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A Note from Al Cuoco

It’s no exaggeration to say that Linear Algebra and Geometry has been
under development for over three decades.

In the early 1970s, with all of two years of teaching under my belt,
I participated in an NSF program for high school teachers at Bowdoin.
Jim Ward assembled an astounding faculty for this four-summer delight—
Ken Ireland, Jon Lubin, Dick Chittham, and A. W. Tucker, among others.
Jim taught several of the courses himself, including a course in concrete
linear algebra. It was immediately clear to me that his approach and this
material would be accessible to high school students.

We instituted a linear algebra course in my school—Woburn High school
in Massachusetts—in the mid 1970s. As enrollment grew, I was joined by my
colleague Elfreda Kallock, one of the most expert teachers I’ve ever known,
and together we organized the course into daily problem sets. These were
polished for another two decades, revised almost weekly to reflect what had
happened in class. Elfreda and I had a great deal of fun as we created the
problem sets, sequenced the problems, made sure that the numbers in the
problems uncovered the principles we wanted to expose, learned TEX, and
wrote corny jokes that the kids learned to love. I’ve posted three samples
of the sets at

https://go.edc.org/woburn-high-samples

After coming to EDC, and with support from NSF, my colleagues and I
began work on creating a course from these notes. Working closely with
advisors and teachers, we refined the materials, added exposition, and
added solutions and teaching notes. And we ran summer workshops for
teachers. Originally designed for high school students who were looking for
an elective, it became evident that teachers found the materials valuable
resources for themselves. Many told us that they wished that they had
learned linear algebra with this approach (an approach described in the
introduction—essentially based in the extraction of general principles from
numerical experiments).
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So, we revised again, this time aiming at a dual audience—preservice
(and inservice) teachers and fourth year high school students. Through-
out all these revisions and changes, we kept to the original philosophy of
developing linear algebra with a dual approach based in reasoning about
calculations and generalizing geometric ideas via their algebraic character-
izations.

There are so many people to thank for this effort—all of the folks listed in
the title page have been inspirations and have left their indelible stamps on
the program. Stan Seltzer and his team at MAA reviewed the manuscript,
working every problem, finding errors, and suggesting fixes. The AMS
team: Kerri Malatesta, Steve Kennedy, Chris Thivierge, and Sergei Gelfand
helped in so many ways, from design to catching more mistakes. I read the
entire MS more than once. Any mistakes that remain are the responsibility
of the other authors.

Thanks to Paul Goldenberg for the design of the cover graphic (and for
contributing to the ideas in Chapter 3), June Mark and Deb Spencer for
help with so many things, large and small, and Stephanie Ragucci for help
with the teaching notes, for piloting the course at Andover High, and for
being such a wonderful kid when she was a student in my original Woburn
High course in the 1980s.
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Introduction

Welcome to Linear Algebra and Geometry . You probably have an idea
about the “Geometry” in the title, but what about “Linear Algebra”?

It’s not so easy to explain what linear algebra is about until you’ve done
some of it. Here’s an attempt:

You may have studied some of these topics in previous courses:

• Solving systems of two linear equations in two unknowns and systems
of three linear equations in three unknowns

• Using matrices to solve systems of equations

• Using matrices and matrix algebra for other purposes

• Using coordinates or vectors to help with geometry

• Solving systems of equations with determinants

• Working with reflections, rotations, and translations

Linear algebra ties all these ideas together and makes connections among
them.

And it does much more than this. Much of high school algebra is
about developing tools for solving equations and analyzing functions. The
equations and functions usually involve one, or maybe two, variables. Linear
algebra develops tools for solving equations and analyzing functions that
involve many variables, all at once. For example, you’ll learn how to find
the equation of a plane in space and how to get formulas for rotations about
a point in space (these involve three variables). You’ll learn how to analyze
systems of linear equations in many variables and work with matrices of any
size—many applications involve matrices with thousands or even millions
of entries.

Here are some quotes from two people who use linear algebra in their
professions:

Linear algebra is a powerful tool in finance. Innovations are
often developed within the world’s most sophisticated financial
firms by those fluent in the language of vectors and matrices.

xiii



Introduction

Linear algebra is not only a valuable tool in its own right, but
it also facilitates the applications of tools in multivariate cal-
culus and multivariate statistics to many problems in finance
that involve risks and decisions in multiple dimensions. Study-
ing linear algebra first, before those subjects, puts one in the
strongest position to grasp and exploit their insights.

— Robert Stambaugh,
Professor of Finance

Wharton School

Students who will take such a course have probably had the
equivalent of two years of algebra and a year of geometry,
at least if they come from a fairly standard program. They
will have seen some analytic geometry, but not enough to give
them much confidence in the relationship between algebraic and
geometric thinking in the plane, and even less in three-space.
Linear algebra can bring those subjects together in ways that
reinforce both. That is a goal for all students, whether or not
they have taken calculus, and it can form a viable alternative to
calculus in high school. I would love to have students in a first-
year course in calculus who already had thought deeply about
the relationships between algebra and geometry.

←−
Dr. Banchoff is one of the
core consultants to this
book.

— Thomas Banchoff,
Professor of Mathematics

Brown University

When you finish the core program (Chapters 1–5), you’ll have the language,
the tools, and the habits of mind necessary to understand many questions
in advanced mathematics and its applications to science, engineering,
computer science, and finance.

It takes some time, effort, and practice to develop these skills.

• The language of linear algebra speaks about two kinds of mathe- ←−
If you don’t know what a
vector or matrix is, don’t
worry—you soon will.

matical objects—vectors and matrices—as well as special functions—
linear mappings—defined on these objects. One of the core skills in
the language of linear algebra is to learn how to use geometric and
algebraic images interchangeably. For example, you’ll refer to the set
of solutions to the equation x− 2y + 3x + w = 0 as a “hyperplane in
four dimensions.”

• The tools of linear algebra involve developing a new kind of algebraic
skill—you’ll be calculating with vectors and matrices, solving equa-
tions, and learning about algorithms that carry out certain processes.
You may have met matrix multiplication or matrix row reduction in ←−

If you don’t know about
these operations, don’t
worry—you soon will.

other courses. These are examples of the kinds of tools you’ll learn
about in this course.

• The habits of mind in linear algebra are the most important
things for you to develop. These involve being able to imagine a
calculation—with matrices, say—without having to carry it out,
making use of a general kind of distributive law (that works with
vectors and matrices), and extending an operation from a small set

xiv



Introduction

to a big set by preserving the rules for calculating. An example of
the kind of mathematical thinking that’s important in linear algebra
is the ability to analyze the following question without finding two
points on the graph:

If (a, b) and (c, d) are points on the graph of 3x + 5y = 7,
is (a + c, b + d) on the graph?

Mathematical habits are just that—habits. And they take time to develop.
The best way to develop these habits is to work carefully through all the
problems.

This book contains many problems, more than in most courses. That’s
for a reason. All the main results and methods in this book come from
generalizing numerical examples. So, a problem set that looks like an
extensive list of calculations is there because, if you carefully work through
the calculations and ask yourself what’s common among them, a general
result (and its proof) will be sitting right in front of you.

The authors of this book took care never to include extraneous problems.
Usually, the problems build on each other like the stories of a tower, so that
you can climb to the top a little at a time and then see something of the
whole landscape. Many of these problem sets have evolved over several
decades of use in high school classrooms, gradually polished every year and
influenced by input from a couple of generations of students.

This is all to say that linear algebra is an important, useful, and beautiful
area of mathematics, and it’s a subject at which you can become very good
by working the problems—and analyzing your work—in the chapters ahead.

Before you start, the authors of this program have some advice for you: ←−
The authors include teach-
ers, mathematicians, ed-
ucation professionals, and
students; most of them fit
into more than one of these
categories.

The best way to understand mathematics is to work really hard
on the problems.

If you work through these problems carefully, you’ll never wonder why a
new fact is true; you’ll know because you discovered the fact for yourself.
Theorems in linear algebra spring from calculations, and the problem sets
ask you to do lots of calculations that highlight these theorems.

The sections themselves provide examples and ideas about the ways
people think about the mathematics in the chapters. They are designed
to give you a reference, but they probably won’t be as complete as the
classroom discussions you’ll have with your classmates and your teacher.
In other words, you still have to pay attention in class.

But you’ll have to pay attention a lot less if you do these problems
carefully. That’s because many of the problems are previews of coming
attractions, so doing them and looking for new ideas will mean fewer
surprises when new ideas are presented in class.

This approach to learning has been evolving for more than 40 years—
many students have learned, really learned, linear algebra by working
through these problems. You are cordially invited to join them.

xv





C H A P T E R

1 Points and Vectors

One of the real breakthroughs in mathematics happened when people
realized that algebra could be joined with geometry. By setting up a
coordinate system and assigning coordinates to points, mathematicians
were able to describe geometric phenomena with algebraic equations and
formulas.

This process allowed mathematicians and physicists to develop, over
long periods of time, intuitions about geometric objects in dimensions
greater than three. Through what this book refers to as the extension
program, geometric ideas that are tangible in two (and three) dimensions
can be extended to higher dimensions via algebra. Doing so will help you
develop geometric intuitions for higher dimensions you cannot physically
experience.

By the end of this chapter, you will be able to answer questions
like these:

1. How can you describe adding and scaling vectors in geometric
terms?

2. How can you use vectors to describe lines in space?

3. Let A = (3, 2) and B = (−1, 4).

a. How do you calculate and graph the following: A + B, 2A,
−3B, 2A − 3B?

b. What is the value of ‖2A − 3B‖?

You will build good habits and skills for ways to

• generalize from numerical examples

• use algebra to extend geometric ideas

• connect the rules of arithmetic to an algebra of points

• use different forms for different purposes

1



Chapter 1 Points and Vectors

Vocabulary and Notation

• coordinates

• direction

• equivalent vectors

• extension program

• initial point (tail)

• length ‖X‖
• linear combination

• magnitude

• n-dimensional Euclidean space

• opposite direction

• ordered n-tuple

• point

• same direction

• scalar multiple

• spanned

• terminal point (head)

• unit vector

• vector

• vector equation

• zero vector

2



1.1 Getting Started

1.1 Getting Started

In this chapter, you’ll develop an “algebra of points.” Before things get
formal, here’s a preview of coming attractions.

• To add two points in the coordinate plane, add the corresponding
coordinates: (3, 2) + (5, 7) = (8, 9) and, more generally, (x, y) +
(z, w) = (x + z, y + w).

• To scale a point in the coordinate plane by a number, multiply both
coordinates of that point by that number: 5(3, 2) = (15, 10) and, more
generally, c(x, y) = (cx, cy).

Exercises

1. Suppose A = (1, 2). On one set of axes, plot these points:

a. 2A b. 3A c. 5A

d. (−1)A e. (−3)A f. (−6.5)A

2. Here’s a picture of a point A, with an arrow drawn from the origin ←−
The arrow in the figure is
called a vector .

to A.

A

X

Y

Draw these vectors, all on the same axes:

a. 2A b. 3A c. 5A

d. (−1)A e. (−3)A f. (−6.5)A

3



Chapter 1 Points and Vectors

3. Here’s a picture of a point A, with an arrow drawn from the origin
to A.

A

X

Y

a. Describe in words the set of all multiples tA, where t ranges
over all real numbers.

b. If A = (r, s), find a coordinate equation for the set of multiples ←−
A coordinate equation in
R2 is an equation of the
form ax+ by = c.

tA, where t ranges over all real numbers.

4. Suppose O = (0, 0), A = (5, 3), and B = (3,−1). Show that O,
A, B, and A + B lie on the vertices of a parallelogram. It may be
helpful to draw a picture.

5. Suppose A = (a1, a2) and B = (b1, b2). Show that O, A, B, and
A+B lie on the vertices of a parallelogram. Again, it may be helpful ←−

O = (0, 0),to draw a picture.

6. Suppose A = (5, 3) and B = (3,−1). Find and plot these points, all Habits of Mind

Draw a picture!!on the same axes:

a. A + B b. A + 3B c. A + 5B

d. A + (−1B) e. A + (−3B) f. A + (−6.5B)

7. Suppose A = (5, 3) and B = (3,−1). Find a coordinate equation
for the set of points X that is generated by A + tB, where t ranges
over all real numbers.

4



1.1 Getting Started

8. Here’s a picture of two points, A and B, with arrows drawn to each
from the origin.

A

B

O X

Y

Draw these vectors, all on the same axes:

a. A + B b. A + 3B c. A + 5B

d. A + (−1B) e. A + (−3B) f. A + (−6.5B)

9. Here’s a picture of two points, A and B, with arrows drawn to each
from the origin.

A

B

O X

Y

Draw a picture of the set of all points X that is generated by A+tB, ←−
You can think of the equa-
tion X = A + tB as a
point-generator : different
numbers t generate differ-
ent points X.

where t ranges over all real numbers.

5



Chapter 1 Points and Vectors

10. Suppose A = (5, 4) and B = (−1, 3). Find numbers c1 and c2 if Habits of Mind

Draw a picture!!!a. c1A + c2B = (4, 7) b. c1A + c2B = (9, 11)

c. c1A + c2B = (11, 5) d. c1A + c2B = (−13, 1)

e. c1A + c2B = (1, −5
2 ) f. c1A + c2B = (− 11

5 ,−1)

11. Here’s a picture of two points, A and B, with arrows drawn to each
from the origin, as well as some other points.

A

B

C
D

E

F

X

Y

Estimate the values for c1 and c2 if

a. c1A + c2B = C b. c1A + c2B = D

c. c1A + c2B = E d. c1A + c2B = F

12. Find the length of each vector. ←−
Draw a picture.

←−
In each part the vector
goes from the origin to the
labeled point.

a. A = (5, 12) b. B = (3, 4) c. C = (−2, 10)

d. P = (4, 1, 8) e. P = (4, 1, 9) f. D = (a, b)

g. Q = (a, b, c)

13. Find the lengths of the sides of �AOB if

a. A = (5, 12), B = (−27, 36)
b. A = (21, 20), B = (21, 220)
c. A = (48, 64), B = (15, 8)
d. A = (4, 4), B = (4,−4)
e. A = (4, 0), B = (2, 2

√
3)

f. A = (3
√

2, 3
√

2), B = (−4
√

2, 4
√

2)
g. A = (−14, 29, 22), B = (−126, 45,−18)

6



1.1 Getting Started

14. Here’s a picture of a three-dimensional coordinate system.

X

Y

Z

1
1

−1

−1

1

−1

P (1,−1,2)

Find the equation of

a. the x–y plane Remember

Equations are point-testers:
a point is on the graph of
your equation if and only
if the coordinates of the
point make the equation
true.

b. the x–z plane
c. the y–z plane
d. the plane parallel to the x–y plane that contains the point

(1,−1, 2)

7



Chapter 1 Points and Vectors

1.2 Points

In most of your high school work so far, the equations and formulas have
expressed facts about the coordinates of points—the variables have been
placeholders for numbers. In this lesson, you will begin to develop an algebra
of points , in which you can write equations and formulas whose variables
are points in two and three dimensions.

In this lesson, you will learn how to

• locate points in space and describe objects with equations

• use the algebra of points to calculate, solve equations, and transform
expressions, all in Rn

• understand the geometric interpretations of adding and scaling

You probably studied the method for building number lines (or “coor-
dinatized lines”) in previous courses. Given a line, you can pick two points
O and A and assign the number 0 to O and 1 to A.

0 1

O A

This sets the “unit” of the number line, and you can now set up a one-
to-one correspondence between the set of real numbers, denoted by R, and ←−

One-to-one correspondence
means that for every point,
there is exactly one real
number (its coordinate)
and for every real number,
there is exactly one point
(its graph).

the set of points on the number line.

• Suppose P is a point on the number line that is located x units to the
right of O. Then x is called the coordinate of P , and P is called
the graph of x.

• Suppose Q is a point on the number line that is located x units to the
left of O. Its distance from O is still x, but it’s not the same point as
P . In this case, −x is the coordinate of Q, and Q is the graph of −x.

The figure below shows several points and their coordinates.

E F O A B C D

−1− 0 1 2√22
3

4

X

Y

y

O x

P (x,y)

This idea of relating the set of all
points on a line with the real numbers
goes back to antiquity, but it was not
until the 17th century that mathemati-
cians (notably Descartes and Fermat) had
a clear notion of how to coordinatize a
plane: draw two perpendicular coordina-
tized lines (usually the scale is the same ←−

In fact, the idea of
coordinatizing the plane
does not require that the
two axes be perpendicular,
only that each point lies on
a unique pair of lines
parallel to a given pair of
axes.

on each) that intersect at their common
origin. These lines are called the x-axis
and y-axis . You can now uniquely iden-
tify every point on the plane using an or-
dered pair of numbers. If the point P cor-
responds to the ordered pair (x, y), x and y are the coordinates of P .

8



1.2 Points

The set of all ordered pairs of real numbers is denoted by R2. Because of
the correspondence between R2 and points on a plane, you can think of R2

as the set of points on a coordinatized plane, so that statements like “the
point (5, 0) is the same distance from the point (0, 0) as the point (3, 4)”
make sense.

IdentifyingR2 with a plane provides a way to use algebra to describe
geometric objects. Indeed, this is the central theme of analytic geometry.

X

Y

1

−1

(1,0)O

C

Consider the circle C on the left. You
can describe C geometrically by say-
ing that C consists of all points in the
plane that are 1 unit from O. However,
you can also describe C algebraically in
terms of the coordinates of the points
that lie on C: C is the set of points
(x, y) so that x2 + y2 = 1.

The connection between the geo-
metric description (“C consists of all
points . . . ”) and the equation (“x2 +
y2 = 1”) is that the equation is a ←−

Many people make state-
ments like “C is the circle
x2 + y2 = 1”; this state-
ment is shorthand for “C is
the circle whose equation
is x2 + y2 = 1.”

point-tester for the geometric defini-
tion. This means that you can test a

point to see if it’s on the circle by seeing if its coordinates satisfy the equa-
tion. For example,

• (1, 0) is on C because 12 + 02 = 1

•
(
1
2 , 1

3

)
is not on C because(

1

2

)2

+

(
1

3

)2

�= 1

•
(√

3
2 ,− 1

2

)
is on C because(√

3

2

)2

+

(
−1

2

)2

= 1

Think about how you get the equation of the circle in the first place:
you take the geometric description—“all the points that are 1 unit from
the origin”—and use the distance formula to translate that into algebra.

←−
The symbol “⇔” means
“the two statements are
equivalent.” You can read
it quickly by saying “if and
only if.”

P = (x, y) is on C ⇔ the distance from P to O is 1

⇔
√

x2 + y2 = 1 (the distance formula)

⇔ x2 + y2 = 1

For You to Do

1. Find five points on the circle of radius 5 centered at (3, 4). Find the equation of
this circle.

2. Take It Further. Find five points on the sphere of radius 5 centered at (3, 4, 2).
Find the equation of this sphere.

9



Chapter 1 Points and Vectors

Developing Habits of Mind

Explore multiple representations. All of plane geometry could be carried out using
the algebra of R2 without any reference to diagrams or points on a plane. For example,
you could define a line to be the set of pairs (x, y) that satisfy an equation of the form
ax + by = c for some real numbers a, b, and c. The fact that two distinct lines intersect
in, at most, one point would then be a fact about the solution set of two equations in two
unknowns. This would be silly when studying two- or three-dimensional geometry—the
pictures help so much with understanding—but you will see shortly that characterizing
geometric properties algebraically makes it possible to generalize many of the facts in
elementary geometry to situations for which there is no physical model.

The method for coordinatizing three-dimensional space is similar.
Choose three mutually perpendicular coordinatized lines (all with the same
scale) intersecting at their origin. Then set up a one-to-one correspondence
between points in space and ordered triples of numbers (x, y, z). In the
following figure, point P has coordinates x = 1, y = −1, and z = 2.

X

Y

Z

1
1

−1

−1

1

−1

P (1,−1,2)

The set of ordered triples of real numbers is denoted by R3, and the
elements of R3 are spoken of as points. In the next figure, the line through
O = (0, 0, 0) and A = (1, 1, 0) makes an angle of 45◦ with the x- and y-axes ←−

If you’re not convinced,
stay tuned . . . you’ll revisit
the notion of angles in R3

in Chapter 2.

and an angle of 90◦ with the z-axis.

X

Y

Z

1
1

−1

−1

1

−1
A (1,1,0)

10



1.2 Points

Minds in Action Episode 1

Tony and Sasha are two students studying Linear Algebra. They are thinking about how
to use the point-tester idea to describe objects in space.

Tony: What would the equation of the x–y plane in R3 be?

Sasha: Don’t you remember using point-tester way back in Algebra 1 when we were
finding equations of lines? First, think about some points on the x–y plane.

Tony: Well, (0, 0, 0) is on that plane. So is (1, 0, 0) and (2, 3, 0). There are a lot, Sasha.
How long do you want me to go on for?

Sasha: Until you see the pattern, of course! But this one’s easy. In fact, all the points
on the x–y plane have one thing in common: the z-coordinate is 0.

Tony: Yes! So that’s easy. The equation would be z = 0. But isn’t that the equation of
a line?

Sasha: I guess it’s not in R3. It has to describe a plane.

Tony: So what does the equation of a line look like in R3?

Sasha: Here, let’s try an easy line, like the x-axis . . . Well, all the points would look
like (something, 0, 0). So the y-coordinate is always 0 and the z-coordinate is always
0. How do I say that in one equation?

Tony: I don’t know . . . I guess the best we can do for now is to say the line is given by
two equations: y = 0 and z = 0.

Sasha: Wait a second . . . what about y2 + z2 = 0?

Tony: Sasha, where do you get these ideas? It works, but that’s not a linear equation,
is it?

For You to Do

3. Find the equation of

a. the x–z plane
b. the plane parallel to the x–z plane that contains the point (3, 1, 4)

In the middle of the 19th century, mathematicians began to realize that it ←−
In 1884, E. A. Abbott
wrote a book that captured
what it might be like to
visualize four dimensions.
The book has been adapted
in an animated film: see
flatlandthemovie.com

was often convenient to speak of quadruples of numbers (x, y, z, w)as points
of “four-dimensional” space. It seemed very natural to speak of (1, 3, 2, 0)
as being a point on the graph of x+2y−z+w = 5 rather than saying, “One
solution to x + 2y − z + w = 5 is x = 1, y = 3, z = 2, and w = 0.” Defining
R4 as the set of all quadruples of real numbers, you can call its elements
“points” in R4. Although there is no physical model for R4 (as there was
for R2 and R3), you can borrow the geometric language used for R2 and
speak of O = (0, 0, 0, 0) as the origin in R4, A = (1, 0, 0, 0) as a point on
the x-axis in R4, and so on. This is, for now, just an analogy: R4 “is” the
set of all ordered quadruples of numbers, and geometric statements about
R4 are simple analogies with R2 and R3.

11
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Chapter 1 Points and Vectors

Of course, there is no need to stop here. You can define R5 as the set of Habits of Mind

Think like a mathemati-
cian. Like many mathe-
maticians, after awhile you
may develop a sense for
picturing things in higher
dimensions. This happens
when the algebraic descrip-
tions become identified
with the geometric descrip-
tions, deep in your mind.

all ordered quintuples of numbers, and so on . . . .

Definition

If n is a positive integer, an ordered n-tuple is a sequence of n real
numbers (x1, x2, . . . , xn). The set of all ordered n-tuples is called n-di-
mensional Euclidean space and is denoted by Rn.

An ordered n-tuple will be referred to as a point in Rn.

Facts and Notation

• Capital letters (such as A, B, or P ) are often used for points.

• If A = (a1, a2, . . . , an), the numbers a1, a2, . . . , an are called the coordinates of
A.

• Two points A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) in Rn are equal if their ←−
Note that instead of writing

a1 = b1, a2 = b2, . . . ,
and an = bn, you can

use shorthand notation
“ai = bi for each
i = 1, 2, . . . , n.”

corresponding coordinates are equal; that is, A = B means a1 = b1, a2 = b2, . . . ,
and an = bn.

• By analogy with R2, the origin of Rn is the point O = (0, 0, 0, . . . , 0).

To extend a definition from geometry to Rn, you must first characterize
the geometric notions in terms of coordinates of points. You can accomplish
this goal most easily by defining several operations on Rn.

The first of these operations is addition. If you were asked to decide
what (2, 3) + (6, 1) should be, you might naturally say “(8, 4), of course.”
It turns out that this definition is very useful: you add points by adding
their corresponding coordinates.

Definition

If A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) are points in Rn, the sum
of A and B, written A + B, is

A + B = (a1 + b1, a2 + b2, . . . , an + bn).

Developing Habits of Mind

Make strategic choices. This is a definition—(2, 3) + (6, 1) equals (8, 4), not because
of any intrinsic reason. It isn’t forced on you by the laws of physics or the basic rules
of algebra, for example. Mathematicians have defined the sum in this way because it
has many useful properties. One of the most useful is that there is a nice geometric
interpretation for this method for adding in R2 and R3.

12



1.2 Points

Example 1

Consider the points A = (3, 1), B = (1, 4), and A+B = (4, 5).
If you plot these three points, you may not see anything
interesting, but if you throw the origin into the figure, it looks
as if O, A, B, and A + B lie on the vertices of a parallelogram. O

A + B(4, 5)

A(3, 1)

B(1, 4)

Y

X

6

4

2

5

−2

Example 1 suggests the following theorem.

Theorem 1.1 (The Parallelogram Rule)

If A and B are any points in R2, then O, A, A + B, and B lie on the
vertices of a parallelogram.

You can refer to this parallelogram as “the parallelogram determined by
A and B.”

For You to Do

4. a. Show that (0, 0), (3, 1), (1, 4), and (4, 5) from Example 1 form the vertices
of a parallelogram.

b. While you’re at it, explain why Theorem 1.1 must be true. ←−
First generate some exam-
ples, then try to generalize
them.

In linear algebra, it is customary to refer to real numbers (or the elements
of any number system) as scalars . The second operation to define on Rn ←−

In this book, the terms
scalar and number will
be used interchangeably.
Scalar has a geometric
interpretation—see below.

is the multiplication of a point by a scalar, and it is called multiplication
of a point by a scalar .

Definition

Let A = (a1, a2, . . . , an) be a point in Rn and suppose c is a scalar. The
scalar multiple cA is

cA = (ca1, ca2, . . . , can).

In other words, to multiply a point by a number, you simply multiply each
of the point’s coordinates by that number. So, 3(1, 4, 2, 0) = (3, 12, 6, 0).

Habits of Mind

Try proving that one of
these statements is true.
For example, show that 2A
is collinear with O and A
and is twice as far from O
as A is.

Habits of Mind

In previous courses, you
saw that if you view R as a
number line, multiplication
by 3 stretches points by a
factor of 3.

Why are numbers called “scalars”? Scalar multiplication can be visu-
alized in R2 or R3 as follows: if A = (2, 1), then 2A = (4, 2), 1

2A =
(1, 1

2 ),−1A = (−2,−1), and −2A = (−4,−2).

13



Chapter 1 Points and Vectors

From this figure, you can see that
if c is any real number, cA is collinear
with O and A; cA is obtained from
A by stretching or shrinking—so scal-
ing—the distance from O to A by a
factor of |c|. If c > 0, cA is in the
same “direction” as A; multiplying by
a negative reverses direction.

Y

X

A(2,1)

2A

1
2A

−A

−2A

−4 −2 2

1

2

3

−1

−2

4

For You to Do

5. Let c be a real number, and let A be a point in R2.

a. Show that cA is collinear with O and A.
b. Show that if c ≥ 0, cA is obtained from A by scaling the distance from O to

A by a factor of |c|. If c < 0, cA is obtained from A by scaling the distance
from O to A by a factor of |c| and reversing direction.

So, now you have two operations on points: addition and scalar multi-
plication. How do the operations behave?

Theorem 1.2 (The Basic Rules of Arithmetic with Points)

Let

A = (a1, a2, . . . , an)

B = (b1, b2, . . . , bn) and

C = (c1, c2, . . . , cn)

be points in Rn, and let d and e be scalars. Then

(1) A + B = B + A

(2) A + (B + C) = (A + B) + C

(3) A + O = A

(4) A + (−1)A = O ←−
Because of property ((4)),
(−1)A is called the neg-
ative of A and is often
written −A.

(5) (d + e)A = dA + eA

(6) d(A + B) = dA + dB

(7) d(eA) = (de)A

(8) 1A = A

Proof. The proofs of these facts all use the same strategy: reduce the
property in question to a statement about real numbers. To illustrate, here
are proofs for ((1)) and ((7)). The proofs of the other facts are left as
exercises.

14



1.2 Points

((1)) A + B = (a1, a2, . . . , an) + (b1, b2, . . . , bn)

= (a1 + b1, a2 + b2, . . . , an + bn) (definition of addition in Rn)

= (b1 + a1, b2 + a2, . . . , bn + an) (commutativity of addition in R)

= (b1, b2, . . . , bn) + (a1, a2, . . . , an) (definition of addition in Rn)

= B + A

((7)) d(eA) = d
(
e(a1, a2, . . . , an)

)
= d(ea1, ea2, . . . , ean) (definition of scalar multiplication)

=
(
d(ea1), d(ea2), . . . , d(ean)

)
(definition of scalar multiplication)

=
(
(de)a1, (de)a2, . . . , (de)an

)
(associativity of multiplication in R)

= (de)(a1, a2, . . . , an) (definition of scalar multiplication)

= (de)A

Subtraction for points is defined by the equation ←−
. . . and “−B” means
(−1)B.A − B = A + (−B)

Developing Habits of Mind

Use coordinates to prove statements about points. The strategy of reducing a
statement about points to one about coordinates will be used throughout this book.

But how do you come up with valid statements about points in the first place? One
way is to see if analogous statements are true in one dimension—with numbers. So,
2 + 3 = 3 + 2 might give you a clue that A + B = B + A for points. Once you have a
clue, try it with actual points . Does (7, 1) + (9, 8) = (9, 8) + (7, 1)? Yes. And why? You
might reason by writing things out and not simplifying until the end: ←−

This habit of “writing
things out and not sim-
plifying until the end” is an
important algebraic strat-
egy, often called delayed
evaluation.

(7, 1) + (9, 8) = (7 + 9, 1 + 8) and

(9, 8) + (7, 1) = (9 + 7, 8 + 1)

Since 7 + 9 = 9 + 7 and 1 + 8 = 8 + 1, (7, 1) + (9, 8) = (9, 8) + (7, 1). And this gives you
an idea for how a proof in general will go.

Example 2

Problem. Find A if A is in R3 and 2A + (−3, 4, 2) = (5, 2, 2).

Solution. Here are two different ways to find A. Habits of Mind

Fill in the reasons.
1. Suppose A = (a1, a2, a3) and calculate as follows.

2(a1, a2, a3) + (−3, 4, 2) = (5, 2, 2)

(2a1, 2a2, 2a3) + (−3, 4, 2) = (5, 2, 2)

(2a1 − 3, 2a2 + 4, 2a3 + 2) = (5, 2, 2)

2a1 − 3 = 5, 2a2 + 4 = 2, 2a3 + 3 = 2

a1 = 4, a2 = −1, a3 = 0; A = (4,−1, 0)

15



Chapter 1 Points and Vectors

2. Instead of calculating with coordinates, you can also use Theorem 1.2.

2A + (−3, 4, 2) = (5, 2, 2)

2A = (8,−2, 0) (subtract (−3, 4, 2) from both sides)

A = (4,−1, 0) (multiply both sides by 1
2 )

Minds in Action Episode 2

Tony and Sasha are working on the following problem:

Find points A and B in R2, where A + B = (3, 11) and 2A − B = (3, 1).

Sasha: In Example 2, we solved the equation with points just like any other equation.
So, here we have two equations and two unknowns . . .

Tony: So we can use elimination. And look, it’s easy—if we add both the equations
together, the B’s cancel out and we get 3A = (6, 12).

Sasha: So we divide both sides by 3 to get A = (2, 4). We can plug that into the first
equation . . .

Tony: . . . and subtract (2, 4) from both sides to get B = (1, 7).

Sasha: Smooth, Tony. I wonder how much harder it would be to use coordinates. What Habits of Mind

Make sure that Sasha and
Tony’s calculations are
legal. Theorem 1.2 gives
the basic rules.

if we say A = (a1, a2) and B = (b1, b2). We can then work it through like the first
part of Example 2.

Tony: Have fun with that, Sasha.

Developing Habits of Mind

Find connections. After using Theorem 1.2 for a while to calculate with points and
scalars, you might begin to feel like you did in Algebra 1 when you first practiced solving
equations like 3x + 1 = 7: you can forget the meaning of the letters and just proceed
formally, applying the basic rules.

Example 3

Problem. Find scalars c1 and c2 so that

c1(1, 4,−1) + c2(3,−1, 2) = (−1, 9,−4)

Solution. Simplify the left-hand side to get

(c1 + 3c2, 4c1 − c2,−c1 + 2c2) = (−1, 9 − 4, ), or

c1 + 3c2 = −1

4c1 − c2 = 9

−c1 + 2c2 = −4

16



1.2 Points

So, you are looking for a solution to this system of equations.

Solve the first two equations simultaneously to find the solution c1 = 2, c2 = −1.
This solution works in the third equation also, so 2 and −1 are the desired scalars. ←−

In Chapter 3, you will study
other methods for solving
systems of linear equations.

Because (−1, 9,−4) can be written as 2(1, 4,−1) + −1(3,−1, 2), (−1, 9,−4) is a linear
combination of (1, 4,−1) and (3,−1, 2).

Exercises

1. Let A = (3, 1), B = (2,−4), and C = (1, 0). Calculate and plot the
following:

a. A + 3B b. 2A − C

c. A + B − 2C d. −A + 1
2B + 3C

e. 1
2 (A + B) + 1

2 (A − B)

2. For each choice of U and V , find U + V and 3U − 2V .

a. U = (4,−1, 2), V = (1, 3,−2)
b. U = (3, 0, 1,−2), V = (1,−1, 0, 1)
c. U = (3, 7, 0), V = (0, 0, 2)
d. U = (1, 1

2 , 3), V = 2U

3. Let A = (3, 1) and B = (−2, 4). Calculate each result and plot your
answers.

a. A + B b. A + 2B c. A + 3B

d. A − B e. A + 1
2B f. A + 7B

g. A − 1
3B h. A + 5

2B i. A − 4B

4. Let A = (5,−2) and B = (2, 5). Calculate each result and plot your
answers.

a. A + B b. A + 2B c. 2A + 3B

d. 2A − 3B e. 1
2A + 1

2B f. 1
3A + 2

3B

g. 1
10A + 9

10B h. −3A − 4B i. A − 4B

5. Let A = (5,−2) and B = (2, 5). Calculate each result and plot your
answers.

a. A + (B − A) b. A + 2(B − A) c. A + 3(B − A)

d. A − 3(B − A) e. A + 1
2 (B − A) f. A + 2

3 (B − A)

g. A + 9
10 (B − A) h. A − 4(B − A) i. A + 4(B − A)

6. Let A = (a1, a2) and B = (b1, b2). Find an expression for the area
of the parallelogram whose vertices are O, A, A + B, and B.

7. In R3, find the equation of each of the following:

a. the y–z plane
b. the plane through (−3, 5,−1) parallel to the y–z plane
c. the plane through (−3, 5,−1) parallel to the x–y plane
d. the sphere with center (0, 0, 0) and radius 1
e. the sphere with center (2, 3, 6) and radius 1
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8. Find the point A = (a1, a2, a3, a4, a5) in R5 if aj = j2 for each
j = 1, 2, . . . , 5.

9. For each of the following equations, solve for A.

a. 3A − (4, 7) = (−1,−4)
b. 2A + 3(2,−1, 3, 6) = 4A + (2,−1, 3, 2)
c. 2A − (4, 6, 2) = O
d. 5A − (−1, 7, 1) = 3A + 4(8,−1, 2)

10. Find A and B if A + B = (4, 8) and A − B = (−2,−6).

11. For each of the following equations, find c1 and c2.

a. c1(2, 3, 9) + c2(1, 2, 5) = (1, 0, 3)
b. c1(2, 3, 9) + c2(1, 2, 5) = (0, 1, 1)

12. Show that there are no scalars c1 and c2 so that ←−
What does the set of
all points of the form
c1(4, 1, 2)+c2(−8,−2,−4)
look like in R3?

c1(4, 1, 2) + c2(−8,−2,−4) = (3, 1, 2)

13. Find nonzero scalars c1, c2, and c3 so that

c1(1, 5, 1) + c2(2, 0, 3) + c3(3, 5, 4) = (0, 0, 0)

14. Show that if c1(3, 2) + c2(4, 1) = (0, 0), then c1 = c2 = 0.

15. Prove (2), (3), and (4) in Theorem 1.2.

16. Prove (5), (6), and (8) in Theorem 1.2.
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1.3 Vectors

1.3 Vectors

The real number system evolved in an attempt to measure physical quan-
tities like length, area, and volume. Certain physical phenomena, however,
cannot be characterized by a single real number. For example, there are
two equally important pieces of information that specify the velocity of an
object: the speed (or magnitude of the velocity) and the direction. You can
represent velocity using a single object: a vector .

←−
Unless, of course, the speed
is 0.

In this lesson, you will learn how to

• test vectors for equivalence using the algebra of points

• prove simple geometric theorems with vector methods

• develop a level of comfort moving back and forth between points and
vectors

• think of linear combinations geometrically

A

B

A vector is a directed line segment that
is usually represented by drawing an ar-
row. The arrow has a length (or magni-
tude), and one end has an arrowhead that
denotes the direction the arrow is point-
ing. In this figure, the two endpoints of
the line segment are labeled A and B.
If you know the two endpoints, you can
completely describe the vector. This vector starts at A and ends at B, so
it is denoted by

−−→
AB. The point A is called the tail (or initial point ) of−−→

AB, and the point B is called the head (or terminal point ) of
−−→
AB.

In fact, you can completely describe any vector by specifying just its

←−
Note that

−→
AB is not the

same vector as
−→
BA.

tail and its head, so you do not have to rely on a drawing. The following
definition works for any dimension.

Definition

If A and B are points in Rn, the vector with tail A and head B is the
ordered pair of points [A, B]. You can denote the vector with tail A and

head B by
−−→
AB.

Facts and Notation

There’s no real agreement about the definition of “vector.” Many books insist that a
vector must have its tail at the origin, calling vectors that don’t start at the origin
“located vectors” or “free vectors.” While there are good reasons for making such fine
distinctions, they are not necessary at the start. This book will soon concentrate on ←−

There’s plenty of time for
formalities later.

vectors that start at the origin too, but for now, think of a vector as an arrow or an
ordered pair of points.
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Developing Habits of Mind

Use algebra to extend geometric ideas. There are many ways to think about
vectors. Physicists talk about quantities that have a “magnitude” and “direction” (like
velocity, as opposed to speed). Football coaches draw arrows. Some people talk about
“directed” line segments. Mathematics, as usual, makes all this fuzzy talk precise: a

←−
The gain in precision is
accompanied by a loss of
all these romantic images
carried by the arrows and
colorful language.

vector is nothing other than anordered pair of points .

But the geometry is essential: a central theme in this book is to start with a geometric

Habits of Mind

“The geometry” referred
to here is the regular
Euclidean plane geometry
you studied in earlier
courses. Later, you may
study just how many of
these ideas can be extended
if you start with, say,
geometry on a sphere.

idea in R2 or R3, find a way to characterize it with algebra, and then use that algebra as
the definition of the idea in higher dimensions. The details of how this theme is carried
out will become clear over time. The next discussion gives an example.

C

D

B

A

1

−1

−2

−2 2 4 6

2

3

4

5

6

7

8

In R2 or R3, two vectors are
called equivalent if they have
the same magnitude (length) and
the same direction. For example,
in the figure to the right,

A = (1,−1)

B = (4, 1)

C = (2, 3) and

D = (5, 5)

−−→
AB is equivalent to

−−→
CD.

For You to Do

1. Show that vectors
−−→
AB and

−−→
CD have

the same length.

What’s Wrong Here?

2. Derman calculates the slope from A to B as 2
3 . But he also remembers that the

slope from B to A is also 2
3 , so he thinks that

−−→
AB is equivalent to

−−→
BA. Can that

be right?

So, there is this geometric idea of equivalent vectors. To define equiva-
lence of vectors in Rn in a way that agrees with this notion of equivalence in
R2, you need to characterize equivalent vectors in R2 without using words
like “magnitude” or “direction.” Suppose A = (a1, a2), B = (b1, b2), C =
(c1, c2), and B is to the right and above A in R2 as in the following figure.
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1.3 Vectors

To find a point D = (d1, d2) so that
−−→
AB is equivalent to

−−→
CD, starting

from C, move to the right a distance equal to b1 − a1, and then move
up a distance equal to b2 − a2. In other words, d1 = c1 + (b1 − a1) and
d2 = c2 + (b2 − a2). Therefore, d1 − c1 = b1 − a1 and d2 − c2 = b2 − a2.

This can be written as (d1 − c1, d2 − c2) = (b1 − a1, b2 − a2), or, using
the algebra of points, Habits of Mind

What are the slopes of
−→
AB

and
−−→
CD?

D − C = B − A

You can call this the “head minus tail test” in R2.

For You to Do

3. In the figure above, show that if D−C = B−A, the distance from A to B is the
same as the distance from C to D and that the slope from A to B is the same ←−

In the CME Project series,
the slope from A to B is
written as m(A,B).

as the slope from C to D.

Theorem 1.3 (Head Minus Tail Test)

In R2, the vectors
−−→
AB and

−−→
CD are equivalent if and only if

D − C = B − A
The discussion leading up to Theorem 1.3 makes its result seem plausi-

ble, but there are other details to check.

1. The preceding argument for finding point D depends on a particular
orientation of the two vectors—B is to the right and above A. A
careful proof would have to account for other cases.

2. That argument shows that if
−−→
AB is equivalent to

−−→
CD, then B −A =

D−C. A careful proof would also show the converse: if B−A = D−C,
then

−−→
AB is equivalent to

−−→
CD.

Both of these details can be handled with some careful analytic geometry.
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It also can be shown (using analytic geometry in three dimensions) that ←−
Much more attention will
be given to the geometry
of R3 in the next chapter.

the Head Minus Tail (HmT) Test works in R3. Since this characterization
of equivalence makes no use of geometric language, it makes sense in Rn.

Definition

If A, B, C, and D are points in Rn, the vectors
−−→
AB and

−−→
CD are said to be

Habits of Mind

Use algebra to extend
geometric ideas. This
definition of “equivalent”
uses the algebra you
developed in Theorem 1.3
and extends that algebra to
any dimension.

equivalent if B − A = D − C.

Example 1

Problem. Is
−−−−−−−→(
1
2 , 3
)
(3, 5) equivalent to

−−−−−−−−−→(
17
8 , 0

) (
35
8 , 2

)
? Habits of Mind

Draw a picture.Solution. You could check slopes and (directed) distances, but both of those are
checked in the HmT Test. For the first vector, HmT yields

(
5
2 , 2
)
; for the second, you

get
(
9
4 , 2
)
. So the vectors are not equivalent.

Example 2

Problem. In R4, if X = (−1, 2, 3, 1), Y = (1,−2, 5, 4), and Z = (3, 1, 1, 0), find W so

that
−−→
XY is equivalent to

−−→
ZW .

Solution. By definition, this means W − Z = Y − X or

W = Z + Y − X = (5,−3, 3, 3)

Developing Habits of Mind

Use algebra to extend geometric ideas. The process that led to the definition of
equivalent vectors in Rn is important.

• First, equivalent vectors in R2 are defined using geometric ideas. ←−
This process will be called
the extension program from
now on.

• Next, equivalent vectors in R2 are characterized by an equation involving only the
operation of subtraction of points.

• Finally, this equation is used as the definition of equivalent vectors in Rn.

This theme will be used throughout the book, and it will allow you to generalize
many familiar geometric notions from the plane (and in the next chapter, from three-
dimensional space) to Rn.

For You to Do

4. Show that in R2 every vector is equivalent to a vector whose tail is at O.

The same result—every vector is equivalent to a vector whose tail is at
O—is true in Rn, and the proof may seem surprising.

22



1.3 Vectors

Theorem 1.4

Every vector in Rn is equivalent to a vector whose tail is at O. In fact,
−−→
AB

is equivalent to
−−−−−−−→
O(B − A).

Proof. B − A = (B − A) − O.

The following figure illustrates Theorem 1.4 for several vectors.

A

B

O

B-A

D

C
D-C

R

SS-R

Facts and Notation

The vectors in Rn break up into “classes”: two vectors belong to the same “class” if and
only if they are equivalent. Every nonzero point in Rn determines one of these classes.
That is, the point A determines the class of vectors equivalent to

−→
OA. Theorem 1.4

shows that every class of vectors is obtained in this way. Furthermore, you can show (see

Exercise 5) that if
−→
OA is equivalent to

−−→
OB, then A = B.

Because of this, the following convention will be in force for the rest of this book:
from now on, an ordered n-tuple A �= O will stand for either a point in Rn or the vector−→
OA. You can also consider O as a vector (the zero vector). The context will always
make it clear whether an element in Rn is considered a point or a vector.

Example 3

Problem. Show that the points A = (−2, 4), B = (2, 5), C = (4, 3), and D = (0, 2)
lie on the vertices of a parallelogram.

Solution Method 1. Translate the quadrilateral to the origin; that is, slide the ←−
A translation is a transfor-
mation that slides a figure
without changing its size,
its shape, or its orientation.
If A is a point, subtract-
ing A from each vertex of
a polygon translates that
polygon (why?).

parallelogram so that one of the vertices (say, A) lands at the origin, and translate
the other three points similarly.
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Since A − A = O, you can translate the other three points by subtracting A. More
precisely,

−−→
AB is equivalent to B−A = (4, 1),

−→
AC is equivalent to C−A = (6,−1), and

−−→
AD

is equivalent to D−A = (2,−2). Since (4, 1)+(2,−2) = (6,−1), C−A = (B−A)+(D−A),
and you can say that, by the Parallelogram Rule (Theorem 1.1 from Lesson 1.2),
O, B −A, C −A, and D −A lie on the vertices of a parallelogram. Since the translation
affects only the position of the figure, A, B, C, and D must also lie on the vertices of a
parallelogram.

Solution Method 2.
−−→
AB is equivalent to

−−→
DC, since B−A = C−D = (4, 1). Since they

are equivalent, you know they have the same length (magnitude), so the line segments ←−
A convex quadrilateral is
a parallelogram if one pair
of opposite sides is both
parallel and congruent, so
there’s no need to show
that

−−→
BC is equivalent to−−→

AD.

are congruent. They also have the same direction, so the line segments have the same
slope and are thus parallel.

For You to Do

5. Derman tried to show that he had a parallelogram if A = (2, 1), B = (4, 2),
C = (6, 3), and D = (10, 5), and he ended up scratching his head. Help him figure
out why these points do not form a parallelogram.

Developing Habits of Mind

Use vectors to describe geometric ideas. If points in R2 and R3 are viewed
as vectors, the geometric description of addition and scalar multiplication is much
easier.

B

BO

If A and B are vectors in R2, A+B is the diagonal of the parallelogram whose sides are
A and B. Multiplying A by c yields a vector whose length is the length of A multiplied
by |c|; cA has the same direction as A if c > 0; cA has the opposite direction of A if
c < 0.
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1.3 Vectors

In Exercise 1 from Lesson 1.1, you plotted several points that were scalar ←−
In Exercise 6, you’ll show
that if P and Q are nonzero
vectors in R2 or R3, and
that if O, P , and Q are
collinear, then Q = cP
for some real number c.
In fact, the set of points
collinear with the points O
and P is the collection of
multiples cP of P .

multiples of a point A = (1, 2). What you might have noticed was that all
of the resulting points ended up on the same line:

10

8

6

4

2

0

0 2 4 6 8−2

−2

−4

−6

−8

−10

−12

−14

−4−6

A

a. 2A=(2,4)

d. (−1)A = (−1,−2)

e. (−3)A = (−3,−6)

f. (−6.5)A = (−6.5,−13)

b. 3A = (3,6)

c. 5A = (5,10)

The fact that scalar multiples of points are collinear hints at an algebraic
way to characterize parallel vectors in R2. In the following figure,

−−→
AB and Remember

A point A corresponds to
the vector

−→
OA.

−−→
C D have the same direction,

−−→
AB and

−−→
EF have opposite directions, and

all three vectors appear to be parallel.

D

F

E

C

B

A

B − A
D − C

F − E

If you construct equivalent vectors start-

ing at O, vectors B − A, D − C, and

F − E are all scalar multiples of each

other. More precisely, D−C = k(B−A)

for some k > 0, and F − E = k(B − A)

for some k < 0. This statement was de-

veloped in R2, but it makes sense in Rn

for any n.
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Definition

Two vectors
−−→
AB and

−−→
CD in Rn are said to be parallel if there is a nonzero Habits of Mind

Use algebra to extend
geometric ideas. The
definition takes an algebraic
characterization—B −A =
k(D − C)—of a geometric

property—
−→
AB is parallel

to
−−→
CD—and makes it the

definition of the geometric
property in Rn.

real number k so that
B − A = k(D − C)

• If k > 0,
−−→
AB and

−−→
CD have the same direction.

• If k < 0,
−−→
AB and

−−→
CD have opposite directions.

The zero vector O is parallel to every vector (with no conclusion about
same or opposite direction).

For You to Do

6. Let A = (3,−1, 2, 4), B = (1, 2, 0, 1), C = (3, 2,−3, 5), and D = (7,−4, 1, 11).

Show that
−−→
AB is parallel to

−−→
CD.

Minds in Action Episode 3

Tony and Sasha are working on the following problem.

Problem. Suppose that P = (2, 4), A = (3, 1), and S is the set of points Q so that−−→
PQ is parallel to A. Draw a picture of S and find an equation for it.

Tony: From the definition, if
−−→
PQ is parallel to A, then there is a real number k so that

Q − P = kA. Okay, now what?

Sasha: Well, let’s rewrite that as
Q = P + kA

I can draw what kA looks like for all real values of k: it’s a line through the origin
and the point A.

O

Tony: Great, but what about the P?

Sasha: Well, we have to add P to each of the multiples.

Tony: That’s a lot of parallelograms! All right, let’s try it.
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O

Ah, I see it. That works . . . it’s a line that goes through P and is parallel to A. So is
Q = P + kA the equation of the line?

Sasha: Well, it’s not the equation for the line, but I guess it’s an equation for the line.
But it’s different than ones we’ve used before, because it has vectors in it and not
coordinates. And, there’s this k in there, standing for a real number.

Tony: There’s probably a special name for it, then.

As Tony and Sasha found out, the graph of Q = P + kA is a straight

←−
Context clues: Tony and
Sasha are thinking of P as
a point and A as a vector.
Why?

line through P in the direction of A. An equation of the form

X = P + kA

is called a vector equation of a line . It works as a point-tester, too, in

←−
The equation X = P + kA
is also called a parametric
equation for the line, when
you want to emphasize the
role of the “parameter” k.

the sense that a point X is on this line if and only if there is a number k so
that X = P + kA—although you’ll have to do some algebra to see if such
a k exists in specific cases. But it also works as a point-generator (see the
Developing Habits of Mind below).

To find a more familiar coordinate equation for S, replace the vector
letters with coordinates. If X = (x, y), you can say ←−

In the next chapter, you’ll
become very familiar with
this vector equation, so
you’ll have less need
to move to the linear
coordinate equation.

(x, y) = (2, 4) + k(3, 1)

and thus

x = 2 + 3k

y = 4 + k

Multiply the second equation by 3 and subtract from the first to obtain

x − 3y = −10

This kind of equation probably looks more like equations of lines than you
are used to, so it is pretty clear that S is in fact a line.
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Developing Habits of Mind

Use the vector equation as a point-generator. You can use the equation X =
P +kA to generate points: consider a “slider” of length k that you can control with your
mouse. As you change the length of the slider, A gets scaled by k and added to P . The ←−

You can create a drawing
like this with geometry
software.

varying P + kA traces out �.

Every value of k generates a point on the line, so the equation X = P + kA is a kind of
“function machine” that takes in numbers k and produces points on the line through P
in the direction of A.

For You to Do

7. Tony and Sasha worked on multiples of a single vector in R2. What if, in the
equation X = P + kA, X, P , and A are in R3? Would the equation still describe
a line? Why or why not?

Minds in Action Episode 4

Tony and Sasha are working on the following problem.

Problem. In R3, let A = (2, 3, 9) and B = (1, 2, 5). What do all the linear
combinations of A and B describe?

Tony: I’m on it, Sasha. “Linear combination” means we multiply A by something, and
B by something, and then add them together. In other words, we want something
that looks like k1A + k2B. Should I start plugging away?

Sasha: Well, let’s think about it for a second. We can find three points easily enough:
A, B, and O.

Tony: Oh. O?

Sasha: Yes, O, because O = 0A+0B. As I was saying, we have three points: A, B, and
O. Those three points aren’t on the same line, so they determine a plane. Let’s call ←−

How does Sasha know
that O, A, and B are
not collinear? What would
happen if they were?

that plane E.
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O

A

B

E

Tony: But I can pick anything for k1 and anything for k2, so won’t that give us infinitely
many points? What does that determine?

Sasha: Hold on. Say both k1 and k2 are 1. Then A+B is another point. But we already
know that completes a parallelogram, right? And if that’s the case, A+B should be on
the same plane as the other three points, otherwise, it wouldn’t make a parallelogram,
but some weird twisted 3D shape.

Tony: I gotcha. That makes sense.

Sasha: And look at this. 2B would have to be on the same plane, too, right? I mean,
it’s on the line

←→
OB, and if O and B are both on the plane E, all of the line

←→
OB has

to be on E.

Tony: Same deal with multiples of A, like 1
2A has to be on E, too.

Sasha: And by the Parallelogram Rule again, their sum, 1
2A +2B, has to be, too.

O

A

B

E

1
2A 2B

2B+
1
2A

Tony: Then all these other points will have to stay on the plane E, right? Because
any point k1A will be on the line

←→
OA, so it’s on E. And any point k2B will be on

the line
←→
OB, so it’s on E, too. And the sum of any of those two points is part of a

parallelogram where we know three of the points are on one plane, so the fourth has
to be too.

Sasha: Brilliant, Tony! So an equation for E could be X = k1A + k2B, or, better yet, ←−
E is called the plane
spanned by A and B.

X = k1(2, 3, 9) + k2(1, 2, 5). Wait . . . uh oh . . .

Tony: What now?
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Sasha: Well, we showed that any linear combination of A and B must be on E. But we
didn’t show it the other way . . . must every point on E be a linear combination of A
and B?

Tony: It’s not the same thing?

Sasha: No, we have to make sure that taking all the linear combinations doesn’t leave
holes in the plane.

They both sit quietly for a while, thinking.

I think I got it. Say Q is a point on E. I can draw a line through Q that’s parallel to
A—that line will be on E. I can also draw a line through Q parallel to B, also on E.

Tony: Good job, Sasha. The line through Q parallel to A will intersect
←→
OB somewhere.

And the line through Q parallel to B will intersect
←→
OA somewhere, too. And that

makes a parallelogram.

Sasha: That’s what I was thinking. Say S is on
←→
OA and

−→
SQ is parallel to B, and say R

is on
←→
OB and

−−→
RQ is parallel to A. Here, look at my picture.

O

A

B

E

S

Q

R

Tony: Yep. So Q = S + R, by the Parallelogram Rule. But since S is on
←→
OA, it has to

equal k1A for some k1, and R being on
←→
OB means it has to equal k2B for some k2.

So, Q = k1A + k2B. And we’re done.

Sasha: Great work, Tony.

Tony: Awesome . . . I think we’ve got a vector equation of a plane: X = k1A + k2B.

Sasha: Maybe, but something’s missing, I think.

For Discussion

8. a. Suppose X, A, and B are vectors in R2, and A and B are not parallel. What
does X = k1A + k2B describe?

b. Suppose X, A, and B are vectors in R4, and A and B are not parallel. What
does X = k1A + k2B describe?

9. Sasha thinks something is missing from Tony’s “vector equation of a plane.”
What do you think she means?
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So, the point-tester for the plane E is “a point Q is on the plane E if
and only if Q is a linear combination of A and B.” This point-tester leads
to the vector equation ←−

X = c1A + c2B is also a
point-generator. Why?

X = c1A + c2B

You can use this equation to test any point X in R3 to see if it is on the
plane E.

Example 4

Problem. Is U = (3, 5, 14) on Sasha’s plane E (from Episode 4)?

Solution. You might spot that U = A + B, so U is a linear combination of A and B,

Habits of Mind

It’s a good idea to train
yourself to check if a point
is a linear combination
of some other points by
playing around with the
numbers in your head.

and hence it’s on E. If you didn’t spot that, you could set up the equations

U = c1A + c2B or

(3, 5, 14) = c1(2, 3, 9) + c2(1, 2, 5)

Now look at it coordinate by coordinate:

3 = 2c1 + c2

5 = 3c1 + 2c2

14 = 9c1 + 5c2

Solve the first two equations for c1 and c2; (1, 1) works. And (1, 1) works in the last
equation, too, so c1 = 1 and c2 = 1 is a solution. Hence, U = 1A + 1B, so U is on E.

For You to Do

10. Check to see if the following points are on E:

a. (3, 5, 13) b. (5, 8, 23) c. (10, 16, 46)

Example 5

Problem. Tony and Sasha showed that the plane E spanned by A = (2, 3, 9) and
B = (1, 2, 5) has a vector equation

X = k1A + k2B

Find a coordinate equation for E.

Solution. A coordinate equation is just a point-tester for E whose test is carried out
by calculating with coordinates and not vectors. Start out with the vector equation

X = k1A + k2B

and substitute A = (2, 3, 9), B = (1, 2, 5), and X = (x, y, z) to get

(x, y, z) = (2k1 + k2, 3k1 + 2k2, 9k1 + 5k2)
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So,

x = 2k1 + k2

y = 3k1 + 2k2

z = 9k1 + 5k2

You want a relation between x, y, and z without using any of the k’s. One way to
start it is to eliminate k2 from two pairs of equations:

1. Multiply the first equation by 2 and subtract the second from the result to get

2x − y = k1

2. Multiply the second equation by 5 and the third equation by 2 and then subtract
to get

5y − 2z = −3k1

Now substitute the left-hand side of the equation into the right-hand side of the last
equation to get

5y − 2z = −3(2x − y)

This equation simplifies to
6x + 2y − 2z = 0

or
3x + y − z = 0 (1)

This is a coordinate equation for E.

The derivation of the coordinate equation in this example should feel like
the calculation shown in Example 4. Compare the system from Example 4
with the system from Example 5. To prove that the last equation is a
coordinate equation for E, you’d have to show that a point (x, y, z) is on
E if and only if (x, y, z) satisfies it. There are some details to be filled in
(what are they?).

In the next chapter, you’ll develop a much more efficient way to find
coordinate equations for planes that will build on the technique developed
in this example.

Exercises

1. For each set of vectors, determine whether the pairs of vectors
−−→
AB ←−

Look for shortcuts. For
instance, notice how solu-
tions to earlier problems
can help with later ones.

and
−−→
CD are equivalent, parallel in the same direction, or parallel in

the opposite direction.

a. A = (3, 1), B = (4, 2), C = (−1, 4), D = (0, 5)
b. A = (3, 1), B = (4, 2), C = (0, 5), D = (−1, 4)
c. A = (3, 1, 5), B = (−4, 1, 3), C = (0, 1, 0), D = (14, 1, 4)
d. A = (−4, 1, 3), B = (3, 1, 5), C = (0, 1, 0), D = (14, 1, 4)
e. A = (1, 3), B = (4, 1), C = (−2, 3), D = (13,−7)
f. A = (3, 4), B = (5, 6), C = B − A, D = O
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g. A = O, B = (4, 7), C = (5, 2), D = B + C
h. A = (−1, 2, 1, 5), B = (0, 1, 3, 0), C = (−2, 3, 2, 1), D =

(−1, 2, 4,−4)
i. A = (−1, 2, 1, 5), B = (−2, 3, 2, 1), C = (0, 1, 3, 0), D =

(−1, 2, 4,−4)

2. For each set of vectors from Exercise 1, parts a–g, sketch the points
A, B, C, D, B − A, and D − C. Use a separate coordinate system
for each set.

3. Find a point P if
−−→
PQ is equivalent to

−−→
AB, where

A = (2,−1, 4), B = (3, 2, 1), and Q = (1,−1, 6)

4. In R4, suppose A = (3, 1,−1, 4), B = (1, 3, 2, 0), and C =

(1, 1,−1, 3). If D = (−3, a, b, c), find a, b, and c so that
−−→
AB is

parallel to
−−→
CD.

5. In Rn, show that if
−−→
AB is equivalent to

−→
AC, then B = C.

6. In R2, show that if A, B, and O are collinear, then B = cA for some
number c.

7. Suppose A = (1, 2, 3) and B = (4, 5, 6). Is each point a linear ←−
Try to do this problem in
your head. If you get stuck,
write down equations.

combination of A and B? If so, give the coefficients. If not, explain
why.

a. (5, 7, 9) b. (3, 3, 3) c. (−5,−7,−9)

d. (10, 14, 18) e. (8, 10, 12) f. (7, 8, 9)

g. (7, 8, 10) h. (1, 2, 3) i. (1, 2, 4)

8. Some people, especially physicists, talk about adding vectors “head
to toe” in the following way: to find

−−→
AB +

−−→
CD, move

−−→
CD to an

equivalent vector starting at B, say
−−→
BQ. Then

−−→
AB +

−−→
CD =

−→
AQ

a. Draw a picture of how this works.
b. Show that

−→
AQ is equivalent to (B − A) + (D − C).

9. In Rn, if
−−→
AB is equivalent to

−−→
CD, show that

−→
AC is equivalent to−−→

BD. Illustrate geometrically in R2 or R3.

10. In R2, let � be the line whose equation is 5x + 4y + 20 = 0. If
P = (−4, 0) and A = (−4, 5), show that � is the set of all points

Q so that
−−→
PQ is parallel to A.

11. Let P = (3, 0) and A = (1, 5). If � is the set of all points Q so

that
−−→
PQ is parallel to A, find a vector equation and a coordinate

equation for �.

12. In R3, let A = (1, 0, 2) and B = (0, 1, 3).

a. Find a vector equation and a coordinate equation for the plane
spanned by A and B.
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b. Take It Further. Find a vector equation and a coordinate
equation for the plane parallel to the one you found in part a
that passes through the point C = (1, 1, 1).

13. Show that the following definition for the midpoint of a vector in
Rn agrees with the usual midpoint formula in R2: the midpoint

of
−−→
AB is the point 1

2 (A + B).

14. In R4, let A = (−3, 1, 2, 4), B = (5, 3, 6,−2), and C = (1, 1,−2, 0). If

M is the midpoint (see Exercise 13) of
−−→
AB and N is the midpoint of−−→

BC, show that
−−→
MN is parallel to

−→
AC. This exhibits a generalization

of what fact in plane geometry?

15. If A, B, and C are points in Rn, M is the midpoint (see Exercise 13)

of
−−→
AB, and N is the midpoint of

−−→
BC,

a. show that M − A = B − M
b. show that M − N = 1

2 (A − C)

c. prove that
−−→
MN is parallel to

−→
AC
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1.4 Length

In the previous lesson, you saw that the two key attributes of a vector are
its magnitude and direction, but you didn’t spend much time on either one.
This lesson focuses on magnitude (length). ←−

You’ll explore direction in
the next chapter.In this lesson, you will learn how to

• calculate the length of a vector and apply the algebraic properties
described in the theorems

• give geometric interpretations of algebraic results that involve length

• understand how the extension program is used to define length in
higher dimensions

• identify a unit vector

If A = (a1, a2) is a vector in R2,
the length of A can be calculated as
the distance between the origin O and
A using the distance formula (which
is derived from the Pythagorean The-
orem):

√
a2
1 + a2

2. So the length of
(3, 4) is 5 and the length of (5, 1) is√

26.

A=(a1, a2)

a1

a2

X

Y

a1
2

a2
2+

You can find a similar formula in R3.

2

1

-1

-1

X

Z

-2

1

Y

a1
2+a2

2

a1

a2

a3

a1
2+a2

2 + a3
2

1
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If A = (a1, a2, a3), repeated applications of the Pythagorean Theorem
shows that

the length of A =

√(√
a2
1 + a2

2

)2

+ a2
3

=
√

a2
1 + a2

2 + a2
3

You can define length in Rn by continuing the process that used the
Pythagorean Theorem to go from two to three dimensions.

Definition

Let A = (a1, a2, . . . , an) be a vector in Rn. The length of A, written ‖A‖,
is given by the formula

Remember

If a is a positive real
number,

√
a is defined

as the positive root of the
equation x2 = a.

‖A‖ =
√

a2
1 + a2

2 + · · · + a2
n

Notice that while A is a vector, ‖A‖ is a number.

For You to Do

1. a. Find the length of (5, 3, 1). b. Find ‖(9, 3, 3, 1)‖.

There are some fundamental properties of length that are inspired by
geometry and proved by algebra.

Theorem 1.5

Let A and B be vectors in Rn and let c be a real number. Then

(1) ‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = O

(2) ‖cA‖ = |c| ‖A‖
(3) ‖A + B‖ ≤ ‖A‖ + ‖B‖

Proof. Here are the proofs of parts ((1)) and ((2)); the proof of ((3)) will
be given in the next chapter. ←−

Or, you can try to prove it
yourself, right now.(1) Since ‖A‖ =

√
a2
1 + a2

2 + · · · + a2
n, ‖A‖ is the square root of the sum

of squares, hence it is nonnegative. And ‖A‖ = 0 if and only if√
a2
1 + a2

2 + · · · + a2
n = 0. But for the sum of a set of nonnegative

numbers to equal 0, each number must equal 0, and thus all the
coordinates a1, a2, . . . , an must be 0. In other words, A = O.
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1.4 Length

(2) If A = (a1, a2, . . . , an), then cA = (ca1, ca2, . . . , can). So

‖cA‖ =
√

(ca1)2 + (ca2)2 + · · · + (can)2

=
√

c2a2
1 + c2a2

2 + · · · + c2a2
n

=
√

c2(a2
1 + a2

2 + · · · + a2
n)

=
√

c2 ·
√

a2
1 + a2

2 + · · · + a2
n

= |c| ‖A‖

Part ((3)) of Theorem 1.5 is known as the Triangle Inequality because,
in R2, it says that if you form a triangle with vertices O, A, and A + B, ←−

You’ll see a proof of the
Triangle Inequality in Rn in
Chapter 2.

the length of A + B is less than or equal to the sum of the lengths of the
other two sides:

X

Y

B

A

A + B

||A + B||

||B||

||A||

Unit Vectors

For every nonzero vector A in R2 or R3, there is a vector with the same
direction as A with length 1. If A = (3, 4), this vector is

(
3
5 , 4

5

)
.

This same phenomenon occurs in Rn, and, as usual, the proof is alge-
braic. Suppose A is a nonzero vector in Rn, and suppose ‖A‖ = k (so that
k > 0). The vector 1

kA is in the same direction as A, and

←−
Where is Theorem 1.5 used
here?

∥∥ 1
kA
∥∥ =

∣∣ 1
k

∣∣ ‖A‖
= 1

k ‖A‖
= 1

kk = 1

That is, by dividing each component of A by ‖A‖, you get a vector in the
same direction as A but with length 1.

Theorem 1.6

Let A be a nonzero vector in Rn. There is a vector in the same direction
as A with length 1; in fact, this vector is 1

‖A‖A.

The vector 1
‖A‖A is called the unit vector in the direction of A. ←−

Can there be more than
one unit vector in any given
direction?
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Example 1

Problem. In R4, find the unit vector in the direction of (5, 10, 6, 8).

Solution.
‖(5, 10, 6, 8)‖ = 15

so the unit vector in the direction of (5, 10, 6, 8) is 1
15 (5, 10, 6, 8) or(

1

3
,
2

3
,
2

5
,

8

15

)

For You to Do

2. a. If A �= O is a vector in Rn and c > 0 is a number, show that the unit vector
in the direction of cA is the same as the unit vector in the direction of A.

b. What if c < 0?
c. What if A = O?

Distance

In R2, the distance between A and B is the length of the vector
−−→
AB, which

is the same as ‖B − A‖. You can use this characterization of distance as a
definition in Rn.

←−
The extension program
again.

Definition

The distance between two points A and B in Rn, written d(A, B), is
defined by the equation

d(A, B) = ‖B − A‖

Example 2

Problem. In R4, show that the triangle with the following vertices is isosceles.

A = (476,−306,−932, 1117)

B = (−1060,−690, 220,−995)

C = (140,−210, 580, 205)

Solution. Compute the lengths of the three sides. ←−
A calculator will help with
the arithmetic.d(A, B) = ‖B − A‖ = ‖(−1536,−384, 1152,−2112)‖ = 2880

d(B, C) = ‖C − B‖ = ‖(1200, 480, 360, 1200)‖ = 1800

d(A, C) = ‖C − A‖ = ‖(−336, 96, 1512,−912)‖ = 1800

Since d(B, C) = d(A, C), the triangle is isosceles.
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1.4 Length

The next theorem gives some important properties of the distance
function. These properties generalize from the geometry of R2 and R3.
To prove them in Rn, use Theorem 1.5.

Theorem 1.7

Let A, B, and C be points in Rn.

(1) d(A, B) ≥ 0, and d(A, B) = 0 if and only if A = B. ←−
You should illustrate each
of these properties in R2 or
R3 with a sketch.

(2) d(A, B) = d(B, A).

(3) d(A, C) ≤ d(A, B) + d(B, C).

Exercises

1. Find ‖A‖ for each of the following:

a. A = (3, 6) b. A = (4, 3, 0) c. A = (−1, 3, 4, 1)

d. A = (1, 0, 1, 0) e. A = (4,−1, 3, 5) f. A = (0, 0, 0, 1)

2. Let A = (3,−1, 4) and B = (4, 2,−1). Find

a. ‖A + B‖ b. ‖A − B‖
c. ‖2A + 2B‖ d. ‖A − 2B‖2

3. Find the unit vector in the direction of A if

a. A = (1, 1) b. A = (6, 8) c. A = (440,−539, 330, 598)

d. A = (1, 3, 0,−1) e. A = (1, 0, 0) f. A = (3, 4, 5)

4. Write About It. Prove that, in R2 and R3, the distance between
two points A and B is the length of B − A. Give a formula for the
distance between A = (a1, a2, a3) and B = (b1, b2, b3).

5. In each exercise, find d(A, B).

a. A = (3, 1), B = (4, 2)
b. A = (1, 0, 1), B = (0, 1, 0)
c. A = (1, 3, 2), B = (4, 1, 3)
d. A = (1, 3,−1, 4), B = (2, 1, 3, 8)

6. Find the length of the sides of �ABC if ←−
Once again, a calculator is
useful for these problems.A = (−120,−1680,−115, 465)

B = (680, 1120, 485, 865)

C = (240, 1659, 155, 267)

7. Which triangles are isosceles?

a. �PQR, where

P = (−1791, 11089,−279)

Q = (5954, 16991, 7835)

R = (1234,−1209, 235)
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b. �MNP , where

M = (−120,−1680,−115, 465)

N = (680, 1120, 485, 865)

P = (240, 1659, 155, 267)

c. �ABC, where

A = (1, 1, 3,−2)

B = (−2, 4, 6, 4)

C = (5, 3, 3, 2)

8. Prove Theorem 1.7.

9. If A and B are points in Rn and M is the midpoint of
−−→
AB (see

Exercise 13 from Lesson 1.3), show that

d(A, M) = d(M, B)

10. Let A = (1, 2), B = (13, 4), and C = (7, 10). Suppose M is

the midpoint of
−−→
AB and N is the midpoint of

−−→
BC. Show that

d(M, N) = 1
2d(A, C).

11. Let A = (1,−2, 2) and B = (7,−5, 4). If M is the midpoint of
−→
OA

and N is the midpoint of
−−→
OB, show that d(M, N) = 1

2d(A, B).

12. If A, B, and C are distinct points in Rn, M is the midpoint of
−−→
AB,

and N is the midpoint of
−−→
BC, show that

d(M, N) = 1
2d(A, C)

What fact from plane geometry does this generalize?

13. The centroid of a triangle is the point where its three medians meet. ←−
A median of a triangle
is a line segment from a
vertex to the midpoint of
the opposite side.

a. Find the centroid of the triangle whose vertices are O, A =
(3, 1), and B = (6, 5).

b. Show that this centroid is A+B
3 .

c. Find the centroid of the triangle whose vertices are Q = (4, 1),
Q + A = (7, 2), and Q + B = (10, 6).

d. Take It Further. Show that in R2 the centroid of a triangle
whose vertices are M , N , and R is M+N+R

3 .

14. a. Pick three cities, say Boston, New York, and Cleveland. Ap-
proximately where is the centroid of the triangle that has your
three cities as vertices?

b. What is a reasonable definition of the “population center” for
three cities?

c. Find the population center for your three cities using your
definition.

15. Show that the points (5, 7, 4), (7, 3, 2), and (3, 7,−2) all lie on a
sphere with center (1, 3, 2).
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1.4 Length

16. If A and B are nonzero vectors in Rn and a = ‖A‖ and b = ‖B‖,
show that ‖bA‖ = ‖aB‖.

17. Suppose A and B are nonzero vectors in R2. Let U = ‖B‖A and
V = ‖A‖B. Show that the parallelogram determined by U and V ←−

Draw a picture.is a rhombus.

41



Chapter 1 Points and Vectors

Chapter 1 Mathematical Reflections

These problems will help you summarize what you have learned in this Vocabulary

In this chapter, you saw
these terms and symbols
for the first time. Make
sure you understand what
each one means, and how
it is used.

• coordinates

• direction

• equivalent vectors

• extension program

• initial point (tail)

• length ‖X‖
• linear combination

• magnitude

• n-dimensional Euclidean
space

• opposite direction

• ordered n-tuple

• point

• same direction

• scalar multiple

• spanned

• terminal point (head)

• unit vector

• vector

• vector equation

• zero vector

chapter:

1. For each of the following equations, solve for A.

a. 2A + (1, 6) = (−3, 4)
b. −A − (5, 3,−4) = O
c. 4A + (1,−3,−2) = 2A − (0,−5, 2)

2. For each set of vectors, determine whether the pairs of vectors
−−→
AB

and
−−→
CD are equivalent, parallel in the same direction, or parallel in

the opposite direction.

a. A = (2, 5), B = (6, 3), C = (−5, 6), D = (−1, 4)
b. A = (2, 5), B = (6, 3), C = (−5, 6), D = (3, 2)
c. A = (−4, 2, 0), B = (7,−1, 9), C = (0, 0, 2), D = (−11, 3,−7)
d. A = (2, 9, 5,−7), B = (4,−3, 8, 0), C = (−1,−9, 0, 5), D =

(1,−21, 3, 12)

3. The vector equation of line � is X = (3, 5) + k(4, 2).

a. Find X if k = 2.
b. Find another point on line �.
c. Find a coordinate equation for line �. Verify that the points

from parts a and b are on line � using the coordinate equation.

4. Let A = (4, 2) and B = (6,−8). Find

a. ‖A‖ b. ‖B‖ c. ‖A + B‖ d. d(A, B)

5. LetA = (4, 2) and B = (6,−8). O, A, B, and A + B form the
vertices of a parallelogram. What additional information about the
parallelogram do ‖A + B‖ and d(A, B) give you? ←−

A and B are the same as
in Exercise 4.

6. How can you describe adding and scaling vectors in geometric
terms?

7. How can you use vectors to describe lines in space?

8. Let A = (3, 2) and B = (−1, 4).

a. Calculate and graph the following: A+B, 2A, −3B, 2A− 3B.
b. Calculate ‖2A − 3B‖.
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Chapter 1 Review

In Lesson 1.2, you learned to

• locate points in space and describe objects with equations

• use the algebra of points to calculate, solve equations, and transform
expressions, all in Rn

• understand the geometric interpretations of adding and scaling

The following problems will help you check your understanding.

1. Given A = (2, 3), B = (4,−3), and C = (−5,−4). Calculate and
plot the following:

a. A + B b. A + 2B c. A + 3B

d. 2 · (A + B) e. A + B + C f. A + B − C

2. In R3, find the equation of each of the following:

a. the x–y plane b. the x–z plane

c. the plane through (−2, 3, 4) parallel to the x–y plane
d. the plane through (−2, 3, 4) parallel to the x–z plane

3. For each of the following equations, solve for A.

a. 4A − (−4, 9) = (2,−5)
b. A + (−1,−7, 8) = 3A − (−11, 1,−8)
c. (1, 15, 2,−5) − 5A = 2(3, 0,−4, 10)

4. For each of the following equations, find c1 and c2.

a. c1(2,−5, 3) + c2(4, 1, 8) = (0,−11,−2)
b. c1(2,−5, 3) + c2(4, 1, 8) = (4, 12, 10)

In Lesson 1.3, you learned to

• test vectors for equivalence using the algebra of points

• prove simple geometric theorems with vector methods

• think of linear combinations geometrically

The following problems will help you check your understanding.

5. For each set of points A, B, and Q, find a point P if
−−→
PQ is equivalent

to
−−→
AB.

a. A = (−2, 8), B = (3,−1), and Q = (2, 5)
b. A = (3, 5, 7), B = (−1,−2, 4), and Q = (−6, 8, 3)

6. In R3, suppose A = (2,−2, 1), B = (3, 4,−2), and C = (5,−1, 6).

If D = (3, a, b), find a and b so that
−−→
A B is parallel to

−−→
CD. Are the

vectors parallel in the same direction or in the opposite direction?
How do you know?
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7. Let P = (2,−1) and A = (3, 4). If � is the set of all points Q so

that
−−→
PQ is parallel to A, find a vector equation and a coordinate

equation for �.

8. In R3, let A = (3,−2, 1) and B = (2, 4, 0).

a. Is (14, 12, 2) a linear combination of A and B? If so, give the
coefficients. If not, explain why not.

b. Is (14, 12, 1) a linear combination of A and B? If so, give the
coefficients. If not, explain why not.

c. Find a vector equation and a coordinate equation for the plane
spanned by A and B.

In Lesson 1.4, you learned to

• calculate length and distance and apply the algebraic properties
described in the theorems

• understand how the extension program is used to define length in
higher dimensions

• identify a unit vector

The following problems will help you check your understanding:

9. Let A = (−4,−3) and B = (2, 2). Find

a. ‖A‖ b. ‖B‖ c. ‖A + B‖
d. ‖2A‖ e. ‖A − B‖ f. ‖B − A‖

10. Find the unit vector in the direction of A if

a. A = (5,−12) b. A = (−3,−3)

c. A = (2, 1,−3) d. A = (1, 1, 1, 1)

11. Find d(A, B) if

a. A = (−2, 4), B = (0, 5)
b. A = (1, 1, 1), B = (2, 2, 2)
c. A = (0, 3, 1, 2), B = (−2, 1,−3, 0)

12. Find the perimeter of �ABC if A = (2, 3), B = (5, 9), and
C = (8, 0).
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Multiple Choice

1. Let A = (3,−6) and B = (−4, 5). Which is equivalent to A + 2B?

A. (−5, 4) B. (−2,−2) C. (−1,−1) D. (2,−7)

2. Which is the equation of the plane through (1,−2, 6) parallel to the
x–y plane?

A. x = 1
B. y = −2
C. z = 6
D. x + y + z = 5

3. Let A = (4, 0), B = (−2,−1), and P = (−5,−3). If
−−→
AB is equivalent

to
−−→
PQ, which are the coordinates of Q?

A. (−11,−4) B. (−1, 2) C. (1,−2) D. (11, 4)

4. In R3, suppose A = (1,−4, 2), B = (−5, 7, 3), P = (2,−2, 3), and
Q = (−10, 20, 5). Which of these statements is true?

A.
−−→
AB and

−−→
PQ are equivalent.

B.
−−→
AB and

−−→
PQ are parallel in the same direction.

C.
−−→
AB and

−−→
PQ are parallel in the opposite direction.

D. None of the above.

5. Let P = (4,−7) and A = (5, 2). If � is the set of all points Q so that−−→
PQ is parallel to A, which is a coordinate equation for �?

A. 2x − 5y − 43 = 0
B. 2x + 5y + 27 = 0
C. 4x − 7y − 6 = 0
D. 4x + 7y + 33 = 0

6. Let A = (2,−4, 7) and B = (−2, 1, 5). What is ‖A − B‖?

A.
√

11 B.
√

13 C. 3
√

5 D. 3
√

17

Open Response

7. Solve each of the following equations for A.

a. 2A + (6,−1) = (8, 4)
b. 3A − (4, 6,−2) = −A + 2(0, 5, 4)

8. For each equation, find scalars c1 and c2. If it is not possible, explain
why.

a. c1(1,−2,−1) + c2(2,−3, 4) = (1,−3,−7)
b. c1(1,−3, 4) + c2(2,−6, 8) = (5,−1, 2)
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9. Let A = (2, 5), B = (4, 9), C = (10, 11), and D = (8, 7).

a. Translate the quadrilateral ABCD so that A is at the origin.
b. Use the Parallelogram Rule to show that A, B, C, and D lie

on the vertices of a parallelogram.
c. Sketch both parallelograms.

10. In R3, let A = (−2, 0, 3) and B = (1, 4, 2). Find a vector equation
and a coordinate equation for the plane spanned by A and B.

11. In R4, find the unit vector in the direction of A if A = (−5, 1,−7, 5).

12. In R3, let A = (−4, 1, 5), B = (2, 3, 4), and C = (2,−1, 6). Show
that �ABC is isosceles.
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2 Vector Geometry

The algebra of points and vectors that you learned about in Chapter 1 gives
you the basic tools with which you can implement the extension program.

• Take a familiar geometric idea in two and three dimensions.

• Find a way to describe it algebraically with vectors.

• Use the algebra as the definition of the idea in higher dimensions.

In this chapter, you’ll use vectors to describe and extend ideas like
perpendicularity and angle. You’ll also learn to describe lines (in R2 and
R3) and planes (in R3) with vector equations. These vector equations are
often much more useful than the coordinate equations you learned about
in other courses, and they allow you to extend the ideas of lines and planes
to higher dimensions. Along the way, you’ll encounter some simple ways to
calculate area and volume using vector methods.

By the end of this chapter, you will be able to answer questions
like these:

1. How can you determine whether two vectors (of any dimension) are
orthogonal?

2. How can you find a vector orthogonal to two given vectors in R3?

3. Let A = (2,−1, 3), B = (1, 1, 2), and C = (2, 0, 5). What is an
equation of the hyperplane E containing A, B, and C?

You will build good habits and skills for ways to

• use algebra to extend geometric ideas

• use vectors to prove facts about numbers

• generalize from numerical examples

• use different forms for different purposes
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Vocabulary and Notation

• angle (between two
vectors)

• component

• cross product

• determinant

• direction vector of
a line

• dot product

• hyperplane

• initial point

• lemma

• linear equation

• normal

• orthogonal

• projection

• right-hand rule

• standard basis vec-
tors

• vector equation of
a line
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2.1 Getting Started

Exercises

1. Suppose A = (3, 1). Find an equation for each of the following lines: ←−
Think of A as a vector
here. Write your equations
in the form ax+ by = c.

a. the line through the origin perpendicular to A
b. the line through P = (−3, 2) perpendicular to A
c. the line through P = (3,−2) perpendicular to A
d. the line through P = (6,−4) perpendicular to A
e. the line through P = (0, 6) perpendicular to A ←−

There’s a point to these
problems. Look for pat-
terns.

f. the line through P = (0, 6) that’s parallel to A

2. Find a nonzero vector Q perpendicular to

a. A = (5, 1) Remember

Unless you are told other-
wise, a vector starts at the
origin.

b. A = (3, 2)
c. A = (−2, 10)
d. A = (6, 4)
e. A = (a, b)
f. both A = (5, 0, 0) and B = (0, 0,−3)

Suppose A and B are vectors. If you drop a perpendicular from the head ←−
If B = O, the convention
is that the projection of A
on B is O.

of A to the line along B, it will hit that line at a point P that’s called the
projection of A on B.

3. Find the projection of A on B if

a. A = (2, 9), B = (10, 0)
b. A = (2, 9), B = (−10, 0)
c. A = (2, 9), B = (0, 6)
d. A = (2, 9), B = (6, 4)
e. A = (2, 9), B = (12, 8)
f. A = (2, 9), B = (−6,−4)
g. A = (2, 9), B = (4, 8)
h. A = (−8, 4), B = (4, 8)

4. Write About It. Given vectors A and B, describe a method for
finding the projection of A on B.

5. Find the angle between each pair of vectors.

a. A = (5, 5), B = (10, 0)
b. A = (5, 5), B = (−10, 0)
c. A = (1,

√
3), B = (0, 6)

d. A = (2, 9), B = (6, 4)
e. A = (2, 9), B = (12, 8)
f. A = (2, 9), B = (−6,−4)
g. A = (2, 9), B = (4, 8)
h. A = (−8, 4), B = (4, 8)
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6. Find the shortest distance from point P to line �.

a. P = (5, 6), � is the x-axis in R2

b. P = (5, 6, 7), � is the y-axis in R3

c. P = (5, 0), � is the graph of x = y in R2

d. P = (5, 0), � is the graph of x = −y in R2

e. P = (8,−24), � is the graph of 7x + 4y = 25 in R2

f. P = (13,−49), � is the graph of 7x + 4y = 25 in R2

g. P = (−387, 651), � is the graph of 7x + 4y = 25 in R2

h. P = (3, 1), � is the graph of 7x + 4y = 25 in R2

i. P = (0, 0), � is the graph of 7x + 4y = 25 in R2

7. Write About It. Given a point P and the equation for a line �,
describe a method for finding the distance from P to �.

8. Suppose you had a sketch like this:

Here, P and A are fixed vectors. (You may instead think of P as
a point and A as a vector.) O is a fixed point—the origin of a
coordinate system. T has coordinates (t, 0). The number t is used
as a scale factor to construct tA and then P + tA.

Find a coordinate equation for the path of P + tA as t ranges over
R if

a. P = (3, 5) and A = (6, 1)
b. P = (5,−7) and A = (6, 1)
c. P = (6, 10) and A = (6, 1)
d. P = (0, 0) and A = (6, 1)
e. P = (5,−7) and A = (12, 2)
f. P = (5,−7) and A = (−12,−2)
g. P = (p1, p2) and A = (a1, a2)
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2.2 Dot Product

2.2 Dot Product

In Chapter 1, you explored addition of vectors and multiplication of a vector
by a scalar. Dot product is another operation on vectors whose calculation
may look familiar to you.

In this lesson, you will learn how to

• find the dot product of two vectors of any dimension

• determine whether two vectors are orthogonal

• use the basic properties of dot product to prove statements and solve
problems

Much of the study of geometry involves lengths and angles in two
dimensions. You can extend these ideas to higher dimensions by looking at ←−

For instance, you spent a
good deal of time proving
congruence by comparing
equal lengths and angle
measures, and you proved
similarity by comparing
proportional lengths and
congruent angles.

them algebraically. To do so, characterize these ideas in terms of vectors.
Luckily, much of the groundwork for this process has been established in
analytic geometry and in trigonometry.

Developing Habits of Mind

Use the Pythagorean Theorem. How can you tell if two vectors are perpendicular? ←−
Except that this doesn’t
work for horizontal and
vertical lines.

In R2, you can use slope: two lines in R2 are perpendicular if their slopes are negative
reciprocals.In R2, a line is determined by its slope and a point on it.

Unfortunately, the idea of slope isn’t quite so simple in R3. Sure, you can come up ←−
Take two pencils. Hold
one vertically and the
other angled out with the
erasers touching. Rotate
the two without changing
the angle between the two
pencils. The slope appears
to change as you rotate it.

with ways to describe a line in R3 by its “steepness,”but there isn’t a single number that
would uniquely characterize the line.

Fortunately, you already know another way to test for perpendicularity: use the
converse of the Pythagorean Theorem. If the side-lengths of a triangle are a, b, and
c, and if a2 + b2 = c2, then the angle opposite the side of length c is a right angle.

The Pythagorean Theorem assumes that the triangle lies in a two-dimensional plane. ←−
You may have heard this
stated as “three points
determine a plane.” You’ll
see later that another
variation is “two vectors
determine a plane.”

Here, you have two vectors that share the same tail point. So whether those vectors are
in R2 or R3, there must be a plane that contains them both. So the theorem works in
three dimensions as well.

In R3, two vectors A = (a1, a2, a3) and B(b1, b2, b3) will be perpendicular

←−
Why ‖A−B‖? This is
d(B,A).

if and only if
‖A‖2 + ‖B‖2 = ‖A − B‖2

Using the definitions of length and distance (see Lesson 1.4), this can be
stated as

a2
1 + a2

2 + a2
3 + b21 + b22 + b23 = (a1 − b1)

2 + (a2 − b2)
2 + (a3 − b3)

2
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When you expand the right-hand side, you will see that a2
1 + a2

2 + a2
3 +

b21 + b22 + b23 ends up on both sides of the equation. Subtract that from both
sides, and you get

−2a1b1 − 2a2b2 − 2a3b3 = 0

Divide both sides by −2, and the equation simplifies to

a1b1 + a2b2 + a3b3 = 0

All the steps in these calculations are reversible. So, A ⊥ B if and only if ←−
Make sure you check
that all the steps are
reversible. Start from “the
sum of the products of the
corresponding coordinates
is 0” and work back to
the statement about equal
lengths.

the sum of the products of the corresponding coordinates is 0.

For You to Do

1. Show that two vectors in R2, say A = (a1, a2) and B(b1, b2), are perpendicular if
and only if

a1b1 + a2b2 = 0

So, now you have an algebraic description of what it takes for two
vectors in R2 or R3 to be perpendicular: the sum of the products of the
corresponding coordinates has to equal 0. Because this sum is such a useful
computation—not only in R2 and R3, but in any dimension—it has a name:
dot product.

Definition

Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be points in Rn. The dot
product of A and B, written A · B, is defined by the formula

A · B = a1b1 + a2b2 + · · · + anbn

Note carefully that while A and B are vectors , A · B is a number .

For You to Do

2. Let A = (3,−1, 2, 4) and B = (1, 5,−1, 6). Find A · B.
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So, now you can say that vectors A and B in R2 or R3 are perpendicular
if and only if A · B = 0. One more refinement:

Facts and Notation

While it’s traditional to use the word “perpendicular” when talking about lines that ←−
“Perpendicular” is from
Latin and “orthogonal” is
from Greek.

meet at a right angle, it is more common to use the word orthogonal when talking
about two vectors .

So, two vectors A and B in R2 or R3 are orthogonal if and only if their
dot product, A ·B, equals 0. Because the dot product is defined for vectors
in any dimension, you can use the extension program to define orthogonal
vectors in any dimension.

Remember

The extension program:
Take a familiar geometric
idea in two and three
dimensions, find a way
to describe it with vectors,
and then use the algebra as
the definition of the idea in
higher dimensions.

Definition

Two vectors A and B in Rn are said to be orthogonal if and only if their
dot product is 0. In symbols,

Habits of Mind

The origin O is orthogonal
to every vector. Why?

A ⊥ B ⇔ A · B = 0

For Discussion

3. Why is the above definition a definition rather than a theorem?

Example 1

In R4, the vectors A = (−1, 3, 2, 1), B = (1, 1,−1, 0), and C = (6,−2, 4, 4) are mutually
orthogonal ; that is, A · B = 0, A · C = 0, and B · C = 0.

For You to Do

In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are mutually orthogonal.

X

Y

Z

E
2

E
1

E
3

−2

−1
−1

1

1

1

2

−1

4. Show that the dot product of any two of these vectors is 0.
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5. In fact, in Rn, let Ei be the vector whose ith coordinate is 1 and whose remaining
coordinates are all 0. So, E1 = (1, 0, . . . , 0), E2 = (0, 1, 0, . . . , 0), . . . , En =
(0, 0, . . . , 0, 1).

a. Show that E1, E2, . . . , En form a set of n mutually orthogonal vectors.
b. If A = (a1, a2, . . . , an) is an arbitrary vector in Rn, show that A · Ei = ai,

the ith coordinate of A.
c. Use parts a and b to prove that A is orthogonal to Ei if and only if its ith ←−

It follows that the only
vector orthogonal to all of
the Ei is O.

coordinate is zero.

Minds in Action Episode 5

Tony and Sasha are trying to describe all the vectors that are orthogonal to both
A = (1, 1,−1) and B = (−1,−2, 4).

Tony: The vectors A and B determine a
plane, and the vectors we are looking for
are those vectors X that are perpendicular
to this plane. That’s got to be a line.

Tony draws on the board.

Sasha: So, if we find one vector X that’s or-
thogonal to A and B, we can just take all
multiples of it. Let’s see what the algebra
tells us.

A

B
X

Tony: If X = (x, y, z) is orthogonal to both A and B, then A · X = 0 and B · X = 0.

←−
Notice how Sasha says
“orthogonal” instead of
“perpendicular.”

Writing this out, we have the system of two equations in three unknowns.

x + y − z = 0

−x − 2y + 4z = 0

Now what?

Sasha: Let’s just see what the algebra tells us.

Sasha starts writing on the board.

Solve the first equation for x: x = −y + z; substitute this for x in the second equation
and simplify. We get y = 3z. Since x = −y + z and y = 3z, we have x = −2z. That
is, any vector X = (x, y, z) where x = −2z and y = 3z will be orthogonal to both A
and B. For example, letting z = 1, we have x = (−2, 3, 1) as a solution. The general
solution is (−2z, 3z, z), where z can be anything it likes.

Tony: Looks messy.

Sasha: Hey! No, it’s very simple: (−2z, 3z, z) = z(−2, 3, 1). So the set of all vectors X
orthogonal to both A and B is the set of all multiples of (−2, 3, 1). Got it?

Tony: That’s a line through the origin. Ohh . . . that makes sense—look at my picture.
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For You to Do

6. Describe all the vectors that are orthogonal to both C = (2,−1, 1) and D =
(−1, 3, 0).

Example 2

Problem. Characterize the set of all vectors X in R3 that are orthogonal to A =
(1, 3, 0), B = (1, 4, 1), and C = (3, 10, 2).

Solution. Let X = (x, y, z) be a solution to the problem. Then A · X = 0, B · X = 0, ←−
If you draw a picture, it
seems that the only vector
in R3 that is orthogonal to
three given vectors is O.
But the algebra lets you
know for sure.

and C · X = 0. Writing this out, you get the system:

x + 3y = 0

x + 4y + z = 0

3x + 10y + 2z = 0

Solving this system, you obtain x = y = z = 0, so X = O.

Example 3

Problem. Characterize the set of vectors X that are orthogonal to A = (1, 1,−1), B =
(−1,−2, 4), and C = (1, 0, 2).

Solution. Again, you may expect the only solution to be O. Use algebra to make sure.
Let X = (x, y, z), and the system of equations becomes

x + y − z = 0

−x − 2y + 4z = 0

x + 2z = 0

The third equation is twice the first equation plus the second equation. So the last
equation is unnecessary and this system is equivalent to (that is, has the same solutions
as) the following system:

x + y − z = 0

−x − 2y + 4z = 0

Sasha solved this system of equations in Episode 5: it is satisfied by any multiple of
(−2, 3, 1), so any vector of the form k(−2, 3, 1) is orthogonal to A and B, which is a line.
But, since the two systems have the same solutions, that line is also orthogonal to C.

←−
Show that any vector of
the form k(−2, 3, 1) is
orthogonal to C.

For Discussion

7. In Example 3, you saw that the line formed by multiples of (−2, 3, 1) is orthogonal
to three vectors. How is this possible geometrically? ←−

Draw a picture.

Example 4

Problem. Suppose A = (3, 1) and B = (5, 2). Find a vector X in R2 such that A·X = 4
and B · X = 2.
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Solution. Let X = (x, y). Then A · X = 3x + y and B · X = 5x + 2y. So, the vector
equations A · X = 4 and B · X = 2 can be written as a system of two equations in two
unknowns:

3x + y = 4

5x + 2y = 2

Solve this system to get X = (6,−14).

The dot product is a new kind of operation: it takes two vectors and
produces a number . Still, it has some familiar-looking algebraic properties
that allow you to calculate with it.

Theorem 2.1 (The Basic Rules of Dot Product)

Let A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn), and C = (c1, c2, . . . , cn) be
vectors in Rn, and let k be a real number. Then

(1) A · B = B · A
(2) A · (B + C) = A · B + A · C
(3) A · kB = kA · B = k(A · B)

(4) A · A ≥ 0, and A · A = 0 if and only if A = O

Proof. Here are the proofs of (1), (3), and (4). The proof of (2) is left as
an exercise.

(1) A · B = (a1, a2, . . . , an) · (b1, b2, . . . , bn)

= a1b1 + a2b2 + · · · + anbn

= b1a1 + b2a2 + · · · + bnan

= (b1, b2, . . . , bn) · (a1, a2, . . . , an)

= B · A
(3) A · kB = (a1, a2, . . . , an) · k(b1, b2, . . . , bn)

= (a1, a2, . . . , an) · (kb1, kb2, . . . , kbn)

= a1(kb1) + a2(kb2) + · · · + an(kbn)

= k(a1b1) + k(a2b2) + · · · + k(anbn)

= k(a1b1 + a2b2 + · · · + anbn)

= k(A · B)

The proof that kA · B = k(A · B) is exactly the same. Habits of Mind

Note that in the equation
kA · B = k(A · B), the
insertion of parentheses
changes the object that
is being multiplied by k.
On the left side, you are
multiplying k by A, a vector
in Rn; on the right side, you
are multiplying k by A · B,
a real number.

(4) A · A = (a1, a2, . . . , an) · (a1, a2, . . . , an)

= a2
1 + a2

2 + · · · + a2
n

Now, the sum of squares of real numbers is nonnegative, and such a sum
is 0 if and only if each ai = 0.

In the proof of part (4), you see the equation

A · A = a2
1 + a2

2 + · · · + a2
n
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The right-hand side of that equation should look familiar—you saw it in
the definition of the length of a vector,

‖A‖ =
√

a2
1 + a2

2 + · · · + a2
n

So you can substitute A · A for a2
1 + a2

2 + · · · + a2
n to get a more efficient

way to write the length of a vector.

Theorem 2.2

If A is a vector in Rn, ‖A‖ =
√

A · A.

Example 5

Problem. Show that if A and B are vectors in Rn,

(A + B) · (A + B) = A · A + 2(A · B) + B · B

Solution. The proof of this fact is exactly the same as the proof from elementary
algebra that established the identity (a + b)2 = a2 + 2ab + b2.

(A + B) · (A + B) = (A + B) · A + (A + B) · B (Theorem 2.1 (2))

= A · (A + B) + B · (A + B) (Theorem 2.1 (1))

= A · A + A · B + B · A + B · B (Theorem 2.1 (2))

= A · A + A · B + A · B + B · B (Theorem 2.1 (1))

= A · A + 2(A · B) + B · B

Example 6

Problem. Let A = (1, 4, 0, 1). For what values of c is cA · cA = 72?

Solution. Using part (3) of Theorem 2.1, you have

cA · cA = c(A · cA) = c2(A · A)

Since A · A = 18, this becomes 18c2 = 72, so c = ±2.

Example 7

Problem. Let A and B be vectors in Rn, with B �= O. Show that ←−
This example will be
important in the next
lesson.

(
A −

(
A·B
B·B

)
B
)
· B = 0

Solution. An equation like this can be confusing, since it mixes operations between
vectors and numbers. It may help to first read through the equation to check that the
operations are working on the right kind of input.
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• A and B are vectors.

• A · B and B · B (each the dot product of two vectors) are both numbers.

• Thus, A·B
B·B (the quotient of two numbers) is also a number. ←−

Note that since B �= O,
B · B > 0, so division by
B ·B is okay.

•
(
A·B
B·B

)
B (a scalar multiple of a vector) is a vector.

• That means A −
(
A·B
B·B

)
B (the difference of two vectors) is a vector.

• Finally,
(
A −

(
A·B
B·B

)
B
)
· B (the dot product of two vectors) is a number.

To see that this number is 0, use Theorem 2.1.(
A −

(
A·B
B·B

)
B
)
· B = A · B −

((
A·B
B·B

)
B
)
· B

= A · B −
(
A·B
B·B

)
(B · B)

= A · B − A · B = 0

The next two examples show how the basic rules for dot product can be
applied to geometry.

Example 8

Problem. Suppose A and B are nonzero orthogonal vectors in Rn and c1A+c2B = O.
Show that c1 = c2 = 0.

Solution. Take the equation c1A + c2B = O and dot both sides with A:

A · (c1A + c2B) = A · O
A · (c1A) + A · (c2B) = 0

c1(A · A) + c2(A · B) = 0

Since A is orthogonal to B, A ·B = 0, so this last equation becomes c1(A ·A) = 0. Since
A �= O, A · A > 0. Since c1(A · A) = 0, it follows that c1 = 0. To prove c2 = 0, take the
equation c1A + c2B = O and dot both sides with B.

Example 9

Problem. Consider the triangle in R3 whose vertices are A = (3, 2, 5), B = (5, 2, 1),

and C = (2, 1, 3). Show that the angle formed by
−→
CA and

−−→
CB is a right angle.

Solution. You want to show that the angle formed by
−→
CA and

−−→
CB is a right angle.

But
−→
CA is equivalent to A − C and

−−→
CB is equivalent to B − C. So, you only have

to show that A − C = (1, 1, 2) is orthogonal to B − C = (3, 1,−2). And it is:
(A − C) · (B − C) = (1, 1, 2) · (3, 1,−2) = 0.
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One of the most beautiful theorems in mathematics is the Pythagorean
Theorem. Does it extend to Rn?

In R2, if A and B are nonzero vectors that aren’t scalar multiples of each
other, then A + B and A − B are the two diagonals of the parallelogram
whose sides are A and B. So the lengths of the diagonals are ‖A + B‖ and
‖A − B‖.

Now, from plane geometry, if the diagonals of a parallelogram have the
same length, the parallelogram is a rectangle. So, if the parallelogram
determined by A and B is a rectangle, then A is perpendicular to B. Thus,
A is perpendicular to B if and only if the diagonals, A+B and A−B, have
the same length. The same fact is true in Rn, but the proof is via algebra.

Lemma 2.3

If A and B are vectors in Rn, A is orthogonal to B if and only if

←−
A lemma is a result
that’s needed to prove
another result. In this case,
Lemma 2.3 is needed to
prove Theorem 2.4. Usu-
ally, people discover that
they need some fact when
they try to prove a theo-
rem, so they call that fact
a lemma and prove it sep-
arately. The German word
for lemma is hilfsatz—
“helping statement.” Note
the connection between
the words “lemma” and
“dilemma.”

‖A + B‖ = ‖A − B‖.

Proof. Suppose ‖A + B‖ = ‖A − B‖. By Theorem 2.2 and squaring both
sides, you have (A + B) · (A + B) = (A − B) · (A − B). This simplifies to
4(A · B) = 0, so A · B = 0, and A is orthogonal to B. The proof of the
converse is just as simple.

In the next figure, A, B, and A − B are three sides of a triangle. Since
A is orthogonal to B, it follows from Lemma 2.3 that ‖A − B‖ = ‖A + B‖,
so the hypotenuse of the right triangle whose legs are A and B has length
‖A + B‖.
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Theorem 2.4 (The Pythagorean Theorem)

If A and B are vectors in Rn and A is orthogonal to B, then ‖A + B‖2 =
‖A‖2 + ‖B‖2. ←−

The converse of the
Pythagorean Theorem
also holds in Rn (see
Exercise 9).

Proof. Since A is orthogonal to B, A · B = 0. So,

‖A + B‖2 = (A + B) · (A + B)

= A · A + 2(A · B) + B · B
= A · A + B · B
= ‖A‖2 + ‖B‖2

Developing Habits of Mind

Use algebra to extend geometric ideas. The extension program is now fully
underway. Look at the proof of the Pythagorean Theorem. It looks just like an algebraic
calculation with numbers—the difference is that the letters stand for vectors and the
operation is dot product, so it is carried out using a different set of basic rules.

There are two advantages to a proof like this:

1. It is extremely simple and compact.

2. It establishes the result for any dimension.

A disadvantage is that it doesn’t seem very geometric—gone are the lovely “squares
upon the hypotenuse” from plane geometry. With time and practice, you’ll be able to
look at a calculation like this and see the geometry.

Exercises

1. For each A and B, find

(i) A · B
(ii) (A + B) · (A + B)
(iii) (A + B) · (A − B)
(iv) (2A + 3B) · (A − B)
(v) (A + B) · (3A − 3B)

a. A = (1, 4, 2, 1), B = (−2, 1, 3, 2)
b. A = (−2, 3), B = (5, 1)
c. A = (−2, 3, 0), B = (5, 1, 0)
d. A = (1, 4, 2), B = (2, 1,−3)
e. A = (1, 5, 2, 3, 1), B = (1, 4,−2, 0,−3)

2. If A and B are vectors in Rn and c is a number, characterize each
of the following by one of the words “vector” or “number.”

a. A · (cB) b. (A · B)A

c. (A · A)B + (B · B)A d. (cA + cB) · A
e. ((cA · B)B) · A f.

A · B
B · B B (B �= O)
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3. Find a nonzero vector X in R3 orthogonal to (1, 3, 2).

4. Characterize all vectors X in R3 orthogonal to A = (1, 3, 2) and
B = (−1,−2, 1).

5. Characterize all vectors X in R3 orthogonal to A = (1, 3, 2),
B = (−1,−2, 1), and C = (0, 1, 3).

6. Characterize all vectors X in R3 orthogonal to A = (1, 3, 2),
B = (−1,−2, 1), and C = (0, 1, 4).

7. Let A = (5, 3, 3), B = (1, 3, 1), and C = (2, 6,−1). One angle of
�ABC is a right angle. Which one is it?

8. In R4, let A = (4, 2, 5, 3), B = (1, 1, 1, 1), and C = (0, 4, 2,−1).
Show that �ABC is a right triangle.

9. Prove the converse of the Pythagorean Theorem: if A and B are
vectors in Rn so that ‖A + B‖2 = ‖A‖2+‖B‖2, then A is orthogonal
to B.

10. Suppose A and B are vectors in Rn and X is a vector orthogonal
to both A and B. Show that X is orthogonal to every vector of the
form c1A + c2B.

11. a. If A1, A2, . . . , Ar are vectors in Rn, a linear combination of
A1, A2, . . . , Ar is a vector B which can be written as c1A1 +
c2A2 + · · · + crAr for some numbers c1, c2, . . . , cr. Show that
(3, 9, 4, 7) is a linear combination of (1, 3, 0, 1), (2, 1, 4, 2), and
(−1, 2, 0, 3), while (3, 9, 4, 8) is not.

b. If A1, A2, . . . , Ar are vectors in Rn, and if X is orthogonal
to Ai for each i, show that X is orthogonal to every linear
combination of A1, A2, . . . , Ar.

c. If A1, A2, A3 and B1, B2 are two sets of vectors in Rn so that
each Bj is orthogonal to all the Ai’s, show that any linear
combination of Ai’s is orthogonal to any linear combination of
the Bj ’s.

12. Let A and B be nonzero vectors in Rn and suppose C is a linear
combination of A and B. If C is orthogonal to both A and B, show
that C = O.

13. Suppose A = (2, 11, 10). Find

a. ‖A‖
b. another vector B that has the same length as A
c. a vector B that has the same length as A and is orthogonal

to A
d. a vector B that has the same length as A, that is orthogonal ←−

A point whose coordinates
are all integers is called a
lattice point .

to A, and that has integer coordinates
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14. Two adjacent vertices of a square are at O and A = (−14,−2, 5).

a. How many such squares are there?
b. Find two vertices that will complete the square.
c. Find two vertices that complete the square and that are lattice

points.

15. Show that the triangle whose vertices are A = (4, 3, 0, 1), B =
(5, 4, 1, 2), and C = (5, 2, 1, 0) is an isosceles right triangle.

16. If A and B are vectors in Rn, show that (A + B) · (A − B) =
A · A − B · B.

17. If A and B are vectors in Rn, show that (A+B)·(A+B) = A·A+B·B
if and only if A is orthogonal to B.

18. Show that if A is orthogonal to B, A is orthogonal to every scalar
multiple of B.

19. Let A1, A2, . . . , Ar be mutually orthogonal nonzero vectors in Rn.
If c1A1 + c2A2 + · · · + crAr = O, show that each ci = 0.

20. Let A and B be vectors so that (A+B) ·(A+B) = (A−B) ·(A−B).
Show that A is orthogonal to B.

21. Let A = (2, 1, 3, 2) and B = (2, 1, 4, 1). Show that A −
(
A·B
B·B

)
B is

orthogonal to B.

22. True or false? If A · B = A · C and if A �= O, then B = C.

23. Find all vectors X that have length 3 and that are orthogonal to
both (−1, 0, 1) and (3, 2,−4).

24. Prove part (2) of Theorem 2.1.

25. Derman wrote down the incorrect definition of dot product. His
notes say that

(a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2

Tony: Derman, it’s supposed to be a1b1 + a2b2 + a3b3.

Derman: OK, but my dot product obeys the same basic rules as
the ones in Theorem 2.1.

Is Derman right? Explain.

26. If A and B are vectors in Rn, show that ←−
When will both sides be
equal?A · A + B · B ≥ 2(A · B)

27. Let A = (a1, a2, a3), B = (b1, b2, b3), and

C = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Show that C is orthogonal to both A and B.
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28. Use Theorem 2.2 and the Basic Rules for Dot Product (Theo-
rem 2.1) to prove parts (1) and (2) of Theorem 1.5 from Lesson 1.4.

Theorem 1.5. Let A and B be vectors in Rn and let c
be a real number. Then
(1) ‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = O
(2) ‖cA‖ = |c| ‖A‖

29. If A and B are vectors, show that

a. ‖A + B‖2 = ‖A‖2 + ‖B‖2 + 2(A · B)
b. ‖A + B‖2 − ‖A − B‖2 = 4(A · B)
c. ‖A + B‖2 + ‖A − B‖2 = 2 ‖A‖2 + 2 ‖B‖2 ←−

What does this say in R2?
Draw a picture.30. If A is a scalar multiple of B, show that

(A · A)(B · B) − (A · B)2 = 0

31. If A, B, and C are vectors in Rn so that d(A, B) = d(C, B), show
that

A · A
2

− A · B =
C · C

2
− C · B

32. If A and B are orthogonal vectors in Rn so that ‖A‖ = ‖B‖ = 1,
show that d(A, B) =

√
2.

33. Let A and B be vectors in Rn, and let c and d be numbers. Prove
the following identities. ←−

The last two of these
identities will be useful
in later sections.

a. (A + 2B) · (A − B) = A · A + A · B − 2B · B
b. (cA + B) · (cA + B) = c2(A · A) + 2c(A · B) + B · B
c. (cA + dB) · (cA + dB) = c2A · A + 2cdA · B + d2B · B
d. (‖B‖A + ‖A‖B) · (‖B‖A + ‖A‖B)

= 2 ‖A‖ ‖B‖ (‖A‖ ‖B‖ + A · B)

e.

(
A · B
B · B B

)
·
(

A · B
B · B B

)
=

(A · B)2

B · B (B �= O)

34. Show that if A · B = A · (B + C), then A is orthogonal to C.

35. If A and B are vectors in Rn, B �= O, and c is a number so that
A − cB is orthogonal to B, show that c = A·B

B·B .

36. If A and B are vectors in Rn, B �= O, and P = A·B
B·BB, show that

a. P · P = A · P
b. A · A = P · P + (A − P ) · (A − P )

37. If A and B are vectors in Rn, B �= O, and c is a number so that
A − cB is orthogonal to A + cB, show that

c = ±‖A‖
‖B‖
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2.3 Projection

An important use of dot product is to determine the projection of a vector
onto another vector. Projection has a number of applications throughout
the study of linear algebra.

In this lesson, you will learn how to

• find the component of a vector along another vector

• find the projection of a vector along another vector

In R2, if A and B are vectors and B �= 0, the projection of A along B is
the vector obtained by intersecting the line through A perpendicular to the
line along B with that line. This is illustrated for several situations in the
following figure.

P=cB

O

B

A

P=cB

O
B

A

P=cB=O B

A

P=cB O B

A

(0<c<1)

(c<0)

(c=0)(c>1)

In each case, P is the projection of A along B. To extend this notion to
Rn, you need to describe P with vector algebra.

(1) P = cB for some scalar c.

(2)
−→
PA meets the line along B at right angles.

Condition ((2)) can be reformulated.

2′. A − P is orthogonal to B.
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2.3 Projection

Since P = cB, you will have a formula for P if you can determine c. To
this end, use condition ((2)′).

←−
Fill in a reason for each
step.

(A − P ) · B = 0

A · B − P · B = 0

P · B = A · B
cB · B = A · B

c(B · B) = A · B

c =
A · B
B · B (since B �= O, B · B �= 0)

Hence P =
A · B
B · B B. This formula makes sense in Rn.

Definition

Let A and B be vectors in Rn, with B �= 0. Habits of Mind

Find general purpose
tools. The projection ties
together quite a bit of
geometry into one little
package. You’ll see in the
exercises and in the next
sections that it’s a very
useful tool.

• The component of A along B, written compB A, is the number

compB A =
A · B
B · B

• The projection of A along B, written ProjB A, is the vector defined
by the formula

ProjB A = (compB A)B =
A · B
B · B B

Example 1

Problem. In R2, let A = (5, 1) and B = (−3, 0). Find ProjB A.

Solution. You might expect that ProjB A = (5, 0). (Why?) Use the definition to find
that

compB A =
−15

9
=

−5

3
so

ProjB A =
−5

3
(−3, 0) = (5, 0)

Example 2

Problem. In R4, let A = (−3, 1,−2, 4) and B = (1, 1, 2, 0). Find ProjA B and ProjB A.

Solution.

compB A =
−6

6
= −1 so ProjB A = (−1,−1,−2, 0)

Similarly, ProjA B = − 1
5A =

(
3
5 , −1

5 , 2
5 ,− 4

5

)
.
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Note that if A and B are vectors in Rn and P = ProjB A, then P satisfies
conditions ((1)) and ((2)′), which were used to characterize projections in
R2. Clearly, P is a multiple of B, and Example 7 from Lesson 2.2 shows
that A − P is orthogonal to B.

Example 3

Problem. If A and B are vectors in Rn and B �= 0,
let P = ProjB A and show that

‖A‖2 = ‖P‖2 + ‖A − P‖2
||A|| ||A−P ||

||P || P=Proj  BO
B

A

A

Solution 1. Let c = compB A so that P = cB. Since A − P is orthogonal to B, A − P
is also orthogonal to P (Lesson 2.2, Exercise 18), so P · (A − P ) = 0. But then

‖P‖2 + ‖A − P‖2 = P · P + (A − P ) · (A − P )

= P · P + A · A − 2A · P + P · P
= 2P · P − 2A · P + A · A
= −2P · (A − P ) + A · A
= −2 (P · (A − P )) + A · A
= A · A = ‖A‖2

Solution 2. Since A − P is orthogonal to P , you can apply the Pythagorean Theorem
to A − P and P .

‖A − P‖2 + ‖P‖2 = ‖A − P + P‖2 = ‖A‖2

Exercises

1. For each of the given points A and B, find d(A, B), ProjB A, and
ProjA B.

a. A = (3, 1), B = (4, 2) b. A = (1, 0, 1), B = (0, 1, 0)

c. A = (1, 3, 2), B = (4, 1, 3) d. A = (1, 3,−1, 4), B = (2, 1, 3, 8)

2. Suppose A, B, and C are vectors. Characterize each expression with
one of the words “vector,” “number,” or “meaningless.”

a. ‖A + B‖ b. A · (B + C) c. ‖A · B‖
d. ProjB A e. ‖ProjB A‖ f. ProjA(compB A)

g. (A · B) · A h. A − A · B i. ‖(A · B)C‖
j. d(A, ProjB A) k. A · ProjA B l. (compB A compA B)C
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3. If A = (1, 0, 3) and B = (−1, 2, 0), find

a. d(A, ProjB A) b. ‖ProjA B‖
c. ProjA(ProjB A) d. compB A compA B

e. (ProjB A − A) · B f. A · ProjB A

4. If A and B are nonzero vectors, show that A is orthogonal to B if
and only if ProjB A = O.

5. If A and B are nonzero vectors, show that compB A and compA B
cannot have opposite signs. ←−

Is there a geometric
interpretation of this
common sign?

6. If A and B are nonzero vectors, show that

compB A

compA B
=

(
‖A‖
‖B‖

)2

7. If A and B are vectors in Rn (B �= O), show that ‖ProjB A‖ = |A·B|
‖B‖ .

8. Show that if A and B are nonzero vectors,

‖A‖
‖ProjB A‖ =

‖B‖
‖ProjA B‖

What is the value of this common ratio?

9. If A and B are vectors in Rn (B �= O), and A is a scalar multiple
of B, show that ProjB A = A.

10. Suppose A = (1, 4,−1). Find ←−
What does it mean to
project a vector on a plane?
Part of this problem is
for you to figure out a
reasonable answer.

a. the projection of A on the x–y plane
b. the projection of A on the x–z plane
c. the projection of A on the y–z plane

11. Suppose A and B are nonzero points in R2. Show that the area of the Hint: Show that the area is

1
2
‖B‖

√
‖A‖2−‖ProjB A‖2

and then simplify.

triangle whose vertices are A, B, and O is 1
2

√
(A · A)(B · B) − (A · B)2.

12. Use Exercise 11 to show that if A and B are vectors in R2,
(A · A)(B · B) − (A · B)2 ≥ 0.

13. Suppose A and B are nonzero points in Rn and let P = ProjB A.

a. Show that

←−
See Example 3 in this
lesson.

‖A‖2 ≥ ‖P‖2

with equality if and only if A = P .
b. Use this to show that

(A · A) ≥ (A · B)2

(B · B)

14. Use Exercise 11 to find the area of the triangle whose vertices are

a. (0, 0), (3, 1), (7, 0)
b. (0, 0), (4,−2), (5, 3)
c. (0, 0), (5, 2), (−1,−3)
d. (1, 3), (2, 1), (7,−2) ←−

For part d, translate to
(0, 0).
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15. Suppose A = (1, 4,−1) and B = (−4, 0, 2). Let P be the parallelo-
gram whose vertices are O, A, B, and A + B.

a. Find the vertices of P′, the projection of P on the x-y plane. ←−
P

′, P′′, and P
′′′ are also

parallelograms. Can you
prove it?

b. Find the vertices of P′′, the projection of P on the x-z plane.
c. Find the vertices of P′′′, the projection of P on the y-z plane.
d. Find the areas of P′, P′′, and P′′′.
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2.4 Angle

2.4 Angle

The geometric image of vectors in R2 allows you to think about the angle
between two vectors. Working with such an image even lets you measure
that angle in a familiar way.

In this lesson, you will learn how to

• find the angle between two vectors in any dimension

• understand and use the triangle inequality in Rn

Minds in Action Episode 6

Sasha and Tony are thinking about Exercise 5 from Getting Started (Lesson 2.1).

Sasha: Say, Tony, I was thinking about projection. I bet we can use it to find the angle
between two vectors. Remember in the Getting Started, we tried to find the angle
between A = (2, 9) and B = (6, 4)?

Tony: Vaguely. How did we solve it then?

Sasha: Using the Law of Cosines. But look:

A

B

P

O 5

2

4

6

8

10

If I drop a perpendicular from A to B, I get a right triangle. And P is the projection
of A onto B. Now finding the cosine is pretty basic.

Tony: Wow, Sasha, how do you come up with these crazy things! So that new triangle
has sides ‖A‖, ‖ProjB A‖, and—

Sasha: We don’t need that third side. I can use cosine with just those two:

cos θ =
‖ProjB A‖

‖A‖

Tony: But wait, how is this easier?

Sasha: Well, we’ve also seen that numerator before. Here it is, Exercise 7 from Les-
son 2.3: If A and B are vectors in Rn (B �= O), show that ‖ProjB A‖ = |A·B|

‖B‖ . So, in
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our case,
|A · B|
‖B‖ =

|(2, 9) · (6, 4)|√
(6, 4) · (6, 4)

=
|12 + 36|√

36 + 16
=

48√
52

Tony: And ‖A‖ =
√

(2, 9) · (2, 9) =
√

85. So cos θ = 48√
52

· 1√
85

. That makes θ =

cos−1
(

48√
52

√
85

)
.

Sasha: Yeah, that’s what I got before. It works out to be about 43.8◦.

Tony: Hmm . . . I bet we’re on to something here.

Sasha and Tony have started using the new facts about vectors to
algebraically find the measure of an angle in R2. The next step is to see if
their discovery helps to think about angles in higher dimensions.

Developing Habits of Mind

Use algebra to extend geometric ideas. You are looking for a way to measure the
angle between two vectors in Rn, but you don’t want to be restricted to the geometry of
R2. So you want to use the geometry of R2 to measure an angle algebraically in a way
that lets you extend it to any dimension. The best tool for that job? As Sasha and Tony
discovered, it’s trigonometry.

As Sasha and Tony discovered, you can calculate the measure of an angle
between vectors using trigonometry, basing your calculation on the lengths
of vectors. Since you already know how to find the length of the projection
of one vector onto another, cosine is the best choice. Cosine also has another
benefit: on the interval 0 ≤ θ ≤ π, there is a one-to-one correspondence
between the measure of an angle and its cosine.

π
2
π 2π

2
π3

2
π5

321 4 5 6 7 8-1-2-3

2
π--π

So, for angles within that interval, knowing the cosine of an angle is enough
to tell you what the angle is. And, if you can find a way to compute the
cosine of the angle between two vectors from what you know about the
vectors, that will provide a way of defining the angle between two vectors
in Rn.

O

B

A

When you look at two vectors in
R2, you might see two different angles ←−

When measuring angles,
you could also “wrap
around” the axis any
number of times, adding
(or subtracting) multiples
of 2π (or, using degrees,
360◦) to the angle. But
your goal is to find a unique
number, so you can ignore
these equivalent measures
here.

that could be considered “between A
and B”: one could be considered “the
angle from A to B” and one “the an-
gle from B to A.” For any two vectors
in R2, these two measurements will
always add to 2π. One will measure
between 0 and π, and the other will
measure between π and 2π. It doesn’t
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necessarily matter which you choose as long as you’re consistent. So you can ←−
In fact, for any angle θ,
cos(2π− θ) = cos θ, so the
cosine would be the same
whether you pick the larger
or smaller angle.

consider the unique angle between two nonzero vectors A and B in R2 to
be the unique angle θ determined by A and B that satisfies the restriction
0 ≤ θ ≤ π.

So now, to invoke the extension program, you want to finalize a formula
for the cosine of the angle between two vectors in R2 and use that formula
as the definition for the cosine of the angle between two vectors in Rn.

Suppose A and B are nonzero vectors, and θ is the angle between A
and B.

O

A

BP O

A

B

P
O=P

A

B

θ
θ θ

In each figure, P = ProjB A. In the first case, where θ is acute, you
can use right triangle trigonometry, like Sasha and Tony did, to say
that cos θ = ‖P‖

‖A‖ . Since P = cB, where c = compB A, you can say
that

cos θ =
‖cB‖
‖A‖ =

|c| ‖B‖
‖A‖

Now, since θ is acute, c > 0, so |c| = c. Also, from the definition of
component, you know that c = A·B

B·B , so

cos θ =

(
A · B
B · B

)
‖B‖
‖A‖

Finally, since ‖B‖ =
√

B · B, then ‖B‖2 = B · B, and so

cos θ =

(
A · B
‖B‖2

)
‖B‖
‖A‖ =

A · B
‖A‖ ‖B‖

For You to Do

1. You just saw that in R2, ←−
Split your work into these
four additional cases:

• π
2
< θ < π

• θ = π
2

• θ = 0

• θ = π

cos θ =
A · B

‖A‖ ‖B‖
when 0 < θ < π

2 . Show that this formula works for any angle θ where 0 ≤ θ ≤ π.

For any angle θ where 0 ≤ θ ≤ π, you can calculate its cosine using the
formula

cos θ =
A · B

‖A‖ ‖B‖
This formula uses only the length of a vector and the dot product, both
of which can be calculated in Rn for any n, not just R2. So it appears to
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be a great candidate for the extension program: you can define the angle
between any two vectors A and B in Rn to be the unique angle between 0
and π that satisfies this equation. But there’s one more issue to check: in
R2, you know that the cosine of an angle ranges between −1 and 1. How
can you be sure the formula will always produce numbers in that range in
any Rn?

In other words, to extend this formula to Rn, you first need to show that
−1 ≤ A·B

‖A‖‖B‖ ≤ 1.

Theorem 2.5 (Cauchy-Schwarz Inequality)

If A and B are vectors in Rn, then ‖A‖ ‖B‖ ≥ |A · B|. ←−
The inequality is named af-
ter Augustin-Louis Cauchy
(1789–1857) and Herman
Schwarz (1843–1921). It
has other names as well,
and it is used all over math-
ematics.

Proof. Let A and B be vectors in Rn (B �= 0) and let P = ProjB A. From
Example 3 from Lesson 2.3, you know that

‖A‖2 = ‖P‖2 + ‖A − P‖2

Since ‖A − P‖ ≥ 0, you can thus say that ‖A‖2 ≥ ‖P‖2. Now, P = A·B
B·BB,

so ←−
Make sure you understand
the reason for each step in
this proof.‖A‖2 ≥

∥∥∥∥A · B
B · B B

∥∥∥∥2

‖A‖2 ≥
(

A · B
B · B

)2

‖B‖2

‖A‖2 ≥
(

A · B
‖B‖2

)2

‖B‖2

‖A‖2 ≥ (A · B)2

‖B‖2

‖A‖2 ‖B‖2 ≥ (A · B)2

(‖A‖ ‖B‖)2 ≥ (A · B)2

‖A‖ ‖B‖ ≥ |A · B|

For You to Do

2. Use the Cauchy-Schwarz Inequality to show that

−1 ≤ A · B
‖A‖ ‖B‖ ≤ 1

Because A·B
‖A‖‖B‖ is the cosine of a unique angle θ in R2 so that 0 ≤ θ ≤ π,

and because you have shown that, even in Rn, it never exceeds the range of
the cosine function, you can feel confident using it as a definition of cosine
in Rn.
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Definition

The angle between two nonzero vectors in Rn, A and B, is the unique
angle θ that satisfies 0 ≤ θ ≤ π and cos θ = A·B

‖A‖‖B‖ .

For You to Do

3. Suppose A = (5, 5)andB = (−3, 0). Find the angle θ between A and B.

Example

←−
First move A to the origin.

αO

B — A

C — A

α

β

γA

B

C

Problem. Find angle α of �ABC, as shown in this
figure, where A = (−13,−66, 76), B = (5, 60, 31), and
C = (27, 46, 60).

Solution. To find cos α, find the cosine of the angle
between B − A and C − A. So,

cosα =
(B − A) · (C − A)

‖B − A‖ ‖C − A‖ =
15552

135 · 120
=

24

25

And thus, α = cos−1 24
25 ≈ 16.26◦.

For You to Do

4. Find angles β and γ of �ABC from the example above.

5. Find the angle between A = (1, 3,−1, 2) and B = (4, 1,−3, 0).

Here’s another application of the Cauchy-Schwarz Inequality. You can
use it to prove part (3) of Theorem 1.5 from Lesson 1.4, which is typically
called the Triangle Inequality.

Theorem (The Triangle Inequality)

If A and B are vectors in Rn, then ‖A + B‖ ≤ ‖A‖ + ‖B‖.

←−
Give a reason for every
step.

Proof.

‖A + B‖2 = (A + B) · (A + B)

= A · A + 2(A · B) + B · B
= ‖A‖2 + 2(A · B) + ‖B‖2

≤ ‖A‖2 + 2 |A · B| + ‖B‖2

≤ ‖A‖2 + 2 ‖A‖ ‖B‖ + ‖B‖2

= (‖A‖ + ‖B‖)2
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So, ‖A + B‖2 ≤ (‖A‖ + ‖B‖)2; since both ‖A + B‖ and ‖A‖ + ‖B‖ are
positive, you can take the square root of both sides, giving the desired
result.

Developing Habits of Mind

Use vectors to prove ideas about numbers. The Cauchy-Schwarz Inequality makes
a statement about vectors. You can restate it using coordinates: if A = (a1, a2, . . . , an)
and B = (b1, b2, . . . , bn), then

|a1b1 + a2b2 + · · · + anbn| ≤
√

a2
1 + a2

2 + · · · + a2
n

√
b21 + b22 + · · · + b2n

This remarkable statement is about ordinary numbers—in this form, it has nothing to do
with vectors. While proving it can be quite difficult using only the algebra of numbers,
as you’ve seen, it is pretty straightforward to do so using linear algebra.

Exercises

1. Find cos θ if θ is the angle between A and B.

a. A = (3, 4), B = (0, 7)
b. A = (1, 1, 1), B = (1, 1, 0)
c. A = (2, 1, 0), B = (5,−3, 4)
d. A = (−3, 1, 2, 5), B = (4, 1, 3,−4)
e. A = (−2, 1, 3, 2), B = (1, 1, 1,−1)
f. A = (−5, 0), B = (1,

√
3)

2. Find the cosine of each angle of �ABC where

a. A = (1, 5, 2), B = (2, 6, 3), C = (2, 5, 1)
b. A = (1,−1), B = (

√
3,
√

3), C = (
√

3 + 1, 0)
c. A = (10, 68, 56), B = (−22,−156, 136), C = (−150, 100,−120)

3. a. Use trigonometry to show that the angle between A = (1, 1)
and B = (1,

√
3) is π

12 .

b. Show that cos π
12 = 1+

√
3

2
√
2

.

4. If A and B are nonzero vectors in Rn, and c and d are positive
scalars, show that the angle between cA and dB is the same as the
angle between A and B.

5. If A and B are nonzero vectors in Rn, show that

compB A compA B = cos2 θ

where θ is the angle between A and B.

6. If A and B are nonzero vectors in Rn and θ is the angle between A
and B, show that

‖A − B‖2 = ‖A‖2 + ‖B‖2 − 2 ‖A‖ ‖B‖ cos θ

(In R2, this is the Law of Cosines.)
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2.4 Angle

7. In R3, let A = (
√

3,
√

3, 1), B = (−1 +
√

3, 1 +
√

3, 1), and
C = (−1, 1, 1). Show that the angles of the triangle whose vertices
are A, B, and C are 90◦, 60◦, and 30◦. Verify that the length of the
shorter leg is one half the length of the hypotenuse.

8. Let A and B be nonzero vectors in Rn, and suppose ‖ProjB A‖ =√
3
2 ‖A‖. Show that the angle between A and B is 30◦.

9. If A and B are nonzero vectors in Rn so that ‖A‖ = ‖B‖, show that
A + B bisects the angle between A and B. Draw a picture in R2.

10. Suppose A and B are nonzero vectors in Rn, and θ is the angle
between A and B. ←−

Hint: Let c = compB A.
Show that
(A− cB) · (A− cB) = 0.

a. If cos θ = 1, show that A = cB where c > 0.
b. If cos θ = −1, show that A = cB where c < 0.

11. If A and B are points in Rn and A = cB where c > 0, show that
‖A + B‖ = ‖A‖ + ‖B‖.

12. If A, B, and C are points in Rn, show that ‖A + B + C‖ ≤
‖A‖ + ‖B‖ + ‖C‖.

13. If A and B are points in Rn, show that ‖A − B‖ ≥ ‖A‖ − ‖B‖.

14. Find X in R3 so that X is orthogonal to (2, 0,−1), ‖X‖ = 9, and
X makes a 45◦ angle with (0, 1, 1).

15. Find a vector A in R3 so that ‖A‖ = 9, A is orthogonal to (4, 0,−1),
and cos θ = 28

45 where θ is the angle between A and (4, 3, 0).

16. Let a1, a2, . . . , an be positive real numbers. Show that ←−
Hint: Use the Cauchy-
Schwarz Inequality.

(a1 + a2 + · · · + an)

(
1

a1
+

1

a2
+ · · · + 1

an

)
≥ n2

17. Take It Further. In vector language, the triangle inequality says
that for any vectors A and B in Rn, it is true that ‖A + B‖ ≤
‖A‖+‖B‖. In geometric language, the Triangle Inequality says that
the sum of the lengths of any two sides of a triangle is greater than
the length of the third side.

a. Working only in R2, show the geometric interpretation of
‖A + B‖ ≤ ‖A‖+ ‖B‖. In other words, show what ‖A + B‖ ≤
‖A‖ + ‖B‖ has to do with triangles.

b. Use ‖A + B‖ ≤ ‖A‖ + ‖B‖ to prove the Cauchy-Schwartz
Inequality.
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Chapter 2 Vector Geometry

2.5 Cross Product

In many physical applications, it is necessary to find a vector orthogonal
to a given set of vectors. In R3, for example, one often has to find a vector
orthogonal to two given vectors. In this section, you’ll derive an explicit ←−

In the next section, you’ll
need to find a vector
orthogonal to two given
vectors in order to find
equations of planes in R3.

formula for a vector that is orthogonal to two given vectors in R3.

In this lesson, you will learn how to

• find a vector orthogonal to two given vectors in R3 using cross product

• determine the area of triangles and parallelograms in R3 using cross
product

• apply the cross product to find the angle between two vectors in R3

For You to Do

1. Find a vector orthogonal to both (1, 5,−2) and (2, 1, 0). Explain how you did it.

Minds in Action Episode 7

Tony and Sasha are trying to solve the general problem of finding a vector orthogonal to
two vectors in R3.

Tony: Let’s just do what we did with (1, 5,−2) and (2, 1, 0), once and for all. Suppose Habits of Mind

Tony is exercising an im-
portant algebraic habit:
mimic a numerical calcula-
tion with variables.

A = (a1, a2, a3) and B = (b1, b2, b3) are two vectors in R3. If X = (x, y, z) is orthogonal
to both A and B, then A ·X = 0 and B ·X = 0. Expanding this we have two equations
in three unknowns.

Tony writes on the board.

a1x + a2y + a3z = 0

b1x + b2y + b3z = 0

Two equations in three unknowns. Now what?

Sasha: Well, if you think about what we are trying to find, there must be infinitely
many solutions, because there are infinitely many vectors that are orthogonal to both
A and B. In fact, they’ll all lie on a line. Look:
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2.5 Cross Product

Sasha draws a picture.

Vectors R, S, and T , and any other vec-
tor along � will do the trick. So, all the
solutions must be scalar multiples of each
other.

Tony: Okay, well, let’s just find one solu-
tion . . . I know: let’s just let z be, say, 12.
Then we’ll have only two unknowns.

B

A

R

S

T

�

Sasha: Good idea. But why not just let z be z? Treat it like a constant and get x and
y in terms of it.

Tony: Great. And then we can find one solution to our system by assigning any value
to z. Here we go. Let’s write it like this:

a1x + a2y = −a3z

b1x + b2y = −b3z

making believe that the right-hand sides are constants. Multiply the first equation by
−b1 and the second equation by a1; add and simplify.

Sasha: I get ←−
Make sure you check
Sasha’s calculations.

(a1b2 − b1a2)y = (a3b1 − a1b3)z

And now I’ll go back and eliminate y; that is, multiply the first equation by b2 and
the second by −a2; add and simplify. I get

(a1b2 − b1a2)x = (a2b3 − a3b2)z

Tony: And now we get to let z be anything we want.

Sasha: Well, I see something for z that will make everything easier. Look—the coefficient
of y in the first equation is the same as the coefficient of x in the second.

Tony: Nice catch, Sasha. If we let z = (a1b2 − b1a2), we can cancel it from each side in
each equation.

Sasha: What a team we are.

Enter Derman, looking at the board.

Derman: I could have told you all this yesterday. I did it in my head.

Tony: OK, Derman, can you show us that it actually works—that

(a2b3 − a3b2, a3b1 − a1b3, a1b2 − b1a2)

is actually orthogonal to A and B?

Derman: It’s time for lunch.
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Chapter 2 Vector Geometry

Tony and Sasha have proved the following theorem.

Theorem 2.6

If A = (a1, a2, a3) and B = (b1, b2, b3), the vector

X = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

is orthogonal to both A and B.

Definition

If A = (a1, a2, a3) and B = (b1, b2, b3), the cross product A × B is the
vector defined by ←−

So, another way to state
Theorem 2.6 is that A×B
is orthogonal to both A
and B.

A × B = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

Developing Habits of Mind

Generalize from numerical examples. This is a common occurrence in mathematics:
starting with a numerical example, you generalize and come up with a general solution
to a problem. You give the solution a name, and then start investigating its properties.
In this case, the process went as follows:

1. Find a vector orthogonal to both (1, 5,−2) and (2, 1, 0).

• You found a solution above. One answer is (2,−4,−9).

2. Find a vector orthogonal to both (a1, a2, a3) and (b1, b2, b3).

• Tony and Sasha did this above. One answer is

(a2b3 − a3b2, b1a3 − a1b3, a1b2 − a2b1)

3. Name this generic solution.

• Call it the cross product of A and B and write

A × B = (a2b3 − a3b2, b1a3 − a1b3, a1b2 − a2b1)

4. Study the properties of the named thing.

• In this case, there is a new operation: ×. You know how to study properties
of operations. That comes next. ←−

Is A × B = B × A? Try it
with numbers.

Facts and Notation

There is an easy way to remember the formula for A×B. First, define the determinant

of the array

(
a b

c d

)
, or det

(
a b

c d

)
, to be the number ad − bc. Using the determinant ←−

Determinants and their
properties will be the
subject of a later chapter.

Sometimes, det

(
a b
c d

)
is

written as

∣∣∣∣a b
c d

∣∣∣∣.

notation, you can write

A × B =

(
det

(
a2 a3

b2 b3

)
, − det

(
a1 a3

b1 b3

)
, det

(
a1 a2

b1 b2

))
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2.5 Cross Product

Furthermore, these arrays can all be obtained from the rectangular array

(
a1 a2 a3

b1 b2 b3

)
whose first row contains the coordinates of A and whose second row contains the
coordinates of B. The first coordinate of A×B is the determinant of the array obtained Habits: Some people cover

up each column with a
hand instead of crossing it
out.

by crossing out the first column of

(
a1 a2 a3

b1 b2 b3

)
, the second coordinate of A×B is the

negative of the determinant of the array obtained by crossing out the second column,
and the third coordinate of A × B is the determinant of the array obtained by crossing
out the third column.

Example 1

Problem. Find A × B if A = (3, 1, 2) and B = (−1, 4, 3).

Solution. Start with the array

(
3 1 2

−1 4 3

)
. So

A × B =

(∣∣∣∣1 2

4 3

∣∣∣∣ ,−
∣∣∣∣ 3 2

−1 3

∣∣∣∣ ,
∣∣∣∣ 3 1

−1 4

∣∣∣∣
)

= (−5,−11, 13)

You can check that A × B is orthogonal to both A and B.

The next theorem gives the important geometric properties of the cross
product.

Theorem 2.7

If A and B are vectors in Rn,

(1) A × B is orthogonal to both A and B, and

(2) ‖A × B‖2 = ‖A‖2 ‖B‖2 − (A · B)2 (Lagrange Identity) ←−
Compare this version of
the Lagrange Identity
to Exercise 11 from
Lesson 2.3.

Proof. Part ((1)) is just a restatement of Theorem 2.6. To prove the
Lagrange Identity, let A = (a1, a2, a3) and B = (b1, b2, b3). Then

‖A × B‖2 = (a2b3 − a3b2)
2 + (a3b1 − a1b3)

2 + (a1b2 − a2b1)
2 while

‖A‖2 ‖B‖2 − (A · B)2 = (a2
1 + a2

2 + a2
3)(b

2
1 + b22 + b23) − (a1b1 + a2b2 + a3b3)

2

You can show these are equal by expanding and simplifying.

Next, the algebraic properties of the cross product are:

Theorem 2.8 (The Basic Rules of Cross Product)

If A, B, and C are vectors in R3 and d is a scalar, then

(1) A × B = −(B × A)

(2) a. A × (B × C) = (A · C)B − (A · B)C

←−
Beware: Part ((2)) of
Theorem 2.8 shows that
the cross product is not
associative; that is, in
general, A × (B × C) �=
(A×B)× C.

b. (A × B) × C = (A · C)B − (B · C)A
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Chapter 2 Vector Geometry

(3) A × (B + C) = (A × B) + (A × C)

(4) (dA) × B = d(A × B) = A × (dB)

(5) A × O = O

(6) A × A = O

Proof. The proofs use only the definition of the cross product. The proof
of ((1)) is below. ←−

You will prove the remain-
ing parts in the exercises.Suppose A = (a1, a2, a3) and B = (b1, b2, b3). Then

A × B = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) and

B × A = (b2a3 − b3a2, b3a1 − b1a3, b1a2 − b2a1)

So, A × B = −(B × A).

Example 2

Problem. Show that if B = cA for some number c, then A × B = 0.

Solution. You could do this by using generic coordinates and the definition of cross
product, or you could use the properties in the theorem and say something like this:

A × B = A × cA = c(A × A) = cO = O

Facts and Notation

Let E1 = (1, 0, 0), E2 = (0, 1, 0), E3 = (0, 0, 1). These vectors are called the standard
basis vectors in R3. You should show that ←−

E1, E2, and E3 are unit
vectors (see Lesson 2.3),
each one lying along a
different coordinate axis in
R3. You’ll become good
friends with these vectors.

E1 × E2 = E3, E2 × E3 = E1, and E3 × E1 = E2

It follows from Theorem 2.8 that

E2 × E1 = −E3, E3 × E2 = −E1, and E1 × E3 = −E2

Here’s a diagram to help you remember these facts:

E
1

E E23

Taking the cross product of any two vectors in the clockwise direction yields the next
vector. The cross product of any two vectors in the counterclockwise direction yields the
negative of the next vector.
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2.5 Cross Product

B

A

A × B ?

A × B ?

�
Theorem 2.7 determines the length of A×

B, and it also tells you that A × B lies
on the line that is orthogonal to the plane
determined by A and B. However, it is not
hard to see that there are two vectors of a
given length that lie along this line.

It can be shown that the direction of A×B
can be determined by the following “right-
hand rule”: to determine the direction of
A × B, position your right hand as in the
following figure. If you point the index finger
of your right hand in the direction of A, and
point the middle finger of your right hand in
the direction of B, your thumb will point in the direction of A × B.

A

B

A×B

The formula for ‖A × B‖ in Theorem 2.7 can be simplified to give a more

←−
The right-hand rule works
because this coordinate
system is oriented to
support it. For example, if
you cross a vector along the
positive x-axis (a positive
multiple of E1) with a
vector along the positive
y-axis (a positive multiple
of E2), you get a vector
along the positive z-axis (a
positive multiple of E3).
In this course, you will use
a “right-hand” coordinate
system. Some applications
(computer graphics, for
example), often use a left-
hand coordinate system.

geometric formula in the case where A and B are nonzero vectors. Let
θ be the angle between A and B. Then A · B = ‖A‖ ‖B‖ cos θ. So, from
Theorem 2.7,

‖A × B‖2 = ‖A‖2 ‖B‖2 − (A · B)2

= ‖A‖2 ‖B‖2 − ‖A‖2 ‖B‖2 cos2 θ

= ‖A‖2 ‖B‖2 (1 − cos2 θ)

= (‖A‖ ‖B‖ sin θ)2

Since θ is between 0 and π, sin θ is nonnegative, so you can take square
roots of both sides to obtain the interesting formula ←−

Why is sin θ nonnegative if
θ is between 0 and π?‖A × B‖ = ‖A‖ ‖B‖ sin θ

An Application to Area

||B|
|

||B
||

sin
 θ

||A|
|

O

B

A

A + B

θ

Suppose A and B are nonzero vec-
tors that are not multiples of each
other. Then the altitude of the par- ←−

The parallelogram spanned
by A and B has vertices O,
A, A+B, and B.

allelogram spanned by A and B is
‖B‖ sin θ, so that the area of the
parallelogram is ‖A‖ ‖B‖ sin θ. But
wait—this is ‖A × B‖. This state-
ment would make a good theorem . . .
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Theorem 2.9

The area of the parallelogram spanned by the nonzero vectors A and B is
‖A × B‖.

Example 3

Problem. Let A = (1, 2, 0), B = (−2, 6, 1), and C = (−10, 6, 5). Find the area of
�ABC.

Solution. The area of the triangle is 1
2 the area of the parallelogram determined by−−→

AB and
−→
AC. This parallelogram has the same area as the one spanned by B − A and

C − A; that is, by (−3, 4, 1) and (−11, 4, 5). So, the area of the triangle is given by

1
2 ‖(−3, 4, 1) × (−11, 4, 5)‖ = 1

2 ‖(16, 4, 32)‖ = 1
2 · 36 = 18

In-Class Experiment

Suppose A = (1, 4,−1) and B = (−4, 0, 2). Let P be the parallelogram whose vertices ←−
See Exercise 15 from
Lesson 2.3.

are O, A, B, and A + B.

1. Find the area of P′, the projection of P on the x–y plane.

2. Find the area of P′′, the projection of P on the x–z plane.

3. Find the area of P′′′, the projection of P on the y–z plane.

4. Relate these to the coordinates of A × B.

5. Generalize to arbitrary pairs of vectors in R3.

Exercises

1. Let A = (1, 3, 1), B = (2,−1, 4), C = (5, 1, 0), and D = (4, 2, 5).
Find

a. A × B b. A × C c. A × (B + C)

d. (A × B) × C e. (A × B) × D f. 3A × 2B

g. 2A × 2C h. A · (B × C) i. D · (A × B)

j. A · (A × C) k. A × (A × B) l. (A × A) × B

2. Find a nonzero vector orthogonal to both (1, 0, 3) and (2,−1, 4).

3. Verify Theorem 2.8, part ((2)), for A = (1, 2, 1), B = (3, 1, 4),
C = (1,−1, 0).

4. Verify parts ((3)) and ((4)) of Theorem 2.8 for A = (0, 1, 1),
B = (1, 3, 4), C = (1, 2, 3), d = 2.
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5. Find the area of the triangle whose vertices are

a. A = (0, 0, 0), B = (1, 4,−1), C = (−4, 0, 2)
b. A = (1, 3, 5), B = (2, 7, 4), C = (−3, 3, 7)
c. A = (1, 1, 2), B = (−3,−2, 5), C = (5, 7,−2)
d. A = (2, 1, 3), B = (1, 4, 1), C = (3, 5, 9)
e. A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1)
f. A = (3, 4, 0), B = (1, 1,−1), C = (1, 3, 2)
g. A = (0, 0, 0), B = (3, 1, 0), C = (4, 2, 0)
h. A = (5, 0, 1), B = (9, 4,−5), C = (2,−2, 5)
i. A = (3, 0), B = (4, 3), C = (5, 1)

6. Use Theorem 2.8 to prove (A + B) × C = (A × C) + (B × C).

7. Find all vectors X so that (3, 1, 2) × X = (−1,−1, 2).

8. If A, B, and C are vectors in R3, use Theorem 2.8, part (2), to
prove: ((A × B) × C) + ((B × C) × A) = (A × C) × B.

9. If A, B, and C are vectors in R3, show that

((A × B) × C) − (A × (B × C)) = (A × C) × B

10. If A, B, and C are nonzero vectors in R3 so that

A × (B × C) = (A × B) × C

show that either A and C are both orthogonal to B, or that A is a
multiple of C.

11. If A and B are vectors in R3, show that

(A × B) × A = A × (B × A)

12. In R3, show that (E1 × E2) × E3 = E1 × (E2 × E3).

13. If A and B are vectors in R3 and C = x1A + x2B for some scalars
x1 and x2, show that C · (A × B) = 0. Interpret geometrically.

14. Use the Lagrange Identity to prove the Cauchy-Schwarz Inequality
in R3.
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15. Suppose that B = (2, 2, 1) and C = (1,−2, 2). Here is a picture of
a cube that has O, B, and C as vertices:

Find the coordinates of the remaining vertices.

16. a. Let A = (1, 0, 0, 0), B = (0, 1, 0, 0), and C = (0, 0, 1, 0). Find a
vector (in R4) perpendicular to A, B, and C.

b. Let D = (2,−1, 2,−3), E = (−1,−2, 1, 1), and F = (0,−1, 1, 2).
Find a vector perpendicular to D, E, and F .

17. Take It Further. Find a formula for a vector perpendicular to
three vectors A = (a1, a2, a3, a4), B = (b1, b2, b3, b4), and C =
(c1, c2, c3, c4).

18. If A, B, and C are vectors in R3, no two of which are collinear, ←−
The operation that assigns
three vectors R, S, T to
R · (S × T ) is sometimes
called the scalar triple
product of R, S, and T .
Does it have any basic
rules?

use the accompanying diagram to show that the volume of the
parallelepiped determined by A, B, and C is |C · (A × B)|.

B

O

h

A

C

A × B

19. Find the volume of the parallelepiped determined by (3, 1, 0),
(4, 2, 1), and (1, 2,−1).

20. Prove parts ((3)) and ((4)) of Theorem 2.8.
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2.5 Cross Product

21. Prove parts ((5)) and ((6)) of Theorem 2.8.

22. Prove part ((2)) of Theorem 2.8.
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2.6 Lines and Planes

A basic problem in analytic geometry is constructing equations that define
simple geometric objects. For instance, you already know how to write an
equation for a line in R2. But the typical methods, which involve calculating
slope, don’t work in R3 and beyond. You need to find another way to
characterize a line (and other geometric objects) that you can generalize
to higher dimensions.

In this lesson, you will learn how to

• find a vector equation of a line given a point and direction vector

• find the vector equation of a plane given a point and two nonparallel
direction vectors

• find an equation of a plane given a point and a direction normal to
the plane

• recognize the difference between the vector and coordinate equations
of a hyperplane

• find the distance from a point to a line and from a point to a plane

Lines

Begin with lines in R2. In analytic geometry, you learned that a straight
line in R2 has an equation of the form

ax + by = c

where a, b, and c are real numbers (and at least one of the coefficients a or ←−
The equation is the point-
tester for the line.

b is not zero). This means that the line consists precisely of those points
(r, s) so that

ar + bs = c

For example, if � is the line containing (3, 0) and (1,−1), the equation for ←−
Make sure you can find the
equation for �.

� is x − 2y = 3; (4, 1) is not on � because 4 − 2(1) �= 3, and (5, 1) is on �
because 5 − 2(1) = 3.

To generalize the notion of straight line to Rn, you need a vector
characterization of lines in R2.
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Example 1

Consider, for example, the line � whose equation is 3x + 5y = 14. Suppose you take two
points on �, say P = (3, 1) and Q = (−2, 4). If A = P − Q = (5,−3), then another way
to characterize � is as follows:

Q

P

A
X

2A

� consists of all points X so that
−−→
PX is parallel to A. For example, if X = (13,−5), then ←−

See Exercise 3 from
Lesson 1.2.

X − P = (10,−6) = 2A so that
−−→
PX is parallel to A, and hence X is on �.

In general, then, you can characterize a line in terms of a point P on
the line and a vector A that sets its direction:

The line through P in the direction of A is the set of all points
X so that

−−→
PX is parallel to A.

But if
−−→
PX is parallel to A, then X − P is a scalar multiple of A. That is,

X − P = tA for some number t, or equivalently, X = P + tA for some
number t. So, a point X is on � if and only if X can be written as “P plus
a multiple of A.”

Q = P − A

P − 1/2A

P + 1/2A

= P + 2A

P + A

P + tA

P

A1/2A

-1/2A

-A

2A

tA ←−
Some students call this the
“ladder image” for �.
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Developing Habits of Mind

Different forms for different purposes. There are two kinds of equations you can
use to describe the line � from Example 1: 3x + 5y = 14 and X = (3, 1) + t(5,−3).

• The equation 3x + 5y = 14 is a point-tester , since you can use it to test any point ←−
Equations of this form
will be referred to as
coordinate equations in
this book.

to see if it is on the graph: (2, 1) is not on the graph, because 3(2) + 5(1) = 11,
not 14. But (3, 1) is, since 3(3) + 5(1) = 14.

• The equation X = (3, 1)+t(5,−3) is a point-generator : any real value of t generates ←−
Equations of this form will
be referred to as vector
equations in this book.

a point on the line.

(3,1) + t(5,-3)

2

(13,-5)

-1

(-2,4)

3

(18,-8)

0

(3,1)

(3,1) + t(5,-3) (3,1) + t(5,-3) (3,1) + t(5,-3)

Example 2

Problem. Find a vector equation for the line m between R = (5, 3) and S = (7, 8).

Solution. The direction of m is set by, for example,

←−
Any multiple of S − R,
including R − S, can be
used as a direction vector
(why?).

A = S − R = (2, 5)

X = R + tA

R

m

S

A = S − R

A point X is on m if and only if X can be written as R plus a multiple of A. In other
words, the equation for m is

X = R + tA or

X = (5, 3) + t(2, 5)
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2.6 Lines and Planes

This equation can be used to find any number
of points on the line.

By picking a number for t, you can find points
on m. For example, if t = −3,

(5, 3) + −3(2, 5) = (−1,−12)

and (−1,−12) is on m. If t = 1,

(5, 3) + 1(2, 5) = (7, 8)

so (7, 8) is also on m.

A = S − R

S

X = R + tA

R

m

R − 3A = (−1, −12)

Can you use the vector equation to test points for being on m? Well,
try it!

• Is
(
6, 11

2

)
on m? In other words, is there a number t so that

(
6, 11

2

) ?
= (5, 3) + t(2, 5)

To see if such a t exists, expand the right-hand side:

(
6, 11

2

) ?
= (5 + 2t, 3 + 5t)

This leads to two equations:

6 = 5 + 2t and
11
2 = 3 + 5t

The first equation implies that t = 1
2 . And 1

2 works in the second
equation, too. So, (

6,
11

2

)
= (5, 3) + 1

2 (2, 5)

and
(
6, 11

2

)
is on m.

• But (6, 6) is not on m, because if you set up the equations as above,
you end up with

6 = 5 + 2t and

6 = 3 + 5t

The only value of t that satisfies the first equation is t = 1
2 , and this

doesn’t work in the second equation.
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Chapter 2 Vector Geometry

For You to Do

1. Find the coordinate equation (something like ax + by = c) for the line m in
Example 2. Which equation is easier to test points: the coordinate equation or
the vector equation? Why?

Developing Habits of Mind

Different forms for different purposes. Yes, you can use the vector equation of m
to test a point to see if it is on m, but it takes some work: you have to solve two equations
(for t) and see whether they are consistent. The coordinate equation, on the other hand,
is a true point-tester—you substitute the coordinates of the point you’re testing for the
variables. If the equation is true, the point passes the test: it’s on the line!

This vector characterization of lines—a point plus all multiples of a di-
rection vector—makes perfect sense in R3. Invoking the extension program,
you can define a line in Rn by this vector equation.

X = P + tA P + A

P − A

−A

P + 1/2A

1/2A

A

P

�

Definition

Let P and A be elements of Rn, A �= O. The line � through P in the
direction of A is the set of all points X so that X = P + tA for some

←−
Some people call � the line
through P along A. This
book will use both ways to
describe lines.
←−
Sometimes the vector
equation is called a
parametric equation and
the variable t is called the
parameter .

number t.

The equation X = P + tA is called the vector equation of �. P is an
initial point of � and A is a direction vector for �.

Example 3

Problem. Find the vector equation of the line � in R2 whose coordinate equation is
3x + 2y = 6.
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2.6 Lines and Planes

Solution. There are many vector equations for �. First, take two points on �, say
P = (2, 0) and Q = (0, 3).

A = Q − P Q = (0, 3)

P = (2, 0)

�

As a direction vector, take A = Q − P = (−2, 3) and take P as an initial point.
So, one equation for � is X = (2, 0) + t(−2, 3). Other possible equations include
X = (2, 0) + t(2,−3) and X = (4,−3) + t(−4, 6). Can you find another one?

Example 4

Problem. Find an equation for the line � in R3 that contains the points P = (3,−1, 4)
and Q = (1, 3,−1).

Solution. Take P as an initial point and A = Q − P = (−2, 4,−5) as a direction
vector. The equation is then X = (3,−1, 4) + t(−2, 4,−5). Sometimes the equation is
written in terms of coordinates

x = 3 − 2t

y = −1 + 4t

z = 4 − 5t

but, unlike the analogous situation in R2, there is no simple single equation relating x,
y, and z.

Many people think that since a line has equation ax + by = c in R2, a
line should have equation ax + by + cz = d in R3. That’s not the case. In
fact, the graph of ax + by + cz = d in three dimensions is a plane, not a
line, as you’ll see shortly.

That’s one real advantage for using vector equations: the vector equation
of a line looks like X = P + tA in any dimension.

Example 5

Problem. In R4, show that A = (3,−1, 1, 2), B = (4, 0, 1, 6), and C = (1,−3, 1,−6)
are collinear.

Solution. Collinearity in R4 means, by definition, that there is some vector equation
of a line that is satisfied by all three points. Now, an equation for the line containing
A and B can be obtained by taking A as an initial point and B − A = (1, 1, 0, 4) as a
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Chapter 2 Vector Geometry

direction vector; this gives
X = (3,−1, 1, 2) + t(1, 1, 0, 4)

To see that C is on this line, you need to find a scalar t so that C = A+ t(1, 1, 0, 4). But
C − A = (−2,−2, 0,−8) = −2(1, 1, 0, 4), so t = −2.

Note that all of the other geometric criteria for collinearity in R2 and R3 are satisfied
by A, B, and C. For example, you should check that B − A, C − A, and C − B are all ←−

These are good things
to do.

scalar multiples of each other, that d(C, A) + d(A, B) = d(C, B), and that cos θ = 1 or

−1, where θ is the angle between
−−→
BA and

−−→
BC.

Planes

Back in Lesson 1.3, Sasha and Tony came up with this vector equation of
a plane:

X = k1A + k2B

At the time, Sasha said she thought something was missing. Seeing the
vector equation of a line, she has a new thought.

Minds in Action Episode 8

Sasha: I know what I was missing before. Look: any plane with an equation like
X = k1A + k2B has to go through the origin.

Tony: I can see that. If both k1 and k2 are set to 0, then X is going to be O no matter
what A and B are.

Sasha: Exactly. But not all planes have to go through the origin.

Tony: You’re right. Well, what did we do for lines?

Tony looks at his notes.

We first came up with the vector equation of a line by looking at a line through the
origin, then adding a fixed vector to all the points on that line—remember the ladder
image? Will that work for planes?

Sasha: Well, yeah, let’s just look at the way we wrote the vector equation of a line. It’s
a vector plus all multiples of another vector. So what if we just add another vector
like this:

X = P + k1A + k2B

There. The linear combination of two vectors added to another vector.

Tony: So P is the initial point—it just represents some point we know is on the plane.
And A and B are direction vectors.
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2.6 Lines and Planes

You can think of the “ladder image” for a plane as being ladder images
for infinitely many lines. The figure below shows three, but there are many
other lines not shown that will fill out the entire plane.
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For You to Do

2. a. Describe geometrically the graph of X = k1(1, 0, 0) + k2(0, 1, 0).
b. Describe geometrically the graph of

X = (0, 0, 1) + k1(1, 0, 0) + k2(0, 1, 0).

Minds in Action Episode 9

Tony and Sasha are thinking about how to describe the following vector equation geomet-
rically:

X = (0, 0, 1, 0) + k1(1, 0, 0, 0) + k2(0, 1, 0, 0)

Tony: (thinking aloud) Those vectors are in R4. Can we do geometry in R4?

Sasha: Well, that equation looks like the vector equation of a plane.

Tony: Yeah, but before we were looking at vectors in R3. This is R4. Can we still say
it’s a plane?

Sasha: Sure! It’s just the extension program all over again. See, we said that equations
that look like X = A + tB were lines, no matter what Rn we were in. So if we said
this was a plane in R3, we can just define a plane to be a fixed point plus all linear
combinations of two vectors, then yeah, it’s a plane, even if we don’t know what a ←−

This definition works as
long as the two vectors
don’t fall on the same line.

plane looks like in four dimensions.

Definition

Let P , A, and B be elements of Rn, where A and B are not parallel. The ←−
If A and B are not parallel,
neither can equal O. Why?

plane E through P spanned by A and B is the set of all points X so
that X = P + t1A + t2B for some numbers t1 and t2.
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Chapter 2 Vector Geometry

The equation X = P + sA + tB is called the vector equation of a
plane E. P is an initial point of E, and A and B are direction vectors
for E.

Remember

A vector equation is some-
times called a parametric
equation and the variables
s and t are called the pa-
rameters.Hyperplanes

There is another way to find the equation of a plane in R3. Let E be an
arbitrary plane in R3, and let P be a point on E.

Remember

In geometry, it is enough

to make
−−→
PM orthogonal

to
−−→
PX and

−−→
PY where X

and Y are two points in E
distinct from P and each
other.

M − P = N

X − P

X

P E

M

From P , draw a vector
−−→
PM that is or-

thogonal to E. Next, let N = M −P ,
the vector equivalent to

−−→
PM starting

at O. N is called a normal to E (and
all other normals to E are scalar mul-
tiples of N). E can be described as
“the set of all points X so that X−P
is orthogonal to N .” ←−

Alternatively, E is the set

of all points X so that
−−→
PX

is orthogonal to
−−→
PM .

That is,E is the set of all points
X so that (X − P ) · N = 0. But
this equation is equivalent to X ·N =
P · N .

Example 6

Let E be the plane containing (3, 1, 0) orthogonal to (1, 1,−1). Then an equation of
E is X · (1, 1,−1) = (3, 1, 0) · (1, 1,−1). That is, E consists of all points X so that ←−

Just as a line is determined
by a point on it and a
direction vector, a plane in
R3 can be determined by
a point on it and a normal
vector.

X · (1, 1,−1) = 4. So, (2, 2, 0) is on E, while (2, 1, 1) is not. So the coordinate equation
for E is all points (x, y, z) such that x + y − z = 4.

For You to Do

3. a. Show that the graph of x + 2y − z = 8 is a plane in R3.
b. Find three points on that plane.
c. Find a normal vector to the plane.
d. Find an equation for the plane in the form ←−

How does part 3d help you
with part 3a?X · N = P · N

So, a plane in R3 also has an equation of the form

X · N = P · N

You can use the extension program and this equation to define objects in
other dimensions. Those objects have special properties, and so they are
given a special name.

Definition

Suppose P and N are in Rn, N �= O. The hyperplane containing P ←−
Think of P as a point and
N as a vector.

orthogonal to N is the set of all points X so that X · N = P · N .
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2.6 Lines and Planes

N is called a normal to E, P is an initial point for E, and the
equation X · N = P · N is an equation for E.

This definition for hyperplane works in Rn for any n, but the geometric
object it describes changes as n changes.

• What is a hyperplane in R2? Suppose E is a hyperplane in R2

containing P = (p1, p2) orthogonal to N = (a, b). Then an equation of
E is (x, y) · (a, b) = (p1, p2) · (a, b). Letting c be the number p1a+p2b,
this equation becomes ax + by = c. So, hyperplanes in R2 are simply
lines. ←−

You can amaze your friends
next time you talk about
the line with equation
5x + 2y = 3. Say “This
is a hyperplane in R2 that
is orthogonal to (5, 2).”(5, 2)

5x + 2y = 3

This gives a nice interpretation to equations for lines from analytic
geometry. The line with equation ax + by = c is orthogonal to the
vector (a, b).

• In R3, a hyperplane is simply a plane. Suppose E is a plane in R3

containing P orthogonal to N = (a, b, c). Then if Q is any point on E,
Q·N = P ·N . If you let d = P ·N , an equation for E can be written as
X ·N = d. Let X = (x, y, z); the equation becomes ax + by + cz = d,
an equation in three variables similar to the ordinary equation in two
variables for a line in R2.

The equation in the definition of hyperplanes can be expanded to
produce coordinate equations.

P and N : (5, 1), (7,−1)

Equation: X · (7,−1) = (5, 1) · (7,−1)

or 7x − y = 34

P and N : (5, 1, 3), (7,−1, 2)

Equation: X · (7,−1, 2) = (5, 1, 3) · (7,−1, 2)

or 7x − y + 2z = 40

P and N : (5, 1, 3, 2), (7,−1, 2, 1)

Equation: X · (7,−1, 2, 1) = (5, 1, 3, 2) · (7,−1, 2, 1)

or 7x − y + 2z + w = 42
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Chapter 2 Vector Geometry

Coordinate equations are often called linear equations, not because
they are equations of lines, but because each side of the equation is a linear
combination of variables. You will learn more about linear combinations ←−

In other words, each
term is a constant or the
product of a constant and
a variable raised to the
first power. Some examples
of nonlinear equations are
xy − y = 3, x2

1 + 3x2 = 5,
sinx + y − cos z = 0, and
3x + 2y = 3.

in Chapter 3. The following theorem formalizes the relationship between
linear equations and their graphs.

Theorem 2.10

Every hyperplane in Rn is the graph of a linear equation. Conversely, the
graph of a1x1 + a2x2 + · · · + anxn = d is a hyperplane with normal vector
(a1, a2, . . . , an).

Proof. If E is a hyperplane containing P orthogonal to
N = (a1, a2, . . . , an), E is the graph of

a1x1 + a2x2 + · · · + anxn = d

where d = P · N .

Conversely, let a1x1 + a2x2 + · · · + anxn = d be a linear equation and

suppose a1 �= 0. If P =
(

d
a1

, 0, 0, . . . , 0
)
, this equation can be written as

X ·N = P ·N , where X = (x1, x2, . . . , xn) and N = (a1, a2, . . . , an). So the
graph of the equation is a hyperplane containing P orthogonal to N .

Example 7

a. Let E be the hyperplane in R4 containing (3,−1, 1, 4) orthogonal to (1,−1, 3, 1).
The coordinate equation defining E is x − y + 3z + w = 11. This comes from
expanding the equation

X · (1,−1, 3, 1) = (3,−1, 1, 4) · (1,−1, 3, 1)

b. Let E be the plane in R3 whose linear equation is 2x + y − z = 5. Then (2, 1,−1)
is a vector normal to E; E contains, for example, (0, 0,−5).

Developing Habits of Mind

The extension program. You used the program three times in this lesson.

• A line in Rn is described by a point on it, P , and a direction vector, A; it has
equation

X = P + tA

• A plane in Rn is described by a point on it, P , and two direction vectors, A and
B; it has equation

X = P + t1A + t2B

• A hyperplane in Rn is described by a point on it, P , and a normal vector N ; it
has equation

X · N = P · N
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Things to notice:

1. The equations can be used in Rn for any n, and the graph of a linear equation in
Rn is always a hyperplane in Rn.

2. So, a hyperplane in R2 is a line, since n = 2, and thus n − 1 = 1. Hence, in R2,
lines can be described by either a vector or a linear equation.

3. And, as you saw already, a hyperplane in R3 is a plane, so the graph of a “linear”
equation in R3 is a plane.

4. In Rn, you’ve now seen that there are

• points (0-dimensional)
• lines (1-dimensional)
• planes (2-dimensional)
• hyperplanes ((n − 1)-dimensional)
• all of Rn (n-dimensional)

In fact, there are similar kinds of objects of every dimension between 1 and n− 1. ←−
For instance, you can
describe a 5-dimensional
flat object in R8 if you
want. Try it.

Example 8

Problem. Find an equation for the plane E containing P1 = (1, 0, 3), P2 = (−1, 1, 2),
and P3 = (2,−1, 0).

Solution. Take P1 as the initial point for E. To find a normal to E, you need a vector
orthogonal to P2 −P1 = (−2, 1,−1) and P3 −P1 = (1,−1,−3). That’s exactly what the
cross product is for.

(−2, 1,−1) × (1,−1,−3) = (−4,−7, 1)

So you can take (−4,−7, 1) as the normal. Since P1 · (−4,−7, 1) = −1, the desired
equation is X · (−4,−7, 1) = −1, which you can rewrite as

−4x − 7y + z = −1

Any multiple of this coordinate equation will also define E.

For You to Do

4. Let F be a plane containing points P1 = (0, 2, 1), P2 = (3,−1, 4), and P3 =
(5, 0, 1).

a. Find a coordinate equation for the plane F .
b. Find a vector equation for the plane F .

Example 9

Problem. In R3, let � be the line through (−5,−2,−4) in the direction of (2, 1, 3),
and let E be the plane containing (2, 0, 0) orthogonal to (2,−3, 1). Find the intersection
of � and E.
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Solution. The equation for � is X = (−5,−2,−4) + t(2, 1, 3), and the equation for
E is X · (2,−3, 1) = 4. If X satisfies both equations, there is some value for t so that
((−5,−2,−4) + t(2, 1, 3)) · (2,−3, 1) = 4. Using the rules for dot product, this equation
becomes

(−5,−2,−4) · (2,−3, 1) + t((2, 1, 3) · (2,−3, 1)) = 4

or −8 + 4t = 4. So, t = 3 and X = (−5,−2,−4) + 3(2, 1, 3) = (1, 1, 5) is the point where
� meets E. ←−

Check to see that (1, 1, 5)
is on both � and E.

Example 10

Problem. Let E be the plane defined by the equation 4x−y+8z = 10. If Q = (9, 0, 17),
find the distance from Q to E.

Solution. The strategy is illustrated below.

N

O

R

E

Q

�

The distance from Q to E is d(Q, R), where R is the point of intersection of line �—that
goes through Q orthogonal to E—with E.

Now, a direction vector for � is precisely a normal vector to E, that is, (4,−1, 8). So
an equation for � is X = (9, 0, 17) + t(4,−1, 8). Proceeding as in Example 9, find that
R = (1, 2, 1). The desired distance is then d(Q, R) = 18.

Example 11

Problem. Find the equation of the intersection of the two planes whose equations are
x + y − 3z = 1 and 2x + y + 3z = 4.

Solution. The intersection of two planes will be a line.

←−
. . . unless the planes are
parallel. How do you know
that the planes are not
parallel?The intersection of the planes consists of all points that satisfy both equations at

once. Solve the first equation for x.
x = 1 − y + 3z

Substitute this in the second equation and solve for y.

y = −2 + 9z

Since x = 1 − y + 3z,
x = 1 − (−2 + 9z) + 3z = 3 − 6z
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There are no more constraints (equations) so z can be anything. So, the two planes
intersect on the set of all points (x, y, z) so that

x = 3 − 6z

y = −2 + 9z

z is arbitrary

Let z = t (t stands for any real number). The intersection is the set of all points of the
form (3 − 6t,−2 + 9t, t). But ←−

This rewriting
(3 − 6t,−2 + 9t, t) as
(3,−2, 0) + t(−6, 9, 1)
(a constant vector plus a
“t” part) will be a valuable
technique throughout this
book.

(3 − 6t,−2 + 9t, t) = (3,−2, 0) + (−6t, 9t, t)

= (3,−2, 0) + t(−6, 9, 1)

So, the intersection is the set of all points X so that X = (3,−2, 0) + t(−6, 9, 1). This is
the equation of the intersection of the two planes.

Exercises

1. For each given set of conditions, find a vector equation of the line
�.

a. � contains (3, 0) and is parallel to (4, 1)
b. � contains (4, 1) and (5,−2)
c. � contains (3, 1, 2) and (2, 0,−1)
d. � contains (1, 0, 1, 0) and (3,−1, 4, 2)
e. � contains (2,−1, 4) and is parallel to the z-axis
f. � contains (3, 4) and is orthogonal to (5,−3)

2. For each given set of conditions, find an equation in the form
X · N = P · N of the hyperplane E.

a. E contains (3, 1, 2) and is normal to (1, 2, 0)
b. E contains (3, 1, 2,−1) and is normal to (4, 1,−1, 2)
c. E contains (3, 1, 2), (2,−1, 4), and (1, 0, 1)
d. E contains (1, 3, 1), (4, 1, 0), and (1, 3, 2)
e. E contains (1, 0, 1), (2, 1, 3), and (0, 0, 0)
f. E contains (2, 0, 1) and is parallel to the plane whose vector

equation is X · (3, 1, 2) = 4

3. Find the linear equations for the hyperplanes found in Exercise 2.

4. In R3, find the equations of the x–y plane, the x–z plane, and the
y–z plane.

Suppose E and E′ are hyperplanes in Rn. E and E′ are parallel if
their normal vectors are scalar multiples of each other. E and E′ are
perpendicular if their normal vectors are orthogonal, and the angle
between E and E′ is the angle between their normal vectors.
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5. For each pair of equations, determine whether they define parallel ←−
Which pairs of equa-
tions define perpendicular
planes?

hyperplanes; if not, find the angle between them.

a. 2x − y = 3 and 4x − 2y = 3
b. x + y = 4 and x − y = 1
c. x − y + z = 3 and x − 2y + z = 1
d. x − 3y + z = 1 and x − z = 2
e. x = 0 and z = 0 (in R3)
f. y = 3 and z = 1 (in R3)

6. a. Find an equation of the plane containing (3, 1, 4) and parallel
to the plane whose equation is 3x − y + z = 7.

b. Find an equation of the plane containing (3, 1, 4) and perpen-
dicular to the planes whose equations are 3x − y + z = 7 and
x + y − z = 4.

7. Find the cosine of the angle of intersection of the hyperplanes
defined by each pair of equations.

a. 3x − 2y + z = 4 and x + y − z = 1
b. x + y − z + w = 0 and 2x + 2y − 2z + 2w = 7
c. x + 3y − z = 2 and z = 0

8. Let E be the set of all vectors in R3 that are orthogonal to (3, 2, 1).
Show that E is a plane and find an equation for E.

9. Let � be the set of all vectors in R3 that are orthogonal to (2, 0, 1)
and (3, 1,−1). Show that it is a line and find a parametric equation
for �.

10. Let E be the set of all points of the form
←−
This is a vector equation
for a plane. It takes the
form

X = A+ sB + tC

(3, 2, 1) + s(2, 0, 1) + t(1, 1, 2)

where s and t are arbitrary parameters. Show that E is a plane and
that the linear equation for E is x + 3y − 2z = 7.

11. Let E be the plane in R3 containing (0, 0, 2) and orthogonal to
(2,−3, 4) and suppose � is the line containing (2, 3, 0) in the direc-
tion of (2, 1, 3). Find the intersection of � and E.

12. Let E have equation x + y − 2z = 3. If � has equation X =
(2, 1, 3) + t(0, 1, 4), find the intersection of � and E.

13. a. Suppose the equation of � is X = (2, 2, 10) + t(0, 1, 6) and
the equation of �′ is X = (0,−5,−4) + t(1, 3, 4). Find the
intersection of � and �′.

b. Let � have equation X = (2, 1, 3) + t(4, 1, 0) and let �′ have
equation X = (2, 4, 0) + t(1, 1, 0). Show that � and �′ are not
parallel but do not intersect.

14. Let E be the plane whose equation is 5x + 2y + 14z = −306. If
Q = (8, 3, 7), find the distance from Q to E.
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15. Let E be the hyperplane in Rn containing P orthogonal to N . If Q
is any point in Rn, show that the distance from Q to E is given by

←−
In R2, this gives you the
formula for the distance
from a point to a line.
Check it out on Exercise 6
from Lesson 2.2.

|(P − Q) · N |
‖N‖

16. Find the distance between the given point and the hyperplane with
the given equation.

a. (1, 14, 25) and x + 4y + 8z = 14
b. (2, 0, 1) and 3x + 2y + 6z = 11
c. (3, 1, 2) and x + y + z = 6
d. (2, 0, 3) and 2x + 3y − z = 7
e. (4, 1) and 3x + 4y = 5
f. (1, 0, 13, 1) and x + y + z + w = −2

17. Find the equation of the intersection of the planes whose equations
are x − y + z = 4 and 2x − y + z = −1.

18. If � has equation X = (8, 2, 9) + t(3, 1, 4) and �′ has equation
X = (9, 1, 4) + t(7, 1, 3),

a. find the intersection of � and �′

b. find an equation of the plane containing � and �′

19. Find equations of two distinct hyperplanes in R4 containing (1, 1, 0, 0),
(1, 0, 1, 1), and (0, 1, 1, 1).
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Chapter 2 Mathematical Reflections

These problems will help you summarize what you have learned in this Vocabulary

In this chapter, you saw
these terms and symbols
for the first time. Make
sure you understand what
each one means, and how
it is used.

• angle (between two
vectors)

• component

• cross product ( × )

• determinant

• direction vector
of a line

• dot product ( · )
• hyperplane

• initial point

• lemma

• linear equation

• normal

• orthogonal

• projection

• right-hand rule

• standard basis vectors

• vector equation of a line

chapter.

1. For each given A and B, find A · B. Determine whether A is
orthogonal to B.

a. A = (−2, 3, 1), B = (4, 3,−1)
b. A = (0, 8,−6), B = (9, 2, 4)
c. A = (−2, 3, 1, 0), B = (10, 7,−1,−5)

2. Let A = (2,−1,−1) and B = (−4, 0, 2). For each exercise, calculate
the given expression.

a. d(A, B) b. compB A c. ProjB A

d. ProjA B e. ‖ProjB A‖ f. ‖ProjA B‖

3. Find θ if θ is the angle between A and B.

a. A = (−2, 1), B = (4, 3)
b. A = (2, 0, 3), B = (−1, 4, 2)
c. A = (1, 0, 0, 2), B = (−2, 1, 0, 5)

4. Let A = (4,−5, 0) and B = (0, 3,−2).

a. Find A × B
b. Find the area of the parallelogram whose vertices are O, A, B,

and A + B.

5. Let A = (2,−1, 3) and B = (1, 1, 2). Find a vector equation of the
line � containing A and B.

6. How can you determine whether two vectors (of any dimension) are
orthogonal?

7. How can you find a vector orthogonal to two given vectors in R3?

8. Let A = (2,−1, 3), B = (1, 1, 2), and C = (2, 0, 5). Find an equation
of the hyperplane E containing A, B, and C.
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Chapter 2 Review

In Lesson 2.2, you learned to

• find the dot product of two vectors of any dimension

• determine whether two vectors are orthogonal

• use the basic properties of dot product to prove statements and solve
problems

The following questions will help you check your understanding.

1. For each given A and B,

(i) find A · B
(ii) find (A + B) · B
(iii) find 2A · B + 2B · B
(iv) is A orthogonal to B? Explain

a. A = (−4,−6), B = (3,−2)
b. A = (5, 0,−1), B = (2,−3, 7)
c. A = (1, 0,−2, 3), B = (2,−5, 4, 2)

2. If A and B are vectors in Rn and c is a number, characterize each
of the following by one of the words “vector” or “number.”

a. A · B b. A · B + A · A
c. cA d. c(A · B)

e. (A · B)A f. A − cB

g. (A − cB) · B

3. Characterize all vectors X in R3 orthogonal to A = (3,−1, 2) and
B = (2, 1,−1).

4. Let A = (−2, 1, 4, 3), B = (3, 5,−2, 3), and C = (2,−1, 6, 4).

a. Show that ΔABC is a right triangle.
b. Verify Pythagoras’ Theorem for ΔABC.

In Lesson 2.3, you learned to

• find the component of a vector along another vector

• find the projection of a vector along another vector

The following questions will help you check your understanding.

5. For the given points A and B, find d(A, B), ProjB A, ProjA B, and
‖ProjB A‖.
a. A = (−2, 3), B = (2, 0)
b. A = (0, 5,−10), B = (1, 0,−1)
c. A = (2,−1, 3, 2), B = (−3, 0, 2,−1)
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6. Let A, B, and C be vectors, and let e be a scalar. For each
exercise, characterize the expression as “vector,” “number,” or
“meaningless.”

a. A·B
B·B b. ProjA B c. compB A

d. ‖ProjB A‖ e. A · compB A f. (compB A)(ProjB A)

g. ‖A · C + ProjC A‖ h. ‖compA C‖ i. (eA · ProjB C)B

7. Let A = (2, 5) and B = (6, 3), Find the area of the triangle whose
vertices are A, B, and O.

In Lesson 2.4, you learned to

• find the angle between two vectors in any dimension

• understand and use the triangle inequality in Rn

The following questions will help you check your understanding.

8. Find cos θ if θ is the angle between A and B.

a. A = (2,−1), B = (−1, 3)
b. A = (3, 0,−1), B = (3,−1, 2)
c. A = (4, 3, 2,−1), B = (8, 4,−6, 2)

9. Find the measure of each angle of �ABC, where A = (0, 0, 0),
B = (2,−4, 1), and C = (5,−2, 3).

10. A and B are nonzero vectors in Rn and θ is the angle between A
and B. If A · B = 10, A · A = 36, and B · B = 25, find θ.

In Lesson 2.5, you learned to

• find a vector orthogonal to two given vectors in R3 using cross product

• determine the area of triangles and parallelograms in R3 using cross
product

• apply the cross product to find the angle between two vectors in R3
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The following questions will help you check your understanding.

11. Let A = (−1,−2, 3), B = (4, 0, 1), and C = (1, 1, 1). Find

a. A × B b. A × 2B

c. 2A × 2B d. B × A

e. (A × B) × C f. A × (B × C)

g. A × A h. (A × A) × B

12. Find a nonzero vector orthogonal to both (2,−1, 3) and (−4, 0, 8).

13. Find the area of the triangle whose vertices are

a. A = (0, 0, 0), B = (0, 2,−1), C = (2, 3,−4)
b. A = (1, 2,−1), B = (0, 5, 3), C = (2, 4,−3)
c. A = (3,−1, 2), B = (4,−2,−1), C = (2, 1, 0)

In Lesson 2.6, you learned to

• find a vector equation of a line given a point and direction parallel
to the line

• find an equation of a plane given a point and a direction normal to
the plane

• recognize the difference between the vector and coordinate equations
of a hyperplane

• find the distance from a point to a line and from a point to a plane

The following questions will help you check your understanding.

14. For each given set of conditions, find a vector equation of line �.
Then use the vector equation to find another point on line �.

a. � contains (4,−2) and is parallel to (−1, 3)
b. � contains (1,−2, 6) and (2, 0,−1)
c. � contains (2,−2, 5, 1) and (3, 2, 1, 0)

15. For each given set of conditions, find

(i) an equation in the form X · N = P · N for the hyperplane E
(ii) a linear equation for the hyperplane E

a. E contains (2,−1, 4) and is normal to (3, 0, 2)
b. E contains (2,−1, 4), (3, 1, 5), and (−2, 4, 6)
c. E contains (2,−1, 4) and is parallel to the plane whose vector

equation is X · (3, 6,−1) = 5

16. For each pair of equations, determine whether they define parallel
hyperplanes; if not, find the angle between them (that is, find the
angle between their normal vectors).

a. x − 2y + 3z = 4 and x + y − 2z = 8
b. x − 2y + 3z = 4 and 2x − 4y + 6z = 11
c. x − 2y + 3z = 4 and x + 2y + z = 4
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Chapter 2 Test

Multiple Choice

1. Which of the following pairs of vectors is orthogonal?

A. A = (2,−3), B = (3,−2)
B. A = (1,−1, 0), B = (2, 0,−2)
C. A = (1, 2,−1), B = (2,−1, 0)
D. A = (4,−2, 5,−1), B = (0, 2, 1, 0)

2. Suppose A = (3,−4, 1, 2) and B = (0, 3, 5,−1). What is the value
of (A + B) · B?

A. 16 B. 26 C. 29 D. 35

3. Let A = (4, 0, 5) and B = (2,−1, 2). What is the value of
‖ProjB A‖?

A. 2 B. 3 C. 6 D. 18

4. Let A, B, and C be vectors. Which expression represents a vector?

A. compB A B. ProjA B C. ‖A + C‖ D. A · (B + C)

5. Let E1 = (1, 0, 0), E2 = (0, 1, 0), and E3 = (0, 0, 1). What is
E2 × E3?

A. (0, 0, 0) B. (1, 0, 0) C. (0, 1, 0) D. (0, 0, 1)

6. A vector equation for line � is X = (5,−3) + t(1,−2). Which point
is on line �?

A. (2,−1) B. (4,−1) C. (6,−6) D. (8,−4)

Open Response

7. Consider the triangle whose vertices are A = (−2, 1, 4), B =
(1,−4, 3), and C = (−3,−2, 5). Show that ∠ACB is a right angle.

8. Let A = (1,−1, 0), B = (−4,−2, 5), and P = ProjA B. Find
d(B, P ).

9. Let A = (1,−2, 0, 5) and B = (−1, 3,−4, 2). Find θ if θ is the angle
between A and B.

10. Find a nonzero vector orthogonal to both A = (−3, 1, 0) and
B = (2, 4,−1).

11. Find the area of the triangle whose vertices are A = (−1, 5,−3),
B = (1, 2,−4), and C = (−2, 6,−3).
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12. Let E be a plane containing points P1 = (5,−2, 3), P2 = (2, 0,−4),
and P3 = (4,−6, 8).

a. Find a normal to E.
b. Find a vector equation in the form X · N = P · N for E.
c. Find a coordinate equation for E.
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C H A P T E R

3 The Solution of Linear Systems

Prior to this course, the systems of equations you worked with were most
likely two equations in two unknowns. You may have encountered systems
with three equations in three unknowns, or where the number of equations
and unknowns were different. When solving systems like these, you can
easily get confused using methods such as substitution and elimination
because you sometimes forget to use one equation, or you use the same
equation twice by accident, or you just lose track of where you are. ←−

For example, take a look
at Example 11 from
Lesson 2.6.

This chapter will focus on a way to keep track of the steps. It will
use a technique called Gaussian elimination, a mechanical process that
guarantees that, when you perform the process to a linear system, you
will end up with a simpler system that has the same solutions as the
original. The process is implemented using a matrix—a rectangular array of
numbers—to keep track of the coefficients and constants in a linear system
of any size.

By the end of this chapter, you will be able to answer questions
like these:

1. How can you tell if a system of equations has a solution?

2. How can you tell if three vectors are linearly independent in R2? in
R3? in Rn?

3. Find the kernel of this matrix:⎛
⎝3 −2 1 4

1 2 −1 0

7 −10 5 12

⎞
⎠

Describe this kernel geometrically.

You will build good habits and skills for ways to

• extend old methods to new systems

• look for similarity in structure

• reason about calculations

• use different forms for different purposes
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Vocabulary and Notation

• augmented matrix

• coefficient matrix

• dimension

• elementary row operations

• equivalent matrices

• equivalent systems

• Gaussian elimination

• kernel

• linear combination

• linearly dependent

• linearly independent

• matrix

• row-reduced echelon form

• trivial solution
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3.1 Getting Started

1. Solve this system of equations:

x + 2y + 13z = −4

x − 5y − 8z = 11

2x − 3y + 6z = 7

2. Write (−4, 11, 7) as a nonzero linear combination of the vectors
(1, 1, 2), (2,−5,−3), and (13,−8, 6).

3. Find the solution set for this system of three equations and three
unknowns:

←−
This is the same as asking
for the intersection of the
three planes defined by
these equations.

3x + y − z = 0

x + y + 3z = 0

2x + y + z = 0

4. Write (0, 0, 0) as a nonzero linear combination of the vectors (3, 1, 2),
(1, 1, 1), and (−1, 3, 1).

5. Find all vectors X orthogonal to (3, 1,−1), (1, 1, 3), and (2, 1, 1).

6. Write (−1, 3, 1) as a linear combination of (3, 1, 2) and (1, 1, 1).

7. Here is a system of equations:

x + 4y = 15

x − 2y = 3

Here is a second system with the same solution set:

x = 7

y = 2

In the second system, each variable appears in only one equation,
so its solution can be read immediately.

a. Find two more systems of equations, using x and y in each
equation, with the same solution set as the two systems above.

b. If possible, find a system of equations in the form

ax + by = 0

cx + dy = 1

with the same solution set.
c. If possible, find a system of equations in the form

ax + by = 0

cx + dy = 0

with the same solution set.

8. Here is a system of equations:

x − 2y = −1

3x + 4y = 27
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For each of the following systems, determine whether it has the
same solution set as the system given above:

a.
2x − 4y = −2

3x + 4y = 27
b.

2x − 4y = −2

5x = 25

c.
2x − 4y = −2

x = 5
d.

2x − 4y = −10

x = 5

9. Lines �1 and �2 intersect at point P = (4, 11, 2) and are parallel to
V1 = (4,−2, 3) and V2 = (−5, 3,−6.5), respectively.

a. Find an equation of the plane containing these lines.
b. Find the vector equation of line �3 through point P and

orthogonal to the plane containing �1 and �2.
c. Characterize all vectors V3 orthogonal to vectors V1 and V2.
d. Let V4 = 3V1−2V2 and V5 = 3V1−5V2. Characterize all vectors

V6 orthogonal to vectors V4 and V5.
e. For what c and d are V3 and V6 both orthogonal to cV1 + dV2?
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3.2 Gaussian Elimination

Many of the problems that you have encountered in this book have led
to solving systems of equations. The sizes of these systems have varied:
two equations in two unknowns, three equations in two unknowns, two
equations in three unknowns. Each time, the algebra was essentially the
same, but as these systems get bigger, it can be difficult to keep track of
what you’re doing. There is a more mechanical method that can solve any
of these systems. The trick is to figure out how to interpret the solution.

In this lesson, you will learn how to

• represent a system of equations with an augmented matrix

• reduce an augmented matrix to its row-reduced echelon form

• interpret the nature of the solution set of a system given its row-
reduced echelon form

• express an infinite solution set to a system as a vector equation

Developing Habits of Mind

Look for structural similarity. Look back at Exercises 3–5 in the Getting Started
lesson. The questions are different, but the numbers underlying them all look the same.⎛

⎝3 1 −1 0

1 1 3 0

2 1 1 0

⎞
⎠

You may have noticed you took similar steps when solving each of these exercises. This
happens because so many different kinds of problems boil down to solving systems of
linear equations. In this lesson, you’ll learn an efficient, mechanical way to solve systems
of linear equations.

Here is the system from Exercise 1 in the Getting Started lesson:⎧⎨
⎩

x + 2y + 13z = −4

x − 5y − 8z = 11

2x − 3y + 6z = 7

This system can be rewritten in terms of dot products. For example,
x + 2y + 13z is the dot product of (1, 2, 13) and (x, y, z).

(1, 2, 13) · (x, y, z) = −4

(1,−5,−8) · (x, y, z) = 11

(2,−3, 6) · (x, y, z) = 7
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What makes this system of equations different from other systems
with three equations and three unknowns? The only information that

←−
A matrix (plural matrices)
is just a rectangular array
of numbers.

distinguishes this system from others are the four numbers in each row.
These numbers can be written independently in a matrix of numbers:

←−
Look back at the two sys-
tems above. What parts
of each system are rep-
resented in this 3-by-4
matrix?

⎛
⎝1 2 13 −4

1 −5 −8 11

2 −3 6 7

⎞
⎠

When you solve a system of equations, it doesn’t matter what variables are
being used. By using matrices, you look only at the numbers involved.

For You to Do

1. For each matrix, write a corresponding system of equations.

a.

(
1 −2 1

3 4 27

)
b.

(
1 0 3 5

0 1 0 3

)
c.

⎛
⎝1 0 0 2

0 1 0 3

0 0 1 −1

⎞
⎠

Matrices like these are arrays of coefficients augmented by the constant
terms of each equation. Because of this, they are called augmented ma-
trices . A matrix that consisted only of the coefficients (the same matrix
without the rightmost column) is called a coefficient matrix .

Equivalent Systems

Definition

• Two systems of equations are equivalent systems if they have the
same solution set.

• Two augmented matrices are equivalent matrices if their corre-
sponding systems are equivalent.

Here are two equivalent systems and their corresponding matrices:{
x + y = 7

x − y = 3
→

(
1 1 7

1 −1 3

)

and

←−
What does 0 in the matrix
signify?

{
x + y = 7

2x = 10
→

(
1 1 7

2 0 10

)
These systems are equivalent because they both have the solution set
{(5, 2)}, and the two augmented matrices are (by definition) also equivalent.
The second system and matrix are simpler, though—this system, and its
corresponding matrix, make it more clear how to find any solutions to the
system. ←−

What step(s) might you
take next to make an even
simpler equivalent system?
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Developing Habits of Mind

Revisit old methods. One method you may have used in the past to solve a system of
equations is the “elimination” method: you can get the equation 2x = 10 in the second

←−
The two augmented matri-
ces are also equivalent: the
second row in the second
matrix comes from adding
the two rows in the first
matrix. So adding the two
rows is the same as adding
the two equations, only you
don’t need to deal with the
variables.

system above by adding together the two equations from the first system, x+ y = 7 and
x − y = 3.

It turns out, though, that if you replace either of the two original equations by their
sum, the new system has the same solution set! So, by definition, this substitution creates
an equivalent system. Here, the matrix representation of that second system has a 0 in
the second row. Having lots of zeros in a matrix makes the solution to the system easier
to see (as you may have noticed in the For You to Do problem 1 earlier in this lesson).

←−
You should convince
yourself that replacing an
equation by the sum of
itself and another equation
produces an equivalent
system. Try it with a
specific system and then
generalize.

So the strategy is, through a series of steps, to eliminate one variable in one equation
in each step, ending up with a system (with mostly zeros) simple enough so you can
read the solution set directly. Each step relies on the same process of the “elimination”
method: add two equations (or some multiple of each) together so a variable will end up
with a coefficient of 0. But here, you replace one of those equations with that sum to
get a new, simpler, equivalent system, then repeat until you’re done.

For You to Do

2. These seven systems of equations are all equivalent. For each given system, write
its corresponding augmented matrix, and then describe the steps you could follow
to transform the previous system into that system.⎧⎨

⎩
x + 2y + 13z = −4

x − 5y − 8z = 11

2x − 3y + 6z = 7

−→

⎛
⎝1 2 13 −4

1 −5 −8 11

2 −3 6 7

⎞
⎠

a.

⎧⎨
⎩

x + 2y + 13z = −4

−x + 5y + 8z = −11

2x − 3y + 6z = 7

b.

⎧⎨
⎩

x + 2y + 13z = −4

7y + 21z = −15

2x − 3y + 6z = 7

c.

⎧⎨
⎩

x + 2y + 13z = −4

2x − 3y + 6z = 7

7y + 21z = −15

d.

⎧⎨
⎩

x + 2y + 13z = −4

−7y − 20z = 15

7y + 21z = −15

e.

⎧⎨
⎩

x + 2y + 13z = −4

z = 0

7y + 21z = −15

f.

⎧⎨
⎩

x + 2y + 13z = −4

z = 0

y + 3z = − 15
7
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Elementary Row Operations

In problem 2, there is at least one example of each of the following
operations, all of which produce equivalent systems of equations.

• Change the order of the equations.

• Replace any equation by a nonzero multiple of itself.

• Replace any equation by a multiple of any other equation plus itself.

These operations on systems can be translated into statements about
augmented matrices. Each of the following operations on an augmented
matrix produces an equivalent matrix.

• Change the order of the rows.

• Replace any row by a nonzero multiple of itself.

• Replace any row by a multiple of any other row plus itself.

These are called the elementary row operations and are the key to
solving systems of linear equations efficiently. By working with matrices,
not only can you see the structure of linear systems more easily, but
you can also more easily build an efficient algorithm for solving systems.
This algorithm is convenient and simple to implement on a calculator or
computer.

For Discussion

3. As stated above, the three operations on systems all produce equivalent systems.
To prove this,

For each operation, show that the solution set of the original system
must be the same as the solution set of the new, modified system.

Example 1

Problem. Solve this system of equations using elementary row operations:

←−
When building an aug-
mented matrix, 0 must be
included whenever a vari-
able is not present, and
terms must be included in
the same order in each row.

⎧⎨
⎩

x + y + z = 10

−y + z = 3

−4x + 3y + 5z = 35

→

⎛
⎝ 1 1 1 10

0 −1 1 3

−4 3 5 35

⎞
⎠

Solution. Your goal is to eliminate all but one variable from each equation. One way
is to make the “x” entry in the third row equal to 0 by replacing that row with 4 times
the first row plus itself.

4
(
1 1 1 10

)
+
(
−4 3 5 35

)
=
(
0 7 9 75

)
←−
The notation between the
matrices means “replace
the third row by 4 times
the first row plus the (old)
third row.”

⎛
⎝ 1 1 1 10

0 −1 1 3

−4 3 5 35

⎞
⎠ R3=4r1+r3−−→

⎛
⎝1 1 1 10

0 −1 1 3

0 7 9 75

⎞
⎠
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Then make the “y” entry in the first row equal to 0 by replacing the first row with
the second row plus itself.(

0 −1 1 3
)

+
(
1 1 1 10

)
=
(
1 0 2 13

)
⎛
⎝1 1 1 10

0 −1 1 3

0 7 9 75

⎞
⎠ R1=r1+r2−−→

⎛
⎝1 0 2 13

0 −1 1 3

0 7 9 75

⎞
⎠

Next, multiply the second row by −1 to make the y entry in the second row positive.

−1
(
0 −1 1 3

)
=
(
0 1 −1 −3

)
⎛
⎝1 0 2 13

0 −1 1 3

0 7 9 75

⎞
⎠ R2=−r2−−→

⎛
⎝1 0 2 13

0 1 −1 −3

0 7 9 75

⎞
⎠

Now add −7 times the second row to the third row to make the y entry in the third
row equal to 0.

−7
(
0 1 −1 −3

)
+
(
0 7 9 75

)
=
(
0 0 16 96

)
⎛
⎝1 0 2 13

0 1 −1 −3

0 7 9 75

⎞
⎠ R3=−7r2+r3−−→

⎛
⎝1 0 2 13

0 1 −1 −3

0 0 16 96

⎞
⎠

Next, divide the third row by 16 (or, multiply by 1
16 ).⎛

⎝1 0 2 13

0 1 −1 −3

0 0 16 96

⎞
⎠ R3=

r3
16−−→

⎛
⎝1 0 2 13

0 1 −1 −3

0 0 1 6

⎞
⎠

The third row now translates back to the equation “z = 6,” so a significant part of the
system is now solved. Continue to eliminate nonzero entries from the other rows.⎛

⎝1 0 2 13

0 1 −1 −3

0 0 1 6

⎞
⎠ R2=r2+r3−−→

⎛
⎝1 0 2 13

0 1 0 3

0 0 1 6

⎞
⎠ R1=r1−2r3−−→

⎛
⎝1 0 0 1

0 1 0 3

0 0 1 6

⎞
⎠

The last augmented matrix gives the solution to the system: x = 1, y = 3, z = 6.

For You to Do

4. For each of the last two steps, describe the row operation that is performed, and
explain why that row operation is chosen.

Gaussian Elimination

There is more than one set of row operations that can solve a system.
The following is an algorithm for solving any system of linear equations.
The Gaussian elimination method gives a process for choosing which
row operations to perform at which time. The basic concept is to choose a
nonzero “pivot” location in each column, scale the row to make its value 1,
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Chapter 3 The Solution of Linear Systems

if necessary, and then use row operations to “clear out” any nonzero values
in the column containing that pivot. The example below shows the process
on a system of three equations and three variables.

Example 2

Problem. Solve this system of equations using Gaussian elimination:

3x + y + z = 8

x + 2y − z = 9

x + 3y + 2z = 9

→

⎛
⎝3 1 1 8

1 2 −1 9

1 3 2 9

⎞
⎠

Solution. Choose a pivot for the first column—any row with a nonzero entry in the
first column will do. Since you want to make the pivot entry 1, the simplest choice is
a row that already has a 1 in that column. Both the second and third rows have a 1, ←−

You could choose to divide
the first row by 3, but
you would then introduce
fractional coefficients.

so pick one—in this case, the second row. By convention, the pivot is placed as high as
possible within the augmented matrix, so begin by changing the order of the first two
rows. ⎛

⎝3 1 1 8

1 2 −1 9

1 3 2 9

⎞
⎠ swap r1 and r2−−→

⎛
⎝1 2 −1 9

3 1 1 8

1 3 2 9

⎞
⎠

Now use the pivot to “clear out” its column, turning all other entries into 0. To do this,
replace the second row by (−3 · row1 + row2) and the third row by (−row1 + row3).⎛

⎝1 2 −1 9

3 1 1 8

1 3 2 9

⎞
⎠ R2=−3r1+r2−−→

⎛
⎝1 2 −1 9

0 −5 4 −19

1 3 2 9

⎞
⎠ R3=−r1+r3−→

⎛
⎝1 2 −1 9

0 −5 4 −19

0 1 3 0

⎞
⎠

A pivot is complete when its column has a single 1 with all other entries 0, so your work
on the first pivot is complete. The first row is now locked in place.

Now find a pivot in the second column, and place it as high as possible (remember, the
first row is now locked in). By changing the order of the last two rows, a 1 is established
as high as possible in the second column.⎛

⎝1 2 −1 9

0 −5 4 −19

0 1 3 0

⎞
⎠ swap r2 and r3−−→

⎛
⎝1 2 −1 9

0 1 3 0

0 −5 4 −19

⎞
⎠

As before, use the pivot to “clear out” its column.⎛
⎝1 2 −1 9

0 1 3 0

0 −5 4 −19

⎞
⎠ R1=−2r2+r1−−→

⎛
⎝1 0 −7 9

0 1 3 0

0 −5 4 −19

⎞
⎠ R3=5r2+r3−−→

⎛
⎝1 0 −7 9

0 1 3 0

0 0 19 −19

⎞
⎠

Now find a pivot in the third column. The only remaining possible pivot comes from
the third row, but there is a 19 instead of a 1. Divide the last row by 19.⎛

⎝1 0 −7 9

0 1 3 0

0 0 19 −19

⎞
⎠ R3=

1
19 r3−−→

⎛
⎝1 0 −7 9

0 1 3 0

0 0 1 −1

⎞
⎠
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3.2 Gaussian Elimination

Once again, use the pivot to “clear out” its column.⎛
⎝1 0 −7 9

0 1 3 0

0 0 1 −1

⎞
⎠ R1=7r3+r1−−→

⎛
⎝1 0 0 2

0 1 3 0

0 0 1 −1

⎞
⎠ R2=−3r3+r2−−→

⎛
⎝1 0 0 2

0 1 0 3

0 0 1 −1

⎞
⎠

There are no more columns, so the Gaussian elimination process is complete. The final
augmented matrix corresponds to the system⎧⎨

⎩
x = 2

y = 3

z = −1

The solution of this system and, therefore, the solution of the original system, can be ←−
The advantage of this
system is pretty clear!

determined immediately: x = 2, y = 3, z = −1.

For You to Do

5. Solve each system using Gaussian elimination:

a.

{
5x − 3y = 8

3x + 2y = 1
b.

⎧⎨
⎩

3x + 4y + z = 10

x + 2y + 4z = 13

2x + 3y + 3z = 5

c.

{
x + y − z = 0

2x + 3y + z = 0

The process of Gaussian elimination is sometimes called reducing a ←−
In this book, the term “row-
reduced echelon form” is
sometimes shortened to
“reduced echelon form” or
simply “echelon form.”

matrix to echelon form, and leads to this definition.

Definition

A matrix is in row-reduced echelon form if
←−
On many calculators, the
rref function takes in a
matrix, and returns its row-
reduced echelon form.

(1) the first nonzero entry in any row is 1, and is to the right of the first
nonzero entry in any row above it

(2) any column containing the first 1 from any row is, except for that 1,
all 0

(3) any rows with all 0 must be at the bottom of the matrix

Roughly speaking, a matrix is in row-reduced echelon form if there are
1’s running down the diagonal, and if the columns containing these 1’s
otherwise contain all 0’s. ←−

There are, of course,
exceptions, and the precise
definition takes these into
account.Example 3

Problem. Which matrices are in echelon form?

a.

⎛
⎝1 9 0

0 1 0

0 0 1

⎞
⎠ b.

⎛
⎝1 9 0

0 0 1

0 0 0

⎞
⎠ c.

⎛
⎝1 9 0

0 0 0

0 0 1

⎞
⎠

d.

⎛
⎝1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎠ e.

⎛
⎝1 0 7 0

0 1 3 0

0 0 0 1

⎞
⎠ f.

⎛
⎝1 0 0 7

0 1 0 6

0 0 1 5

⎞
⎠
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Solution.

a. Not in echelon form. The first 1 in the second row is in column 2), and there’s a 9
above that pivotal 1, so this matrix violates part ((2)) of the definition.

b. In echelon form. This matrix meets all of the requirements of the definition.

c. Not in echelon form. The row of zeros is not below the nonzero rows, so it violates
part ((3)) of the definition.

d. In echelon form. This matrix meets all of the requirements of the definition.

d. In echelon form. This matrix meets all of the requirements of the definition.

f. In echelon form. This matrix meets all of the requirements of the definition.

Example 4

Problem. Solve this system of equations. Does the graph of the solution set represent
a point, a line, or a plane?

←−
Each equation in this
system has a plane as its
graph. In general, what do
you get if you intersect two
planes?

{
x − y + z = 7

2x + y + z = 5

Solution. Reduce the corresponding augmented matrix to echelon form.

(
1 −1 1 7

2 1 1 5

)
R2=−2r1+r2−−→(

1 −1 1 7

0 3 −1 −9

)
R2=

1
3 r2−−→

(
1 −1 1 7

0 1 − 1
3 −3

)
R1=r2+r1−−→

(
1 0 2

3 4

0 1 − 1
3 −3

)

Write the final matrix as a system of equations to read the solution.{
x + 2

3z = 4

y − 1
3z = −3

Unlike Example 2, this solution is not quite so automatic. You can rewrite each equation
to be a statement in terms of z: x = 4− 2

3z and y = −3+ 1
3z. The z is not restricted—it

can be any value at all. So the solution set is

←−
Where can the first two
numbers in each of these
ordered triples be found in
the matrix?

X =
(
4 − 2

3z, −3 + 1
3z, z

)
for any number z

= (4,−3, 0) + z
(
− 2

3 , 1
3 , 1
)

As seen in Chapter 2, this is the equation of a line in R3.

Example 5

Problem. Solve this system of equations:⎧⎨
⎩

x + 3y + z + 2w = 4

2x + y − 3z − w = 3

4x + 3y − 5z − w = 7
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3.2 Gaussian Elimination

Solution. Write the augmented matrix for the system, then reduce it to echelon form.⎛
⎝1 3 1 2 4

2 1 −3 −1 3

4 3 −5 −1 7

⎞
⎠ R2=−2r1+r2−−→

R3=−4r1+r3

⎛
⎝1 3 1 2 4

0 −5 −5 −5 −5

0 −9 −9 −9 −9

⎞
⎠

R2=− 1
5 r2−−→

⎛
⎝1 0 −2 −1 1

0 1 1 1 1

0 −9 −9 −9 −9

⎞
⎠ R3=9r2+r3−−→

⎛
⎝1 0 −2 −1 1

0 1 1 1 1

0 0 0 0 0

⎞
⎠

Write the final matrix as a system of equations.

←−
The system has only two
equations because all the
entries in the third row
of the augmented matrix
became 0. Strictly speak-
ing, that row represents the
equation
0x+ 0y + 0z + 0w = 0.

Since any values of x, y, z,
and w satisfy that equation,
it gives you no additional
information as to the fi-
nal solution, so it can be
ignored.

{
x − 2z − w = 1

y + z + w = 1

As in Example 4, each equation has more than one variable. You can write the variables
x and y each in terms of z and w. {

x = 1 + 2z + w

y = 1 − z − w

Variables z and w are not restricted, and can be any value at all. The solution set is

X = (1 + 2z + w, 1 − z − w, z, w) for any z and w

= (1, 1, 0, 0) + z (2,−1, 1, 0) + w (1,−1, 0, 1)

There is also more than one way to write the solution set to this example.
The given solution solved two equations for x and y in terms of z and w,
but this is not the only possibility. Here are the same equations solved for
z and w in terms of x and y.{

z = −2 + x + y

w = 3 − x − 2y

One way to find this is to build the initial augmented matrix with a different
order of variables. The variables placed first are the ones most easily solved
for when using Gaussian elimination.

The equations above led to the solution set

X = (x, y, −2 + x + y, 3 − x − 2y) for any x and y

= (0, 0,−2, 3) + x (1, 0, 1,−1) + y (0, 1, 1,−2)

This doesn’t look like the same solution set, but it has to be, since it comes
from the same set of equations.

For You to Do

6. a. Show that (0, 0,−2, 3) is in the solution set of both of these equations:

X = (1, 1, 0, 0) + s(2,−1, 1, 0) + t(1,−1, 0, 1)

X = (0, 0,−2, 3) + s(1, 0, 1,−1) + t(0, 1, 1,−2)

b. Find two more points (x, y, z, w) that are solutions, and check them against
both solution sets.
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Example 6

Problem. Solve this system of equations. Describe the graph of the solution set.⎧⎨
⎩

x − y + z = 3

4x + y + z = 5

5x + 2z = 12

Solution. Write the augmented matrix, then reduce to echelon form.⎛
⎝1 −1 1 3

4 1 1 5

5 0 2 12

⎞
⎠→

⎛
⎝1 0 2

5
12
5

0 1 − 3
5 − 7

5

0 0 0 4

⎞
⎠

Write the final matrix as a system of equations.⎧⎨
⎩

x + 2
5z = 0

y − 3
5z = 0

0 = 4

The last equation, 0 = 4, is a false statement—no matter what values of x, y, and
z, it will always be false. When one equation is always false, there is no solution to
the entire system of equations. No values of x, y, and z can satisfy all three equations
simultaneously. The graph is empty, since no points make all the equations true.

Exercises

1. Find all vectors X that are orthogonal to (1, 2, 3), (4, 5, 6), and
(7, 8, 9) by solving this system of equations:

←−
When all the constants are
0, the system is called a
homogeneous system .

⎧⎨
⎩

X · (1, 2, 3) = 0

X · (4, 5, 6) = 0

X · (7, 8, 9) = 0

−→

⎧⎨
⎩

x + 2y + 3z = 0

4x + 5y + 6z = 0

7x + 8y + 9z = 0

2. The solution to Exercise 1 says that any multiple of (1,−2, 1)
is perpendicular to the three given vectors. How is this possible
geometrically?

3. Find the linear combination of (1, 2, 3), (4, 5, 6), and (7, 8, 10) that
produces (17, 19, 12) by solving this system of equations:⎧⎨

⎩
a + 4b + 7c = 17

2a + 5b + 8c = 19

3a + 6b + 10c = 12

4. Let A = (1,−3, 2), B = (5, 0,−4), and C = (2, 1,−1).

a. Write (13, 6,−16) as a linear combination of A, B, and C.
b. Find all vectors that are orthogonal to A, B, and C.
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5. Let A = (1,−1, 2), B = (2, 1,−1), and C = (−1, 1,−3). Write the
following vectors as linear combinations of A, B, and C:

a. (1, 0, 0) b. (0, 1, 0) c. (0, 0, 1)

d. (1, 1, 1) e. (17,−13, 19)

6. Reduce this matrix to echelon form and compare this result to the
results you got in Exercise 5.⎛

⎝ 1 2 −1 1 0 0 1 17

−1 1 1 0 1 0 1 −13

2 −1 −3 0 0 1 1 19

⎞
⎠

7. Solve each system by reducing an augmented matrix to echelon
form.

a.

{
2x + 3y = 11

3x + y = −1
b.

{
2a − 3b = 19

a + 5b = −10

c.

⎧⎨
⎩

x + y + z = −2

2x − 3y + z = −11

−x + 2y − z = 8

d.

⎧⎨
⎩

x + y + z = 6

2x − 3y + 4z = 3

4x − 8y + 4z = 12

e.

⎧⎨
⎩

x + 2y + z = 24

2x − 3y + z = −1

x − 2y + 2z = 7

f.

⎧⎨
⎩

a + b + c = 0

3a − 2b + 5c = 1

2a + b + 2c = −1

g.

⎧⎨
⎩

a − 2b − 4c = −3

2a + 3b + 7c = 13

3a − 2b + 5c = −15

h.

⎧⎪⎪⎨
⎪⎪⎩

x + y + z + w = 10

2x − y + 3z − w = 5

3x + y + z + w = 12

−x − y + z + w = 4

8. Solve each system by reducing an augmented matrix to echelon
form. Write solution sets as fixed vectors plus linear combinations
of other vectors when needed, as seen in Examples 4 and 5.

a.

⎧⎨
⎩

x − y + z = 2

3x + y − z = 3

x + y + z = 3

b.

{
x + 3y = 7

x − y = −1

c.

⎧⎨
⎩

x − y + 3z = 5

5x + y − z = 9

2x + y + 3z = 7

d.

{
x − y + 3z = 2

2x − y + z = 3

e.

⎧⎨
⎩

x − y + 3z = 2

2x − y + z = 3

x + y + z = 4

f.

⎧⎨
⎩

x − y + 3z = 2

2x − y + z = 3

3x − 2y + 4z = 5

g.

⎧⎨
⎩

x − y + 3z = 2

2x − y + z = 3

3x − 2y + 4z = 6

h.

{
x − y + z − w = 2

2x + 3y + z − w = 5

9. a. Suppose A = (a, b, c, d) and B = (e, f, g, h) are solutions to
the system in Exercise 8h. Is A + B a solution to the system?
Explain.

b. Find a system of two equations in three unknowns so that if
A and B are solutions, so is A + B.
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10. Solve each homogeneous system. Remember

A homogeneous system is
one where all the constants
are 0.
The zero vector O is a so-
lution to any homogeneous
system—why? For each
system, determine if there
are additional nonzero so-
lutions.

a.

⎧⎨
⎩

x − y + z = 0

3x + y − z = 0

x + y + z = 0

b.

{
x + 3y = 0

x − y = 0

11. For each pair of homogeneous systems, solve them separately, then
compare the two systems and their solution sets.

a. (i)

⎧⎨
⎩

x − y + 3z = 0

5x + y − z = 0

2x + y + 3z = 0

(ii)

{
x − y + 3z = 0

2x + y + 3z = 0

b. (i)

⎧⎨
⎩

x − y + 3z = 0

2x − y + z = 0

x + y + z = 0

(ii)

{
x − y + 3z = 0

2x − y + z = 0

c. (i)

⎧⎨
⎩

x − y + 3z + w = 0

2x − y + z + w = 0

3x − 2y + 4z + w = 0

(ii)

⎧⎪⎪⎨
⎪⎪⎩

x − y + 3z + w = 0

2x − y + z + w = 0

3x − 2y + 4z + w = 0

3x + 2y + 4z + w = 0

12. Solve each homogeneous system.

←−
Why is there more than one
solution for part a?

a.

{
x − y + z − w = 0

2x + 3y + z − w = 0
b.

⎧⎨
⎩

x − y + 3z = 0

2x − y + z = 0

3x − 2y + 4z = 0

13. On the basis of what you’ve seen in Exercises 10–12, under what
circumstances must there be more than one solution to a system
of equations? You’ve also seen that there can be more than one
solution under other circumstances. Try to describe such a circum-
stance.

124



3.3 Linear Combinations

3.3 Linear Combinations

In Chapter 1, you saw a definition for linear combination. It was not always
easy to find out if one vector was a linear combination of two other vectors.
The row-reduced echelon form of a matrix made up of those vectors is a
quick way to find out.

In this lesson, you will learn how to

• determine whether a vector is a linear combination of other given
vectors

• find the linear combination of one or more vectors that results in a
given vector

Here is the definition you saw in Chapter 1:

Definition

Let A1, A2, . . . , Ak be vectors in Rn and let c1, c2, . . . , ck be real numbers. ←−
Informally, a linear combi-
nation is any sum of scalar
multiples of a given set of
vectors.

A vector B that can be written as

c1A1 + c2A2 + · · · + ckAk = B

is a linear combination of A1 through Ak.

One way to find out if a vector B can be expressed as a linear combination
of other vectors also tells you how to make that combination (if it is
possible).

Example 1

Problem. Determine whether (17, 19, 12) can be written as a linear combination of ←−
This question uses the same
vectors as Exercise 3 from
the last lesson. Pay close
attention to the process.

(1, 2, 3), (4, 5, 6), and (7, 8, 10). If so, how? If not, explain.

Solution. The vector (17, 19, 12) is a linear combination of the given vectors if and
only if there exist a, b, and c so that

a(1, 2, 3) + b(4, 5, 6) + c(7, 8, 10) = (17, 19, 12)

This leads to three equations that must be solved simultaneously. Here are the three
equations and the corresponding augmented matrix.⎧⎨

⎩
a + 4b + 7c = 17

2a + 5b + 8c = 19

3a + 6b + 10c = 12

→

⎛
⎝1 4 7 17

2 5 8 19

3 6 10 12

⎞
⎠

Note that the four vectors you started with—the three given vectors and the target
vector—have become the four columns of the augmented matrix. Now, reduce the ←−

This makes it possible to
move directly from the
problem statement to the
augmented matrix.
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augmented matrix to echelon form, and write the corresponding system. If the system
has a solution, then a linear combination exists. If not, it doesn’t.⎛

⎝1 4 7 17

2 5 8 19

3 6 10 12

⎞
⎠ →

⎛
⎝1 0 0 −12

0 1 0 23

0 0 1 −9

⎞
⎠ →

⎧⎨
⎩

a = −12

b = 23

c = −9

So a linear combination can be made using the values a = −12, b = 23, and c = −9.

Check your solution to make sure it works.

−12(1, 2, 3) + 23(4, 5, 6) − 9(7, 8, 10)

= (−12 + 92 − 63,−24 + 115 − 72,−36 + 138 − 90)

= (17, 19, 12)

The solution to the system also indicates that this is the only possible linear combination ←−
You will soon see cases
where there are more
than one possible linear
combinations.

that produces (17, 19, 12).

For You to Do

1. Determine whether (7, 8, 9) can be written as a linear combination of (1, 2, 3) and
(4, 5, 6). If so, how? If not, explain.

Example 2

Problem. Determine whether (11, 13, 15) can be written as a linear combination of
(1, 2, 3), (4, 5, 6), and (7, 8, 9). If so, how? If not, explain.

Solution. Set up the matrix, reduce to echelon form, and translate.⎛
⎝1 4 7 11

2 5 8 13

3 6 9 15

⎞
⎠ →

⎛
⎝1 0 −1 −1

0 1 2 3

0 0 0 0

⎞
⎠ →

{
a − c = −1

b + 2c = 3

The final system says that a · (1, 2, 3) + b · (4, 5, 6) + c · (7, 8, 9) = (11, 13, 15) as long as
a − c = −1 and b + 2c = 3. There is a linear combination for any value of c, since the
equations can be rewritten as {

a = c − 1

b = −2c + 3

Find any particular linear combination by picking a value of c. For example, c = 2 ←−
So, unlike the previous
two examples, there are
infinitely many linear
combinations.

leads to the solution a = 1, b = −1, c = 2 and the linear combination

1(1, 2, 3) − 1(4, 5, 6) + 2(7, 8, 9) = (11, 13, 15)

Developing Habits of Mind

Seek structural similarity. The first three columns of the matrix in Example 2—both
the original and the echelon form—are identical to the first three columns in For You
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to Do problem 1. In that problem, you found that (7, 8, 9) was a linear combination of
(1, 2, 3) and (4, 5, 6).

(7, 8, 9) = −1(1, 2, 3) + 2(4, 5, 6)

Example 2 asks to find out whether (11, 13, 15) is a linear combination of (1, 2, 3), (4, 5, 6),
and (7, 8, 9). Since (7, 8, 9) is itself a linear combination of the other two, this means that
the question is identical to finding out whether (11, 13, 15) is a linear combination of just
(1, 2, 3) and (4, 5, 6).

For example, take the solution just found in Example 2:

1(1, 2, 3) − 1(4, 5, 6) + 2(7, 8, 9) = (11, 13, 15)

Replace (7, 8, 9) by a combination of (1, 2, 3) and (4, 5, 6), then recollect terms.

1(1, 2, 3) − 1(4, 5, 6) + 2[−1(1, 2, 3) + 2(4, 5, 6)] = −1(1, 2, 3) + 3(4, 5, 6)

This means that if you can find a solution to (11, 13, 15) = a · (1, 2, 3) + b · (4, 5, 6) +
c · (7, 8, 9), you can also find a solution to (11, 13, 15) = p · (1, 2, 3) + q · (4, 5, 6).

It is even possible to solve the problem by ignoring the (7, 8, 9) column altogether.
Here is Example 3 resolved without the vector (7, 8, 9): ←−

Be careful! This works
because (7, 8, 9) is a
linear combination of the
other two vectors. Only if
you are sure in advance
that a vector is a linear
combination of the other
vectors should you use this
technique.

⎛
⎝1 4 11

2 5 13

3 6 15

⎞
⎠ →

⎛
⎝1 0 −1

0 1 3

0 0 0

⎞
⎠ →

{
a = −1

b = 3

The result states that (11, 13, 15) can be written just as a linear combination of (1, 2, 3)
and (4, 5, 6).

Example 3

Problem. Determine whether (17, 19, 12) can be written as a linear combination of
(1, 2, 3), (4, 5, 6), and (7, 8, 9). If so, how? If not, explain.

Solution. As before, set up the augmented matrix and reduce it to echelon form.⎛
⎝1 4 7 17

2 5 8 19

3 6 9 12

⎞
⎠ →

⎛
⎝1 0 −1 0

0 1 2 0

0 0 0 1

⎞
⎠ →

⎧⎨
⎩

a − c = 0

b + 2c = 0

0 = 1

The third row says 0a+0b+0c = 1, and that’s impossible for any choice of the variables.
It is impossible to solve the system of equations needed here, and that means that
(17, 19, 12) cannot be written as a linear combination of (1, 2, 3), (4, 5, 6), and (7, 8, 9). ←−

You have seen that the
vectors (1, 2, 3), (4, 5, 6),
and (7, 8, 9) all lie on
the same plane in R3. Is
(17, 19, 12) on that plane?Developing Habits of Mind

Reason about calculations. If you arrive at 0 = 1, where is the error in logic? All
the algebra (represented by the elementary row operations that reduced the matrix to
echelon form) was correct! The only place the error can be is in the initial statement of
the linear combination

a(1, 2, 3) + b(4, 5, 6) + c(7, 8, 9) = (17, 19, 12)
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Chapter 3 The Solution of Linear Systems

that led to this set of algebraic steps. The original statement must be invalid, so there
can be no numbers a, b, c for which the equation is true.

The examples in this lesson are perfectly general: they suggest a method
for determining whether a given vector B is a linear combination of
other vectors A1, . . . , Ak, and, if it is, the method shows how to find the
coefficients. These facts are summarized in the following lemma.

Lemma 3.1

To test if B is a linear combination of k vectors A1 to Ak, build a matrix
whose first k columns are A1 through Ak, with B in column (k + 1). Then
reduce to echelon form.

If any row of the echelon form has a nonzero entry in column k + 1 and
zeros everywhere else, the linear combination cannot be made. Otherwise, it
can be made, and translating the final matrix back to a system of equations
shows how.

Exercises

1. When asked to write D as a linear combination of three vectors A,
B, and C, Derman ended up with this echelon form:⎛

⎝1 0 0 3

0 1 0 −2

0 0 1 1

⎞
⎠

Write D as a linear combination of A, B, and C.

2. Can D = (13, 17, 3) be written as a linear combination of A =
(1, 2, 3), B = (4, 5, 6), and C = (7, 8, 0)? If so, how?

3. Can D = (13, 17, 3) be written as a linear combination of A =
(1, 2, 3), B = (4, 5, 6), and C = (7, 8, 9)? If so, how?

4. Can D = (13, 17, 21) be written as a linear combination of A =
(1, 2, 3), B = (4, 5, 6), and C = (7, 8, 9)? If so, how?

5. To see if vector D can be written as a linear combination of A, B,
and C, you create a matrix and reduce to echelon form. For each
of the following echelon forms, determine whether D is a linear
combination of A, B, and C, and if so, how.

a.

⎛
⎝1 0 0 − 30

7

0 1 0 − 115
7

0 0 1 −60

⎞
⎠ b.

⎛
⎝1 0 0 0

0 1 0 5

0 0 1 7

⎞
⎠

c.

⎛
⎝1 1

2 − 3
2 0

0 0 0 1

0 0 0 0

⎞
⎠ d.

⎛
⎝1 1

2 0 0

0 0 1 0

0 0 0 1

⎞
⎠

e.

⎛
⎝1 1

2 0 5
2

0 0 1 7

0 0 0 0

⎞
⎠ f.

⎛
⎝1 1

2 − 3
2

5
2

0 0 0 0

0 0 0 0

⎞
⎠
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6. Find the intersection of the two planes whose equations are X ·
(1,−1, 7) = −2 and X ·(2,−1, 12) = −1 by setting up an augmented
matrix and reducing to echelon form.

7. Find the intersection of the two lines with equations X = (4,−2, 2)+ ←−
First find the values of t
and s. Then what?

t(−1, 2, 1) and X = (1, 2,−1) + s(2,−3, 1).

8. Find the intersection of the three planes whose equations are

x + 3y − z = −2

2x + 7y − 3z = −6

x + y + 2z = −3

9. Determine if (13, 6,−16) can be written as a linear combination of
(1,−3, 2), (5, 0,−4), and (2, 1,−1). If so, show how.

10. a. In R4, find a vector orthogonal to all of these vectors:

(22, 16, 3,−2) (22, 22, 9,−1) (17, 16, 6,−1)

b. Take It Further. Show that there is a nonzero vector orthog-
onal to any three vectors in R4.

11. In R4, let

X = y(22, 16, 3,−2) + z(22, 22, 9,−1) + w(17, 16, 6,−1)

a. Find a coordinate equation in the form X ·N = 0 with the same
solution set as the equation above. Compare your answer to
the result in Exercise 10.

b. Take It Further. Show that every point that satisfies your ←−
So, your answer to part a
defines a hyperplane in R4.

solution to part a also satisfies the original equation.

12. Suppose P , A, B, and C are vectors in R4 and you have this
equation: ←−

If N is orthogonal to A, B,
and C, dot both sides with
N . Does such an N exist?

X = P + yA + zB + wC

Explain why the solution also satisfies an equation of the form
X · N = d.

13. Let E be the set of points X in R4 such that

X · (1, 1, 1, 1) = 10

Find vectors P , A, B, and C so that E is the solution set to

X = P + yA + zB + wC
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3.4 Linear Dependence and Independence

You can determine special relationships among a set of vectors by deter-
mining whether a linear combination of them can produce the zero vector.

In this lesson, you will learn how to

• recognize the identity matrix by notation and by form

• use row-reduced echelon form to find a linear combination of a vector
in terms of a group of other vectors (if it exists)

• interpret linear dependency in R3 geometrically

Example 1

Problem. Write (0, 0, 0) as a linear combination of the given vectors.

a. A = (1, 2, 3), B = (4, 5, 6), C = (7, 8, 10)

b. A = (1, 2, 3), B = (4, 5, 6), C = (7, 8, 9)

Solution. Using Lemma 3.1 from Lesson 3.3, construct an augmented matrix whose
first three columns are the three given vectors, and whose fourth column is the zero
vector. Then reduce the matrix to echelon form.

a.

⎛
⎝1 4 7 0

2 5 8 0

3 6 10 0

⎞
⎠ →

⎛
⎝1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎠ →

a = 0

b = 0

c = 0
According to the echelon form, the only possible solution is to set all the scalars
to 0. ←−

The “all zero” solution is
typically referred to as the
trivial solution .b.

⎛
⎝1 4 7 0

2 5 8 0

3 6 9 0

⎞
⎠ →

⎛
⎝1 0 −1 0

0 1 2 0

0 0 0 0

⎞
⎠ →

a − c = 0

b + 2c = 0

For these vectors, there are nontrivial solutions: any combination of a, b, and c,
where a = c and b = −2c. One such possibility is

2(1, 2, 3) − 4(4, 5, 6) + 2(7, 8, 9) = (0, 0, 0)

which you can get by letting c = 2.

You can always find a linear combination of any set of vectors that will
produce O: simply let all the scalars equal zero. But special relationships
can be revealed if you can find nonzero combinations.
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3.4 Linear Dependence and Independence

Definition

• Vectors A1, A2, . . . , Ak are linearly dependent if there are num-
bers c1, c2, . . . , ck that are not all zero so that ←−

The key phrase in the
definition is not all zero,
otherwise every set of
vectors would be linearly
dependent.

c1A1 + c2A2 + · · · + ckAk = O

where O = (0, 0, . . . , 0).

• On the other hand, the vectors are linearly independent if the
only solution to c1A1 + c2A2 + · · · + ckAk = O is c1 = c2 = · · · =
ck = 0.

The definitions of linearly dependent and linearly independent are stated
in terms of algebra. But there is a geometric interpretation in R3: three
vectors in R3 are linearly dependent if and only if the three vectors lie in
the same plane. So, for example, (7, 8, 9) is in the plane spanned by (1, 2, 3) ←−

You can extend this idea
to any dimension, even if
you cannot visualize it: “n
vectors in Rn are linearly
dependent if and only if
they all lie in the same
hyperplane.” What does
this mean in R2?

and (4, 5, 6) but (7, 8, 10) is not. The next theorem states this in general.

Theorem 3.2

Vectors A1, A2, . . . , Ak are linearly dependent if and only if one of the
vectors is a linear combination of the others.

For Discussion

1. Prove the statement “If vectors A1, A2, . . . , Ak are linearly dependent, then one ←−
Since the statement in
Theorem 3.2 is “if and
only if,” the proof comes
in two parts to prove
each direction. This For
Discussion problem proves
one direction. You will
prove the other direction in
Exercise 9.

of the vectors Ai is a linear combination of the other vectors.”

To begin, you can say that if the vectors are linearly dependent, then by the
definition of linear dependence,

c1A1 + c2A2 + · · · + ckAk = O

for some set of numbers c1, c2, . . . , ck where at least one scalar is not zero. Let ci
be the first nonzero among the scalars.

Complete this half of the proof by showing that Ai can be written as a linear
combination of the other vectors.

Example 2

Problem. Are the vectors (1, 1,−1), (−1, 1, 0), and (2, 1, 1) linearly dependent or
independent?

Solution. The vectors are linearly dependent if a(1, 1,−1) + b(−1, 1, 0) + c(2, 1, 1) =
(0, 0, 0) has a nonzero solution. Set up an augmented matrix and reduce to echelon form.⎧⎨

⎩
a − b + 2c = 0

a + b + c = 0

−a + c = 0

→

⎛
⎝ 1 −1 2 0

1 1 1 0

−1 0 1 0

⎞
⎠
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Reducing that matrix to echelon form gives Remember

You can construct the
augmented matrix directly
by writing the given vectors
as the first columns, and
then the desired linear
combination vector as the
last column.

⎛
⎝1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎠

So the only solution is a = 0, b = 0, c = 0. Thus, these three vectors are linearly
independent.

Example 3

Problem. Are the vectors (1, 2, 3), (4, 5, 6), and (7, 8, 9) linearly dependent or inde-
pendent?

Solution. These vectors should be old friends by now. You could set up a matrix and
reduce it to echelon form, but you’ve seen in Example 1 earlier in this lesson that

(7, 8, 9) = 2(4, 5, 6) − (1, 2, 3)

So, the vectors are linearly dependent by Theorem 3.2.

←−
Note that (1, 2, 3) −
2(4, 5, 6) + (7, 8, 9) =
(0, 0, 0)

Here is a graph of the three linearly independent vectors from
Example 2.

B

C

AAA

The vectors (1, 1,−1), (−1, 1, 0), and (2, 1, 1) do not lie in the same plane.

Here are two views of the three linearly dependent vectors from
Example 3.

A

B

C

A

B

C

These vectors lie in the same plane.

Facts and Notation

The elementary row operations will leave any column in a matrix consisting entirely of
zeros unchanged. So when testing linear dependence or independence, adding that final ←−

Why?column of zeros provides no additional information—it will not change no matter what
elementary row operations you take to reduce the matrix.
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3.4 Linear Dependence and Independence

When a set of vectors in R3 is linearly independent, the echelon form of the augmented
matrix, which represents the only possible solution, is⎛

⎝1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎠

which translates to the equations a = 0, b = 0, c = 0. If you remove that extraneous
final column of zeros, you get ⎛

⎝1 0 0

0 1 0

0 0 1

⎞
⎠

This form, a matrix with 1’s on the diagonal and 0 otherwise, is an example in R3 of
the result you get when you reduce a matrix of n linearly independent vectors in Rn.
This matrix is called the identity matrix, with the shorthand I, for reasons that will
become clear in the next chapter.

The statement about linearly independent vectors made in the Facts and
Notation above can be expressed as the following theorem.

Theorem 3.3

A set of n vectors A1, . . . , An in Rn is linearly independent if and only if
the echelon form of the matrix whose columns are A1 through An is the ←−

This theorem will grow into
a really big theorem over
the coming chapters.

identity matrix I.

Exercises

1. Solve each problem by writing an augmented matrix and reducing
it to echelon form.

a. Show that (3, 1, 0), (2, 4, 3), and (0,−10,−9) are linearly de-
pendent.

b. Are (2, 1, 4), (3, 0, 1), (7, 1, 2), and (8,−1, 0) linearly depen-
dent?

c. Are (4, 1, 2), (3, 0, 1), and (7, 1, 4) linearly dependent?
d. Write (9, 8, 17) as a linear combination of (2, 1, 3), (4, 1, 2), and

(7, 5, 6).
e. Show that (9, 8, 17), (2, 1, 3), (4, 1, 2), and (7, 5, 6) are linearly

dependent.
f. Show that (10, 5, 10, 6) is a linear combination of (4, 1, 2, 0) and

(3, 2, 4, 3).
g. Show that (10, 5, 10, 6), (4, 1, 2, 0), and (3, 2, 4, 3) are linearly

dependent.

2. a. Show that (6, 9, 12) is a linear combination of the vectors
(1, 2, 3), (4, 5, 6), and (7, 8, 9).

b. Show that (6, 9, 10) is not a linear combination of the vectors
(1, 2, 3), (4, 5, 6), and (7, 8, 9).
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3. a. Describe all vectors that are orthogonal to (1, 0, 3) and (7, 1, 2).
b. Describe all vectors that are orthogonal to (1, 0, 3), (7, 1, 2),

and (9, 1, 9).
c. Describe all vectors that are orthogonal to (1, 0, 3), (7, 1, 2),

and (9, 1, 8).
d. Which of the three sets of vectors (from parts a, b, and c

above) are linearly independent?
e. Compare your answers to parts a, b, and c. How did your

answer to part d relate to those answers?

4. Find the intersection of the graphs of X · (2, 1, 4) = 8 and X ·
(1, 1, 5) = 6. Describe that intersection geometrically. ←−

That is, is it a point? a
line? a plane? something
else?

5. Find the intersection of the graphs of

X = (3, 1, 2) + t(4, 1, 6) and

X = (−2, 5, 5) + s(3,−1, 1)

6. Write (1, 2, 5) as a linear combination of (4, 1, 6) and (3,−1, 1).

7. Are the lines with equations X = (3, 1, 4) + t(0, 1, 6) and X = Lines are skew in R3 if
they are neither parallel nor
intersecting. This “third”
possibility can’t exist in R2,
right?

(1, 1, 7) + s(1, 2, 4) parallel, intersecting, or skew?

8. Show that any set of vectors that contains O is linearly dependent.

9. Complete the second half of the proof of Theorem 3.2 by proving
the following statement:

“Given a set of vectors A1, A2, . . . , Ak, if one of the
vectors Ai is a linear combination of the other vectors
in the set, then the vectors are linearly dependent.”

10. Find numbers a, b, and c, not all zero, so that ←−
Will any other values for a,
b, and c work?a(7, 1, 3) + b(2, 1, 4) + c(8,−1,−6) = (0, 0, 0)

11. Show that if a(1, 4, 7)+ b(2, 5, 8)+ c(3, 6, 0) = (0, 0, 0), then a = b =
c = 0.

12. Find all vectors orthogonal to the rows of⎛
⎝3 1 2 0

4 1 6 1

1 3 2 0

⎞
⎠

13. Show that any vector orthogonal to the rows of⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠

must be (0, 0, 0).
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3.4 Linear Dependence and Independence

14. When asked to write D as a linear combination of three vectors A,
B, and C, Sasha ended up with this echelon form:⎛

⎝1 0 2 0

0 1 −1 0

0 0 0 0

⎞
⎠

a. Is D a linear combination of A, B, and C? Explain.
b. Are A, B, C, and D linearly dependent? Explain how you

know.
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3.5 The Kernel of a Matrix

In a number of exercises and examples, you found the set of vectors ←−
For two examples, see
Exercises 12 and 13 from
Lesson 3.4.

orthogonal to the rows of a given matrix. This set of vectors is called the
kernel of a matrix.

In this lesson, you will learn how to

• find the kernel of a matrix

• understand the connection between the kernel of a matrix and the
linear dependence/independence of the columns

Definition

If A is a matrix, the kernel of A, written ker(A), is the set of all vectors ←−
Throughout the rest of this
course, you’ll see general-
izations, refinements, and
equivalent formulations of
this definition. But this is a
good place to start.

orthogonal to the rows of A.

Example 1

Problem. Find the kernel of

(
3 1 2

4 0 1

)
.

Solution. Finding the kernel of this matrix is equivalent to finding the set of vectors
orthogonal to both (3, 1, 2) and (4, 0, 1). If X = (x, y, z) is a vector in the kernel, then
X satisfies

X · (3, 1, 2) = 0

X · (4, 0, 1) = 0
→
{

3x + y + 2z = 0

4x + z = 0

This produces a homogeneous system of equations. Solve by writing the augmented
Remember

A system of equations
is homogeneous if all its
constants are zero.

matrix, then reducing to echelon form:(
3 1 2 0

4 0 1 0

)
→
(

3 1 2 0

1 −1 −1 0

)
→ · · · →

(
1 −1 −1 0

0 4 5 0

)
→
(

1 0 1
4 0

0 1 5
4 0

)

The kernel is the set of solutions generated by the equations

x = − 1
4z

y = − 5
4z

The kernel of this matrix is thus

X = (− 1
4z,− 5

4z, z) or X = t(−1,−5, 4)

Note that the zero vector (0, 0, 0) is in the kernel (when t = 0), but there are other
solutions, so the kernel includes other vectors as well.
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For You to Do

1. Find the kernel of each matrix:

a.

(
1 2 3

1 4 7

)
b.

⎛
⎝1 2 3

1 4 7

1 6 0

⎞
⎠

c.

⎛
⎝1 2 3

1 4 7

1 6 11

⎞
⎠ d.

⎛
⎜⎜⎝

1 2 3 4

1 4 7 0

1 6 11 0

1 0 3 0

⎞
⎟⎟⎠

For Discussion

2. Will the zero vector O always be in the kernel of any matrix?

Developing Habits of Mind

Look for shortcuts. You may have noticed in the preceding For You to Do that when
finding the kernel of a matrix, you could jump directly to the augmented matrix for the
system of equations. The augmented matrix is built by tacking on a column of zeros to
the right of the original.

But you can even skip that part! As stated in the last lesson, any row operations
performed on a matrix leaves a column of zeros unaffected. That means you can take
the original matrix, reduce it directly to echelon form, then tack on that column of zeros
at the end. Or, you can just picture it being there, and not bother inserting it at all!

Minds in Action Episode 10

Tony: I feel like we are doing the same thing over and over in this chapter.

Derman: Yeah, I keep typing “rref” a lot.

Tony: No, I mean we keep using the echelon form to answer different questions.
Sometimes, the echelon form is really simple, and it makes the answer simple.

Sasha: So what have you found?

Tony: One thing that’s been nice in this lesson is when the constants are all zero, you
never run into that sticky situation where there is no solution to a system.

Derman: Oh, the 0 = 1 thing. That always confuses me.

Tony: There always has to be at least one solution, the zero vector. That happens with
these kernels, too. O is always in the kernel.

Sasha: I noticed that a lot of the time O is the only thing in the kernel.

Tony: Right. In the last lesson, zero was the only solution when the vectors were linearly
independent.
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Sasha: And in this lesson . . . hey, that’s a great idea!

Tony: What’s a great idea?

Sasha: I was wondering when the kernel would be just the zero vector. And you just
figured it out!

Tony: Ohh. Well, I’ll take credit if you want. Very smooth, Sasha.

Derman: You guys are confusing. I need a worked-out example.

Example 2

Problem.

a. Show that the vectors (1, 1, 1), (2, 4, 6), and (3, 7, 2) are linearly independent.

b. Find the kernel of

⎛
⎝1 2 3

1 4 7

1 6 2

⎞
⎠.

Solution.

a. Write these vectors as columns of a matrix. As stated in Theorem 3.3, the vectors
are independent if and only if the echelon form of that matrix is the identity matrix. Remember

The identity matrix has 1’s
on its diagonal and zeros
everywhere else.

The matrix reduced to echelon form is⎛
⎝1 2 3

1 4 7

1 6 2

⎞
⎠→

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠

which is the identity. So the vectors are linearly independent.

b. Note that this is the same matrix from part a. To find vectors (x, y, z) orthogonal
to the rows of this matrix, look for solutions to the system⎧⎨

⎩
x + 2y + 3z = 0

x + 4y + 7z = 0

x + 6y + 2z = 0

→

⎛
⎝1 2 3 0

1 4 7 0

1 6 2 0

⎞
⎠

What is the echelon form of this augmented matrix? Look back at part a, which
uses the same matrix without a column of zeros. The column of zeros has no effect
so the echelon form must be ⎛

⎝1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎠

This states that the zero vector (0, 0, 0) is the only vector orthogonal to the three-
row vectors. The kernel is only the zero vector.
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This example suggests the following two theorems.

Theorem 3.4

The kernel of a matrix is O if and only if the columns of the matrix are
linearly independent.

Theorem 3.5

Given a square matrix A, ker(A) = O if and only if rref(A) = I. ←−
A square matrix is a matrix
that has the same number
of rows and columns.

For Discussion

3. Sketch proofs for these two theorems using the examples as templates, and using
the theorems from Lesson 3.4.

Developing Habits of Mind

Look for connections. The theorems in this chapter say that these conditions on a
square matrix A are all connected:

1. The columns of A are linearly independent.

2. rref(A) = I.

3. ker(A) = O.

In later chapters, you’ll add to this list of connections. It turns out these statements are
equivalent : for a given matrix A, if one is true, they are all true, and if one is false, they
all fail.

This means that if you are looking for any one of these properties to be true for
a matrix, you can choose to establish whichever property is most convenient. In some
situations, this is a very good reason to construct a matrix in the first place.

Exercises

1. In R2, characterize ←−
Draw a picture, if you think
it will help.a. all linear combinations of (1, 3)

b. all linear combinations of (1, 3) and (3, 6)
c. all linear combinations of (1, 3) and (−3,−9)

2. In R3, give a geometric description of ←−
The set of all linear
combinations of (1, 3, 7),
(3, 6,−1), and (5, 6, 1) is
called the linear span of
these vectors.

a. all linear combinations of (1, 3, 7)
b. all linear combinations of (1, 3, 7) and (3, 6,−1)
c. all linear combinations of (1, 3, 7), (3, 6,−1), and (5, 6, 1)
d. all linear combinations of (1, 3, 7), (3, 6,−1), and (4, 9, 6)
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3. In R3, give a geometric description of

a. all vectors orthogonal to (1, 3, 7)

b. the kernel of

⎛
⎝1 3

3 6

7 −1

⎞
⎠

c. the kernel of

⎛
⎝1 3 5

3 6 6

7 −1 1

⎞
⎠

d. the kernel of

⎛
⎝1 3 4

3 6 9

7 −1 6

⎞
⎠

4. For each matrix, given in echelon form, find its kernel: ←−
You may prefer to write
an additional column of
zeros to the right of the
matrices given in these
exercises. Remember, the
zero vector is in the kernel
of any matrix.

a.

⎛
⎝1 0 3

0 1 −2

0 0 0

⎞
⎠ b.

⎛
⎝1 0 −4 3

0 1 2 −5

0 0 0 0

⎞
⎠ c.

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠

5. For each given matrix, find its kernel.

a.

(
3 1 2

1 2 4

)
b.

(
3 1 0 4

1 4 3 1

)

c.

⎛
⎝3 1 0 4

1 4 3 1

2 −3 −3 3

⎞
⎠ d.

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠

e.

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠ f.

⎛
⎜⎜⎝

1 3 0

2 1 3

3 4 3

5 5 6

⎞
⎟⎟⎠

6. a. Suppose A is an m × n matrix and vectors X and Y are in
ker(A). Show that every linear combination of X and Y is also
in ker(A).

b. Show that the kernel of a matrix is either just the zero vector
or contains infinitely many vectors.

7. Take It Further. If A is a 6 × 11 matrix, show that ker(A) is
infinite.

8. Without a calculator, compute the row-reduced echelon form of

A =

⎛
⎝1 0 −2 8 4

1 0 −1 5 2

2 0 −3 18 6

⎞
⎠

9. Find the solution set of the system⎧⎪⎪⎨
⎪⎪⎩

2x + 3y − z + w = 17

x + y + z − 2w = −6

x + 2z + 4w = 18

2y + z − 2w = 5
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10. When asked to solve a system of equations, Derman ended up with
this echelon form: (

1 0 1 0

0 1 −2 1

)
Find a solution for the system of equations.

11. Find ker(A) if A =

⎛
⎝1 1 1 2

2 1 −1 1

3 2 0 3

⎞
⎠.

12. Find the intersection of the two lines with equations X = (3, 0, 1)+
t(1, 1, 2) and X = (7, 3, 4) + s(2, 1,−1).

13. Find a set of vectors in R3 so that all of the following are true:

• (1, 1, 0) is in your set.
• Every vector (x, y, z) in R3 is a linear combination of the

vectors in your set.
• The vectors in your set are linearly independent.

14. Find a set of vectors in R4 so that all of the following are true:

• (1, 0, 1, 0) is in your set.
• Every vector (x, y, z, w) in R4 is a linear combination of the

vectors in your set.
• The vectors in your set are linearly independent.

15. Let A be an n×n matrix. Show that if any one of these statements
is true, the other three are also true.

a. rref(A) = I.
b. The columns of A are linearly independent.
c. ker(A) = O.
d. Every vector in Rn is a linear combination of the columns of A. ←−

Another way to read
Exercise 15d: “The linear
span of the columns of A
is all of Rn.”

16. Show that if any one of the statements in Exercise 15 are false, they
all are.
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Chapter 3 Mathematical Reflections

These problems will help you summarize what you have learned in this Vocabulary

In this chapter, you saw
these terms and symbols
for the first time. Make
sure you understand what
each one means, and how
it is used.

• augmented matrix

• coefficient matrix

• dimension

• elementary row
operations

• equivalent matrices

• equivalent systems

• Gaussian elimination

• kernel

• linear combination

• linearly dependent

• linearly independent

• matrix

• row-reduced echelon
form

• trivial solution

chapter.

1. Solve each system by reducing an augmented matrix to echelon
form. Write solution sets as fixed vectors plus linear combinations
of other vectors when needed.

a.

⎧⎨
⎩

x + 4y + 3z = −10

2x + 3y − z = 5

5x − 5y − 8z = 15

b.

⎧⎨
⎩

x + y + z = 4

2x − y + 5z = −1

3x + 2y + 4z = 9

2. Let A = (2, 1,−2), B = (3, 4, 1), and C = (2, 1, 3).
Determine whether (4, 12, 2) can be written as a linear combination
of A, B, and C. If so, how? If not, explain.

3. Are the vectors (2, 1,−2), (3, 4, 1), and (2, 1, 3) linearly dependent
or independent? Do these vectors lie in the same plane?

4. Find the kernel of each matrix:

a.

⎛
⎜⎝1 −3 2

1 5 −1

1 6 3

⎞
⎟⎠ b.

⎛
⎜⎝1 −3 2

1 5 −1

1 −19 8

⎞
⎟⎠ c.

⎛
⎜⎝1 −3 2 1

1 5 −1 3

1 6 3 −2

⎞
⎟⎠

5. In R3, give a geometric description of

a. all linear combinations of (4,−1, 2), (3, 7,−5), and (5,−9, 10)
b. all linear combinations of (4,−1, 2), (3, 7,−5), and (5,−9, 9)

c. the kernel of

⎛
⎝4 −1 2

3 7 −5

5 −9 9

⎞
⎠

6. How can you tell if a system of equations has a solution?

7. How can you tell if three vectors are linearly independent in R2? in
R3? in Rn?

8. Find the kernel of this matrix:⎛
⎝3 −2 1 4

1 2 −1 0

7 −10 5 12

⎞
⎠

Describe this kernel geometrically.
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Chapter 3 Review

In Lesson 3.2, you learned to

• represent a system of equations with an augmented matrix

• reduce an augmented matrix to its row-reduced echelon form

• interpret the nature of the solution of a system given its row-reduced
echelon form

• express an infinite solution set to a system as a vector equation

The following problems will help you check your understanding.

1. Solve each system by reducing an augmented matrix to echelon
form. Write solution sets as fixed vectors plus linear combinations
of other vectors when needed, as seen in Examples 4 and 5.

a.

⎧⎨
⎩

x − 3y − 2z = −15

2x − 5y + 3z = 1

4x − y + 3z = 17

b.

⎧⎨
⎩

x − y + 2z = 8

3x + y − z = 1

4x + z = −2

c.

⎧⎨
⎩

x − 3y − 5z = 18

3x + 2y − 4z = 21

2x + 5y + z = 3

d.

{
2x − 3y − 6z = 5

x − 2y − 8z = 7

2. Find the linear combination of (−1,−5, 3), (4, 2,−5), and (7,−1, 2)
that produces (22,−16, 19) by solving this system of equations:⎧⎨

⎩
−a + 4b + 7c = 22

−5a + 2b − c = −16

3a − 5b + 2c = 19

3. Find all vectors that are orthogonal to (1, 3, 1), (2, 1, 1), and (3, 4, 2)
by solving this system of equations:⎧⎨

⎩
X · (1, 3, 1) = 0

X · (2, 1, 1) = 0

X · (3, 4, 2) = 0

−→

⎧⎨
⎩

1x + 3y + 1z = 0

2x + 1y + 1z = 0

3x + 4y + 2z = 0

In Lesson 3.3, you learned to

• determine whether a vector is a linear combination of other given
vectors

• find the linear combination of one or more vectors that results in a
given vector
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The following problems will help you check your understanding.

4. To see if vector D can be written as a linear combination of A, B,
and C, you create a matrix whose columns are A, B, and C, and
D, and reduce to echelon form. For each of the following echelon
forms, determine whether D is a linear combination of A, B, and
C, and if so, how.

a.

⎛
⎝1 0 0 3

0 1 0 −4

0 0 1 −2

⎞
⎠ b.

⎛
⎝1 0 0 −5

0 1 0 4
5

0 0 1 1
5

⎞
⎠

c.

⎛
⎝1 0 −2 3

0 1 −1 1

0 0 0 0

⎞
⎠ d.

⎛
⎝1 0 0 − 2

9

0 1 0 4
9

0 0 0 2

⎞
⎠

5. Determine if D = (−15, 12, 4) can be written as a linear combination
of A = (1, 1, 2), B = (4, 3, 1), and C = (−2, 3, 0)? If so, show how.

6. Find the intersection of the two planes whose equations are X ·
(2,−3, 5) = 4 and X · (1,−1, 1) = −3 by setting up an augmented
matrix and reducing to echelon form.

In Lesson 3.4, you learned to

• recognize the identity matrix by notation and by form

• use row-reduced echelon form to find a linear combination of a vector
in terms of a group of other vectors (if it exists)

• interpret linear dependency in R3 geometrically

The following questions will help you check your understanding.

7. Write (0, 0, 0) as a linear combination of the given vectors. Are the
vectors linearly dependent or independent?

a. A = (2,−3, 4), B = (−5, 1, 0), C = (1,−8, 12)
b. A = (2,−3, 4), B = (−5, 1, 0), C = (1,−8, 11)

8. Let A = (2, 1,−2), B = (3, 4, 1), and C = (2, 1, 3).

a. Describe all vectors that are orthogonal to A, B, and C.
b. Are these vectors linearly dependent or independent? How do

you know?

9. Let A = (−3, 4, 5), B = (2, 1,−1), and C = (−8, 7, 11).

a. Describe all vectors that are orthogonal to A, B, and C.
b. Are these vectors linearly dependent or independent? How do

you know?
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In Lesson 3.5, you learned to

• find the kernel of a matrix

• understand the connection between the kernel of a matrix and the
linear dependence/independence of the columns

• show that the vectors in the kernel of a matrix are orthogonal to the
row vectors of the matrix

The following problems will help you check your understanding.

10. Find the kernel of each matrix.

a.

(
1 3 5

1 2 4

)
b.

⎛
⎝1 3 5

1 2 4

1 5 6

⎞
⎠

c.

⎛
⎝1 3 5

1 2 4

1 5 7

⎞
⎠ d.

⎛
⎝1 3 5 11

1 2 4 10

1 5 7 13

⎞
⎠

11. In R3, give a geometric description of

a. all linear combinations of (2, 4, 7) and (3, 5, 9)
b. all linear combinations of (2, 4, 7), (3, 5, 9), and (1, 1, 3)
c. all linear combinations of (2, 4, 7), (3, 5, 9), and (1, 1, 2)

12. In R3, give a geometric description of

a. all vectors orthogonal to (2, 4, 7)

b. the kernel of

⎛
⎝2 3 1

4 5 1

7 9 2

⎞
⎠

c. the kernel of

⎛
⎝2 3 1

4 5 1

7 9 3

⎞
⎠
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Chapter 3 Test

Multiple Choice

1. To solve a system of equations, Tanya finds the reduced echelon
form of ⎛

⎝1 0 1 −2

0 1 −2 3

0 0 0 0

⎞
⎠

What is the solution to the system?

A. X = (0, 0, 0) B. X = (−2, 3, 0)

C. X = (−2, 3, 0) + t(−1, 2, 1) D. No solution

2. Let A = (2,−3, 1), B = (4, 0, 5), C = (−2, 1,−1), and D =
(−6,−7,−9). Which equation shows that D is a linear combination
of A, B, and C?

A. D = −3A + 2B − 2C B. D = −2A + 2B + 3C

C. D = 2A − 2B + 3C D. D = 3A − 2B + 2C

3. Which equation describes all vectors that are orthogonal to (−2, 3, 2)
and (3,−4, 1)?

A. X = (0, 0, 0) B. X = (11, 8,−1)

C. X = t(−11,−8, 1) D. X = t(8, 11,−1)

4. In R3, let A = (2,−1, 5) and B = (1, 0,−3). Which of the following
describes all linear combinations of A and B?

A. the point O
B. the line X = t(2,−1, 5)
C. the plane X = s(2,−1, 5) + t(1, 0,−3)
D. all of R3

5. A matrix in echelon form is⎛
⎝1 0 −3 2

0 1 2 −4

0 0 0 0

⎞
⎠

What is the kernel of this matrix?

A. O
B. X = s(3,−2, 0) + t(−2, 4, 0)
C. X = s(3,−2, 0, 1) + t(−2, 4, 1, 0)
D. X = s(3,−2, 1, 0) + t(−2, 4, 0, 1)

6. Suppose that A is a 3 × 3 matrix and rref(A) = I. Which of the
following statements is not true?

A. The kernel of A is O.
B. The column vectors lie in the same plane.
C. The zero vector (0, 0, 0) is the only vector orthogonal to the

row vectors.
D. The column vectors of A are linearly independent.
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Open Response

7. Solve the system using Gaussian elimination:⎧⎨
⎩

x + 2y + 5z = 15

3x − 3y + 2z = 20

2x − 5y + 4z = 33

8. Determine if D = (4, 16,−22) can be written as a linear combination
of A = (1,−2, 5), B = (3, 4,−8), and C = (5,−2, 0). If so, show
how.

9. Find the intersection of the two lines with equations X = (1,−2, 4)+
t(3,−1, 6) and X = (2, 1, 6) + s(2,−2, 4).

10. Let A = (2, 7, 5), B = (−3, 3, 6), and C = (2, 1,−1).

a. Write (0, 0, 0) as a linear combination of A, B, and C.
b. Are A, B, and C linearly dependent or independent? Explain.

11. Let A = (1,−3, 2), B = (2, 0,−4), and C = (3, 5,−1).

a. Describe all vectors that are orthogonal to A, B, and C.
b. Are A, B, and C linearly dependent or independent? Explain.

12. Find the kernel of each matrix.

a.

⎛
⎝ 1 4 3

−2 1 6

5 −4 1

⎞
⎠ b.

⎛
⎝1 −1 0 3

1 −2 1 4

3 −2 4 2

⎞
⎠
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C H A P T E R

4 Matrix Algebra

In the last chapter, you used matrices as a bookkeeping organizer: the
matrix kept track of the coefficients in a linear system. By operating on
the matrix in certain ways (using the elementary row operations), you
transformed the matrix without changing the solution set of the underlying
linear system. But matrices can be objects in their own right. They have
their own algebra, their own basic rules, and their own operations beyond
the elementary row operations.

If you think of a vector as a matrix, you can start extending vector
operations, such as addition and scalar multiplication, to matrices of any
dimension. This chapter defines three operations—addition, scaling, and
multiplication—and develops an algebra of matrices that allows you to
perform complicated calculations and solve seemingly difficult problems
very efficiently. So, think of this chapter as an expansion of your algebra
toolbox.

By the end of this chapter, you will be able to answer questions
like these:

1. When can you multiply two matrices?

2. How can you tell if a matrix equation has a unique solution?

3. Let A =

⎛
⎝ 1 4 3

−1 1 2

5 4 2

⎞
⎠. What is A−1.

You will build good habits and skills for ways to

• look for similarity in structure

• reason about calculations

• create a process

• seek general results

• look for connections
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Vocabulary and Notation

• Aij , A∗j , Ai∗

• diagonal matrix

• entry

• equal matrices

• identity matrix

• inverse

• invertible matrix,
nonsingular matrix

• kernel

• lower triangular matrix

• m × n matrix

• matrix multiplication,
matrix product

• multiplication by a scalar

• scalar matrix

• singular matrix

• skew-symmetric matrix

• square matrix

• sum of matrices

• symmetric matrix

• transpose

• upper triangular matrix
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4.1 Getting Started

A matrix is a rectangular array of numbers. Here are some matrices:

←−
You’ve seen matrices
before.

H =

(
1 2

3 4

)
, I =

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠,

J =

⎛
⎝0 1 1

1 0 1

1 1 0

⎞
⎠, K =

⎛
⎝3 −1 12 5

0 6 3 1

0 0 −2 10

⎞
⎠,

L =

(
2 1

3 4

)
, M =

(
2 3 4

5 6 7

)
,

N =

⎛
⎝2 5

3 6

4 7

⎞
⎠, O =

⎛
⎝0 0

0 0

0 0

⎞
⎠

1. Describe conditions that you think would make two matrices equal. ←−
Make your definition so
clear that you could read
it over the phone and the
person at the other end
would understand.

2. a. Find three pairs of matrices above that you think can be added
together. Calculate the sum of each pair.

b. Find three pairs of matrices above that you think cannot be
added together, and explain why.

3. a. Cal says that matrix K is basically a pile of four vectors. What
do you think he means by this? What dimension would these
vectors have?

b. Rose says that matrix K is actually a pile of three vectors.
What do you think she means by this? What dimension would
these vectors have?

4. a. If A is a vector and c is a real number, what is cA and how is
it calculated?

b. If A is a matrix and c is a real number, how do you think cA
should be defined? ←−

What would Cal and Rose
say about this?

The map below shows the number of daily nonstop flights between certain
U.S. cities on an airline.
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Seattle
SEA

Boston
BOS

Tampa
TPA

Phoenix
PHX

San Francisco
SFO

Chicago
ORD

1
1

11

3

7

5

3

5

6
7

7 4
4

5

4

6

5

5. There is no direct flight from Boston to Phoenix.

a. If you had a one-stop flight from Boston to Phoenix, in what
cities could the stop be?

b. How many possible one-stop flights are there from Boston to
Phoenix?

c. How many possible one-stop flights are there from Phoenix to
Boston?

6. Carrie lives in Chicago.

Carrie: I had some great flights, nonstop both ways.

Assuming she went to one of the five other cities on the map above,
how many possible round trips could she have taken?

7. A six-by-six matrix can be used to contain all the information in
the map. Complete the matrix below; some entries have been given.

←−
The 6 says there are six
direct flights from Boston
to Chicago, while the 5 says
there are five direct flights
from Chicago to Boston.
What should the entry be
for Boston to Tampa?

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TO→
FROM↓ BOS ORD SEA SFO TPA PHX

BOS 6 0

ORD 5

SEA 0

SFO 1 0

TPA

PHX 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8. Use only the matrix to answer the following questions:

a. How many one-stop flights are there from Boston to Phoenix?
b. How many one-stop flights are there from Chicago to Seattle?
c. How many one-stop flights are there from Chicago to Chicago? ←−

Part c is just another way
to state the trip Carrie
takes in Exercise 6.

d. How many one-stop flights are there from San Francisco to
Tampa?

9. Describe how to use the matrix to find the number of one-stop
flights from one given city to another given city.
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10. Write a and b in terms of x and y.

a = 3m + 2n + 4p

b = m − 4n + 6p

m = 2x + 3y

n = 4x − 5y

p = x + 10y

11. Write a and b in terms of x and y.

a = 2m + 4n + p

b = 3m − 5n + 10p

m = 3x + y

n = 2x − 4y

p = 4x + 6y

12. Compare the steps you followed to solve Exercises 8 and 10. How Habits of Mind

Look for common structure
in different problems.

are they similar?

153



Chapter 4 Matrix Algebra

4.2 Adding and Scaling Matrices

Vectors can be added and scaled just like numbers. Those operations can
be extended, using the extension program, to matrices of any dimension.

In this lesson, you will learn how to

• use clear notation for the different entries in a matrix

• determine when two matrices can be added

• multiply a matrix by a scalar

• apply the properties of vector addition and scalar multiplication to
matrices

• find the transpose of a matrix

As you saw in Chapter 3, a matrix is just a rectangular array of numbers.
You can classify matrices according to size: an m × n matrix is a matrix ←−

When you see “m×n,” say
“m by n.”

with m rows and n columns. So, if A =

⎛
⎝3 1 2 4

0 1 7 8

1 1 3 2

⎞
⎠, A is a 3× 4 matrix;

it has three rows and four columns.

If A is m× n, the notation Aij means the entry in the ith row and jth

column of A. In the above matrix, A32 = 1 and A23 = 7. If A is m × n, A
can be written as ←−

In some books, the entries
of the generic m×n matrix
are marked using lower case
letters like aij .

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 A14 · · · A1n

A21 A22 A23 A24 · · · A2n

A31 A32 A33 A34 · · · A3n

...
...

...
...

. . .
...

Am1 Am2 Am3 Am4 · · · Amn

⎞
⎟⎟⎟⎟⎟⎟⎠

Facts and Notation

You can think of a matrix as a list of rows or a list of columns. The notation Ai∗ means ←−
Think of the star as
meaning “all.” A3∗ means
the third row and all the
columns of A. Similarly,
A∗2 means the entire
second column of A. Any
row or column of A is a
vector with dimension equal
to the other dimension of
the matrix. This notation
is used in some computer
languages.

the ith row of A. It is a row vector whose entries are(
Ai1 Ai2 · · · Ain

)
The vector Ai∗ is in Rn for all i between 1 and m.

Similarly, the notation A∗j means the jth column of A. It is a column vector whose
entries are ⎛

⎜⎜⎜⎝
A1j

A2j

...

Amj

⎞
⎟⎟⎟⎠

The vector A∗j is in Rm for all j between 1 and n.
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For You to Do

1. Let B =

(
2 −1 2 4

3 1 8 8

)
. If B is an m × n matrix, what are m and n?

2. Determine the following:

a. B23 + B11 b. B1∗ c. B∗1 + B∗2

The best place to start building an algebra of matrices is to decide what Habits of Mind

The extension program.
You have already extended
the algebra of numbers to
vectors. Now, the task is
to extend the algebra of
vectors to matrices.

it means for two matrices to be equal. You described conditions that would
make two matrices equal in Exercise 1 from Lesson 4.1. You might have said
something along the lines of “two matrices are equal if they have the same
size and if all their entries are equal.” The following definition expands on
that idea.

Definition

Two matrices A and B are said to be equal if they have the same size
and if any of these equivalent conditions is met:

• Aij = Bij for all i and j

• Ai∗ = Bi∗ for all i

• A∗j = B∗j for all j

The three conditions stand for different ideas. If A and B are m×n matrices,
the second condition is equality in Rn among the m rows of A and B. The
third condition is equality in Rm among the n columns of A and B. The
equal sign means different things here! The first time, it means equality of
numbers , while the second and third times, it is equality of vectors .

For Discussion

3. Let M =

(
2 3 4

5 6 7

)
and N =

⎛
⎝2 5

3 6

4 7

⎞
⎠. Are M and N equal? If so, explain why.

←−
Why do all three methods
give you the same result?

If not, describe the relationship between M and N .

If you think of a matrix as a collection of vectors—as the definition
of equality suggests—then you can use that idea to extend operations of
vectors to matrices. So, in order to add two matrices, they must be exactly
the same size, and the sum is calculated by adding the corresponding entries
of the two matrices.
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Definition

If A and B are m × n matrices, then the sum of matrices A and B,
written A + B, is an m × n matrix defined by any of these:

• (A + B)ij = Aij + Bij

• (A + B)i∗ = Ai∗ + Bi∗

• (A + B)∗j = A∗j + B∗j

As with the definition of matrix equality, the definition of addition has
three different options. Addition may be carried out by adding entries , but
it can also be carried out by adding row or column vectors .

For You to Do

4. Let A =

(
2 4 −3

−4 3 1

)
and B =

(
4 8 −6

4 −3 −1

)
. Calculate A + B using each of

the three methods given in the definition.

Scalar multiplication is defined for vectors, and that definition carries
over to matrices. This is one place where thinking of a matrix as a list of
vectors comes in handy.

Definition

If A is an m × n matrix and c is a scalar, then the multiplication of a
matrix by a scalar , written cA, is an m × n matrix defined by any of
these:

• (cA)ij = cAij

• (cA)i∗ = cAi∗

• (cA)∗j = cA∗i

Scalar multiplication can be carried out by multiplying through each entry ,
but it can also be carried out by performing scalar multiplication on the
row or column vectors .

With these two operations, you can start building the list of basic rules
of matrix algebra.

Theorem 4.1 (The Basic Rules of Matrix Algebra)

Suppose that A, B, and C are matrices of the same size, and that d and e
are scalars. Then

(1) A + B = B + A

(2) A + (B + C) = (A + B) + C

(3) A + O = A ←−
What do you think O
represents here?(4) A + (−1)A = O
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(5) (d + e)A = dA + eA

(6) d(A + B) = dA + dB

(7) d(eA) = (de)A

(8) 1A = A

These properties should look familiar. They were seen in Chapter 1
applied to vectors. The notation

(
1 2 3

)
can now stand for a vector, a

point, or a matrix (with one row), and the properties in Theorem 4.1 apply
to all three.

Developing Habits of Mind

Look for structural similarity. Because of part ((4)) of Theorem 4.1, the matrix ←−
Some call −A the ”additive
inverse” of A.

−1A is called either the opposite of A or the negative of A. The shorthand −A can be
used, but it really means −1A.

You may have noticed there was no definition for subtraction of matrices. For numbers,
subtraction is defined in terms of adding the opposite: x − y = x + (−y). The same
definition can now be used for subtraction of matrices: A − B = A + (−B), where −B
means −1B.

What other properties of real numbers might apply to matrices? For the time being,
only addition and subtraction are defined. A kind of multiplication of matrices will be
defined later, and it will be useful to see what properties of real numbers (commutativity,
associativity, identity, inverses) carry over into the system of matrices.

Definition

If A is an m × n matrix, the transpose of A, written A� is the n × m ←−
Other books may write
tA,Atr, or A′ for trans-
pose.

matrix defined by any of these:

• A�
ij = Aji

• A�
i∗ = A∗i ←−

Note that A�
i∗ is a row

vector, while A∗i is a
column vector.

• A�
∗j = Aj∗

For example, if A =

(
1 3 2

−1 4 7

)
, A� =

⎛
⎝1 −1

3 4

2 7

⎞
⎠.

For Discussion

5. Give a short explanation for why each of the following facts is true about the
transpose operator:

a. (A + B)� = A� + B� ←−
Say “the transpose of the
sum is the sum of the
transposes.”

b. (cA)� = c(A�)
c. (A�)� = A
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Exercises

1. a. Prove one of the statements in Theorem 4.1 using the entries
Aij , Bij of the matrices involved.

b. Prove one of the statements in Theorem 4.1 using the rows
Ai∗, Bi∗ of the matrices involved.

c. Prove one of the statements in Theorem 4.1 using the columns
A∗j , B∗j of the matrices involved.

2. Some of these statements are always true. Some aren’t always true.
And some don’t make sense. Decide which is which. ←−

Capital letters represent
matrices and lowercase
letters represent scalars.

a. A + cB = cA + B b. c(d + A) = cd + cA

c. c(A − B) = cA − cB d. A − A� = O

e. 0A = O f. c(A − B) = c(A + B) − cB

3. Let A =

(
1 −1 −3

2 −1 0

)
and B =

(
3 1 4

1 2 −3

)
.

Calculate the following:

a. 2A + 3B b. A − 3B c. 1
2 (A + B) + 1

2 (A − B)

d. 3B + rref(A) e. 2A + 2B f. 2(A + B)

g. A + O h. 3B + 2A i. 5A + 2A

4. If A =

(
1 −7

1 6

)
, find B if A + 4B = 3B − 2A.

5. Let A =

⎛
⎝ 1 3

−1 4

7 2

⎞
⎠, B =

⎛
⎝0 3

1 2

3 −1

⎞
⎠, and C =

⎛
⎝−3 1

1 2

−2 3

⎞
⎠.

Calculate the following:

a. A + (B + C) b. (A + B) + C c. A�

d. B� e. A� + B� f. (A + B)�

g. (3A)� h. (−2A)� i. ((A + B) + C)�

6. Let A =

⎛
⎜⎜⎝

3 1 7 −1

3 2 5 2

1 3 1 7

3 4 −1 0

⎞
⎟⎟⎠.

Calculate the following:

a. A + A� b. A − A� c. 1
2 (A + A�) + 1

2 (A − A�)

7. Let A =

⎛
⎝1 3 −1 4

2 0 10 6

5 7 8 9

⎞
⎠.

Determine the following:

a. A14 b. A21 c. A33

d. A2∗ e. A∗3 f. A1∗ + A3∗
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8. Let A be an m × n matrix with generic entry Aij .

a. What are the entries in the ith row of A?
b. What are the entries in the jth column of A?
c. What are the diagonal entries of A?
d. What are the entries in the last row of A?
e. What are the entries in the next to last column of A?

9. Let A be a 3×5 matrix whose generic entry is Aij . Write the entries
of A given each of the following conditions:

a. Aij = i + j b. Apq = p − 2q

c. Apk = p d. Ars = rs

e. Ars = r2 + s2 f. Aij = i2 − j2

g. Aij = max{i, j} h. Avw = min{v, w}

10. Let A =

(
1 0 4

3 1 2

)
. Find the matrix B if Bij = Aji.

11. Let A =

(
1 3 −1

2 0 4

)
and B =

⎛
⎝2 7 4

1 −1 0

3 2 1

⎞
⎠.

Calculate the following:

a. A1∗ · A2∗
b. A1∗ · B∗1
c. A2∗ · B∗3
d. (A1∗ + A2∗) · (B∗1 − B∗2 + B∗3)
e. ProjA1∗ B∗2
f. A11B∗1 + A12B∗2 + A13B∗3

12. Find x, y, z, and w if(
x + 2y − z 2x + 3y

x + z − 5 3x + z + 6

)
=

(
3 − w 5 + z − 2w

w − y 4y − 2w

)
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4.3 Different Types of Square Matrices

You have already encountered many types of square matrices. Some of them
have special uses or properties, so it is helpful to refer to them by special
names.

In this lesson, you will learn how to

• recognize the different types of square matrices

• decompose any square matrix into its symmetric and skew-symmetric
parts

A square matrix is an n× n matrix: a matrix with the same number
of rows and columns. Here is a generic square matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 · · · A1n

A21 A22 A23 · · · A2n

A31 A32 A33 · · · A3n

...
...

...
. . .

...

An1 An2 An3 · · · Ann

⎞
⎟⎟⎟⎟⎟⎟⎠

Square matrices are common enough that they warrant further classifica-
tion. Here are some special kinds of square matrices. The examples are all
3× 3 or 4× 4, but these special types of square matrices can occur for any
n × n.

Special
type

Example Description

Identity
matrix

I =

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠ Iij =

{
1 if i = j

0 otherwise

Diagonal
matrix

⎛
⎝3 0 0

0 5 0

0 0 π

⎞
⎠ Aij = 0 when i �= j

Scalar
matrix

⎛
⎝3 0 0

0 3 0

0 0 3

⎞
⎠ Aij = 0 when i �= j, and

c = A11 = A22 = A33 = · · ·
Note: A = cI
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Special
type

Example Description

Upper
triangular

matrix

⎛
⎝1 2 3

0 4 5

0 0 6

⎞
⎠ Aij = 0 when i > j

Lower
triangular

matrix

⎛
⎜⎜⎝

1 0 0 0

2 3 0 0

4 5 6 0

7 8 9 10

⎞
⎟⎟⎠ Aij = 0 when i < j

Symmetric
matrix

⎛
⎜⎜⎝

1 2 3 4

2 5 6 7

3 6 8 9

4 7 9 10

⎞
⎟⎟⎠

Aij = Aji

or

Ak∗ = A�
k∗

or

A� = A

Skew-
symmetric

matrix

⎛
⎜⎜⎝

0 1 2 3

−1 0 4 5

−2 −4 0 6

−3 −5 −6 0

⎞
⎟⎟⎠

Aij = −Aji

or

Ak∗ = −A�
k∗

or

A� = −A

For You to Do

1. Let A =

⎛
⎝1 2 3

4 6 9

5 −2 0

⎞
⎠. Calculate A + A� and A − A�. What kind of matrices

are these?

Your work on problem 1 suggests the following lemma.

Lemma 4.2

If A is a square matrix, then

• A + A� is symmetric, and

• A − A� is skew-symmetric

There are multiple possible proofs of the lemma, including ones that
track A through its entries, or its rows and columns. One simple proof
uses only the definitions of symmetric and skew-symmetric, along with
some properties of the transpose operator you explored in For Discussion
problem 5 from Lesson 4.2.
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Proof. A + A� is symmetric if and only if its transpose equals itself, and
it does:

(A + A�)� = A� + (A�)� = A� + A = A + A�

The proof that A − A� is skew-symmetric is almost identical. A matrix is
skew-symmetric if and only if its transpose is also its negative.

(A − A�)� = A� − (A�)� = A� − A = −A + A� = −(A − A�)

Symmetry and skew-symmetry are preserved under scalar multiplica-
tion, as the following lemma states.

Lemma 4.3

If A is symmetric, then cA is also symmetric. If A is skew-symmetric, then
cA is also skew-symmetric.

You will be asked to prove this lemma in Exercise 2.

Look back at Exercise 6c from Lesson 4.2. There, you were asked to
calculate

1
2 (A + A�) + 1

2 (A − A�)

This expression turned out to equal the original matrix A. But this
expression is also the sum of a symmetric matrix and a skew-symmetric
matrix, according to the lemmas above. The algebra is general, leading to
the following theorem.

Theorem 4.4

Every square matrix is the sum of a symmetric matrix and a skew-
symmetric matrix.

Proof. If the square matrix is A, the symmetric matrix is 1
2 (A+A�), and

the skew-symmetric matrix is 1
2 (A − A�).

1
2 (A + A�)︸ ︷︷ ︸
symmetric

+ 1
2 (A − A�)︸ ︷︷ ︸

skew-symmetric

= 1
2A + 1

2A� + 1
2A − 1

2A�

=
(
1
2A + 1

2A
)

+
(
1
2A� − 1

2A�)
= A + O

= A

For Discussion

2. a. Let A =

⎛
⎝ 3 4 2

−2 7 0

2 −1 5

⎞
⎠. Write A as the sum of a symmetric and a skew-

symmetric matrix.

b. Explain why B =

(
3 4 2

−2 7 0

)
cannot be written as the sum of a symmetric

and a skew-symmetric matrix.
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Exercises

1. Prove Lemma 4.2.

a. Use the entry-by-entry definitions of symmetric and skew-
symmetric.

b. Use the row-by-row definitions of symmetric and skew-symmetric.

2. Prove the two parts of Lemma 4.3.

a. Use any definition of symmetric to show that if A is symmetric
and c is a scalar, then cA is symmetric.

b. Use any definition of skew-symmetric to show that if A is skew-
symmetric and c is a scalar, then cA is skew-symmetric.

3. If A =

(
a b

c d

)
, write A as the sum of a symmetric matrix and a

skew-symmetric matrix.

4. Theorem 4.4 gives a method to write a square matrix A as the sum
of a symmetric matrix and a skew-symmetric matrix. Prove that
this pair of matrices is unique, or find some other pairs of matrices
that can also be used.

5. For each given matrix A, find an expression in terms of i and j that
defines the entries Aij of the matrix. All matrices can be defined as

A =

⎛
⎝A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

⎞
⎠

a. A =

⎛
⎝0 −1 −2 −3

1 0 −1 −2

2 1 0 −1

⎞
⎠ b. A =

⎛
⎝4 6 8 10

6 8 10 12

8 10 12 14

⎞
⎠

c. A =

⎛
⎝2 2 2 2

4 4 4 4

6 6 6 6

⎞
⎠ d. A =

⎛
⎝3 5 7 9

4 6 8 10

5 7 9 11

⎞
⎠

e. A =

⎛
⎝ 2 3 4 5

5 6 7 8

10 11 12 13

⎞
⎠

6. Classify each given matrix as scalar, diagonal, upper or lower
triangular, symmetric, skew-symmetric, or none of the above.

a. A is 3 × 3 and Aij = i2 + j2

b. A is 4 × 4 and Aij = i2 − j2

c. A is 3 × 3 and Apq = p2 + pq + q2

d. A is 2 × 2 and Apq = p − 2q
e. A is 2 × 2 and Ars = 2s − r

f. A = rref

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠ g. A = rref

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠
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h. A is 3 × 3 and Aij =

{
i + j if i > j

0 if i ≤ j

i. A is 4 × 4 and Aij =

{
i2 if i = j

0 if i �= j

7. Write a in terms of x.

a = 2m − 3n + 5p

m = 4x

n = 5x

p = −x

8. Write a and b in terms of x.

a = 2m − 3n + 5p

b = −2m + 6n + 10p

m = 4x

n = 5x

p = −x

9. Write a in terms of x and y.

a = 2m − 3n + 5p

m = 4x − 2y

n = 5x + 3y

p = −x + 5y

10. Write a and b in terms of x, y, z, and w.

a = 2m − 3n + 5p

b = −2m + 6n + 10p

m = 4x − 2y + 7z + w

n = 5x + 3y − 3z + w

p = −x + 5y + 2z + w
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11. As in Exercise 7 from Lesson 4.1, this 5×5 matrix gives the number
of one-way, nonstop flights between four different cities served by
an airline.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

PDX LAS DEN CLT PHL

PDX 0 0 5 0 1

LAS 0 0 0 5 5

DEN 5 0 0 4 3

CLT 0 5 4 0 10

PHL 1 5 3 8 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Philadelphia

PHL

CLT

Charlotte

Denver DEN

LAS

1

1

3
3

5

5

5

5

5

5

4 4

4

10

8

Las Vegas

PDX

Portland

a. How many different one-stop flights are there from Portland
to Las Vegas?

←−
There are 10 daily nonstop
flights from Charlotte to
Philadelphia.

b. How many different one-stop flights are there from Portland
to Denver?

c. How many different one-stop flights are there from Portland
to Charlotte?

d. How many different one-stop flights are there from Portland
to Philadelphia?

e. How many different one-stop flights are there from Philadel-
phia to Denver?

f. How many different two-stop flights are there from Philadel-
phia to Denver? ←−

Yes, one of those stops can
be Denver or Philadelphia.
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4.4 Matrix Multiplication

You have already seen how to add two matrices. You may wonder if you
can multiply two matrices, and if it works like adding and multiplying two
numbers. It turns out that the operation for multiplication of matrices is
a little more complicated than addition, but the results end up being very
helpful.

In this lesson, you will learn how to

• calculate the product of two matrices

• determine whether you can multiply two matrices

• find the transpose of the product of two matrices

Minds in Action Episode 11

Sasha and Derman are working on Exercise 10 from the previous lesson.

Derman: This problem is all about matrices. It reminds me of Chapter 3. Look, here
are the two matrices involved:

(
2 −3 5

−2 6 10

)
and

⎛
⎝ 4 −2 7 1

5 3 −3 1

−1 5 2 1

⎞
⎠

Derman: All I do is copy the numbers. I guess I might need to put a zero sometimes
like we did in Chapter 3, but that didn’t happen here.

Sasha: Hey, that was a pretty good idea. But what do you do with those matrices? You
can’t add them; they’re not the same size.

Derman: Beats me. But the matrices have all the numeric information from the
problem.

Sasha: Hmm, okay. Let’s try to solve Exercise 10 using just your matrices.

Derman: Well, we know a is going to be some number of x’s.

Sasha: Right: a = 2m− 3n + 5p. I can read that from the first row of your first matrix.

Derman: Then I read the first row of the other matrix?

Sasha: That’s not going to work. Look at the original problem. Where are all the x’s?

Derman: Oh! It’s the first column. We use the row of the first matrix, and the column
of the second matrix.

Sasha: I noticed in those exercises we kept performing the same calculation, and it was
exactly like doing a dot product. You know, with your matrices, we can really do a
dot product. Let’s calculate the dot product of the first row of the first matrix and
the first column of the second matrix.
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Derman: All right, this will take me a while.

Derman carefully counts out a row of the first matrix and a column of the second matrix.

(
2 −3 5

−2 6 10

)
and

⎛
⎝ 4 −2 7 1

5 3 −3 1

−1 5 2 1

⎞
⎠

(
2 −3 5

)
·

⎛
⎝ 4

5

−1

⎞
⎠ =

2 · 4 + (−3) · 5 + 5 · (−1) = −12

Derman: Is that okay? Can I do a dot product with vectors that are pointed differently?

Sasha: As long as they have the same number of elements. You got −12, so the answer
to the exercise should include a = −12x . . . hey, it does!

Derman: Seriously? Wow. And if I want to do the other stuff with a, I keep using the
first row and switch the column . . . the last column will be pretty easy to use, huh?
Then to do b, I use the second row, I think.

Sasha: Very smooth. We should check to make sure we’re getting the same answers
with or without matrices. I think your method would work pretty well on those airline
problems, too.

For You to Do

1. Use Derman and Sasha’s method to verify the rest of Exercise 10.

The operation Derman and Sasha use in the above dialogue comes up
very frequently in problems that involve matrices. Today, this operation
is known as matrix multiplication . This operation isn’t as simple to
describe as matrix addition, but has many applications, including the
solution of systems of equations like the ones from Chapter 3.

To find the product AB of two matrices A and B, calculate all the dot ←−
Derman’s calculation above
gives the entry in the first
row and first column of
AB, since he used the
first row of A and the first
column of B.

products of the rows of A with the columns of B.

Definition

Let A and B be matrices, where A is m × n and B is n × p. The matrix
product of A and B, written as AB, is an m × p matrix given by

←−
Read this carefully. The
ijth entry of AB is the
dot product of . . . what,
specifically?

(AB)ij = Ai∗ · B∗j

For example, suppose

A =

⎛
⎝A11 A12

A21 A22

A31 A32

⎞
⎠ , B =

(
B11 B12 B13 B14

B21 B22 B23 B24

)
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Then

AB =

⎛
⎝(AB)11 (AB)12 (AB)13 (AB)14

(AB)21 (AB)22 (AB)23 (AB)24
(AB)31 (AB)32 (AB)33 (AB)34

⎞
⎠

=

⎛
⎝A1∗ · B∗1 A1∗ · B∗2 A1∗ · B∗3 A1∗ · B∗4

A2∗ · B∗1 A2∗ · B∗2 A2∗ · B∗3 A2∗ · B∗4
A3∗ · B∗1 A3∗ · B∗2 A3∗ · B∗3 A3∗ · B∗4

⎞
⎠

This process is followed when a calculator is asked to multiply two matrices.

For Discussion

2. a. What would it mean to “square” a matrix, and what kinds of matrices could
be squared?

b. If possible, square the matrix from Exercise 11 from the last lesson. What
happens?

Developing Habits of Mind

Reason about calculations. Each entry (AB)ij is the dot product of the ith row of
A and the jth column of B. For the matrix product AB to exist, the dot products must
exist. That means that the number of columns in A must equal the number of rows in ←−

The size of the row vectors
in A must be the same
as the size of the column
vectors in B.

B.

If, as above, A is 3 × 2 and B is 2 × 4, each dot product is in R2, and the resulting
matrix AB is 3 × 4.

The order in which you perform a matrix multiplication is important. If you tried to
compute BA, you’d find it won’t work; each row of B has four terms, while each column ←−

Even if AB and BA are
defined, it’s not necessarily
true that AB = BA or
even that they have the
same size. Try it with an
example, say, with A 2× 3
and B 3× 2.

of A has three. The dot products are undefined, and so is the matrix product.

Some people visualize the matrix product AB as shown below. Consider any entry in
AB (the dot pictured below). Its value is the dot product of the row in A to its left and
the column in B above it.

←−
This way of remembering
how multiplication works is
often called the over and
down method.

⎛
⎜⎜⎜⎜⎜⎝

B

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝ A

⎞
⎟⎠

⎛
⎜⎝ •

⎞
⎟⎠

For You to Do

3. Which of these matrices can be multiplied together? Find all pairs, the order in
which they can be multiplied, and the size of the matrix product that will result.

A is 3 × 2 B is 2 × 4 C is 3 × 1 D is 4 × 2 E is 4 × 4
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Example

Problem. Calculate the product of A =

⎛
⎝1 −1

3 1

7 2

⎞
⎠ and B =

(
3 2 1

2 −1 5

)
.

Solution. Use the format described above.(
3 2 1

2 −1 5

)
⎛
⎝1 −1

3 1

7 2

⎞
⎠

⎛
⎝ 1 3 −4

11 5 8

25 12 17

⎞
⎠ So AB =

⎛
⎝ 1 3 −4

11 5 8

25 12 17

⎞
⎠

Each dot product is a row of A and a column of B. Some examples:

AB23 = A2∗ · B∗3 =
(
3 1

)
·
(

1

5

)
= 8

AB12 = A1∗ · B∗2 =
(
1 −1

)
·
(

2

−1

)
= 3

AB31 = A3∗ · B∗1 =
(
7 2

)
·
(

3

2

)
= 25

For You to Do

4. Use A and B from the previous example. Does the matrix product BA exist? If
so, calculate it. If not, explain why it can’t be done.

Minds in Action Episode 12

Derman: I saw matrices in a movie recently.

Sasha: I’ve had enough of your jokes about The Matrix , okay?

Derman: That wasn’t the one. It was Good Will Hunting . There was a map, and then
he made a matrix.

Sasha: I’ll bet it’s on YouTube.

Derman and Sasha go to http://www.youtube.com/watch?v=l0y7HeDqrV8

Derman: See, matrices. There’s a map in the upper left, it looks like this:

4

1 2 3

Sasha: He answers the first question with a
4×4 matrix called A. I’ll bet it’s the matrix
of paths, like the airline problems. There
are two paths from 2 to 3 . . . hey, this is
what’s in the movie!
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Derman: I don’t understand why the MIT people in this movie are so impressed if we
can do it. The second question looks harder: “Find the matrix giving the number of
three-step walks.”

Sasha: Well, A by itself gives the number of one-step walks.

Derman: Maybe we should make a matrix of two-step walks first. If you wanted to do
a two-step walk from 1 to 1, you could go from 1 to 2, then 2 to 1 . . . or from 1 to
3 . . . no you can’t do that . . . or from 1 to 4, then 4 to 1. So, there are two ways to
get from 1 to 1 in a two-step walk. This is going to take a while.

Sasha: Derman, this is matrix multiplication at work! If we take A and multiply it with
itself, that’ll be our matrix of two-step walks.

Derman: How do you like them apples?

Sasha: Huh? Anyway, let’s get to work. It’s interesting that in the movie, he writes A3

next to his answer for the three-step problem.

For You to Do

5. a. Use the map to construct the 4 × 4 matrix A.
b. Use matrix multiplication to construct a second 4 × 4 matrix giving the

number of two-step walks from any point to any other point. ←−
To check, there should be
six two-step paths from
point 2 to itself, two two-
step paths from point 1 to
point 3, and one two-step
path from point 4 to point
2.

c. Find the matrix giving the number of three-step walks. Is the answer given
in the movie correct?

In-Class Experiment

Carefully write out the result of each matrix multiplication. What do you notice?

1.
(
g h

) (i j k

l m n

)
2.
(
c d

) (i j k

l m n

)

3.

⎛
⎜⎜⎝

a b

c d

e f

g h

⎞
⎟⎟⎠
(

i j k

l m n

)
4.

⎛
⎜⎜⎝

a b

c d

e f

g h

⎞
⎟⎟⎠
(

j

m

)
5.

⎛
⎜⎜⎝

a b

c d

e f

g h

⎞
⎟⎟⎠
(

k

n

)

6. Here is a large matrix multiplication problem. Use a group of six people to
determine the matrix product AB without using a calculator.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −1 3 0 4 −2 1 1 4

0 0 0 3 4 3 1 10 −1 2

1 1 1 1 1 1 1 1 1 1

3 6 −3 9 0 12 −6 3 3 12

9 8 7 6 5 4 3 2 1 0

10 10 6 9 5 8 1 3 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 −2 1 3

1 0 −2 −1 2 3

−1 0 0 1 3 2

3 1 0 −3 4 7

0 1 2 0 5 5

4 1 3 −4 5 9

−2 1 1 2 4 2

1 1 5 −1 3 4

1 1 0 −1 2 3

4 1 0 −4 100 104

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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4.4 Matrix Multiplication

When you multiply two matrices A and B, the first row of the product
AB uses only the first row of A. Similarly, the third column of AB uses only
the third column of B. This means you can think of a matrix multiplication
as operating on each row of the first matrix, or each column of the second
matrix.

Theorem 4.5

If the matrix product AB exists, then ←−
Say, “The ith column of AB
is A times the ith column
of B.” What would you say
for rows?

• (AB)i∗ = Ai∗ · B, and

• (AB)∗j = A · B∗j

For You to Do

6. Calculate each matrix product.

a.

⎛
⎝1 −1

3 1

7 2

⎞
⎠ ·

(
3 1

2 5

)
b.

(
1 3 7

−1 1 2

)
·
(

3 2

1 5

)
c.

(
3 2

1 5

)
·
(

1 3 7

−1 1 2

)

The first two exercises above show that AB and A�B� are unrelated;
in general, (AB)� �= A�B�. But the third exercise reveals the following ←−

Some say that transpose
doesn’t “distribute” over
matrix multiplication.

theorem.

Theorem 4.6

If the matrix product AB exists, then

(AB)� = B�A�

Proof. The proof relies on the definitions of transpose and matrix mul-
tiplication, and the fact that the dot product, the operation underlying ←−

This proof was conceived
by a high school student.

matrix multiplication, is commutative.

(AB)�ij = (AB)ji by definition of transpose

= Aj∗ · B∗i by definition of matrix multiplication

= B∗i · Aj∗ since dot product is commutative

= B�
i∗ · A�

∗j by definition of transpose

= (B�A�)ij by definition of matrix multiplication

This proves that (AB)� and B�A� are equal for any entry, so they are
equal matrices.

171



Chapter 4 Matrix Algebra

Exercises

1. Calculate each matrix product without using a calculator.

a.

(
1 3 −1

2 4 0

)⎛⎝1

3

7

⎞
⎠ b.

(
1 3 −1

2 4 0

)⎛⎝−1

1

2

⎞
⎠

c.

(
1 3 −1

2 4 0

)⎛⎝1 −1

3 1

7 2

⎞
⎠ d.

(
2 4 0

)⎛⎝1 −1

3 1

7 2

⎞
⎠

e.
(
4 8 0

)⎛⎝1 −1

3 1

7 2

⎞
⎠ f.

(
3 7 −1

)⎛⎝1 −1

3 1

7 2

⎞
⎠

2. Calculate this matrix product:

(
3 1

5 2

)(
a b

c d

)
.

3. Use the result from Exercise 2 to find a 2 × 2 matrix M so that(
3 1

5 2

)
M =

(
1 0

0 1

)
.

4. Find two matrices A and B so that

a. AB is defined but BA isn’t.
b. AB and BA are both defined but have different sizes.
c. AB and BA are both defined and have the same size, but

AB �= BA.
d. AB = BA.

5. Let

A =

(
1 3 −1

2 4 0

)
B =

⎛
⎝1 −1

3 1

7 2

⎞
⎠ C =

(
3 −1

1 4

)

D =

(
−1 1 5

1 0 2

)
E =

(
−1 1

5 2

)
Calculate each of the following:

a. AB b. A2∗ · B c. A · B∗1 d. DB

e. C2 f. CE g. EC

h. (A + D)B i. AB + DB j. (AB)C

k. A(BC) l. A(3B) m. (4A)B

n. Find a 2 × 2 matrix F so that EF =

(
1 0

0 1

)

6. Compute the matrix product AB given the two matrices below.
Try to organize your algebraic work to make the result as “clean”
as possible.

A =

(
a b c

d e f

)
B =

⎛
⎝u v

w x

y z

⎞
⎠

7. Using the same matrices from Exercise 6, compute the matrix
product BA.
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8. Describe how the results of the last two exercises can be used to
explain Theorem 4.5.

9. Let A =

(
5 3

2 1

)
and B =

(
5 4

3 2

)
.

Show that (AB)� �= A�B�.

10. For each given set of square matrices A and B, determine whether
AB = BA.

a. A =

(
1 0

1 3

)
and B =

(
−2 4

1 6

)

b. A =

⎛
⎝1 −1 1

3 1 2

4 −1 1

⎞
⎠ and B =

⎛
⎝ 2 1 3

−1 4 2

0 1 7

⎞
⎠

c. A =

⎛
⎝1 −1 1

4 2 3

1 0 1

⎞
⎠ and B =

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠

d. A =

⎛
⎝1 −1 1

4 2 3

1 0 1

⎞
⎠ and B =

⎛
⎝2 0 0

0 2 0

0 0 2

⎞
⎠

e. A =

⎛
⎝1 −1 1

4 2 3

1 0 1

⎞
⎠ and B =

⎛
⎝2 0 0

0 3 0

0 0 2

⎞
⎠

f. A =

(
1 −2

2 1

)
and B =

(
−2 4

−4 −2

)

11. Given A =

(
1 3 −1

2 0 1

)
, B =

⎛
⎝1 −1 1

3 4 0

2 6 1

⎞
⎠, and C =

⎛
⎝3 −1

1 4

2 7

⎞
⎠,

calculate each of the following:

a. A(BC)
b. (AB)C

12. Does matrix multiplication distribute over addition? In other words,
if A, B, and C are matrices and all of the operations are defined,
are either or both of these true?

A(B + C) = AB + AC

(B + C)A = AB + AC

Use examples or counterexamples to illustrate or disprove the state-
ments.

13. Suppose A and B are matrices that can be multiplied and c is a
number. Show that A(cB) = (cA)B = c(AB).
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14. Theorem 4.1 gives some properties of matrix addition and scalar
multiplication. Find and prove some properties of matrix multipli-
cation.

15. True or false: If X and Y are square matrices of the same size and
XY = O, then either X = O or Y = O.

If true, prove it. If not, find a counterexample.

16. Find all 2 × 2 matrices A so that

a. A2 =

(
25 0

0 16

)
b. A2 =

(
−1 0

0 −1

)
c. A2 =

(
0 −1

0 0

)
d. A2 =

(
0 −1

1 0

)

17. Suppose that y �= 0 and that

A =

(
x y

1−x2

y −x

)

Show that A2 = I. ←−
So, there are infinitely
many 2 × 2 matrices
whose square is the identity
matrix.

18. Suppose A =

(
2 3

4 5

)
. Show that A2 − 7A − 2I = O.

19. Suppose A =

(
a b

c d

)
. Show that ←−

a+d is called the trace of
A and ad− bc is called the
determinant of A.

A2 − (a + d)A + (ad − bc)I = O

20. If X and Y are square matrices of the same size, is it true that

(X + Y )(X − Y ) = X2 − Y 2 ?

If so, prove it. If not, correct the statement so it becomes true.

21. Here is a graph of connections on a map.

4

3

21

a. Use the map to construct a 4 × 4 matrix A to represent the
situation.

b. Find the total number of ways to get from 1 to 2 in one step,
in two steps, in three steps. ←−

Note that 2 has a path to
itself . . .

c. Compute A2 and A3.
d. Determine, using matrices, the total number of ways to get

from 1 to 4 in five or fewer steps.
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4.4 Matrix Multiplication

22. Solve this system of linear equations:⎧⎨
⎩

3x + 5y + z = 16

x + 3y + 4z = 25

4x − 2y − 3z = −9

23. Calculate the result of this matrix multiplication:⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠
⎛
⎝2

1

5

⎞
⎠

24. Write

⎛
⎝11

11

6

⎞
⎠ as a linear combination of the columns of the matrix

A where

A =

⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠

25. Show that⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ = x

⎛
⎝3

1

4

⎞
⎠+ y

⎛
⎝ 5

3

−2

⎞
⎠+ z

⎛
⎝ 1

4

−3

⎞
⎠

26. Find a vector

⎛
⎝x

y

z

⎞
⎠ so that

⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝11

11

6

⎞
⎠

27. If A is an n × n matrix, the trace of A, written Tr(A), is the sum
of the elements on the “main diagonal” of A.

Tr(A) = A11 + A22 + · · · + Ann

True or false? If true, prove it. If false, give a counterexample.

a. Tr(A + B) = Tr(A) + Tr(B)
b. Tr(cA) = c Tr(A)
c. Tr(AB) = Tr(A) Tr(B)
d. Tr(AB) = Tr(BA)
e. Tr(A2) = (Tr(A))

2
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4.5 Operations, Identity, and Inverse

In the last lesson, matrix multiplication was formally defined as a gener-
alized dot product. In this lesson, you will explore another way to think
about matrix multiplication: a generalized linear combination. This repre-
sentation of matrix multiplication will prove to be very useful.

In this lesson, you will learn how to

• set up a matrix multiplication as a linear combination of vectors

• understand the relationship between matrix multiplication, dot prod-
uct, and linear combination

• find the inverse of a matrix, if it exists

• use the inverse to solve a matrix equation

Consider Exercises 22–25 from the previous lesson. Two of the exercises
are types you explored in Chapter 3. The others align closely with them
but take an approach through matrix multiplication.

Exercise 25 gives the result⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 3x + 5y + z

x + 3y + 4z

4x − 2y − 3z

⎞
⎠

If you let X =

⎛
⎝x

y

z

⎞
⎠, AX is the left side of a system of linear equations

⎧⎨
⎩

3x + 5y + z = b1
x + 3y + 4z = b2
4x − 2y − 3z = b3

The system can be described using the matrix equation AX = B, where A is
a matrix and X is a column vector. Any possible solution to the system can
be tested by calculating the matrix product AX and determining whether
it solves AX = B.

For You to Do

1. Calculate each matrix product.

a.

⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠
⎛
⎝3

0

2

⎞
⎠ b.

⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠
⎛
⎝0

1

0

⎞
⎠ c.

⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠
⎛
⎝3 0

0 1

2 0

⎞
⎠

d. Find X if

⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠X =

⎛
⎝6

8

8

⎞
⎠.
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As seen in part c from the For You to Do problem 1, you can test
many possible columns X1, X2, . . . at once by creating a matrix with
each possible X as a column, and read the results from the columns of
the matrix product. This follows directly from Theorem 4.5, since matrix
multiplication operates on each column of the second matrix.

In Chapter 3, you learned that solutions to systems are closely tied to
linear combinations. Matrix multiplication gives you a good way to express
these ties. For example:⎛

⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 3x + 5y + z

x + 3y + 4z

4x − 2y − 3z

⎞
⎠

= x

⎛
⎝3

1

4

⎞
⎠+ y

⎛
⎝ 5

3

−2

⎞
⎠+ z

⎛
⎝ 1

4

−3

⎞
⎠

There’s nothing special about the numbers in this calculation. You could
do the same thing for any matrix and column. In other words, you have
the essence of the proof of a theorem that will be very useful for the rest
of this book.

Theorem 4.7

The product AX, where A is a matrix and X is a column vector, is a linear ←−
You might try proving
this theorem for a general
matrix A. The proof is just
a generic version of the
above calculation.

combination of the columns of A. More precisely, if A is m × n,

A

⎛
⎜⎜⎜⎝

x1

x2

...

xn

⎞
⎟⎟⎟⎠ = x1A∗1 + x2A∗2 + · · · + xnA∗n

Facts and Notation

A similar result is true for rows: a row vector times a matrix is a linear combination of
the rows of the matrix. More precisely, if A is m × n

(x1, x2, . . . , xm)A = x1A1∗ + x2A2∗ + · · · + xmAm∗

Work out a few examples to see how the proof would go.

Combining Theorems 4.5 and 4.7, you can pick apart a matrix calcu-
lation: any column of AB is A times the corresponding column of B. A
similar calculation shows that the same thing is true for the rows of AB.
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Theorem 4.8 (The Pick-Apart Theorem)

Suppose A is m × n and B is n × p. Then

(1) the jth column of AB is A times the jth column of B, and this is a
linear combination of the columns of A:

(AB)∗j = A B∗j = A

⎛
⎜⎜⎜⎝

B1j

B2j

...

Bnj

⎞
⎟⎟⎟⎠ = B1jA∗1 + B2jA∗2 + · · · + BnjA∗n

(2) the ith row of AB is the ith row of A times B, and this is a linear
combination of the rows of B:

(AB)i∗ = Ai∗ B

= (Ai1, Ai2, . . . , Aim)B

= Ai1 B1∗ + Ai2B2∗ + · · · + AimBm∗

Some Properties of Matrix Multiplication

Theorem 4.6 leads to the following theorem about symmetric matrices.

Theorem 4.9

If A and B are symmetric matrices, then (AB)� = BA.

Proof. A matrix A is symmetric if A = A�. Now use Theorem 4.6:

(AB)� = B�A� by Theorem 4.6

= BA B and A are symmetric

Matrix multiplication may not be commutative, but it is associative.

Theorem 4.10

If A is m × n, B is n × p, and C is p × q, then

(AB)C = A(BC)

The associative property of matrix multiplication can be proved right
from the definition of matrix multiplication, but the proof is extremely
messy. See Exercises 15 and 16 for examples in the case of 2 × 2 matrices.
In Chapter 5, you’ll see a simple proof of associativity that depends on
using matrices to represent certain kinds of functions.
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For You to Do

2. In Theorem 4.10, show that (AB)C and A(BC) have the same size.

Because matrix multiplication is not commutative, care must be taken Habits of Mind

Theorem 4.10 lets you
write ABC for a product
of three matrices. How
you do the multiplication
doesn’t matter: (AB)C or
A(BC). But switching the
order (like (AC)B) will
change the answer.

whenever multiplying both sides by a matrix. If AX = B and you want
to multiply both sides by C, it is not true that C(AX) = BC. Instead,
a correct step is C(AX) = CB (“left multiplication”) or (AX)C = BC
(“right multiplication”).

For You to Do

3. Let A =

⎛
⎝3 5 1

1 3 4

4 −2 −3

⎞
⎠. Find a 3 × 3 matrix I such that AI = A.

One of the special matrices introduced in Lesson 4.3 was the identity ←−
So, the 3×3 identity matrix

is I =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠. When

the size needs to be made
clear, you can write I3 for
the 3× 3 identity matrix.

matrix, a square matrix with 1 on the diagonal and 0 everywhere else. The
use of the term identity matches its use in other mathematical systems: it
is the identity for matrix multiplication.

Theorem 4.11

If A is an n × n matrix and I is the n × n identity matrix, then ←−
The identity for real-
number addition is 0,
and the identity for real-
number multiplication is
1. Is there an identity for
matrix addition?

AI = IA = A

In-Class Experiment

4. For each matrix A, find a matrix B so that AB = I, or show that no such B
exists.

a.

(
1 2

3 4

)
b.

(
1 2

2 4

)
c.

(
3 0

0 4

)
d.

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠ e.

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠

Come up with some more 2 × 2 and 3 × 3 matrices. Determine if a matrix B

←−
The numbers used in
these last two might seem
familiar from Chapter 3.

always exists, and if not, some conditions that guarantee B exists (or doesn’t).

In other mathematical systems, two elements are inverses for an opera-
tion if they produce the identity as output under that operation, and that
definition carries over to matrices.

Definition

A square matrix A is invertible if there exists a square matrix B such
that AB = I = BA. This matrix B is the matrix inverse of A, denoted
A−1.

Invertible matrices are sometimes called nonsingular ; matrices that

←−
This definition is a little
redundant. If A is square
and AB = I, you can
prove that BA = I. See
Exercise 32.do not have inverses are therefore singular .
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As you saw in the In-Class Experiment above, not all square matrices A
are invertible. One important question that will be answered soon is how
to determine whether or not a square matrix A is invertible. If A−1 exists,

←−
Calculators can find the
inverse of a matrix when it
exists, either by typing
A−1 or using the inv
function. The notation
A−1 is the same notation
used for inverse functions
(their composite is the
identity function), and
for inverses under real-
number multiplication
(their product is 1).

it becomes very helpful in solving the matrix equation AX = B, as the
following theorem shows.

Theorem 4.12

If an n × n matrix A is invertible and B is any column vector in Rn, the
system AX = B has a unique column vector X as its solution.

Proof. Since A is invertible, A−1 exists. If AX = B were an “algebra”
problem, it would be solved by multiplying by the multiplicative inverse of
A on both sides. The equivalent step here is to perform left multiplication ←−

All of the observations
made in Chapter 3 about
linear combinations, espe-
cially those about linear
dependence and indepen-
dence, can be stated in
terms of the matrix equa-
tion AX = B.

by A−1.

AX = B

A−1(AX) = A−1B

(A−1A)X = A−1B

IX = A−1B

X = A−1B

Developing Habits of Mind

Create a process. As with some of the proofs in Chapters 1 and 2, the proof of
Theorem 4.12 not only proves the theorem, but gives the solution.

As you work with inverse matrices, you will find that multiplying by A−1 serves many
of the same purposes as multiplying by a−1 = 1

a in an ordinary linear equation from
Algebra 1 (both “undo” an operation). However, be careful: for matrices, A−1 may not ←−

In fact, not all real num-
bers have multiplicative
inverses: 0−1 doesn’t exist
for numbers.

exist.

The next lesson will focus more on the existence of inverses and solving the matrix
equation AX = B. Some facts from Chapter 3 will prove very helpful.

For You to Do

5. Prove the converse of Theorem 4.12: if A is n × n and AX = B has a unique
solution for every column vector B in Rn, then A is invertible.

Hint: Let B be the matrix whose first column is the unique solution to

AX =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠, second column is the unique solution to AX =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠, and so

on. What is AB?
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Exercises

1. Find a solution to this system of linear equations.⎧⎨
⎩

2x + 4y + 5z = 57

3x + 2y + 5z = 48

−x + 2y = 9

2. Calculate the result of each matrix multiplication.

a.

⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠
⎛
⎝1

5

7

⎞
⎠ b.

⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠
⎛
⎝−5

2

10

⎞
⎠

c.

⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠
⎛
⎝7

8

4

⎞
⎠ d.

⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠
⎛
⎝1

0

0

⎞
⎠

e.

⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠
⎛
⎝1 −5 7 1

5 2 8 0

7 10 4 0

⎞
⎠

3. Write

⎛
⎝3

4

5

⎞
⎠ as a linear combination of the columns of the matrix

⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠

or prove that it is impossible.

4. Suppose A =

⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠. Write the result of the following matrix

multiplication as a linear combination of the columns of A.⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠
⎛
⎝x1 y1

x2 y2
x3 y3

⎞
⎠

5. Find two different vectors that make this matrix multiplication true.⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 4

6

−2

⎞
⎠

6. For each given matrix, find its inverse without using a calculator,
or show that the inverse does not exist.

a.

⎛
⎝ 2 4 5

3 2 5

−1 2 0

⎞
⎠ b.

⎛
⎝ 2 4 5

3 2 5

−1 2 1

⎞
⎠ c.

⎛
⎝2 0 0

0 5 0

0 0 −10

⎞
⎠

7. a. If A is symmetric, prove that A2 is symmetric.
b. If A is skew-symmetric, what can be said about A2? Prove it.
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8. Theorem 4.9 states that if A and B are symmetric, then (AB)� =
BA. Is this true . . .

a. if A and B are both skew-symmetric?
b. if A is symmetric and B is skew-symmetric?

9. If A is a square matrix and AI = A, prove that IA = A.

10. Justify each step in the proof of Theorem 4.12.

11. What’s Wrong Here? Derman claims that right-multiplication
could have been used in the proof of Theorem 4.12. Here are his
steps:

AX = B

(AX)A−1 = BA−1

(AA−1)X = BA−1

X = BA−1

He concludes this means that A−1B = BA−1 for any invertible ma-
trix A and any matrix B. What is wrong with Derman’s reasoning?

12. Given M =

(
a b

b a + b

)
, calculate each of the following:

a. M2 b. M3 c. M4 d. M5 e. M6 f. M7

g. What is happening in general? Can you explain it?

13. For A =

⎛
⎝1 2 3

3 2 1

2 3 1

⎞
⎠, find X if

a. AX =

⎛
⎝1

0

0

⎞
⎠ b. AX =

⎛
⎝0

1

0

⎞
⎠ c. AX =

⎛
⎝0

0

1

⎞
⎠

14. For A =

⎛
⎝1 2 3

3 2 1

2 3 1

⎞
⎠, determine A−1.

15. Let A =

(
2 1

1 3

)
, B =

(
4 −1

5 1

)
, and C =

(
1 −1

5 0

)
. Calculate each

of the following:

a. A(BC) b. (AB)C

16. Let A =

(
a b

c d

)
, B =

(
e f

g h

)
, and C =

(
w x

y z

)
. Calculate each

of the following:

a. A(BC) b. (AB)C
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17. For each 2× 2 matrix A, calculate A−1. Use fractions when needed.

a. A =

(
10 −1

3 10

)
b. A =

(
10 −1

3 20

)
c. A =

(
10 1

3 20

)
d. A =

(
5 8

8 13

)
e. A =

(
a b

c d

)

18. Under what circumstances will a 2 × 2 matrix be invertible? Find
some examples that are invertible and some that are not.

19. Find a 3 × 3 matrix B so that

⎛
⎝3 2 1

2 0 −1

0 1 1

⎞
⎠B =

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠.

20. Under what circumstances will a 3 × 3 matrix be invertible? Find
some examples that are invertible and some that are not.

21. a. Pick any 3 × 3 diagonal matrix and square it. What do you
notice?

b. If A =

⎛
⎝0.9 0 0

0 1 0

0 0 0.5

⎞
⎠, compute A3.

c. For matrix A, give a good estimate for A100 without computing
it.

22. Determine whether each statement is true or false. Justify your
answers. Assume the given matrices are square and the same size.

a. The product of two scalar matrices is a scalar matrix.
b. The product of two diagonal matrices is a diagonal matrix.
c. The sum of two upper triangular matrices is an upper trian-

gular matrix.
d. The product of two upper triangular matrices is an upper

triangular matrix.
e. The product of an upper triangular matrix and a lower trian-

gular matrix is a diagonal matrix.
f. The product of two symmetric matrices is a symmetric matrix.
g. The sum of two skew-symmetric matrices is a skew-symmetric

matrix.
h. The product of two skew-symmetric matrices is a skew-

symmetric matrix.

23. Find all matrices A so that A2 =

(
1 0

0 1

)
.

24. Find all matrices B so that B3 =

(
1 0

0 1

)
.

25. Find all matrices C so that C4 =

(
1 0

0 1

)
.
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26. Let A =

(
2 3

1 −1

)
and P =

(
5 7

3 4

)
. Compute the following: ←−

Since multiplying matrices
is associative, you can read
part b as either (PA)P−1

or P (AP−1). But it is not
the same as A!

a. P−1 b. M = PAP−1

c. M2 d. PA2P−1

27. Using the same matrices as Exercise 26, use a calculator to compute
each of the following:

a. M10 =
(
PAP−1

)10
b. PA10P−1

28. Prove that if P is invertible and n is any positive integer, then(
PAP−1

)n
= PAnP−1

29. Let A =

(
0.9 0.3

0.1 0.7

)
and P =

(
1 1

−1 3

)
.

a. Compute P−1, and then compute M = PAP−1.
b. Compute M10 to four decimal places.

c. Explain why M100 is very close to

(
1 0

0 0

)
.

d. Use Exercise 28 to explain why A100 = P−1M100P .
e. Give a very good approximation to A100 without a calculator.

30. Suppose A and B are n×n matrices so that AB = I. Show that the
system (x1, x2, . . . , xn)A = (c1, c2, . . . , cn) has a unique solution for
every (c1, c2, . . . , cn) in Rn.

31. Suppose A and B are n × n matrices so that AB = I. Show that ←−
Use Exercise 30 to find
vectors Ci so that CiA
= (0, 0, . . . , 0, 1, 0, . . . , 0),
where the 1 is in the ith

place. Let C be the matrix
whose rows are the Ci.
What is CA?

there is an n × n matrix C so that CA = I.

32. Suppose A and B are n×n matrices so that AB = I. Use Exercise 31
to show that BA = I.
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4.6 Applications of Matrix Algebra

You can use matrices to solve systems of equations. There is a useful re-
lationship between the solutions to a system and the kernel of its corre-
sponding matrix. Finding the kernel will often give you a faster way to find
the whole set of solutions.

In this lesson, you will learn how to

• determine when a matrix has an inverse

• find all solutions to a matrix equation given one solution and the
kernel of the matrix

• find the set of vectors left invariant or just simply scaled after
multiplication by a matrix

In Chapter 3, you learned this definition of the kernel of a matrix:

If A is a matrix, the kernel of A, written ker(A), is the set of
all vectors that are orthogonal to the rows of A.

Consider the matrix

A =

⎛
⎝2 2 3

7 2 10

3 −2 4

⎞
⎠

A vector X =

⎛
⎝x

y

z

⎞
⎠ is in the kernel if it is orthogonal to all the rows of

A. The three dot products involved produce this homogeneous system of
equations: Remember

A system of equations
is homogeneous if all its
constant terms are zero.

⎧⎨
⎩

2x + 2y + 3z = 0

7x + 2y + 10z = 0

3x − 2y + 4z = 0

Oh, but this is familiar from the last lesson. The written system of equations
can be written as one equation in the form AX = B, where A is a matrix
of coefficients, X is a column vector of unknowns, and B is a column vector
of constants. ⎛

⎝2 2 3

7 2 10

3 −2 4

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠

The right side is the zero vector, so the system can be written as AX = O.

So, X is in the kernel if it solves the homogeneous system of equations,
and a second equivalent definition of kernel is the following:

Definition

The kernel ker(A) of a matrix A is the set of vectors X that make
AX = O.
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For Discussion

1. Suppose vector S solves AX = B and nonzero vector Y is in the kernel of A.
Find three more vectors Z that each solve AZ = B. ←−

What does the new kernel
definition say about AY ,
and how can this be used
to find more solutions?The zero vector will always be in the kernel: A O = O. Some matrices

have other vectors in their kernels while others do not.

For You to Do

2. a. Given matrix A =

⎛
⎝2 2 3

7 2 10

3 −2 4

⎞
⎠, determine whether there is a nonzero

vector X in the kernel of A. You may wish to use methods from Chapter 3
or from Lesson 4.5.

b. If matrix A has a nonzero kernel, change it slightly to make a new matrix
that does not. If matrix A does not have a nonzero kernel, change it slightly
to make a new one that does.

In the last lesson, you learned that when it exists , a matrix’s inverse can
be used to solve the system AX = B. The system AX = O is no exception,
which leads to this corollary to Theorem 4.12.

Corollary 4.13

If a matrix A is invertible, ker(A) is only the zero vector. ←−
The converse of this
theorem is also true. You’ll
prove it later in this lesson.You’ll be asked to prove this corollary in the exercises.

For You to Do

3. Let A =

⎛
⎝4 1 0

2 5 −1

0 9 −2

⎞
⎠, X =

⎛
⎝1

1

1

⎞
⎠, and Y =

⎛
⎝ 0

5

19

⎞
⎠. Calculate the following:

a. AX b. AY c. AX − AY d. A(X − Y ) e. A(3X − 3Y )

The results from these problems suggest the following theorem.

Theorem 4.14

Given a matrix A, if there exist vectors X and Y with AX = AY , then
k(X − Y ) is in ker(A) for any real number k.

Proof. If AX = AY , then AX − AY = O, a zero vector. Since matrix
multiplication is distributive, then A(X − Y ) = O as well, and X − Y is in
the kernel of A.
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Now consider k(X−Y ) for some real k. These steps prove that k(X−Y )
is in ker(A).

A(k(X − Y )) = k(A(X − Y ))

= k · O
= O

Corollary 4.15

For a matrix A, if ker(A) = O, then AX = AY if and only if X = Y .

Proof.

• Clearly if X = Y , then AX = AY .

• If ker(A) = O, then by Theorem 4.14,

AX = AY =⇒ k(X − Y ) is in ker(A)

specifically, X − Y is in ker(A). Hence X − Y = O, and X = Y .

Minds in Action Episode 13

Tony and Sasha are looking at a linear system.

Tony: We want to solve AX = B:

⎛
⎝1 1 5

1 2 7

3 4 17

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 3

4

10

⎞
⎠

Sasha: I see one solution:

⎛
⎝ 3

4

10

⎞
⎠ is the last column minus the sum of the first two.

Tony: How’d you see that?

Sasha: Practice. Anyway, this means that S =

⎛
⎝−1

−1

1

⎞
⎠ is a solution by Theorem 4.5.

Tony: Do you see any others?

Sasha: No. But I have an idea.

Tony: Of course you do. What is it?

Sasha: Well, suppose we solve an easier system: AX = O.

Tony: That will give you the kernel of A. What do you intend to do with that?

Sasha: Well, if AS = B and AT = O, then A(S + T ) will also be B.

Tony: Sure, A(S + T ) = AS + AT = B + O = B. Smooth.

Enter Derman
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Tony: Hey, Derman. Go find rref

⎛
⎝1 1 5

1 2 7

3 4 17

⎞
⎠.

Derman: Sure. I did it in my head. It’s

⎛
⎝1 0 3

0 1 2

0 0 0

⎞
⎠.

Tony: Ah. That means that the columns of A are linearly dependent. It also means
that

ker(A) = z(−3,−2, 1)

Sasha: And it also means that every vector of the form

(−1,−1, 1) + z(−3,−2, 1)

is a solution to our original system. Hey . . . that’s a line.

Tony: So is the kernel—it’s a line through the origin. And it’s parallel to our solution
line.

Derman: I did it in my head.

Sasha: I wonder if we’ve found all the solutions . . . .

The next result shows that Tony, Sasha, and Derman are onto something.

Theorem 4.16

If AS = B, then every solution to AX = B is found by letting X = S +K,
where K is in ker(A).

Proof. There are two parts to the proof. First, show that if AS = B, then
A(S + K) = B. Since K is in ker(A), AK = O.

A(S + K) = AS + AK = B + O = B

Second, show that if AS = B and AT = B, then T = S +K with K in the
kernel. This follows directly from Theorem 4.14.

For You to Do

4. Tony, Sasha, and Derman found that the set of solutions to their “inhomoge-
neous” system AX = B was a translate (by (−1,−1, 1)) of the kernel of A. Since
ker(A) was a line through the origin, the solution set was a parallel line through
(−1,−1, 1).

Come up with a matrix A that has a plane
through the origin as its kernel. Show that the
solution set to AX = B for some vector B is a
translate of this plane by B:
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Developing Habits of Mind

Seek general results. While the theorems above cover many cases, they miss an
important one: the converse to Corollary 4.13. It would be nice to have some conditions
that guarantee that a square matrix A has an inverse. ←−

Nonsquare matrices cannot
have inverses. More about
nonsquare matrices in
Chapter 5.

You may suspect that if A is a square matrix and ker(A) includes only the zero vector,
then A−1 exists. This is true, but proving it requires some work from Chapter 3. Why?
Because much of the work comes down to solving equations in the form AX = B, which
correspond directly with systems of equations.

Suppose A is 3×3. If it has an inverse A−1, then AA−1 =

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠. Now ask: what

would the first column of A−1 have to be?

Theorem 4.5 says that this first column determines the first column of the product

completely. If this column is called X1, then AX1 =

⎛
⎝1

0

0

⎞
⎠. This corresponds to a system

of three equations and three unknowns, which may or may not have a solution.

Similarly, solve AX2 =

⎛
⎝0

1

0

⎞
⎠ and AX3 =

⎛
⎝0

0

1

⎞
⎠ and one of two things will happen:

• If all three systems were solvable, then the columns X1, X2, X3 are, in order, the
columns of the inverse A−1.

• If at least one system was unsolvable, then A−1 does not exist, since there is no
way to make that column of the identity matrix when multiplying.

As you learned in Chapter 3, you can solve multiple systems that have the same coef-
ficient matrix at once. The method below shows how you can use Gaussian elimination
to find all the columns of A−1 at once. What would it mean if Gaussian elimination
breaks down at any step along the way?

Example

Problem. Let A =

⎛
⎝2 −1 0

2 1 −3

0 1 1

⎞
⎠. Find A−1 or show that it does not exist.

Solution. The goal is to find a matrix such that

⎛
⎝2 −1 0

2 1 −3

0 1 1

⎞
⎠A−1 =

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠
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To find the first column of A−1, you can solve the system AX =

⎛
⎝1

0

0

⎞
⎠ by Gaussian

elimination. This method, introduced in Chapter 3, starts by setting up an augmented
matrix .

⎛
⎝2 −1 0 1

2 1 −3 0

0 1 1 0

⎞
⎠

When Gaussian elimination is complete, the rightmost column will be the first column
of A−1.

You can repeat this process to find all three columns of A−1, or do all three at once!
In Chapter 3 you learned that Gaussian Elimination can solve multiple versions of the ←−

For an example of this, see
Exercise 6 in Lesson 3.2.

same system of equations, by writing more columns into the augmented matrix. This
means that A−1 can be found by following Gaussian Elimination on this matrix:

⎛
⎝2 −1 0 1 0 0

2 1 −3 0 1 0

0 1 1 0 0 1

⎞
⎠

For example, after subtracting the second row by the first row, you get

⎛
⎝2 −1 0 1 0 0

0 2 −3 −1 1 0

0 1 1 0 0 1

⎞
⎠

For You to Do

5. a. Find the reduced echelon form of this augmented matrix.
b. What is A−1?
c. Verify that AA−1 = I.

The end result of this Gaussian elimination puts the identity matrix into
the first three columns. ⎛

⎝1 0 0

0 1 0 . . .

0 0 1

⎞
⎠

The process will succeed if Gaussian elimination produces an identity
matrix in its first n columns. The inverse matrix can then be read from the
remaining columns. This can be stated as a theorem.

Theorem 4.17

For a square matrix A, if rref(A) = I, then A−1 exists.
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In Chapter 3, you learned that rref(A) = I if and only if the columns of
A were linearly independent. This leads to a very nice corollary.

Corollary 4.18

For a square matrix A, if its columns are linearly independent, then A−1

exists.

Developing Habits of Mind

Look for connections. You’ve now learned that these conditions for a square matrix
A are all connected:

←−
You’ll add to this list of
connections later in the
book.

(1) the columns of A are linearly independent

(2) rref(A) = I

(3) A−1 exists

(4) AX = B has a unique solution for any B

(5) ker(A) = O

These statements are, in fact, equivalent : for a given matrix A, if one is true, they all
are true and, if one is false, they all fail.

How do you prove that these five statements are equivalent? You could prove that ←−
How many proofs would
that be?

each one implies the other. But a common technique is to set up a “chain of implications”
like this:

(1) columns are linearly independent −→ (2) rref(A) = I

↑ ↓
(5) ker(A) = O ←− (4) AX = B has a unique solution ←− (3) A−1 exists

The next theorem formalizes this equivalence. Its proof is just a summary
of theorems and corollaries you have already proved.

←−
TFAE stands for “The
Following Are Equivalent.”

Theorem 4.19 (The TFAE Theorem)

The following statements are all equivalent for an n × n matrix A:

(1) The columns of A are linearly independent

(2) rref(A) = I

(3) A−1 exists

(4) AX = B has a unique solution for any B

(5) ker(A) = O

Proof. One chain of implications is to show that

(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1)
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You have done all but the last of these already. To show the last, suppose
that ker(A) = O and suppose that

←−
You need to show that each
xi = 0. Why?

x1A∗1 + x2A∗2 + · · · + xnA∗n = O

Then

←−
Why?A

⎛
⎜⎜⎜⎝

x1

x2

...

xn

⎞
⎟⎟⎟⎠ = O

so (x1, x2, . . . , xn) is in ker(A). Hence, each xi = 0 and the columns of A
are linearly independent.

For You to Do

6. Look back over the previous chapters and find the theorems and corollaries that
establish the other implications.

Exercises

1. Consider A =

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠ and B =

⎛
⎝ 5

11

17

⎞
⎠.

a. Show that if X1 =

⎛
⎝−1

3

0

⎞
⎠, AX1 = B.

b. Show that if X2 =

⎛
⎝ 1

−1

2

⎞
⎠, AX2 = B.

c. Find some other vectors that also solve AX = B.

2. Suppose AX1 = B and AX2 = B. Which of the following vectors
X must also solve AX = B?

a. X = 2X1 b. X = X1 + X2

c. X = X1 − X2 d. X = 1
2X1 + 1

2X2

e. X = 2X1 − X2 f. X = aX1 + bX2 for any real a, b

3. Suppose X1 and X2 are each in ker(A). Which of the following
vectors X must also be in ker(A)?

a. X = 2X1 b. X = X1 + X2

c. X = X1 − X2 d. X = 1
2X1 + 1

2X2

e. X = 2X1 − X2 f. X = aX1 + bX2 for any real a, b

4. Prove that if AX1 = B and AX2 = B for nonzero B, then aX1+bX2

is a solution to AX = B if and only if a + b = 1.

5. Prove Corollary 4.13 using Theorem 4.12.
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6. Use the results from this lesson to prove that a system of linear
equations cannot have exactly two solutions.

7. Calculate each of the following, where

A =

(
4 1 3

2 1 0

)
, B =

(
3 1 2

1 4 3

)
, C =

⎛
⎝ 1 2 3

−1 1 4

1 3 2

⎞
⎠ , D =

⎛
⎝4 3 1

1 1 0

2 2 1

⎞
⎠

a. AC b. CA c. BC

d. (A + B)C e. A�C� f. D−1

g. (AD)∗3 h. (BD)2∗ i. (D�)−1

8. Use Gaussian elimination to determine the inverse of this matrix:⎛
⎝ 0.4 0.1 0.3

−0.2 0.2 0.6

0.2 −0.2 0.4

⎞
⎠

9. a. Give some conditions that will guarantee that a square matrix
A has an inverse.

b. Give some conditions that guarantee that a square matrix A
will not have an inverse.

10. Here is a graph of connections on a map:

←−
Note that 4 has a path to
itself.

a. Use the map to construct a 4×
4 matrix M to represent the
situation.

b. Find the total number of ways
to get from 1 to 4 in one step,
in two steps, in three steps.

c. Compute M2 and M3.

d. Determine, using matrices, the
total number of ways to get
from 1 to 4 in five or fewer
steps.

4

1 2

3

11. If A =

⎛
⎝3 1 2

1 7 −1

4 2 3

⎞
⎠, write A as the sum of a symmetric and skew-

symmetric matrix.
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12. Given A =

⎛
⎝3 1 2

1 7 −1

4 2 3

⎞
⎠ and X =

⎛
⎝ 2

−1

5

⎞
⎠.

a. Compute B = AX.
b. Write B as a linear combination of the columns of A. ←−

In other words, find c1, c2,
and c3 so that

B = c1

⎛
⎝3
1
4

⎞
⎠+c2

⎛
⎝1
7
2

⎞
⎠+c3

⎛
⎝ 2
−1
3

⎞
⎠

13. Solve each system by multiplying both sides by the inverse of the
coefficient matrix.

a.

(
7 5

3 2

)(
x

y

)
=

(
−21

−10

)

b.

⎛
⎝2 1 1

1 1 0

2 0 3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ −3

5

−19

⎞
⎠

c.

⎛
⎝2 3 1

2 3 0

1 2 1

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝−10

−13

−8

⎞
⎠

d.

⎛
⎝6 1 1

7 2 1

2 1 0

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝−11

−2

6

⎞
⎠

14. For each given matrix A and column vector B, find all X so that ←−
There may be more than
one solution! Find them all .

AX = B.

a. A =

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠, B =

⎛
⎝ 5

11

17

⎞
⎠

b. A =

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠, B =

⎛
⎝ 5

11

8

⎞
⎠

c. A =

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠, B =

⎛
⎝ 5

11

8

⎞
⎠

d. A =

⎛
⎝1 3 −1 2

0 1 4 1

3 10 1 7

⎞
⎠, B =

⎛
⎝ 5

2

17

⎞
⎠

e. A =

⎛
⎝1 3 −1 2

0 1 4 1

3 10 1 7

⎞
⎠, B =

⎛
⎝4

1

8

⎞
⎠

15. Let A =

(
1 3 0

2 5 1

)
.

a. Find ker(A).

b. Find all 3 × 1 matrices X so that AX =

(
4

8

)
.
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16. For each system, rewrite the system in the form AX = B. Then,
find a solution to each system by writing B as a linear combination
of the columns of A. ←−

There may be more than
one solution, but you only
have to find one!

a.

⎧⎪⎪⎨
⎪⎪⎩

x − y + z = 0

2x + y + z = 3

x − y + 2z = 0

3x − 3y − z = 0

b.

⎧⎪⎪⎨
⎪⎪⎩

x − y + z = 0

2x + y + z = 2

x − y + 2z = 1

3x + y − z = 0

c.

{
x + y + 4z = 3

x − y + 2z = −1
d.

⎧⎨
⎩

x + 2y + 3z = 1

4x + 5y + 6z = 1

7x + 8y + 9z = 1

e.

⎧⎨
⎩

x + y − z = 2

3x + y − 2z = 5

x + y + z = 4

17. For each system, find one solution using the method of Exercise 16,
and then find all solutions by using the kernel.

a.

(
1 3 7

2 7 1

)⎛⎝x

y

z

⎞
⎠ =

(
2

5

)
b.

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝1

1

1

⎞
⎠

c.

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝1

1

1

⎞
⎠ d.

⎛
⎝2 1

3 4

7 2

⎞
⎠(x

y

)
=

⎛
⎝ 4

11

11

⎞
⎠

18. Suppose A =

⎛
⎝1 1 −1 2

3 1 −2 5

1 1 1 4

⎞
⎠. Left-multiply A by each of the ←−

Matrix A should be
familiar. See Exercise 16e.

following matrices, and describe how the result relates to A.

a.

⎛
⎝0 1 0

1 0 0

0 0 1

⎞
⎠ b.

⎛
⎝2 0 0

0 1 0

0 0 1

⎞
⎠ c.

⎛
⎝ 1 0 0

0 1 0

−1 0 1

⎞
⎠ d.

⎛
⎝ 1 0 0

−3 1 0

0 0 1

⎞
⎠

19. Suppose that E =

⎛
⎝− 3

4
1
2

1
4

5
4 − 1

2
1
4

− 1
2 0 1

2

⎞
⎠ and A =

⎛
⎝1 1 −1 2

3 1 −2 5

1 1 1 4

⎞
⎠. Show

that EA is the echelon form of A.

20. Given A =

⎛
⎜⎜⎝

3 −1 2 4 6

1 7 1 0 5

0 1 3 −2 4

1 5 1 0 6

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎜⎝

1 3 7 −1

2 1 1 4

−1 2 6 3

4 0 3 1

2 8 1 7

⎞
⎟⎟⎟⎟⎟⎠, find

each of these without performing the complete matrix multiplica-
tion: ←−

Think about where the row
or column of the product
would come from, and find
a simpler way to calculate
it.

a. (AB)3∗ b. (AB)∗2 c. (BA)1∗ d. (BA)∗2
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21. Given A =

(
a b

1 − a 1 − b

)
.

a. Compute A2 and show that the sum of the entries in each
column is 1.

b. Compute A3 and show that the sum of the entries in each
column is 1.

22. Given A, a 2×2 matrix where the sum of the entries in each column
is k, show that the sum of the entries in each column of A2 is k2.

23. Given A, a 3×3 matrix where the sum of the entries in each column
is k, show that the sum of the entries in each column of A2 is k2.

24. Given A, where the sum of the entries in each column is a, and B, ←−
Be as specific or general
as you like here, but the
statement is even true for
nonsquare A and B!

where the sum of the entries in each column is b, show that the sum
of the entries in each column of AB is ab.

25. For each matrix, determine whether it has an inverse. Compute the
inverse if it exists, but not before determining whether it exists.

a.

(
5 3

2 1

)
b.

⎛
⎝1 0 2

2 1 1

4 2 3

⎞
⎠ c.

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠

d.

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠ e.

⎛
⎜⎜⎝

1 0 4 3

2 1 4 1

3 1 2 0

5 2 6 1

⎞
⎟⎟⎠

26. Let A =

(
5 3

2 1

)
and B =

(
5 3

3 2

)
.

a. Show that (AB)−1 �= A−1B−1.
b. Experiment to find a different, but simple, expression for

(AB)−1 in terms of A−1 and B−1.

27. For each system AX = B, find one solution X0 using the method of
Exercise 16, and then write an expression for all solutions in terms
of the kernel of A.

a.

(
1 3 −1

2 1 4

)⎛⎝x

y

z

⎞
⎠ =

(
2

5

)
b.

⎛
⎝1 2

3 −1

1 7

⎞
⎠(x

y

)
=

⎛
⎝4

5

9

⎞
⎠

c.

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝1

1

1

⎞
⎠ d.

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝1

1

2

⎞
⎠

e.

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 2

2

−7

⎞
⎠

28. True or False: For n × n matrices A and B,

if A is invertible and AB = O, then B = O.

If true, prove it. If false, find a counterexample.
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29. Sometimes, the product AX determines a vector that is a multiple

of the original. Let A =

(
0.9 0.3

0.1 0.7

)
and X =

(
x1

x2

)
.

a. If AX = kX, write the system of equations that corresponds
to the matrix equation.

b. Find all possible values of k that could produce a possible
nonzero vector X.

c. For each value of k you found, determine a nonzero vector X
that solves AX = kX.

d. The matrix A used here is the same one from Exercise 29
from Lesson 4.5. What do you notice about the results here
compared with that exercise?

30. Pick several 2×2 matrices A, and follow the process of Exercise 29.

a. Find a matrix where k = 0 produces a possible nonzero vector
X.

b. Find a matrix where no real number k can produce a possible
nonzero vector X.

31. Prove this statement:

The values of k that produce nonzero vectors X solving
AX = kX are precisely those where ker(A − kI) has
nonzero vectors in its kernel, and these vectors solve
AX = kX.

32. A block diagonal matrix is a square matrix made of small square
matrices along the diagonal of a large matrix, with zeros otherwise.
One example is ←−

Note that the smaller
square matrices can be
1× 1, which is an allowable
matrix size.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 0 0 0

3 4 0 0 0 0

0 0 5 0 0 0

0 0 0 6 7 8

0 0 0 9 10 11

0 0 0 12 13 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

a. Compute A2.
b. What can you say about the powers of A?
c. This notation is sometimes used for block diagonal matrices:

A =

⎛
⎝X O O

O Y O

O O Z

⎞
⎠

What does this notation mean?

33. A block triangular matrix is a matrix that, when looked at as
a set of “blocks” (smaller matrices inside the larger one), becomes
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a triangular matrix. One example is ←−
The sets of −1, −2, and −3
show the lower-triangular
blocks, though it is the
fact that zeros appear
above the “diagonal” that
is important.A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 0 0 0

3 4 0 0 0 0

−1 −1 5 0 0 0

−2 −2 −3 6 7 8

−2 −2 −3 9 10 11

−2 −2 −3 12 13 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

a. Compute A2.
b. What can you say about the powers of A?
c. This notation is used for block triangular matrices. What does

it mean?

A =

⎛
⎝X O O

M Y O

N P Z

⎞
⎠
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These problems will help you summarize what you have learned in this Vocabulary

In this chapter, you saw
these terms and symbols
for the first time. Make
sure you understand what
each one means, and how
it is used.

• Aij , A∗j , Ai∗

• diagonal matrix

• entry

• equal matrices

• identity matrix

• inverse

• invertible matrix,
nonsingular matrix

• kernel

• lower triangular matrix

• m× n matrix

• matrix multiplication,
matrix product

• multiplication by a scalar

• scalar matrix

• singular matrix

• skew-symmetric matrix

• square matrix

• sum of matrices

• symmetric matrix

• transpose

• upper triangular matrix

chapter.

1. Let

A =

(
1 2 −1

0 3 1

)
, B =

(
−2 1 −4

3 −1 5

)

C =

⎛
⎝4 2 6

3 −3 7

1 0 −2

⎞
⎠, D =

⎛
⎝5 −1 3

6 −2 4

8 10 −5

⎞
⎠

Calculate each of the following, if possible. If it is not possible,
explain why.

a. A + B b. C + D c. A�

d. C� e. A� + B� f. (A + B)�

g. 2D h. A + 3B i. D12 + C32

2. Let A =

⎛
⎝ 3 6 −2

−2 1 2

12 10 7

⎞
⎠.

Write A as the sum of a symmetric and skew-symmetric matrix.

3. Let

A =

⎛
⎝ 2 −3

0 4

−1 2

⎞
⎠ , B =

(
1 −5 3

−1 6 −3

)

C =

(
5 3

7 4

)
, D =

(
−1 3

2 1

)
Calculate each of the following, if possible. If it is not possible,
explain why.

a. AB b. CB c. C1∗ · B
d. D2 e. DC f. BC

g. Find a 2 × 2 matrix F so that CF =

(
1 0

0 1

)
.

4. For each matrix, find its inverse without using a calculator, or show
that the inverse does not exist.

a.

(
4 −3

10 −5

)
b.

(
−1 2

−4 8

)
c.

⎛
⎝3 −1 0

2 1 −5

3 0 −4

⎞
⎠

5. Let A =

⎛
⎝ 3 −1 0

4 1 2

−2 5 3

⎞
⎠ and X =

⎛
⎝ 3

4

−1

⎞
⎠.

a. Compute B = AX.
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b. Write B as a linear combination of the columns of A. In other
words, find c1, c2, and c3 so that

B = c1

⎛
⎝ 3

4

−2

⎞
⎠+ c2

⎛
⎝−1

1

5

⎞
⎠+ c3

⎛
⎝0

2

3

⎞
⎠

6. Given two matrices A and B, how can you tell if the product AB
exists?

7. How can you tell if a matrix equation has a unique solution?

8. Let A =

⎛
⎝ 1 4 3

−1 1 2

5 4 2

⎞
⎠. Find A−1.
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In Lesson 4.2, you learned to

• use clear notation for the different entries of a matrix

• determine when two matrices can be added to each other

• multiply a matrix by a scalar

• apply the properties of vector addition and scalar multiplication to
matrices

• find the transpose of a matrix

The following exercises will help you check your understanding.

1. Let

A =

⎛
⎜⎜⎝
−1 2

4 −5

3 0

−6 1

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

2 4

−6 3

2 1

7 10

⎞
⎟⎟⎠ , and C =

⎛
⎜⎜⎝
−4 −1

3 8

−5 2

1 0

⎞
⎟⎟⎠

Calculate each of the following.

a. A + B b. (A + B) + C c. A�

d. A� + C� e. (A + C)� f. (2A)�

g. (−A)� h. ((A + B) + C)�

2. Let A =

⎛
⎜⎜⎝

2 −1 −3

1 3 −7

4 −9 2

8 0 −1

⎞
⎟⎟⎠.

Determine the following.

a. A13 b. A31 c. A23 + A33

d. A3∗ e. A∗3 f. A2∗ + A4∗

3. Let A be a 2×4 matrix whose generic entry is Aij . Write the entries
of A given each of the following conditions:

a. Aij = i
b. Apq = p + q
c. Ars = r + 3s

In Lesson 4.3, you learned to

• be familiar with the different types of square matrices

• decompose any square matrix into its symmetric and skew-symmetric
parts

The following exercises will help you check your understanding.
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4. If A =

⎛
⎝ 1 4 −3

2 9 4

−4 5 −7

⎞
⎠, write A as the sum of a symmetric matrix

and skew-symmetric matrix.

5. Classify each given matrix as scalar, diagonal, upper or lower
triangular, strictly upper or lower triangular, symmetric, skew-
symmetric, or none of the above.

a. A is 3 × 3 and Aij = i + j
b. A is 4 × 4 and Aij = 2i − 2j
c. A is 2 × 2 and Ars = r + 2s

d. A = rref

⎛
⎝2 1 0

3 2 1

5 2 4

⎞
⎠

e. A is 3 × 3 and Aij =

{
i − j if i < j

0 if i ≥ j

f. A is 4 × 4 and Aij =

{
j if i = j

0 if i �= j

6. Write a and b in terms of x and y.

a = 3m − 4n + 2p

b = 5m + 2n − 3p

m = 2x − 3y

n = −4x + y

p = 3x + 5y

In Lesson 4.4, you learned to

• determine whether the product of two matrices exists

• find the product of two matrices

• understand the operation as the dot product of a group of vectors

• find the transpose of the product of two matrices

The following exercises will help you check your understanding.

7. Let

A =

⎛
⎝ 1 2 −4

3 0 5

−1 2 −3

⎞
⎠ , B =

⎛
⎝2 −6

1 3

4 0

⎞
⎠ , and C =

(
5 −2

1 8

)

Calculate each of the following. If the calculation is not possible,
explain why.

a. AB b. BA c. BC

d. C2 e. B2∗ · C f. B(2C)

g. (AB)� h. A� · B� i. B� · A�
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8. For each set of square matrices A and B, determine whether AB =
BA.

a. A =

(
0 3

6 3

)
and B =

(
−1 2

4 1

)

b. A =

(
−3 −1

2 5

)
and B =

(
2 3

4 0

)

c. A =

⎛
⎝1 −3 1

2 1 −2

5 −1 −1

⎞
⎠ and B =

⎛
⎝ 2 −1 3

−4 2 1

1 −3 −10

⎞
⎠

9. Four points on a map are labeled A, B, C, and D. This 4×4 matrix
M shows the number of ways to get from one point to another in
one step.

⎛
⎜⎜⎜⎜⎝

A B C D

A 0 1 0 1

B 1 0 1 1

C 0 1 0 1

D 1 1 1 0

⎞
⎟⎟⎟⎟⎠

a. Find the total number of ways to get from point A to point C
in one step.

b. Compute M2 and M3.
c. Find the total number of ways to get from point A to point C

in three steps.
d. Find the total number of ways to get from point A to point C

in three or fewer steps.

In Lesson 4.5, you learned to

• understand the relationship between matrix multiplication, dot prod-
uct, and linear combination

• set up a matrix multiplication as a linear combination of vectors

• find the inverse of a square matrix, if it exists

• use the inverse to solve a matrix equation

The following exercises will help you check your understanding.

10. Find two different vectors that makes this matrix multiplication
true. ⎛

⎝ 1 −2 5

−2 3 −4

0 −1 6

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝−2

5

1

⎞
⎠

11. For each matrix, find its inverse without using a calculator, or show
that the inverse does not exist.

a.

⎛
⎝−1 3 5

2 4 5

−1 0 1

⎞
⎠ b.

⎛
⎝ 3 0 0

1 3 0

−1 4 3

⎞
⎠ c.

⎛
⎝ 0 0 0

1 0 0

−1 4 0

⎞
⎠
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12. For each matrix A,

(i) find A−1, and
(ii) verify that A · A−1 = I.

a. A =

(
3 2

0 −1

)

b. A =

⎛
⎝1 2 −1

0 4 3

1 −2 0

⎞
⎠

In Lesson 4.6, you learned to

• determine when a square matrix has an inverse

• find the inverse of a matrix by augmenting it with the identity matrix

• find all solutions to a matrix equation given one solution and the
kernel of the matrix

• understand the relationship between linear independence of the
columns of a matrix and its invertibility

• find the set of vectors whose direction is left invariant after multipli-
cation by a matrix

The following exercises will help you check your understanding.

13. Consider A =

⎛
⎝2 3 6

1 4 5

0 5 4

⎞
⎠ and B =

⎛
⎝ 6

−2

−10

⎞
⎠.

a. Show that if X1 =

⎛
⎝ 24

6

−10

⎞
⎠, AX1 = B.

b. Show that if X2 =

⎛
⎝15

2

−5

⎞
⎠, AX2 = B.

c. Find some other vectors that also solve AX = B.

14. For each system,

(i) rewrite the system in the form AX = B,
(ii) find a solution to each system by writing B as a linear combi- ←−

There may be more than
one solution, but you only
have to find one!

nation of the columns of A, and
(iii) find all solutions to the system by finding the kernel.

a.

⎧⎨
⎩

2x − y + 3z = 3

x + 3y + 2z = 5

3x − 5y + 4z = 1

b.

⎧⎨
⎩

2x − y + 3z = 1

x + 3y + 2z = 8

3x − 5y = −10

c.

{
x + 2y − 4z = −5

x − 3y + z = 5
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15. Solve each system by multiplying both sides by the inverse of the
coefficient matrix.

a.

(
2 5

1 3

)(
x

y

)
=

(
1

5

)

b.

⎛
⎝ 1 1 3

−1 2 6

4 2 −1

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 4

−1

0

⎞
⎠
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Chapter 4 Test

Multiple Choice

1. Let A =

⎛
⎜⎜⎜⎝

3 6 −9 2

−2 8 1 −9

−4 10 −5 5

0 11 −6 1

⎞
⎟⎟⎟⎠. What is the value of A23 + A31?

A. −6 B. −3 C. 5 D. 6

2. Suppose A is a 3 × 3 matrix whose generic entry is Aij = i − 2j.
What is the value of A13?

A. −5 B. −3 C. 5 D. 7

3. Let A =

⎛
⎝ 2 1 −2

4 0 3

−3 5 1

⎞
⎠ and B =

⎛
⎝−5 1 0

2 −3 4

5 1 −6

⎞
⎠. Which is

(AB)3∗?

A.

⎛
⎝ 13

−9

−13

⎞
⎠ B.

⎛
⎝ 16

−18

14

⎞
⎠ C.

(
32 −25 −13

)
D.

(
30 −17 14

)

4. Let A =

(
2 −2

4 3

)
and B =

(
−1 3

−5 4

)
. Which of the following is

equivalent to (AB)�?

A.

(
2 −2

4 3

)(
−1 3

−5 4

)
B.

(
−1 3

−5 4

)(
2 −2

4 3

)
C.

(
2 4

−2 3

)(
−1 −5

3 4

)
D.

(
−1 −5

3 4

)(
2 4

−2 3

)

5. Let A =

⎛
⎝ 2 3 −1

−1 2 −4

5 11 −7

⎞
⎠ and B =

⎛
⎝ 7

−4

17

⎞
⎠. If X1 = (−2, 5, 4) is one

solution to AX = B, which equation gives all solutions to AX = B?

A. X = (−10, 9, 1) + t(−2, 5, 4)
B. X = (−10, 9, 7) + t(−2, 5, 4)
C. X = (−2, 5, 4) + t(−10, 9, 1)
D. X = (−2, 5, 4) + t(−10, 9, 7)

6. Let

⎛
⎝−2 0 5

3 1 3

−2 1 0

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 15

−10

12

⎞
⎠ . What is the solution to this

equation?

A.

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝−26

7

4

⎞
⎠ B.

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝−5

2

1

⎞
⎠

C.

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 9

70

4

⎞
⎠ D.

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 30

71

−40

⎞
⎠
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Open Response

7. Let A =

⎛
⎝1 −6 2

3 0 −1

2 5 −4

⎞
⎠ and B =

⎛
⎝3 −2 7

1 6 −2

3 −4 −8

⎞
⎠ . Calculate the

following:

a. A + 2B b. A2∗ + B3∗
c. A� d. (A + B)�

8. Let A =

⎛
⎝−2 4 −1

3 1 5

0 −3 2

⎞
⎠ . Write A as the sum of a symmetric and

a skew-symmetric matrix.

9. Let

A =

(
−2 4 1

3 8 −2

)
, B =

⎛
⎝ 2 1

−3 7

0 4

⎞
⎠ , and C =

(
−2 5

3 −1

)

Calculate each of the following. If the calculation is not possible,
explain why.

a. AB b. BA

c. BC d. CB

10. Let A =

⎛
⎝ 2 0 −2

1 −3 1

−4 1 4

⎞
⎠ . Determine A−1.

11. Consider this system. ⎧⎨
⎩

3x − y + z = 3

x + 3y − 2z = 2

2x − 4y + 3z = 1

a. Rewrite the system in the form AX = B.
b. Find a solution to the system by writing B as a linear combi- ←−

There may be more than
one solution, but you only
have to find one!

nation of the columns of A.
c. Find all solutions to the system by finding the kernel.

12. Solve the system by multiplying both sides by the inverse of the
coefficient matrix. (

3 −2

3 −1

)(
x

y

)
=

(
18

15

)
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C H A P T E R

5 Matrices as Functions

Up to this point, you have used matrices as a tool to interact on a set of
vectors all at once, or to hold coefficients of a system of equations. Matrices
can also act like functions. When you think about a matrix this way, you
can examine the effect it has geometrically when applied to vectors. For
instance, video game programmers and computer animators use matrices
to move objects around while preserving their shape.

In this chapter, you will find methods for determining what effect a
particular matrix will have on a shape in R2: will it preserve the shape, or
stretch it, or flip it over? All of these transformations can be defined using
matrices.

By the end of this chapter, you will be able to answer questions
like these:

1. How can you find a matrix that rotates points about the origin?

2. What is the area of the parallelogram spanned by two given vectors?

3. Let A =

(
1 3 5

4 6 2

)
.

a. What is the image under A for

⎛
⎝ 2

3

−1

⎞
⎠?

b. What is the set of pullbacks under A for

(
7

16

)
?

You will build good habits and skills for ways to

• look for counterexamples

• extend using linearity

• use algebra to extend geometric ideas

• look for proofs that reveal hidden meaning

• use the extension program

209



Chapter 5 Matrices as Functions

• look for structure

• find alternative methods that you can generalize

Vocabulary and Notation

• angle of rotation

• center of rotation

• conjugation

• fixed point

• image of a matrix

• linear map

• linear transformation of Rn

• preimage

• pullback

• rotation
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5.1 Getting Started

Exercises

1. Given three points T =

(
2

2

)
, U =

(
3

0

)
, and V =

(
9

3

)
, draw ←−

As seen before, each point
corresponds to a column
vector. These points are in
R2.

�TUV . What kind of triangle is TUV ? Justify your answer.

2. For each matrix J , compute T ′ = JT, U ′ = JU, and V ′ = JV .
Describe how �T ′U ′V ′ is obtained from �TUV .

a. J =

(
0 1

1 0

)
b. J =

(
0 1

−1 0

)
c. J =

(
0.8 −0.6

0.6 0.8

)
d. J =

(
2 0

0 2

)
e. J =

(
1 0

0 0

)
f. J =

(
2
5

3
5

3
5

2
5

)

For each matrix given in Exercises 3–9, sketch and describe the effect of
the matrix on each of the following: ←−

For shapes, describe the
effect by stating how
the shape changed (is it
similar or congruent to the
original?) and the change
in area.

a. O b. P = (2, 3) c. Q = (−1, 4)

d. ∠POQ e. �POQ

f. the unit square (the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1))
g. the unit circle (the circle with center O with radius 1)
h. the line X = t(3, 1) ←−

In each case, is the result
still a line?

i. the line X = (1, 0) + t(3, 1)

3. A =

(
4 0

0 4

)
4. B =

(
24
25

−7
25

7
25

24
25

)
5. C =

(
1 2

0 1

)

6. D =

(
3 −4

4 3

)
7. E =

(
−3
5

−4
5

−4
5

3
5

)

8. F =

(
5
2

−3
2

−1
2

7
2

)
9. G =

(
1
10

−3
10

−3
10

9
10

)

10. a. Find a 2×2 matrix M so that M

(
x

y

)
is the reflection of (x, y) ←−

What point is the reflection
of (2, 3) over the x-axis? of
(−1,−2)? of (x, y)?

over the x-axis.

b. Find a matrix R so that R

(
x

y

)
=

(
2y

2x

)
. ←−

The transformation in 10b
maps (x, y) �→ (2y, 2x).

11. a. Find a matrix M that projects any point (x, y) onto the x-axis.
b. Find a matrix N that projects any point (x, y) onto the y-axis.

c. What are the coordinates of (M + N)

(
x

y

)
?

12. Suppose A and B are m × n matrices and that AX = BX for all
vectors X in Rn. Show that A = B. ←−

Hint: Choose specific
vectors X to look at, and
try to prove that all the
pieces of A must equal all
the pieces of B.

13. Suppose A =

(
1 2 3

4 5 6

)
.

a. Find ker(A) and describe it geometrically.
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Chapter 5 Matrices as Functions

b. Find all vectors X =

⎛
⎝x

y

z

⎞
⎠ so that AX =

(
3

9

)
. Describe your

answer geometrically.
c. Show that every vector B in R2 can be written as AX for some

vector X, or find one that cannot.

14. Suppose A =

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠.

a. Find ker(A) and describe it geometrically.

b. Find all vectors X =

⎛
⎝x

y

z

⎞
⎠ so that AX =

⎛
⎝ 3

9

15

⎞
⎠. Describe

your answer geometrically.
c. Show that every vector B in R3 can be written as AX for some

vector X, or find one that cannot.

15. Suppose A =

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠.

a. Find ker(A) and describe it geometrically.

b. Find all vectors X =

⎛
⎝x

y

z

⎞
⎠ so that AX =

⎛
⎝ 3

9

15

⎞
⎠. Describe

your answer geometrically.
c. Show that every vector B in R3 can be written as AX for some

vector X, or find one that cannot.
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5.2 Geometric Transformations

You likely have studied geometric transformations of the plane in a previous
course. Special kinds of transformations can be represented with matrices.

In this lesson, you will learn how to

• describe what 2× 2 and 3× 3 linear transformations do to a triangle,
the unit square, and the unit circle

• use the properties of linear transformations to show that not all
transformations are linear

• find the matrices that produce scalings, reflections, and 90◦ rotations

An m×n matrix can define a function from Rn to Rm. When n = m the
matrix is square, and it defines a linear mapping from Rn to itself , called ←−

Right now, all that “linear”
means is “defined by a
matrix.” You will generalize
this definition and make it
more precise in Chapter 8.

a linear transformation of Rn. “Transform” means “change in form or
appearance,” and this is what linear transformations do to objects in Rn.

In R2 and R3, you can think of linear transformations in terms of how
the resulting points or other shapes relate to the original points in the
coordinate plane or in space. Here are two matrices and their corresponding
linear transformations:

• In the plane, applying the 2×2 matrix M =

(
2 0

0 2

)
results in points

←−
Pick some points to test:
What happens to (3, 4)? to
(−2,−1)?

that are scaled by a factor of 2, because(
2 0

0 2

)(
x

y

)
=

(
2x

2y

)
= 2

(
x

y

)

• In space, applying the matrix

⎛
⎝1 0 0

0 1 0

0 0 −1

⎞
⎠ results in a point reflected

This picture illustrates
the reflection across the
plane:

(x,y,−z)

(x,y,0)

(x,y,z)
through the xy-plane, because⎛

⎝1 0 0

0 1 0

0 0 −1

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ x

y

−z

⎞
⎠

For most matrices, it is more difficult to describe the corresponding linear
transformation. For example, how do points in the plane transformed by

the matrix M =

(
8 −1

1 3

)
relate to the original points? One way to analyze

this question is to look at the effect of a matrix on a simple object, such
as a square or circle.
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Chapter 5 Matrices as Functions

Example

Problem. The matrix M =

(
8 −1

1 3

)
is applied to each of the vertices of the unit square

whose vertices are {O(0, 0), A(1, 0), B(1, 1), C(0, 1)}. What is the resulting figure?

Solution. Calculate the image of each of the vertices:

MO = M

(
0

0

)
=

(
0

0

)
= O′

MA = M

(
1

0

)
=

(
8

1

)
= A′

MB = M

(
1

1

)
=

(
7

4

)
= B′

MC = M

(
0

1

)
=

(
−1

3

)
= C ′

Then, plot the new figure O′A′B′C ′ in the plane.

C ʹ: (-1, 3)

Aʹ: (8, 1)

Bʹ: (7, 4)

C : (0, 1)

B: (1, 1)

A: (1, 0)O: (0, 0)

Connect consecutive vertices with segments. The unit square appears to be transformed
to a parallelogram.

Minds in Action Episode 14

Tony, Sasha, and Derman are talking about this example.

Derman: Why is it a parallelogram?

Tony: I think I see. In the original square, two vertices add to the third one, like this:(
1

1

)
=

(
1

0

)
+

(
0

1

)
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5.2 Geometric Transformations

So, B = A + C. Multiply both sides by M and use the basic rules from Chapter 4:

M

(
1

1

)
= M

((
1

0

)
+

(
0

1

))

= M

(
1

0

)
+ M

(
0

1

)

And B′ = A′ + C ′. That’s the parallelogram rule for adding vectors.

Derman: I wonder if that always works. I think it will.

Tony: I’m still not convinced of something else. We only plotted the vertices, and then
connected them with segments. How do we know that the segment between O and
(1, 0) transforms to the segment between O and (5, 2)?

They all think about it . . .

Sasha: I’ve got it! It relies on the same basic rules. All the points along
−→
OA transform

to points along
−−→
OA′. Consider the midpoint of

−→
OA; it’s 1

2A, and

M
(
1
2A
)

= 1
2M (A) = 1

2A′

Tony: Nice. And you can do this with any point along
−→
OA, since it can be written as

kA for some number k between 0 and 1. Then

M (kA) = kM (A) = kA′

And that proves that
−→
OA transforms to

−−→
OA′.

Derman: Sounds good, but what about
−−→
CB?

For Discussion

1. Convince Derman that points along
−−→
CB get mapped to points along

−−−→
C ′B′.

2. How does the area of the parallelogram compare with the area of the unit square? ←−
Does the ratio of the areas
have any connection to the
matrix M?

The properties that Derman, Tony, and Sasha use in the dialogue above
follow from the basic rules for matrix multiplication. Some important ones
are listed in the following theorem.

Theorem 5.1

Suppose M is a linear transformation of Rn. Then Remember

“Linear transformation”
means “defined by a
matrix.” You’ll generalize
this notion later, but
matrices will still play a
central role.

(1) M fixes the origin: MO = O

(2) The image of the sum of two vectors is the sum of their images:
M(A + B) = MA + MB

(3) Scalars come out: M(cA) = c(MA)
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Chapter 5 Matrices as Functions

The three properties of Theorem 5.1 hold for any mapping Rn → Rm

that is defined by matrix multiplication. So, the theorem applies to more
general maps.

For You to Do

3. a. Illustrate each of the properties from Theorem 5.1 with an example from ←−
Use pictures in your
illustrations.

R2 and an example from R3.
b. Using the notation of Theorem 5.1, show that

M(cA + dB) = cM(A) + dM(B)

Developing Habits of Mind

Look for counterexamples. One way to use Theorem 5.1 is as a tool to show that a
transformation is not linear. For example, the mapping that adds (4,7) to every point in
R2 isn’t a linear transformation because it doesn’t fix the origin. For the same reason,
no 2 × 2 matrix can represent any translation in the plane.

Minds in Action Episode 15

Sasha is still thinking about the transformation matrix M =

(
8 −1

1 3

)

Sasha: I wonder what M does to other figures? Like what about the unit circle with
equation x2 + y2 = 1?

Derman: That’s not in the book.

Tony: It is now . . .

Derman: I think you get another circle.

Sasha: I think you get a conic, and it might be a circle.

Derman: What’s a conic?

Tony: It’s the graph of a quadratic equation—a circle, ellipse, parabola, or hyperbola.

Derman: How could it be a parabola? That makes no sense. If you stretch a circle it
might look like a football or something.

Sasha: M took the square and stretched and squished it in a kind of uniform way. Now,
to do that to a circle . . . I’m not sure what happens. So let’s run the algebra.

Sasha writes on the board

M

(
x

y

)
=

(
8 −1

1 3

)(
x

y

)
=

(
8x − y

x + 3y

)
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(
x

y

)
is on the circle, so x2 + y2 = 1. We need to find an equation satisfied by

(
x′

y′

)
=

(
8x − y

x + 3y

)

Tony: Just solve for x and y as expressions in x′ and y′. You know an equation satisfied
by x and y, so you know an equation that will be satisfied by these expressions. Right?

Derman: Yeah, right. And how do you intend to solve for x and y when we’ve got

x′ = 8x − y

y′ = x + 3y

Sasha: Look at the big picture. We have(
x′

y′

)
= M

(
x

y

)
so M−1

(
x′

y′

)
=

(
x

y

)

And we can find M−1 in a lot of ways. If M =

(
8 −1

1 3

)
, then ←−

Exercise 17 from Lesson 4.5
gives a formula for the
inverse of a 2× 2 matrix.M−1 = 1

25

(
3 1

−1 8

)

Tony: So, (
x

y

)
= M−1

(
x′

y′

)
= 1

25

(
3 1

−1 8

)(
x′

y′

)
= 1

25

(
3x′ + y′

−x′ + 8y′

)
And

x =
3x′ + y′

25

y =
−x′ + 8y′

25

Sasha: Things are heating up. If x2 + y2 = 1, then(
3x′ + y′

25

)2

+

(
−x′ + 8y′

25

)2

= 1

So (3x′ + y′)
2

+ (−x′ + 8y′)
2

= 625. All we need to do is expand this and see what
we get.

They calculate . . .

Tony: I get 2(x′)2 − 2x′y′ + 13(y′)2 = 125.

Sasha: The graph of that is . . . um, yeah . . . what is the graph of that?

Derman: And things are cooling down . . . .
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For Discussion

4. Using any tools available, graph ←−
You know some points, like
(1, 0), on the unit circle.
Their images are on the
graph of 2x2 − 2x y +
13y2 = 125, right?

2x2 − 2xy + 13y2 = 125

in the coordinate plane, and then graph x2 + y2 = 1 on the same axes.

For You to Do

5. In Exercise 18 from Lesson 4.6, you saw that each step in the process of reducing
a matrix to echelon form can be accomplished by multiplying on the left by an
elementary row matrix . For 2 × 2 matrices, the elementary row matrices are of
three types, corresponding to the three elementary row operations.

•
(

0 1

1 0

)
switches the rows.

•
(

k 0

0 1

)
or

(
1 0

0 k

)
replaces a row by k times itself.

•
(

1 0

k 1

)
or

(
1 k

0 1

)
replaces a row by the sum of itself and k times the other

row.

a. What does each of these matrices do to square OACB in the example earlier
in this lesson?

b. Take It Further. What does each of these matrices do to the unit circle—
the graph of x2 + y2 = 1?

Exercises

1. For each linear transformation matrix, describe the effect it has in ←−
If you’re not sure, test
some points and see what
happens.

geometric language.

a.

(
0 0

0 1

)
b.

(
1 0

0 3

)
c.

(
0 2

2 0

)
d.

(
0 −2

−2 0

)

e.

⎛
⎝0 0 0

0 1 0

0 0 1

⎞
⎠ f.

⎛
⎝2 0 0

0 2 0

0 0 2

⎞
⎠

g.

⎛
⎝−1 0 0

0 −1 0

0 0 −1

⎞
⎠ h.

⎛
⎝0 0 0

0 1 0

0 0 0

⎞
⎠

2. For each given transformation of R2, find a corresponding 2 × 2
matrix.

a. Reflect all points over the x-axis.
b. Reflect all points over the y-axis.
c. Scale all points by a factor of 3.
d. Reflect all points through the origin.
e. Reflect all points over the graph of y = x.
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5.2 Geometric Transformations

f. Rotate all points 90◦ counterclockwise around the origin.
g. Rotate all points 90◦ clockwise around the origin.
h. Reflect all points over the graph of y = x, then scale this image

by 3, and then reflect this image over the y-axis.

3. Let M be the matrix from part f of Exercise 2. Calculate each of the
following, and describe the effect of each new matrix in geometric
language.

a. M2 b. M3 c. M4 d. M5 e. M102

4. If B, C, and E are the matrices that solve parts b, c, and e of ←−
If you can show that
B·C·E is the desired matrix
without actually computing
its value and comparing it
to the matrix you found
in part h, then you can
probably also explain why
E · C · B does not solve
part h.

Exercise 2, show that B · C · E is the matrix that solves part h.

5. Suppose T : R2 → R2 is defined by

T (X) = X +

(
2

3

)

a. What does T do to the unit square?
b. What does T do to the unit circle?
c. Is T a linear transformation? If so, find the matrix that

represents T . If not, explain how you know.

6. a. Write M =

(
8 −1

1 3

)
as a product of elementary row matrices.

b. Use part a to describe what M does to points on the plane.

7. Show that M =

(
1
5

2
5

2
5

4
5

)
projects (x, y) along (1, 2).

←−
What is M

(
x
y

)
?8. Show that 1

a2+b2

(
a2 ab

ab b2

)
transforms R2 by projecting (x, y) along

(a, b).

9. Let M =

(
3
5 − 4

5
4
5

3
5

)
and let

(
x′

y′

)
= M

(
x

y

)
. Find ‖(x, y)‖ and

‖(x′, y′)‖ if

a. (x, y) = (2, 0) b. (x, y) = (0, 2) c. (x, y) is any vector

10. Let M =

(
3
5 − 4

5
4
5

3
5

)
and let

(
x′

y′

)
= M

(
x

y

)
. Find the angle between

(x, y) and (x′, y′) if

a. (x, y) = (2, 0) b. (x, y) = (0, 2) c. (x, y) is any vector

11. Let M =

(
1
2 −

√
3
2√

3
2

1
2

)
and let

(
x′

y′

)
= M

(
x

y

)
. Find ‖(x, y)‖ and

‖(x′, y′)‖ if

a. (x, y) = (2, 0) b. (x, y) = (0, 2) c. (x, y) is any vector
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12. Let M =

(
1
2 −

√
3
2√

3
2

1
2

)
and let

(
x′

y′

)
= M

(
x

y

)
. Find the angle

between (x, y) and (x′, y′) if

a. (x, y) = (2, 0) b. (x, y) = (0, 2) c. (x, y) is any vector

13. Let M =

(
−27 70

−12 31

)
.

a. Show what M does to the unit square.
b. Theorem 5.1 says that M fixes the origin. Does it fix any other

vectors?
c. Does M fix any lines? That is, are there any vectors X so that

MX = kX for some number k?
d. Show what M does to the unit circle.

14. Let M =

(
35 −12

17 −6

)
.

a. Show what M does to the unit square.
b. Theorem 5.1 says that M fixes the origin. Does it fix any other

vectors?
c. Does M fix any lines? That is, are there any vectors X so that

MX = kX for some number k?
d. Show what M does to the unit circle.

15. Let M =

⎛
⎝−3

7
−6
7

−2
7

−2
7

3
7

−6
7

6
7

−2
7

−3
7

⎞
⎠.

a. Theorem 5.1 says that M fixes the origin. Does it fix any other
vectors?

b. Show that M preserves length. That is, show that for any
vector X, ‖MX‖ = ‖X‖.

c. Take It Further. Does M preserve angle measure?

16. Let M =

⎛
⎝−3 −6 −2

−2 3 −6

6 −2 −3

⎞
⎠ and let � be the line whose equation is

X = (4, 1, 2) + t(1,−1, 1). Show that the image of � under M is a
line, and find a vector equation of this line.

17. Suppose N is an n× n matrix and � is a line in Rn whose equation
is X = P + tA. Show that the image of � under N is a line, and find
a vector equation of this line.

18. Let R =

√
2

2

(
1 1

−1 1

)
.

a. Show what R does to the unit square.
b. Show what R does to the unit circle.
c. Show what R does to the graph of x2 − xy + y2 = 1.
d. Use part c to draw the graph of x2 − xy + y2 = 1.

19. Suppose that A is a square matrix. Show that (A− I) and (A + I) ←−
In other words, show
that (A − I)(A + I) =
(A+ I)(A− I).

commute under multiplication.
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20. Suppose that A is a square matrix. A fixed vector for A is a
nonzero vector X so that AX = X. Find all fixed vectors for the
following matrices or show that there are none:

a.

(
0.9 0.3

0.1 0.7

)
b.

⎛
⎝0 0.6 0

1 0 1

0 0.4 0

⎞
⎠ c.

⎛
⎝ 0 1 3

−1 0 1

−3 −1 0

⎞
⎠ d.

⎛
⎝0.9 0 0.3

0 1 0

0.1 0 0.7

⎞
⎠

21. Suppose A is a square matrix. Show that A has a fixed vector if and
only if ker(A − I) �= O.

22. Suppose A is a square matrix without a fixed vector. Show that
A − I has an inverse.

23. Suppose A is a square matrix without a fixed vector. Show that
(A − I)−1 commutes with A + I.

24. An orthogonal matrix is a matrix whose transpose is equal to

its inverse. Show that

(
.6 −.8

.8 .6

)
is an orthogonal matrix.

25. a. Show that if N is an orthogonal matrix, then

N∗i · N∗j =

{
1 if i = j

0 if i �= j

b. Use part a to show that each column of N has unit length and
is orthogonal to the other columns. ←−

Hence, the name “orthogo-
nal.”26. Find a 3 × 3 orthogonal matrix.

27. Show that if N is an orthogonal matrix, and A and B are vectors,

a. N preserves length: ‖NA‖ = ‖A‖
b. the angle between NA and NB is the same as the angle

between A and B:

NA · NB

‖NA‖ ‖NB‖ =
A · B

‖A‖ ‖B‖

28. Take It Further. Prove the following theorem.

Theorem (Cayley, 1846)

Consider the function r defined on n × n matrices S by the rule

r(S) = (S − I)
−1

(S + I)

Then if S is skew-symmetric with integer entries, r(S) is orthogonal
with entries that are rational numbers.

29. Use the result of Exercise 28 to find four 3× 3 orthogonal matrices
with rational entries.

30. Find four 3×3 matrices A with integer entries and with the property
that A� = A−1.
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Chapter 5 Matrices as Functions

31. Suppose A is a 3 × 3 matrix with the property that A� = A−1.

a. Show that the columns of A, together with O, are four vertices
of a cube.

b. How would you find the other four vertices?

32. Find four cubes in R3 whose vertices are lattice points and whose
faces are not parallel to the coordinate planes.
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5.3 Rotations

5.3 Rotations

In Lesson 5.2, you saw that certain geometric transformations, such as
reflecting over an axis, can be represented by a matrix, while others, such
as translations, cannot. What about rotations?

In this lesson, you will learn how to

• find the matrix that defines a given rotation

• find one matrix for a set of successive rotations

• given a point, find its image after rotation

• find a point given its image and angle of rotation

• use conjugation to find the matrix that represents a reflection over a
given line or a rotation about a given point

In R2, a rotation is determined by a point, the center of the rotation, ←−
In R3, a rotation is
determined by an axis and
a magnitude. This lesson
concentrates on rotations
in the plane.

and an angle of rotation . For example, consider the rotation T : R2 →
R2 defined by rotating all points 90◦ counterclockwise around (5, 12):

T(X) X
T(Y )

Y

(5, 12)

For You to Do

1. a. Find and draw the image of (8, 16) under T .
b. Find and draw the image of O under T .
c. Draw the image of the unit circle under T .
d. Find all fixed points for T . A fixed point satisfies T (X) = X.
e. Is T a linear transformation? Explain. ←−

In other words, can T be
represented by a matrix?

Minds in Action Episode 16

Tony, Derman, and Sasha are thinking about rotations.

Sasha: A rotation has only one fixed point—its center. Agreed?

Derman: Seems so. I don’t think any rotation can be a linear transformation. Theo-
rem 5.1 says a linear transformation has to fix the origin.

223
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Tony: Pretty solid reasoning, Derman, but what if its center is the origin?

Derman: Oh, right. In that case, it has to be, so let’s find the matrix for one of those. ←−
See Exercise 2f from
Lesson 5.2.Sasha: Hold on, Derman. There were other rules in Theorem 5.1. Just because it fixes

the origin doesn’t mean it’s a linear transformation. What about (x, y) �→ (xy, x)? It
fixes the origin but violates another part of the theorem. Look, in my mapping,

(2, 3) �→ (6, 2) and (4, 2) �→ (8, 4), but

(2, 3) + (4, 2) = (6, 5) �→ (30, 6) �= (6, 2) + (8, 4)

It can’t be linear, it violates part ((2)) of Theorem 5.1.

Derman: OK, but what if rotations about the origin satisfy all the parts of Theorem 5.1?
Will rotations around the origin be linear then?

Sasha: Maybe, but all those things definitely have to be true. I’m guessing that if all
the parts of Theorem 5.1 are satisfied, there is a matrix that does the job. But that’s
not what the theorem says.

Tony: All right, let’s see if rotations about
the origin satisfy that theorem. We know
they fix the origin. What about part ((2))?
It says, “the image of the sum of two vec-
tors is the sum of their images.”

Tony draws this picture

I think it works.

Sasha: Looks good to me.

Derman: Me too. Wait, what did we do?

For You to Do

Tony, Sasha, and Derman are convinced that rotating the sum of two vectors through a ←−
In other words, rotations
around the origin satisfy
part ((2)) of Theorem 5.1.

specified angle gives the same result as rotating the vectors through that angle and then
finding their sum.

2. Write an argument to go with the picture Tony drew, or give some other
convincing argument that rotations around the origin satisfy this property.

3. Give an argument, geometric or otherwise, to show that rotations around the
origin also satisfy part ((3)) of Theorem 5.1. If T is a rotation around the origin,
then T (cA) = c(T (A)).

Facts and Notation

The rotation with center O and magnitude θ is denoted by Rθ. Starting with point X, ←−
The convention is that
the rotation is in the
counterclockwise direction
and that angles measure
between 0◦and 360◦.

Rθ(X) is defined as the point you get when you rotate X through an angle of θ around
(0, 0).
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The following theorem summarizes the properties of Theorem 5.1 for
rotations around the origin.

Theorem 5.2

Suppose θ is an angle. The function Rθ satisfies all the properties of
Theorem 5.1:

(1) Rθ(O) = O.

(2) Rθ(X + Y ) = Rθ(X) + Rθ(Y ) for all vectors X and Y .

(3) Rθ(kX) = kRθ(X) for all vectors X and all numbers k.

Developing Habits of Mind

Use linearity. It turns out that Theorem 5.2 lets you find a formula for the image of
any point under Rθ. It comes down to the idea that any point in R2 can be written as

(x, y) = x(1, 0) + y(0, 1)

Parts (2) and (3) of Theorem 5.2 state that sums and scalars “pass through,” so if you
can say exactly what happens to (1, 0) and (0, 1), you can determine what happens to
any point in the plane.

Given Rθ(1, 0) and Rθ(0, 1), you can determine Rθ(x, y).

Rθ(x, y) = Rθ (x(1, 0) + y(0, 1))

= Rθ (x(1, 0)) + Rθ (y(0, 1))

= xRθ(1, 0) + yRθ(0, 1)

This process, going from what a linear map does to vectors along an axis to what it does
in general, is called extension by linearity and is a common mathematical habit.

For Discussion

4. Show that Rθ(1, 0) = (cos θ, sin θ) and Rθ(0, 1) = (− sin θ, cos θ).

←−
What if θ is obtuse? greater
than 180◦?

θ
θ

(0,1)

(1,0)

Rθ(1,0)

Rθ(0,1)
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The result of this For Discussion problem leads to a theorem.

Theorem 5.3

For any vector X = (x, y),

Rθ(X) = (x cos θ − y sin θ, x sin θ + y cos θ)

Proof.

Rθ(x, y) = Rθ (x(1, 0) + y(0, 1))

= xRθ(1, 0) + yRθ(0, 1)

= x(cos θ, sin θ) + y(− sin θ, cos θ)

= (x cos θ − y sin θ, x sin θ + y cos θ)

For You to Do

5. Use Theorem 5.3 to find the exact R30◦(X) for each vector X.

a. (1, 0) b. (12, 0) c. (−3, 4) d. (−9, 12) e. (9, 4)

Minds in Action Episode 17

Tony, Sasha, and Derman are looking at Theorem 5.3.

Derman: So, now we have a formula for Rθ. It looks messy. Is there a matrix that does
the job?

Sasha: There sure is. Look at the next to last line of the proof:

Habits of Mind

Sasha is reasoning about
the calculations.

x(cos θ, sin θ) + y(− sin θ, cos θ)

Write it as

x

(
cos θ

sin θ

)
+ y

(
− sin θ

cos θ

)
and think of the Pick-Apart Theorem. ←−

You saw the Pick-Apart
Theorem—Theorem 4.8
from Lesson 4.5.x

(
cos θ

sin θ

)
+ y

(
− sin θ

cos θ

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)

Tony: And those columns are the vectors from the For Discussion problem. Wow, there
is a matrix that represents Rθ. And all we needed to do was to use linearity to
find what Rθ did to two vectors, one along each axis. Maybe your general idea about ←−

Sasha’s general idea, from
Episode 16, was that if all
parts of Theorem 5.1 are
satisfied, there must be a
matrix that does the job.

Theorem 5.1 was right after all, and there’s always a matrix if those parts are satisfied.

Sasha: Yes, I think so. In fact, if you look at what we did, I think that if you have a
function that satisfies all the parts of Theorem 5.1, and you know what it does to a
set of vectors that “generates” somehow . . . I’m not sure what I want to say, but I
think there’s a more general idea here.
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5.3 Rotations

Sasha’s matrix for rotations deserves to be stated as a theorem.

Theorem 5.4

In R2, rotations about the origin are linear transformations defined by the
matrix

Rθ

(
x

y

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)

Example 1

Problem. Find the image when the point (
√

3, 1) is rotated 60◦ about the origin. ←−
Draw a picture. Remember,
rotations are counterclock-
wise.

Solution. Use the values of cos 60◦ = 1
2 and sin 60◦ =

√
3
2 .

R60◦

(√
3

1

)
=

(
1
2 −

√
3
2√

3
2

1
2

)(√
3

1

)
=

(
0

2

)

Example 2

Problem. Let A = (4, 0), B = (0, 2), and C = (0, 0). Find the image of �ABC under
a rotation of 45◦ about (0, 0). ←−

Draw a picture.

Solution. Use the values of cos 45◦ =
√
2
2 and sin 45◦ =

√
2
2 .

R45◦

(
4

0

)
=

(√
2
2 −

√
2
2√

2
2

√
2
2

)(
4

0

)
=

(
2
√

2

2
√

2

)

R45◦

(
0

2

)
=

(√
2
2 −

√
2
2√

2
2

√
2
2

)(
0

2

)
=

(
−
√

2√
2

)

R45◦

(
0

0

)
=

(√
2
2 −

√
2
2√

2
2

√
2
2

)(
0

0

)
=

(
0

0

)

The rotation of (0, 0) could have been found more directly using knowledge of rotations.
Since (0, 0) is the center of rotation, the image must remain (0, 0). Alternatively, knowing
that R45◦ can be represented by a transformation matrix, it must satisfy the properties
of linear transformations, including fixing the origin.

Example 3

Problem. The image of P = (−2
√

3, 2) under a rotation of the plane about (0, 0)
through an angle of θ is P ′ = (−2

√
3,−2). Find θ.

Solution.

cos θ =
P · P ′

‖P‖ ‖P ′‖ =
8

4 · 4 =
1

2
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There is only one angle with 0◦ ≤ θ < 180◦ with cos θ = 1
2 , which is 60◦.

Remember

There are two angles
between 0◦and 360◦with
cosine equal to 1

2
, but

remember that this formula
for angle restricts θ to be
between 0◦and 180◦.

P

P ʹ

2

−2

−5 5

As with other linear transformations, Rθ is often identified by its matrix
representation, called a rotation matrix :

Rθ =

(
cos θ − sin θ

sin θ cos θ

)

Keep in mind that there are subtle differences between Rθ, which is
a transformation, and its matrix. Since the effect of Rθ is identical to
multiplying by its rotation matrix, it’s often said that the transformation
“is” the matrix.

Some new facts about rotation matrices can be determined by looking
at both sides of this coin.

For Discussion

6. a. What is the effect of rotating by 30◦, and then rotating by 45◦?
b. What is the effect of rotating by 45◦, and then rotating by 30◦?
c. What is the effect of rotating by 30◦ five times in a row?
d. What is the effect of rotating by 30◦, and then rotating by −30◦?

If you think about it geometrically, rotating a point by 30◦ and then
rotating it by 45◦ produces a single rotation of 75◦. But these rotations all
have corresponding matrices. For example, the 30◦ rotation can be carried
out by multiplying a vector by the matrix(

cos 30◦ − sin 30◦

sin 30◦ cos 30◦

)

So, for every point

(
x

y

)
,

(
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

)((
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

)(
x

y

))
=

(
cos 75◦ − sin 75◦

sin 75◦ cos 75◦

)(
x

y

)

You developed this statement based on the geometry, but it is also a state-
ment about matrix multiplication. Since matrix multiplication is associa-
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tive, then for every point

(
x

y

)
,

((
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

)(
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

))(
x

y

)
=

(
cos 75◦ − sin 75◦

sin 75◦ cos 75◦

)(
x

y

)
It follows from Exercise 12 from Lesson 5.1 that ←−

This is also a good way
to find the exact values of
cos 75◦ and sin 75◦.

(
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

)(
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

)
=

(
cos 75◦ − sin 75◦

sin 75◦ cos 75◦

)
You can use geometry to prove additional facts about rotation matrices as
described in the following theorem.

Theorem 5.5

Let α, β, and θ be angles.

(1) RαRβ = Rα+β ←−
In this theorem, Rθ is a
rotation matrix.(2) RαRβ = RβRα

(3) For any nonnegative integer n, (Rθ)
n = Rnθ

(4) (Rθ)
−1 = R−θ = (Rθ)

�

For Discussion

7. Prove Theorem 5.5.

Example 4

Problem. The image of P under a rotation of 90◦ about (0, 0) is (5, 3). Find P . ←−
Draw a picture.

Solution. Take the equation R90◦

(
x

y

)
=

(
5

3

)
. To solve for the point, multiply both

sides by (R90◦)
−1.

R90◦

(
x

y

)
=

(
5

3

)

(R90◦)
−1R90◦

(
x

y

)
= (R90◦)

−1

(
5

3

)
(

x

y

)
= (R90◦)

�
(

5

3

)
(

x

y

)
=

(
0 1

−1 0

)(
5

3

)

=

(
3

−5

)

The point is P = (3,−5).

You can describe more complex transformations using matrix multipli-
cation. Suppose T is the transformation that reflects a point over the line �
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whose equation is X = t(3, 4). How would you find a matrix that represents
T?

Your goal is to reflect a point X over the line �. In Exercise 2a from
Lesson 5.2, you found a 2 × 2 matrix that corresponded to reflection of

the x-axis:

(
1 0

0 −1

)
. You can use this reflection to reflect over any line

through the origin.

A good strategy employs the algebraic habit known as conjugation. In
this case, you want to use reflection over the x-axis to find reflection over �.
You can do this in three steps:

1. Rotate � so that the result lies on the x-axis. Transform X with it.

2. Reflect the point over �′, which is now the x-axis. Note that reflecting
�′ over the x-axis doesn’t change �′, since they are now the same line.

3. Finally, rotate �′ back so that the result lies back on the original line
�. Again, transform X with it!

Try it with a sample point first, say X(1, 5). Here’s a sketch of X
and �:

Xʹ?

X
�

θ

Now, follow the steps outlined above. In this case, � is all multiples of (3, 4),
so cos θ = 3

5 and sin θ = 4
5 . Then the rotation matrix is

Rθ =

(
3
5 − 4

5
4
5

3
5

)

and

(Rθ)
−1 = (Rθ)

� =

(
3
5

4
5

− 4
5

3
5

)
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So, to reflect (1, 5) over �:

1. Rotate (1, 5) clockwise by θ by multiplying it by R−1
θ =

(
3
5

4
5

− 4
5

3
5

)
. ←−

Rotating clockwise by θ
(R−1

θ ) is the same as
rotating counterclockwise
by −θ (R−θ).

R
θ
−1(x)

R
θ
−1(�)

(
3
5

4
5

− 4
5

3
5

)(
1

5

)
=

(
23
5
11
5

)

2. Reflect that point over the x-axis by multiplying it by F =

(
1 0

0 −1

)
.

F(R
θ
-1(x))

R
θ
−1(�)

(
1 0

0 −1

)(
23
5
11
5

)
=

(
23
5

− 11
5

)
3. Rotate that point counterclockwise by θ by multiplying it by Rθ =(

3
5 − 4

5
4
5

3
5

)
.

R
θ 
(F(R

θ
−1(x)))=xʹ

R
θ 
(R

θ
−1(�))=�

(
3
5 − 4

5
4
5

3
5

)(
23
5

− 11
5

)
=

(
115
25
59
25

)
=

(
4.52

2.36

)
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So the process you followed was this:

Rθ

(
F

(
R−1

θ

(
1

5

)))

By associativity, this must also equal

(
RθFR−1

θ

)(1

5

)

So T =
(
RθFR−1

θ

)
. You can calculate the matrix product to get a single

2 × 2 matrix that shows the entire transformation T :

RθFR−1
θ =

(
3
5 − 4

5
4
5

3
5

)(
1 0

0 −1

)(
3
5

4
5

− 4
5

3
5

)
=

(−7
25

24
25

24
25

7
25

)

This matrix can be applied to any point X. As a check, compute TX for

X =

(
1

5

)
:

(−7
25

24
25

24
25

7
25

)(
1

5

)
=

(
115
25
59
25

)
.

As expected, this is the same point found by following the steps earlier.

Exercises

1. Find a matrix that defines each rotation:

a. R60◦ b. R45◦ c. R90◦ d. R120◦

e. R240◦ f. R180◦ g. R270◦ h. R225◦

i. R330◦ j. R24◦

2. Determine the image of P under a rotation about (0, 0) through an ←−
Draw a picture.angle of θ.

a. P = (
√

3, 1), θ = 30◦ b. P = (0, 2), θ = 45◦

c. P = (
√

3, 1), θ = −60◦ d. P = (−5,−2), θ = 180◦

3. Suppose A = (1, 2), B = (3,−1), and C = (5, 1). Find the image of
�ABC under a rotation about (0, 0) through an angle of θ if

a. θ = 90◦ b. θ = 60◦ c. θ = 135◦

4. The image of P under a rotation about (0, 0) through θ is P ′. Find
P .

a. θ = 60◦, P ′ = (
√

3, 1) b. θ = 30◦, P ′ = (
√
3
2 , 3

2 )

5. The image of (2,−3) about the origin under a rotation of θ is (3, 2).
Find θ.

6. Show that any 2 × 2 rotation matrix is an orthogonal matrix. ←−
See Exercise 24 from
Lesson 5.2.7. Find an exact value for each matrix.

←−
Your answer should be a
matrix of numbers, with no
trigonometric expressions.

a. R75◦ b. R105◦ c. R195◦ d. R165◦
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8. Without a calculator, determine a single matrix Rθ, 0◦ ≤ θ < 360◦,
that is equivalent to each expression:

a.

(√
2
2 −

√
2
2√

2
2

√
2
2

)47

b.

(
1
2 −

√
3
2√

3
2

1
2

)500

c.

(
− 1

2

√
3
2

−
√
3
2 − 1

2

)23

d.

( √
2
2

√
2
2

−
√
2
2

√
2
2

)10

e.

(
−1 0

0 −1

)10

f.

(
0 −1

1 0

)13

g.

(√
2
2 −

√
2
2√

2
2

√
2
2

)(√
3
2 − 1

2
1
2

√
3
2

)( √
2
2

√
2
2

−
√
2
2

√
2
2

)(
0 −1

1 0

)

9. For each of the following, first draw a picture, and then calculate
the answer:

a. The line whose equation is 2x + 3y = 6 is rotated 270◦ about
the origin. What is the equation of the image?

b. The line whose equation is 5x + 2y = 6 is rotated about the
origin through an angle of tan−1 4

3 . What is the equation of
the image?

c. The line whose equation is X = (1, 2)+ t(3, 1) is rotated about
the origin through an angle of 45◦. What is the equation of the
image?

10. For each of the following, first calculate the answer, and then draw
the picture after you do the calculations:

a. The graph of x2 − xy + y2 = 16 is rotated about the origin
through an angle of 45◦. What is the equation of the image?

b. The graph of

25x2 − 120xy + 144y2 − 416x + 559y + 52 = 0

is rotated about the origin through an angle of cos−1 5
13 . What

is the equation of the image?

11. Find the image of P = (−3, 5) under a rotation about point
C = (4, 1) through an angle of θ = sin−1

(
4
5

)
. ←−

Stuck because the center
isn’t the origin? Try
conjugation!

12. Suppose P ′ is the image of P rotated 120◦ about the origin. If
P ′ = (−

√
3, 1), find P .

13. Point P is rotated about center C = (3, 2) through an angle of
sin−1

(
3
5

)
to obtain point P ′. If P ′ = (15,−10), find P .

14. Find the equation of the image of the set of points that satisfy

x2 − 2xy + y2 −
√

2x −
√

2y = 0

under a rotation of the plane about (0, 0) through an angle of 45◦.
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15. Suppose A = (1, 2), B = (5,−3), and C = (3, 4). Find the image
of �ABC if it is rotated 90◦ about A and then reflected over the
y-axis.

16. Suppose that A = (1, 4). Find the image of A if A is reflected over
the graph of

a. 12x = 5y
b. 12x = −5y
c. Take It Further. 12x + 5y = 60

17. Let A = (3, 1), B = (5, 2), and C = (3, 5). �ABC is reflected over←→
AC; find the new vertices.

18. Let A = (3, 1), B = (5, 2), and C = (3, 5). �ABC is reflected over←→
AB; find the new vertices.

19. Let A = (3, 1), B = (5, 2), and C = (3, 5). �ABC is reflected over←→
BC; find the new vertices.

20. Find a matrix that transforms R2 by reflecting a point over the
graph of y = x, multiplies the image by 2, reflects this image over
the y-axis, and then rotates this image 90◦ about (0, 0).

21. Let A = (6,−8), B = (18, 1), and C = (10, 5). �ABC is reflected

over
←→
AB; find the new vertices.

22. Use Theorem 5.5 to prove the angle-sum identities .

cos(θ + α) = cos θ cosα − sin θ sin α and

sin(θ + α) = sin θ cosα + cos θ sin α

23. Suppose you have a transformation T on R2 that satisfies all the
properties of Theorem 5.1, and suppose you know that T (1, 0) =
(8,−1) and T (0, 1) = (4, 5).

Show that T can be defined by a matrix, and give the specific matrix
that defines T .

24. Suppose you have a transformation T on R2 that satisfies all the
properties of Theorem 5.1, and suppose you know that T (1, 1) =
(8,−1) and T (0, 1) = (4, 5).

a. Find T (9, 4).
b. Can T be defined by a matrix?

25. Take It Further. Rotation matrices exist in R3 as well, but they
have an axis of rotation instead of a center point. Find the 3 × 3
rotation matrices that rotate space through an angle θ about each
of these possible axes of rotation:

a. the x-axis
b. the y-axis
c. the z-axis
d. the line defined by X = t(1, 1, 1)
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5.3 Rotations

26. Let T be the transformation that rotates R3 90◦ about the x-axis,
then 90◦ about the y-axis, and then 90◦ about the z-axis.

a. Find a matrix representation for T .
b. Find a fixed vector for T .
c. Is T a rotation? Explain.

27. a. Are rotations commutative in R2?
b. Are rotations commutative in R3?

Explain with examples or drawings.
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Chapter 5 Matrices as Functions

5.4 Determinants, Area, and Linear Maps

You are already familiar with the geometric concept of area. Vector algebra
and matrices provide an easy way to calculate it in two and three dimen-
sions. The ideas in this section will later be extended to higher dimensions.

In this lesson, you will learn how to

• find the area of a triangle or a parallelogram, given the coordinates
of the vertices, using matrices

• find the area for the image of a triangle or a rectangle after a
transformation

• understand the relation between area and determinant of 2 × 2
matrices

In Chapter 2, you used vector methods to find area. For instance,
Theorem 2.9 states that, in R3, the area of the parallelogram spanned ←−

Theorem 2.9 was intro-
duced in Lesson 2.5.

by the nonzero vectors A and B is ‖A × B‖. But how would you find the
area spanned by vectors in R2? If you solved Exercise 5i from Lesson 2.5,
you know how to do it.

||B|
|

||B
||

sin
 θ

||A|
|

O

B

A

A + B

θ

Example

Problem. Find the area of the parallelogram spanned by A(2, 3) and B(5,−1).
←−
In exercises from Chapter 1
(such as Exercise 6 from
Lesson 1.2), you may have
found the area using the
“surround it with a rectan-
gle” method:

A(2,3)

A+B=(7,2)

B(5,-1)

A+B=(7,2)

A(2,3)

B(5,−1)
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5.4 Determinants, Area, and Linear Maps

Solution. The idea is to embed the points into R3 so that you can take a cross product.
Think of R2 as the x–y plane in R3. So instead of A(2, 3) and B(5,−1), think of A(2, 3, 0)
and B(5,−1, 0). The area of the parallelogram doesn’t change, but in R3 you can take
the cross product.

Habits of Mind

Reason about calcula-
tions. How could you have
predicted that A×B would
lie along the z-axis?

A × B =

(∣∣∣∣ 3 0

−1 0

∣∣∣∣ ,−
∣∣∣∣2 0

5 0

∣∣∣∣ ,
∣∣∣∣2 3

5 −1

∣∣∣∣
)

= (0, 0,−17)

By Theorem 2.9, the area is the length of the cross product, and

‖A × B‖ = ‖(0, 0,−17)‖ = 17

This method is perfectly general. Given any two points in R2, say Remember

The determinant of(
r p
t q

)
is the number

rq − tp. The notation is ei-

ther

∣∣∣∣r p
t q

∣∣∣∣ or det
(
r p
t q

)
.

P = (a, b) and Q = (c, d), the area of the parallelogram spanned by P
and Q is

‖(a, b, 0) × (c, d, 0)‖ =

∥∥∥∥
(∣∣∣∣b 0

d 0

∣∣∣∣ ,−
∣∣∣∣a 0

c 0

∣∣∣∣ ,
∣∣∣∣a b

c d

∣∣∣∣
)∥∥∥∥

= ‖(0, 0, ad − bc)‖ = |ad − bc|

This reasoning proves a theorem.

Theorem 5.6

The area of the parallelogram spanned by P = (a, b) and Q = (c, d) is ←−
Notice that the coordinates
of the points are in the
columns of the matrix. It
would work just as well
if they were in the rows
(why?). Using columns
makes things easier in the
next part of the lesson.

the absolute value of the determinant of the matrix whose columns are P
and Q: ∣∣∣∣det

(
a c

b d

)∣∣∣∣ = |ad − bc|

Minds in Action Episode 18

Derman, Tony, and Sasha are talking after school.

Tony: So, absolute value of determinant is area. Does it act like area?

Derman: How does area act?

Sasha: Well, let’s make a list. Here are some things that area should do:

Sasha writes on the board.

1. The area of the unit square should be 1.
v

(0,1)

2. If you scale one side of a parallelogram by c, the
area should scale by c.

v
u

cu
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Chapter 5 Matrices as Functions

3. If you switch the order of the vectors that span
the parallelogram, the area should stay the same.

4. If the vectors that span the parallelogram are
scalar multiples of each other, the area should be 0.

v

Tony: So, if absolute value of determinant is area, we better have properties like these:

Tony writes beside each of Sasha’s items

1. The area of the unit square should be 1, so

∣∣∣∣det

(
1 0

0 1

)∣∣∣∣ = 1.

2. If you scale one side of a parallelogram by c, the area should scale by c, so∣∣∣∣det

(
c · r p

c · s q

)∣∣∣∣ = c

∣∣∣∣det

(
r p

s q

)∣∣∣∣
3. If you switch the order of the vectors that span the parallelogram, the area should

stay the same. ∣∣∣∣det

(
a c

b d

)∣∣∣∣ =

∣∣∣∣det

(
c a

d b

)∣∣∣∣
4. If the vectors that span the parallelogram are scalar multiples of each other, the

area should be 0. ∣∣∣∣det

(
c · r r

c · s s

)∣∣∣∣ = 0

Derman: I feel a theorem coming on . . .

As Derman predicted, here are the basic rules for determinants.

Theorem 5.7 (Basic Rules of 2 × 2 Determinants)

Determinants have the following properties: ←−
Notice that the statements
in the theorem do not
involve absolute value. Do
they imply Tony’s claims?

(1) det

(
1 0

0 1

)
= 1

(2) det

(
c · r p

c · s q

)
= c det

(
r p

s q

)
“scalars come out”

(3) det

(
a c

b d

)
= − det

(
c a

d b

)
“det is alternating ”

(4) det

(
c · r r

c · s s

)
= 0

For You to Do

1. Prove Theorem 5.7.
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5.4 Determinants, Area, and Linear Maps

Developing Habits of Mind

Use algebra to extend geometric ideas. Theorem 5.7 is all about the algebra of Remember

The extension program:
Take a familiar geometric
idea in two and three
dimensions, find a way
to describe it with vectors,
and then use the algebra as
the definition of the idea in
higher dimensions.

determinants, but it was motivated by Sasha’s list of geometric properties of area. Once
again, geometry inspires algebra. It’s possible to define the determinant of any square
matrix, and you’ll do exactly that in Chapter 9. These general determinants will have
very similar properties to the ones in Theorem 5.7, all motivated by corresponding
properties of (generalized) area. You haven’t encountered it lately, but this will be
another application of the “extension program” that you met in Chapters 1 and 2.

Sometimes, it’s the algebra that leads the way, and an algebraic result
is motivated by algebra itself. For example, notice that part ((2)) of
Theorem 5.7 is similar to part ((3)) of Theorem 5.1 from Lesson 5.2. Both
say that “scalars come out.” But for determinants, what’s scaled is not the
matrix—it’s one column.

For You to Do

2. a. Show that det

(
7 + 5 9

6 + 2 3

)
= det

(
7 9

6 3

)
+ det

(
5 9

2 3

)
.

b. If A and B are 2 × 2 matrices, is det(A + B) equal to det(A) + det(B)?

If you analyze the calculations above, you see that it works in general.

Theorem 5.8

Given two matrices with a common corresponding column, the determinant
of the matrix formed by adding the two other corresponding columns is the
sum of the two given matrices’ determinants. To be precise:

det

(
a + a′ c

b + b′ d

)
= det

(
a c

b d

)
+ det

(
a′ c

b′ d

)

For Discussion

3. Find another place in this course, besides area and cross product, where deter-
minants showed up.

For You to Do

4. Find the area of the triangle whose vertices are (2, 3), (7,−1), and (4, 6).

Determinants and Linear Maps

There are many connections between determinants and linear maps. One
has to do with area.
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Chapter 5 Matrices as Functions

Minds in Action Episode 19

Sasha, Tony, and Derman are still talking.

Tony: Remember the example from Lesson 5.2? We looked at the effect of M =(
8 −1

1 3

)
when it is applied to the unit square.

Derman: We got the parallelogram whose vertices are O, (8, 1), (7, 4), and (−1, 3).

Derman draws on the board

C ʹ: (-1, 3)

Aʹ: (8, 1)

Bʹ: (7, 4)

C : (0, 1)

B: (1, 1)

A: (1, 0)O: (0, 0)

Tony: And, right after that, we were asked to find the area of the parallelogram.

Sasha: Oh . . . Now we know that it’s just the absolute value of the determinant of the
matrix whose columns are the points that generate the parallelogram. It’s∣∣∣∣det

(
8 −1

1 3

)∣∣∣∣ = 25

Hey! That’s just the absolute value of the determinant of M , our original matrix.

Derman: Maybe it’s a coincidence.

Tony: I don’t think so. Look, the generators of our new parallelogram are the points

we get when we multiply

(
1

0

)
and

(
0

1

)
by M .

Sasha: And by the Pick-Apart Theorem, what you get are just the first and second ←−
The Pick-Apart Theorem
is Theorem 4.8 from
Lesson 4.5.

columns of M .

Derman: So the vertices that generate the new thing are the columns of M . That means
that the area of the new thing is the absolute value of the determinant of M . So it’s
not a coincidence.

Tony: There are seldom coincidences in mathematics.

Sasha: I wonder . . . Applying M to the vertices of the unit square multiplies its area
by 25, the determinant of M . I wonder if multiplying by M always multiplies area by
25.

Derman: Where do you get these ideas?

Tony: Well, before we jump into this, let’s look at another example. Suppose we start
with A = (4, 3) and B = (2,−5). We know that O, A, A + B, and B form a
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5.4 Determinants, Area, and Linear Maps

parallelogram B whose area is ∣∣∣∣det

(
4 2

3 −5

)∣∣∣∣ = 26

Let’s find the area of the image of B under M and see if it’s 25 · 26.

For You to Do

5. Find the area of the image of B under M and see if it’s 25 · 26.

Well, it’s true, and it’s true for any 2 × 2 matrix M : if A and B are ←−
And there’s more. Later
you’ll see how this general-
izes to Rn.

points in R2, the area of the parallelogram spanned by MA and MB is
|det(M)| times the area of the parallelogram spanned by A and B. This
happens thanks to the properties described in Theorems 5.7 and 5.8.

Suppose you have two points A = (a, b) and B = (c, d). The area of the
parallelogram spanned by A and B is the absolute value of the determinant
of the matrix Q whose columns are A and B.

detQ =

∣∣∣∣det

(
a c

b d

)∣∣∣∣ = |ad − bc|

Now suppose you multiply A and B by M =

(
8 −1

1 3

)
. The area of

←−
M could be any 2 × 2
matrix here.

the parallelogram spanned by MA and MB is the absolute value of the
determinant of the matrix N whose columns are MA and MB. The idea
is to decompose N using the Pick-Apart Theorem, and then to use what
you know about determinants (Theorem 5.7).

You know that

MA =

(
8 −1

1 3

)(
a

b

)

= a

(
8

1

)
+ b

(
−1

3

)

Similarly,

MB =

(
8 −1

1 3

)(
c

d

)

= c

(
8

1

)
+ d

(
−1

3

)
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So, ←−
The notation here is a
little clumsy. It means
that the first column of

N is a

(
8
1

)
+ b

(
−1
3

)
,

and the second column is

c

(
8
1

)
+ d

(
−1
3

)

N =

(
a

(
8

1

)
+ b

(
−1

3

)
, c

(
8

1

)
+ d

(
−1

3

))
.

Now calculate detN using the properties. First use Theorem 5.8 on the
first column, breaking the determinant into the sum of the determinants of
two matrices R and T :

detN = det

(
a

(
8

1

)
+ b

(
−1

3

)
, c

(
8

1

)
+ d

(
−1

3

))

= det

(
a

(
8

1

)
, c

(
8

1

)
+ d

(
−1

3

))
︸ ︷︷ ︸

R

+ det

(
b

(
−1

3

)
, c

(
8

1

)
+ d

(
−1

3

))
︸ ︷︷ ︸

T

Then use the same theorem on each of the second columns, breaking det R
into the sum of two determinants:

detR = det

(
a

(
8

1

)
, c

(
8

1

)
+ d

(
−1

3

))

= det

(
a

(
8

1

)
, c

(
8

1

))
+ det

(
a

(
8

1

)
, d

(
−1

3

))

Next, use parts ((2)) and ((3)) of Theorem 5.7 to take out scalars and
reduce this further:

←−
det

(
8 8
1 1

)
= 0, right?

detR = det

(
a

(
8

1

)
, c

(
8

1

))
+ det

(
a

(
8

1

)
, d

(
−1

3

))

= ac det

(
8 8

1 1

)
+ ad det

(
8 −1

1 3

)

= ad detM

For You to Do

6. Do the same thing for detT : show that

detT = −bc detM

Putting it all together, you get

Remember

Q =

(
a c
b d

)
det N = ad detM − bc detM

= (detM)(ad − bc)

= (detM) · (detQ)

Even though M was a specific matrix in this calculation, there’s nothing
special about it. The same argument works in general.
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5.4 Determinants, Area, and Linear Maps

Theorem 5.9 (Effect of a Linear Map on Area)

If M is any 2 × 2 matrix and A and B are points, then the area of the
parallelogram spanned by MA and MB is |det M | times the area of the
parallelogram spanned by A and B.

Proof. Using the above notation, the area of the parallelogram spanned
by MA and MB is |det N | and the area of the parallelogram spanned by
A and B is |det Q|. But

|detN | = |(detM) · (detQ)| = |(detM)| · |(detQ)|

Facts and Notation

Theorem 5.9 holds more generally: if a matrix M is applied to a figure F that can be
approximated to any degree of accuracy by squares (a circle, say), then the image of F
under M is scaled by |detM |.

Minds in Action Episode 20

Derman, Sasha, and Tony are thinking about this proof

Derman: Well, that was enough of a workout for today.

Sasha: Wait, I see something.

Derman: Of course you see something.

Sasha: I think there’s a bonus to all this. Remember that N was defined as the matrix
whose columns are MA and MB.

Tony: Yes, the columns of N are M

(
a

b

)
and M

(
c

d

)
. Ah . . . and Q is

(
a c

b d

)
.

Sasha: So, by Pick-Apart, N is MQ. And det N is (detM) · (detQ). See what I mean?

Tony: . . . and it will always work.

Derman: Here comes a theorem . . .

Theorem 5.10 (Product Rule for Determinants)

If M and Q are 2 × 2 matrices,

det(MQ) = (detM) · (detQ)

For Discussion

7. Prove the Product Rule for Determinants.
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Chapter 5 Matrices as Functions

Developing Habits of Mind

Look for proofs that extend. Theorem 5.10 could be proved by direct calculation—
just set up generic matrices M and Q, multiply them, and show that the determinant of
the product is the product of the determinants. This works (try it), but it has a couple
of drawbacks:

1. It doesn’t extend. There’s a product rule for determinants of n × n matrices, and
you’ll see it in Chapter 9. But direct calculation would get way out of hand for
any matrices larger than 2 × 2.

2. Direct calculation shows you that it’s true but it doesn’t show why it’s true.

An argument based on the calculation right before Theorem 5.9 uses M as a represen-
tation of a linear map and Q as a storehouse for the vertices of a parallelogram. It then
shows that the area of the parallelogram spanned by the columns of Q gets scaled by
the determinant of M when M is applied to that parallelogram.

Mathematicians accept any solid proof as valid, but proofs that reveal hidden meaning
are more prized than those that don’t.

Exercises

1. Suppose A =

(
1

5

)
and B =

(
7

−2

)
. Find the area of

←−
Exercise 1 is more than
a collection of fun calcu-
lations. There are hidden
theorems in some of the
parts. See if you can find
them.

a. the parallelogram spanned by A and B
b. the parallelogram spanned by 2A and B
c. the parallelogram spanned by 2A and 2B
d. the parallelogram spanned by 2A and −3B
e. the parallelogram spanned by MA and MB, where M =(

2 4

3 5

)
f. the parallelogram spanned by M2A and M2B, where M =(

2 4

3 5

)
g. the parallelogram spanned by M�A and M�B, where M =(

2 4

3 5

)
h. the parallelogram spanned by M−1A and M−1B, where M =(

2 4

3 5

)
i. the parallelogram spanned by A and A + B
j. the parallelogram spanned by A and A + 3B
k. �OAB

2. a. If you multiply a 2 × 2 matrix by a scalar k, what happens to
its determinant?

b. Give a geometric interpretation of your answer to part a above.
What does it say about area?
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5.4 Determinants, Area, and Linear Maps

3. Suppose A = (4,−3), B = (1, 6), and C = (3, 4). Compare the areas
of the parallelograms spanned by A and B, A and C, and A and
B + C.

4. Suppose A, B, and C are points in R2. Show that the area of
the parallelogram spanned by A and B + C is equal to the area
of the parallelogram spanned by A and B plus the area of the
parallelogram spanned by A and C by

a. using geometry
b. using the algebra of determinants

5. Suppose M =

(
3 0

0 2

)
and C is the unit circle: the graph of

x2 + y2 = 1.

a. What is the equation for and the graph of the image of C under
M?

b. What is the area of the image of C under M?

6. Develop a formula for the area of an ellipse in terms of the lengths
of its semi-axes.

7. If M and N are 2 × 2 matrices, show that

det(MN) = det(NM)

even if MN �= NM .

8. If A is a 2 × 2 matrix that has an inverse, how is det A related to
det(A−1)? Prove what you say.

9. Suppose M =

(
8 −1

8 −1

)
. What is the area spanned by MA and MB

for any points A and B? Illustrate geometrically.

10. If M is a 2 × 2 matrix with determinant 0, show that M maps all
of R2 onto a line through the origin.

11. If A is a 2 × 2 matrix, show that the area of the parallelogram
spanned by the columns of A is the same as the area of the
parallelogram spanned by the rows of A.

12. Suppose that A =

(
5

1

)
and B =

(
2

4

)
. Suppose further that

C = xA + yB =

(
19

11

)
for numbers x and y.

a. Find x and y.
b. Find the area of the parallelograms determined by

(i) A and B
(ii) A and C
(iii) B and C
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Chapter 5 Matrices as Functions

13. Suppose that A and B are linearly independent vectors in R2 and
that C = xA + yB for numbers x and y.

C=xA+yB

yB

B

A

xA

Show that ←−
Here, det(A,B) means the
determinant of the matrix
whose columns are A and
B.

x =
det(C, B)

det(A, B)
and y =

det(A, C)

det(A, B)

a. using algebra
b. using geometry

14. In Exercise 18 from Lesson 2.5, you saw that if A, B, and C are
vectors in R3, no two of which are collinear, then the volume of the
parallelepiped determined by A, B, and C is |C · (A × B)|.

B

O

h

A

C

A × B

It would make sense, then, to extend the definition of determinant ←−
You’ll treat general deter-
minants in depth in Chap-
ter 9.

to 3×3 matrices by defining the determinant of a 3×3 matrix whose
columns are A, B, and C to be C · (A × B). Find the determinant
of each matrix:

a. det

⎛
⎝1 2 3

4 5 6

7 8 10

⎞
⎠ b. det

⎛
⎝ 2 2 3

8 5 6

14 8 10

⎞
⎠

c. det

⎛
⎝2 1 3

5 4 6

8 7 10

⎞
⎠ d. det

⎛
⎝6 2 3

7 5 6

8 8 10

⎞
⎠

e. det

⎛
⎝1 + 6 2 3

4 + 7 5 6

7 + 8 8 10

⎞
⎠ f. det

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠

15. a. Which of the properties in Theorems 5.7 and 5.8 extend to
3 × 3 matrices?

b. Take It Further. Proofs?
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5.5 Image, Pullback, and Kernel

Most of the matrix functions you have been working with thus far have
been represented by square matrices. However, nonsquare matrices can also
act as functions. With nonsquare matrices, the outputs are in a different
dimension from the inputs, so lines and shapes acted upon by those matrices
may also change dimensions.

In this lesson, you will learn how to

• find the image of a linear map using matrix multiplication

• find and interpret geometrically the set of pullbacks of a vector under
a given matrix

• understand the relationship between the kernel of a matrix and the
set of pullbacks of a vector under that matrix

For You to Do

1. Consider the matrix A =

(
1 2 3

4 5 6

)
. For what kinds of vectors X is the product

AX defined, and what are the outputs?

Definition

Let A be an m × n matrix and let X be a vector in Rn. The vector AX is
the image under A of X.

The image of a matrix A, denoted by Im(A), is the set of vectors B
such that AX = B for at least one vector X in Rn.

Example 1

Problem. Let X =

⎛
⎝−1

3

1

⎞
⎠. Calculate its image under A =

(
1 2 3

4 5 6

)
.

Solution. The image under A of X is the matrix product AX. ←−
Alternatively, you can say

that A sends X to

(
8
17

)
.

AX =

(
1 2 3

4 5 6

)⎛⎝−1

3

1

⎞
⎠ =

(
8

17

)
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For You to Do

2. Find the image under A =

(
1 2 3

4 5 6

)
of each vector:

a.

⎛
⎝2

3

4

⎞
⎠ b.

⎛
⎝−3

1

2

⎞
⎠ c.

⎛
⎝−1

4

6

⎞
⎠ d.

⎛
⎝0

0

0

⎞
⎠

Developing Habits of Mind

The extension program. Most of the functions you have worked with so far have
likely operated on numbers. But functions can operate on any mathematical objects:
this chapter focuses on functions that take vectors as inputs and produce vectors as ←−

In Chapters 6 and 7, you’ll
extend this idea of function
even further when you
generalize the concept of
vectors to things other than
n-tuples of numbers.

outputs.

Matrix multiplication defines such a function from Rn to Rm—an m×n matrix times
a column vector in Rn produces a column vector in Rm. The function is defined by
matrix multiplication. For example, the function

F (x, y, z) = (3y − 2x, z)

is a function from R3 to R2 and can be described completely by the matrix A =(
−2 3 0

0 0 1

)
, since if X =

⎛
⎝x

y

z

⎞
⎠, then F (X) = AX =

(
3y − 2x

z

)
.

←−
For this type of function,
F (X) is the same as the
matrix product AX, and
both will be used in this
chapter.

A natural question emerges: can any function from Rn to Rm be defined using matrix
multiplication? No. For example, the function defined by

F (x, y, z) = (2xz + 2yz, 2xy)

cannot be represented by a matrix. ←−
Why?

Many functions from Rn to Rm do have matrix representations, though. Such func-
tions are called linear maps. Linear maps turn out to have many useful properties—
properties that will be developed in depth in Chapter 8. For example, if F is represented
by matrix A, F (O) must be O (why?). ←−

Note that, depending on
the dimensions of A, the
input O and the output O
could be different.

For Discussion

3. Let F be a function represented by the 3 × 2 matrix A =

⎛
⎝1 4

2 5

3 6

⎞
⎠,

and suppose F (X) =

⎛
⎝5

4

3

⎞
⎠ and F (Y ) =

⎛
⎝−14

−10

−6

⎞
⎠.

Determine each of the following.

a. F (2X − 3Y ) b. F (−X) c. F (O)

248



5.5 Image, Pullback, and Kernel

Facts and Notation

“F is a function from R3 to R2” can be written as F : R3 → R2.

This statement only names the function and its domain and range sets, not how it
behaves. The following statement both names and defines a linear mapping from R3 to
R2:

F : R3 → R2 such that (x, y, z) �→ (x + 2y + 3z, 4x + 5y + 6z)

Often the domain and range are not given, since they are implied by the variables in
use.

F : (x, y, z) �→ (x + 2y + 3z, 4x + 5y + 6z)

(x, y, z)
F�→ (x + 2y + 3z, 4x + 5y + 6z)

This particular function is a linear mapping, so it can also be described using the matrix

A =

(
1 2 3

4 5 6

)
.

F : (x, y, z) �→
(

1 2 3

4 5 6

)⎛⎝x

y

z

⎞
⎠

F (x, y, z) =

(
1 2 3

4 5 6

)
·

⎛
⎝x

y

z

⎞
⎠

F (X) = AX

It’s said that A represents the function F . So matrices aren’t functions themselves, but
they can represent functions, and the behavior of the function is entirely controlled by
the matrix.

For You to Do

4. If X =

⎛
⎝−1

3

1

⎞
⎠, the image under A =

(
1 2 3

4 5 6

)
of X is AX =

(
8

17

)
.

Find all vectors Y for which the image under A of Y is

(
8

17

)
.

Developing Habits of Mind

Look for structure. In Chapter 4, you learned about various operations on matrices.
You can add, scale, transpose, and (sometimes) multiply matrices. For square matrices,
you can (sometimes) find inverses. As you will see (later in this course and in other
courses), these operations carry over to operations on functions. But one operation
is especially important for this chapter: matrix multiplication corresponds to function
composition.
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Chapter 5 Matrices as Functions

If f : D → D′ and g : D′ → D′′, then the function from D to D′′ defined by “first
apply f , then apply g” is denoted by g ◦ f :

g ◦ f : D → D′′ by the rule g ◦ f(x) = g(f(x))

The next theorem shows the corresponding statement using matrix
multiplication.

Theorem 5.11

Suppose F : Rn → Rm is defined by a matrix A, and G : Rm → Rp is ←−
See Exercise 12 from
Lesson 5.1. By the way,
what sizes are A and B?

defined by matrix B. Then G ◦ F is represented by the matrix BA.

For Discussion

5. Prove Theorem 5.11.

By definition, a function must have a unique output for any given input.
However, the outputs may or may not come from unique inputs. This is
still the case when dealing with functions whose inputs and outputs are
vectors.

Suppose AX = B for vectors X and B and matrix A. The vector B is
the unique image under A of X. As problem 4 shows, though, X may not
be the only vector whose image is B.

Definition

Let A be an m × n matrix, let X be a vector in Rn, and let B be a vector
in Rm. If AX = B, then X is a pullback of B under A. ←−

Since B is the image of
X, sometimes X is instead
referred to as the preimage
of B. Pullback is the more
common term.

Note that the definition says “a pullback” and not “the pullback.” A
vector can have more than one pullback. This idea is not new: if f : R → R

such that f(x) = x2, then there are two pullbacks for 49. (What are they?)

Example 2

Problem. Find the set of pullbacks of B under A, where A =

(
1 3 1

2 0 8

)
and

B =

(
4

2

)
.

Solution. A pullback of B under A is any vector X =

⎛
⎝x

y

z

⎞
⎠ so that AX = B. This is

a system of equations: (
1 3 1

2 0 8

)⎛⎝x

y

z

⎞
⎠ =

(
4

2

)
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5.5 Image, Pullback, and Kernel

There are multiple methods for solving it, but one way is to find the echelon form of an
augmented matrix. (

1 3 1 4

2 0 8 2

)
→
(

1 0 4 1

0 1 −1 1

)
The solution set is given by

x = 1 − 4z

y = 1 + z

The entire set of pullbacks of B is ←−
Sometimes the phrase
pullback refers to this set,
rather than any specific
pullback.

X = (1, 1, 0) + t(−4, 1, 1)

Example 3

Problem. Find the set of pullbacks of B under A, where A =

⎛
⎝1 2

3 0

1 8

⎞
⎠ and B =

⎛
⎝ 3

3

10

⎞
⎠.

Solution. A pullback of B under A is any vector X =

(
x

y

)
so that AX = B. This is

a system of equations: ⎛
⎝1 2

3 0

1 8

⎞
⎠(x

y

)
=

⎛
⎝ 3

3

10

⎞
⎠

Again, find the echelon form of the augmented matrix.⎛
⎝1 2 3

3 0 3

1 8 10

⎞
⎠→

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠

The third equation listed, 0x+0y = 1, means there is no solution to the original system
of equations. So vector B has no pullback .

In both cases above, finding the set of pullbacks of B under A is
equivalent to finding all solutions to the matrix equation AX = B. One
key question for this chapter is under what conditions AX = B will have
no solutions, exactly one solution, or more than one solution.

Developing Habits of Mind

Find alternative methods that you can generalize. The method of solution in the
examples is effective, but a second method may prove more powerful and generalizable.
It uses Theorem 4.16 from Lesson 4.6:

If AS = B, then every solution to AX = B is found by letting X = S + K,
where K is in ker(A).
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Chapter 5 Matrices as Functions

So, if you can find one pullback, you can find them all! In the first example, you started
with this system: (

1 3 1

2 0 8

)⎛⎝x

y

z

⎞
⎠ =

(
4

2

)

The solution S =

⎛
⎝1

1

0

⎞
⎠ can be found by inspection, by writing

(
4

2

)
as a linear

combination of the columns of A.

The kernel of A can be found using its echelon form:(
1 3 1

2 0 8

)
→
(

1 0 4

0 1 −1

)

Based on the echelon form, the kernel is all vectors in the form t(−4, 1, 1). Then,
Theorem 4.16 states that the full set of solutions to AX = B is

X = (1, 1, 0) + t(−4, 1, 1)

This method doesn’t help much when there are no solutions. And when you want to
solve a specific system, the direct approach using the augmented matrix is just as good
as finding a solution and then the kernel. But Theorem 4.16 is theoretically important:
given a matrix A, the pullback of any vector has the same structure as the pullback of ←−

It has the same structure
algebraically and, when you
can draw pictures, geomet-
rically. If, for some B, the
solution set to AX = B
is a line in R3, then the
solution set to AX = C
is a line (in fact a parallel
line) for any choice of C.

any other vector.

Example 4

Problem. Let A =

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠. For each of the following vectors, find the set of

pullbacks under A.

a.

⎛
⎝ 6

15

24

⎞
⎠ b.

⎛
⎝ 5

11

17

⎞
⎠ c.

⎛
⎝1

1

1

⎞
⎠

Solution. Find one solution to each system by inspection, and use the echelon form

to find the kernel of A.

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠ →

⎛
⎝1 0 −1

0 1 2

0 0 0

⎞
⎠. The kernel is given by the set of

equations x = z, y = −2z, or ker(A) = t(1,−2, 1).

Using inspection to find a solution to each of the given systems (use linear combina-
tions of the columns) gives the following sets of pullbacks:

a. X = (1, 1, 1) + t(1,−2, 1) ←−
What do these pullbacks
look like geometrically?b. X = (−1, 1, 0) + t(1,−2, 1)

c. X = (0, 1, 1) + t(1,−2, 1)

Other answers are possible, but they will determine the same sets.
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For You to Do

6. Suppose A =

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠. For each of the following vectors, find the set of

pullbacks under A.

a.

⎛
⎝5

7

9

⎞
⎠ b.

⎛
⎝3

3

3

⎞
⎠ c.

⎛
⎝3

3

4

⎞
⎠

7. Repeat problem 6 above using A =

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠.

Exercises

1. Let A =

(
1 3 7

2 7 1

)
. Find the image under A for each given vector. ←−

The matrix A represents a
function that maps R3 to
R2.

a.

⎛
⎝1

4

1

⎞
⎠ b.

⎛
⎝3

0

0

⎞
⎠ c.

⎛
⎝1

0

1

⎞
⎠

2. Use the same A from Exercise 1. Find the set of pullbacks under A
for each given vector.

a.

(
4

9

)
b.

(
4

−6

)
c.

(
11

0

)

3. If X is in the pullback of

(
3

7

)
under A and Y is in the pullback of ←−

Again, use the same A from
Exercise 1.

(
8

1

)
under A, find the image of the following under A.

a. X + Y b. 2X c. 2X + 3Y d. 0X

4. Suppose M =

⎛
⎝1 2

3 0

1 8

⎞
⎠. Show that the image of M is a plane in R3 Remember

The image of a matrix M
is the set of all vectors N
that can be solutions to
MX = N .

that contains the origin, and find an equation for that plane.

5. Let matrix multiplication by B =

⎛
⎝1 3 2 1

1 4 4 6

3 10 8 8

⎞
⎠ represent a

function from R4 to R3. Find the image under B for each given
vector.

a.

⎛
⎜⎜⎝

1

4

2

1

⎞
⎟⎟⎠ b.

⎛
⎜⎜⎝

1

0

2

0

⎞
⎟⎟⎠ c.

⎛
⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎠
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6. For each of the following vectors, find the set of pullbacks under

B =

⎛
⎝1 3 2 1

1 4 4 6

3 10 8 8

⎞
⎠, the same B as in Exercise 5.

a.

⎛
⎝ 4

5

13

⎞
⎠ b.

⎛
⎝4

2

0

⎞
⎠ c.

⎛
⎝ 5

4

14

⎞
⎠

7. Consider these four vectors:

A =

(
0

0

)
, B =

(
1

0

)
, C =

(
1

1

)
, and D =

(
0

1

)
.

For each of the following matrices,

• compute the images A′ through D′ of these four vectors under
the matrix

• draw figures ABCD and A′B′C ′D′

• describe how figure A′B′C ′D′ is obtained from ABCD

a.

(
2 0

0 2

)
b.

(
0 1

1 0

)
c.

(
1 0

0 1

)
d.

(
0 0

0 1

)

e.

(
2 0

0 3

)
f.

(
−1 0

0 1

)
g.

(√
3
2 − 1

2
1
2

√
3
2

)
h.

(√
2
2 −

√
2
2√

2
2

√
2
2

)

8. For each A and X, find the image of X under A.

a. A =

(
1 3 −1

2 1 4

)
, X =

⎛
⎝1

0

3

⎞
⎠

b. A =

⎛
⎝−1 2 4 2

0 0 1 0

4 1 3 1

⎞
⎠, X =

⎛
⎜⎜⎝

1

−1

1

−1

⎞
⎟⎟⎠

c. A =

⎛
⎝ 1 4

2 1

−1 3

⎞
⎠, X =

(
3

7

)

d. A =

⎛
⎝0 1 0

1 0 0

0 0 0

⎞
⎠, X =

⎛
⎝2

3

4

⎞
⎠

9. Find ker(A) for the given matrix A.

a. A =

(
1 2 4

2 5 5

)
b. A =

⎛
⎝1 −1 2 4

3 −2 5 6

1 2 4 5

⎞
⎠

c. A =

⎛
⎝1 −1 2 4

3 −2 5 6

4 −3 7 10

⎞
⎠ d. A =

⎛
⎝4 1 8

1 4 6

3 −3 2

⎞
⎠
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10. Let A =

⎛
⎝1 3 2

2 5 3

1 2 1

⎞
⎠. For each of the given vectors, find the pullback.

←−
In this context, “pullback”
means the same as “the set
of pullbacks.”a.

⎛
⎝3

5

2

⎞
⎠ b.

⎛
⎝2

4

2

⎞
⎠ c.

⎛
⎝5

8

3

⎞
⎠

d.

⎛
⎝5

8

2

⎞
⎠ e.

⎛
⎝0

0

0

⎞
⎠ f.

⎛
⎝ 6

10

3

⎞
⎠

11. Suppose that A =

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠, that X is in the pullback of

⎛
⎝1

5

2

⎞
⎠,

and that Y is in the pullback of

⎛
⎝−1

2

7

⎞
⎠. Find the image of 4X −5Y

under A.
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Chapter 5 Matrices as Functions

5.6 The Solution Set for AX = B

You started using matrices as tools to solve systems of equations. Now you
can think of a matrix as representing a function that operates on vectors.
The representations are a little different, but understanding both is helpful
to determine the types of solutions each can generate.

In this lesson, you will learn how to

• determine whether a linear function is one-to-one

• find a matrix that represents a projection along a vector or a line

• describe the set of pullbacks of a linear function using formal function
language

Minds in Action Episode 21

Derman: Let’s review what we know about solving AX = B. That’s a system of
equations.

Tony: I remember that AX = B has a solution whenever B is a linear combination of
the columns of A. Here, I’ll make one using prime numbers for A and something easy
for B. (

2 3 5

7 11 13

)⎛⎝x

y

z

⎞
⎠ =

(
8

29

)

All right, find me a solution to this one.

Derman thinks for a good, long time.

Derman: The solution is x = 1, y = 2, z = 0.

Tony: Nice, but careful when you say the solution.

Derman: Right, there might be more than one. We have to look at the kernel of A.

Tony: And I think two things can happen. If the kernel is the zero vector, then that’s
the only solution. Zero’s always in the kernel.

Derman: And if the kernel has other vectors in it, then there are more solutions, and
you get them by adding anything in the kernel to the solution you already have.

Tony: Very smooth.

Sasha walks over . . .

Sasha: Let’s review what we know about solving AX = B.

Derman: We just did that! It’s a system of equations.

Sasha: But what about all this function stuff? What if we think of A as a function?

256



5.6 The Solution Set for AX = B

Derman: I guess the language will be different, but it should be the same stuff. AX = B
still has a solution whenever B is a linear combination of the columns of A.

Sasha: So, you’re saying B is in the image of A, Im(A), if and when B is a linear
combination of A’s columns.

Derman: That’s not what I said, but it sounds good. Here, look at this.

Sasha looks at the equation that Tony wrote.

Sasha: Ah. The solutions are the pullback of B under A, if they exist.

Tony: Hey, she’s right! By the way, there are solutions: x = 1, y = 2, z = 0 is one.

Sasha: Okay, great. Then we have to look at the kernel of A.

Derman: Oh, we’ve been here. Two things can happen. If the kernel is the zero vector,
then that’s the only . . . uh, pullback. Zero’s always in the kernel.

Tony: And if the kernel has other vectors in it, then the pullback set is larger, and you
get anything in the pullback by adding anything in the kernel to the pullback you
already have!

Sasha: Very smooth.

For You to Do

1. Find the complete set of pullbacks of

(
8

29

)
under

(
2 3 5

7 11 13

)
. ←−

Alternatively, this could
also have said “Find the
pullback of . . . ” with the
same intended meaning.

For Discussion

2. There are definitely systems with no solutions and vectors with no pullbacks.
There are definitely systems with unique solutions, which occur when ker(A) is
just the zero vector. Can there be systems with exactly four solutions? Your work
in Exercise 6 from Lesson 3.5 may be helpful.

Derman, Tony, and Sasha have noticed that there are two ways to
describe the solution set to AX = B—either in terms of linear equations
or in terms of linear mappings. The next two theorems say essentially the
same thing from these two points of view, and they summarize much of
what has happened so far.

Theorem 5.12 (AX = B, Function Version)

Suppose A is m×n. A vector B in Rm is in the image of A (so that B has
a nonempty pullback under A) if and only if B is a linear combination of
the columns of A. If B is in the image of A, the kind of pullback that B has
is determined by A’s kernel. If ker(A) contains only the zero vector, B has ←−

ker(A) is either just the
zero vector or contains
infinitely many vectors.

only one vector in its pullback, while if ker(A) contains nonzero vectors (so
that it contains infinitely many vectors), then the pullback of B is infinite.
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Theorem 5.13 (AX = B, System Version)

Suppose A is m×n, and suppose B is a vector in Rm. The system AX = B
has a solution if and only if B is a linear combination of the columns of
A. If AX = B has a solution, the solution set is determined by A’s kernel. ←−

Theorem 4.16 from Les-
son 4.6 shows you how to
construct all the solutions
from one solution: you add
your fixed solution to things
in the kernel.

If ker(A) contains only the zero vector, AX = B has only one solution,
while if ker(A) contains nonzero vectors (so that it contains infinitely many
vectors), then AX = B has infinitely many solutions.

You can tell whether ker(A) = O or ker(A) is infinite by going through
the process of computing it. The following theorem shows a useful way to
tell just by looking at A.

Theorem 5.14 (“Fatter Than Tall” or FTT)

If matrix A is m× n with m < n, then ker(A) contains more than the zero ←−
Another way to say this:
a homogeneous system
with more variables than
equations has a nonzero
solution.

vector.

Combining this theorem with Theorem 3.4 from Lesson 3.5, you get a
useful corollary.

Corollary 5.15

Any set of more than n vectors in Rn is linearly dependent.

For Discussion

3. Write out a careful explanation of why Theorem 5.14 is true in the case that A Habits of Mind

Generalize from exam-
ples. Find the kernel of
a few FTT matrices and
you’ll see why the theorem
is true.

is 3 × 5. Why is it true in general?

Many functions on real numbers have different inputs with the same
output: it is possible to have x �= y while still having f(x) = f(y). But for ←−

What function matches the
figure below? Is it one-to-
one?

some functions, this never happens: if the inputs are different, the outputs
must be different. For functions that take vector inputs, this means the
images of all input vectors are distinct, and all pullback sets contain a
unique element. Functions that behave this way, regardless of the type of
input, are called one-to-one.

Definition

A function F is one-to-one if, whenever X and Y are in the domain of
F and X �= Y , then F (X) �= F (Y ). Alternatively, if F (X) = F (Y ), then
X = Y .

Example

Problem. Suppose F : R2 → R2 is defined by F (X) = Proj(1,1) X.

1. What is Im(F )?

2. Is F one-to-one?
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3. What is the pullback of (2, 2)?

4. Can F be represented by a matrix? If so, find it. If not, explain why.

Solution. The first three questions can be answered from a picture of what F does to
points; it projects them onto the line along B = (1, 1).

(1,1)

(2,2)

all project
onto (0,0)

all project
onto (2,2)

�

1. The image is the line � : y = x. The line passes through the origin in the direction
of B, and its vector equation is X = t(1, 1).

2. No, F is not one-to-one, because all the points on a line perpendicular to � get
mapped to the same point on �. For example, F (3, 3) = F (2, 4) = F (1, 5), so F is
not one-to-one.

3. The pullback of (2, 2) is all points X for which F (X) = (2, 2). This is the line
through (2, 2) perpendicular to �. Its direction can be found by using dot product,
and its vector equation is X = (2, 2) + t(−1, 1).

The first three questions were answered geometrically, but all four questions can be
answered algebraically using the definition of projection from Chapter 2. This builds a
direct formula for F (x, y) in terms of x and y.

F (x, y) = Proj(1,1)(x, y)

=
(x, y) · (1, 1)

(1, 1) · (1, 1)
(1, 1)

=
x + y

2
(1, 1)

=

(
x + y

2
,
x + y

2

)
Since both coordinates of F (x, y) are linear in terms of x and y, F can be represented

by a 2×2 matrix: A =

(
1
2

1
2

1
2

1
2

)
. Knowing matrix A allows you to gain additional insight

on the first three questions.
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1. Im(F ) is the set of all linear combinations of the columns of A: the multiples of(
1
2 , 1

2

)
. This is the same as the line � defined above.

2. One way to detect whether F is one-to-one is to see if ker(A) contains only
the zero vector. In this case, ker(A) is the set of multiples of (−1, 1), because

rref(A) =

(
1 1

0 0

)
. The pullback of anything in Im(F ) must be infinite, so F is not

one-to-one.

3. To find the pullback of (2, 2), first find a particular solution. An obvious one is
(2, 2), but there are others. Then, the entire pullback is found by adding (2, 2) to
everything in ker(A). The pullback of (2, 2) is the line defined by the equation

X = (2, 2) + t(−1, 1)

As seen in the example, if F is a linear mapping, the kernel of its
representative matrix offers the following quick test.

Theorem 5.16

Let F be a linear mapping represented by matrix A. F is one-to-one if and
only if the kernel of A contains just O.

For You to Do

4. Prove Theorem 5.16.

For Discussion

5. Theorems 5.14 and 5.16 can be combined to make an interesting corollary. What
is it, and what does it imply?

Developing Habits of Mind

Use functions to prove facts about matrices. There’s a theorem in Chapter 4 that
still hasn’t been proved: Theorem 4.10 from Lesson 4.5 says that matrix multiplication
is associative.

If A is m × n, B is n × p, and C is p × q, then (AB)C = A(BC).

This can be proved right from the definition of matrix multiplication, but the proof is
messy and not very enlightening. But if you look at matrices as functions, the proof
comes from the following facts.

Function composition is associative: If you have three functions ←−
Why is function composi-
tion associative? Look what
each side of the equation
does to any element of D.

f : D → D′, g : D′ → D′′, and h : D′′ → D′′′

then
h ◦ (g ◦ f) = (h ◦ g) ◦ f
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Matrix multiplication corresponds to function composition: This is the
content of Theorem 5.11 from Lesson 5.5.

For Discussion

6. Use this line of reasoning to prove that matrix multiplication is associative.

Exercises

1. How many vectors are in the solution set to AX = B for each
system below? Justify your answer.

a. A =

(
1 2 4

2 5 5

)
, B =

(
2

0

)
b. A =

(
1 2

2 5

)
, B =

(
2

0

)

c. A =

⎛
⎝1 3 2 −1

3 8 5 −2

1 5 4 −3

⎞
⎠, B =

⎛
⎝ 6

12

3

⎞
⎠

d. A =

⎛
⎝1 3 2 −1

3 8 5 −2

1 5 4 −3

⎞
⎠, B =

⎛
⎝ 4

11

6

⎞
⎠

e. A =

⎛
⎝1 3 2

3 8 5

1 5 4

⎞
⎠, B =

⎛
⎝ 4

11

6

⎞
⎠

f. A =

⎛
⎝1 3

3 8

1 5

⎞
⎠, B =

⎛
⎝ 4

11

6

⎞
⎠

g. A =

⎛
⎝1 3

3 8

1 6

⎞
⎠, B =

⎛
⎝ 4

11

6

⎞
⎠

2. Explain why it is impossible for a system of four linear equations in
four unknowns to have exactly two solutions.

3. Show that it is impossible for a linear map (a function represented
by a matrix) F : R3 → R2 to be one-to-one.

4. Suppose F : R2 → R3 is defined by X
F�→

⎛
⎝1 2

3 4

5 6

⎞
⎠ X.

a. Find ker(F ). b. Find Im(F ).

5. The following are partial or complete definitions of functions. For
each, decide whether it is one-to-one.

a. Defined by a matrix A where ker(A) �= O
b. Defined by a matrix A where ker(A) = O
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c. Defined by a 2 × 3 matrix A

d. Defined by A =

⎛
⎝0 1 0

1 0 0

0 0 0

⎞
⎠

e. Defined by A =

(
0 −3

3 0

)
f. Defined by a 2 × 2 matrix that projects (x, y) onto (1, 2)

6. Suppose F : R3 → R3 is defined by X
F�→

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠ X.

a. Is F one-to-one? Explain.
b. Find Im(F ).

7. Show that a function F : R2 → R3 defined by a matrix cannot have
all of R3 as its image.

8. Is there a 3×3 matrix A and two vectors B and C so that AX = B
has exactly one solution and AX = C has infinitely many? Justify
your answer.

9. If A is a 3×3 matrix whose columns are linearly independent, show
that AX = B has exactly one solution for every B in R3.

10. Consider the two functions S, T : R3 → R3 defined by

S(X) = Proj(1,2,−1)(X)

T (X) = Proj(2,4,−2)(X)

Show that S and T are represented by the same matrix. Explain
how this can happen.

11. Suppose that A is a matrix, X is in the pullback of

⎛
⎝5

1

3

⎞
⎠, Y is in

the pullback of

⎛
⎝3

2

0

⎞
⎠, and Z is in ker(A). Find the image of

a. 2X + 3Y b. 5Y c. X − 2Y d. X − 2Y + 3Z

12. Suppose that A is a matrix. If X and Y are both in the pullback
of B, must X + Y also be in the pullback of B? Must 3X be in the
pullback of B? If so, prove it. If not, determine the conditions on B
that make it possible.

13. Suppose R =

(
3 0

0 4

)
, P =

(
3 4

2 3

)
, and S = P−1RP .

a. Find all vectors X so that RX = kX for some number k.
b. Find all vectors X so that SX = kX for some number k.
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14. Suppose R =

(
1 0

0 .5

)
, P =

(
3 4

2 3

)
, and S = P−1RP .

a. Find all vectors X so that RX = X. ←−
A vector X so that
RX = X is a fixed vector
for R.

b. Find all vectors X so that SX = X.
c. Find all vectors X so that RX = kX for some number k.
d. Find all vectors X so that SX = kX for some number k.
e. Calculate R50 and S50.
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Chapter 5 Mathematical Reflections

These problems will help you summarize what you have learned in this Vocabulary

In this chapter, you saw
these terms and symbols
for the first time. Make
sure you understand what
each one means, and how
it is used.

• angle of rotation

• center of rotation

• conjugation

• fixed point

• fixed vector

• image of a matrix

• linear map

• linear transformation
of Rn

• one-to-one

• preimage

• pullback

• rotation

chapter.

1. For each linear transformation matrix M ,

(i) show what M does to the unit square
(ii) describe the effect M has in geometric language

a. M =

(
4 0

0 3

)
b. M =

(
0 −1

2 0

)
c. M =

(
1 2

0 1

)
d. M =

(
−3 0

0 0

)

2. a. Find the image of P = (2,−4) under a rotation about (0, 0)
through an angle of 30◦.

b. The image of P under a rotation about (0, 0) through an angle
of 120◦ is P ′. If P ′ = (−4,−2

√
3), find P .

3. Let A = (2,−4), B = (4, 5), and C = (1,−2). Find the area of the
parallelogram spanned by

a. A and B b. A and C c. A and 3B d. 2A and 3B

e. MA and MB, where M =

(
1 −1

1 1

)

4. Suppose F : R3 → R3 is defined by X
F�→

⎛
⎝2 1 −1

3 4 2

5 5 1

⎞
⎠ X.

a. Find ker(F ).
b. Is F one-to-one? Explain.
c. Find Im(F ).

5. How can you find a matrix that rotates points θ◦ about the origin?

6. What is the area of the parallelogram spanned by two given vectors
in R2?

7. Let A =

(
1 3 5

4 6 2

)
.

a. Find the image under A for

⎛
⎝ 2

3

−1

⎞
⎠.

b. Find the set of pullbacks under A for

(
7

16

)
.
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Chapter 5 Review

In Lesson 5.2, you learned to

• describe what a 2 × 2 and a 3 × 3 linear transformation does to a
triangle, the unit square, and the unit circle

• use the properties of linear transformations to show that not all
transformations are linear

• find the matrices that produce scalings, reflections, and 90◦ rotations

The following exercises will help you check your understanding.

1. For each linear transformation matrix, describe the effect it has in
geometric language.

a.

(
1 0

0 0

)
b.

(
0 −1

−1 0

)
c.

(
1 0

0 −2

)
d.

(
0 −3

3 0

)

e.

⎛
⎝1 0 0

0 0 0

0 0 0

⎞
⎠ f.

⎛
⎝2 0 0

0 2 0

0 0 0

⎞
⎠ g.

⎛
⎝−1 0 0

0 −1 0

0 0 0

⎞
⎠

2. For each given transformation of R2, find a corresponding 2 × 2
matrix.

a. Scale all points by a factor of 10.
b. Reflect all points over the graph of y = −x.
c. Reflect all points over the graph of y = x, and then reflect this

image over the graph of y = −x.
d. Rotate all points 180◦ counterclockwise.
e. Reflect all points over the y-axis, then scale this image by a

factor of 2, and then reflect this image over the x-axis.

3. Let M =

(
4 −2

2 3

)
.

a. Show what M does to the unit square.
b. Theorem 5.1 says that M fixes the origin. Does it fix any other

vectors?
c. Show what M does to the unit circle.

In Lesson 5.3, you learned to

• find the matrix that defines a given rotation

• find one matrix for a set of successive rotations

• given a point, find its image after rotation

• find a point given its image and angle of rotation

• use conjugation to find the matrix that represents a reflection over a
given line or a rotation about a given point
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The following exercises will help you check your understanding.

4. Find a matrix that defines each rotation.

a. R30◦ b. R90◦ c. R135◦ d. R150◦

e. R180◦ f. R225◦ g. R255◦ h. R−60◦

5. Suppose A = (0, 0), B = (2,−3), and C = (4, 1). Find the image of
�ABC under a rotation about (0, 0) through an angle of θ if

a. θ = 180◦ b. θ = 45◦ c. θ = 120◦

6. The image of P under a rotation of 45◦ about (0, 0) is (2, 6). Find P .

In Lesson 5.4, you learned to

• find the area of a triangle or a parallelogram, given the coordinates
of the vertices, using matrices

• find the area for the image of a triangle or a rectangle after a
transformation

• understand the relation between area and determinant of 2 × 2
matrices

The following exercises will help you check your understanding.

7. Suppose A = (−3,−5), B = (1,−4), and C = (3,−12). Find the
area of the parallelogram spanned by

a. A and B b. A and C c. A and −B d. 3A and 3C

e. MA and MB, where M =

(
2 −1

1 2

)

8. Suppose A = (2, 5), B = (6, 3), and C = (4,−1). Find the area of
�ABC.

9. Let A and B be vectors in R2. Suppose that the area of the parallel-
ogram spanned by A and B is 5. For each transformation matrix M ,
find the area of the parallelogram spanned by MA and MB.

a. M =

(
1 0

0 −1

)
b. M =

(
2 0

0 2

)
c. M =

(
0 3

2 0

)
d. M =

(
2 4

3 −1

)

In Lesson 5.5, you learned to

• identify different notations for a function from Rn to Rm, including
its matrix representation

• find the image of a linear map using matrix multiplication

• find and interpret geometrically the set of pullbacks of a vector under
a given matrix
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The following exercises will help you check your understanding.

10. Let A =

(
4 2 −2

3 −1 5

)
. Find the image under A for each given

vector.

a.

⎛
⎝ 2

0

−3

⎞
⎠ b.

⎛
⎝ 4

−1

7

⎞
⎠ c.

⎛
⎝0

0

0

⎞
⎠

11. Find the set of pullbacks of B under A if

a. A =

(
1 −2 −1

−4 5 −2

)
and B =

(
−8

−1

)

b. A =

⎛
⎝3 1 5

4 1 4

2 1 6

⎞
⎠ and B =

⎛
⎝4

2

6

⎞
⎠

c. A =

⎛
⎝3 1 5

4 1 4

2 1 6

⎞
⎠ and B =

⎛
⎝4

2

1

⎞
⎠

12. Let A =

(
2 −1 −5

1 3 1

)
, let X be in the pullback of

(
6

−4

)
under A,

and let Y be in the pullback of

(
−1

3

)
under A.

a. Find B, the image of 2X + 3Y under A.
b. Find the set of pullbacks of B under A.

In Lesson 5.6, you learned to

• determine whether a linear function is one-to-one

• find a matrix that represents a projection along a vector or a line

• describe the set of pullbacks of a linear function using formal function
language

The following exercises will help you check your understanding.

13. How many vectors are in the solution set to AX = B for each
system below? Justify your answer.

a. A =

(
1 1 5

2 3 −2

)
, B =

(
7

3

)

b. A =

⎛
⎝1 1 5

2 3 −2

3 4 −4

⎞
⎠, B =

⎛
⎝7

3

3

⎞
⎠

c. A =

⎛
⎝1 1 5

2 3 −2

3 4 3

⎞
⎠, B =

⎛
⎝ 7

3

10

⎞
⎠

d. A =

⎛
⎝1 1 5

2 3 −2

3 4 3

⎞
⎠, B =

⎛
⎝ 7

3

−4

⎞
⎠
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14. Suppose F : R3 → R3 is defined by X
F�→ AX. For each given A

and B,

(i) What is Im(F )?
(ii) Is F one-to-one?
(iii) What is the pullback of vector B?

a. A =

⎛
⎝ 1 1 −1

2 3 −5

−3 −5 8

⎞
⎠, B =

⎛
⎝2

2

7

⎞
⎠

b. A =

⎛
⎝ 1 1 −1

2 3 −5

−3 −5 9

⎞
⎠, B =

⎛
⎝ 2

2

−2

⎞
⎠

15. Suppose F : R2 → R2 is defined by F (X) = Proj(1,2) X.

a. Find a 2 × 2 matrix to represent F .
b. What is ImF?
c. Is F one-to-one?
d. What is the pullback of (2, 4)?
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Multiple Choice

1. Which linear transformation matrix corresponds to a reflection of
all points over the graph of y = x?

A.

(
−1 0

0 −1

)
B.

(
0 −1

−1 0

)
C.

(
0 1

1 0

)
D.

(
1 0

0 −1

)

2. Which point is the result when the matrix M =

(
0 −1

1 0

)
is applied

to the point X =

(
x

y

)
?

A.

(
−x

y

)
B.

(
x

−y

)
C.

(
−y

x

)
D.

(
y

−x

)

3. Let M =

(
0 1

−1 0

)
. Which rotation about (0, 0) is defined by matrix

M?

A. R45◦ B. R90◦ C. R180◦ D. R270◦

4. Let A = (−3, 4) and B = (2, 7). What is the area of �AOB?

A. 6.5 B. 13 C. 14.5 D. 29

5. If X is in the pullback of

(
−5

11

)
under A and Y is in the pullback

of

(
−9

12

)
under A, what is the image of 2X + Y under A?

A.

(
−28

46

)
B.

(
−19

34

)
C.

(
1

−6

)
D.

(
12

6

)

6. Let A =

⎛
⎝2 3 1

3 5 3

5 7 1

⎞
⎠ and B =

⎛
⎝2

2

6

⎞
⎠. What is the solution to

AX = B?

A. there is no solution
B. X = O
C. X = (4,−3, 1)
D. X = (0, 1,−1) + t(4,−3, 1)

Open Response

7. Let M =

(
16 3

5 2

)
.

a. Show what M does to the unit square.
b. Theorem 5.1 says that M fixes the origin. Does it fix any other

vectors?
c. Show what M does to the unit circle.
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8. Let P = (−1, 2).

a. Find the image of P under a rotation about the origin through
an angle of 120◦.

b. The image of Q = (x, y) under a rotation about the origin
through an angle of 30◦ is P . Find Q.

9. Suppose A = (4, 1) and B = (3,−2). Find the area of

a. the parallelogram spanned by A and B
b. the parallelogram spanned by 5A and 5B
c. the parallelogram spanned by MA and MB, where M =(

2 1

4 −2

)

10. Let A =

(
1 3 2

5 4 −1

)
.

a. If X =

⎛
⎝ 1

2

−5

⎞
⎠, find the image under A of X.

b. If B =

(
7

2

)
, find the set of pullbacks of B under A.

11. Suppose F : R2 → R3 is defined by X
F�→

⎛
⎝2 1

3 −4

4 1

⎞
⎠ X.

a. Find ker(F ).
b. Is F one-to-one? Explain.
c. Find Im(F ).

12. Suppose F : R2 → R2 is defined by F (X) = Proj(3,1) X.

a. What is ImF?
b. Is F one-to-one?
c. What is the pullback of (6, 2)?
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For problems 1–8, suppose A =

⎛
⎝2 1 1

1 1 0

2 0 3

⎞
⎠ and B =

⎛
⎝2 3 1

2 3 0

1 2 1

⎞
⎠. Find:

Remember

B2 means BB.1. A−1 2. B−1 3. AB 4. BA

5. A� B� 6. (AB)−1 7. 2A − B 8. AB2A

For problems 9–11, consider the function from R3 to R2 defined by the

matrix A =

(
1 2 −1

3 5 1

)
.

9. Find the image of

⎛
⎝ 2

−1

3

⎞
⎠.

10. Find the pullback of

(
−1

2

)
.

11. If X is in the pullback of

(
3

1

)
and if X ′ is in the pullback of

(
2

4

)
,

what is the image of X + 3X ′.

12. Let A =

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠. Find the solution to AX =

⎛
⎝ 6

15

15

⎞
⎠. ←−

This solution is unique.

For problems 13–15, classify the solution set of each system as one of the
following: a) one solution, b) no solutions, and c) infinitely many solutions.
Write a long explanation for each of your answers.

13.

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 5

11

17

⎞
⎠

14.

⎛
⎝1 3 1 2

4 1 −7 −3

2 4 0 2

⎞
⎠
⎛
⎜⎜⎝

x

y

z

w

⎞
⎟⎟⎠ =

⎛
⎝ 7

6

12

⎞
⎠

15.

⎛
⎝2 1

3 4

7 2

⎞
⎠(x

y

)
=

⎛
⎝ 4

11

11

⎞
⎠
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For problems 16–25, let A = (4, 1, 2), B = (3, 4,−12), C = (1, 2, 0), let M

be the midpoint of
−→
AC, let t = 2, and let θ be the angle between A and

2B. Find

16. A + 2B 17. (A − B) · C 18. (tA − tB) · C

19. d(A, C) 20. d(A, M) 21. ‖ProjB A‖

22. ProjB 2A 23. A × C 24. A × tC 25. cos θ

26. Find a nonzero vector orthogonal to (1, 4, 7) and (2, 9, 3).

27. Find a nonzero vector orthogonal to (1, 1,−1), (−1,−2, 4), and
(1, 0, 2).

28. Write (0, 4,−4) as a linear combination of (1, 0, 2) and (4, 1, 7).

29. If A = (3,−8, 5), B = (8, 4, 5), and C = (6,−4,−7), find the area
of �ABC.

30. If A = (3, 1, 2), B = (4, 1, 6), C = (2, 0, 7), and D = (4, y, z), find y

and z if
−−→
AB ‖ −−→

CD.

31. If A = (5, 8, 10), B = (3, 4, 7), and C = (4, 5, 6), show that �ABC
is a right triangle. Is �ABC isosceles?

32. A and B are vectors in Rn. If A is orthogonal to B, show that A is
orthogonal to any scalar multiple of B.

33. A and B are vectors in R3. Show that A × 2B = 2(A × B).
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Multiple Choice

1. Suppose A = (2,−1) and B = (−3, 4). If
−−→
AB is equivalent to

−−→
OQ,

which are the coordinates of Q?

A. (−5, 5) B. (−1, 3) C. (1,−3) D. (5,−5)

2. A vector equation for line � is X = (3,−1) + k(2,−5). What is its
coordinate equation?

A. 2x + 5y = −1
B. 2x + 5y = 1
C. 5x + 2y = −13
D. 5x + 2y = 13

3. Let A = (0,−4, 5) and B = (2,−1, 3). Which is ‖B − A‖?

A.
√

3 B. 3 C.
√

17 D. 17

4. In R3, A = (1,−2, 3) and B = (1, 2,−1). Which is ProjB A?

A.
(
− 3

7 ,− 6
7 , 3

7

)
B.

(
− 3

7 , 6
7 ,− 9

7

)
C. (−1,−2, 1)
D. (−1, 2,−3)

5. If θ is the angle between A = (1,−1) and B = (1, 3), what is cos θ?

A. −
√
10
10 B. − 2

√
5

5 C. −
√
5
5 D. −

√
2
2

6. Line � contains (−2, 5) and is parallel to (3, 4). Which point is on �?

A. (−8,−3) B. (−1, 14) C. (5,−1) D. (9, 1)

7. Which equation describes all vectors that are orthogonal to (1,−2,−3),
(2, 1,−1), and (3, 4, 1)?

A. X = (0, 0, 0)
B. X = (1,−1, 1)
C. X = t(−1, 1, 0)
D. X = t(1,−1, 1)

8. In R3, A = (3,−1, 1), B = (1,−2, 0), and C = (2, 1, 1). Which of
the following describes all linear combinations of A, B, and C?

A. the point O
B. the line X = t(3,−1, 1)
C. the plane X = s(3,−1, 1) + t(1,−2, 0)
D. all of R3
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Cumulative Test

9. Let A =

⎛
⎝1 −1 2

4 −7 5

2 −3 3

⎞
⎠ and B =

⎛
⎝3 −2 0

1 4 −1

5 −3 2

⎞
⎠. What is the value

of A2∗ · B∗1?

A. −12 B. 12 C. 26 D. 30

10. Suppose A =

(
3 −2

−1 0

)
and B =

(
4 −2

3 −3

)
. Which of the following

is equal to (AB)�?

A.

(
6 0

−4 2

)
B.

(
6 −4

0 2

)
C.

(
14 −8

12 −6

)
D.

(
14 12

−8 −6

)

11. M =

(
0 1

−1 0

)
is a transformation matrix. What effect does M

have on point P =

(
x

y

)
?

A. M reflects P over the x-axis.
B. M reflects P over the y-axis.
C. M rotates P through an angle of 90◦ counterclockwise.
D. M rotates P through an angle of 270◦ counterclockwise.

12. Let A =

⎛
⎝−3 1 2

−2 4 −2

1 0 −5

⎞
⎠. What is the image under A of

⎛
⎝−2

−8

−8

⎞
⎠?

A.

⎛
⎝−2

0

−2

⎞
⎠ B.

⎛
⎝2

0

2

⎞
⎠ C.

⎛
⎝−18

−12

38

⎞
⎠ D.

⎛
⎝18

12

38

⎞
⎠

Open Response

13. In R3, let A = (2,−3, 4) and B = (−5, 5, 0).

a. Show that (23,−27, 16) is a linear combination of A and B.
b. Find a vector equation and a coordinate equation for the plane

spanned by A and B.

14. In R3, let A = (0, 2, 1), B = (6, 5, 3), and C = (3,−1, 1). Show that
�ABC is isosceles.

15. Characterize all vectors X in R3 orthogonal to A = (2,−1, 1) and
B = (4, 1,−3).
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16. Suppose A = (2,−3, 5) and B = (1,−2, 4).

a. Find a nonzero vector orthogonal to both A and B.
b. Find the area of the parallelogram with vertices O, A, B, and

A + B.

17. Consider the system of equations below:{
x + 2y − 3z = 4

3x + 4y − z = −2

a. Represent the system as an augmented matrix.
b. Reduce the augmented matrix to echelon form.
c. Find the solution to the system.
d. Does the graph of the solution set represent a point, a line, or

a plane?

18. Given

A =

⎛
⎝2 −3 1

0 −4 4

1 −5 4

⎞
⎠

a. Find ker(A).
b. Are the columns of A linearly dependent or linearly indepen-

dent? Explain.

19. Let A =

⎛
⎝ 1 0 2

3 2 −3

−1 −1 3

⎞
⎠ and B =

⎛
⎝−2

10

−7

⎞
⎠

a. Determine A−1.
b. Solve the equation AX = B by multiplying both sides of the

equation by A−1.

20. Consider the system⎧⎨
⎩

x − 3y + z = 0

−2x + 5y − 5z = −4

x − 2y + 4z = 4

a. Rewrite the system in the form AX = B.
b. Find a solution to the system by writing B as a linear combi-

nation of the columns of A.
c. Find all solutions to the system by finding the kernel.

21. Find the image of P = (−4, 6) under a rotation of 30◦ about (0, 0).

22. Find the set of pullbacks of B =

(
−12

−5

)
under A =

(
1 2 −5

2 3 −2

)
.
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C H A P T E R

6 Markov Chains

In previous classes, you likely calculated the probability of a coin flip
landing on heads or tails, or the results of rolling one or more number cubes.
You can model some systems by identifying the various states the system
might take. For instance, weather has states such as sunny, partly cloudy,
mostly cloudy, overcast, rainy, snowy, and many more. And a number of
factors go into determining what the weather is on any given day.

You can model such a system by determining the probability of what
the weather might be tomorrow given what the weather is today. If you do
that for all the various states, you can start to build your model to predict
what the weather might be tomorrow, or the next day, or next week, based
on these probabilities. (Of course, in this example, the further out you go,
the less accurate your prediction is likely to be, but it’s a start!)

In this chapter, you will look at how you can use matrices and their
algebra that you learned in previous chapters to calculate probabilities for
large systems.

By the end of this chapter, you will be able to answer questions
like these:

1. How can I represent a system using a transition matrix?

2. What is the difference between an absorbing state and a transient
state?

3. What is the average number of turns it would take to win the game
HiHo! Cherry-O?

You will build good habits and skills for ways to

• use a model

• reason about calculations

• use precise language

• use linearity

• use properties

• seek structural similarity

• use forms with purpose

277



Chapter 6 Markov Chains

Vocabulary and Notation

• absorbing Markov chain

• absorbing state

• attractor

• Markov chain

• node

• probability vector

• random process

• steady state

• submatrix

• transient state

• transition graph

• transition matrix

• transition probability
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6.1 Getting Started

6.1 Getting Started

Here are the rules for a short game called Count to Five. You start with
zero points, and the goal is to score at least five points in the fewest turns.
On each turn, roll a number cube and record the result.

If you roll . . . Then you . . .

1 add one point

2 add two points

3 add three points

4 subtract one point (but never drop below zero)

5 reset to zero

6 roll again immediately—this does not count as a
turn

The game ends when you reach at least five points. ←−
If you roll 3, 4, 2, 6, 2, you
complete the game in four
turns, not five.1. a. Play the game three times, and for each time, write down the

number of turns it took you to get at least five points. Remember

A roll of 6 does not count
as a turn.

b. Compute the average number of turns taken by your entire
class.

2. Suppose you have two points while playing Count to Five.

a. Explain why the probability of having exactly four points next
turn is 1

5 .
b. What is the probability of having zero points next turn? one?

two? three? four? five?
c. What is the probability of having exactly three points two

turns from now?
d. What is the probability of having zero points two turns from

now? one? two? three? four? five or more? ←−
What is the sum of these
six values?

3. Complete the following 6-by-6 table. Each column heading is the
number of points you start a turn with, and each row heading is the
number of points you end the same turn with. The entry in row i
and column j is the probability of ending a turn with i points when
starting that turn with j points.

0 1 2 3 4 5

0 .4 .2 0

1 .2 0

2 0 0

3 .2 0

4 .2 0

5 .2 1

4. Let R be the 6-by-6 matrix of numbers found in Problem 3 above.
Compute R2 and compare the data to the numbers found in Prob-
lem 2d above.
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5. Suppose that if you’re healthy today, there is a 90% chance you will
be healthy again tomorrow (and a 10% chance of being sick). But
if you’re sick today, there is only a 30% chance you will be healthy
tomorrow (and a 70% chance of being sick again).

a. You’re healthy today. Find the probability that you’ll be
healthy two days from now.

b. Jeff is sick today. Assuming the same information, find the
probability that Jeff will be healthy two days from now.

c. Find the probability that you’ll be healthy three days from
now.

d. Take It Further. Find the probability that you’ll be healthy
10 days from now, and the probability that Jeff will be healthy
10 days from now.

6. Calculate each of the following.

a.

(
0.9 0.3

0.1 0.7

)2

b.

(
0.9 0.3

0.1 0.7

)3

c.

(
0.9 0.3

0.1 0.7

)10

Roger and Serena are playing a game of tennis. The first player to win four
points wins the game, but a player must win by two. Roger and Serena
have each won three points, so neither of them can win on the next point. ←−

In tennis, this situation is
called deuce.

7. Suppose Serena is 60% likely to win any point, and the score is tied. ←−
Serena is serving. In
general, the server has an
advantage in tennis.

a. Find the probability that Serena wins the game on the next
two points.

b. Find the probability that Roger wins the game on the next
two points.

c. Find the probability that after the next two points, the game
is tied again.

There are five possible situations that can come up during Roger and
Serena’s game, once they are tied with three points each. Each situation
can be labeled:

• (T): the game is tied

• (S1): Serena, the server, is ahead by one

• (R1): Roger, the receiver, is ahead by one

• (SW): Serena wins by going ahead by two

• (RW): Roger wins by going ahead by two

8. Draw a graph depicting what can happen in the game of problem
7. Include the five labels T, S1, R1, SW, and RW (in any order you
prefer).

9. Take It Further. Suppose the probability that Serena wins a
point is p, and the players are tied with three points each. Find
the probability that Serena wins the game, in terms of p.
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10. a. Suppose

M =

⎛
⎝0.5 0.4 0.5

0.2 0.3 0.5

0.3 0.3 0

⎞
⎠

Show that M − I has a nonzero kernel, where I is the 3 × 3
identity matrix.

b. Take It Further. Suppose M is any n × n matrix with the
property that the sum of the entries in any column is 1. Show
that M − I has a nonzero kernel, where I is the n×n identity
matrix.
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6.2 Random Processes

In the Getting Started lesson, you used matrices to keep track of various
probabilities. In this lesson, you will formalize the properties of these
matrices and see how they are useful for making predictions of outcomes
over longer periods of time.

In this lesson, you will learn how to

• identify a random process and its various states

• model a random process using probability

• follow a Markov chain model across a number of states

Suppose that when you wake up every day, you decide whether you are
healthy or sick. You make a list day by day of your status. After four weeks
you might have a list like this one:

healthy, healthy, sick, healthy, healthy, healthy, healthy, healthy,
sick, sick, sick, healthy, healthy, healthy, healthy, healthy,
healthy, healthy, sick, sick, sick, sick, healthy, healthy, healthy,
healthy, healthy, healthy . . .

This is an example of a random process , which consists of a set of states
and a sequence of observations of those states. In this case, the states are
healthy and sick (H and S for short) and the observations are your day-to-
day status.

Minds in Action Episode 22

Derman: So, being healthy or sick is random, like flipping a coin?

Sasha: A little, I guess. If you’re healthy one day, you might be sick the next day.

Derman: Maybe it’s like flipping an unfair coin. I wouldn’t want to be sick half the
time.

Sasha: There may be more to it, also. It seems like if you’re already sick one day, you’re
more likely to stay sick the next day. And if you’re healthy, you’ll probably stay
healthy.

Derman: I see what you mean. You could be healthy for weeks, then sick for five days
in a row. Maybe you flip one coin if you’re healthy, and a different coin if you’re sick.

Sasha: Why does it always have to be about coins?

282



6.2 Random Processes

Example

Jennie is an excellent fast-pitch softball pitcher. She has three pitches: a fastball, a
changeup, and a drop curve. Jennie mixes up her pitches to try to fool hitters. Here’s a ←−

Don’t worry if you can’t
tell a fastball and a drop
curve apart! In the list of
pitches, F is a fastball, C
is a changeup, and D is a
drop curve.

sample of 24 pitches she threw during a game, in the order she threw them:

F, F, C, D, F, F, F, D, C, F, F, C,
D, F, C, F, D, F, F, D, C, F, D, F

This can be thought of as a random process with three states and the sequence of
observations is the sequence of pitches.

Problem. Jennie just threw a fastball. About how likely do you think it is that the
next pitch will be a fastball? a changeup? a drop curve?

Solution. There is no way to know the exact probabilities, but an approximation can
be found by looking at the 24 pitches thrown. Thirteen of the 24 pitches are fastballs.
Of these, 12 are followed by other pitches:

F → F: 5

F → C: 3

F → D: 4

According to the data, the probability that the next pitch will be a fastball is about 5
12 ,

while the probability that it is a changeup is about 3
12 and the probability that it is a

drop curve is about 4
12 .

A larger sample of 1000 pitches would give more confident approximate probabilities,
but even those can’t be considered exact.

For You to Do

1. After Jennie throws a drop curve, about how likely is it that the next pitch will
be a fastball? a changeup? another drop curve?

Random processes can be classified as continuous or discrete. The
temperature at a specific location is an example of a continuous random ←−

Think of a continuous
random process as a
continuous function whose
domain is R. A discrete
random process is like a
function whose domain is
the nonnegative integers.

process, since it changes as a function of a continuously changing variable—
time. But, if you measured the temperature every hour on the hour, those
observations would form a discrete random process.

In some random processes, the probability of moving between states can
also depend on external factors, such as the time of day or time of year when
measuring temperature. But in certain random processes, the probability
of going from one state to the next depends only on their current state:
the probability of having four points at the end of a turn of Count to Five
depends only on the current number of points. With a finite number of
states, such a random process is called a Markov chain.
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Definition

A Markov chain is a discrete random process with a finite number of
states having the property that the probability of entering a state for the
next observation depends only on the current state.

Developing Habits of Mind

Use a model. Markov chains are often used to model processes. Jennie doesn’t throw
pitches at random, but a Markov chain can analyze her overall pitching patterns. In a
Markov chain, you would assume knowledge of the probabilities described in the example
above. Then, you could use the Markov chain to generate new sequences of pitches, or
to predict the overall percentage of fastballs.

Suppose that each day for two years, you kept track of whether you were healthy
or sick each day. You might observe that if you were healthy on a given day, you were
healthy the next day 90% of the time; but if you were sick that day, you were healthy
the next day only 30% of the time. These observations could be used as the basis for
a Markov chain that could then predict what percentage of days you will be healthy in
the future.

For Discussion

2. Suppose you are healthy today.

a. Using the percentages given above, follow the random process to determine
whether you are sick or healthy for the next 28 days.

b. With the data from your class, determine the overall approximate percentage
of days that you will be healthy under this random process.

Exercises

1. Calculate each of the following: ←−
What does Exercise 1 have
to do with this lesson?

a.

(
0.9 0.3

0.1 0.7

)15

b.

(
0.9 0.3

0.1 0.7

)20

c.

(
0.9 0.3

0.1 0.7

)28

2. Consider the matrix D =

(
1 0

0 0.6

)
.

a. Compute D2 without a calculator.
b. As n grows larger, describe what happens to Dn.

3. Suppose p1 is the probability you are healthy three days from now,
and p2 is the probability you are sick three days from now. Given
the information from Getting Started, calculate, in terms of p1 and
p2,

a. the probability of being healthy four days from now
b. the probability of being sick four days from now
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4. Compute this matrix product:

(
0.9 0.3

0.1 0.7

)(
p1
p2

)

5. Let A =

(
0.9 0.3

0.1 0.7

)
and P =

(
3 3

−1 3

)
.

a. Calculate P−1.
b. Calculate PAP−1.
c. Calculate (PAP−1)(PAP−1).
d. Calculate PA2P−1.
e. As n grows larger, describe what happens to

(
PAP−1

)n
.

6. Give some examples of processes that are Markov chains, and others
that are not.

7. Derman has a game he plays with a penny and a nickel. He flips a
coin and then uses the result to determine which coin to flip next.
If it’s heads, the next flip is the penny; if it’s tails, the next flip is
the nickel. But there’s a secret: the penny is unfairly weighted to
flip heads 75% of the time. ←−

You can model Derman’s
unfair penny by flipping two
coins at once. If they don’t
both come up tails, then
that counts as a “head” for
the unfair penny.

Derman flips the penny first . . .

a. If you play this game for 25 flips, would you expect more heads
or more tails? Is it guaranteed?

b. Play the game through 25 flips and count the number of heads.
c. Collect the results from a large group to estimate the proba-

bility that any one flip comes heads in this game.
d. Take It Further. As the game continues, determine the long- ←−

The answer should be
between 0.5 and 0.75 . . .
why?

term probability that any one flip comes heads.

8. Calculate to four decimal places each of the following:

a.

(
0.75 0.5

0.25 0.5

)2

b.

(
0.75 0.5

0.25 0.5

)3

c.

(
0.75 0.5

0.25 0.5

)4

d.

(
0.75 0.5

0.25 0.5

)10

9. A local restaurant awards free lunches once a month in a drawing.
Each month, 10% of the people who are eligible win a free lunch.
Once you win the lunch, you can’t win it again. Andrea enters the
drawing every month, hoping for a free lunch.

a. To four decimal places, find the probability that Andrea has
not won a free lunch in the first two months.

b. . . . in the first three months.

c. . . . in the first five months.
d. Andrea says that since there is a 10% chance of winning each

month, she’s sure to win sometime within the next 10 months.
Is this accurate? Why or why not?
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10. Calculate to four decimal places each of the following:

a.

(
0.9 0

0.1 1

)2

b.

(
0.9 0

0.1 1

)3

c.

(
0.9 0

0.1 1

)4

d.

(
0.9 0

0.1 1

)10

11. A website has a home page with
links to two other pages. From
each page, you can click through
to the next page, or click to return
to the home page.

Suppose you are at the home page
now, and begin randomly clicking
on links.

Home

Page 1 Page 2

a. Complete this table with the probability that you are at the
home page after n clicks.

# Clicks P (home page)

0 1

1

2

3

4

5

b. Explain why, in the long run, the probability of being at the
home page tends toward 1

3 .

12. Here is a 3 × 3 matrix:

A =

⎛
⎝0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

⎞
⎠

Find a formula for An in terms of n. Calculating the exact value of ←−
Take advantage of the
massive symmetry of A . . .

An for small powers of n should help.

13. Here is a 3 × 3 matrix:

A =

⎛
⎝0 x x

x 0 x

x x 0

⎞
⎠

Find a formula for An in terms of x and n.
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14. Repeat Exercise 11 with a web-
site that has a home page with
links to three other pages. From
each page, you can click through
to the next page, or click to return
to the home page.

Home

Page 1 Page 2 Page 3

15. Calculate to four decimal places each of the following:

←−
What about a formula for⎛
⎜⎜⎝
0 x x x
y 0 0 x
y x 0 0
y 0 x 0

⎞
⎟⎟⎠

n

?

a.

⎛
⎜⎜⎝

0 1
2

1
2

1
2

1
3 0 0 1

2
1
3

1
2 0 0

1
3 0 1

2 0

⎞
⎟⎟⎠

2

b.

⎛
⎜⎜⎝

0 1
2

1
2

1
2

1
3 0 0 1

2
1
3

1
2 0 0

1
3 0 1

2 0

⎞
⎟⎟⎠

3

c.

⎛
⎜⎜⎝

0 1
2

1
2

1
2

1
3 0 0 1

2
1
3

1
2 0 0

1
3 0 1

2 0

⎞
⎟⎟⎠

4

d.

⎛
⎜⎜⎝

0 1
2

1
2

1
2

1
3 0 0 1

2
1
3

1
2 0 0

1
3 0 1

2 0

⎞
⎟⎟⎠

10

16. Repeat Exercises 11 and 15 with a website that has a home page
with links to four other pages. From each page, you can click through
to the next page, or click to return to the home page. You will need
to construct appropriate matrices for the second exercise.

Home

Page 1 Page 2 Page 3 Page 4

17. Give a set of specific assumptions that could be used to form a ←−
One possible assumption
(not a complete set) is that
every time Jennie throws a
fastball, her next pitch is
a drop curve 30% of the
time.

Markov chain that models Jennie’s pitch selection in the Example
on page 283.

18. Some Markov chains have absorbing states—states that, when
entered, are never exited.

←−
One major distinction
among Markov chains is
whether or not they have
absorbing states. This will
become a focus later in the
module.

a. Of the examples you’ve seen so far (in the Getting Started
lesson and in this lesson, including exercises), which have
absorbing states?

b. Give another example of a Markov chain with at least one
absorbing state.

19. Many board games (such as Chutes and Ladders) can be modeled
completely by very large Markov chains. Pick five examples of board
games, and determine whether they can be modeled completely by
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Markov chains, can be modeled partially by Markov chains, or are
unrelated to Markov chains.

20. Model the tennis situation from Getting Started by using a spinner, ←−
If using a calculator that
gives random numbers
between 0 and 1, numbers
below 0.6 award points to
Serena, and numbers above
0.6 award points to Roger.
If using a die, a roll of 1-3
is a point for Serena, a roll
of 4-5 is a point for Roger,
and, like Count to Five, a
roll of 6 is ignored.

a die, or a calculator’s random number generator.

a. Play the game 10 times and record the winner and the total
number of points played.

b. Using data from others, determine the approximate probability
that Serena wins the game. Is it higher or lower than 60%?

c. How often did a game last exactly six points?
d. How often did a game last exactly seven points?
e. How often did a game last eight or more points?

21. Let T be the 5-by-5 matrix

T =

⎛
⎜⎜⎜⎜⎜⎝

1 0.6 0 0 0

0 0 0.6 0 0

0 0.4 0 0.6 0

0 0 0.4 0 0

0 0 0 0.4 1

⎞
⎟⎟⎟⎟⎟⎠

a. Calculate T 2 without the aid of a calculator.
b. Use a calculator to compute T 20, and write each entry to four

decimal places.

22. A simple board game has five spaces with each player starting on
A. On a turn, flip a coin; tails is a one-space move, and heads is a
two-space move, counterclockwise. If you land on “flip again,” do so
immediately; this is part of the same turn. After D, players continue
to A.

Flip
Again

C D

B A

a. After one turn, give the probabilities that a player could be on
A, B, C, and D. ←−

One of these probabilities
is zero.

b. After two turns, give the probabilities.
c. After three turns, give the probabilities.
d. Take It Further. After 100 turns, give the approximate

probabilities.

23. Take It Further. Consider the tennis example from Getting
Started. Suppose Serena is behind by one point. Either Roger wins
the game with the next point, or the game returns to a tie.

a. If Serena is 60% likely to win each point, find the probability
that she wins the game to four decimal places.
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b. There is a probability p that makes it exactly 50% likely for
Serena to win the game. Find p to four decimal places.
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6.3 Representations of Markov Chains

The changes in the different states of a Markov procedure can be modeled
in very useful ways using both graphs and matrices. In this lesson, you will
represent Markov chains using both models, and you will see some ways to
simulate a Markov chain using random numbers.

In this lesson, you will learn how to

• make a transition graph to visualize a Markov chain

• create a probability matrix from a transition graph

• use random numbers to simulate the different stages of a Markov
chain

Transition Graphs

The simplest way to visualize a small Markov chain is with a transition
graph . This graph models the situation from Exercise 5 from Lesson 6.1.

0.9

0.7

0.1

0.3

healthy sick

Transition graph for Exercise 5 from Lesson 6.1

Each state of the Markov chain is identified with a circle, usually called
a node . Here, the nodes are labeled healthy and sick . The graph also
includes several transition arrows, each marked with its transition prob-
ability , which must be between 0 and 1 (inclusive). The sum of the
transition probabilities leaving each node must be exactly 1. ←−

Usually, arrows are only
drawn for nonzero proba-
bilities.

For You to Do

1. Draw a transition graph for the tennis game from problem 7 from Lesson 6.1.
Use five nodes labeled T, S1, R1, SW, RW. Assume that Serena is 60% likely to ←−

You may want to order the
nodes differently. Note that
there must be at least one
transition arrow leaving SW
and RW.

win any point.
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For Discussion

2. a. Use the transition graph for the tennis game to determine the probability
that Serena wins the game in two points.

b. Use the transition graph to determine the probability that the game remains
a tie after two points.

Transition Matrices

The transition matrix of a Markov chain contains the same information
as the graph. It is a square matrix with as many columns as the number
of states in the Markov chain. Each column contains all the transition
probabilities for a specific state.

Example 1

This 2-by-2 matrix includes the information for the transition graph at the start of this
lesson.

←−
The first column gives the
transition probabilities from
the healthy state.

M =

(healthy sick

healthy 0.9 0.3

sick 0.1 0.7

)

The matrix above is labeled with its states. This won’t be necessary once
you decide on a standard ordering of the states. The first column M∗1 of
transition matrix M gives the transition probabilities from state 1 to each
state in order. The second column M∗2 gives transition probabilities from ←−

Suppose there is no way to
go from state a to state b.
Then either Mba or Mab

must be 0. Which one?

state 2 to each state, and so on.

A transition matrix is more convenient than a graph in many respects,
especially when it comes to calculation. Often, a transition graph is built
to aid in the construction of the corresponding transition matrix, and is
then discarded.

For You to Do

3. For each transition graph, construct the transition matrix. The order of the states
is given by the labels on the states.

a.

1 2 3
0.6

0.1

0.4
10.9

b.

1 2 3
0.6

0.1

0.4

1

0.9
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c.
4

1 2 3
0.25 1

0.5

0.25
0.5

0.5

0.5

0.5

d.

1 2 3 4 5

1

1

0.6 0.6

0.4 0.4 0.4

0.6

Example 2

In the softball example from the last lesson, Jennie (or her catcher) decides what sequence
of pitches to throw. A Markov chain can model these decisions. After deciding the state
order {fastball, changeup, drop curve}, here is a possible 3-by-3 transition matrix.

←−
All entries in M are
nonnegative and the sum of
the entries in each column
is exactly 1. Why must the
entries in a column sum
to 1?

M =

⎛
⎝0.5 0.4 0.5

0.2 0.3 0.5

0.3 0.3 0

⎞
⎠

Problem. What does M31 tell you?

Solution. The value of M31 is 0.3, and it tells you that if Jennie thows a fastball (state
1), her next pitch will be a drop curve (state 3) 30% of the time. This information is
found in the first column, third row of the transition matrix.

For You to Do

4. Based on the transition matrix above, what is the probability of a changeup if a
fastball has just been thrown? What is the probability of two consecutive drop
curves?

5. If Jennie throws a fastball, what is the probability that she will throw a fastball
two pitches later?

The entries in a transition matrix can also be described using the
notation of conditional probability: ←−

The notation P (B|A)
stands for the probability
that event B occurs, given
that event A has already
occurred. Say it like this:
“The probability of B,
given A.”

M31 = P (state 3|state 1)

The value of M31 is the probability of a transition into state 3, given
that the process is currently in state 1. In a Markov chain, each transition
probability never changes, so a fixed matrix can be written to model a
Markov chain. In general,

Mij = P (state i|state j)
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Exercises

s1

s2

s4 s3

s5

Exercises 1 through 5 refer to this
graph of five states. For each of the
given rules, determine a 5 × 5 tran-
sition matrix using the state order
{s1, s2, s3, s4, s5}. It may be helpful
to first draw a transition graph for
some situations.

1. The probability of moving
clockwise is 1

2 , and the proba-
bility of moving counterclock-
wise is 1

2 .

2. The probability of moving
clockwise is 3

4 , and the proba-
bility of moving counterclockwise is 1

4 .

3. The probability of moving clockwise is 1
2 , and the probability

of moving counterclockwise is 1
2 , except for s3, which cannot be

escaped from.

4. The probability of moving clockwise is 1
2 , and the probability of

moving counterclockwise is 1
2 , except that s1 feeds s3 and no other

states, and s3 feeds s1 and no other states.

5. The probability of moving clockwise is 2
5 , and the probability of

moving counterclockwise is 3
5 , except for s1 and s5, which cannot

be escaped from.

6. Build a transition graph for the small board game from Exercise 22
from the previous lesson.

7. Build a 4× 4 transition matrix for the game from Exercise 22 from ←−
Why is the transition
matrix 4×4 and not 5×5?

the previous lesson.

8. In a transition graph, the sum of the probabilities leaving a node
must be 1. Does this also apply to the probabilities entering a node?
Why or why not?

9. Make a transition graph that corresponds to the 3 × 3 transition
matrix given in Example 2 from this lesson.

10. Draw a transition graph for Count to Five from Getting Started.
There should be six states. ←−

What about a transition
matrix?

11. Consider the transition graph given in the For You to Do problem
3d from this lesson.

a. If you are in state s2 now, what is the probability you will be
in s4 after two transitions?

b. If you are in state s2 now, what states could you be in after
two transitions, and with what probabilities?
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c. Repeat this calculation for all states si and build a 5 × 5 ←−
Some entries have been
given to help you get
started. Note: This is not
the transition matrix for
the graph, but it may be
related to it...

matrix containing the results. Each column should give the
five probabilities for each starting state; your answers to part
b should form the second column of the matrix.⎛

⎜⎜⎜⎜⎜⎝
0.6 0 0

0

0

0.16 1

⎞
⎟⎟⎟⎟⎟⎠

12. For each of the transition matrices T you found in the For You to
Do problem 3 from this lesson, compute T 2.

13. Write the transition matrix for Example 1 from this lesson using
the state order {sick, healthy}.

14. Write the 5×5 transition matrix for the tennis example from Getting
Started using the state order {SW, S1, T, R1, RW}.

15. Write the transition matrix for the tennis example using the state
order {S1, T, R1, SW, RW}.

16. Construct a 3 × 3 matrix T based on Example 2 from this lesson
giving the probabilities for what Jennie will throw two pitches from
now. For example, T11 = 0.48, and this is the probability that if
Jennie throws a fastball now, she will throw another fastball two
pitches later.

17. Given matrix M , calculate M2 and M10.

M =

⎛
⎝0.5 0.4 0.5

0.2 0.3 0.5

0.3 0.3 0

⎞
⎠

18. In a high school, 90% of the students advance from one grade
to the next: freshmen, sophomores, juniors, and seniors. 90% of
seniors graduate. Of the 10% who don’t advance, all freshmen and
sophomores repeat, while 5% of juniors and seniors repeat. The
other 5% drop out.

a. Build a transition graph for this situation. How many states
should there be? Remember that all states must have transition
arrows leaving them with probabilities summing to 1.

b. Build a transition matrix for this situation. Label the states.
c. Does this Markov chain have absorbing states? Explain.

19. a. If a student is a freshman today, what can happen after two
years, and with what probabilities?

b. If a student is a junior today, what can happen after two years,
and with what probabilities?

20. Write About It. Why are transition matrices always square?
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Perspective: Simulating Markov Chains

Markov chains can be run as experiments, conducted by hand or with the
aid of a computer. Simulation uses a list of random numbers between zero
and one. Random numbers can be generated by computer, or even using a
phone book! Take a random “white” page (of residential listings) and look
at only the last four digits. If the phone number is 978-555-5691, the last
four digits are 5691. Then, put a decimal point in front of the four digits
to get 0.5691, a random number between zero and one. ←−

Do you think this method
actually produces good
random numbers? What if
you used a “yellow” page
with business listings?

Here’s a sample set of 10 numbers from a phone book:

0.6224, 0.5711, 0.1623, 0.9062, 0.3186,
0.1076, 0.2482, 0.5610, 0.4593, 0.7568

Here’s how to use these numbers to simulate 10 pitches from Jennie’s
softball game, using the Markov chain seen earlier. First, decide what state
to start in. In this case, assume her first pitch is a fastball.

As a reminder, the 3 × 3 transition matrix for this situation is

⎛
⎝0.5 0.4 0.5

0.2 0.3 0.5

0.3 0.3 0

⎞
⎠

These steps use the transition matrix to simulate 10 pitches:

1. Take the first random number from the list and call it s. Here,
s = 0.6224.

2. Look at the column in the transition matrix for the Markov chain
corresponding to the current state. Since we are starting in fastball ,

that column is

⎛
⎝0.5

0.2

0.3

⎞
⎠.

3. From top to bottom, add as many entries in the column as it takes ←−
This step is selecting the
state to transition into.
In this case, it gives
a probability of 0.5 of
remaining a fastball , a 0.2
probability of transitioning
to a changeup, and a 0.3
probability of transitioning
to a drop curve.

to get a number that is greater than or equal to s. In this case, that
takes two numbers: 0.5 + 0.2 ≥ s; just 0.5 isn’t enough. The number
of entries you added is the destination state number. Therefore, you
transition to changeup.

4. Repeat these steps as long as you want using the next random number
in the list as s. The next number would use the data from the

second column of the transition matrix,

⎛
⎝0.4

0.3

0.3

⎞
⎠, corresponding to

the changeup state.

For You to Do

6. Determine when the first transition to the drop curve state will occur.
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This is the result when using the 10 phone book numbers listed above. ←−
Why does 0.6224 give a
C? Why does 0.5711 give a
second C?

start 0.6224 0.5711 0.1623 0.9062 0.3186

F C C F D F

0.1076 0.2482 0.5610 0.4593 0.7568

F F C C D

You can use the same random numbers and simulate the two-state sick-
healthy model. As before, you must pick a starting state. If you start as
healthy, you start the simulation process using the first column of the
transition matrix

(
0.9 0.3

0.1 0.7

)

This is the result when using the 10 phone book numbers listed above.

start 0.6224 0.5711 0.1623 0.9062 0.3186

healthy healthy healthy healthy sick sick

0.1076 0.2482 0.5610 0.4593 0.7568

healthy healthy healthy healthy healthy

For You to Do

7. a. Use as many of the random numbers as are needed to simulate the tennis
game with the transition matrix you constructed in the For You to Do
problem 3d from this lesson. Assume the game starts tied.

b. Repeat the simulation of the tennis game five more times using different
pages of a phone book.

8. Using a calculator or computer, simulate a 100-pitch softball game for Jennie.
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6.4 Applying Matrix Algebra to Markov Chains

6.4 Applying Matrix Algebra to Markov Chains

One reason that matrices are so useful is that you can calculate with them.
In this lesson, you’ll see how calculations with a transition matrix can give
you information about the Markov chains that it represents.

In this lesson, you will learn how to

• use matrix algebra with transition matrices to calculate the proba-
bility of future states of a Markov chain

• understand the relationship between the power of a transition matrix
and probabilities of various states

In the previous lesson, you learned that each column of a transition
matrix gives the probabilities for any given starting state, so the entries
in each column are nonnegative and sum to 1. Such vectors are called
probability vectors .

Definition

A probability vector is a vector of nonnegative real numbers whose
elements add to 1.

For Discussion

1. Is

(
1

0

)
a probability vector?

2. Write a general expression for a two-term probability vector, and a three-term
probability vector. Use as few variables as possible.

Recall the two-state Markov chain that models being healthy or sick. Its
2 × 2 transition matrix is

M =

(
0.9 0.3

0.1 0.7

)

M∗1, the first column, is a probability vector that determines transitions
from the healthy state.

For You to Do

3. Suppose the probability that Aaron is healthy today is p1 and the probability
he is sick is p2. As a linear combination of p1 and p2, find the probability that
Aaron is healthy tomorrow, and (separately) the probability that Aaron is sick
tomorrow.
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The calculations in the For You to Do problems should remind you of ←−
If they don’t remind you of
matrix multiplication, try
the same calculation on a
Markov chain with more
than two states.

matrix multiplication. Given a probability vector, you can multiply it by
the transition matrix to produce a new probability vector for the next
observation:

(
0.9 0.3

0.1 0.7

)(
p1
p2

)

For You to Do

4. After one day, the probability of being healthy is 0.9 and the probability of being
sick is 0.1. Use matrix multiplication to determine the probability of being healthy
after two days, and the probability of being sick after two days.

The same process can be followed for any transition matrix and for any
probability vector.

Example

Local biologists are tracking the movement of deer between Big Creek, Tall Pines, and
Hunters’ Canyon. The graph below shows the probability of movement from one year to
the next.

0.80.75

0.05

0.05

0.05
0.3 0.15

0.65

0.2

Hunters’ Canyon

Big Creek Tall Pines

Problem. Last year, 60% of the deer were in Big Creek, 10% in Tall Pines, and 30% in
Hunters’ Canyon. Determine this year’s distribution of the deer.

Solution Method 1. Use the transition graph provided. The proportion of deer in
Big Creek is found by multiplying last year’s proportions by the probabilities on the
transition arrows leading to Big Creek:

0.75 · 0.6 + 0.05 · 0.1 + 0.3 · 0.3 = 0.545

You can use similar calculations to find the other proportions. For Tall Pines:

0.05 · 0.6 + 0.8 · 0.1 + 0.05 · 0.3 = 0.125

For Hunters’ Canyon:
0.2 · 0.6 + 0.15 · 0.1 + 0.65 · 0.3 = 0.33

The sum of these proportions is 0.545 + 0.125 + 0.33 = 1, as expected.
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Solution Method 2. Build a transition matrix. You will perform the same calculations
as in Solution Method 1 above if you multiply the transition matrix by the probability
vector. Using the state order {Big Creek, Tall Pines, Hunters’ Canyon}, the transition
matrix T and the probability vector P , given as the starting distribution, are:

←−
Note that the numbers
in T and P are all found
in the calculations from
Solution Method 1. The
numbers from T are also
in the transition graph,
and the numbers from P
are taken from last year’s
distribution.

T =

⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠ , P =

⎛
⎝0.6

0.1

0.3

⎞
⎠

Multiply T by P to calculate this year’s distribution:

TP =

⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠
⎛
⎝0.6

0.1

0.3

⎞
⎠ =

⎛
⎝0.545

0.125

0.33

⎞
⎠

This gives the same distribution as Solution Method 1, and is more easily adapted to
different situations or distributions.

For You to Do

5. a. What will next year’s distribution of the deer be?
b. The year after that?
c. How might you determine the distribution 10 years from now?

Solution Method 2 suggests the following theorem for calculating the
probabilities in a Markov chain.

Theorem 6.1

Given a Markov chain with transition matrix T and probability vector P ,
the probability vector for the next observation is TP .

For Discussion

6. Prove Theorem 6.1.

Theorem 6.1 states that if you start with a transition matrix T and a
probability vector P , TP is the probability vector for the next observation.
Here’s what happens if you apply this theorem to find the probability vector
that follows TP :

T (TP ) = (TT )P = T 2P

Therefore, T 2P is another probability vector, two observations ahead. This

←−
Make sure you can explain
why these steps are valid.

can continue for any number of observations, leading to a very powerful
theorem.

Theorem 6.2 (The TnP Theorem)

Given a Markov chain with transition matrix T and probability vector P ,
the probability vector n observations from now is TnP .
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For Discussion

7. a. Use the TnP Theorem to determine the probability that if you are healthy ←−
If you are healthy today,
what probability vector
should you use for P?

today, you will be healthy ten days from now.

b. What happens to the healthy-sick probability vectors as the number of days
increases? ←−

Do the healthy-sick vectors
approach a limit?

Developing Habits of Mind

Reason about calculations. What if all the deer from the Example on page 298

started out in Big Creek? Then, the probability vector would be

⎛
⎝1

0

0

⎞
⎠, a unit vector.

Perform the matrix multiplication to get⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠
⎛
⎝1

0

0

⎞
⎠ =

⎛
⎝0.75

0.05

0.2

⎞
⎠

It’s the first column of transition matrix T . Thinking about linear combinations can
help here: the unit vector says the result will be 1 times the first column of T , plus 0
times the second column, plus 0 times the third column. The Pick-Apart Theorem from
Chapter 4 comes in handy here:

(AB)∗i = A · B∗i

You can calculate new probability vectors for multiple starting vectors at once. Multiply
T by a matrix made of column vectors. Here’s an example:⎛

⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠
⎛
⎝0.6 1

0.1 0

0.3 0

⎞
⎠ =

⎛
⎝0.545 0.75

0.125 0.05

0.33 0.2

⎞
⎠

In particular, if you started with all the unit vectors, you’d get

TI =

⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠
⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠

=

⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠

Of course, T comes back! But what if you used these new vectors to calculate the next
observation? You’d use T as input:

TT =

⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠
⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠

=

⎛
⎝ 0.625 0.1225 0.4225

0.0875 0.65 0.0875

0.2875 0.2275 0.49

⎞
⎠
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Squaring the original transition matrix gives a new set of probability vectors, and these
vectors give the correct probabilities after two transitions. Higher powers give even ←−

You may have noticed this
behavior in some exercises
from the previous lesson.

more long-term behavior and results. This leads to a useful theorem, the Matrix Power
Formula.

Theorem 6.3 (The Matrix Power Formula)

If T is a transition matrix for a Markov chain, the columns of Tn are the ←−
Tn is the transition matrix
from observation n to
observation n+ 1.

probability vectors for the nth observation. Put another way, (Tn)ij is the
probability of being in state i, starting from state j, after n observations.

For You to Do

8. a. Square the 3 × 3 transition matrix from the softball example given in
Example 2 from Lesson 6.3: ⎛

⎝0.5 0.2 0.3

0.4 0.3 0.3

0.5 0.5 0

⎞
⎠

b. What is the probability that if Jessie throws a drop curve, she will throw
another drop curve exactly two pitches later?

Exercises

1. For the healthy-sick example, assume you are healthy today. Com-
pute the probability that you will be healthy in

a. 3 days b. 4 days c. 5 days

d. 20 days e. 50 days

2. Repeat Exercise 1, but assume you are sick today.

3. In Exercise 10 from Lesson 6.3, you drew a transition graph for the
Count to Five game from Getting Started.

Construct a 6-by-6 transition matrix T for the game, with the state

←−
The last column of T
should be the unit vector⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠
. Once you have

five points, you never go
back . . .

order from zero points to five points.

4. a. Revisit Exercise 2d from Getting Started. If you have two
points now, write down the probabilities in two turns: the
probability of having zero points in two turns, one point in
two turns, and so on.

b. Let T be the matrix from Exercise 3. Compute T 2. What are
the elements of its third column, and what do they mean?

5. A steady state is a probability vector X such that for the transi-
tion matrix T , TX = X. Find a steady state for each of the following
matrices T .

a. T =

(
0.9 0.3

0.1 0.7

)
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b. T =

(
0.75 0.5

0.25 0.5

)

c. T =

⎛
⎝0.5 0.4 0.5

0.2 0.3 0.5

0.3 0.3 0

⎞
⎠

d. T =

⎛
⎜⎜⎜⎜⎜⎝

1 0.6 0 0 0

0 0 0.6 0 0

0 0.4 0 0.6 0

0 0 0.4 0 0

0 0 0 0.4 1

⎞
⎟⎟⎟⎟⎟⎠

6. For each transition matrix T in Exercise 5, compute T 50 with the
help of a calculator. Do you see anything interesting?

Exercises 7 through 9 use the Example on page 298.

7. a. In 1999, all the deer were in Hunters’ Canyon. Determine the
distribution of deer in 2000, 2001, and 2002.

b. Compute T 3 for the transition matrix given in the Example.
c. If all the deer were in Big Creek three years ago, what propor-

tion of deer are now in Big Creek?
d. If all the deer started in Tall Pines three years ago, what

proportion of deer are now in Big Creek?

8. How could you determine what will happen to the deer population in
the long run? Does your answer depend on the starting distribution
of deer?

9. a. Suppose the deer population this year is given by the vector⎛
⎝0.7

0.2

0.1

⎞
⎠. Find next year’s deer population.

b. Show that next year’s deer population can be expressed as a
linear combination of the columns of the transition matrix T .

c. If this year’s population is given by the vector

⎛
⎝ a

b

1 − a − b

⎞
⎠,

find next year’s deer population.

10. Prove the following theorem.

Theorem 6.4

If X is a steady state for the Markov chain with transition matrix
T , then X is in the kernel of the matrix T − I (where I is the
corresponding identity matrix).

11. Let T be the 4 × 4 transition matrix from Exercise 6 in the last
lesson.

a. Compute T 2 ·

⎛
⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎠ and interpret the results.
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b. Compute T 3 ·

⎛
⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎠ and interpret the results.

c. Compute T 2 ·

⎛
⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎠ and interpret the results.

d. Compute T 10.
e. Find a steady state for T .

12. Serena and Roger are playing tennis. They are tied with three points
each, and Serena is 60% likely to win any given point.

a. Use a transition matrix to determine the probability that
Serena wins the game sometime within four points. ←−

You’ll need to calculate
T 4 for some transition
matrix . . . then what?

b. Find the probability that Roger wins the game sometime
within six points.

c. Find the probability that Serena wins the game within 100
points.

13. Find the probability that Serena will win the game if she is given a
one-point lead.

14. Find the probability that Roger will win the game if he is given a
one-point lead.

15. a. Compute the probability that you finish the game in three
turns or less when playing Count to Five.

b. Compute the probability that you finish the game in exactly
four turns when playing Count to Five.

16. For each transition matrix T in Exercise 5, find all possible steady
states.

17. Let T =

(
0.9 0.3

0.1 0.7

)
.

a. Find Tr(T ) and det(T ).
b. Find the two values of k such that the equation TP = kP has

a nonzero solution.(
0.9 0.3

0.1 0.7

)(
x

y

)
=

(
kx

ky

)

18. Let T =

(
a 1 − b

1 − a b

)
, a generic 2 × 2 transition matrix.

a. Find Tr(T ) and det(T ).
b. Find the two values of k, in terms of a and b, such that the

equation TP = kP has a nonzero solution.(
a 1 − b

1 − a b

)(
x

y

)
=

(
kx

ky

)
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19. Let T =

⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠.

Find all three values of k such that TP = kP has a nonzero solution.
(Hint: Can you rewrite the equation so the right side is the zero
vector?)

20. Consider the situation of Exercise 18 from the previous lesson. Use
Theorem 6.2 to determine each of the following:

a. The probability that a junior will graduate in two more years.
b. The probability that a freshman will graduate in four years.
c. The probability that a freshman will graduate in five years or

less.
d. The probability that a freshman will graduate in six years or

less.
e. The probability that a freshman will graduate at all. ←−

What power of the transi-
tion matrix could give this
answer?

21. A town’s population is 10,000. Today, 9000 people are healthy and
1000 people are sick.

a. Using the 2 × 2 transition matrix for this example, determine
the number of healthy and sick people for each of the next ten
days.

b. What is happening in the long run?

22. Let T be a matrix with nonnegative real entries, and suppose there
is an n so that all the entries of Tn are nonzero.

a. Explain why all the entries of Tn must be positive.
b. Take It Further. Prove that for any k > n, all the entries of

T k must be positive.

23. Let P =

⎛
⎝0.5

0.2

0.3

⎞
⎠ and T =

⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠.

a. Calculate T 2P .
b. Find three probability vectors V1, V2, V3 and three nonzero

constants c1, c2, c3 so that P = c1V1 + c2V2 + c3V3.
c. For the vectors you found, calculate c1T

2V1+c2T
2V2+c3T

2V3.

24. Show that, in general, if P = c1V1 + c2V2 + c3V3, then

TnP = c1T
nV1 + c2T

nV2 + c3T
nV3
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6.5 Regular Markov Chains

In a previous lesson, you learned that whether you are sick or healthy
today has very little effect on whether you are sick or healthy a long time
from now (say, 100 days). This lesson focuses on Markov chains with that
property.

In this lesson, you will learn how to

• recognize when a Markov chain is regular

• determine the attractor for a regular Markov chain

Definition

A probability vector X is a steady state for a transition matrix T if and
only if TX = X.

In-Class Experiment

Here are three transition graphs. For each,

• build the 3 × 3 transition matrix T

• determine all possible steady states

• calculate T 50

a.
0.4 0.4

0.6 0.5

0.5 0.6

1 2 3

b.

1 2 3
0.6

1

1

0.4

c.

1 2 3
0.05

0.05

0.2 0.3

0.15

0.650.80.75

0.05
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Chapter 6 Markov Chains

A Markov chain with the property that, no matter what the starting
distribution is, it always converges to the same state is called a regular
Markov chain due to its “regular” long-term behavior.

Developing Habits of Mind

Use precise language. What does it mean to say that “it always converges to the same
state”? One way to think about it is through transition matrices. Suppose you have a
Markov chain, regular in the above sense, and you start with some probability vector
P that describes the current state. If the transition matrix is T , then the probabilities
after n observations is TnP . To say that “TnP converges on a state V ” means that

You can make ‖TnP − V ‖ as small as you want by making n big enough. ←−
Two real numbers are close
if the absolute value of
their difference is small.
Thinking of R as R1

and extending this idea,
it makes sense to call
two vectors A and B in
Rn close if the distance
between them ‖B −A‖ is
small.

This is often written as a limit:
lim
n→∞

TnP = V.

Definition

A Markov chain with transition matrix T is regular if and only if there
is a vector V with the property that, for any probability vector P ,

lim
n→∞

TnP = V

The results from calculating T 50 in the In-Class Experiment show the same ←−
If the columns of Tn all
converge to some vector
V , will TnP also converge
for V for any vector P?

“regular” behavior that some, but not all, Markov chains exhibit.

There is another characterization of regular chains that only involves
matrices.

Theorem 6.5

A Markov chain with transition matrix T is regular if and only if there ←−
In some linear algebra
books, a matrix T is
called regular if, for some
integer n, Tn contains only
positive entries.

exists an n such that Tn contains no zeros.

Theorem 6.5 does not seem to match the intuitive idea of “regularity”
described in the definition of regular earlier in this lesson, but it is possible
to prove that the definition is equivalent to the intuitive idea. The proof is
beyond the scope of this book, but here are some ideas that might make it
plausible.

Suppose T is a transition matrix where Tn has no zeros. Think about
how a column of Tn+1 is generated: it is a linear combination of the columns
of Tn whose coefficients are all positive and sum to 1.

What are the consequences of this? It means the columns of Tn+1 are
more of a “mix” than the columns of Tn, and particularly large or small
columns will be leveled off by the linear combination. As n grows, the
columns of Tn get very close to one another, inducing “regularity.”

On the flip side, you might like to think about nonregular Markov chains,
and why their transition matrices don’t induce this behavior.
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6.5 Regular Markov Chains

For You to Do

1. Use Theorem 6.5 to find some examples of regular Markov chains and nonregular
Markov chains that you have seen in this module. For each, take the transition
matrix T and calculate T 50.

Example 1

The first transition graph in the In-Class Experiment corresponds to this 3-by-3 transi-
tion matrix:

T =

⎛
⎝0.4 0.5 0

0.6 0 0.6

0 0.5 0.4

⎞
⎠

Problem. If you start in the first state, what are the long-term probabilities of being
in each state? What if you start in the second or third?

Solution. Use the TnP Theorem. Calculate TnP using probability vector P =

⎛
⎝1

0

0

⎞
⎠

←−
Theorem 6.2 from Les-
son 6.4.

and a high power of n. Here are the results for n = 20 and 21.

←−
The “≈” here means that
the result is close to the
right-hand sides.

T 20P =

⎛
⎝0.4 0.5 0

0.6 0 0.6

0 0.5 0.4

⎞
⎠

20⎛
⎝1

0

0

⎞
⎠ ≈

⎛
⎝0.3125

0.3750

0.3125

⎞
⎠

T 21P =

⎛
⎝0.4 0.5 0

0.6 0 0.6

0 0.5 0.4

⎞
⎠

21⎛
⎝1

0

0

⎞
⎠ ≈

⎛
⎝0.3125

0.3750

0.3125

⎞
⎠

If you start in the first state, the long-term probability of being in the first state is
roughly 0.3125, the second state is roughly 0.375; and the third state is roughly 0.3125.

If starting in the second state, use initial probability vector P =

⎛
⎝0

1

0

⎞
⎠ instead. This

←−
Note that T 20

⎛
⎝0
1
0

⎞
⎠ is

the second column of T 20

(why?).

time T 20P is ⎛
⎝0.4 0.5 0

0.6 0 0.6

0 0.5 0.4

⎞
⎠

20⎛
⎝0

1

0

⎞
⎠ ≈

⎛
⎝0.3125

0.3750

0.3125

⎞
⎠

To four decimal places, this is the same result as starting in the first state.

Starting with probability vector

⎛
⎝0

0

1

⎞
⎠ to represent the third state, the same result

occurs. The starting state does not seem to influence the long-term behavior of this
Markov chain.
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For You to Do

2. a. Calculate T 20. ←−
How does the above
example and Chapter 4’s
“Pick-Apart Theorem”
(Theorem 4.8) make the
calculation in problem 2
simpler?

b. Calculate T 20 ·

⎛
⎝.4

.4

.2

⎞
⎠.

3. Algebraically, find a state, a probability vector V =

⎛
⎝x

y

z

⎞
⎠ such that TV = V .

Recall that the standard basis vectors in R3 (written as columns) are

E1 =

⎛
⎝1

0

0

⎞
⎠ , E2 =

⎛
⎝0

1

0

⎞
⎠ , and E3 =

⎛
⎝0

0

1

⎞
⎠

In Example 1, you saw that, for large values of n, if you apply Tn to any
of these vectors, you get something very close to

V =

⎛
⎝.3125

.3750

.3125

⎞
⎠ =

⎛
⎝ 5

16
3
8
5
16

⎞
⎠

This vector V is a steady state for T .

But it also seems that Tn times any probability vector is close to this
steady state. Linearity can help to explain this.

Developing Habits of Mind

Use linearity. Any vector

⎛
⎝a

b

c

⎞
⎠ can be written in terms of E1, E2, and E3:

←−
This example uses a
probability vector in R3, but
the argument is general.
See Exercise 24 from
Lesson 6.4.

⎛
⎝a

b

c

⎞
⎠ = a

⎛
⎝1

0

0

⎞
⎠+ b

⎛
⎝0

1

0

⎞
⎠+ c

⎛
⎝0

0

1

⎞
⎠

Consider a probability vector P . It can be written as

P = aE1 + bE2 + cE3

where a + b + c = 1 (why)? Now use matrix algebra to calculate TnP in terms of the
unit coordinate vectors.

←−
This is true regardless of
the size of T . So, for any P ,
TnP is a weighted average
of the columns of Tn.

TnP = Tn(aE1 + bE2 + cE3)

= Tn(aE1) + Tn(bE2) + Tn(cE3)

= a(TnE1) + b(TnE2) + c(TnE3)
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6.5 Regular Markov Chains

This might not seem like an improvement, but you saw that, for large n, each of the
vectors TnE1, TnE2, and TnE3 is very close to the steady state V . It follows that

TnP = a(TnE1) + b(TnE2) + c(TnE3)

is very close to
TnP = a(V ) + b(V ) + c(V ) = (a + b + c)V = V

since a + b + c = 1.

The example used so far in this lesson is, in fact, general: for regular
Markov chains, it doesn’t matter what probability vector you start with.
The long-term behavior always approaches a single steady state.

Theorem 6.6

Given a regular Markov chain with transition matrix T , there is an ←−
This is difficult to prove.
But you can prove parts
of it. See Exercises 16,
17, and 18 for some ideas
related to the proof. The
full proof is outside the
scope of this book.

attractor V , a probability vector such that for any given probability vector
P ,

lim
n→∞

TnP = V

This vector V is the only probability vector that is a steady state for such
a Markov chain.

For Discussion

In the In-Class Experiment, you noticed that for some Markov chains, the columns of
Tn end up being nearly identical. For the Markov chain from Example 1, T 20 is

←−
The columns of Tn don’t
always behave this way!
This only works for regular
Markov chains.

T 20 ≈

⎛
⎝0.3125 0.3125 0.3125

0.3750 0.3750 0.3750

0.3125 0.3125 0.3125

⎞
⎠

4. Explain why for any regular Markov chain, the columns of high powers of its
transition matrix must be nearly identical. (Hint: What would happen other-
wise?)

For You to Do

5. Find the one steady state V for the healthy-sick example from previous lessons.
Pick five different starting probability vectors P , and, for each, find the smallest
value of n so that ‖TnP − V ‖ < .001.

Example 2

Consider this 3-by-3 transition matrix seen earlier to model Jessie’s pitch selection:

T =

⎛
⎝0.5 0.4 0.5

0.2 0.3 0.5

0.3 0.3 0

⎞
⎠
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Chapter 6 Markov Chains

Problem. Show that this Markov chain is regular, and then find the attractor V .

Solution. To show that the Markov chain is regular, find a power of T such that Tn

contains no zeros. For this Markov chain, T 2 is sufficient. You previously determined

T 2 =

⎛
⎝0.48 0.47 0.45

0.31 0.32 0.25

0.21 0.21 0.3

⎞
⎠

Since T 2 has no zeros, the Markov chain with transition matrix T is regular.

By Theorem 6.6, the attractor V is the only steady state (the only probability vector
that solves TV = V ). Here are three ways to find V .

Solution Method 1. Let V =

⎛
⎝a

b

c

⎞
⎠ and set up a system of equations to solve.

0.5a + 0.4b + 0.5c = a

0.2a + 0.3b + 0.5c = b

0.3a + 0.3b = c

This system doesn’t have a single solution, but you can add one more, a + b + c = 1, to ←−
Alternatively, write V =⎛
⎝ a

b
1− a− b

⎞
⎠ from the

start to produce a 2-by-2
system of equations with
one solution.

get a unique solution:

a =
55

117
, b =

35

117
, c =

27

117

Solution Method 2. Approximate V by determining Tn for a high power of n. Since
the Markov chain is regular, each column of Tn should be approximately equal to V .

T 20 ≈

⎛
⎝0.47009 0.47009 0.47009

0.29915 0.29915 0.29915

0.23077 0.23077 0.23077

⎞
⎠

All the columns give the same answer to five decimal places, so any column vector is a
good approximation to V .

Remember

This won’t happen unless
the Markov chain is
regular! This method only
approximates V .Solution Method 3. Use linear algebra to simplify the equation TV = V .

TV = V

TV = IV (for some identity matrix)

TV − IV = O (a zero vector)

(T − I)V = O

Find the kernel of T − I.

Remember

(T − I)V = O is of the
form AV = O, so you can
apply any of the methods
from Chapters 3 and 4.

T − I =

⎛
⎝−0.5 0.4 0.5

0.2 −0.7 0.5

0.3 0.3 −1

⎞
⎠

One method is to take the augmented matrix

←−
Note how similar the matrix
T − I is to the equations of
Solution Method 1!

A =

⎛
⎝−0.5 0.4 0.5 0

0.2 −0.7 0.5 0

0.3 0.3 −1 0

⎞
⎠
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6.5 Regular Markov Chains

and calculate its echelon form

rref(A) =

⎛
⎝1 0 −55

27 0

0 1 −35
27 0

0 0 0 0

⎞
⎠

The third column of this matrix, along with the fact that the sum of the elements of V
must add to 1, allow it to be found uniquely.

For You to Do

6. Using more than one method, find the attractor V for the deer example from the
previous lesson. The 3-by-3 transition matrix is

T =

⎛
⎝0.75 0.05 0.3

0.05 0.8 0.05

0.2 0.15 0.65

⎞
⎠

Exercises

In Exercises 1 through 7, use the transition graph to determine whether
each Markov chain is regular. If it is regular, find the unique steady state. If ←−

Hmm, thanks to Theo-
rem 6.5, regularity is de-
termined by the transition
matrix . . .

it is not regular, change the matrix (as little as possible) to make it regular.

1.

1 2
1

0.6

0.4

2.

1 2

3

0.2

0.2 0.2

0.50.5

0.5

0.3

0.3 0.3

3.

5

1

2

34

0.6

0.4 0.4

0.40.40.6 0.6

0.6

0.4

0.6

4.

5

1

2

34

0.6

0.2 0.4

0.2

0.2

0.40.4
0.6 0.6

0.6

0.2

0.6
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5.

1 2

4 3

0.4 0.7

0.6

1

0.3

1

6.

1 2

4 3

0.7 0.8

0.6

0.4

1

0.3

0.2

7.

1 2

4 3

0.8 0.3

1

0.9

0.1

0.2

0.7

8. Suppose V is an attractor (see Theorem 6.6 for the definition). Prove
that V is a steady state for this Markov chain.

9. Suppose V and W are two distinct steady states for a Markov chain.
Prove that this Markov chain cannot be regular by showing that the
required statement

lim
n→∞

TnP = V

is not true for all probability vectors P .

10. Give justifications for each algebra step in the Developing Habits of
Mind titled “Use linearity”on page 308. Be careful about whether
each variable and calculation talks about a scalar, a vector, or a
matrix.

11. Consider the five-square game first seen in Exercise 22 from Les-
son 6.2.

a. Show that the Markov chain for this situation is regular.
b. Find the steady state.
c. In this game, each time the player lands on A they are given

$200. If the game lasts 100 turns, about how much money
would you expect a player to earn during the game?
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6.5 Regular Markov Chains

12. The first player to land on any square in the game from Exercise 11
may purchase a contract that pays them each time a player lands
on that space. Here are the contracts and their payouts:

A: costs $500, pays $100

B: costs $700, pays $150

C: costs $1500, pays $200

D: costs $2000, pays $300

Which square is the best investment? Use the steady state to help ←−
How many turns will it
take for you to recoup the
investment you make when
buying each space?

you decide.

13. Explain why Count to Five and the tennis example from Getting
Started do not correspond to regular Markov chains.

14. a. Given the transition graph below, determine whether or not
the Markov chain is regular.

4

1 2 3
0.25 1

0.5

0.25
0.5

0.5

0.5

0.5

b. In the long run, what percentage of the time will you be in
state 4?

15. In Exercise 13, you showed that the transition matrix for Count to
Five does not correspond to a regular Markov chain.

a. Prove or disprove the following:
If the transition matrix T for a Markov chain has ←−

In other words, T has a 1 on
its diagonal. What would
the column that includes
that 1 look like?

Tii = 1 for some i, then T is not the transition
matrix for a regular Markov chain.

b. If the transition matrix T has any nondiagonal Tij = 1, is it
still possible for T to correspond to a regular Markov chain?

16. Suppose T is a transition matrix, and all the elements of T are
nonzero.

a. Explain why T must correspond to a regular Markov chain.
b. Prove that every element in T satisfies 0 < Tij < 1.

17. Suppose T is a transition matrix, and all elements in T are strictly
between 0 and 1. Additionally, T has a maximal element, some Tij

larger than all other elements of T .

a. Prove that the largest entry in T 2 is less than the largest entry ←−
Hint: Use a linear combina-
tion of the rows or columns
of T .

in T .
b. Prove that if T k has a maximal element, then the largest entry

in T k+1 is less than the largest element in T k.

18. Take It Further. Suppose that T is the transition matrix for a
regular Markov chain with attractor V . Without using Theorem 6.6,
show that T (V ) = V .
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19. Suppose that T is the transition matrix for a regular Markov chain
with attractor V . Show that every fixed vector for T is of the form
kV for some number k.

20. Let T =

(
0.9 0.3

0.1 0.7

)
.

a. Find a matrix A such that TA = A

(
1 0

0 0.6

)
.

b. Find the two values of k such that TX = kX has a nonzero
solution.

21. Let T =

(
0.9 0.3

0.1 0.7

)
, D =

(
1 0

0 0.6

)
. Let A be an invertible matrix

such that TA = AD.

Remember

An invertible matrix A is
one with an inverse, A−1.
Use the matrix you found
in Exercise 20.

a. Calculate A−1.
b. Show that T = ADA−1.
c. Show that T 2 = AD2A−1.
d. Show that Tn = ADnA−1.
e. Suppose n is large. What, approximately, is Dn?
f. If n is large, evaluate the right side without a calculator to give

an estimate for Tn.

22. Take It Further. The game of Monopoly is closely related to the
five-square game described earlier.

a. Build a large transition matrix for Monopoly.
b. Use technology to provide evidence that this Markov chain is

regular, and to approximate its steady state.
c. What property on the board will recoup its hotel cost most

quickly?
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6.6 Absorbing Markov Chains

Some random processes include states that only transition to themselves.
For instance, Markov chains describing games that declare a winner typi-
cally include such states, since once a player is declared a winner, they stay
the winner (and the game usually ends). In this lesson, you will explore the
nature of such Markov chains and the states they contain.

In this lesson, you will learn how to

• understand and identify absorbing and transient states of a random
process

• use transition matrices to identify absorbing states

For You to Do

1. If you haven’t already, build the 6-by-6 transition matrix for the Count to Five
game from Lesson 6.1, Getting Started.

2. Using the transition matrix, determine the probability of going from zero points
to five points in the following number of turns.

a. two or fewer b. three or fewer c. four or fewer

d. 10 or fewer e. 100 or fewer

Here’s the transition graph for Count to Five.

.4

.2

.2
.2

.2

.2

.2

.2

.2

.2

.2
.2

.2

.2
.2

.2

.2

.4

.6

1

.40

3 4 5

1 2

Once you have five points . . . that’s it!

It is impossible to escape from the five-point state. Every other state has
at least one transition away from itself.

For Discussion

3. Give some other examples of situations where an inescapable state might occur.
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An inescapable state is also called an absorbing state.

Definition

An absorbing state is a state in a random process whose only transition
is to itself.

A transient state is a state that has transitions to other states (that is,
a state that is nonabsorbing).

An absorbing Markov chain is a Markov chain where all states have a
(possibly indirect) path to an absorbing state.

The tennis example from Getting Started is an absorbing Markov chain
with two absorbing states (SW and RW) and three transient states.

Minds in Action Episode 23

Derman: Hey, I think I can identify the absorbing states by looking at the transition
matrix.

Sasha: Okay, how?

Derman: It’s any column with a 1. If its probability is one, you have no choice!

1 2 3 4

.7.8

.2 .3 .4

.6 1

T =

⎛
⎜⎜⎜⎝
.8 0 0 0

.2 .7 0 0

0 .3 .6 0

0 0 .4 1

⎞
⎟⎟⎟⎠

Sasha: I believe you . . . mostly.

Derman: Come on, you know I’m right. The 1 forces you to go wherever it says.

Sasha: Now that I believe. But “wherever it says” might cause trouble. Here, let me
change yours a little:

1 2 3 4

.7.8

.2 .3 1

1

T =

⎛
⎜⎜⎜⎝
.8 0 0 0

.2 .7 0 0

0 .3 0 1

0 0 1 0

⎞
⎟⎟⎟⎠

Now the third and fourth columns would each have a 1 in them, but they’re not
absorbing states: each 1 forces you to go somewhere else.

Derman: Oh. I see what you’re getting at. I have a new idea: if the one is on the diagonal,
then it’s an absorbing state, because it’s forcing you to stay there. Otherwise, the 1
forces you to keep moving somewhere else.

Sasha: Like a webpage with only one link.

Derman: Or a boring board game.
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Derman and Sasha’s ideas lead to this theorem.

Theorem 6.7

For a Markov chain with transition matrix T , state i is an absorbing state
if and only if Tii = 1.

For Discussion

4. What are the transient and absorbing states in Derman and Sasha’s examples?

5. What are the transient and absorbing states in the tennis example from Getting
Started?

6. a. Can a Markov chain have no absorbing states? Explain.
b. Can a Markov chain have no transient states? Explain.

Developing Habits of Mind

Use properties. One interesting question is whether or not an absorbing Markov chain
can be regular. Both absorbing and regular chains can be classified by their transition
matrices.

• A Markov chain is regular if for some n, the power Tn of its transition matrix has
no zeros.

• A Markov chain is absorbing if its transition matrix T has a 1 on its diagonal.

For any absorbing state, the corresponding column of the transition matrix is a unit
vector. Here’s one example of a four-state transition matrix with state 3 absorbing:

T =

⎛
⎜⎜⎝

0.6 0.2 0 0

0.3 0.4 0 0

0.1 0.4 1 0.5

0 0 0 0.5

⎞
⎟⎟⎠

Now calculate T 2:

T 2 =

⎛
⎜⎜⎝

0.42 0.2 0 0

0.3 0.22 0 0

0.28 0.58 1 0.75

0 0 0 0.25

⎞
⎟⎟⎠

The third column of T 2 is the same unit vector! Recall the Pick-Apart Theorem from
Chapter 4: (AB)∗j = A · B∗j . For the T given above, T 2

∗3 is given by

T 2
∗3 = T · T∗3 =

⎛
⎜⎜⎝

0.6 0.2 0 0

0.3 0.4 0 0

0.1 0.4 1 0.5

0 0 0 0.5

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎠

Thinking about linear combinations, any product TV is a linear combination of the
columns of T , with the values in V giving the combination. This multiplication says to

317



Chapter 6 Markov Chains

use 1 times the third column, and 0 times the others. In other words, T 2
∗3 is exactly the

third column of T .

The same logic applies to T 3 = (T 2) · T or any power of T . The third column of Tn

will always be

⎛
⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎠. This proves that T cannot be the transition matrix of a regular

Markov chain! Why? Theorem 6.5 from Lesson 6.5 says that it could only be regular if
some Tn had no zeros. Here, Tn always has at least one zero entry.

The argument made for T applies to any transition matrix with a 1 on its diagonal, ←−
In the exercises, you’ll be
asked to show that this is
not always true when T
has a 1 that isn’t on the
diagonal.

so an absorbing Markov chain can never be regular and vice versa.

Markov chains can be regular or absorbing, never both. It is important to recognize
that this isn’t the entire story: many Markov chains are neither regular nor absorbing.
Here is a simple example from earlier in this module:

1 2 3
0.6

1

1

0.4

This Markov chain has no absorbing states, but each power Tn of its transition matrix ←−
Suppose you started in
state 1 of this diagram.
Where could you be after
n transitions?

will have several zeros. Therefore, it is neither regular nor absorbing.

In the last lesson, you explored high powers of transition matrices for
regular Markov chains. For regular chains, the probability vectors in each Remember

Regular Markov chains
require some n for which
Tn has no zeros.

column tend toward the same steady state. Because an absorbing Markov
chain can’t be regular, this won’t happen for an absorbing Markov chain.
But what does happen?

Example

Roger and Serena are playing a game of tennis. The first player to win four points wins
the game, but a player must win by two. Roger and Serena have each won three points,
so neither of them can win on the next point. Serena is 60% likely to win any point.

Problem. Find the probability that Serena wins in 20 points or fewer.

Solution. Here is the transition graph and matrix for this game. The situation described
corresponds to starting in state 3.

1 2 3 4 5

1

1

0.6 0.6

0.4 0.4 0.4

0.6
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T =

⎛
⎜⎜⎜⎜⎜⎝

1 0.6 0 0 0

0 0 0.6 0 0

0 0.4 0 0.6 0

0 0 0.4 0 0

0 0 0 0.4 1

⎞
⎟⎟⎟⎟⎟⎠

The absorbing states are states 1 and 5, with state 1 being a win for Serena. The
question is asking for the probability of starting in state 3 and ending in state 1 after 20
transitions.

This is precisely the question answered by the TnP Theorem (Theorem 6.2). Since

they are starting at state 3, the probability vector P is P =

⎛
⎜⎜⎜⎜⎜⎝

0

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎠. So the probability

vector 20 transitions from now (n = 20) would be T 20P , which is just the third column
of T 20. Here is T 20 to five decimal places:

T 20 ≈

⎛
⎜⎜⎜⎜⎜⎝

1 0.87655 0.69186 0.41482 0

0 0.00032 0 0.00049 0

0 0 0.00065 0 0

0 0.00022 0 0.00032 0

0 0.12291 0.30749 0.58437 1

⎞
⎟⎟⎟⎟⎟⎠

There is about a 69.2% chance that Serena has won (state 1), a 30.7% chance that Roger
has won (state 5), and less than a 0.1% chance that the game is tied (state 3). The way
the game is played makes it impossible for either player to be one point ahead after
exactly 20 points. ←−

With a finite number of
states and transitions, a
probability of 0 means
the given transition is
impossible. A higher n
could be used to further
reduce the chances the
game continues. Try T 100

on a calculator . . .

Column 3 of T 20 gives the probability vector after 20 transitions, when starting in
state 3. The same can be said for any column of T 20 for any desired starting state. Note
especially columns 1 and 5, which are locked in place as unit vectors. This is the effect
of an absorbing state—if you start there, you must remain there.

For You to Do

7. If Roger starts with a one-point lead, find the probability that he wins within 25
points, the probability that he loses within 25 points, and the probability that
the game is still going 25 points later.

Transient States

So far the focus has been more on the absorbing states. Now you will take
a closer look at transient states.
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For You to Do

8. In Count to Five, determine the probability that you have exactly zero points

a. . . . when the game begins b. . . . after one turn

c. . . . after two turns d. . . . after three turns

e. . . . after four turns

9. Kevin claims that on average, players spend two turns during Count to Five with
no points. Use the results from problem 8 to explain why the actual average must
be larger than two.

Developing Habits of Mind

Reason about calculations. Absorbing states act like vacuums. In an absorbing
Markov chain, the probability of being in a transient state instead of an absorbing state
continues to drop as the number of transitions increases, and the only steady states for
absorbing Markov chains are those with zeros for all transient states.

The long-term probability of being in a transient state of an absorbing Markov chain
always approaches zero. But an interesting question is the expected number of times
each transient state will be visited before reaching an absorbing state. This could tell
you the expected length of Count to Five, or how many times, on average, the tennis
game will be tied.

You can compute the expected number of times an event occurs by adding the
probability it occurs at each opportunity. For example, if there is a 60% chance of rain
each day for four days, the expected number of days of rain is 0.6 · 4 = 2.4.

Given transition matrix T , Tn
ij tells you the probability that if you start

in state j, after n turns you’ll be in state i. For example, here are T and
T 2 for Count to Five:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

.4 .4 .2 .2 .2 0

.2 0 .2 0 0 0

.2 .2 0 .2 0 0

.2 .2 .2 0 .2 0

0 .2 .2 .2 0 0

0 0 .2 .4 .6 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

.32 .28 .24 .16 .12 0

.12 .12 .04 .08 .04 0

.16 .12 .12 .04 .08 0

.16 .16 .12 .12 .04 0

.12 .08 .08 .04 .04 0

.12 .24 .4 .56 .68 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

So T 2
11 says there is a 32% chance that if you started with zero points

(the first state), you will have zero points after two turns. T 2
31 says there is

a 16% chance that if you started with zero points, you will have two points
after two turns.

Suppose you start in state 1, and you want to determine the expected
number of times state 1 occurs. You can compute this by adding the ←−

The value is automatically
at least 1, since state 1
occurs immediately at the
start.

probability it occurs in the first transition, the second transition, the
third . . . with no limit. Using a capital E for the expected number of
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times, you get

E11 = 1 + T11 + T 2
11 + T 3

11 + · · · (1)

E11 = 1 +
∞∑
k=1

T k
11 (2)

E11 =
∞∑
k=0

T k
11 (3)

For Discussion

10. Explain each of the three equations above. What changes between equations (2)
and (3)?

In the same manner, a matrix E can be computed where Eij gives the
expected number of times state i occurs, given starting state j:

←−
What is T 0? For any real
number x, x0 = 1, but T
is a matrix . . .

E =
∞∑
k=0

T k

E = I + T + T 2 + T 3 + T 4 + · · ·

It is possible to approximate E by taking a finite number of terms from
the infinite sum. For example, here is I +T +T 2+T 3+T 4 for the transition
matrix T given above:

I + T + T 2 + T 3 + T 4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2.198 1.099 0.762 0.603 0.496 0

0.493 1.269 0.363 0.162 0.107 0

0.581 0.518 1.269 0.360 0.158 0

0.617 0.581 0.493 1.243 0.338 0

0.280 0.422 0.386 0.323 1.099 0

0.830 1.110 1.728 2.309 2.802 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

For example, a player starting Count to Five with zero points will spend
an average of 0.581 turns with two points, up to and including the fourth
turn.

A better approximation can be found by repeating this process up to a
high power of T :

100∑
k=0

T k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3.121 1.907 1.387 1.069 0.838 0

0.827 1.561 0.590 0.329 0.231 0

1.012 0.896 1.561 0.578 0.318 0

1.110 1.012 0.827 1.491 0.520 0

0.590 0.694 0.595 0.480 1.214 0

94.341 94.931 96.040 97.052 97.879 101

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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For Discussion

11. Why are the totals for the last row so large?

The transition matrix for Count to Five has its transient states listed
first and its absorbing state last. It is helpful to organize the transition
matrix for an absorbing Markov chain in this way. Look back at the tennis
example: the transient states are S1, T, R1, and the absorbing states are
SW and RW. Here is the transition matrix rewritten in this state order:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S1 T R1 SW RW

S1 0 0.6 0 0 0

T 0.4 0 0.6 0 0

R1 0 0.4 0 0 0

SW 0.6 0 0 1 0

RW 0 0 0.4 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

This matrix carries all the information of the original, but the order makes
the distinction between transient and absorbing states clearer. A 3-by-
3 submatrix Q containing only the information about transient states is ←−

A submatrix is just a
matrix made up of rows
and columns picked from a
larger matrix.

highlighted above.

For You to Do

12. Calculate T 20 for the above matrix. Compare to the result found in the Example
from this lesson.

The transition matrix for any absorbing Markov chain can be written in
the form

T =

(
Q 0

R I

)
with four submatrices. Each of these gives a specific piece of information:

• Q is a square matrix of transition probabilities from transient states
to transient states

• R is a matrix of transition probabilities from transient states to
absorbing states

• 0 is matrix of zeros reflecting the impossibility of transitioning from
absorbing states to transient states

• I is an identity matrix, reflecting the fact that absorbing states feed
only themselves.

This breakdown allows you to focus on one piece of the matrix. If you’re
interested in the behavior of transient states, focus on matrix Q. If you’re
interested in the behavior of absorbing states, focus on matrix R.
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For You to Do

13. Calculate each of the following:

a. (1 + r + r2 + · · · + rn)(1 − r), where r is a real number.
b. (I+T +T 2+· · ·+Tn)(I−T ), where T is a matrix and I is the corresponding

identity matrix.

Developing Habits of Mind

Seek structural similarity. In an earlier course, you likely used this formula for the
sum of a geometric series with common ratio r:

1 + r + r2 + · · · + rn =
1 − rn+1

1 − r

Two important questions arise here: is there a similar formula for matrices, and what
happens with the infinite sum?

For matrices, the result from the For You to Do problem 13 above suggests this rule:

I + T + T 2 + · · · + Tn =
I − Tn+1

I − T

But this makes no sense. There’s no such thing as dividing by a matrix. Like solving
AX = B, this is done by multiplying by an inverse matrix:

I + T + T 2 + · · · + Tn = (I − Tn+1) · (I − T )−1

There’s still trouble: I − T might not have an inverse. For the matrix of Count to Five,
here is I − T :

I − T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

.6 −.4 −.2 −.2 −.2 0

−.2 1 −.2 0 0 0

−.2 −.2 1 −.2 0 0

−.2 −.2 −.2 1 −.2 0

0 −.2 −.2 −.2 1 0

0 0 −.2 −.4 −.6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Not good. The last column is all zeros. Therefore T has a nonzero kernel and cannot have
an inverse. The same thing happens for any absorbing state of any absorbing Markov
chain!

The formula seems doomed, but not so: use matrix Q instead! This is the matrix of
only transient state behavior, so it doesn’t have this problem. It’s not easy, but you can
prove that (I −Q) must have an inverse. So the formula is valid, but for Q instead of T : ←−

See the exercises, especially
22.I + Q + Q2 + Q3 + · · · + Qn = (I − Qn+1) · (I − Q)−1

The rule for infinite geometric series can apply as long as the entries in Q tend toward
zero, which they must for transient states. And that formula is much cleaner.

I + Q + Q2 + Q3 + · · · = (I) · (I − Q)−1 = (I − Q)−1
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Astoundingly, this formula works and gives the expected number of times any
transient state is visited before an absorbing state is entered.

For You to Do

14. For the 6-by-6 matrix from Count to Five, determine the 5-by-5 submatrix Q,
and then compute (I − Q)−1. Compare to the summation given earlier.

15. What is the average total length of a game of Count to Five?

Exercises

1. a. Draw and label a transition graph for a Markov chain with at
least two absorbing states.

b. Build the transition matrix that corresponds to your transition
graph.

2. For each of the transition graphs in Exercises 1–7 in Lesson 6.5,
determine whether the corresponding Markov chain is absorbing.

3. Of the three transition graphs pictured below, one corresponds to
a regular Markov chain, one to an absorbing chain, and one to a
chain that is neither regular nor absorbing. Decide which is which.

a.

.7

.7

.3

1

.3

1
3 4

1 2
b.

.7

.7

.3

1

.3

3 4

1 2

1

c.

.7

1

1

.7

.3

.3

3 4

1 2

4. Draw a 4-state transition graph that corresponds to

a. a regular Markov chain
b. an absorbing Markov chain
c. a chain that is neither regular nor absorbing ←−

Look back for other
examples of chains that
are neither regular nor
absorbing.

5. Find all steady states for the 4-state Markov chain Derman drew in
Minds in Action—Episode 23.

6. Find all steady states for the 4-state Markov chain Sasha drew in
Minds in Action—Episode 23.

7. Show, with a transition matrix or a transition graph, that it is
possible for a Markov chain to have an absorbing state while a
subset of the Markov chain is regular. ←−

The overall Markov chain
is not regular in this case.
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8. A simpler version of Count to Five is Flip to Five. Start with zero
points. Flip a coin; if it’s heads, add one point; if it’s tails, add two.
When you reach five points or more, stop.

a. Build a 6-by-6 transition matrix for this game.
b. Determine the probability that you finish the game in three or

fewer turns.
c. Determine the probability that you finish the game in five or

fewer turns.
d. Determine the average length of a game of Flip to Five.

9. a. Use an 11-by-11 transition matrix to determine the average
length of a game of Flip to Ten, which plays like Flip to Five
but doesn’t end until you reach 10 points.

b. Suppose you have five points when playing Flip to Ten. Deter-
mine the average number of turns remaining in the game.

10. In For You to Do problem 15, you determined the average total
length of a game of Count to Five. The method of solution only
uses one column of that matrix. Use the entire matrix to determine
the average number of turns remaining in Count to Five if you have

a. zero points b. one point c. two points

d. three points e. four points

11. You saw this reordered transition matrix for the tennis example
earlier in the lesson with the 3-by-3 square matrix Q in bold.

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S1 T R1 SW RW

S1 0 0.6 0 0 0

T 0.4 0 0.6 0 0

R1 0 0.4 0 0 0

SW 0.6 0 0 1 0

RW 0 0 0.4 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

a. Determine I − Q and (I − Q)−1.
b. If the players start the game tied, determine the average

number of ties that will occur. (Hint: This answer is found
in one of the entries of (I − Q)−1.)

c. If the players start the game tied, determine the average
number of points played when Serena is leading by 1.

d. If the players start the game tied, determine the average
number of points played when Roger is leading by 1.

e. If the players start the game tied, determine the average
number of points played.

12. Suppose Serena and Roger are equally likely to win points, instead
of Serena winning 60% of the points. The players start the game
tied.

a. Build a transition matrix T for this situation, ordered the same
way as the one above.

b. Determine the average number of points played.
c. What is the probability that Serena wins the game?
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13. The game of HiHo! Cherry-O plays a lot like Count to Five. On
each turn, you may do one of seven things.

• Add one point.
• Add two points.
• Add three points.
• Add four points.
• Subtract one point (but never drop below zero).
• Subtract two points (but never drop below zero).
• Reset score to zero.

The game ends when the score reaches 10 or more.

a. Build an 11-by-11 transition matrix for this game. Like Count
to Five, the states are the number of possible points in the
game (0 through 10).

b. Determine the probability of completing the game in four or
fewer turns.

c. Determine the probability that the game will not be complete
within 20 turns.

d. Use the methods of this lesson to determine the average num-
ber of turns taken in the game.

14. Take It Further. Suppose that the probability that Serena wins
a point is p and the probability that Roger wins is (1 − p). The
players start the game tied.

a. Build a transition matrix T for this situation, ordered the same
way as the one from Exercise 11.

b. Determine the average number of points played, in terms of p.
c. What is the probability that Serena wins the game, in terms

of p?

15. Consider an absorbing Markov chain with n states whose only
absorbing state is state i. Consider some other state j.

a. Explain why there must be a path from j to i, possibly
through several other states. (Hint: What does the definition
of absorbing Markov chain say?)

b. Let t be the length of the shortest path from j to i. What is
the largest possible value of t? (Hint: Could the shortest such
path double back on itself?)

16. Let T be the transition matrix for a Markov chain with one absorb-
ing state i. Use the result of Exercise 15 to prove the following.

Theorem 6.8

An n-state Markov chain with transition matrix T and single ab-
sorbing state i is an absorbing Markov chain if and only if all entries
in Tn−1

i∗ are nonzero. Remember

The notation Ti∗ means
the ith row of T .17. Let S be the set of absorbing states for a Markov chain.

a. Explain why the Markov chain is absorbing if and only if there
is a path from every state j to at least one of the states in S.

b. Must there be a path from every state j to all of the absorbing
states in S? Explain or give an example.
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c. Let T k
S be the sum of the rows of T k that correspond to the

absorbing states in S. Prove the following. ←−
Why is (n− 1) specifically
picked here as the power of
T?

Theorem 6.9
An n-state Markov chain with transition matrix T and set of
absorbing states S is an absorbing Markov chain if and only if
all entries in Tn−1

S are nonzero.

18. The tennis example from this module has 5 states. Here is T 4 with
the transient states first, then the absorbing states:

T 4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S1 T R1 SW RW

S1 .1152 0 .1728 0 0

T 0 .2304 0 0 0

R1 .0768 0 .1152 0 0

SW .744 .5328 .216 1 0

RW .064 .2368 .496 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

a. Jesch claims that no matter what the situation in the tennis
game, there is less than a 1 in 4 chance that the game will last
through the next four points. Is he right? Explain using T 4

above.
b. Jesch also claims that no matter what the situation in the

tennis game, there is less than a 1 in 12 chance that the game
will last through the next eight points. Is he right? ←−

It is possible to answer
this question using only
T 4. Look for that before
calculating T 8.

19. Consider an absorbing Markov chain with n states and transition
matrix T .

a. Prove that there is a number p < 1 such that the probability
of remaining in transient states after n−1 transitions must be
less than or equal to p.

b. Prove that, given this p < 1, the probability of remaining in
transient states after 2(n− 1) transitions must be less than or
equal to p2.

c. The probability of remaining in transient states after k(n− 1)
transitions must be less than or equal to what expression?

d. Prove that the probability of remaining in transient states
forever is zero.

For an absorbing Markov chain, when states are ordered according to
whether they are transient or absorbing, the transition matrix can be
written in the form

T =

(
Q 0

R I

)
Here, Q is a square matrix of transition probabilities from transient states
to transient states.

20. a. Write the 4-by-4 transition matrix for the Markov chain whose
transition graph is pictured in Exercise 3b in the above form.

b. For this transition matrix, calculate Q20.
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21. Use the result of Exercise 19 to prove this theorem.

Theorem 6.10

Given an absorbing Markov chain with transition matrix T , if Q is
the square submatrix of transition probabilities from transient states
to transient states, then

lim
n→∞

Qn = 0

22. Let Q be a matrix such that

lim
n→∞

Qn = 0

a. Show that

(I − Q) · (I + Q + Q2 + Q3 + · · · + Qn + · · · ) = I

b. Explain how the above can be used to show that

(I + Q + Q2 + Q3 + · · · + Qn + · · · ) = (I − Q)−1

23. Take It Further. Prove that if Q is the matrix of transition prob-
abilities from transient states to transient states, then | det(Q)| < 1. ←−

Hint: How does det(Q2)
compare to det(Q)?Consider the situation in Exercise 18 from Lesson 6.5.

24. Construct a 6-by-6 transition matrix T for this Markov chain, using
the state order {freshman, sophomore, junior, senior, graduated,
dropped out}.

25. Determine the expected number of years a freshman will spend in
each of the four grade levels.

26. Calculate T 30
51 and interpret its meaning.

27. The game of Chutes and Ladders can be modeled completely as an
absorbing Markov chain.

a. Why can this game be modeled as a Markov chain at all?
b. Why can this game be modeled as an absorbing Markov chain?

28. Take It Further.

a. Using technology, build a large transition matrix for Chutes
and Ladders . Even though there are 100 squares on the board,
there will not be 100 states in the matrix, because some squares
cannot be landed on. For example, square 4 cannot be landed
on, since it immediately sends the player to square 14.

b. Determine the probability that the game ends within 10 turns.
c. Determine the probability that the game does not end within

100 turns.
d. Using the methods of this lesson, determine the average num-

ber of turns taken in the game before it ends by reaching square
100.
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6.7 The World Wide Web: Markov and PageRank

When you search for particular words on the internet, search engines find
millions of pages that match your terms. One way of organizing results uses
regular Markov chains.

In this lesson, you will learn how to

• see an application of Markov chains to a difficult problem

• understand how the PageRank algorithm uses Markov chains to
model user behavior

With the growth of the internet in the mid-1990s, sites to search the
World Wide Web quickly became popular. The earliest such sites were
created by hand: one popular site was titled “Yet Another Hierarchically
Organized Oracle,” or Yahoo for short. Further growth led to the creation
of search engines , which might find all the webpages with keywords such as
“tennis.” But as the Web kept growing, the quality of searches decreased,
because it was difficult to determine, algorithmically, what webpages were
the most popular or trustworthy.

In 1998, two graduate students presented a solution to the problem based
on regular Markov chains. Their solution treats each webpage as a state
in a gigantic regular Markov chain, and then determines its unique steady
state. Each page is ranked according to its steady-state probability, from
high to low, and higher-ranked pages are displayed earlier in search results.
Their search engine was called Google, and the quality of its search results
made it the most frequently used website in the 2000s.

For You to Do

This graph shows five webpages and the one-way links between them.

A B C

D E

1. Based on the links, rank the pages from 1 to 5 in order of how frequently you
think they would be visited.

2. Build H, a 5-by-5 transition matrix for these webpages. Assume that each link is
clicked with equal probability. For example, the first column of H corresponds to
page A. Its values include a 0.5 probability of transitioning to B, a 0.5 probability
of transitioning to D, and zeros otherwise.
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3. Let H be the transition matrix you calculated in problem 2. Calculate H20. What
does this matrix represent and how can it be used to answer problem 1?

This description comes from the 1998 paper by Sergey Brin and
Lawrence Page (for whom PageRank might be named):

PageRank can be thought of as a model of user behavior. We
assume there is a “random surfer” who is given a webpage at
random and keeps clicking on links, never hitting “back” but
eventually gets bored and starts on another random page. The
probability that the random surfer visits a page is its PageRank. ←−

Lawrence Page, Sergey
Brin, Rajeev Motwani, and
Terry Winograd (1999)
“The PageRank Citation
Ranking: Bringing Order
to the Web.” Technical
Report. Stanford InfoLab.

. . . A page can have a high PageRank if there are many pages
that point to it, or if there are some pages that point to it and
have a high PageRank. Intuitively, pages that are well cited
from many places around the web are worth looking at. Also,
pages that have perhaps only one citation from something like
the Yahoo! homepage are also generally worth looking at.

Problems 1–3 above suggest that a random Web surfer can be modeled
using a transition matrix with columns containing zeros and 1

n , where n is
the number of links away from each page. (For the above graph, n = 2 for
page A.) However, there are two complications. ←−

The 1
n

method doesn’t ac-
count for what is described
above when the surfer
“eventually gets bored.”

• Some pages don’t have links. Over half the sites on the World
Wide Web are dead ends with no links. PageRank models this
by assuming the random Web surfer will pick a page at random,
assigning an equal probability 1

p to each transition, where p is the
total number of pages.

• Behavior does not produce a regular Markov chain. Picture
a webpage whose only link is a “Reload” button. According to the
linking model, this page would be an absorbing state! Since a Markov
chain cannot be both regular and absorbing, it would not be possible
to compute PageRank without dealing with this situation. PageRank
deals with this by giving a “damping factor” d = 0.2, a probability ←−

Google actually used
d = 0.15, but d = 0.2
is a little easier to work
with.

that instead of using a page’s links, the next page is determined
randomly.

The probability of reaching any page from any other page is, therefore, at
least d

p , where p is the total number of pages. If there are n links leaving a

page, linked pages will be reached with probability d
p + 1−d

n . (Why?)

For Discussion

4. Why do the changes listed above guarantee a transition matrix that corresponds
to a regular Markov chain?
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Once the transition matrix T is constructed, the PageRank vector v is
the unique vector such that Tv = v. Without both of the changes listed
above, this vector wouldn’t be unique, and it would not be possible to
correctly decide for all pairs of pages whether one was more or less likely to
be visited than another. Computing the PageRank vector was at the heart
of the execution and success of Google. Because of this, the end result of
the PageRank calculation has been called the “$25 billion eigenvector.” ←−

Google’s own website
states that they “became
successful precisely because
we were better and faster
at finding the right answer
than other search engines
at the time.” PageRank
has evolved somewhat, but
the Markov concept is still
at its heart.

Example

Problem. Find the PageRank vector for the following Web graph, assuming damping
factor d = 0.2.

A B C

D E

Solution. With five pages, d
p = 0.2

5 = 0.04. The value 1 − d = 0.8 gives the probability
that a normal link is followed instead, and if a page has n links, each will have probability
0.04 + 0.8

n . If a page has no links, all pages will have equal probability 1
5 .

• Page A links to B and D, so each linked page has transition probability 0.44, while
each unlinked page has transition probability 0.04.

• Page B links to A, C, D, and E, so each linked page has transition probability 0.24,
while each unlinked page has transition probability 0.04.

• Page C links only to B, so B has transition probability 0.84, while other pages
have transition probability 0.04.

• Page D links only to A, so A has transition probability 0.84, while other pages
have transition probability 0.04.

• Page E links nowhere, so all pages have transition probability 0.2.

Here is the 5-by-5 transition matrix T :

T =

⎛
⎜⎜⎜⎜⎜⎝

0.04 0.24 0.04 0.84 0.2

0.44 0.04 0.84 0.04 0.2

0.04 0.24 0.04 0.04 0.2

0.44 0.24 0.04 0.04 0.2

0.04 0.24 0.04 0.04 0.2

⎞
⎟⎟⎟⎟⎟⎠

There are several methods for finding the vector v that solves Tv = v. If Tv = v,
then Tv = Iv and (T − I)v = 0. The PageRank vector can be found by determining the
kernel of (T − I).
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As seen in Lesson 6.5, an approximation to v can be found by computing high powers
of T . For example, here is T 20:

T 20 ≈

⎛
⎜⎜⎜⎜⎜⎝

0.291 0.291 0.291 0.291 0.291

0.262 0.262 0.262 0.262 0.262

0.110 0.110 0.110 0.110 0.110

0.227 0.227 0.227 0.227 0.227

0.110 0.110 0.110 0.110 0.110

⎞
⎟⎟⎟⎟⎟⎠

The approximation shows that page A has the highest PageRank, followed by B and D,
with C and E tied much lower.

Developing Habits of Mind

Use forms with purpose. The example above uses a 5-by-5 transition matrix, but the
Web has billions of pages! It is prohibitively difficult to compute Tn for such a matrix,
and even more difficult to find the kernel of (T − I). Another method is used instead: a
starting vector v0 is chosen, and then v1 = Tv0 is computed. Then v2 = Tv1, and several
more, until the results have “settled.” The last of these vectors should be very close
to the correct steady state. Why does this work? As seen earlier, if T is the transition
matrix of a regular Markov chain, then the columns of Tn are almost identical for large
enough n, and Tnv will be almost identical for any probability vector v.

This method is more efficient since the entire matrix T need not be recomputed time
and again.

There is one significant shortcut used in PageRank calculation. Since more than half
the pages on the Web are dead ends like page E from the example above, all such pages
can be joined as a “chunk” (since they all have the same link behavior) with their
probabilities computed after the fact. See Exercises 10 and 11 for more about this.

Exercises

1. For each given Web graph, determine the PageRank vector using
damping factor d = 0.2.

a.

A B C

D E
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b.

A B C

D E
c.

A B C

D E
d.

A B C

D E
e.

A B C

D E

2. Use the map from Exercise 1d for the following:

a. Recompute the PageRank using damping factor d = 0.15.
b. Recompute the PageRank using damping factor d = 0.8. What

happens?
c. Recompute the PageRank using damping factor d = 0 (follow-

ing links only). What happens?

3. Sally says that the nature of PageRank makes it impossible for a
page to have greater than 0.5 probability in the PageRank vector.
Is she right? Explain.
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4. Take It Further. If d = 0.2 is the damping factor, determine the
maximum possible PageRank a page can have when there are n
total pages.

5. Let T be the transition matrix from the example in this lesson.

T =

⎛
⎜⎜⎜⎜⎜⎝

0.04 0.24 0.04 0.84 0.2

0.44 0.04 0.84 0.04 0.2

0.04 0.24 0.04 0.04 0.2

0.44 0.24 0.04 0.04 0.2

0.04 0.24 0.04 0.04 0.2

⎞
⎟⎟⎟⎟⎟⎠

Also consider these probability vectors:

←−
With no information about
the behavior of a network,
V3 is a good starting
“guess” for PageRank.
When “updating” Page-
Rank for new links and
changes to the Web, the
previous PageRank was
used as the starting guess.

V1 =

⎛
⎜⎜⎜⎜⎜⎝

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎠ , V2 =

⎛
⎜⎜⎜⎜⎜⎝

0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎠ , V3 =

⎛
⎜⎜⎜⎜⎜⎝

0.2

0.2

0.2

0.2

0.2

⎞
⎟⎟⎟⎟⎟⎠ , V4 =

⎛
⎜⎜⎜⎜⎜⎝

0

0

.5

0

.5

⎞
⎟⎟⎟⎟⎟⎠

a. Calculate Tn·V1 for n = 1, 2, 3, 4, 5, 20. Describe what happens.
b. Repeat for V2, V3, and V4.
c. For each of V1 through V4, determine the smallest value of n

for which all the elements of Tn · Vi are within 0.01 of the
PageRank vector

V =

⎛
⎜⎜⎜⎜⎜⎝

0.291

0.262

0.110

0.227

0.110

⎞
⎟⎟⎟⎟⎟⎠

6. Build a small Web graph using about 10 pages from your school’s
website.

a. Build the transition matrix for your Web graph with damping
factor d = 0.2. Which page has the highest PageRank? the
lowest?

b. Repeat with damping factor d = 0. Are there any changes?

7. Build a small network for “following” in a social media service such
as Twitter. The network should include between 10 and 20 people ←−

Note: “Following” isn’t
always both ways. A can
follow B even if B doesn’t
follow A. Treat this like you
would a “link” from page
A to page B.

and all their interconnections. Use the PageRank algorithm with
d = 0.2 to determine a popularity ranking for the people you chose.

8. Look back at the airport network from Lesson 4.1. Consider each
flight from one city to another to be a “link” like a link between
webpages. ←−

Webpages can also have
multiple links to the same
page . . .

a. Determine the PageRank order of the six cities using d = 0.2.
According to these flights, which airport will be the most
crowded for this airline?

b. Repeat using d = 0. Is it reasonable to have a damping factor
used in this situation?

c. What other assumptions are made that could affect the true
ranking of these six cities?
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9. Build another small network of links, and then compute the
PageRank of the network. Here are some suggestions:

• Facebook friends or other two-way social media
• Text messages (count the number of messages sent from A to

B in one day as the number of links)
• Cell phone calls
• Blog references
• YouTube “watch this next” lists
• News sites’ “see also” listings
• Thesaurus lists of synonyms

10. Consider the Example from this lesson. A more efficient way of
computing the PageRank for pages without links is available, and
the method works by looking at the three possible ways to reach
page E.

a. The first way is a link from “anywhere”. Explain why the
probability of reaching E this way is 0.2

5 = 0.04, using the
damping factor given in the example.

b. The second way is a link from page B. The long-term prob-
ability of reaching B is 0.262 (as computed in the example).
Show that the probability of reaching E this way is 0.0524.

c. The third way is a “link” from page E; E can be thought of
as having links to every page, including itself since, when E
is reached, all pages are equally likely to be next. If the long-
term probability of reaching E is p, show that the probability
of reaching E from itself is 0.16p.

d. Solve the equation p = 0.04 + 0.0524 + 0.16p to determine the
long-term probability of reaching E.

11. The link network below includes three pages with no links.

A B C

D E F

a. Build a new network with three “pages,” the two pages with
real links, and one “page” representing the set of pages with
no links. Include the probabilities of moving from the no-link
“page” to all other pages, including itself. ←−

Note: The probability of
going from the no-link page
to itself is not 1

3
.

b. Using the new network, compute the long-term probability of
reaching each of the three “pages.”

c. Use the method of Exercise 10 to determine the long-term
probability of reaching each of the three actual no-link pages.
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Chapter 6 Mathematical Reflections

These problems will help you summarize what you have learned in this Vocabulary

In this chapter, you saw
these terms and symbols
for the first time. Make
sure you understand what
each one means, and how
it is used.

• absorbing Markov chain

• absorbing state

• attractor

• Markov chain

• node

• probability vector

• random process

• steady state

• submatrix

• transient state

• transition graph

• transition matrix

• transition probability

chapter:

1. Suppose that if you’re healthy today, there is a 90% chance you will
be healthy again tomorrow (and a 10% chance of being sick). But
if you’re sick today, there is only a 30% chance you will be healthy
tomorrow (and a 70% chance of being sick again).

a. You’re healthy today. Find the probability that you’ll be
healthy two days from now.

b. Jeff is sick today. Assuming the same information, find the
probability that Jeff will be healthy two days from now.

c. Find the probability that you’ll be healthy three days from
now.

2. Roger and Serena are playing a game of tennis. The first player to
win four points wins the game, but a player must win by two. Roger
and Serena have each won three points, so neither of them can win
on the next point. Suppose Serena and Roger are equally likely to
win points. The players start tied.

a. Build a transition matrix T for this situation.
b. Determine the average number of points played.
c. What is the probability that Serena wins the game?

3. After one day, the probability of being healthy is 0.9 and the prob-
ability of being sick is 0.1. Use matrix multiplication to determine
the probability of being healthy after two days, and the probability
of being sick after two days.

4. A steady state is a probability vector X such that for the transi-
tion matrix T , TX = X. Find a steady state for each of the following
matrices T .

a. T =

(
0.9 0.3

0.1 0.7

)

b. T =

(
0.75 0.5

0.25 0.5

)

c. T =

⎛
⎝0.5 0.4 0.5

0.2 0.3 0.5

0.3 0.3 0

⎞
⎠

d. T =

⎛
⎜⎜⎜⎜⎜⎝

1 0.6 0 0 0

0 0 0.6 0 0

0 0.4 0 0.6 0

0 0 0.4 0 0

0 0 0 0.4 1

⎞
⎟⎟⎟⎟⎟⎠

5. How can I represent a system using a transition matrix?
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6. What is the difference between an absorbing state and a transient
state?

7. What is the average number of turns it would take to win the game
HiHo! Cherry-O?
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7 Vector Spaces

There are some significant structural similarities between vectors and
matrices. For example, you can add two vectors and you can add two
matrices. You can scale a vector and you can scale a matrix.

This structure can also be found in other mathematical systems: you
can add and scale polynomials; you can add and scale complex numbers;
you can add and scale trigonometric functions. The properties described
in Theorems 1.2 and 4.1 carry over to adding and scaling in these other
systems.

Many systems behave this same way with respect to addition and scaling.
These structural similarities were noticed by mathematicians for some
time, and formalized in the late 19th century by Giuseppe Peano when
he described a vector space.

By the end of this chapter, you will be able to answer questions
like these:

1. What properties are necessary for a system to be a vector space?

2. How can you determine whether a set is a generating system for a
given vector space?

3. What is the coordinate vector for v =

(
5 0

2 3

)
with respect to the

basis B =

{(
0 0

1 1

)
,

(
1 0

0 1

)
,

(
1 1

0 0

)
,

(
1 0

0 0

)}
?

You will build good habits and skills for ways to

• look for similarity in structure

• find general results

• reason about calculations

• note general results
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Vocabulary and Notation

• basis for a vector space

• column space

• coordinate vector

• dimension of a vector space

• finite dimensional

• generating system

• linear span

• Matm×n

• Rn[x]

• row space

• subspace

• vector space

• zero vector
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7.1 Getting Started

Exercises

1. Find numbers a, b, and c that make each statement true or show
that there are no such numbers:

a. a(1, 2,−1, 3) + b(1, 0, 1, 0) + c(2, 1, 0, 0) = (3, 5,−1, 9)
b. a(1, 2,−1, 3) + b(1, 0, 1, 0) + c(2, 1, 0, 0) = (13, 8, 1, 6)
c. a(1, 2,−1, 3) + b(1, 0, 1, 0) + c(2, 1, 0, 0) = (16, 13, 0, 15)
d. a(1, 2,−1, 3) + b(1, 0, 1, 0) + c(2, 1, 0, 0) = (16, 13, 0, 16)
e. a(1, 2,−1, 3) + b(1, 0, 1, 0) + c(2, 1, 0, 0) = (0, 0, 0, 0)

2. Find numbers a, b, and c that make each statement true or show
that there are no such numbers:

a. a

(
1 2

−1 3

)
+ b

(
1 0

1 0

)
+ c

(
2 1

0 0

)
=

(
3 5

−1 9

)

b. a

(
1 2

−1 3

)
+ b

(
1 0

1 0

)
+ c

(
2 1

0 0

)
=

(
13 8

1 6

)

c. a

(
1 2

−1 3

)
+ b

(
1 0

1 0

)
+ c

(
2 1

0 0

)
=

(
16 13

0 15

)

d. a

(
1 2

−1 3

)
+ b

(
1 0

1 0

)
+ c

(
2 1

0 0

)
=

(
16 13

0 16

)

e. a

(
1 2

−1 3

)
+ b

(
1 0

1 0

)
+ c

(
2 1

0 0

)
=

(
0 0

0 0

)

3. Find numbers a, b, and c that make each statement true or show
that there are no such numbers:

a. a(x3 + 2x2 − x + 3) + b(x3 + x) + c(2x3 + x2) = 3x3 + 5x2 − x + 9
b. a(x3 + 2x2 − x + 3) + b(x3 + x) + c(2x3 + x2) = 13x3 + 8x2 + x + 6
c. a(x3 + 2x2 − x + 3) + b(x3 + x) + c(2x3 + x2) = 16x3 + 13x2 + 15
d. a(x3 + 2x2 − x + 3) + b(x3 + x) + c(2x3 + x2) = 16x3 + 13x2 + 16
e. a(x3 + 2x2 − x + 3) + b(x3 + x) + c(2x3 + x2) = 0

4. Show that every vector in R4 is a linear combination of these four
vectors:

(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)

5. Show that every 2 × 2 matrix is a linear combination of these four ←−
What should a “linear
combination of matrices”
mean?

matrices: (
1 1

0 0

)
,

(
0 1

1 0

)
,

(
0 0

1 1

)
,

(
0 0

0 1

)

6. Show that every polynomial of degree 3 or less is a linear combina- ←−
What should a “linear com-
bination of polynomials”
mean?

tion of these four polynomials:

x3 + x2, x2 + x, x + 1, 1
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R3 is closed under addition: the sum of any two vectors in R3 is always
in R3. R3 is also closed under scalar multiplication: if X ∈ R3, cX ∈ R3 for
any number c. Not all sets are closed under these operations: for example,
odd numbers aren’t closed under addition.

For each set given in Exercises 7–18, determine if it is closed under
addition, and determine if it is closed under scalar multiplication.

7. The x–y plane in R3

8. The set of vectors of the form (a, 2a) in R2

9. The plane with equation x + y + z = 1 in R3 ←−
The set here is all points
in the plane with equation
x + y + z = 1. Pick any
two points in this plane X
and Y . . . is X + Y also
in this plane?

10. The set of 2 × 2 matrices of the form

(
a b

b a

)

11. The set of polynomials with degree less than or equal to 3

12. The set of polynomials with degree 3 or greater

13. ker

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠

14. The set of 2 × 2 matrices that have determinant 1

15. The set of 3 × 3 symmetric matrices ←−
Is the sum of two symmet-
ric matrices also symmet-
ric? Is 3 times a skew-
symmetric matrix also
skew-symmetric?

16. The set of 3 × 3 skew-symmetric matrices

17. The line in R3 through (5, 1, 2) in the direction of (4,−1, 5)

18. The line in R3 through O in the direction of (4,−1, 5)
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7.2 Introduction to Vector Spaces

You have seen that some of the basic operations and properties of vectors
can be extended to matrices, since you can think of a matrix as a set of
vectors (row or column vectors) lined up together. In this lesson, you will
see that the basic rules of vectors can also be extended to many other
systems.

In this lesson, you will learn how to

• tell what the structural similarities for different vector spaces are

• determine whether or not a given set is a vector space

In 1888, Giuseppe Peano defined a vector space to be any system that
had the basic rules for arithmetic of points (Theorem 1.2).

Definition

Let V be a nonempty set of objects on which the operations of addition and ←−
If you think of V as Rn (so
that the elements of V are
n-tuples), this definition
is almost identical to the
basic rules of arithmetic
for points (Theorem 1.2).
Those rules are also
essentially the same as
the basic rules for matrix
algebra (Theorem 4.1),
since you can think of an
n-dimensional vector as a
1× n matrix.

scalar multiplication are defined. V is a vector space , and the objects in
V are vectors , if these properties are true for all v, w, u ∈ V and for all
numbers c and d:

(1) V is closed under addition and scalar multiplication. This is, if
v, w ∈ V , then v + w ∈ V and cv ∈ V for all numbers c.

(2) v + w = w + v for all v, w ∈ V .

(3) v + (w + u) = (v + w) + u for all v, w, u ∈ V .

(4) There is an element 0, called the zero vector , in V so that for all ←−
The zero vector for Rn is
just the origin, O.

v ∈ V , v + 0 = v.

(5) For every v ∈ V , there is an element denoted by −v with the property
that v + −v = 0.

←−
The vector −v is called the
“negative of v.” How many
negatives can a vector
have? See Exercise 36.

(6) c(v + w) = cv + cw for all numbers c and elements v, w of V .

(7) (c + d)v = cv + dv for all numbers c, d and elements v of V .

(8) c(dv) = cd(v) for all numbers c, d and elements v of V .

←−
As usual, “numbers c and
d” imply that c and d are
real numbers. Such a vector
space is called a real vec-
tor space . There are more
general types.

(9) 1v = v for all elements v in V .

Developing Habits of Mind

Seek structural similarity. Complex numbers, polynomials, vectors, and matrices
all have surface features that look quite different, and each has operations that are
not shared by the others. But if you calculate enough with polynomials and complex
numbers, you begin to feel that there are some underlying similarities in how “the
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operations go.” For example, you may think of a complex number as working like a
polynomial, with the extra layer that i2 = −1.

Developing the habit of abstracting what’s common in seemingly different situations
has led to some major breakthroughs in mathematics. Still, it took quite a bit of effort
to describe the common ground precisely. Developing a list of properties like those in
Theorems 1.2 and 4.1 didn’t come in a flash of insight. The list evolved and was polished
gradually over time in an effort to precisely describe what mathematicians wanted to
say.

Example 1

Consider the set of 2 × 3 matrices, and define the operations of addition and scalar ←−
In this book, the set of all
m× n matrices is denoted
by Matm×n.

multiplication as usual.

Problem. Verify property (1) of the definition of a vector space to help show that the
set of 2 × 3 matrices is a vector space under these operations.

Solution. Re-read property (1), letting V be the set of 2 × 3 matrices.

The set of 2× 3 matrices is closed under addition and scalar multiplication.
This means that if M, N are 2 × 3 matrices, then M + N is a 2 × 3 matrix,
and cM is a 2 × 3 matrix for all numbers c.

So here are some generic 2 × 3 matrices M and N :

M =

(
d e f

g h i

)
, N =

(
n o p

q r s

)

So if M + N and cM are also 2 × 3 matrices, the property is verified.

M + N =

(
d + n e + o f + p

g + q h + r i + s

)
, cM =

(
cd ce cf

cg ch ci

)

Both M + N and cM are 2× 3 matrices of real numbers, so property (1) is true for this
(possible) vector space. Note that this relies on knowledge of closure of the real numbers
under addition and multiplication.

For Discussion

1. What 2 × 3 matrix serves as the zero vector?

2. Verify property (5) for the set of 2 × 3 matrices with the usual operations.

In this vector space, the vectors are 2 × 3 matrices. In general, the ←−
Later in this chapter,
you’ll see that, in an
important way, the vectors
in any vector space can be
“viewed as” n-tuples.

elements of a vector space won’t look anything like what you think of as
a vector—an n-tuple of numbers in Rn. A vector is just an element of a
vector space, regardless of what that space looks like.
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Example 2

Problem. Consider R3[x], the set of polynomials in x with degree less than or
equal to 3. Define the operations of addition and scalar multiplication as usual. Verify ←−

A polynomial in x is
a polynomial with real
coefficients using x as its
variable. x3 + 13x − 1

2
is

in R3[x], but x
2 − x4 isn’t,

and neither is x2−xy. It’s a
useful convention to define
the degree of 0, the zero
polynomial, to be −∞.
Among other things, this
guarantees that the zero
polynomial is in Rn[x] for
every positive integer n.

properties (2), (4), and (5) of the definition of a vector space to help show that R3[x] is
a vector space under these operations.

Solution. The vectors of R3[x] are polynomials in the form ax3 + bx2 + cx + d, where
a through d are real numbers.

Property (2): Let v = ax3 + bx2 + cx + d and w = ex3 + fx2 + gx + h. Then

v + w = (ax3 + bx2 + cx + d) + (ex3 + fx2 + gx + h)

= (ax3 + ex3) + (bx2 + fx2) + (cx + gx) + (d + h)

= (a + e)x3 + (b + f)x2 + (c + g)x + (d + h)

w + v = (ex3 + fx2 + gx + h) + (ax3 + bx2 + cx + d)

= (ex3 + ax3) + (fx2 + bx2) + (gx + cx) + (h + d)

= (e + a)x3 + (f + b)x2 + (g + c)x + (h + d)

In simpler terms, R3[x] is commutative under addition because it relies on real-number
addition, term by term. ←−

Again, the property relies
on an equivalent property
of real numbers.

Property (4): Let v = ax3 + bx2 + cx + d. Find an element z ∈ R3[x] with

(ax3 + bx2 + cx + d) + z = (ax3 + bx2 + cx + d)

So the question is, “What do I add to ax3 + bx2 + cx + d to get ax3 + bx2 + cx + d?” ←−
Because the degree of 0 is
−∞, 0 is in R3[x].

The zero vector of R3[x] is the zero polynomial: 0 = 0x3 + 0x2 + 0x + 0.

Property (5): Let v = ax3 + bx2 + cx + d. You want to find a polynomial you can add
to this to get 0. As you might expect, you can negate each coefficient (or multiply the
whole thing by −1):

(ax3 + bx2 + cx + d) + (−ax3 − bx2 − cx − d)

= (a − a)x3 + (b − b)x2 + (c − c)x + d

= 0x3 + 0x2 + 0x + 0

= 0

So for any v ∈ R3[x], v + (−1)v = 0. ←−
To show that R3[x] is a
vector space under these
operations, the remaining
properties still need to be
verified.For You to Do

3. Is R3[x] closed under scalar multiplication? Is it closed under polynomial multi-
plication?

4. Is the set of polynomials whose degree is exactly 3 a vector space? Explain.
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In the previous example, it turned out that in R3[x] the negative of a
vector (a polynomial) is the same as −1 times that vector. You can check
that this is also true in R3 and in Mat2×3. In fact, it’s true in every vector
space.

Theorem 7.1

If V is a vector space and v is a vector in V , then −v = (−1)v.

Proof. First, think about what the theorem is saying. You want to show
that the negative of a vector is what you get when you scale the vector by
−1. But “the negative of a vector” is defined by its behavior: a vector w is
the negative of v if, when you add it to v, you get 0. So, to see if (−1)v is ←−

By Exercise 36, there is
only one negative for each
vector.

the same as −v, add (−1)v to v and see if you get 0.

(−1)v + v = (−1)v + 1v why?

= ((−1) + 1)v why?

= 0v why?

= 0 Theorem 7.2 from Exercise 35

For You to Do

5. Complete the missing reasons above. Remember

V is a vector space so it
satisfies all nine properties
given earlier.

Developing Habits of Mind

Find general results. Theorem 7.1 is one of the main reasons that the concept of a
vector space is so useful. This theorem about vector spaces didn’t use any particular
vector space! This means it is true in every vector space. This one theorem gives a result
about Rn, Matm×n, R3[x], and every other vector space you’ll ever meet. So, you don’t
have to prove the same thing multiple times—you prove it once and then are guaranteed
that it holds in every system that satisfies the definition of vector space.

Minds in Action Episode 24

Sasha, Tony, and Derman are pondering this idea of vector space.

Derman: So if anything can be a vector, isn’t everything a vector space?

Tony: I don’t know—it’s a brand new idea. Try making something up!

Derman: All right, let’s do ordered pairs (x, y). What did we call that, R2?

Sasha: Well, you need operations for addition and scalar multiplication.

Derman: I’ll make up something silly: you switch the coordinates each time you make
a calculation! That means

(a, b) + (c, d) = (d + b, a + c)

c(a, b) = (cb, ca)
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Tony: Okay, so you’re saying that’s a vector space?

Derman: Sure, why wouldn’t it be?

Sasha: It has to satisfy those nine properties we just read.

Derman: It satisfies property (1) for sure! If v and w are ordered pairs, then v + w and
cv are ordered pairs.

Tony: Fine, but what about property (2)?

Derman: Hmm. I’ll try an example: v = (2, 5) and w = (10, 3). Then

v + w = (3 + 5, 2 + 10) = (8, 12)

w + v = (5 + 3, 10 + 2) = (8, 12)

Derman: Yes! This is definitely a vector space!

Sasha: Try property (9).

Derman: That should be easy. If v = (2, 5), then 1 · v = (1 · 5, 1 · 2) = (5, 2).

Derman: Shoot. That was supposed to equal (2, 5), since it should be 1v = v.

Sasha: That kills it. It’s not a vector space.

Derman: Really? I guess it does. One counterexample to any of the properties voids
the whole thing.

For You to Do

6. For each of the nine properties, determine whether it is true or false using
Derman’s system. For each property that is false, provide a counterexample or
explain why the property cannot be satisfied.

Example 3

Let R[x] denote the set of polynomials in x with no limit on degree, and define addition
and scalar multiplication in the usual way.

Problem. Is R[x] a vector space under these operations?

Solution. You must show that properties (1)–(9) are satisfied. In this case, any
polynomial is a vector. While formal proofs of each property are possible, a sketch is
provided below.

Property (1). Is the sum of two polynomials another polynomial? If you scale a
polynomial, do you get another polynomial? Yes, every time; so R[x] is closed under
adding and scaling.

Properties (2) and (3). Addition of polynomials is commutative and associative.

Property (4). As seen in the last example, the zero vector for R[x] is the zero ←−
Numbers are polynomials.
Nonzero numbers are
polynomials of degree 0.
The zero polynomial has,
by convention, degree −∞.

polynomial : the number 0.
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Property (5). Given a polynomial f , the coefficients of −1f are the opposites of the
coefficients of f . Therefore, the coefficients of f + −1f must all be zero.

Properties (6) and (7). Because the polynomials’ coefficients are real numbers, you
can use all the properties of R. An example may help, such as

f = 2x2 + 5x + 6, g = 4x3 − 2x2 − 5x − 7, c = 5, d = 3

The details for the specific example can help you construct a proof for general polyno-
mials like f = anxn + an−1x

n−1 + · · · + a1x + a0.

Property (8). As with properties (6) and (7), a specific example can help generate a
detailed proof.

Property (9). In 1f , each coefficient of f is multiplied by 1, leaving it identical. Then
1f = f since all its coefficients are equal.

Since R[x] satisfies all nine properties, it is a vector space, and the “vectors” are
polynomials of any degree.

Minds in Action Episode 25

Derman, Tony, and Sasha are still thinking.

Tony: I dunno. This all seems to me like you’re just changing the way things look. I

mean, 2 × 2 matrices are just vectors in R4. I can write

(
1 2

3 4

)
or (1, 2, 3, 4). I add

them the same way no matter how I write them, and I scale them the same way, too.

Derman: You can multiply matrices.

Tony: Sure, but in this vector space world, you only look at adding and scaling. They’re
the same, I tell you.

Derman: Yeah, and R3[x]—it’s just R4, too. If I call it x3 + 2x2 + 3x + 4 or (1, 2, 3, 4),
it doesn’t matter. Adding and scaling work the same way.

Tony: It’s all just Rn. A rose by any other name . . . .

Sasha: What about R[x]?

Long pause . . .

Tony: Well, that’s different.

Derman: Let’s go to lunch.

Exercises

1. Verify that properties (2)–(9) of a vector space hold for the set of
2 × 3 matrices under addition and scalar multiplication.
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2. Verify properties (1), (6), (7), (8), and (9) for R3[x], the set of
polynomials whose degree is at most 3, under the usual definition
of addition and scalar multiplication.

In Exercises 3–34, determine if the description gives a vector space. Give
a counterexample for each example that is not a vector space, and give a
good explanation for each that is a vector space. Unless otherwise stated,
addition and scalar multiplication are defined as expected.

3. V = R4[x]. This is the set of polynomials whose degree is at most
4.

4. V = the set of polynomials of degree at least 4.

5. V = C, the complex numbers.

6. V is the set of ordered pairs (x, y), but both x and y must be
integers.

7. V is the set of ordered pairs (x, y) with y = 0.

8. V is the set of ordered pairs (x, y) with 2x + 3y = 12.

9. V is the set of ordered pairs (x, y) with 2x + 3y = 0.

10. V is the set of ordered triples (x, y, z) with z = 0. ←−
In Exercises 10–13, V , W ,
U , and S are planes in R3.11. W is the set of ordered triples (x, y, z) with x + y = z.

12. U is the set of ordered triples (x, y, z) with x + y + z = 5.

13. S is the set of ordered triples (x, y, z) with x + y + z = 0.

14. V is the set of 3 × 3 lower triangular matrices.

15. V is the set of 3 × 3 diagonal matrices.

16. V is the set of 3 × 3 symmetric matrices.

17. V is the set of 3 × 3 skew-symmetric matrices.

18. V is the set of all polynomials f with f(3) = 0.

19. V is the set of all polynomials f with f(3) = 1.

20. V is the set of 2 × 2 matrices in the form

(
a 1

1 d

)
.

21. W = ker

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠.

22. U = ker

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠.
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23. S is the set of all linear combinations of the rows of⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠

24. T is the set of all linear combinations of the columns of⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠

25. V is the set of all vectors B that can be written as

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠
⎛
⎝x

y

z

⎞
⎠

for some vector

⎛
⎝x

y

z

⎞
⎠.

26. V is the set of solutions

⎛
⎝x

y

z

⎞
⎠ to the system

⎛
⎝1 4 2

3 0 1

4 4 3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 2

−1

1

⎞
⎠

27. W is the set of solutions

⎛
⎝x

y

z

⎞
⎠ to the system

⎛
⎝1 4 2

3 0 1

4 4 3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠

28. U is the set of solutions

⎛
⎝x

y

z

⎞
⎠ to the system

⎛
⎝1 4 2

3 0 1

4 4 3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝5

3

7

⎞
⎠

29. V is the set of ordered pairs (x, y) with addition as usual, but scaling
is defined by the rule c(x, y) = (2cx, 2cy).

30. V is the set of ordered pairs (x, y) with addition as usual, but scaling
is defined by the rule c(x, y) = (cx, 0).

31. Take It Further. V is the set of 2× 2 matrices

(
a b

c d

)
such that

ad − bc = 1.
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32. V is the set of ordered pairs (x, y) with addition according to the
unusual rule

(a, b) + (c, d) = (ac − bd, ad + bc)

and scalar multiplication as usual.

33. Take It Further. V is the set of all functions f that map the
interval from 0 to 1 into the real numbers

f : [0, 1] → R

where addition and scalar multiplication are defined as in precalcu-
lus:

f + g : [0, 1] → R is defined by (f + g)(x) = f(x) + g(x)

cf : [0, 1] → R is defined by (cf)(x) = c(f(x))

34. Take It Further. The Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, . . .

Each term after the second is the sum of the two terms before it.
The Fibonacci sequence starts with 1, 1, . . . but “Fibonacci-like”
sequences start with any two real numbers and use the same rule.
Here is one:

1

2
,
3

2
, 2,

7

2
,
11

2
, 9, . . .

Let F be the set of all Fibonacci-like sequences. Addition is defined
by adding two sequences term by term, and scaling by c means to
multiply every term in the sequence by c.

35. The steps below lead you through a proof of the following theorem.

Theorem 7.2

If v is a vector in vector space V , then

←−
Why is the second zero in
bold, but not the first?

0v = 0

a. Use property (7) to show that 0v + 0v = 0v.
b. Add −0v on the left of both sides of the above equation to

show that this implies 0v = 0.

36. The following properties are true in any vector space V . Prove them
using the nine properties of a vector space.

a. If v +w = v and v +u = v, then w = u. (In other words, there ←−
Here, all variables stand for
vectors in V .

cannot be more than one distinct zero vector.)
b. If v + w = b and v + u = b, then w = u. (Hint: Use part a.)
c. A vector can have only one negative: if v+w = 0 and v+u = 0,

then u = w.

37. Take It Further. Suppose S is the set of polynomials of degree at
least 5, together with the zero polynomial, 0. Is S a vector space?
Explain your answer.
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38. Take It Further. Patrick says that it shouldn’t be necessary to
check if a vector space is closed under scaling.

Patrick: Look: 3v = v + v + v and 5v = v + v + v + v + v. Scaling
is repeated addition, so if it’s closed under addition, it’s closed
under scaling.

Either show that Patrick is right, or prove him wrong.
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7.3 Subspaces

7.3 Subspaces

The elements of a subset of a general vector space have the same arithmetic
operations as the enclosing space. How can you tell if that subset is also a
vector space? Do you have to check and make sure that all nine properties
are satisfied?

In this lesson, you will learn how to

• determine if a subset of a vector space is also a vector space

• identify the key properties you need to test in order to prove that a
subset of a vector space is a vector space in its own right

Many of the exercises in the last lesson asked you to determine whether
or not a subset of Rn was a vector space under the usual operations of
addition and scalar multiplication. Knowing that you are working within
Rn makes proving some of the nine properties easier, since the known
properties of Rn carry through to any of its subsets. Any subset of Rn must
already have commutativity, associativity, distributivity, and multiplicative
identity. ←−

Six of the nine properties
covered, just like that!The biggest property to worry about is closure under the two operations.

If a subset of Rn fails to be a vector space under the usual operations, it is
due to lack of closure on one or both operations.

Example

Problem. Let S be the set of ordered triples (x, y, z) with x + y + z = 3. Is S a vector
space under the usual operations of addition and scalar multiplication?

Solution. No. Find a counterexample by picking v = (1, 1, 1) and w = (3, 0, 0). By ←−
Either of these counterex-
amples is enough to prove
that S is not a vector space,
since it fails property (1),
closure under addition and
scalar multiplication.

definition, v, w ∈ S. If S is to be a vector space, then v + w = (4, 1, 1) must be in S as
well. But for this vector, x + y + z = 6, and therefore v + w /∈ S. (Why, exactly, do you
know v + w can’t be in S?)

S is not closed under scalar multiplication, either. If v = (1, 1, 1), then cv = (c, c, c),
which is only in S when c = 1.

Note that there was no need to check if S is associative, commutative,
or distributive; these properties are inherited from Rn. More generally, any
subset S of a vector space V , using the same operations as the vector
space, must inherit V ’s commutativity, associativity, distributivity, and
multiplicative identity. More about this shortly. ←−

If there were a counterex-
ample inside S, that coun-
terexample would prove
that V wasn’t a vector
space!

As the example shows, though, not every subset of a vector space V is
itself a vector space. Subsets that are vector spaces are called subspaces.
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Definition

A subset S of a vector space V is a subspace of V if it is a vector space Remember

A vector space is, by
definition, nonempty.

under the same operations defined on V .

Minds in Action Episode 26

Derman: Sasha, you’ve convinced me that not everything can be a subspace.

Sasha: And why is that?

Derman: Because not everything is a vector space. If the thing I pick isn’t a vector
space, it definitely can’t be a subspace.

Sasha: Very smooth. Can you think of any subspaces?

Derman: I thought that set of polynomials . . . what did we call it . . .

Derman flips back to Example 2 from Lesson 7.2 . . .

Derman: Yeah, I think R3[x] is a subspace of something. It’s restrictive.

Sasha: You’d have to find some other vector space that contains R3[x].

Derman: I’ve got it! It’s R[x], the set of polynomials!

Sasha: Nice, I think that works. Is R3[x] a subset of R[x]?

Derman: Well sure! R[x] is all polynomials, and R3[x] is all polynomials of degree less
than or equal to 3. If it’s in R3[x], it has to be in R[x].

Sasha: For this to work, R3[x] and R[x] both have to be vector spaces.

Derman: But we proved that in the last lesson. That means R3[x] is a subspace of R[x]!
Sweet.

Sasha: Nicely done.

For You to Do

1. Find a different subset of R[x] that is also a subspace.

2. Find a different set, other than R[x], in which R3[x] is a subspace.

3. Find a subset of R[x] that is not a subspace of R[x].

Facts and Notation

From now on, if V is a vector space and S is a subset of V that is up for consideration as ←−
Notation: “S is a subset
of V ” is often denoted by
“S ⊂ V ”.

a subspace of V , assume, so that it’s not necessary to say it every time, that the addition
and scalar multiplication in S are the same ones as those in V .
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For Discussion

4. Suppose S is a nonempty subset of a vector space V . Why do properties ((2)),
((3)), ((6)), ((7)), ((8)), and ((9)) in the definition of vector space from Lesson 7.2
automatically hold in S, just because they hold in V ? ←−

Another way to say it: S
inherits these properties
from V .

So, if it’s already known that S is a subset of V , and V is a vector space,
then only three properties must be demonstrated about S for it to be a
subspace:

• S must be closed under addition and scalar multiplication.

• S must contain the zero vector 0, and since S is part of V , it must
be the same zero vector V uses.

• S must contain inverses: for any s ∈ S, s + (−1)s = 0.

The other properties are inherited from V . However, the list can be
shortened even further.

Lemma 7.3

If S is a nonempty subset of a vector space V , and S is closed under scalar
multiplication, then S contains 0 and inverses.

Proof. Consider any element s ∈ S (since S is nonempty, such an element
must exist). S is closed under scalar multiplication, so cs exists for any real
number c. Particularly, consider c = 0 and c = −1:

• Let c = 0. 0s must be in S. As you might suspect, 0s = 0, the zero
vector, so 0 ∈ S. Proving that 0s = 0 requires some finesse of the
other properties of vector space V , and a sketch of the proof is found
in Exercise 35 in the last lesson. The zero vector is contained in S.

• Let c = −1. (−1)s must be in S. Theorem 7.1 proved that for any
v ∈ V , −v = (−1)v. Any s ∈ S is also in V , so −s = (−1)s. Now
consider s + (−1)s:

s + (−1)s = s + (−s) Theorem 7.1

= 0 by definition of negative

S has inverses: for any s ∈ S, s + (−1)s = 0.

So, rather than checking nine properties, you can whittle the list down
to two.

Theorem 7.4

A nonempty subset S of a vector space V is a subspace of V if and only if
it is closed under addition and scalar multiplication.

355



Chapter 7 Vector Spaces

Developing Habits of Mind

Reason about calculations. Lemma 7.3 above states that if S is closed under scalar
multiplication, it has an identity and inverses. What about addition? To show that S
is a subspace of V , you must still show that S is closed under addition. If it isn’t, S
violates property (1) and cannot be a vector space. ←−

Suppose V is the set of
all polynomial functions f
so that either f(3) = 0
or f(4) = 0. Show that
V is closed under scalar
multiplication but not
under addition.

Still, Theorem 7.3 makes life a lot easier. Look back over the exercises from the last
lesson. Most of them describe subspaces! Anything starting with “V is the set of ordered
pairs (x, y) with . . . ” describes a possible subspace of the known vector space R2. The
same is true for ordered triples, polynomials, matrices, and many more. You can now
answer these exercises by showing that V is a subspace of the known vector space. You
must show V is closed under addition and scalar multiplication.

As always, be careful : it must already be clear that the enclosing set is a vector
space. Typically, the enclosing set is Rn or a polynomial or matrix space, using standard
operations. But if the enclosing space or the operations are unusual, watch out!

For Discussion

5. Look back at the exercises from Lesson 7.2. Find as many examples of subspaces
as you can.

Exercises

1. Let V be a vector space. ←−
As with the last lesson,
if not otherwise stated,
assume that the standard
operations for addition and
scalar multiplication are in
use.

a. Is V a subspace of V ? Explain.
b. Let S contain only the zero vector of V . Show that S is a

subspace of V .

In Exercises 2–5, determine which are subspaces of R3.

2. All vectors of the form (a, 0, 0)

3. All vectors of the form (a, 1, 1)

4. All vectors of the form (a, b, c), where b = a + c

5. All vectors of the form (a, b, c), where b = a + c + 1

In Exercises 6–10, determine which are subspaces of Mat2×2(R), the set
of 2 × 2 matrices with real entries.

6. All matrices of the form

(
0 a

b 0

)

7. All matrices of the form

(
a b

c d

)
, where a, b, c, and d are integers
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8. All matrices of the form

(
a b

c d

)
, where a + d = 0

9. All matrices of the form

(
a 3b

2a − b a + b

)
, where a, b ∈ R

10. All 2 × 2 matrices A so that A� = A ←−
What’s another name for a
matrix with A� = A?

11. Which of the following are subspaces of R3[x], the set of polynomials
with degree less than or equal to 3?

a. All polynomials a3x
3 + a2x

2 + a1x + a0, where a0, a1, a2, and
a3 are integers

b. All polynomials a3x
3+a2x

2+a1x+a0, where a0+a1+a2+a3=0
c. All polynomials f(x) = a3x

3+a2x
2+a1x+a0, where f(3) = 0

d. All polynomials f(x) = a3x
3+a2x

2+a1x+a0 that are divisible
by 2x − 3

12. Which of the following are subspaces of RR, the set of real-valued
functions?

a. All functions f so that f(x) < 0 for all x ∈ R

b. All constant functions
c. All even functions: functions f such that f(x) = f(−x) for all

x ∈ R

13. Consider S, the set of solutions to⎛
⎝3 7 −3

1 1 4

4 2 4

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝4

5

6

⎞
⎠

Is S a subspace of R3? Explain how you know.

14. Consider V = R2[x] and S, the set of polynomials of the form
ax2 + bx with a, b ∈ R. Is S a subspace of V ? Explain how you
know.

15. Show that the kernel of

⎛
⎝1 4 7

2 8 3

1 4 −4

⎞
⎠ is a subspace of R3.

16. Take It Further. Show that the kernel of any 3 × 3 matrix is a
subspace of R3, or find a counterexample.

In Exercises 17–31, determine whether S is a subspace of V .

17. S is the set of ordered triples (x, y, x + y), V is R3.

18. S is the set of ordered triples (x, y, z) with x− y + 2z = 0, V is R3.

19. S is the set of ordered 4-tuples (x, y, z, w) with x − y + z − w = 4,
V is R4.

20. S is the set of ordered 4-tuples (x, y, x − y, x + 2y), V is R4.
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21. S is the set of ordered triples (x, y, z) with x+y = z and 2x+y = 2z,
V is R3.

22. S is the set of matrices of the form

(
a b

a a + b

)
with a, b ∈ R, V is

Mat2×2(R), the set of 2 × 2 matrices.

23. S is the set of matrices of the form

(
x x − y

1 2x

)
with x, y ∈ R, V is

Mat2×2(R), the set of 2 × 2 matrices.

24. S is the set of matrices of the form

(
x x − y

0 2x

)
with x, y ∈ R, V is

Mat2×2(R), the set of 2 × 2 matrices.

25. S is the set of linear combinations of the columns of

⎛
⎝1 4 2

3 1 4

4 5 6

⎞
⎠, V

←−
In the next lesson, this set
will be called the column
space of a given matrix.

is R3.

26. S is the kernel of

⎛
⎝1 4

7 2

1 3

⎞
⎠, V is R3.

27. S is the set of vectors in R3 perpendicular to (4, 1, 3), V is R3.

28. Take It Further. S is the set of vectors in R3 perpendicular to
(a, b, c), V is R3.

29. S is the set of polynomials in the form a(7x2+1)+b(2x3−3x2+5),
where a, b ∈ R, V is R3[x].

30. S is the set of vectors of the form a(0, 7, 0, 1) + b(2,−3, 0, 5) where
a, b ∈ R, V is R4.

31. S is the set of solutions to

⎛
⎝4 1 7

3 1 0

7 −1 2

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝3

1

2

⎞
⎠, V is R3.

32. Find three spaces, A, B, and C, so that A is a subspace of B and
B is a subspace of C. Is A also a subspace of C?

33. Are subspaces transitive? In other words, if A is a subspace of B
and B is a subspace of C, does that force A to be a subspace of C?
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7.4 Linear Span and Generating Systems

You already know how to tell if a vector is a linear combination of a
set of given vectors. This lesson will look at all vectors that are a linear
combination of a given set of vectors.

In this lesson, you will learn how to

• find a generating system for a vector space

• determine if a given vector is in the linear span of a set of vectors

• determine if a set of vectors generates a vector space

For You to Do

1. Show that the point (11,−1, 16) lies in the plane spanned by the vectors (1,−3, 4)
and (2, 2, 1).

2. Show that there exist real numbers c1 and c2 so that

11x2 − x + 16 = c1(x
2 − 3x + 4) + c2(2x2 + 2x + 1)

3. Show that there is a solution to⎛
⎝ 1 2

−3 2

4 1

⎞
⎠(x

y

)
=

⎛
⎝11

−1

16

⎞
⎠

The three For You to Do problems above are very similar. The term
linear combination applies to vectors, but something more general is
happening in all three problems. If you think of the more general concept of
vector used in this chapter, these three problems are essentially identical. ←−

You could say they are
isomorphic. More on that
later.

The general concept of linearity leads to this definition of linear span.

Definition

Let v1, v2, . . . , vn be elements of vector space V . The linear span S of
this set of vectors is the set of all combinations in the form

c1v1 + c2v2 + · · · + cnvn

where ci ∈ R.

The notation L{v1, v2, . . . , vn} represents the linear span of a set of
vectors.

If S is the linear span of a set of vectors {v1, v2, . . . , vn}, then v ∈ S if ←−
Vector here means the
more general concept, so
it could be a polynomial,
matrix, or something else.

it can be written as

v = c1v1 + c2v2 + · · · + cnvn

for real numbers c1 through cn.
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Example 1

Problem. Consider polynomials v1 = x2 + 1, v2 = x2 − 1, and v3 = x2 + x + 1. Let
S be the linear span of v1, v2, and v3. Which of the following expressions are in S =
L{x2 + 1, x2 − 1, x2 + x + 1}?

a. 2x2 b. 5x2 + 6x + 5 c. x3 d. 0

Solution.

a. To show that 2x2 is in S, find a, b, c with ←−
You could also use c1, c2, c3
here, but with a low num-
ber of variables, subscripts
are often unnecessary.

a(x2 + 1) + b(x2 − 1) + c(x2 + x + 1) = 2x2

The left side can be expanded and then collected term-by-term to get

(a + b + c)x2 + (c)x + (a − b + c) = 2x2

2x2 is in S if there exist a, b, c that solve this system:

a + b + c = 2

c = 0

a − b + c = 0

The solution is a = 1, b = 1, c = 0. Since a solution exists, 2x2 is in the linear span
of these vectors. That is, ←−

Here, the term vectors is
being used in the sense of
elements of a vector space.

1(x2 + 1) + 1(x2 − 1) + 0(x2 + x + 1) = 2x2

a fact that you can check.

b. Similarly, 5x2 + 6x + 5 is in S if there is a solution to this system:

a + b + c = 5

c = 6

a − b + c = 5

The solution is a = −1, b = 0, c = 6, and, sure enough,

−1(x2 + 1) + 0(x2 − 1) + 6(x2 + x + 1) = 5x2 + 6x + 5

c. x3 is not in S: since a, b, and c can only be real numbers, there is no way for
a(x2 + 1) + b(x2 − 1) + c(x2 + x + 1) to have degree higher than 2. If you wanted
to include x3 in the linear span of some set of vectors, at least one of the vectors
would have to have degree 3 or higher. (Why?)

d. 0 is definitely in S: Remember

In R[x], the zero vector, 0,
is the number 0.0 = 0(x2 + 1) + 0(x2 − 1) + 0(x2 + x + 1)

Similarly, the zero vector for a vector space must be part of the linear span of any ←−
Can you write 0 as a linear
combination of these three
polynomials in another
way?

nonempty set of vectors.
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For Discussion

4. Suppose p = kx2 +mx+n. Is p ∈ S for any choice of real numbers k, m, n? Some
of your work from previous chapters may be helpful.

When working with matrices, two specific vector spaces come up fre-
quently. One vector space’s elements are the rows of the matrix, and the
other’s elements are the columns.

Definition

Given an m × n matrix A, the row space of A is the linear span of m
vectors, the rows of A. The column space of A is the linear span of n
vectors, the columns of A.

Put another way, the row space of A is the set of linear combinations of
the rows of A. The column space of A is the set of linear combinations of
the columns of A.

For You to Do

5. Write down a 2× 3 matrix, and then determine its row space and column space.
Then, describe the row space geometrically within R2, and describe the column
space geometrically within R3.

The vectors that are used to construct a linear span come from a vector
space V . Since V is closed under addition and scalar multiplication, the
linear span S must be contained in V . It makes sense, then, to ask whether
a linear span is a subspace of V . As it turns out, it is.

Theorem 7.5

Let v1, v2, . . . , vn be vectors in a vector space V . If S = L{v1, v2, . . . , vn},
then S is a subspace of V .

Proof. As seen in the last lesson, it suffices to show that S is closed under
addition and scalar multiplication. If s ∈ S, then s = c1v1+c2v2+· · ·+cnvn
for real numbers c1 through cn.

• Addition. Let s, t ∈ S; prove that (s + t) ∈ S. To do this, write
(s + t) in terms of the initial vectors v1 through vn:

s = c1v1+ c2v2+ · · · + cnvn

t = d1v1+ d2v2+ · · · + dnvn

(s + t) = (c1 + d1)v1+ (c2 + d2)v2+ · · · + (cn + dn)vn

The properties needed to combine terms on the right come from the
known properties of V , especially property (7): cv +dv = (c+d)v for
any v ∈ V .
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Since (s+t) can be written in terms of v1 through vn, it is an element
of the linear span S.

• Scalar multiplication. Let s ∈ S; prove that ks ∈ S for any real
number k. This can be quickly done by calculating ks directly:

s = c1v1+ c2v2+ · · · + cnvn

ks = (kc1)v1+ (kc2)v2+ · · · + (kcn)vn

Again, this relies on properties of V , particuarly property (8): c(dv) =
cd(v) for any real numbers c, d, and v ∈ V .

Since you have shown S is closed under addition and scalar multiplica-
tion, S is a subspace of V .

Developing Habits of Mind

Seek structural similarity. The definition of linear span is closely tied to the definition
of linear combination. And many of the results are similar. Theorem 7.5 can be thought
of as a parallel to these statements about linear combinations:

If v and w are linear combinations of a set of vectors, then so are v + w and
kv for any real number k.

If you add a new vector to a set, does it automatically increase the set of linear
combinations? Try a numerical example. Is (7, 8, 9) a linear combination of (1, 2, 3) and
(3, 3, 3)? It is (right?). What, then, does the set of linear combinations of (1, 2, 3), (3, 3, 3),
and (7, 8, 9) look like? Does adding (7, 8, 9) increase the set of linear combinations?

Try again, adding (5, 6, 9), which isn’t a linear combination of (1, 2, 3) and (3, 3, 3).
Now what happens?

If you keep thinking about linear combinations, you’ll have a strong sense of what
happens with the more general concept of linear span.

The experiment above helps motivate the following theorem and corol-
lary.

Theorem 7.6

Let S = L{v1, v2, . . . , vn} and v ∈ S. Then S is also the linear span of
{v1, v2, . . . , vn, v}. That is, S = L{v1, v2, . . . , vn, v}

Proof. To prove that S is the linear span of {v1, v2, . . . , vn, v}, there are
two parts.

• If s ∈ S, then s = c1v1 + c2v2 + · · ·+ cnvn + cn+1v. There is already a
way to write s in terms of v1 through vn, so let cn+1 = 0. Therefore,
s can be written in terms of c1 through cn+1. Anything in S is in the
linear span of {v1, v2, . . . , vn, v}.
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• If s = c1v1 + c2v2 + · · ·+ cnvn + cn+1v, then s can also be written in
terms of just v1 through vn. Since v ∈ S, it can be rewritten in terms
of v1 through vn: ←−

To show that something
is in the linear span of
v1 through vn, show
that it can be written as
c1v1 + · · ·+ cnvn.

s = c1v1 + c2v2 + · · · + cnvn + cn+1v

= c1v1 + c2v2 + · · · + cnvn + cn+1(d1v1 + d2v2 + · · · + dnvn)

= (c1 + cn+1d1)v1 + (c2 + cn+1d2)v2 + · · · + (cn + cn+1dn)vn

The actual coefficients on the last line aren’t important, but the fact
that s can be written only in terms of v1 through vn is. Since it can
be written this way, s ∈ S.

Any element in S is in the linear span of {v1, v2, . . . , vn, v}, and any
element in the linear span must also be in S. Therefore, the two sets are
equal, and S is the linear span.

This quick corollary follows, since the zero vector must always be in any
nonempty vector space.

Corollary 7.7

Let S = L{v1, v2, . . . , vn}. Then S is also L{v1, v2, . . . , vn,0}.

Theorem 7.6 shows that there can be more than one set of vectors with
the same linear span. Of particular interest are sets of vectors whose linear
span covers an entire vector space V .

Definition

Let v1, v2, . . . , vn be vectors in a vector space V . The set of vectors
{v1, v2, . . . , vn} is a generating system for V if L{v1, v2, . . . , vn} = V .

Example 2

Problem. Find a generating system for R2[x], the set of polynomials of degree less
than or equal to 2.

Solution. There are many possible answers. One simple answer is

v1 = x2

v2 = x

v3 = 1

Consider an element in R2[x], say v = 3x2 − 5x + 7. Then v = 3v1 − 5v2 + 7v3, so v is
in the linear span of v1, v2, and v3.

In fact, any v = ax2 + bx + c can be written as v = av1 + bv2 + cv3, proving that any
element in R2[x] is part of the linear span of these vectors. And since each vi ∈ R2[x],
there is a guarantee that the linear span can’t be anything larger. These vectors are a
generating system for R2[x].
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For You to Do

6. Find two other generating systems for R2[x].

Minds in Action Episode 27

Sasha: What’d you get for your generating system?

Derman: You first.

Sasha: I looked at Example 1 from Lesson 7.4. I am pretty sure this is a generating
system:

v1 = x2 + 1, v2 = x2 − 1, v3 = x2 + x + 1

Derman: Hmm, yours only has three things in it, just like the simple one they gave
with x2, x, and 1.

Sasha: Oh. Doesn’t yours also have three vectors?

Derman: I’m not even sure how many vectors mine has.

Sasha: Well, read me your list.

Derman: Okay, I got x2, x, 1, 2x2, 2x, 2, 3x2, 3x, 3, x + 1, 2x + 1, x2 + 1,−x,−2x. I could
keep going like this for a long time.

Sasha: I’ll bet. How can your giant list be a generating system?

Derman: It just has to be true that you can make anything ax2+bx+c with the pieces.
They never said how many pieces.

Sasha: Yeah, but some of your pieces seem unnecessary. You don’t need 2x2 if you
already have x2. And you don’t need x + 1 if you already have x and 1.

Derman: So what? It’s still a generating system, right?

Sasha: I guess it is. But isn’t it a nuisance having all that extra stuff? I’d think you’d
want it to be as small as possible.

Derman: Small like yours, you mean. Do you know yours is the smallest? Could it be
done with just two vectors instead of three?

Sasha: I have no idea.

For Discussion

7. Is there a pair of polynomials v1 and v2 such that L{v1, v2} = R2[x], or are three
necessary for a generating system?

Exercises
1. Prove Corollary 7.7 using Theorem 7.6.

2. Prove that Sasha’s choices from the dialogue above are a generating
system for R2[x].
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For Exercises 3–6, determine whether or not the given vector is in the given
linear span.

3. (3, 6, 9) in L{(1, 4, 6), (2, 5, 8)}

4. (3, 6, 0) in L{(1, 4, 7), (2, 5, 8)}

5. x2 + 1 in L{1 + x, 1 − x}

6. x2 + 1 in L{1 + x, 1 − x, x2}

For each vector space described in Exercises 7–28, find a generating system.

7. Mat3×3(R)

8. Ordered triples (x, y, z) with z = 0

9. R4

10. Ordered triples in the form (a, b, 2a + 3b)

11. Matrices of the form

(
a b

b b − a

)

12. Matrices in the form

(
a b + a a − b

b a − b 2a − b

)

13. Ordered triples (x, y, z) with x + y − 2z = 0

14. ker

(
1 2 3

4 5 6

)

15. ker

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠

16. ker

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠

17. The column space of

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠

18. The column space of

⎛
⎝1 2 3 2

4 5 6 0

7 8 9 3

⎞
⎠

19. The column space of

⎛
⎝1 2 3 4

4 5 6 10

7 8 9 16

⎞
⎠
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20. The set of 3 × 3 diagonal matrices

21. The set of 3 × 3 symmetric matrices

22. The set of 3 × 3 upper triangular matrices

23. The set of 3 × 3 skew-symmetric matrices

24. The set of strictly upper triangular 4 × 4 matrices

25. R2[x] 26. R3[x] 27. R4[x] 28. R[x]

For Exercises 29–38, determine whether the given set is a generating system
for the corresponding vector space. Justify your answers.

29. {(1, 0, 0), (0, 1, 0), (0, 0, 1)} for R3

30. {(1, 10, 0), (0, 1, 1), (0, 0, 1)} for R3

31. {(1, 2, 3), (4, 5, 6), (7, 8, 9)} for R3

32. {(1, 2), (3, 6)} for R2

33. {(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 0), (0, 0, 0, 1)} for R4

34.

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
for Mat2×2 R

35.

{(
1 2

0 0

)
,

(
0 1

2 0

)
,

(
0 1

1 0

)}
for Mat2×2 R

36.

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 2

)
,

(
0 0

0 1

)}
for Mat2×2 R

37. {x2, x − 1, 1} for R2[x]

38. {1 + x, 1 − x, x2} for R2[x]

39. Find a generating system for the column space of

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠.

40. Find an independent generating system for the column space of⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠.

Remember

A set of vectors is inde-
pendent if every nonzero
linear combination of the
vectors is nonzero . . . or if
its kernel is zero . . . or . . .

41. Find an independent generating system for the row space of⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠.
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For Exercises 42–44, prove that each set is a generating system for the
corresponding vector space.

42. {(1, 0,−1), (0, 1, 2)} for the row space of

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠

43. {(1, 1, 2), (−3,−2, 2), (11, 8, 11)} for R3

44. {1 + x, 1 − x, 1 + x2} for R2[x]
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7.5 Bases and Coordinate Vectors

In past chapters, you have become very familiar with linear dependence
and independence of n-tuples. This chapter has introduced more general
vector spaces. It is natural to extend the definitions of linear dependence,
independence, and generating system to sets of vectors in a general vector
space V . Then each linearly independent generating system for V will
be used to build a structure-preserving relation between V and the more
familiar n-tuples.

In this lesson, you will learn how to

• determine whether a set of vectors is a basis for a vector space

• find the dimension of a vector space

• determine the dimension of the row and column spaces for a given
matrix, as well as the dimension of its kernel

• find the coordinate vector of any vector given a basis for a vector
space

For You to Do

1. Which of these are generating systems for R2[x] under the standard operations?

a. {x2 + 1, 2x + 1}
b. {x2 + 1, x2 − 1, x2 + x + 1}
c. {x2 + 1, x2 − 1, x2 + x + 1, 2x + 1}
d. {x2, x, 1}
e. {x2, x, 1, 2x2, 2x, 2}

The problem above shows that there are many generating systems for
a given vector space, but some seem more useful than others. The key lies
in an understanding of linear independence. Recall the definitions of linear
dependence and independence from Chapter 3:

• Vectors A1, A2, . . . , Ak are linearly dependent if there are numbers
c1, c2, . . . , ck that are not all zero so that c1A1+c2A2+· · ·+ckAk = O,
where O = (0, 0, . . . , 0).

• On the other hand, the vectors are linearly independent if the only
solution to c1A1 + c2A2 + · · · + ckAk = O is c1 = c2 = · · · = ck = 0.

This definition carries over quite nicely into vector spaces.
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Definition

Given a vector space V with elements v1, v2, . . . , vk,

• Vectors v1, v2, . . . , vk are linearly dependent if there are numbers
c1, c2, . . . , ck that are not all zero so that c1v1 +c2v2 + · · ·+ckvk = 0. ←−

This equation uses what-
ever addition and scalar
multiplication operations
are defined for the vector
space.

• On the other hand, the vectors are linearly independent if the
only solution to c1v1+c2v2+ · · ·+ckvk = 0 is c1 = c2 = · · · = ck = 0.

For all practical purposes, this is the same definition. And the corollaries ←−
See Theorem 3.2 from
Lesson 3.4.

that follow are the same, too; of particular use is a theorem that if any of
v1 through vk can be written as a linear combination of the others, the set
is linearly dependent.

For Discussion

2. For each set of vectors in For You to Do problem 1, determine whether it is
linearly independent over R2[x] under the standard operations.

When a generating system of vectors is linearly independent, it is called
a basis .

Definition

Let v1, v2, . . . , vn be vectors in a vector space V . The set of vectors
{v1, v2, . . . , vn} is a basis for vector space V if they are linearly
independent and form a generating system for V . In this book, a basis ←−

A basis for V is a linearly
independent generating
system.

is often denoted by gothic letters, like B.

Facts and Notation

Every vector space does indeed have a basis. Unfortunately, this fact is difficult to prove,
so consider it an assumption for this course.

While all vector spaces have a basis, some vector spaces do not have finite bases—
bases that contain a finite number of vectors. A good example is R[x], the vector space
of polynomials of any degree. A vector space with a finite basis is called finite dimen- ←−

. . . and a vector space that
does not have a finite basis
is called infinite dimen-
sional .

sional .

The following lemma will be useful in the rest of this chapter. It is
a direct consequence of the Fatter Than Tall Theorem (Theorem 5.14
from Lesson 5.6) and a restatement of a corollary (Corollary 5.15) to that
theorem.

Lemma 7.8 (Formerly Corollary 5.15)

Any set of more than n vectors in Rn is linearly dependent.

Minds in Action Episode 28

Tony, Sasha, and Derman are contemplating bases.
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Tony: So, Lemma 7.8 implies that any set of more than n vectors in Rn can’t be a basis
for Rn. There are no six-vector bases of R4.

Derman: Can three vectors be a basis for R4?

Tony: I don’t think so . . . I bet I could prove that if you gave me some time. Let me
think about it tonight.

Derman: OK, how about this one: if n vectors in Rn are linearly independent, must
they form a basis?

Sasha: (after they pause to think) Yes. And I think we can prove it. Suppose, just for
example, that you have four linearly independent vectors in R4, say {v1, v2, v3, v4}. ←−

Sasha is using lowercase
letters, even though she
imagines that the vectors
are in R4.

To be a basis for R4, I need to show that it generates R4. So, pick a vector v in R4. I
want to show that it can be written as a combination of my alleged basis.

Derman: Wow, “alleged.” That’s police talk.

Sasha: My idea is that, by the lemma, {v1, v2, v3, v4, v}, five vectors in R4, must be
linearly dependent.

Tony: Bingo. Yes, that means that you get a combination like

c1v1 + c2v2 + c3v3 + c4v4 + cv = 0

with the c’s not all zero. So, solve this for v—subtract cv from both sides and divide
both sides by −c. You’ve got v as a combo of the alleged basis.

Sasha: Blah. All that linearly dependent means is that at least one of the coefficients
in

c1v1 + c2v2 + c3v3 + c4v4 + cv = 0 (∗)
is not 0. But what if c is 0? Then you can’t solve for v because you can’t divide by
−c. I feel like we’re on the right track, but this doesn’t quite work.

More thinking . . .

Derman: Look, if c = 0, equation (∗) becomes

c1v1 + c2v2 + c3v3 + c4v4 = 0

Tony: Bingo again. But because {v1, v2, v3, v4} is independent, we have c1 = c2 = c3 =
c4 = 0. So if c = 0, then all the c’s would be zero, c1 = c2 = c3 = c4 = c = 0 and that
can’t be.

Sasha: Great. So, c �= 0 and we can solve for v. Done.

Derman: What were we trying to prove again?

The reasoning in this episode leads to the following theorem.

Theorem 7.9

Any set of n linearly independent vectors in Rn is a basis for Rn.
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For You to Do

1. Use the reasoning in the dialogue to prove Theorem 7.9.

Example 1

Problem. For each set of vectors, determine whether it is a basis for R3.

1. {(1, 0, 1), (0, 2, 1)}
2. {(1, 0, 1), (1, 0,−1), (1, 1, 1)}
3. {(1, 0, 1), (1, 0,−1), (1, 1, 1), (0, 2, 1)}

Solution. For the first two sets of vectors, write them as the columns of a matrix. To
test for independence, reduce the matrix to echelon form.

1. These two vectors are the columns of the 3 × 2 matrix

⎛
⎝1 0

0 2

1 1

⎞
⎠. It is possible to

see that these are independent by inspection, or find the echelon form:

⎛
⎝1 0

0 2

1 1

⎞
⎠→

⎛
⎝1 0

0 1

0 0

⎞
⎠

However, these two vectors do not form a generating system for R3, since the set ←−
What’s an equation of the
form X · N = d for this
plane?

of linear combinations forms a plane. Any point not on that plane is not a linear
combination of the columns of the original matrix, and hence these vectors are not
a basis for R3 since they are not a generating system.

2. These three vectors are the columns of the 3×3 matrix M =

⎛
⎝1 1 1

0 0 1

1 −1 1

⎞
⎠. Reduce

this matrix to echelon form:

⎛
⎝1 1 1

0 0 1

1 −1 1

⎞
⎠→

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠

Since the echelon form is the identity matrix, you can invoke the TFAE Theorem
(Theorem 4.19 from Lesson 4.6) to conclude that the vectors are independent.
They also form a generating system for R3. To see this, let B be any vector in
R3, written as a column. By the same Theorem 4.19, MX = B has a (unique)
solution. But MX is a linear combination of the columns of M . So, the columns ←−

MX is a linear combina-
tion of the columns of M
by the Pick-Apart Theo-
rem (Theorem 4.8 from
Lesson 4.5).

of M (the original three vectors) generate R3. Therefore, these three vectors are a
basis for R3.

3. These are four vectors in R3, so by Lemma 5.15, they are linearly dependent and
hence can’t be a basis.
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Developing Habits of Mind

Note general results. The logic in the last part of the example above does not consider
the actual vectors! Lemma 5.15 implies that any set of more than n vectors cannot be a
basis for Rn.

An important question remains:

Is the same story true for other vector spaces? If so, how would you calculate
the right n for a particular vector space?

This question will lead to the main result of this lesson. You will show that any two ←−
Attention is restricted to
finite bases in this chapter.

bases of the same vector space contain the same number of vectors . This is one of the
most important results in linear algebra. The remainder of this lesson is technical, so be
prepared. It will help, as you go through it, to keep several numerical examples at hand.

The observations made about Rn are surprisingly applicable to other
vector spaces, and the key is the coordinate vector. Given a basis
B = {v1, v2, . . . , vn} for a vector space V , consider any vector v ∈ V .
Since B is a generating system, then there must exist coefficients so that

v = c1v1 + c2v2 + · · · + cnvn

Definition

Let B = {v1, v2, . . . , vn} be a basis for a vector space V . For any vector
v ∈ V , its coordinate vector with respect to B is an element of Rn,
(c1, c2, . . . , cn), such that

v = c1v1 + c2v2 + · · · + cnvn

The coordinate vector for v with respect to B is denoted by vB.

Facts and Notation

It takes a little time to get used to the “underline” notation vB. Think of it as “the
coordinates of v with respect to B.”

For You to Do

3. Consider R2[x]. One basis for this vector space is ←−
You haven’t proven that
this is a basis, but you will
prove it by the end of the
lesson.

B = {x2 + 1, x2 − 1, x2 + x + 1}

For each vector v ∈ R2[x] below, find vB.

a. 2x2 + 2 b. 2 c. 3x2 − 5x + 7

d. Take It Further. ax2 + bx + c in terms of a, b, and c
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Minds in Action Episode 29

Sasha: Wait a minute. This definition says “its coordinate vector.” I’m not convinced
these are unique.

Derman: You should be more trusting.

Sasha: Yeah, yeah. Could we prove they are unique?

Derman: What if two coordinate vectors corresponded to the same vector?

Sasha: That’s a great idea. If that happened with the coordinate vectors, we could look
at . . . (Sasha mumbles a bit while thinking.)

For Discussion

4. Construct a proof that for any basis, the corresponding coordinate vectors must ←−
See Exercise 27.be unique. That is, show that if V is a vector space with basis B, every vector

w in V has one and only one coordinate vector with respect to B.

For You to Do

Suppose V is a vector space with basis B = {v1, . . . , vn}.

5. Show that 0B = O = (0, 0, 0, . . . , 0).

6. Show that every vector in Rn is the coordinate vector for some vector in V .

Assigning coordinate vectors with respect to a basis is a way to take the
vectors in any vector space V and make them look like the vectors from
Chapter 1: n-tuples in Rn. And the correspondence v �→ vB is a one-to-
one correspondence—every vector in V corresponds to exactly one n-tuple, ←−

Tony had a premoni-
tion about this idea in
Episode 25.

and vice versa. This correspondence does more than match up vectors in
V with n-tuples. It is also structure preserving in the sense of the
following theorem.

Theorem 7.10

Let V be a vector space with basis B. If v, w ∈ V have coordinate vectors c ←−
Think of this theorem as
the statement, “coordinate
vectors respect structure.”

and d, then

(1) v + w has coordinate vector c + d

(2) kv has coordinate vector kc

In other words,

(1) v + w
B

= vB + wB

(2) kvB = kvB

←−
In other words, the map
v �→ vB enjoys the
“linearity” properties
of Theorem 5.1 from
Lesson 5.2.
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Proof. Both proofs rely on the fact that v, w ∈ V , a known vector space.
Let v have coordinate vector c = (c1, c2, . . . , cn) and w have coordinate
vector d = (d1, d2, . . . , dn). This means

v = c1v1 + c2v2 + · · · + cnvn

w = d1v1 + d2v2 + · · · + dnvn

where v1 through vn are the vectors in basis B. To prove that v + w has
coordinate vector c + d, compute the vector directly.

v + w = (c1v1 + · · · + cnvn) + (d1v1 + · · · + dnvn)

= (c1v1 + d1v1) + (c2v2 + d2v2) + · · · + (cnvn + dnvn)

= (c1 + d1)v1 + (c2 + d2)v2 + · · · + (cn + dn)vn

Therefore, the coordinate vector of v + w is (c1 + d1, c2 + d2, . . . , cn + dn),
which equals c + d.

For Discussion

7. In a similar fashion, prove the second half of Theorem 7.10.

So, the correspondence that assigns vectors in V to coordinate vectors
in Rn is very tight:

1. it associates each vector in V with exactly one n-tuple, and vice versa,
and

2. it associates addition in V with addition in Rn and scalar multipli-
cation in V with scalar multiplication in Rn.

Such a correspondence, one that maps objects to objects and operations to ←−
Because of item 1a, the
representation is said to be
faithful.

operations, is called a representation , and the correspondence v �→ vB

is said to be a “representation of V ”.

Theorem 7.10 leads to the following corollary.

Corollary 7.11

Suppose V is a vector space, B is a basis, w1, . . . , wk is a collection of
vectors, and c1, . . . , ck is a collection of scalars. Then

c1w1 + · · · + ckwkB
= c1w1B

+ · · · + c1wkB

For You to Do

8. Use Theorem 7.10 to prove Corollary 7.11.
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Corollary 7.11 leads to the following theorem.

Theorem 7.12

Suppose V is a vector space with a basis B that contains n vectors. A ←−
In short, this theorem
states that “coordinate
vectors respect linear
independence.”

collection of vectors w1, . . . , wk is linearly independent in V if and only if
its coordinate vectors with respect to B are linearly independent in Rn.

For Discussion

9. Write out a careful proof of Theorem 7.12.

Minds in Action Episode 30

Next day, Tony comes into class, all excited.

Tony: I was up all night thinking of what we were discussing in Episode 28. Remember?
Derman said, “Can three vectors be a basis for R4?” and I said, “I don’t think so . . .
I bet I could prove that if you gave me some time. Let me think about it tonight.”
Well, I think I have it. The key is Theorem 7.12.

Derman: You remember episode numbers?

Tony: Yes. Anyway, my idea goes like this: we know that one basis for R4 contains four
vectors:

Z = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}
Suppose you had another basis with only three vectors in it, say ←−

Tony is imagining that each
vi is a vector in R4.B = {v1, v2, v3}

Since B generates R4, I can write each element of Z as a combination of vectors in
B, like this:

(1, 0, 0, 0) = a11v1 + a12v2 + a13v3

(0, 1, 0, 0) = a21v1 + a22v2 + a23v3

(0, 0, 1, 0) = a31v1 + a32v2 + a33v3

(0, 0, 0, 1) = a41v1 + a42v2 + a43v3

Derman, would you please write out the coordinate vectors for each element of Z with
respect to B?

Derman writes on the board with a little flourish.

(1, 0, 0, 0)
B

= (a11, a12, a13)

(0, 1, 0, 0)
B

= (a21, a22, a23)

(0, 0, 1, 0)
B

= (a31, a32, a33)

(0, 0, 0, 1)
B

= (a41, a42, a43)
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Tony: Thank you. Now Sasha, what do you see here?

Sasha: Oh, very smooth, Tony. On the right, I see four vectors in R3. By Lemma 7.8,
these four vectors are linearly dependent. I get it . . .

Tony: So, by Theorem 7.12, the vectors on the left are linearly dependent. But these
are our basis Z vectors, and we know that they are independent.

Derman: That’s crazy.

Tony: Well, it’s a contradiction. It says that the alleged basis B isn’t a basis after all.

Sasha: So there are no three-vector bases of R4. This must work in general.

Derman: I feel a theorem coming on.

Theorem 7.13 (Invariance of Dimension)

Let Z and B be two bases for a vector space V . Z and B must have exactly
the same number of elements.

For You to Do

10. Write out a careful proof of Theorem 7.13.

Definition

The dimension of a vector space V , denoted by dim(V ), is the number Remember

This book considers only
finite-dimensional vector
spaces.

of elements in any basis of V .

Example 2

Problem. Determine the dimension of the vector space of 2 × 2 matrices.

Solution. The dimension of a vector space is the number of elements in any basis.
Find a basis for Mat2×2(R), the set of 2 × 2 matrices. One obvious basis is{(

1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
These four matrices are independent, since there is no nonzero linear combination of
these matrices that produces a matrix of all zeros. Additionally, these four matrices
form a generating system; the linear span of these four matrices is the set of all possible
2 × 2 matrices.

Therefore, this is a basis for Mat2×2(R), and the dimension of this vector space is 4.

Developing Habits of Mind

Seek similar structures. It’s a good idea to stand back from all the details and look
at the main results of this lesson and how they relate to the rest of the course.
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1. In Chapter 1, you learned about the algebra of Rn and developed some basic rules ←−
These basic rules are
listed in Theorem 1.2 (see
Lesson 1.2).

for calculating with vectors.

2. In Chapter 4, you developed an algebra of matrices, and these same rules for
calculating held.

3. In this chapter, you defined a vector space to be any structure that enjoyed these
rules for calculation.

4. Now things come full circle. These arbitrary vector spaces (at least the finite-
dimensional ones) are really Rn in disguise. The coordinate vector map allows you
to represent any vector space as Rn for some n.

5. And with any finite-dimensional vector space V , you can associate a dimension—
an integer n that is the size of any basis for V .

As a final application of all this, you can add to the TFAE theorem of
Chapter 4 (Theorem 4.19 from Lesson 4.6).

Theorem 7.14 (The TFAE Theorem)

The following statements are all equivalent for an n × n matrix A:

(1) The columns of A are linearly independent.

(2) rref(A) = I.

(3) A−1 exists.

(4) AX = B has a unique solution for any B.

(5) ker(A) = O.

(6) The dimension of the column space of A is n.

For You to Do

11. Suppose the dimension of the column space of A is n. Show that at least one of
the other conditions in Theorem 7.14 is true—and therefore, all are true.

Exercises

For Exercises 1–16, determine whether the set is a basis for the given vector
space.

1. {(1, 1, 0), (0, 1, 1), (0, 0, 1)} for R3

2. {(1, 4), (2, 3)} for R2

3.

{(
1 0

0 0

)
,

(
0 1

1 0

)
,

(
0 0

1 1

)
,

(
0 0

0 1

)}
for Mat2×2(R), the set of 2×

2 matrices

4. {(1, 2, 3), (4, 5, 6), (7, 8, 9)} for R3
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5. {(1, 2, 3), (4, 5, 6), (7, 8, 0)} for R3

6. {(1, 2, 3), (4, 5, 6), (7, 8, 0), (1, 4, 7)} for R3

7. {1 + x, 1 − x, x2} for R3[x]

8. {1 + x, 1 − x, x2} for R2[x]

9. {(1, 0, 1), (3, 1, 2)} for L{(1, 0, 1), (3, 1, 2), (4, 1, 3)}

10. {(1, 2, 3), (2, 5, 3), (3, 7, 8)} for R3

11. {(1, 3, 2), (2, 5, 4), (7, 2,−6), (3,−1, 4)} for R3

12. {x2 + 1, 3 − x2, x3} for R3[x]

13. {x2 + x, 3x − x2, x3} for R3[x]

14. {(1, 3, 1), (2, 0, 4), (7, 2, 6), (3,−1, 4)} for R3

15.

{(
1 1

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 1

)
,

(
0 0

0 1

)}
for Mat2×2(R)

16.

⎧⎨
⎩
⎛
⎝2

1

3

⎞
⎠ ,

⎛
⎝4

0

1

⎞
⎠ ,

⎛
⎝3

1

2

⎞
⎠
⎫⎬
⎭ for the column space of

⎛
⎝2 6 3 4

1 1 1 0

3 4 2 1

⎞
⎠

Remember

The column space of a
matrix is the linear span of
its column vectors.

For Exercises 17–25, find a basis for the given vector space.

17. The set of 3 × 3 symmetric matrices

18. The set of 4 × 4 upper triangular matrices

19. ker

(
1 3 1

2 0 4

)

20. L{(1, 2, 3), (4, 5, 6), (7, 8, 9)}

21. The column space of

⎛
⎝1 2 5 3

3 0 3 3

1 4 9 5

⎞
⎠

22. The column space of

⎛
⎝ 1 −1 3

5 6 4

−1 −8 6

⎞
⎠

23. The set of vectors in R3 perpendicular to both (1, 4, 3) and (2, 9, 1)

24. The row space of

⎛
⎜⎜⎝

1 1 0 2

2 3 4 1

1 0 1 0

4 4 5 3

⎞
⎟⎟⎠
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25. L

{(
1 0

1 2

)
,

(
3 −1

4 6

)
,

(
1 −1

3 4

)
,

(
2 0

2 4

)}
←−
A linear span of matrices?
Sure, these are vectors
inside the vector space
Mat2×2(R).

26. Find a basis for R3 that contains (1, 3, 4) and (2, 5, 1).

27. Let V be a vector space, and let B = {v1, v2, . . . , vn} be a basis for
V . Show that any v in V can be written as a linear combination of
the {v1, v2, . . . , vn} in exactly one way.

For Exercises 28–37, find the coordinate vector for v with respect to the
given basis.

28. v = (1, 2, 3), B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

29. v = (1, 2, 3), B = {(1, 1, 0), (0, 1, 1), (0, 0, 1)}

30. v = (1, 3, 1, 2), B = {(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)}

31. v = (1, 3, 1), B = {(1, 3, 1), (2, 0, 4), (1, 2, 3)}

32. v = (1, 2, 3), B = {(1, 2, 0), (3, 1, 4), (−1, 4, 6)}

33. v = 4x3 + 3x2 − 2x + 3, B = {1, 1 + x, x + x2, x2 + x3}

34. v =

(
4 3

−2 3

)
, B =

{(
1 1

0 0

)
,

(
0 1

1 0

)
,

(
0 0

1 1

)
,

(
0 0

0 1

)}

35. v =

(
2 1

−1 4

)
, B =

{(
1 1

0 0

)
,

(
0 1

1 0

)
,

(
0 0

1 1

)
,

(
0 0

0 1

)}

36. v =

(
3 4

0 4

)
, B =

{(
1 1

0 0

)
,

(
0 1

1 0

)
,

(
0 0

1 1

)
,

(
0 0

0 1

)}

37. v = x2 − 3x + 4, B = {1 + x, 1 − x, x2 + 1}

38. Let V be a vector space with basis B = {v1, v2, v3}. Suppose that v
and w are vectors in V such that vB = (1,−1, 4) and wB = (1, 4, 6).
Calculate each of the following: ←−

Even though you don’t
know what v1 is, what is
v1B?

a. (2v − w)
B

b. (v − 2w)
B

c. v1B d. (v − v2 + v3)
B

In Exercises 39–52, find the dimension of each vector space.

39. Rn 40. R5[x] 41. Rn[x]

42. Mat3×2(R) 43. Matm×n(R)

44. The set of 3 × 3 symmetric matrices

45. The set of n × n symmetric matrices
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46. The set of n × n diagonal matrices

47. The set of n × n scalar matrices

48. The set of 3 × 3 upper triangular matrices

49. The set of n × n upper triangular matrices

50. The set of n × n skew-symmetric matrices

51. All matrices of the form

(
a b c

b a a + c

)

52. L{(1, 3, 1, 0), (2, 0, 1, 4), (3, 3, 2, 4), (1,−3, 0, 4)}

53. Given A =

⎛
⎜⎜⎝

1 3 2 4 3

3 10 −1 6 1

2 7 −3 2 −2

5 16 3 14 7

⎞
⎟⎟⎠

a. Find dim(kerA).
b. Find the row rank of A, the dimension of its row space.
c. Find the column rank of A, the dimension of its column space.

For Exercises 54–60, determine the dimensions of the kernel, the row space,
and the column space of the given matrix A.

54. A =

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠ 55. A =

⎛
⎝1 2 3 4

4 5 6 7

7 8 9 10

⎞
⎠

56. A =

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠ 57. A =

⎛
⎝1 3 0 1

2 1 4 2

3 4 4 3

⎞
⎠

58. A =

⎛
⎝1 3 0 1 2

3 10 1 4 1

2 7 1 3 −1

⎞
⎠

59. A =

⎛
⎜⎜⎝

1 3 0 1 2

3 10 1 4 1

2 7 1 3 −1

3 13 1 5 3

⎞
⎟⎟⎠

60. A =

⎛
⎜⎜⎜⎜⎜⎝

1 3 0 1 2

3 10 1 4 1

2 7 1 3 −1

3 13 1 5 3

4 13 1 5 4

⎞
⎟⎟⎟⎟⎟⎠

61. Look back at the results from Exercises 54–60.

a. Is there a relationship between the total number of columns in
A, the dimension of the kernel of A, and the row rank of A?

b. Is there a relationship between the row rank and column rank
of A?

c. Take It Further. Can you prove that your relationships are
true?
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62. Determine each of the following for A =

⎛
⎜⎜⎝

1 3 4 1 2

3 2 7 1 3

2 −1 3 0 1

4 5 11 2 5

⎞
⎟⎟⎠.

a. dim(kerA)
b. The column rank of A
c. The row rank of A
d. A basis for ker A
e. A basis for the column space of A
f. A basis for the row space of A

381



Chapter 7 Vector Spaces

Chapter 7 Mathematical Reflections

These problems will help you summarize what you have learned in this Vocabulary

In this chapter, you saw
these terms and symbols
for the first time. Make
sure you understand what
each one means, and how
it is used.

• basis for a vector space

• column space

• coordinate vector

• dimension of a vector
space

• finite dimensional

• generating system

• linear span

• Matm×n

• Rn[x]

• row space

• subspace

• vector space

• zero vector

chapter.

1. Consider the set V of 4 × 1 matrices and define the operations of
addition and scalar multiplication as usual. Verify that properties
(1), (2), (4), and (5) hold for the set V .

2. Let S be the set of 4 × 1 matrices of the form

⎛
⎜⎜⎝

a

0

a

0

⎞
⎟⎟⎠ and let V be

the set of 4 × 1 matrices with real entries. Is S a subspace of V ?
Explain.

3. Let S = L{(1, 2, 4), (−1, 1, 3), (−2, 1, 4)}.
a. Is (−1, 4,−1) in S? Explain.
b. Is S a generating system for R3? Explain.

4. Show that {x2, 3x2 + x, 2x2 − x + 1} is a basis for R2[x].

5. Let v =

(
2 −1

3 6

)
and B =

{(
1 0

1 0

)
,

(
0 1

0 0

)
,

(
1 1

0 1

)
,

(
0 1

0 1

)}
.

Find the coordinate vector for v with respect to basis B.

6. What properties are necessary for a system to be a vector space?

7. How can you determine whether a set is a generating system for a
given vector space?

8. Find the coordinate vector for v =

(
5 0

2 3

)
with respect to the basis

B =

{(
0 0

1 1

)
,

(
1 0

0 1

)
,

(
1 1

0 0

)
,

(
1 0

0 0

)}
.
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Chapter 7 Review

In Lesson 7.2, you learned to

• understand the structural similarities for different vector spaces

• determine whether or not a given set is a vector space

The following problems will help you check your understanding.

1. Verify that properties (1), (2), (4), (5), and (6) of a vector space
hold for the set of polynomials whose degree is at most 2, under the
usual definition of addition and scalar multiplication.

2. Determine whether or not V is a vector space. If it is not a vector
space, give a counterexample. If it is a vector space, give a good
explanation to justify your answer.

a. V = Q, the set of rational numbers.
b. V = the set of 1 × 3 matrices.
c. V = the set of ordered pairs (x, y) with x + y = 0.
d. V = the set of ordered pairs (x, y) with x + y = 1.

3. Let V = the set of 2 × 2 matrices in the form

(
a b

c d

)
such that

d = 0.

a. Verify that properties (1), (4), and (5) hold for V .
b. If d = 1, would properties (1), (4), and (5) still hold? Explain.

In Lesson 7.3, you learned to

• determine if a subset of a vector space is also a subspace

• identify the key properties you need to test in order to prove a subset
of a vector space is a subspace

The following problems will help you check your understanding.

4. Determine whether each given set is a subspace of the vector space
V = R[x]. Explain your reasoning.

a. All polynomials of degree at most 2
b. All polynomials of degree 2
c. All polynomials of degree at least 2
d. R[x]

5. Determine which of the following are subspaces of R2. Explain how
you know.

a. All vectors of the form (x, 0)
b. All vectors of the form (x, 1)
c. All vectors of the form (x, y), where x + 2y = 3
d. All vectors of the form (x, y), where x + 2y = 0
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6. Let S be the set of matrices of the form

(
a a

b b

)
and V =

Mat2×2(R), the set of 2 × 2 matrices. Show that S is a subspace
of V .

In Lesson 7.4, you learned to

• find a generating system for a vector space

• determine if a given vector is in the linear span of a set of vectors

• determine if a set of vectors generates a vector space

The following problems will help you check your understanding.

7. Find a generating system for each vector space.

a. Matrices of the form

(
a a

b a

)
b. Ordered triples (x, y, z) with x + y + z = 0

c. ker

⎛
⎝−1 2 −2

3 −5 4

1 −1 0

⎞
⎠

d. The column space of

⎛
⎝2 −1 0

3 2 −2

0 1 −4

⎞
⎠

8. Determine whether the given vector is in the given linear span.

a. (1, 3,−5) in L{(3, 2,−1), (2,−1, 4)}
b. x − 2 in L{2x, x − 1}

9. Determine whether the given set is a generating system for the
corresponding vector space. Justify your answers.

a. {(2, 3), (3, 4)} for R2

b. {(3, 3, 0), (0, 2, 1), (0,−3,−2)} for R3

In Lesson 7.5, you learned to

• determine whether a set of vectors is a basis for a vector space

• find the dimension of a vector space

• determine the dimension of the row and column spaces for a given
matrix, as well as the dimension of its kernel

The following problems will help you check your understanding.

10. Determine whether the set is a basis for the given vector space.

a. {(1, 2, 3), (2, 0,−2), (−1, 4, 3)} for R3

b. {(1, 2), (3,−1), (4, 0)} for R2

c.

{(
2 0

0 0

)
,

(
0 1

0 1

)
,

(
0 0

1 0

)
,

(
0 2

1 0

)}
for Mat2×2(R)

d.
{
x2 + x, x − 1

}
for R2[x]
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11. For each vector space, find a basis and state the dimension of the
vector space.

a. L{(−1, 2, 4), (3, 1, 0), (1, 5, 8)}

b. The column space of

⎛
⎝2 1 −3

1 3 1

3 4 −2

⎞
⎠

c. ker

(
1 −3 4

2 3 −1

)

12. Find the coordinate vector for v with respect to the given basis.

a. v = (−2,−14,−2), B = {(2,−1, 5), (0, 1, 3), (4, 5, 7)}
b. v = 4x2 − 2x − 5, B = {x2, x + 1, x − 2}

c. v =

(
3 6

1 5

)
, B =

{(
0 1

0 0

)
,

(
0 0

1 1

)
,

(
0 1

0 1

)
,

(
1 1

0 0

)}
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Chapter 7 Test

Multiple Choice

1. Which is not a property of a vector space V ?

A. There is an element 0 in V called the zero vector.
B. For every v ∈ V , there is an element −v with the property

v + −v = 0.
C. For all v and w ∈ V , v · w = w · v.
D. c(v + w) = cv + cw for all numbers c and elements v, w of V .

2. Which of the following is a subspace of R2?

A. The set of ordered pairs (x, y) with x > 0 and y > 0
B. The set of ordered pairs (x, y) with y = 2x
C. The set of ordered pairs (x, y) with x = 1
D. The set of ordered pairs (x, y) with y > x

3. Let S = L{x2, x + 2}. Which of the following is in S?

A. x − 2
B. x2 + 4x − 8
C. 2x2 − 3x − 6
D. x3 + 2x2

4. Three vectors form a basis for R3. If two of those vectors are
(1, 0,−1) and (2, 1, 3), which could be the third vector?

A. (2, 0,−2) B. (2,−1,−1) C. (3, 1, 2) D. (3, 2, 7)

5. What is the dimension of R4[x]?

A. 0 B. 3 C. 4 D. 5

6. Let v = (2, 1,−5) and B = {(2, 0, 1), (1, 0, 3), (1, 1, 2)}. What is the
coordinate vector for v with respect to basis B?

A. (0, 1, 1) B. (1, 1,−1) C. (2,−3, 1) D. (3,−2,−2)

Open Response

7. Let V = R1[x] be the set of polynomials whose degree is at most 1.
Verify that each property of a vector space given below holds for V .

a. The set is closed under addition and scalar multiplication.
b. v + w = w + v for all v, w ∈ V .
c. c(dv) = cd(v) for all numbers c, d and elements v of V .

8. Let V = Mat2×2(R) and let S = the set of 2 × 2 matrices in the

form

(
a 0

0 b

)
. Show that S is a subspace of V .

9. Find a generating system for each vector space.

a. Matrices in the form

(
a b

2a + b 2a − b

)
b. Ordered triples (x, y, z) with x + y = 0

10. Show that {x3 + 1, x2 − x, x + 1, x − 1} is a basis for R3[x].
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11. Find a basis for the column space of

⎛
⎝ 2 −3 3

0 2 −2

−1 2 −2

⎞
⎠.

12. Determine the dimension of the kernel of A =

⎛
⎝1 2 5

5 4 7

3 1 0

⎞
⎠.
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C H A P T E R

8 Bases, Linear Mappings, and Matrices

In the last chapter, you learned how abstract vector spaces can be generated
by a linearly independent system of vectors called a basis . But a vector
space can have many different bases. In this chapter, you will see how
these different bases have a geometric interpretation.

The concept of linear maps and linear transformations will also be
extended to general vector spaces. These maps are defined by their action
on a basis, so they will have different representations as matrices according
to which basis is picked for the domain and the range. You will see that
these different representations are related in a very nice way. And matrices
will also be used to switch among the different representations.

By the end of this chapter, you will be able to answer questions
like these:

1. How is the dimension of the row space of a matrix related to the
dimension of its kernel?

2. How are different matrix representations for the same linear map
related?

3. Let M =

(
9 4

−12 −5

)
and D =

(
3 0

0 1

)
. Is M is similar to D?

You will build good habits and skills for ways to

• reason about calculations

• ensure statements are consistent

• use different strategies to establish a proof

• find associations between different concepts
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Vocabulary and Notation

• bijective linear map

• blow up to a basis

• change of basis matrix

• eigenvalue

• eigenvector, characteristic vec-
tor

• identity mapping

• invariant line

• linear map

• matrix for a transformation
with respect to a basis

• maximal linearly independent
set

• row and column rank

• similar matrices

• structure-preserving represen-
tation
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8.1 Getting Started

Exercises

1. Suppose A =

⎛
⎝1 2 −2 4 7

2 3 −1 5 8

3 5 −3 9 15

⎞
⎠. Find the dimension of

a. the row space of A
b. the column space of A
c. the kernel of A

2. Find a basis for R3 that contains (1, 2, 3) and (2, 3, 4). Explain your
method.

3. Let R = {(1, 0, 2, 0), (0, 1, 0, 3), (2, 2, 4, 3), (1, 1, 0,−3), (0, 0, 1, 4), (1, 1, 1, 1)}.
a. Show that R is not a basis for R4.
b. Show that R is a generating system for R4.
c. Find a subset of R that is a basis for R4. Explain your method.

4. Let S = {x2 + 1, x2 − 1, x3 + 1}.
a. Show that S is not a basis for R3[x].
b. Show that S is linearly independent.
c. Find a basis for R3[x] that contains S. Explain your method.

5. Let T =

{(
1 1

1 1

)
,

(
1 1

1 2

)
,

(
0 2

2 4

)
,

(
2 1

1 3

)
,

(
2 5

5 0

)}
.

a. Show that T is not a basis for the vector space of all 2 × 2
symmetric matrices.

b. Show that T is a generating system for the vector space of all
2 × 2 symmetric matrices.

c. Find a subset of T that is a basis for the vector space of 2× 2
symmetric matrices. Explain your method.

6. Suppose that V is a vector space, v, w are vectors in V , and c is a
scalar. Show that L{v, w} = L{v, w + cv}.

7. Show that any set consisting of one nonzero vector is linearly
independent.

8. Suppose that V is a vector space and {v1, v2, . . . , vm} is a gener-
ating system for V . Suppose further that vm is a combination of
{v1, v2, . . . , vm−1}. Show that if you eliminate vm from the set, you
still have a generating system for V .

9. Let V be a vector space of dimension n and let

B = {v1, v2, . . . , vn}

be a basis for V . Show that a set of vectors

B′ = {w1, w2, . . . , wn}
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in V is a basis for V if and only if the set of coordinate vectors

{w1B
, w2B

, . . . , wnB
}

is a basis for Rn.

10. Suppose T : R4 → R3 is defined by

T (x, y, z, w) = (2x + y + w, y + 2z + w, x + y + z + w)

and let

B = {(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)} and

B
′ = {(1, 1, 0), (0, 1, 1), (0, 0, 1)}

a. Show that B is a basis for R4.
b. Show that B′ is a basis for R3.
c. Find a matrix M so that, for any vector X in R4, ←−

The coordinate vectors XB

and T (X)
B′ are written as

columns here.
MXB = T (X)

B′

11. Consider the following two bases for R3:

B = {(1, 1, 0), (0, 1, 1), (0, 0, 1)} and

B′ = {(−1, 2, 3), (2,−3,−6), (1,−3,−2)}

a. Find a matrix M so that, for any vector X in R3,

MXB = XB′

b. Find a matrix N so that, for any vector X in R3,

NXB′ = XB

c. Calculate MN .

12. Show that ←−
M is called the “Mahler
basis” for R3[x], named for
the German mathematician
Kurt Mahler. What would
be a good candidate for the
Mahler basis of R4[x]?

M =

{
1, x,

x(x − 1)

2
,
x(x − 1)(x − 2)

6

}
is a basis for R3[x].

13. Consider the following two bases for R3[x]: ←−
B is the standard basis and
M is the Mahler basis from
Exercise 12.

B = {1, x, x2, x3} and

M =

{
1, x,

x(x − 1)

2
,
x(x − 1)(x − 2)

6

}
a. Find a matrix M so that, for any vector F in R3[x],

MFB = FM

b. Find a matrix N so that, for any vector F in R3,

NFM = FB

c. Calculate MN .
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8.2 Building Bases

In Lesson 7.5, you learned that any two bases for a finite-dimensional vector ←−
In this chapter, all vector
spaces will be finite-
dimensional. The number
of vectors in a basis
for a vector space is its
dimension.

space have the same size. This fact will allow you to create bases from a
given set of vectors that only meets some of the necessary criteria.

In this lesson, you will learn how to

• build a basis for a vector space by blowing up a set of linearly
independent vectors that is not a generating system into a basis,
or by sifting out a basis from a generating system whose vectors are
not linearly independent.

Minds in Action Episode 31

In Episode 27, Derman and Sasha were discussing generating systems, but they hadn’t
quite finished that discussion.

Derman: So what? It’s still a generating system, right?

Sasha: I guess it is. But isn’t it a nuisance having all that extra stuff? I’d think you’d
want it to be as small as possible.

Derman: Small like your generating system, you mean. Do you know yours is the
smallest? Could it be done with just two vectors instead of three?

Sasha: I have no idea.

Derman: But I think I do have an idea! It’s pretty obvious that the vectors x2, x, and
1 would generate all of R2[x], but they wanted us to find other generating systems.
The reason I listed so many vectors is that I was thinking about what parts I could
use to “build” each polynomial in R2[x]. I know I don’t need them all, but I do need
to be able to make any x2 part I want, so I need something with an x2 in it. Same for
x and the constant: I need something with an x in it and something with a number.

Sasha: Well, but my solution . . .

Derman: See? Because if I start with, say, the x + 1 vector I had before, that lets me
build some things, but I’ll never get any x2 parts. So that’s not enough! I can fix that
by using my 3x2 vector.

Sasha: Yes, but . . .

Derman: But those two aren’t enough because I still can’t control the x part and
constant part independently of each other. Using my 3x2 vector, I can get any x2

term I like, and using my x + 1 vector, I can get any x term or any constant term I
like, but no matter what I do with x + 1, the constant term and the coefficient of the
x term will be the same. I need another vector! Something that separates the x term
and the constant term. Like my 2x vector.

Sasha wrinkles her nose in thought as Tony comes in.

393



Chapter 8 Bases, Linear Mappings, and Matrices

Tony: I like to translate the whole thing into coordinate vectors. Look, we know that
B = {x2, x, 1} is a basis for R2[x]. If I express Sasha’s vectors in terms of B, I get

x2 + 1
B

= (1, 0, 1)

x − 1
B

= (0, 1,−1)

x2 + x + 1
B

= (1, 1, 1)

By Exercise 9 from Lesson 8.1, Sasha’s vectors form a basis of R2[x] if and only if
their coordinate vectors with respect to B form a basis for R3.

Sasha: And we have a way to think about that: take the matrix whose columns are the
coordinate vectors and reduce it to echelon form. If the echelon form is the identity,
then the columns form a basis.

Derman: I just did it, and the echelon form is I. Bingo.

Tony: Very smooth.

For You to Do

1. Find, if possible, a basis of the linear span of {99x + 18, 231x + 42} in R1[x].

2. Find, if possible, a basis for R1[x] that contains 99x + 18.

3. Find, if possible, a basis for R1[x] that contains 99x + 18 and 231x + 42.

Derman, Sasha, and Tony are working on the problem of finding a basis
for a vector space, starting from a predetermined set of vectors. Given such
a set S, it can either be a basis already or fail for one or both of two reasons:

1. S doesn’t generate.

2. S is linearly dependent.

For the rest of this lesson, you’ll look at two techniques for building bases
from deficient sets:

1. Starting with a linearly independent set of vectors, you’ll learn how ←−
If your set of vectors is
deficient for both reasons,
as in the {99x + 18,
231x+42} example above,
you’ll have to first remove
the dependencies and then
extend it to a basis.

to “blow it up” to a basis.

2. Starting with a generating system, you’ll learn how to “sift out” a
basis.

Blowing up

Suppose you have a linearly independent set of vectors that’s not a basis.
You can extend it to a basis via the method described in the next example.

Example 1

Problem. Is the set

{(
1 1

0 0

)
,

(
0 1

1 0

)}
a basis for Mat2×2? If not, can you find a

basis that contains it?
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Solution. It’s not a basis because dim (Mat2×2) = 4, and this set only contains two
vectors. But the set is linearly independent. So, it must not span. The idea is to find a

matrix that is not in the linear span of

{(
1 1

0 0

)
,

(
0 1

1 0

)}
. Well,

a

(
1 1

0 0

)
+ b

(
0 1

1 0

)
=

(
a a + b

b 0

)

So, there are plenty of matrices that are not in the linear span,

(
0 0

0 1

)
, for example. So,

throw this in and consider the set {(
1 1

0 0

)
,

(
0 1

1 0

)
,

(
0 0

0 1

)}

Is this a basis? Well, no, because it only has three things in it and a basis requires four.
Is it independent? Yes, as you can check directly with a calculation. Or, you can also
reason like this:

Suppose that

a

(
1 1

0 0

)
+ b

(
0 1

1 0

)
+ c

(
0 0

0 1

)
=

(
0 0

0 0

)

If c �= 0, then you could solve for

(
0 0

0 1

)
and conclude that it is a combination of the

original two matrices. But you chose

(
0 0

0 1

)
to ensure that it’s not such a combination,

so c = 0. But then a = b = 0 because the original two matrices are linearly independent.

So, now you have three linearly independent vectors. It’s not a basis, so it must not
span. Look at a generic linear combination:

a

(
1 1

0 0

)
+ b

(
0 1

1 0

)
+ c

(
0 0

0 1

)
=

(
a a + b

b c

)

Pick a vector that is not of this form, say

(
0 0

1 1

)
. Use the above line of reasoning to

←−
In every matrix of this form
the entry in the first row,
second column must be the
sum of the entries in the
first column.

show that {(
1 1

0 0

)
,

(
0 1

1 0

)
,

(
0 0

0 1

)
,

(
0 0

1 1

)}
is linearly independent. Finally, you have four independent vectors, so this is a basis.

This method is perfectly general. Starting from an independent set, you
can keep adjoining vectors, each of which is not in the linear span of the
previous ones, until you have enough to make a basis. And, each time you
adjoin a vector that’s not in the span of the previous ones, the resulting
set is linearly independent, thanks to the following lemma.

Lemma 8.1

Suppose that the vectors {v1, v2, . . . , vn} are linearly independent and that
v is not in the linear span of {v1, v2, . . . , vn}. Then {v1, v2, . . . , vn, v} is
also linearly independent.
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For You to Do

4. Use the reasoning in Example 1 to prove Lemma 8.1.

Lemma 8.1 shows how to adjoin vectors, one at a time, to a linearly
independent set so as to keep the larger set linearly independent. If the
dimension of the space is finite, which is the assumption in this chapter,
eventually, you get enough independent vectors to make a basis.

Theorem 8.2 (The Blow-Up Theorem)

Any linearly independent set of vectors can be extended to form a basis.

Developing Habits of Mind

Use different strategies to establish a proof. The proof of Theorem 8.2 is implicit
in the method used in Example 1, and Lemma 8.1 guarantees that this method will
work. Such a proof is called constructive—it establishes that something happens by
showing you how to make it happen.

Sifting out

Suppose that you start with a generating system that’s not a basis. You can
“pare it down” to make a basis. The following, similar to the blowing-up
algorithm, does that.

Suppose you have a set of vectors {v1, v2, . . . , vn} that is a generating ←−
In other words,
L{v1, v2, . . . , vn} = V .

system for a vector space V , but it’s not a basis. Then it must be linearly
dependent. (Why?) So, there are scalars ci, not all zero, so that

c1v1 + · · · + cnvn = 0 (∗)

Suppose, for example, that cn �= 0. Then, you can solve equation (∗) for
vn:

vn = − 1

cn
(c1v1 + · · · + cn−1vn−1)

By Exercise 8 from Lesson 8.1, {v1, v2, . . . , vn−1} is still a generating ←−
In other words,
L{v1, v2, . . . , vn−1} = V .

system for V . If it is independent, you have a basis. If not, you can eliminate
another vector in this same way and still keep the fact that the linear span

←−
See Exercise 7 from
Lesson 8.1.

is all of V . One at a time, you can eliminate extraneous vectors until you
get an independent set that still generates. That will be your basis.

There may be several ways to sift a basis out of a generating system,
eliminating at each step a vector that’s a combination of the rest. In the
end, though, any of the bases you construct in this way will contain the
same number of vectors. (Why?) Another way to think about it is that
this sifting process produces a maximal linearly independent set . See
Exercise 8 for more on this.
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Exercises

1. For each of the given sets, blow it up to a basis.

a. {(1, 2, 3)} for R3

b. {(1, 2, 3), (1, 2, 0)} for R3

c. {(1, 1, 0, 0), (0, 1, 1, 0)} for R4

d.

{(
1 0

0 1

)
,

(
0 1

1 0

)}
for Mat2×2(R)

e. {(1, 0, 1)} for L{(1, 2, 1), (1, 0, 1), (2, 2, 2), (0, 2, 0)}
f. {x2 + 1} for L{(x + 1)2, x2 + 1, 2(x2 + x + 1), 2x}

g. {(3, 4, 4, 3), (2, 3, 4, 1)} for the row space of

⎛
⎜⎜⎝

1 1 0 2

2 3 4 1

1 0 1 0

4 4 5 3

⎞
⎟⎟⎠

h.

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝

2

5

1

8

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1

7

1

9

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ for the column space of the matrix in part g.

i. {(1,−1, 1, 2, 0)} for kerM = ker

⎛
⎝1 3 0 1 5

2 5 1 1 9

1 2 1 0 4

⎞
⎠ ←−

(1,−1, 1, 2, 0) is in the
kernel of the matrix, right?

2. For each of the given vector spaces, sift out a basis from the given ←−
If the vector space is given
as the linear span of a set of
vectors, use those vectors
as the generating system.

generating system.

a. V = L{(1, 2, 1), (1, 0, 1), (2, 2, 2), (0, 3, 0)}

b. V is the row space of N =

⎛
⎜⎜⎝

1 1 0 2

2 3 4 1

1 0 1 0

4 4 5 3

⎞
⎟⎟⎠, starting with the

rows.
c. V is the column space of N from part b, starting with the

columns.
d. V = L{1, x, 3x + 2, x2 + 1, x2 − 1}
e. V = L{1, x, x(x−1)

2 , x(x−1)(x−2)
6 }

3. Suppose M is an m × n matrix. Show that the kernel of M is a ←−
See Exercise 16 from
Lesson 7.3.

subspace of Rn.

4. Suppose that T : R5 → R3 is represented by matrix M from
Exercise 1i.

a. Find a basis for ker M .
b. Blow this up to a basis of R5.
c. Apply T to each of your basis vectors by multiplying each of

them by M . This gives you five vectors in R3. But some of ←−
See Lesson 5.5 for the
definition. The column
space of M is what was
called the image of M (or
of T ) in Chapter 5.

them will be O. (Why?)
d. Show that the nonzero vectors in your set from the previous

part of this exercise form a basis for the column space of M .
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5. Suppose that F : R4 → R4 is represented by matrix N from
Exercise 2b.

a. Find a basis for ker N .
b. Blow this up to a basis of R4.
c. Apply F to each of your basis vectors by multiplying each of

them by N . This gives you four vectors in R4. But some of
them will be O. (Why?)

d. Show that the nonzero vectors in your set from the previous
part of this exercise form a basis for the column space of N .

6. Suppose that V is a vector space of dimension n. Show that any
generating system for V that contains n vectors is a basis for V .

7. Suppose V is a vector space and S is a subspace. Show that

dim(S) ≤ dim(V )

and that equality occurs if and only if S = V .

8. Suppose you have a generating system for a vector space V , say G =
{v1, . . . , vn}. Let B be a subset of G that is linearly independent and
that has the property that any subset of G that has more vectors ←−

B is a maximal linearly
independent subset of G.

in it than B is linearly dependent. Show that B is a basis for V .
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8.3 Rank

In Exercise 61 in Lesson 7.5, you explored relationships between the
dimensions of the row space, the column space, and the kernel of a matrix.
This lesson will formalize the relationships among these dimensions.

In this lesson, you will learn how to

• find the rank of a matrix

• determine the relationship among the dimensions of the row space,
column space, and kernel of a matrix.

In-Class Experiment

Choose a matrix larger than 3 × 3 and not necessarily square. Pick your matrix so that
either the rows or the columns are linearly dependent. For your matrix, find

1. the dimension of the row space

2. the dimension of the column space

3. the dimension of the kernel

Minds in Action Episode 32

Tony, Sasha, and Derman are passing the time, playing with matrices.

Sasha: Hey, look at this: I made a 3 × 3 matrix whose rows are linearly dependent:

A =

⎛
⎝1 2 3

4 5 6

5 7 9

⎞
⎠

Derman: The sum of the first two rows is equal to the third.

Sasha: And, without trying, the columns are linearly dependent, too:

1

⎛
⎝1

4

5

⎞
⎠− 2

⎛
⎝2

5

7

⎞
⎠+ 1

⎛
⎝3

6

9

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠

Tony: That can’t always work. Let’s try it with another one, say

M =

⎛
⎜⎜⎝

1 2 3 4

2 3 4 5

3 5 7 9

1 1 1 1

⎞
⎟⎟⎠
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Derman: This time, the row space has dimension 2:

M1∗ + M2∗ = M3∗ and M2∗ − M1∗ = M4∗

So, the first two rows generate the row space.

Sasha: Ah, and look at the columns:

2M∗2 − M∗1 = M∗3 and 3M∗2 − 2M∗1 = M∗4

Tony: Maybe the row space and column space always have the same dimension? That’s
weird.

Derman: This could be a great party trick. Make up a square matrix whose rows are
dependent. Automatically the columns are, too.

Sasha: There are theorems to prove to make sure it always works before you can bring
it to one of your parties.

Derman’s party trick exposes a deep result about dimension: given any
matrix, the dimensions of the row and column space are the same. You will
prove this fact by the end of the lesson.

Lemma 8.3

Row-equivalent matrices have the same row space.

Proof. Suppose A is row equivalent to B. Then you can get from A to B
by performing some sequence of elementary row operations:

1. Switch two rows.

2. Multiply a row by a nonzero constant.

3. Replace Ai∗ by cAj∗ + Ai∗ for some scalar c.

The row space is the linear span of the rows. Clearly, the first two operations
don’t change the row space. The last operation doesn’t either, by Exercise 6
from Lesson 8.1.

Applying Lemma 8.3 to each step of the reduction to echelon form results
in a corollary.

Corollary 8.4

If M is a matrix, the row space of M is the same as the row space of
rref(M).

Definition

The row rank of a matrix is the dimension of its row space. The column
rank of a matrix is the dimension of its column space.
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For You to Do

1. Find the row rank and column rank for⎛
⎝1 3 2 −1 2

1 1 −1 −1 3

1 0 −1 −1 3

⎞
⎠

Developing Habits of Mind

Reason about calculations. Think about a matrix in echelon form. The nonzero
rows are linearly independent because of the positions of the pivots. And the zero rows
contribute nothing to the row space. This leads to a theorem.

Theorem 8.5

The row rank of a matrix is the number of nonzero rows in its echelon form. ←−
And the column rank is the
number of nonzero rows
in the echelon form of the
transpose, right?

Minds in Action Episode 33

Tony: And what about the kernel?

Derman: What about the kernel?

Tony: I mean, look at how we find the kernel. Here’s an echelon form:

Tony writes this matrix on the board:

⎛
⎜⎜⎝

1 0 0 3 2

0 1 0 −4 2

0 0 1 −5 8

0 0 0 0 0

⎞
⎟⎟⎠

When I find the kernel, I can solve for the first three variables in terms of the last ←−
Tony is reasoning about
the calculation without
carrying it out completely.

two. There will be two “free variables” that can be anything I want.

Derman: So, the kernel will be all linear combinations of two things, right?

Tony: Right. It will be like

(−3w − 2u, 4w − 2u, 5w − 8u, w, u) = (−3w, 4w, 5w, w, 0) + (−2u,−2u,−8u, 0, u)

= w(−3, 4, 5, 1, 0) + u(−2,−2,−8, 0, 1)

so there will be a w part and a u part. So the dimension of the kernel is 2.

Sasha: Very smooth, Tony. This will always work. The dimension of the kernel is the
number of free variables in the echelon form. And this is the number of nonpivot
columns in the echelon form. And this is the number of columns minus the number
of pivot columns in the echelon form. And this is the number of columns minus the
number of nonzero rows in the echelon form. And this is the number of columns minus
the row rank of the echelon form. And this is the number of columns minus the row
rank of the original matrix.
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Derman: Can you say that one more time?

Sasha’s statement leads to the following theorem.

Theorem 8.6 (Dimension of Kernel)

The dimension of the kernel of an m × n matrix whose row rank is r is
n − r.

For Discussion

2. Help Derman unpack Sasha’s sentences and prove Theorem 8.6.

Minds in Action Episode 34

Tony: I have an idea about how we might prove that Derman’s party trick—that the
row rank and column rank of any matrix is the same—always works. What if we
could prove that, for an m×n matrix, the column rank—the dimension of the column
space—is equal to n minus the dimension of the kernel?

Sasha: That would do it. If the row rank is r, the dimension of the kernel is n − r, so,
if what you say is true, the column rank would be n − (n − r) . . .

Derman: And that’s just r, so the column rank would be the same as the row rank.
Things are heating up.

Sasha: But, Tony, how would you prove that for an m × n matrix, the column rank is
equal to n − (the dimension of the kernel)?

Tony: I have no idea.

Derman: Things are cooling down.

They think about it and get nowhere, so they put it away for the day. The next morning,
Sasha makes an announcement.

Sasha: I’ve been thinking about this all night, and I have an idea. Remember Exercises 4
and 5 from Lesson 8.2? They hold the key. We just need to do what we did there, but
make it general.

Tony: I think you’re right. It will work—I know it.

Derman: I didn’t do those problems.

Tony: Well, it goes like this, Derman. Suppose you have an m × n matrix M and the
dimension of the kernel is k. Take a basis for the kernel and blow it up to a basis for
Rn. You’ll have n vectors now, k of them in the kernel. So, there are n − k vectors
in the basis for Rn that are not in the kernel. Could these be a basis for the column
space?

Derman: No. They are in Rn and the columns are from Rm.
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Sasha: Right, but in Exercises 4 and 5, we then multiplied these vectors by the matrix—
their images under M are in Rm.

Derman: I didn’t do those problems.

Sasha, Tony, and Derman are onto something. The proof of the following
theorem makes their method precise.

Theorem 8.7 (Dimension of the Column Space)

Suppose M is m × n and the dimension of ker(M) is k. Then the column
rank of M is n − k.

Proof. Think of M as a linear mapping from Rn to Rm.

Ker M

Im M

0

R
n

Rm

It might help to keep track of everything if you have a specific matrix
in mind, say a 4 × 5 matrix whose echelon form is Tony’s matrix from ←−

Follow along the proof
using this specific M .

Episode 33:

M =

⎛
⎜⎜⎝

1 0 0 3 2

0 1 0 −4 2

0 0 1 −5 8

0 0 0 0 0

⎞
⎟⎟⎠

In this example, n = 5, m = 4, and k = 2.

Take a basis for ker(M), say {v1, . . . , vk}, and blow it up to a basis for
Rn:

{v1, . . . , vk, vk+1, . . . , vn}
You want to prove that the dimension of the column space for M is n− k,
and you have n − k vectors sitting there: {vk+1, . . . , vn}. But these are
in Rn, and the column space—the image of the mapping represented by
M—is a subspace of Rm.
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Multiplying a vector in Rn by M produces a vector in Rm, so that’s a
way to get things to be the right size. Consider the set

G = {Mv1, . . . , Mvk, Mvk+1, . . . , Mvn}

Now v1 through vk are in kerM , so M times each of them is 0. Hence, the
nonzero vectors in G form the set

B = {Mvk+1, . . . , Mvn}

These vectors are in the right place (Rm), and there are the right number
of them (n− k), so the proof will be complete if you can show that B is a
basis for the column space of M . To be a basis, B must have two properties:

1. B is linearly independent. Suppose you have scalars ck+1, . . . , cn
so that

ck+1Mvk+1 + ck+2Mvk+2 + · · · + cnMvn = 0

Then
M (ck+1vk+1 + ck+2vk+2 + · · · + cnvn) = 0

So the vector v = ck+1vk+1 + ck+2vk+2 + · · ·+ cnvn is in kerM . But
a basis for ker M is {v1, . . . , vk}. This means that v can be written as
a linear combination of v1, . . . , vk; so you have an equation like this: ←−

This proof is typical of
the constructive proofs in
linear algebra—it’s really a
“generic example.”

ck+1vk+1 + ck+2vk+2 + · · · + cnvn = c1v1 + · · · + ckvk

for some scalars c1, . . . , ck. Get everything on one side of this equa-
tion, and you have a linear combination of {v1, . . . , vk, vk+1, . . . , vn}
equal to 0. But {v1, . . . , vk, vk+1, . . . , vn} is a basis, so it’s linearly
independent, so all the c’s (including the ones you care about) are 0.

2. B is a generating system for the column space of M . The
column space of M is the set of all linear combinations of the columns ←−

The Pick-Apart Theorem
is Theorem 4.8 from
Lesson 4.5.

of M . By the Pick-Apart Theorem, every such combination is of the
form MX for a vector X in Rn. Write X as a linear combination of
the basis {v1, . . . , vk, vk+1, . . . , vn}:

X = c1v1 + · · · + ckvk + ck+1vk+1 + ck+2vk+2 + · · · + cnvn

Multiply both sides by M :

MX = c1Mv1+· · ·+ckMvk+ck+1Mvk+1+ck+2Mvk+2+· · ·+cnMvn

Since v1, . . . , vk are in the kernel of M , this becomes

MX = ck+1Mvk+1 + ck+2Mvk+2 + · · · + cnMvn

and MX is a linear combination of the vectors in B.

That does it: B is a basis.

As an immediate corollary, you can prove that the row rank is the same
as the column rank.
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Theorem 8.8 (Row Rank = Column Rank)

The row rank and the column rank of a matrix are equal.

Proof. Suppose M is m× n and its row rank is r. Then the dimension of
the kernel is n − r by Theorem 8.6. By Theorem 8.7, the column rank is

n − dim(ker M) = n − (n − r) = r

So, Derman’s party trick always works. Pick a matrix, any matrix. The
number of linearly independent rows is the same as the number of linearly
independent columns.

Facts and Notation

From now on, there is no need to distinguish between row and column rank. You can
simply refer to the rank of a matrix. If M is a matrix, r(M) will denote the rank of
M .

The fact that the row and column ranks are equal is by no means obvious
at the start, and many people find it surprising until they see a proof. The
proof uses many of the important theorems and methods that have been
developed over the course of this program.

The fact that the row rank and column rank are the same allows
another refinement of the TFAE theorem that was first stated in Chapter 4
(Theorem 4.19 from Lesson 4.6) and refined once already in Chapter 7
(Theorem 7.14 from Lesson 7.5):

Theorem 8.9 (The TFAE Theorem)

The following statements are all equivalent for an n × n matrix A:

(1) The columns of A are linearly independent.

(2) The rows of A are linearly independent.

(3) The rank of A is n.

(4) rref(A) = I.

(5) A−1 exists.

(6) AX = B has a unique solution for any B.

(7) ker(A) = O.

(8) The dimension of the column space for A is n.

(9) The dimension of the row space for A is n.
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Exercises

1. Find the rank of each matrix.

a.

⎛
⎝1 2 3

4 5 6

7 8 9

⎞
⎠ b.

⎛
⎝1 2 3

4 5 6

7 8 0

⎞
⎠ c.

⎛
⎝1 2 3 1

4 1 0 2

5 3 3 3

⎞
⎠

d.

⎛
⎜⎜⎝

1 3 1 5

2 1 3 6

1 4 1 6

0 2 1 3

⎞
⎟⎟⎠ e.

⎛
⎜⎜⎝

3 1 2

4 0 1

6 1 3

2 1 −1

⎞
⎟⎟⎠ f.

⎛
⎜⎜⎝

1 4 3 5 2

4 3 −1 7 8

1 2 1 3 4

2 3 5 5 −10

⎞
⎟⎟⎠

2. For each condition, give an example, if possible, of a matrix that
satisfies it. If there is no matrix, explain why not.

a. A is 2 × 3 and r(A) = 2.
b. A is 2 × 4 and r(A) = 3.
c. A is 3 × 3 and r(A) = 2.
d. A is 3 × 3 and r(A) = 3.
e. A is 3 × 4 and r(A) = 2.
f. A is 4 × 3 and ker(A) is infinite.
g. A is 4 × 4 and ker(A) is infinite.
h. A is 4 × 3 and ker(A) = {0}.
i. A is 3 × 4 and ker(A) = {0}.
j. A is 3 × 4 and the rows of A are independent.
k. A is 3 × 4 and the columns of A are independent.

3. For each matrix, find its rank and the dimension of its kernel.

a.

⎛
⎜⎜⎝

2 1 1

5 7 1

1 1 0

8 9 2

⎞
⎟⎟⎠ b.

⎛
⎜⎜⎝

1 2 1 3

4 6 2 8

2 2 0 2

5 6 1 7

⎞
⎟⎟⎠ c.

⎛
⎝3 7 −3

3 5 6

4 2 −4

⎞
⎠

4. For each set of conditions, give an example, if possible, of a matrix
that satisfies them. If there is no matrix, explain why not.

a. A is 3 × 2 and r(A) = 2.
b. A is 3 × 2 and r(A) = 3.
c. A is 3 × 3 and ker(A) = {0}.
d. A is 3 × 3 and ker(A) is infinite.
e. A is 4 × 3 and the rows of A are independent.

5. For each set, show that it is a basis.

a. {1 + x, 1 − x, x2} for R2[x]

b.

{(
1 1

0 0

)
,

(
0 1

2 0

)
,

(
0 0

3 4

)
,

(
0 0

0 5

)}
for Mat2×2(R)
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6. Let G =

⎛
⎜⎜⎝

2 1 1

5 7 1

1 1 0

8 9 2

⎞
⎟⎟⎠.

a. Find r(G).
b. Find dim ker(G).
c. Find a basis for ker(G).
d. Find a basis for the column space of G.

7. Let H =

⎛
⎝1 2 3 4

4 5 6 7

7 8 9 10

⎞
⎠.

a. Find r(H).
b. Find dim ker(H).
c. Find a basis for ker(H).
d. Find a basis for the column space of H.

8. For each set of conditions, give an example, if possible, of an
interesting matrix that satisfies them. If there is no matrix, explain
why not.

a. A is 4 × 3 and r(A) = 4.
b. A is 4 × 3 and r(A) = 3.
c. A is 4 × 4 and A−1 exists.
d. A is 4 × 4 and ker(A) is infinite.
e. A is 3 × 2 and the rows of A are independent.

9. For each set, explain why it cannot be a basis for the given vector
space.

a. {(1, 1, 0, 0), (0, 1, 1, 0), (0, 1, 1, 1)} for R4

b.

{(
1 0

0 0

)
,

(
1 1

0 0

)
,

(
0 0

1 0

)
,

(
0 1

1 0

)}
for Mat2×2(R)

c. {(1, 3, 2), (3, 10, 7), (1, 4, 3)} for R3

10. Suppose that A and B are n × n matrices.

a. Show that the row space of AB is contained in the row space
of B.

b. Show that the column space of AB is contained in the column
space of A.

c. Show that r(AB) ≤ A and r(AB) ≤ r(B). ←−
See Exercise 7 from
Lesson 8.2.

11. Let M =

⎛
⎝1 3 0 1

2 5 1 1

1 2 1 0

⎞
⎠.

a. Find r(M).
b. Find dim ker(M).
c. Find dim(column space of M).
d. Find a basis for ker(M).
e. Find a basis for the row space of M .
f. Find a basis for the column space of M .
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12. Let N =

⎛
⎜⎜⎝

1 1 0 2

2 3 4 1

1 0 1 0

4 4 5 3

⎞
⎟⎟⎠.

a. Find the row rank of N .
b. Find a basis for the column space of N .

13. Find a basis for L{(1, 2, 1), (1, 0, 1), (2, 2, 2), (0, 2, 0)}.

14. Find a basis for R3 that contains (1, 2, 3) and (1, 2, 0).

15. Find a basis for the row space of

⎛
⎜⎜⎝

1 3 4

2 5 3

3 8 7

0 −1 −5

⎞
⎟⎟⎠ that contains

(0,−1,−5).
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8.4 Building and Representing Linear Maps

In Chapter 5, you saw that an m × n matrix could be used to define a ←−
By the end of Chapter 7,
things came full circle: you
saw how these arbitrary
vector spaces could be
made to “look like”
n-tuples by picking a
basis and working with
coordinate vectors.

mapping from Rn to Rm via matrix multiplication. Such mappings were
called linear maps. In Chapter 7, you generalized the algebraic properties
of n-tuples and defined a vector space to be any set of objects that satisfies
the basic rules of Rn.

In this lesson, you’ll generalize the notion of linear map to these arbitrary
vector spaces. But how do you associate a matrix with a map from, say,
R3[x] to some other vector space, say, 2×2 symmetric matrices? The basic
idea is to represent the vectors as n-tuples via the coordinate vectors and ←−

But, as you’ll see in this
lesson and the next, all
the different matrices
associated with the same
map will be related to each
other in interesting ways.

to work with those.The resulting matrix will therefore depend on the bases
you pick for the domain and range.

In this lesson, you will learn how to

• find a formula for a linear map by its action on a basis

• find the matrix representation associated with a linear map with
respect to a given pair of bases.

It would be good to define a general linear map in a way that doesn’t depend
on the way the map is represented but only on the way the map behaves.
One way to do this is to use the properties of linear transformations listed
in Theorem 5.1 from Lesson 5.2 as the definition of a linear map. This is
the way most mathematicians think of it:

Definition

Suppose V and W are vector spaces. A mapping T : V → W is called a
linear map if it satisfies two properties:

(1) T (v1 + v2) = T (v1) + T (v2) for all vectors v1, v2 in V .

(2) T (cv) = cT (v) for all vectors v in V and scalars c.

On the left-hand side of these equations, all of the operations take place in
V ; that is, v1 + v2 adds two vectors in V , and their sum is also in V , so
T is also acting on a vector in V . On the right-hand side, however, T (v1)
and T (v2) are vectors in W , so the sum T (v1) + T (v2) is a sum of vectors
in W . Similarly cT (v) is a scalar multiple of a vector in W .

For You to Do

1. Invent a linear map T : Mat2×2 → R3[x].

2. Invent a map F : Mat2×2 → R3[x] that is not linear.
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Developing Habits of Mind

Ensure statements are consistent. A linear map between vector spaces V and W is ←−
You have encountered
many linear maps already:
projections, functions de-
fined by matrices, rotations
of the plane, and the “co-
ordinate map” that, given
a basis B of V , assigns a
vector vB in Rn.

a function T : V → W that “respects the vector space structure.”

This changes the definition of linear map from the one in Chapter 5. But Theorem 5.1
from Lesson 5.2 guarantees that a mapping that is linear in the Chapter 5 sense (it can
be represented by a matrix) is linear in this new sense. And, as you’ll see in this lesson,
maps that are linear in this new sense can also be represented by matrices. But that will
take a little extra work.

The following theorem states that a linear map “preserves linear combi-
nations.”

Theorem 8.10 (Linearity)

Suppose that T : V → W is linear. If v1, . . . , vk are vectors in V and
c1, . . . , ck are scalars, then ←−

V and W could be
polynomials, matrices,
complex numbers, or
subspaces of these.

T (c1v1 + · · · + ckvk) = c1T (v1) + · · · + ckT (vk)

For You to Do

3. Prove Theorem 8.10.

Example 1

Problem. Suppose D : R3[x] → R2[x] is linear and you know what it does to the ←−
Check that B is a basis for
R3[x].

vectors in the basis B = {1, 1 + x, x + x2, x2 + x3}:

D(1) = 0

D(1 + x) = 1

D(x + x2) = 1 + 2x

D(x2 + x3) = 2x + 3x2

Find D(4x3 + 3x2 − 2x + 3).

Solution. First write 4x3 + 3x2 − 2x + 3 as a linear combination of the basis vectors: ←−
So, 4x3 + 3x2 − 2x+ 3

B
=

(4,−1,−1, 4)—see Exer-
cise 33 from Lesson 7.5.

4x3 + 3x2 − 2x + 3 = 4(1) + (−1)(1 + x) + (−1)(x + x2) + 4(x2 + x3)

So, applying Theorem 8.10,

D(4x3 + 3x2 − 2x + 3) = D
(
4(1) + (−1)(1 + x) + (−1)(x + x2) + 4(x2 + x3)

)
= 4 D(1) + (−1) D(1 + x) + (−1) D(x + x2) + 4 D(x2 + x3)

= 4 · 0 + −1 · 1 + (−1)(1 + 2x) + 4(2x + 3x2)

= 12x2 + 6x − 2
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For You to Do

4. Find a formula for D in Example 1 by getting an expression for

D(ax3 + bx2 + cx + d)

Theorem 8.10 and the method of Example 1 can be used to prove a very
useful result.

Theorem 8.11 (Extension by Linearity)

A linear map is determined by its action on a basis. More precisely, suppose
V and W are vector spaces and B is a basis for V . A linear map T : V → W
is completely determined by what it does to the vectors in B in the sense
that if you know what it does to each basis vector, you know what it does ←−

You saw an example of
extension by linearity in the
Developing Habits of Mind
in Lesson 5.3.

to every vector in V .

Proof. Suppose B = {v1, . . . , vk}. If v is a vector in V , there is only one
way to write v as a linear combination of the vectors in B (why?), say

v = c1v1 + c2v2 + · · · + cnvk

Then, by Theorem 8.10, T (v) is determined:

T (v) = c1T (v1) + c2T (v2) + · · · + cnT (vk)

Theorem 8.11 is an example of a class of theorems that mathematicians
prize. It says that a linear map on an infinite set, V , is determined by what
it does to a finite set of inputs (the basis vectors).

This kind of “finiteness” theorem is pretty rare. In your other courses,
you may have seen another one: a polynomial of degree n is determined by
n + 1 inputs.

For You to Do

5. Can you think of any other finiteness theorems, either from this course or others?

Matrix representations

The goal is to associate a matrix with a linear map in a way that preserves
the same properties as the matrix representations you met in Chapter 5.
The most important properties of such representations are ←−

Such representations are
said to be faithful.Bijective: Every linear map is associated with a unique matrix

and vice versa.

Structure preserving: Applying a linear map to a vector is accom-
plished by multiplying the matrix for that map by the vector.

But how do you multiply a matrix by a polynomial? You can’t. However,
you can multiply a matrix by the coordinate vector for the polynomial
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with respect to some basis. The idea is outlined in Exercises 10–13 from
Lesson 8.1. The following outline shows how it’s done in principle. It’s
worth reasoning through this outline first, so that the numbers don’t get
in the way. The outline will be followed by some numerical examples.

Suppose that

a basis for V is B = {v1, v2, v3} and

a basis for W is B′ = {w1, w2}

And suppose that T : V → W is linear. You want to find a matrix M that
does the work of T ; that is, find a matrix M so that, for any vector v in
V ,

←−
M will be 2× 3. (Why?)

MvB = T (v)
B′

Pick some v in V . The steps for seeing how M is built are:

1. Write v as a linear combination of vectors in B, say

v = av1 + bv2 + cv3

This gives you

vB =

⎛
⎝a

b

c

⎞
⎠

2. And you want to express T (v) in terms of B′, say

T (v) = dw1 + ew2

so that

T (v)
B′ =

(
d

e

)
3. So, you are looking for a matrix M so that

M

⎛
⎝a

b

c

⎞
⎠ =

(
d

e

)

4. By the Pick-Apart Theorem, ←−
The Pick-Apart Theorem
is Theorem 4.8 from
Lesson 4.5.

M

⎛
⎝a

b

c

⎞
⎠ = aM∗1 + bM∗2 + cM∗3

5. But by linearity (Theorem 8.10),

Remember

v = av1 + bv2 + cv3 and T
is linear.

T (v) = aT (v1) + bT (v2) + cT (v3)

so that ←−
. . . and T (v)

B′ =

(
d
e

)
.

T (v)
B′ = aT (v1)

B′ + bT (v2)
B′ + cT (v3)

B′
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8.4 Building and Representing Linear Maps

Now put it all together. You want M

⎛
⎝a

b

c

⎞
⎠ to be

(
d

e

)
, which is T (v)

B′ .

And you know that

M

⎛
⎝a

b

c

⎞
⎠ = aM∗1 + bM∗2 + cM∗3 and

T (v)
B′ = aT (v1)

B′ + bT (v2)
B′ + cT (v3)

B′

And the punchline: comparing those last two equations, you can take M to
be the matrix whose columns are the coordinate vectors: T (v1)

B′ , T (v2)
B′ ,

T (v3)
B′ .

Example 2

In Example 1, you considered the linear map D : R3[x] → R2[x] defined on the basis
B = {1, 1 + x, x + x2, x2 + x3}:

D(1) = 0

D(1 + x) = 1

D(x + x2) = 1 + 2x

D(x2 + x3) = 2x + 3x2

Problem. Suppose the basis for R2[x] is B′ = {1, x, x2}. Find a matrix M that does
the work of D; that is, for any v in R3[x],

MvB = D(v)
B′

Solution. Take the columns of M to be the coordinate vectors with respect to B′ of
the image under D of each vector in B:

D(1)
B′ = 0B′ = (0, 0, 0)

D(1 + x)
B′ = 1B′ = (1, 0, 0)

D(x + x2)
B′ = 1 + 2x

B′ = (1, 2, 0)

D(x2 + x3)
B′ = 2x + 3x2

B′ = (0, 2, 3)

So that M =

⎛
⎝0 1 1 0

0 0 2 2

0 0 0 3

⎞
⎠.

Check: In Example 1, you saw that

D(4x3 + 3x2 − 2x + 3) = 12x2 + 6x − 2
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You should be able to get this by multiplying M by the coordinate vector for this
cubic with respect to B and translating back from B′. Well, 4x3 + 3x2 − 2x + 3

B
=

(4,−1,−1, 4) (see Exercise 33 from Lesson 7.5), and

⎛
⎝0 1 1 0

0 0 2 2

0 0 0 3

⎞
⎠
⎛
⎜⎜⎝

4

−1

−1

4

⎞
⎟⎟⎠ =

⎛
⎝−2

6

12

⎞
⎠

and sure enough,
12x2 + 6x − 2

B′ = (−2, 6, 12)

Example 3

Suppose T : R3 → R2 is defined by T (x, y, z) = (x + y, x− z). And suppose the bases of
the domain and range are

B = {(1, 1, 0), (0, 1, 1), (0, 0, 1)}
B′ = {(1, 1), (0, 1)}

Problem. Find a matrix M so that, for any vector v in R3,

MvB = T (v)
B′

Solution. Apply T to the basis vectors in B and look at what you get in terms of B′:

T (1, 1, 0)
B′ = (2, 1)

B′ = (2,−1)

T (0, 1, 1)
B′ = (1,−1)

B′ = (1,−2)

T (0, 0, 1)
B′ = (0,−1)

B′ = (0,−1)

So, M is the matrix whose columns are these coordinate vectors:

M =

(
2 1 0

−1 −2 −1

)

Check: Suppose v = (x, y, z). Then

vB = (x, y − x, z − y + x)

and (
2 1 0

−1 −2 −1

)⎛⎝ x

y − x

z − y + x

⎞
⎠ =

(
x + y

−y − z

)

Sure enough,
(x + y)(1, 1) + (−y − z)(0, 1) = (x + y, x − z) = T (x, y, z)
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8.4 Building and Representing Linear Maps

Minds in Action Episode 35

The three friends are thinking about Example 3.

Derman: Wait a minute—if T (x, y, z) = (x + y, x − z), I can just write down a matrix
that does the work of T :

(
1 1 0

1 0 −1

)⎛⎝x

y

z

⎞
⎠ =

(
x + y

x − z

)

So the matrix is N =

(
1 1 0

1 0 −1

)
, not M =

(
2 1 0

−1 −2 −1

)
.

Tony: But the matrix M wasn’t designed to work from B to B′. N just works straight
up, so to speak. It’s kind of like N works on vectors using the usual coordinates, but
M works on the same vectors using different coordinates. Or something like that.

Sasha: I think that’s what’s going on, Tony. The vector (x, y, z) really is a coordinate
vector—it’s just that it’s the coordinate vector with respect to the standard basis
vectors

E = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Tony: OK, let’s try it. Suppose E = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and E′ = {(1, 0), (0, 1)}.
Let’s find the matrix that does the work of T with respect to these bases.

Derman: OK. I’ll set it up like before:

T (1, 0, 0)
E′ = (1, 1)

E′ = (1, 1)

T (0, 1, 0)
E′ = (1, 0)

E′ = (1, 0)

T (0, 0, 1)
E′ = (0,−1)

E′ = (0,−1)

Now I put the coordinate vectors into the columns and I get(
1 1 0

1 0 −1

)

Tony: So, that’s it. These new matrices from one basis to another are generalizations of
the matrices we built in Chapter 5. Those Chapter 5 matrices are matrices from one
standard basis to another standard basis, that’s all. It’s like we’re using a different
coordinate system here. The different bases give different sets of axes for the domain
and range—the axes are determined by the vectors in the two bases . . .

Sasha: . . . at least for vector spaces like Rn, where you can imagine “axes.”

Derman: Didn’t we make everything look like Rn in Chapter 7?

All of the examples and calculations in this lesson can now be summa-
rized and brought to closure.
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Chapter 8 Bases, Linear Mappings, and Matrices

Definition

Suppose V and W are vector spaces with respective bases

B = {v1, . . . , vn} and B′ = {w1, . . . , wm}

and suppose that T : V → W is a linear map. The matrix for T with re-

spect to B and B′ , written MB
′

B (T ), is the m×n matrix whose columns
are

T (v1)
B′ , T (v2)

B′ , . . . , T (vn)
B′

Theorem 8.12 (Matrix Representation of a Linear Map)

With the notation of the above definition, MB
′

B (T ) does the work of T in
the sense that, if v is any vector in V , then

T (v)
B′ = MB

′

B (T )vB

Proof. The proof is just a generic version of the calculations carried out.
To keep the notation down, let M = MB

′

B (T ), so that, for any i between 1
and n,

M∗i = T (vi)
B′

Write v as a linear combination of the vectors in B:

v = c1v1 + c2v2 + · · · + cnvn

so that

vB =

⎛
⎜⎜⎜⎝

c1
c2
...

cn

⎞
⎟⎟⎟⎠

Then
T (v) = c1T (v1) + c2T (v2) + · · · + cnT (vn)

Then, taking coordinate vectors, you get

T (v)
B′ = c1T (v1)

B′ + c2T (v2)
B′ + · · · + cnT (vn)

B′ (Theorem 7.10; see Lesson 7.5)

= c1M∗1 + c2M∗2 + · · · + cnM∗n

= M

⎛
⎜⎜⎜⎝

c1
c2
...

cn

⎞
⎟⎟⎟⎠ (the Pick-Apart Theorem)

= MvB

One more generalization of previous results: Theorem 5.11 (see Les-
son 5.5) generalizes to matrices with respect to arbitrary bases.
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8.4 Building and Representing Linear Maps

Theorem 8.13 (Composite to Product)

Suppose that V , W , and U are vector spaces and that T and S are linear
maps:

V
T→ W

S→ U

Suppose further that B, B′, B′′are bases, respectively, for V , W , and U .
Then

MB
′′

B (S ◦ T ) = MB
′′

B′ (S) MB
′

B (T )

Proof. Suppose v is any vector in V . Then

←−
This is a challenging proof.
Give reasons for each step.

MB
′′

B (S ◦ T )vB = S ◦ T (v)
B′′

= S (T (v))
B′′

= MB
′′

B′ (S)T (v)
B′

= MB
′′

B′ (S)
(
MB

′

B (T )vB

)
=
(
MB

′′

B′ (S)MB
′

B (T )
)

vB

Since this is true for every vector vB in Rn, ←−
See Exercise 12 from
Lesson 5.1.

MB
′′

B (S ◦ T ) = MB
′′

B′ (S) MB
′

B (T )

Developing Habits of Mind

Find associations between different concepts. As you can see, composition of
linear maps corresponds to matrix multiplication when the maps are represented by
matrices.

Exercises

1. For each mapping F : R2 → R2, determine whether F is linear.

a. F (x, y) = (2x, y) b. F (x, y) = (x2, y)

c. F (x, y) = (y, x) d. F (x, y) = (x, y + 1)

e. F (x, y) = (0, y) f. F (x, y) = (
√

3x,
√

3y)

2. For each mapping F : R3 → R2, determine whether F is linear.

a. F (x, y, z) = (x, x + y + z) b. F (x, y, z) = (0, 0)

c. F (x, y, z) = (1, 1) d. F (x, y, z) = (2x + y, 3y − 4z)

e. F (a, b, c) = a + c f. F (a, b, c) = a2 + b2

3. For each mapping F : R2(x) → R2(x), determine whether F is
linear.

a. F (a0 + a1x + a2x
2) = a0 + (a1 + a2)x + (2a2 − 3a1)x

2

b. F (a0 + a1x + a2x
2) = 0

c. F (a0 + a1x + a2x
2) = (a0 + 1) + a1x + a2x

2
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4. Let T : R3 → R2 be a linear mapping such that

T

⎛
⎝1

0

0

⎞
⎠ =

(
1

1

)
, T

⎛
⎝0

1

0

⎞
⎠ =

(
3

0

)
, T

⎛
⎝0

0

1

⎞
⎠ =

(
4

−7

)

Find T

⎛
⎝1

3

8

⎞
⎠.

5. Show that complex conjugation

a + bi �→ a − bi

is a linear map from C to C.

6. Let T : R3 → R2 be defined by (x, y, z) �→ (x + z, y − 2x), and let
S : R2 → R3 be defined by (x, y) �→ (x + 2y, 3x, y − x). Let M(T )
be the matrix for T with respect to the standard bases. Find

a. T ◦ S(1, 3) b. S ◦ T (2, 3,−1)

c. M(T ) d. M(S)

e. M(S ◦ T ) f. M(T ◦ S)

g. M(S)M(T ) h. M(T )M(S)

7. Suppose T : R3[x] → L{(1, 2, 0), (3, 1, 2)} is defined by

T (1) = (4, 3, 2)

T (1 + x) = (2,−1, 2)

T (x + x2) = (5, 5, 2)

T (x2 + x3) = (5, 0, 4)

Let M = MB
′

B (T ), where

B = {1, 1 + x, x + x2, x2 + x3} and B′ = {(1, 2, 0), (3, 1, 2)}

a. Find M

Then use M to find

b. T (x)
c. T (x3 − 3x2 + 5x − 6)
d. The set of all vectors v so that T (v) = (0, 0, 0)
e. The set of all vectors v so that T (v) = (1, 2, 0)

8. Let T , M , and B be as in Exercise 7, and let

B
′′ = {(8, 11, 2), (6, 7, 2)}

If N = MB′′

B (T ), find

a. r(M) and r(N)
b. ker(M) and ker(N)
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9. Suppose T : V → W is linear, and

dim(V ) = r and dim(W ) = s

What size is any matrix that represents T? Explain.

10. Suppose T : R3 → R3 is linear and is given by

T (1, 1, 0) = (−19,−6,−6)

T (0, 1, 1) = (−60,−21,−15)

T (0, 0, 1) = (−18,−7,−3)

Find MB
B (T ) if ←−

Here, the basis for the
domain and the range is
the same.

a. B = {(1, 1, 0), (0, 1, 1), (0, 0, 1)}
b. B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
c. B = {(12, 5, 3), (3, 1, 1), (2, 1, 0)}

11. Suppose V = R3[x] . Let E be the standard basis for R4. Show that
the map C : V → R4 defined by C(f) = f

E
is a linear map.

12. Suppose V is a vector space of dimension n, and let B = {v1, . . . , vn}
be a basis for Rn. Show that the map C : V → Rn defined by
C(v) = vB is a linear map.

13. Suppose T : V → W is linear. Show that T maps the zero vector in
V to the zero vector in W .

14. Suppose T : R2 → R2 is linear. Show that T maps a line to another
line.

15. Suppose T : Rn → Rm is linear. Show that T maps a line in Rn to
a line in Rm.

16. Suppose T : R2 → R2 is a linear map defined by ←−
See Exercise 14 from
Lesson 5.6.T (x, y) =

(
5x + 6y,−3x − 7

2y
)

a. Find the matrix M for T with respect to the standard bases
of R2.

b. Find two linearly independent vectors v1 and v2 that are scaled
by T—that is, so that there are numbers k1 and k2 such that

T (v1) = k1 v1 and

T (v2) = k2 v2

c. Find MB
B (T ), where B = {v1, v2}.

The next several exercises use the following definition (which you will
explore further in Lesson 8.5.

Definition

Let V be a vector space. The identity mapping on V , denoted by id(V ),
is the mapping id : V → V defined by id(v) = v for every vector v in V .
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17. If V is a vector space and T : V → V , show that

T ◦ id = id ◦T = T

18. Pick your favorite vector space V and a basis B for V . Calculate
MB

B (id).

19. Suppose T : R5[x] → R6[x], where T (f) is obtained from f by
multiplying f by x and simplifying.

a. Show that T is linear.
b. Suppose B = {1, x, x2, x3, x4, x5} and B′ = {1, x, x2, x3, x4, x5, x6}.

Find MB
′

B (T ).

20. Suppose T : R5[x] → R5[x], where T (f) is obtained from f by
replacing x by x + 1 and expanding.

a. Show that T is linear.
b. Suppose B = {1, x, x2, x3, x4, x5}. Find MB

B (T ).

21. Suppose T : R4[x] → R3[x] is defined by T (f) = g, where

g(x) = f(x + 1) − f(x)

a. Show that T is linear.
b. Suppose B = {1, x, x2, x3, x4} and B′ = {1, x, x2, x3}. Find

MB
′

B (T ).
c. Suppose that

B =

{
1, x,

x(x − 1)

2
,
x(x − 1)(x − 2)

6
,
x(x − 1)(x − 2)(x − 3)

24

}
and

B
′ =

{
1, x,

x(x − 1)

2
,
x(x − 1)(x − 2)

6

}

Find MB
′

B (T ).

22. If V is a vector space and B and B′ are two different bases for V , ←−
See Exercise 11 from
Lesson 8.1.

show that
MB

′

B (id)vB = vB′

for any vector v in V .

23. Using the same notation as in Exercise 22, show that(
MB

′

B (id)
)−1

= MB
B′(id)

24. Suppose V is a vector space, T : V → V is linear, B and B′ are
two bases for V , and P = MB

′

B (id). Show that

P−1MB
′

B′ (T )P = MB
B (T )

25. Suppose V = R3, v1 = (2, 1, 2), v2 = (4, 1, 8), and v3 = v1 × v2.

a. Show that B = {v1, v2, v3} is a basis for V .
b. Let E be the plane spanned by v1 and v2. Find a vector

equation for E.
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8.4 Building and Representing Linear Maps

c. Suppose T : V → V is the map that projects a point onto E. ←−
T (P ) is the intersection
with E of the line through
P in the direction of v3.

Show that T is linear and find

MB
B (T )

26. Combine your work in Exercises 16 and 24 to find, without a
calculator, the value of (

5 6

−3 − 7
2

)4

27. For each value of n, find the value of(
5 6

−3 −3.5

)n

a. n = 10 b. n = 20 c. n = 100
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8.5 Change of Basis

In the previous lesson, you learned how to represent a linear map by a
matrix that depends on the bases of the domain and the range. When the
domain and range are the same, as for a linear transformation, you will
be able to use those results to switch coordinate systems. The goal of this
lesson is to build such a matrix.

In this lesson, you will learn how to

• find the change of basis matrix for a vector space

• find the change of representation matrix for a given linear transfor-
mation and two given bases

In the previous lesson, you saw the following definition.

Definition

Let V be a vector space. The identity mapping on V , denoted by id(V ),
is the mapping id : V → V defined by id(v) = v for every vector v in V .

This definition leads to the following theorem.

Theorem 8.14

If V is a vector space and B is a basis, then

MB
B (id) = I

where I is the identity matrix of the appropriate size.

For You to Do

1. Prove Theorem 8.14.

What if you look at the matrix for the identity map with respect to two
different bases?

Suppose V is a vector space and B and B′ are bases for V . By
Theorem 8.12 (see Lesson 8.4), if v is any vector in V , ←−

See Exercise 22 from
Lesson 8.4.

MB
′

B (id)vB = id(v)
B′ = vB′

Minds in Action Episode 36

Tony: So, multiplying the coordinate vector for v with respect to B by this matrix
MB

′

B (id) produces the coordinate vector for v with respect to B′.

Sasha: So, the matrix changes the basis for you.
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8.5 Change of Basis

Derman: I need to try one.

Sasha: Good idea. Suppose V = R2[x]. Pick two bases.

Derman: OK. Let B = {1, x, x2} and let B′ = {1 + x, x + x2, x2}. Now I need a vector,
I guess.

Tony: Let’s do it in general. Suppose v = ax2 + bx + c. Coordinates, anyone?

Derman: Sure: vB = (c, b, a) and vB′ = (c, b − c, c − b + a).

←−
Check Derman’s work here.

Sasha: So, we want a matrix M so that

M

⎛
⎝c

b

a

⎞
⎠ =

⎛
⎝ c

b − c

c − b + a

⎞
⎠

Tony: I can find that. It’s supposed to be MB
′

B (id). So, we find the coordinate vectors
with respect to B′ for each vector in B, and we make those the columns of a matrix:

id(1)
B′ = 1B′ = (1,−1, 1)

id(x)
B′ = xB′ = (0, 1,−1)

id(x2)
B′ = x2

B′ = (0, 0, 1)

Now make these the columns of a matrix:

MB
′

B (id) =

⎛
⎝ 1 0 0

−1 1 0

1 −1 1

⎞
⎠

Let’s try it out.

Derman: The suspense is driving me crazy.⎛
⎝ 1 0 0

−1 1 0

1 −1 1

⎞
⎠
⎛
⎝c

b

a

⎞
⎠ = . . .

Yup. It works! And we could have used Pick-Apart to build this matrix to begin with:⎛
⎝ c

b − c

c − b + a

⎞
⎠ = c

⎛
⎝ 1

−1

1

⎞
⎠+ b

⎛
⎝ 0

1

−1

⎞
⎠+ a

⎛
⎝0

0

1

⎞
⎠

so

⎛
⎝ 1 0 0

−1 1 0

1 −1 1

⎞
⎠
⎛
⎝c

b

a

⎞
⎠ =

⎛
⎝ c

b − c

c − b + a

⎞
⎠!

Sasha: Yes, it works. But I understand it better if I stand back and use the calculation
in the book:

MB
′

B (id)vB = id(v)
B′ = vB′

This shows that it will always work.

Derman: Right, but I have to see an example before I really believe it.

Tony, Sasha, and Derman have proved a theorem.
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Theorem 8.15 (Change of Basis Theorem)

Suppose that V is a vector space and that B and B′ are bases for V . Then
for any vector v in V ,

MB
′

B (id)vB = vB′

Definition

Suppose that V is a vector space and that B and B′ are bases for V . The
matrix MB

′

B (id) is called the change of basis matrix from B to B′.

Changing representations

The methods of the previous lesson are used when you want to represent
a linear map T from one vector space V with basis B to another vector
space W with basis B′. Of course, V and W might be the same. Then T
is a linear transformation of V , and any matrix that represents T will be

←−
Because the matrix is
square, you can apply
all of the results about
square matrices, including
the TFAE Theorem (Theo-
rem 8.9; see Lesson 8.3.)square (why?)

In Chapter 5, you represented a linear transformation T of Rn by ←−
The standard basis of Rn

is {E1, E2, . . . , En}, where
Ei is the ith row of the
n× n identity matrix.

a square matrix. In the language of this chapter, matrix was MB
B (T ),

where B is the standard basis of Rn. Now, you can generalize to linear
transformations defined on any vector space with respect to any basis.
This means that for a particular transformation T : V → V , there are ←−

Note that the basis for the
domain (V ) and the range
(V ) are taken to be the
same in this section. This is
how matrix representations
of linear transformations
are most often used.

many different matrix representations—there’s an MB
B (T ) for any choice

of basis B. So, there are many different “faces” of the same linear map—
different matrices that represent the same thing. In this section, you’ll see
how these different matrices are related. The key will be the Composite to
Product Theorem (Theorem 8.13, see Lesson 8.4).

Minds in Action Episode 37

Derman, Sasha, and Tony are passing the time, talking about linear maps.

Tony: Suppose you know the matrix for a linear transformation with respect to one
basis. Can you use it to find the matrix of the same map with respect to a new basis?

Derman: Here’s what I’d do: change from the new basis to the old one with a change
of basis matrix. Then apply the map. Then convert from the old basis to the new one
with another change of basis matrix.

Sasha: That sounds good. I think this can all be done with matrix multiplication. Let’s
get some notation down. Suppose we have a vector space V with two bases B and
B′ and a linear map T : V → V . And, suppose we know MB

B (T ). We want MB
′

B′ (T ).
Here’s my guess:

MB
′

B′ (T ) = MB
′

B (id)MB
B (T )MB

B′(id)

Derman: Isn’t that what I said?

Tony, Sasha, and Derman have the right idea, as shown in the next
theorem.
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Theorem 8.16 (Change of Representation)

Suppose V is a vector space with two bases B and B′, and suppose that
T : V → V is a linear transformation. Then

MB
′

B′ (T ) = MB
′

B (id)MB
B (T )MB

B′(id)

Proof. The right side of the above equation is a product of three matrices.
By the associative law for matrix multiplication, you can group things two
at a time:

MB
′

B (id)MB
B (T )MB

B′(id) = MB
′

B (id)
(
MB

B (T )MB
B′(id)

)
= MB

′

B (id) MB
B′(T ◦ id) (Theorem 8.13; see Lesson 8.4)

= MB
′

B (id) MB
B′(T ) (Exercise 17 from Lesson 8.4)

= MB
′

B′ (id ◦T )

= MB
′

B′ (T )

You can think of this equation

MB
′

B′ (T ) = MB
′

B (id)MB
B (T )MB

B′(id)

as a way to “cancel” B and replace it with B′:

MB
′

B (id)MB
B (T )MB

B′(id) = MB
′

B (id)MB

�B (T )M�B
B′(id)

= MB
′

B (id)MB
B′(T ◦ id)

= MB
′

B (id)MB
B′(T )

= MB
′

�B (id)M�B
B′(T )

= MB
′

B′ (id ◦T )

= MB
′

B′ (T )

Minds in Action Episode 38

Derman: I don’t like the statement of the Change of Representation Theorem. It’s really
ugly looking. What does all that stuff mean, anyway?

Tony: I know what you mean, Derman. It does look pretty bad.

Sasha: What’s wrong with it? It looks perfectly fine to me.

Derman: Aren’t each of these things matrices? Why do we have to write things like
MB

B (T ) and MB
′

B (id)? It looks like the matrix, M , is being multiplied by something,
like T .

Tony: I understand that part. It’s like writing f(x) to represent a function of x. That
does not mean f times x, Derman.
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Derman: Yeah, I guess so. But why all the subscript and superscript Bs? And why do
we have to write id if it is a change of basis matrix? If we want to change from one
basis to another, why not just write MB

′

B or MB
B′?

Sasha: Hmm, let me think about this.

Sasha thinks for a moment, and then writes

(
cos θ − sin θ

sin θ cos θ

)
on a piece of paper.

Sasha: What is this?

Derman: It’s the rotation matrix for R2, but I don’t understand what this has to do
with my question.

Sasha: It’s not the rotation matrix for R2; it’s a rotation matrix for R2.

Derman: What do you mean? It is the rotation matrix, isn’t it?

Tony: Oh, I think I see! It is the most common rotation matrix, but that’s only because
we wrote, or constructed, that matrix relative to the standard basis for R2. But we
could have picked a different basis and the matrix would have looked different!

Sasha: Right! It would have been a different matrix, but it would still represent the
same rotation, just relative to a different basis.

Derman: I don’t understand. How would we find the rotation matrix relative to a
different basis?

Tony: You already told us how to, Derman! Change from the new basis to the old one,
apply the standard rotation matrix, then convert back to the new basis!

Sasha: I wonder if we could build it the way we built the original rotation matrix, too.

Tony: What do you mean, Sasha?

Sasha: When we first built the rotation matrix, we made it by looking at what the
transformation would do to (1, 0) and (0, 1). We picked those because that was the
only basis we knew for R2 at the time.

Tony: Plus that basis is really nice and seems to make everything easier. But I think
your way would work, too.

Sasha: Yeah, and the standard basis is how we usually represent vectors in R2. In this
case, we would have to keep writing everything relative to our nonstandard basis.

Derman: What are you two talking about? Doesn’t my way sound easier?

For You to Do

2. Use Sasha’s proposed method to find a matrix that represents a rotation in
R2 counterclockwise through an angle θ relative to the basis vectors (2, 1) and
(1,−1).

3. Use Derman’s proposed method to find a matrix that represents a rotation in
R2 counterclockwise through an angle θ relative to the basis vectors (2, 1) and
(1,−1).
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8.5 Change of Basis

4. Let B = {(1, 0), (0, 1)}, the standard basis for R2, and let B′ = {(2, 1), (1,−1)},
the basis used in problems 2 and 3 above. Let the transformation T be the coun-
terclockwise rotation by θ. Use the notation from the Change of Representation
Theorem to notate the two rotation matrices for R2 used in problems 2 and 3
above.

Exercises

1. Suppose B = {(1, 0), (0, 1)} and B′ = {(1, 1), (−3, 2)}.
a. Find the change of basis matrix from B to B′.
b. Find the change of basis matrix from B′ to B.
c. Find the product of these two matrices.

2. Suppose B = {(−3, 5), (11, 2)} and B′ = {(2, 5), (7, 1)}.
a. Find the change of basis matrix from B to B′.
b. Find the change of basis matrix from B′ to B.
c. Find the product of these two matrices.

3. Suppose

B = {1, x, x2} and B′ = {2 + x + 2x2, 3 + x, 2 + x + x2}

a. Find the change of basis matrix from B to B′.
b. Find the change of basis matrix from B′ to B.
c. Find the product of these two matrices.

4. Suppose B = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} and B′ =
{(−2, 3, 0, 5), (3,−1, 7, 1), (0, 4,−2, 3), (1,−3, 2,−4)}.
a. Find the change of basis matrix from B to B′.
b. Find the change of basis matrix from B′ to B.
c. Find the product of these two matrices.

5. A linear transformation T is represented by the following matrix

written relative to the standard basis for R2:

(
5 0

0 2

)
a. Describe this transformation relative to the standard basis.
b. Find a matrix that represents this transformation relative to

the nonstandard basis B′ = {(3, 1), (−1, 2)}.
c. Find a matrix that represents this transformation relative to

the nonstandard basis B′ = {(−4, 3), (7, 1)}.
d. When T is considered relative to some basis for R2, the matrix

that represents this transformation is

(
−1 −18

1 8

)
. Find two

bases for R2 that produce such a representation of T .
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6. Suppose T : R2 → R2 is linear and

T (1, 0) = (23,−12)

T (0, 1) = (40,−21)

a. Find M , the matrix for T with respect to the standard basis.
b. Find a basis B′ = {v1, v2} for R2 so that

T (v1) = k1v1 and T (v2) = k2v2

for numbers k1 and k2.
c. Find N = MB

′

B′ (T ).
d. Find a matrix P so that

N = P−1MP

7. Suppose T : R3[x] → R3[x] is defined by

T (1) = 15 − 2x + 3x2 + 7x3

T (x) = 20 − 3x + 7x2 + 11x3

T (x2) = 22 − 4x + 10x2 + 13x3

T (x3) = −34 + 6x − 10x2 − 17x3

Find MB
B (T ), where

B =
{
12 + 2x + 5x2 + 9x3, 2 − x + x2 + x3, 1 + x2 + x3, 1 + x + x3

}
8. Suppose T : Mat2×2 → Mat2×2 is defined by

T

(
1 0

0 0

)
=

(
15 −2

3 7

)

T

(
0 1

0 0

)
=

(
20 −3

7 11

)

T

(
0 0

1 0

)
=

(
22 −4

10 13

)

T

(
0 0

0 1

)
) =

(
−34 6

−10 −17

)

and suppose that

B =

{(
12 2

5 9

)
,

(
2 −1

1 1

)
,

(
1 0

1 1

)
,

(
1 1

0 1

)}

Find MB
B (T ).

9. Which linear mappings T are one-to-one? For those that are, find
a formula for T−1.

a. T (x, y, z) = (x − y, x + y)
b. T (x, y, z) = (x − y, x + y, 2z)
c. T (x, y) = (2x + y, x + y)
d. T (x, y, z) = (x + 2y + 3z, 4x + 5y + 6z, 7x + 8y)
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8.5 Change of Basis

e. T

(
x y

z w

)
= (x + w, 2y, z + w, w)

f. T (ax2 + bx + c) = 2ax + b

g. T (x, y, z) =

⎛
⎝x y z

z y x

y z x

⎞
⎠

10. For those mappings in Exercises 9a–9e that have inverses, find
M(T ) and M(T−1). Show that in each case, ←−

Here, all matrices are with
respect to standard bases.M(T−1) = (M(T ))−1

11. Suppose that V is a vector space and that T : V → V is linear. Let
B be any basis for V , and let M = MB

B (T ).

a. Show that if T is one-to-one, then M is invertible and

MB
B (T−1) = M−1

b. Show that T is one-to-one if and only if ker(M) is just the zero
vector.

←−
Just as for matrices, the
kernel of a linear map is
the set of vectors that get
mapped to 0.
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8.6 Similar Matrices

In Lesson 8.5, you learned to find the change of representation matrix of a
linear transformation for different bases. In this lesson, you will see that all
those matrices, which are just different faces of the same map, are related
in a particularly nice way.

In this lesson, you will learn how to

• determine when two matrices are similar

• find the eigenvalues and the eigenvectors of a matrix

• find a diagonal matrix, if it exists, similar to a given matrix

Minds in Action Episode 39

Derman: I still don’t really understand what we are doing here. Why do we keep
changing these transformations?

Sasha: We’re not changing the transformations, Derman, just their representations. It’s
still the same transformation, it just looks different.

Derman: That doesn’t make sense! The matrix is the transformation, isn’t it?

Tony: Not exactly. Think about this . . .

Tony sketches the following graph:

Tony: What is this?

Derman: It’s the graph of the function defined by y = x2. ←−
Derman is thinking of y as
a function of x here.Tony: But it’s not actually the function defined by y = x2; it’s just the graph of it.

Derman: Right . . .
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Tony: So if we changed the axes on our coordinate plane, the graph would look different,
but it still would be the graph of y = x2. So, actually, this is only a graph of y = x2.
It’s the most common, since this is what we generally set our axes to be, but if we
halved the x-coordinates, the graph would get all skinny like this:

Tony: But this is still a graph of the same function. The function didn’t change, just
the way we are representing it on this graph.

Sasha: Right, but it would have been better if we had picked these coordinate axes:

Sasha graphs the same function using coordinate axes where the x-axis is integer values
but the y-axis is squares of integer values and the negative of squares of integer values.

Sasha: Then the graph of our function would look really nice!

Derman: That’s cheating!

Sasha: Not really. It’s just changing the axes of the graph.

Derman: But now it looks like a different function!

Tony: But it’s not a function at all—it’s a graph. And the graph is just a different
representation of the same function.

Sasha: Right. And if we can figure out what axes, or coordinate system, to use, we can
make the graph of the function look really nice. In the same way, if we can figure out
what basis to use, we can make the matrix that represents our transformation look
really nice.
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Derman: I guess so. But there’s one more thing that still bothers me. Why do we
need to put the id in for change of basis matrices in this formula: MB

′

B′ (T ) =
MB

′

B (id)MB
B (T )MB

B′(id)? I asked you that yesterday, Sasha, and you didn’t answer
me.

Sasha: Oh, sorry about that, Derman. I must have gotten sidetracked. Well, it’s related
to what we were talking about then. We decided that to say a matrix represents a
transformation is a little imprecise, right?

Derman: Yeah, we decided it had to represent a transformation relative to a particular
basis.

Sasha: So that’s why we write things like MB
B (T ) or MB

′

B (T ); we’re declaring what
basis the transformation is occurring relative to.

Derman: But we don’t want change-of-basis matrices to represent a transformation at
all! They just change the basis.

Sasha: But why are those matrices so different? If every transformation matrix has to
be written relative to a particular basis . . .

Tony: Oh! Then any change-of-basis matrix has to be written relative to a transforma-
tion!

Derman: But there isn’t any transformation occurring!

Tony: Exactly! That’s why we write id , the identity transformation. That way our
vectors don’t move under the transformation.

Sasha: Right.

Derman: I guess so. So every matrix represents a transformation relative to a particular
basis?

Sasha: Yup!

Derman: Every matrix? What about

(
1 0

0 1

)
? What transformation is that, and relative

to what basis?

Tony: We already proved this back at Theorem 8.14, Derman! That’s the identity
transformation, id !

Derman: But what is the basis?

Tony: Any basis! It’s the best transformation, because it has the same representation
no matter what basis we are talking about. But now I’m interested in this equation
from the theorem:

MB
′

B′ (T ) = MB
′

B (id)MB
B (T )MB

B′(id)

The “bookend” matrices on the right-hand side look a lot alike:

MB
′

B (id) and MB
B′(id)

One transitions from B′ to B and the other transitions from B to B′. I bet they’re
inverses of each other.
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Sasha: Of course they are. Look:

MB
′

B (id)MB
B′(id) = MB

B (id ◦ id) (Composite to Product)

= MB
B (id) (id ◦ id = id)

= I (Theorem 8.14; see Lesson 8.5)

Since the product is I, the matrices are inverses.

Derman: I need to try one.

For You to Do

1. Help Derman work an example. Suppose V = R2[x], B = {x2, x, 1}, and ←−
If you arrange your calcula-
tions systematically, you’ll
find that expressing the ele-
ments of B in terms of the
elements of B′ will involve
the same steps you used
in Chapter 3 to find the
inverse of a matrix.

B′ = {2x2 + 5x + 3, 4x − 1, x2 + x + 2}. Calculate MB
′

B (id) and MB
B′(id), and

show that the two matrices are inverses.

In Episode 39, Sasha proves the next theorem.

Theorem 8.17

Suppose V is a vector space and B and B′ are bases for V . Then(
MB

′

B (id)
)−1

= MB
B′(id)

Theorem 8.17 allows the Change of Representation Theorem (Theo-
rem 8.16; see Lesson 8.5) to be recast.

Corollary 8.18 (Change of Representation, Take 2)

Suppose V is a vector space with two bases B and B′, and suppose that
T : V → V is a linear transformation. Then there is a square matrix P
such that

MB
′

B′ (T ) = P−1MB
B (T )P

In fact, P = MB
B′(id), the change of basis matrix from B′ to B.

Definition

Two n× n matrices M and N are similar if there is an invertible matrix
P such that ←−

Notation: If
N = P−1MP , one writes
N ∼ M .

N = P−1MP

So, using this definition, you can say that matrices for the same transfor-
mation with respect to different bases are similar .

You have met similar matrices (without calling them that) throughout ←−
See Exercises 26–29 from
Lesson 4.5 for more
examples.

this course. Similar matrices are related in several important ways (see
Exercises 5 and 11, for example).

A major goal of much of linear algebra is, given a linear transformation
T on a vector space V , to find a basis B of V for which the matrix
representation for T is especially simple—a diagonal matrix, for example.
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Example 1

Suppose T is a linear transformation on R3 whose matrix, with respect to the standard
basis B, is

M =

⎛
⎝−14 −3 33

−76 −21 174

−16 −4 37

⎞
⎠

Problem. Find MB
′

B′ (T ), where B′ = {(3, 5, 2), (−1, 4, 0), (2, 1, 1)}.

Solution 1. By Corollary 8.18, MB
′

B′ (T ) = P−1MP , where P = MB
B′(id). To build P ,

you need to express the elements of B′ in terms of the elements of B. That’s pretty easy. ←−
Since B is standard, the
columns of the change-of-
basis matrix are just the
the elements of B′.

(3, 5, 2) = 3(1, 0, 0) + 5(0, 1, 0) + 2(0, 0, 1)

(−1, 4, 0) = −1(1, 0, 0) + 4(0, 1, 0) + 0(0, 0, 1)

(2, 1, 1) = 2(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1)

so

P = MB
B′(id) =

⎛
⎝3 −1 2

5 4 1

2 0 1

⎞
⎠

It follows that MB
′

B (id) is ←−
You can invert the matrix
by hand or calculator.

P−1 = MB
′

B (id) =

⎛
⎝−4 −1 9

3 −1 −7

8 2 17

⎞
⎠

So,

MB
′

B′ (T ) = P−1MP

=

⎛
⎝−4 −1 9

3 −1 −7

8 2 17

⎞
⎠
⎛
⎝−14 −3 33

−76 −21 174

−16 −4 37

⎞
⎠
⎛
⎝3 −1 2

5 4 1

2 0 1

⎞
⎠

=

⎛
⎝3 0 0

0 −2 0

0 0 1

⎞
⎠

This is a much simpler matrix than M .
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Solution 2. You could build MB
′

B′ (T ) directly from the definition. This illustrates why
the matrix came out so nicely.⎛

⎝−14 −3 33

−76 −21 174

−16 −4 37

⎞
⎠
⎛
⎝3

5

2

⎞
⎠ =

⎛
⎝ 9

15

6

⎞
⎠ = 3

⎛
⎝3

5

2

⎞
⎠

⎛
⎝−14 −3 33

−76 −21 174

−16 −4 37

⎞
⎠
⎛
⎝−1

4

0

⎞
⎠ =

⎛
⎝ 2

−8

0

⎞
⎠ = −2

⎛
⎝−1

4

0

⎞
⎠

⎛
⎝−14 −3 33

−76 −21 174

−16 −4 37

⎞
⎠
⎛
⎝2

1

1

⎞
⎠ =

⎛
⎝2

1

1

⎞
⎠ = 1

⎛
⎝2

1

1

⎞
⎠

So, T scales each of the basis vectors in B′.

T

⎛
⎝3

5

2

⎞
⎠ = 3

⎛
⎝3

5

2

⎞
⎠ , T

⎛
⎝−1

4

0

⎞
⎠ = −2

⎛
⎝−1

4

0

⎞
⎠ , and T

⎛
⎝2

1

1

⎞
⎠ = 1

⎛
⎝2

1

1

⎞
⎠

Or, to spell out all the details,

T

⎛
⎝3

5

2

⎞
⎠ = 3

⎛
⎝3

5

2

⎞
⎠+ 0

⎛
⎝−1

4

0

⎞
⎠+ 0

⎛
⎝2

1

1

⎞
⎠ ,

T

⎛
⎝−1

4

0

⎞
⎠ = 0

⎛
⎝3

5

2

⎞
⎠− 2

⎛
⎝−1

4

0

⎞
⎠+ 0

⎛
⎝2

1

1

⎞
⎠ , and

T

⎛
⎝2

1

1

⎞
⎠ = 0

⎛
⎝3

5

2

⎞
⎠+ 0

⎛
⎝−1

4

0

⎞
⎠+ 1

⎛
⎝2

1

1

⎞
⎠

Hence, by definition, MB
′

B′ (T ) =

⎛
⎝3 0 0

0 −2 0

0 0 1

⎞
⎠.

The basis B′ in the above example consists of vectors that are scaled
by the transformation. Such vectors are called eigenvectors or charac-
teristic vectors for the transformation, and the scale factors are called
eigenvalues . If you can find a basis of eigenvectors for a transformation,
the matrix with respect to that basis will be a diagonal matrix (with eigen- ←−

Note that the columns of
the “diagonalizing matrix”
P in the above example are
precisely the eigenvectors
for T .

values on the diagonal), and that makes it easy to apply the transformation.

Geometrically, you can think of an eigenvector for T as the generator of
a line that is invariant under T . If you have a basis of eigenvectors, it’s like
having a set of axes that get scaled by the transformation.
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So, if your basis consists of eigenvectors, the matrix representation is ←−
You’ve encountered eigen-
vectors before, without
calling them that. See, for
example, Exercises 29–31
from Lesson 4.6 or Ex-
ercises 13 and 14 from
Lesson 5.6.

especially simple. Does such a basis exist? If so, how do you find it? These
are the questions you’ll study in the next chapter.

Exercises

1. A linear transformation T is represented by the following matrix
written relative to the standard basis for R2:(

6 0

0 2

)

a. Describe the transformation relative to the standard basis.
b. Find a matrix that represents this transformation relative to

the nonstandard basis B′ = {(3, 4), (1, 1)}.
c. Find a matrix that represents this transformation relative to

the nonstandard basis B′′ = {(5, 3), (4, 3)}.
d. Find a matrix P that shows that your answers to part b and

part c above are, in fact, similar.
e. When this transformation is considered relative to some basis

for R2, the matrix that represents it is

(
−2 −4

8 10

)
. Find a basis

for R2 that produces such a representation of T .

2. A linear transformation T is represented by the following matrix
written relative to the standard basis for R2:(

−3 0

4 1

)

a. If B = {(1, 0), (0, 1)}, use the notation of this chapter to denote
the given information of this problem.

b. Find a matrix that represents this transformation relative to
the nonstandard basis B′ = {(3, 4), (1, 1)}. Use the notation
of this chapter to denote this answer.

c. Find a matrix that represents this transformation relative to
the nonstandard basis B′′{(5, 3), (4, 3)}. Use the notation of
this chapter to denote your answer.

d. Find a matrix P that shows your answers to part b and part
c are, in fact, similar.

e. Find a diagonal matrix D such that D is similar to M .
f. Explain what your answer to part e means in terms of the

transformation represented by M .

3. A linear transformation T is represented by the following matrix
written relative to the standard basis for R2:(

1
5

12
5

12
5 − 6

5

)

a. If B = {(1, 0), (0, 1)}, use the notation of this chapter to denote
the given information of this problem.
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b. Find the image of the unit square under T . Try to describe the
effect T has on points in R2 geometrically.

c. Find the image of (4, 3) under T . Describe the effect T has on
this point geometrically.

d. Find the image of (−2,−1.5) under T . Describe the effect T
has on this point geometrically.

e. Find the image of (4, 3) under T 2. Describe the geometric effect
T has on this point when applied twice.

f. Find the image of the line X = k(4, 3) under T . Describe
the effect T has on this line geometrically. (This type of line
contains many eigenvectors of T .)

g. Find another line E = k(x, y) that is invariant under T . (Or,
equivalently, find another eigenvector of T .)

h. Show that two eigenvectors for T can form a basis for R2. Call
this basis B′.

i. Find MB
′

B′ (T ).

4. Show that the matrices

(
a 0

0 b

)
and

(
b 0

0 a

)
are similar.

5. a. Find two 2× 2 matrices that are similar. Show that they have
the same determinant.

b. Show that if any pair of 2 × 2 matrices are similar, they have
the same determinant.

6. Are there any 2× 2 matrices that have no eigenvectors in R2? If so,
find one. If not, prove it. ←−

In other words, are there
any 2 × 2 matrices that
don’t fix any lines?

7. A linear transformation T is represented by the following matrix M
written relative to the standard basis for R3:⎛

⎝2 0 0

0 −1 0

0 0 5

⎞
⎠

a. Find a matrix that represents this transformation relative to
the nonstandard basis

B
′ = {(1,−1, 1), (3, 2,−1), (2, 2,−1)}

b. Find a matrix that represents this transformation relative to
the nonstandard basis

B′′ = {(4,−1, 0), (−3, 1, 3), (1,−1, 2)}

c. Find a matrix that shows your answers to part b and part c
above are, in fact, similar.

d. When this transformation is considered relative to some basis

for R3, the matrix that represents it is

⎛
⎝11 −6 12

6 2 12

−6 3 −7

⎞
⎠. Find

a basis for R3 that produces such a representation of T .
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8. Suppose that

M =

⎛
⎜⎜⎝

15 20 22 −34

−2 −3 −4 6

3 7 10 −10

7 11 13 −17

⎞
⎟⎟⎠

a. Find a 4 × 4 matrix P so that P−1MP is a diagonal matrix.
b. How could you use part a to find M5 without a calculator?

9. Suppose that M , N , and Q are n × n matrices. Show that

a. M ∼ M
b. if M ∼ N , then N ∼ M
c. if M ∼ N and N ∼ Q, then M ∼ Q
d. if M ∼ N , then Mk ∼ Nk for any nonnegative integer k

10. Matrices for the same transformation with respect to different bases
are similar. Is the converse true? That is, suppose M and N are, say,
3 × 3 matrices with the property that there is an invertible matrix
P so that

P−1MP = N

Is there a linear transformation T : R3 → R3 and a pair of bases B

and B′ so that

MB
B (T ) = M and MB

′

B′ = N?

If so, what could you take as the bases, and what would the change
of basis matrix be? If not, provide a counterexample.

11. Recall from Exercise 27 from Lesson 4.4 that the trace of a square
matrix is the sum of its diagonal elements. Show that similar
matrices have the same trace. Illustrate with an example.
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Chapter 8 Mathematical Reflections

These problems will help you summarize what you have learned in this Vocabulary

In this chapter, you saw
these terms and symbols
for the first time. Make
sure you understand what
each one means, and how
it is used.

• bijective linear map

• blow up to a basis

• change of basis matrix

• eigenvalue

• eigenvector,
characteristic vector

• identity mapping

• invariant line

• linear map

• matrix for a
transformation with
respect to a basis

• maximal linearly
independent set

• row and column rank

• similar matrices

• structure-preserving
representation

chapter.

1. Is the set {(−2, 1, 3, 1), (1, 0,−4, 3)} a basis for R4? If not, find a
basis that contains it.

2. Let M =

⎛
⎝1 0 −1 −2 3

3 1 −2 1 2

1 1 0 5 −4

⎞
⎠.

a. Find r(M).
b. Find dim ker(M).
c. Find dim(column space of M).
d. Find a basis for ker(M).
e. Find a basis for the column space of M .

3. Determine whether each mapping is linear.

a. F : R2 → R2; F (x, y) = (x − y, x + y)
b. F : R3 → R2; F (x, y, z) = (x − y, z2)

4. Suppose B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and
B′ = {(1, 2, 4), (0, 1, 3), (1, 1, 0)}.
a. Find the change of basis matrix from B to B′.
b. Find the change of basis matrix from B′ to B.
c. Find the product of these two matrices.

5. Let M =

(
−2 5

−2 4

)
and N =

(
2 −2

1 0

)
. Show that M and N are

similar.

6. How is the dimension of the row space of a matrix related to the
dimension of its kernel?

7. How are different coordinate systems in the domain and range of a
linear transformation represented algebraically?

8. Let M =

(
9 4

−12 −5

)
and D =

(
3 0

0 1

)
. Show M is similar to D.
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Chapter 8 Review

In Lesson 8.2, you learned to

• build a basis by expanding a set of linearly independent vectors so it
generates

• build a basis by sifting out vectors from a set that generates but is
not linearly independent

The following problems will help you check your understanding.

1. For each of the given sets, blow it up to a basis.

a. {(1, 1,−1), (−1, 2, 4)} for R3

b. {(0, 1, 1)} for L{(3, 2,−1), (0, 1, 1), (3, 3, 0), (−3, 0, 3)}
c. {(2x2 − 1)} for R2[x]

2. For each of the given vector spaces, sift out a basis from the given
generating system.

a. V = L{2, 3x, x2 + x, x − 4}
b. V = L{(1, 2, 0), (3, 1, 4), (5, 5, 4), (2,−1, 4), (4, 1,−2)}

c. V is the row space of N =

⎛
⎝1 −3 −1

2 0 4

1 3 5

⎞
⎠, starting with the

rows.

d. V is the column space of N =

⎛
⎝1 −3 −1

2 0 4

1 3 5

⎞
⎠, starting with

the columns.

3. Is the set

{(
0 0

1 1

)
,

(
1 0

1 0

)
,

(
0 1

0 0

)
,

(
1 1

1 0

)}
linearly indepen-

dent and a basis for Mat2×2(R)? If not, remove any dependencies
and then extend it to a basis.

In Lesson 8.3, you learned to

• find the dimension of the row and column spaces of a matrix

• find the dimension of the kernel and its relation with the dimensions
of the row and column space

The following exercises will help you check your understanding.

4. For each matrix, find its rank and the dimension of its kernel.

a.

⎛
⎝2 −1 5

1 0 −1

2 5 −1

⎞
⎠ b.

⎛
⎜⎜⎝

2 −1 5

1 0 −1

2 5 −1

4 4 4

⎞
⎟⎟⎠

c.

⎛
⎜⎜⎝

2 −1 5

2 5 −1

4 4 4

8 2 14

⎞
⎟⎟⎠ d.

⎛
⎝2 −1 5 −4

2 5 −1 0

4 4 4 −4

⎞
⎠
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5. For each set of conditions, give an example, if possible, of a matrix
A that satisfies them. If there is no matrix, explain why not.

a. A is 3 × 5 and r(A) = 3.
b. A is 5 × 3 and r(A) = 2.
c. A is 5 × 3 and r(A) = 4.
d. A is 3 × 5 and dim ker(A) = 2.

6. Let N =

⎛
⎜⎜⎝

1 2 0 1 −2

2 3 1 1 1

1 5 1 0 3

4 −1 1 3 −3

⎞
⎟⎟⎠.

a. Find r(N).
b. Find dim ker(N).
c. Find a basis for ker(N).
d. Find a basis for the column space of N .

In Lesson 8.4, you learned to

• find a formula for a linear map knowing what it does to a basis

• build a matrix that does the work of a given linear map

• find the matrix representing a given linear map with respect to the
bases of its domain and range

The following exercises will help you check your understanding.

7. Determine whether each mapping F is linear.

a. F : R3 → R3; F (x, y, z) = (−x, x + y, 3y)
b. F : R3 → R2; F (x, y, z) = (x + 2, 3y)

c. F : R2[x] → Mat2×2(R); F (a + bx + cx2) =

(
2a b

−c 1

)

8. The linear map D : R2 → R3 with respect to the standard bases is
defined by D(x, y) = (y, x, y + x).

a. Find D(2, 3).
b. Find a matrix M so that, for any vector v in R2, MvB =

D(v)
B′ .

c. Use M to find D(2, 3).

9. Suppose the linear map T : R3 → R1[x] is defined by T (a, b, c) =
(b + c) + ax. And suppose the bases of the domain and the range
are

B = {(1, 0, 1), (0, 1, 1), (1, 0, 0)}
B′ = {1, 2 + x}

a. Find T (1, 2, 3).
b. Find a matrix M = MB

′

B (T ) so that, for any vector v in R3,
MvB = T (v)

B′ .
c. Use M to find T (1, 2, 3).

10. Suppose the linear map T : R3 → R2 is defined by T (x, y, z) =
(2(x + y), 2(x − z)) and the linear map S : R2 → R2 is defined by
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S(x, y) = (2x,−y). Let M(T ) and M(S) be the matrices for T and
S with respect to the standard bases. Find

a. S ◦ T (1, 2, 3)
b. M(S)
c. M(T )
d. M(S ◦ T )
e. M(S)M(T )

f. M(S ◦ T ) ·

⎛
⎝1

2

3

⎞
⎠

In Lesson 8.5, you learned to

• find a matrix that will switch coordinate systems within the same
vector space

• determine the change of representation for a linear transformation
given two different bases on a vector space

The following problems will help you check your understanding.

11. Suppose V = R2[x], let B = {1, x, x2}, and let B′ = {2, 1 + x, x −
x2}.
a. Find MB

′

B (id), the change-of-basis matrix from B to B′.
b. If v = 2 + 3x + x2, use this change-of-basis matrix to find vB′ .

12. Suppose B = {(2,−1), (0, 3)} and B′ = {(1, 1), (2, 0)}.
a. Find the change-of-basis matrix from B to B′.
b. Find the change-of-basis matrix from B′ to B.
c. Find the product of these two matrices.

13. A linear transformation T is represented by the matrix

⎛
⎝1 0 0

0 −1 0

0 0 2

⎞
⎠

relative to the standard basis for R3.

a. Describe this transformation relative to the standard basis.
b. Find a matrix that represents this transformation relative to

the nonstandard basis

B′ = {(1, 1, 0), (0, 1, 2), (1, 1, 1)}

c. Let v = (2, 3, 4). Show that T (v)
B′ = T (vB′).

In Lesson 8.6, you learned to

• determine if two matrices are similar

• find a diagonal matrix, if one exists, similar to a given matrix

• find the eigenvalues and eigenvectors of a given matrix

The following exercises will help you check your understanding.
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14. Suppose T : R3 → R3 is represented by the following matrix M
written relative to the standard basis B for R3:

M =

⎛
⎝8 −9 6

6 −7 4

0 0 1

⎞
⎠

and suppose that

B′ = {(3, 2, 0), (1, 1, 0), (−6,−4, 1)}

a. Find P = MB
B′(id).

b. Find P−1 =
(
MB

B′(id)
)−1

.

c. Use your answers to parts a and b to find MB
′

B′ (T ).

15. A linear transformation T is represented by the following matrix
written relative to the standard basis for R2:(

0 −1

2 0

)

a. Describe this transformation relative to the standard basis.
b. Find a matrix that represents this transformation relative to

the nonstandard basis B′ = {(3,−1), (−4, 1)}.
c. Find a matrix that represents this transformation relative to

the nonstandard basis B′′ = {(−2, 0), (1,−1)}.
d. Find a matrix P that shows your answers to part b and part

c are similar.

16. A linear transformation T is represented by the following matrix
written relative to the standard basis for R2:(

−26 10

−75 29

)

When this transformation is considered relative to some nonstan-

dard basis for R2, the matrix that represents it is

(
−1 0

0 4

)
. Find a

basis for R2 that produces this representation of T .
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Chapter 8 Test

Multiple Choice

1. Consider the set {(−1, 1, 2), (1, 1, 0)}. Which additional vector will
blow it up to a basis for R3?

A. (3,−3,−6)
B. (2, 0,−2)
C. (1,−3, 4)
D. (0, 2, 2)

2. Let N =

⎛
⎝−2 3 1 −2

1 3 −3 1

−4 6 2 −4

⎞
⎠. What is the rank of N?

A. 1
B. 2
C. 3
D. 4

3. Let T : R2 → R3 be a linear mapping such that

MB
′

B (T ) =

⎛
⎝1 1

0 2

1 −2

⎞
⎠ and B′ = {(1, 0,−1), (1, 1, 1), (0, 0, 1)}

What is T (4,−2)?

A. (−2,−4, 2)
B. (−2,−4,−4)
C. (2,−4, 8)
D. (2, 4, 2)

4. Suppose B = {(1, 0), (0, 1)} and B′ = {(2,−1), (1,−3)}. What is
the change-of-basis matrix from B to B′?

A.

(
3
5 − 1

5
1
5 − 2

5

)
B.

(
3
5

1
5

− 1
5 − 2

5

)
C.

(
1 2

−3 −1

)
D.

(
2 1

−1 3

)

5. Suppose MB
′

B (id) =

(
1 −3

−2 4

)
. What is MB

B′(id)?

A.

(
−2 − 3

2

−1 − 1
2

)
B.

(
− 1

10
3
10

− 1
5 − 2

5

)
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C.

(
2
5

3
10

1
5

1
10

)
D.

(
1
2

3
2

1 2

)

6. Suppose for some transformation T , MB
B (T ) =

(
1 2

0 −5

)
, where

B is the standard basis. Which matrix represents MB
′

B′ (T ) when
B′ = {(−1, 3), (2, 4)}?

A.

(
− 21

5 − 52
5

− 2
5

1
5

)
B.

(
− 16

5 − 7
5

− 27
5 − 4

5

)
C.

(
−5 −8

0 1

)
D.

(
−3 −2

−4 −1

)

Open Response

7. Let M =

⎛
⎜⎜⎝
−1 1 0 1

2 1 3 4

1 2 3 5

−3 0 −3 −3

⎞
⎟⎟⎠. For each of the given vector spaces,

sift out a basis from the given generating system.

a. V is the row space of M , starting with the rows.
b. V is the column space of M , starting with the columns.

8. Let M =

⎛
⎜⎜⎝

1 −2 5

3 −1 0

2 1 −5

5 −5 10

⎞
⎟⎟⎠.

a. Find r(M).
b. Find dim ker(M).
c. Find a basis for ker(M).
d. Find a basis for the row space of M .
e. Find a basis for the column space of M .

9. Suppose D : R3 → R2 with respect to the standard bases is defined
by D(x, y, z) = (x − y, 2z).

a. Show that D is linear.
b. Find a matrix M so that, for any vector v in R3, MvB =

D(v)
B′ .

c. Let B = {(1, 0, 1), (0,−1, 1), (1,−1, 0)} and B′ = {(1, 1), (0, 2)}.
Find N = MB

′

B (D).
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10. Suppose B = {(1, 0), (0, 1)} and B′ = {(4,−2), (1,−1)}. And,
suppose T : R2 → R2 is linear and

T (1, 0) = (4,−5)

T (0, 1) = (−2, 3)

a. Find the change of basis matrix from B to B′.
b. Find the change of basis matrix from B′ to B.
c. Find M , the matrix for T with respect to the standard basis B,

and N, the matrix that represents this transformation relative
to the nonstandard basis B′.

11. Show that M =

(
−1 4

2 1

)
and N =

(
15 36

−6 −15

)
are similar

matrices.
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9 Determinants and Eigentheory

You have already met determinants of 2 × 2 and 3 × 3 matrices in several
contexts.

• In Lesson 2.5, you learned that the cross product of two vectors A ←−
The cross product is
orthogonal to both A
and B, and its length is
equal to the area of the
parallelogram spanned by
the two vectors.

and B in R3 can be calculated with determinants of 2 × 2 matrices.

• In Lesson 5.4, you used what you knew about cross products to
deduce that the area of the parallelogram spanned by two vectors
in the plane must be equal to the absolute value of the determinant
of the matrix formed by putting the two vectors in the columns of a
matrix.

• In that same lesson, you learned that the determinant of a 2 × 2 ←−
If you don’t remember
all of them, look back
at Theorems 5.7, 5.8,
and 5.10. For example,
you learned that, for
2 × 2 matrices A and B,
det(AB) = detA detB.

matrix tells you what the associated linear map does to areas, and
you proved many useful properties of 2 × 2 determinants.

• And if you did Exercise 14 from Lesson 5.4, you learned to calculate
the volume of a parallelepiped determined by three vectors A, B,
and C by computing the absolute value of the determinant of a 3× 3
matrix. Remember

If the columns of a 3 × 3
matrix are the vectors A,
B, and C (in that order),
then the determinant of the
matrix is C · (A×B).

Not surprisingly, it’s time to use the extension program to define deter-
minants for n × n matrices and to use that extension as the definition of
volume in Rn. In this chapter, you’ll learn how to calculate determinants
of any size and see which of the properties continue to hold in higher di-
mensions. And determinants will play a prominent role as you tie together
some loose threads regarding fixed vectors and fixed lines for matrices.

By the end of this chapter, you will be able to answer questions
like these:

1. How can you find a vector in Rn orthogonal to n− 1 other vectors?

2. How can you extend the definition of volume to Rn?

3. Diagonalize the matrix A =

(
3 −1

4 −2

)
.
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You will build good habits and skills for ways to

• use the familiar to extend

• use functional notation

• use general purpose tools

• pay close attention to definitions

• find ways to simplify

• use the equivalence of different properties

• plan a general proof

• look for connections and structural similarities

Vocabulary and Notation

• algebraic multiplicity

• characteristic polynomial

• determinant

• eigenvalue

• eigenvector

• generalized cross product

• geometric multiplicity

• height

• M -invariant subspace

• minors of a matrix

• parallelepiped

• probability vector

• special orthogonal vector
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Exercises

For Exercises 1–3, find the determinant of each matrix.

1. a.

∣∣∣∣a c

b d

∣∣∣∣ b.

∣∣∣∣c a

d b

∣∣∣∣ c.

∣∣∣∣a b

c d

∣∣∣∣
←−
As usual, there are hidden
theorems in these calcula-
tions. What are they?

2. a.

∣∣∣∣∣∣
3 0 1

1 4 0

2 −3 1

∣∣∣∣∣∣ b.

∣∣∣∣∣∣
0 3 1

4 1 0

−3 2 1

∣∣∣∣∣∣ c.

∣∣∣∣∣∣
1 0 3

0 4 1

1 −3 2

∣∣∣∣∣∣
3. a.

∣∣∣∣∣∣
a d 2a

b e 2b

c f 2c

∣∣∣∣∣∣ b.

∣∣∣∣∣∣
a d a + d

b e b + e

c f c + f

∣∣∣∣∣∣
4. Find a nonzero vector that is orthogonal to the three given vectors

P1 = (1, 1, 0, 1), P2 = (1, 0, 0, 1), and P3 = (0, 0, 1, 0).

5. Define the volume of the 4-dimensional “box” spanned by P1, P2, ←−
How does this relate to
Exercise 4 above? Look
back at Exercise 14 from
Lesson 5.4 for a hint.

and P3 to be volume of base (the volume of the parallelepiped
spanned by P1, P2, and P3) times height. Find a way to calculate
the volume of the “box” spanned by the vectors from Exercise 4
and the vector Q = (2, 7,−9, 3).

6. Consider the vector of consecutive integers in Rn:

A = (1, 2, 3, 4, . . . , n − 1, n)

A transposition or flip is a switch of two adjacent entries. You ←−
Counting flips will be
important in Lesson 9.3.

can move 4 to the first position with three flips:

(1, 2, 3, 4, . . . , n − 1, n)
(1)→ (1, 2,4,3, . . . , n)

(2)→ (1,4,2, 3, . . . , n)
(3)→ (4,1, 2, 3, . . . , n)

How many flips does it take to

a. move 9 to the first position?
b. interchange 1 and 9?
c. move j to the first position?
d. interchange i and j (where i < j)?

7. Find λ if the determinant of the given matrix is 0.

a.

∣∣∣∣1 − λ 2

−1 4 − λ

∣∣∣∣ b.

∣∣∣∣∣∣
1 − λ 0 0

0 −λ 1

0 −4 −4 − λ

∣∣∣∣∣∣
8. For the given matrices,

1. determine if the given matrix has any nonzero fixed vectors
(that is, vectors where AX = X)
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2. determine if any nonzero vectors satisfy AX = 2X
3. find all nonzero vectors that satisfy AX = cX for any real

←−
In part 3. such a vector
would determine a fixed
line for the matrix.number c

←−
How do these matrices
compare with the ones in
Exercise 7? Hmm.

a. A =

(
1 2

−1 4

)
b. A =

⎛
⎝1 0 0

0 0 1

0 −4 −4

⎞
⎠
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9.2 Determinants

You have learned how to find determinants of 2 × 2 and 3 × 3 matrices. It
is now time to generalize the definition. The first step to generalizing the
definition of determinants to n×n matrices is to understand better what’s
going on in the more familiar 2 × 2 and 3 × 3 cases.

In this lesson, you will learn how to

• extend the definition of determinant to n × n matrices

• use a recursive algorithm to find the determinant of a matrix

• evaluate a determinant along any row or column

• develop the basic rules for determinants

Minds in Action Episode 40

Derman, Sasha, and Tony are talking about Exercise 2 from Lesson 9.1.

Tony: Hey, did you guys notice that all three answers are the same, except for the sign?

Derman: Of course they are! The matrices are the same.

Tony: What do you mean? They’re not the same. I mean, they’re kind of the same,
but . . .

Sasha: No, Derman’s right. Remember when we first did determinants like this? We were
finding the volume of the figure spanned by the three column vectors. The column
vectors are the same, just switched around, so . . .

Tony: So the volumes would have to be the same because it’s the same figure! Of
course! That’s why only the sign can change. The absolute value of the determinant
can’t change.

Derman: That’s what I said.

Tony: But why does the sign change when two columns are switched?

Sasha: Well, look at Exercise 1. The same thing happened in the 2 × 2 case, and since
we calculated with variables, that’s actually a proof.

Tony: Yeah, but I still don’t see why.

Sasha: Hmm. We learned that if the three columns of a matrix are the vectors A, B,
and C, then we can calculate the determinant as C · (A × B). What happens if we
switch the first two columns to make a new matrix?

Tony: The new matrix would have columns B, A, and C, so its determinant is C ·(B×A).
Of course! We already know that A × B = −(B × A). But I don’t see why switching ←−

A×B = −(B×A) because
of the right-hand rule!

the first and last column would change the sign. I guess we just have to calculate like
we did for 2 × 2 matrices . . . work it out in general.

Tony starts writing out some matrices.
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The three friends have figured out an important fact about calculating
determinants. It’s an idea that will form the basis for calculating more
general determinants, so it deserves to be stated as a theorem.

Theorem 9.1

Let A = (a1, a2, a3), B = (b1, b2, b3), and C = (c1, c2, c3) be three vectors.
Form four matrices whose columns are these vectors:

M1 = (ABC) =

⎛
⎝a1 b1 c1

a2 b2 c2
a3 b3 c3

⎞
⎠ , M2 = (BAC) =

⎛
⎝b1 a1 c1

b2 a2 c2
b3 a3 c3

⎞
⎠

M3 = (CBA) =

⎛
⎝c1 b1 a1

c2 b2 a2

c3 b3 a3

⎞
⎠ , M4 = (ACB) =

⎛
⎝a1 c1 b1

a2 c2 b2
a3 c3 b3

⎞
⎠

Then det(M1) = − det(M2), det(M1) = − det(M3), and det(M1) =
− det(M4). In other words, interchanging two columns of a 3 × 3 matrix
has the effect of multiplying the determinant by −1.

Proof. Sasha, Tony, and Derman have already provided a proof of the fact
that det(M1) = − det(M2). Here’s the second case:

det(M1) = C · (A × B)

= c1

∣∣∣∣a2 b2
a3 b3

∣∣∣∣− c2

∣∣∣∣a1 b1
a3 b3

∣∣∣∣+ c3

∣∣∣∣a1 b1
a2 b2

∣∣∣∣
= c1(a2b3 − a3b2) − c2(a1b3 − a3b1) + c3(a1b2 − a2b1)

On the other hand,

det(M3) = A · (C × B)

= a1

∣∣∣∣c2 b2
c3 b3

∣∣∣∣− a2

∣∣∣∣c1 b1
c3 b3

∣∣∣∣+ a3

∣∣∣∣c1 b1
c2 b2

∣∣∣∣
= a1(c2b3 − c3b2) − a2(c1b3 − c3b1) + a3(c1b2 − c2b1)

Now, compare term by term: det(M1) contains the term a1b2c3, and
det(M3) contains the term −a1b2c3; det(M1) contains the term −a1b3c2,
and det(M3) contains the term a1b3c2; and so on.

For Discussion

1. Finish the proof of Theorem 9.1. First, check that the terms appearing in the
expansion of det(M3) are exactly the negatives of the terms in the expansion of
det(M1). Then find a proof for the last claim—that det(M1) = − det(M4).

The real utility of Theorem 9.1 is that it allows you to calculate the
determinant of a 3 × 3 matrix using any column. If A, B, and C are three
vectors in R3, then there are three related matrices:

(ABC)
switch B and C−→ (ACB)

switch A and B−→ (BCA)
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9.2 Determinants

Theorem 9.1 says the determinants of these three matrices satisfy

det(ABC) = − det(ACB) = det(BCA)

since two columns were interchanged to go from (ABC) to (ACB), and
then two more columns were interchanged to go from (ACB) to (CBA).

Writing these three determinants out more explicitly gives

←−
The first row is C · (A×B).
The second row is
−B · (A × C). The third
row is A · (B × C).

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = c1

∣∣∣∣a2 b2
a3 b3

∣∣∣∣− c2

∣∣∣∣a1 b1
a3 b3

∣∣∣∣+ c3

∣∣∣∣a1 b1
a2 b2

∣∣∣∣
= −b1

∣∣∣∣a2 c2
a3 c3

∣∣∣∣+ b2

∣∣∣∣a1 c1
a3 c3

∣∣∣∣− b3

∣∣∣∣a1 c1
a2 c2

∣∣∣∣
= a1

∣∣∣∣b2 c2
b3 c3

∣∣∣∣− a2

∣∣∣∣b1 c1
b3 c3

∣∣∣∣+ a3

∣∣∣∣b1 c1
b2 c2

∣∣∣∣
So when you calculate a determinant of a 3× 3 matrix, you can evaluate it
along any of the three columns, as long as you are careful to keep the signs
straight. This can often make the work of calculating 3 × 3 determinants
much easier.

Example 1

Problem. Find each determinant. ←−
In other courses, you
may have learned other
methods for evaluating
some determinants. See,
for example, Exercise 6.

a.

∣∣∣∣∣∣
1 2 1

3 0 2

4 2 3

∣∣∣∣∣∣ b.

∣∣∣∣∣∣
3 0 1

4 1 0

−3 2 1

∣∣∣∣∣∣
Solution.

a. Notice that the matrix has a 0 in the second column. That means that if you
expand along the second column, one of the terms will disappear, making the
calculation shorter.∣∣∣∣∣∣

1 2 1

3 0 2

4 2 3

∣∣∣∣∣∣ = −2

∣∣∣∣3 2

4 3

∣∣∣∣+ 0

∣∣∣∣1 1

4 3

∣∣∣∣− 2

∣∣∣∣1 1

3 2

∣∣∣∣ = −2(9 − 8) − 2(2 − 3) = 0

b. This matrix has zeros in both the second and third columns, making either one a
good choice. Here’s the calculation along the third column:

←−
Try calculating this deter-
minant along the second
column. Do you get the
same answer?

∣∣∣∣∣∣
3 0 1

4 1 0

−3 2 1

∣∣∣∣∣∣ = 1

∣∣∣∣ 4 1

−3 2

∣∣∣∣− 0

∣∣∣∣ 3 0

−3 2

∣∣∣∣+ 1

∣∣∣∣3 0

4 1

∣∣∣∣ = (8 + 3) + (3 − 0) = 14

Notice how the signs in the expansion are different in the two examples
above. This “sign matrix” might help you keep track of which sign to use
when you expand a determinant. Along the first and third columns, the
expansion is +,−, +. Along the second column, it is −, +,−. ←−

Why is this correct? Look
back at the text before
Example 1 if you’re not
sure.

∣∣∣∣∣∣
+ − +

− + −
+ − +

∣∣∣∣∣∣
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For You to Do

2. Calculate each determinant. Pick your columns wisely.

a.

∣∣∣∣∣∣
0 1 2

3 1 −1

0 1 0

∣∣∣∣∣∣ b.

∣∣∣∣∣∣
1 2 0

−1 3 0

1 4 0

∣∣∣∣∣∣
This method of “evaluating along a column” will become the definition

of determinants for n × n matrices.

Developing Habits of Mind

The extension program. Thinking back, the determinant of a 3×3 matrix was defined
as the dot product of the third column with a “distinguished” vector orthogonal to the
first two columns: if A∗1, A∗2, and A∗3 are columns of a 3 × 3 matrix A, then

detA = A∗3 · (A∗1 × A∗2)

= A∗3 ·
(∣∣∣∣• •

• •

∣∣∣∣ ,−
∣∣∣∣• •
• •

∣∣∣∣ ,
∣∣∣∣• •
• •

∣∣∣∣
)

where each of the 2× 2 matrices of bullets is obtained from A in the usual way that you
form the cross product—crossing out one row and one column.

One of the goals of this chapter is to see how you can use this same idea to define the
determinant of, say, a 4 × 4 matrix whose columns are A∗1, A∗2, A∗3, and A∗4 as a dot
product

←−
Why the minus sign in front
of A∗4? Stay tuned.

−A∗4 ·

⎛
⎝
∣∣∣∣∣∣
• • •
• • •
• • •

∣∣∣∣∣∣ ,−
∣∣∣∣∣∣
• • •
• • •
• • •

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
• • •
• • •
• • •

∣∣∣∣∣∣ ,−
∣∣∣∣∣∣
• • •
• • •
• • •

∣∣∣∣∣∣
⎞
⎠

where the vector of 3× 3 determinants is a vector orthogonal to A∗1, A∗2, and A∗3 and ←−
Actually, you’ll see that
there’s nothing special
about the fourth column
here. You’ll develop a
method that will work
for any column, always
giving the same answer.
See Theorem 9.1 for a
preview.

whose entries are obtained with the same method you used to construct cross products.
And you’ll generalize this to n×n matrices. This will be a long and somewhat technical
process, so pull out your pencil.

The following definition for smaller matrices will prove useful moving
forward.

Definition

Let

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . . A1n

An1 An2 · · · Ann

⎞
⎟⎟⎟⎠

be an n × n matrix. The minors of A are the (n − 1) × (n − 1) square
matrices formed by deleting one row and one column from A. The matrix
Mij is the minor formed by deleting row i and column j.
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9.2 Determinants

Example 2

Problem. Let A =

⎛
⎝ 1 2 0

−1 3 0

1 4 0

⎞
⎠. Find M11 and M23.

Solution. To find M11, delete the first row and first column from A.⎛
⎝� � �
� 3 0

� 4 0

⎞
⎠ , so M11 =

(
3 0

4 0

)
.

To find M23, delete the second row and third column from A.⎛
⎝1 2 �
� � �
1 4 �

⎞
⎠ , so M23 =

(
1 2

1 4

)
.

For Discussion

3. Find the minors M13 and M21 for the matrix A given in Example 2 above.

Facts and Notation

The notion of matrix minors allows a more succinct description for calculating determi-

nants of 3 × 3 matrices. Let A =

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠. Calculating det(A) along the first

column gives
det(A) = A11 |M11| − A21 |M21| + A31 |M31|

Calculating det(A) along the second column gives

det(A) = −A12 |M12| + A22 |M22| − A32 |M32|

Finally, calculating det(A) along the third column gives

det(A) = A13 |M13| − A23 |M23| + A33 |M33|

Notice that this agrees with the rule for calculating 2 × 2 determinants as well. Let

A =

(
A11 A12

A21 A22

)
. Calculating det(A) along the first column gives

←−
Why is |M11| = A22?
Check the other minors as
well.

det(A) = A11 |M11| − A21 |M21| = A11A22 − A21A12

Calculating det(A) along the second column gives

det(A) = −A12 |M12| + A22 |M22| = −A12A21 + A22A11
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Developing Habits of Mind

Notice similarities. Note that each of the three expansions of the 3 × 3 determinant
is a dot product.

Along the first column: det(A) = (A11, A21, A31) · (|M11| ,− |M21| , |M11|)
Along the second column: det(A) = − (A12, A22, A32) · (|M12| ,− |M22| , |M12|)
Along the third column: det(A) = (A13, A23, A33) · (|M13| ,− |M23| , |M13|)

Each of these vectors of minors is a cross product. What do you cross to get each one?

This leads naturally to a method for calculating determinants for larger
matrices: pick a column of the matrix (ideally one with nice numbers or
zeros in it). Multiply each entry in that column by the determinant of the
corresponding matrix minor. Add the terms together, with signs alternating
as given in the “sign matrix” below: ←−

Can you figure out a
formula for Sij in terms
of i and j?

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

+ − + −
− + − + · · ·
+ − + −
− + − +

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

Example 3

Problem. Find the value of ∣∣∣∣∣∣∣∣
−1 0 2 1

−1 1 −4 1

2 1 0 −2

0 3 5 3

∣∣∣∣∣∣∣∣
Solution. Evaluating along the first column gives

−1 |M11| − (−1) |M21| + 2 |M31| − 0 |M41|

The last term will vanish, so this simplifies to

−1

∣∣∣∣∣∣
1 −4 1

1 0 −2

3 5 3

∣∣∣∣∣∣+ 1

∣∣∣∣∣∣
0 2 1

1 0 −2

3 5 3

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
0 2 1

1 −4 1

3 5 3

∣∣∣∣∣∣
There are three determinants of a 3 × 3 matrix to evaluate, just like you’ve been doing.

←−
Why is the second column a
good choice for this matrix?

∣∣∣∣∣∣
1 −4 1

1 0 −2

3 5 3

∣∣∣∣∣∣ = 4

∣∣∣∣1 −2

3 3

∣∣∣∣+ 0

∣∣∣∣1 1

3 3

∣∣∣∣− 5

∣∣∣∣1 1

1 −2

∣∣∣∣
= 4(3 + 6) − 5(−2 − 1) = 51
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∣∣∣∣∣∣
0 2 1

1 0 −2

3 5 3

∣∣∣∣∣∣ = 0

∣∣∣∣0 −2

5 3

∣∣∣∣− 1

∣∣∣∣2 1

5 3

∣∣∣∣+ 3

∣∣∣∣2 1

0 −2

∣∣∣∣
= −1(6 − 5) + 3(−4 − 0) = −13

∣∣∣∣∣∣
0 2 1

1 −4 1

3 5 3

∣∣∣∣∣∣ = 0

∣∣∣∣−4 1

5 3

∣∣∣∣− 1

∣∣∣∣2 1

5 3

∣∣∣∣+ 3

∣∣∣∣ 2 1

−4 1

∣∣∣∣
= −1(6 − 5) + 3(2 + 4) = 17

So the 4 × 4 determinant is −1(51) + 1(−13) + 2(17) = −30.

←−
Work these out for yourself.
You’ll be glad that you did.

Definition

Let A be an n-by-n square matrix.

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

⎞
⎟⎟⎟⎠ .

Pick an arbitrary column of A, say A∗j . Then

det(A) = (−1)j+1
(
A1j |M1j | − A2j |M2j | + · · · + (−1)n+1Anj |Mnj |

)
.

For Discussion

4. What is the purpose of the (−1)j+1 in front of the sum above? What is the
purpose of the (−1)n+1 on the last term of the sum?

Developing Habits of Mind

Use functional notation. It’s useful to think of the determinant as a function defined
on the columns of A, because they are vectors in Rn and there’s a built-in arithmetic of
vectors that you’ve developed over the last seven chapters. One goal of this chapter is
to investigate the interaction of the determinant with that arithmetic.

For You to Do

5. Calculate the determinants. Think about which columns are the most convenient
to use.

a.

∣∣∣∣∣∣∣∣
2 0 0 0

5 3 0 1

4 4 1 0

7 −3 2 1

∣∣∣∣∣∣∣∣ b.

∣∣∣∣∣∣∣∣∣∣∣

5 3 2 8 7

0 1 6 −1 4

0 0 8 0 7

0 0 0 9 3

2 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣
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Minds in Action Episode 41

Sasha: Something doesn’t make sense.

Derman: Lots of things don’t make sense. Like what does “easy as pie” mean?

Sasha: No, I mean about determinants. The definition seems to depend on the column
you pick.

Tony: Let’s try to do it two different ways and see what happens.

For You to Do

6. Calcuate

∣∣∣∣∣∣∣∣
2 0 0 0

5 3 0 1

4 4 1 0

7 −3 2 1

∣∣∣∣∣∣∣∣ using a different column than you used above. Do you get

the same result?

Developing Habits of Mind

Ensure consistency. Sasha’s concern that the definition of determinants depends on
the column you pick is important. In the next lesson, you’ll prove that it makes no
difference which column you expand along to calculate the determinant: no matter what,
you’ll get the same result. Assume this fact for now. ←−

In other words, the deter-
minant is well-defined .

Theorems 5.7 and 5.8 describe many properties of 2×2 determinants. If
the definition above for n× n determinants is a good one, these properties
should still hold. The next theorem establishes four important properties
for n × n determinants.

Theorem 9.2 (Basic Rules of Determinants)

Let A be an n × n matrix:

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1j · · · A1n

A21 A22 · · · A2j · · · A2n

...
...

...
. . .

...

An1 An2 · · · Anj · · · Ann

⎞
⎟⎟⎟⎠ .

Determinants have the following properties:

(1) Let I stand for the n × n identity matrix. Then det(I) = 1. Remember

The identity matrix has 1
along the diagonal and 0
everywhere else.

(2) If you replace a column A∗j with a scalar multiple of that column
cA∗j, the determinant is multiplied by the same scalar c. In other
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words, if

A′ =

⎛
⎜⎜⎜⎝

A11 A12 · · · cA1j · · · A1n

A21 A22 · · · cA2j · · · A2n

...
...

...
. . .

...

An1 An2 · · · cAnj · · · Ann

⎞
⎟⎟⎟⎠ ,

then det(A′) = c det(A). ←−
“scalars come out.”

(3) If you rewrite one column of A as a sum of two column vectors,
then det(A) breaks up as a sum of two determinants. Specifically, say
A∗j = A′

∗j + A′′
∗j and let

A′ =

⎛
⎜⎜⎜⎝

A11 A12 · · · A′
1j , · · · A1n

A21 A22 · · · A′
2j · · · A2n

...
...

...
. . .

...

An1 An2 · · · A′
nj · · · Ann

⎞
⎟⎟⎟⎠ , and

A′′ =

⎛
⎜⎜⎜⎝

A11 A12 · · · A′′
1j , · · · A1n

A21 A22 · · · A′′
2j · · · A2n

...
...

...
. . .

...

An1 An2 · · · A′′
nj · · · Ann

⎞
⎟⎟⎟⎠ .

Then det(A) = det(A′) + det(A′′). ←−
“det is linear.”

(4) Interchanging two columns A∗i and A∗j has the effect of multiplying
the determinant by −1. ←−

“det is alternating.”

Proof. You will prove parts ((1)), ((2)), and ((3)) in Exercises 10, 12,
and 13.

The proof of part ((4)) will follow from the first three parts along with
some intermediate results that are derived for them. Follow along with the
next few lemmas that lead to a proof of part ((4)).

Lemma 9.3

If one column of a matrix is O, the determinant is 0.

Proof. You’ll prove this in Exercise 11.

Lemma 9.4

If two adjacent columns are switched, the determinant changes by a sign.

The proof of Lemma 9.4 is easier to think about than to write down.
But a concrete example helps you see what’s going on.

Try it with ←−
Don’t just crank it out;
delay the evaluation to
help see how the structure
of your calculations could
be used in a general proof.

A =

∣∣∣∣∣∣∣∣
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

∣∣∣∣∣∣∣∣ and B =

∣∣∣∣∣∣∣∣
1 2 4 3

5 6 8 7

9 10 12 11

13 14 16 15

∣∣∣∣∣∣∣∣
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Expand A along column 4 and B along column 3. The coefficients are the
same and the minors are the same. The only difference is a change of signs
(as defined by the sign matrix).

The proof in general follows exactly the same idea.

Corollary 9.5

If two adjacent columns are equal, the determinant is 0.

Proof. Suppose A has two adjacent equal columns. Switch the identical
columns and det A changes by a sign (by Lemma 9.4). But the matrix stays
the same. So, det(A) = − det(A). This implies that det(A) = 0.

Corollary 9.6

If any two columns are equal, the determinant is 0.

Proof. Switch adjacent columns, one at a time, to bring the two equal
columns right next to each other. The determinant changes by at most a
sign. But the determinant of the resulting matrix is 0, so the determinant
of the original is too.

Theorem 9.7 (Part ((4)) of Theorem 9.2)

If you switch any two columns, the determinant changes by a sign.

Proof. Given a matrix A, suppose you want to switch columns i and
j. Form the matrix whose ith and jth columns are each A∗i + A∗j—the
sum of the two columns you want to switch. Its determinant is 0 by
Corollary 9.6. Then use linearity to break the determinant into a sum
of four determinants, two of which are 0 because they have two identical
columns, and the other two are A and the matrix obtained from A by
switching two columns: ←−

If the subscripts get in the
way, trace out the proof for
a 6-by-6 matrix, switching
columns, say, 2 and 5.

0 = det (A∗1, A∗2, . . . , A∗i + A∗j , . . . , A∗i + A∗j , . . . , A∗n)

= det (A∗1, A∗2, . . . , A∗i, . . . , A∗i + A∗j , . . . , A∗n)

+ det (A∗1, A∗2, . . . , A∗j , . . . , A∗i + A∗j , . . . , A∗n)

= det (A∗1, A∗2, . . . , A∗i, . . . , A∗i, . . . , A∗n)

+ det (A∗1, A∗2, . . . , A∗i, . . . , A∗j , . . . , A∗n)

+ det (A∗1, A∗2, . . . , A∗j , . . . , A∗i, . . . , A∗n)

+ det (A∗1, A∗2, . . . , A∗j , . . . , A∗j , . . . , A∗n)

In this last display, the first and third determinants are 0, so

0 = det (A∗1, A∗2, . . . , A∗i, . . . , A∗j , . . . , A∗n)

+ det (A∗1, A∗2, . . . , A∗j , . . . , A∗i, . . . , A∗n)

and the result follows.

The proof of Theorem 9.2 is now complete.
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Developing Habits of Mind

Use general-purpose tools. The proof of part ((4)) of Theorem 9.2 may seem like a
slick trick, but this kind of reasoning—using the linearity of the determinant function—
is a general-purpose method that can be used to establish many key properties of
determinants. The next examples show how these ideas can be used.

The rules for determinants can often make the process of computing
complicated determinants easier, if you take a moment to examine the
matrix first.

Example

Problem. Find each determinant.

a.

∣∣∣∣∣∣
1 5 2

1 −1 2

−3 1 −6

∣∣∣∣∣∣. b.

∣∣∣∣∣∣∣∣
−1 0 2 1

−1 1 −4 1

2 1 0 −2

0 3 5 3

∣∣∣∣∣∣∣∣
Solution.

a. Notice that the last column is exactly twice the first column, so the determinant
must be 0.

b. Here, the first and last columns are not identical, but they are close enough to
make the computation much easier. First, rewrite the last column as a sum, and
then split up the determinant.∣∣∣∣∣∣∣∣

−1 0 2 1 + 0

−1 1 −4 1 + 0

2 1 0 −2 + 0

0 3 5 0 + 3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
−1 0 2 1

−1 1 −4 1

2 1 0 −2

0 3 5 0

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
−1 0 2 0

−1 1 −4 0

2 1 0 0

0 3 5 3

∣∣∣∣∣∣∣∣ .

The first determinant is 0. (Why? Look at the first and last columns.) The second
one has a column with only one nonzero term, so it makes sense to evaluate along
that column.

∣∣∣∣∣∣∣∣
−1 0 2 0

−1 1 −4 0

2 1 0 0

0 3 5 3

∣∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣
−1 0 2

−1 1 −4

2 1 0

∣∣∣∣∣∣
= 3

(
1

∣∣∣∣−1 2

2 0

∣∣∣∣− 1

∣∣∣∣−1 2

−1 −4

∣∣∣∣
)

= 3 (−4 − 6) = −30
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Example

Suppose

A =

⎛
⎜⎜⎝

1 5 9 6

2 6 10 8

3 7 11 10

4 8 12 12

⎞
⎟⎟⎠

Notice that the columns of A are linearly dependent. In fact, ←−
You could have figured
out this dependence in
Chapter 3.

A∗4 = 2A∗1 − A∗2 + A∗3

Then, using the results from this section, det(A) can be expressed as the sum of three
determinants, and you can calculate like this:

detA = |A∗1, A∗2, A∗3, 2A∗1 − A∗2 + A∗3|
= |A∗1, A∗2, A∗3, 2A∗1|

+ |A∗1, A∗2, A∗3,−A∗2|
+ |A∗1, A∗2, A∗3, A∗3| (part ((3)) of Theorem 9.2)

= 2 |A∗1, A∗2, A∗3, A∗1|
− |A∗1, A∗2, A∗3, A∗2|

+ |A∗1, A∗2, A∗3, A∗3| (part ((2)) of Theorem 9.2)

= 0 (each of these determinants has two equal columns)

More generally,

Theorem 9.8

If the columns of a matrix are linearly dependent, its determinant is 0. ←−
You’ll prove this theorem
in Exercise 16.
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Exercises

1. Evaluate each of the following determinants.

a.

∣∣∣∣∣∣
1 2 1

3 0 7

1 2 1

∣∣∣∣∣∣ b.

∣∣∣∣∣∣
1 4 2

3 2 1

1 −1 1

∣∣∣∣∣∣ c.

∣∣∣∣∣∣
1 4 2

1 −1 1

3 2 1

∣∣∣∣∣∣

d.

∣∣∣∣∣∣
2 8 4

3 2 1

1 −1 1

∣∣∣∣∣∣ e.

∣∣∣∣∣∣∣∣
5 3 8 1

0 1 7 6

0 0 −2 3

0 0 0 4

∣∣∣∣∣∣∣∣ f.

∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣

g.

∣∣∣∣∣∣
3 0 0

0 4 0

0 0 5

∣∣∣∣∣∣ h.

∣∣∣∣∣∣
1 −1 1

0 1 6

3 −2 1

∣∣∣∣∣∣ i.

∣∣∣∣∣∣
1 0 3

−1 1 −2

1 6 1

∣∣∣∣∣∣

j.

∣∣∣∣∣∣∣∣
0 0 0 3

0 0 2 0

0 0 −1 0

5 0 0 0

∣∣∣∣∣∣∣∣
2. Evaluate the determinant∣∣∣∣∣∣∣∣∣∣∣

1 4 7 3 2

5 1 3 8 7

0 0 1 −1 3

0 0 2 0 1

0 0 1 −1 3

∣∣∣∣∣∣∣∣∣∣∣
along

a. the first column
b. the second column

3. What values of a make the following determinant 0?∣∣∣∣∣∣
1 0 a

0 1 0

a 0 1

∣∣∣∣∣∣
4. Calculate each determinant. Look for shortcuts.

a.

∣∣∣∣∣∣
1 2 4

3 0 3

1 −1 6

∣∣∣∣∣∣ b.

∣∣∣∣∣∣
1 4 2

3 3 0

1 6 −1

∣∣∣∣∣∣ c.

∣∣∣∣∣∣
1 2 8

3 0 6

1 −1 12

∣∣∣∣∣∣
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5. Calculate each determinant. Look for shortcuts.

a.

∣∣∣∣∣∣∣∣
1 3 −1 3

0 1 0 0

1 0 0 5

2 4 5 −1

∣∣∣∣∣∣∣∣ b.

∣∣∣∣∣∣∣∣
1 −1 3 3

0 0 1 0

1 0 0 5

2 5 4 −1

∣∣∣∣∣∣∣∣

c.

∣∣∣∣∣∣∣∣
2 −1 3 3

0 0 1 0

2 0 0 5

4 5 4 −1

∣∣∣∣∣∣∣∣ d.

∣∣∣∣∣∣∣∣
1 6 −2 3

0 2 0 0

1 0 0 5

2 8 10 −1

∣∣∣∣∣∣∣∣

e.

∣∣∣∣∣∣∣∣
1 3 6 3

0 1 2 0

1 0 0 5

2 4 8 −1

∣∣∣∣∣∣∣∣ f.

∣∣∣∣∣∣∣∣
1 6 −2 4

0 2 0 0

1 0 0 6

2 8 10 1

∣∣∣∣∣∣∣∣
6. You may have learned another technique for calculating determi-

nants of 3 × 3 matrices, often called the “basket weave” method.

a. How does the basket weave method work? ←−
If you don’t know what
the method is, you can
find it on the Web—
search for “basket weave
determinants.”

b. Does it work for any matrices besides 3 × 3?

7. Suppose that A =

⎛
⎝a b c

d e f

g h i

⎞
⎠ and that det(A) = 5. Find each

determinant.

a. det(4A)t b.

∣∣∣∣∣∣
2a 3b 4c

2d 3e 4f

2g 3h 4i

∣∣∣∣∣∣

c.

∣∣∣∣∣∣
b c a

e f d

h i g

∣∣∣∣∣∣ d.

∣∣∣∣∣∣
a b 2a

d e 2d

g h 2g

∣∣∣∣∣∣

e.

∣∣∣∣∣∣
a + 2b b c

d + 2e e f

g + 2h h i

∣∣∣∣∣∣ f.

∣∣∣∣∣∣
a − b b − c 2c

d − e e − f 2f

g − h h − i 2i

∣∣∣∣∣∣
8. Calculate the determinant.∣∣∣∣∣∣∣∣

a a2 b a2 + b

b b2 c ab + c

c c2 d ac + d

d d2 a ad + a

∣∣∣∣∣∣∣∣
9. Prove part ((1)) of Theorem 9.2. ←−

Hint: You already know
it is true for 2 × 2 and
3 × 3 identity matrices.
Show that if it’s true for an
(n − 1) × (n − 1) identity
matrix, it must be true for
an n× n identity matrix.

10. What is the determinant of a diagonal matrix such as

⎛
⎝3 0 0

0 5 0

0 0 7

⎞
⎠?
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11. Prove that if a matrix A has a column of all 0’s, then det(A) = 0. ←−
What’s a smart choice
for a column on which to
expand?

12. Prove part ((2)) of Theorem 9.2.

13. Prove part ((3)) of Theorem 9.2. ←−
For Exercises 12 and 13,
try evaluating det(A) along
the column A∗j .

14. Show that if one column of a matrix A is a scalar multiple of another
(A∗i = cA∗j , where i �= j), then det(A) = 0.

15. Suppose A, A′, and A′′ are three n-by-n matrices that are identical
except in the ith column and, there,

A∗i = aA′
∗i + bA′′

∗i

for some numbers a and b. Then

detA = a detA′ + b detA′′

16. Prove Theorem 9.8.
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9.3 More Properties of Determinants

In Lesson 9.2, you used an algorithm to define the determinant of an n×n
matrix. But there was a choice involved. In this lesson, you will make sure ←−

“Pick an arbitrary column
of A . . . ”

that the column you use to evaluate the determinant does not affect the
outcome. In this lesson, you will learn how to

• prove that the column you use to evaluate the determinant of a matrix
does not affect the outcome

• expand a determinant along a row instead of a column

• compare the determinant of a matrix to the determinant of its
transpose

Developing Habits of Mind

Pay close attention to definitions. Mathematics is one of the only fields where you
can create an object simply by writing down its definition. Mathematicians frequently
invent new objects, defining them by listing their properties. ←−

You’ve already seen several
examples; for instance,
vector spaces and matrices
were probably new objects
to you. In this book,
they were “defined into
being.” But definitions
are not arbitrary. The
idea of vector space, for
example, captured many
commonalities among
things with which you were
already familiar.

Of course, mathematicians must take great care to make sure that their definitions
make sense—that they actually define an object that could exist, and that the object in
question is well-defined.

You’ve already seen an example of this issue. In defining the cross product of two
vectors A and B in R3, one might be tempted to say, “A × B is a vector orthogonal to
both A and B.” But then any reasonable person, after drawing a quick sketch, is likely
to ask, “Which vector orthogonal to both A and B? There are a whole bunch of them!”

In defining A×B, mathematicians picked a nice example of a vector that is orthogonal
to both A and B: it is easy to compute with 2× 2 determinants; it has the nice property
that its length tells you something about the parallelogram spanned by A and B; and
you can geometrically describe its position in space with the right-hand rule. ←−

You meet another aspect
of showing that something
is well-defined whenever
you invoke the extension
program. What is that
aspect?

Now, you’ve run into this problem in the definition of determinant. If the definition
doesn’t say which column to choose, how do you know there’s only one determinant?

The first thing to do is try some examples.

For You to Do

1. Evaluate this determinant along each of the three columns. Do you get the same
answer each time? ∣∣∣∣∣∣

0 2 1

1 0 −2

3 5 3

∣∣∣∣∣∣
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Theorem 9.9 (Determinant Is Well-Defined)

Let A be an n × n square matrix.

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

⎞
⎟⎟⎟⎠

Let A∗i and A∗j be any two columns of A. Then ←−
In other words, the answer
for det(A) is the same, no
matter which column you
use.

(−1)i+1
(
A1i |M1i| − A2i |M2i| + · · · + (−1)n+1Ani |Mni|

)
= (−1)j+1

(
A1j |M1j | − A2j |M2j | + · · · + (−1)n+1Anj |Mnj |

)
Proof. This is a sketch of the main ideas for the proof. ←−

A formal proof of this
theorem requires ideas
from a field of mathematics
called combinatorics.

First, look at what happens for 2 × 2 and 3 × 3 matrices to see what’s
going on. ∣∣∣∣A11 A12

A21 A22

∣∣∣∣ = A11A22 − A12A21

Each term in the sum looks like A1x1
A2x2

, where x1 �= x2. In other words,
in each term, each row and each column show up exactly once.∣∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣ =A11A22A33 + A12A23A31 + A13A21A32

− A11A23A32 − A12A21A33 − A13A22A31

In this case, each term in the sum looks like A1x1
A2x2

A3x3
, where x1, x2,

and x3 are all different. Again, in each term each row and each column
appear exactly once.

Now let A be a 4 × 4 matrix, and suppose you evaluate det(A) along
column A∗j . Then A1j |M1j | is the first term in the formula for the
determinant. Since |M1j | is a determinant of a 3 × 3 matrix, you know
that each term in the sum looks like A2x2

A3x3
A4x4

, where x2, x3, and x4

are all different, and none of them equal j. So when you multiply these ←−
Remember that M1j is
formed by deleting the first
row and column j.

by A1j , you get terms that look like A1jA2x2
A3x3

A4x4
, with each row and

each column appearing exactly once.

Similarly, A2j |M2j | is a sum of terms A1x1
A2jA3x3

A4x4
, where all of

the x’s are different and none of them equal j, so again each row and each
column appears once in each term. The same can be said for A3j |M3j |, and ←−

Convince yourself of this.A4j |M4j |.
In this same way, you can see that for any n × n matrix, the terms in

the expansion of det(A) all look like A1x1
A2x2

· · ·Anxn
, where the x’s are

all different. This is true no matter which column you choose to expand
along.
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The only thing to worry about, then, is the signs of these terms. The
“sign matrix,” from Lesson 9.2, tells you the sign attached to each minor, ←−

The sign matrix is this:⎛
⎜⎜⎜⎝
+ − +
− + − · · ·
+ − +

...
. . .

⎞
⎟⎟⎟⎠

but then each minor is expanded according to its own sign matrix, all the
way down to individual entries in the matrix. And each entry ends up with
a + or a −. Is there any regularity to how the signs are attached? It may
not be obvious, but there is. It involves looking at the xi’s carefully and
asking how many “flips” of two numbers it takes to rearrange the sequence
x1, x2, . . . , xn into the sequence 1, 2, 3, . . . , n.

For example, in the 2 × 2 case, the positive term was A11A22. The xi

sequence is 1, 2, which is already in order, so it takes 0 flips to put it in
order. The negative term was A12A21. Here the xi sequence is 2, 1. To put
it in order, you need one flip.

2, 1
1↔2−→ 1, 2.

In the 3× 3 case, one of the positive terms requires no flips. Each of the
←−
This term requires no flips:
A11A22A33.others requires an even number of flips. Consider the term A12A23A31. The

sequence of xi’s is 2, 3, 1. So, ←−
Check that no matter how
hard you try, you can’t
change 2, 3, 1 into 1, 2, 3
with an odd number of
flips.

2, 3, 1
1↔2−→ 1, 3, 2

2↔3−→ 1, 2, 3

All of the negative terms require an odd number of flips. For example, look
at A11A23A32:

1, 3, 2
2↔3−→ 1, 2, 3.

For You to Do

2. Check each of the other terms in the 3 × 3 determinant and make sure that the
sign of each is given by the “even-odd” flip test. ←−

The “even-odd” flip test :
If there are k flips, the sign
is (−1)k.

This is promising. It gives a way to assign a sign to each term
A1x1

A2x2
· · ·Anxn

in det(A) that doesn’t depend on a choice of columns: ←−
Implicit here is the fact
that, for any term, any
way you pick to reorder
the xi’s will always have
the same “parity”—even or
odd. That’s true, and you
might try proving it.

the sign is “+ ”if it takes an even number of flips and “− ” if it takes an
odd number of flips. But is that the same as the sign you get by expanding
along any column? That comes next.

The plan is to establish that, no matter which column you pick, the
sign attached to A1x1

A2x2
· · ·Anxn

that results from repeatedly applying
the sign matrix to the original determinant and all of its minors is exactly
the number of flips it takes to move the xi into increasing order because
that—the number of flips it takes to order the xi’s—doesn’t depend at all
on which column you choose.

This is a bit tricky, but if you’ve followed along so far, the rest is downhill.
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Stick with a 4× 4 matrix—the following argument will work in general.
Suppose you evaluate along column j. The first is term A1j |M1j |. Since
M1j is a smaller matrix, you know that det(M1j) is a sum of terms that ←−

M1j is a 3× 3 matrix.look like A2x2
A3x3

A4x4
, where

• all the x’s are different and none of them are j

• the term is positive if it requires an even number of flips to put the
sequence x2, x3, x4 in increasing order

• the term is negative if it requires an odd number of flips

Suppose A2x2
A3x3

A4x4
is a positive term in the expansion of |M1j |, and

so A1jA2x2
A3x3

A4x4
is a term in det(A). Should the term be positive or

negative? Well, you need to see how many flips it takes to make the sequence
j, x2, x3, x4 look like 1, 2, 3, 4. Here’s one way to do it: first, move all the x’s
into increasing order. You know that takes an even number of flips. Now ←−

You know it takes an
even number of flips
because A2x2A3x3A4x4

was a positive term in the
expansion of |M1j |.

move the j into position:

• If j = 1, you’re done; the sequence is already in order. So the final
term should be positive.

• If j = 2, your sequence looks like 2, 1, 3, 4, so it takes one more flip to
put it in order. That means it takes an odd number of flips overall,
so the term should be negative.

• If j = 3, your sequence looks like 3, 1, 2, 4, so it takes two flips to put
it in order. That makes the total number of flips still even, so the
term should be positive.

• If j = 4, it takes three flips (why?). So the total number of flips is
odd, and the term should be negative.

The same reasoning works for the terms in |M1j | that are negative. In both
cases, you conclude that you should multiply by −1 if j is even, and 1 if j
is odd. And that’s what the sign matrix predicts.

That explains the first row of the sign matrix. What about the second ←−
The sign matrix is this:⎛
⎜⎜⎜⎝
+ − +
− + − · · ·
+ − +

...
. . .

⎞
⎟⎟⎟⎠

row? The exact same reasoning works, except now you need to count the
number of flips it takes to put the sequence x1, j, x3, x4 in order. After you
put x1, x2, x3 in order, you want to switch j and 2 by a sequence of flips.

If j = 1, the sequence looks like 2, 1, 3, 4, so it takes one flip to put it in
order. If j = 2, the sequence is already in order, so no flips are needed. If
j = 3, the sequence looks like 1, 3, 2, 4, so it takes one flip to finish putting
it in order. And if j = 4, it takes two flips. (Why?) This means the signs
attached to A2j should be positive if j = 2 or 4, and negative if j = 1 or 3.

The same kind of reasoning can explain why each row of the sign matrix
does the right thing. And the same idea will work for n × n matrices.

Developing Habits of Mind

Find ways to simplify The above argument would need more precision to make it
air-tight, but the basic idea is to use the fact that the determinant of an n × n matrix
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is well-defined by assuming that it is well-defined for (n − 1) × (n − 1) matrices and by
showing that the sign of any term is determined by the “flip test.”

There are many different ways to develop the theory of determinants—just take a
glance at some other linear algebra books. But all of them have some sticky arguments
at various points, because the notion of determinant is closely tied up with this idea of
even/odd flips. This idea rears its head twice:

(1) When you try to figure out what happens if you switch two columns

(2) When you try to show that a determinant is well-defined

The treatment used in this course has managed to eliminate the stickiness from ((1)) by
the proof used for Theorem 9.7, so that all the technicalities are buried in the proof of
Theorem 9.9.

Facts and Notation

The reasoning above has an interesting consequence. You will get exactly the same terms
in the sum, with exactly the same signs attached to them, if you evaluate along rows
instead of columns.

The proof considers terms of the form Aij |Mij | separately, and shows that each term
looks like A1x1

A2x2
· · ·Anxn

, where the x’s are all different and where xi = j. When you
sum along column j, you get every possible term A1x1

A2x2
· · ·Anxn

, where the x’s are
all different. If you sum along row i instead—adding and subtracting terms that look
like Ai1 |Mi1|, Ai2 |Mi2|, and so forth—you will get exactly the same terms.

Consider evaluating along the first row of a 3 × 3 determinant:∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣ = A11 |M11| − A12 |M12| + A13 |M13|

= A11A22A33 + A12A23A31 + A13A21A32

− A11A23A32 − A12A21A33 − A13A22A31

That means the definition of determinant could be stated in two equivalent ways. Let
Ai∗ be any row of an n × n matrix A, and let A∗j be any column. Then

det(A) = (−1)i+1
(
Ai1 |Mi1| − Ai2 |Mi2| + · · · + (−1)n+1Ain |Min|

)
= (−1)j+1

(
A1j |M1j | − A2j |M2j | + · · · + (−1)n+1Anj |Mnj |

)

Example

Problem. Evaluate this determinant along the first row, and along the third column.
Check that the answers are the same. ∣∣∣∣∣∣

1 1 0

2 0 3

1 −1 0

∣∣∣∣∣∣ .
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Solution. Along the first row:∣∣∣∣∣∣
1 1 0

2 0 3

1 −1 0

∣∣∣∣∣∣ = 1

∣∣∣∣ 0 3

−1 0

∣∣∣∣− 1

∣∣∣∣2 3

1 0

∣∣∣∣+ 0

∣∣∣∣2 0

1 −1

∣∣∣∣
= 3 + 3 = 6

Along the third column: ∣∣∣∣∣∣
1 1 0

2 0 3

1 −1 0

∣∣∣∣∣∣ = 0

∣∣∣∣2 0

1 −1

∣∣∣∣− 3

∣∣∣∣1 1

1 −1

∣∣∣∣+ 0

∣∣∣∣1 1

2 0

∣∣∣∣
= −3(−2) = 6

Corollary 9.10 (Rows and Columns)

The determinant of a matrix can be evaluated along any row in the same
way that it is evaluated along a column.

It follows that the basic properties of determinants in Theorem 9.2 also
hold for rows.

Theorem 9.11 (Basic Rules of Determinants–Row Version)

Let A be an n × n matrix. Then

(1) Interchanging two rows of A has the effect of multiplying the deter-
minant by −1. ←−

“det is alternating.”
(2) If you replace a row Aj∗ with a scalar multiple of that row cAj∗, the

determinant is multiplied by the same scalar c. ←−
“scalars come out.”

(3) If you rewrite one row of A as a sum of two row vectors, then
det(A) breaks up as a sum of two determinants. Specifically, say
Aj∗ = A′

j∗ + A′′
j∗. Then∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗1
A∗2
...

A′
j∗ + A′′

j∗
...

A∗n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗1
A∗2
...

Aj∗
...

A∗n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗1
A∗2
...

A′′
j∗
...

A∗n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

←−
“det is linear.”

For You to Do

3. Evaluate the following determinant along each of the rows. Do you get the same
answer each time? Do you get the same answer as when you evaluated along the
columns in For You to Do problem 1?∣∣∣∣∣∣

0 2 1

1 0 −2

3 5 3

∣∣∣∣∣∣
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Minds in Action Episode 42

Sasha is drawing pictures of parallelepipeds and looking worried while Tony and Derman
eat their lunches.

B
A

C

ZY

X

Sasha’s Pictures

Tony: What are the pictures for?

Sasha: It seems weird to me that these boxes have the same volume.

Tony: What do you mean they have the same volume?

Sasha: Say I start with three vectors, like A = (1, 1, 1), B = (1,−1, 3), and C =
(−2, 1, 1). We learned a long time ago that if we make the matrix with those vectors
as columns, like this . . .

Sasha writes the matrix M =

⎛
⎝1 1 −2

1 −1 1

1 3 1

⎞
⎠

. . . then the volume of the box spanned by A, B, and C is |det(M)| = |C · (A × B)|.

Derman loudly slurps his drink and looks thoughtful.

Tony: Yeah, and if we switch the columns around, it’s still the same box. But you have
two different boxes drawn there.

Sasha: Well, we just learned that we can evaluate det(M) along the rows instead, right?
So, lets call the rows X = (1, 1,−2), Y = (1,−1, 1), and Z = (1, 3, 1). Then it seems
like we just learned that |det(M)| = |Z · (X × Y )| if we . . .

Tony: . . . if we evaluate along the last row instead of the last column!

Derman: But that doesn’t make sense. To get |Z · (X × Y )|, I should put those vectors
as the columns of a matrix, like this . . .

Derman puts down his drink, grabs Sasha’s pencil, and writes a new matrix N =⎛
⎝ 1 1 1

1 −1 3

−2 1 1

⎞
⎠.

Tony: But your matrix is just the transpose of Sasha’s matrix.

Sasha: Wow! You’re right. I feel a theorem coming on . . .

Derman: I’m not feeling it.
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For You to Do

4. Check that Sasha is right—that the determinant of her matrix M and Derman’s
matrix N are really the same. Remember

M =

⎛
⎝1 1 −2

1 −1 1

1 3 1

⎞
⎠ and N =

⎛
⎝ 1 1 1

1 −1 3

−2 1 1

⎞
⎠

Here’s the theorem Derman, Sasha, and Tony discovered.

Theorem 9.12

Let A be an n × n matrix, and let A� be its transpose. Then det(A) =
det(A�).

Proof. The proof will look similar to several you’ve seen already: show
the statement is true for small matrices like 2 × 2 and 3 × 3. Then
show that whenever it is true for all matrices of some particular size, say
(n − 1) × (n − 1), then it must be true for all “next size bigger” matrices.

←−
This method of proof is so
common in mathematics
that it has a special name:
proof by mathematical
induction.

You’ve already seen that detA = detA� for 2 × 2 and 3 × 3 matrices.
Suppose you know it works for (n−1)×(n−1) matrices. Let A be an n×n
square matrix and A� its transpose,

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

⎞
⎟⎟⎟⎠ and A� =

⎛
⎜⎜⎜⎝

A11 A21 · · · An1

A12 A22 · · · An2

...
...

. . .
...

A1n A2n · · · Ann

⎞
⎟⎟⎟⎠ .

Calculate det(A) by evaluating along the first column to get

det(A) = A11 |M11| − A21 |M21| + · · · + (−1)n+1An1 |Mn1|

Calculate det(A�) by evaluating along the first row to get

det(A�) = A11

∣∣M�
11

∣∣− A21

∣∣M�
21

∣∣+ · · · + (−1)n+1An1

∣∣M�
n1

∣∣
= A11 |M11| − A21 |M21| + · · · + (−1)n+1An1 |Mn1|
= det(A)

In the second line, use the fact that the minors have size (n− 1)× (n− 1).
So for the minor Mij , you already know that det(M�

ij ) = det(Mij).

For You to Do

5. Prove Theorem 9.11. Show Corollary 9.6 and Theorem 9.8 remain true if you ←−
Hint: Use Theorem 9.12.replace “column” with “row.”

You’ve probably already noticed that calculating the determinant of a
diagonal matrix is particularly simple. What about the determinants of ←−

Upper and lower triangular
matrices were introduced
in Lesson 4.3.

matrices that are upper triangular or lower triangular? Try a few.
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For You to Do

6. Calculate these determinants:

a.

∣∣∣∣∣∣
1 2 3

0 4 5

0 0 6

∣∣∣∣∣∣ b.

∣∣∣∣∣∣∣∣
3 0 0 0

1 3 0 0

−2 0 −3 0

11 −7 221 1

∣∣∣∣∣∣∣∣ c.

∣∣∣∣∣∣∣∣∣∣∣

−2 2 2 −1 1

0 4 2 1 8

0 0 −8 0 1

0 0 0 2 1

0 0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣
Theorem 9.13

The determinant of an upper triangular matrix is the product of the diag- ←−
The proof will look similar
to several you’ve seen al-
ready: Show the statement
is true for small matrices
like 2× 2 and 3× 3. Then
show that whenever it is
true for all matrices of
some particular size, say
(n − 1) × (n − 1), then it
must be true for all “next
size bigger” matrices. This
is mathematical induction
again.

onal entries, and the same is true for a lower triangular matrix.

Proof.

Here’s the proof for upper triangular matrices: if

A =

(
a b

0 d

)
, then

|A| = ad − b · 0 = ad

which is exactly the product of the diagonal entries.

←−
You already proved one
special case of this when
you showed that det(I) = 1
in Exercise 9 from Les-
son 9.2.

Now let

A =

⎛
⎝A11 A12 A13

0 A22 A23

0 0 A33

⎞
⎠

be any upper triangular 3×3 matrix. Expand det(A) along the first column:

det(A) = A11 |M11| − 0 |M21| + 0 |M31| = A11 |M11|

Since M11 is an upper triangular 2×2 matrix, its determinant is the product
of the diagonal entries A22 and A33. So det(A) = A11A22A33.

Now let A be any n×n upper triangular matrix, and suppose you know
that for every (n−1)× (n−1) upper triangular matrix, the determinant is
the product of the diagonal entries. Expand det(A) along the first column
to get:

det(A) = A11 |M11| − 0 |M21| + · · · ± 0 |Mn1| = A11 |M11|

Since M11 is an upper triangular matrix of dimension (n − 1) ×
(n − 1), its determinant is the product of its diagonal entries, i.e.,
|M11| = A22A33 · · ·Ann, and so

det(A) = A11A22A33 · · ·Ann

which is the product of the diagonal entries.

For Discussion

7. Prove Theorem 9.13 for lower triangular matrices. ←−
What needs to change in
the proof?
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Exercises

1. Evaluate

∣∣∣∣∣∣
1 3 1

2 −1 4

0 1 3

∣∣∣∣∣∣
a. along the first column
b. along the last row.

2. Evaluate

∣∣∣∣∣∣
−1 4 2

1 3 1

2 0 6

∣∣∣∣∣∣
a. along the last row
b. along the second column.

3. Evaluate

∣∣∣∣∣∣∣∣
1 −1 3 2

1 4 1 0

−1 3 1 2

0 1 6 1

∣∣∣∣∣∣∣∣
a. along row 2, and
b. along row 4.

4. Evaluate each determinant. Look for shortcuts.

a.

∣∣∣∣∣∣
1 2 −3

5 −1 1

2 4 −6

∣∣∣∣∣∣ b.

∣∣∣∣∣∣∣∣
1 −1 2 0

0 1 1 3

2 −4 0 5

1 1 −2 3

∣∣∣∣∣∣∣∣ c.

∣∣∣∣∣∣
1 t t2

t t2 1

t2 t 1

∣∣∣∣∣∣

d.

∣∣∣∣∣∣∣∣
1 1 1 1

1 a b d

1 1 c e

1 1 1 f

∣∣∣∣∣∣∣∣ e.

∣∣∣∣∣∣∣∣
1 a b c + d

1 c d a + b

1 c b a + d

1 a d c + b

∣∣∣∣∣∣∣∣ f.

∣∣∣∣∣∣
8 2 −1

−3 4 6

1 7 2

∣∣∣∣∣∣

g.

∣∣∣∣∣∣
k −3 9

2 4 1

1 k2 3

∣∣∣∣∣∣ h.

∣∣∣∣∣∣∣∣
1 3 4 0

2 1 5 2

3 1 2 1

1 0 −3 −1

∣∣∣∣∣∣∣∣ i.

∣∣∣∣∣∣
2 3 −1

1 5 6

3 4 7

∣∣∣∣∣∣

j.

∣∣∣∣∣∣∣∣
1 2 5 0

0 3 −3 0

0 4 2 0

0 −1 1 1

∣∣∣∣∣∣∣∣ k.

∣∣∣∣∣∣∣∣∣∣∣

5 3 2 8 7

0 1 6 −1 4

0 0 8 0 7

0 0 0 9 3

0 0 0 0 2

∣∣∣∣∣∣∣∣∣∣∣
l.

∣∣∣∣∣∣
5 3 8

2 1 6

3 2 2

∣∣∣∣∣∣

m.

∣∣∣∣∣∣
a b c

a + 1 b − 3 c + 2

a − 2 b + 6 c − 4

∣∣∣∣∣∣ n.

∣∣∣∣∣∣∣∣
1 2 2 2

1 3 3 3

1 1 4 4

1 1 1 5

∣∣∣∣∣∣∣∣
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5. Solve for x: ∣∣∣∣∣∣
3 4 2

−1 x x

2 5 7

∣∣∣∣∣∣ = 2

6. Prove that

∣∣∣∣∣∣
1 1 1

a b c

a2 b2 c2

∣∣∣∣∣∣ = (b − a)(c − a)(c − b).
←−
This determinant is called
the Vandermonde deter-
minant , named for the
violinist-mathematician
Alexandre-Théophile Van-
dermonde.

7. Suppose A = (A∗1, A∗2, A∗3, A∗4) is a 4×4 matrix and x1, x2, x3, x4

are numbers. Express each determinant in terms of det(A) and the
xi. ←−

In each problem, you are
replacing a whole column of
A with a linear combination
of the columns. You should
probably try expanding the
determinant along that
column.

a. det ((x1A∗1 + x2A∗2 + x3A∗3 + x4A∗4), A∗2, A∗3, A∗4)
b. det (A∗1, (x1A∗1 + x2A∗2 + x3A∗3 + x4A∗4), A∗3, A∗4)
c. det (A∗1, A∗2, (x1A∗1 + x2A∗2 + x3A∗3 + x4A∗4), A∗4)
d. det (A∗1, A∗2, A∗3, (x1A∗1 + x2A∗2 + x3A∗3 + x4A∗4))
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9.4 Elementary Row Matrices and Determinants

9.4 Elementary Row Matrices and Determinants

Ever since Chapter 3, you have been using the three elementary row
operations to put matrices in row reduced echelon form. Now elementary
row operations will be a useful tool to prove some important properties of
determinants.

In this lesson, you will learn how to

• use matrix multiplication as a way to reduce a matrix to echelon form

• relate the determinant of a matrix to the determinant of its echelon
form

• add one more simple condition to the TFAE Theorem (Theorem 8.9
from Lesson 8.3)

• prove that the determinant of the product of two n × n matrices is Remember

You proved this for 2 × 2
matrices in Chapter 5
(Theorem 5.10 from
Lesson 5.4).

the product of their determinants

Remember the three elementary row operations:

• interchange two rows

• replace one row with a nonzero multiple of that row

• replace one row with the sum of itself and some multiple of another
row

Minds in Action Episode 43

The three friends are talking about elementary row operations and determinants.

Derman: I tried some examples, and it seems like that third elementary row operation—
where you replace one row with the sum of itself and some multiple of another row—
that doesn’t do anything to the determinant.

Tony: How can that be? When you multiply a row by something, the determinant gets
multiplied by that same constant.

Derman: I don’t know why, but it’s true. Check it out. Start with one of those easy
triangular matrices like this: ∣∣∣∣∣∣

1 2 3

0 4 5

0 0 6

∣∣∣∣∣∣ = 24

right? Then take row 1, and subtract twice row 3 from it. You get this:∣∣∣∣∣∣
1 2 −9

0 4 5

0 0 6

∣∣∣∣∣∣ = 24

The determinant didn’t change.
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Tony: That’s not fair, though. Because it’s still triangular, and nothing on the diagonal
changed.

Sasha: Well, that shouldn’t matter. Because if the determinant stays the same when
you do the row operation, it will always stay the same, whether you start with a
triangular matrix or not. And if it changes somehow, it should still change in that
case.

Tony: I guess so, but it still seems like too special a case. What if you took row 3, and
subtracted twice row 1 from it?

Derman: OK, I’ll do it in my head. You get

∣∣∣∣∣∣
1 2 3

0 4 5

−2 −4 0

∣∣∣∣∣∣ = 24

Tony: Well, I guess I believe it then. But I still don’t see why . . .

Sasha: Let’s try that trick of “delayed evaluation,” where you write something out but

don’t simplify everything too much. So we started with this determinant:

∣∣∣∣∣∣
1 2 3

0 4 5

0 0 6

∣∣∣∣∣∣.
And then we subtracted twice row 1 from row 3:∣∣∣∣∣∣

1 2 3

0 4 5

0 − 2 · 1 0 − 2 · 2 6 − 2 · 3

∣∣∣∣∣∣
Tony: Oh, this looks like part of that theorem on rules of determinants. ←−

Theorem 9.11, part ((3)).
Sasha: Yeah, we can split it up now as a sum of two determinants:∣∣∣∣∣∣

1 2 3

0 4 5

0 − 2 · 1 0 − 2 · 2 6 − 2 · 3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 2 3

0 4 5

0 0 6

∣∣∣∣∣∣+
∣∣∣∣∣∣

1 2 3

0 4 5

−2 · 1 −2 · 2 −2 · 3

∣∣∣∣∣∣
Tony: That first one is just our original determinant. The second one . . .

Sasha: In the second one, the third row is a multiple of the first, and that’s another one
of the determinant rules. That determinant is 0. ←−

Sasha’s comment fol-
lows from Theorem 9.11,
part ((2)). (Why?)

Tony: So if you add a multiple of some row to a different row, it really doesn’t change
the determinant.

Derman: That’s what I said!

Theorem 9.14 (Effects of Elementary Row Operations)

(1) Interchanging two rows of a matrix multiplies the determinant of the
matrix by −1.

(2) Replacing one row of a matrix Ai∗ with a constant multiple of that row
cAi∗ multiplies the determinant of the matrix by the same constant c.

(3) Replacing one row of a matrix with a sum of that row and some ←−
In other words, replacing
row Ai∗ with Ai∗ + cAj∗
where i �= j doesn’t change
the determinant of the
matrix A.

multiple of a different row does not change the determinant of the
matrix.
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For Discussion

1. Sasha, Derman, and Tony have outlined a proof of part ((3)). Turn their idea ←−
You don’t need to prove
parts ((1)) and ((2)) be-
cause they are identical
to statements in Theo-
rem 9.11.

into a proof.

Minds in Action Episode 44

Sasha is still thinking about elementary row operations.

Sasha: Thinking aloud. I wonder if there’s some relationship between det(A) and
det(rref(A)).

Tony: What do you mean?

Sasha: Well, it’s easy to calculate det(rref(A)), right? If you start with a square
matrix, then rref(A) is a diagonal matrix. Either it’s got all 1’s on the diagonal, ←−

If rref(A) has all 1’s on the
diagonal, then rref(A) = I,
the identity matrix.

so det(rref(A)) = 1, or . . .

Tony: . . . or it’s got a 0 somewhere on the diagonal, and then det(rref(A)) = 0. Very
smooth.

Derman: But does that really tell us anything about det(A)?

Sasha: I don’t know. But we know that we use elementary row operations to change A
into rref(A). And we know what each of those operations does to det(A). It seems like
somehow we should be able to keep track.

Derman: Where do you get these ideas?

As usual, Sasha is onto something. The first step in figuring out a re- ←−
See For You to Do prob-
lem 5 from Lesson 5.2 if
you need a refresher about
2 × 2 elementary row ma-
trices.

lationship between det(A) and det(rref(A)) is to understand the determi-
nants of the elementary row matrices .

To form an elementary row matrix, perform an elementary row operation
to the identity matrix. This table gives some examples for 3 × 3 matrices:

Type elementary row operation elementary row matrix

Type 1 switch rows 1 and 3 E =

⎛
⎝0 0 1

0 1 0

1 0 0

⎞
⎠

Type 2 multiply row 1 by −5 F =

⎛
⎝−5 0 0

0 1 0

0 0 1

⎞
⎠

Type 3 replace row 2 with itself plus twice row 3 G =

⎛
⎝1 0 0

0 1 2

0 0 1

⎞
⎠
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For Discussion

2. Use Theorem 9.14 and the fact that det(I) = 1 to compute the determinants |E|,
|F |, and |G|.

For You to Do

3. Start with A =

⎛
⎝0 1 2

3 4 5

6 7 8

⎞
⎠, and find each matrix product.

a. EA b. FA c. GA

Describe in words what happens to the matrix A in each case.

Theorem 9.15 (Determinant and Effect of Elementary Row Matrix)

Let A be any n × n matrix.

(1) Let E be the n × n elementary row matrix obtained by interchanging
rows i and j in the identity matrix I. Then

(a) det(E) = −1, and
(b) EA is exactly the same as matrix A with rows i and j inter-

changed.

(2) Let E be the n × n elementary row matrix obtained by multiplying
row i of the identity matrix by the nonzero constant c. Then

(a) det(E) = c, and
(b) EA is exactly the same as matrix A with rows i multiplied by c.

(3) Let E be the n × n elementary row matrix obtained by replacing row
i of the identity matrix I by itself plus c times row j. Then

(a) det(E) = 1, and
(b) EA is exactly the same as matrix A with row i replaced by itself

plus c times row j.

Proof. The statements about the determinants all come from how the

←−
If you do problems 2 and 3
above, the next proof will
be much clearer.

elementary row matrices are formed. Here’s the proof for the type 1 ←−
You’ll prove the other
statements later.

elementary row matrices: suppose E is obtained from I by switching two
rows. Then, by part ((1)) of Theorem 9.14,

det(E) = − det(I) = −1

To see that EA is obtained from A by switching rows i and j, you need
to use the Pick-Apart Theorem again. ←−

The Pick-Apart Theorem
is Theorem 4.8 from
Lesson 4.5, and you’ve
used it many times since
then.

The kth row of EA is Ek∗A, the kth row of E times A; in symbols:

(EA)k∗ = Ek∗A

As long as k is not equal to i or j (the two rows that got switched), the
kth row of Eij looks just like the kth row of the identity matrix; that is,
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Ek∗ = Ik∗. It follows that

(EA)k∗ = Ek∗A = Ik∗A = (IA)k∗ = Ak∗

So, the kth row of EA is exactly the same as the kth row of A.

However, if you look at the ith row, then Ei∗ = Ij∗ , so Remember

E is obtained from I by
switching rows i and j.

(EA)i∗ = Ei∗A = Ij∗A = (IA)j∗ = Aj∗

and the ith row of EA is the jth row of A. ←−
Make sure you can supply
a reason for each equality
in the chain.

Similarly, if you look at the jth row, then Ej∗ = Ii∗, so

(EA)j∗ = Ej∗A = Ii∗A = (IA)i∗ = Ai∗

and the jth row of EA is the ith row of A.

So every row of EijA is identical to the same row of A, except rows i
and j are switched.

For Discussion

4. Prove part ((3)) of Theorem 9.15. Show that if E is a type 3 elementary row ←−
See Exercise 18 from
Lesson 4.6.

matrix, obtained from I by replacing the ith row by itself plus c times the jth

row, the product EA is obtained from A by replacing Ai∗ with Ai∗ + cAj∗.

For You to Do

5. Here are a few elementary row matrices of various sizes. For each one,

• describe the elementary row operation that is carried out when you multiply
a matrix A by the given matrix

• find the determinant of the given matrix
• find the inverse of the given matrix, or say why it doesn’t exist

a.

⎛
⎝1 0 3

0 1 0

0 0 1

⎞
⎠ b.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

c.

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 1

⎞
⎟⎟⎠

Theorem 9.15 has an interesting consequence, which you might have
already guessed.

Theorem 9.16

Every elementary row matrix E is invertible; furthermore, E−1 is also an
elementary row matrix.

Proof. Here’s a proof for one kind of elementary row matrix: suppose E ←−
You’ll take care of the other
two cases yourself.

is obtained from the identity by replacing row i with the sum of itself and
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c times row j for some nonzero scalar c. So the rows of E can be described
this way:

(E)k∗ =

{
Ik∗ whenever k �= i, and

Ii∗ + cIj∗ if k = i

Consider the matrix F , which is obtained from the identity by replacing
row Ii∗ with Ii∗ − cIj∗. From Theorem 9.15, multiplying any matrix A by
F leaves every row alone except for row i, which it replaces with row i
minus c times row j. Now think about the product M = FE; the rows of
M satisfy

• Mk∗ = Ek∗ whenever i �= k, since F leaves row k alone. So in
particular Mk∗ = Ik∗

• Mi∗ = Ei∗ − cEj∗. Using what you know about the rows of E from
above, this means

Mi∗ = (Ii∗ + cIj∗) − cIj∗ = Ii∗

So M = I, and E−1 = F .

Developing Habits of Mind

Use clear language to unpack a proof. In a way, the above proof masks the
simplicity of the idea. Basically, every elementary row operation can be “undone” by
another elementary row operation.

• Switching two rows is undone by doing it again.

• Multiplying a row by c is undone by multiplying that row by 1
c .

• Replacing the ith row by itself plus c times the jth row is undone by replacing the
ith row by itself plus −c times the jth row.

If you have an elementary row matrix obtained from I by an elementary row operation
of a certain type, its inverse is obtained from I by doing the inverse operation to I.

Elementary row matrices are especially useful, because they give a nice
way to relate A and rref(A). Here it is.

Theorem 9.17 (Echelon Form as Matrix Product)

There are elementary row matrices E1, E2, . . . , Es such that

E1E2 · · ·Es(rref(A)) = A. (4)

Furthermore, if rref(A) = I, then A can be written as a product of ←−
You’ve already seen one
example of how this works,
if you did Exercise 6 from
Lesson 5.2.

elementary row matrices.

Proof. Notice that the last sentence follows immediately from the first
one; just substitute I for rref(A) in equation (4). You know that you can
turn A into rref(A) by doing elementary row operations, which is the same
as multiplying by an elementary row matrix. So it looks like this:

rref(A) = Fs · · ·F2F1A
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where the F ’s are all elementary row matrices.

By Theorem 9.16 elementary row matrices are all invertible, so we can
multiply by the inverses one at a time.

rref(A) = Fs · · ·F2F1A

F−1
s rref(A) = Fs−1 · · ·F2F1A

...
...

F−1
2 · · ·F−1

s rref(A) = F1A

F−1
1 F−1

2 · · ·F−1
s rref(A) = A

From Theorem 9.16, you also know that the inverses are all elementary row
matrices as well. So rename them this way: F−1

1 = E1, F−1
1 = E1, and so

on. Then this becomes

E1E2 · · ·Es rref(A) = A

which is exactly what the theorem claimed.

The Product Rule

You have now shown that all but one rule you discovered for 2 × 2
determinants still hold for larger n × n determinants. The one rule that’s
still missing is the product rule: det(AB) = det(A) det(B). To begin, it ←−

This was Theorem 5.10
from Lesson 5.4.

makes sense to try an example to see if the product rule might continue to
hold for larger matrices.

For You to Do

6. Verify that det(AB) = det(A) det(B) if

A =

⎛
⎝1 3 0

2 1 4

3 4 5

⎞
⎠ and B =

⎛
⎝0 −1 1

1 0 2

5 1 2

⎞
⎠

First, you’ll see that the product rule holds in a special case—when the ←−
This will also help answer
Sasha’s question about
the relationship between
det(A) and det(rref(A)).

first matrix is an elementary row matrix.

Theorem 9.18

If A is any n × n matrix, and E is an elementary row matrix of the same
size, then det(EA) = det(E) det(A).

Proof. Suppose E is an elementary row matrix formed by interchanging ←−
All the hard work for this
proof has already been
done. It’s now just a
matter of putting the pieces
together.

rows i and j of the identity matrix. You know two useful facts:

• From Theorem 9.15, you know that multiplying EA has the effect of
switching rows i and j of A.

• From Theorem 9.14, you know that switching two rows of A has the
effect of multiplying det(A) by −1.
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Together, these two facts say that det(EA) = − det(A).

From Theorem 9.15, you also know that det(E) = −1, so det(E) det(A) =
− det(A) as well. Therefore, det(EA) = det(E) det(A), since they both
equal − det(A).

For Discussion

7. Prove Theorem 9.18 for type 2 elementary row matrices: show that if E is an ←−
You’ll finish the proof of
Theorem 9.18 by proving it
for Ei+j(c) in the Exercises.

elementary row matrix formed by multiplying row i of the identity matrix by
some nonzero scalar c, then det(EA) = det(E) det(A).

Minds in Action Episode 45

The friends are still talking about det(A) and det(rref(A)).

Sasha: Oh, I get it now. We can write A = E1E2 · · ·Es rref(A).

Derman: I still don’t see how that helps.

Tony: Now we know that if you multiply on the left by an elementary row matrix,
then the determinants multiply. So we can take determinants of both sides in Sasha’s
equation, and then expand it all out:

|A| = |E1E2 · · ·Es rref(A)|
= |E1| |E2| · · · |Es| |rref(A)|

Derman: I still don’t see how that helps.

Sasha: Well, we know that all of the determinants of the E’s are either 1 or −1 or some
nonzero constant c. So if we multiply them all together, there’s just some nonzero
constant k = |E1| |E2| · · · |Es| and det(A) = k det(rref(A)).

Derman: I still don’t see how that helps.

Tony: Huh, yeah. Me, too. I mean, it seems like there’s something there. But does that
mean we should find rref(A) and keep track of our steps to find det(A)? I’m not sure
that’s any easier.

Sasha: No, but I think I see something even better. I think what this says is that if
rref(A) = I, then detA �= 0. And if rref(A) �= I, then . . .

Tony: . . . then it must have a 0 on the diagonal, so both det(rref(A)) and det(A) will
be 0.

Sasha: I think that means we have more stuff for our “TFAE Theorem.” ←−
The most recent version
of the “TFAE Theorem”
is Theorem 8.9 from
Lesson 8.3.

Derman: I’m hungry. And I still don’t see how this helps.

Embedded in the three friends’ exchange is a theorem.
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Theorem 9.19

If A is an n × n matrix, there is a nonzero number k so that

det(A) = k det(rref(A))

Theorem 9.19 allows you to add one more condition—a very important
one—to the TFAE Theorem.

Theorem 9.20 (The TFAE Theorem)

The following statements are all equivalent for an n × n matrix A.

(1) The columns of A are linearly independent.

(2) The rows of A are linearly independent.

(3) The rank of A is n.

(4) rref(A) = I.

(5) A−1 exists.

(6) AX = B has a unique solution for any B.

(7) ker(A) = O.

(8) The dimension of the column space for A is n.

(9) The dimension of the row space for A is n.

(10) det(A) �= 0.

Proof. Everything in this theorem has already been proved except the
equivalence of the last statement. The idea now is to show that state-
ment ((10)) is equivalent to statement ((4)). ←−

That’s enough, since
you already know state-
ment ((4)) is equivalent to
all the others.

Sasha has already explained what Theorem 9.19 states formally: det(A) =
k det(rref(A)) for some nonzero constant k. If rref(A) = I, then detA =
k �= 0. On the other hand, if rref(A) �= I, then there is a zero somewhere
on the diagonal of rref(A). Since rref(A) is a diagonal matrix with a zero
on the diagonal, its determinant is 0. So det(A) = k · 0 = 0 as well.

Developing Habits of Mind

Use the equivalence of different properties. Theorem 9.20 says that the determi-
nant of a matrix can provide a useful way to check all kinds of properties. For example:

• Is the rank of A less than n (where A is an n × n matrix)? Well, rank(A) = n is
equivalent to det(A) �= 0. So calculate the determinant. If it’s 0, then rank(A) < n,
and otherwise rank(A) = n.

• Does A have an inverse? Only if its determinant is not 0.

• Does AX = 0 have more than one solution? Only if det(A) = 0.
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For Discussion

8. List three other facts you can check about a matrix just by calculating whether
the determinant is 0 or not.

For You to Do

9. Use determinants to find t if (3, 1, 2), (4, t, 2), (5, 1, 2t) are linearly dependent.

Now you’re ready to put the last puzzle piece in place to see that even
the product rule holds for determinants of any size square matrix.

Theorem 9.21 (Product Rule for Determinants)

Let A and B be any two n × n matrices. Then det(AB) = det(A) det(B).

Proof. There are two possibilities: either det(A) = 0, or det(A) �= 0. The
very powerful TFAE Theorem will come in handy in dealing with each case.

First, suppose det(A) �= 0. Then rref(A) = I from the TFAE Theorem.
We know from Theorem 9.17 that in this case A = E1E2 · · ·Es is a product
of elementary row matrices. So

AB = E1E2 · · ·EsB

Taking determinants of both sides, we have

|AB| = |E1E2 · · ·EsB|
= |E1| |E2 · · ·EsB|

...

= |E1| |E2| · · · |Es| |B|
= |E1E2 · · ·Es| |B|
= |A| |B|

Now suppose det(A) = 0; then from the TFAE Theorem, you know
that rank(A) < n. In Exercise 10 from Lesson 8.3, you showed that
rank(AB) ≤ rank(A). So rank(AB) < n, which means (again, from the
TFAE Theorem) that det(AB) = 0. So

det(A) det(B) = 0 · det(B) = 0 = det(AB).

And that takes care of both possibilities.

For Discussion

10. Fill in reasons for each step in the derivation of |AB| in the proof of Theorem 9.21.
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Exercises

1. Suppose that

A =

⎛
⎝a b c

d e f

g h i

⎞
⎠ and B =

⎛
⎝ j k l

m n p

q r s

⎞
⎠ .

Suppose also that det(A) = 5 and det(B) = 3. Find the following:

a. det(AB) b. det(2AB)

c. det
(
(AB)−1

)
d. det

(
A−1A−1

)
e. det

(
A−1B

)
f. det

(
A−1BA

)
g. det

(
ABA−1B−1

)
h. det

(
A−1B4

)
i. det

⎛
⎝
⎛
⎝a b c

g h i

d e f

⎞
⎠
⎛
⎝ j k l

2m 2n 2p

q r s

⎞
⎠
⎞
⎠

2. If A is an n × n matrix and A2 = I, show that det(A) = ±1.

3. If A is an invertible n × n matrix, show that det(A−1) = 1
det(A) . ←−

Use the equation
A−1A = I.4. If M and N are similar n×n matrices, use Exercise 3 to show that

Remember

M and N are similar if
there’s an invertible matrix
P so that N = P−1MP .
See Lesson 8.5.

det(M) = det(N).

5. If A is an n × n matrix with real entries and A3 = I, show that
det(A) = 1.

6. Show that there is no real 3×3 matrix B so that B2 =

⎛
⎝−1 0 0

0 0 1

0 −1 0

⎞
⎠.

7. Suppose that

A =

⎛
⎝a b c

d e f

g h i

⎞
⎠ and B =

⎛
⎝ j k l

m n p

q r s

⎞
⎠

Suppose also that det(A) = −7 and det(B) = 5. Find the following:

a. det(2A) b. det(B−1) c. det(AB) d. det(ABA−1)

e.

∣∣∣∣∣∣
a b c

g h i

d e f

∣∣∣∣∣∣ f.

∣∣∣∣∣∣
j k l

3m 3n 3p

q r s

∣∣∣∣∣∣
g.

∣∣∣∣∣∣
a b c

d − a e − b f − c

g h i

∣∣∣∣∣∣ h.

∣∣∣∣∣∣
j k l

m n p

j + m k + n l + p

∣∣∣∣∣∣
i.

∣∣∣∣∣∣
⎛
⎝−2a −2b −2c

g h i

d e f

⎞
⎠
⎛
⎝ m n p

j k l

q + 2m r + 2n s + 2p

⎞
⎠
∣∣∣∣∣∣
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8. Find the value of x if

rank

⎛
⎝1 − x −1 −1

1 3 − x 1

−3 1 −1 − x

⎞
⎠ < 3

9. Help finish the proof of Theorem 9.15.

a. If E is obtained from I by multiplying a row by c, show that
det(E) = c.

b. If E is obtained from I by adding a multiple of one row to
another, show that det(E) = 1.

10. Help finish the proof of Theorem 9.15 by showing that the product
Ei(c)A is exactly the same as matrix A with row i multiplied by c.

11. Finish the proof of Theorem 9.16 by finding the inverses of elemen-
tary row matrices of types 2 and 3, and showing that they really
are the inverses.

12. Help finish the proof of Theorem 9.18: show that if E is an elemen-
tary row matrix formed by replacing row Ii∗ of the identity matrix
with Ii∗ + cIj∗, then det(EA) = det(E) det(A).
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9.5 Determinants as Area and Volume

Remember the philosophy of the extension program: take a familiar geo-
metric idea in two and three dimensions, find a way to describe it with
vectors, and then use the algebra as the definition of the idea in higher
dimensions.

It’s time to pull together some ideas relating determinants, area, and
volume, and then extend those ideas to define volume for “boxes” in higher
dimensions.

In this lesson, you will learn how to

• use Cramer’s Rule to find a vector orthogonal to n− 1 given vectors
in Rn

• extend the definition of cross product from the familiar two vectors
in R3 to n − 1 vectors in Rn

• extend the definition of volume to a box spanned by n vectors in Rn

• use Cramer’s Rule to find the solution to a system of linear equations

First, here’s a summary of what you’ve seen so far, since it’s the
scaffolding for work in higher dimensions.

Form the Geometric Object. In R2, two vectors P and Q define a
parallelogram whose other two vertices are O and P + Q.

Q

O

P

P+Q

In R3, three linearly independent vectors P , Q, and R determine a ←−
Note that O, P , and Q
determine a plane, and
P + Q lies in that same
plane. The other four
vertices are translations
of these four points by the
point R. What happens
if the vectors are linearly
dependent?

parallelepiped, whose other vertices are O, (P + Q), (P + R), (Q + R),
and (P + Q + R). It looks like a (possibly slanted) box.
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R

O

P

Q
P+Q

P+R

Q+R
P+Q+R

Area/Volume Formula. You know from geometry that

area of a parallelogram = (length of base) · (height)

volume of a parallelepiped = (area of base) · (height)

In R2, the base is one of the two vectors. In R3, the base is the parallelogram
formed by two of the three vectors.

Projection. In both R2 and R3, you need to find the height of the figure,
which is really just the projection of one vector onto a vector orthogonal
to the others.

P+Q

P×Q P+Q+R

P+R

P+Q

Q

P

Q+R

Q

R

P

O

O

P⊥

Projp⊥(Q)=height

Proj
(P×Q)

(R)=height

If P = (a, b) in R2, then a vector orthogonal to P is P⊥ = (−b, a). It has ←−
Check that P · P⊥ = 0.the additional nice property that ‖P‖ =

∥∥P⊥∥∥.
In R3, you know that the cross product P × Q is orthogonal to both P

and Q, and has the additional nice property that ‖P × Q‖ is the area of ←−
So in R2 and R3, you
have a vector that is both
orthogonal to the base of
the figure and has a length
numerically equal to the
length or area of the base.

the parallelogram spanned by P and Q.
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Area/Volume as Dot Product. Once you have a vector orthogonal to
the base, you can find the height and then compute the area or volume.

height in R2 = ‖ProjP⊥ Q‖ =

∥∥∥∥
(

Q · P⊥

P⊥ · P⊥

)
P⊥
∥∥∥∥

=

∣∣Q · P⊥∣∣
‖P⊥‖2

∥∥P⊥∥∥ =

∣∣Q · P⊥∣∣
‖P⊥‖

height in R3 =
∥∥ProjP×Q R

∥∥ =

∥∥∥∥
(

R · (P × Q)

(P × Q) · (P × Q)

)
(P × Q)

∥∥∥∥
=

|R · (P × Q)|
‖(P × Q)‖2

‖(P × Q)‖ =
|R · (P × Q)|
‖(P × Q)‖

Now the area and volume calculations are easy.

Remember

One nice thing about P⊥

is that
∥∥P⊥∥∥ = ‖P‖.

area in R2 = (length of base) · (height)

= ‖P‖
∣∣Q · P⊥∣∣
‖P⊥‖ =

∣∣Q · P⊥∣∣
volume in R3 = (area of base) · (height)

= ‖P × Q‖ |R · (P × Q)|
‖(P × Q)‖ = |R · (P × Q)|

In both cases, the volume is the absolute value of a dot product between
a special vector orthogonal to the base, and the one vector that’s not part
of the base.

Area/Volume as Determinant. Of course, you also know that if P =
(a, b) and Q = (c, d), then the area of the parallelogram formed by P and
Q is the absolute value of the determinant of a matrix, specifically the ←−

You should check that
Q · P⊥ is exactly the same

as

∣∣∣∣a c
b d

∣∣∣∣.
matrix where P and Q form the columns. You also started out calculating
determinants of 3× 3 matrices whose columns were vectors P , Q, and R in
R3 by calculating R · (P ×Q). So in both R2 and R3, the area and volume
calculations boil down to finding the absolute value of the determinant of
a matrix whose columns are P , Q, and R.

It’s hard to think about “parallelepipeds” and “volume” in dimensions

←−
The fancy name for par-
allelepipeds in dimen-
sion bigger than three is
parallelotope .

greater than three. You can’t draw a picture to help you figure out what’s
going on. So you need to use the extension program again: use the algebra
to define the geometric objects. Then check that these objects have all the
right properties.

For Discussion

1. Here are four vectors in R4:

P1 = (0, 1, 1, 1), P2 = (1, 0, 2, 1)

P3 = (2, 1, 1, 0), P4 = (1, 2, 1, 2)

a. What are the vertices of the “parallelepiped” they define?
b. What could be the “base” of the figure?
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c. What would you call the “height” of this figure?
d. Without calculating it, describe what the “volume” of this figure might

mean.

The first step on the extension program is to define the figures.

Definition

Given n vectors in Rn, they span a parallelepiped . If the vectors are
P1, P2, . . . , Pn, then there are 2n vertices of the parallelepiped: O, the n
vectors themselves, and all possible sums of two vectors, three vectors, and ←−

“The n vectors themselves,
and all possible sums of
two vectors, three vectors,
and so on, up to the sum
of all n vectors.” Why does
this give you 2n vectors?

so on, up to the sum of all n vectors.

Cramer’s Rule

In R2 and R3, the area and volume calculations were made much easier
by the fact that you could find a special vector that was orthogonal to the ←−

You already know what
“orthogonal” means in any
dimension. It means the
dot product is 0. But can
you find a nice way to do
the calculation? And can
you always get the special
property of the length?

base and that had length numerically equal to the measure (length or area)
of the base. Can you do the same trick in higher dimensions?

Example 1

Problem. Given P1 = (1, 1, 0, 3), P2 = (−1, 1, 0, 0), and P3 = (0, 1, 1, 1), find a vector
X that is orthogonal to all three.

Solution. Let X = (x1, x2, x3, x4). You want to solve this system: ←−
These equations come from
expanding the equations

P1 ·X = 0

P2 ·X = 0

P3 ·X = 0.

1 · x1 + 1 · x2 + 0 · x3 + 3 · x4 = 0

−1 · x1 + 1 · x2 + 0 · x3 + 0 · x4 = 0

0 · x1 + 1 · x2 + 1 · x3 + 1 · x4 = 0

You can move the x4’s to the other side : ←−
This is like what Sasha and
Tony did with a similar set
of equations in R3. See
Lesson 2.5.

1 · x1 + 1 · x2 + 0 · x3 = −3 · x4

−1 · x1 + 1 · x2 + 0 · x3 = 0 · x4

0 · x1 + 1 · x2 + 1 · x3 = −1 · x4.

This lets you write a matrix equation: ←−
Use New Tools. In
Lesson 2.5, the three
friends didn’t know how to
write a system of equations
as a matrix equation.
They didn’t even know
about using the augmented
matrix for a system to solve
it. Look at how much they
(and you) have learned
since then.

⎛
⎝ 1 1 0

−1 1 0

0 1 1

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝−3

0

−1

⎞
⎠x4

Let A =

⎛
⎝ 1 1 0

−1 1 0

0 1 1

⎞
⎠. Expand along the last column to see that det(A) = 1

∣∣∣∣ 1 1

−1 1

∣∣∣∣ =

2 �= 0. So A has an inverse. You can check that this is correct.

A−1 =

⎛
⎝ 1

2 − 1
2 0

1
2

1
2 0

− 1
2 − 1

2 1

⎞
⎠
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That means ⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ 1

2 − 1
2 0

1
2

1
2 0

− 1
2 − 1

2 1

⎞
⎠
⎛
⎝−3

0

−1

⎞
⎠x4 =

⎛
⎝− 3

2

− 3
2

1
2

⎞
⎠x4

This equation gives the line orthogonal to the three vectors P1, P2, and P3. It’s clear
from the form of the answer that a nice choice for a representative vector is x4 = 2.

←−
Notice that the convenient
value for x4 is exactly
det(A). This is also what
Sasha and Tony found in
R2. See Lesson 2.5.

Then you get X = (−3,−3, 1, 2).

For You to Do

2. Use the same four points as in For Discussion problem 1.

P1 = (0, 1, 1, 1), P2 = (1, 0, 2, 1)

P3 = (2, 1, 1, 0), P4 = (1, 2, 1, 2)

a. Find a vector X that is orthogonal to P2, P3, and P4.
b. Find the projection of P1 onto X.

For two vectors in R3, the equations to find a third vector orthogonal
to both are simpler. It’s a good idea to focus on that case first, to see if
a general technique might emerge. If A = (a1, a2, a3) and B = (b1, b2, b3),
the equations you want to solve are

a1x1 + a2x2 = −a3x3

b1x1 + b2x2 = −b3x3, or in matrix terms(
a1 a2

b1 b2

)(
x1

x2

)
=

(
−a3

−b3

)
x3

You already know that one solution is

←−
See the first Facts and
Notation in Lesson 2.5.

A × B =

(
det

(
a2 a3

b2 b3

)
, − det

(
a1 a3

b1 b3

)
, det

(
a1 a2

b1 b2

))
How does this solution relate to the above matrix equation? A little
rewriting might make things more clear.∣∣∣∣a2 a3

b2 b3

∣∣∣∣ = −
∣∣∣∣a3 a2

b3 b2

∣∣∣∣ =

∣∣∣∣−a3 a2

−b3 b2

∣∣∣∣
−
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ =

∣∣∣∣a1 −a3

b1 −b3

∣∣∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣ =

∣∣∣∣a1 a2

b1 b2

∣∣∣∣
Let

M =

(
a1 a2

b1 b2

)
and B =

(
−a3

−b3

)
.

Define new matrices Mi where column i is exactly the column vector B,
and all other columns are identical to the columns of M . So

M1 =

(
−a3 a2

−b3 b2

)
and M2 =

(
a1 −a3

b1 −b3

)
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Then the cross product satisfies

A × B = (det(M1), det(M2), det(M))

For Discussion

3. Provide reasons for each step of the calculation∣∣∣∣a2 a3

b2 b3

∣∣∣∣ = −
∣∣∣∣a3 a2

b3 b2

∣∣∣∣ =

∣∣∣∣−a3 a2

−b3 b2

∣∣∣∣
−
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ =

∣∣∣∣a1 −a3

b1 −b3

∣∣∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣ =

∣∣∣∣a1 a2

b1 b2

∣∣∣∣
Does this generalize to higher dimensions? A natural thing to do is check

it against an already worked example, such as the one in Example 1.

Example 2

Problem. Given P1 = (1, 1, 0, 3), P2 = (−1, 1, 0, 0), and P3 = (0, 1, 1, 1), find a vector
X that is orthogonal to all three.

Solution. In this case, the matrix equation is⎛
⎝ 1 1 0

−1 1 0

0 1 1

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝−3

0

−1

⎞
⎠x4, so M =

⎛
⎝ 1 1 0

−1 1 0

0 1 1

⎞
⎠ and B =

⎛
⎝−3

0

−1

⎞
⎠

Substitute B for each column of M to get three new matrices.

M1 =

⎛
⎝−3 1 0

0 1 0

−1 1 1

⎞
⎠ , M2 =

⎛
⎝ 1 −3 0

−1 0 0

0 −1 1

⎞
⎠ , and M3 =

⎛
⎝ 1 1 −3

−1 1 0

0 1 −1

⎞
⎠

Form the vector
X = (det(M1), det(M2), det(M3), det(M)) = (−3,−3, 1, 2)

It’s a simple matter to check that X is orthogonal to all three of the given vectors. ←−
In fact, this is the same
vector X that was found in
Example 1 above, using
the method of solving
the matrix equation with
inverses.

This suggests a general method.

Developing Habits of Mind

Plan a general proof. Essentially, you want to mimic what you have done in the
numerical examples so far.
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Suppose you have n − 1 linearly independent vectors in Rn:

P1 = (p11, p12, . . . , p1n)

P2 = (p21, p22, . . . , p2n)

...

Pn−1 = (p(n−1)1, p(n−1)2, . . . , p(n−1)n)

Looking for a vector orthogonal to all of them amounts to finding a vector X =
(x1, x2, . . . , xn) in Rn so that

P1 · X = 0

P2 · X = 0

...

Pn−1 · X = 0

And this amounts to solving the system of equations

p11x1 + · · · + p1(n−1)xn−1 + p1nxn = 0

p21x1 + · · · + p2(n−1)xn−1 + p2nxn = 0

...

p(n−1)1x1 + · · · + p(n−1)(n−1)xn−1 + p(n−1)nxn = 0

The idea is to treat one of the variables as a constant and to “move it over” to the other
side. In the two previous examples, the last variable was chosen as the constant, and the
square matrix that resulted from the remaining coefficients had nonzero determinant.
That doesn’t always happen. For example, the vectors (2, 3, 5) and (4, 6, 7) are linearly
independent, but if we treat x3 as a constant in the system,

2x1 + 3x2 + 5x3 = 0

4x1 + 6x2 + 7x3 = 0(
2 3

4 6

)(
x1

x2

)
= −

(
5

7

)
x3

then the matrix M =

(
2 3

4 6

)
has determinant 0, and that’s trouble.

←−
Look back at the previous
two examples to see where
determinant 0 would have
caused trouble.But there’s a save: if you start with n − 1 independent vectors in Rn, you know that

the matrix ⎛
⎜⎜⎜⎝

p11 p12 · · · p1(n−1) p1n
p21 p22 · · · p2(n−1) p2n

...
. . .

p(n−1)1 p(n−1)2 · · · p(n−1)(n−1) p(n−1)n

⎞
⎟⎟⎟⎠

has row-rank n − 1. So, by TFAE (Theorem 9.20), it has column-rank n − 1, too. That ←−
TFAE to the rescue again.means that n − 1 of the columns are linearly independent, and you can reorder the

columns so that the linearly independent ones are the first n − 1 columns. And the
resulting coefficient matrix will have a nonzero determinant. So, the method of the
examples will work after (possibly) a little column shuffling.
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Hence, after a possible reordering of the columns, you can treat the last variable, xn,
as a constant, rearranging the system so that it is (n − 1) × (n − 1):

p11x1 + · · · + p1(n−1)xn−1 = −p1nxn

p21x1 + · · · + p2(n−1)xn−1 = −p2nxn

...

p(n−1)1x1 + · · · + p(n−1)(n−1)xn−1 = −p(n−1)nxn

This can be written as a matrix equation:

M

⎛
⎜⎜⎜⎝

x1

x2

...

xn−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−p1n
−p2n

...

−p(n−1)n

⎞
⎟⎟⎟⎠xn

where

M =

⎛
⎜⎜⎜⎝

p11 p12 · · · p1(n−1)

p21 p22 · · · p2(n−1)

...
. . .

p(n−1)1 p(n−1)2 · · · p(n−1)(n−1)

⎞
⎟⎟⎟⎠

Now, this isn’t really a single system—you get a system for every choice of xn. You could
pick xn to be 1, 2, 345, π, or anything. Because the coefficient matrix M now has rank
n − 1, picking xn = 0 would lead to X = O (why?), certainly a vector orthogonal to
each of the Pi, but not the one you want.

So, assume that xn = 1. You can then write the system as

M

⎛
⎜⎜⎜⎝

x1

x2

...

xn−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−p1n
−p2n

...

−p(n−1)n

⎞
⎟⎟⎟⎠

Just as in the numericals, you can solve this for X = (x1, x2, . . . , xn−1). Then you can
choose xn to make X look pleasing, multiply the solution by that value, and get a nice
vector orthogonal to each of the Pi. The results are in line with what you did in two
and three dimensions, and they are detailed in the proof of the next theorem.

Theorem 9.22 (Cramer’s Rule)

Given (n − 1) linearly independent vectors in Rn,

P1 = (p11, p12, . . . , p1n)

P2 = (p21, p22, . . . , p2n)

...

Pn−1 = (p(n−1)1, p(n−1)2, . . . , p(n−1)n)
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let

M =

⎛
⎜⎜⎜⎝

p11 p12 · · · p1(n−1)

p21 p22 · · · p2(n−1)

...
. . .

p(n−1)1 p(n−1)2 · · · p(n−1)(n−1)

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎝

−p1n
−p2n
...

−p(n−1)n

⎞
⎟⎟⎟⎠

For each number k = 1, . . . , n − 1, define a matrix Mk by the following
rule: column k of Mk is equal to the column vector B, and all other columns ←−

In other words,

(Mk)i∗ =

{
Mi∗ if i �= k

B if i = k

.

are equal to the columns of M .

Let X be a vector in Rn defined by

X = (det(M1), det(M2), . . . , det(Mn−1), det(M)) .

Then X is orthogonal to each of the vectors P1, P2, . . . , Pn−1.

Proof.

After rearranging the independent vectors Pi, it’s safe to assume that
the rows of M are linearly independent, and so det(M) �= 0. Hence, by
TFAE (Theorem 9.20) there is a unique solution to the matrix equation
MY = B. Let Y = (y1, y2, . . . , yn−1) be that solution.

Now,

det(M1) =

∣∣∣∣∣∣∣∣∣
−p1n p12 · · · p1(n−1)

−p2n p22 · · · p2(n−1)

...
. . .

−p(n−1)n p(n−1)2 · · · p(n−1)(n−1)

∣∣∣∣∣∣∣∣∣
Since Y is a solution to the matrix equation, you know that

p11y1 + · · · + p1(n−1)yn−1 = −p1n

p21y1 + · · · + p2(n−1)yn−1 = −p2n

. . . and so on. Substituting these equations in the first column of M1 gives

det(M1) =

∣∣∣∣∣∣∣∣∣
p11y1 + · · · + p1(n−1)yn−1 p12 · · · p1(n−1)

p21y1 + · · · + p2(n−1)yn−1 p22 · · · p2(n−1)

...
. . .

p(n−1)1y1 + · · · + p(n−1)(n−1)yn−1 p(n−1)2 · · · p(n−1)(n−1)

∣∣∣∣∣∣∣∣∣
Use the fact that determinant is linear to break this up as a sum of ←−

This is the same calculation
you did in Exercise 7a from
Lesson 9.3.

several determinants.
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det(M1) =

∣∣∣∣∣∣∣∣∣
p11y1 p12 · · · p1(n−1)

p21y1 p22 · · · p2(n−1)

...
. . .

p(n−1)1y1 p(n−1)2 · · · p(n−1)(n−1)

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣
p12y2 p12 · · · p1(n−1)

p22y2 p22 · · · p2(n−1)

...
. . .

p(n−1)2y2 p(n−1)2 · · · p(n−1)(n−1)

∣∣∣∣∣∣∣∣∣
+

.. .

+

∣∣∣∣∣∣∣∣∣
p1(n−1)yn−1 p12 · · · p1(n−1)

p22yn−1 p22 · · · p2(n−1)

...
. . .

p(n−1)(n−1)yn−1 p(n−1)2 · · · p(n−1)(n−1)

∣∣∣∣∣∣∣∣∣

= y1

∣∣∣∣∣∣∣∣∣
p11 p12 · · · p1(n−1)

p21 p22 · · · p2(n−1)

...
. . .

p(n−1)1 p(n−1)2 · · · p(n−1)(n−1)

∣∣∣∣∣∣∣∣∣

+ y2

∣∣∣∣∣∣∣∣∣
p12 p12 · · · p1(n−1)

p22 p22 · · · p2(n−1)

...
. . .

p(n−1)2 p(n−1)2 · · · p(n−1)(n−1)

∣∣∣∣∣∣∣∣∣
+

.. .

+ yn−1

∣∣∣∣∣∣∣∣∣
p1(n−1) p12 · · · p1(n−1)

p22 p22 · · · p2(n−1)

...
. . .

p(n−1)(n−1) p(n−1)2 · · · p(n−1)(n−1)

∣∣∣∣∣∣∣∣∣
In this sum, each determinant except the first has two equal columns,

so they all evaluate to 0. The first is exactly det(M). So det(M1) =
y1 det(M) and y1 = det(M1)/ det(M). Similar calculations show that ←−

See how important it is in
this proof for det(M) to be
nonzero?

y2 = det(M2)/ det(M), and so on for each component of the vector Y .

So

M

⎛
⎜⎜⎜⎝

det(M1)/ det(M)

det(M2)/ det(M)
...

det(Mn−1)/ det(M)

⎞
⎟⎟⎟⎠ = B

This gives a formula for Y so that MY = B. And, as you saw in the
Developing Habits of Mind earlier in this lesson, you can find a vector
X = (x1, . . . , xn−1, xn) orthogonal to each of the Pi by scaling Y by any
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number xn and setting X = (y1, . . . , yn−1, xn). But the above equation
says that

M

⎛
⎜⎜⎜⎝

det(M1)

det(M2)
...

det(Mn−1)

⎞
⎟⎟⎟⎠ = B det(M)

So a clear choice is to let xn = det(M). It follows that ←−
This was the clear choice in
R2, R3, and all the earlier
examples as well.

X = (det(M1), det(M2), . . . , det(Mn−1), det(M))

is orthogonal to all of the vectors P1, . . . , Pn−1.

For You to Do

4. Again take the points

P1 = (0, 1, 1, 1), P2 = (1, 0, 2, 1)

P3 = (2, 1, 1, 0), P4 = (1, 2, 1, 2)

Use Cramer’s Rule to find a vector orthogonal to P2, P3, and P4. ←−
Do you get the same
answer as in For You to Do
problem 2? If the vectors
are not the same, how can
they both be orthogonal to
the three vectors?

Notice that Cramer’s Rule actually gives you yet another method to
solve certain matrix equations. Given a matrix equation MX = B with M
a square matrix and det(M) �= 0, the proof of Cramer’s Rule showed that
the unique solution can be described by the following corollary.

Corollary 9.23 (Cramer’s Rule, System of Equations Version)

Suppose M is a square matrix with nonzero determinant. Using the notation
of Theorem 9.22, the unique solution to MX = B is

X =

(
det(M1)

det(M)
,
det(M2)

det(M)
, . . . ,

det(Mn)

det(M)

)
,

where Mi is the matrix obtained from M by replacing M∗i by B.

Example 3

Problem. Use Cramer’s Rule to solve this matrix equation.⎛
⎜⎜⎝

0 1 1 0

−1 2 1 −1

0 3 1 −1

0 0 4 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x

y

z

w

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1

2

3

4

⎞
⎟⎟⎠

Solution. Evaluating along the first column, you can check that det(M) = 2, so there
is a unique solution. Define Mi for i = 1, 2, 3, 4 by substituting the column vector B for
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the appropriate column.

det(M1) =

∣∣∣∣∣∣∣∣
1 1 1 0

2 2 1 −1

3 3 1 −1

4 0 4 1

∣∣∣∣∣∣∣∣ = 4

det(M2) =

∣∣∣∣∣∣∣∣
0 1 1 0

−1 2 1 −1

0 3 1 −1

0 4 4 1

∣∣∣∣∣∣∣∣ = −2

Similarly you can find that det(M3) = 4 and det(M4) = −8. So the solution is
X = (4/2,−2/2, 4/2,−8/2) = (2,−1, 2,−4). ←−

Check that X really is
the solution to the original
matrix equation.

Developing Habits of Mind

Look for structural similarities. The two versions of Cramer’s Rule really say the
same thing if you look carefully at the systems of equations that arise. For example, the
system in the above example can be written as

⎛
⎜⎜⎝

0 1 1 0 −1

−1 2 1 −1 −2

0 3 1 −1 −3

0 0 4 1 −4

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎜⎜⎝

x

y

z

w

1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎠

And this results in a vector orthogonal to the rows of the coefficient matrix.

For You to Do

5. Use Cramer’s Rule to solve this matrix equation.⎛
⎜⎜⎝

0 1 1 0

−1 2 1 −1

0 3 1 −1

0 0 4 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x

y

z

w

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0

2

2

0

⎞
⎟⎟⎠

Generalized Cross Products

You already know a lot about cross products of two vectors in R3. Let A,
B, and C be vectors in R3 and let c be a scalar: the following were all
proved as part of the Basic Rules of Cross Product (Theorem 2.8):

(1) (A × B) · A = 0 and (A × B) · B = 0.

(2) A × B = −B × A.

(3) A × A = O.
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(4) cA × B = c(A × B) and A × cB = c(A × B).

(5) A × (B + C) = (A × B) + (A × C).

Any notion of cross product in higher dimensions should certainly preserve
these properties. It turns out that the vector you get out of Cramer’s Rule
does just that.

Definition

Given (n − 1) vectors in Rn,

P1 = (p11, p12, . . . , p1n)

P2 = (p21, p22, . . . , p2n)

...

Pn−1 = (p(n−1)1, p(n−1)2, . . . , p(n−1)n)

let

M =

⎛
⎜⎜⎜⎝

p11 p12 · · · p1(n−1)

p21 p22 · · · p2(n−1)

...
. . .

p(n−1)1 p(n−1)2 · · · p(n−1)(n−1)

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎝

−p1n
−p2n

...

−p(n−1)n

⎞
⎟⎟⎟⎠

For each number k = 1, . . . , n − 1, let Mk be the matrix

(Mk)i∗ =

{
Mi∗ if i �= k

B if i = k

The generalized cross product of the given vectors is

←−
Notice that the proof of
Cramer’s Rule required
the vectors to be linearly
independent, but this
definition does not. The
justification will come
from the fact that when
the vectors are linearly
dependent, this cross
product is the vector O.

P1 × P2 × · · · × Pn−1 = (det(M1), det(M2), . . . , det(Mn−1), det(M))

Facts and Notation

In dimensions higher than 3, the generalized cross product is sometimes denoted by ∧,
so that, in R4, for example, A × B × C is denoted by A ∧ B ∧ C.

For You to Do

6. Here are three vectors in R4. You’ll use them to test some properties of cross
product.

P1 = (2, 3, 0,−2), P2 = (0,−1,−5,−1), P3 = (1, 0, 0, 2)

a. Find P1 × P2 × P3. b. Find P2 × P1 × P3.

c. Find P1 × P2 × P1. d. Find P1 × 3P2 × P3.
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Theorem 9.24 (Basic Rules of Generalized Cross Product)

Let P1, P2, . . . , Pn−1 be vectors in Rn and let c be a scalar. The cross product
P1 × P2 × · · · × Pn−1 satisfies the following:

(1) (P1 × P2 × · · · × Pn−1) · Pi = 0 for i = 1, 2, . . . , n − 1.

(2) Interchanging two vectors in the list P1, P2, . . . , Pn−1 multiplies the ←−
So, for example, P2 ×
P1 × P3 × · · · × Pn−1 =
−(P1 × P2 × P3 × · · · ×
Pn−1).

cross product by −1.

(3) If two of the vectors are equal, the cross product is O.

(4) Multiplying any of the vectors by the scalar c multiplies the cross ←−
So, for example, P1 ×
cP2 × · · · × Pn−1 =
c(P1×P2×P3×· · ·×Pn−1).

product by c.

(5) Cross product is linear in each of the vectors Pi. That is, if Pi =
P ′
i + P ′′

i , then

P1 × P2 × · · · × Pi × · · · × Pn−1

= (P1 × P2 × · · · × P ′
i × · · · × Pn−1)

+ (P1 × P2 × · · · × P ′′
i × · · · × Pn−1)

Proof. For part ((1)), if the vectors are linearly independent, this follows
immediately from Theorem 9.22 above. If they are linearly dependent, then
it will follow from parts ((3)), ((4)), and ((5)).

Here’s a proof for part ((2)). If you interchange vectors Pi and Pj , then ←−
You’ll do the the rest in the
Exercises.

you interchange row i and row j in each of the matrices M , M1, . . . ,
Mn−1. So each of the determinants is multiplied by −1, which means the
cross product is multiplied by −1.

For Discussion

7. Use parts ((2)), ((3)), ((4)), and ((5)) to prove that if any of the vectors is a
linear combination of the others, then the cross product is O.

Volume in Higher Dimensions

Recall that in R2, the area of a parallelogram spanned by vectors P and Q
could be calculated as

∣∣Q · P⊥∣∣, and in R3 the volume of the parallelepiped
spanned by P , Q, and R could be calculated as |R · (P × Q)|. The extension
program suggests the following definition for higher dimensions.

Definition

Let P1, P2, · · · , Pn be vectors in Rn. Define the volume of the paral-
lelepiped spanned by these vectors to be |Pn · (P1 × P2 × . . . × Pn−1)|.

Minds in Action Episode 46

The three friends are talking about this new definition of volume.
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Tony: I see how this definition makes sense. But it seems like when we actually
calculated areas and volumes, we did it by calculating the determinant of a matrix.

Derman: Yeah, like if P and Q were two vectors in the plane, then we made the matrix
with P and Q as columns. And if P , Q, and R were three vectors in R3, then we made
the matrix with those columns and calculated its determinant.

Tony: Yeah. With this new definition, we have to calculate a whole bunch of determi-
nants to find the cross product, and then do the dot product with the last vector. It
seems like more work.

Sasha: No, not really. Because if you calculate the determinant of the bigger matrix,
you still have to calculate lots of determinants of the minors as you go along.

Derman and Tony: Huh?

Sasha: Look, think about four dimensions so things don’t get too complicated with the
notation. Take four vectors X, Y, Z, W and put them in a matrix as columns.

M =

⎛
⎜⎜⎝

x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4

⎞
⎟⎟⎠

Say you want to calculate the determinant along the last column. You have to do it
like this:

det(M) = −w1

∣∣∣∣∣∣
x2 y2 z2
x3 y3 z3
x4 y4 z4

∣∣∣∣∣∣+ w2

∣∣∣∣∣∣
x1 y1 z1
x3 y3 z3
x4 y4 z4

∣∣∣∣∣∣− w3

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x4 y4 z4

∣∣∣∣∣∣+ w4

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
Tony: Oh, I see. So it looks like W · X, where X is a vector made up of a bunch of

determinants of a 3 × 3 matrix.

Derman: But they’re not the same determinants as X × Y × Z. Are they?

Sasha: They don’t look like it. But . . . let’s see . . . Let’s just think about the first one.
We want

−

∣∣∣∣∣∣
x2 y2 z2
x3 y3 z3
x4 y4 z4

∣∣∣∣∣∣
to be the same as ∣∣∣∣∣∣

−x4 x2 x3

−y4 y2 y3
−z4 z2 z3

∣∣∣∣∣∣
since that’s the first coordinate of X ×Y ×Z. If we switch columns two times, we get∣∣∣∣∣∣

−x4 x2 x3

−y4 y2 y3
−z4 z2 z3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x2 x3 −x4

y2 y3 −y4
z2 z3 −z4

∣∣∣∣∣∣
Tony: Yeah, and then we can factor out the negative sign, so∣∣∣∣∣∣

−x4 x2 x3

−y4 y2 y3
−z4 z2 z3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4
z2 z3 z4

∣∣∣∣∣∣
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Sasha: And then just take a transpose to get what we want. I bet the other ones work
the same way. Very smooth.

Sasha, Tony, and Derman have figured out a very nice fact.

Theorem 9.25 (Volume as Determinant)

Let P1, P2, . . . , Pn be vectors in Rn, and let M be the matrix defined by ←−
In other words, the columns
of M are the vectors
P1, P2, . . . , Pn, in order.

M∗j = Pj. Then

Pn · (P1 × P2 × · · · × Pn−1) = det(M)

Proof. Here’s a proof that the first term in each sum is always the same. ←−
The idea is essentially the
same as what Sasha, Tony,
and Derman describe. The
only trick is keeping track
of the negative signs.

Let

P1 = (p11, p12, . . . , p1n)

P2 = (p21, p22, . . . , p2n)

...

Pn−1 = (p(n−1)1, p(n−1)2, . . . , p(n−1)n)

Pn = (pn1, pn2, . . . , pnn)

The first component of P1 × P2 × · · · × Pn−1 is∣∣∣∣∣∣∣∣∣
−p1n p12 p13 · · · p1(n−1)

−p2n p22 p23 · · · p2(n−1)

...
. . .

−p(n−1)n p(n−1)2 p(n−1)3 · · · p(n−1)(n−1)

∣∣∣∣∣∣∣∣∣
It takes n − 2 switches to move the first column of this matrix to the last
column, keeping all of the others in the same order, so this determinant is
the same as

(−1)n−2

∣∣∣∣∣∣∣∣∣
p12 p13 · · · p1(n−1) −p1n
p22 p23 · · · p2(n−1) −p2n

...
. . .

p(n−1)2 p(n−1)3 · · · p(n−1)(n−1) −p(n−1)n

∣∣∣∣∣∣∣∣∣
Then you can factor out −1 from the last column to get

(−1)n−1

∣∣∣∣∣∣∣∣∣
p12 p13 · · · p1(n−1) p1n
p22 p23 · · · p2(n−1) p2n

...
. . .

p(n−1)2 p(n−1)3 · · · p(n−1)(n−1) p(n−1)n

∣∣∣∣∣∣∣∣∣
So the first term in the sum of Pn · (P1 × P2 × · · · × Pn−1) is

(−1)n−1pn1

∣∣∣∣∣∣∣∣∣
p12 p13 · · · p1(n−1) p1n
p22 p23 · · · p2(n−1) p2n

...
. . .

p(n−1)2 p(n−1)3 · · · p(n−1)(n−1) p(n−1)n

∣∣∣∣∣∣∣∣∣
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9.5 Determinants as Area and Volume

Taking the transpose of the matrix shows that this is the same as the first
term in the expansion of det(M) along the last column.

For You to Do

8. Start with the same four vectors as in For Discussion problem 1.

P1 = (0, 1, 1, 1), P2 = (1, 0, 2, 1), P3 = (2, 1, 1, 0), P4 = (1, 2, 1, 2)

Use determinants to find the four-dimensional volume of the box formed by these
vectors.

Remember in Lesson 5.4 Sasha talked about how area should act,
including:

1. The area of the unit square should be 1.

v

(0,1)

2. If you scale one side of a parallelogram by c, the
area should scale by |c|.

v
u

cu

3. If you switch the order of the vectors that span
the parallelogram, the area should stay the same.

4. If the vectors that span the parallelogram are
scalar multiples of each other, the area should be 0.

v

For Discussion

9. Make a list like Sasha’s for how volume should act. Use properties of determinants
to prove that each one is true for volumes in higher dimensions as they’ve been
defined in this lesson.

Exercises

1. For each part, find a vector orthogonal to the given vectors.

a. P1 = (1, 0, 0,−2), P2 = (1,−1, 2, 0), P3 = (2, 0, 1, 1)
b. P1 = (1, 2, 0, 1), P2 = (0, 1, 0, 2), P3 = (3, 2, 1, 1)
c. P1 = (1,−2, 0, 1), P2 = (1, 2, 1, 0), P3 = (2, 0,−1, 1)
d. P1 = (3, 1, 0, 1), P2 = (1, 1, 1, 1), P3 = (1, 0, 1, 3)
e. P1 = (1,−1, 0, 1, 1), P2 = (1, 0, 2, 1,−1),

P3 = (1, 1, 0, 0, 2), P4 = (1,−2, 1, 1, 0)
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f. P1 = (3, 0, 0, 1, 1), P2 = (2, 1, 1, 1, 0),
P3 = (−1, 0,−1, 1, 1), P4 = (2, 1, 0, 1, 0)

2. For each part, use Cramer’s Rule to find a vector orthogonal to the
given vectors.

a. P1 = (1, 2, 0, 1), P2 = (0, 1, 0, 2), P3 = (3, 2, 1, 1)
b. P1 = (1,−2, 0, 1), P2 = (1, 2, 1, 0), P3 = (2, 0,−1, 1)
c. P1 = (2, 2, 0,−1), P2 = (1, 0,−1, 0), P3 = (2, 0, 0, 2)
d. P1 = (1,−1, 0, 1), P2 = (2, 0, 1, 1), P3 = (1, 3, 1,−1)
e. P1 = (1,−1, 0, 1, 1), P2 = (1, 0, 2, 1,−1),

P3 = (1, 1, 0, 0, 2), P4 = (1,−2, 1, 1, 0)
f. P1 = (0, 1, 0, 1, 2), P2 = (2, 0, 1,−1,−1),

P3 = (−1,−1, 0, 2, 0), P4 = (1, 2, 0, 1, 1)

3. For each part below, use the cross product to find a vector orthog-
onal to the two vectors. Then use Cramer’s Rule to find a vector
orthogonal to them. Do both methods give you the same orthogonal
vector?

a. P1 = (3, 2, 2), P2 = (2, 1, 0)
b. P1 = (−1, 0, 1), P2 = (2, 4,−1)

4. For each given matrix equation, use Cramer’s Rule to solve it.

a.

(
1 2

3 2

)(
x

y

)
=

(
3

4

)
b.

(
1 0

2 −1

)(
x

y

)
=

(
2

3

)

c.

⎛
⎝ 1 2 1

1 0 2

−1 0 1

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝1

1

2

⎞
⎠

5. For each part, find the volume of the parallelepiped spanned by the
given vectors.

a. P1 = (1, 2, 0, 1), P2 = (0, 1, 0, 2),
P3 = (1, 2, 1, 1), P4 = (1, 0, 0, 1)

b. P1 = (3, 1, 0, 1), P2 = (1, 1, 1, 1),
P3 = (1, 0, 1, 3), P4 = (1, 1, 1, 0)

c. P1 = (3, 2, 0, 0), P2 = (1, 2, 2, 1),
P3 = (1,−2, 1, 1), P4 = (2, 0, 1, 1)

d. P1 = (2,−1, 0, 2), P2 = (1, 0, 0, 0),
P3 = (1, 0,−2, 2), P4 = (−1, 0, 2, 0)

e. P1 = (0, 1, 0, 1, 2), P2 = (2, 1, 1, 0, 1),
P3 = (1, 0, 1, 2, 1), P4 = (1, 1, 1, 2, 0),
P5 = (1, 3, 1, 1, 1)

f. P1 = (1, 0, 0,−2, 1), P2 = (3, 1, 1, 0, 2),
P3 = (0, 0, 1,−1, 0), P4 = (2, 0,−1, 0, 1),
P5 = (1, 2, 0, 0, 2)

6. Finish Sasha, Tony, and Derman’s argument. Show that if you have
four vectors X, Y, Z, W in R4, then

W · (X × Y × Z) = det(M)

where M is the matrix whose columns are X, Y, Z, W in order.
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9.5 Determinants as Area and Volume

7. Explain why there are 2n vertices for an n-dimensional paral-
lelepiped.

8. Suppose T : Rn → Rn is a linear map whose matrix with respect
to the standard basis is A. If P1, P2, . . . , Pn are vectors in Rn, show
that the volume of the box spanned by T (P1), T (P2), . . . , T (Pn) is
det(A) times the volume of the box spanned by P1, P2, . . . , Pn.

9. Prove part ((3)) of Theorem 9.24.

10. Prove part ((4)) of Theorem 9.24.

11. Prove part ((5)) of Theorem 9.24.

12. Here’s a picture to demonstrate Cramer’s Rule in R3. Suppose u, v,
and w are vectors in R3, so they form a parallelepiped. And suppose
q is another vector that is a linear combination of those three. So
q = xu + yv + zw.

Explain why the picture shows that

←−
Relate the determinants
to volumes of objects in
the picture. How are those
objects related, and why?

det(q,v,w) = x det(u,v,w), so

x =
det(q,v,w)

det(u,v,w)

©Mathematical Association of America, 1997. All rights reserved.
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9.6 Eigenvalues and Eigenvectors

You have already seen several examples of matrices (and linear transfor-
mations) that have fixed vectors . In this lesson, you’ll extend that notion ←−

Attend to precision. A
matrix or transformation
fixes a line if the image
of any point on the line is
another point on the line. It
doesn’t have to map every
point on the line to itself,
just to some other point on
the line.

to fixed lines and, more generally, fixed subspaces.

In this lesson, you will learn how to

• find the characteristic polynomial of a matrix

• recognize the underlying geometry of the characteristic polynomial’s
real roots

• establish the relationship between the eigenvalues , eigenvectors , and
characteristic polynomials of similar matrices

• find the invariant subspaces of a matrix or linear transformation

Example 1

Problem. Decide if the following matrix has any fixed lines. ←−
You can think of A as the
matrix for a linear map
T : R2 → R2 with respect
to, say, standard bases.
In that case, T (x, y) =
(x+ 2y, 3x+ 2y).

A =

(
1 2

3 2

)

Solution. If a line goes through the origin, then it has an equation like X = tQ for
some vector Q. That is, the line is all multiples of the vector Q. If the line is fixed by
A, then it must be the case that AQ is some other point on the line, so it must be a
multiple of Q. Say AQ = λQ. If that happens, you can take any other point on the line ←−

The symbol λ is the Greek
letter “lambda,” and is
used here to stand for a
real number.

and calculate
A(tQ) = t(AQ) = t(λQ) = (tλ)Q

So every multiple of Q maps to a multiple of Q, and the whole line is fixed by A.

That means you need to look for vectors Q where A just multiplies Q by some number.
You could start by trying possible values for λ. Maybe start with λ = 1.

AQ = Q(
1 2

3 2

)(
x

y

)
=

(
x

y

)

This leads to two equations in two unknowns.

x + 2y = x

3x + 2y = y

The first equation says 2y = 0, and the second says 3x + y = 0. So the only solution is
Q = O, which doesn’t give a fixed line since all multiples of O are just O.
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Try λ = −1 instead.

AQ = −Q(
1 2

3 2

)(
x

y

)
=

(
−x

−y

)
.

This leads to two equations in two unknowns.

x + 2y = −x

3x + 2y = −y

These equations simplify to

2x + 2y = 0

3x + 3y = 0

Both of these yield x = −y as a solution, so you can take Q = (1,−1) as the vector, and
see that the line with equation X = tQ is fixed by A.

For Discussion

1. Does the matrix A =

(
1 2

3 2

)
have any fixed lines other than the line with ←−

Focus on lines whose
equations look like X = tQ
for some vector Q; that is,
look for fixed lines that go
through the origin.

equation X = t

(
1

−1

)
? Split up the work and try a few other values of λ to see

if you can find any others.

Minds in Action Episode 47

Sasha, Tony, and Derman are in a group, working on the For Discussion problem, above.

Derman: I don’t get why we’re just looking for lines through the origin. Why don’t we
look for fixed lines with equations like X = P + tQ? Those lines that are shifted off
the origin?

Sasha: Hmm. Good question. What if there were a fixed line like that?

Tony: Well, A would map any point on that line to another point on that line.

Sasha: Yeah, so let’s start with the simplest version. P is on the line, right? Because
you just let t = 0.

Tony: But if A fixes the line, we know that there is a number c so that AP = P + cQ.

Sasha: OK. Let’s try another: P +Q is also on the line. That’s kind of the next simplest
point to think about. What if we multiply A by that?

Tony: From what we did before, A(P + Q) = AP + AQ = P + cQ + AQ.

Sasha: Yeah, but if that’s on the same line, then it has to look like P + tQ for some
number t. So, for some t, P + cQ + AQ = P + tQ. That means cQ + AQ = tQ . . .
it’s just a multiple of Q.
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Tony: Oh, and then AQ = (t − c)Q. So the line with equation X = tQ through the
origin would have to be fixed for this to even have the possibility of working. I guess
it makes sense to focus on those lines, then.

Definition

Let M be an n× n matrix. A nonzero vector Q satisfying MQ = λQ for a ←−
Why does it make sense to
require that an eigenvector
is not O?

real number λ is called an eigenvector of M with eigenvalue λ.

←−
The prefix “eigen” was
adopted from German and
means “self.”

For Discussion

2. In the definition of eigenvector and eigenvalue, why is it necessary that M is a
square matrix?

This chapter deals with eigenvectors and eigenvalues for matrices. Be-
cause of the results in Chapter 8, all the definitions and theorems apply
just as well if you replace “matrix” by “linear transformation.” The “dic-
tionary” that lets you translate from matrices to linear transformations is
the assignment of coordinate vectors with respect to a basis. More about
this as the lesson develops (and in the Exercises).

Theorem 9.26 (Eigenvectors Scale)

If Q is an eigenvector for a matrix A with eigenvalue λ, then so is tQ
for every real number t �= 0. Furthermore, the line with equation X = tQ
through the origin is fixed by the matrix A.

Proof. If AQ = λQ, then A(tQ) = t(AQ) = t(λQ) = λ(tQ) (since real
numbers commute with matrices and with each other). As long as tQ �= O,
it fits the definition of an eigenvector with eigenvalue λ.

Since every multiple of Q is mapped by A to another multiple of Q, and
since AO = O, the line with equation X = tQ is mapped to itself by A.

Minds in Action Episode 48

Sasha, Tony, and Derman are still working on the For Discussion problem 1, above.

Tony: There’s got to be a better way to do this. I’m tired of guessing values for λ and
checking if they work.

Derman: Yeah. And how will we even know when we’re done? We could keep checking
numbers forever . . . 1.2, 1.21, 1.212, . . .

Sasha: There’s got to be some way to solve all the equations for all the Q’s at once. We
want to know if we can find Q’s and λ’s so that

AQ = λQ

Derman: It seems like we’ve got too many variables.
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Sasha: I think this might be a time to write out the details. We want(
1 2

3 2

)(
x

y

)
= λ

(
x

y

)
=

(
λx

λy

)

Tony: OK, that gives two equations

x + 2y = λx

3x + 2y = λy

which simplifies to

(1 − λ)x + 2y = 0

3x + (2 − λ)y = 0

Derman’s right. We only have two equations, but we have three unknowns: x, y, and λ.
And our system isn’t linear. How can we solve that? ←−

What does Tony mean
by “And our system isn’t
linear”?

Sasha: Hold on . . . what if we write this as a matrix equation again.(
1 − λ 2

3 2 − λ

)(
x

y

)
=

(
0

0

)

That’ll always have solutions with x = y = 0. But we want a nonzero vector Q.

Tony: So we need the kernel of this new matrix to have more stuff in it than just O.
But that can only happen if the matrix is not invertible. Hmm . . . I’m still stuck.

Sasha: It can only happen if the determinant is 0! We can set the determinant equal
to 0 and solve the equation for λ.

Derman looks into space and mumbles a bit.

Derman: I get λ = −1, and λ = 4. ←−
Check that Derman is right.
Find the determinant, set it
equal to 0, and solve for λ.

Tony: Cool. Now we can use those specific values in the original equation to figure out
which vectors work for Q. And those are the only λ’s that can ever work. We’ll know
when we’re done! ←−

If you haven’t done so
already, find a vector Q
such that AQ = 4Q.

Sasha, Tony, and Derman have outlined a way to find the eigenvalues
of a matrix. Once you find those, you can look for the corresponding
eigenvectors . Here’s another example of how it works.

Example 2

Problem. Find all of the eigenvalues of this matrix. Then for each eigenvalue, find
the corresponding eigenvectors.

M =

⎛
⎝1 0 0

3 −2 6

0 0 1

⎞
⎠
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Solution. You want solutions to the matrix equation MQ = λQ. The equation can
be written like this: ←−

Check that

λ

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝λ 0 0
0 λ 0
0 0 λ

⎞
⎠

⎛
⎝x
y
z

⎞
⎠

⎛
⎝1 0 0

3 −2 6

0 0 1

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝λ 0 0

0 λ 0

0 0 λ

⎞
⎠
⎛
⎝x

y

z

⎞
⎠

⎛
⎝1 0 0

3 −2 6

0 0 1

⎞
⎠
⎛
⎝x

y

z

⎞
⎠−

⎛
⎝λ 0 0

0 λ 0

0 0 λ

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠

⎛
⎝1 − λ 0 0

3 −2 − λ 6

0 0 1 − λ

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠ (∗)

Like Sasha said, you can only find nonzero vector solutions if the determinant of the Remember

Eigenvectors must be
nonzero. It’s part of the
definition.

matrix on the left is 0. Calculate the determinant.∣∣∣∣∣∣
1 − λ 0 0

3 −2 − λ 6

0 0 1 − λ

∣∣∣∣∣∣ = (1 − λ)2(−2 − λ)

So there are only two eigenvalues: 1 and −2. What are the eigenvectors? Plug in λ = 1,
and equation (∗) becomes ⎛

⎝0 0 0

3 −3 6

0 0 0

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠

The solution to this is a plane, not just a line! It has equation x − y + 2z = 0. What
are the eigenvectors? Well, they’re any (nonzero) vectors in this plane. Every vector in
the plane can be described as a linear combination of two linearly independent vectors
in the plane, say Q1 = (1, 1, 0) and Q2 = (0, 2, 1). So the eigenvectors with eigenvalue 1 ←−

It’s a good idea to check
your answer. Multiply one
of these vectors by the
original matrix.⎛
⎝1 0 0
3 −2 6
0 0 1

⎞
⎠

⎛
⎝1
1
0

⎞
⎠ =

⎛
⎝1
1
0

⎞
⎠

So, X really is an eigenvec-
tor with eigenvalue 1. You
check Y .

look like tQ1 + sQ2, as long as t and s are not both 0.

Now plug in λ = −2 to equation (∗):⎛
⎝−1 0 0

3 0 6

0 0 −1

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠

The solutions to this equation satisfy x = z = 0 and y is any real number. So one
eigenvector with eigenvalue −2 is Q3 = (0, 1, 0). All eigenvectors with eigenvalue −2
look like nonzero multiples of this vector Q3.

The general method looks like this:

Step 1: Rewrite AQ = λQ as (A − λI)Q = 0.

Step 2: Find det(A−λI), set it equal to 0, and solve for λ. These are your
eigenvalues.
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Step 3: Plug in your eigenvalues for λ in the equation (A−λI)Q = 0, and
solve for Q to find the eigenvectors.

Definition

The determinant det(A − λI) is a polynomial in λ. It is called the
characteristic polynomial for the matrix A. ←−

The characteristic equa-
tion for A is the polynomial
equation det(A− λI) = 0.

For You to Do

3. For each matrix below, find the eigenvalues and the eigenvectors corresponding
to each eigenvalue.

a.

(
1 4

1 1

)
b.

⎛
⎝1 −1 −1

0 0 1

0 −2 −3

⎞
⎠

Characteristic Polynomials

Minds in Action Episode 49

The three friends are talking about eigenvalues.

Derman: You know what? I found a matrix with no eigenvalues!

Tony: That doesn’t make any sense. Every example we’ve seen, the matrix always has
eigenvalues . . . In fact, it seems like 2× 2 matrices have 2 and 3× 3 matrices have 3,
and . . .

Sasha: Wait, that’s not true. Remember Example 2 from Lesson 9.6? It was a 3 × 3
matrix, but it had only two eigenvalues: 1 and −2.

Tony: Oh, yeah. But 1 counted twice.

Sasha: What do you mean it “counted twice”?

Tony: The characteristic polynomial was (1−λ)2(−2−λ). So 1 counted twice, because
the (1 − λ) term is squared.

Sasha: Oh, I see what you mean. And also there was a whole plane of eigenvectors for
λ = 1 instead of just a line like there was for λ = −2. So there really were three
eigenvectors.

Derman: But that doesn’t always happen. Look. Let A =

(
0 −1

1 0

)
. Then the charac-

teristic polynomial is λ2 + 1. And nothing makes that 0. ←−
Is Derman right about the
characteristic polynomial
of A? Calculate it to check
his work.

Tony: Whoa.

Sasha: Well, that’s not totally true. If we let ourselves use complex numbers, then i
makes the characteristic polynomial 0.

Derman: Why would we let ourselves do that? You’re changing the rules in the middle
of the game.
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As Sasha, Tony, and Derman are beginning to suspect, there’s a lot going
on with the characteristic polynomial. One way to think about Tony’s claim
that an n×n matrix has n eigenvalues if you’re allowed to count some of the
eigenvalues twice is in terms of the degree of the characteristic polynomial.

Theorem 9.27 (Coefficients of the Characteristic Polynomial)

Let A be an n × n matrix. Then,

(1) The characteristic polynomial of A has degree exactly n. ←−
In other words, λn is the
highest power of λ that
appears in the polynomial.

(2) The coefficient of λn in the characteristic polynomial is (−1)n.

(3) The coefficient of λn−1 in the characteristic polynomial is (−1)n−1

times the trace of A. Remember

The trace of a matrix is the
sum of the diagonal entries.

(4) The constant term of the characteristic polynomial is exactly det(A).

Proof. You’ll prove part ((4)) in Exercise 13.

Let

A − λI =

⎛
⎜⎜⎜⎝

A11 − λ A12 A13 · · · A1n

A21 A22 − λ A23 · · · A2n

...
. . .

An1 An2 An3 · · · Ann − λ

⎞
⎟⎟⎟⎠

Parts ((1))–((3)) all rely on the following. Since each term in any expansion
of the determinant contains one entry from each row and one entry from
each column, the determinant looks like: ←−

Think about expanding
along the first row. When
you find the minor M12,
you delete row 1 and
column 2. Since A11 − λ
and A22 − λ both get
deleted, at most n − 2
terms with λ can show up
in A12 det(M12). Can you
see why the same thing is
true of all the other terms
except (A11−λ) det(M11)?

det(A − λI) = (A11 − λ)(A22 − λ) · · · (Ann − λ)

+ terms where at most n − 2 of the factors contain λ

Parts ((1)) and ((2)) are now pretty clear. The highest degree term
possible is when you expand out (A11 − λ)(A22 − λ) · · · (Ann − λ). One
term in the expansion comes from multiplying n copies of −λ together to
get (−1)nλ. Every other term will have smaller degree.

The λn−1 term also comes from expanding out

(A11 − λ)(A22 − λ) · · · (Ann − λ)

since all the other terms have degree n−2 or smaller. You get that term by
taking n − 1 copies of −λ together with one of the Aii terms. You get one

←−
If you’re not sure why
this works, try expanding
out (A11 − λ)(A22 − λ),
(A11 − λ)(A22 − λ)(A33 −
λ), and (A11 − λ)(A22 −
λ)(A33 − λ)(A44 − λ).of those terms for each constant Aii. So when you add them all together,

you get (−1)n−1λn−1(A11 + A22 + · · · + Ann). The sum in parentheses is
exactly the trace of A.

Developing Habits of Mind

Look for connections. Derman noticed that sometimes characteristic polynomials
have no real roots. But a famous theorem in linear algebra says that every matrix has
at least one eigenvalue. How can this be?
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Well, you have to do what Sasha did and change the rules of the game a bit.
Eigenvalues are just roots of a polynomial. A famous theorem from algebra says that ←−

It’s such a famous theorem
that it’s called “The
Fundamental Theorem of
Algebra.”

every (nonconstant) polynomial has a root, as long as you allow the roots to be complex
numbers. For an n × n matrix, the characteristic polynomial has degree n, meaning it’s
not constant. So it always has at least one (complex) root. In fact, the same theorem can
be used to prove that a degree n polynomial has exactly n roots, as long as you count
“with multiplicity” like Tony does. You’ll learn more about this in the next lesson.

Is there a geometric way to think about matrices that do have real eigenvalues versus
those that do not? If a matrix has entries from R and has real eigenvalues, then it will
have eigenvectors that have real entries as well. So the matrix will have a fixed line
somewhere. Can you think of matrices that don’t have any fixed lines at all?

Think about matrices as geometric transformations. If you picture rotating the plane
around the origin, unless you rotate by some multiple of 180◦, you won’t have any fixed
lines at all. That means most rotation matrices in R2 don’t have any fixed lines, so they ←−

You learned about rotations
and rotation matrices in
Lesson 5.3.

can’t have real eigenvalues.

In fact, Derman’s matrix A =

(
0 −1

1 0

)
is a rotation matrix. It rotates everything in

R2 around O by an angle of 90◦. There aren’t any fixed lines in this transformation, so
the corresponding matrix can’t have any real eigenvalues.

For Discussion

4. Remember that a rotation in R2 about O through an angle θ can be described
by the matrix

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
Find the characteristic polynomial of Rθ, and use algebra to find a condition for
this polynomial to have real roots.

It should come as no surprise that matrices that are related to each other
in some way have characteristic polynomials that are related to each other
in some way. In the Exercises, you will explore the relationship between the
characteristic polynomials of a matrix and its inverse, and the characteristic
polynomials of a matrix and its transpose. Right now, you’re going to think
about similar matrices.

Remember

M and N are similar if
there’s an invertible matrix
P so that N = P−1MP .
See Lesson 8.5.

You already know that similar matrices have the same determinant (see
Exercise 4 in Lesson 9.4). Does that mean they have the same eigenvalues?
Do they have the same eigenvectors? As usual, the best thing to do is try
some specific cases first.
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In-Class Experiment

Below there are several pairs of matrices M and P . The matrix P−1 is also given to you.
For each pair of matrices,

(1) Find the eigenvalues and eigenvectors of M . ←−
You should not have to
do any calculations to find
the eigenvalues of M . Ask
yourself: What is special
about these matrices?

(2) Calculate the matrix N = P−1MP .

(3) Decide if the eigenvalues of M are also eigenvalues of N . If not, how do the
eigenvalues compare?

(4) Decide if the eigenvectors of M are also eigenvectors of N . If not, how do the
eigenvectors compare?

a. M =

(
−1 5

0 1

)
, P =

(
3 −1

−2 1

)
, P−1 =

(
1 1

2 3

)

b. M =

(
2 0

−11 2

)
, P =

(
−2 5

1 −2

)
, P−1 =

(
2 5

1 2

)

c. M =

(
1 2

0 3

)
, P =

(
0 1

−1 1

)
, P−1 =

(
1 −1

1 0

)

d. M =

(
0 2

0 1

)
, P =

(
3 2

4 3

)
, P−1 =

(
3 −2

−4 3

)

From your work on the In-Class Experiment, you may have come up
with the following theorem.

Theorem 9.28 (Eigenvalues, Eigenvectors for Similar Matrices)

(1) Similar matrices have the same eigenvalues.

(2) If M is a matrix with eigenvector Q corresponding to eigenvalue λ,
and if P is invertible, then P−1Q is an eigenvector for the matrix
N = P−1MP corresponding to the same eigenvalue λ.

For Discussion

5. Prove Theorem 9.28.

Developing Habits of Mind

Look for connections. In the notation of Theorem 9.28, suppose that N = P−1MP .
In the language of Lesson 8.5, N and M can be considered different matrices for the
same linear map, say T , with respect to different bases. So, Theorem 9.28 says that the
eigenvalues of all the different matrix representations for T are the same—they are the
eigenvalues for T . And the eigenvectors for the different matrix representations for T are
just the coordinate vectors for the eigenvectors for T (with respect to the appropriate
bases).
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You’ve already learned that the eigenvalues of M and any matrix similar
to M are the same. But even more is true: the characteristic polynomials
are identical.

Theorem 9.29 (Characteristic Polynomials for Similar Matrices)

If M and N are similar n×n matrices, then the characteristic polynomials
of M and N are the same.

Proof. Let M and N be similar matrices, and let P be a matrix such that
N = P−1MP . The key step in the proof is realizing that you can write λI
as P−1(λI)P .

The characteristic polynomial of N is

←−
If you’re not sure about
this step, look back at For
You to Do problem 3 from
Lesson 9.4.

det(N − λI) = det(P−1MP − P−1(λI)P )

= det
(
P−1(M − λI)P

)
= det(P−1) det(M − λI) det(P )

=
1

det(P )
det(M − λI) det(P )

= det(M − λI)

The last line is the characteristic polynomial of M , so the two characteristic
polynomials are, indeed, equal.

For Discussion

6. Justify each step of the calculations in the last equations. In particular, prove if
P is an invertible matrix of the same size as an identity matrix I and λ is some
real number, then λI = P−1λIP .

Invariant Subspaces

Recall that a subspace of a vector space V is any subset of V that itself ←−
You learned about sub-
spaces in Lesson 7.3.

forms a vector space. For example, a line through the origin in R2 is a
vector space. So is a line (or a plane) through the origin in R3.

Definition

Given a square matrix M , a vector space W is M-invariant if whenever
a vector Q is in W , so is the vector MQ. If W is a subspace of some bigger ←−

If T : V → V is linear,
a subspace W of V is T -
invariant if T (w) is in W
whenever w is in W .

vector space V , then W is called an M-invariant subspace of V .

Example 3

You’ve already seen several examples of invariant subspaces of R2 and R3. Here are some
to remind you.

If A =

(
1 2

3 2

)
, then
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A

(
t

(
1

−1

))
= tA

(
1

−1

)
= t

(
−1

1

)

= −t

(
1

−1

)

So the line with equation X = t

(
1

−1

)
is an A-invariant subspace of R2.

In Example 2 from this lesson, you saw that any vector Q in the plane with equation
x − y + 2z = 0 satisfies MQ = Q for the matrix

M =

⎛
⎝1 0 0

3 −2 6

0 0 1

⎞
⎠

So that plane is an M -invariant subspace of R3. ←−
Indeed, M fixes the plane
point by point.

For Discussion

7. Let M be a 4×4 matrix. Explain why O and R4 are both M -invariant subspaces
of R4.

For You to Do

8. Let M be an n × n matrix, and let λ be an eigenvalue of M . Show that the set

Eλ = {Q a vector in Rn such that MQ = λQ}
= {all eigenvectors of M with eigenvalue λ together with O}

is an M -invariant subspace of Rn. ←−
You have to show that Eλ

is a subspace and that it is
M -invariant.

Definition

The subspace Eλ in For You to Do problem 8 is called the eigenspace of
M associated to the eigenvalue λ.

Example 4

Problem. Let

M =

⎛
⎝0 1 0

1 0 0

0 0 1

⎞
⎠

Check that λ = 1 is an eigenvalue for M , and find the eigenspace E1.
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Solution. If λ = 1 is an eigenvalue, then it must be the case that det(M − I) = 0.

det(M − I) =

∣∣∣∣∣∣
−1 1 0

1 −1 0

0 0 0

∣∣∣∣∣∣
Since this matrix has a column of 0’s, the determinant is 0.

To find the eigenspace for λ = 1, you need to solve (M − I)Q = O. The equation is

(M − I)Q =

⎛
⎝−1 1 0

1 −1 0

0 0 0

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝0

0

0

⎞
⎠

Any vector (x, y, z) where x = y will satisfy this equation. So the eigenspace is the plane ←−
What are some eigenvec-
tors corresponding to eigen-
value 1?

with equation x − y = 0 in R3.

For You to Do

9. Check that λ = −1 is also an eigenvalue of the matrix M in Example 4 above.
Find the eigenspace E−1.

The examples of M -invariant subspaces above are all eigenspaces. Is
every M -invariant subspace an eigenspace? See Exercises 21–22 and 27–29.

Exercises

1. Decide if the vector

⎛
⎝−1

0

2

⎞
⎠ is an eigenvector for each given matrix.

a.

⎛
⎝−1 1 0

2 0 1

0 3 −1

⎞
⎠ b.

⎛
⎝0 0 1

2 −1 1

3 2 1

⎞
⎠

c.

⎛
⎝ 3 2 1

2 2 −2

−1 3 0

⎞
⎠ d.

⎛
⎝1 4 −1

0 0 0

2 −1 4

⎞
⎠

2. Decide if 3 is an eigenvalue for each matrix.

a.

(
−8 −5

10 7

)
b.

(
4 1

−1 2

)
c.

(
6 3

−5 −2

)
d.

(
10 5

−14 −7

)

3. Find all eigenvalues of each given matrix. Then find the eigenvectors
corresponding to those eigenvalues.

a.

(
−2 −6

4 8

)
b.

(
1 0

3 1

)
c.

(
7 −3

1 3

)
d.

(
2 0

0 2

)
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e.

⎛
⎝ 1 1 −1

−2 1 1

−2 2 0

⎞
⎠ f.

⎛
⎝−1 0 0

−6 2 0

−6 0 2

⎞
⎠ g.

⎛
⎝ 3 2 1

−2 −1 −1

0 0 1

⎞
⎠

h.

⎛
⎝−1 1 4

−2 −4 −8

2 2 3

⎞
⎠ i.

⎛
⎝−1 −3 −3

6 8 6

−6 −6 −4

⎞
⎠

4. For each matrix A,

(i) find all eigenvalues and eigenvectors for A
(ii) calculate A−1

(iii) find all eigenvalues and eigenvectors for A−1

a. A =

(
−2 −6

4 8

)
b. A =

(
5 4

−2 −1

)

c. A =

⎛
⎝ 1 1 −1

−2 1 1

−2 2 0

⎞
⎠ d. A =

⎛
⎝2 0 0

2 4 −2

6 6 −4

⎞
⎠

Any conjectures?

5. Consider one of the eigenvectors for each eigenvalue you found for
the matrix in Exercise 3e. Check whether these vectors are linearly
independent.

6. Consider one of the eigenvectors for each eigenvalue you found for
the matrix in Exercise 3h. Check whether these vectors are linearly
independent.

7. Find the characteristic polynomial of each given matrix.

a.

(
1 0

3 1

)
b.

(
−1 1

1 2

)
c.

(
7 −3

1 3

)

d.

⎛
⎝ 1 1 −1

−2 1 1

−2 2 0

⎞
⎠ e.

⎛
⎝−1 0 0

−6 2 0

−6 0 2

⎞
⎠ f.

⎛
⎝1 0 1

3 1 −1

1 −1 −1

⎞
⎠

8. Here is an n×n diagonal matrix. What is its characteristic polyno-
mial? ⎛

⎜⎜⎜⎜⎜⎜⎝

A11 0 0 · · · 0

0 A22 0 · · · 0

0 0 A33 · · · 0
...

...
...

. . . 0

0 0 0 · · · Ann

⎞
⎟⎟⎟⎟⎟⎟⎠
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9. For each matrix A,

(i) find the characteristic polynomial of A
(ii) find A�

(iii) find the characteristic polynomial of A�

a. A =

(
7 −3

1 3

)
b. A =

(
5 4

−2 −1

)

c. A =

⎛
⎝−1 −3 −3

6 8 6

−6 −6 −4

⎞
⎠ d. A =

⎛
⎝1 0 −2

0 1 −1

1 −1 −2

⎞
⎠

Any conjectures?

10. For each matrix A,

(i) find the characteristic polynomial of A
(ii) find A−1

(iii) find the characteristic polynomial of A−1

a.

(
−1 1

2 0

)
b.

(
9 −4

12 −5

)
c.

(
− 10

3 −8
8
3 6

)

d.

(
0 1

−3 7
2

)
e.

⎛
⎝ 1 1 −1

−2 1 1

−2 2 0

⎞
⎠ f.

⎛
⎝− 11

2 2 2

−6 3
2

5
2

−6 3 2

⎞
⎠

Any conjectures?

11. For each matrix, find all its eigenvalues and for each of these
eigenvalues, describe the eigenspace.

a.

(
2 0

0 2

)
b.

(
−2 2

−6 5

)
c.

⎛
⎝ 1 1 −1

−2 1 1

−2 2 0

⎞
⎠

d.

⎛
⎝−1 0 0

−6 2 0

−6 0 2

⎞
⎠ e.

⎛
⎝ 3 −2 −4

2 −1 −5

−1 1 3

⎞
⎠ f.

⎛
⎝2 0 − 1

2

1 1 − 1
2

2 0 0

⎞
⎠

12. For each matrix and eigenvalue pair, find the associated eigenspace.

a.

⎛
⎝ 3 2 1

−2 −1 −1

0 0 1

⎞
⎠ , eigenvalue = 1

b.

⎛
⎝−1 1 4

−2 −4 −8

2 2 3

⎞
⎠ , eigenvalue = −2

c.

⎛
⎝ 7 −4 4

6 −4 6

−2 1 1

⎞
⎠ , eigenvalue = 3

d.

⎛
⎝−3 −2 2

4 3 −4

0 0 −1

⎞
⎠ , eigenvalue = −1

13. Prove part ((4)) of Theorem 9.27. ←−
Hint: What happens if λ =
0 in det(A − λI)? What
happens if λ = 0 in the
characteristic polynomial?
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14. Suppose A is an n × n matrix.

a. Show that det(A) is the product of the eigenvalues for A.
b. Show that the trace of A is the sum of the eigenvalues for A.

15. Here is an n × n diagonal matrix. For this matrix, Aii = i and
Aij = 0 if i �= j. What are the eigenvalues of this matrix? What are
the eigenvectors? ⎛

⎜⎜⎜⎝
1 0 0 · · · 0

0 2 0 · · · 0
...

. . . 0

0 0 0 · · · n

⎞
⎟⎟⎟⎠

16. Here is an n×n upper triangular matrix. What are its eigenvalues?⎛
⎜⎜⎜⎝

A11 A12 A13 · · · A1n

0 A22 A23 · · · A2n

...
. . . 0

0 0 0 · · · Ann

⎞
⎟⎟⎟⎠

17. Without calculating the determinant, explain why x − y and x − z
are eigenvalues of this matrix. ←−

Can you find the other
eigenvalues?

M =

⎛
⎜⎜⎝

x y z w

y x z w

y z x w

y z w x

⎞
⎟⎟⎠

18. Let M be a 3 × 3 matrix, and let Q =

⎛
⎝1

0

1

⎞
⎠. Suppose MQ = O. Is

Q an eigenvector of M? If so, what is its associated eigenvalue? If
not, why not?

19. Suppose T : R2 → R2 is the map that reflects a point over the line
with equation x = y. Find the eigenvalues and eigenvectors for T .

20. Suppose T : R2 → R2 is the map that reflects a point over the line
with equation X = t(3, 4). Find the eigenvalues and eigenvectors
for T .

21. Let M =

⎛
⎝1 1 0

0 1 1

0 0 0

⎞
⎠. Decide if these statements are true.

a. The x-axis is an M -invariant subspace of R3.
b. The y-axis is an M -invariant subspace of R3.
c. The z-axis is an M -invariant subspace of R3.
d. The x–y plane is an M -invariant subspace of R3.
e. The x–z plane is an M -invariant subspace of R3.
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22. Suppose A is a 4×4 matrix, Q1 is an eigenvector of A with eigenvalue
3, and Q2 is an eigenvector of A with eigenvalue −1. Prove that the
plane in R4 spanned by Q1 and Q2 is an A-invariant subspace of
R4.

23. Prove that a matrix and its transpose have the same characteristic ←−
So A and A� have the
same eigenvalues. Can you
say anything about the
eigenvectors?

polynomial.

24. Prove that a matrix has 0 as an eigenvalue if and only if the
determinant of the matrix is 0. (So the matrix is not invertible.)

25. Suppose Q is an eigenvector for an invertible matrix A with eigen- ←−
Use the equation AQ =
λQ.

value λ. Prove that Q is also an eigenvector for A−1. What is its
eigenvalue?

26. For each given matrix M , compute its characteristic polynomial.
Then plug M into the polynomial as the value for λ and simplify ←−

For constant terms in the
polynomial, multiply by
the identity matrix. For
example, if M is a 2 × 2
matrix, then (2M − 3)
means (2M − 3I), where I
is the 2× 2 identity matrix.

as much as possible.

a. M =

(
1 −1

1 3

)
b. M =

(
1 −1

−4 1

)

27. Take It Further. Suppose M is a matrix and Q is a vector.
The M-cyclic subspace generated by Q is the linear span of
{Q, MQ, M2Q, M3Q, . . . }.
For each given matrix M and vector Q, find the M -cyclic subspace
generated by Q.

a. M =

⎛
⎝0 0 −1

1 1 1

1 −1 0

⎞
⎠ , Q =

⎛
⎝ 1

−1

0

⎞
⎠

b. M =

⎛
⎝0 0 −1

1 1 1

1 −1 0

⎞
⎠ , Q =

⎛
⎝1

1

1

⎞
⎠

c. M =

⎛
⎜⎜⎝

0 1 −1 0

1 0 1 1

1 0 2 1

1 1 1 1

⎞
⎟⎟⎠ , Q =

⎛
⎜⎜⎝
−1

0

1

0

⎞
⎟⎟⎠

28. Take It Further. If M is an n × n matrix, the dimension of the
M -cyclic subspace generated by Q is at most n. Explain how to find
a basis for it.

29. Take It Further. If M is an n×n matrix, show that the M -cyclic
subspace generated by Q is M -invariant.
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9.7 Topics in Eigentheory

I pray you, be gone: I will make an end of my dinner; there’s
pippins and cheese to come.

—William Shakepeare, The Merry Wives of Windsor

Eigenvalues and eigenvectors have unexpected applications in a variety of
fields besides mathematics: physics, engineering, statistics, probability, fi-
nance, optics, etc. The eigenvectors determine lines where a matrix function
just acts by stretching or reducing a vector. The eigenvalues are the scale by
which the stretch is applied. When there are enough linearly independent
eigenvectors to form a basis, a change of basis leads to a diagonal matrix,
with the eigenvalues as its diagonal entries, that is similar to the original
matrix. This helps make some very messy calculations much simpler and
direct.

In this lesson, you will learn how to

• find the algebraic and geometric multiplicity of the eigenvalues of a
matrix

• determine which matrices can be diagonalized

• use a basis made of eigenvectors to create a change of basis matrix

• apply the diagonalization process to simplify calculations in proba-
bility theory and dynamical systems

• find the equation of a circle, ellipse, or hyperbola whose axes have
been rotated by a certain angle

Developing Habits of Mind

Reflect and review. This is the last lesson of the last chapter in the course. You’ve
learned a great deal over the past chapters. It’s a good idea now to go back to the
beginning and to read the introduction. How would you describe linear algebra to
someone just starting this program?

There’s always so much more to learn in mathematics. Think of this final lesson
as a preview of coming attractions. You’ll get a taste of several directions for further
study—things you can dig into as you learn more about linear algebra.

You’ve already seen situations where taking powers of a matrix is helpful ←−
Markov chains, yet another
situation where finding
powers of matrices comes
in handy, are explored in
Chapter 6.

to solve a problem. For example, in Minds in Action—Episode 12 from
Lesson 4.4, Derman, Sasha, and Tony figured out that if a matrix M
represents the number of one-step paths between various destinations, then
M2 represents the number of two-step paths, M3 represents the number of
three-step paths, and so on.

524



9.7 Topics in Eigentheory

You’ve also seen that finding powers of diagonal matrices is much easier ←−
For example, look back
at Exercise 21 from Les-
son 4.5.

than finding powers of matrices that are not diagonal. And in Example 1
from Lesson 8.6, you saw that—at least sometimes—you can find a change
of basis so as to “diagonalize” a matrix.

In this lesson, you’ll use the ideas of eigenvalues and eigenvectors to
figure out when you can diagonalize a given matrix, and you’ll see some of
the useful consequences of diagonalization.

Definition

An n × n matrix M is diagonalizable if there is an invertible matrix P ←−
In other words, M is
diagonalizable if M is
similar to a diagonal matrix.

so that P−1MP is a diagonal matrix.

Example 1

Problem. Is the matrix M =

⎛
⎝−14 −3 33

−76 −21 174

−16 −4 37

⎞
⎠ diagonalizable?

Solution. Well, suppose it is diagonalizable. What would that mean? You could find
a matrix P so that P−1MP is a diagonal matrix D, say

D =

⎛
⎝a1 0 0

0 a2 0

0 0 a3

⎞
⎠

Write P as a matrix of column vectors P = (P∗1, P∗2, P∗3), and rewrite the equation
above as

MP = PD

M (P∗1, P∗2, P∗3) = (P∗1, P∗2, P∗3)

⎛
⎝a1 0 0

0 a2 0

0 0 a3

⎞
⎠

(MP∗1, MP∗2, MP∗3) = (a1P∗1, a2P∗2, a3P∗3)

But look! You have three equations now.

←−
This last step comes from
the Pick-Apart Theorem,
Theorem 4.8 from Les-
son 4.5.

MP∗1 = a1P∗1

MP∗2 = a1P∗2

MP∗3 = a1P∗3

In other words, the columns of P must be eigenvectors for the matrix M , and the diagonal
entries of D must be the eigenvalues of M .

In fact, you already saw in Example 1 from Lesson 8.6 that this matrix is diagonal-

←−
You can check that the
columns of P are all
eigenvectors of M , and
that P 1−MP is a diagonal
matrix.

izable. The “diagonalizing matrix” is

P =

⎛
⎝3 −1 2

5 4 1

2 0 1

⎞
⎠ with P−1 =

⎛
⎝−4 −1 9

3 −1 −7

8 2 17

⎞
⎠
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So if you want to diagonalize a matrix, just make a matrix P of
eigenvectors, and then find P−1MP . Well, almost. The matrix P has to be

←−
And a 2 × 2 matrix
needs to have two linearly
independent eigenvectors,
and an n× n matrix needs
to have . . .

invertible for this to work. So a 3 × 3 matrix needs to have three linearly
independent eigenvectors in order to be diagonalizable. In fancier language:
an n × n matrix M is diagonalizable if and only if there is a basis of Rn

made up of eigenvectors of M .

Example 2

Problem. Are these two matrices diagonalizable?

a. A =

⎛
⎝1 0 0

3 −2 6

0 0 1

⎞
⎠ b. B =

⎛
⎝1 2 3

0 2 1

0 1 2

⎞
⎠

Solution. You saw matrix A in Example 2 from Lesson 9.6. Its characteristic polyno-
mial is (1 − λ)2(−2 − λ), so its eigenvalues are 1 and −2.

For λ = 1, you found two eigenvectors, X = (1, 1, 0) and Y = (0, 2, 1). For λ = −2,
you found the eigenvector Z = (0, 1, 0). If these three vectors are linearly independent,
then this will be a diagonalizing matrix:

P =

⎛
⎝1 0 0

1 2 1

0 1 0

⎞
⎠

You can calculate that det(P ) = −1, so the columns are, indeed, linearly independent.
Then A is diagonalizable and ←−

The order of the eigen-
values corresponds to the
order of the eigenvectors in
the matrix P .

P−1AP =

⎛
⎝1 0 0

0 1 0

0 0 −2

⎞
⎠

The characteristic polynomial for B is (1 − λ)2(3 − λ), so the eigenvalues are 1 and
3. If you plug λ = 1 into B − λI, you get the matrix

B − λI =

⎛
⎝0 2 3

0 1 1

0 1 1

⎞
⎠

You can check that the kernel of this matrix is the line with equation X = t(1, 0, 0). For
λ = 3, the matrix is

B − λI =

⎛
⎝−2 2 3

0 −1 1

0 1 −1

⎞
⎠

which has kernel X = t(5, 2, 2). You can find lots of eigenvectors: (1, 0, 0), (2, 0, 0),
(π, 0, 0), (5, 2, 2), (−15,−6,−6), and so on. But you can never find more than two linearly
independent eigenvectors, because you only have two fixed lines to work with. So matrix
B is not diagonalizable.
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For You to Do

1. For each matrix M below, do the following:

(i) Decide if M is diagonalizable by checking if it has enough linearly indepen-
dent eigenvectors.

(ii) If it is diagonalizable, find a diagonalizing matrix P .
(iii) Find the diagonal matrix P−1MP . ←−

Notice that you don’t need
to calculate P−1 to do the
last part. Why not?a. M =

(
1 2

2 1

)
b. M =

(
1 2

0 1

)
c. M =

⎛
⎝1 2 1

0 2 1

0 0 3

⎞
⎠

Minds in Action Episode 50

Derman is explaining his work on finding linearly independent eigenvectors.

Derman: Whenever the eigenvalues are all different, you have enough linearly indepen-
dent eigenvectors.

Tony: How do you figure that?

Derman: Well, each eigenvalue gets you at least one eigenvector. So then you’ll have
enough of them if all the eigenvalues are different.

Sasha: But you figured out that sometimes you don’t have enough eigenvalues. Some-
times you don’t have any.

Derman: No, I know. I mean . . . I guess I mean if you have n different eigenvalues for
an n × n matrix, then it works.

Sasha: OK, that makes more sense. But I still have a question. How do you know the
eigenvectors you get are linearly independent?

Derman: Huh?

Sasha: You don’t just need n eigenvectors. You need them to be linearly independent.

Derman: I . . . uh . . . Oh, there’s the bell for lunch.

This theorem answers Sasha’s question.

Theorem 9.30

Let M be an n × n square matrix. Then eigenvectors corresponding to
different eigenvalues are linearly independent.

Proof. Suppose you’ve got two eigenvectors X1 and X2, with different
eigenvalues λ1 and λ2. And suppose you can find scalars a1 and a2 so that

a1X1 + a2X2 = O
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Multiply both sides of this equation by the matrix M and simplify.

M(a1X1 + a2X2) = MO

a1(MX1) + a2(MX2) = O

(a1λ1)X1 + (a2λ2)X2 = O

Combine this last equation with the first one above.

a1X1 + a2X2 = O

(a1λ1)X1 + (a2λ2)X2 = O

Multiply the top equation by λ2 and subtract what you get from the bottom
one to get

a1(λ1 − λ2)X1 = O

You know that λ1 − λ2 �= 0, since the eigenvalues were different. You also
know that X1 �= O, since it’s an eigenvector. So then the only choice is that
a1 = 0, which means a2 = 0 also. So the vectors are linearly independent.

Now you know that whenever you have two eigenvectors that correspond
to two different eigenvalues, they are linearly independent. What if you have
three eigenvectors that correspond to three different eigenvalues? Play the
same game. Suppose you can write

a1X1 + a2X2 + a3X3 = O

Multiply both sides of this equation by the matrix M and simplify.

←−
Fill in the reasons for each
step!

M(a1X1 + a2X2 + a3X3) = MO

(a1λ1)X1 + (a2λ2)X2 + (a3λ3)X3 = O

Now multiply
a1X1 + a2X2 + a3X3 = O

by λ3 and subtract from

(a1λ1)X1 + (a2λ2)X2 + (a3λ3)X3 = O

to get
a1(λ1 − λ3)X1 + a2(λ2 − λ3)X2 = O

This is a linear combination of X1 and X2 that yields O. But you know
X1 and X2 are linearly independent, since they correspond to different
eigenvalues, and the result for two vectors is already proved. That means
the two coefficients in this last equation must both be 0. So a1 = a2 = 0, Remember

The eigenvalues are differ-
ent, so λ1 − λ3 �= 0 and
λ2 − λ3 �= 0.

which means a3 = 0 as well.

The rest of the proof works just like this. Suppose you know that k − 1
eigenvectors corresponding to k − 1 different eigenvalues must be linearly
independent. Do this same calculation in a little more generality to show
that k eigenvectors corresponding to k different eigenvalues must be linearly ←−

This is mathematical
induction again.

independent.

An important consequence of Theorem 9.30 is the fact that Derman
originally noticed, which is summarized in the following theorem.
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Theorem 9.31

If M is an n × n matrix and M has n different eigenvalues, then M is
diagonalizable.

For Discussion

2. Use Theorem 9.30 to prove Theorem 9.31.

Minds in Action Episode 51

The three friends are still talking about Derman’s idea.

Tony: I wonder if Derman’s theorem is one of those “if and only if” things.

Derman: What do you mean?

Tony: Well, we know that if we have n different eigenvalues, then we can diagonalize
the matrix. Maybe it’s true that if we don’t have n different eigenvalues, then we can’t
diagonalize it.

Sasha: No way, that can’t be right.

Tony: Why not?

Sasha: Well, you can make up really easy counterexamples. Just make a matrix that’s Habits of Mind

Look for counterexamples.already diagonal, but has repeated eigenvalues, like this:

⎛
⎜⎜⎝

2 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2

⎞
⎟⎟⎠

There are only two different eigenvalues, not four. But it’s already diagonal, so it’s
certainly “diagonalizable.”

Both Tony and Sasha have brought up the idea of “repeated” eigenval-
ues. It’s time to figure out what happens when an n× n matrix has n real
eigenvalues, but some of them are “repeats.”

Definition

Let M be an n × n matrix, and suppose the characteristic polynomial of
M can be completely factored over the real numbers. So the characteristic
polynomial looks like

(a1 − λ)e1(a2 − λ)e2 · · · (at − λ)et

where the numbers ai are all different.

• The exponent ei is called the algebraic multiplicity of the eigen-
value ai.
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• The dimension of the eigenspace Eai
is called the geometric mul-

tiplicity of the eigenvalue ai.

Example 3

In Example 2, the characteristic polynomial of the matrix A is

(1 − λ)2(−2 − λ)

The eigenspace E1 consists of the linear span of two linearly independent vectors:
Q1 = (1, 1, 0) and Q2 = (0, 2, 1). The eigenspace of E−2 is a line, X = t(0, 1, 0). So 1 is
an eigenvalue with algebraic multiplicity two and geometric multiplicity two, and −2 is
an eigenvalue with algebraic multiplicity one and geometric multiplicity one.

For matrix B, the characteristic polynomial is (1 − λ)2(3 − λ). The eigenspace
E1 consists of the line with equation X = t(1, 0, 0). The eigenspace E3 is the line
with equation X = t(5, 2, 2). So 1 is an eigenvalue with algebraic multiplicity two
and geometric multiplicity one, and 3 is an eigenvalue with algebraic multiplicity and
geometric multiplicity both equal to one.

For You to Do

3. For each matrix below,

(i) find the algebraic multiplicity and the geometric multiplicity of the eigen-
value −2

(ii) decide if the matrix is diagonalizable or not

a.

(
−2 1

0 −2

)
b.

⎛
⎝1 3 2

0 −2 1

0 0 −1

⎞
⎠ c.

⎛
⎝1 −3 3

3 −5 3

6 −6 4

⎞
⎠

Facts and Notation

From the examples you’ve seen so far, it seems reasonable to guess that for any eigenvalue
a of a matrix M ,

1 ≤ geometric multiplicity of a ≤ algebraic multiplicity of a.

The first inequality must be true. Remember that the eigenvalue a is defined so that
M −aI has something in the kernel besides O. So there must be at least one eigenvector
Q. But then the whole line with equation X = tQ is in the eigenspace Ea, and the
geometric multiplicity is at least 1.

The formal proof of the second inequality—that the algebraic multiplic-
ity is at least as large as the geometric multiplicity—is a little complicated.
It’s a good idea first to examine the case in R3, and then sketch the gen-
eralization. In R3, there are three possibilities for geometric multiplicity of ←−

The eigenspace Ea is a
subspace of R3, so it
can have at most three
dimensions.

an eigenvalue: 1, 2, or 3.
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If the geometric multiplicity is one, the algebraic multiplicity must be
at least one. (Otherwise, a is not an eigenvalue!) What if the geometric
multiplicity is two? Let Q1 and Q2 be linearly independent eigenvectors
with eigenvalue a. Expand those two vectors to a basis for R3 by adding
a vector Y such that {Q1, Q2, Y } is a linearly independent set. Then, for
some numbers b1, b2, and b3,

MQ1 = aQ1

MQ2 = aQ2

MY = b1X1 + b2X2 + b3Y

Using the Pick-Apart Theorem, you can rewrite the three equations above
as a single matrix equation.

Remember

(Q1Q2Y )means the matrix
whose columns are the
vectors Q1, Q2, and Y , in
that order.

M (Q1Q2Y ) = (Q1Q2Y )

⎛
⎝a 0 b1

0 a b2
0 0 b3

⎞
⎠ (5)

Let P = (Q1Q2Y ) and N =

⎛
⎝a 0 b1

0 a b2
0 0 b3

⎞
⎠. Since the columns of P

form a basis for R3, they are linearly independent. So P is invertible,
meaning equation (5) can be rewritten as P−1MP = N . Theorem 9.29
says that similar matrices have the same characteristic polynomials. The
characteristic polynomial of N is easy to calculate if you expand the
determinant on the first column; it’s (a − λ)2(b3 − λ). So the algebraic
multiplicity of a is at least two. ←−

“At least 2” because b3
might also be equal to a.If the geometric multiplicity of a is three, the eigenvectors Q1, Q2, Q3

already form a basis for R3. So equation (5) becomes

M (Q1Q2Q3) = (Q1Q2Q3)

⎛
⎝a 0 0

0 a 0

0 0 a

⎞
⎠

You can run the same argument to see that the characteristic polynomial
of M is (a − λ)3, which means a has algebraic multiplicity three.

Suppose now that M is an n×n matrix, and a is an eigenvalue with ge-
ometric multiplicity r. Take r linearly independent eigenvectors in Ea, say
Q1, Q2, . . . , Qr, and then blow that set up to a basis for Rn by adding how-
ever many vectors you need. If the basis is {Q1, Q2, . . . , Qr, Yr+1, . . . , Yn},
you can calculate that

M (Q1Q2 · · ·QrYr+1 · · ·Yn)

= (Q1Q2 · · ·QrYr+1 · · ·Yn)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 · · · 0 b1(r+1) · · · b1n
0 a · · · 0 b2(r+1) · · · b2n
...

. . .
...

...
. . .

...

0 0 · · · a br(r+1) · · · brn
0 0 · · · 0 b(r+1)(r+1) · · · b(r+1)n

...
. . .

...
...

. . .
...

0 0 · · · 0 bn(r+1) · · · bnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Expanding along the first column and arguing as in the R3 case, you can
see that (a − λ)r will divide the characteristic polynomial of M . So the
algebraic multiplicity of a is at least r.

Theorem 9.32 (Geometric-Algebraic Multiplicity)

If M is a matrix with eigenvalue a, then

1 ≤ geometric multiplicity of a ≤ algebraic multiplicity of a.

Some Applications of Diagonalization

In Exercise 18 from Lesson 5.2, you were asked to figure out what the
matrix

←−
At the time, you didn’t
know that R is a rotation
matrix. What is the angle
θ for which R = Rθ?

R =

√
2

2

(
1 1

−1 1

)
does to the graph of the quadratic equation x2 − xy + y2 = 1. The algebra
probably got a bit messy. Now that you know about diagonalization, you
can tackle such problems in a more elegant way. First, notice that you can
think of x2 − xy + y2 = 1 as a matrix equation.

(x, y)A

(
x

y

)
= 1, where A =

(
1 −1/2

−1/2 1

)

For You to Do

4. Check that ←−
A polynomial like x2−xy+
y2 is called a quadratic
form .(x, y)A

(
x

y

)
= (x, y)

(
1 −1/2

−1/2 1

)(
x

y

)
= x2 − xy + y2

Also, check that the columns of the matrix

R =

√
2

2

(
1 1

−1 1

)
are eigenvectors for the matrix A. What are the eigenvalues?

So you have a rotation matrix R and a diagonal matrix D so that
R−1AR = D, so A = RDR−1. Of course, if R is a rotation matrix, then so
is R−1; it just rotates in the opposite direction. If you have A = R−1

θ DRθ,
then

←−
You proved in Theorem 5.5
that for a rotation matrix
Rθ, (Rθ)

−1 = (Rθ)
�.

(x, y)A

(
x

y

)
= 1

(x, y) (Rθ)
−1

DRθ

(
x

y

)
= 1

(x, y) (Rθ)
� DRθ

(
x

y

)
= 1

(
Rθ

(
x

y

))�

D

(
Rθ

(
x

y

))
= 1
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So let (
x′

y′

)
= Rθ

(
x

y

)
Then the quadratic equation becomes

(x′, y′)D

(
x′

y′

)
= 1 (6)

In other words, it looks like λ1x
′2 + λ2y

′2 = 1. This looks like either a
circle, an ellipse, or a hyperbola, depending on λ1 and λ2. Since Rθ is just ←−

Circle: the eigenvalues are
equal and positive.
Ellipse: the eigenvalues
are unequal and positive.
Hyperbola: one eigenvalue
is negative, and one is
positive.

a rotation, the original graph must have that same shape.

For Discussion

5. You already found the eigenvalues of

(
1 −1/2

−1/2 1

)
. So, is the graph of x2 −

xy + y2 = 1 a circle, an ellipse, or a hyperbola?

The (x′, y′) in equation (6) is the coordinate vector for (x, y) with respect
to the basis B that consists of eigenvectors of A. Rθ is the transition matrix ←−

The elements of the basis
of eigenvectors are the
columns of Rθ.

from the standard basis to B. And D is none other than MB
B (T ), where

T : R2 → R2 is the map whose matrix with respect to the standard basis
is A.

So, in this example, the process of diagonalization allows you to change
the axes of R2 in a way that transforms the equation x2 − xy + y2 = 1 so

←−
This “change of variable”
doesn’t change the graph—
it just changes the point-
tester used to define the
graph.

that it’s easier to recognize its graph.

Minds in Action Episode 52

Derman: I was playing around with matrices, and I noticed something weird. Look at
this matrix we were just using.

M =

⎛
⎝1 −3 3

3 −5 3

6 −6 4

⎞
⎠

It turned out the characteristic polynomial is (−2 − λ)2(4 − λ), right?

Tony: Sure, that’s what I got.

Derman: Yeah, now watch. I’m going to plug in the matrix M for λ. Then I get

←−
By “(−2 − M)”
Derman means the ma-
trix (−2I −M), where I is
the 3× 3 identity matrix.

(−2 − M)2(4 − M) =

⎛
⎝−3 3 −3

−3 3 −3

−6 6 −6

⎞
⎠

2⎛
⎝ 3 3 −3

−3 9 −3

−6 6 0

⎞
⎠

Tony: What am I supposed to be seeing here?

Derman: Don’t you get it? If you multiply that all out, you get O!

Tony: You do? (Tony checks it on his calculator.) You do! But, what does that mean?
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Derman: I don’t know. But I tried a couple of examples. It even works for matrices

that don’t have real eigenvalues like A =

(
0 −1

1 0

)
.

Sasha: Where do you get these ideas?

Derman: Well, the characteristic polynomial is det(M − λI). Replace λ by M and you
get det(M − MI) = det(O) = 0.

Tony: Derman, λ is a placeholder for a number , not a matrix. You can’t do that.

Derman: But it works! It works, I tell you.

For You to Do

6. Check that Derman is right about the matrix A =

(
0 −1

1 0

)
. Find the charac-

teristic polynomial of A, and then plug A in to that polynomial and do all the ←−
So, for example, for the
polynomial x2 + 2x − 3,
you’d calculate A2 + 2A−
3I.

simplification. Do you get the O matrix?

Facts and Notation

Derman’s “proof” is flawed, but he has discovered the Cayley-Hamilton Theorem,
which says that every n × n matrix is a root of its own characteristic polynomial. The
proof in general can get kind of messy, but it’s not hard to prove for matrices that are
diagonalizable.

First, think about diagonal matrices. The 4×4 case is good enough to see the general
principles at work. Let

D =

⎛
⎜⎜⎝

a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4

⎞
⎟⎟⎠

The characteristic polynomial of D is (a1 − λ)(a2 − λ)(a3 − λ)(a4 − λ). Plug in D for λ,
and you get A1A2A3A4, where

A1 =

⎛
⎜⎜⎝

0 0 0 0

0 a1 − a2 0 0

0 0 a1 − a3 0

0 0 0 a1 − a4

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

a2 − a1 0 0 0

0 0 0 0

0 0 a2 − a3 0

0 0 0 a2 − a4

⎞
⎟⎟⎠

A3 =

⎛
⎜⎜⎝

a3 − a1 0 0 0

0 a3 − a2 0 0

0 0 0 0

0 0 0 a3 − a4

⎞
⎟⎟⎠ , A4 =

⎛
⎜⎜⎝

a4 − a1 0 0 0

0 a4 − a2 0 0

0 0 a4 − a3 0

0 0 0 0

⎞
⎟⎟⎠

Now analyze the calculation: the first row of A1 has all 0’s, so the same will be true
of the first row of A1A2, and in fact of A1A2A3A4. Moreover, (A1)2∗ · (A2)∗j has all 0’s
for every column (A2)∗j . So the second row of A1A2 is also all 0’s, so the same will be
true for the second row of A1A2A3A4. In fact, all the rows will be 0 in the final product.
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Now suppose M is similar to a diagonal matrix. So for some matrix P , you have
P−1MP = D. By Theorem 9.29, M and D have the same characteristic polynomial, say
(a1 − λ)(a2 − λ)(a3 − λ)(a4 − λ). From the argument above, you know that

←−
In this equation, O means
the 4×4 matrix of all zeros.

O = (a1I − D)(a2I − D)(a3I − D)(a4I − D)

= (a1I − P−1MP )(a2I − P−1MP )

(a3I − P−1MP )(a4I − P−1MP )

= (P−1a1IP − P−1MP )(P−1a2IP−1 − P−1MP )

(P−1a3IP − P−1MP )(P−1a4IP − P−1MP )

= P−1(a1I − M)PP−1(a2I − M)P

P−1(a3I − M)PP−1(a4I − M)P

= P−1(a1I − M)(a2I − M)(a3I − M)(a4I − M)P

Multiplying on each side by P on the left and P−1 on the right gives

O = (a1I − M)(a2I − M)(a3I − M)(a4I − M)

So M is a root of its own characteristic polynomial.

For Discussion

7. Provide a reason for each step in the calculation in the above equations.

Dynamics

A dynamical system is a system that changes over time, where what ←−
The random processes in
Chapter 6 are examples
of dynamical systems.
Another example is the
population of wolves in a
national park. The future
population depends on the
current population—how
many mature wolves can
reproduce? Are there more
wolves than the food supply
and land can support? How
many will die off? And so
on.

happens next depends on the current state of the system. One way to model
many dynamical systems is through iteration. You apply a function to some
starting value, and then take the output and put it back into the function
as the next input.

Example 4

Here’s an example of iteration with a matrix representing the function. Take the matrix

S =

(
1 −1

0 1

)
and the vector X =

(
0

1

)
.

Find SX, S(SX) = S2X, S(S(SX)) = S3X, and so on. You get

SX =

(
−1

1

)
, S2X =

(
−2

1

)
, S3X =

(
−3

1

)
, . . .

For Discussion

8. Using the matrix S and the vector X given above, find a general formula for
SnX, where n is a positive integer. Explain why your formula is right. Draw a
picture of what’s happening to the vector SnX as n gets really big.
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So when a matrix represents the function, iteration amounts to finding
powers of the matrix. This can be nice. If you want to know what happens in
100 steps, you don’t have to figure out what happens at steps 1 through 99.
Just raise the matrix to the hundreth power and apply it to your starting ←−

Of course, that’s assuming
that you can find an
efficient way to raise a
matrix to some high power.

vector.

For You to Do

9. Calculate A5 and B5.

a. A =

⎛
⎝1 1 0

1 0 1

0 1 1

⎞
⎠ b. B =

⎛
⎝2 0 0

0 −1 0

0 0 1

⎞
⎠

Even though the powers of A form a pretty nice pattern, you can
probably imagine that calculating large powers of B is much easier than
calculating large powers of A. However, it turns out the characteristic
polynomial of A is (2 − λ)(−1 − λ)(1 − λ), and that if you let

P =

⎛
⎝1 1 −1

1 −2 0

1 1 1

⎞
⎠ , then P−1 =

⎛
⎝ 1

3
1
3

1
3

1
6 − 1

3
1
6

− 1
2 0 1

2

⎞
⎠

and P−1AP = B. Maybe that can help you calculate large powers of A.

Theorem 9.33

If P−1AP = B, then for any integer n ≥ 1, P−1AnP = Bn.

Example 5

This theorem makes it much easier to calculate high powers of matrices, providing they
are diagonalizable. Consider the matrices A and B above. You can see that

B10 =

⎛
⎝1024 0 0

0 1 0

0 0 1

⎞
⎠ , so A10 = PB10P−1 =

⎛
⎝342 341 341

341 342 341

341 341 342

⎞
⎠ .

For Discussion

10. Prove Theorem 9.33.

Markov chains are a special kind of iteration that models lots of interest- ←−
Markov chains are explored
in more detail in Chapter 6.

ing processes, including how Google decides the order for displaying search
results. Markov chains involve iterating special matrices applied to special
vectors.
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Definition

A probability vector is a vector that has nonnegative entries that
sum to 1. A transition matrix is a square matrix whose columns are
probability vectors.

For Discussion

11. Write down several examples of probability vectors and several examples of
transition matrices.

12. a. Given the vector X =

(
1

2

)
, can you find a multiple of X that is a probability

vector? If so, how? If not, why not?

b. Given the vector X =

(
1

−2

)
, can you find a multiple of X that is a

probability vector? If so, how? If not, why not?

Example 6

Here’s a 2 × 2 transition matrix:

T =

(
0.7 0.5

0.3 0.5

)

Here are some iterates TnX starting with the probability vector X =

(
1

0

)
:

TX =

(
0.7

0.3

)
, T 2X =

(
0.64

0.36

)

T 3X =

(
0.628

0.372

)
, T 4X =

(
0.6256

0.3744

)

The outputs of the dynamical system seem to be approaching some value. But what
value?

For You to Do

13. a. Check that .2 and 1 are both eigenvalues for the matrix

T =

(
0.7 0.5

0.3 0.5

)

b. You know that T is similar to the diagonal matrix

D =

(
1 0

0 0.2

)

Find D2, D3, and D4. Find a formula for Dn and describe what happens
for very large values of n.
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c. Find the eigenvector associated with 1, and write it as a probability vector.
d. Find decimal approximations to your probability vector, and compare them

to the outputs of the dynamical system in Example 6 above.

Exercises

1. Determine whether each matrix is diagonalizable.

a.

(
8 4

−9 −4

)
b.

(
−7 −3

18 8

)

c.

⎛
⎝ 1 0 −2

0 0 0

−2 0 4

⎞
⎠ d.

⎛
⎝−1 −4 0

0 3 0

1 5 −1

⎞
⎠

e.

⎛
⎜⎜⎝
−12 −10 −8 2

0 17 21 11

0 0 11 −1

0 0 0 5

⎞
⎟⎟⎠ f.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2. Diagonalize each matrix.

a.

(
−7 −3

18 8

)
b.

(
13 16

−8 −11

)
c.

(
−6 −6

3 3

)

d.

⎛
⎝ 1 0 −2

0 0 0

−2 0 4

⎞
⎠ e.

⎛
⎝ 4 3 3

−3 −2 −3

−3 −3 −2

⎞
⎠

f.

⎛
⎜⎜⎝
−12 −10 −8 2

0 17 21 11

0 0 11 −1

0 0 0 5

⎞
⎟⎟⎠

3. For each matrix, find the algebraic multiplicity and the geometric
multiplicity of each real eigenvalue. Decide if the matrix is diago-
nalizable or not.

a.

(
−3 4

−1 −7

)
b.

(
0 0

0 0

)
c.

(
4 6

−4 −7

)

d.

⎛
⎝ 4 4 2

−5 −5 −2

0 −1 −1

⎞
⎠ e.

⎛
⎝1 1 0

0 1 1

2 0 0

⎞
⎠ f.

⎛
⎝−1 1 0

0 −1 0

2 −1 0

⎞
⎠

g.

⎛
⎜⎜⎜⎜⎜⎝
−1 0 0 0 0

0 4 0 0 0

1 3 0 0 0

2 2 −1 −3 0

3 1 −2 −2 1

⎞
⎟⎟⎟⎟⎟⎠
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4. For each of the following,

(i) determine the quadratic equation given by the matrix equation
(ii) find a rotation matrix that will diagonalize the given matrix Remember

A rotation matrix looks like

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

So its column vectors each
have length 1, and the
columns are orthogonal to
each other. You’ll need to
make sure that’s true of
the matrix you use.

(iii) use the diagonalization to decide if the original equation de-
scribed a circle, an ellipse, or a hyperbola

a. (x, y)

(
5 2

2 2

)(
x

y

)
= 1 b. (x, y)

(
1 −5

−5 1

)(
x

y

)
= 1

5. Suppose that A =

(
a b

2
b
2 c

)
. Show that

ax2 + bxy + cy2 = (x, y)A

(
x

y

)

6. For each matrix, find its characteristic polynomial, and then check
that the matrix is a root of its own characteristic polynomial.

a. A =

(
5 8

−2 −3

)
b. B =

(
6 10

−4 −6

)

c. C =

(
5 8

−3 −4

)
d. D =

⎛
⎝−3 −1 −2

2 0 2

3 2 1

⎞
⎠

7. For each of the following, use the matrix P to diagonalize the matrix
M . Then use the diagonalization to compute M11.

a. M =

(
−9 6

−12 8

)
and P =

(
3 2

4 3

)

b. M =

⎛
⎝ 1 2 2

−3 −4 −2

3 3 1

⎞
⎠ and P =

⎛
⎝ 0 −1 1

1 1 −1

−1 0 1

⎞
⎠

8. Suppose M = P−1DP , P =

(
1 2

1 1

)
, and D2 =

(
−9 0

0 −4

)
.

a. Calculate M6.
b. Does M have real eigenvalues? If so, what are they? If not,

why not?

9. For each given matrix M , find a formula for Mn for any integer
n ≥ 1.

a. M =

(
3 −4

2 −3

)
b. M =

(
5 −3

6 −4

)

10. For each given matrix T ,

(i) choose a convenient probability vector X and use a calculator
to find the iterates TX, T 2X, T 3X, and T 4X

(ii) show that 1 is an eigenvalue of T , and find the other eigenvalue

a. T =

(
0.6 0.2

0.4 0.8

)
b. T =

(
0.25 0.5

0.75 0.5

)
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11. If possible, give an example of two 3 × 3 matrices that have the
same characteristic polynomial but are not similar to each other. If
it’s not possible, explain why not.

12. In Minds in Action—Episode 51, Sasha claims that any diagonal
matrix is diagonalizable. Prove that what she said is true, based on ←−

What is the “diagonalizing
matrix” in this case?

the definition of “diagonalizable.”

13. Let A =

(
a b

c d

)
. Can you find a condition on a, b, c, and d that

guarantees A is diagonalizable?

14. Is it true that in a transition matrix the rows are probability
vectors? If yes, explain why. If no, provide a counterexample.

15. Prove that a 2 × 2 transition matrix always has an eigenvalue 1.

16. Prove that a 3 × 3 transition matrix always has an eigenvalue 1.
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Chapter 9 Mathematical Reflections

These problems will help you summarize what you have learned in this Vocabulary

In this chapter, you saw
these terms and symbols
for the first time. Make
sure you understand what
each one means, and how
it is used.

• algebraic multiplicity

• characteristic polynomial

• eigenvalue

• eigenvector

• generalized cross
product

• geometric multiplicity

• M -invariant subspace

• minors of a matrix

• parallelepiped

• probability vector

chapter.

1. Let A =

⎛
⎝ 2 −1 3

1 3 2

−2 −4 0

⎞
⎠.

a. Determine the minors M13, M23, and M33.
b. Use the results of part a to find the determinant of A.

2. Evaluate each determinant. Look for shortcuts.

a.

∣∣∣∣∣∣
3 1 −4

2 0 0

5 1 −2

∣∣∣∣∣∣ b.

∣∣∣∣∣∣
2 −4 3

0 −1 7

0 0 5

∣∣∣∣∣∣
3. Let P1 = (1, 0, 0,−2), P2 = (0, 1, 1,−1), P3 = (−2,−3, 0, 0), and

P4 = (2,−1, 0, 1), and let N be the matrix whose columns are P1,
P2, P3, P4 in order.

a. Calculate the generalized cross product P1 × P2 × P3.
b. Use the cross product to calculate the volume V of the paral-

lelepiped spanned by these vectors.

V = |P4 · (P1 × P2 × P3)|

c. Calculate V = |det(N)|. Are the results the same?

4. Suppose that λ = 1 is an eigenvalue of M =

(
4 1

3 2

)
. What are the

corresponding eigenvectors?

5. How can you find a vector in Rn orthogonal to n− 1 other vectors?

6. How can you extend the definition of volume to Rn?

7. Under what conditions is an n × n matrix diagonalizable?

8. Diagonalize the matrix A =

(
3 −1

4 −2

)
.
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Chapter 9 Review

In Lesson 9.2, you learned to

• extend the definition of determinant to n × n matrices

• use a recursive algorithm to find the determinant of a matrix

• evaluate a determinant along any row or column

• develop the basic rules for determinants

The following problems will help you check your understanding.

1. Evaluate each determinant. Look for shortcuts.

a.

∣∣∣∣∣∣
4 −1 1

3 0 3

2 0 −2

∣∣∣∣∣∣ b.

∣∣∣∣∣∣
1 3 5

−1 −3 2

2 6 7

∣∣∣∣∣∣
c.

∣∣∣∣∣∣
2 −3 1

−3 4 0

4 −2 −1

∣∣∣∣∣∣ d.

∣∣∣∣∣∣
2 1 −3

−3 0 4

4 −1 −2

∣∣∣∣∣∣
2. Evaluate the determinant ∣∣∣∣∣∣∣∣

0 2 −1 4

1 3 0 1

0 −2 1 4

0 −3 1 0

∣∣∣∣∣∣∣∣
along

a. the first column
b. the fourth column

3. Suppose that A =

(
a b

c d

)
and that det A = 6. Find each determi-

nant.

a.

∣∣∣∣3a b

3c d

∣∣∣∣ b.

∣∣∣∣2a 2b

2c 2d

∣∣∣∣
c.

∣∣∣∣b a

d c

∣∣∣∣ d.

∣∣∣∣a + 3b b

c + 3d d

∣∣∣∣
In Lesson 9.3, you learned to

• prove that the column you use to evaluate the determinant of a matrix
does not affect the outcome

• expand a determinant along a row instead of a column

• compare the determinant of a matrix to the determinant of its
transpose

The following problems will help you check your understanding.
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4. Evaluate

∣∣∣∣∣∣∣∣
−2 3 0 −1

1 0 2 −2

4 −2 1 2

0 2 0 −4

∣∣∣∣∣∣∣∣
a. along row 1
b. along row 4

5. Suppose that A =

⎛
⎝a b c

d e f

g h i

⎞
⎠ and that det (A) = 5. Find each

determinant.

a. detA� b. det 3A

c.

∣∣∣∣∣∣
a b c

g h i

d e f

∣∣∣∣∣∣ d.

∣∣∣∣∣∣
a b c

3d 3e 3f

g h i

∣∣∣∣∣∣
6. Solve each equation for x. Look for shortcuts.

a.

∣∣∣∣∣∣
1 −1 4

0 0 x

3 x 6

∣∣∣∣∣∣ = −4 b.

∣∣∣∣∣∣
1 −2 −4

0 2 x

0 0 x

∣∣∣∣∣∣ = 6

In Lesson 9.4, you learned to

• use matrix multiplication as a way to reduce a matrix to echelon form

• find in what ways the determinant of a matrix is changed by reducing
it to its echelon form

• calculate the determinant of the product of two matrices

• understand how a nonzero determinant is equivalent to all other
statements in the TFAE Theorem

The following problems will help you check your understanding.

7. Suppose A is a 3 × 3 matrix and det (A) = 5. For each elementary
row matrix E,

• describe the elementary row operation that is carried out when
you multiply matrix A by E

• find the determinant of E
• find the determinant of the product EA

a. E =

⎛
⎝1 0 0

0 2 0

0 0 1

⎞
⎠ b. E =

⎛
⎝0 2 0

1 0 0

0 0 1

⎞
⎠ c. E =

⎛
⎝1 0 0

0 1 0

0 2 1

⎞
⎠
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8. Suppose that A =

⎛
⎝a b c

d e f

g h i

⎞
⎠ and B =

⎛
⎝ j k l

m n p

q r s

⎞
⎠. Suppose also

that det (A) = 4 and that det (B) = −2. Find the following:

a. det(AB) b. det(3AB)

c. det(A−1) d. det(B−1)

e. det((AB)−1) f. det(AB−1)

g.

∣∣∣∣∣∣
a b c

d e f

5g 5h 5i

∣∣∣∣∣∣ h.

∣∣∣∣∣∣
a b c

d e f

5a + g 5b + h 5c + i

∣∣∣∣∣∣
9. Suppose A =

⎛
⎝1 0 −2

3 t 4

t 1 −1

⎞
⎠. Use determinants to find t if rref(A) �=

I.

In Lesson 9.5, you learned to

• use Cramer’s Rule to find a vector orthogonal to n− 1 given vectors

• extend the definition of cross product to n − 1 vectors in Rn

• extend the definition of volume to a box spanned by n vectors in Rn

• use Cramer’s Rule to find the solution to a system of linear equations

The following problems will help you check your understanding.

10. Let P1 = (1, 1, 1, 2), P2 = (1,−1, 3, 0), and P3 = (0, 1, 0, 1), and
suppose X is a vector that is orthogonal to all three given vectors.

a. Set up and solve a system of equations to find X.
b. Use Cramer’s Rule to find X.

11. For each given matrix equation, use Cramer’s Rule to solve it.

a.

(
2 −1

3 2

)(
x

y

)
=

(
10

8

)
b.

⎛
⎝ 2 1 −1

−1 2 4

1 0 −2

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝−3

4

−2

⎞
⎠

12. For each given set of vectors, find the volume of the parallelepiped
spanned by them.

a. P1 = (0, 1, 2, 0), P2 = (−1, 2, 3, 0),
P3 = (2,−1, 0, 1), P4 = (3, 0, 0,−1)

b. P1 = (1, 1, 2, 2), P2 = (3,−2, 0, 1),
P3 = (1, 2, 2, 3), P4 = (0, 1, 0,−1)

In Lesson 9.6, you learned to

• find the characteristic polynomial of a matrix

• recognize the underlying geometry of the characteristic polynomial’s
real roots
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• establish the relationship between the eigenvalues , eigenvectors , and
characteristic polynomials of similar matrices

• find the invariant subspaces of a matrix or linear transformation

The following problems will help you check your understanding.

13. For each given matrix A,

(i) find the characteristic polynomial of A
(ii) find all eigenvalues and eigenvectors for A

a.

(
1 2

6 5

)
b.

(
1 −1

0 1

)

c.

⎛
⎝1 2 −2

0 −1 1

0 0 2

⎞
⎠ d.

⎛
⎝2 0 0

1 1 −1

1 0 2

⎞
⎠

14. Let A =

⎛
⎝1 1 1

0 2 0

0 2 1

⎞
⎠.

a. Find all eigenvalues and eigenvectors for A.
b. Calculate A−1.
c. Find all eigenvalues and eigenvectors for A−1.

15. For each given matrix and eigenvalue pair, find the associated
eigenspace.

a.

(
1 2

−1 4

)
, eigenvalue = 3

b.

⎛
⎝1 0 −1

2 2 −3

1 0 2

⎞
⎠, eigenvalue = 2

c.

⎛
⎝−1 1 1

0 1 2

0 0 −1

⎞
⎠, eigenvalue = −1

In Lesson 9.7, you learned to

• find the algebraic and geometric multiplicity of the eigenvalues of a
matrix

• determine which matrices can be diagonalized

• use a basis of eigenvectors to create a change of basis matrix

• apply the diagonalization process to simplify calculations in proba-
bility theory and dynamical systems

• find the equation of a conic section whose axes have been rotated by
a certain angle

The following problems will help you check your understanding.
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16. For each matrix, find the algebraic multiplicity and the geometric
multiplicity of each real eigenvalue. Is the matrix diagonalizable?
Explain.

a.

(
2 −1

2 5

)
b.

(
1 −1

1 3

)
c.

⎛
⎝−1 1 0

4 2 0

2 2 −2

⎞
⎠

17. For each of the following,

(i) determine the quadratic equation given by the matrix equation
(ii) find a rotation matrix that will diagonalize the given matrix
(iii) use the diagonalization to decide if the original equation de-

scribed a circle, an ellipse, or a hyperbola

a. (x, y)

(
4 1

1 4

)(
x

y

)
= 1 b. (x, y)

(
17 9

9 −7

)(
x

y

)
= 1

18. For each of the following, use the matrix P to diagonalize the matrix
M . Then use the diagonalization to compute M5.

a. M =

(
−8 18

−3 7

)
and P =

(
3 2

1 1

)

b. M =

⎛
⎝−1 4 11

0 −10 −24

0 4 10

⎞
⎠ and P =

⎛
⎝ 1 1 −1

−2 0 3

1 0 −1

⎞
⎠
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Multiple Choice

1. Suppose that A =

⎛
⎝a b c

d e f

g h i

⎞
⎠ and that det (A) = −2. What is the

determinant of B =

⎛
⎝4a 4b 4c

4g 4h 4i

4d 4e 4f

⎞
⎠?

A. −128 B. −8 C. 8 D. 128

2. Suppose that A =

(
a b

c d

)
and det(A) = 7. What is the determinant

of

(
a − 2c b − 2d

c d

)
?

A. −14 B. −7 C. 7 D. 14

3. Suppose that A =

⎛
⎜⎜⎝

a b c d

e f g h

i j k l

m n p q

⎞
⎟⎟⎠ has rank 3. Which statement

must be true?

A. ker(A) = O
B. det(A) = 0
C. The dimension of the column space for A is 4.
D. The columns of A are linearly independent.

4. Let P1 = (1, 0,−1, 2), P2 = (−2, 1, 1,−3), P3 = (2, 2, 3, 1), and
P4 = (0, 0, 1,−1). What is the volume of the parallelepiped spanned
by these vectors?

A. 2 B. 3 C. 12 D. 15

5. Which is an eigenvector for A =

⎛
⎝1 −1 2

0 1 3

0 0 −2

⎞
⎠?

A. (−2,−2, 0)
B. (−1, 1, 0)
C. (1, 1,−2)
D. (2, 2,−2)

6. Suppose M =

(
−2 −1

1 0

)
. Let a be the algebraic multiplicity and g

be the geometric multiplicity of the eigenvalue −1 of M . What are
the values of a and g?

A. a = 1 and g = 1
B. a = 1 and g = 2
C. a = 2 and g = 1
D. a = 2 and g = 2

547



Chapter 9 Determinants and Eigentheory

Open Response

7. Evaluate

∣∣∣∣∣∣∣∣
2 −1 3 1

0 4 0 0

0 −1 0 −1

3 0 −2 −1

∣∣∣∣∣∣∣∣
a. along the third column
b. along the second row

8. Solve for x: ∣∣∣∣∣∣
x 2 1

4 1 −2

2 x 1

∣∣∣∣∣∣ = −15

9. Let P1 = (1,−2, 0, 1), P2 = (1, 3, 1, 0), and P3 = (2, 0,−1, 1).

a. Find X = P1 × P2 × P3.
b. Show that X is orthogonal to each of the three given vectors.

10. Let A =

⎛
⎝ 1 0 0

2 −2 1

−1 0 1

⎞
⎠.

a. Find the characteristic polynomial for matrix A.
b. Find all eigenvalues for A.
c. Find the eigenvectors corresponding to each eigenvalue.

11. Let A =

(
7 4

2 5

)
.

a. Find a matrix P that will diagonalize A.
b. Use P to diagonalize A.
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1. Consider S, the set of 3 × 2 matrices of the form

⎛
⎝a b

c d

e f

⎞
⎠, where

e = −f .

a. Show that S is closed under addition.
b. Is S a subspace of V , the set of all 3×2 matrices? Justify your

answer.

2. Which of the following are subspaces of R2[x], the set of polynomials
with degree less than or equal to 2? Justify your answer.

a. All polynomials a2x
2 + a1x + a0, where a1 = 0

b. All polynomials a2x
2 + a1x + a0, where a1 < 0

c. All polynomials a2x
2 + a1x + a0, where a0 + a1 + a2 = 0

3. Determine whether v is in L{(1, 2,−1), (3, 0,−4)}.
a. v = (4,−4,−6)
b. v = (5, 3,−4)
c. v = (7, 2,−9)

4. Find a generating system for each vector space.

a. Matrices in the form

(
a b

2a a − b

)

b. The kernel of

⎛
⎝1 −1 4

3 1 8

0 3 −3

⎞
⎠

c. The column space of

⎛
⎝1 −1 4

3 1 8

0 3 −3

⎞
⎠

5. Determine whether the set is a basis for the given vector space.
Justify your answer.

a. {(1,−2, 3), (2, 0, 5), (3,−4, 1)} for R3

b. {3 − x, 1 + x2} for R2[x]

c.

⎧⎨
⎩
⎛
⎝1

3

0

⎞
⎠ ,

⎛
⎝−1

1

3

⎞
⎠ ,

⎛
⎝ 4

8

−3

⎞
⎠
⎫⎬
⎭ for the column space of

⎛
⎝1 −1 4

3 1 8

0 3 −3

⎞
⎠

6. Let V = L{(1,−2, 3), (2, 0, 5), (0,−4, 1)}.
a. Find a basis for V .
b. What is the dimension of V ?

7. Consider the basis B = {(1, 0, 1), (2, 1, 1), (0, 3, 2)} for R3 and let
v = (2,−1, 3). Find vB.

8. Blow up
{
x3 + x, x2 − 3

}
to a basis for R3[x].
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9. A generating system for vector space V is the column space of

N =

⎛
⎝1 −1 2

2 1 1

0 −1 1

⎞
⎠. Starting with the columns, sift out a basis for

V .

10. Let M =

⎛
⎜⎜⎝

2 −1 3 1

1 −1 4 2

0 1 −5 −3

0 2 −2 2

⎞
⎟⎟⎠.

a. Determine the rank of M .
b. Determine the dimension of the kernel of M .
c. Find a basis for the kernel of M .

11. For each mapping F : R2 → R2[x], determine whether F is linear.

a. F (a, b) = ax + bx2

b. F (a, b) = 1 + ax + bx2

12. Suppose T : R2 → R3 is defined by

T (1, 0) = (1, 1, 2)

T (1, 1) = (2, 0, 3)

Let M = MB′

B (T ), where

B = {(1, 0), (1, 1)} and B
′ = {(1, 1, 0), (0, 1, 0), (0, 1, 1)}

a. Find M .
b. Use M to find T (3, 2).

13. Suppose

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and B
′ = {(1, 1, 1), (1, 1, 0), (−1, 0, 1)}.

And, suppose that a linear transformation T is represented by the
matrix ⎛

⎝2 0 0

0 −1 0

0 0 1

⎞
⎠

written relative to the standard basis B.

a. Find the change of basis matrix from B to B′.
b. Find the change of basis matrix from B′ to B.
c. Describe the transformation T relative to the standard basis

B.
d. Find a matrix that represents this transformation relative to

the nonstandard basis B′.

14. Let M =

(
4 −1

1 2

)
and N =

(
17 −49

4 −11

)
. Find a matrix P that

shows that M and N are similar.

15. Find the determinant of A =

⎛
⎝2 −1 3

2 1 4

0 1 −3

⎞
⎠.
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16. Let M =

⎛
⎝1 2 −3

x 1 −4

0 1 x

⎞
⎠.

For what values of x will the columns of M be linearly dependent?

17. Let P1 = (1,−1, 0,−2), P2 = (0,−3, 1, 1), and P3 = (2,−1,−1, 0).
Find a vector X that is orthogonal to all three vectors.

18. Use Cramer’s Rule to solve(
2 −1

4 3

)(
x

y

)
=

(
−4

2

)

19. What is the volume of the parallelepiped spanned by the vectors
P1 = (1, 3, 0, 2), P2 = (0,−1, 1, 2), P3 = (2, 1, 0, 0), and P4 =
(1, 0,−2, 3)?

For problems 20–21, consider the matrix

M =

⎛
⎝−1 2 3

0 −11 −15

0 6 8

⎞
⎠

20. a. Find all eigenvalues and eigenvectors for M .
b. For each eigenvalue, describe the eigenspace and determine its

algebraic multiplicity and geometric multiplicity.

21. a. Is M diagonalizable? Explain.
b. If M is diagonalizable, find the diagonalizing matrix P and use

P to diagonalize M .
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Multiple Choice

1. Let V = R2. Which of the following is a subspace of V ?

A. The set of vectors of the form (a, a + 1)
B. The set of vectors of the form (a, 3a)
C. The set of vectors (a, b), where a > b
D. The set of vectors (a, b), where a + b = 1

2. Which vector is in the linear span of v1 = (2,−3, 1) and v2 =
(1,−1, 3)?

A. (3,−4,−2)
B. (3,−2, 2)
C. (4,−5, 7)
D. (4,−1,−5)

3. Let V be the set of all matrices of the form

⎛
⎜⎜⎝

a b

0 c

a + c 0

0 a

⎞
⎟⎟⎠. What is

the dimension of the vector space V ?

A. 2 B. 3 C. 4 D. 6

4. What is the coordinate vector for v =

(
2 −1

1 3

)
with respect to

base B =

{(
1 0

1 1

)
,

(
1 0

1 0

)
,

(
0 0

1 0

)
,

(
0 1

1 0

)}
?

A.

(
−2 2

1 3

)
B.

(
1 1

−1 3

)
C.

(
2 1

−1 1

)
D.

(
3 −1

0 −1

)

5. Let M =
{
x2 + 1, 2x

}
. What additional vector will blow up M to

a basis for R2[x]?

A. x2 + x
B. x2 + x + 1
C. 2x2 + x + 2
D. 2x2 + 2

6. Let M =

⎛
⎜⎜⎝

1 2 −1 5

0 −1 3 −2

2 1 1 4

0 −3 3 −6

⎞
⎟⎟⎠. What is the rank of matrix M?

A. 1 B. 2 C. 3 D. 4

7. Which mapping F : R3 → R2 is linear?

A. F (x, y, z) = (x + y, z + 1)
B. F (x, y, z) = (x + y, z)
C. F (x, y, z) = (x2, y + z)
D. F (x, y, z) = (x + y,

√
z)
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Cumulative Test

8. Suppose B = {(1, 0), (0, 1)} and B′ = {(1,−3), (−1, 4)}. Which is
the change of basis matrix from B to B′?

A.

(
4
7

1
7

− 3
7

1
7

)
B.

(
4
7 − 3

7
1
7

1
7

)
C.

(
4 1

3 1

)
D.

(
4 3

1 1

)

9. Suppose that M =

⎛
⎝a b c

d e f

g h i

⎞
⎠ and that det(M) = 8. What is the

determinant of N =

⎛
⎝b 2a 3c

e 2d 3f

h 2g 3i

⎞
⎠?

A. −48 B. −40 C. 40 D. 48

10. Suppose that A is an n × n matrix and det(A) = 1. Which of the
following statements is true?

A. ker(A) �= O
B. rref(A) �= I
C. The rows of A are linearly independent.
D. A−1 does not exist.

11. In R4, let P1 = (0, 0, 2, 0), P2 = (−1, 1, 3,−1), P3 = (2,−1, 1, 0), and
P4 = (2, 1, 0, 0). What is the volume of the parallelepiped spanned
by these vectors?

A. 1 B. 8 C. 9 D. 24

12. Let M =

(
−1 2

4 −3

)
. Which vector is an eigenvector for M corre-

sponding to the eigenvalue λ = 1?

A. (1,−1) B. (1, 1) C. (2,−4) D. (2, 4)

Open Response

13. Consider the set V of 2 × 2 matrices, and define the operations of
addition and scalar multiplication as usual.

a. Verify that V is closed under addition and scalar multiplica-
tion.

b. If V were the set of 2× 2 matrices of the form

(
a a

b 0

)
, would

V be closed under addition and scalar multiplication? Explain.

14. Find a generating system for each vector space.

a. Ordered triples (x, y, z) with x + y = 0

b. Matrices of the form

⎛
⎝ a b

c −c

a + c b − c

⎞
⎠
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Cumulative Test

15. Sift out a basis for the column space of N =

⎛
⎝ 1 −1 2

3 2 4

−1 5 −7

⎞
⎠,

starting with the columns.

16. The linear map D : R2 → R3 with respect to the standard bases is
defined by D(a, b) = (2a, a + b, 2a + b).

a. Find D(3, 5).
b. Find a matrix M , so that for any vector v in R2, MvB =

D(v)
B′ .

c. Use M to find D(3, 5).

17. Show that M =

(
3 2

1 −1

)
and N =

(
−5 3

−10 7

)
are similar matrices.

18. Let A =

⎛
⎝−1 2 3

1 −1 5

0 3 2

⎞
⎠.

a. Determine the minors M31, M32, and M33.
b. Use the results of part a to find the determinant of A.

19. Use Cramer’s Rule to solve⎛
⎝2 −1 1

4 1 −2

0 3 −3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 0

−10

−6

⎞
⎠

20. Find all eigenvalues and eigenvectors for A =

⎛
⎝1 −3 1

0 −1 4

0 0 3

⎞
⎠.

21. Suppose M =

(
18 −40

8 −18

)
and P =

(
−5 2

−2 1

)
.

a. Use the matrix P to diagonalize the matrix M .
b. Use the diagonalization to compute M7.
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Index

absorbing Markov chain, 316, 320
absorbing state, 287, 316, 320
algebraic multiplicity, 529
alternating determinants, 238
angle between two vectors, 10, 73
angle of rotation, 223, 224, 225
angle-sum identities, 234
attractor, 309
augmented matrices, 114
axis of rotation, 223

basic rules
of cross product, 79, 500
of arithmetic with points, 14, 16, 157,

343, 377
of determinants, 238, 458, 471
of dot product, 56, 65
of generalized cross product, 502
of matrix algebra, 156, 215, 343, 377

basis for a vector space, 80, 369, 394,
411

bijective, 411
block diagonal matrix, 197
block triangular matrix, 197
Blow-Up Theorem, 396

Cauchy-Schwarz Inequality, 72, 74, 83
Cayley-Hamilton Theorem, 534
center of rotation, 223
change of basis matrix, 424
Change of Basis Theorem, 424
Change of Representation Theorem, 425
characteristic equation, 513
characteristic polynomial, 513, 514, 529,

534
characteristic vector, see eigenvector
closed, 342, 343, 353, 355
coefficient matrix, 114
column rank, 400, 403
column space, 358, 361
component, 65, 71
constructive proof, 396
coordinate, 8, 12
coordinate equation, 4, 88

of a plane, 31, 91
coordinate vector, 372, 375, 394, 415,

422

Cramer’s Rule, 496, 499
cross product, 54, 78, 236, 454, 466, 494,

500
generalized, 501

determinant, 78, 174, 237, 451, 454,
466, 477

product rule for, 243, 483
diagonal matrix, 160, 473, 525
diagonalizable matrix, 525, 529, 532
dimension, 376, 400, 402, 403, 405
direction vector, 90, 92, 94
distance between two points, 38, 39, 51
dot product, 52, 65, 71, 113, 166, 171,

454, 456
dynamical system, 535

echelon form, 119, 132, 137, 138, 190,
218, 251, 252, 311, 394, 401, 479,
482

eigenspace, 518, 530
eigenvalue, 435, 510
eigenvector, 197, 262, 331, 435, 510,

510, 526, 527
elementary row matrix, 218, 479
elementary row operations, 116, 132,

400, 477–479
equal

matrices, 155
points, 12

equivalence
of matrices, 114
of systems, 114
of vectors, 20, 22

Euclidean space, 12
even-odd flip test, 468
Extension by Linearity Theorem, 411
extension program, 22, 38, 53, 60, 70,

90, 93, 94, 96, 155, 239, 248, 454,
491, 502

faithful representation, 374, 411
Fatter Than Tall Theorem, 258, 369
Fibonacci sequence, 351
finite dimensional, 369
fixed lines, 508
fixed vector, 221, 263
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Index

flip, see transposition
function, 178, 213, 225
function composition, 249, 260, 261

Gaussian elimination, 117, 189
generating system, 363, 393, 404
geometric multiplicity, 530
Google, 329
graph, 8

head minus tail test, 21
head of a vector, 19
homogeneous system, 122, 136, 185, 258
hyperplane, 94

equation of, 91, 95

identity mapping, 419, 422
identity matrix, 133, 138, 160, 179, 190,

302, 422, 458
image, 250

of a matrix, 247, 253, 257, 260
of a vector, 247

infinite dimensional, 369
initial point, 19, 94, 95
invariant subspace, 517
invariant vector space, 517
inverse, 355, 433
invertible matrix, 179, 186, 433, 481,

516, 525

kernel, 136, 185, 185, 252, 256, 257,
260, 302, 401–403, 405, 429

Lagrange Identity, 79, 83
lattice point, 61
Law of Cosines, 69, 74
length, 36, 51, 59, 69, 71
line, 86, 90, 259

equation of, 88
linear combination, 17, 28, 31, 96, 125,

127, 130, 177, 256, 258, 260, 300,
359, 361, 362, 395, 411, 512, 528

linear equation, see coordinate equation
linear map, 213, 225, 239, 243, 248, 257,

403, 409, 411
linear span, 139, 359, 400
linear transformation, 213, 215, 223,

225–227, 409, 424, 510
linearly dependent, 131, 258, 369, 462
linearly independent, 131, 139, 191,

369, 375, 394, 395, 404, 405, 489,
496, 512, 526, 527

M -cyclic subspace generated by Q, 523
magnitude, see length
Markov chain, 284, 306, 316, 536
Markov chains, 524
mathematical induction, 473
matrix, 114, 151, 154, 291

entry, 154
equality of, 155
inverse, 179, 217

matrix for a linear map with respect to
two bases, 416

matrix multiplication, 167, 176, 229,
249, 261, 298–300

properties, 178
Matrix Power Formula, 301
matrix product, 167, 482
maximal linearly independent set, 396
midpoint, 34
minors, 454
multiplication

of a matrix by a scalar, 156
of a point by a scalar, 13, 14, 25, 26
of a vector by a scalar, 24, 27, 37, 54,

64, 508
of two matrices, 167, 176

mutually orthogonal, 53

n-dimensional Euclidean space, 12
node, 290
nonsingular matrix, 179
normal, 94, 95

one-to-one function, 258
ordered n-tuple, 12
orthogonal, 53

matrix, 221, 228
vectors, 51, 53, 54, 59, 64, 76, 136,

454, 466, 492

PageRank, 330
parallel, 26, 87
parallelepiped, 472, 489, 492

volume spanned by n vectors, 502,
504

volume spanned by three vectors, 491,
502

parallelogram, 13, 30, 489
area spanned by two vectors, 82, 236,

237, 240, 243, 491, 502
Parallelogram Rule, 13, 24, 30
parallelotope, 491
parameter, 90, 94
parametric equation, see vector equation
Pick-Apart Theorem, 178, 226, 240, 243,

300, 308, 317, 404, 412, 531
plane, 93, 489
point, 12, 19

equality of, 12
point-tester, 9, 31, 86
polynomial, 345, 354
preimage, see pullback
probability, 283, 284, 290, 292
probability vector, 297, 305, 537
projection, 65, 69, 71, 259, 410, 490
pullback, 250, 257, 259
Pythagorean Theorem, 35, 51, 59, 60

quadratic form, 532

random process, 282, 535
rank, 405, 405
real vector space, 343
regular Markov chain, 306, 317, 330
representation, 374
rotation, 223, 410
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rotation matrix, 228, 426, 515, 532
row rank, 400
row space, 361, 400
row-reduced echelon form, see echelon

form

scalar, 13
scalar multiple

of a vector, 343
of a matrix, 156, 162
of a point, 25, 225
of a vector, 409

scalar triple product, 84
sign matrix, 453, 456, 468
similar matrices, 184, 433, 516
singular matrix, 179
skew, 134
slope, 20, 51
spanned, 29
square matrix, 139, 160, 527
standard basis vectors, 80, 308, 415
steady state, 301, 305, 318, 336
structure preserving, 373, 411
submatrix, 322
subspace, 354, 517
subtraction of points, 15, 21, 26, 38
sum of matrices, 156
sum of points, 12, 14, 26
system of equations, 116
system of equations, 17, 55, 114, 115,

118, 120, 127, 137, 185, 190, 256,
258, 492, 499

tail of a vector, 19
terminal point, 19
TFAE Theorem, 191, 371, 377, 405, 485,

495, 497
trace, 174, 438
transient state, 316
transition matrix, 305
transition graph, 290
transition matrix, 291, 299, 316, 320,

330, 537
transition probability, 290
translation, 23, 188
transpose, 473
transpose of a matrix, 157, 161
transposition, 449, 468
Triangle Inequality, 37, 73
triangular matrix, 161, 197, 474, 478
trivial solution, 130

unit vector, 37, 300

Vandermonde determinant, 476
vector, 19, 20, 297, 343, 359

class, 23
equivalence, 20, 22
head, 19
orthogonality, 51, 53, 76
tail, 19

vector equation, 88
of a line, 27, 90
of a plane, 31, 94

vector space, 343, 353, 409

well-defined, 458, 466

x-axis, 8, 431

y-axis, 8, 431

zero matrix, 156
zero vector, 23, 137, 185, 343, 355
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