ2 − τ1, �13 = τ3 − τ1, and �23 = τ3 − τ2 for the Hundal data are

[D12
(6), D12

(31)) = [−3, 6),

[D13
(6), D13

(31)) = [0, 8),

and
[D23

(6), D23
(31)) = [−2, 6),

respectively.
For the sake of illustration for the associated large-sample approximation, we take

an approximate α value of .10. With k = 3, we find q.10 =cRangeKNorm(.10, 3) =
2.902. The associated approximate values for the auv’s and buv’s are

a12 = a13 = a23 ≈ 6(6)

2
− 2.902

[
6(6)(6 + 6 + 1)

24

]1/2

+ 1 = 6.19

and
b12 = b13 = b23 ≈ 6.19 − 1 = 5.19.

As 〈6.19〉 = 6 and 〈5.19〉 = 5, we see that the approximate 90% simultaneous confidence
intervals for the simple contrasts τ2 − τ1, τ3 − τ1, and τ3 − τ2 are identical with the exact
89.51% simultaneous confidence intervals for these Hundal data. This provides some
indication that the common sample size of six observations is already large enough to
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enable the large-sample approximation to be effective for these simultaneous confidence
intervals.

Comments

78. Relationship of Simultaneous Confidence Intervals to Two-Sided All-Treatments
Multiple Comparisons. The simultaneous 100(1 − α)% confidence intervals
(6.93) for the collection C (6.89) of all simple contrasts are directly related
to the Dwass–Steel–Critchlow–Fligner two-sided all-treatments multiple
comparison procedure (6.62) discussed in Section 6.5. In fact, for every (u , v)

pair, 1 ≤ u < v ≤ k , the two-sided multiple comparison procedure (6.62)
yields the decision τu �= τv at an experimentwise error rate α if and only if 0
does not belong to the corresponding simultaneous 100(1 − α)% confidence
interval [Duv

(〈auv〉), Duv
(nu nv−〈buv〉)) for τv − τu . Thus, each of the 2(k

2) sets of
possible multiple comparison decisions associated with procedure (6.62) at
an experimentwise error rate α corresponds to a collection of simultaneous
100(1 − α)% confidence intervals (6.93) for C (6.89) for which the particular
(u , v) intervals not containing the value 0 match exactly with those treatment
pairs for which procedure (6.62) leads to the decision τu �= τv .

79. Simultaneous 100(1 − α)% Lower Confidence Bounds. In situations where an
order restriction τ1 ≤ τ2 ≤ · · · ≤ τk on the treatment effects is appropriate (see
Sections 6.2 and 6.6 for further details), it is more natural to seek out simulta-
neous 100(1 − α)% lower confidence bounds (rather than two-sided intervals)
for the collection C (6.89) of simple contrasts. In such a setting, let c∗

α be the
critical value for the Hayter–Stone one-sided all-treatments multiple comparison
procedure (6.68) and set

huv = nunv

2
− c∗

α

[
nunv(nu + nv + 1)

24

]1/2

+ 1. (6.95)

The simultaneous 100(1 − α)% lower confidence bounds for the collection C
(6.89) suggested by Hayter and Stone (1991) are then given by{

[Duv
(〈huv〉), ∞), 1 ≤ u < v ≤ k

}
, (6.96)

where, once again, 〈t〉 denotes the greatest integer less than or equal to t and the
ordered Duv

(t) ’s are as defined in the Procedure of this section. When either the
number of treatments exceeds 3 or k = 3 and one or more of the sample sizes is
larger than 7, Hayter and Stone (1991) suggest approximating c∗

α in expression
(6.95) by dα , the upper αth percentile point for the distribution of

D = maximum
1≤i<j≤k

⎡⎢⎢⎢⎣ Zj − Zi{
ni + nj

2ni nj

}1/2

⎤⎥⎥⎥⎦ ,

where Z1, . . . , Zk are mutually independent and Zi has an N (0, 1/ni ) distri-
bution, for i = 1, . . . , k . To find dα for k treatments, we use the R command
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cHayStonLSA(α, k). For example, to find d.05 for k = 6 treatments, we apply
cHayStonLSA(.05, 6) and obtain d.05 = 3.725.

The relationship between these simultaneous 100(1 − α)% lower confidence
bounds (6.96) for C (6.89) and the Hayter–Stone one-sided all-treatments mul-
tiple comparison procedure (6.68) at experimentwise error rate α is identical
to that described in Comment 78 for the simultaneous 100(1 − α)% confidence
intervals (6.93) for C (6.89) and the two-sided all-treatments multiple compari-
son procedure (6.62) at experimentwise error rate α.

80. Pairwise versus Joint Rankings. In the latter portion of Comment 59, we dis-
cussed some of the pros and cons of pairwise rankings versus joint rankings in
the one-way layout setting. The simultaneous 100(1 − α)% confidence intervals
(6.93) for the collection of all simple contrasts (and the analogous simultaneous
lower confidence bounds (6.96) discussed in Comment 79) are clearly associ-
ated with pairwise rankings. This provides an additional advantage to the use
of pairwise rankings, as the joint ranking approach discussed in Comment 59
does not lead directly to such simultaneous confidence intervals or bounds for
C (6.89).

Properties

1. Distribution-Freeness. For populations satisfying Assumptions A1–A3, (6.94)
holds. Hence, we can control the simultaneous coverage probability to be 1 − α

without having more specific knowledge about the form of the underlying F .
As a result, the intervals in (6.93) are distribution-free simultaneous confidence
intervals for the collection C (6.89) of all simple contrasts over a very large class
of populations.

2. Asymptotic Multivariate Normality. See Hayter (1984) and Critchlow and Fligner
(1991).

Problems

81. Consider the length of YOY gizzard shad data discussed in Problem 4. Find a set of approxi-
mate simultaneous 95% confidence intervals for the set of all simple contrasts.

82. Consider the Hundal knowledge of performance data originally discussed in Example 6.2.
Find a set of simultaneous 88.11% lower confidence bounds for the three simple contrasts
τ2 − τ1, τ3 − τ1, and τ3 − τ2 (see Comment 79). Compare with the set of 89.59% simultaneous
confidence intervals obtained in Example 6.10 for these same simple contrasts.

83. Consider the Acid Red 114 revertant colonies data in Table 6.10. Find a set of approximate
simultaneous 90% confidence intervals for the set of all simple contrasts.

84. Consider the tiger muskellunge plasma glucose data in Table 6.9. Find a set of approximate
simultaneous 95% confidence intervals for the set of all simple contrasts.

85. Consider the white-tailed deer fasting metabolic rate data in Table 6.8. Find a set of approxi-
mate simultaneous 80% confidence intervals for the set of all simple contrasts.

86. Consider the half-time of mucociliary clearance data in Table 6.1. Find a set of approximate
simultaneous 91.81% confidence intervals for the set of all simple contrasts. Without further
calculations, what decisions would be reached for these data by the multiple comparison
procedure (6.62) at experimentwise error rate α = .0819? (See Comment 78.)
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87. Consider the average basal area increment data in Table 6.7. Find a set of approximate simul-
taneous 90% confidence intervals for the set of all simple contrasts. Do you have any concerns
about the application of this procedure to these data?

88. Consider the Wechsler Adult Intelligence Scale data in Table 6.11. For the age groups 16–
19, 20–34, 35–54, and 55–69 years only, find a set of approximate simultaneous 90% lower
confidence bounds for the set of all simple contrasts for these four age groups. Without
further calculations, what decisions would be reached for these data by the multiple compar-
ison procedure (6.70) at approximate experimentwise error rate α = .10? (See Comments 78
and 79.)

6.10 EFFICIENCIES OF ONE-WAY LAYOUT
PROCEDURES

The Pitman asymptotic relative efficiencies for translation alternatives of most of the
nonparametric procedures discussed in this chapter with respect to the corresponding
normal theory procedures are given by the expression

eF = 12σ 2
F

⎧⎨⎩
∞∫

−∞
f 2(u)du

⎫⎬⎭
2

, (6.97)

where σ 2
F is the variance of the common underlying (continuous) distribution F (6.1) and

f (·) is the probability density function corresponding to F . The parameter
∫∞
−∞ f 2(u) du

is the area under the curve associated with f 2(·), the square of the common probability
density function. We note that this same expression (6.97) also yields the corresponding
Pitman efficiencies in the one-sample and two-sample location settings (see Sections 3.11
and 4.5).

In particular, the Pitman asymptotic relative efficiency of the Kruskal–Wallis test
based on H (6.5) with respect to the normal theory one-way layout F-test was found to
be eF (6.97) by Andrews (1954). The asymptotic relative efficiency of the Jonckheere–
Terpstra test for ordered alternatives based on the statistic J (6.13) with respect to
a suitable normal theory competitor was found by Puri (1965) to be eF (6.97) as
well. Mack and Wolfe (1981) found the same expression to hold for the asymptotic
relative efficiency of their peak-known umbrella test procedure based on Ap (6.31) rel-
ative to an analogous normal theory procedure based on sample averages. Fligner and
Wolfe (1982) found the same to be case for the treatments-versus-control test based on
FW (6.50).

Sherman (1965) obtained eF (6.97) as the asymptotic relative efficiency of the
two-sided all-treatments and the one-sided treatments-versus-control multiple comparison
procedures discussed in Sections 6.5 and 6.7 with respect to the corresponding classical
normal theory procedures based on sample means. Spjøtvoll (1968) showed that, when
nj /N tends to ρj , with 0 < ρj < 1, the estimators Whj (6.85) have the same asymp-
totic properties as the estimators [Zh. − Zj .] (see Comment 74). It then follows from
Lehmann’s (1963a) results that eF (6.97) is the asymptotic relative efficiency of the esti-
mator θ̂ (6.83) with respect to the least squares estimator θ =∑k

h=1

∑k
j=1 dhj (X .h − X .j ),

where

X .t =
nt∑

i=1

Xit

nt
, for t = 1, . . . , k .
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As noted in both Sections 3.11 and 4.5, the asymptotic relative efficiency eF (6.97)
is always greater than or equal to .864 and can be infinite. See expression (3.116) for
the value of eF (6.97) for a variety of underlying F populations.

We do not know of any results for the asymptotic relative efficiencies of the
Mack–Wolfe peak-unknown umbrella test (Section 6.3B), the Hayter–Stone one-sided
all-treatments multiple comparison procedure (Section 6.6), or the Critchlow–Fligner
procedure for simultaneous confidence intervals for all simple contrasts (Section 6.9).



Chapter 7

The Two-Way Layout

INTRODUCTION

The procedures of this chapter are designed for statistical analyses of data collected under
the auspices of an experimental design involving two factors, each at two or more levels.
Our primary interest is in the relative location effects (medians) of the different levels
of one of these factors, hereafter called the treatment factor, within the various levels of
the second factor, hereafter called the blocking factor. This blocking factor is associated
quite commonly with the experimental design where subjects are first divided into more
homogeneous subgroups (called blocks) and then randomly assigned to the various
treatment levels within these blocks. Such a design is called a randomized block design,
and we will use this treatment/block terminology to describe the two-way layout setting
throughout this chapter. In addition, we will refer, without loss of generality, to the k
levels of a treatment as the k treatments. (In the case of a randomized complete block
design, where the data consist of one observation on each of k treatments in each of n
blocks, this represents a direct generalization of the paired replicates setting discussed in
Chapter 3.)

The basic null hypothesis of interest is that of no differences in the location effects
(medians) of the k treatments within each of the blocks. The alternatives considered here
correspond to either general or ordered differences between the treatment effects (medi-
ans). As with the one-way layout setting in Chapter 6, we also differentiate between those
cases where all of the k treatments represent “new” categories for study and those where
one of the treatments corresponds to a control or a baseline category. Finally, we must
deal separately with a variety of different possibilities (and correspondingly different sta-
tistical procedures) for the number of observations available from each treatment–block
combination (cell), ranging from 0 (missing data), 1, to more than 1 (replications).

Sections 7.1–7.5 are devoted to the case of one observation per treatment–block
cell (commonly known as a randomized complete block design). Section 7.1 presents
a distribution-free test directed at general alternatives. A distribution-free test designed
specifically to detect ordered differences among the k treatments is discussed in
Section 7.2. Multiple comparison procedures designed to detect which, if any, treatment
effects differ from one another are presented in Section 7.3 (all-treatments comparisons)
and 7.4 (treatments-versus-control comparisons). In Section 7.5 we present estimators
of contrasts in the treatment effects.

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Sections 7.6–7.8 deal with settings where certain treatment–block cells yield single
observations, but there are also treatment–block combinations for which we have no
observations; that is, we have either zero or one observation from each treatment–block
cell. Sections 7.6 and 7.7 present a distribution-free hypothesis test for general alterna-
tives and an all-treatments multiple comparison procedure, respectively, for the structured
setting where the data arise from a balanced incomplete block design (BIBD). Section 7.8
discusses a distribution-free hypothesis test for general alternatives in a two-way layout
with an arbitrary configuration of either zero or one observation per cell.

In Sections 7.9 and 7.10 we discuss procedures for the setting where there is at
least one observation from each cell and there are some cells with multiple observations
(replications). Section 7.9 presents a distribution-free hypothesis test for general alterna-
tives for this replications setting, with an emphasis on the special case where we have an
equal number (>1) of replications in each cell. An all-treatments multiple comparison
procedure for this setting of an equal number of replications is detailed in Section 7.10.

All of the procedures in Sections 7.1–7.10 are associated with within-blocks rank-
ings (known as the Friedman ranks) and represent direct extensions to the two-way
layout of the paired replicates sign procedures discussed in Sections 3.4–3.6. The cor-
responding extensions to the two-way layout of the paired replicates Wilcoxon signed
ranks procedures discussed in Sections 3.1–3.3 yield asymptotically (number of blocks
tending to infinity) distribution-free test and multiple comparison procedures, and we
present simplified conservative versions that are nearly asymptotically distribution-free.
In Sections 7.11–7.15 we discuss these extensions associated with Wilcoxon signed ranks
for data from a randomized complete block design with k treatments and n blocks.
Section 7.11 contains a conservative signed ranks test directed at general alternatives,
and Section 7.12 presents the corresponding conservative signed ranks test procedure
designed for ordered alternatives. The associated approximate signed ranks multiple
comparison procedures are given in Sections 7.13 (all-treatments comparisons) and 7.14
(treatments-versus-control comparisons). Section 7.15 contains the contrast estimators
linked to the Wilcoxon signed ranks.

The asymptotic relative efficiencies for translation alternatives of the procedures with
respect to their normal theory counterparts are discussed in Section 7.16.

Treatments

Blocks 1 2 . . . k

1 X111 X121 . . . X1k1

...
... . . .

...

X11c11 X12c12 . . . X1kc1k

2 X211 X221 . . . X2k1

...
... . . .

...

X21c21 X22c22 . . . X2kc2k
...

...
...

...
...

n Xn11 Xn21 . . . Xnk1

...
... . . .

...

Xn1cn1 Xn2cn2 . . . Xnkcnk
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Data. The data consist of N =∑n
i=1

∑k
j=1 cij observations, with cij observations from

the combination of the i th block with the j th treatment (i.e., the (i , j )th cell), for i =
1, . . . , n and j = 1, . . . , k .

Assumptions

A1. The N random variables {(Xij 1, . . . , Xijcij ), i = 1, . . . , n and j = 1, . . . , k} are
mutually independent.

A2. For each fixed (i , j ), with i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, the cij random
variables (Xij 1, . . . , Xijcij ) are a random sample from a continuous distribution
with distribution function Fij .

A3. The distribution functions F11, . . . , F1k , . . . , Fn1, . . . , Fnk are connected through
the relationship

Fij (u) = F (u − βi − τj ), −∞ < u < ∞, (7.1)

for i = 1, . . . , n and j = 1, . . . , k , where F is a distribution function for a con-
tinuous distribution with unknown median θ , βi is the unknown additive effect
contributed by block i , and τj is the unknown additive treatment effect con-
tributed by the j th treatment.

We note that Assumptions A1–A3 correspond directly to the usual two-way layout
additive (See Comment 6) model associated with normal theory assumptions; that is,
Assumptions A1–A3 are equivalent to the representation

Xijt = θ + βi + τj + eijt , i = 1, . . . , n; j = 1, . . . , k; t = 1, . . . , cij ,

where θ is the overall median, τj is the treatment j effect, βi is the block i effect, and
the N e’s form a random sample from a continuous distribution with median 0. (Under
the additional assumption of normality, the medians θ and 0 are, of course, also the
respective means.)

Hypothesis

The null hypothesis of interest in Sections 7.1, 7.2, 7.6, 7.8, 7.9, 7.11, and 7.12 is that
of no differences among the additive treatment effects τ1, . . . , τk , namely,

H0 : [τ1 = · · · = τk ]. (7.2)

The null hypothesis asserts that the underlying distributions Fi1, . . . , Fik within block
i are the same, for each fixed i = 1, . . . , n; that is, Fi1 ≡ Fi2 ≡ · · · ≡ Fik ≡ Fi , for
i = 1, . . . , n , in (7.1).

In Sections 7.1–7.5 we consider the special case of one observation per treat-
ment–block combination (commonly known as a randomized complete block design),
corresponding to cij = 1 for every i = 1, . . . , n and j = 1, . . . , k . For ease of notation
in these five sections, we drop the third subscript on the X variables, since it is always
equal to 1 in this setting.
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7.1 A DISTRIBUTION-FREE TEST FOR GENERAL
ALTERNATIVES IN A RANDOMIZED COMPLETE BLOCK
DESIGN (FRIEDMAN, KENDALL-BABINGTON SMITH)

In this section we present a procedure for testing H0 (7.2) against the general alternative
that at least two of the treatment effects are not equal, namely,

H1 : [τ1, . . . , τk not all equal], (7.3)

when cij ≡ 1, for i = 1, . . . , n and j = 1, . . . , k .

Procedure

To compute the Friedman (1937) statistic S , we first order the k observations from least
to greatest separately within each of the n blocks. Let rij denote the rank of Xij in the
joint ranking of the observations Xi1, . . . , Xik in the i th block and set

Rj =
n∑

i=1

rij and R.j = Rj

n
. (7.4)

Thus, for example, R2 is the sum (over the n blocks) of the within-blocks ranks received
by the treatment 2 observations and R.2 is the average within-blocks rank for these same
observations. The Friedman statistic S is then given by

S = 12n

k(k + 1)

k∑
j=1

(
R.j − k + 1

2

)2

=
⎡⎣ 12

nk(k + 1)

k∑
j=1

R2
j

⎤⎦− 3n(k + 1), (7.5)

where (k + 1)/2 =∑n
i=1

∑k
j=1 rij /nk is the average rank assigned via this within-blocks

ranking scheme.
To test

H0 = [τ1 = · · · = τk ]

versus the general alternative

H1 : [τ1, . . . , τk not all equal],

at the α level of significance,

Reject H0 if S ≥ sα; otherwise do not reject, (7.6)

where the constant sα is chosen to make the type I error probability equal to α. The
constant sα is the upper α percentile for the null (τ1 = · · · = τk ) distribution of S .
Comment 8 explains how to obtain the critical values sα for k treatments, n blocks, and
available levels of α.
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Large-Sample Approximation

When H0 is true, the statistic S has, as n tends to infinity, an asymptotic chi-square
(χ2) distribution with k − 1 degrees of freedom. (See Comment l0 for indications of the
proof.) The chi-square approximation for procedure (7.6) is

Reject H0 if S ≥ χ2
k−1,α; otherwise do not reject, (7.7)

where χ2
k−1,α is the upper α percentile point of a chi-square distribution with k − 1

degrees of freedom. To find χ2
k−1,α we use the R command qchisq(1 − α, k − 1). For

example, to find χ2
5,.05, we apply qchisq(.95, 5) and obtain χ2

5,.05 = 11.071.

Ties

If there are ties among the k observations in a given block, assign each of the observations
in a tied group the average of the within-blocks integer ranks that are associated with
the tied group and compute S with these within-blocks average ranks. As a consequence
of the effect that ties have on the null distribution of S , the following modification is
required to apply either procedure (7.6) or the large-sample approximation in (7.7) when
there are tied data values within any of the blocks. For either of these procedures, we
replace S by

S ′ =
12
∑k

j=1

(
Rj − n(k + 1)

2

)2

nk(k + 1) − [1/(k − 1)]
∑n

i=1

{(∑gi
j=1 t3

i ,j

)
− k
}

= 12
∑k

j=1 R2
j − 3n2k(k + 1)2

nk(k + 1) − [1/(k − 1)]
∑n

i=1

{(∑gi
j=1 t3

i ,j

)
− k
} , (7.8)

where gi denotes the number of tied groups in the i th block and ti ,j is the size of the
j th tied group in the i th block. We note that an untied observation within a block is
considered to be a tied group of size 1. In particular, if there are no ties among the X ’s
in the i th block, then gi = k , ti ,j = 1 for each j = 1, . . . , k , and the correction term for
the i th block becomes {(∑gi

j=1 t3
i ,j ) − k} = k − k = 0. If each block is void of ties, then

we have
∑n

i=1{(
∑gi

j=1 t3
i ,j ) − k} = 0 and S ′ (7.8) reduces to S , as given in (7.5).

We note that even the small-sample procedure (7.6) is only approximately, and not
exactly, of significance level α in the presence of tied X observations within any of the
blocks. To get an exact level α-test in this tied setting, see Comment 9.

EXAMPLE 7.1 Rounding First Base.

The data in Table 7.1 were obtained by Woodward (1970) in a study to determine which,
if any, of three methods of rounding first base is best, in the sense that it minimizes,
on the average, the time to reach second base. The three methods, “round out,” “narrow
angle,” and “wide angle” are illustrated in Figure 7.1.
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Table 7.1 Rounding-First-Base Times

Methods

Players Round out Narrow angle Wide Angle

1 5.40 (1) 5.50 (2) 5.55 (3)
2 5.85 (3) 5.70 (1) 5.75 (2)
3 5.20 (1) 5.60 (3) 5.50 (2)
4 5.55 (3) 5.50 (2) 5.40 (1)
5 5.90 (3) 5.85 (2) 5.70 (1)
6 5.45 (1) 5.55 (2) 5.60 (3)
7 5.40 (2.5) 5.40 (2.5) 5.35 (1)
8 5.45 (2) 5.50 (3) 5.35 (1)
9 5.25 (3) 5.15 (2) 5.00 (1)

10 5.85 (3) 5.80 (2) 5.70 (1)
11 5.25 (3) 5.20 (2) 5.10 (1)
12 5.65 (3) 5.55 (2) 5.45 (1)
13 5.60 (3) 5.35 (1) 5.45 (2)
14 5.05 (3) 5.00 (2) 4.95 (1)
15 5.50 (2.5) 5.50 (2.5) 5.40 (1)
16 5.45 (1) 5.55 (3) 5.50 (2)
17 5.55 (2.5) 5.55 (2.5) 5.35 (1)
18 5.45 (1) 5.50 (2) 5.55 (3)
19 5.50 (3) 5.45 (2) 5.25 (1)
20 5.65 (3) 5.60 (2) 5.40 (1)
21 5.70 (3) 5.65 (2) 5.55 (1)
22 6.30 (2.5) 6.30 (2.5) 6.25 (1)

R1 = 53 R2 = 47 R3 = 32

Source: W. F. Woodward (1970).

Second base

Third base First base

Home plate

Figure 7.1 Three methods of rounding first base: ♦ path = round out method, ∗ path = narrow angle method,
solid path = wide angle method.
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Twenty-two baseball players participated in the study, and each of them ran from
home plate to second base six times. Using a randomized order, these six trials per player
were evenly divided (two each) among the three methods (round out, narrow angle, and
wide angle). The entries in Table 7.1 are average times of the two runs per method from
a point on the first base line 35 ft from home plate to a point 15 ft short of second base.
The within-blocks (players) ranks (rij ’s) of the observations are also given in Table 7.1 in
parentheses after the data values (using average ranks to break the ties) and the treatment
(running method) rank sums (R1, R2, and R3) are provided at the bottom of the columns.

Since ties exist in blocks 7, 15, 17, and 22, we use S ′ (7.8). The term in braces in the
denominator of (7.8) is zero for each block i in which there are no tied observations. Thus,
we need to evaluate that term only for i = 7, 15, 17, and 22, corresponding to the blocks
in which ties exist. In block 7 there is one tied group of size 2 (5.40) and one tied group of
size 1 (5.35). Thus, t7,1 = 2, t7,2 = 1, g7 = 2, and {(∑g7

j=1 t3
7,j ) − k} = {(23 + 13) − 3} =

6. In the same way {(∑gi
j=1 t3

i ,j ) − k} = 6 for i = 15, 17, and 22. Hence, from (7.8) we
obtain

S ′ = 12[(53 − 44)2 + (47 − 44)2 + (32 − 44)2]

22(3)(4) − ( 1
2

)
(6 + 6 + 6 + 6)

= 11.1.

For the large-sample approximation, we compare the value of S ′ to the chi-square dis-
tribution with k − 1 = 2 degrees of freedom. Since 1 - pchisq (11.1, 2) = 1

-.9961 = .0039, we see that the lowest level at which we reject H0, using the large-
sample procedure (7.7) adjusted for ties, is approximately .004. Hence, there is strong
evidence here to reject the hypothesis that the methods are equivalent with respect to
time to reach second base.

Comments

1. Basic Model. Model (7.1) is the most basic form of the two-way layout There is
just one observation per cell, and we assume that there is no interaction between
the block and treatment factors.

2. More General Setting. We could replace Assumptions A1–A3 and H0 (7.2) with
the more general null hypothesis that all possible (k !)n rank configurations for
the rij ’s are equally likely. Procedure (7.6) remains distribution-free for this more
general hypothesis.

3. Design Rationale. The n blocks in this basic two-way layout design represent
an effort to reduce experimental errors and prevent misleading comparisons of
“apples and oranges.” (We prefer to compare apples with apples.) Thus, in
Example 7.1, the 22 blocks correspond to 22 different baseball players. The treat-
ments are to be assigned at random within each block (i.e., in each block, the
order in which each player is assigned to run the three different rounding-first-
base methods should be decided by a random mechanism, where each of the six
possible orders has equal probability of being chosen, and the assignments in
the different blocks are to be independent). Note that in the Procedure, we rank
only within each block. Thus, in block 1, for example, the three treatment times
of player 1 are compared. This is an attempt to eliminate a nuisance effect due
to player 1’s intrinsic speed. It would be foolish to compare round out times of
player 1 with wide angle times of player 2 if player 1 is a (slow) 200-1b catcher
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and player 2 is a (speedy) 160-1b shortstop. In such a comparison, a difference
in treatment effects would be confounded with the basic speed differences of the
players, the latter being of little or no interest in this particular experiment.

4. Motivation for the Test. Under Assumptions A1–A3 and H0 (7.2), each of the
block rank vectors R∗

i = (ri1, . . . , rik ), i = 1, . . . , n , has a uniform distribution
over the set of all k ! permutations of the vector of integers (1, 2, . . . , k ). It follows
that

E0(rij ) = 1

k !
(k − 1)!

k∑
t=1

t = k + 1

2
,

the average rank being assigned separately in each of the blocks. Thus, we have

E0(R.j ) = E0

(
1

n
Rj

)
= 1

n
E0

(
n∑

i=1

rij

)
= 1

n

n∑
i=1

E0(rij )

= n(k + 1)

2n
= k + 1

2
, for j = 1, . . . , k ,

and we would expect the R.j ’s to be close to (k + 1)/2 when H0 is true. Since
the test statistic S (7.5) is a constant times a sum of squared differences between
the observed treatment average ranks, R.j and their common null expected value,
E0(R.j ) = (k + 1)/2, small values of S represent agreement with H0 (7.2). When
the τ ’s are not all equal, we would expect a portion of the associated treatment
average ranks to differ from their common null expectation, (k + 1)/2, with some
tending to be smaller and some larger. The net result (after squaring the observed
differences to obtain the

[
R.j − (k + 1)/2

]2
terms) would be a large value of S .

This naturally suggests rejecting H0 in favor of H1 (7.3) for large values of S
and motivates procedures (7.6) and (7.7). (See also Comment 5.)

5. Connection to Normal Theory Test. The Friedman S statistic also arises naturally
if we apply the usual two-way layout F statistic to the ranks instead of the actual
observations. Then S may be written as S = [12/k(k + 1)] SST, where SST is
the treatment sum of squares applied to the ranks.

6. Assumptions. We emphasize that Assumption A3 stipulates that the nk cell dis-
tributions Fij , i = 1, . . . , n and j = 1, . . . , k , can differ at most in their locations
(medians) and that these location differences (if any) must be a result of additive
block and/or treatment effects (i.e., there is no interaction between the treatment
and block factors). In particular, Assumption A3 requires that the nk underlying
distributions belong to the same general family (F ) and that they do not dif-
fer in scale parameters (variability). We do note, that the test procedure (7.6)
remains distribution-free under the less restrictive setting where Assumption A3
is replaced by the weaker condition

A3′. The distribution functions F11, . . . , F1k , . . . , Fn1, . . . , Fnk are connected
through the relationship

Fij (u) = Fi (u − τj ), −∞ < u < ∞,

for i = 1, . . . , n and j = 1, . . . , k , where F1, . . . , Fn are arbitrary distribution
functions for continuous distributions with unknown medians θ1, . . . , θn ,
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respectively, and, as before, τj is the unknown additive treatment effect
contributed by the j th treatment.

Assumption A3 then corresponds to Assumption A3′ with the additional condition
that F1 ≡ · · · ≡ Fn . (See also Comment 2.)

7. Special Case of Two Treatments. For the case of k = 2 treatments, the procedures
in (7.6) and (7.7) are equivalent to the exact and large-sample approximation
forms, respectively, of the two-sided sign test, as discussed in Section 3.4.

8. Derivation of the Distribution of S under H0 (No-Ties Case). The null distribution
of S (7.5) can be obtained by using the fact that under H0 (7.2), all possible (k !)n

rank configurations for the rij ’s are equally likely. We now take k = 4, n = 2 to
illustrate how the null distribution can be derived. In this case, S (7.5) reduces
to S = (.3R∗ − 30), where R∗ = R2

1 + R2
2 + R2

3 + R2
4 . We note that S does not

vary with changes of the names of the blocks or with relabeling of the k samples.
Thus, for example,

(a) I II III IV (b) I II III IV

Block 1 1 2 3 4 Block 1 3 1 2 4
Block 2 3 1 2 4 Block 2 1 2 3 4

yield the same value of S , because (b) is obtained from (a) by reversing the roles
of blocks 1 and 2. Similarly,

(c) I II III IV (d) I II III IV

Block 1 1 2 3 4 Block 1 2 1 3 4
Block 2 3 1 2 4 Block 2 1 3 2 4

yield the same value of S , since (d) is obtained from (c) by reversing the roles
of samples I and II. Instead of (4!)2 rank configurations, therefore, we list only
4! = 24 configurations (the 24 different configurations in block 2 corresponding to
a fixed configuration 1, 2, 3, 4 in block 1) and their associated values of R∗ and S .

(a) I II III IV (b) I II III IV (c) I II III IV

1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 4 3 1 3 4 2

R∗ = 120, S = 6 R∗ = 118, S = 5.4 R∗ = 114, S = 4.2

(d) I II III IV (e) I II III IV (f) I II III IV

1 2 3 4 1 2 3 4 1 2 3 4
1 3 2 4 1 4 2 3 1 4 3 2

R∗ = 118, S = 5.4 R∗ = 114, S = 4.2 R∗ = 112, S = 3.6

(g) I II III IV (h) I II III IV (i) I II III IV

1 2 3 4 1 2 3 4 1 2 3 4
2 1 3 4 2 1 4 3 2 3 4 1

R∗ = 118, S = 5.4 R∗ = 116, S = 4.8 R∗ = 108, S = 2.4
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(j) I II III IV (k) I II III IV (l) I II III IV

1 2 3 4 1 2 3 4 1 2 3 4
2 3 1 4 2 4 1 3 2 4 3 1

R∗ = 114, S = 4.2 R∗ = 110, S = 3 R∗ = 106, S = 1.8

(m) I II III IV (n) I II III IV (o) I II III IV

1 2 3 4 1 2 3 4 1 2 3 4
3 1 2 4 3 1 4 2 3 2 4 1

R∗ = 114, S = 4.2 R∗ = 110, S = 3 R∗ = 106, S = 1.8

(p) I II III IV (q) I II III IV (r) I II III IV

1 2 3 4 1 2 3 4 1 2 3 4
3 2 1 4 3 4 1 2 3 4 2 1

R∗ = 112, S = 3.6 R∗ = 104, S = 1.2 R∗ = 102, S = .6

(s) I II III IV (t) I II III IV (u) I II III IV

1 2 3 4 1 2 3 4 1 2 3 4
4 1 2 3 4 1 3 2 4 2 1 3

R∗ = 108, S = 2.4 R∗ = 106, S = 1.8 R∗ = 106, S = 1.8

(v) I II III IV (w) I II III IV (x) I II III IV

1 2 3 4 1 2 3 4 1 2 3 4
4 2 3 1 4 3 1 2 4 3 2 1

R∗ = 102, S = .6 R∗ = 102, S = .6 R∗ = 100, S = 0

Thus, we find

P0{S = 6} = 1
24 , P0{S = 5.4} = 3

24 , P0{S = 4.8} = 1
24 ,

P0{S = 4.2} = 4
24 , P0{S = 3.6} = 2

24 , P0{S = 3} = 2
24 ,

P0{S = 2.4} = 2
24 , P0{S = 1.84} = 4

24 , P0{S = 1.2} = 1
24 ,

P0{S = .6} = 3
24 , P0{S = 0} = 1

24 .

The probability, under H0, that S is greater than or equal to 5.4, for example,
is therefore

P0{S ≥ 5.4} = P0{S = 5.4} + P0{S = 6}
= 3

24 + 1
24 = 1

6 .

Note that we have derived the null distribution of S without specifying the
common form (F ) of the underlying distribution function for the X ’s under H0
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beyond the point of requiring that it be continuous. This is why the test procedure
(7.6) based on S is called a distribution-free Procedure. From the null distribution
of S , we can determine the critical value sα and control the probability α of
falsely rejecting H0 when H0 is true, and this error probability does not depend
on the specific form of the common underlying continuous X distribution.

For a given number of treatments k and blocks n , the R command
cFrd(α,k,n) can be used to find the available upper-tail critical values sα for
possible values of S . For a given available significance level α, the critical value
sα then corresponds to P0(S ≥ sα) = α and is given by cFrd(α, k, n) = sα .
Thus, for example, for k = 5 and n = 7, we have P0(S ≥ 10.40) = .0261, so
that s.0261 = cFrd(.0261, 5, 7) = 10.40 for k = 5 and n = 7.

9. Exact Conditional Distribution of S with Ties among the X Values. To have a test
with exact significance level even in the presence of tied X ’s, we need to consider
all (k !)n block rank configurations, where now these within-blocks ranks are
obtained by using average ranks to break the ties. As in Comment 8, it still follows
that under H0 each of the (k !)n block rank configurations (now with these tied
ranks) is equally likely. For each such configuration, the value of S is computed
and the results are tabulated. We illustrate this construction only for the very
limited case of k = 3, n = 2, and the tied data X11 = 2.4, X12 = 3.0, X13 = 3.0,
X21 = 4.0, X22 = 6.0, and X23 = 3.0. Using average ranks to break within-blocks
ties, the observed rank vector is (r11, r12, r13, r21, r22, r23) = (1, 2.5, 2.5, 2, 3, 1).
Thus, R1 = 3, R2 = 5.5, R3 = 3.5, and the attained value of S is

S =
[

12

2(3)(4)
{(3)2 + (5.5)2 + (3.5)2} − 3(2)(4)

]
= 1.75.

To assess the significance of S , we obtain its conditional null distribution by
considering the 36 equally likely (under H0) possible rank configurations (i.e.,
permutation combinations) of the observed rank vector (1, 2.5, 2.5, 2, 3, 1).
These 36 configurations and associated values of S are as follows:

I II III I II III

1 2.5 2.5 1 2.5 2.5
2 3 1 S = 1.75 2 3 1 S = 1.75
2.5 1 2.5 2.5 1 2.5
2 3 1 S = 0.25 2 3 1 S = 0.25
2.5 2.5 1 2.5 2.5 1
2 3 1 S = 3.25 2 3 1 S = 3.25
1 2.5 2.5 1 2.5 2.5
2 1 3 S = 1.75 2 1 3 S = 1.75
2.5 1 2.5 2.5 1 2.5
2 1 3 S = 3.25 2 1 3 S = 3.25
2.5 2.5 1 2.5 2.5 1
2 1 3 S = 0.25 2 1 3 S = 0.25
1 2.5 2.5 1 2.5 2.5
1 2 3 S = 3.25 1 2 3 S = 3.25
2.5 1 2.5 2.5 1 2.5
1 2 3 S = 1.75 1 2 3 S = 1.75
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I II III I II III

2.5 2.5 1 2.5 2.5 1
1 2 3 S = 0.25 1 2 3 S = 0.25
1 2.5 2.5 1 2.5 2.5
3 2 1 S = 0.25 3 2 1 S = 0.25
2.5 1 2.5 2.5 1 2.5
3 2 1 S = 1.75 3 2 1 S = 1.75
2.5 2.5 1 2.5 2.5 1
3 2 1 S = 3.25 3 2 1 S = 3.25
1 2.5 2.5 1 2.5 2.5
1 3 2 S = 3.25 1 3 2 S = 3.25
2.5 1 2.5 2.5 1 2.5
1 3 2 S = 0.25 1 3 2 S = 0.25
2.5 2.5 1 2.5 2.5 1
1 3 2 S = 1.75 1 3 2 S = 1.75
1 2.5 2.5 1 2.5 2.5
3 1 2 S = 0.25 3 1 2 S = 0.25
2.5 1 2.5 2.5 1 2.5
3 1 2 S = 3.25 3 1 2 S = 3.25
2.5 2.5 1 2.5 2.5 1
3 1 2 S = 1.75 3 1 2 S = 1.75

Since each of these values of S has null probability 1
36 , it follows that

P0{S = 0.25} = P0{S = 1.75} = P0{S = 3.25} = 1
3 .

This distribution is called the conditional distribution or the permutation
distribution of S , given the tied ranks {(1, 2.5, 2.5), (1, 2, 3)}. For the particular
observed value S = 1.75, we have P0{S ≥ 1.75} = 2

3 .

10. Large-Sample Approximation. Define the random variables Tj = R.j − E0(R.j ) =
R.j − (k + 1)/2, for j = 1, . . . , k . Since each R.j =∑n

i=1 rij /n is an average, it
is not surprising (see, e.g., pages 388–389 of Lehmann (1975) for justification)
that a properly standardized version of the vector T∗ = (T1, . . . , Tk−1) has
an asymptotic (n tending to infinity) (k − 1)-variate normal distribution with
mean vector 0 = (0, . . . , 0) and appropriate covariance matrix � when the null
hypothesis H0 is true. (Note that T ∗ does not include Tk = R.k − (k + 1)/2,
because Tk can be expressed as a linear combination of T1, . . . , Tk−1. This is
the reason that the asymptotic normal distribution is (k − 1)-variate and not
k -variate.) Since the test statistic S (7.5) is a quadratic form in the variables
(T1, . . . , Tk−1), it is, therefore, quite natural that S has an asymptotic (n tending
to infinity) chi-square distribution with k − 1 degrees of freedom.

11. Competitor Based on Wilcoxon Signed Ranks. The statistic S (7.5) utilizes the
treatment observations only through comparisons within blocks. As noted in
Comment 7, this provides a natural extension of the sign test procedure for
paired data and it is this restriction to within-blocks comparisons that leads
directly to the distribution-free nature of procedure (7.6). An alternative approach
would be to extend the (generally) more powerful signed rank test procedure,
as discussed in Section 3.1. This approach utilizes between-block comparisons
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of the observations and is discussed further in Section 7.11. The associated test
procedure utilizing between-blocks signed rank comparisons is (generally) more
powerful than the Friedman test based on S (7.5). However, this two-way layout
signed rank procedure is no longer exactly distribution-free for small numbers
(n) of blocks and tests based on this approach require the use of a large-sample
approximation.

12. Consistency of the S Test. Replace Assumptions A1–A3 by the less restrictive
Assumption A1′ : Xij = βi + eij , where the e’s are mutually independent,
and Assumption A2′ : e1j , . . . , enj come from the same continuous pop-
ulation

∏
j , j = 1, . . . , k , but where

∏
1, . . . ,

∏
k are not assumed to be

identical. Then the test defined by (7.6) is consistent against alternatives
for which

∑k
v=1(1 − puv) �=∑k

v=1 puv for at least one u ∈ {1, . . . , k}, where
puv = P(eiu < eiv) with eiu a random member from

∏
u and eiv a random

member from
∏

v that is independent of eiu .

Properties

1. Consistency. See Noether (1967a, p. 54) and Comment 12.

2. Asymptotic Chi-Squaredness. See Lehmann (1975, pp. 388–389).

3. Efficiency. See van Elteren and Noether (1959) and Section 7.16.

Problems

1. Goldsmith and Nadel (1969) have studied respiratory function following exposure to various
levels of ozone for periods of 1 h. The subjects were four presumably healthy males employed
by the California State Department of Public Health. The objective measurement used was
airway resistance as evaluated by the body plethysmographic technique (see DuBois et al.
(1956) and Comroe, Botelho, and DuBois (1959)). Goldsmith and Nadel reported average val-
ues for four consecutive measurements taken immediately prior to and again about 5 min after
termination of each level of ozone exposure. Table 7.2 is based on a subset of the Goldsmith-
Nadel data, where the tabled values are average airway resistance after ozone exposure minus
average airway resistance prior to ozone exposure. Use procedure (7.6) to test H0.

2. Show that the two expressions for S in (7.5) are, indeed, equivalent.

3. Could Friedman’s test be applied to data from a one-way layout in which there are the same
number, n , of observations from each of the k treatments? Explain. Should Friedman’s test be
applied to such data? Explain.

Table 7.2 Effect of Experimental Ozone Exposures on Airway
Resistance (cm H2Ol /s)

Subject After .1 ppm After .6 ppm After 1.0 ppm

1 −.08 .01 .06
2 .21 .17 .19
3 .50 −.11 .34
4 .14 .07 .14

Source: J. R. Goldsmith and J. A. Nadel (1969).
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4. Show directly, or illustrate by means of an example, that the maximum value of S is Smax =
n(k − 1). For what configuration is this maximum achieved?

5. Creatine phosphokinase (CPK) is a skeletal muscle isoenzyme that is often found to be elevated
in the serum of acutely psychotic subjects during the initial stages of a psychotic episode. A
number of variables known to affect serum CPK activity have been evaluated as possible
causes of the serum CPK activity elevations observed during acute psychotic episodes. One
such variable of interest is that of physical exercise, which is well known to increase serum CPK
levels in normal subjects. In this regard, Goode and Meltzer (1976) studied the relationship
between isometric exercises (designed to strengthen and tone muscle without lengthening
and contracting the muscles themselves) and increased CPK levels in psychotic patients. In
particular, they were interested in whether the elevation of CPK in the serum of psychiatric
patients may be in part due to increased covert isometric motor activity. The subjects in their
study were patients hospitalized on a research unit at the Illinois Psychiatric Institute. Fourteen
such patients were isometrically exercised following remission of psychotic symptoms, usually
2–4 weeks after admission. The 60-min isometric exercise procedure involved stationary wall
bars and required maximal use of all major muscle groups. The subjects described the exercises
as extremely fatiguing and at or near the limits of their endurances.

Table 7.3 contains the plasma CPK activity (mU/l) levels for each of these 14 patients
prior to the period of isometric exercises, as well as at 18 and 42 h after completion of such
exercises. Also recorded for each patient is the peak plasma CPK activity exhibited during the
period of psychosis immediately following admission to the Institute.

Use these data to assess whether there are any differences in CPK activity between the
four patient conditions considered in Table 7.3.

6. Suppose k = 3 and n = 13. Compare the critical region for the exact level α = .025 test of
H0 (7.2) based on S with the critical region for the corresponding nominal level α = .025
test based on the large-sample approximation. What is the exact significance level of this .025
nominal level test based on the large-sample approximation?

7. Suppose k = 3 and n = 3. Obtain the form of the exact null (H0) distribution of S for the
case of no-tied observations.

8. Suppose k = 4 and n = 8. Compare the critical region for the exact level α = .005 test of
H0 (7.2) based on S with the critical region for the corresponding nominal level α = .005

Table 7.3 Effect of lsometric Exercise on Serum Creatine Phosphokinase (CPK) Activity
(mU/l) in Psychotic Patients

19 h 42 h Peak-
Subject Preexercise postexercise postexercise psychotic period

1 27 101 82 63
2 30 112 50 78
3 24 26 68 69
4 54 89 135 1,137
5 21 30 49 57
6 36 41 48 800
7 36 29 46 105
8 16 20 8 111
9 21 26 25 61

10 26 25 31 74
11 65 60 69 190
12 25 27 28 107
13 19 18 21 306
14 48 41 28 109

Source: D. J. Goode and H. Y. Meltzer (1976).
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test based on the large-sample approximation. What is the exact significance level of this .005
nominal level test based on the large-sample approximation?

9. Suppose k = 3 and n = 2, and we observe the data X11 = 3.6, X12 = 3.6, X13 = 5.2, X21 =
4.3, X22 = 5.2, and X23 = 4.3. What is the conditional probability distribution of S under H0

(7.2) when average ranks are used to break ties among the X ’s? How extreme is the observed
value of S in this conditional null distribution? Compare this fact with that obtained by taking
the observed value of S to the (incorrect) unconditional null distribution of S .

10. Consider the CPK activity data in Table 7.3. Ignoring the patients’ peak psychotic period data,
assess the conjecture that isometric exercise has an effect on the CPK activity of psychotic
patients.

11. Use the CPK data in Table 7.3 and an appropriate nonparametric test procedure to assess
whether there is any difference between peak CPK activity during the psychotic period and
peak CPK activity over the combined pre/post exercise periods.

12. Nicholls and Ling (1982) conducted a study to assess the effectiveness of a system employing
hand cues in the teaching of language to severely hearing-impaired children. In particular,
they considered syllables presented to hearing-impaired children under the following seven
conditions: (A) audition, (L) lip reading, (AL) audition and lip reading, (C) cued speech, (AC)
audition and cued speech, (LC) lip reading and cued speech, and (ALC) audition, lip reading,
and cued speech. The 18 subjects in the study were all severely hearing-impaired children
who had been taught through the use of cued speech for at least 4 years. Syllables were
presented to the subjects under each of the seven conditions (presented in random orders) and
the subjects were asked in each case to identify the consonants in each syllable by writing
down what they perceived them to be. The subjects’ results were scored by marking properly
identified consonants in the appropriate order as correct. After tallying the responses, an overall
percentage correct was assigned to each participant under each experimental condition. These
correct percentage data for the 18 children in the study are given in Table 7.4.

Table 7.4 Percentage Consonants Correctly Identified under Each of the Condi-
tions: (A) Audition, (L) Lip Reading, (AL) Audition and Lip Reading, (C) Cued
Speech, (AC) Audition and Cued Speech, (LC) Lip Reading and Cued Speech, and
(ALC) Audition, Lip Reading, and Cued Speech

Subject A L AL C AC LC ALC

1 1.1 36.9 52.4 42.9 31.0 83.3 63.0
2 1.1 33.3 34.5 34.5 41.7 77.3 81.0
3 13.0 28.6 40.5 33.3 44.0 81.0 76.1
4 0 23.8 22.6 33.3 33.3 69.0 65.5
5 11.9 40.5 57.1 35.7 46.4 98.8 96.4
6 0 27.4 46.4 42.9 47.4 78.6 77.4
7 5.0 20.2 22.6 35.7 37.0 69.0 73.8
8 4.0 29.8 42.9 13.0 33.3 95.2 91.7
9 0 27.4 38.0 42.9 45.2 89.3 85.7

10 1.1 26.2 31.0 31.0 32.1 70.2 71.4
11 2.4 29.8 38.0 34.5 46.4 86.9 92.9
12 0 21.4 21.4 41.7 33.3 67.9 59.5
13 0 32.1 33.3 44.0 34.5 86.9 82.1
14 0 28.6 23.8 32.1 39.3 85.7 72.6
15 1.1 28.6 29.8 41.7 35.7 81.0 78.6
16 1.1 36.9 33.3 25.0 31.0 95.2 95.2
17 0 27.4 26.1 40.5 44.0 91.7 89.3
18 0 41.7 35.7 42.9 45.2 95.2 95.2

Source: G. H. Nicholls and D. Ling (1982).
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Use these data to assess whether there are any differences in the effectiveness of these
seven conditions for teaching severely hearing-impaired children.

13. Consider the study with severely hearing-impaired children in Problem 12. Using the per-
centage correctly identified data from Table 7.4, assess whether there are any differences
in the effectiveness of the three stand-alone conditions A, L, and C for teaching severely
hearing-impaired children.

14. Consider the study with severely hearing-impaired children in Problem 12. Using the percent-
age correctly identified data for only the first eight children (and the proper correction for ties),
assess whether there are any differences in the teaching effectiveness from adding one or more
of the factors L (lip reading) and C (cued speech) to the baseline A (audition) approach.

7.2 A DISTRIBUTION-FREE TEST FOR ORDERED
ALTERNATIVES IN A RANDOMIZED COMPLETE BLOCK
DESIGN (PAGE)

In many practical two-way layout settings where an additive model is appropriate, it is
also the case that the treatments are such that the appropriate alternatives to no differ-
ences in treatment effects (H0) are those of increasing (or decreasing) treatment effects
according to some natural labeling for the treatments. Examples of such settings include
treatments corresponding to quality or quantity of materials, severity of disease, drug
dosage levels, and intensity of stimulus. We note that the Friedman procedure (7.6) does
not utilize any such partial prior information regarding the postulated alternative order-
ing. The statistic S (7.5) takes on the same value for all possible k ! labelings of the
treatments. In this section, we consider a procedure for testing H0 (7.2) against the a
priori ordered alternatives,

H2 : [τ1 ≤ τ2 ≤ · · · ≤ τk , with at least one strict inequality]. (7.9)

The Page test of this section is preferred to the Friedman test in Section 7.1 when the
treatments can be labeled a priori in such a way that the experimenter expects any
deviation from H0 (7.2) to be in the particular direction associated with H2 (7.9). We
emphasize, however, that the labeling of the treatments, so that the ordered alternatives
(7.9) are appropriate, cannot depend on the observed sample values. This labeling must
correspond completely to a factor (s) implicit in the nature of the experimental design
and not the observed data.

Procedure

First, we must label the treatments so that they are in the expected order associated with
the alternative H2 (7.9). (This labeling must be done prior to data collection.) To compute
the Page (1963) statistic L, we once again rank within blocks and compute the Friedman
treatment sums of ranks R1, . . . , Rk as defined in (7.4). The Page statistic L is then the
weighted combination of these rank sums given by

L =
k∑

j=1

jRj = R1 + 2R2 + · · · + kRk . (7.10)
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To test

H0 : [τ1 = · · · = τk ]

versus the ordered alternative

H2 : [τ1 ≤ τ2 ≤ · · · ≤ τk , with at least one strict inequality],

at the α level of significance,

Reject H0 if L ≥ lα; otherwise do not reject, (7.11)

where the constant lα is chosen to make the type I error probability equal to α. The con-
stant lα is the upper α percentile for the null (τ1 = · · · = τk ) distribution of L. Comment
17 explains how to obtain the critical value lα for k treatments, n blocks, and available
levels of α.

Large-Sample Approximation

The large-sample approximation is based on the asymptotic (n tending to infinity) nor-
mality of L, suitably standardized. We first need to know the expected value and variance
of L when the null hypothesis is true. Under H0, the expected value and variance of L
are

E0(L) = nk(k + 1)2

4
(7.12)

and

var0(L) = nk2(k + 1)(k2 − 1)

144
, (7.13)

respectively. These expressions for E0(L) and var0(L) are verified by direct calculations
in Comment 18 for the special case of k = 3 and n = 2. General derivations of both
expressions are outlined in Comment 20.

The standardized version of L is

L∗ = L − E0(L)√
var0(L)

=
L −
[

nk(k + 1)2

4

]
{

nk2(k + 1)(k2 − 1)

144

}1/2 . (7.14)

When H0 is true, L∗ has, as n tends to infinity, an asymptotic N (0, 1) distribution (see
Comment 20 for indications of the proof). The normal theory approximation for procedure
(7.11) is

Reject H0 if L∗ ≥Zα ; otherwise do not reject. (7.15)
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Ties

If there are ties among the k X ’s within any of the n blocks, assign each of the obser-
vations in a tied group the average of the integer ranks that are associated with the tied
group and compute L with these average ranks.

We note that even procedure (7.11) using these average ranks to break ties and the
critical value lα is only approximately, and not exactly, of significance level α in the
presence of tied X observations within any of the blocks. To get an exact level α test
in this tied setting, see Comment 19. (See also Comment 21 regarding the use of the
large-sample approximation in the case of within-blocks ties.)

EXAMPLE 7.2 Breaking Strength of Cotton Fibers.

An experiment in Cochran and Cox (1957, p. 108) considered the effect, in terms of
breaking strength of cotton fibers, of the level of potash (K2O) in the soil. Five levels of
potash were applied (k = 5) in a randomized block pattern with three blocks (n = 3). The
criterion used for the analysis was the Pressley strength index, obtained by measuring
the breaking strength of a bundle of fibers of a given cross-sectional area. A single
sample of cotton was taken from each plot, and four determinations were made on each
sample. The main entries of Table 7.5 are the means of the four determinations and the
parenthetical values are the within-block ranks. (No dimensions are associated with the
data of Table 7.5, because the machine that measures the strength index is calibrated in
arbitrary units.)

We are interested here in using procedure (7.11) to test the hypothesis of equivalent
strengths versus the ordered alternative that specifies a trend of decreasing breaking
strength with increasing levels of potash. For the purpose of illustration, we take the
significance level to be α = .0097. Applying the R command cPage(α,k,n) with k = 5
and n = 3, we find cPage(.0097, 5, 3) = 155. That is, P0(L ≥ 155) = .0097, and
we have that l.0097 = 155 and procedure (7.11) becomes

Reject H0 if L ≥ 155.

Now, we illustrate the computations leading to the sample value of L (7.10). Using the
treatment sums of within-block ranks given in Table 7.3, we see from (7.10) that

L = R1 + 2R2 + 3R3 + 4R4 + 5R5

= 5 + 2(5) + 3(9) + 4(14) + 5(12) = 158.

Table 7.5 Strength Index of Cotton

Potash (lb/acre)

Replications 144 108 72 54 36

1 7.46 (2) 7.17 (1) 7.76 (4) 8.14 (5) 7.63 (3)
2 7.68 (2) 7.57 (1) 7.73 (3) 8.15 (5) 8.00 (4)
3 7.21 (1) 7.80 (3) 7.74 (2) 7.87 (4) 7.93 (5)

R1 = 5 R2 = 5 R3 = 9 R4 = 14 R5 = 12

Source: W. G. Cochran and G. M. Cox (1957).
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Since the value of L is greater than the critical value 155, we can reject H0 at the
α = .0097 level, providing strong evidence (for the levels of potash considered) in favor
of the trend of decreasing breaking strength with increasing level of potash.

For the large-sample approximation we need to compute the standardized form of L∗
using (7.14). Since k = 5, n = 3, and the sample value of L is 158, we see from (7.14)
that

L∗ =
158 −

[
3(5)(5 + 1)2

4

]
{

3(52)(5 + 1)(52 − 1)

144

}1/2 = 158 − 135√
75

= 2.66.

Thus, using the approximate procedure (7.15) with the value of L∗ = 2.66 and the R

command pnorm(·), we see that the approximate P -value for these data is P0(L∗ ≥
2.66) ≈ 1 − pnorm(2.66) = 1 − .9961 = .0039. This is in good agreement with our
previous outcome using the exact test, even though n is only 3.

Comments

13. More General Setting. As with the Friedman procedure in Section 7.1, we could
replace Assumptions A1–A3 and H0 (7.2) with the more general null hypoth-
esis that all possible (k !)n rank configurations for the rij ’s are equally likely.
Procedure (7.11) remains distribution-free for this more general hypothesis.

14. Motivation for the Test. If the ordering τ1 < τ2 < · · · < τk is true, then Rv will
tend to be larger than Ru for u < v. Note that L (7.10) weights Rv by the integer
v and Ru by the integer u . Thus, L tends to be large when H2 (7.9) is true,
serving as partial motivation for the L test in (7.11).

15. Assumptions. As with the Friedman procedure in Section 7.1, we emphasize
that Assumption A3 stipulates that the nk cell distributions Fij , i = 1, . . . , n and
j = 1, . . . , k , can differ at most in their locations (medians) and that these loca-
tion differences (if any) must be a result of additive block and/or treatment effects
(i.e., there is no interaction between the treatment and block factors). In partic-
ular, Assumption A3 requires that the nk underlying distributions belong to the
same general family (F ) and that they do not differ in scale parameters (variabil-
ity). We do note, however, that the test procedure (7.11) remains distribution-free
under the less restrictive setting where Assumption A3 is replaced by the weaker
condition A3′ stated in Comment 6. (See also Comment 13.)

16. Special Case of Two Treatments. For the case of k = 2 treatments, the procedures
in (7.11) and (7.15) are equivalent to the exact and large-sample approximation
forms, respectively, of the one-sided sign test, as discussed in Section 3.4.

17. Derivation of the Distribution of L under H0 (No-Ties Case). The null distribution
of L (7.10) can be obtained by using the fact that under H0 (7.2), all (k !)n

possible rank configurations are equally likely. As is the case for S (7.5) (see
Comment 8), L does not vary with changes of the names of the blocks; however,
unlike S , because it is directed toward a particular ordered alternative, the L
values (in general) do change with changes of names of the treatments. Thus,
building up the null distribution of L is more tedious than in the case of S . We
illustrate this construction for the very special case of k = 3 and n = 2. In this
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case, we need to consider (3!)2 = 36 block–treatment rank configurations. We
list these configurations and their associated values of L = R1 + 2R2 + 3R3.

(a) I II III (b) I II III (c) I II III (d) I II III

1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 3 2 2 1 3 2 3 1

L = 28 L = 27 L = 27 L = 25

(e) I II III (f) I II III (g) I II III (h) I II III

1 2 3 1 2 3 1 3 2 1 3 2
3 1 2 3 2 1 1 2 3 1 3 2

L = 25 L = 24 L = 27 L = 26

(i) I II III (j) I II III (k) I II III (l) I II III

1 3 2 1 3 2 1 3 2 1 3 2
2 1 3 2 3 1 3 1 2 3 2 1

L = 26 L = 24 L = 24 L = 23

(m) I II III (n) I II III (o) I II III (p) I II III

2 1 3 2 1 3 2 1 3 2 1 3
1 2 3 1 3 2 2 1 3 2 3 1

L = 27 L = 26 L = 26 L = 24

(q) I II III (r) I II III (s) I II III (t) I II III

2 1 3 2 1 3 2 3 1 2 3 1
3 1 2 3 2 1 1 2 3 1 3 2

L = 24 L = 23 L = 25 L = 24

(u) I II III (v) I II III (w) I II III (x) I II III

2 3 1 2 3 1 2 3 1 2 3 1
2 1 3 2 3 1 3 1 2 3 2 1

L = 24 L = 22 L = 22 L = 21

(y) I II III (z) I II III (aa) I II III (bb) I II III

3 1 2 3 1 2 3 1 2 3 1 2
1 2 3 1 3 2 2 1 3 2 3 1

L = 25 L = 24 L = 24 L = 22

(cc) I II III (dd) I II III (ee) I II III (ff) I II III

3 1 2 3 1 2 3 2 1 3 2 1
3 1 2 3 2 1 1 2 3 1 3 2

L = 22 L = 21 L = 24 L = 23

(gg) I II III (hh) I II III (ii) I II III (jj) I II III

3 2 1 3 2 1 3 2 1 3 2 1
2 1 3 2 3 1 3 1 2 3 2 1

L = 23 L = 21 L = 21 L = 20
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Thus, we find

P0{L = 28} = 1

36
, P0{L = 27} = 4

36
, P0{L = 26} = 4

36
,

P0{L = 25} = 4

36
, P0{L = 24} = 10

36
, P0{L = 23} = 4

36
,

P0{L = 22} = 4

36
, P0{L = 21} = 4

36
, P0{L = 20} = 1

36
.

The probability, under H0, that L is greater than or equal to 27, for example,
is therefore

P0{L ≥ 27} = P0{L = 27} + P0{L = 28} = 4

36
+ 1

36
= 5

36
= .139.

Similarly, P0{L ≥ 28} = P0{L = 28} = 1
36 = .028.

Since the null distribution for L has been derived without specifying the
common form (F ) of the underlying distribution function for the X ’s under H0

beyond the point of requiring that it be continuous, the test procedure (7.11)
based on L is a distribution-free procedure. From the null distribution of L
we can determine the critical value lα and control the probability α of falsely
rejecting H0 when H0 is true, and this error probability does not depend on the
specific form of the common underlying X distribution.

For a given number of treatments k and blocks n , the R command
cPage(α,k,n) can be used to find the available upper-tail critical values lα for
possible values of L. For a given available significance level α, the critical value
lα then corresponds to P0(L ≥ lα) = α and is given by cPage(α, k, n) = lα .
Thus, for example, for k = 4 and n = 5, we have P0(L ≥ 140) = .0106 so that
l.0106 = cPage(.0106, 4, 5) = 140 for k = 4 and n = 5.

18. Calculation of the Mean and variance of L under the Null Hypothesis H0. In
displays (7.12) and (7.13), we presented formulas for the mean and variance of
L, respectively, when the null hypothesis is true. In this comment we illustrate
a direct calculation of E0(L) and var0(L) in the particular case of k = 3, n = 2,
and no tied observations, using the null distribution of L obtained in Comment
17. (Later, in Comment 20, we present arguments for the general derivations of
E0(L) and var0(L).) The expected value of the null distribution of L is obtained
directly from multiplication of each possible value of L by its probability under
H0. Thus, using the null probability values from Comment 17, we obtain

E0(L) = 1
36 (20 + 28) + 4

36 (21 + 22 + 23 + 25 + 26 + 27) + 10
36 (24) = 24.

This is in agreement with what we obtain using (7.12), namely,

E0(L) = 2(3)(3 + 1)2

4
= 24.
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A direct check on the expression for var0(L) is also easy. Again using the null
probabilities from Comment 17, we have

var0(L) = E0[{L − E0(L)}2] = E0[{L − 24}2]

=
{

1
36 [(20 − 24)2 + (28 − 24)2] + 4

36

[
(21 − 24)2

+ (22 − 24)2 + (23 − 24)2 + (25 − 24)2

+ (26 − 24)2 + (27 − 24)2]+ 10
36 [(24 − 24)2]

}
= 1

36 (16 + 16) + 4
36 (9 + 4 + 1 + 1 + 4 + 9) + 10

36 (0) = 4,

which agrees with what we obtain using (7.13) directly, namely,

var0(L) = 2(3)2(3 + 1)(32 − 1)

144
= 4.

19. Exact Conditional Distribution of L under H0 with Ties within the Blocks. To
have a test with exact significance level even in the presence of tied X ’s within
some of the blocks, we need to consider all (k !)n possible rank configurations,
where now the within-blocks ranks are obtained by using average ranks to break
the ties. As in Comment 17, it still follows that under H0 each of these (k !)n

configurations is equally likely. For each such configuration, the value of L is
computed and the results are tabulated. As an example, consider the case of
k = 3, n = 2, and the data X11 = 2.4, X12 = 3.6, X13 = 2.4, X21 = 4.0, X22 =
5.9, and X23 = 1.7. Using average ranks to break the tie in the first block, the
observed block rank vectors are (r11, r12, r13) = (1.5, 3, 1.5) and (r21, r22, r23) =
(2, 3, 1). Thus, R1 = 3.5, R2 = 6, R3 = 2.5, and the attained value of L is 3.5 +
2(6) + 3(2.5) = 23. To assess the significance of this value of L, we would need
to obtain the entire conditional null distribution of L by computing its value
for each of the (3!)2 = 36 equally likely (under H0) possible configurations
of the observed block rank vectors (1.5, 3, 1.5) and (2, 3, 1). This would be
accomplished in exactly the same manner as is illustrated for the no-ties case in
Comment 17.

20. Large-Sample Approximation. We can rewrite the expression for L (7.10) to
obtain

L =
k∑

j=1

jRj =
k∑

j=1

j

(
n∑

i=1

rij

)
=

n∑
i=1

⎛⎝ k∑
j=1

jrij

⎞⎠ =
n∑

i=1

Qi ,

with Qi =∑k
j=1 jrij , i = 1, . . . , n . Moreover, from Assumptions A1 and A3,

Q1, . . . , Qn are mutually independent and identically distributed random vari-
ables, regardless of whether or not the null hypothesis H0 is true. The asymptotic
normality, as n tends to infinity, of the standardized form

L∗ = L − E (L)

[var(L)]1/2
= L − nE [Q1]

[n var(Q1)]1/2
(7.16)
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then follows at once from standard central limit theory for sums of mutually
independent, identically distributed random variables (cf. Randles and Wolfe
(1979, p. 421)).

The computation of E (Q1) and var(Q1) is simplified by noting that

E (Q1) = E

⎛⎝ k∑
j=1

jr1j

⎞⎠ =
k∑

j=1

jE (r1j ) (7.17)

and

var(Q1) = var

⎛⎝ k∑
j=1

jr1j

⎞⎠
=

k∑
j=1

var(jr1j ) + 2
v−1∑
u=1

k∑
v=2

cov(ur1u , vr1v)

=
k∑

j=1

j 2var(r1j ) + 2
v−1∑
u=1

k∑
v=2

uv cov(r1u , r1v). (7.18)

In particular, when H0 is true, (r11, . . . , r1k ) is an exchangeable random vector.
Thus, under H0, we have

var0(r1j ) = var0(r11), for j = 2, . . . , k

and
cov0(r1u , r1v) = cov0(r11, r12), for 1 ≤ u < v ≤ k .

Using these facts in (7.15) and (7.16), we obtain

E0(Q1) = E0(r11)

k∑
j=1

j = k(k + 1)

2
E0(r11) (7.19)

and

var0(Q1) = var0(r11)

k∑
j=1

j 2 + 2 cov0(r11, r12)

v−1∑
u=1

k∑
v=2

uv

= k(k + 1)(2k + 1)

6
var0(r11)

+ cov0(r11, r12)

[
k∑

u=1

k∑
v=1

uv −
k∑

t=1

t2

]

= k(k + 1)(2k + 1)

6
[var0(r11) − cov0(r11, r12)]

+
[

k(k + 1)

2

]2

cov0(r11, r12). (7.20)
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It can be shown (see Problem 22) that

E0(r11) = k + 1

2
, var0(r11) = k2 − 1

12
(7.21)

and

cov0(r11, r12) = − (k + 1)

12
. (7.22)

Using these results in expressions (7.19) and (7.20), we obtain

E0(Q1) = k(k + 1)

2

(k + 1)

2
= k(k + 1)2

4
(7.23)

and

var0(Q1) = k(k + 1)(2k + 1)

6

[
k2 − 1

12
+ k + 1

12

]
+
[

k(k + 1)

2

]2 (
−k + 1

12

)
,

which, after some straightforward algebra, yields

var0(Q1) = k2(k + 1)(k2 − 1)

144
. (7.24)

Combining equations (7.17), (7.18), (7.23), and (7.24), we obtain

E0(L) = nE0(Q1) = nk(k + 1)2

4

and

var0(L) = nk2(k + 1)(k2 − 1)

144
,

as stated in expressions (7.12) and (7.13), respectively. In conjunction with
(7.16), this provides the justification for the approximate α level procedure
in (7.15).

21. Conservative Nature of the Large-Sample Approximation when There Are Ties
within Blocks. In applications where tied X values are observed in one or more
of the blocks and average ranks are used to deal with these ties, the null variance
of L based on its exact conditional null distribution (see Comment 19) is always
smaller than the value obtained from expression (7.13). (This fact is illustrated in
Problems 20 and 21.) As a result, the approximate level α procedure in (7.15)
is conservative in the presence of within-blocks ties in the following sense:
If we reject H0 using procedure (7.15) with var0(L) obtained from expression
(7.13), then we would also reject H0 if we were to more properly use the exact
conditional null variance of L in computing the value of L∗ (7.14).

22. Relation to Rank Order Correlation. The L test is directly related to Spearman’s
rank order correlation coefficient rs (8.63). Let ri denote Spearman’s correlation
coefficient computed between the observed rank order and the postulated order
in block i , and set r = (∑n

i=1 ri /n
)
. Then, it can be shown that

r =
{

12L

nk(k2 − 1)
− 3(k + 1)

(k − 1)

}
.
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23. Consistency of the L Test. Replace Assumptions A1–A3 by the less restrictive
Assumption A1′ : Xij = βi + eij , where the e’s are mutually independent,
and Assumption A2′ : e1j , . . . , enj come from the same continuous population∏

j , j = 1, . . . , k , but where
∏

1, . . . ,
∏

k are not assumed to be identical. Then
the test defined by (7.11) is consistent against alternatives for which

{∑
u<v(v −

u)puv > k(k − 1)(k + 1)/12
}
, where puv = P(eiu < eiv) with eiu a random

member from
∏

u and eiv a random member from
∏

v that is independent of eiu

(see Hollander (1967a)). For those situations covered by Assumptions A1–A3,
this consistency statement implies the consistency statement given in Property 1.

Properties

1. Consistency. The test defined by (7.11) is consistent against the H2 (7.9) alterna-
tives. See Hollander (1967a) and Comment 23.

2. Asymptotic Normality. See Comment 20 and Randles and Wolfe (1979, p. 421).

3. Efficiency. See Hollander (1967a) and Section 7.16.

Problems

15. Brady (1969) described an experiment concerning the influence of the rhythmicity of a
metronome on the speech of stutterers. The subjects were 12 severe stutterers. Each subject
spoke extemporaneously for 3 min under the three conditions N , A, and R.

N : Subject spoke unaided by a metronome.
R: Subject spoke with a regular (rhythmic) metronome set at 120 ticks per minute and

was instructed to pace one syllable of speech to each tick.
A: Subject spoke with an arrhythmic metronome in which the intervals between ticks

ranged randomly between 0.3 and 0.7 s but with an average of 120 ticks per minute. Again
the subject was instructed to pace one syllable of speech to each tick.

Table 7.6 gives the number of dysfluencies under each condition. On the basis of the
conditions, and prior to looking at the data, we might expect a deviation from H0 to be in the
direction τR < τA < τN . Perform Page’s test using this postulated ordering.

16. Verify the relationship (see Comment 22) between L (7.10) and rs (8.63).

Table 7.6 Influence of Rhythmicity of Metronome on Speech Fluency

Dysfluencies under Each Condition

Subject R A N

1 3 5 15
2 3 3 11
3 1 3 18
4 5 4 21
5 2 2 6
6 0 2 17
7 0 2 10
8 0 3 8
9 0 2 13

10 1 0 4
11 2 4 11
12 2 1 17

Source: J. P. Brady (1969).
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17. Show directly, or illustrate by means of an example, that the maximum value of L is Lmax =
nk(k + 1)(2k + 1)/6. For what rank configuration is the maximum achieved?

18. Show directly, or illustrate by means of an example, that the minimum value of L is Lmin =
nk(k + 1)(k + 2)/6. For what rank configuration is this minimum achieved?

19. Shelterbelts (long rows of tree plantings across the direction of the prevailing winds) have
been used extensively for sometime in developed countries to protect crops and livestock from
the effects of the wind. Ujah and Adeoye (1984) conducted a study to see if such shelterbelts
could be used effectively to ameliorate the severe losses from droughts experienced almost
annually in the arid and semiarid zones of Nigeria and considered to be a leading factor in the
declining food production in Nigeria and many of its neighbors.

Ujah and Adeoye investigated the effect of shelterbelts on a variety of factors related
to drought conditions, including wind velocity, air and soil temperatures, and soil moisture.
The experiment was conducted at two locations about 3.5 km apart, near Dambatta. Table 7.7
presents the wind velocity data (averaged over these two locations) at various distances leeward
of the shelterbelt expressed as percent wind speed reduction relative to the wind velocity on
the windward side of the shelterbelt. The data are monthly (except for July, November, and
December, for which the data were not available) and at leeward distances of 20, 40, 100,
150, and 200 m from the shelterbelt.

Use these data to test the hypothesis of a negative relationship between percent reduction
in average wind speed and the leeward distance from a shelterbelt.

20. Consider the case of k = 3, n = 2, and the tied data set X11 = 2.4, X12 = 3.6, X13 = 2.4,
X21 = 4.0, X22 = 5.9, and X23 = 1.7. What is the conditional probability distribution of L
under H0 (7.2) when average ranks are used to break within-blocks ties among the X ’s?
(see Comment l9). How extreme is the observed value of L = 23 in this conditional null
distribution?

21. Consider the tied data set in Problem 20 for the setting of k = 3 and n = 2. Use the conditional
null probability distribution of L obtained in Problem 20 to compute the conditional null
variance of L and compare this value with that of the unconditional null variance given by
(7.13). Interpret these two numbers in view of the discussion in Comment 21.

22. Let r1 = (r11, . . . , r1k ) be a random vector of ranks that is uniformly distributed over the set
of all k ! permutations of (1, . . . , k). Show that E (r11) = (k + 1)/2, var(r11) = (k2 − 1)/12,
and cov(r11, r12) = −(k + 1)/12.

23. Carry out the algebra to verify the final expression for var0(Q) in (7.24).

24. Suppose k = 3 and n = 3. Obtain the form of the exact null (H0) distribution of L for the
case of no-tied observations.

Table 7.7 Percent Reduction in Average Wind Speed at Dambatta, 1980/81

Leeward Distance from Shelterbelt (m)

Month 20 40 100 150 200

January 22.1 20.7 15.4 12.3 6.9
February 19.2 18.7 14.9 9.3 6.5
March 21.5 21.9 14.3 9.9 7.1
April 21.5 21.2 11.1 9.4 6.2
May 21.3 20.9 11.2 9.4 7.7
June 20.9 19.6 16.9 11.6 7.0
August 19.3 18.7 14.4 12.5 7.0
September 20.1 19.6 15.6 12.6 7.5
October 23.7 20.4 14.6 12.4 8.5

Source: J. E. Ujah and K. B. Adeoye (1984).
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Table 7.8 Maximum Soil Temperature (◦C) at 5-cm Depth at
Dambatta, 1980/81

Leeward Distance from Shelterbelt (m)

Month 20 40 100 200

January 37.7 37.5 37.6 37.4
February 39.7 39.4 39.6 39.6
March 42.0 42.0 41.9 41.9
April 43.4 43.1 42.8 43.0
May 42.5 42.3 42.3 42.1
June 39.7 39.7 39.6 39.7
July 38.7 38.5 38.6 38.5
August 39.1 38.8 38.9 38.4
September 39.7 39.5 39.2 39.4
October 39.9 40.0 40.0 40.2
November 39.6 39.7 39.8 39.7

Source: J. E. Ujah and K. B. Adeoye (1984).

25. In their study of shelterbelts (see Problem 19), Ujah and Adeoye (1984) also obtained mea-
surements of the monthly maximum soil temperature (◦C) at a 5-cm depth at leeward distances
of 20, 40, 100, and 200 m from the shelterbelt. These data are presented in Table 7.8.

Use these data to test the hypothesis that there is a negative relationship between maximum
soil temperature at a 5-cm depth and the leeward distance from a shelterbelt.

26. For the case of k = 2, show that procedure (7.11) is equivalent to the exact one-sided sign
test, as discussed in Section 3.4.

27. Consider the data on percentage consonants correctly identified in Table 7.4 from the study
on hearing-impaired children by Nicholls and Ling (1982). From previous studies, there is
reason to believe that cued speech (C) is more effective as a stand-alone method for teaching
language to hearing-impaired children than lip reading (L), which, in turn, is thought to be
more effective than audition (A) by itself. Find an approximate P -value using procedure (7.15)
to test this conjecture.

RATIONALE FOR MULTIPLE COMPARISON PROCEDURES

In Sections 7.1 and 7.2 we have discussed procedures designed to test the null hypothesis
H0 (7.2) against either general or ordered alternatives. Upon rejection of H0 with one
of these test procedures for a given set of data, our conclusion is either that there are
some unspecified differences among the treatment effects (associated with the Friedman
procedure discussed in Section 7.1) or that the treatment effects follow an ordered pattern
(associated with the Page procedure of Section 7.2). However, in neither of these test
procedures is our conclusion pair-specific; that is, the tests in Sections 7.1 and 7.2 are not
designed to enable us to reach conclusions about specific pairs of treatment effects. The
relative sizes of the specific treatment effects τ1 and τ2, for example, cannot be inferred
from the conclusions reached by either of the test procedures of Sections 7.1 or 7.2. To
elicit such pairwise specific information, we turn to the class of multiple comparison
procedures. In Section 7.3 we present a two-sided all-treatments multiple comparison
procedure for the omnibus setting corresponding to the general alternatives H1 (7.3).
In Section 7.4 we deal with treatments-versus-control multiple comparison decisions for
settings where one of the treatments plays a special role as the study control.
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7.3 DISTRIBUTION-FREE TWO-SIDED ALL-TREATMENTS
MULTIPLE COMPARISONS BASED ON FRIEDMAN RANK
SUMS—GENERAL CONFIGURATION (WILCOXON,
NEMENYI, MCDONALD-THOMPSON)

In this section we present a multiple comparison procedure based on Friedman’s within-
blocks ranks that is designed to make decisions about individual differences between pairs
of treatment effects (τi , τj ) for i < j , in a setting where general alternatives H1 (7.3) are
of interest. Thus, the multiple comparison procedure of this section would generally be
applied to two-way layout data (with one observation per cell) after rejection of H0 (7.2)
with the Friedman procedure from Section 7.1. In this setting it is important to reach
conclusions about all

(k
2

) = k(k − 1)/2 pairs of treatment effects and these conclusions
are naturally two-sided.

Procedure

Let R1, . . . , Rk be the treatment sums of within-blocks ranks given by (7.4). Calculate the
k(k − 1)/2 absolute differences |Ru − Rv|, 1 ≤ u < v ≤ k . At an experimentwise error
rate of α the Wilcoxon–Nemenyi–McDonald–Thompson two-sided all-treatments mul-
tiple comparison procedure reaches its k(k − 1)/2 pairwise decisions, corresponding to
each (τu , τv) pair, 1 ≤ u < v ≤ k , by the criterion

Decide τu �= τv if |Ru − Rv| ≥ rα; otherwise decide τu = τv , (7.25)

where the constant rα is chosen to make the experimentwise error rate equal to α; that
is, rα satisfies the restriction

P0(|Ru − Rv| < rα , u = 1, . . . , k − 1; v = u + 1, . . . , k) = 1 − α, (7.26)

where the probability P0(.) is computed under H0 (7.2). Equation (7.26) stipulates that
the k(k − 1)/2 inequalities |Ru − Rv| < rα corresponding to all pairs (u , v) of treatments
with u < v, hold simultaneously with probability 1 − α when H0 (7.2) is true. Comment
26 explains how to obtain the critical values rα for k treatments, n blocks, and available
experimentwise error rates α.

Large-Sample Approximation

When H0 is true, the k -component vector (R1, . . . , Rk ) has, as n tends to infinity,
an asymptotic (k − 1)-variate normal distribution with appropriate mean vector and
covariance matrix (see Comment 29 for indications of the proof). It then follows that
the critical value rα can, when the number of blocks n is large, be approximated by
[nk(k + 1)/12]1/2qα , where qα is the upper αth percentile point for the distribution of
the range of k independent N (0, 1) variables. Thus, the large-sample approximation for
procedure (7.25) is

Decide τu �= τv if |Ru − Rv| ≥ qα

[
nk(k + 1)

12

]1/2

; otherwise decide τu = τv. (7.27)
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To find qα for k treatments and a specified experimentwise error rate α, we use the R

command cRangeNor(α,k). For example, to find q.05 for k = 5 treatments, we apply
cRangeNor(.05,5) and obtain q.05 = 3.858 for k = 5.

Ties

If there are ties among the X observations within any of the blocks, use average ranks
to break the ties and compute the individual treatment sums of ranks R1, . . . , Rk . In such
cases, the experimentwise error rate associated with procedure (7.25) is only approxi-
mately equal to α.

EXAMPLE 7.3 Rounding First Base.

Consider the rounding-first-base data discussed in Example 7.1. There we had found
(using the large-sample approximation for the Friedman procedure) that there is strong
evidence to conclude that the three methods of running to first base are not equivalent
with respect to time to reach second base. To determine which of the three running
methods differ in median times to second base, we apply the approximate procedure
(7.27), using average ranks to break the within-runners ties in computing R1, R2, and
R3. Here, we have k = 3 and n = 22. For the sake of illustration, we take our approxi-
mate experimentwise error rate to be α = .01. Using the R command cRangeNor(α,k)
with α = .01 and k = 3, we find cRangeNor(.01, 3) = q.01 = 4.12, and procedure
(7.27) reduces to

Decide τu �= τv if |Ru − Rv| ≥ (4.12)

[
22(3)(4)

12

]1/2

= 19.3.

Using the treatments sums of within-runners ranks given in Table 7.1, we find that

|R2 − R1| = 6, |R3 − R1| = 21, and |R3 − R2| = 15.

Referring these absolute value rank sum differences to the approximate critical value
19.3, we see that

|R2 − R1| = 6 < 19.3 ⇒ decide τ2 = τ1,

|R3 − R1| = 21 ≥ 19.3 ⇒ decide τ3 �= τ1,

and

|R3 − R2| = 15 < 19.3 ⇒ decide τ3 = τ2.

Thus, at an approximate experimentwise error rate of .01, we have reached the con-
clusion that only the round out (treatment 1) and wide angle (treatment 3) running
methods yield significantly different median times to second base. (We note that the
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smallest approximate experimentwise error rate at which we would reach this conclusion
is obtained by first setting

max
(u ,v)

|Ru − Rv| = |R3 − R1| = 21 = qα

[
22(3)(4)

12

] 1
2

and solving for

qα = 21

[
22(3)(4)

12

]− 1
2

= 4.477.

Using the R command pRangeNor(qα , k ), we then find α = pRangeNor(4.48, 3) =
.0044 to be the smallest experimentwise error rate at which we would decide that the
round out (treatment 1) and wide angle (treatment 3) running methods yield significantly
different median times to second base.

For the sake of illustration for the exact procedure in (7.25), we consider the subset
of the sample data associated with the first 15 baseball players in Table 7.1. For that
subset we have k = 3, n = 15, and the three treatment sums of ranks R∗

1 = 37, R∗
2 = 31,

and R∗
3 = 22. With k = 3, n = 15, and experimentwise error rate α = .047, we apply

the R command cWNMT(α,k,n) and find cWNMT(.047, 3, 15) = 13. Thus, we have
r.047 = 13 and procedure (7.25) becomes

Decide τu �= τv if |R∗
u − R∗

v | ≥ 13.

Since |R∗
2 − R∗

1 | = 6, |R∗
3 − R∗

1 | = 15, and |R∗
3 − R∗

2 | = 9, we see that our decisions for
this subset of data using procedure (7.25) would be τ2 = τ1, τ3 �= τ1, and τ3 = τ2, in
agreement with what we found using the entire set of 22 baseball players and the approx-
imate procedure (7.27). (Note, however, that for this smaller set of data, we could no
longer conclude that τ3 �= τ1 at an experimentwise error rate as low as .01.)

Comments

24. Rationale for Multiple Comparison Procedures. We think of the methods of this
section as multiple comparison procedures. The aim of applying such procedures
goes beyond the point of deciding whether the treatments are equivalent to the
(often more important) problem of selecting which, if any, treatments differ
from one another. Thus, the user makes k(k − 1)/2 decisions, one for each pair
of treatments. Equation (7.26) states that the probability of making all correct
decisions when H0 is true is controlled to be 1 − α; that is, when using procedure
(7.25), the probability of at least one incorrect decision, when H0 is true, is
controlled to be α. This error rate is derived under the assumption that H0 is
true, but it does not depend on the particular underlying distributional form F .
This is why we call (7.25) a distribution-free multiple comparison procedure.

The multiple comparison procedures of this section can also be interpreted
as hypothesis tests. If we consider the procedure that rejects H0 if and only if
the inequality of (7.25) [or of (7.27)] holds for at least one (u , v) pair, 1 ≤ u <

v ≤ k , this is a distribution-free test of size α for H0 (7.2).
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25. Experimentwise Error Rate. The use of an experimentwise error rate represents
a very conservative approach to multiple comparisons. We are insisting that the
probability of making only correct decisions be 1 − α when the null hypothesis
H0 (7.2) of treatment equivalence is true. Thus, although we have a high degree
of protection when H0 is true, we often apply such techniques where we have
evidence (perhaps based on a priori information or perhaps obtained by apply-
ing the Friedman test, as in Example 7.3) that H0 is not true. This protection
under H0 also makes it harder for the procedure to judge treatments as differing
significantly when in fact H0 is false, and this difficulty becomes more severe
as k increases. See Comment 6.54 for additional discussion of experimentwise
error rates.

26. Critical Values rα . The rα critical values can be obtained by using the fact that
under H0 (7.2), all (k !)n rank configurations are equally likely. Thus, to obtain
the probability under H0 that |Ru − Rv| < c simultaneously for u = 1, . . . , k − 1
and v = u + 1, . . . , k , we can count the number of configurations for which
the event B = {|Ru − Rv| < c, u = 1, . . . , k − 1; v = u + 1, . . . , k} occurs and
divide this number by (k !)n . For an illustration, consider the 24 configurations
of Comment 8, corresponding to the case k = 4, n = 2. (As in Comment 8, the
same reasoning enables us to consider only 24 rather than (4!)2 = 576 configu-
rations.) For each configuration, we now display the values of |R1 − R2|, |R1 −
R3|, |R1 − R4|, |R2 − R3|, |R2 − R4|, and |R3 − R4|.

(a) |R1 − R2| = 2 (b) |R1 − R2| = 2 (c) |R1 − R2| = 3 (d) |R1 − R2| = 3
|R1 − R3| = 4 |R1 − R3| = 5 |R1 − R3| = 5 |R1 − R3| = 3
|R1 − R4| = 6 |R1 − R4| = 5 |R1 − R4| = 4 |R1 − R4| = 6
|R2 − R3| = 2 |R2 − R3| = 3 |R2 − R3| = 2 |R2 − R3| = 0
|R2 − R4| = 4 |R2 − R4| = 3 |R2 − R4| = 1 |R2 − R4| = 3
|R3 − R4| = 2 |R3 − R4| = 0 |R3 − R4| = 1 |R3 − R4| = 3

(e) |R1 − R2| = 4 (f) |R1 − R2| = 4 (g) |R1 − R2| = 0 (h) |R1 − R2| = 0
|R1 − R3| = 3 |R1 − R3| = 4 |R1 − R3| = 3 |R1 − R3| = 4
|R1 − R4| = 5 |R1 − R4| = 4 |R1 − R4| = 5 |R1 − R4| = 4
|R2 − R3| = 1 |R2 − R3| = 0 |R2 − R3| = 3 |R2 − R3| = 4
|R2 − R4| = 1 |R2 − R4| = 0 |R2 − R4| = 5 |R2 − R4| = 4
|R3 − R4| = 2 |R3 − R4| = 0 |R3 − R4| = 2 |R3 − R4| = 0

(i) |R1 − R2| = 2 (j) |R1 − R2| = 2 (k) |R1 − R2| = 3 (l) |R1 − R2| = 3
|R1 − R3| = 4 |R1 − R3| = 1 |R1 − R3| = 1 |R1 − R3| = 3
|R1 − R4| = 2 |R1 − R4| = 5 |R1 − R4| = 4 |R1 − R4| = 2
|R2 − R3| = 2 |R2 − R3| = 1 |R2 − R3| = 2 |R2 − R3| = 0
|R2 − R4| = 0 |R2 − R4| = 3 |R2 − R4| = 1 |R2 − R4| = 1
|R3 − R4| = 2 |R3 − R4| = 4 |R3 − R4| = 3 |R3 − R4| = 1

(m) |R1 − R2| = 1 (n) |R1 − R2| = 1 (o) |R1 − R2| = 0 (p) |R1 − R2| = 0
|R1 − R3| = 1 |R1 − R3| = 3 |R1 − R3| = 3 |R1 − R3| = 0
|R1 − R4| = 4 |R1 − R4| = 2 |R1 − R4| = 1 |R1 − R4| = 4
|R2 − R3| = 2 |R2 − R3| = 4 |R2 − R3| = 3 |R2 − R3| = 0
|R2 − R4| = 5 |R2 − R4| = 3 |R2 − R4| = 1 |R2 − R4| = 4
|R3 − R4| = 3 |R3 − R4| = 1 |R3 − R4| = 2 |R3 − R4| = 4
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(q) |R1 − R2| = 2 (r) |R1 − R2| = 2 (s) |R1 − R2| = 2 (t) |R1 − R2| = 2
|R1 − R3| = 0 |R1 − R3| = 1 |R1 − R3| = 0 |R1 − R3| = 1
|R1 − R4| = 2 |R1 − R4| = 1 |R1 − R4| = 2 |R1 − R4| = 1
|R2 − R3| = 2 |R2 − R3| = 1 |R2 − R3| = 2 |R2 − R3| = 3
|R2 − R4| = 0 |R2 − R4| = 1 |R2 − R4| = 4 |R2 − R4| = 3
|R3 − R4| = 2 |R3 − R4| = 0 |R3 − R4| = 2 |R3 − R4| = 0

(u) |R1 − R2| = 1 (v) |R1 − R2| = 1 (w) |R1 − R2| = 0 (x) |R1 − R2| = 0
|R1 − R3| = 1 |R1 − R3| = 1 |R1 − R3| = 1 |R1 − R3| = 0
|R1 − R4| = 2 |R1 − R4| = 0 |R1 − R4| = 1 |R1 − R4| = 0
|R2 − R3| = 0 |R2 − R3| = 2 |R2 − R3| = 1 |R2 − R3| = 0
|R2 − R4| = 3 |R2 − R4| = 1 |R2 − R4| = 1 |R2 − R4| = 0
|R3 − R4| = 3 |R3 − R4| = 1 |R3 − R4| = 2 |R3 − R4| = 0

Thus, for example,

P0{|Ru − Rv| < 6, u = 1, 2, 3; v = u + 1, . . . , 4}
= P0{|R1 − R2| < 6; |R1 − R3| < 6; |R1 − R4| < 6;

|R2 − R3| < 6; |R2 − R4| < 6; |R3 − R4| < 6}
= 22

24 = 1 − .083,

because for 22 of the configurations—all but configurations (a) and
(d)—the event {|R1 − R2| < 6; |R1 − R3| < 6; |R1 − R4| < 6; |R2 − R3| <

6; |R2 − R4| < 6; |R3 − R4| < 6} occurs. This .083 probability agrees with
the result obtained from using the R command cWNMT(α,k,n); that is,
cWNMT(.083, 4, 2) = r.083 = 6 for k = 4 treatments and n = 3 blocks.

27. Relationship to Range of Rank Sums. Define the range of R1, . . . , Rk as

Range [R1, . . . , Rk ] = max[R1, . . . , Rk ] − min[R1, . . . , Rk ].

Then, |Ru − Rv| is less than c, for all u < v, if and only if range [R1, . . . , Rk ]
is less than c. Thus, in Comment 26, instead of computing the values of |R1 −
R2|, |R1 − R3|, |R1 − R4|, |R2 − R3|, |R2 − R4|, |R3 − R4| for each rank configura-
tion, we need to have calculated only range [R1, . . . , Rk ] for each configuration.
That is, we can obtain the critical constants rα by computing only the range for
each possible rank configuration. We do, however, need to compute the individ-
ual absolute differences |Ru − Rv| in order to apply procedure (7.25) to a set of
data.

28. Historical Development. The basic idea behind the multiple comparison pro-
cedures (7.25) and (7.27) based on the Friedman rank sums is attributed by
McDonald and Thompson (1967) to Wilcoxon who “. . . in 1956, in an unpub-
lished notebook, carried out the first correct probability computation for 3 objects
(treatments) and 3 judges (blocks) . . .’̇’ Nemenyi (1963) obtained a small num-
ber of exact critical values rα for procedure (7.25) in his Ph.D. dissertation.
McDonald and Thompson (1967) provided additional exact critical values.
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29. Large-Sample Approximation. Let R = (R1, . . . , Rk ) be the vector of the Fried-
man rank sums. Then, it can be shown that a properly standardized R has, as n
tends to infinity, an asymptotic multivariate normal distribution with appropri-
ate mean vector μ and covariance matrix � (see Miller (1966) for details). It
follows directly from this result (again, see Miller (1966)) that the procedure in
(7.27) has an asymptotic experimentwise error rate equal to α.

30. Dependence on Observations from Other Noninvolved Treatments. The absolute
difference |Ru − Rv| depends on the values of the observations from the other
k − 2 treatments, in addition to the observations from treatments u and v. Thus,
the multiple comparison procedures (7.25) and (7.27) both have the disadvantage
that the decision concerning treatment u and treatment v can be affected by
changes only in the observations from one or more of the other k − 2 treatments
that are not directly involved. This difficulty has been emphasized by Miller
(1966) and Gabriel (1969).

31. Approximately Distribution-Free Multiple Comparison Procedures Based on
Signed Ranks. The multiple comparison procedures in (7.25) and (7.27) both
utilize the within-blocks Friedman ranking schemes, and, as a result, they
are related to the sign procedures for paired replicates data (see Comments
7 and 16). Competitor all-treatments multiple comparison procedures based
on signed ranks that utilize between-block information are discussed in
Section 7.13. These signed rank procedures are, however, only asymptotically
distribution-free.

Properties

1. Asymptotic Multivariate Normality. See Miller (1966).

2. Efficiency. See Section 7.16.

Problems

28. Livesey (1967) has compared the performance of rats, Rabbits, and cats on the Hebb–Williams
(1946) elevated pathway test (EPT). Table 7.9, based on a subset of the Livesey data, gives
mean error scores by species for 12 problems. Using procedure (7.25), find the species (if any)
that differ significantly.

29. For the case of k = 3, n = 9, and α = .05, compare procedures (7.25) and (7.27).

30. Consider the rounding-first-base data discussed in Examples 7.1 and 7.3. Using the data for all
22 players, find the smallest approximate experimentwise error rate at which we would declare
that the median time to second base for the narrow angle method of running is different from
that for the wide angle method of running.

31. Apply procedure (7.25) to the ozone exposure data of Table 7.2.

32. Apply the approximate procedure (7.27) to the percentage of correctly identified consonants
data of Table 7.4.

33. Find the totality of all available experimentwise error rates α and the associated critical values
rα for procedure (7.25) when k = 3 and n = 3.

34. Illustrate the difficulty discussed in Comment 30 by means of a numerical example.

35. Consider the serum CPK data of Table 7.3 in Problem 5. Find the smallest (available) exper-
imentwise error rate at which the most significant difference in treatment effects between the
time measurements would be detected.
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Table 7.9 Error Scores by Species

Problem Number Rats Rabbits Cats

1 1.5 1.7 0.3
2 1.1 1.5 1.0
3 1.8 8.1 3.6
4 1.9 1.3 0.0
5 4.3 4.0 0.6
6 2.0 4.6 5.5
7 8.4 4.0 1.0
8 6.6 5.1 3.1
9 2.4 2.5 0.1

10 6.5 6.9 1.6
11 2.6 2.5 4.3
12 6.5 6.8 1.0

Source: P. J. Livesey (1967).

36. Consider the serum CPK data of Table 7.3 in Problem 5. Find the smallest (available) exper-
imentwise error rate at which we would declare that the typical serum CPK activity at 19 h
postexercise is different from that at 42 h postexercise.

7.4 DISTRIBUTION-FREE ONE-SIDED TREATMENTS
VERSUS CONTROL MULTIPLE COMPARISONS BASED
ON FRIEDMAN RANK SUMS (NEMENYI,
WILCOXON–WILCOX, MILLER)

In this section we turn our attention to a multiple comparison procedure designed to make
decisions about individual differences between the median effect for a single, baseline
control population and the median effects of each of the remaining k − 1 treatments. This
treatments-versus-control multiple comparison procedure can be applied after rejection
of H0 (7.2) with either the Friedman or the Page test discussed in Sections 7.1 and 7.2,
respectively. Its application leads to conclusions about the differences between each of
the k − 1 treatment effects and the control effect, and these conclusions are naturally
one-sided.

Procedure

For simplicity of notation, we let treatment 1 assume the role of the single baseline
control. Let R1, . . . , Rk be the treatment sums of the within-blocks ranks given by (7.4).
Calculate the k − 1 differences (Ru − R1), u = 2, . . . , k . At an experimentwise error rate
of α, the Nemenyi–Wilcoxon–Wilcox–Miller one-sided treatments-versus-control mul-
tiple comparison procedure reaches its k − 1 pairwise decisions, corresponding to each
(τ1, τu) pair, for u = 2, . . . , k , by the criterion

Decide τu > τ1 if (Ru − R1) ≥ r∗
α ; otherwise decide τu = τ1, (7.28)

where the constant r∗
α is chosen to make the experimentwise error rate equal to α; that

is, r∗
α satisfies the restriction

P0((Ru − R1) < r∗
α , u = 2, . . . , k) = 1 − α, (7.29)
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where the probability P0(.) is computed under H0 (7.2). Equation (7.29) stipulates that
the k − 1 inequalities (Ru − R1) < r∗

α , corresponding to each treatment paired with the
control, hold simultaneously with probability 1 − α when H0(7.2) is true. Comment 35
explains how to obtain the critical value r∗

α for k treatments, n blocks, and available
experimentwise error rates α. (For discussion of how to adjust procedure (7.28) for
settings where it is of interest to decide whether the treatment effects are smaller than
the control effect, see Comment 34.)

Large-Sample Approximation

When H0 is true, the (k − 1)-component vector (R2 − R1, . . . , Rk − R1) has, as n tends
to infinity, an asymptotic (k − 1)-variate normal distribution with mean vector 0 (see
Comment 37 for an indication of the proof). It then follows that the critical value r∗

α

can, when the number of blocks is large, be approximated by [nk(k + 1)/6]1/2m∗
α,1/2,

where m∗
α,1/2 is the upper αth percentile point for the distribution of the maximum of

(k − 1) N (0, 1) random variables with common correlation ρ = 1
2 . Thus, the large-sample

approximation for procedure (7.28) is

Decide τu > τ1 if (Ru − R1) ≥ [nk(k + 1)/6]1/2m∗
α,1/2;

otherwise decide τu = τ1. (7.30)

To find m∗
α,1/2 for k treatments and a specified experimentwise error rate α, we use

the R command cMaxCorrNor(α,k,0.5). For example, to find m∗
.04584,1/2 for k = 4

treatments, we apply cMaxCorrNor(.04584,4,0.5) and obtain m∗
.04584,1/2 = 2.19.

Ties

If there are ties among the X observations within any of the blocks, use average ranks
to break the ties and compute the individual treatment sums of ranks R1, . . . , Rk . In such
cases, the experimentwise error rate associated with procedure (7.28) is only approxi-
mately equal to α.

EXAMPLE 7.4 Stuttering Adaptation.

Daly and Cooper (1967) considered the rate of stuttering adaptation under three condi-
tions. Eighteen subjects (college-age stutterers) read each of three different passages five
consecutive times. In one condition, electroshock was administered during each moment
of stuttering, and in another condition, electroshock was administered immediately fol-
lowing each stuttered word. The remaining condition was a control with no electroshock.
The percentage of stuttering behavior during each reading was recorded, and Table 7.10
presents for each subject a rate of adaptation score under each condition. The score
was found by using the residual measurement method suggested by Tate, Cullinan, and
Ahlstrand (1961).

To determine if either of the two treatments yield improved (larger) median adapta-
tion scores, we apply procedure (7.28), using average ranks to break the within-subjects
ties in computing R1, R2, and R3. Here, we have k = 3 and n = 18. For the sake of illus-
tration, we take our experimentwise error rate to be α = .0492. Using the R command
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Table 7.10 Adaptation Scores for College-Age Stutterers

Treatment

Subject 1 (No shock) 2 (Shock following) 3 (Shock during)

1 57 (3) 38 (1) 51 (2)
2 59 (3) 48 (1) 56 (2)
3 44 (1.5) 50 (3) 44 (1.5)
4 51 (2) 53 (3) 44 (1)
5 43 (1) 53 (3) 50 (2)
6 49 (1) 56 (3) 54 (2)
7 48 (2) 37 (1) 50 (3)
8 56 (2) 58 (3) 40 (1)
9 44 (1.5) 44 (1.5) 50 (3)

10 50 (2) 50 (2) 50 (2)
11 44 (1) 58 (3) 56 (2)
12 50 (3) 48 (2) 46 (1)
13 70 (2) 60 (1) 74 (3)
14 42 (1) 58 (3) 57 (2)
15 58 (1) 60 (2) 74 (3)
16 54 (3) 38 (1) 48 (2)
17 38 (1) 48 (2.5) 48 (2.5)
18 48 (2) 56 (3) 44 (1)

R1 = 33 R2 = 39 R3 = 36

Source: D. A. Daly and E. B. Cooper (1967).

cNWWM(α,k,n) with k = 3 and n = 18, we find cNWWM(.0492,3,18) = r∗
.0492 = 12,

and procedure (7.28) reduces to

Decide τu > τ1 if (Ru − R1) ≥ 12.

Using the treatments sums of within-subjects ranks given in Table 7.10, we find that

(R2 − R1) = 6 and (R3 − R1) = 3.

Referring these rank sum differences to the critical value 12, we see that

(R2 − R1) = 6 < 12 ⇒ decide τ2 = τ1,

(R3 − R1) = 3 < 12 ⇒ decide τ3 = τ1.

Thus, at an experimentwise error rate of .0492, we find no statistical evidence that either
of the two electroshock treatments lead to an increase in median adaptation scores over
the control setting. (In fact, we can use the R command pNWWM(·) to obtain the smallest
experimentwise error rate at which we would be able to declare a statistically significant
increase in median adaptation scores for either of the two treatments. Since the largest
observed difference in rank sums is (R2 − R1) = 6, we see that the smallest experimen-
twise error rate at which we could declare a statistically significant increase in median
adaptation scores for either of the two treatments is pNWWM(adaptation.scores)

$p.val[1] = .2859.
For the sake of illustration for the large-sample approximation (7.30), we simply note

that m∗
.02002,1/2 = cMaxCorrNor(.02002,3,0.5) = 2.30 for k = 3 and m∗

.05410,1/2 =
cMaxCorrNor(.05410,6,0.5) = 2.20 for k = 6.
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Comments

32. Rationale for Treatments-versus-Control Multiple Comparison Procedures. The
general rationale for the multiple comparison procedures of this section is the
same as that given in Comment 24 for the two-sided all-treatments multiple
comparison procedures of Section 7.3. The only additional factor here is that
the treatments-versus-control procedures of this section do not compare all treat-
ments, but only each noncontrol treatment with the control on a directional basis.
This situation arises, for example, in drug screening in the examination of many
new treatments in hopes of improving on a standard, and there is no initial rea-
son to perform between treatment comparisons. Of course, similar comparisons
between treatments that were selected as being better than the control would
most likely be carried out later in a follow-up study.

The multiple comparison procedures of this section, which involve making
k − 1 decisions, can also be interpreted as hypothesis tests. If we consider the
procedure that rejects H0 if and only if the inequality in (7.28) [or in (7.30)]
holds for at least one (1, u) pair, u = 2, . . . , k , then this is a distribution-free
test of level α for H0 (7.2).

33. Experimentwise Error Rate. The use of an experimentwise error rate represents
a very conservative approach to multiple comparisons. We insist that the prob-
ability of making only correct decisions be 1 − α when the hypothesis H0 (7.2)
of treatment equivalence is true. Thus we have a high degree of protection when
H0 is true, but we often apply the techniques of this section when we have evi-
dence (perhaps based on a priori information or perhaps obtained by applying
a previous test procedure) that H0 is not true. (For additional general remarks
about experimentwise error rates, see Comment 6.54.)

34. Opposite Direction Decisions. Procedures (7.28) and (7.30) are designed for the
one-sided case where the decisions are τu > τ1 versus τu = τ1, u = 2, . . . , k . To
handle the analogous one-sided situation where the decisions involve τu < τ1

versus τu = τ1, u = 2, . . . , k , use (7.28) and (7.30) with (Ru − R1) replaced by
(R1 − Ru) for u = 2, . . . , k .

35. Critical Values r∗
α . The r∗

α critical values can be obtained by using the fact that
under H0 (7.2), all (k !)n rank configurations are equally likely. However, the
computational effort is greater in this treatments-versus-control problem than in
the all-treatments problem, because the values Ru − R1, u = 2, . . . , k , are in gen-
eral changed when we relabel the control treatment. (In the all-treatments case,
the relevant statistic range [R1, . . . , Rk ] is unaffected by treatment relabelings.
(See Comment 27.)

Let us now do an example to illustrate the nature of the necessary compu-
tations. For simplicity, we take the case n = 3, k = 3. Here, the largest possible
value of R3 − R1 is 6, corresponding to the configuration

(a) I II III

1 2 3
1 2 3
1 2 3,
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where R1 = 3, R3 = 9. Similarly, the largest possible value of R2 − R1 is 6,
corresponding to

(b) I II III

1 3 2
1 3 2
1 3 2.

Since none of the other configurations can yield an Ru − R1 difference as large as
6, we have P0{(R2 − R1) ≥ 6 or (R3 − R1) ≥ 6} = 2/[(3!)3] = 2/216 = .0093.
Thus, in the notation of (7.28), we have r∗

.0093 = 6, in agreement with
the result obtained from using the R command cNWWM(α,k,n); that is,
cNWWM(.0093,3,3) = r∗

.0093 = 6 for k = 3 treatments and n = 3 blocks.

36. Historical Development. The basic idea behind the treatments-versus-control
multiple comparison procedures (7.28) and (7.30) based on the Friedman rank
sums was initially discussed by Nemenyi (1963), Wilcoxon and Wilcox (1964),
and Miller (1966). Windham (1971) provided the exact critical values r∗

α for
procedure (7.28) for the case of k = 3, n = 2(1)18 and for k = 4, n = 2(1)5.
Additional values of r∗

α were obtained by Odeh (1977) for the settings k = 2(1)5,
n = 2(1)8 and k = 6, n = 2(1)6.

37. Large-Sample Approximation. Let Rd = (R2 − R1, . . . , Rk − R1) be the vector
of differences between the treatment rank sums and the control rank sum. Then,
it can be shown that a properly standardized Rd has, as n tends to infinity, an
asymptotic multivariate normal distribution with mean vector 0 and appropriate
covariance matrix � (see Miller (1966) for details). It follows directly from this
result (again, see Miller (1966)) that the procedure in (7.30) has an asymptotic
experimentwise error rate equal to α.

38. Dependence on Observations from Other Noninvolved Treatments. The
treatments-versus-control multiple comparison procedures of this section suffer
from the same disadvantage mentioned in Comment 30 for the corresponding
all-treatments multiple comparisons. The decision between treatment u(>1)
and the control can be affected by changes only in the observations from one
or more of the other k − 2 treatments that are not directly involved.

39. Two-Sided Treatments-versus-Control Multiple Comparison Procedures. The
multiple comparison procedures of this section are both one sided by nature,
resulting in decisions between τu = τ1 and τu > τ1 for every u = 2, . . . , k (or
between τu = τ1 and τu < τ1 for every u = 2, . . . , k , as noted in Comment
34). We view such one-sided comparisons to be the most natural approach
for treatments-versus-control settings. In such situations, we are generally
interested in seeing which, if any, of the proposed new treatments are better
than a standard control or placebo. In most practical applications, better is
synonymous with one-sided comparisons (all in one direction or all in the
other), and thus our emphasis on such procedures in this section. However,
a two-sided treatments-versus-control analog to procedure (7.28) has been
developed in the literature and corresponds to the criterion

Decide τu �= τ1 if |Ru − R1| ≥ r∗∗
α ; otherwise decide τu = τ1, (7.31)
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where the constant r∗∗
α is chosen to make the experimentwise error rate equal

to α; that is,
P0{|Ru − R1| < r∗∗

α , u = 2, . . . , k} = 1 − α,

where the probability P0(.) is computed under H0 (7.2). Windham (1971) pro-
vided values of r∗∗

α for procedure (7.31) for the settings k = 3, n = 2(1)18
and k = 4, n = 2(1)5 (see also Hollander and Wolfe (1973)). A large-sample
approximation to (7.31) is discussed in Miller (1966).

40. Approximately Distribution-Free Multiple Comparison Procedures Based on
Signed Ranks. The multiple comparison procedures (7.28) and (7.30) both
utilize the within-blocks Friedman ranking schemes, and, as a result, they
are related to the sign procedures for paired replicates data (see Comments 7
and 16). Competitor treatments-versus-control multiple comparison procedures
based on signed ranks that utilize between-block information are discussed in
Section 7.14. These signed rank procedures are, however, only asymptotically
distribution-free.

Properties

1. Asymptotic Multivariate Normality. See Miller (1966).

2. Efficiency. See Section 7.16.

Problems

37. Consider the serum CPK activity data from Problem 5. Treating preexercise as a control and
ignoring the peak psychotic period data, apply procedure (7.28) to decide if there is statistical
evidence of increased serum CPK activity either 19 or 42 h after exercise.

38. Apply an appropriate one-sided multiple comparison procedure (see (7.28) and Comment 34)
to the rhythmicity data of Table 7.6, letting the condition N (subject spoke unaided by a
metronome) serve as the control.

39. For the case k = 3, n = 18, and α ≈ .01, compare procedures (7.28) and (7.30).

40. Consider the rounding-first-base data discussed in Examples 7.1 and 7.3. Using the data for
all 22 players and treating the round out method of running to second base as the control,
find the smallest approximate experimentwise error rate at which we would declare that the
median time to second base for the wide angle method of running is smaller than that for the
round out method.

41. Illustrate the difficulty discussed in Comment 38 by means of a numerical example.

42. Find the complete list of available experimentwise error rates α and the associated r∗
α critical

values for procedure (7.28) when k = 3 and, n = 2.

43. Consider the subset of the data on percentage correctly identified consonants in Table 7.4
corresponding to conditions A, AL, and AC . Treating condition A as a control, find the smallest
experimentwise error rate for procedure (7.28) at which we would detect the condition (L or C )
yielding the most improvement in performance when added to A in the syllable presentation.

44. Treating condition A as a control, apply procedure (7.30) to the data on percentage correctly
identified consonants in Table 7.4.

45. Consider the maximum soil temperature data in Table 7.8. Apply the appropriate treatments-
versus-control procedure to decide if maximum soil temperature is significantly warmer at 20,
40, or 100 m from the shelterbelt than at a distance of 200 m.
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7.5 CONTRAST ESTIMATION BASED ON ONE-SAMPLE
MEDIAN ESTIMATORS (DOKSUM)

In this section we discuss a method for point estimation of certain linear combinations
of treatment effects known in the literature as contrasts. We define such a contrast in the
treatment effects τ1, . . . , τk to be any linear combination of the form

θ =
k∑

i=1

ai τi , (7.32)

where a1, . . . , ak are any specified constants such that
∑k

i=1 ai = 0. Equivalently, we can
write θ in terms of the individual differences in treatment effects (known in the literature
as simple contrasts)

�hj = τh − τj , h = 1, . . . , k; j = 1, . . . , k , (7.33)

by noting that

θ =
k∑

h=1

k∑
j=1

dhj �hj , (7.34)

where
dhj = ah

k
, h = 1, . . . , k ; j = 1, . . . , k . (7.35)

For a given setting, decisions about which contrasts to estimate can be related to either
a priori interest in particular linear combinations of the τ ’s or the results of one of the
multiple comparison procedures discussed in Sections 7.3 and 7.4.

Procedure

For each pair of treatments (u , v), u �= v = 1, . . . , k , compute the differences

Di
uv = Xiu − Xiv , i = 1, . . . , n , (7.36)

between the treatment u and treatment v observations for each of the n blocks. For
1 ≤ u �= v ≤ k , let

Zuv = median {Di
uv , i = 1, . . . , n}. (7.37)

Since Zvu = −Zuv , we need only to calculate the k(k − 1)/2 values Zuv corresponding
to u < v. We refer to Zuv as the “unadjusted” estimator of the simple contrast �uv =
τu − τv . (Note that Zuv is just the median estimator of Section 3.5, applied here to
the Xiu − Xiv differences. For example, Z23 is the median of the Xi2 − Xi3 differences,
i = 1, . . . , n , and is the “unadjusted” estimator of the simple contrast τ2 − τ3.) Next, we
compute

Zu. =
k∑

j=1

Zuj

k
, u = 1, . . . , k , (7.38)
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where we note that Zuu = 0 for u = 1, . . . , k . Setting

�̃uv = Zu. − Zv., (7.39)

the adjusted estimator of θ is given by

θ̃ =
k∑

j=1

aj Zj ., (7.40)

or, equivalently,

θ̃ =
k∑

h=1

k∑
j=1

dhj �̃hj . (7.41)

EXAMPLE 7.5 Rounding First Base.

Consider the rounding-first-base data originally presented in Table 7.1 of Example 7.1.
We illustrate the Doksum contrast estimator θ̃ (7.40) on the simple contrast θ = τroundout −
τwide angle = τ1 − τ3. In Example 7.3, we found the round out and wide angle methods
differed significantly at the .01 experimentwise error rate. An estimate of τ1 − τ3 provides
us with an idea of the time saved by running wide angle as opposed to round out.

From Table 7.11 and (7.37), we obtain Z12 = .05, Z13 = .125, and Z23 = .10. From
(7.38), we have

Z1. = Z11 + Z12 + Z13

3
= 0 + .05 + .125

3
= .058,

Z2. = Z21 + Z22 + Z23

3
= −.05 + 0 + .10

3
= .017,

Z3. = Z31 + Z32 + Z33

3
= −.125 − .10 + 0

3
= −.075.

Note that for calculating Z2. and Z3., we have used the fact that Zuv = −Zvu .
The adjusted estimator of θ = τ1 − τ3 is now obtained using (7.32) with

a1 = 1, a2 = 0, a3 = −1,

so that from (7.40), we have

θ̃ = Z1. − Z3. = .058 − (−.075) = .133.

Parenthetically, it should be noted that the equivalent form (7.34) is obtained with
the identifications

d11 = d12 = d13 = 1
3 ,

d21 = d22 = d23 = 0,

d31 = d32 = d33 = − 1
3 .
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Table 7.11 Values of Duv Differences for Data of Table 7.1

Player i Di
12 Di

13 Di
23

1 −.10 −.15 −.05
2 .15 .10 −.05
3 −.40 −.30 .10
4 .05 .15 .10
5 .05 .20 .15
6 −.10 −.15 −.05
7 .00 .05 .05
8 −.05 .10 .15
9 .10 .25 .15

10 .05 .15 .10
11 .05 .15 .10
12 .10 .20 .10
13 .25 .15 −.10
14 .05 .10 .05
15 .00 .10 .10
16 −.10 −.05 .05
17 .00 .20 .20
18 −.05 −.10 −.05
19 .05 .25 .20
20 .05 .25 .20
21 .05 .15 .10
22 .00 .05 .05

Comments

41. Unadjusted Estimator. The unadjusted estimator Zuv (7.37) of �uv (7.33) is
simply the estimator associated with the sign test and previously discussed in
Section 3.5. However, the Doksum adjusted estimator θ̃ (7.40) is quite often
different from this simple unadjusted estimator Zuv . This is the case in Example
7.5, for instance, where Z13 = .125, but θ̃ = τ̃1 − τ3 = .133.

42. Ambiguities with the Unadjusted Estimators. The unadjusted estimators Zuv

(7.37) lead to ambiguities in contrast estimation because they do not satisfy
the linear relations that are satisfied by the contrasts they estimate. For
example, �13 = τ1 − τ3 = (τ1 − τ2) + (τ2 − τ3) = �12 + �23, but, in general,
Z13 �= Z12 + Z23. Thus, the two “reasonable” estimators Z13 and Z12 + Z23 of
�13 = τ1 − τ3 can give different estimates. We refer to this property as the
incompatibility of the unadjusted estimators Zuv .

43. Efficiency. The adjusted estimators �̃uv (7.39) of �uv (7.33) are always at least
as efficient as the unadjusted ones and they are compatible. They do, how-
ever, have the disadvantage that the estimator of �uv = τu − τv depends on the
observations from the other k − 2 treatments.

44. Contrast Estimator Associated with Signed Ranks. As noted in Comment 41,
the contrast estimator θ̃ (7.40) is related to paired replicates estimators associ-
ated with the sign statistic, as discussed in Sections 3.4 and 3.5. A competitor
contrast estimator related to the Hodges–Lehmann paired replicates estimator
associated with the signed rank statistic and utilizing between-block information
is discussed in Section 7.15.
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Properties

1. Standard Deviation of θ̃ (7.40). For the asymptotic standard deviation of θ̃ (7.40),
see Doksum (1967).

2. Asymptotic Normality. See Doksum (1967).

3. Efficiency. See Doksum (1967) and Section 7.16.

Problems

46. Estimate 2τN − τA − τR for the metronome data of Table 7.6.

47. Illustrate, using a numerical example, the incompatibility of the unadjusted estimators Zuv (see
Comment 42).

48. Estimate the simple contrasts θ1 = τ2 − τ1, θ2 = τ3 − τ1, and θ3 = τ3 − τ2 for the CPK activity
data in Table 7.3.

49. Estimate the contrast 3τALC − τAL − τAC − τLC for the percentage consonants correctly iden-
tified data in Table 7.4.

50. Using the data of Table 7.4, estimate the simple contrast that represents the benefit from adding
lip reading to audition in teaching severely hearing-impaired children.

51. Estimate the contrast τAC + τLC − 2τC for the percentage consonants correctly identified data
in Table 7.4.

52. Estimate all contrasts found to be of interest in Problem 45 for the maximum soil temperature
data in Table 7.8.

53. Estimate all possible simple contrasts for the ozone exposure data in Table 7.2.

54. Consider the percent average wind speed reduction data in Table 7.7. Use an appropriate all-
treatments multiple comparison procedure (see Section 7.3) to decide which distances from the
shelterbelt have significantly different reductions in average wind speed. Estimate all contrasts
suggested to be important from this multiple comparison analysis.

55. Estimate the contrast τrats − τcats for the Livesey EPT error score data of Table 7.9.

INCOMPLETE BLOCK DATA—TWO-WAY LAYOUT WITH
ZERO OR ONE OBSERVATION PER TREATMENT–BLOCK
COMBINATION

In two-way layout settings the most common form of data collection corresponds to the
case of a single observation for every treatment–block combination. However, it is not
uncommon to deal with two-way layout problems where certain treatment–block cells
yield single observations, but where there are also treatment–block combinations for
which we have no observations. This could be the result of a deliberate design to deal
with data collection problems where it is not feasible (economically, time constraints,
etc.) to collect data from every treatment–block combination or it could be simply a
result of missing data from what was intended to be a complete block design.

In the next three sections we discuss procedures developed for such incomplete
block data sets. In Sections 7.6 and 7.7 we present a distribution-free hypothesis test for
general alternatives and an all-treatments multiple comparison procedure, respectively,
for the most commonly used design specifically structured to yield less than complete
block data, namely, the BIBD. In Section 7.8 we detail a distribution-free hypothesis
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test for general alternatives that is applicable for two-way layout data representing an
arbitrary configuration of either zero or one observation per cell.

Throughout these three sections, we continue to operate under the general conditions
of Assumptions A1–A3. However, in these sections we impose the additional constraint
that each cij is either 0 or 1 and N =∑n

i=1

∑k
j=1 cij �= kn; that is, we have incomplete

block data. We again drop the third subscript on the X variables in Sections 7.6–7.8. This
will not be problematic, however, as there are no cells with more than one observation.

7.6 A DISTRIBUTION-FREE TEST FOR GENERAL
ALTERNATIVES IN A RANDOMIZED BALANCED
INCOMPLETE BLOCK DESIGN (BIBD)
(DURBIN–SKILLINGS–MACK)

In this section we present a procedure for testing H0 (7.2) against the general alternatives
H1 (7.3) for incomplete block data that arise from a very structured randomized BIBD.
Such a BIBD corresponds to a setting where we observe s(< k) treatments in each of the
n blocks, every pair of treatments occurs together in the same number, λ, of blocks, and
each of the k treatments is observed for a total of p times. These parameters of a BIBD
must satisfy the restriction that p(s − 1) = λ(k − 1), which, of course, forces additional
constraints on the cij ’s (see Problems 57 and 60).

Procedure

To compute the Durbin–Skillings–Mack statistic for such a balanced incomplete block
design setting, we first order the available s observations from least to greatest separately
within each of the n blocks. Let rij be this within-block rank of Xij if there is an
observation for the i th block– j th treatment combination; otherwise, let rij = 0. Set

Rj =
n∑

i=1

rij , for j = 1, . . . , k . (7.42)

Thus, for example, R3 is the sum (over the n blocks) of the within-blocks ranks received
by the p available treatment 3 observations. (Note that each Rj will be the sum of exactly
p nonzero within-blocks ranks.) The Durbin–Skillings–Mack statistic is then given by

D =
[

12

λk(s + 1)

] k∑
j=1

{
Rj − p(s + 1)

2

}2

=
⎧⎨⎩
[

12

λk(s + 1)

] k∑
j=1

R2
j

⎫⎬⎭− 3(s + 1)p2

λ
, (7.43)

where (s + 1)/2 =∑k
j=1 rij /k is the average within-blocks rank assigned for each of

the n blocks. Since each treatment is observed p times, it follows that p(s + 1)/2 is the
expected sum of within-blocks ranks for each of the k treatments when H0 (7.2) is true.

To test
H0 : [τ1 = · · · = τk ]
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versus the general alternative

H1 : [τ1, . . . , τk not all equal],

at the α level of significance,

Reject H0 if D ≥ dα,s ; otherwise do not reject, (7.44)

where the constant dα,s is chosen to make the type I error probability equal to α. The
constant dα,s is the upper α percentile for the null (τ1 = · · · = τk ) distribution of D .
Comment 49 explains how to obtain the critical values dα,s for k treatments, n blocks,
and available values of α.

Large-Sample Approximation

When H0 is true, the statistic D has, as n tends to infinity, an asymptotic chi-square
(χ2) distribution with k − 1 degrees of freedom. (See Comment 50 for indications of the
proof.) The chi-square approximation for procedure (7.44) is

Reject H0 if D ≥ χ2
k−1,α; otherwise do not reject, (7.45)

where χ2
k−1,α is the upper α percentile of a chi-square distribution with k − 1 degrees of

freedom. To find χ2
k−1,α , we use the R command qchisq(1 − α, k − 1). For example,

to find χ2
6,.025, we apply qchisq(.975,6) and obtain χ2

6,.025 = 14.45.
Skillings and Mack (1981) noted that this approximate procedure (7.45) can be quite

conservative when α is small (say, ≤ .01) and either the number of blocks n or the number
of common occurrences λ is small. In particular, they suggest that the approximation is
conservative whenever λ is not at least 3. In such cases, they strongly recommend the
use of the exact values of dα,s whenever possible.

Ties

If there are ties among the X observations within any of the blocks, use average ranks
to break the ties and compute the individual treatment sums of ranks R1, . . . , Rk . In such
cases, the significance level associated with procedure (7.44) is only approximately equal
to α. (See Comment 51 for discussion of how to construct a conditionally distribution-free
test of H0 even when there are ties within some of the blocks.)

EXAMPLE 7.6 Chemical Toxicity.

Moore and Bliss (1942) compared the toxicity of each of seven chemicals applied to
Aphis rumicis, a black aphid found on nasturtiums. The logarithm of the dose required
to kill 95% of the insects exposed to a chemical was the measurement reported. Since
the experimenters could test only three chemicals in any given day, they used a balanced
incomplete block design requiring 7 days for completion of the experiment. The toxicities
for the studied chemicals are shown in Table 7.12.
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Table 7.12 Logarithm of Toxic Dosages

Chemical

Day A B C D E F G

1 .465 .343 .396
2 .602 .873 .634
3 .875 .325 .330
4 .423 .987 .426
5 .652 1.142 .989
6 .536 .409 .309
7 .609 .417 .931

Source: W. Moore and C. I. Bliss (1942).

This experiment constitutes a BIBD with k = 7 treatments, of which s = 3 are
observed in each of the n = 7 blocks, every pair of treatments occur together in λ = 1
of the blocks, and each of the treatments is observed for a total of p = 3 times. We
are interested in assessing whether there are any differences in the toxicities of the
seven chemicals relative to A. rumicis. We will use the approximate procedure (7.45) to
test if there are any differences in the toxicities of the seven chemicals. For the sake
of illustration, we take the approximate significance level to be α = .05. Using the R

command qchisq(1 − α, k ), we find the value χ2
6,.05 = qchisq(.95, 6) = 12.59

and procedure (7.45) reduces to

Reject H0 if D ≥ 12.59.

Now, we illustrate the computations leading to the sample value of D (7.43). Ranking
from 1 to 3 within each of the seven blocks (days) and summing across the blocks for
each of the chemicals, we obtain the following treatment sums of ranks:

R1 = 3 + 1 + 1 = 5, R2 = 1 + 1 + 3 = 5, R3 = 3 + 3 + 3 = 9, R4 = 2 + 1 + 2 = 5,

R5 = 2 + 2 + 1 = 5, R6 = 3 + 2 + 3 = 8, R7 = 2 + 2 + 1 = 5.

Hence, from (7.43), we find that

D =
{[

12

1(7)(4)

]
(52 + 52 + 92 + 52 + 52 + 82 + 52)

}
− 3(4)(32)

1

=
{

3(270)

7

}
− 108 = 7.71.

Comparison of this observed value of 7.71 with the approximate critical value χ2
6,.05 =

12.59 leads us to conclude that there is not strong sample evidence to indicate any
significant difference between the seven studied chemicals with respect to their tox-
icities for A. rumicis. In fact, the observed value of D = 7.71 is approximately the
.26 upper percentile for the chi-square distribution with 6 degrees of freedom (i.e.,
qchisq(.74, 6) ≈ 7.71). Thus, the approximate P -value for these data and procedure
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(7.45) is .26, providing further evidence of the similarity of the studied chemicals with
respect to their toxic effects on A. rumicis.

Comments

45. More General Setting. We could replace Assumptions A1–A3 and H0 (7.2) with
the more general null hypothesis that all possible (s!)n rank configurations for
the nonzero rij ’s are equally likely. Procedure (7.44) remains distribution-free
for this more general hypothesis.

46. Design Rationale. In a two-way layout setting with no replications within
block–treatment combinations, it is best to use a randomized complete block
design (as discussed in Sections 7.1–7.5) whenever possible. However, there
are times when experimental constraints such as fixed costs or limited time or
facilities make it impossible to obtain an observation for every treatment–block
combination. When this is the case, the use of a balanced incomplete block
design is often a good alternative. Such a BIBD provides for sufficient data
to be collected to permit comparison of each treatment with every other one.
Moreover, the fact that the BIBD imposes a rigid structure on the missing
observations within and across the blocks enables the associated data analysis
to be both relatively simple and efficient.

47. Motivation for the Test. Under Assumptions A1–A3 and H0 (7.2), each of the
block rank vectors R∗

i for those s observations present in the i th block, i =
1, . . . , n , has a uniform distribution over the set of all s! permutations of the vec-
tor of integers (1, 2, . . . , s). If rij is nonzero, it follows that E0(rij ) = (1/s!)[(s −
1)!]
∑k

t=1 t = (s + 1)/2, the average rank being assigned separately to the par-
tial data in each of the blocks. Thus, E0(Rj ) =∑n

i=1 E0(rij ) = p(s + 1)/2, for
j = 1, . . . , k , because there are observations in exactly p of the blocks for each
of the k treatments. Therefore, we would expect each of the Rj ’s to be close to
p(s + 1)/2 when H0 is true. Since the test statistic D (7.43) is a constant times
a sum of squared differences between the observed treatment sums of ranks,
Rj , and their common null expected value, E0(Rj ) = p(s + 1)/2, small values
of D represent agreement with H0 (7.2). When the τ ’s are not all equal, we
would expect a portion of the associated treatment sums of ranks to differ from
their common null expectation, p(s + 1)/2, with some tending to be smaller and
some larger. The net result (after squaring the observed differences to obtain the
[Rj − p(s + 1)/2]2 terms) would be a large value of D . This quite naturally
suggests rejecting H0 in favor of H1 (7.3) for large values of D and motivates
procedures (7.44) and (7.45).

48. Assumptions. We emphasize that Assumption A3 stipulates that the ns cell dis-
tributions Fij for those treatment–block combinations where observations are
collected can differ at most in their locations (medians) and that these location
differences (if any) must be a result of additive block and/or treatment effects
(i.e., there is no interaction between the treatment and block factors). In partic-
ular, Assumption A3 requires that the ns underlying distributions belong to the
same general family (F ) and that they do not differ in scale parameters (variabil-
ity). We do note, however, that the test procedure (7.44) remains distribution-free
under the less restrictive setting where Assumption A3 is replaced by the weaker
condition
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A3′. The distribution functions F11, . . . , F1k , . . . , Fn1, . . . , Fnk are connected
through the relationship

Fij (u) = Fi (u − τj ), −∞ < u < ∞,

for i = 1, . . . , n and j = 1, . . . , k , where F1, . . . , Fn are arbitrary
distribution functions for continuous distributions with unknown medians
θ1, . . . , 0n , respectively, and, as before, τj is the unknown additive
treatment effect contributed by the j th treatment.

Assumption A3 then corresponds to Assumption A3′ with the additional condi-
tion that F1 ≡ · · · ≡ Fn (see also Comment 45).

49. Derivation of the Distribution of D under H0 (No-Ties Case). The null distribu-
tion of D (7.43) can be obtained using the fact that under H0 (7.2), all possible
(s!)n rank configurations for the nonzero rij ’s are equally likely. We now take
the simplest (but not very useful in practice) balanced incomplete block design
corresponding to k = 3, s = 2, n = 3, p = 2, and λ = 1 to illustrate how the null
distribution can be derived. In this case, D (7.43) reduces to D = ( 4

3 )R∗ − 36,
where R∗ = R2

1 + R2
2 + R2

3 .
The value of D for each of the (2!)3 = 8 possible rank configurations for

this setting are presented below.

I II III I II III I II III
1 2 2 1 1 2
1 2 1 2 2 1

1 2 1 2 1 2

R∗ = 29, D = 2.67 R∗ = 29, D = 2.67 R∗ = 27, D = 0

I II III I II III I II III
2 1 1 2 1 2
2 1 1 2 2 1

1 2 2 1 2 1

R∗ = 29, D = 2.67 R∗ = 29, D = 2.67 R∗ = 29, D = 2.67

I II III I II III
2 1 2 1
1 2 2 1

2 1 2 1

R∗ = 27, D = 0 R∗ = 29, D = 2.67

Thus, we find

P0{D = 0} = .25 and P0{D = 2.67} = .75.

Note that we have derived the null distribution of D without specifying the
common form (F ) of the underlying distribution function for the X ’s under
H0 beyond the point of requiring that it be continuous. This is why the test
procedure (7.44) based on D is called a distribution-free Procedure. From the
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null distribution of D , we can determine the critical value dα,s and control the
probability α of falsely rejecting H0 when it is true, and this error probability
does not depend on the specific form of the common underlying continuous X
distribution.

For a given BIBD design with incidence matrix obs.mat, the R command
cDurSkiMa(α, obs.mat) can be used to find the available upper-tail critical
values dα,s for possible values of D . The incidence matrix will be an n × k
matrix of ones and zeroes, which indicate where the data are observed and
unobserved, respectively. Methods for finding the incidence matrix for various
BIBD designs are given in the literature. While the incidence matrix will not
be unique for a given (k , n , s , λ, p) combination, the distribution of D under H0

will be the same for any of the possible incidence matrices. For a given available
significance level α, the critical value dα,s then corresponds to P0(D ≥ dα,s) =
α and is given by cDurSkiMa(α, obs.mat) = dα,s . Thus, for example, for
the BIBD combination (k , n , s , λ, p) = (3, 3, 2, 1, 2), one possibility would be

obs.mat =
⎡⎣1 1 0

1 0 1
0 1 1

⎤⎦, which would yield cDurSkiMa(.75, obs.mat)

= d.75,s = 2.67, as noted previously in this comment. As a second more practical
example, we can consider the case of (k , n , s , λ, p) = (6, 15, 4, 6, 10). A possible
incidence matrix is given by

obs.mat =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0

1 1 1 0 1 0

1 1 0 1 1 0

1 1 1 0 0 1

1 1 0 1 0 1

1 1 0 0 1 1

1 0 1 0 1 1

1 0 0 1 1 1

1 0 1 1 1 0

1 0 1 1 0 1

0 1 0 1 1 1

0 0 1 1 1 1

0 1 1 1 1 0

0 1 1 1 0 1

0 1 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which yields cDurSkiMa(.0487, obs.mat) = d.0487,s = 10.80.

50. Large-Sample Approximation. Define the random variables Tj = Rj − E0(Rj ) =
Rj − p(s + 1)/2, for j = 1, . . . , k . Since each Rj is a sum, it is not surprising
(see, e.g., Skillings and Mack (1981) for formal justification) that a properly
standardized version of the vector T ∗ = (T1, . . . , Tk−1) has an asymptotic (n
tending to infinity) (k − 1)-variate normal distribution with mean vector 0 =
(0, . . . , 0) and appropriate covariance matrix � when the null hypothesis H0 is
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true. (Note that T ∗ does not include Tk = Rk − p(s + 1)/2, because Tk can be
expressed as a linear combination of T1, . . . , Tk−1. This is the reason that the
asymptotic normal distribution is (k − 1)-variate and not k -variate.) Since the
test statistic D (7.43) is a quadratic form in the variables (T1, . . . , Tk−1), it is
therefore quite natural that D has an asymptotic (n tending to infinity) chi-square
distribution with k − 1 degrees for freedom.

51. Exact Conditional Distribution of D with Ties among the Observed X Values
within Blocks. To have a test with exact significance level even in the presence
of tied X ’s within some of the blocks, we need to consider all (s!)n block rank
configurations, where now these within-blocks ranks are obtained using average
ranks to break ties. As in Comment 49, it still follows that under H0 each
of the (s!)n block rank configurations (now with these tied ranks) is equally
likely. For each such configuration, the value of D is computed and the results
are tabulated. We illustrate this for the same setting as was used in the untied
example in Comment 49 (namely, k = 3, s = 2, n = 3, p = 2, and λ = 1),
except here we assume that the two observations within block one are tied in
value. Thus, the block ranks we are dealing with here are (1.5, 1.5), (1, 2), and
(1, 2) for blocks 1, 2, and 3, respectively.

As in Comment 49, D (7.43) reduces to D = ( 4
3 )R∗ − 36, where R∗ =

R2
1 + R2

2 + R2
3 . Since the rank configuration for the first block is always (1.5, 1.5),

we need only compute the value of D for (2!)2 = 4 possible rank configurations.
The values of D for these four configurations are as follows:

I II III I II III
1.5 1.5 1.5 1.5
1 2 1 2

1 2 2 1

R∗ = 28.5, D = 2 R∗ = 27.5, D = 0.67

I II III I II III
1.5 1.5 1.5 1.5
2 1 2 1

1 2 2 1

R∗ = 27.5, D = 0.67 R∗ = 28.5, D = 2

Thus, we find

P0{D = 0.67} = .50 and P0{D = 2} = .50.

This distribution is called the conditional distribution or the permutation dis-
tribution of D , given the set of tied within-blocks ranks (1.5, 1.5), (1, 2), and
(1, 2).

52. Historical Development. The test procedures (7.44) and (7.45) based on D were
first proposed by Durbin (1951). Later, Skillings and Mack (1981) studied a
more general procedure for arbitrary incomplete block data (see Section 7.8)
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and, for the first time, made available the exact critical values dα,s for procedure
(7.44) for a reasonable set of balanced incomplete block designs.

Properties

1. Consistency. See van Elteren and Noether (1959).

2. Asymptotic Chi-Squaredness. See Durbin (1951), Benard and van Elteren (1953)
or Skillings and Mack (1981).

3. Efficiency. See van Elteren and Noether (1959) and Section 7.16.

Problems

56. Mendenhall (1968) discusses an experiment that was conducted to compare the effects of
seven different chemical substances on the skin of male rats. The necessity to use rela-
tively homogeneous patches of a rat’s skin for the study restricted the experimenter to three
experimental units (patches of skin) per animal. However, to avoid the confounding effect of
rat-to-rat variability in the comparison of the seven chemicals, the experimenter was obligated
to block on rats and any given rat could be treated with only three of the seven chemi-
cals. This resulted in the use of a balanced incomplete block design with parameters k = 7,
n = 7, s = 3, p = 3, and λ = 1. The experimental measurements for the study are presented in
Table 7.13.

Apply procedure (7.45) with approximate significance level α ≈ .05 to these data to test
the hypothesis of interest.

57. Verify that the relationship p(s − 1) = λ(k − 1) must hold for a balanced incomplete block
design.

58. Verify that the two representations for D (7.43) are, in fact, equivalent.

59. What are the maximum and minimum values for the test statistic D (7.43)? What rank con-
figurations lead to these maximum and minimum values?

60. Consider the relationship p(s − 1) = λ(k − 1) that must hold for a balanced incomplete block
design. What constraints does this condition place on the cij ’s for the data?

61. Kuehl (1994) described an experiment by J. Berry and A. Deutschman at the University of
Arizona designed to study the effect of pressure on percent conversion of methyl glucoside to
monovinyl isomers. The conversion is achieved by addition of acetylene to methyl glucoside
in the presence of a base under high pressure. Five pressures were of interest in the study, but
only three could be examined at any one time under identical experimental conditions because

Table 7.13 Reactions of Male Rats to Chemical Substances

Chemical Substance

Rat A B C D E F G

1 10.2 6.9 14.2
2 9.9 12.9 14.1
3 12.1 11.7 8.6
4 14.3 9.1 7.7
5 8.8 16.3 8.6
6 13.1 9.2 15.2
7 11.3 9.7 6.2

Source: W. Mendenhall (1968).
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Table 7.14 Percent Conversion of Methyl Glucoside to Monovinyl Isomers

Pressure (psi)

Experimental run 250 325 400 475 550

1 16 18 32
2 19 46 45
3 26 39 61
4 21 35 55
5 19 47 48
6 20 33 31
7 13 13 34
8 21 30 52
9 24 10 50

10 24 31 37

Source: R. O. Kuehl (1994).

of limited laboratory space. This necessitated the use of a balanced incomplete block design.
The data obtained in the experiment and design are given in Table 7.14.

State the parameters for the BIBD employed in this chemical conversion study. Apply
procedure (7.44) to these data to assess whether pressure (at the levels included in the study)
has any effect on the percent conversion of methyl glucoside to monovinyl isomers.

62. Consider the BIBD corresponding to k = 5, n = 10, s = 3, p = 6, and λ = 3. Compare the
critical region for the exact level α = .0499 test of H0 (7.2) based on D with the critical region
for the corresponding nominal level α = .0499 test based on the large-sample approximation.

63. Consider the BIBD corresponding to k = 4, n = 6, s = 2, p = 3, and λ = 1. Obtain the form
of the exact null H0 distribution of D (7.43) for the case of no-tied observations.

64. Consider the BIBD corresponding to k = 5, n = 20, s = 2, p = 8, and λ = 2. Compare the
critical region for the exact level α = .0685 test of H0 (7.2) based on D with the critical region
for the corresponding nominal level α = .0685 test based on the large-sample approximation.

65. Consider the BIBD corresponding to k = 4, n = 6, s = 2, p = 3, and λ = 1. Suppose that the
two observations in each of blocks 3 and 5 are tied. Obtain the conditional exact probability
distribution of D under H0 (7.2) when average ranks are used to break these two sets of
within-blocks ties. Compare this conditional null distribution of D with the null distribution
for D obtained in Problem 63 when there are no ties.

66. Consider the percentage consonants correctly identified data in Table 7.4 for conditions AL,
AC, LC, and ALC only. Suggest a possible BIBD that could have been utilized in this study for
these four treatments to reduce the number of conditions under which each severely hearing-
impaired child had to be observed. Using a random mechanism for deciding how to apply
the BIBD in question to the existing data set, analyze the corresponding data subset to assess
whether there are any differences in the effectiveness of the conditions AL, AC, LC, and ALC
for teaching severely hearing-impaired children.

67. Consider the percentage consonants correctly identified data in Table 7.4 for conditions A, L,
and C only, Suggest a possible BIBD that could have been utilized in this study for these three
treatments to reduce the number of conditions under which each severely hearing-impaired
child had to be observed. Using a random mechanism for deciding how to apply the BIBD in
question to the existing data set, analyze the corresponding data subset to assess whether there
are any differences in the effectiveness of the conditions A, L, and C for teaching severely
hearing-impaired children.
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7.7 ASYMPTOTICALLY DISTRIBUTION-FREE TWO-SIDED
ALL-TREATMENTS MULTIPLE COMPARISONS FOR
BALANCED INCOMPLETE BLOCK DESIGNS
(SKILLINGS–MACK)

In this section we present an asymptotically distribution-free multiple comparison pro-
cedure using the Friedman within-blocks ranks that is designed to make decisions about
individual differences between pairs of treatment effects (τi , τj ), for i < j , for data
obtained from a balanced incomplete block design. The multiple comparison procedure
of this section would generally be applied to BIBD data after rejection of H0 (7.2) with
the Durbin–Skillings–Mack procedure from Section 7.6. In this setting we will reach
conclusions about all k(k − 1)/2 pairs of treatment effects and these conclusions are
naturally two-sided in nature.

Procedure

Let R1, . . . , Rk be the treatment sums of within-blocks ranks given by (7.42). Calculate
the k(k − 1)/2 absolute differences |Ru − Rv|, 1 ≤ u < v ≤ k .

When H0 (7.2) is true, the k(k − 1)/2-component vector (R1, . . . , Rk ) has, when
properly standardized and as n tends to infinity, an asymptotic (k − 1)-variate normal
distribution with appropriate mean vector and covariance matrix (see Skillings and Mack
(1981) for details of the proof). At an approximate experimentwise error rate of α,
the Skillings–Mack two-sided all-treatments multiple comparison procedure reaches its
k(k − 1)/2 pairwise decisions, corresponding to each (τu , τv) pair, 1 ≤ u < v ≤ k , by
the criterion

Decide τu �= τv if |Ru − Rv| ≥ [(s + 1)(ps − p + λ)/12]1/2qα;
otherwise decide τu = τv , (7.46)

where qα is the upper αth percentile for the distribution of the range of k independent
N (0, 1) variables. To find qα for k treatments and a specified experimentwise error
rate α, we use the R command cRangeNor(α,k). For example, to find q.025 for k = 6
treatments, we apply cRangeNor(.025,6) and obtain q.025 = 4.361 for k = 6. (See
also Comment 55.)

Ties

If there are ties among the X observations within any of the blocks, use average ranks
to break the ties and compute the individual treatment sums of ranks R1, . . . , Rk .

EXAMPLE 7.7 Chemical Toxicity.

For the sake of illustration, we apply procedure (7.46) to the chemical toxicity data
relative to the black aphid, A. rumicis, as previously discussed in Example 7.6, even
though the Durbin–Skillings–Mack procedure did not find any significant differences
(approximate P -value of .26) between the treatment effects. Taking our approximate
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experimentwise error rate to be α ≈ .05, we find cRangeNor(.05, 7) = q.05 = 4.170
for k = 7 and procedure (7.46) reduces to

Decide τu �= τv if |Ru − Rv| ≥ [4(9 − 3 + 1)/12]1/2(4.170) = 6.370.

Using the treatments sums of within-blocks ranks obtained in Example 7.6, we find that

|R2 − R1| = 0, |R3 − R1| = 4, |R4 − R1| = 0, |R5 − R1| = 0, |R6 − R1| = 3,

|R7 − R1| = 0, |R3 − R2| = 4, |R4 − R2| = 0, |R5 − R2| = 0, |R6 − R2| = 3,

|R7 − R2| = 0, |R4 − R3| = 4, |R5 − R3| = 4, |R6 − R3| = 1, |R7 − R3| = 4,

|R5 − R4| = 0, |R6 − R4| = 3, |R7 − R4| = 0, |R6 − R5| = 3, |R7 − R5| = 0,

|R7 − R6| = 3.

Since all these absolute differences are less than the critical value, 6.370, we see that the
7(6)/2 = 21 decisions at this approximate experimentwise error rate of .05 are that τu =
τv , for 1 ≤ u < v ≤ 7. This is, of course, not at all surprising, because, in Example 7.6,
the Durbin–Skillings–Mack test procedure found no support for rejecting H0 (7.2) for
these data.

Comments

53. Rationale for Multiple Comparison Procedure. The rationale behind the multiple
comparison procedure of this section for data from a balanced incomplete block
design is similar to that behind the two-sided multiple comparison procedures
for data from a complete randomized block design. For further discussion, see
Comment 24.

54. Experimentwise Error Rate. The use of an experimentwise error rate represents
a very conservative approach to multiple comparisons. We are insisting that the
probability of making only correct decisions be 1 − α when the null hypoth-
esis H0 (7.2) of treatment equivalence is true. Thus, we have a high degree
of protection when H0 is true, but we often apply such techniques when we
have evidence (perhaps based on a priori information or perhaps obtained by
applying the Durbin–Skillings–Mack test, as in Example 7.7) that H0 is not
true. The protection under H0 also makes it harder for the procedure to judge
treatments as differing significantly when, in fact, H0 is false, and this diffi-
culty becomes more severe as k increases. See Comment 6.54 for additional
discussion of experimentwise error rates.

55. Conservative Procedure. Skillings and Mack (1981) also proposed a conser-
vative multiple comparison procedure that guarantees an upper bound on the
experimentwise error rate. Let R1, . . . , Rk be the treatment sums of within-blocks
ranks given by (7.42). At an experimentwise error rate no greater than α, the
Skillings–Mack conservative two-sided all-treatments multiple comparison pro-
cedure reaches its k(k − 1)/2 decisions through the criterion

Decide τu �= τv if |Ru − Rv| ≥ [kλdα,s(s + 1)/6]1/2;
otherwise decide τu = τv , (7.47)
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where dα,s is the upper α percentile for the null distribution of the
Durbin–Skillings–Mack statistic D (7.43). Skillings and Mack (1981) note
that although procedure (7.47) does not require a large number of blocks, it is,
nevertheless, rather conservative because it is based on the projection procedure
of Scheffé; that is, the true experimentwise error rate might be considerably
smaller than the bound α provided by (7.47). As a result, they recommend
using the approximation (7.46) whenever the number of blocks is reasonably
large.

56. Contrast Estimators for BIBD’s. Greenberg (1966) proposed a method of contrast
estimation for general (including balanced) incomplete block designs where the
number of observations in a block is smaller than the number of treatments to
be compared.

57. Dependence on Observations from Other Noninvolved Treatments. The
all-treatments multiple comparison procedure of this section suffers from
the same disadvantage as do the other two-way layout multiple comparison
procedures of this chapter. The decision between treatment u and treatment v

can be affected by changes only in the observations from one or more of the
other k − 2 treatments that are not directly involved.

Properties

1. Asymptotic Multivariate Normality. See Skillings and Mack (1981).

2. Efficiency. See Section 7.16.

Problems

68. Apply procedure (7.46) to the chemical substance effect data of Table 7.13 in Problem 56.

69. Illustrate the difficulty discussed in Comment 57 by means of a numerical example.

70. Apply procedure (7.46) to the percent conversion data of Table 7.14 in Problem 61.

71. Consider the chemical toxicity data of Table 7.12 in Example 7.6. Find the smallest approx-
imate experimentwise error rate at which the most significant difference(s) in black aphid
(A. rumicis) toxicity between the studied substances would be detected by procedure (7.46).

72. Consider the chemical substance effect data of Table 7.13 in Problem 56. Find the smallest
approximate experimentwise error rate at which procedure (7.46) would declare that chemical
substances F and G have differing effects on the skin of male rats.

73. Consider the percent conversion data of Table 7.14 in Problem 61. Find the smallest approx-
imate experimentwise error rate at which the most significant difference in the effects of the
various pressures on the percent conversion of methyl glucoside to monovinyl isomers would
be detected by procedure (7.46).

7.8 A DISTRIBUTION-FREE TEST FOR GENERAL
ALTERNATIVES FOR DATA FROM AN ARBITRARY
INCOMPLETE BLOCK DESIGN (SKILLINGS–MACK)

Not every set of data resulting from less than a randomized complete block design satisfies
the necessary constraints (see Section 7.6) to be analyzed by the Durbin–Skillings–Mack
procedure for balanced incomplete block designs. In this section we present a general
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procedure for analyzing data from a two-way layout where there are either zero or one
observation for each treatment–block combination but where there is not necessarily any
nice pattern to the particular combinations for which we do not have observations. Such
an incomplete data configuration could, of course, be intentionally designed this way,
but it could also be the consequence of missing observations from an experiment that
was intended to yield data for a randomized complete block design.

For this general two-way layout setting, let si denote the number of treatments for
which an observation is present in block i , for i = 1, . . . , n . (If si = 1 for block i , we
remove that block from the analysis. Therefore, throughout this section, n will denote the
number of blocks for which si ≥ 2.) We discuss a distribution-free procedure for testing
H0 (7.2) against the general alternatives H1 (7.3) when we are faced with such arbitrarily
incomplete block data.

Procedure

To compute the Skillings–Mack statistic for arbitrarily incomplete block data, we first
rank the si observed data values in block i from least to greatest, for each block i =
1, . . . , n . Thus, in the i th block, we will be assigning ranks 1, 2, . . . , si . For i = 1, . . . , n
and j = 1, . . . , k , let

rij = rank of Xij among the observations in block i , if cij = 1,

= (si + 1)/2, if cij = 0,

where (si + 1)/2 is the average of the ranks assigned to the observations present in the
i th block. Set

Aj =
n∑

i=1

(
12

si + 1

)1/2 (
rij − si + 1

2

)
, j = 1, . . . , k . (7.48)

Thus, Aj is the weighted sum of centered (around the block average) ranks for the
observations from the j th treatment, with the block weighting factor [12/(si + 1)]1/2

being inversely proportional to the square root of the number of observations present in
the block (see Comment 63). Set

A = (A1, . . . , Ak−1). (7.49)

(Without loss of generality, we have chosen to omit Ak from the vector A. The Aj ’s are
linearly dependent, because a weighted linear combination of all k of them is a constant.
We could omit any one of the Aj ’s in the definition of A (7.49), and the procedure we
now describe would lead to the same value of the test statistic. For further discussion,
see Skillings and Mack (1981).)

The covariance matrix for A under H0 (7.2) is given by

�0 =

⎡⎢⎢⎢⎢⎢⎣
∑k

t=2 λ1t −λ12 −λ13 · · · −λ1,k−1

−λ12
∑k

t �=2 λ2t −λ23 · · · −λ2,k−1

...
...

...
...

−λ1,k−1 −λ2,k−1 −λ3,k−1 · · · ∑k
t �=k−1 λk−1,t

⎤⎥⎥⎥⎥⎥⎦ (7.50)
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where, for t �= q = 1, . . . , k ,

λqt = λtq = [number of blocks in which both treatments q and t are observed].
(7.51)

Let �−
0 be any (see Comment 62) generalized inverse for �0. The Skillings–Mack

statistic is then given by

SM = A�−
0 A′. (7.52)

(We note that if λqt > 0 for all q �= t , then the rank of the covariance matrix �0 (7.50) is
k − 1, and we can simply use the ordinary inverse �−1

0 in the definition of SM (7.52).)
To test

H0 : [τ1 = · · · = τk ]

versus the general alternative

H1 : [τ1, τ2, . . . , τk not all equal],

at the α level of significance,

Reject H0 if SM ≥ smα; otherwise do not reject, (7.53)

where the constant smα is chosen to make the type I error probability equal to α. Comment
64 explains how to obtain the critical values smα for a two-way layout configuration with
k treatments, n blocks, and observation indicators cij , i = 1, . . . , n; j = 1, . . . , k .

Large-Sample Approximation

When H0 (7.2) is true and λqt > 0 for every q �= t = 1, . . . , k (i.e., every pair of treat-
ments occur together in at least one block), the statistic SM has, as n tends to infinity, an
asymptotic chi-square (χ2) distribution with k − 1 degrees of freedom (see Comment 65
for indications of the proof). The chi-square approximation for procedure (7.53) is

Reject H0 if SM ≥ χ2
k−1,α; otherwise do not reject, (7.54)

where χ2
k−1,α is the upper α percentile of a chi-square distribution with k − 1 degrees of

freedom. To find χ2
k−1,α , we use the R command qchisq(1 − α, k − 1). For example, to

find χ2
5,.05, we apply qchisq(.95,5) and obtain χ2

5,.05 = 11.071.
As with the BIBD procedure discussed in Section 7.6, Skillings and Mack (1981)

have pointed out that this approximate procedure (7.54) can be quite conservative when
α is small (say, ≤ .01) and the number of blocks, n , is not large. In such cases, it
is preferable to generate the exact critical value smα and use procedure (7.53). (See
Comment 64.) (We should also point out that the approximate procedure (7.54) is simply
not applicable if there are at least two treatments that do not have observations together
in any of the blocks; that is, if λqt = 0 for at least one pair q �= t = 1, . . . , k .)
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Table 7.15 Subset of Data on the Influence
of Rhythmicity of Metronome on Speech
Fluency

Dysfluencies under
each condition

Subject R A N

1 3(1) 5(2) 15(3)
2 1(1) 3(2) 18(3)
3 5(2) 4(1) 21(3)
4 2(1) — 6(2)
5 0(1) 2(2) 17(3)
6 0(1) 2(2) 10(3)
7 0(1) 3(2) 8(3)
8 0(1) 2(2) 13(3)

Source: J. P. Brady (1969).

Ties

If there are ties among the X observations within any of the blocks, use average ranks
to break the ties and compute the individual treatment weighted sums of centered ranks
A1, . . . , Ak . In such cases, the significance level associated with procedure (7.53) is only
approximately equal to α. (See Comment 66 for discussion of how to construct a con-
ditionally distribution-free test of H0 even when there are tied observations within some
of the blocks.)

EXAMPLE 7.8 Effect of Rhythmicity of a Metronome on Speech Fluency.

Consider Table 7.15, which contains a subset (with subject labels renumbered) of the
data in Table 7.6 obtained by Brady (1969) in his study of the influence of rhythmicity
of a metronome on the speech of stutterers, where the missing observation for subject 4
might be due to a malfunction in the arrhythmic metronome during her evaluation.

Here we have a two-way layout with k = 3, n = 8, and all cij ′s = 1 except c42 = 0.
We illustrate the computations leading to the sample value of SM. The within-blocks (sub-
jects) ranks (rij ’s) for the observations present are also given in Table 7.15 in parentheses
after the data values. With respect to the missing value for subject 4 under condition A,
the average rank (2 + 1)/2 = 1.5 for subject 4 is assigned as the value for r42. From
(7.48), we compute the weighted sums of centered ranks to be

A1 =
{[

12

(3 + 1)

]1/2

[(1 − 2) + (1 − 2) + (2 − 2) + (1 − 2) + (1 − 2)

+ (1 − 2) + (1 − 2)] +
[

12

(2 + 1)

]1/2

(1 − 1.5)

}

= 1.732(−6) + 2(−.5) = −11.392,

A2 =
{[

12

(3 + 1)

]1/2

[(2 − 2) + (2 − 2) + (1 − 2) + (2 − 2) + (2 − 2)
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+ (2 − 2) + (2 − 2)] +
[

12

(2 + 1)

]1/2

(1.5 − 1.5)

}

= 1.732(−1) + 2(0) = −1.732,

and

A3 =
{[

12

(3 + 1)

]1/2

[(3 − 2) + (3 − 2) + (3 − 2) + (3 − 2) + (3 − 2)

+ (3 − 2) + (3 − 2)] +
[

12

(2 + 1)

]1/2

(2 − 1.5)

}

= 1.732(7) + 2(.5) = 13.124.

Thus, we obtain A = (−11.392, −1.732).
With the single missing observation for subject 4 under condition A, the combination

counts λqt (7.51) are λ12 = 7, λ13 = 8, and λ23 = 7. Hence, from representation (7.50),
the null covariance matrix �0 has form

�0 =
[

15 −7

−7 14

]
.

Since each of λ12, λ13, and λ23 is positive, the rank of �0 is 2, and its ordinary inverse
is

�−1
0 = ( 1

161

) [14 7

7 15

]
=
[
.0870 .0435

.0435 .0932

]
.

From (7.52), we obtain

SM = A�−1
0 A′

= (−11.392, −1.732)

[
.0870 .0435

.0435 .0932

](
−11.392

−1.732

)

= 13.287.

For a given arbitrary incomplete block design with incidence matrix obs.mat, the R

command cSkilMack(α,obs.mat) can be used to find the available upper-tail critical
values smα for possible values of SM. The incidence matrix is an n × k matrix of ones
and zeroes, which indicate where the data are observed and unobserved, respectively.
For a given available significance level α, the critical value smα then corresponds to
P0(SM ≥ smα) = α and is given by cSkilMack(α, obs.mat) = smα . For this example,
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we define the incidence matrix as

obs.mat =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1
1 0 1
1 1 1
1 1 1
1 1 1
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and find cSkilMack(.0097,obs.mat) = sm.0097 = 8.528. Since we have observed
SM = 13.287 > sm.0097 = 8.528. the P-value for this test procedure is smaller than .0097.
(In fact, using pSkilMack(x) where x is the metronome data, we find that the P-value
for this test is .00006.) Thus, there is strong evidence to support the hypothesis that the
rhythmicity of a metronome does, indeed, influence the speech of stutterers (see also
Comment 60 and Problem 76).

Comments

58. More General Setting. We could replace Assumptions A1–A3 and H0 (7.2) with
the more general null hypothesis that all possible

∏n
i=1 si ! rank configurations

for the within-blocks ranks, rij , of the observed data are equally likely. Procedure
(7.53) remains distribution-free for this more general hypothesis.

59. Motivation for the Test. Under Assumptions A1–A3 and H0 (7.2), the block
rank vector R∗

i for those si observations present in the i th block has a uni-
form distribution over the set of all si ! permutations of the vector of integers
(1, 2, . . . , si ), and this is true for all blocks, i = 1, . . . , n . For those rij corre-
sponding to observations present in the collected data set, it is then the case that
E0(rij ) = (si + 1)/2, the average rank being assigned to the partial data present
in the i th block, for every block i = 1, . . . , n . Thus, it follows from (7.48) and
the definition of rij for an empty cell that E0(Aj ) = 0 for every j = 1, . . . , k .
Therefore, we would expect each of the Aj ’s to be close to zero when H0 is true.
Since the test statistic SM (7.52) is a quadratic form in A1, . . . , Ak , small values
of SM represent agreement with H0 (7.2). When the τ ’s are not all equal, we
would expect a portion of the Aj ’s to differ from their common null expectation
of zero, with some tending to be positive and some tending to be negative. The
net effect would be a large value of the quadratic form SM. This quite naturally
suggests rejecting H0 in favor of H1 (7.3) for large values of SM and motivates
procedures (7.53) and (7.54).

60. Special Cases. When the configuration of observed data in each of the blocks
satisfies the constraints of a BIBD (see Section 7.6), the procedures in (7.53) and
(7.54) are equivalent to the exact and large-sample approximation forms, respec-
tively, of the Durbin–Skillings–Mack test procedure given in (7.44) and (7.45),
respectively Section 7.6. Moreover, when we have an observation present in
every treatment–block combination (i.e., we have a randomized complete block
design), the Skillings–Mack procedures in (7.53) and (7.54) are equivalent to
the exact and large-sample approximation forms, respectively, of the Friedman
test procedure presented in (7.6) and (7.7), respectively, of Section 7.1. Thus,
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the Skillings–Mack procedures in (7.53) and (7.54) represent natural extensions
of the most commonly used nonparametric procedures for randomized com-
plete block and balanced incomplete block designs to the setting of arbitrary
incompleteness of the blocks.

We note that there is also an alternative closed-form expression for the test
statistic SM (7.52) when only a single treatment has missing data. Without loss
of generality, suppose that treatment k is missing observations in blocks t + 1,
t + 2, . . . , n (i.e., treatment k has only t observations). Then, it can be shown
(see Problem 76) that SM can be written as

SM = [t + (k − 1)n]−1

⎧⎨⎩
k−1∑
j=1

A2
j +
[

nA2
k

t

]⎫⎬⎭ . (7.55)

61. Assumptions. We emphasize that Assumption A3 stipulates that the ns cell dis-
tributions Fij for those treatment–block combinations where observations are
collected can differ at most in their locations (medians) and that these location
differences (if any) must be a result of additive block and/or treatment effects
(i.e., there is no interaction between the treatment and block factors). In partic-
ular, Assumption A3 requires that the ns underlying distributions belong to the
same general family (F ) and that they do not differ in scale parameters (variabil-
ity). We do note, however, that the test procedure (7.53) remains distribution-free
under the less restrictive setting where Assumption A3 is replaced by the weaker
condition Assumption A3′ stated in Comment 43. Assumption A3 then corre-
sponds to Assumption A3′ with the additional condition that F1 ≡ · · · ≡ Fn .
(See also Comment 58.)

62. Use of Generalized Inverse. We noted in the body of the text that any generalized
inverse

∑−
0 can be used in the computation of SM (7.52). Skillings and Mack

(1981) have shown that the value of SM is invariant with respect to the choice of
generalized inverse, so that there is no ambiguity in the computation of SM and
the associated test procedures (7.53) and (7.54) even if

∑
0 (7.50) is not of full

rank. Of course, as we also noted previously, if λqt > 0 for all q �= t = 1, . . . , k ,
then the rank of the covariance matrix

∑
0 is, in fact, k − 1 and we can simply

use the ordinary inverse
∑−1

0 in the definition of SM.

63. Weighting Factor. In the computation of the weighted sums of centered ranks
A1, . . . , Ak , Skillings and Mack (1981) chose to weight the within-blocks cen-
tered ranks [rij − (si + 1)/2] by the factor [12/(si + 1)]1/2. They noted that this
weighting factor has several advantages over other alternatives. First, it leads
to a simple null covariance structure

∑
0 (7.50), which is useful for computa-

tional purposes. Second, because the range of the [rij − (si + 1)/2] values is
less for blocks having fewer observations than for complete blocks, it is quite
reasonable to adjust for this fact by using larger weights in those blocks with
fewer observations. This has the effect of equalizing the contribution of each
block when computing the Aj ’s. Prentice (1979) showed that a similar weighting
scheme (using weights of [si + 1]−1) leads to increased power over use of the
unweighted forms of the treatment sums. Skillings and Mack (1981) also note
that use of the alternative simple weights s−1

i would minimize the null variance
of the weighted sums of centered ranks A1, . . . , Ak . However, the use of these
simple weights would also alter the simplicity of the null covariance matrix

∑
0,
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and computation of the associated test statistic would be much more difficult
than is the case for SM (7.52). Other weighting schemes have been considered
by Benard and van Elteren (1953) and Brunden and Mohberg (1976).

64. Derivation of the Distribution of SM under H0 (No-Ties Case). The null distribu-
tion of SM (7.52) can be obtained by using the fact that under H0 (7.2), all possi-
ble s1!s2! . . . sk ! rank configurations for the within-blocks ranks of the observed
data are equally likely. We would simply compute the value of SM for each
of these s1!s2! . . . sk ! block rank configurations and then tabulate the collective
distribution of the values. Since the specifics of generating such a null distribu-
tion for SM are virtually identical with those for the Durbin–Skillings–Mack
statistic D (7.43) for balanced incomplete block designs, the reader is referred
to Comment 49 for illustration of the details of the process.

For a given arbitrary incomplete block design with incidence matrix
obs.mat, the R command cSkilMack(α, obs.mat) can be used to find the
available upper-tail critical values smα for possible values of SM . The incidence
matrix is an n × k matrix of ones and zeroes, which indicate where the data are
observed and unobserved, respectively. For a given available significance level
α, the critical value smα then corresponds to P0(SM ≥ smα) = α and is given
by cSkilMack(α, obs.mat) = smα . Thus, for example, for k = 3, n = 5, all
cij = 1 except for c23 = c41 = c52 = 0, the incidence matris is given by

obs.mat =

⎡⎢⎢⎢⎢⎣
1 1 1
1 1 0
1 1 1
0 1 1
1 0 1

⎤⎥⎥⎥⎥⎦
and we find cSkilMack(.0208, obs.mat) = sm.0208 = 6.6347, so that
P0(SM ≥ 6.6347) = .0208 for this missing data configuration.

65. Large-Sample Approximation. Let A be the vector defined in (7.49). Since each
Aj is a weighted sum of centered ranks, it is not surprising (see Skillings and
Mack (l981) for more details) that a properly standardized version of A has an
asymptotic (n tending to infinity) (k − 1)-variate normal distribution with mean
vector 0 = (0, . . . , 0) and covariance matrix

∑
0 (7.50) when the null hypothesis

H0 is true and λqt > 0, for every q �= t = 1, . . . , k . (Note once again that A does
not include Ak , because Ak can be expressed as a weighted linear combination of
A1, . . . , Ak−1. This is the reason that the asymptotic normal distribution is (k −
1)-variate and not k -variate.) Since the test statistic SM (7.52) is a quadratic form
in the variables A1, . . . , Ak−1, it is therefore quite natural that SM has an asymp-
totic (n tending to infinity) chi-square distribution with k − 1 degrees of freedom
when the null hypothesis H0 is true and λqt > 0, for every q �= t = 1, . . . , k .

66. Exact Conditional Null Distribution of SM with Ties among the Observed X
Values within Blocks. To have a test with exact significance level even in
the presence of tied X ’s within some of the blocks, we need to consider all
s1!s2! . . . sk ! block rank configurations for the observed data, where now these
within-blocks ranks are obtained using average ranks to break ties. As in
Comment 64, it still follows that under H0 each of the s1!s2! . . . sk ! observed
block rank configurations (now with these tied ranks) is equally likely. For
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each such configuration, the value of SM (7.52) is computed and the results are
tabulated. Since the specifics of generating such a conditional null distribution
for SM in the case of tied within-blocks observations are virtually identical
with those for the case of tied observations with the Durbin–Skillings–Mack
statistic D (7.43) for balanced incomplete block designs, the reader is referred
to Comment 51 for illustration of the details of the process.

67. Settings Where the Chi-Square Approximation Is Not Applicable. We note
that the sole condition (other than the number of blocks becoming large)
for the chi-square approximation to be applicable is that each of the λqt ’s,
q �= t = 1, . . . , k , must be positive. In settings where at least one of the λqt ’s
is zero, the approximate procedure (7.54) is not applicable. For such cases,
one could still use procedure (7.53) by generating the (exact or simulated) null
distribution of SM (7.52) and obtaining the appropriate critical values. On the
other hand, if λqt = 0 for a particular pair of treatments q and t (so that q and
t never appear together in a block), then procedure (7.53) would not necessarily
be effective in testing H0 (7.2) even when τq and τt are quite different.

68. Historical Development. The test procedures (7.53) and (7.54) were proposed
and studied by Skillings and Mack (1981). They provided some exact null
distribution critical values for the special case of BIBDs (see Section 7.6)
and for a second special case where we are only a single observation short of
having complete block data.

Properties

1. Asymptotic Chi-Squaredness. See Skillings and Mack (1981).

Problems

74. In the data on percent reduction in average wind speed due to shelterbelts discussed in Prob-
lem 19, the month of November was omitted from the data in Table 7.7 because the percent
reduction observation at 20 m was missing. In Table 7.16, we again present these data with
the month of November included.

Table 7.16 Percent Reduction in Average Wind Speed at
Dambatta, 1980/81

Leeward Distance from Shelterbelt m

Month 20 40 100 150 200

January 22.1 20.7 15.4 12.3 6.9
February 19.2 18.7 14.9 9.3 6.5
March 21.5 21.9 14.3 9.9 7.1
April 21.5 21.2 11.1 9.4 6.2
May 21.3 20.9 11.2 9.4 7.7
June 20.9 19.6 16.9 11.6 7.0
August 19.3 18.7 14.4 12.5 7.0
September 20.1 19.6 15.6 12.6 7.5
October 23.7 20.4 14.6 12.4 8.5
November 19.5 18.4 13.8 8.4 —

Source: J. E. Ujah and K. B. Adeoye (1984).
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Table 7.17 Assembly Times (min)

Assembly Methods

Workers A B C D

1 3.2 4.1 3.8 4.2
2 3.1 3.9 3.4 4.0
3 4.3 3.5 4.6 4.8
4 3.5 3.6 3.9 4.0
5 3.6 4.2 3.7 3.9
6 4.5 4.7 3.7 —
7 — 4.2 3.4 —
8 4.3 4.6 4.4 4.9
9 3.5 — 3.7 3.9

Source: J. H. Skillings and G. A. Mack (1981).

Use the Skillings–Mack procedure (7.53) to test the hypothesis that there is a difference
in percent reduction in average wind speed over the five leeward distances from a shelterbelt.
(Note that the conclusion of the Skillings–Mack procedure applied to these data is not direc-
tional, as was the case with the decision in Problem 19 using the Page ordered alternatives
procedure and the randomized complete design data without the month of November. A cor-
responding ordered alternatives analog to the Skillings–Mack procedure for arbitrary missing
data is not available in the literature.)

75. Skillings and Mack (1981) consider the experiment evaluating four methods of assembling a
product, where the blocking factor corresponds to the individual assembly workers. The data
for this experiment are presented in Table 7.17, where the observations are assembly times in
minutes. The missing observations are due to machinery breakdowns or employee absenteeism.
Use these data to assess whether there are any differences among the assembly methods with
regard to median time for assembly of the product.

76. Verify that expression (7.55) is an alternative way to compute the statistic SM (7.52) when
only a single treatment has missing data.

77. Consider Table 7.18, which gives a subset of the Rounding-first-base data in Table 7.1 obtained
by Woodward (1970) in his study of the best method of rounding first base to minimize the
time to second base. (The missing observations might be due to injury during one of the
other runs.) Use these data to assess whether there are any differences among median times
to second base for these three ways of rounding first base.

78. We noted that the value of the test statistic SM (7.52) does not depend on the form of the
particular generalized inverse

∑−
0 used in the calculation. Illustrate this fact by computing SM

using two different generalized inverses for a setting where the rank of
∑

0 is not k − 1.

79. Consider Table 7.19, which gives a subset of the serum CPK activity data in Table 7.3 obtained
by Goode and Meltzer (1976) in their study of the effect of isometric exercise on serum CPK
levels. Use these data to assess whether there are any differences in median serum CPK activity
(in mU/l) for the three measurement periods.

80. Verify for the data in Table 7.15 of Example 7.8 that the value of SM = 13.287 would also
be obtained if we take A to be (A1, A3) or (A2, A3) and make the corresponding changes in
the definition of the null covariance matrix

∑
0 (7.50).

81. Verify that the Skillings–Mack statistic SM (7.52) simplifies to the closed-form expression for
the Friedman statistic S (7.5) when we have data from a randomized complete block design.

82. Verify that the Skillings–Mack statistic SM (7.52) simplifies to the closed-form expression for
the Durbin–Skillings–Mack statistic D (7.43) when we have data from a balanced incomplete
block design.
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Table 7.18 Rounding-First-Base Times

Methods

Players Round out Narrow angle Wide angle

1 5.40 5.50 5.55
2 5.85 5.70 5.75
3 5.20 5.60 5.50
4 5.55 5.50 —
5 5.90 5.85 5.70
6 5.45 5.55 5.60
7 5.40 5.40 5.35
8 — 5.50 5.35
9 5.25 5.15 5.00

10 5.85 — 5.70
11 5.25 5.20 5.10
12 5.65 5.55 —
13 5.60 5.35 5.45
14 5.05 — 4.95
15 5.50 5.50 5.40
16 — 5.55 5.50
17 5.55 5.55 —
18 5.45 5.50 5.55
19 5.50 5.45 5.25
20 5.65 5.60 5.40
21 5.70 5.65 5.55
22 6.30 6.30 6.25

Source: W. F. Woodward (1970).

Table 7.19 Effect of Isometric Exercise on Serum Creatine
Phosphokinase (CPK) Activity (mU/l) in Psychotic Patients

19-h 42-h
Subject Preexercise Postexercise Postexercise

1 27 101 82
2 30 112 50
3 24 26 68
4 54 89 —
5 21 30 49
6 36 41 48
7 36 29 46
8 16 20 8
9 21 26 25

Source: D. J. Goode and H. Y. Meltzer (1976).

83. Consider the setting corresponding to k = 4 and n = 10 where we have only a single missing
observation in one of the blocks. Compare the critical region for the exact level α = .0501
test of H0 (7.2) based on SM with the critical region for the corresponding nominal level
α = .0501 test based on the large-sample approximation.

84. Consider the setting corresponding to k = 6 and n = 5 where we have only a single missing
observation in one of the blocks. Compare the critical region for the exact level α = .0499
test of H0 (7.2) based on SM with the critical region for the corresponding nominal level
α = .0499 test based on the large-sample approximation.
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85. Consider the incomplete block data setting corresponding to k = 3, n = 3, s1 = s2 = 3, and
s3 = 2. Obtain the form of the exact null H0 distribution of SM (7.52) for the case of no-tied
observations.

86. Consider the incomplete block data setting corresponding to k = 3, n = 3, s1 = s2 = 3, and
s3 = 2. Suppose the three observations in block 2 are all tied at a single value, but there
are no tied observations in any of the other blocks. Obtain the conditional exact probability
distribution of SM (7.52) under H0 (7.2) when average ranks are used to break this set of
within-block ties. Compare this conditional null distribution of SM with the null distribution
of SM obtained in Problem 85 when there are no ties.

REPLICATIONS—TWO-WAY LAYOUT WITH AT LEAST
ONE OBSERVATION FOR EVERY TREATMENT–BLOCK
COMBINATION

It is often the case in two-way layout settings that we have more than one observation for
some of the treatment–block combinations. These multiple observations in a given cell
are referred to as replications for that treatment–block combination. Of course, permitting
such replications opens the possibility of a much wider variety of data configurations
for our two-way layout. There could be some cells with no observations, some with
one observation, and some with multiple observations. In the next two sections we
emphasize nonparametric procedures for general alternatives in the setting where we have
a common, equal number c > 1 of replications for every treatment–block combination.
Direct extensions of these general alternatives procedures to less restrictive settings where
the number of replications need not be equal but there are no empty cells are discussed
in Comment 77. Nonparametric procedures that are valid for the most general two-way
layout settings where there may be a mix of cells with more than one observation (i.e.,
replications), cells with a single observation, and empty cells with no observations are
discussed in Comment 78 for the cases of general and ordered alternatives.

In Section 7.9 we present a distribution-free hypothesis test for general alternatives
when we have an equal number (>1) of replications for every treatment–block combi-
nation. In Section 7.10 we discuss an all-treatments multiple comparison procedure for
the same setting.

Throughout these two sections, we continue to operate under the general conditions
of Assumptions A1–A3. However, in Sections 7.9 and 7.10, we impose the additional
constraint that each cij is equal to c(>1) and, thus, that

N =
n∑

i=1

k∑
j=1

cij = nkc.

7.9 A DISTRIBUTION-FREE TEST FOR GENERAL
ALTERNATIVES IN A RANDOMIZED BLOCK DESIGN WITH
AN EQUAL NUMBER C(>1) OF REPLICATIONS PER
TREATMENT–BLOCK COMBINATION (MACK–SKILLINGS)

In this section we present a procedure for testing H0 (7.2) against the general alternatives
H1 (7.3) for block data where we have an equal number c > 1 replications for each of
the treatment–block combinations. Here, the total number of observations is N = nkc.
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Procedure

To compute the Mack–Skillings statistic for this equal replications setting, we first rank
the observations from least to greatest separately within each of the n blocks. Let rijq be
the within-block rank of Xijq (the q th replication from the j th treatment in the i th block)
among the kc total observations present in the i th block, for i = 1, . . . , n . Set

Sj =
n∑

i=1

⎡⎣ c∑
q=1

rijq/c

⎤⎦ , for j = 1, . . . , k . (7.56)

Thus, Sj is the sum (across blocks) of the cellwise averages of the within-blocks ranks
assigned to the c observations from treatment j , for j = 1, . . . , k . The Mack–Skillings
statistic for equal replications is then given by

MS =
[

12

k(N + n)

] k∑
j=1

[
Sj − N + n

2

]2

,

=
[

12

k(N + n)

]⎧⎨⎩
k∑

j=1

S 2
j

⎫⎬⎭− 3(N + n), (7.57)

where (N + n)/2n = (kc + 1)/2 =∑k
j=1

∑c
q=1 rijq/kc is the average within-blocks rank

assigned for each of the n blocks. It follows that n(N + n)/2n = (N + n)/2 is the
expected sum (across blocks) of the cellwise averages for each of the k treatments when
H0 (7.2) is true; that is, (N + n)/2 is the expected value of Sj , for each j = 1, . . . , k ,
when the null hypothesis H0 is true.

To test
H0 : [τ1 = · · · = τk ]

versus the general alternative

H1 : [τ1, . . . , τk not all equal],

at the α level of significance,

Reject H0 if MS ≥ msα; otherwise do not reject, (7.58)

where the constant msα is chosen to make the type I error probability equal to α. The
constant msα is the upper α percentile for the null (τ1 = · · · = τk ) distribution of MS.
Comment 73 explains how to obtain the critical values msα for k treatments, n blocks,
c replications for each treatment–block combination, and available values of α.

Large-Sample Approximation

When H0 (7.2) is true, the statistic MS has, as the common number of observations
on each treatment, nc, tends to infinity, an asymptotic chi-square (χ2) distribution with
k − 1 degrees of freedom. (See Comment 74 for indications of the proof.) The chi-square
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approximation for procedure (7.58) is

Reject H0 if MS ≥ χ2
k−1,α; otherwise do not reject, (7.59)

where χ2
k−1,α is the upper α percentile of a chi-square distribution with k − 1 degrees of

freedom. To find χ2
k−1,α , we use the R command qchisq(1 − α, k − 1). For example, to

find χ2
6,.025, we apply qchisq(.975, 6) and obtain χ2

6,.025 = 14.45.
Mack and Skillings (1980) have pointed out that this chi-square approximation is

adequate when the significance level α is at least .05 and the number of replications c is
at least 4, even though it is slightly conservative when the level nears .05. However, for
significance levels as low as .01, they note that the conservative nature of the approximate
procedure (7.59) can be somewhat severe unless the common number of replications c is
rather large. Whenever possible, they recommend the use of the exact procedure (7.58)
for such small significance levels.

Ties

If there are ties among the X observations within any of the blocks, use average ranks to
break the ties and compute the individual sums of cellwise averages of the within-blocks
ranks S1, . . . , Sk . In such cases, the significance level associated with procedure (7.58)
is only approximately equal to α. (See Comment 75 for discussion of how to construct
an exact conditionally distribution-free test of H0 even when there are tied observations
within some of the blocks.)

EXAMPLE 7.9 Determination of Niacin in Bran Flakes.

In a study to investigate the precision and homogeneity of a procedure for assessing the
amount of niacin in bran flakes, Campbell and Pelletier (1962) prepared homogenized
samples of bran flakes enriched with 0, 4, or 8 mg niacin per 100 g of cereal. Portions of
the homogenized samples were sent to different laboratories, which were asked to carry

Table 7.20 Amount of Niacin in Enriched Bran Flakes

Amount of niacin enrichment
(milligrams per 100 g bran flakes)

Laboratory 0 4 8

1 7.58 (3) 11.63 (7) 15.00 (2)
7.87 (8) 11.87 (11) 15.92 (9)
7.71 (6) 11.40 (3) 15.58 (4)

2 8.00 (9.5) 12.20 (12) 16.60 (12)
8.27 (12) 11.70 (8.5) 16.40 (11)
8.00 (9.5) 11.80 (10) 15.90 (7)

3 7.60 (4) 11.04 (2) 15.87 (6)
7.30 (1) 11.50 (5.5) 15.91 (8)
7.82 (7) 11.49 (4) 16.28 (10)

4 8.03 (11) 11.50 (5.5) 15.10 (3)
7.35 (2) 10.10 (1) 14.80 (1)
7.66 (5) 11.70 (8.5) 15.70 (5)

Source: J. A. Campbell and O. Pelletier (1962).
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out the specified procedure for each of three separate samples. The resulting data (in
milligrams per 100 g bran flakes) for a subset (4 out of 12) of the laboratories included
in the study are presented in Table 7.20.

Of primary interest here is the precision of the laboratory procedure for determining
niacin content in bran flakes. The actual amount of niacin enrichment in the prepared bran
flakes serves only as a “nuisance” blocking factor in our evaluation of the consistency of
the results across the four laboratories for which data are included in Table 7.20. Hence,
we have data from a two-way layout with k = 4 treatments (laboratories), n = 3 blocks
(amounts of niacin enrichment), and c = 3 replications (individual bran flake samples)
per laboratory/enrichment combination. For the purpose of illustration, we consider the
significance level α = .0501. Applying the R command cMackSkil(α,k,n,c) with
k = 4, n = 3, and c = 3, we see that cMackSkil(.0501,4,3,3) = ms.0501 = 7.479
and procedure (7.58) becomes

Reject H0 if MS ≥ 7.479.

Now, we illustrate the computations leading to the sample value of MS. The numbers
in parentheses after the data values in Table 7.20 are the within-enrichment-levels (i.e.,
blocks) ranks (using average ranks to break ties) of the niacin content measurements
obtained from the four laboratories. Using these block ranks, we obtain the following
sums of cellwise averages for the four laboratories:

S1 = 3 + 8 + 6 + 7 + 11 + 3 + 2 + 9 + 4

3
= 17.67,

S2 = 9.5 + 12 + 9.5 + 12 + 8.5 + 10 + 12 + 11 + 7

3
= 30.5,

S3 = 4 + 1 + 7 + 2 + 5.5 + 4 + 6 + 8 + 10

3
= 15.83,

and
S4 = 11 + 2 + 5 + 5.5 + 1 + 8.5 + 3 + 1 + 5

3
= 14.

Hence, with k = 4, n = 3, and N = 36, we find from (7.57) that

MS =
[

12

4(36 + 3)

]
{(17.67)2 + (30.5)2 + (15.83)2 + (14)2} − 3(36 + 3)

=
[

1

13

]
{312.23 + 930.25 + 250.59 + 196} − 117 = 12.93.

Since the observed value of MS is greater than the critical value 7.479, we can reject
H0 at the α = .0501 level, providing rather strong evidence that the studied process for
assessing niacin content in bran flakes does not produce consistent results across a variety
of laboratories and is therefore not reliable as an evaluative procedure. In fact, from the
observed value of MS = 12.93, we can use the R command pMackSkil(niacin) to find
that P0(MS ≥ 12.93) = pMackSkil(niacin) = .0023. Thus, the smallest significance
level at which we can reject H0 in favor of H1 with the observed value of the test
statistic MS = 12.93 is .0023.

We should note in passing that there also appears to be an even more basic prob-
lem with this studied procedure for assessing niacin content in bran flakes and that is
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the accuracy (in addition to the lack of reproducibility) of the numerical values of the
measurements. For example, for those samples enriched with 4 mg niacin per 100 g bran
flakes, the values obtained by applying this procedure to the sample bran flakes ranged
from 10.10 to 12.20 mg per 100 g bran flakes, well over the preestablished niacin con-
tent. (Similar comments apply to the 0- and 8-mg enrichment samples.) This clearly
indicates a rather severe basic calibration problem with the assessment procedure, in
addition to the lack of portability across laboratories detected by our application of the
Mack–Skillings procedure to these data.

Comments

69. More General Setting. We could replace Assumptions A1–A3 and H0 (7.2) with
the more general null hypothesis that all possible [(ck)!]n configurations for the
permutations of the within-blocks ranks (rijq ’s) are equally likely. Procedure
(7.58) remains distribution-free for this more general null hypothesis.

70. Motivation for the Test. Under Assumptions A1–A3 and H0 (7.2), each of
the block rank vectors R∗

i = (ri11, . . . , ri1c , ri21, . . . , ri2c , . . . , rik1, . . . , rikc),
i = 1, . . . , n , has a uniform distribution over the set of all (ck )! permutations
of the vector of integers (1, 2, . . . , ck ) and this is true, independently, for
each of the n blocks. It is then the case that E0(rijq ) = (ck + 1)/2 for every
i = 1, . . . , n; j = 1, . . . , k ; and q = 1, . . . , c. It follows from (7.56) that
E0(Sj ) = nc(ck + 1)/2c = (nck + n)/2 = (N + n)/2. Since the test statistic
MS (7.57) is a constant times a sum of squared differences between the
observed treatment sums of cellwise average ranks, Sj , and their common null
expected value, E0(Sj ) = (N + n)/2, small values of MS represent agreement
with H0 (7.2). When the τ ’s are not all equal, we would expect a portion of
the associated treatment sums of cellwise average ranks, Sj , to differ from
their common null expectation, (N + n)/2, with some tending to be smaller
and some larger. The net result (after squaring the observed differences to
obtain the [Sj − (N + n)/2]2 terms) would be a large value of MS. This quite
naturally suggests rejecting H0 in favor of H1 (7.3) for larger values of MS and
motivates procedures (7.58) and (7.59).

71. Special Case of c = 1. When we have a single observation for every treat-
ment–block combination (i.e., c = 1), we are dealing with data from a complete
randomized block design. In this setting, the Mack–Skillings statistic MS (7.57)
is equivalent to the Friedman statistic S (7.5). Thus, the Mack–Skillings proce-
dures (7.58) and (7.59) represent natural extensions of the Friedman procedures
(7.6) and (7.7), respectively, to the case of an equal number c > 1 of replications
per cell.

72. Assumptions. We emphasize that Assumption A3 stipulates that the nk cell dis-
tributions Fij can differ at most in their locations (medians) and that these
location differences (if any) must be a result of additive block and/or treat-
ment effects (i.e., there is no interaction between the treatment and block fac-
tors). In particular, Assumption A3 requires that the ns underlying distributions
belong to the same general family (F ) and that they do not differ in scale
parameters (variability). We do note, however, that the test procedure (7.58)
remains distribution-free under the less restrictive setting where Assumption A3
is replaced by the weaker condition Assumption A3′ stated in Comment 43.
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Assumption A3 then corresponds to Assumption A3′ with the additional condi-
tion that F1 ≡ · · · ≡ Fn . (Also see Comment 69.)

73. Derivation of the Distribution of MS under H0 (No-Ties Case). The null distri-
bution of MS (7.57) can be obtained by using the fact that under H0 (7.2), all
possible [(ck)!]n configurations for the permutations of the within-blocks ranks
(rijq ’s) are equally likely. Thus, to obtain the exact null distribution of MS, we
compute its value for each of these [(ck)!]n block rank configurations and then
tabulate the collected outcomes. We must point out, of course, that the number
[(ck)!]n of configurations for which we need to compute the value of MS can get
large rather quickly, as either k or c is moderately increased. Since the specifics
of generating such a null distribution for MS are virtually identical with those
for the Durbin–Skillings–Mack statistic D (7.43) for balanced incomplete block
designs, the reader is referred to Comment 49 for illustration of the details of
the process.

For a given number of treatments k , blocks n , and c replications for each
treatment–block combination, the R command cMackSkil(α,k,n,c) can be
used to find the available upper-tail critical values msα for possible values of MS .
For a given available significance level α, the critical value msα then corresponds
to P0(MS ≥ msα) = α and is given by cMackSkil(α,k,n,c) = msα . Thus,
for example, for k = 4, n = 4, and c = 3, we have P0(MS ≥ 7.667) = .0502,
so that ms.0502 = cMackSkil(.0502,4,4,3) = 7.667 for k = 4, n = 4, and
c = 3.

74. Large-Sample Approximation. Define the centered treatment sums of cellwise
average ranks S ∗

j = Sj − E0(Sj ) = Sj − (N + n)/2, for j = 1, . . . , k , and set
S ∗ = (S ∗

1 , . . . , S ∗
k−1). Since each Sj is an average, it is not surprising (see Mack

and Skillings (1980) for more details) that a properly standardized version of
S ∗ has an asymptotic (nc tending to infinity) (k − 1)-variate normal distribution
with mean vector 0 = (0, . . . , 0) and appropriate covariance matrix �∗ when the
null hypothesis H0 is true. (Note that S ∗ does not include S ∗

k , because S ∗
k can

be expressed as a weighted linear combination of S ∗
1 , . . . , S ∗

k−1. This is the rea-
son that the asymptotic normal distribution is (k − 1)-variate and not k -variate.)
Since the test statistic MS (7.57) is a quadratic form in the variables (S ∗

1 , . . . ,
S ∗

k−1), it is therefore quite natural that MS has an asymptotic (nc tending to
infinity) chi-square distribution with k − 1 degrees of freedom when the null
hypothesis H0 is true.

75. Exact Conditional Null Distribution of MS with Ties among the X Values within
Blocks. To have a test with exact significance level even in the presence of
tied X ’s within some of the blocks, we need to consider all [(ck)!]n block rank
configurations for the observed data, where now these within-blocks ranks are
obtained using average ranks to break ties. As in Comment 73, it still follows
that under H0 each of the [(ck)!]n observed block rank configurations (now
with these tied ranks) is equally likely. For each such configuration, the value
of MS (7.57) is computed and the results are tabulated. Since the specifics
of generating such a conditional null distribution for MS in the case of tied
within-blocks observations are virtually identical with those for the case of tied
observations with the Durbin–Skillings–Mack statistic D (7.43) for balanced
incomplete block designs, the reader is referred to Comment 51 for illustration
of the details of the process.
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76. Simple Competitor Procedure when the Number of Replications Is the Same for
Every Cell. As an alternative to the Mack–Skillings procedure (7.58), we could
first compute the median of the c replications separately in each of the nk
cells and then apply either the Friedman procedure (7.6) or the Page procedure
(7.11), whichever is appropriate for the alternatives of interest, to these nk cell
medians (which now represent data from a complete randomized block design).
In general, this approach could result in substantial loss of information, especially
when the number of replications per cell, c, is large. However, it is simple and
does provide the only available nonparametric procedure for dealing specifically
with ordered alternatives when we have an equal number (>1) of replications per
cell. (We note, in passing, that any appropriate measure of central tendency, such
as the cell means or the medians of the Walsh averages (see Comment 3.17), for
the individual cell data, could be used instead of the cell medians to summarize
the data prior to application of the Friedman or the Page procedure.)

77. Extension to Arbitrary Replication (≥ 1) Configurations. We have described the
Mack–Skillings procedure in detail for the setting where we have the same
number of replications c (≥ 1) for each of the treatment–block combinations.
However, in their original work, Mack and Skillings (1980) proposed a more
general test procedure that is appropriate for any two-way layout setting for
which we have at least one replication for every treatment–block combination
(i.e., there are no empty cells). We now present their procedure for this more
general setting where the only stipulation is that cij > 0 for every i = 1, . . . , n
and j = 1, . . . , k .

For i = 1, . . . , n , let qi =∑k
j=1 cij be the total number of observations

present in the i th block. Once again we rank the observations from least to
greatest within each of the blocks and let riju denote the rank of Xiju within the
qi observations present in the i th block, for u = 1, . . . , cij ; i = 1, . . . , n; and
j = 1, . . . , k . For each treatment, compute the sum of cellwise weighted average
ranks

Vj =
n∑

i=1

cij∑
u=1

riju

qi
, j = 1, . . . , k . (7.60)

Define the vector

V = (V1 − E0[V1], . . . , Vk−1 − E0[Vk−1])

=
(

V1 −
n∑

i=1

[
ci1(qi + 1)

2qi

]
, . . . , Vk−1 −

n∑
i=1

[
ci ,k−1(qi + 1)

2qi

])
. (7.61)

Thus, the components of V are the sums of cellwise weighted average ranks
centered about their expected values under H0. (Without the loss of generality,
we have chosen to omit the centered Vk from the vector V . The Vj ’s are linearly
dependent, because a weighted linear combination of all k of them is a constant.
We could omit any one of the Vj ’s in the definition of V and the procedure
we now describe would lead to the same value of the test statistic. For further
discussion, see Mack and Skillings (1980).)
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The covariance matrix for V under H0 (7.2) has the form
∑

V ,0 = ((σs ,t )),
where

σs ,t =
n∑

i=1

[
cis(qi − cis)(qi + 1)

12q2
i

]
, for s = t = 1, . . . , k − 1

= −
n∑

i=1

[
cis cit (qi + 1)

12q2
i

]
, for s �= t = 1, . . . , k − 1. (7.62)

The rank of the matrix �V ,0 is k − 1. Letting �−1
V ,0 denote the inverse of �V ,0,

the Mack–Skillings test statistic for this general setting of unequal, but positive,
numbers of replications in the treatment–block combinations, is given by

MSg = V �−1
V ,0V ′. (7.63)

To test
H0 : [τ1 = · · · = τk ]

versus the general alternative

H1 : [τ1, τ2, . . . , τk not all equal],

at the α level of significance, the Mack–Skillings general procedure is then to

Reject H0 if MSg ≥ msg ,α; otherwise do not reject, (7.64)

where the constant msg ,α is chosen to make the type I error probability equal
to α.

The critical values msg ,α are available in the literature only for the setting
where we have an equal number, c, of replications in each cell, in which case
the general Mack–Skillings test procedure (7.64) is equivalent to the equal
replications version given in (7.58). However, when H0 (7.2) is true, the general
form statistic MSg , has, as N tends to infinity in such a way that cij /N tends
to ρij > 0 for every i = 1, . . . , n and j = 1, . . . , k , an asymptotic chi-square
(χ2) distribution with k − 1 degrees of freedom. Thus, when N is large, the
chi-square approximation for the general Mack–Skillings procedure (7.64) is

Reject H0 if MSg ≥ χ2
k−1,α; otherwise do not reject, (7.65)

where χ2
k−1,α is the upper α percentile of a chi-square distribution with k − 1

degrees of freedom.

78. Competitor Procedures Applicable for Most General Two-Way Layout Settings
Where There Are Both Replications and Empty Cells. Thus far in this chapter we
have discussed procedures that are appropriate either for settings where we have
0 or 1 observation for every treatment–block combination or for settings where
we have at least one observation in every cell. None of these procedures are
appropriate for the most general settings that represent a combination of these
two structures, namely, those data sets where we have replications (cij > 1) for



362 Chapter 7 The Two-Way Layout

some treatment–block combinations and no observations (cij = 0) for others. We
briefly discuss now two test procedures for such general two-way layout settings,
one designed for general alternatives to H0 (7.2) and the second specifically
oriented toward detecting ordered alternatives.

Let ki be the number of treatments in the i th block for which cij > 0, for
i = 1, . . . , n . (Once again, we discard any block i for which ki = 1, as such a
block contains no information relative to possible differences in the treatment
effects. Notationally, then, n represents the number of blocks remaining after
discarding blocks with observations on only a single treatment.)

General Alternatives. We first compute the one-way layout Kruskal–Wallis
statistic H (6.5) separately in each of the n blocks. Letting Hi denote this
Kruskal–Wallis statistic for the i th block, i = 1, . . . , n , the statistic considered
by Mack (1981) for this most general two-way layout setting is given by

Htot =
n∑

i=1

Hi . (7.66)

The level α test of H0 (7.2) versus the general alternatives H1 (7.3) studied by
Mack (1981) is

Reject H0 if Htot ≥ h∗
α; otherwise do not reject, (7.67)

where the constant h∗
α is chosen to make the type I error probability equal

to α. Values of h∗
α are available in Mack (1981) for k = 3, n = 2, 3, and all

combinations of replications 0 ≤ cij ≤ 3, as well as for k = 3, n = 4, 5, and all
combinations of replications 0 ≤ cij ≤ 2. Additional values of h∗

α can be found
in DeKroon and Van der Laan (1981) for α = .01, .05, and various combi-
nations of k , n , and equal number of replications c in the ranges 2 ≤ k ≤ 4,
1 ≤ n ≤ 10, and 2 ≤ c ≤ 4. (We note, in passing, that procedure (7.67) can be
particularly sensitive to a large degree of interaction between the treatment and
the block factors. In the presence of such extensive interaction, it is possible that
a rejection of H0 with procedure (7.67) could be a direct consequence of this
interaction, rather than because of any significant differences in the treatment
effects τ1, . . . , τk .)

When H0 (7.2) is true, the statistic Htot has, as min (nonzero cij , i =
1, . . . , n; j = 1, . . . , k ) tends to infinity, an asymptotic chi-square (χ2) distri-
bution with d = (k1 + k2 + · · · + kn − n) degrees of freedom (see Mack (1981)
for details). Thus, when the minimum nonzero cij is large, the chi-square approx-
imation for procedure (7.67) is

Reject H0 if Htot ≥ χ2
d ,α; otherwise do not reject, (7.68)

where χ2
d ,α is the upper α percentile point of a chi-square distribution with d

degrees of freedom.
Ordered Alternatives. If we are interested in ordered alternatives, H2 (7.9),

we first compute the one-way layout Jonckheere–Terpstra statistic J (6.13) sep-
arately in each of the n blocks. Letting Ji denote this Jonckheere–Terpstra
statistic for the i th block, i = 1, . . . , n , the statistic proposed by Skillings and
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Wolfe (1977, 1978) for this most general two-way layout ordered alternatives
setting is given by

Jtot =
n∑

i=1

Ji . (7.69)

The level α test of H0 (7.2) versus the ordered alternatives H2 (7.9) suggested
by Skillings and Wolfe (1977, 1978) is

Reject H0 if Jtot ≥ j ∗
α ; otherwise do not reject, (7.70)

where the constant j ∗
α is chosen to make the type I error probability equal

to α. Values of j ∗
α are available in Skillings (1980) for k = 2(1)6, n = 2(1)5

and selected configurations of the cij ’s such that cij = Ci , for i = 1, . . . , n and
j = 1, . . . , k (i.e., within a given block, each treatment has the same number
of observations Ci , but C1, C2, . . ., Cn need not all be equal). (We note that
procedure (7.70) does not have the same sensitivity to the presence of extensive
interaction as does the general alternatives procedure (7.67). Rejection of H0

with procedure (7.70) will always be indicative of the presence of an ordered
structure on the treatment effects τ1, . . . , τk .)

When H0 (7.2) is true, the standardized form

J ∗
tot = Jtot − E0(Jtot)

[var0(Jtot)]1/2
(7.71)

has, as min (nonzero cij , i = 1, . . . , n; j = 1, . . . , k ) tends to infinity, an asymp-
totic N (0, 1) distribution (see Skillings and Wolfe (1977, 1978) for details),
where

E0(Jtot) =
∑n

i=1

[
q2

i −∑k
j=1 c2

ij

]
4

(7.72)

and

var0(Jtot) =
∑n

i=1

[
q2

i (2qi + 3) −∑k
j=1 c2

ij (2cij + 3)
]

72
, (7.73)

are the expected value and variance, respectively, of Jtot (7.69) under the null
hypothesis H0 and qi = ci1 + · · · + cik is the total number of observations
present in the i th block, i = 1, . . . , n . Thus, when the minimum nonzero cij is
large, the normal theory approximation for procedure (7.70) is

Reject H0 if J ∗
tot ≥ zα; otherwise do not reject. (7.74)

79. Historical Development. Mack and Skillings (1980) proposed and studied a gen-
eral test procedure for an arbitrary two-way layout setting where we have at least
one observation for every treatment–block combination (see Comment 77). For
the special case of an equal number of replications, c, in every cell, their general
test procedure simplifies to the expression in (7.58) based on the test statistic
MS. They also provided some exact null distribution critical values smα in this
equal replications setting for a variety of combinations of k , n , and c.
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Properties

1. Asymptotic Chi-Squaredness. See Mack and Skillings (1980).

2. Efficiency. See Mack and Skillings (1980) and Section 7.16.

Problems

87. Rice (1988) considered an experiment to determine whether two forms of iron, Fe2+ and
Fe3+, are retained differently, with the goal of comparing their potentials for use as dietary
supplements. A total of 108 mice were randomly divided into six groups of 18 mice each.
Three of these groups were given Fe2+ in the different concentrations, 10.2, 1.2, and .3 mM,
and three groups were given Fe3+ in the same concentrations. The iron was radioactively
labeled so that a counter could be used to accurately measure the initial amount given, and
it was administered orally to the mice. At a later time, a second count was obtained on each
mouse, and the percentage of iron retained was recorded. The data in Table 7.21 are the
percentages retained by each of the 108 mice.

Use the Mack–Skillings large-sample procedure (7.59) to test the hypothesis that there
is a difference across the concentrations studied between the two forms of iron Fe2+ and
Fe3+ in percentage iron retained.

88. Let Vj be as defined in expression (7.60), for j = 1, . . . , k . Show that

E0[Vj ] =
n∑

i=1

[
cij (qi + 1)

2qi

]
,

as noted in expression (7.61), where qi is the number of observations present in the i th block,
for i = 1, . . . , n .

Table 7.21 Percentage of Iron Retained

Form of iron

Concentration Fe2+ Fe3+

.3 millimolar 2.71 5.43 6.38 2.25 3.93 5.08
6.38 8.32 9.04 5.82 5.84 6.89
9.56 10.01 10.08 8.50 8.56 9.44

10.62 13.80 15.99 10.52 13.46 13.57
17.90 18.25 19.32 14.76 16.41 16.96
19.87 21.60 22.25 17.56 22.82 29.13

1.2 millimolar 4.04 4.16 4.42 2.20 2.93 3.08
4.93 5.49 5.77 3.49 4.11 4.95
5.86 6.28 6.97 5.16 5.54 5.68
7.06 7.78 9.23 6.25 7.25 7.90
9.34 9.91 13.46 8.85 11.96 15.54

18.40 23.89 26.39 15.89 18.30 18.59

10.2 millimolar 2.20 2.69 3.54 0.71 1.66 2.01
3.75 3.83 4.08 2.16 2.42 2.42
4.27 4.53 5.32 2.56 2.60 3.31
6.18 6.22 6.33 3.64 3.74 3.74
6.97 6.97 7.52 4.39 4.50 5.07
8.36 11.65 12.45 5.26 8.15 8.24

Source: J. A. Rice (1988).
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89. Show that for the special case of one replication per cell (i.e., c = 1), the Mack–Skillings
procedures (7.58) and (7.59) are equivalent to the Friedman procedures (7.6) and (7.7),
respectively. (See Comment 71.)

90. Anderson and McLean (1974) considered the data from an experiment measuring the strength
of a weld in steel bars. The two factors of interest in the experiment were the total time of
the automatic weld cycle and the distance the weld die travels during the automatic weld
cycle. Two weld-strength observations were collected at each combination of five different
weld cycle times and three different weld die travel distances (gage bar settings). These
weld-strength data are given in Table 7.22.

Use the Mack–Skillings procedure to test the hypothesis that weld cycle time has an
effect on the strength of a weld, at least over the weld die travel distances considered in the
study.

91. For the weld-strength data in Table 7.22, compute the median of the two observations in each
of the gage bar setting/weld cycle time combinations. Apply the Friedman procedure (7.6) to
the resulting medians to test the hypothesis that weld cycle time has an effect on the strength
of a weld, at least over the weld die travel distances in the study. Compare with the result
obtained in Problem 90. (See also Comment 76.)

92. Consider the Mack–Skillings statistic MSg (7.63) for the most general two-way layout set-
ting with at least one replication for every treatment–block combination, as discussed in
Comment 77. Show that the test procedure (7.64) based on MS g is equivalent to the equal
replications test procedure (7.58) based on MS (7.57) when, in fact, we have an equal number,
c, of replications for every treatment–block combination.

93. One method for the determination of coal acidity is based on the use of ethanolic NaOH. In an
effort to assess the effect of the ethanolic NaOH concentration on the obtained acidity values,
Sternhell (1958) studied three different NaOH concentrations (.404N, .626N, and .786N) in
conjunction with three different types of coal (Morwell, Yallourn, and Maddingley). The
data in Table 7.23 are the resulting acidity values determined under each of these three
concentration levels for two different samples from each type of coal.

Use the Mack–Skillings procedure to test the hypothesis that the NaOH concentration
has an effect on the measured coal acidity values, at least over the three types of coal included
in this study.

94. Consider the percentage retained iron data in Table 7.21. Test the hypothesis that the iron con-
centration affects the percentage iron retention, regardless of which form of iron is involved.

Table 7.22 Strength of Weld

Weld cycle times

Gage bar setting 1 2 3 4 5

1 10 12 13 17 21 30 18 16 17 21
2 15 19 14 12 30 38 15 11 14 12
3 10 8 12 9 10 5 14 15 19 11

Source: V. L. Anderson and R. A. McLean (1974).

Table 7.23 Coat Acidity Value

NaOH concentration
Type of coal .404N .626N .786N

Morwell 8.27 8.17 8.03 8.21 8.60 8.20
Yallourn 8.66 8.61 8.42 8.58 8.61 8.76
Maddingley 8.14 7.96 8.02 7.89 8.13 8.07

Source: S. Sternhell (1958).



366 Chapter 7 The Two-Way Layout

95. What is the maximum value for the Mack–Skillings statistic MS (7.57) when there are c
replications per cell? For what rank configuration is this maximum achieved?

96. Consider the setting corresponding to k = 4, n = 5, and c = 3 replications per cell. Compare
the critical region for the exact level α = .0100 test of H0 (7.2) based on MS with the
critical region for the corresponding nominal level α = .0100 test based on the large-sample
approximation.

97. Consider the setting corresponding to k = 2, n = 2, and c = 2 replications per cell. Obtain
the form of the exact null H0 distribution of MS (7.57) for the case of no-tied observations.

98. Consider the setting corresponding to k = 2, n = 2, and c = 2 replications per cell. Suppose
that one of the observations in the first cell (block 1 and treatment 1) is tied in value with
one of the observations in the second cell (block 1 and treatment 2). Obtain the conditional
exact probability distribution of MS (7.57) under H0 (7.2) when average ranks are used to
break this within-blocks tie. Compare this conditional null distribution of MS with the null
distribution of MS obtained in Problem 97 when there are no ties.

99. Consider the setting corresponding to k = 2, n = 2, and c = 2 replications per cell. Suppose
that one of the observations in the first cell (block 1 and treatment 1) is tied in value with the
other observation in the same cell. Obtain the conditional exact probability distribution of MS
(7.57) under H0 (7.2) when average ranks are used to break this within-cell tie. Compare this
conditional null distribution of MS with the null distributions of MS obtained in Problems 97
and 98 when there are no ties and ties between cells, respectively.

100. Consider the setting corresponding to k = 5, n = 4, and c = 4 replications per cell. Compare
the critical region for the exact level α = .0500 test of H0 (7.2) based on MS with the
critical region for the corresponding nominal level α = .0500 test based on the large-sample
approximation.

101. In a study to determine the effect of light on the release of luteinizing hormone (LH), Rice
(1988) compared data for male and female rats kept in constant light with similar animals
exposed to a regime of 14 h of light and 10 h of darkness. Five different dosages of a
luteinizing release factor (LRF) were considered in the study and the measurement obtained
from the animals was the level of LH (in nanograms per milliliter of serum) in blood samples
collected after exposure to one of the regimes in combination with one of the LRF dosages.
We consider data for the male rats only.

Sixty male rats were randomly allocated to the various experimental settings in such
a way that six rats were exposed to each of the 10 combinations of light regime and LRH
dosage. The LH level data for these 60 rats are given in Table 7.24.

Table 7.24 Serum Level of LH (in Nanograms per Milliliter of Serum)

Light regime

LRF dosage Constant light 14 h light/10 h dark

0 ng (control) 72 64 78 212 27 68
20 56 70 72 130 153

10 ng 74 82 40 32 98 148
87 78 88 186 203 188

50 ng 130 187 133 294 306 234
185 107 98 219 281 288

250 ng 159 167 193 515 340 348
196 174 250 205 505 432

1250 ng 137 426 178 296 545 630
208 196 251 418 396 227

Source: J. A. Rice (1988).
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Use the Mack–Skillings large-sample procedure (7.59) to test the hypothesis that degree
of exposure to light has an effect on serum levels of LH across the LRH dosages included
in the study.

7.10 ASYMPTOTICALLY DISTRIBUTION-FREE
TWO-SIDED ALL-TREATMENTS MULTIPLE
COMPARISONS FOR A TWO-WAY LAYOUT WITH AN
EQUAL NUMBER OF REPLICATIONS IN EACH
TREATMENT–BLOCK COMBINATION (MACK–SKILLINGS)

In this section we present an asymptotically distribution-free multiple comparison pro-
cedure using within-blocks ranks that is designed to make two-sided decisions about
individual differences between pairs of treatment effects (τi , τj ), for i < j , for data
obtained from a two-way layout design with an equal number of replications for every
treatment–block combination. The multiple comparison procedure of this section would
generally be applied to data from such a two-way layout with an equal number of repli-
cations after rejection of H0 (7.2) with the Mack–Skillings procedure from Section 7.9.
In this setting we will reach conclusions about all k(k − 1)/2 pairs of treatment effects
and these conclusions are naturally two-sided in nature.

Procedure

Let S1, . . . , Sk be the treatment sums of cellwise averages of within-blocks ranks given
by (7.56). Calculate the k(k − 1)/2 absolute differences |Su − Sv|, 1 ≤ u < v ≤ k .

When H0 (7.2) is true, the k(k − 1)/2-component vector (S1, . . . , Sk ) has, when
properly standardized and as N tends to infinity, an asymptotic (k − 1)-variate normal
distribution with appropriate mean vector and covariance matrix (see Mack and Skillings
(1980) for details of the proof). At an approximate experimentwise error rate of α,
the Mack–Skillings two-sided all-treatments multiple comparison procedure reaches its
k(k − 1)/2 pairwise decisions, corresponding to each (τu , τv) pair, 1 ≤ u < v ≤ k , by
the criterion

Decide τu �= τv if |Su − Sv| ≥ [k(N + n)/12]1/2qα; otherwise decide τu = τv ,
(7.75)

where qα is the upper αth percentile for the distribution of the range of k independent
N (0, 1) variables. To find qα for k treatments and a specified experimentwise error rate α,
we use the R command cRangeNor(α,k). For example, to find q.01 for k = 4 treatments,
we apply cRangeNor(.01,4) and obtain q.01 = 3.240 for k = 4. (See also Comment
82.)

Ties

If there are ties among the X observations within any of the blocks, use average ranks
to break the ties and compute the individual sums of cellwise averages of within-blocks
ranks S1, . . . , Sk .
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EXAMPLE 7.10 Determination of Niacin in Bran Flakes.

For the sake of illustration, we apply procedure (7.75) to the niacin determination data
discussed in Example 7.9. There we had found rather strong evidence that the studied
process for assessing niacin content in bran flakes does not produce consistent results
across a variety of laboratories. To determine which of the laboratories differ in median
detected niacin content in the bran flakes, we consider procedure (7.75) with an approxi-
mate experimentwise error rate α ≈ .025. Using the R command cRangeNor(α,k) with
α = .025 and k = 4, we find cRangeNor(.025,4) = q.025 = 3.984 and procedure
(7.75) reduces to

Decide τu �= τv if |Su − Sv| ≥ [4(36 + 3)/12]1/2(3.984) = 14.365.

Using the treatments sums of cellwise averages of within-blocks ranks obtained in
Example 7.9, we find that

|S2 − S1| = |30.5 − 17.67| = 12.83, |S3 − S1| = |15.83 − 17.67| = 1.84,

|S4 − S1| = |14 − 17.67| = 3.67, |S3 − S2| = |15.83 − 30.5| = 14.67,

|S4 − S2| = |14 − 30.5| = 16.5, |S4 − S3| = |14 − 15.83| = 1.83.

Referring these differences to the approximate critical value 14.365, we see that

|S2 − S1| = 12.83 < 14.365 ⇒ decide τ2 = τ1,

|S3 − S1| = 1.84 < 14.365 ⇒ decide τ3 = τ1,

|S4 − S1| = 3.67 < 14.365 ⇒ decide τ4 = τ1,

|S3 − S2| = 14.67 > 14.365 ⇒ decide τ3 �= τ2,

|S4 − S2| = 16.5 > 14.365 ⇒ decide τ4 �= τ2,

and |S4 − S3| = 1.83 < 14.365 ⇒ decide τ4 = τ3.

Thus, at an approximate experimentwise error rate of .025, we see that Laboratory 2
yielded significantly different median detected niacin content than either Laboratory 3
or Laboratory 4. These multiple comparison decisions help to focus the rationale for
the original rejection of H0 (7.2) by the Mack–Skillings procedure in Example 7.9, as
it now seems reasonable to question the reliability of Laboratory 2 in conducting this
niacin content process.

Comments

80. Rationale for Multiple Comparison Procedure. The rationale behind the multiple
comparison procedure of this section for data from a two-way layout design
with an equal number of replications is similar to that for the two-sided multiple
comparison procedures for data from a complete randomized block design. For
further discussion, see Comment 24.
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81. Experimentwise Error Rate. The use of an experimentwise error rate represents
a very conservative approach to multiple comparisons. We are insisting that the
probability of making correct decisions be 1 − α when the null hypothesis H0

(7.2) of treatment equivalence is true. Thus we have a high degree of protection
when H0 is true, but we often apply such techniques when we have evidence
(perhaps based on a priori information or perhaps obtained by applying the
Mack–Skillings test, as in Example 7.9) that H0 is not true. The protection
under H0 also makes it harder for the procedure to judge treatments as differing
significantly when, in fact, H0 is false, and this difficulty becomes more severe
as k increases. See Comment 6.54 for additional discussion of experimentwise
error rates.

82. Conservative Procedure. Mack and Skillings (1980) also proposed a conservative
multiple comparison procedure that guarantees an upper bound on the experi-
mentwise error rate. Let S1, . . . , Sk be the treatment sums of cellwise averages of
within-blocks ranks given by (7.56). At an experimentwise error rate no greater
than α, the Mack–Skillings conservative two-sided all-treatments multiple com-
parison procedure reaches its k(k − 1)/2 decisions through the criterion

Decide τu �= τv if |Su − Sv| ≥ [k(N + n)msα/6]1/2;
otherwise decide τu = τv , (7.76)

where msα is the upper α percentile for the null distribution of the
Mack–Skillings statistic MS (7.57). Comment 73 describes how to obtain
values of msα for a given number of treatments k , blocks n , and c replications
for each treatment–block combination. Mack and Skillings (1980) note that
although procedure (7.76) does not require a large number of blocks, it is,
nevertheless, rather conservative since it is based on the projection procedure
of Scheffé; that is, the true experimentwise error rate might be considerably
smaller than the bound α provided by (7.76). As a result, they recommend
using the approximation (7.75) whenever the number of blocks is reasonably
large.

83. Dependence on Observations from Other Noninvolved Treatments. The
all-treatments multiple comparison procedure of this section suffers from
the same disadvantage as do the other two-way layout multiple comparison
procedures of this chapter. The decision between treatment u and treatment v

can be affected by changes only in the observations from one or more of the
other k − 2 treatments that are not directly involved.

Properties

1. Asymptotic Multivariate Normality. See Mack and Skillings (1980).

2. Efficiency. See Section 7.16.

Problems

102. Apply procedure (7.75) to the weld-strength data of Table 7.22 in Problem 90.

103. Illustrate the difficulty discussed in Comment 83 by means of a numerical example.
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104. Apply procedure (7.75) to the coal acidity data of Table 7.23 in Problem 93.

105. Consider the niacin content data of Table 7.20 in Example 7.9. Find the smallest approximate
experimentwise error rate at which the most significant difference(s) in median bran flake
niacin content between the four laboratories would be detected by procedure (7.75).

106. Consider the weld-strength data of Table 7.22 in Problem 90. Find the smallest approximate
experimentwise error rate at which procedure (7.75) would declare that weld cycle times 1
and 3 have differing effects on the strength of a weld.

107. Consider the coal acidity data of Table 7.23 in Problem 93. Find the smallest approximate
experimentwise error rate at which the most significant difference(s) in effects of the NaOH
concentration on the measured coal acidity value would be detected by procedure (7.75).

108. Consider the coal acidity data of Table 7.23 in Problem 93. Find the smallest approximate
experimentwise error rate at which procedure (7.75) would declare that there is a difference
in median coal acidity level between the Morwell and the Yallourn types of coal.

ANALYSES ASSOCIATED WITH SIGNED RANKS

The statistical procedures discussed in Sections 7.1–7.5 (for randomized block designs
with a single observation on each treatment–block combination) utilize the treatment
observations only through comparisons within blocks. It is this restriction to within-blocks
comparisons that leads directly to many of these procedures being strictly distribution-
free, even for small sample sizes. An alternative approach is to consider accessing
between-blocks information via utilization of pairwise signed ranks in the construction
of appropriate statistical procedures. Hypothesis test and multiple comparison procedures
based on these pairwise signed ranks will no longer be exactly distribution-free for small
numbers (n) of blocks and they require the use of large-sample approximations. How-
ever, improved efficiency can result in many cases from this use of between-blocks signed
ranks.

In the next five sections we assume (as done in Sections 7.1–7.5) that we have data
from a randomized complete block design satisfying Assumptions A1–A3 for the case
of one observation per treatment–block combination, corresponding to cij = 1 for every
i = 1, . . . , n and j = 1, . . . , k . For ease of notation in these five sections, we once again
drop the third subscript on the X variables, because it is always equal to 1 in this setting.

Section 7.11 contains a conservative signed ranks test procedure directed at gen-
eral alternatives for randomized block designs with a single observation on each treat-
ment–block combination, while Section 7.12 presents the corresponding conservative
signed ranks test procedure designed for ordered alternatives. The associated approximate
signed ranks multiple comparison procedures are given in Sections 7.13 (all-treatments
comparisons) and 7.14 (treatments-versus-control comparisons). Section 7.15 contains
the contrast estimators linked to the Wilcoxon signed ranks for this setting.

7.11 A TEST BASED ON WILCOXON SIGNED RANKS
FOR GENERAL ALTERNATIVES IN A RANDOMIZED
COMPLETE BLOCK DESIGN (DOKSUM)

In this section we present a conservative procedure based on pairwise signed ranks for
testing H0 (7.2) against the general alternative H1 (7.3) that at least two of the treatment
effects are not equal.
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Procedure

For each of the k(k − 1)/2 pairs of treatments (u , v), with 1 ≤ u < v ≤ k , we form the
n absolute differences

Y i
uv = |Xiu − Xiv|, i = 1, . . . , n. (7.77)

(Note that Y i
uv = |Di

uv|, where the Di
uv are the same differences given in (7.36) and used

in the contrast estimator discussed in Section 7.5.) For each pair of treatments (u , v),
we let Ri

uv be the rank of Y i
uv in the ranking from least to greatest of the n values

Y 1
uv , . . . , Y n

uv . To compute the Doksum (1967) statistic D , set

Tuv =
n∑

i=1

Ri
uv�

i
uv and Buv =

n∑
i=1

� i
uv , (7.78)

where

� i
uv =

{
1, if Xiu < Xiv ,

0, otherwise.
(7.79)

Let

Huv = 2(Tuv − Buv)

n(n − 1)
, 1 ≤ u < v ≤ k . (7.80)

(We note that the statistics Huv need be calculated directly only for u < v, because for
u > v, we can use the relationship Hvu = 1 − Huv .) Next, we obtain the averages

Hu. =
k∑

j=1

Huj

k
, u = 1, . . . , k , (7.81)

where we note that Huu = 0, for u = 1, . . . , k .
The common null variance of each of the k(k − 1)/2 differences Hu. − Hv., 1 ≤

u < v ≤ k , is given by the expression

var0(Hu. − Hv.) = 2n − 1 + (k − 2)[24(n − 2)λF + 13 − 6n]

3kn(n − 1)
, (7.82)

with
λF = P0(X1 < X2 + X3 − X4 and X1 < X5 + X6 − X7), (7.83)

where X1, X2, . . . , X7 are independent and identically distributed according to the common
continuous underlying distribution F in Assumption A3. Since the value of λF (7.83)
depends on the particular form of the continuous F , we can not use the expression in
(7.82) to construct a distribution-free procedure for testing H0 (7.2). However, Lehmann
(1964) showed that λF ≤ 7

24 for all continuous F (see Comment 87). Replacing λF in
equation (7.82) by this upper bound of 7

24 yields the expression

VU = 2n − 1 + (k − 2)[7(n − 2) + 13 − 6n]

3kn(n − 1)
. (7.84)
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The Doksum test statistic for the conservative test of H0 (7.2) is then

D =
k∑

j=1

[Hj . − {(k − 1)/2k}]2

(k − 1)VU /2k
. (7.85)

For a conservative test (see Comment 85) of

H0 : [τ1 = · · · = τk ]

versus the general alternative

H1 : [τ1, τ2, . . . , τk not all equal],

at the approximate α level of significance,

Reject H0 if D ≥ χ2
k−1,α; otherwise do not reject, (7.86)

where χ2
k−1,α is the upper α percentile point of a chi-square distribution with k − 1

degrees of freedom. To find χ2
k−1,α , we use the R command qchisq(1 − α, k − 1). For

example, to find χ2
3,.05, we apply qchisq(.95, 3) and obtain χ2

3,.05 = 7.815.

Ties

For any Y i
uv (7.77), 1 ≤ u < v ≤ k , that is zero, compute Tuv and Buv in (7.78) by

replacing the associated � i
uv (7.79) with

�∗i
uv =

⎧⎪⎪⎨⎪⎪⎩
1, if Xiu < Xiv ,
1
2 , if Xiu = Xiv ,

0, if Xiu > Xiv.

(7.87)

For ties among Y 1
uv , . . . , Y n

uv , use average ranks to compute Tuv (7.78).

EXAMPLE 7.11 Rounding First Base.

Consider once again the rounding-first-base data presented in Table 7.1 and discussed in
Example 7.1. The reader should already be familiar with the calculations of the paired-
data signed rank statistics Tuv and sign statistics Buv (see Comment 86) from the materials
in Sections 3.1 and 3.4, respectively. We include a detailed calculation of T12 and B12 in
Table 7.25 to illustrate the method for handling zero differences and ties (see Ties and
Comment 88).

The statistics B12 and T12 are obtained by summing the entries in the next-to-last and
last columns, respectively, of Table 7.25. We obtain B13, B23, T13, and T23 in a similar
manner, and the results are

B13 = 5, B23 = 5, T13 = 54, and T23 = 30.5.
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Table 7.25 Calculation of T12 and B12 for Data in Table 7.1

j Xj 1 − Xj 2 Y j
12 Rj

12 �
∗j
12 Rj

12�
∗j
12

1 −.10 .10 17 1 17
2 .15 .15 20 0 0
3 −.40 .40 22 1 22
4 .05 .05 9.5 0 0
5 .05 .05 9.5 0 0
6 −.10 .10 17 1 17
7 .00 .00 2.5 1

2 1.25
8 −.05 .05 9.5 1 9.5
9 .10 .10 17 0 0

10 .05 .05 9.5 0 0
11 .05 .05 9.5 0 0
12 .10 .10 17 0 0
13 .25 .25 21 0 0
14 .05 .05 9.5 0 0
15 .00 .00 2.5 1

2 1.25
16 −.10 .10 17 1 17
17 .00 .00 2.5 1

2 1.25
18 −.05 .05 9.5 1 9.5
19 .05 .05 9.5 0 0
20 .05 .05 9.5 0 0
21 .05 .05 9.5 0 0
22 .00 .00 2.5 1

2 1.25

B12 = 8 T12 = 97

It then follows from (7.80) that

H12 = .385, H13 = .212, and H23 = .110.

From (7.81) and the fact that Huv = 1 − Hvu , we have

H1. = H11 + H12 + H13

3

= 0 + .385 + .212

3
= .199,

H2. = H21 + H22 + H23

3

= .615 + 0 + .110

3
= .242,

H3. = H31 + H32 + H33

3

= .788 + .890 + 0

3
= .559.



374 Chapter 7 The Two-Way Layout

We next find VU (7.84) to be

VU = 2(22) − 1 + [7(20) + 13 − 6(22)]

3(3)(22)(21)
= .015.

Substituting these values for H1., H2., H3., and VU into (7.43) yields

D =
[
.199 − ( 1

3

)]2 + [.242 − ( 1
3

)]2 + [.559 − ( 1
3

)]2
2(.015)/6

= 15.5.

Referring this value of D to the chi-square distribution with k − 1 = 2 degrees of free-
dom, we use the R command pchisq(15.5,2) to find that the lowest significance
level at which we would reject H0 is 1 − .99957 = .00043 (cf. Example 7.1).

Comments

84. Motivation for the Test. Under H0 (7.2), the Hj .’s (7.81) tend to be near (k −
1)/2k , their common null expectation, and thus the numerator of D (7.85)
tends to be small. When the τ ’s are not all equal, we expect the Hj .’s to be
more disparate, and thus (at least some of) the [Hj . − {(k − 1)/2k}]2 terms
tend to be large, yielding a large value of D . This provides partial motivation
for procedure (7.86).

85. Conservative Nature of the Test. The test defined by (7.86) is neither
distribution-free nor asymptotically (n → ∞) distribution-free. Rather, it
is conservative in the sense that (asymptotically) the actual probability of
rejecting H0 (7.2) when it is true tends to be slightly smaller than the nominal
level α. This is a consequence of using an upper bound for the parameter λF

(7.83). See also Comments 87 and 89.

86. Pairwise Signed Rank and Sign Statistics. For a given pair of treatments
(u , v), 1 ≤ u < v ≤ k , the statistics Tuv and Buv (7.78) are simply the
Wilcoxon signed rank and sign statistics, respectively, as discussed in
Sections 3.1 and 3.4, respectively, applied to the paired data in treatments u
and v. With this relationship in mind, we note that the difference Tuv − Buv

in the numerator of Huv (7.80) may equivalently be calculated as the number
of Walsh averages (Xsu − Xsv + Xtu − Xtv)/2, with 1 ≤ s < t ≤ n , that are
negative. (See Comment 3.l7.)

87. Bounds for the Parameter λF . The null correlation between two overlapping
statistics Huv and Huw defined by (7.80), with u �= v, u �= w, and v �= w,
depends on the parameter λF (7.83). This, combined with the fact that λF

varies with F (Lehmann, 1964), prevents the development of a distribution-free
test procedure based on the numerator of D (7.85). Lehmann (1964) showed
that λF ≤ 7

24 (≈ .2917) for all continuous F . Replacement of λF in expression
(7.82) for the null variance of Hu. − Hv. by the upper bound 7

24 enables
the development of the conservative procedure based on D (7.86). Spurrier
(1991) established the lower bound λF ≥ 89

315 (≈ .2825) for all continuous
F . Since the value of λF is so narrowly confined between .2825 and .2917
for all continuous F , replacing λF by its upper bound or 7

24 in expression
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(7.82) sacrifices little to permit the construction of the conservative test
procedure (7.86).

88. Ties. The reader may have noted that the method we advocate in Ties for dealing
with zero differences, when computing the Tuv(Buv) signed rank (sign) statistics
for use in procedure (7.86), differs from the corresponding directions given for
the signed rank (sign) statistic in Section 3.1 (Section 3.4). In Chapter 3, we
recommended reducing the sample size by the number of zero differences. This
change is initiated in the calculation of D (7.85) in order to keep all of the
Tuv’s and Buv’s based on the same sample size (n).

89. Asymptotically Distribution-Free Competitor. As an alternative to the conserva-
tive test procedure (7.86) based on the replacement of the unknown parameter
λF (7.83) by its upper bound 7

24 , we could instead choose to estimate the value
of λF from the sample data. Use of a consistent estimator of λF in this manner
leads to an asymptotically (n → ∞) distribution-free procedure for testing H0

(7.2), rather than the conservative procedure in (7.86). Lehmann (1964) pro-
posed the estimator λ̂F of λF , where λ̂F is the proportion of sample sextuples
(α, β, γ ; u , v, w) for which the simultaneous inequalities

(Xαu < Xβu + Xαv − Xβv and Xαu < Xγ u + Xαw − Xγw)

are satisfied. In practice, when estimating λF , it would normally suffice to
check only a subset of the total number of such sample sextuples. Due to the
closeness of the upper bound 7

24 to all values of λF , procedure (7.86) is, for
all practical purposes, virtually equivalent to Doksum’s (1967) asymptotically
distribution-free procedure based on estimating λF .

Properties

1. Consistency. See Doksum (1967) and Hollander and Wolfe (1973, p. 166).

2. Asymptotic Chi-Square Distribution. See Doksum (1967).

3. Efficiency. See Doksum (1967) and Section 7.16.

Problems

109. Apply procedure (7.86) to the adaptation score data of Table 7.10 (Example 7.4).

110. The Doksum test procedure (7.86) uses between-block information, whereas Friedman’s test
procedure (7.6) uses only within-block information. Explain.

111. Apply procedure (7.86) to the serumCPK activity data in Table 7.3, Problem 5.

112. Apply procedure (7.86) to the percentage correctly identified consonants data in Table 7.4
(Problem 12).

113. Both the Doksum (7.86) and the Friedman (7.6) procedures are appropriate for testing against
general alternatives when we have data from a randomized complete block design with one
observation per treatment–block combination. Discuss the relative advantages and disadvan-
tages of the two competing procedures.
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7.12 A TEST BASED ON WILCOXON SIGNED RANKS
FOR ORDERED ALTERNATIVES IN A RANDOMIZED
COMPLETE BLOCK DESIGN (HOLLANDER)

In this section we present a conservative procedure based on pairwise signed ranks
for testing H0 (7.2) against the a priori ordered alternatives H2 (7.9), corresponding to
τ1 ≤ τ2 ≤ · · · ≤ τk , with at least one strict inequality.

Procedure

For each of the k(k − 1)/2 pairs of treatments (u , v), with 1 ≤ u < v ≤ k , we compute
the signed rank statistic Tuv , as defined in (7.78). To compute the Hollander statistic Q ,
set

Y =
k−1∑
u=1

k∑
v=u+1

Tuv. (7.88)

The null expected value of Y is given by

E0(Y ) = nk(k − 1)(n + 1)

8
, (7.89)

but the null variance of Y is unknown (see Comment 93) and depends on the particular
form of the underlying continuous distribution F in Assumption 3. Thus, a test of H0

(7.2) based on Y will not be distribution-free. However, a conservative procedure can
be developed by using an upper bound for this unknown null variance of Y . Using the
R command CorrUpperBound(n), we obtain the value of the upper bound ρn

U for the
null correlation between two overlapping signed rank statistics based on n observations.
An upper bound for the null variance of Y (7.88) is then given by

varU (Y ) = nk(n + 1)(2n + 1)(k − 1){3 + 2(k − 2)ρn
U }

144
. (7.90)

The Hollander test statistic for the conservative test of H0 (7.2) is then

Q = Y − E0(Y )

{varU (Y )}1/2
, (7.91)

with the expressions for E0(Y ) and varU (Y ) given in (7.89) and (7.90), respectively. For
a conservative test (see Comment 92) of

H0 : [τ1 = · · · = τk ]

versus the ordered alternatives

H2 : [τ1 ≤ τ2 ≤ · · · ≤ τk , with at least one strict inequality],

at the approximate α level of significance,

Reject H0 if Q ≥ zα; otherwise do not reject. (7.92)
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Ties

See Ties of Section 7.11 and Comment 88.

EXAMPLE 7.12 Effect of Weight on Forearm Tremor Frequency.

The data in Table 7.26 are based on a subset of the data obtained by Fox and Randall
(1970) in their study of forearm tremor. Each entry in the table is the mean of five
experimental values of tremor frequency. We identify treatment 1 with 7.5 lb, treatment
2 with 5 lb, treatment 3 with 2.5 lb, treatment 4 with 1.25 lb, and treatment 5 with 0 lb,
and use procedure (7.92) to test H0 (7.2) versus the ordered alternatives H2 (7.9), which
specify that adding mass decreases the tremor frequency.

Calculations similar to those presented in Example 7.11 yield

T12 = 18.5, T13 = 21, T14 = 21, T15 = 21, T23 = 20,

T24 = 21, T25 = 21, T34 = 21, T35 = 21, T45 = 21.
(7.93)

From (7.88), we obtain

Y = T12 + T13 + T14 + T15 + T23 + T24 + T25 + T34 + T35 + T45 = 206.5.

From the R command CorrUpperBound(6), we find ρ6
U = .452, and evaluating (7.89)

and (7.90) gives

E0(Y ) = 5(4)(6)(7)

8
= 105,

VarU (Y ) = 6(7)(13)(5)(4){3 + 6(.452)}
144

= 433.2.

From (7.91), we then have

Q = 206.5 − 105

[433.2]1/2
= 4.88.

Table 7.26 Forearm Tremor Frequency (Hz) as a Function of
Weight Applied at the Wrist

Treatment 1 2 3 4 5
Weight (lb)

Subject 7.5 5 2.5 1.25 0

1 2.58 2.63 2.62 2.85 3.01
2 2.70 2.83 3.15 3.43 3.47
3 2.78 2.71 3.02 3.14 3.35
4 2.36 2.49 2.58 2.86 3.10
5 2.67 2.96 3.08 3.32 3.41
6 2.43 2.50 2.85 3.06 3.07

Source: J. R. Fox and J. E. Randall (1970).
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Using the R command pnorm(·), we see that the lowest approximate level at
which we would reject H0 with these data is P0(Q ≥ 4.88) ≈ 1 − pnorm(4.88) =
1 − .99999947 = .00000053. Thus there is very strong evidence (over the range of
weights considered in the study) that the tremor frequency does decrease as the applied
weight increases.

Comments

90. Motivation for the Test. Note that the statistic Y (7.88) is designed to guard
against the postulated ordered alternatives H2 (7.9). Consider the case k = 3.
Then Y = T12 + T13 + T23, and if τ1 < τ2 < τ3, each of T12, T13, and T23

would tend to be larger than n(n + 1)/4, their common null expectation. Thus,
Y would tend to be large, as desired. Contrast this with a situation in which we
suspect (and design the test for) the alternative τ1 < τ2 < τ3, but in actuality,
we have τ3 < τ2 < τ1. In this case, each of T12, T13, and T23 would tend to be
small. This provides partial motivation for procedure (7.92).

91. Non-Distribution-Free Property of Y (7.88). Consider the Y (7.88) statistic for
testing against ordered alternatives in the two-way layout (7.1) in relation to
Jonckheere’s J (6.13) statistic for testing against ordered alternatives in the
one-way layout (6.1). The statistic J is the sum

∑k
u<v Uuv of two-sample

Mann–Whitney statistics Uuv (or, equivalently, Wilcoxon rank sum statistics),
where each Uuv is distribution-free under H0 (6.2). The statistic Y is a sum∑k

u<v Tuv of the paired-sample Wilcoxon signed rank statistics Tuv , where each
Tuv is distribution-free under H0 (7.2). Although J itself is also distribution-
free under H0 (6.2), Y is not distribution-free under H0 (7.2) when k > 2. (For
k = 2, Y reduces to T12, which is distribution-free.) See Hollander (1967a) for
details of the non-distribution-free character of Y .

92. Conservative Nature of the Test. The test defined in (7.91) is neither distribution-
free nor asymptotically (n → ∞) distribution-free. Rather, it is conservative
in the sense that (asymptotically) the actual probability of rejecting H0 (7.2)
when it is true tends to be smaller than the nominal level α. This is a direct
consequence of using an upper bound varU (Y ) to replace the unknown null
variance of Y . Also see Comment 94.

93. Asymptotic Null Variance of Y. Hollander (1967a) showed that the asymptotic
(n → ∞) null variance of Y (7.88) has the form

var0(Y ) = nk(n + 1)(2n + 1)(k − 1){3 + 2(k − 2)ρ∗}
144

,

where ρ∗ is the limiting (n → ∞) null correlation between two overlapping
signed rank statistics T12 and T13. This limiting correlation can also be
expressed as

ρ∗ = 12λF − 3, (7.94)

where λF is defined by (7.83). In forming the Q test statistic (7.91)
for the conservative test procedure (7.92), we replace ρ∗ by its upper
bound ρn

U .
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94. Asymptotically Distribution-Free Competitor. As an alternative to the conser-
vative test procedure (7.92) based on the use of the upper bound ρn

U , we could
instead replace ρ∗ (7.94) by a consistent estimator ρ̂ based on the sample
data. Use of a consistent estimator of ρ∗ in this manner leads to an asymp-
totically (n → ∞) distribution-free procedure for testing H0 (7.2) rather than
the conservative procedure in (7.92). Hollander suggested such an approach
to this problem based on the consistent estimator ρ̂ = 12̂λF − 3, where λ̂F is
defined in Comment 89. Due to the closeness of the upper bound 7

24 to all
values of λF , procedure (7.92) is, for all practical purposes, virtually equiv-
alent to Hollander’s (1967a) asymptotically distribution-free procedure based
on estimating λF .

Properties

1. Consistency. The test defined by (7.92) is consistent against the ordered alterna-
tives (7.9). See Hollander (1967a) and Hollander and Wolfe (1973, p. 170).

2. Asymptotic Normality. See Hollander (1967a).

3. Efficiency. See Hollander (1967a) and Section 7.16.

Problems

114. Apply the Q (7.92) test to the metronome data of Table 7.6. Use the postulated ordering
τR < τA < τN .

115. The Hollander test procedure (7.92) uses between-block information, but Page’s test procedure
(7.11) uses only within-block information. Explain.

116. Apply procedure (7.92) to the shelterbelt data in Table 7.7 (Problem 19).

117. Apply procedure (7.92) to the cotton strength index data in Table 7.5 (Example 7.2). Compare
with the result from the use of Page’s test in Example 7.2.

118. Both the Hollander (7.92) and the Page (7.11) procedures are appropriate for testing against
ordered alternatives when we have data from a randomized complete block design with one
observation per treatment–block combination. Discuss the relative advantages and disadvan-
tages of the two competing procedures.

7.13 APPROXIMATE TWO-SIDED ALL-TREATMENTS
MULTIPLE COMPARISONS BASED ON SIGNED RANKS
(NEMENYI)

In this section we present a multiple comparison procedure based on Wilcoxon signed
rank statistics that is designed to make decisions about individual differences between
pairs of treatment effects (τu , τv), for u < v, in a setting where general alternatives
H1 (7.3) are of interest. Thus, the multiple comparison procedure of this section would
generally be applied to two-way layout data (with one observation per cell) after rejection
of H0 (7.2) with the Doksum–Lehmann procedure from Section 7.11. In this setting it is
important to reach conclusions about all k(k − 1)/2 pairs of treatment effects and these
conclusions are naturally two sided in nature.
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Procedure

For 1 ≤ u < v ≤ k , let Tuv be the signed rank statistic (7.78) between treatments u and
v. Calculate the k(k − 1)/2 statistics

T ′
uv = max{Tuv , [n(n + 1)/2] − Tuv}, 1 ≤ u < v ≤ k . (7.95)

At an approximate (see Comment 95) experimentwise error rate of α, the two-sided
signed rank multiple comparison procedure reaches its k(k − 1)/2 pairwise decisions,
corresponding to each (τu , τv) pair, for 1 ≤ u < v ≤ k , by the criterion

Decide τu �= τv if T ′
uv ≥ t ′

α; otherwise decide τu = τv , (7.96)

where the constant t ′
α is chosen to make the experimentwise error rate approximately

equal to α; that is, t ′
α satisfies the restriction

P0{T ′
uv < t ′

α , u = 1, . . . , k − 1 and v = u + 1, . . . , k} ≈ 1 − α, (7.97)

where the probability P0(.) is computed under H0 (7.2). Equation (7.97) stipulates that
the k(k − 1)/2 inequalities T ′

uv < t ′
α , corresponding to all pairs (u , v) of treatments with

u < v, hold simultaneously with approximate probability 1 − α when H0 (7.2) is true.
Selected approximate values of t ′

α can be found from the relationship

t ′
α ≈
[

n(n + 1)

4

]
+
[

n(n + 1)(2n + 1)

48

]1/2

qα , (7.98)

where qα is the upper αth percentile point for the distribution of the range of k indepen-
dent N (0, 1) variables. To find qα for k treatments and a specified experimentwise error
rate α, we use the R command cRangeNor(α, k). For example, to find q.005 for k = 6
treatments, we apply cRangeNor(.005, 6) and obtain q.005 = 5.033 for k = 6.

Ties

See Ties of Section 7.11 and Comment 88.

EXAMPLE 7.13 Rounding First Base.

We illustrate procedure (7.96) using the approximation (7.98) with the rounding-first-base
data of Table 7.1. In Example 7.11, we found

T12 = 97, T13 = 54, and T23 = 30.5.

From (7.95), we obtain

T ′
12 = max{97, 253 − 97} = 156, T ′

13 = max{54, 253 − 54} = 199,

T ′
23 = max{30.5, 253 − 30.5} = 222.5.
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With an experimentwise error rate of α = .01 and k = 3, we use cRangeNor(.01,3)
to find q.01 = 4.12 for k = 3. Thus, with approximation (7.98), the inequality in (7.96)
reduces to

T ′
uv ≥ t ′

.01 ≈
[

22(23)

4

]
+
[

22(23)(45)

48

]1/2

(4.12) = 216.2,

and procedure (7.96) becomes

Decide τu �= τv if T ′
uv ≥ 216.2, 1 ≤ u < v ≤ 3.

Since T ′
12 < 216.2, T ′

13 < 216.2, and T ′
23 ≥ 216.2, only the narrow angle (treatment 2)

and wide angle (treatment 3) running methods differ significantly at the approximate .01
experimentwise error rate using the signed rank procedure (7.96).

At this point, the reader may have noticed that, at the approximate .01 experiment-
wise error rate, the signed rank analysis in this example yields a conclusion different from
the corresponding analysis based on the Friedman rank sums performed in Example 7.3.
Since the analyses are based on different rankings and different statistics, the reader
should not be shocked. It is instructive to note that if, for example, the multiple com-
parisons were made at an approximate .10 experimentwise error rate, the two procedures
would agree in the sense that differences between treatments 2 and 3 and between treat-
ments 1 and 3 would be declared significant under both analyses.

Comments

95. Non-Distribution-Free Property. Procedure (7.96), using approximation (7.98),
is neither distribution-free nor asymptotically distribution-free. Nemenyi (1963)
proposed this procedure under the assumptions that (a) the statistic max{T ′

uv , 1 ≤
u < v ≤ k} is distribution-free and (b) the limiting (n → ∞) null correlation
between T12 and T13 (say) is close to 1

2 . Assumption (a) is incorrect, but the
reasonableness of assumption (b) is supported by the values of λF , for various
distributions F , obtained by Lehmann (1964), Hollander (1966), and Obenchain
(1969). (See also Comments 87 and 93.)

96. Independence from Observations for Other Noninvolved Treatments. The value
of T ′

uv , the statistic used in the decision relating to τu and τv , does not depend
on the observation values from the other k − 2 treatments. Thus, the signed
ranks procedure (7.96) eliminates a difficulty encountered with the corresponding
multiple comparison procedures (7.25) and (7.27) of Section 7.3 based on the
Friedman rank sums. (See Comment 30.)

Properties

1. Efficiency. See Section 7.16.

Problems

119. Apply procedure (7.96) to the serum CPK activity data in Table 7.3 (Problem 5).

120. Apply procedure (7.96) to the Hebb–Williams EPT data in Table 7.9 (Problem 28).
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121. Both procedures (7.27) and (7.96) are appropriate multiple comparison procedures when we
have data from a randomized complete block design with one observation per treatment–block
combination, and we are interested in two-sided comparisons between all treatments. Discuss
the relative advantages and disadvantages of the two competing procedures.

122. Apply procedure (7.96) to the percentage correctly identified consonants data in Table 7.4
(Problem 12).

7.14 APPROXIMATE ONE-SIDED
TREATMENTS-VERSUS-CONTROL MULTIPLE
COMPARISONS BASED ON SIGNED RANKS
(HOLLANDER)

In this section we turn our attention to a multiple comparison procedure based on the
Wilcoxon signed rank statistics that is designed to make decisions about individual differ-
ences between the median effect for a single, baseline control population, and the median
effects of each of the remaining k − 1 treatments. This treatments- versus-control multi-
ple comparison procedure can be applied to two-way layout data (with one observation
per cell) after rejection of H0 (7.2) with either the Doksum–Lehmann or the Hollan-
der procedure discussed in Sections 7.11 and 7.12, respectively. Its application leads to
conclusions about the differences between each of the k − 1 treatment effects and the
control effect and these conclusions are naturally one sided in nature.

Procedure

For simplicity of notation, we let treatment 1 assume the role of the single, baseline con-
trol. For each of the k − 1 treatments u = 2, . . . , k , we compute the signed rank statistic
T1u (7.78) between the control treatment 1 and treatment u . At an approximate (see Com-
ment 98) experimentwise error rate of α, the one-sided treatments-versus-control signed
rank multiple comparison procedure reaches its k − 1 pairwise decisions, corresponding
to each (τ1, τu ) pair, for u = 2, . . . , k , by the criterion

Decide τu > τ1 if T1u ≥ t∗
α ; otherwise decide τu = τ1, (7.99)

where the constant t∗
α is chosen to make the experimentwise error rate approximately

equal to α; that is, t∗
α satisfies the restriction

P0{T1u < t∗
α , u = 2, . . . , k} ≈ 1 − α, (7.100)

where the probability P0(.) is computed under H0 (7.2). Equation (7.100) stipulates that
the k − 1 inequalities T1u < t∗

α , corresponding to each treatment paired with the control,
hold simultaneously with approximate probability 1 − α when H0 (7.2) is true. Selected
approximate values of t∗

α can be found from the relationship

t∗
α ≈
[

n(n + 1)

4

]
+
[

n(n + 1)(2n + 1)

24

]1/2

m∗
α,ρ∗ , (7.101)

where m∗
α,ρ∗ is the upper αth percentile point for the distribution of the maximum of

(k − 1)N (0, 1) variables with common correlation ρ∗ equal to the upper bound ρn
U for
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the null correlation between two overlapping signed rank statistics based on n observa-
tions. The upper bound ρn

U for signed rank statistics based on n observations is found
from the R command CorrUpperBound(n). To find m∗

α,ρ∗ for k treatments and a spec-
ified experimentwise error rate α, we use the R command cMaxCorrNor(α, k,rho.hat).
For example, to find m∗

.02337,.3 for k = 5 treatments and correlation ρ∗ = .3, we apply
cMaxCorrNor(.02337,5,.3) and obtain m∗

.02337,.3 = 2.50. (For a discussion of how
to adjust procedure (7.99) for settings where it is of interest to decide whether the
treatment effects are smaller than the control effect, see Comment 97.)

Ties

See Ties of Section 7.11 and Comment 88.

EXAMPLE 7.14 Effect of Weight on Forearm Tremor Frequency.

We use the tremor data of Table 7.26 to illustrate procedure (7.99) using the approxima-
tion (7.101). We relabel the treatments so that the no-weight (0 lb) treatment assumes
the role of the control. To make this clear in the ensuing computations, we reproduce
Table 7.26 as Table 7.26′ with the new treatment designations.

We illustrate the one-sided decisions of τu = τ1 versus τu < τ1, u = 2, . . . , 5. We see
from Comment 97 that our procedure is based on (7.99) with Tu1 = [n(n + 1)/2] − T1u

replacing T1u in the left-hand side of the inequality in (7.99). From the relabeling in
Table 7.26′ and the basic computations in Example 7.12, we obtain

T12 = 0, T13 = 0, T14 = 0, and T!5 = 0,

which, in turn, implies

T21 = 21 − T12 = 21, T31 = 21 − T13 = 21,

T41 = 21 − T14 = 21, T51 = 21 − T15 = 21.

From the R command CorrUpperBound(6), we find ρ6
U = .452. With an approximate

experimentwise error rate of α = .10, we then use the R command cMaxCorrNor(.10,

Table 7.26′ Forearm Tremor Frequency (Hz) as a Function of
Weight Applied at the Wrist

Treatment 1 2 3 4 5
Weight (lb)

Subject 0 1.25 2.5 5 7.5

1 3.01 2.85 2.62 2.63 2.58
2 3.47 3.43 3.15 2.83 2.70
3 3.35 3.14 3.02 2.71 2.78
4 3.10 2.86 2.58 2.49 2.36
5 3.41 3.32 3.08 2.96 2.67
6 3.07 3.06 2.85 2.50 2.43

Source: J. R. Fox and J. E. Randall (1970).
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5,.452) with ρ∗ = .452 to find m∗
.10,.452 = 1.935. Thus, with approximation (7.101),

the inequality in (7.99) for our one-sided decisions reduces to

Tu1 ≥ t∗
.10 ≈

[
6(7)

4

]
+
[

6(7)(13)

24

]1/2

(1.935) = 19.73,

and procedure (7.99) for these one-sided decisions becomes

Decide τu < τ1 if Tu1 ≥ 19.73, u = 2, . . . , 5.

Since T21 = T31 = T41 = T51 = 21 > 19.73, the signed rank procedure (7.99) with an
approximate .10 experimentwise error rate concludes that all four weight levels (treat-
ments) yield significantly smaller forearm tremor frequencies than does the zero weight
control.

Comments

97. Opposite Direction Decisions. Procedure (7.99) is designed for the
one-sided situation in which the relevant decisions are τu = τ1 versus
τu > τ1, u = 2, . . . , k . To treat the analogous one-sided case of τu = τ1 versus
τu < τ1, u = 2, . . . , k , we simply replace T1u by Tu1 = [n(n + 1)/2] − T1u , in
the left-hand side of the inequality in (7.99).

98. Non-Distribution-Free Property. Procedure (7.99), using approximation
(7.101), is neither distribution-free nor asymptotically distribution-free.
However, it is generally conservative in that the attained approximate
experimentwise error rate associated with procedure (7.99) tends to be slightly
lower than the nominally stipulated rate. Due to the closeness of the upper
bound 7

24 to all values of λF , procedure (7.99) is, for all practical purposes,
virtually equivalent to Hollander’s (1966) asymptotically distribution-free
procedure based on estimating λF .

99. Simplification of Approximation. One of the disadvantages of the approximation
to t∗

α provided in (7.101) is that it requires obtaining the value of m∗
α,ρ∗ for

common correlation ρ∗ = ρn
U . To simplify matters, one could use the further

approximation associated with replacing ρn
U by its asymptotic (n → ∞) limit

of 1
2 . The approximation in (7.101) would then use the proper value of m∗

α, 1
2

for common correlation ρ∗ = 1
2 .

100. Asymptotically Distribution-Free Competitor. As an alternative to the conser-
vative one-sided multiple comparison procedure (7.99) based on the use of
the upper bound ρn

U in approximation (7.101), we could instead use a consis-
tent estimator ρ̂ of the null correlation between two overlapping signed rank
statistics based on n observations. The value of m∗

α,ρ∗ used in approximation
(7.101) would then correspond to this estimate (ρ̂) of the null correlation rather
than the upper bound ρn

U . Use of a consistent estimator ρ̂ in this manner leads
to an asymptotically (n → ∞) distribution-free one-sided multiple comparison
procedure, rather than the conservative procedure in (7.99). Hollander (1966)
suggested such an approach based on the consistent estimator ρ̂ = 12λ̂F − 3,
where λ̂F is defined in Comment 89.
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101. Two-Sided Treatments-versus-Control Multiple Comparison Procedure. The
multiple comparison procedure (7.99) of this section is one sided by nature,
resulting in decisions between τu = τ1 and τu > τ1 for every u = 2, . . . , k
(or between τu = τ1 and τu < τ1 for every u = 2, . . . , k , as noted in
Comment 97). We view such one-sided comparisons to be the most natural
approach for treatments-versus-control settings. In such situations, we are
generally interested in seeing which, if any, of the proposed new treatments
are better than a standard control or placebo. In most practical applications,
better is synonymous with one-sided comparisons (all in one direction or
all in the other) and thus our emphasis on such procedures in this section.
However, a two-sided treatments-versus-control analog to procedure (7.99)
has been developed in the literature and corresponds to the criterion

Decide τu �= τ1 if T ′
1u ≥ t∗∗

α ; otherwise decide τu = τ1, (7.102)

where the T ′
1u ’s are defined by (7.95) and the constant t∗∗

α is chosen to make
the experimentwise error rate approximately equal to α; that is,

P0{T ′
1u < t∗∗

α , u = 2, . . . , k} ≈ 1 − α,

where the probability P0(.) is computed under H0 (7.2). One approximation
for t∗∗

α sets

t∗∗
α ≈

[
n(n + 1)

4

]
+
[

n(n + 1)(2n + 1)

24

]1/2

v∗
α , (7.103)

where v∗
α is the upper αth percentile of the maximum absolute value of (k −

1)N (0, 1) random variables with common correlation 1
2 . Selected values of v∗

α

can be obtained from Dunnett (1964).

102. Independence from Observations for Other Noninvolved Treatments. The value
of T1u , the statistic used in the decision relating to τu and τ1, does not depend on
the observation values from the other k − 2 treatments. Thus, the signed ranks
procedure (7.99) eliminates a difficulty encountered with the corresponding
one-sided multiple comparison procedures (7.28) and (7.30) of Section 7.4
based on the Friedman rank sums. (See Comment 38.)

Properties

1. Efficiency. See Section 7.16.

Problems

123. Apply an appropriate one-sided signed rank multiple comparison procedure (see (7.99) and
Comment 97) to the rhythmicity data of Table 7.6 in Problem 15, letting the condition N
serve as the control.

124. Consider the serum CPK activity data from Problem 5. Treating preexercise as a control and
ignoring the peak psychotic period data, apply procedure (7.99) to decide if there is statistical
evidence of increased serum CPK activity either 19 or 42 h after exercise.
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125. Both procedures (7.30) and (7.99) are appropriate multiple comparison procedures when we
have data from a randomized complete block design with one observation per treatment–block
combination and we are interested in one-sided comparisons between (k − 1) treatments and
a single, baseline control. Discuss the relative advantages and disadvantages of the two
competing procedures.

126. Treating condition A as a control, apply procedure (7.99) to the percentage correctly identified
consonants data in Table 7.4 (Problem 12).

7.15 CONTRAST ESTIMATION BASED ON THE
ONE-SAMPLE HODGES–LEHMANN ESTIMATORS
(LEHMANN)

In this section we describe how to use the Hodges–Lehmann estimators based on the
appropriate Walsh averages to construct estimators of a contrast θ (7.32 and 7.34) in
the treatment effects τ1, . . . , τk . For a given setting, decisions about which contrasts
to estimate can be related either to a priori interest in particular linear combinations
of the τ ’s or to the result of one of the multiple comparison procedures discussed in
Sections 7.3, 7.4, 7.13, and 7.14.

Procedure

Let θ be an arbitrary contrast (7.32 and 7.34) in the treatment effects τ1, . . . , τk . For
each pair of treatments (u , v), u �= v = 1, . . . , k , compute the differences Di

uv (7.36),
i = 1, . . . , n , between the treatment u and treatment v observations for each of the n
blocks. For each (u , v) pair, obtain the values of the n(n + 1)/2 Walsh averages for
these sample differences, namely,

Di
uv + Dj

uv

2
, 1 ≤ i ≤ j ≤ n. (7.104)

Let Wuv be the median of the Walsh averages associated with the u − v treatment dif-
ferences; that is,

Wuv = median

{
Di

uv + Dj
uv

2
, 1 ≤ i ≤ j ≤ n

}
, u �= v = 1, . . . , k . (7.105)

(Since Wvu = −Wuv , we need to calculate only the k(k − 1)/2 values Wuv corresponding
to u < v.) Note that each Wuv is a Hodges–Lehmann estimator of the form considered
in Section 3.2, applied here to the Xiu − Xiv differences. For example, W23 is the median
of the n(n + 1)/2 Walsh averages of the form [Di

23 + Dj
23]/2, 1 ≤ i ≤ j ≤ n , and can

be viewed as an “unadjusted” estimator (see Comments 7.103 and 7.104) of the simple
contrast τ2 − τ3.

Next, we compute

Wu. =
k∑

j=1

Wuj

k
, u = 1, . . . , k , (7.106)
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where we note that Wuu = 0 for u = 1, . . . , k . Setting

�̂uv = Wu. − Wv., (7.107)

the adjusted estimator of θ is given by

θ̂ =
k∑

j=1

aj Wj ., (7.108)

or, equivalently,

θ̂ =
k∑

h=1

k∑
j=1

dhj �̂hj . (7.109)

(See (7.35) for the relationship between the d ’s and the a’s.)

EXAMPLE 7.15 Rounding First Base.

In Example 7.5, we obtained the Doksum estimator of the contrast θ =
τroundout − τwide angle = τ1 − τ3 relating to the rounding-first-base data of Table 7.1. We
now use (7.108) to obtain the Lehmann estimator of the same contrast. To evaluate W12,
defined by (7.105), note that W12 = median{[Di

12 + Dj
12]/2, 1 ≤ i ≤ j ≤ 22}, where Di

12
and Dj

12 are defined by (7.36). The D1
12, . . . , D22

12 values are exhibited in Table 7.11.
Letting F (1)

12 ≤ · · · ≤ F (253)
12 denote the 253 ordered [Di

12 + Dj
12]/2 values, we find

F (1)
12 = −.4, F (2)

12 = F (3)
12 = F (4)

12 = −.25 F (5)
12 = F (6)

12 = −.225,

F (7)
12 = · · · = F (10)

12 = −.2, F (11)
12 = · · · = F (18)

12 = −.175,

F (19)
12 = F (20)

12 = −.15, F (21)
12 = −.125, F (22)

12 = · · · = F (27)
12 = − .1,

F (28)
12 = · · · = F (34)

12 = −.075, F (35)
12 = · · · = F (49)

12 = −.05,

F (50)
12 = · · · = F (81)

12 = −.025, F (82)
12 = · · · = F (113)

12 = 0,

F (114)
12 = · · · = F (152)

12 = .025, F (153)
12 = · · · = F (198)

12 = .05,

F (199)
12 = · · · = F (221)

12 = .075, F (222)
12 = · · · = F (234)

12 = .1,

F (235)
12 = · · · = F (240)

12 = .125, F (241)
12 = · · · = F (249)

12 = .15,

F (250)
12 = F (251)

12 = .175, F (252)
12 = .2, F (253)

12 = .25.

Thus,
W12 = F (127)

12 = .025.

To evaluate W13, we use the equation W13 = median {[Di
13 + Dj

13]/2, 1 ≤ i ≤ j ≤ 22},
where Di

13 and Dj
13 are defined by (7.36). The D1

13, . . . , D22
13 values are exhibited in



388 Chapter 7 The Two-Way Layout

Table 7.11. Letting F (1)
13 ≤ · · · ≤ F (253)

13 denote the 253 ordered [Di
13 + Dj

13]/2 values,
we have

F (1)
13 = −.3, F (2)

13 = F (3)
13 = −.225, F (4)

13 = −.2, F (5)
13 = −.175,

F (6)
13 = F (7)

13 = F (8)
13 = −.15, F (9)

13 = · · · = F (12)
13 = −.125,

F (13)
13 = · · · = F (19)

13 = −.1, F (20)
13 = · · · = F (25)

13 = −.075,

F (26)
13 = · · · = F (33)

13 = −.05, F (34)
13 = · · · = F (46)

13 = −.025,

F (47)
13 = · · · = F (62)

13 = 0, F (63)
13 = · · · = F (77)

13 = .025,

F (78)
13 = · · · = F (94)

13 = .05, F (95)
13 = · · · = F (108)

13 = .075,

F (109)
13 = · · · = F (131)

13 = .1, F (132)
13 = · · · = F (157)

13 = .125,

F (158)
13 = · · · = F (190)

13 = .15, F (191)
13 = · · · = F (217)

13 = .175,

F (218)
13 = · · · = F (238)

13 = .2, F (239)
13 = · · · = F (247)

13 = .225,

F (248)
13 = · · · = F (253)

13 = .25.

Thus,
W13 = F (127)

13 = .1.

In the same way, we calculate W23 by using the D1
23, . . . , D22

23 values in Table 7.11 and
the fact that W23 = median {[Di

23 + Dj
23]/2, 1 ≤ i ≤ j ≤ 22}. Letting F (1)

23 ≤ · · · ≤ F (253)
23

denote the 253 ordered [Di
23 + Dj

23]/2 values, we see that

F (1)
23 = −.1, F (2)

23 = · · · = F (5)
23 = −.075, F (6)

23 = · · · = F (15)
23 = −.05,

F (16)
23 = · · · = F (19)

23 = −.025, F (20)
23 = · · · = F (42)

23 = 0,

F (43)
23 = · · · = F (73)

23 = .025, F (74)
23 = · · · = F (98)

23 = .05,

F (99)
23 = · · · = F (138)

23 = .075, F (139)
23 = · · · = F (178)

23 = .1,

F (179)
23 = · · · = F (211)

23 = .125, F (212)
23 = · · · = F (238)

23 = .15,

F (239)
23 = · · · = F (247)

23 = .175, F (248)
23 = · · · = F (253)

23 = .2.

Thus,
W23 = F (127)

23 = .075.

From (7.106), we find

W1. = W11 + W12 + W13

3

= 0 + .025 + .1

3
= .0417,
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W2. = W21 + W22 + W23

2

= −.025 + 0 + .075

3
= 0.167,

and

W3. = W31 + W32 + W33

3
= −.1 − .075 + 0

3
= −.0583.

Note that in calculating W2. and W3., we use the relationship Wuv = −Wvu .
The Lehmann estimator θ̂ is now obtained from (7.108) by noting that a1 = 1,

a2 = 0, and a3 = −1, so that

θ̂ = W1. − W3. = .0417 − (−.0583) = .10.

For these data, the adjusted estimator W1. − W3. agrees with the unadjusted estimator
W13. However, we do note that the value of the Lehmann estimator θ̂ = .10 differs from
that of the Doksum estimator θ̃ = .133 (see Example 7.5) for these rounding-first-base
data.

Comments

103. Unadjusted Estimator. The unadjusted estimator Wuv (7.105) of �uv = τu − τv

is simply the estimator associated with the signed rank test and discussed in
Section 3.2.

104. Ambiguities with the Unadjusted Estimators. The unadjusted estimators Wuv

(7.105) are incompatible, leading to possible ambiguities in contrast estimation
because they do not satisfy the linear relations that are satisfied by the contrasts
they estimate. We have encountered this difficulty before (see Comments 6.77
and 7.42). The adjusted estimators �̂uv (7.107) are compatible but have the
disadvantage that the estimator of �uv = τu − τv depends on the observations
from the other k − 2 treatments.

105. Computational Difficulty. Example 7.15 is a glaring illustration of the labor
involved in computing Wuv when n is moderately large. It is necessary to obtain
the median of n(n + 1)/2 Walsh averages, whereas the estimator Zuv (7.37) is
based on the median of only n differences. Thus, Doksum’s contrast estimator
is preferred to Lehmann’s contrast estimator in terms of ease of computation.
On the other hand, asymptotic efficiencies generally (but not always) favor
Lehmann’s contrast estimator. (See Section 7.16.)

Properties

1. Standard Deviation of θ̂ (7.108). For the asymptotic standard deviation of θ̂

(7.108), see Lehmann (1964).

2. Asymptotic Normality. See Lehmann (1964).

3. Efficiency. See Lehmann (1964) and Section 7.16.
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Problems

127. Calculate the Lehmann estimator of the contrast 2τN − τA − τR for the metronome data of
Table 7.6. Compare with the Doksum estimator from Problem 46.

128. Give an example illustrating the incompatibility of the unadjusted estimators Wuv (7.105).
(See Comment 104.)

129. Calculate the Lehmann estimators for the simple contrasts θ1 = τ2 − τ1, θ2 = τ3 − τ1, and
θ3 = τ3 − τ2 for the CPK activity data in Table 7.3.

130. Estimate the contrast 3τALC − τAL − τAC − τLC for the percentage consonants correctly iden-
tified data in Table 7.4.

131. Using the data of Table 7.4, obtain Lehmann’s estimator of the simple contrast that represents
the benefit from adding lip reading to audition in teaching severely hearing-impaired children.
Compare with the Doksum estimator from Problem 50.

132. Compute Lehmann’s estimator for all contrasts found to be of interest in Problem 45 for the
maximum soil temperature data in Table 7.8.

133. Calculate Lehmann’s estimator of the contrast τrats − τcats for the Livesey EPT error score of
Table 7.9.

7.16 EFFICIENCIES OF TWO-WAY LAYOUT
PROCEDURES

We first consider the procedures of Sections 7.1–7.5, which are associated with the
Friedman rank sums for the case of one observation per treatment–block combination
(i.e., a randomized complete block design). The Pitman asymptotic relative efficiencies
(for translation alternatives) of these procedures with respect to the corresponding normal
theory counterparts are given by the expression

eF =
[

k

(k + 1)

]⎡⎢⎣12σ 2
F

⎧⎨⎩
∞∫

−∞
f 2(u)du

⎫⎬⎭
2
⎤⎥⎦ , (7.110)

where σ 2
F is the variance of the common underlying (continuous) distribution F (7.1) and

f (.) is the probability density function corresponding to F . The parameter
∫∞
−∞ f 2(u)du

is the area under the curve associated with f 2(.), the square of the common probability
density function. We note that eF (7.110) is simply k/(k + 1) times the corresponding
Pitman efficiencies in the one-sample, two-sample, and k -sample location settings (see
Sections 3.11, 4.5, and 6.10).

In particular, the Pitman asymptotic relative efficiency of the Friedman test based
on S (7.5) with respect to the normal theory two-way layout F test was found to be
eF (7.110) by van Elteren and Noether (1959). The asymptotic relative efficiency of
the Page test for ordered alternatives, based on the statistic L (7.10), with respect to a
suitable normal theory competitor was found by Hollander (1967a) to be eF (7.110) as
well. Furthermore, methods analogous to those of Sherman (1965) lead to expression
(7.110) as the asymptotic relative efficiency of both the all-treatments two-sided and the
treatments-versus-control one-sided multiple comparison procedures in Sections 7.3 and
7.4, respectively, with respect to the classical normal theory procedures based on sample
means. Finally, Doksum (1967) obtained (7.110) as the asymptotic relative efficiency of



7.16 Efficiencies of Two-Way Layout Procedures 391

the estimator θ̃ (7.40) with respect to the least-squares estimator θ̄ =∑k
j=1 aj X.j , where

X.j =∑n
i=1 Xij /n .

The efficiency eF (7.110) is always greater than or equal to .576 and it can be
infinite. Some values of eF for various F and k combinations are given in Table 7.27.

We next turn to the procedures in Sections 7.6–7.8 that are designed for two-way
layout data with zero or one observation per treatment–block combination. The Pitman
asymptotic relative efficiency of the Durbin–Skillings–Mack test based on D (7.43) with
respect to the standard normal theory procedure for a balanced incomplete block design
was found to be eF (7.110) by van Elteren and Noether (1959). Once again, methods
analogous to those of Sherman (1965) lead to expression (7.110) as the asymptotic relative
efficiency of the all-treatments two-sided multiple comparison procedures in Section 7.7.
We do not know of any results for the asymptotic relative efficiencies of the general
alternatives Skillings–Mack test in Section 7.8 for data from an arbitrary incomplete
block design.

For the case of two-way layout data with at least one observation for every
treatment–block combination, Mack and Skillings (1980) found that under certain
conditions the asymptotic relative efficiency of their test for general alternatives based
on the statistic MS (7.57) with respect to a suitable normal theory competitor is, once
again, given by eF (7.110). Combining their results with methods analogous to those
of Sherman (1965) yields expression (7.110) as the asymptotic relative efficiency of the
all-treatments two-sided multiple comparison procedures in Section 7.10, as well.

Finally, we turn to the procedures in Sections 7.11–7.15 which are associated with
Wilcoxon signed ranks. The asymptotic relative efficiencies of Doksum’s conservative
test of Section 7.11, based on replacing λF by its upper bound 7

24 , are very close to those
of a related test proposed by Doksum (1967) in which λF is estimated. The expression
for the asymptotic relative efficiency e∗

F of the related test, relative to the normal theory
F-test, is given by the right-hand side of (2.12) in Doksum (1967). The parameter e∗

F
is always greater than .864 and can be infinite. In Table 7.28, we provide values of e∗

F
for normal, uniform and exponential distributions and various numbers (k ) of treatments.
Similarly, the efficiencies of Hollander’s conservative test of Section 7.12, based on
replacing λF by its upper bound 7

24 , are very close to those of a related test proposed
by Hollander (1967a), in which λF is estimated. The expression for the asymptotic

Table 7.27 Values of eF for Various Distributions and Numbers (k) of Treatments

k 2 3 4 5 10 20 50 ∞
Distribution eF

Normal 0.637 0.716 0.764 0.796 0.868 0.909 0.936 0.955
Uniform 0.667 0.750 0.800 0.833 0.909 0.952 0.980 1.000
Double exponential 1.000 1.125 1.200 1.250 1.364 1.429 1.471 1.500

Table 7.28 Values of e∗
F for Various Distributions and Numbers (k) of Treatments

k 2 3 4 5 10 20 50 ∞
Distribution e∗

F

Normal 0.955 0.966 0.972 0.975 0.983 0.987 0.989 0.990
Uniform 0.889 0.894 0.897 0.899 0.902 0.904 0.905 0.906
Exponential 1.500 1.528 1.543 1.552 1.570 1.579 1.585 1.588
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Table 7.29 Values of e∗∗
F for Various Distributions and Numbers (k) of Treatments

k 2 3 4 5 10 20 50 ∞
Distribution e∗∗

F

Normal 0.955 0.963 0.969 0.972 0.980 0.985 0.988 0.990
Uniform 0.889 0.893 0.895 0.897 0.901 0.903 0.905 0.906
Exponential 1.500 1.521 1.534 1.543 1.563 1.575 1.583 1.588

relative efficiency e∗∗
F of this related test, with respect to a normal theory t-test for

ordered alternatives, is given by the right-hand side of (4.6) of Hollander (1967a). The
parameter e∗∗

F is always greater than .864 and can be infinite. In Table 7.29, we provide
values of e∗∗

F for normal, uniform, and exponential distributions and various numbers
(k ) of treatments. The efficiencies in Table 7.29 are also close approximations to the
efficiencies of the conservative multiple comparison procedures of Sections 7.13 and
7.14 with respect to normal theory competitors based on sample means. Lehmann (1964)
obtained the asymptotic relative efficiency (for translation alternatives) of the contrast
estimator (7.108) of Section 7.15 with respect to the least-squares estimator based on the
sample means. The asymptotic relative efficiency is given by e∗

F (see Table 7.28).



Chapter 8

The Independence Problem

INTRODUCTION

The data in this chapter consist of a random sample from a bivariate population. Our
basic interest here is in the statistical relationship between the two variables involved in
the bivariate structure. In particular, we will discuss procedures for deciding whether or
not these two variables are independent and, if not independent, for assessing both the
type and degree of dependency that exists between them.

In Section 8.1, we present a distribution-free test for independence that is based
on signs of appropriate products of differences. Section 8.2 presents an estimator of
the measure of association τ defined by (8.2). Section 8.3 contains an asymptotically
distribution-free confidence interval for τ . Section 8.4 uses Efron’s bootstrap method to
obtain a different asymptotically distribution-free confidence interval for τ . Section 8.5
presents a distribution-free test for independence based on ranks. Section 8.6 contains a
distribution-free test of independence, which is consistent against a broader class of alter-
natives than those classes of alternatives that can be detected by the tests of Sections 8.1
and 8.5. Section 8.7 considers the asymptotic relative efficiencies of the procedures in
this chapter with respect to their normal theory counterparts.

Data. We obtain n bivariate observations (X1, Y1), . . . , (Xn , Yn), one observation on each
of n subjects.

Assumptions

A The n bivariate observations (X1, Y1), . . . , (Xn , Yn) are a random sample from a
continuous bivariate population. That is, the (X , Y ) pairs are mutually independent
and identically distributed according to some continuous bivariate population.

8.1 A DISTRIBUTION-FREE TEST FOR INDEPENDENCE
BASED ON SIGNS (KENDALL)

Hypothesis

Let FX ,Y be the joint distribution function for the common bivariate population of the
(X , Y ) pairs. Moreover, let Fx (x) and FY (y) be the distribution functions for the marginal

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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X and Y populations, respectively. The null hypothesis of interest here is that the X and
Y random variables are independent. Formally stated, this null hypothesis is

H0 : [FX ,Y (x , y) ≡ FX (x)FY (y), for all (x , y) pairs]. (8.1)

The alternative hypothesis to (8.1) will be a function of the type of dependence
between the X and Y variables that is of principal interest. In this section, we concentrate
on a type of dependence measured by the Kendall population correlation coefficient

τ = 2P{(Y2 − Y1)(X2 − X1) > 0} − 1. (8.2)

We note that the event {(Y2 − Y1)(X2 − X1) > 0} occurs if and only if either the event
{X2 > X1 and Y2 > Y1} or the event {X2 < X1 and Y2 < Y1} occurs. These latter two
events are mutually exclusive, therefore

P{(Y2 − Y1)(X2 − X1) > 0} = P(X2 > X1, Y2 > Y1)

+ P(X2 < X1, Y2 < Y1).
(8.3)

If X and Y are independent, it follows that

P(X2 > X1, Y2 > Y1) = P(X2 > X1)P(Y2 > Y1) =
(

1

2

)(
1

2

)
= 1

4
, (8.4)

because X1, X2 are independent and identically distributed variables, as are Y1, Y2

(although not necessarily, of course, with the same distribution as the X ’s). Similarly, if
X and Y are independent, we also have

P(X2 < X1, Y2 < Y1) = 1

4
.

Combining this result with (8.3) and (8.4), we see that the Kendall population correlation
coefficient τ = 2

( 1
4 + 1

4

)− 1 = 0 if X and Y are independent. (It is important to point
out that this is not an if and only if statement because τ = 0 does not necessarily imply
that X and Y are independent. See Comment 2 for more on this relationship.)

Procedure

To compute the Kendall sample correlation statistic K , we first calculate the values of
the n(n − 1)/2 paired sign statistics Q((Xi , Yi ), (Xj , Yj )), for 1 ≤ i < j ≤ n , where

Q((a , b), (c, d)) =
{

1, if (d − b)(c − a) > 0,

−1, if (d − b)(c − a) < 0.
(8.5)

That is, for each pair of subscripts (i , j ) with i < j , score 1 if (Yj − Yi )(Xj − Xi ) is
positive and score −1 if (Yj − Yi )(Xj − Xi ) is negative. The Kendall statistic K is then

K =
n−1∑
i=1

n∑
j=i+1

Q((Xi , Yi ), (Xj , Yj )), (8.6)

corresponding to adding up the 1’s and −1’s from the paired sign statistics.
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a. One-Sided Upper-Tail Test. To test the null hypothesis of independence, namely,

H0 : [FX ,Y (x , y) ≡ FX (x)FY (y), for all(x , y) pairs]

(which implies τ = 0) versus the alternative that X and Y are positively correlated
(see Comment 2) corresponding to

H1 : τ > 0, (8.7)

at the α-level of significance,

Reject H0 if K ≥ kα; otherwise do not reject, (8.8)

where the constant kα is chosen to make the type I error probability equal to α

and K = K /(n(n − 1)/2), the average of the paired sign statistics Q . Values of
kα are found using the command qKendall (Wheeler (2009)).

b. One-Sided Lower-Tail Test. To test

H0 : [FX ,Y (x , y) ≡ FX (x)FY (y), for all (x , y) pairs]

versus the alternative that X and Y are negatively correlated (see Comment 2)
corresponding to

H2 : τ < 0,

at the α-level of significance,

Reject H0 if K ≤ −kα; otherwise do not reject. (8.9)

c. Two-Sided Test. To test

H0 : [FX ,Y (x , y) ≡ FX (x)FY (y), for all (x , y) pairs]

versus the general alternative that X and Y are dependent variables corresponding
to

H3 : τ �= 0,

at the α-level of significance,

Reject H0 if |K | ≥ kα/2; otherwise do not reject. (8.10)

This two-sided procedure is the two-sided symmetric test with α/2 probability in
each tail of the null distribution of K .
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Large-Sample Approximation

The large-sample approximation is based on the asymptotic normality of K , suitably
standardized. For this standardization, we need to know the expected value and variance
of K when the null hypothesis of independence is true. Under H0, the expected value
and variance of K are

E0(K ) = 0 (8.11)

and

var0(K ) = n(n − 1)(2n + 5)

18
, (8.12)

respectively. These expressions for E0(K ) and var0(K ) are verified by direct calculations
in Comment 7 for the special case of n = 4. General derivations of both expressions are
presented in Comment 10.

The standardized version of K is

K ∗ = K − E0(K )

{var0(K )}1/2
= K

{n(n − 1)(2n + 5)/18}1/2
. (8.13)

When H0 is true, K ∗ has, an n tends to infinity, an asymptotic N (0, 1) distribution
(see Comment 10 for indications of the proof). The normal theory approximation for
procedure (8.8) is

Reject H0 if K ∗ ≥ zα; otherwise do not reject, (8.14)

the normal theory approximation for procedure (8.9) is

Reject H0 if K ∗ ≤ −zα; otherwise do not reject, (8.15)

and the normal theory approximation for procedure (8.10) is

Reject H0 if |K ∗| ≥ zα/2; otherwise do not reject. (8.16)

Ties

If there are ties among the n X observations and/or separately among the n Y observa-
tions, replace the function Q((a , b), (c, d)) in the definition of K (8.6) by

Q∗((a , b), (c, d)) =

⎧⎪⎪⎨⎪⎪⎩
1, if (d − b)(c − a) > 0,

0, if (d − b)(c − a) = 0,

−1, if (d − b)(c − a) < 0.

(8.17)

(Thus, in the case of tied X values and/or tied Y values, zeros are assigned to the
associated paired sign statistics.) After computing K with these modified paired sign
statistics, use procedure (8.8), (8.9), or (8.10). Note, however, that this test associ-
ated with tied X ’s and/or Y ’s is only approximately, and not exactly, of significance
level α.
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When applying the large-sample approximation, however, the loss in variability due
to the tied X ’s and/or tied Y ’s must also be taken into account. While these ties do not
affect the null expected value of K , its null variance is reduced to

var0(K ) =
{

n(n − 1)(2n + 5) −∑g
i=1 ti (ti − 1)(2ti + 5) −∑h

j=1 uj (uj − 1)(2uj + 5)
}

18

+
{∑g

i=1 ti (ti − 1)(ti − 2)
} {∑h

j=1 uj (uj − 1)(uj − 2)
}

9n(n − 1)(n − 2)

+
{∑g

i=1 ti (ti − 1)
} {∑h

j=1 uj (uj − 1)
}

2n(n − 1)
(8.18)

in the presence of such ties, where in (8.18) g denotes the number of tied X groups, ti
is the size of tied X group i , h is the number of tied Y groups, and uj is the size of tied
Y group j . We note that an untied X (Y ) observation is considered to be a tied X (Y )

“group” of size 1. In particular, if neither the collection of n X nor the collection of n Y
observations contains tied observations, we have g = h = n , ti = uj = 1, i = 1, . . . , n ,
and j = 1, . . . , n . In this case of no tied X ’s and no tied Y ’s, each term involving either
(ti − 1) or (uj − 1) or both reduces to zero and the variance expression in (8.18) reduces
to the usual null variance of K, as given previously in (8.12).

As a consequence of the effect that ties have on the null variance of K , the following
modification is needed to apply the large-sample approximation when there are tied
X observations and/or tied Y observations. Compute K with the modified paired sign
statistic using (8.17) and set

K ∗ = K

{var0(K )}1/2
, (8.19)

where var0(K ) is now given by display (8.18). With this modified form of K ∗, approxi-
mation (8.14), (8.15), or (8.16) can be applied.

EXAMPLE 8.1 Tuna Lightness and Quality.

The data in Table 8.1 are a subset of the data obtained by J. Rasekh, A. Kramer, and
R. Finch (1970) in a study designed to ascertain the relative importance of the various
factors contributing to tuna quality and to find objective methods for determining quality
parameters and consumer preference. Table 8.1 gives values of the Hunter L measure
of lightness, along with panel scores for nine lots of canned tuna. The original con-
sumer panel scores of excellent, very good, good, fair, poor, and unacceptable were
converted to the numerical values of 6, 5, 4, 3, 2, and 1, respectively. The panel scores
in Table 8.1 are averages of 80 such values. (The Y random variable is thus discrete,
and hence, the continuity portion of Assumption A is not satisfied. Nevertheless, because
each Y is an average of 80 values, we need not be nervous about this departure from
Assumption A.)

It is suspected that the Hunter L value is positively associated with the panel score.
Thus, we will apply procedure (8.8) to test H0 (8.1) versus τ > 0. Consider the sig-
nificance level α = .10. Using qKendall(p=.10, N=9, lower.tail=T) gives a
value of −.333. By the symmetry of K , the critical value is therefore .333.
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Table 8.1 Hunter L Values and Consumer Panel
Scores for Nine Lots of Canned Tuna

Lot Hunter L value (X ) Panel score (Y )

1 44.4 2.6
2 45.9 3.1
3 41.9 2.5
4 53.3 5.0
5 44.7 3.6
6 44.1 4.0
7 50.7 5.2
8 45.2 2.8
9 60.1 3.8

Source: J. Rasekh, A. Kramer, and R. Finch (1970).

Table 8.2 Q((Xi , Yi ), (Xj , Yj )) Values for Canned Tuna Data

j\i 1 2 3 4 5 6 7 8

2 1
3 1 1
4 1 1 1
5 1 −1 1 1
6 −1 −1 1 1 −1
7 1 1 1 −1 1 1
8 1 1 1 1 −1 −1 1
9 1 1 1 −1 1 −1 −1 1

We illustrate the computations of the paired sign statistics in (8.5) leading to the
sample value of K (8.6) in Table 8.2.

Summing the +1 and −1 values in Table 8.2 we see that

K =
8∑

i=1

9∑
j=i+1

Q((Xi , Yi ), (Xj , Yj )) = 26 − 10 = 16,

and K = 16/36.
This value of K is greater than the critical value .333, so we reject H0 in favor of

τ > 0 at the α = .10 level. Note that the critical value given by R results in a significance
level of α = .13, not α = .10.

Since the one-sided P -value for these data is the lowest significance level at which
we can reject H0 in favor of τ > 0 with the observed value of the test statistic K =
16/36. The P -value for these data is P0(K ≥ 16/36) = P0(K ≤ −16/36). The P -value is
pKendall(-16/36, N=9, lower.tail=T) =.060. Thus, there is some evidence
(although not overwhelming) that the Hunter L lightness values and the panel scores are
positively correlated.

The R command cor.test will perform this test without the need to use qKendall
or pKendall. The analysis above can be replicated by

cor.test (x, y, method="kendall", alt="greater")

where x is the Hunter L value and y is the panel score from Table 8.1. This results in
the output
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Kendall’s rank correlation tau

data: x and y
T = 26, p-value = 0.05972
alternative hypothesis: true tau is greater than 0
sample estimates:
tau
0.4444444.

The value of the test statistic is given here is T = 26. R sums (8.6) only over those
values of Q giving a positive 1. Since the number of pairs is n(n − 1)/2, there must
be n(n − 1)/2 − T negative 1 values in (8.6). To convert T to K , one uses the relation
K = 2T − n(n − 1)/2. For the data in Table 8.1, T = 26 is equivalent to K = 2 · 26 −
9 · 8/2 = 16.

For the large-sample approximation, we find (since there are no ties in the data)
from (8.13) that

K ∗ = 16

{9(8)(23)/18}1/2
= 1.67.

Thus, the smallest significance level at which we can reject H0 in favor of τ > 0 using
the normal theory approximation is .0475, since z.0475 = 1.67. This is in good agreement
with the exact P -value of .060 found previously.

Comments

1. Motivation for the Test. The null hypothesis of this section is that the X and Y
random variables are independent, which implies (see the discussion in Procedure)
that the Kendall population correlation coefficient τ is equal to 0. However, the
alternatives are stated directly in terms of τ(>, <, or �= 0). When τ is greater than
0 (and thus P((Y2 − Y1)(X2 − X1) > 0) > 1

2 ), there will tend to be a large number
of positive paired sign statistics and fewer negative paired sign statistics. Hence,
when τ is greater than 0, we would expect the sample to lead to a big, positive
value for K . This suggests rejecting H0 in favor of τ > 0 for large values of K
and motivates procedures (8.8) and (8.14). Similar rationales lead to procedures
(8.9), (8.10), (8.15), and (8.16).

2. Interpretation of τ . The Kendall correlation coefficient τ can also be written
as τ = [P((Y2 − Y1)(X2 − X1) > 0) − P((Y2 − Y1)(X2 − X1) < 0)]. We have
already noted that if X and Y are independent, then τ = 0. On the other hand,
if τ > 0, then it is more likely that {X2 > X1 and Y2 > Y1} or {X2 < X1 and
Y2 < Y1} occurs than either of the complementary events {X2 > X1 and Y2 < Y1}
or {X2 < X1 and Y2 > Y1}. Thus, if τ > 0, it is more likely that the change from
X1 to X2 has the same (rather than opposite) sign as that from Y1 to Y2. It is
reasonable to interpret this type of relationship between X and Y as indicative of
a positive association (as measured by τ ). Similarly, τ < 0 may reasonably be
interpreted as indicative of a negative association (as measured by τ ) between X
and Y .

3. Concordant/Discordant Pairs. Call the (Xi , Yi ), (Xj , Yj ) pairs concordant if
(Xi − Xj )(Yi − Yj ) > 0 and discordant if (Xi − Xj )(Yi − Yj ) < 0. Thus, (Xi , Yi )

and (Xj , Yj ) are concordant if either (a) Xi > Xj and Yi > Yj or (b) Xi < Xj

and Yi < Yj . Similarly, (Xi , Yi ) and (Xj , Yj ) are discordant if either (c) Xi < Xj
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and Yi > Yj or (d) Xi > Xj and Yi < Yj . Now K (8.6) can be expressed as
K = K ′ − K ′′, where

K ′ = number of concordant pairs,

K ′′ = number of discordant pairs,

and the count is taken over the n(n − 1)/2 sets of pairs (Xi , Yi ), (Xj , Yj ) with
i < j . Note that (Xi , Yi ), (Xj , Yj ) are concordant if the ordering of Xi , Xj agrees
with that of Yi , Yj . We have discordance when these orderings do not agree.
Thus, K /{n(n − l)/2} can be viewed as an average measure of agreement
between the X ’s and the Y ’s, where agreement refers to order.

4. Equivalent Expression When There Are No Ties. Let K ′ = (number of concordant
pairs) and K ′′ = (number of discordant pairs), as defined in Comment 3. If there are
no ties among the X ’s and no ties among the Y ’s, then K ′ + K ′′ = n(n − 1)/2.
Thus, with no ties, we have K = K ′ − K ′′ = K ′ − [n(n − 1)/2 − K ′] =
2K ′ − {n(n − 1)/2}. To illustrate, consider the tuna data in Example 8.1. Sum-
ming the 1’s in Table 8.2 (corresponding to concordant pairs), we obtain K ′ = 7 +
5 + 6 + 3 + 2 + 1 + 1 + 1 = 26. Adding the 0’s in Table 8.2 (corresponding to
discordant pairs), we have K ′′ = 1 + 2 + 0 + 2 + 2 + 2 + 1 + 0 = 10. It follows
that K = K ′ − K ′′ = 26 − 10 = 2K ′ − {n(n − 1)/2} = [2(26) − 9(8)/2] = 16,
in agreement with the value obtained directly in Example 8.1.

5. Convenience Through Ordering. It is convenient to compute the number of
concordant pairs, K ′ by first rearranging the (Xi , Yi ) pairs so that the (new) X ’s
are in increasing order. Then, after rearrangement, K ′ is equal to the number
of pairs for which the corresponding Y ’s are in increasing order. For example,
suppose our observations are

i 1 2 3 4 5

Xi 4.1 −2.4 −2.2 −5.6 5.5
Yi 2.3 3.7 1.1 2.2 3.8

We arrange these so that the X ’s are in increasing order and obtain the following:

X −5.6 −2.4 −2.2 4.1 5.5

Y 2.2 3.7 1.1 2.3 3.8

Then, proceeding from left to right, we find the Y pairs that are in increasing
order to be (2.2, 3.7), (2.2, 2.3), (2.2, 3.8), (3.7, 3.8), (1.1, 2.3). (1.1, 3.8), and
(2.3, 3.8). Thus, K ′ = 7 and K = 2K ′ − {5(4)/2} = 4.

6. Derivation of Distribution of K under H0 (No-Ties Case). Let Ri be the rank
Xi in the joint ranking of X1, . . . , Xn and let Si be the rank of Yi in the joint
ranking of Y1, . . . , Yn . It is clear that knowledge of the R’s and S ’s is sufficient
to calculate K (8.6). (See Problem 2.) We use this fact to illustrate how the
null distribution of K can be obtained. Without loss of generality, we take
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R1 = 1, . . . , Rn = n; then, as under H0 (8.1), all possible n! (S1, S2, . . . , Sn)

Y -rank configurations are equally likely, implying each has probability (1/n!).
Let us consider the case n = 4. In the following table, we display the

4! = 24 possible (S1, S2, S3, S4) configurations, the associated values of K , and
the corresponding null probabilities.

(R1, R2, R3, R4) (S1, S2, S3, S4) Null probability K

(1, 2, 3, 4) (1, 2, 3, 4) 1
24 6

(1, 2, 3, 4) (1, 2, 4, 3) 1
24 4

(1, 2, 3, 4) (1, 3, 2, 4) 1
24 4

(1, 2, 3, 4) (1, 3, 4, 2) 1
24 2

(1, 2, 3, 4) (1, 4, 2, 3) 1
24 2

(1, 2, 3, 4) (1, 4, 3, 2) 1
24 0

(1, 2, 3, 4) (2, 1, 3, 4) 1
24 4

(1, 2, 3, 4) (2, 1, 4, 3) 1
24 2

(1, 2, 3, 4) (2, 3, 1, 4) 1
24 2

(1, 2, 3, 4) (2, 3, 4, 1) 1
24 0

(1, 2, 3, 4) (2, 4, 1, 3) 1
24 0

(1, 2, 3, 4) (2, 4, 3, 1) 1
24 −2

(1, 2, 3, 4) (3, 1, 2, 4) 1
24 2

(1, 2, 3, 4) (3, 1, 4, 2) 1
24 0

(1, 2, 3, 4) (3, 2, 1, 4) 1
24 0

(1, 2, 3, 4) (3, 2, 4, 1) 1
24 −2

(1, 2, 3, 4) (3, 4, 1, 2) 1
24 −2

(1, 2, 3, 4) (3, 4, 2, 1) 1
24 −4

(1, 2, 3, 4) (4, 1, 2, 3) 1
24 0

(1, 2, 3, 4) (4, 1, 3, 2) 1
24 −2

(1, 2, 3, 4) (4, 2, 1, 3) 1
24 −2

(1, 2, 3, 4) (4, 2, 3, 1) 1
24 −4

(1, 2, 3, 4) (4, 3, 1, 2) 1
24 −4

(1, 2, 3, 4) (4, 3, 2, 1) 1
24 −6

Thus, for example, the probability is 5
24 under H0 that K is equal to 2,

because K = 2 when any of the five outcomes (S1, S2, S3, S4) = (1, 3, 4, 2), (1,
4, 2, 3), (2, 1, 4, 3), (2, 3, 1,4), or (3, 1, 2, 4) occurs and each of these outcomes
has null probability 1

24 . Simplifying, we obtain the null distribution



402 Chapter 8 The Independence Problem

Possible value of K Probability under H0

−6 1
24

−4 3
24

−2 5
24

0 6
24

2 5
24

4 3
24

6 1
24

The probability, under H0, that K is greater than or equal to 2, for example, is
therefore

P0(K ≥ 2) = P0(K = 2) + P0(K = 4) + P0(K = 6)

= 5

24
+ 3

24
+ 1

24
= 3

8
= .375.

This agrees with the upper-tail probability for n = 4 and the value K = 2 when
using pKendall.

Note that we have derived the null distribution of K without specifying the
form of the underlying independent X and Y populations under H0 beyond the
point of requiring that they be continuous. That is why the test procedures based
on K are called distribution-free procedures. From the null distribution of K , we
can determine the critical value kα and control the probability α of falsely reject-
ing H0 when H0 is true, and this error probability does not depend on the specific
forms of the underlying continuous and independent X and Y distributions.

7. Calculation of the Mean and Variance of K under the Null Hypothesis. Displays
(8.11) and (8.12) present formulas for the mean and variance of K when the null
hypothesis is true. In this comment, we illustrate a direct calculation of E0(K ) and
var0(K ) in the particular case of n = 4, using the null distribution of K obtained
in Comment 6. (Later, in Comment 10, we present general derivations of E0(K )

and var0(K ).) The null mean, E0(K ), is obtained by multiplying each possible
value of K with its probability under H0 and summing the products. Thus,

E0(K ) = −6

(
1

24

)
− 4

(
3

24

)
− 2

(
5

24

)
+ 0

(
6

24

)
+ 2

(
5

24

)
+ 4

(
3

24

)
+ 6

(
1

24

)
= 0.

This is in agreement with the value stated in (8.7). A check on the expression
for var0(K ) is also easily performed, using the well-known fact that

var0(K ) = E0(K
2) − {E0(K )}2.
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The value of E0(K 2), the second moment of the null distribution of K , is again
obtained by multiplying possible values (in this case of K 2) by the corresponding
probabilities under H0 and summing. We find

E0(K
2) =

[
(36 + 36)

(
1

24

)
+ (16 + 16)

(
3

24

)
+ (4 + 4)

(
5

24

)
+ 0

(
6

24

)]

= 26

3
.

Thus,

var0(K ) = 26

3
− (0)2 = 26

3
,

which agrees with what we obtain using (8.12) directly, namely,

var0(K ) = 4(4 − 1)(2(4) + 5)

18
= 26

3
.

8. Symmetry of the Distribution of K under the Null Hypothesis. When H0 is
true, the distribution of K is symmetric about its mean 0 (see Comment 6 for
verification of this when n = 4). This implies that

P0(K ≤ −x) = P0(K ≥ x), (8.20)

for all x. Equation (8.20) is used directly to convert upper-tail probabilities
to lower-tail probabilities. In particular, it follows from (8.20) that the lower
α percentile for the null distribution of K is −kα , thus the use of −kα as the
critical value in procedure (8.9).

9. Possible Values for K. If n = 4j or n = 4j + 1, j = 0, 1, . . ., the statistic K (8.6) is
always an even integer. Similarly, if n = 4j + 2 or n = 4j + 3, j = 0, 1, . . . , K
is always an odd integer. The fact that K can assume only every other integer
follows from the counting procedure used to define K (see (8.5) and (8.6)).
The even or odd property of K for specific sample sizes can be deduced
from the relation K = 2K ′ − {n(n − 1)/2} and the fact that n(n − 1)/2 is
an even integer (the product of an odd and an even integer) when n = 4j or
n − 4j + 1, j − 0, 1, . . ., and is an odd integer (the product of two odd integers)
when n = 4j + 2 or n = 4j + 3, j = 0, 1, . . . .

10. Large-Sample Approximation. From the counting representation for K in (8.5)
and (8.6), we see immediately that

E (K ) = E

⎡⎣n−1∑
i=1

n∑
j=i+1

Q((Xi , Yi ), (Xj , Yj ))

⎤⎦

=
n−1∑
i=1

n∑
j=i+1

E [Q((Xi , Yi ), (Xj , Yj ))].
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=
n−1∑
i=1

n∑
j=i+1

[P{(Y2 − Y1)(X2 − X1) > 0}

− P{(Y2 − Y1)(X2 − X1) < 0}],

which, because the X and Y variables are continuous, yields

E (K ) =
n−1∑
i=1

n∑
j=i+1

[2P{(Y2 − Y1)(X2 − X1) > 0} − 1]

=
n−1∑
i=1

n∑
j=i+1

τ =
(

n
2

)
τ , (8.21)

from expression (8.2) for τ . The value of τ is 0 if X and Y are independent, so
it follows that the expected value of K under H0 is 0, as noted in (8.11). For the
variance of K , we can use a well-known expression for the variance of a sum
of random variables to obtain

var(K ) =

⎡⎢⎢⎣n−1∑
i=1

n∑
j=i+1

var(Qij ) +
n−1∑
i=1

n∑
j=i+1

n−1∑
s=1

(i ,j )�=(s ,t)

n∑
t=s+1

cov(Qij , Qst )

⎤⎥⎥⎦ , (8.22)

where Quv = Q((Xu, Yu), (Xv , Yv)), for 1 ≤ u < v ≤ n .
After considerable tedious calculation, we can show that (8.22) simplifies to

var(K ) = [n(n − 1)]

[
1

2
(1 − τ 2) + 4(n − 2)

{
δ −
(

τ + 1

2

)2
}]

, (8.23)

where τ is given in (8.2) and

δ = P{(Y2 − Y1)(X2 − X1) > 0 and (Y3 − Y1)(X3 − X1) > 0}. (8.24)

Using a mutually exclusive breakdown of the event in δ (8.24) similar to that in
(8.2), we see that

δ = [P{Y2 > Y1, X2 > X1, Y3 > Y1, X3 > X1}
+ P{Y2 > Y1, X2 > X1, Y3 < Y1, X3 < X1}
+ P{Y2 < Y1, X2 < X1, Y3 > Y1, X3 > X1}
+ P{Y2 < Y1, X2 < X1, Y3 < Y1, X3 < X1}]

= [P{Y1 < min(Y2, Y3), X1 < min(X2, X3)}
+ P{Y3 < Y1 < Y2, X3 < X1 < X2}
+ P{Y2 < Y1 < Y3, X2 < X1 < X3}
+ P{Y1 > max(Y2, Y3), X1 > max(X2, X3)}]. (8.25)
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When X and Y are independent variables (under H0), (8.25) simplifies to

δ0 = [P0{Y1 < min(Y2, Y3)}P0{X1 < min(X2, X3)}
+ P0(Y3 < Y1 < Y2)P0(X3 < X1 < X2)

+ P0(Y2 < Y1 < Y3)P0(X2 < X1 < X3)

+ P0{Y1 > max(Y2, Y3)}P0{X1 > max(X2, X3)}]. (8.26)

However, X1, X2, and X3 are mutually independent, identically distributed
random variables, as are Y1, Y2, and Y3. Thus, we know that

P0{Y1 < min(Y2, Y3)} = P0{X1 < min(X2, X3)} = 1

3
, (8.27)

P0{Y1 > max(Y2, Y3)} = P0{X1 > max(X2, X3)} = 1

3
, (8.28)

and

P0(X3 < X1 < X2) = P0(X2 < X1 < X3) = P0(Y3 < Y1 < Y2)

= P0(Y2 < Y1 < Y3) = 1

6
. (8.29)

Combining (8.26), (8.27), (8.28), and (8.29), we obtain

δ0 =
[

1

3

(
1

3

)
+ 1

6

(
1

6

)
+ 1

6

(
1

6

)
+ 1

3

(
1

3

)]
= 10

36
. (8.30)

From (8.23) and (8.30) and the fact that τ = 0 when X and Y are independent,
it follows that the null variance of K is given by

var0(K ) = [n(n − 1)]

[
1

2
(1 − 0)2 + 4(n − 2)

{
10

36
−
(

0 + 1

2

)2
}]

= [n(n − 1)]

[
1

2
+ 1

9
(n − 2)

]
= n(n − 1)(2n + 5)

18
,

as previously noted in (8.12).
The asymptotic normality under both H0 and general alternatives of the

standardized form

K ∗ = K − E0(K )

{var0(K )}1/2
= K{

n(n − 1)(2n + 5)

18

}1/2

follows from Hoeffding’s (1948a) U -statistic theorem applied to the bivariate
setting. (For additional details, see Example 3.6.12 in Randles and Wolfe (1979).)
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11. Ties within the X-Values and/or Y-Values. We have recommended dealing with
tied X observations and/or tied Y observations by counting a zero in the Q∗
(8.17) counts leading to the computation of K (8.6). This approach is satisfactory
as long as the number of (X , Y ) pairs containing a tied X and/or tied Y obser-
vation does not represent a sizable percentage of the total number (n) of sample
pairs.

We should, however, point out that methods other than this zero assignment
to the Q∗ (8.17) counts have been considered for dealing with tied X and/or tied
Y observations. One could use individual randomization (e.g., flipping a fair coin)
to decide whether each of the tied pairs (X or Y ) is to be counted as a +1 (i.e., as
a concordant pair—see Comment 3) or as a −1 (i.e., as a discordant pair—again,
see Comment 3) in the computation of K (8.6). (Although this approach maintains
many of the nice properties of K that hold when there are no tied X and/or tied
Y observations, it introduces extraneous randomness that could quite easily have
a direct effect on the outcome of any subsequent inferences based on such a
modified value of K .) A second alternative approach in the case of the one-
sided test procedures in (8.8), (8.9), (8.14), and (8.15) is to be conservative about
rejecting the null hypothesis H0; that is, we could count all the tied X and/or tied
Y observations as if they were in favor of not rejecting H0. Thus, for example, in
applying either procedure (8.8) or (8.14) to test H0 against the alternative τ > 0,
we would treat all the pairs of pairs involving tied X and/or tied γ observations
as if they were discordant pairs (in favor of not rejecting H0) leading to Q (8.5)
counts of −1 in the calculation of K . (In the case of procedures (8.9) and (8.15), all
the pairs of pairs involving tied X and/or tied Y observations would be considered
as concordant pairs—again in favor of not rejecting H0 —leading to Q (8.5)
counts of +1 in the calculation of K .) Any rejection of H0 with this conservative
approach to dealing with tied X and/or tied Y observations could then be viewed
as providing strong evidence in favor of the appropriate alternative. For more
detailed discussion of methods for handling tied X and/or tied Y observations,
see Sillitto (1947), Smid (1956), Burr (1960), and Kendall (1962).

12. Some Power Results for the Kendall Test for Independence. We consider the
upper-tail α-level test of H0 (8.1) versus H1 : τ > 0 given by procedure (8.8).
The power, or probability of correctly rejecting H0, for τ (8.2) values “near” the
null hypothesis value of 0 can be approximated by

Power
.= �(AF ), (8.31)

where �(AF ) is the area under a standard normal density to the left of the point

AF = {[9n(n − 1)/(4n + 10)]1/2τ − zα}. (8.32)

When FX ,Y is the bivariate normal distribution with correlation coefficient
ρ, it follows that τ − 2

π
sin−1(ρ) (see, for example, Gibbons and Chakraborti

(2010)). Thus, when FX ,Y is bivariate normal the approximate power depends
only on the value of ρ. For purposes of illustration, suppose that the common
underlying distribution is bivariate normal with ρ = .4. For the case of n = 9 and
α = .060, the test rejects H0 if and only if K ≥ 16, or, equivalently, K ≥ 16/36.
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Substituting τ = (2/π) sin−1(.4) = (2/π)(.4115) = .2620 in (8.32), we obtain

Abiv nor = {[9(9)(8)/2(2(9) + 5)]1/2.2620 − 1.555}
= {[14.09]1/2(.2620) − 1.555} = {.9835 − 1.555} = −.57.

Thus, the approximate power of this test for a bivariate normal distribution with
ρ = .4 (and any means and variances) is

Power
.= �(−.57) = 1 − �(.57) = 1 − (1 − .28) = .28.

This compares with the simulation estimated exact power of .35 for n = 9,
ρ = .4, and α = .05, as given in Table 8.3 of Bhattacharyya, Johnson, and Neave
(1970). Additional simulation estimated exact power values for the one-sided
Kendall test and sample sizes n = 5,7,9 and significance levels α = .01 and .05
can be found in Bhattacharyya, Johnson, and Neave (1970) for bivariate normal
and bivariate exponential distributions.

13. Sample Size Determination. Noether (1987) shows how to determine an
approximate sample size n so that the α-level one-sided test given by procedure
(8.8) will have approximate power 1 − β against an alternative value of τ (8.2)
greater than zero. This approximate value of n is

n
.= 4(zα + zβ)2

9τ 2
. (8.33)

As an illustration of the use of (8.33), suppose we are testing H0 and we desire
to have an upper-tail level α = .010 test with power 1 − β at least .90 against
an alternative bivariate distribution for which τ = .4. Using zα = z.01 = 2.326
and zβ = z.10 = 1.282, we find that the approximate required sample size for the
alternative τ = .4 is

n
.= 4(2.326 + 1.282)2

9(.4)2
= 36.2.

To be conservative, we would take n = 37.

14. Trend Test. If we take Xi = i , i = 1, . . . , n and consider

K =
n−1∑
i=1

n∑
j=i+1

Q((i , Yi ), (j , Yj ))

=
n−1∑
i=1

n∑
j=i+1

c(Yj − Yi ),

where

c(a) =

⎧⎪⎨⎪⎩
1 if a > 0,

0 if a = 0,

−1 if a < 0,

then K can be used as a test for a time trend in the univariate random sample
Y1, . . . , Yn . This use of K to test for a time trend was suggested by Mann (1945).
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15. Other Uses for the K Statistic. The Wilcoxon rank sum test (Section 4.1) and
the Jonckheere–Terpstra test (Section 6.2) can be viewed as tests based on K
(8.6) (or, equivalently, τ̂ (8.34)). For this interpretation see Jonckheere (1954a)
and Kendall (1962, Sections 3.12 and 13.9). Also, Wolfe (1977) has used the K
statistic to compare the correlation between variables X2 and X1 with that between
the variables X3 and X1, when both X2 and X3 are potential predictors for X1.

16. Consistency of the K Test. Under the assumption that (X1, Y1), . . . , (Xn , Yn) is
a random sample from a continuous bivariate population with joint distribution
function FX ,Y (x , y), the consistency of the tests based on K depends on the
parameter τ (8.2). The test procedures defined by (8.8), (8.9), and (8.10) are
consistent against the class of alternatives corresponding to τ >, <, and �= 0,
respectively.

17. Multivariate Concordance. Joe (1990) has generalized Kendall’s measure of
association τ from the bivariate case where τ measures the strength of association
between two variables X , Y to the multivariate case where X = (X1, . . . , Xm)

is an m-dimensional random variable and one is interested in a measure of the
strength of the association between the components X1, . . . , Xm of X. Let F
denote the joint distribution function of X,

F (x1, . . . , xm) = P(X1 ≤ x1 and X2 ≤ x2 and . . . and Xm ≤ xm)

and denote the marginal distribution functions as Fj (xj ) = P(Xj ≤ xj ), j =
1, . . . , m . The null hypothesis of mutual independence of X1, . . . , Xm is

H0 : F (x1, . . . , xm) =
m∏

j=1

Fj (xj ), for all(x1, . . . , xm).

That is, the joint distribution is equal to the product of the marginals.
Joe has defined a class of measures of the strength of association

between X1, X2, . . . , Xm . Let Xi = (Xi1, . . . , Xim), i = 1, 2 be two independent
m-dimensional random variables each with joint distribution function F . One
member of Joe’s class reduces to τ , the average of all pairwise τ ’s. The measure
τ was introduced by Hays (1960) and is given by

τ =
m−1∑
u=1

m∑
v=1

τuv{
m(m − 1)

2

} ,

where

τuv = P{(X1u − X1v)(X2u − X2v) > 0} − P{(X1u − X1v)(X2u − X2v) < 0}
= 2P{X1u − X1v)(X2u − X2v) > 0} − 1.

Joe has also generalized Spearman’s measure (see Section 8.5) and a measure
due to Blomqvist (1950).
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Properties

1. Consistency. The tests defined by (8.8), (8.9), and (8.10) are consistent against
the alternatives τ >, <, and �= 0, respectively.

2. Asymptotic Normality. See Hoeffding (1948a) or Randles and Wolfe (1979, pp.
108–109).

3. Efficiency. See Section 8.7.

Problems

1. The data in Table 8.3 are a subset of the data obtained by Featherston (1971). Among other
things, he was interested in the relationship between the weight of tapeworms (Taenia hydati-
gena) fed to dogs and the weight of the scoleces recovered from the dogs after 20 days. (A
scolex is the attachment end of a tapeworm, consisting of the head and neck.) The cysticerci
used in the experiment were collected from sheep carcasses and force-fed to 10 dogs via
gelatine capsules. The scoleces were recovered from each dog at autopsy, 20 days after the
introduction of the tapeworms. Table 8.3 gives the mean weight of the initial cysticerci and
the mean weight of the recovered worms for each of the 10 dogs in the study.

Test the hypothesis of independence versus the alternative that the mean weight of intro-
duced cysticerci is positively correlated with the mean weight of worms recovered.

2. Let Ri be the rank of Xi in the joint ranking of X1, . . . , Xn and let Si be the rank of Yi in the
joint ranking of Y1, . . . , Yn . Show that knowledge of R1, . . . , Rn and S1, . . . , Sn is sufficient to
calculate K (8.6).

3. The data in Table 8.4 are a subset of the data obtained by Sylvester (1969) in a study concerned
with the anatomical and pathological status of the corticospinal and somatosensory tracts and
parietal lobes of patients who had had cerebral palsy. Among other things, he was interested
in the relationship between brain weights and large fiber (>7.5 μ in diameter) counts in
the medullary pyramid. Table 8.4 gives the mean brain weights (g) and medullary pyramid
large fiber counts for 11 cerebral palsy subjects. Test the hypothesis of independence versus
the general alternative that brain weight and large fiber count in the medullary pyramid are
correlated in subjects who have had cerebral palsy.

Table 8.3 Relation Between Weight of the Cysticerci of
Taenia hydatigena Fed to Dogs and Weight of Worms
Recovered at 20 Days

Mean weight, mg

Dog Cysticerci Worms recovered

1 28.9 1.0
2 32.8 7.7
3 12.0 7.3
4 9.9 7.9
5 15.0 1.1
6 38.0 3.5
7 12.5 18.9
8 36.5 33.9
9 8.6 28.6

10 26.8 25.0

Source: D. W. Featherston (1971).
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Table 8.4 Mean Brain Weights and Medullary Pyramid
Large Fiber Counts for Cerebral Palsy Subjects

Subject Brain Pyramidal large
number weight, g fiber count

1 515 32,500
2 286 26,800
3 469 11,410
4 410 14,850
5 461 23,640
6 436 23,820
7 479 29,840
8 198 21,830
9 389 24,650

10 262 22,500
11 536 26,000

Source: P. E. Sylvester (1969).

4. Let (X1, Y1) and (X2, Y2) be independent and identically distributed continuous bivariate ran-
dom variables with joint probability density function

fX ,Y (x , y) =
{

e−y , 0 < x < y < ∞,

0, elsewhere.

Calculate the value of τ for this bivariate distribution.

5. Let (X1, Y1) and (X2, Y2) be independent and identically distributed discrete bivariate random
variables with joint probability function

fX ,Y (x , y) =
⎧⎨⎩

x + y

21
, x = 1, 2, 3; y = 1, 2,

0, elsewhere.

Calculate the value of τ for this bivariate distribution.

6. Let (X1, Y1) and (X2, Y2) be independent and identically distributed continuous bivariate ran-
dom variables with joint probability density function

fX ,Y (x , y) =
⎧⎨⎩

1

2
y2e−x−y , 0 < x < ∞, 0 < y < ∞,

0, elsewhere.

Calculate the value of τ for this bivariate distribution.

7. The data in Table 8.5 are a subset of the data considered by Clark, Vandenberg, and Proctor
(1961) in a study concerned with the relationship of scores on various psychological tests and
certain physical characteristics of twins. Table 8.5 gives the test scores (totals of a number of
different psychological tests) of 13 dizygous (i.e., nonidentical) male twins. Test the hypothesis
of independence versus the alternative that the twins’ test scores are positively correlated.

8. Previously, it was shown that if X and Y are independent random variables, then τ (8.2) has
a value of 0. Show that the converse is not true by constructing a joint probability distribution
for the pair of random variables X and Y such that τ = 0 but X and Y are not independent.

9. If we have 25 bivariate observations and FX ,Y is bivariate normal with correlation coefficient
.3, what is the approximate power of the level α = .045 test of H0 (8.1) versus the alternative
τ > 0?
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Table 8.5 Psychological Test Scores of Dizygous Male Twins

Pair i Twin Xi Twin Yi

1 277 256
2 169 118
3 157 137
4 139 144
5 108 146
6 213 221
7 232 184
8 229 188
9 114 97

10 232 231
11 161 114
12 149 187
13 128 230

Source: P. J. Clark, S. G. Vandenberg, and C. H. Proctor (1961).

10. For an arbitrary number, n , of bivariate observations, what are the smallest and largest values
of K ? Give examples of data sets where these extremes are achieved.

11. Give an example of a data set of n ≥ 10 bivariate observations for which K has value 0.
(Consider Comment 9.)

12. Suppose n = 20. Compare the critical region for the exact level α = .05 test of H0 (8.1)
versus H2 : τ < 0 based on K with the critical region for the corresponding nominal level
α = .05 based on the large-sample approximation. What is the exact significance level of this
.05 nominal level test based on the large-sample approximation?

13. Consider a level α = .10 test of H0 (8.1) versus the alternative τ > 0 based on K . How many
bivariate observations (n) will we need to collect in order to have approximate power at least
.95 against an alternative for which τ = .6?

14. A question of significance to state legislators working with tight budgets is the spending for sec-
ondary education. The data in Table 8.6 are from the Department of Education, National Center
for Education Statistics and were considered by Merline (1991) in assessing the relationship
between the amount of money spent on secondary education and various performance criteria
for high-school seniors. Table 8.6 gives the spending ($) per high-school senior and the per-
centage of those seniors who graduated for each of the 50 states in the 1987–1988 school year.

Use the large-sample approximation to test the hypothesis of independence versus the
alternative that spending per high-school senior and the percentage of seniors graduating are
positively correlated. (Discuss any other social or economic factors that might impact on
these data and, thereby, on the conclusion from this statistical analysis.)

15. For the case of n = 5 untied bivariate (X , Y ) observations, obtain the form of the exact null
(H0) distribution of K . (See Comment 6.)

16. Johnson (1973) studied several different managerial aspects of university associated schools
of nursing. Among the data she collected were the “extent of agreement (between the dean
and the faculty) on the responsibilities for decision making” and “faculty satisfaction.” The
ranks on the two variables for the 12 institutions that were involved in Johnson’s study are
presented in Table 8.7.

Test the hypothesis of independence versus the alternative that faculty/dean decision-
making agreement and faculty satisfaction are negatively correlated in university schools of
nursing. (Note: Low ranks are associated with poor faculty satisfaction and little faculty/dean
decision-making agreement, respectively.)

17. Consider the test of H0 (8.1) versus H1 : τ > 0 based on K for the following n = 10 (X , Y )
observations: (1.5, 6), (1.9, 4), (2.3, 6), (2.7, 12), (1.5, 13), (1.8, 16), (3.6, 16), (4.2, 9), (4.7,



412 Chapter 8 The Independence Problem

Table 8.6 Spending per High-School Senior and the Percentage of Those Seniors Who Grad-
uated during the 1987–1988 School Year

$ per % $ per %
State Pupil Graduated State Pupil Graduated

Alaska 7971 65.5 Ohio 3998 79.6
New York 7151 62.3 Nebraska 3943 85.4
New Jersey 6564 77.4 Hawaii 3919 69.1
Connecticut 6230 84.9 West Virginia 3858 77.3
Massachusetts 5471 74.4 California 3840 65.9
Rhode Island 5329 69.8 Indiana 3794 76.3
Vermont 5207 78.7 Missouri 3786 74.0
Maryland 5201 74.1 Arizona 3744 61.1
Wyoming 5051 88.3 New Mexico 3691 71.9
Delaware 5017 71.7 Nevada 3623 75.8
Pennsylvania 4989 78.4 Texas 3608 65.3
Oregon 4789 73.0 North Dakota 3519 88.3
Wisconsin 4747 84.9 Georgia 3434 61.0
Michigan 4692 73.6 South Carolina 3408 64.6
Colorado 4462 74.7 North Carolina 3368 66.7
New Hampshire 4457 74.1 South Dakota 3249 79.6
Minnesota 4386 90.9 Louisiana 3138 61.4
Illinois 4369 75.6 Oklahoma 3093 71.7
Maine 4246 74.4 Tennessee 3068 69.3
Montana 4246 87.3 Kentucky 3011 69.0
Washington 4164 77.1 Arkansas 2989 77.2
Virginia 4149 71.6 Alabama 2718 74.9
Iowa 4124 85.8 Idaho 2667 75.4
Florida 4092 58.0 Mississippi 2548 66.9
Kansas 4076 80.2 Utah 2454 79.4

Source: J. W. Merline (1991).

Table 8.7 Rankings for Faculty/Dean Decision-Making
Agreement and Faculty Satisfaction for Participating
Schools of Nursing

Rank for faculty/dean Rank for
decision-making faculty

School agreement satisfaction

1 8 8
2 9 2
3 6 10
4 12 5
5 1 12
6 11 4
7 10 6
8 2 9
9 4 7

10 5 3
11 7 11
12 3 1

Source: B. M. Johnson (1973).
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0), and (4.0, 3). Compute the P -values for the competing K -procedures based on either (a)
using Q∗ (8.17) counts of zero, as recommended in the Ties portion of this section, or (b)
dealing with the tied X and tied Y observations in a conservative manner, as presented in
Comment 11. Discuss the results.

18. In Comment 4, we noted that we have K = 2K ′ − {n(n − 1)/2}, where K ′ = (number
of concordant pairs), when there are neither tied X nor tied Y observations. Obtain the
corresponding expression for the relationship between K and K ′ when there are no tied X

pairs and a total of t ( �= 0) tied Y pairs (among the
(

n
2

)
total Y pairs), and we use the

Q∗ (8.17) counts of zero to deal with the tied Y pairs. How does this expression change if
there are no tied Y pairs and t tied X pairs? Discuss the necessary changes in the expression
relating K and K ′ when there are s ( �= 0) tied X pairs and t ( �= 0) tied Y pairs.

19. Gerstein (1965) studied the long-term pollution of Lake Michigan and its effect on the water
supply for the city of Chicago. One of the measurements considered by Gerstein was the
annual number of “odor periods” over the period of years 1950–1964. Table 8.8 contains
this information for Lake Michigan for each of these 15 years.

Test the hypothesis that the degree of pollution (as measured by the number of odor
periods) had not changed with time against the alternative that there was a general increasing
trend in the pollution of Lake Michigan over the period 1950–1964. (See Comment 14.)

8.2 AN ESTIMATOR ASSOCIATED WITH THE KENDALL
STATISTIC (KENDALL)

Procedure

The estimator of the Kendall population correlation coefficient τ (8.2), based on the
statistic K (8.6),is

τ̂ = 2K

n(n − 1)
= K . (8.34)

The statistic τ̂ is known as Kendall’s sample rank correlation coefficient and appropriately
assumes values between −1 and 1 inclusive.

Table 8.8 Annual Number of Odor Periods
for Lake Michigan for the Period 1950–1964

Year Number of odor periods

1950 10
1951 20
1952 17
1953 16
1954 12
1955 15
1956 13
1957 18
1958 17
1959 19
1960 21
1961 23
1962 23
1963 28
1964 28

Source: H. H. Gerstein (1965).
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EXAMPLE 8.2 (Continuation of Example 8.1).

For the canned tuna data of Table 8.1, we see from (8.34) that the sample estimate of
τ is

τ̂ = 2(16)

9(8)
= 4

9
. (8.35)

This estimate is also found in the R output in Example 8.1.

Comments

18. Ties. In the presence of ties, use τ̂ = 2K /n(n − 1), where

K =
n−1∑
i=1

n∑
j=i+1

Q∗((Xi , Yi ), (Xj , Yj )) (8.36)

and Q∗((Xi , Yi ), (Xj , Yj )) is defined by (8.17).

19. Probability Estimation. For many problems, distribution-free test statistics are
used directly to estimate basic probability parameters other than the usual distri-
butional parameters associated with the corresponding normal theory problems.
In particular, note that τ̂ = 2K /[n(n − 1)] estimates the probability parameter
τ (8.2) rather than the usual correlation coefficient for the underlying bivariate
population. Estimators of such readily interpretable parameters are very helpful in
data analysis. (See Crouse (1966), Wolfe and Hogg (1971), and Comment 4.18.)

Properties

1. Standard Deviation of τ̂ . For the asymptotic standard deviation of τ̂ (8.34), see
Noether (1967a, p. 78), Fligner and Rust (1983), Samara and Randles (1988), and
Comment 25.

2. Asymptotic Normality. See Hoeffding (1948a) and Randles and Wolfe (1979, pp.
108–109).

Problems

20. Estimate τ for the tapeworm data of Table 8.3.

21. What is the maximum possible value of τ̂ when there are no tied X and/or tied Y observations?
What is the minimum possible value of τ̂ when there are no tied X and/or tied Y observations?
Construct three examples with n ≥ 10 with no tied X and/or tied Y observations: one in
which τ̂ achieves its maximum value, one in which it achieves its minimum value, and one
for which τ̂ = 0.

22. Estimate τ for the cerebral palsy data of Table 8.4.

23. Estimate τ for the twin data of Table 8.5.

24. Estimate τ for the secondary education data of Table 8.6.
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25. Use Comment 17 to redo Problem 21 for the case when there are t ( �= 0) tied X pairs (among

the total of

(
n
2

)
X pairs) and no tied Y observations. How is the answer affected if there are

no tied X observations and t( �= 0) tied Y pairs? if there are s ( �= 0) tied X pairs and t ( �= 0)

tied Y pairs?

26. Estimate τ for the nursing faculty data of Table 8.7.

8.3 AN ASYMPTOTICALLY DISTRIBUTION–FREE
CONFIDENCE INTERVAL BASED ON THE KENDALL
STATISTIC (SAMARA–RANDLES, FLIGNER–RUST,
NOETHER)

Procedure

For an asymptotically distribution-free symmetric two-sided confidence interval for τ ,
with the approximate confidence coefficient 1 − α, we first compute

Ci =
n∑

t=1
t �=i

Q((Xi , Yi ), (Xt , Yt )), for i = 1, . . . , n , (8.37)

where Q((a , b), (c, d)) is given by (8.5). Let C = (1/n)
∑n

i=1 Ci = 2K /n and define

σ̂ 2 = 2

n(n − 1)

[
2(n − 2)

n(n − 1)2

n∑
i=1

(Ci − C )2 + 1 − τ̂ 2

]
, (8.38)

where τ̂ is given by (8.34). The approximate 100(1 − α)% confidence interval (τL, τU)

for τ that is associated with the point estimator τ̂ (8.34) is then given by

τL = τ̂ − zα/2σ̂ , τU = τ̂ + zα/2σ̂ . (8.39)

With τL and τU given by display (8.39), we have

Pτ {τL < τ < τU} ≈ 1 − α for all τ. (8.40)

(For approximate upper or lower confidence bounds for τ associated with τ̂ , see
Comment 23.)

EXAMPLE 8.3 (Continuation of Examples 8.1 and 8.2).

Consider the canned tuna data of Table 8.1. We illustrate how to obtain an approximate
90% symmetric two-sided confidence interval for τ . From (8.37), we see that

C5 =
∑
j �=5

Q((X5, Y5), (Xj , Yj ))

= [Q((X5, Y5), (X1, Y1)) + Q((X5, Y5), (X2, Y2))

+ Q((X5, Y5), (X3, Y3)) + Q((X5, Y5), (X4, Y4))
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+ Q((X5, Y5), (X6, Y6)) + Q((X5, Y5), (X7, Y7))

+ Q((X5, Y5), (X8, Y8)) + Q((X5, Y5), (X9, Y9)].

Using the fact that Q((Xi , Yi ), (Xj , Yj )) = Q((Xj , Yj ), (Xi , Yi )) for every i �= j and the Q
counts for the canned tuna data in Table 8.2, it follows that

C5 = 1 − 1 + 1 + 1 − 1 + 1 − 1 + 1 = 2.

Note that C5 is simply equal to the sum of the Q values in the j = 5 row and the i = 5
column in Table 8.2. In the same way, we find

C1 = 7 − 1 = 6, C2 = 6 − 2 = 4, C3 = 8 − 0 = 8, C4 = 6 − 2 = 4

C6 = 3 − 5 = −2, C7 = 6 − 2 = 4, C8 = 6 − 2 = 4, C9 = 5 − 3 = 2.

Thus, we have

C = 1

9

9∑
i=1

Ci = 1

9
[6 + 4 + 8 + 4 + 2 − 2 + 4 + 4 + 2] = 32

9
.

Thus,

9∑
i=1

(Ci − C )2 =
9∑

i=1

(
Ci − 32

9

)2

=
[(

22

9

)2

+
(

4

9

)2

+
(

40

9

)2

+
(

4

9

)2

+
(

−14

9

)2

+
(

−50

9

)2

+
(

4

9

)2

+
(

4

9

)2

+
(

−14

9

)2
]

= 484 + 4(16) + 1600 + 2(196) + 2500

81
= 560

9
. (8.41)

Using the values for τ̂ and �9
i=1(Ci − C )2 given in (8.35) and (8.41), respectively, we

see from (8.38) that

σ̂ 2 = 2

9(8)

[
2(7)

9(8)2

(
560

9

)
+ 1 −

(
4

9

)2
]

= 1

36
[1.512 + 1 − .198] = .064.

With 1 − α = .90 (so that α = .10), z.05 = 1.65. Hence, from (8.39), we obtain

τL = 4

9
− 1.65(.064)1/2 = .444 − .417 = .027
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and
τU = 4

9
+ 1.65(.064)1/2 = .444 + .417 = .861.

Our approximate 90% symmetric confidence interval for τ is thus (τL, τU) = (.027, .861).
The above results may be duplicated with the command kendall.ci in package

NSM3. The arguments needed are the samples X and Y , the confidence level α, and
whether the interval should be the two-sided symmetric interval described above or a
one-sided interval described in Comment 24. In particular,

kendall.ci (x, y, alpha=.1, type="t")

reproduces the above bounds for this example.

Comments

20. Interpretation as a Confidence Interval for a Probability. The confidence interval
given by (8.39) is an approximate 1 − α confidence interval for a parameter that is
a linear function of the probability P{(X1 − X2)(Y1 − Y2) > 0}. This is common
practice in the field of nonparametric statistics, where probabilities are often
natural and easily interpretable parameters. Recall the relation of the Wilcoxon
two-sample test of Section 4.1 to the parameter P(X < Y ). (See Comments 4.7,
4.10, 4.14, and 4.18.)

21. Ties. In the presence of ties, use Q∗((Xi , Yi ), (Xj , Yj )) defined by (8.17) instead
of Q((Xi , Yi ), (Xj , Yj )) given by (8.5) in the computation of C1, . . . , Cn and τ̂ .

22. Alternative Method of Calculation. The following equivalent formula for the term
�n

i=1(Ci − C )2 in the definition of σ̂ 2 (8.38), namely,

n∑
i=1

(Ci − C )2 =
n∑

i=1

C 2
i − 4K 2

n
, (8.42)

is often computationally more convenient.

23. Concordant/Discordant Pairs Representation for the Ci ’s. Let C ′
i and C ′′

i be the
numbers of pairs (Xj , Yj ), j �= i , that are concordant and discordant, respectively,
with (Xi , Yi ), for i = 1, . . . , n . Then, the Ci (8.37) counts can be expressed as
Ci = C ′

i − C ′′
i , for i = 1, . . . , n .

24. Confidence Bounds. In many settings, we are interested only in making one-
sided confidence statements about the parameter τ ; that is, we wish to assert
with specified confidence that τ is no larger (or, in other settings, no smaller)
than some upper (lower) confidence bound based on the sample data. To obtain
such one-sided confidence bounds for τ , we proceed as follows. For a specified
confidence coefficient 1 − α, find za (not zα/2, as for the confidence interval). An
approximate 100(1 − α)% upper confidence bound τ ∗

U for τ is then given by

[−1, τ ∗
U) = [−1, τ̂ + zασ̂ ), (8.43)

where τ̂ and σ̂ 2 are given by (8.34) and (8.38), respectively. With τ ∗
U given by

display (8.43), we have

Pτ {−1 ≤ τ < τ ∗
U} ≈ 1 − α for all τ. (8.44)
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The corresponding approximate 100(1 − α)% lower confidence bound τ ∗
L for τ

is given by

(τ ∗
L , 1) = (τ̂ − zασ̂ , 1), (8.45)

with

Pτ {τ ∗
L < τ ≤ 1} ≈ 1 − α for all τ. (8.46)

25. Alternative Approximate Confidence Limits. Samara and Randles (1988) showed
that the statistic τ̂ /σ̂ is itself distribution-free under the null hypothesis (H0) of
independence, and they tabled the upper αth percentile of its null distribution,
k∗
α , for α = .005, .01, .025, .05, and .10 and sample sizes n = 6(1)20. Slightly

improved confidence intervals and confidence bounds can be obtained by replac-
ing the normal percentiles zα/2 and zα by k∗

α/2 and k∗
α , respectively, in (8.39),

(8.43), and (8.45).

26. Estimating the Asymptotic Standard Deviation of τ̂ . The statistic σ̂ (8.38) is cho-
sen to be a consistent estimator for the asymptotic standard deviation of the point
estimator τ̂ (8.34). It is not necessary to use all the sample observations in cal-
culating σ̂ . In fact, any fixed percentage subset of the n sample observations can
be employed to find the Ci values used in (8.38). For example, 25% of a random
sample of n paired observations (namely, n/4 observations) could be used to
obtain σ̂ .

27. Asymptotic Coverage Probability. Asymptotically, the true coverage probability
of the interval defined by (8.39) and the bounds in (8.43) and (8.45) will agree
with the nominal confidence coefficient 1 − α. Subject to Assumption A, this
asymptotic (n infinitely large) result does not depend on the distribution of the
underlying bivariate population. Thus, the interval given by (8.39) and the bounds
in (8.43) and (8.45) have been constructed to have the asymptotically distribution-
free property.

28. Historical Development. The initial effort at constructing asymptotically
distribution-free confidence intervals and bounds for τ was due to Noether
(1967a). The approximate 100(1 − α)% confidence interval proposed by Noether
is τ̂ ± zα/2σ̂N , where σ̂ 2

N is a consistent estimator (based on U -statistics theory)
of the variance of τ̂ . However, it was later pointed out that σ̂ 2

N can assume
negative values, even though it is estimating the nonnegative quantity var(τ̂ ).
Although this distressing possibility is more likely to occur in small samples,
it can be negative for sample sizes as large as n = 30, To avoid this problem,
Fligner and Rust (1983) proposed the use of τ̂ ± zα/2σ̂FR as an asymptotically
distribution-free 100(1 − α)% confidence interval for τ̂ , where σ̂ 2

FR is a jackknife
estimator (different from σ̂ 2

N) of var(τ̂ ) that is consistent and cannot assume
negative values. A few years later, Samara and Randles (1988) noted that
although the Fligner–Rust jackknife estimator σ̂ 2

FR can never be negative, it can
be zero for a variety of rank configurations, including some nonextreme cases.
They suggested a final modification leading to the asymptotically distribution-free
100(1 − α)% confidence interval in display (8.39), where σ̂ 2 (8.38) = σ̂ 2

SR is a
third consistent estimator of var(τ̂ ). The estimator σ̂ 2

SR = σ̂ 2 (8.38) is also based
on U -statistics methodology (as is σ̂ 2

N), but it can never be negative and is zero
only in the two extreme cases where τ̂ = ±1. For the approximate confidence
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interval τ̂ ± zα/2σ̂ to be simply the singleton point τ̂ (= +1 or −1) in such
extreme cases is not ideal, but it is also not unreasonable.

29. Competitor Tests for Independence. In Section 8.1, we discussed tests of indepen-
dence (8.1) based on Kendall’s statistic K (8.6). Noether (1967a), Fligner and
Rust (1983), and Samara and Randles (1988) also proposed distribution-free tests
of H0 (8.1) based on the statistics τ̂ /σ̂N, τ̂ /σ̂FR, and τ̂ /σ̂SR, respectively, where
τ̂ is given by (8.34) and σ̂ 2

N, σ̂ 2
FR, and σ̂ 2

SR are the various consistent estimators
of var(τ̂ ) discussed in Comment 28. Although not generally as powerful as the
procedures based on K for testing H0 (8.1), the tests based on τ̂ /σ̂N, τ̂ /σ̂FR, and
τ̂ /σ̂SR all have the advantage (not possessed by the tests based on K ) that they
are also asymptotically distribution-free procedures for testing the more general
null hypothesis H ∗

0 : τ = 0.

30. Partial Correlation Coefficients. Let (X1, Y1, Z1), . . . , (Xn , Yn , Zn) be a random
sample from a continuous trivariate distribution. It is often of interest to assess
the association between the X and Y variables, controlled for the third variable Z .
Gripenberg (1992) proposed measuring this “partial correlation” by the parameter

τXY /Z = 2P{(Y2 − Y1)(X2 − X1) > 0|Z1 = Z2} − 1

= E [Q((X1, Y1), (X2, Y2))|Z1 = Z2], (8.47)

where Q((X1, Y1), (X2, Y2)) is defined by (8.5). To estimate τXY /Z , Gripen-
berg arranged the (Xi , Yi , Zi ) triples in an increasing order with respect to
the values of the Z variable. Letting ZN (1) ≤ · · · ≤ ZN (n) denote the order
statistics for Z1, . . . , Zn , the ordered triples correspond to (XN (1), YN (1),
ZN (1)), . . . , (XN (n), YN (n), ZN (n)) (with respect to increasing Z values).
Gripenberg’s estimator for τXY /z is then given by

TXY /Z = 1

n − 1

n−1∑
i=1

Q((XN (i ), YN (i )), (XN (i+1), YN (i+1))), (8.48)

where, once again, Q((XN (i ),YN (i )), (XN (i+1), YN (i+1)) is given by (8.5). The
approximate 100(1 − α)% confidence interval for τXY /Z (8.47) proposed by
Gripenberg is then

TXY /Z[
1 + bz 2

α/2

n

] ±

{
bz 2

α/2

n

(
1 − T 2

XY /Z + bz 2
α/2

n

)}1/2

[
1 + bz 2

α/2

n

] , (8.49)

where b is an arbitrary consistent estimator of β = σ ∗2

1−τ2
XY /Z

, with σ ∗2 representing

the asymptotic variance of n1/2TXY /Z . Two competing estimators b are considered
by Gripenberg.
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Properties

1. Asymptotic Distribution-Freeness. For populations satisfying Assumption A,
(8.40) holds. Hence, we can control the coverage probability to be approximately
1 − α for large sample size n without having more specific knowledge about
the form of the underlying bivariate (X , Y ) distribution. Thus, (τL, τU) is an
asymptotically distribution-free confidence interval for τ over the class of all
continuous bivariate distributions.

Problems

27. For the tapeworm data of Table 8.3, find a confidence interval for τ with the approximate
confidence coefficient .95.

28. For the cerebral palsy data of Table 8.4, find a confidence interval for τ with the approximate
confidence coefficient .90.

29. Use only six (X , Y ) pairs (those corresponding to the first six lot numbers) in Table 8.1 and
compute a new estimator σ̂ 2 (8.38) for the asymptotic variance of τ̂ (see Comment 26).
Compare it with the estimator based on all nine observations obtained in Example 8.3.

30. For the twins data in Table 8.5, find a lower confidence bound for τ with the approximate
confidence coefficient .95. (See Comment 24.)

31. For the educational expense data in Table 8.6, find a lower confidence bound for τ with the
approximate confidence coefficient .95. (See Comment 24.)

32. For the nursing data of Table 8.7, find an upper confidence bound for τ with the approximate
confidence coefficient .95.

33. Suppose that (X1, Y1, Z1) = (7.0, 2.5, 1.9), (X2, Y2, Z2) = (6.3, 9.6, 4.1), (X3, Y3, Z3) =
(6.9, 3.7, 12.4), (X4, Y4, Z4) = (3.6, 12.1, 6.5), (X5, Y5, Z5) = (9.0, 6.4, 11.2), (X6, Y6, Z6) =
(3.0, 6.2, 7.7), and (X7, Y7, Z7) = (4.2, 0.4, 8.2) represent a random sample of size n =7 from
a trivariate probability distribution. Estimate the partial correlation τXY /Z (8.47) between X
and Y conditional on Z (See Comment 30).

8.4 AN ASYMPTOTICALLY DISTRIBUTION-FREE
CONFIDENCE INTERVAL BASED ON EFRON’S
BOOTSTRAP

The asymptotically distribution-free confidence for the parameter τ described in
Section 8.3 is based on obtaining a mathematical expression for σ 2, the variance of τ̂ .
Such an expression depends on the unknown underlying bivariate distribution and so σ 2

must be estimated from the data. The estimate given by (8.38) is consistent, and it is
used to form the confidence interval of Section 8.3. In many problems, however, it will
be difficult or impossible to obtain a tractable mathematical expression for the variance
of the statistic of interest. Efron’s bootstrap is a general method for obtaining estimated
standard deviations of estimators θ̂ and confidence intervals for parameters θ without
requiring a tractable mathematical expression for the asymptotic variance of θ̂ . Efron’s
technique eliminates the mathematical intractability obstacle by relying on computing
power and is known as a computer-intensive method. It is applicable in a great variety
of problems (see Efron (1979), Efron and Gong (1983), Efron and Tibshirani (1993),
Davison and Hinkley (1997), DiCiccio and Efron (1996), and Manly (2007)). In this
section, we apply Efron’s bootstrap method to obtain an asymptotically distribution-free
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confidence interval for the parameter τ (the population measure of association defined
by (8.2)) using the estimator τ̂ given by (8.34), where Q (8.5) is replaced by Q∗ (8.17)
in the definition of K .

Procedure

Denote the observed bivariate sample values as

Z1 = (X1, Y1), Z2 = (X2, Y2), . . . , Zn = (Xn , Yn).

1. Make n random draws with replacement from the bivariate sample Z1, Z2, . . . , Zn .
This is equivalent to doing independent random sampling from the bivariate
empirical distribution function F̂ , which puts probability 1/n on each of the
data points Zi , i = 1, . . . , n .

For the canned tuna data of Table 8.1, n = 9 and

Z1 = (44.4, 2.6), Z2 = (45.9, 3.1), Z3 = (41.9, 2.5), Z4 = (53.3, 5.0),

Z5 = (44.7, 3.6), Z6 = (44.1, 4.0), Z7 = (50.7, 5.2), Z8 = (45.2, 2.8),

Z9 = (60.1, 3.8).

A possible bootstrap sample of these data is, for example, 1 copy of Z1, 2
copies of Z2, 0 copies of Z3, 0 copies of Z4, 1 copy of Z5, 3 copies of Z6, 0 copies
of Z7, 1 copy of Z8, and 1 copy of Z9.

2. Perform step 1 a large number, say, B , of times. For each draw, compute τ̂ . Note
that in computing τ̂ , it will be necessary to use Q∗ (8.17) rather than Q (8.5) in the
definition of K . This is because ties will occur in most bootstrap samples because
we sample with replacement. Denote the B values of τ̂ as τ̂ ∗1, τ̂ ∗2, . . . , τ̂ ∗B . These
are called the bootstrap replications of τ̂ . Let τ̂ ∗(1) ≤ τ̂ ∗(2) ≤ · · · ≤ τ̂ ∗(B) denote
the ordered values of the bootstrap replications.

An asymptotically distribution-free confidence interval for τ , with the approx-
imate confidence coefficient 100(1 − α)%, is (τ ′

L, τ ′
U), where

τ ′
L = τ̂ ∗(k), τ ′

U = τ̂ ∗(B+1−k) (8.50)

and
k = B

(α
2

)
. (8.51)

If k = B(α/2) is an integer, then τ ′
L is the k th-largest bootstrap replication and

τ ′
U is the (B + 1 − k)th-largest replication. For example, if α = .10 and B =

1, 000, k = 1, 000(.05) = 50, τ ′
L is the bootstrap replication occupying position

50 in the ordered list, and τ ′
U is the bootstrap replication occupying position

951 in the ordered list. If B(α/2) is not an integer, we follow the convention
of Effon and Tibshirani (1993, p. 160) and set k = 〈(B + 1)(α/2)〉, the largest
integer that is less than or equal to (B + 1)(α/2). With this value of k , τ ′

L is
the bootstrap replication occupying position k in the ordered list and τ ′

U is the
bootstrap replication occupying position B + 1 − k in the ordered list.
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EXAMPLE 8.4 (Continuation of Examples 8.1, 8.2, and 8.3).

We obtained 1000 bootstrap replications of τ̂ . Figure 8.1 is a histogram of the 1000
bootstrap replications. The 1000 bootstrap replications are as follows:

τ̂ ∗(1) = −.556, τ̂ ∗(2) = −.500, τ̂ ∗(3) = · · · = τ̂ ∗(5) = −.444,

τ̂ ∗(6) = −.417, τ̂ ∗(7) = · · · τ̂ ∗(9) = −.361,

τ̂ ∗(10) = τ̂ ∗(11) = −.306, τ̂ ∗(12) = −.250,

τ̂ ∗(13) = τ̂ ∗(14) = −.222, τ̂ ∗(15) = τ̂ ∗(16) = −.194,

τ̂ ∗(17) = τ̂ ∗(18) = −.167, τ̂ ∗(19) = −.139,

τ̂ ∗(20) = τ̂ ∗(21) = −.111, τ̂ ∗(22) = · · · = τ̂ ∗(32) = −.083,

τ̂ ∗(33) = · · · = τ̂ ∗(40) = −.056, τ̂ ∗(41) = · · · = τ̂ ∗(50) = −.028,

τ̂ ∗(51) = · · · = τ̂ ∗(70) = .000, τ̂ ∗(71) = · · · = τ̂ ∗(85) = .028,

τ̂ ∗(86) = · · · = τ̂ ∗(91) = .056, τ̂ ∗(92) = · · · = τ̂ ∗(113) = .083,

τ̂ ∗(114) = · · · = τ̂ ∗(133) = −.111, τ̂ ∗(134) = · · · = τ̂ ∗(148) = .139,

τ̂ ∗(149) = · · · = τ̂ ∗(173) = .167, τ̂ ∗(174) = · · · = τ̂ ∗(194) = .194,

τ̂ ∗(195) = · · · = τ̂ ∗(227) = .222, τ̂ ∗(228) = · · · = τ̂ ∗(264) = .250,

τ̂ ∗(265) = · · · = τ̂ ∗(316) = .278, τ̂ ∗(317) = · · · = τ̂ ∗(351) = .306,

τ̂ ∗(352) = · · · = τ̂ ∗(393) = .333, τ̂ ∗(394) = · · · = τ̂ ∗(433) = .361,

τ̂ ∗(434) = · · · = τ̂ ∗(478) = .389, τ̂ ∗(479) = · · · = τ̂ ∗(530) = .417,

τ̂ ∗(531) = · · · = τ̂ ∗(592) = .444, τ̂ ∗(593) = · · · = τ̂ ∗(640) = .472,

τ̂ ∗(641) = · · · = τ̂ ∗(687) = .500, τ̂ ∗(688) = · · · = τ̂ ∗(730) = .528,

τ̂ ∗(731) = · · · = τ̂ ∗(769) = .556, τ̂ ∗(770) = · · · = τ̂ ∗(808) = .583,

τ̂ ∗(809) = · · · = τ̂ ∗(847) = .611, τ̂ ∗(848) = · · · = τ̂ ∗(880) = .639,

τ̂ ∗(881) = · · · = τ̂ ∗(912) = .667, τ̂ ∗(913) = · · · = τ̂ ∗(935) = .694,

τ̂ ∗(936) = · · · = τ̂ ∗(955) = .722, τ̂ ∗(956) = · · · = τ̂ ∗(969) = .750,

τ̂ ∗(970) = · · · = τ̂ ∗(986) = .778, τ̂ ∗(987) = · · · = τ̂ ∗(992) = .806,

τ̂ ∗(993) = τ̂ ∗(994) = .833, τ̂ ∗(995) = · · · = τ̂ ∗(999) = .861, τ̂ ∗(1000) = .889.
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Figure 8.1 Histogram of 1000 bootstrap replications of Kendall’s sample correlation coefficient for the
canned tuna data of Table 8.1.

For an approximate 90% confidence interval α = .1, (α/2) = 0.5, and from (8.51),
we find k = 1000(.05) = 50. Then from (8.50) and the ordered list of 1000 bootstrap
replications,

τ ′
L = τ̂ ∗(50) = −.028, τ ′

U = τ̂ ∗(951) = .722.

The command kendall.ci will provide a bootstrap confidence interval. In addition to
the arguments specified in Example 8.3, one here must set bootstrap=T and a value
for the number of replicates B. For example,

kendall.ci(x, y, alpha=.1, type="t", bootstrap=T, B=1000)

will find an interval similar, but almost certainly not identical, to the interval above or
the interval found in Example 8.3. Running the above command five times results in
the following intervals: (−.063, .818), (−.067, .857), (−.063, .824). (−.030, .824), and
(−.030, .871). Recall that the method from Section 8.3 gave the interval (.027, .861).

Comments

31. The Bootstrap Estimated Standard Error. For Kendall’s sample correlation coef-
ficient τ̂ , the standard deviation of τ̂ , which we have denoted thus far as σ ,
depends on the bivariate distribution function FX ,Y . We now denote FX ,Y as F ,
dropping the subscripts. We could exhibit the dependence of σ on F by writing σ

as σ(F ). Although F is unknown, it can be estimated by the bivariate empirical
distribution function F̂ , which puts probability 1/n on each of the observed data
points Zi = (Xi , Yi ), i = 1, . . . , n . The bootstrap estimate of σ(F ) is σ(F̂ ), where
σ(F̂ ) is the standard deviation of τ̂ when the true underlying distribution is F̂
rather than F . A tractable mathematical expression for σ(F̂ ) is very difficult to
obtain. However, σ(F̂ ) can be estimated using the B bootstrap replications, by

σ̂B =
{∑B

i=1 (τ̂ ∗i − τ̂ ∗.)2

(B − 1)

}1/2

, (8.52)
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where

τ̂ ∗. =
∑B

i=1 τ̂ ∗i

B
. (8.53)

As B tends to ∞, σ̂B tends to σ(F̂ ). As n tends to ∞, σ(F̂ ) tends to σ(F ). Thus,
σ̂B can be used as an estimate of the standard deviation of τ̂ .

32. The Bootstrap in the One-Sample Nonparametric Framework. In this section, we
applied the bootstrap in a bivariate situation, where the data are bivariate observa-
tions Zi = (Xi , Yi ), i = 1, . . . , n , and the parameter of interest is τ . The bootstrap
can be used in a wide variety of situations, including the one-sample problem, the
k -sample problem, censored data problems, and complicated multivariate frame-
works. (See Efron and Gong (1983), Efron and Tibshirani (1993), Davison and
Hinkley (1997), and DiCiccio and Efron (1996).) In this comment, we describe
the approach in the context of the one-sample nonparametric framework.

Suppose we are interested in estimating a parameter θ = θ(F ), when
X1, . . . , Xn are a random sample from an unknown distribution F . The
nonparametric maximum likelihood estimate of F is the statistic θ̂ = θ(Fn),
where Fn is the sample distribution function. For example, if we are interested
in estimating the r th moment of the F distribution, θ(F ) = E (X r ), then
θ(Fn) = (

∑n
i=1 X r

i )/n .
The bootstrap procedure in the one-sample problem is analogous to the pro-

cedure we described for the bivariate situation. The steps are as follows:

1. Make n random draws with replacement from the sample X1, . . . , Xn .
2. Perform step 1 a large number, say B , of times. For each draw, compute

θ̂ . Denote the B values of θ̂ as θ̂∗1, θ̂∗2, . . . , θ̂∗B . These are the bootstrap
replications of θ̂ .

The bootstrap estimate of the standard deviation of θ̂ is

σ̂B =
{∑B

i=1 (θ̂∗i − θ̂∗.)2

(B − 1)

}1/2

, (8.54)

where

θ̂∗. =
∑B

i=1 θ̂∗i

B
. (8.55)

An asymptotically distribution-free confidence interval for θ , with approxi-
mate confidence coefficient 100(1 − α)%, is (θ ′

U, θ ′
L), where

θ ′
L = θ̂∗(k), θ ′

U = θ̂∗(B+1−k), (8.56)

where θ̂∗(1) ≤ θ̂∗(2) ≤ · · · ≤ θ̂∗(B) are the ordered values for the bootstrap repli-
cations and k = 〈(B + 1)(α/2)〉, the largest integer that is less than or equal to
(B + 1)(α/2).

The confidence interval defined by (8.56) is called the percentile interval.
Let Ĝ denote the cumulative distribution function of θ̂∗:

Ĝ(t) = #{θ̂∗i < t}
B

. (8.57)

The end points θ ′
L, θ ′

U are, respectively, the α and 1 − α percentiles of Ĝ .
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The percentile confidence interval is transformation-respecting. If η = m(θ)

is a monotone transformation, then a confidence interval (ηL, ηU) for the param-
eter η is obtained directly from the confidence interval (8.56) for θ via ηL =
m(θ ′

L), ηU = m(θ ′
U). For example, a confidence interval for θ2 is obtained by

squaring the end points of the confidence interval for θ .
The percentile confidence interval is range-preserving. For example, consider

the percentile interval based on bootstrapping τ̂ . The values of the parameter τ ,
Kendall’s population correlation coefficient, are always between −1 and 1. The
possible values of the estimator τ̂ also are in the interval [−1, 1]. Thus, the
bootstrap replications of τ̂ must be in the interval [−1, 1], as must the confidence
interval end points, because the end points are particular bootstrap replications.
More generally, the estimator θ̂ of the form θ̂ = θ(Fn) satisfies the same range
restrictions as θ = θ(F ), and thus, the percentile interval based on bootstrapping
θ̂ also satisfies the same range restrictions as θ .

33. The BCa Confidence Interval. Efron and Tibshirani (1993, Chapter 14) (see also
DiCiccio and Efron, 1996) present a method, called the BCa method, that gives
more accurate confidence limits than does the percentile method of Comment
32. The acronym BCa means “bias-corrected and accelerated.” The BCa method
depends on a bias-correction z0 and an acceleration a . In the one-sample non-
parametric framework, z0 can be estimated by

ẑ0 = �−1
{

#{θ̂∗i < θ̂}
B

}
, (8.58)

where � denotes the standard normal cumulative distribution function. Thus, ẑ0

is �−1 of the proportion of the bootstrap replications less than θ̂ .
The estimate of a is

â =
∑n

i=1 (θ̂ . − θ̂−i )
3

6
{∑n

i=1 (θ̂ . − θ̂−i )2
}3/2

, (8.59)

where θ̂−i is the estimate of θ obtained by deleting Xi , and computing θ̂ for the
reduced sample X1, X2, . . . , Xi−1, Xi+1, . . . , Xn and

θ̂ . =
∑n

i=1 θ̂−i

n
. (8.60)

The lower and upper end points of the 100(1 − α)% confidence interval are

θ ′′
L = Ĝ−1�

(
ẑ0 + ẑ0 + z (α/2)

1 − â(ẑ0 + z (α))

)
, (8.61)

θ ′′
U = Ĝ−1�

(
ẑ0 + ẑ0 + z (1−α/2)

1 − â(ẑ0 + z (1−α/2))

)
, (8.62)

where in (8.61) and (8.62), � is the standard normal distribution function,
z (α/2) = �−1(α/2), z (1−α/2) = �−1(1 − α/2) (if, for example, a = .10, then
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z (α/2) = −1.65, and z (1−α/2) = 1.65), Ĝ is given by (8.57), ẑ0 is given by (8.58),
and â is given by (8.59).

The end points θ ′′
L and θ ′′

U of the BCa interval are also percentiles of the boot-
strap distribution Ĝ but not necessarily the same ones as given by the percentile
interval. If â = ẑ0 = 0, the BCa and percentile intervals are the same.

The BCa interval also enjoys the transformation-respecting and range-
preserving properties that hold for the percentile interval. The BCa interval,
however, has an accuracy advantage. The BCa interval has a second-order
accuracy property, whereas the percentile interval is only first-order accurate.
See Section 14.3 of Efron and Tibshirani (1993).

The appendix of Efron and Tibshirani (1993) describes some available boot-
strap software and contains some programs in the S language, including a program
for computing BCa intervals.

34. The Choice of B, the Number of Bootstrap Replications. The choice of B depends
to some extent on the particular statistic that is being bootstrapped and the com-
plexity of the situation. Efron and Tibshirani (1993, p. 52) give some rules of
thumb based on their extensive experience with the bootstrap. Roughly speak-
ing, B = 200 replications are usually sufficient for estimating a standard error
but much larger values of B , such as 1000 or 2000, are required for bootstrap
confidence intervals.

35. An Example Where the Bootstrap Fails. Let X1, . . . , Xn be a random sample from
the uniform distribution on (0, θ ). The maximum likelihood estimator of θ , the
upper end point of the interval, is θ̂ = maximum(X1, . . . , Xn) = X(n). Efron and
Tibshirani (1993, p. 81) point out that the bootstrap does not do well in this
situation. Miller (1964) showed that the jackknife estimator of θ also fails in
this situation, because it depends not only on X(n) but also on X(n−1), the second
largest observation, and the latter contains no additional information about θ when
the value of X(n) is available.

36. Jackknife versus Bootstrap. For a linear statistic of the form θ̂ =
μ + {∑n

i=1 h(Xi )/n
}
, where μ is a constant and h is a function, there is

no loss of information in using the jackknife rather than the bootstrap. For
nonlinear statistics, there is a loss of information and the bootstrap should be
preferred. See Efron and Tibshirani (1993) for a detailed discussion of the
relationship between the jackknife and the bootstrap.

One disadvantage of the bootstrap is that two different people bootstrapping
the same data will not in general get the same bootstrap estimate of the standard
deviation or the same confidence interval. This violates what Gleser (1996) calls
“the first law of applied statistics,” namely: “Two individuals using the same
statistical method on the same data should arrive at the same conclusion.” See
Gleser (1996) for other disadvantages of the bootstrap.

37. Development of the Bootstrap. The bootstrap was formally introduced by Efron
(1979). Efron and Tibshirani (1993, p. 56), however, credit many authors for
similar ideas, and they designate as “particularly notable” the contributions of
Hartigan’s typical value theory (1969, 1971, 1975). Hartigan recognized the wide
applicability of subsample methods (a subsample of X1, . . . , Xn is any subset
of the whole sample) as a tool for assessing variability. See Efron and Tibshi-
rani (1993, p. 56) for references to other papers that contain ideas related to
bootstrapping.
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Properties

See Bickel and Freedman (1981) for asymptotic consistency. See Efron and Tibshi-
rani (1993) and Davison and Hinkley (1997) for various properties including accuracy,
transformation-respecting, range-preserving, and the relationship of the bootstrap to the
jackknife. See Hall (1992) for a high-level mathematical treatment of the bootstrap. See
Manly (2007) for bootstrap methods in biology.

Problems

34. For the cerebral palsy data of Table 8.4, use the bootstrap method to find a confidence inter-
val for τ with approximate confidence coefficient .90. Compare your results with those of
Problem 28.

35. For the psychological test scores data of Table 8.5, use the bootstrap method to find a confi-
dence interval for τ with approximate confidence coefficient .95.

36. Consider the case n = 3 where you have three bivariate observations Z1, Z2, and Z3. List the
possible bootstrap samples and give the corresponding probability of each being selected on a
given bootstrap replication.

37. Consider the case where you have four bivariate observations Z1, Z2, Z3, and Z4. List the
possible bootstrap samples and give the corresponding probability of each being selected on a
given bootstrap replication.

38. Illustrate by means of an example or show directly that with n observations the number of
possible bootstrap samples is

(2n−1
n

)
.

39. Show that if â = ẑ0 = 0, the BCa interval given by (8.61) and (8.62) reduces to the percentile
interval.

8.5 A DISTRIBUTION-FREE TEST FOR INDEPENDENCE
BASED ON RANKS (SPEARMAN)

Hypothesis

Let (X1, Y1), . . . , (Xn , Yn) be a random sample from a continuous bivariate population (i.e.,
Assumption A is satisfied) with joint distribution function FX ,Y and marginal distribution
functions FX and FY . In this section, we return to the problem of testing for independence
between the X and Y variables corresponding to the null hypothesis H0 (8.1). Here,
however, alternatives to H0 will no longer be stated in terms of the correlation coefficient
τ (8.2). Instead, the alternatives of interest in this section are less specifically interpretable,
corresponding to the quite general (but vague; see Comment 47) concepts of positive or
negative association between the X and Y variables.

Procedure

To compute the Spearman rank correlation coefficient rs, we first order the n X obser-
vations from least to greatest and let Ri denote the rank of Xi , i = 1, . . . , n , in this
ordering. Similarly, we separately order the n Y observations from least to greatest and
let Si denote the rank of Yi , i = 1, . . . , n , in this ordering. The Spearman (1904) rank
correlation coefficient is defined as the Pearson product moment sample correlation of
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the Ri and the Si . (See Comment 40.) When no ties within a sample are present, this is
equivalent to two computationally efficient formulae:

rs = 12
∑n

i=1

{[
Ri − n+1

2

] [
Si − n+1

2

]}
n(n2 − 1)

(8.63)

= 1 − 6
∑n

i=1 D2
i

n(n2 − 1)
, (8.64)

where Di = Si − Ri , i = 1, . . . , n .

a. One-Sided Upper-Tail Test. To test the null hypothesis of independence, H0 (8.1),
versus the directional alternative

H1 : [X and Y are positively associated] (8.65)

at the α level of significance,

Reject H0 if rs ≥ rs,α; otherwise do not reject, (8.66)

where the constant rs,α is chosen to make the type I error probability equal to α.
Values of rs,α are found with the command qSpearman.

b. One-Sided Lower-Tail Test. To test independence, H0 (8.1), versus the directional
alternative

H2 : [X and Y are negatively associated] (8.67)

at the α level of significance,

Reject H0 if rs ≤ −rs,α; otherwise do not reject. (8.68)

c. Two-Sided Test. To test independence, H0 (8.1), versus the general dependency
alternative

H3 : [X and Y are not independent variables] (8.69)

at the α level of significance,

Reject H0 if |rs| ≥ rs,α/2; otherwise do not reject. (8.70)

This two-sided procedure is the two-sided symmetric test with α/2 probability in
each tail of the null distribution of rs.

Large-Sample Approximation

The large-sample approximation is based on the asymptotic normality of rs, suitably
standardized. For this standardization, we need to know the expected value and variance
of rs when the null hypothesis of independence is true. Under H0, the expected value
and variance of rs are

E0(rs) = 0 (8.71)
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and

var0(rs) = 1

n − 1
, (8.72)

respectively. These expressions for E0(rs) and var0(rs) are verified by direct calculations
in Comment 42 for the special case of n = 4. General derivations of both expressions
are discussed in Comment 45.

The standardized version of rs is

r∗
s = rs − E0(rs)

{var0(rs)}1/2
= (n − 1)1/2rs. (8.73)

When H0 is true, r∗
s has, as n tends to infinity, an asymptotic N (0, 1) distribution. (See

Comment 45 for indications of the proof.) The normal theory approximation for procedure
(8.66) is

Reject H0 if r∗
s ≥ zα; otherwise do not reject, (8.74)

the normal theory approximation for procedure (8.68) is

Reject H0 if r∗
s ≤ −zα; otherwise do not reject, (8.75)

and the normal theory approximation for procedure (8.70) is

Reject H0 if |r∗
s | ≥ zα/2; otherwise do not reject. (8.76)

Ties

If there are ties among the n X observations and/or separately among the n Y obser-
vations, assign each of the observations in a tied (either X or Y) group the average of
the integer ranks that are associated with the tied group. After computing rs with these
average ranks for tied observations, use procedure (8.66), (8.68), or (8.70). Note, how-
ever, that this test associated with tied X ’s and/or tied Y ’s is only approximately, and
not exactly, of significance level α. (To get an exact level α test even in this tied setting,
see Comment 46.)

If there are tied X ’s and/or tied Y ’s, Spearman’s rank correlation coefficient cal-
culated with Pearson’s correlation does not require modification. If using the computa-
tionally efficient version of rs at (8.64), some changes to the statistic are necessary. The
statistic rs in this case becomes

rs =
n(n2 − 1) − 6

∑n
s=1 D2

s − 1
2

{∑g
i=1

[
ti
(
t2
i − 1

)]+∑h
j=1

[
uj

(
u2

j − 1
)]}

{[
n(n2 − 1) −∑g

i=1 ti
(
t2
i − 1

)][
n(n2 − 1) −∑h

j=1 uj

(
u2

j − 1
)]}1/2 , (8.77)

where in (8.77) g denotes the number of tied X groups, ti is the size of tied X group i ,
h is the number of tied Y groups, and uj is the size of tied Y group j . We note that an
untied X (Y ) observation is considered to be a tied X (Y ) group of size 1. In particular, if
neither the collection of X nor the collection of Y observations contains tied values, we
have g = h = n , tj = uj = 1, i = 1, . . . , n , and j = 1, . . . , n . In this case of no tied X ’s
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and no tied Y ’s, each term involving either (t2
i − 1) or (u2

j − 1) reduces to zero and the
“ties” expression for rs in (8.77) reduces to the “no-ties” form for rs, as given in (8.64).

As a consequence of this effect that ties have on the null distribution of rs, in order
to use the large-sample approximation when there are tied X observations and/or tied
Y observations, we first compute r∗

s (8.73) using average ranks and the ties-corrected
version of rs (8.77). Approximation (8.74), (8.75), or (8.76) can then be applied, as
appropriate for the problem, with this value of r∗

s .

EXAMPLE 8.5 Proline and Collagen in Liver Cirrhosis.

Kershenobich, Fierro, and Rojkind (1970) have studied the relation between the free pool
of proline and collagen content in human liver cirrhosis. The data in Table 8.9 are based
on an analysis of cirrhotic livers from seven patients, each having a histological diagnosis
of portal cirrhosis.

We are interested in assessing whether there is a positive relationship between the
total collagen and the free proline in cirrhotic livers. Thus, we wish to apply procedure
(8.66) to test the hypothesis of independence, H0 (8.1), versus the alternative, H1 (8.65),
of positive association. For purposes of illustration, we consider the significance level
α = .01. The statistic rs is symmetric about 0 (see Comment 43), so P(rs ≥ rs,.01) =
P(rs ≤ −rs,.01). In R, this is found with

qSpearman(.01, r=7),

where r is the number of samples. The result is −.786, so procedure (8.66) becomes

Reject H0 if rs ≥ .786.

Ranking the X (total collagen) values from least to greatest, using average ranks
for the tied pair, we obtain R1 = (1 + 2)/2 = 1.5, R2 = (1 + 2)/2 = 1.5, R3 = 3, R4 =
4, R5 = 5, R6 = 6, and R7 = 7. Similarly, ranking the Y (free proline) values from least to
greatest, again using average ranks for the tied pairs, we find S1 = (2 + 3)/2 = 2.5, S2 =
4, S3 = (2 + 3)/2 = 2.5, S4 = 1, S5 = 5, S6 = 6, and S7 = 7. Taking differences, we see
that

D1 = 2.5 − 1.5 = 1, D2 = 4 − 1.5 = 2.5, D3 = 2.5 − 3 = −.5

D4 = 1 − 4 = −3, D5 = 5 − 5 = 0, D6 = 6 − 6 = 0

D7 = 7 − 7 = 0.

Table 8.9 Free Proline and Total Collagen Contents of Cirrhotic Patients

Total collagen, Xi Free proline, Yi ,
Patient (mg/g dry weight of liver) (μ mole/g dry weight of liver)

1 7.1 2.8
2 7.1 2.9
3 7.2 2.8
4 8.3 2.6
5 9.4 3.5
6 10.5 4.6
7 11.4 5.0

Source: D. Kershenobich, F. J. Fierro, and M. Rojkind (1970).
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There are ties, so we need to use the ties-corrected version of the statistic rs if using
(8.64). If using Pearson’s correlation of ranks, no modifications are necessary.

For this purpose, we note that there are g = 6 tied X groups, with t1 = 2, t2 = t3 =
t4 = t5 = t6 = 1, and h = 6 tied Y groups, with u2 = 2, u1 = u3 = u4 = u5 = u6 = 1.
Thus, for these tied data, the modified value of rs (8.77) is calculated to be

rs = 7(72 − 1) − 6[(1)2 + (2.5)2 + (−.5)2 + (−3)2 + 3(0)2] − 1
2 (2)(2)(22 − 1)

{[7(72 − 1) − 2(22 − 1)][7(72 − 1) − 2(22 − 1)]}1/2

= 7(48) − 6(16.5) − 6

{[7(48) − 6][7(48) − 6]}1/2
= 231

330
= .700.

This value of rs is also obtained through the R command

cor(x, y, method="spearman")

where x and y are the data from Table 8.9. This value of rs is not greater than the critical
value .786, so we do not reject the null at the α = .01 level. Note that the critical value
given by R results in a significance level of α = .024, not α = .01.

The one-sided P -value for these data is the smallest significance level at which we
can reject H0 in favor of a positive association between total collagen and free proline
in cirrhotic patients with the observed value of the test statistic rs =.700. We see that
the P -value is P0(rs ≥ .700). By symmetry, this is the same as P0(rs ≤ − .700). The R

command pSpearman will provide the following:

pSpearman(-.700, r=7)=.044.

Thus, there is some marginal evidence that total collagen and free proline are positively
associated in subjects with liver cirrhosis.

For the large-sample approximation, we use rs = .700 to compute r∗
s (8.73) and

obtain
r∗

s = (6)1/2(.700) = 1.71.

Thus, the smallest significance level at which we can reject H0 in favor of positive
association between total collagen and free proline in subjects with liver cirrhosis using
the normal theory approximation is .0436 (z.0436 = 1.71).

The R function cor.test reproduces the above analysis.

cor.test (x, y, method="spearman", alternative="greater")

produces this output:

Spearman’s rank correlation rho

data: x and y
S = 16.8, p-value = 0.03996
alternative hypothesis: true rho is greater than 0
sample estimates:
rho
0.7

Warning message:
In cor.test.default(x8.9, y8.9, method = "s", alt = "g") :
Cannot compute exact p-values with ties
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The statistic reported as S is the sum of D2
i from (8.64). However, in the presence of

ties, this value is not accurate. Rather, it is found using Pearson’s correlation of the
ranks for rs and then solving for D2

i in (8.64). R provides a warning about inexact P -
values in the presence of ties. In this case, one should use pSpearman to obtain a
P -value.

Comments

38. Motivation for the Test. The null hypothesis of this section is that the X and
Y variables are independent, which, in the case of no ties, implies that any
permutation of the X ranks (R1, . . . , Rn) is equally likely to occur with any
permutation of the Y ranks (S1, . . . , Sn). As a result, under the null hypothesis
H0 (8.1) of independence, the Spearman rank correlation coefficient rs (8.64)
will have a tendency to assume values near zero. However, when the alternative
H1 : [X and Y are positively associated] is true, the rank vectors (R1, . . . , Rn) and
(S1, . . . , Sn) will tend to agree, resulting in small differences Di = Si − Ri , i =
1, . . . , n . Thus, when H1 (8.65) is true, we would expect the value of

∑n
j=1 D2

j
to be small and the resulting value of rs (8.64) to be large and positive. This
suggests rejecting H0 in favor of positive association H1 (8.65) for large positive
values of rs and motivates procedures (8.66) and (8.74). Similar rationales apply
to procedures (8.68), (8.70), (8.75), and (8.76).

39. Computation of rs. The value of rs (8.63) can also be obtained in R using

cor(rank(x), rank(y), method=‘‘pearson’’).

The command rank provides the ranks of a sample. The default method of
dealing with ties in this command is to average the ranks within a tie group.

40. Pearson’s Product Moment Sample Correlation Coefficient. The classical
Pearson product moment sample correlation coefficient for the pair of vectors
(X1, . . . , Xn) and (Y1, . . . , Yn) is given by

rp =
∑n

k=1 (Xk − X )(Yk − Y )[∑n
i=1(Xi − X )2

∑n
j=1(Yj − Y )2

]1/2 , (8.78)

where X =∑n
s=1 Xs/n and Y =∑n

t=1 Yt/n . We note that the Spearman rank
correlation coefficient rs is simply the classical correlation coefficient applied
to the rank vectors (R1, . . . , Rn) and (S1, . . . , Sn) instead of the actual X and Y
observations, respectively. (See Problem 49.)

41. Derivation of the Distribution of rs under H0 (No-Ties Case). Without loss
of generality, we take R1 = 1, . . . , Rn = n; under H0 (8.61) all possible
n!(S1, S2, . . . , Sn) Y -rank configurations are equally likely, therefore each has
null probability 1/n!.

Let us consider the case n = 4. In the following table, we display the 4! =
24 possible (S1, S2, S3, S4) configurations, the associated values of rs, and the
corresponding null probabilities.
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(R1, R2, R3, R4) (S1, S2, S3, S4) Null probability rs

(1, 2, 3, 4) (1, 2, 3, 4) 1
24 1

(1, 2, 3, 4) (1, 2, 4, 3) 1
24 .8

(1, 2, 3, 4) (1, 3, 2, 4) 1
24 .8

(1, 2, 3, 4) (1, 3, 4, 2) 1
24 .4

(1, 2, 3, 4) (1, 4, 2, 3) 1
24 .4

(1, 2, 3, 4) (1, 4, 3, 2) 1
24 .2

(1, 2, 3, 4) (2, 1, 3, 4) 1
24 .8

(1, 2, 3, 4) (2, 1, 4, 3) 1
24 .6

(1, 2, 3, 4) (2, 3, 1, 4) 1
24 .4

(1, 2, 3, 4) (2, 3, 4, 1) 1
24 −.2

(1, 2, 3, 4) (2, 4, 1, 3) 1
24 0

(1, 2, 3, 4) (2, 4, 3, 1) 1
24 −.4

(1, 2, 3, 4) (3, 1, 2, 4) 1
24 .4

(1, 2, 3, 4) (3, 1, 4, 2) 1
24 0

(1, 2, 3, 4) (3, 2, 1, 4) 1
24 .2

(1, 2, 3, 4) (3, 2, 4, 1) 1
24 −.4

(1, 2, 3, 4) (3, 4, 1, 2) 1
24 −.6

(1, 2, 3, 4) (3, 4, 2, 1) 1
24 −.8

(1, 2, 3, 4) (4, 1, 2, 3) 1
24 −.2

(1, 2, 3, 4) (4, 1, 3, 2) 1
24 −.4

(1, 2, 3, 4) (4, 2, 1, 3) 1
24 −.4

(1, 2, 3, 4) (4, 2, 3, 1) 1
24 −.8

(1, 2, 3, 4) (4, 3, 1, 2) 1
24 −.8

(1, 2, 3, 4) (4, 3, 2, 1) 1
24 −1

Thus, for example, the probability is 3
24 under H0 that rs is equal to .8, because

rs = .8 when any of the three outcomes (S1, S2, S3, S4) = (1, 2, 4, 3), (1, 3, 2,
4), or (2, 1, 3, 4) occurs and each of these outcomes has null probability 1

24 .
Simplifying, we obtain the null distribution



434 Chapter 8 The Independence Problem

Possible value of rs Probability under H0

−1.0 1
24

−0.8 3
24

−0.6 1
24

−0.4 4
24

−0.2 2
24

0.0 2
24

0.2 2
24

0.4 4
24

0.6 1
24

0.8 3
24

1.0 1
24

The probability, under H0, that rs is greater than or equal to .6, for example, is
therefore

P0(rs ≥ .6) = P0(rs = 1.0) + P0(rs = .8) + P0(rs = .6)

= 1

24
+ 3

24
+ 1

24
= 5

24
.

Note that we have obtained the null distribution of rs without specifying
the form of the underlying independent X and Y populations under H0, beyond
the point of requiring that they be continuous. This is why the test procedures
based on rs are called distribution-free procedures. From the null distribution
of rs, we can determine the critical value rs,α and control the probability α of
falsely rejecting H0 when H0 is true, and this error probability does not depend
on the specific forms of the underlying continuous and independent X and Y
distributions.

42. Calculation of the Mean and Variance of rs under the Null Hypothesis. In displays
(8.71) and (8.72), we presented formulas for the mean and variance of rs when
the null hypothesis is true. In this comment, we illustrate a direct calculation of
E0(rs) and var0(rs) in the particular case of n = 4, using the null distribution of rs

obtained in Comment 41. (Later, in Comment 45, we present general derivations
of E0(rs) and var0(rs).) The null mean, E0(rs), is obtained by multiplying each
possible value of rs with its probability under H0 and summing the products.
Thus,

E0(rs) = −1

(
1

24

)
− .8

(
3

24

)
− .6

(
1

24

)
− .4

(
4

24

)
− .2

(
2

24

)
+ 0

(
2

24

)
+ .2

(
2

24

)
+ .4

(
4

24

)
+ .6

(
1

24

)
+ .8

(
3

24

)
+ 1

(
1

24

)
= 0.



8.5 Distribution-Free Test Based on Ranks 435

This is in agreement with the value stated in (8.71). A check on the expression
for var0(rs) is also easily performed, using the well-known fact that

var0(rs) = E0(r
2
s ) − {E0(rs)}2.

The value of E0
(
r2

s

)
, the second moment of the null distribution of rs, is again

obtained by multiplying possible values (in this case, of r2
s by the corresponding

probabilities under H0 and summing). We find

E0(r
2
s ) =

[
(1 + 1)

(
1

24

)
+ (.64 + .64)

(
3

24

)
+ (.36 + .36)

(
1

24

)

+ (.16 + .16)

(
4

24

)
+ (.04 + .04)

(
2

24

)
+ 0

(
2

24

)]
= 1

3
.

Thus,

var0(rs) = 1

3
− 02 = 1

3
,

which agrees with what we obtain using (8.72) directly, namely,

var0(rs) = 1

4 − 1
= 1

3
.

43. Symmetry of the Distribution of rs under the Null Hypothesis. When H0 is true,
the distribution of rs is symmetric about its mean 0. (See Comment 41 for
verification of this when n = 4.) This implies that

P0(rs ≤ −x) = P0(rs ≥ x), (8.79)

for all x . Equation (8.79) is used directly to convert upper-tail probabilities to
lower-tail probabilities. In particular, it follows from (8.79) that the lower αth
percentile for the null distribution of rs is −rs,α; thus, the use of −rs,α as the
critical value in procedure (8.68).

44. Equivalent Form. Let (R1, . . . , Rn) and (S1, . . . , Sn) be the vectors of separate
ranks for the X and Y observations, respectively. We note that

n∑
i=1

(
Ri − n + 1

2

)(
Si − n + 1

2

)
=

n∑
i=1

Ri Si − n + 1

2

n∑
i=1

Ri

− n + 1

2

n∑
i=1

Si + n(n + 1)2

4
.

However,
∑n

i=1 Ri =∑n
i=1 Si =∑n

i=1 i = n(n + 1)/2. Thus, we have

n∑
i=1

(
Ri − n + 1

2

)(
Si − n + 1

2

)
=

n∑
i=1

Ri Si − n(n + 1)2

4
.
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Combining this fact with the definition of rs in display (8.63), we obtain an
alternative computational expression for rs, namely,

rs = 12
∑n

i=1 Ri Si

n(n2 − 1)
− 3

(
n + 1

n − 1

)
. (8.80)

Thus, rs is a linear function of the statistic
∑n

i=1 Ri Si . Therefore, the various tests
of independence discussed in this section can be as easily based on

∑n
i=1 Ri Si

as on the more complicated formula for rs given in (8.63) (or its counterpart in
(8.64)).

45. Large-Sample Approximation. Under the null hypothesis H0 (8.1), the rank
vectors (R1, . . . , Rn) and (S1, . . . , Sn) are independent and each is uniformly
distributed over the set of n! permutations of (1, 2, . . . , n). It follows that the
random variables

∑n
i=1 Ri Si and

∑n
j=1 jSj have the same null distribution. Com-

bining this fact with the representation for rs given in (8.80), it follows that

E0(rs) = E0

[
12
∑n

j=1 jSj

n(n2 − 1)
− 3

(
n + 1

n − 1

)]

= 12
∑n

j=1 jE0(Sj )

n(n2 − 1)
− 3

(
n + 1

n − 1

)
.

Each Sj , j = l , . . . , n , has a probability distribution that is uniform over the set
of integers {1, 2, . . . , n}. It follows that E0(Sj ) =∑n

k=1 k(1/n) = (n + 1)/2, for
j = 1, . . . , n . Thus, we have that

E0(rs) =
12
∑n

j=1 j

(
n + 1

2

)
n(n2 − 1)

− 3

(
n + 1

n − 1

)

=
12

n(n + 1)

2

(
n + 1

2

)
n(n2 − 1)

− 3

(
n + 1

n − 1

)
= 0,

as previously noted in (8.71). For the null variance of rs, we first note that

var0(rs) = var0

[
12
∑n

j=1 jSj

n(n2 − 1)
− 3

(
n + 1

n − 1

)]
= 144

n2(n2 − 1)2
var0

⎛⎝ n∑
j=1

jSj

⎞⎠ .

(8.81)

Using a well-known expression for the variance of a sum of random variables,
we have that

var0

⎛⎝ n∑
j=1

jSj

⎞⎠ =
n∑

j=1

var0(jSj ) +
n∑

j=1

n∑
k=1,k �=j

cov0(jSj , kSk )

=
n∑

j=1

j 2var0(Sj ) +
n∑

j=1

n∑
k=1,k �=j

jk cov0(Sj , Sk ).
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The joint distribution of (Sj , Sk ) is the same for every j �= k = 1, . . . , n and the
marginal distribution of Sj is the same for each j = 1, . . . , n . It follows that

var0

⎛⎝ n∑
j=1

jSj

⎞⎠ = var0(S1)

n∑
j=1

j 2 + cov0(S1, S2)

n∑
j=1

n∑
k=1,k �=j

jk .

Using the facts that
n∑

j=1

j 2 = n(n + 1)(2n + 1)

6

and

n∑
j=1

n∑
k=1,k �=j

jk =
⎛⎝ n∑

j=1

j

⎞⎠( n∑
k=1

k

)
−

n∑
j=1

j 2

=
[

n(n + 1)

2

]2

− n(n + 1)(2n + 1)

6

= n(n2 − 1)(3n + 2)

12
,

we obtain

var0

⎛⎝ n∑
j=1

jSj

⎞⎠ =
[

n(n + 1)(2n + 1)

6
var0(S1) + n(n2 − 1)(3n + 2)

12

cov0(S1, S2)

]
.

Moreover, under H0 (8.1), it can be shown (see Problems 53 and 54) that
var0(S1) = (n2 − 1)/12 and cov0(S1, S2) = −(n + 1)/12. Thus, we have

var0

⎛⎝ n∑
j=1

jSj

⎞⎠ =
[

n(n + 1)(2n + 1)(n2 − 1)

72

]

− n(n2 − 1)(3n + 2)(n + 1)

144

= n(n + 1)(n2 − 1)

144
[2(2n + 1) − (3n + 2)]

= n2(n + 1)(n2 − 1)

144
. (8.82)

Combining (8.81) and (8.82) yields

var0(rs) = 144

n2(n2 − 1)2

[
n2(n + 1)(n2 − 1)

144

]
= 1

n − 1
,

as noted in (8.72).
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The asymptotic normality under H0 of the standardized form

r∗
s = rs − E0(rs)

{var0(rs)}1/2
= (n − 1)1/2rs

follows from the fact that rs has the same null distribution as

12
∑n

j=1 jSj

n(n2 − 1)
− 3

(
n + 1

n − 1

)
and standard techniques for establishing the asymptotic nonnality of a lin-
ear combination

(
�n

j=1 jSj
)

of random variables. (For additional details, see
Sections 8.4 and 12.3 in Randles and Wolfe (1979).)

46. Exact Conditional Null Distribution of rs with Ties among the X - and/or Y -
Values. To have a test with exact significance level even in the presence of tied X
and/or Y observations, we must consider all the possible values of rs correspond-
ing to the fixed observed rank vector (R1, . . . , Rn) = (r1, . . . , rn) and every one
of the n! permutations of the observed rank vector (S1, . . . , Sn) = (s1, . . . , sn),
where average ranks have been used to break ties in both of the rank vec-
tors. As in Comment 41, it still follows that under H0 each of the n! possi-
ble outcomes for the ordered configurations (s1, . . . , sn), in conjunction with a
fixed value of (r1, . . . , rn), both based on using average ranks to break ties,
occurs with probability 1/n!. For each such (s1, . . . , sn) configuration and fixed
(r1, . . . , rn), the value of rs is computed and the results are tabulated. We
illustrate this construction for n = 4 and the data (X1, Y1) = (2, 3.1), (X2, Y2) =
(3.9, 4), (X3, Y3) = (2, 5.1), and (X4, Y4) = (3.6, 4). Using average ranks to break
ties, the associated X and Y rank vectors are (R1, R2, R3, R4) = (1.5, 4, 1.5, 3) and
(S1, S2, S3, S4) = (1, 2.5, 4, 2.5), respectively. Thus, we have D1 = −.5, D2 =
−1.5, D3 = 2.5, D4 = −.5, and an obtained value of rs = .1. To assess the sig-
nificance of rs, we obtain its conditional distribution by considering the 4! =
24 equally likely (under H0) possible values of rs for the fixed rank vector
(r1, r2, r3, r4) = (1.5, 4, 1.5, 3) in conjunction with each of the 24 permutations
of the rank vector (s1, s2, s3, s4) = (1, 2.5, 4, 2.5). These 24 permutations of (1,
2.5, 4, 2.5) and associated values of rs are as follows:

(s1, s2, s3, s4) Probability under H0 Value or rs

(1, 2.5, 4, 2.5) 1
24 .1

(1, 2.5, 2.5, 4) 1
24 .55

(1, 2.5, 2.5, 4) 1
24 .55

(2.5, 1, 2.5, 4) 1
24 −.2

(1, 4, 2.5, 2.5) 1
24 .85

(1, 4, 2.5, 2.5) 1
24 .85

(1, 2.5, 4, 2.5) 1
24 .1

(2.5, 1, 4, 2.5) 1
24 −.65
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(s1, s2, s3, s4) Probability under H0 Value or rs

(4, 1, 2.5, 2.5) 1
24 −.65

(4, 1, 2.5, 2.5) 1
24 −.65

(4, 2.5, 1, 2.5) 1
24 .1

(2.5, 4, 1, 2.5) 1
24 .85

(4, 2.5, 1, 2.5) 1
24 .1

(4, 2.5, 2.5, 1) 1
24 −.35

(4, 2.5, 2.5, 1) 1
24 −.35

(2.5, 4, 2.5, 1) 1
24 .4

(2.5, 1, 4, 2.5) 1
24 −.65

(2.5, 1, 2.5, 4) 1
24 −.2

(2.5, 2.5, 1, 4) 1
24 .55

(2.5, 2.5, 1, 4) 1
24 .55

(2.5, 4, 1, 2.5) 1
24 .85

(2.5, 4, 2.5, 1) 1
24 .4

(2.5, 2.5, 4, 1) 1
24 −.35

(2.5, 2.5, 4, 1) 1
24 −.35

This yields the null-tail probabilities

P0(rs ≥ .85) = 4

24
P0(rs ≥ −.2) = 16

24

P0(rs ≥ .55) = 8

24
P0(rs ≥ −.35) = 20

24

P0(rs ≥ .4) = 10

24
P0(rs ≥ −.65) = 1

P0(rs ≥ .1) = 14

24
.

This distribution is called the conditional null distribution or the permutation
null distribution of rs, given the observed sets of tied ranks (r1, r2, r3, r4) =
(1.5, 4, 1.5, 3) and (s1, s2, s3, s4) = (1, 2.5, 4, 2.5). For the particular observed
value rs = .1, we have P0(rs ≥ .1) = 14

24 , so that such a value does not indi-
cate a deviation from H0 in the direction of positive association between the X
and Y variables. (We note that both the null expected value and null variance for
rs are different in this case of tied ranks (see Problem 51) than the corresponding
expressions given in (8.71) and (8.72) for the no ties setting.)

47. Point Estimation and Confidence Intervals Associated with rs. The Kendall statis-
tic K (8.6) is directly associated with the population correlation coefficient
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τ (8.2). This leads naturally to point estimators and approximate confidence
intervals for τ based on K . Such is not the case for the Spearman statistic rs

(8.63). The measure of association linked with the independence tests based on
rs is

η = 3[τ + (n − 2)φ]

n + 1
,

where τ is given by (8.2) and

φ = 2P{(Y3 − Y1)}(X2 − X1) > 0} − 1.

This measure of association η has several undesirable properties, including the
facts that it is dependent on the sample size n and it is asymmetric in the X and
Y labels. (For more discussion along these lines, see Fligner and Rust (1983).)
As a result, point estimators and confidence intervals for η based on rs are of
little practical interest.

48. Trend Test. If we take Xi = i , i = 1, . . . , n , and compute rs, then the procedures
based on rs can be used as tests for a time trend in the univariate random sample
Y1, . . . , Yn .

49. Other Uses for the rs Statistic. Spearman’s rank correlation coefficient rs also
finds use in other settings where association is a primary issue. One such instance
is in connection with Page’s test for ordered alternatives in a two-way layout
(see Section 7.2). Page’s L statistic (7.10) is directly related to rs. For more
details, see Comment 7.22.

Properties

1. Asymptotic Normality. See Randles and Wolfe (1979, pp. 405–407).

2. Efficiency. See Section 8.7.

Problems

40. In order to study the effects of pharmaceutical and chemical agents on mucociliary clearance,
doctors often use the ciliary beat frequency (CBF) as an index of ciliary activity. One accepted
way to measure CBF in a subject is through the collection and analysis of an endobronchial
forceps biopsy specimen. However, this technique is a rather invasive method for measuring
CBF. In a study designed to assess the effectiveness of less invasive procedures for measuring
CBF, Low et al. (1984) considered the alternative technique of nasal brushing. The data in
Table 8.10 are a subset of the data collected by Low et al. during their investigation.

The subjects in the study were all men undergoing bronchoscopies for diagnoses of a
variety of pulmonary problems. The CBF values reported in Table 8.10 are averages of 10
consecutive measurements on each subject.

Test the hypothesis of independence versus the alternative that the CBF measurements
via nasal brushing and endobronchial forceps biopsy are positively associated (and, therefore,
that nasal brushing is an acceptable alternative to the more invasive endobronchial forceps
biopsy technique for measuring CBF).

41. Test the hypothesis of independence versus the alternative that the mean weight of introduced
cysticerci is positively correlated with the mean weight of worms recovered for the tapeworm
data in Table 8.3.
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Table 8.10 Relation between Ciliary Beat Frequency
(CBF) Values Obtained through Nasal Brushing and
Endobronchial Forceps Biopsy

CBF (hertz)

Nasal Endobronchial
Subject brushing forceps biopsy

1 15.4 16.5
2 13.5 13.2
3 13.3 13.6
4 12.4 13.6
5 12.8 14.0
6 13.5 14.0
7 14.5 16.0
8 13.9 14.1
9 11.0 11.5

10 15.0 14.4
11 17.0 16.0
12 13.8 13.2
13 17.4 16.6
14 16.5 18.5
15 14.4 14.5

Source: P. P. Low, C. K. Luk, M. J. Dulfano, and P. J. P. Finch
(1984).

42. Test the hypothesis of independence versus the alternative that spending per high-school senior
and percentage seniors graduating are positively correlated for the secondary education data
in Table 8.6.

43. Show that the two expressions for rs in displays (8.63) and (8.64) are equivalent.

44. For arbitrary number of observations, what are the smallest and largest possible values of rs?
Justify your answers.

45. Suppose n = 5 and we observe the data (X1, Y1) = (3.7, 9.2), (X2, Y2) = (4.3, 9.4), (X3, Y3) =
(5.0, 9.2), (X4, Y4) = (6.2, 10.4), and X5, Y5) = (5.3, 9.2). What is the conditional probability
distribution of rs under H0 (8.1) when average ranks are used to break ties among the Y ’s?
How extreme is the observed value of rs in this conditional null distribution? Compare this
fact with that obtained by taking the observed value of rs to the (incorrect) unconditional null
distribution of rs. (See also Problem 48.)

46. Give an example of a data set of n ≥ 10 bivariate observations for which rs has value 0.

47. Suppose n = 25. Compare the critical region for the level α = .05 test of H0 (8.1) versus H2

(8.67) based on rs with the critical region for the corresponding nominal level α = .05 test
based on the large-sample approximation.

48. For the case of n = 5 untied bivariate (X , Y ) observations, obtain the form of the exact null
(H0) distribution of rs. (See Comment 41.)

49. Let rp be the Pearson product moment correlation coefficient defined in (8.78). Show that rs

(8.63) is simply this Pearson product moment correlation coefficient applied to the rank vectors
(R1, . . . , Rn) and (S1, . . . , Sn) instead of the original (X1, . . . , Xn) and (Y1, . . . , Yn) vectors.

50. Use the computer software R obtain the value of rs for the secondary education data in
Table 8.6, using average ranks to break the ties in the X and Y values.

51. Obtain the values of E0(rs) and var0(rs) corresponding to the exact conditional null distri-
bution of rs for the case of n = 5 and the tied data considered in Comment 46. Compare
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these values with the corresponding values for E0(rs) and var0(rs) given in expressions (8.71)
and (8.72) for the no ties setting. Discuss a possible reason for the difference in these null
variances.

52. Use the Lake Michigan pollution data in Table 8.8 to test the hypothesis that the degree of
pollution (as measured by the number of odor periods) had not changed with time against the
alternative that there was a general increasing trend in the pollution of Lake Michigan over
the period of 1950–1964. (See Comment 48.)

53. Let (S1, . . . , Sn) be a vector of ranks that is uniformly distributed over the set of all n!
permutations of (1, 2, . . . , n). Show that the marginal probability distribution of each Si , for
i = 1, . . . , n , is uniform over the set {1, 2, . . . , n}. Use this fact to show that E (Si ) = (n + 1)/2
and var(Si ) = (n2 − 1)/12, for i = 1, . . . , n .

54. Let (S1, . . . , Sn) be a vector of ranks that is uniformly distributed over the set of all n!
permutations of (1, 2, . . . , n). Show that the joint marginal probability distribution of (Si , Sj ),
for i �= j = 1, . . . , n , is given by

P(Si = s , Sj = t) =
⎧⎨⎩

1

n(n − 1)
, s �= t = 1, . . . , n

0, otherwise.

Use this fact to show that cov(Si , Sj ) = −(n + 1)/12, for i �= j = 1, . . . , n .

55. The data in Table 8.11 were considered by Gentry and Pike (1970) in their study of the
relationship between the mean rate of return over the period 1956 through 1969 and the 1969
value of common stock portfolios for 32 life insurance companies.

Test the hypothesis of independence versus the general alternative that the 1956–1969
mean rate of return for a stock portfolio is correlated in some fashion with its 1969
value.

8.6 A DISTRIBUTION-FREE TEST FOR INDEPENDENCE
AGAINST BROAD ALTERNATIVES (HOEFFDING)

Hoeffding (1948b) proposed a test of independence that is able to detect a much broader
class of alternatives to independence than the classes of alternatives that can be detected
by the tests of Sections 8.1 and 8.5 based on sample correlation coefficients.

Procedure

To test the hypothesis that the X and Y random variables are independent, namely, H0

given by (8.1), we first rank X1, . . . , Xn jointly and let Ri denote the rank of Xi in this
joint ranking, i = 1, . . . , n . Then rank Y1, . . . , Yn jointly, and let Si denote the rank of Yi

in this joint ranking, i = 1, . . . , n . We let ci denote the number of sample pairs (Xα , Yα)

for which both Xα < Xi and Y − α < Yi ; that is,

ci =
n∑

α=1

φ(Xα , Xi )φ(Yα , Yi ), i = 1, . . . , n , (8.83)

where φ(a , b) = 1 if a < b, = 0, otherwise.
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Table 8.11 Mean Rate of Return of Common Stock Portfolios over the Period
1956–1969 and the 1969 Value of Each Equity Portfolio for 32 Life Insurance
Companies

Mean rate (%) of Value of common stock portfolio,
Company return, 1956–1969 December 31, 1969 (millions of dollars)

1 18.83 96.0
2 16.98 54.6
3 15.36 84.4
4 14.65 251.5
5 14.21 131.8
6 13.68 37.3
7 13.65 109.9
8 13.07 13.5
9 12.99 76.3

10 12.81 72.6
11 11.60 42.1
12 11.51 41.5
13 11.50 56.2
14 11.41 59.3
15 11.26 1184.0
16 10.67 144.0
17 10.44 111.9
18 10.44 179.8
19 10.33 29.2
20 10.30 279.5
21 10.22 166.6
22 10.05 194.3
23 10.04 40.8
24 9.57 428.4
25 9.50 7.0
26 9.48 485.6
27 9.29 165.3
28 9.21 343.8
29 9.04 35.4
30 8.82 24.7
31 8.78 2.7
32 7.26 8.9

Source: J. Gentry and J. Pike (1970).

We set

Q =
n∑

i=1

(Ri − 1)(Ri − 2)(Si − 1)(Si − 2), (8.84)

R =
n∑

i=1

(Ri − 2)(Si − 2)ci , (8.85)

and

S =
n∑

i=1

ci (ci − 1), (8.86)

and compute

D = Q − 2(n − 2)R + (n − 2)(n − 3)S

n(n − 1)(n − 2)(n − 3)(n − 4)
. (8.87)
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For a (two-sided) test of H0 versus the alternative that X and Y are dependent (see
Comment 52), at the α level of significance,

Reject H0 if D ≥ dα; otherwise do not reject, (8.88)

where the constant dα satisfies the equation P0(D ≥ dα) = α.

Large-Sample Approximation

For the large-sample approximation, we use a statistic B , proposed by Blum, Kiefer, and
Rosenblatt (1961), that is slightly different than Hoeffding’s D statistic. (The tests based
on B and D are, however, asymptotically equivalent, because the statistics nD + ( 1

36

)
and nB have the same asymptotic distribution under H0. See Comment 53.) Let

B = n−5
n∑

i=1

[N1(i )N4(i ) − N2(i )N3(i )]
2, (8.89)

where

N1(i ) = number of sample pairs (Xα , Yα) lying in the region

T1(i ) = {(x , y) : x ≤ Xi and y ≤ Yi },
N2(i ) = number of sample pairs (Xα , Yα) lying in the region

T2(i ) = {(x , y) : x > Xi and y ≤ Yi },
N3(i ) = number of sample pairs (Xα , Yα) lying in the region

T3(i ) = {(x , y) : x ≤ Xi and y > Yi },
N4(i ) = number of sample pairs (Xα , Yα) lying in the region

T4(i ) = {(x , y) : x > Xi and y > Yi }. (8.90)

That is, for each i , determine the number of sample pairs (Xα , Yα) lying in each of the
regions determined by the horizontal and vertical lines through the point (Xi , Yi ).

A large-sample approximation to procedure (8.88) is

Reject H0 if
1

2
π4nB ≥ bα; otherwise do not reject, (8.91)

where the constant bα satisfies the equation P0(
1
2π4nB ≥ bα) = α. Blum, Kiefer, and

Rosenblatt suggested that when n is small, the error introduced when utilizing the large-
sample approximation may be reduced by substituting (n − 1)B for nB in the left-hand
side of (8.91). For a different large-sample approximation, see Comment 53.

Ties

Use average ranks and replace (8.83) by

ci =
n∑

α=1
a �=i

φ∗(Xα , Xi )φ
∗(Yα , Yi ), i = 1, . . . , n , (8.92)
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where

φ∗(a , b) =

⎧⎪⎨⎪⎩
1, if a < b,
1
2 , if a = b,

0, otherwise.

(8.93)

EXAMPLE 8.6 [Continuation of Example 8.5].

We return to the data of Table 8.9 and consider the relation between the free pool of
proline and collagen content in human liver cirrhosis. We apply Hoeffding’s test of
independence. From (8.92), we find

c1 = φ∗(X2, X1)φ
∗(Y2, Y1) + φ∗(X3, X1)φ

∗(Y3, Y1) + φ∗(X4, X1)φ
∗(Y4, Y1)

+ φ∗(X5, X1)φ
∗(Y5, Y1) + φ∗(X6, X1)φ

∗(Y6, Y1) + φ∗(X7, X1)φ
∗(Y7, Y1)

= 1

2
(0) + 0

(
1

2

)
+ 0(1) + 0(0) + 0(0) + 0(0) = 0,

c2 = φ∗(X1, X2)φ
∗(Y1, Y2) + φ∗(X3, X2)φ

∗(Y3, Y2) + φ∗(X4, X2)φ
∗(Y4, Y2)

+ φ∗(X5, X2)φ
∗(Y5, Y2) + φ∗(X6, X2)φ

∗(Y6, Y2) + φ∗(X7, X2)φ
∗(Y7, Y2)

= 1

2
(1) + 0(1) + 0(1) + 0(0) + 0(0) + 0(0) = 1

2
,

c3 = φ∗(X1, X3)φ
∗(Y1, Y3) + φ∗(X2, X3)φ

∗(Y2, Y3) + φ∗(X4, X3)φ
∗(Y4, Y3)

+ φ∗(X5, X3)φ
∗(Y5, Y3) + φ∗(X6, X3)φ

∗(Y6, Y3) + φ∗(X7, X3)φ
∗(Y7, Y3)

= 1

(
1

2

)
+ 1(0) + 0(1) + 0(0) + 0(0) + 0(0) = 1

2
,

c4 = φ∗(X1, X4)φ
∗(Y1, Y4) + φ∗(X2, X4)φ

∗(Y2, Y4) + φ∗(X3, X4)φ
∗(Y3, Y4)

+ φ∗(X5, X4)φ
∗(Y5, Y4) + φ∗(X6, X4)φ

∗(Y6, Y4) + φ∗(X7, X4)φ
∗(Y7, Y4)

= 1(0) + 1(0) + 1(0) + 0(0) + 0(0) + 0(0) = 0,

c5 = φ∗(X1, X5)φ
∗(Y1, Y5) + φ∗(X2, X5)φ

∗(Y2, Y5) + φ∗(X3, X5)φ
∗(Y3, Y5)

+ φ∗(X4, X5)φ
∗(Y4, Y5) + φ∗(X6, X5)φ

∗(Y6, Y5) + φ∗(X7, X5)φ
∗(Y7, Y5)

= 1(1) + 1(1) + 1(1) + 1(1) + 0(0) + 0(0) = 4,

c6 = φ∗(X1, X6)φ
∗(Y1, Y6) + φ∗(X2, X6)φ

∗(Y2, Y6) + φ∗(X3, X6)φ
∗(Y3, Y6)

+ φ∗(X4, X6)φ
∗(Y4, Y6) + φ∗(X5, X6)φ

∗(Y5, Y6) + φ∗(X7, X6)φ
∗(Y7, Y6)

= 1(1) + 1(1) + 1(1) + 1(1) + 1(1) + 0(0) = 5,

c7 = φ∗(X1, X7)φ
∗(Y1, Y7) + φ∗(X2, X7)φ

∗(Y2, Y7) + φ∗(X3, X7)φ
∗(Y3, Y7)

+ φ∗(X4, X7)φ
∗(Y4, Y7) + φ∗(X5, X7)φ

∗(Y5, Y7) + φ∗(X6, X7)φ
∗(Y6, Y7)

= 1(1) + 1(1) + 1(1) + 1(1) + 1(1) + 1(1) = 6.
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We next compute the values of Q , R, S , and D . Using (8.84) and (8.87) and the Ri ’s
and Si ’s found in Example 8.5, we obtain

Q = .5(−.5)(1.5)(.5) + .5(−.5)(3)(2) + 2(1)(1.5)(.5)

+ 3(2)(0)(−1) + 4(3)(4)(3) + 5(4)(5)(4) + 6(5)(6)(5)

= 1443.81,

R = −.5(.5)(0) + (−.5)(2)

(
1

2

)
+ 1(.5)

(
1

2

)
+ 2(−1)(0) + 3(3)(4) + 4(4)(5) + 5(5)(6)

= 265.75,

S = 0(−1) + 1

2

(
−1

2

)
+ 1

2

(
−1

2

)
+ 0(−1) + 4(3) + 5(4) + 6(5)

= 61.5

and

D = 1443.81 − 2(5)(265.75) + 5(4)(61.5)

7(6)(5)(4)(3)

= 16.31

2520
.

We now use these data to illustrate the computations needed to perform the large-
sample approximation. For example, for the pair (X4, Y4) = (8.3, 2.6), dividing the plane
into the four regions defined by (8.90) and counting the number of sample pairs in these
regions yields the N1(4), N2(4), N3(4), and N4(4) values defined by (8.90), namely,

N1(4) = 1, N2(4) = 0, N3(4) = 3, N4(4) = 3.

Performing similar subdivisions and counts corresponding to the other six sample
pairs, we find

N1(1) = 1, N2(1) = 2, N3(1) = 1, N4(1) = 3,

N1(2) = 2, N2(2) = 2, N3(2) = 0, N4(2) = 3,

N1(3) = 3, N2(3) = 1, N3(3) = 1, N4(3) = 3,

N1(5) = 5, N2(5) = 0, N3(5) = 0, N4(5) = 2,

N1(6) = 6, N2(6) = 0, N3(6) = 0, N4(6) = 1,

N1(7) = 7, N2(7) = 0, N3(7) = 0, N4(7) = 0.
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From (8.89), we then obtain

B = (7)−5{[3 − 2]2 + [6 − 0]2 + [6 − 1]2 + [3 − 0]2 + [10 − 0]2 + [6 − 0]2 + [0 − 0]2}
= 7−5(207).

The sample size n = 7 is relatively small, so we calculate the left-hand side of (8.91)
with (7 − 1)B replacing 7B . We find

1

2
π4(n − 1)B = 1

2
(3.14)4(6)(207)(7)−5 = 3.60.

The value of D given above may be reproduced using the R command HoeffD.
The arguments are the two samples X and Y . Estimates of P -values and critical values
dα may be obtained from pHoeff. These are approximate values based on Monte Carlo
simulation. For this value of D , the P -value is approximately .077. This is approximate
not only due to the simulation of the distribution, but also because ties exist in the data.

For the large-sample approximation, nD + 1/36 = .073 and nB = .086. For larger
n , we would see closer agreement. The command hoeffd in package Hmisc (Harrell
(2012)) will perform this test and give asymptotic P -values based on B . The following
is the relevant R output from the call hoeffd (x, y) where x is the collagen data
from Table 8.9 and y is the proline data:

D

x y
x 1.00 0.19
y 0.19 1.00

n= 7

P
x y

x 0.0215
y 0.0215

The test statistic D has an upper bound of 1/30 for all n (Wilding and Mudholkar
(2008)). R reports the statistic D scaled to an upper bound of 1. So, the value of D
previously calculated as 16.31/2520 is scaled to D ′ = (16.31/2520) · 30 = .194. The
asymptotic P -value given is based on B (using n , not n − 1 despite the low sample size).
For this data, the P -value is .0215. Thus, we would reject the null hypothesis for any spec-
ified significance level α greater or equal to .0215. Note that this test is approximate due
to the presence of ties. Additionally, the sample size may be inappropriate for the use of
asymptotic P -values. A combination of the two factors (ties, sample size) may explain the
discrepancy between the P -value based on D (0.077 and the value found here. 0.0215).

For comparison, recall that in Section 8.5, we applied the Spearman’s test to the
data of Table 8.9 and found the one-sided P -value to be between .05 and .10. Thus, the
two-sided P -value for the test is between .10 and .20.

Comments

50. Motivation for Hoeffding’s Test. Define

D∗(x , y) = P(X ≤ x and Y ≤ y) − P(X ≤ x)P(Y ≤ y). (8.94)
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We note that D∗(x , y) = 0 for all (x , y) if and only if H0 is true. This fact
was used by Hoeffding in devising the test based on D . The statistic D estimates
the parameter

�1(F ) = EF {D∗(X ′, Y ′)}2, (8.95)

where (X ′, Y ′) is a random member from the underlying bivariate population
with distribution F . In other words, we may think of D∗(x , y) as a measure of
the deviation from H0 at the point (x , y), and �1(F ) as the average value of the
square of this deviation.

51. Null Distribution of D . In determining the null distribution of D , we can, with-
out loss of generality, take R1 = i and obtain the associated values of D for
the n! possible Y rank configurations of the form (S1, . . . , Sn). Each of these
configurations has probability [1/(n!)] under H0.

52. Consistency of D against a Broad Class of Alternatives. The D test was designed
by Hoeffding to detect a broad class of alternatives to the hypothesis of indepen-
dence, and in this sense its character differs from that of the tests of independence
of Sections 8.1 and 8.5 based on sample correlation coefficients. Although
Hoeffding (1948b) showed that the D test is not sensitive to all alternatives
to H0, he demonstrated that under mild restrictions on the nature of the under-
lying bivariate population F , the test is consistent when H0 is false. Thus, the
D test detects alternatives where the X ’s and Y ’s are positively associated and
alternatives where the X ’s and Y ’s are negatively associated. Furthermore, there
exist populations F where X , Y are dependent and D is consistent, but the tests
based on the sample correlation coefficients are not consistent.

53. Relationship of D and B . The statistics nD + ( 1
36 ) and nB have the same

asymptotic distribution under H0. (See Hoeffding (1948b) and Blum, Kiefer,
and Rosenblatt (1961).) Thus, another large-sample approximation to procedure
(8.88) is

Reject H0 if

(
1

2

)
π4
{

nD +
(

1

36

)}
≥ bα; otherwise do not reject.

54. Development of D Test. The test based on D was introduced by Hoeffding
(1948b). The related test based on B was considered by Blum, Kiefer, and
Rosenblatt (1961), who extended the approach to testing for the independence
of k (k ≥ 2) variables. A one-sided test, similar in character to the two-sided
B test, was proposed by Crouse (1966). Skaug and Tjøstheim (1993) consid-
ered the Blum–Kiefer–Rosenblatt statistic in a time-series setting and estab-
lished (under mild conditions) consistency against lag one dependent alterna-
tives. Zheng (1997) used smoothing methods to develop a nonparametric test of
independence between two variables. His test is consistent against any form of
dependence.

55. Finite Sample Size Distribution of D. Wilding and Mudholkar (2008) proposed
improved methods for estimating the distribution of Hoeffding’s D under the
null distribution for small sample sizes. Their approximations are based on the
Weibull family of distributions. The command pHoeff provides an approxima-
tion of this distribution using Monte Carlo simulation. For the discrete values d
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of D , it provides the probability that d occurs P(D = d), the lower-tail proba-
bilities P(D ≤ d), and upper-tail probabilities P(D ≥ d). For example, if n = 5
and 20,000 Monte Carlo runs are used, the output is

d P(D = d) P(D <= d) P(D >= d)
-0.01667 0.13280 0.13280 1.00000
0.000000 0.79995 0.93275 0.86720
0.033333 0.06725 1.00000 0.06725.

Properties

1. Consistency. The test defined by (8.88) is consistent against populations for which
the parameter �1(F ) defined by (8.95) is positive. For conditions on F that ensure
that �1(F ) will be positive, see Hoeffding (1948b) and Yanagimoto (1970).

2. Asymptotic Distribution. For the asymptotic distribution of {nD + ( 1
36 )}, see

Hoeffding (1948b) and Blum, Kiefer, and Rosenblatt (1961).

Problems

56. The data in Table 8.12 are a subset of the data obtained by Shen et al. (1970) in an experi-
ment concerned with the hypothesis that diabetes mellitus is not simply a function of insulin
deficiency and that perhaps insulin insensitivity could play an important role in the hyper-
glycemia of diabetes. One of the purposes of the study was to investigate the relation between
the response to a glucose tolerance test and glucose impedance, a quantity describing the body
tissues’ resistance to glucose and expected to be constant for a given individual throughout
the experimental range of glucose uptake rate in the author’s study. The seven subjects rep-
resented in Table 8.12 were volunteers recently released from a minimum security prison and
characterized by low plasma glucose response to oral glucose. Table 8.12 gives the weighted
glucose response to an oral glucose tolerance test (X ) and the glucose impedance reading (Y )
for each of the seven subjects.

Use procedure (8.88) to test for impedance of weighted glucose response and glucose
impedance. (Recall that procedure (8.88) is designed to detect all alternatives to the hypothesis
of independence. However, if one has prior reasons or evidence to suspect that the weighted
glucose response is positively correlated with glucose impedance, it would be more appropriate
to focus on alternatives of positive association by using the one-sided procedure, based on
Kendall’s K , given by (8.8).)

Table 8.12 Weighted Glucose Response and Glucose
Impedance

Weighted glucose Glucose
Subject response, X impedance, Y

1 130 26.1
2 116 19.7
3 122 26.8
4 117 23.7
5 108 23.4
6 115 24.4
7 107 16.5

Source: S. Shen, G. M. Reaven, J. W. Farquhar, and R. H.
Nakanishi (1970).
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57. Apply Kendall’s two-sided test based on (8.10) to the data of Table 8.12. Compare your result
with the result of Problem 56.

58. Apply the large-sample approximation given in Comment 53 to the data in Table 8.9. Compare
this approximation with the approximation based on (8.91) that was used in Example 8.6.

8.7 EFFICIENCIES OF INDEPENDENCE PROCEDURES

Investigation of the asymptotic relative efficiencies of tests for independence is made
more difficult by our inability to define natural classes of alternatives to the hypothesis
of independence. The asymptotic relative efficiencies of the test procedure (one- or two-
sided) based on Kendall’s statistic K (8.6) with respect to the corresponding normal
theory test based on Pearson’s product moment correlation coefficient rp (8.78) have
been found by Stuart (1954) and Konijn (1956) for a class of dependence alternatives
“close” to the hypothesis of independence. Values of this asymptotic relative efficiency
e(K , rP), for selected bivariate FX ,Y , are as follows:

FX ,Y : Normal Uniform Double Exponential

e(K , rp) : .912 1.000 1.266

In the normal setting, natural alternatives to independence correspond to bivariate
normal distributions with nonzero correlation. In this case, the asymptotic relative effi-
ciency of the test procedure (one- or two-sided) based on Spearman’s statistic rs (8.63)
with respect to the corresponding test procedure based on Kendall’s K is 1. Moreover,
the common asymptotic relative efficiency of either the test procedure based on rs or the
test procedure based on K with respect to the corresponding normal theory test based on
rp is (3/π)2 = .912.

The point estimator and confidence interval associated with normality assumptions
for the independence problem are concerned with the underlying correlation coefficient,
whereas the estimator and confidence intervals based on Kendall’s K relate to the param-
eter τ . In view of this, the estimator τ̂ (8.34) and the approximate confidence intervals
given by (8.39) and (8.50) are not easily compared with the normal theory procedures;
hence, their asymptotic efficiencies are not presented here.

We do not know of any results for the asymptotic efficiency of Hoeffding’s inde-
pendence test (Section 8.6).



Chapter 9

Regression Problems

INTRODUCTION

Among the most common applications of statistical techniques are those involving some
sort of regression analysis. Such procedures are designed to detect and interpret stochastic
relationships between a dependent (response) variable and one or more independent
(predictor) variables. These regression relationships can vary from that of a simple linear
relationship between the dependent variable and a single independent variable to complex,
nonlinear relationships involving a large number of predictor variables.

In Sections 9.1–9.4, we present nonparametric procedures designed for the simplest
of regression relationships, namely, that of a single stochastic linear relationship between
a dependent variable and one independent variable. (Such a relationship is commonly
referred to as a regression line.) In Section 9.1, we present a distribution-free test of
the hypothesis that the slope of the regression line is a specified value. Sections 9.2 and
9.3 provide, respectively, a point estimator and distribution-free confidence intervals and
bounds for the slope parameter. In Section 9.4, we complete the analysis for a single
regression line by discussing both an estimator of the intercept of the line and the use of
the estimated linear relationship to provide predictions of dependent variable responses
to additional values of the predictor variable. In Section 9.5, we consider the case of
two or more regression lines and describe an asymptotically distribution-free test of the
hypothesis that the regression lines have the same slope; that is, that the regression lines
are parallel.

In Section 9.6, we present the reader with an introduction to the extensive field of
rank-based regression analysis for more complicated regression relationships than that
of a straight line. In Section 9.7, we provide short introductions to a number of recent
developments in the rapidly expanding area of non-rank-based nonparametric regres-
sion, where the goal is to make statistical inferences about the relationship between
a dependent variable and one or more independent variables without a priori specifi-
cation of a formal model describing the regression relationship. These non-rank-based
approaches to nonparametric regression are generally more complicated than the level
assumed throughout the rest of this text. As a result, our approach in Section 9.7 is simply
to give brief descriptions of a variety of statistical techniques that are commonly used
to develop such procedures and provide appropriate references for readers interested in
more detailed information about them, rather than to concentrate on specific procedures
and their application to appropriate data sets.

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

451



452 Chapter 9 Regression Problems

Finally, in Section 9.8, we consider the asymptotic relative efficiencies of the
straight-line regression procedures discussed in Sections 9.1–9.3 and 9.5–9.6 with
respect to their competitors based on classical least squares estimators.

ONE REGRESSION LINE

Data. At each of n fixed values, x1, . . . , xn , of the independent (predictor) variable
x , we observe the value of the response random variable Y . Thus, we obtain a set of
observations Y1, . . . , Yn , where Yi is the value of the response variable when x = xi . The
x ’s are assumed to be distinct and, without loss of generality, we take x1 < x2 < · · · < xn .

Assumptions

Al. Our straight-line model is

Yi = α + βxi + ei , i = 1, . . . , n , (9.1)

where the x ’s are known constants and α (the intercept) and β (the slope) are
unknown parameters.

A2. The random variables e1, . . . , en are a random sample from a continuous pop-
ulation that has median 0.

9.1 A DISTRIBUTION-FREE TEST FOR THE SLOPE
OF THE REGRESSION LINE (THEIL)

Hypothesis

The null hypothesis of interest here is that the slope, β, of the postulated regression line
is some specified value β0, namely,

H0 : β = β0. (9.2)

Thus, the null hypothesis asserts that for every unit increase in the value of the indepen-
dent (predictor) variable x , we would expect an increase (or decrease, depending on the
sign of β0) of roughly β0 in the value of the dependent (response) variable Y .

Procedure

To compute the Theil (1950a) statistic C , we first form the n differences

Di = Yi − β0xi , i = 1, . . . , n. (9.3)

Let

C =
n−1∑
i=1

n∑
j=i+1

c(Dj − Di ), (9.4)
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where

c(a) =
⎧⎨⎩

−1, if a < 0,
0, if a = 0,
1, if a > 0.

(9.5)

Thus, for each pair of subscripts (i , j ), with 1 ≤ i < j ≤ n , score 1 if Dj − Di is
positive, and score −1 if Dj − Di is negative. The statistic C (9.4) is then just the sum
of these 1’s and −1s.

a. One-Sided Upper-Tail Test. To test the null hypothesis

H0 : β = β0

versus the alternative that the slope is larger than the specified β0 corresponding
to

H1 : β > β0, (9.6)

at the α level of significance,

Reject H0 if C̄ ≥ kα; otherwise do not reject, (9.7)

where the constant kα is chosen to make the type I error probability equal to α

and C̄ = C /(n(n − 1)/2). (See Comment 2.)

b. One-Sided Lower-Tail Test. To test the null hypothesis

H0 : β = β0

versus the alternative that the slope is smaller than the specified β0 corresponding
to

H2 : β < β0, (9.8)

at the α level of significance,

Reject H0 if C̄ ≤ −kα; otherwise do not reject. (9.9)

c. Two-Sided Test. To test the null hypothesis

H0 : β = β0

versus the alternative that the slope is simply not equal to the specified β0 corre-
sponding to

H3 : β �= β0, (9.10)

at the α level of significance,

Reject H0 if |C̄ | ≥ kα/2; otherwise do not reject. (9.11)

This two-sided procedure is the two-sided symmetric test with α/2 probability in
each tail of the null distribution of C̄ .
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Large-Sample Approximation

The large-sample approximation is based on the asymptotic normality of C , suitably
standardized. For this standardization, we need to know the expected value and variance
of C when the null hypothesis H0 (9.2) is true. Under H0, the expected value and variance
of C are

E0(C ) = 0 (9.12)

and

var0(C ) = n(n − 1)(2n + 5)

18
, (9.13)

respectively. (See Comment 2.)
The standardized version of C is

C ∗ = C − E0(C )

{var0(C )}1/2
= C

{n(n − 1)(2n + 5)/18}1/2
. (9.14)

When H0 is true, C ∗ has, as n tends to infinity, an asymptotic N (0, 1) distribution (See
Comment 2). The normal theory approximation for procedure (9.7) is

Reject H0 if C ∗ ≥ zα; otherwise do not reject, (9.15)

the normal theory approximation for procedure (9.9) is

Reject H0 if C ∗ ≤ −zα; otherwise do not reject, (9.16)

and the normal theory approximation for procedure (9.11) is

Reject H0 if |C ∗| ≥ zα/2; otherwise do not reject. (9.17)

Ties

If there are ties among the Di (9.3) differences, C may be computed as described in
(9.4), but keep in mind that procedures (9.7), (9.9), and (9.11) are then approximate
rather than exact. Sen (1968) suggested a way to deal with ties among the values of the
independent variable x .

EXAMPLE 9.1 Effect of Cloud Seeding on Rainfall.

Smith (1967) described experiments performed in Australia to investigate the effects of
a particular method of cloud seeding on the amount of rainfall. In one experiment that
took place in the Snowy Mountains, two areas served as target and control, respectively,
and during any one period, a random process was used to determine whether clouds over
the target area should be seeded. The effect of seeding was measured by the double ratio
[T/Q (seeded)]/[T/Q (unseeded)], where T and Q are the total rainfalls in the target and
control areas, respectively. Table 9.1 provides the double ratio calculated for each year
of a 5-year experiment.

The slope parameter β represents the rate of change in Y per unit change in x . We
apply the one-sided lower-tail test (9.9) with β0 equal zero. This should be viewed as a
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Table 9.1 Double Ratio for 5 Years in the
Snowy Mountains of Australia

Years seeded, xi Double ratio, Yi

1 1.26
2 1.27
3 1.12
4 1.16
5 1.03

Source: E. J. Smith (1967).

test of the null hypothesis that the double ratio does not change with time (i.e., the effects
of seeding during one year do not overlap into other years) against the alternative that
there is a decrease over time, either in the rainfall increases resulting from the seeding
or in the ability of the experiments to detect such increases.

From (9.3), with β0 = 0, we see that Di = Yi . We now illustrate the computations
required to obtain the value of C (9.4) for these data.

(i , j ) Dj − Di c(Dj − Di )

(1, 2) .01 1
(1, 3) −.14 −1
(1, 4) −.10 −1
(1, 5) −.23 −1
(2, 3) −.15 −1
(2, 4) −.11 −1
(2, 5) −.24 −1
(3, 4) .04 1
(3, 5) −.09 −1
(4, 5) −.13 −1

Thus, we find the value of C and C̄ to be

C =
4∑

i=1

5∑
j=i+1

c(Dj − Di ) = −6, C̄ = C

n(n − 1)/2
= −.6.

Using the fact that the null distribution of C is symmetric about zero (See Comment 2),
we find that the P -value for these data is P(C̄ ≤ −.6) =pKendall(-.6, N = 5,

lower.tail = T) = .117. Thus, there is not much evidence of a decrease over time
of the rainfall increases resulting from the seeding.

To illustrate the normal theory approximation (which should not be expected to be
highly accurate for a sample size as small as 5), we first find from (9.14) that

C ∗ = −6

{5(4)(15)/18}1/2
= −1.47.

Thus, the smallest significance level at which we can reject H0 : β = 0 in favor of
β < 0 using the normal theory approximation is .0708, since z.0708 = −1.47. As expected
for this small sample size (n = 5), this is not in especially good agreement with the exact
P -value of .117 found previously.
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The above analysis may also be carried out in R. The command theil requires argu-
ments for data vectors x and y, the null hypothesized value beta. 0 and type="t",
"1", or "u" for a two-tailed, lower-tail, or upper-tail test, respectively. If taking x and
y to be the data from Table 9.1, a call of the function theil(x, y, beta.0=0,

type="1") results in the following output, which reproduces the analysis above:

Null: beta less than 0
C = -6, C.bar = -0.6, P = 0.117.

Comments

1. Motivation for the Test. From (9.4), we see that C will be large when Dj > Di

for many (i , j ) pairs. Now

Dj − Di = [Yj − β0xj − (Yi − β0xi )] = [Yj − Yi + β0(xi − xj )].

Furthermore, under model (9.1), the median of Yj − Yi = [β(xj − xi ) + (ej − ei )]
is β(xj − xi ). Thus, under model (9.1), the median of Dj − Di is [β(xj − xi ) +
β0(xi − xj )] = (β − β0)(xj − xi ). Hence, we tend to obtain positive Dj − Di dif-
ferences when β > β0, and these positive differences lead to large values of C .
This serves as partial motivation for procedure (9.7).

2. Relationship to Kendall’s Correlation Statistic K . The statistic C (9.4) is sim-
ply Kendall’s correlation statistic K (8.6) computed between the x and Y − β0x
values. In particular, a test of β0 = 0 can be interpreted as a test for correla-
tion between the x and Y sequences. Moreover, the null H0 (9.2) distribution
properties of the statistic C (when there are no tied D values) are identical with
the corresponding distributional properties of Kendall’s statistic K under its null
hypothesis of independence (See Section 8.1). This leads immediately to the use
of the critical values kα in procedures (9.7), (9.9), and (9.11). In addition, the
symmetry about zero for the null distribution of C follows from Comment 8.8
and the values of E0(C ) and var0(C ) are direct consequences of the corresponding
values of E0(K ) and var0(K ), respectively, developed in Comment 8.10. Finally,
the asymptotic (n → ∞) normality for the standardized statistic C ∗ under the
null hypothesis H0 (9.2) derives from the similar property for the standardized
K ∗, as discussed in Comment 8.10.

3. Testing for Trends over Time. In the special case when the x -values are the time
order (as in Example 9.1), the procedures in (9.7), (9.9), and (9.11) (with β0 set
equal to zero) can be viewed as tests against a time trend and have been suggested
for this use by Mann (1945). (See also Comment 8.14.)

Properties

1. Consistency. The tests defined by (9.7), (9.9), and (9.11) are consistent against
the alternatives 0 β >, <, and �= β0, respectively.

2. Asymptotic Normality. See Comment 2.

3. Efficiency. See Sen (1968) and Section 9.8.
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Problems

1. Johnson et al. (1970) considered the behavior of a cenosphere-resin composite under
hydrostatic pressure. The authors pointed out that most deep submersible vehicles utilize a
buoyancy material, known as syntactic foam, that is a composite of closely packed hollow
glass microspheres embedded in a resin matrix. These microspheres are relatively expensive
to manufacture, and the cost of the syntactic foam is principally determined by the cost of the
microspheres. The authors also noted that the ash from generating stations burning pulverized
coal contains a small proportion of hollow glassy microspheres, known as cenospheres, and
these have about the right size distribution for use in syntactic foam. The cenospheres can be
readily collected from the ash-disposal method used in certain British generating stations. The
authors were thus interested in whether the cenospheres would, in some applications, perform
as well as the manufactured microspheres.

In attempting to assess the usefulness of cenospheres as a component of syntactic foam,
Johnson et al. investigated the effects of hydrostatic pressure (such as exists in the ocean
depths) on the density of a cenosphere-resin composite. The results are given in Table 9.2.
What is the P -value for a test of H0 : β = 0 against the alternative β > 0 for these data?

2. Explain why the effect of the unknown intercept parameter α (See model (9.1)) is “eliminated”
in the application of procedure (9.4) to a set of data.

3. Consider the tapeworm data discussed in Problem 8.1. Using the mean weight of the initial
force-fed cysticerci as the independent (predictor) variable, test the hypothesis that there was
virtually no change in the mean weight of the cysticerci over the 20-day period following
introduction into the dogs against the alternative that the typical tapeworm grew in size during
the period of the study.

4. Stitt, Hardy, and Nadel (1971) studied the relationship between the surface area and body
weight of squirrel monkeys. The data in Table 9.3 represent the total surface areas (cm3) and

Table 9.2 The Effects of Hydrostatic Pressure on the Density
of a Cenosphere-Resin Composite

Specimen Pressure (psi) Density (g/cm3)

1 0 0.924
2 5,000 0.988
3 10,000 0.992
4 15,000 1.118
5 20,000 1.133
6 25,000 1.145
7 30,000 1.157
8 100,000 1.357

Source: A. A. Johnson, K. Mukherjee, S. Schlosser, and E. Raask (1970).

Table 9.3 Body Weight and Total Surface Area of Squirrel Monkeys

Monkey Body weight, g Total surface area, cm3

1 660 780.6
2 705 887.6
3 994 1122.8
4 1129 1125.2
5 1005 l070.4
6 923 1039.2
7 953 1040.0
8 1018 1133.4
9 1181 1148.0

Source: J. T. Stitt, J. D. Hardy, and E. R. Nadel (1971).
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body weights (g) for nine squirrel monkeys. Treating body weight as the independent variable,
test for the presence of a linear relationship between these two measurements in squirrel
monkeys.

5. Explain the meaning of the intercept parameter α and slope parameter β in model (9.1).

6. Consider the odor periods data of Table 8.8 in Problem 8.19. Test the conjecture that over the
period 1950–1964, the number of odor periods for Lake Michigan generally increased at a
rate greater than two per year.

9.2 A SLOPE ESTIMATOR ASSOCIATED
WITH THE THEIL STATISTIC (THEIL)

Procedure

To estimate the slope parameter β of model (9.1), compute the N = n(n − 1)/2 individual
sample slope values Sij = (Yj − Yi )/(xj − xi ), 1 ≤ i < j ≤ n . The estimator of β (Theil
(1950c)) associated with the Theil statistic, C , is

β̂ = median {Sij , 1 ≤ i < j ≤ n}. (9.18)

Let S (1) ≤ · · · ≤ S (N ) denote the ordered values of the sample slopes Si ,j . Then if N is
odd, say N = 2k + 1, we have k = (N − 1)/2 and

β̂ = S (k+1), (9.19)

the value that occupies position k + 1 in the list of the ordered Sij values. If N is even,
say N = 2k , then k = N /2 and

β̂ = [S (k) + S (k+1)]/2. (9.20)

That is, when N is even, β̂ is the average of the two Sij values that occupy positions k
and k + 1 in the ordered list of all N sample slopes Sij .

EXAMPLE 9.2 Effect of Cloud Seeding on Rainfall—Example 9.1 Continued.

Consider the double-ratio data of Table 9.1. The ordered values of the N = 5(4)/2 = 10
sample slopes Sij = (Yj − Yi )/(xj − xi ) are S (1) ≤ · · · ≤ S (10) : −.150, −.130, −.080,
−.070, −.0575, −.055, −.045, −.033, .010, and .040. As N = 10 is even, we
use (9.20) with k = 10

2 = 5 to obtain the slope estimate β̂ = [S (5) + S (6)]/2 =
[−.0575 − .055]/2 = −.0563.

Comments

4. Generalization for Nondistinct x-Values. Sen (1968) generalized Theil’s (1950c)
estimator to the case where the x ’s are not distinct. Let N ′ denote the num-
ber of positive xj − xi differences, for 1 ≤ i < j ≤ n . (In the case where the
x ’s are distinct, N ′ = N .) Sen’s estimator of β is the median of the N ′ sam-
ple slope values that can be computed from the data. In the special case when



9.2 A Slope Estimator Associated with the Theil Statistic (Theil) 459

x1 = x2 = . . . = xm = 0 and xm+1 = xm+2 = . . . = xm+q = 1 (with n = m + q
and m < n), Sen’s estimator reduces to the median of the mq(Yj − Yi ) differ-
ences, where i = 1, . . . , m and j = m + 1, . . . , m + q . That is, Sen’s estimator
reduces to the Hodges–Lehmann two-sample estimator of Section 4.2 applied to
the two samples Y1, . . . , Ym and Ym+1, . . . , Ym+q .

Dietz (1989) considered various nonparametric estimators of the slope includ-
ing Theil’s estimator. She found that Theil’s estimator is robust, easy to compute,
and competitive in terms of mean squared error with alternative slope estimators.
She also considered various nonparametric estimators of the intercept and of the
mean response at a given x -value.

5. Sensitivity to Gross Errors. The estimator β̂ (9.18) is less sensitive to gross errors
than is the classical least squares estimator

β̄ =
∑n

i=1 (Yi − Ȳ )(xi − x̄)∑n
j=1 (xj − x̄)2 ,

where x̄ =∑n
i=1 xi /n and Ȳ =∑n

j=1 Yj /n .

6. Median versus Weighted Average. The estimator β̂ (9.18) is the median of the N
individual slope estimators Sij = (Yj − Yi )/(xj − xi ). The least squares estimator
β̄ (See Comment 5) is a weighted average of the Sij ’s.

7. Sample Slopes. The command theil will output the n(n − 1)/2 sample slopes
if the additional argument slopes=T is specified. If x and y are the data from
Table 9.1, then theil(x, y, slopes=T) will output the following table:

i j Si j

1 2 0.01000000

1 3 −0.07000000

1 4 −0.03333333

1 5 −0.05750000

2 3 −0.15000000

2 4 −0.05500000

2 5 −0.08000000

3 4 0.04000000

3 5 −0.04500000

4 5 −0.13000000

A different slope estimator is due to Siegel (1982). For a fixed point, the
Siegel estimator computes the n − 1 slopes with the remaining points and takes
the median of these n − 1 values. This is done for each point, resulting in n
medians. The median of these n medians is the estimate of β.

Properties

1. Standard Deviation of β̂ (9.18). For the asymptotic standard deviation of β̂ (9.18),
see Sen (1968).
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2. Asymptotic Normality. See Sen (1968).

3. Efficiency. See Sen (1968) and Section 9.8.

Problems

7. Estimate β for the cenosphere-resin data of Table 9.2.

8. Compute the least squares estimator β̄ (See Comment 5) for the cenosphere-resin data of
Table 9.2, and compare β̄ with the β̂ value obtained in Problem 7. In general, which of β̂ and
β̄ is easier to compute?

9. Estimate β for the body-weight and surface-area data for squirrel monkeys discussed in
Problem 4.

10. Obtain the set of 28 ordered individual sample slopes for the cenosphere-resin data of Table 9.2.

11. Estimate β for the tapeworm data discussed in Problems 3 and 8.1.

12. Obtain the set of 45 ordered individual sample slopes for the tapeworm data discussed in
Problems 3 and 8.1.

9.3 A DISTRIBUTION-FREE CONFIDENCE INTERVAL
ASSOCIATED WITH THE THEIL TEST (THEIL)

Procedure

For a symmetric two-sided confidence interval for β, with confidence coefficient 1 − α,
first obtain the upper (α/2)th percentile point kα/2 of the null distribution of C (9.4). Let
Cα = n(n − 1)/2 · kα/2 − 2 and set

M = N − Cα

2
, (9.21)

and

Q = N + Cα

2
= M + Cα , (9.22)

where, once again, N = n(n − 1)/2. The 100(1 − α)% confidence interval (βL, βU) for
the slope β that is associated with the two-sided Theil test (Section 9.1) is then given by

βL = S (M ), βU = S (Q+1), (9.23)

where S (1) ≤ · · · ≤ S (N ) are the ordered individual sample slopes Sij = (Yj − Yi )/(xj −
xi ), 1 ≤ i < j ≤ n , used in computing the point estimator β̂ (9.18). That is, βL is the
sample slope Sij that occupies position M in the list of N ordered sample slopes. The
upper end point βU is the sample slope Sij value that occupies position Q = M + Cα in
this ordered list. With βL and βU given by display (9.23), we have

Pβ(βL < β < βU) = 1 − α for all β. (9.24)

For upper or lower confidence bounds for β associated with appropriate one-sided Theil’s
test procedures, see Comment 9.
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Large-Sample Approximation

For large n , the integer Cα may be approximated by

Cα ≈ zα/2

{
n(n − 1)(2n + 5)

18

}1/2

. (9.25)

In general, the value of the right-hand side of (9.25) is not an integer. To be conservative,
take Cα to be the largest integer that is less than or equal to the right-hand side of (9.25)
for use in (9.21) and (9.22).

EXAMPLE 9.3 Effect of Cloud Seeding on Rainfall—Example 9.1 Continued.

Consider the double-ratio data of Table 9.1. We illustrate how to obtain the 95% confi-
dence interval for β. With 1 − α = .95 (so that α = .05), we see that kα/2 = k.025 = .8.
Thus, C.025 = 5.4

2 k.025 − 2 = 8 − 2 = 6. Since N = 5(4)/2 = 10, we see from (9.21) and
(9.22) that

M = 10 − 6

2
= 2

and

Q = 10 + 6

2
= 8.

Using these values of M = 2 and Q = 8 in display (9.23), we see that

βL = S (2), βU = S (9)

provide the end points of our 95% confidence interval for β. From the ordered list of
sample slope values given in Example 9.2, we obtain S (2) = −.130 and S (9) = .010, so
that our 95% confidence interval for β is

(βL, βU) = (−.130, .010).

Note that the critical value given by R results in a confidence level of 1 − α = .917,
not 1 − α = .95. Using the theil command with the arguments alpha=l-.05 and
type="t" results in the following output:

1 - alpha = 0.05 two-sided CI for beta:
-0.15, 0.04

The theil command produces an interval whose confidence level is at least 1 − α. The
actual confidence level for this interval is 1 − α = .983, compared to 1 − α = .917 for
the interval determined by hand.

Comments

8. Use of R to Compute the End Points of the Confidence Interval (9.3). The
n(n − 1)/2 individual sample slope values Sij = (Yj − Yi )/(xj − xi ), 1 ≤ i ≤
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j ≤ n , can also be obtained from the theil command by specifying the
argument slopes=T. For details, See Comment 7.

9. Confidence Bounds. In many settings, we are interested only in making
one-sided confidence statements about the parameter β; that is, we wish to
assert with specified confidence that β is no larger (or, in other settings, no
smaller) than some upper (lower) confidence bound based on the sample data.
To obtain such one-sided confidence bounds for β, we proceed as follows. For
specified confidence coefficient 1 − α, find the upper αth [not (α/2)th, as for
the confidence interval] percentile point ka of the null distribution of C (9.4).
Let C ∗

α = n(n−1)
2 kα − 2 and set

M ∗ = N − C ∗
α

2
and Q∗ = N + C ∗

α

2
. (9.26)

The 100(1 − α)% lower confidence bound β∗
L for β is then given by

(β∗
L, ∞) = (S (M ∗), ∞), (9.27)

where, as before, S (1) ≤ · · · ≤ S (N ) are the ordered individual sample slopes.
With β∗

L given by display (9.27), we have

Pβ(β∗
L < β < ∞) = 1 − α for all β. (9.28)

The corresponding 100(1 − α)% upper confidence bound β∗
U is given by

(−∞, β∗
U) = (−∞, S (Q∗+1)). (9.29)

It follows that

Pβ(−∞ < β < β∗
U) = 1 − α for all β. (9.30)

For large n , the integer C ∗
α may be approximated by

C ∗
α ≈ zα

{
n(n − 1)(2n + 5)

18

}1/2

. (9.31)

In general, the value of the right-hand side of (9.31) is not an integer. To be
conservative, take C ∗

α to be the largest integer that is less than or equal to the
right-hand side of (9.31) for use in display (9.26).

10. Midpoint of the Confidence Interval as an Estimator. The midpoint of the
confidence interval given by (9.23), namely, [S [M ) + S (Q+1)]/2, suggests
itself as a reasonable estimator of β. (Note that this actually yields a class of
estimators depending on the value of α.) In general, this midpoint does not
give the same value as β̂ (9.18).
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Properties

1. Distribution-Freeness. For populations satisfying Assumptions A1 and A2, (9.24)
holds (See Theil (1950b, 1950c)). Hence, we can control the coverage probability
to be 1 − α without having more specific knowledge about the form of the
common underlying distribution of the ei ’s. Thus, (βL, βU) is a distribution-free
confidence interval for β over a very large class of populations.

2. Efficiency. See Sen (1968) and Section 9.8.

Problems

13. Obtain a 90% confidence interval for β for the cenosphere-resin data in Table 9.2.

14. Obtain a 95% confidence interval for β for the body weight and surface area data for squirrel
monkeys discussed in Problems 4 and 9.

15. Consider a fixed set of data. Show that for α2 > α1, the symmetric two-sided (1 − α1) confi-
dence interval for β given by (9.23) is always as long or longer than the symmetric two-sided
(1 − α2) confidence interval for β.

16. Obtain a 95% upper confidence bound (See Comment 9) for β for the double-ratio cloud-
seeding data in Table 9.1.

17. Obtain a 95% lower confidence bound (See Comment 9) for β for the tapeworm data discussed
in Problems 8.1, 3, and 11.

18. Obtain a 90% confidence interval for β for the Lake Michigan odor periods data discussed in
Problems 8.19 and 6.

19. Find the midpoint of the 95% confidence interval for β obtained in Problem 14 for the squirrel
monkey body-weight and surface-area data. As noted in Comment 10, this midpoint can be
used to estimate the value of β. Compare this midpoint estimator with the value of β̂ (9.18)
obtained in Problem 9.

9.4 AN INTERCEPT ESTIMATOR ASSOCIATED WITH
THE THEIL STATISTIC AND USE OF THE ESTIMATED
LINEAR RELATIONSHIP FOR PREDICTION
(HETTMANSPERGER–McKEAN–SHEATHER)

Procedure

To estimate the intercept parameter α of model (9.1), we define

Ai = Yi − β̂xi , i = 1, . . . , n , (9.32)

where β̂ is the point estimator of β given in (9.18). An estimator associated with the
Theil statistic C and suggested by Hettmansperger, McKean, and Sheather (1997) is

α̂ = median {A1, . . . , An}. (9.33)

Let A(1) ≤ · · · ≤ A(n) denote the ordered Ai values (9.32). Then if n is odd, say
n = 2k + 1, we have k = (n − 1)/2 and

α̂ = A(k+1), (9.34)



464 Chapter 9 Regression Problems

the value that occupies position k + 1 in the list of ordered Ai values. If n is even, say
n = 2k , then k = n/2 and

α̂ = A(k) + A(k+1)

2
. (9.35)

That is, when n is even, α̂ is the average of the two values that occupy positions k and
k + 1 in the ordered list of all n Ai ’s.

Employing both the estimator β̂ (9.18) for the slope and the estimator α̂ (9.33) for
the intercept, our estimated linear relationship between the x and Y variables is then
given by ︷ ︸︸ ︷

med Yx=x∗ = [
︷ ︸︸ ︷
median Y when x = x∗] = α̂ + β̂ x∗. (9.36)

That is, we would predict
︷ ︸︸ ︷
med Yx=x∗ to be the typical value of the dependent variable

Y for a future setting of the independent variable x at x∗. (See also Comment 12.)

EXAMPLE 9.4 Effect of Cloud Seeding on Rainfall—Example 9.1 Continued.

Once again, consider the double-ratio data of Table 9.1. From Example 9.2, we see
that the slope estimate for these data is β̂ = −.0563. Combining this value with the
(xi , Yj ) pairs from Table 9.1, the five ordered A (9.32) values are A(1) ≤ · · · ≤ A(5) :
1.2889, 1.3115, 1.3163, 1.3826, and 1.3852. As n = 5 is odd, we use (9.34) with k = (5 −
1)/2 = 2 to obtain the intercept estimate α̂ = A(3) = 1.3163. This estimate is provided
by the command theil.

Combining the slope estimate of β̂ = −.0563 and this intercept estimate of α =
1.3163, our final estimated linear relationship between the x and Y variables is then
given by (9.36) to be︷ ︸︸ ︷

med Yx=x∗ = [
︷ ︸︸ ︷
median Y when x = x∗] = 1.3163 − .0563x∗. (9.37)

Thus, for example, we would estimate the median double-ratio value after 4.5 years of
the cloud-seeding study to have been︷ ︸︸ ︷

med Yx=4.5 = [
︷ ︸︸ ︷
median Y when x = 4.5 years]

= 1.3163 − .0563(4.5) = 1.06295.

Using (9.37) once again, the predicted double-ratio value if the study were to continue
for a sixth year would be︷ ︸︸ ︷

med Yx=6 = [
︷ ︸︸ ︷
median Y when x = 6 years]

= 1.3163 − .0563(6) = 0.9785.

One must always exercise caution in using an estimated linear relationship to predict
typical values of the dependent variable Y for values of the independent variable x that
are too different from the range of x -values used in establishing the estimated linear
relationship (See Comment 12). For example, it would make no sense whatsoever to use
the relationship (9.37) to estimate the median double-ratio value for negative values of x∗,

mailto:@x=4.A5
mailto:@x=4.A5
mailto:@x=4.A5
mailto:@x=4.A5
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because they are not possible. In addition, although x∗ = 20 years would certainly be a
possible value for the independent variable (corresponding to 20 consecutive years of the
cloud-seeding study), in order to use (9.37) to predict the typical double-ratio value Y
after 20 years of the study would require the assumption that the regression relationship
(9.1) remains linear for that extended time period. Although this may be a reasonable
assumption to make, it is not one that comes automatically. Careful consideration should
be given to its validity before using (9.37) to predict the double-ratio value that far into
the future based solely on the 5 years of available data.

Comments

11. Competing Estimators. The intercept estimator given by (9.33) is not the only
nonparametric estimator of α that has been studied in the statistical literature. In
the case of symmetry of the underlying distribution for the error random variables
e1, . . . , en in Assumption A2, Hettmansperger and McKean (1977) proposed the
competing estimator α̃ associated with the median of the n(n + 1)/2 Walsh
averages of the n individual Ai (9.32) differences. Adichie (1967) proposed and
studied the asymptotic properties of an entire class of estimators for α associated
with rank tests.

12. Appropriate Range of Values of the Independent Variable for Purposes of Predic-
tion. When we choose to use the estimated linear relationship (9.36) to predict
typical values of the dependent variable Y for a particular setting of the indepen-
dent variable x∗, caution must always be the rule. For prediction purposes, we
must be relatively confident that the linear relationship holds at least approxi-
mately when x assumes the value x∗. This is seldom of concern when x∗ is well
situated among the values of the independent variable at which we observed
sample-dependent variables in obtaining the estimated relationship (9.36) in the
first place. However, when we are interested in predicting the typical value of
the dependent variable Y for a setting of the independent variable x∗ that is
outside the range for which sample data had been collected in obtaining the
estimated relationship (9.36), we must not automatically assume that the linear
relationship (9.1) is still appropriate. Careful consideration must be given to
justification of the reasonableness of this relationship for the particular problem
of interest prior to using (9.36) for prediction purposes when considering such
extended ranges of the independent variable.

Problems

20. Estimate α for the cenosphere-resin data of Table 9.2.

21. Estimate α for the body-weight and surface-area data for squirrel monkeys discussed in Prob-
lem 4.

22. Use the linear relationship (9.36) to estimate the typical density of a cenosphere-resin composite
under hydrostatic pressure of 17,500 psi.

23. Use the linear relationship (9.36) to estimate the typical total surface area (cm3) for a squirrel
monkey with a body weight of 1000 g.

24. Estimate α for the tapeworm data discussed in Problems 8.1, 3, 11, and 17. Use the linear
relationship (9.36) to estimate the typical weight of worms recovered from a dog that had been
force-fed 20 mg cysticerci of Taenia hydatigena.
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25. Consider the cenosphere-resin data of Table 9.2. Discuss the reasonableness of using the linear
relationship (9.36) established in Problem 20 for these data to estimate the typical density of
cenosphere-resin composites under hydrostatic pressures of 35,000, 75,000, and 200,000 psi.

26. Consider the body-weight and surface-area data for squirrel monkeys presented in Problem 4.
Discuss the reasonableness of using the linear relationship (9.36) established in Problem 21
for these data to estimate the typical total surface area (cm3) for squirrel monkeys with body
weights of 320, 975, and 2500 g.

k(≥2) REGRESSION LINES

9.5 AN ASYMPTOTICALLY DISTRIBUTION-FREE TEST
FOR THE PARALLELISM OF SEVERAL REGRESSION LINES
(SEN, ADICHIE)

In this section, we discuss an asymptotically distribution-free procedure to test for par-
allelism of k ≥ 2 regression lines. Thus, we are concerned with testing equality of
the k slope parameters without additional constraints on the corresponding, unspecified
intercepts.

Data. For the i th line, i = 1, . . . , k , we observe the value of the i th response random
variable Yi at each of ni fixed levels, xi1, . . . , xini , of the i th independent (predictor) vari-
able xi . Thus, for the i th line, i = 1, . . . , k , we obtain a set of observations Yi1, . . . , Yini ,
where Yij is the value of the response variable Yi when xi = xij .

Assumptions

Bl. We take as our straight-line model

Yij = αi + βi xij + eij , i = 1, . . . , k; j = 1, . . . , ni , (9.38)

where the xij ’s are known constants and α1, . . . , αk and β1, . . . , βk are the
unknown intercept and slope parameters, respectively.

B2. The N = n1 + · · · + nk random variables e11, . . . , e1n1 , . . . , ek1, . . . , eknk are
mutually independent.

B3. The random variables {ei1, . . . , eini }, i = 1, . . . , k , are k random samples from
a common continuous population with distribution function F (.).

Hypothesis

The null hypothesis of interest here is that the k regression lines in model (9.38) have a
common, but unspecified, slope, β, namely,

H0 : [β1 = · · · = βk = β, with β unspecified]. (9.39)

Note that this null hypothesis does not place any conditions whatsoever on the intercept
parameters α1, . . . , αk . Thus, the assertion in H0 (9.39) is simply that the k regression
lines in model (9.38) are parallel.
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Procedure

To construct the Sen–Adichie statistic V , we first align each of the k regression samples.
Let β̄ be the pooled least squares estimator for the common slope β under the null
hypothesis H0 (9.39), as given by

β̄ =
∑k

i=1

∑ni
j=1 (xij − x̄i )Yij∑k

i=1

∑ni
j=1 (xij − x̄i )2

, (9.40)

where

x̄i =
ni∑

j=1

xij

ni
, for i = 1, . . . , k . (9.41)

For each of the k regression samples, compute the aligned observations

Y ∗
ij = (Yij − β̄ xij ), i = 1, . . . , k; j = 1, . . . , ni . (9.42)

Order these aligned observations Y ∗
ij from least to greatest separately within each of the

k regression samples. Let r∗
ij denote the rank of Y ∗

ij in the joint ranking of the aligned
observations Y ∗

i1, . . . , Y ∗
ini

in the i th regression sample.
Compute

T ∗
i =

ni∑
j=1

[(xij − x̄i )r
∗
ij ]/(ni + 1), i = 1, . . . , k , (9.43)

where x̄i is given by (9.41). Setting

C 2
i =

ni∑
j=1

(xij − x̄i )
2, i = 1, . . . , k , (9.44)

the Sen–Adichie statistic V is then given by

V = 12
k∑

i=1

[
T ∗

i

Ci

]2

. (9.45)

To test
H0 : [β1 = · · · = βk = β, with β unspecified]

versus the general alternative

H1 : [β1, . . . , βk not all equal] (9.46)

at the approximate α level of significance,

Reject H0 if V ≥ χ2
k−1,α; otherwise do not reject, (9.47)

where χ2
k−1,α is the upper α percentile of a chi-square distribution with k − 1 degrees of

freedom. Values of χ2
k−1,α can be obtained from the R command qchisq.
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Ties

If there are ties among the ni aligned observations Y ∗
ij (9.42) for the i th regression sample,

use average ranks to break the ties and compute the weighted sum T ∗
i (9.43) contribution

to V (9.45) for that sample.

EXAMPLE 9.5 Ammonium Flux in Coastal Sediments.

Coastal sediments are an important reservoir for organic nitrogen (ON). The degradation
and mineralization of ON in coastal sediments is bacterially mediated and is known to
involve several distinct steps. Moreover, it is possible to measure the rates of the pro-
cesses at each of these steps. During the first stage of ON remineralization, ammonium
is generated by heterotrophic bacteria during a process called ammonification. Ammo-
nium can then be released to the environment or be microbially transformed to other
nitrogenous species.

Mortazavi (1997) collected four sediment cores from Apalachicola Bay, Florida, and
analyzed them at the Florida State University. The flux of ammonium (μ moles N per
square meter of surface area) to the overlying water was measured for each core sample
every 90 minutes during a 6-hour incubation period. These data are presented in Table 9.4
for the four core samples.

We are interested in assessing whether the rate of ammonium flux is similar across
these four coastal sediments (at least over the 6-hour period of the study). Thus, if we

Table 9.4 Coastal Sediment Ammonium Flux in
Apalachicola Bay, Florida

Core Time, Ammonium flux,
sample, i xij (h) Yij (μ moles N /m2)

Core 1 0 0
1.5 33.019
3 111.314
4.5 196.205
6 230.658

Core 2 0 0
1.5 131.831
3 181.603
4.5 230.070
6 258.119

Core 3 0 0
1.5 33.351
3 97.463
4.5 196.615
6 217.308

Core 4 0 0
1.5 8.959
3 105.384
4.5 211.392
6 255.105

Source: B. Mortazavi (1997).
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let βi correspond to the rate of ammonium flux for the i th coastal sediment core sample,
i = 1, . . . , 4, we are interested in testing the null hypothesis H0 (9.39) against the general
alternative (9.46) that the rates are not the same for the four coastal areas in Apalachicola
from which the core samples were drawn.

First, we must obtain the pooled least squares estimator β̄ (9.40). The set of xij

values is the same for each of the coastal sediment samples, so

x̄1 = x̄2 = x̄3 = x̄4 = 0 + 1.5 + 3 + 4.5 + 6

5
= 3.

Hence, from (9.44), we obtain

C 2
1 = C 2

2 = C 2
3 = C 2

4 = (0 − 3)2 + (1.5 − 3)2 + (3 − 3)2 + (4.5 − 3)2 + (6 − 3)2

= 9 + 2.25 + 0 + 2.25 + 9 + 22.5,

which, in turn, yields

4∑
i=1

5∑
j=1

(xij − x̄i )
2 =

4∑
i=1

C 2
i = 4(22.5) = 90.

For the numerator of β̄ (9.40), we see that

4∑
i=1

5∑
j=1

(xij − x̄i )(Yij ) = [(0 − 3)(0 + 0 + 0 + 0)

+ (1.5 − 3)(33.019 + 131.831 + 33.351 + 8.959)

+ (3 − 3)(111.314 + 181.603 + 97.463 + 105.384)

+ (4.5 − 3)(196.205 + 230.070 + 196.615 + 211.392)

+ (6 − 3)(230.658 + 258.119 + 217.308 + 255.105)]

= [0 − 310.74 + 0 + 1251.423 + 2883.57] = 3824.253.

Combining these two quantities, we obtain the value of the pooled least squares slope
estimator (9.40) to be

β̄ = 3824.253

90
= 42.49.

Next, we create the aligned observations Y ∗
ij (9.42) for each of the core samples:

Core 1 : Y ∗
11 = 0 − 42.49(0) = 0

Y ∗
12 = 33.019 − 42.49(1.5) = −30.716

Y ∗
13 = 111.314 − 42.49(3) = −16.156

Y ∗
14 = 196.205 − 42.49(4.5) = 5

Y ∗
15 = 230.658 − 42.49(6) = −24.282
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Core 2 : Y ∗
21 = 0 − 42.49(0) = 0

Y ∗
22 = 131.831 − 42.49(1.5) = 68.096

Y ∗
23 = 181.603 − 42.49(3) = 54.133

Y ∗
24 = 230.070 − 42.49(4.5) = 38.865

Y ∗
25 = 258.119 − 42.49(6) = 3.179

Core 3 : Y ∗
31 = 0 − 42.49(0) = 0

Y ∗
32 = 33.351 − 42.49(1.5) = −30.384

Y ∗
33 = 97.463 − 42.49(3) = −30.007

Y ∗
34 = 196.615 − 42.49(4.5) = 5.41

Y ∗
35 = 217.308 − 42.49(6) = −37.632

Core 4 : Y ∗
41 = 0 − 42.49(0) = 0

Y ∗
42 = 8.959 − 42.49(1.5) = −54.776

Y ∗
43 = 105.384 − 42.49(3) = −22.086

Y ∗
44 = 211.392 − 42.49(4.5) = 20.187

Y ∗
45 = 255.105 − 42.49(6) = 0.165.

Ordering these aligned observations Y ∗
ij from least to greatest separately within each

of the four core samples, we obtain the following within-samples rankings:

Core 1 : r∗
11 = 4, r∗

12 = 1, r∗
13 = 3, r∗

14 = 5, and r∗
15 = 2.

Core 2 : r∗
21 = 1, r∗

22 = 5, r∗
23 = 4, r∗

24 = 3, and r∗
25 = 2.

Core 3 : r∗
31 = 4, r∗

32 = 2, r∗
33 = 3, r∗

34 = 5, and r∗
35 = 1.

Core 4 : r∗
41 = 3, r∗

42 = 1, r∗
43 = 2, r∗

44 = 5, and r∗
45 = 4.

The values of T ∗
1 , . . . , T ∗

4 are then obtained from (9.43) to be

T ∗
1 = [(0 − 3)(4) + (1.5 − 3)(1) + (3 − 3)(3) + (4.5 − 3)(5) + (6 − 3)(2)]

(5 + 1)
= 0,

T ∗
2 = [(0 − 3)(1) + (1.5 − 3)(5) + (3 − 3)(4) + (4.5 − 3)(3) + (6 − 3)(2)]

(5 + 1)
= 0,

T ∗
3 = [(0 − 3)(4) + (1.5 − 3)(2) + (3 − 3)(3) + (4.5 − 3)(5) + (6 − 3)(1)]

(5 + 1)
= −.75,

T ∗
4 = [(0 − 3)(3) + (1.5 − 3)(1) + (3 − 3)(2) + (4.5 − 3)(5) + (6 − 3)(4)]

(5 + 1)
= 1.5.
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Combining these T ∗
i values with the corresponding values of C 2

i previously obtained,
we see from (9.45) that the Sen–Adichie statistic V for these data is given by

V = 12

{
(0)2

22.5
+ (0)2

22.5
+ (−.75)2

22.5
+ (1.5)2

22.5

}
= 12{0 + 0 + 0.25 + .1} = 1.5.

For the Sen–Adichie procedure (9.47), we compare the value of V to the chi-
square distribution with k − 1 = 3 degrees of freedom. We see that the observed value
of V = 1.5 is the .318 percentile for the chi-square distribution with 3 degrees of freedom.
Thus, the P -value for these data and test procedure (9.47) is .682, indicating that there
is virtually no sample evidence in support of significant differences in the rates (slopes)
of ammonium flux for the four coastal areas sampled.

The R command sen.adichie replicates this analysis. The argument is a list z.
There are k items in the list z, one for each set of data corresponding to a specific linear
relation. Each of these k items is a matrix with the first column the x values, the second
the Y values.

Comments

13. Motivation for the Test. The pooled least squares estimator β̄ (9.40) estimates
some weighted combination, say β∗, of the k individual slopes β1, . . . , βk (9.38).
From Assumptions Bl and B3, it follows that the aligned observations Y ∗

ij (9.42),
i = 1, . . . , k and j = 1, . . . , ni , will tend to have values near

med(Y ∗
ij ) = med(Yij − β̄xij )

≈ med(Yij ) − β∗xij = αi + βi xij − β∗xij + med(eij )

= αi + (βi − β∗)xij + med(eij ). (9.48)

If the null hypothesis H0 (9.39) is true, then β1 = · · · = βk = β∗ = β and we
would expect each of Y ∗

i1, . . . , Y ∗
ini

to be near αi + med(eij ), for each of the
regression samples i = 1, . . . , k . As the r∗

ij ranks are obtained separately within
each of the k samples, it follows that under H0 (9.39) the ranks r∗

i1, . . . , r∗
ini

should behave like a random permutation of the integers 1, . . . , ni and exhibit
no additional relationship with the regression constants xi1, . . . , xini , for i =
1, . . . , k . Thus, the null hypothesis setting should lead to values of T ∗

i near
zero, for i = 1, . . . , k , and subsequently to small values of the Sen–Adichie test
statistic V (9.45). On the other hand, if the null hypothesis H0 (9.39) is not true,
then some of the βi ’s will be larger than β∗ and some of them will be smaller
than β∗. For those regression populations for which βi is larger than β∗, we see
from (9.48) that the aligned observations Y ∗

ij (9.42) will be positively related
to the values of the corresponding regression constants xij . This would tend
to produce large positive values for the corresponding T ∗

i ’s (9.43). For those
regression populations for which βi is smaller than β∗, we see from (9.48) that
the aligned observations Y ∗

ij (9.42) will be negatively related to the values of
the corresponding regression constants xij . This would tend to produce large
negative values for the corresponding T ∗

i ’s (9.43). Each of these T ∗
i values
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is squared in the calculation of the Sen–Adichie test statistic V (9.45). Therefore,
regression populations with either βi larger or smaller than β∗ will tend to
produce large contributions to the test statistic V , providing partial motivation
for procedure (9.47).

14. Historical Development. The general form of the test procedure (9.47), but using
a rank estimate for the common value of the slope parameter β under H0 (9.39)
in the construction of the aligned observations Y ∗

ij (9.42), was first proposed and
studied by Sen (1969). The use of the pooled least squares estimator β̄ (9.40)
in the construction of the Y ∗

ij ’s was first suggested by Adichie (l984).

15. Potthoff’s Conservative Test of Parallelism. For the case k = 2, Potthoff (1974)
proposed a Wilcoxon-type test of β1 = β2. He compared each sample slope that
can be computed from line 2 data with each sample slope that can be computed
from line 1 data, scoring 1 if the sample 2 slope is larger than the sample
1 slope and 0 otherwise. His statistic was the average of the n1(n1 − 1)(n2)

(n2 − 1)/4 such indicators. (To avoid complications, he assumed no two x1j ’s
are equal and no two x2j ’s are equal.) The test associated with his statistic was
neither distribution-free nor asymptotically distribution-free. Instead, he used an
upper bound for the null variance of the statistic to produce a conservative test
procedure.

16. Competitor Based on Joint Rankings When the Intercept Is Common. The
Sen–Adichie procedure (9.47) is based on the individual rankings of the
aligned observations Y ∗

ij (9.42) separately within each of the k samples. This
requires a good deal more computational time than if we could use a single
simultaneous ranking of all N = n1 + · · · + nk aligned observations. Although
such a joint ranking is not appropriate for the general model (9.38), Adichie
(1974) proposed a procedure based on the joint ranking of all N of the aligned
observations for settings where it is also reasonable to assume equality of the k
intercepts α1, . . . , αk in model (9.38). Thus, Adichie’s procedure is appropriate
for testing H0 (9.39) under Assumptions B2, B3 and the following more
restrictive Assumption B1′ replacing Assumption B1:
Bl ′. We take as our straight-line model

Yij = α + βi xij + eij , i = 1, . . . , k; j = 1, . . . , ni , (9.49)

where the xij ’s are known constants, α is the common (unknown) intercept and
β1, . . . , βk are the unknown slope parameters, respectively.

Adichie’s (1974) test statistic for this more restrictive setting is quite similar
in form to the Sen–Adichie test statistic V (9.45). The major difference is the use
of the single simultaneous ranking of all N of the aligned observations, rather
than the k separate rankings utilized in constructing V . (We note, in passing,
that the assumption of a common intercept α would be quite reasonable for the
ammonium flux data considered in Example 9.5.)

17. Test Procedures for Restricted Alternatives. The Sen–Adichie procedure (9.47)
is designed to test H0 (9.39) against the class of general alternatives H1 (9.46).
Other authors have proposed nonparametric procedures designed to test H0

against more restricted classes of alternatives. Adichie (1976) and Rao and Gore
(1984) studied asymptotically distribution-free test procedures designed to reach
a decision between H0 and the class of ordered alternatives H2 : [β1 ≤ · · · ≤ βk ,
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with at least one strict inequality]. Finally, Kim and Lim (1995) considered
asymptotically distribution-free procedures for testing H0 against umbrella alter-
natives of the form H3 : [β1 ≤ · · · ≤ βp ≥ βp+1 ≥ · · · ≥ βk , with at least one
strict inequality].

18. Comparing Several Regression Lines with a Control. The Sen–Adichie procedure
(9.47) is designed to test H0 (9.39) against the class of general alternatives H1

(9.46). In this context, the test involves a comparison of each regression line
with every other regression line. For settings where one of the regression lines
corresponds to a standard line for a control population, we might want to make
only the k − 1 comparisons between the noncontrol regression lines and this
control line. Lim and Wolfe (1997) proposed and studied an asymptotically
distribution-free procedure for testing the null hypothesis H0 (9.39) against the
“treatments” versus control alternative H4 : [β1 ≤ βi , i = 2, . . . , k , with at least
one strict inequality], where, without loss of generality, the first regression line
plays the role of the control line.

Properties

1. Asymptotic Chi-Squareness. See Sen (1969).

2. Efficiency. See Sen (1969) and Section 9.8.

Problems

27. Wells and Wells (1967) discussed Project SCUD, an attempt to study the effects of cloud
seeding on cyclones. The basic hypothesis of interest was that cloud seeding in areas of
cyclogenesis on the east coast of the United States had no measurable effect on the development
of storms there. Table 9.5, based on a subset (Experiment 1 of Table I of Wells and Wells
(1967)) of the observational data from Project SCUD, gives “RI ” and “M ” values for 11
seeded and 10 control units. The quantity RI is a measure of precipitation and the quantity M ,
the geostrophic meridional circulation index, was used in predicting cyclogenesis. Cyclones

Table 9.5 Precipitation Amounts RI and Circulation
Index M for Seeded and Control Units

Seeded Control

Unit, j x1j (M ) Y1j (RI ) x2j (M ) Y2j (RI )

1 24 .180 −7 .138
2 28 .175 10 .081
3 30 .178 17 .072
4 37 .021 25 .188
5 43 .260 44 .075
6 47 .715 51 .435
7 52 .441 53 .423
8 57 .205 63 .339
9 71 .417 75 .519

10 87 .498 90 .738
11 115 .603

Source: J. M. Wells and M. A. Wells (1967).
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were expected to develop only when M was predicted positive. Test that the regression lines
of RI on M for seeded and control units are parallel.

28. Consider the aligned observations Y ∗
ij (9.42), i = 1, . . . , k and j = 1, . . . , ni . Discuss why

additional knowledge about the intercept parameters α1, . . . , αk is not necessary in order to use
the separate within-samples ranks of the Y ∗

ij ’s in the construction of the test statistic V (9.45).

29. Consider the aligned observations Y ∗
ij (9.42), i = 1, . . . , k and j = 1, . . . , ni .

(a) Discuss why it would not be appropriate, in general, to use a single simultaneous ranking
of all N = n1 + · · · + nk aligned observations in the construction of a statistic for testing
H0 (9.39).

(b) Under what conditions on the intercept parameters α1, . . . , αk might such a single
simultaneous ranking be appropriate for developing a statistic to test H0 (9.39)? (See
Comment 16.)

30. Wardlaw and van Belle (1964) discussed the mouse hemidiaphragm method for assaying
insulin. This procedure depends on the ability of the hormone to stimulate glycogen synthe-
sis by the diaphragm tissue, in vitro. Hemidiaphragms are dissected from mice of uniform
weight that have been starved for 18 hours. The tissues are incubated in tubes, and after incu-
bation, the hemidiaphragms are washed with water and analyzed for glycogen content using
anthrone reagent. The content is measured in terms of optical density. The procedure makes
use of the fact that increasing the concentration of insulin in the incubation medium tends to
increase glycogen synthesis by the hemidiaphragms. Specifically, for levels of insulin between
.1 and 1.0 μ/ml, there is an approximate linear relationship between glycogen content and log
concentration of insulin (See Wardlaw and Moloney (1961)).

The data in Table 9.6 are the log concentrations of insulin and the glycogen contents
for 12 observations each from two varieties of insulin, namely, standard insulin and sample 1
insulin. For both standard and sample 1 lines, there are six observations at an insulin volume of
.3 ml and six observations at a volume of 1.5 ml. In this insulin assay, and in many bioassays,
the question of parallelism is extremely important, because the concept of relative potency (of
a test preparation with respect to a standard) depends on the assumption that the dose–response
lines are parallel. Using the data in Table 9.6, test the hypothesis that the dose–response lines
for standard insulin and sample 1 insulin are parallel.

31. Experimental geneticists use survival under stressful conditions to compare the relative fitness
of different species. Dowdy and Wearden (1991) considered data relating to the survival of

Table 9.6 Glycogen Content of Hemidiaphragms Measured by Optical
Density in the Anthrone Test × 1000

Standard insulin Sample I insulin

j x1j (log dose) Y1j (glycogen) x2j (log dose) Y2j (glycogen)

1 log (0.3) 230 log (0.3) 310
2 log (0.3) 290 log (0.3) 265
3 log (0.3) 265 log (0.3) 300
4 log (0.3) 225 log (0.3) 295
5 log (0.3) 285 log (0.3) 255
6 log (0.3) 280 log (0.3) 280
7 log (1.5) 365 log (1.5) 415
8 log (1.5) 325 log (1.5) 375
9 log (1.5) 360 log (1.5) 375

10 log (1.5) 300 log (1.5) 275
11 log (1.5) 360 log (1.5) 380
12 log (1.5) 385 log (1.5) 380

Source: A. C. Wardlaw and G. van Belle (1964).
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Table 9.7 Numbers of Drosophila Flies (Three Different Species) That
Survive to Adulthood after Exposure to Various Levels (ppm) of an Organic
Phosphorus Insecticide

Level of Number survived
Species insecticide (ppm) to adulthood

Drosophila melanogaster 0.0 91
0.3 71
0.6 23
0.9 5

Drosophila pseudoobscura 0.0 89
0.3 77
0.6 12
0.9 2

Drosophila serrata 0.0 87
0.3 43
0.6 22
0.9 8

Source: S. Dowdy and S. Wearden (1991).

three species of Drosophila under increasing levels of organic phosphorus insecticide. Four
batches of medium, identical except for the levels of insecticide they contained, were prepared.
One hundred eggs from each of three Drosophila species were deposited on each of the four
medium preparations and the level of insecticide (x) in parts per million (ppm) and number of
Drosophila flies that survived to adulthood (y) for each combination are recorded in Table 9.7.
Test the hypothesis that the three species of Drosophila exhibit the same response to increasing
levels of insecticide in the medium studied.

32. Among the pieces of information used to assess the age of primates are measurements of
skull, muzzle, and long-bone development. Reed (1973) collected such measurements for
Papio cynocephalus baboons over a period of 5 years and developed a regression relationship
between these attributes and age. A portion of Reed’s data (from African colonies existing
at the Southwest Foundation for Research and Education in San Antonio, Texas) is presented
in Table 9.8 for male and female Papio cynocephalus baboons. The recorded data are age, in
months, and the sum of skull, muzzle, and long-bone measurements, in millimeters.

Use these data to decide whether there is any difference in the slopes defining the linear
relationships between age and the sum of skull, muzzle, and long-bone measurements for male
and female Papio cynocephalus baboons.

GENERAL MULTIPLE LINEAR REGRESSION

9.6 ASYMPTOTICALLY DISTRIBUTION-FREE
RANK-BASED TESTS FOR GENERAL MULTIPLE LINEAR
REGRESSION (JAECKEL, HETTMANSPERGER–McKEAN)

The statistical procedures discussed in Sections 9.1–9.4 are concerned with the case of
a straight-line relationship between a single independent (predictor) variable x and a
response random variable Y . In Section 9.5, we presented a test procedure for assess-
ing parallelism of two such straight-line relationships, each with a single independent
(predictor) variable. However, in many settings where a regression relationship is of
interest there are several independent (predictor) variables that potentially influence the
value of a single response random variable. In this section, we present an asymptotically
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Table 9.8 Age, in Months, and Sum of Skull, Muzzle,
and Long-Bone Measurements, in Millimeters, for Male and
Female Papio cynocephalus Baboons

Male Female

j x1j (sum) Y1j (age) x2j (sum) Y2j (age)

1 175.0 1.36 175.0 1.58
2 183.0 2.20 183.0 2.48
3 190.0 3.05 190.0 3.40
4 200.0 4.45 200.0 4.92
5 211.0 6.19 211.0 6.87
6 220.0 7.78 220.0 8.66
7 230.0 9.70 230.0 10.86
8 239.5 11.66 239.5 13.14
9 245.5 12.96 245.5 14.67

10 260.0 16.33 260.0 18.68
11 271.5 19.21 271.5 22.14
12 284.0 22.52 284.0 26.18
13 291.0 24.46 291.0 28.57
14 302.5 27.78 302.5 32.68
15 314.0 31.25 314.0 37.03
16 318.5 32.65 318.5 38.80
17 327.0 35.36 327.0 42.22
18 337.0 38.65
19 345.5 41.52
20 360.0 46.61
21 375.0 52.10
22 384.5 55.69
23 397.0 60.55
24 411.0 66.18
25 419.5 69.68
26 428.5 73.47
27 440.0 78.41
28 454.5 84.81

Source: O. M. Reed (1973).

distribution-free rank-based procedure for testing appropriate hypotheses in such a setting,
commonly known as multiple linear regression.

Data. Let x′ = (x1, . . . , xp) be a row vector of p independent (predictor) variables and
let x′

1 = (x11, . . . , xp1), . . . , x′
n = (x1n , . . . , xpn) denote n fixed values of this vector. At

each of these fixed vectors x′
1, · · · x′

n , we observe the value of the single response random
variable Y . Thus, we obtain a set of observations Y1, . . . , Yn , where Yi is the value of
the response variable when x′ = x′

i .

Assumptions

C1. Our model for multiple linear regression is

Yi = ξ + β1x1i + β2x2i + · · · + βpxpi + ei = ξ + x′
i β, i = 1, . . . , n , (9.50)

where x′
1 = (x11, . . . , xp1), . . . , x′

n = (x1n , . . . , xpn) are vectors of known con-
stants, ξ is the unknown “intercept” parameter, and β ′ = (β1, . . . , βp) is a row
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vector of unknown parameters, commonly referred to as the set of regression
coefficients. For convenience later, we also write expression (9.50) in matrix
notation. Let Y′ = (Y1, . . . , Yn), ξ ′ = (ξ , . . . , ξ), and set

X =

⎡⎢⎢⎢⎢⎢⎢⎣
x11 x21 . . . xp1

x12 x22 . . . xp2

...
...

...

x1,n−1 x2,n−1 . . . xp,n−1

x1n x2n . . . xpn

⎤⎥⎥⎥⎥⎥⎥⎦ . (9.51)

Then, using matrix notation, the multiple linear regression model (9.50) can
also be written as

Y = ξ + Xβ. (9.52)

C2. The error random variables e1, . . . , en are a random sample from a continuous
distribution that is symmetric about its median 0, has cumulative distribution
function F (·), and probability density function f (·) satisfying the mild condition
that
∫∞
−∞ f 2(t)dt < ∞.

Hypothesis

We are interested in testing the null hypothesis that a specific subset βq of the regres-
sion parameters β are zero. Without loss of generality (because the ordering of the
(x1, β1), . . . , (xp , βp) pairs in model (9.50) is arbitrary), we take this subset βq to be
the first q components of β; that is, we take β ′

q = (β1, . . . , βq ). Thus, we wish to test
the null hypothesis

H0 : [β ′
q = 0;β ′

p−q = (βq+1, . . . , βp) and ξ unspecified]. (9.53)

Thus, the null hypothesis asserts that the independent variables x1, . . . , xq do not play
significant roles in determining the value of the dependent variable Y . (In many settings,
we are interested in assessing the effect of all the independent variables simultaneously,
which corresponds to taking q = p in H0 (9.53). Also see Problem 35.)

Procedure

To compute the Jaeckel–Hettmansperger–McKean test statistic HM , we proceed in sev-
eral distinct steps. First, we obtain an unrestricted estimator for the vector of regression
parameters β. Let Ri (β) denote the rank of Yi − x′

i β among Y1 − x′
1β, . . . , Yn − x′

nβ, as
a function of β, for i = 1, . . . , n (See Comment 20). The unrestricted estimator for β,
corresponding to a special case of a class of such estimators proposed by Jaeckel (1972),
is then that the value of β, say, β̂, that minimizes the measure of dispersion (once again,
see Comment 20)

Dj (Y − Xβ) =
∑

a(Ri (β))(Yi − x′
i β),

where a is a nondecreasing function on the integers 1, 2, . . . , n such that �k a(k) = 0.
Typically, a is written as a score function φ on [0,1] by the relation a(k) = φ(k/(n + 1)).
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The function φ is standardized so that
∫

φ = 0 and
∫

φ2 = 1. One such φ is the Wilcoxon
score function:

φ(x) =
√

12

(
x − 1

2

)
, x ∈ [0, 1].

Using this φ, the dispersion is

DJ (Y − Xβ) = (12)1/2(n + 1)−1
n∑

i=1

[
Ri (β) − n + 1

2

]
(Yi − x′

i β). (9.54)

The estimator β̂ does not, in general, have a closed-form expression (See Comment 21 for
a special case where such a closed-form expression is available), and iterative computer
methods are generally necessary to obtain numerical solutions.

The second step in the computation of the Jaeckel–Hettmansperger–McKean test
statistic HM involves repeating the steps leading to β̂ except now the minimization of
the Jaeckel dispersion measure DJ (Y − Xβ) is obtained under the condition imposed
by the null hypothesis H0 (9.53), namely, that βq = 0, with βp−q unspecified. Let β̂0
denote the value of β that minimizes DJ (Y − Xβ) in (9.54) under the null constraint
that βq = 0.

Let DJ (Y − Xβ̂) and DJ (Y − Xβ̂0) denote the overall minimum and the minimum
under the null constraint that βq = 0, respectively, of the Jaeckel dispersion measure
DJ (Y − Xβ) in (9.54) and set

D∗
J = DJ (Y − Xβ̂0) − DJ (Y − Xβ̂). (9.55)

We note that D∗
J represents the drop or reduction in Jaeckel dispersion from fitting the

full model as opposed to the reduced model corresponding to the null hypothesis H0

(9.53) constraint that βq = 0.
The third and final step in the construction of the Jaeckel–Hettmansperger–McKean

test statistic HM is the computation of a consistent estimator (See Comment 23) of a
scale parameter τ . For the Wilcoxon score,

τ = [12]−1/2
[∫ ∞

−∞
f 2(t)dt

]−1

. (9.56)

Combining the results of these three construction steps, the Jaeckel–Hettmansperger–
McKean test statistic HM is given by

HM = 2D∗
J

q τ̂
. (9.57)

When H0 (9.53) is true, the statistic HM has, as n tends to infinity, an asymptotic F
distribution with degrees of freedom q and n − p − 1, corresponding to the q constraints
placed on β under H0 and the total number p of predictors.

To test

H0 : [β ′
q = 0;β ′

p−q = (βq+1, . . . , βp) and ξ unspecified]
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against the general alternative

H0 : [β ′
q �= 0;β ′

p−q = (βq+1, . . . , βp) and ξ unspecified] (9.58)

at the approximate α level of significance,

Reject H0 if HM ≥ Fq ,n−p−1,α; otherwise do not reject, (9.59)

where Fq ,n−p−1,α is the upper α percentile of an F distribution with q and n − p − 1
degrees of freedom. The values of Fq ,n−p−1,α may be obtained from the R command qf.

Instead of an Fq ,n−p−1,α critical value, one may remove the q from the denominator
of the statistics HM and use a χ2

q ,α , the upper α percentile of a chi-square distribution.
However, Hettmansperger and McKean (1977) and McKean and Sheather (1991) pointed
out that the chi-square distribution is often too light tailed for use with small or moderate
size samples.

Ties

If there are ties among Y1 − x′
1β, . . . , Yn − x′

nβ, use average ranks to break the ties
in the computation of the minimum DJ (Y − Xβ). Similarly, if there are ties among
Y1 − x′

1β0 . . . , Yn − x′
nβ0, use average ranks to break the ties in the computation of the

minimum DJ (Y − Xβ0).

EXAMPLE 9.6 Snow Goose Departure Times.

Wildlife science involves the study of how environmental conditions affect wildlife habits.
Freund et al. (2010) report data on such a study to assess how a variety of environmental
conditions affect the time that lesser snow geese leave their overnight roost sites to fly to
their feeding areas. The data in Table 9.9 represent the following observations collected
at a refuge near the Texas coast for 36 days of the 1987–1988 winter season:

TIME(Y ) : minutes before (−) or after (+) sunrise,

TEMP(x1) : air temperature in degrees Celsius,

HUM(x2) : relative humidity,

LIGHT(x3) : light intensity,

CLOUD(x4) : percent cloud cover.

Here, we consider a multiple regression analysis to assess the influence that the
environmental conditions temperature (TEMP), relative humidity (HUM), light intensity
(LIGHT), and percent cloud cover (CLOUD) have on the departure times (TIME) of
lesser snow geese in this region of the country. For illustrative purposes, we consider
the following three distinct null hypotheses:

H01 : [β1 = β2 = β3 = β4 = 0; ξ unspecified], (9.60)

H02 : [β1 = β2 = 0;β3, β4, and ξ unspecified], (9.61)
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Table 9.9 Environmental Conditions Related to Snow Goose Departure Times

DATE TIME TEMP HUM LIGHT CLOUD

11/10/87 11 11 78 12.6 100
11/13/87 2 11 88 10.8 80
11/14/87 −2 11 100 9.7 30
11/15/87 −11 20 83 12.2 50
11/17/87 −5 8 100 14.2 0
11/18/87 2 12 90 10.5 90
11/21/87 −6 6 87 12.5 30
11/22/87 22 18 82 12.9 20
11/23/87 22 19 91 12.3 80
11/25/87 21 21 92 9.4 100
11/30/87 8 10 90 11.7 60
12/05/87 25 18 85 11.8 40
12/14/87 9 20 93 11.1 95
12/18/87 7 14 92 8.3 90
12/24/87 8 19 96 12.0 40
12/26/87 18 13 100 11.3 100
12/27/87 −14 3 96 4.8 100
12/28/87 −21 4 86 6.9 100
12/30/87 −26 3 89 7.1 40
12/31/87 −7 15 93 8.1 95
01/02/88 −15 15 43 6.9 100
01/03/88 −6 6 60 7.6 100
01/05/88 −14 2 92 9.0 60
01/07/88 −8 2 96 7.1 100
01/08/88 −19 0 83 3.9 100
01/10/88 −23 −4 88 8.1 20
01/11/88 −11 −2 80 10.3 10
01/12/88 5 5 80 9.0 95
01/14/88 −23 5 61 5.1 95
01/15/88 −7 8 81 7.4 100
01/16/88 9 15 100 7.9 100
01/20/88 −27 5 51 3.8 0
01/21/88 −24 −1 74 6.3 0
01/22/88 −29 −2 69 6.3 0
01/23/88 −19 3 65 7.8 30
01/24/88 −9 6 73 9.5 30

Source: R. J. Freund, W. J. Wilson and D. Mohr (2010).

and
H03 : [β2 = 0;β1, β3, β4, and ξ unspecified]. (9.62)

Consider the null hypothesis H01 (9.60). To test if all four parameters are 0, the
function rfit from package Rfit (Kloke and McKean, 2011) is used. The data from
Table 9.9 is in the R data frame goose. This data set includes a column of l’s labeled
INT to represent the intercept term ξ if desired. The calls to perform the rank regression
are

rfit(TIME ~ TEMP + HUM + LIGHT + CLOUD, data=goose)

or

rfit(TIME ~ INT + TEMP + HUM + LIGHT + CLOUD, data=goose,
intercept=F)
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These produce identical results. The default score function is the Wilcoxon score. The
estimates for the intercepts ξ and β1 through β4 are output as a result of either of the
above calls:

Coefficients :

TEMP HUM LIGHT CLOUD
-51.41229030 1.03912341 0.12628642 2.53480480 0.08951666

The estimates for the parameters βi and ξ may be used to predict the time the geese
leave for their feeding area given values xi of the environmental variables TEMP, HUM,

LIGHT, and CLOUD. This estimated regression relation is

Ŷ = −51.41 + 1.04x1 + 0.13x2 + 2.53x3 + 0.09x4.

More details on these parameter estimates may be obtained by the summary com-
mand on the rank fit object generated by rfit.

Coefficients;
Estimate Std.Error t.value p.value

-51.412290 9.159212 -5.6132 4.128e-06
TEMP 1.039123 0.271468 3.8278 0.0006116
HUM 0.126286 0.116753 1.0817 0.2880251
LIGHT 2.534805 0.770792 3.2886 0.0025748
CLOUD 0.089517 0.045066 1.9863 0.0561974.

This provides the same parameter estimates for ξ and βi . In addition, there are individual
tests on whether a parameter is zero or not based on asymptotic normality.

It is possible that not all four of the predictor variables, xi , are needed to model
the response variable Y well in this example. Hypotheses tests on subsets of the βi

parameters can be used to choose a suitable model.
To test the hypotheses (9.60), (9.61), and (9.62), we will compare two models to each

other: a full model and a reduced model. For hypothesis H01 (9.60), we are interested
in comparing a full model with all q = 4 parameters βi and the intercept ξ in it to a
reduced model with no βi parameters, only the intercept. We use D∗

J , the difference of
the Jaeckel dispersions DJ for each of these models, to perform the comparison. In (9.55)
the first term on the right is the Jaeckel dispersion for the reduced model and the second
term is the dispersion for the full model. This difference in dispersions is standardized
to become the test statistic HM.

The reduced model goes with the null hypothesis, the full model is paired with the
alternative. For H01, a reduced model with none of the four βi is fit with a call of

r.01 <- rfit(TIME ~ INT, data=goose, intercept=F)

and the alternative hypothesis full model with all parameters is modeled by

f.01 <- rfit(TIME ~ TEMP + HUM + LIGHT + CLOUD,
data=goose)

The R command drop.test will perform the test of H01 versus the alternative using
the statistic HM. This command has two arguments: the first is the rank fit for the full
model and the second is the rank fit for the reduced model. We compare the rank fits
f.01 and r.01 with

drop.test(f.01, r.01)
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The output of this call is

Drop in Dispersion Test
F-Statistic p-value
1.7708e+01 1.1619e-07

The F-statistic is the value of HM. The individual components of this statistic given in
(9.57) may be viewed directly. If the full versus reduced model comparison is saved
to an R object by using the command h.01 <- drop.test(f.01, r.01), then
displaying the components of this analysis with names(h.01) shows that there are six
pieces of information available: F, p.value, RD (“reduction in dispersion”), tauhat,
dfl, and df2. These values refer, respectively, to the statistic HM, the associated upper-
tail P -value, D∗

J , τ̂ , and the numerator and denominator degrees of freedom for the
statistic. The P -value and HM are automatically displayed with drop.test. The others
may be printed with the $ indexing convention of R:

h.01$RD=294.0261
h.01$tauhat=8.30223
h.01$df1=4
h.01$df2=31

Note that the numerator degrees of freedom is q = 4 and the denominator degrees of
freedom is n − p − 1 = 36 − 4 − 1, as expected. The estimate of τ̂ is found using the
method of Koul et al. (1987). From (9.57),

HM = 2D∗
J

q τ̂
= 2 · 294.0261

4 · 8.30223
= 17.70766

agreeing with the output of drop.test above. For a particular α, a critical
value could be obtained using the R command qf(alpha, df 1=4, df 2=31,

lower.tail=F). The P -value is obtained with pf(17.70766, df 1=4,

df2=31, lower.tail=F) or taken from the output of drop.test. Given the low
P -value for this data and hypothesis, we reject H01 in favor of the alternative hypothesis
that not all of β1 through β4 are 0. Due to complexity of minimizing the Jaeckel
dispersion measure, the values of the statistics found above may differ slightly when
running R under various hardware and software configurations.

To get additional information about potential contributions of some of the individual
independent (predictor) variables xi , we make use of additional hypotheses. First, consider
H02 (9.61). This null tests if β1 = β2 = 0 versus not both are 0. Under both H02 and the
alternative H12, ξ , β3, and β4 are unspecified. The full model is the same in this case as
when testing H01 so the correct rank fit is again f.01. The reduced model is fit with

r.02 <- rfit(TIME ~ LIGHT + CLOUD, data=goose)

and the test is performed by

drop.test(f.01, r.02)

The output of this call is

Drop in Dispersion Test
F-Statistic p-value
6.6681478 0.0039024

This null is rejected, implying that the variables TEMP and/or HUM contribute signifi-
cantly (over and above the contributions of LIGHT and CLOUD) to the determination of
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the time that lesser snow geese leave their overnight roost sites to fly to their feeding
areas.

Finally, consider the third null hypothesis H03 (9.62). This hypothesis states that
β2 = 0, so the appropriate reduced model is fit by

r.03 <- rfit(TIME ~ TEMP + LIGHT + CLOUD, data=goose)

and the full model rank fit is again f.01. Using drop. test (f.01, r.03), the
result is

Drop in Dispersion Test
F-Statistic p-value

1.72126 0.19916

Based on the large P -value, there is no evidence that the relative humidity HUM contributes
significantly (over and above the contributions of TEMP. LIGHT and CLOUD) to the
determination of the time that lesser snow geese leave their overnight roost sites to fly
to their feeding areas. This does not conflict with the test of the hypothesis H02 because
the alternative in that case is that not both β1 (TEMP) and β2 (HUM) are 0.

Comments

19. Motivation for the Test. Use of a measure of dispersion to assess the effective-
ness of a model fit to a set of data is common in regression analysis. The
estimators β̂ and β̂0 are chosen to minimize the Jaeckel dispersion associ-
ated with the differences Yi − x′

j β, i = 1, . . . , n , under no restrictions on β and
under the null hypothesis restriction that β = (βq , βp−q ) = (0q , βp−q ), respec-
tively. Thus, the numerator of the Jaeckel–Hettmansperger–McKean test statis-
tic 2D∗

J = 2[DJ (Y − Xβ̂0) − DJ (Y − Xβ̂)] is twice the drop or reduction in the
Jaeckel dispersion from fitting the full model as opposed to the reduced null
hypothesis model (9.53) with βq = 0q . Large values of this drop in dispersion
will lead to large values of HM (9.57) and are indicative of lack of agree-
ment between the collected data and the null hypothesis. This serves as partial
motivation for procedure (9.59).

20. Translation lnvariance—“Effect” of the “Intercept” Parameter ξ . The Jaeckel
dispersion measure DJ (Y − Xβ) is translation invariant in the sense that it is
not affected by the unknown value of the “intercept” parameter, ξ . We note that
the rank Ri (β) of Y i − x′

i β among Y1 − x′
1β, as a function of β, is exactly the

same as the rank of Yi − ξ − x′
i β among Y1 − ξ − x′

1β, . . . Yn − ξ − x′
nβ, for

i = 1, . . . , n . It follows that the Jaeckel measure of dispersion is independent of
the value of the intercept parameter ξ , because

DJ (Y − ξ − Xβ) = (12)1/2(n + 1)−1
n∑

i=1

[
Ri (β) − n + 1

2

]
(Yi − ξ − x′

i β)

= DJ (Y − Xβ) − ξ [(12)1/2(n + 1)−1]
n∑

i=1

[
Ri (β) − n + 1

2

]

= DJ (Y − Xβ), because
n∑

i=1

[
Ri (β) − n + 1

2

]
= 0.
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21. Closed-Form Expression for β̂-Special Case of Straight-Line Regression. One
situation where the unrestricted estimator β̂ minimizing DJ (Y − Xβ in (9.54)
has a closed-form expression is when we have only a single independent (pre-
dictor) variable so that model (9.50) corresponds to a straight-line regression
Yi = ξ + β1xi + ei , i = 1, . . . , n . For this setting, the Jaeckel (1972) estima-
tor of the slope β1 is a weighted median of the set of all pairwise slopes
Sij = (Yj − Yi )/(xj − xi ), for (i , j ) such that xi �= xj . This particular estimator
was first derived using different criteria and studied by Adichie (1967).

22. Estimation of the “Intercept” ξ . Because the Jaeckel dispersion measure DJ (Y −
Xβ) is independent of the unknown value of the “intercept” ξ (See Comment
20), the estimator β̂ obtained by minimizing DJ (Y − Xβ) does not provide
any information relative to ξ . Hettmansperger and McKean (1977) suggested
using the full-model residuals e∗

i = Yi − x′
i β̂, for i = 1, . . . , n , to estimate ξ . In

particular, they proposed the estimator

ξ̂ = median

{e∗
i + e∗

j

2
, 1 ≤ i ≤ j ≤ n

}
. (9.63)

(We note, in passing, that ξ̂ is simply the Hodges–Lehmann one-sample esti-
mator θ̂ (3.23) applied to the full-model residuals e∗

1 , . . . , e∗
n .)

23. Estimation of the Parameter τ (9.56). Part of the construction of the
Jaeckel–Hettmansperger–McKean test statistic, HM (9.57), is the computation
of a consistent estimator of the parameter τ (9.56). A variety of approaches
leading to a number of competing consistent estimators have been considered
in the literature. Hettmansperger and McKean (1977) suggested a consistent
estimator for τ based on the length of a Wilcoxon signed rank confidence
interval (See Section 3.3) applied to the full-model residuals e∗

1 , . . . , e∗
n

discussed in Comment 22. Koul, Sievers, and McKean (1987) recommended
an estimator of τ based on the empirical distribution function of the absolute
differences of the full-model residuals e∗

1 , . . . , e∗
n . An approach to the estimation

of τ based on window- or kernel-type estimation of the probability density
function f (·) has been considered by Schuster (1974) and Schweder (1975,
1981).

24. Generalized Score Functions. The rank regression procedure discussed in this
section is based on the use of the Wilcoxon-type scoring function of the ranks
in the construction of the Jaeckel dispersion function DJ (Y − Xβ) in (9.54).
Other scoring functions, such as �−1(·) associated with the van der Waerden
test discussed in Comment 4.12, were also considered by Jaeckel (1972) in the
construction and study of an entire class of rank-based dispersion measures for
the multiple linear regression setting.

25. Test for a More General Null Hypothesis. Hettmansperger, McKean, and Sheather
(1997) described a generalization of the null hypothesis presented in H0 (9.53).
They discussed statistical procedures for the more inclusive problem of test-
ing H ∗

0 : Mβ = 0 versus the general alternative H ∗
A : Mβ �= 0, where M is an

arbitrary full row rank q × p matrix, for some q ≤ p.
As an example, consider the null hypothesis H04 : [β1 = β2;β3, β4, and ξ

unspecified] against the alternative H14 : [β1 �= β2;β3, β4, and ξ unspecified] for
the snow geese data from Example 9.6. This is equivalent to setting M to the
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single row matrix [1 − 1 0 0] so that Mβ = 0 is the same as H04. In R, we
again use drop.test with the full model f.01 from Example 9.6 and the
reduced model from

r.04 <- rfit(TIME ~ I(TEMP + HUM) + LIGHT + CLOUD,
data=goose)

where the I command uses the + symbol to force TEMP and HUM to be con-
sidered as a sum, rather than using the + symbol to represent additional terms
in the rank regression model. The estimated rank regression equation for the
reduced model is

Coefficients :
I (TEMP + HUM) LIGHT CLOUD

-65.6185750 0.2366911 3.3860983 0.1346024

and the test of the hypotheses H04 against H14 is given by

Drop in Dispersion Test
F-Statistic p-value

8.4534141 0.0066766

Thus, there is good evidence that the independent variables temperature and
relative humidity do not contribute in the same degree to the determination of
the time that lesser snow geese leave their overnight roost sites to fly to their
feeding areas. This finding is in good agreement with what had been established
previously in Example 9.6.

26. Extension to the General Linear Model. Our discussion of rank-based regression
in this section has only touched upon a small portion of a much more extensive
rank-based approach to the large class of linear models. Although a discussion
of this more general setting is beyond the scope of this text, we recommend
that the interested reader take advantage of two excellent survey articles on this
topic by Draper (1988) and Hettmansperger, McKean, and Sheather (1997).

Properties

1. Consistency. Under certain regularity conditions (see, for example,
Hettmansperger, McKean, and Sheather (1997)), the test defined by (9.59) is
consistent against the alternatives H1 (9.58).

2. Asymptotic Chi-Squareness. See McKean and Hettmansperger (1976).

3. Efficiency. See McKean and Hettmansperger (1976) and Section 9.8.

Problems

33. In heart catheterization, a 3-mm-diameter Teflon catheter (tube) is inserted into a major vein
or artery at the femoral region and maneuvered up into the heart itself to assess the heart’s
physiology and functional ability. Heart catheterizations are sometimes performed on children
with congenital heart defects. In such cases, the length of the catheter is often determined by
a physician’s educated guess. Rice (2007) considered a data set obtained by Weindling (1977)
in a preliminary study involving 12 children. For each child, the exact catheter length required
was determined by using a fiuoroscope to check that the tip of the catheter had reached the
pulmonary artery. The 12 catheter lengths (cm) and the heights (in) and weights (lb) for the
12 children in the study are given in Table 9.10.
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Table 9.10 Required Length of Heart Catheter as a Func-
tion of Height and Weight

Height, Weight, Length of heart
Child in lb catheter, cm

1 42.8 40.0 37.0
2 63.5 93.5 49.5
3 37.5 35.5 34.5
4 39.5 30.0 36.0
5 45.5 52.0 43.0
6 38.5 17.0 28.0
7 43.0 38.5 37.0
8 22.5 8.5 20.0
9 37.0 33.0 33.5

10 23.5 9.5 30.5
11 33.0 21.0 38.5
12 58.0 79.0 47.0

Source: J. A. Rice (2007).

Treating length of heart catheter as the independent variable, test for the importance of
height and weight in determining the required catheter length.

34. Iman (1994) considered data obtained by Leaf et al. (1989) in a study of options for reducing
concentrations of total plasma triglycerides. Leaf et al. obtained measurements of the following
variables on each of 13 patients:

Y : Total triglyceride level, mmol/l ,
x1: Sex of the patient (coded as female = 0, male = 1),
x2: Whether patient is obese (coded as no = 0, yes = 1),
x3: Chylo-microns,
x4: Very low density lipoprotein (VLDL),
x5: Low density lipoprotein (LDL),
x6: High density lipoprotein (HDL),
x7: Age of the patient.

These data are presented in Table 9.11.

(a) Including all the measured variables, find the approximate P -value for a test of the null
hypothesis that obesity does not play a significant role in determination of the total triglyc-
eride level.

(b) Including all the measured variables, find the approximate P -value for a test of the null
hypothesis that none of the lipoproteins play significant roles in determination of the total
triglyceride level.

(c) Does age play a significant role in the determination of the total triglyceride level, when
all the measured variables are taken into account? Justify your answer.

(d) Find an approximate P -value for a test of the null hypothesis that none of the measured
variables contribute significantly to the determination of the total triglyceride level.

35. Consider the multiple linear regression model in (9.50). Often it is the case that we are
interested in testing whether any of the independent variables x1, . . . , xp have significant effects
on the determination of the value of the dependent random variable Y . This corresponds to
taking q = p in the statement of the null hypothesis (9.53). For this setting, what would be the
form of the null constraint estimator β̂0? Provide a closed-form expression for DJ (Y − Xβ̂0)

for this setting in terms of the ordered Y observations, Y (1) ≤ · · · ≤ Y (n).

36. Freund et al. (2010) presented a set of data relating survival times (TIME) of liver trans-
plant patients to the following information collected from the patients prior to their transplant
operations:
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Table 9.11 Blood Plasma Measurements Related to Total Triglyceride Level

Total Chylo-
Patient triglyceride level Sex/Obese microns VLDL LDL HDL Age

1 20.19 1/1 3.11 4.51 2.05 0.67 53
2 27.00 0/1 4.90 6.03 0.67 0.65 51
3 51.75 0/0 5.72 7.98 0.96 0.60 54
4 51.36 0/1 7.82 9.58 1.06 0.42 56
5 28.98 1/1 2.62 7.54 1.42 0.36 66
6 21.70 0/1 1.48 3.96 1.09 0.23 37
7 14.40 1/1 0.57 8.60 2.16 0.83 41
8 15.14 1/1 0.60 5.46 1.58 0.85 55
9 50.00 1/1 6.29 13.03 1.48 0.28 43

10 23.73 1/1 1.94 7.12 0.91 0.57 58
11 29.33 0/1 0.52 8.94 1.58 0.88 39
12 19.98 0/1 1.11 5.85 1.19 0.62 41
13 13.28 1/0 1.61 3.73 1.58 0.62 54

Source: D. A. Leaf, W. E. Connor, R. Illingworth, S. P. Bacon, and G. Sexton (1989) and R. L. Iman
(1994).

CLOT: a measure of the clotting potential of the patient’s blood

PROG: a subjective index of the patient’s prospect of recovery

ENZ: a measure of a protein present in the body

LIV: a measure relating to white blood cell count.

These data for 54 liver transplant patients are presented in Table 9.12. Examine the
relationship of survival time (TIME) to the four measured preoperation variables. Which of
them provide significant input into the determination of survival time for liver transplant
patients?

37. In Section 9.1, we discussed a procedure designed to test the effect of a single independent
(predictor) variable x on a dependent random variable Y when the anticipated relationship
between x and Y is linear. Sometimes, the anticipated relationship between x and Y is better
described by a higher order polynomial in x , rather than a simple linear relationship. Discuss
how the general procedure presented in this section can be used to test for a relationship
between x and Y that is best described by a polynomial of degree p > 1.

38. Consider the cenosphere-resin composite data of Problem 1. In that problem, you were asked
to assess the significance of a possible linear relationship between hydrostatic pressure, x , and
the density of the cenosphere-resin composite, Y . Suppose that someone suggested that the
relationship between x and Y might be better represented by a cubic polynomial through the
expression

E [Y |x ] = ξ + β1x + β2x2 + β3x3,

where ξ , β1, β2, and β3 are unknown parameters. (See Problem 37.)

(a) Find the approximate P -value for an appropriate test of the null hypothesis that there is
no (cubic, quadratic, or linear) significant relationship between x and Y .

(b) Find the approximate P -value for an appropriate test of the null hypothesis that the rela-
tionship between x and Y is actually quadratic, as opposed to cubic.

(c) Find the approximate P -value for an appropriate test of the null hypothesis that the rela-
tionship between x and Y is actually linear, as opposed to either quadratic or cubic.

39. Hettmansperger, McKean, and Sheather (1997) described the following generalization of the
null hypothesis presented in H0 (9.53). They discussed statistical procedures for the more
general problem of testing H ∗

0 : Mβ = 0 versus the general alternative H ∗
A : Mβ �= 0, where
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Table 9.12 Survival Times of Liver Transplant Patients and
Related Biological Measurements

Patient TIME CLOT PROG ENZ LIV

1 34 3.7 51 41 1.55
2 58 8.7 45 23 2.52
3 65 6.7 51 43 1.86
4 70 6.7 26 68 2.10
5 71 3.2 64 65 0.74
6 72 5.2 54 56 2.71
7 75 3.6 28 99 1.30
8 80 5.8 38 72 1.42
9 80 5.7 46 63 1.91

10 87 6.0 85 28 2.98
11 95 5.2 49 72 1.84
12 101 5.1 59 66 1.70
13 101 6.5 73 41 2.01
14 109 5.2 52 76 2.85
15 115 5.4 58 70 2.64
16 116 5.0 59 73 3.50
17 118 2.6 74 86 2.05
18 120 4.3 8 119 2.85
19 123 6.5 40 84 3.00
20 124 6.6 77 46 1.95
21 125 6.4 85 40 1.21
22 127 3.7 68 81 2.57
23 136 3.4 83 53 1.l2
24 144 5.8 61 73 3.50
25 148 5.4 52 88 1.81
26 151 4.8 61 76 2.45
27 153 6.5 56 77 2.85
28 158 5.1 67 77 2.86
29 168 7.7 62 67 3.40
30 172 5.6 57 87 3.02
31 178 5.8 76 59 2.58
32 181 5.2 52 86 2.45
33 184 5.3 51 99 2.60
34 191 3.4 77 93 1.48
35 198 6.4 59 85 2.33
36 200 6.7 62 81 2.59
37 202 6.0 67 93 2.50
38 203 3.7 76 94 2.40
39 204 7.4 57 83 2.16
40 215 7.3 68 74 3.56
41 217 7.4 74 68 2.40
42 220 5.8 67 86 3.40
43 276 6.3 59 100 2.95
44 295 5.8 72 93 3.30
45 310 3.9 82 103 4.55
46 311 4.5 73 106 3.05
47 313 8.8 78 72 3.20
48 329 6.3 84 83 4.13
49 330 5.8 83 88 3.95
50 398 4.8 86 101 4.10
51 483 8.8 86 88 6.40
52 509 7.8 65 115 4.30
53 574 11.2 76 90 5.59
54 830 5.8 96 114 3.95

Source: R. J. Freund, W. J. Wilson and D. Mohr (2010).
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M is an arbitrary full row rank q × p matrix, for some q ≤ p (See Comment 25). Within this
more general setting, what matrix M corresponds to the special case of the null hypothesis H0

in (9.53)?

40. In an attempt to gain a better understanding of the complexities of air pollution in general and
to predict pollutant levels in particular, the Los Angeles Pollution Control District routinely
records the levels of pollutants and several meteorological conditions at various sites around
the city. As reported by Rice (2007), the data in Table 9.13 represent the maximum level of
an oxidant (a photochemical pollutant) and the morning averages of the four meteorological
variables: wind speed, temperature, humidity, and insolation (measure of amount of sunlight)
over a 30-day period in a single summer.

Ignoring the distinct possibility that there is some degree of correlation between maximum
oxidant levels collected on adjacent days (which would violate Assumption C3 regarding
the independence of the observations of the dependent variable), examine the relationship of
oxidant level to the four meteorological variables. Which of them contribute significantly to
the maximum oxidant level on a given day for the Los Angeles Pollution Control District?

41. For the data discussed in Problem 40, consider a multiple linear regression of the maximum
oxidant level on the four meteorological measurements. Find the approximate P -value for

Table 9.13 Maximum Oxidant Level, Wind Speed, Temperature, Humidity, and
Insolation for a 30-Day Summer Period in the Los Angeles Pollution Control
District

Oxidant Wind
Day level speed Temperature Humidity Insolation

1 15 50 77 67 78
2 20 47 80 66 77
3 13 57 75 77 73
4 21 38 72 73 69
5 12 52 71 75 78
6 12 57 74 75 80
7 12 53 78 64 75
8 11 62 82 59 78
9 12 52 82 60 75

10 20 42 82 62 58
11 11 47 82 59 76
12 17 40 80 66 76
13 20 42 81 68 71
14 23 40 85 62 74
15 17 48 82 70 73
16 16 50 79 66 72
17 10 55 72 63 69
18 11 52 72 61 57
19 11 48 76 60 74
20 9 52 77 59 72
21 5 52 73 58 67
22 5 48 68 63 30
23 4 65 67 65 23
24 7 53 71 53 72
25 18 36 75 54 78
26 17 45 81 44 81
27 23 43 84 46 78
28 23 42 83 43 78
29 24 35 87 44 77
30 25 43 92 35 79

Source: J. A. Rice (2007).
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Table 9.14 Number of Chaoborus Larvae and Water Quality of Samples

Dissolved
Sample Number of larvae Depth Brackishness oxygen

1 35 8.4 8.0 1.0
2 10 2.0 6.5 8.5
3 9 3.5 6.2 6.5
4 30 10.4 5.0 1.5
5 20 6.5 6.5 7.5
6 23 6.2 7.3 4.5
7 28 12.4 6.4 4.0
8 8 7.0 6.0 10.0
9 29 5.8 6.1 3.0

10 4 3.0 5.4 11.0
11 18 6.0 7.3 4.5
12 14 5.5 6.6 5.5
13 32 9.0 6.5 2.5
14 6 1.1 5.8 7.0

Source: S. Dowdy and S. Wearden (1991).

an appropriate test of the null hypothesis that the regression coefficients for wind speed and
humidity are the same, as are the regression coefficients for temperature and insolation. (See
Comment 25.)

42. Dowdy and Wearden (1991) considered the relationship between several environmental factors
and the number of larvae of the phantom midge, genus Chaoborus, which is similar to a
mosquito in appearance, but is not bloodsucking. The larva burrows into the sediment at the
bottom of a body of water and remains there during the daylight hours. At night, it migrates
to the surface of the water to feed. The larva is itself eaten by larger animals and therefore
plays an important role in the food chain for freshwater fish. A team of biologists studied a
recreational lake created by damming a small stream and recorded the following measurements
at each of 14 sampling points in the lake:

Y : number of larvae of Chaoborus collected in a grab sample of the sediment from an area
of approximately 225 cm2 of lake bottom.

X1: depth (meters) of the lake at the sampling point.

x2: brackishness (conductivity) of the water at the lake bottom (recorded in mhos per
decimeter).

x3: dissolved oxygen (milligrams per liter) in the water sampled from the lake bottom.

The data from these 14 sampling points are presented in Table 9.14. Examine the rela-
tionship of the number of Chaoborus larvae to the three measured water quality variables.
Which of them provide significant input into the determination of the number of Chaoborus
larvae in a lake environment?

NONPARAMETRIC REGRESSION ANALYSIS

9.7 AN INTRODUCTION TO NON-RANK-BASED
APPROACHES TO NONPARAMETRIC REGRESSION
ANALYSIS

In all the previous sections of this chapter, the modus operandi has been to consider
a specific regression model with associated parameters (e.g., straight line, two straight
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lines, multiple linear regression) and then to discuss appropriate rank-based procedures
for making statistical inferences about the unknown parameters. They have all been
nonparametric in nature, in that the inferential procedures were not dependent upon the
assumption of a particular underlying distribution for the error terms. Recently, however,
there has been considerable research activity in the literature in an arena that has become
known generally as nonparametric regression. Although it maintains an indifference to
the form of the underlying distribution for the error terms, the distinction in this new
area of endeavor is that even a specific regression model is no longer stipulated a priori.
The data are asked to provide not only the eventual statistical inference but also aid with
the development of an appropriate regression relationship between the dependent random
variable and the independent predictor variables(s). Thus, the intent of these nonparamet-
ric regression procedures is to permit the data to aid in both the selection of an appropriate
model for the regression relationship and the inferences eventually drawn from this model.

All the procedures previously discussed in this chapter have also been rank-based,
in the sense that some form of ranking was used in arriving at the appropriate inferences.
When the model itself is open for data input, however, ranks are no longer sufficient to
provide both model selection and inferential procedures. Hence, the procedures associ-
ated with this field known as nonparametric regression do not generally utilize rankings
in reaching their conclusions. As a result, they are often more complicated and computa-
tionally intensive than the level assumed throughout the rest of this text. Consequently,
our approach in this section will be to discuss briefly some of the statistical techniques
that are commonly used in developing such nonparametric regression procedures rather
than to provide details of specific procedures and their applications to appropriate data
sets. More detailed summaries of various aspects of this general area of nonparametric
regression are provided in Chapters 13 and 14 and, for example, in Cleveland (1994),
Eubank (1999), Hastie and Tibshirani (1990), Wasserman (2006), and Ryan (2009).

We concentrate here on the setting where we are interested in obtaining informa-
tion about the relationship between a single dependent random variable Y and a single
independent (predictor) variable x . For available procedures in the area of nonparametric
regression when there are multiple independent variables, the reader is referred to work
by Friedman (1991) and Stone (1994), for example.

Data. At each of n fixed values, x1, . . . , xn , of the independent (predictor) variable
x , we observe the value of the response random variable Y . Thus, we obtain a set
of observations Y1, . . . , Yn , where Yi is the value of the response variable when
x = xi .

Assumptions

The most general nonparametric regression relationship between Yi and xi is given by

Yi = μ(xi ) + ei , for i = 1, . . . , n , (9.64)

where the random variables e1, . . . , en are a random sample from a continuous population
that has median 0.

The goal, of course, is to make valid statistical inferences about the form of the
regression function μ(·). Depending on the specific approach to nonparametric regression
under consideration, a variety of additional regularity conditions are often imposed on
the form of μ(·) to enable development of appropriate statistical methodology.
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As there is likely to be a good deal of fuzziness (variability) in the response data
Y1, . . . , Yn , it is often difficult to describe the relationship between x and Y , as expressed
in the median μ(x), without the aid of a more formal model. Therefore, we search for
ways to dampen, or “smooth,” the fluctuations present in the Y observations as we move
along the various x values. In this section, we discuss a variety of ways to approach this
smoothing of the data. Ryan (2009) referred to each of these smoothing techniques as a
“smoother” and to the associated estimates μ̂(xi ) at the nxi values as a “smooth.” The
first four smoothers discussed in this section are linear smoothers, in the sense that the
estimates μ̂(x1), . . . , μ̂(xn) in a particular smooth are always linear combinations of the
observations Y1, . . . , Yn . The fifth smoother is nonlinear.

Running Line Smoother. One of the earliest attempts at nonparametric regression is
associated with the running line smoother proposed and studied by Cleveland (1979).
For this smoother, a moving window of points is utilized and a simple least squares
linear regression line is computed each time a point is deleted and another added as the
window moves along the x values. The plot of these running lines as a function of the
independent variable x is referred to as the running line smoother estimator for μ(x).

A number of issues are important relative to the construction of running line
smoothers. First, one must decide on how many points are to be used in each window
(i.e., the window size or size of the neighborhood) for which the least squares regression
line is to be computed. Clearly, a window size that is too small will result in very little
smoothing of the data, whereas a window size that is too large will virtually force a
single straight-line relationship on the data, regardless of its validity. This choice of
window size is discussed in Hastie and Tibshirani (1987), where they indicate that a
window size of roughly 10–15% of the data is reasonable. Another matter of concern
with running line smoothers is how to deal with the extremes of the data, where
symmetric windows are not possible. Statistical inference about μ̂(x) associated with
running line smoothers is addressed in Hastie and Tibshirani (1990).

Kernel Regression Smoother. As with the running line smoother, the kernel regression
smoother utilizes neighborhood data to provide its estimate of the regression function
μ(x). In this setting, the neighborhoods are often referred to as strips and the size
of a strip is called the bandwidth. One of the clear distinctions between running line
smoothers and kernel regression smoothers is in how they weight the observations in a
given window. For a running line smoother, the points in a neighborhood are equally
weighted, although, of course, they could have differing influences on the estimation
process. On the other hand, for a kernel regression smoother, the distance of the points
in a neighborhood from the center of a neighborhood, say, x0, is used to differentially
weight their contributions. Basically, in the process of estimating μ(x0), no weight is
given to those observations outside of the neighborhood centered at x0 and the greatest
weight in the neighborhood is given to those observations Yi for which the corresponding
xi are closest to x0. A kernel function is utilized to assign these differential weights to
the observations across the various neighborhoods.

Altman (1992) addressed the question of how many strips to use in constructing a
kernel regression smoother, as well as some related procedures for statistical inference.
The selection of a kernel function and its relationship to the stipulation of both the
number of strips and the bandwidth is discussed in Hastie and Tibshirani (1990) and
Härdle (1992). One particular shortcoming of kernel regression smoothers is that their
performance at the boundaries of the predictor region can be rather poor, as documented
by Hastie and Loader (1993) and Fan and Marron (1993).
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Local Regression Smoother. Local regression smoothers were first introduced by
Cleveland (1979), where he referred to the process as locally weighted regression. Local
regression smoothers once again use overlapping neighborhoods and, as with the kernel
regression smoothers, weight the contributions of points to the estimation of μ(x0)

in an inverse relationship to their distances from x0. The estimation in a particular
neighborhood is thus like a local weighted least squares fit.

Robust versions of local regression smoothers, which downweight large residuals,
have also been proposed (see, e.g., Cleveland (1994) and Cleveland, Grosse, and Shyu
(1992)) for the setting where the random errors have a symmetric distribution. Compu-
tational methods for local regression smoothers are presented in Cleveland and Grosse
(1991). Approaches to statistical inferences for μ(x0), as well as diagnostic checks asso-
ciated with local regression smoothers, are discussed in Cleveland, Grosse, and Shyu
(1992).

Running line, kernel regression, and local regression smoothers are discussed in
more detail in Chapter 14.

Spline Regression Smoothers. A spline is a curve pieced together from a number of
individually constructed curve/line segments; that is, a spline is simply a piecewise poly-
nomial. (Smith (1979) and Eubank (1999) provided nice discussions of this general
concept.) When each segment of a spline contains only linear terms, it is called a linear
spline.

The application of splines to regression problems in a general sense is discussed
in Wegman and Wright (1983), where they refer to splines associated with a regression
model as regression splines. The simplest of these regression spline smoothers are those
associated with linear splines. The junctures where these lines are pieced together are
known as knots. When the positions of these knots are known a priori, the use of linear
regression spline smoothers is relatively straightforward. However, when the positions of
the knots are also unknown, the problem becomes a good deal more complicated. Appli-
cations of higher order polynomial splines (in particular, quadratic and cubic splines) are
discussed in Eubank (1999).

A different approach to the use of splines in regression problems is associated with
the development of smoothing splines. For these procedures, the regression smooth results
from minimization of a sum of squares augmented by a smoothing term related to the
order of the desired smoothing spline. For further information on smoothing splines, the
reader is referred to Eubank (1999) and Wahba (1990).

Wavelet Smoother. This smoother represents the observed data with a set of basis func-
tions and their corresponding coefficients. Wavelet functions are commonly used as a
basis because they are able to model data sampled from very general relations between
Y and x . The wavelet estimate is not linear. The coefficients are modified nonlinearly
by thresholding rules which generally set some of the coefficients to 0 and shrink the
remaining toward 0. The estimate of μ is found with these modified coefficients, not the
original values.

Donoho and Johnstone (1994, 1995) created popular threshold methods for wavelets
called VisuShrink and SureShrink. Under the assumptions of normal errors, they showed
that the asymptotic rates of convergence for these wavelet smoothers are optimal or
near optimal. New methods of thresholding with improved estimation properties have
been derived. For example, Cai (1999) collapsed groups of coefficients together in order
to attain optimal convergence rates with improved visual smoothness of the estimate.
Others have extended wavelet smoothers to variable designs for the xi (see, e.g., Kovac
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and Silverman (2000)) and non-normality of errors (e.g., Nason (1996)). Chapter 13
discusses wavelet smoothing in greater detail.

General Discussion. As mentioned previously, all the nonparametric regression proce-
dures discussed in this section are considerably more computationally intensive than the
material presented elsewhere in the text. As a result, computer software is essential for the
implementation of these nonparametric regression smoothers. Such software is available
in R.

Finally, we note that in determining which of these approaches to nonparametric
regression is most appropriate for a given problem, the decision invariably comes down
to the relative importance of minimizing bias versus minimizing variance. All these
smoothers produce biased estimators for the regression function μ(x) so that the desired
trade-off between the sizes of the variance and bias (along with computational capa-
bilities, of course) often strongly influences the choice of a particular nonparametric
regression smoother.

9.8 EFFICIENCIES OF REGRESSION PROCEDURES

The asymptotic relative efficiencies of the Theil procedures of Sections 9.1–9.3 with
respect to their normal theory counterparts based on the least squares estimator of β

have been found by Sen (1968) to be given by the expression

eF = ε2

⎡⎢⎣12σ 2
F

⎧⎨⎩
∞∫

−∞
f 2(u)du

⎫⎬⎭
2
⎤⎥⎦ = ε2e∗

F , (9.65)

where σ 2
F is the variance of the common underlying (continuous) distribution F (·) for the

random variables e1, . . . , en in (9.1), f (·) is the probability density function corresponding
to F , and ε2 is the limiting value (n tending to infinity) of ε2

n , where εn is the product
moment correlation coefficient between (x1, . . . , xn ) and (1, . . . , n) as given in expression
(6.2) of Sen (1968). The parameter

∫∞
−∞ f 2(u)du is the area under the curve associated

with f 2(·), the square of the common probability density function. We note that the
expression eF (9.65) is simply ε2 times the corresponding Pitman efficiencies (e∗

F ) in
the one-sample, two-sample, and k -sample location settings (See Sections 3.11, 4.5, and
6.10).

We note that εn clearly depends on the design configuration for the values (x1, . . . , xn)

of the independent variable. An important special case where εn = 1 is the equally spaced,
no-replications design, where xi = x1 + (i − 1)a , for some a > 0 and i = 1, . . . , n . When
ε2 = 1, values of eF (9.65) correspond to e∗

F and can be obtained from display (3.116).
The asymptotic relative efficiency under a sequence of near alternatives of the

Sen–Adichie parallelism test based on V (9.45) with respect to the corresponding normal
theory procedure based on least squares estimators was found to be e∗

F (9.65) by Sen
(1969). The asymptotic relative efficiency under a sequence of contiguous alternatives
of the Jaeckel-Hettmansperger-McKean rank-based multiple linear regression test based
on HM (9.57) with respect to the corresponding least squares competitor test procedure
was found by McKean and Hettmansperger (1976) to be e∗

F (9.65) as well. Once again,
the values of e∗

F can be found in display (3.116).



Chapter 10

Comparing Two Success
Probabilities

INTRODUCTION

In Chapter 2, we described inferential procedures for a single success probability. These
procedures are based on the proportion of successes observed in n independent Bernoulli
trials. Recall that each observation could be classified a success or failure (depending on
whether or not a specified attribute was present). In this chapter, the object is to compare
two unknown success probabilities, p1, p2, on the basis of the corresponding rates of
success in independent samples.

Section 10.1 describes approximate tests and confidence intervals for p1 − p2. The
tests and confidence intervals are based on the large-sample approximations. Section 10.2
presents Fisher’s exact (conditional) test. In Section 10.3, we introduce the odds ratio and
present inferential procedures (tests, estimators, and confidence intervals) for the odds
ratio. Section 10.4 describes tests, estimators, and confidence intervals for analyzing k
strata of 2 × 2 tables. Section 10.5 considers the efficiency properties.

Data. We observe the outcomes of n1. independent repeated Bernoulli trials, each
with success probability p1. We also observe the outcomes of n2. independent
repeated Bernoulli trials, each with success probability p2. The data are represented in
Table 10.1.

Assumptions

In Section 10.1, we make the following assumptions.

A1. O11 is the number of successes observed in n1. independent Bernoulli trials,
each with success probability p1.

A2. O21 is the number of successes observed in n2. independent Bernoulli trials,
each with success probability p2.

A3. The Bernoulli trials corresponding to sample 1 are independent of the Bernoulli
trials corresponding to sample 2.

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Table 10.1 2 × 2 Table of Outcomes

Successes Failures Totals
Sample 1 O11 O12 n1.
Sample 2 O21 O22 n2.

Totals: n.1 n.2 n..

(10.1)

The hypothesis of interest in Section 10.1 is

H0 : p1 = p2 = p (10.2)

with the common value p being unspecified.
An exact conditional test of H0 is achievable but computationally difficult, as follows.

The random quantity

D = O11

n1.

− O21

n2.

(10.3)

is an estimator of p1 − p2. Suppose, for our data, the observed value of D is Dobs. Using
the independent binomial distributions of O11 and O21, one can, for a specified value of
p, compute Pp(D ≥ Dobs). Then define the P -value to be

P = max
0≤p≤1

Pp(D ≥ Dobs).

This computationally intensive unconditional test is due to Barnard (1945), but later
its originator and others have preferred Fisher’s exact conditional test. See Barnard
(1945, 1947), Suissa and Shuster (1985), and Haber (1986, 1987) for more on Barnard’s
unconditional test and Fisher’s exact test. See Mehta and Hilton (1993) for a discussion
of conditional versus unconditional tests and the computational difficulties incurred by
unconditional tests, especially for contingency tables beyond the 2 × 2 case.

In this chapter, we defer Fisher’s exact test to Section 10.2. In Section 10.1, we
present approximate tests and confidence intervals for p1 − p2. These approximate pro-
cedures are based on the large-sample approximations.

10.1 APPROXIMATE TESTS AND CONFIDENCE
INTERVALS FOR THE DIFFERENCE BETWEEN TWO
SUCCESS PROBABILITIES (PEARSON)

To test H0, given by (10.2), we use the following large-sample tests.

Large-Sample Test Procedures

The test statistic is a suitably standardized version of p̂1 − p̂2, where

p̂1 = O11

n1.

, p̂2 = O21

n2.

. (10.4)

The standard deviation of D = p̂1 − p̂2 can be estimated by

ŜD(p̂1 − p̂2) =
√

p̂(1 − p̂)

n1.

+ p̂(1 − p̂)

n2.

, (10.5)
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where

p̂ = O11 + O21

n1. + n2.

(10.6)

is an estimator of the hypothesized common success rate p. Recall that O11 is the number
of successes in sample 1, O21 is the number of successes in sample 2, and n1. + n2. is
the total number of trials for both samples. Thus, p̂ may be viewed as being obtained by
pooling the data in the two samples. The standardized version of p̂1 − p̂2 is

A = p̂1 − p̂2

ŜD(p̂1 − p̂2)
. (10.7)

When H0 is true, the asymptotic distribution of A is N (0, 1).

a. Approximate One-Sided Upper-Tail Test. We denote the difference in success rates
by

pd = p1 − p2. (10.8)

To test
H0 : pd = 0

versus
H1 : pd > 0,

at the approximate α level of significance,

Reject H0 if A ≥ zα; otherwise do not reject. (10.9)

b. Approximate One-Sided Lower-Tail Test. To test

H0 : pd = 0

versus
H2 : pd < 0,

at the approximate α level of significance,

Reject H0 if A ≤ −zα; otherwise do not reject. (10.10)

c. Approximate Two-Sided Test. To test

H0 : pd = 0

versus
H3 : pd �= 0,

at the approximate α level of significance,

Reject H0 if |A| ≥ za/2; otherwise do not reject. (10.11)
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Approximate confidence intervals for pd are obtained as follows. For confidence
intervals, a different estimator is utilized to estimate the standard deviation of p̂1 − p̂2

than was used in the testing procedure given earlier. Let

S̃D(̂p1 − p̂2) =
√

p̂1(1 − p̂1)

n1.

+ p̂2(1 − p̂2)

n2.

, (10.12)

where
p̂1 = O11

n1.

, p̂2 = O21

n2.

.

In estimating the standard deviation of p̂1 − p̂2 for use in the confidence interval pro-
cedure, we no longer assume p1 = p2, as in the case when H0 is true. That is why
S̃D(̂p1 − p̂2) given by (10.12) differs from S̃D(̂p1 − p̂2) given by (10.5).

For a symmetric two-sided confidence interval for pd , with the approximate confi-
dence coefficient 1 − α, set

pd ,L = p̂1 − p̂2 − zα/2 · S̃D(̂p1 − p̂2) (10.13)

and
pd ,U = p̂1 − p̂2 + zα/2 · S̃D(̂p1 − p̂2). (10.14)

With pd ,L and pd ,U given by displays (10.13) and (10.14), respectively, we have, for all
(p1, p2) pairs,

P(p1,p2)(pd ,L < pd < pd ,U) ≈ 1 − α. (10.15)

EXAMPLE 10.1 Care Patterns for Black and White Patients with Breast
Cancer.

Diehr et al. (1989) pointed out that it is well known that survival of women with breast
cancer tends to be lower in blacks than whites. See the references of their paper for
documentation of this fact. Diehr and her colleagues were interested in whether differ-
ences seen in survival could be accounted for by differences in diagnostic methods and
treatment. Their study sought to determine if there are statistically significant patterns
of care and, if so, whether these differences can be attributed to differences between
black and white patients in age, stage, type of insurance, type of hospital, or type of
physician.

The information used in the Diehr et al. (1989) study concerning management and
treatment during the first 4 months of diagnosis was abstracted from a systematic sample
of inpatient and outpatient records of female patients in 107 participating hospitals. Diehr
and her colleagues reported on a subset of 10 breast cancer patterns. The 10 were chosen
because they were applicable to most patients and thus could be assessed for enough black
patients to make the study possible. One pattern of interest was liver scan. Did patients
with local or regional disease have a liver scan or CT scan of the liver? Such scans are
not routinely required for a patient with local or regional disease because the likelihood
of finding an abnormality with the scan is low in the absence of abnormal liver chemistry
or hepatomegaly. In the Diehr et al. study, it was found that black patients with local
disease were more likely to have a liver scan or a CT scan than were white patients. The
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Table 10.2 Patients with Local or Regional
Disease Receiving Liver Scan in Hospital 8

Liver scan

Patients Yes No Totals

Black 4 8 12
White 1 20 21

Totals: 5 28 33

Source: P. Diehr, J. Yergan, J. Chu, P. Feigl, G.
Glaefke, R. Moe, M. Bergner, and J. Rodenbaugh
(1989).

percentage of black patients receiving appropriate care was about 10 percentage points
lower than that of white patients, even after controlling for other factors. In particular,
considering the data for patients in the 19 hospitals that had enough black patients for
individual analysis, Diehr and her colleagues found that black patients were more likely
than white patients to receive liver scan, and this tendency could not be attributed simply
to chance. To see how this conclusion was reached, we first focus on the liver scan data of
hospital 8 given in Table 10.2. We will illustrate how, for that hospital, the approximate
test based on A can be used to see if there was a significant difference between the
chance of a white patient receiving a scan and the chance of a black patient receiving a
scan. (We return to this problem in Section 10.2 and apply Fisher’s exact test. Later, in
Section 10.4, we apply the Mantel–Haenszel test to the data from the 19 hospitals with
the most black patients to get an overall conclusion.)

Let p1 be the unknown probability that a black patient in hospital 8 with local or
regional disease will receive a liver scan and let p2 be the unknown probability that a
white patient in hospital 8 with local or regional disease will receive a liver scan. We
write the null hypothesis as

H0 : p1 = p2,

or equivalently, pd = 0, where pd = p1 − p1.
Diehr and her colleagues suspected that a deviation from H0 would be in the direction

of the one-sided alternative p1 > p2. To test against this one-sided alternative, we use
procedure (10.8). We find, from (10.3) to (10.6),

p̂1 = 4

12
= .3333, p̂2 = 1

21
= .0476, p̂ = 4 + 1

12 + 21
= 5

33
= .1515,

and

ŜD =
√

(.1515)(.8485)

12
+ (.1515)(.8485)

21
= .1296.

Then, from (10.7),

A = .3333 − .0476

.1296
= 2.20.

The approximate α = .05 test given by procedure (10.8) is reject H0 if A ≥ 1.65, accept
H0 otherwise. As A = 2.20, we reject H0 at that level. The P -value is the probability that
a standard normal is greater than A = 2.20. Using pnorm(2.20, lower.tail = F),



500 Chapter 10 Comparing Two Success Probabilities

we find P = .014. This constitutes strong evidence that in hospital 8 the chance that a
black patient with local or regional breast cancer receives a liver scan is higher than the
corresponding chance that a white patient with local or regional breast cancer receives a
liver scan.

To find an approximate 95% confidence interval for p1 − p2, we first compute, via
(10.12),

S̃D(̂p1 − p̂2) =
√

.3333(.6667)

12
+ (.0476)(.9524)

21
= .1439.

Then, the lower and upper confidence limits, given by (10.13) and (10.14), respectively,
are

pd ,L = .3333 − .0476 − 1.96(.1439) = .004,

pd ,U = .3333 − .0476 + 1.96(.1439) = .568.

The 2 × 2 Chi-Squared Test of Homogeneity

The large-sample two-sided test based on A can also be presented via Karl Pearson’s
famous chi-squared statistic. It is motivated as follows. Suppose the null hypothesis H0

is true. Then, the best estimator of the common success probability is p̂, given by (10.6).
In the notation of Table 10.1, this can be written as

p̂ = n.1

n..

. (10.16)

Using this estimator, the expected values of the random quantities O11,O12,O21, and
O22 in Table 10.1 can be estimated, respectively, by E11, E12, E21, and E22, where

E11 = n1. × p̂ = n1. × n.1

n..

,

E12 = n1. × (1 − p̂) = n1. × n.2

n..

,

E21 = n2. × p̂ = n2. × n.1

n..

,

E22 = n2. × (1 − p̂) = n2. × n.2

n..

. (10.17)

A measure of the discrepancy between the observed frequen cies, the O’s, and the
estimated expected frequencies under the hypothesis, the E ’s, is the chi-squared statistic
given by

χ2 = (O11 − E11)
2

E11
+ (O12 − E12)

2

E12
+ (O21 − E21)

2

E21
+ (O22 − E22)

2

E22
. (10.18)

The chi-squared statistic can be written in abbreviated notation as

χ2 =
∑ (O − E )2

E
, (10.19)
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where we have omitted the subscripts on the O’s and the E ’s, but it is to be understood
that the summation

∑
is over the four cells of Table 10.1. Note that the differences

“observed minus expected,” that is, O − E , are squared, eliminating the balancing out
of positive and negative discrepancies. Also, each squared difference is weighted by the
inverse of the corresponding E , so that the differences involving small E ’s assume the
greatest importance.

It can be shown that
A2 = χ2, (10.20)

where A is given by (10.7). This implies that the two-sided approximate α-level test of
pd =0 versus pd �= 0 given by procedure (10.11) is equivalent to the test

Reject H0 if χ2 ≥ χ2
α,1; otherwise do not reject, (10.21)

where χ2
α,1 is the upper α percentile point of the chi-squared distribution with 1 degree of

freedom. There is a shortcut formula for the calculation of the chi-squared test statistic,
namely,

χ2 = n..(O11O22 − O21O12)
2

n.1 × n.2 × n1. × n2.

. (10.22)

For the liver scan data of Table 10.2, we can use (10.22) to find

χ2 = 33(4 × 20 − 1 × 8)2

(5)(28)(12)(21)
= 4.85,

agreeing (allowing for round-off error) with the value obtained by squaring A = 2.20.
R implements the two tests in this section with the command prop.test. One

may enter a matrix where each row contains the number of successes and failures for a
particular population or one can enter two vectors: one for the number of successes (x)
and one for the corresponding number of observations (n). For the data in Table 10.2,
the analysis may be performed with the success x and number n vectors by calling

prop.test(x=c(4, 1), n=c(12, 21), correct=F, alternative=
"greater")

Setting the argument correct to false prevents a continuity correction from being applied
to the data. Alternatively, we could have constructed a matrix with the successes and
failures in rows:

table10.2 <- matrix(c(4, 8, 1, 20), byrow=T, nrow=2)

then use this matrix in prop.test:

prop.test(table10.2, correct=F, alternative="greater")

The output from each of these calls is identical:

X-squared = 4.849, df = 1, p-value = 0.01383
alternative hypothesis: greater
95 percent confidence interval:
0.04918621 1.00000000
sample estimates:

prop1 prop2
0.33333333 0.04761905
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The inference is based on A2 (X-squared), not A. Note that the confidence interval given
coincides with the direction of the alternative. To obtain the two-sided confidence interval
calculated in Example 10.1, change the argument alternative to “two.sided”.

The chi-squared test, as developed here, is called a chi-squared test of homogeneity.
This is because, for Table 10.1, we have considered the data to be based on a sample of
size n1. from one population and a separate independent sample of size n2. from a second
population. Thus, for the liver scan data of Table 10.2, n1. = 12, n2. = 21, and the null
hypothesis specifies that p1 = p2, where p1 denotes the probability that a black patient
with local or regional disease will receive a liver scan and p2 denotes the probability
that a white patient with local or regional disease will receive a liver scan. The null
hypothesis is called the homogeneity hypothesis because it specifies that the chance of
success is the same for both populations.

The 2 × 2 Chi-Squared Test of Independence

In contrast to the homogeneity framework, 2 × 2 tables also arise when none of n.1, n.2, n1.

or n2. is fixed, but instead when each observation from a general population is cross-
classified on the basis of two characteristics (having characteristic C , say, not having
characteristic C ; having characteristic D , say, not having characteristic D). The question
is whether the occurrences of the characteristics are independent. We now describe how
the chi-squared statistic defined by (10.18) is also appropriate for a test of independence.

We rewrite Table 10.1 using slightly different notation (see Table 10.3).

Table 10.3 2×2 Table of Outcomes

C Not C Totals

D O11 O11 n1.

Not D O21 O22 n2.

Totals: n.1 n.2 n..

(10.23)

Let pij , i = 1, 2, j = 1, 2 denote the true unknown joint probability of falling into
cell (i , j ) of Table 10.3. Thus

p11 = P(C and D), p12 = P(not C and D),

p21 = P(C and not D), p22 = P(not C and not D).
(10.24)

The marginal probabilities are

p1. = p11 + p12, p2. = p21 + p22,

p.1 = p11 + p21, p.2 = p12 + p22.
(10.25)

The hypothesis HI of independence asserts that all joint probabilities are equal to the
product of their marginal probabilities, namely,

HI : pij = pi . × p.j , i = 1, 2, j = 1, 2. (10.26)
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If, for example, E11 denotes the expected number of observations that fall in cell (1, 1)
of Table 10.3, we have

E11 = n.. × P(C and D) = n.. × p11,

and under HI ,
E11 = n.. × P(C ) × P(D) = n.. × p.1 × p1.

It is natural to estimate P(C ) = p1. by (O11 + O21)/n.. and P(D) = p1. by (O11 +
O12)/n... That is, P(C) is estimated by the relative frequency of event C, and P(D) is
estimated by the relative frequency of event D. Thus, under the hypothesis of indepen-
dence, the E ’s are estimated as (we are abusing notation and using the same symbol Eij

for the expected number of observations falling into the (i , j ) cell and an estimator of
that expected number)

E11 = n.. ×
(O11 + O21

n..

)
×
(O11 + O12

n..

)
= n.1 × n1.

n..

,

and

E12 = n.2 × n1.

n..

,

E21 = n.1 × n2.

n..

,

E22 = n.2 × n2.

n..

. (10.27)

Note that the E ’s given by display (10.27) agree with the E ’s given by display (10.17).
It follows that the χ2 statistic given by (10.20) can also be used to test independence.
Specifically, an approximate α-level test of HI , versus alternatives where association
holds between the two characteristics, is

Reject HI if χ2 ≥ χ2
α,1; otherwise do not reject. (10.28)

We illustrate this test in Example 10.2.

EXAMPLE 10.2 Death Penalty and Gun Registration.

The data in Table 10.4 were reported by Clogg and Shockey (1988), whose source was
the 1982 General Social Survey.

For these data, we can calculate χ2 via (10.18) or (10.22). In R, we use the command
chisq.test. The argument is a matrix containing the characteristic data:

table10.4 <- matrix(c(784, 236, 311, 66), byrow=T, nrow=2)
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Table 10.4 Gun Registration and Death Penalty
Cross-Classification

Death Penalty
Gun registration Favor Oppose Totals

Favor 784 236 1020
Oppose 311 66 377

Totals: 1095 302 1397

Source: 1982 General Social Survey; see C. C. Clogg and
J. W. Shockey (1988).

Using this matrix in chisq.test(table10.4, correct=F) results in

Pearson’s Chi-squared test

data: table10.4
X-squared = 5.1503, df = 1, p-value = 0.02324

We find χ2 = 5.15 with a P -value of .023, indicating that there is an association between
the two characteristics, namely, attitude toward gun registration and attitude toward the
death penalty.

Although χ2 measures, via the formal hypothesis test, the significance of associ-
ation between two characteristics, it does not measure the degree of association. In
Section 10.3, we will discuss a measure of the degree of association based on the odds
ratio.

The R command chisq.test produces the expected and observed values for the
data. These may be accessed with the $ notation followed by expected or observed.
Thus, for the data in Table 10.2, the expected values in the cells are obtained with
chisq.test(tablel0.2, correct=F) $expected. This results in

[,1] [,2]
[1,] 1.818182 10.18182
[2,] 3.181818 17.81818

Comments

1. Sample-Size Determination. Suppose we want to determine sample sizes so that
our estimate p̂1 − p̂2 of the true difference p1 − p2 will be within D of the true
value, with probability equal to 1 − α. Equating the desired precision, D , to the
actual precision, (zα/2) · SD(̂p1 − p̂2), yields the equation

D = zα/2 ·
√

p1(1 − p1)

n1.

+ p2(1 − p2)

n2.

.

Taking n1. = n2. = m and solving for m yields

m = (zα/2)
2 · [p1(1 − p1) + p2(1 − p2)]

D2
. (10.29)

We cannot use (10.29) as it stands, because p1 and p2 are not known. (The
purpose of the experiment is to obtain information about the unknown values of
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p1, p2, and p1 − p2.) However, the term in square brackets in the numerator of
the right-hand side of (10.29) is largest when p1 = p2 = 1

2 . Thus, a sufficiently
large-sample would be

m = (zα/2)
2 · [( 1

2

) ( 1
2

)+ ( 1
2

) ( 1
2

)]
D2

= (zα/2)
2

2D2
.

This sample size assures the desired reliability regardless of the values of p1 and
p2. In situations in which it is known that p1 and p2 are definitely less than some
maximum value p∗ (say), which is less than 1

2 , p∗ can be substituted for p1 and
p2 in (10.29), yielding

m = (zα/2)
2[2(p∗)(1 − p∗)]

D2
. (10.30)

The same is true if p1 and p2 are known to be greater than some value p∗, which
is greater than 1

2 .

2. Testing p1 − p2 Equals Some Specific Nonzero Value. In this section, the tests
based on A were formulated for the null hypothesis p1 = p2, or, equivalently,
p1 − p2 = 0. To test p1 − p2 = δ0 (say), where δ0 is any specified nonzero value
between −1 and 1, use the statistic A′, defined as

A′ = (̂p1 − p̂2) − δ0

ŜD(̂p1 − p̂2)
. (10.31)

Note that the denominator of A′ uses ŜD(̂p1 − p̂2), as given by (10.5), rather than
the estimator S̃D(̂p1 − p̂2), given by (10.12), based on pooling the two sample pro-
portions together. The statistic A′ should be referred to percentiles of the normal
distribution. Significantly large values of A′ indicate p1 − p2 > δ0; significantly
small values of A′ indicate p1 − p2 < δ0.

3. Different Sampling Schemes. In the framework of the test of homogeneity, we are
testing H0 : p1 − p2, a comparison of success probabilities using two binomial
samples. In the notation of Table 10.1, we observe O11 successes out of n1.

observations in sample 1, a sample from an underlying population 1 (say), and
we observe O21 successes out of n2. observations in sample 2, a sample from
an underlying population 2. Here, n1. and n2. are fixed, but n.1 and n.2 are not
fixed but random (although n.1 and n.2 are constrained to sum to n..). In the
framework of testing for independence, the sampling scheme is different. It is
known as cross-sectional sampling. A total of n.. subjects are obtained from an
underlying population, and then each subject falls, in the notation of Table 10.3,
into the 4 cells of the 2 × 2 table according to whether or not the subject possesses
characteristic C and whether or not he has characteristic D . Here none of the
row and column totals n.1, n.2, n1., n2. are fixed; only n.. is fixed.

4. Determining If the Sample Sizes Are Large Enough for the Large-Sample Approx-
imation. The tests and confidence interval of this section depend on an approxi-
mation to exact probabilities. The approximation is close if the samples are large.
They should be large enough so that the E ′s, defined by display (10.17), each are
no smaller than five.
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5. Yates’ Correction for Continuity. Yates (1934) proposed a continuity correction
for the chi-squared test. The corrected χ2 statistic is

χ2
c = n..(|O11O22 − O21O12| − n../2)2

n.1 × n.2 × n1. × n2.

. (10.32)

This correction can be used in both the test for independence and the test

for homogeneity. To get a P -value, refer χ2
c to the chi-squared distribution

with 1 degree of freedom. To perform a formal test of the null hypothesis,
reject H0 at the (approximate) type I error probability α if χ2

c ≥ χ2
α,1 and

accept H0 if χ2
c < χ2

α,1; otherwise do not reject. This correction is imple-
mented in the R commands prop.test and chisq.test by the argument
correct=T.

There is disagreement in the statistical literature about the virtue of the con-
tinuity correction based on χ2

c . See Storer and Kim (1990) and the references
therein. On the basis of their study, Storer and Kim hold the view that in the
context of comparing two binomial samples (i.e., testing homogeneity with two
marginals n1. and n2. fixed), Yates’ continuity correction should not be used. They
also state “. . . our results suggest that for any reasonable sample size one will not
be led far astray by the simple uncorrected χ2 statistic.” Storer and Kim actually
compare seven tests of the homogeneity hypothesis H0 : p1 = p2, including the
approximate test based on χ2, the approximate test based on χ2

c , and Fisher’s
exact test. Fisher’s exact test is conditional on all marginal totals n.1, n.2, n1., n2.

being fixed. We present this test in Section 10.2.

6. McNemar’s Test. Instead of having two independent samples to form the 2 × 2
table, as is the setup for the homogeneity test, there will be experiments in which
the categorical data are based on dependent samples. Dependent samples can
occur in matched-pair studies. For example, a pair may consist of a sibling and
a parent. This is the situation for the Hodgkins tonsillectomy example in this
comment. Dependent samples can also occur when the same subject is measured
at two different times.

Johnson and Johnson (1972), in a study that was interested in testing the
theory that the tonsils protect the body against invasion of the lymph nodes by
a Hodgkin’s disease virus (also see Problem 3), obtained tonsillectomy data on
85 Hodgkin’s cases and a sibling of each case. The data showed 41 tonsillec-
tomies among the Hodgkin’s cases and 33 tonsillectomies among the siblings.
The pairing of a case with sibling means that the rates for the two groups are not
independent. The pairing should be taken into account in the analysis in order to
achieve the best chance of detecting a departure from the null hypothesis. The
null hypothesis asserts that Hodgkin’s cases and their siblings have the same
rates of tonsillectomy. A proper way to test the null hypothesis is to apply the
one-sample binomial test (Section 2.1) to Table 10.5, obtained by Johnson and
Johnson.

If there is no association between tonsillectomy and Hodgkin’s disease, then
the probability is 1

2 that a patient–sibling pair falls in the upper-right cell and 1
2

that it falls in the lower-left cell, given that the pair falls off the main diagonal.
Since the pairs are independent, the ratio 15

22 can be compared with 1
2 by a binomial
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Table 10.5 Tonsillectomy Rates for Hodgkin’s Disease Patients and Siblings

Sibling

Tonsillectomy No tonsillectomy Totals

Hodgkin’s Tonsillectomy 26 15 41
Patients No tonsillectomy 7 37 44

Totals: 33 52 85

Source: S. K. Johnson and R. E. Johnson (1972).

test, as described in Chapter 2. Specifically, let

p̂.1 = proportion of silbings with tonsillectomy = 26 + 7

85
,

p̂1. = proportion of Hodgkin’s patients with tonsillectomy = 26 + 15

85
.

The statistics p̂.1 and p̂1. are estimates of p.1 and p1., respectively. The difference
between p̂1. and p̂.1 is

d = p̂1. − p̂.1 = 26 + 15

85
− 26 + 7

85
= 15 − 7

85

and the estimated standard deviation of this difference is

ŜD(d) =
√

15 + 7

85
.

An approximate large-sample test can be applied by referring

d

ŜD(d)
=

15−7
85√
15+7
85

= 15 − 7√
15 + 7

= 1.71

to a N (0, 1) distribution. The approximate one-sided P -value is .044, indicating
that there is evidence that the rate of tonsillectomy is higher for Hodgkin’s cases
than for their siblings.

The exact one-sided P -value is Pr(B ≥ 15), where B is a binomial random
variable with p = 1

2 and n = 22. This is easily found using the R command
pbinom.

To find Pr(B ≥ 15), we use

Pr(B ≥ 15) = Pr(B > 14).

Using pbinom(14, size=22, prob=1/2 lower.tail=F), the P -value is
.0669. The one-sided approximate P -value of .044 found by the normal approxi-
mation is in reasonable agreement with this exact one-sided P -value of .067. Note,
however, that if you were using an α = .05 level, you would accept H ′

0 : p1. = p.1

in favor of the alternative p1. > p.1 with the one-sided exact McNemar’s test, but
you would reject H0 with the normal approximation.



508 Chapter 10 Comparing Two Success Probabilities

Table 10.6 Data on Matched Pairs

Controls

Factor Factor
present absent Totals

Factor present O11 O12 n1.

Cases
Factor absent O21 O22 n2.

Totals: n.1 n.2 n..

The R command mcnemar.test will implement this procedure. The data
is specified as a 2 × 2 matrix. This command provides two-sided P -values.
Appropriate one-sided P -values may be derived using this two-sided value.

More generally, suppose we are dealing with a retrospective study where
each case has been matched with a control. We wish to compare the frequency of
an antecedent factor (in the preceding example, tonsillectomy) among the cases
with the frequency of the antecedent factor among the controls. The data can be
summarized as in Table 10.6.

The null hypothesis is H ′
0 : p1. = p.1, which is equivalent to p12 = p21.

To test H ′
0 : p1. = p.1, the hypothesis that asserts the cases and controls have

the same population proportions of the antecedent factor, refer

d = p̂1. − p̂.1

ŜD(d)
= O12 − O21√

O12 + O21
(10.33)

to a N (0, 1) distribution.
The two-sided test of H ′

0 : p1. = p.1 versus the alternative p1. �= p.1 at the
(approximate) α level is reject H ′

0 if |d | ≥ zα/2; otherwise do not reject.
The one-sided (approximate) α-level test of H ′

0 versus the alternative p1. > p.1

is reject H ′
0 if d ≥ zα; otherwise do not reject. Similarly, the one-sided (approxi-

mate) α-level test of H ′
0 versus the alternative p1. < p.1 is reject H ′

0 if d ≤ −zα;
otherwise do not reject.

See McNemar (1947), Mosteller (1952), and Agresti (2013) for further
details.

7. Edwards’ Correction for Continuity. Recall McNemar’s test (Comment 6) in the
matched-pairs situation. The test is based on the statistic

d = O12 − O21√
O12 + O21

.

The approximate two-sided α-level test of H ′
0 : p1. = p.1 versus the alternative

p1. �= p.1 is reject H ′
0 if |d | ≥ zα/2; otherwise do not reject. An equivalent test is

to compute

d2 = (O12 − O21)
2

O12 + O21
(10.34)

and reject H ′
0 if d2 ≥ χ2

α,1, do not reject H ′
0 if d2 < χ2

α,1, where χ2
α,1 is the upper

α percentile point of the chi-squared distribution with 1 degree of freedom. To
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correct this test for continuity, a correction due to Edwards (1948) is based on
computing

χ2
e = (|O12 − O21| − 1)2

O12 + O21
(10.35)

and referring χ2
e to the chi-squared distribution with one degree of freedom.

Properties

1. Asymptotic Distribution of Pearson’s Chi-Squared Statistic. See Agresti (2013,
Sections 3.2.1 and 16.3.3).

2. Asymptotic Equivalence of Pearson’s Chi-Squared Statistic and the Likelihood
Ratio Statistic. See Agresti (2013, Section 16.3.4).

3. Power of the Chi-Squared Test. See Agresti (2013, Section 6.6.4).

Problems

1. Andrews (1995) investigated bodily shame as a possible mediating factor between abusive
experiences (sexual and physical) and later depression in a community sample of adult women.
A total of 101 women, who ranged in age from 32 to 56 years, were selected from an original
longitudinal study of 289 women performed between 1980 and 1983 in Islington, an inner-city
area of London, England (Brown et al. 1986). The 3-year study was designed to investigate
the onset and course of depressive disorder. The investigators concentrated on working-class
women with at least one child at home in order to get a group of women who were at high risk
of developing clinical depression. Table 10.7 is a 2 × 2 table adapted from Andrews (1995)
for the purpose of investigating association between childhood abuse and depression. (Physical
and sexual abuse were combined into one category, abuse.)

From Table 10.7, we see that 17 of 31 women with childhood abuse had been depressed,
whereas 22 of 70 women who had not expressed childhood abuse had been depressed. Test for
independence of childhood abuse and depression against alternatives of association.

2. In the study by Andrews (1995) described in Problem 1, there was also an investigation into
the possible association between abuse in adulthood and depression. Table 10.8, adapted from
Andrews, gives the results.

Test for independence of adulthood abuse and depression against alternatives of association.

3. Vianna, Greenwald, and Davies (1971) considered a series of 101 Hodgkin’s disease patients,
with the purpose of testing the theory that the tonsils protect the body against invasion of
the lymph nodes by a Hodgkin’s disease virus. (The existence of such a virus has not been
established.) Among the 101 Hodgkin’s cases, they found 67 had had a tonsillectomy, whereas
in a control group of 107 patients with other complaints, 43 had had a tonsillectomy. Compute
99% confidence limits for the difference in true rates.

Table 10.7 Abuse in Childhood and Depression in the 8-Year Study Period

Abuse in childhood Depression No depression Totals

Yes 17 14 31
No 22 48 70

Totals: 39 62 101

Source: B. Andrews (1995).
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Table 10.8 Abuse in Adulthood and Depression in the 8-Year Study Period

Abuse in adulthood Depression No depression Totals

Yes 23 15 38
No 16 47 63

Totals: 39 62 101

Source: B. Andrews (1995).

Table 10.9 ABC-ELISA and Standard ELISA

Standard ELISA + − Totals

+ 82 13 95
ABC-ELISA − 6 0 6

Totals: 88 13 101

Source: D. F. Cruess (1989).

4. R. Goode and D. Coursey, in a study of the theory that the tonsils serve as a reservoir harboring
the virus that causes mononucleosis, obtained data on Stanford students seeking treatment for
mononucleosis at the Stanford University Student Health Service. The data are given in Miller
(1980). Among 46 students 21 years old diagnosed as having mononucleosis, they found that
only 8 had had a tonsillectomy, whereas among 139 students of the same age, in the health
center for other complaints, 48 had had a tonsillectomy. Compute 95% confidence limits for
the difference in rates.

5. Verify directly the equivalence of (10.18) and (10.22).

6. Cruess (1989) points out that the error of applying the ordinary chi-squared statistic to paired
data occurs frequently in the medical literature. Cruess cites in particular the study of Shen
et al. (1988). They compared the results of two tests, ABC-ELISA and standard ELISA, on
101 hydatidosis patients. (Hydatidosis, or hydatid disease, is infestation with echinococcus, a
genus of tapeworms.) Shen et al. used the ordinary unpaired chi-squared test and reported a
P -value < 0.005. This was inappropriate because each case was tested using both laboratory
procedures and thus the data were paired. Instead of the ordinary unpaired chi-squared test,
McNemar’s test should have been performed. Table 10.9 gives the information on the 101
pairs.

Perform McNemar’s test. What is the P -value? What do you conclude concerning the
hypothesis of equal proportions positive for both ELISA tests?

7. Suppose you are planning an experiment to investigate two success rates p1, p2. Determine
the value of the sample size m for each sample (in the equal sample-size case) so that your
estimate, p̂1 − p̂2, of the true difference, p1 − p2, will be within .2 of the true difference with
probability .95.

8. Verify (10.20). That is, show χ2 given by (10.18) is equal to the square of A, where A is given
by (10.7).

9. Astin et al. (1995) studied posttraumatic stress disorder (PTSD) and childhood abuse in
battered women. PTSD prevalence rates were compared among 50 battered women and 37
maritally distressed women who had not experienced battering. The results are given in
Table 10.10.

Is there a significant difference in the PTSD rates for battered women versus maritally
distressed women (who had not experienced battering)?
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Table 10.10 PTSD Rates

Maritally distressed women who
PTSD Battered women had not experienced battering totals

Yes 29 7 36
No 21 30 51

Totals: 50 37 87

Source: M. C. Astin, S. M. Ogland-Hand, E. M. Coleman, and D. S. Foy (1995).

10. Recall Table 10.3 and the definition of independence given by HI (10.26). We define the con-
ditional probabilities pj |i = pij /pi ., i = 1, 2, j = 1, 2. Thus, for example, p1|2 is the conditional
probability of the observation landing in column 1 (i.e., has characteristic C ) given that the
observation has landed in row 2 (i.e., does not have characteristic D). Show that HI is equivalent
to the equalities p1|1 = p1|2 and p2|1 = p2|2 being satisfied.

11. Show that the four equalities of HI (given by (10.26)) are satisfied if and only if p11 = p1. × p.1.

10.2 AN EXACT TEST FOR THE DIFFERENCE BETWEEN
TWO SUCCESS PROBABILITIES (FISHER)

Recall the basic 2 × 2 table given in display (10.1). Fisher’s (1934) exact test is based
on the conditional distribution of O11 given the row and column sums n1., n2., n.1, n.2.
The conditional distribution of O11 is

Pr(O11 = x |n1., n2., n.1, n.2) =

(
n1.

x

)(
n2.

n.1 − x

)
(

n..

n.1

) . (10.36)

The range of possible values for x is nL ≤ x ≤ nU, where nL = max(0, n1. + n.1 − n..)

and nU = min(n1., n.1). The conditional probability distribution defined by (10.36) is a
member of a family of distributions known as hypergeometric distributions. Expression
(10.36) can be put in a more readily usable form by simplifying the binomial coefficients
appearing in the numerator and denominator. Such simplification allows us to rewrite
that equation as

Pr(O11 = x |n1., n2., n.1, n.2) = n.1!n.2!n1.!n2.!

n..!x !O12!O21!O22!
. (10.37)

Fisher’s exact test judges whether O11 is significantly small or significantly large
with respect to the conditional distribution defined by (10.36). Specifically, to test H0 :
p1 = p2 versus the alternative p1 < p2, Fisher’s exact test is reject H0 if O11 ≤ qα ,
otherwise do not reject, where qα is chosen from the conditional distribution so that
Pr(O11 ≤ qα|n1., n2., n.1, n.2) = α. Similarly, to test H0 : p1 = p2 versus the alternative
p1 > p2, Fisher’s exact test is reject H0 if O11 ≥ rα , otherwise do not reject, where
rα satisfies Pr(O11 ≥ rα|n1., n2., n.1, n.2) = α. A two-sided α-level test of H0 : p1 = p2

versus the alternative p1 �= p2 is reject H0 if O11 ≤ qα1 or if O11 ≥ rα2 , otherwise do not
reject, where qα1 , rα2 are chosen to give α1 probability in the lower tail and α2 probability
in the upper tail, where α1 + α2 = α. Critical values for these tests can be obtained from
the tables of Finney et al. (1963), and P -values for the test can be obtained from R.
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EXAMPLE 10.3 Example 10.1 Continued.

Recall the liver scan data of hospital 8. We now illustrate how, for that hospital, Fisher’s
exact test can be used to see if there was a significant difference between the chance
of a white patient receiving a scan and the chance of a black patient receiving a scan.
(Later, in Section 10.4, we use a test due to Mantel and Haenszel (1959) to get an overall
conclusion based on the data from the 19 hospitals with the most black patients.)

Let p1 be the unknown probability that a black patient receives a liver scan and let p2

be the unknown probability that a white patient receives a liver scan. The null hypothesis
is H0 : p1 = p2. Diehr and her colleagues suspected that a deviation from H0 would be
in the direction of the one-sided alternative p1 > p2, and thus, they reported the one-
sided P -value corresponding to large values of O11. To find the P -value corresponding
to their observed value O11 = 4 (see Table 10.2) for hospital 8, we need to evaluate the
probabilities of the tables giving a value as large or larger than the observed value of
O11. These tables are

4 8 12
1 20 21

5 28 33

5 7 12
0 21 21

5 28 33

with the table on the left corresponding to Table 10.2 and the table on the right being the
only more extreme response in the direction p1 > p2. Next, we use (10.37) to calculate
the probabilities associated with each of these two tables, corresponding to x = 4 and
x = 5.

x Table Probability

4 8 12

4
1 20 21

5 28 33

5!28!12!21!

33!4!8!1!20!
= .0438

(10.38)

5 7 12

5
0 21 21

5 28 33

5!28!12!21!

33!5!7!0!21!
= .0033

(10.39)

Thus, the P -value for hospital 8 is

P =.0033 + .0438 = .047. (10.40)

This constitutes strong evidence that in hospital 8 the chance that a black patient
with local or regional breast cancer receives a liver scan is higher than the corresponding
chance that a white patient with local or regional breast cancer receives a liver scan.

The R command fisher.test will implement this procedure. The data is spec-
ified as a 2 × 2 matrix. This command provides two-sided and one-sided P -values by
specifying the appropriate value to the argument alternative. One may also use the
command oddsratio from package epitools (Aragon (2012)) to obtain the P -value
for the two-sided test.
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Comments

8. Justification for Fisher’s Exact Test. Result (10.36) is justified as follows. Suppose
that in a group of n.. individuals, n1. possess a certain attribute and n.. − n1. do
not. If a sample of n.1 individuals is drawn randomly from the n.. individuals,
without replacement, the chance that x of these individuals possess the attribute
is given by the right-hand side of (10.36).

9. Use of Fisher’s Exact Test as a Test of Independence. In this section, we have
introduced Fisher’s exact test in the context of a test of homogeneity. It can,
however, also be used to test independence (just as the approximate chi-squared
test of Section 10.1 can be used as a test of homogeneity and also as a test
of independence). If, using the notation of Table 10.3, the events C and D are
independent, then the conditional distribution of O11 within the restricted set of
samples having fixed row and column tables is again given by (10.36).

10. Limited Choice of α Values. For small sample sizes, the probability distribution of
O11, given by expression (10.36), is highly discrete (i.e., has a small number of
possible values with corresponding probabilities). Thus, the user’s choices for α,
when performing the formal test, are limited. Equivalently, there will, in small-
sample-size cases, be a small number of possible P -values. This is illustrated
in Problem 12, where, for the data in Table 10.11, there are only three possible
values for O11 with three corresponding P -values.

11. Use and Misuse of Statistics. Cruess (1989) reviewed the statistics of the 201 sci-
entific articles published during the calendar year 1988 in The American Journal
of Tropical Medicine and Hygiene. He determined that 148 of the articles had at
least one detectable statistical error; most of the errors involved improper docu-
mentation or application of statistical hypothesis testing. Among others, Cruess
cites the Mendis, Ihalamulla, and David (1988) article (considered in Problem 12)
as one in which the sample sizes were not large enough to justify the large-sample
approximation used to compute P -values. The errors cited by Cruess are typical
of the uses and misuses of statistics in journals in other areas of medical research.
Ironically, the papers containing errors are often the most clearly written. Indeed,
it is possible to ascertain errors only if the authors supply sufficient data and
detail so that other researchers can check their results. Thus, it may be unfair to
be overly critical of the papers that contain errors.

Properties

1. Uniformly Most Powerful Unbiased (UMPU) Property of Fisher’s Exact Test. See
Tocher (1950) and Agresti (2013, Section 3.5.5).

2. Minimal Sample Sizes Required to Achieve a Certain Power for Specified Signifi-
cance Levels. See Gail and Gart (1973) and Suissa and Shuster (1985).

Problems

12. The data in Table 10.11 are from a study by Mendis, Ihalamulla, and David (1988). The
researchers compared the reactivity of heterologous human immune sera from patients with
multiple malaria attacks to sera from primary-attack patients.
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Table 10.11 Reactivity of Multiple Malaria Attack
Patients and Primary-Attack Patients

Reactivity

Patients Low High Totals

Multiple attack 0 5 5
Primary attack 2 1 3

Totals: 2 6 8

Source: K. N. Mendis, R. I. Ihalamulla, and P. H. David (1988).

We write the null hypothesis as H0 : p1 = p2, where p1 is the unknown probability that
a multiple-attack patient will have low reactivity and p2 is the unknown probability that
a primary-attack patient will have low reactivity. What is the P -value achieved by these
data if we use Fisher’s exact text of H0 against the alternative p1 < p2? What is your
conclusion?

13. Consider Problem 12 and the reactivity data of Table 10.11. Mendis, Ihalamulla, and David
(1988) claimed a “significantly higher incidence of reactivity” in the multiple-attack patients.
(In our notation of Problem 12, their conclusion corresponds to the alternative p1 < p2, or
equivalently, 1 − p1 > 1 − p2.) Mendis, Ihalamulla, and David (1988) based their conclusion
on the χ2 statistic defined by (10.18). Apply the approximate test based on χ2. Compare their
conclusion with your conclusion obtained in Problem 12, recalling that the P -value obtained
in Problem 12 is one-sided and the P -value based on χ2 is two-sided.

14. Return to the reactivity data of Table 10.11. Find the P -value based on Yate’s continu-
ity correction to χ2 (see Comment 5). Compare your result with those of Problems 12
and 13.

15. Show that expressions (10.36) and (10.37), for the conditional distribution of O11 given the
row and column sums, are equivalent.

16. For the Diehr et al. (1989) study, the liver scan data for hospital 16 are given in Table 10.12.
Let p1 be the probability that a black patient in hospital 16 with local or regional disease will
receive a liver scan and let p2 be the probability that a white patient in hospital 16 with local
or regional disease will receive a liver scan. Test H0 : p1 = p2 versus the alternative p1 > p2

using Fisher’s exact test. What is the P -value?

17. For the data of Table 10.12, perform two chi-squared approximations, one without a continuity
correction and with Yates’s continuity correction. Compare the approximate P -values with the
exact P -value obtained in Problem 16.

Table 10.12 Patients with Local or Regional
Disease Receiving Liver Scan in Hospital 16

Liver scan
Patients Yes No Totals

Black 2 3 5
White 3 12 15

Totals: 5 15 20

Source: P. Diehr, J. Yergan, J. Chu, P. Feigl, G. Glaefke,
R. Moe, M. Bergner, and J. Rodenbaugh (1989).
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10.3 INFERENCE FOR THE ODDS RATIO (FISHER,
CORNFIELD)

Although the χ2 statistic, given by (10.18) of Section 10.1, measures, via the formal
hypothesis test, the significance of association between two characteristics, it does not
measure the degree of association. This is because χ2 has the defect of depending
not only on the true probabilities of landing in the four cells of the 2 × 2 table but
also on the total number of subjects. One commonly used measure for association that
does not have this defect and also is readily interpretable is the sample odds ratio. To
introduce the sample odds ratio, θ̂ , we first define the corresponding population odds ratio
parameter θ .

Recall the notation of Tables 10.1 and 10.3 and the joint probabilities given by
display (10.24). The odds, given that the subject is in row 1 of the 2 × 2 table, that the
subject will be in column 1 (instead of column 2) are

θ(1) =
p11

p11 + p12
p12

p11 + p12

= p11

p12
. (10.41)

In terms of the notation of Table 10.3 with characteristics C and D , (10.41) can be
written as

θ(1) = P(C |D)

P(not C |D)
= p11

p12
. (10.42)

Similarly, the odds, given that the subject is in row 2 of the 2 × 2 table, that the subject
will be in column 1 (instead of column 2) are

θ(2) = P(C | not D)

P(not C | not D)
= p21

p22
. (10.43)

The odds ratio is the parameter

θ = θ(1)

θ (2)
= p11p22

p12p21
. (10.44)

The odds ratio can be any number between 0 and ∞. If the cell probabilities p11,
p12, p21, p22 are all positive, then independence of the characteristics C and D implies
θ = 1 and, conversely, θ = 1 implies C and D are independent. If p11 or p22 is 0 (and
p12 and p21 are not 0), then θ = 0. If p12 or p21 is 0 (and p11 and p22 are not 0), then
θ = ∞. θ is undefined in each of the four cases (i) p11 = 0 and p12 = 0, (ii) p21 = 0 and
p22 = 0, (iii) p11 = 0 and p21 = 0, and (iv) p12 = 0 and p22 = 0.

θ measures the strength of the association. A table having 1 < θ < ∞ is such that
the probability of the subject landing in column 1, given that the subject is known to be in
row 1, is higher than the probability that the subject will land in column 1, given that the
subject is known to be in row 2. That is, in the notation of the conditional probabilities
(see Problem 10), p1|1 is greater than p1|2. Correspondingly, a table for which 0 < θ < 1
has p1|1 < p1|2.
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Unconditional Procedures

Estimator of θ . The unconditional maximum likelihood estimator of θ is the sample
odds ratio

θ̂ = O11O22

O12O21
. (10.45)

If O11 or O22 is 0 (and O12 and O21 are not zero), then θ̂ = 0. If O12 or O21 is 0 (and O11

and O22 are not zero), then θ̂ = ∞. θ̂ is undefined in each of the four cases (i) O11 = 0
and O12 = 0, (ii) O21 and O22 = 0, (iii) O11 = 0 and O21 = 0, and (iv) Ol2 = 0 and
O22 = 0. To eliminate these difficulties, we may use the adjusted version,

θ̂a = (O11 + .5)(O22 + .5)

(O12 + .5)(O21 + .5)
. (10.46)

(See Comment 20).

Confidence Intervals

We define
ν = ln(θ) (10.47)

and
ν̂ = ln(θ̂). (10.48)

The distribution of ν̂ converges more rapidly to its asymptotic distribution than does the
distribution of θ̂ to its asymptotic distribution. Thus, it is preferable to base tests and
confidence intervals for the odds ratio on the asymptotic distribution of ν̂.

The standard deviation of ν̂ can be estimated by

ŜD(̂ν) =
√

1

O11
+ 1

O12
+ 1

O21
+ 1

O22
, (10.49)

or the adjusted version

ŜD(̂ν) =
√

1

O11 + .5
+ 1

O12 + .5
+ 1

O21 + .5
+ 1

O22 + .5
. (10.50)

The null hypothesis θ = 1 is equivalent to the null hypothesis ν = 0.

a. Approximate One-Sided Upper-Tail Test. To test

H0 : ν = 0

versus
H1 : ν > 0,

at the approximate α level of significance,

Reject H0 if
ν̂

ŜD(̂ν)
≥ zα; otherwise do not reject. (10.51)
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b. Approximate One-Sided Lower-Tail Test. To test

H0 : ν = 0

versus
H2 : ν < 0,

at the approximate α level of significance,

Reject H0 if
ν̂

ŜD(̂ν)
≤ −zα; otherwise do not reject. (10.52)

c. Approximate Two-Sided Test. To test

H0 : ν = 0

versus
H3 : v �= 0,

at the approximate α level of significance,

Reject H0 if

∣∣∣∣ ν̂

ŜD(̂ν)

∣∣∣∣ ≥ zα/2; otherwise do not reject. (10.53)

For a symmetric two-sided confidence interval for ν, with the approximate confidence
coefficient 1 − α, set

νL = ν̂ − zα/2ŜD(̂ν) (10.54)

and
νU = ν̂ + zα/2ŜD(̂ν). (10.55)

A confidence interval for the odds ratio θ is obtained by exponentiating νL and νU

given by (10.54) and (10.55). That is, a symmetric two-sided confidence interval for θ ,
with the approximate confidence coefficient 1 − α, is (θL, θU), where

θL = eνL , (10.56)

θU = eνU . (10.57)

Exact conditional tests and confidence intervals for θ , which are more computation-
ally tedious than the unconditional procedures, are presented in Comments 14 and 15,
respectively.

EXAMPLE 10.4 Example 10.1 Continued.

We return to the liver scan data of Table 10.2. From (10.45), we find

θ̂ = 4(20)

8(1)
= 10.
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That is, we estimate the odds to be 10 times higher for black patients (with local or
regional disease) to receive a liver scan than for white patients (with local or regional
disease) to receive a liver scan.

From (10.47) and (10.48), we find, respectively,

ν̂ = ln(θ̂) = 2.30,

and

ŜD(̂ν) =
√

1

4
+ 1

8
+ 1

1
+ 1

20
= 1.19.

Computing ν̂/ŜD(̂ν), we obtain

ν̂

ŜD(̂ν)
= 1.93.

The corresponding approximate one-sided P -value, for testing H0 : ν = 0 versus H1 :
ν > 0, is .027 (obtained from pnorm (1.93, lower.tail = F)). This is strong
evidence that ν > 0 or, equivalently, that the odds ratio θ is greater than 1.

A symmetric two-sided confidence interval for ν, with the approximate confidence
coefficient .95, is found from (10.54) and (10.55) to be

νL = 2.30 − (1.96)(1.19) = −.03,

νU = 2.30 + (1.96)(1.19) = 4.63.

Exponentiating, we find (see (10.56) and (10.57))

θL = e−.03 = .97,

θU = e4.63 = 102.5.

The R command oddsratio from package epitools will implement this procedure.
The data is specified as a 2 × 2 matrix. The argument method should be set to “wald”.
Some of the R output for this data is given below:

$data
Yes No Total

Black 4 8 12
White 1 20 21
Total 5 28 33

$measure
odds ratio with 95% C.I. estimate lower upper

White 10 0.9635896 103.7786

$p.value
two-sided midp.exact fisher.exact chi.square

White 0.05047275 0.04713571 0.02766249

The appropriate P -value is found under the column labeled chi.square. The odds
ratio estimate (θ̂ = 10) and associated confidence interval are found in the $measure

section. These results match (within rounding error) those obtained earlier. The P -value
under the column heading fisher.exact is associated with the two-sided test from
Section 10.2.
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Comments

12. Odds Ratio and Estimated Odds Ratio under Reversal of Rows and Columns. If
the roles of the rows and columns are reversed, then the odds ratio does not
change. Reversing the roles of the rows and columns produces a new 2 × 2 table
with underlying cell probabilities p ′

11, p ′
12, p ′

21, p ′
22, where p ′

11 = p11, p ′
12 = p21,

p ′
21 = p12, p ′

22 = p22. Thus θ ′, the odds ratio for the new table, is

θ ′ = p ′
11p ′

22

p ′
12p ′

21

= p11p22

p21p12
= θ.

Similarly, the estimated odds ratio θ̂ does not change when the roles of the rows
and columns are reversed.

13. Effect of Interchanging the Order of the Rows. If rows 1 and 2 are interchanged,
then the new table has underlying cell probabilities p ′

11, p ′
12, p ′

21, p ′
22, where

p ′
11 = p21, p ′

12 = p22, p ′
21 = p11, p ′

22 = p12 and the odds ratio for the new table is

θ ′ = p ′
11p ′

22

p ′
12p ′

21

= p21p12

p22p11
= 1

θ
,

where θ is the odds ratio for the original table. Similarly, if columns 1 and 2 of
the original table are interchanged, the new odds ratio is the inverse of the original
odds ratio. The same results also hold for the estimated odds ratio. That is, if
the rows are interchanged (or if the columns are interchanged), θ̂ ′, the estimated
odds ratio for the new table, is the inverse of θ̂ , the estimated odds ratio for the
original table.

14. Exact Conditional Test for the Odds Ratio. The conditional distribution of O11

given n1., n.1, and θ (due to Fisher, 1935) is

P(O11 = x |n1., n.1, θ) =

(
n1.

x

) (
n.. − n1.

n.1 − x

)
θ x

nU∑
y=nL

(
n1.

y

) (
n.. − n1.

n.1 − y

)
θ y

(10.58)

where (recall that) nL = max(0, n1. + n.1 − n..), nU = min(n1., n.1). If Oobs
11

denotes the observed value of O11 for your 2 × 2 table, the P -value for testing
H0 : θ = θ0 versus H1 : θ > θ0 is

P =
∑

{all x -values≥Oobs
11 }

P(O11 = x |n1., n.1, θ).

For testing H0 : θ = θ0 versus H2 : θ < θ0, the P -value is

P =
∑

{all x -values≤Oobs
11 }

P(O11 = x |n1., n.1, θ).

With the choice θ0 = 1, these procedures reduce to Fisher’s exact test.
The exact conditional test’s P -value can be obtained using the R command

fisher.test (see Comment 17).
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15. Exact Conditional Confidence Intervals for the Odds Ratio. Exact confidence inter-
vals for θ can be obtained by inverting the tests of Comment 14. For a confidence
interval (θL, θU), with confidence coefficient ≥ 1 − α, θL is the value of θ0 for
which the P -value is α/2 when testing H0 : θ = θ0 versus H1 : θ > θ0.

Similarly, θU is the value of θ0 for which the P -value is α/2 when testing
H0 : θ = θ0 versus H2 : θ < θ0. The R command fisher.test can be used to
obtain the exact conditional confidence interval. See Comment 17.

16. Conditional Estimator of the Odds Ratio. The conditional maximum likelihood
estimator of θ is the value (θ̃ , say) of θ that maximizes the right-hand side
of (10.38). This yields a different estimator than the unconditional maximum
likelihood estimator θ̂ given by (10.45). The value θ̃ can be found by solving
the equation O11 = Ec(O11), where Ec denotes expectation with respect to the
conditional distribution given by (10.58). This equation has a unique solution
(Cornfield, 1956), which can be obtained by using iterative methods. θ̃ can be
obtained using the R command fisher.test. See Comment 17.

17. Use of R to Perform the Conditional Procedures. The conditional methods of
Comments 14, 15, and 16 can be performed using the fisher.test command.
For the data of Table 10.2, this gives the one-sided P -value .0471 for testing
θ = 1, agreeing with what we obtained in Example 10.3 using Fisher’s exact
test. (Recall that the tests of Comment 14 with θ0 = 1 reduce to Fisher’s exact
tests.) The fisher.test command also yields exact confidence intervals and
the conditional maximum likelihood θ̃ . R gives the 95% confidence interval for
θ as (0.77,514.55). The approximate unconditional 95% confidence interval
for θ found using the results of Example 10.4 is (0.96, 103.78). The conditional
maximum likelihood estimator of θ is 9.25. Recall from Example 10.4 that the
unconditional maximum likelihood estimator of θ is 10. The R procedures are
based on the algorithms due to Mehta and Patel (1986a, 1986b) and Clarkson
et al. (1993). For a survey on exact methods for contingency tables, see Agresti
(2013).

18. Yule’s Measure of Association. The odds ratio θ measures association, but it takes
values from 0 to ∞. If there is a preference for a measure that lies between −1
and 1, we can use Yule’s (1900, 1912) Q , which is defined as

Q = θ − 1

θ + 1

= p11p22 − p12p21

p11p22 + p12p21
. (10.59)

Its sample analog for an observed 2 × 2 table is

Q̂ = θ̂ − 1

θ̂ + 1

= O11O22 − O12O21

O11O22 + O12O21
. (10.60)
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Since Q is an increasing function of θ , confidence limits for Q can be
obtained from confidence limits for θ . In particular, an approximate 1 − α confi-
dence interval for Q is (QL, QU), where

QL = θL − 1

θL + 1
, (10.61)

QU = θU − 1

θU + 1
, (10.62)

where θL and θU are given by (10.56) and (10.57), respectively.
For the liver scan data of Table 10.2, from (10.60), we find

Q̂ = (10 − 1)

10 + 1
= .82.

From (10.61) and (10.62) and Example 10.4, an approximate 90% confidence
interval for Q is (QL, QU), where

QL = (1.40 − 1)

(1.40 + 1)
= .17,

QU = (70.8 − 1)

70.8 + 1
= .97.

19. Odds Ratio under Binomial Sampling. Recall the binomial model of Section 10.1.
There O11 is the number of successes in n1. independent Bernoulli trials, each
with success probability p1, and O21 is the number of successes in n2. independent
Bernoulli trials, each with success probability p2. (Also, the sample 1 trials are
assumed independent of the sample 2 trials.) Then, the odds ratio is defined to be

θ =
p1

1 − p1
p2

1 − p2

. (10.63)

20. Adjusted Unconditional Estimator θ̂a. The denominator of θ̂ can be 0 with positive
probability, and thus in particular, the mean and variance of θ̂ do not exist. The
adjusted estimator θ̂a removes this difficulty. See Haldane (1955) and Gart and
Zweiful (1967).

21. Asymptotic Theory for ln(θ̂). The delta method provides asymptotic normality
results for functions g (that satisfy mild regularity conditions) of random vari-
ables, which themselves have an asymptotic multivariate normal distribution. The
method produces an explicit expression for the variance of g , which in turn can
be used to obtain a consistent estimator of that variance. The delta method is
frequently used in categorical data analysis, where, under multinomial sampling,
the cell entries, suitably standardized, have an asymptotic (singular) multivariate
normal distribution (cf. Goodman and Kruskal (1963) and Agresti (2013, Section
3.1.7)). Applying the delta method to the function

g(O11,O12,O21,O22) = ln

(O11O22

O12O21

)
= ln(θ̂), (10.64)
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provides justification for procedures (10.51)–(10.55). The expression for the vari-
ance will depend on the pij ’s that are then replaced by their sample counterparts
Oij /n.. to obtain a consistent estimator of the variance. Agresti (2013, Section
3.1.7) provides the elementary details for the case where g is given by (10.64).

Properties

1. Bias of Odds Ratio Estimators. See Haldane (1955), Gart and Zweiful (1967),
and Agresti (2013, Section 3.1.1).

2. Invariance Properties of Odds Ratio and Estimated Odds Ratio. See Edwards
(1963) and Comment 12.

Problems

18. For the data of Table 10.4, estimate θ and compute a 95% confidence interval for θ . Interpret
your results.

19. For the data of Table 10.7, estimate θ and compute a 95% confidence interval for θ . Interpret
your results.

20. For the data of Table 10.8, estimate θ and compute a 95% confidence interval for θ . Interpret
your results.

21. For the data of Table 10.12, compute θ and obtain an approximate 95% confidence interval
for θ .

22. The relative risk is defined to be
r = p1|1

p1|2
,

where (recall) p1|1 = p11/(p11 + p12) and p1|2 = p21/(p21 + p22). Show that if r = 1, then the
hypothesis of independence holds and, conversely, independence implies r = 1.

23. Show that the odds ratio θ and the relative risk r satisfy

θ = r × 1 − p1|2
1 − p1|1

.

24. For the data of Table 10.4, compute Q̂ and obtain an approximate 95% confidence interval for
Q .

25. For the data of Table 10.7, compute Q̂ and obtain an approximate 95% confidence interval for
Q .

26. For the data of Table 10.8, compute Q̂ and obtain an approximate 95% confidence interval for
Q .

27. For the data of Table 10.11, compute θ̃ and compare it to θ̂ .

28. For the data of Table 10.12, get an exact 95% (conditional) confidence interval for θ .

10.4 INFERENCE FOR k STRATA OF 2 × 2 TABLES
(MANTEL AND HAENSZEL)

Recall the Diehr et al. (1989) study discussed in Example 10.1 and Section 10.1. In that
example, we computed the respective probabilities, for hospital 8, of white and black
patients receiving liver scans. Now we wish to apply an overall test that assesses the
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respective probabilities across the 19 hospitals (with the most black patients) in the Diehr
et al. study.

More formally, suppose our data consist of k strata, and within each stratum we
have a 2 × 2 table. The two rows of the 2 × 2 table in the i th stratum are viewed as
data from two independent binomial distributions with respective success probabilities
(p(i )

1 , p(i )
2 ), i = 1, 2, . . . , k . In the Diehr et al. study, k = 19 and the strata correspond to

hospitals. Let

p(i )
1 = probability that a black patient in hospital i (with

local or regional disease) will receive a liver scan,
p(i )

2 = probability that a white patient in hospital i (with
local or regional disease) will receive a liver scan.

The data in the i th 2 × 2 table can be represented in the notation of Table 10.13.
Mantel and Haenszel (1959) proposed an approximate test of the null hypothe-

sis H0, which specifies that within each stratum, the success probabilities are equal.
That is

H0 : p(1)
1 = p(1)

2 , p(2)
1 = p(2)

2 , . . . , p(k)
1 = p(k)

2 . (10.65)

We let θi denote the odds ratio for the i th table. Recall that θi is defined as

θi = p(i )
1

1 − p(i )
1

/
p(i )

2

1 − p(i )
2

. (10.66)

H0 can be rewritten as

H0 : θ1 = θ2 = · · · = θk = 1. (10.67)

That is, we are testing that there is a common odds ratio and it is equal to 1. Note
that H0 allows for the common success probabilities to differ from hospital to hospi-
tal. The alternatives of interest are that p(i )

1 ≥ p(i )
2 for all i = 1, . . . , k or p(i )

1 ≤ p(i )
2

for all i = 1, . . . , k . In terms of the liver scan problem, the alternatives specify that
across the 19 hospitals, the probabilities that black patients receive liver scans are
higher than the respective probabilities that white patients receive liver scans or across
the 19 hospitals the black patients have lower probabilities than those of the white
patients.

Table 10.13 2 × 2 Table for i th Stratum

Successes Failures Totals

Sample 1 O11i O12i n1.i
Sample 2 O21i O22i n2.i

Totals: n.1i n.2i n..i
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Approximate Conditional Procedure

In the i th table, given that the marginal totals n1.i , n2.i , n.1i , n.2i , are fixed, the random
variable O11i has a hypergeometric distribution

P(O11i = x) =

(
n1.i

x

)(
n2.i

n.1i − x

)
(

n..i

n.1i

) . (10.68)

The null mean E0(O11i ) is given by

E0(O11i ) = (n1.i )(n.1i )

n..i
, (10.69)

and the null variance var0(O11i ) is given by

var0(O11i ) = (n1.i )(n2.i )(n.1i )(n.2i )

n2
..i (n..i − 1)

. (10.70)

The Mantel and Haenszel (1959) statistic is

MH =
∑k

i=1{O11i − E0(O11i )}√∑k
i=1 var0(O11i )

. (10.71)

An approximate α-level one-sided test of H0 given by (10.65) against the alternatives

H1 : p(i )
1 ≥ p(i )

2 , i = 1, . . . , k (10.72)

(with at least one inequality strict) is

Reject H0 if MH ≥ zα; otherwise do not reject. (10.73)

An approximate α-level one-sided test of H0 against the alternatives

H2 : p(i )
1 ≤ p(i )

2 , i = 1, . . . , k (10.74)

(with at least one inequality strict) is

Reject H0 if MH ≤ −zα; otherwise do not reject. (10.75)

An approximate α-level two-sided test of H0 against the alternatives

H3 : p(i )
1 ≥ p(i )

2 for all k or p(i )
1 ≤ p(i )

2 for all k (10.76)

(with at least one inequality strict) is

Reject H0 if (MH)2 ≥ χ2
α,1; otherwise do not reject. (10.77)
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EXAMPLE 10.5 Liver Scan Data for 19 Hospitals.

Table 10.14 gives, for the Diehr et al. (1989) study, the percent of patients with local
or regional disease receiving liver scan. The data are for the 19 hospitals with the most
black patients.

In Table 10.15, we give the values of E0(O11i ) and var0(O11i ), obtained using (10.69)
and (10.70), respectively.

The 19 2 × 2 tables formed from Table 10.14 are as follows:

Hospital 1

4 9 13
12 34 46
16 43 59

Hospital 2

4 6 10
34 33 67
38 39 77

Hospital 3

7 2 9
6 7 13

13 9 22

Hospital 4

5 5 10
59 56 115
64 61 125

Hospital 5

7 7 14
22 69 91
29 76 105

Hospital 6

5 6 11
41 80 121
46 86 132

Hospital 7

3 6 9
8 72 80

11 78 89

Hospital 8

4 8 12
1 20 21
5 28 33

Hospital 9

7 2 9
77 38 115
84 40 124

Hospital 10

4 6 10
20 70 90
24 76 100

Hospital 11

1 8 9
16 76 92
17 84 101

Hospital 12

4 10 14
10 91 101
14 101 115

Hospital 13

9 18 27
27 118 145
36 136 172

Hospital 14

3 5 8
35 45 80
38 50 88

Hospital 15

9 5 14
69 20 89
78 25 103

Hospital 16

2 3 5
3 12 15
5 15 20

Hospital 17

6 1 7
45 31 76
51 32 83

Hospital 18

14 10 24
12 70 82
26 80 106

Hospital 19

15 15 30
43 129 172
58 144 202

From (10.71) and Table 10.15, we obtain

MH = 113 − 81.004√
39.383

= 5.10.
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Table 10.14 Percent of Patients with Local or Regional Disease
Receiving Liver Scans in 19 Hospitals with the Most Black Patients

% with scan (number of patients eligible)

Hospital White Black

1 26.1 (46) 30.8 (13)
2 50.8 (67) 40.0 (10)
3 46.2 (13) 77.8 (9)
4 51.3 (115) 50.0 (10)
5 24.2 (91) 50.0 (14)
6 33.9 (121) 45.5 (11)
7 10.0 (80) 33.3 (9)
8 4.8 (21) 33.3 (12)
9 67.0 (115) 77.8 (9)

10 22.2 (90) 40.0 (10)
11 17.4 (92) 11.1 (9)
12 9.9 (101) 28.6 (14)
13 18.6 (145) 33.3 (27)
14 43.8 (80) 37.5 (8)
15 77.5 (89) 64.3 (14)
16 20.0 (15) 40.0 (5)
17 59.2 (76) 85.7 (7)
18 14.6 (82) 58.3 (24)
19 25.0 (172) 50.0 (30)

Table 10.15 Null Means and Variances of O11i for Liver Scan Data

i O11i E0(O11i ) var0(O11i )

1 4 3.525 2.038
2 4 4.935 2.204
3 7 5.318 1.347
4 5 5.120 2.317
5 7 3.867 2.449
6 5 3.833 2.307
7 3 1.112 0.886
8 4 1.818 1.012
9 7 6.097 1.839

10 4 2.400 1.658
11 1 1.515 1.159
12 4 1.704 1.326
13 9 5.651 3.789
14 3 3.455 1.805
15 9 10.602 2.245
16 2 1.250 0.740
17 6 4.301 1.537
18 14 5.887 3.470
19 15 8.614 5.255∑19

i=1 O11i = 113
∑19

i=1 E (O11i ) = 81.004
∑19

i=1 var0(O11i ) = 39.383
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For MH = 5.10, the two-sided P -value associated with the test at (10.73) is found to be
approximately 1.7 × 10−7 using pnorm(5.1, lower.tail=F). Thus, there is very
strong evidence that the hospitals do not have a common odds ratio that is 1. Since MH
is significantly positive, there is strong evidence that across hospitals the odds that black
patients get liver scans are higher than the odds that white patients get liver scans.

The Mantel–Haenszel test is implemented in R with the command
mantelhaen.test. The data is input as a collection of 2 × 2 matrices in a
three-dimensional array format. One- and two-sided tests are available through the
argument alternative. The test statistic is given as (MH)2 for all tests, rather
than MH. Using the data from Example 10.5, the following output is produced by
mantelhaen.test(x, correct=F, alternative="g"):

Mantel-Haenszel chi-squared test without continuity
correction

data: x
Mantel-Haenszel X-squared = 25.9938, df = 1, p-value = 1.713e-07
alternative hypothesis: true common odds ratio is greater

than 1

Comments

22. Types of Alternatives the Mantel–Haenszel Test Detects. Consider the one-sided
procedure given by (10.73). This procedure rejects H0 for significantly large val-
ues of MH. This test will be consistent against H1 (given by (10.72)) if at least one
of the inequalities is strict. However, if for some strata p(i )

1 > p(i )
2 and for others

the inequality goes in the other direction, the MH test will have less power because
the statistic would then tend to add positive and negative deviations of the form
{O11i − E0(O11i )}. Roughly speaking, the one-sided procedure based on (10.73)
is consistent against alternatives A for which EA

(∑k
i=1{O11i − E0(O11i )}

)
> 0,

where EA indicates that the expectation is computed under alternative A. Sim-
ilar considerations apply to the one-sided procedure given by (10.75) and the
two-sided procedure given by (10.77).

23. The Mantel–Haenszel Test Viewed as a Test of Conditional Independence. Sup-
pose the k 2 × 2 tables are tables of cross-classified data and in each stratum we
are interested in whether factors C and D are (conditionally) independent. The
alternative of positive association would correspond to C and D being positively
associated across strata. The one-sided procedure given by (10.73) tests condi-
tional independence against alternatives that C and D are positively associated
across strata. As in Comment 22, the MH test will have less power if for some
strata C and D are positively associated and, for others, C and D are nega-
tively associated. Similar considerations apply to the one-sided procedure given
by (10.75) and the two-sided procedure defined by (10.77).

24. Zelen’s Exact Test for a Common Odds Ratio. The null hypothesis H0, given by
(10.67), specifies that the strata have a common odds ratio equal to 1. Zelen
(1971) developed an exact conditional test of

H ∗
0 : θ1 = θ2 = · · · = θn = θ (say), (10.78)
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where the common value θ is unspecified. The hypothesis H ∗
0 is called the hypoth-

esis of homogeneity.
Recall Table 10.13 and let τ denote any collection of k 2 × 2 tables. Fur-

thermore, define

T = {τ : table i in τ has marginal totals n.1i , n.2i , n1.i , n2.i }. (10.79)

The O11i values can vary, but the marginal totals are fixed. Zelen’s test is based
on the restricted reference set

T (s) =
{

τ : τ ∈ T and
k∑

i=1

O11i = s

}
. (10.80)

Note that T (s) is contained in T . The conditional probability of obtaining a
specific set of k 2 × 2 tables that is a member of T (s) is

P(τ |s) =

∏k

i=1

(
n1.i

O11i

)(
n2.i

O21i

)/(
n..i

n.1i

)
∑

τ∈T

∏k

i=1

(
n1.i

O11i

)(
n2.i

O21i

)/(
n..i

n..i

) . (10.81)

Zelen’s test is conditional on
∑k

i=1 O11i as well as the marginal totals n.1i , n.2i ,
n1.i , n2.i for each table. For all k 2 × 2 tables having the same marginals as the
observed marginals, the probability given by (10.81) is calculated. The tables
are then ordered according to those probabilities. The P -value is the sum of
those probabilities for those tables whose probabilities are less than or equal to
the probability of the observed table. That is, suppose τ0 is our observed set of
k 2 × 2 tables with marginal totals n.1i , n.2i , n1.i , n2.i for the i th table and suppose
that for τ0, we have

∑k
i=1 O11i = s . Let

T ∗(s) = {τ : τ ∈ T (s) and P(τ |s) ≤ P(τ0|s)} .

Then, the P -value for Zelen’s test is

P =
∑

τ∈T ∗(s)

P(τ |s).

This P -value is two-sided; the test does not indicate the direction of a deviation
from H ∗

0 .
For example, suppose k = 2 and our observed set of two tables is

τ0 =
{

2 2
1 5,

1 4
5 1

}
.
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Thus, our observed value is O111 + O112 = 3. The four tables in the reference
set T (3) and their conditional probabilities given by (10.81) are as follows.

Table Conditional probability

1.

{
0 4

3 3,

3 2

3 3

} [{(
4

0

)(
6

3

)/(
10

3

)}
·
{(

5

3

)(
6

3

)/(
11

6

)}]
�

= .2841

2.

{
1 3

2 4,

2 3

4 2

} [{(
4

1

)(
6

2

)/(
10

3

)}
·
{(

5

2

)(
6

4

)/(
11

6

)}]
�

= .6387

3.

{
2 2

1 5,

1 4

5 1

} [{(
4

2

)(
6

1

)/(
10

3

)}
·
{(

5

1

)(
6

5

)/(
11

6

)}]
�

= .0767

4.

{
3 1

0 6,

0 5

6 0

} [{(
4

3

)(
6

0

)/(
10

3

)}
·
{(

5

0

)(
6

6

)/(
11

6

)}]
�

= .0004,

where

� =
{(

4

0

)(
6

3

)/(
10

3

)}
·
{(

5

3

)(
6

3

)/(
11

6

)}

+
{(

4

1

)(
6

2

)/(
10

3

)}
·
{(

5

2

)(
6

4

)/(
11

6

)}

+
{(

4

2

)(
6

1

)/(
10

3

)}
·
{(

5

1

)(
6

5

)/(
11

6

)}

+
{(

4

3

)(
6

0

)/(
10

3

)}
·
{(

5

0

)(
6

6

)/(
11

6

)}

= .0722 + .1623 + .0195 + .0001 = .2541.

Thus, the four tables have conditional probabilities .0722/.2541 = .2841,
.1623/.2541 = .6387, .0193/.2541 = .0767, and .0001/.2541 = .0004. Of these
four tables, Table 4 has the lowest probability and Table 3 (which is τ0) has the
second lowest. The P -value is

P = .0004 + .0767 = .077.



530 Chapter 10 Comparing Two Success Probabilities

Thus, the observed data do not support H ∗
0 . For small data sets, Zelen’s test is

performed with the command zelen.test. This test requires an input array of
k 2 × 2 matrices. For the example data, the P -value found is again .077.

Mehta, Patel, and Gray (1985) developed an algorithm for performing Zelen’s
test and inverting the test to get a confidence interval for the common odds ratio.

An approximate P -value based on a large-sample test of H ∗
0 proposed by

Breslow and Day (1980) is available through the R command rma.mhs. See
Comment 25. The Breslow–Day statistic has, under H ∗

0 , an asymptotic chi-
squared distribution with k − 1 degrees of freedom. See Breslow and Day (1980)
and Jones et al. (1989). Jones et al. compared seven tests of H ∗

0 , including the
Breslow–Day test. Jones et al. found generally low power for all the tests of H ∗

0
in the study, especially when the data are sparse. In sparse-data situations, a test
due to Liang and Self (1985) performed best.

25. Monte Carlo Sampling to Estimate the Exact P-Value for Zelen’s Test. For some
large data sets, computation of the exact P -value for Zelen’s test is not feasible.
Senchaudhuri, Mehta, and Patel (1995) presented a Monte Carlo method of control
variates that, with a little extra computational effort, can estimate the exact P -
value with greater accuracy than can be obtained by crude Monte Carlo sampling.
For precise descriptions of the method of control variates and the method of
crude Monte Carlo sampling, see Senchaudhuri, Mehta, and Patel (1995). Both
Monte Carlo methods sample a large number N (say) of tables τi from the
reference set given by (10.80) with respective probabilities P(τi |s) given by
(10.81). Senchaudhuri, Mehta, and Patel (1995) presented the data set (Dixon
v. Margolis 1991) given in Table 10.16. The data may be viewed in the format
of 12 2 × 2 tables. The data related to promotions, in 1985, 1987, and 1988, of
black and white police officers in various ranks.

The software StatXact (2010) can be used to obtain a confidence interval
for Zelen’s P -value based on the method of control variates. It produces an
interval based on a sample of a user-specified number of tables. For a sample

Table 10.16 Promotions of Black and White Police Officers

Black White
Year Rank Promoted Total Promoted Total

1985 Sgt. 10 84 66 414
SA Sgt. 3 28 40 110
Master Sgt. 3 12 37 162
SA Master Sgt. 0 2 16 62

1987 Sgt. 1 98 32 487
SA Sgt. 0 29 28 120
Master Sgt. 3 17 28 176
SA Master Sgt. 2 5 16 65

1988 Sgt. 4 107 43 591
SA Sgt. 1 36 4 113
Master Sgt. 2 20 43 198
SA Master Sgt. 1 5 18 112

Source: P. Senchaudhuri, C R. Mehta, and N. R. Patel (1995).
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of 10,000 tables, the corresponding 99% confidence interval for the P -value of
Zelen’s test was (.042, .055). Thus, there is strong evidence against H ∗

0 . That is,
the data indicate that there is not a common odds ratio. (Senchaurdhuri et al.
sampled 100,000 tables and their 99% confidence interval for the P -value was
(.0464, .0467).)

The Breslow and Day (1980) statistic for this data is obtained using the R

command rma.mh from package metafor (Viechtbauer (2010)). The data
may be entered by providing four input vectors, one for each cell of the 2 × 2
tables. Assuming that these vectors are labeled O.11, O.12, O.21 and O.22,
the command is performed with rma.mh(O.11, O.12, O.21, O.22). The
Breslow–Day statistic and P -value are accessed with $BD and $BDp, respectively.
The numeric values for these statistics and the data in Table 10.16 are 16.02
and 0.14.

26. Point and Interval Estimation of a Common Odds Ratio. If we assume (perhaps
on the basis of Zelen’s exact test of H ∗

0 ) that there is a common odds ratio θ ,
it is natural to obtain a point estimate and confidence interval for θ . Mantel and
Haenszel (1959) suggested

θ̂MH =
∑k

i=1(O11iO22i
/

n..i )∑k
i=1(O12iO21i

/
n..i )

. (10.82)

Robins, Breslow, and Greenland (1986) estimated the variance of log(θ̂MH) by

σ̂ 2
RGB =

∑k
i=1(O11i + O22i )(O11iO22i )

/
n2

..i

2
(∑k

i=1 O11iO22i
/

n..i
)2

+
∑k

i=1

{
(O11i + O22i )(O12iO21i ) + (O12i + O21i )(O11iO22i )

}/
n2

..i

2
(∑k

i=1 O11iO22i /n..i
)(∑k

i=1 O12iO21i /n..i
)

+
∑k

i=1(O12i + O21i )(O12iO21i )
/

n2
..i

2
(∑k

i=1 O12iO21i
/

n..i
)2 . (10.83)

An approximate 1 − α confidence interval for ln(θ) is (ψL, ψU), where

ψL = ln(θ̂MH) − zα/2σ̂RGB (10.84)

ψU = ln(θ̂MH) + zα/2σ̂RGB (10.85)

and where θ̂MH is given by (10.82) and σ̂ 2
RGB is given by (10.83). An approximate

1 − α confidence interval for the common odds ratio θ is (θL, θU), where

θL = eψL , (10.86)

θU = eψU, (10.87)

where ψL, ψU are given by (10.84) and (10.85), respectively.
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The command rma.mh will compute θ̂MH and the confidence interval. Partial
output of the procedure using the data in Table 10.16 is

Model Results (OR scale):

estimate ci.lb ci.ub
0.4785 0.3232 0.7084

Thus, the estimate θ̂MH of θ is .48 and the approximate 95% confidence interval
for θ is (.32, .71).

Properties

1. Relationship of Mantel–Haenzel Statistic to Cochran’s (1954) Statistic. See Fleiss
(2003) and Agresti (2013, Section 6.4.2).

2. Efficiency of Mantel–Haenzel Estimator of a Common Odds Ratio. See Hauck
(1979), Breslow (1981), Donner and Hauck (1986), Hauck and Donner (1988),
and Section 10.5.

Problems

29. Mittal (1991) considered pooling tables and the paradoxes that could arise from such pooling.
For example, with the two 2 × 2 tables

Table 1 Table 2

O111 O121 O112 O122

O211 O221 O212 O222

the pooled 2 × 2 table is
Table 3

O111 + O112 O121 + O122

O211 + O212 O221 + O222.

It may happen that the indication obtained by analyzing Table 3 could be different than the
individual indications obtained by analyzing Tables 1 and 2. For example, it is possible that
the estimated odds ratios θ̂1 and θ̂2 for Tables 1 and 2, respectively, satisfy

θ̂1 = O111O221

O121O221
≥ 1, θ̂2 = O112O222

O122O212
≥ 1

but the estimated odds ratio θ̂3 for Table 3 satisfies

θ̂3 = (O111 + O112) × (O221 + O222)

(O121 + O122) × (O211 + O212)
≤ 1.

Or it may be that θ̂1 ≤ 1 and θ̂2 ≤ 1 but θ̂3 ≥ 1. Such anomalies fall into a category known
as Simpson’s Paradox. Create an example satisfying Simpson’s Paradox.
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Table 10.17 Fractions of Students with Tonsillectomies

Age 18 19 20 21 22 23 24

IM 6
23

3
42

12
41

8
46

5
15

2
9

4
9

C 17
49

26
96

34
112

48
139

45
118

29
66

36
75

Source: R. G. Miller (1980).

30. Apply the Mantel–Haenszel test to the data of Table 10.16. What is your conclusion? Is the
conclusion surprising in view of the test results obtained in Comment 25?

31. Recall the study of R. Goode and D. Coursey reported in Miller (1980) and considered in Prob-
lem 4. They surveyed students seen at Stanford University’s Student Health Center between
January 1968 and May 1973. They checked the charts of students treated for infectious mononu-
cleosis (IM) for confirmation of the disease and to determine any history of tonsillectomy. The
control group consisted of students seen at the Health Center between April and September
1973, who came in for any ailment and were willing to check on a survey sheet whether or
not they had undergone a tonsillectomy. Within the 18–24 age groups, the data are given in
Table 10.17. Do the data indicate that tonsillectomy reduces the risk of contracting infectious
mononucleosis?

32. Perform Zelen’s test (see Comments 24 and 25) to the data of Table 10.17. What is your
conclusion?

33. Suppose we have 3 2 × 2 tables of the form

Successes Failures

Treatment A O11i O12i

Treatment B O21i O22i

and the data are as follows:

Table 1 Table 2 Table 3

2 5 4 11 3 11

1 6 1 7 2 9

Perform Zelen’s test of H ∗
0 . What do you conclude?

34. Refer to the three 2 × 2 tables of Problem 33. Assuming a common odds ratio θ , compute
θ̂MH (see Comment 26) and obtain an approximate 95% confidence interval for θ .

35. Even if the evidence in a given data set indicates that H ∗
0 is not true, explain the potential

usefulness of computing θ̂MH for that data set.

36. Suppose k = 2 and our observed set of two 2 × 2 tables is τ0 =
{

3 2
1 5,

1 4
5 1

}
(a) List the tables in the reference set T (4) defined by (10.80).

(b) Compute P(τ |4) for each τ ∈ T (4).

(c) Find the P -value for Zelen’s test corresponding to the observed table τ0.
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10.5 EFFICIENCIES

Storer and Kim (1990) studied the size and power of seven tests for the two-sample
binomial problem considered in Sections 10.1 and 10.2. The tests compared included
the uncorrected chi-squared statistic given by (10.19) in Section 10.1, the chi-squared
statistic with Yates’ continuity correction (Comment 5), and Fisher’s exact test (Section
10.2). In the equal sample-sizes case, an exact unconditional test due to Suissa and
Shuster (1985) does quite well in terms of power. In the general case, the authors find
the sample sizes required by Fisher’s exact test are 10–20% higher than those required
by some of the more powerful procedures considered. One of their conclusions is that
for any reasonable sample size, one will not be led far astray by using the uncorrected
chi-squared statistic.

For estimating the odds ratio (Sections 10.3 and 10.4), Hauck and Donner (1988)
studied the asymptotic relative efficiency (ARE) of the Mantel–Haenszel estimator θ̂MH

(Comment 26) relative to the conditional maximum likelihood estimator proposed by
Birch (1964). They assumed a common odds ratio θi = θ , i = 1, . . . , k , and 0 < θ < ∞.
In this situation, p(i )

1 can be expressed in terms of θ and p(i )
2 , p(i )

1 = (θp(i )
2 )/
{
1 − p(i )

2 +
θp(i )

2

}
and the ARE can be studied by varying the p(i )

1 , i = 1, . . . , k , and θ . Hauck and
Donner (1988) considered the case where the number of strata increases indefinitely for
fixed within-stratum sample sizes. For the situations they considered, the ARE does not
drop below .9. They pointed out the ARE decreases monotonically as θ moves away
from 1 in either direction. For the less extreme values of θ , .2 ≤ θ ≤ .5, the smallest
ARE is .931. Hauck and Donner (1988) pointed out that the results they obtained in
their 1988 study are similar to ones they obtained (Donner and Hauck (1986)) for the
fixed-number-of-strata asymptotic case where the ARE was found to be high over a wide
range of designs likely to arise in practice. For other efficiency results concerning θ̂MH,
see Breslow (1981) and Tarone, Gart, and Hauck (1983).



Chapter 11

Life Distributions and Survival
Analysis

INTRODUCTION

In Sections 11.1–11.4 we consider a sample of lifelengths from an underlying life
distribution (i.e., a distribution that puts all of its probability on nonnegative values).
There are many nonparametric classes of life distributions that are used to describe
aging. We focus on six natural classes that have easily understood physical interpre-
tations. The classes are the increasing failure rate (IFR) class, the increasing failure
rate average (IFRA) class, the new better than used (NBU) class, the new better than
used in expectation (NBUE) class, the decreasing mean residual life (DMRL) class, and
the initially increasing then decreasing mean residual life (IDMRL) class. In Sections
11.1–11.4 we describe tests of the null hypothesis of exponentiality. Section 11.1 con-
siders IFR and IFRA alternatives. Section 11.2 considers NBU and NBUE alternatives.
Section 11.3 considers DMRL alternatives and also presents confidence bands for the
mean residual life function. Section 11.4 considers IDMRL alternatives, and the tests
presented are designed to detect a trend change in the mean residual life. Section 11.5
presents a nonparametric confidence band for the distribution function. Sections 11.6
and 11.7 are devoted to censored data. Section 11.6 contains, for censored data, an esti-
mator of the distribution function, confidence bands for the distribution function, and
confidence bands for the quantile function. Section 11.7 presents a two-sample test for
censored data. Section 11.8 considers asymptotic relative efficiencies.

Data. We obtain n observations, X1, . . . , Xn .

Assumptions for Sections 11.1–11.4

A1. The observations are a random sample from the underlying continuous popula-
tion; that is, the X ’s are independent and identically distributed according to a
continuous distribution F .

A2. F is a life distribution; that is, F (a) = 0 for a < 0. Equivalently, the X ’s are
nonnegative.

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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11.1 A TEST OF EXPONENTIALITY VERSUS IFR
ALTERNATIVES (EPSTEIN)

Hypothesis

We first define the failure rate function, denoted by r(x). If F has a corresponding density
f , r(x) is defined as

r(x) = f (x)

F (x)
(11.1)

for those x such that F (x) > 0. (F (x) = 1 − F (x) and F (x) is known as the survival
function.) The failure rate is also called the hazard rate.

The failure rate has the following physical interpretation. The product r(x)δx is
the probability that an item (unit, person, part) alive at age x will fail in the interval
(x , x + δx ), where δx is small. An IFR corresponds to deleterious aging; that is, the
failure rate increases as age increases. A decreasing failure rate (DFR) corresponds to
beneficial aging; that is, the failure rate decreases as age increases. A constant failure
rate corresponds to a model where the failure rate neither increases nor decreases with
age but is, in fact, independent of age.

The null hypothesis is

H0 : r(x) = λ, for some λ > 0, and all x > 0. (11.2)

The null hypothesis asserts that the failure rate is a constant λ (λ is unspecified); that
is, the failure rate does not depend on x . The null hypothesis specifies that F is an
exponential distribution. (One characterization of exponential distributions is that F is
an exponential distribution if and only if its failure rate is constant.) Thus H0 can be
rewritten as

H0 : F (x) =
{

1 − e−λx (λ unspecified), x ≥ 0,

0, x < 0.
(11.3)

Equivalently, H0 can be expressed as

H0 : F (x) =
{

e−λx (λ unspecified), x ≥ 0,

1, x < 0.
(11.4)

A life distribution F is said to be in the increasing failure rate (IFR) class if its failure
rate is nondecreasing. Similarly, a life distribution F is said to be in the decreasing failure
rate (DFR) class if its failure rate is nonincreasing. For mathematically formal definitions
of these classes, see, for example, Barlow and Proschan (1981). Whereas the IFR class is
used to model deleterious aging, the DFR class is used to model beneficial aging. When
the failure rate r exists, r is IFR if

r(x) ≤ r(y) for all x < y . (11.5)

Similarly, when the failure rate r exists, r is DFR if

r(x) ≥ r(y) for all x < y . (11.6)
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Procedure

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics and define X(0) = 0. The normal-
ized spacings are D1, D2, . . . , Dn , where

Di = (n − i + 1)(X(i ) − X(i−1)), i = 1, . . . , n. (11.7)

Let

Si =
i∑

u=1

Du , i = 1, . . . , n (11.8)

and define S0 = 0. Si is called the total time on test at X(i ). The total-time-on-test statis-
tic is

E =
∑n−1

i=1 Si

Sn
. (11.9)

a. One-Sided Test against IFR Alternatives. To test

H0 : F is exponential
versus

H1 : F is IFR (and not exponential),

at the α level of significance,

Reject H0 if E ≥ eα; otherwise do not reject, (11.10)

where the constant eα is chosen to make the type I error probability equal to
α; that is, P0{E ≥ eα} = α. The R function epstein returns the statistic E and
the corresponding probability. The arguments are x (the data), alternative (which
takes the option IFR, DFR, and two sided) and exact (where exact = False uses
the large-sample approximation if n > 9).

b. One-Sided Test against DFR Alternatives. To test

H0 : F is exponential
versus

H2 : F is DFR (and not exponential),

at the α level of significance,

Reject H0 if E ≤ n − 1

2
− eα; otherwise do not reject. (11.11)

See Comment 6.

c. Two-Sided Test against IFR and DFR Alternatives. To test

H0 : F is exponential
versus

H3 : F is IFR or DFR (and not exponential),
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at the α level of significance (with equal probabilities α/2 in the tails),

Reject H0 if E ≥ eα/2 or if E ≤ n − 1

2
− eα/2; otherwise do not reject.

(11.12)

Large-Sample Approximation

Let

E∗ = E − E0(E)√
var0(E)

= E − (n−1)
2√

n−1
12

. (11.13)

Then, as n → ∞, the distribution of E∗ tends to the N (0, 1) distribution.
The large-sample approximation to procedure (11.10) is

Reject H0 if E∗ ≥ zα; otherwise do not reject. (11.14)

The large-sample approximation to procedure (11.11) is

Reject H0 if E∗ ≤ −zα; otherwise do not reject. (11.15)

The large-sample approximation to procedure (11.12) is

Reject H0 if |E∗| ≥ zα/2; otherwise do not reject. (11.16)

EXAMPLE 11.1 Methylmercury Poisoning.

Van Belle (1972) consulted on an experiment at the Florida State University designed to
study the effect of methylmercury poisoning on the lifelengths of fish. In the experiment,
goldfish were subjected to various dosages of methylmercury. At one dosage level, the
ordered times to death (in days) were 42, 43, 51, 61, 66, 69, 71, 81, 82, and 82. We will
apply the Epstein test of H0 versus IFR alternatives. The calculations are summarized in
Table 11.1.

From the fourth column of Table 11.1, we obtain

9∑
i=1

Si = 420 + 429 + 493 + 563 + 593 + 608 + 616 + 646 + 648 = 5016.

Then from (11.9)

E =
∑9

i=1 Si

S10
= 5016

648
= 7.74.

To apply the large-sample approximation, we note, using (11.13),

E∗ = 7.74 − 4.5√
9

12

= 3.74.
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Table 11.1 Calculation of E
for the Methylmercury Data

i X(i ) D(i ) S(i )

1 42 420 420
2 43 9 429
3 51 64 493
4 61 70 563
5 66 30 593
6 69 15 608
7 71 8 616
8 81 30 646
9 82 2 648

10 82 0 648

Let methyl<-c(42, 43, 51, 61, 66, 69, 71, 81, 82, 82). Then
epstein(methyl, alt="ifr", exact=T) yields E = 7.74 with a P -value
.00002. For the large-sample approximation, epstein(methyl, alt="ifr")

returns E∗ = 3.74 with a two-sided P -value .00009.

Comments

1. The Total-Time-on-Test Statistic. In a life-testing situation, n independent items
may be put on test to study their survival. Let X1, . . . , Xn denote the observed
lifelengths and let X(1) ≤ · · · ≤ X(n) denote their ordered values, and let X(0) = 0.
At time X(i ), the total time spent on test thus far by the n items is

nX(1) + (n − 1)(X(2) − X(1)) + · · · + (n − i + 1)(X(i ) − X(i−1))

=
i∑

u=1

(n − u + 1)(X(u) − X(u−1))

=
i∑

u=1

Du = Si ,

where (recall) Si is given by (11.8). The total-time-on-test transformation trans-
forms X(1), . . . , X(n) into T1, . . . , Tn , where

Ti =
∑i

u=1 Du∑n
u=1 Du

= Si

Sn
. (11.17)

The quantities T1, . . . , Tn are called the total-time-on-test transforms and

E =
n−1∑
i=1

Ti (11.18)

is known as the total-time-on-test statistic. When H0 is true, T1, . . . ,
Tn−1 have the same distribution as the order statistics in a sample of size n − 1
from the uniform (0, 1) distribution (see Epstein (1960)). Since the sum of n − 1
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ordered values equals the sum of n − 1 unordered values, it follows that under
H0, E has the same distribution as U1 + U2 + · · · + Un−1, where U1, . . . , Un−1

are independent and identically distributed U (0, 1) random variables. Since
E (U1) = 1

2 and var(U1) = 1
12 , it follows that

E0(E) = n − 1

2
(11.19)

and
var0(E) = n − 1

12
. (11.20)

From the central limit theorem, we obtain the large-sample approximation based
on E∗ (see (11.13)). The approach to normality is fast and the approximation is
very good when n ≥ 9.

2. The Barlow–Doksum Class of Monotonic Tests. Barlow and Proschan (1966)
showed that the T ’s given by (11.17) tend to be larger for an IFR distribution than
for an exponential distribution. This led Barlow and Doksum (1972) to consider
tests based on statistics that are monotonic in the following sense. A statistic
T (T1, . . . , Tn) is monotonic in the T ’s if T (T1, . . . , Tn) ≥ T (T ′

1, . . . , T ′
n) when-

ever Ti ≥ T ′
i , i = 1, . . . , n − 1. Barlow and Doksum studied the particular class

of monotonic statistics given by TJ =∑n−1
i=1 J (Ti ), where J is a nondecreasing

function on (0, 1). The function J is chosen to make the test based on TJ asymp-
totically most powerful for a given parametric alternative. The choice J (u) = u
yields the total-time-on-test statistic E that is shown to be asymptotically most
powerful for Makeham alternatives. The Makeham parametric family has failure
rate function

rm(x) = λ{1 + θ(1 − exp(−λx))}, θ ≥ 0, x > 0, λ > 0. (11.21)

The failure rate, rm , is increasing when θ > 0. When θ = 0, rm(x) = λ, the failure
rate of an exponential distribution with parameter λ.

For other IFR tests, see Bickel and Doksum (1969), Problem 3, Klefsjö
(1983), Comment 5, and the survey papers by Doksum and Yandell (1984) and
Hollander and Proschan (1984).

3. The Increasing Failure Rate Average (IFRA) Class. The failure rate, r(x), may
have an increasing trend, but it may not be strictly nondecreasing, as is required
to be a member of the IFR class. The failure rate may fluctuate due perhaps
to seasonal variations. In a medical setting, an early increasing failure rate may
decrease for a period due to medical intervention. A distribution F is in the IFRA
class if its average failure rate increases. A distribution F is in the DFRA class
if its average failure rate decreases. For more formal definitions, see Barlow and
Proschan (1981).

The IFR class is contained in the IFRA class and the DFR class is contained
in the DFRA class. If F is IFR, then it is IFRA, but the converse is not true. That
is, there are IFRA distributions that are not IFR. Similarly, if F is DFR then it is
DFRA, but there are DFRA distributions that are not DFR. We may write these
containment relations as

IFR ⊂ IFRA

DFR ⊂ DFRA.
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The exponential distributions form the boundary of the IFR class and the DFR
class; that is, the exponential distributions are in the IFR class and in the DFR
class, and they are the only distributions that are both IFR and DFR. Similarly,
the exponential distributions form the boundary of the IFRA and DFRA classes;
that is, the exponential distributions are in the IFRA class and in the DFRA class
and are the only distributions that are both IFRA and DFRA.

Barlow and Scheuer (1971) and Wang (1987) estimate F when it is known
to be in the IFRA class.

4. Use of E for Testing IFRA. Barlow and Proschan (1966) proved that if X1, . . . , Xn

is a sample from an IFRA distribution and Y1, . . . , Yn is a sample from an expo-
nential distribution, then

E(X1, . . . , Xn)
st≥ E(Y1, . . . , Yn). (11.22)

Here, E(X1, . . . , Xn) denotes E computed for the X -sample and E(Y1, . . . , Yn)

denotes E computed for the Y -sample. The notation
st≥ means stochastically

greater than. The random variable Z is said to be stochastically greater than
the random variable Z ′ if P(Z ≤ x) ≤ P(Z ′ ≤ x) for every x .

Motivated by result (11.22), Barlow (1968) suggested rejecting H0 in favor
of IFRA alternatives if E is large.

Hollander and Proschan (1975) showed that the total-time-on-test
statistic E arises in a natural way for testing exponentiality against NBUE
alternatives (see Section 11.2 and Comments 13 and 14). Hollander and Proschan
(1975) showed that the consistency class of the test that rejects for large (small)
values of E contains the NBUE (NWUE) distributions. Thus the statistic E can
be more suitably viewed as a test for determining the larger NBUE (NWUE)
class.

Other tests of H0 versus IFRA alternatives have been proposed by Barlow
(1968), Barlow and Campo (1975), Bergman (1977), Deshpande (1983), and
Klefsjö (1983). Klefsjö’s test is presented in Comment 5. IFR and IFRA tests
for incomplete data, where some of the items are not observed up to their failure
times, have been proposed by Barlow and Proschan (1969). The maximum like-
lihood estimator (Ĝn , say) of F , when it is known that F is in the IFR class, was
obtained by Grenander (1956) and Marshall and Proschan (1965) (also see Barlow
et al. (1972) and Robertson, Wright, and Dykstra (1988)). Hollander and Proschan
(1984) illustrated the calculation of Ĝn using the methylmercury poisoning data
of Table 11.1.

5. Klefsjö’s IFR and IFRA Tests. Klefsjö’s (1983) proposed IFR and IFRA tests
based on the normalized spacings D1, . . . , Dn defined by (11.7). Klefsjö’s tests
are motivated by a graphical procedure known as the total-time-on-test transform
(see Barlow and Campo (1975) and Klefsjö (1983)). Klefsjö rejects H0 in favor
of H1 for large values of

A =
∑n

j=1 αj Dj

Sn
,

where Sn is defined by (11.8) and

αj = 6−1{(n + 1)3j − 3(n + 1)2j 2 + 2(n + 1)j 3}.
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The null distribution of A is determined by using the result that under
H0, D1, D2, . . . , Dn are independent and identically distributed according to
the exponential distribution given by (11.3). Klefsjö provides null distribution
tables of

A∗ = A

(
7560

n7

)1/2

for n = 5(5)75. He gives the upper and lower .01, .05, and .10 percentiles. Sig-
nificantly large values of A∗ indicate IFR alternatives; significantly small values
of A∗ indicate DFR alternatives. Klefsjö shows that under H0, A∗ can be treated
asymptotically as a N (0, 1) random variable. Klefsjö also shows that the test that
rejects H0 for large values of A is consistent against the class of continuous IFR
distributions.

Klefsjö’s (1983) test of H0 versus F is IFRA (and not exponential) is based
on the statistic B , where

B =
∑n

j=1 βj Dj

Sn
,

where
βj = 6−1{2j 3 − 3j 2 + j (1 − 3n − 3n2) + 2n + 3n2 + n3}.

Klefsjö provides null distribution tables of

B∗ = B

(
210

n5

)1/2

for n = 5(5)75, giving the upper and lower .01, .05, and .10 percentiles. Signifi-
cantly large values of B indicate IFRA alternatives; significantly small values of
B indicate DFRA alternatives. Klefsjö shows that under H0, B∗ can be treated
asymptotically as a N (0, 1) random variable. Klefsjö also shows that the test that
rejects H0 for large values of B is consistent against the class of continuous IFRA
distributions.

For Klefsjö’s IFR test use the R command klefsjo.ifr.mc(x,

alternative="two.sided", exact=FALSE, min.reps=100, max.

reps=1000, delta= 10∧-3). Here, x is a vector of data of length n ,
alternative choices are two.sided, ifr, and dfr with the default being two.sided,
exact is TRUE/FALSE and determines whether the exact test or the large-sample
approximation is used if n ≥ 9. If n < 9, the exact test is used. The default
value is FALSE, so the large-sample approximation is used unless otherwise
specified, min.reps is the minimum number of replications for the Monte Carlo
approximation with the default = 100, max.rep is the maximum number of
replications for the Monte Carlo approximation, and delta is the measure of
accuracy for the convergence. If the probability converges to within delta, a stop
occurs before reaching the maximum number of replications.

For Klefsjö’s IFRA test, use klefsjo.ifra.mc(x, alternative=

"two.sided", exact=FALSE, min.reps=100, max.reps=1000,

delta=10∧-3) where x , exact, min.reps max.reps are defined as in Klefsjö’s
IFR test above. For alternative, the choices are two.sided, ifra, dfra with the
default value being two.sided.
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6. Symmetry of the Null Distribution of E . Under H0, the distribution of E is sym-
metric about its mean (n−1)

2 ; that is,

P0

(
E − n − 1

2
≥ x
)

= P0

(
E − n − 1

2
≤ −x

)
(11.23)

It follows that the lower α percentile point (e(2)
α , say) of the null distribution of

E can be obtained from the upper α percentile point e(1)
α via

e(2)
α = (n − 1) − e(1)

α . (11.24)

7. Some IFR Distributions, Some DFR Distributions. The exponential distribution
has density function

f (x) = λe−λx , x > 0, λ > 0.

Its failure rate is constant, that is,

r(x) = λ, x > 0.

Thus, the exponential distribution is both IFR and DFR.
One commonly used generalization of the exponential distribution is the

Weibull distribution with density function

f (x) = λα(λx)α−1e−(λx)α , x > 0, α > 0 λ > 0.

Its failure rate is
r(x) = λα(λx)α−1.

The failure rate is increasing for α > 1 and decreasing for α < 1. Thus the Weibull
distributions for which α > 1 are IFR distributions, and the Weibull distributions
with α < 1 are DFR distributions. For α = 1, the Weibull distribution reduces to
the exponential distribution.

Another frequently used family of distributions, which is a generalization of
the exponential, is the gamma family. The gamma density function is

f (x) = λαxα−1e−λx


(α)
, x > 0, α > 0, λ > 0,

where 
(α) is the gamma function (cf. Kalbfleisch and Prentice (1980, p. 23)).
The gamma density does not have a closed-form expression for its failure rate. Its
failure rate is increasing when α > 1 and is decreasing when α < 1. Thus those
members of the gamma family for which the parameter α is greater than 1 are
IFR distributions, those members corresponding to α < 1 are DFR distributions.
When α = 1, the gamma distribution reduces to the exponential distribution.

For other IFR and DFR distributions, see Barlow and Proschan (1981) and
Kalbfleisch and Prentice (1980). Often investigators pool data from different IFR
distributions to increase the effective sample size. Gurland and Sethuraman (1995)
show that such a pooling may actually reverse the IFR property of the individual
samples to a DFR property for the mixture.
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Table 11.2 Intervals in Hours between Failures of the Air-
Conditioning System of Plane 8044

i 1 2 3 4 5 6 7 8 9 10 11 12

Xi 487 18 100 7 98 5 85 91 43 230 3 130

Source: F. Proschan (1963).

Table 11.3 Ordered Survival Times in Days of Guinea Pigs under Regimen 4.3

i 1 2 3 4 5 6 7 8 9
X(i ) 10 33 44 56 59 72 74 77 92

i 10 11 12 13 14 15 16 17 18
X(i ) 93 96 100 100 102 105 107 107 108

i 19 20 21 22 23 24 25 26 27
X(i ) 108 108 109 112 113 115 116 120 121

i 28 29 30 31 32 33 34 35 36
X(i ) 122 122 124 130 134 136 139 144 146

i 37 38 39 40 41 42 43 44 45
X(i ) 153 159 160 163 163 168 171 172 176

i 46 47 48 49 50 51 52 53 54
X(i ) 183 195 196 197 202 213 215 216 222

i 55 56 57 58 59 60 61 62 63
X(i ) 230 231 240 245 251 253 254 254 278

i 64 65 66 67 68 69 70 71 72
X(i ) 293 327 342 347 361 402 432 458 555

Source: T. Bjerkedal (1960).

Properties

1. Consistency. See Hollander and Proschan (1975) for the consistency class of
the test defined by (11.10). In particular, if F is continuous and IFR (and not
exponential), the test is consistent.

2. Asymptotic Normality. See Barlow (1968), Bickel and Doksum (1969), and
Doksum and Yandell (1984).

3. Efficiency. See Bickel and Doksum (1969), Klefsjö (1983), and Section 11.8.

Problems
1. Table 11.2 is based on a subset of data considered by Proschan (1963). Proschan investigated

the life distribution of the air-conditioning system of a fleet of Boeing 720 jet airplanes. Table
11.2 presents intervals (in hours) between failures of the air-conditioning system of plane 8044.

Using the data of Table 11.2, test H0 versus IFR alternatives.

2. Bjerkedal (1960) studied the lifelengths of guinea pigs injected with different amounts of tuber-
cle bacilli. One reason for choosing this species is that guinea pigs are known to have a high
susceptibility to human tuberculosis. The data in Table 11.3 are a subset of the survival data
considered by Bjerkedal.

The data in Table 11.3 correspond to study M (in Bjerkedal’s terminology), in which
animals in a single cage are under the same regimen. The regimen number is the common
logarithm of the number of bacillary units in .5 ml of the challenge solution. The data in
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Table 11.3 are for regimen 4.3. Regimen 4.3 corresponds to 2.2 × 104 bacillary units per .5 ml
(log10(2.2 × 104) = 4.342). There are 72 observations, and Table 11.3 gives the ordered values
X(1) ≤ · · · ≤ X(72). Using the data of Table 11.3, test H0 versus IFR alternatives.

3. Bickel and Doksum (1969) considered a class of test statistics based on the ranks of the D’s. Let
Ri denote the rank of Di in the joint ranking of D1, . . . , Dn . One member of the Bickel–Doksum
class is

W1 =
n∑

i=1

i log
(

1 − Ri

n + 1

)
. (11.25)

When F is IFR (DFR) the spacings tend to show a downward (upward) trend (cf. Doksum and
Yandell (1984). Thus, H0 is rejected in favor of H1(H2) for significantly large (small) values of
W1. Bickel and Doksum showed that tests based on W1 are asymptotically equivalent to those
based on E . They found, however, that for finite sample sizes, E does better than W1 in terms
of power. For finite n , the null distribution of W1 can be obtained using the fact that, under H0,
all n! possible outcomes of (R1, . . . , Rn) are equally likely (and thus each has probability 1/n!).
Determine the null distribution of W1 for the case n = 4. That is, give the possible values of
W1 and the corresponding probabilities. What is the critical region of the α = 1

24 test of H0

versus H1 based on W1?

4. Bickel and Doksum (1969) showed that, under H0,

W ∗
1 =

√
n(W ′

1 + 1
2 )

s1
(11.26)

tends to a N (0, 1) distribution as n → ∞. In (11.26),

W ′
1 = W1

n(n + 1)
(11.27)

and
s2

1 = n − 1

12(n + 1)
. (11.28)

Thus an approximate α level test of H0 versus H1 rejects H0 if W ∗
1 ≥ zα and accepts H0 if

W ∗
1 < zα . Similarly, an approximate α level test of H0 versus H2 rejects H0 if W ∗

1 ≤ −zα and
accepts H0 if W ∗

1 > −zα . Apply the large-sample test of H0 versus H1, based on W ∗
1 to the

methylmercury data of Example 11.1.

5. Apply the large-sample test based on W ∗
1 to the data of Table 11.2.

6. Verify the symmetry of the null distributions of E as expressed in (11.23) (Hint : Recall that,
under H0, E has the same distribution as U1 + . . . + Un−1, where U1, . . . , Un−1 are independent
U (0, 1) random variables.)

7. Describe a situation in which DFR alternatives (i.e., beneficial aging) might occur.

8. Describe a situation where it is natural to expect the underlying distribution to satisfy the IFRA
property but not satisfy the IFR property (i.e., where F might be expected to be a member of
the IFRA class but not a member of the IFR class).

11.2 A TEST OF EXPONENTIALITY VERSUS NBU
ALTERNATIVES (HOLLANDER–PROSCHAN)

Hypothesis

The hypothesis of interest is

H0 : P(X ≥ x + y |X ≥ x) = P(X ≥ y), for all x , y ≥ 0. (11.29)
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The vertical bar (|) in the probability statement on the left-hand side of (11.29) is to be
read as “given that.” (11.29) asserts that the probability of surviving an additional time
period y , given that the item has survived to time x , is equal to the probability that a
new item will survive an initial period y . Insisting that the equality holds for all x , y
is equivalent to asserting that used items of all ages are no better and no worse than
new items. This property is equivalent to the underlying population being an exponential
population (see Comment 8). Thus (11.29) is another way of expressing H0 given by
display (11.3). Using the survival function F , (11.29) can be written as

H0 :
F (x + y)

F (x)
= F (y), all x , y ≥ 0, (11.30)

and again as
H0 : F (x + y) = F (x)F (y), all x , y ≥ 0. (11.31)

We now turn to the new better than used (NBU) and new worse than used (NWU)
alternatives. The distribution F is said to be in the NBU class if

F (x + y) ≤ F (x)F (y), all x , y ≥ 0. (11.32)

Similarly, the distribution F is said to be in the NWU class if

F (x + y) ≥ F (x)F (y), all x , y ≥ 0. (11.33)

If F is NBU, then new items are better than used items of any age. Similarly, if F is
NWU, then new items are worse than used items of any age. The boundary members
of the classes are the exponential distributions. An exponential distribution is both NBU
and NWU.

Procedure

Let X(1) ≤ · · · ≤ X(n) denote the ordered X ’s. Compute

T =
∑

i>j>k

ψ(X(i ), X(j ) + X(k)), (11.34)

where

ψ(a , b) =
{

1, if a > b,

0, if a < b.
(11.35)

Note that the summation in (11.34) is over all n(n − 1)(n − 2)/6 ordered triples (i , j , k)

with i > j > k .

a. One-Sided Test against NBU Alternatives. To test

H0 : F is exponential

versus
H4 : F is NBU (and not exponential)
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at the α level of significance,

Reject H0 if T ≤ t1,α; otherwise do not reject, (11.36)

where the constant t1,α satisfies P0{T ≤ t1,α} = α. The R function nb.mc gives
a P -value corresponding to T based on Monte Carlo sampling. If the value of T ,
say t , is less than the null mean n(n − 1)(n − 2/8)), nb.mc returns a value that
approximates P0(T ≤ t). If t is greater than the null mean, nb.mc approximates
P0(T ≥ t). The R function newbet gives an approximate P -value corresponding
to the standardized value T ∗ defined by (11.39).

b. One-Sided Test against NWU Alternatives. To test

H0 : F is exponential

versus
H5 : F is NBU (and not exponential)

at the α level of significance,

Reject H0 if T ≥ t2,α; otherwise do not reject, (11.37)

where the constant t2,α satisfies P0{T ≥ t2,α} = α.

c. Two-Sided Test against NBU and NWU Alternatives. To test

H0 : F is exponential

versus
H6 : F is NBU or NWU (and not exponential)

at the α level of significance,

Reject H0 if T ≤ t1,α1 or if T ≥ t2,α2; otherwise do not reject, (11.38)

where α1 + α2 = α.

Large-Sample Approximation

Define

T ∗ = T − E0(T )

[var0(T )]1/2

= T − { n(n−1)(n−2)
8

}{( 3
2

)
n
(
n − 1

)(
n − 2

)[( 5
2592

)(
n − 3

)(
n − 4

)+ (n − 3
)( 7

432

)+ ( 1
48

)]}1/2 .

(11.39)

When H0 is true, the statistic T ∗ has an asymptotic (n tending to infinity) N (0, 1) distri-
bution.
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The normal theory approximation to procedure (11.36) is

Reject H0 if T ∗ ≤ −zα; otherwise do not reject. (11.40)

The normal theory approximation to procedure (11.37) is

Reject H0 if T ∗ ≥ zα; otherwise do not reject. (11.41)

The normal theory approximation to procedure (11.38) is

Reject H0 if T ∗ ≤ −zα1 or if T ∗ ≥ zα2; otherwise do not reject, (11.42)

where α1 + α2 = α.
The R function newbet gives the P -value based on the normal approximation.

Ties

If X(i ) = X(j ) + X(k), compute T by replacing ψ(X(i ), X(j ) + X(k)) with ψ∗(X(i ), X(j ) +
X(k)), where

ψ∗(a , b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if a > b,

1
2 , if a = b,

0, if a < b.

(11.43)

EXAMPLE 11.2 Example 11.1 Continued.

We return to the methylmercury poisoning data of Example 11.1. Recall that the ordered
lifelengths X(1) ≤ . . . ≤ X(10) are 42, 43, 51, 61, 66, 69, 71, 81, 82, and 82. Although,
in general, the ψ functions of (11.34) need to be computed for the n(n − 1)(n −
2)/6 (X(i ), X(j ), X(k)) triples with i > j > k , we note that X(10) < X(1) + X(2); thus for
this data set, all 120 ψ functions must be zero. (Since X(10) < X(1) + X(2), there is no
(i , j , k) triple with i > j > k satisfying X(i ) > X(j ) + X(k).) Thus T = 0. Hollander and
Proschan (1972) showed that for n ≥ 3,

P0{T = 0} = 1(2n−2
n

) . (11.44)

Thus, with n = 10, we find

P0{T = 0} = 1(18
10

) = 1

43758
= .00002.

Thus the P -value is .00002, and this is strong evidence against exponentiality in favor of
deleterious aging. (Result (11.44) was derived under the assumption that F is continuous.
We have a tie in the methylmercury poisoning data set, and thus the P -value of .00002
is approximate.)
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Table 11.4 Intervals in Hours between
Failures of the Air-Conditioning System
of Plane 7907

i Xi X(i )

1 194 15
2 15 29
3 41 33
4 29 41
5 33 181
6 181 194

Source: F. Proschan (1963).

EXAMPLE 11.3 Intervals between Failures for Air-Conditioning System.

Table 11.4 is based on a subset of data considered by Proschan (1963). Proschan inves-
tigated the life distribution of the air-conditioning system of a fleet of Boeing 720 jet
airplanes. The table presents intervals between failures of the air-conditioning system of
plane 7907.

Before testing exponentiality, Proschan considered the following question: Can we
view the X ’s as a random sample from a common population? We are considering a
particular plane, and increased operation of the plane might lead to shorter (or longer)
intervals between failures. Proschan states, “A trend toward longer intervals, if estab-
lished, could be the result of greater experience, debugging, or elimination of faulty
parts, whereas a trend toward shorter intervals could be the result of wearout, aging, or
poor maintenance.”

To see whether it is appropriate to consider the successive intervals from airplane
7907 as values from a common population, we followed Proschan and applied Mann’s
test for trend (see Comment 8.14) and found that there is no significant evidence of a
trend; thus we proceed as if the X ’s are a random sample from a common population.
We now apply procedure (11.36) to test the hypothesis of exponentiality against NBU
alternatives. In this particular setting, we may interpret the hypothesis as a statement that
the air-conditioning system, upon repair, is as good as new. Table 11.5 illustrates the
calculations required to compute T .

Thus, we have
T =

∑
i>j>k

ψ(X(i ), X(j ) + X(k)) = 12.

Let ac<-c(194, 15, 41, 29, 33, 181). The R function newbet(ac)

returns the value T = 12, T ∗ = −.786, and a corresponding P -value of .22. The R
function nb.mc(ac, alt="nbu") yields the Monte Carlo sampling approximation
P0(T ≤ 12) = .15. Thus there is not sufficient evidence to reject H0 and we accept that
the underlying distribution is some exponential distribution.

Comments

8. Characterization of the Exponential Distribution. If (11.31) holds for all x , y ≥ 0,
then it can be shown (cf. Barlow and Proschan (1981, p. 57)) that P(X ≥ y) =
e−λy for some λ > 0. That is, the underlying population is exponential. Even
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Table 11.5 ψ(X(i ), X(j ) + X(k)) Values Corresponding to the 20 Ordered
(i , j , k) Triples with i > j > k

(i , j , k) (X(i ), X(j ), X(k)) X(j ) + X(k) ψ(X(i ), X(j ) + X(k))

(3, 2, 1) (33, 29, 15) 44 0
(4, 2, 1) (41, 29, 15) 44 0
(5, 2, 1) (181, 29, 15) 44 1
(6, 2, 1) (194, 29, 15) 44 1
(4, 3, 1) (41, 33, 15) 48 0
(5, 3, 1) (181, 33, 15) 48 1
(6, 3, 1) (194, 33, 15) 48 1
(5, 4, 1) (181, 41, 15) 56 1
(6, 4, 1) (194, 41, 15) 56 1
(6, 5, 1) (194, 181, 15) 196 0
(4, 3, 2) (41, 33, 29) 62 0
(5, 3, 2) (181, 33, 29) 62 1
(6, 3, 2) (194, 33, 29) 62 1
(5, 4, 2) (181, 41, 29) 70 1
(6, 4, 2) (194, 41, 29) 70 1
(6, 5, 2) (194, 181, 29) 210 0
(5, 4, 3) (181, 41, 33) 74 1
(6, 4, 3) (194, 41, 33) 74 1
(6, 5, 3) (194, 181, 33) 214 0
(6, 5, 4) (194, 181, 41) 222 0

though under H0 the population distributions are restricted to be exponential,
we have retained the term nonparametric for tests based on T and E , because
those tests are designed to detect large nonparametric classes of distributions.

9. Relationship of NBU to IFR and IFRA. The NBU class is larger than the IFR
and IFRA classes and properly contains those classes. Symbolically,

IFR ⊂ IFRA ⊂ NBU.

The corresponding containment relations for the NWU class in relation to the
DFR and DFRA classes are

DFR ⊂ DFRA ⊂ NWU.

Thus, for example, an IFR distribution is also an NBU distribution, but there
are NBU distributions that are not IFR or IFRA. For example, the underlying
population may be NBU, but its failure rate r(x) may fluctuate (and in particular
not be increasing or increasing on average), due perhaps to seasonal variations.
The NBU test is designed to detect this larger class. Hollander and Proschan
show that the consistency class of the NBU (NWU) test that rejects for small
(large) values of T includes the continuous NBU (NWU) distributions.

10. The NBU Test Employs New Items. The reader should note that we can test
whether new is better (worse) than used employing only new items. That is, we
need a sample only of lifelengths of new items to perform the NBU (NWU)
test.
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11. Motivation for the NBU Test. Define

T ∗(x , y) = F (x)F (y) − F (x + y). (11.45)

Note that T ∗(x , y) = 0 for all (x , y) if and only if H0 is true. This fact was
used by Hollander and Proschan in devising the test based on T . The statistic
1
4 − {2T/[n(n − 1)(n − 2)]} estimates the parameter

�NBU(F ) = EF {T ∗(X ′, Y ′)}, (11.46)

where X ′, Y ′ are independent and each is from the underlying life popula-
tion with distribution F . We may view T ∗(x , y) as a measure of the deviation
from H0 at the point (x , y) and �NBU(F ) as the average value of this devia-
tion. When F is NBU and continuous, the parameter �NBU(F ) is positive. When
sampling from such a population the value of 1

4 − {2T/[n(n − 1)(n − 2)]} tends
to be large or, equivalently, T tends to be small. This partially motivates proce-
dure (11.36). Asymptotic normality of T is directly obtained from Hoeffding’s
U -statistic theory because 2T/[n(n − 1)(n − 2)]} is a U -statistic. (See Hollan-
der and Proschan, 1972.)

12. NBU Test for Censored Data. Chen, Hollander, and Langberg (1983a) extended
the NBU test to censored data by estimating the parameter �NBU(F ) using the
Kaplan and Meier (1958) estimator of F . (See Comment 35.)

13. The New Better Than Used in Expectation (NBUE) Class. The NBUE class is
larger than the NBU class. In order to define the NBUE class, we first introduce
the mean residual life function. The mean residual life function, corresponding
to a distribution F , gives, for each value of x ≥ 0, the expected remaining life
at time x . More formally, the mean residual life (mrl) function corresponding
to a distribution F is defined as

m(x) =
{

EF (X − x |X > x), for those x such that F (x) > 0,

0, for those x such that F (x) = 0,
(11.47)

where X has the distribution F . In (11.47), note that X − x is the residual life
of an item with lifelength X , given that it has survived to time x . Also note that
m(0) is the mean μ of the distribution F , that is, m(0) = E (X ).

A distribution F with finite mean is said to be a member of the new better
than used in expectation (NBUE) class if its corresponding mean residual life
function m satisfies

m(0) ≥ m(x) for all x . (11.48)

The NBUE class has the following interpretation. A used NBUE item of any
fixed age has a smaller mean residual lifelength than does a new item.

The new worse than used in exceptation (NWUE) is similarly defined. A
distribution F with finite mean is said to be a member of the NWUE class if its
corresponding mean residual life function satisfies

m(0) ≤ m(x) for all x . (11.49)
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The NWUE class has the following interpretation. A used NWUE item of any
fixed age has a larger mean residual lifelength than does a new item.

The boundary members of the NBUE and NWUE classes are the expo-
nential distributions. The exponential distributions, given by (11.3), have mrl
functions m(x) = (λ)−1, x ≥ 0. This is another characterization of the exponen-
tial distributions, namely, that F is an exponential distribution if and only if its
mrl function is constant.

The relation of the NBUE class to the smaller classes IFR, IFRA, and NBU
is given by the following containment relations:

IFR ⊂ IFRA ⊂ NBU ⊂ NBUE. (11.50)

For the dual classes used to model beneficial aging,

DFR ⊂ DFRA ⊂ NWU ⊂ NWUE. (11.51)

14. Using the E Statistic to Test against NBUE Alternatives. Let X be a random value
from F . Hollander and Proschan (1975) considered the parameter

�NBUE(F ) = EF {F (X )[m(0) − m(X )]}

as a measure of deviation, for a given F , from exponentiality toward “NBUE-
ness.” In the definition of �NBUE(F ), m(x) is the mrl function defined by
(11.47). Hollander and Proschan estimated �NBUE(F ) with its sample coun-
terpart, �NBUE(Fn), where Fn is the empirical distribution function defined by
(11.93). This yields the statistic

K =
∑n

i=1 di X(i )

n2
,

where X(1) ≤ · · · ≤ X(n) are the ordered X ’s and

di = 3n

2
− 2i + 1

2
.

Dividing K by X to make it scale-invariant, Hollander and Proschan proposed
K ∗ = K /X as a statistic for testing H0 against NBUE alternatives or NWUE
alternatives. Significantly large (small) values of K ∗ lead to rejection of H0 in
favor of NBUE (NWUE) alternatives. Hollander and Proschan showed that

nK ∗ = E − n − 1

2
, (11.52)

where E is the total-time-on-test statistic defined by (11.9). Thus tests based
on K ∗ are equivalent to tests based on E . Hence, the total-time-on-test statistic,
originally proposed to detect IFR (DFR) alternatives and later proposed to detect
IFRA (DFRA) alternatives, can be used to detect the larger class of NBUE
(NWUE) alternatives. For testing against NBUE (NWUE) alternatives, use the
R functions newbet and nb.mc.

Klefsjö (1983), by considering a graphical method known as the
total-time-on-test transform (cf. Barlow and Campo, 1975) was also led to
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the K ∗ statistic as a test statistic for exponentiality versus NBUE alternatives.
Borges, Proschan, and Rodrigues (1984) developed a test of exponentiality
versus NBUE alternatives based on the sample coefficient of variation s/X ,
where s2 = n−1∑n

i=1(Xi − X )2. The test proposed by Borges, Proschan, and
Rodrigues is equivalent to a test studied by Lee, Locke, and Spurrier (1980).
Under H0, the distribution of S ′ = √

n{(s/X ) − 1} is asymptotically N (0, 1).
Significantly large values of S ′ indicate NBUE alternatives, and significantly
small values (i.e., large negative values) of S ′ indicate NWUE alternatives.

Let Ui = Si /Sn , where Si is given by (11.8). Barlow and Doksum (1972)
proposed the statistic D+ = max1≤i≤n{Ui − i/n} for testing H0 against IFR
alternatives. Koul (1978b) showed that the test that rejects H0 for significantly
large values of D+ can be more appropriately viewed as a test of H0 against the
larger NBUE class. The null distribution of D+, tabled by Birnbaum and Tingey
(1951), can be used in this life-testing context. Asymptotically, under H0,

P
{

n1/2D+ ≤ x
}

= 1 − e−2x2
.

Whitaker and Samaniego (1989) derive estimates of F for the situation when it
is known that F is a member of the NBUE class.

15. Koul’s NBU Tests. Koul (1977, 1978a) suggested other statistics for
testing H0 versus NBU alternatives. Koul (1977) proposed the statistic
S = min1≤k≤j≤n Tkj , where for 1 ≤ k ≤ j ≤ n , Tkj = nSkj − (n − k)(n − j )
and Skj =∑n

i=1 ψ(X(i ), X(k) + X(j )). S /n2 estimates the parameter
α(F ) = infx ,y≥0{F (x + y) − F (x)F (y)}. The parameter α(F ) can be
viewed as a measure of the deviation of F from H0 toward H4. When F is
exponential, α(F ) = 0; it is negative when F is NBU. Thus, the test rejects
H0 in favor of H4 when S is significantly small. Koul gives critical values of
S for α = .005, .01, .025, .05, .10, .20 and n = 3(1)30(5)50. Koul (1977) does
not provide a dual test of H0 versus H5 (NWU alternatives). Koul (1978a)
suggested a class of tests of H0 versus NBU alternatives indexed by a function
ψ satisfying mild conditions. The Hollander–Proschan NBU test corresponds
to the choice ψ(u) = u . Koul advocated the choice ψ(u) = u1/2.

16. The Boyles–Samaniego Estimator. Boyles and Samaniego (1984) considered the
problem of estimating F when it is known that F is NBU. Their estimator is

F̂NBU(x) = max
i

{
F n(x + X(i ))

F n(X(i ))

}
,

where X(1) < · · · < X(n) are the ordered X ’s and F n is the sample survival func-
tion. F n(x) = 1 − Fn(x), where Fn is the sample distribution function defined
by (11.105). Boyles and Samaniego show that F̂NBU is in the NBU class of
distributions and that it is relatively easy to compute. It is not, however, a con-
sistent estimator of F for all F in the NBU class. They do show that it is a
consistent estimator of F when F is NBU and T = inf{M : F (M ) = 1} is well
defined and finite.

17. The NBU Class and Replacement Policy Comparisons. The NBU class plays
an important role in replacement policy comparisons that arise in the study
of renewal processes and repairable systems. A renewal process is a sequence
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Table 11.6 Ordered Survival Times (Days from Diagnosis)

7 429 579 968 1877
47 440 581 1077 1886
58 445 650 1109 2045
74 455 702 1314 2056

177 468 715 1334 2260
232 495 779 1367 2429
273 497 881 1534 2509
285 532 900 1712
317 571 930 1784

Source: M. M. Siddiqui and E. A. Gehan (1966).

of independent, identically distributed, nonnegative random variables that (with
probability 1) are not all zero. An example of a renewal process is the following.
Consider a system operating over an indefinite period of time. Upon failure, the
system is repaired or replaced. Assuming negligible time for repair, the succes-
sive intervals between failures are independent, identically distributed random
variables of a renewal process.

Under an age replacement policy, a unit is replaced upon failure or at
age T , whichever comes first. Let N (t) = number of renewals in [0, t] for an
ordinary renewal process and NA(t , T ) = number of failures in [0, t] under an
age replacement policy with replacement interval T . It can be shown that N (t) is
stochastically larger than NA(t , T ) for all t ≥ 0, T ≥ 0, if and only if F is NBU.
For this result and related results, see Barlow and Proschan (1981, p. 179).

Properties

1. Consistency. See Hollander and Proschan (1972) for the consistency class of
the test defined by (11.36). In particular, if F is continuous, NBU (and not
exponential), the test is consistent.

2. Asymptotic Normality. See Hollander and Proschan (1972).

3. Efficiency. See Hollander and Proschan (1972), Koul (1978b), Klefsjö (1983),
and Section 11.8.

Problems

9. The data in Table 11.6 are from a study discussed by Siddiqui and Gehan (1966) and also
considered by Bryson and Siddiqui (1969). The data are survival times (measured from the
date of diagnosis) of 43 patients suffering from chronic granulocytic leukemia. For these data,
T = 8327. Apply the large-sample approximation (11.40) to test against NBU alternatives.
(Note that one might be reluctant to postulate IFR alternatives here because, after the diagnosis
of leukemia, medical treatment may cause the failure rate to decrease for a period of time.)

10. Either show directly or illustrate by means of an example that the maximum possible value of
T (based on a sample of size n) is n(n − 1)(n − 2)/6 and the minimum possible value is 0.

11. Apply the NBU test to the data of Table 11.2. Compare your result to the result obtained using
the test based on E .

12. Let Fa ,b denote the class of distributions with support [a , b], where b < 2a . (Roughly speaking,
each F in Fa ,b puts all its probability in the interval [a , b], where b < 2a .) Show that if
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X1, . . . , Xn is a random sample from a distribution F that is in the class Fa ,b , then PF (T =
0) = 1.

13. (Problem 12 Continued) Show that every F in Fa ,b is an NBU distribution. (Hint: Consider
the four cases (i) x < a and y < a , (ii) x ≥ a and y ≥ a , (iii) x < a and y ≥ a , and (iv) x ≥ a
and y < a . Show that in each of these cases, F (x , y) satisfies the inequality of (11.32).)

14. (Problems 12 and 13 Continued) Consider the NBU test that rejects for small values of T .
Using the fact that, for n ≥ 3, P0[T = 0] = 1/

(2n−2
n

)
, show that when n ≥ 3 and α ≥ 1/

(2n−2
n

)
,

the power of the NBU test equals 1 for every F in the class Fa ,b .

15. Verify directly (or illustrate using an example) result (11.52).

16. Apply the NBU test to the guinea pig survival data of Table 11.3.

11.3 A TEST OF EXPONENTIALITY VERSUS
DMRL ALTERNATIVES (HOLLANDER–PROSCHAN)

Hypothesis

The null hypothesis is
H0 : F is exponential. (11.53)

The alternatives are expressed in terms of the mrl function m(x) defined by (11.47).
The alternatives are the decreasing mean residual life (DMRL) alternatives, and the
increasing mean residual life (IMRL) alternatives. DMRL distributions model situations
where deterioration takes place with age; IMRL distributions model beneficial aging.

The distribution F is said to be a member of the decreasing mean residual life
(DMRL) class if F (0) = 0 and

m(x) ≥ m(y), for all x < y such that F (x) and F (y) > 0. (11.54)

Similarly, the distribution F is said to be a member of the increasing mean residual life
(IMRL) class if F (0) = 0 and

m(x) ≤ m(y), for all x < y such that F (x) and F (y) > 0. (11.55)

The distributions that are both DMRL and IMRL are the exponential distributions; that
is, the exponentials are the boundary members of the classes.

Procedure

Let X(1) ≤ · · · ≤ X(n) denote the ordered X ’s. Compute

V ∗ = V

X
, (11.56)

where

V =
∑n

i=1 c(i )X(i )

n4
(11.57)
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and

ci =
(

4

3

)
i 3 − 4ni 2 + 3n2i −

(
1

2

)
n3 +

(
1

2

)
n2 −

(
1

2

)
i 2 +
(

1

6

)
i .

Let
V ′ = {√(210)n

}
V ∗. (11.58)

a. One-Sided Test against DMRL Alternatives. To test

H0 : F is exponential

versus
H7 : F is DMRL (and not exponential),

at the α level of significance,

Reject H0 if V ′ ≥ v1,α; otherwise do not reject, (11.59)

where the constant v1,α is chosen to make the type I error probability equal to α;
that is, P0{V ′ ≥ v1,α} = α. The R function dmrl.mc returns the Monte Carlo test
and the large-sample approximation. By specifying Monte Carlo is TRUE/FALSE
determines whether the Monte Carlo test or the large-sample approximation is
used if n ≥ 9. If n < 9 the Monte Carlo test is used. The default value is
FALSE, so the large-sample approximation will be used unless specified not to
(see Example 11.4).

b. One-Sided Test against IMRL Alternatives. To test

H0 : F is exponential

versus
H8 : F is IMRL (and not exponential),

at the α level of significance,

Reject H0 if V ′ ≤ v2,α; otherwise do not reject, (11.60)

where the constant v2,α is chosen to make the type I error probability equal to α;
that is, P0{V ′ ≤ v2,α} = α.

c. Two-Sided Test against DMRL and IMRL Alternatives. To test

H0 : F is exponential

versus
H9 : F is DMRL or IMRL (and not exponential)

at the α level of significance,

Reject H0 if V ′ ≥ v1,α1 or if V ′ ≤ v2,α2; otherwise do not reject, (11.61)

where α = α1 + α2.
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Large-Sample Approximation

Under H0, the asymptotic distribution of V ′ tends to the N (0, 1) distribution. Thus, the
large-sample approximation to procedure (11.59) is

Reject H0 if V ′ ≥ zα; otherwise do not reject. (11.62)

The large-sample approximation to procedure (11.60) is

Reject H0 if V ′ ≤ −zα; otherwise do not reject. (11.63)

The (equal-tailed) large-sample approximation to procedure (11.61), with α1 = α2 =
α/2 is

Reject H0 if |V ′| ≥ zα/2; otherwise do not reject. (11.64)

EXAMPLE 11.4 Methylmercury Poisoning.

We return to the methyl-mercury poisoning data of Example 11.1 and illustrate the
calculation of the DMRL statistic via Table 11.7.

By summing the fourth column of Table 11.7, we obtain

10∑
i−1

ci X(i ) = 29,730.

Thus, from (11.56), we obtain

V = 29,730

10,000
= 2.9730.

Because X =
(∑10

i=1 Xi

)
/10 = 64.8, from (11.55) and (11.58), we obtain

V ∗ = 2.9730

64.8
= .0459

and

V ′ =
√

2100(.0459) = 2.10.

Using the R command dmrl.mc(methyl, alt="dmrl", exact=T) returns V ∗ =
.046 with a P -value of .01. For the large-sample approximation, use dmrl.mc(methyl,
alt="dmrl") to get V ′ = 2.10 with a P -value of .018. Thus the test indicates that a
DMRL model is preferable to an exponential model, and there is strong evidence of age
deterioration.
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Table 11.7 Calculation of V for the
Methylmercury Poisoning Data

i X(i ) c(i ) ci X(i )

1 42 −189 −7,938
2 43 −1 −43
3 51 122 6,222
4 61 188 11,468
5 66 205 13,530
6 69 181 12,489
7 71 124 8,804
8 81 42 3,402
9 82 −57 −4,674

10 82 −165 −13,530

Comments

18. Implications among Life Distribution Classes. The relationships
between the five classes we have discussed, namely, IFR, IFRA, NBU,
NBUE, DMRL and their dual classes DFR, DFRA, NWU, NWUE, IMRL are
given in Figure 11.1. Where no implication is shown, no implication exists, as
may be demonstrated by counterexample.

Referring to Figure 11.1, we see, for example, that if F is IFR, then F
is DMRL. That is, the IFR class is contained in the DMRL class. Similarly,
the DMRL class is contained in the NBUE class. That there is no arrow connect-
ing DMRL to the IFRA and NBU classes is meant to signify that a containment
relation does not hold between DMRL and IFRA or between DMRL and NBU.
Thus, for example, there are IFRA distributions that are not DMRL distributions
and there are DMRL distributions that are not IFRA distributions. Similarly,
there are NBU distributions that are not DMRL distributions and there are DMRL
distributions that are not NBU distributions (see Bryson and Siddiqui (1969)).

The classes in Figure 11.1 consist of life distributions that can be used to
model situations where the lifelengths of items tend to deteriorate with age.
The dual classes in Figure 11.1 can be used to model situations where the
lifelengths tend to improve with age. The boundary members of each class and
its dual are the exponential distributions that are used to model situations where
lifelengths neither deteriorate nor improve with age. Thus, for example, the only
distributions that are both DMRL and IMRL are the exponential distributions.

19. Motivation for the DMRL Test. Let

D(x , y) = F (x)F (y){m(x) − m(y)}, (11.65)

where m(x) is the mean residual life function (see (11.47)). D(x , y) = 0 for all
x ≤ y if and only if H0 is true. Let X and Y be independent random variables,
each with life distribution F . The parameter

�DMRL(F ) = EF {I (X < Y )D(X , Y )} (11.66)

can be considered a measure of “DMRLness.” In (11.66), I (X < Y ) is 1 if
X < Y , and 0 otherwise. For each x < y , D(x , y) is a weighted measure of the
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IFR IFRA NBU NBUE

DMRL

IMRL

DFR DFRA NWU NWUE

Figure 11.1 Implications among life distributions.

deviation from H0 toward H7 and �DMRL(F ) is an average value of this devia-
tion. The weights F (x) and F (y) represent the proportions of the population still
alive at times x and y , respectively, thus furnishing comparisons concerning the
mean residual lifelengths from x and y , respectively. The Hollander–Proschan
statistic is obtained by substituting the empirical distribution function Fn for
F in (11.66). The asymptotic normality of the statistic follows from Stigler’s
(1974) results on linear functions of order statistics (see Stigler (1974) and
Hollander and Proschan (1975)). The exact null distribution of V ′ is given by
Langenberg and Srinivasan (1979) for α in the upper and lower .01, .05 and .10
regions for n = 2(1)20(5)60. Chen, Hollander, and Langberg (1983b) extended
the DMRL test to censored data by estimating �DMRL(F ) using the Kaplan and
Meier (1958) estimator.

Aly (1990) derives a test of H0 versus H7 using a different parameter to
estimate “DMRLness.” He finds his test outperforms V ′ for the three distribu-
tions he considered. His test has Pitman efficiencies with respect to V ′ of 1.219,
1.0714, and 1.4272 for linear failure rate, Makeham, and Weibull alternatives,
respectively.

20. The Empirical Mean Residual Life Function. The empirical mean residual func-
tion (mrl) function, m̂(x), for a sample X1, . . . , Xn , from F is obtained by
replacing F by the empirical survival function, F n in (11.47). The expression
for m̂(x) when this substitution is made reduces to

m̂(x) =
∑S (x)

j=1 (X ∗
j − x)

S (x)
, (11.67)

where S (x) denotes the number of items at time x , out of the initial sample
X1, . . . , Xn , that exceed x and X ∗

1 , . . . , X ∗
S (x), are those observations that exceed

x . Note that m̂(x) is the average, less x , of the sample values that are greater
than x . Yang (1978) and Hall and Wellner (1979) showed strong consistency of
m̂(x) as an estimator of m(x). Hall and Wellner (1979) derived nonparametric
simultaneous confidence bands for m(x) (see Comment 21). Guess, Hollander,
and Proschan (1986) derived tests of exponentiality versus a trend change in the
mrl function. They considered the situation where the turning point is known.
Hawkins, Kochar, and Loader (1992) considered the situation where the turning
point is unknown. The turning point procedures are discussed in Section 11.4.
Mi (1994) proposed an estimator of m(x) which is continuous and decreasing
(increasing) when F is DMRL (IMRL).
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Insurance companies are particularly interested in estimating the mrl of
insurance applicants in order to set premiums. McLain and Ghosh (2011) esti-
mate the conditional mrl function m(x |z) = EF (X − x |X > x , Z = z) in the
situation where baseline covariates z are available and survival times are subject
to censoring.

21. Confidence Bands for the Mean Residual Life Function. Hall and Wellner (1979)
developed nonparametric simultaneous confidence bands for the mrl function.
(Additional bands are presented in Csörgő and Zitikis (1996).) Assume that
E (X r ) < ∞ for some r > 2. The Hall–Wellner bands are

m̂(x) − Dn

F n(x)
, m̂(x) + Dn

F n(x)
, 0 ≤ x < ∞, (11.68)

where

F n(x) = number of X -values in the sample > x

n
(11.69)

is the empirical survival function, m̂(x) is the mean residual life function given
by (11.67), and

Dn = aαSn

n1/2
, (11.70)

where

Sn =
√∑n

i=1(Xi − X )2

n − 1
(11.71)

is the sample standard deviation. The value aα is determined so that the coverage
probability of the bands is approximately 1 − α. Values of aα are given in the
R object b.mrl.

The value aα is chosen from the distribution of sup0≤t≤1 |Wt |, where Wt

is the value at t of standard Brownian motion W (see the Weiner process,
Billingsley (1968, p. 61)). The value aα satisfies

P

(
sup

0≤t≤1
Wt ≤ aα

)
= 1 − α.

Hall and Wellner show that if F is continuous and E (X r ) < ∞ for some r > 2,
then as n → ∞, the limiting value of the probability given by the left-hand
side of (11.72) is 1 − α. The distribution of Y = sup0≤t≤1 Wt is given by (cf.
Billingsley, 1968, p. 79)

P(Y ≤ a) ≡ P(a) =
∞∑

k=−∞
(−1)k {�((2k + 1)a) − �((2k − 1)a)}

= 1 − 4{�(a) − �(3a) + �(5a) − · · ·},

where � denotes the standard normal cumulative distribution function and � =
1 − �. Hall and Wellner point out the approximation P(a) ∼= 1 − 4�(a) gives
three-place accuracy for α > 1.4.
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Figure 11.2 An approximate 95% confidence band for the mean residual life for the chronic granulocytic
leukemia data of Table 11.6.

With the choice of aα as given in b.mrl, we have

P

(
m̂(x) − Dn

F n(x)
≤ m(x) ≤ m̂(x) + Dn

F n(x)
, for all x ≥ 0

)
∼= 1 − α.

(11.72)
Thus, for example, to obtain an approximate 95% simultaneous confidence band,
use a a.05 = 2.2414 when substituting into (11.70).

Figure 11.2 is a plot of m̂(x) and an approximate 95% simultaneous confi-
dence band for m(x) for the chronic granulocytic leukemia data of Table 11.6.
Note that the graph of m̂(x) changes at each ordered X -value and is a line of
slope −1 between adjacent X -values. The same is also true of the band.

The R program mrl computes the bands.
Suppose, rather than simultaneous confidence bands for all x ≥ 0, we desire

tighter bands for m(x) at a specific point. Hall and Wellner (1979) show that if
F (x) > 0, then

n1/2(m̂(x) − m(x)){F n(x)}1/2

s∗
n (x)

tends in distribution to a N (0, 1) as n → ∞, where s∗
n (x) is the sample standard

deviation of the observations that exceed x . Using the X ∗ notation of (11.67),

s∗
n (x) =

{∑S (x)
j=1 (X ∗

j − X (x))2

n − 1

}
,
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where X (x) =∑S (x)
j=1 X ∗

j /S (x) is the mean of the observations that exceed x . It
follows that (

m̂(x) − zα/2s∗
n (x){

nF n(x)
}1/2

, m̂(x) + zα/2s∗
n (x){

nF n(x)
}1/2

)

is an approximate 100(1 − α)% confidence interval for m(x) at the point x .

Properties

1. Consistency. See Hollander and Proschan (1975) for the consistency class of
the test defined by (11.59). In particular, if F is continuous, DMRL (and not
exponential), the test is consistent.

2. Asymptotic Normality. See Hollander and Proschan (1975).

3. Efficiency. See Hollander and Proschan (1975), Klefsjö (1983), and Section 11.8.

Problems

17. Apply the DMRL test to the chronic granulocytic leukemia data of Table 11.6.

18. Apply the DMRL test to the air-conditioning system failure data of Table 11.2. Compare your
result to the results from Problem 11.

19. (a) Calculate the estimated mean residual life function for the air-conditioning system data of
Table 11.4.

(b) Calculate approximate 95% confidence bands for the true mean residual life function.

20. Apply the DMRL test to the guinea pig survival data of Table 11.3. Compare your results to
the results in Problems 2 and 16.

21. (a) Calculate the estimated mean residual life function for the guinea pig survival data of
Table 11.3.

(b) Calculate approximate 95% confidence bands for the true mean residual life function.

22. Table 11.8, based on data in Zacks (1992), gives the pneumatic pressure (kg/cm2) required to
break 20 concrete cubes of dimensions 10 × 10 × 10 cm3.

(a) Calculate an approximate 92% confidence band for m(x).
(b) Calculate an approximate 92% confidence interval for m(229.7). Compare the limits of

the band at 229.7 with the limits of the interval.

23. Describe a situation in which it might be expected that the mean residual life function would
be initially increasing and then later decreasing.

Table 11.8 Pneumatic Pressures Required to Break Concrete Cubes

94.9 106.9 229.7 275.7 144.5 112.8 159.3 153.1 270.6 322.0
216.4 544.6 266.2 263.6 138.5 79.0 114.6 66.1 131.2 91.1

Source: S. Zacks (1992).
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11.4 A TEST OF EXPONENTIALITY VERSUS A
TREND CHANGE IN MEAN RESIDUAL LIFE
(GUESS–HOLLANDER–PROSCHAN)

Hypothesis

The null hypothesis is H0 : F is exponential. The alternatives are specified in terms of
two nonparametric classes of distributions defined via the mean residual life function. The
initially increasing, then decreasing mean residual life (IDMRL) class models aging that
is initially beneficial and then is adverse. The decreasing initially, then increasing mean
residual life (DIMRL) class models aging that is initially adverse and then is beneficial.
A distribution with finite mean is said to be a member of the IDMRL class if there exists
a turning point τ ≥ 0 such that

m(x) ≤ m(y), for 0 ≤ x ≤ y < τ ,

m(x) ≥ m(y), for τ ≤ x ≤ y ,

where m(x) is the mrl function. Similarly, a distribution F with finite mean is said to be
a member of the DIMRL class if there exists a turning point τ ≥ 0 such that

m(x) ≥ m(y), for 0 ≤ x ≤ y < τ ,

m(x) ≤ m(y), for τ ≤ x ≤ y .

Procedure

We treat the case where the turning point τ is known, using a procedure due to Guess,
Hollander, and Proschan (1986). The GHP statistic can be used to detect IDMRL and
DIMRL alternatives. In Comment 25, we consider the case where the turning point is
not known and describe a procedure due to Hawkins, Kochar, and Loader (1992). The
HKL statistic can be used to detect IDMRL alternatives, but it is not designed to detect
DIMRL alternatives.

To define the GHP test statistic, we set

T1 =
i∗∑

i=1

B1

(
(n − i + 1)

n

)(
X(i ) − X(i−1)

)+ B1

(
(n − i ∗)

n

)
(τ − X(i∗))

+ B2

(
(n − i ∗)

n

)(
X(i∗+1) − τ

)+ n∑
i=i∗+2

B2

(
(n − i + 1)

n

)
(X(i ) − X(i−1)),

(11.73)

where (letting X(1) < · · · < X(n) denote the ordered X-values with X(0) = 0) the integer
i ∗ is defined by

0 < X(1) < · · · < X(i∗) ≤ τ < X(i∗+1) < · · · < X(n). (11.74)
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The functions B1 and B2 in (11.73) are defined as

B1(u) =
[

2

3
− Fn(τ ) + 1

2
F 2

n (τ )

]
u +
[
−1 + Fn(τ ) − 1

2
F 2

n (τ )

]
u2 + 1

3
u4, (11.75)

B2(u) =
[
−1

6
+ 1

2
Fn(τ ) − 1

2
F 2

n (τ ) + 1

3
F 3

n (τ )

]
u +
[

1

2
− Fn(τ ) + 1

2
F 2

n (τ )

]
u2 − 1

3
u4.

(11.76)

where Fn is the empirical distribution function defined by (11.93). For data where there
are ties, use

T1 =
i∗∑

i=1

B1

(
si−1

n

)(
X̃ik − X̃(i−1)k

)+ B1

(
si∗

n

)(
τ − X̃i∗k

)
+ B2

(
si∗

n

)(
X̃(i∗+1)k − τ

)+ k∑
i=i∗+2

B2

(
si−1

n

)(
X̃ik − X̃(i−1)k

)
, (11.77)

where
0 = X̃0k < X̃1k < · · · < X̃i∗k ≤ τ < X̃(i∗+1)k < · · · < X̃kk (11.78)

are the distinct ordered observations,

ni = number of observed deaths at time X̃ik , (11.79)

si = n −
i∑

t=0

nt , for i = 0, 1, . . . , k < n. (11.80)

In (11.80), ni �= 0, i = 1, . . . , k but n0 is allowed to be 0.
Under H0, the distribution of n1/2T1 tends, as n → ∞, to a normal distribution with

mean 0 and variance

σ 2
T1

= μ2
[
− 1

15
F 5(τ ) + 1

6
F 4(τ ) − 1

6
F 3(τ ) + 1

10
F 2(τ ) − 1

30
F (τ ) + 1

120

]
, (11.81)

where μ is the mean of F . The test, for the case where τ is known, uses the statistic
n1/2T1/σ̂T1 , where

σ̂ 2
T1

= X
2
[
− 1

15
F 5

n (τ ) + 1

6
F 4

n (τ ) − 1

6
F 3

n (τ ) + 1

10
F 2

n (τ ) − 1

30
Fn(τ ) + 1

210

]
. (11.82)

a. One-Sided Test against IDMRL Alternatives. To test

H0 : F is exponential
versus

H10 : F is IDMRL (and not exponential),

at the approximate α level of significance,

Reject H0 if
n1/2T1

σ̂T1

≥ zα; otherwise do not reject. (11.83)
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b. One-Sided Test against DIMRL Alternatives. To test

H0 : F is exponential

versus
H11 : F is DIMRL (and not exponential)

at the approximate α level of significance,

Reject H0 if
n1/2T1

σ̂T1

≤ −zα; otherwise do not reject. (11.84)

c. One-Sided Test against IDMRL and DIMRL Alternatives. To test

H0 : F is exponential

versus
H12 : F is IDMRL or DIMRL (and not exponential),

at the approximate α level of significance,

Reject H0 if
n1/2T1

σ̂T1

≥ zα1 or if
n1/2T1

σ̂T1

≤ −zα2; otherwise do not reject,

(11.85)
where α = α1 + α2.

The R function tc returns the value of T1, σ̂ 2
T1

and T ∗
1 = n1/2T1/σ̂T1 along with the

corresponding P -value. (See Example 11.5.)

EXAMPLE 11.5 Lifelengths of Guinea Pigs Injected with Tubercle Bacilli.

Bjerkedal (1960) studied the lifelengths of guinea pigs injected with different amounts
of tubercle bacilli. Guinea pigs are known to have a high susceptibility to human tuber-
culosis. This is one reason experimenters choose the species. In Bjerkedal’s study (M),
the animals in a single cage are under the same regimen. The regimen number is the
common logarithm of the number of bacillary units in .5ml of the challenge solution. In
Table 11.3 (see Problem 2), we presented the data for regimen 4.3, which corresponds
to 2.2 × 104 bacillary units per .5 ml (because log10 (2.2 × 104) = 4.342).

It is natural to postulate DIMRL alternatives in this situation. The motivation is that
initially the injection of tubercle bacilli causes an adverse stage of aging, but after the
guinea pigs have survived this initial adverse stage, their natural systems recover to yield
a beneficial stage.

Hall and Wellner (1981) used regimen 4.3 and fit a parametric distribution that is in
the DIMRL class. They estimated the turning point as τ̂ = 91.9. We apply the DIMRL
test to regimen 5.5 of Table 11.9, using 91.9 as the “known” turning point. This is a
reasonable a priori choice because regimens 4.3 and 5.5 are closely related.

For the DIMRL test applied to the pigs data of Table 11.9 with τ = 91.9, we obtain
T1 = −.7956, σ̂ 2

T1
= 7.1072, and n1/2T1/σ̂T1 = −2.53, yielding a P -value of .006. Thus

there is strong evidence to reject H0 in favor of H11.
To do the calculations using R, apply tc(pigs, tau = 91.9, alt="dimrl")

to obtain T1 = −.7956, and P = .006.
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Table 11.9 Ordered Survival Times in Days of Guinea Pigs under Regimen 5.5

i 1 2 3 4 5 6 7 8 9
X(i ) 43 45 53 56 56 57 58 66 67

i 10 11 12 13 14 15 16 17 18
X(i ) 73 74 79 80 80 81 81 81 82

i 19 20 21 22 23 24 25 26 27
X(i ) 83 83 84 88 89 91 91 92 92

i 28 29 30 31 32 33 34 35 36
X(i ) 97 99 99 100 100 101 102 102 102

i 37 38 39 40 41 42 43 44 45
X(i ) 103 104 107 108 109 113 114 118 121

i 46 47 48 49 50 51 52 53 54
X(i ) 123 126 128 137 138 139 144 145 147

i 55 56 57 58 59 60 61 62 63
X(i ) 156 162 174 178 179 184 191 198 211

i 64 65 66 67 68 69 70 71 72
X(i ) 214 243 249 329 380 403 511 522 598

Source: T. Bjerkedal (1960).

Comments

22. Motivation for the IDMRL Test. The motivation for the IDMRL test is similar to
the motivation (see Comment 19) for the DMRL test of Section 11.3. The test
statistic T1 estimates a parameter �IDMRL(F ) that is a weighted measure of the
degree to which F satisfies the IDMRL property. Specifically,

�IDMRL(F ) = EF {I (X < Y < τ)D(X , Y ) − I (τ < X < Y )D(X , Y )}, (11.86)

where D is defined by (11.65) and the indicator functions in (11.86) are defined
as follows. Let X , Y be independent random variables each with distribution F .
Then I (X < Y < τ) is 1 if X < Y < τ and 0 otherwise. Similarly, I (τ < X <

Y ) is 1 if τ < X < Y and 0 otherwise.
Asymptotic normality of T1, similarly standardized, is proved directly in

Guess, Hollander, and Proschan (1986). Exact null distributions of T1 can be
obtained, but the distributions depend on τ and thus creating tables for different
τ values is impractical. There are exact tables, however, for the related problem
where one knows the proportion ρ of the population that “dies” at or before the
turning point. (See Comment 24.)

23. Some Situations Where Knowledge of τ May Be Available. Knowledge of τ might
be available in a situation where one is studying a biological organism in a
physical model of a disease process. In such a situation, it may be the case that
the first 3 months (say) constitute an incubation period. As another example,
consider a training program for future doctors or a recruiting program for a
military service. The value of τ may be known by the length of the intensive
stage designed to eliminate the weaker students or recruits.

24. The IDMRL Test When the Proportion ρ (of the Population that Dies before or at
the Turning Point) Is Known. In a training program, for example, past experience
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Table 11.10 Estimated Large-Sample Percentiles of T (2)

1 − α .90 .95 .99
(1 − α)th percentile 1.41 1.59 1.93

Source: D. L. Hawkins, S. Kochar, and C. Loader (1992).

with earlier classes of recruits may provide knowledge of the proportion ρ of
the population that dies at or before the turning point. Such a ρ would satisfy
F (τ ) = ρ. Guess, Hollander, and Proschan (1986) proposed a statistic (similar
to the T1 statistic) for this situation and provided exact critical values for the case
ρ = .25 for the sample sizes n = 2, . . . , 30 in the lower and upper α = .01, .05,
and .10 regions. Their statistic can be used to detect both IDMRL and DIMRL
alternatives. Tables for ρ = 0(.1)1, .75, 1

3 , and 2
3 are given in Guess (1984).

25. Case Where the Turning Point Is Unknown. Hawkins, Kochar, and Loader (1992)
presented two statistics, T (1) and T (2), for the case where the turning point is
unknown. Their statistics can be used to test exponentiality versus IDMRL alter-
natives, but they are not designed to detect DIMRL alternatives. In Hawkins,
Kochar, and Loader (1992), Monte Carlo power comparisons showed that T (2)

outperformed T (1), and thus we present T (2) here. The HKL statistic is an appro-
priately standardized estimator of a function of F that is 0 when F is exponential
and is positive when F is IDMRL (see Hawkins, Kochar, and Loader (1992)
for details). The statistic can be expressed as

T (2) = n1/2(X )−1 max
0≤k≤n

ξk , (11.87)

where

ξk = A − 2

(
1 − k

n

) n−1∑
j=k

(
1 − j

n

)
D∗

j + 4
n−1∑
j=k

(
1 − j

n

)2

D∗
j , (11.88)

and

A = −X(1) +
n−1∑
j=1

cj D
∗
j , (11.89)

where

cj = 1 − j

n
− 2

(
1 − j

n

)2

(11.90)

and
D∗

j = X(j+1) − X(j ).

The HKL test of H0 versus H10 (F is IDMRL) rejects H0 for significantly large
values of T (2) and accepts H0 otherwise. (To simplify the notation, in (11.87)–
(11.90) the dependence on n of T (2), ξk , A, and cj has been suppressed. In HKL,
these quantities are called T (2)

n , ξnk , An , and cnj .)



568 Chapter 11 Life Distributions and Survival Analysis

HKL do not provide exact tables for the null distribution of T (2) but instead
base their test on estimated critical values obtained from an asymptotic approx-
imation given by (2.6) of their paper. Table 11.10 contains selected estimated
percentiles of the asymptotic distribution of T (2).

From Table 11.10, we see that for large n ,

P0 (T (2) ≥ 1.41) ∼= .10, P0(T
(2) ≥ 1.59) ∼= .05, P0(T

(2) ≥ 1.93) ∼= .01.

Thus, for example, the approximate α = .05 test of exponentiality versus IDMRL
alternatives rejects H0 if T (2) ≥ 1.59 and accepts H0 if T (2) < 1.59.

Aly (1990) proposed competitors of the Guess, Hollander, and Proschan
(1986) tests for the case where the turning point τ (or the proportion ρ that
dies before or at the turning point) is known and a competitor of the Hawkins,
Kochar, and Loader (1992) tests when neither τ nor ρ is known.

Properties

1. Consistency. The test defined by (11.83) is consistent against those F distribu-
tions for which the parameter T (F ), given by (2.1) of Guess, Hollander, and
Proschan (1986), is positive. In particular, if F is continuous, and IDMRL (and
not exponential), the test is consistent.

2. Asymptotic Normality. See Guess, Hollander, and Proschan (1986).

3. Efficiency. See Hawkins, Kochar, and Loader (1992) and Section 11.8. Asymptotic
relative efficiencies are unavailable, but HKL give some Monte Carlo power
comparisons of their tests with respect to the GHP test.

Problems

24. The data for Bjerkedal’s study M, regimen 6.6, are given in Table 11.11. Test for a trend
change in the mrl function at τ = 89.

25. Calculate the estimated mrl function for the guinea pig survival data of Table 11.9.

26. Calculate the estimated mrl function for the guinea pig survival data of Table 11.11.

27. Test for a trend change in the mrl using the chronic granulocytic leukemia data of Table 11.6.

28. Describe a situation (different from those mentioned in Comment 23) where one might expect
a trend change in the mean residual life.

11.5 A CONFIDENCE BAND FOR THE DISTRIBUTION
FUNCTION (KOLMOGOROV)

Assumption

A1. The observations are a random sample from the underlying continuous popula-
tion. That is, the X ’s are independent and identically distributed according to a
continuous distribution F .
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Table 11.11 Ordered Survival Times in Days of Guinea Pigs under Regimen 6.6

i 1 2 3 4 5 6 7 8 9
X(i ) 12 15 22 24 24 32 32 33 34

i 10 11 12 13 14 15 16 17 18
X(i ) 38 38 43 44 48 52 53 54 54

i 19 20 21 22 23 24 25 26 27
X(i ) 55 56 57 58 58 59 60 60 60

i 28 29 30 31 32 33 34 35 36
X(i ) 60 61 62 63 65 65 67 68 70

i 37 38 39 40 41 42 43 44 45
X(i ) 70 72 73 75 76 76 81 83 84

i 46 47 48 49 50 51 52 53 54
X(i ) 85 87 91 95 96 98 99 109 110

i 55 56 57 58 59 60 61 62 63
X(i ) 121 127 129 131 143 146 146 175 175

i 64 65 66 67 68 69 70 71 72
X(i ) 211 233 258 258 263 297 341 341 376

Source: T. Bjerkedal (1960).

Note that we do not require Assumption A2 (used in Sections 11.1–11.4) that F be
a life distribution. Here, the X ’s can also assume negative values.

We seek a simultaneous confidence band for the unknown distribution function; that
is, we seek random functions (i.e., functions that depend on the observed sample values
X1, . . . , Xn ) �(x) and u(x) satisfying

P
{
�(x) ≤ F (x) ≤ u(x), for all x

}
≥ 1 − α.

We then say {�(x), u(x)} is a simultaneous confidence band (or, more simply, a confidence
band) for F (x) with confidence at least 100(1 − α)%.

The bands are based on the null distribution of the Kolomogorov statistic. (See
Comment 27.) They are defined as

�(x) =
{

Fn(x) − dα , if Fn(x) − dα ≥ 0,

0, if Fn(x) − dα < 0,
(11.91)

and

u(x) =
{

Fn(x) + dα , if Fn(x) + dα ≤ 1,

1, if Fn(x) + dα > 1.
(11.92)

In (11.91) and (11.92), Fn(x) is the empirical distribution function of the X ’s defined by

Fn(x) = number of X ’s in the sample ≤ x

n
, (11.93)

and dα is the upper α percentile point of the distribution of Kolmogorov’s statistic D
(see Comments 26 and 5.41), defined as

D = sup
−∞<x<∞

{|Fn(x) − F (x)|}; (11.94)
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Table 11.12 Calculation of the Confidence Band for F (x)

for the Methylmercury Poisoning Data

x F10(x) �(x) u(x)

x < 42 0 0 .409
42 ≤ x < 43 .1 0 .509
43 ≤ x < 51 .2 0 .609
51 ≤ x < 61 .3 0 .709
61 ≤ x < 66 .4 0 .809
66 ≤ x < 69 .5 .091 .909
69 ≤ x < 71 .6 .191 1
71 ≤ x < 81 .7 .291 1
81 ≤ x < 82 .8 .391 1

x ≥ 82 1 .591 1

that is, dα satisfies

PF

(
sup

−∞<x<∞

{|Fn(x) − F (x)|} < dα

)
= 1 − α. (11.95)

The R program kd computes the value of D . The R program kolmogorov computes
the probability under the null hypothesis that D ≥ d .

Large-Sample Approximation

Kolmogorov (1933) and Smirnov (1939) (see also Feller (1948)) proved that as n → ∞,
PF (D ≤ z/

√
n) tends to L(z ), where

L(z ) = 1 − 2
∞∑

i=1

(−1)i−1e−2 i 2z 2
. (11.96)

Smirnov (1948) presents a table of values of L(z ). For large n , dα can be approximated by

dα
.= z ∗

α√
n

, (11.97)

where L(z ∗
α ) = 1 − α. The values of z ∗

α for α = .20, .10, .05, .02, .01 are 1.07, 1.22, 1.36,
1.52, 1.63, respectively. Thus, for example, with α = .05, d.05

.= 1.36/
√

n . The large-
sample approximation is reasonably good for n ≥ 38.

EXAMPLE 11.6 Example 11.1 Continued.

We use the data of Example 11.1 to determine a confidence band for the distribution of
lifelengths. The ordered times to death (in days) are 42, 43, 51, 61, 66, 69, 71, 81, 82,
82. We illustrate the calculation of the 95% band. Table 11.12 illustrates the calculation
of Fn(x), �(x), and u(x). Figure 11.3 is a plot of Fn(x) and the 95% confidence band.

The R function ecdf.ks.CI(x, main=NULL, sub=NULL, xlab=deparse

(substitute(x)),. . .) creates the 95% confidence band. Here x is a vector of data
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Figure 11.3 A 95% confidence band for F (x) for the methylmercury poisoning data.

of length n and main is the title of the plot. The default is ecdf(x) + 95% K.S.Bands.
The “. . . ” signifies you can add any plotting options available. The function returns a list
with three elements, namely, lower (the lower values of the confidence band), upper (the
upper values of the confidence band), and D (the value of Kolmogorov’s statistic D).

The null distribution of D is derived under the assumption that the underlying distri-
bution is continuous. If there are tied observations (as is the case for the methylmercury
poisoning data of this example), the confidence band and the goodness-of-fit test based
on D are approximate, not exact.

Comments

26. Derivation of the Confidence Band. Using the null distribution of D , we can
determine a critical value dα such that

PF (|Fn(x) − F (x)| ≤ dα , for all x) = 1 − α. (11.98)

The subscript F in the notation PF means that the probability is being computed
under the assumption that X1, . . . , Xn is a random sample from F . We can rewrite
(11.98) as

PF (−dα ≤ Fn(x) − F (x) ≤ dα , for all x) = 1 − α. (11.99)

Equation (11.99) is equivalent to

PF (dα ≥ −Fn(x) + F (x) ≥ −dα , for all x) = 1 − α. (11.100)

Equation (11.100) is equivalent to

PF (Fn(x) − dα ≤ F (x) ≤ Fn(x) + dα , for all x) = 1 − α. (11.101)
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From (11.101), we can conclude that {Fn(x) − dα , Fn(x) + dα} is a 1 − α con-
fidence band for F . It is, however, possible that the upper boundary Fn(x) + dα

may exceed 1. We know that F (x) itself cannot exceed 1, so we can lower
the upper boundary to u(x) = minimum[Fn(x) + dα , 1]. Similarly, it is possi-
ble that the lower boundary Fn(x) − dα may be less than 0. We know that
F (x) cannot be less than 0, so we can raise the lower boundary to �(x) =
maximum[Fn(x) − dα , 0]. These adjustments yield the band given by (11.91)
and (11.92).

27. Goodness-of-Fit Test Based on D. Suppose we have a random sample X1, . . . , Xn

from a population with distribution function F (x). Suppose further there is rea-
son to believe (perhaps based on previous experience) that F0 is some completely
specified distribution. For example, F0 may be specified to be a normal distri-
bution with mean 1 and standard deviation 2 or an exponential distribution (see
(11.3)) with scale parameter λ = 1

2 . Kolmogorov’s test of the null hypothesis,

H ∗
0 : F (x) = F0(x) for all x , (11.102)

against the alternative,

H ∗
A : F (x) �= F0(x) for at least one x , (11.103)

is based on
D = sup

−∞<x<∞
{|Fn(x) − F0(x)|}, (11.104)

where Fn(x), the sample distribution function, is

Fn(x) = number of X ’s in the sample ≤ x

n
. (11.105)

Alternatively, Fn(x) can be expressed as

Fn(x) =

⎧⎪⎨⎪⎩
0, x < X(1),
i
n , X(i ) ≤ x < X(i+1),

1, x > X(n).

(11.106)

In (11.104), sup−∞<x<∞ denotes the supremum over all x of the absolute
value of the difference Fn(x) − F0(x). If Fn(x) and F0(x) are plotted as ordinates
against x as abscissa, D is the value of the largest vertical distance between Fn

and F0. The supremum occurs at one of the X(i )’s (i.e., at one of the jump points
of Fn ) or just to the left of one of the X(i )’s.

Formally, Kolmogorov’s test, at the α level of significance, is

Reject H ∗
0 if D ≥ dα; otherwise do not reject, (11.107)

where dα satisfies PF0(D ≥ dα) = α. The R function find.kol(d , n) gives the
probability under the null hypothesis that D ≥ d .

The motivation for the test is as follows. The sample distribution function
Fn(x) has many desirable properties as an estimator of the underlying distribu-
tion F (x) from which the sample is drawn. In particular, Fn(x) converges to
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F (x). If the hypothesized distribution F0 is the true distribution F , then Fn(x)

should be “close” to F0(x). The statistic Dn is the largest vertical distance
between Fn and F0 and this largest distance should be small if H ∗

0 is true.
When all n observations are distinct, D can be computed as

D = max
i=1,...,n

Mi , (11.108)

where

Mi = max

{∣∣∣∣ in − F0(X(i ))

∣∣∣∣, ∣∣∣∣ (i − 1)

n
− F0(X(i ))

∣∣∣∣}. (11.109)

If there are tied observations, let k denote the number of distinct observa-
tions and let Z(1) < · · · < Z(k) denote the ordered distinct observations. Then D
can be computed as

D = max
i=1,...,n

M ′
i , (11.110)

where

M ′
i = max{|Fn(Z(i )) − F0(Z(i )|, |Fn(Z(i−1)) − F0(Z(i ))|}. (11.111)

When F is continuous, the statistic D has a continuous distribution. The statis-
tic D is distribution-free under H ∗

0 when F0 is a continuous distribution. To
see this, let X(0) < · · · < X(n+1) denote the order statistics, where X(0) = −∞
and X(n+1) = ∞. When X1, . . . , Xn are independent and identically distributed
according to the continuous distribution F0, it can be shown using the prob-
ability integral transformation (cf. Casella and Berger (2002, pp. 54–55)) that
F0(X1), . . . , F0(Xn) are independent and identically distributed according to the
uniform distribution on [0, 1]. It follows that F0(X(1)), . . . , F0(X(n)) have the
same joint distribution as that of the order statistics from a sample of size n
from the uniform distribution on [0, 1]. Therefore, in determining the distribution
of D under H ∗

0 , without loss of generality F0 can be taken to be the uniform
distribution on [0, 1]. That is, F0(x) = 0 for x < 0, F0(x) = x for 0 ≤ x ≤ 1,
F0(x) = 1 for x > 1. This simplifies the calculations used to determine critical
values dα . For further details, see Birnbaum (1952) and Miller (1956).

To illustrate the test based on D we return to settling velocity data of Table
3.12. Suppose that we wish to test if the data are from a normal population with
mean 14 and standard deviation 2. That is, suppose the hypothesized distribution
is F0 = N (14, 2). The seven ordered values are 12.8, 12.9, 13.3, 13.4, 13.7,
13.8, 14.5. The values F0(X(1)), . . . , F0(X(7)) for use in (11.109) are calculated
as follows. Let Y denote a N (14, 2) random variable. Then,

F0(X(1)) = P(Y ≤ 12.8) = P

(
Y − 14

2
≤ 12.8 − 14

2

)
= P(Z ≤ −.6)

= .2743,

where Z has a N (0, 1) distribution. Letting �(z ) denote the area under the
N (0, 1) curve to the left of z (i.e., P(Z ≤ z )), we find the value .2743 from
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pnorm(−.6). Note that, by symmetry, �(−.6) = 1 − �(.6) = P(Z ≥ .6).
Similarly, we find

F0(X(2)) = P(Y ≤ 12.9) = P

(
Y − 14

2
≤ 12.9 − 14

2

)
= P(Z ≤ −.55)

= �(−.55) = .2912,

F0(X(3)) = P(Y ≤ 13.3) = P

(
Y − 14

2
≤ 13.3 − 14

2

)
= P(Z ≤ −.35)

= �(−.35) = .3632,

F0(X(4)) = P(Y ≤ 13.4) = P

(
Y − 14

2
≤ 13.4 − 14

2

)
= P(Z ≤ −.3)

= �(−.3) = .3821,

F0(X(5)) = P(Y ≤ 13.7) = P

(
Y − 14

2
≤ 13.7 − 14

2

)
= P(Z ≤ −.15)

= �(−.15) = .4404,

F0(X(6)) = P(Y ≤ 13.8) = P

(
Y − 14

2
≤ 13.8 − 14

2

)
= P(Z ≤ −.1)

= �(−.1) = .4602,

F0(X(7)) = P(Y ≤ 14.5) = P

(
Y − 14

2
≤ 14.5 − 14

2

)
= P(Z ≤ −.25)

= �(.25) = .5987.

Table 11.13 illustrates the calculation of D using (11.108) and (11.109).
From Table 11.13, (11.108) and (11.109), we find D = .4013. The R func-

tion kolmogorov(x, fnc,. . .) computes D and gives the P -value. Here, x
is a vector of length n and fnc is the functional form of the pdf of F . The first
argument must be the data. The . . . is for all the parameters besides the data
that fnc needs to operate.

With velocity<-c(12.8, 12.9, 13.3, 13.4, 13.7, 13.8, 14.5)

apply kolmogorov(velocity, pnorm, mean=14, sd=2) to obtain
D = .4013 and P = .157. Therefore, there is not strong evidence to reject
H ∗

0 . We should not, however, be surprised that H ∗
0 is not rejected. With the

small sample size n = 7, Kolmogorov’s test will not have good power against
reasonable alternatives to H ∗

0 . Even when the sample sizes are large, there are
many types of distributions for which the Kolmogorov statistic D will have
low power (cf. Fan (1996)).

28. Goodness-of-Fit Test for a Composite Null Hypothesis. In Comment 26, D was
used to test the simple null hypothesis H ∗

0 , where the underlying distribution,
F , is completely specified under the null hypothesis. If, instead, the underlying
distribution, F , is not completely specified under the null hypothesis, but rather
the null hypothesis asserts that F is a member of some parametric family with
one or more parameters unspecified, this is known as a composite null hypoth-
esis. The statistic D , suitably modified, can be used to test a composite null
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Table 11.13 Calculation of D for the Settling Velocity Data in the Case Where F0 = N (14, 2)

i X(i )
i
n − F0(X(i )) F0(X(i )) − (i−1)

n max{| i
n − F0(X(i ))|, | (i−1)

n − F0(X(i ))|}

1 12.8 1
7 − .2743 = −.1314 .2743 − 0 = .2743 .2743

2 12.9 2
7 − .2912 = −.0055 .2912 − 1

7 = .1483 .1483

3 13.3 3
7 − .3632 = .0654 .3632 − 2

7 = .0775 .0775

4 13.4 4
7 − .3821 = .1893 .3821 − 3

7 = −.0465 .1893

5 13.7 5
7 − .4404 = .2739 .4404 − 4

7 = −.1310 .2739

6 13.8 6
7 − .4602 = .3969 .4602 − 5

7 = −.2541 .3969

7 14.5 1 − .5987 = .4013 .5987 − 6
7 = −.2584 .4013

hypothesis. The modified statistic is D ′, where

D ′ = sup
−∞<x<∞

∣∣Fn(x) − F̂0(x)
∣∣, (11.112)

where F̂0(x) is an estimator of F0 calculated using the method of maximum
likelihood estimation to estimate the unspecified parameters of the hypothesized
parametric family. When the underlying F is continuous, D ′ has a continuous
distribution. The null distribution and asymptotic null distribution of D for the
simple null hypothesis are no longer valid for D ′ in the composite case, and new
results need to be derived for each parametric family. Lilliefors (1967) used sim-
ulation to obtain tables of the null distribution of D ′ for testing for an underlying
normal distribution and more accurate tables based on simulation were provided
by Dallal and Wilkinson (1986). For testing for an underlying exponential dis-
tribution, see Lilliefors (1969), Stephens (1974), and Durbin (1975); for testing
for an underlying logistic distribution, see Stephens (1979); and for the extreme
value and Weibull families, see Chandra, Singpurwalla, and Stephens (1981).
In Comment 28, we give an illustration of the test for the normal family with
the mean and standard deviation unspecified. The test is due to Lilliefors (1967,
1969). For summary articles on the Kolmogorov–Smirnov-type tests of fit, see
Stephens (1983a, 1983b).

29. Lilliefors’ Test of Normality. We wish to test if the X ’s come from a normal
distribution (or more realistically, if their distribution can be reasonably approx-
imated by a normal distribution). The maximum likelihood esitamtors of the
mean μ and the standard deviation σ are

μ̂ = X =
∑n

i=1 Xi

n
(11.113)

and

σ̂ = s =
√∑n

i=1(Xi − X )2

n − 1
. (11.114)
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Table 11.14 Calculation of D ′ for the Settling Velocity Data in the Case of Testing
for an Underlying Unspecified Normal Distribution

i X(i ) Z(i ) = (X(i )−X )

s �(Z(i )) |F7(X(i )) − �(Z(i ))| |F7(X(i )−) − �(Z(i ))|
1 12.8 −1.1793 .1191 .0237 .1191
2 12.9 −1.0073 .1569 .1288 .0140
3 13.3 −.3194 .3747 .0539 .0890
4 13.4 −.1474 .4414 .1300 .0128
5 13.7 .3685 .6438 .0705 .0723
6 13.8 .5405 .7056 .1516 .0087
7 14.5 1.7444 .9595 .0405 .1023

The estimator F̂0(x) for use in (11.112) is the normal distribution with mean X
and standard deviation s given by (11.113) and (11.114), respectively. That is,
for each x ,

F̂0(x) = �

(
x − X

s

)
. (11.115)

Letting X(1) < · · · < X(n) denote the ordered X ’s, we need to obtain the n values
of Fn(X(i )) as well as the n values of

F̂0(Z(i )) = �(Z(i )) = �

(
X(i ) − X

s

)
. (11.116)

where

Z(i ) = X(i ) − X

s
, (11.117)

and Z(1) < · · · < Z(n) are the ordered Z ’s. Then D ′ can be written as

D ′ = maximum
i=1,...,n

{|Fn(X(i )) − �(Z(i ))|, |Fn(X(i )−) − �(Z(i ))|}, (11.118)

where, in (11.118), Fn(X(i )−) denotes the height of the empirical distribution
just to the left of X(i ), that is, Fn(X(i )−) is (i − 1)/n for i = 1, . . . , n . To apply
Lilliefor’s test, use library(nortest) to load the nortest package. Then apply the
R command lillie.test.

We illustrate Lilliefors’ test using the settling velocities data of Table 3.12.
We are testing if the underlying distribution can be reasonably approximated by
some unspecified normal distribution. Direct calculations yield

X = 13.486, s = .5815.

Table 11.14 illustrates the calculation of D ′.
From Table 11.14 and (11.118), we find

D ′ = .1516.

Equivalently, to compute D ′, let velocity<-c(12.8, 12.9, 13.3,

13.4, 13.7, 13.8, 14.5) and apply lillie.test(velocity). The
output is D ′ = .1516 with a corresponding P -value of .8968. Since n = 7 is a



11.5 A Confidence Band for Distribution Function 577

small sample size, we should not be surprised that the test based on D ′ does
not lead to rejection of the null hypothesis at a low α value.

30. Modifications for Discrete Data and for Censored Data. Pettitt and Stephens
(1977) define a Kolmogorov–Smirnov-type statistic for discrete or grouped data.
For discrete data, the possible outcomes are divided into k cells and the null
hypothesis is H0 : P (an observation falls in cell i ) = pi , i = 1, . . . , k , where
the p’s are specified. For a sample of size N , their statistic is

PS = max
i=1,...,k

∣∣∣∣ j∑
i=1

(Oi − Ei )

∣∣∣∣, (11.119)

where Oi is the observed number in the i th cell and Ei = npi is the expected
number for the i th cell. The null hypothesis is rejected for significantly large
values of PS . For grouped continuous data, let x0 < x1 < · · · < xk define the
cells in that cell i contains values of the random variable X for which xi−1 <

X < xi . If Oi and Ei are the observed and expected values in cell i , PS is
defined as in (11.119).

Pettitt and Stephens provide null distribution tables of PS (the statistic is S
in their notation) for sample sizes 30 or less, giving exact upper-tail probabilities
in the equal-cell case (i.e., equal expected values Ei ) and good approximations
for other situations.

Fleming et al. (1980) provide an uncensored data modification of Kol-
mogorov’s goodness-of-fit test, which they generalize to right-censored data.
Chi-squared-type goodness-of-fit tests for censored data are given by Habib
and Thomas (1986), Akritas (1988), Hjort (1990a), Hollander and Peña (1992a,
1992b), and Li and Doss (1993). (See also Section VI.3.3 of Andersen et al.
(1993).)

Properties

1. Asymptotic Distribution. See Smirnov (1948).

2. Closeness of Actual Coverage Probability to Nominal Coverage Probability when
Using Large-Sample Approximation. See Nair (1984).

3. Asymptotic Efficiency. See Nair (1984) and Hollander and Peña (1989).

Problems

29. Table 11.15 contains service-time data for a Tallahassee fast-food restaurant. The data were
obtained by Schonrock (1996). The service time is defined as the time when the car pulled up
to the speaker to order to the time when the car left the window with the order. The data were
obtained at dinner time on a Thursday evening.

(a) Do you think the observations can be viewed as a random sample from the service-
time distribution? In particular, consider the question of whether the observations are
independent.

(b) Compute 90% confidence bands for the distribution of time to service.

30. Refer to Problem 29 and explain why one might, a priori, suspect that the time-to-service
distribution is an IFR distribution. Apply a suitable procedure to test exponentiality versus
IFR alternatives.
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Table 11.15 Service Times at a Fast-Food Restaurant

Start Finish Time’s

5:35:17 5:36:09 54
5:37:33 5:39:21 108
5:38:41 5:40:37 115
5:47:27 5:49:36 129
5:48:34 5:50:06 92
5:49:06 5:51:24 138
5:53:31 5:54:14 43
5:54:36 5:56:57 141
5:55:27 5:57:17 110
5:58:11 6:00:09 118
6:00:42 6:02:00 78
6:01:37 6:03:05 88
6:02:28 6:08:08 340
6:04:59 6:08:49 230
6:08:35 6:10:53 138
6:12:34 6:15:31 177
6:15:18 6:17:48 150
6:19:24 6:21:29 125
6:21:22 6:22:42 80
6:21:39 6:24:07 148
6:22:33 6:25:58 205
6:24:31 6:31:24 413
6:27:05 6:31:41 276
6:31:17 6:33:43 146
6:31:44 6:34:52 188
6:36:03 6:37:42 99
6:38:00 6:40:14 134
6:40:31 6:41:01 30
6:41:02 6:44:04 182
6:41:33 6:45:16 223
6:44:30 6:46:45 135
6:46:14 6:50:43 269
6:47:36 6:51:20 224
6:48:02 6:52:19 257

Source: H. Schonrock (1996).

31. With Fn(x) and F0(x) plotted as ordinates against x as abscissa, the Kolmogorov statistic,
D , is the value of the largest vertical distance between them. Justify that the largest vertical
distance can be expressed by (11.108) and (11.109).

32. Obtain approximate 95% simultaneous confidence bands for the survival function correspond-
ing to the leukemia data of Table 11.6.

33. Obtain approximate 95% simultaneous confidence bands for the survival function correspond-
ing to the guinea pig data of Table 11.9.

11.6 AN ESTIMATOR OF THE DISTRIBUTION FUNCTION
WHEN THE DATA ARE CENSORED (KAPLAN–MEIER)

Assumptions

B1. Let T1, . . . , Tn be independent, each with continuous life distribution F . Let
C1, . . . , Cn be independent, each with continuous censoring distribution function
G . Ci is the censoring time corresponding to Ti .
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B2. We observe, for i = 1, . . . , n ,

Xi = minimum{Ti , Ci }

and δi , where

δi =
{

1, if Ti ≤ Ci ,

0, if Ti > Ci .

Thus, δi is 1 if Ti is uncensored and we observe the true survival time, Ti , rather
than the time to censorship. However, δi is 0 if Ti is censored and we observe
Ci . In this case, we know only that the survival time Ti is greater than Ci .

B3. The T ’s and C ’s are mutually independent.

Assumption B3 in practical terms means that the censoring times provide no infor-
mation about the true survival times. This would not be the case, for example, in a
methadone study where patients on methadone are given weekly urine analysis tests to
see if they have gone back on heroin. A patient who has started using heroin again may
censor himself or herself (not show up for the weekly test) in order not to be “caught.”
Here X , the time to relapse, and C , the time to censorship, would not be independent.

To illustrate the notation of this model, which is known as the randomly right-
censored model, consider the radiation of the affected node data of Table 11.16. For
those data, X1 = T1 = 346 and δ1 = 1 because the 346 value is not censored as the
true time to relapse is observed. However, for X4, we have X4 = C4 = 1953 and δ4 = 0
because the true number of days to relapse is not observed. The observation is censored
and we only know that the true time to relapse is greater than 1953.

In clinical trials, the T ’s may represent times to the occurrence of an endpoint event.
For example, the endpoint event may be relapse or death. The data are typically analyzed
before all the subjects have experienced the endpoint event. For example, in a fertility
clinic, women may be taking hormones to enhance the chance of becoming pregnant.
Suppose, when the data are analyzed, a woman has been undergoing treatment for 418
days and is not yet pregnant. If T denotes the time to pregnancy (measured from the
initialization of treatment), we know that T > 418, but we do not at this point know the
(eventual) true value of T . We call the 418 value a censored observation and denote it
by 418c . Other women in the study may have left town or stopped coming to the clinic
and, again, for such women, the observations are censored.

Procedure

We let F (x) = P(T ≤ x) denote the distribution function and

F (x) = 1 − F (x) = P(T > x) (11.120)

denote the survival function. Furthermore, we let t(1) < · · · < t(k) denote the ordered
distinct failure times. These are the known deaths and the censored values are not in
the list of the t(i )’s. (If F is continuous, then there will be no tied failure times, but in
practice, ties occur.) We let ni denote the number of patients at risk at time t(i ). ni is
the number of patients who have not died or been censored before t(i ). We let di be the
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number of deaths (failures) at time t(i ). (When there are no tied observations, all the d ’s
are 1.) The Kaplan and Meier (1958) estimator of the survival function at time x is

F KM(x) =
∏

t(i )≤x

(
1 − di

ni

)
. (11.121)

The estimator of the distribution function at time x is, of course, 1 − F KM(x). We illustrate
the computation of the Kaplan–Meier estimator (KME) in Example 11.6. See Comment
41 for R commands for the Kaplan–Meier estimator.

EXAMPLE 11.7 Hodgkin’s Disease Data.

The data in Table 11.16 are from a clinical trial in early Hodgkin’s disease (i.e., cases
in which the disease was detected at an early stage) conducted at the Stanford Medical
Center by Kaplan and Rosenberg (1973). The data also appear in Chapter 14 of Brown
and Hollander (2008). Hodgkin’s disease is a cancer of the lymph system. The two
treatments considered by Kaplan and Rosenberg (1973) were (1) radiation treatment of
the affected node and (2) radiation treatment of the affected node plus all nodes in the
trunk of the body (total nodal radiation). The relapse-free survival times are given in
Table 11.16. If a relapse has not occurred by the date of data analysis, it is indicated by
an N and a superscript c is affixed to the observation.

Figure 11.4 is a plot of the KMEs for the total nodal treatment and the affected
node treatment. Table 11.17 illustrates the calculation of the KME for the affected node
treatment. Note there are 16 known relapses (out of 25 patients), and thus there are
k = 16 distinct failure times listed in Table 11.17.

Note that the KME decreases at each distinct failure time and is constant between dis-
tinct failure times (it does not decrease at censored observations). If the largest observed
value is censored, the survival probability estimate F KM, as given by (11.121), does
not decrease to zero but remains constant from that largest observed value out to ∞
(see Comment 34). To illustrate the calculations of Table 11.17 and the use of formula
(11.121), consider, for example, the value of F KM at t(16) = 1375. The right-hand side
of formula (11.121) is a product taken over those distinct failure times that are less or
equal to 1375—that is, over the times 86, 107, 141, 292, 312, 330, 346, 364, 401, 419,
505, 570, 688, 822, 836, and 1375. The product is evaluated as follows:

F KM(1375) =
∏

t(i )≤1375

(
1 − di

ni

)

=
(

1 − 1

25

)(
1 − 1

24

)(
1 − 1

23

)(
1 − 1

22

)(
1 − 1

21

)
×
(

1 − 1

20

)(
1 − 1

19

)(
1 − 1

18

)(
1 − 1

17

)(
1 − 1

16

)
×
(

1 − 1

15

)(
1 − 1

14

)(
1 − 1

13

)(
1 − 1

12

)(
1 − 1

11

)(
1 − 1

9

)
= .356.



11.6 Estimator When Data are Censored 581

Table 11.16 Relapse-Free Survival Times for Hodgkin’s Disease Patients

Radiation of affected node Total nodal radiation

Days to relapse Days to relapse
Relapse (Y ) or to date Relapse (Y ) or to date
or not (N ) of analysis or not (N ) of analysis

Y 346 N 1699c

Y 141 N 2177c

Y 296 N 1968c

N 1953c N 1889c

Y 1375 Y 173
Y 822 N 2070c

N 2052c N 1972c

Y 836 N 1897c

N 1910c N 2022c

Y 419 N 1879c

Y 107 N 1726c

Y 570 N 1807c

Y 312 Y 615
N 1818c Y 1408
Y 364 N 1763c

Y 401 N 1684c

N 1645c N 1576c

Y 330 N 1572c

N 1540c Y 498
Y 688 N 1585c

N 1309c N 1493c

Y 505 Y 950
N 1378c N 1242c

N 1446c N 1190c

Y 86

Source: H. S. Kaplan and S. A. Rosenberg (1973)
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Figure 11.4 The Kaplan–Meier estimators for the total nodal and the affected-node survival distributions.
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Table 11.17 Calculation of the Kaplan–Meier Esti-
mator for the Affected Node Treatment

i t(i ) ni di F KM(t(i ))

1 86 25 1 .960
2 107 24 1 .920
3 141 23 1 .880
4 296 22 1 .840
5 312 21 1 .800
6 330 20 1 .760
7 346 19 1 .720
8 364 18 1 .680
9 401 17 1 .640

10 419 16 1 .600
11 505 15 1 .560
12 570 14 1 .520
13 688 13 1 .480
14 822 12 1 .440
15 836 11 1 .400
16 1375 9 1 .356

The values in Table 11.17 can be obtained by using R commands (see Comment 41).
In the Kaplan and Rosenberg study, 49 patients were admitted to the study between

1967 and 1970 and randomly assigned to the affected node and the total nodal therapies.
The original 49 patients were followed, and the data as of fall 1973 are given in Table
11.16. In the spring of 1970, all subsequent patients were assigned the total nodal therapy
because at that point the evidence was mounting that the total nodal therapy was superior
to the affected node therapy.

Note that from Table 11.16, we see that by the date of analysis in the fall of 1973,
16 of the 25 affected node patients had relapsed, whereas only 5 of the 24 total nodal
patients had relapsed. Furthermore, Figure 11.4 shows that the KME for the total nodal
therapy is always above that of the affected node therapy; that is, the estimated chance
of relapse-free survival to any time is higher for the total nodal group than the affected
node group. The statistical assessment of this difference can be formally made with a
two-sample test for censored data. We describe such a test in Section 11.7.

Comments

31. Partial Motivation for the Kaplan–Meier Estimator. The KME (also known as
the product limit estimator) given by (11.121) can be motivated as follows: Just
before time t(i ), there are ni patients at risk and di die at time t(i ). Thus, it
is natural to estimate the probability of death at t(i ), given that one has sur-
vived to t(i ), as the ratio di /ni , that is, the number of deaths at t(i ) divided
by the number at risk at t(i ). Then, (1 − (di /ni )) is the estimated conditional
probability of surviving past time t(i ), given survival up to t(i ). The product
in (11.121) corresponds to multiplying these conditional probabilities of not
dying, for all known death times from zero up to the time of interest. This
yields an estimate of the unconditional probability of surviving past the time of
interest.



11.6 Estimator When Data are Censored 583

32. Efron’s Redistribute-to-the-Right Algorithm. Suppose our data consist of the fol-
lowing observations: 4, 5, 5c , 6c , 7, 8c , 9, 11c , where the superscript c indicates
a censored value. If the observations were all uncensored times, the empiri-
cal survival function would assign mass 1

8 to each of the values. At the first
censored time, 5c , a death has not occurred but will occur somewhere to the
right of 5. Efron’s (1967) redistribute-to-the-right algorithm takes the mass of
1
8 at 5c and redistributes it equally among the five times 6c , 7, 8c , 9, 11c to
the right of 5c , adding 1

5 ( 1
8 ) to the mass at 6c , 7, 8c , 9, 11c . Now go to the

next censored time 6c and redistribute the new mass 1
5 ( 1

8 ) + 1
8 equally among

the observations to the right of 6c . Continue this process until you reach the
last observation. Efron shows this algorithm yields the KME. The algorithm is
illustrated in the following display. The last value F KM(x) = 0 at 11c in the
southeast corner of the display is in accordance with Efron’s convention. (See
Comment 34.)

Observed Mass at Mass after first Mass after second Mass after third
values start redistribution redistribution redistribution F KM(x)

4 1
8 .125 .125 .125 .875

5 1
8 .125 .125 .125 .750

5c 1
8 0 0 0 .750

6c 1
8

1
8 + ( 1

5 )( 1
8 ) = .150 0 0 .750

7 1
8 .150 .150 + ( 1

4 )(.150) = .1875 .1875 .5625

8c 1
8 .150 .1875 0 .5625

9 1
8 .150 .1875 .150 + ( 1

2 )(.1875) = .28125 .28125

11c 1
8 .150 .1875 .28125 0

33. Efron’s Self-Consistency. Another way to obtain the KME is via Efron’s self-
consistency process. If there is no censoring and we observe T1, . . . , Tn , the
nonparametric estimator of F (x) is the empirical survival function

F n(x) =
∑n

i=1 ψ(Ti ,x)

n
,

where ψ(Ti , x) = 1 if Ti > x , 0 otherwise. Note nF n(x) is a sum of 0’s and
1’s, where 1 is scored if Ti > x and 0 is scored otherwise. In the censored case,
we observe

Xi = min(Ti , Ci ), δi =
{

1, if Xi = Ti ,

0, if Xi = Ci ,

and thus for some X ’s we cannot tell if the corresponding T ’s will exceed
x . If Xi > x , we know Ti > x , but if Xi < x and δi = 0, we do not know if
Xi < Ti ≤ x or, instead, if Ti > x . It is thus reasonable in such a case to score (in
place of 1) an estimated conditional probability Ŝ (x)/Ŝ (Xi ), say, an estimated
chance that Ti will exceed x , given that Ti > Xi . Efron calls an estimator Ŝ
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self-consistent if

Ŝ (x) = 1

n

[
N (x) +

∑
δi =0,Xi ≤x

Ŝ (x)

Ŝ (Xi )

]
,

where N (x) = number of X ’s > x . Start with some estimator (it can, e.g., be
Ŝ0(x) = N (x)/n) on the right-hand side of the preceding defining equation,
calculate the left-hand side, plug the calculated value into the right-hand side,
and continue this process to form a sequence of estimators

Ŝj+1(x) = 1

n

[
N (x) +

∑
δi =0,Xi ≤x

Ŝj (x)

Ŝj (Xi )

]
.

Efron shows Ŝj (x) converges in a finite number of steps to an estimator that
will agree with F KM(x) for x less than the largest observation.

34. The Kaplan–Meier Estimated Tail Probabilities. Let Z(1) ≤ · · · ≤ Z(n) denote the
ordered values in the combined list of uncensored and censored values. If Z(n)

is an uncensored value, then F KM(x) = 0 for all x > Z(n). If, however, Z(n) is
censored, then F KM(x)—as defined by (11.121)—remains a nonzero constant
from Z(n) to ∞ and thus does not have the property that F KM(x) tends to be
0 as x tends to be ∞, a property that must hold for F (x), the true survival
function being estimated by F KM. Some authors leave F KM(x) undefined for
x > Z(n) when Z(n) is a censored observation (as we have done in Figure 11.4,
which gives the Kaplan–Meier estimates for the affected node and total nodal
radiation data). Efron (1967) suggested that when Z(n) is censored, F KM should
be defined to be 0 for all x > Z(n). Gill (1980) suggested that when Z(n) is
censored, one should set F KM(x) = F KM(Z(n)) for x > Z(n) so that F KM is a
nonzero constant from Z(n) to ∞. Efron’s convention yields underestimates of
the tail survival probabilities, whereas Gill’s convention yields overestimates.
Brown, Hollander, and Korwar (1974) and Moeschberger and Klein (1985) sug-
gested methods for completing the tail of the KME, which can be considered
intermediate to Efron’s and Gill’s conventions. Brown, Hollander, and Korwar
recommend fitting an exponential survival curve to complete the KME, namely,
the exponential curve that agrees with F KM(Z(n)) at Z(n). Determining the λ

that satisfies exp(−λZ(n)) = F KM(Z(n)) yields λ = −{ln[F KM(Z(n))]}/Z(n), and
the tail survival probabilities are defined to be

exp(−λx) = exp

(
x{ln[F KM(Z(n))]}

Z(n)

)
for x > Z(n).

Moeschberger and Klein (1985) used the Weibull distribution to fit the tail
survival probabilities when Z(n) is censored.

In Figure 11.4, we left the two Kaplan–Meier estimates undefined after the
respective largest observations (which are censored in both samples). Figure 11.4
as is indicates the superiority of the total nodal treatment, and in this case, there in
not a need to estimate survival probabilities in the tails. In situations where such
tail estimates are desired, however, fitting the tail probabilities by the Brown,
Hollander, and Korwar method or the Moeschberger and Klein method yields
more realistic estimates than those obtained by the Efron or Gill conventions.
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35. Confidence Intervals for the Survival Probability at Time x. Let

V (x) = var
(
F KM(x)

)
, (11.122)

the variance of the KME of surviving past time x . V (x) can be estimated by

V̂(x) = {F KM(x)}2
∑

t(i )≤x

di

ni (ni − di )
. (11.123)

The standard error given by (11.123) is known as Greenwood’s formula (Green-
wood, 1926). An asymptotic 100(1 − α)% confidence interval for F KM(x) is
(F L(x), F U (x)), where

F L(x) = F KM(x) − zα/2

(
V̂ (x)

)1/2
, F U (x) = F KM(x) + zα/2

(
V̂ (x)

)1/2
.

(11.124)
When no censoring and no tied observations occur, the KME reduces to the

empirical survival function

F n(x) = number of observations in the sample > x

n
, (11.125)

where n is the sample size. Correspondingly, the asymptotic confidence interval
given by (11.124) reduces, in the case of no censoring and no tied observations,
to the following 100(1 − α)% confidence interval for F (x) :(

F n(x) − zα/2

{
F n(x)(1 − F n(x))

n

}1/2

,

F n(x) + zα/2

{
F n(x)(1 − F n(x))

n

}1/2)
. (11.126)

Estimators, confidence intervals, and confidence bands for F can also be
obtained by exploiting the relationship between the cumulative hazard function
of F and the survival function. The cumulative hazard function �F correspond-
ing to the distribution F is defined to be

�F (x) = − ln(1 − F (x)) =
x∫

0

r(t)dt ,

where r is the failure rate defined by (11.1).
F can be expressed in terms of � by

F (x) = e−�(x).

If one has an estimator �̂ of �, this yields an estimator F̂ of F via F̂ (x) =
e−�̂(x). The Nelson–Aalen estimator of � is

�̂(x) =
{

0, x < t(1),∑
t(i )≤x

di
ni

, x ≥ t(1).
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Nelson defined the estimator in an applied setting (see Nelson (1969, 1972)) and
Aalen (1978) considered it in a more general theoretical setting.

Kalbfleisch and Prentice (1980) (see also Bie, Borgan, and Liestøl (1987)
and Borgan and Liestøl (1990)) used a log transformation of the cumulative
hazard function (or, equivalently, the transformation g(x) = ln(− ln(x)) applied
to the survival function) to obtain an asymptotic confidence interval for F (x)

that is a competitor of the interval given by (11.124). Thomas and Grunkemeier
(1975) used an arcsine square root transformation (g(x) = arcsin(

√
x)) to obtain

a competitor of the interval given by (11.124). The Kalbfleisch and Prentice
asymptotic 100(1 − α)% confidence interval for F (x) is

({F KM(x)}a , {F KM(x)}1/a),

where

a = exp

[ zα/2
∑

t(i )≤x
di

ni (ni −di )

ln(F KM(x))

]
.

Borgan and Liestøl (1990) found that the Thomas and Grunkemeier (1975) and
Kalbfleisch and Prentice (1980) confidence intervals do better, in small samples,
than the confidence interval given by (11.124).

36. Exact Moments of the KME. Chen, Hollander, and Langberg (1982) give, for
α > 0, an exact expression for E ([F KM(x)]α), the αth moment of the KME.
They consider the case where the censoring distribution G (the distribution of
each Ci ) and the survival distribution F (the distribution of each Ti ) satisfy
a proportional hazards model (see (11.154)). Chen, Hollander, and Langberg
(1982) used the Efron convention (see Comment 34) to define F KM in the tail,
whereas Wellner (1985) obtained closely related exact results using the Gill
convention to define F KM in the tail. These exact results enable one to study
the exact biases of the KME and to compare the exact variances of the KME
with its asymptotic variances. Wellner notes that the biases and variances of the
KME based on the Gill convention are almost everywhere smaller than those
for the KME based on the Efron convention. Thus Wellner advocates use of the
Gill definition rather than the Efron definition.

37. Simultaneous Confidence Bands for the Survival Function. The interval given by
(11.124) has approximate coverage probability 1 − α at a fixed value x . Suppose,
instead, we desire an approximate 1 − α simultaneous confidence band for F .
Such a band would have the property

PF (F �(x) ≤ F (x) ≤ F u(x), for all x)
.= 1 − α, (11.127)

where F �(x) is the lower contour of the band and F u(x) is the upper contour of
the band. Display (11.127) is to be interpreted as meaning that simultaneously,
for all x , the chance is approximately 1 − α that the random contours F�, Fu

contain F .

Confidence bands based on the KME have been presented by many authors
including Gillespie and Fisher (1979), Gill (1980), Hall and Wellner (1980),
Fleming et al. (1980), Nair (1981, 1984), Csörgő and Horváth (1986), Hollander
and Peña (1989), and Hollander, McKeague and Yang (1997). (The bands in
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Fleming et al. (1980) are not explicitly defined in the paper, but they are implic-
itly given in the appendix of the paper and can be developed as outlined in
Exercise 6.5 of Fleming and Harrington (1991, pp. 397–398).) Gulati and Padgett
(1996) use the Hollander and Peña (1989) approach but replace the discontinuous
KME by a kernel-based continuous estimator to obtain continuous confidence
bands. See also Section IV.3.3 of Andersen et al. (1993) for confidence inter-
vals and simultaneous confidence bands for the survival function. For confidence
intervals, also see Thomas and Grunkemeir (1975) and Murphy (1995).

Some of the proposed bands are contained in the family of bands,
indexed by a value c > 0, presented by Hollander and Peña (1989). The
Hollander–Peña family is of the form

{[F �(x), F u(x)], 0 ≤ x ≤ T }, (11.128)

where

F �(x) = F KM(x){1 − rn(x; c, λn)}, F u(x) = F KM(x){1 + rn(x; c, λn)},
(11.129)

where

rn(x; c, λn) = λn

[(nc)1/2{1 − L∗
n(x , c)}] , (11.130)

L∗
n(x , c) = cd∗

n (x)

{1 − cd∗
n (x)} , (11.131)

d∗
n (x) =

∑
{t(i )≤x}

di

ni (ni − di )
, (11.132)

where, as before, di is the number of deaths at t(i ) and ni is the number of risk
at t(i ). The value of λn is obtained from b.sf (which is adapted from Table
11.1 of Hall and Wellner (1980)). Use b.sf with β = 1 − α and

a = cd∗
n (T )

1 + cd∗
n (T )

.

b.sf gives values of λ such that Ga(λ) = β for a = .10, .25, .40, .50, .60, .75,
.90, 1.00 and β = .99, .95, .90, .75, .50, .25, where

Ga(λ) = 1 − 2�

[
λ{a(1 − a)}−1/2

]
+ 2

∞∑
k=1

(−1)k e−2k2λ2
[�(r(2k − d)}

− �(r(2k + d)}], (11.133)

where � is the standard normal distribution function, r = λ{(1 − a)/a}1/2 and
d = (1 − a)−1. Ga(λ) = P{sup0≤t≤a |W 0

t | ≤ λ}, where W 0 is a Brownian
bridge process on [0, 1] (cf. Billingsley (1968, pp. 64–65)).

The most popular confidence band in use at the time of this writing is
the Hall and Wellner (1980) band. It corresponds to c = 1 in the Hollander–
Peña family. The choice of c is discussed in Section 11.4 of Hollander and
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Figure 11.5 An approximate 95% confidence band for the affected-node survival distribution (c = .5).

Peña (1989). Although the asymptotic coverage probability of all bands in the
family is 1 − α, c controls the width of the bands on various intervals. Bands
corresponding to larger values of c are narrower on the left (i.e., for smaller x
values). If one desires a band that is narrow at the specific point x = x0, choose
c = 1/d∗

n (x0).

For the affected-node data of Table 11.15, Figure 11.5, Figure 11.6, and
Figure 11.7 are, respectively, plots of asymptotic 95% confidence bands for the
choices c = .5, 1, and 2. The figures also display the KME.

38. Monotonized Bands. There will be some data sets for which the bands given
by (11.129) can be narrowed and yet still retain the same asymptotic coverage
probability. The process is called monotonization. Let 0 ≤ x ≤ y ≤ T . From
(11.129), it can be seen that the ratio of the values of the upper contour of the
bands at x and y is

F u(x)

F u(y)
= F KM(x){1 + rn(x; c, λn)}

F KM(y){1 + rn(y; c, λn)}

= F KM(x)

F KM(y)

[
1 −
{

rn(y; c, λn) − rn(x; c, λn)

1 + rn(y; c, λn)

}]
.

Because F KM(x) ≥ F KM(y) and rn(y; c, λn) ≥ rn(x; c, λn), it may happen
that, for some x and y (with x ≤ y), the ratio F u(x)/F u(y) will be less than 1. In
such a situation, the upper contour of the band is not monotone decreasing. This
is unacceptable because F itself is monotone decreasing. For a confidence band
whose upper contour is not monotone decreasing, a narrower band can be formed
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Figure 11.6 An approximate 95% confidence band for the affected-node survival distribution (c = 1, the
Hall–Wellner band).
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Figure 11.7 An approximate 95% confidence band for the affected-node survival distribution (c = 2).
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that will have the monotone property and will also have the same confidence
level as the original band. This narrower band is formed by monotonizing the
upper contour of the original band. In general, suppose that [mn(x), Mn(x)] is an
asymptotic 100(1 − α)% confidence band for F on the interval [0, T ]. Then the
monotonized band [mn(x), mina≤x Mn(a)] is also an asymptotic 100(1 − α)%
confidence band for F . This is true because, due to the monotonicity of F ,
the events {

mn(x) ≤ F (x) ≤ Mn(x), 0 ≤ x ≤ T
}

(11.134)

and {
mn(x) ≤ F (x) ≤ min

a≤x
Mn(a), 0 ≤ x ≤ T

}
(11.135)

are identical and thus have the same probability of occurring. Furthermore,
because 0 ≤ F (x) ≤ 1 for all x -values, we may use the confidence band given by{

max[0, mn(x)], min
[
1, min

a≤x
Mn(a)

]
, 0 ≤ x ≤ T

}
. (11.136)

39. NBU Test for Censored Data. Chen, Hollander, and Langberg (1983a) extended
the NBU test of Section 11.2 to the censored data situation. Their test statistic Jc

is obtained by estimating the parameter �NBU(F ) (see (11.46)) by �NBU(FKM),
where FKM is the KME. Letting Z(1) ≤ · · · ≤ Z(n) denote the ordered values
(in the combined list of censored and uncensored values), the statistic can be
written as

Jc =
n∑

i=1

F KM(2Z(i ))d
2
i + 2

n∑
i<j

F KM(Z(i ) + Z(j ))di dj , (11.137)

where
di = F KM(Z(i−1)) − F KM(Z(i )) (11.138)

and Z(0) is defined to be 0.
The null asymptotic mean of Jc is 1

4 , independent of the scale parameter λ

of the exponential distribution corresponding to the null hypothesis and indepen-
dent of the censoring distribution governing the times to censorship. The null
asymptotic variance of n1/2Jc does, however, depend on λ and the censoring
distribution and thus must be estimated from the data. The NBU (NWU) test
for censored data is based on

J ∗
c =

√
n(Jc − 1

4 )

σ̂c
, (11.139)

where

σ̂ 2
c = (128)−1 +

n−1∑
i=1

n(n − i + 1)−1(n − i )−1{(128)−1

− (32)−1Z(i )(̂λ) + (16)−1Z 2
(i )(̂λ

2)
}× exp

{
−4Z(i )̂λ

}
− n

{
(128)−1 − (32)−1Z(n )̂λ + (16)−1Z 2

(n )̂λ
2
}

exp

{
−4Z(n )̂λ

}
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and
λ̂ = number of uncensored observations∑n

i=1 Zi
. (11.140)

Under H0, λ̂ consistently estimates λ and σ̂ 2
c consistently estimates the asymp-

totic variance of
√

nJc . Under H0, J ∗
c is asymptotically N (0, 1) (see Chen,

Hollander, and Langberg (1983a)).
To test H0 against NBU alternatives at the approximate α level of signifi-

cance,

Reject H0 if J ∗
c ≤ −zα; otherwise do not reject. (11.141)

To test H0 against NWU alternatives, at the approximate α level of significance,

Reject H0 if J ∗
c ≥ zα; otherwise do not reject. (11.142)

To test H0 against NBU and NWU alternatives, at the approximate α level of
significance,

Reject H0 if |J ∗
c | ≥ zα/2; otherwise do not reject. (11.143)

40. Estimation and Confidence Bands for the Quantile Function. The quantile func-
tion is formally defined as F−1(p) = sup{t : F (t) ≤ p}, 0 < p < 1. Thus, for
example, F−1(.5) is the median. Bootstrap confidence bands for the quantile
function were given by Doss and Gill (1992). Li et al. (1996) (hereafter, Li
et al. (1996)) used a likelihood ratio approach to obtain confidence bands for
the quantile function. They define the likelihood function

L(F ) =
n∏

i=1

[F (Zi ) − F (Zi −)]δi [1 − F (Zi )]
1−δi ,

where Zi is the observed value corresponding to patient i (Zi , may be a censored
value or a known death) and δi is 1 if Zi corresponds to a known death and
δi is 0 if Zi corresponds to a censored observation. Let � be the space of all
distribution functions on [0, ∞). Here, F is viewed as a parameter taking values
in �. For any t ≥ 0 and 0 < p < 1, Li et al. (1996) define

R(p, t) = sup{L(F ) : F (t) = p and F ∈ �}
sup{L(F ) : F ∈ �}

and, for 0 ≤ r ≤ 1,
C (p, r) = {t : R(p, t) ≥ r}.

A large value of R(p, t) can be considered evidence in favor of the hypoth-
esis H ∗ : F (t) = p. Therefore, C (p, r) can be interpreted, for each fixed p, as
the set of times t for which H ∗ is not rejected by a test based on R(p, t). Li
et al. (1996) show that C (p, r) is always an interval and their asymptotic confi-
dence band is obtained by pasting together intervals of the form C (p, r) with r
chosen appropriately. Furthermore, they obtain an asymptotic 1 − α confidence
interval for the p-quantile of F . This interval is of the form C (p, r∗

α), where
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r∗
α = exp{−X 2

1,α/2} and X 2
1,α is the upper α-quantile of a chi-square distribution

with 1 degree of freedom. Figure 11.8 contains a plot of the Kaplan–Meier
quantile function, F−1

KM, and an asymptotic 95% confidence band for the true
unknown quantile function for the affected node data of Table 11.16.

41. R commands for the KME. For the affected node treatment data of Table 11.16,
let

days<-c(346, 141, 296, 1953, 1375, 822, 2052, 836, 1910, 419, 107, 570, 312,
1818, 364, 401, 1645, 330, 1540, 688, 1309, 505, 1378, 1446, 86).
relapse<-c(1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1).
Set
my.formula = Surv(days, relapse)~1

my.fit = survfit(my.formula)

plot(my.fit)

The output is the KME and 95% confidence limits. Use km.ci to change to a
different confidence level. For example,

library(km.ci)
km.ci(my.fit, conf.level=.9)
plot(km.ci(my.fit, conf.level=.9))

Properties

1. Consistency. See Peterson (1977), Gill (1980), Shorack and Wellner (1986,
Section 7.3), Wang (1987), Ying (1989), Fleming and Harrington (1991, Section
3.4), and Andersen et al. (1993, Section IV.3.2).

2. Asymptotic Distributional Properties. See Kaplan and Meier (1958), Efron (1967),
Breslow and Crowley (1974), Meier (1975), Gill (1980, 1983), Fleming and
Harrington (1991, Chapter 6), and Andersen et al. (1993, Section IV.3.2).

3. Asymptotic Optimality. See Wellner (1982), van der Vaart (1988, 1991), and
Andersen et al. (1993, Chapter VIII).

4. Efficiency. See Wellner (1982), Miller (1983), Hollander, Proschan, and Sconing
(1985), Gill (1989), and Andersen et al. (1993, Chapter VIII).

5. Nonparametric Maximum Likelihood Estimator. See Johansen (1978) for a proof
that the Kalpan–Meier estimator is the nonparametric MLE of F in the sense of
Kiefer and Wolfowitz (1956).

Problems

34. The data in Table 11.18 are from Hollander, McKeague, and Yang (1997) and concern 432
manuscripts submitted for publication to the Theory and Methods Section of the Journal of
the American Statistical Association in the period January 1, 1994–December 13, 1994. Of
interest is the distribution of the time (in days) to first review. When the data were studied
on December 13, 1994, 158 papers were still awaiting the first review. Thus, there are 158
censored times and 274 uncensored times. In Table 11.18, the variable Xi = minimum (Ti , Ci ),
where Ti is the time to first review and Ci is the time to censorship, and the indicator variable
δi is 1 if the i th observation is uncensored and 0 if it is censored. Compute the Kaplan–Meier
estimate of the survival function.
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Figure 11.8 An approximate 95% confidence band for the affected-node quantile function.

35. For the review times data of Table 11.18, compute asymptotic 95% confidence bands for the
survival function.

36. For the review times data of Table 11.18, compute an asymptotic 95% confidence interval for
the probability that the time to first review will exceed 150 days.

37. The data in Table 11.19 were provided by Koziol and Green (1978) and can be found in
Hollander and Proschan (1979). The data correspond to 211 patients with stage IV prostate
cancer who were treated with estrogen in a Veterans Administration Cooperative Urological
Research Group (1967) study. The observations over the years 1967 through March 1977. At
the March 1977 closing date, there were 90 patients who had died of prostate cancer, 105
who had died of other diseases, and 16 who were still alive. Those observations corresponding
to deaths due to other causes and those corresponding to the 16 survivors are considered
censored observations (withdrawals). Compute the KME of the survival distribution for deaths
from cancer of the prostate.

38. For the prostate cancer data of Table 11.19, compute asymptotic 90% confidence bands for
the survival function.

39. For the prostate cancer data of Table 11.19, compute an asymptotic 90% confidence interval
for the probability of surviving more than 100 months.

40. Verify that, in the case of no censored observations, the confidence interval given by (11.124)
reduces to that given by (11.126).

41. Verify that, due to monotonicity of F (i.e., F (x) ≥ F (y) whenever x < y), the events given
by (11.134) and (11.135) are identical.

42. Apply the NBU test for censored data to the prostate cancer of Table 11.19. What is your
conclusion?

43. Apply the NBU test for censored data to the affected node data of Table 11.16. What is your
conclusion?
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Table 11.18 The Times to First Review of 1994 JASA Theory and Methods Papers

Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi

214 1 201 1 28 1 252 0 118 1 187 0 28 1 28 1 76 1 56 0 28 0
184 1 274 1 287 0 96 1 33 1 152 1 21 1 118 0 18 1 21 1 27 0
150 1 265 1 195 1 175 1 69 1 46 1 1 1 40 1 88 0 55 0 27 0

70 1 120 1 86 1 54 1 133 1 103 1 0 1 6 1 85 0 55 0 25 0
16 1 141 1 137 1 167 1 126 1 37 1 144 0 91 1 85 0 54 0 25 0

141 1 48 1 74 1 150 1 84 1 170 1 144 0 34 1 85 0 18 1 22 0
210 1 204 1 71 1 219 1 197 1 64 1 140 0 21 1 20 1 54 0 22 0
132 1 312 0 140 1 86 1 85 1 182 0 14 1 1 1 83 0 53 0 21 0

30 1 220 1 22 1 1 1 15 1 180 0 0 1 111 0 82 0 50 0 21 0
204 1 188 1 120 1 111 1 206 1 176 0 27 1 111 0 81 0 50 0 15 0

84 1 84 1 176 1 128 1 125 1 175 0 23 1 1 1 81 0 1 1 15 0
36 1 84 1 181 1 178 1 57 1 64 1 126 1 48 1 11 1 15 1 15 0
38 1 215 1 155 1 40 1 181 1 42 1 139 0 110 0 77 0 50 0 1 1
69 1 33 1 74 1 131 1 215 0 175 0 55 1 47 1 77 0 47 0 1 1
33 1 55 1 29 1 20 1 3 1 149 1 137 0 68 1 70 1 47 0 14 0
49 1 140 1 100 1 220 1 13 1 158 1 114 1 74 1 74 0 46 0 12 0

203 1 147 1 195 1 84 1 175 1 169 0 56 1 98 1 71 0 16 1 12 0
203 1 41 1 127 1 32 1 37 1 169 0 124 1 105 0 23 1 43 0 12 0
218 1 94 1 34 1 95 1 182 1 22 0 121 1 104 0 28 1 43 0 8 0
267 1 292 1 177 1 188 1 210 0 168 0 1 1 104 0 70 0 18 1 8 0

99 1 131 1 150 1 115 1 92 1 157 1 27 1 103 0 44 1 43 0 8 0
21 1 221 1 265 0 238 0 208 0 89 1 130 0 90 1 69 0 42 0 8 0
78 1 39 1 174 1 1 1 30 1 165 1 130 0 98 0 68 0 42 0 7 0

150 1 3 1 104 1 187 1 28 1 14 1 130 0 98 0 67 0 40 0 7 0
237 1 16 1 203 1 125 1 168 1 161 0 127 0 98 0 64 1 0 1 7 0

91 1 129 1 109 1 110 1 202 0 161 0 100 1 97 0 30 1 12 1 7 0
21 1 210 1 217 1 32 1 114 1 159 0 126 0 96 1 41 1 39 0 6 0

224 1 240 1 238 1 32 1 105 1 91 1 126 0 97 0 62 0 35 0 5 0
126 1 141 1 210 1 228 1 196 0 146 1 28 1 18 1 61 0 35 0 5 0
167 1 231 1 22 1 80 1 195 0 159 0 125 0 96 0 20 1 35 0 4 0
105 1 119 1 148 1 64 1 114 1 134 1 125 0 92 0 57 0 30 1 1 0
146 1 291 0 142 1 231 0 75 1 13 1 125 0 91 0 57 0 35 0 1 0

50 1 199 1 126 1 64 1 194 0 159 0 95 1 91 0 57 0 34 0
28 1 67 1 220 1 228 0 143 1 18 1 95 1 91 0 57 0 34 0

288 1 263 1 145 1 18 1 106 1 155 0 123 0 31 1 57 0 34 0
37 1 155 1 21 1 55 1 128 1 154 0 123 0 27 1 57 0 33 0
18 1 189 1 256 0 154 1 200 0 124 1 123 0 83 1 42 1 33 0

113 1 0 1 253 0 139 1 129 1 73 1 109 1 33 1 57 0 29 1
22 1 209 1 22 1 91 1 138 1 51 1 119 0 11 1 57 0 28 0

234 1 223 1 80 1 196 1 152 1 21 1 6 1 88 0 57 1 27 0

Source: M. Hollander, I. W. McKeague, and J. Yang (1997).

11.7 A TWO-SAMPLE TEST FOR CENSORED DATA
(MANTEL)

For the Hodgkin’s survival time data of Table 11.15, the two samples, corresponding
to the affected node and total nodal radiation treatments, contain censored observations.
Figure 11.4 indicates that the underlying survival distributions corresponding to the two
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Table 11.19 Survival Times and Withdrawal Times in Months for 211 State IV Patients (with
Number of Ties Given in Parentheses)

Survival times: 0(3), 2, 3, 4, 6, 7(2), 8, 9(2), 11(3), 12(3), 15(2), 16(3), 17(2), 18, 19(2), 20, 21, 22(2), 23, 24,
25(2), 26(3), 27(2), 28(2), 29(2), 30, 31, 32(3), 33(2), 34, 35, 36, 37(2), 38, 40, 41(2), 42(2), 43, 45(3), 46,
47(2), 48(2), 51, 53(2), 54(2), 57, 60, 61, 62(2), 67, 69, 87, 97(2), 100, 145, 158.

Withdrawal times: 0(6), 1(5), 2(4), 3(3), 4, 6(5), 7(5), 8, 9(2), 10, 11, 12(3), 13(3), 14(2), 15(2), 16, 17(2),
18(2), 19(3), 21, 23, 25, 27, 28, 31, 32, 34, 35, 37, 38(4), 39(2), 44(3), 46, 47, 48, 49, 50, 53(2), 55, 56, 59,
61, 62, 65, 66(2), 72(2), 74, 78, 79, 81, 89, 93, 99, 102, 104(2), 106, 109, 119(2), 125, 127, 129, 131, 133(2),
135, 136(2), 138, 141, 142, 143, 144, 148, 160, 164(3).

Source: J. A. Koziol and S. B. Green (1978).

treatments are not equal and the survival times in the samples are better under total
nodal radiation than under radiation of the affected node. This, however, is only a visual
assessment, and censoring complicates the picture. A two-sample test for censored data
is needed to make an objective assessment. One commonly used test is Mantel’s (1966)
test, also known as the logrank test.

Assumptions

C1. For sample 1, let T1, . . . , Tm be independent, each with continuous life dis-
tribution function F1. Let C1, . . . , Cm be independent, each with continuous
censoring distribution function G1. Ci is the censoring time corresponding to
Ti . For sample 2, let U1, . . . , Un be independent, each with continuous life dis-
tribution function F2. Let D1, . . . , Dn , be independent, each with continuous
censoring distribution function G2. Dj is the censoring time associated with Uj .

C2. For sample 1, we observe, for i = 1, . . . , m ,

Xi = minimum {Ti , Ci }

and δi , where

δi =
{

1, if Ti ≤ Ci ,

0, if Ti > Ci .

For sample 2, we observe, for j = 1, . . . , n ,

Yj = minimum {Uj , Dj }

and

εj =
{

1, if Uj ≤ Dj ,

0, if Uj > Dj .

Thus, δi is 1 if Ti is uncensored and we observe the true survival time Ti

rather than the time to censorship Ci . However, δi is 0 if Ti is censored and
we observe Ci . In this case, we only know that the true survival time Ti is
greater than Ci . Similarly, εj is 1 if Uj is uncensored and we observe the true
survival time Uj rather than the time to censorship Dj . However, εj is 0 if Uj is
censored and we observe Dj . In this case, we only know that the true survival
time Uj is greater than Dj .
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C3. The T ’s, C ’s, U ’s, and D’s are mutually independent.

To illustrate the notation of this model, which is known as the randomly right-
censored model, consider the data of Table 11.16. For those data, where m = 25, n = 24,
we have X1 = T1 = 346 and δ1 = 1 because the 346 value is not censored as the true time
to relapse is observed. However, for X4, we have X4 = C4 = 1953 and δ4 = 0 because the
true number of days to relapse is not observed. The observation is censored and we know
only that the true time to relapse is greater than 1953. Similarly, Y1 = D1 = 1699, ε1 = 0,
and Y5 = U5 = 173, ε5 = 1.

Procedure

Combine the two samples and let k denote the number of distinct failure times. Denote
these distinct failure times by w(1) < w(2) < · · · < w(k). Let nij , j = 1, 2, denote the
number of patients from sample j at risk at w(i ). That is, nij is the number of patients
who have not experienced the endpoint event (death, relapse, etc.) or been censored
before time w(i ). Let dij , j = 1, 2, be the number of failures from sample j at time w(i ).
Correspondingly, let ni be the combined number of patients from both samples who are
at risk at w(i ) and let di be the combined (from both samples) number of failures at w(i ).

Mantel’s (1966) test statistic Mc for two-sample censored data is

Mc =
∑k

i=1(di1 − Ei1)√∑k
i=1 Vi1

, (11.144)

where
Ei1 = di ni1

ni
(11.145)

and

Vi1 = di (ni − di )ni1ni2

n2
i (ni − 1)

(11.146)

are, respectively, the conditional mean and variance of di1. (See Comment 42.)
Let F1 denote the unknown life distribution of group 1 and F2 the unknown life

distribution of group 2. The null hypothesis is

H0 : F1 = F2.

The test is performed by treating Mc as having an approximate N (0, 1) distribution under
H0. See Comment 46 for an R program for computing Mc .

a. One-Sided Test of H0 against Alternatives for Which Treatment 2 Is Better. To test

H0 : F1 = F2

versus

H1 : Survival times for treatment 2 tend to be longer than those for treatment 1,

at the approximate α level of significance,

Reject H0 if Mc ≥ zα; otherwise do not reject. (11.147)
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b. One-Sided Test of H0 against Alternatives for Which Treatment 1 is Better. To test

H0 : F1 = F2

versus

H2 : Survival times for treatment 1 tend to be longer than those for treatment 2,

at the approximate α level of significance,

Reject H0 if Mc ≤ −zα; otherwise do not reject. (11.148)

c. Two-Sided Test against Alternatives for which the Two Treatments Differ. To test

H0 : F1 = F2

versus

H3 : Survival times for treatment 2 have a

different distribution than that for treatment 1,

at the approximate α level of significance,

Reject H0 if |Mc | ≥ z α
2
; otherwise do not reject. (11.149)

EXAMPLE 11.8 Example 11.7 Continued.

We return to the Hodgkin’s disease data of Table 11.16. Drs. Kaplan and Rosenberg
believed the total nodal radiation treatment to be superior to the radiation of the affected
node treatment. A hypothesis test provides an assessment in terms of P -values. We will
apply Mantel’s test to the data. In the combined sample there are k = 21 distinct failure
times w(1) < · · · < w(21). They are

(1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1)
86 107 141 173 296 312 330 346 364 401 419
(2) (1) (1) (2) (1) (1) (1) (2) (1) (2)
498 505 570 615 688 822 836 950 1375 1408

In the preceding display, above each w in parentheses, we indicate if the failure is from
treatment 1 (radiation of the affected node) or treatment 2 (total nodal radiation). Table
11.20 illustrates the computation of Mc . Summing columns 2, 7, and 8, respectively, of
Table 11.20 yields

21∑
i=1

di1 = 16,
21∑

i=1

Ei1 = 8.7220,
21∑

i=1

Vi1 = 5.0146.
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Table 11.20 Computation of Mc for the Hodgkin’s Disease Data

wi di1 di ni1 ni2 ni Ei1 Vi1

86 1 1 25 24 49 .5102 .2499
107 1 1 24 24 48 .5000 .2500
141 1 1 23 24 47 .4894 .2499
173 0 1 22 24 46 .4783 .2495
296 1 1 22 23 45 .4889 .2499
312 1 1 21 23 44 .4773 .2495
330 1 1 20 23 43 .4651 .2488
346 1 1 19 23 42 .4524 .2477
364 1 1 18 23 41 .4390 .2463
401 1 1 17 23 40 .4250 .2444
419 1 1 16 23 39 .4103 .2420
498 0 1 15 23 38 .3947 .2389
505 1 1 15 22 37 .4054 .2411
570 1 1 14 22 36 .3889 .2377
615 0 1 13 22 35 .3714 .2335
688 1 1 13 21 34 .3824 .2362
822 1 1 12 21 33 .3636 .2314
836 1 1 11 21 32 .3438 .2256
950 0 1 10 21 31 .3226 .2185

1,375 1 1 9 18 27 .3333 .2222
1,408 0 1 7 18 25 .2800 .2016

Then, from (11.144), we obtain

Mc = 16 − 8.7220√
5.0146

= 3.25.

Using 1-pnorm, (3.25) gives an approximate one-sided P -value of .0006. Thus, there is
strong evidence that total nodal radiation is more effective than the radiation of affected
nodes in preventing or delaying the recurrence of early stage Hodgkin’s disease. For an
R program for Mantel’s test, see Comment 46.

Comments

42. Motivation for Mantel’s Test. The development is similar to that used in Section
10.4, where success probabilities are compared in k 2 × 2 tables. Here, k 2 × 2
tables are formed, one at each known failure time w(i ), as in Table 11.21. (Note,
however, that while k was fixed in Section 10.4, here k is the random number
of observed failures in the combined sample.)

Conditioning on the marginal totals in each of the k 2 × 2 tables, the mean
and variance of dij are, respectively

Eij = di nij

ni
(11.150)

and

Vij = di (ni − di )ni1ni2

n2
i (ni − 1)

. (11.151)
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Table 11.21 2 × 2 Table of Failure and Numbers at
Risk at Failure Time w(i )

Failures Not Failures Totals

Sample 1 di1 ni1 − di1 ni1

Sample 2 di2 ni2 − di2 ni2

Totals di ni − di ni

The k “observed minus expected” differences d11 − E11, . . . , d1k − E1k are not
independent (in contrast to the k , “observed minus expected” differences O111 −
E111, . . . ,O11k − E11k of Section 10.4, which are independent because the k 2 ×
2 tables of that section are assumed to be independent). Due to the lack of
independence, the central limit theorem, which is used to establish asymptotic
normality of the MH statistic of Section 10.4, cannot be applied in this case, and
other approaches are necessary to establish asymptotic normality of Mc . Proofs
of asymptotic normality of Mc , as a consequence of more general results that
establish asymptotic normality of classes of two-sample statistics that include
Mc , can be found in Gill (1980), Fleming and Harrington (1991), and Andersen
et al. (1993).

Mantel’s (1966) nonrigorous development of his test for the censored case
is via analogy to the Mantel–Haenszel (1959) test for k 2 × 2 tables presented in
Section 10.4 (also see Mantel (1963)). For further discussion, see Miller (1998),
Kalbfleisch and Prentice (2002), Fleming and Harrington (1991), Andersen et al.
(1993), and Klein and Moeschberger (2003). Mantel’s test is closely related to
tests proposed by Peto and Peto (1972) and Cox (1972). (Cox (1972) is a seminal
paper on nonparametric regression methods for censored data. For nonparametric
regression methods for censored data, also see Kalbfleisch and Prentice (2002),
Miller (1998), Cox and Oakes (1984), Fleming and Harrington (1991), Crowder
et al. (1991), Andersen et al. (1993), and Klein and Moeschberger (2003).)
Mantel’s test, also known as the logrank test (a name first used by Peto and
Peto (1972)), can be viewed as a generalization of a test due to Savage (1956)
for uncensored data (see Kalbfleisch and Prentice (2002)). Fleming et al. (1980)
provide a two-sample test for censored data that generalizes the Kolmogorov–
Smirnov test of Section 5.4. They found that their test tends to do better than
Mantel’s test and Gehan’s test when the failure rates (recall (11.1)) of the two
underlying distributions cross.

43. Choice of the Variance for the Logrank Test. When there are no ties among the
k uncensored observations in the combined sample, di = 1, i = 1, . . . , k , and
Mc can be written as

Mc = M

σM
,

where

M =
k∑

i=1

(
di1 − ni1

ni

)
and

σ 2
M =

k∑
i=1

ni1ni2

n2
i

.
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σ 2
M is the Mantel variance (also known as the Mantel–Haenszel variance).

Under H0, σ 2
M is an unbiased estimator of the variance of M , independently of

differences between the censoring distributions of the two groups. Brown (1984)
shows, however, that with equal sample sizes, when M is large in absolute value,
σ 2

M tends to underestimate the true variance. Large values of |M | tend to be
accompanied by small values of σ 2

M . This results in exaggeratedly large values
of |M |/σM and P -values that are too small. This is also discussed by Morton
(1978). Brown suggests that when the sample sizes are approximately equal,
one should instead base tests on M /σP , where σ 2

P is the permutation variance
(see Peto and Peto (1972) and Brown (1984)), which assumes equal censoring
distributions. The permutation variance is

σ 2
P = mn

(m + n)(m + n − 1)

(
k −

k∑
i=1

n−1
i

)
.

Brown shows that under equal sample sizes, the permutation variance tends to
overstate the true variance when censoring is unequal.

Although Brown’s results highlight the weakness of Mantel’s procedure
in certain situations, the assumption of equal censoring distributions required
by σ 2

P is too restrictive and thus, we have used the Mantel variance in our
presentation of Mantel’s test. See Mantel (1985) for a brief rebuttal to Brown
(1984).

44. Tarone–Ware Tests. The Mantel test described in this section assigns equal
weights to the 2 × 2 tables formed at each known failure time w(i ). Tarone and
Ware (1977) define a class of two-sample tests for censored data by allowing dif-
ferent weights for the tables. Their general test statistic, for weights b1, . . . , bk ,
is

TW =
∑k

i=1 bi (di1 − Ei1)√∑k
i=1 b2

i Vi1

, (11.152)

where Ei1, Vi1 are given by (11.145) and (11.146), respectively. Under H0, TW
is asymptotically N (0, 1). Significantly large values of TW indicate survival
times for treatment 2 tend to be larger than those for treatment 1. Significantly
small values of TW indicate survival times for treatment 1 tend to be larger than
those for treatment 2. The choice bi = 1 yields Mantel’s statistic. The choice
bi = ni yields a test due to Gehan (1965) (although Gehan derived his test from
a different approach). Tarone and Ware advocate the choice bi = √

ni based on
efficiency considerations.

45. Other Two-Sample Tests for Censored Data. There are many two-sample tests
for censored data. Gehan (1965) proposed a generalization of Wilcoxon’s two-
sample test for uncensored data. Efron (1967) proposed a different generalization
of Wilcoxon’s test. Tarone and Ware (1977) defined a class of tests that include
Mantel’s test and Gehan’s test. Prentice (1978) proposed a family of linear rank
tests. Other very general families have been proposed and studied by Gill (1980)
and Harrington and Fleming (1982). Leurgans (1983, 1984) gives efficiency and
small-sample Monte Carlo power results for many of these tests. Fleming and
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Harrington (1991, Chapter 7) provide a comprehensive treatment of Gill’s 1980
K class.

46. R program for Two-Sample Censored Data Tests. We use the survival package’s
function survdiff that performs two-sample censored data tests and obtains
corresponding approximate P -values for statistics in the Harrington and Fleming
(1982) Gp class of tests. By setting ρ = 0, one gets Mantel’s test. To illustrate the
use of survdiff, we consider the relapse-free times of Table 11.16. We create
three R objects corresponding to (i) the X ’s of Table 11.16, (ii) the indicators
(1 for observed relapse, 0 for censored) of whether the X is a true relapse time
or a censored time, and (iii) indicators (1 for sample 1, 2 for sample 2) that
designate if X is from sample 1 or sample 2. Let

rad<-c(346, 141, 296, 1953, 1375, 822, 2052, 836, 1910, 419, 107, 570,
312, 1818, 364, 401, 1645, 330, 1540, 688, 1309, 505, 1378, 1446, 86, 1699,
2177, 1968, 1889, 173, 2070, 1972, 1897, 2022, 1879, 1726, 1807, 615, 1408,
1763, 1684, 1576, 1572, 498, 1585, 1493, 950, 1242, 1190),

cen<-c(1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0),

smp<-c(rep(1, 25), (0, 24)).

Then, creating a survival formula,

Surv(data, event = optional censors)̃ x,

we set
formula = Surv(rad, event = cen)̃ smp

and with rho = 0 corresponding to Mantel’s test, the R function
survdiff(formula, rho = 0) yields chisquare = 10.6 on 1 degree
of freedom, P = .00115. This agrees (allowing for rounding) with what we
obtained in Example 11.7.

Recall that in Example 11.7, we found Mc = 3.25 with an approximate
one-sided P -value of .0006 based on the normal approximation. Note (3.25)2 =
10.56 and 2(.0006) = .0012.

47. The Cox Proportional Hazards Model. In addition to Assumptions B1–B3, we
assume that each subject has a vector of non-time-dependent covariates with
the i th subject having covariate vector zi = (z1i , . . . , zpi )

′. The covariate vector
z is often called the risk vector. For example, in a study of coronary heart
disease (CHD),, the covariates could include total cholesterol, high density
lipoprotein, age, systolic blood pressure, diabetic status, and smoking status.
One of the goals is to assess the influence of each covariate on the time to death
from CHD.

The failure rate function at time x is modeled by Cox (1972) as

r(x |z) = r0(x) exp

( p∑
i=1

βi zi

)
,
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where β = (β1, . . . , βp)
′ is a vector of regression coefficients. The parameter

βi is a measure of the importance of the i th covariate to the failure rate. The
function r0(x) is known as the baseline failure rate and is unspecified. The term
proportional hazards is used because for two subjects with covariate z and z∗
say,

r(x |z)/r(x |z∗) = exp

{ p∑
i=1

βi (zi − z ∗
i )

}
, (11.153)

which is constant.
Assuming there are no ties, let x(1) < . . . < x(n) denote the ordered

observed times. Let R(i ) be the set of patients at risk just before time
x(i ). Let z(i ) be the covariate associated with x(i ). For an uncensored
time x(i ), the conditional probability of death of the patient with covari-
ate z(i ) at time x(i ), given survival up to time x(i ), is exp(β ′z(i ))/

∑
j∈R(i )

exp(β ′zj ). Then, Cox’s partial likelihood is the product, over the uncensored
times, of these conditional probabilities, namely,

Lc(β) =
∏

uncensored
times

exp(β ′z(i ))∑
j∈R(i )

exp(β ′z(j ))
. (11.154)

Maximum likelihood estimates for the β’s can be obtained numerically, for
example, by a Newton–Raphson algorithm or other numerical techniques.

Hypothesis tests concerning the β’s include Wald’s test, the likelihood
ratio test based on lnLc , and the scores test. For details, including the cases
where ties are present and the covariates may be time-dependent, see Klein and
Moeschberger (2003). The R package survival contains a number of procedures
related to life testing and estimation for the Cox model including cox.zph,
which tests the proportional hazards assumption, and coxph, which fits a pro-
portional hazards model. Ng’andu (1997) compares various tests for assessing
the validity of the proportional hazards assumptions.

Properties

1. Consistency. See Gill (1980, Section 4.1) and Fleming and Harrington (1991,
Section 7.3).

2. Asymptotic Normality. See Prentice (1978), Gill (1980), and Fleming and
Harrington (1991, Section 7.2).

3. Efficiency. See Peto and Peto (1972), Prentice (1978), Gill (1980, Chapter 5),
Harrington and Fleming (1982), Leurgans (1983, 1984), and Fleming and Har-
rington (1991, Section 7.4).

4. Power and Sample-Size Calculations. See Latta (1981), Schoenfeld (1981),
Leurgans (1983, 1984), Hsieh (1987, 1992), Sposto and Krailo (1987), Lakatos
and Lan (1992), and Strawderman (1997).
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Table 11.22 Severe Viral Hepatitis Study

Treatment Length of observation, Status
Patient (D = drug, P = placebo) weeks (A = alive, D = dead)

1 D 6 D
2 P 16 A
3 P 2 D
4 D 1 D
5 D 1 D
6 P 4 A
7 D 16 A
8 D 3 A
9 P 16 A

10 D 8 D
11 P 16 A
12 P 2 D
13 D 4 D
14 P 16 A
15 P 5 A
16 D 1 D
17 D 10 A
18 P 2 A
19 P 2 A
20 D 10 D
21 P 16 A
22 D 1 A
23 P 16 A
24 D 15 A

Source: P. B. Gregory (1974).

Problems

44. The data in Table 11.22, obtained by Gregory (1974) of the Stanford University, originally
appeared in Brown and Hollander (1977). The data are from a clinical trial conducted to
study the efficiency of a new drug thought to be helpful for treating patients with a particular
type of serious liver disease. Is there evidence that the new drug does significantly better (or
significantly worse) than the placebo in terms of survival times?

45. Give an intuitive explanation why the 2 × 2 tables formed at the uncensored times
w(i ), . . . , w(k) are not independent.

46. Apply Gehan’s test (see Comment 43) to the hepatitis data of Table 11.22. Compare your
results with those of Problem 44.

47. Apply the Tarone–Ware test with weights bi = √
ni (see Comment 43) to the hepatitis data of

Table 11.22. Compare your results with those of Problems 44 and 46.

48. The data in Table 11.23 are from Hollander (1996) and concern 444 manuscripts submitted
for publication to “Theory and Methods” Section of the Journal of the American Statistical
Associations in the period January 1, 1995–December 15, 1995. Of interest is the distribution
of the time (in days) to first review. When the data were studied on December 15, 1995,
173 papers were still awaiting the first review. Thus, there are 173 censored times and 271
uncensored times. In Table 11.23, the variable Xi = minimum(Ti , Ci ), where Ti is the time
to first review and Ci is the time to censorship, and the indicator variable δi is 1 if the i th
observation is uncensored and 0 if it is censored. Use the data in Table 11.18 and Table 11.23
to test if there is a significant difference between the 1994 times to first review and the 1995
times to first review.
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Table 11.23 The Times to First Review of the 1995 JASA Theory and Methods Papers

Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi Xi δi

141 1 37 1 16 1 93 1 77 1 134 1 64 1 29 1 88 1 58 0 22 1

140 1 42 1 245 1 240 0 101 1 171 1 56 1 116 0 87 0 56 0 30 0

161 1 126 1 162 1 95 1 175 1 119 1 106 1 115 0 85 0 56 0 30 0

23 1 88 1 42 1 221 1 162 1 155 1 87 1 115 0 15 1 50 0 19 1

14 1 27 1 31 1 130 1 206 0 28 1 103 1 0 1 81 0 50 0 29 0

134 1 64 1 98 1 21 1 132 1 112 1 137 0 114 0 81 0 50 0 29 0

83 1 260 1 127 1 66 1 205 0 169 0 137 0 113 0 81 0 39 1 28 0

145 1 114 1 37 1 90 1 90 1 169 0 38 1 113 0 1 1 33 1 25 0

97 1 114 1 171 1 159 1 19 1 125 1 17 1 113 0 80 1 50 0 25 1

119 1 252 1 118 1 232 0 32 1 162 0 95 1 14 1 79 0 49 0 25 0

255 1 49 1 0 1 70 1 150 1 162 0 133 0 109 0 78 0 22 1 25 0

181 1 154 1 188 1 74 1 190 1 118 1 120 1 109 0 78 0 49 0 25 0

140 1 54 1 257 1 100 1 56 1 96 1 130 0 89 1 71 1 23 1 25 0

209 1 159 1 197 1 188 1 196 0 47 1 53 1 2 1 78 0 45 0 25 0

194 1 38 1 21 1 211 1 82 1 73 1 19 1 45 1 77 0 45 0 25 0

297 1 246 1 263 0 177 1 196 0 150 1 59 1 23 1 77 0 38 1 23 0

46 1 91 1 143 1 221 0 58 1 40 1 93 1 107 0 2 1 44 0 23 0

47 1 197 1 262 0 204 1 191 1 161 0 129 0 107 0 73 0 44 0 16 1

44 1 32 1 197 1 122 1 42 1 14 1 1 1 106 0 73 0 44 0 18 1

85 1 32 1 145 1 14 1 14 1 161 0 119 1 93 1 73 0 43 0 18 0

155 1 104 1 35 1 99 1 21 1 157 0 128 0 105 0 70 0 43 0 18 0

153 1 32 1 45 1 28 1 54 1 157 1 90 1 85 1 70 0 43 1 18 0

48 1 101 1 201 1 218 0 104 1 148 1 127 0 101 0 70 0 31 1 17 0

48 1 291 0 204 1 217 0 151 1 153 1 123 0 101 0 70 0 42 0 17 0

187 1 102 1 126 1 3 1 189 0 157 0 123 1 101 0 70 0 39 0 17 0

99 1 288 0 255 0 28 1 39 1 157 0 123 0 100 0 67 0 39 0 16 0

21 1 225 1 255 0 129 1 78 1 157 0 46 1 100 0 67 0 39 0 16 0

190 1 147 1 99 1 170 1 109 1 41 1 66 1 100 0 64 0 39 0 15 0

319 0 160 1 233 1 93 1 186 0 151 0 43 1 100 0 64 0 14 1 15 0

108 1 284 0 197 1 135 1 158 1 46 1 123 0 0 1 64 0 27 1 11 0

44 1 253 1 42 1 169 1 44 1 151 0 121 0 20 1 47 1 38 0 11 0

127 1 174 1 170 1 28 1 179 1 71 1 34 1 47 1 63 0 38 0 11 0

155 1 180 1 71 1 79 1 64 1 151 0 121 0 99 0 60 0 37 0 9 0

186 1 22 1 76 1 81 1 28 1 150 0 110 1 98 0 59 1 37 0 9 0

215 1 237 1 26 1 211 1 17 1 150 0 120 0 21 1 59 0 33 1 9 0

39 1 218 1 12 1 33 1 177 0 148 0 80 1 95 0 34 1 27 1 8 0

118 1 127 1 187 1 117 1 29 1 12 1 119 0 94 0 59 0 37 0 4 0

22 1 148 1 130 1 41 1 47 1 18 1 31 1 95 0 59 0 18 1 3 0

32 1 100 1 28 1 24 1 23 1 70 1 73 1 93 0 59 0 32 0 3 0

74 1 63 1 1 1 0 1 167 1 47 1 43 1 43 1 59 0 32 0 2 0

28 1 58 0 31 0 2 0

Source: M. Hollander (1996).



11.8 Efficiencies 605

Table 11.24 Asymptotic Relative Efficiencies of A, B , V ′, E

A B V ′ E c2
MAX

F1 (linear failure rate) 0.44 0.31 1.00 0.91 0.820
F2 (Makeham) 0.70 0.70 0.70 1.00 0.083
F3 (Pareto) 0.44 0.31 1.00 0.91 0.820
F4 (Weibull) 0.51 0.87 0.49 1.00 1.441
F5 (gamma) 0.39 1.00 0.28 0.90 0.498

49. For the data of Table 11.22, compute the Nelson–Aalen estimator of the cumulative hazard
function for the drug and the Nelson–Aalen estimator of the cumulative hazard function for
the placebo. What differences are indicated?

11.8 EFFICIENCIES

The entries in Table 11.24 are given by Klefsjö (1983) and are based on efficiency
calculations reported in Bickel and Doksum (1969), Hollander and Proschan (1975),
and Klefsjö (1983). The statistics considered in Table 11.24 are the total-time-on-test
statistic E of Section 11.1 given by (11.9) (also see Comment 14), the IFR statistic A
(see Comment 5), the IFRA statistic B (see Comment 5), and the DMRL statistic V ′
(11.58). Table 11.24 gives, for the distributions F1 (linear failure rate), F2 (Makeham), F3

(Pareto), F4 (Weibull), and F5 (gamma), the asymptotic relative efficiencies of A, B , V ′,
E relative to the statistic (among A, B , V ′, E) having the largest efficacy for that particular
F . The c2

MAX column of Table 11.24 gives, for a given F , the largest squared efficacy
for the four included statistics.

For the NBU statistic T given by (11.34), Hollander and Proschan (1972) found
the asymptotic relative efficiency of T with respect to E for Weibull and linear failure
rate distributions. The values are eF4(T , E) = .937 and eF1(T , E) = .45. Other efficiency
values for T are given in Koul (1978b) and Deshpande (1983). Other efficiency values
for E are given by Bickel and Doksum (1969) and Borges, Proschan, and Rodrigues
(1984).

To our knowledge, asymptotic relative efficiency results have not been obtained
for the IDMRL and DIMRL tests of Section 11.4. Hawkins, Kochar, and Loader (1992),
however, have performed a limited Monte Carlo power comparison of their IDMRL tests
T (1) and T (2) (see Comment 25) for the case where the turning point τ is unknown versus
the Guess–Hollander–Proschan IDMRL test for the case where τ is known (given by
(11.83) and denoted by HKL as GHP1) and the Guess–Hollander–Proschan IDMRL test
when the proportion ρ = F (τ ) is known. See Comment 24. The latter test is denoted by
HKL as GHP2. The distribution used by HKL in their Monte Carlo study is Fα,β,γ (x) =
1 − Fα,β,γ (x), α > 0, β > 0, γ > 0, where Fα,β,γ (x) is given in Section 3 of HKL
(1992). The distribution has mrl function.

mα,β,γ (x) = β + γ e−αx (1 − e−αx ), x ≥ 0. (11.155)

As γ tends to be 0, mα,β,γ (x) tends to be the constant mrl function of the exponential
distribution (11.3) with λ = 1/β. Each member of the Fα,β,γ family is an IDMRL dis-
tribution with turning point τ = α−1 log(2). HKL found their T (1) test and GHP1 to be
slightly conservative. They found GHP1 generally dominates their T (1) and T (2) tests
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except when ρ ≤ .5, where T (2) seems to dominate. When ρ ≤ .75, T (2) dominates T (1)

and compares well with GHP1 and GHP2. For ρ in the neighborhood of .90, HKL found
T (1) dominates T (2), but both T (1) and T (2) are considerably dominated by GHP2. As
HKL point out, it is not surprising that the GHP tests outperform the HKL in their study,
because in their comparisons, the GHP tests are allowed to use information about τ , and
such information is not required by the HKL tests.

Nair (1984) defined a family of confidence bands for the survival function. Nair’s
family is indexed by parameters a , b with 0 < a < b < 1. Each band in his family is an
equal-precision band in the sense that its width is proportional to its standard deviation.
Nair compared his equal-precision (EP) bands to the Hall–Wellner (HW) band defined
in Comment 34. His efficiency criterion is the ratio of the limiting squared widths of the
bands. In the absence of censoring, the HW band reduces to the Kolmogorov band of
Section 11.5. Thus, Nair’s comparisons are relevant to Section 11.5 as well as Section
11.6. Nair concluded that the HW and EP bands are competitive, with the HW band being
narrower in the middle and the EP bands narrower in the tails. He also found the relative
performance of the EP bands to the HW band gets better as censoring increases. Hollander
and Peña (HP) (1989) used the same efficiency criterion to compute the efficiency e(x; c)

of the HP band (see Comment 37) for a general c with respect to the HW band (which
is the HP band corresponding to c = 1). They showed, under certain conditions, e(x; c)

tends to c as x tends to 0 and e(x ; c) tends to c−1 tends to infinity.
The KME of Section 11.6 is the best estimator of the survival function F in the

fully nonparametric model when the underlying life distribution F and the censoring
distribution G (that governs the censoring patterns) are unspecified (see Andersen et
al. (1993, Chapter VIII)). Efficiency robustness properties of the KME can be studied
by seeing how well the KME does in models for which it is not optimal. Miller (1983)
studied the KME’s efficiency loss when compared to the MLE in parametric models. Not
surprisingly, the KME performs poorly relative to the MLE in a fully parametric setting.
For example, when F and G are exponential, Miller (1983) showed that the asymptotic
efficiency of the KME F KM(x) (see (11.121)) with respect to the MLE tends to zero as
x tends to zero and also tends to zero as x tends to infinity.

Hollander, Proschan, and Sconing (1985) considered the efficiency properties of the
KME in the proportional hazards model, where the censoring distribution G and the life
distribution F satisfy

1 − G(x) = {1 − F (x)}β , x > 0, β > 0. (11.156)

In this model, the cumulative hazard functions �G = − log(1 − G) and �F = − log(1 −
F ) are proportional. Also, the expected proportion of uncensored observations is 1/(1 +
β). The model is also known as the Koziol–Green model (see Koziol and Green (1976)).
Table 11.25 contains asymptotic efficiency values of the KME with respect to the MLE
F̃ in model (11.154) with β unknown. The estimator F̃ was independently proposed
by Abdushukurov (1987), Cheng and Lin (1987), and Hollander, Proschan, and Sconing
(1985) (also see Csörgő (1988) and Csörgő and Faraway (1998)). The latter paper bares a
paradox that shows the proportional hazards model is “too good to be true.” For estimating
F , sometimes it is better to have a censored sample than an uncensored sample! The
estimator F̃ is

F̃ (x) = {Ĥ (x)}d , (11.157)
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Table 11.25 Values of a(x )

x β: .1 .2 1
3 .5 1.0 2.0

.1 .9186 .8522 .7812 .7130 .5903 .5048

.5 .9466 .9063 .8672 .8345 .7910 .7642
1.0 .9640 .9368 .9091 .8821 .8130 .6477
1.5 .9679 .9403 .9065 .8655 .7358 .4850
2.0 .9639 .9291 .8828 .8239 .6492 .3930

where, letting Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) denote the ordered values in the combined
list of censored and uncensored values, Ĥ (x) = (number of Z ′s > x)/n and d =
(number of uncensored values)/n . Table 11.25, part of a larger table in HPS (1985),
gives values of the asymptotic efficiency

a(x) = e(F KM, F̃ )

of the KME with respect to F̃ when F is exponential with parameter 1 and G is expo-
nential with parameter β. For this choice of F , G , it can be shown that a(x) initially
increases and then decreases. The value of x for which this change occurs is given by
the solution to the equation (β + 1)x = 2[1 − exp{−x(β + 1)}]. Table 11.25 suggests
that a(x) decreases as β increases. β increasing is equivalent to censoring increasing
stochastically. Thus, Table 11.25 suggests that a(x) decreases as censoring increases
stochastically.

HPS (1985) also studied, in the fully nonparametric model where the life distribution
F and the censoring distribution G are arbitrary, the asymptotic efficiency b(x),

b(x) = e(F n , F KM),

of the empirical survival function (11.125) with respect to the KME; b(x) has the fol-
lowing interpretation. Roughly speaking, the KME requires nb(x) observations in the
censored model to do as well as the empirical survival function does with n observations
from the noncensored model. HPS (1985) showed (1) as x tends to 0, b(x) tends to 1;
(2) as x tends to infinity, b(x) tends to infinity; (3) b(x) is increasing in x ; and (4) b(x)

increases as censoring increases stochastically. The results show that when x is small,
the KME’s efficiency loss is small, but for large values of x , the KME should be used
with caution, particularly in cases of heavy censoring.

Harrington and Fleming (HF) (1982) obtained, using results of Gill (1980), asymp-
totic relative efficiencies of their class Gρ of tests. The Gρ class is a special case of Gill’s
(1980) K class. They take the censoring distributions G1, G2 to be equal and consider
the family of survival functions Hρ(x) given by

H0(x) = e−ex
(ρ = 0), (11.158)

Hρ(x) = (1 + ρex )−1/ρ (ρ > 0). (11.159)

They consider the time-transformed location alternatives of survival functions

S ρ(x) = Hρ(g(x) + θ),
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where g is an arbitrary monotonically increasing time transformation. The two samples
can be viewed as being modeled with the survival functions F i (x) = Hρ(g(x) + θi ),
i = 1, 2, with � = θ2 − θ1 and H0 corresponding to � = 0. HF (1982) obtained the
asymptotic efficiency of the Gρ statistic versus the Gρ∗

statistic for survival alternatives
F i (x) = Hρ∗(g(x) + θN

i ). The statistic Gρ∗
is fully efficient against Hρ∗ . Expression

(11.160) gives the asymptotic efficiencies e(Gρ ,Gρ∗
) in the special case of proportional

hazards, where G1(x) = G2(x) = {F (x)}β :

e(Gρ ,Gρ∗
) = (2ρ + β + 1)(2ρ∗ + β + 1)

(ρ∗ + ρ + β + 1)2
. (11.160)

For ρ = 0,Gρ is the logrank test, and it is optimal against shifts of the extreme value
distribution given by (11.156). See HF (1982), Leurgans (1983, 1984), and Fleming and
Harrington (1991, Section 7.4) for further efficiency results concerning Mantel’s logrank
test and its competitors.



Chapter 12

Density Estimation

INTRODUCTION

A common assumption in the previous chapters has been that the sampled data comes
from a continuous distribution. This chapter examines methods of estimating the distri-
bution of the population from which the data is sampled in such cases. If an estimate of
the density of a continuous population is available, one can find estimates of population
statistics such as the mode, range, and quantiles and estimate probabilities associated
with the population, as well as make subjective determinations of whether data appears
to have a symmetric distribution or not, or whether two distributions appear to be of the
same general form.

The methods of estimating densities are typically computationally intensive and
require the use of software for even small sets of data. Accordingly, this chapter will
rely on the use of software for examples. Section 12.1 provides an introduction to the
density functions and gives a popular, commonly used estimate, the histogram. In Section
12.2, the idea of kernel estimation is introduced and several kernels are examined, and
Section 12.3 discusses bandwidth selection methods.

Data. There are n observations X1, X2, . . . , Xn .

Assumptions

A1. The observations X1, X2, . . . , Xn are a random sample from a continuous popu-
lation. That is, the X ’s are mutually independent and identically distributed.

12.1 DENSITY FUNCTIONS AND HISTOGRAMS

Properties of Densities

The probabilities associated with a real-valued continuous random variable X are evalu-
ated through the use of a probability density function (pdf) f through the relation

P (a < X < b) =
∫ b

a
f (x)dx (12.1)

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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for any pair of real numbers a ≤ b. One may substitute inequalities that are not strict
in the above equation without affecting the evaluation of the probability. The density
function f must satisfy two additional properties:

D1. f (x) ≥ 0 for all x and

D2.
∫∞
−∞ f (x)dx = 1.

The pdf f is related to the cumulative distribution function (cdf) F by

F (b) = P(X ≤ b) =
∫ b

−∞
f (x)dx (12.2)

which implies

P(a < X ≤ b) =
∫ b

a
f (x)dx = F (b) − F (a). (12.3)

In a parametric setting, the density function relies on the parameters that specify
the distribution within its family. For example, data following a normal distribution with
mean μ and variance σ 2 has its probabilities completely determined through its pdf:

f (x) = (2πσ 2)−1/2e−(x−μ)2/(2σ 2), −∞ < x < ∞, (12.4)

where μ is any real number and σ > 0. Estimating the density at (12.4) only requires
estimation of the parameters μ and σ 2. Popular methods to do this include maximum
likelihood estimation and the method of moments estimator. Of course, the estimate
obtained is valid only if the data does, in fact, follow the normal distribution.

It is more likely that someone needing to estimate a density does not know ahead
of time that the density belongs to a certain class or family of parametric distribution
functions. In this case, nonparametric estimation is required. We now present one such
estimator.

Using (12.3), we note that for a continuous random variable X with cdf F and h > 0

P(x − h/2 < X ≤ x + h/2) = F (x + h/2) − F (x − h/2) =
∫ x+h/2

x−h/2
f (y)dy . (12.5)

If f is smooth and h is small, ∫ x+h/2

x−h/2
f (y)dy ≈ h · f (x).

A reasonable estimate for f (x) is then

f̂ (x) = F (x + h/2) − F (x − h/2)

h
. (12.6)

From (12.2), it is clear that if f is not known, then neither is F . So we have just traded
the problem of estimating f with that of estimating F . Fortunately, we already have an
estimate for the cdf. The empirical cdf of a sample was used in Chapter 5 in association
with the Kolmogorov–Smirnov test. The empirical cdf is

Fn(t) = # of Xi ≤ t

n
(12.7)

for any real t . This leads to a step-function estimate for F .
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EXAMPLE 12.1 Spatial Ability Scores.

In a study examining the relation between student mathematical performance and their
preference for solving problems, Haciomeroglu and Chicken (2011) gathered data on
a student’s spatial ability using four tests of visualization. For each student, their data
were combined into a single score giving an overall measure of spatial ability. These
scores for 68 female high school students enrolled in advanced placement (AP) calculus
classes in Florida are given in Table 12.1. High scores are associated with students
with strong spatialization skills. The empirical cdf for these 68 observations is shown in
Figure 12.1. This figure is a plot of the output from the R function ecdf. The circles
on the plot represent an end point of an interval that is closed, that is, the point is in the
interval. The interval in this case is the interval on which the estimate of F is constant.
These intervals are closed on the right and open on the left. Thus, for a value of x that
occurs in a circle, the estimate Fn(x) is always shown by the circle at x , not the solid
line at x .

The Histogram

One estimate of the density function f at a point x is found by combining (12.6) and
(12.7)

f̂ (x) = Fn(x − h/2) − Fn(x + h/2)

nh
= # of Xi in (x − h/2, x + h/2]

nh
. (12.8)

The histogram estimate of a density function simplifies the estimate at (12.8) by removing
the requirement that the center of the intervals used for estimating f̂ (x) is x . Instead, a
number of centering points based on the range of the data is used. The value for h is
chosen so that if the cj , j = 1, 2, . . . , m are a collection of fixed centering points, then the
intervals Ij = (cj − h/2, cj + h/2] are nonoverlapping and the set of intervals Ij covers
the range of the random sample. We will refer to these intervals Ij as bins (they are
sometimes labeled classes), and we call h the bin width.

The histogram counts the number of X ’s in the bin Ij for any x in Ij , rather than
using the bins defined in (12.8):

f̂ (x) = # of Xi in Ij

nh
= nj

nh
, x in Ij . (12.9)

Note that this histogram estimate of f integrates to 1, as required of a density (D2).

Table 12.1 Discrepancy Scores for 68 Female AP Calculus Students

0.129 0.242 0.262 0.284 0.300 0.317 0.324 0.330 0.339 0.353
0.359 0.369 0.377 0.382 0.424 0.425 0.429 0.451 0.453 0.471
0.477 0.479 0.480 0.480 0.483 0.487 0.489 0.501 0.501 0.502
0.503 0.507 0.511 0.520 0.522 0.530 0.532 0.535 0.536 0.540
0.547 0.548 0.551 0.551 0.554 0.556 0.557 0.558 0.581 0.590
0.596 0.604 0.616 0.623 0.627 0.628 0.654 0.663 0.680 0.691
0.744 0.751 0.790 0.806 0.813 0.818 0.830 0.860

Source: E. Haciomeroglu and E. Chicken (2011).
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Figure 12.1 The empirical cdf for the data in Example 12.1.

Generally, a vertical line is added to a graph of the histogram at each bin end point.
An alternative to (12.9) is to use only the numerator in the estimate. In this case, the
height of the estimate is just the integer count in each bin. This will have the same shape
as the histogram but is not a density estimator because it no longer integrates to 1.

Procedure

Suppose x is a random sample of size n from a continuous population,
x= {X1, X2, . . . , Xn}. To estimate a histogram of x using R, the command hist(x) is
used. The argument freq is used either to set the vertical axis to denote the number of
Xi in a particular bin (freq=TRUE) or to set the bin height proportional to the number
of Xi in a bin (freq=FALSE). The latter option gives a true density estimate, because
only it will integrate to 1. The argument breaks="FD" will use the rule of Freedman
and Diaconis (1981) for determining the number of bins m and the bin width h . This
method selects the bin width to be

h = 2 · IQR · n−1/3,

where IQR is the interquartile range of the data and n is the number of samples. The
command hist then divides the range of the data by h to determine m . Additionally, it
may modify the number of bins and the bin width slightly (using the pretty function)
to ensure visually pleasing bin end points.

Unlike the other methods to be discussed later in this chapter, the histogram is simple
enough to be implemented manually. After selection of the number of bins m and bin
width h , as well as the placement of the end points or midpoints of the bins, one sets the
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value of the estimate over a bin interval to be the number of observed values Xi that fall
into that bin, divided by nh . For large data sets, this manual procedure becomes unwieldy.

EXAMPLE 12.2 Histogram for Spatial Ability Data.

For the data in Table 12.1, the IQR is 0.1525 and n = 68. This gives a bin width of
h = 0.075 using the rule of Freedman–Diaconis. The maximum value of the spatial
ability data is 0.860 and the minimum is 0.129, so the number of bins is m = (0.860 −
0.129)/0.075 = 9.747. This should be rounded up to next integer to ensure coverage of
the range. Thus, the histogram will use m = 10 bins of size 0.075 to estimate the density
of the data. If the histogram was to be manually drawn with these values, then these m
bins are

Ij =
{

[0.129, 0.129 + 0.075], j = 1,

(0.129 + 0.075 · (j − 1), 0.129 + 0.075 · j ], j = 2, . . . , 10.

The first bin, I1, is closed on the left in order to ensure the minimum value of the data is
included in the histogram. R takes the number of bins and the bin width m provided by
the Freedman–Diaconis rule as a suggestion rather than a strict requirement. It modifies
the number of bins and the bin widths with the pretty function to create a visually
pleasing graph. The function pretty forces values that are one, two, or five times a
power of 10. For this data, R has changed m to 8 and h to 0.1. Additionally, it starts
the bins at 0.1, rather than the minimum data value of 0.129. Using these values, the
height of the histogram for the discrepancy data is given in Table 12.2. This data is
plotted in Figure 12.2a. The histogram was produced by the R command hist using
arguments freq=F and breaks="FD". Examining the plot of the histogram, possible
interpretations are that the distribution of the population from which the data was sampled
may be bimodal and skewed to the left.

Modifying the number of bins may have a significant effect on the histogram esti-
mate. Choosing too large a bin width results in an oversmoothed estimate of the density,
while too small a bin width gives an estimate that is overly sensitive to the sample rather
than to the underlying distribution. This is equivalent to a problem in variance-bias trade-
off. As h increases, the estimate displays increasing bias and decreasing variability. As
h decreases, the opposite occurs. (See Comment 1.)

EXAMPLE 12.3 Effect of Changing Bin Width.

Figure 12.2 shows the histogram for the spatial ability data in Table 12.1 with different
choices of bin width h . The number of bins will change as h does in order to ensure

Table 12.2 Histogram Data for Example 12.1

j Ij nj nj /nh j Ij nj nj /nh

1 [0.1, 0.2] 1 1/6.8 5 (0.5, 0.6] 24 24/6.8
2 (0.2, 0.3] 4 4/6.8 6 (0.6, 0.7] 9 9/6.8
3 (0.3, 0.4] 9 9/6.8 7 (0.7, 0.8] 3 3/6.8
4 (0.4, 0.5] 13 13/6.8 8 (0.8, 0.9] 5 5/6.8
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Figure 12.2 Histograms for the data in Example 12.1.

the range of the data is covered by the histogram. The histogram in Figure 12.2b has
m = 3 bins of width 0.244. Compared to Figure 12.2a, this histogram is smoother and
the distribution of the population appears much more symmetric. The histogram in Figure
12.2c has m = 20 bins of width 0.037. The distribution now appears to be bimodal.

A drawback to having too many bins is the introduction of regions of zero probability.
The histogram in Figure 12.2c has one such area. This corresponds to a gap in the
sample data. It is unlikely that the true density of the spatial ability data has regions of
zero probability. Additionally, it is undersmoothed. This estimate is too variable for an
assumed continuous distribution.

Comments

1. Bias, Variance, and Integrated Mean Squared Error of the Histogram. If the
underlying density f from which the population is drawn is continuous with
two continuous, bounded derivatives, Scott (1979) shows that the bias of the
histogram at a point x is

hf ′(x)/2 − f ′(x)(x − tx ) + O(h2),
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where h is the bin width, tx is the left end point of the bin containing x , and the
term O(h2) is on the order of h2. The variance of the histogram at a point x is
given by

f (x)/(nh) + O(n−1),

where O(n−1) is on the order of n−1. It is evident that as h increases, the bias
increases and the variance decreases. The reverse is true as h decreases. In order
to have both a small variance and bias, it is desirable to have h small and nh
large. This requires that nh → ∞, n → ∞, and h → 0. In light of this, the final
terms in the above expressions for the bias and variance are ignored and the
remainders are referred to as the asymptotic bias and variance.

To find a useful bin width for the entire histogram, the integrated mean
squared error (IMSE) is used. For the histogram, the asymptotic IMSE is

(nh)−1 + h2/12 ·
∫

(f ′)2. (12.10)

This expression is analyzed to find both optimal bandwidths and kernels. See
Comment 2.

2. Rules for Number of Bins and Bin Width. There are a number of rules for selecting
the number bins m , or equivalently, the bin width h . The hist function in R

implements the Freedman–Diaconis rule discussed above (breaks="FD") as
well as a few others. The argument breaks="Scott" uses

h = 3.5σ̂

n1/3
,

where σ̂ is the sample standard deviation. This bin width is found by minimizing
the asymptotic mean integrated squared error (MISE) (12.10) under the assump-
tion that the population is normal. The Freedman–Diaconis (1981) rule is derived
similarly to Scott’s rule, but uses 2 · IQR in place of 3.5σ̂ .

Another method is given by Sturges (1926) and implemented with
breaks="Sturges". Here, the number of bins is determined by

m = log2 n + 1,

and the value is rounded up to the next integer. This number is found by assuming
underlying normality. For nonnormal data, Sturges’ rule may oversmooth the
histogram density estimator by specifying too few bins. R uses Sturges’ method
as the default.

3. End Point Determination. The intervals used for the bins are closed on the right,
that is, of the form (a , b]. This is the default for R and seems natural given (12.7).
However, R allows for the option of having the intervals closed on the left. This
is accomplished with the argument right=TRUE or right=FALSE in the hist
function. Whichever method is selected, the bins at the extreme left and right are
closed on the left and right, respectively.

4. Unequal Bin Widths. We have assumed that the bins are all the same size. This is
not necessary. The bin widths may be h1, h2, . . . , hm , an arbitrary set of positive
values, provided the resulting bins are nonoverlapping and cover the complete
range of the data. All that is necessary to determine the histogram in this case



616 Chapter 12 Density Estimation

is to substitute hj for h in (12.9). In R, this can be implemented by specifying a
vector of unequal bin widths through the argument breaks.

5. Average Shifted Histograms. A variant of the histogram described in Scott (1992)
is the average shifted histogram (ASH). In this method, m different histograms
are calculated, each with fixed bin width h . However, the leftmost bin end point
is varied for each histogram: if the first histogram starts at a point x0, then
the remaining m − 1 histograms begin at x0 + h(i/m), where i runs from 1 to
m − 1. Weighted averages of these m histograms are taken as the ASH density
estimate. In R, ASH is implemented with commands available in the package
ash developed by Gebhardt (2009).

Properties

1. Consistency. For conditions under which consistency is obtained, See Scott (1979,
1992).

Problems

1. Using the data from Table 12.1, calculate the bin width and number of bins using Scott’s rule
and Sturges’ rule. Compare histograms created for the spatial ability data with these values
and the values obtained from the Freedman–Diaconis rule. Are different characteristics of the
underlying distribution evident as the bin width changes?

2. For the data in Table 12.1, can the bin width be changed to give a density estimate that appears
to be symmetric? Multimodal? Skewed left or right?

3. The data in Table 12.3 contains 82 male spatial ability studies from Haciomeroglu and Chicken
(2011). Find the bin widths and number of bins using the three different rules. Compare the
histograms created using these three methods. Are different characteristics evident?

4. Do the male and female spatial ability data from Table 12.1 and Table 12.3 appear to come
from the same underlying distribution when using one of the three bin width rules? Can a bin
width be chosen that maximizes (minimizes) the similarity of the two histograms?

5. Combine the spatial ability data from Tables 12.1 and 12.3 into a single sample of size 150.
Does the male or female data appear to come from the same distribution as the combined
distribution based on the shape of the histogram? Can the bin width be changed to change this
conclusion?

6. Use the data in Table 5.8 to create a histogram for each group of subjects. Do the histograms
appear to represent the same underlying distribution?

Table 12.3 Discrepancy Scores for 82 Male AP Calculus Students

-0.147 0.075 0.244 0.275 0.326 0.329 0.335 0.353 0.369 0.411
0.416 0.419 0.427 0.427 0.432 0.442 0.443 0.447 0.451 0.473
0.475 0.476 0.489 0.490 0.501 0.505 0.505 0.513 0.517 0.519
0.530 0.531 0.537 0.550 0.553 0.559 0.568 0.573 0.576 0.577
0.578 0.582 0.582 0.603 0.619 0.624 0.625 0.628 0.629 0.632
0.636 0.641 0.646 0.655 0.662 0.662 0.663 0.667 0.668 0.676
0.677 0.677 0.683 0.684 0.693 0.696 0.699 0.699 0.707 0.711
0.727 0.738 0.749 0.749 0.749 0.772 0.794 0.797 0.810 0.822
0.859 0.859

Source: E. Haciomeroglu and E. Chicken (2011).
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12.2 KERNEL DENSITY ESTIMATION

While a histogram provides a simple estimate of a density function, it does have some
drawbacks. First, if the data comes from a continuous distribution, the histogram cannot
provide a continuous density estimate. There will be jumps in the data corresponding to
the end points of the bins unless two adjoining bins have the same number of observations
in those bins. Even then, there are jumps at the beginning and end of the histogram.
Second, the estimator is constant over intervals. Only the number of observations in
a bin have an effect on the density estimate, not the placement of the observed data
within each bin. Thus, for all points x in a bin, the value of the estimate is the same. To
overcome these issues, we use kernel functions to estimate the densities. We introduce
this idea through the use of centered histograms.

Centered Histogram

In a histogram, each sample point in an interval Ij adds 1/(nh) to the height of the estimate
for all points x in Ij . This results in the blocky, discontinuous shape of histograms.
To get around this, we drop the fixed intervals Ij in favor of the x -centered intervals
in (12.8).

The bin width will remain h , a constant. The estimate of the modified histogram
at a point x will be proportional to the number of observed data points Xi that fall in
the interval (x − h/2, x + h/2]. For each observed data point in this interval, 1/(nh) is
added to the estimate. This is the same amount added to the usual histogram estimate
with fixed bins. The difference is that now the bins are centered at each point x where
a density estimate is desired. The height of the modified histogram does not depend on
the fixed bins used in the usual histogram but rather on the number of data points near
x . In this modified histogram, points are considered to be near x by being no more than
h/2 away from x , while in the usual histogram, a point is near x if it is in the same,
predefined bin.

EXAMPLE 12.4 Histogram with Centered Bins.

As an illustration, take h = 0.5 and use the spatial ability data from Table 12.1. The
estimate at (12.8) becomes

f̂ (x) = # of Xi in (x − 0.25, x + 0.25]

34
(12.11)

For any x < 0.129 − h/2 = −1.121, the number of points Xi in (x − h/2, x + h/2] is
zero. This is also true for any x ≥ 0.860 + h/2 = 1.110. The estimate of the density is
therefore f̂ (x) = 0 for these values of x .

For x ∈ [0.129, 0.860), the x -centered bins will contain at least one data point Xi . For
example, if x = 0, the number of data points in (x − h/2, x + h/2] = (−0.25, 0.25] is 2
and f̂ (0) = 12/nh = 2/34. Similarly, for x = 0.2, there are 17 points in the x -centered
interval and f̂ (0.2) = 17/34.

This modified histogram estimator integrates to 1 just as before and is always greater
or equal to 0. Similar to the histogram, a value for f̂ is available for every x . However,
this value depends on the point x more so than in the histogram. With the histogram, all
that counted was which bin x was in. Now, the actual value of x is important.
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Figure 12.3 Centered histogram estimate of the spatial ability data.

Evaluating the centered histogram is more time intensive than a histogram, and it is
not recommended that it be found by hand. A centered histogram may be created in R

with the function density. Figure 12.3 shows the centered histogram using the spatial
ability data. By default, R will evaluate f̂ at each of the n data points. Users may specify
other ranges of x for which f̂ is evaluated.

The reliance of the histogram on the bin end points has thus been addressed, but
Figure 12.3 shows that (12.8) is still a discontinuous estimate and constant over intervals
(albeit small intervals). This is overcome by using a kernel function to smooth out the
estimator.

Kernels

A kernel function K is a function such that

K (x) ≥ 0, −∞ < x < ∞,

K (−x) = K (x),

and ∫ ∞

−∞
K (x)dx = 1.

Thus, K is a nonnegative function symmetric about 0, which integrates to 1. Numerous
kernel functions have been proposed for use with density estimation. A simple one is the
uniform, or box, kernel. This kernel is defined as

K (x) =
{

1, −1/2 ≤ x < 1/2,

0, otherwise.
(12.12)
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and clearly meets the three restrictions given above. Another common kernel function is
the normal kernel (12.4) with μ set to 0 to ensure symmetry and σ a constant. If K is a
kernel function, then so is the scaled version

1

h
· K
(x

h

)
(12.13)

for h > 0. This scaled kernel can be centered at any data point Xi , and symmetry is not
around 0 as above, but around Xi

1

h
· K

(
x − Xi

h

)
.

Given the data, the kernel density estimate is

f̂ (x) = 1

nh

n∑
i=1

K

(
x − Xi

h

)
. (12.14)

When using kernel density estimators, it is customary to refer to h as the bandwidth,
rather than the bin width.

If the kernel function is taken to be the box kernel (12.12), then (12.14) and (12.8)
are identical. In this case, the kernel K takes on the value 1 whenever an observation Xi

is near x . The notion of nearness is determined by the bandwidth h and the form of K .
Taking the sum, the estimate at x is the number of data points Xi near x multiplied by
the factor 1/(nh). As with the centered histogram, the height of the box kernel density
estimator increments by 1/(nh) for every Xi in the interval centered at x .

EXAMPLE 12.5 Spatial Ability Kernel Density Estimate.

Using the box kernel (12.12) with the spatial ability data and h = 0.5, the density estimate
at a point x is given by

f̂ (x) = 1

34

68∑
i=1

K

(
x − Xi

1/2

)
.

K ((x − Xi )/(1/2)) will equal 1 whenever Xi is in (x − h/2, x + h/2] = (x − 0.25, x +
0.25] and 0 otherwise. Each time it is 1, an increment of 1/34 is added to the estimate
of f at x . This is, of course, the same as the centered histogram estimate. The plot in
Figure 12.3 was created by plotting the output from the function call

density(SP, kernel="r", bw=1/(4 * sqrt(3)), n=2ˆ14)

where SP is the data, kernel="r" specifies using the box (“rectangular”) kernel, bw
specifies the bandwidth and n tells R at how many values of x the density will be
evaluated. The unusual value for the bandwidth is a result of the manner in which the
density function scales the kernel function. The function density scales the kernel
K to K ∗ such that

bw =
√∫

x2K ∗(x)dx
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for a user-specified value of the argument bw. Because K is a density, this is equivalent
to scaling the kernel so that a random variable with density K ∗ has standard deviation
equal to bw. The value of bw = 1/(4

√
3) will result in the scaled kernel (12.13) with

h = 0.5. For a general h , one would set bw = h/(2
√

3).
As with the histograms, changing the bandwidth h will affect the shape of the

estimated density. In Figure 12.3, one might believe that the bandwidth h is too large,
resulting in the loss of the bimodal and skew features evident in the histogram estimate.
Figure 12.4 shows estimates with the box kernel, but h = 0.1 (bw = 0.1/(2

√
3), solid

line) and h = 0.2 (bw = 0.2/(2
√

3), dashed line). The dotted line is the estimate from
Figure 12.3 (h = 1/2). Increasing the bandwidth provides a smoother estimate over a
wider range of values.

R provides several additional options for the choice of the kernel function. Three of
these are displayed in Figure 12.5. Figure 12.5a is the normal, or Gaussian, kernel. This
uses the form given at (12.4) with μ set to 0 and σ = 1. The normal kernel is smoother
than the box kernel, and its support is infinite, rather than finite. However, because it
is a symmetric density, it does meet the above requirements for a kernel function. An
advantage to using a smooth kernel like the normal is that it will provide a density
estimate that is smooth. The box kernel contains jumps that were carried over to the
estimate it produced. The normal kernel has no such problems.

0.0 0.5 1.0

0
1

2
3

4

Figure 12.4 Box kernel estimate with differing bandwidths.
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Figure 12.5 Kernel functions.

Figure 12.5b is the Epanechnikov kernel. This kernel is of the form

K (x) = 3(1 − x2)

4
, −1 ≤ x < 1. (12.15)

Figure 12.5c is the triangle kernel:

K (x) = 1 − |x |, −1 ≤ x < 1.

If the kernel function is not the box kernel, the kernel density estimator is still interpreted
in the same way. Like before, K ((x − Xi )/h) provides a measure of the number of points
near x . Instead of being a 1 if near x and a 0 if not near x , which is the same as counting
the number of Xi near x , the kernel now assigns a measure that reflects the degree of
nearness to x for the points Xi . The kernel K integrates to 1 and is nonnegative, so its
value approaches 0 when its argument is far from 0. If the kernel has a single mode at
0, then low values of K ((x − Xi )/h) correspond to Xi that are far from x , while high
values are close to x . For the box kernel, which is not unimodal, all data points are either
equally close or equally far from x . There is no degree of closeness or farness.

One may also think of the kernel as providing a weighted value for the number of
Xi near x . In particular, data values near x give more weight than those further away.

Because the normal kernel has infinite support, the bandwidth h does not provide a
fixed window like the box kernel. Every point Xi gives some weight to the estimate at x .
Recalling that 99.7% of the mass of a normal density is within three standard deviations
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of the mean, most of the observed data points that provide weight in the kernel estimate
at a point x will be close.

Unlike the box kernel, the relation between the argument bw and the bandwidth h
is simple. Because the standard deviation is σ , one just equates h with σ .

EXAMPLE 12.6 Kernel Choice.

The density estimate using the normal, Epanechnikov, and triangle kernels on the spatial
ability data is shown in Figure 12.6. Note that using these kernels provide a much
smoother estimate than that obtained with the box kernel in Figure 12.3. In general, for
a given data set, the smoother the kernel, the smoother the estimate. The three kernel
density estimates in Figure 12.6 each use bw=0.25.

Comments

6. Equivalency of Histogram and Kernel Estimator. We have seen that the box kernel
and the centered histogram are equivalent. This equivalency carries over to the
histogram as well. The centered histogram is

f̂ (x) = # of Xi in (x − h/2, x + h/2]

nh
.

This is the same as

f̂ (x) = 1

nh

n∑
i=1

K

(
x − Xi

h

)
,
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Figure 12.6 Density estimated of spatial ability data using differing kernel functions.



12.2 Kernel Density Estimation 623

provided the box kernel (12.12) is used. This counts the number of points Xi in
the interval centered at x . Let cj be the centers of the histogram bins Ij . For any
x in ∪j Ij , set cx to be ck that is closest to x , that is, c∗ = arg min |x − ck |. If x
is equidistant from two ck , take cx to be the larger. Then the histogram estimate
f̂H may be written as

f̂H (x) = f̂ (cx ) = 1

nh

n∑
i=1

K

(
cx − Xi

h

)
= # of Xi in (cx − h/2, cx + h/2]

nh

= # of Xi in Ij

nh
, x in Ij .

7. Asymptotic Mean Integrated Squared Error (MISE) and the Epanechnikov kernel.
The MISE between a function f and its estimate f̂ is given by (Scott and Terrell,
1987).

MISE (f , f̂ ) = E

(∫
(f − f̂ )2

)
.

Asymptotically, for a kernel function K this is∫
K 2

nh
+ σ 4

K h4
∫
(f ′′)2

4
, (12.16)

where σ 2
K = ∫ x2K (x)dx .

Epanechnikov (1969) minimized (12.16) with respect to the choice of kernel
function K , resulting in (12.15). The reference density f is again assumed to be
normal.

8. Kernel Choice. Rosenblatt (1956) and Parzen (1962) pioneered development of
nonparametric kernel density estimation. In these papers they discussed properties
of density estimates based on using weight functions (kernels), including the box
and triangle kernels described in this section. While differing choices for kernel
functions result in visual changes to the estimate (i.e., smooth kernels give smooth
estimates), Epanechnikov (1969) shows that the kernel choice does not have a
significant impact on the statistical properties of kernel density estimates. While
the choice of kernel is not of great importance, the choice of bandwidth is a
crucial part of kernel density estimation. Bandwidth selection will be explored in
the subsequent section.

9. Binned kernel estimates. Binning the observed data increases the speed at which
a kernel density estimate can be obtained. A regularly spaced grid covering the
range of the data is created and a binned data value at each grid point is determined
by weighting the observed data. The binned value of the data at gj is a weighted
combination of the observed data Xi . Observed points Xi near a particular grid
point gj provide more information and weight than those further away. Using
a normal kernel, Silverman (1982) provided very fast algorithm for calculating
the density estimate. Hall and Wand (1996) show the bias of the binned density
estimate is more sensitive to binning than the variance and that this sensitivity is
reduced for smoother kernels. They also provide some guidelines for the size of
the grid.
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Properties

1. Consistency. For conditions under which consistency is obtained, see Parzen
(1962).

Problems

7. Find the kernel density estimate of the female spatial ability data from Table 12.1. What
differences are evident as the kernel function K is changed? And as the bandwidth changes?
For a fixed bandwidth, how do the characteristics of the estimate change as the kernel function
is varied?

8. Find the kernel density estimate of the male spatial ability data from Table 12.3. Does the
underlying distribution of this data appear to come from the same distribution as the female
data? Can changing the kernel function change this conclusion? Explain.

9. Find the kernel estimate of the combined male and female spatial ability date. Do the distri-
butions for the male or female data appear to come from the common distribution of all the
students? Can choice of bandwidth or kernel change this? Explain.

10. Using the box kernel (12.12), show that the expressions at (12.8) and (12.14) are equivalent.

11. Show that the kernel density estimate K at (12.14) satisfies the properties D1 and D2.

12. Show that for h small enough, the box kernel density estimate becomes 1/(nh) on intervals
of length h centered at each data point Xi , and 0 everywhere else. Show this estimate has
integral 1. Hint : Let h < mini ,j |Xi , Xj |.

12.3 BANDWIDTH SELECTION

In the implementation of the kernel density estimator in Section 12.2, the bandwidth
was a user-specified numeric value. However, choosing a bandwidth in such a way is
not ideal. Indeed, the examples make it clear that one can choose a bandwidth that
will provide as smooth (or unsmooth) and estimate as desired. Instead, some automated
methods for bandwidth are desired. Such bandwidth selection methods should rely on
either properties derived from the data, as was done with bin width determination with
a histogram, or be based on some theoretical concerns.

Fixed Bandwidth

A common bandwidth derived by minimizing the MISE (12.16) is

h = 1.06n−1/5 · min{σ̂ , IQR/1.34}, (12.17)

where σ̂ is the estimate of the standard deviation using the data. See Comment 10. If
the data is normal, then the IQR is close to 1.34σ . Rather than specifying a numeric
value to the argument bw in R, a method is provided. In this case, it is implemented
via the argument bw="nrd". A variant of this bandwidth described in Silverman (1986)
is obtained by using the argument bw="nrd0" in the call to density. This has the
effect of changing the constant 1.06 to 0.90. This is the default bandwidth selection rule
in the R.

The above bandwidths are found under the assumption that the underlying density
is normal. When the data is not normal, they still provide reasonable bandwidth choices.
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However, other bandwidth selection methods are available that are data driven rather
than dependent on the assumption of normality.

Two such data-driven bandwidths are derived using cross-validation methods in
Scott and Terrell (1987). These methods select a value of h that minimizes the MISE.
Cross-validation is part of the process in that for each candidate value of h , the method
compares the estimated density using all the data to an estimate that leaves out the
point Xi when estimating the density at that point. The bandwidths differ in that one
provides a function in h that is unbiased estimate of the MISE, while the other produces
a biased estimate of the MISE but with smaller variability. These two cross-validation
methods are implemented in the function density through the argument bw="ucv"
and bw="bcv".

Another data-driven method is based on the expression for the MISE in (12.16).
The bandwidth h in (12.17) is calculated by using a normal density for f . In contrast,
Sheather and Jones (1991) replace

∫
(f ′′)2 in (12.17) with an estimate using the data

instead of assuming a particular form for the density’s second derivative. This method is
implemented using bw="SJ". Estimating

∫
(f ′′)2, perhaps with another kernel estimator,

evaluating (12.16) with this estimate and minimizing is referred to as a plug-in estimator.

Variable Bandwidth

The previous estimators used a constant bandwidth h for all points x . A modification
to this is to use a bandwidth that varies from point to point. If the number of observed
data points near a particular observed value of Xi is large, one would expect this dense
placement of data to result in an improved density estimate at Xi . In this case, a small
bandwidth would be reasonable. If, on the other hand, there are very few observed data
points near Xi , a larger bandwidth may be needed in order to incorporate a sufficient
number of observations to accurately estimate the density at Xi . The bandwidth becomes
locality dependent. Small bandwidths are associated with areas of dense data, while large
bandwidths are desirable in areas of sparse data. Thus, h is replaced with hi :

f̂ (x) = 1

n

n∑
i=1

1

hi
K

(
x − Xi

hi

)
. (12.18)

Following Silverman (1986), the bandwidths hi are proportional to a fixed bandwidth h
used to construct a pilot estimate f̂p of the density f :

hi = λi h. (12.19)

The bandwidth factors λi are given by

λi =

⎛⎜⎝ f̂p(Xi )(∏n
j=1 f̂p(Xj )

)1/n

⎞⎟⎠
−α

.

The parameter α provides a level of sensitivity of the bandwidth to the pilot density
estimate.

R implements the adaptive kernel with the function call akj in package quantreg
developed by Koenker (2011). It uses the normal kernel by default. The initial h is
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Figure 12.7 Kernel density estimates using automatic bandwidth selection methods and normal kernel.

selected according to (12.17) with Silverman’s 0.9 modifier in place of 1.06. Portnoy
and Koenker (1989) recommend setting the sensitivity parameter α to be 1/2 (the default
value in R).

EXAMPLE 12.7 Bandwidth Choice.

Figure 12.7 shows the results of applying different automated bandwidth selection meth-
ods to the spatial ability data. The solid line uses bw="nrd0", the dashed line is
bw="bcv", the dotted line is bw="SJ", and the mixed line uses the variable band-
width method. The bandwidths for the first three methods are shown in Table 12.4. The
value of h in (12.19) is in the final row of the table.

Comments

10. Optimal Bandwidth. The Epanechnikov kernel is found by minimizing (12.16)
with respect to K . If (12.16) is instead minimized with respect to h , the optimal

Table 12.4 Automated Bandwidths
for the Spatial Ability Data

Method Bandwidth

"nrd0" 0.044
"bcv" 0.074
"SJ" 0.037

variable 0.042
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bandwidth is the value of h , which minimizes the MISE:

h =
( ∫

K 2

nσ 4
K

∫
(f ′′)2

)1/5

. (12.20)

Using the normal kernel K with σK = 1 and assuming the underlying data come
from a normal population with mean 0 and variance σ 2, the optimal bandwidth is

h = (4/3)1/5 σn−1/5 ≈ 1.06 · σn−1/5.

11. Balloon Estimators. In (12.18), there is a local bandwidth for each observed
data point Xi . One could also have the bandwidth varying by location x , the
point at which the density is to be estimated. Such a density estimator is called
a balloon estimate. However, this type of estimate leads to poor results in terms
of asymptotic behavior in the univariate case. See Terrell and Scott (1992).

12. Bootstrap Method. Faraway and Jhun (1990) proposed a resampling via bootstrap
to determine the value of a fixed bandwidth. In simulations, this methods outper-
forms fixed bandwidth cross-validation methods in terms of squared errors but
is computationally expensive. Hall and Kang (2001) further examine such band-
width methods and compare the computational expense with the improvements
in the estimates.

Problems

13. For the female spatial ability data in Table 12.1, find the kernel density estimate using several
of the bandwidth selection rules. Compare these bandwidths to those calculated for the male
spatial ability data from Table 12.3.

14. Using the female spatial ability data, do the automatically selected bandwidths remain stable
as the kernel function changes? Is this true for the male data?

15. Use the data in Table 5.8 to create a kernel density estimate for each group of subjects. Do
the estimated densities appear to represent the same underlying distribution?

16. For the box kernel K , find the standard deviation of a random variable with density h−1K (x/h)

for a fixed value h > 0.

17. Show that the asymptotic MISE is minimized when

h =
( ∫

K 2

nσ 4
K

∫
(f ′′)2

)1/5

.

18. If f is the density for a normal random variable with mean 0 and variance σ 2, show∫
(f ′′)2 = 3/

(
8
√

πσ 5).
19. Using the normal kernel K with σK = 1 and assuming the underlying data come from a normal

population with mean 0 and variance σ 2, show the optimal bandwidth is

h = (4/3)1/5 σn−1/5.
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12.4 OTHER METHODS

Other methods of density estimation besides kernel methods are available, though less
commonly used. Orthogonal series estimates of densities were proposed by Cencov
(1962). These estimators represent the density function f in terms of a series expan-
sion involving a set of specified basis functions and a set of scalar coefficients. Because
f is a density, the scalars are estimated from the observed data by equating the coeffi-
cients with the expectation of the basis functions evaluated at the data. Common choices
for the orthogonal bases are the Fourier series and, more recently, wavelet bases. See
Kronmal and Tarter (1968) and Donoho et al. (1996). In both cases, the number of scalar
coefficients is theoretically infinite, but a practical estimate will use only a finite number
of them. Orthogonal series estimates then become a problem is selecting the appropriate
subset of coefficients that best represent the distribution of the underlying observed data.

Another class of estimators are nearest neighbor estimates introduced in Loftsgaarden
and Quesenberry (1965). In these estimators, a neighborhood around the point at which
the density is to be estimated is created that holds a specified number of data values.
In regions where the data is dense, such a neighborhood window will be small, while
in sparse areas, it will by necessity be larger. This is similar to the variable bandwidth
kernel estimates where the size of the window (neighborhood) varies with x . But where
the variable bandwidth methods will have differing numbers of observation data in each
window, nearest neighbor methods keep this number fixed. A drawback to this type of
estimator is that it may not integrate to 1, violating D2. Additionally, these estimates
have poor asymptotic behavior in terms of mean squared errors. See Terrell and Scott
(1992) for a discussion of these limitations.
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Wavelets

INTRODUCTION

In Chapters 9 and 11, methods were presented that estimated specific types of function:
linear functions in Chapter 9 and survival curves in Chapter 11. Each of these methods
made use of assumptions that specified the nature of the shape of the function to be
estimated. This shape restriction is not discussed in this chapter. Here, the unknown
function is not assumed to have any particular parametric shape or representation but
rather the function belongs to a class of functions possessing more general characteristics,
such as a certain level of smoothness. Using the observed data, one may estimate such a
function by representing the function in another domain. One common way to approach
this is to use an orthogonal series representation of the function. This shifts the estimation
problem from directly trying to estimate the unknown function f , to estimating a set of
scalar coefficients that represent f in the orthogonal series domain. An efficient method
for estimating such functions involves the use of wavelets. Wavelets are strong tool in
such methods because they concentrate most of the information about the function in a
much reduced set of data and have the ability to estimate both global and local features
in the underlying function.

In Section 13.1, wavelet methods are introduced. Section 13.2 discusses one of the
main tools in wavelet analysis, thresholding. Thresholding provides a significant level of
data reduction for the problem.

Data. There are n pairs of observations (x1, y1), (x2, y2) . . . , (xn , yn).

Assumptions

A1. The observations are related through the expression

yi = f (xi ) + εi , i = 1, 2, . . . , n.

A2. The εi are independent and identically distributed.

A3. The function f is square integrable, that is,
∫

f 2 < ∞. It is defined on a closed
interval [a , b]. For simplicity, it assumed that [a , b] = [0, 1].

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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13.1 WAVELET REPRESENTATION OF A FUNCTION

Basis Functions

A set of functions � = {ψ1, ψ2, . . .} is called a basis for a class of functions F if any
function f ∈ F can be represented as a linear combination of the basis functions ψi . This
is written as

f (x) =
∞∑

i=1

θi ψi (x), (13.1)

where the θi are scalar constants, usually referred to as coefficients. The equality in (13.1)
is understood in the sense of some particular measure; in this case, we take equality to
mean ∫ [

f (x) −
∞∑

i=1

θi ψi (x)

]2

dx = 0. (13.2)

The constants θi are the inner product of the function f and the basis functions ψi

θi = 〈f , ψi 〉 =
∫

f (x)ψi (x)dx .

The basis functions are orthogonal if 〈ψi , ψj 〉 = 0 for i �= j . They are orthonormal if
they are orthogonal and 〈ψi , ψi 〉 = 1.

There are many sets of basis functions available to estimate functions in a variety
of classes F . In this chapter, we consider orthonormal wavelet bases. A simple wavelet
function ψ first appeared in Haar (1910), but more flexible and powerful wavelets were
developed by Daubechies (1992) and many others (see Vidakovic (1999)). The Haar
wavelet and a “D2” Daubechies wavelet are depicted in Figure 13.1. If ψ is a wavelet
function, then the collection of functions

� = {ψjk : j , k integers}, (13.3)

where
ψjk (x) = 2j/2ψ(2j x − k), (13.4)

forms a basis for square-integrable functions. � is the collection of translations and
dilations of ψ . Figure 13.1 shows some translations and dilations of the wavelet functions.
The function ψ may be constructed to ensure that the set � is orthonormal. Although
the function ψ may be defined on the entire real line, the property that

∫
ψ2 = 1 implies

that the value of ψ is near 0 except over a small range. This, combined with (13.4),
means that as j increases, ψjk becomes increasingly localized. Often, it is desirable that
the function ψ have finite support, that is, ψ is nonzero on an interval of finite length.
Constructive methods exist to ensure this property in addition to orthonormality.

Multiresolution Analysis

Careful construction of the wavelet function ψ leads to a multiresolution analysis (MRA).
As described in Mallat (1989a), the MRA provides an interpretation of the wavelet
representation of f in terms of location and scale. Rewriting (13.1) with the dual indexing
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Figure 13.1 (a) Haar wavelet ψ = ψ0,0 (solid line) and ψ3,5 (dashed line). (b) D2 wavelet. ψ = ψ0,0 (solid
line) and ψ1,1 (dashed line).

of wavelets provided by the translations and dilations of ψ gives

f (x) =
∑
j∈Z

∑
k∈Z

θjkψjk (x), (13.5)

where Z is the set of integers. Under the conditions specified for an MRA, this may
be interpreted as a series of approximations of f , where each approximation is at a
different scale level j . In this context, scale may be thought of as synonymous with
frequency. With wavelets, the term resolution is generally used when referring to scale or
frequency. For a fixed j , the index k represents the behavior of f at resolution scale j and
a particular location. One can then interpret the wavelet representation at (13.5) as giving
information about the function f at differing resolution (scale, frequency) levels j and
locations k , hence the term MRA. If using finitely supported wavelets, this interpretation
is strengthened because the locality indexed by k becomes more pronounced.

Consider a cumulative approximation of f using all the values of j less than some
integer J ,

fJ (x) =
∑
j<J

∑
k∈Z

θjkψjk (x). (13.6)

As J increases, fJ is able to model smaller scale (higher frequency) behavior of f . These
correspond to changes in f that occur over a small interval of the x -axis. As J decreases,
fJ models larger scale (lower frequency) behavior of f . The complete representation of
f is the limit of the fJ . The limit of these approximations fJ get closer, in the sense of
(13.2), to the function f as J increases. See Comments 2 and 3.



632 Chapter 13 Wavelets

It is common to truncate the MRA. One may write (13.5) as

f (x) =
∑
k∈Z

ξj0kφj0k (x) +
∑
j≥j0

∑
k∈Z

θjk ψjk (x). (13.7)

The first term on the right side of (13.7) is the cumulative approximation fj0 using all
resolution levels j < j0. It makes use of a function φ related to the wavelet ψ (see
Comment 3). The second term on the right side of (13.7) is a set of series, one for
each resolution level j ≥ j0. Each of these series, when added to fj0 , allows for modeling
higher scale-frequency behavior of f and brings the approximation closer to f . When a
function f is written as at (13.7), fj0 is the approximation at the “smooth” or “coarse”
resolution level and each of the remaining resolution level series is a “detail” level. The
MRA then gives a smooth, cumulative approximation of f and several detail levels to
increase the modeling accuracy.

For J ≥ j0, the cumulative approximation fJ at (13.6) becomes

fJ (x) =
∑
k∈Z

ξj0kφj0k (x) +
∑

j0≤j<J

∑
k∈Z

θjk ψjk (x), (13.8)

See Comment 4. The functions φ and ψ are sometimes referred to as the scaling function
and the wavelet function, respectively. They are also called the father wavelet and mother
wavelet.

EXAMPLE 13.1 MRA Using the Haar Wavelet.

Using the wavelet representation of a function at (13.7) the MRA for the function

f (x) = x , x ∈ [0, 1)

can be found analytically when ψ is the Haar wavelet. The wavelet functions ψ and φ

are given by

ψ(x) =
{

1, x ∈ [0, 1/2),

−1, x ∈ [1/2, 1),

and
φ(x) = 1, x ∈ [0, 1).

Setting J to 0 in (13.6), or, equivalently, J = j0 = 0 in (13.8) results in f0(x) = 1/2. This
approximation of f is shown as a solid line in Figure 13.2a. The function f is displayed
as a dotted line. Figure 13.2b shows f1, the approximation of f up to resolution level
j = 0. Figure 13.3a shows f1 − f0, the change in the estimate of f obtained by adding in
detail resolution level 1.

Figure 13.2c and d shows the cumulative approximations for resolution levels f2 and
f3. The nature of the Haar wavelet is easily seen in these approximations. As j increases,
it is clear that the stair-like approximations will get arbitrarily close to the function f .
Details on evaluating these approximations are given in Comment 9 and the problems.

In Figure 13.3, note how increasing the resolution level j allows for increased mod-
eling of high frequency behavior. The larger values of j enable modeling of changes
occurring over smaller intervals of the x -axis. Each panel in Figure 13.3 displays the
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Figure 13.2 Cumulative approximations up to resolution levels J = −1, 0, 1, 2 from Example 13.1 using
the Haar wavelet. The underlying function is f (x) = x , shown with a dotted line.

approximation of f at a single detail resolution level, while in Figure 13.2 each panel
displays the cumulative approximation of f up to a particular level.

Figure 13.4a displays the cumulative approximations for the same function f but
using the D2 wavelet shown in Figure 13.1. Note that the approximations display some
issues at the boundary value. This is due to using periodic wavelets. See Comment 5. The
original wavelet is of length 3. When periodized, certain translation indices k will cause
the wavelet functions to “wraparound” the end points. The Haar wavelet does not display
this property because ψ and all its translations and dilations fit within [0, 1], that is, the
Haar wavelet is already periodic with respect to [0, 1]. To avoid this, one may specify
using reflection at the boundaries, rather than periodicity. However, this will increase the
number of indices k that must be considered at each resolution level j . The cumulative
approximations when using reflection at the boundaries is shown in Figure 13.4b.

Discrete Wavelet Transform

In Example 13.1, the simple form of the Haar wavelet allows exact determination of the
wavelet coefficients θjk . Other wavelets do not have analytic forms that can be integrated.
In these cases, a numeric algorithm must be used to estimate the coefficients.
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Figure 13.3 Resolution levels j = 0, 1, 2 from Example 13.1 using the Haar wavelet. The underlying function
is f (x) = x , shown with a dotted line. Note the differing vertical scales.

One such method is the cascade algorithm of Mallat (1989b). If the observed data
is the vector y = (y1, y2, . . . , yn) sampled from the function f , the cascade algorithm
recursively estimates the wavelet coefficients from the data. The sample size needs to
be a power of 2 for this algorithm, n = 2J for some positive integer J . Given a set of
wavelet coefficients, the cascade algorithm works in reverse, as well. It can convert the
coefficients back into the sample data. Creating wavelet coefficients from data is called
decomposition, while the reverse is known as reconstruction. See Comment 10.

Use of the data to estimate the wavelet coefficients restricts the upper level of
summation in (13.7) to J − 1, where J = log2(n). Thus, the number of resolution levels
in the wavelet series is truncated both above and below in practice, resulting in J − j0 + 1
series, each representing a resolution level:

f (x) =
∑
k∈Z

ξj0kφj0k (x) +
J −1∑
j=j0

∑
k∈Z

θjk ψjk (x). (13.9)

In addition, the cascade algorithm cannot determine wavelet coefficients below j = 0, so
a lower bound for j0 is 0.

Implementation of the cascade algorithm is efficiently carried out with a transforma-
tion matrix whose entries are determined by the choice of wavelet basis and the sample
size n . This transformation is referred to as the discrete wavelet transform (DWT). Three
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Figure 13.4 Approximations up to resolution levels j = 0, 1, 2 from Example 13.1 using the D2 wavelet. The left
panels use periodic boundary handling, the right panel use reflection. The underlying function is f (x) = x , shown with a
dotted line.

commands in R that make use of the DWT are dwt, idwt, and mra. All these functions
are in the package waveslim (Whitcher (2010)).

EXAMPLE 13.2 Implementing the MRA.

The command mra uses the DWT to provide the approximations of the sampled data
y at various resolution levels. This command requires arguments for the sampled data
y, method="dwt", the wavelet basis wf, and the number of resolution levels to deter-
mine, J. If the sample size is n = 2J , then possible values for J are from 1 to J .

Suppose the function f from Example 13.1 is sampled at n = 212 equally spaced
points on the interval [0, 1), say,

yi = xi = (i − 1)/n , i = 1, 2, . . . , n.

To decompose the sampled data y into the maximum possible resolution levels with the
Haar basis, the following is used:
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mra(y, method="dwt", wf="haar", J=12)

Periodic wavelets are the default setting. Otherwise, the argument boundary=

"reflection" would be added to the above command. This command provides a list
of 13 vectors. The first vector is the change necessary to go from the approximation
f12 to f13: f13 − f12. This is the approximation at the highest detail resolution level. The
next vector in the list is f12 − f11. The next to last vector is f1 − f0. The final, thirteenth
vector is the smooth approximation f0. Summing the thirteenth vector and the twelfth
vector results in f1, summing the thirteenth, twelfth, and eleventh vectors results in f2
and so on.

Setting the argument J to be a smaller integer than 12 in this example will decompose
the sampled data into fewer levels. This is equivalent to setting j0 in (13.7) to a value
greater than 0. For example, if J is set to 3, then four vectors will be created. The first
three of these vectors are the detail approximations f12 − f11 through f10 − f9 and the final
vector is the smooth approximation fj0 = f9.

The solid line in Figure 13.2b is a result of the command

mra(y, method="dwt", wf="haar", J=12)[[13]]

The argument J=12 will decompose the observed data y into 13 approximations of f
at consecutive resolution levels. Specifying [[13]] gives the lowest level approxima-
tion, the smooth approximation f0. The other 12 approximations correspond to the detail
resolution levels. The plots in Figure 13.3 are of the vectors

mra(y, method="dwt", wf="haar", J=12)[[12]]
mra(y, method="dwt", wf="haar", J=12)[[11]]
mra(y, method="dwt", wf="haar", J=12)[[10]]

In the above three commands, the data is again decomposed into the maximum number of
resolution levels by setting J=12. The three lowest detail resolution levels are provided
by specifying [[12]] (f1 − f0), [[11]] (f2 − f1) and [[10]] (f3 − f2). The smooth
approximations f1, f2 and f3 in Figure 13.2 are plots of

mra(y, method="dwt", wf="haar", J=11)[[12]]
mra(y, method="dwt", wf="haar", J=10)[[11]]
mra(y, method="dwt", wf="haar", J=9)[[10]]

In the above three R commands, note that the data is being decomposed into fewer
than the maximum number of levels. The final vector in the produced list is the smooth
approximation. For example, the first command produces 12 vectors: 11 detail approx-
imations f12 − f11 through f2 − f1 and the smooth approximation f1. The plots in Figure
13.4a are

mra(y, method="dwt", wf="d4", J=11)[[12]]
mra(y, method="dwt", wf="d4", J=10)[[11]]
mra(y, method="dwt", wf="d4", J=9)[[10]]

while those in Figure 13.4b add the argument boundary="reflection" to the pre-
vious three commands. R labels the Daubechies wavelets with twice the number of
vanishing moments. See Comment 7. Thus, d4 refers to the wavelet D2.

Instead of using the double bracketing to index the vectors produced by mra, the
output is also indexed by names. If a vector is decomposed into, say, 6 detail resolution
levels and a single smooth approximation, the vectors provided by mra are named D1,
D2, . . ., D6 and S6 with D1 being the highest detail resolution level. So, for example,
the following two commands are equivalent:
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mra(y, method="dwt", wf="haar", J=6)[[1]]
mra(y, method="dwt", wf="haar", J=6)$D1

The mra command provides approximations of f at differing resolution levels. In
contrast, the dwt command determines the wavelet coefficients at each resolution level.
This command has arguments for the sampled data y, the wavelet basis wf and the number
of resolution levels to determine, n.levels. As with mra, an optional boundary
argument can be added. Use of dwt results in a list of n.levels+ 1 vectors. The
first vector in the list is the highest resolution level of detail coefficients, the lower
detail level coefficients follow, and the final vector consists of the wavelet coefficients
corresponding to the smooth approximation. There are n/2 = 2J −1 coefficients in the
first vector, n/4 = 2J −2 in the second, and so on. The final vector of smooth coefficients
has the same length as the lowest detail level of coefficients, 2J −n.levels. These
decreasing vector sizes are a result of the increasing support of the wavelet basis functions
as the resolution level j decreases. The total number of coefficients in all the vectors
provided by dwt is the same as the length of the vector of sampled data, n .

If n.levels is set to its largest possible value, n.levels = log2(n), the maximum
number of decomposition levels is generated. The sampled data y is assumed to be equally
spaced and dyadic in number. The list of vectors generated from dwt is indexed in the
same way as the mra output. One may either use the double bracket indexing or the
names of the vectors. Unlike mra, though, dwt uses lower case letters in the names, that
is, d1 instead of D1.

Once a sampled function has been decomposed via dwt, the resulting R list of coef-
ficients may be used to reconstruct the original vector of sampled data y . The command
for this is idwt. If y is the sampled data as above,

y.dwt <- dwt(y, wf="haar", n.levels=12)

generates the list of wavelet coefficients and assigns it to the R object y.dwt. The
original data y is reconstructed with

idwt(y.dwt)

The idwt command only needs the R object containing the list of coefficient vectors.
The other necessary information for reconstruction, number of levels and wavelet basis,
is contained in the object y.dwt.

Comments

1. Wavelet Function. This chapter describes wavelets in terms of generating a basis
for square-integrable functions. A more basic definition of a wavelet function ψ

can be given in terms of its Fourier transform:

ψ̂(ω) = 1√
2π

∫
e−iωtψ(t)dt .

A function ψ is a wavelet if it satisfies the admissibility condition (Daubechies
(1992)). ∫ |ψ̂(ω)|2

|ω| dω < ∞.
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If working in the Fourier domain is not desired, then ψ is a wavelet, provided∫
ψ(t)dt = 0

and ∫
(1 + |t |α)|ψ(t)|dt < ∞

for some positive α.

2. Interpreting Resolution Levels via the MRA. The MRA relates the different res-
olution levels to approximations of f through (13.6),

fj (x) − fj−1(x) =
∑
k∈Z

θj−1,k ψj−1,k (x). (13.10)

Thus, the series at a single index j is the difference between two approximations
at adjacent resolution levels.

In (13.6), increasing J allows approximation of functions possessing
higher scale behavior. This follows from above by observing that fJ +1 − fJ =∑

k∈Z θJk ψJk adds to the approximation fJ using basis functions with half
the support of those used in fJ . Equivalently, decreasing J will restrict the
approximations to lower scales.

One can extend (13.10) to a range of resolution levels rather than just a
single level. For any integers j1 < j2,

fj2(x) − fj1(x) =
∑

j1≤j<j2

∑
k∈Z

θjkψj ,k (x)

represents the approximation of f over several scales.

3. MRA. The MRA is a sequence of nested subspaces

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·

such that the intersection of all these subspaces is {0}, the closure of their union
is the space of square-integrable functions, and

f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1.

It is additionally assumed that there is a function φ ∈ V0 such that every function
f0 ∈ V0 can be written as

f0(x) =
∑

k

ξ0kφ0k (x),

where ξjk and φjk are defined as at (13.13). Using this definition, due to Mallat
(1989a), it can be seen that as j increases, the functions residing in the spaces
Vj are allowed to display higher frequency behavior. Functions in lower spaces
Vj are smoother than those in higher spaces. The functions in Vj+1 that are not
in Vj are the detail functions needed to go from a lower space to a higher space.
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Writing Wj as this set, then Vj+1 is the sum of functions in Wj and functions in
Vj : Vj+1 = Vj ⊕ Wj . Continuing, this results in

VJ = Vj0 ⊕ Wj0 ⊕ Wj0+1 ⊕ · · · ⊕ WJ −1.

Wavelet bases represent functions in Vj as series involving ξjk and φjk , while
functions in Wj may be written as a series involving θjk and ψjk . With the
orthonormal wavelet basis used in this chapter, this implies that functions in
Wj are orthogonal to functions in Wk for any k �= j and Vk for any k ≤ j . The
decomposition provided by the cascade algorithm at (13.16) is represented by
the ladder of function spaces above.

4. Truncating the MRA from Below. One may write (13.5) as

f (x) =
∑
j<j0

∑
k∈Z

θjkψjk (x) +
∑
j≥j0

∑
k∈Z

θjkψjk (x) (13.11)

for some fixed integer j0. The properties of the MRA allow the first set of series
on the right side of (13.11) to be written as a single series

fj0(x) =
∑
j<j0

∑
k∈Z

θjkψjk (x) =
∑
k∈Z

ξj0kφj0k (x), (13.12)

where
φj0k (x) = 2j0/2φ(2j0 x − k) and ξj0k = 〈f , φj0k 〉 (13.13)

for some function φ dependent on ψ . See Comment 3. This approximation fj0
is considered “smooth” or “coarse” with respect to an approximation that would
include higher resolution levels j ≥ j0. The expression at (13.5) is therefore

f (x) =
∑
k∈Z

ξj0kφj0k (x) +
∑
j≥j0

∑
k∈Z

θjkψjk (x),

where the first series on the right represents the smooth approximation fj0 of f
and the second set of series allows for modeling higher scale-frequency behavior
of f . The set of basis functions becomes

� = {ψjk : j ≥ j0, k ∈ Z} ∪ {φj0k : k ∈ Z}.
The single series involving ξ and φ is a smooth approximation of f up to a
particular resolution level j0. The series involving θ and ψ represent “details,”
which when added to fj0 create a less smooth, more detailed approximation of
f at higher resolution levels.

The smooth approximation fJ may also be written in terms of the wavelet
functions ψ and φ. From (13.11) and (13.12)

fJ (x) =
∑
j<j0

∑
k∈Z

θjk ψjk (x) +
∑

j0≤j<J

∑
k∈Z

θjkψjk (x)

=
∑
k∈Z

ξj0kφj0k (x) +
∑

j0≤j<J

∑
k∈Z

θjkψjk (x)

for J ≥ j0. If J = j0, just the first series using φ is used.
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5. Periodic Wavelets. If a function is defined on the interval [0, 1], it may be
preferable to estimate it with basis functions restricted to the same interval. One
way to implement this is by periodizing the wavelet functions. If φ and ψ are
father and mother wavelets (see Comment 4), then their periodized versions are
given by Vidakovic (1999).

φ
p
jk (x) =

∞∑
l=−∞

φjk (x − l)

and

ψ
p
jk (x) =

∞∑
l=−∞

ψjk (x − l).

If the wavelets are finitely supported, then for each j there are only a finite
number of indices k that result in nonzero coefficients θjk for a function f
supported on [0, 1]. If the wavelets are periodized to the interval [0, 1], then the
number of coefficients at each nonnegative level resolution level j is 2j . This is
a result of the dilation in (13.4).

6. Using Sampled Data as Coefficients. The cascade algorithm begins the decom-
position process by equating the sample vector of data y = (y1, y2, . . . , yn) with
the coefficients ξJk . See Comment 3. If the function f is sampled at the equally
spaced points k/n , k = 1, 2, . . . , n on the interval [0, 1], then ξJk are taken to be
f (k/n). However, ξJk ≈ √

nf (k/n) for smooth f (Daubechies (1992)). So, the
coefficients estimated with these initial values by the cascade algorithm are too
large by the factor

√
n . The dwt command does not use the factor

√
n . This is

not an issue because the reconstruction command idwt takes this into account.
dwt also reverses the sign of the coefficients. Again, this is accounted for in
both the decomposition and the reconstruction and does not pose any problems
in analyzing the functions.

7. Daubechies Wavelets. Daubechies (1992) generated families of compactly sup-
ported orthonormal wavelet bases that are commonly used in many applications.
Two such categories of wavelets, determined by the choice of roots of a polyno-
mial used in the wavelet construction, are extremal phase wavelets and least
asymmetric wavelets. The latter are often referred to as symmlets. Each of
these categories is further characterized by the number of vanishing moments.
A wavelet function ψ has N vanishing moments if∫

x lψ(x)dx = 0

for l = 0, 1, . . . , N − 1. A wavelet basis in which ψ has N vanishing moments
can model a polynomial up to degree N − 1 with only the smooth approximation
based on φ and the associated ξ . See Comment 4.

R implements both types of wavelets in dwt and mra. This is done via the
argument wf. The extremal phase wavelets are indicated by wf="dN", where
N=4,6,8,16, is twice the number of vanishing moments. The support length
for these wavelets is 2N − 1. The least asymmetric wavelets are indexed in
R by wf="laN", where N=8,16,20 is again twice the number of vanishing
moments.



13.1 Wavelet Representation of a Function 641

8. Nondyadic Length Sampled Functions. If the length n of a sampled function
is not dyadic, the DWT may not be directly implemented as described above.
However, the observed vector can be lengthened or shortened to give a length
that is a dyadic integer. Shortening the vector is not desirable because this
ignores data that may be important. To lengthen the data, there are two common
methods. The simplest is to add data values to the end of the observed vector to
bring the total length to the closest dyadic number. The DWT is applied to this
extended data vector. In R, this is implemented with dwt.nondyadic. This
will pad the observed vector in the right with a string of zeros.

A second method to bring the vector size up to a dyadic length is through
the use of reflection. This is not the same as using reflection to handle boundary
issues. Instead, an observed vector is reflected about its end points. For example,
if the length n of the observed data y is k less than the first dyadic integer after
n , then the DWT is performed on

y∗ = (y1, y2, . . . , yn−1, yn , yn−1, yn−2, . . . , yn−k ).

A modification of this is obtained using double reflection. First, the observed
vector is reflected about the end point as above. This is a horizontal reflection.
Then, the added data is reflected vertically about this same end point. Using
this method, no discontinuities are introduced into the extended vector at the
original vector’s end point.

9. Determining the Approximations with the Haar Basis. To find the approximations
fj for Example 13.1, Problem 1 gives

ψjk (x) =
{

2j/2, x ∈ [k2−j , (k + 1/2)2−j ),

−2j/2, x ∈ [(k + 1/2)2−j , (k + 1)2−j ).
(13.14)

To evaluate the inner product of f and ψ , the supports of these functions must
be carefully considered. The support of f is [0, 1], the support of ψjk is seen
from above to be [k2−j , (k + 1)2−j ). For j < 0, the only translation k that has
a nonzero length overlap with [0, 1] is k = 0. For k = 0 and j < 0, the value
of ψjk for any x in the interval [0, 1) is 2j/2. The inner product for j < 0 and
k = 0 is then

θj 0 = 〈f , ψj 0〉 =
∫

f (x)ψj 0(x)dx =
∫ 1

0
x2j/2dx = 2j/2−1.

Only considering negative values of j in (13.5) results in

f0(x) =
−1∑

j=−∞

∑
k∈Z

θjkψjk (x) =
−1∑

j=−∞
θj 0ψj 0(x) =

−1∑
j=−∞

2j/2−12j/2

= 1

2

−1∑
j=−∞

2j = 1

2
.

The smooth approximation using all negative resolution levels is just a constant,
f0 = 1/2.
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Although f0 was evaluated above as a series involving ψ , it could also have
been found using the father wavelet φ. See Problem 4.

The support of the Haar wavelet results in 2j nonzero wavelet coefficients θjk

for each nonnegative resolution level j . The only translations k that have nonzero
length overlap with the support of the function f are k = 0, 1, . . . , 2j − 1. From
Problem 5, the inner product when j ≥ 0 is

θjk = 〈f , ψjk 〉 = −2(−3j/2−2).

The function f is written with (13.5) as

f (x) =
∑
j∈Z

∑
k∈Z

θjkψjk (x)

= f0(x) +
∑
j≥0

2j −1∑
k=0

θjkψjk (x)

= 1/2 +
∑
j≥0

2j −1∑
k=0

−2(−3j/2−2)ψjk (x). (13.15)

When j = 0, the only value of k is 0. From Problem 6, the series at this detail
resolution level is

θ0,0ψ0,0(x) =
{−1/4, x ∈ [0, 1/2),

1/4, x ∈ [1/2, 1).

When this is added to the smooth approximation f0, it lowers the approximation
of f by 1/4 on the interval [0, 1/2) and raises the approximation of f by 1/4
on [1/2, 1). Figure 13.2b shows f1, the smooth approximation of f through
resolution level j = 0. Figure 13.3a shows f1 − f0, the change in the estimate of
f obtained by adding in detail resolution level 1.

When j = 1, two values of k are relevant, k = 1 and k = 2, and θ1k =
−2(−3·1/2−2) = −2−7/2. From Problem 7, the series at this detail resolution level
is

1∑
k=0

θ1,kψ1,k (x) =
{−1/8, x ∈ [0, 1/4) or x ∈ [1/2, 3/4),

1/8, x ∈ [1/4, 1/2) or x ∈ [3/4, 1).

This detail resolution level series is shown in Figure 13.3b, while Figure 13.3c
shows the detail resolution level series at j = 2.

10. Estimating Coefficients with the Cascade Algorithm. Assume the data is an
equally spaced vector y = (y1, y2, . . . , yn) sampled from the function f . The
cascade algorithm of Mallat (1989b) recursively estimates the θjk and ξjk . Using
periodic wavelets and assuming that n is a dyadic number, that is, n = 2J

for some integer J , the sampled data y is treated as though it is the set of n
coefficients ξJk needed for the smooth wavelet approximation fJ . The cascade
algorithm then uses these coefficients to estimate the coefficients at the next
lower resolution level. It will create the n/2 θJ −1,k coefficients and n/2 ξJ −1,k

coefficients for a particular choice of wavelet basis functions ψ .
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After one step of the algorithm, f is written as a detail series at resolution
level J − 1 and the smooth approximation fJ −1. Using (13.6) and (13.7) with
j0 = J − 1, this is

fJ (x) =
∑
k∈Z

ξJ −1,kφJ −1,k (x) +
∑

j=J −1

∑
k∈Z

θjkψjk (x).

Note the use of fJ rather than f . This is due to using the sample y , rather than
f itself. The data y is assumed to be at resolution level J , so it is not possible
to find a higher resolution level approximation than this.

The next step of the algorithm operates in the same manner, but on the
coefficients ξJ −1,k instead of ξJk . At each step, the number of coefficients θ or ξ

estimated at a resolution level j is half the number of the previously estimated
coefficients at resolution level j + 1. After J steps, only one of each coefficient
may be estimated: θ0,0 and ξ0,0. The algorithm may not proceed any further.
This process of recursively finding lower resolution level coefficients is called
decomposition.

It is not necessary to decompose the sampled function data y to the lowest
possible level. A decomposition may stop at any fixed level j0, where 0 ≤ j0 ≤
J − 1. In this case, the cascade algorithm provides coefficients for the following
decomposition:

fJ (x) =
∑
k∈Z

ξj0kφj0k (x) +
J −1∑
j=j0

∑
k∈Z

θjkψjk (x). (13.16)

The cascade algorithm works in reverse, as well. Given sets of coefficients
ξj0k and θjk , j0 ≤ j < J , the algorithm will combine ξj0k and θj0k into ξj0+1,k , then
combine ξj0+1,k and θj0+1,k into ξj0+2,k , and so on. It will stop at ξJk , which is
the original data y . Using the algorithm in this fashion is called reconstruction.

Implementation of the cascade algorithm is efficiently carried out with a
transformation matrix whose entries are determined by the choice of wavelet
basis and the sample size n .

Properties

1. Approximation Accuracy of the MRA. See Mallat (1989a, 1989b, 2009).

2. Characteristics of Wavelet Bases. See Daubechies (1992).

Problems

1. The Haar wavelet ψ = ψ0,0 is given by

ψ(x) =
{

1, x ∈ [0, 1/2),

−1, x ∈ [1/2, 1).

Show that

ψjk (x) =
{

2j/2, x ∈ [k2−j , (k + 1/2)2−j ),

−2j/2, x ∈ [(k + 1/2)2−j , (k + 1)2−j ).
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2. Using the Haar wavelet, verify that 〈ψij , ψkl 〉 = 1 when i = k and j = l , and 0 otherwise.

3. If the basis at (13.3) is truncated below by j = 0, then the associated function φ when ψ is the
Haar wavelet is given by

φ(x) = φ0,0(x) = 1, x ∈ [0, 1).

Show that

(a) 〈φ0j , ψkl 〉 = 0 for any k ≥ 0 and j and l .
(b) 〈φ0j , φ0k 〉 = 1 when j = k and 0 otherwise.

4. In Example 13.1, the mother wavelet ψ was used to find the smooth approximation f0. Show
f0 = 1/2 using the father wavelet φ for the Haar basis and f (x) = x , x ∈ [0, 1].

5. Let f (x) = x , x ∈ [0, 1], and ψ be the Haar wavelet.

(a) Show that for j ≥ 0 and k = 0, 1, . . . , 2j − 1, θjk = −2(−3j/2−2).
(b) Use (13.14) and (13.15) to show the series at detail resolution level j = 0 is

θ0,0ψ0,0(x) =
{−1/4, x ∈ [0, 1/2),

1/4, x ∈ [1/2, 1).

(c) Show the series at detail resolution level j = 1 is

1∑
k=0

θ1,k ψ1,k (x) =
{−1/8, x ∈ [0, 1/4) or x ∈ [1/2, 3/4),

1/8, x ∈ [1/4, 1/2) or x ∈ [3/4, 1).

6. Let y be the first 512 components in the sunspots data from package datasets.

(a) Use the mra command to plot f4, f5 and f6 using the Haar wavelet. Describe the different
characteristics of each of these three smooth approximations. For example, use J=5 and
either [[6]] or $S5 to find f4.

(b) Repeat the above problem using the wavelet basis indexed by wf="la8". This wavelet is
from the family of “least asymmetric” wavelets (Vidakovic (1999)). Describe the differences
between the smooth approximations using the different wavelet bases.

13.2 WAVELET THRESHOLDING

Section 13.1 explained how a function f may be represented with a wavelet basis. Using
the DWT, a sample of length n from f may be decomposed into n wavelet coefficients
making up a single smooth approximation and up to J = log2(n) detail resolution levels.
The inverse DWT can be applied to these resulting wavelet coefficients to reconstruct
the original sample data.

In this section, the sparsity property of wavelets is described and thresholding, the
statistical method based on sparsity, is given. Sparsity refers to the ability of wavelets
to represent a function by concentrating or compressing the information about f into a
few large magnitude coefficients and many small magnitude coefficients. In general, as
f gets smoother, the amount of compression attained becomes greater. Compression is
applied to the wavelet coefficients of a sampled function f prior to its reconstruction.

A concept related to compression is thresholding. Sparsity tells us that only a few
coefficients are needed to represent a function reasonably well. Thresholding tells us
how to find those few coefficients. Thresholding is an essential step in nearly all sta-
tistical function estimation procedures involving wavelets. Thresholding will reduce the
dimension of the sample vector based on some theoretical concerns, rather than just
compressing the data to a specified amount. The amount of reduction is often significant,
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sometimes just a few coefficients out of the original n are retained in the thresholding of
the wavelet series. The most common use of wavelet thresholding is to obtain a recon-
struction of an unknown function f when the Assumptions A1–A3 hold and only the
noisy data y is observed.

Sparsity

The MRA represents a function f as a smooth approximation and several series of
increasingly detailed resolution levels. The basis functions at the lower resolution levels
have wider support than those at higher levels, so fewer of these functions and their
associated coefficients are needed at lower levels when compared to higher levels. This
is very clear when using the DWT with a sampled vector of data from f . There are n/2
coefficients at the highest level, n/4 at the next, and so on.

If f is smooth, the lower resolution levels will provide a reasonable approximation
to f without the need to include higher resolution levels. These higher levels are mod-
eling high frequency behavior, therefore a smooth function will not have need of them.
The majority of the wavelet coefficients reside in these higher levels, so being able to
ignore them means a small subset of the coefficients is sufficient to model f . This is the
sparseness property.

EXAMPLE 13.3 Sparsity of the Wavelet Representation.

Andrews and Herzberg (1985) provide data on mean monthly sunspot observations
collected at the Swiss Federal Observatory in Zurich and the Tokyo Astronomical Obser-
vatory from 1749 to 1983. The data displays excessive variability over time, obscuring
any underlying trend in the cycle of sunspot appearances. The top panel in Figure 13.5
shows monthly sunspot data from January 1749 through July 1919. This data is named
sunspots and is found in the package datasets in R. The data sunspots has length
2820, but only the first 2048 are used here because that is a dyadic number. The DWT is
applied to this data resulting in 2048 coefficients. This decomposition was accomplished
using the command

dwt(sunspots[1:2048])

The wavelet basis and the number of decomposition levels were not specified, so the
default values of wf="la8" and n.levels=4 are used. This results in 2048 wavelet
coefficients. These coefficients are sorted in magnitude and the smallest 50% (1024) are
set to 0. The inverse DWT is applied to this compressed set of coefficients, resulting in
the reconstruction shown in Figure 13.5b. Figure 13.5c is the result of setting the smallest
95% of the coefficients to 0 prior to reconstruction. As the figure shows, compressing
the data by half provides a reconstruction nearly indistinguishable from the original data.
Keeping only 5% (102) of the coefficients results in a reconstruction with the basic
shape of the original data, but with the very localized variability mostly removed. This
final reconstruction make the underlying trend apparent without the obscuring short-term
variation evident in the original data set.

Thresholding

A drawback to compression as used in Example 13.3 is the need to specify the amount
of reduction. Choosing a certain percentage reduction becomes a subjective decision,
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Figure 13.5 Monthly sunspot data from Example 13.3. (a) displays 2048 observations from January 1749 to July 1919.
(b) the reconstruction using the 1024 largest (in magnitude) wavelet coefficients. (c) the reconstruction using the 102
largest (in magnitude) wavelet coefficients.

perhaps not adequately reflecting the nature of the underlying function f well. For
example, one may choose to keep a very small percentage of the wavelet coefficients
resulting in a smooth estimate of f , when in fact f may not be smooth at all.

In contrast, thresholding methods specify a value based on theoretical or data-driven
considerations. No subjectivity is required to specify which coefficients to set to 0 and
which to keep. Many methods of thresholding are based on assuming that the errors in
Assumption A2 are normally distributed. Some of these methods are given in Donoho
and Johnstone (1994). They make use of two rules for thresholding wavelet coefficients:

ηH (θ , λ) = θ · I (|θ | > λ) (13.17)

ηS (θ , λ) = sgn(θ) (|θ | − λ)+ . (13.18)

The first of these rules is called hard thresholding, while the second is soft. In each
rule, θ is a coefficient estimated with the DWT and λ is a specified threshold value. The
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hard threshold sets a coefficient to 0 if it has small magnitude and leaves the coefficient
unmodified otherwise. The soft threshold sets small coefficients to 0 and shrinks the
large ones by λ toward 0. The compression method discussed in Example 13.3 uses
hard thresholding with the threshold determined by sorting the coefficients in absolute
magnitude.

The DWT operation may be represented as a matrix operator. If W represents this
matrix and y is the observed data, then

θ̃ = Wy = Wf + W ε

is the vector of wavelet coefficients based on the observed noisy data as in Assumption
A1. The DWT is a linear transformation, so this can also be written as

θ̃ = θ + ε̃,

where θ = Wf represents the wavelet coefficients of the unobserved sampled function f
(without errors) and ε̃ = W ε represents the coefficients of the errors. The DWT matrix
W is orthogonal, so the ε̃ are normally distributed, provided the original errors ε were
normal. Unless the size of noise contaminating the underlying function f is excessive,
the ε̃ are generally smaller in magnitude than θ . In this case, the sparsity property of
wavelet coefficients implies that coefficients representing error may safely be ignored.
Donoho and Johnstone make use of this in their “VisuShrink” estimator. VisuShrink is
the result of applying the soft threshold rule (13.18) to θ̃ using the threshold

λv =
√

2σ 2 log(n),

where σ 2 is the variance of the errors ε. The value of σ 2 is not generally known and
must be estimated. See Comment 11. If θ̂ = ηS (θ̃ , λv), the thresholded coefficients, then
the VisuShrink estimate of f is

f̂v = W −1θ̂ , (13.19)

where W −1 represents the inverse DWT.
In general, analyzing an observed sample of data y via wavelets refers to the process

of decomposing the data via the DWT, applying some method of thresholding, and then
reconstructing the thresholded coefficients using the inverse DWT. Letting f̂ be the
reconstructed estimate of the unknown function f , this is written as

f̂ = W −1η (Wy , λ) . (13.20)

Note that Wy are the observed coefficients θ̃ , the result of applying the DWT W . This is
followed by applying the threshold rule η with some threshold λ, resulting in θ̂ . Finally,
the inverse DWT is applied to the θ̂ .

The soft threshold rule ηS in (13.19) can be replaced with the hard threshold rule
ηH without affecting the asymptotic performance of the VisuShrink estimate in terms of
mean squared error (MSE):

E

{
1

n

n∑
i=1

(
f (xi ) − f̂v(xi )

)2}
.
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The expectation is needed to account for the randomness from the error term ε. See
Comment 12.

When applying thresholding to wavelet coefficients, not all coefficients are consid-
ered. Generally, only the wavelet coefficients in the detail resolution levels above the
smooth approximation are subjected to thresholding. The justification for this is that the
smooth approximation is a coarse estimate of f and none of this information should be
discarded. Recalling the discussion on the sparsity of the wavelet representation of a func-
tion, the majority of the coefficients are in high detail resolution levels. Relatively few
coefficients are in the smooth approximation level. So, only a few wavelet coefficients
are exempt from thresholding.

EXAMPLE 13.4 Thresholding the Sunspot Data.

The first 2048 observations from the sunspot data will be thresholded using VisuShrink.
Note that VisuShrink provides an optimal reconstruction of f only in the case of normally
distributed errors. Ignoring this for the moment, the analysis begins by obtaining the
DWT of the observed data. The next step is to threshold the coefficients. This is done
in R via the universal.thresh command. This command requires a list of wavelet
coefficients from applying the DWT to the observed data y , the number of levels to
threshold, and an indication of whether to use the hard or soft threshold. The value of σ

is estimated within universal.thresh using (13.21) with m = 0. See Comment 11.
The default value for the number of levels to threshold is max.level=4. This coincides
with the default number of levels for decomposition in the command DWT: n.levels =

4. The default rule for thresholding is hard = TRUE. The final step, after thresholding,
is to reconstruct the thresholded coefficients using idwt. The following commands will
implement these three steps:

y <- sunspots[1:2048]
y.dwt <- dwt(sunspots[1:2048])
y.thresh <- universal.thresh(y.dwt)
y.idwt <- idwt(y.thresh)

The dwt and universal.thresh commands used default values, so four detail reso-
lution levels and a smooth approximation are provided by dwt and only the four detail
levels are thresholded. The rule used is the hard rule at (13.17).

Figure 13.6 shows the plots of reconstructions of the sunspot data using both
hard and soft thresholding rules. Figure 13.6a displays the observed data, Figure 13.6b
the VisuShrink estimate using the soft threshold rule, and Figure 13.6c the VisuShrink
estimate using the hard threshold. The default setting in DWT decomposed the observed
data into four detail resolution levels of lengths n/2 = 1024, n/4 = 512, n/8 = 256, and
n/16 = 128. The smooth approximation level is therefore of length n/16 = 128. The
default setting in universal.thresh only thresholds the wavelet coefficients in the
four detail resolution levels. Of these 1920 detail coefficients, each rule thresholded
1840 of them. Only 80 detail coefficients are not set to 0. With hard thresholding, these
80 coefficients are unmodified. With soft thresholding, these 80 coefficients are shrunk
toward 0 by λ = 31.78. For comparison with the compressed reconstructions in Figure
13.5, 89.84% of the coefficients are set to 0 using VisuShrink.

Although both hard and soft rules set the same subset of coefficients to 0, the
reconstructions shown in Figure 13.6 are very different. Any coefficient larger than
λ = 31.78 is reduced toward 0 by λ in the soft thresholded estimate. This results in



13.2 Wavelet Thresholding 649

1750 1800 1850 1900

0
50

15
0

No thresholding

Year

S
un

sp
ot

s

1750 1800 1850 1900

0
50

10
0

VisuShrink, soft thresholding

Year

S
un

sp
ot

s

1750 1800 1850 1900

0
50

15
0

VisuShrink, hard thresholding

Year

S
un

sp
ot

s

(a)

(b)

(c)

Figure 13.6 VisuShrink estimates of the monthly sunspot data from Example 13.4. (a) the original 2048 observa-
tions from January 1749 to July 1919. (b) the reconstruction using soft thresholding. (c) the reconstruction using hard
thresholding.

the smoother estimate that is evident in the figure. In fact, one of the desirable properties
of VisuShrink with soft thresholding is its ability to produce visually pleasing results
(hence the “visu” in VisuShrink). As mentioned above, both hard and soft thresholding
with VisuShrink result in the same MSE performance asymptotically.

The threshold used in VisuShrink is a universal, or global, threshold. The same
threshold is applied to every coefficient. Another method of thresholding uses a different
threshold at each resolution level of the wavelet decomposition of f . One such example is
the SureShrink method of Donoho and Johnstone (1995). SureShrink chooses a threshold
at each resolution level by minimizing the risk at that level as given by Stein (1981). See
Comment 17. Unlike VisuShrink, SureShrink is only intended to be used with the soft
threshold rule. SureShrink outperforms VisuShrink in terms of lower MSE (see Comment
12), but it does not always provide the visually pleasing reconstructions which some find
desirable.

SureShrink is actually a hybrid threshold method. While sparsity of the wavelet
representation of a function is considered to be a beneficial property, there is a concern
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when implementing SureShrink that the wavelet coefficients at certain resolution levels
can be too sparse. There may not enough information in a resolution level to determine
what the threshold should be. Only a few wavelet coefficients in a resolution level may be
representing function, while the rest of the coefficients are transformations of the errors
ε. In this case, SureShrink will revert to using the universal threshold of VisuShrink at
the resolution level in question.

EXAMPLE 13.5 SureShrink Thresholding.

R implements the SureShrink threshold with command hybrid.thresh. The arguments
are the DWT of the observed data and the number of levels to threshold. Additionally,
hybrid.thresh makes use of a sampling scheme. At each resolution level, one half of
the wavelet coefficients are sampled and used to estimate the threshold for the other half.

Figure 13.7 shows the results of applying SureShrink to an observed data vector
sampled from a function. This data is in R as the object blocks. This object is part of the
package waveslim and is made available for use with the command data(blocks).
Figure 13.7a shows the a sample of size n = 512 from the blocks function f with
errors added to it. Figure 13.7b is obtained using VisuShrink with soft thresholding,
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Figure 13.7 Reconstructions using VisuShrink and SureShrink from Example 13.5. (a) displays the original 512 noisy
observations and the true, underlying function. (b) is the VisuShrink reconstruction using soft thresholding. (c) is the
SureShrink reconstruction.



13.2 Wavelet Thresholding 651

Figure 13.7c is the reconstruction using SureShrink. In all three panels of Figure 13.7,
the piecewise linear function is the true underlying function f .

In this example, the errors added to the function blocks are independent, identically
distributed normal errors with mean 0 and standard deviation σ = 1.5. The wavelet
decomposition went down four levels, providing a smooth approximation and four detail
resolution levels. VisuShrink set 477 of the 480 detail coefficients to 0. SureShrink set 421
of the 480 detail coefficients to 0. The MSE of the reconstructions is 0.78 and 0.64 for
VisuShrink and SureShrink, respectively. While SureShrink had the lower reconstruction
error, Figure 13.7c clearly exhibit the ability of VisuShrink to provide a more visually
pleasing reconstruction than SureShrink. VisuShrink is probably oversmoothing the data.
Note that all but three of the detail coefficients were set to 0, while 59 of these coefficients
were not removed in SureShrink.

The coefficients at the second highest level of detail coefficients were deemed too
sparse. See Comment 17. The hybrid nature of SureShrink requires that the universal
threshold of VisuShrink must be used for this level, while the risk minimization thresholds
were used in the remaining three detail resolution levels. This is done automatically with
hybrid.thresh.

Other Thresholding Methods

The thresholding methods discussed above make decisions about whether or not to shrink
a coefficient by considering one coefficient at a time. A threshold is determined by
VisuShrink, SureShrink, or the top percentage method and each coefficient is compared
against this threshold. Several methods (Pensky and Vidakovic (1999); Hall et al. (1998,
1999); Cai and Silverman (2001)) have been proposed to threshold groups of coefficients
simultaneously. In these methods, subset of the coefficients are grouped together and a
function of these coefficients is evaluated. A decision to threshold or not is made for all
coefficients in the subset, and this rule is applied to all of them at once. One motivation
for such methods is that neighboring coefficients may contain information about each
other that will improve the thresholding decision. See Comment 14.

Thresholding the wavelet coefficients by keeping a certain percentage of the largest
coefficients did not require distributional assumptions on the coefficients, but both Vis-
uShrink and SureShrink were designed for normally distributed errors. Thresholding
without strong distributional assumptions on the errors may be implemented using a
cross-validation threshold rule. See Nason (1996), for example, and Comment 15.

These alternative methods of thresholding are discussed in detail in Nason
(2008).

Comments

11. Estimating σ . The threshold λv requires σ 2. In practice, this is not known and
must be estimated. For a vector y sampled from an observed noisy function f + ε,
the highest level of detail coefficients are used to estimate σ 2. This is a sound
strategy if one believes the estimated coefficients in this detail level represent the
observed error, rather than function. This is not an unreasonable assumption. If the
sample is of size n = 2J , this highest detail resolution level only serves to bridge
the gap between two successive smooth approximations at levels J − 1 and J .
For large n , or for smooth f , this difference between the two approximations may
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indeed be just noise. However, it is possible that some functional component of f
may be present in the highest detail resolution level of coefficients. In this case, a
robust estimator of σ 2 is desired. Donoho and Johnstone use the median absolute
deviation estimator. Because they assume the errors to be normally distributed,
their estimate of σ is

σ̂ =
{

median
(
|θ̃J −1,k − m|

)}
· (�−1(3/4)

)−1
, (13.21)

where m = median(θ̃J −1,l ) and � is the normal cumulative distribution function.
The constant involving � provides an unbiased estimate of σ in the event of
normality.

12. Rates of Convergence. The measure of error for an estimate f̂ of a function f
when using wavelet methods is generally the MSE,

E

{
1

n

n∑
i=1

(
f (xi ) − f̂v(xi )

)2}
.

If the xi are equally spaced over [0, 1] with distance between points equal to n−1,
the MSE above is approximately the same as

E

{∫ 1

0

(
f (x) − f̂v(x)

)2
dx

}
.

If f ∈ F has smoothness parameter α (roughly the number of derivatives pos-
sessed by f ), then the VisuShrink estimate f̂v has error rate

sup
f ∈F

E

{
1

n

n∑
i=1

(
f (xi ) − f̂v(xi )

)2} ≤ C

(
log n

n

) 2α
2α+1

,

where C is some unknown finite constant which does not depend on n . The
SureShrink estimator and block threshold estimators remove the log term from
the above rate. For details, see Donoho and Johnstone (1994, 1995), Hall et al.
(1999), and Cai (1999).

13. The Translation Invariant Estimator. One of the results of using compactly sup-
ported wavelets is that the end points of the support of the basis functions may
adversely affect estimation at those points. In particular, if there are jumps in the
function that do not occur where the wavelet basis functions begin or end, these
jumps will be poorly modeled. A fix to this was proposed in Coifman and Donoho
(1995) and Nason and Silverman (1995). Their method, the translation invariant
estimate, applies wavelet decomposition, thresholding, and reconstruction to all
possible shifts of the original observed data y = f + ε. For a signal of length n ,
there are n possible shifts of the data. Each shift cycles the data one position to
the right. Data moving past the end point is cycled back to the starting point.
After the shifted data is thresholded and reconstructed, it is “unshifted” back
to the original positions. Then, these n estimates of the underlying function are
averaged to provide a final estimate. The hope is that shifting the data removes
the dependency on the estimation at a point from the location of the wavelet basis
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function end points. If Sl shifts the data by l positions and S −1
l shifts the data

back to its original position, then the translation invariant estimator is given by

fTI = 1

n

n∑
l=1

S −1
l W −1η (WSl y , λ) .

Cuevas and Chicken (2012) extend this idea by considering only select shifts
at each point. Both these methods provide increased ability to model jumps in
the underlying functions f . The translation invariant estimate is implemented
in R with the commands modwt and imodwt. It is also an option in the mra

command: method="modwt".

14. Thresholding Multiple Wavelet Coefficients Simultaneously. The threshold meth-
ods presented in this chapter are term-by-term methods. They consider whether
or not to shrink one coefficient at a time. Each decision is made independently
of the others. Other thresholding methods have been developed to threshold sev-
eral coefficients at once. Pensky and Vidakovic (1999) proposed using a global
threshold which simultaneously considers every coefficient in a resolution level
j . If the sum of the squared coefficients in a resolution level are larger than some
specified threshold, then all coefficients are kept, otherwise, all are set to 0. Hall,
Kerkyacharian, and Picard (1998, 1999) and Cai (1999) proposed and examined
block thresholding methods that consider groups of coefficients within a reso-
lution level. Again, sums of squared coefficients in a block are compared to a
threshold and all coefficients in a block are shrunk by the same amount. Note that
a block size of 1 is term-by-term thresholding, while a block that encompasses
the entire resolution level is the global threshold of Pensky. Variations on these
ideas are the neighbor methods of Cai and Silverman (2001). These methods
are similar to term-by-term and block thresholding but use additional coefficients
outside the range of coefficients to be thresholded to increase the precision of the
decision on whether or not to shrink the coefficients.

15. Cross-Validation Thresholding. VisuShrink and SureShrink determine the values
of their thresholds under the assumption that the errors in Assumption A2 are
normally distributed. Nason (1996) removes this assumption by using a cross-
validation threshold. An observed sample vector y of length n is split into even
and odd components of length n/2. For each candidate value of the threshold
λ, the wavelet estimate (decomposition, thresholding, reconstruction) of the even
(odd) data is compared to the observed odd (even) data using the MSE. The λ

that minimizes this error is the chosen threshold. This threshold is chosen with
respect to sampled functions of length n/2, so a multiplier is applied to make it
suitable for the original observed data of length n . This type of thresholding is
implemented in the package wavethresh (Nason, 2010).

16. Unequally Spaced Sample Points. It is not necessary that the vector y be sampled
at equally spaced points. Cai and Brown (1998, 1999) and Kovac and Silverman
(2000) show that term-by-term thresholding methods may be applied to sample
points that are fixed and irregularly spaced or follow a uniform placement on the
support interval of the underlying f without affecting the estimation properties
of wavelet analysis. Chicken (2003, 2005) shows similar results for block thresh-
olding methods. In some cases, the wavelet transform may be applied directly to
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nonequispaced data, but in other situations, a transformation must be applied to
the observed data y before and after the wavelet analysis.

17. SureShrink Threshold. The word “sure” in SureShrink refers to “Stein’s unbiased
risk estimate.” For a fixed resolution level j and threshold λ, this risk is

SURE(θj ·, λ) = nj − 2 · #{k : |θjk | ≤ λσj } +
nj∑

k=1

(
min(|θjk |, λ)

)2
,

where θj · is the set of coefficients at resolution level j and nj is the number of
such coefficients. The threshold at resolution level j is then

λj = arg min
0≤λ≤λv

SURE(θj ·, λ),

where λv is the VisuShrink threshold using nj . SureShrink will use λv if a level
is too sparse:

1

nj

∑
k

(θ2
jk − 1) ≤ n−1/2

j (log2 nj )
3/2.

For details, see Donoho and Johnstone (1995).
R allows the use of SureShrink without the sparsity condition through the

command sure.thresh. This command also allows hard thresholding, which
SureShrink is not designed for. The sampling scheme used to determine the thresh-
old for half the data based on the other half is not implemented in sure.thresh.

Properties

1. Convergence Rates. For rates of convergence of wavelet-based estimates in a
variety of settings, see Donoho and Johnstone (1994, 1995), Hall et al. (1999),
Cai (1999), Vidakovic (1999) and Chicken (2003, 2005).

Problems

7. Use the dwt command to obtain the wavelet coefficients of the first 512 components of the
sunspots data. Use n.levels=9.

(a) Use the unlist command on this object to create a single vector of coefficients. Make
two histograms: one of the coefficient vector and one of the untransformed data. How do
these histogram shapes illustrate the sparsity of the wavelet representation of the data?

(b) Create a histogram using only the highest level of detail coefficients (use [[1]]] or $d1
to access these coefficients from the output of dwt). Do these coefficients appear to be
symmetric about 0? Normal?

(c) Threshold the wavelet coefficients for this data using both SureShrink and VisuShrink.
Describe the differences in the reconstructions.

8. Create vectors of noisy blocks data with errors having mean 0 and variance 1 using the
following R commands:

y1 <- blocks + rnorm(512)

y2 <- blocks + rexp(512) - rep(1, 512)

y3 <- blocks + runif(512, -sqrt(3), sqrt(3))
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(a) Apply VisuShrink separately to each of the vectors y1, y2, and y3. Find and compare
the MSEs for each reconstruction with respect to f = blocks. Comment on the visual
quality of the reconstructions.

(b) Repeat the above tasks using SureShrink in place of VisuShrink.
(c) How do the MSEs compare for the VisuShrink and SureShrink estimates from the above

two problems? Comment on any differences in the visual quality of the estimates.
(d) Construct a histogram using only the highest level of detail wavelet coefficients from the

DWT of y1. Do the same for y3. Do either sets of these coefficients appear to be normal?

9. Using the initial 210 components of the sunspots data, find VisuShrink estimates of the data
using n.levels=6 in dwt and max.level=4, 5, 6, and 7 in universal.thresh (setting
max.level=7 will threshold the wavelet coefficients used in the smooth approximation of f ).
Compare the VisuShrink estimates using both MSE and visual fit.

13.3 OTHER USES OF WAVELETS IN STATISTICS

The methods discussed in this chapter use wavelets to estimate a function f when it
is observed under Assumptions A1 to A3. However, this is by no means the only use
of wavelets. In fact, wavelet methods have been applied successfully to many statis-
tical problems other than those presented in Sections 13.1 and 13.2. As mentioned in
Chapter 12, wavelets may be used in nonparametric density estimation. See Vidakovic
(1999) and references therein for examples of density estimators based on wavelets.
Wavelets are also useful in understanding the properties of time series and random pro-
cesses. See Percival and Walden (2000) and Craigmile and Percival (2005) for results
and references on the use of wavelets in these cases.

Many engineering applications consist of observing sequences of large data sets. For
example, each observation Wi , i = 1, 2, . . . , m may be a set of bivariate data {(xj , yj )}n

j=1
where x and y are related functionally as specified in Assumptions A1 to A3: for each i ,
Wi is an observation consisting of n bivariate pairs of data satisfying

yij = f (xij ) + εij , j = 1, 2, . . . , n.

The wavelet property of sparsity becomes useful to reduce the size of the data in these
problems. Jin and Shi (2001) and Chicken et al. (2009) provide examples where wavelets
are used as a dimension reduction tool to monitor sequences of such observations under
the assumption of normality on the errors, while McGinnity et al. (2013) developed a
method to monitor such sequences under general conditions for the observed errors. See
Chicken (2011) for additional references and more examples of the utility of wavelets in
such situations.

In addition to the three examples described above, wavelets are applicable to many
other statistical problems. Vidakovic (1999) and Nason (2008) provide additional details,
examples and references for the use of wavelets in statistical methods beyond those
presented in this chapter. In particular, Nason provides extensive examples implemented
with the R software package.



Chapter 14

Smoothing

INTRODUCTION

The wavelet methods from Chapter 13 are useful at estimating a function from a sample
of bivariate data (x , y) because these methods do not rely on specific assumptions about
the functional relation underlying the data. In contrast, the functional estimation prob-
lems considered in Chapters 9 and 11 were designed to estimate very specific types of
functions. In this chapter, we continue to pursue methods to estimate a general function
from a collection of bivariate observations.

Wavelet methods projected the data into resolution levels at various scales (frequen-
cies) through the use of a set of special basis functions. The properties of wavelets lead to
representing the data by a greatly reduced set of objects through the nonlinear process of
thresholding. The methods presented here are “smoothers.” Similar to wavelet methods,
these smoothers may make use of external functions to model the functional relation
between y and x . These functions, however, neither form a basis for a space of functions
nor do they provide a dimension reduction property or analyze an observed function in
terms of scale and location. Additionally, the external functions used in smoothers are
typically very simple: lines or low order polynomial functions. Most wavelet functions
are very complex.

We refer to these methods as smoothers, but another common term used is non-
parametric regression. The term nonparametric in this case refers not to distributional
assumptions on observed errors but to the lack of a specific, parametric form assumed for
the function being estimated. For example, in Chapter 9, we assumed that the function
to be estimated was a linear function. Here, no such assumptions are made. In addition,
we also make no strong distributional assumptions on the errors.

In this chapter, three types of smoothing methods are discussed. All are linear
smoothers: the estimates obtained are linear combinations of the observed data. The
first section introduces a local averaging estimator. Next, we discuss a local linear esti-
mate based on regressing the observed data in localized windows. In the final section,
kernel methods, similar to those used for density estimation found in Chapter 12, are
given.

Data. There are n pairs of observations (x1, y1), (x2, y2) . . . , (xn , yn). Without loss of
generality, assume the xi are ordered, x1 ≤ x2 ≤ · · · ≤ xn .

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Assumptions

A1. The observations are related through the expression

yi = f (xi ) + εi , i = 1, 2, . . . , n.

A2. The errors εi are independent and identically distributed from a continuous
population, centered at 0.

14.1 LOCAL AVERAGING (FRIEDMAN)

In local averaging, the estimate of f at the point xi is taken to be the average of observed
values yj corresponding to values xj in some vicinity of xi . In Friedman (1984), this
neighborhood of xi is chosen to be the smallest symmetric window about xi containing s
observations. Since the average is a linear combination of the points in the neighborhood,
the fit is a linear smoother. The term span is used to denote the number of points in
the window. The window is sized to include s points, including and centered at xi . The
window size will change for different values of xi , but always includes the same number
of points. This is a nearest neighbor method, as opposed to a method where the window
is always the same size.

The value of the span s is critical. Recall from Chapter 12 that selecting an appro-
priate bandwidth drives the usefulness of the density estimation procedure. The choice of
the span is similar in this case. Too large a span will oversmooth the data resulting in a
large bias in the estimate. Too small a span provides an estimate that is undersmoothed. In
this second case, we have large variability. The correct span will find a balance between
the bias and variance.

Friedman proposed using a cross-validation method to choose the span. This method
uses a leave-one-out approach to find the best span. One point at a time is removed
from the set of n bivariate observations (x , y). The local average is determined for the
point (xi , yi ) using the n − 1 remaining points, and the error between this point and its
estimate is noted. This process is done for a variety of candidate values for the span s ,
and the selected value is that which minimizes the average of these errors squared. See
Comment 2.

Rather than using a single span for the entire estimate of f , Friedman makes use of
variable spans. A variable span is analogous to the variable bandwidths used in density
estimation in Chapter 12. In a region where the function f is irregular or displays much
variability, it might be beneficial to have a large span. Smooth regions might require
fewer points in the estimate. The variable span depends on xi and is denoted as s(xi ).
See Comment 2.

If it is known (or suspected) that the underlying function f is relatively smooth
curve, an additional smoothing parameter may be used with the variable span. The
“bass” parameter resides in the interval [0, 10]. Small values of the bass have little
or no additional smoothing effect on the estimated functions. Large values of the bass
will drive the span close to a window containing n/2 of the data points. See Comment 3.

EXAMPLE 14.1 Nitrogen Oxide Concentrations.

Cleveland (1979) examines data gathered by Brinkman (1981) on the nitrogen oxide
concentrations found in engine exhaust for ethanol engines with various equivalence
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Figure 14.1 Smoothing of the ethanol data from Brinkman (1981) using Friedman’s local averaging
smoother. The lines are the smoothed data with differing spans, the points are the original observed pairs
(x , y). The smoothing parameter bass is set to 0 (the default value in supsmu).

ratios. These 88 pairs of data are in the R data set ethanol. They may be smoothed by
Friedman’s local averaging method with the command supsmu. The command requires
arguments for the x and y vectors, a span and a bass. The cross-validated variable span
is implemented using the argument span="cv", the default value. For a constant span
of size pn where p ∈ [0, 1], use span=p. The default bass value is 0, but this may
be changed with the argument bass. Figure 14.1 displays the 88 observations from the
ethanol data set as points and the smoothed data (solid line) using these default values for
bass and span, as well as two additional constant spans. For the cross-validated span
(solid line), the overall shape of the data is maintained, with the short-term irregularities
smoothed over. For the specified constant span of 0.30 (dashed line), the estimator is too
smooth (biased). In particular, it misses the data peak in the center. Setting the constant
span lower to 0.05 (dotted line) will pick up the peak, but there is excess variability in the
smoothed estimate. Using the cross-validation variable span provides a more reasonable
estimate in that it is neither oversmoothing nor too irregular. It is striking a reasonable
balance between bias and variance.

The smoothed estimates in Figure 14.1 are generated with the following command:

supsmu(x=ethanol$E, y=ethanol$NOx, bass=0, span="cv")

where E is the engine equivalence ratio and NOx the nitrogen oxide concentration. The
argument span may be changed to 0.30 and 0.05 for comparisons. If the results of the
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Figure 14.2 Smoothing of the ethanol data from Brinkman (1981) using Friedman’s local averaging
smoother and varying the bass argument in supsmu.

above call are saved in an R object, say ethanol.supsmu, then ethanol.supsmu$y
is the vector of the fitted smoothed values ŷ .

Increasing the bass will impose additional smoothing on the data. This is illustrated in
Figure 14.2. The span is chosen again using the cross-validation method described earlier.
The three values for bass are 0 (default), 7, and 10. The solid line in Figure 14.2 is the
same as that in Figure 14.1. The dashed line shows the smoothed data using bass=7.
Note that the resulting smoothed data with this value is close to the default case with
a notable exception near the equivalence ratio of 0.7. Setting bass=10, the maximum
value, results in the smoothed data shown with the dotted line. With this bass value,
the span is quite far from the cross-validated span. See Comment 3. It is clear that
this estimate (bass=10) is oversmoothing the data. The center portion of the estimate is
biased downward significantly. The variance of the estimate is reduced but at the expense
of excessive bias.

Comments

1. Choice of Window. Friedman’s local averaging smoother uses the smallest sym-
metric window centered at each xi and containing s points as the neighborhood
for smoothing. An alternative is to use the smallest (not necessarily symmetric)
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window that contains the specified number of observations, s . This alternative
method has the advantage that it generalizes to smoothing higher dimensional
functions. However, the symmetric window approach is simpler from a compu-
tational standpoint. In particular, for the xi being equally spaced over the support
of the function f , adjacent neighborhoods are identical except for one entering
and one leaving point. See Friedman (1984).

2. Cross-Validation. For an index i , let ŷ(i ) be the local averaging estimate of the
function at the point xi determined by using all the observed data points except
for (xi , yi ) and a particular specified value of the span s . Then,

ei (s) = yi − ŷ(i ), i = 1, 2 . . . , n

is the error based on this leave-one-out approach for a single point (xi , yi ). The
choice for a span is the value of s that minimizes the average of these errors:

ŝ = arg min
s∈S

1

n

n∑
i=1

e2
i (s)

for some set S of candidate values of s . The span selected in such a way is a
global span. It is used for every point xi .

If using a variable span (the default method in supsmu), a span s(xi ) is found
for each xi . The set S is taken to be S = {.05n , .2n , .5n}. These three spans are
referred to as the tweeter, midrange, and woofer smoothers. The woofer is global
in nature and provides a high level of smoothing; the tweeter is very localized
and give the least amount of smoothing. The midrange is in between the two.
Rather than minimizing the sum of squared errors as in the constant span case,
the errors associated with a particular candidate span are first smoothed with the
midrange smoother. The error at xi is taken to be the smoothed value at xi . The
value of the variable span can change abruptly for adjacent points xi . To account
for this, the function s(x) is subjected to further smoothing using the midrange
smoother and an interpolation step is used to determine the final fitted value ŷi .
See Friedman (1984) for details on the mechanics of variable span selection. For
more details on cross-validation, see, for example, Allen (1974), Stone (1974),
or Golub et al. (1979).

3. Additional Smoothing via the Bass Parameter. The woofer (see Comment 2) in
Friedman (1984) provides a significant amount of smoothing due to its large size:
n/2. The bass parameter is used to force the span closer to the woofer through
user input. For a point xi , the bass modifies the span through the relation

s(xi ) = scv(xi ) + (sw − scv(xi )) ·
(

ecv,i

ew

)10−α

,

where α ∈ [0, 10] is the user-specified value of the bass, scv is the optimal span
for xi , and sw is the fixed woofer span. The fraction is the ratio of two fitted
errors: ecv,i represents the error between the fitted point ŷi and the observed point
yi using the optimal span, ew is this error when fitting with the woofer. Note that
setting α = 10 results in s(xi ) = sw, while α = 0 has s(xi ) very close to scv(xi )

(the fraction should be less than equal to 1). The bass is applied to the data before
the optimal spans are smoothed. See Comment 2.
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4. Dependence of Errors. If Assumption A2 is invalid, in particular with positive
or negative correlation among the errors, then using cross-validation to choose
the optimal span will result in poor estimates. Positive correlation will result in
underestimating the underlying function f , while negatively correlated errors will
lead to overestimation. See Friedman (1984).

5. Sample Size n. The use of woofer, midrange, and tweeter values as candidate spans
in the variable span selection method may be too limited in certain situations.
For example, in data sets where the irregular features of the underlying function
f to be smoothed require a span less than the tweeter, s = .05n , oversmoothing
will occur. In these cases, manual values of smoothing spans may be preferable.

Problems

1. The data set cars from Ezekiel (1930) contains stopping distances for various speeds. Smooth
the data using Friedman’s smoother by choosing your own value of the span. Use dist as the
dependent (response) variable and speed as the independent (predictor) variable. Using trial and
error, what seems to be a reasonable span? Comment on the graphical comparison between the
estimate using your choice of span with the estimate using the span chosen by cross-validation.

2. Consider the data set sunspots from Andrews and Herzberg (1985) as a response variable.
For the predictor data x , use

x <- c(1:length(sunspots))

Apply Friedman’s smoother using trial and error to find a span that seems to work well with
the data. Then find an estimate using the span determined by cross-validation. Describe the
results (taking into account Comment 5).

3. Reduce the size of the sunspots data from Problem 2 by taking only the first m observations:

y <- sunspots[1:m]

x <- c(1:m)

At what value of m does the cross-validation method begin to provide a reasonable estimate?
Why is this occurring?

4. Using the first m = 128 observations from the sunspots data in Problem 2, obtain the wavelet
estimate using the VisuShrink method from Chapter 13. Comment on the graphical comparison
between the VisuShrink estimate and the estimate you would have gotten in Problem 3 by
setting m = 128. The thresholded wavelet estimate requires a dyadic number n of points xi ,
say n = 2J for some integer J . Additionally, it assumes that these points are equally spaced
apart. These two conditions are met by the truncated sunspots data. However, VisuShrink
is designed for normal errors ε, while Friedman’s estimator makes no such assumption.

5. Pagan and Ullah (1999) reported data from the 1971 Canadian census on wages for male high
school graduates. This data in the R object cps71. Use the logarithm of wages logwage as
the response and age as the predictor. Smooth this data using Friedman’s method with the
span found by trial and error. Comment on the graphical comparison between this estimate to
that obtained when using the span selected by cross-validation.

6. Using the Canadian census wage data from Problem 5, smooth the data with Friedman’s
method using the cross-validation span and bass=0. Vary the bass parameter to obtain a
reasonable fit. Comment on the graphical comparison of the estimates with varying bass
values. Which value of the bass seems most reasonable?

7. Using the data from Table 9.3 on body weight and total surface area of squirrel monkeys, find
and plot the estimated line using Theil’s method. Use surface area as the response and weight
as the predictor. Then find the estimate using Friedman’s method with the span chosen by
cross-validation. Comment on the graphical comparison between these two estimates.
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14.2 LOCAL REGRESSION (CLEVELAND)

Instead of estimating the function f at a point xi by using local averaging, Cleveland
(1979) proposed a method to estimate this value by performing a local linear regres-
sion on the observations (x , y) near xi . The resulting regression model’s fitted value at
xi is then used as the smoothed estimate at this point. The regression performed is a
weighted regression, where the weights are related to the distance of the points used in
the regression to the point xi .

Like Friedman’s local average smoother, this is a nearest neighbor method. The
weight function is scaled so that only a specified number of points are used in a local
regression. See Comment 6. The size of the window of points used will vary from one
xi to another, but each window will contain the same proportion αn of the total number
of points, where α is some number in (0, 1].

Once the initial fit at each point xi is found using the above weighted regression,
additional regressions are performed to reduce the impact of outliers on the smoothed esti-
mate. This is done to make the estimator robust against such points. This second weighting
scheme uses weights based not on the distance between the points in a neighborhood
of xi but on the residual errors between the fitted points ŷj found in the initial local
weighted regression and the corresponding observed values yj . This residual weighted
regression is performed iteratively, each time determining new residual-based weights
on the previous local residual weighted regression. See Comment 7.

The span may also be chosen automatically. Cleveland suggests implementing cross-
validation by using a modification of the PRESS (predictive residual sums of squares)
method of Allen (1974). This method was further modified by Golub et al. (1979), where
it is called generalized cross-validation. See Comment 9.

EXAMPLE 14.2 Nitrogen Oxide Concentrations.

Continuing with Example 14.1, we apply Cleveland’s method to the ethanol data from
Brinkman (1981). Cleveland’s local regression smoother is implemented in R using the
command loess. This command requires arguments for a model, the span α and the
degree of the polynomial to use in the local regression. The ethanol data is not sorted
by equivalence ratios. The loess command requires the data to be sorted with respect
to the x variable. This is easily accomplished with the commands

ethanol$NOx <- ethanol$NOx[order(ethanol$E)]
ethanol$E <- sort(ethanol$E)

For the local linear regression described here, degree=1 is needed. See Comment 8.
The model is specified using the notation y ∼ x, where x and y are vectors containing
the observations. The span argument serves the same purpose as in supsmu. It gives
the proportion of the n observations that will be included in the local regression window.
The weight functions are the tricube and biweight functions, see Comments 6 and 7. The
number of iterations for the residual-based weighted regressions is by default equal to 4.
This may be changed with the argument loess.control(iterations=m), where
m is the desired number of iterations.

The smooth is obtained with the call

loess(ethanol$NOx ~ ethanol$E, degree=1, span=0.75)
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Figure 14.3 Smoothing of the ethanol data from Brinkman (1981) using Cleveland’s local regression
smoother. The estimates are obtained from loess for spans 0.75 and 0.10 and from loess.as for the
cross-validation span.

or, equivalently

loess(NOx ~ E, data=ethanol, degree=1, span=0.75)

If the output to this call is saved to an R object, say ethanol.loess, then
ethanol.loess$fitted is the vector of the fitted values ŷ . Figure 14.3 shows the
different smooth estimates for span values α = 0.75 (the default value) and α = 0.10.
The estimate using the span 0.75 (dashed line) appears to be oversmoothing the data
(increased bias). This is most apparent in the center of the data where this span
underestimated the peak in the data. The estimate using the span 0.10 (dashed line)
displays too much irregularity (increased variance). To select a span with generalized
cross-validation, the command loess.as from the R package fANCOVA (Wang
(2010)) is called with arguments for the observed data x and y, and specifying
criterion="gcv":

loess.as(x=ethanol$NOx, y=ethanol$E, criterion="gcv")

Unlike loess, the default degree is 1 for this command. If the output to this call is
saved to an R object, say ethanol.loess.as, then ethanol.loess.as$fitted

is the fitted data and summary(ethanol.loess.as) will provide the selected span.
For the ethanol data, generalized cross-validation chooses the span to be α = 0.19.
The solid line in Figure 14.3 is the smooth obtained with this span. Considering all
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three spans, 0.10, 0.19 (the generalized cross-validation span), and 0.75 (the default
span), it is clear that as the span increases the estimates become smoother. The esti-
mate using the cross-validation span seems preferable to the other two. It displays
neither oversmoothing nor excess variability. Additionally, it possesses the added benefit
of not being chosen subjectively.

It is possible to set a span that will result in error messages within loess and
loess.as. These are generally a result of specifying too small a span. If so, the problem
is easily remedied by increasing the span incrementally until the errors no longer occur.
This problem will not occur when using an automatically selected method.

Comments

6. Weights for the Weighted Local Regression. The function for determining the
weights in the initial weighted regression model are defined by a function W
and the proportion of points α to include in a local regression. In Cleveland
(1979), the function W is a symmetric function, nonincreasing for nonnegative
x , with the following properties:

W (x) > 0, |x | < 1,

W (x) = 0, |x | ≥ 1.

This W is then modified for each index i = 1, 2, . . . , n by centering W at xi

and scaling W such that the first value at which it is zero is at the αn nearest
neighbor of xi . One such W suggested by Cleveland and implemented in the R
command loess is the tricube function:

W (x) = (1 − |x |3)3 , |x | < 1,

and W (x) = 0 elsewhere. Letting wi
1, wi

2, . . . , wi
n be the weights determined by

the centered and scaled W for a particular point xi , the weighted local regression
is found by minimizing the weighted least squares

n∑
j=1

wi
j

(
yj − β i

0 − β i
1xj
)2

, (14.1)

where β i
0 and β i

1 are the intercept and slope of the linear relation between x and
y in the neighborhood of xi .

7. Residual-Based Weights. Once the initial weighted local regression is performed
(see Comment 6), one may find the residual errors between each observed value
yi and the local weighted fitted value

ŷi = β̂ i
0 + β̂ i

1xi

where the β̂ i are the estimates of the parameters β i using local weighted least
squares regression. Residual-based weights are found by defining the bisquare
weight function B ,

(Bx) = (1 − x2)2 , |x | < 1,

and B(x) = 0, elsewhere. Denoting the residuals by

ei = yi − ŷi , i = 1, 2, . . . , n ,
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the residual-based weights are

δi = B

(
ei

(
6 · median

1≤j≤n
|ej |
)−1
)

.

The weights used are the product of the original distance-based weights and the
residual-based weights,

n∑
j=1

δj w
i
j

(
yk − β i ′

0 − β i ′
1 xj
)2

where β i ′
0 and β i ′

1 are the parameters for this new local regression fit in the
neighborhood of the point xi . Using residual-based weights to reduce the effect
of outliers in the fitted models is considered a robust method. Cleveland refers
to his method as robust locally weighted regression.

This is an iterative procedure. The residual weights may be recomputed
using the new fit from the previous residual-based weight regression. Cleveland’s
use of this iteration is a modification of iterated weighted least squares. See, for
example, Beaton and Tukey (1974) and Andrews (1974).

8. Local Polynomial Regression. The method in this section focuses on simple lin-
ear regression, that is, the degree is 1. However, the method may be implemented
with a local polynomial regression in place of linear regression. R allows for
degrees of d = 0, 1, or 2. The local polynomial regression model minimizes

n∑
j=1

wi
j

(
yk − β i

0 − β i
1xj − · · · − β i

d xd
j

)2
.

For a discussion of the choice of polynomial degree, see Cleveland (1979).

9. Automatic Span Selection. R provides two methods of automatic span selection
through the command loess.as. The generalized cross-validation method of
Golub et al. (1979) is a modification of the ordinary cross-validation discussed
in Comment 2 of Section 14.1. Ordinary cross-validation minimizes the sum
of squared residuals over the candidate spans. In the notation from the above
referenced comment,

1

n

n∑
i=1

(
yi − ŷ(i )

)2
is the error based on the leave-one-out approach for a single point (xi , yi ) and a
specific value of the span. For generalized cross-validation, this is rewritten as

1

n

n∑
i=1

(
yi − ŷi

1 − hii

)2

,

where the hii are the diagonal entries of the matrix H that determines the linear
regression estimates. The hii are then replaced with their average value

1

n

n∑
i=1

hii = trace(H )/n ,
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and generalized cross-validation chooses the span that minimizes

1

n

n∑
i=1

(
yi − ŷi

1 − trace(H )/n

)2

.

A second method for span selection is based on using a modification of
Akaike (1974). In a parametric regression setting, one compares several models
and selects the one with the minimum value of Akaike information criterion
(AIC). Hurvich and Tsai (1989) and Hurvich et al. (1998) modified this to apply
to more general models and showed their corrected AIC is equivalent to

ln

(
1

n − 1

n∑
i=1

(yi − ŷi )
2

)
+ 1 + 2(trace(H ) + 1)

n − trace(H ) − 2
.

The above expression is evaluated at candidate spans, each choice of span
resulting in different fitted values ŷi and H . The span that minimizes the expres-
sion is chosen. This method is implemented in loess.as with the argument
criterion="aicc".

10. Local Multivariate Regression. Local weighted regression may be extended to
the multivariate case. The fitted or smoothed values ŷi are now determined
by a multiple polynomial regression on a vector of p independent variable
x1, x2, . . . , xp . The regressions are local, as before, and the nearest neighbor-
hood method requires a p-dimensional measure of distance. See Cleveland and
Devlin (1988) for details.

11. Regression Estimation. The regression in Cleveland’s smoother is performed
with weighted least squares using the argument family="gaussian", the
default value in loess and loess.as. Although no assumptions of nor-
mality were made on the errors ε in Assumption A2, this does not present a
difficulty. While inference on usual regression (weighted or not) depends heav-
ily on normality, the estimation of the parameters β does not. The estimates
found by least squares regression are a form of robust estimation known as
M-estimation. For details on regression as a robust M-estimator, see Huber and
Ronchetti (2009).

12. Sample Size n. The automatic span selection method based on generalized cross-
validation searches for values of α in the interval [0.05, 0.95]. However, cases
may occur where the variability of the underlying function f requires a span
below 0.05. In such situations, manual selection of the smoothing span α may
be necessary. See Comment 5.

Properties

1. For the sampling distributions associated with varying assumptions on the errors
ε, see Cleveland (1979).

Problems

8. Smooth the data set cars from Problem 1 using Cleveland’s smoother. Choose a reasonable
value for the span using trial and error. Why does this span appear to be a good choice?
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Comment on the graphical comparison of the estimate using the trial and error span with the
estimates found using the span chosen by the two cross-validation validation methods (aicc
and gcv).

9. Comment on the graphical comparison between the estimates obtained with the automatically
selected spans in Problem 8 and the estimate obtained from Friedman’s smoother using the
cross-validation span in Problem 1.

10. Through trial and error, find a span that seems to work well with the sunspots data from
Problem 2 using Cleveland’s method. Then find the estimates using the spans determined by
the two cross-validation methods. Describe the results (taking into account Comment 12).

11. Reduce the size of the sunspots data set by taking only the first m observations as was done
in Problem 3. At what value of m do the cross-validation methods begin to provide reasonable
estimates? Why is this occurring?

12. Using the first m = 128 observations from the sunspots data in Problem 2, obtain the wavelet
estimate using the VisuShrink method from Chapter 13. Comment on the graphical comparison
between the VisuShrink estimate and the estimate you would have gotten in Problem 11 by
setting m = 128. The thresholded wavelet estimate requires a dyadic number n of points xi ,
say n = 2J for some integer J . Additionally, it assumes that these points are equally spaced
apart. These two conditions are met by the truncated sunspots data. However, VisuShrink
is designed for normal errors ε, while Clevelands’s estimator makes no such assumption.

13. Apply Cleveland’s method to Canadian wage data from Problem 5. Obtain an estimate using
a span found by trial and error. Then obtain estimates using the two cross-validation span
selectors. Comment on the graphical comparison between these estimates.

14. Comment on the graphical comparison of the estimates obtained with the two automatically
selected spans in Problem 13 to the estimate obtained in Problems 5 and 6 using Friedman’s
method with cross-validation span and an appropriate value for the bass.

15. Change the degree of the local polynomial in Cleveland’s method to 0 (locally constant) using
the argument degree (see Comment 8). Using the cars data from Problem 1, how does
changing the degree affect the estimates compared to the locally linear estimates (degree=1)
from Problem 8? Change the degree to 2 (locally quadratic) and compare graphically the
estimate obtained to those found using degrees 0 and 1.

16. Change the degree of the local polynomial in Cleveland’s method as in Problem 15, but use
the data Canadian census data cps71 from Problem 5. Comment on the graphical comparison
between these estimates.

17. Using the data from Table 9.3 on body weight and total surface area of squirrel monkeys, find
and plot the estimated line using Theil’s method. Use surface area as the response and weight
as the predictor. Then find the estimate using Cleveland’s method with the spans chosen by
cross-validation. Comment on the graphical comparison between these estimates.

14.3 KERNEL SMOOTHING

In Chapter 12, we introduced the kernel function as a tool for density estimation. We
return to the idea of kernels, but now in the context of estimating a general function f
rather than a density function. Nadaraya (1964, 1965) and Watson (1964) independently
introduced the kernel regression estimate

f̂ (x) =
∑n

i=1 yi K

(
x − xi

h

)
∑n

j=1 K

(
x − xj

h

) (14.2)
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for observations gathered under this chapter’s assumptions. The kernel function K obeys
the same restrictions as those set forth in Chapter 12. The parameter h is the bandwidth.
The estimate (14.2) can be rewritten as

f̂ (x) =
n∑

i=1

yi

⎡⎢⎢⎣ K

(
x − xi

h

)
∑n

j=1 K

(
x − xj

h

)
⎤⎥⎥⎦ =

n∑
i=1

yi wi

illustrating that this estimate is a linear estimate of the observed data yi . The weights
wi are dependent on the choice of kernel function K , the bandwidth h , and the distance
between the observed data xi and the point x . An estimate of the fitted value ŷi is given
by replacing x with xi in (14.2),

ŷi = f̂ (xi ).

Unlike the methods in the previous two sections, this is not a nearest neighbor
method for a given kernel K and bandwidth h . The number of observations used in the
estimate at any point x is not fixed but the window size is. See Comment 13.

Other kernel regression methods have been proposed, see Comment 16. These meth-
ods are similar to the Nadaraya–Watson estimator in that the kernel is used to weight the
observed data yi . Other kernel methods have been developed where the kernel is used
as weights for local linear least squares. See Comment 15.

As in the case of density estimation, the importance of the bandwidth h in obtaining
a good estimate of f is critical. Instead of relying on choosing h based on subjective
means, an automated method for bandwidth selection is desired. One such method is
the AIC method of Hurvich et al. (1998) used earlier with Cleveland’s local weighted
regression smoother. See Comment 9. A second method is the simple leave-one-out least
squares cross-validation similar to that in Comment 2. In this case, the bandwidth h is
the changing value over which the least squares are minimized, rather than the span s .

EXAMPLE 14.3 Nitrogen Oxide Concentrations.

The R command npreg from the Hayfield and Racine (2008) package np will imple-
ment the Nadaraya–Watson kernel regression estimator. It requires arguments for the
observed data x and y and a bandwidth. As with loess, the data must be sorted with
respect to the x variable, which in this case is the engine ratio variable. For the ethanol
data from the previous examples, the estimate is obtained and stored in the R object
ethanol.npreg by

ethanol.npreg <- npreg(bws=.09, txdat=ethanol$E,
tydat=ethanol$NOx)

The arguments txdata and tydata identify the observed data x and y . The argument
bws specifies the bandwidth. By default, the kernel used is the normal density
centered at 0 with standard deviation σ equal to the bandwidth h . The results of
running the above command with three different bandwidths (h = 0.01, 0.03, 0.05)
are shown in Figure 14.4. The estimated function is obtained with the command
fitted(ethanol.npreg). The figure clearly displays how increasing the bandwidth
results in smoother estimates. However, the two larger bandwidths seem to be
oversmoothing the data, while with h = 0.01, the estimate appears to be overly
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Figure 14.4 Smoothing of the ethanol data from Brinkman (1981) using the Nadaraya–Watson estimator
with varying bandwidths h and the normal kernel.

influenced by the variability of the observed data. Which bandwidth is preferable is
once again a choice in weighing bias versus variance.

The kernel K may be changed, as well. The argument setting the kernel in npreg

is ckertype, which refers to the continuous kernel type. Choices available are
ckertype="gaussian", "epanechnikov" or "uniform". In Chapter 12, this
last kernel is called the "rectangular" when performing kernel density estimation
with density. Additionally, one may specify the order of the kernel. See Comment
14. Figure 14.5 shows the results of using the three different kernels with a fixed
bandwidth of h = 0.03. Each estimate is approximately the same shape, following the
same general pattern. Differences are apparent, though. In particular, the uniform kernel
provides a less smooth estimate than the other two kernels. As in the case of density
estimation, the choice of bandwidth is more important than the choice of kernel.

The two methods of automatic bandwidth selection are implemented with the argu-
ment bwmethod. Setting bwmethod="cv.aic" or "cv.ls" will choose the AIC or
simple least squares cross-validation method, respectively. The bandwidth chosen by this
method for the Nadaraya–Watson regression estimate of the ethanol data is h = 0.019.
The fit with this bandwidth is shown in Figure 14.6 as the solid line. For comparison,
finding the estimate using cv.ls results in a bandwidth of h = 0.016 and is shown as
the dashed line. The estimators using the cross-validation bandwidths do not appear to be
oversmoothing the data or including unnecessary variability, both of which are problems
with the arbitrarily selected bandwidths in Figure 14.4.
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Figure 14.5 Smoothing of the ethanol data from Brinkman (1981) using the Nadaraya–Watson estimator
with varying kernel functions K and fixed bandwidth h = 0.03.

Figure 14.7 displays a comparison of estimates of the relation between engine ratio
and nitrous oxide concentrations for each of the methods discussed in this chapter. All
methods are shown using cross-validation span or bandwidth selection. For Cleveland’s
estimate, generalized cross-validation is used. For the Nadaraya–Watson estimate, least
squares cross-validation is employed with the normal kernel and fixed bandwidth. The
estimates are quite similar. The main difference appears in the region around an engine
ratio of about 0.7. Cleveland’s robust estimator smooths over a feature that each of the
other two methods pick up.

Comments

13. Nearest Neighbor Estimates. The kernel regression estimator can become a near-
est neighbor method by letting the bandwidth h vary to include a specified
number of points in the window. There are two methods by which this may be
accomplished. An adaptive bandwidth varies hi , a bandwidth for each point xi

in the set of observed data. A generalized nearest neighbor approach varies hx ,
a bandwidth for each point x at which one wishes to estimate the function f . In
(14.2), for example, replace h with either hi or hx .

The R command npreg implements this type of bandwidth through
the argument bwtype. The default value is bwtype="fixed", a single
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Figure 14.6 Smoothing of the ethanol data from Brinkman (1981) using the Nadaraya–Watson estimator
with Gaussian kernel functions K and bandwidth chosen as in Hurvich et al. (1998).

bandwidth h for the entire estimate. Using bwtype="adaptive nn" or
"generalized nn" will provide the number of nearest neighboring points
to include in the corresponding kernel window.

14. Kernel Order. The order of a kernel K is defined in terms of its moments mi
K :

mi
K =
∫ ∞

−∞
x i K (x)dx .

For a symmetric kernel, mi
K = 0 for all odd integers i . The order of K is i ,

where i is the smallest integer such that mi
K > 0. The normal, uniform, and

Epanechnikov kernels are all of order 2. If mi
K > 2, the kernel is said to be a

higher order kernel. Higher order kernels are formed from lower order kernels
through multiplication by an appropriate polynomial. These higher order kernels
are useful in kernel regression in that for large n the error between the true
underlying function f and the kernel regression estimate is smaller than that
for low order kernels. Additionally, there is some reduction in the bias of the
estimate when using higher order kernels. A drawback to using higher order
kernels is the introduction of negative weights. For a more complete discussion
of higher order kernel regression, see Marron (1994). The command npreg

allows for modifying the order of the kernel function. This is done with the
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Figure 14.7 Comparison of the three estimates discussed in Sections 14.1–14.3.

argument ckerorder (continuous kernel order). Allowable values are 2, 4, 6,
or 8, with 2 as the default value.

15. Local Linear Kernel Regression. The kernel regression estimator may be
extended to a local linear kernel estimator. The idea is to find values for β0

and β1 that minimize the equation

n∑
i=1

(yi − β0 − β1(x − xi ))
2 K

(
x − xi

h

)
. (14.3)

This is a weighted local linear regression problem, similar to that specified
in Cleveland (1979) and Cleveland and Devlin (1988) (compare to (14.1) in
Comment 6). If β1 is set to 0, the solution to (14.3) is the Nadaraya–Watson
estimator (14.2). Thus, the Nadaraya–Watson kernel regression estimator is a
locally weighted constant regression, rather than locally weighted linear regres-
sion. In the context of Cleveland (1979), the locally weighted constant regression
is akin to setting the degree of the polynomial to 0. Of course, Cleveland’s esti-
mator differs substantially in that it iterates many weighted regressions in order
to be robust against overly influential observations. For details and properties of
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local linear kernel regression estimators, see Fan (1992, 1993), Li and Racine
(2004), Racine and Li (2004), and Ruppert and Wand (1994).

The R command npreg allows for local linear kernel regression. One
can specify either the Nadaraya–Watson estimator using the argument
regtype="lc" (local constant) or regtype="ll" (local linear). The
independent (predictor) variables xi are assumed to be continuous in Assump-
tion A2. However, other types of predictor variables are considered and
implemented in the R package np. For details on these noncontinuous xi

and the cross-validation bandwidth selection methods associated with these R

commands, see Li and Racine (2004) and Racine and Li (2004).

16. Other Kernel Estimators. Priestley and Chao (1972) proposed a kernel estimator
that incorporates the distance between adjacent observed points xi in addition
to weighting with a kernel function K ,

f̂ (x) =
n∑

i=1

yi (xi − xi−1)

h
K

(
x − xi

h

)
,

where it is assumed that xi−1 ≤ xi . For convergence results, asymptotic proper-
ties and a choice of optimal kernel, see Priestley and Chao (1972) and Benedetti
(1977).

Gasser and Müller (1979) proposed a method that integrated the kernel in
a small neighborhood of xi ,

f̂ (x) =
n∑

i=1

yi

h

∫ si

si−1

K

(
x − t

h

)
dt ,

where xi ≤ si ≤ xi+1. A simple choice for the si are the midpoints,

si = xi + xi+1

2
.

Properties and optimal choices for kernels are found in Gasser and Müller (1979)
and Müller (1984). The Gasser–Müller kernel estimator has larger variance than
the Nadaraya–Watson estimator but smaller bias. See Fan (1992).

17. Derivation of the Nadaraya–Watson Estimator. Although the Nadaraya–Watson
estimator can be thought of as a special case of a locally weighted linear kernel
estimator (see Comment 15), it was derived in a different manner. If (Xi , Yi ) are
independent pairs of random variables, then the solution to the nonparametric
regression problem

Yi = m(Xi ) + εi

is

m̂(x) = E (Y |X = x) =
∫

yf1(y |x)dy =
∫

yf (x , y)dy

f2(x)
, (14.4)

where f (x , y) is the joint density of X and Y , f1(y |x) is the conditional density
of Y given X = x and f2(x) is the marginal density of X . The denominator f2(x)
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may be estimated from the observed data with a kernel density estimator (12.14)
as

f̂2(x) = 1

nh

n∑
i=1

K

(
x − Xi

h

)
.

The joint density f1 may be estimated with

f̂ (x , y) = 1

nh2

n∑
i=1

K

(
x − Xi

h

)
K

(
y − Yi

h

)
,

see Scott (1992). The Nadaraya–Watson estimator is found by taking the ratio.
See Problem 18. The local average smoother and local linear estimators may also
be considered to be solutions of (14.4). See Friedman (1984) and Fan (1992), for
example. Because the Nadaraya–Watson estimator is the ratio of two correlated
density estimators, its properties are more difficult to determine, at least when
compared to the univariate density estimates in Chapter 12.

Properties

1. For the bias, variance, and asymptotic properties of the Nadaraya–Watson estima-
tor, see Nadaraya (1964, 1965), Watson (1964), Bierens (1987), and Fan (1992).

Problems

18. Using the kernel properties specified in Chapter 12, show that (14.4) in Comment 17 is
equivalent to the Nadaraya–Watson estimator, that is, show

∑n
i=1 yi K

(
x − xi

h

)
∑n

j=1 K

(
x − xj

h

) =
∫

y f̂ (x , y)dy

f̂2(x)
.

19. Using the cars data from Problem 1, find the Nadaraya–Watson estimate with the normal
kernel and a variety of bandwidths. By trial and error, determine a bandwidth that seems most
reasonable. Then find an estimate using a bandwidth selected by cross-validation. Comment
on the graphical comparison of these estimates.

20. Change the kernel K in Problem 19 to the uniform kernel, but continue using a cross-validation
bandwidth selector. Then change K to the Epanechnikov kernel. Comment on the graphical
comparison of these three estimates using different kernels.

21. Find the Nadaraya–Watson estimate using the normal kernel on the sunspots data from
Problem 2. Use bandwidths selected by trial and error and then using the cross-validation
methods. Comment on the graphical comparison of these estimates. Comment on the cross-
validation estimates from this problem with the cross-validation estimates found in Problems
2 and 10.

22. Find the local linear kernel regression estimate using the cars data from Problem 1 by chang-
ing the regression type with the argument regtype="ll". Use cross-validation bandwidths.
Comment on the graphical comparison of this estimate to the estimates obtained in Problem
19 with cross-validation bandwidths.
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23. Comment on the graphical comparison of the estimates from Problem 22 to the local linear
estimates found using Cleveland’s method in Problem 8.

24. Using the first m = 2048 observations from the sunspots data in Problem 2, obtain the
wavelet estimate using the VisuShrink method from Chapter 13. Compare the VisuShrink
estimate to the estimate you would have gotten in Problem 21 by using only the first 2048
observations:

y <- sunspots[1:2048]

x <- c(1:2048)

The basic wavelet threshold estimate requires a dyadic number of points xi (n = 2J for some
integer J ) and that these points be equally spaced apart. These conditions are met by the
truncated sunspots data. However, VisuShrink is designed for normal errors ε, while the
Nadaraya–Watson estimator makes no such assumption.

25. Using the Canadian census data from Problem 5, find the Nadaraya–Watson estimate of the
relation between the dependent variable logwage and the independent variable age. Use
nearest neighbor bandwidth selection methods (see Comment 13) and fixed bandwidth selec-
tion methods. Comment on the graphical comparison of these estimates. Also compare these
estimates to those obtained in Problems 5 and 13.

26. Using the data from Table 9.3 on body weight and total surface area of squirrel monkeys, find
and plot the estimated line using Theil’s method. Use surface area as the response and weight
as the predictor. Then find the Nadaraya–Watson estimate of this relation with the span chosen
by cross-validation. Comment on the graphical comparison between these estimates.

14.4 OTHER METHODS OF SMOOTHING

This chapter discussed three methods of smoothing: Friedman’s local averaging smoother,
Cleveland’s locally weighted linear regression estimator, and the Nadaraya–Watson
kernel estimator. However, there are many other types of smoothing estimators cur-
rently in use. Tukey (1977) proposed smoothing the data using running medians. The
fitted value ŷi is estimated using the median of the values within a small neighbor-
hood. The use of medians was implemented in order to be robust against outliers, much
as Cleveland’s estimator attempts to be robust through iterative weighted regressions.
Splines, introduced by Schoenberg (1946), are polynomial functions which have found
wide use in the problem of smoothing. For details on the many methods of statistical
spline smoothing, see Wegman and Wright (1983), Wahba (1990), Eubank (1999), and
Wang (2011), for example. Orthogonal series methods such as wavelets and Fourier series
are also used for smoothing. See Chapter 13 for a discussion of wavelets.

The methods presented in this chapter have been univariate: the response y depends
only on a single x . More generally, one may consider y to depend on p > 1 independent
variables x1, x2, . . . , xp . Cleveland and Devlin (1988) and Ruppert and Wand (1994)
proposed an extension of locally weighted regression. See Ruppert and Wand (1994) and
Härdle and Müller (2000) for a discussion of multivariate extension of the univariate
kernel regression methods described in this chapter. Multivariate spline methods exist,
as well. See, for example, Cox (1984) and Friedman (1991). And, finally, Hastie and
Tibshirani (1986) introduced a multivariate method using multiple smoothers, one for
each of the p predictors. The method is iterative, using the backfitting algorithm of
Friedman and Stuetzle (1981) to estimate the p individual smoothers.



Chapter 15

Ranked Set Sampling

INTRODUCTION

This chapter is devoted to the concept of ranked set sampling, a technique for data
collection that generally leads to more efficient statistical procedures than competitors
based on simple random samples. The rationale behind ranked set sampling and its
historical development is provided in Section 15.1. In Section 15.2, we describe how
to collect a ranked set sample and discuss (see Comment 1) some of the structural
differences between ranked set samples and simple random samples. We illustrate the
application of ranked set sampling to the estimation of a population mean in Section
15.3 and present the ranked set sample analog of the two-sample Mann–Whitney–
Wilcoxon test procedure (see Section 4.1) in Section 15.4. Other important issues for
ranked set sampling are discussed in Section 15.5, and a number of recent developments
in statistical inference with similarities to ranked set sampling are discussed briefly in
Section 15.6.

15.1 RATIONALE AND HISTORICAL DEVELOPMENT

When we collect a simple random sample (SRS) from a population, what makes asso-
ciated statistical inference procedures appropriate is not the fact that each individual
measurement in the sample is likely to be representative of the population characteristic
of interest. Rather, it is through the concept of the sampling distributions of the relevant
statistics that we should, “on the average,” obtain a set of sample observations that are
truly representative of the full population. In practice, however, we obtain only a single
random sample and the on-the-average concept does not help much if the particular pop-
ulation items selected for our sample are, in fact, not really very representative of the
full population.

There are a number of ways to address the concerns associated with the possibility
of obtaining an unrepresentative SRS. Most of them involve using additional information
about the population to a priori partition it into more homogeneous subgroups that are
designed to more fully cover the entire population. SRSs are then collected independently
from these subgroups to form a more structured overall set of sample data that, by design,
will more likely be representative of the entire population. Such approaches include
stratified, cluster, and proportional sampling schemes.

Nonparametric Statistical Methods, Third Edition. Myles Hollander, Douglas A. Wolfe, Eric Chicken.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Ranked set sampling (RSS) is a sampling approach that also uses additional infor-
mation to provide more structure to the collected sample items. In RSS, however, this
additional information is not used to partition the full population prior to the collection
of appropriate SRSs. Rather, in RSS, potential SRSs are selected directly from the full
population and then auxiliary population information is used to impose an “artificially
poststratified” structure that enables us to collect measurements from units that are more
likely to represent the full spectrum of values in the population.

The concept of RSS was first proposed by McIntyre (1952) (reprinted in 2005) for
situations where taking the actual measurements for sample observations is difficult (e.g.,
costly, destructive, time consuming), but mechanisms for either informally or formally
ranking a set of sample units with regard to the aspect of interest are relatively easy and
reliable. Takahasi and Wakimoto (1968) and Dell and Clutter (1972) were the first to
provide some of the basic properties for statistical procedures based on RSS data. For
additional information about the historical development of RSS methodology, see the
review paper by Patil (1995).

15.2 COLLECTING A RANKED SET SAMPLE

The goal of RSS is to collect observations from a population that are more likely to
span the full range of values in the population (and, therefore, be more representa-
tive of it) than the same number of observations obtained via simple random sampling.
What is a ranked set sample (RSS) and how do we collect it? For ease of discus-
sion, we assume throughout this chapter that all sampling is from an infinite popula-
tion or with replacement from a finite population. (For information about RSS without
replacement from a finite population, see, for example, Patil, Sinha, and Taillie (1995,
1999).)

To obtain an RSS of k observations from a population, we proceed as follows. First,
an initial SRS of k units is selected from the population and rank-ordered on the attribute
of interest. A variety of mechanisms can be used to obtain this ranking, including visual
comparisons, expert opinion, or through the use of auxiliary variables, but it cannot
involve actual measurements of the attribute of interest on the sample units. The unit
that is judged to be the smallest in this ranking is included as the first item in the RSS
and the attribute of interest is formally measured for the unit. This initial measurement
is called the first judgment order statistic and is denoted by X[1], where square brackets
are used instead of the usual parentheses (1) for the smallest order statistic because X[1]

may or may not actually have the smallest attribute measurement among the k units in
the SRS, even though our ranking judged it to be the smallest. The remaining k − 1 units
(other than X[1]) in our initial SRS are not considered further in making inferences about
the population—their role was solely to assist in the selection of the smallest ranked unit
for measurement.

Following the selection of X[1], a second SRS (independent of the first SRS) of size
k is selected from the population and ranked in the same manner as the first SRS. From
this second SRS we select the item ranked as the second smallest of the k units (i.e.,
the second judgment order statistic) and add its attribute measurement, X[2], to the RSS.
From a third SRS (independent of both the previous SRSs) of size k , we select the unit
ranked to be the third smallest (i.e., the third judgment order statistic) and include its
attribute measurement, X[3], in the RSS. This process continues until we have selected
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the unit ranked to be the largest of the k units in the k th independent SRS and included
its attribute measurement, X[k ], in our RSS.

This entire process results in the k measured observations X[1], . . . , X[k ] and is called
a cycle. The number of units, k , in each SRS is called the set size. Thus to complete a
single ranked set cycle, we need to use a total of k2 units from the population to sepa-
rately rank k independent SRSs of size k each. The measured observations X[1], . . . , X[k ]

constitute a balanced ranked set sample of size k , where the descriptor “balanced” refers
to the fact that we have collected one judgment order statistic for each of the ranks
1, 2, . . . , k .

To obtain a balanced RSS with a desired total number of measured observations (i.e.,
sample size) n = km , we repeat the entire process for m independent cycles, yielding
the following balanced RSS of size n:

Cycle 1 X[1]1 X[2]1 X[3]1 . . . X[k ]1

Cycle 2 X[1]2 X[2]2 X[3]2 . . . X[k ]2

...
...

...
...

...
...

...
...

...
...

...
...

Cycle m X[1]m X[2]m X[3]m . . . X[k ]m

EXAMPLE 15.1 Obtaining a Ranked Set Sample—Gasoline Reid Vapor
Pressure.

Unburned hydrocarbons emitted from automobile tailpipes and via evaporation from
manifolds are among the primary contributors to ground-level ozone and smog levels
in large cities. One way to reduce the effect of this factor on air pollution is through
the use of reformulated gasoline, designed to reduce its volatility, as measured by the
Reid Vapor Pressure (RVP) value. To assure that gasoline stations in metropolitan areas
are selling gasoline that complies with clean air regulations, regular samples of refor-
mulated gasoline from the pumps at these stations are collected and RVP values are
measured.

The RVP value for a sample can be measured either by a crude field technique right
after collection at the gasoline pump or via a more sophisticated analysis after the sample
has been shipped to a government laboratory. While the actual laboratory analysis of
RVP is not overly expensive, it is costly to ship these gasoline samples to the laboratory,
since they must be packed to prevent gaseous hydrocarbons from escaping en route and
special transport measures are required for flammable liquids such as gasoline. It would
be beneficial to use these cruder, less expensive, field RVP measurements as reliable
surrogates for the more expensive laboratory RVP measurements in order to reduce the
required number of formal laboratory tests without significant loss of accuracy, resulting
in considerable cost savings.

Nussbaum and Sinha (1997) suggested the use of RSS as an aid in achieving this
goal. Thirty-six of the field RVP measurements (collected from the pumps) considered
by Nussbaum and Sinha are given in the following table.
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Sample Field RVP Sample Field RVP
number value number value

1 7.60 19 7.85
2 9.25 20 7.86
3 7.73 21 7.92
4 7.88 22 7.95
5 8.89 23 7.85
6 8.88 24 7.95
7 9.14 25 7.98
8 9.15 26 7.80
9 8.25 27 7.80

10 8.98 28 8.01
11 8.63 29 7.96
12 8.62 30 7.86
13 7.90 31 8.89
14 8.01 32 7.89
15 8.28 33 7.73
16 8.25 34 9.21
17 8.17 35 8.01
18 10.72 36 8.32

Source: B. D. Nussbaum and B. K. Sinha (1997).

Nussbaum and Sinha recommended using these field RVP values (highly correlated with
the more precise laboratory measurements) to provide the ranking mechanism for selec-
tion of a much smaller subgroup of gasoline samples to submit for follow-up laboratory
analysis. They considered a set size of k = 3 with m = 4 cycles, which leads to an RSS
of only n = 12 gasoline samples to send for full laboratory RVP measurement.

To select this RSS, using a set size of k = 3, of 12 gasoline samples to be sent
to the laboratory for more precise RVP measurements, the first thing we must do is to
randomly divide the 36 gasoline samples into 12 sets of three each. For this purpose,
we use the R command sample(1:36, 36, replace = F) to obtain the following
random ordering of the sample numbers 1–36 clustered into 12 sets of size k = 3 each
based on their order of appearance:

(10, 13, 23) (11, 12, 17) (16, 2, 21) (15, 18, 36) (34, 27, 5) (24, 31, 14)

(22, 35, 19) (30, 9, 4) (28, 32, 8) (33, 26, 29) (7, 1, 6) (3, 20, 25)

Next we must decide which four sets will be used to obtain the smallest judgment
ordered units, which four will be used to obtain the median judgment ordered units, and
which four will be used to obtain the largest judgment ordered units. There is complete
flexibility here, but these decisions must be made without knowledge of the actual field
RVP values in the 12 sets. For the sake of illustration here, we choose to select the
minimum judgment ordered unit from the first four sets, the median judgment ordered
unit from the second four sets, and the largest judgment ordered unit from the final four
sets.

The 12 sets of three RVP values each that result from our sampling process are given
in the following table:
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8.98 7.90 7.85 8.63 8.62 8.17 8.25 9.25 7.92

8.28 10.72 8.32 9.21 7.80 8.89 7.95 8.89 8.01

7.95 8.01 7.85 7.86 8.25 7.88 8.01 7.89 9.15

7.73 7.80 7.96 9.14 7.60 8.88 7.73 7.86 7.98

Using our chosen criteria for selecting the judgment ordered units, we see that the units
selected by our RSS scheme for shipment to the laboratory for precise RVP measurements
are those gasoline samples corresponding to the bold field RVP values in the following
table:

8.98 7.90 7.85 8.63 8.62 8.17 8.25 9.25 7.92

8.28 10.72 8.32 9.21 7.80 8.89 7.95 8.89 8.01

7.95 8.01 7.85 7.86 8.25 7.88 8.01 7.89 9.15

7.73 7.80 7.96 9.14 7.60 8.88 7.73 7.86 7.98

Thus we will send gasoline samples 23, 17, 21, 15, 5, 14, 22, 4, 8, 29, 7, and 25 to the
laboratory for more precise RVP determinations, and the resulting laboratory RVP values
will constitute our balanced RSS of size n = 12 based on a set size of k = 3 with m = 4
cycles, using the field RVP value as our auxiliary ranking variable.

Comments

1. Comparison of Ranked Set Samples and Simple Random Samples. A balanced
RSS of size n differs from an SRS of the same size in a number of important
ways. An SRS is designed so that the n observations in the sample are mutually
independent and identically distributed. Probabilistically speaking, it means that
each of the individual sample items represents a typical value chosen from the
underlying population. That is not the case for a balanced RSS of size n . While
the individual observations in a balanced RSS remain mutually independent, they
are clearly not identically distributed, so that individual observations in a balanced
RSS do not represent typical values from the underlying population. In fact, the
individual judgment order statistics represent very distinctly different portions of
the underlying population. This is a very important feature of an RSS, as the
items in the sample are designed in such a way as to provide greater assurance
that the entire range of population values are represented.

This is best illustrated by considering an example. Suppose that X has a
standard normal distribution and let X1, X2, X3, X4, X5 be a random sample of size 5
from this distribution. Let X(1) ≤ X(2) ≤ X(3) ≤ X(4) ≤ X(5) be the associated order
statistics. In Figure 15.1, we plot the underlying N (0, 1) density as well as the
marginal distributions for the five individual order statistics X(1), X(2), X(3), X(4),
and X(5).

If we use perfect rankings to collect an RSS of size 5 from the stan-
dard normal distribution, then these five RSS observations behave like mutually
independent order statistics from the standard normal and their densities are rep-
resented by the five individual marginal density curves in Figure 15.1. While these
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Figure 15.1 Standard normal density (dotted curve) and the individual marginal densities of the five order
statistics X(1), X(2), X(3), X(4), and X(5) (solid curves, in order of peaks, from the minimum, X(1), on the left to
the maximum, X(5), on the right) for a random sample of size 5 from the standard normal distribution.

five densities certainly overlap, they assign the bulk of their individual marginal
probabilities to five subregions of the standard normal domain. As a result, the
five RSS observations are much more likely to represent the full range of values
for the standard normal distribution than would a SRS of size five; that is, the
probability that the five SRS observations fail to represent the full range of the
standard normal distribution is greater than the corresponding probability for the
five RSS observations. As we shall see in the next section, this feature enables
RSS to be more effective than SRS in the estimation of a population mean.

Problems

1. Gemayel et al. (2011) demonstrated that RSS can be an effective way to reduce auditing costs
when assessing the true value of an account is time consuming (and, consequently, expensive)
by allowing for smaller sample sizes than would be necessary for a SRS approach with the
same precision. They point out that this is commonly the case for accounts such as inventory;
accounts receivable; property, plant, and equipment; and accounts payable. In these settings,
the auditor will draw a sample from a set of accounts through their subsidiary ledgers, and then
proceed with on-site inspections, recalculations, confirmations, and other auditing procedures
when necessary.

Tackett (2012) provided simulated sales invoice records data for an electrical/plumbing
distribution center, constructed in such a way that 15% of the recorded sales invoices are
fraudulent, with stated book values larger than the true audited values for the materials sold in
those transactions. Table 15.1 in the NSM Third Edition R Package (sample subset included
here) provides the stated book values and the true audited values for a population of 12,557
such sales invoice records, with 15% (1884) of them being fraudulently recorded. (In practice,
of course, all that would be available for the auditor would be the stated book values, and the
true audited values would be obtained only for those accounts that were selected for inclusion
in the RSS. The auditor would not need to find the audited values for the entire population.
However, we have included the true audited values in Table 15.1 for all 12,557 sales invoices
so that the data set can be used to illustrate the application of RSS in such a setting.)

Select an SRS of 20 invoices from the population of 15% overstated book value accounting
data given in Table 15.1. Be explicit about how you choose the invoices to include in your
SRS.
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Table 15.1 15% Overstated Book Value (BV) and Audited
Value (AV)

Invoice number 15% Overstated BV, $ AV, $

1 889.80 889.80
2 111.94 111.94
3 259.08 259.08
4 5326.21 2322.23
5 51.55 51.55
6 310.54 310.54
7 64.70 64.70
8 1207.81 1207.81
9 193.68 72.27

10 1581.39 1581.39
11 2013.36 2013.36
12 2151.67 2151.67
13 508.60 508.60
14 196.80 196.80
15 62.30 62.30
16 5495.16 5495.16
17 582.44 582.44
18 71.27 71.27
19 1531.85 1531.85
20 1631.94 1631.94

Source: Personal Communication from J. A. Tackett (2012).
The complete population of 12,557 sales invoice records is available
in the NSM Third Edition R Package.

2. Consider the population of 15% overstated book value accounting data given in Table 15.1.
(See Problem 1 for more discussion about these data.) Using the stated book values to perform
your judgment rankings, select a balanced RSS of 20 invoices for auditing using a set size
of k = 5. How many cycles m did you need to obtain the RSS? How many invoice book
values did you use in total for the judgment rankings leading to the selection of the invoices
to audit?

3. Consider the SRS and RSS of size 20 each obtained in Problems 1 and 2, respectively, and
list the audited (true) invoice value for each of these units. Compare and contrast the SRS and
RSS as far as being representative of the entire population of audited (true) values.

4. Consider the population of 15% overstated book value accounting data given in Table 15.1.
(See Problem 1 for more discussion about these data.) Using book values to perform your
judgment rankings, select a balanced RSS of 96 invoices for auditing using a set size of
k = 3. How many cycles m did you need to obtain the RSS? How many invoice book values
did you use in total for the judgment rankings that led to the selection of the invoices to
audit?

5. Consider the population of 15% overstated book value accounting data given in Table 15.1.
(See Problem 1 for more discussion about these data.) Using book values to perform your
judgment rankings, select a balanced RSS of 96 invoices for auditing using a set size of
k = 4. How many cycles m did you need to obtain the RSS? How many invoice book values
did you use in total for the judgment rankings leading to the selection of the invoices to audit?

6. Consider the population of 15% overstated book value accounting data given in Table 15.1.
(See Problem 1 for more discussion about these data.) Using book values to perform your
judgment rankings, select a balanced RSS of 96 invoices for auditing using a set size of
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k = 6. How many cycles m did you need to obtain the RSS? How many invoice book values
did you use in total for the judgment rankings leading to the selection of the invoices to audit?

7. We would like to collect a balanced RSS of 24 observations from a population. List all of
the (set size, cycle size) combinations that could be used to obtain this balanced RSS of size
24. For each of these combinations, calculate the total number of sample units that need to be
included in the judgment rankings. Discuss the pros and cons of these options.

8. You have been asked to justify the use of a balanced RSS as opposed to an SRS of the
same size to obtain information about a population. Discuss the pros and cons of these two
approaches to data collection.

9. The Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994) was
conducted by the National Center for Health Statistics, Centers for Disease Control and Pre-
vention. This survey was designed to obtain nationally representative information on the health
and nutritional status of the population of the United States. Specifically, it contains various
body measurements and information on other health-related variables for the respondents. We
consider here a portion of this data set for those 13,267 NHANES III participants who were
at least 21 years old and not pregnant at the time they completed their surveys.

Body mass index (BMI), which is commonly used to classify an adult’s weight status,
will be the variable of interest in this problem. It is calculated as the ratio of weight (kg) to
height squared (m2). Table 15.2 in the NSM Third Edition R package (sample subset included
here) provides the following NHANES III data for each of these 13,267 subjects: Gender,
Age, BMI, Arm Circumference (ArmCir), Buttocks Circumference (ButtocksCir), and Thigh
Circumference (ThighCir).

Select an SRS of 25 subjects from this population of NHANES III participants represented
in Table 15.2. Be explicit about how you choose the individuals to include in your SRS.

10. Consider the population of NHANES III data given in Table 15.2. (See Problem 9 for more
discussion about the NHANES III study.) Using arm circumference as the auxiliary variable
to perform your judgment rankings, select a balanced RSS of 15 subjects using a set size of
k = 3. How many cycles m did you need to obtain the RSS? How many subjects did you use
in total for the judgment rankings leading to the selection of the subjects to include in your
RSS?

11. Consider the population of NHANES III data given in Table 15.2. (See Problem 9 for more
discussion about the NHANES III study.) Using buttocks circumference as the auxiliary vari-
able to perform your judgment rankings, select a balanced RSS of 24 subjects using a set size
of k = 8. How many cycles m did you need to obtain the RSS? How many subjects did you

Table 15.2 NHANES III Dataa

Subject Gender Age BMI ArmCir ButtocksCir ThighCir

1 1 21 25.5 34.9 97.7 53.5
2 2 32 23.4 32.8 98.9 46.9
3 2 48 27.6 33.3 106.3 51.1
4 1 35 29.4 36.1 105.9 57.0
5 1 48 25.0 31.2 93.6 46.5

Source: The Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994,
conducted by the National Center for Health Statistics, Centers for Disease Control and Prevention.
a The code for gender is 1 for Male and 2 for Female, BMI is given in kilograms per square meter,
and Arm Circumference (ArmCir), Buttocks Circumference (ButtocksCir), and Thigh Circumference
(ThighCir) are all measured in centimeters.
Data for the complete population of 13,267 NHANES III respondents is available in the NSM Third
Edition R package.



684 Chapter 15 Ranked Set Sampling

use in total for the judgment rankings leading to the selection of the subjects to include in
your RSS?

12. Consider the population of NHANES III data given in Table 15.2. (See Problem 9 for more dis-
cussion about the NHANES III study.) Using buttocks circumference as the auxiliary variable
to perform your judgment rankings, select a balanced RSS of 25 subjects using a set size of
k = 5. How many cycles m did you need to obtain the RSS? How many subjects did you use
in total for the judgment rankings leading to the selection of the subjects to include in your
RSS?

13. Consider the SRS and RSS of size 25 each obtained in Problems 9 and 12, respectively, and
list the BMI value for each of these individuals. Compare and contrast the SRS and RSS as
far as being representative of the full population of BMI values.

14. Consider the population of NHANES III data given in Table 15.2. (See Problem 9 for more
discussion about the NHANES III study.) Using arm circumference as the auxiliary variable
to perform your judgment rankings, select a balanced RSS of 96 using a set size of k = 6.
How many cycles m did you need to obtain the RSS? How many subjects did you use in total
for the judgment rankings leading to the selection of the subjects to include in your RSS?

15. Consider the population of NHANES III data given in Table 15.2. (See Problem 9 for more
discussion about the NHANES III study.) Using arm circumference as the auxiliary vari-
able to perform your judgment rankings, select a balanced RSS of 96 using a set size of
k = 8. How many cycles m did you need to obtain the RSS? How many subjects did you
use in total for the judgment rankings leading to the selection of the subjects to include in
your RSS?

16. Consider the population of NHANES III data given in Table 15.2. (See Problem 9 for more
discussion about the NHANES III study.) Using buttocks circumference as the auxiliary vari-
able to perform your judgment rankings, select a balanced RSS of 96 using a set size of k = 6.
How many cycles m did you need to obtain the RSS? How many subjects did you use in total
for the judgment rankings leading to the selection of the subjects to include in your RSS?

17. Consider the population of NHANES III data given in Table 15.2. (See Problem 9 for more
discussion about the NHANES III study.) Using buttocks circumference as the auxiliary vari-
able to perform your judgment rankings, select a balanced RSS of 96 using a set size of
k = 8. How many cycles m did you need to obtain the RSS? How many subjects did you
use in total for the judgment rankings leading to the selection of the subjects to include in
your RSS?

18. We would like to collect a balanced RSS of 48 observations from a population. List all of
the (set size, cycle size) combinations that could be used to obtain this balanced RSS of size
48. For each of these combinations, calculate the total number of sample units that need to
be included to obtain the required judgment rankings. Discuss the pros and cons of these
options.

19. Consider the RVP data presented in Table 15.3. Using the RSS approach discussed in Example
15.1 with set size k = 2, how many of the 36 samples obtained from the pump would we have
needed to send to the laboratory for more formal RVP measurements?

20. Consider the first four (Arm Circumference, BMI) pairs in the NHANES III data given in
Table 15.2, namely,

(34.9, 25.5), (32.8, 23.4), (33.3, 27.6), (36.1, 29.4).

(a) How many different SRSs of size n = 2 can be selected from this subset of four BMI
values? List each of these possible SRSs.

(b) Using a set size of k = 2 and arm circumference as the auxiliary variable for the ranking
process, how many different RSSs of size n = 2 can be selected from this subset of four
BMI values? List each of these possible RSSs.
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Table 15.3 Reid Vapor Pressure (RVP)

Pump sample Field RVP Laboratory
number value RVP value

1 7.60 7.59
2 9.25 9.33
3 7.73 7.76
4 7.88 7.98
5 8.89 9.02
6 8.88 8.92
7 9.14 9.28
8 9.15 9.28
9 8.25 8.60

10 8.98 8.56
11 8.63 8.64
12 8.62 8.70
13 7.90 7.83
14 8.01 8.15
15 8.28 8.03
16 8.25 8.29
17 8.17 8.21
18 10.72 10.67
19 7.85 7.86
20 7.86 7.86
21 7.92 7.83
22 7.95 7.83
23 7.85 7.79
24 7.95 7.85
25 7.98 7.83
26 7.80 7.80
27 7.80 7.77
28 8.01 7.73
29 7.96 7.73
30 7.86 8.28
31 8.89 9.01
32 7.89 7.98
33 7.73 7.78
34 9.21 9.30
35 8.01 8.11
36 8.32 7.99

Source: B. D. Nussbaum and B. K. Sinha (1997).

15.3 RANKED SET SAMPLING ESTIMATION
OF A POPULATION MEAN

Data. We obtain two sets of n observations each from a population. One set of n obser-
vations, X1, . . . , Xn , is collected as a SRS and the second set of n observations is collected
as a balanced RSS, corresponding to set size k and m cycles, with n = km . The RSS
observations from cycle 1 are denoted by (X[1]1, X[2]1, . . . , X[k ]1), the RSS observations
from cycle 2 are denoted by (X[1]2, X[2]2, . . . , X[k ]2), . . . , and the RSS observations from
the final cycle m are denoted by (X[1]m , X[2]m , . . . , X[k ]m).
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Assumptions

A1. The underlying population is continuous with distribution function F , density
function f , and it has finite mean, μ, and finite variance, σ 2.

A2. All 2n observations (n SRS observations and n RSS observations) are mutually
independent.

Procedure

The natural RSS estimator, μ̂RSS, for the population mean μ based on the balanced
RSS (X[1]1, . . . , X[k ]1; X[1]2, . . . , X[k ]2; . . . ; X[1]m , . . . , X[k ]m) is simply the average of the
sample observations, namely,

μ̂RSS = X RSS =
m∑

j=1

k∑
i=1

X[i ]j

km
. (15.1)

Properties of μ̂RSS

Result. The balanced RSS estimator μ̂RSS (15.1) is an unbiased estimator for the popu-
lation mean μ regardless of whether the judgment rankings are perfect or imperfect.

Dell and Clutter (1972) established this result in the general setting for set size
k and m cycles without any restriction on the accuracy of the judgment rankings.
We demonstrate the argument under the more restrictive additional Assumption A3 that
the judgment rankings are perfect.

A3. The judgment ranking process used to obtain the RSS is perfect, so that the RSS
observations are, in fact, true order statistics from the underlying population.

For simplicity in the argument, we consider only the case of a single cycle (m = 1),
so that the total sample size n is equal to the set size k . Under the Assumption A3 of
perfect rankings, we can represent the RSS observations for this setting by X ∗

(1), . . . , X ∗
(k),

where these k variables are mutually independent and X ∗
(i ), i = 1, . . . , k , is distributed

like the i th order statistic for a random sample of size k from a continuous distribution
with distribution function F (x) and density f (x).

It follows immediately from the properties of a simple average that

E [μ̂RSS] = E [X RSS] = 1

k

k∑
i=1

E [X ∗
(i )]. (15.2)

Moreover, since X ∗
(i ) is distributed like the i th order statistic for a random sample of size

k from a continuous distribution with distribution function F (x) and density f (x) under
perfect rankings, we have

E [X ∗
(i )] =

∫ ∞

−∞
x

k !

(i − 1)!(k − i )!
[F (x)]i−1[1 − F (x)]k−i f (x)dx , (15.3)



15.3 Ranked Set Sampling Estimation of a Population Mean 687

for i = 1, . . . , k . Combining (15.2) and (15.3), we obtain

E [X RSS] = 1

k

k∑
i=1

{∫ ∞

−∞
kx

(
k−1
i−1

)
[F (x)]i−1[1 − F (x)]k−i f (x)dx

}

=
∫ ∞

−∞
xf (x)

{
k∑

i=1

(
k−1
i−1

)
[F (x)]i−1[1 − F (x)]k−i

}
dx . (15.4)

Letting q = i − 1 in the summation in (15.4) we see that

k∑
i=1

(
k−1
i−1

)
[F (x)]i−1[1 − F (x)]k−i =

k−1∑
q=0

(
k − 1

q

)
[F (x)]q [1 − F (x)](k−1)−q = 1,

since the latter expression is just the sum over the entire sample space of the probabilities
for a binomial random variable with parameters k − 1 and p = F (x).

Using this fact in (15.3) we obtain

E [μ̂RSS] = E [X RSS] =
∫ ∞

−∞
xf (x)dx = μ, (15.5)

establishing the fact that μ̂RSS is an unbiased estimator for μ.
To obtain the variance of the RSS estimator μ̂RSS, we note that the mutual indepen-

dence of the X ∗
(i )

′s , i = 1, . . . , k , enables us to write

Var(X RSS) = 1

k2

k∑
i=1

Var(X ∗
(i )). (15.6)

Letting μ∗
(i ) = E [X ∗

(i )], for i = 1, . . . , k , we note that

E [(X ∗
(i ) − μ)2] = E [(X ∗

(i ) − μ∗
(i ) + μ∗

(i ) − μ)2]

= E [(X ∗
(i ) − μ∗

(i ))
2] + (μ∗

(i ) − μ)2

= Var(X ∗
(i )) + (μ∗

(i ) − μ)2, (15.7)

since the cross-product terms are zero. Combining (15.6) and (15.7) yields the expression

Var(X RSS) = 1

k2

k∑
i=1

E [(X ∗
(i ) − μ)2] − 1

k2

k∑
i=1

(μ∗
(i ) − μ)2. (15.8)

Now, proceeding as we did with E [X RSS], we see that

k∑
i=1

E [(X ∗
(i ) − μ)2] =

k∑
i=1

∫ ∞

−∞
k(x − μ)2

(
k−1
i−1

)
[F (x)]i−1[1 − F (x)]k−i f (x)dx

= k
∫ ∞

−∞
(x − μ)2f (x)

{
k∑

i=1

(
k−1
i−1

)
[F (x)]i−1[1 − F (x)]k−i

}
dx .
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Once again using the binomial distribution, the interior sum is equal to 1 and we obtain

k∑
i=1

E [(X ∗
(i ) − μ)2] = k

∫ ∞

−∞
(x − μ)2f (x)dx = kσ 2. (15.9)

Combining (15.8) and (15.9), it follows that

Var(X RSS) = 1

k2

{
kσ 2 −

k∑
i=1

(μ∗
(i ) − μ)2

}

= σ 2

k
− 1

k2

k∑
i=1

(μ∗
(i ) − μ)2. (15.10)

Comparison of SRS and RSS Estimators

The SRS estimator for the population mean μ is just the sample mean μ̂SRS = X =
1
k

∑k
j=1 Xj and it is well known that E [μ̂SRS] = μ and Var(μ̂SRS) = σ 2

k . Thus, both μ̂SRS

and μ̂RSS are unbiased estimators for the population mean. Moreover, from (15.10), it
follows that

Var(X RSS) = σ 2

k
− 1

k2

k∑
i=1

(μ∗
(i ) − μ)2

= Var(X ) − 1

k2

k∑
i=1

(μ∗
(i ) − μ)2 ≤ Var(X ), (15.11)

since
∑k

i=1(μ
∗
(i ) − μ)2 ≥ 0.

Hence, in the case of perfect rankings, not only is X RSS an unbiased estimator but
its variance is also never larger than the variance of the SRS estimator X based on
the same number of measured observations. In fact, this is a strict inequality unless
μ∗

(i ) = μ for all i = 1, . . . , k , which is the case only if the judgment rankings are purely
random.

EXAMPLE 15.2 Quinine Content in Cinchona Plants.

Cinchona plants are a primary source of quinine for use in the treatment of malaria. One
source for these plants is the steep hills in southern India. Sengupta, Chakravarti, and
Sarkar (1951) conducted a study for the Indian government with the goal of estimating
dry bark and quinine content of these plants. However, the measurement of dry bark
quinine yield requires uprooting the plant, stripping the bark, and drying it until a reliable
weight can be obtained. This can be a time-consuming and costly operation. Fortunately, a
simultaneous investigation demonstrated that dry bark quinine yield was highly correlated
with the volume of bark in the growing plant, computed as a function of the total height
of the plant and girths and thicknesses of the bark at a number of different heights
above ground level. All of these measurements can be made with little cost and without
uprooting and destruction of the plant. This is an ideal setting for the use of RSS with
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the goal of estimating the average dry bark weight (in ounces), μW, for cinchona plants
produced in this area of southern India.

The raw data from the study by Sengupta, Chakravarti, and Sarkar (1951) are no
longer available. Thus we follow the lead of Stokes (1980) and Chen, Bai, and Sinha
(2004) and simulate data pairs (V , W ) of cinchona plant volume V and dry bark weight
W (in ounces) that are roughly representative of the cinchona plants in southern India,
where the mean cinchona plant bark volume is μV = 200 with standard deviation σV =
10, the mean cinchona plant dry bark weight is μW = 20.08 with standard deviation
σW = 7.79, and the correlation between cinchona plant bark volume and cinchona plant
dry bark weight is ρ = 0.9. Two hundred simulated (V , W ) pairs from the bivariate
normal distribution with parameters μV = 200, σV = 10, μW = 20.08, σW = 7.79, and
ρ = 0.9 are given in Table 15.4. We will use a balanced RSS of size n = 20 based on
a set size of k = 4 with m = 5 cycles to obtain our RSS estimate of μW. Using the R

command sample(l:200, 80, replace = F), we obtain the following set of 80
random numbers selected without replacement from 1, . . . , 200, inclusive, listed in their
order of selection:

129 151 167 114 100 155 118 128 149 184 171 119 191 002 088 106 143 012
175 061 148 003 104 197 042 107 161 105 181 127 164 157 140 133 110 048
177 056 176 044 138 053 192 008 120 113 131 031 035 116 134 126 166 160
141 011 188 025 101 071 027 081 135 153 189 182 058 152 085 196 019 159
041 144 115 162 075 111 070 091

Using this order of selection, we group these 80 random numbers into 20 sets of set size
k = 4 each as follows:

(129, 151, 167, 114) (100, 155, 118, 128) (149, 184, 171, 119) (191, 002, 088, 106)
(143, 012, 175, 061) (148, 003, 104, 197) (042, 107, 161, 105) (181, 127, 164, 157)
(140, 133, 110, 048) (177, 056, 176, 044) (138, 053, 192, 008) (120, 113, 131, 031)
(035, 116, 134, 126) (166, 160, 141, 011) (188, 025, 101, 071) (027, 081, 135, 153)
(189, 182, 058, 152) (085, 196, 019, 159) (041, 144, 115, 162) (075, 111, 070, 091)

Without knowledge of the actual volumes for the 80 sampled cinchona plants, we decide
without prejudice to select the smallest judgment order statistics from the first five of
these sets, the second judgment order statistics from the second five of these sets, the
third judgment order statistics from the third five of these sets, and, finally, the largest
judgment order statistics from the final five of these sets.

The volumes for the 80 cinchona plants in these 20 sets of four each are as
follows:

(192.56, 201.41, 196.67, 208.26) (181.25, 190.65, 200.16, 196.85)
(204.67, 200.97, 188.99, 197.17) (211.99, 197.96, 196.15, 185.82)
(186.95, 190.89, 188.79, 192.20) (201.45, 194.29, 199.72, 209.02)
(207.86, 198.41, 186.93, 205.14) (201.25, 184.23, 196.60, 211.21)
(201.76, 195.09, 198.44, 205.59) (206.04, 198.42, 216.59, 189.79)
(204.04, 175.77, 186.73, 199.17) (194.82, 194.73, 188.54, 201.87)
(191.85, 190.20, 202.48, 201.12) (206.88, 198.80, 214.41, 181.43)
(179.59, 195.77, 189.78, 192.33) (178.88, 193.30, 198.33, 188.83)
(194.37, 200.40, 197.23, 184.96) (199.05, 197.31, 187.73, 186.87)
(208.90, 220.42, 211.56, 196.22) (206.68, 207.87, 192.17, 224.41)
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Table 15.4 Cinchona Plant Volume and Dry Bark Weight (oz)a

Plant number Volume (V) Dry bark weight (W)

1 188.58 15.29
2 197.96 20.72
3 194.29 21.20
4 202.61 23.92
5 205.20 15.36
6 165.15 22.03
7 204.67 22.80
8 199.17 19.91
9 207.49 15.28

10 197.51 21.33
11 181.43 13.10
12 190.89 36.66
13 199.93 26.87
14 192.93 20.10
15 210.27 33.11
16 180.83 18.44
17 204.18 42.06
18 207.97 16.43
19 187.73 9.93
20 207.30 25.47
21 208.16 18.75
22 173.90 22.34
23 197.18 14.74
24 200.05 25.36
25 195.77 14.22
26 201.04 15.57
27 178.88 17.67
28 188.82 31.54
29 191.46 6.13
30 186.48 2.06
31 201.87 21.93
32 193.83 15.39
33 187.87 11.58
34 188.78 32.66
35 191.85 29.37
36 191.33 22.81
37 192.83 19.15
38 196.86 17.11
39 200.50 25.83
40 197.67 25.82
41 208.90 24.76
42 207.86 19.88
43 226.36 17.70
44 189.79 14.91
45 200.42 27.12
46 194.58 20.36
47 187.85 19.49
48 205.59 28.57
49 186.94 20.42
50 205.34 17.02
51 204.51 30.19
52 217.73 24.93
53 175.77 18.74
54 218.39 22.57

(continued )
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Table 15.4 (Continued )

Plant number Volume (V) Dry bark weight (W)

55 219.53 17.90
56 198.42 17.47
57 212.63 24.24
58 197.23 19.05
59 208.94 5.18
60 199.46 11.05
61 192.20 24.62
62 191.23 25.38
63 187.78 12.85
64 173.04 16.21
65 187.08 13.89
66 183.86 9.13
67 207.97 18.72
68 185.22 11.75
69 225.00 16.87
70 192.17 13.02
71 192.33 22.99
72 195.27 12.02
73 209.31 12.16
74 190.59 20.41
75 206.68 9.27
76 203.39 23.58
77 210.76 14.27
78 187.93 24.04
79 196.74 30.67
80 213.38 18.12
81 193.30 2.36
82 189.55 12.22
83 199.32 12.73
84 202.34 18.56
85 199.05 14.59
86 199.41 11.00
87 201.04 24.07
88 196.15 31.64
89 190.97 12.50
90 223.14 25.13
91 224.41 15.88
92 199.94 21.64
93 201.11 24.92
94 195.06 19.99
95 197.75 3.41
96 206.80 22.98
97 200.78 13.77
98 209.33 12.05
99 217.98 24.31

100 181.25 24.58
101 189.78 21.24
102 209.30 27.89
103 206.79 28.70
104 199.72 12.24
105 205.14 22.96
106 185.82 31.81
107 198.41 10.37
108 192.57 19.97
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Table 15.4 (Continued )

Plant number Volume (V) Dry bark weight (W)

109 212.32 22.51
110 198.44 20.20
111 207.87 19.79
112 205.76 13.80
113 194.73 19.67
114 208.26 21.52
115 211.56 29.64
116 190.20 17.62
117 203.41 11.63
118 200.16 16.21
119 197.17 11.46
120 194.82 13.19
121 202.44 21.80
122 208.63 11.61
123 201.12 32.64
124 208.10 11.80
125 196.29 22.43
126 201.12 27.41
127 184.23 5.63
128 196.85 31.98
129 192.56 36.89
130 187.54 28.94
131 188.54 16.03
132 192.61 20.87
133 195.09 9.76
134 202.48 3.82
135 198.33 24.95
136 200.26 21.63
137 189.70 25.70
138 204.04 14.05
139 210.52 18.78
140 201.76 16.42
141 214.41 16.16
142 199.07 29.25
143 186.95 23.46
144 220.42 10.06
145 201.76 17.04
146 211.69 26.11
147 192.65 20.86
148 201.45 28.41
149 204.67 19.55
150 188.45 26.46
151 201.41 16.22
152 184.96 28.78
153 188.83 2.72
154 178.42 24.36
155 190.65 10.66
156 198.36 1.12
157 211.21 14.00
158 212.38 26.71
159 186.87 25.57
160 198.80 23.50
161 186.93 8.04
162 196.22 13.91

(continued )
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Table 15.4 (Continued )

Plant number Volume (V) Dry bark weight (W)

163 180.64 30.92
164 196.60 19.84
165 185.15 25.42
166 206.88 23.78
167 196.67 32.51
168 211.62 9.09
169 217.01 27.42
170 198.72 16.35
171 188.99 13.58
172 190.51 13.77
173 186.20 20.40
174 202.73 3.20
175 188.79 8.89
176 216.59 12.54
177 206.04 26.13
178 200.13 21.14
179 188.41 20.14
180 194.41 19.41
181 201.25 27.31
182 200.40 4.04
183 187.00 19.66
184 200.97 11.02
185 197.08 8.23
186 199.69 18.98
187 201.69 19.35
188 179.59 27.69
189 194.37 21.49
190 186.07 7.65
191 211.99 22.54
192 186.73 10.83
193 198.61 13.51
194 196.40 20.21
195 209.28 22.78
196 197.31 22.96
197 209.02 15.46
198 195.40 26.92
199 215.47 26.72
200 202.77 27.20

Source: J. M. Sengupta, I. M. Chakravarti, and D. Sarkar (1951), S. L.
Stokes (1980), and Z. Chen, Z. D. Bai, and B. K. Sinha (2004).
a Random sample of 200 observations from a bivariate normal distribu-
tion with parameters μV = 200, σV = 10, μW = 20.08, σW = 7.79, and
ρV,W = 0.9. This bivariate normal distribution provides an approximate
representation of the joint distribution of V = cinchona plant bark vol-
ume and W = cinchona plant dry bark weight for cinchona plants grown
in the hills of southern India.

Given our stated criterion for selecting the judgment ordered units, we see that the
cinchona plants designated by our RSS scheme for which dry bark measurements are
to be determined correspond to the bold cinchona plant volume measurements in the
following display:
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(192.56, 201.41, 196.67, 208.26) (181.25, 190.65, 200.16, 196.85)

(204.67, 200.97, 188.99, 197.17) (211.99, 197.96, 196.15, 185.82)

(186.95, 190.89, 188.79, 192.20) (201.45,194.29, 199.72, 209.02)

(207.86, 198.41, 186.93, 205.14) (201.25, 184.23, 196.60, 211.21)

(201.76, 195.09, 198.44, 205.59) (206.04, 198.42, 216.59, 189.79)

(204.04, 175.77, 186.73, 199.17) (194.82, 194.73, 188.54, 201.87)

(191.85, 190.20, 202.48, 201.12) (206.88, 198.80, 214.41, 181.43)

(179.59, 195.77, 189.78, 192.33) (178.88, 193.30, 198.33, 188.83)

(194.37, 200.40, 197.23, 184.96) (199.05, 197.31, 187.73, 186.87)

(208.90, 220.42, 211.56, 196.22) (206.68, 207.87, 192.17, 224.41)

The 20 cinchona plants with bold volume values in this display correspond to plant
numbers

(129, 100, 171, 106, 143) for the smallest judgment order statistics

(104, 107, 164, 110, 056) for the second smallest judgment order statistics

(008, 120, 126, 166, 071) for the third largest judgment order statistics

(135, 182, 085, 144, 091) for the largest judgment order statistics.

In practice, we would then need to measure the dry bark weights for these 20 plants.
In this example, of course, these 20 dry bark weights are simply obtained from the
complete listing in Table 15.4, and the corresponding RSS of judgment order statistics are
given by

X[1]1 = 36.89 X[1]2 = 24.58 X[1]3 = 13.58 X[1]4 = 31.81 X[1]5 = 23.46

X[2]1 = 12.24 X[2]2 = 10.37 X[2]3 = 19.84 X[2]4 = 20.20 X[2]5 = 17.47

X[3]1 = 19.91 X[3]2 = 13.19 X[3]3 = 27.41 X[3]4 = 23.78 X[3]5 = 22.99

X[4]1 = 24.95 X[4]2 = 4.04 X[4]3 = 14.59 X[4]4 = 10.06 X[4]5 = 15.88

Hence, from (15.1) it follows that the RSS estimate of the average dry bark weight
μdry bark weight of cinchona plants raised in this area of southern India is given by

μ̂dry bark weight, RSS = 1

20

5∑
j=1

4∑
i=1

X[i ]j

= (36.89 + 24.58 + 13.58 + 31.81 + 23.46 + 12.24 + 10.37

+ 19.84 + 20.20 + 17.47 + 19.91 + 13.19 + 27.41 + 23.78

+ 22.99 + 24.95 + 4.04 + 14.59 + 10.06 + 15.88)/20

= 387.24/20 = 19.362 ounces,
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which is in good agreement with the average dry bark weight of 20.08 ounces that was
used in the simulation of the data pairs (V , W ) of cinchona plant volume V and dry bark
weight W , as given in Table 15.4.

As a naive comparison, we note that if we had simply taken the first 20 cinchona
plants selected in our RSS process, namely, plants 002 012 061 088 100 106 114 118 119
128 129 143 149 151 155 167 171 175 184, and 191, to be our SRS of size n = 20, the
corresponding SRS estimate of the average dry bark weight μdry bark weight of cinchona
plants raised in this area of southern India would have been

μ̂dry bark weight, SRS

= (20.72 + 36.66 + 24.62 + 31.64 + 24.58 + 31.81 + 21.52 + 16.21

+ 11.46 + 31.98 + 36.89 + 23.46 + 19.55 + 16.22 + 10.66 + 32.51

+ 13.58 + 8.89 + 11.02 + 22.54)/20 = 446.52/20 = 22.326 ounces,

which is not as accurate an estimate of the true simulation mean dry bark weight of 20.08
ounces as that provided by the RSS estimator.

EXAMPLE 15.3 Auditing to Detect Fraud.

Gemayel et al. (2011) demonstrated that RSS can be an effective way to reduce auditing
costs when assessing the true value of an account is time consuming (and, consequently,
expensive) by allowing for smaller sample sizes than would be required for an SRS
approach to have the same precision. They point out that this is commonly the case
for accounts such as inventory; accounts receivable; property, plant, and equipment; and
accounts payable. In these settings, the auditor will draw a sample from a set of accounts
through their subsidiary ledgers, and then proceed with on-site inspections, recalculations,
confirmations, and other auditing procedures when necessary.

Tackett (2012) provided simulated sales invoice records data for an electrical/
plumbing distribution center, constructed in such a way that 15% of the recorded sales
invoices are fraudulent, with stated book values larger than the true audited values
for the materials sold in those transactions. Table 15.1 in the NSM Third Edition R

package (sample subset included here) provides the stated book values and the true
audited values for a population of 12,557 such sales invoice records, with 15% (1884)
of them having fraudulently recorded book values. (In practice, of course, all that
would be available for the auditor would be the stated book values, and the true audited
values would be obtained only for those accounts that were selected for inclusion in the
RSS. The auditor would not need to find the audited values for the entire population.
However, we have included the true audited values in Table 15.1 for all 12,557 sales
invoices so that the data set can be used to illustrate the application of RSS in such a
setting.)

We will use the stated book value (readily available in the company’s electronic
ledgers) as the auxiliary ranking variable to obtain an RSS of 200 sales invoices for
auditing purposes. For the sake of illustration, we take our set size to be k = 10 and
employ m = 20 cycles to achieve our overall sample size of n = km = 10(20) = 200.
(We could, of course, have used other (k , m) combinations such as (4, 50), (5, 40), or
(8, 25) to obtain our overall sample size of 200.)
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With k = 10 and m = 20, we must first obtain mk = 20(10) = 200 SRSs of size
10 each (without replacement) from the book values listed in Table 15.1. Then we use
the book values to judgment rank the invoices within each of these 200 sets of 10 sales
invoices and select the smallest judgment-ordered sales invoice from 20 of these sets,
the second smallest judgment-ordered sales invoice from a second group of 20 sets, the
third judgment-ordered sales invoice from a third group of 20 sets, etc., until, finally, we
select the largest judgment-ordered sales invoices from the remaining group of 20 sets.
Then the true audited value will be obtained for the 200 sales invoices selected in this
manner.

Fortunately, the entire process of selecting the units to include in the RSS can be
accomplished by simply applying the R command RSS(k, m, x ) to the sales invoice
population, where k is the set size, m is the number of cycles, and x is the label for
the auxiliary variable to be used for the judgment ranking. Thus, applying RSS(10, 20,
book.value. audited. value[,2]) to the book value sales invoice data in Table 15.1, we
obtain the following 200 SRSs of 10 sales invoices each, ordered separately by their
book values within each of the random samples:

200 Random Samples of 10 Book Values Each, Ordered from Least to Greatest Within Each of
the Random Samples

1 2 3 4 5 6 7 8 9 10
84.16 35.84 24 44.52 1.84 38.46 29.89 2.98 42.61 4.18

119.54 37.47 62.1 47.33 21.65 81.76 66.19 46.29 87.55 56.17
138.02 60.95 101.93 67.86 25.13 139.08 418 57.97 89.76 84.6
150.55 83.25 176.01 72.86 30.52 318.51 504.06 80.89 345.37 106.86
209 83.69 228.02 79.35 45.21 338.51 1117.84 90.19 642.78 149.07
217.91 173.63 234.18 89.06 77.35 384.37 1391.44 184.28 674.14 221.96
438.2 241.41 259.82 211.46 245.56 1379.63 1450.12 304.46 940.72 292.23
976.28 1055.25 349.17 354.76 445.24 1727.92 1569.27 678.9 958.53 360.5

1819.27 1124.2 425 450.68 567.42 2024.36 2377.07 1074.38 1388.55 1239.07
3448.28 1430.48 1000.84 473.28 1513.33 2838.76 3095.73 4332.08 41488.06 3196.05

11 12 13 14 15 16 17 18 19 20
54.34 31.56 50.6 29.32 30.4 159.88 28.8 37.77 58.62 49.14
59.92 40.99 130.19 47.11 111.64 274.44 72.42 122.35 152.69 145.95

264.17 155.38 159.14 54.82 112.39 416.87 116.55 197.39 170.61 211.41
287.45 186.56 184.57 58.62 916.14 422.35 117.64 806 202.25 229.13
813.1 277.39 413.86 401.88 1513.73 588.45 172.41 841.83 238.74 561.01
858.41 286.16 517.93 410.48 1904.01 1019.67 352.92 1147.21 312.06 567.1
897.01 465.35 677.7 1013.34 3578.18 1439.55 889.8 1521.58 846.28 942.35

2621.47 920.43 784.84 1040.13 4316.92 1552.04 976.11 1844.69 1061.44 1285.18
8497.63 5862.7 2709.18 1183.22 9213.44 2422.35 1758.17 2157.08 2317.06 2538.26

236345.1 18066.54 5733.49 1313.5 9249.18 5827.13 3271.78 86153.45 8629.54 4076.38

21 22 23 24 25 26 27 28 29 30
4.3 21.1 71.43 34.86 51.37 74.9 54.43 32.02 30.07 26.71

34.67 66.29 83.2 106.04 62.4 90.42 98.83 49.99 149.32 38.03
49.18 68.94 201.89 148.55 82.29 103 130.21 60.97 178.42 201.53

115.07 265.11 241.72 530.59 165.78 112.39 868.85 78.15 347.3 223.02
273.02 322.61 288.69 566.1 255.11 165.46 1190.58 176.85 439.55 224.83
674 485.97 290.92 685.92 330.2 245.44 1251.93 229.58 909.64 450.79
944.18 539.44 913.72 1179.26 367.46 304.5 1680.82 247.51 1587.07 787.01
986.88 679.74 1036.41 1425.45 573.07 383.39 2352.46 772.61 1995.59 1024.45

1542.49 1004.08 1952.96 3567.94 804.36 1054.68 2566.22 8618.81 2034.76 1271.18
2092.18 17919.76 2806.22 6150.92 1450.9 1564.28 4085.44 9389.97 6228.45 1440.78

(continued )
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200 Random Samples of 10 Book Values Each, Ordered from Least to Greatest Within Each
of the Random Samples (Continued )

31 32 33 34 35 36 37 38 39 40
40.82 67.66 136.97 24.44 29.25 23.93 170.32 1.96 28.08 61.73
67.57 88.27 288.3 38.38 51.4 160.76 269.36 25.81 134.58 122.05

155.17 105.55 518.75 51.15 99.39 163.64 292.56 89.69 385.84 126.71
178.31 112.6 721.64 58.91 283.65 217.46 299.67 310.31 422.62 190.52
374.4 251.67 958 134.76 325.87 274.67 544.59 348.69 583.61 334.15
478.77 664.42 1228.66 187.15 454.43 334.67 555.47 487.82 779.09 475.12
776.83 731.43 1409.18 281.06 571.78 1234.11 717.02 736.31 1155.62 802.29
909.73 903.59 2590.92 503.5 797.74 1266.71 1299.02 3935.95 1763.31 3776.49

1709.93 1051.7 3826.11 589.46 1166.8 2023.97 1660.5 4252.76 2324.99 8106.33
8059.29 5341.06 4604.8 1527.72 2026.32 4686.67 1705.56 196374.2 2760.85 150890.4

41 42 43 44 45 46 47 48 49 50
1.9 45.57 26.41 37.44 39.06 31.11 26.61 73.94 23.56 48.31

39.24 86.53 117.96 92.94 69.9 31.66 41.18 74.82 46.87 71.14
40.16 150.19 249.58 171.22 117 40.85 96.47 133.63 434.81 127.05
56.44 218.65 265.17 204.44 164.89 248.87 104.13 190.97 595.09 236.57
66.61 274.75 1244.68 391.96 530.21 293 115.79 282.11 839.17 260.39

102.98 513.8 1433.07 485.58 672.84 310.7 290.01 383.7 1713.56 702.69
129.57 644.75 2226.89 813.06 740.87 373.49 293.43 486.54 1723.48 1335.5
537.19 668.72 2392.93 1359.63 808.46 1145.2 377.1 492.85 2750.03 2310.4

1274.79 844.56 2832.84 3032.98 1007.63 1306.36 1324.46 579.35 2901.52 3154.24
2298.92 1052.26 4451.9 26049.71 1401.11 6918.05 1961.79 616 3665.03 3322.79

51 52 53 54 55 56 57 58 59 60
61.32 25.15 96.27 108.89 83.6 51.82 28.3 55.68 59.83 26.41

112.21 41.41 325.76 193.79 222.98 84.41 64.76 104.46 127.26 31.86
170.91 49.41 376.22 342.86 243.5 190.89 123.8 230.55 234.07 37.04
463.94 147.86 496.48 474.8 341.68 213.49 176.6 1084.09 263.64 38.39
918.76 156.96 578.28 513.23 356.12 316.36 285.52 1649.13 543.62 45.48

1373.17 362.96 624.13 585.71 594.19 376.21 317.56 2488.8 635.74 76.63
1850.73 551 650.85 898.72 1198.57 448.45 1019.57 2767.18 720.57 166.45
3036.96 573.33 1507.11 1156.77 2606.47 702.65 1266.49 3616.39 836.91 176.46
5608.04 875.72 2338.01 2010.66 4644.18 1255.07 2774.95 7823.93 6209.07 502.05

13922.81 23450.95 5798.55 5369.7 5461.37 9117.69 3696.51 52667.94 56747.1 1440.31

61 62 63 64 65 66 67 68 69 70
37.67 24.45 33.53 58.92 64.88 81.87 9.08 57.3 107.19 37.35

167.05 28.67 74.92 111.57 190.44 106.65 32.35 91.43 118.03 53.19
202.86 125.38 123.29 196.83 312.44 256.05 171.72 103.46 192.43 261.84
252.32 188.11 143.47 454.59 349.36 305.7 176.34 143.9 204.37 437.19

1611.75 286.96 187.5 522.96 631.37 528.59 224.75 469.89 840.56 453.45
1636.34 576.79 336.14 1005.31 753.57 647.38 310.02 579.32 1106.81 646.09
1882.98 612.32 369.76 1348.14 848.51 1226.5 778.49 976.96 1771.6 808.11
2981.79 871.25 1517.3 3797.21 4630.35 1244.05 1809.65 996.83 1910.64 973.32
3831.65 1373.7 2463.4 17580 5107.12 4103.11 2514.48 1373.86 2168.64 1700.51

96539.69 2443.64 26796.4 82221.27 18290.83 5995.58 4593.12 1564.39 2224.44 2458.23

71 72 73 74 75 76 77 78 79 80
24.08 153.86 21.64 6.96 35.58 49.15 90.99 42.58 32.33 27.77
52.33 157.26 121.79 56.36 37.91 62.92 110.31 48.01 35.49 101.1
75.71 188.5 129.21 63.69 48.87 95.49 148.64 132.43 48.8 109.05

111.04 632.72 206.13 85.39 52.42 102.22 182.91 235.52 63.81 110.95
217.68 641.59 462.91 269.73 69.96 127.92 203.45 779.08 134.44 144.71
247.25 1142.27 813.14 432.06 113.92 290.06 311.01 1153.21 281.87 165.18
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200 Random Samples of 10 Book Values Each, Ordered from Least to Greatest Within Each of
the Random Samples (Continued )

549.14 1213.05 969.04 636.54 278.24 398.75 330.04 1485.27 286.18 214.93
1634.24 1506.53 1439.62 1014.16 420.05 1945.04 418.09 1818.02 375.35 362.46
2278.06 1646.55 2303.61 2339.42 1450.44 2912.21 575.89 2121.94 1338.93 784.79

14717.51 2909.86 7813.33 7112.99 1857.68 5972.28 723.6 9244.39 32604.49 1089.44

81 82 83 84 85 86 87 88 89 90
46.67 36.31 53.18 125.07 78.11 82.54 55.3 25.45 26.13 114.01
63.83 160.72 78.3 192.74 80.1 220.62 150 73.53 34.66 145.84

148.47 273.02 653.91 349.11 177.49 530.09 154.52 449.1 207.06 283.07
706.53 462.96 802.68 377.84 234.12 582.15 197.38 504.45 240.56 310.66
817.38 486.6 827.62 475.97 330.2 673.44 308.07 779.78 364.9 482.05

1152.54 497.58 919.35 726.1 518.94 1140.68 387.03 1351.43 378.31 692.12
1162.41 693.15 1025.76 936.44 520.92 1151.37 917.02 1467.39 457.13 702.66
1721.81 1293.28 1029.33 1109.16 1140.71 1218.27 941.01 1673.19 1034.76 956.32
2135.36 1522.15 1600.07 2190.74 1258.62 1467.68 1709.09 1675.87 1062.19 1016.35

66667.65 2583.99 6785.24 4471.82 5414.46 3122.75 72710.23 1678.04 44733.81 1592.1

91 92 93 94 95 96 97 98 99 100
35.29 2 41.1 46.35 40.39 54.23 171.49 41.05 57.9 27.51
38.32 46.73 42.71 102.92 43.44 68.95 223.71 52.74 66.34 32.15

146.41 49.98 59.21 159.42 122.97 119.48 283.12 99.52 75.74 33.7
228.12 106.79 107.06 167.74 189.88 274.18 316.53 106.96 76.87 135.24
369.68 195.37 141.88 974.73 307.17 290 475.54 115.98 166.91 165.33
857.36 229.59 376.94 983.12 458.5 466.78 657.95 280.5 292.93 249.19

1228.35 338.93 392.4 1468.73 851.53 565.56 717.46 438.87 642.86 542.27
1474.9 937.67 554.81 5983.71 1283.04 696.27 822.36 686.52 1641.53 2455.2
1793.21 1929.87 760.32 7381.72 3422.32 5149.18 844.47 8170.31 1822.78 20685.19
4627.99 1950.58 937.41 17536.25 125013.5 6891.97 846.22 66798.69 4653.38 96287.45

101 102 103 104 105 106 107 108 109 110
34.22 39.73 1.31 35.94 45.61 32.82 30.62 29.1 54.76 28.59
56.35 43.56 29.58 111.55 59.88 51.21 46.18 57.05 72.57 79.21

132.99 54.9 101.13 192.11 71.72 59.73 82.56 254.44 278.68 121.46
199.36 87.42 121.76 339.69 152.5 65.34 85.58 305.08 444.27 125.59
231.45 147.66 311.12 438.82 182.96 169.72 120.63 328.89 496.13 178.81
319.6 160.71 348.81 650.81 224.43 190.93 219.22 336.45 913.48 199.84
321.95 189.41 705.51 1336.97 435.88 278.21 636.59 463.49 996.96 833.21
553.72 234.09 1114.41 1466.34 806.56 484.04 1155.18 1020.08 1196.38 1686.73

2921.93 614.62 3540.56 1656.27 1707.77 935.31 1974.95 1395.27 1359.47 4766.41
12028.74 1990.78 3871.55 15191.31 1828.05 2024.08 2815.26 1611.98 9152.17 5084.95

111 112 113 114 115 116 117 118 119 120
57.82 157.56 34.49 3.13 22.89 45.89 65.78 35.3 24.65 103.42

227.53 375.25 81.15 36.58 34.79 87.3 115.91 38.33 63.69 105.79
397.97 398.9 100.64 42.27 89.88 310.2 119.95 39.28 125.39 598.19
413.99 561.19 102.99 84.75 376.61 526.63 226.28 98.82 180.48 636.6
503.1 777.61 165.9 88.43 463.45 575.1 467.43 222.96 332.89 776.68
983.3 785.72 293.05 128.85 738.72 753.13 468.31 226.03 501.62 1067.48

1057.24 887.91 456.99 200.45 778.92 1138.99 606.03 292.73 544.3 1793.44
1518.02 1222.23 986.06 1295.76 857.41 1236.53 613.8 297.02 1611.87 2765.62
2194.9 1729.86 1054.68 2024.99 1683.45 2102.22 765.32 753.43 2001.23 3289.82
2254.55 5934.77 1115.26 7548.64 25565.67 2797.63 2308.88 1657.63 2355.22 27066.71

(continued )
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200 Random Samples of 10 Book Values Each, Ordered from Least to Greatest Within Each of
the Random Samples (Continued )

121 122 123 124 125 126 127 128 129 130
26.05 31.74 33.04 41.82 48.39 40.98 35.63 28.89 65.48 67.57

175.27 116.97 98.47 86.23 94.25 76.21 82.84 29.07 68.83 105.39
310.97 190.66 233.47 210.65 94.26 81.49 104.6 39.57 86.76 138.49
348.5 339.46 344.23 330.4 171.74 115.38 362.01 59.08 335.69 420.1
411.63 513.42 547.41 400.68 194.12 209.43 688.96 84.06 378.97 434.03
609 1476.14 670.56 487.03 730.07 520.42 1035.43 426.01 668.08 522.74

1209.13 1528.65 738.87 968.94 1212.04 2280.45 1244.2 749 719.89 1647.61
1367.6 1791.62 834.09 1187.13 1966.33 2311.24 1617.8 1124.5 865.18 1780.87
1390.95 2151.4 1175.55 5904.52 2139.87 3785.65 4612.68 9599.66 1483.33 1901.64

13358.53 10886.61 1713.5 78885.34 46273.1 5868.22 43303.89 17623.17 1819.4 57451.82

131 132 133 134 135 136 137 138 139 140
61.78 74.51 66.11 30.08 43.17 41.6 46.85 12.94 87.88 37.17

441.62 148.16 68.17 50.73 48.35 63.45 147.16 58.17 146.29 122.5
786.09 284.29 77.91 53.95 65.51 143.82 388.05 218.7 151.4 204.59

1250.16 335.07 166.52 93.57 74.68 175.59 677.55 264.62 247.04 264.7
1585.72 342.03 531.02 265.01 100.55 389.69 878.45 421.21 888.85 505.44
2023.24 544.4 941.22 276.62 135.99 909.07 997.41 433.32 1609.94 643.68
2053.38 752.68 992.73 694.1 533.87 994.84 1305.35 517.48 1632.58 965.71
4881.81 1230.22 1235.28 704.85 569.66 1613.08 1770.07 1061.29 1752.71 1703.55
5504.25 1639.7 2385.17 829.68 1378.34 1675.89 1957.88 1292.66 1797.37 1763.89
9691.12 2217.98 3557.41 2422.83 2592.68 8288.31 6099.11 8025.95 2641.33 2260.17

141 142 143 144 145 146 147 148 149 150
27.22 29.65 303.22 29.08 70.24 41.08 50.01 1.05 49.9 31.23
41.86 41.15 352.1 43.04 111.17 83.9 104.05 56.87 151.25 143.3
74.66 46.93 364.32 68.84 152.8 140.84 158.44 139.74 151.32 157.66

130.33 58.45 506.32 83.19 198.96 195.78 184.58 276.22 220.12 232.34
363.93 237.38 543.51 98.94 210.21 234.34 466.67 390.94 454.48 269.94
522.28 298.76 572.79 158.54 287.61 480.64 560.07 563.43 530 378.53
786.43 320.9 611.59 159.94 482.15 524.95 805.55 1367.97 646.58 381.37
823.22 636.59 930.55 421.86 958.63 825.86 1556.95 1403.52 1295.77 1076.36
903.89 881.47 1757.59 2140.42 1157.68 1764.09 1802.14 2097.1 2655.41 1797.02

8282.78 911.95 1868.31 5036.25 1924.51 9498.1 6122.85 8640.57 52958.58 2758.76

151 152 153 154 155 156 157 158 159 160
62.88 31.15 153.96 75.85 287.69 46.61 96.03 23.71 30.93 23.84
83.75 70.88 166.75 87.49 382.06 53.14 140.14 53.17 53.04 24.92

105.01 176.68 186.69 151.2 495.07 115.61 151.05 70.38 86 70.2
341.73 249.77 320.53 151.38 665.38 123.49 318.68 115.02 165.6 94.54
412.8 345.29 522.96 161.87 1879.71 404.05 446.73 117.94 216.57 690.35
454.22 657.77 1363.86 176.01 1927.41 419.45 571.61 286.4 422.6 733.58
571.66 786.15 1386.28 182.34 2010.44 557.99 940.76 354.15 553.34 1031.12
994.54 963.67 1564.75 328.87 2409.72 575.81 1382.08 1257.55 572.69 1817.31

2751.88 1082.63 13945.1 737.95 3553.37 1668.63 2057.73 1413.81 1528.69 2216.27
8176.53 8142.2 56682.16 17085.76 9287.11 2471.45 9663.45 1725.45 2850.15 6637.89

161 162 163 164 165 166 167 168 169 170
60.84 63.6 33.56 90.28 60.26 76.45 24.6 114.78 1.43 49.58
69.76 98.75 41.96 130.35 81.62 260.4 27.66 121.09 161.62 52.7

128.97 290.11 119.85 280.97 85.74 271.82 35.95 134.24 199.03 60.15
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200 Random Samples of 10 Book Values Each, Ordered from Least to Greatest Within Each of
the Random Samples (Continued )

138.97 292.87 198.39 1277.23 110.23 306.58 66.22 226.18 244.48 110.05
163 360.68 407.41 1300.71 193.69 584.62 132.4 277.16 268.72 204.48
163.16 381.69 558.59 1565.84 921.41 1115.09 159.31 876.91 330.39 295.02
319.1 578.46 1600.98 1736.01 1516.19 3628.26 383.52 1242.41 696.63 322.89
481.18 2081.33 2710.99 2175.19 1828.23 3908.45 896.24 1622.5 1591.96 510.03
786.54 2689.33 4642.34 6509.82 2281.23 5128.69 1162.02 1967.99 2581.98 663.62
905.32 3702.78 12882.12 9456.03 11751.72 36107.4 5442.17 60716.14 6835.45 3966.28

171 172 173 174 175 176 177 178 179 180
2.87 26 49.03 39.14 58.99 47.96 31.31 1.31 82.05 22.82

92.48 81.76 74.46 51.67 66.29 67.48 38.01 69.36 106.63 45.36
151.29 179.63 80.85 331.67 100.24 98.87 72.57 120.85 181.26 48.84
157.21 224.52 199.52 634.15 147.08 202.89 125.99 132.4 208.63 112.71
224.23 305.67 200.99 686.44 154.58 343.13 164.08 199.75 240.58 116.31
410.08 307.76 336.44 820.22 154.92 814.78 216.44 746.48 291.99 127.41
410.72 393.43 557.38 1288.63 277.68 1298.55 326.41 784.35 336.26 457.99
567.84 467.61 1218.65 1990.96 808.83 2184.41 723.73 878.99 468.87 1036.91

1018.32 939.12 6580.75 5060.14 2123.95 2942.23 2312.77 1015.27 537.05 2049.97
3568.35 2002.1 11102.92 5723.42 4001.74 5579.02 18441.51 1169.51 8058.74 3941.9

181 182 183 184 185 186 187 188 189 190
41.72 35.28 101.29 36.07 49.62 31.35 48.2 27.84 32.03 4.97

114.28 57.6 118.68 40.91 192.49 70.46 65.84 54.58 36.35 38.57
140.08 114.84 153.57 163.14 228.08 143.9 87.43 121.35 45.82 78.04
309.63 142.16 187.03 266.87 257.58 433.98 206.83 181.77 87.07 102.65
538.01 334.57 254.13 828.74 340.19 621 882.11 219.98 113.21 141.36
606.25 355.54 402.91 901.67 383.6 659.05 1253.72 585.05 128.56 466.61
648.31 455.71 470.44 1005.83 1116.13 860.38 1386.3 602.03 712.25 643.65

1072.35 493.41 755.81 1437.76 1717.49 1161.35 1509.31 755.56 1802.02 936.67
2029.85 673.18 795.25 1449.21 2046.42 2206.49 2300.67 1176.53 2137.93 1107.56
3049.17 6569.74 18513.61 3348.4 3497.52 5262.55 3363.05 1675.16 7937.35 1638.54

191 192 193 194 195 196 197 198 199 200
58.66 261.89 23.01 27.3 24.75 54.27 41.51 25.05 73.88 35.41
63.8 416.88 49.66 39.87 39.08 130.31 81.69 38.1 79.13 49.73

109.44 431.34 69.46 43.23 76.76 210.44 118.4 126.94 88.04 64.79
113.83 575.84 99.78 59.63 113.55 275.57 131.45 539.89 115.08 86.95
133.86 674.52 1785.28 120.42 162.62 479.28 139.25 607.93 426.65 102.41
223.23 916.47 2087.05 315.82 257.26 618.7 178.12 968.09 634.83 285.01
283.71 965.22 2272.46 1388.44 321.72 1039.61 577.25 995.17 729.89 541.89
836.19 1343.42 5793.3 1524.38 1405.04 2121.15 1828.2 1235.88 1569.06 1094.93

1578.92 1944.74 6165.71 2025.73 1561.28 4604.91 1907.56 4398.7 5300.33 1505.08
2110.99 18940.75 48561.93 7721.78 2107.9 59865.95 5201.64 9877.81 16734.4 5075

Using our predesigned sampling plan, we select the unit with the smallest ordered book
value in each of the first 20 samples of 10 sales invoices, the unit with the second
smallest ordered book value in each of the second 20 samples of 10 sales invoices, the
unit with the third smallest ordered book value in each of the third 20 samples of 10
sales invoices, etc., until, finally, we select the unit with the largest ordered book value
in each of the remaining 20 samples of 10 sales invoices for inclusion in our RSS of
n = 200 units. Thus our RSS consists of the following 200 sales invoices, listed from
the smallest to the largest unit number:
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Sales Invoice Numbers for the 200 Invoices in the Ranked Set Sample

56 2406 5054 7732 9872
165 2415 5154 7758 9885
238 2428 5245 7793 9907
250 2458 5341 7840 10055
275 2468 5430 7932 10137
454 2709 5431 7962 10266
548 2780 5452 7990 10302
565 3050 5468 8023 10340
598 3127 5618 8099 10377
632 3164 5657 8126 10393
708 3235 5698 8186 10449
775 3249 5852 8199 10525
891 3258 6004 8246 10533
952 3319 6050 8364 10608
968 3349 6106 8384 10617

1007 3433 6117 8396 10619
1040 3568 6140 8495 10779
1042 3816 6162 8562 10784
1156 3855 6196 8601 10874
1167 3888 6331 8691 10969
1235 3908 6433 8701 11184
1319 3946 6619 8815 11231
1331 3953 6655 8826 11355
1346 3983 6684 8828 11371
1379 4028 6696 8837 11386
1382 4106 6742 8862 11475
1442 4141 6762 8887 11538
1650 4150 6872 9043 11640
1729 4217 6901 9048 11665
1801 4466 6957 9119 11672
1821 4476 6998 9130 11826
2004 4482 7102 9193 11876
2005 4493 7141 9246 11893
2231 4625 7154 9353 11950
2247 4696 7263 9375 11959
2285 4763 7274 9393 12168
2315 4863 7312 9492 12293
2319 4975 7468 9527 12371
2363 5005 7538 9581 12397
2398 5018 7645 9842 12472

The final step in the process for the practicing auditor would then be to perform the
required steps to obtain the true audited value for each of the 200 sales invoice units
in the selected RSS. Of course, for us it is simply a matter of going to Table 15.1 and
recording the listed audited values for these units. The audited values for the 200 sales
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invoices in the RSS are given in the following table, in the order of increasing unit
number (as in the previous table).

Audited Values for the 200 Invoices in the Ranked Set Sample

5060.14 96.47 575.81 112.48 1018.32
330.20 2349.97 663.62 5751.84 182.91
190.89 749.00 2689.33 2280.45 226.03
461.17 58.62 106.04 31.56 24.00

1076.36 7181.90 38.03 482.05 5075.00
201.57 149.32 117.00 42.35 994.84
288.30 143.47 49.41 2942.23 369.68

3497.52 85.39 421.86 2.98 166.91
293.05 111.04 357.72 1632.58 319.60
29.89 6569.74 537.05 965.71 486.60
51.40 786.54 23819.98 290.00 269.36
4.18 42.61 1001.14 454.59 3049.17

38.46 434.81 34.68 817.38 974.73
17278.42 752.68 40.16 54.34 224.43

342.86 133.63 165.33 150.19 34.67
753.13 1798.00 122.05 40.85 98.83
501.62 1638.54 58.57 90.42 785.72
525.61 28.52 28.80 533.87 2281.23
50.60 632.72 38.38 6580.75 84.16

308.07 738.87 376.22 349.81 9877.81
37.04 468.31 930.55 517.48 1564.75

572.69 3363.05 30.40 1015.27 3348.40
190.93 2049.97 80.45 25.81 35.84
73.33 22.26 18940.75 128.85 143.90

994.54 176.34 219.22 348.81 719.89
234.07 1647.61 195.37 1.84 1040.83

1067.48 7721.78 88.27 475.54 437.19
673.44 364.90 7937.35 1162.02 779.78

2107.90 1675.16 1556.95 305.70 171.22
48.94 252.32 160.76 63.81 1295.77

992.73 650.81 38.46 2110.99 2075.73
2123.95 5201.64 307.17 123.80 249.58
1209.13 134.58 206.13 1382.08 958.63
328.87 160.71 37.77 1212.04 230.55
27.78 939.12 1244.20 1817.31 1528.65
44.52 983.30 694.10 879.15 188.11

582.45 243.50 827.62 110.95 115.98
1257.55 2053.38 149.38 49.14 29.32

52.42 738.72 66.29 1743.17 968.94
170.91 770.93 825.86 636.59 235.52

We can then use these RSS observations to estimate the percentage of fraudulent sales
invoices in the entire population of 12,557 sales invoices and the total amount of fraud
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(overstatement) in the population. To estimate the population percentage of fraudulent
sales invoices, pF, we can simply use the sample percentage of fraudulent sales invoices
in our RSS (see Comment 6), namely,

p̂F,RSS = 30

200
= 15%.

This happens to be a perfect match with the known overall percentage of 15% fraudulent
sales invoices in the population (but do not expect such perfection with all RSSs!).

To estimate the total amount of fraud (overstatement) in the population, we first
estimate the average amount of fraud per account, μF, and then expand that average to
the total number (12,557) of accounts in the population. For this purpose, we record the
amount of overstatement for each of the units in our RSS (recording a “0” if a sales
invoice is not fraudulent), yielding the following overstatements for the 200 invoices in
the RSS.

Overstatements (Fraud) for the 200 Invoices in the Ranked Set Sample

0 0 0 223.97 0
0 4159.85 0 10982.56 0
0 0 0 0 0

502.50 0 0 0 0
0 11331.71 0 0 0

274.40 0 0 84.70 0
0 0 0 0 0
0 0 0 0 0
0 0 465.50 0 0
0 0 0 0 0
0 0 36045.97 0 0
0 0 1408.58 0 0
0 0 48.52 0 0

31283.51 0 0 0 0
0 0 0 0 0
0 2844.34 0 0 0
0 0 101.31 0 0

779.74 39.05 0 0 0
0 0 0 0 0
0 0 0 563.67 0
0 0 0 0 0
0 0 0 0 0
0 0 119.39 0 0

131.04 27.73 0 0 0
0 0 0 0 0
0 0 0 0 1541.15
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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Overstatements (Fraud) for the 200 Invoices in the Ranked Set Sample
(Continued )

92.94 0 0 0 0
0 0 63.76 0 3186.82
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

34.62 0 0 0 0
0 0 0 1433.62 0

821.07 0 0 0 0
0 0 199.98 0 0
0 0 0 3385.52 0
0 1197.06 0 0 0

From (15.1), the RSS estimate of μF is then just the average of these 200 values,
namely,

μ̂F,RSS = $113,374.58

200
= $566.87.

The RSS estimate of the total amount of fraud in the entire population is thus 12,557
(μ̂F, RSS) = 12,557($566.87) = $7,118,187.

Comments

2. Contrasting μ̂SRS and μ̂RSS. The k components of the SRS estimator μ̂SRS = X
are mutually independent and identically distributed and each is itself an unbiased
estimator for μ. While the k components of the RSS estimator μ̂RSS = X RSS are
also mutually independent, they are not identically distributed and none of them
(except for the middle order statistic when k is odd and the underlying distribution
is symmetric about μ) are individually unbiased for μ. Yet the averaging process
leaves μ̂RSS unbiased. Interestingly, it is the additional structure associated with
the nonidentical nature of the distributions for the terms in μ̂RSS that leads to the
improvement in precision for μ̂RSS relative to μ̂SRS.

3. Imperfect Rankings. The RSS estimator μ̂RSS remains unbiased for the popula-
tion mean μ and at least as precise (i.e., as small or smaller variance) than the
corresponding SRS estimator μ̂SRS based on the same number of measured obser-
vations even if the judgment ranking process does not yield perfect rankings. The
relationship between the variances for the two estimators is still given by the
expression in (15.10), except that the expected value μ∗

(i ) for the i th true order
statistic X ∗

(i ) under perfect rankings is replaced by the expected value of the judg-
ment order statistic μ[i ] = E [X[i ]], for i = 1, . . . , k . See Dell and Clutter (1972)
for a more detailed discussion of the effect of imperfect judgment rankings in
this setting.

4. Estimation of the Population Variance. The RSS approach has also been used to
estimate a population variance. Let X[1]j , . . . , X[k ]j , for j = 1, . . . , m , be an RSS
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(for set size k and m cycles) from a population with finite variance σ 2. Stokes
(1980) proposed the following RSS estimator, σ̂ 2

Stokes, for σ 2:

σ̂ 2
Stokes = 1

mk − 1

m∑
j=1

k∑
i=1

(X[i ]j − μ̂RSS)
2, (15.12)

where μ̂RSS (15.1) is the RSS estimator for the population mean. Stokes shows that
the estimator σ̂ 2

Stokes (15.12) is asymptotically unbiased for σ 2 and, for sufficiently
large m or k , at least as efficient as the standard variance estimator, σ̂ 2

SRS, based on
an SRS of the same size n = mk . Stokes points out, however, that the estimator
σ̂ 2

Stokes does not do as well for small or moderate samples, primarily due to the
fact that it can be quite biased for even moderate sample sizes.

MacEachern et al. (2002) note that the Stokes estimator σ̂ 2
Stokes treats each

observation in the RSS the same regardless of which judgment order statistic it
corresponds to, thereby ignoring some of the structural information provided by
the RSS design. They took advantage of this additional structure inherent in the
RSS design to propose a competitor estimator

σ̂ 2
MOSW =

∑k
r �=s=1

∑m
i=1

∑m
j=1(X[r]i − X[s]j )

2

2m2k2

+
∑k

r=1

∑m
i=1

∑m
j=1(X[r]i − X[r]j )

2

2m(m − 1)k2
(15.13)

that incorporates both within judgment ranking and between judgment ranking
information from the RSS data. MacEachern et al. show that σ̂ 2

MOSW (15.13) is
an unbiased estimator for σ 2 and that it is more efficient over a broad variety
of underlying distributions for small to moderate sample sizes than the Stokes
estimator σ̂ 2

Stokes(15.12). Under mild conditions, however, the asymptotic rela-
tive efficiency of σ̂ 2

MOSW relative to σ̂ 2
Stokes is 1 when the judgment ranking is

perfect.

5. Estimation of the Population Distribution Function. Utilization of information
obtained from rankings is clearly an integral part of the RSS concept through
the judgment ranking process used to select the specific items for measurement.
However, it was not until the seminal paper by Stokes and Sager (1988) that a
rank-based nonparametric approach was proposed for analysis of the RSS mea-
surements themselves. Stokes and Sager studied the use of RSS data to estimate
the distribution function F (t) of a population.

Let X[1]j , . . . , X[k ]j , for j = 1, . . . , m , be the RSS (for set size k and m cycles)
from a distribution with distribution function F (t). The natural RSS estimator for
F (t) considered by Stokes and Sager (1988) is the sample distribution function
for the RSS data, namely,

F̂RSS(t) = 1

mk

k∑
i=1

m∑
j=1

I(−∞,t](X[i ]j ). (15.14)

Stokes and Sager show that F̂RSS(t) is an unbiased estimator of F (t) and that

Var(F̂RSS(t)) ≤ Var(F̂SRS(t)) for all t,
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where F̂SRS(t) is the usual sample distribution function for a SRS of the same
size n = mk . They also demonstrate how to use F̂RSS(t) in conjunction with the
Kolmogorov–Smirnov statistic to provide simultaneous confidence bands for the
distribution function F (t).

Kvam and Samaniego (1993) consider competitors to F̂RSS(t) that allow
for differential weightings of the RSS observations in the averaging process.
Their approach leads to more efficient estimators than F̂RSS(t) under a variety of
specific distributional assumptions about F (t). Kvam and Samaniego (1994) use
a similar approach to obtain a nonparametric maximum likelihood estimator for
F (t) based on RSS data. The estimators proposed by Kvam and Samaniego in
these two papers also automatically accommodate unbalanced RSS data, where
the different order statistics are not equally represented in the collected RSS (see
the “Unbalanced Ranked Set Sampling” discussion in Section 15.5 for more about
unbalanced RSS options). The original Stokes and Sager estimator F̂RSS(t) does
not immediately adapt to such unbalanced RSSs.

6. Estimation of a Population Proportion. For populations consisting of binary data
corresponding to “success” or “failure,” for example, the feature of interest is
the proportion, p, of “successes” in the population. If we assign the numerical
values of 0 and 1 to “failure” and “success,” respectively, then the proportion p
is nothing more than the population average μ as discussed in this section, so that
one natural estimator for p is simply the sample average, p̂RSS, corresponding to
the percentage of ‘successes’ observed in the RSS. However, this naive estimator
does not fully utilize the additional information incorporated in the RSS data via
the prior ranking process; that is, unlike an SRS, not all “successes” in an RSS
should be treated equally.

Taking into account this special information associated with the different RSS
observations, Terpstra (2004) developed the RSS maximum likelihood estimator,
p̂RSS, MLE, for a population proportion p. He showed that p̂RSS, MLE is slightly
more efficient than p̂RSS and uniformly more efficient than the standard sample
percentage of “successes,” p̂SRS, for an SRS of the same size.

Another factor that is important to consider when applying RSS methodology
to the estimation of a population proportion is the curious aspect of initially
“ranking” binary data to implement the RSS structure. This is not an issue if
individuals are used to subjectively judgment rank the candidates within a set with
respect to their relative likelihoods of being “successes.” However, if we wish to
use additional quantitative information from the population to aid in these within-
sets binary rankings, then appropriate mechanisms are required to enable that
process. Terpstra and Liudahl (2004) suggested the use of a single concomitant
to facilitate the ranking of binary data, and Chen, Stasny, and Wolfe (2005)
expanded on this concept through the use of logistic regression to incorporate
multiple concomitants in a formal mechanism for ranking such data. They found
that the use of logistic regression substantially improves the accuracy of the
preliminary ranking in the RSS process, which, in turn, can lead to considerable
gains in precision for estimation of the population proportion.

7. Ordered Categorical Data. Chen, Stasny, and Wolfe (2008) extended the appli-
cation of RSS methodology to ordered categorical variables with the goal of
estimating the probabilities of all of the categories. They used ordinal logistic
regression to aid in the ranking of the ordinal variable of interest and proposed
an optimal allocation scheme, as well as methods for implementing it.
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Properties

1. Consistency, Asymptotic Normality, and Efficiency of the RSS Mean Estimator
μ̂RSS. See Takahasi and Wakimoto (1968), Takahasi (1970), and Dell and Clutter
(1972).

Problems

21. Using the RSS of 20 invoices obtained in Problem 2, estimate the average audited (true)
invoice value for the entire population of invoices. Compare this estimate with the estimate
for the same quantity based on the SRS of 20 invoices obtained in Problem 1.

22. Consider the population of 15% overstated book value accounting data given in Table 15.1.
(See Example 15.3 for more discussion about these data.) Select an SRS of 96 invoices from
this population and use these data to estimate the average audited (true) invoice value for the
entire population of invoices. Compare this value with the corresponding estimates of the same
quantity using the three RSSs of 96 invoices each obtained in Problems 4–6.

23. Estimate the percentage of fraudulent invoices in the entire population using the SRS of 96
invoices from Problem 22 and, separately, using the three RSSs of 96 invoices each obtained
in Problems 4–6. How do these four estimates compare with the actual 15% of fraudulent
invoices for the entire population?

24. Using the SRS of 96 invoices from Problem 22 and, separately, the three RSSs of 96 invoices
each from Problems 4–6, estimate the total amount of overstatement (fraud) in the entire
population. Compare these four estimates.

25. Using the RSS of 25 subjects obtained in Problem 12, estimate the average BMI for the entire
NHANES III population. Compare this estimate with the estimate for the same quantity based
on the SRS of 25 subjects obtained in Problem 9. How do these two estimates compare with
the actual average BMI for the entire population of the NHANES subjects?

26. Consider the population of NHANES III data given in Table 15.2. (See Problem 9 for more
discussion about the NHANES III study.) Select an SRS of 96 subjects from this population
and use these data to estimate the average BMI for the entire NHANES III population. Compare
this value with the four estimates of the same quantity using the RSSs of 96 NHANES III
subjects each obtained in Problems 14–17. How do these five estimates compare with the
actual average BMI for the entire population?

27. An individual is considered to be overweight if his or her BMI is at least 25 (Kuczmarski
et al., 1997). Estimate the percentage of overweight subjects in the NHANES III population
using the SRS of 96 subjects from Problem 26 and, separately, using the four RSSs of 96
subjects each obtained in Problems 14–17. How do these five estimates compare with the
actual percentage of overweight subjects in the NHANES III population?

28. An individual is considered to be obese if his or her BMI is at least 30 (Kuczmarski et al.,
1997). Estimate the percentage of obese subjects in the NHANES III population using the
SRS of 96 subjects from Problem 26 and, separately, using the four RSSs of 96 subjects each
obtained in Problems 14–17. How do these five estimates compare with the actual percentage
of obese subjects in the NHANES III population?

29. Consider the first four (Arm Circumference (ArmCir), BMI) pairs in the NHANES III data
given in Table 15.2, namely,

(34.9, 25.5), (32.8, 23.4), (33.3, 27.6), (36.1, 29.4).

(a) In part (a) of Problem 20 you listed the possible SRSs of size n = 2 that could be selected
from this subset of four BMI values. Calculate the sample mean for each of these potential
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SRSs. Calculate the average of these SRS means and compare it with the mean of the full
subset of four BMI values.

(b) In part (b) of Problem 20 you listed the possible ranked set samples of size n = 2 that
could be selected from this subset of four BMI values using a set size of k = 2 and arm
circumference as the auxiliary variable for the ranking process. Calculate the sample mean
for each of these potential RSSs. Calculate the average of these RSS means and compare
it with the mean of the full subset of four BMI values.

(c) What important properties of the SRS mean and the RSS mean are illustrated by what you
found in parts (a) and (b)?

30. Consider the population of 15% overstated book value accounting data given in Table 15.1. (See
Problem 1 for more discussion about these data.) Use the sample distribution function F̂SRS(t)
for the SRS of 96 audited values from this population obtained in Problem 22 to estimate the
distribution function F (t) for the full population of audited invoice values. Compare F̂SRS(t)
with the Stokes and Sager (1988) RSS estimator F̂RSS(t) (15.14) given in Comment 5 using
the RSS of 96 audited invoice values obtained in Problem 4.

31. Consider the population of NHANES III data given in Table 15.2. Use the RSS of 96 NHANES
III subjects obtained in Problem 17 and the MacEachern et al. (2002) estimator σ̂ 2

MOSW (15.13)
given in Comment 4 to estimate the variance of the BMI values for the NHANES III population.

32. One of the research focuses of the Research Farm at Ataturk University, Erzurum, Turkey, is
on increasing meat quality and production in sheep. As part of this research, the sheep are
sampled periodically in order to monitor their biological growth and provide estimates for
the population means of specific traits of interest. Young sheep are very active animals and
it is labor intensive to hold them secure during the measurement process. As a result, it is
important to minimize the number of sheep included in these samples while still obtaining
reliable information about the broader population. RSS can be used effectively to reduce
the number of lambs that must be measured at each of these periodic samplings by taking
advantage of readily available archival information about the birth weight of a lamb and its
mother’s weight at the time of mating, both of which are positively correlated with the lamb’s
weight throughout its growth cycle. Table 15.5 contains the birth weight, mother’s weight at
the time of mating, and the weight at 7 months for 224 lambs at the Research Farm of Ataturk
University. Use the mother’s weight at the time of mating as the auxiliary ranking variable
and set size k = 3 to select an RSS (using SRSs without replacement throughout the ranking
process) of size n = 21. Obtain the RSS estimate of the average 7-month weight for the entire
population of 224 lambs based on the 7-month weights of these 21 lambs.

33. Consider the weight data for 224 lambs at the Research Farm at Ataturk University, Erzurum,
Turkey given in Table 15.5. (See Problem 32 for more discussion about these data.) Use the
lamb’s birth weight as the auxiliary ranking variable and set size k = 3 to select an RSS
(using SRSs without replacement throughout the ranking process) of size n = 21 from the
population of 224 lambs. Obtain the RSS estimate of the average 7-month weight for the
entire population of lambs based on the 7-month weights of these 21 lambs. Compare this
estimate with that obtained in Problem 32 using the mother’s weight at the time of mating as
the auxiliary ranking variable. Which of these two would you expect to be the more accurate
estimate of the population average 7-month weight? Why?

34. Consider the population of 15% overstated book value accounting data given in Table 15.1.
(See Example 15.3 for more discussion about these data.)

(a) Select an SRS of 200 invoices from this population and use these sample data to estimate
both the percentage of fraudulent accounts in the population and the total amount of
overstatement (fraud) in the population.

(b) Use book values to perform your judgment rankings and a set size of k = 4 to select
a balanced RSS of 200 invoices for auditing. Use these RSS data to estimate both the
percentage of fraudulent accounts in the population and the total amount of overstatement
(fraud) in the population.
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Table 15.5 Sheep Weight (kg) from the Research
Farm at Ataturk University

Mother mating weight Lamb weight

at Birth at 7 Months

50.5 3.7 25.0
44.3 3.5 26.5
47.7 3.7 23.5
44.4 3.9 23.5
44.8 4.4 27.2
51.9 4.0 26.6
51.2 4.0 23.5
56.8 4.8 31.0
58.4 5.2 34.5
51.5 3.9 27.5
48.2 4.9 31.0
50.0 3.1 22.7
54.9 4.2 27.1
52.3 4.4 27.9
58.5 4.5 29.0
52.6 5.0 30.3
55.8 4.7 28.4
50.9 3.7 23.7
48.0 3.4 21.6
55.2 6.3 35.5
52.1 4.2 26.3
53.3 5.6 31.4
50.2 5.9 34.4
52.7 4.2 27.0
50.0 4.0 25.5
55.6 4.2 31.4
49.1 4.5 25.5
44.5 4.1 25.9
53.3 4.4 30.5
54.4 3.9 25.3
50.8 4.8 28.8
52.2 4.4 28.5
56.2 4.5 29.5
52.5 5.9 37.0
54.0 4.3 31.8
59.2 6.7 40.5
50.8 4.0 28.5
51.8 4.0 27.1
55.7 4.5 30.5
43.3 3.2 21.5
57.5 4.9 30.5
51.3 4.3 27.0
54.8 6.6 37.0
56.1 6.7 37.7
51.3 3.2 24.0
43.1 3.8 25.5
46.0 4.3 27.9
54.6 5.3 33.1
54.7 4.7 27.5
58.6 4.4 28.5
47.1 3.8 24.6
49.7 2.6 21.9
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Table 15.5 (Continued )

Mother mating weight Lamb weight

at Birth at 7 Months

54.7 4.3 32.5
52.2 3.9 25.9
53.2 2.6 21.5
53.1 4.1 25.0
46.2 3.5 26.6
50.9 3.9 25.8
45.4 3.0 22.7
51.1 3.7 25.3
56.5 4.8 34.0
52.5 4.5 30.5
50.5 4.0 27.5
47.4 4.5 27.0
47.9 3.9 28.0
43.3 3.6 22.9
52.6 4.6 31.0
55.9 4.4 28.5
59.9 4.7 33.0
57.8 4.8 31.5
56.5 4.5 25.5
50.2 3.9 26.7
56.7 3.6 27.0
49.1 3.0 22.0
49.0 3.0 21.3
48.3 3.3 26.5
48.9 2.9 21.6
46.5 3.7 21.8
43.9 3.6 20.3
47.1 2.6 22.4
42.8 2.5 21.3
45.2 4.2 23.0
45.2 4.7 28.4
46.6 4.4 28.1
50.3 5.2 33.5
53.3 5.2 31.0
48.6 4.8 28.8
54.5 6.6 36.9
47.5 3.9 23.0
51.5 4.2 26.2
63.7 5.2 36.0
52.4 4.6 28.7
50.9 5.0 29.0
47.5 5.2 31.0
53.9 5.4 30.0
52.3 4.8 28.5
52.7 4.5 28.5
55.1 4.5 26.5
55.0 5.4 31.0
61.7 5.8 35.0
55.1 5.0 33.0
54.7 4.7 34.0
50.7 3.5 25.0
47.1 4.2 28.0

(continued )
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Table 15.5 (Continued )

Mother mating weight Lamb weight

at Birth at 7 Months

60.8 5.1 32.1
53.5 4.5 28.3
53.2 3.2 24.0
55.0 4.4 29.6
57.2 4.8 29.0
59.6 5.0 29.5
46.5 3.8 26.5
48.4 4.3 24.0
51.3 4.4 31.0
56.7 5.3 33.4
56.3 4.0 30.0
55.2 4.6 27.0
52.1 4.6 28.5
51.4 4.6 27.4
58.7 4.7 34.0
53.6 4.3 31.6
53.4 5.0 34.5
46.6 3.8 25.5
51.2 4.7 33.5
49.8 4.8 27.2
49.5 5.1 29.5
46.8 5.3 31.7
56.8 6.1 33.5
50.7 5.7 34.0
52.0 5.2 30.0
52.3 3.3 21.0
52.4 3.1 23.5
43.8 4.0 23.9
56.2 3.9 25.9
54.7 4.9 31.0
50.0 4.2 25.0
51.9 4.8 26.0
51.6 4.9 29.9
48.3 4.2 28.5
49.8 3.6 24.5
53.9 4.5 29.0
53.5 4.0 27.6
52.0 3.3 23.6
51.1 3.3 22.3
60.2 4.7 32.5
46.0 4.2 24.5
56.3 4.1 26.5
53.8 4.3 28.5
44.1 4.4 27.2
58.8 4.6 33.0
52.6 4.3 27.2
52.9 3.9 27.6
53.8 4.4 25.9
54.1 3.4 24.2
54.1 4.1 25.5
53.5 4.1 27.0
56.0 5.3 29.5
55.1 3.8 26.3
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Table 15.5 (Continued )

Mother mating weight Lamb weight

at Birth at 7 Months

54.9 4.7 31.5
52.2 4.5 26.0
55.7 4.1 31.0
55.7 3.7 24.0
55.0 3.2 24.2
59.6 3.6 29.0
59.8 4.1 29.0
61.3 5.7 35.6
49.3 4.4 24.9
56.1 5.6 35.5
55.5 3.1 25.0
58.8 5.1 31.5
49.9 3.2 23.5
56.8 4.1 28.5
63.2 5.2 34.0
57.6 4.3 31.0
49.9 5.6 31.0
54.9 4.6 32.0
50.0 4.5 28.0
49.6 2.9 23.4
53.3 4.2 25.0
52.3 4.7 30.5
58.0 4.7 29.5
59.9 4.2 30.5
49.0 3.6 25.9
53.3 3.4 24.5
56.0 4.2 28.6
51.5 5.0 33.5
51.3 3.6 25.6
52.3 5.1 29.0
45.9 4.2 24.0
52.7 4.4 29.7
54.5 5.0 30.3
46.7 3.8 22.0
60.3 5.4 35.1
51.4 4.7 29.5
54.2 6.0 33.0
53.9 4.4 26.2
45.4 3.4 23.5
51.1 5.1 28.0
57.0 4.5 25.5
49.0 4.9 26.0
52.2 3.2 24.6
60.0 4.9 32.2
45.3 3.7 25.4
44.2 3.5 20.5
58.2 4.9 35.0
52.8 4.7 25.5
49.6 4.8 27.0
50.9 3.7 27.6
51.4 3.5 27.9
52.3 4.9 30.2

(continued )
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Table 15.5 (Continued )

Mother mating weight Lamb weight

at Birth at 7 Months

60.1 5.6 32.0
57.5 4.9 28.5
50.6 4.8 27.0
42.2 2.7 22.0
44.3 4.4 27.5
48.1 5.1 31.0
51.2 4.4 25.5
48.0 4.8 29.5
58.5 5.1 34.0
52.6 4.9 33.0
52.2 4.0 28.5
50.9 3.8 26.2
44.5 3.8 21.4
53.1 2.8 23.9
51.6 4.7 27.8

Source: Ö. Özturk, Ö. C. Bilgin, and D. A. Wolfe (2005).

(c) Compare the results obtained in parts (a) and (b) with those discussed in Example 15.3,
as well as with the true percentage of fraudulent accounts in the population and the true
amount of overstatement (fraud) in the population.

35. Consider the population of NHANES III data given in Table 15.2. (See Problem 9 for more
discussion about the NHANES III study.)

(a) Select 20 independent SRSs of n = 96 subjects each from this NHANES III population
and compute the average BMI for each of these SRSs. Calculate the sample standard
deviation for these 20 SRS means.

(b) Using buttocks circumference as the auxiliary ranking variable and set size k = 6, select
20 independent RSSs of size n = 96 each from this NHANES III population and compute
the average BMI for each of these RSSs. Calculate the sample standard deviation for these
20 RSS means.

(c) Considering the results of parts (a) and (b), discuss the relative effectiveness of using an
SRS versus an RSS (with buttocks circumference as the ranking variable) of the same size
to estimate the average BMI value for the entire NHANES III population.

36. The average tree height for a heavily forested area is almost impossible to fully quantify.
Statistical sampling approaches can be used to obtain a reliable estimate for this attribute, but
even in those approaches the size of the required sample can be prohibitive, both in terms of
time commitment and expense. Fortunately, the height of a tree is highly correlated with the
more readily available diameter of the tree at breast height. This feature can be used quite
effectively in conjunction with an RSS approach to reduce the number of trees for which we
must obtain the actual tree height measurement in order to obtain a reliable estimate of the
average tree height in the entire forest.

Platt, Evans, and Rathbun (1988) studied the composition and dynamics of an old-growth
longleaf pine population on the Wade Tract in southern Thomas County, Georgia. They
obtained a variety of measurements for the longleaf pine trees in this population. In Table
15.6, we present the full height in feet and the diameter at breast height in centimeters for 396
of the trees in their study.

Using the easily measured tree diameter at breast height as the auxiliary ranking variable
and a set size of k = 6, obtain an RSS (without replacement in the sampling process) of size
n = 24 trees from this population of 396 trees. Estimate the average tree height of the entire
population of 396 trees using the measured heights for the 24 trees in the RSS.



714 Chapter 15 Ranked Set Sampling

Table 15.6 Conifer Tree Diameter (cm) and Height (ft)

Tree Diameter Height Tree Diameter Height

1 15.9 28 199 40.2 75
2 22.0 26 200 66.8 223
3 56.9 119 201 4.1 11
4 9.6 16 202 60.6 180
5 24.6 43 203 8.0 15
6 3.3 7 204 17.2 43
7 11.4 21 205 22.0 46
8 4.7 6 206 15.9 39
9 21.3 40 207 3.1 4

10 16.8 28 208 4.5 12
11 5.1 12 209 32.0 65
12 7.5 22 210 46.9 126
13 3.1 7 211 36.4 103
14 4.9 7 212 25.4 64
15 6.1 9 213 40.0 82
16 5.5 12 214 40.4 87
17 6.5 11 215 19.8 42
18 5.6 14 216 30.5 37
19 6.9 11 217 37.7 183
20 3.8 6 218 22.1 33
21 9.7 27 219 5.5 6
22 6.9 16 220 28.4 76
23 4.1 8 221 46.4 120
24 58.5 192 222 15.8 33
25 46.0 203 223 45.9 202
26 22.2 51 224 33.5 82
27 3.7 5 225 36.7 77
28 52.9 162 226 44.0 105
29 63.2 223 227 51.6 197
30 46.5 211 228 45.0 78
31 56.3 196 229 34.0 99
32 21.9 43 230 53.1 198
33 11.0 20 231 30.8 85
34 4.7 14 232 17.2 24
35 11.0 19 233 57.0 213
36 58.8 222 234 6.3 9
37 3.5 4 235 44.2 216
38 10.1 28 236 3.0 4
39 16.9 38 237 36.4 62
40 10.8 26 238 2.7 3
41 9.0 21 239 4.4 7
42 8.0 19 240 41.4 177
43 17.8 38 241 3.4 7
44 23.9 37 242 8.4 25
45 2.3 5 243 4.8 12
46 5.8 13 244 4.2 5
47 6.0 16 245 6.3 16
48 8.8 23 246 32.6 67
49 9.9 20 247 15.3 31
50 14.6 34 248 38.6 42
51 10.8 29 249 5.2 6
52 44.2 181 250 61.8 239
53 12.9 16 251 10.9 33

(continued )
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Table 15.6 (Continued )

Tree Diameter Height Tree Diameter Height

54 28.0 77 252 3.5 6
55 39.8 76 253 2.5 4
56 20.4 37 254 10.9 26
57 47.3 111 255 8.9 24
58 35.7 66 256 21.0 67
59 44.9 87 257 44.1 107
60 8.7 25 258 7.0 16
61 24.3 46 259 9.4 27
62 15.7 35 260 8.0 17
63 30.9 54 261 23.0 59
64 69.2 131 262 11.6 35
65 24.1 72 263 33.0 90
66 4.2 8 264 7.5 17
67 3.8 8 265 17.5 46
68 41.2 94 266 8.9 33
69 39.8 68 267 47.4 53
70 18.6 33 268 22.0 49
71 38.7 68 269 6.8 18
72 12.2 17 270 7.5 18
73 6.0 16 271 22.2 32
74 8.0 14 272 19.3 25
75 13.5 19 273 14.5 22
76 20.1 32 274 3.5 5
77 57.4 202 275 10.9 26
78 8.2 22 276 14.7 33
79 32.7 41 277 12.5 34
80 9.4 23 278 18.7 35
81 8.9 25 279 20.5 38
82 9.2 18 280 11.5 26
83 6.1 14 281 43.7 92
84 7.5 19 282 10.1 36
85 52.3 152 283 42.1 70
86 15.5 25 284 41.8 92
87 23.7 51 285 21.9 70
88 67.1 208 286 56.9 113
89 12.3 16 287 40.5 83
90 14.0 16 288 15.9 76
91 4.9 9 289 18.8 58
92 5.5 8 290 26.5 89
93 7.6 17 291 42.2 133
94 3.5 5 292 39.8 196
95 6.3 18 293 48.2 197
96 19.0 39 294 25.5 40
97 2.7 5 295 19.6 40
98 8.2 24 296 59.4 176
99 7.6 20 297 9.3 25

100 9.2 27 298 19.8 33
101 5.9 9 299 34.0 42
102 6.2 12 300 4.9 6
103 13.3 22 301 8.3 14
104 13.4 30 302 3.7 8
105 33.9 82 303 32.7 53
106 33.7 93 304 2.6 7
107 8.3 26 305 44.8 140
108 48.0 99 306 10.3 21
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Table 15.6 (Continued )

Tree Diameter Height Tree Diameter Height

109 40.4 78 307 28.5 32
110 8.6 22 308 34.0 119
111 16.0 26 309 36.6 81
112 29.1 49 310 50.8 106
113 18.4 22 311 29.2 78
114 26.8 37 312 8.5 21
115 6.2 7 313 23.4 35
116 2.9 6 314 7.9 15
117 3.0 8 315 44.6 149
118 14.6 20 316 2.5 4
119 18.4 32 317 9.4 17
120 15.0 34 318 3.0 6
121 18.4 41 319 2.8 3
122 44.5 64 320 3.0 5
123 4.5 8 321 4.1 8
124 10.4 20 322 23.4 42
125 24.0 37 323 59.0 189
126 5.1 10 324 5.2 8
127 5.3 13 325 8.5 10
128 2.5 4 326 7.8 15
129 2.2 3 327 44.9 140
130 3.1 4 328 54.4 104
131 2.6 4 329 47.9 129
132 8.1 26 330 41.3 94
133 12.4 31 331 38.8 91
134 15.1 34 332 41.1 105
135 12.7 38 333 39.0 116
136 49.0 96 334 45.4 140
137 20.8 35 335 47.9 137
138 11.9 18 336 53.7 105
139 47.6 154 337 43.5 96
140 10.6 32 338 18.7 68
141 22.9 33 339 57.8 188
142 10.6 27 340 14.9 23
143 49.7 103 341 4.5 10
144 50.6 122 342 8.8 22
145 19.1 40 343 23.6 26
146 53.0 114 344 11.5 21
147 18.0 82 345 20.0 27
148 44.4 105 346 8.3 19
149 10.8 35 347 12.6 30
150 51.7 219 348 5.8 14
151 22.6 48 349 12.9 25
152 7.7 19 350 5.4 11
153 43.5 60 351 22.5 42
154 3.1 3 352 11.8 32
155 5.0 13 353 51.2 203
156 4.4 8 354 45.3 85
157 3.3 5 355 48.7 120
158 2.6 5 356 6.6 20
159 53.5 211 357 16.7 33
160 48.9 206 358 12.3 23
161 47.8 176 359 6.5 15

(continued )
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Table 15.6 (Continued )

Tree Diameter Height Tree Diameter Height

162 17.2 37 360 53.0 106
163 28.6 45 361 18.1 21
164 10.8 31 362 2.4 5
165 50.1 212 363 5.8 11
166 4.7 8 364 27.0 29
167 5.3 10 365 19.9 24
168 10.6 19 366 17.5 22
169 3.7 6 367 62.5 232
170 3.9 8 368 44.6 92
171 5.3 12 369 38.0 167
172 2.5 3 370 3.2 2
173 13.2 38 371 13.4 21
174 17.1 37 372 5.7 14
175 13.9 33 373 3.6 5
176 8.0 21 374 2.6 3
177 8.5 27 375 75.4 244
178 50.1 109 376 2.2 5
179 6.8 18 377 3.7 7
180 19.9 55 378 3.1 4
181 17.5 47 379 7.2 26
182 6.8 21 380 8.2 20
183 10.9 33 381 3.2 5
184 11.2 23 382 2.5 3
185 20.2 38 383 4.0 11
186 19.6 26 384 1.8 1
187 18.4 46 385 2.7 3
188 50.9 84 386 9.9 21
189 17.6 42 387 6.3 11
190 44.1 113 388 3.2 11
191 17.0 31 389 3.3 5
192 46.9 135 390 5.0 12
193 2.8 6 391 3.7 6
194 25.5 40 392 2.0 5
195 14.5 28 393 5.1 13
196 14.1 40 394 6.0 12
197 47.1 85 395 3.8 8
198 42.2 93 396 3.5 9

Source: W. J. Platt, G. W. Evans, and S. L. Rathbun (1988) and Z. Chen,
Z. D. Bai, and B. K. Sinha (2004).

15.4 RANKED SET SAMPLE ANALOGS OF THE
MANN–WHITNEY–WILCOXON TWO-SAMPLE
PROCEDURES (BOHN–WOLFE)

Data. We obtain N = m + n RSS observations, m from population 1 and n from popu-
lation 2.

Assumptions

A1. The m balanced RSS observations from population 1 are collected using c
cycles of set size k each, where m = kc, and the RSS observations from cycle
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1 are denoted by (X[1]1, X[2]1, . . . , X[k ]1), the RSS observations from cycle 2 are
denoted by (X[1]2, X[2]2, . . . , X[k ]2), . . . , and the RSS observations from the final
cycle c are denoted by (X[1]c , X[2]c , . . . , X[k ]c).

A2. The n balanced RSS observations from population 2 are collected using d
cycles of set size q each, where n = qd , and the RSS observations from cycle
1 are denoted by (Y[1]1, Y[2]1, . . . , Y[q]1), the RSS observations from cycle 2 are
denoted by (Y[1]2, Y[2]2, . . . , Y[q]2), . . . , and the RSS observations from the final
cycle d are denoted by (Y[1]d , Y[2]d , . . . , Y[q]d ).

A3. All N = m + n RSS observations are mutually independent. Thus, in addition
to the independence within the RSSs from populations 1 and 2, we also have
independence across the two populations.

A4. Populations 1 and 2 are both continuous populations.

A5. The ranking processes used to obtain the two RSSs are perfect, so that the RSS
observations are true order statistics from their respective populations.

Hypothesis

Let F be the distribution function corresponding to population 1 and let G be the distri-
bution function corresponding to population 2.

The null hypothesis is

H0 : F (t) = G(t), for every t . (15.15)

The null hypothesis asserts that the X variable and the Y variable have the same proba-
bility distribution, but the common distribution is not specified.

The alternative hypothesis in this two-sample location setting typically specifies
that Y tends to be larger (or smaller) than X . One model that is useful to describe
such alternatives is the translation model—also called the location-shift model—that was
discussed in Chapter 4. This location-shift model is

G(t) = F (t − �), for every t . (15.16)

Model (15.16) says population 2 is the same as population 1 except it is shifted by the
amount �. Another way of writing this is

Y
d= X + �,

where the symbol
d= means “has the same distribution as.” The parameter � is called

the location shift. It is also known as the treatment effect. If X is a randomly selected
value from population 1, the control population, and Y is a randomly selected value from
population 2, the treatment population, then � is the expected effect due to the treatment.
If � is positive, it is the expected increase due to the treatment, and if � is negative, it
is the expected decrease due to the treatment. If the mean E (X ) of population 1 exists,
then letting E (Y ) denote the mean of population 2, we have

� = E (Y ) − E (X ),
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the difference in population means. In terms of the location-shift model, the null hypoth-
esis H0 reduces to

H0 : � = 0,

the hypothesis that asserts the population means are equal or, equivalently, that the
treatment has no effect.

We note that although we find it convenient to use the “treatment” and “control”
terminology, many situations will arise in which we want to compare two populations,
neither of which can be described as a control population. The procedures of this section
are applicable even when there are no natural control or treatment designations for the
two populations.

Procedure

To compute the Bohn–Wolfe (1992) statistic BW, we follow the lead of the two-sample
Mann–Whitney U statistic discussed in Comment 4.7 by computing the mn = kcqd count
statistics φ(X[s]t , Y[u]v), for s = 1, . . . , k ; t = 1, . . . , c; u = 1, . . . , q ; v = 1, . . . , d , where

φ(X[s]t , Y[u]v) =
{

1, if X[s]t < Y[u]v

0, otherwise.
(15.17)

The Bohn–Wolfe statistic is then

BW =
k∑

s=1

c∑
t=1

q∑
u=1

d∑
v=1

φ(X[s]t , Y[u]v)

= (# of X[s]t
′s < Y[u]v

′s in the RSS data). (15.18)

a. One-Sided Upper-Tail Test. To test

H0 : � = 0

versus

H1 : � > 0,

at the α level of significance,

Reject H0 if BW ≥ bwα; otherwise do not reject, (15.19)

where the constant bwα is chosen to make the type I error probability equal to α. Thus
the constant bwα is the upper α percentile for the null (� = 0) distribution of BW.
Comment 10 explains how to obtain the critical value bwα for set sizes k and q , cycle
sizes c and d , and available values of α.

b. One-Sided Lower-Tail Test. To test

H0 : � = 0

versus

H2 : � < 0,
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at the α level of significance,

Reject H0 if BW ≤ (mn − bwα); otherwise do not reject. (15.20)

c. Two-Sided Test. To test
H0 : � = 0

versus
H3 : � �= 0,

at the α level of significance,

Reject H0 if BW ≥ bwα/2 or BW ≤ (mn − bwα/2); otherwise do not reject.

(15.21)

The two-sided procedure given by (15.21) is the two-sided symmetric test with α/2
probability in each tail of the distribution.

Large-Sample Approximation

The large-sample approximation is based on the asymptotic normality of BW, suitably
standardized. We consider here only the case where we have a common set size k =
q = 2 and the same number of observations from each population as well (i.e., the same
number of cycles c = d ). For this setting, the standardized version of BW when the null
hypothesis H0 is true is given by

BW∗ =
√

9

8c3

[
BW − E0(BW)

] = √ 9

8c3

[
BW − 2c2]. (15.22)

When H0 is true, BW∗ has, as the common number of cycles c tends to infinity, an
asymptotic N (0, 1) distribution.

The normal theory approximation to procedure (15.19) is

Reject H0 if BW∗ ≥ zα; otherwise do not reject. (15.23)

The normal theory approximation to procedure (15.20) is

Reject H0 if BW∗ ≤ −zα; otherwise do not reject. (15.24)

The normal theory approximation to procedure (15.21) is

Reject H0 if | BW∗| ≥ zα/2; otherwise do not reject. (15.25)

(Additional discussion about the form of the appropriate standardization for BW and
the resulting large-sample approximation for general k , q , c, and d is provided in
Comment 12.)
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Ties

If there are ties between the X[s]t
′s and the Y[u]v

′s , replace φ(X[s]t , Y[u]v) in (15.17) by

φ∗(X[s]t , Y[u]v) =

⎧⎪⎪⎨⎪⎪⎩
1, if X[s]t < Y[u]v

1
2 , if X[s]t = Y[u]v

0, if X[s]t > Y[u]v

(15.26)

in the computation of BW (15.18). Thus, we add a count of 1/2 to the value of BW for
every tie between an X[s]t and a Y[u]v .

EXAMPLE 15.4 Body Mass Index.

The NHANES III survey, 1988–1994, was conducted by the National Center for Health
Statistics, Centers for Disease Control and Prevention. This survey was designed to
obtain nationally representative information on the health and nutritional status of the
population of the United States. The data set contains information for 33,994 persons
aged 2 months and older who participated in the survey. Specifically, it contains various
body measurements and information on other health-related variables for the respondents.
The survey used a complex, multistage cluster sample of households. (Since we are going
to treat a subset of the NHANES sample as our population for this example, we ignore
the complex nature of the sample design.)

BMI, which is commonly used to classify an adult’s weight status, will be the variable
of interest in this example. It is calculated as the ratio of weight (kg) to height squared
(m2). For consideration here, we exclude those NHANES III subjects who were either
younger than 21 years or who were pregnant at the time of their NHANES interviews. The
remaining 13,267 NHANES III subjects are viewed as our population for this example. In
Table 15.2 in the NSM Third Edition R package we provide the following NHANES III
data for each of these 13,267 subjects: Gender, Age, BMI, Arm Circumference (ArmCir),
Buttocks Circumference (ButtocksCir), and Thigh Circumference (ThighCir).

In this example we use buttocks circumference (ButtocksCir) as the auxiliary ranking
variable to obtain RSSs to compare the BMI values for males and females in the NHANES
III population under consideration. In particular, letting X (Y ) denote the male (female)
BMI values, respectively, we will use our RSS data to test the null hypothesis H0 : � = 0
against the one-sided alternative H1 : � > 0 corresponding to larger BMI values for
females in the NHANES III population.

For illustrative purposes, we take a common set size k = q = 4 and a common cycle
size c = d = 5 for the males and females, so that our measured BMI data will consist of
balanced RSSs of m = n = 20 observations from each of the male and female subsets of
the NHANES III subjects. Following the approach detailed in Example 15.3, we apply
the R command RSS(4,5, NHANES.III $ButtocksCir[NHANES.III$Gender

= = 1]), to the male subset of the NHANES III population to obtain the following
ordered balanced RSS of 20 male BMI values:

X[s]t measurements: 18.0 20.5 21.3 21.3 22.3 23.8 23.8

24.6 25.0 25.2 25.3 25.9 26.1 27.0

27.4 27.4 28.4 29.4 29.6 32.8.
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Similarly, we apply the R command RSS(4,5, NHANES.III $ButtocksCir

[NHANES.III$Gender = = 2]), to the female subset of the NHANES III
population to obtain the following ordered balanced RSS of 20 female BMI values:

Y[u]v measurements: 17.2 17.8 19.9 20.0 21.7 22.0 22.3
23.1 23.9 25.8 27.1 29.6 30.1 30.3
30.7 31.1 35.2 35.6 38.1 42.5.

For significance level α = .0515 , we use the R command cBohnWolfe(.0515, k,
q, c, d) with k = q = 4 and c = d = 5 (see Comment 10) to obtain the Bohn–Wolfe
critical value cBohnWolfe(.0515,4,4,5,5) = bw.0515 = 239 and the test procedure
(15.19) becomes

Reject H0 : � = 0 in favor of H1 : � > 0 if BW ≥ 239.

Applying the Bohn–Wolfe statistic to the female and male RSS data, we see that BW =
226. Since this value of BW is less than the critical value 239, we do not reject H0 : � = 0
in favor of H1 : � > 0, leading to the conclusion that females do not tend to have larger
BMI values than males in the NHANES III population. In fact, from the observed value
BW = 226 we see that P0(BW ≥ 226) = pBohnWolfe (x, y,4, 4, 5, 5) = .14.
Thus the lowest significance level at which we can reject H0 : � = 0 in favor of H1 :
� > 0 with the observed value of the test statistic BW = 226 is the P -value α = .14.

Comments

8. Motivation for the Test. When � is greater than 0, the RSS Y -values will tend to
be larger than the corresponding RSS X -values. Hence, there will tend to be more
φ(X[s]t , Y[u]v) counts equal to 1 and the resulting value of BW will be large. This
suggests rejecting H0 in favor of � > 0 for large values of BW and motivates
procedure (15.19). An analogous motivation leads to procedure (15.20).

9. Testing � is Equal to Some Specified Nonzero Value. Procedures (15.19), (15.20),
and (15.21) and the corresponding large-sample approximations given by pro-
cedures (15.23), (15.24), and (15.25) are for testing if � is equal to 0. To test
� = �0, where �0 is some specified nonzero number, subtract �0 from each Y[u]v

value to form a pseudo-RSS, namely, Y ∗
[u]v = Y[u]v − �0, for u = 1, . . . , q and

v = 1, . . . , d . Then compute BW via (15.18) applied to the X[s]t
′s and Y ∗

[u]v
′s . The

procedures (15.19), (15.20), and (15.21), and their corresponding large-sample
approximations given by displays (15.23), (15.24), and (15.25), can then be car-
ried out as described earlier.

10. Derivation of the Distribution of BW under H0 (No-ties Case). Assume that the
underlying common X and Y distribution under H0 is continuous so that ties
have probability zero of occurring and, in addition, assume that the judgment
rankings are perfect for both the X and Y RSSs. Bohn and Wolfe (1992) showed
that, just as for the SRS setting, the RSS Mann–Whitney statistic BW (with
perfect rankings) is distribution-free under H0 over the class of all continuous
distributions. However, there is a major difference in how the null distributions
of the test statistics and associated critical values are obtained for the SRS and
RSS settings.

For the SRS setting, the N = (m + n) combined sample X and Y observa-
tions are not only mutually independent but also identically distributed. Thus, in
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the case of SRSs, it suffices to look at each of the
(N

m

)
distinct (i.e., unchanged

by permutations within the X ’s and Y ’s separately) ordered arrangements of
these combined sample observations, and moreover, they are all equally likely
under H0. This makes tabulation of the associated null distribution for the SRS
Mann–Whitney U statistic (4.15) relatively straightforward. (For a more detailed
discussion, see Comment 4.3.)

However, the equally likely nature of these arrangements under H0 does not
carry over to the RSS setting, due to the fact that the ranked set X ’s and Y ’s, while
still mutually independent, are no longer identically distributed. For example, even
in the case of perfect rankings, there is nothing to prevent the smallest ordered
item selected in a given cycle from being larger than the largest ordered item
selected in the same cycle when the null hypothesis H0 is true. While this prob-
ability will generally be small, it will not be zero as in the case of SRS. This
means that for RSS data it is no longer sufficient to look at the

(N
m

) = (kc+qd
kc

)
dis-

tinct (i.e., unchanged by permutations within the X’s and Y’s separately) ordered
arrangements of the combined sample observations. Instead we need to calculate
the probability of each of the N ! = (kc + qd)! possible permutations separately
(no longer equally likely) and then combine these probabilities to obtain the null
distribution for BW.

Fortunately, the probabilities of these N ! permutations under RSS still do
not depend on the form of the common, continuous F ≡ G under H0 and per-
fect rankings, although the tabulation of these probabilities can be tedious. We
illustrate the necessary computations with a small example.

Example.

For a single X and Y cycle (i.e., c = d = 1) and common X and Y set size
k = q = 2, we must obtain the null probabilities for the 4! = 24 different permu-
tations. Under the assumption of perfect judgment rankings, the RSS observations
X(1)1, X(2)1, Y(1)1, and Y(2)1 are independent order statistics with joint pdf given by

gRSS(x(1), x(2), y(1), y(2))

=
{

2∏
s=1

2!

(s − 1)!(2 − s)!
[F (x(s))]

s−1[1 − F (x(s))]
2−s f (x(s))

}

×
{

2∏
u=1

2!

(u − 1)!(2 − u)!
[F (y(u))]

u−1[1 − F (y(u))]
2−u f (y(u))

}
,

which simplifies to

gRSS(x(1), x(2), y(1), y(2))

= 16[1 − F (x(1))][F (x(2))][1 − F (y(1))][F (y(2))]
2∏

s=1

f (x(s))

2∏
u=1

f (y(u)).

Using this expression for gRSS and straightforward integration, the null probabil-
ities for each of the 4! = 24 permutations of X(1)1, X(2)1, Y(1)1, and Y(2)1 can then
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be computed by integrating over the appropriate region. Thus, for example, the
four permutations {X(1)1 < Y(1)1 < X(2)1 < Y(2)1}, {X(1)1 < Y(1)1 < Y(2)1 < X(2)1},
{Y(1)1 < X(1)1 < Y(2)1 < X(2)1}, and {Y(1)1 < X(1)1 < X(2)1 < Y(2)1} all have the
same null probability of occurrence, p, given by

p =
∫ ∞

−∞

∫ y(2)

−∞

∫ x(2)

−∞

∫ y(1)

−∞
gRSS(x(1), x(2), y(1), y(2))dx(1)dy(1)dx(2)dy(2) = 41/280.

Proceeding in this fashion for all 24 permutations yields the set of null
probabilities (independent of the form of the continuous common distribution F
under H0 and perfect rankings) and the associated values of BW given in the
following table.

Null Probabilities under Perfect Rankings and Values of BW for the 24
Permutations in an RSS with c = d = 1 and k = q = 2.

Permutation Null probability Value of BW

y(2) < y(1) < x(2) < x(1) 17 / 2520 0

y(2) < y(1) < x(1) < x(2) 7 / 360 0

y(1) < y(2) < x(1) < x(2) 137 / 2520 0

y(1) < y(2) < x(2) < x(1) 7 / 360 0

y(1) < x(1) < y(2) < x(2) 41 / 280 1

y(1) < x(2) < y(2) < x(1) 7 / 360 1

y(2) < x(1) < y(1) < x(2) 7 / 360 1

y(2) < x(2) < y(1) < x(1) 1 / 280 1

x(1) < y(1) < y(2) < x(2) 41 / 280 2

x(1) < y(2) < y(1) < x(2) 137 / 2520 2

x(2) < y(1) < y(2) < x(1) 17 / 2520 2

x(2) < y(2) < y(1) < x(1) 1 / 280 2

y(1) < x(1) < x(2) < y(2) 41 / 280 2

y(1) < x(2) < x(1) < y(2) 137 / 2520 2

y(2) < x(1) < x(2) < y(1) 17 / 2520 2

y(2) < x(2) < x(1) < y(1) 1 / 280 2

x(1) < y(1) < x(2) < y(2) 41 / 280 3

x(1) < y(2) < x(2) < y(1) 7 / 360 3

x(2) < y(1) < x(1) < y(2) 7 / 360 3

x(2) < y(2) < x(1) < y(1) 1 / 280 3

x(1) < x(2) < y(1) < y(2) 137 / 2520 4

x(1) < x(2) < y(2) < y(1) 7 / 360 4

x(2) < x(1) < y(1) < y(2) 7 / 360 4

x(2) < x(1) < y(2) < y(1) 17 / 2520 4
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Combining the null probabilities for the various permutations with the associated
values for BW, we see that the null distribution of BW under perfect rankings
for this setting (i.e., c = d = 1 and k = q = 2) is given by

P0(BW = 0) = P0(BW = 4) = 1/10,

P0(BW = 1) = P0(BW = 3) = 17/90

and P0(BW = 2) = 19/45.

Note that the null distribution is symmetric about its mean E0(BW) =
kcqd/2 = 2.

Observe that we have derived the null distribution of BW without specifying
a form of the common underlying continuous distribution of the two populations
under H0. This is why the procedures based on BW are called distribution-free
procedures. From the null distribution of BW we can determine the critical value
bwα and control the probability α of falsely rejecting H0 when H0 is true, and this
error probability does not depend on the specific form of the common underlying
continuous distribution, as long as the rankings used to obtain the RSS data
are perfect. For the effect that imperfect rankings have on these type I error
probabilities, see Comments 16 and 17.

For given set sizes k and q and cycle sizes c and d , the R command
cBohnWolfe (α, k , q , c, d) can be used to find the available upper-tail critical
values bwα associated with the possible values of BW. For a given available sig-
nificance level α, the critical value bwα then corresponds to P0(BW ≥ bwα) = α

and is given by cBohnWolfe (α, k , q , c, d) = bwα . Thus, for example, for
k = 2, q = 3, c = 3, and d = 3, we have P0(BW ≥ 40) = .0303, so that
bw.0303 = cBohnWolfe(.0303, 2, 3, 3, 3) = 40 for k = 2, q = 3,
c = 3, and d = 3.

11. Calculation of the Mean and Variance of BW. Theoretical properties of the RSS
Mann–Whitney statistic BW can be obtained by using standard results about the
general class of U-statistics. (See Randles and Wolfe (1979) for a discussion of
U-statistics.) Let

γ =
k∑

s=1

q∑
u=1

P(X[s]1 < Y[u]1). (15.27)

Then γ is a two-sample, multivariate, estimable parameter of degree (1, 1)

and BW/cd is the multivariate U-statistic estimator for γ . Standard U-statistic
arguments can be used to establish the following general (arbitrary distribution
functions F and G) expressions for the expected value and variance of BW (see
Hoeffding (1948a) and Bohn and Wolfe (1992) for more details):

E (BW) = cdγ (15.28)

and

σ 2 = Var(BW) = cd [(d − 1)ζ1,0 + (c − 1)ζ0,1 + ζ1,1], (15.29)
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where

ζ1,0 =
k∑

s=1

q∑
u=1

{
P(X[s]1 < min(Y[u]1, Y[u]2)) − [P(X[s]1 < Y[u]1)]

2
}

+
k∑

s=1

∑∑
1≤u �=v≤q

{
P(X[s]1 < min(Y[u]1, Y[v]1))

−P(X[s]1 < Y[u]1)P(X[s]1 < Y[v]1)
}

, (15.30)

ζ0,1 =
k∑

s=1

q∑
u=1

{
P(max(X[s]1, X[s]2) < Y[u]1) − [P(X[s]1 < Y[u]1)]

2
}

+
q∑

u=1

∑∑
1≤s �=t≤k

{
P(max(X[s]1, X[t]1) < Y[u]1)

−P(X[s]1 < Y[u]1)P(X[t]1 < Y[u]1)
}

, (15.31)

and

ζ1,1 =
k∑

s=1

q∑
u=1

{
P(X[s]1 < Y[u]1)[1 − P(X[s]1 < Y[u]1)]

}

+
q∑

u=1

∑∑
1≤s �=t≤k

{
P(max(X[s]1, X[t]1) < Y[u]1)

−P(X[s]1 < Y[u]1)P(X[t]1 < Y[u]1)
}

+
k∑

s=1

∑∑
1≤u �=v≤q

{
P(X[s]1 < min(Y[u]1, Y[v]1))

−P(X[s]1 < Y[u]1)P(X[s]1 < Y[v]1)
}
. (15.32)

We point out that these general expressions for the expected value and variance
of BW are valid even if the judgment rankings are not perfect. Of course,
in that setting, we would need to know the probability distributions of the
imperfect judgment order statistics in order to actually compute the relevant
probabilities. When the judgment rankings are perfect, however, the usual
distributional properties of order statistics from continuous distributions can be
used to evaluate these expressions.

12. Large-Sample Approximation. The asymptotic normality of the standardized
Bohn–Wolfe statistic BW∗ = BW−E (BW)√

Var(BW)
also follows from the fact that BW/cd

is the multivariate U-statistic estimator for γ (see Bohn and Wolfe (1992) for
more details). Let N = c + d and set λ = limN →∞(c/N ). If 0 < λ < 1 and
ζ1,0
λ

+ ζ0,1
1−λ

> 0, then
√

N
cd (BW − E [BW]) has an asymptotic (N → ∞) normal
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distribution with mean 0 and finite variance σ 2∞ given by

σ 2
∞ = ζ1,0

λ
+ ζ0,1

1 − λ
, (15.33)

where ζ1,0 and ζ0,1 are as given in (15.30) and (15.31), respectively.
Under the null hypothesis H0 : � = 0 and perfect rankings, we have

E0[BW] = cdkq/2, and the null asymptotic variance, σ 2
0(∞), from (15.33), does

not depend on the form of the common underlying continuous F . Thus, the stan-
dardized test statistic BW∗ is asymptotically (N → ∞) distribution-free under
H0 and perfect rankings. Bohn and Wolfe (1992) provided detailed expressions
for computing these null values of ζ0,1 and ζ1,0, and thus the value of σ 2

0(∞).
For the special case when the set sizes are both equal to 2 (i.e., k = q = 2),

Bohn and Wolfe (1992) showed that E0[BW] = 2cd and ζ1,0 = ζ0,1 = 4/9 under
H0, so that σ 2

0(∞) = 4
9λ(1−λ)

. Thus, when k = q = 2, the asymptotic (N → ∞)

null distribution of BW∗ =
√

N
cd

(
BW−E0[BW]

σ0(∞)

)
=

√
N

cd

(
BW−2cd√

4
9λ(1−λ)

)
is standard normal.

Replacing λ and 1 − λ by c
N and d

N , respectively, it follows from Slutsky’s

theorem that the asymptotic (N → ∞) null distribution of 3
2

√
1

cdN (BW − 2cd) is
standard normal. When the cycle sizes are also equal (i.e., c = d ), this simplifies
even further to the result that the asymptotic (N → ∞) null distribution of√

9
8c3 (BW − 2c2) is standard normal, as noted previously in (15.22) in the

Large-Sample Approximation section.

It follows from this result that P0
{√ 9

8c3 (BW − 2c2) ≥ zα

} ≈ α, where zα is
the upper αth percentile for the standard normal distribution, when k = q = 2
and c = d , so that the approximate upper αth percentile for the null distribution

of BW is then bwα ≈
√

8c3

9 zα + 2c2 for this setting.

13. Symmetry of the Distribution of BW under the Null Hypothesis and Perfect
Rankings. When H0 is true and the judgment rankings are perfect, the distribution
of BW is symmetric about its mean cdkq/2 for any (k , q , c, d) configuration.
This implies that when H0 is true,

P0(BW ≤ x) = P0(BW ≥ cdkq − x), (15.34)

for x = 0, 1, . . . , cdkq .

14. Shift Parameter Estimator Associated with the Bohn–Wolfe Statistic. For perfect
judgment rankings, Bohn and Wolfe (1992) showed that the Hodges–Lehmann
(1963) shift parameter estimator, �̂BW, associated with the BW statistic is
given by

�̂BW = median{Y(u)v − X(s)t : u = 1, . . . , q; v = 1, . . . , d;
s = 1, . . . , k ; t = 1, . . . , c}. (15.35)

Not surprisingly, �̂BW has the same form as the shift parameter estimator �̂

(4.34) associated with the Mann–Whitney–Wilcoxon statistic W , the difference
being that �̂BW utilizes RSS data, whereas �̂ is computed with SRS observations.
The usual small sample and asymptotic properties (see Randles and Wolfe
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(1979)) for the Hodges–Lehmann estimator �̂BW follow from the properties of
the associated test statistic BW.

15. Shift Parameter Confidence Intervals Associated with the Bohn–Wolfe Statistic.
To develop a 100(1 − δ)% confidence interval under perfect rankings for
the shift parameter �, let D∗

(1) ≤ D∗
(2) ≤ . . . ≤ D∗

(cdkq) be the cdkq ordered
differences Y(u)v − X(s)t , for s = 1, . . . , k ; t = 1, . . . , c; u = 1, . . . , q ; and
v = 1, . . . d . Since we have a shift (�) model and BW =∑cdkq

i=1 �(D∗
(i )), where

�(w) = 1, 0 as w >, ≤ 0, it follows from Randles and Wolfe (1979, Theorem
6.1.13) that[D∗

(cdkq+1−r), D∗
(r)) is a 100(1 − δ)% confidence interval for �, where

r satisfies P0(BW ≥ r) = δ/2. The associated one-sided 100(1 − δ)% upper
{lower} confidence bound for � is given by (−∞, D∗

(r∗)) {[D∗
(cdkq+1−r∗), ∞)},

where P0(BW ≥ r∗) = δ. As with the shift estimator �̂BW (Comment 14), these
confidence intervals and bounds for � are direct RSS analogs of the SRS confi-
dence intervals and bounds for � associated with the Mann–Whitney–Wilcoxon
statistic W (see Section 4.3).

16. Robustness of Level—Effect of Imperfect Rankings on BW. All of the properties of
the test procedures based on BW discussed in Section 15.4 are predicated on the
assumption that the judgment rankings are perfect. This assumption leads directly
to the distribution-free property for BW under the null hypothesis H0 : � = 0
and enables us to use standard distributional properties of order statistics to
construct the necessary critical values for the test procedures. In practice, of
course, it is likely that some ranking errors will occur in obtaining our RSS
data. Bohn and Wolfe (1994) used expected spacings to develop an imperfect
ranking model to address this issue. They found that small imperfections in the
rankings did not seriously affect the overall performance of the tests based on
BW. However, it was also clear from their study that significant ranking error
could lead to substantial inflation of the true significance level over the nominal
level set by using the null distribution of BW under perfect rankings. Fligner and
MacEachern (2006) and Frey (2007a) studied this issue under different classes
of imperfect ranking models. This level of inflation for the BW test procedures
under imperfect rankings clearly emphasizes the importance of having a reliable
ranking process for collecting the RSS data.

17. Lack of Distribution-Freeness When the Rankings Are Imperfect. As noted in
Comment 16, the significance levels for the BW test procedures are inflated
when there are serious ranking errors. This is an immediate consequence of the
fact that the BW statistic is no longer distribution-free under the null hypothesis
H0 : � = 0 in the presence of ranking error (see Bohn and Wolfe (1994)). In fact,
the standardized statistic BW∗ is not even asymptotically (N → ∞) distribution-
free when there are ranking errors. The null expected value E0[BW] = 2cd is
maintained (and not dependent on the common underlying distribution F under
H0) even in the presence of ranking errors (as long as the ranking process is
consistent across the cycles). On the other hand, when there are ranking errors,
the asymptotic variance σ 2∞ (15.33) depends on the form of the common F under
H0. Thus, without some knowledge about the common F or the use of additional
sample information (see Comment 18), even the asymptotic distribution cannot
be used to set reliable approximate critical values for the test procedures based
on BW in the presence of ranking errors. In fact, the true asymptotic variance for
BW under H0 in the presence of ranking errors is generally higher than the value
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σ 2
0(∞) stipulated under perfect rankings. This is not surprising, as we would expect

more variability in the BW procedures when unaccounted-for ranking errors are
present in the data collection process. The net result is that using the perfect
ranking expression σ 2

0(∞) for the asymptotic variance leads to approximate critical
values that actually correspond to higher significance levels than stipulated.

18. Modifications to Accommodate Imperfect Rankings. As noted in Comments 16
and 17, the Bohn–Wolfe statistic BW is no longer distribution-free under the null
hypothesis H0 in the presence of ranking errors during the collection of the RSS
data. This can lead to substantial inflation of the true significance level (over the
nominal level under the assumption of perfect rankings) for the associated test
procedures based on BW. While there is little that can be done to ameliorate
these concerns in the presence of substantial ranking errors and small sample
sizes, Özturk (2008, 2010) proposed a clever way to deal with them in the case
of larger sample sizes. First, he employed a number of techniques, including
minimizing a distance measure and nonparametric maximum likelihood, to esti-
mate unknown parameters in the classes of imperfect ranking models developed
by Bohn and Wolfe (1994) and Frey (2007a). He then used these fitted imperfect
ranking models to provide an appropriate estimator, σ̂ 2

0(∞), of the asymptotic
null variance that takes into account the additional variability associated with the
presence of ranking errors. Finally, replacing the asymptotic null variance σ 2

0(∞)

associated with perfect rankings, as discussed in Comment 12 and Bohn and
Wolfe (1992), by the adjusted estimator σ̂ 2

0(∞) in the expression for BW∗ given
in Comment 12 leads to large-sample test procedures that maintain their nominal
approximate significance levels even in the presence of substantial ranking errors.

19. Comparisons Only Within, but not Across, Judgment Ranks. As discussed in Com-
ments 17 and 18, the Bohn–Wolfe statistic BW is not necessarily distribution-free
under the null hypothesis H0 : � = 0 when the RSS ranking process is not perfect
and this leads to inflated significance levels for the associated test procedures in
the presence of imperfect rankings. For the setting where the set size is the same
for the X and Y RSSs (i.e., k = q), Fligner and MacEachern (2006) proposed a
competitor statistic T that includes the Mann–Whitney comparisons between X ’s
and Y ’s only for those (X , Y )’s that have the same within-set judgment ranks.

Let

Tj =
c∑

t=1

d∑
v=1

φ(X[j ]t , Y[j ]v), for j = 1, . . . , k , (15.36)

where

φ(X[j ]t , Y[j ]v) =
{

1, if X[j ]t < Y[j ]v

0, otherwise.

Thus, Tj is simply the Bohn–Wolfe statistic utilizing the Mann–Whitney counts
only between those X and Y observations that have the same within-set judgment
rank j , for j = 1, . . . , k . The Fligner–MacEachern test statistic is then the sum
of these common-rank Mann–Whitney statistics, namely,

FM =
k∑

j=1

Tj . (15.37)
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The statistic FM is distribution-free under H0 : � = 0 for any ranking mechanism
(perfect or imperfect) that is the same for both the X and Y populations. In
fact, the null distribution of each Tj , j = 1, . . . , k , is precisely that of the usual
two-sample Mann–Whitney statistic for c X observations and d Y observations
(see Comment 4.7). Moreover, T1, . . . , Tk are mutually independent since all
cdkq RSS observations are mutually independent. Thus, the null distribution for
FM (15.37) can be obtained as the convolution of k independent Mann–Whitney
null distributions, each for the same sample sizes of c X ’s and d Y ’s, and this is
true whether the ranking process is perfect or imperfect in any fashion, including
completely at random. MacEachern and Fligner compared the performance of
tests based on the Bohn–Wolfe statistic BW with tests based on their statistic FM
under perfect rankings and under a variety of imperfect ranking models. Since the
BW statistic includes more individual comparisons between the two samples than
does the FM statistic, it is not surprising that Fligner and MacEachern found the
Bohn–Wolfe procedure to generally have higher power than the FM procedure
when the rankings are perfect, although this edge in power for BW under perfect
rankings is never overwhelming for the underlying distributions considered in
their study. On the other hand, when the rankings are imperfect, they found that
the FM procedure was generally superior to the BW procedure. This is also not
surprising, given the FM procedure is truly distribution-free under H0 so that it
maintains its nominal significance level even when the rankings are imperfect,
while the true significance level for the BW procedure can be considerably
inflated over its nominal level in the presence of less than perfect rankings.

20. Consistency of the BW Test. Under Assumptions A1–A5, which includes the
condition that the rankings are perfect, the consistency of the tests based on BW
depends on the parameter

γ ∗ =
k∑

s=1

q∑
u=1

P(X[s]1 < Y[u]1) − kq

2
. (15.38)

Bohn and Wolfe (1992) showed that under Assumptions A1–A5 the test
procedures defined by (15.19), (15.20), and (15.21) are consistent against the
alternatives for which γ ∗ >, <, and �= 0, respectively.

Properties

1. Consistency. Under perfect rankings and the location-shift model defined by
(15.16), the tests defined by (15.19), (15.20), and (15.21) are consistent against
the alternatives � >, <, �= 0, respectively. Also see Comment 20.

2. Asymptotic Normality. See Bohn and Wolfe (1992).

3. Efficiency. See Bohn and Wolfe (1992).

Problems

37. Consider the population of NHANES III data given in Table 15.2 and discussed in Example
15.4. Divide the subjects in the NHANES III population into two groups: (a) age 30 years or
younger and (b) age 31 years or older. Using buttocks circumference as the auxiliary ranking
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variable and common set size k = q = 4, select independent RSSs of size m = n = 20 each
from these two age groups and obtain the BMI values for the individuals in the two RSSs.
Find the P -value for the BW test of the conjecture that the average BMI value for individuals
aged 31 years or older is greater than the average BMI value for individuals aged 30 years or
younger in the NHANES III population.

38. In 1997, scientists at the Horticulture Research International–East Manning conducted an
exploratory study to assess the potential impact of RSS. The results of this investigation
were reported in Murray, Ridout, and Cross (2000). A portion of the study focused on a com-
parison of spray deposit coverage on tree leaves under two different sprayer configurations.
Two similar plots of apple trees were sprayed with a fluorescent, water-soluble tracer Tinopal
CBS-X at 2% concentration in water. One of the plots was sprayed at high volume with a
coarse nozzle on the sprayer (coarse treatment) to provide large average droplet size. The
second plot was sprayed at low volume with a fine nozzle on the sprayer (fine treatment) to
provide small average droplet size. The investigators were interested in both the percentage
of upper leaf surface covered by the spray and the total amount of spray deposited on the
upper surfaces of the leaves. In this problem, we concentrate solely on the percentage of
upper leaf surface covered by the spray and denote this variable by %Coverage (expressed as
a decimal).

With the RSS methodology in mind, 25 sets of five leaves each (common set size k =
q = 5) were collected from the central trees of each of these two plots. Leaves of similar size
were selected throughout the tree canopies, with care to avoid any intentional bias, but without
any formal randomization scheme. For our purposes in this problem, we will view these 250
collected leaves as 50 independent random samples (25 from each plot) of size 5 each.

The leaves were taken to the laboratory where a scientist ranked (without formal mea-
surement) the %Coverage on the upper surfaces of each of the leaves within these 100 sets of
five leaves based on visual appearance of the deposits on the upper leaf surfaces when viewed
under ultraviolet light. Once these visual rankings were completed, the image analysis system
Optimax V was used to formally estimate the percentage areas of the individual upper leaf
surfaces that were covered with deposit.

The scientist’s within-set rankings and the Optimax V estimated %Coverage data from
this experiment are presented in Table 15.7. With common set size k = q = 5, randomly select
five of the 25 sets of rankings for the coarse treatment data on which to utilize the Optimax
V measurement for the smallest ranked leaf in each of the five sets. Then randomly select a
second set of five of the remaining 20 sets of rankings for the coarse treatment data on which
to utilize the Optimax V measurement for the second smallest ranked leaf in each of the
five sets. Continue in this fashion through a third randomly selected set of five (from among
the 15 remaining sets) where the Optimax V measurement for the third smallest ranked leaf
is utilized, then a fourth randomly selected set of five (from among the 10 remaining sets)
where the Optimax V measurement for the fourth smallest ranked leaf is utilized. Finally, the
Optimax V measurement for the largest ranked leaf will be utilized from the remaining five
sets. This yields an RSS of size m = c(k) = 5(5) = 25 from the coarse treatment data. We
proceed in a similar fashion to obtain an independent RSS of size n = d(q) = 5(5) = 25 from
the fine treatment data.

Find the P -value for the BW test of the conjecture that the upper leaf surface %Coverage
is higher for the coarse treatment than for the fine treatment.

39. For a single X and Y cycle (i.e., c = d = 1), X set size k = 2 and Y set size q = 3, obtain the
null probabilities under the assumption of perfect rankings for each of the 5! = 120 distinct
possible permutations of the judgment ordered X and Y observations. Compile the resulting
null distribution of the test statistic BW for this setting.

40. For X set size k = 4, Y set size q = 3, c = 4 cycles for the X sample and d = 3 cycles for
the Y sample, how many distinct possible permutations of the judgment ordered X and Y
observations must be considered in order to compile the null distribution of the test statistic
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Table 15.7 Percentage Upper Leaf Coverage by Spray

High volume coarse nozzle

Ranked set Observer ranking Percentage cover

1 1 .003
1 2 .027
1 3 .029
1 4 .264
1 5 .347
2 1 .012
2 2 .028
2 3 .350
2 4 .378
2 5 .527
3 1 .052
3 2 .107
3 3 .244
3 4 .104
3 5 .194
4 1 .032
4 2 .087
4 3 .076
4 4 .057
4 5 .260
5 1 .095
5 2 .089
5 3 .115
5 4 .096
5 5 .143
6 1 .039
6 2 .137
6 3 .069
6 4 .141
6 5 .216
7 1 .225
7 2 .119
7 3 .212
7 4 .119
7 5 .252
8 1 .026
8 2 .096
8 3 .126
8 4 .100
8 5 .377
9 1 .007
9 2 .043
9 3 .083
9 4 .105
9 5 .153

10 1 .070
10 2 .128
10 3 .095
10 4 .191
10 5 .565
11 1 .034
11 2 .096
11 3 .204

(continued )
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Table 15.7 (Continued )

High volume coarse nozzle

Ranked set Observer ranking Percentage cover

11 4 .269
11 5 .223
12 1 .042
12 2 .118
12 3 .219
12 4 .236
12 5 .373
13 1 .004
13 2 .062
13 3 .130
13 4 .230
13 5 .360
14 1 .013
14 2 .133
14 3 .155
14 4 .218
14 5 .289
15 1 .012
15 2 .069
15 3 .046
15 4 .123
15 5 .296
16 1 .051
16 2 .102
16 3 .094
16 4 .241
16 5 .276
17 1 .098
17 2 .104
17 3 .226
17 4 .264
17 5 .622
18 1 .063
18 2 .059
18 3 .193
18 4 .204
18 5 .155
19 1 .046
19 2 .229
19 3 .224
19 4 .210
19 5 .194
20 1 .040
20 2 .126
20 3 .117
20 4 .285
20 5 .150
21 1 .032
21 2 .044
21 3 .100
21 4 .143
21 5 .273
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Table 15.7 (Continued )

High volume coarse nozzle

Ranked set Observer ranking Percentage cover

22 1 .108
22 2 .141
22 3 .158
22 4 .154
22 5 .100
23 1 .004
23 2 .143
23 3 .130
23 4 .137
23 5 .261
24 1 .028
24 2 .090
24 3 .292
24 4 .250
24 5 .271
25 1 .007
25 2 .057
25 3 .091
25 4 .103
25 5 .229

Low volume fine nozzle

Ranked set Observer ranking Percentage cover

1 1 .036
1 2 .129
1 3 .090
1 4 .083
1 5 .360
2 1 .080
2 2 .137
2 3 .241
2 4 .363
2 5 .298
3 1 .091
3 2 .136
3 3 .183
3 4 .426
3 5 .564
4 1 .005
4 2 .074
4 3 .185
4 4 .270
4 5 .505
5 1 .310
5 2 .166
5 3 .337
5 4 .404
5 5 .487
6 1 .250
6 2 .287
6 3 .320
6 4 .457
6 5 .696

(continued )
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Table 15.7 (Continued )

Low volume fine nozzle

Ranked set Observer ranking Percentage cover

7 1 .156
7 2 .181
7 3 .177
7 4 .167
7 5 .343
8 1 .171
8 2 .192
8 3 .290
8 4 .217
8 5 .217
9 1 .013
9 2 .037
9 3 .074
9 4 .328
9 5 .285

10 1 .094
10 2 .395
10 3 .544
10 4 .550
10 5 .715
11 1 .089
11 2 .186
11 3 .227
11 4 .436
11 5 .512
12 1 .043
12 2 .032
12 3 .042
12 4 .108
12 5 .237
13 1 .026
13 2 .044
13 3 .269
13 4 .336
13 5 .451
14 1 .137
14 2 .100
14 3 .379
14 4 .419
14 5 .518
15 1 .050
15 2 .086
15 3 .140
15 4 .186
15 5 .315
16 1 .180
16 2 .138
16 3 .133
16 4 .181
16 5 .211
17 1 .017
17 2 .111
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Table 15.7 (Continued )

Low volume fine nozzle

Ranked set Observer ranking Percentage cover

17 3 .105
17 4 .051
17 5 .086
18 1 .071
18 2 .067
18 3 .130
18 4 .140
18 5 .417
19 1 .044
19 2 .120
19 3 .293
19 4 .194
19 5 .342
20 1 .024
20 2 .102
20 3 .277
20 4 .464
20 5 .742
21 1 .100
21 2 .364
21 3 .438
21 4 .134
21 5 .333
22 1 .011
22 2 .009
22 3 .085
22 4 .052
22 5 .218
23 1 .111
23 2 .056
23 3 .184
23 4 .132
23 5 .322
24 1 .152
24 2 .199
24 3 .227
24 4 .277
24 5 .386
25 1 .111
25 2 .121
25 3 .170
25 4 .201
25 5 .122

Source: R. A. Murray, M. S. Ridout, and J. V. Cross (2000).

BW? Select 10 of these permutations and compute the value of BW and the null probability
for each of them under the assumption of perfect rankings.

41. General expressions for E(BW) and Var(BW) are provided in (15.28) and (15.29), respectively,
in Comment 11.

(a) Simplify these expressions for the setting of common set size k = q = 2 and the same
number of observations from each population (i.e., common cycle size c = d ).
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(b) For the setting in part (a) under the assumption of perfect rankings, show that the null
H0 : � = 0 mean and variance for BW are given by:

E0(BW) = 2c2 and Var0(BW) = 8c3/9.

42. Compute the Fligner–MacEachern test statistic FM (15.37) discussed in Comment 19 for the
coarse spray and fine spray leaf %Coverage RSSs from Problem 38.

43. Compute the mean μFM and variance σ 2
FM under the null hypothesis H0 : � = 0 for the Fligner–

MacEachern statistic FM (15.37) presented in Comment 19. What is the asymptotic distribution
of the standardized statistic

FM∗ = FM − μFM

σFM

as both cycle sizes c and d become large? Provide arguments supporting this result.

15.5 OTHER IMPORTANT ISSUES FOR RANKED
SET SAMPLING

McIntyre (1952) introduced the basic concept of RSS in his seminal paper 60 years ago
and there were several bursts of related research activity over the next 30 years. However,
it was not until the paper by Stokes and Sager (1988) that the true impact of this simple
idea began to flourish. RSS has been an important aspect of statistical research for the
past 20 years and continues to attract considerable attention even 60 years post-McIntyre.
Part of this richness is due to the great flexibility provided by the ranked set paradigm.
In this section we briefly discuss some aspects of this flexibility that provide excellent
research opportunities as well as address complexities in applications.

Set Size

The set size plays a critical role in the performance of any RSS procedure. For given
set size k , each measured RSS observation utilizes additional information obtained from
its ranking relative to k − 1 other units from the population. With perfect rankings this
additional information is clearly an increasing function of k . Thus, with perfect rankings,
we would want to take our set size k to be as large as economically possible within
available resources. However, it is also clear that the likelihood of errors in our rankings
is an increasing function of the set size as well; that is, the larger k is, the more likely
we are to experience errors in our rankings. Therefore, to select the set size k optimally,
we need to be able to both model the probabilities for imperfect rankings and to assess
their impact on our RSS statistical procedures. We discuss a number of approaches to
this issue in the following section.

Imperfect Rankings

The effectiveness of RSS procedures depends directly on how well the within-set rankings
to select the units for measurement can be accomplished. While perfect rankings are
surely the goal of any RSS protocol, it is just as likely not to be feasible. Thus it is
imperative in practice that we be able to assess the effect of imperfect rankings on our
procedures, and the most appropriate way to do this is to develop statistical models to
capture the uncertainty of the ranking process.
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Dell and Clutter (1972) proposed the first class of models for this purpose. They
view the ranks of the experimental units as being based on perceived values that are
associated with the true measured values through an additive model. Taking a much
different approach, Bohn and Wolfe (1994) considered the distributions of the judgment
order statistics to be mixtures of distributions of the true order statistics and based
their model on the expected spacings between order statistics. Presnell and Bohn (1999)
pointed out some limitations with this approach. Frey (2007a) overcame the Presnell–
Bohn concerns by producing a much larger class of models through a clever scheme of
subsampling order statistics from the basic Bohn–Wolfe model. The most recent attempt
by Fligner and MacEachern (2006) to understand the ranking process used the monotone
likelihood ratio principle to develop a class of imperfect ranking models.

Bohn and Wolfe (1994) and Fligner and MacEachern (2006) studied the effect of
imperfect rankings on the performance of the Bohn–Wolfe BW test procedure presented
in Section 15.4. (More on this topic can be found in Comments 16–19.) Chen, Stasny,
and Wolfe (2006a) used data from the NHANES III survey, 1988–1994, to provide an
empirical assessment of the ranking accuracy in RSS.

Unbalanced Ranked Set Sampling

The emphasis in this chapter has been entirely on balanced RSS data of the form
X[i ]j , i = 1, . . . , k and j = 1, . . . , m , where k is the common set size and m is the num-
ber of cycles. Thus, in the case of balanced RSS data, we have the same number, m ,
of each of the judgment order statistics; that is, we have m mutually independent and
identically distributed first judgment order statistics X[1]1, . . . , X[1]m ; m mutually inde-
pendent and identically distributed second judgment order statistics X[2]1, . . . , X[2]m; . . . ;
and m mutually independent and identically distributed k th judgment order statistics
X[k ]1, . . . , X[k ]m . While balanced RSS is the most commonly occurring form of RSS data,
there are situations where it is not optimal to collect the same number of measured
observations for each of the judgment order statistics.

For example, consider an underlying distribution that is unimodal and symmetric
about its median θ and suppose we are interested only in making inferences about θ

using RSS data based on an odd set size k . Among all the order statistics for a random
sample of size k , we know that the sample median X(k+1)/2 contains the most information
about θ . Thus, to estimate θ in this setting, it is natural to consider measuring the same
judgment order statistic, namely, the judgment median X[(k+1)/2], in each set, so that it is
measured all k times in each of the m cycles. The resulting RSS consists of mk measured
observations, each of which is a judgment median from a set of size k . This would be the
most efficient RSS for estimating the population median θ for a population that is both
unimodal and symmetric about θ , and it is clearly as unbalanced as possible. A similar
approach calls for a distinctly different unbalanced RSS for estimating the median of
an asymmetric unimodal population. There are, of course, other considerations. While
median judgment order statistics do provide an efficient estimator for the median of a
symmetric population, they would not be an optimal choice if we also want to estimate
the variance of the population—balanced RSS measurements would be preferable for
this purpose. (See Özturk and Wolfe (2000) for more discussion of the pros and cons of
balanced versus unbalanced RSS.)

Chen, Stasny, and Wolfe (2006b) and Chen et al. (2009) considered the use of unbal-
anced RSSs in estimation of a population proportion p. They used Neyman allocation
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to decide on optimal representations of the various judgment order statistics in the for-
mation of an RSS. This approach leads to the preferred use of balanced RSS for values
of p near 1/2, but the unbalanced nature of the optimal allocation grows dramatically as
the value of p nears either 0 or 1.

Unequal Set Sizes

Sometimes the sets that arise naturally in RSS applications are of unequal sizes. For
instance, commuters on different public buses in a large city or patients in a collection of
doctors’ waiting rooms represent naturally occurring sets of varying sizes. One alternative
in such situations is to pare down the larger sets to agree in size with the smaller sets, but
this can lead to the loss of valuable information that could have been obtained from the
more comprehensive rankings within the larger sets. Gemayel, Stasny, and Wolfe (2010)
proposed an estimator for the median of a symmetric population that combines the medi-
ans of RSSs of varying sizes. While not optimal for any specific symmetric distribution,
they show that the estimator is robust over a wide class of symmetric distributions.

Cost Considerations

Even under perfect judgment rankings, the costs of the various components of RSS,
namely, identifying sampling units, ranking of sets of sampling units, and eventual mea-
surement of units selected for inclusion in an RSS, all affect the choice of an optimal
set size k . For a basic discussion of these factors and their effect on optimal set size
selection, the reader is referred to Nahhas, Wolfe, and Chen (2002).

Multiple Observations per Set

In all of the previous discussion of RSS in this chapter, we only consider measuring
a single observation from each set. The rationale behind this approach is the fact that
the correlation inherent in measuring more than one observation per set typically leads
to a reduction in efficiency for RSS estimation. Wang, Chen, and Liu (2004), however,
demonstrated that this is not necessarily the case when the cost involved in the ranking
process itself is not small relative to the costs of unit selection and unit measurement.
Under such conditions, they find that taking two or more observations from a set can
lead to improved RSS estimation.

Problems

44. In Problem 14 we collected a balanced RSS of 96 subjects from the NHANES III population
using a set size of k = 6 and arm circumference as the auxiliary variable to perform the
judgment rankings with the goal of making inferences about the BMI for the population. Since
this auxiliary variable does not provide perfect rankings for the BMI values, there will be
ranking errors within the sets. Let

pij = P (true i th order statistic in a set is ranked as the j th

judgment order statistic in that set),
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for i = 1, . . . , 6 and j = 1, . . . , 6. Thus, pij , i �= j , is the probability that the ranking process
in a given set incorrectly assigns the j th judgment rank to the BMI value that is actually
the i th ordered BMI value in the set and pii , i = 1, . . . , 6, is the probability that the ranking
process correctly identifies the i th ordered BMI value in a set of size 6. Use the known BMI
values for all 576 subjects involved in the ranking process leading to this RSS of size 96 to
obtain sample estimates of the 36 probabilities pij , i = 1, . . . , 6 and j = 1, . . . , 6. Discuss the
effectiveness of using arm circumference as the auxiliary ranking variable for BMI.

45. In Problem 15 we collected a balanced RSS of 96 subjects from the NHANES III population
using a set size of k = 8 and arm circumference as the auxiliary variable to perform the
judgment rankings with the goal of making inferences about the BMI for the population. Since
this auxiliary variable does not provide perfect rankings for the BMI values, there will be
ranking errors within the sets. Let

pij = P (true i th order statistic in a set is ranked as the j th

judgment order statistic in that set),

for i = 1, . . . , 8 and j = 1, . . . , 8. Thus, pij , i �= j , is the probability that the ranking process
in a given set incorrectly assigns the j th judgment rank to the BMI value that is actually
the i th ordered BMI value in the set and pii , i = 1, . . . , 8, is the probability that the ranking
process correctly identifies the i th ordered BMI value in a set of size 8. Use the known BMI
values for all 768 subjects involved in the ranking process leading to this RSS of size 96 to
obtain sample estimates of the 64 probabilities pij , i = 1, . . . , 8 and j = 1, . . . , 8. Compare the
imperfect ranking information obtained in this problem with that obtained in Problem 44 for
set size k = 6.

46. In Problem 16 we collected a balanced RSS of 96 subjects from the NHANES III population
using a set size of k = 6 and buttocks circumference as the auxiliary variable to perform the
judgment rankings with the goal of making inferences about the BMI for the population. Since
this auxiliary variable does not provide perfect rankings for the BMI values, there will be
ranking errors within the sets. Let

pij = P (true i th order statistic in a set is ranked as the j th

judgment order statistic in that set),

for i = 1, . . . , 6 and j = 1, . . . , 6. Thus, pij , i �= j , is the probability that the ranking process
in a given set incorrectly assigns the j th judgment rank to the BMI value that is actually
the i th ordered BMI value in the set and pii , i = 1, . . . , 6, is the probability that the ranking
process correctly identifies the i th ordered BMI value in a set of size 6. Use the known BMI
values for all 576 subjects involved in the ranking process leading to this RSS of size 96 to
obtain sample estimates of the 36 probabilities pij , i = 1, . . . , 6 and j = 1, . . . , 6. Compare
the imperfect ranking information obtained in this problem with that obtained in Problem 44
when arm circumference was used as the auxiliary ranking variable. Discuss the implication
of your findings.

47. Consider the NHANES III population data provided in Table 15.2 and discussed in Example
15.4. Collect an unbalanced RSS (see the “Unbalanced Ranked Set Sampling” discussion in this
section) of size n = 96 from this population using set size k = 5 and buttocks circumference as
the auxiliary variable for the ranking process by obtaining the BMI value for the subject with
the median buttocks circumference in each of the 96 sets of size 5. Thus, the collected BMI
data will be of the form X[3]j = j th set sample median for each of the sets j = 1, 2, . . . , 96.
Use these data to estimate the average BMI for the entire NHANES III population. Compare
this estimate with the four estimates of the same quantity using the balanced RSSs of 96
NHANES III subjects each obtained in Problems 14–17 and the estimate from the SRS of
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size 96 obtained in Problem 26. How do these six estimates compare with the actual average
BMI for the entire population?

48. Consider an underlying population that is unimodal and symmetric about its finite mean μ and
suppose we are interested only in making inferences about μ using RSS data based on an odd
set size k . Consider an unbalanced RSS of size n (see the “Unbalanced Ranked Set Sampling”
discussion in this section) collected from this population, where the judgment sample median
X[(k+1)/2] is measured in each of the n sets of size k each. Thus, the collected RSS data will
be of the form {X[(k+1)/2]j = j th set sample median for each of the sets j = 1, 2, . . . , n}. Let
μ̂ = X med = 1

n

∑n
j=1 X[(k+1)/2]j be the average of these n RSS set medians. Show that μ̂ is an

unbiased estimator for μ when the ranking process is perfect. (See Özturk and Wolfe (2000)
for more discussion on such median unbalanced RSSs.)

49. An individual is considered to be obese if his or her BMI is at least 30 (Kuczmarski et al.,
1997). Consider the population of NHANES III data given in Table 15.2 (discussed in Example
15.4) and let p denote the proportion of individuals in this population who are obese.

(a) Using buttocks circumference as the auxiliary variable to perform the judgment rankings
and set size k = 5, select an unbalanced RSS (see the “Unbalanced Ranked Set Sampling”
discussion in this section) of size n = 100, where the BMI value X[5] is obtained for
the largest judgment ordered subject in half (50) of these sets and the BMI value X[4]

is obtained for the second largest judgment ordered subject in the other half (50) of
these sets. Find the sample percentage, p̂high, of the individuals in this RSS who are
obese.

(b) Using buttocks circumference as the auxiliary variable to perform the judgment rankings
and set size k = 5, select an unbalanced RSS (see the “Unbalanced Ranked Set Sam-
pling” discussion in this section) of size n = 100, where the BMI value X[1] is obtained
for the smallest judgment ordered subject in half (50) of these sets and the BMI value
X[2] is obtained for the second smallest judgment ordered subject in the other half (50)
of these sets. Find the sample percentage, p̂low, of the individuals in this RSS who are
obese.

(c) Using buttocks circumference as the auxiliary variable to perform the judgment rankings
and set size k = 5, select an unbalanced RSS (see the “Unbalanced Ranked Set Sampling”
discussion in this section) of size n = 100, where the BMI value X[3] is obtained for the
median judgment ordered subject in all 100 of these sets. Find the sample percentage,
p̂middle, of the individuals in this RSS who are obese.

(d) Compare the sample percentages obtained in parts (a)–(c) of this problem in conjunction
with the true proportion of obese individuals in the NHANES III population. (See Chen,
Stasny, and Wolfe (2006b) for more discussion about the use of unbalanced RSSs in the
estimation of population proportions.)

50. An individual is considered to be overweight if his or her BMI is at least 25 (Kuczmarski
et al., 1997). Consider the population of NHANES III data given in Table 15.2 (discussed
in Example 15.4) and let q denote the proportion of individuals in this population who are
overweight.

(a) Using the RSS sample obtained in part (a) of Problem 49, find the sample percentage,
q̂high, of the individuals in this RSS who are overweight.

(b) Using the RSS sample obtained in part (b) of Problem 49, find the sample percentage,
q̂low, of the individuals in this RSS who are overweight.

(c) Using the RSS sample obtained in part (c) of Problem 49, find the sample percentage,
q̂middle, of the individuals in this RSS who are overweight.

(d) Discuss the sample percentages obtained in parts (a)–(c) of this problem in conjunction
with the true proportion of overweight individuals in the NHANES III population.

(e) Compare the results obtained in this problem with those obtained in Problem 49. (See
Chen, Stasny, and Wolfe (2006b) for more discussion about the use of unbalanced RSSs
in estimation of population proportions.)
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15.6 EXTENSIONS AND RELATED APPROACHES

In addition to the rapid development of the field of RSS over the past two decades, it
has also provided a stimulus for the emergence of other important related approaches to
statistical inference. In this section we discuss four such areas that have arisen directly
from previous RSS considerations.

Judgment Post-Stratification

One of the features of RSS is that a researcher is required to judgment rank the potential
units prior to obtaining any measurements; that is, the researcher must commit to the RSS
approach from the onset of the experiment. MacEachern, Stasny, and Wolfe (2004) intro-
duced a data collection method, called judgment post-stratification (JPS ), that enables a
researcher to collect an initial SRS in a standard fashion from the population of interest
and then to post-stratify the SRS observations by ranking each of them among its own
randomly chosen comparison sample. Thus the variable of interest is first measured on all
of the original SRS units and only then is relative judgment ranking information obtained
from the comparison samples to enable the JPS. This approach allows the researcher to
utilize the measurements in the full SRS as well as the additional information obtained
from the JPS process.

The JPS approach provides a mechanism for incorporating both imprecise rankings
and information from multiple rankers via the JPS process. For additional work on this
aspect of JPS, see Wang et al. (2006), Stokes, Wang, and Chen (2007), Wang, Lim, and
Stokes (2008), and Frey and Özturk (2011).

Order Restricted Randomization

Özturk and MacEachern (2004, 2007) built on the general framework of RSS to develop
order restricted randomized (ORR) designs that utilize subjective judgment ranking to
enable restricted randomization in the comparison of two treatments (one of which could
be a control). The units within a given set are assigned to different treatments and then
instead of the typical RSS approach that selects a single unit from each ranked set for
full measurement, the ORR designs allow for all of the units within a set to be fully mea-
sured. The positive dependence between the units within sets leads to contrast estimators
and confidence intervals with smaller variability than those based on either completely
randomized designs or purely RSS designs. An added feature of ORR estimation is that
it does not rely on perfect judgment rankings.

Intentionally Representative Sampling

Frey (2007b) introduced a novel approach to data collection dubbed intentionally repre-
sentative sampling (IRS) that allows a researcher more flexibility in the use of prior and
auxiliary information than is possible with RSS. Once a target sample size n has been
established, the IRS process requires that the researcher divide the population of interest
into disjoint potential samples of size n , each of which is considered (based on prior
and auxiliary information) to be at least roughly representative of the overall population
with respect to the measurement of interest. In this way, the researcher can exclude from
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the very beginning any potential samples that are considered to be unrepresentative of
the population. To effectively implement the IRS approach, we must, of course, have
reasonably good auxiliary information about all of the units in the population, not just
the ranking subsets that are required for implementation of RSS procedures.

Sampling from Partially Rank-Ordered Sets

There are times when it is difficult to rank all of the experimental units in a set with high
confidence, particularly when subjective information is utilized in the ranking process.
Özturk (2011, 2012) and Gao and Özturk (2012) considered a judgment ordering process
called judgment subsetting that allows a judgment ranker to use tied ranks when it
is difficult to fully rank the experimental units in a set. They showed that this added
flexibility leads to improved precision for RSS estimation procedures in settings where
the full ranking cannot be done with high confidence.



Chapter 16

An Introduction to Bayesian
Nonparametric Statistics
via the Dirichlet Process

INTRODUCTION

Bayesian statistics incorporate prior information about the parameter of interest into
the inferential method. The prior information is specified through the use of a prior
distribution on the parameter of interest, thereby treating that parameter as a random
quantity. The prior information can be obtained in many ways including pilot experiments
and the opinions of experts. The parameter is chosen by the prior and then after the data
are obtained, the posterior distribution is computed. The posterior distribution is the
conditional distribution of the parameter, given the data. If more data are obtained, the
posterior is used as the new prior and then a new posterior distribution is computed. This
is called Bayesian updating.

It is easiest to do Bayesian statistics when the unknown parameter lies in a finite-
dimensional space. For example, in the problem of estimating a success probability
considered in Chapter 2, the typical prior used for the one-dimensional parameter p
is a member of the Beta(r , s) family whose density function f (x) is proportional to
xr−1(1 − x)s−1. Then after observing the outcomes of the n Bernoulli trials, say X =
(X1, . . . , Xn), where Xi is 1 if the ith trial results in a success and 0 if the ith trial results
in a failure, the posterior distribution of p given the data is Beta(r + B , s + n − B),
where B =∑n

i=1 Xi is the number of successes in the n trials. The Bayes estimator of
p for a squared-error loss function is the mean of the posterior distribution, namely,
E (p|X ) = (r + B)/(r + s + n). As n gets large, the Bayes estimator approaches B/n ,
the frequentist estimator considered in Chapter 2.

Bayesian methods are more difficult in the nonparametric case because in the non-
parametric setting, the unknown parameter may vary in an infinite-dimensional space.
For example, if the parameter is the distribution function F itself, we need to estimate
F (x) for every value of x between −∞ and ∞. A challenging problem for statisticians
who wish to pursue a Bayesian nonparametric approach is to put a prior distribution
on F and then compute the posterior distribution of F , given the data. Although there
were several earlier attempts at doing this, Ferguson’s (1973) elegant approach, cre-
ating what is now called Ferguson’s Dirichlet process prior, or more succinctly, the
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Dirichlet process, has proved to have staying power and is frequently used. It is sur-
prisingly tractable because, in the simplest problems, the posterior distribution, given
the data, is also a Dirichlet process prior. When the prior distribution, given the data,
is also a member of the family, the family is said to be a conjugate family of distribu-
tions. The Dirichlet process priors are a conjugate family, and the posterior distribution,
given the data, is readily obtained as we describe in Section 16.1. Section 16.2 con-
siders Ferguson’s (1973) Bayesian nonparametric estimator of the distribution function
F . Section 16.3 treats a rank order estimation problem and the Bayesian nonparametric
rank order estimator of Campbell and Hollander (1978). Section 16.4 treats the censored
data counterpart to Section 16.2 and gives the Susarla–van Ryzin (1976) Bayesian non-
parametric estimator of F for the case where the data are right censored. In Section
16.5 we discuss other Bayesian nonparametric approaches to estimation including Gibbs
sampling.

16.1 FERGUSON’S DIRICHLET PROCESS

We consider probability measures P on the real line R1. Ferguson’s approach considers
partitions A = (A1, . . . , Ak ) of disjoint measurable sets whose union is R1. For any such
partition A, the vector P(A) = (P(A1), . . . , P(Ak )) is a k -vector of nonnegative numbers
(probabilities) that sum to 1. The probability measure P is completely determined if P(A)

is known for all or most partitions A. P must satisfy certain additivity and consistency
conditions, which we will not present here, but see Ferguson (1973) for the mathematical
rigor. It can be shown that a consistent family of probability measures for P(A) as
A ranges among all finite partitions will define a unique probability measure for P .
This is the way Ferguson defines his process. Ferguson’s Dirichlet process is arrived at
by starting with finite-dimensional Dirichlet distributions. These are distributions in Rk

concentrated on the subset Pk = {p : (p1, ..., pk ) : p1 ≥ 0, . . . , pk ≥ 0,
∑k

i=1 pi = 1
}
. A

random vector (Y1, . . . , Yk ) ε Pk is said to have a finite-dimensional Dirichlet distribution
with parameters (β1, . . . , βk ) if

Yi = Zi∑k
j=1 Zj

, (16.1)

where Z1, . . . , Zk are independent Gamma random variables with scale parameter 1 and
shape parameters β1, . . . , βk . We write this distribution as D(β1, . . . , βk ). When βi > 0,
i = 1, . . . , k , the density function of (Y1, . . . , Yk ) is

f (y1, . . . , yk ) = 
(β0)∏k
j=1 
(βj )

, (16.2)

where β0 is defined as β0 =∑k
j=1 βj and yk = 1 −∑k−1

j=1 yj . This is a (k − 1)-

dimensional distribution because the y’s have the constraint
∑k

j=1 yj = 1.
Ferguson’s Dirichlet process produces a random probability measure P (say), taking

values in P , the space of all probability measures on R1. The process is defined by
having, for every finite partition A, P(A) follow the Dirichlet distribution with parame-
ters (αμ(A1), . . . , αμ(Ak )), that is P(A) has the distribution D(αμ(A1), ..., αμ(Ak )). In
particular, for the partition (A, Ac), P(A) follows the Beta distribution with parameters
(α(A), α(Ac)). We denote the Dirichlet measure just described by D(α, μ).
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The Bayesian works with this process as follows. The Bayesian chooses D(α, μ) as
a prior distribution for P . The measure μ and the constant α need to be specified. The
measure μ can be viewed as the Bayesian’s guess of the unknown P and α is viewed as
the prior sample size, a measure of confidence in the guess. The larger the values of α,
the more confidence that is being expressed (see Comments 3 and 4). Ferguson showed
(see Comment 5)

E (P(A)) = μ(A) (16.3)

var(P(A)) = μ(A)μ(Ac)/(α + 1). (16.4)

In particular with A = (−∞, x ], we have

E (P(−∞, x ]) = E (F (x)) = μ(−∞, x ] (16.5)

var(P(−∞, x ]) = var(F (x)) = μ(−∞, x ]μ(x , ∞)/(α + 1). (16.6)

Suppose that X1, X2, . . . are random variables such that, given P , they are independent
and identically distributed according to P . That is, P is first chosen by the Dirichlet
process D(α, μ), and then given P , the X ’s are a sample from P . Then Ferguson (1973)
showed that the posterior distribution of P , given X1, . . . , Xn , is D(α + n , μn) where

μn =
(

α

α + n

)
μ +
(

n

α + n

)
Fn , (16.7)

where

Fn(x) =
∑n

i=1 I (Xi ≤ x)

n
(16.8)

is the empirical distribution of X1, . . . , Xn .
For a weighted squared-error loss function (see Comment 6), the Bayes estimator

of any function g(P) is its expectation with respect to the posterior distribution. In
particular, the Bayes estimator of P is μn and the Bayes estimator of F (x) = P((−∞, x ])
is μn((−∞, x ]) where μn is given by (16.7).

Comments

1. The Dirichlet Process Produces Only Discrete Distributions. The Dirichlet pro-
cess assigns probability 1 to the class of all discrete distributions in R1. This
means the random distribution produced by the Dirichlet prior is always a dis-
crete distribution. This result was first proved by Ferguson (1973) in his seminal
paper. An alternative proof can be obtained using Sethuraman’s (see Sethuraman
and Tiwari (1982) and Sethuraman(1994)) constructive definition of a Dirichlet
measure (see Comment 2).

Figure 16.1 gives 10 randomly selected P ’s chosen by the Dirichlet measure
D(α, μ), where μ is chosen to be the exponential distribution with scale parameter
3, and α is taken to be 4 yielding

μ((0, x ]) = 1 − exp(−3x) for x ≥ 0, = 0 for x < 0, (16.9)

α = 4.
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Figure 16.1 Ten randomly selected P ’s (dark curves) chosen by D(α, μ), α = 4, μ is exponential with scale
parameter 3 (dotted curve).

The dark lines in Figure 16.1 are the randomly selected P ’s and the smooth curve
is μ((0, x ]), which is the expected value of F (x) = P((−∞, x ]).

2. Sethuraman’s Constructive Definition of the Dirichlet Process. Let Y1, Y2, . . . ,
θ1, θ2, . . . be independent random variables where the Y ’s are identically dis-
tributed with common distribution μ and the θ ’s are identically distributed accord-
ing to a Beta distribution with parameters 1 and α. Set

p1 = θ1, pk = θk

∏k−1

j=1
(1 − θj ), (16.10)

P(A) =
∑

k

pk I (YkεA), (16.11)

where for any event A, I (A) = 1 if A occurs and 0 otherwise. The random measure
P is a random discrete probability measure putting mass pk at Yk . Sethuraman
(1994) showed its distribution is the Dirichlet measure D(α, μ). The represen-
tation defined by (16.10) and (16.11) was announced in Sethuraman and Tiwari
(1982) and studied in detail by Sethuraman (1994).

By its construction, the random measure P defined by (16.10) and (16.11) is
a random discrete measure. It still had to be proved, however, that this process
is the same as Ferguson’s Dirichlet process. Sethuraman needed to show that
finite-dimensional distributions are finite-dimensional Dirichlet. He did this using
a fixed point theorem and he also used the same fixed point theorem to show that
the posterior distribution is also Dirichlet. Since Sethuraman’s representation uses
only independent random variables, other Dirichlet results are relatively easy to
prove using the representation. The representation also lends itself to computation.
In particular, it can be used to obtain random samples from the Dirichlet process
(see Sethuraman (1994), Doss (1994), and Hollander and Sethuraman (2001)).

3. Relationship of the Bayes Estimator to the Empirical Distribution Function. From
(16.7), we see that the Bayes estimator μn is a linear combination of the prior
guess μ and the empirical distribution Fn . Furthermore, as n gets large, the first
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term in (16.7) approaches 0 and the second term approaches Fn . Thus, for large
n , the influence of the prior information is diminished (the sample itself does
most of the “talking”!) as is typically the case for Bayesian procedures.

4. Interpretation of α as the Prior Sample Size. It is a common practice to view α

as the prior sample size partially because setting α = 0 in (16.7) yields μn = Fn .
Sethuraman and Tiwari (1982) pointed out that there is a difficulty with this view.
The Dirichlet process prior is not defined if α = 0 and as α tends to 0 with the
prior guess μ held fixed, it can be shown that the limiting prior distribution is a
degenerate distribution that puts all of its mass at one random point Y , where Y
has the distribution μ. This is too confining a prior opinion and this limiting dis-
tribution would typically not be an acceptable prior for use in Bayesian problems.

5. Mean and Variance of P(A). Taking the partition (A, Ac) it follows directly from
the definition of the Dirichlet process that if the Dirichlet prior is D(α, μ), then
P(A) has a Beta distribution with parameters (αμ(A), αμ(Ac)). It then follows
that E (P(A)) = μ(A), var(P(A)) = μ(A)((1 − μ(A))/(α + 1).

6. Bayes Estimator of P When the Loss Function Is Weighted Squared Error. When
estimating F (x) = P((−∞, x ]) by F̂ (x), we will assume that the loss function
is weighted squared error so that when we estimate P by F̂ we “lose”

L(P , F̂ ) =
∫

(F (x) − F̂ (x))2dW (x), (16.12)

where W is a finite measure. The Bayes estimator is the F̂ that minimizes the
expected loss with respect to the posterior distribution. The minimizer is the
expectation of P((−∞, x ]) with respect to D(α + n , μn) and this expectation is
μn((−∞, x ]).

7. Unconditional Distribution of Sample Observations. Ferguson (1973) showed
that if P ∼ D(α, μ) and X1 is a sample of size 1 from P , then

Q(X1 ∈ A) = μ(A),

where Q denotes probability. He established the result using conditional
expectations as follows.

Q(X1 ∈ A) = EQ(X1 ∈ A|P(A)) = EP(A) = μ(A), (16.13)

where the second equality uses the fact that given P , X1 is a sample of size
1 from the distribution P . With A = (−∞, x ], (16.13) yields the conditional
distribution function of X1, that is

Q(X1 ≤ x) = μ((−∞, x ]).

Hollander and Korwar (1976) used moments of the Dirichlet distribution
to generalize Ferguson’s result to a sample of size m . Let P ∼ D(α, μ) and let
X1, . . . , Xm be a sample of size m from P. Then

Q {X1 ≤ x1, . . . , Xm ≤ xm} =
∏m

j=1

(
αμ
(
Ax(j )

)+ j − 1
)

∏m
j=1(α + j − 1)

, (16.14)

where x(1) ≤ · · · ≤ x(m) are the order statistics of x1, . . . , xm and Ax = (−∞, x ].
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16.2 A BAYES ESTIMATOR OF THE DISTRIBUTION
FUNCTION (FERGUSON)

Assumption

A1. X1, X2, . . . , Xn are a random sample from a distribution F with probability mea-
sure P , where P((−∞, x ]) = F (x). Let the prior guess of the unknown P be
the measure μ, and let α denote the degree of confidence in μ. The parameter
α is often referred to as the prior sample size.

Procedure

For weighted squared-error loss (see Comment 6), the Bayes estimator of F (x) =
P((−∞, x ]) is

μn((−∞, x ]) =
(

α

α + n

)
μ((−∞, x ]) +

(
n

α + n

)
Fn((−∞, x ]), (16.15)

where μ((−∞, x ]) = F0(x) (say) is the prior guess at F (x) and Fn((−∞, x ]) = Fn(x) =∑n
i=1 I (Xi ≤ x)/n is the empirical distribution function based on X1, . . . , Xn .

EXAMPLE 16.1 Framingham Heart Study.

The Framingham Heart Study is a well-known ongoing longitudinal study of cardiovas-
cular disease. The original study cohort consisted of a random sample of 5209 adults
aged 28 through 62 years residing in Framingham, Massachusetts, between 1948 and
1951. The data in Table 16.1 consist of an extinct cohort of 12 men who were 67 and
over at the fourth exam. The data are the times in days from the fourth exam to death.

McGee (2010) supplied the data of Table 16.1. He is an expert on the Framingham
study. McGee postulated a priori an expected remaining life of about 8 years for men
under those or similar situations in 1958 (about the time of the fourth exam). He felt that
a two-parameter Gompertz distribution or a two-parameter Weibull distribution might
be a good guess for μ but also an exponential with a mean of 8 (roughly 2292 days)
would be a reasonable prior. Thus, partially for convenience of illustration, we set μ to
be exponential with mean 2292, so that

μ(x) = F0(x) = 1 − e−λx , λ = 1/2922,

and we take α = 4. Figure 16.2 gives a plot of the empirical distribution Fn , the Bayes
estimator, and the exponential prior μ.

Ferguson’s estimator can be obtained from the R function ferg.df(x, alpha,

mu, npoints, ...), where x is a vector of length n, alpha is the prior sample size,
mu is the prior guess for P, npoints is the number of estimated points returned, and “. . . ”
are all of the parameters needed for mu.

Table 16.1 Time from Fourth Exam to Death (Days)

i 1 2 3 4 5 6 7 8 9 10 11 12
Xi 2273 2710 141 4725 5010 6224 4991 458 1587 1435 2565 1863

Source: D. McGee (2010).
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Figure 16.2 Ferguson’s estimate, the empirical CDF, and the prior CDF for the fourth exam data of
Table 16.1.

Comments

8. Bayes Estimator. With the Dirichlet process prior and weighted squared-error loss,
the estimator μn given by (16.15) minimizes the Bayes risk among all estimators
of F . That is, μn is the Bayes estimator for the Dirichlet Process prior.

9. G-Invariant Dirichlet Process Priors. Dalal (1979) introduced G-invariant Dirich-
let process priors whose realizations are probability measures invariant under
a finite group G of transformations. For the specific choice G = {e, g} where
e(x) = x and g(x) = 2θ − x , Dalal obtained the Bayes estimator against his
prior for the problem of estimating a symmetric distribution with known cen-
ter of symmetry θ . Dalal’s estimator is a symmetrized version of Ferguson’s
estimator.

Assume P follows a G-invariant process with G = {e, g} and parameters
μ {(−∞, x ]} = F0 (the prior guess at the symmetric F ) and α. Then Dalal’s
estimator for a sample of size n is

μ∗
n {(−∞, x ]} = pnF0(x) + (1 − pn)

n∑
i=1

{
δXi (x) + δ2θ−Xi (x)

}
/2n , (16.16)

where pn = α/(α + n) and

δX (t) =
{

1 when X ∈ {(−∞, t]},
0 otherwise.

Hannum and Hollander (1983) used Dalal’s G-invariant prior to study the robust-
ness of Ferguson’s estimator in the symmetric setting where Dalal’s estimator
is the Bayes estimator. Their paper gives information about the robustness of
Ferguson’s estimator against a prior for which it is not Bayes.
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Properties

1. Bayes optimality. See Ferguson (1973) and Comment 8.

2. Robustness. See Hannum and Hollander (1983) and Comment 9.

Problems

1. The morning arrival times for 10 days of a school bus at the Tipperary street pickup stop are
8:05, 8:06, 8:09, 8:12, 8:03, 8:15, 8:11, 8:16, 8:00, and 8:14. The scheduled pickup time is
8:05 but past experience has led the students to believe there is a tendency for the bus to arrive
late rather than be on time or early. For convenience we relabel so that 8:00 is represented by
0, 8:05 by 5, and so forth, hence we can consider the possible arrival interval to be [0, 20].
To utilize the students’ experience, we choose the prior where the prior density μ′ = f0 is

μ′(x) = f0(x) =

⎧⎪⎪⎨⎪⎪⎩
1/40, 0 ≤ x ≤ 10

3/40, 10 ≤ x ≤ 20

0, otherwise,

This choice makes arrivals a priori three times more likely to be in the interval [10, 20] than
in the interval [0, 10]. The corresponding prior distribution μ is

μ(−∞, x ] = F0(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, x < 0

x/40, 0 ≤ x ≤ 10

1

4
+ 3(x − 10)

40
, 10 ≤ x ≤ 20

1, x > 20.

For the choice α = 3, find the Bayes estimator given by (16.15). What is the posterior proba-
bility that the bus will be more than 10 min late?

2. Consider the arrival times data of Problem 1 and again take α = 3 but change the prior to be
uniform, namely,

μ′(x) = f0(x) =
{

1/20, 0 ≤ x ≤ 20

0, otherwise,

so that

μ(−∞, x ] = F0(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x < 0

x/20, 0 ≤ x ≤ 20

1, x > 20.

Find the Bayes estimator given by (16.15) and compare your answer to that of Problem 1.
What is the posterior probability that the bus will be more than 10 min late? Is the unknown
prior reasonable for a situation where a priori the bus has a tendency to be late?

3. Consider the arrival times of Problem 1, take α = 3 and F0 to be uniform on [0, 20]. Thus F0

is symmetric with center of symmetry θ = 10. Compute Dalal’s estimator (see Comment 9)
and compare it with Ferguson’s estimator obtained in Problem 2.

4. Let P have the Dirichlet distribution D(α, μ). Show

(a) The expected value of P(A) is μ(A).

(b ) The variance of P(A) is μ(A)μ(Ac)/(α + 1).



752 Chapter 16 An Introduction to Bayesian Nonparametric Statistics via the Dirichlet Process

5. Show that Dalal’s estimator μ∗
n , given by (16.16), of a symmetric distribution is a symmetrized

version of Ferguson’s Bayes estimator of an arbitrary distribution. That is, show

μ∗
n ((−∞, x ]) = 1

2

{
μn(−∞, x ] + 1 − μn (−∞, [2θ − x ]−)

}
,

where F ([t]−) denotes P(X < t) when X has the distribution F .

16.3 RANK ORDER ESTIMATION (CAMPBELL
AND HOLLANDER)

Assumptions

A1 of Section 16.2

Rank Order Problem

We let X1, . . . , Xn be a sample of size n from F . The problem is to estimate the rank
order G of X1 among X1, . . . , Xn from the knowledge of r observed values X1, . . . , Xr

with r < n . Without loss of generality we can consider X1, . . . , Xr to be the first r values
in the unordered sample.

Some Possible Settings

(a) A pilot group of 10 astronauts are training for an important space mission. Each
trainee earns a score based on his/her overall performance. Suppose X1 represents
astronaut BB’s score. Based on X1, . . . , X10, how do we estimate BB’s rank in
a total pool of 30 astronauts. In this scenario, r = 10 and n = 30. (The six best
astronauts, as measured by X , will be chosen as the crew and the next best six
will be chosen as the backup crew.)

(b) In 2008, there were five major hurricane (Category 3 strength or higher) with
corresponding top wind speeds X1, . . . , X5. How can we estimate, on the basis
of X1, . . . , X5, the rank of the storm represented by X1 in the set of the five 2008
major hurricanes and the next 15 major hurricanes to occur? Here, r = 5 and
n = 20.

Procedure

Let

K = number of observations of X1, . . . , Xn less than X1,

L = number of observations of X1, . . . , Xn equal to X1,

M = number of observations of X1, . . . , Xn greater than X1.

Using average ranks when ties are present, the rank order G of X1 among X1, ..., Xn

is the average of the ranks that would be assigned to the L values tied at X1, in a joint
ranking from least to greatest, that is,

G = {(K + 1) + (K + 2) + · · · + (K + L)}/L = K + {(L + 1)/2}. (16.17)
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In a similar fashion, we define K ′, L′, M ′ as the number of observations of X1, . . . , Xr

less than, equal to, and greater than X1, respectively, so the rank order of X1 among
X1, . . . , Xr is

G ′ = K ′ + (L′ + 1)/2.

For squared-error loss, the mean of the posterior distribution of G , given X1, . . . , Xr ,
is the Bayes estimator Ĝ of G . Campbell and Hollander (1978) showed

Ĝ = G ′ + (n − r)

{
αμ(−∞, X1) +

r∑
i=1

δXi (−∞, X1) + 1

2
αμ({X1})

+ 1

2

r∑
i=1

δXi ({X1})
}/

(α + n), (16.18)

where the measure μ(·) and the “prior sample size” α are the parameters of the Dirichlet,
where δz (A) = 1 if z ∈ A, 0 otherwise, and {X1} is the set consisting of the single point
X1. Campbell and Hollander showed that Ĝ can also be written as

Ĝ = {(n + α)/(r + α)} G ′ − 1

2
{(n − r)/(r + α)}

+ (n − r)

[
αμ(−∞, X1) + 1

2
αμ({X1})

]/
(r + α). (16.19)

The formula (16.19) for Ĝ is more computationally direct than (16.18).
We note that the estimator Ĝ depends on X1, . . . , Xr only through X1 and G ′ and of

course Ĝ also depends on the prior guess μ and the prior sample size α, the parameters
of the Dirichlet process.

EXAMPLE 16.2 Swimming the Womens’ 50 yard Freestyle.

A competitive Division I NCAA college swimming team is practicing for the 2009
conference championship. In the womens’ 50 yard freestyle, the college team has decided
to have two heats. There are six swimmers in the first heat and six swimmers in the second
heat. A swimmer (WW, say) competes in the first heat and her time is X1 seconds. The
times X1, . . . , X6 of the six swimmers in the first heat are given in Table 16.2. The team
has decided that the six fastest swimmers in the two heats will be chosen to compete in
the event at the conference championship. We wish to estimate WW’s rank order among
X1, . . . , X12. Here r = 6 and n = 12.

An expert swimmer postulated, based on NCAA Division I data and her experience in
the event, that a reasonable prior distribution is N (22.52, .24), this is a normal distribution
with mean 22.52 and standard deviation .24. Taking that as the prior parameter μ and

Table 16.2 Womens’ 50 Yard Freestyle Times (seconds)

X1 X2 X3 X4 X5 X6

22.43 21.88 22.39 22.78 22.65 22.60
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α = 10 as the “prior sample size” parameter, we have from (16.19) with r = 6, n = 12,
G ′ = 3, and X1 = 22.43,

Ĝ =
(

22

16

)
3 − 1

2

(
6

16

)
+ 60

[
P22.52,.24(Y ≤ 22.43) + 1

2
(0)

]/
16,

where P22.52,.24(Y ≤ 22.43) is the probability that a normal random variable Y with mean
22.52 and standard deviation .24 is less than or equal to 22.43, and μ(22.43) = 0 because
the normal distribution is continuous. Now, P22.52,.24(Y ≤ 22.43) = P(Z ≤ 22.43−22.52

.24 ) =
P(Z ≤ −.375), where Z is an N (0, 1) random variable, and the probability is found to
be .3538. Thus, Ĝ = 66

16 − 3
16 + 60(.3538)

16 = 5.264, which may be rounded to 5.
The Campbell–Hollander estimator can be obtained from the R function ch.ro(x,

n, alpha, mu, ...) where x is a vector of length r, n is the sample size, alpha is
the prior sample size, mu is the prior guess for P, and ... are all the parameters needed
for mu.

Note the role played by the prior’s parameters μ and α. WW’s time of 22.43 is
slightly below the prior’s mean of 22.52. Without the prior information we would have
expected her rank in the 12 would be at the 50% point because her rank of 3 in the initial
group of 6 put her at the 50% point of that group. The statistic Ĝ incorporates the prior
information and adjusts WW’s final ranking slightly downward.

Comments

10. Bayes Optimality of Ĝ . With the Dirichlet process prior and squared-error loss, Ĝ
minimizes the Bayes risk among all estimators of G (see Campbell and Hollander
(1978)).

11. Non-Bayesian Competitors of Ĝ. Johnson (1974) introduced non-Bayesian esti-
mators of rank order for the rank order problem. His estimators are

GF = G ′ + (n − r)F (X1), (16.20)

for the case when F is known and continuous, and

Gu = {(n + 1)/(r + 1)} G ′ (16.21)

for the case when F is unknown.
For the case when F is known, Johnson showed that

ˆ̃T = [G ′+ (n − r + 1)F(X1) − {(n − r)/(n − 1)}]/[1 +{(2r − n − 1)/(n2 − 1)
}]

(16.22)
is, conditional on G = g , an unbiased estimator of g . For the case when F is
unknown, Johnson showed that for r > 1, the estimator

T̃ = (r − 1)−1(n − 1)(G ′ − 1) + 1 (16.23)

is, conditional on G = g , an unbiased estimator of g .
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12. Optimal Properties of Gu and GF in the Nonrandom Model. In the nonrandom
model (Model I), it is assumed that F is a nonrandom, continuous distribution
from which a sample X1, . . . , Xr , . . . , Xn is taken. For this nonrandom model,
Campbell and Hollander showed that in the class of linear rank order estimators
of the form aG ′ + c, the estimator Gu minimizes the average mean-squared error.
Campbell and Hollander also showed that in the nonrandom model, in the class
of estimators of the form aG ′ + bF (X1) + c, the estimator GF minimizes the
average mean square.

13. Mean-Squared Error Comparisons. Campbell and Hollander (1978) compared
average mean-squared errors of the estimators Ĝ , Gu , GF , T̃ , and ˆ̃T in the
nonrandom model (Model I) and in the Dirichlet model (Model II). In Model
II, X1, . . . , Xn is a sample of size n from the Dirichlet process. Campbell and
Hollander’s Table 4.2 reflects the Bayesian optimality of Ĝ .

Properties

1. Bayes Optimality of Ĝ. See Campbell and Hollander(1978) and Comment 10.

2. Average Mean-Squared Errors. See Campbell and Hollander (1978) and
Comment 13.

Problems

6. Suppose the prior used in Example 16.2 was changed to μ = N (22.35, .24) rather than
N (22.52, .24) and the prior sample size used remains α = 10. How does this affect, if at all,
WW’s predicted rank? Compare the two results and, if a difference occurs, give an explanation
for the difference.

7. Compute the estimators Gu and T̃ for the freestyle times of Table 16.2. Compare with the
values of the estimator Ĝ . Explain the differences, if any.

8. Show that formulas (16.18) and (16.19) are equivalent.

9. Describe three other possible scenarios for the rank order problem.

10. How would you obtain prior information for a problem involving California earthquakes and
their severity as measured on the Richter scale?

11. Show that Gu can be obtained from GF by replacing F (X1) with G ′/(r + 1) in (16.20).

16.4 A BAYES ESTIMATOR OF THE DISTRIBUTION
WHEN THE DATA ARE RIGHT-CENSORED (SUSARLA
AND VAN RYZIN)

Assumptions

B1. We assume that given distribution functions F and G , X1, . . . , Xn are inde-
pendent and identically distributed according to the continuous life distribution
F , and Y1, . . . , Yn are independent and identically distributed according to the
continuous censoring distribution G . We observe

Zi = min {Xi , Yi }
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and δi where

δi =
{

1, if Xi ≤ Yi ,

0, if Xi > Yi .

Note that this is a change of notation from Section 11.6. We retain the usage
of the X ’s earlier in this chapter.

B2. A prior distribution is needed for the pair (F , G). The prior used assumes that,
under the prior, F and G are independent and that F is D(α, μ). As shown by
Lo (1993), the distribution of G is irrelevant and the values Y1, . . . , Yn can be
considered as constants.

Procedure

Rearrange the sample to take

Z1 = X1, . . . , Zr = Xr , Zr+1 = Yr+1, . . . , Zn = Yn ,

where r is the number of uncensored X ’s.
The Bayes estimator of F , under the Dirichlet prior D(α, μ), was derived by Susarla

and van Ryzin (1976). For squared-error loss, the estimator is given by (16.25). In
(16.25), Z ∗

1 < Z ∗
2 < · · · < Z ∗

m denote the distinct values among the censored observations
Zr+1, . . . , Zn , and

Nn(A) =
n∑

i=1

I (Zi ∈ A), (16.24)

where I (Zi ∈ A) is 1 if Zi ∈ A, 0 otherwise. Note that Nn(A) is a count among all the
Z ’s, censored or not. The Susarla–van Ryzin estimator is

ˆ̄Fn(x) = αμ(x , ∞) + Nn(x , ∞)

αμ(0, ∞) + n

m∏
j=1

αμ([Z ∗
j , ∞)) + Nn([Z ∗

j , ∞))

αμ([Z ∗
j , ∞)) + Nn([Z ∗

j , ∞)) − λj
, (16.25)

where, in (16.25),

λk = number of censored values equal to Z ∗
k , k = 1, . . . , m ,

and (16.18) holds for Z ∗
l ≤ x < Z ∗

l+1, l = 0, . . . , m , Z ∗
0 is defined to be 0 and Z ∗

m+1 is
defined to be ∞.

EXAMPLE 16.3 Hodgkin’s Disease Data.

We consider the “radiation of affected node” data given in Table 11.16. If one had
available data from earlier studies in which the patients were given the affected node
treatment, such data could be used to formulate the Dirichlet prior with correspond-
ing specifications of the “guess” parameter μ(x) = F0(x) and the “prior sample size”
parameter α. We do not have such data but it is reasonable to specify an exponen-
tial for μ, namely, μ(x) = F0(x) = 1 − e−λx , an exponential with mean 1/λ, and use
the actual data of Table 11.16 to guide the choice of λ. That is, use that data to
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Figure 16.3 The Susarla–van Ryzin estimator (dark curve) and the Kaplan–Meier estimator (dotted curve)
for the affected node data of Table 11.16.

obtain an estimate λ̂ of λ. We could calculate the mean of the Kaplan–Meier esti-
mator, which is

∫∞
0 F̄KM(x)dx and then set

∫∞
0 F̄KM(x) = 1/λ̂, and solve for λ̂ to obtain

λ̂ = 1/(
∫∞

0 F̄KM(x)dx). This would require choosing a convention to complete the tail
of F̄KM because for the affected node data, the largest observation 2052 is a censored
observation. It is more straightforward to use the median (m̂ say) of F̄KM. The median
m̂ is the smallest value x∗ such that F̄KM(x∗) ≤ 1/2. From Table 11.16, we see that
this value is m̂ = 688 because F̄KM (688) = .480 and F̄KM (570) = .520. The median m
of F̄0(x) = e−λx satisfies e−λm = 1/2, or equivalently, m = ln(2)/λ. Therefore we set
m̂ = ln(2)/λ̂, that is 688 = ln(2)/λ̂, and find λ̂ = ln(2)/688 = .001. Thus we use the
“guess” F0(x) = 1 − e−(.001)x . The choice of α, the degree of faith in F0, is somewhat
arbitrary but here we choose α = 3 and in Problem 13 ask you to investigate how other
reasonable choices of α affect the calculation of ˆ̄Fn given by (16.25).

Figure 16.3 is a plot of the Susarla–van Ryzin estimator and the Kaplan–Meier
estimator.

The Susarla–van Ryzin estimator can be obtained from the R function svr.df.

Comments

14. Bayes Optimality of ˆ̄Fn. With the Dirichlet process prior and weighted squared-
error loss, ˆ̄Fn minimizes the Bayes risk among all estimators of F̄ .

15. Calculation of the Bayes Estimator. From (16.25) we see that both the uncen-
sored and censored values have to be known to calculate the Bayes estimator.
To calculate the Kaplan–Meier estimator we do not need to know the actual
censored observations but only the number of censored observations between
two uncensored observations.

16. The Bayes Estimator is a Function of the Sufficient Statistic. Susarla and van
Ryzin pointed out that when μ is continuous, the data (Z , δ) = {(Zi , δi ), i =
1, . . . , n} can be recovered from the Bayes estimator. The Bayes estimator is thus
a function of the sufficient statistic (Z , δ). However, (Z , δ) cannot be reclaimed
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from the Kaplan–Meier estimator. Thus the Bayes estimator makes a fuller use
of the data and in that sense is more informative.

17. A Relationship between the Bayes and the Kaplan–Meier Estimators. As α tends
to 0, the Bayes estimator converges to the Kaplan–Meier estimator.

18. Full Bayesian Analysis. The Bayes estimator of F is the mean of the posterior
distribution and is given by the Susarla–van Ryzin estimator of (16.25). The
Susarla–van Ryzin development, however, does not provide a full Bayesian
analysis. To do a full Bayesian analysis, the posterior distribution is needed.
Furthermore, in the censored data framework, the posterior distribution is not a
Dirichlet distribution. In Section 16.5, we show how Gibbs sampling approxi-
mates the posterior distribution.

Properties

1. Bayes Optimality of ˆ̄Fn . See Susarla and van Ryzin (1976) and Comment 14.

2. Convergence to the Kaplan–Meier Estimator. As α tends to 0, ˆ̄Fn converges to
F̄KM. See Susarla and van Ryzin (1976) and Comment 17.

Problems

12. Recall Problem 37 of Chapter 11. The data corresponded to 211 patients with stage IV prostate
cancer who were treated with estrogen. A random sample of size 14 from the 211 observations
of survival times and withdrawal times (in months) from Table 11.19 yielded

Deaths: 31 33 97 3 32 17

Censored: 66 3 5 13 93 13 59 38

As reported by Koziol and Green(1976), prior experience suggested that had the patients not
been treated with estrogen, their survival distribution from cancer of the prostate would be
exponential with mean 100. Compute the Susarla–van Ryzin estimator of F taking μ to be
exponential with mean 100 and α = 4.

13. Return to Example 16.3 and change the choice of α to α = 5. How does this affect the
Susarla–van Ryzin estimator? Now change α = 10 and compute the Susarla–van Ryzin esti-
mator. Compare with results with α = 3 and α = 5. What do you conclude?

14. Consider Table 11.18, times to first review of 1994 JASA Theory and Methods papers, and
Table 11.23, times to first review of 1995 JASA Theory and Methods papers.

(a) Compute the Kaplan–Meier estimator of F for the 1994 data.

(b) Use the KM estimator obtained in part (a) as the prior guess μ to compute the Susarla–van
Ryzin estimator of F for the 1995 data. Take α = 30.

15. (a) Compute the Kaplan–Meier estimator of F for the 1995 data of Table 11.23.

(b) Use the KM estimator obtained in part (a) of Problem 15 as the prior guess μ for the 1994
JASA data (Table 11.18). Take α = 30 and compute the Susarla–van Ryzin estimator for
the 1994 data.

(c) Compare the results obtained in Problem 14(b) with those obtained in Problem 15(b).
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16.5 OTHER BAYESIAN APPROACHES

In this section we briefly describe some other Bayesian approaches, including using
different priors, Gibbs sampling, Gibbs sampling with the Dirichlet process, and the
Sethuraman and Hollander partition-based (PB) priors developed in the context of repair
models. For advanced Bayesian methods in survival analysis, see the January 2011 special
issue of Lifetime Data Analysis. A brief summary of the papers contained in that issue
is given by the issues’ guest coeditors Chen and Gustafson (2011).

Other Priors

Mauldin, Sudderth, and Williams (2002) constructed a conjugate family of prior distri-
butions from trees of Pólya urns. In particular, unlike the Dirichlet priors which assign
probability one to the class of discrete, Pólya tree priors can assign probability one to
the class of continuous distributions.

Dalal (1979) introduced G-invariant Dirichlet process priors whose realizations are
probability measures invariant under a finite group of transformations (see Comment 9).

Dykstra and Laud (1981), using an extended gamma process, found posterior dis-
tributions of hazard rates for uncensored and censored data, Bayes estimators of hazard
rates, and distribution functions for weighted squared-error loss.

Lo (1982) developed Bayesian nonparametric procedures for shock models using
independent gamma-Dirichlet priors. He showed that these priors are conjugate when
sampling from the shock models he considered. He obtained the Bayes estimator for the
survival function under weighted squared-error loss.

One can find posterior distributions that are more general than Dirichlet distribu-
tions and more general than those mentioned earlier. Partition the whole space into two
sets A0, A1, then each of these is partitioned into A00, A01, and A10, A11, respectively.
Continue this partitioning. At the nth stage, the partitioning yields 2n sets Atn , where
tn is an n-vector of 0’s and 1’s. The set Atn is partitioned as Atn ,0, Atn ,1, and there
are 2n+1 sets at the (n + 1)st stage. Under mild regularity, any probability measure P
on R1 provides the quantities ue = P(A1), u0 = P(A01|A0), u1 = P(A11|A1), . . . , utn =
P(Atn 1|Atn ), . . .. These quantities are between 0 and 1 and conversely any sequence
of numbers (ue , u0, u1, . . . , utn , . . .) in [0, 1] yields a unique probability measure P on
R1, and the range of each utn is unrestricted. Thus one can assign probability distribu-
tions to (utn ). Such probability distributions induce probability measures on the space
of probability measures on R1. Thus any such distribution can be used as a prior distri-
bution. Blackwell (1973) showed that if we take the u’s as independent, with utn being
a Beta distribution with parameters (αμ(Atn 1), αμ(Atn 0)), that yields the Dirichlet prior
D(α, μ) for P . Other choices for the distributions of the u’s yield priors that concentrate
on absolutely continuous distributions, symmetric distributions, unimodal distributions,
distributions with increasing failure rate, and so forth.

Chen and Gustafson (2011) coedited a special issue of Lifetime Data Analysis
devoted to Bayesian Methods in Survival Analysis.

Gibbs Sampling

Suppose we want to produce samples from a joint distribution K of a bivariate random
variable (X , Y ) or, for some function t(x , y), desire to calculate

∫
t(x , y)dK (x , y).
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These calculations may be mathematically intractable directly, but Gibbs sampling
provides a computational method for obtaining them. Suppose we can generate obser-
vations from the conditional distributions Q(x |y) = P(X ≤ x |Y = y) and R(y |x) =
P(Y ≤ y |X = x). Then let (X0, Y0) be arbitrary. Generate Xn from the distribu-
tion Q(·|Yn−1) and Yn from the distribution R(·|Xn), n = 1, . . . , N . The sequence
(X0, Y0), (X1, Y1), . . . , is a Markov chain with a transition function for which K is an
invariant distribution. Under mild conditions on the transition function, the Markov
chain converges in one of several senses to K . For large N, and a set A, 1

N

∑
I ((Xi ,

Yi ) ∈ A) ≈ K (A) and 1
N

∑
t(Xi , Yi ) ≈ ∫ t(x , y)dK (x , y). If the convergence is stronger,

(XN , YN ) approximately has distribution K .
The above-mentioned approach can be generalized to more than two variables and

the variable need not be finite dimensional.

Gibbs Sampling with the Dirichlet

We describe Gibbs sampling with the Dirichlet in the context of the nonparametric cen-
soring problem of Section 16.4. We follow the exposition in Hollander and Sethuraman
(2001). Recall we observe Zi = min(Xi , Yi ) and δi = I (Xi ≤ Yi ), i = 1, . . . , n . Thus if
δi = 1 we observe the actual value of Xi but if δi = 0 we only know that Xi ∈ Ai ,
where Ai = (Yi , ∞). We rearrange the samples so that Z1 = X1, . . . , Zr = Xr , Zr+1 =
Yr+1, . . . , Zn = Yn where r is the number of uncensored values and m = n − r is the
number of censored values. The Bayes posterior distribution is the conditional distribu-
tion of F given the data. We will use Gibbs sampling to simulate from this distribution.
This will also produce a method of obtaining, via computational methods, the posterior
estimate of the survival function. We will do this for the “radiation of affected node”
data of Table 11.16. Then we will compare this estimate with the Susarla–van Ryzin
estimate computed for those data.

Recall Ferguson’s result (16.7) that the conditional distribution of F , given
X1, . . . , Xr , is D(α + r , μr ), where

μr = α

α + r
μ + r

α + r
F .

With F having distribution D(α + r , μr ), given F let Xr+1, . . . , Xn be indepen-
dent and identically distributed according to F . The posterior distribution is the
conditional distribution of F given Xi ∈ Ai , i = r + 1, . . . , n . The conditional distri-
bution Q(F |Xr , . . . , Xn , data) of F is D(α + n , μn) and the conditional distribution
R(Xr+1, . . . , Xn |F , data) is that of independent random variables having distributions
FAr+1 , . . . , FAn , where for any set A, FA is the distribution F restricted to the set A.
Hence, in the joint distribution of F and (Xr+1, . . . , Xn) given the data, we know the
two conditional distributions to use Gibbs sampling. An observation (F , Xr+1, . . . , Xn)

is simulated from the joint distribution of F and (Xr+1, . . . , Xn) given the data. The F
can be considered an observation from the posterior distribution.

To generate a distribution from the Dirichlet prior, Sethuraman’s (1994) representa-
tion of the Dirichlet process was used (see Comment 2 and (16.10), (16.11)). We start at
stage 0 of Gibbs sampling. Let F 0, X 0

r+1, . . . , X 0
n be arbitrary or educated guesses at F

and the unknown censored values. Define the measure

μ0
n = 1

n

[
αμ +

r∑
i=1

δXi +
n∑

i=r+1

δX 0
i

]
,
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where δx is the distribution that concentrates a mass of 1 at the point x , that is,

δx (A) =
{

1 if x ∈ A

0 otherwise.

For a set A, say A = (0, a),

μ0
n(A) = 1

n

[
αμ(A) +

r∑
i=1

δXi (A) +
n∑

i=r+1

δXi (A)

]
. (16.26)

Note that in (16.26), depending on the value of a , some of the δXi ((0, a)) will be 1,
others 0, and likewise for the δX 0

i
((0, a)). To generate F 1, take pk (given by (16.10))

based on independent θ1, θ2, . . ., which are iid Beta(1, α + n) and

F 1(x) =
∞∑

k=1

pk I (Wk ≤ x), (16.27)

where W1, W2, . . . , are iid according to μ0
n . The sum in (16.27) cannot be computed

exactly because it is an infinite sum. We avoid generating the F 1 precisely, and go to
the next step of generating (X 1

r+1, ..., X 1
n ) as iid according to this F 1 and satisfying, for

i = r + 1, . . . , n , X 1
i ∈ Ai . From Sethuraman’s constructive definition of the Dirichlet,

X 1
r+1, . . . , X 1

n can be taken to be WIr+1 , . . . , WIn , where Ir+1, . . . , In are iid according
to the random discrete distribution {pk , k = 1, . . . , }. Thus first generate a sufficiently
large vector W1, . . . , WN , which are iid μ0

n . The random index Ir+1 is then generated
as min

{
j :
∑j

i=1 pi ≥ U
}
, where U is uniform on [0, 1]. Thus one needs to generate

only a finite (through random) number of pi ’s to generate Ir+1. If X 1
r+1 = WIr+1 is not

in Ar+1, repeat this step till it happens. This yields X 1
r+1. Continue in this fashion till

X 1
r+1, . . . , X 1

n are generated. Similarly, generate (F M , X M
r+1, . . . , X M

n ) for M = 1, . . . , K .
At each step, the infinite series for F M does not have to be calculated. The average of
μM

n over several such runs is the computational Bayes estimate of μ. See Doss (1994)
where this computational method is described. Athreya, Doss and Sethuraman (1994)
showed the Gibbs sampler converges. Table 16.3 computes the exact and computational
Bayes estimates of F for the “radiation of affected node” data of Table 11.16.

Repair Models and Partition-Based Priors

Repair models are important in reliability because when a system (or item) fails in the
field, cost and other considerations typically preclude replacement with a new item and
instead the system is repaired, then put back in use. Hollander and Sethuraman (2002)
discussed various repair models and described non-Bayesian nonparametric methods for
such models.

One repair model that has been frequently considered in the literature is the age-
dependent repair model of Block, Borges, and Savits (1985) (BBS, 1985). In this model,
two types of repairs are possible at the time of the repair, namely, a perfect repair or a
minimal repair. A perfect repair replaces the failed item with a new one and is performed
with probability p(t). A minimal repair restores the system to its state just before failure
and is performed with probability 1 − p(t). The function p(t) is allowed to depend on
the age of the failed system.
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Table 16.3 Exact (Susarla–van Ryzin) and Computa-
tional (Gibbs) Estimates of the Survival Function for the
“Radiation of Affected Node” Data

x Exact (SVR) Computational (Gibbs)

86 .9555 .9555
107 .9177 .9177
141 .8788 .8788
296 .8297 .8297
312 .7927 .7927
330 .7556 .7556
346 .7187 .7187
364 .6816 .6816
401 .6432 .6432
419 .6062 .6062
505 .5647 .5647
570 .5249 .5249
688 .4824 .4824
822 .4400 .4399
836 .4036 .4036

1309 .3861 .3861
1375 .3447 .3485
1378 .3446 .3484
1446 .3424 .3467
1540 .3392 .3444
1645 .3353 .3302
1818 .3286 .3269
1910 .3245 .3254
1953 .3221 .3188
2052 .3130 .3173

Let F be the distribution of the time to first failure of the system. At first glance, it
would seem reasonable, if one wanted to perform Bayesian nonparametric inference for F ,
to put a Dirichlet prior on F . Repair models such as the BBS model, however, introduce
certain dependencies so that with a Dirichlet prior on F , the posterior distribution of F ,
given the data, is not Dirichlet. In other words, the Dirichlet process is not conjugate for
these repair models. Sethuraman and Hollander (2009) introduced a new class of partition-
based (PB) priors that are conjugate and they also defined a subclass of the PB class called
partition-based Dirichlet (PBD) priors that also form a conjugate family. They considered
the general framework of a sequence of dependent random variables X1, X2, . . . , Xn , where
X1 is distributed according to a probability measure P (or equivalently, a distribution F ),
and the distribution of Xi+1 given X1, . . . , Xi and other covariates depends on P and the
previous data, i = 1, . . . , n . Sethuraman and Hollander (2009) developed nonparametric
Bayesian methods to estimate P , which, unlike many of the non-Bayesian nonparametric
methods described in Hollander and Sethuraman (2002), do not make any assumptions
about when data collection is stopped.
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Csörgõ, S., and L. Horváth. (1986). Confidence
bands from censored samples. Canadian Journal
of Statistics 14, 131–144.

Cuevas, J., and E. Chicken. (2012). A trimmed
translation-invariant denoising estimator. Journal
of Statistical Computation and Simulation 82,
1299–1310.

Dalal, S. R. (1979). Dirichlet invariant processes
and applications to nonparametric estimation
of symmetric distribution functions. Stochastic
Processes and their Applications 9, 99–107.

Dale, M. (1984). Personal communication for report
in Statistics 661. Columbus: Ohio State University.

Dallal, G. E., and L. Wilkinson. (1986). An analyti-
cal approximation to the distribution of Lilliefors’
test statistic. American Statistician 40, 294–296.

Daly, D. A., and E. B. Cooper. (1967). Rate of stut-
tering adaptation under two electro-shock condi-
tions. Behaviour Research and Therapy 5, 49–54.

Damico, J. A., and D. A. Wolfe. (1987). Extended
tables of the exact distribution of a rank statistic
for all treatments multiple comparisons in one-
way layout designs. Communications in Statistics:
Theory and Methods 16, 2343–2360.

Daubechies, I. (1992). Ten Lectures on Wavelets.
Philadelphia, PA: SIAM.

David, H. A. (1981). Order Statistics, 2nd edn. New
York: John Wiley and Sons, Inc.

David, H. A., and H. N. Nagaraja. (2003). Order
Statistics, 3rd ed. Hoboken, NJ: John Wiley and
Sons.

Davis, C. E., and D. Quade. (1978). U-statistics
for skewness or symmetry. Communications in
Statistics: Theory and Methods 7, 413–418.



Bibliography 769

Davison, A. C., and D. V. Hinkley. (1997). Boot-
strap Methods and Their Application. New York:
Cambridge University Press.

DeKroon, J., and P. Van der Laan. (1981).
Distribution-free test procedures in two-way
layouts; a concept of rank interaction. Statistica
Neerlandica 35, 189–213.

Dell, T. R., and J. L. Clutter. (1972). Ranked set
sampling theory with order statistics background.
Biometrics 28, 545–555.

Delse, F. C., and B. W. Feather. (1968). The effect
of augmented sensory feedback on the control of
salivation. Psychophysiology 5, 15–21.

Deshpande, J. V. (1983). A class of tests for expo-
nentiality against increasing failure rate average
alternatives. Biometrika 70, 514–518.

Devore, J. L. (1991). Probability and Statistics for
Engineering and the Sciences (3rd ed.). Belmont,
CA: Wadsworth, Inc.

DiCiccio, T. J., and B. Efron. (1996). Bootstrap con-
fidence intervals. Statistical Science 11, 189–228.

Dickinson, M. B., F. E. Putz, and C. D. Canham.
(1993). Canopy gap closure in thickets of the
clonal shrub, Cornus racemosa, Bulletin of the
Torrey Botanical Club 120, 439–444.

Diehr, P., J. Yergan, J. Chu, P. Feigl, G. Glaefke,
R. Moe, M. Bergner, and J. Rodenbaugh. (1989).
Treatment modality and quality differences for
black and white breast cancer patients treated in
community hospitals. Medical Care 27, 942–958.

Dietz, E. J. (1989). Teaching regression in a non-
parametric statistics course. American Statistician
43, 35–40.

Dixon V. Margolis. (1991). 56 FEP Cases (N. D.
Illionois).

Doksum, K. (1967). Robust procedures for some
linear models with one observation per cell.
Annals of Mathematical Statistics 38, 878–883.

Doksum, K. (1974). Empirical probability plots and
statistical inference for nonlinear models in the
two-sample case. Annals of Statistics 2, 267–277.

Doksum, K. A., and G. L. Sievers. (1976). Plotting
with confidence: Graphical comparisons of two
populations. Biometrika 63, 421–434.

Doksum, K. A., and B. S. Yandell. (1984). Tests for
exponentiality. In P. R. Krishnaiah and P. K. Sen
(Eds), Handbook of Statistics, Volume 4, Non-
parametric Methods, pp. 579–611. Amsterdam:
North Holland.

Donner, A., and W. W. Hauck. (1986). The large-
sample relative efficiency of the Mantel-Haenszel
estimator in the fixed-strata case. Biometrics 42,
537–545.

Donoho, D., and I. Johnstone. (1994). Ideal spatial
adaptation via wavelet shrinkage. Bionietrika 81,
425–455.

Donoho, D., and I. Johnstone. (1995). Adapting
to unknown smoothness via wavelet shrinkage.
Journal of the American Statistical Association
90, 1200–1224.

Donoho, D. L., I. M. Johnstone, G. Kerkyacharian,
and D. Picard. (1996). Density estimation by
wavelet thresholding. The Annals of Statistics 24
pp. 508–539.

Doss, H. (1994). Bayesian nonparametric estimation
for incomplete data via successive substitution
sampling. Annals of Statistics 22, 1763–1786.

Doss, H., and R. D. Gill. (1992). An elementary
approach to weak convergence for quantile
processes, with applications to survival data.
Journal of the American Statistical Association
87, 869–877.

Dowdy, S., and S. Wearden. (1991), 2E. Statistics for
Research. New York: John Wiley and Sons, Inc.

Draper, D. (1988). Rank-based robust analysis of
linear models. I. Exposition and review. Statistical
Science 3, 239–271.

DuBois, A. B., S. Y. Botelho, G. M. Bedell, R.
Marshall, and J. H. Comroe Jr. (1956). A rapid
plethysmographic method for measuring thoracic
gas volume: A comparison with a nitrogen
washout method for measuring functional residual
capacity in normal subjects. Journal of Clinical
Investigation 35, 322–326.

Dunn, O. J. (1964). Multiple comparisons using
rank sums. Technometrics 6, 241–252.

Dunnett, C. W. (1964). New tables for multiple com-
parisons with a control. Biometrics 20, 482–491.

Durbin, J. (1951). Incomplete blocks in ranking
experiments. British Journal of Mathematical and
Statistical Psychology 4, 85–90.

Durbin, J. (1975). Kolmogorov-Smirnov tests when
parameters are estimated with applications to
tests of exponentiality and tests on spacings.
Biometrika 62, 5–22.

Dwass, M. (1960). Some k-sample rank-order tests.
In I. Olkin, S. G. Ghurye, H. Hoeffding, W. G.
Madow, and H. B. Mann (Eds), Contributions to
Probability and Statistics, pp. 198–202. Stanford,
CA: Stanford University Press.

Dykstra, R. L., and P. Laud. (1981). A Bayesian
nonparametric approach to reliability. Annals of
Statistics 9, 356–367.

Easton, E. (2006). Personal communication.



770 Bibliography

Edwards, A. L. (1948). Note on the “correction
for continuity” in testing the significance of
the difference between correlated proportions.
Psychometrika 13, 185–187.

Edwards, A. W. F. (1963). The measure of asso-
ciation in a 2 × 2 table. Journal of the Royal
Statistical Society, Series A 126, 109–114.

Efron, B. (1967). The two-sample problem with
censored data. Proceedings of the 5th Berkeley
Symposium 4, 831–854.

Efron, B. (1971). Forcing a sequential experiment
to be balanced. Biometrika 58, 403–417.

Efron, B. (1979). Bootstrap methods: Another look
at the jackknife. Annals of Statistics 7, 1–26.

Efron, B. (1982). The Jackknife, the Bootstrap and
other Resampling Plans, Volume 38 of CBMS-
NSF Regional Conference Series in Applied
Mathematics. Philadelphia, PA: SIAM.

Efron, B., and G. Gong. (1983). A leisurely look at
the bootstrap, the jackknife and cross-validation.
American Statistician 37, 36–48.

Efron, B., and R. J. Tibshirani. (1994). An Introduc-
tion to the Bootstrap. New York: Chapman & Hall.

Ehlers, A. (1995). A 1-year prospective study of
panic attacks: Clinical course and factors asso-
ciated with maintenance. Journal of Abnormal
Psychology 104, 164–172.

Elmore, R.T., T.P. Hettmansperger and F. Xuan.
(2004). The sign statistic, one-way layouts and
mixture models. Statistical Science 19, 579–587.

Epanechnikov, V. A. (1969). Non-parametric estima-
tion of a multivariate probability density. Theory
of Probability and its Applications 14, 153–158.

Epstein, B. (1960a). Tests for the validity of the
assumption that the underlying distribution of life
is exponential, I. Technometrics 2, 83–101.

Epstein, B. (1960b). Tests for the validity of the
assumption that the underlying distribution of life
is exponential, II. Technometrics 2, 167–183.

Eriksen, L., S. Björnstad, and K. G. Götestam.
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Härdle, W. (1992). Applied Nonparametric Regres-
sion. London: Cambridge University Press.

Härdle, W., and M. Müller. (2000). Multivari-
ate and semiparametric kernel regression, In
M. G. Schimek ed., Smoothing and Regression:
Approaches, Computation, and Application
357–392. New York: John Wiley and Sons.

Harrell, F. E. Jr. (2012). Hmisc: Harrell Miscella-
neous. R package version 3.9–3.

Harrington, D. P., and T. R. Fleming. (1982). A
class of rank test procedures for censored survival
data. Biometrika 69, 553–566.

Harter, H. L. (1961). Expected values of normal
order statistics. Biometrika 48, 151–165.

Hartigan, J. A. (1969). Using subsample values as
typical values. Journal of the American Statistical
Association 64, 1303–1317.

Hartigan, J. A. (1971). Error analysis by replaced
samples. Journal of the Royal Statistical Society,
Series B 33, 98–110.

Hartigan, J. A. (1975). Necessary and sufficient
conditions for asymptotic joint normality of a
statistic and its subsample values. Annals of
Statistics 3, 573–580.



774 Bibliography

Hastie, T., and C. Loader. (1993). Local regression:
automatic kernel carpentry. Statistical Science 8,
120–129 (discussion: 129–143).

Hastie, T., and R. Tibshirani. (1986). Generalized
additive models. Statistical Science 1, 297–310.

Hastie, T., and R. Tibshirani. (1987). Generalized
additive models: some applications. Journal of
the American Statistical Association 82, 371–386.

Hastie, T., and R. Tibshirani. (1990). Generalized
Additive Models. New York: Chapman and Hall.

Hastings, W. K. (1970). Monte Carlo sampling meth-
ods using Markov chains and their applications.
Biometrika 57, 97–109.

Hauck, W. W. (1979). The large-sample variance of
the Mantel-Haenszel estimator of a common odds
ratio. Biometrics 35, 817–819.

Hauck, W. W., and A. Donner. (1988). The asymp-
totic relative efficiency of the Mantel-Haenszel
estimator in the increasing-number-of-strata case.
Biometrics 44, 379–384.

Hawkins, D. L., S. Kochar, and C. Loader. (1992).
Testing exponentiality against IDMRL distri-
butions with unknown change point. Annals of
Statistics 20, 280–290.

Hayfield, T., and J. S. Racine. (2008). Nonpara-
metric econometrics: The np package. Journal of
Statistical Software 27(5), 1–32.

Hays, W. L. (1960). A note on average tau as a
measure of concordance. Journal of the American
Statistical Association 55, 331–341.

Hayter, A. J. (1984). A proof of the conjecture that
the Tukey-Kramer multiple comparison procedure
is conservative. Annals of Statistics 112, 61–75.

Hayter, A. J. (2013). Simultaneous confidence
intervals for several quantiles of an unknown
distribution. (Submitted for publication).

Hayter, A. J., and G. Stone. (1991). Distribution free
multiple comparisons for monotonically ordered
treatment effects. Australian Journal of Statistics
33, 335–346.

Hebb, D. O., and K. Williams. (1946). A method
of rating animal intelligence. Journal of General
Psychology 34, 59–65.

Hettmansperger, T. P. (1984). Statistical Inference
Based on Ranks. New York: John Wiley and
Sons, Inc.

Hettmansperger. T. P., and J. W. McKean. (1977). A
robust alternative based on ranks to least squares
in analyzing linear models. Technometrics 19,
275–284.

Hettmansperger, T. P., J. W. McKean, and S. J.
Sheather. (1997). In G. S. Maddala and C. R. Rao

(Eds), Rank-based Analyses of Linear Models,
Handbook of Statistics, Volume 15. Amsterdam:
Elsevier Science.

Hettmansperger, T. P., and R. M. Norton. (1987).
Tests for patterned alternatives in k -sample
problems. Journal of the American Statistical
Association 82, 292–299.

Hilgard, E. R., L. W. Lauer, and A. H. Morgan.
(1963). Manual for Stanford Profile Scales of
Hypnotic Susceptibility, Forms I and II. Palo Alto,
CA: Consulting Psychologist Press.

Hilton, J. F., and L. Gee. (1997a). The size and
power of the exact bivariate symmetry test. Com-
putational Statistics & Data Analysis 26, 53–69.

Hilton, J. F., and L. Gee. (1997b). An exact Hollan-
der bivariate symmetry test. Algorithm A5 321.
Journal of the Royal Statistical Society Series C
46, 533–540.

Hjort, N. L. (1990a). Goodness of fit tests in models
for life history data based on cumulative hazard
rates. Annals of Statistics 18, 1221–1258.

Hjort, N. L. (1990b). Nonparametric Bayes estima-
tors based on beta processes in models for life
history data. Annals of Statistics 18, 1259–1294.

Hochberg, Y., and A. C. Tamhane. (1987). Multiple
Comparison Procedures. New York: John Wiley
and Sons, Inc.

Hodges, J. L. Jr., and E. L. Lehmann. (1950). Some
problems in minimax point estimation. Annals of
Mathematical Statistics 21, 182–197.

Hodges, J. L. Jr., and E. L. Lehmann. (1956). The
efficiency of some nonparametric competitors of
the t-test, Annals of Mathematical Statistics 27,
324–335.

Hodges, J. L. Jr., and E. L. Lehmann. (1963).
Estimates of location based on rank tests. Annals
of Mathematical Statistics 34, 598–611.

Hodges, J. L. Jr., and E. L. Lehmann. (1967).
On medians and quasimedians. Journal of the
American Statistical Association 62, 926–931.

Hodges, J. L. Jr., and E. L. Lehmann. (1970).
Deficiency. Annals of Mathematical Statistics 41,
783–801.

Hodges, J. L. Jr., and E. L. Lehmann. (1983).
Hodges-Lehmann estimators. In S. Kotz, N. L.
Johnson, and C. B. Read (Eds), Encyclopedia of
Statistical Sciences, Volume 3, pp. 463–465. New
York: John Wiley and Sons, Inc.

Hoeffding, W. (1948a). A class of statistics with
asymptotically normal distribution. Annals of
Mathematical Statistics 19, 293–325.



Bibliography 775

Hoeffding, W. (1948b). A non-parametric test of
independence. Annals of Mathematical Statistics
19, 546–557.

Hoeffding, W. (1951). “Optimum” nonparametric
tests. Proceedings of 2nd Berkeley Symposium,
Berkeley, pp. 83–92.

Hoeffding, W. (1952). The large-sample power
of tests based on permutations of observations.
Annals of Mathematical Statistics 23, 169–192.

Hollander, M. (1966). An asymptotically distri-
bution-free multiple comparison procedure—
treatments versus control. Annals of Mathematical
Statistics 37, 735–738.

Hollander, M. (1967a). Rank tests for randomized
blocks when the alternatives have an a priori
ordering. Annals of Mathematical Statistics 38,
867–877.

Hollander, M. (1967b). Asymptotic efficiency of
two nonparametric competitors of Wilcoxon’s two
sample test. Journal of the American Statistical
Association 62, 939–949.

Hollander, M. (1971). A nonparametric test for
bivariate symmetry. Biometrika 58, 203–212.

Hollander, M. (1996). Personal communication.
Hollander, M., and R. M. Korwar. (1976). Nonpara-

metric Bayes estimation of the probability that
X ≤ Y. Communications in Statistics - Theory
and Methods 14, 1369–1383.

Hollander, M., and R. M. Korwar. (1982). Non-
parametric Bayesian estimation of the horizontal
distance between two populations. In Nonpara-
metric Statistical Inference I. New York: North
Holland, pp. 409–415.

Hollander, M., I. W. McKeague, and J. Yang.
(1997). Likelihood ratio-based confidence bands
for survival functions. Journal of the American
Statistical Association 92, 215–226.

Hollander, M., and E. Peña. (1988). Nonparametric
test under restricted treatment-assignment rules.
Journal of the American Statistical Association
83, 1144–1151.

Hollander, M., and E. Peña. (1989). Families
of confidence bands for the survival function
under the general random censorship model and
the Koziol-Green model. Canadian Journal of
Statistics 17, 59–74.

Hollander, M., and E. Peña. (1992a). A chi-squared
goodness-of-fit test for randomly censored data.
Journal of the American Statistical Association
87, 458–463.

Hollander, M., and E. Peña. (1992b). Classes of
nonparametric goodness-of-fit tests for censored

data: Simple null hypothesis case. In A. K. Md. E.
Saleh (Eds), Nonparametric Statistics and Related
Topics, pp. 97–118. Amsterdam: North-Holland.

Hollander, M., and E. A. Peña. (2004). Nonpara-
metric methods in reliability. Statistical Science
19, 644–651.

Hollander, M., G. Pledger, and P. Lin. (1974).
Robustness of the Wilcoxon test to a certain
dependency between samples. Annals of Statistics
2, 177–181.

Hollander, M., and F. Proschan. (1972). Testing
whether new is better than used. Annals of
Mathematical Statistics 43, 1136–1146.

Hollander, M., and F. Proschan. (1975). Tests for
the mean residual life. Biometrika 62, 585–593.

Hollander, M., and F. Proschan. (1979). Testing
to determine the underlying distribution using
randomly censored data. Biometrics 35, 393–401.

Hollander, M., and F. Proschan. (1984). Nonpara-
metric concepts and methods in reliability. In
P. R. Krishnaiah and P. K. Sen (Eds), Handbook
of Statistics, Nonparametric Methods, Volume 4,
pp. 613–655. Amsterdam: North-Holland.

Hollander, M., F. Proschan, and J. Sconing. (1985).
Efficiency loss with the Kaplan-Meier estimator.
Technical Report M707, Department of Statistics,
Tallahassee: Florida State University.

Hollander, M., and J. Sethuraman. (2001). Non-
parametric methods: Advanced computational
approaches. In N. J. Smelser and P. B. Baltes
(Eds), International Encyclopedia of the Social &
Behavioral Sciences, pp. 10673–10680. Oxford:
Permagon.

Hollander, M., and J. Sethuraman. (2002). Nonpara-
metric inference for repair models. Sankhya 64,
693–706.

Hotelling, H., and M. R. Pabst. (1936). Rank
correlation and tests of significance involving no
assumption of normality. Annals of Mathematical
Statistics 7, 29–43.

Høyland, A. (1965). Robustness of the Hodges-
Lehmann estimates for shift. Annals of
Mathematical Statistics 36, 174–197.

Høyland, A. (1968). Robustness of the Wilcoxon
estimate of location against a certain dependence.
Annals of Mathematical Statistics 39, 1196–1201.

Hsieh, F. Y. (1987). A simple method of sample size
calculation for unequal-sample-size designs that
use the logrank or t-test. Statistics in Medicine 6,
577–581.

Hsieh, F. Y. (1992). Comparing sample size formu-
lae for trials with unbalanced allocation using the
logrank test. Statistics in Medicine 11, 1091–1098.



776 Bibliography

Huber, P. J., and E. M. Ronchetti. (2009). Robust
Statistics. New York: John Wiley and Sons, Inc.

Hundal, P. S. (1969). Knowledge of performance as
an incentive in repetitive industrial work. Journal
of Applied Psychology 53, 224–226.

Hurvich, C. M., J. S. Simonoff, and C.-L. Tsai.
(1998). Smoothing parameter selection in non-
parametric regression using an improved akaike
information criterion. Journal of the Royal Statis-
tical Society Series B-Statistical Methodology 60,
271–293.

Hurvich, C. M., and C.-L. Tsai. (1989). Regression
and time series model selection in small samples.
Biometrika 76, 297–307.

Ijzermans, A. B. (1970). Pitting corrosion and
intergranular attack of austenitic Cr-Ni stainless
steels in Na SCN. Corrosion Science 10, 607–615.

Iman, R. L. (1994). A Data-Based Approach to
Statistics. Belmont, CA: Duxbury Press.

Jaeckel, L. A. (1972). Estimating regression coef-
ficients by minimizing the dispersion of the
residuals. Annals of Mathematical Statistics 43,
1449–1458.

Jamison, H. H. (1971). Development of a gaseous
oxygen impact testing method. Materials Research
and Standards 11, 22–27.

Jeffreys, H. (1946). An invariant form for the prior
probability in estimation problems. Proceedings
of the Royal Society of London, Series A 186,
453–461.

Jin, J., and J. Shi. (2001). Automatic feature extrac-
tion of waveform signals for in-process diagnostic
performance improvement. Journal of Intelligent
Manufacturing 12(3), 257–268.

Joe, H. (1990). Multivariate concordance. Journal
of Multivariate Analysis 35, 12–30.

Johansen, S. (1978). The product limit estimator
as maximum likelihood estimator. Scandinavian
Journal of Statistics 5, 195–199.

Johnson, A. A, K. Mukherjee, S. Schlosser, and E.
Raask. (1970). The behaviour of a cenosphere-
resin composite under hydrostatic pressure. Ocean
Engineering 2, 45–48.

Johnson, B. (1984). Personal communication for
report in Statistics 661. Columbus: Ohio State
University.

Johnson, B. M. (1973). Decision making, faculty sat-
isfaction, and the place of the School of Nursing
in the university. Nursing Research 22, 100–107.

Johnson, N. L. (1974). Estimation of rank order.
Report 931. Univ. of North Carolina Institute of
Statistics.

Johnson, R. A. (1988). Stress-strength models for
reliability. In P. K. Krishnaiah and C. R. Rao
(Eds), Handbook of Statistics, Volume 7, pp.
27–54. New York: North Holland.

Johnson, S. K., and R. E. Johnson. (1972). Ton-
sillectomy history in Hodgkin’s disease. New
England Journal of Medicine 287, 1122–1125.

Jonckheere, A. R. (1954a). A distribution-free
k -sample test against ordered alternatives.
Biometrika 41, 133–145.

Jonckheere, A. R. (1954b). A test of significance
for the relation between m rankings and k
ranked categories. British Journal of Statistical
Psychology 7, 93–100.

Jones, M. P., T. W. O’Gorman, J. H. Lemke, and R.
F. Woolson. (1989). A Monte Carlo investigation
of homogeneity tests of the odds ratio under
various sample size configurations. Biometrics
45, 171–181.

Jung, D. H., and A. C. Parekh. (1970). A semi-
micromethod for the determination of serum iron
and iron-binding capacity without deproteiniza-
tion. American Journal of Clinical Pathology 54,
813–817.

Kalbfleisch, J. D., and R. L. Prentice, (1980, 2002).
The Statistical Analysis of Failure Time Data.
New York: John Wiley and Sons, Inc.

Kaneto, A., K. Kosaka, and K. Nakao. (1967).
Effects of stimulation of the Vagus nerve on
insulin Secretion. Endocrinology 80, 530–536.

Kaplan, E. L., and P. Meier. (1958). Nonparametric
estimation from incomplete observations. Jour-
nal of the American Statistical Association 53,
457–481.

Kaplan, H. S., and S. A. Rosenberg. (1973). Personal
communication.

Karpatkin, M., R. F. Porges, and S. Karpatkin.
(1981). Platelet counts in infants of women with
autoimmune thrombocytopenia. New England
Journal of Medicine 305, 936–939.

Kayle, K. A. (1984). Personal communication for
report in Statistics 661. Columbus: Ohio State
University.

Kendall, M. G. (1938). A new measure of rank
correlation. Biometrika 30, 81–93.

Kendall, M. G. (1962). Rank Correlation Methods,
3rd edn. London: Griffin.

Kendall, M. G., and J. D. Gibbons. (1990). Rank
Correlation Methods, 5th edn. London: Arnold.

Kepner, J. L., and R. H. Randles. (1984). Compari-
son of test for bivariate symmetry versus location
and/or scale alternatives. Communications in
Statistics: Theory and Methods 13, 915–930.



Bibliography 777

Kershenobich, D., F. J. Fierro, and M. Rojkind.
(1970). The relationship between the free pool
of proline and collagen content in human liver
cirrhosis. Journal of Clinical Investigation 49,
2246–2249.

Kiefer, J., and J. Wolfowitz. (1956). Consistency of
the maximum likelihood estimator in the presence
of infinitely many nuisance parameters. Annals of
Mathematical Statistics 27, 887–906.

Kim, D. H., and D. H. Lim. (1995). Rank tests for
parallelism of regression lines against umbrella
alternatives. Journal of Nonparametric Statistics
5, 289–302.
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Probabilités. Paris: Courcier.

Latta, R. (1981). A Monte Carlo study of some two-
sample rank tests with censored data. Journal of
the American Statistical Association 76, 713–729.

Leach, S. P. (1972). Personal communication.
Leach, S. P. (1979). Introduction to Statistics. A

Nonparametric Approach for the Social Sciences.
Chichester: John Wiley and Sons, Inc.

Leaf, D. A., W. E. Connor, R. Illingworth, S. P.
Bacon, and G. Sexton. (1989). The hypolipidemic
effects of gemfibrozil in type V hyperlipidemia.
Journal of the American Medical Association 262,
3154–3160.

LeCam, L., and J. Neyman (Eds). (1965). Bernoulli
Bayes Laplace Anniversary Volume. New York:
Springer-Verlag.

Lee, S. C. S., C. Locke, and J. D. Spurrier.
(1980). On a class of tests of exponentiality.
Technometrics 22, 547–554.

Lehmann, E. L. (1951). Consistency and unbiased-
ness of certain nonparametric tests. Annals of
Mathematical Statistics 22, 165–179.

Lehmann, E. L. (1959). Testing Statistical Hypothe-
ses. New York: John Wiley and Sons, Inc.

Lehmann, E. L. (1963a). Robust estimation in
analysis of variance. Annals of Mathematical
Statistics 34, 957–966.

Lehmann, E. L. (1963b). Asymptotically nonpara-
metric inference: An alternative approach to
linear models. Annals of Mathematical Statistics
34, 1494–1506.

Lehmann, E. L. (1963c). Nonparametric confi-
dence intervals for a shift parameter. Annals of
Mathematical Statistics 34, 1507–1512.

Lehmann, E. L. (1964). Asymptotically nonpara-
metric inference in some linear models with one
observation per cell. Annals of Mathematical
Statistics 35, 726–734.

Lehmann, E. L. (1975). Nonparametrics: Statistical
Methods Based on Ranks. San Francisco, CA:
Holden-Day.

Lehmann, E. L. (1986). Testing Statistical Hypothe-
ses, 2nd edn. New York: John Wiley and Sons, Inc.

Lehmann, E. L., and H. J. M. D’Abrera. (2006).
Nonparametrics: Statistical Methods Based on
Ranks, 2nd edn. New York: Springer.

Lepage, Y. (1971). A combination of Wilcoxon’s
and Ansari-Bradley’s statistics. Biometrika 58,
213–217.

Lepage, Y. (1973). A table for a combined Wilcoxon
Ansari-Bradley statistic. Biometrika 60, 113–116.

Leurgans, S. (1983). Three classes of censored
data rank tests: strengths and weaknesses under
censoring. Biometrika 70, 651–658.

Leurgans, S. (1984). Asymptotic behavior of two-
sample rank tests in the presence of random
censoring. Annals of Statistics 12, 572–589.

Levin, A. (2011). No U.S. airline fatalities in 2010.
January 21, 2011 USA TODAY.

Li, G., and H. Doss. (1993). Generalized Pearson-
Fisher chi-square goodness-of-fit tests, with
application to models with life history data.
Annals of Statistics 21, 772–797.

Li, G., M. Hollander, I. W. McKeague, and J. Yi.
(1996). Nonparametric likelihood ratio confidence
bands for quantile functions from incomplete
survival data. Annals of Statistics 24, 628–640.

Li, J., and R. Y. Liu. (2004). New nonparametric
tests of multivariate locations and scales using
data depth. Statistical Science 19, 686–696.

Li, Q., and J. Racine. (2004). Cross-validated local
linear nonparametric regression. Statistica Sinica
14, 485–512.

Liang, K. Y., and S. G. Self. (1985). Tests for
homogeneity of odds ratio when the data are
sparse. Biometrika 72, 353–358.

Lilliefors, H. (1967). On the Kolmogorov-Smirnov
test for normality with mean and variance
unknown. Journal of the American Statistical
Association 62, 399–402.



Bibliography 779

Lilliefors, H. (1969). On the Kolmogorov-Smirnov
test for the exponential distribution with mean
unknown. Journal of the American Statistical
Association 64, 387–389.

Lim, D. H., and D. A. Wolfe. (1997). Nonparametric
comparisons of several regression lines with a
control. Far East Journal of Theoretical Statistics
1, 51–61.

Livesey, P. J. (1967). The Hebb-Williams elevated
pathway test: A comparative study of rat, rabbit
and cat performance. Australian Journal of
Psychology 19, 55–62.

Lloyd, S. J., K. D. Garlid, R. C. Reba, and A. E.
Seeds. (1969). Permeability of different layers of
the human placenta to isotopic water. Journal of
Applied Physiology 26, 274–276.

Lo, A. (1982). Bayesian nonparametric statistical
inference for shock models. Scandinavian Journal
of Statistics 8, 237–242.

Lo, A. (1993). A Bayesian bootstrap for censored
data. Annals of Statistics 21, 100–123.

Loftsgaarden, D. O., and C. P. Quesenberry. (1965).
A nonparametric estimate of a multivariate
density function. The Annals of Mathematical
Statistics 36, 1049–1051.

Low, P. P., C. K. Luk, M. J. Dulfano, and P. J. P.
Finch. (1984). Ciliary beat frequency of human
respiratory tract by different sampling techniques.
American Review of Respiratory Disease 130,
497–498.

Lu, H. H. S., M. T. Wells, and R. C. Tiwari.
(1994). Inference for shift functions in the two-
sample problem with right-censored data: With
applications. Journal of the American Statistical
Association 89, 1017–1026.
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Özturk, Ö., and D. A. Wolfe. (2000). Optimal alloca-
tion procedure in ranked set sampling for unimodal
and multi-modal distributions. Environmental and
Ecological Statistics 7, 343–356.

Pagan, A., and A. Ullah. (1999). Nonparametric
Econometrics. Cambridge: Cambridge University
Press.

Page, E. B. (1963). Ordered hypotheses for multiple
treatments: A significance test for linear ranks.
Journal of the American Statistical Association
58, 216–230.

Pan, G. (1996). Distribution-free confidence proce-
dure for umbrella orderings. Australian Journal
of Statistics 38, 161–172.

Parzen, E. (1962). On estimation of a proba-
bility density function and mode. Annals of
Mathematical Statistics 33, 1065–1076.

Parzen, E. (2004). Quantile probability and statistical
data modeling. Statistical Science 19, 652–662.

Patil, G. P. (1995). Editorial: Ranked set sam-
pling. Environmental and Ecological Statistics 2,
271–285.

Patil, G. P., A. K. Sinha, and C. Taillie. (1995).
Finite population corrections for ranked set
sampling. Annals of the Institute of Statistical
Mathematics 47, 621–636.

Patil, G. P., A. K. Sinha, and C. Taillie. (1999).
Ranked set sampling: a bibliography. Environ-
mental and Ecological Statistics 6, 91–98.

Pearson, E. S. (1931). The analysis of variance in
cases of non-normal variation. Biometrika 23,
114–133.

Pearson, K. (1900). On the criterion that a given
system of deviations from the probable in the
case of a correlated system of variables is such
that it can be reasonably supposed to have arisen



Bibliography 783

from random sampling, Philosophical Magazine
Series 5 50, 157–175.

Pearson, K. (1911). On the probability that two
independent distributions of frequency are really
samples from the same population. Biometrika 8,
250–254.

Pensky, M., and B. Vidakovic. (1999). Adap-
tive wavelet estimator for nonparametric density
deconvolution. Annals of Statistics 27, 2033–2053.

Percival, D. B., and A. T. Walden. (2000).
Wavelet Methods for Time Series Analysis (Cam-
bridge Series in Statistical and Probabilistic
Mathematics). Cambridge University Press.

Peterson, A. V. (1977). Expressing the Kaplan-Meier
estimator as a function of empirical subsurvival
functions. Journal of the American Statistical
Association 90, 1399–1405.

Peto, R., and J. Peto. (1972). Asymptotically efficient
rank invariant test procedures (with discussion).
Journal of the Royal Statistical Association 72,
854–858.

Pettitt, A. N., and V. Siskind. (1981). Effect of
within-sample dependence on the Mann-Whitney-
Wilcoxon statistic. Biometrika 68, 437–441.

Pettitt, A. N., and M. A. Stephens. (1977). The
Kolmogorov-Smirnov goodness-of-fit statistic
with discrete and grouped data. Technometrics
19, 205–210.

Phadke, C. P., S. S. Wu, F. J. Thompson, and A. L.
Behrman. (2006). Soleus H-reflex modulation in
response to change in percentage of leg loading
in standing after incomplete spinal cord injury.
Neuroscience Letters 403, 6–10.

Pires, A. M., and J. A. Branco. (2010). A statistical
model to explain the Mendel-Fisher controversy.
Statistical Science 25, 545–565.

Pitman, E. J. G. (1948). Notes on non-parametric
statistical inference. Columbia University
(duplicated).

Platt, W. J., G. W. Evans, and S. L. Rathbun.
(1988). The population dynamics of a long-lived
conifer (Pinus palustris). The American Naturalist
131, 491–525.

Poland, A., D. Smith, R. Kuntzman, M. Jacobson,
and A. H. Conney. (1970). Effect of intensive
occupational exposure to DDT on phenylbutazone
and cortisol metabolism in human subjects. Clin-
ical Pharmacology & Therapeutics 11, 724–732.

Portnoy, S., and R. Koenker. (1989). Adaptive
l-estimation for linear models. The Annals of
Statistics 17 pp. 362–381.

Potthoff, R. F. (1974). A non-parametric test of
whether two simple regression lines are parallel.
Annals of Statistics 2, 295–310.

Pratt, J. W. (1959). Remarks on zeros and ties in
the Wilcoxon signed rank procedures. Journal of
the American Statistical Association 54, 655–667.

Pratt, J. W. (1964). Robustness of some procedures
for the two-sample location problem. Journal of
the American Statistical Association 59, 665–680.

Prentice, M. J. (1979). On the problem of m
incomplete rankings. Biometrika 66, 167–170.

Prentice, R. L. (1978). Linear rank tests with right
censored data. Biometrika 65, 167–179.

Presnell, B., and L. L. Bohn. (1999). U -statistics
and imperfect ranking in ranked set sampling.
Journal of Nonparametric Statistics 10, 111–126.

Priestley, M., and M. Chao. (1972). Non-parametric
function fitting. Journal of the Royal Statistical
Society, Series B-Methodological 34, 385–392.

Proschan, F. (1963). Theoretical explanation of
observed decreasing failure rate. Technometrics
5, 375–383.

Puri, M. L. (1965). Some distribution-free k -sample
rank tests of homogeneity against ordered alter-
natives. Communications on Pure and Applied
Mathematics 18, 51–63.

Puri, M. L., and P. K. Sen. (1968). On Chernoff-
Savage tests for ordered alternatives in randomized
blocks. Annals of Mathematical Statistics 39,
967–972.

Puri, M. L., and P. K. Sen. (1971). Nonparametric
Methods in Multivariate Analysis. New York:
John Wiley and Sons, Inc.

Putt, M. E., and V. M. Chinchilli. (2004). Nonpara-
metric approaches to the analysis of crossover
studies. Statistical Science 19, 712–719.

Quenouille, M. H. (1949). Approximate tests of
correlation in time-series. Journal of the Royal
Statistical Society, Series B 11, 68–84.

Racine, J., and Q. Li. (2004). Nonparametric estima-
tion of regression functions with both categorical
and continuous data. Journal of Econometrics
119, 99–130.

Ramachandramurty, P. V. (1966a). On some
nonparametric estimates for shift in the Behrens-
Fisher situation. Annals of Mathematical Statistics
37, 593–610.

Ramachandramurty, P. V. (1966b). On the Pit-
man efficiency of one-sided Kolmogorov and
Smirnov tests for normal alternatives. Annals of
Mathematical Statistics 37, 940–944.



784 Bibliography

Ramsay, W. N. M. (1957). The determination of
iron in blood plasma or serum. Clinica Chimica
Acta 2, 214–220.

Randles, R. H., M. A. Fligner, G. E. Policello
II, and D. A. Wolfe. (1980). An asymptoti-
cally distribution-free test for symmetry versus
asymmetry. Journal of the American Statistical
Association 75, 168–172.

Randles, R. H., T. P. Hettmansperger, and G. Casella.
(2004). Introduction to the special issue: Non-
parametric statistics. Statistical Science 19, 561.

Randles, R. H., and R. V. Hogg. (1971). Certain
uncorrelated and independent rank statistics.
Journal of the American Statistical Association
66, 569–574.

Randles, R. H., and D. A. Wolfe. (1979). Introduc-
tion to the Theory of Nonparametric Statistics.
New York: John Wiley and Sons, Inc. (Randles
and Wolfe (1979) was reprinted in 1991 by
Krieger Publishing Company.)

Rao, K. S. M., and A. P. Gore. (1984). Testing
concurrence and parallelism of several sample
regressions against ordered alternatives. Math-
ematische Operationsforschung und Statistik,
Series Statistics 15, 43–50.

Rasekh, J., A. Kramer, and R. Finch. (1970).
Objective evaluation of canned tuna sensory
quality. Journal of Food Science 35, 417–423.

Reed, O. M. (1973). Papio Cynocephalus age
determinations. American Journal of Physical
Anthropology 38, 309–314.

Rice, J. A. (1998). Mathematical Statistics and
Data Analysis. Pacific Grove, CA: Wadsworth &
Brooks/Cole.

Rice, J. A. (2007). Mathematical Statistics and
Data Analysis (3rd edn.). Belmont, CA: Thomson
Brooks/Cole.

Risen, J. L., and T. Gilovich. (2008). Why people
are reluctant to tempt fate. Journal of Personality
and Social Psychology 95, 293–307.

Robertson, T., F. T. Wright, and R. L. Dykstra.
(1988). Order Restricted Statistical Inference.
New York: John Wiley and Sons, Inc.

Robins, J., N. Breslow, and S. Greenland. (1986).
Estimators of the Mantel-Haenszel variance
consistent in both spare data and large-strata
limiting models. Biometrics 42, 311–323.

Rosenblatt, M. (1956). Remarks on some nonpara-
metric estimates of a density function. Annals of
Mathematical Statistics 27, 832–837.

Ruppert, D., and M. Wand. (1994). Multivariate
locally weighted least squares regression. The
Annals of Statistics 22, 1346–1370.

Rust, S. W., and M. A. Fligner. (1984). A modifica-
tion of the Kruskal-Wallis statistic for the gener-
alized Behrens-Fisher problem. Communications
in Statistics: Theory and Methods 13, 2013–2028.

Ryan, T. P. (2009). Modern Regression Methods.
New York: John Wiley and Sons, Inc.

Salsburg, D. S. (1970). Personal communication
(with the cooperation of Pfizer and Co., Groton,
Conn.).

Samara, B., and R. H. Randles. (1988). A test for cor-
relation based on Kendall’s tau. Communications
in Statistics: Theory and Methods 17, 3191–3205.

Santner, T. J. (1988). Teaching large-sample bino-
mial confidence intervals. Teaching Statistics 20,
20–23.

Sauber, S. R. (1971). Approaches to precounseling
and therapy training: An investigation of its
potential influence on process outcome. PhD
dissertation, Florida State University.

Savage, I. R. (1953). Bibliography of nonparamet-
ric statistics and related topics. Journal of the
American Statistical Association 48, 844–906,
Correction: (1958), 53, 1031.

Savage, I. R. (1956). Contributions to the theory
of rank order statistics—the two-sample case.
Annals of Mathematical Statistics 27, 590–615.

Savage, I. R. (1962). Bibliography of Nonparametric
Statistics. Cambridge: Harvard University Press.

Savur, S. R. (1937). The use of the median in
tests of significance. Proceedings of the Indian
Academy of Sciences - Section A 5 (6), 564–576.

Saxena, K. M. L. (1969). Use of sign statistic
in problems concerning P(Y < X ). Abstract in
Annals of Mathematical Statistics 40, 1154.
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R Program Index

The software R (freely available for download at http://www.r-project.org/) is utilized
throughout this text. Some commonly used functions are included in R by default. Other
functions are available in packages from sources independent of the authors. The remain-
ing functions are defined in the NSM3 package. The user needs only to install (once) and
load (at the beginning of each R session) the NSM3 package to have access to all of the
functions used throughout the text. The independently maintained packages will be auto-
matically included. Readers who are unfamiliar with R are referred to the “Introduction
to R” available at http://cran.r-project.org/doc/manuals/R-intro.html.

Any bugs, suggestions, or other issues for the functions defined in the NSM3 package
should be sent to Grant Schneider at schneider.393@osu.edu. Issues relating to indepen-
dent functions should be referred to their respective maintainers.

The following is a table of the R functions used throughout the text, a short descrip-
tion of each, and the package where each is defined. More extensive descriptions and
examples can be found in the R documentation, which may be accessed by entering
?function.name (with function.name replaced by the desired function) in the R

console. General package information (including additional functions not referenced in
the text) can be obtained by entering help(package="NSM3") in the R console.

Function Name Description Package

akj Function to perform univariate adaptive kernel
density estimation using Silverman’s method

quantreg

ash1 Function to compute the univariate average shifted
histogram

ash

binom.confint Function to obtain a confidence interval for the
Binomial parameter p

binom

binom.test Function to test the null hypothesis about the
probability of success in a Bernoulli experiment

stats

cAnsBrad Quantile function for the Ansari-Bradley C
distribution

NSM3

cBohnWolfe Quantile function for the Bohn-Wolfe U
distribution

NSM3

cDurSkiMa Quantile function for the Durbin, Skillings-Mack D
distribution

NSM3

chisq.test Function to perform chi-square contigency table
tests

stats

cFligPoli Quantile function for the Fligner-Policello U
distribution

NSM3

cFrd Quantile function for the Friedman,
Kendall-Babington Smith S distribution

NSM3
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Function Name Description Package

cHaySton Quantile function for the Hayter-Stone W
distribution

NSM3

cHayStonLSA Quantile function for the Hayter-Stone W
asymptotic distribution

NSM3

cHollBivSym Quantile function for the Hollander A distribution NSM3
ch.ro Function to compute the Campbell-Hollander

estimator Ĝ
NSM3

cJCK Quantile function for the Jonckheere-Terpstra J
distribution

NSM3

cKolSmirn Quantile function for the Kolmogorov-Smirnov J
distribution

NSM3

cKW Quantile function for the Kruskal-Wallis H
distribution

NSM3

cLepage Quantile function for the Lepage D distribution NSM3
cMackSkil Quantile function for the Mack-Skillings MS

distribution
NSM3

cMaxCorrNor Quantile function for the maximum of k N (0, 1)

random variables with common correlation ρ

NSM3

cNDWol Quantile function for the Nemenyi, Damico-Wolfe
Y distribution

NSM3

cNWWM Quantile function for the Nemenyi,
Wilcoxon-Wilcox, Miller R distribution

NSM3

cor Function to compute correlation stats
cor.test Test for association between paired samples stats
CorrUpperBound Function to compute the upper bound for the null

correlation between two overlapping signed rank
statistics

NSM3

coxph Function to fit a Cox proportional hazards
regression model

survival

cox.zph Function to test the proportional hazards
assumption for a Cox regression model fit

survival

cPage Quantile function for the Page L distribution NSM3
cRangeNor Quantile function for the range of k independent

N (0, 1) random variables
NSM3

cSDCFlig Quantile function for the Dwass, Steel,
Critchlow-Fligner W distribution

NSM3

cUmbrPK Quantile function for the Mack-Wolfe Peak Known
Ap distribution

NSM3

cUmbrPU Quantile function for the Mack-Wolfe Peak
Unknown Ap̂ distribution

NSM3

cWNMT Quantile function for the Wilcoxon, Nemenyi,
McDonald-Thompson R distribution

NSM3

density Function to compute kernel density estimates stats
dmrl.mc Function to compute the Monte Carlo or asymptotic

P -value for the observed Hollander-Proschan V ′
statistic

NSM3

drop.test Function to perform a reduction in dispersion test Rfit
dwt Function to perform a level J decomposition of the

input vector using the pyramid algorithm
waveslim

ecdf Function to compute an empiricial cumulative
distribution function

stats

(continued)
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Function Name Description Package

ecdf.ks.CI Function to compute and plot Kolmogorov’s 95%
confidence band for the distribution function
F (x)

NSM3

epstein Function to compute the P -value for the observed
Epstein E statistic

NSM3

e.mc Monte Carlo approximation to the epstein
function

NSM3

ferg.df Function to compute an approximation of
Ferguson’s estimator μn

NSM3

fisher.test Function to perform Fisher’s exact test for the
null hypothesis of independence of rows and
columns in a contingency table with fixed
marginals

stats

hist Function to compute a histogram of the given
data values

graphics

hoeffd Function to compute a matrix of Hoeffding’s D
statistic for all possible pairs of columns of a
matrix

Hmisc

HoeffD Function to compute Hoeffding’s D statistic for
small sample sizes, which is used in pHoeffD

NSM3

HollBivSym Function to compute the Hollander A statistic for
testing bivariate symmetry

NSM3

hybrid.thresh Function to perform wavelet shrinkage using
hybrid SURE thresholding

waveslim

idwt Inverse of the dwt function, to reconstruct the
original data

waveslim

imodwt Inverse of the modwt function, to reconstruct the
original data

waveslim

kendall.ci Function to produce a confidence interval for
Kendall’s τ

NSM3

klefsjo.ifr Function to compute the P -value for the observed
Klefsjö’s A∗ statistic

NSM3

klefsjo.ifra Function to compute the P -value for the observed
Klefsjö’s B∗ statistic

NSM3

klefsjo.ifr.mc Monte Carlo approximation to the
klefsjo.ifr function

NSM3

klefsjo.ifra.mc Monte Carlo approximation to the
klefsjo.ifra function

NSM3

km.ci Function to compute pointwise and simultaneous
confidence intervals associated with the
Kaplan-Meier estimator

km.ci

kolmogorov Function to compute the asymptotic P -value for
the observed Kolmogorov D statistic

NSM3

lillie.test Function to perform the Lilliefors test for the
composite hypothesis of normality

nortest

loess Function to fit a polynomial surface determined
by one or more numerical predictors, using
local fitting

stats

loess.as Function to fit a local polynomial regression with
automatic smoothing parameter selection

fANCOVA



794 R Program Index

Function Name Description Package

mantelhaen.test Function to perform a Cochran-Mantel-Haenszel
chi-square test of the null hypothesis that two
nominal variables are conditionally independent
in each stratum

stats

mblm Function to fit linear models based on Theil-Sen
single median or Siegel repeated medians

mblm

mcnemar.test Function to perform McNemar’s chi-square test for
symmetry of rows and columns in a
two-dimensional contingency table

stats

median Function to compute the sample median stats
MillerJack Function to compute the Miller Jackknife Q statistic stats
modwt Function to perform a level J decomposition of the

input vector using the non-decimated discrete
wavelet transform

waveslim

mra Function to perform a level J additive
decomposition of the input vector using the
pyramid algorithm

waveslim

mrl Function to return the mean residual life along with
Hall and Wellner’s upper and lower bounds

NSM3

nb.mc Monte Carlo approximation to the newbet
function

NSM3

newbet Function to compute the asymptotic P -value for the
observed Hollander-Proschan T ∗ statistic

NSM3

npreg Function to perform kernel regression np
oddsratio Calculates odds ratio by one of several methods epitools
owa Function to compute the ordered Walsh averages

and the value of the Hodges-Lehmann estimator
NSM3

pAnsBrad Function to compute the P -value for the observed
Ansari-Bradley C statistic

NSM3

pbinom Distribution function for the binomial distribution stats
pBohnWolfe Function to compute the P -value for the observed

Bohn-Wolfe U statistic
NSM3

pchisq Distribution function for the chi-square distribution stats
pDurSkiMa Function to compute the P -value for the observed

Durbin, Skillings-Mack D statistic
NSM3

pf Distribution function for the F distribution stats
pFligPoli Function to compute the P -value for the observed

Fligner-Policello U statistic
NSM3

pFrd Function to compute the P -value for the observed
Friedman, Kendall-Babington Smith S statistic

NSM3

pHaySton Function to compute the P -value for the observed
Hayter-Stone W statistic

NSM3

pHayStonLSA Function to compute the upper-tail probability of
the Hayter-Stone W asymptotic distribution for a
given cutoff

NSM3

pHoeff Function to approximate the distribution of
Hoeffding’s D statistic using a Monte Carlo
sample

NSM3

pHollBivSym Function to compute the P -value for the observed
Hollander A statistic

NSM3

pJCK Function to compute the P -value for the observed
Jonckheere-Terpstra J statistic

NSM3

(continued)
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Function Name Description Package

pKendall Distribution function for the Kendall K statistic SuppDists
pKolSmirn Function to compute the P -value for the

observed Kolmogorov-Smirnov J statistic
NSM3

pKW Function to compute the P -value for the
observed Kruskal-Wallis H statistic

NSM3

pLepage Function to compute the P -value for the
observed Lepage D statistic

NSM3

pMackSkil Function to compute the P -value for the
observed Mack-Skillings MS statistic

NSM3

pMaxCorrNor Function to compute the upper-tail probability of
the maximum of k N (0, 1) random variables
with common correlation ρ for a given cutoff

NSM3

pNDWol Function to compute the P -value for the
observed Nemenyi, Damico-Wolfe Y statistic

NSM3

pNWWM Function to compute the P -value for the observed
Nemenyi, Wilcoxon-Wilcox, Miller R statistic

NSM3

pnorm Distribution function for the normal distribution stats
pPage Function to compute the P -value for the

observed Page L statistic
NSM3

pPairedWilcoxon Function to extend wilcox.test to compute
the (exact or Monte Carlo) P -value for paired
Wilcoxon data in the presence of ties

NSM3

pRangeNor Function to compute the upper-tail probability of
the range of k independent N (0, 1) random
variables for a given cutoff

NSM3

pretty Function to compute equally spaced values that
cover the range of values in the given data

base

prop.test Function to test the null hypothesis that the
proportions in several groups are the same or
that they equal specified values

stats

pSDCFlig Function to compute the P -value for the observed
Dwass, Steel, Critchlow-Fligner W statistic

NSM3

psignrank Distribution function for the Wilcoxon signed
rank T + statistic

stats

pSpearman Distribution function for the Spearman rS

statistic
SuppDists

pUmbrPK Function to compute the P -value for the
observed Mack-Wolfe Peak Known Ap statistic

NSM3

pUmbrPU Function to compute the P -value for the observed
Mack-Wolfe Peak Unknown Ap̂ statistic

NSM3

pwilcox Distribution function for the Wilcoxon rank sum
W statistic

stats

pWNMT Function to compute the P -value for the
observed Wilcoxon, Nemenyi,
McDonald-Thompson R statistic

NSM3

qbinom Quantile function for the binomial distribution stats
qchisq Quantile function for the chi-square distribution stats
qf Quantile function for the F distribution stats
qKendall Quantile function for the Kendall K distribution SuppDists
qKolSmirnLSA Quantile function for the asymptotic distribution

of the Kolmogorov-Smirnov J statistic
NSM3
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Function Name Description Package

qnorm Quantile function for the normal distribution stats
qSpearman Quantile function for the Spearman rS

distribution
SuppDists

qt Quantile function for the Student t distribution stats
qwilcox Quantile function for the Wilcoxon rank sum W

distribution
stats

rexp Function for random generation from the
exponential distribution

stats

rfit Function to minimize Jaeckel’s dispersion
function to obtain a rank-based solution for
linear models

Rfit

RFPW Function to compute the P -value for the observed
Randles-Fligner-Policello-Wolfe V statistic

NSM3

rma.mh Function to fit a fixed-effects model via the
Mantel-Haenszel method

metafor

rnorm Function for random generation from the normal
distribution

stats

RSS Function to obtain a ranked-set sample of given
set size and number of cycles based on a
specified auxiliary variable

NSM3

runif Function for random generation from the
uniform distribution

stats

sample Function to take a sample (with or without
replacement) of the specified size from the
input data

base

sen.adichie Function to test for parallel lines NSM3
SIGN.test Function to test a hypothesis based on the sign

statistic B and obtain confidence intervals for
one-sample problems

BSDA

supsmu Function to smooth values by Friedman’s super
smoother

stats

sure.thresh Function to perform wavelet shrinkage using
SURE thresholding

waveslim

Surv Function to create a survival object, usually used
as a response variable in a model formula

survival

survdiff Function to test if there are differences between
two or more survival curves

survival

survfit Function to create survival curves from a
formula or previously fitted model

survival

svr.df Function to compute the Susarla-van Ryzin

estimator ˆ̄Fn

NSM3

tc Function to compute the asymptotic P -value for
the observed Guess-Hollander-Proschan T1

statistic

NSM3

theil Function to estimate and perform tests on the
slope and intercept of a simple linear model

NSM3

universal.thresh Function to perform wavelet shrinkage using
universal thresholding

waveslim

unlist Function to, given a list, simplify the list to
produce a vector containing the atomic
components of that list

base

(continued)
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Function Name Description Package

waerden.test Function to compute the P -value for the
observed van der Waerden c statistic

agricolae

wilcox.test Function to perform one- and two-sample
Wilcoxon (Mann-Whitney) tests

stats

wilcox test Function to compute the P -value for the observed
two-sample Wilcoxon statistic based on the
conditional distribution (when there are ties)

coin

zelen.test Function to perform Zelen’s test NSM3
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large-sample approximation, 720, 726–727
motivation, 722
null distribution, 722–725
power, 729–730
properties, 730
ties, 721

Bootstrap, 420–427, 627
bandwidth selection, 627
bias-corrected and accelerated, 425–426
confidence interval for tau, 420–423
estimated standard error, 423–424
jackknife versus bootstrap, 426
number of bootstrap replications, 426
one-sample framework, 424–425

Boyles-Samaniego new better than used estimator,
553

Campbell-Hollander Bayes rank order estimator,
752–755

Cascade algorithm, 634, 642–643
Censored data, 551, 578–605

confidence bands for survival function, 585–590
new better than used test, 590–591
quantile function confidence bands, 591–592
survival function estimators, 578–594
two-sample tests, 594–601

Chen-Hollander-Langberg new better than used test
for censored data, 590–591

Chi-squared test of homogeneity, 495–509
Chi-squared test of independence, 495–509
Collecting a ranked set sample, 677–681,

737–739
balanced versus unbalanced, 738–739
comparison with a simple random sample,

680–681
constructive approach to obtain a balanced

ranked set sample, 677–678

cost considerations, 739
example, 678–680
imperfect rankings, 737–738
multiple observations per set, 739
set size, 737
unequal set sizes, 739

Concordance, multivariate, 408
Concordant pairs, 399–400
Conditional test:

balanced incomplete block design, 338
bivariate symmetry, 102–112
broad alternatives, 196–197
center of symmetry, 50–52
common odds ratio, 527–530
equal means, 124–125
equal success rates, 511–513
equal variances, 166–167
independence, 438–439
odds ratio, 520
one-way layout, 209–210, 253
two-way layout, 299–300, 310, 338, 350–351,

359
Confidence intervals for the binomial parameter,

24–33
Agresti-Coull interval, 26–27
Clopper-Pearson interval, 27
Laplace-Wald interval, 26
Wilson interval, 25–26

Contingency tables, 495–534
2 x 2, 495–534
k strata of 2 x 2 tables, 522–534

Continuity corrections:
Edwards, 508–509
Yates, 506

Contrasts:
in one-way layout, 278–287
in two-way layout, 328–331, 386–390

Correlation coefficient:
Gripenberg partial, 419
Kendall, 394, 399, 413–414
Pearson, 427, 429, 431–432
Spearman, 427, 429, 431–432, 440

Cox’s proportional hazards model, 601–602
fitting a proportional hazards model, 602
partial likelihood, 602
test of the proportional hazards assumption,

602
Critchlow-Fligner simultaneous confidence intervals

for simple contrasts in one-way layout,
282–287

example, 283–285
large-sample approximation, 283, 286
motivation, 285
properties, 286
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Cross-validation methods:
density bandwidth selection, 625
generalized cross-validation, 662–663, 665–666
least squares, 660, 668
span selection, 657–658, 660, 662–663,

665–666, 668–669, 672–673
wavelet thresholding, 651, 653

Cumulative distribution function, see Distribution
function

Cumulative hazard function, 585–586

Decreasing failure rate, see Failure rate
Density estimation, 609–628

histogram, 611–616
kernel estimator, 617–624
nearest neighbor estimator, 628
orthogonal series estimator, 628

Density function, 609–610
Dirichlet process, see Ferguson’s Dirichlet process
Discordant pairs, 399–499
Discrete wavelet transform, 633–637, 640

sample size, 634, 637, 641–643
Dispersion:

confidence intervals, 167, 178–179
estimators, 167, 178–179
tests, 151–190

Distribution-free, 2
Distribution function:

confidence bands, censored case, 586–590
confidence bands, uncensored case, 568–578
estimation of, censored case, 578–594
estimation of, ranked set sample, 705–706
estimation of, uncensored case, 191, 568–578,

610
Doksum contrast estimator in two-way layout:

asymptotic relative efficiency, 390–391
example, 329–330
large-sample approximation, 331
motivation, 330
properties, 331

Doksum test based on signed ranks for general
alternatives in two-way layout, 370–375

asymptotic relative efficiency, 391
consistency, 375
example, 372–374
large-sample approximation, 372
motivation, 374
properties, 375
ties, 372, 375

Durbin, Skillings-Mack test for balanced
incomplete block design, 332–340

asymptotic relative efficiency, 391

example, 333–335
large-sample approximation, 333, 337–339
motivation, 335
properties, 339
ties, 333, 338

Dwass, Steel, Critchlow-Fligner one-way layout all
treatments multiple comparisons, 256–265

asymptotic relative efficiency, 287
example, 257–260
large-sample approximation, 257, 262–263, 265
motivation, 260
properties, 265
ties, 257

Edwards continuity correction, 508–509
Efficiency, see Asymptotic relative efficiency
Efron bootstrap, see Bootstrap
Efron redistribute-to-the-right algorithm, 583
Efron self-consistency property, 583–584
Empirical distribution function, 191, 610–612,

705–706
example, 611–612
in goodness-of-fit test, 572–575
in Kolmogorov-Smirnov test, 190–200

Epstein increasing failure rate test, 536–545
asymptotic relative efficiency, 605
example, 538–539
large-sample approximation, 538
motivation, 539–540
properties, 544

Equivariance, 27
Experimentwise error rate:

in a one-way layout, 260–261
in a two-way layout, 319

Exponentiality, tests of, 535–568

Failure rate, 536
Fisher exact test, 511–513

example, 512
motivation, 513
properties, 513

Fisher sign test, for paired replicates, 63–74
asymptotic relative efficiency, 113
confidence interval, 80–83
consistency, 73
examples, 65–66, 90–92
large-sample approximation, 65, 70–71, 74
motivation, 67
for one-sample data, 90–93
power, 71–73
properties, 73–74
sample size determination, 73
ties, 65, 71
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Fisher-Yates-Terry-Hoeffding two-sample location
test, 130–132

asymptotic relative efficiency, 150
large-sample approximation, 132

Fligner-Policello two-sample test, 145–149
asymptotic relative efficiency, 150
consistency, 149
example, 147–148
large-sample approximation, 146
motivation, 148
properties, 149
ties, 146

Fligner-Wolfe one-way layout treatments versus
control test, 249–255

asymptotic relative efficiency, 287
consistency, 255
example, 251–252
large-sample approximation, 250
motivation, 252
properties, 255
ties, 251, 253

Friedman, Kendall-Babington Smith two-way
layout test, 292–304

asymptotic relative efficiency, 390
consistency, 301
example, 293–295
large-sample approximation, 293, 300
motivation, 296
properties, 301
ties, 293, 299–300

Ferguson’s Bayes estimator of the distribution
function, 746–752

Ferguson’s Dirichlet process, 745–748

Gasser-Müller kernel estimator, 673
Gehan two-sample test for censored data, 600
Gibbs sampling, 760–761
Gibbs sampling with the Dirichlet, 760–761
Goodness-of-fit tests, 29–30

exponentiality, 575
normality, 575–577
specified distribution, 572

Greenwood formula, 585
Gripenberg estimator and confidence interval for

partial correlation, 419
Guess-Hollander-Proschan test for trend change in

mean residual life, 563–568
example, 565–566
motivation, 566
power, 568
properties, 568

Halperin-Gilbert-Lachin confidence interval
for P(X < Y), 140–141

Hall-Wellner mean residual life confidence bands,
560–562

Hall-Wellner survival function confidence bands,
586–588

Hawkins-Kochar-Loader tests for trend change in
mean residual life, 567–568

Hayter-Stone ordered alternatives multiple
comparisons, one-way layout, 265–271

example, 267–268
large-sample approximation, 266–267, 270–271
motivation, 269
properties, 271
ties, 267

Hettmansperger-McKean-Sheather intercept
estimator, 463–465

Histogram, 611–616
average shifted histogram, 616
bias, 614–615
bin width, 612, 615–616
centered, 617–618
consistency, 616
effect of changing the bandwidth, 613
equivalency to kernel density estimate, 622–623
examples, 613–614, 617–618
integrated mean squared error, 614–615
properties, 616
variance, 614–615

Hodges-Lehmann one-sample estimator based on
Walsh averages, 56–58, 84–87

asymptotic relative efficiency, 113
examples, 56–57, 85–87
motivation, 57
properties, 58
standard deviation, estimated, 58, 62

Hodges-Lehmann two-sample estimator,
136–142

asymptotic relative efficiency, 150
example, 137
motivation, 137–138
properties, 141
standard deviation, estimated, 141, 143

Hoeffding independence test, 442–449
consistency, 449
example, 445–447
large-sample approximation, 444
motivation, 447–448
properties, 449
relation to Blum-Kiefer-Rosenblatt test, 448
ties, 444–445

Hollander bivariate symmetry test, 102–112
consistency, 111
example, 105–110
large-sample approximation, 104
motivation, 110
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properties, 111
ties, 105

Hollander test based on signed ranks for ordered
alternatives in two-way layout, 376–379

asymptotic relative efficiency, 391–392
consistency, 379
example, 377–378
large-sample approximation, 376, 379
motivation, 378
properties, 379
ties, 377

Hollander two-way layout treatment versus control
multiple comparisons based on signed ranks,
382–386

asymptotic relative efficiency, 392
example, 383–384
large-sample approximation, 382–383
motivation, 384
properties, 385
ties, 383

Hollander-Peña confidence bands for survival
function, 586–588

Hollander-Proschan decreasing mean residual life
test, 555–562

asymptotic relative efficiency, 605
example, 557–558
large-sample approximation, 557
motivation, 558–559
properties, 562

Hollander-Proschan new better than used test,
545–555

asymptotic relative efficiency, 605
consistency, 554
example, 549–550
large-sample approximation, 547–548
motivation, 551
properties, 554
ties, 548

Imperfect rankings, 704, 728–729, 737–738
Incomplete block designs, 331–354

balanced, 332–343
arbitrary, 343–354

Increasing failure rate:
class, 536, 558–559
tests for, 536–545

Increasing failure rate average:
class, 540–541
tests for, 541–542

Independence:
Blum-Kiefer-Rosenblatt test of, 444, 448–449
Hoeffding test of, 442–449
in 2 x 2 contingency tables, 495–514

Kendall test of, 393–409
Spearman test of, 427–440

Initially increasing, then decreasing, mean residual
life:

class, 555
tests for, 555–562

Interquartile range, 612
Intentionally representative sampling, 742–743
Intercept estimator, 463–465
Inverse discrete wavelet transform, 637, 644–645,

647

Jackknife, 176–178
asymptotic relative efficiency, 201
dispersion confidence interval, 178–179
dispersion estimator, 178–179
dispersion test, 169–181
estimated variance of general estimator, 176–177
general confidence interval, 177
versus bootstrap, 176–177

Jaeckel-Hettmansperger-McKean test for general
multiple linear regression, 475–485

asymptotic relative efficiency, 494
example, 479–483
large-sample approximation, 478–479
motivation, 483
properties, 485
ties, 479

Jonckheere ordered alternatives test, 215–225
asymptotic relative efficiency, 287
consistency, 224
example, 217–219
large-sample approximation, 216, 222–223
motivation, 219
power, 223
properties, 224
ties, 216–217

Judgment post-stratification, 742

Kaplan-Meier estimator of the survival function for
censored data, 578–594

asymptotic relative efficiency, 606–607
bias, 586
confidence bands based on, 586–590
motivation, 582
properties, 592
redistribute-to-the-right algorithm, 583
self-consistency property, 583–584
tail probability estimation, 584

Kendall’s test of independence, 393–409
asymptotic relative efficiency, 450
consistency, 409
example, 397–399
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Kendall’s test of independence (Continued )
large-sample approximation, 396, 403–405
motivation, 399
power, 406–407
properties, 409
sample-size determination, 407
ties, 396–397, 406
trend test, 407

Kernel density estimation, 617–624
binned kernel estimate, 623
consistency, 624
effect of changing the kernel, 622–623
effect of changing the bandwidth, 619–621
examples, 619–622
mean integrated squared error, 623

Kernel function, 618–619
bandwidth, 619
effect of changing kernel on density estimation,

622
Epanichnikov, 621, 623, 626–627
normal, 619
order, 671–672
properties, 618–619
rectangular, 618
triangle, 621

Kernel smoother, 667–674
local linear kernel smoother, 662–666
Gasser-Müller estimator, 673
Nadaraya-Watson estimator, 667–670
Priestly-Chao estimator, 673

Klefsjö increasing failure rate test, 541–542
Klefsjö increasing failure rate average test,

541–542
Kolmogorov confidence band for distribution

function, 568–578
asymptotic relative efficiency, 577, 606
example, 570–571
large-sample approximation, 570
motivation, 571–572
properties, 577

Kolmogorov goodness-of-fit test, 572–575
Kolmogorov-Smirnov test, 190–200

asymptotic relative efficiency, 201
consistency, 198
example, 192–194
large-sample approximation, 192, 197–198
properties, 198
ties, 192, 195–197

Koul new better than used test, 553
Kruskal-Wallis one-way layout test, 204–215

asymptotic relative efficiency, 287
consistency, 211–212
example, 205–206
large-sample approximation, 205, 210

motivation, 206–207
properties, 212
ties, 205, 209–210

k -sample tests, one-way layout, 202–255
two-way layout, 289–315, 332–340, 343–367,

370–379

Lehmann contrast estimator in two-way layout,
386–390

asymptotic relative efficiency, 392
example, 387–389
large-sample approximation, 389
motivation, 389
properties, 389

Lepage test for location and dispersion, 181–190
consistency, 188
example, 183–185
large-sample approximation, 182, 187
motivation, 185
properties, 188
ties, 182, 187–188

Li-Hollander-McKeague-Yang quantile function
confidence bands, 591–592

Lilliefors normality test, 575–577
Linear regression, 451–490, 662–666
Local averaging smoother, 657–661

bass, 657, 659–660
cross-validation, 657–660
example, 657–659
span, 657–661
windows, 659–660

Local regression smoother, 662–666
cross-validation, 662
example, 662–664
generalized cross-validation, 662
multivariate regression, 666
polynomial regression, 665
properties, 666
weighted regression, 664–665

Location-shift function, 132
Logrank test, see Mantel two-sample test for

censored data

Mack-Skillings all treatments multiple comparisons,
equal number of replications in each
treatment-block configuration, 367–370

asymptotic relative efficiency, 391
example, 368
motivation, 368
properties, 369
ties, 367

Mack-Skillings test for randomized block design
with equal number of replications per
treatment-block configuration, 354–367
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asymptotic relative efficiency, 391
example, 356–358
large-sample approximation, 355–356, 359
motivation, 358
properties, 364
ties, 356, 359

Mack-Wolfe umbrella alternatives test, peak known,
226–240

asymptotic relative efficiency, 287
consistency, 238
example, 228–230
large-sample approximation, 227–228, 235–238
motivation, 230–231
properties, 238
ties, 228

Mack-Wolfe umbrella alternatives test, peak
unknown, 241–249

estimation of umbrella peak, 245
example, 242–244
motivation, 244
power, 247
ties, 242

Mann trend test, 407
Mann-Whitney test, see Wilcoxon rank sum test
Mann-Whitney U-statistic, 126–128
Mantel-Haenszel estimator of common odds ratio,

531–532
asymptotic relative efficiency, 534
example, 532

Mantel-Haenszel odds ratio test for k strata of 2 x 2
tables, 522–532

example, 525–527
motivation, 527
properties, 532

Mantel two-sample test for censored data,
594–605

asymptotic relative efficiency, 608
example, 597–598
large-sample approximation, 596–597
motivation, 598–599
properties, 602

McIntyre’s concept of a ranked set sample,
676–677

McNemar dependent proportions test, 506–508
Mean residual life function, 551, 559–560

confidence bands for, 560–562
decreasing, 555
estimator, 559–560
increasing, 555

Median:
estimated standard deviation of sample median,

78
median absolute deviation estimator, 652
of a population, 63

of a sample, 76
test for population median being a specified

value, 46, 68, 84–93
Miller jackknife test for dispersion, 169–181

asymptotic relative efficiency, 201
consistency, 179
example, 172–175
motivation, 177
properties, 179
ties, 172

Modeling imperfect rankings, 737–738
Moses confidence interval for location differences,

142–145
asymptotic relative efficiency, 150
example, 143
large-sample approximation, 142
motivation, 143
properties, 144

Moses goodness-of-fit test, 198
Multinomial distribution, 27–29

estimation, 28–29, 37–38
goodness-of-fit test, 29

Multiple comparisons, one-way layout, 255–278
all treatments, 256–271
treatment versus control, 271–278
two-way layout, 315–327, 341–343, 367–370,

379–386
all treatments, 316–322, 341–343, 367–370,

379–382
treatment versus control, 322–327, 382–386

Multiresolution analysis, 630–633, 635–639
example, 632–633, 635–637

Nadaraya-Watson estimator, 667–674
bandwidth selection, 668, 670–671
derivation, 673–674
example, 668–670
properties, 674

Nearest neighbor methods:
density estimation, 628
kernel smoother, 670–671
local averaging smoother, 657–661
local regression smoother, 662–666

Nelson-Aalen cumulative hazard function estimator,
585

Nemenyi, Damico-Wolfe one-way layout treatment
versus control multiple comparisons, 271–278

asymptotic relative efficiency, 287
example, 273–274
large-sample approximation, 272–273, 277
motivation, 274
properties, 277
ties, 273
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Nemenyi two-way layout all treatments multiple
comparisons based on signed ranks, 379–382

asymptotic relative efficiency, 392
example, 380–381
large-sample approximation, 380
motivation, 381
properties, 381
ties, 380

Nemenyi, Wilcoxon-Wilcox, Miller rank sum
two-way layout treatment versus control
procedures, 322–327

asymptotic relative efficiency, 390
example, 323–324
large-sample approximation, 323, 326
motivation, 325
properties, 327
ties, 323

New better than used:
class, 546
estimator, 553
tests for, 545–555

New better than used in expectation:
class, 551
tests for, 552–553

Nonparametric statistical procedures:
advantages of, 1–2

Normality, tests of, 575–577

Odds ratio, 515–534
confidence interval for common odds ratio,

531–532
confidence interval for odds ratio, 516–517
estimator, 516–521
estimator of common odds ratio, 516–521
exact conditional test that odds ratio is a

specified value, 520
population, 515
test for a common odds ratio, 527–530
test that a common odds ratio equals 1, 522–533

One-sample tests, location, 84–95
population symmetry, 94–102

One-way layout, 202–288
Ordered alternatives, one-way layout, 215–225

two-way layout, 304–315, 362–363, 376–379
Order restricted randomization, 742
Order statistics, in estimation of population median,

78
Orthogonal basis functions, 630
Orthogonal series, 628, 630

Page test for ordered alternatives in two-way
layout, 304–315

asymptotic relative efficiency, 390

consistency, 313
example, 306–307
large-sample approximation, 305, 310–313
motivation, 307
properties, 313
ties, 306, 310

Paired replicates analyses, 39–84
Parallelism test, see Sen-Adichie parallelism test
Partial correlation, 419

confidence interval, 419
estimator, 419

Pearson’s chi-squared goodness-of-fit test, 29
Pearson test for comparing two proportions,

496–509
Pitman asymptotic relative efficiency, see

Asymptotic relative efficiency
Placements, 145
Polynomial regression, 665–666, 672
Priestly-Chao kernel estimator, 673
Probability that X< Y , 138–141

estimator, 138
confidence intervals, 139–141

Proportional hazards, 601–602

Quenouille-Tukey jackknife, 176–178
Quantile function, 591–592
Quasimedian, 77–78

R, computing with, 8–9
index, 791–797

Randles-Fligner-Policello-Wolfe, Davis-Quade
symmetry test, 94–102

consistency, 101–102
example, 96–99
large-sample approximation, 96, 102
motivation, 99
properties, 102
ties, 96

Randomized blocks, 289–331, 370–390
Ranked set sampling estimators, 685–717, 727–728

distribution function, 705–706
examples, 688–695, 695–704
mean, 685–717
ordered categorical probabilities, 706
population proportion, 706
variance, 704–705

Rank order estimation, 752–755
Rank sum test, see Wilcoxon rank sum test
Redistribute-to-the-right algorithm, 583
Regression, 451–494

arbitrary regression function, 490–494
confidence intervals, 460–463
estimators, 458–460, 484
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intercept estimators, 463–465, 484
kernel regression smoother, 492, 667–674
local regression smoother, 493, 662–666
multiple linear, 475–490
non-rank based, 490–494, 656–675
one line, 451–466
running line smoother, 492
parallelism, 466–475
several lines, 466–490
slope estimator, 458–460
spline regression smoother, 493, 675
tests, 452–460, 466–473, 475–485

Robins-Breslow-Greenland odds ratio confidence
interval, 531–532

example, 532

Samara-Randles, Fligner-Rust, Noether confidence
interval for Kendall’s τ , 415–420

example, 415–417
motivation, 417
properties, 420
ties, 417

Sampling from partially rank-ordered sets, 743
Scale parameter(s), 152–153, 162–163

confidence intervals for ratio of, 167, 178–179
estimators for ratio of, 167, 178–179
tests for ratio of, 152–169, 169–181

Self-consistency property, 583–584
Sen-Adichie parallelism test, 466–475

asymptotic relative efficiency, 494
example, 468–471
large-sample approximation, 467
motivation, 471–472
properties, 473
ties, 468

Sen confidence interval for P(X < Y ), 139–140
Sensory difference tests, 14–15
Sethuraman’s constructive definition of the

Dirichlet process, 746
Signed rank test, see Wilcoxon signed rank test
Sign test, see Fisher sign test
Simpson paradox, 532
Skewness, 96

example, 613
left, 100
right, 100

Skillings-Mack multiple comparison procedure for
balanced incomplete block designs, 341–343

asymptotic relative efficiency, 391
example, 341–342
large-sample approximation, 341, 343
motivation, 342

properties, 343
ties, 341

Skillings-Mack test for arbitrary incomplete block
design, 343–354

example, 346–348
large-sample approximation, 345, 350–351
motivation, 348
properties, 351
ties, 346, 350–351

Smoothers, 490–494, 656–675
Spearman independence test, 427–440

asymptotic relative efficiency, 450
example, 430–432
large-sample approximation, 428–429, 436–438
motivation, 432
properties, 440
ties, 429–430, 438–439

Spearman rank correlation coefficient, 427, 429,
431–432, 440

Spjøtvoll contrast estimator in one-way layout,
278–282

asymptotic relative efficiency, 287
example, 279–280
large-sample approximation, 281
motivation, 281
properties, 281

Susarla-van Ryzin distribution function estimator
for right-censored data, 755–758

Symmetry, 94, 103
test of bivariate symmetry, 102–112
test of population symmetry, 94–102

Tarone-Ware two-sample tests for censored data,
600

Tau, confidence interval for, 415–427
estimator of, 413–414
measure of association, 399

Theil confidence interval for slope, 460–463
asymptotic relative efficiency, 494
example, 461
large-sample approximation, 461
motivation, 462
properties, 463

Theil slope estimator, 458–460
asymptotic relative efficiency, 494
example, 458
large-sample approximation, 460
motivation, 458
properties, 459–460

Theil test for slope, 452–456
asymptotic relative efficiency, 494
consistency, 456
example, 454–456



818 Subject Index

Theil test for slope (Continued )
large-sample approximation, 454
motivation, 456
properties, 456
ties, 454

Thresholding, 644–651
block, 652–653
cross-validation, 651, 653
examples, 645, 648–651
hard, 646
hybrid, 649–651
soft, 646
sparsity, 645
SureShrink, 649–651, 654
translation-invariant, 652–653
VisuShrink, 647–651

Total-time-on-test statistic, 539–540
Trend:

in mean residual life, 555–568
in one-way layout effects, 215–225
in sample, 407, 440
in two-way layout effects, 304–313, 376–379

Triangle test, 14
Triple:

left, 95
right, 95

Tukey confidence interval for location, 59–63
asymptotic relative efficiency, 113
example, 59–60
large-sample approximation, 59
motivation, 60
properties, 62

Turning point in mean residual life, 563–568
tests when turning point known, 563–568
tests when turning point unknown, 567–568

Two-sample tests:
broad alternatives, 190–200
dispersion and location, 181–190
dispersion differences, 152–181
location differences, 115–136, 145–149

Two-way layout, 289–392

Umbrella alternatives:
one-way layout, 225–249

test for, peak known, 226–240
test for, peak unknown, 241–249

Van der Waerden two-sample location test, 130–132
asymptotic relative efficiency, 150
example, 131–132
large-sample approximation, 131

Variance:
of histogram estimates, 614–615
tests for equality of population variances,

151–190, see also Dispersion

Walsh average, 56
Wavelets, 630–632, 637–638

coefficients, exact, 630, 640
Daubechies family, 630, 640
father wavelet, 632
Haar wavelet, 630, 632–633, 641–642
mother wavelet, 632
multiresolution analysis, 630–633, 635–639
periodic, 640
properties, 643
resolution level, 631–632, 638

Wavelet estimation, 640–651, see also
Thresholding

boundary handling, 633, 636–637, 640–641
coefficients, estimated, 633–634, 640, 642–643
convergence rates, 652, 654
examples, 645, 648–651
mean squared error, 647, 652
sample point placement, 653–654
sample size, 634, 637, 641–643

Weighted regression, 662–666, 675
Wilcoxon, Nemenyi, McDonald-Thompson rank

sum two-way layout all treatments multiple
comparisons, 316–322

asymptotic relative efficiency, 390
example, 317–318
large-sample approximation, 316–317, 321
motivation, 318
properties, 321
ties, 317

Wilcoxon rank sum test, 115–136
asymptotic relative efficiency, 150
consistency, 133
examples, 119–122
large-sample approximation, 117–118
motivation, 122
power, 128–129
properties, 133
sample-size determination, 129–130
ties, 118

Wilcoxon signed rank test, 39–55, 84–87
asymptotic relative efficiency, 113
consistency, 53
examples, 43–45, 85–87
large-sample approximation, 41–42
motivation, 45
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for one-sample data, 84–87
power, 52
properties, 53
sample-size determination, 53
ties, 42–43, 49–52

Yates continuity correction, 506
Yule association measure, 520–521

Zelen test for common odds ratio, 527–530
example, 528–530
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