OXFORD HANDBOOK OF UROLOGY

John Reynard | Simon Brewster | Suzanne Biers
Naomi Neal

Offers practical, current advice on diagnosis, treatment, and management

Contains the latest guidelines from internationally recognised organisations, including the EAU and BAUS

Features new and expanded topics, including cancer recommendations and urological controversies
Published and forthcoming Oxford Handbooks

Oxford Handbook for the Foundation Programme 3e
Oxford Handbook of Acute Medicine 3e
Oxford Handbook of Anaesthesia 2e
Oxford Handbook of Applied Dental Sciences
Oxford Handbook of Cardiology
Oxford Handbook of Clinical and Laboratory Investigation 3e
Oxford Handbook of Clinical Dentistry 4e
Oxford Handbook of Clinical Diagnosis 2e
Oxford Handbook of Clinical Examination and Practical Skills
Oxford Handbook of Clinical Haematology 3e
Oxford Handbook of Clinical Immunology and Allergy 2e
Oxford Handbook of Clinical Medicine—Mini Edition 8e
Oxford Handbook of Clinical Medicine 8e
Oxford Handbook of Clinical Pharmacy
Oxford Handbook of Clinical Rehabilitation 2e
Oxford Handbook of Clinical Specialties 8e
Oxford Handbook of Clinical Surgery 3e
Oxford Handbook of Complementary Medicine
Oxford Handbook of Critical Care 3e
Oxford Handbook of Dental Patient Care 2e
Oxford Handbook of Dialysis 3e
Oxford Handbook of Emergency Medicine 4e
Oxford Handbook of Endocrinology and Diabetes 2e
Oxford Handbook of ENT and Head and Neck Surgery
Oxford Handbook of Expedition and Wilderness Medicine
Oxford Handbook of Gastroenterology & Hepatology
Oxford Handbook of General Practice 3e
Oxford Handbook of Genitourinary Medicine, HIV, and Sexual Health 2e
Oxford Handbook of Geriatric Medicine
Oxford Handbook of Infectious Diseases and Microbiology
Oxford Handbook of Key Clinical Evidence
Oxford Handbook of Medical Sciences
Oxford Handbook of Nephrology and Hypertension
Oxford Handbook of Neurology
Oxford Handbook of Nutrition and Dietetics
Oxford Handbook of Obstetrics and Gynaecology 2e
Oxford Handbook of Occupational Health
Oxford Handbook of Oncology 3e
Oxford Handbook of Ophthalmology
Oxford Handbook of Paediatrics
Oxford Handbook of Palliative Care 2e
Oxford Handbook of Practical Drug Therapy 2e
Oxford Handbook of Pre-Hospital Care
Oxford Handbook of Psychiatry 2e
Oxford Handbook of Public Health Practice 2e
Oxford Handbook of Reproductive Medicine & Family Planning
Oxford Handbook of Respiratory Medicine 2e
Oxford Handbook of Rheumatology 3e
Oxford Handbook of Sport and Exercise Medicine
Oxford Handbook of Tropical Medicine 3e
Oxford Handbook of Urology 2e
John Reynard and I were invited to write the Oxford Handbook of Urology to bolster the already comprehensive collection of these familiar handbooks by Oxford University Press in 2003. We had been appointed as consultants in Oxford in 1998, both enthusiastic and active in teaching, research, and publication, having already produced successful urology textbooks, already proud co-authors of a book called Urology: A Handbook for Medical Students, published in 2001. So we were delighted to accept the invitation. Suzanne Biers, our talented junior trainee, joined us as co-author, initially providing a perspective first as a senior house officer, then as a specialist registrar, and ultimately as a Cambridge consultant by the third edition.

The first edition was published in 2006, the second in 2009, and the third in 2013. During this time, the book became the go-to text for urology surgical trainees studying for the Royal College of Surgeons FRCS (Urology) examination. The review of the third edition in European Urology Today, published in September 2014, by Prof P Meria (Paris) concluded: ‘This pocketbook is undoubtedly an outstanding tool for everyone and we recommend it to all urologists regardless of their level of practice’. Judging by reviews posted on Amazon.co.uk, the OHU is also popular with general practitioners, medical students, other groups of junior doctors and graduate nurses. The three editions have been translated into three languages and have, between them, sold over 18,000 hard copies and 800 digital versions internationally. The third edition was ‘Highly Commended’ in the surgical specialties category of the 2014 British Medical Association Medical Book Awards. Urology is a rapidly developing sub-speciality, both in terms of surgical technology and medical therapeutic advances, so there has been no shortage of topics to update in each edition, including this latest which we are proud to present now. For the fourth edition, we are delighted to be joined by Naomi Neal, another of our excellent senior registrars who recently passed the FRCS (Urology), to share the work and bring fresh perspectives.

We sincerely hope you enjoy the book, that it might inspire you to become a urologist or develop urology within your career, to help you to pass an examination, to develop sub-specialist interest and knowledge in urology, and most importantly, to help you confidently manage patients under your care. We welcome any feedback in order to improve on each revision and ensure it provides everything you need in a comprehensive quick-reference handbook. We wish you all the best in your future endeavours and hope you enjoy, and are inspired by, urology as much as we have been.

Simon Brewster,
on behalf of the authors,
October 2017
The authors would like to express their gratitude to Professor Andrew Protheroe, Medical Oncologist at the Churchill Hospital in Oxford, Professor Nick Watkin, Consultant in Andrology and Genito-urethral Reconstruction at St George’s Hospital in London, Mr Dan Wood, Consultant in Adolescent and Reconstructive Urology at University College London Hospitals, and Miss Helen Bolton, Senior Fellow in Obstetrics and Gynaecology at Addenbrooke’s Hospital in Cambridge, who all gave freely of their time and expertise.
Contents

Symbols and abbreviations viii

1 General principles of management of patients 1
2 Significance and preliminary investigation of urological symptoms and signs 7
3 Urological investigations 37
4 Bladder outlet obstruction 71
5 Urinary incontinence and female urology 129
6 Infections and inflammatory conditions 193
7 Urological neoplasia 252
8 Miscellaneous urological diseases of the kidney 407
9 Stone disease 437
10 Upper tract obstruction, loin pain, hydronephrosis 501
11 Trauma to the urinary tract and other urological emergencies 515
12 Infertility 555
13 Sexual health 581
14 Neuropathic bladder 621
15 Urological problems in pregnancy 657
16 Paediatric urology 669
17 Urological surgery and equipment 731
18 Basic science and renal transplant 827
19 Urological eponyms 847

Index 851
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>approximately</td>
</tr>
<tr>
<td>®</td>
<td>website</td>
</tr>
<tr>
<td>↳</td>
<td>cross-reference</td>
</tr>
<tr>
<td>↑</td>
<td>increased</td>
</tr>
<tr>
<td>↓</td>
<td>decreased</td>
</tr>
<tr>
<td>→</td>
<td>leads to</td>
</tr>
<tr>
<td>♀</td>
<td>female</td>
</tr>
<tr>
<td>♂</td>
<td>male</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>±</td>
<td>plus or minus</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
<tr>
<td>≥</td>
<td>equal to or greater than</td>
</tr>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>κ</td>
<td>kappa</td>
</tr>
<tr>
<td>π</td>
<td>pi</td>
</tr>
<tr>
<td>®</td>
<td>registered trademark</td>
</tr>
<tr>
<td>™</td>
<td>trademark</td>
</tr>
<tr>
<td>A&E</td>
<td>accident and emergency</td>
</tr>
<tr>
<td>AAA</td>
<td>abdominal aortic aneurysm</td>
</tr>
<tr>
<td>AAOS</td>
<td>American Academy of Orthopaedic Surgeons</td>
</tr>
<tr>
<td>AAST</td>
<td>American Association for the Surgery of Trauma</td>
</tr>
<tr>
<td>ABG</td>
<td>arterial blood gas</td>
</tr>
<tr>
<td>4-ABP</td>
<td>4-aminobiphenyl</td>
</tr>
<tr>
<td>ACCP</td>
<td>American College of Chest Physicians</td>
</tr>
<tr>
<td>ACE</td>
<td>angiotensin-converting enzyme</td>
</tr>
<tr>
<td>ACh</td>
<td>acetylcholine</td>
</tr>
<tr>
<td>ACR</td>
<td>albumin:creatinine ratio; acute cellular rejection</td>
</tr>
<tr>
<td>ACTH</td>
<td>adrenocorticotropic hormone</td>
</tr>
<tr>
<td>ADAM</td>
<td>Androgen Deficiency in the Aging Male (questionnaire)</td>
</tr>
<tr>
<td>ADH</td>
<td>antidiuretic hormone</td>
</tr>
<tr>
<td>ADPKD</td>
<td>autosomal dominant polycystic kidney disease</td>
</tr>
<tr>
<td>ADT</td>
<td>androgen deprivation therapy</td>
</tr>
<tr>
<td>AF</td>
<td>atrial fibrillation</td>
</tr>
<tr>
<td>AFP</td>
<td>alpha-fetoprotein</td>
</tr>
<tr>
<td>AFS</td>
<td>autologous fascial sling</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>AHR</td>
<td>acute humoral rejection</td>
</tr>
<tr>
<td>AID</td>
<td>artificial insemination by donor</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immune deficiency syndrome</td>
</tr>
<tr>
<td>AK-TEDS</td>
<td>above-knee thromboembolic stocking</td>
</tr>
<tr>
<td>ALPP</td>
<td>abdominal leak point pressure</td>
</tr>
<tr>
<td>AMACR</td>
<td>alpha-methylacyl CoA racemase</td>
</tr>
<tr>
<td>AML</td>
<td>angiomylipoma</td>
</tr>
<tr>
<td>ANP</td>
<td>atrial natriuretic peptide</td>
</tr>
<tr>
<td>a-NVH</td>
<td>asymptomatic non-visible haematuria</td>
</tr>
<tr>
<td>APD</td>
<td>automated peritoneal dialysis</td>
</tr>
<tr>
<td>APF</td>
<td>antiproliferative factor</td>
</tr>
<tr>
<td>APTT</td>
<td>activated partial thromboplastin time</td>
</tr>
<tr>
<td>5AR</td>
<td>5α-reductase</td>
</tr>
<tr>
<td>ARCD</td>
<td>acquired renal cystic disease</td>
</tr>
<tr>
<td>5ARI</td>
<td>5α-reductase inhibitor</td>
</tr>
<tr>
<td>ARPKD</td>
<td>autosomal recessive polycystic kidney disease</td>
</tr>
<tr>
<td>ART</td>
<td>assisted reproductive techniques</td>
</tr>
<tr>
<td>AS</td>
<td>active surveillance</td>
</tr>
<tr>
<td>ASAP</td>
<td>atypical small acinar proliferation</td>
</tr>
<tr>
<td>ASB</td>
<td>asymptomatic bacteriuria</td>
</tr>
<tr>
<td>ASTRO</td>
<td>American Society of Therapeutic Radiation Oncologists</td>
</tr>
<tr>
<td>ATFP</td>
<td>arcus tendineus fascia pelvis</td>
</tr>
<tr>
<td>ATG</td>
<td>antithymocyte globulin</td>
</tr>
<tr>
<td>ATN</td>
<td>acute tubular necrosis</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AUA</td>
<td>American Urological Association</td>
</tr>
<tr>
<td>AUA-SI</td>
<td>American Urological Association Symptom Index</td>
</tr>
<tr>
<td>AUR</td>
<td>acute urinary retention</td>
</tr>
<tr>
<td>AUS</td>
<td>artificial urinary sphincter</td>
</tr>
<tr>
<td>AVM</td>
<td>arteriovenous malformation</td>
</tr>
<tr>
<td>AZF</td>
<td>azoospermic factor</td>
</tr>
<tr>
<td>BAUS</td>
<td>British Association of Urological Surgeons</td>
</tr>
<tr>
<td>BCG</td>
<td>bacille Calmette–Guérin</td>
</tr>
<tr>
<td>BCR</td>
<td>bulbocavernosus reflex; biochemical recurrence</td>
</tr>
<tr>
<td>bd</td>
<td>bis die (twice daily)</td>
</tr>
<tr>
<td>BDFS</td>
<td>biochemical disease-free survival</td>
</tr>
<tr>
<td>bFGF</td>
<td>basic fibroblast growth factor</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BNF</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>BNI</td>
<td>bladder neck incision</td>
</tr>
<tr>
<td>SYMBOLS AND ABBREVIATIONS</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>BOO</td>
<td>bladder outlet obstruction</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BPE</td>
<td>benign prostatic enlargement</td>
</tr>
<tr>
<td>bPFS</td>
<td>biochemical progression-free survival</td>
</tr>
<tr>
<td>BPH</td>
<td>benign prostatic hyperplasia</td>
</tr>
<tr>
<td>BPLND</td>
<td>bilateral pelvic lymphadenectomy</td>
</tr>
<tr>
<td>BPO</td>
<td>benign prostatic obstruction</td>
</tr>
<tr>
<td>BPS</td>
<td>bladder pain syndrome</td>
</tr>
<tr>
<td>BPSA</td>
<td>benign prostate-specific antigen</td>
</tr>
<tr>
<td>BRFs</td>
<td>biochemical recurrence-free survival</td>
</tr>
<tr>
<td>BSE</td>
<td>bovine spongiform encephalopathy</td>
</tr>
<tr>
<td>BT</td>
<td>brachytherapy</td>
</tr>
<tr>
<td>BTA</td>
<td>bladder tumour antigen</td>
</tr>
<tr>
<td>BTX</td>
<td>botulinum toxin</td>
</tr>
<tr>
<td>BTX-A</td>
<td>botulinum toxin-A</td>
</tr>
<tr>
<td>BUO</td>
<td>bilateral ureteric obstruction</td>
</tr>
<tr>
<td>BXO</td>
<td>balanitis xerotica obliterans</td>
</tr>
<tr>
<td>CAA</td>
<td>Civil Aviation Authority</td>
</tr>
<tr>
<td>CABG</td>
<td>coronary artery bypass graft</td>
</tr>
<tr>
<td>CAH</td>
<td>congenital adrenal hyperplasia</td>
</tr>
<tr>
<td>CAIS</td>
<td>complete androgen insensitivity syndrome</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CAPD</td>
<td>continuous ambulatory peritoneal dialysis</td>
</tr>
<tr>
<td>CAUTI</td>
<td>catheter-associated urinary tract infection</td>
</tr>
<tr>
<td>CBAVD</td>
<td>complete bilateral absence of the vas deferens</td>
</tr>
<tr>
<td>CD</td>
<td>collecting duct</td>
</tr>
<tr>
<td>CEULDCT</td>
<td>contrast-enhanced ultra-low-dose computerized tomography</td>
</tr>
<tr>
<td>CF</td>
<td>cystic fibrosis</td>
</tr>
<tr>
<td>CFTR</td>
<td>cystic fibrosis transmembrane conductance regulator</td>
</tr>
<tr>
<td>CFU</td>
<td>colony-forming unit</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>Ch</td>
<td>Charrière</td>
</tr>
<tr>
<td>chRCC</td>
<td>chromophobe renal cell carcinoma</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CIRF</td>
<td>clinically insignificant residual fragment</td>
</tr>
<tr>
<td>CIS</td>
<td>carcinoma in situ</td>
</tr>
<tr>
<td>CISC</td>
<td>clean intermittent self-catheterization</td>
</tr>
<tr>
<td>CJD</td>
<td>Creutzfeldt–Jakob disease</td>
</tr>
<tr>
<td>CKD</td>
<td>chronic kidney disease</td>
</tr>
<tr>
<td>CKD-EPI</td>
<td>Chronic Kidney Disease Epidemiology Collaboration</td>
</tr>
<tr>
<td>Symbol/Abbreviation</td>
<td>Definition/Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>cmH₂O</td>
<td>centimetre of water</td>
</tr>
<tr>
<td>CMV</td>
<td>cytomegalovirus</td>
</tr>
<tr>
<td>CNI</td>
<td>calcineurin inhibitor</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>COPUM</td>
<td>congenital obstructive posterior urethral membrane</td>
</tr>
<tr>
<td>CPA</td>
<td>cyproterone acetate</td>
</tr>
<tr>
<td>CPPS</td>
<td>chronic pelvic pain syndrome</td>
</tr>
<tr>
<td>CPRE</td>
<td>complete primary repair of bladder extrophy</td>
</tr>
<tr>
<td>cRCC</td>
<td>clear renal cell carcinoma</td>
</tr>
<tr>
<td>CRF</td>
<td>chronic renal failure</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CRPC</td>
<td>castrate-resistant prostate cancer</td>
</tr>
<tr>
<td>CSS</td>
<td>cancer-specific survival</td>
</tr>
<tr>
<td>CT</td>
<td>computerized tomography; collecting tubule</td>
</tr>
<tr>
<td>CT-KUB</td>
<td>computerized tomography of the kidneys, ureters, and bladder</td>
</tr>
<tr>
<td>CTPA</td>
<td>computerized tomography pulmonary angiography</td>
</tr>
<tr>
<td>CTU</td>
<td>computerized tomography urography</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>CVP</td>
<td>central venous pressure</td>
</tr>
<tr>
<td>CXR</td>
<td>chest X-ray</td>
</tr>
<tr>
<td>Da</td>
<td>dalton</td>
</tr>
<tr>
<td>DCN</td>
<td>dorsal clitoral nerve</td>
</tr>
<tr>
<td>DCT</td>
<td>distal convoluted tubule</td>
</tr>
<tr>
<td>DE</td>
<td>delayed ejaculation</td>
</tr>
<tr>
<td>DESD</td>
<td>detrusor–external sphincter dyssynergia</td>
</tr>
<tr>
<td>DEXA</td>
<td>dual-energy X-ray absorptiometry (scan)</td>
</tr>
<tr>
<td>DFS</td>
<td>disease-free survival</td>
</tr>
<tr>
<td>DGI</td>
<td>disseminated gonococcal infection</td>
</tr>
<tr>
<td>DH</td>
<td>detrusor hyperreflexia</td>
</tr>
<tr>
<td>DHT</td>
<td>dihydrotestosterone</td>
</tr>
<tr>
<td>DI</td>
<td>diabetes insipidus</td>
</tr>
<tr>
<td>DIC</td>
<td>disseminated intravascular coagulation</td>
</tr>
<tr>
<td>dL</td>
<td>decilitre</td>
</tr>
<tr>
<td>DMSA</td>
<td>dimercaptosuccinic acid (renogram)</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPN</td>
<td>dorsal penile nerve</td>
</tr>
<tr>
<td>DRE</td>
<td>digital rectal examination</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>DSD</td>
<td>detrusor sphincter dyssynergia; disorders of sex development</td>
</tr>
<tr>
<td>DSLNB</td>
<td>dynamic sentinel lymph node biopsy</td>
</tr>
<tr>
<td>DVLA</td>
<td>Driver and Vehicle Licensing Agency</td>
</tr>
<tr>
<td>DVT</td>
<td>deep vein thrombosis</td>
</tr>
<tr>
<td>EAU</td>
<td>European Association of Urology</td>
</tr>
<tr>
<td>EBC</td>
<td>estimated bladder capacity</td>
</tr>
<tr>
<td>EBRT</td>
<td>external beam radiotherapy</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein–Barr virus</td>
</tr>
<tr>
<td>ECF</td>
<td>extracellular fluid</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>ED</td>
<td>erectile dysfunction</td>
</tr>
<tr>
<td>EDO</td>
<td>ejaculatory duct obstruction</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra-acetic acid</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>eGFR</td>
<td>estimated glomerular filtration rate</td>
</tr>
<tr>
<td>EGFR</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>EHL</td>
<td>electrohydraulic lithotripsy</td>
</tr>
<tr>
<td>EIA</td>
<td>enzyme immunoassay</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EMDA</td>
<td>electromotive drug administration</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyography</td>
</tr>
<tr>
<td>EMU</td>
<td>early morning urine</td>
</tr>
<tr>
<td>EN2</td>
<td>Engrailed-2</td>
</tr>
<tr>
<td>ENT</td>
<td>ear, nose, and throat</td>
</tr>
<tr>
<td>EPLND</td>
<td>extended pelvic lymphadenectomy</td>
</tr>
<tr>
<td>EPN</td>
<td>emphysematous pyelonephritis</td>
</tr>
<tr>
<td>EORTC</td>
<td>European Organization for Research and Treatment of Cancer</td>
</tr>
<tr>
<td>EPS</td>
<td>expressed prostatic secretions</td>
</tr>
<tr>
<td>ER</td>
<td>extended release</td>
</tr>
<tr>
<td>ESBL</td>
<td>extended-spectrum β-lactamase</td>
</tr>
<tr>
<td>ESR</td>
<td>erythrocyte sedimentation rate</td>
</tr>
<tr>
<td>ESSIC</td>
<td>European Society for the Study of Bladder Pain Syndrome/Interstitial Cystitis</td>
</tr>
<tr>
<td>ESWL</td>
<td>extracorporeal shock wave therapy</td>
</tr>
<tr>
<td>F</td>
<td>French</td>
</tr>
<tr>
<td>FBC</td>
<td>full blood count</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FDG</td>
<td>fluoro-2-deoxy-D-glucose</td>
</tr>
<tr>
<td>FGSI</td>
<td>Fournier’s gangrene severity index</td>
</tr>
<tr>
<td>FISH</td>
<td>fluorescence in situ hybridization</td>
</tr>
<tr>
<td>FNA</td>
<td>fine-needle aspiration</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle-stimulating hormone</td>
</tr>
<tr>
<td>F:T</td>
<td>free-to-total (ratio)</td>
</tr>
<tr>
<td>SFU</td>
<td>5-fluorouracil</td>
</tr>
<tr>
<td>FVC</td>
<td>frequency–volume chart</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>G</td>
<td>gauge</td>
</tr>
<tr>
<td>GA</td>
<td>general anaesthetic</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GAG</td>
<td>glycosaminoglycan</td>
</tr>
<tr>
<td>GCT</td>
<td>germ cell tumour</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>GIFT</td>
<td>gamete intra-Fallopian transfer</td>
</tr>
<tr>
<td>GnRH</td>
<td>gonadotrophin-releasing hormone</td>
</tr>
<tr>
<td>GP</td>
<td>general practitioner</td>
</tr>
<tr>
<td>GSTP1</td>
<td>glutathione-S-transferase P1</td>
</tr>
<tr>
<td>GTN</td>
<td>glyceryl trinitrate</td>
</tr>
<tr>
<td>GU</td>
<td>gonococcal urethritis</td>
</tr>
<tr>
<td>GUM</td>
<td>genitourinary medicine</td>
</tr>
<tr>
<td>Gy</td>
<td>Gray</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>H⁺</td>
<td>hydrogen ion</td>
</tr>
<tr>
<td>HAL</td>
<td>hexaminolevulinic acid</td>
</tr>
<tr>
<td>Hb</td>
<td>haemoglobin</td>
</tr>
<tr>
<td>hCG</td>
<td>human chorionic gonadotrophin</td>
</tr>
<tr>
<td>HCO³⁻</td>
<td>bicarbonate</td>
</tr>
<tr>
<td>HDR</td>
<td>high-dose rate</td>
</tr>
<tr>
<td>HDU</td>
<td>high-dependency unit</td>
</tr>
<tr>
<td>HIF</td>
<td>hypoxia-inducible factor</td>
</tr>
<tr>
<td>HIFU</td>
<td>high-intensity focused ultrasound</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HLA</td>
<td>human leucocyte antigen</td>
</tr>
<tr>
<td>HMG</td>
<td>human menopausal gonadotrophin</td>
</tr>
<tr>
<td>HMG-CoA</td>
<td>3-hydroxy-3-methyl-glutaryl coenzyme A</td>
</tr>
<tr>
<td>5-HMT</td>
<td>5-hydroxymethyl tolterodine</td>
</tr>
<tr>
<td>HO</td>
<td>house officer</td>
</tr>
<tr>
<td>HoLAP</td>
<td>holmium laser ablation of the prostate</td>
</tr>
<tr>
<td>HoLEP</td>
<td>holmium laser enucleation of the prostate</td>
</tr>
<tr>
<td>HoLRP</td>
<td>holmium laser resection of the prostate</td>
</tr>
<tr>
<td>HPCR</td>
<td>high-pressure chronic retention</td>
</tr>
<tr>
<td>HPF</td>
<td>high-power field</td>
</tr>
<tr>
<td>Symbol</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>HPV</td>
<td>human papillomavirus</td>
</tr>
<tr>
<td>HRO</td>
<td>high-reliability organization</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamine</td>
</tr>
<tr>
<td>HTLV</td>
<td>human T lymphotropic virus</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IC</td>
<td>intermittent catheterization; interstitial cystitis</td>
</tr>
<tr>
<td>ICD</td>
<td>implantable cardioverter–defibrillator</td>
</tr>
<tr>
<td>ICF</td>
<td>intracellular fluid</td>
</tr>
<tr>
<td>ICS</td>
<td>International Continence Society</td>
</tr>
<tr>
<td>ICSI</td>
<td>intracytoplasmic sperm injection</td>
</tr>
<tr>
<td>IDO</td>
<td>idiopathic detrusor overactivity</td>
</tr>
<tr>
<td>IELT</td>
<td>intravaginal detrusor overactivity</td>
</tr>
<tr>
<td>IFIS</td>
<td>intraoperative floppy iris syndrome</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IgA</td>
<td>immunoglobulin A</td>
</tr>
<tr>
<td>IGCCCG</td>
<td>International Germ Cell Cancer Collaborative Group</td>
</tr>
<tr>
<td>IGCN</td>
<td>intratubular germ cell neoplasia</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
</tr>
<tr>
<td>IGFBP</td>
<td>insulin-like growth factor binding protein</td>
</tr>
<tr>
<td>IIEF</td>
<td>International Index of Erectile Function</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>ILP</td>
<td>interstitial laser prostatectomy</td>
</tr>
<tr>
<td>IM</td>
<td>intramuscularly</td>
</tr>
<tr>
<td>IMRT</td>
<td>intensity-modulated radiotherapy</td>
</tr>
<tr>
<td>INR</td>
<td>international normalized ratio</td>
</tr>
<tr>
<td>IPC</td>
<td>intermittent pneumatic calf compression</td>
</tr>
<tr>
<td>IPSS</td>
<td>International Prostate Symptom Score</td>
</tr>
<tr>
<td>ISC</td>
<td>intermittent self-catheterization</td>
</tr>
<tr>
<td>ISD</td>
<td>intrinsic sphincter deficiency</td>
</tr>
<tr>
<td>ISF</td>
<td>interstitial fluid</td>
</tr>
<tr>
<td>ISSM</td>
<td>International Society for Sexual Medicine</td>
</tr>
<tr>
<td>ITU</td>
<td>intensive treatment unit</td>
</tr>
<tr>
<td>IU</td>
<td>international unit</td>
</tr>
<tr>
<td>IUI</td>
<td>intrauterine insemination</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>IVC</td>
<td>inferior vena cava</td>
</tr>
<tr>
<td>IVF</td>
<td>in vitro fertilization</td>
</tr>
<tr>
<td>IVP</td>
<td>intravenous pyelography</td>
</tr>
<tr>
<td>IVU</td>
<td>intravenous urography/urogram</td>
</tr>
<tr>
<td>SYMBOLS AND ABBREVIATIONS</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>JGA</td>
<td>juxtaglomerular apparatus</td>
</tr>
<tr>
<td>JVP</td>
<td>jugular venous pressure</td>
</tr>
<tr>
<td>K⁺</td>
<td>potassium</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>Kₗ</td>
<td>formation product</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>KGF</td>
<td>keratinocyte growth factor</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz</td>
</tr>
<tr>
<td>kj</td>
<td>kilojoule</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
</tr>
<tr>
<td>Kₜₚ</td>
<td>solubility product</td>
</tr>
<tr>
<td>KTP</td>
<td>potassium titanyl phosphate (laser)</td>
</tr>
<tr>
<td>KUB</td>
<td>kidneys, ureters, and bladder</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LA</td>
<td>local anaesthetic</td>
</tr>
<tr>
<td>LDH</td>
<td>lactate dehydrogenase</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>LDR</td>
<td>low-dose-rate</td>
</tr>
<tr>
<td>LDUH</td>
<td>low-dose unfractionated heparin</td>
</tr>
<tr>
<td>LFT</td>
<td>liver function test</td>
</tr>
<tr>
<td>LH</td>
<td>luteinizing hormone</td>
</tr>
<tr>
<td>LHRH</td>
<td>luteinizing hormone-releasing hormone</td>
</tr>
<tr>
<td>LMWH</td>
<td>low-molecular-weight heparin</td>
</tr>
<tr>
<td>LNI</td>
<td>lymph node invasion</td>
</tr>
<tr>
<td>LoH</td>
<td>loop of Henle</td>
</tr>
<tr>
<td>LOH</td>
<td>late-onset hypogonadism</td>
</tr>
<tr>
<td>LRINEC</td>
<td>Laboratory Risk Indicator for Necrotizing Fasciitis</td>
</tr>
<tr>
<td>LRP</td>
<td>laparoscopic radical prostatectomy</td>
</tr>
<tr>
<td>LSD</td>
<td>lysergic acid diethylamide</td>
</tr>
<tr>
<td>LUT</td>
<td>lower urinary tract</td>
</tr>
<tr>
<td>LUTS</td>
<td>lower urinary tract symptom</td>
</tr>
<tr>
<td>LVI</td>
<td>lympho-vascular invasion</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>μA</td>
<td>microampere</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
</tr>
<tr>
<td>MAB</td>
<td>maximal androgen blockade</td>
</tr>
<tr>
<td>MAG3</td>
<td>mercaptoacetly-triglycine (renogram)</td>
</tr>
<tr>
<td>MAGPI</td>
<td>meatal advancement and granuloplasty</td>
</tr>
<tr>
<td>MAOI</td>
<td>monoamine oxidase inhibitor</td>
</tr>
<tr>
<td>MAP</td>
<td>mean arterial pressure</td>
</tr>
<tr>
<td>MAPP</td>
<td>Multidisciplinary Approach to Pelvic Pain (study)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>MAR</td>
<td>mixed agglutination reaction</td>
</tr>
<tr>
<td>MBq</td>
<td>megabecquerel</td>
</tr>
<tr>
<td>MCDK</td>
<td>multicystic dysplastic kidney</td>
</tr>
<tr>
<td>MCUG</td>
<td>micturating cystourethrography</td>
</tr>
<tr>
<td>MDCTU</td>
<td>multidetector computerized tomography urography</td>
</tr>
<tr>
<td>MDP</td>
<td>methylene diphosphonate</td>
</tr>
<tr>
<td>MDRD</td>
<td>Modification of Diet in Renal Disease</td>
</tr>
<tr>
<td>MDT</td>
<td>multidisciplinary team</td>
</tr>
<tr>
<td>mEq</td>
<td>milliequivalent</td>
</tr>
<tr>
<td>MESA</td>
<td>microsurgical epididymal sperm aspiration</td>
</tr>
<tr>
<td>MET</td>
<td>medical expulsive therapy</td>
</tr>
<tr>
<td>MeV</td>
<td>mega electron volt</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mGy</td>
<td>milligray</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MHRA</td>
<td>Medicines and Healthcare Products Regulatory Agency</td>
</tr>
<tr>
<td>mHz</td>
<td>millihertz</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>MI</td>
<td>muscle-invasive</td>
</tr>
<tr>
<td>MIBG</td>
<td>meta-iodo-benzyl-guanidine</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MIS</td>
<td>Müllerian inhibiting substance; minimally invasive surgery</td>
</tr>
<tr>
<td>MIT</td>
<td>minimally invasive treatment</td>
</tr>
<tr>
<td>mIU</td>
<td>milli international unit</td>
</tr>
<tr>
<td>μL</td>
<td>microlitre</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>μm</td>
<td>micron</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimetre of mercury</td>
</tr>
<tr>
<td>MMC</td>
<td>mitomycin C</td>
</tr>
<tr>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>μmol</td>
<td>micromole</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole</td>
</tr>
<tr>
<td>MNE</td>
<td>monosymptomatic nocturnal enuresis</td>
</tr>
<tr>
<td>mOsm</td>
<td>milliosmole</td>
</tr>
<tr>
<td>MPA</td>
<td>mycophenolate</td>
</tr>
<tr>
<td>mpMRI</td>
<td>multiparametric magnetic resonance imaging</td>
</tr>
<tr>
<td>MPOA</td>
<td>medial preoptic area</td>
</tr>
<tr>
<td>MPR</td>
<td>multiplanar reformatting</td>
</tr>
<tr>
<td>MRCoNS</td>
<td>meticillin-resistant coagulase-negative staphylococci</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MRSA</td>
<td>meticillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>MRU</td>
<td>magnetic resonance urography</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
<tr>
<td>MSK</td>
<td>medullary sponge kidney</td>
</tr>
<tr>
<td>MSMB</td>
<td>microsemionprotein-beta</td>
</tr>
<tr>
<td>MSU</td>
<td>mid-stream urine</td>
</tr>
<tr>
<td>mSv</td>
<td>millisievert</td>
</tr>
<tr>
<td>mTOR</td>
<td>mammalian target of rapamycin</td>
</tr>
<tr>
<td>MUCP</td>
<td>maximal urethral closure pressure</td>
</tr>
<tr>
<td>MRI</td>
<td>mixed urinary incontinence</td>
</tr>
<tr>
<td>MUS</td>
<td>mid-urethral sling</td>
</tr>
<tr>
<td>MUSE</td>
<td>Medicated Urethral System for Erection (device)</td>
</tr>
<tr>
<td>MVAC</td>
<td>methotrexate, vinblastine, adriamycin, cisplatin</td>
</tr>
<tr>
<td>Na⁺</td>
<td>sodium</td>
</tr>
<tr>
<td>NA</td>
<td>noradrenaline</td>
</tr>
<tr>
<td>NAAT</td>
<td>nucleic acid amplification test</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>NAION</td>
<td>non-arteritic anterior ischaemic optic nerve neuropathy</td>
</tr>
<tr>
<td>NBI</td>
<td>narrow-band imaging</td>
</tr>
<tr>
<td>NDO</td>
<td>neurogenic detrusor overactivity</td>
</tr>
<tr>
<td>NE</td>
<td>nocturnal enuresis</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NGU</td>
<td>non-gonococcal urethritis</td>
</tr>
<tr>
<td>NHS</td>
<td>National Health Service</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Care Excellence</td>
</tr>
<tr>
<td>NIDDK</td>
<td>National Institute of Diabetes and Digestive and Kidney Diseases</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>NIH-CPSI</td>
<td>National Institute of Health Chronic Prostatitis Symptom Index</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>NMI</td>
<td>non-muscle invasive</td>
</tr>
<tr>
<td>NMNE</td>
<td>non-monoymyotonic nocturnal enuresis</td>
</tr>
<tr>
<td>nmol</td>
<td>nanomole</td>
</tr>
<tr>
<td>NMP</td>
<td>nuclear matrix protein</td>
</tr>
<tr>
<td>NND</td>
<td>number needed to detect</td>
</tr>
<tr>
<td>NNT</td>
<td>number needed to treat</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NOA</td>
<td>non-obstructive azoospermia</td>
</tr>
<tr>
<td>NOAC</td>
<td>new oral anticoagulant</td>
</tr>
<tr>
<td>NP</td>
<td>nocturnal polyuria</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>NS</td>
<td>nerve sparing; non-seminomatous</td>
</tr>
<tr>
<td>NSAID</td>
<td>non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>NSGCT</td>
<td>non-seminomatous germ cell tumour</td>
</tr>
<tr>
<td>NSU</td>
<td>non-specific urethritis</td>
</tr>
<tr>
<td>NVH</td>
<td>non-visible haematuria</td>
</tr>
<tr>
<td>OA</td>
<td>obstructive azoospermia</td>
</tr>
<tr>
<td>OAB</td>
<td>overactive bladder</td>
</tr>
<tr>
<td>OAT</td>
<td>oligoasthenoteratospermia</td>
</tr>
<tr>
<td>od</td>
<td>omni die (once daily)</td>
</tr>
<tr>
<td>OFIF</td>
<td>onlay island flap</td>
</tr>
<tr>
<td>OLND</td>
<td>obturator fossa lymphadenectomy</td>
</tr>
<tr>
<td>OSA</td>
<td>obstructive sleep apnoea</td>
</tr>
<tr>
<td>Pabd</td>
<td>intra-abdominal pressure</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>partial pressure of carbon dioxide (in arterial blood)</td>
</tr>
<tr>
<td>PAE</td>
<td>prostate artery embolization</td>
</tr>
<tr>
<td>PAG</td>
<td>periaqueductal grey (matter)</td>
</tr>
<tr>
<td>PAIS</td>
<td>partial androgen insensitivity syndrome</td>
</tr>
<tr>
<td>PAOD</td>
<td>peripheral artery occlusive disease</td>
</tr>
<tr>
<td>PARP</td>
<td>poly-ADP ribose polymerase</td>
</tr>
<tr>
<td>PC</td>
<td>prostate cancer</td>
</tr>
<tr>
<td>PCA3</td>
<td>prostate cancer antigen 3</td>
</tr>
<tr>
<td>PCN</td>
<td>percutaneous nephrostomy</td>
</tr>
<tr>
<td>PCNL</td>
<td>percutaneous nephrolithotomy</td>
</tr>
<tr>
<td>PCO₂</td>
<td>carbon dioxide tension</td>
</tr>
<tr>
<td>PCR</td>
<td>protein:creatinine ratio; polymerase chain reaction</td>
</tr>
<tr>
<td>PCT</td>
<td>proximal convoluted tubule</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>PDD</td>
<td>photodynamic detection</td>
</tr>
<tr>
<td>PDE</td>
<td>phosphodiesterase</td>
</tr>
<tr>
<td>PDE5</td>
<td>phosphodiesterase type-5</td>
</tr>
<tr>
<td>Pdet</td>
<td>detrusor pressure</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet-derived growth factor</td>
</tr>
<tr>
<td>PDT</td>
<td>photodynamic therapy</td>
</tr>
<tr>
<td>PE</td>
<td>premature ejaculation; pulmonary embolism</td>
</tr>
<tr>
<td>PEC</td>
<td>perivascular epithelioid cell</td>
</tr>
<tr>
<td>PEDT</td>
<td>Premature Ejaculation Diagnostic Tool</td>
</tr>
<tr>
<td>PEP</td>
<td>post-exposure prophylaxis</td>
</tr>
<tr>
<td>PESA</td>
<td>percutaneous epididymal sperm aspiration</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PFMT</td>
<td>pelvic floor muscle training</td>
</tr>
<tr>
<td>PFS</td>
<td>pressure–flow study; progression-free survival</td>
</tr>
<tr>
<td>Symbol</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>PG</td>
<td>prostaglandin</td>
</tr>
<tr>
<td>PGE2</td>
<td>prostaglandin E2</td>
</tr>
<tr>
<td>phi</td>
<td>Prostate Health Index</td>
</tr>
<tr>
<td>PI3</td>
<td>phosphoinositide 3</td>
</tr>
<tr>
<td>PIN</td>
<td>prostatic intraepithelial neoplasia; penile intraepithelial neoplasia</td>
</tr>
<tr>
<td>PIRAD</td>
<td>Prostate Imaging Reporting and Data (system)</td>
</tr>
<tr>
<td>PLAP</td>
<td>placental alkaline phosphatase</td>
</tr>
<tr>
<td>PLESS</td>
<td>Proscar Long-term Efficacy Safety Study</td>
</tr>
<tr>
<td>PMC</td>
<td>pontine micturition centre</td>
</tr>
<tr>
<td>PMNL</td>
<td>polymorphonuclear leucocyte</td>
</tr>
<tr>
<td>pmol</td>
<td>picomole</td>
</tr>
<tr>
<td>PN</td>
<td>partial nephrectomy</td>
</tr>
<tr>
<td>PNE</td>
<td>peripheral nerve evaluation</td>
</tr>
<tr>
<td>PO</td>
<td>per os (orally)</td>
</tr>
<tr>
<td>PO₂</td>
<td>oxygen tension</td>
</tr>
<tr>
<td>POP</td>
<td>pelvic organ prolapse</td>
</tr>
<tr>
<td>POPQ</td>
<td>pelvic organ prolapse quantification</td>
</tr>
<tr>
<td>PPI</td>
<td>post-prostatectomy incontinence</td>
</tr>
<tr>
<td>PPS</td>
<td>pentosan polysulfate sodium</td>
</tr>
<tr>
<td>PR</td>
<td>pulse rate</td>
</tr>
<tr>
<td>pRCC</td>
<td>papillary renal cell carcinoma</td>
</tr>
<tr>
<td>PRP</td>
<td>prion protein</td>
</tr>
<tr>
<td>PSA</td>
<td>prostate-specific antigen</td>
</tr>
<tr>
<td>PSAD</td>
<td>prostate-specific antigen density</td>
</tr>
<tr>
<td>PSADT</td>
<td>prostate-specific antigen doubling time</td>
</tr>
<tr>
<td>PSMA</td>
<td>prostate-specific membrane antigen</td>
</tr>
<tr>
<td>PTEN</td>
<td>phosphatase and tensin homologue</td>
</tr>
<tr>
<td>PTFE</td>
<td>polytetrafluoroethylene</td>
</tr>
<tr>
<td>PTH</td>
<td>parathyroid hormone</td>
</tr>
<tr>
<td>PTNS</td>
<td>posterior (percutaneous) tibial nerve stimulation</td>
</tr>
<tr>
<td>PTTI</td>
<td>parenchymal transit time index</td>
</tr>
<tr>
<td>PUJ</td>
<td>pelviureteric junction</td>
</tr>
<tr>
<td>PUJO</td>
<td>pelviureteric junction obstruction</td>
</tr>
<tr>
<td>PUNLMP</td>
<td>papillary urothelial neoplasm of low malignant potential</td>
</tr>
<tr>
<td>PUR</td>
<td>post-partum urinary retention</td>
</tr>
<tr>
<td>PUV</td>
<td>posterior urethral valves</td>
</tr>
<tr>
<td>PUVA</td>
<td>psoralen combined with vitamin A</td>
</tr>
<tr>
<td>PVA</td>
<td>polyvinyl alcohol</td>
</tr>
<tr>
<td>PVD</td>
<td>peripheral vascular disease</td>
</tr>
<tr>
<td>Pves</td>
<td>intravesical pressure</td>
</tr>
<tr>
<td>PVN</td>
<td>paraventricular nucleus</td>
</tr>
<tr>
<td>PVN</td>
<td>paraventricular nucleus</td>
</tr>
<tr>
<td>Symbol</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>PVP</td>
<td>photoselective vaporization of the prostate</td>
</tr>
<tr>
<td>PVR</td>
<td>post-void residual</td>
</tr>
<tr>
<td>qds</td>
<td>quater die sumendus (four times daily)</td>
</tr>
<tr>
<td>Qmax</td>
<td>maximal flow rate</td>
</tr>
<tr>
<td>QoL</td>
<td>quality of life</td>
</tr>
<tr>
<td>RARP</td>
<td>robot-assisted radical prostatectomy</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>RBF</td>
<td>renal blood flow</td>
</tr>
<tr>
<td>RCC</td>
<td>renal cell carcinoma</td>
</tr>
<tr>
<td>RCT</td>
<td>randomized controlled trial</td>
</tr>
<tr>
<td>REM</td>
<td>rapid eye movement</td>
</tr>
<tr>
<td>RFA</td>
<td>radiofrequency ablation</td>
</tr>
<tr>
<td>RI</td>
<td>resistive index</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNU</td>
<td>radical nephroureterectomy</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>RP</td>
<td>radical prostatectomy; retropubic tape</td>
</tr>
<tr>
<td>RPF</td>
<td>retroperitoneal fibrosis; renal plasma flow</td>
</tr>
<tr>
<td>RPLND</td>
<td>retroperitoneal lymph node dissection</td>
</tr>
<tr>
<td>RPR</td>
<td>rapid plasma reagin</td>
</tr>
<tr>
<td>RR</td>
<td>respiratory rate</td>
</tr>
<tr>
<td>RT</td>
<td>radiotherapy</td>
</tr>
<tr>
<td>RTA</td>
<td>renal tubular acidosis; road traffic accident</td>
</tr>
<tr>
<td>RTK</td>
<td>receptor tyrosine kinase</td>
</tr>
<tr>
<td>rUTI</td>
<td>recurrent urinary tract infection</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SARS</td>
<td>sacral anterior root stimulator</td>
</tr>
<tr>
<td>SC</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SCC</td>
<td>squamous cell carcinoma</td>
</tr>
<tr>
<td>SCI</td>
<td>spinal cord injury</td>
</tr>
<tr>
<td>SHBG</td>
<td>sex hormone-binding globulin</td>
</tr>
<tr>
<td>SHO</td>
<td>senior house officer</td>
</tr>
<tr>
<td>SIMS</td>
<td>single-incision mid-urethral sling</td>
</tr>
<tr>
<td>SIRS</td>
<td>systemic inflammatory response syndrome</td>
</tr>
<tr>
<td>SLE</td>
<td>systemic lupus erythematosus</td>
</tr>
<tr>
<td>SNM</td>
<td>sacral nerve modulation</td>
</tr>
<tr>
<td>SNS</td>
<td>sacral nerve stimulation</td>
</tr>
<tr>
<td>s-NVH</td>
<td>symptomatic non-visible haematuria</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>SPC</td>
<td>suprapubic catheter</td>
</tr>
<tr>
<td>SpR</td>
<td>specialist registrar</td>
</tr>
<tr>
<td>Symbol</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>SR</td>
<td>sustained release</td>
</tr>
<tr>
<td>SRE</td>
<td>skeletal-related event</td>
</tr>
<tr>
<td>SSRI</td>
<td>selective serotonin reuptake inhibitor</td>
</tr>
<tr>
<td>STD</td>
<td>sexually transmitted disease</td>
</tr>
<tr>
<td>STI</td>
<td>sexually transmitted infection</td>
</tr>
<tr>
<td>STIR</td>
<td>short TI inversion recovery</td>
</tr>
<tr>
<td>SUI</td>
<td>stress urinary incontinence</td>
</tr>
<tr>
<td>SWL</td>
<td>shock wave lithotripsy</td>
</tr>
<tr>
<td>T</td>
<td>tesla</td>
</tr>
<tr>
<td>TAPD</td>
<td>transverse anteroposterior diameter</td>
</tr>
<tr>
<td>TB</td>
<td>tuberculosis</td>
</tr>
<tr>
<td>TBW</td>
<td>total body water</td>
</tr>
<tr>
<td>TC</td>
<td>testicular cancer</td>
</tr>
<tr>
<td>TCC</td>
<td>transitional cell carcinoma</td>
</tr>
<tr>
<td>tds</td>
<td>ter die sumendus (three times daily)</td>
</tr>
<tr>
<td>TEAP</td>
<td>transurethral ethanol ablation of the prostate</td>
</tr>
<tr>
<td>TEDS</td>
<td>thromboembolic deterrent stockings</td>
</tr>
<tr>
<td>TENS</td>
<td>transcutaneous electrical nerve stimulation</td>
</tr>
<tr>
<td>TESA</td>
<td>testicular exploration and sperm aspiration</td>
</tr>
<tr>
<td>TESE</td>
<td>testicular exploration and sperm extraction</td>
</tr>
<tr>
<td>TET</td>
<td>tubal embryo transfer</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TIN</td>
<td>testicular intratubular neoplasia (synonymous with IGCN)</td>
</tr>
<tr>
<td>TIP</td>
<td>tubularized incised plate</td>
</tr>
<tr>
<td>TNF</td>
<td>tumour necrosis factor</td>
</tr>
<tr>
<td>TOT</td>
<td>transobturator tape</td>
</tr>
<tr>
<td>TOV</td>
<td>trial of void</td>
</tr>
<tr>
<td>TPIF</td>
<td>transverse preputial island flap</td>
</tr>
<tr>
<td>TRUS</td>
<td>transrectal ultrasound</td>
</tr>
<tr>
<td>TS</td>
<td>tuberous sclerosis</td>
</tr>
<tr>
<td>TSE</td>
<td>testicular self-examination</td>
</tr>
<tr>
<td>TUIP</td>
<td>transurethral incision of the prostate</td>
</tr>
<tr>
<td>TULIP</td>
<td>transurethral ultrasound-guided laser-induced prostatectomy</td>
</tr>
<tr>
<td>TUMT</td>
<td>transurethral microwave thermotherapy of the prostate</td>
</tr>
<tr>
<td>TUNA</td>
<td>transurethral needle ablation of the prostate</td>
</tr>
<tr>
<td>TUR</td>
<td>transurethral resection</td>
</tr>
<tr>
<td>TURBT</td>
<td>transurethral resection of bladder tumour</td>
</tr>
<tr>
<td>TURED</td>
<td>transurethral resection of the ejaculatory ducts</td>
</tr>
<tr>
<td>TURP</td>
<td>transurethral resection of the prostate</td>
</tr>
<tr>
<td>TVUVP</td>
<td>transurethral vaporization of the prostate</td>
</tr>
<tr>
<td>TURVP</td>
<td>transurethral vapour resection of the prostate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TVT</td>
<td>tension-free vaginal tape</td>
</tr>
<tr>
<td>TVTO</td>
<td>tension-free vaginal tape obturator</td>
</tr>
<tr>
<td>TWOC</td>
<td>trial without catheter</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>UD</td>
<td>urethral diverticulum</td>
</tr>
<tr>
<td>UDT</td>
<td>undescended testis</td>
</tr>
<tr>
<td>U&E</td>
<td>urea and electrolytes</td>
</tr>
<tr>
<td>UI</td>
<td>urinary incontinence</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>ULDCT</td>
<td>ultra-low-dose computerized tomography</td>
</tr>
<tr>
<td>ULTRA</td>
<td>Unrelated Live Transplant Regulatory Authority</td>
</tr>
<tr>
<td>UPJO</td>
<td>uretero-pelvic junction obstruction</td>
</tr>
<tr>
<td>URS</td>
<td>ureterorenoscopy</td>
</tr>
<tr>
<td>USA</td>
<td>United States</td>
</tr>
<tr>
<td>USS</td>
<td>ultrasound scan</td>
</tr>
<tr>
<td>UTI</td>
<td>urinary tract infection</td>
</tr>
<tr>
<td>UUI</td>
<td>urge urinary incontinence</td>
</tr>
<tr>
<td>UOO</td>
<td>unilateral ureteric obstruction</td>
</tr>
<tr>
<td>UUT-TCC</td>
<td>upper urinary tract transitional cell carcinoma</td>
</tr>
<tr>
<td>vCJD</td>
<td>variant Creutzfeldt–Jakob disease</td>
</tr>
<tr>
<td>VCGU</td>
<td>videocystourethrography</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>VEGFR</td>
<td>vascular endothelial growth factor receptor</td>
</tr>
<tr>
<td>VH</td>
<td>visible haematuria</td>
</tr>
<tr>
<td>VHL</td>
<td>von Hippel–Lindau</td>
</tr>
<tr>
<td>VIP</td>
<td>vasoactive intestinal peptide</td>
</tr>
<tr>
<td>VLAP</td>
<td>visual laser ablation of the prostate</td>
</tr>
<tr>
<td>V/Q</td>
<td>ventilation–perfusion</td>
</tr>
<tr>
<td>VRE</td>
<td>vancomycin-resistant enterococci</td>
</tr>
<tr>
<td>VTE</td>
<td>venous thromboembolism</td>
</tr>
<tr>
<td>VUJ</td>
<td>vesicoureteric junction</td>
</tr>
<tr>
<td>VUJO</td>
<td>vesicoureteric junction obstruction</td>
</tr>
<tr>
<td>VUR</td>
<td>vesicoureteric reflux</td>
</tr>
<tr>
<td>VURD</td>
<td>vesicoureteric reflux with renal dysplasia</td>
</tr>
<tr>
<td>VVF</td>
<td>vesicovaginal fistula</td>
</tr>
<tr>
<td>W</td>
<td>watt</td>
</tr>
<tr>
<td>WAGR</td>
<td>Wilms’ tumour/aniridia/genitourinary anomalies/mental retardation</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cell</td>
</tr>
<tr>
<td>WCC</td>
<td>white cell count</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>Symbol</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>wk</td>
<td>week</td>
</tr>
<tr>
<td>WW</td>
<td>watchful waiting</td>
</tr>
<tr>
<td>y</td>
<td>year</td>
</tr>
<tr>
<td>YAG</td>
<td>yttrium-aluminium-garnet</td>
</tr>
<tr>
<td>ZIFT</td>
<td>zygote intra-Fallopian transfer</td>
</tr>
</tbody>
</table>
Chapter 1

General principles of management of patients

Communication skills 2
Documentation and note-keeping 4
Patient safety in surgical practice 6
Communication skills

Communication is the imparting of knowledge and understanding. Good communication is crucial for the surgeon in his or her daily interaction with patients. The nature of any interaction between surgeon and patient will depend very much on the context of the interview, whether you know the patient already, and the quantity and type of information that needs to be imparted. As a general rule, the basis of good communication requires the following:

- **Introduction.**
 - Give your name; explain who you are; greet the patient/relative appropriately (e.g. handshake); check you are talking to the correct person.

- **Establish the purpose of the interview.**
 - Explain the purpose of the interview from the patient’s perspective and yours and the desired outcome of the interview.

- **Establish the patient’s baseline knowledge and understanding.**
 - Use open questions; let the patient talk, and confirm what they know.

- **Listen actively.**
 - Make it clear to the patient that they have your undivided attention— that you are focusing on them. This involves appropriate body language (keep eye contact—do not look out of the window!).

- **Pick up on, and respond to, cues.**
 - The patient/relative may offer verbal or non-verbal indications about their thoughts or feelings.

- **Elicit the patient’s main concern(s).**
 - What you think should be the patient’s main concerns may not be. Try to find out exactly what the patient is worried about.

- **Chunks and checks.**
 - Give information in small quantities, and check that this has been understood. A good way of doing this is to ask the patient to explain what they think you have said.

- **Show empathy.**
 - Let the patient know you understand their feelings.

- **Be non-judgemental.**
 - Do not express your personal views or beliefs.

- **Alternate control of the interview between the patient and yourself.**
 - Allow the patient to take the lead where appropriate.

- **Signpost changes in direction.**
 - State clearly when you move on to a new subject.

- **Avoid the use of jargon.**
 - Use language the patient will understand, rather than medical terminology.
• **Body language.**
 - Use body language that shows the patient that you are interested in their problem and that you understand what they are going through. Respect cultural differences; in some cultures, eye contact is regarded as a sign of aggression.

• **Summarize and indicate the next steps.**
 - Summarize what you understand to be the patient’s problem and what the next steps are going to be.
Documentation and note-keeping

The Royal College of Surgeons’ guidelines state that each clinical history sheet should include the patient’s name, date of birth, and record number. Each entry should be timed, dated, and signed, and your name and position (e.g. SHO for ‘senior house officer’ or SpR for ‘specialist registrar’) should be clearly written in capital letters below each entry. You should also document which other medical staff were present with you on ward rounds or when seeing a patient (e.g. ‘ward round—SpR (Mr X)/SHO/HO’).

Contemporaneous note-keeping is an important part of good clinical practice. Medical notes document the patient’s problems, the investigations they have undergone, the diagnosis, and the treatment and its outcome. The notes also provide a channel of communication between doctors and nurses on the ward and between different medical teams. In order for this communication to be effective and safe, medical notes must be clearly written. They will also be scrutinized in cases of complaint and litigation. Failure to keep accurate, meaningful notes which are timed, dated, and signed, with your name written in capital letters below, exposes you to the potential for criticism in such cases. The standard of note-keeping is seen as an indirect measure of the standard of care you have given your patients. Sloppy notes can be construed as evidence of sloppy care, quite apart from the fact that such notes do not allow you to provide evidence of your actions. Unfortunately, the defence of not having sufficient time to write the notes is not an adequate one, and the courts may regard absence of documentation of your actions as indicating that you did not do what you said you did.

Do not write anything that might later be construed as a personal comment about a patient or colleague (e.g. do not comment on an individual’s character or manner). Do not make jokes in the patient’s notes. Such comments are unlikely to be helpful and may cause you embarrassment in the future when you are asked to interpret them.

Try to make the notes relevant to the situation so, e.g. in a patient with suspected bleeding, a record of blood pressure and pulse rate is important, but a record of a detailed neurological history and examination is less relevant (unless, e.g. a neurological basis for the patient’s problem is suspected). The results of investigations should be clearly documented in the notes, preferably in red ink, with a note of the time and date when the investigation was performed.

Avoid the use of abbreviations. In particular, always write LEFT or RIGHT in capital letters, rather than Lt/Rt or L/R. A handwritten L can sometimes be mistaken for an R, and vice versa.
Operation notes
We include the following information on operation notes:

- Patient name, number, and date of birth.
- Date of operation.
- Surgeon, assistants.
- Patient position (e.g. supine, prone, lithotomy, Lloyd–Davies).
- Type of deep vein thrombosis (DVT) prophylaxis [above-knee thromboembolic stockings (AK-TEDS), Flowtrons, heparin, etc.].
- Type, time of administration, and doses of antibiotic prophylaxis.
- Presence of an image intensifier, if appropriate.
- Type and size of endoscopes used.
- Your signature and your name in capitals.
- Post-operative instructions and follow-up, if appropriate.

If a consultant is supervising you but is not scrubbed, you must clearly state that the ‘consultant (named) was in attendance’.
Patient safety in surgical practice

The aviation, nuclear, and petrochemical industries are termed ‘high-reliability organizations’ (HROs) because they have adopted a variety of core safety principles that have enabled them to achieve safety success, despite ‘operating’ in high-risk environments. Surgeons can learn much from HROs and can adopt some of these safety principles in surgical practice in order to improve safety in the non-technical aspects of care.

Foremost amongst the safety principles of HROs are:

- **Teamworking.**
- **Use of standard operating procedures (SOPs):** day-to-day tasks are carried out according to a set of rules and in a way that is standardized across the organization.
- **Cross-checking:** members of the team check that a procedure, drug, or action has been done or administered by ‘verbalizing’ that action to another team member. This is most familiar when aircraft cabin crew are asked by the pilot to check that the doors of the plane are locked shut (‘doors to cross-check’) and crew members cross to the opposite door to confirm this has been done. In surgical practice, an example of cross-checking could be ‘antibiotic given?’, confirmed by a specific reply such as ‘240mg IV gentamicin given’.
- **Regular audit and feedback of audit data:** performance data (both good and bad) are collected regularly, and crucially team members are notified (e.g. in audit meetings) of where they are performing well or badly.
- **Establishment of variable hierarchies:** development of a working environment where junior staff are encouraged to ‘speak up’ if they believe an error is about to occur, without fear of criticism.
- **Cyclical training:** frequent and regular training sessions to reinforce safe practice methods.
Significance and preliminary investigation of urological symptoms and signs

Haematuria I: definition and types 8
Haematuria II: causes and investigation 10
Haemospermia 14
Lower urinary tract symptoms 16
Nocturia and nocturnal polyuria 18
Loin (flank) pain 20
Urinary incontinence 24
Genital symptoms 26
Abdominal examination in urological disease 28
Digital rectal examination 30
Lumps in the groin 32
Lumps in the scrotum 34
CHAPTER 2 Significance and preliminary investigation

Haematuria I: definition and types

The presence of blood in the urine
Visible haematuria (VH), previously referred to as ‘frank’ or ‘gross’ haematuria is when the patient or doctor has seen blood in the urine or describes the urine as red or pink (or ‘cola’-coloured—occasionally seen in acute glomerulonephritis).

Microscopic or dipstick haematuria is ‘non-visible’ haematuria (NVH). Non-visible haematuria is categorized as symptomatic [s-NVH, i.e. lower urinary tract symptoms (LUTS) such as frequency, urgency, urethral pain on voiding, suprapubic pain] or asymptomatic (a-NVH).

Non-visible haematuria (microscopic or dipstick haematuria)
Blood is identified by urine microscopy or by dipstick testing. Microscopic haematuria has been variably defined as three or more, five or more, or ten or more red blood cells (RBCs) per high-power field (HPF). Samples sent from the community by general practitioner (GPs) to hospital labs have a significant false-negative rate (due to red cell lysis in transit).

The sensitivity of urine dipstick testing of a freshly voided urine sample is now good enough for detecting haematuria that routine confirmatory microscopy is no longer considered necessary. Dipstick haematuria is considered to be significant if 1+ or more. ‘Trace’ haematuria is considered negative. No distinction is made between haemolysed and non-haemolysed dipstick-positive urine; as long as 1+ or more of blood is detected, it is considered significant haematuria.

Urine dipsticks test for haem [i.e. they test for the presence of haemoglobin (Hb) and myoglobin in the urine]. Haem catalyses oxidation of orthotolidine by an organic peroxidase, producing a blue-coloured compound. Dipsticks are capable of detecting the presence of Hb from one or two RBCs.

- **False-positive urine dipstick**: occurs in the presence of myoglobinuria, bacterial peroxidases, povidone, and hypochlorite.
- **False-negative urine dipstick (rare)**: occurs in the presence of reducing agents (e.g. ascorbic acid—prevents the oxidation of orthotolidine).

Is microscopic or dipstick haematuria abnormal?
A few RBCs can be found in the urine of normal people. The upper limit of normal for RBC excretion is 1 million per 24h (as seen in healthy medical students). In healthy 21-year-old soldiers undergoing yearly urine examination over a 12-y period, 40% had microscopic haematuria on at least one occasion, and 15% on two or more occasions. Transient microscopic haematuria may occur following rigorous exercise or sexual intercourse, or from menstrual contamination.

The fact that the presence of RBCs in the urine can be a perfectly normal finding explains why in ~70% of ‘patients’ with microscopic or dipstick haematuria, no abnormality is found despite full conventional urological investigation [urine cytology, cystoscopy, renal ultrasonography, and intravenous urogram (IVU)].

That said, a substantial proportion with visible and a smaller, but significant, proportion with NVH will have a serious underlying...
disease, and since there is no way, other than by further investigation, of distinguishing the dipstick-positive patient with significant disease from the dipstick-positive patient without significant disease, the recommendation is to investigate all patients with dipstick haematuria.

What is significant haematuria?
- Any single episode of VH.
- Any single episode of s-NVH [in the absence of urinary tract infection (UTI) or other transient causes].
- Persistent a-NVH—defined as two out of three dipsticks positive for NVH (in the absence of UTI or other transient causes).

Transient (non-significant haematuria) is caused by:
- UTI: treat the UTI, and repeat dipstick testing to confirm the absence of haematuria. UTI is most easily excluded by a negative dipstick result for both leucocytes and nitrites. If dipstick haematuria positive with a negative dipstick result for both leucocytes and nitrites, investigate the haematuria further.
- Exercise-induced haematuria or rarely myoglobinuria (VH and NVH): repeat dipstick testing after a period of abstention from exercise.
- Menstruation.

Initial investigation for s-NVH and persistent a-NVH
- Exclude UTI or other transient causes.
- Plasma creatinine/estimated glomerular filtration rate (eGFR).
- Measure proteinuria on a random sample (24-h urine collections for protein are rarely required).*
- Blood pressure (BP).

When is urological referral warranted?
- All patients with VH.
- All patients with s-NVH.
- a-NVH in patients aged 40y or more.
- Persistent a-NVH (defined as two out of three positives for NVH).

For the patient <40y with a-NVH, if the eGFR is >60mL/min, BP <140/90, and no proteinuria (PCR <50mg/mmol or ACR <30mg/mmol), then while a-NVH persists and it is recommended that the patient has an annual eGFR, BP check, and proteinuria check. If VH or s-NVH develops, referral to urology for a cystoscopy and imaging is indicated. If the eGFR is <60mL/min, BP >140/90, or there is proteinuria (PCR >50mg/mmol or ACR >30mg/mmol), nephrological referral is indicated.

* Protein assessment on a single urine sample—protein:creatinine ratio (PCR) or albumin:creatinine ratio (ACR): significant proteinuria is a PCR >50mg/mmol or an ACR >30mg/mmol.

References

Further reading
Haematuria II: causes and investigation

Urological and other causes of haematuria

NVH (microscopic or dipstick haematuria) is common (20% of men >60 years old). Bear in mind that most patients (70%—and some studies say almost 90%) with NVH have no urological pathology. Conversely, a significant proportion of patients have glomerular disease despite having a normal BP and a normal serum creatinine level, and in the absence of proteinuria (although it is fair to say that most do not develop progressive renal disease and those that do usually develop proteinuria and hypertension as impending signs of deteriorating renal function). The management algorithm for patients with negative urological haematuria investigations is shown under p. 12.

Causes of haematuria

- **Cancer**: bladder [transitional cell carcinoma (TCC), squamous cell carcinoma (SCC)], kidney (adenocarcinoma), renal pelvis and ureter (TCC), prostate.
- **Stones**: kidney, ureteric, bladder.
- **Infection**: bacterial, mycobacterial [tuberculosis (TB)], parasitic (schistosomiasis), infective urethritis.
- **Inflammation**: cyclophosphamide cystitis, interstitial cystitis.
- **Trauma**: kidney, bladder, urethra (e.g. traumatic catheterization), pelvic fracture causing urethral rupture.
- **Renal cystic disease** (e.g. medullary sponge kidney).
- **Other urological causes**: benign prostatic hyperplasia (BPH, the large, vascular prostate), loin pain haematuria syndrome, vascular malformations.
- **Nephrological causes of haematuria**: tend to occur in children or young adults and include commonly immunoglobulin A (IgA) nephropathy, post-infectious glomerulonephritis; less commonly, membranoproliferative glomerulonephritis, Henoch–Schönlein purpura, vasculitis, Alport’s syndrome, thin basement membrane disease, Fabry’s disease, etc.
- **Other ‘medical’ causes of haematuria**: include coagulation disorders—congenital (e.g. haemophilia), anticoagulation therapy (e.g. warfarin), sickle-cell trait or disease, renal papillary necrosis, vascular disease (e.g. emboli to the kidney cause infarction and haematuria).
- **Nephrological causes**: more likely in the following situations—children and young adults, proteinuria, RBC casts.

What percentage of patients with haematuria have urological cancers?

- **Microscopic**: about 5–10%.
- **Macroscopic**: about 20–25%.
Urological investigation of haematuria—VH, s-NVH, a-NVH aged >40y, persistent (two out of three dipsticks) a-NVH

Modern urological investigation involves urine culture (where, on the basis of associated ‘cystitis’ symptoms, urinary infection is suspected), urine cytology, cystoscopy, renal ultrasonography, and computerized tomography urography (CTU).

Diagnostic cystoscopy

Nowadays, this is carried out using a flexible fibreoptic cystoscope, unless radiological investigation demonstrates bladder cancer, in which case one may forego flexible cystoscopy and proceed immediately to rigid cystoscopy and biopsy under anaesthetic [transurethral resection of bladder tumour (TURBT)].

What is the role of multidetector CT urography (MDCTU) in the investigation of haematuria?

This is a rapid-acquisition CT done following intravenous (IV) contrast administration with high spatial resolution. Overlapping thin sections can be ‘reconstructed’ into images in multiple planes (multiplanar reformattting (MPR)), so lesions can be imaged in multiple planes. It has the advantage of a single investigation, which potentially could obviate the need for the traditional ‘4-test’ approach to haematuria (IVU, renal ultrasound, flexible cystoscopy, urine cytology), although at the cost of a higher radiation dose (a 7-film IVU = 5–10mSV, 3-phase MDCTU = 20–25mSV).

There is evidence suggesting that MDCTU has reasonable sensitivity and high specificity for diagnosing bladder tumours (in patients with macroscopic haematuria: 93% sensitivity, 99% specificity) and that it has equivalent diagnostic accuracy to retrograde uretero-pyelography (the retrograde administration of contrast via a catheter inserted in the lower ureter to outline the ureter and renal collecting system). Overall, for patients with haematuria and no prior history of urological malignancy, for the detection of all urological tumours, it has 65% sensitivity and 98% specificity—so it only rarely calls a lesion a tumour when, in fact, the lesion is benign, but it still fails to diagnose a significant proportion of urinary neoplasms (sensitivity for upper tract neoplasms 80%, for bladder tumours 60%).

The role of MDCTU (described by some as the ‘ultimate’ imaging modality) in the investigation of haematuria remains controversial. MDCTU in all patients with haematuria (microscopic, macroscopic), when most will have no identifiable cause for the haematuria, has a cost (high radiation dose, financial). A targeted approach, aimed at those with risk factors for urothelial malignancy (age >40y, macroscopic, as opposed to microscopic, haematuria, smoking history, occupational exposure to benzenes and aromatic amines), might be a better use of this resource, rather than using MDCTU as the first imaging test for both high- and low-risk patients. Thus, the ‘best’ imaging probably depends on the context of the patient.
Should cystoscopy be performed in patients with a-NVH?

The American Urological Association (AUA)’s Best Practice Policy on Asymptomatic Microscopic Hematuria recommends cystoscopy in all high-risk patients (high risk for the development of TCC) with microscopic haematuria (the AUA still uses the term ‘microscopic’ haematuria) (see below).9

- **Patients at high risk for TCC:** positive smoking history, occupational exposure to chemicals or dyes (benzenes or aromatic amines), analgesic abuse (phenacetin), history of pelvic irradiation, previous cyclophosphamide treatment.

In asymptomatic, low-risk patients <40y, it states that ‘it may be appropriate to defer cystoscopy’, but if this is done, urine should be sent for cytology. However, the AUA also states that ‘the decision as to when to proceed with cystoscopy in low-risk patients with persistent microscopic haematuria must be made on an individual basis after a careful discussion between the patient and physician’. It is our policy to inform such patients that the likelihood of finding a bladder cancer is low, but nevertheless we recommend flexible cystoscopy. The patient then makes a decision as to whether or not to proceed with cystoscopy, based on their interpretation of ‘low risk’.

If no cause for haematuria (VH or NVH) is found with cystoscopy and CTU, is further investigation necessary?

Some say yes, quoting studies that show serious disease can be identified in a small number of patients where, in addition, retrograde ureterography, endoscopic examination of the ureters and renal pelvis (ureteroscopy), and renal angiography were done. Others say no, citing the absence of development of overt urological cancer during 2- to 4-y follow-up in patients originally presenting with microscopic or macroscopic haematuria (although without further investigations).10

For patients with negative initial investigations, the AUA’s Best Practice Policy on Asymptomatic Microscopic Hematuria advises repeat urinalysis, urine cytology, and BP measurement at 6, 12, 24, and 36 months, with repeat imaging and cystoscopy where dipstick or microscopic haematuria persists (in the process of being revised at the time of this 3rd edition went to press). The diagnostic yield from repeat testing where initial tests are normal remains to be identified with certainty. There is evidence that unless a patient re-presents with VH, repeat urologic investigation in those with persistent dipstick or microscopic haematuria will not identify any additional significant urological pathology and nephrological investigation only in a very small number of patients with IgA nephropathy.11

The European Association of Urology (EAU) currently has no policy for the management or follow-up of patients with persistent dipstick or microscopic haematuria.
If no cause for NVH is found, is there a risk of subsequent urological cancer developing (i.e. do normal initial haematuria investigations fail to identify urological cancer in some patients)?

Over 10- to 13-y of follow-up, two studies have revealed that where initial investigations in those patients with asymptomatic dipstick haematuria are negative and repeat dipstick analysis after full urological investigation reveals no haematuria, no patient developed urological cancer.11,12

If NVH persists after initial negative investigation, should the patient undergo repeat investigation?

Where dipstick haematuria persists after initial renal imaging and cystoscopy reveals no cause, the diagnostic yield of repeat investigation is very low. Nephrological and repeat urological investigations reveal no urological malignancies, IgA nephropathy in 12%, and UTI in 24%.11

The recommendation from these studies is that repeat urological investigation is not necessary, unless a patient becomes symptomatic or develops VH.

References

Haemospermia

Definition: the presence of blood in the semen

Usually intermittent, benign, self-limiting, and no cause identified.

Causes

- **Age <40y:** usually inflammatory (e.g. prostatitis, epididymo-orchitis, urethritis); infective, including sexually transmitted diseases (STDs) (e.g. gonococcus), non-STD infection (e.g. *Enterococcus faecalis, Chlamydia trachomatis, Ureaplasma urealyticum*), or viral infection (e.g. herpes simplex), urethral warts, or idiopathic (though, to an extent, this reflects the limited investigation that is usually carried out in this age group). Rarely, testicular tumour; perineal or testicular trauma. Tumours are found in 2.4%.

- **Age >40y:** as for men aged <40—the commonest cause is now post-transrectal ultrasound (TRUS) biopsy of the prostate; prostate cancer; bladder cancer; testicular cancer; BPH; dilated veins in the prostatic urethra; prostatic or seminal vesicle calculi; hypertension; carcinoma of the seminal vesicles; post-external beam radiotherapy or brachytherapy for prostate cancer. Tumours are found in 3.5% (mostly prostatic; rarely testis, seminal vesicle, epididymal).

- **Rare causes at any age:** bleeding diathesis (von Willebrand’s disease, haemophilia, acquired coagulation defects); uterical, Müllerian or seminal vesicle cysts—which may cause ductal obstruction, dilatation, distension, and rupture of blood vessels; TB; schistosomiasis; amyloid of the prostate or seminal vesicles; post-injection of haemorrhoids. Very rarely, haemospermia may be confused with melanospermia from urinary tract melanoma.

NB. Abnormalities detected on TRUS or magnetic resonance imaging (MRI) may not necessarily be the cause of haemospermia.

Examination

Examine the testes, epididymis, prostate, and seminal vesicles [digital rectal examination (DRE)]. Measure BP.

Investigation

Send urine for culture. If risk of exposure to STDs, refer to the local STD clinic for STD screen. If the haemospermia resolves after a single episode, an argument can be made for doing nothing else. If it recurs or persists, then even in young men (2.4% risk of finding cancer if <40y old), arrange tests for prostate-specific antigen (PSA), full blood count (FBC), liver function tests (LFTs), and clotting; TRUS, flexible cystoscopy (look for urethral polyps, urethritis, prostatic cysts, urethral foreign bodies, stones, and vascular abnormalities), renal ultrasound, and pelvic MRI (MR angiography can identify rare vascular abnormalities). The author has a low threshold for flexible cystoscopy, given the simplicity of doing this test. If haematuria coexists, investigate this as described.
Treatment

This is directed at the underlying abnormality, if found. If no cause is found, reassure the patient that most cases are self-limiting.

Further reading

Lower urinary tract symptoms

A plethora of terms have been coined to describe the symptom complex traditionally associated with prostatic obstruction due to BPH. The ‘classic’ prostatic symptoms of hesitancy, poor flow, frequency, urgency, nocturia, and terminal dribbling have, in the past, been termed ‘prostatism’ or simply ‘BPH symptoms’. One sometimes hears these symptoms being described as due to ‘BPO’ (benign prostatic obstruction) or ‘BPE’ (benign prostatic enlargement) or, more recently, ‘LUTS/BPH’. However, these ‘classic’ symptoms of prostatic disease bear little relationship to the prostate size, urinary flow rate, residual urine volume, or indeed urodynamic evidence of bladder outlet obstruction (BOO). Furthermore, age-matched men and women have similar ‘prostate’ symptom scores, but women obviously have no prostate. We therefore no longer use the expression ‘prostatism’ to describe the symptom complex of hesitancy, poor flow, etc. Instead, we call such symptoms ‘lower urinary tract symptoms’ (LUTS), which is purely a descriptive term avoiding any implication about the possible underlying cause of these symptoms.

The new terminology ‘LUTS’ is useful because it reminds the urologist to consider possible alternative causes of symptoms which may have absolutely nothing to do with prostatic obstruction and it reminds us to avoid operating on an organ, such as the prostate, when the cause of the symptoms may lie elsewhere.

Baseline symptoms can be ‘measured’ using a symptom index. The most widely used is the International Prostate Symptom Score (IPSS) which, in addition to the seven symptoms of the American Urological Association Symptom Index (AUA-SI), includes a question for the patient to assess the ‘bothersomeness’ of their LUTS, the AUA-SI.

Other causes of LUTS

In broad terms, LUTS can be due to pathology in the prostate, the bladder, the urethra or other pelvic organs (uterus, rectum), or due to neurological disease affecting the nerves that innervate the bladder. These pathologies can include BPE causing BOO, and infective, inflammatory, and neoplastic conditions of the bladder, prostate, or urethra. While LUTS are, in general, relatively non-specific for particular pathologies, the context in which they occur (i.e. associated symptoms) can indicate their cause. For example:

- LUTS, in association with macroscopic haematuria or with dipstick or microscopic haematuria, suggests a possibility of bladder cancer. This is more likely if urinary frequency, urgency, and ‘bladder’ pain (suprapubic pain) are prominent. Carcinoma in situ (CIS) of the bladder—a non-invasive, but potentially very aggressive, form of bladder cancer which very often progresses to muscle-invasive or metastatic cancer—classically presents in this way.
- Recent onset of bedwetting in an elderly man is often due to high-pressure chronic retention (HPCR). Visual inspection of the abdomen may show marked distension due to a grossly enlarged bladder. The diagnosis of chronic retention is confirmed by palpating the enlarged, tense bladder which is dull to percussion and by drainage of a large volume (often well in excess of 2L) following catheterization.
• Rarely, LUTS can be due to neurological disease causing spinal cord or cauda equina compression or to pelvic or sacral tumours. Associated symptoms include back pain, sciatica, ejaculatory disturbances, and sensory disturbances in the legs, feet, and perineum. In these rare cases, loss of pericoccygeal or perineal sensation (sacral nerve roots 2–4) indicates an interruption to the sensory innervation of the bladder, and an MRI scan will confirm the clinical suspicion that there is a neurological problem.

References
Nocturia and nocturnal polyuria

- Nocturia ≥2 is common and bothersome (sleep disturbance).
- Prevalence of nocturia ≥2: men—40% aged 60–70y, 55% aged >70y; women—10% aged 20–40y, 50% aged >80y.
- Nocturia ≥2 is associated with a 2-fold risk of falls and injury in the ambulant elderly.
- Men who void more than twice at night have a 2-fold risk of death (possibly due to the associations of nocturia with endocrine and cardiovascular disease).³

The diagnostic approach to the patient with nocturia

Nocturia can be due to urological disease but, more often than not, is non-urological in origin. Therefore, ‘approach the lower urinary tract last’ (Neil Resnick, Professor of Gerontology, Pittsburgh).⁴

Causes of nocturia

- **Urological**: BPO, overactive bladder (OAB), incomplete bladder emptying.
- **Non-urological**: renal failure, idiopathic nocturnal polyuria (NP), diabetes mellitus, central diabetes insipidus (DI), nephrogenic DI, primary polydipsia, hypercalcaemia, drugs, autonomic failure, obstructive sleep apnoea (OSA).

Assessment of the nocturic patient

Ask the patient to complete a frequency–volume chart (FVC)—a voiding diary that records time and volume of each void over a 24-h period for 7 days. This establishes:

- If the patient is polyuric or non-polyuric.
- If polyuric, whether the polyuria is present throughout 24h or confined to night-time (NP).

Polyuria is defined empirically as >3L of urine output per 24h [Standardization Committee of the International Continence Society (ICS), 2002].

NP is empirically defined as the production of more than one-third of 24-h urine output between midnight and 8 a.m. (It is a normal physiological mechanism to reduce urine output at night. Urine output between midnight and 8 a.m.—one-third of the 24h clock—should certainly be no more than one-third of the 24-h total urine output and, in most people, will be considerably less than one-third.)

Polyuria (urine output of >3L per 24h) is due to either a solute diuresis or a water diuresis. Measure urine osmolality: <250mOsm/kg = water diuresis, >300mOsm/kg = solute diuresis. Excess levels of various solutes in the urine, such as glucose in the poorly controlled diabetic, lead to a solute diuresis. A water diuresis occurs in patients with primary polydipsia (an appropriate physiological response to high water intake) and DI [antidiuretic hormone (ADH) deficiency or resistance]. Patients on lithium have renal resistance to ADH (nephrogenic DI).
References

Further reading
Loin (flank) pain

This can present suddenly as severe pain in the flank, reaching a peak within minutes or hours (acute loin pain). Alternatively, it may have a slower course of onset (chronic loin pain), developing over weeks or months. Loin pain is frequently presumed to be urological in origin on the simplistic basis that the kidneys are located in the loins. However, other organs are located in this region, a pathology within which may be the source of the pain, and pain arising from extra-abdominal organs may radiate to the loins (‘referred’ pain). So when faced with a patient with loin pain, think laterally—the list of differential diagnoses is long!

The speed of onset of loin pain gives some, although not an absolute, indication of the cause of urological loin pain. Acute loin pain is more likely to be due to something obstructing the ureter such as a stone. Loin pain of more chronic onset suggests disease within the kidney or renal pelvis.

Acute loin pain

The commonest cause of sudden onset of severe pain in the flank is the passage of a stone formed in the kidney down through the ureter. Ureteric stone pain characteristically starts very suddenly (within minutes), is colicky in nature (waves of increasing severity are followed by a reduction in severity, although seldom going away completely), and radiates to the groin as the stone passes into the lower ureter. The pain may change in location, from flank to groin, but its location does not provide a good indication of the position of the stone, except where the patient has pain or discomfort in the penis and a strong desire to void, which suggests that the stone has moved into the intramural part of the ureter (the segment within the bladder). The patient cannot get comfortable. They often roll around in agony.

Fifty per cent of patients with these classic symptoms of ureteric colic do not have a stone confirmed on subsequent imaging studies nor do they physically ever pass a stone.¹² They have some other cause for their pain (see pp. 20–1). A ureteric stone is only very rarely life-threatening, but many of these differential diagnoses may be life-threatening. Acute loin pain is less likely to be due to a ureteric stone in women and in patients at the extremes of age. It tends to be a disease of men (and, to a lesser extent, women) between the ages of ~20 and 60y, although it can occur in younger and older individuals.

Acute loin pain—non-stone, urological causes

• Clot or tumour colic: a clot may form from a bleeding source within the kidney (e.g. renal cell cancer or transitional cell cancer of the renal pelvis). Similarly, a ureteric TCC may cause ureteric obstruction and acute loin pain. Loin pain and haematuria are often assumed to be due to a stone, but it is important to approach investigation of such patients from the perspective of haematuria (i.e. look to exclude cancer).

• Pelviureteric junction obstruction (PUJO), also known as ureteropelvic junction obstruction (UPJO): may present acutely with flank pain, severe enough to mimic a ureteric stone. A computerized tomography (CT) scan will demonstrate hydronephrosis, with a normal-calibre
ureter below the pelviureteric junction (PUJ) and no stone. MAG3 renography confirms the diagnosis.

- **Infection:** e.g. acute pyelonephritis, pyonephrosis, emphysematous pyelonephritis, xanthogranulomatous pyelonephritis. These patients have a high fever (>38°C), whereas ureteric stone patients do not (unless there is an infection ‘behind’ the obstructing stone), and are often systemically very unwell. Imaging studies may or may not show a stone, and there will be radiological evidence of infection within the kidney and perirenal tissues (oedema).

Acute loin pain—non-urological causes
- **Vascular.**
 - Leaking abdominal aortic aneurysm (AAA).
- **‘Medical’.**
 - Pneumonia.
 - Myocardial infarction.
 - Malaria presenting as bilateral loin pain and dark haematuria—black water fever.
- **Gynaecological and obstetric.**
 - Ovarian pathology (e.g. twisted ovarian cyst).
 - Ectopic pregnancy.
- **Gastrointestinal (GI).**
 - Acute appendicitis.
 - Inflammatory bowel disease (Crohn’s disease, ulcerative colitis).
 - Diverticulitis.
 - Burst peptic ulcer.
 - Bowel obstruction.
- **Testicular torsion.**
- **Spinal cord disease.**
 - Prolapsed intervertebral disc.

Distinguishing urological from non-urological loin pain
History and examination are clearly important. Patients with ureteric colic often move around the bed in agony. Those with peritonitis lie still. Palpate the abdomen for signs of peritonitis (abdominal tenderness and/or guarding), and examine for abdominal masses (pulsatile and expansile = leaking AAA). Examine the patient’s back, chest, and testicles. In women, do a pregnancy test.

Chronic loin pain—urological causes
- **Renal or ureteric cancer.**
 - Renal cell carcinoma (RCC).
 - TCC of the renal pelvis or ureter.
- **Renal stones.**
 - Staghorn calculi.
 - Non-staghorn calculi.
- **Renal infection.**
 - TB.
- **PUJO.**
Significance and preliminary investigation

- Testicular pathology (referred pain).
 - Testicular neoplasms.
- Ureteric pathology.
 - Ureteric reflux.
 - Ureteric stone (may drop into the ureter, causing severe pain which then subsides to a lower level of chronic pain).

Chronic loin pain—non-urological causes

- GI.
 - Bowel neoplasms.
 - Liver disease.
- Spinal disease.
 - Prolapsed intervertebral disc.
 - Degenerative disease.
 - Spinal metastases.

References

Urinary incontinence

Definitions

Urinary incontinence (UI): the complaint of any involuntary leakage of urine.

Stress urinary incontinence (SUI): the complaint of involuntary leakage of urine on effort or exertion or sneezing or coughing. SUI can also be a sign—the observation of involuntary leakage of urine from the urethra that occurs synchronously with exertion, coughing, etc. A diagnosis of urodynamic SUI is made during filling cystometry when there is involuntary leakage of urine during a rise in abdominal pressure (induced by coughing) in the absence of detrusor contraction.

Urge urinary incontinence (UUI): the complaint of any involuntary leakage of urine accompanied by, or immediately preceded by, urgency.

Mixed urinary incontinence (MUI): a combination of SUI and UUI.

• Both UUI and MUI cannot be a sign, as they both require a perception of urgency by the patient.
• 25% of women aged >20y have UI, of whom 50% have SUI, 10–20% pure UUI, and 30–40% MUI.
• UI impacts on psychological health, social functioning, and quality of life.

Significance of SUI and UUI

• SUI: occurs as a result of bladder neck/urethral hypermobility and/or neuromuscular defects causing intrinsic sphincter deficiency (sphincter weakness incontinence). As a consequence, urine leaks whenever urethral resistance is exceeded by an ↑ abdominal pressure occurring during exercise or coughing, for example.
• UUI: may be due to bladder overactivity (formerly known as detrusor instability) or less commonly due to pathology that irritates the bladder (infection, tumour, stone). The correlation between urodynamic evidence of bladder overactivity and the sensation of urgency is poor, particularly in patients with MUI. Symptoms resulting from involuntary detrusor contractions may be difficult to distinguish from those due to sphincter weakness. Furthermore, in some patients, detrusor contractions can be provoked by coughing, and therefore, distinguishing leakage due to SUI from that due to bladder overactivity can be very difficult.
Other types of incontinence
While SUI and especially UUI do not specifically allow identification of the underlying cause, some types of incontinence allow a specific diagnosis to be made.

- **Bedwetting** in an elderly man usually indicates HPCR.
- **A constant leak** of urine suggests a fistulous communication between the bladder (usually) and vagina (e.g. due to surgical injury at the time of a hysterectomy or Caesarean section), or rarely the presence of an ectopic ureter draining into the vagina (in which case the urine leak is usually low in volume, but lifelong).

Further reading
Genital symptoms

Scrotal pain
- Pathology within the scrotum.
 - Torsion of the testicles.
 - Torsion of testicular appendages.
 - Epididymo-orchitis.
 - Testicular tumour.
- Referred pain.
 - Ureteric colic.

Torsional torsion: ischaemic pain is severe (e.g. myocardial infarction, ischaemic leg, ischaemic testis). Torsion presents with sudden onset of pain in the hemiscrotum, sometimes waking the patient from sleep. May radiate to the groin and/or loin. Five to ten per cent of boys report a history of scrotal trauma in the period prior to the acute presentation of testicular torsion.\(^1,^2\) Similar episodes may have occurred in the past, with spontaneous resolution of the pain (suggesting torsion/spontaneous detorsion). The testis is very tender. It may be high-riding (lying at a higher-than-normal position in the testis) and may lie horizontally due to twisting of the cord. There may be scrotal erythema.

Epididymo-orchitis: similar presenting symptoms as testicular torsion. Tenderness is usually localized to the epididymis (absence of testicular tenderness may help to distinguish epididymo-orchitis from testicular torsion, but in many cases, it is difficult to distinguish between the two). See p. 224 for advice on attempting to distinguish torsion from epididymo-orchitis.

Testicular tumour: 20% present with testicular pain.

Acute presentations of testicular tumours
- Testicular swelling may occur rapidly (over days or weeks). An associated (secondary) hydrocele is common. A hydrocele in a young person should always be investigated with an ultrasound to determine whether the underlying testis is normal.
- Rapid onset (days) of testicular swelling can occur. Very rarely present with advanced metastatic disease (high-volume disease in the retroperitoneum, chest, and neck, causing chest, back, or abdominal pain or shortness of breath).
- ~10–15% of testis tumours present with signs suggesting inflammation (i.e. signs suggesting a diagnosis of epididymo-orchitis—a tender, swollen testis, with redness in the overlying scrotal skin and fever).

Chronic scrotal pain
Includes:
- Testicular pain syndrome (a cause can be identified in as many as 75% of cases).
 - Testicular tumour.
 - Previous trauma or surgery, e.g. hernia repair, hydrocele repair, epididymal cyst removal, varicocele repair.
- Post-infection.
- Diabetic neuropathy.
- Polyarteritis nodosa.
- If there is radiation of the pain, consider a primary source in the vertebrae (e.g. prolapsed disc, tumour), ureter (ureteric stone), or a retroperitoneal tumour.
- Post-vasectomy pain syndrome (1–15% of men post-vasectomy; in some men, caused by obstruction to the vas, sperm granuloma, and chronic epididymitis).
- Epididymal pain syndrome.
 - Chronic bacterial infection.
 - STDs.
 - Trauma.

Other causes of chronic scrotal pain include post-laparoscopic nephrectomy (55% of men) and radical nephrectomy (20%)—50% of men experiencing resolution of the pain by 1 month post-surgery (possibly due to ligation of the gonadal vein); chronic prostatitis (tender prostate on DRE); pudendal neuralgia.

Management

- **Examination**: examine the scrotum for any of the pathologies listed previously; DRE.
- **Investigation**: mid-stream urine (MSU), scrotal ultrasound scan.
- **Treatment**: having excluded the above causes, antibiotics may be used if chronic epididymitis is suspected; pelvic floor physiotherapy; pain clinic referral; surgery—last resort, partial or total epididymectomy, inguinal orchiectomy, vasectomy reversal, spermatid cord denervation.

Priapism

Painful, persistent, prolonged erection of the penis not related to sexual stimulation (causes summarized in Chapter 13).

- Two broad categories—low-flow (commonest) and high-flow.
- Low-flow priapism—due to haematological disease, malignant infiltration of the corpora cavernosa with malignant disease, or drugs; painful because the corpora are ischaemic.
- High-flow priapism—due to perineal trauma which creates an arteriovenous fistula; painless.

Diagnosis is usually obvious from the history and examination of the erect, tender penis (in low-flow priapism). Characteristically, the corpora cavernosa are rigid and the glans is flaccid. Examine the abdomen for evidence of malignant disease, and perform a DRE to examine the prostate and check anal tone.

References

Further reading

Abdominal examination in urological disease

Because of their retroperitoneal (kidneys, ureters) or pelvic location (bladder and prostate), ‘urological’ organs are relatively inaccessible to the examining hand when compared with, for example, the spleen, liver, or bowel. For the same reason, for the kidneys and bladder to be palpable implies a fairly advanced disease state.

It is important that the urologist appreciates the characteristics of other intra-abdominal organs when involved with disease, so that they may be distinguished from ‘urological’ organs.

Characteristics and causes of an enlarged kidney

The mass lies in a paracolic gutter, moves with respiration, is dull to percussion, and can be felt bimanually. It can also be balloted, i.e. bounced like a ball \([\text{balla} = \text{ball} (\text{Italian})]\), between your hands, with one placed on the anterior abdominal wall and one on the posterior abdominal wall.

- **Causes of an enlarged kidney:** renal carcinoma, hydronephrosis, pyonephrosis, perinephric abscess, polycystic disease, nephroblastoma.

Characteristics and causes of an enlarged liver

The mass descends from underneath the right costal margin—you cannot get above it; it moves with respiration, is dull to percussion, and has a sharp or rounded edge. The surface may be smooth or irregular.

- **Causes of an enlarged liver:** infection, congestion (heart failure, hepatic vein obstruction—Budd–Chiari syndrome), cellular infiltration (amyloid), cellular proliferation, space-occupying lesion (polycystic disease, metastatic infiltration, primary hepatic cancer, hydatid cyst, abscess), cirrhosis.

Characteristics and causes of an enlarged spleen

The mass appears from underneath the costal margin, enlarges towards the right iliac fossa, is firm and smooth, and may have a palpable notch. It is not possible to get above the spleen—it moves with respiration, is dull to percussion, and cannot be felt bimanually.

- **Causes of an enlarged spleen:** bacterial infection (typhoid, typhus TB, septicaemia); viral infection (glandular fever); protozoal infection (malaria, kala-azar); spirochaete infection (syphilis, leptospirosis—Weil’s disease); cellular proliferation (myeloid and lymphatic leukaemia, myelosclerosis, spherocytosis, thrombocytopenic purpura, pernicious anaemia); congestion (portal hypertension—cirrhosis, portal vein thrombosis, hepatic vein obstruction, congestive heart failure); cellular infiltration (amyloid, Gaucher’s disease); space-occupying lesions (solitary cysts, hydatid cysts, lymphoma, polycystic disease).
Characteristics of an enlarged bladder
Arises out of the pelvis, dull to percussion, pressure of examining hand may cause a desire to void.

Characteristics and causes of abdominal distension
- Fetus—smooth, firm mass, dull to percussion, arising out of the pelvis.
- Flatus—hyperresonant (there may be visible peristalsis if the accumulation of flatus is due to bowel obstruction).
- Faeces—palpable in the flanks and across the epigastrium, firm, and may be indentable; there may be multiple separate masses in the line of the colon.
- Fat.
- Fluid (ascites)—fluid thrill, shifting dullness.
- Large abdominal masses (massive hepatomegaly or splenomegaly, fibroids, polycystic kidneys, retroperitoneal sarcoma).

The umbilicus and signs and symptoms of associated pathology
The umbilicus represents the location of four fetal structures: the umbilical vein, two umbilical arteries, and the urachus which is a tube extending from the superior aspect of the bladder towards the umbilicus (it represents the obliterated vesicourethral canal).

The urachus may remain open at various points, leading to the following abnormalities.
- Completely patent urachus: communicates with the bladder and leaks urine through the umbilicus; usually does not present until adulthood (strong contractions of the bladder of a child closes the mouth of the fistula).
- Vesicourachal diverticulum: a diverticulum in the dome of the bladder; usually symptomless.
- Umbilical cyst or sinus: can become infected, forming an abscess or may chronically discharge infected material from the umbilicus. A cyst can present as an immobile, midline swelling between the umbilicus and bladder; deep to the rectus sheath. It may have a small communication with the bladder, and therefore, its size can fluctuate as it can becomes swollen with urine.

Other causes of umbilical masses
Metastatic deposit (from abdominal cancer, metastatic spread occurring via lymphatics in the edge of the falciform ligament, running alongside the obliterated umbilical vein); ‘deposit’ of endometriosis (becomes painful and discharges blood at the same time as menstruation).
Digital rectal examination

The immediate anterior relationship of the rectum in the ♂ is the prostate. The DRE is the mainstay of examination of the prostate.

Explain the need for the examination. Ensure the examination is done in privacy. In the United Kingdom (UK), DRE is usually done in the left lateral position—with the patient lying on their left side and with the hips and knees flexed to 90° or more. Examine the anal region for fistulae and fissures. Apply plenty of lubricating gel to the gloved finger. Lift the tight buttock upwards with your other hand to expose the anus, and gently and slowly insert your index finger into the anal canal, then into the rectum.

Palpate anteriorly with the pulp of your finger, and feel the surface of the prostate. Note its consistency (normal or firm) and its surface (smooth or irregular), and estimate its size. (It can be helpful to relate its size to common objects (e.g. fruit or nuts!). A normal prostate is the size of a walnut, a moderately enlarged prostate that of a tangerine, and a big prostate the size of an apple or orange. The normal bilobed prostate has a groove (the median sulcus) between the two lobes, and in prostate cancer, this groove may be obscured.

Many men find DRE uncomfortable, or even painful, and the inexperienced doctor may equate this normal discomfort with prostatic tenderness. Prostatic tenderness is best elicited by gentle pressure on the prostate with the examining finger. If the prostate is really involved by some acute, inflammatory condition, such as acute, infective prostatitis or a prostatic abscess, it will be very tender.

DRE should be avoided in the profoundly neutropenic patient (risk of septicaemia) and in patients with an anal fissure where DRE would be very painful.

Other features to elicit in the DRE

The integrity of the sacral nerves that innervate the bladder and of the sacral spinal cord can be established by eliciting the bulbocavernosus reflex (BCR) during a DRE. The sensory side of the reflex is elicited by squeezing the glans of the penis or the clitoris (or in catheterized patients, by gently pulling the balloon of the catheter onto the bladder neck). The motor side of the reflex is tested by feeling for contraction of the anus during this sensory stimulus. Contraction of the anus represents a positive BCR and indicates that the afferent and efferent nerves of the sacral spinal cord (S2–4) and the sacral cord are intact.
Section 2. Significance and preliminary investigation

Lumps in the groin

Differential diagnosis
Inguinal hernia, femoral hernia, enlarged lymph nodes, saphena varix, hydrocele of the cord (or of the canal of Nück in women), vaginal hydrocele, undescended testis, lipoma of the cord, femoral aneurysm, psoas abscess.

Determining the diagnosis

Hernia
A hernia (usually) has a cough impulse (i.e. it expands on coughing) and (usually) reduces with direct pressure or on lying down unless, uncommonly, it is incarcerated (i.e. the contents of the hernia are fixed in the hernia sac by their size and by adhesions). Movement of the lump is not the same as expansion. Many groin lumps have a transmitted impulse on coughing (i.e. they move) but do not expand on coughing. Since inguinal and femoral hernias arise from within the abdomen and descend into the groin, it is not possible to ‘get above’ them. For lumps that arise from within the scrotum, the superior edge can be palpated (i.e. it is possible to ‘get above’ them).

Once a hernia has protruded through the abdominal wall, it can expand in any direction in the subcutaneous tissues, and therefore, the position of the unreduced hernia cannot be used to establish whether it is inguinal or femoral. The point of reduction of the hernia establishes whether it is an inguinal or a femoral hernia.

- **Inguinal**: the hernia reduces through the abdominal wall at a point above and medial to the pubic tubercle. An indirect inguinal hernia often descends into the scrotum; a direct inguinal hernia rarely does.
- **Femoral**: the hernia reduces through the abdominal wall at a point below and lateral to the pubic tubercle.

Enlarged inguinal lymph nodes
A firm, non-compressible, nodular lump in the groin. Look for pathology in the skin of the scrotum and penis, the perianal area and anus, and the skin and superficial tissues of the thigh and leg.

Saphena varix
A dilatation of the proximal end of the saphenous vein. Can be confused with an inguinal or femoral hernia because it has an expansile cough impulse (i.e. expands on coughing) and disappears on lying down. It is easily compressible and has a fluid thrill when the distal saphenous vein is percussed.

Hydrocele of the cord (or of the canal of Nück in women)
A hydrocele is an abnormal quantity of peritoneal fluid between the parietal and visceral layers of the tunica vaginalis, the double layer of the peritoneum surrounding the testis and which was the processus vaginalis in the fetus. Normally, the processus vaginalis becomes obliterated along its entire length, apart from where it surrounds the testis where a potential space remains between the parietal and visceral layers. If the central part
of the processus vaginalis remains patent, fluid secreted by the ‘trapped’ peritoneum accumulates and forms a hydrocele of the cord (the equivalent in ♀ is known as the canal of Nück). A hydrocele of the cord may therefore be present in the groin.

Undescended testis
May be on the correct anatomical path but may have failed to reach the scrotum (incompletely descended testis) or may have descended away from the normal anatomical path (ectopic testis). The ‘lump’ is smooth, oval, tender to palpation, and non-compressible, and there is no testis in the scrotum.

Lipoma of the cord
A non-compressible lump in the groin, with no cough impulse.

Femoral aneurysm
Usually in the common femoral artery (rather than the superficial or profunda femoris branches), and therefore located just below the inguinal ligament. Easily confused with a femoral hernia. Like all aneurysms, they are expansile (but unlike hernias, they do not expand on coughing).

Psoas abscess
The scenario is one of a patient who is unwell with fever and with a soft, fluctuant, compressible mass in the femoral triangle.
Lumps in the scrotum

Differential diagnosis
Inguinal hernia, hydrocele, epididymal cyst, testicular tumour, varicocele, sebaceous cyst, tuberculous epididymo-orchitis, gumma of the testis, carcinoma of scrotal skin.

Determining the diagnosis
Inguinal hernia
An indirect inguinal hernia often extends into the scrotum. It usually has a cough impulse (i.e. it expands on coughing) and usually reduces with direct pressure or on lying down. It is not possible to get above the lump.

Hydrocele
A hydrocele is an abnormal quantity of peritoneal fluid between the parietal and visceral layers of the tunica vaginalis, the double layer of the peritoneum surrounding the testis and which was the processus vaginalis in the fetus. Normally, the processus vaginalis becomes obliterated along its entire length, apart from where it surrounds the testis where a potential space remains between the parietal and visceral layers.

Usually painless, unless the underlying testicular disease is painful. A hydrocele has a smooth surface, and it is difficult or impossible to feel the testis which is surrounded by the tense, fluid collection (unless, rarely, the hydrocele is very lax). The superior margin can be palpated (i.e. you can get above the lump). It is possible to transilluminate a hydrocele (i.e. the light from a torch applied on one side can be seen on the other side of the hydrocele).

May be primary (idiopathic) or secondary. Primary hydroceles develop slowly (over the course of years usually) and there is no precipitating event such as epididymo-orchitis or trauma, and the underlying testis appears normal on ultrasound (no testicular tumour). Secondary hydroceles (infection, tumour, trauma) represent an effusion between the layers of the tunica vaginalis (the visceral and parietal layers), analogous to a pleural or peritoneal effusion. In filariasis (infection with the filarial worm Wuchereria bancrofti), obstruction of the lymphatics of the spermatic cord give rise to the hydrocele.

Epididymal cyst
(Also known as a spermatocele if there are spermatozoa in the contained fluid.)
Derived from the collecting tubules of the epididymis and contains clear fluid. They develop slowly (over years), lie within the scrotum (you can get above them), and usually lie above and behind the testis. They are often multiple (multiloculated).

Orchitis
In the absence of involvement of the epididymitis, due to a viral infection, e.g. mumps. Often occurs with enlargement of the salivary glands.
Tuberculous epididymo-orchitis
Infection of the epididymis (principally) with TB, which has spread from the blood or urinary tract. The absence of pain and tenderness is noticeable. The epididymis is hard and has an irregular surface. The spermatic cord is thickened, and the vas deferens also feels hard and irregular (a ‘string of beads’).

Testicular tumour (seminoma, teratoma)
A solid mass arising from within the scrotum that, if very large, may extend up into the spermatic cord. They may present with symptoms which mimic an acute epididymo-orchitis (i.e. pain and tenderness in the testis and fever). Not infrequently, the patient reports a history of minor trauma to the testis in the days or weeks preceding the onset of symptoms. They may have undergone an orchidopexy as a child (fixation of the testis in the scrotum for an undescended testis).

The lump is usually firm or hard, and may have a smooth or an irregular surface. Examine for abdominal and supraclavicular lymph nodes.

Gumma of the testis
Rare; syphilis of the testis resulting in a round, hard, insensitive mass involving the testis (a so-called ‘billiard ball’); difficult to distinguish from a tumour.

Varicocele
Dilatation of the pampiniform plexus—the collection of veins surrounding the testis and extending up into the spermatic cord (essentially varicose veins of the testis and spermatic cord). Small, symptomless varicoceles occur in ~20% of normal men and are commoner on the left side. They may cause a dragging sensation or an ache in the scrotum. Said to feel like a ‘bag of worms’. The varicocele disappears when the patient lies down.

Sebaceous cyst
Common in scrotal skin. They are fixed to the skin and have a smooth surface.

Carcinoma of scrotal skin
Appears as an ulcer on the scrotal skin, often with a purulent or bloody discharge.
Chapter 3

Urological investigations

Assessing kidney function 38
Urine examination 40
Urine cytology 42
Prostatic-specific antigen 43
Radiological imaging of the urinary tract 44
Uses of plain abdominal radiography (the ‘KUB’ X-ray—kidneys, ureters, and bladder) 46
Other urological contrast studies 52
Computed tomography and magnetic resonance imaging 54
Radioisotope imaging 60
Uroflowmetry 62
Post-void residual urine volume measurement 66
Cystometry, pressure flow studies, and videocystometry 68
Assessing kidney function

When we talk about measuring kidney function, what we mean is measurement of glomerular filtration rate (GFR). This is regarded as the best measure of kidney function, and we grade the degree of renal impairment and renal failure according to the GFR. Normal GFR in young men is \(~130\text{mL/min per 1.73m}^2\) of body surface area. In young women, it is \(120\text{mL/min per 1.73m}^2\) of body surface area. Mean GFR declines with age (Table 3.1).

The ideal filtration marker is excreted by filtration alone. Exogenous markers that can be used to measure include inulin, iothalamate, ethylene diamine tetra-acetic acid (EDTA), diethylene triamine penta-acetic acid, and iohexol. Measurement of GFR using exogenously administered markers is complex and expensive and is difficult to do in routine clinical practice.

Urinary clearance of endogenous markers, such as creatinine, can be used to estimate GFR. Creatinine is a 113D-amino acid derivative that is freely filtered at the glomerulus. A timed urine collection and measurement of serum creatinine concentration allows calculation of GFR according to the formula:

\[
\text{Clearance (GFR)} = \frac{U \times V}{P}
\]

where \(U\) is the concentration of urine in urine, \(P\) the concentration in plasma, and \(V\) the urine flow.

As an alternative, estimation of GFR can be made from simple measurement of serum creatinine, since the main mechanism of creatinine excretion is by glomerular filtration and GFR has a reciprocal relationship with serum creatinine. Thus, as GFR falls (indicating worsening renal function), creatinine rises. However, creatinine is not the ideal filtration marker since it is also excreted by proximal tubular secretion, as well as by glomerular filtration, and therefore, creatinine clearance exceeds GFR, i.e. creatinine clearance tends to overestimate GFR.

Table 3.1 Chronic kidney disease (CKD) classification

<table>
<thead>
<tr>
<th>Stage</th>
<th>eGFR (mL/min/1.73m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kidney damage with normal or ↑ GFR</td>
</tr>
<tr>
<td>2</td>
<td>Mild decrease in GFR</td>
</tr>
<tr>
<td>3</td>
<td>Moderate decrease in GFR</td>
</tr>
<tr>
<td>3a</td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>Severe decrease in GFR</td>
</tr>
<tr>
<td>5</td>
<td>Kidney failure</td>
</tr>
</tbody>
</table>
Estimated GFR

Since the endogenous production of creatinine is determined by muscle mass, serum levels of creatinine will not only vary according to renal function (glomerular filtration), but also according to age, body size, ethnic group, and sex. Taking account of these factors can overcome some of the limitations of measurement of serum creatinine alone.

Two creatinine-based equations have been widely used for calculating eGFR—the Cockcroft–Gault formula (derived from a♂ inpatient population) and the Modification of Diet in Renal Disease (MDRD) equation [derived from patients with chronic kidney disease (CKD)]. The Cockcroft–Gault formula overestimates GFR because of tubular secretion of creatinine and the value is not adjusted for body surface area. More recently, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation has been developed and is now recommended by the National Institute for Health and Care Excellence (NICE) for routine use, as it is more accurate than the MDRD equation, is less biased at eGFR >60, and performs better in patients >75y.

The MDRD equation (modified in 2005; adjusts for body surface area) is:

\[\text{GFR (mL/min/1.73m}^2) = 30849 \times (S_{Cr})^{-1.154} \times (\text{age})^{-0.203} \times (0.742 \text{ if } \varnothing; \times 1.212 \text{ if black}) \]

The CKD-EPI equation is:

\[\text{GFR (mL/min/1.73m}^2) = 141 \times \min (S_{Cr}/\kappa, 1)^\alpha \times \max (S_{Cr}/\kappa, 1)^{-1.209} \times 1.018 \text{ if } \varnothing; \times 1.159 \text{ if black}) \]

where \(S_{Cr} = \text{serum creatinine (µmol/L)}; \kappa = 61.9 \text{ for } \varnothing, 79.6 \text{ for } \sigma^\circ; \alpha = -0.329 \text{ for } \varnothing, -0.411 \text{ for } \sigma^\circ; \min = \text{the minimum of } S_{Cr}/\kappa \text{ or 1}; \max = \text{the maximum of } S_{Cr}/\kappa \text{ or 1}. \)

The eGFR provides substantial improvements over serum creatinine measurements alone in the clinical assessment of renal function in terms of the detection, evaluation, and management of CKD (Table 3.1).
Urine examination

Dipstick testing
Analysis for pH, blood, protein, glucose, and white cells can be done with dipstick testing.

pH
Urinary pH varies between 4.5 and 8, averaging between 5.5 and 6.5.

Blood
Normal urine contains <3 RBCs per HPF (1000 erythrocytes/mL of urine; upper limit of 5000–8000 erythrocytes/mL). Positive dipstick for blood indicates the presence of Hb in the urine. Hb has a peroxidase-like activity and causes oxidation of a chromogen indicator which changes colour when oxidized. Sensitivity of urine dipsticks for identifying haematuria (>3 RBCs/HPF) is >90%; specificity is lower [i.e. a higher false-positive rate with the dipstick due to contamination with menstrual blood or dehydration (concentrates what RBCs are normally present in urine)].

Haematuria due to a urological cause does not elevate urinary protein. Haematuria of nephrological origin often occurs in association with casts, and there is almost always significant proteinuria.

Protein
Normal, healthy adults excrete about 80–150mg of protein per day in their urine (normal protein concentration <20mg/dL). Proteinuria suggests the presence of renal disease (glomerular, tubulo-interstitial, renal vascular) or multiple myeloma, but it can occur following strenuous exercise. The dipstick test is based on a tetrabromophenol blue dye colour change (green colour develops in the presence of a protein concentration of >20mg/dL).

White blood cells
Leucocyte esterase activity detects the presence of white blood cells (WBCs) in the urine. Leucocyte esterase is produced by neutrophils and causes a colour change in a chromogen salt on the dipstick. Not all patients with bacteriuria have significant pyuria. False negatives: concentrated urine, glycosuria, presence of urobilinogen, consumption of large amounts of ascorbic acid. False positives: contamination.

Nitrite testing
Nitrites in the urine suggest the possibility of bacteriuria. They are not normally found in the urine. Many species of Gram-negative bacteria can convert nitrates to nitrites, and these are detected in the urine by a reaction with the reagents on the dipstick, which form a red azo dye. The specificity of the nitrite dipstick for detecting bacteriuria is >90% (false-positive nitrite testing is contamination). Sensitivity is 35–85% (i.e. lots of false negatives); less accurate in urine containing fewer than 10^5 organisms/mL.

Cloudy urine that is positive for WBCs and nitrite-positive is very likely to be infected.
Urine microscopy

Red blood cell morphology
Determined by phase contrast microscopy. RBCs derived from the glomerulus are dysmorphic (they have been distorted by their passage through the glomerulus). RBCs derived from tubular bleeding (tubulo-interstitial disease) and those from lower down the urinary tract (i.e. urological bleeding from the renal pelvis, ureters, or bladder) have a normal shape. Glomerular bleeding is suggested by the presence of dysmorphic RBCs, RBC casts, and proteinuria.

Casts
A protein coagulum (principally, Tamm–Horsfall mucoprotein derived from tubular epithelial cells) formed in the renal tubule and ‘cast’ in the shape of the tubule (i.e. long and thin). The protein matrix traps tubular luminal contents. If the cast contains only mucoproteins, it is called a hyaline cast. Seen after exercise and heat exposure, and in pyelonephritis or chronic renal disease. RBC casts contain trapped erythrocytes and are diagnostic of glomerular bleeding, most often due to glomerulonephritis. WBC casts are seen in acute glomerulonephritis, acute pyelonephritis, and acute tubulo-interstitial nephritis.

Crystals
Specific crystal types may be seen in the urine and help diagnose underlying problems (e.g. cystine crystals establish the diagnosis of cystinuria). Calcium oxalate, uric acid, and cystine are precipitated in acidic urine. Crystals precipitated in alkaline urine include calcium phosphate and triple phosphate (struvite).
Urine cytology

- **Urine collection for cytology:** exfoliated cells lying in urine that has been in the bladder for several hours (e.g. early morning specimens) or in a urine specimen that has been allowed to stand for several hours are degenerate. Such urine specimens are not suitable for cytological interpretation. Cytological examination can be performed on bladder washings (using normal saline) obtained from the bladder at cystoscopy (or following catheterization) or from the ureter (via a ureteric catheter or ureteroscope). The urine is centrifuged, and the specimen obtained is fixed in alcohol and stained by the Papanicolaou technique.

- Normal urothelial cells are shed into the urine, and under the microscope, their nuclei appear regular and monomorphic (diffuse, fine chromatin pattern, single nucleolus).

- **Causes of a positive cytology report (i.e. abnormal urothelial cells seen)—high nuclear:cytoplasmic ratio, hyperchromatic nuclei, prominent nucleoli):**
 - Urothelial malignancy (TCC, SCC, adenocarcinoma).
 - Previous radiotherapy (especially if within the last 12 months).
 - Previous cytotoxic drug treatment (especially if within the last 12 months, e.g. cyclophosphamide, busulfan, ciclosporin).
 - Urinary tract stones.

- Renal adenocarcinoma (clear cell cancer of the kidney) usually does not exfoliate abnormal cells, although occasionally clusters of clear cells may be seen, suggesting the diagnosis.

- High-grade urothelial cancer and CIS exfoliate cells which look very abnormal, and usually the cytologist is able to indicate that there is a high likelihood of a malignancy. Low-grade bladder TCC exfoliates cells which look very much like normal urothelial cells. The difficulty arises where the cells look abnormal, but not that abnormal—here, the likelihood that the cause of the abnormal cytology is a benign process is greater.

- **Sensitivity and specificity of positive urine cytology for detecting TCC of the bladder depends on the definition of ‘positive’—if only obviously malignant or highly suspicious samples are considered positive, then the specificity will be high. Urine cytology may be negative in as many as 20% of high-grade cancers. If ‘atypical cells’ are included in the definition of ‘abnormal’, the specificity of urine cytology for diagnosing urothelial cancer will be relatively poor (relatively high number of false positives) because many cases will have a benign cause (stones, inflammation).**
Prostatic-specific antigen

(See also pp. 332–3 and pp. 334–5.)

PSA is a 34-kDa glycoprotein enzyme produced by the columnar acinar and ductal prostatic epithelial cells. It is a member of the human kallikrein family, and its function is to liquefy the ejaculate, enabling fertilization. PSA is present in both benign and malignant cells, although the expression of PSA tends to be reduced in malignant cells and may be absent in poorly differentiated tumours. Large amounts are secreted into the semen, and small quantities are found in the urine and blood.

The function of serum PSA is unclear, although it is known to liberate insulin-like growth factor (IGF) type 1 from one of its binding proteins. Seventy-five per cent of circulating PSA is bound to plasma proteins (complexed PSA) and metabolized in the liver, while 25% is free and excreted in the urine. Complexed PSA is stable, bound to α-1 antichymotrypsin and α-2 macroglobulin. Free PSA is unstable, recently found to consist of two isoforms—pro-PSA is a peripheral zone precursor, apparently elevated in the presence of prostate cancer, and benign PSA (BPSA) is the transition zone precursor and associated with BPH. The half-life of serum PSA is 2.2 days. The normal range for the serum PSA assay in men is <4.0ng/mL, though this varies with age. Table 3.2 shows a published age-specific normal range (95th centile).

In the absence of prostate cancer, serum PSA concentrations also vary physiologically, according to race and prostate volume.

Indications for checking serum PSA

- Patient request, following counselling (see p. 336).
- LUTS.
- Abnormal DRE.
- Progressive bone pain, especially back pain.
- Unexplained anaemia, anorexia, or weight loss.
- Spontaneous thromboembolism or unilateral leg swelling.
- Monitoring of prostate cancer patients.

Table 3.2 Age-adjusted normal range for PSA

<table>
<thead>
<tr>
<th>Age range</th>
<th>Normal PSA range (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ages</td>
<td><4.0</td>
</tr>
<tr>
<td>40–49</td>
<td><2.5</td>
</tr>
<tr>
<td>50–59</td>
<td><3.5</td>
</tr>
<tr>
<td>60–69</td>
<td><4.5</td>
</tr>
<tr>
<td>>70</td>
<td><6.5</td>
</tr>
</tbody>
</table>
Radiological imaging of the urinary tract

Ultrasound
A non-invasive method of urinary tract imaging. While it provides good images of the kidneys and bladder, anatomical detail of the ureter is poor and the mid ureter cannot be imaged at all by ultrasound because of overlying bowel gas.

Uses of ultrasound

Renal
- Assessment of haematuria.
- Determination of the nature of renal masses—can differentiate simple cysts (smooth, well-demarcated wall, reflecting no echoes; benign) from solid masses (almost always malignant; cystic masses with solid components or multiple septae or calcification may be malignant), from those casting an ‘acoustic shadow’ (stones) (Fig. 3.1).
- Can determine the presence/absence of hydronephrosis (dilatation of the collecting system) in patients with abnormal renal function (Fig. 3.2).
- Allows ultrasound-guided nephrostomy insertion in patients with hydronephrosis and renal impairment or with infected, obstructed kidneys.

Bladder
- Measurement of post-void residual (PVR) urine volume.
- Allows ultrasound-guided placement of a suprapubic catheter.

Prostate: TRUS
- Measurement of prostate size (where gross prostatic enlargement is suspected on the basis of a DRE and surgery in the form of open prostatectomy is contemplated).
- To assist prostate biopsy (allows biopsy of hypo- or hyperechoic lesions).
- Investigation of azoospermia (can establish the presence of ejaculatory duct obstruction).

Urethra
Can image the urethra and establish the depth and extent of spongiofibrosis in urethral stricture disease.

Testes
- Assessment of the patient complaining of a ‘lump in the testicle (or scrotum)’—can differentiate benign lesions (hydrocele, epididymal cyst) from malignant testicular tumours (solid, echo-poor, or with an abnormal echo pattern).
- When combined with power Doppler, can establish the presence/absence of testicular blood flow in suspected torsion.
- Assessment of testicular trauma (rupture is indicated by an abnormal echo pattern due to blood within the body of the testis; surrounding haematoma may be seen—blood within the scrotal soft tissues that has escaped through a tear in the tunica albuginea and the visceral and parietal layers of the tunica vaginalis; haematocele—blood contained by an intact parietal layer of the tunica vaginalis).
- Investigation of infertility—varicoceles and testicular atrophy may be identified.
Fig. 3.1 An acoustic shadow cast by a stone within the kidney.

Fig. 3.2 Hydronephrosis. Urine in dilated calyces appears black (hypoechoic).
Uses of plain abdominal radiography (the ‘KUB’ X-ray—kidneys, ureters, and bladder)

- For detection of stones and determination of their size and (to an extent) their location within the kidneys, ureters, and bladder (Fig. 3.3).
- Renal calculi: a calcification overlying the kidneys is intrarenal if it maintains its relationship to the kidney on inspiratory and expiratory films (i.e. if it moves with the kidney). If in doubt as to whether an opacity overlying the outline of the kidney is intrarenal or not, get an ultrasound (look for the characteristic ‘acoustic shadow’ within the kidney), IVU, or CT urinary tract (CT-KUB).
- Ureteric calculi: sensitivity for detection of renal calculi is in the order of 50–70% (i.e. the false-negative rate is between 30 and 50%; it misses ureteric stones when these are present in 30–50% of cases). CT-KUB or IVU, which relate the position of the opacity to the anatomical location of the ureters, are required to make a definitive diagnosis of a ureteric stone. However, once the presence of a ureteric stone has been confirmed by another imaging study (CT-KUB or IVU) and as long as it is radio-opaque enough and large enough to be seen, plain radiography is a good way of following the patient to establish whether the stone is progressing distally, down the ureter. It is not useful for ‘following’ ureteric stones that are radiolucent (e.g. uric acid) or small (generally a stone must be 3–4mm to be visible on plain X-ray), or when the stones pass through the ureter as it lies over the sacrum. Ability of KUB X-ray to ‘see’ stones is also dependent on the amount of overlying bowel gas.
- Plain tomography (a plain X-ray taken of a fixed coronal plane through the kidneys) can be useful but is rarely done nowadays, with the availability of ultrasound and CT.
- Opacities that may be confused with stones (renal, ureteric) on plain radiography: calcified lymph nodes, pelvic phleboliths (round, lucent centre, usually below the ischial spines).
- Look for the psoas shadow—obscured where there is retroperitoneal fluid (pus or blood) (Fig. 3.4).
Fig. 3.3 Small staghorn calculus on KUB X-ray.

Fig. 3.4 Leaking AAA on plain X-ray; the right psoas shadow cannot be seen due to retroperitoneal haemorrhage.
Intravenous urography

Also known as intravenous pyelography (IVP). Now virtually obsolete in the era of CT-KUB scanning (non-contrast CTU) used for the investigation of acute loin pain and CTU (a contrast CT of the kidneys, ureters, and bladder). The reconstructed digital images obtained on CTU are superior to those of IVU. However, for the benefit of those urologists in other parts of the world where IVU may still be the standard method of upper tract imaging, the author has retained this section.

A control film is obtained before contrast is given. Intravascular contrast is administered, followed by a series of X-rays of the kidneys, ureters, and bladder over the following 30min or so, to image their anatomy and pathology and to give some indication of renal function.

- Radio-opacity of contrast agents depends on the presence of a tri-iodinated benzene ring in the molecule.
- Ionic monomers (sodium and meglumine salts) ionize, thereby producing high-osmolality solutions (e.g. iothalamate—Conray®, diatrizoate—Hypaque®, Urografin®).
- Non-ionic monomers—low osmolality (e.g. iopamidol—Niopam®, iohexol—Omnipaque®).
- At a concentration of 300mg of iodine per mL, ionic monomers have an osmolality five times higher than plasma, compared with non-ionic monomers which have an osmolality twice that of plasma.
- Excreted from plasma by glomerular filtration.

Films and ‘phases’ of the IVU

- **Plain film:** looking for calcification overlying the region of the kidneys, ureters, and bladder.
- **Nephrogram phase:** first phase of IVU; film taken immediately following IV administration of contrast (peak nephrogram density). The nephrogram is produced by filtered contrast within the lumen of the proximal convoluted tubule (PCT) (it is a proximal tubular, rather than distal, tubular phenomenon).
- **Pyelogram phase:** as the contrast passes along the renal tubule (into the distal tubule), it is concentrated (as water is absorbed, but the contrast agent is not). As a consequence, the contrast medium is concentrated in the pelvicalyceal system and thus this ‘pyelogram’ phase (Fig. 3.5) is much denser than the nephrogram phase. The pyelogram phase can be made denser by dehydrating the patient prior to contrast administration. Pelvic compression can be used to distend the pelvicalyceal system and demonstrate their anatomy more precisely. Compression is released and a film taken (20–30min) (Fig. 3.6).

Side effects of administration of intravenous contrast media

- Occur in 1% of patients given non-ionic and 5% given ionic contrast media.
- The most serious reactions represent an anaphylactic reaction—hypotension with flushing of the skin (marked peripheral vasodilatation), oedema (face, neck, body, and limbs), bronchospasm, urticaria. Rarely, cardiac arrest can occur. The death rate, as a consequence of these reactions, is 1 in 40 000 to 1 in 70 000 with the ionic media and 1 in 200 000 with non-ionic contrast agents.
Fig. 3.5 Normal IVU at 15min.

Fig. 3.6 Normal IVU at 20min. Lower abdominal compression has been released.
A contrast reaction is more likely to occur in patients with an iodine allergy, previous contrast reaction, asthma, multiple other allergies, and heart disease and is less likely with non-ionic contrast media. Steroid premedication (at least 12h before) can reduce the risk of a contrast reaction.

Contrast media are also nephrotoxic. Ten per cent of patients with a raised creatinine will develop an increase in creatinine after an IVU (more likely in diabetics, with dehydration, and with large contrast doses). The increase in creatinine usually resolves spontaneously.

Uses of IVU

- Investigation of haematuria—detection of renal masses, filling defects within the collecting system of the kidney and within the ureters (stones, TCCs).
- Localization of calcification overlying the urinary tract (i.e. is it a stone or not?).
- Investigation of patients with loin pain (e.g. suspected ureteric colic). Increasingly being replaced with CTU which has superior sensitivity and specificity.
- Very good for identification of congenital urinary tract abnormalities (e.g. ureteric anatomy in duplex systems; Fig. 3.7), malrotation, horseshoe kidneys.
- Used for follow-up of post-ureteric surgery to identify strictures.
- There is a trend towards IVU being replaced by MDCTU (a rapid-acquisition CT done following IV contrast administration, with high spatial resolution) at least in the investigation of haematuria and of loin pain. To a large extent, whether one uses IVU or MDCTU depends on the availability of the latter in your radiology department.
Fig. 3.7 Bilateral duplex as seen on a tomogram from IVU.
Other urological contrast studies

Videocystourethrography (VCUG)
(See Fig. 3.8.)
To identify the presence of vesicoureteric reflux (VUR) during filling and emptying of the bladder and the presence and site of obstruction in the outlet of the bladder and within the urethra, particularly in patients with neuropathic bladder problems [e.g. spinal cord injury (SCI)].

Cystography
Retrograde filling of the bladder via a catheter with contrast. Identifies vesicocolic and vesicovaginal fistulae and bladder rupture (extraperitoneal and intraperitoneal).

Urethrography
(See Fig. 3.9.)
Retrograde filling of the urethra with contrast, to identify the site and length of urethral strictures (Fig. 3.10) or the presence, extent, and site of urethral injury (in pelvic fracture, for example).

Ileal loopogram
Retrograde filling of an ileal conduit with contrast, to establish the presence of free reflux into the ureters (a normal finding; absence of free reflux suggests obstruction at the uretero-ileal junction due to ischaemic stenosis or recurrent TCC in the ureters at the uretero-ileal junction) and the presence of TCCs in the ureters or renal pelvis (an occasional finding in patients who have had a cystectomy for bladder TCC with ileal conduit urinary diversion).

Retrograde ureterography
Retrograde instillation of contrast into the ureters by a ureteric catheter inserted into the ureter via a cystoscope (rigid or flexible). Provides excellent definition of the ureter and renal pelvis for detection of ureteric and renal pelvic TCCs or radiolucent stones in patients with persistent haematuria where other tests have shown no abnormality. Also used to diagnose the presence and site of ureteric injury (obstruction, ureteric leak) in cases of ureteric injury (e.g. post-hysterectomy or Caesarean section).
Fig. 3.8 VCUG showing bilateral ureteric reflux.

Fig. 3.9 Normal urethrogram.

Fig. 3.10 A urethrogram showing a bulbar urethral stricture.
Computed tomography and magnetic resonance imaging

CT

Widely used for investigation of urological symptoms and disease. It can detect very small differences in X-ray absorption values of tissues, providing a very wide range of densities (and therefore differentiation between tissues) when compared with plain radiography. The computer calculates the absorption value (attenuation) of each pixel and reconstructs this into an image. The attenuation values are expressed on a scale from -1000 to $+1000$ Hounsfield units (water $= 0$, air $= -1000$, bone $= +1000$). More recently, advances in computing power have enabled the data to be reformatted, so that images can be produced in sagittal and coronal planes, as well as in the more familiar horizontal plane (Figs. 3.11 and 3.12).

‘Plain’ CT scans (without contrast) can detect calcification and calculi within the urinary tract.

Administration of IV contrast is used to investigate haematuria, to evaluate the nature of solid renal lesions, and to determine the nature of soft tissue masses (e.g. to differentiate bowel from lymph nodes in cancer staging CTs). ‘Spiral’ or ‘helical’ CT [also known as multidetector CT urography (MDCTU) when done following IV contrast administration] is very rapid scanning, while the table on which the patient is lying is moved though the scanner. Multiple images (‘slices’) of the patient are taken. A large volume of the body can be imaged in a single breath-hold, thus eliminating movement artefact and increasing spatial resolution—particularly useful for identifying suspected ureteric stones in patients with acute loin pain and (with contrast) for determining the nature of renal masses.

Overlapping thin sections can be ‘reconstructed’ into images in multiple planes [multiplanar reformatting (MPR)], so lesions can be imaged in multiple planes (sagittal, coronal), as opposed to the traditional transverse sections.

Uses of CT

Haematuria

Investigation of the site and cause of urinary tract bleeding. Has the advantage of a single investigation which potentially could obviate the need for the traditional ‘4-test’ approach to haematuria (IVU, renal ultrasound, flexible cystoscopy, urine cytology), although at the cost of a higher radiation dose. There is evidence suggesting that MDCTU has reasonable sensitivity and high specificity for diagnosing bladder tumours1 (in patients with macroscopic haematuria—93% sensitivity, 99% specificity) and that it has equivalent diagnostic accuracy to retrograde ureteropyelography (the retrograde administration of contrast via a catheter inserted in the lower ureter to outline the ureter and renal collecting system).2 Overall, for patients with haematuria and no prior history of urological malignancy, for the detection of all urological tumours, it has ~65% sensitivity and 98% specificity3—so it only rarely calls a lesion a tumour when, in fact, the lesion is benign, but it still fails to diagnose a significant proportion of
Fig. 3.11 Coronal CT image of the abdomen showing the left kidney, aorta, and inferior vena cava.

Fig. 3.12 Coronal CT image of the abdomen showing the left kidney and paravertebral muscles.
urinary neoplasms (sensitivity for upper tract neoplasms 80%, for bladder tumours 60%). The role of MDCTU (described by some as the ‘ultimate’ imaging modality) in the investigation of haematuria remains controversial. MDCTU in all patients with haematuria (microscopic, macroscopic), when most will have no identifiable cause for the haematuria, has a cost (high radiation dose, financial). A targeted approach, aimed at those with risk factors for urothelial malignancy (age >40y, macroscopic, as opposed to microscopic, haematuria, smoking history, occupational exposure to benzenes and aromatic amines) might be a better use of this resource, rather than using MDCTU as the first imaging test for both high- and low-risk patients. Thus, the ‘best’ imaging probably depends on the context of the patient.

Renal
- Investigation of renal masses—characterizes solid from cystic lesions; differentiates benign (e.g. angiomyolipoma) from malignant solid masses (e.g. RCC).
- Staging of renal cancer (establishes local, nodal, and distant spread).
- Assessment of stone size and location (within the collecting system or within the parenchyma of the kidney).
- Detection and localization of the site of intrarenal and perirenal collections of pus (pyonephrosis, perinephric abscess).
- ‘Staging’ (grading) of renal trauma.
- Determination of the cause of hydronephrosis.

Loin pain: imaging the ureters
The IVU, previously the mainstay of imaging in patients with flank pain, has been superseded by CT-KUB, a non-contrast CT of the kidneys, ureters, and bladder. Compared with IVU, CT-KUB:
- Has greater specificity (97%) and sensitivity (94–100%) for diagnosing ureteric stones. Can identify non-stone causes of flank pain.
- Requires no contrast administration, so avoiding the chance of a contrast reaction (the risk of fatal anaphylaxis following the administration of low-osmolality contrast media for IVU is in the order of 1 in 100 000).
- Is faster, taking just a few minutes to image the kidneys and ureters. An IVU, particularly where delayed films are required to identify a stone causing high-grade obstruction, may take hours to identify the precise location of the obstructing stone.
- Is equivalent in cost to IVU in high-CT volume hospitals.

CTU is able to locate and measure the size and number of ureteric stones. A non-contrast CT-KUB radiation dose: ~4.7mSv, compared to 1.5mSv for IVU (fatal cancer risk is estimated at 1 in 2000 for a 10-mSv radiation exposure). Ultra-low-dose CT (ULDCT) lowers radiation exposure (0.6–2mSv), but at the expense of lower sensitivity (68–86%) for small (<3mm) ureteric stones. Contrast-enhanced ULDCT (CEULDCT) uses contrast which increases sensitivity (97%) and specificity (100%) for detecting small ureteric stone disease, while limiting radiation dose to levels comparable with IVU (1.7mSv vs 1.4mSv).
Bladder

Bladder cancer staging (establishes local, nodal, and distant spread).

MRI

MRI makes use of the magnetic properties of the hydrogen nucleus (a proton) present in water molecules, and therefore in all body tissues. In a magnetic field (1.5T or 3T), protons align along the direction of the field and the application of pulsed alternating radio waves gives photon energy to hydrogen protons, thereby changing their alignment. When the radio waves are switched off, the protons relax (realign) into their resting spin state and emit photon energy, which is detected by coils and generates an image. T1 images are generated from the longitudinal relaxation (fat appears white and fluid appears black), and T2 images are generated from the transverse relaxation (fluid appears bright). Signal intensity is determined by: (1) proton density, (2) T1 relaxation time, (3) T2 relaxation time, and (4) flow (e.g., loss of signal from rapidly flowing arterial blood).

Gadolinium contrast can be used to speed up the relaxation time of protons, thereby increasing the contrast between normal and pathological tissues. The risk of nephrogenic systemic fibrosis is highest with the use of linear chelate agents and in those with an eGFR <60, those with liver transplant, and in children <1y.

Multiparametric MRI (mpMRI) uses T2 images (anatomy), diffusion-weighted imaging (measures Brownian motion of water and calculates apparent diffusion coefficient maps), and dynamic contrast-enhanced images (pre-, peri-, and post-contrast) to identify significant prostate cancer.

Uses of MRI in the urological patient

- Staging of pelvic cancer—bladder and prostate cancer staging (establishes local, nodal, and distant spread). Good for identifying seminal vesicle invasion. Increasingly used pre-biopsy for diagnosis of prostate cancer (mpMRI), with the PIRADS (Prostate Imaging Reporting and Data System) scoring system. Staging of penile cancer.
- Especially useful for diagnosing phaeochromocytomas (very bright image on T2-weighted images).
- Investigation of LUTS where the history suggests a possible neurological basis (LUTS in the presence of lumbar or thoracic back pain or associated with loss of perineal sensation or disturbances of bladder sensation or where there is sensory disturbance in the legs or feet).
- Staging of renal cancer with inferior vena cava (IVC) thrombus assessment.
- Identification of ureteric stones where ionizing radiation is best avoided (e.g., pregnant women with loin pain).
- Assessment of penile smooth muscle viability in priapism.
Positron emission tomography (PET) imaging and PET/CT in the urological patient

A nuclear medicine imaging technique. Produces three-dimensional images of functional processes in the body. Detects gamma rays emitted by positron-emitting radionuclide tracers which are introduced into the body on biologically active molecules. The molecules to which the radionuclides are bound allow ‘visualization’ of metabolic processes. Three-dimensional images of tracer concentration within various organs and tissues are then constructed by CT scanning (or MRI) performed within the same machine. It thus involves exposure to ionizing radiation (typically 5–7mSv, but if combined with CT, up to 25mSv).

Radionuclides with short half-lives (minutes) are attached to biologically active molecules such as glucose (‘metabolic’ tracers) or molecules that bind to receptors or sites of drug action (‘receptor-specific’ tracers). As a consequence of the short half-lives, the radionuclides must be made in a cyclotron in a radiochemistry lab in close proximity to the PET imaging unit.

In urological practice, one example is fluoro-2-deoxy-D-glucose labelled with an isotope of fluorine 18F (18F-FDG). This is taken up by cellular glucose transporters and phosphorylated to FDG-6-phosphate by glucose-6-phosphokinase. FDG is trapped in cells, and so cells are intensely radiolabelled with 18F-FDG. Choline (18F or 11C) can also be utilized, acting as a cell membrane phospholipid with $^+$ metabolism and turnover in prostate cancer.

The radioisotopes undergo positron emission decay, emitting positrons (the so-called antiparticles of the electron). The emitted positrons travel in tissue for a short distance (<1mm, depending on the isotope) and, in so doing, lose kinetic energy. They decelerate to a point where they can interact with the electron, this interaction leading to the destruction of both the electrons and positrons and, in the process, producing a pair of gamma photons moving in opposite directions. These photons are detected when they reach a scintillator within the scanning device.

Uses

18F-FDG is excreted in urine and this limits the role of 18F-FDG PET scanning in the detection of primary urological cancers, but it has shown promise in the detection of metastatic disease.

Prostate cancer

18F-FDG PET has limited sensitivity for primary staging, since prostate cancer cells often do not have $^+$ glucose metabolism. European guidelines recommend the use of choline PET in post-radical prostatectomy failure if PSA >1ng/mL and in post-radical radiotherapy failure if salvage therapy is being considered and evaluation of distant metastases is required.
Kidney cancer

18F-FDG PET is advised if CT shows equivocal metastases in renal cancer.

Bladder cancer

18F-FDG PET is recommended by NICE if CT/MRI shows equivocal metastases in muscle-invasive bladder cancer, but it is not useful in primary staging.

Germ cell tumours

18F-FDG PET is used in seminomas to assess post-chemotherapy masses of >3cm. However, it is not used in non-seminomatous germ cell tumours (NSGCTs).

References

Radioisotope imaging

A variety of organic compounds can be ‘labelled’ with a radioactive isotope that emits gamma rays, allowing the radiation to penetrate through tissues and reach a ‘gamma’ camera placed adjacent to the patient. The most commonly used radioisotope is technetium—\(^{99m}\)Tc (half-life 6h, gamma ray emission energy 0.14MeV). The excretion characteristics of the organic compound to which \(^{99m}\)Tc is bound determine the clinical use.

MAG3 renogram

\(^{99m}\)Tc is bound to mercaptoacetyl triglycine. Over 90% of mercaptoacetyl-triglycyl (MAG3) becomes bound to plasma proteins, following IV injection. It is excreted from the kidneys, 90% by tubular secretion and only 10% by glomerular filtration. Following IV injection, MAG3 is very rapidly excreted (appearing in the kidney within 15s of injection and starting to appear in the bladder within about 3min). Approximately two-thirds of the injected dose of MAG3 are taken up by the kidneys with each passage of blood through the kidney. The radioactivity over each kidney thus increases rapidly. The peak of radioactivity represents the point at which delivery of MAG3 to the kidney from the renal artery is equivalent to excretion of MAG3. The radioactivity starts to decline, as excretion outstrips supply. Thus, a time–activity curve can be recorded for each kidney. This time–activity curve is known as a renogram.

Images are collected onto a film at 2s intervals for the first 1min and then at 20s intervals for the remainder of the study (usually a total of 30min).

A normal renogram has three phases

- **First phase:** a steeply rising curve lasting 20–30s.
- **Second phase:** a more slowly rising curve, rising to a peak. If the curve does not reach a peak, the second phase is said to rise continually. A normal second phase ends with a sharp peak.
- **Third phase:** a curve that descends after the peak. There can be no third phase if there is no peak.

Description of the renogram

No comment is made about the first phase. The second phase is described as being absent, impaired, or normal. The third phase is described as being absent, impaired, or normal.

The time to the peak depends on the urine flow and the level of hydration and is a crude measure of the time it takes the tracer to travel through the parenchyma of the kidney and through the renal pelvis. The time to the peak of the renogram normally varies between 2 and 4.5min.

If the renogram continues beyond the time at which the peak should normally occur, then there may be a distal obstruction (e.g. at the PUJ or lower down the ureter). In this situation, an injection of 40mg of furosemide is given (at about 18min), and if the curves start to fall rapidly, this is taken as proof that there is no obstruction. If it continues to rise, there is obstruction. If it remains flat (neither rising or falling), this is described as an ‘equivocal’ result.
Parenchymal transit time can also be measured [parenchymal transit time index (PTTI)]. The normal range for the PTTI is 40–140s and averages 70s. The PTTI is prolonged (to >156s) in obstruction and in renal ischaemia. A normal PTTI excludes obstruction.

Uses
- ‘Split’ renal function (i.e. the % function contributed by each kidney).
- Determination of the presence of renal obstruction—based on the shape of the renogram curve and the PTTI.

DMSA scanning
Dimercaptosuccinic acid (DMSA) is labelled with 99mTc. It is taken up by the proximal tubules and retained there, with very little being excreted in the urine. A ‘static’ image of the kidneys is thus obtained (at about 3–4h post-IV injection of the radioisotope). It demonstrates whether a ‘lesion’ contains functioning nephrons or not.

Uses
- ‘Split’ renal function (i.e. the % function contributed by each kidney).
- Detection of scars in the kidney (these appear as defects in the cortical outline, representing areas in which the radioisotope is not taken up).

Radioisotope bone imaging
99mTc-labelled methylene diphosphonate (MDP) is taken up by areas of bone where there is ↑ blood supply and ↑ osteoblastic activity. There are many causes of a focal increase in isotope uptake: bone metastases, site of fractures, osteomyelitis, TB, and benign bone lesions (e.g. osteoma). Metastases from urological cancers are characterized by their predilection for the spine and the fact that they are multiple (single foci of metastasis are rare). Prostate cancer classically metastasizes in this way.
Uroflowmetry

Measurement of flow rate (Fig. 3.13). Provides a visual image of the 'strength' of a patient's urinary stream. Urine flow rate is measured in mL/s and is determined using commercially available electronic flowmeters (Fig. 3.14). The mechanisms include a rotating disc (momentum flux principle), a weight transducer (gravimetric principle), or capacitance using a bimetallic strip. These flowmeters are able to provide a printout, recording the voided volume, maximum flow rate, and time taken to complete the void, together with a record of the flow pattern. The maximum flow rate Qmax is influenced by the volume of urine voided, by the contractility of the patient's bladder, and by the conductivity (resistance) of their urethra.

A number of nomograms are available which relate the voided volume to the flow rate.

Interpretation and misinterpretation of urine flow rate

The 'wag' artefact (Fig. 3.13b) is seen as a sudden, rapid increase in flow rate on the uroflow tracing and is due to the urine flow suddenly being directed at the centre of the flowmeter, producing a sudden artefactual surge in flow rate.

In men with 'prostatic' symptoms, for the same voided volume, the flow rate varies substantially on a given day (by as much as 5mL/s if four flows are done). Most guidelines recommend measuring at least two flow rates (each >150mL) and using the highest as representing the patient’s best effort.

What does a low flow mean?

Uroflowmetry alone cannot tell you why the flow is abnormal. It cannot distinguish between low flow due to BOO and that due to a poorly contractile bladder.

The principal use of urine flow rate measurement is in the assessment of elderly men with suspected prostatic obstruction ('LUTS/BPH'), but there is debate about its usefulness as a test for predicting outcome of various treatments. Some studies suggest that men with poor outcomes are more likely to have had higher flows preoperatively, compared with those with good outcomes, whereas other studies report equivalent improvements in symptoms whether or not the preoperative flow rate is high or low. A recent Veterans Administration trial comparing transurethral resection of the prostate (TURP) with watchful waiting in men with LUTS/BPH found that flow rate could not predict the likelihood of a good symptomatic outcome after TURP.

As a consequence, different guidelines give different guidance with regard to performing uroflowmetry in men with LUTS/BPH. It is regarded as an optional test by the AUA and recommended by the 4th International Consultation on BPH, and the EAU BPH guidelines state that it ‘is obligatory prior to undertaking surgical treatment’.

62 CHAPTER 3 Urological investigations
Fig. 3.13 (a) A uroflow trace. (b) A uroflow trace with a ‘wag’ artefact occurring between 5 and 10s. The true Qmax is not 23.5mL/s, as the readout suggests, but is nearer 18mL/s.

Fig. 3.14 Dantec flowmeter.
Generally speaking, urine flow rate measurement is regarded as having an insufficient diagnostic accuracy for it to be useful in the assessment of lower urinary tract (LUT) dysfunction. Although urine flow measurement can be used to assess voiding function in men with urethral strictures, it has limited value in younger men because in this age group, the bladder can compensate for a marked degree of obstruction by contracting more forcefully. Thus, a young man may have a normal flow rate despite having a marked urethral stricture.

References
Post-void residual urine volume measurement

PVR urine volume is the volume of urine remaining in the bladder at the end of micturition. In normal individuals, there should be no urine remaining in the bladder at the end of micturition. A PVR may be caused by detrusor underactivity (due to ageing—as the older bladder is less able to sustain a contraction than the younger bladder or in neurological disease affecting bladder innervation), BOO, or a combination of both. In clinical practice, PVR volume is measured by ultrasound after the patient has attempted to empty their bladder. A commonly used formula for calculating bladder volume is:

\[
\text{Bladder volume} = \frac{1}{2} \times \text{length} \times \text{width} \times \text{height}
\]

PVR volume shows considerable day-to-day variability, with volumes recorded on different days over a 3-month period varying between 150 and 670mL.

Clinical usefulness of PVR volume measurement

Analysis of placebo-treated men (n = 737) in the MTOPS trial suggests that PVR volume did not seem to be a strong predictor of the likelihood of developing acute urinary retention. There was no difference in retention rates in men with a residual urine volume of <39mL, compared with those with a residual urine volume of 39mL or more (although the higher PVR was associated with a greater chance of symptomatic progression and of the need for invasive therapy). Similarly, there was no difference in retention rates in 389 men treated with \(\alpha \)-blockers or 553 treated with placebo with a residual urine volume of <300mL, compared with those with a residual urine volume of >300mL. In 170 men with uro dynamically confirmed BOO who initially opted for conservative (non-surgical) treatment, 141 (83%) remained untreated at 10y and 29 (17%) had undergone surgery (22 for LUTS, seven for retention). PVR at baseline did not predict the chance of developing urinary retention or of the need for TURP for worsening LUTS.

PVR volume measurement cannot predict symptomatic outcome from TURP. For these reasons, residual urine volume measurement is regarded as an optional test in the AUA guidelines but is recommended by the 4th International Consultation on BPH.

Residual urine volume measurement is useful (along with measurement of serum creatinine) as a safety measure. It indicates the likelihood of back pressure on the kidneys, and thus it tells the urologist whether it is safe to offer watchful waiting, rather than TURP. In men with moderate LUTS, it is safe not to operate where the PVR volume is <350mL and this probably holds true for those with higher PVR volumes (<700mL).

Does an elevated residual urine volume predispose to urinary infection?

Though intuition would suggest yes, what evidence there is relating residual volume to urine infection suggests that an elevated residual urine may not, at least in the neurologically normal adult, predispose to urine infection. There has been no longitudinal study to determine if an elevated PVR increases the risk of developing UTI.
References

Cystometry, pressure flow studies, and videocystometry

- **Cystometry**: the recording of bladder pressure during bladder filling.
- **Pressure–flow studies (PFS)**: the simultaneous recording of bladder pressure during voiding.
- **Videocystometry**: fluoroscopy (X-ray screening) combined with PFS during voiding (Fig. 3.8).

These techniques provide the most precise measurements of bladder and urethral sphincter behaviour during bladder filling and during voiding. Cystometry precedes the PFS. Bladder pressure (Pves, measured by a urethral or suprapubic catheter) and abdominal pressure (Pabd, measured by a pressure line inserted into the rectum) are recorded as the bladder fills (cystometric phase) and empties (voiding phase), and the flow rate is simultaneously measured during the voiding phase. The pressure developed by the detrusor (the bladder muscle) Pdet cannot be directly measured, but it can be derived by subtracting the abdominal pressure from the pressure measured within the bladder (the intravesical pressure). This allows the effect of rises in intra-abdominal pressure caused by coughing or straining to be subtracted from the total (intravesical) pressure, so that a 'pure' detrusor pressure is obtained.

All pressures are recorded in cmH₂O, and flow rate is measured in mL/s. The pressure lines are small-bore, fluid-filled catheters attached to an external pressure transducer, or catheter-tip pressure transducers can be used.

A computerized printout of Pves, Pabd, and Pdet and flow rate (Qmax) is obtained (Fig. 3.15). During bladder filling, the presence of OAB contractions can be detected. During voiding, the key parameters are Qmax and the detrusor pressure at the point at which Qmax is reached (Pdet Qmax). This pressure, relative to Qmax, can be used to define the presence of BOO by using a variety of nomograms, of which the ICS nomogram is most widely used.
Fig. 3.15 A computerized printout of the intravesical pressure (Pves), intra-abdominal pressure (Pabd), subtracted detrusor pressure (Pdet), and flow rate (Qmax).
Chapter 4

Bladder outlet obstruction

Regulation of prostate growth and development of benign prostatic hyperplasia 72
Pathophysiology and causes of bladder outlet obstruction and BPH 73
Benign prostatic obstruction: symptoms and signs 74
Diagnostic tests in men with LUTS thought to be due to BPH 76
The management of LUTS in men: NICE 2010 guidelines 78
Watchful waiting for uncomplicated BPH 84
Medical management of BPH: alpha blockers 86
Medical management of BPH: 5-alpha-reductase inhibitors 88
Medical management of BPH: combination therapy 90
Medical management of BPH: alternative drug therapy 92
Minimally invasive management of BPH: surgical alternatives to TURP 94
Invasive surgical alternatives to TURP 96
TURP and open prostatectomy 102
Acute urinary retention: definition, pathophysiology, and causes 104
Acute urinary retention: initial and definitive management 108
Indications for and technique of urethral catheterization 110
Technique of suprapubic catheterization 112
Management of nocturia and nocturnal polyuria 118
Chronic retention 120
High-pressure chronic retention 122
Bladder outlet obstruction and retention in women 124
Urethral strictures and stenoses 126
Regulation of prostate growth and development of benign prostatic hyperplasia

BPH is characterized by an increase in epithelial and stromal cell numbers (hyperplasia) in the peri-urethral area of the prostate. New epithelial gland formation is normally only seen during fetal development. The development of new glands in the adult prostate has given rise to the concept of ‘reawakening’ of the inductive effect of the prostatic stroma on the prostatic epithelium.

The increase in prostate cell number could reflect proliferation of epithelial and stromal cells, impairment of programmed cell death, or a combination of both. During the early phases of development of BPH, cell proliferation occurs rapidly. In established BPH, cell proliferation slows down and there is impairment of programmed cell death (androgens and oestrogens actively inhibit cell death).

The role of androgens in BPH

Testosterone can bind directly to the androgen receptor or may be converted to a more potent form—dihydrotestosterone (DHT)—by the enzyme 5α-reductase (5AR). There are two isoforms of 5AR—type I or ‘extraprostatic’ 5AR (which is absent in prostatic tissue and present in, for example, the skin and liver) and type II or ‘prostatic’ 5AR (which is found exclusively on the nuclear membrane of stromal cells, but not within prostatic epithelial cells). Type I 5AR is not inhibited by finasteride, whereas type II 5AR is. Dutasteride inhibits both type I and II 5AR. Finasteride reduces serum DHT by about 70%, and dutasteride by about 95%. Finasteride reduces prostatic DHT (type II) by about 80%, and dutasteride by about 94%. We do not know whether these differences translate into differences in clinical efficacy, since neither drug has been compared against the other.

Testosterone diffuses into prostate and stromal epithelial cells. Within epithelial cells, it binds directly to the androgen receptor. In prostate stromal cells, a small proportion binds directly to the androgen receptor, but the majority binds to 5AR (type II) on the nuclear membrane, is converted to DHT, and then binds (with greater affinity, and therefore greater potency, than testosterone) to the androgen receptor in the stromal cell. Some of the DHT formed in the stromal cells diffuses out of these cells and into nearby epithelial cells (a paracrine action). The androgen receptor/testosterone or androgen receptor/DHT complex then binds to specific binding sites in the nucleus, thereby inducing transcription of androgen-dependent genes and subsequent protein synthesis.

It is thought that stromal/epithelial interactions may be mediated by soluble growth factors—small peptides that stimulate or inhibit cell division and differentiation. Growth-stimulating factors include basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), keratinocyte growth factor (KGF), and insulin-like growth factor (IGF). Transforming growth factors (e.g. TGF-β) normally inhibit epithelial cell proliferation, and it is possible that in BPH, TGF-β is downregulated.
Pathophysiology and causes of bladder outlet obstruction and BPH

The principal cause of BOO in men is BPH. Less common causes are urethral stricture and malignant enlargement of the prostate. BOO in women is altogether less common, with causes including pelvic prolapse (cystocele, rectocele, uterine) with the prolapsing organ directly compressing the urethra, urethral stricture, urethral diverticulum, post-surgery for ‘stress’ incontinence, Fowler’s syndrome (impaired relaxation of the external sphincter occurring in premenopausal women, often in association with polycystic ovaries), and pelvic masses (e.g. ovarian masses). In either sex, neurological disease [SCI, spina bifida, multiple sclerosis (MS)] can cause failure of relaxation of the external sphincter during voiding [detrusor sphincter dyssynergia (DSD)].

The pathophysiological basis of BOO due to BPE secondary to BPH (BPO) has been studied more than any other type of obstruction. BPO has dynamic and static components:

- **Dynamic component of BPO:** 1-adrenoceptor-mediated prostatic smooth muscle contraction. Smooth muscle accounts for ~40% of the area density of the hyperplastic prostate, and the human prostate contracts following administration of α-adrenergic agonists. This effect is the rationale for α-adrenoceptor blocker treatment for symptomatic BPO.

- **Static component of BPO:** mediated by the volume effect of BPE.

Pathophysiological consequences of BOO

John Hunter (1786), who founded the Royal College of Surgeons of England, noted that ‘The disease of the bladder arising from obstruction alone is increased irritability and its consequences, by which it admits of little distension, becomes quick in its action, and thick and strong in its coats’. BOO causes thickening of the wall of the bladder. Microscopically, smooth muscle cells enlarge and there is an increase in connective tissue (collagen and elastin) between the smooth muscle bundles. In some cases, this may lead to poor compliance, with development of high bladder and intrarenal pressures. Progressive hydronephrosis can develop, with impairment of renal function and even renal failure (HPCR).

Experimentally created BOO causes development of bladder overactivity (unstable bladder contractions during bladder filling). This may be due to prolonged ↑ intravesical pressure during voiding, causing ischaemia and leading to ischaemic damage to neurons within the bladder (i.e. denervation). Symptomatically, many patients with BOO develop frequency, urgency, and urge incontinence.
Benign prostatic obstruction: symptoms and signs

Clinical practice guidelines
Developed to standardize the approach to diagnosis (and treatment) of men presenting with symptoms suggestive of BPH. Every guideline agrees that a history should be taken and an examination performed, and that the severity of urinary symptoms should be formally assessed using the IPSS. This includes a measure of the ‘bother’ caused by the patient’s symptoms (i.e. the degree to which the symptoms are troubling).

Urinary symptoms—what do they mean?
During the 1990s, the classic ‘prostatic’ symptoms of frequency, urgency, nocturia, hesitancy, poor flow, intermittent flow, and terminal dribbling—traditionally said to indicate the presence of BOO due to BPE—were shown to bear little relationship to prostate size, flow rate, residual urine volume, or indeed urodynamic evidence of BOO. Age-matched elderly men and women have similar symptom scores (IPSS), despite the fact that women have no prostate and rarely have BOO.

Prostatism vs LUTS vs LUTS/BPH
‘Prostatism’ has therefore been replaced by the expression ‘LUTS’, which avoids any implication about the cause of these symptoms. More recently, the expression ‘LUTS/BPH’ has been used to describe the symptoms of BPH. It does not really matter whether you use ‘prostatism’, ‘LUTS’, or ‘LUTS/BPH’, as long as you remember that urinary symptoms may have non-prostatic causes. Try to avoid treating the prostate when the problem may lie elsewhere.

• Bedwetting: suggests the presence of HPCR (look for distension of the abdomen due to a grossly enlarged bladder that is tense on palpation and dull to percussion).
• Marked frequency and urgency, particularly when also combined with bladder pain: look for CIS of the bladder (urine cytology, flexible cystoscopy, and bladder biopsy).
• Macroscopic haematuria: sometimes due to a large, vascular prostate, but exclude other causes (bladder and kidney cancer and stones) by flexible cystoscopy and upper tract imaging.
• Back pain and neurological symptoms (sciatica, lower limb weakness, or tingling): rarely, LUTS can be due to neurological disease.

Reference
Diagnostic tests in men with LUTS thought to be due to BPH

Clinical practice guidelines
Developed as an attempt to standardize the approach to diagnosis and treatment of men presenting with symptoms suggestive of BPH. All agree that a history should be taken and an examination performed, and all recommend the assessment of symptom severity using the IPSS. This includes a measure of the ‘bother’ caused by the patient’s symptoms. There is considerable variation between guidelines in terms of recommended diagnostic tests. High-quality guidelines (e.g. based on results of randomized trials) recommend few diagnostic tests—urine analysis, completion of a voiding diary (frequency–volume chart) to detect the presence of polyuria and NP (which may be the cause of a patient’s frequency or nocturia), and measurement of serum creatinine. They regard flow rate measurement and assessment of residual urine volume as optional tests.

DRE and PSA
Done to detect nodules that may indicate an underlying prostate cancer and to provide a rough indication of prostate size. Size alone is not an indication for treatment, but if surgical treatment is contemplated, marked prostatic enlargement can be confirmed by TRUS scan (prostate volume in the order of 100mL or more increases the likelihood of an open prostatectomy). Discuss the pros and cons of PSA testing with the patient.

Serum creatinine
Baseline measure of renal function and to detect renal failure secondary to high-pressure urinary retention.

Post-void residual urine volume
Varies considerably (by as much as 600mL between repeat measurements) on the same or different days. It cannot predict symptomatic outcome from TURP. Along with serum creatinine, it indicates whether watchful waiting (WW) is safe. It is safe not to operate where the PVR volume is <350mL, since the majority of men show no worsening of creatinine, no increase in PVR and no worsening of symptoms, and do not require TURP.

Flow rate measurement
This is variously regarded as optional, recommended, and obligatory prior to undertaking surgical treatment for BPH. Like PVR, measurement of flow rate varies substantially on a given day, cannot distinguish between BOO and a poorly contractile bladder, and is not good at predicting the likelihood of a good symptomatic outcome after TURP.
Pressure flow studies
Reasonably good at predicting symptomatic outcome after TURP. However, most patients without obstruction have a good outcome, and the time, cost, and invasiveness of pressure flow studies are perceived by most urologists as not justifying their routine use. The AUA guidelines on the management of BPH (http://www.auanet.org) regards pressure flow studies as optional, since they are unable to reliably predict treatment failure in the individual patient (treatment failure is somewhat higher in the absence of obstruction, but unobstructed individuals still have a reasonable chance of improvement with TURP). The AUA guidelines specifically state that ‘If interventional therapy is planned without clear evidence of the presence of obstruction, the patient needs to be informed of possible higher failure rates of the procedure’.

Renal ultrasonography
To detect hydronephrosis if serum creatinine is elevated. The percentage of patients having upper tract dilatation on ultrasound according to serum creatinine is: creatinine <115mmol/L: 0.8%; creatinine 115–130mmol/L: 9%; and creatinine >130mmol/L: 33%.

References
The management of LUTS in men: NICE 2010 guidelines

(® http://www.nice.org.uk.CG97)

For those practising in the UK, the NICE 2010 LUTS guidelines provide a helpful summary of the diagnostic and treatment options for men with LUTS. Like guidelines in general, they are not written in stone—there is no absolute requirement to follow them to the letter; you may ‘step outside’ the guidelines, as long as your rationale for doing so has a logical (reasonable) basis. Differences exist between those aspects of the NICE guidelines that cover BPH-related LUTS and the AUA 2010 guidelines on the management of BPH (® http://www.auanet.org), and these differences are highlighted where relevant.

LUTS are classified according to the IPSS as mild (0–7), moderate (8–19), and severe (20–35).

Initial assessment (i.e. primary care)

Assess the general medical history to identify possible causes of LUTS and comorbidities; examine the abdomen, genitals, and DRE; dipstick urine for blood, glucose, protein, leucocytes, and nitrites; complete FVC; serum creatinine and eGFR only if suspected renal impairment.

Offer information, advice, and time to decide if they wish to have PSA testing if LUTS are suggestive of BOO secondary to BPE or abnormal feeling of prostate on DRE or patient concerned about prostate cancer.

Do not routinely offer cystoscopy, flow rate, or residual urine volume measurement.

Offer lifestyle advice (e.g. advice on fluid intake); mild or moderate bothersome LUTS—discuss active surveillance* (reassurance, lifestyle advice, no immediate treatment, regular follow-up) or active intervention (conservative management, drugs, surgery).

Conservative management

- **Storage symptoms:** if OAB is suspected, offer supervised bladder training, advice on fluid intake, lifestyle advice, and, if needed, containment products, i.e. pads or sheaths; offer supervised pelvic floor exercises for stress incontinence caused by prostatectomy—continue for at least 3 months before considering other options.
- **Voiding symptoms:** offer intermittent self-catheterization (ISC) before indwelling or suprapubic catheterization if less invasive means fail to correct LUTS; tell men with proven BOO that bladder training is less effective than surgery; for post-micturition dribbling, explain how to do urethral milking.
- **Offer drug treatment** where conservative options are unsuccessful or inappropriate; take account of comorbidities and current treatments; do not offer homeopathy, phytotherapy, or acupuncture (Table 4.1).

* AUA 2010 guidelines use the terms ‘watchful waiting’ and ‘active surveillance’ interchangeably; it defines ‘watchful waiting’ as ‘a management strategy in which the patient is monitored by his physician, but currently receives no active intervention’. WW is recommended for patients with mild symptoms (AUA-SI <B) and patients with AUA-SI of 8 or more who are not bothered by their LUTS drug treatment.
NP: exclude other medical causes—diabetes mellitus and DI, adrenal insufficiency; hypercalcaemia; liver failure; polyuric renal failure; chronic heart failure; OSA, dependent oedema; chronic venous stasis; calcium channel blockers; diuretics; selective serotonin reuptake inhibitor (SSRI) antidepressants.

Consider a late-afternoon loop diuretic. Consider offering oral desmopressin—measure serum sodium 3 days after the first dose; stop if sodium falls below the normal reference range.

Refer for specialist assessment
If bothersome LUTS that fails to respond to conservative management or drugs; LUTS complicated by recurrent or persistent UTI; retention; renal impairment suspected to be caused by LUT dysfunction; suspected urological cancer; stress incontinence.

Specialist assessment
(In other words, secondary care—‘health-care professional with specific training in managing LUTS in men’.) A summary of surgical treatment options, based on prostatic size, for voiding symptoms is shown in Table 4.2 and for storage symptoms in Table 4.3.

Offer the following only as part of a randomized controlled trial (RCT): prostatic Botox injection; laser vaporization techniques; bipolar TUVP; transurethral vapour resection of the prostate (TUVRP) (monopolar or bipolar).

Table 4.1 Drug treatment

<table>
<thead>
<tr>
<th>Indication</th>
<th>Treatment</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate to severe LUTS</td>
<td>Offer an α-blocker (alfuzosin, doxazosin, tamsulosin, terazosin)</td>
<td>At 4–6wk (AUA guidelines 2–4wk), then every 6–12 months</td>
</tr>
<tr>
<td>OAB</td>
<td>Offer an anticholinergic</td>
<td>At 4–6wk until stable, then every 6–12 months</td>
</tr>
<tr>
<td>LUTS, prostate estimated >30g or PSA >1.4ng/mL and high risk of progression</td>
<td>Offer 5α-reductase inhibitor (SARI)</td>
<td>At 3–6 months, then every 6–12 months</td>
</tr>
<tr>
<td>Bothersome moderate to severe LUTS and prostate estimated >30g or PSA >1.4ng/mL</td>
<td>Consider an α-blocker plus SARI</td>
<td>At 4–6wk, then every 6–12 months for the α-blocker; at 3–6 months, then every 6–12 months for the SARI</td>
</tr>
<tr>
<td>Storage LUTS despite α-blocker treatment alone</td>
<td>Consider adding an anticholinergic</td>
<td>At 4–6wk until stable, then every 6–12 months</td>
</tr>
</tbody>
</table>
CHAPTER 4 Bladder outlet obstruction

Do not offer any of the following as an alternative to TURP, TUVP, or HoLEP:
- Transurethral needle ablation of the prostate (TUNA); transurethral microwave thermotherapy of the prostate (TUMT); high-intensity focused ultrasound (HIFU); laser coagulation; transurethral ethanol ablation of the prostate (TEAP) (AUA 2010 guidelines include TUNA and TUMT as treatment options for the patient with moderate to severe LUTS, i.e. IPSS 8 or more).

Why do men seek treatment for their symptoms?
Men seek treatment for their LUTS for several reasons:
- The symptoms may be bothersome.
- They may fear that the symptoms are a warning that acute urinary retention will develop.
- They may be concerned that their symptoms indicate that they have prostate cancer.

Table 4.2 Voiding symptoms

<table>
<thead>
<tr>
<th>Prostate size</th>
<th>Type of surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>TURP (monopolar or bipolar); transurethral vaporization of the prostate (TUVP) (monopolar); holmium laser enucleation of the prostate (HoLEP)’</td>
</tr>
<tr>
<td>Estimated <30g</td>
<td>Transurethral incision of the prostate (TUIP) [bladder neck incision (BNI)] as an alternative to the above</td>
</tr>
<tr>
<td>Estimated >30g</td>
<td>TURP, TUVP, HoLEP*, open prostatectomy</td>
</tr>
</tbody>
</table>

’ At a centre specializing in the technique or with mentorship arrangement in place.

Table 4.3 Storage symptoms

<table>
<thead>
<tr>
<th>Indication</th>
<th>Type of surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detrusor overactivity</td>
<td>Consider offering bladder wall Botox injection (must be willing and able to do ISC); SNS; cystoplasty (must be willing and able to do ISC)</td>
</tr>
<tr>
<td>Stress incontinence</td>
<td>Consider artificial urinary sphincter (AUS) (intramural injectables, implanted adjustable compression devices, male slings—only as part of an RCT)</td>
</tr>
<tr>
<td>Intractable LUTS if cystoplasty or SNS not clinically appropriate or unacceptable to patient</td>
<td>Consider offering urinary diversion</td>
</tr>
</tbody>
</table>

’ SNS, sacral nerve stimulation (the InterStim).
Establish what the patient wants from his consultation with you. Once reassured that the likelihood of urinary retention and prostate cancer is low, he may not want treatment for symptoms that, on the surface, may appear quite bad, and he may be happy to adopt a policy of WW.

Goals of treatment
- To improve bothersome symptoms.
- To prevent symptom progression.
- To reduce long-term complications (urinary retention, renal insufficiency).
- Management options include WW, lifestyle modification, drug treatments (α-adrenergic blockers, 5ARIs, anticholinergics, plant extracts), minimally invasive surgery, TURP, and open prostatectomy. The choice of treatment is determined by the patient, based on his perception of how bad (bothersome) his symptoms are, balanced against the perceived benefit and risks of the various options. Drug treatments have the least impact on symptoms but are generally safe. Minimally invasive surgery has a somewhat greater impact, with a higher risk of side effects. TURP and open prostatectomy have the greatest impact on symptoms, but at the risk of potentially serious complications.

Bothersome symptoms
Bothersomeness does not necessarily equate with symptom severity as assessed by symptom scores. Thus, a man with a low symptom score may find his symptoms very bothersome and may want treatment, whereas another man with a high symptom score may not be bothered and may want no treatment. If one symptom is particularly bad, but the other six symptoms in the 7-symptom score are minimal, the overall symptom score will obviously be relatively low, but the patient may find that one symptom very bothersome (e.g. urgency and nocturia tend to be more bothersome than hesitancy or poor flow).

‘Are my symptoms due to prostate cancer?’
No particular LUTS are specific for prostate cancer. Even if it later turns out that he does have prostate cancer, a patient’s symptoms might be due to coexisting BPH or some other LUT pathology. If he is concerned about the possibility of prostate cancer, counsel him with regard to PSA testing and prostate biopsy.

‘Am I likely to develop retention of urine?’
Many patients are understandably concerned that their urinary symptoms may be a harbinger for the development of acute urinary retention. This may influence their decision to seek help for symptoms, which they may perceive as indicating a risk of subsequent retention, and it may affect the type of treatment they choose. Table 4.4 can help give the patient some idea of his risk of developing urinary retention.
Table 4.4 Yearly risk of retention according to age and symptom score (i.e. number of men experiencing an episode of retention every year)

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Mild symptoms (AUA symptom score 7 or less)</th>
<th>Moderate or severe symptoms (AUA symptom score >7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40–49</td>
<td>3 men in every 1000</td>
<td>3 men in every 1000</td>
</tr>
<tr>
<td>70–79</td>
<td>9 men in every 1000</td>
<td>34 men in every 1000</td>
</tr>
</tbody>
</table>

Adjusting for age and flow rate, those with an AUA symptom score of 8 or more had a 2.3-fold *(risk of going into urinary retention, when compared with those with an AUA score of 7 or less. Those men with a peak flow rate of <12mL/s had a 4-fold * risk of urinary retention, when compared with those with a flow rate of >12mL/s. Prostate volume of >30mL was associated with a 3-fold * risk of urinary retention, compared with those with prostate volumes of <30mL.

* This table is taken from Jacobsen’s report, a 4-year prospective study of a cohort of >2000 men. * The presence of LUTS, a low flow rate, an enlarged prostate, and old age were associated with an * risk of urinary retention.

Reference

Watchful waiting for uncomplicated BPH

A number of studies have shown that in a substantial proportion of men, symptoms do not progress, even for those with severe symptoms.

- **Ball**: a total of 107 men followed with WW over 5y. In none was there an absolute indication for surgery. Half of the patients were obstructed on urodynamic testing. A third of the patients got better; just under a half stayed the same; a quarter got worse (of whom eight underwent TURP); 2% went into retention.

- **PLESS study (Proscar Long-term Efficacy and Safety Study)**: a total of 1500 men with moderate to severe symptoms were randomized to placebo (and a similar number to active drug). Those on placebo had an average fall in symptom score of 1 point at 4y.

- **Wasson's study of WW vs TURP**: for men with moderate symptoms, the risk of progression to retention, worsening symptoms, or need for TURP was relatively low in those who chose WW; 40% noticed an improvement in their symptoms, 30% got worse, and TURP was required in about a quarter.

- **Five centres’ study**: a total of 500 men referred by their family doctors for consideration for TURP were managed non-operatively after viewing an educational programme. Over the following 4y period, a proportion of the men chose drug treatment or surgery. For men with mild, moderate, or severe symptoms, 10%, 24%, and 39%, respectively, had undergone surgery at the end of 4y. For the same symptom categories, 63%, 45%, and 33% were still not receiving any treatment at the end of 4y. Almost a quarter of men who initially presented with severe symptoms noted an improvement in their symptoms to mild or moderate.

On the basis of these studies, we can say that symptoms, even if severe, do not necessarily get worse, even over fairly long periods of time. This forms the foundation of WW as an option for many patients, even if the symptoms at baseline are severe. The IPSS measures both symptom ‘severity’, but more importantly, the bother that the symptoms cause the patient. Thus, if a patient has a high symptom score (severe symptoms) but is not bothered by these symptoms, there is no indication for treatment. Some patients, on the other hand, have a low symptom score but may find even this degree of symptoms very bothersome. Treatment is indicated in such cases (usually starting with medical therapy such as an α-blocker or a 5ARI).

References

Medical management of BPH: alpha blockers

The rationale for blocker therapy in BPH
As described earlier, BPO is caused partly by α1-adrenoceptor-mediated prostatic smooth muscle contraction, and this is the rationale for α-adrenoceptor blocker treatment for symptomatic BPO.

There are two broad subtypes of α-adrenoceptor (AR)—α1 and α2. Molecular cloning studies have identified three α1-AR subtypes—α1a (predominant in human stroma and therefore mediates prostate smooth muscle contraction), α1b (predominant in human prostate epithelium), and α1L (believed to be a conformational state of the α1a-AR). The AR subtypes mediating the efficacy and side effects of α-adrenoceptor-blocking drugs are unknown.

Alpha-blocker classification
α-blockers are categorized by their selectivity for the AR and by their elimination half-life.
- Non-selective: phenoxybenzamine—effective symptom control, but high side effect profile.
- α1: prazosin, alfuzosin, indoramin.
- Long-acting α1: terazosin, doxazosin, alfuzosin sustained release (SR).
- Subtype selective: tamsulosin—relatively selective for the α1a-AR subtype, compared to the α1b subtype.

No study has directly compared one α-blocker with another in terms of efficacy or side effects. Terazosin and doxazosin require dose titration to minimize dizziness and syncope at the start of treatment.

Indications for treatment
Bothersome LUTS where WW has failed or the patient wishes to have treatment.

Efficacy
Percentage of patients who respond to α-blockers
Patients are able to perceive a 4-point improvement in IPSS. If ‘response’ is defined as >25% improvement in symptoms, relative to placebo, most studies describe response rates of 30–40%. The mean probability for improvement in symptom score after TURP is in the order of 80% (i.e. eight out of ten men will notice an improvement in their symptoms after TURP). For those men who respond, α-blockers have a much more rapid onset than do 5ARIs. Their effect will be maximal within a month of starting treatment.

Improvements in symptom score in men who ‘respond’ to α-blockers
The average improvement in symptom score after TURP is about 85%. While some of this may represent a placebo response, this improvement is considerably better than that seen with the α-blockers, which result in a 10–30% improvement in symptom score, relative to placebo. This equates to a 4- to 5-point improvement in symptom score over placebo.
Side effects
A substantial proportion of men stop taking their medication either because of side effects (15–30% report some constellation of side effects) or because of a perceived lack of effectiveness (~50% of men stop taking an α-blocker within 3y because of a perception that it has not worked).4 Side effects include asthenia (weakness in 5%), dizziness (2–14%), headache (2%) and postural hypotension (1%), and retrograde ejaculation (8%). There are little data on the safety of concomitant use of α-blockers with drugs for erectile dysfunction.1

Intraoperative floppy iris syndrome and alpha-blocker use
A triad of progressive intraoperative miosis (constriction of the pupil) despite preoperative dilation, billowing of a flaccid iris, and iris prolapse towards the incision site during cataract surgery leads to complications such as posterior capsule rupture with vitreous loss and post-operative intraocular pressure spikes (visual acuity outcomes appeared preserved). The original report linked this condition with the preoperative use of tamsulosin; iris dilator smooth muscle inhibition has been suggested as a potential mechanism.5,6

The risk of intraoperative floppy iris syndrome (IFIS) amongst men taking tamsulosin is substantial (43–90% in ten retrospective and prospective studies).7 The risk of IFIS appears to be lower with older generic α-blockers such as terazosin and doxazosin (0–25%).7

Whether stopping α-blocker treatment at any time before surgery mitigates the risk of IFIS is unclear. The AUA 2010 BPH Guidelines7 recommend that men with LUTS secondary to BPH where α-blocker therapy is planned should be asked about planned cataract surgery. Those with planned cataract surgery should avoid the initiation of α-blockers until their cataract surgery is completed.

References
Medical management of BPH: 5-alpha-reductase inhibitors

5ARIs inhibit the conversion of testosterone to DHT, the more potent androgen in the prostate. This causes shrinkage of the prostatic epithelium, and therefore a reduction in prostate volume, thereby reducing the ‘static’ component of BPE. This takes some months to occur, so urinary symptoms will not improve initially. Finasteride is a competitive inhibitor of the enzyme 5AR (type II isoenzyme), which converts testosterone to DHT. Finasteride therefore lowers serum and intraprostatic DHT levels. Epristeride is a dual inhibitor of 5AR. Whether it has any clinically significant advantages over finasteride remains to be established.

Efficacy

- **Finasteride:** a number of large studies have shown symptom improvement over placebo in the order of 2–3 points on the IPSS and improvements in flow rate in the order of 1–2mL/s [SCARP\(^1\) (Scandinavian BPH Study Group), PROSPECT\(^2\) (PROScar Safety Plus Efficacy Canadian Two-year study), PROWESS Study Group,\(^3\) and more recently PLESS\(^4\) (Proscar Long-term Efficacy and Safety Study)]. The PLESS data also show a small reduction in the risk of urinary retention.

- **Dutasteride:** evidence for its efficacy is derived from a 2y RCT with an open-label extension;\(^6\) SMART 1, which evaluated the effect of a placebo-controlled withdrawal of an α-blocker from a combination therapy arm;\(^7\) and from the CombAT study (comparison of dutasteride vs tamsulosin vs dutasteride + tamsulosin).\(^8\)

Side effects

Generally speaking, fairly mild. Principally centre around sexual problems (e.g. loss of libido, 5%; impotence, 5%; reduced volume of ejaculate in a few per cent).

5-alpha-reductase inhibitors and the risk of urinary retention

The PLESS data\(^5\) have been widely publicized as showing a substantial reduction in the risk of urinary retention. In this 4y follow-up study, 42 of 1471 men on finasteride went into urinary retention (3%), while 99 of 1404 men on placebo experienced an episode of retention (7%). This represents an impressive 43% relative reduction in risk in those taking finasteride. However, the absolute risk reduction over a 4y period is a less impressive 4%. So finasteride does reduce the risk of retention, but it is reducing the risk of an event which is actually quite rare, as suggested by the fact that 93% of men on placebo in this study did not experience retention over a 4y period. Put another way, to prevent one episode of retention, 25 men would have to continue treatment with finasteride for 4y.

5-alpha-reductase inhibitors for haematuria due to BPH

Finasteride suppresses vascular endothelial growth factor (VEGF). Shrinking large vascular prostates probably helps reduce the frequency of haematuria in men with BPH.\(^5\)
MEDICAL MANAGEMENT OF BPH: 5-ALPHA-REDUCTASE INHIBITORS

References

Medical management of BPH: combination therapy

A combination of an α-blocker and a 5ARI. The studies include:

- **MTOPS study (Medical Therapy of Prostatic Symptoms)**: 3047 men; mean prostate volume 36mL. This combination prevented progression of BPH, when compared with either drug alone (progression being defined as a worsening of symptom score by 4 or more or the development of complications such as UTI or acute urinary retention).

- **Veterans Affairs Combination Therapy Study**: 1200 men randomized to placebo, finasteride, terazosin, or both terazosin and finasteride. At 1y follow-up, relative to placebo, finasteride had reduced the symptom score by an average of 3 points, whereas terazosin alone or in combination with finasteride had reduced the symptom score by an average of 6 points.

- **PREDICT study (Prospective European Doxazosin and Combination Therapy)**: randomized >1000 men to placebo, finasteride, doxazosin, or both finasteride and doxazosin. Difference in symptom score at baseline and 1y were: placebo – 5.7, finasteride – 6.6, doxazosin – 8.3, and combination therapy – 8.5.

- **ALFIN study (alfuzosin, finasteride, and combination in the treatment of BPH)**: 1000 men randomized to alfuzosin, finasteride, or both. At 6 months, improvement in the IPSS was not significantly different in the alfuzosin vs the combination group.

- **CombAT trial**: 4844 men; mean prostate volume 55mL. Compared tamsulosin, dutasteride, and a combination of both. Prostate volume was >30mL (TRUS). Only 2y data are available as of 2011. Combination therapy resulted in significantly greater improvements in symptoms, compared to dutasteride, from month 3 and tamsulosin from month 9 and significantly greater improvement in peak urinary flow from month 6. There was a significant increase in drug-related adverse events with combination therapy. Analyses of the primary endpoints (4y progression of LUTS, urinary retention, and need for prostate surgery) are awaited.

Thus, most studies, except for MTOPS, suggest that combination therapy is no more useful than an α-blocker alone. Disadvantages of combination therapy: greater risk of side effects, no additional benefit over α-blockers alone in most men, need for treatment for >1y before an improvement in symptoms is seen, sexual side effects.

In the Prostate Cancer Prevention Trial, 18 000 men were randomized to finasteride or placebo over a 7y period. Those in the finasteride group had a lower prevalence of prostate cancer detected on prostate biopsy (26.5% of men receiving finasteride had a positive biopsy vs 29.5% in the placebo group). However, higher-grade tumours (i.e. biologically more aggressive than low-grade cancers) were commoner in the finasteride group (there was a 1.3% increase in high-grade cancers in the finasteride group). The jury is out on whether finasteride causes higher-grade cancers or whether these findings are a histological or sampling artefact. Finasteride increases the ability (↑ sensitivity) of both PSA, DRE, and prostate biopsy
to diagnose high-grade prostate cancer7,8—so-called cytoreduction of the prostate, leading to a greater likelihood of finding high-grade cancer (the argument is that finasteride has less of an effect on PSA reduction in men with high-grade than low-grade cancers, so men with high-grade cancer are more likely to have an elevated PSA, and therefore to undergo prostate biopsy and thus cancer detection).

References

Medical management of BPH: alternative drug therapy

Anticholinergics
For a man with frequency, urgency, and urge incontinence—symptoms suggestive of an OAB—consider prescribing an anticholinergic (e.g. oxybutynin, tolterodine, trospium chloride, or flavoxate). There is the concern that these drugs could precipitate urinary retention in men with BOO (because they block parasympathetic/cholinergic-mediated contraction of the detrusor), but the risk of this occurring is probably very low, even in men with urodynamically proven BOO.1

Phytotherapy
An alternative drug treatment for BPH symptoms, and one which is widely used in Europe and increasingly in North America, is phytotherapy. Fifty per cent of all medications consumed for BPH symptoms are phytotherapeutic ones.2 Examples include the Saw palmetto plant (Serenoa repens) and extracts from the stinging nettle (Urtica dioica), amongst several others. While previous editions of this book quoted studies, including a meta-analysis, that suggested similar efficacy to 5ARIs in terms of improvements in symptoms and flow rates,2,3 more recent studies have generally failed to confirm a clinically important role for Saw palmetto in the management of BPH.4,5

NICE in the UK does not recommend phytotherapy for LUTS in men (www.nice.org.uk/CG97) and similarly, in the United States, phytotherapy is no longer recommended by the AUA 2010 BPH Guidelines (http://www.auanet.org).

References
Minimally invasive management of BPH: surgical alternatives to TURP

In 1989, Roos reported a seemingly higher mortality and reoperation rate after TURP, when compared with open prostatectomy. This, combined with other studies suggesting that symptomatic outcome after TURP was poor in a substantial proportion of patients and that TURP was associated with substantial morbidity, prompted the search for less invasive treatments.

The two broad categories of alternative surgical techniques are minimally invasive and invasive. All are essentially heat treatments, delivered at variable temperature and power and producing variable degrees of coagulative necrosis (minimally invasive) of the prostate or vaporization of prostatic tissue (invasive).

Transurethral radiofrequency needle ablation of the prostate

Low-level radiofrequency is transmitted to the prostate via a transurethral needle delivery system; the needles which transmit the energy are deployed in the prostatic urethra once the instrument has been advanced into the prostatic urethra. It is done under local anaesthetic (LA), with or without IV sedation. The resultant heat causes localized necrosis of the prostate.

Improvements in symptom score and flow rate are modest. Side effects include bleeding (one-third of patients), UTI (10%), and urethral stricture (2%). No adverse effects on sexual function have been reported. Concerns remain with regard to long-term effectiveness.

The UK NICE does not recommend TUNA for symptoms associated with prostatic enlargement (https://www.nice.org.uk/guidance/cg97/chapter/1-recommendations).

Transurethral microwave thermotherapy

Microwave energy can be delivered to the prostate via an intraurethral catheter (with a cooling system to prevent damage to the adjacent urethra), producing prostatic heating and coagulative necrosis. Subsequent shrinkage of the prostate and thermal damage to adrenergic neurons (i.e. heat-induced adrenergic nerve block) relieves obstruction and symptoms.

Many reports of TUMT treatment are open studies, with all patients receiving treatment (no 'sham' treatment group where the microwave catheter is inserted, but no microwave energy is given—this results in 10-point symptom improvements in ~75% of men). Compared with TURP, TUMT results in symptom improvement in 55% of men, and TURP in 75%. Sexual side effects after TUMT (e.g. impotence, retrograde ejaculation) are less frequent than after TURP, but the catheterization period is longer and UTI and irritative urinary symptoms are more common. EAU guidelines state that TUMT ‘should be reserved for patients who prefer to avoid surgery or who no longer respond favourably to medication’. TUMT is still a popular treatment in the United States.

The UK NICE guideline on prostatic enlargement is found here: https://www.nice.org.uk/guidance/cg97/chapter/1-recommendations.
High-intensity focused ultrasound

A focused ultrasound beam can be used to induce a rise in temperature in the prostate or indeed in any other tissue to which it is applied. For HIFU treatment of the prostate, a transrectal probe is used. A general anaesthetic (GA) or heavy IV sedation is required during the treatment. It is regarded as an investigational therapy.

The UK NICE does not recommend HIFU for symptoms associated with prostatic enlargement (https://www.nice.org.uk/guidance/cg97/chapter/1-recommendations).

Prostatic urethral lift (UroLift®)

UroLift® aims to open up the prostatic urethra by retracting the lateral lobes using anchoring implants inserted transurethrally. This treatment is suitable for prostates of <100g without a median lobe. The median lobe cannot be anchored posteriorly due to the risk of rectal injury. Its advantages over TURP are that it is simpler to learn, teach, and perform and is quicker to perform and blood loss and hospital stay are less. It is usually done as a day case. It is indicated in men with voiding LUTS and small to moderate-sized prostates (<100g) with no median lobe.

Technique

Insert implants at 2 and 10 o’clock in the prostatic urethra, about 1cm distal to the bladder neck. It is important the metal clips are not within the bladder, else they might encrust. Repeat at intervals towards the veru to create good retraction of the lateral lobes. Between two and six implants may be needed, depending on the size and length of the prostate.

Outcomes

UroLift® has been shown to improve LUTS without compromising sexual function. UroLift® is supported by NICE guidance.

References

Bladder outlet obstruction

Invasive surgical alternatives to TURP

Transurethral electrovaporization of the prostate
Vaporizes and dessicates the prostate. TUVP seems to be as effective as TURP for symptom control and relief of BOO, with durable (5y) results. Operating time and inpatient hospital stay are equivalent. Requirement for blood transfusion may be slightly less after TUVP.\(^1,^2\) TUVP does not provide tissue for histological examination, so prostate cancers cannot be detected. NICE in the UK has endorsed TUVP as a surgical treatment option for prostatic symptoms.\(^3\)

Laser prostatectomy
Several different techniques of ‘laser prostatectomy’ evolved during the 1990s. Essentially, in the year 2012, we are left with just holmium laser prostatectomy (endorsed by NICE 2010 Guidelines) and the green light laser (NICE 2010 Guidelines recommending its use only in the context of RCTs).\(^3\)

Transurethral ultrasound-guided laser-induced prostatectomy (TULIP)
Performed using a probe consisting of a Nd:YAG laser adjacent to an ultrasound transducer.

Visual laser ablation of the prostate (VLAP)
This side-firing system used a mirror to reflect, or a prism to refract, the laser energy at various angles (usually 90°) from a laser fibre located in the prostatic urethra onto the surface of the prostate. The principal tissue effect was one of coagulation, with subsequent necrosis.

Contact laser prostatectomy
Produces a greater degree of vaporization than VLAP, allowing the immediate removal of tissue.

Interstitial laser prostatectomy (ILP)
Performed by transurethral placement of a laser fibre directly into the prostate that produces a zone of coagulative necrosis some distance from the prostatic urethra.

TULIP, VLAP, contact laser prostatectomy, and ILP have been succeeded by holmium laser prostatectomy.

KTP laser vaporization of the prostate
Also known as ‘greenlight’ photoselective vaporization of the prostate (PVP). An yttrium-aluminium-garnet (YAG) laser light is shone through a potassium titanyl phosphate (KTP) crystal, doubling the frequency and halving the emitted light wavelength to 532nm. This is in the green part of the visible spectrum and is strongly absorbed by Hb, producing efficient prostate tissue vaporization (Fig. 4.1). KTP energy is poorly absorbed by water/saline (the irrigant), and therefore, non-contact vaporization is possible. The benefits include less heating of the delivery fibre, which can last for a longer period of time. Laser systems of 80 and 120W are available. In the 80W system, ~100kJ will be delivered to the average prostate in 30min by rapid pulses of ‘quasi-continuous’ energy. Laser heat is concentrated over a small area, which allows rapid vaporization of tissue, with
I

minimal coagulation of underlying structures (2mm rim of coagulated tissue is left), but creating effective haemostasis. It can be used for larger prostates (>100mL) and higher-risk patients on anticoagulants.

Indications
The 2010 NICE Guidelines on the management of LUTS in men state that laser vaporization techniques, of which greenlight laser is one, should be offered only as part of an RCT.

Technique
Using a KTP/532 80W laser (Laserscope®), a 6F side-firing fibre is placed through a 24F continuous irrigation cystoscope, with normal saline irrigation. Generally, the median lobe is treated first, then the lateral lobes, using a sweeping movement of the laser fibre across the prostate, starting at the bladder neck and working distally to the level of the verumontanum. No tissue is available for histology.

Advantages over TURP
KTP laser prostatectomy can be performed safely as a day surgery operation, and in selected cases, a catheter may not be needed post-operatively or can be removed within 24h. It provides a virtually bloodless operation, with no reported need for blood transfusion, even in anticoagulated patients. Irrigation with saline or water avoids the risk of transurethral resection (TUR syndrome). The incidence of retrograde ejaculation is lower than TURP (8.3–52%), with no reported cases of new erectile dysfunction. When directly compared to TURP, equivalent short-term efficacies are seen, but with significantly shorter catheterization times and inpatient stays in the laser group.

Fig. 4.1 Absorption curve of water and oxyhaemoglobin. From Laserscope® Physician training manual 2006. Reproduced with permission from the American Medical Systems Inc, Minnesota.
Outcomes

Short- and medium-term outcomes (up to 5y follow-up) demonstrate sustained and statistically significant improvements in symptom scores (IPSS/AUA), flow rate, and PVR volumes.5–10

A randomized study comparing greenlight and TURP (the GOLIATH study) with 2y follow-up11 indicated longer operating time, shorter catheter dwell time, and shorter hospital stay with greenlight laser but showed no difference in voiding metrics, compared to TURP. There were fewer reported adverse events with greenlight.

Post-operative complications

Haematuria (1–11%); dysuria (2–21%); acute urinary retention (1–11%); reoperation rate (0–5% at 1y).

Prostate artery embolization

Prostate artery embolization (PAE) is an interventional radiology technique which involves injecting small particles into the blood vessels that supply the prostate. This blocks the blood supply, with the aim of shrinking the prostate through necrosis.

Advantages over TURP

• Performed under LA and sedation.
• May be performed on patients not fit for anaesthesia.
• Blood loss is less.
• Shorter in-hospital stay

Indications

The evidence for PAE remains limited at this time. Data available suggest that it might be useful for men with larger vascular prostates that are not suitable for surgical intervention. As many as 25% of patients may not have an improvement in IPSS.

Technique

Following CT angiographic planning, a percutaneous transfemoral approach is used to super-selectively catheterize the small prostate arteries. These are embolized with polyvinyl alcohol (PVA), gelatin sponge, and other synthetic biocompatible materials. It is a technically challenging procedure.

Outcomes

Small RCTs12,13 suggest good improvements in voiding parameters. PAE had higher technical and clinical failures. However, long-term data are not available at this time, and there is a paucity of RCT data. Currently, the UK NICE guidance recommends PAE in a research setting with the involvement of a multidisciplinary team (MDT).
Holmium (Ho):YAG laser

The holmium laser is a pulsed, solid-state laser with a wavelength of 2140nm, which is strongly absorbed by water. It is absorbed into prostate tissue to a depth of 0.4mm, and the heat created (>100°C) causes good tissue vaporization, while causing coagulation of small to medium-sized blood vessels. The coagulative depth is about 2–3mm beyond the tissue that has been vaporized. The irrigant is normal saline, so the risk of TUR syndrome is avoided.

HoLEP (endorsed by 2010 NICE Guidelines on the management of LUTS in men, available from: http://www.nice.org.uk/CG97) is particularly useful for treating larger prostates. An end-firing laser fibre is used to cut grooves into the prostate down to the level of the capsule. The prostate lobes are then dissected off and pushed into the bladder where a mechanical morcellator is used to fragment and aspirate the tissue. HoLEP is technically more difficult to master than laser vaporization and has a longer learning curve, but the overall results are at least equivalent to TURP, with fewer associated risks.

In a randomized trial comparing holmium laser enucleation with TURP for prostates of >40g, HoLEP was equivalent to TURP, but with those in the HoLEP group having a shorter catheterization time and hospital stay. A larger volume of prostatic tissue was removed. Long-term follow-up (7y) demonstrates sustained significant improvements in symptom scores and flow rates. In a direct comparison with open prostatectomy, HoLEP has also demonstrated equivalent improvement in symptom scores and flow rates at 3y follow-up.

Other techniques of holmium laser prostatectomy

Holmium laser ablation of the prostate (HoLAP)

A side-firing dual-wavelength fibre is used in a near-contact mode to vaporize prostatic tissue circumferentially to produce a satisfactory channel. Original techniques used 60W lasers; however, lasers of up to 100W are now available. Symptom improvements are sustained in the long term, and when directly compared with TURP, similar efficacy was seen in the short term, but with shorter hospital stay and catheter times in the HoLAP group and less bleeding than for TURP. Studies suggest overall, it is most effective for smaller prostate glands.

Holmium laser resection of the prostate (HoLRP)

This technique copies that of TURP, whereby the precise cutting ability of the holmium laser is used to remove pieces of prostate down to the capsule to create a large and relatively bloodless channel. It can be used on prostate glands of all sizes. Again, it has short catheterization times and hospital stays and is associated with minimal post-operative dysuria.
References

Bladder outlet obstruction

TURP and open prostatectomy

TURP
Removal of the obstructing tissue of BPH or obstructing prostate cancer from within the prostatic urethra, leaving the compressed outer zone intact (the ‘surgical capsule’). An electrically heated wire loop is used, through a resectoscope, to cut the tissue and diathermy bleeding vessels. The cut ‘chips’ of the prostate are pushed back into the bladder by the flow of irrigating fluid and, at the end of resection, are evacuated using specially designed ‘evacuators’—a plastic or glass chamber attached to a rubber bulb which allows fluid to be flushed in and out of the bladder.

Indications for TURP
- Bothersome LUTS that fail to respond to changes in lifestyle or medical therapy.
- Recurrent acute urinary retention.
- Renal impairment due to BOO (high-pressure chronic urinary retention).
- Recurrent haematuria due to BPE.
- Bladder stones due to prostatic obstruction.

Open prostatectomy

Indications
- Large prostate (>100g).
- TURP not technically possible (e.g. limited hip abduction).
- Failed TURP (e.g. because of bleeding).
- Urethra too long for the resectoscope to gain access to the prostate.
- Presence of bladder stones which are too large for endoscopic cystolitholapaxy, combined with marked enlargement of the prostate.

Contraindications
- Small, fibrous prostate.
- Prior prostatectomy in which most of the gland has been resected or removed; this obliterates the tissue planes.
- Carcinoma of the prostate.

Techniques
Suprapubic (transvesical)
The preferred operation if enlargement of the prostate involves mainly the middle lobe. The bladder is opened, the mucosa around the protruding adenoma is incised, and the plane between the adenoma and the capsule is developed to enucleate the adenoma. A 22Ch urethral catheter and a suprapubic catheter (SPC) are left, together with a retropubic drain. The urethral catheter is removed in 3 days, and the SPC is clamped at 6 days, with its removal 24h later. The drain can be removed 24h after this (day 8).

Simple retropubic
Popularized by Terence Millin (Ireland, 1947). Compared with the suprapubic (transvesical) approach, it allows more precise anatomic exposure of the prostate, thus giving better visualization of the prostatic cavity, which allows more accurate removal of the adenoma, better control
of bleeding points, and more accurate division of the urethra, so reducing the risk of incontinence.

As well as the contraindications noted, the retropubic approach should not be employed when the middle lobe is very large because it is difficult to get behind the middle lobe and so to incise the mucosa (safely) distal to the ureters.

The prostate is exposed by a Pfannenstiel or lower midline incision. Haemostasis is achieved before enucleating the prostate by ligating the dorsal vein complex with sutures placed deeply through the prostate. The prostatic capsule and adenoma are incised transversely with the diathermy just distal to the bladder neck. The plane between the capsule and adenoma is found with scissors and developed with a finger. Sutures are used for haemostasis. A wedge of the bladder neck is resected. A catheter is inserted and left for 5 days, and the transverse capsular incision is closed. A large tube drain (30Ch Robinson’s) is left for 1–2 days.

Complications
- Haemorrhage.
- Urinary infection.
- Rectal perforation (close and cover with a colostomy).
Acute urinary retention: definition, pathophysiology, and causes

Definition

Painful inability to void, with relief of pain following drainage of the bladder by catheterization.

The combination of reduced or absent urine output with lower abdominal pain is not, in itself, enough to make a diagnosis of acute retention. Many acute surgical conditions cause abdominal pain and fluid depletion, the latter leading to reduced urine output, and this reduced urine output can give the erroneous impression that the patient is in retention when, in fact, they are not. Thus, central to the diagnosis is the presence of a large volume of urine which, when drained by catheterization, leads to resolution of the pain. What represents ‘large’ has not been strictly defined, but volumes of 500–800mL are typical. Volumes <500mL should lead one to question the diagnosis. Volumes >800mL may be defined as acute-on-chronic retention.

Pathophysiology

Normal micturition requires:

- Afferent input to the brainstem and cerebral cortex.
- Coordinated relaxation of the external sphincter.
- Sustained detrusor contraction.
- The absence of an anatomic obstruction in the outlet of the bladder.

Four broad mechanisms can lead to urinary retention:

- ↑ urethral resistance (i.e. BOO).
- Low bladder pressure (i.e. impaired bladder contractility).
- Interruption of sensory or motor innervation of the bladder.
- Central failure of coordination of bladder contraction with external sphincter relaxation.

Causes in men

- BPE.
- Malignant enlargement of prostate.
- Urethral stricture; prostatic abscess.

Urinary retention in men is either spontaneous or precipitated by an event. Precipitated retention is less likely to recur once the event which caused it has been removed. Spontaneous retention is more likely to recur after a trial of catheter removal and therefore to require definitive treatment (e.g. TURP). Precipitating events include anaesthetic and other drugs (anticholinergics, sympathomimetic agents such as ephedrine in nasal decongestants), non-prostatic abdominal or perineal surgery, and immobility following surgical procedures.
Causes of acute urinary retention in either sex

- Haematuria, leading to clot retention.
- Drugs (as mentioned in the text).
- Pain (adrenergic stimulation of the bladder neck).
- Post-operative retention (see p. 107).
- Sacral cord (S2–4) injury.
- Sacral (S2–4) nerve or compression or damage, resulting in detrusor areflexia—cauda equina compression (due to prolapsed L2–L3 disc or L3–L4 intervertebral disc pressing on sacral nerve roots of the cauda equina, trauma to vertebrae, benign or metastatic tumours).
- Suprasacral SCI [results in loss of coordination of external sphincter relaxation with detrusor contraction—so-called detrusor sphincter dyssynergia (DSD)—so the external sphincter contracts when the bladder contracts).
- Radical pelvic surgery damaging the pelvic parasympathetic plexus (radical hysterectomy, abdominoperineal resection): unilateral injury to the pelvic plexus (preganglionic parasympathetic and post-ganglionic sympathetic neurons) denervates motor innervation of the detrusor muscle.
- Pelvic fracture rupturing the urethra (more likely in men than women).
- Neurotropic viruses involving sensory dorsal root ganglia of S2–4 (herpes simplex or zoster).
- MS [can affect any part of the central nervous system (CNS) (Fig. 4.2)]; retention caused by detrusor areflexia or DSD.
- Transverse myelitis.
- Diabetic cystopathy (causes sensory and motor dysfunction).
- Damage to dorsal columns of the spinal cord, causing loss of bladder sensation (tabes dorsalis, pernicious anaemia).

Risk factors for retention in men

Advancing age is a strong predictor of the risk of urinary retention in men. Other factors that predict risk of urinary retention are the presence of LUTS (higher symptom scores), previous episodes of spontaneous retention, low Qmax (though there is some debate), and larger prostate volume. Elevated PVR does not seem to predict the risk of retention and nor does treatment with anticholinergic medication.1

Causes in women

- Pelvic prolapse (cystocele, rectocele, uterine); urethral stricture; urethral diverticulum.
- Post-surgery for ‘stress’ incontinence.
- Pelvic masses (e.g. ovarian masses).
- Fowler’s syndrome: * electromyographic (EMG) activity can be recorded in the external urethral sphincters of these women (which, on ultrasound, is of volume) and is hypothesized to cause impaired relaxation of the external sphincter; occurs in premenopausal women, often in association with polycystic ovaries.
Fig. 4.2 MRI of the cervical and sacral cord in a young patient presenting with urinary retention. The patient had undiagnosed multiple sclerosis. Signal changes are seen in the cervical, thoracic, and lumbosacral cord.
Risk factors for post-operative retention

Instrumentation of the LUT; surgery to the perineum or anorectum; gynaecological surgery; bladder overdistension; reduced sensation of bladder fullness; pre-existing prostatic obstruction; epidural anaesthesia. Post-partum retention is not uncommon, particularly with epidural anaesthesia and instrumental delivery.

Reference

CHAPTER 4 Bladder outlet obstruction

Acute urinary retention: initial and definitive management

Initial management
Urethral catheterization to relieve pain (suprapubic catheterization if the urethral route not possible). Record the volume drained—this confirms the diagnosis, determines subsequent management, and provides prognostic information with regard to outcome from this treatment.

Definitive management in men
Discuss trial without catheter (TWOC) with the patient. Precipitated retention often does not recur; spontaneous retention often does. Fifty per cent with spontaneous retention will experience a second episode of retention within the next week or so, and 70% within the next year. A maximum flow rate (Qmax) of <5mL/s and low voiding detrusor pressure predict subsequent retention. Thus, while most will require definitive treatment (e.g. TURP), a substantial minority will get away without needing surgery.

In men, mortality in the first year after acute urinary retention is 2–3 times higher than the general ♂ population. Not surprisingly, it increases with age (Table 4.5). A substantial proportion of this ↑ mortality seems to be linked to comorbidity in these men. Thus, when deciding whether to ‘subject’ a man to TURP for retention, remember that acute retention represents a harbinger of severe systemic disease. A careful assessment for comorbidity (cardiovascular disease, diabetes, chronic pulmonary disease) should be made, and referral for appropriate specialist advice on management of this comorbidity should be considered.

Options to avoid TURP
• Prostate-shrinking drugs [5ARIs in those with benign-feeling prostates, luteinizing hormone-releasing hormone (LHRH) agonists in those with malignant-feeling prostates on DRE, confirmed by TRUS-guided prostate biopsy], followed by a TWOC several months later.
• Prostatic stents.
• Long-term urethral or suprapubic catheter.
• Clean intermittent self-catheterization (CISC)—not a realistic option for most men, but some will be able and happy to do this.

Definitive management in women
CISC, either until normal voiding function recovers or permanently if it does not. Fowler’s syndrome—sacral neuromodulation (e.g. Medtronic InterStim).

Risks and outcomes of TURP for retention
• Relative risks of TURP for retention vs TURP for LUTS: post-operative complications, 26:1; blood transfusion, 2.5:1; in-hospital death, 3:1.1,2
• Failure to void after initial catheter removal: high retention volume, greater age, and low maximum detrusor pressure are predictive for failure to void after TURP. Ten per cent in those with acute retention of urine and 40% in those with acute-on-chronic retention fail to void after initial post-TURP TWOC. Overall, 1% of men will fail to void after subsequent TWOCs and will require long-term catheterization.3
Table 4.5 One-year mortality rates in men with acute retention

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Spontaneous acute retention (%)</th>
<th>Precipitated acute retention (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45–54</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>85 or over</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>All ages</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

References

Indications for and technique of urethral catheterization

Indications
- Relief of urinary retention.
- Prevention of urinary retention—a period of post-operative catheterization is commonly employed after many operations where limited mobility makes normal voiding difficult.
- Monitoring of urine output (e.g. post-operatively); prevention of damage to the bladder during a Caesarean section.
- Bladder drainage following surgery to the bladder, prostate, or urethra (e.g. TURP, TURBT, open bladder stone removal, radical prostatectomy).
- Bladder drainage following injuries to the bladder.

Technique

Explain the need for, and the method of, catheterization to the patient. Use the smallest catheter—in practical terms, usually a 12Ch, with a 10mL balloon. For longer catheterization periods (weeks), use a silastic catheter to limit tissue ‘reaction’, thereby reducing the risk of a catheter-induced urethral stricture. If clot retention, use a 3-way catheter (20Ch or greater) to allow evacuation of clots and bladder irrigation to prevent subsequent catheter blockage.

The technique is aseptic. One gloved hand is sterile, and the other is ‘dirty’. The dirty hand holds the penis or separates the labia to allow cleansing of the urethral meatus; this hand should not touch the catheter. Use sterile water or sterile cleaning solution to ‘prep’ the skin around the meatus.

Apply lubricant jelly to the urethra. Traditionally, this contains LA (e.g. 2% lidocaine), which takes between 3 and 5min to work. However, a randomized, placebo-controlled trial showed that 2% lidocaine was no more effective for pain relief than anaesthetic-free lubricant, suggesting that it is the lubricant action that prevents urethral pain. If using an LA lubricant, warn the patient that it may ‘STING’. An LA lubricant is contraindicated in patients with allergies to LAs and in those with urethral trauma where there is a (theoretical) risk of complications arising from systemic absorption of lidocaine. When instilling jelly, do so gently—a sudden, forceful depression of the plunger of the syringe can rupture the urethra! In ♂, ‘milk’ the gel towards the posterior urethra, while squeezing the meatus, to prevent it from coming back out of the meatus.

Insert the catheter using the sterile hand until the flow of urine confirms it is in the bladder. Failure of urine flow may indicate that the catheter balloon is in the urethra. Intraurethral inflation of the balloon can rupture the urethra. If no urine flows, attempt aspiration of urine using a 50mL bladder syringe (lubricant gel can occlude the eye-holes of the catheter). Absence of urine flow indicates either the catheter is not in the bladder or, if the indication for catheterization is retention, that the diagnosis is wrong (there will
usually be a few millilitres of urine in the bladder, even in cases where the absence of micturition is due to oliguria or anuria, so complete absence of urine flow usually indicates the catheter is not in the bladder). If the catheter will not pass into the bladder, and you are sure that the patient is in retention, proceed with suprapubic catheterization.

Reference

CHAPTER 4 Bladder outlet obstruction

Technique of suprapubic catheterization

Indications
- Failed urethral catheterization in urinary retention.
- Preferred site for long-term catheters, e.g. intractable urinary incontinence where other methods have failed; neurological disease (long-term bladder management in SCI or MS). Long-term urethral catheters commonly lead to acquired hypospadias in ♂ (ventral splitting of the glans penis) and patulous urethra in ♀ (leading to frequent balloon expulsion and bypassing of urine around the catheter); hence, the suprapubic site is preferred for long-term catheters.
- Used in the initial management of urethral trauma where urethral catheterization has failed.

Contraindications
Insertion of suprapubic catheterization is best avoided in:
- Patients with clot retention, the cause of which may be an underlying bladder cancer (the cancer could be ‘spread’ along the catheter track to involve the skin).
- Patients with known carcinoma of the bladder.
- Patients with lower midline incisions (the bowel may be ‘stuck’ to the deep aspect of the scar, leading to the potential for bowel perforation).
- Pelvic fractures where the catheter may inadvertently enter the large pelvic haematoma which always accompanies severe pelvic fracture. This can lead to infection of the haematoma, and the resulting sepsis can be fatal. Failure to pass a urethral catheter in a patient with a pelvic fracture usually indicates a urethral rupture (confirmed by urethrography) and is an indication for formal open suprapubic cystotomy.
- Patients on anticoagulation and antiplatelet treatment.
- Abdominal wall sepsis.
- Patients with subcutaneous vascular graft in the suprapubic region, e.g. femoro-femoral cross-over graft.

Assessment prior to insertion
- Ask if previous abdominal surgery in the suprapubic or pelvic region.
- Enquire if there is neurological disease (bladder capacity often small and urethral incompetence in women is common, which makes bladder distension difficult; SCI autonomic dysreflexia is common in bladder distension, so a spinal or general anaesthetic may be required).
- Abdominal examination: inspect for lower abdominal scars; palpate and percuss the lower abdomen to confirm the bladder is distended.
- Consider stopping anticoagulation (or modifying with heparin ‘bridging’ therapy) and antiplatelet treatment if safe to do so.
Consent for suprapubic catheter insertion
British Association of Urological Surgeons (BAUS) SPC practice guidelines.
Risks include:
• Haemorrhage, including haematuria and intra-abdominal bleeding.
• Infection, including UTI and infection of track site or wound.
• Pain.
• Injury to abdominal organs.
• General risks of long-term catheterization.

Technique
LA or spinal or general anaesthetic if:
• At risk of autonomic dysreflexia (or at patient’s request).
• The bladder cannot be distended sufficiently to allow safe SPC insertion.

Give antibiotic prophylaxis if there is likely to be urine bacterial colonisation.
Prior to insertion of the trocar, be sure to confirm the diagnosis by:
• Abdominal examination (palpate and percuss the lower abdomen to confirm the bladder is distended).
• Ultrasound: BAUS SPC practice guidelines state that ultrasound can be used to determine if there is interposing bowel in the planned suprapubic track ‘if carried out by a competent, trained practitioner’. They do not define ‘competent’ or ‘trained’. They admit that ‘the reliability of ultrasonography in excluding the presence of a loop of intestine in the suprapubic region has not been formally evaluated’.
• Aspiration of urine using a 21G (green) needle, usually 2cm above the pubic symphysis.

Use a wide-bore trocar if you anticipate that the catheter will be in place for >24h (small-bore catheters will block within a few days). Aim to place the catheter about 2cm above the pubis symphysis. Placement too close to the symphysis will result in difficult trocar insertion (the trocar will hit the symphysis). Instil a few millilitres of LA into the skin of the intended puncture site and down to the rectus sheath. Confirm the location of the bladder by drawing back on the needle to aspirate urine from the bladder. This helps guide the angle of trocar insertion. Make a 1cm incision with a sharp blade through the skin. Hold the trocar handle in your right hand, and steady the needle end with your left hand (this hand helps prevent insertion too deeply). Push the trocar in the same direction in which you previously aspirated urine. As soon as urine issues from the trocar, withdraw the latter, holding the attached sheath in place. Push the catheter in as far as it will go. Inflate the balloon. Peel away the side of the sheath, and remove it.

Complications of urethral and suprapubic catheters
At the time of insertion
• Bowel perforation that accounts for the reported mortality of SPC insertion of 1–2%.1,2 Try to avoid the temptation to describe SPC insertion as a ‘minor’ procedure. BAUS SPC practice guidelines state the patient and their carers should be given written guidance, including instructions for ‘prompt referral to the team who inserted the catheter if the patient is unexpectedly unwell and/or has marked abdominal pain. The instructions should include contact numbers and clear
instructions to make contact in the event of bleeding that is either heavy or persistent, symptoms to suggest infection, or the presence of lower abdominal pain that is failing to improve or spreading away from the immediate catheter site.

- Persistent haematuria (may require bladder washouts and even, very occasionally, return to theatres for cystoscopic diathermy of the bleeding point if it can be found). Pass a urethral catheter to assist bladder washouts and irrigation. Pull the SPC balloon back against the anterior bladder wall to tamponade the bleeding.
- Track site or wound infection. Antibiotics, and if an abscess, incision and drainage. The author has never seen a case of cellulitis, ‘track infection’, or abscess in over 500 SPC insertions in patients at high risk of these potential complications, i.e. SCI patients with urine bacterial colonization. He advises patients of the very common occurrence of granulation tissue around the SPC track and that this does not represent track infection and should not be treated with antibiotics. The track often takes many months to ‘mature’, i.e. for skin to grow down the track. BAUS SPC practice guidelines state ‘systemic antibiotics should not be used to treat uncomplicated pericatheter discharge or asymptomatic bacteriuria’.

Long-term problems and complications

- Recurrent UTIs: the definition of what represents a ‘UTI’ is a source of much confusion and the cause of much inappropriate prescribing of antibiotics, which inevitably leads to the development of resistant bacteria in the urine. Inevitably, any foreign body in the bladder will become colonized with bacteria very rapidly. We do not regard the mere presence of bacteria or pus cells (of whatever number) as indicative of a UTI (the presence of bacteria in the absence of constitutional symptoms of feeling unwell, fever, and cloudy, smelly urine is not regarded as ‘active’ infection, but rather is better termed ‘colonization’). Avoid the temptation to prescribe antibiotics for mere colonization. Symptomatic UTIs (fever, feeling generally unwell, smelly and cloudy urine) can be a very difficult problem to manage. Not infrequently, patients (particularly those with SCI managed with long-term catheter drainage) report such symptoms in the absence of any bacterial growth in the urine. Others report feeling perfectly well, for months on end, in the face of urine that is full of bacteria! Remember, although short courses of antibiotics (7–10 days) may resolve what we think may be the symptoms of UTI, no amount of antibiotics will, over the long term, be able to sterilize the urine of a patient with a foreign body such as a catheter in it. Low-dose antibiotics (a quarter of the normal daily treatment dose) may keep the symptoms at bay or reduce the frequency of ‘infective’ episodes (but long-term use of nitrofurantoin or trimethoprim—two popular low-dose antibiotics—is associated, albeit rarely, with severe side effects such as blood dyscrasias or pulmonary fibrosis). In some patients, the only solution is to change bladder management. There is a greater risk of pyelonephritis in the chronically catheterized patient.
• **Catheter blockages**: due to encrustation of the lumen of the catheter with bacterial biofilms. *Proteus mirabilis*, *Morganella*, and *Providencia* species secrete a polysaccharide matrix. Within this, urease-producing bacteria generate ammonia from nitrogen in urine, raising urine pH and precipitating magnesium and calcium phosphate crystals. The matrix–crystal complex blocks the catheter. Catheter blockage causes bypassing, which soils the patient’s clothes. Bladder distension can cause autonomic dysreflexia in patients with thoracic or cervical SCIs, leading to extreme rises in BP that, believe it or not, can cause stroke and death! Regular bladder washouts and ↑ catheter size sometimes help. There is a suggestion, based on *in vitro* experiments on catheters in the laboratory, that intermittent catheter drainage (by the use of a valve inserted between the catheter and the drainage bag) can reduce the likelihood of catheter blockages. Whether this holds true in patients remains to be documented.

• **Bladder stone formation**: necessitating surgical removal (endoscopic or open cystolithotomy), occurs in one in four patients followed over a 5y period.¹

• ‘Track’ problems at the time of catheter changes: difficulty removing the catheter (some catheter balloons have a ‘memory’, retaining an awkward shape such that they resist removal); difficulty reinserting the catheter (may require repositioning of the SPC site).

• In ♂ patients managed by a long-term urethral catheter, the pressure of the catheter can cause urethral and bladder neck erosion, leading to a so-called patulous urethra. In the ♀, a long-term urethral catheter can lead to pressure atrophy of the meatus of the penis, leading to an acquired hypospadias (‘kippering’ of the glans penis and even the shaft of the penis). While a mild acquired hypospadias has no great functional effect, cosmetically it does.

• **Catheter bypassing**: either around the suprapubic site or per urethra. Management is empirical. Try as small a balloon size as possible. If the leakage is due to bladder spasms, then a smaller balloon may possibly reduce their intensity and frequency. Anticholinergics may help, as may intravesical Botox injections. Other options include condom sheath drainage (in men) or bladder neck closure. This is not the minor operation (‘just a few stitches’) that patients are sometimes led to believe, and often—30% of cases—the closure breaks down so the leak persists. Bladder neck closure is irreversible, and access to the bladder via the suprapubic track is not always easy, particularly if access to the ureteric orifices is required for upper tract endoscopy.

• **Bladder cancer (SCC of the bladder)**: there is conflicting evidence regarding the incidence of bladder cancer in SCI patients, some studies suggesting an ↑ risk and others suggesting the risk is the same as in the non-spinal injured population.⁴ The author feels that the risk of SCC is greater than in the ambulant, non-catheterized population, but that the risk is still low. The pathogenesis is likely to involve chronic bacterial colonization of the bladder of spinal patients, whether managed with indwelling catheters, ISC, or sheath drainage, and so the presence of the catheter per se is not enough to induce development of a
cancer. Screening cystoscopy studies have either failed to result in a downstaging of bladder cancer, when compared with non-screened patients, or simply not detected any cases of bladder cancer. Screening cystoscopy remains a subject of debate.5

Catheter care

- When should the first change be done, and who should do it? BAUS SPC practice guidelines state ‘It is not necessary for the first catheter change to be carried out by the team who inserted the catheter; the first change is generally deferred for at least 2 weeks (and typically 6–12 weeks) after catheter insertion to allow the track to ‘mature’.
- How often should the catheter be changed? Usually 6-weekly to 3-monthly, but there is no hard and fast rule that a catheter must be changed at a given interval.
- To maintain bladder capacity over the long term, should the catheter be clamped and should long-term anticholinergic medication be given? Nice idea in theory, but no evidence of efficacy of either method.
- Can a flip-flow valve be used to allow intermittent bladder emptying? Yes, as long as the patient does not get autonomic dysreflexia with bladder distension and does not leak urethrally with a full bladder.
- Can the patient or carer change the SPC? Yes, if adequately trained.
- What should I do for bypassing of urine (leakage of urine either per urethra or around the SPC)? Try anticholinergics, and if this fails, bladder Botox injections. If all else fails, a bladder neck or urethral closure may be necessary.
- The catheter keeps blocking. What can I do? BAUS SPC practice guidelines state that ‘Repeated catheter blockages are frequently related to the development of bladder calculi’. The author agrees that blockages are ‘related to’ the same process that causes bladder stones, but catheter blockages are not caused by bladder stones, for in the author’s experience of managing many, many hundreds of patients with bladder stones, such stones are often far too large to block the catheter eye-holes. Catheter blockages and bladder stones are caused by the same process—chronic bacterial colonization of the bladder and any artificial device left within the bladder such as a catheter, followed by the development of a biofilm around the colonies of bacteria, followed by infiltration of this biofilm with calcium and phosphate. This is the process of catheter encrustation (which blocks catheters), and it is also the process of bladder stone formation. Where blockages become problematic, increase the SPC size, increase fluid intake, and consider bladder washouts (daily or every few days)—the evidence base for the efficacy of all of this is weak. The evidence base for in vivo use of a flip-flow valve to stop blockages is non-existent. In the author’s experience, full-dose courses of antibiotics or low-dose prophylactic antibiotics only very occasionally resolve this problem and, more often than not, lead to the emergence of multiresistant bacteria in the urine.
References

Further reading

Management of nocturia and nocturnal polyuria

Nocturia is often particularly resistant to treatment.

First, establish whether the patient is polyuric (>3L of urine/24h) by getting them to complete an FVC. If they are polyuric, this may account for their daytime and night-time voiding frequency. Establish whether they have a solute or water diuresis and the causes thereof (Box 4.1).

If non-polyuric (<3L urine output/24h), determine the distribution of urine output over the 24h period. If more than one-third of urine output is between the hours of midnight and 8 a.m., then the patient has NP.

If there is NP, exclude other medical causes: diabetes mellitus and DI, adrenal insufficiency; hypercalcaemia; liver failure; polyuric renal failure; chronic heart failure; OSA, dependent oedema; chronic venous stasis; calcium channel blockers; diuretics; and SSRI antidepressants.

Non-polyuric nocturia

BPH medical therapy
The impact of α-blockers, 5ARIs, and anticholinergics on nocturia is modest.

TURP
Nocturia persists in 20–40% of men after TURP.

Medtronic InterStim therapy for nocturia
Patients preselected on the basis of a favourable symptomatic response to a test stimulation can experience a reduction in nocturia, but not all patients respond to the test stimulation and the treatment is expensive and not yet widely available in all countries.

Treatment for NP
The evidence base for NP treatments is limited (very few randomized, placebo-controlled trials).

Fluid restriction
Many patients have reduced their afternoon and evening fluid intake in an attempt to reduce their night-time diuresis.

Diuretics
Diuretics, taken several hours before bedtime, reduce nocturnal voiding frequency in some patients.2 3

DDAVP
A synthetic analogue of arginine vasopressin (endogenous ADH) which, if taken at night, can reduce urine flow by its antidiuretic action. It has been suggested that NP may be caused by a lack of endogenous production of ADH in elderly people. However, adults both with and without NP have no rise in ADH at night (i.e. ADH secretion remains remarkably constant throughout the day in adults with and without NP). Furthermore, the diuresis in adults with NP is a solute diuresis due to nocturnal natriuresis.4 Thus, lack of ADH secretion at night is not the cause of the diuresis in nocturnal polyuric adults, and therefore, from a theoretical perspective, there is no
logical basis for using desmopressin in NP. There is limited evidence that it reduces night-time voiding frequency (at least in responder enrichment studies) and increases sleep duration in a proportion of patients with NP.

Side effects
Hyponatraemia (sodium <130mmol/L) in 5% of patients. Measure serum sodium 3 days after starting DDAVP, and stop if hyponatraemia develops.

Box 4.1 Investigation of the polyuric patient (urine output >3L per 24h)
- Urine osmolality?
 - >250mOsm/kg = solute diuresis.
 - <250mOsm/kg = water diuresis.
- Solute diuresis: poorly controlled diabetes mellitus, saline loading (e.g. post-operative diuresis), diuresis following relief of HPCR.
- Water diuresis: primary polydipsia, DI (nephrogenic, e.g. lithium therapy; central—ADH deficiency).

Nocturia and sleep apnoea
OSA is highly prevalent in those over 65y of age. It is often manifested by snoring. There is a strong association between OSA symptoms and nocturia. Large negative intrathoracic pressure swings may trigger cardiac-mediated natriuresis and hence cause NP.

References
Chronic retention

Anyone who retains a certain volume of urine in their bladder after voiding or attempted voiding can be said to be in chronic retention. For those who retain the ability to pass urine, such a situation can be termed ‘chronic retention’, and this may be low pressure (normal creatinine and absence of hydronephrosis on ultrasound) or high pressure (raised creatinine which falls post-catheterization, usually with hydronephrosis on ultrasound). Those with chronic retention who suddenly become unable to pass urine (and this is usually painful) can be said to have developed acute-on-chronic retention. Again, this can be low pressure or high pressure. A workable definition (one that is related to the outcome of TURP) for the acute setting of painful inability to void is that acute retention (non-chronic) is a painful inability to void with a catheterization volume of <800mL, and acute-on-chronic retention is a painful inability to void with a catheterization volume of >800mL.¹

In the context of chronic retention, precisely what ‘a certain volume’ means is variably defined. Some say a patient has chronic retention when they consistently leave 300mL behind post-void, others 800mL, and NICE⁴ describes it as a residual volume of >1000mL or the presence of a palpable/percussable bladder (though the bladder can certainly be palpated or percussed when containing <1000mL, so this definition is not strictly consistent).

The 2010 NICE guidelines on management of LUTS in men provide a useful algorithm for the management of chronic retention (Fig. 4.3). A creatinine and renal ultrasound are done.
Fig. 4.3 NICE guidelines for management of LUTS in men—modified version. Data sourced from National Institute for Health and Clinical Excellence (2010) Lower urinary tract symptoms in men: management. NICE guideline (CG97).

References
CHAPTER 4 Bladder outlet obstruction

High-pressure chronic retention

In the 2nd edition of this book, this was defined as maintenance of voiding, with a bladder volume of >800mL and an intravesical pressure above 30cmH\textsubscript{2}O, accompanied by hydronephrosis1,2 and since this definition has been shown to be helpful in predicting the outcome of the commonest surgical treatment for urinary retention,1 it is one that I have decided to keep for this 4th edition. Over time, this leads to renal failure. When the patient is suddenly unable to pass urine, acute-on-chronic high-pressure retention of urine has occurred.

A man with high-pressure retention who continues to void spontaneously may be unaware that there is anything wrong. He will often have no sensation of incomplete emptying, and his bladder seems to be insensitive to the gross distension. Often, the first presenting symptom is that of bedwetting. This is such an unpleasant and disruptive symptom that it will cause most people to visit their doctor. Visual inspection of the patient’s abdomen may show marked distension due to a grossly enlarged bladder. The diagnosis of chronic retention can be confirmed by palpation of the enlarged, tense bladder which is dull to percussion.

Acute treatment

Catheterization relieves the pressure on the kidneys and allows normalization of renal function. A large volume of urine is drained from the bladder (often in the order of 1–2L and sometimes much greater). The serum creatinine is elevated, and an ultrasound will show hydronephrosis, with a grossly distended bladder if the scan is done before relief of retention.

Anticipate profound diuresis following drainage of the bladder due to:
- Excretion of salt and water that has accumulated during the period of renal failure.
- Loss of the corticomedullary concentration gradient, due to continued perfusion of the kidneys with diminished flow of urine through the nephron (this washes out the concentration gradient between the cortex and medulla).
- An osmotic diuresis caused by elevated serum urea concentration.

A small percentage of patients have a postural drop in BP. It is wise to admit patients with HPCR for a short period of observation until the diuresis has settled. A few will require IV fluid replacement if they experience a symptomatic fall in BP when standing.

Definitive treatment

TURP or a long-term catheter. In those unable to void who have been catheterized, a TWOC is clearly not appropriate in cases where there is back pressure on the kidneys. Rarely, a patient who wants to avoid TURP and does not want an indwelling catheter will be able to empty their bladder by ISC.
References
Bladder outlet obstruction and retention in women

Relatively rare (75% of women undergoing pressure flow studies have BOO, compared with 60% of unselected men with LUTS).\(^{1,2}\)

It may be symptom-free and present with LUTS or as acute urinary retention. In broad terms, the causes are related to obstruction of the urethra (e.g. urethral stricture, compression by a prolapsing pelvic organ such as the uterus, post-surgery for stress incontinence) or have a neurological basis (e.g. injury to the sacral cord or parasympathetic plexus, degenerative neurological disease, e.g. MS, diabetic cystopathy).

Voiding studies in women

Women have a higher Qmax, for a given voided volume than do men. Women with BOO have a lower Qmax than those without BOO. There are no universally accepted urodynamic criteria for diagnosing BOO in women.

Treatment of BOO in women

Treat the cause (e.g. dilatation of a urethral stricture; repair of a pelvic prolapse). Where this it is not possible (because of a neurological cause such as MS or SCI), the options are:

- ISC or intermittent catheterization by a carer.
- Indwelling catheter (preferably suprapubic rather than urethral).
- Mitrofanoff catheterizable stoma.

Where urethral ISC is technically difficult, a catheterizable stoma can be constructed between the anterior abdominal wall and the bladder, using the appendix, Fallopian tube, or a narrowed section of the small intestine. This is the Mitrofanoff procedure. It is simply a new urethra which has an abdominal location, rather than a perineal one, and is therefore easier to access for ISC.

For women with a suprasacral SCI with preserved detrusor contraction and urinary retention due to DSD, sacral deafferentation, combined with a Brindley stimulator, can be used to manage the resulting urinary retention.

Fowler’s syndrome

A primary disorder of sphincter relaxation (as opposed to secondary to, for example, SCI). Increased EMG activity (repetitive discharges on external sphincter EMG) can be recorded in the external urethral sphincters of these women (which, on ultrasound, are of ↑ volume) and is hypothesized to cause impaired relaxation of the external sphincter. Occurs in premenopausal women, typically aged 15–30, often in association with polycystic ovaries (50% of patients), acne, hirsutism, and menstrual irregularities. May also be precipitated by childbirth or gynaecological or other surgical procedures. They report no urgency with bladder volumes of >1000mL, but when attempts are made to manage their retention by ISC, they experience pain, especially on withdrawing the catheter.
- **Pathophysiology**: may be due to a channelopathy of the striated urethral sphincter muscle, leading to involuntary external sphincter contraction.
- **Treatment**: ISC, sacral neuromodulation with Medtronic InterStim (90% void post-implantation and 75% are still voiding at 3y follow-up). The mechanism of action of sacral neuromodulation in urinary retention is unknown.

References

Urethral strictures and stenoses

A urethral stricture is a scar in the subepithelial tissues of the corpus spongiosum which constricts the lumen of the urethra. Since it is only the anterior urethra that is surrounded by the corpus spongiosum, by consensus, urethral strictures are said only to affect the anterior urethra. A narrowing of the calibre of the posterior urethra is termed a stenosis.

Anterior urethral strictures

The process of scar formation occurs in the spongy erectile tissue (corpus spongiosum) of the penis that surrounds the urethra—spongiofibrosis.

- Inflammation [e.g. balanitis xerotica obliterans (BXO)], gonococcal infection leading to gonococcal urethritis (less common nowadays because of prompt treatment of gonorrhoea).
- Trauma:
 - Straddle injuries—blow to the bulb urethra (e.g. cross-bar injury).
 - Iatrogenic—instrumentation (e.g. traumatic catheterization, traumatic cystoscopy, TURP, BNI).

The role of non-specific urethritis (e.g. Chlamydia) in the development of anterior urethral strictures has not been established.

Posterior urethral stenoses

Fibrosis of the tissues around the urethra results from trauma—pelvic fracture or surgical (radical prostatectomy, TURP, urethral instrumentation). By consensus, they are now described as stenosis and are no longer described as strictures. These are essentially distraction injuries (leading to a stenosis of the urethra) where the posterior urethra has been pulled apart and the subsequent healing process results in the formation of a scar which contracts and thereby narrows the urethral lumen.

Symptoms and signs of urethral stricture

- Voiding symptoms—hesitancy, poor flow, post-micturition dribbling.
- Urinary retention—acute, or high-pressure acute-on-chronic.
- UTI—prostatitis, epididymitis.

Management of urethral strictures

Where the patient presents with urinary retention, the diagnosis is usually made following a failed attempt at urethral catheterization. In such cases, avoid the temptation to ‘blindly’ dilate the urethra. Dilatation may be the wrong treatment option for this type of stricture—it may convert a short stricture, which could have been cured by urethrotomy or urethroplasty, into a longer and denser stricture, thus committing the patient to more complex surgery and a higher risk of recurrent stricturing. Place an SPC instead, and image the urethra with retrograde and antegrade urethrography to establish the precise position and length of the stricture.

Similarly, avoid the temptation to inappropriately dilate a urethral stricture diagnosed at flexible cystoscopy (urethroscopy). Arrange retrograde urethrography, so appropriate treatment can be planned.
Treatment options

- **Urethral dilatation**: designed to stretch the stricture without causing more scarring; bleeding post-dilatation indicates tearing of the stricture (i.e. further injury has been caused), and re-stricturing is likely.

- **Internal (optical) urethrotomy**: stricture incision with an endoscopic knife or laser. Divides the stricture, followed by epithelialization of the incision. If deep spongiofibrosis is present, the stricture will recur. Best suited for short (<1.5cm) bulbar urethral strictures with minimal spongiofibrosis. A catheter is left for 3–5 days (what evidence there is suggests keeping a catheter for 3 days reduces the risk of extravasation of urine and infective complications that may result; longer catheterization does not reduce long-term re-stricturing). Consider ISC for 3–6 months, starting several times daily, reducing to once or twice a week towards the end of this period. For strictures in other parts of the anterior urethra or where there has been a previous optical urethrotomy or dilatation, an optical urethrotomy will almost certainly fail to cure the stricture. Avoid optical urethrotomy for sphincter strictures (e.g. post-TURP) because the sphincter may be rendered incompetent—dilatation is a safer option.

- **Excision and re-anastomosis or tissue transfer**: best chance of cure; excises the area of spongiofibrosis with primary re-anastomosis or closure of the defect with buccal mucosa or a pedicled skin flap. Stricturotomy and buccal mucosal grafting, rather than transecting the entire urethra and then re-anastomosing it, is becoming increasingly popular (but not for strictures that obliterate the entire urethral lumen).

A stepwise progression up this ‘reconstructive ladder’ (the process of starting with a simple procedure and moving onto the next level of complexity when this fails) is not appropriate for every patient. For the patient who wants the best chance of long-term cure, offer excision and re-anastomosis or tissue transfer upfront. For the patient who is happy with lifelong ‘management’ of his stricture (with repeat dilatation or optical urethrotomy), offer dilatation or optical urethrotomy.

Balanitis xerotica obliterans

Genital lichen sclerosis and atrophicus in the ♂. Hyperkeratosis is seen histologically. Appears as a white plaque on the foreskin or the glans of the penis, or within the urethral meatus. Commonest cause of stenosis of the meatus. The foreskin becomes thickened and adheres to the glans, leading to phimosis (a thickened, non-retractile foreskin). Patients with long-standing BXO and meatal stenosis often have more proximal urethral strictures.

References

Chapter 5

Urinary incontinence and female urology

Urinary incontinence: classification 130
Urinary incontinence: causes and pathophysiology 132
Urinary incontinence: evaluation 134
Stress urinary incontinence in women 138
Surgery for female stress incontinence: injection therapy 140
Surgery for female stress incontinence: Burch colposuspension 142
Surgery for female stress incontinence: synthetic midurethral slings 144
Surgery for female stress incontinence: autologous fascial slings (AFS) 150
Surgery for female stress incontinence: artificial urinary sphincter and other devices 152
Male urinary incontinence: post-prostatectomy incontinence 154
Male urinary incontinence: surgical treatment 158
Overactive bladder: conservative and medical treatment 162
Overactive bladder: intravesical botulinum toxin-A therapy 166
Overactive bladder: surgical options for failed conventional therapy 168
Mixed urinary incontinence 170
Vesicovaginal fistula 172
Incontinence in elderly patients 176
Initial management of urinary incontinence in women 178
Specialized management of urinary incontinence in women 179
Initial management of urinary incontinence in men 180
Specialized management of urinary incontinence in men 181
Management of urinary incontinence in frail older persons 182
Female urethral diverticulum (UD) 184
Pelvic organ prolapse 188
Urinary incontinence: classification

Definition
UI is the complaint of any involuntary leakage of urine.\(^1\) It results from a failure of the bladder to store urine caused by dysfunction of the bladder detrusor smooth muscle, dysfunction of the urethral sphincter, or anatomical abnormalities (which can be congenital or acquired). Urine loss is either urethral or extraurethral [i.e. due to ectopic ureter or vesicovaginal fistula (VVF)].

Prevalence
There is wide variation in the reported prevalence of UI worldwide. It affects about 3.5 million people in the UK. The prevalence is approximately twice as common in ♀ compared to ♂ and increases with age (Table 5.1).\(^2\) International studies show a gradual increase in the prevalence of ♀ UI during adulthood to 30%, stabilizing between the ages of 50 and 70y, before rising again.\(^3\) ~50% of women suffer stress UI, 11% urgency UI, and 36% mixed UI.\(^3\)

Classification
- **Stress urinary incontinence (SUI):** involuntary urinary leakage on effort, exertion, sneezing, or coughing.\(^1\) It is due to hypermobility of the bladder base or pelvic floor and/or intrinsic urethral sphincter deficiency. When confirmed on urodynamic testing, it is termed urodynamic stress incontinence. It was further categorized in women by Blaivas\(^4\) (using videourodynamics) into:
 - **Type 0:** report of UI, but without clinical signs.
 - **Type I:** leakage that occurs during stress with <2cm descent of the bladder base below the inferior margin of the symphysis pubis.
 - **Type II:** leakage on stress accompanied by marked bladder base descent (>2cm) that occurs only during stress (IIa) or is permanently present (IIb).
 - **Type III:** bladder neck and proximal urethra are already open at rest (with or without descent), which is also known as intrinsic sphincter deficiency (ISD).
- **Urges urinary incontinence (UUI):** involuntary urine leakage accompanied or immediately preceded by urgency (a sudden, strong desire to void).\(^1\) It is due to an overactive detrusor muscle. The urodynamic diagnosis is termed ‘detrusor overactivity incontinence’. It is a component of the OAB syndrome (see \(\text{pp. 162–4}\)).
- **Mixed urinary incontinence (MUI):** involuntary leakage associated with urgency and also with exertion, effort, sneezing, or coughing.\(^1\) It contains symptoms of both SUI and UUI.
- **Overflow incontinence:** leakage of urine when the bladder is abnormally distended with large residual volumes.
• **Nocturnal enuresis**: the complaint of loss of urine occurring during sleep.\(^1\) The prevalence in adults is about 0.5%,\(^5\) and 7–10% in children aged 7y.\(^6\) Nocturnal enuresis can be further classified into primary types (never been dry for longer than a 6-month period) or secondary (the re-emergence of bedwetting after a period of being dry for at least 6–12 months; see \(\Rightarrow \) pp. 724–6). In an adult \(\delta \), nocturnal incontinence may be an indicator of HPCR (see \(\Rightarrow \) pp. 122–3).

• **Post-micturition dribble**: involuntary loss of urine immediately after the individual has finished passing urine, usually after leaving the toilet in men or after rising from the toilet in women.\(^1\) In men, it is due to pooling of urine in the bulbar urethra after voiding.

• **Continuous incontinence**: the complaint of continuous involuntary loss of urine.\(^7\) This is experienced with a vesicovaginal fistula.

• **Insensible incontinence**: the complaint of UI where the women has been unaware of how it occurred.\(^7\)

• **Coital incontinence**: the complaint of involuntary loss of urine with coitus.\(^7\)

Table 5.1 Prevalence of urinary incontinence in the UK

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>♀</th>
<th>♂</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–44</td>
<td>5–7%</td>
<td>3%</td>
</tr>
<tr>
<td>45–64</td>
<td>8–15%</td>
<td>3%</td>
</tr>
<tr>
<td>65+</td>
<td>10–20%</td>
<td>7–10%</td>
</tr>
</tbody>
</table>

References

Urinary incontinence: causes and pathophysiology

General risk factors for UI

Predisposing factors
- Gender (♀ > ♂).
- Race (Caucasian > Afro-Caribbean).
- Genetic predisposition.
- Neurological disorders [SCI, stroke, MS, Parkinson’s disease (PD)].
- Anatomical disorders (VVF, ectopic ureter in girls, urethral diverticulum, urethral fistula, bladder exstrophy, epispadias)
- Childbirth (assisted vaginal delivery, increasing parity) and pregnancy.
- Anomalies in collagen subtype.
- Pelvic, perineal, and prostate surgery (radical hysterectomy, prostatectomy, TURP), leading to pelvic muscle and nerve injury.
- Radical pelvic radiotherapy.
- Diabetes.

Promoting factors
- Smoking (causing chronic cough and raised intra-abdominal pressure).
- Obesity.
- Infection (UTI).
- ↑ fluid intake.
- Medications (i.e. α-blockers in women).
- Poor nutrition.
- Ageing.
- Cognitive deficits.
- Poor mobility.
- Oestrogen deficiency.

Pathophysiology

Urodynamic studies can help determine the underlying aetiology for UI.

Bladder abnormalities

- **Detrusor overactivity**: urodynamic observation characterized by involuntary bladder muscle (detrusor) contractions during the filling phase of the bladder, which may be spontaneous or provoked and can consequently cause UI. The underlying cause may be neuropathic where there is a relevant neurological condition or idiopathic where there is no defined cause. It leads to the symptoms of urinary frequency, urgency, nocturia ± incontinence.

The pathogenesis of detrusor overactivity is most likely to be multifactorial. Theories include:
- **Myogenic hypothesis**: partial detrusor (bladder smooth muscle) denervation, leading to ↑ excitability and activity between muscle cells.¹
- **Neurogenic hypothesis**: disruption of primary neural control in muscle cells.²
• **Integrative hypothesis:** the detrusor muscle is arranged in modules which are thought to be controlled by a peripheral myovesical plexus composed of intramural ganglia and interstitial cells. Detrusor overactivity results from abnormal or exaggerated peripheral autonomic activity (within this plexus).³

• **Reduced bladder compliance:** a ↓ volume-to-pressure relationship where there is a high increase in bladder pressure during filling due to alterations in elastic properties of the bladder wall or changes in muscle tone (i.e. a ‘stiff’ bladder). May be secondary to neurological or other bladder insults such as myelodysplasia, SCI, radical hysterectomy, and radiation cystitis.

Urethral and sphincter abnormalities

♀ SUI is most likely caused by a mixed spectrum of both urethral hypermobility and intrinsic sphincter deficiency (one component may be more prominent).

• **Urethral hypermobility:** due to a weakness of pelvic floor support, causing a rotational descent of the bladder neck and proximal urethra during increases in intra-abdominal pressure.

• **Intrinsic sphincter deficiency:** describes an intrinsic malfunction of the sphincter, regardless of its anatomical position, which is responsible for type III SUI (described by McGuire). Causes include inadequate urethral compression (due to previous urethral surgery, ageing, menopause, radical pelvic surgery, anterior spinal artery syndrome) or deficient urethral support (pelvic floor weakness, childbirth, pelvic surgery, menopause). In ♂, the urethral sphincter may be damaged after prostatic or pelvic surgery (TURP, radical prostatectomy) or radiotherapy.

Theories for the pathogenesis of SUI include:

• **Integral theory:** laxity of the anterior vaginal wall and pubourethral ligaments, causing bladder neck hypermobility.⁴

• **Hammock hypothesis:** failure of support of the urethra by the endopelvic fascia and vaginal wall.⁵

References

Urinary incontinence: evaluation

History

• **Aim:** to establish the type of incontinence (stress, urgency, or mixed). Enquire about LUTS (storage or voiding symptoms); triggers for incontinence (cough, sneezing, exercise, position, urgency); and frequency, severity, and degree of bother of symptoms. Establish the risk factors (abdominal/pelvic surgery or radiotherapy, neurological disorders, obstetric and gynaecology history, medications). Enquire about bowel function and symptoms of sexual dysfunction and pelvic organ prolapse in women (see pp. 188–92). A validated patient-completed questionnaire is helpful to assess initial symptoms and patient-reported outcome following intervention (ICIQ-UI short form, ICIQ-FLUTS, ICIQ-MLUTS, SF36 QoL)* (Fig. 5.1).

‘Red flag’ symptoms which require further specific investigation are incontinence associated with pain, haematuria, recurrent UTI, significant voiding or obstructive symptoms, and a previous history of pelvic surgery/radiotherapy.

Physical examination

Women

Perform a chaperoned pelvic examination in the supine, standing, and left lateral position with a Sim’s speculum. Ask the patient to cough or strain, and inspect for anterior and posterior vaginal wall prolapse, uterine or vaginal vault descent, and urinary leakage (stress test). Internal pelvic examination can be performed to assess the strength of voluntary pelvic floor muscle strength and for bladder neck mobility. Inspect the vulva for oestrogen deficiency (causing vaginal atrophy), which may require topical oestrogen treatment. Calculate the body mass index (BMI) as a tool to counsel patients, as higher BMIs are associated with ↑ risk of stress incontinence.

Both sexes

Examine the abdomen for a palpable bladder (indicating urinary retention if the patient has recently passed urine). A neurological examination should include assessment of gait, anal reflex, perineal sensation, and lower limb function. Where clinically indicated, a DRE should be performed to exclude constipation and a rectal mass, and to test anal tone and assess the prostate in men.

‘Red flag’ signs requiring further investigation include (new) neurological deficit, haematuria, urethral, bladder, or pelvic masses, and suspected fistula.

* ICIQ-UI short form: International Consultation on Incontinence Questionnaire (short form) for men and women—to assess symptom score and quality of life; ICIQ-FLUTS: ICIQ on Female Lower Urinary Tract Symptoms—to assess occurrence and bother of symptoms relating to incontinence and other urinary symptoms in females; ICIQ-MLUTS: ICIQ Male Lower Urinary Tract Symptoms; SF36 QoL: Short Form 36 health survey questionnaire. Assesses health status in persons with incontinence.
Many people leak urine some of the time. We are trying to find out how many people leak urine, and how much this bothers them. We would be grateful if you could answer the following questions, thinking about how you have been, on average, over the past four weeks.

1. Please write in your date of birth: [] [] []
 DAY MONTH YEAR

2. Are you (tick one):
 [] Female [] Male

3. How often do you leak urine? (Tick one box)
 - never [] 0
 - about once a week or less often [] 1
 - two or three times a week [] 2
 - week once a day [] 3
 - several times a day [] 4
 - all the time [] 5

4. We would like to know how much urine you think leaks.
 How much urine do you usually leak (whether you wear protection or not)? (Tick one box)
 - none [] 0
 - a small amount [] 2
 - a moderate amount [] 4
 - a large amount [] 6

5. Overall, how much does leaking urine interfere with your everyday life?
 Please ring a number between 0 (not at all) and 10 (a great deal)
 [] 0 [] 1 [] 2 [] 3 [] 4 [] 5 [] 6 [] 7 [] 8 [] 9 [] 10

 not at all [] a great deal

 ICIQ score: sum scores 3+4+5 [] []

6. When does urine leak? (Please tick all that apply to you)
 - never – urine does not leak []
 - leaks before you can get to the toilet []
 - leaks when you cough or sneeze []
 - leaks when you are asleep []
 - leaks when you are physically active/exercising []
 - leaks when you have finished urinating and are dressed []
 - leaks for no obvious reason []
 - leaks all the time []

Thank you very much for answering these questions.

Basic investigation

- **Bladder diaries:** record the fluid intake, the frequency and volume of urine voided, incontinent episodes, and the degree of urgency over a 3-day period.
- **Urinalysis ± culture:** treat any infection and reassess symptoms.
- **Flow rate and PVR volume:** patients need to void 150mL of urine for an accurate result. A reduced flow rate suggests BOO or reduced bladder contractility. The volume of urine remaining in the bladder after voiding (PVR) is also informative (<50mL is normal; >200mL is abnormal; 50–200mL requires clinical correlation).
- **Pad testing:** weighing of perineal pads to estimate urine loss after a specific time or provocation test. It is performed with a full bladder. A pad weight gain of >1g is positive for a 1h test, and a pad weight gain of >4g is positive for a 24h test. This is not standardized and is not always reliable.

Further investigation

- **Blood tests, imaging [ultrasound scan (USS)] and cystoscopy:** indicated for complicated cases with persistent or severe symptoms, haematuria, bladder pain, voiding difficulties, recurrent UTI, abnormal neurology, previous pelvic surgery or radiotherapy, or suspected extraurethral incontinence.
- **Urodynamics (see ➔ p. 68):**
 - Twin-channel cystometry measures bladder and bladder outlet behaviour during filling and voiding, including incontinence episodes. In SUI, it measures the intravesical pressure at which leakage occurs due to an ↑ intra-abdominal pressure (i.e. Valsalva manoeuvre) in the absence of detrusor contraction (abdominal leak point pressure). Pressures of >90–100cmH\textsubscript{2}O suggest hypermobility, and <60cmH\textsubscript{2}O ISD.2 Detrusor overactivity is manifest as detrusor contractions during filling or an abnormal detrusor pressure rise with position change (lying to standing). Poor bladder compliance is seen as a persistent, gradual rise in detrusor pressure during bladder filling.
 - Videourodynamics uses contrast (urografin) to fill the bladder, and fluoroscopy can visualize movement of the proximal urethra and bladder neck with filling or provocation and identify risk factors for the development of upper tract deterioration (i.e. detrusor sphincter dyssynergia (DSD) and vesicoureteric reflux).
 - Ambulatory urodynamics are a more physiological, and potentially more accurate, diagnostic test. It is conducted over a longer period (4h) and relies on natural bladder filling. Often used where previous studies have been equivocal or failed to reproduce the patient’s reported symptoms.
- **Sphincter EMG:** measures electrical activity from striated muscles of the urethra or perineal floor and provides information on synchronization between the bladder muscle (detrusor) and the external urethral sphincter. Clinically useful for patients with suspicion of external urethral sphincter dysfunction, seen in conditions such as DSD (see ➔ p. 124) and hypercontractile non-relaxing sphincters (i.e. Fowler’s syndrome) (see ➔ pp. 124–5).
References

Stress urinary incontinence in women

SUI accounts for up to 50% of reported UI in women and presents with symptoms of involuntary urinary leakage on effort (e.g. lifting), exertion (e.g. running), sneezing, and coughing. It is associated with hypermobility of the bladder neck/urethra and ISD which coexist, to varying degrees, in most patients. Hypermobility results from pelvic floor weakness causing a rotational descent of the bladder neck and proximal urethra during ↑ intra-abdominal pressure. ISD is weakness of the external urethral sphincter, regardless of its anatomical position. ISD is defined as a maximal urethral closure pressure (MUCP) of ≤20cmH\textsubscript{2}O on urethral pressure profilometry, or an abdominal leak point pressure (ÅLPP) of ≤60cmH\textsubscript{2}O.

Specific risk factors

- Childbirth (↑ risk with vaginal delivery, forceps delivery).
- Ageing.
- Oestrogen withdrawal.
- Previous pelvic surgery.
- Obesity.
- Neurological disorders causing sphincter weakness (SCI, MS, spina bifida).

Assessment of SUI

(Also see pp. 134–7.)

- **Stress test:** a leakage of urine from the urethra on cough denotes a positive test.
- **Pad test:** number and weight of pads used to estimate urine loss.
- **Pelvic exam:** check for pelvic organ prolapse (POP). Elevation of an anterior wall prolapse (cystocele) may unmask any occult sphincter incompetence and incontinence in those who are continent as a result of obstruction caused by the prolapse. Assess for bladder neck hypermobility with straining. Assess the oestrogen status and requirement for topical oestrogen treatments.
- **Bladder diary.**
- **ICIQ-UI short form.**
- **Urine dipstick ± culture:** to exclude UTI.
- **Urodynamics:** after conservative management has failed. NICE clinical guidance 171 recommends urodynamics for women before SUI surgery if there are: \(^1\)
 - Symptoms of an overactive bladder.
 - Symptoms of voiding dysfunction.
 - Symptoms of anterior compartment prolapse.
 - Or the patient has had previous SUI surgery.

NICE clinical guidance 171 recommends avoiding urodynamics studies for women with pure SUI symptoms. \(^1\) However, in clinical practice, urodynamics are often performed prior to surgical intervention, in order to fully clarify the nature of the incontinence and to optimize counselling for surgery. On urodynamic testing, only 5% of women have pure SUI, and of these women, 25% have additional urodynamic diagnoses. \(^2\)
Stress Urinary Incontinence in Women

- **Urethral pressure profile**: some centres offer this as standard with urodynamics. Microtransducers are mounted in a catheter that is placed into the bladder and then slowly withdrawn, measuring intraluminal urethral pressures. A measure of the urethral closure pressure can be obtained.

- **Further investigation**: cystoscopy and urinary tract USS if indications (i.e. if evidence of haematuria, sterile pyuria, concomitant storage symptoms, suspicion of fistula).

Conservative treatment

- **Pelvic floor muscle training (PFMT)**: supervised for a minimum of 3 months, performing at least eight contractions, three times per day. PFMT can be combined with biofeedback (visual, tactile, and auditory stimuli) to improve the patient’s awareness of the pelvic floor muscles. PMFT improves symptoms in 30% of women with mild SUI.

- **Lifestyle modification**: general advice is to stop smoking, avoid constipation, modify fluid intake. An ↑ BMI is associated with ↑ risk and symptom severity of SUI, which can be improved with weight loss.³

- **Medication**: duloxetine inhibits the reuptake of both serotonin and noradrenaline (NA). It is given orally (PO) 20–40mg twice daily (bd) and acts to increase urethral sphincter muscle activity via ↑ stimulation of the pudendal nerve. Suggested as a second-line therapy as an alternative to surgery, and counsel on the risk of adverse effects (nausea and vomiting).¹

- **Containment devices**: pads, catheters, urethral plug (FemSoft), vaginal compression devices (Contiform).

Pelvic floor multidisciplinary team

Surgery is considered after conservative methods have failed to improve or resolve SUI. The NICE clinical guideline 171 recommends pelvic floor MDT review of all cases being considered for continence surgery.¹ The MDT should include a urologist, a urogynaecologist, a specialist nurse, a specialist physiotherapist, a colorectal surgeon, an elderly care physician, and/or an occupational therapist.

Surgical treatment

- Urethral bulking agents (see p. 140).
- Burch colposuspension (see pp. 142–3).
- Suburethral slings (see pp. 144–8, pp. 150–1).
- Artificial urinary sphincters (AUS) and other devices (see pp. 152–3).

References

Surgery for female stress incontinence: injection therapy

Indications
The injection of bulking materials into the proximal urethra is a minimally invasive surgical technique used to improve urethral resistance in women with SUI predominantly due to ISD (Table 5.2). Tends to be reserved for frail or elderly patients (where minimally invasive options are preferable), and for women of reproductive age who have not completed their family (as other surgical options may be compromised by pregnancy or childbirth).

Contraindications
- Active infection (UTI).
- Untreated bladder overactivity.
- Bladder neck or urethral stenosis.
- Urethral diverticulum.
- Avoid if significant previous pelvic radiotherapy/urethral scar tissue.

Injection techniques
The procedure can be performed under local or general anaesthesia.
- Transurethral injection under cystoscopy guidance.
- Periurethral (percutaneous) injection with cystoscopy or ultrasound guidance.
- Hand-held device-guided technique—available for blind administration of Macroplastique® and Bulkamid® under LA.

The aim is to achieve urethral muscosal apposition and closure of the lumen. In women, 2–4 injections are recommended (depending on the agent).
Complications

- Temporary urinary retention (2–15%).
- De novo urgency incontinence (6–12%).
- UTI (5%).
- Haematuria (5%).
- Distant migration of the injected particles (PTFE, Macroplastique®) and risk of granuloma formation (PTFE), although no adverse consequences are reported.

Outcomes

Overall success rates are variable, depending on both the agent and patient selection, with reported ranges of 10–80%; however, the average success rate is more like 30–50%.\(^1\)\(^2\) Results tend to deteriorate with time (i.e. the success of Durasphere® decreases from 63% initially to 21% at 3y).\(^3\) Patients should be counselled on outcomes and the need for repeat treatments. As the results are not durable, periurethral bulking agents are not commonly used as a first-line intervention.

References

Surgery for female stress incontinence: Burch colposuspension

Burch colposuspension
A retropubic procedure used to treat SUI predominantly caused by bladder neck and urethral hypermobility. Burch colposuspension is the most widely used of the retropubic suspension techniques and has the best durability. The open procedure uses a Pfannenstiel incision and involves exposing the paravaginal (pubocervical) fascia (either side of the bladder neck) and approximating it (loosely) to the iliopectineal (Cooper’s) ligament of the superior pubic rami, using heavy, slow- or non-absorbing sutures (i.e. 0-PDS or Ethibond) (Fig. 5.2). The formation of adhesions over time will secure its position. It can also be performed laparoscopically (± robot-assisted). Patients therefore require good vaginal mobility. It is also an option for patients with concurrent SUI and anterior vaginal wall prolapse.

Outcomes
Initial success rates for open repair are about 85–90% at 1y, 70–90% at 5y, and 70% after 10y. Success rates when used for recurrent incontinence are 83% at 1y. Overall success rates are slightly higher in some series for open repair over the laparoscopic approach. Open repair has a shorter operating time and is recommended by NICE; the laparoscopic approach is more costly but has a shorter hospital stay.

Complications
- Middle and posterior compartment prolapse (22%); 5% require surgery.
- De novo bladder overactivity (7%).
- Long-term voiding difficulty or retention (<5%).
- Bladder perforation (<2%).
- Recurrent UTI (5%).
- Pain (7%).

Vagino-obturator shelf/paravaginal repair
This is a variant of the Burch procedure. Sutures are placed along the vaginal wall and paravaginal fascia, and then passed through the obturator fascia to attach to part of the parietal pelvic fascia below the tendinous arch (arcus tendoneus fascia). It aims to disperse tension on the paravesical tissues laterally to reduce the risk of prolapse. Cure rates are up to 85%.
Fig. 5.2 Burch colposuspension—view looking down into the retropubic space and pelvis.

References

Surgery for female stress incontinence: synthetic midurethral slings

Synthetic mid-urethral tapes or slings (MUS) are used for SUI due to urethral hypermobility and/or ISD. They are type I (>75µm pores) soft, monofilamentous polypropylene mesh. They can be used as primary procedures, or as secondary procedures for recurrent incontinence. They are ‘less invasive’ surgical options and can be performed as a day case.

Patients must be counselled on the operation and risk of mesh complications and be provided with written information [e.g. Medicines and Healthcare Products Regulatory Agency (MHRA) patient information on mesh products, available from: http://www.mhra.gov.uk]. Thorough documentation of the consenting process should be recorded.

Types of MUS
(See Table 5.3.)

- **Retropubic tape (RP):** inserted through an anterior vaginal incision at the level of the mid urethra, advanced behind the symphysis pubis, and guided out into the suprapubic region (bottom-to-top) or inserted from a top-to-bottom approach.
- **Transobturator tape (TOT):** placed from an incision in the groin, through the obturator foramen, and brought out vaginally (outside-to-in) or inserted from an inside-to-out approach.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Product name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retropubic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom-to-top</td>
<td>GYNECARE TVT™ and TVT Exact™</td>
<td>Ethicon</td>
</tr>
<tr>
<td></td>
<td>Lynx™</td>
<td>Boston Scientific</td>
</tr>
<tr>
<td>Top-to-bottom</td>
<td>SPARC™</td>
<td>Boston Scientific</td>
</tr>
<tr>
<td></td>
<td>BioArc®</td>
<td>Boston Scientific</td>
</tr>
<tr>
<td>Adjustable</td>
<td>Adjust® (Adjustable SIMS)</td>
<td>Bard</td>
</tr>
<tr>
<td></td>
<td>Remeex®</td>
<td>Neomedic</td>
</tr>
<tr>
<td>Transobturator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside-to-inside</td>
<td>Obtryx™ (I and II)</td>
<td>Boston Scientific</td>
</tr>
<tr>
<td></td>
<td>Aris®</td>
<td>Coloplast</td>
</tr>
<tr>
<td>Inside-to-outside</td>
<td>GYNECARE TVT™ Obturator System (TVTO)</td>
<td>Ethicon</td>
</tr>
<tr>
<td>Other tapes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMS</td>
<td>Adjust® (adjustable SIMS)</td>
<td>Bard</td>
</tr>
<tr>
<td>Adjustable</td>
<td>Safyre® (TOT)</td>
<td>Promedon</td>
</tr>
<tr>
<td>Multiple routes</td>
<td>Align®</td>
<td>Bard</td>
</tr>
</tbody>
</table>
- Adjustable MUS: tapes that allow for later adjustment of tension to optimize control of incontinence.
- Single-incision mid-urethral slings (SIMS) or mini-slings: short synthetic tapes that are self-fixing and do not exit at skin level.

Retropubic (bottom–up) MUS

The bladder should be catheterized and empty. A small midline anterior vaginal incision is made over the mid urethra. The tension-free vaginal tape (TVT) has long trocars on each end (Fig. 5.3a). These are inserted into either side of the urethra and perforate through the endopelvic fascia. They are then pushed up behind the symphysis pubis and out onto the lower abdominal wall, 5cm apart, on either side of the midline, just above the pubic bone (i.e. the trocar passes from **bottom upwards**). Cystoscopy confirms the integrity of the bladder and urethra. Once the tape is positioned tension-free over the mid urethra, its covering sheath is removed and the ends cut flush to the abdomen. The vaginal epithelium is closed over the top. The operation is generally performed under GA but can also be done under LA ± sedation. Post-operatively, patients who have high residuals or fail to void usually only require temporarily CISC until PVRs are <100–150mL.

Outcomes of TVT
- Overall success rates are 85–90% and are durable over time.¹
- **TVT vs colposuspension:** a meta-analysis of RCTs showed both have equal efficacy at 1y, with patient-reported cure rates of 75%,² and results remain equivalent at 5y.³ Colposuspension has a higher risk of prolapse and voiding dysfunction. TVT has a higher risk of bladder perforation.
- **TVT vs autologous sling:** a meta-analysis of MUS and autologous pubovaginal slings report a similar cure rate; however, pubovaginal slings are associated with a higher risk of voiding dysfunction.⁴

Transobturator MUS

A midline anterior vaginal incision is made for dissection around the urethra. Two small incisions are made, lateral to the labia majora, at the level of the clitoris. In the outside-to-in technique (i.e. Obtryx™), the curved trocar device is placed through the skin incision and turned downwards, passing through the anterior part of the obturator foramen and exiting alongside the urethra on each side (i.e. the trocar passes from **outside to inside**) (Fig. 5.3c). The tape is attached to the end of each handle and brought back out to the skin surface. It is positioned tension-free around the mid urethra, and the ends cut flush with the skin.

In TVT obturator (TVTO), the tape is passed in a reverse route—a metal guide assists in directing the trocar from **inside to outside** through the anterior aspect of the obturator foramen (Fig. 5.3b).
Outcomes

- TOT vs TVT: the EAU Panel meta-analysis reports no difference in cure rates at 12 months (up to 85%) between retropubic and transobturator approaches.\(^5\) TOT has a lower risk of voiding dysfunction (4% vs 7%), bladder perforation (0.3%), urethral perforation (5%), as compared to RP insertion. De novo urgency was reported in 6%, and vaginal perforation in 1.7% of TOT procedures. The risk of chronic perineal pain is higher in TOT (7% vs 3%), while post-operative haematoma is higher with retropubic tapes.\(^4\)

- TVTO vs TVT: TVTO has reported statistically similar objective cure rates to TVT in RCTs (81% vs 86%, respectively), but significantly ↑ risk of leg pain.\(^6\)

- TOT vs TVTO (outside-to-in vs inside-to-out): long-term success rates are equal (72% at 9y, and improvement reported in a further 14%). Groin pain was reported in 4%.\(^7\)

- TOT vs colposuspension: an RCT reported similar results for both patient- and clinician-reported outcomes. TOT has a shorter hospital stay and shorter operating times.\(^8\)

Fig. 5.3 (a) GYNECARE TVT\(^{TM}\) retropubic system tension-free support for incontinence. (b) GYNECARE TVT\(^{TM}\) obturator system. (c) Obtryx I\(^{TM}\) transobturator mid-urethral sling system. Reproduced courtesy of Boston Scientific.
Mini-tapes
Self-retaining mini-tapes inserted via a single vaginal incision. SIMS are tapes adapted to be fixed to retropubic tissues, the endopelvic fascia, or the obturator fascia, being less invasive, reducing the risk of nerve, muscle, vessel, bladder, and bowel damage, and avoiding external skin incisions. The short-term success rates are up to 90%,9 and they have similar initial success to MUS,10 although results may not be sustained over time. Several products have been withdrawn or are no longer available (i.e., TVT Secur; Mini-Arc).

Adjustable tapes
These enable adjustment of tape tension either during or shortly after surgery, to optimize continence and reduce the risk of voiding dysfunction post-operatively. In women with SUI due to ISD, the Remeex® system achieves a cure rate of 90% at 7 y follow-up. Sling tension readjustment was needed in 6%.11 Complications include persistent retention (6%) and de novo urgency in 10%.

General complications of tapes
- Voiding dysfunction (urinary retention, de novo bladder overactivity).
- Vaginal, urethra, and bladder perforation or erosions.
- Chronic pain (groin/thigh with transobturator route).
- Damage to bowel or blood vessels (rare).

Tapes in recurrent SUI
The outcome for primary tapes is superior to repeat MUS placement (86% vs 62%).12 However, the outcome of recurrent SUI surgery appears to be statistically the same, whichever procedure is performed (RP vs TOT, colposuspension or autologous sling).13

Mesh complications
Around 553 retropubic tapes (TVT) require partial or total removal and around 112 TOTs require removal per year in the UK.14 MUS complications should be carefully documented and discussed with the pelvic floor MDT and reported to the MHRA and the hospital medical device liaison officer. If incision or excision of the MUS is indicated, counsel the patient on the risks of recurrent incontinence and persisting urinary symptoms and that surgery may not relieve chronic pain. It is recommended that significant mesh complications are dealt with in sub-specialist centres.

Mesh controversy
The use of mesh for SUI (and prolapse) has been scrutinized in Scottish15 and English16 reviews. The Mesh Oversight Group Report16 concluded mesh is a safe treatment option and advised improvements in patient information, consent, shared decision-making, procedure recording, and complication reporting for these procedures. All treatment options should be offered with an MDT approach, and cases should be registered on national databases (i.e., BAUS).
References

Surgery for female stress incontinence: autologous fascial slings (AFS)

A retropubic mid-urethral (pubovaginal) sling technique using the patient’s own (autologous) tissue. A strip of fascia is used to construct the sling (either full length or a shorter length suspended on non-absorbable sutures). Harvested tissues can be the anterior rectus fascia sheath or the fascia lata from the thigh. Allograft (cadaveric) and xenograft (animal) tissues have proven less effective and are less commonly used. The graft supports the bladder neck and proximal urethra and provides a backboard against which the urethra is compressed during transmission of ↑ abdominal pressure (cough).

Indications
- Suitable for type II (hypermobility) and type III (ISD) SUI.
- Useful for recurrent SUI (including after urethral or vaginal mesh extrusion).

Cautions
- Avoid in patients with untreated urgency-predominant mixed incontinence.
- Warn patients with detrusor underactivity of the high likelihood of needing to self-catheterize.

Approaches
- The commonest is the retropubic technique (suprapubic-to-vaginal approach). Some perform a vagina-to-suprapubic procedure (bottom-to-top), similar to the TVT.
- Transobturator sling insertion is also described and is potentially useful for SUI following orthotopic neobladder formation.

Procedure
A strip of the rectus fascia, measuring 2cm by 10cm in length, is harvested via a Pfannenstiel incision, and non-absorbable long sutures placed on both ends (‘sling on a string’). The sling is placed commonly under the mid or proximal urethra. The sutures are guided separately through the endopelvic fascia and through the lower part of the rectus fascia (either side of the mid-line, ~5cm apart). The suture ends are tied to each other, using the minimal amount of tension needed to prevent urethral movement.

Complications
- Voiding dysfunction with need for CISC (6%) or sling release (3%).
- De novo urgency (10%).
- Pain in abdominal scar (3%).
- Bladder injury.
- Bleeding.
- Infection.
Outcomes
AFS have similar short-term success to synthetic MUS (TVT), with continence rates around 90% at 1y and 75% at 10y follow-up. Success rates for recurrent SUI after previous failed synthetic MUS are around 70%.

AFS vs midurethral sling
Similar efficacy, but tapes have lower complications and voiding dysfunction.

AFS vs colposuspension
One RCT (SISTEr trial) reported a higher success rate with AFS (66% at 2y), as compared to Burch colposuspension (49%), but morbidity was higher with AFS. A Cochrane review meta-analysis showed that AFS and colposuspension overall had similar cure rates at 1y.

References
Surgery for female stress incontinence: artificial urinary sphincter and other devices

The AUS (AMS800™; Fig. 5.4) is a closed, pressurized system with three components (also see pp. 643–5). The inflatable cuff is placed around the bladder neck. A pressure-regulating balloon is placed extraperitoneally in the abdomen. An activating pump is placed in the labia majora. The cuff provides a constant circumferential pressure to compress the urethra. To void, the pump is squeezed, which transfers fluid to the reservoir balloon, thereby deflating the cuff. The cuff then automatically refills within 3 min. Voiding takes place in the interval taken for the cuff to refill. The reservoir balloon pressure tends to be a standard 61–70 mmHg for bladder neck placement.

Other types of AUS include the FlowSecure™, which is a low-pressure, adjustable one-piece device, whereby the fluid pressure can be regulated by injecting or removing saline through a self-sealing port in the control pump.

Indications and patient selection

Used for moderate to severe SUI secondary to urethral sphincter deficiency in patients with normal bladder capacity and compliance. In women, it is most commonly used after other treatments for SUI have failed. It can be used for neuropathic sphincter weakness (e.g. SCI, spina bifida). If there is combined bladder overactivity and sphincter weakness, treat the bladder first (i.e. lower bladder pressures with anticholinergics, intravesical botulinum injections, augmentation), which, in some cases, will be enough to achieve continence. If incontinence persists, proceed with AUS at a later date.

Contraindications to AUS include bladder neck or urethral stenosis, poor patient manual dexterity or cognition, and active infection.

Fig. 5.4 AMS800™ urinary control system artificial urinary sphincter. (a) demonstrates the three main components: (bladder neck) cuff, labial pump, and reservoir balloon. (b) The artificial urinary sphincter in situ in a ♀. Reproduced with permission courtesy of Boston Scientific.
Patient evaluation
Patients should undergo urodynamics, cystoscopy, and upper tract imaging to evaluate voiding function and identify anatomical abnormalities that might affect the efficacy of the AUS. Good manual dexterity is required to manipulate the pump and sufficient cognitive function to operate the AUS themselves several times daily.

Results specific to women
Patient-reported cure rates are 59–88%. Risk factors for failure include pelvic radiotherapy, previous Burch colposuspension, and older patient age.

Complications

Recurrent incontinence due to
- ‘Urethral atrophy’ underneath the cuff.
- Mechanical failure needing revision (up to 42% at 10y).
- Urethral erosion.
- Infection (requires device removal).
- Explantation (rates 6–15%).
- Injury to bladder or urethra.
- Haematoma.
- Urinary retention.

Adjustable compression device (ACT®)
Treatment for SUI due to ISD, most commonly used for recurrent incontinence. Ultrasound or fluoroscopic imaging is utilized to guide two inflatable spherical balloons on either side of the bladder neck. A subcutaneous port in the labia majora is used to adjust the volume of each balloon to optimize continence.

Outcomes
- Success rates: cure in up to 44%; patient satisfaction and improvement reported in up to 78%.

Complications
- Urethral or bladder perforation perioperatively.
- Infection.
- Urethral erosion.
- Cutaneous erosion of the port component.
- Balloon migration or dysfunction.
- Failure/persisting incontinence.
- De novo urgency.
- Urinary retention.
- Explantation (18–30%).

References
Male urinary incontinence: post-prostatectomy incontinence

Background
The main cause of post-prostatectomy incontinence (PPI) is sphincter incompetence (i.e. stress incontinence). The proximal sphincter mechanism is removed at prostatectomy, and therefore, continence relies on a functioning distal (external) urethral sphincter mechanism and low bladder pressure during bladder filling. Direct damage to the external sphincter can occur during transurethral prostatectomy (i.e. in TURP, it can occur particularly during resection between the 11 and 2 o’clock positions when the reference point for the position of the distal sphincter—the verumontanum—cannot be seen). Damage to the innervation of the sphincter can also occur during radical prostatectomy (RP). Urodynamic studies before and after RP show that the MUCP and functional urethral length (the length of the urethra over which the sphincter functions to maintain high pressures) are lower. Nerve-sparing RP (where the neurovascular bundles are specifically identified and preserved) produces better continence rates and longer functional urethral lengths and MUCPs.

A substantial proportion of men (around 10%) also have OAB symptoms before prostatectomy, and this may remain so after surgery, contributing to urgency or MUI. Around 2–63% will develop new urodynamic detrusor overactivity following RP.1

Incidence
UI generally occurs in <1% of men after bladder outlet surgery (including TURP, HoLEP, greenlight laser vaporization of the prostate, and open prostatectomy for BPH).2,3 Following RP for malignant disease, PPI can improve over 12 months post-surgery. The overall incidence of PPI (defined as no pad or a safety pad) is 7–40% for open RP,4 5–34% for laparoscopic RP,4 and 4–31% for robot-assisted laparoscopic RP,5 the latter of which also has an earlier time of recovery of continence.

Risk factors for PPI
- Increasing age.
- Pre-existing bladder dysfunction.
- Previous radiotherapy (TURP following brachytherapy has a 40% risk of UI).
- Previous TURP prior to RP.
- Advanced stage of prostate cancer and surgical technique in RP.
Evaluation
Observe for up to 12 months for spontaneous improvement. Act sooner if symptoms are severe.
- **History:** stress-induced leakage (cough, physical activity, standing from a sitting position) suggests sphincter dysfunction. Ask about storage symptoms. Assess the severity of PPI: record the number of pads used and questionnaires (ICIQ-MLUTS; ED-5D-5L QoL).
- **Examination:** observe for leakage on coughing.
- **Tests:** PVR measurement (to exclude retention with overflow); videourodynamic studies allow the determination of bladder and sphincter function; cystoscopy allows the identification of strictures (particularly important if AUS implantation or sling surgery is contemplated) and can visualize attempts at sphincter contraction.

Treatment
Most men are advised to participate in PFMT following surgery, although its benefit is debated. It may potentially speed up recovery of continence but does not cure PPI. Some studies have demonstrated a benefit of PFMT (performed for up to 1y) on improving both the duration and severity of PPI experienced. However, in the Men After Prostate Surgery (MAPS) study, four sessions of supervised PFMT over a 3-month period had no impact on continence at 12 months postprostatectomy, when compared with no intervention.

Conservative treatment for sphincter weakness
- **Devices and pads:** penile sheath (i.e. Conveen®), Afex® (underwear with a built-in plastic channel which allows urine to flow into a collection bag), pads, in-dwelling catheters.

Surgical treatment for sphincter weakness
- **Bulbourethral slings:** the AdVance™ Male Sling is a fixed tape which repositions/elevates the bulbar urethra. Adjustable slings include the Remex Male Readjustable System® and Argus®. Slings which compress the bulbar urethra include the I-STOP TOMS transobturator sling.
- **AUS:** the most commonly used is the AMS800™. Insertion is usually deferred until 1y post-prostatectomy, and it is the most effective long-term treatment. Adjustable AUS include FlowSecure™ (which has an additional ‘stress’ reservoir that can respond to sudden increases in abdominal pressure) and ZEPHYR (ZSI 375), both of which have the facility to inject more fluid into the system post-operatively to increase pressures.
- **Adjustable compression device (ACT®).**
- **Urethral bulking agents.**

Treatment for bladder overactivity
- **Conservative treatment for bladder overactivity includes behavioural therapy and medication (anticholinergics, mirabegron).**
- **Surgery for intractable cases includes intravesical botulinum toxin injection, augmentation cystoplasty, or urinary diversion.**
- **Catheterization may be considered in selected cases.**
- **Patient with MUI can still be offered SUI surgery, as studies show that bladder overactivity can improve after AUS insertion.**
References

Male urinary incontinence: surgical treatment

Male sling
The AdVance™ Male Sling is a fixed suburethral sling inserted via a transobturator route, which works by repositioning (elevating) the bulbar urethra (Fig. 5.5). A midline perineal incision and bilateral groin incisions are made. A helical trocar is passed from the groin incision, through the anterior part of the obturator foramen on each side, and exits either side of the urethra. The arms of the tape are attached to the trocar and brought out to the skin level where they are trimmed. The central part of the mesh is sutured to the bulbar urethra and then tensioned to achieve elevation.

- **Outcomes:** cure rates of up to 73% up to 3y follow-up,\(^2\) results being better in men with mild to moderate incontinence. Previous radiotherapy has a negative impact.

- **Complications:** voiding dysfunction, urinary retention, mesh extrusion, fistula formation, failure, chronic pain, urethral erosion.

The MASTER (Male synthetic sling versus Artificial urinary Sphincter Trial for men with urodynamic stress incontinence after prostate surgery: Evaluation by Randomised controlled trial) NIHR study is randomizing men with PPI to sling or AUS surgery, to identify which patients will benefit most from which type of surgery, including patients who have also had radiotherapy treatment.
Fig. 5.5 AdVance™ Male Sling system. Reproduced with permission courtesy of Boston Scientific.
Artificial urinary sphincter

Currently considered the gold standard treatment for PPI (also see pp. 643–5). The AMS 800™ is a closed, pressurized system with three components: an inflatable cuff which is placed around the bulbar urethra, a pressure-regulating balloon placed extraperitoneally in the lower abdomen, and an activating pump placed in the scrotum (Figs. 5.6 and 5.7). A double cuff can be used in men with severe PPI, as it exerts pressure over a greater urethral length, but the risk of complications is ↑. A transcorporeal approach can be used for revisional surgery. This involves harvesting of extra tissue (tunica albuginea of the corpora cavernosa) which is incorporated under the cuff.

- **Contraindications to AUS**: bladder neck or urethral stenosis, poor patient manual dexterity or cognition, active infection.
- **Outcomes**: AUS can function well for many years (10y). Overall long-term success (continued continence, no device malfunction) is 70–90%;¹,² revision rates are 20–30%.¹ Previous radiotherapy has an adverse effect. AUS can be used to treat recurrent incontinence after sling failure, with equally good outcomes.

Complications

Recurrent incontinence due to

- ‘Urethral atrophy’ underneath the cuff (10% in the first 5y). Thought not to be true atrophy, but to be due to the formation of a constricting sheath of tissue over the urethra.
- Mechanical failure (of the pump or slow leak of fluid from the system).
- Urethral erosion.

1. Previous radiotherapy has an adverse effect.
2. AUS can be used to treat recurrent incontinence after sling failure, with equally good outcomes.
Bladder overactivity or reduced compliance.

Erosion: occurs in 5%, most commonly at 3–4 months, with 75% occurring in the first year. Patients present with pain and swelling of the scrotum or perineum, incontinence, and bloody discharge. ↑ risk after pelvic radiotherapy.

Infection: primary implant infection rates are 1–5%. With infection or erosion, remove the entire device and wait 3–6 months before reinsertion.

Other: haematoma (scrotum); late urinary retention which may signify obstruction from urethral stricture or bladder neck contracture (higher risk with previous pelvic irradiation). Always ensure that the AUS is deactivated (i.e. the cuff is deflated) prior to urethral instrumentation or catheterization.

Adjustable compression device (ACT®)

The ProAct device (Uromedica Inc) is composed of two silicone elastomer balloons. Fluoroscopy is used to insert them into either side of the bladder neck after RP, or at the level of the membranous urethra where the prostate is still present. Each balloon is attached to a titanium port which allows adjustment of the balloon pressures.

Outcomes: cure rates are up to 63% after RP;2 explanation rates are around 20%; outcomes are less good after previous radiotherapy, which also increases the risk of urethral erosion.

Complications: bladder or urethral perforation, balloon migration.

Urethral bulking agents

Infrequently used, as low success rates and repeat treatments required. Products include Macroplastique® (silicone macroparticles). Limited evidence that they can improve PPI and quality of life (QoL) on a short-term basis but can also cause deterioration of incontinence in some patients. Success rates are up to 34% after RP.2

References

Overactive bladder: conservative and medical treatment

Definition
OAB is a symptom syndrome defined as urgency, with or without urge incontinence, usually with frequency and nocturia. It is caused by detrusor overactivity. Seventeen per cent of the population aged >40y in Europe have symptoms of OAB. The prevalence increases with age.

Conservative management
Supervised PFMT for 3 months for women is beneficial. Biofeedback and electrical stimulation therapy can complement PFMT by helping women become more aware of the pelvic floor muscles. Behavioural modification involves modifying fluid intake, avoiding bladder irritants (caffeine, alcohol, fizzy drinks), and bladder training for 6 weeks (delayed micturition for increasing periods of time by inhibiting the desire to void). If this fails, consider medication.

Anticholinergic medication
Acetylcholine acts on muscarinic receptors (M3 ± M2 subtypes) on the bladder smooth muscle (detrusor) to cause involuntary contractions and provoke the symptoms of bladder overactivity. These receptors are the targets of anticholinergic (antimuscarinic) drugs which inhibit contractions and increase bladder capacity. ~50% of patients will benefit from medication.

- **Oxybutynin**: mixed action (antimuscarinic, LA, and direct muscle relaxation). It is available as immediate- or extended-release (ER) tablets, transdermal patch and gel preparations, and can be given intravesically. It is effective but has a high rate of side effects, reducing patient compliance. NICE recommends this as a first-line drug treatment.
- **Solifenacin**: selective antimuscarinic antagonist (M3 > M2). The STAR trial compared solifenacin to tolterodine ER and found higher improvements in urgency, urge incontinence, and overall incontinence with solifenacin (59% became continent vs 49%). The number of patients discontinuing treatment due to side effects was similar (3–3.5%).
- **Tolterodine**: bladder-selective antimuscarinic, metabolized to 5-hydroxymethyl tolterodine (5-HMT). ER formulation has demonstrated good efficacy and tolerability. NICE recommends this as a first-line drug treatment.
- **Fesoterodine**: non-selective antimuscarinic with 5-HMT active metabolite. Superior to tolterodine in reducing urgency, improving bladder capacity and continence (64% dry vs 57% with tolterodine), with the added benefit of a flexible dosing regimen.
- **Darifenacin**: highly selective M3 antagonist. Achieves significant reduction in urinary frequency, urgency, incontinence episodes (77% with 15mg dose). It is well tolerated (2.1% discontinued 15mg treatment due to side effects). NICE recommends this as a first-line drug treatment.
Overactive Bladder: Conservative and Medical Treatment

- Trospium: non-selective for muscarinic receptors. Minimal passage across the blood–brain barrier, with the theoretical benefit of fewer cognitive effects. ER formula has good long-term results.\(^7\)
- Propiverine: non-selective for muscarinic receptors.

Contraindications to anticholinergics

- Uncontrolled narrow-angle glaucoma, myasthenia gravis, bladder outlet obstruction, bowel disorders (i.e. active ulcerative colitis, bowel obstruction).

Common side effects of anticholinergics

- Dry mouth, constipation, blurred vision, urinary retention, cognitive impairment, skin rash with transdermal patches.

Anticholinergic burden

Consideration should be taken for the number of drugs with anticholinergic effects that a patient is already taking, and try to rationalize medication where possible or use lower doses. This is particularly important in >65y olds. Drugs with the highest anticholinergic effects are bladder antimuscarinics, antihistamines, and antidepressants. An assessment tool—the anticholinergic Cognitive Burden Scale—can help produce a score for individual patients at risk. While controversial, there is some evidence that higher chronic exposure to anticholinergic drugs may adversely affect cognitive function and potentially contribute to dementia.\(^8\)

Mirabegron (Betmiga\(^\text{®}\))

\(\beta_3\)-adrenoceptor agonist drug. Causes smooth muscle relaxation by reducing muscle sensitivity to calcium and can improve bladder storage without affecting contraction of the bladder. NICE currently recommends its use in patients in whom antimuscarinic drugs are contraindicated or clinically ineffective or have unacceptable side effects.\(^9\) Mirabegron reduces incontinence episodes by 34% and urinary frequency by 44%, as compared to placebo, after 3 months of treatment,\(^10\) and effects appear durable up to 1y.\(^11\) A reduced dose (25mg ER) should be given in renal and liver impairment. Contraindication: severe, uncontrolled high BP (>180mmHg systolic and >110mmHg diastolic). Side effects: tachycardia, UTI, and atrial fibrillation (AF) (rare). Also refer to the British National Formulary (BNF).

Combination therapy

Due to the different mechanisms of action, it is feasible to combine mirabegron with anticholinergic medication in patients who have failed to obtain optimal effect with monotherapy alone. Although this is not yet licensed, safety has been demonstrated in trials. Solifenacin 5mg, in combination with mirabegron 50mg ER, demonstrated improvements in micturition frequency and incontinence episodes, compared to solifenacin monotherapy, with no episodes of urinary retention.\(^12\)

Other drugs used for OAB

- Topical oestrogen: can improve urgency, urgency incontinence, frequency, and nocturia in post-menopausal women.\(^13\) Relative contraindication is a history of breast or uterine cancer.
References

Overactive bladder: intravesical botulinum toxin-A therapy

Botulinum toxin-A (BTX-A)
Botulinum toxin (BTX) is a neurotoxin produced by a Gram-positive, rod-shaped, anaerobic bacterium Clostridium botulinum. There are seven subtypes. Subtypes A and B are used in urology; however, BTX-A is the more potent, with a longer duration of action. Considered as an option if conservative and medical therapies have failed.

Main applications for treatment in the urinary tract
• Neurogenic detrusor overactivity (nDO).
• Idiopathic detrusor overactivity (IDO).
• Detrusor sphincter dyssynergia.

It has also been used for symptomatic benign prostatic enlargement and chronic pelvic pain syndromes (BPS/IC).

Mechanism of action
BTX-A acts by inhibiting the release of acetylcholine (ACh) and other neurotransmitters from presynaptic cholinergic nerve terminals, resulting in regionally reduced muscle contractility and muscle atrophy at the site of injection. BTX-A has a heavy and a light chain, joined by a disulfide bond. Attachment of the heavy chain component to the protein receptor SV2 on the axon terminal allows the toxin to enter the neuron by endocytosis. The light chain cleaves SNAP-25 (a protein from the SNARE family). This, in turn, blocks the fusion of neurosecretory vesicles and inhibits release of ACh from presynaptic terminals, with additional inhibitory effects on other neurotransmitters. The chemical denervation that results is a reversible process.

Adult dosing regimen for detrusor overactivity
• American BTX-A onabotulinum toxin A (Botox®, Allergan), 100–300U.
• English BTX-A abobotulinum toxin A (Dysport®, Ipsen), up to 1000U.
• Botox® 300 is roughly equivalent to 900U of Dysport®.

NICE clinical guideline 171 recommends a dose of 200IU for IDO or 100IU for patients wishing to avoid CISC.1 NICE clinical guideline 148 recommends BTX-A for nDO;2 the doses used tend to be 200–300IU.

Method of intravesical administration
• LA flexible cystoscopy using a sheath and an ultra-fine 4mm needle, or rigid cystoscopy under GA using a flexible needle.
• BTX-A is diluted in normal saline (i.e. 100IU Botox® diluted in 20mL of saline).
• Twenty random sites on the bladder wall are injected, i.e. 1mL (5IU Botox®) per injection site.
• BTX-A can be injected directly into the detrusor muscle or submucosally.
• General practice is usually to avoid injecting the trigone.*

* A trigone-sparing technique has been used to prevent the theoretical risk of iatrogenic VUR, although there is no evidence to support this.
Outcome
- A response is seen within 7 days (maximal response may take 30 days).
- Effects last ~6–9 months, and repeat injections are required.
- Tolerance to the drug and efficacy appears unchanged with repeated applications.
- Repeat injections lead to a significant improvement in symptoms (frequency, urgency, and urgency incontinence) and in urodynamic parameters (*↑* maximum cystometric capacity, *↓* maximum detrusor pressure) and QoL. Most studies have not published beyond six injections.
- There are no adverse changes in bladder histology with multiple injections.
- Generally success rates for complete continence are >50%.

Contraindications to treatment
- Myasthenia gravis.
- Aminoglycosides/drugs interfering with neuromuscular transmission, which may enhance the effects of BTX-A.
- Eaton–Lambert syndrome.
- Breastfeeding and pregnancy.
- Bleeding disorders (haemophilia, hereditary clotting factor deficiency).

Side effects
- Urinary retention. Higher risk in NDO, compared to IDO (up to 70% vs 20%). The risk is dose-dependent; around 6% for 100IU Botox®. The risk of retention is stable over repeat injections (i.e. if catheterization is needed for the first treatment, it will be needed for subsequent treatments).
- Haematuria.
- UTI (up to 25%).
- Bladder pain.
- General muscle weakness (rare, commoner in NDO and at higher doses).
- Dysphagia.
- Diplopia, blurred vision.

References

Eaton–Lambert syndrome: small cell bronchial carcinoma associated with defective ACh release at the neuromuscular junction, causing proximal muscle weakness.
Overactive bladder: surgical options for failed conventional therapy

- **Neuromodulation** (also see pp. 654–5)

- **Sacral nerve stimulation (SNS):** involves electrical stimulation of the bladder’s nerve supply to suppress reflexes responsible for involuntary bladder muscle (detrusor) contraction. The InterStim device (Medtronic) stimulates the S3 afferent nerve, which then inhibits detrusor activity at the level of the sacral spinal cord. An initial percutaneous nerve evaluation is performed, followed by surgical implantation of permanent electrode leads into the sacral foramen, with a pulse generator which is programmed externally. Used mainly for IDO. Around 67% become dry or have >50% improvement in symptoms, effective up to 5y. Avoid in patients who are likely to require MRI, as it is not compatible. Complications include lead migration, infection, and device failure needing revision.

- **Percutaneous tibial nerve stimulation (PTNS):** a surface electrode is attached to the foot, and a fine needle is placed next to the tibial nerve (just above the medial malleolus of the ankle) and connected to a low-voltage stimulator. The posterior tibial nerve has mixed sensory and motor fibres (L5–S3) originating from the same spinal segments as the bladder (S2–4). PTNS provides neuromodulation via retrograde stimulation of the sacral nerve plexus. Patients initially attend for weekly sessions of 30min for 12wk. Short-term symptom improvement is reported in around 55%, with additional extended monthly treatments achieving symptom improvement of 77% at 3y.

Surgery

The aim is to increase functional bladder capacity, decrease maximal detrusor pressure, and protect the upper urinary tract (also see pp. 632–8).

- **Augmentation enterocystoplasty (‘Clam’ ileocystoplasty):** the bladder is opened (bivalved), and a detubularized segment of the ileum is anastomosed, creating a larger bladder volume. It relieves intractable frequency, urgency, and incontinence in 90% of patients.

- **Autoaugmentation (detrusor myectomy):** the detrusor muscle is excised from the entire dome of the bladder, leaving the underlying bladder endothelium intact. A large epithelial bulge is created, which augments bladder capacity. Less commonly performed now as limited long-term efficacy. Most benefit in patients with IDO.

- **Urinary diversion:** reserved for intractable cases. One option is ileal conduit formation. Both ureters are detached distally from the bladder and sutured to one end of a harvested short ileal segment. The other end of the bowel segment is brought out cutaneously as a stoma to drain urine into a bag (urostomy).
References
Mixed urinary incontinence

Approximately 30% of women with incontinence will report symptoms of MUI, with involuntary urinary leakage associated with urgency and also with exertion, effort, sneezing, or coughing. The underlying causes and evaluation remain the same as for SUI and UUI. The aim of management is to treat the predominant symptoms first.

MUI accounts for 10–30% of all incontinence experienced by men. The same treatment principles apply regarding treating the predominant symptom first, but due consideration must also be undertaken to assess the impact of the bladder outlet as well.

Management

Conservative measures
- Pelvic floor muscle training; bladder training; avoid bladder irritants, modify fluid intake, weight loss.

Medications
- Anticholinergics or mirabegron for OAB symptoms; consider topical oestrogen therapy, where appropriate, for women.

Surgery for the SUI component in women

There is evidence that treating SUI, if it is predominant, has good success, without necessarily making the OAB component worse. It is proposed that having an open bladder neck can contribute to OAB symptoms and that SUI surgery may correct this. Urodynamics are essential to evaluate bladder function prior to offering surgery in this group.

- **MUS**: overall success rates are slightly lower in MUI than in patients with SUI alone.
- **Retropubic (TVT) and TOT for MUI**: overall success rates for both approaches are 56% at mean follow-up of 3y. They were more effective for treating SUI (85–97% success rate) vs urgency symptoms (28–85% success rate).³
- **Outside-in (TOT) and inside-out transobturator tapes (TVTO) for MUI**: TOTs lie more horizontally and have less risk of OAB, as compared to TVT, and are considered a good option for MUI. Both transobturator techniques have equivalent outcomes, with 75% success at 1y follow-up. Results are sustained at 9y follow-up, with 65% successful and 15% reported improved.² Urgency symptoms improved in 35%, and urgency incontinence improved in 41% (while in a smaller proportion, urgency was made worse in 7% and urgency incontinence worse in 2%).
- **Colposuspension**: has been shown to be effective in the resolution of both MUI components, with success rates reported in up to 87% and residual UUI in around 13%.³
- **Autologous fascial sling**: good success rates for SUI are reported (>90%), with resolution of urgency in around 70%.⁴
Surgery for the SUI component in men
OAB-predominant symptoms should be treated; however, men with MUI can still be offered SUI surgery (i.e. AUS), as bladder overactivity can also improve after AUS insertion.

References
Vesicovaginal fistula

Vesicovaginal fistula (VVF) is an abnormal communication between the bladder and vagina. In 10%, there is a coexisting ureteric injury or fistula.

Aetiology

In developing countries, the majority are due to obstructed or prolonged childbirth, causing tissue pressure necrosis between the vagina and the bladder. In developed countries, 75% follow hysterectomy (0.1–0.2% risk) (Fig. 5.6). Other causes include pelvic surgery or radiotherapy, pessary erosion, advanced pelvic malignancy (cervical carcinoma), pelvic endometriosis, inflammatory bowel disease, trauma, childbirth (5%), low oestrogen states, infection (urinary TB), and congenital abnormalities.

Symptoms

Patients present with incontinence. Following surgery or pelvic intervention, they may present with immediate or delayed-onset of urinary leakage from the vagina, abdominal pain or distension, prolonged bowel ileus (due to leak of urine into the peritoneal cavity, as well as through the vagina), suprapubic pain, and haematuria.

Assessment

- Pelvic examination may demonstrate VVF and confirm its location. Also assess the capacity and mobility of the vagina to see if a vaginal repair is feasible.
- ‘3-swab test’: give oral phenazopyridine which turns the urine orange. After 1h, place three swabs into the vagina and instil methylene blue into the bladder. If the proximal swab turns blue, it indicates VVF; if it is orange, it suggests ureterovaginal fistula.
- Cystoscopy may directly identify the fistula tract and help determine its proximity to the ureteric orifices. Biopsy the tract if history of malignancy.
- CT urogram and/or bilateral retrograde pyelograms to assess ureteric involvement or coexisting injury.
- Cystogram: the best test for identifying a bladder fistula (can be done by fluoroscopy screening or as a CT cystogram) (Fig. 5.8).
- Contrast-enhanced CT or MRI if history of previous radiotherapy or malignancy (to assess for recurrence of disease process).

Management

Small, uncomplicated VVF may resolve with urethral catheterization (± anticholinergics and antibiotics), particularly obstetric fistulae if identified early. If the VVF persists after a period of observation, surgical reconstruction is needed. A coexisting ureterovaginal fistula will require ureteric stent initially for a minimum of 6wk, and formal reimplantation if it persists.

Surgery

When the VVF is identified perioperatively, immediate repair can be considered. For VVF which presents post-operatively, surgical repair can be undertaken when inflammation, oedema, infection, and tissue necrosis have
resolved. Traditionally, surgery was deferred for 3–6 months but can be considered earlier on an individual patient basis. Repair after radiotherapy is deferred for 6–12 months.

Principles of VVF repair
- Good exposure of fistula.
- Excise devitalized tissue.
- Removal of any foreign bodies.
- Dissection to separate vaginal and bladder walls.
- Watertight closure of the bladder and vagina.
- Interpositional tissue.
- Multiple layer closure, tension-free, avoid overlapping suture lines.
- Good haemostasis.
- Drainage of urine from the site of surgical repair (catheter, drain, stents).

Vaginal approach:
the fistula tract is incised and closure of the bladder and vagina are performed in separate layers. Interpositional tissue (Martius fat pad from labia majora) may be mobilized between the bladder and vagina.

Abdominal approach:
more often used for complex cases, patients with a VVF high in the vagina or if associated with ureteric injury. The bladder is bisected to the level of the fistula tract which can be excised. The vagina and bladder are closed separately, and an interpositional omental flap of tissue secured between them. Suprapubic and urethral catheters are placed for 2–3wk, and a cystogram performed prior to catheter removal. Offer oestrogen replacement to post-menopausal women. Avoid tampons or sexual intercourse for 3 months.
Post-operative complications of VVF repair include vaginal bleeding, infection, bladder pain, dyspareunia due to vaginal stenosis, graft ischaemia, ureteric injury, and fistula recurrence.

Urinary diversion:
ileal conduit formation is reserved for complex cases, and considered in patients with significant previous radiotherapy.

Outcomes
Overall success rates for primary VVF repair (via a vaginal or an abdominal approach) are >90%. Complicated VVF, including patients who have received radiotherapy, have lower success rates (around 67%).

References
VESICOVAGINAL FISTULA
Incontinence in elderly patients

Prevalence
UI steadily increases with advancing age (particularly ≥70y). It affects about 10–20% of women and 7–10% of men aged >65y and living at home. These figures escalate if older people are institutionalized.
- **Prevalence for both sexes:**
 - residential home 25%;
 - nursing home 40%;
 - long-stay hospital ward 50–70%.¹

Transient causes of UI (‘DIAPPERS’)
- Delirium.
- Infection.
- Atrophic vaginitis or urethritis.
- Pharmaceuticals (opiates and calcium antagonists cause urinary retention and constipation; anticholinergics cause ↑ PVR and retention; α-adrenergic antagonist cause SUI in women).
- Psychological problems (depression; neurosis; anxiety).
- Excess fluid input or output (diuretics; congestive cardiac failure; NP).
- Restricted mobility.
- Stool impaction (constipation).

Established UI
This is unrelated to comorbid illness and persists over time. There are several types, including UUI, SUI, and incontinence associated with impaired bladder emptying (due to underactive bladder, urethral or bladder outlet obstruction). In addition, functional incontinence is associated with factors outside of the urinary tract such as permanent immobility, cognitive impairment, and environmental changes.

History
Seek out any transient causes, and correct before arranging complex assessment and investigation. This can immediately improve function and QoL and may be sufficient to restore continence, even if there is coexisting urinary tract dysfunction. Elicit a full drug history, comorbid conditions, and psychological, cognitive, functional, social, and environmental status.

Examination
Include a mini-mental state evaluation and direct observation of patient dexterity and mobility (Barthel Index). Include an abdominal assessment (distended bladder), DRE (impacted faeces) and prostate assessment, vulval inspection (POP; atrophic vaginitis), and neurological testing.

Investigations
- Measure serum creatinine.
- FVC.
- Flow rate and PVR urine measurement.
- Urinalysis (screen for infection, haematuria, glycosuria, proteinuria).
- Stress test.
- Evaluation of the home environment is helpful, and assess the need for modifications (occupational therapist and district nurse visits).
- Urodynamics should be reserved for patients considered fit for surgery and where the results will alter clinical treatment. Renal tract USS can be undertaken where clinically indicated (i.e. large PVR, impaired renal function, haematuria, UTI).
Management

Conservative
Biofeedback, electrical stimulation of the pelvic floor, and behavioural methods are appropriate only if cognition is intact. In the presence of OAB or mixed symptoms, PFMT can have good results if used in conjunction with anticholinergics. Treat any atrophic vaginitis with topical oestrogen therapy. Optimize mobility, and bring the toilet closer to the bed. Try timed and prompted voiding. Absorbent appliances include bed pads and body-worn pad products (disposable or reusable), body-worn external urine collection devices (close-fitting penile sheath or Afex appliance), pessary for POP, and indwelling catheters where UI is due to obstruction and/or no alternative intervention suitable.

Medical therapy

Ensure that BOO and significant PVR are adequately treated before considering treatment of OAB symptoms. Be mindful of anticholinergic burden (see E p. 163); the more drugs with anticholinergic properties the patient is on, the higher the risk of cognitive impairment. Use antimuscarinic drugs with fewer effects on cognitive function; consider using a lower dose, or try mirabegron. Avoid immediate-release oxybutynin in older patients with cognitive symptoms.

Surgery

Where conservative treatments have failed to improve SUI or OAB, all standard surgical options can be considered in men and women on an individual basis. Intact cognitive ability and manual dexterity are needed for procedures with a risk of urinary retention (i.e. BTX-A injections in the bladder and anti-incontinence surgery where CISC may be required) and AUS insertion.

Stress urinary incontinence surgery
Anti-incontinence procedures (such as MUS and colposuspension) are still effective in older women but are associated with a higher risk of voiding problems (de novo bladder overactivity, need for CISC) and UTI. In men, postprostatectomy incontinence can be considered for surgical correction, with success rates for AUS insertion reported to be up to 72% for men >75y.

Bladder overactivity surgery
BTX-A injection into the bladder is a successful treatment; however, older patients are at an risk of urinary retention and need for CISC. SNS has been used for refractory OAB in older patients successfully, although overall it tends to be less effective with age (around 37% cure rate in >55y vs 65% if <50y).

References

Initial management of urinary incontinence in women

(See Fig. 5.9.)

Initial Management of Urinary Incontinence in Women

<table>
<thead>
<tr>
<th>History</th>
<th>Clinical Assessment</th>
<th>Presumed Diagnosis</th>
<th>Treatment *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incontinence on physical activity</td>
<td>Incontinence with mixed symptoms</td>
<td>Incontinence frequency with urgency</td>
<td></td>
</tr>
<tr>
<td>• General assessment (see relevant chapter)</td>
<td>• Urinary symptoms assessment (including frequency-volume chart and questionnaire)</td>
<td>• Assess quality of life and desire for treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assess physical examination: abdominal, pelvic and perineal</td>
<td>• Physical examination: abdominal, pelvic, and perineal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cough test to demonstrate stress incontinence if appropriate</td>
<td>• Cough test to demonstrate stress incontinence if appropriate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Uroflowmetry and urine culture → if infected, treat and reassess if appropriate</td>
<td>• Uroflowmetry and urine culture → if infected, treat and reassess if appropriate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assess post-void residual urine</td>
<td>• Assess post-void residual urine</td>
<td></td>
</tr>
</tbody>
</table>

Presumed Diagnosis

- Stress incontinence
- Mixed incontinence
- Urgency incontinence

Treatment *

- **Stress Incontinence**
 - Pelvic floor muscle training for SUI, MUI, or OAB
 - Bladder retraining for OAB
 - Antimuscarinics (OAB + urgency incontinence) or Duloxetine** (SUI)

- **Mixed Incontinence**
 - Treat most bothersome symptom first
 - Pelvic floor muscle training for SUI, MUI, or OAB
 - Bladder retraining for OAB
 - Antimuscarinics (OAB + urgency incontinence) or Duloxetine** (SUI)

- **Urgency Incontinence**
 - Lifestyle interventions
 - Pelvic floor muscle training for SUI, MUI, or OAB
 - Bladder retraining for OAB
 - Antimuscarinics (OAB + urgency incontinence) or Duloxetine** (SUI)

Specialized Management

- Other adjuncts, such as electrical stimulation
- Vaginal devices
- Failure

Complicated incontinence

- Recurrent incontinence
- Incontinence associated with:
 - Pain
 - Micturition
 - Recurrent infection
 - Significant voiding symptoms
 - Pelvic irradiation
 - Radical pelvic surgery
 - Suspected fistula

Fig. 5.9 Initial management of urinary incontinence in women.
Specialized management of urinary incontinence in women

(See Fig 5.10.)

Specialized Management of Urinary Incontinence in Women

HISTORY/SYMPTOM ASSESSMENT

- Incontinence on physical activity
 - Assess for pelvic organ mobility/prolapse
 - Consider imaging of the UT/pelvic floor
 - Urodynamics (see notes)

CLINICAL ASSESSMENT

- Incontinence with mixed symptoms
 - Consider imaging of the UT/pelvic floor
 - Urodynamics (see notes)

URODYNAMIC STRESS INCONTINENCE (USI)

- Mixed incontinence USI/DOI
 - Treat most bothersome symptoms first

DIAGNOSIS

- Detrusor overactivity incontinence (DOI)
 - Incontinence associated with poor bladder emptying

- Bladder outlet obstruction
 - Underactive detrusor

TREATMENT

- If initial therapy fails:
 - Stress incontinence surgery
 - Balling agents
 - Caps and slings
 - Cuff/suspension

- If initial therapy fails:
 - Botulinum toxin
 - Neuremulation
 - Bladder augmentation

- Complicated incontinence:
 - Recurrent incontinence
 - Incontinence associated with:
 - Pain
 - Haematuria
 - Recurrent infection
 - Voiding symptoms
 - Pelvic irradiation
 - Radical prostatectomy
 - Suspended fistula

Consider:

- Urethrocytoscropy
- Further imaging
- Urodynamics

*At any stage of the patient’s care pathway, management may need to include continence products

Initial management of urinary incontinence in men

(See Fig. 5.11.)

Specialized management of urinary incontinence in men

(See Fig. 5.12.)

Specialised Management of Urinary Incontinence in Men

HISTORY/SYMPTOM ASSESSMENT
- Post-prostatectomy incontinence
- Incontinence with urgency/frequency
- “Complicated” incontinence:
 - Recurrent incontinence
 - Incontinence associated with:
 - Prostate or pelvic irradiation
 - Radical pelvic surgery

CLINICAL ASSESSMENT
- Stress incontinence due to sphincteric incompetence
- Mixed incontinence: Treat major component first
- Urgency incontinence due to detrusor overactivity (during filling)

DIAGNOSIS
- Lower urinary tract anomaly/pathology
 - Consider:
 - Urethroscopy
 - Further imaging
 - Urodynamics

TREATMENT
- If initial therapy fails:
 - α-blockers, SARI
 - Correct anatomic bladder outlet obstruction
 - Antimuscarinics
 - Intermittent catheterisation
 - Antimuscarinics
 - Correct anomaly
 - Treat pathology

If initial therapy fails:
- Artificial urinary sphincter
- Male sling (see chapter 13)

At any stage of the patient’s care pathway, management may need to include continence products

Management of urinary incontinence in frail older persons

(See Fig 5.13.)

Female urethral diverticulum (UD)

Essentially a cyst-like structure which communicates (via an ostium) with the urethral lumen. It affects women in the third to fifth decades of life, with an incidence of 1–6%. The UK incidence has increased from 74 cases diagnosed in 1998–1999 to 229 in 2014–2015, likely due to improved detection of cases. Some report a predilection in Afro-Caribbean races.

Aetiology
- Congenital (rare).
- Acquired:
 - Periurethral (Skene’s) gland infection (by Neisseria gonorrhoea, Escherichia coli, other coliform bacteria, or normal vaginal flora) causes abscess formation and subsequent rupture into the urethral lumen. Repeated filling and stasis of urine in the cavity causes expansion of the diverticulum, recurrent infection, and epithelialization.
 - Trauma associated with childbirth (forceps delivery).
 - Previous urethral or vaginal surgery.
 - Repeated urethral instrumentation.

Classification
- Simple (commonest).
- Horseshoe (or saddlebag).
- Circumferential.

UD can be single or multiple (10%) and located in the distal, middle (commonest), or proximal urethra, usually seen as a midline anterior vaginal cystic swelling.

Presentation
The classical ‘three Ds’ (dysuria, post-void dribble, and dyspareunia) are only found in 23% of patients. Patients report a wide array of symptoms, including urinary frequency, urgency, urethral discharge, recurrent UTI, incontinence, pain, obstructive symptoms, urinary retention, vaginal mass, and haematuria. Twenty per cent of patients are asymptomatic.

Differential diagnoses
Skene’s gland cysts or abscess, Gartner’s duct cysts, vaginal wall inclusion cysts, vaginal leiomyoma, ectopic ureterocele, urethral carcinoma, and endometrioma. Clinically may be mistaken for a cystocele.

Complications of UD
- Malignancy (5%).
- Stones (4–10%).
- Endometriosis.
- Rupture (can lead to fistula formation).
Assessment

- **History:** voiding symptoms, dyspareunia, and urethral or vaginal discharge. It is common to have coexisting OAB or SUI.
- **Examination:** a midline anterior vaginal wall mass may be visualized or palpable in 80% (Fig. 5.14). Gentle pressure can express urethral discharge in up to 40%.

Investigation

- Bladder diary.
- MSU.
- Urethral pressure flowmetry may show a classical biphasic recording.
- Rigid cystourethroscopy to exclude concomitant bladder pathology.
- Twin-channel urodynamics are recommended for patients with associated significant voiding symptoms or incontinence.

Imaging

- **MRI (endoluminal or surface coil):** is the gold standard investigation, with up to 100% sensitivity. UD are identified as hyperdense areas on T2-weighted images (Fig. 5.15).
- **Micturating cystourethrography:** is up to 95% sensitive at detecting UD and useful for assessing concomitant voiding dysfunction.
- **USS (transvaginal, transrectal, or transperineal):** UD is seen as an anechoic or hypoechoic lesion with through-transmission of signal.
- **Double-balloon high-pressure urethrography:** involves infusion of contrast via a double-balloon urethral catheter to delineate the UD cavity. It is up to 90% sensitive, but invasive and so is rarely used.

Fig. 5.14 Picture of a urethral diverticulum in a catheterized patient prior to surgery. Kindly provided with permission from Tamsin Greenwell.
Chapter 5 Urinary incontinence and female urology

Treatment
Symptomatic UD requires surgery. The aims are dissection and excision of the diverticulum, identification and closure of the connection to the urethra (ostium), and a three-layered watertight closure ± an interpositional flap (Martius fat pad). Some advocate marsupialization for small distal third UD. A urethral catheter is placed for up to 14 days ± cystourethrogram prior to catheter removal (depending on the complexity of the repair).

The concomitant insertion of a pubovaginal sling or tape for SUI remains controversial. Many authors advocate initial UD surgery and reassessment of symptoms before proceeding with incontinence surgery.²

Complications of surgery
- UTI (up to 40%).
- Recurrent UTI (23%).
- Incontinence.
- Recurrence of UD.
- Persistent or de novo LUTS.
- Urethrovaginal fistula (2%).
- Persistent pain or dyspareunia.
- Urinary retention.

Fig. 5.15 T2-weighted axial magnetic resonance image demonstrating a horseshoe-shaped urethral diverticulum. Kindly provided with permission from Tamsin Greenwell.
Outcomes

Contemporary series report overall success rates for primary and redo surgery of 70–97%. Success rates for primary surgery alone are ~89%.²

References

Pelvic organ prolapse

Definitions
- Anterior wall prolapse: is essentially a herniation of the bladder (cystocele) or urethra (urethrocele) through the anterior vaginal wall due to weakened pubocervical ligaments.
- Posterior wall prolapse: is protrusion of the rectum through the posterior vaginal wall due to weakened perirectal fascia (rectocele) or protrusion of the peritoneum (small intestine or omentum) into the vagina (enterocele).
- Middle compartment prolapse: includes uterine prolapse (descent of the uterus secondary to weak cardinal or uterosacral ligaments), vault prolapse (descent of the vaginal cuff after hysterectomy), and procidentia (prolapse of the entire uterus).

Incidence
Approximately 50% of women develop prolapse after childbirth (20% are symptomatic). Lifetime risk of requiring POP or incontinence surgery is ~11%, with 29% requiring repeat procedures. Fifty per cent are anterior, 30% posterior, and 20% uterine or vault prolapse.

Aetiology
- Congenital: secondary to connective tissue abnormalities (spina bifida, exstrophy, Ehlers–Danlos syndrome).
- Acquired (multifactorial): related to previous vaginal surgery (prolapse repair, colposuspension, hysterectomy), vaginal delivery, older age (↓ oestrogen levels), obesity, constipation, and chronic straining.

Levels of vaginal support
Delancey described three level of vaginal support:
- Level 1: uterosacral (cardinal) ligaments support the upper vagina and cervix. Deficiency contributes to vaginal vault prolapse.
- Level 2: arcus tendineus fascia pelvis (ATFP), also referred to as the white line, provides lateral support to the mid vagina. Deficiency contributes to cystocele formation.
- Level 3: the perineal body and perineal membrane support the lower vagina. Deficiency contributes to rectocele formation.

Grading and staging of prolapse
The Baden–Walker classification grades prolapse according to its relationship to the hymen (Table 5.4). The Pelvic Organ Prolapse Quantification

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No prolapse</td>
</tr>
<tr>
<td>1</td>
<td>Descent halfway to the hymen</td>
</tr>
<tr>
<td>2</td>
<td>Descent to hymen</td>
</tr>
<tr>
<td>3</td>
<td>Descent halfway past the hymen</td>
</tr>
<tr>
<td>4</td>
<td>Maximal descent/eversion</td>
</tr>
</tbody>
</table>

Table 5.4 Baden–Walker classification of POP

(POPQ) is a validated system which allows standardized and accurate prolapse description by measuring distances between defined anatomical points and the hymen (Fig. 5.16; Tables 5.5 and 5.6).

Table 5.5 Description of anatomical points used in POPQ

<table>
<thead>
<tr>
<th>Anatomical point</th>
<th>Description</th>
<th>Range of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior wall, Aa</td>
<td>Anterior vaginal wall 3cm proximal to the external meatus</td>
<td>−3cm to +3cm</td>
</tr>
<tr>
<td>Anterior wall, Ba</td>
<td>Most distal part of remaining upper anterior vaginal wall</td>
<td>−3cm to +tvl</td>
</tr>
<tr>
<td>Cervix or cuff, C</td>
<td>Most distal edge of cervix or vaginal cuff (vault)</td>
<td></td>
</tr>
<tr>
<td>Posterior wall, Ap</td>
<td>Posterior vaginal wall 3cm proximal to the hymen</td>
<td>−3cm to +3cm</td>
</tr>
<tr>
<td>Posterior wall, Bp</td>
<td>Most distal position of the remaining upper posterior vaginal wall</td>
<td>−3cm to +tvl</td>
</tr>
<tr>
<td>Posterior fornix, D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genital hiatus, gh</td>
<td>Measured from middle of external urethral meatus to posterior midline hymen</td>
<td></td>
</tr>
<tr>
<td>Perineal body, pb</td>
<td>Measured from posterior margin of gh to middle of anal orifice</td>
<td></td>
</tr>
<tr>
<td>Total vaginal length, tvl</td>
<td>Depth of vagina when point D or C is returned to normal position</td>
<td></td>
</tr>
</tbody>
</table>

![Anatomical reference points used for POPQ.](image-url)
Presentation

History
- Vaginal pressure or bulge.
- Urinary frequency, urgency, incomplete emptying, incontinence.
- Bowel dysfunction (urgency, difficulty defecating, faecal soiling).
- Symptoms aggravated by prolonged standing.
- May need to manually reduce prolapse to void or defecate.
- Sexual dysfunction (dyspareunia, lack of sensation).

Examination
- Examine in lithotomy, left lateral position using a Sims’ speculum, and standing. Patients may have prolapse in >1 compartment.
- Cough or bear down when retracting the posterior wall to demonstrate anterior or middle compartment prolapse. Anterior prolapse may be due to a central fascial defect (the vagina wall looks smooth) or lateral defects (the vagina has rugae).
- Retract the anterior wall to visualize posterior compartment prolapse.
- Cough test for SUI. Should repeat with prolapse reduced, as may unmask occult SUI.

Investigation
- MSU.
- Bladder diary.
- PVR.
- Urodynamics (if concomitant voiding dysfunction or incontinence).
- MRI (selected cases).
- Defaecography (isotope or contrast) for posterior compartment prolapse in selected cases.

Treatment

Conservative
- Lifestyle intervention (treat constipation, chronic cough).
- PFMT.
- Vaginal pessary—individually fitted and changed in clinic initially every 3–6 months, with inspection for vaginal ulceration or fistulae. Treat any vaginal atrophy.
Surgery
Cases should be discussed in an MDT forum. The patient may have more than one type of prolapse that requires treatment. Primary repair is performed using absorbable interrupted buttress sutures. The role of synthetic mesh for prolapse repair is currently under scrutiny, as it can be associated with significant complications, including chronic pelvic pain, dyspareunia, extrusion, and the need for further intervention, and recommendations are to avoid its use in primary repair. Mesh can be used in recurrent prolapse repair as an inlay mesh strip cut to size and sutured over the fascial defect, or as pre-designed mesh systems. Non-absorbable and absorbable synthetic mesh has been used.

Anterior compartment
The vaginal skin is opened in the midline and dissected off the underlying tissues and bladder. Suture repair (anterior colporrhaphy) uses interrupted absorbable sutures which are placed in the remnant fascia on either side of the prolapsed bladder. These are tied to each other over the prolapse to reduce it back into place. Surplus vaginal skin may be excised, and the skin then closed over the repair. This can be used in both primary and recurrent prolapse repair.

Mesh repair uses a strip of mesh cut according to the size of the defect and sutured over it, with skin closure above. A Cochrane review advises caution in using mesh and adds that there is a lack of evidence to support its use due to the ↑ morbidity risk. Other studies report no benefit to mesh over native tissue repair in terms of efficacy, QoL, and complications (other than mesh related), and native tissue repair has fewer risks. Several mesh systems have been withdrawn.

- **Outcomes:** failure rate of suture repair is 29% vs 9% for non-absorbable mesh repair.
- **Complications:** bleeding, infection, de novo bladder overactivity, incontinence, urinary retention, bladder or urethral injury, dyspareunia, fistula, need for reintervention.
- **Mesh specific complications:** extrusion of mesh into the vagina, urethra or bladder, dyspareunia, and chronic pain.

If there is coexisting SUI, options include prolapse repair and insertion of a mid-urethral tape. It is unclear as to whether the operations are best performed concomitantly or separately. Alternatively, primary colposuspension is useful for treating both problems (but carries a 15% risk of posterior wall prolapse).

Posterior compartment
Repair with suture techniques or mesh, as above. Failure rates are similar at around 15–20%. Risks include: bowel injury, bowel symptoms, dyspareunia, mesh extrusion, and pain.

Middle compartment prolapse
- **Uterine prolapse:** options include vaginal or abdominal hysterectomy. An alternative for women wishing to preserve the uterus is sacrohysteropexy. An open or laparoscopic approach may be taken. A strip of mesh encircles the cervix and is then sutured to the sacrum.
Vault prolapse options include:

• Sacrospinous fixation—(unilateral) suspension of the vaginal vault (or cervix) to the sacrospinous ligament with two sutures via a posterior vaginal approach.

• Sacrocolpopexy—suspension of the anterior and posterior aspects of the vaginal vault to the sacrum by strips of mesh and non-absorbable sutures, which are then covered with the peritoneum to avoid bowel adhesion (open or laparoscopic approach).

• Uterosacral ligament suspension—the uterosacral ligaments are sutured to the vaginal apex.

Colpocleisis is an obliterative procedure reserved for non-sexually active women with significant prolapse and essentially consists of removing sections of the anterior and posterior vaginal wall skin and then suturing the vagina closed.

References

Chapter 6

Infections and inflammatory conditions

Urinary tract infection: definitions and epidemiology 194
Urinary tract infection: microbiology 196
Lower urinary tract infection: cystitis and investigation of UTI 200
Urinary tract infection: general treatment guidelines 202
Recurrent urinary tract infection 204
Upper urinary tract infection: acute pyelonephritis 208
Pyonephrosis and perinephric abscess 210
Other forms of pyelonephritis 212
Chronic pyelonephritis 214
Urosepsis 216
Fournier’s gangrene 220
Peri-urethral abscess 222
Epididymitis and orchitis 224
Prostatitis: classification and pathophysiology 226
Bacterial prostatitis 228
Chronic pelvic pain syndrome 230
Bladder pain syndrome (BPS) 232
Urological problems from ketamine misuse 236
Genitourinary tuberculosis 238
Parasitic infections 240
HIV in urological surgery 244
Phimosis 246
Inflammatory disorders of the penis 248
Urinary tract infection: definitions and epidemiology

Definitions

Urinary tract infection

UTI is infection of the bladder (cystitis), kidneys (pyelonephritis), ureter (ureteritis), or urethra (urethritis). There is an associated inflammatory response of the urothelium to bacterial invasion, leading to a constellation of symptoms. Kass originally described significant bacteriuria as $\geq 10^5$ colony-forming units per mL (CFU/mL) from an MSU specimen; however, it is now recognized that lower bacterial counts are still clinically relevant. Recommendations for diagnosing UTI from MSU culture are shown in Table 6.1. Any bacteria in a urine sample taken from a suprapubic bladder aspiration are clinically relevant.

- Bacteriuria: is the presence of bacteria in the urine and may be asymptomatic or symptomatic. Bacteriuria without pyuria may indicate the presence of bacterial colonization of the urine, rather than the presence of active infection.
- Pyuria: is the presence of WBCs in the urine, implying an inflammatory response of the urothelium to bacterial infection, or in the absence of bacteriuria (sterile pyuria), some other pathology such as carcinoma in situ, TB infection, bladder stones, or other inflammatory conditions.
- An uncomplicated UTI: is one occurring in a patient with a structurally and functionally normal urinary tract. The majority of such patients are women who respond quickly to a short course of antibiotics.
- A complicated UTI: is one occurring in the presence of an underlying anatomical or functional abnormality (e.g. incomplete bladder emptying secondary to BOO or DSD in SCI, renal or bladder stones, colovesical fistula, etc.). Other factors suggesting a potential complicated UTI are diabetes mellitus, immunosuppression, hospital-acquired infection, indwelling catheter, recent urinary tract intervention, and a failure of response to appropriate treatment. Most UTIs in men are defined as complicated, as they tend to occur in association with a structural or functional abnormality. Complicated UTIs take longer to respond to antibiotic treatment than uncomplicated UTIs, and if there is an untreated underlying abnormality, they will usually recur.

UTIs may be isolated, recurrent, or unresolved.
- Isolated UTI: an interval of at least 6 months between infections.
- Recurrent UTI: >2 infections in 6 months or three within 12 months. Recurrent UTI may be due to re-infection (i.e. infection by different bacteria) or bacterial persistence (infection by the same organism originating from a focus within the urinary tract). Bacterial persistence may be caused by the presence of bacteria within calculi (e.g. struvite stone), within a chronically infected prostate (chronic bacterial prostatitis) or within an obstructed or atrophic infected kidney, or occurs as a result of a bladder fistula (with the bowel or vagina) or a urethral diverticulum.
- Unresolved infection: implies inadequate therapy and is caused by natural or acquired bacterial resistance to treatment, infection by (multiple) different organisms, or rapid re-infection.
Prevalence of UTI
The prevalence of UTI increases with age (Table 6.2). Around 50% of women experience one or more episodes in their lifetime. The incidence of UTI in women is around 3% per year, with 15% being recurrent UTI.

General risk factors
•♀ sex.
•Increasing age.
•Low oestrogen states (menopause).
•Pregnancy.
•Diabetes mellitus.
•Previous UTI.
•Institutionalized elderly patients.
•Stone disease (kidney, bladder).
•Genitourinary tract malformation.
•Voiding dysfunction (including obstruction).
•Indwelling catheters. The daily risk of UTI is around 5%. Catheter-associated UTIs (CAUTIs) account for up to 80% of hospital-acquired UTIs.

Reference

Further reading
Urinary tract infection: microbiology

Most UTIs are caused by faecal-derived bacteria that are facultative anaerobes (i.e. they can grow under both anaerobic and non-anaerobic conditions) (Table 6.3).

Uncomplicated UTI

Urinary infection in a subject with a normal functional and anatomical urinary tract. Most UTIs are bacterial in origin. The commonest cause is Escherichia coli, a Gram-negative bacillus, which accounts for 85% of community-acquired and 50% of hospital-acquired infections. Other common causative organisms include Staphylococcus saprophyticus, Proteus mirabilis, and Klebsiella.

Complicated UTI

Infection in a subject with a functional or anatomical abnormality of the urinary tract, underlying risk factors, or failure to respond to therapy. E. coli is responsible for up to 50% of cases. Other causes include enterococci, staphylococci, Pseudomonas, Proteus, Klebsiella, and other enterobacteria.

Route of infection

Ascending

The vast majority of UTIs result from infection ascending retrogradely up the urethra. Bacteria, derived from the large bowel, colonize the perineum, vagina, and distal urethra. They ascend along the urethra to the bladder (↑ risk in ♀ as the urethra is shorter), causing cystitis. From the bladder, they may ascend via the ureters to involve the kidneys (pyelonephritis). Reflux is not necessary for infection to ascend to the kidneys, but it will encourage ascending infection, as will any process that impairs ureteric peristalsis (e.g. ureteric obstruction, Gram-negative organisms and endotoxins, pregnancy). Infection that ascends to involve the kidneys is also more likely where the infecting organism has P pili (filamentous protein appendages, also known as fimbriae, which allow binding of bacteria to the surface of epithelial cells).

- **Haematogenous**: uncommon, but is seen with Staphylococcus aureus, Candida fungaemia, and Mycobacterium tuberculosis (causing TB).
- **Infection via lymphatics**: seen rarely in inflammatory bowel disease and from retroperitoneal abscess.

Factors increasing bacterial virulence

Adhesion mechanisms

Many Gram-negative bacteria have pili (also known as fimbriae) on their cell surface, which aid attachment to urothelial cells of the host. A typical piliated cell may contain 100–400 pili. Pili are 5–10nm in diameter and up to 2µm long. E. coli produces a number of antigenically and functionally different types of pili on the same cell; other strains may produce only a single type, and in some isolates, no pili are seen (such as Dr adhesin associated with UTI in pregnant women and children). Pili are defined functionally by their ability to mediate haemagglutination (clumping of RBCs) of specific types of erythrocytes. Mannose-sensitive (type 1) pili are produced by all
Table 6.3 Classification of bacteria and other organisms associated with the urinary tract and UTI

<table>
<thead>
<tr>
<th>Category</th>
<th>Gram Classification</th>
<th>Organism</th>
</tr>
</thead>
</table>
| **Cocci** | Gram +ve aerobes | **Streptococcus** | Non-haemolytic: *Enterococcus* (E. faecalis)
| | | α-haemolytic: *S. viridans*; β-haemolytic *Streptococcus* |
| | | **Staphylococcus** | *S. saprophyticus* (causes 10% of symptomatic lower UTIs in young, sexually active women)
| | | | *S. aureus*
| | | | *S. epidermidis* |
| **Gram –ve aerobes** | Neisseria | *N. gonorrhoeae* |
| **Bacilli (rods)** | Gram +ve aerobes | **Corynebacteria** | *C. urealyticum* |
| | Acid-fast | *M. tuberculosis* |
| | Gram +ve anaerobes* | **Lactobacillus** | (i.e. *L. crispatus* and *L. Jensenii* are common vaginal commensal organisms)
| | | | *Clostridium perfringens* |
| | Gram –ve aerobes | **Enterobacteriaceae** | *E. coli*, *P. mirabilis*, *Klebsiella* spp.
| | | Non-fermenters | *Pseudomonas aeruginosa* |
| | Gram –ve anaerobes* | **Bacteroides** | *Bacteroides fragilis* |
| **Other organisms**| | | *C. trachomatis* |
| | | *M. hominus* |
| | | **Ureaplasma** | *U. urealyticum* (causes UTI in patients with indwelling catheters) |
| | | | *C. albicans* |

*Anaerobic infections of the bladder and kidney are uncommon—anaerobes are normal commensals of the perineum, vagina, and distal urethra. However, infections of the urinary system that produce pus (e.g. scrotal, prostatic, or perinephric abscesses) can be caused by anaerobic organisms (e.g. *Bacteroides* spp. such as *B. fragilis*, *Fusobacterium* spp., anaerobic cocci, and *C. perfringens*).*
strains of *E. coli* and are associated with cystitis. Certain pathogenic types of *E. coli* also produce mannose-resistant P pili and are associated with pyelonephritis. S pili are associated with infection of both the bladder and kidneys.

Avoidance of host defence mechanisms

- **General**: an extracellular capsule reduces immunogenicity and resists phagocytosis (*E. coli*). *M. tuberculosis* resists phagocytosis by preventing phagolysosome fusion.
- **Toxins**: *E. coli* species have haemolysin activity which has a direct pathogenic effect on host erythrocytes.
- **Enzyme production**: *Proteus* species produce ureases which cause the breakdown of urea in urine to ammonia, which then contributes to disease processes (struvite stone formation).

Antimicrobial resistance

- **Enzyme inactivation**: *S. aureus*, *N. gonorrhoeae*, and enterobacteria can produce β-lactamase which hydrolyses the β-lactam bond within the structure of some antibiotics, so inactivating them. The β-lactam antibiotics are penicillins, cephalosporins, and carbments.
- **Altered permeability**: access of the antibiotic to the bacteria is prevented by alterations in receptor activity or transport mechanisms.
- **Alteration of binding site**: genetic variations may alter the antibiotic target, leading to drug resistance.

Host defences

Factors that protect against UTI include the following.

General

- **Commensal flora**: protect by competing for nutrients, bacteriocin production, stimulation of the immune system, and altering pH.
- **Mechanical integrity of mucous membranes**.
- **Mucosal secretions**: lysozymes split muramic acid links in cell walls of Gram-positive organisms; lactoferrin disrupts the normal metabolism of bacteria.
- **Urinary IgA** inhibits bacterial adherence.

Specific

- **Mechanical flushing effect of urine through the urinary tract** (i.e. antegrade flow of urine).
- A mucopolysaccharide coating of the bladder (Tamm–Horsfall protein) helps prevent bacterial attachment.
- **Bladder surface mucin**: glycosaminoglycan (GAG) layer is an anti-adherent factor, preventing bacterial attachment to the mucosa.
- **Low urine pH** and high osmolarity reduce bacterial growth.
- **♀ commensal flora**: *Lactobacillus acidophilus* metabolizes glycogen into lactic acid, causing a drop in pH.
- **↑ rates of bladder mucosal cell exfoliation** are seen during infection, which accelerates cell removal with adherent bacteria.
Lower urinary tract infection: cystitis and investigation of UTI

Cystitis is infection and/or inflammation of the bladder.

- **Presentation:** frequent voiding of small volumes, dysuria, urgency, offensive urine, suprapubic pain, haematuria, fever ± incontinence. Enquire about frequency of infections and triggers, and assess risk factors. It is helpful to obtain a full microbiology history where results are available.

- **Examination:** check for a palpable bladder and post-void urine residuals. Include a pelvic examination in women to assess for atrophic vaginitis, prolapse, and the presence of a urethral diverticulum.

General investigation of UTI

Dipstick of MSU specimen

White blood cells (indirect testing for pyuria)

Leucocyte esterase activity detects the presence of WBCs in the urine. Leucocyte esterase is produced by neutrophils and causes a colour change in a chromogen salt on the dipstick. Not all patients with bacteriuria have significant pyuria (sensitivity of 75–95% for detection of infection, i.e. 5–25% of patients with infection will have a negative leucocyte esterase test, erroneously suggesting that they have no infection).

- False positives (pyuria present, negative dipstick test)—concentrated urine, glycosuria, presence of urobilinogen, consumption of large amounts of ascorbic acid.
- False negatives (pyuria absent, positive dipstick test)—contamination.

Remember, there are many causes for pyuria (and therefore a positive leucocyte esterase test occurring in the absence of bacteria on urine microscopy). This is so-called sterile pyuria, and it occurs with TB infection, renal calculi, bladder calculi, glomerulonephritis, interstitial cystitis/bladder pain syndrome, and carcinoma in situ. Thus, the leucocyte esterase dipstick test may be truly positive in the absence of infection.

Nitrite testing (indirect testing for bacteriuria)

Nitrites are not normally found in urine, and their presence suggests the possibility of bacteriuria. Many species of Gram-negative bacteria can convert nitrates to nitrites. These are detected in the urine by a reaction with the reagents on the dipstick which form a red azo dye. The specificity of the nitrite dipstick for detecting bacteriuria is >90% (false-positive nitrite testing can occur with contamination). The sensitivity is 35–85% (i.e. false negatives are common—a negative dipstick in the presence of active infection) and is less accurate in urine containing <10^5 organisms/mL. Hence, if the nitrite dipstick test is positive, the patient probably has a UTI, but a negative test often occurs in the presence of infection.

Cloudy urine, which is positive for WBCs on dipstick and is nitrite-positive, is very likely to be infected.

Blood

Hb has a peroxidase-like activity, causing oxidation of a chromogen indicator on the dipstick, which changes colour when oxidized. False positives are seen with menstrual blood and dehydration.
pH
Urinary pH usually lies between 5.5 and 6.5 (range 4.5–8). A persistent alkaline pH associated with UTI indicates a risk of stones. Urease-producing bacteria (such as *P. mirabilis*) hydrolyse urea to ammonia and carbon dioxide, leading to the formation of magnesium, calcium, and ammonium phosphate stones (triple phosphate or struvite calculi).

Microscopy of MSU
- **False negative:** low bacterial counts may make it very difficult to identify bacteria, and the specimen of urine may therefore be deemed to be negative for bacteriuria when, in fact, there is active infection.
- **False positive:** bacteria may be seen in the MSU in the absence of infection. This is most often due to contamination with commensals from the distal urethra and perineum (urine from a woman may contain thousands of lactobacilli and corynebacteria derived from the vagina). These bacteria are readily seen under the microscope, and although they are Gram-positive, they often appear Gram-negative (Gram-variable) if stained.

If the urine specimen contains large numbers of squamous epithelial cells (cells which are derived from the foreskin, vaginal, or distal urethral epithelium), this suggests contamination of the specimen, and the presence of bacteria in this situation may indicate a false-positive result. The finding of pyuria and RBCs suggests the presence of active infection.

Further investigation
If this is a one-off infection in an otherwise healthy individual, no further investigations are required. Investigation for uncomplication recurrent UTI also has a low diagnostic yield in women. However, investigation is required if:
- The patient develops symptoms and signs of upper tract infection (loin pain, malaise, fever)—if clinical suspicion of acute pyelonephritis, pyonephrosis, or perinephric abscess.
- Recurrent UTIs develop (see pp. 204–7).
- The patient is pregnant.
- Unusual infecting organism (e.g. *Proteus*), suggesting the possibility of an infection stone.
- Red flag symptoms—such as bladder pain, storage symptoms, or haematuria persisting after UTI is treated.

These further investigations will include imaging with USS (or CT if suspecting stones) and cystoscopy.

Non-infective cystitis
Symptoms of cystitis can also be caused by:
- Pelvic radiotherapy (radiation cystitis—bladder capacity is reduced and multiple areas of mucosal telangiectasia are seen cystoscopically).
- Drug-induced cystitis, e.g. cyclophosphamide, ketamine, intravesical bacille Calmette–Guérin (BCG) therapy.
- Bladder pain syndrome/interstitial cystitis.
Urinary tract infection: general treatment guidelines

Antimicrobial drug therapy
The aim is to eliminate bacterial growth from the urine. Empirical treatment involves the administration of antibiotics according to the clinical presentation and the most likely causative organism before culture sensitivities are available. Microbiology departments produce their own local hospital recommendations, which will be based on local and regional bacterial sensitivities and resistance, and should be followed. Men are often affected by complicated UTI and may require longer treatments, as will patients with uncorrectable structural or functional abnormalities (e.g. indwelling catheters, neuropathic bladders). Once culture results are available, the antibiotic should be changed according to sensitivities. Mild–moderate severity infections can be treated with oral antibiotics, whereas patients who have severe infection and are systemically unwell require hospital admission for IV drugs until improvement is seen (i.e. in temperature and other parameters), after which the patient can be stepped down to oral antibiotics to complete a full course of treatment (1–2 weeks).

Options for initial empirical therapy
If the local resistance pattern is <20%, options for UTI include: fluoroquinolone, aminopenicillin + β-lactamase inhibitor (i.e. co-amoxiclav), cephalosporin (group 3b), and aminoglycoside (i.e. gentamicin).

General guide to antibiotic treatment of UTI
See Table 6.4.

Bacterial resistance to drug therapy
Organisms susceptible to concentrations of an antibiotic in the urine (or serum) after the recommended clinical dosing are termed ‘sensitive’, and those that do not respond are ‘resistant’. Bacterial resistance may be intrinsic via selection of a resistant mutant during initial treatment (e.g. Proteus is intrinsically resistant to nitrofurantoin) or genetically transferred between bacteria by R plasmids. Antibiotic-resistant organisms that cause complicated UTI include Gram-negative bacteria that produce AmpC enzymes or extended-spectrum β-lactamases (ESBLs) which are often multidrug-resistant, and Gram-positive cocci such as meticillin-resistant Staphylococcus aureus (MRSA), meticillin-resistant coagulase-negative staphylococci (MRCoNS), and vancomycin-resistant enterococci (VRE). To avoid increasing resistance, the emphasis is on antibiotic stewardship—it is not advisable to commence antibiotics without clinical evidence of a UTI (exceptions include asymptomatic bacteriuria in pregnancy), and local microbiology guidelines should be followed.

Definitive treatment
Once urine or blood culture results are available, antimicrobial therapy should be adjusted according to bacterial sensitivities. Any reversible or underlying abnormality should be corrected if feasible (i.e. extraction of an infected calculus, removal of catheter, nephrostomy drainage of an infected and obstructed kidney).
General preventative advice
Encourage a good fluid intake; ensure adequate bladder emptying; avoid constipation. In women—voiding before and after intercourse; avoid using bubble bath or washing hair in the bath (as this affects the protective commensal organisms—the lactobacilli). Post-menopausal women may benefit from topical oestrogen treatment.

Table 6.4 General guide to antibiotic treatment of UTI

<table>
<thead>
<tr>
<th>Infection</th>
<th>Antibiotic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute, uncomplicated cystitis</td>
<td>Nitrofurantoin PO</td>
<td>5 days</td>
</tr>
<tr>
<td></td>
<td>Alternatives:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trimethoprim* PO</td>
<td>5 days</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin PO</td>
<td>3 days</td>
</tr>
<tr>
<td></td>
<td>Cephalexin PO</td>
<td>3 days</td>
</tr>
<tr>
<td>Acute, mild–moderate uncomplicated pyelonephritis</td>
<td>Fluoroquinolone PO</td>
<td>7–10 days</td>
</tr>
<tr>
<td></td>
<td>Alternatives:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cephalexin PO</td>
<td>10 days</td>
</tr>
<tr>
<td></td>
<td>Co-amoxiclav** PO</td>
<td>14 days</td>
</tr>
<tr>
<td>Acute, severe complicated pyelonephritis</td>
<td>Fluoroquinolone</td>
<td>Initial IV antibiotics; after clinical improvement change to PO and complete a 1–2wk course</td>
</tr>
<tr>
<td></td>
<td>Alternatives:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cephalexin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-amoxiclav</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piperacillin/tazobactam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gentamicin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meropenem</td>
<td></td>
</tr>
</tbody>
</table>

PO, oral; IV, intravenous administration.
* If local resistance pattern is known (i.e. E. coli resistance <20%).
** If the uropathogen is known to be susceptible.

These are general recommendations adapted from EAU guidelines to fit with UK antibiotic use. You should be guided by your local microbiology department recommendations. Refer also to the BNF, and check contraindications to antibiotics during pregnancy (see p. 661). Also note that antibiotics can affect the efficacy of the oral contraceptive pill, so alternative forms of contraception may be required during treatment.

Reference
Recurrence urinary tract infection

Recurrence UTI (rUTI) is defined as >2 infections in 6 months or three infections within 12 months. It may be due to re-infection (i.e. infection by different bacteria) or bacterial persistence (infection by the same organism originating from a focus within the urinary tract).

Re-infection

This usually occurs after a prolonged interval (months) from the previous infection and is often caused by a different organism than the previous infecting bacterium.

- **Women:** with re-infection do not usually have an underlying functional or anatomical abnormality. Re-infections are associated with ↑ vaginal mucosal receptivity for uropathogens and ascending colonization from faecal flora. These women cannot be cured of their predisposition to rUTIs, but they can be managed by a variety of techniques (see below). Women who have suffered one UTI have a 20% risk of experiencing another UTI in the next 6 months.

- **Men:** with re-infection may have underlying BOO (i.e. due to BPE or a urethral stricture), which makes them more likely to develop a repeat infection, but between infections, their urine is sterile (i.e. they do not have bacterial persistence between symptomatic UTIs). A flexible cystoscopy, PVR urine volume measurement, USS and, in some cases, urodynamics or urethrography may be helpful in establishing the potential causes.

Both men and women with bacterial persistence usually have an underlying functional or anatomical abnormality, and they can potentially be cured of their rUTIs if this abnormality can be identified and corrected.

Management of women with recurrent UTIs due to re-infection

Imaging tests, including renal USS, and flexible cystoscopy can be performed to check for potential sources of suspected bacterial persistence (i.e. to confirm this is a ‘simple’ case of re-infection, rather than one of bacterial persistence), but often they are normal.

Preventative and conservative management in females

- Most encourage a good fluid intake, although evidence for this is limited.
- Avoidance of spermicides used with the diaphragm or on condoms. Spermicides containing nonoxynol-9 reduce vaginal colonization with lactobacilli and may enhance *E. coli* adherence to urothelial cells. Recommend an alternative form of contraception.
- Avoid bubble baths and perfumed soaps on the perineum which can strip away the commensal ‘protective’ organisms (lactobacilli).
- **Cranberry tablets or juice:** contains proanthocyanidins which inhibit bacterial adherence. Results have been conflicting as to the clinical benefit.
- **Oestrogen replacement:** a lack of oestrogen in post-menopausal women causes loss of vaginal lactobacilli and ↑ colonization by *E. coli*. Topical oestrogen replacement can result in recolonization of the vagina with lactobacilli and help eliminate colonization with bacterial uropathogens.
Alkalization of the urine: with potassium citrate or sodium bicarbonate can help alleviate the ‘burning’ symptoms of active cystitis.

Intravaginal lactobacilli: some limited evidence of benefit.

Vitamin C (ascorbic acid): causes acidification of the urine and a bacteriostatic effect—some limited evidence of benefit.

D-mannose: in studies, it blocks E. coli adhesion and invasion of urothelial cells; however, clinical evidence is limited as a prophylactic.

Vaccines (Uro-Vaxom®): daily oral capsule containing 18 strains of E. coli. Not widely available.

Methenamine hippurate (Hiprex®): a prophylactic with wide-spectrum antimicrobial effects (not used to treat active infections). It is hydrolysed in urine to form formaldehyde, which is bacteriostatic, and so it avoids bacterial resistance. Acidic urine is needed for it to have an antibacterial effect. It creates an acidic environment itself (via hippuric acid), but additional high-dose vitamin C can be given. Not helpful in patients with a neuropathic bladder or urinary tract abnormalities. The ALTAR study (ALternative To prophylactic Antibiotics for the treatment of Recurrent urinary tract infections in women) is an NIHR-HTA study randomizing patients to methenamine vs low-dose antibiotics, to assess the effects on rUTI prevention (results pending). Side effects: rash, pruritus, stomach and bladder irritation. Contraindications: severe renal impairment, liver impairment, gout, severe dehydration, pregnancy. Avoid concomitant use with sulfonamides, alkalizing agents, and acetazolamide.

Intravesical GAG analogues (sodium hyaluronate, chondroitin sulfate): given as separate treatments or in combination (IALuRil®). Placed in the bladder via an in-and-out catheter for an induction course (once per week for 4–6wk) and then maintenance if beneficial (once per month for 4–6 months). We would tend to use this after other medical and antibiotic prophylaxis has shown only partial benefit or failed.

Antibiotic management

Low-dose continuous antibiotic prophylaxis

Oral antimicrobial therapy with full-dose oral tetracyclines, ampicillin, sulfonamides, amoxicillin, and cefalexin causes resistant strains in the faecal flora and subsequent resistant UTIs. However, trimethoprim, nitrofurantoin, and low-dose cefalexin have minimal adverse effects on the faecal and vaginal flora.

Efficacy of prophylaxis: A Cochrane review reports significant reduction of microbiology rUTI by around 4-fold, and clinical recurrence by 13-fold, with the number needed to treat to prevent one symptomatic rUTI being 1.85. Only small doses of antimicrobial agent are required, generally given at bedtime for 6–12 months. Symptomatic re-infection during prophylactic therapy is managed with a full therapeutic dose with the same prophylactic antibiotic or another antibiotic. Prophylaxis can then be restarted. Symptomatic re-infection immediately after cessation of prophylactic therapy is managed by restarting nightly prophylaxis.

Trimethoprim (100mg daily): the gut is a reservoir for organisms that colonize the peri-urethral area which may cause episodes of acute cystitis in young women. Trimethoprim eradicates Gram-negative aerobic flora from the gut and vaginal fluid (i.e. it eliminates the
pathogens from the infective source). Trimethoprim is also concentrated in bactericidal concentrations in the urine following an oral dose. Side effects: GI disturbance, rash, pruritus, depression of haematopoiesis, allergic reactions. Use with caution in renal impairment, as it can increase creatinine by competitively inhibiting tubular secretion.

- **Nitrofurantoin** (50–100mg daily): completely absorbed and/or inactivated in the upper intestinal tract and therefore has no effect on gut flora. It is present for brief periods at high concentrations in the urine and leads to repeated elimination of bacteria from the urine. Nitrofurantoin prophylaxis therefore does not lead to a change in vaginal or introital colonization with enterobacteria. Bacteria colonizing the vagina remain susceptible to nitrofurantoin because of the lack of bacterial resistance in the faecal flora. Side effects: GI upset, chronic pulmonary reactions (pulmonary fibrosis), peripheral neuropathy, allergic reactions, liver impairment. This drug should be used for limited periods only.

- **Cefalexin**: at 125–250mg nightly is an excellent prophylactic agent because faecal resistance does not develop at this low dosage. Side effects: GI upset, allergic reactions.

- **Ciprofloxacin** (125mg daily): short courses eradicate enterobacteria from faecal and vaginal flora. The (longer term) use of ciprofloxacin is increasingly discouraged, with some hospitals not allowing its routine use in an attempt to reduce the incidence of symptomatic *C. difficile*. Side effects: tendon damage (including rupture) which may occur within 48h of starting treatment (rare). The risk of tendon rupture is ↑ by the concomitant use of corticosteroids. Avoid in patients with known tendon disorders.

- **Fosfomycin**: while EAU guidelines recommend this as antibiotic for empirical use, in the UK, it tends to be only available for prescription after microbiology advice and generally reserved for multidrug-resistant UTIs. Treatment dose is a 1g sachet as single dose; prophylaxis is 1g every 10 days PO.

Post-intercourse antibiotic prophylaxis

Sexual intercourse has been established as an important risk factor for acute cystitis in women. In addition, women using the diaphragm have a significantly greater risk of UTI than those using other contraceptive methods. Post-coital therapy with antimicrobials, such as nitrofurantoin, cefalexin, or trimethoprim, taken as a single dose (once daily), effectively reduces the incidence of re-infection.

Self-start therapy

Women keep a home supply of an antibiotic (e.g. trimethoprim, nitrofurantoin, or a fluoroquinolone) and start treatment when they develop symptoms suggestive of a UTI (preferably having first delivered a urine specimen to their GP for culture). They can also be provided with instructions on the use of urine dipsticks to help confirm the diagnosis.
Bacterial persistence

Bacterial persistence usually leads to frequent recurrence of infection (within days or weeks), and the infecting organism is usually the same organism as that causing the previous infection(s). Uropathogenic *E. coli* have been found to penetrate urothelial cells and form quiescent intracellular bacterial reservoirs, which can act as a nidus for bacterial persistence and UTI recurrence. Often, there is also an underlying functional or anatomical problem, and infection will usually not resolve until this has been corrected. Causes include kidney stones, a chronically infected prostate (chronic bacterial prostatitis), bacteria within an obstructed or atrophic infected kidney, vesicovaginal or colovesical fistula, and bacteria within a urethral diverticulum.

Management of men and women with recurrent UTIs due to bacterial persistence

Investigation

These are directed at identifying the potential causes of bacterial persistence.

- KUB X-ray to detect radio-opaque renal calculi.
- Renal USS to detect hydronephrosis and renal calculi. If hydronephrosis is present, but the ureter is not dilated, consider the possibility of a radio-opaque stone obstructing the PUJ or a PUJO.
- Determination of PVR volume by bladder USS.
- CT where a stone is suspected, but not identified on plain X-ray or USS; CTU to assess for abnormal urinary tract anatomy.
- Flexible cystoscopy to identify possible causes of rUTIs such as bladder stones, an underlying bladder cancer (rare), a urethral or bladder neck stricture, or a fistula.
- Urodynamics—for associated voiding dysfunction.

Treatment

This depends on the functional or anatomical abnormality that is identified as the cause of the bacterial persistence. If a stone is identified, this should be removed. If there is obstruction (e.g. BOO, PUJO, DSD), this should be corrected.

Reference

Upper urinary tract infection: acute pyelonephritis

Definition: pyelonephritis is an inflammation of the kidney and renal pelvis.

Presentation

Clinical diagnosis is based on the presence of fever, flank pain, bacteriuria, pyuria, usually with an elevated white cell count (WCC). Nausea and vomiting are common. It may affect one or both kidneys. There are usually accompanying symptoms suggestive of a lower UTI (frequency, urgency, suprapubic pain, urethral burning or pain on voiding) responsible for the subsequent ascending infection to the kidney.

- **Differential diagnosis:** cholecystitis, pancreatitis, diverticulitis, and appendicitis.
- **Risk factors:** ♀ > ♂, VUR, urinary tract obstruction, calculi, SCI (neuropathic bladder), diabetes mellitus, congenital malformation, pregnancy, indwelling catheters, urinary tract instrumentation.
- **Pathogenesis and microbiology:** initially, there is patchy infiltration of neutrophils and bacteria in the parenchyma. Later changes include the formation of inflammatory bands, extending from the renal papilla to the cortex, and small cortical abscesses. Eighty per cent of infections are secondary to *E. coli* (possessing P pili virulence factors). Other infecting organisms: enterococci (*E. faecalis*), *Klebsiella*, *Proteus*, staphylococci, and *Pseudomonas*. Any process interfering with ureteric peristalsis (i.e. obstruction) may assist in retrograde bacterial ascent from bladder to kidney.

Investigation and treatment

- For those patients who have a fever but are not systemically unwell, outpatient management is reasonable. Culture the urine, and start oral antibiotics according to your local antibiotic policy (which will be based on the likely infecting organisms and their likely antibiotic sensitivity). EAU guidelines give several suggestions, with first-line drugs being fluoroquinolones (oral ciprofloxacin 500mg bd for 7–10 days) if *E. coli* resistance is <10%.
- If the patient is systemically unwell, resuscitate, culture urine and blood, and start IV fluids and IV antibiotics, again selecting the antibiotic according to your local antibiotic policy. The EAU guideline first-line option is fluoroquinolones (i.e. IV ciprofloxacin 400mg bd), with alternatives being cephalosporins, co-amoxiclav, gentamicin, piperacillin with tazobactam (Tazocin®), or meropenem.
- Arrange a renal USS to look for obstruction or stones, and CT if required (i.e. if hydronephrosis is identified, CT can be used to look for a ureteric stone, tumour, or clot).
● If the patient does not respond within 3 days to a regimen of appropriate IV antibiotics (confirmed on sensitivities), arrange a contrast CT (± delayed-phase urogram). Failure to respond to treatment suggests possible pyonephrosis (i.e. pus in the kidney), a perinephric abscess, or complicated pyelonephritis. Pyonephrosis should be drained by insertion of a percutaneous nephrostomy tube. A perinephric abscess should have an image-controlled percutaneous drain insertion.

● If the patient responds to IV antibiotics, change to an oral antibiotic of appropriate sensitivity when they become apyrexial (i.e. after control of infection or after elimination of the underlying problem), and continue this for a 1- to 2-wk course in total.

Reference
Pyonephrosis and perinephric abscess

Pyonephrosis
An infected hydronephrosis where pus accumulates within the renal pelvis and calyces. It is associated with damage to the parenchyma, resulting in loss of renal function. The causes are essentially those of hydronephrosis where infection has supervened (e.g. ureteric obstruction by stone, PUJO).

Presentation
Patients with pyonephrosis are usually very unwell, with a high fever, flank pain, and tenderness.

Risk factors
Stone disease, previous UTI, or surgery.

Investigation
- USS: shows evidence of obstruction (hydronephrosis) with a dilated collecting system, fluid–debris levels, or air in the collecting system.
- CT: shows hydronephrosis, stranding of perinephric fat, and thickening of the renal pelvis.

Treatment
IV fluids and IV antibiotics (as for severe pyelonephritis), with urgent percutaneous drainage (nephrostomy) and/or ureteric stent.

Perinephric abscess
Perinephric abscess develops as a consequence of extension of infection outside the parenchyma of the kidney in acute pyelonephritis, from rupture of a cortical abscess, or if obstruction in an infected kidney (i.e. pyonephrosis) is not drained quickly enough. More rarely, it is due to haematogenous spread of infection from a distant site or infection from adjacent organs (i.e. bowel). The abscess develops within Gerota’s fascia.

Risk factors
Diabetes mellitus; immunocompromise; an obstructing ureteric calculus may precipitate the development of a perinephric abscess.

Causes
Perinephric abscesses are caused by S. aureus (Gram-positive), E. coli, and Proteus (Gram-negative organisms).

Presentation
Patients present with fever, unilateral flank tenderness, and ≥5-day history of milder symptoms. Failure of a seemingly straightforward case of acute pyelonephritis to respond to IV antibiotics within a few days also arouses suspicion that there is an accumulation of pus in or around the kidney or an obstruction with infection.

A flank mass with overlying skin erythema and oedema may be observed. Extension of the thigh (stretching the psoas) may trigger pain, and psoas spasm may cause reactive scoliosis.
Investigation
- **FBC**: shows raised WCC and C-reactive protein (CRP).
- **Urine analysis and cultures**.
- **Blood cultures**: are required to identify organisms responsible for the haematogenous spread of infection (i.e. *S. aureus*).
- **USS or CTU**: can identify the size, site, and extension of retroperitoneal abscesses and allow radiographically controlled percutaneous drainage.

Treatment
Commence broad-spectrum IV antibiotics according to local microbiology guidelines (i.e. aminoglycoside and co-amoxiclav) until culture sensitivities are available. Drainage of the collection should be performed, either radiographically or by formal open incision and drainage if the pus collection is large. IV antibiotics should be used initially and followed by oral antimicrobials until clinical review and re-imaging confirm resolution of infection. Nephrectomy may be required for extensive renal involvement or a non-functioning infected kidney.

Acute pyelonephritis, pyonephrosis, perinephric abscess, and complicated pyelonephritis—making the diagnosis
Maintaining a degree of suspicion in all cases of presumed acute pyelonephritis is the single most important thing in allowing an early diagnosis of complicated renal infection such as a pyonephrosis, perinephric abscess, or emphysematous pyelonephritis (EPN) to be made. If the patient is very unwell, is diabetic, or has a history suggestive of stones, they may have something more than just a simple acute pyelonephritis. Specifically ask about a history of sudden onset of severe flank pain a few days earlier, suggesting the possibility that a stone passed into the ureter, with later infection supervening. Arranging a renal USS in all patients with suspected renal infection will demonstrate the presence of hydronephrosis, pus, or stones, and follow up with CT if concerns (i.e. hydronephrosis).

Clinical indicators suggesting a more complex form of renal infection are length of symptoms prior to treatment and time taken to respond to treatment. Most patients with uncomplicated acute pyelonephritis have been symptomatic for <5 days. Most with, for example, a perinephric abscess have been symptomatic for >5 days prior to hospitalization. Patients with acute pyelonephritis became afebrile within 4–5 days of treatment with an appropriate antibiotic, whereas those with perinephric abscesses remained pyrexial.
Other forms of pyelonephritis

Emphysematous pyelonephritis
A rare severe form of acute necrotizing pyelonephritis caused by gas-forming organisms. It is characterized by fever and abdominal pain, with radiographic evidence of gas within and around the kidney (on plain radiography or CT) (Fig. 6.1). It usually occurs in diabetics and, in many cases, is precipitated by urinary obstruction by, for example, ureteric stones. High glucose levels associated with poorly controlled diabetes provide an ideal environment for fermentation by enterobacteria, with carbon dioxide being produced during this process. EPN is commonly caused by *E. coli*, and less frequently by *Klebsiella* and *Proteus*.

Presentation
Severe acute pyelonephritis (high fever and systemic upset) that fails to respond to IV antibiotics within 2–3 days.

Investigation
KUB X-ray may show a crescent- or kidney-shaped distribution of gas around the kidney. Renal USS often demonstrates strong focal echoes, indicating gas within the kidney. CT can help classify the disease. Type I shows parenchymal destruction, an absence of fluid collection, or streaky gas from the medulla to cortex—this has a poorer prognosis. Type II shows intrarenal gas and renal or perirenal fluid, or collecting system gas—this has a better prognosis.

Management
Patients with EPN are usually very unwell (to the extent that many are not fit enough for emergency nephrectomy), and mortality is high. Resuscitate and transfer to the intensive treatment unit (ITU)/high-dependency unit (HDU). Management is with IV antibiotics, IV fluids, percutaneous drainage,

Fig. 6.1 Enhanced axial CT scan demonstrating emphysematous pyelonephritis affecting the left kidney. Image kindly provided with permission from Professor S. Reif.
and careful control of diabetes. Where there is no symptomatic improvement, have a low threshold for rescanning (CT) and consider additional percutaneous drainage for ‘pockets’ of infection that have not been adequately drained. In those where sepsis is poorly controlled, emergency nephrectomy may be required.

Xanthogranulomatous pyelonephritis (XGP)

An uncommon, severe form of chronic renal infection. It usually (although not always) occurs in association with underlying renal (staghorn) calculi and renal obstruction. Three forms exist: focal (XGP in the renal cortex with no pelvic communication), segmental, and diffuse. The chronic granulomatous process results in the destruction of renal tissue, leading to a non-functioning kidney. *E. coli* and *Proteus* are common causative organisms. Lipid-laden, ‘foamy’ macrophages become deposited around abscesses within the parenchyma of the kidney. The infection may be confined to the kidney or extend to the perinephric fat. The kidney becomes grossly enlarged and macroscopically contains yellowish nodules (pus) and areas of haemorrhagic necrosis. It can be very difficult to distinguish the radiological findings from a renal cancer on imaging studies such as CT. Indeed, in many cases, the diagnosis is made after nephrectomy for what was presumed to be an RCC.

Presentation

Flank pain, fever, malaise, haematuria, LUTS, and a tender flank mass. It affects all age groups, ♀ more often than ♂. Associated with diabetes.

Complications

Fistula (nephrocutaneous, nephrocolonic), paranephric abscess, psoas abscess.

Investigation

Blood tests show anaemia and leucocytosis. Bacteria (*E. coli, Proteus*) may be found on culture of urine. Renal USS shows an enlarged kidney containing echogenic material. CT may identify (obstructing) renal or urinary tract calculi, hydronephrosis, renal cortical thinning, and perinephric fat inflammation. Non-enhancing cavities are seen, containing pus and debris. On radioisotope scanning (DMSA, MAG3 renogram), there may be reduced or no function in the affected kidney.

Management

On presentation, these patients are usually commenced on antibiotics, as the constellation of symptoms and signs suggest infection. If systemically unwell, transfer to ITU/HDU for treatment. When imaging studies are done, such as CT, the appearances usually suggest the possibility of an RCC, and therefore, when signs of infection have resolved, patients commonly have proceeded to nephrectomy. Often, only following pathological examination of the removed kidney will it become apparent that the diagnosis was one of infection (XGP), rather than a tumour.
Chronic pyelonephritis

In essence, this describes renal scarring which may or may not be related to previous UTI. It is a radiological, functional, or pathological diagnosis or description.

Causes
- Renal scarring due to previous infection.
- Long-term effects of VUR, with or without superimposed infection.

A child with VUR, particularly where there is reflux of infected urine, will develop reflux nephropathy (which, if bilateral, may cause renal impairment or renal failure). If the child’s kidneys are examined radiologically (or pathologically if they are removed by nephrectomy), the radiologist or pathologist will describe the appearances as those of ‘chronic pyelonephritis’.

An adult may also develop radiological and pathological features of chronic pyelonephritis due to the presence of reflux or BOO combined with high bladder pressures, again particularly where the urine is infected. This was a common occurrence in ♂ patients with SCI and DSD before the advent of effective treatments for this condition.

Pathogenesis

Chronic pyelonephritis is essentially the end-result of long-standing reflux (non-obstructive chronic pyelonephritis) or of obstruction (obstructive chronic pyelonephritis). These processes damage the kidneys, leading to scarring, and the degree of damage and subsequent scarring is more marked if infection has supervened.

Presentation

Patients may be asymptomatic or present with symptoms secondary to renal failure. Diagnosis is often from incidental findings during general investigation. There is usually no active infection. BP is often raised.

Appearances on imaging

Scars can be ‘seen’ radiologically on a renal USS, renal isotope scan, or CT. The scars are closely related to a deformed renal calyx. Distortion and dilatation of the calyces is due to scarring of the renal pyramids. These scars typically affect the upper and lower poles of the kidneys because these sites are more prone to intrarenal reflux. The cortex and medulla in the region of a scar are thin. The kidney may be so scarred that it becomes small and atrophic.

Management

Aim to investigate and treat any infection, prevent further UTI, and monitor and optimize renal function and BP.

Complications

Renal impairment progressing to end-stage renal failure in bilateral cases (usually only if chronic pyelonephritis is associated with an underlying structural or functional urinary tract abnormality).
Urosepsis

Definitions

- **Bacteraemia**: is the presence of bacteria in the bloodstream.
- **Systemic inflammatory response syndrome (SIRS)**: a systemic response to infection (or other clinical insult). SIRS is defined by at least two of the following:
 - Fever (>38°C) or hypothermia (<36°C).
 - Tachycardia (>90 beats/min in patients not on β-blockers).
 - Tachypnoea (respiration >20 breaths/min or PaCO₂ <4.3kPa or a requirement for mechanical ventilation).
 - WCC >12 000 cells/mm³, <4000 cells/mm³, or >10% immature (band) forms.
- **Sepsis**: is the diagnosis of infection associated with the systemic manifestations of infection (i.e. SIRS).
- **Severe sepsis**: sepsis associated with organ dysfunction or tissue hypoperfusion (features including lactic acidosis, oliguria, or acute altered mental state).
- **Septic shock**: severe sepsis with circulatory shock (hypotension despite adequate fluid resuscitation), and organ dysfunction or hypoperfusion (features include lactic acidosis, oliguria, or acute altered mental state). It is diagnosed after 30mL/kg of isotonic fluid has been given to reverse any hypovolaemia. Hypotension in septic shock is defined as a sustained systolic BP <90mmHg or a drop in systolic pressure of >40mmHg for >1h, when the patient is normovolaemic and other causes have been excluded or treated. Lactate is >4mmol/L. Septic shock results from Gram-positive bacterial toxins or Gram-negative endotoxins which trigger the release of cytokines [tumour necrosis factor (TNF), interleukin (IL)-1], vascular mediators, and platelets, resulting in vasodilatation (manifest as hypotension) and disseminated intravascular coagulation (DIC).
- **Refractory septic shock**: is defined as septic shock lasting >1h which fails to respond to therapy (fluids or pharmacotherapy).

Causes of urinary sepsis

In the hospital setting, common causes are the presence or manipulation of indwelling urinary catheters, urinary tract surgery (particularly endoscopic—TURP, TURBT, ureteroscopy, PCNL), and urinary tract obstruction (particularly that due to stones obstructing the ureter). Sepsis occurs in ~1.5% of men undergoing bladder outlet surgery. Diabetic patients, patients in ITU, and immunocompromised patients (on chemotherapy and steroids) are more prone to urosepsis.

- **Causative organisms in urinary sepsis**: E. coli, enterococci, staphylococci, *Pseudomonas*, *Klebsiella*, and *Proteus*.

General management of sepsis

The principles of management include early recognition, resuscitation, localization of the source of sepsis, early and appropriate antibiotic administration, and removal of the primary source of sepsis. From a urological perspective, the clinical scenario might be a post-operative patient
who has undergone TURP or surgery for stones. On return to the ward, they become pyrexial, start to shiver and shake, and are tachycardic and tachypnoeic (leading initially to respiratory alkalosis). They may be confused and oliguric. They may initially be peripherally vasodilated (flushed appearance with warm peripheries). Consider the possibility of a non-urological source of sepsis (e.g. pneumonia). If there are no indications of infection elsewhere, assume the urinary tract is the source of sepsis.

Initial management of sepsis (The Sepsis Six)

Resuscitate and commence goal-directed therapy within the first 1–3h of diagnosis of sepsis:
- Blood culture (prior to antibiotics) and assess for an infective source.
- Bloods: FBC and serial arterial blood gases (ABGs) to check lactate levels.
- Catheterize and monitor urine output hourly.
- Give high-flow oxygen.
- IV fluids. Fluid-challenge patients with sepsis-induced tissue hypoperfusion and hypovolaemia (or high lactate ≥4mmol/L) with a minimum of 30mL/kg of isotonic crystalloid.
- Empirical broad-spectrum IV antibiotics

Assess response to resuscitation—monitor clinical and haemodynamic responses, hourly urinary output, repeat lactate levels.

Further management of severe sepsis/septic shock

Complete within the first 6h of diagnosis:
- Administer vasopressors for hypotension that does not respond to initial fluid resuscitation (i.e. NA).
- Fluid resuscitation.
- Repeat lactate measurements.

Goals
- Maintain mean arterial pressure (MAP) ≥65mmHg.
- Aim for urine output ≥0.5mL/kg/h.
- Central venous pressure (CVP) 8–12mmHg.
- Normal lactate.
- Mixed venous oxygen saturation of ≥65%.

Other investigations
- FBC: the WBC is usually elevated. The platelet count may be low—a possible indication of impending DIC.
- Coagulation screen: this is important if surgical or radiological drainage of the source of infection is necessary. In the absence of anticoagulants, a raised international normalized ratio (INR) of >1.5 or activated partial thromboplastin time (APTT) of >60s is a sign of organ dysfunction.
- Urea and electrolytes (U&E): as a baseline determination of renal function and CRP which is usually elevated. Serum creatinine >176μmol/L (from a normal baseline) is a sign of organ dysfunction.
- ABGs: to identify hypoxia and the presence of metabolic acidosis. Lactate ≥2mmol/L is a sign of organ dysfunction, and ≥4mmol/L is a sign of shock.
- Urine output monitoring: <0.5mL/kg/h for 2h is a sign of organ dysfunction.
- Urine culture: an immediate Gram stain may aid in deciding which antibiotic to use. Change antibiotics once sensitivities are available.
- Blood cultures: as above, and prior to giving antibiotics.
- Imaging: guided by clinical findings [i.e. chest X-ray (CXR) looking for pneumonia, atelectasis, and effusions; renal USS may identify hydronephrosis or pyonephrosis; CT if suspicious of renal calculi, urinary tract anomalies, or infected pelvic collections, etc.].

If there is septic shock, the patient needs to be transferred to ITU. Inotropic support may be needed with invasive monitoring (central line, arterial line). Steroids may be used as adjunctive therapy in Gram-negative infections if resuscitation has failed to improve the clinical situation. Naloxone may help revert endotoxic shock. Blood glucose is carefully controlled. This should all be done under the supervision of an intensivist.

Treat the underlying cause. Drain any obstruction and remove any foreign body. If there is a stone obstructing the ureter, preferably arrange for nephrostomy tube insertion to relieve the obstruction. If the patient is stable, an alternative is to take the patient to theatre for ureteric stent insertion. Send any urine specimens obtained for microscopy and culture.

Empirical treatment of urosepsis

This is ‘blind’ use of antibiotics based on an educated guess of the most likely pathogen that has caused the sepsis. Gram-negative aerobic rods are common causes of urosepsis (e.g. *E. coli, Klebsiella, Citrobacter, Proteus*, and *Serratia*). Enterococci (Gram-positive aerobic non-haemolytic streptococci) may sometimes cause urosepsis. In urinary tract operations involving the bowel, anaerobic bacteria may be the cause of urosepsis, and in wound infections, staphylococci (e.g. *S. aureus* and *S. epidermidis*) are the usual cause.

Recommendations for treatment of urosepsis

Refer to your local microbiology guidelines. Options include:

- Fluoroquinolones (e.g. ciprofloxacin) exhibit good activity against *Enterobacteriaceae* and *Pseudomonas*, but less activity against staphylococci and enterococci. GI tract absorption of ciprofloxacin is good, so PO administration is as effective as IV.
- Aminopenicillin with β-lactamase inhibitor (e.g. co-amoxiclav).
- A third-generation cephalosporin (e.g. IV cefotaxime, ceftiraxone). These are active against Gram-negative bacteria but have less activity against staphylococci and Gram-positive bacteria. Ceftazidime also has activity against *Pseudomonas*.
- Aminoglycoside (e.g. gentamicin) is often used in conjunction with other antibiotics. It has a relatively narrow therapeutic spectrum against Gram-negative organisms. Close monitoring of therapeutic levels and renal function is important. It has good activity against *Enterobacteriaceae* and *Pseudomonas*, with poor activity against streptococci and anaerobes, and therefore should ideally be combined with β-lactam antibiotics or ciprofloxacin.
• If no clinical response to these antibiotics, consider a combination of an antipseudomonal acylaminopenicillin and a β-lactamase inhibitor (e.g. piperacillin and tazobactam; trade name Tazocin®). This combination is active against Enterobacteriaceae, enterococci, and Pseudomonas.

• An alternative second-line drugs are carbapenems (e.g. meropenem, imipenem, ertapenem). Broad-spectrum, with good activity against Gram-positive and Gram-negative bacteria, including anaerobes. Meropenem and imipenem are also active against Pseudomonas. Can be given in combination with gentamicin.

• (Consider metronidazole if there is a potential anaerobic source of sepsis.)

If there is clinical improvement, parenteral treatment (IV) should continue for 3–5 days after the infection has been controlled (or a complicating factor has been eliminated), followed by a course of oral antibiotics. Make appropriate adjustments when sensitivity results are available from urine cultures (which may take about 48h).

• **Mortality rate:** with early diagnosis and goal-directed intervention, mortality from sepsis and septic shock is around 20–30%.

Reference

Further reading

Fournier’s gangrene

Necrotizing fasciitis of the external genitalia and perineum, primarily affecting males and causing necrosis and subsequent gangrene of infected tissues. Also known as spontaneous fulminant gangrene of the genitalia. It is a urological emergency.

Causative organisms

Culture of infected tissue reveals a combination of aerobic bacteria (E. coli, enterococci, Klebsiella, S. aureus, Streptococcus spp.) and anaerobic organisms which are believed to grow in a synergistic fashion.

Predisposing factors

- Diabetes mellitus.
- Chronic alcohol excess.
- Local trauma to the genitalia and perineum (e.g. zipper injuries to the foreskin, peri-urethral extravasation of urine following traumatic catheterization, or instrumentation of the urethra).
- Surgical procedures such as circumcision.
- Paraphimosis.
- Perianal and perirectal infections.

Pathophysiology

Fournier’s gangrene is usually related to an initial genitourinary tract infection or skin trauma, or from direct extension from a perirectal focus. Spread of infection is through the local fascia (superficial Dartos and deep Buck’s fascia in the penis, Dartos fascia in the scrotum, Collé’s fascia in the perineal region, and Scarpa’s fascia of the anterior abdominal wall). Infection produces endotoxins, leading to tissue necrosis that can spread rapidly, and pus produced by anaerobic pathogens (Bacteroides) produces the typical putrid smell.

Presentation

A previously well patient may become systemically unwell following a seemingly trivial injury to the external genitalia. Early clinical features include localized skin erythema, tenderness and oedema, and sometimes associated LUTS (dysuria, difficulty voiding, urethral discharge). This progresses to fever and sepsis, with cellulitis and palpable crepitus in the affected tissues indicating the presence of subcutaneous gas produced by gas-forming organisms. As the infection advances, blisters (bullae) appear in the skin, and within a matter of hours, areas of necrosis may develop, which spread to involve adjacent tissues (e.g. lower abdominal wall).

Diagnosis

The diagnosis is a clinical one and is based on the awareness of the condition and a high index of suspicion. In early stages of disease, abdominal X-ray and scrotal USS or CT may demonstrate the presence of air in tissues. CT can also indicate the extent of disease; however, most surgeons would not delay to image the patient but progress directly to surgical treatment.

Assessment tools

- The Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC) score measures different laboratory results (serum CRP, WBC count, Hb, creatinine, sodium, glucose) to give a total score to help stratify patients
FOURNIER’S GANGRENE

into risk categories when the initial clinical assessment is equivocal. A LRINEC score of ≥6 should raise the suspicion of necrotizing fasciitis, and a score of ≥8 is strongly predictive; however, this should not be relied on and clinical assessment should take precedence.

- Mortality risk can be assessed by the Fournier’s gangrene severity index (FGSI), based on nine clinical parameters: respiratory rate, heart rate, temperature, WBC count, haematocrit, sodium, potassium, creatinine, and sodium bicarbonate levels. Each parameter is valued between 0 and 4, with the higher value given to the greatest deviation from normal. FGSI >9 correlates with mortality (46–75%); FGSI <9 has a reported 78–96% chance of survival.

Management

- Do not delay.
- Resuscitate the patient: obtain IV access, and take bloods [FBC, U&E, liver function tests (LFTs), CRP, clotting, group and save] and blood cultures. Start IV fluids; administer oxygen; check and control blood sugars in diabetics.
- Broad-spectrum parenteral antibiotics are given immediately to cover both Gram-positive and Gram-negative aerobes and anaerobes, according to local microbiology guidelines (e.g. combination of co-amoxiclav plus gentamicin plus clindamycin or metronidazole).
- Inform ITU/HDU.
- Transfer the patient to theatre as quickly as possible for debridement of necrotic tissue until healthy bleeding tissue margins are found. Extensive areas may have to be removed, but it is unusual for the testes or deeper penile tissues to be involved and these can usually be spared. Send tissue for culture.
- If there is extensive perineal/perianal involvement, faecal diversion with colostomy may be required.
- Wound irrigation with hydrogen peroxide may be used at the end.
- A catheter (urethral or SPC) is inserted to divert urine and allow monitoring of urine output.
- Repeat examination under anaesthetic ± further debridement to remove residual necrotic tissue is required at 24h and then guided by clinical progress.
- Where facilities allow, treatment with hyperbaric oxygen therapy can be beneficial.
- Treat the underlying comorbidity or cause, i.e. optimize diabetic control.
- Vacuum-assisted closure of wounds can hasten patient recovery.
- Reconstruction can be contemplated when wound healing is complete.

Mortality is in the order of 20–30%. Mortality rates are reported to be higher in patients with a degree of immunocompromise (diabetics, alcohol excess) and those with anorectal or colorectal disease/involvement.

References

Peri-urethral abscess

Peri-urethral abscess can occur in patients with urethral stricture disease following urethral catheterization and in association with gonococcal urethritis. The bulbar urethra is a commonly affected site in men. These conditions predispose to bacteria (Gram-negative rods, enterococci, anaerobes, *Gonococcus*) gaining access through Buck’s fascia to the peri-urethral tissues. If not rapidly diagnosed and treated, infection (necrotizing fasciitis) can spread to the perineum, buttocks, and abdominal wall. In immunocompromised patients [i.e. patients with human immunodeficiency virus (HIV) infection], *M. tuberculosis* is also a causative organism.

Presentating features

- Scrotal swelling.
- Tender, inflamed area on the perineum or under the penis.
- Fever.
- Urinary retention (>20%).
- Urethral discharge (10%).
- Spontaneous discharge of abscess through the urethra (10%).

Complications

Extravasation of urine from the abscess cavity may result in cellulitis and a risk of fistula formation.

Management

Emergency treatment is required. The abscess should be incised and drained, an SPC placed to divert the urine away from the urethra, and broad-spectrum parenteral antibiotics commenced according to local microbiology guidelines (i.e. IV gentamicin and cephalosporin or co-amoxiclav) until antibiotic sensitivities are known. Any devitalized and necrotic tissue requires immediate surgical debridement.
Epididymitis and orchitis

Acute epididymitis

An infective condition of the epididymis, often also involving the testis (epididymo-orchitis) and usually caused by bacterial infection. It has an acute onset and a clinical course lasting <6wk, presenting with epididymal pain, swelling, and tenderness. It can occur in all age groups and tends to be unilateral.

Pathogenesis

Infection ascends from the urethra or bladder. In sexually active men aged <35y, the infective organism is commonly *N. gonorrhoeae*, *C. trachomatis*, or coliform bacteria (causing urethritis which then ascends to infect the epididymis). In older men and children, the infective organisms are usually common uropathogens (i.e. *E. coli*). *M. tuberculosis* (TB) is a rarer cause of epididymitis where the epididymis feels like a ‘beaded’ cord (see pp. 238–9), and epididymitis and abscess formation can also be encountered after intravesical BCG therapy for bladder cancer.

A rare, non-infective cause of epididymitis is the antiarrhythmic drug amiodarone, which accumulates in high concentrations within the epididymis, causing inflammation. It can be unilateral or bilateral and resolves on discontinuation of the drug. Some cases of epididymitis in children are also non-infective (idiopathic or as a result of trauma).

Presentation

Fever; testicular swelling; scrotal pain that may radiate to the groin (spermatic cord) and lower abdomen; erythema of scrotal skin; thickening of the spermatic cord; reactive hydrocele; evidence of an underlying associated infection (urethral discharge, symptoms of urethritis, cystitis, or prostatitis).

Differential diagnosis

- Testicular torsion is the main differential diagnosis. In torsion, pain and swelling are more acute and localized to the testis, whereas epididymitis is mainly preceded by infective symptoms, with pain, tenderness, and swelling tending to be confined to the epididymis.

If any doubt in the diagnosis exists, exploration is the safest option. Colour Doppler USS, which provides a visual image of blood flow, can differentiate between a torsion and epididymitis, but its sensitivity for diagnosing torsion is only 80% (i.e. it ‘misses’ the diagnosis in 20% of cases). Its sensitivity for diagnosing epididymitis is about 70%.
- Torsion of testicular appendage.
- Acute haemorrhage within a testicular tumour.
- Testicular trauma.
- Mumps orchitis.

Investigation

- FBC, U&E, CRP, and blood cultures (if systemically unwell).
- Urine dipstick ± culture [and nucleic acid amplification testing (NAAT) of first-void urine if the patient is at risk of STI].
- Urethral swab/culture of any urethral discharge.
- Scrotal USS.
Treatment

Bed rest, analgesia, scrotal elevation, and empirical antibiotics (according to local microbiology guidelines) until culture sensitivities are available.

- For men considered at risk of infection with a sexually transmitted pathogens (*C. trachomatis*, *N. gonorrhoeae*), treat with oral doxycycline 100mg bd for 10–14 days plus a single dose of ceftriaxone 500mg intramuscularly (IM).
- For men at risk of *C. trachomatis* (where gonorrhoea has been excluded), treat with oral doxycycline 100mg bd for 14 days or a fluoroquinolone (i.e. oral ofloxacin 200mg bd) for 14 days.
- Patients should self-refer to genitourinary medicine (GUM) for further input and tracing and treatment of sexual contacts.
- For non-sexually transmitted infection (STI) of the epididymis, and if infection is considered to be due to an enteric organism (including men who have recently undertaken a prostate biopsy or other urinary tract surgery or intervention), give either oral ciprofloxacin 500mg bd for 10 days or ofloxacin 200mg bd for 14 days. An alternative would be co-amoxiclav for 10 days.
- When the patient is systemically unwell, admit for resuscitation and broad-spectrum IV antibiotics such as gentamicin in combination with a cephalosporin or ciprofloxacin. When the patient becomes afebrile, change to an oral antibiotic, guided by culture sensitivities, to complete a 14-day course. Any underlying cause of infection should be identified and treated (e.g. BOO) to prevent further episodes.

Complications

These include abscess formation (requiring incision and drainage), infarction of the testis, chronic pain and infection, and infertility.

Chronic epididymitis

Diagnosed in patients with long-term pain in the epididymis. It can result from recurrent episodes of acute epididymitis. Clinically, the epididymis is thickened and may be tender. Treatment is with the appropriate antibiotics (guided by cultures) and analgesia. Epididymectomy is reserved for severe refractory cases.

Orchitis

Orchitis is inflammation of the testis, although it often occurs with epididymitis (epididymo-orchitis) in bacterial infections. Causes also include the mumps virus, *M. tuberculosis*, syphilis, and autoimmune processes (granulomatous orchitis). The testis is swollen and tense, with oedema of connective tissues and inflammatory cell infiltration. Treat the underlying cause.

Mumps orchitis occurs in 30% of infected post-pubertal ♂. It manifests 3–4 days after the onset of parotitis and can result in tubular atrophy. Ten to thirty per cent of cases are bilateral and are associated with testicular atrophy and infertility.

Further reading

Prostatitis: classification and pathophysiology

Prostatitis is infection and/or inflammation of the prostate, which is described as acute or chronic, and bacterial or abacterial. The classification system is from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institute of Health (NIH) in the United States. Chronic abacterial prostatitis is further divided into inflammatory and non-inflammatory types, guided by the results of segmented urine cultures.

NIKKD/NIH classification of prostatitis

I. Acute bacterial prostatitis.

II. Chronic bacterial prostatitis.

III. Chronic pelvic pain syndrome (CPPS): chronic abacterial prostatitis.

IIIa. Inflammatory CPPS: WBC in expressed prostatic secretions (EPS), post-prostatic massage urine (VB3), or semen.

IIIb. Non-inflammatory CPPS: no WBC in EPS, VB3, or semen.

IV. Asymptomatic inflammatory prostatitis (histological prostatitis).

Segmented urine cultures

Technique described by Meares and Stamey (1968) to help classify the type of prostatitis. It localizes bacteria to a specific part of the urinary tract by sampling different parts of the urinary stream with prostatic massage which produces expressed prostatic secretions (EPS). Where cultures are negative, numbers of leucocytes per HPF (>10) on microscopy favour a diagnosis of inflammatory CPPS.

Thirty minutes before the test, the patient should drink 400mL of fluid. Retract the foreskin, and cleanse the glans before specimen collection.

- VB1: first 10–15mL of urine voided. Positive culture indicates urethritis (or prostatitis).
- VB2: MSU collection of 10–15mL (the patient is asked to void 100–200mL in total). Positive culture indicates cystitis.
- EPS: the prostate is massaged, while holding a sterile container below the glans to catch secretions. Positive culture indicates prostatitis.
- VB3: first 10–15mL of urine voided following prostatic massage. Positive culture indicates prostatitis.

Epidemiology

Prostatitis is estimated to affect 50% of men at some point in their lives. The overall prevalence is reported at 5–14%. Age groups at risk are 20–50y and >70y.

Pathophysiology

Bacterial prostatitis

The commonest infective pathogens are Gram-negative *Enterobacteriaceae* (*E. coli* in 80% of cases, *Klebsiella, Proteus, Pseudomonas*). Both type 1 and P pili are important bacterial virulence factors that facilitate infection. Five to ten per cent of infections are caused by Gram-positive bacteria (*S. aureus* and *S. saprophyticus, E. faecalis*). Acute bacterial prostatitis is often secondary to infected urine refluxing into prostatic ducts that drain into the posterior urethra. The resulting oedema and inflammation may then obstruct the prostatic ducts, trapping uropathogens and causing progression to chronic bacterial prostatitis in ~5%.

Inflammatory and non-inflammatory prostatitis

Also referred to as chronic pelvic pain syndrome (CPPS) or prostate pain syndrome. The underlying aetiology is not fully understood but is likely to be multifactorial. The Multidisciplinary Approach to Pelvic Pain (MAPP) research project has been set up to evaluate the importance and impact of various ‘clinical phenotypes’ for this type of prostatitis. Essentially, patients may have a predominance of certain symptoms or conditions that feature in their disease, suggestive of the main underlying aetiology (i.e. neurological, endocrine, immunological, infectious, neuromuscular, and psychosocial components). The MAPP study aims to identify potential biomarkers relating to these ‘clinical phenotypes’, which will ultimately help with the diagnosis and direct patient-specific management.

Reference

Bacterial prostatitis

Acute bacterial prostatitis
Acute infection of the prostate associated with lower UTI and generalized sepsis. The underlying focus or cause of the initial infection should be identified and also treated (i.e. BOO, urethral stricture, voiding dysfunction, urinary tract stones).

Risk factors
Factors that predispose to genitourinary tract, and then prostatic, colonization with bacteria are:
- UTI.
- Acute epididymitis.
- Indwelling urethral catheters.
- Transurethral surgery.
- Intraprostatic ductal reflux.
- Phimosis.
- Prostatic stones.

Presentation
- Acute onset of fevers, chills, nausea, and vomiting.
- Pain: perineal/prostatic, suprapubic, penile, groin, external genitalia.
- Urinary symptoms: 'irritative'—frequency, urgency, dysuria; ‘obstructive’—hesitancy, strangury, intermittent stream, urinary retention.
- Signs of systemic toxicity: fever, tachycardia, hypotension.
- Suprapubic tenderness and a palpable bladder if urinary retention.
- DRE: prostate is usually swollen and tender (but may also be normal).

Investigation
- Serum blood tests: FBC, U&E, CRP.
- Urinalysis, urine culture ± cytology.
- Blood cultures if high pyrexia/systemically unwell.
- Urethral swabs (if indicated to exclude STI).
- PVR urine measurement.

Further investigation is guided by individual patient presentation and clinical suspicion. Although segmented urine cultures are recommended in some guidelines, prostatic massage should be avoided in the acute, painful phase of prostatitis.

Treatment
- Antibiotics: refer to local microbiology guidelines. If the patient is systemically well, use an oral fluoroquinolone (i.e. ciprofloxacin 500mg bd) for 10 days. For a patient who is systemically unwell, IV antibiotic options include broad-spectrum penicillin, third-generation cephalosporin or fluoroquinolone, combined with an aminoglycoside (gentamicin) for initial treatment. When infection parameters normalize, IV antibiotics can change to oral therapy, which is continued for a total of 2–4wk.
- Pain relief.
- Treat urinary retention: urethral, suprapublic, or in-and-out catheter.
Complications

Prostatic abscess

Failure to respond to treatment (i.e. persistent symptoms and fever while on appropriate antibiotic therapy) suggests the development of a prostatic abscess. The majority are due to *E. coli* infection. Risk factors include diabetes mellitus, immunocompromise, renal failure, transurethral instrumentation, and urethral catheterization. Rectal examination demonstrates a tender, boggy-feeling prostate or an area of fluctuance. A transrectal USS or CT scan (if the former proves too painful) are the best way of diagnosing a prostatic abscess. Transurethral resection or deroofing of the abscess is the optimal treatment. Alternatively, percutaneous drainage may be attempted.

Chronic bacterial prostatitis

- Defined as bacterial prostatitis where symptoms persist for ≥3 months.
- Caused by recurrent infection. Chronic episodes of pain, voiding dysfunction, and ejaculatory problems may be a feature.

Assessment

Enquire about factors that may be contributing to infection: urinary symptoms, history of renal tract stones, and symptoms suggesting a colovesical fistula in at-risk patients (pneumaturia, history of diverticular disease, pelvic surgery, or radiotherapy). DRE may reveal a tender, enlarged, and boggy prostate.

Investigation

- Urinalysis, urine culture ± cytology.
- Segmented urine cultures (see p. 226).
- Semen culture.
- Urethral swabs (to exclude STI).
- Flow rate and PVR urine measurement.
- Individualized further investigation as indicated (e.g. renal tract imaging to identify stones).

Treatment

- Prescribe an initial 2- to 4-wk course of antibiotics (fluoroquinolone or trimethoprim) and then reassess. If initial cultures are positive or the patient has reported positive effects from the treatment, antibiotics can be continued for a total course of 4–6wk.
- *α*-adrenoceptor blockers may provide some benefit. They act on the prostate and bladder neck *α*-receptors, causing smooth muscle relaxation, improved urinary flow, and reduced intraprostatic ductal reflux.

* The use of fluoroquinolones is restricted in many hospitals due to the risk of *C. difficile* infection. Hospitals now have their own antibiotic protocols for most infections, or alternatively discuss with your local microbiologist. Alternative antibiotics include trimethoprim which has good prostatic penetration. However, trimethoprim has no activity against *Pseudomonas*, some enterococci, and some *Enterobacteriaceae*.
Infections and inflammatory conditions

CHAPTER 6

Chronic pelvic pain syndrome

Also referred to as chronic non-bacterial prostatitis [i.e. inflammatory (IIIa) and non-inflammatory (IIIB) types of prostatitis] or prostate pain syndrome. Described as ‘pain perceived to be from the prostate, reproduced by palpating the prostate, being present for a minimum of three out of six months’. The aetiology and pathophysiology are unknown.

Presentation

• ≥3 months of localized pelvic pain (prostate/perineum, suprapubic, penile, groin, external genitalia, lower back).
• Pain with ejaculation.
• LUTS (dysuria, frequency, urgency, poor flow).
• May be associated with erectile dysfunction.
• Symptoms can be difficult to treat. They can recur over time and severely affect the patient’s QoL. Younger men have a higher risk of suffering severe symptoms.

Basic evaluation

• History, including enquiry into associated disorders and psychosocial assessment.
• Physical exam, pelvic floor assessment (including tenderness), and DRE.
• National Institute of Health Chronic Prostatitis Symptom Index (NIH-CPSI) questionnaire. This scores three main symptom areas: pain (location, frequency, severity), voiding (obstructive and irritative symptoms), and impact on QoL. Other symptoms scores that are used are the IPSS and IIEF-5.
• Uroflowmetry and PVR urine volume.
• Segmented urine cultures and EPS. These specimens may or may not reveal leucocytes, but for the diagnosis, EPS and post-prostatic massage urine (VB₃) cultures should not identify any bacteria.

Further evaluation (where clinically indicated)

• Semen analysis and culture.
• Urethral swab for culture (to exclude STI).
• Urine cytology (if suspicion of bladder malignancy).
• Urodynamics (to investigate voiding dysfunction).
• Cystoscopy (if suspicion of urethral stricture, BOO, or bladder pathology).
• TRUS.
• PSA.

Treatment

Some groups of patients will benefit more from specific therapies than others. Patients require a multimodal approach to treatment, guided by their main clinical features (phenotype). Options include:

• Conservative therapy: counselling, biofeedback, education, anxiety/stress reduction, psychotherapy, focused pelvic physiotherapy for tenderness of skeletal muscles, gentle exercise, avoid aggravating factors (e.g. certain foods or activities).
• α-adrenoceptor blockers: most useful for those with associated voiding symptoms and in newly diagnosed disease.
• Antibiotics: some benefit in patients presenting early with a new diagnosis of inflammatory CPPS (i.e. ciprofloxacin, levofloxacin for 4–6 wk). Antibiotics do not appear effective for long-standing, refractory disease.
• Anti-inflammatory drugs: non-steroidal anti-inflammatory drugs (NSAIDs) (i.e. ibuprofen).
• 5α-reductase inhibitors: anti-androgens (i.e. finasteride, dutasteride) have the ability to reduce prostatic glandular tissue and improve intraductal reflux and symptoms in selected cases.
• Phytotherapies: Quercetin (polyphenolic bioflavonoid with antioxidant and anti-inflammatory properties); Cernilton (pollen abstract).
• Pentosan polysulfate sodium (PPS).
• Analgesia: with specialist pain team input.
• Neuromodulatory therapies: amitriptyline, gabapentinoid (pregabalin)—shown to improve mean NIH-CPSI and pain scores.
• Muscle relaxants: diazepam.
• Prostatic massage: 2/3 times per week for 6 wk, with antibiotic therapy (limited evidence of benefit).
• Local heat therapy.

If no pathology is identified and there is no response to initial treatments, referral to the chronic pain team is advised.

Reference
Bladder pain syndrome (BPS)

A chronic and debilitating disorder characterized by urinary frequency, urgency, nocturia, bladder, and pelvic pain. It remains a diagnosis of exclusion after all other causes for the symptoms have been ruled out (Table 6.5). The ‘classic’ form is associated with bladder ulceration (Hunner’s ulcers) and destructive inflammation, with some developing a small-capacity fibrotic bladder or upper urinary tract outflow obstruction. ‘Non-ulcer’ forms do not show the same progression.

Definitions

Terminology has changed a number of times. It was formally known as interstitial cystitis (IC). The ICS, the European Society for the Study of Bladder Pain Syndrome/Interstitial Cystitis (ESSIC), and the EAU use the term ‘BPS’.1,2 The AUA use the term ‘IC/BPS’.1,2,3

- ESSIC: ‘chronic (>6 months) pelvic pain, pressure, or discomfort perceived to be related to the urinary bladder, accompanied by at least one other urinary symptom such as persistent urge to void or frequency’.1,2
- AUA: ‘an unpleasant sensation (pain, pressure, discomfort) perceived to be related to the urinary bladder, associated with LUTS >6 weeks, in the absence of infection or other identifiable causes’.2,3

Epidemiology

Predominantly affects ♀ (♀:♂ ratio is >5:1). Reported prevalence varies widely but is estimated to be 300 per 100 000 women and 30–60 per 100 000 men.2

Associated disorders

Irritable bowel syndrome, allergies, fibromyalgia, chronic fatigue syndrome, focal vulvitis, vulvodynia, Sjögren’s syndrome, inflammatory bowel disease, systemic lupus erythematosus (SLE).

Aetiology

BPS is now considered a generalized somatic disorder with multifactorial contributing factors, including:

- Mast cells: frequently associated with the BPS bladder, located around the detrusor; blood vessels, nerves, and lymphatics. Activated mast cells release histamine, causing pain, hyperaemia, and fibrosis in tissues.
- C-fibre activation and substance P release.
- Defective bladder epithelium: an abnormal GAG layer may allow urine constituents (including potassium) to leak past the luminal surface, causing inflammation in muscle layers.
- Neurogenic mechanisms: abnormal activation of sensory nerves causes release of neuropeptides, resulting in neurogenic inflammation.
- Reflex sympathetic dystrophy of the bladder: excessive sympathetic activity.
- Bladder autoimmune response.
- Urinary toxins or allergens.
- Urine antiproliferative factor (APF): is made by the bladder urothelium. It inhibits bladder cell propagation and may predispose susceptible individuals to BPS following other bladder insults.
Presentation
Urinary frequency, urgency, and nocturia with associated suprapubic pain, pressure or discomfort related to bladder filling (and typically relieved by bladder emptying). Patients often describe pelvic pain (urethra, vagina, vulva, rectum) and pain in the lower abdomen and back. Women may have presented with what is presumed to be rUTI/cystitis symptoms (without proven bacteriuria) that have failed antibiotic treatment.

Evaluation
The first priority is to exclude other causes for symptoms (Table 6.5).^4^
- History.
- Focused physical examination.
- PVC.

Table 6.5 NIDDK diagnostic criteria for ‘interstitial cystitis’

<table>
<thead>
<tr>
<th>Diagnostic criteria</th>
<th>Positive factors (supporting diagnosis)</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cystoscopic evidence of Hunner’s ulcer</td>
<td>1. Pain on bladder filling, relieved by emptying</td>
<td>1. <18y old (controversial— children can be affected)</td>
</tr>
<tr>
<td></td>
<td>2. Pain (suprapubic, pelvic, urethral, vaginal, or perineal)</td>
<td>2. Benign or malignant bladder tumours</td>
</tr>
<tr>
<td></td>
<td>3. Glomerulations on cystoscopy</td>
<td>3. Radiation cystitis</td>
</tr>
<tr>
<td></td>
<td>4. ↓ compliance on urodynamics</td>
<td>4. Tuberculous cystitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Bacterial cystitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Vaginitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Cyclophosphamide cystitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Symptomatic urethral diverticulum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Uterine, cervical, vaginal, or urethral cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Active herpes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Bladder or lower ureteral calculi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Daytime frequency <5 times in 12h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13. Nocturia <2 times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14. Symptoms relieved by antibiotics, urinary antiseptics, and analgesics, e.g. phenazopyridine hydrochloride</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15. Duration <12 months (definitions now suggest shorter durations of >6wk are associated with BPS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16. Involuntary bladder contractions (on urodynamics)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17. Bladder capacity >400mL (absence of sensory urgency)</td>
</tr>
</tbody>
</table>

Of note, it is recommended that these criteria are only used within the context of clinical trials, as they are felt to be too restrictive for clinical use.

• Urinalysis and urine culture (treat any infection and reassess).
• O’Leary–Sant Symptom Index: is useful in assessing baseline symptoms and effectiveness of treatments.

Further investigations (if clinically indicated):
• Urine cytology.
• Urodynamics.
• Cystoscopy: helpful to assess the health of the bladder mucosa and bladder capacity under anaesthetic. Also indicated for investigation of haematuria and to exclude malignancy. While bladder biopsy can be used to help with classification of the condition, we would only perform this to rule out other pathologies.

Around 10% of patients may have Hunner’s ulcers, seen as pink or red areas on the bladder mucosa, often associated with small vessels radiating towards a central scar, occasionally covered by fibrin deposit or clot. The scar ruptures with increasing bladder distension, producing ‘waterfall’-type bleeding. It is clinically significant, as it is directly related to symptoms of pain and sensory urgency, and destruction (diathermy or resection) of the lesion can provide symptomatic relief. Therefore, also consent for hydrodistension and fulguration of ulcers if performing cystoscopy under GA, as these can both provide therapeutic benefit.

• Low-pressure hydrodistension: diagnostic and therapeutic manoeuvre.
 Under anaesthesia, the bladder is distended twice (to around 80cmH\textsubscript{2}O for 1–2min) and then re-inspected for diffuse glomerulations (petechiae); >10 per quadrant in three of four bladder quadrants previously being described as diagnostic, although it is now thought that neither the presence nor the severity of post-distension glomerulations correlates with any of the primary symptoms of BPS. It is still used to help classify disease.1

First-line treatment
There should be an MDT approach throughout from physicians, dieticians, physiotherapists, pain specialists, psychologists, and patient support groups. The aim is to target the individual’s symptoms (phenotype) using the UPOINT system. Patients are categorized by their predominant symptoms: Urinary, Psychological, Organ-specific, Inflammation, Neurological/systemic, Tenderness (of muscles).
• Patient education and support: bladder training, stress management, pelvic floor relaxation techniques, acupuncture, transcutaneous electrical nerve stimulation (TENS), referral to the pain team. Avoid triggers individual to the patient (e.g. coffee, citrus fruits). Aims are to optimize the QoL and encourage realistic patient expectations.
• Multimodal pain management: initially use simple analgesia (low-potency NSAIDs). Pain control should be reassessed throughout treatment, with input from specialist pain clinics.
Second-line treatment

- **Oral medications:** tricyclics (amitriptyline) have anticholinergic, antihistamine, and sedative effects; pentosan polysulfate (PPS) is an anti-inflammatory synthetic GAG analogue; cimetidine (H2 histamine receptor antagonist) and hydroxyzine (H1 antagonist) are antihistamines and anti-inflammatory; gabapentin (antiepileptic used as an adjuvant in pain disorders). Try one drug at a time. Stop ineffective treatments, and try an alternative. If there is only moderate improvement with one drug, add an adjuvant therapy.

- **Repeated intravesical drug installation:** typical regimen includes one instillation per week for 4–6wk and maintenance therapy once per month for 4–6 months. Drugs that are used are dimethyl sulfoxide (DMSO), PPS, alkalinized lidocaine ± heparin, sodium hyaluronate, (Parson’s cocktail) and chondroitin sulfate.

Third-line treatment

- **Surgery:** transurethral resection, laser coagulation or diathermy of Hunner’s ulcers; bladder hydrodistension.

Fourth-line treatment

- **BTX-A injection** into the bladder + hydrodistension.
- **Sacral nerve neuromodulation.**

Fifth-line treatment

- **Oral ciclosporin.**

Sixth-line treatment

- **Reconstruction:** urinary diversion (ileal conduit) with or without cystectomy for refractory disease. This can be considered earlier in the treatment strategy for end-stage, small fibrotic bladders. Augmentation cystoplasty can be used for small-capacity bladders due to classical Hunner’s ulcer disease, with complete relief of pain in 63% and improvement in 25%. Supratrigonal cystectomy and ileal neobladder formation is also described; however, warn patients that surgery may not relieve their pain.

Of note, it is recommended that patients are not given: long-term antibiotics in the absence of proven infection or effectiveness; intravesical BCG; intravesical resiniferatoxin; high-pressure, long-duration hydrodistension; or long-term oral glucocorticoids.

References

Urological problems from ketamine misuse

Ketamine is a sedative and an analgesic used clinically for the induction and maintenance of anaesthesia. Increasingly, it is being misused as a recreational drug (Class B). It is a non-competitive \textit{N}-methyl-\textit{D}-aspartate receptor antagonist, excreted with its metabolites into the urine. It has hallucinogenic effects, producing an out-of-body experience known as the ‘K-hole’. Around 20–30% of ketamine abusers suffer LUTS.

\textbf{Pathology}

Patients with few symptoms may have a normal bladder. Symptomatic patients may have inflammation of the bladder epithelium and denuding of the urothelium, and neovascularization and petechial haemorrhage of the bladder are reported.\cite{1} Histologically, it may mimic the characteristics of carcinoma \textit{in situ}.\cite{2} The bladder wall is thickened. The exact mechanism of damage is not known. Theories include a direct toxic effect of ketamine and its metabolites on the genitourinary tract, microvascular reactions and damage, and autoimmune processes.\cite{5}

\textbf{Presentation}

- \textbf{Lower urinary tract}: ketamine-induced cystitis is a recognized phenomenon, comprising severe urinary frequency, urgency, urge incontinence, dysuria, and painful haematuria. Bladder emptying and urinary flow rates appear unaffected.
- \textbf{Upper urinary tract}: unilateral and bilateral hydronephrosis secondary to ureteric transmural inflammation and stricture formation, VUR, papillary necrosis, and renal failure.

An association of these symptoms with hepatic dysfunction is reported.\cite{3}

\textbf{Assessment}

A full history of urinary symptoms and recreational drug use is essential, including doses and duration of use, as they impact on prognosis. Patients often use other substances at the same time.

\textbf{Investigation}

- Renal function (U&E; GFR).
- MSU dipstick ± microscopy and culture to detect and guide treatment of UTI.
- FVC.
- Urodynamics: demonstrate detrusor overactivity and reduced bladder compliance.
- USS or CTU: to assess for upper urinary tract involvement.
- Cystoscopy ± biopsy under anaesthetic: clearly document any pathology (i.e. denuded urothelium) and measure bladder capacity.
Treatment

- Patients must be strongly encouraged to stop using ketamine. Taking the drug >3 times per week is associated with significantly lower voided volumes. Pelvic pain, urgency, and frequency are reported to be significantly higher for ketamine use for >24 months, compared to use for short durations. Symptoms scores improve, directly related to the length of abstinence from the drug, and early functional changes have the potential to normalize after 1y of ketamine cessation. Reduced benefit from abstinence is seen if ketamine is used at higher frequencies or for longer durations. Symptoms can persist for up to 1y after stopping. There also appear to be individual factors, as even after stopping use, around two-thirds may have persisting symptoms or even report worse LUTS.

- Local support from drug and addiction services.

- Analgesia to control the symptoms. Pain control strategies that have been described include buprenorphine patches and co-codamol.

- Medical therapy similar to those used for BPS can be tried for residual symptoms: amitriptyline; anti-inflammatories (cimetidine, hydroxyzine); oral PPS (Elmiron®), or intravesical drugs such as PPS or sodium hyaluronate. Symptoms are often refractory to treatment with antibiotics, anticholinergics, and NSAIDs.

- Where indicated, nephrostomy or ureteric stents to preserve renal function until definitive surgical correction of ureteric stricture.

- Surgery is undertaken for refractory end-stage disease. Techniques include cystectomy and urinary diversion (ileal conduit or reconstruction with neobladder) or substitution cystoplasty to increase bladder capacity. These procedures should be reserved for patients who have abstained from ketamine use.

References

Genitourinary tuberculosis

TB of the genitourinary tract is caused by \textit{M. tuberculosis}. TB was formerly predominantly seen in Asian populations but is now seen with increasing incidence in those from other ethnic groups and immunocompromised patients (i.e. with HIV infection). It has a higher incidence in \varnothing than ϖ. Treatment of bladder cancer with intravesical BCG has also been reported as a cause of urogenital TB.

Pathogenesis

- **Primary TB**: the primary granulomatous lesion forms in the mid to upper zone of the lung. It consists of a central area of caseation surrounded by epitheloid and Langhans’ giant cells, accompanied by caseous lesions in the regional lymph nodes. There is early spread of bacilli via the bloodstream to the genitourinary tract, but immunity rapidly develops and the infection remains quiescent. Acute diffuse systemic dissemination of tubercle bacilli can result in symptomatic miliary TB.
- **Post-primary TB**: reactivation of infection is triggered by immunocompromise (including HIV). It is at this point that patients develop clinical manifestations.

Effects on the genitourinary tract

- **Kidney**: the commonest site of extrapulmonary TB. Haematogenous spread causes granuloma formation in the renal cortex, associated with caseous necrosis of the renal papillae and deformity of the calyces, leading to the release of bacilli into the urine. This is followed by healing fibrosis and calcification, which causes destruction of the renal architecture, resulting in a small, distorted kidney. In severe cases, this ultimately results in autonephrectomy.
- **Ureters**: spread is directly from the kidney and can result in stricture formation [vesicoureteric junction (VUJ), PUJ, and mid-ureteric] and ureteritis cystica. VUR may develop due to distortion of the ureteric orifices.
- **Bladder**: usually secondary to renal infection. The bladder wall becomes oedematous, red, and inflamed, with ulceration and tubercles (yellow lesions with a red halo). Disease progression causes fibrosis and contraction (resulting in a small-capacity ‘thimble’ bladder), obstruction, calcification, and fistula formation.
- **Prostate and seminal vesicles**: haematogenous spread causes cavitation and calcification, with palpable, hard-feeling structures. Fistulae may form to the rectum or perineum.
- **Epididymis**: results from descending renal infection or haematogenous spread. Features include a ‘beaded’ cord which may be tender or asymptomatic and is usually unilateral. Complications include abscess, spread of infection to the testis, and infertility.
- **Fallopian tubes**: may then spread to involve the uterus. It can present with infertility, pelvic pain, mass, or abnormal bleeding.
- **Penis**: rare manifestation transmitted from sexual contact or local contamination, resulting in ulceration of the glans or a penile nodule. Biopsy confirms the diagnosis.
Presentation
Early symptoms include fever, lethargy, weight loss, night sweats, and UTI not responding to treatment. Later manifestations include LUTS, haematuria, and flank pain.

Investigation
- Urine dipstick test: may show blood and leucocytes, but no nitrites.
- Urine culture: at least three early morning urines (EMUs) are required. A typical finding is sterile pyuria (leucocytes, but no growth). Ziehl–Neelsen staining will identify these acid- and alcohol-fast bacilli (cultured on Lowenstein–Jensen medium). Polymerase chain reaction (PCR) techniques of analysing urine are reliable and quick methods to achieve a diagnosis and are more commonly used now.
- Urine cytology: to exclude other causes of sterile pyuria (i.e. bladder malignancy/carcinoma in situ).
- CXR and sputum culture.
- Tuberculin skin test: a negative test excludes TB; a positive test suggests TB exposure.
- Renal tract imaging: X-ray and USS of kidneys, ureters, and bladder initially. Further investigation into urinary tract involvement and complications can include CTU.
- Cystoscopy and biopsy.

Treatment
Medical
An MDT approach is required, involving colleagues from respiratory, infectious diseases, and microbiology departments. Treatment is with 2 months of isoniazid, rifampicin, and pyrazinamide and ethambutol, followed by a continuation phase of 4 months of isoniazid and rifampicin. Longer treatments or modification of drugs is needed for complications and resistant organisms.

Surgical
A non-functioning, calcified kidney may need nephrectomy. Regular follow-up imaging is recommended to monitor for ureteric strictures which may need stenting, nephrostomies, or ureteric reimplantation. Severe bladder disease may require surgical augmentation, urinary diversion, or cystectomy and neobladder reconstruction. For epididymal involvement, epididymectomy ± orchidectomy is considered if pharmacotherapy fails or extensive disease is present.
Parasitic infections

Urinary schistosomiasis (bilharzia)

This is caused by the parasitic trematode (or flatworm) called *Schistosoma haematobium*. It occurs in Africa (Egypt) and the Middle East. Other causes of schistosomiasis include *S. mansoni*, *S. japonicum*, *S. mekongi*, and *S. intercalatum*. They are mainly responsible for intestinal forms of the disease.

Life cycle of S. haematobium

(See Fig. 6.2.)

Infection is acquired by exposure to contaminated water. The parasites (cercariae form) penetrate the skin of the human host, shed their tails, and become schistosomula. They migrate first to the lung via venous circulation, then to the liver to mature. The adult worms couple (sexual reproductive phase), migrate to veins of the vesical plexus, and lay fertilized eggs. Most eggs (which typically have a terminal spine) leave the body by penetrating...
the bladder and entering the urine. Some eggs are trapped in the tissues, and those not destroyed by host responses can become calcified. The released eggs hatch in freshwater, releasing miracidia which find and enter the intermediate host—a freshwater *Bulinus* species snail. Through an asexual reproductive phase, sporocysts are created in the snail. These produce and later release larvae called cercariae, the free-swimming, infective form of the parasite, and the cycle is continued, with penetration into the human host. The disease has two main stages: active (when adult worms are laying eggs) and inactive (when the adults have died and there is a reaction to the remaining eggs).

Pathology

Lesions occur due to calcification of dead eggs trapped in tissues, triggering a fibrotic reaction. A T-cell-mediated immune response is stimulated also by the presence of the eggs, resulting in eosinophilic granuloma in the bladder, uterus, and genitalia.

Clinical presentation

- **Maculopapular eruption (cercarial dermatitis):** may arise on the skin at the site of cercarial penetration (within hours, lasting up to 3 days). ‘Swimmer’s itch’ may occur in individuals who are already sensitized and become re-infected.
- **Acute schistosomiasis (Katayama fever):** is a generalized immune reaction associated with the onset of egg-laying. Symptoms may include fever, malaise, non-productive cough, lymphadenopathy, hepatosplenomegaly, haematuria, urinary frequency, and terminal dysuria (onset 3 weeks–4 months).
- **Chronic and advanced disease:** chronic local inflammatory response to eggs trapped in host tissues results in inflammatory and obstructive urinary tract sequelae, usually after several years. Obstructive features include fibrosis and ‘eggshell’ calcification of the bladder, urinary retention, ureteric stenosis, hydronephrosis, renal failure, and stones. Seminal vesicle involvement can produce ‘lumpy semen’.

Investigation

- **Midday urine specimen:** may contain eggs (distinguished by having a terminal spine). Eggs may also be identified in the faeces.
- **FBC:** eosinophilia in acute infection; anaemia and thrombocytopenia in chronic and advanced disease.
- **U&E:** raised creatinine in advanced disease (renal impairment).
- **Serology tests [enzyme-linked immunosorbent assay (ELISA)]:** identify specific antibodies.
- **Cystoscopy:** identifies eggs in the trigone (‘sandy patches’).
- **Bladder and rectal biopsies:** may identify eggs (if not already found in urine or faeces).
- **X-ray or CT:** may show a calcified, contracted bladder and evidence of obstructive uropathy.
- **USS:** in established disease may show hydronephrosis and a thickened bladder wall.
Treatment
Praziquantel 40mg/kg as a single or divided oral doses. Corticosteroids are an adjuvant therapy used to treat Katayama fever (within 2 months of freshwater contact). Patients should be followed up at 2 and 6 months with urinalysis and clinical assessment.

Complications
- SCC of the bladder—there can be a lag period of around 20y between infection and the development of malignancy.
- Bladder contraction, calcification, and ulceration.
- Obstructive uropathy.
- Renal failure.
- Secondary bacterial UTI.

Genitourinary hydatid disease
- Infection occurs after ingestion of the dog parasite *Echinococcus granulosus* (tapeworm). Sheep are the intermediate hosts. Occurs in the Middle East, Australia, and Argentina. Eggs come to rest in the genitourinary tract after passage through the portal system, heart, and pulmonary circulation.
- Large (hydatid) cysts form, which can be asymptomatic or present with pain. They can affect the kidneys, bladder, prostate, seminal vesicles, and epididymis.
- Peripheral eosinophilia is seen, with a positive hydatid complement fixation test.
- USS is usually diagnostic; X-rays and CT scans show a thick-walled, fluid-filled spherical cyst with a calcified wall.
- Medical treatment is with albendazole, mebendazole, or praziquantel.
- Where surgical excision is indicated, cysts can be first sterilized with chlorhexidine, alcohol, or hydrogen peroxide.
- Medical therapy is recommended preoperatively and post-operatively to reduce recurrence rates.
- Cyst rupture or spillage of cyst contents perioperatively can provoke systemic anaphylaxis.

Genital filariasis
Lymphatic filariasis caused by *Wuchereria bancrofti* infection is common in the tropics and is transmitted by mosquitoes. Genitourinary manifestations, which may be delayed up to 5y, include funiculoepididymitis, orchitis, hydrocele, scrotal and penile elephantitis, and lymph scrotum (oedema). Diagnosis is on thick film, serology, or biopsy. Medical treatment is with diethylcarbamazine. Surgical excision of fibrotic and oedematous tissue may be needed for genital elephantitis.
HIV in urological surgery

Human immunodeficiency virus
Causes a spectrum of illness related to immune system deficiency. HIV-1 is pandemic and accounts for significant mortality in developing countries. HIV-2 has less pathogenicity and is predominant in West Africa. Transmission is via unprotected sexual intercourse, contaminated needles, mother-to-fetus transmission, infected blood, and blood products (blood transfusion risks are now minimal).

Pathogenesis
HIV is a retrovirus. It possesses the enzyme reverse transcriptase that enables viral RNA to be transcribed into DNA, which is then incorporated into the host cell genome. HIV binds to CD4 receptors on helper T-lymphocytes (CD4 cells), monocytes, and neural cells. After an extended latent period (8–10 years), CD4 counts decline. Acquired immune deficiency syndrome (AIDS) is defined as HIV positivity and CD4 lymphocyte counts of <200 x 10^6/L. The associated immunosuppression increases the risk of opportunistic infections and tumours.

Diagnosis
ELISA testing of serum detects antibodies against HIV antigens. The second confirmatory test is western blot. Informed consent is required for the test.

Urological sequelae of HIV infection

Renal
- Opportunistic infections: including cytomegalovirus (CMV), aspergillosis, mycobacteria, and Cryptococcus infections. Can lead to pyelonephritis, acute tubular necrosis (ATN), and abscess formation.
- Renal impairment and failure: HIV and AIDS-associated nephropathy.
- Renal stones: secondary to indinavir (antiretroviral treatment).
- Tumours: Kaposi’s sarcoma, lymphoma.

Bladder
- Voiding dysfunction: urinary retention (associated with toxoplasmosis), bladder overactivity or underactivity.
- Opportunistic infections causing UTI.
- Tumours: SCC, Kaposi’s sarcoma, lymphoma.

Urethra
- Reiter’s syndrome (urethritis, conjunctivitis, arthritis) is associated with AIDS.
- Bacterial urethritis.

Prostate
- Bacterial prostatitis and abscesses (including opportunistic organisms).
- Reported ↑ progression rate for prostatic carcinoma.
External genitalia

- Chronic or recurrent genital herpes.
- Atypical syphilis.
- Opportunistic infections of the testicle and epididymis.
- Testicular cancers (risk of germ cell and non-germ cell tumours, lymphoma).
- Testicular atrophy ± hypogonadism.
- Scrotal and penile Kaposi’s sarcoma (seen as purple/red lesions).
- Fournier’s gangrene.
- Sexual dysfunction: due to the underlying HIV pathology (HIV neuropathy, encephalopathy, or lipodystrophy) and/or due to HIV drug therapies (antiretroviral therapy).

Of note, circumcision has been shown to reduce the risk of acquiring HIV infection in heterosexual men.

Occupational needle-stick injury

The risk of HIV transmission after percutaneous exposure to HIV-infected blood is 3 per 1000 injuries.\(^1\) Risks are ↑ if the patient has terminal HIV-related illness, it is a deep injury, there is visible blood on the device causing the injury, and the injury is with a needle previously placed in the source patient’s vein or artery.\(^1\) After mucocutaneous exposure, the risk is <1 in 1000.\(^1\)

Management

Immediately wash the area well, and encourage free bleeding of puncture wounds. Irrigate exposed mucous membranes with water. Report to occupational health [accident and emergency (A&E) or equivalent out-of-hours service] for a risk assessment and baseline blood sample for storage. The source patient will be approached and counselled on undergoing HIV testing. Health-care worker follow-up testing is recommended at 12 and 24wk post-exposure (or 24wk after antiretroviral prophylaxis if prescribed). Occupational HIV exposure is reported to the HPA Centre for Infections.

Post-exposure prophylaxis (PEP) is recommended if there has been significant occupational exposure to blood or another high-risk body fluid from a patient or other source, either known to be HIV-infected or considered high risk of HIV infection (but where the result of a HIV test has not or cannot be obtained). PEP should be initiated ideally within 1h and continued for at least 28 days. The PEP starter pack contains one Truvada\(^\text{®}\) tablet (tenofovir and emtricitabine) taken once a day plus two Kaletra\(^\text{®}\) tablets (lopinavir and ritonavir) taken twice a day.\(^1\)

Reference

Phimosis

A condition where the foreskin (or prepuce) is tight and cannot be retracted back over the glans of the penis. A physiological phimosis is present at birth due to adhesions between the epithelium of the inner foreskin and the glans. Penile growth, erections, and accumulation of epithelial debris (smegma) under the foreskin causes gradual separation. Ninety per cent of foreskins are retractile at age 3. Few persist into adulthood (<1% phimosis at age 17y). Recurrent balanitis and inflammatory conditions such as balanitis xerotica obliterans (BXO) in uncircumcised ♂ can cause new pathological phimosis.

Presentation

Physiological phimosis is usually asymptomatic. Patients may describe ballooning of the foreskin on voiding and an inability to fully retract the foreskin which, in sexually active men, may also cause skin trauma during sexual intercourse. Inflammation or infection (balanitis and balanoposthisis) may cause bleeding, pain, discharge, or dysuria. Phimosis associated with BXO presents with white, itching plaques affecting the foreskin and glans and may have associated voiding problems due to the tight prepuce and/or distal urethral involvement causing meatal stenosis or distal urethral strictures.

Treatment

- **Adults:** treat any associated infection. If symptomatic or a pathological phimosis, surgical treatment is circumcision (see pp. 784–5). Preputioplasty (longitudinal incision on the foreskin which is closed transversely) is an alternative for milder cases. It is effective in around 50%; a circumcision is then required for those who do not respond. Preputioplasty is not suitable for BXO.
- **Children:** older children with phimosis suffering infection (balanitis) can be treated with antibiotics and a course of topical 0.1% betamethasone (Betnovate®) cream which acts to soften the phimosis and allow foreskin retraction. The recommendations are to avoid circumcision, where possible.1

Indications for circumcision in children include phimosis associated with recurrent balanitis, BXO, (recurrent) UTI associated with an underlying abnormality (i.e. VUR, posterior urethral valves (PUV), neuropathic bladder dysfunction), rUTI, failed medical therapy for UTI, stone disease, and for religious reasons.

Contraindications to (neonatal) circumcision include the presence of hypospadias (± chordee or hooded foreskin), small penis, or large hernia or hydrocele (where repair after circumcision may cause a buried penis or secondary phimosis).

1 BXO is also known as lichen sclerosis et atrophicus.
Complications of phimosis

- **Paraphimosis**: the foreskin is retracted behind the glans but cannot be replaced again. An existing degree of phimosis and/or prolonged retraction produces a tight ring of tissue at the corona, leading to venous congestion, oedema, and swelling of the glans, which can progress to arterial occlusion and necrosis (see p. 549).
- **Recurrent balanitis**.
- **Balanoposthitis**: severe balanitis and infection of the foreskin where inflammatory secretions and pus are trapped in the foreskin by the phimotic band.
- **Chronic inflammation**.
- **Penile cancer (SCC)**: rare, but ↑ risk in uncircumcised ♂.
- **STI**: ↑ risk (including HIV transmission) in uncircumcised ♂.

References

Inflammatory disorders of the penis

Balanitis and balanoposthitis

Balanitis is inflammation of the glans penis. Balanoposthitis is inflammation of the prepuce (foreskin) and glans. Risk with phimosis and uncircumcised males. Causes are shown in Table 6.6. Clinical features include pain, erythema, discharge, difficulty retracting the prepuce, and voiding dysfunction. Treat any proven infection; instruct on good hygiene, and avoid irritants. A short course of topical steroid cream (i.e. 0.1% betamethasone) can be applied to improve retractability of the prepuce. Surgical options for recurrent infections include circumcision.

Lichen sclerosis

- Lichen sclerosis et atrophicus is a chronic inflammatory skin condition of unknown aetiology. On the penis and prepuce, it is also called balanitis xerotica obliterans (BXO).
- Of men with BXO of the prepuce, around 10% will have involvement of the glans penis and 1% urethral involvement.
- Presentation: phimosis, itching, and discomfort with itchy, flat-topped white papules that coalesce to form white patches on the glans penis and prepuce. May be associated with voiding dysfunction.
- Complications include meatal stenosis, urethral strictures, and dense adhesions, causing fusion between the prepuce and glans.
- Pathological features are thinning and hyperkeratosis of the epithelium, hyalinization of keratin in the upper dermis, infiltration of lymphocytes and plasma cells in the dermis, and degeneration of the basal cell layer.
- BXO is thought to be a premalignant condition in adults, although progression to SCC is rare. BXO is an associated finding in around 28% of patients presenting with penile carcinoma in contemporary series, although larger series report lower rates (2%).
- Treatment: a trial of topical corticosteroids may be tried for mild conditions, but generally, men require circumcision (± meatal dilatation).

Table 6.6 Causes of balanitis

<table>
<thead>
<tr>
<th>Category</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifestyle-related</td>
<td>Poor hygiene, local irritants (soaps, spermicides)</td>
</tr>
<tr>
<td>Fungal infection</td>
<td>Candida</td>
</tr>
<tr>
<td>Bacterial infection</td>
<td>Non-sexually transmitted: coliforms, group B streptococci</td>
</tr>
<tr>
<td></td>
<td>Sexually transmitted: N. gonorrhoeae, C. trachomatis, syphilis, herpes simplex</td>
</tr>
<tr>
<td>Inflammatory dermatoses</td>
<td>Lichen sclerosis, lichen planus, Zoon’s balanitis, Reiter’s syndrome, psoriasis, eczema, irritant contact dermatitis</td>
</tr>
<tr>
<td>Drugs</td>
<td>Examples: amoxicillin, paracetamol, salicylates, tetracyclines, propranolol, quinine, chlordiazepoxide</td>
</tr>
</tbody>
</table>
The prepuce should be sent for histological analysis. Surgery is usually curative, but any residual BXO after circumcision should be followed up, with further topical therapy (steroid, antibiotic, or antifungal), as indicated. Biopsy may be needed if the lesion persists, progresses, or changes (despite appropriate treatment).

Zoon’s balanitis
Also referred to as ‘plasma cell balanitis’. It tends to occur in older, uncircumcised men. Patients present with well-circumscribed, shiny, moist, erythematous plaque on the glans (sometimes described as having a ‘Cayenne pepper’ appearance), with a corresponding lesion on the prepuce. Pathological features are chronic inflammatory cell (plasma cell) infiltrate in the dermis. It is usually asymptomatic but may present with irritation, pain, or discharge. Differential diagnosis is erythroplasia of Queyrat, lichen planus, fixed drug eruption, or psoriasis, and a skin biopsy is often indicated to confirm the diagnosis. A swab should be taken for microbiological analysis, as secondary infection is common and requires antibiotic treatment. Conservative therapies include advice on hygiene, topical corticosteroids (± antibiotics or antifungals, as clinically indicated), but the disorder tends to persist or recur. Definitive treatment is with circumcision. Carbon dioxide laser therapy also has reported success.

Lichen planus
It affects all age groups and can occur in isolation on the penis or as part of a generalized eruption. It presents as an itchy, papular rash. It consists of mauve papules which have a flat top covered in white streaks (Wickham’s striae). It affects the flexor surfaces (wrists, elbows), genitalia (appearing as a white, annular lesion or erythematous plaques on the glans penis), buccal mucosa, lumbar region, and ankles. The diagnosis is made clinically; biopsy can be used if the diagnosis is unclear or the lesions fail to respond to appropriate treatment. It is often self-limiting, but topical steroids can be prescribed for symptomatic lesions.

Psoriasis
Chronic papulosquamous inflammatory skin disease, presenting with itchy, pink plaques covered in silver white scales on hair-bearing areas and extensor surfaces (knees and elbows). It also causes pitting of the nails. Lesions may be guttate (raindrop-shaped), circinate (rings), or geographic. Genital psoriasis may present as itching and soreness of the groins and glans and a red penile rash. It may also involve the prepuce. It is treated with topical emollients, soap substitutes, and short courses of topical low-dose steroid creams.

Reiter’s syndrome
The typical triad of symptoms is urethritis, conjunctivitis, and seronegative arthritis. It tends to present in younger men. It can be caused by STI (C. trachomatis), and there is an association with HIV. Penile, oral, and skin lesions may occur, which can be confused for psoriasis. Genital manifestations include circinate balanitis (ring-shaped, eroded lesions on the glans penis) in uncircumcised men, which can appear as a crust lesion in circumcised patients. Patients should be advised to self-refer for STI screening. The condition is self-limiting and usually resolves spontaneously.
Behçet’s syndrome
An uncommon disorder of unknown cause characterized by painful genital (scrotum, prepuce, glans) and oral (aphthous) ulceration, polyarthritis, uveitis, and neurological syndromes. Treatment of genital lesions is with topical steroids (corticosteroids).

References
Basic pathology and molecular biology 254
Wilms’ tumour and neuroblastoma 256
Radiological assessment of renal masses 260
Benign renal masses 262
Renal cell carcinoma: pathology, staging, and prognosis 264
Renal cell carcinoma: epidemiology and aetiology 268
Renal cell carcinoma: presentation and investigation 270
Renal cell carcinoma: management I 272
Renal cell carcinoma: management II 274
Renal cell carcinoma: management III 276
Upper urinary tract transitional cell carcinoma 278
Bladder cancer: epidemiology and aetiology 282
Bladder cancer: pathology, grading, and staging 284
Bladder cancer: clinical presentation 288
Bladder cancer: haematuria, diagnosis, and transurethral resection of bladder tumour 290
Bladder cancer (non-muscle invasive TCC): surgery and recurrence 294
Bladder cancer (non-muscle invasive TCC): adjuvant treatment 296
Bladder cancer (muscle-invasive): staging and surgical management of localized (pT2/3a) disease 298
Bladder cancer (muscle-invasive): radical radiotherapy and palliative treatment 302
Bladder cancer: management of locally advanced and metastatic disease 304
Bladder cancer: urinary diversion after cystectomy 306
Prostate cancer: epidemiology and aetiology 310
Prostate cancer: incidence, prevalence, mortality, and survival 312
Prostate cancer: prevention 314
Prostate cancer: pathology—adenocarcinoma 318
Prostate cancer grading 320
Prostate cancer: staging and imaging 324
Prostate cancer: clinical presentation 328
Prostate cancer: screening 330
Prostate cancer: prostate-specific antigen 332
Prostate cancer: PSA derivatives and kinetics 334
Prostate cancer: counselling before PSA testing 336
Prostate cancer: molecular diagnostic and prognostic markers 338
Prostate cancer: transrectal ultrasound and needle biopsy 340
Chapter 7

Urological neoplasia

Prostate cancer: suspicious lesions 346
Prostate cancer: watchful waiting and active surveillance 348
Prostate cancer: radical prostatectomy and pelvic lymphadenectomy 350
Prostate cancer—radical prostatectomy: post-operative care and complications 354
Prostate cancer: oncological outcomes of radical prostatectomy 356
Prostate cancer: radical external beam radiotherapy 360
Prostate cancer: brachytherapy 362
Prostate cancer—minimally invasive management of localized and radio-recurrent prostate cancer: cryotherapy, high-intensity focused ultrasound, and photodynamic therapy 364
Prostate cancer: management of locally advanced non-metastatic (T3–4N0M0) and N1 disease 366
Prostate cancer—management of advanced disease: hormone therapy I 368
Prostate cancer—management of advanced disease: hormone therapy II 370
Prostate cancer—management of advanced disease: hormone therapy III 372
Prostate cancer—management of advanced disease: castrate-resistant prostate cancer 374
Prostate cancer—management of advanced disease: palliative care 378
Urethral cancer 380
Penile neoplasia: benign, viral-related, and premalignant lesions 382
Penile cancer: epidemiology, risk factors, and pathology 384
Penile cancer: clinical management 386
Scrotal and paratesticular tumours 390
Testicular cancer: incidence, mortality, epidemiology, and aetiology 392
Testicular cancer: pathology and staging 394
Testicular cancer: clinical presentation, investigation, and primary treatment 396
Testicular cancer: serum markers 398
Testicular cancer: management of non-seminomatous germ cell tumours 400
Testicular cancer: prognostic staging system for metastatic germ cell tumours 402
Testicular cancer: management of seminoma, intratubular germ cell neoplasia, and lymphoma 404
Neoplasia (the formation and growth of a tumour) may be a benign or malignant process. Malignant neoplasms, characterized by local invasion of normal tissue or distant spread (metastasis) via lymphatic or vascular channels, may be primary or secondary. Neoplasms are considered to arise by clonal expansion of a single abnormal cell through uncontrolled aberrant divisions. This cell may be a stem cell, rather than a terminally differentiated cell. Tumour formation results from the loss of balance between cell division and withdrawal from the cell cycle by differentiation or programmed cell death (apoptosis). Signals regulating cell proliferation and interactions come from proteins encoded by messenger RNA that is, in turn, transcribed from genomic DNA. An identifiable precursor lesion may exist.

Urological neoplasms most commonly arise from the lining epithelium of the genitourinary tract. Benign epithelial neoplasms from glandular or transitional epithelium are, respectively, termed adenoma or transitional cell papilloma. Malignant epithelial neoplasms are carcinomas; they may be further characterized histologically by prefixing either adeno if the neoplasm is glandular or squamous cell or transitional cell, according to the epithelium from which it has arisen. Carcinomas arise from non-invasive epithelial lesions, some of which are identifiable histologically—in the bladder, it is flat carcinoma in situ (CIS), while in the prostate, it is prostatic intraepithelial neoplasia (PIN). Connective tissue neoplasms are described according to their components, adding benign (-oma) or malignant (-sarcoma) suffixes. For example, a benign neoplasm composed of blood vessels, fat, and smooth muscle is an angiomyolipoma; a malignant neoplasm composed of smooth muscle is a leiomyosarcoma. Genitourinary sarcomas are rare, constituting 1% of all neoplasms.

There are exceptions. In the testis, the commonest primary neoplasms arise from seminiferous tubules and are termed germ cell tumours (GCTs). Rarely, primary malignant lymphoma can arise in the testis. In the kidney, the childhood Wilms’ tumour arises from the embryonic mesenchyme of the metanephric blastema, while the benign oncocytoma is thought to arise from cells of the collecting ducts (CDs).

Secondary malignant neoplasms within urological tissues are uncommon; they may arise by direct invasion from adjacent tissues (e.g. adenocarcinoma of the sigmoid colon may invade the bladder) or haematogenous metastasis from a distant site such as the lung.

Neoplasia is a genetic disease—it may be hereditary or sporadic, depending on whether the genetic abnormalities are constitutional (germline) or somatic (acquired). Hereditary tumours tend to appear at a younger age than their sporadic counterparts and are often multifocal due to an underlying constitutional genetic abnormality.

Genetic and epigenetic abnormalities may promote tumour development or growth in a number of ways:

- Activation (by point mutation, deletion, translocation, or overexpression) of oncogenes encoding transcription factors, e.g. c-myc.
- Inactivation (reduced expression) of tumour suppressor genes; their diverse protein products stabilize the cell, ensuring differentiation and a finite lifespan in which it performs its function. Inactivation of such
genes by deletion or mutation may result in loss of this negative growth control. For example, \textit{PTEN} (chromosome 10q) is a prostate tumour suppressor gene encoding a phosphatase that is active against protein and lipid substrates. It is present in normal epithelium but is commonly reduced in prostate cancer due to allele loss of chromosome 10q. It inhibits one of the intracellular signalling pathways PI3 kinase-Akt, that is essential for cell cycle progression and cell survival. Inactivation of \textit{PTEN} therefore promotes cell immortalization and proliferation.

- \textit{Overexpression of peptide growth factors}, e.g. IGF type 1 in prostate cancer or the highly angiogenic VEGF in renal cancer.
- \textit{Promoter methylation or acetylation} inactivating genes encoding detoxification enzymes, e.g. \textit{GSTP1}.
- \textit{Gene fusions}: a translocation occurs during mitosis to bring a promoter gene adjacent to a transcription factor gene on a particular chromosome, resulting in overexpression of this factor and abnormal positive growth control, e.g. \textit{TMPRSS2–ERG} fusions are found in at least 50% of prostate cancers.
- \textit{MicroRNA}: tissue-specific, non-coding, short single-stranded RNA; regulates gene expression by interacting with messenger RNA; multifunctional, measurable, and potentially reversible; postulated to be the key to individualized cancer treatment.

Interest in the molecular pathology of urological neoplasia has begun to result in the development of screening tests for hereditary diseases, diagnostic or prognostic gene profiling, and new strategies for treatment. More recently, there is growing interest in the use of immunotherapy in a wide range of cancers, including therapeutic vaccines (e.g. sipuleucel-T), oncolytic virus therapies, checkpoint inhibitors (of note, inhibitors of CTLA4 and PD1), adoptive cell therapies, adjuvant immunotherapies, cytokines, and monoclonal antibodies.
Wilms’ tumour and neuroblastoma

Wilms’ tumour (nephroblastoma)
First described by the German surgeon Max Wilms (1867–1918), this is a rare childhood tumour, affecting one in 10 000 children. It is, however, the commonest intra-abdominal tumour of childhood (20% of all childhood malignancies), and it represents 80% of all genitourinary tumours affecting children under 15y. ♂ and ♀ are equally affected; 20% are familial, and 5% are bilateral. Seventy-five per cent present under the age of 5y. Children of African descent are at greatest risk.

Pathology and staging
Wilms’ tumour is a soft, pale grey tumour (it looks like the brain). It contains metanephric blastema, primitive renal tubular epithelium, and connective tissue components. Two distinct histological subtypes are described: favourable (well differentiated) and anaplastic (poorly differentiated).

In at least 20% of cases, mutation or deletion of both copies (alleles) of the chromosome 11p13 WT1 tumour suppressor gene results in tumourigenesis. The familial disease exhibits autosomal dominant inheritance but is recessive at the cellular level. Affected family members harbour a germline WT1 mutation, conferring susceptibility. One further ‘hit’ is required, while two ‘hits’ are required to cause the sporadic disease. This explains why hereditary Wilms’ tumours tend to develop multifocally and at a slightly younger age than its sporadic counterpart. Mutations of three further genes WT2 (11p15.5), WTX (on the X chromosome), and CTNNB1 account for a further 30% of cases. Loss of chromosome 1p and 16q alleles defines a subgroup with worse prognosis.

Stage I Wilms’ tumour (36% of patients)
At least one of the following criteria must be met:

• The tumour is limited to the kidney and is completely excised.
• The surface of the renal capsule is intact.
• The tumour is not ruptured or biopsied (open or needle) prior to removal.
• No involvement of extrarenal or renal sinus lymph–vascular spaces.
• No residual tumour apparent beyond the margins of excision.
• Metastasis of the tumour to lymph nodes not identified.

Stage II Wilms’ tumour (22% of patients)
At least one of the following criteria must be met:

• The tumour extends beyond the kidney but is completely excised.
• No residual tumour apparent at or beyond the margins of excision.
• Any of the following conditions may also exist:
 • Tumour involvement of the blood vessels of the renal sinus and/or outside the renal parenchyma.
 • The tumour has been biopsied prior to removal or there is local spillage of the tumour during surgery, confined to the flank.
 • Extensive tumour involvement of renal sinus soft tissue.
Stage III Wilms’ tumour (24% of patients)
At least one of the following criteria must be met.
- Unresectable primary tumour.
- Lymph node metastasis.
- The tumour is present at surgical margins.
- Tumour spillage involving peritoneal surfaces, either before or during surgery, or transected tumour thrombus.

Stage IV Wilms’ tumour (18% of patients)
- Defined as the presence of haematogenous metastases (lung, liver, bone, or brain) or lymph node metastases outside the abdominopelvic region.

Stage V Wilms’ tumour (5% of patients)
- Defined as bilateral renal involvement at the time of initial diagnosis.

Presentation
Ninety per cent have a mass; 33% complain of abdominal or loin pain; up to 30% develop haematuria, and 50% are hypertensive. Fifteen per cent of patients exhibit other anomalies such as horseshoe kidney, hemihypertrophy/macroGLOSSia (Beckwith–Wiedemann syndrome), gonadal dysgenesis/nephropathy (Denys–Drash syndrome), aniridia/retardation [Wilms’ tumour/aniridia/genitourinary anomalies/mental retardation (WAGR) syndrome], and fetal overgrowth (Perlman’s syndrome).

Investigation
The first-line investigation for a child with an abdominal mass or haematuria is ultrasound which will reveal a renal tumour. Further to diagnostic imaging, staging is obtained by CT, including the chest. Needle biopsy is avoided.

Treatment and prognosis
Children with renal tumours should be managed by a specialist paediatric oncology centre. Staging nephrectomy, with or without preoperative or post-operative chemotherapy, remains the mainstay of treatment. The chemotherapy most frequently used is vincristine and doxorubicin. Flank irradiation may be used in higher-stage tumours. Survival is generally good at 92% overall, ranging from 55% to 97%, according to the stage at presentation and histology.

Neuroblastoma
The commonest extracranial solid tumour of childhood. Eighty per cent are diagnosed <4 y old. The tumour is of neural crest origin; 50% occur in the adrenal gland, and most of the remainder arises along the sympathetic trunks.

Presentation
Systemic symptoms and signs are common: fever, abdominal pain/distension, mass, weight loss, anaemia, and bone pain. Retro-orbital metastases may cause proptosis.
Imaging and staging
Ultrasound initially; CT of the chest and abdomen. Calcification in the tumour helps distinguish neuroblastoma from Wilms’ tumour. MIBG (meta-iodo-benzyl-guanidine) scans are very sensitive for detection of neuroblastomas (Table 7.1).

Treatment and prognosis
Surgical excision; radiotherapy; combination chemotherapy, possibly with autologous bone marrow transplantation. Stage 4S tumours may resolve, with little or no treatment. Prognosis is poor, except for stage 1 and 4S disease.

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Tumour confined to organ of origin and grossly complete excision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2</td>
<td>Unilateral tumour with residual disease post-resection or lymphadenopathy</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Tumour crossing the midline or contralateral nodes</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Metastatic disease beyond regional nodes; survival 6%</td>
</tr>
<tr>
<td>Stage 4S</td>
<td>Unilateral tumour with metastasis limited to liver, skin, or bone marrow; survival 77%</td>
</tr>
</tbody>
</table>
Radiological assessment of renal masses

Abdominal USS is the first-line investigation for a patient with loin pain or a suspected renal mass. The size resolution for renal masses is 1.5cm, exhibiting variable echo patterns. Ultrasound may also detect renal cysts, most of which are simple: smooth-walled, round or oval, without internal echoes, and complete transmission with a strong acoustic shadow posteriorly. If the cyst has a solid intracystic element, septations, an irregular or calcified wall, further imaging with CT is indicated. Ten to twenty-five per cent of RCCs contain cysts. Yale radiologist Morton Bosniak developed the following radiological classification of renal cysts, with modification of type II, in Table 7.2.¹

If a renal mass is detected by USS, a thin slice or helical CT scan before and after IV contrast is the most important investigation for characterization and staging. Around 90% of solid-enhancing renal masses will be RCCs. Ten per cent of RCCs will contain calcifications or fat. Even relatively avascular renal carcinomas enhance by 10–25 Hounsfield units.*

Occasionally, an isodense, but enhancing, area of the kidney is demonstrated—this is termed ‘pseudotumour’ and may correspond to a harmless, hypertrophied cortical column (of Bertin) or dysmorphic segment. CT may mislead with respect to liver invasion (rare) due to ‘partial volume effect’; real-time ultrasound is more accurate. Lymphadenopathy of >2cm is invariably indicative of metastasis.

MRI with gadolinium contrast may be used for imaging the IVC, locally advanced disease or renal insufficiency, or for patients allergic to iodinated contrast. Doppler USS may also evaluate IVC tumour thrombus. Renal arteriography is seldom used in the diagnostic setting but may be helpful.

<table>
<thead>
<tr>
<th>Table 7.2 Radiological classification of renal cysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>IIF</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
</tbody>
</table>

* Hounsfield units are a measure of X-ray attenuation applied to CT scanning: –1000 units equate with air, 0 units equate with water, and +1000 units equate with bone.
to delineate the number and position of renal arteries in preparation for nephron-sparing surgery or surgery for horseshoe kidneys.

Ultrasound or CT-guided fine-needle aspiration (FNA) or needle biopsy

This is increasingly indicated due to the trend in managing small masses with surveillance or minimally invasive ablative therapies. Also, a histological diagnosis is usually required prior to treating inoperable patients with systemic therapies. Needle biopsy is highly specific, but less sensitive, for detecting malignancy—in experienced hands, >90% of biopsy cores are diagnostic. Repeat biopsy is diagnostic in 80–100%. There are also risks of haemorrhage (5%) and tumour spillage/seeding (rare). FNA is useful for aspiration of a renal abscess or an infected cyst or to diagnose a suspected lymphoma or metastatic lesions. Table 7.3 shows a practical radiological classification of renal masses.

<table>
<thead>
<tr>
<th>Simple cyst</th>
<th>Complex cyst</th>
<th>Fatty mass</th>
<th>Others (excluding rarities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyst</td>
<td>Renal carcinoma</td>
<td>Angiomyolipoma</td>
<td>rcc</td>
</tr>
<tr>
<td>Multiple cysts</td>
<td>Cystic nephroma</td>
<td>Lipoma</td>
<td>Metastasis</td>
</tr>
<tr>
<td>Parapelvic cyst</td>
<td>Haemorrhagic cyst</td>
<td>Liposarcoma</td>
<td>Lymphoma</td>
</tr>
<tr>
<td>Calyceal diverticulum</td>
<td>Metastasis</td>
<td>Sarcoma</td>
<td>Abscess</td>
</tr>
<tr>
<td></td>
<td>Wilms' tumour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infected cyst</td>
<td></td>
<td>TB</td>
</tr>
<tr>
<td></td>
<td>Lymphoma</td>
<td></td>
<td>Oncocytoma</td>
</tr>
<tr>
<td></td>
<td>TB</td>
<td></td>
<td>Xanthogranulomatous pyelonephritis</td>
</tr>
<tr>
<td></td>
<td>Renal artery aneurysm</td>
<td></td>
<td>Phaeochromocytoma (adrenal)</td>
</tr>
<tr>
<td></td>
<td>Arteriovenous malformation</td>
<td></td>
<td>Wilms’ tumour</td>
</tr>
<tr>
<td></td>
<td>Hydrocalyx</td>
<td></td>
<td>TCC</td>
</tr>
</tbody>
</table>

While no current RCC screening programme exists in the UK, it would be appropriate to offer USS to high-risk individuals such as relatives of von Hippel–Lindau (VHL) syndrome patients.

Reference

Benign renal masses

The commonest (70%) are simple cysts, present in >50% of >50y olds. Rarely symptomatic, treatment by aspiration or laparoscopic deroofing is seldom considered.

Fifteen per cent of all renal tumours are benign; the two most clinically important are oncocytoma and angiomyolipoma (AML).

Oncocytoma

Uncommon, accounting for 3–7% of renal tumours. ♂ are twice as commonly affected as ♀. They occur simultaneously with RCC in 7–32% of cases.

Pathology

Oncocytomas are spherical, capsulated, and brown/tan-coloured, with a mean size of 4–6cm. Half contain a central scar. They may be multifocal and bilateral (4–13%), and 10–20% extend into perinephric fat. Histologically, they comprise aggregates of eosinophilic cells thought to arise from intercalated cells of the CD. Cells are packed with mitochondria; mitoses are rare, and large nucleoli are present; they are considered benign, not known to metastasize. There is often loss of the Y chromosome.

Presentation

Oncocytomas often (83%) present as an incidental finding or with loin pain or haematuria.

Investigation

The main differential diagnosis is RCC, since both clear cell and papillary type 2 and 3 oncocytic variants exhibit eosinophilic cytoplasm. Oncocytomas cannot often be distinguished radiologically from RCCs; they may coexist with RCCs. Rarely, they exhibit a ‘spoke-wheel’ pattern on CT scanning, caused by a stellate central scar. Percutaneous biopsy is occasionally recommended if there is a high degree of suspicion of this diagnosis, although up to 22% are non-diagnostic.

Treatment

Surveillance is safe for biopsy-proven oncocytoma. Where the diagnosis is in doubt, partial nephrectomy is indicated, as for localized T1 RCC. No follow-up is necessary. Minimally invasive techniques, such as radiofrequency ablation (RFA) or HIFU, may be considered for smaller tumours where the possibility of RCC is not excluded.

Angiomyolipoma

Eighty per cent of these benign mesenchymal tumours (formerly considered a hamartoma) occur sporadically, mostly in middle-aged ♀. Twenty per cent are in association with tuberous sclerosis (TS), an autosomal dominant syndrome characterized by mental retardation, epilepsy, adenoma sebaceum, and other hamartomas. Mutations of suppressor genes TSC1 and TSC2. Up to 80% of TS patients develop AMLs, mean age 30y, 66% ♀, frequently multifocal and bilateral. Renal cysts and rarely carcinoma are also described.
Pathology
AML is composed of perivascular epithelioid cells (PECs) containing blood vessels, immature smooth muscle, and fat. They are always considered benign, although extrarenal AMLs have been reported in the venous system, hilar lymph nodes, and liver. Macroscopically, it looks like a well-circumscribed lump of fat. Solitary AMLs are more frequently found in the right kidney.

Presentation
AMLs frequently present as incidental findings (>50%) on ultrasound or CT scans. They may present with flank pain, a palpable mass, or painless haematuria. Massive and life-threatening retroperitoneal bleeding occurs in up to 10% of cases (Wunderlich’s syndrome).

Investigation
Ultrasound reflects from fat, hence a characteristic bright echo pattern. This does not cast an ‘acoustic shadow’ beyond, helping to distinguish an AML from a calculus. CT shows a fatty tumour as low density (<10 Hounsfield units) in 86% of AMLs. If the proportion of fat is low, a definite diagnosis cannot be made, as other renal tumours may contain fat. Measurement of the diameter is relevant to treatment.

Treatment
In studies, 52–82% of patients with AML of >4cm are symptomatic, compared with only 23% with smaller tumours. Therefore, asymptomatic AMLs can be followed with serial ultrasound if <4cm, while those bleeding or of >4cm or in women of childbearing age should be treated. Selective renal embolization or partial/total nephrectomy may be lifesaving in the setting of acute haemorrhage. RFA may also be an option. In tumours of >3cm, the mTOR (mammalian target of rapamycin) inhibitor everolimus can reduce tumour volumes by >50% in 64% of patients over 96wk, with acceptable toxicity. Patients with kidney loss should be monitored for hypertension (and treated for it if discovered) and avoid nephrotoxic drugs such as certain pain relievers and IV contrast agents. In patients with TS, in whom multiple bilateral lesions are present, annual renal USS and conservative treatment should be attempted.
Renal cell carcinoma: pathology, staging, and prognosis

RCC is an adenocarcinoma of the renal cortex, believed to arise from the PCT (although the majority of VHL gene deletions occur in the distal tubule). Usually tan-coloured, lobulated, and solid; 7% are multifocal, 1–2% bilateral, and 10–20% contain calcification; 10–25% contain cysts or are predominantly cystic. There may be zones of haemorrhage, necrosis, and scarring. Rarely grossly infiltrative, they are usually circumscribed by a pseudocapsule of compressed tissue.

Metastasis is by: direct extension to the adrenal gland (7.5% in tumours of >5cm), through the renal capsule (25%), into the renal vein (up to 44%), IVC (5%), and right atrium; by lymphatics to hilar and para-aortic lymph nodes; and haematogenously to the lung (75%), bone (20%), liver (18%), and brain (8%).

RCC histological subtype classification

- **Clear cell (cRCC):** 80%; highly vascular; clear cells (glycogen, cholesterol) or granular (eosinophilic cytoplasm, mitochondria); involves loss of VHL, PBRM1, and others genes on chromosome 3; 10% multifocal; small incidental tumours could equate with Bell’s legendary ‘benign adenoma’. Prognosis is relatively poor, except for the uncommon (4%) multilocular cystic variant (about 50% of Bosniak III lesions).
- **Papillary (pRCC):** 10–15%; well-circumscribed with a pseudocapsule and frequent necrosis; three variants exist, each biologically distinct. Type 1 is linked to alterations in the tyrosine kinase MeT pathway; type 2 is associated with the NRF2–antioxidant response element signalling pathway activation; type 3 is oncocytic (controversial). Trisomy 7, 16, and 17; loss of chromosome Y.
- **Chromophobe (chRCC):** 5%; arises from the cortical portion of the CD; possess a perinuclear halo of microvesicles; hypodiploid with loss of chromosomes 1, 2, 6, 10, 13, 17, and 21. Prognosis is relatively good.
- **Collecting duct (Bellini):** rare, young patients, very poor prognosis.
- **Medullary cell:** rare, arises from the calyceal epithelium; young sickle-cell sufferers; very poor prognosis.

A ‘sarcomatoid’ histology describes an infiltrative, poorly differentiated variant of any subtype, carrying a worse prognosis. Coagulative necrosis is seen in 30%. Array-based karyotyping performs well on paraffin-embedded tumours and can be used to identify characteristic chromosomal aberrations in renal tumours with challenging morphology.

Grading is by the Fuhrman system (1 = well differentiated; 2 = moderately differentiated; 3 and 4 = poorly differentiated), based on nuclear size, outline, and nucleoli. It is an independent prognostic factor.

Hereditary genetic changes associated with RCC are described on pp. 268–9.
RCC is an immunogenic tumour, expressing numerous antigens (e.g. RAGE-1, MN-9). Reports of spontaneous regression, prolonged stabilization, and complete responses to immunotherapy support this. Tumour-infiltrating lymphocytes are readily obtained from RCCs, including T-helper, dendritic, natural killer, and cytotoxic T-cells. RCC is notoriously vascular, over-expressing angiogenic factors, principally VEGF, but also bFGF and TGF-β.

Fig. 7.1 Renal cell carcinoma staging. (a) Primary tumour limited to the kidney (T1/T2). (b) Primary tumour invading the perinephric fascia (T3a) or adrenal gland (T4). (c) Primary tumour extends into the renal veins or IVC below the diaphragm (T3b); above the diaphragm/into the right atrium (T3c); outside the perinephric fascia (e.g. into the liver, bowel, or posterior abdominal wall) (T4). (d) N and M staging: multiple para-aortic/para-caval nodes; pulmonary, bone, or brain metastases (T4N2M1).
Staging
Staging is by TNM classification, following histological confirmation of the diagnosis (Fig. 7.1) (for TNM staging, see http://www.uicc.org/resources/tnm/publications-resources). All rely upon physical examination and imaging—the pathological classification (prefixed ‘p’) corresponds to the TNM categories.

Prognosis
(See Table 7.4.)
Improving: overall 56% survive >5y; 50% survive >10y (UK, 2011). Factors affecting RCC survival include:
• TNM staging is the most important prognostic indicator for RCC.
• Lymph node involvement: incidence ranges from 6% in T1–2 tumours, 46% in T3a, and 62–66% in higher-stage disease.
• Fuhrman grade, RCC subtype, necrosis or sarcomatoid features.
• Performance status and systemic symptoms.
• Blood tests: anaemia, platelet count, elevated plasma fibrinogen (under investigation).
• Molecular factors under investigation: VEGF, hypoxia-inducible factor (HIF)-1, phosphatase and tensin homologue (PTEN), CD44, gene expression profiling—not in routine use.
• Leibovich score (post-nephrectomy).

A prognostic nomogram predicting the 5y probability of treatment failure for patients with newly diagnosed RCC is available from: http://www.mskcc.org/cancer-care/types/kidney/prediction-tools.

Table 7.4 RCC: 5y survival

<table>
<thead>
<tr>
<th>Stage Description</th>
<th>5y Survival Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ-confined T1 N0M0 (AJCC stage I)</td>
<td>70–94% (depends on grade)</td>
</tr>
<tr>
<td>Organ-confined T2 N0M0 (AJCC stage II)</td>
<td>50–75%</td>
</tr>
<tr>
<td>Locally advanced T3 or N1 (AJCC stage III)</td>
<td>22–70% (25% in T3c, IVC wall invasion)</td>
</tr>
<tr>
<td>Metastatic T4, N2, or M1 (AJCC stage IV)</td>
<td>5–40%</td>
</tr>
</tbody>
</table>

AJCC, American Joint Committee on Cancer.
Renal cell carcinoma: epidemiology and aetiology

RCC (also known as hypernephroma, since it was erroneously believed to originate in the adrenal gland, clear cell carcinoma, and Grawitz tumour) is the commonest of renal tumours, constituting 2–3% of all cancers. It is an adenocarcinoma, accounting for 85% of renal malignancies; the remaining malignancies are TCC (10%), sarcomas, Wilms’ tumour, and other rarities (5%). It occurs in sporadic (common) and hereditary (rare) forms.

Incidence, mortality, and survival

In the UK, both incidence and mortality are rising, with 11 900 patients diagnosed (compared with 3676 patients in 1999) and 4400 deaths in 2013. There has been a 38% increase in incidence over the past decade, possibly related to incidental diagnosis using cross-sectional imaging. RCC is the most lethal of all urological tumours, with ~50% of patients dying of the condition; it is the tenth commonest cause of cancer death, accounting for 3% of all cancer deaths. The 5y survival, heavily dependent on the stage at diagnosis, is 56%, while the 10y survival fell to 50% for UK patients. Survival in RCC is improving.

Aetiology

- ♂ are affected 1.5 times as commonly as ♀; 50% present over the age of 70y.
- 42% are linked to risk factors:
 - Environmental
 Studies have shown associations with cigarette, pipe, or cigar smoking (1.4- to 2.3-fold risk), tobacco chewing, renal failure, transplant recipients and dialysis (6- to 30-fold risk), obesity (BMI >25), hypertension (1.4- to 2-fold risk), urban dwelling, low socio-economic status, occupational asbestos and cadmium exposure, the analgesic phenacitin, thorium dioxide, and sickle-cell trait (medullary carcinoma only).
 Nutrition is considered important; Asian migrants to Western countries are at ↑ risk of RCC; vitamins A, C, and E and fruit/vegetable consumption are protective. Anatomical risk factors include polycystic and horseshoe kidneys.
 - Genetic
 Two to 4% of renal cancers are inherited. An affected first-degree relative confers a 2.5-fold ↑ risk. The following familial conditions are identified:
 - VHL syndrome: 50% of individuals with this autosomal dominant syndrome, characterized by phaeochromocytoma, renal and pancreatic cysts, and cerebellar haemangioblastoma, develop RCC, often bilateral and multifocal. Patients typically present in the third, fourth, or fifth decades. VHL syndrome occurs due to loss of both copies of a tumour suppressor gene at chromosome 3p25–26; this and other 3p genes (RASSF1A, PBRM1) are implicated in causing >80% of sporadic RCC’s. Inactivation of the VHL gene leads to effects on gene transcription, including dysregulation of HIF-1 and 2, intracellular proteins that play an important role in the cellular response to hypoxia and starvation.
This results in the upregulation of VEGF, the most prominent angiogenic factor in RCC, explaining why some RCCs are highly vascular, and thus enabling targeted treatment approaches (see pp. 276–7).

• **Hereditary pRCC**: is an autosomal dominant condition, characterized by trisomy 7 and 17, with activation of the c-MET proto-oncogene. c-MET is the receptor tyrosine kinase (RTK) for hepatocyte growth factor, which regulates epithelial proliferation and differentiation in a wide variety of organs, including the normal kidney.

• **Hereditary leiomyomatosis RCC-associated RCC**: is an autosomal dominant familial condition caused by a defect in the fumarase hydratase gene on chromosome 1q; patients have multiple cutaneous and uterine leiomyomas, and 33% have RCC.

• **Birt–Hogg–Dubé syndrome**: mutations of the FLCN gene on chromosome 17p result in the autosomal dominant condition. This rare disease is characterized by benign tumours of hair follicles (mainly facial), pulmonary cysts, pneumothoraces, and renal tumours including oncocytomas and RCC.

• **TS complex**: renal manifestations include AML, renal cysts, and RCC, in descending frequency.

Screening for RCC

Aside from investigating the upper urinary tracts for a-NVH, there is little to support population screening for RCC using ultrasound, given that a large study of 10 000 men aged >40y yielded RCC in only 0.1%.
Renal cell carcinoma: presentation and investigation

At least half of all RCCs are detected incidentally on abdominal imaging carried out to investigate vague or unrelated symptoms. Thus, there has been a downward stage migration at diagnosis since ultrasound and CT scanning came into routine use in the 1980s.

Presentation

- **History:** of the symptomatic RCCs diagnosed, 50% of patients present with haematuria, 40% with loin pain, 25% notice a mass, and 30% have symptoms or signs of metastatic disease, including bone pain, night sweats, fatigue, weight loss, dyspnoea, and haemoptysis. Less than 10% of patients exhibit the classic triad of haematuria, pain, and abdominal mass. Less common presenting features include pyrexia of unknown origin (9%), venous thromboembolism (VTE), acute varicocele due to obstruction of the testicular vein by a tumour within the left renal vein (2–5%), and lower limb oedema due to venous obstruction. Paraneoplastic syndromes due to ectopic hormone secretion by the tumour occur in 30% of patients; these may be associated with any disease stage (Table 7.5).

- **Clinical examination:** may reveal an abdominal mass, cervical lymphadenopathy, a non-reducing varicocele, or lower limb oedema (both suggestive of venous involvement).

<table>
<thead>
<tr>
<th>Syndrome associated with RCC</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaemia (30%)</td>
<td>Haematuria, chronic disease</td>
</tr>
<tr>
<td>Polycythaemia (5%)</td>
<td>Ectopic secretion of erythropoietin</td>
</tr>
<tr>
<td>Hypertension (25%)</td>
<td>Ectopic secretion of renin, renal artery compression, or arteriovenous fistula</td>
</tr>
<tr>
<td>Hypoglycaemia</td>
<td>Ectopic secretion of insulin</td>
</tr>
<tr>
<td>Cushing’s syndrome</td>
<td>Ectopic secretion of adrenocorticotropic hormone (ACTH)</td>
</tr>
<tr>
<td>Hypercalcaemia (10–20%)</td>
<td>Ectopic secretion of parathyroid hormone (PTH)-like substance</td>
</tr>
<tr>
<td>Gynaecomastia, amenorrhoea, reduced libido, baldness</td>
<td>Ectopic secretion of gonadotrophins</td>
</tr>
<tr>
<td>Staufer’s syndrome: hepatic dysfunction, fever, anorexia</td>
<td>Unknown; resolves in 60–70% of patients post-nephrectomy</td>
</tr>
</tbody>
</table>
Investigations

- **Radiological**: evaluation of haematuria, loin pain, and renal mass using CT plus the role of needle biopsy is described on p. 261, pp. 290–1.
- **MRI renal imaging**: may be used in patients with contrast allergy, renal failure, or pregnancy
- **Positron emission tomography (PET)**: is not currently in clinical use.
- **Urine cytology and culture**: should be normal.
- **FBC**: may reveal polycythaemia or anaemia.
- **Serum creatinine and electrolytes, calcium, clotting studies, and LFTs**: are essential.

When RCC is diagnosed radiologically, staging chest CT will follow, and bone scan if clinically indicated. Any suggestion of renal vein or IVC involvement on CT may be further investigated with Doppler USS or MRI. CT angiography may be helpful in planning renal embolization, partial nephrectomy, or surgery for horseshoe kidneys.

Contralateral kidney function is assessed by the uptake and excretion of CT contrast and serum creatinine/eGFR. If necessary, isotope renography is used.
Renal cell carcinoma: management I

Increasing diagnosis of smaller early-stage RCC, advances in minimally invasive surgery (MIS) and vascular pass techniques, and the concept of cytoreductive surgery for advanced RCC have significantly impacted surgical treatment strategies over the past two decades. Surgery is the mainstay of ‘curative’ treatment for operable RCC, except for the very frail and unfit for whom renal artery embolization may palliate symptoms. Active surveillance and minimally invasive options are discussed in the next section.

Partial nephrectomy (PN) is the gold standard for cT1 tumours

Nephron-sparing surgery without adrenalectomy is indicated as follows:

- **Absolute**: tumour in a single anatomical/functioning kidney; bilateral tumours;
- **Relative**: multifocal RCC, particularly if the patient has VHL syndrome, aiming to avoid renal replacement therapy; contralateral kidney threatened by another condition.
- **Elective**: T1 (up to 7cm) tumours with a normal contralateral kidney, unless the tumour is close to the pelvicalyceal system. Perceived advantages over radical nephrectomy include preservation of renal function and reduced risk of cardiovascular events.

CT reconstruction provides the surgeon with preoperative identification of the arterial anatomy. Open or laparoscopic transperitoneal or loin (extraperitoneal) approaches are used. The renal artery is clamped, and the kidney packed with crushed ice (open technique) to avoid warm ischaemia. Functional recovery occurs within hours after 20min of warm ischaemia, and days after 30min; it may take several weeks after 60min of clamping. If the surgical margin is clear of tumour, the depth of the margin (>1mm) does not influence risk of local recurrence (which is up to 10%). PN for T2 RCC carries an ↑ risk of local recurrence. Specific complications include urinary leak from the collecting system, which may require prolonged drainage or a ureteric stent placement to facilitate healing, and hyperfiltration renal injury, which may eventually require renal replacement therapy—proteinuria is a prognostic sign. Long-term oncological outcomes are comparable with radical surgery.

MIS using robot-assisted PN is becoming the preferred approach; endorsed by NICE in 2016, overtaking open PN and relegating laparoscopic PN to third place, according to BAUS 2015 audit data. Oncological outcomes with MIS are comparable with open PN. Laparoscopic PN causes a longer (up to 30min) warm ischaemia time, less with the Da Vinci®. Attempts at achieving cold ischaemia using renal artery or retrograde ureteric infusions, or crushed ice in endo-bags have proved difficult and laborious. Some enthusiasts are performing ‘zero-ischaemia’ laparoscopic partial nephrectomy and accepting significant blood loss. Advantages of MIS PN include less pain, blood loss, shorter hospital stay, and quicker return to work.

Radical nephrectomy

With the exception of a few peripherally located T2 tumours, this remains the gold standard treatment of T2–4 RCC and T1 RCC in patients unsuitable for PN. Adrenalectomy is not necessary, unless clinically involved by the tumour. Regional lymph node sampling is necessary for staging purposes
only if the nodes are clinically involved; no therapeutic benefit has been demonstrated for routine lymphadenectomy. Extended lymphadenectomy adds time and increases blood loss, while nodes are clear in about 95% of cases, so is not recommended.

There is no difference in outcome favouring a specific surgical approach, so the default is now laparoscopic for T2/T3a RCC. Approaches are either transperitoneal or retroperitoneal. The specimen is removed whole in a bag through an iliac incision. Advantages over open surgery include less blood loss, pain, reduced hospital stay, and quicker return to normal activity. Morbidity is reported in 8–38% of cases, including pulmonary embolism (PE) and poorly understood effects on renal function. Long-term (10y) results are equivalent to those obtained by open surgery—cancer-specific survival (CSS) was 92% in a mixed US series.

An open approach is necessary only for large or locally advanced non-metastatic RCC. The aim is to remove all tumour with adequate surgical margins by excising the kidney with Gerota’s fascia, all vein tumour thrombus, adrenal gland (if invasion indicated by imaging), and limited regional nodes for staging. The surgical approach is transperitoneal (good access to hilar vessels) or thoraco-abdominal (for very large or T3c/T4 tumours). Disease involving the IVC, right atrium, liver, bowel, or posterior abdominal wall demands special surgical skills. In appropriate patients, an aggressive surgical approach involving a surgical MDT to achieve negative margins appears to provide survival benefit. Additional measures that attempt to optimize this high-risk surgery include preoperative IVC filter placement or renal artery embolization, per-operative vascular bypass (veno-venous, cardiopulmonary) or deep hypothermic circulatory arrest. Following renal mobilization (avoiding tumour manipulation), the ureter is divided; ligation and division of the renal artery or arteries should ideally take place prior to ligation and division of the renal vein, to prevent vascular swelling of the kidney. Complications include mortality of up to 2% from bleeding or embolism of the tumour thrombus and bowel, pancreatic, splenic, or pleural injury.

Post-operative follow-up aims to detect local or distant recurrence, to permit additional treatment if indicated; incidence is 7% for T1N0M0 RCC, 20% for T2N0M0, and 40% for T3N0M0. After partial nephrectomy, concern will also focus on recurrence in the remnant kidney. There is no consensus regarding the optimal regime, typically stage-dependent 6-monthly clinical assessment and annual CT imaging of the chest and abdomen for 5–10y.

Post-operative prognosis

The Leibovich scoring system groups patients into low, intermediate, or high risk for development of metastasis at 1, 3, 5, 7, and 10y, according to tumour stage, size, nuclear grade, presence of necrosis, and regional nodal status. This is particularly useful when selecting patients for trials of adjuvant therapy.1

A prognostic nomogram predicting the 5y probability of treatment failure for patients with newly diagnosed RCC is available from: http://www.mskcc.org/cancer-care/types/kidney/prediction-tools

Reference

Localized and locally advanced RCC—adjuvant therapy

RCC is not considered to be a radiosensitive disease, so radiotherapy is not used as an adjuvant (or neo-adjuvant) to surgery. Trials of adjuvant systemic therapy after nephrectomy have shown conflicting results regarding improved disease-free survival (DFS). The ASSURE trial randomized 1943 patients at high risk of recurrence following nephrectomy to adjuvant sunitinib, soralanib, or placebo. Median DFS was around 6y for all three groups, with high rates of discontinuation due to toxicity in the non-placebo groups. The S-TRAC data, including 615 patients, have just been released comparing sunitinib vs placebo for high-risk RCC, demonstrating a 14-month DFS benefit for adjuvant treatment. The results of the UK SORCE trial, comparing adjuvant soralanib with placebo in a similar setting, are awaited.

Localized RCC—alternatives to surgical treatment

- Renal artery embolization: indicated for patients with gross haematuria who are unfit for curative surgery.
- Active surveillance: small (T1a; <4cm), solid renal masses may be followed with serial abdominal imaging (contrast-enhanced renal CT or ultrasound) in elderly or unfit individuals. Metastasis is rare in masses of <3cm. For every 1cm size increase, the estimated prevalence of metastasis increases by 3.5%. Of 178 patients, 101 had renal biopsy, of which 55% were malignant, 12% benign, and 33% non-diagnostic. Average growth rate was similar for these histological groups: ~0.15cm/y. Over a minimum 2y period, 25 (12%) progressed locally (i.e. grew to ≥4cm or volume doubled in ≤12 months), and only two (1.1%) developed bone/lung metastases. In QoL studies, patient anxiety is not affected by time on surveillance.
- Cryosurgery: this minimally invasive treatment (MIT), performed using intraoperative ultrasound by open, percutaneous, or laparoscopic routes, is gaining popularity as a nephron-sparing treatment option. While hospital stay is significantly reduced by cryosurgery, especially using the percutaneous approach, a number of studies comparing this with PN have reported inferior medium- and long-term oncological outcomes, notably cancer-specific and metastasis-free survival.
- Image-guided percutaneous RFA: this MIT, delivered by percutaneous or laparoscopic approaches, has been shown in a number of poor-quality studies to be as effective as cryosurgery. One non-randomized study of 100 patients comparing RFA with radical nephrectomy demonstrated significantly reduced overall survival in the RFA group, although patients mean age was 13y older.
- HIFU: this MIT, delivered percutaneously or extracorporeally, is under evaluation as a nephron-sparing treatment option.

The above three MITs have the advantage of being outpatient-based, low-morbidity, and repeatable; they are currently recommended only for those patients unfit or unwilling to undergo surgery (since current data show recurrence rates are higher), ideally within clinical trials.
Localized RCC—follow-up after treatment
Patients require follow-up to monitor renal function, manage post-operative complications, and detect locally recurrent or metastatic disease. Intensity of imaging is risk-stratified in this respect, dependent on the treatment received, margin positivity in the case of PN, and Leibovich score. Alternating annual ultrasound and CT scans for 5y is appropriate for a patient at low risk following surgery, while a high-risk patient, especially following MIT, should have CT imaging at 6 months, then annually, reducing to 2-yearly after 5y.

Localized RCC—treatment of local recurrence
Though uncommon, if there is local recurrence in the renal bed or regional nodes after radical nephrectomy, surgical excision remains the preferred treatment choice, provided there are no signs of distant disease. Local recurrence is commoner after PN where it can be treated by a further PN, or radical nephrectomy.

Metastatic RCC—surgical management
~20% of patients with RCC have metastatic disease at presentation; a further 30% progress subsequently to this stage following nephrectomy. All decisions regarding non-systemic management of these patients should be taken on a case-by-case basis in consultation with the MDT.

Despite the remote possibility of spontaneous metastatic regression (<5%) following nephrectomy, it was rarely undertaken, except to palliate local symptoms of pain or haematuria until a median survival benefit of 10 months for patients with good performance status treated with cytoreductive nephrectomy prior to immunotherapy [interferon (IFN)-α] was reported in 2004. Studies are ongoing to investigate whether there is a similar benefit to cytoreductive nephrectomy with tyrosine kinase inhibitors. Currently, the standard practice is not to recommend it, but, where possible, patients should be recruited to studies investigating cytoreductive nephrectomy. If inoperable, renal artery embolization can be helpful.

Nephrectomy may be considered in combination with resection of single or oligo-metastases in selected patients with curative intent, or to at least delay the need for systemic treatment. Resection of a solitary or oligo-metastases is an appropriate option for a small number of patients, ideally a few months after nephrectomy, to ensure the lesion has remained solitary. Limited non-randomized studies have mostly demonstrated survival benefits ranging from a few months to several years, especially involving metastasectomy of lung, liver, pancreatic, and bone lesions.

Stereotactic radiotherapy or radiosurgery is useful for palliation of symptomatic metastatic lesions in bone and the brain and, in combination with surgery, for spinal cord compression.

References
Renal cell carcinoma: management III

Metastatic RCC: systemic management

- Prognostic risk stratification: the MSKCC (Motzer) criteria may be used, based on:
 - Karnofsky performance status <80%.
 - Time from diagnosis to treatment <1y.
 - Hb subnormal.
 - Lactate dehydrogenase (LDH) >1.5 times the upper limit.
 - Corrected calcium >2.4mmol/L.

The presence of none of these factors confers favourable risk—median time to death 20 months; 1–2 factors carry intermediate risk—median survival 10 months; >3 factors carry poor risk—4 months median survival.

First-generation immunotherapy

The immunogenicity of RCC is discussed earlier. The first cytokines to be used therapeutically, to activate anti-tumour immune response, were IFNs and subsequently IL-2. Randomized studies in the 1990s demonstrated modest response rates (10–20%) after systemic immunotherapy, using these cytokines alone and in combination; toxicity could be severe. Responses were more likely in patients with good performance status, prior nephrectomy, and small-volume metastatic burden. An MRC trial of IFN-α vs medroxyprogesterone demonstrated a 2.5-month survival advantage in the immunotherapy group. The use of immunotherapy was overshadowed by the development of RTK inhibitors, although there is still a role for IL-2 in a very select group of patients (excellent performance status, small-volume lung only metastases, and no prior treatment).

Angiogenesis and receptor tyrosine kinase inhibitors

As discussed earlier, most RCCs are highly angiogenic, so fortunately they become good therapeutic targets for angiogenesis inhibitors. Via its cell surface receptor VEGF receptor (VEGFR), VEGF is a pro-angiogenic peptide growth factor that activates the phosphoinositide 3 (PI3) kinase/AKT signal transduction pathway, which is one of three major RTK signalling pathways. VEGF is overexpressed in tumour tissue as a result of HIF-1 overexpression, caused by inactivation of the VHL tumour suppressor gene (in 61% of sporadic RCCs). In randomized trials, two well-tolerated oral multi-RTK inhibitors sunitinib and pazopanib have demonstrated significant benefit in the first-line metastatic setting, prolonging progression-free survival (PFS) in metastatic RCC patients by 6 months, compared with interferon alfa or placebo. The UK NICE approved both in 2009 and 2011, respectively. Complete responses are rare, and partial responses modest (30–40%); they also stabilize the disease in ~30% of patients.1,2

Bevacizumab is a humanized monoclonal antibody that binds to VEGF. A phase III randomized trial demonstrated a median 31% response with bevacizumab + interferon alfa, compared with interferon alfa alone, with a 4.8-month PFS advantage for low- and intermediate-risk patients. This combination is a rarely used option for first-line treatment. A randomized trial demonstrated a >3-month survival advantage of temsirolimus, an inhibitor...
of cytoplasmic mTOR kinase (a downstream component of the same pathway) in metastatic RCC patients, compared with interferon alfa. This remains an option for first-line treatment of poor-risk disease. For second line, everolimus is an oral mTOR inhibitor—it confers a 2-month PFS over placebo when used for patients failing the treatments above. However, because of toxicity and cost, NICE has not approved its use (2011), so the epidermal growth factor receptor (EGFR) inhibitor axitinib is routinely used at the time of writing for second-line treatment in the UK, with proven superior survival, compared to another RTK inhibitor sorafenib.

Cabozantinib, another oral multi-RTK (including VEGFR, MET, and AXL) inhibitor has shown PFS superiority over everolimus (7.4, compared with 3.8, months) as a second-line agent in the METEOR study. Support for this indication by NICE is expected in July 2018.

Second-generation immunotherapy

Recent advances in immune-oncology have the potential to transform the practice of medical oncology. _Checkpoint inhibitors_, antibodies that inhibit suppressive regulators of T-cell function, have been developed that target the PD-1/PD-L1, and CTLA-4 pathways. One such agent _nivolumab_ has demonstrated a 5.4-month overall survival advantage over everolimus, with less toxicity, as second line in patients who have failed treatment with RTK or mTOR inhibitors, exhibiting an objective response rate of 25% vs 5%. Approval for nivolumab by NICE was given in October 2016, which is likely to alter the landscape for second-line treatment. Phase I and II trials of similar agents including atezolizumab and ipilimumab also show good response rates (22–45%) and acceptable toxicity.

There is also interest in combining checkpoint inhibitors with RTK inhibitors, which may enhance the anti-tumour efficacy of the PD-1 pathway blockade by reducing tumour infiltrating regulatory T-cells. Finally, studies are ongoing to explore the efficacy of _immune-stimulatory vaccines_ containing dendritic cells and tumour-associated peptides.

- **Chemotherapy**: little role in RCC; ineffective due to high multidrug resistance P glycoprotein expression.
- **Palliative care**: steroids [e.g. dexamethazone 4mg four times daily (qds)] improve appetite and mental state but are unlikely to impact on tumour growth. The involvement of uro-oncology, palliative, and primary care MDTs is essential to support these patients and their relatives.

References

Upper urinary tract transitional cell carcinoma

Upper urinary tract transitional cell carcinoma (UUT-TCC) accounts for 90% of upper urinary tract tumours, the remainder being benign inverted papilloma, fibroepithelial polyp, SCC (associated with long-standing staghorn calculus disease), adenocarcinoma (rare), and various rare non-urothelial tumours, including sarcoma.

TCC of the renal pelvis is uncommon, accounting for 10% of renal tumours and 5% of all TCCs. Ureteric TCC is rare, accounting for only 1% of all newly presenting TCCs. Half are multifocal, 75% located distally, while only 3% are located in the proximal ureter. Synchronous bladder cancer is found in 17%.

Risk factors are similar to those of bladder TCC (see pp. 282–3).
- ♂ are affected three times as commonly as ♀.
- Incidence increases with age.
- Smoking confers a 7-fold risk, and there are various occupational causes.
- Phenacetin ingestion.
- There is a high incidence of UUT-TCC in families from some villages in Balkan countries (‘Balkan nephropathy’) that is associated with Aristolochia fangchi and clematis plants, as also observed in Chinese herb nephropathy.
- Lynch syndrome (hereditary non-polyposis colon cancer) is an autosomal dominant condition caused by a DNA mismatch repair defect; it is associated with various cancers, including UUT-TCC, most in middle-aged ♀.

Pathology and grading

The tumour usually has a papillary structure, but occasionally solid. It is bilateral in 2–4%. It arises within the renal pelvis, less frequently in one of the calyces or ureter. Histologically, features of TCC are present; grading is as for bladder TCC. Spread is by direct extension, including into the renal vein and vena cava; lymphatic spread to para-aortic, para-caval, and pelvic nodes; and bloodborne spread, most commonly to the liver, lung, and bone. At diagnosis, 60% of renal pelvis and 25–45% of ureteric TCC is invasive.

Presentation
- Painless total haematuria (80%).
- Loin pain (30%), often caused by clots passing down the ureter (‘clot colic’).
- Asymptomatic when detected, associated with synchronous bladder TCC (in 4%, accounts for 15% of UUT-TCC).

Investigation

Ultrasound is excellent for detecting the commoner renal parenchymal tumours but is not sensitive in detecting tumours of the renal pelvis or ureter. Diagnosis is usually made on urine cytology and CTU, respectively, revealing malignant cells and a filling defect in the renal pelvis or ureter. If
doubt exists, selective ureteric urine cytology, retrograde ureteropyelography, or flexible ureterorenoscopy with biopsy (accuracy of grade 90%) are indicated. Some surgeons prefer to have histological proof of malignancy prior to treatment. Additional staging is obtained by chest CT and, occasionally, isotope bone scan.

Staging uses the TNM (2017) classification (for TNM staging, see http://www.uicc.org/resources/tnm/publications-resources), following histological confirmation of the diagnosis [World Health Organization (WHO) 2004 grading: papillary urothelial neoplasia of low malignant potential, and low-grade and high-grade carcinomas]. Lymph node spread is to the para-aortic, pre-caval, and ipsilateral common iliac and pelvic nodes.

Treatment

If staging indicates non-metastatic disease in the presence of a normal contralateral kidney, the gold standard treatment with curative intent is radical nephroureterectomy (RNU) with excision of the bladder cuff. A single dose of post-operative mitomycin (MMC) reduces the risk of bladder tumour recurrence (ODMIT-C Trial, 2011).

The laparoscopic approach focuses on mobilizing the kidney and upper ureter extraperitoneally; the lower ureter with the bladder cuff is dissected via a Gibson-type open incision, through which the entire specimen is retrieved. As for laparoscopic nephrectomy, benefits include reduced post-operative pain and faster recovery. Tumour spillage and port site metastases are theoretical hazards. Long-term results are equivalent with the open approach.

The open approach uses either a long transperitoneal midline incision or separate loin and iliac fossa incisions. The entire ureter is taken with a cuff of the bladder because of the 50% incidence of subsequent ureteric stump recurrence.

Percutaneous, segmental, or ureterorenoscopic resection/laser ablation of the tumour are the minimally invasive options for patients with a single functioning kidney, bilateral disease, or unilateral low-grade tumours of <1cm, or those who are unfit. Topical BCG or chemotherapy (e.g. MMC) may subsequently be instilled through the nephrostomy or ureteric catheters, though benefit has not been proven. This nephron-sparing approach is less likely to be curative than definitive surgery, with up to a third of patients having recurrence.

Follow-up after RNU should continue at least 5y to detect metachronous bladder cancer (50%) and UUT-TCC (5%):

- Ta/Tis: cystoscopy and urine cytology at 3 months, then annually, plus annual CTU.
- T1-4: cystoscopy and urine cytology at 3 months, then annually, plus CTU 6-monthly for the first 2y and thereafter annually.
- Follow-up after kidney-sparing surgery should include urine cytology and CTU at 3 months, 6 months, and then annually, plus cystoscopy and ureteroscopy at 3 months, then 6-monthly for 2y and thereafter annually.
Metastatic disease
- Systemic combination chemotherapy (platinum-based): for unresectable or metastatic disease, is associated with a 30% total or partial response at the expense of moderate toxicity.
- Palliative surgery or arterial embolization: may be necessary for troublesome haematuria. Radiotherapy is generally ineffective.

Prognostic factors
(See Table 7.6.)
Muscle-invasive UUT-TCC, constituting 60% of new presentations, has a poor prognosis. The following are recognized prognostic factors, in descending order of importance:
- Tumour grade and stage.
- Associated Tis.
- Age.
- Lymphovascular invasion.
- Tumour >1cm or multifocality.
- Extensive tumour necrosis.
- Tumour location.
- Molecular markers, e.g. epithelial cadherin, HIF-1A, telomerase RNA, TK MET.

Table 7.6 UUT-TCC 5y survival

<table>
<thead>
<tr>
<th></th>
<th>5-Year Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-invasive (Ta, Tis)</td>
<td>100%</td>
</tr>
<tr>
<td>Organ-confined (T1, 2)</td>
<td>73–97%</td>
</tr>
<tr>
<td>Locally advanced (T3, 4)</td>
<td><10–41%</td>
</tr>
<tr>
<td>Node-positive (N+)</td>
<td>10%</td>
</tr>
<tr>
<td>Pulmonary, bone metastases (M+)</td>
<td>10%</td>
</tr>
</tbody>
</table>
Chapter 7 Urological neoplasia

Bladder cancer: epidemiology and aetiology

Incidence, mortality, and survival
Bladder cancer is the second commonest urological malignancy and the eighth commonest cancer in men. UK incidence has fallen since the mid-1990s in all age groups; 10,100 patients were diagnosed in 2014. Mortality has fallen since the early 1990s, more pronounced in men than women, accounting for 5,400 UK deaths in 2014. This makes it the sixth commonest cause of cancer death, representing 3% of all UK cancer deaths. Perhaps the reduction in smoking accounts for such trends. These data indicate about half of patients diagnosed have curable or controllable disease; hence, 10y survival is around 50% for women and approaching 60% in men.

Risk factors
- **Men:** are 2.5 times more likely to develop the disease than women, the reasons for which are unclear but may be associated with greater urine residuals in the bladder or smoking demographics.
- **Age:** increases risk; bladder cancer is most commonly diagnosed in the eighth decade and is rare below age 50y.
- **Environmental carcinogens:** found in urine are the major cause of bladder cancer:
 - **Smoking:** is the major environmental cause of bladder cancer in the developed world. Smokers have a 2- to 4-fold risk of developing bladder cancer, with subsequent recurrences and higher mortality proportional to the amount and duration, compared to non-smokers. Ex-smokers have reduced risk. Estimates suggest that 37% of bladder cancers is caused by smoking in the UK. Cigarette smoke contains the carcinogens 4-aminobiphenyl (4-ABP) and 2-naphthylamine (Fig. 7.2). Slow hepatic acetylation (detoxification) of 4-ABP by N-acetyltransferase and glutathione S-transferase M1 (GSTM1) or induction of the cytochrome p-450 1A2 demethylating enzyme appears to increase urothelial carcinogenic exposure. There is a slow (20y) risk reduction following cessation of smoking.
 - **Family history:** first-degree relatives have a 1.8-fold risk, although shared smoking habits are considered to be the cause, rather than a genetic linkage;
 - **Occupational exposure:** to carcinogens, in particular aromatic hydrocarbons like aniline, is a recognized cause of bladder cancer, linked to 6% of cases. Examples of ‘at-risk’ occupations are shown in Box 7.1. A latent period of 25–45y exists between exposure and carcinogenesis.
 - **Chronic inflammation of bladder mucosa:** bladder stones, long-term catheters (e.g. SCI patients), and notoriously the ova of Schistosoma haematobium (bilharziasis) are implicated in the development of SCC of the bladder.
 - **Drugs:** phenacetin, cyclophosphamide, pioglitazone (diabetes patients).
 - **Race:** black people have a lower incidence than white people, but inexplicably they appear to carry a poorer prognosis.
 - **Pelvic radiotherapy:** either for prostate cancer (external beam or brachytherapy) or a gynaecological malignancy, a relative risk of 1.4–4 exists for the later development of a second primary malignancy in the bladder. Ionizing radiation is linked to 3% of UK bladder cancers.
Bladder Cancer: Epidemiology and Aetiology

- Crohn's disease patients: have a 2-fold ↑ risk.
- Renal transplant patients: have a 3-fold ↑ risk.
- Obesity: increases the risk by 10–30%.

No evidence for a hereditary genetic aetiology exists, though many somatic genetic abnormalities have been identified. The commonest cytogenetic abnormality is loss of chromosomes 9p, 9q, 11p 13q, and 17q. Activation/amplification of oncogenes (p21 ras, c-myc, c-jun, erbB-2), inactivation of tumour suppressor genes (p53 mutations appear to worsen survival after treatment, retinoblastoma, p16 cyclin-dependent kinase inhibitor), and ↑ expression of angiogenic factors (e.g. VEGF) are reported in TCCs.

Reference

1 Cancer Research UK. Available from: https://www.cancerresearchuk.org/#/
Bladder cancer: pathology, grading, and staging

Benign tumours of the bladder, including inverted urothelial papilloma and nephrogenic adenoma, are uncommon.

The vast majority of primary bladder cancers are malignant and epithelial in origin:
- >90% are TCCs.
- 1–7% are SCCs; 75% are SCC in areas where schistosomiasis is endemic;
- 2% are adenocarcinoma;
- SCC and spindle cell carcinomas (rare);
- Other rare primary tumours include phaeochromocytoma, melanoma, lymphoma, and sarcoma arising within the bladder muscle;
- Secondary bladder cancers are mostly direct spread by adenocarcinomas from the gut, prostate, kidney, or ovary, or squamous carcinoma of the uterine cervix.

Tumour spread is:
- Direct tumour growth to involve the detrusor, the ureteric orifices, prostate, urethra, uterus, vagina, perivesical fat, bowel, or pelvic side walls.
- Implantation, into wounds/percutaneous catheter tracts.
- Lymphatic infiltration of the iliac and para-aortic nodes.
- Haematogenous, most commonly to the liver (38%), lung (36%), adrenal gland (21%), and bone (27%). Any other organ may be involved.

TCC may be single or multifocal. Because 5% of patients will have a synchronous upper tract TCC and metachronous recurrences may develop after several years, the urothelial ‘field change’ theory of polyclonality has been favoured over the theory of tumour monoclonality with transcoelomic implantation (seeding).

Primary TCC is either non-muscle invasive (NMI) or muscle-invasive (MI):
- 70% of tumours are papillary, usually G1 or G2, exhibiting at least seven transitional cell layers covering a fibrovascular core (normal transitional epithelium has ~5 cell layers). Papillary TCC is usually NMI, confined to the bladder mucosa (Ta) or submucosa (T1). Ten per cent of patients subsequently develop MI or metastatic disease. However, G3T1 tumours are more aggressive, with 40% subsequently upstaging.
- 10% of TCC have mixed papillary and solid morphology, and 10% are solid. These are usually G3, half of which are MI at presentation.
- 10% of TCC is flat CIS. This is poorly differentiated carcinoma, but confined to the epithelium and associated with an intact basement membrane. Fifty per cent of CIS lesions occur in isolation; the remainder occur in association with MI TCC. CIS usually appears as a flat, red velvety patch on the bladder mucosa; 15–40% of such lesions are CIS, the remainder being focal cystitis of varying aetiology. The cells are poorly cohesive, with up to 100% of patients with CIS exhibiting positive urine cytology, in contrast to much lower yields (17–72%) with G1/2 papillary TCC.
54% of untreated CIS lesions will progress to MI TCC, making CIS the most aggressive form of superficial TCC; failure to respond to intravesical BCG increases this risk to 66%.

5% of patients with G1 or G2 TCC and at least 20% with G3 TCC (including CIS) exhibit lympho-vascular invasion (LVI).

Histological grading was traditionally classified into: benign urothelial papilloma and well, moderately, and poorly differentiated (G1, G2, and G3, respectively) carcinoma (1973 WHO Classification). Most retrospective studies, clinical trials, and guidelines are based on this classification. The 2004 WHO grading uses cytological/architectural criteria to distinguish flat lesions (hyperplasia, dysplasia, CIS) and raised lesions [urothelial papilloma, papillary urothelial neoplasms of low malignant potential (PUNLMP), low-grade and high-grade urothelial carcinomas]. PUNLMP comprises benign and most G1 tumours, while low-grade comprises the remaining G1 and most G2, and high-grade comprises the remaining G2 and G3 tumours. The 2004 system is more reproducible but is as yet not proven to be of better prognostic value than the 1973 system. Hence, both systems are used in contemporary clinical practice, with G2 tumours being called either G2 low-grade or G2 high-grade.

LVI is associated with pathological upstaging and is a poor prognostic factor in T1 tumours, so is routinely reported in resection specimens. Other TCC variants include sarcomatoid, plasmacytoid, nested, micropapillary, and adeno, all of which carry poorer prognosis. Molecular markers, particularly FGFR3 mutation status show promise but are still under investigation.

Staging is by the TNM (2017) classification (Fig. 7.3) (for TNM staging, see http://www.uicc.org/resources/tnm/publications-resources). It relies upon physical examination and imaging, and the pathological classification (prefixed ‘p’) corresponding to the TNM categories.

![Fig. 7.3 T staging of bladder cancer.](image)
Metastatic lymph node TCC is found in: 0% of Tis, 6% of Ta, 10% of T1, 18% of T2 and T3a, and 25–33% of T3b and T4 disease.

SCC is usually solid or ulcerative and MI at presentation. SCC accounts for only 1% of UK bladder cancers. SCC in the bladder is associated with chronic inflammation and urothelial squamous metaplasia, rather than CIS. In Egypt, 80% of SCCs are induced by the ova of *Schistosoma haematobium*. Five per cent of paraplegics with long-term catheters develop SCC. Smoking is also a risk factor for SCC. The prognosis is better for bilharzial SCC than for non-bilharzial disease, probably because it tends to be lower grade and metastases are less common in these patients.

Adenocarcinoma is rare, usually solid/ulcerative and G3, and carries a poor prognosis. One-third originate in the urachus, the remnant of the allantois, located deep to the bladder mucosa in the dome of the bladder. Adenocarcinoma is a long-term (10–20+ year) complication of bladder extrophy and bowel implantation into the urinary tract, particularly bladder substitutions and ileal conduits after cystectomy. There is association with cystitis glandularis, rather than CIS. Secondary adenocarcinomas of the bladder mostly arise by direct spread, as discussed previously.
Bladder cancer: clinical presentation

Symptoms
- The commonest presenting symptom (85% of cases) is painless VH. UTI should be excluded, because this is the commonest cause of haematuria. Haematuria may be initial or terminal if the lesion is at the bladder neck or in the prostatic urethra. Four to 12% of patients >45y (risk increasing with age) and 1–2% of those <45y with VH have bladder cancer. A history of smoking or occupational exposure is relevant.
- a-NVH found on routine urine stick-testing accounts for a minority of presentations, predicting bladder cancer in 0.79% and 1.6% for patients aged 40–59y and ≥60y, respectively. Up to 16% of ♂ and 4% of ♀ have stick-test haematuria. NICE (2015)\(^1\) has raised the age limit for urgent referral to 60y, which must include one of the additional findings:
 - Dysuria (4.5% have bladder cancer).
 - Raised WCC (3.9% have bladder cancer).
- Filling-type LUTS such as urgency or suprapubic pain. There is almost always microscopic or macroscopic haematuria. This so-called ‘malignant cystitis’ is typical in patients with CIS.
- Recurrent UTIs predict bladder cancer in 0.5% patients.
- Pneumaturia due to malignant colovesical fistula, though less common than benign causes (diverticular and Crohn’s disease).
- Urachal adenocarcinomas may present with a blood or mucus umbilical discharge or a deep sub-umbilical mass.
- Advanced bladder cancer may present with lower limb swelling due to lymphatic/venous obstruction, bone pain, weight loss, anorexia, confusion, and anuria (renal failure due to bilateral ureteric obstruction).
- Pain is unusual, even if the patient has obstructed upper tracts, since the obstruction and renal deterioration arise gradually.

Signs
General examination may reveal pallor, indicating anaemia due to blood loss or chronic renal impairment. Abdominal examination may reveal a suprapubic mass in the case of locally advanced disease; DRE may reveal a pelvic mass above, or involving, the prostate. If this mass is mobile (best as-essed on bimanual examination under GA), it is most likely to be confined to the bladder and surgically operable.

Although the likelihood of diagnosing bladder cancer in patients <50y is low, all patients with these presenting features should be investigated (see pp. 290–3).

Reference
Bladder cancer: haematuria, diagnosis, and transurethral resection of bladder tumour

Investigation of haematuria

According to NICE guidelines (2015), VH in patients aged ≥45y should be investigated if there is no evidence of infection or if it persists or recurs after successful treatment of an infection. Unexplained NVH should be investigated in patients aged ≥60y and with either dysuria or raised WCC.

VH requires consideration of other (rare) causes of discoloured urine (myoglobinuria, haemoglobinuria, beeturia, drug discoloration—rifampicin, doxorubicin). Twenty-two per cent of patients with VH will harbour a urological malignancy. NVH is further subdivided as follows:

- s-NVH: symptoms such as voiding LUTS, hesitancy, frequency, urgency, and dysuria.
- a-NVH: incidental detection in the absence of LUTS or upper urinary tract symptoms.

Five per cent of patients with NVH will harbour urological malignancy, more frequently in patients >40y.

Dipstick vs microscopy

Urine dipstick of a fresh voided urine sample, containing no preservative, is considered a sensitive means of detecting the presence of haematuria. Routine microscopy for confirmation of dipstick haematuria is not necessary. While the sensitivity of urine dipsticks may vary from one manufacturer to another, significant haematuria is considered to be 1+ or greater (trace haematuria is negative), either non-haemolysed or haemolysed.

- Urological investigations: are tailored according to patient age and symptoms:
 - ≥40y old with VH: urgent CTU, cystoscopy, and cytology.
 - <40y with VH: urgent USS renal tract, followed by CT-KUB, cystoscopy, and cytology.
 - >40y with NVH: CT-KUB, followed by USS renal tract, cystoscopy ± urine cytology.
 - <40y with NVH: USS renal tract alone for a-NVH and with cystoscopy for s-NVH.

CTU is faster and more sensitive than ultrasound or IVU in the detection of renal (parenchymal and urothelial) and ureteric tumours. However, it carries a higher radiation dose and is more expensive. CTU also detects some bladder tumours but may overcall bladder wall hypertrophy as a tumour and will miss flat CIS and urethral pathology, so it cannot replace cystoscopy. CT-KUB requires less radiation dose and is preferred in patients who are more likely to have a stone than malignancy.

If all investigations are normal, consideration should be given to nephrological disorders that may cause haematuria such as glomerulonephritis. Annual monitoring of BP, urinalysis, and eGFR is recommended. Cross-referral to a renal physician is advised in patients with persisting microscopic haematuria ± proteinuria and hypertension or eGFR <60mL/min.
Referral back for further urological investigation is required if haematuria becomes visible (CTU indicated) or NVh persists but becomes symptomatic. Patients with predominantly filling-type LUTS, suprapubic pain, or recurrent UTI/pneumaturia should also have urine cytology and cystoscopy.

Causes of persistent NVH

Urological causes

Common
- BPH.
- Cancer (bladder, kidney, prostate, ureter).
- Calculus disease or nephrolithiasis.
- Cystitis or pyelonephritis.
- Prostatitis or urethritis.
- *Schistosoma haematobium* infection.

Less common
- Radiation cystitis.
- Urethral strictures.
- TB.
- Medullary sponge kidney.
- Cyclophosphamide-induced cystitis.

Rare
- Arteriovenous malformation (AVM).
- Renal artery thrombosis.
- Polycystic kidney disease.
- Papillary necrosis of any cause.
- Loin pain haematuria syndrome.

Nephrological causes

Common
- IgA nephropathy (Berger’s disease).
- Thin basement membrane disease.

Less common/rare
- Acute glomerular disease.
 - Post-infectious glomerulonephritis.
 - Rapidly progressive glomerulonephritis.
 - Systemic lupus nephritis.
 - Vasculitis.
 - Goodpasture’s disease.
 - Henoch–Schönlein purpura syndrome.
 - Haemolytic uraemic syndrome.
- Chronic primary glomerulonephritis.
 - Focal segmental glomerulonephritis.
 - Mesangiocapillary glomerulonephritis
 - Membranous nephropathy.
 - Mesangial proliferative glomerulonephritis.
- Familial causes.
 - Hereditary nephritis (Alport’s syndrome).
 - Polycystic kidney disease (autosomal dominant or recessive).
Urine cytology
Examination of freshly voided urine for exfoliated cells is most sensitive (90–100%) in patients with high-grade TCC and CIS, anywhere in the urinary tract. It is costly, and <1% of cancers are detected by cytology alone when other investigations are normal. False-negative cytology is frequent (40–70%) in patients with papillary TCC, while false-positive cytology can arise due to infection, inflammation, stones, instrumentation, and intravesical instillations such as chemotherapy. Guidelines do not specify if and when to use it, so practices vary.

Urine molecular markers
Enzyme-linked immunosorbent assay (ELISA) tests for detecting tumour-specific urinary markers, such as bladder tumour antigen (BTA) or nuclear matrix protein 22 (NMP22), tend to have greater sensitivity, but reduced specificity, for detecting TCC, compared with urine cytology. Other urinary tests include ImmunoCyt and UroVysion (fluorescence in situ hybridization using probes for chromosomes 3, 7, 17, and 9p21). The absence of clinical trials and the costs involved mean that it is unclear whether these tests, alone or in combination, may replace any of the standard investigations for haematuria.

Diagnosis and initial treatment of bladder cancer
TURBT usually provides definitive histological diagnosis, grade, and clinical and pathological stage and is the first (sometimes sole) treatment. This is undertaken under general or spinal anaesthesia; bimanual examination is mandatory before and after bladder tumour resection to assess size, position, and mobility (i.e. stage). If possible, the surgeon should resect the tumour(s) completely, including muscle. The resection should be fractionated if a large tumour, and en bloc if <1cm tumour. The pathologist should report on the tumour type, grade, and stage; in particular, the presence or absence of muscularis propria should be noted since its absence will preclude reliable T staging. Red areas are biopsied separately; the prostatic urethra is biopsied if cystectomy with bladder reconstruction is under consideration. Particular care is taken when resecting tumours at the dome since intraperitoneal bladder perforation may occur, especially in women with thin-walled bladders. Care is also taken when resecting posterolateral tumours due to the proximity of the obturator nerve; stimulation may result in a ‘kick’, unless the patient is under full paralysis, which may lead to bladder perforation and/or troublesome bleeding.

Narrow-band imaging (NBI) and photodynamic detection (PDD)
- **NBI:** is an optical image enhancement technology in which the narrow bandwidth of light is strongly absorbed by Hb and penetrates only the surface of tissue, increasing the visibility of hypervascular cancer tissue, in contrast to normal urothelium.
- A number of small studies have demonstrated NBI to be superior to standard white light cystoscopy for the detection of new and recurrent tumours.
- **PDD** (fluorescence cystoscopy): uses blue light (400nm) in combination with an intravesical porphyrin-based photosensitizer hexaminolevulinic acid (HAL; Hexvix®). In bladder cancer cells, this leads to red
fluorescence (640nm) due to high levels of the heme intermediate protoporphyrin IX. Several randomized studies have revealed CIS lesions and developing papillary tumours which cannot be seen using standard white light for tumour detection and resection. For example, a total of 113 CIS lesions in 58 patients, 104 (92%) were detected by PDD, 77 (68%) were detected by white light cystoscopy, while five were detected only by biopsy of visually normal mucosa. The 1y risk of papillary recurrence is reduced by 9–27%. The value of PDD for improvement of the outcome in relation to progression rate or survival remains to be demonstrated, though it has gained a place in routine management of patients with positive urine cytology, but normal-looking bladder mucosa, and those with recurrence and a history of high-grade cancer.

Staging investigations are usually reserved for patients with biopsy-proven MI bladder cancer, unless clinically indicated, since NMI TCC and CIS are rarely associated with metastases.

References
Bladder cancer (non-muscle invasive TCC): surgery and recurrence

TURBT

The diagnostic role of TURBT has been discussed on pp. 292–3. As a primary treatment, a visually complete tumour resection is adequate for 70% of newly presenting patients with Ta/T1 superficial disease. The remaining 30% of patients experience early recurrence, 15% with upstaging. Because of this, it is standard care that all new patients receive adjuvant treatment with a single dose of post-operative intravesical chemotherapy (usually mitomycin; see pp. 296–7). Complications of TURBT are uncommon, including bleeding, sepsis, bladder perforation, incomplete resection, and urethral stricture.

Alternatives to TURBT

Transurethral cystodiathermy or laser are accepted, quicker, and less morbid procedures for ablating small superficial recurrences when obtaining tissue for histology is not considered necessary.

Fluorescence and NBI cystoscopy are discussed on pp. 292–3.

Follow-up after TURBT

- **Second resection:** an early repeat TUR (within 2–6wk) should be undertaken:
 - If the first resection was incomplete.
 - When the pathologist reports that the resected specimen contains no muscularis propria, or
 - If a high-grade, but apparently non-invasive, T1 tumour has been reported, since up to 25% (45% if no muscle included on the first specimen) of these G3pT1 tumours are understaged T2 tumours and up to 55% of T1 and 41% of G3 tumours have persistent disease.

This strategy improves recurrence-free survival and prognosis.

In the absence of these indications for a second resection, a review cystoscopy is performed at 3 months. If this demonstrates recurrence, 70% will recur further. If not, only 20% will recur further. If the bladder is clear at follow-up, subsequent cystoscopies are performed under LA at 9 months and thereafter annually for 5y (patients with low-risk TCC) or until the patient is no longer fit to undergo treatment (patients with high-risk disease).

Patients with G3T1 TCC and CIS are at significantly higher risk of recurrence, and 40% subsequently upstage. Some patients experience persistent symptomatic multifocal G1/2, Ta/1 recurrent TCC, demanding frequent follow-up procedures. In these circumstances, **adjuvant treatment** is indicated (see pp. 296–7).

There is no accepted protocol for upper tract surveillance in patients with a history of bladder TCC, although EAU guidelines recommend yearly imaging (CTU) for patients with high-risk disease.

Predicting recurrence and progression in Ta/T1 TCC

A validated scoring system, based on the following factors, has been developed [by the European Organization for Research and Treatment of Cancer (EORTC)]:

- Number of tumours (e.g. 1 = 0 points; 2–7 = 3 points; ≥8 = 6 points).
- Tumour diameter (<3cm vs >3cm).
- Prior recurrence (<1 vs >1 per year).
- T stage (Ta vs T1).
• Tumour grade (G1 vs G2 vs G3).
• Presence of concomitant CIS.

This system divides superficial tumours into those at low risk (50%), intermediate risk (35%), or high risk (15%) of recurrence and progression at 1y or 5y. The scoring tables and risk calculators are available at: http://www.eortc.be/tools/bladdercalculator/.

NICE guidelines (2015) classify patients into low (primary solitary pTaG1/2 <3cm or PUNLMP), intermediate, or high (pTaG3, pT1G2/3, CIS, or micropapillary or nested variant cancer) risk.

See Table 7.7 for a summary of the management of bladder cancer by grade and stage.

Table 7.7 A summary of the management of bladder cancer

<table>
<thead>
<tr>
<th>Histology</th>
<th>Risk of recurrence post-TURBT (%)</th>
<th>Risk of stage progression (%)</th>
<th>Further treatment</th>
<th>Urological follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1/2, Ta/1, TCC</td>
<td>30</td>
<td>10–15</td>
<td>Immediate post-operative single dose intravesical chemotherapy</td>
<td>Review cystoscopies, commencing 3 months</td>
</tr>
<tr>
<td>Recurrent multifocal G1/2, Ta/I TCC</td>
<td>70+</td>
<td>10–15</td>
<td>Intravesical chemotherapy × 6-weekly doses</td>
<td>Review cystoscopies, commencing 3 months</td>
</tr>
<tr>
<td>G3, Ta/T1 TCC</td>
<td>80</td>
<td>40</td>
<td>Second resection; intravesical BCG × 6-weekly doses; consider cystectomy for recurrence</td>
<td>Review cystoscopies, commencing 6–12wk</td>
</tr>
<tr>
<td>CIS (severe intraepithelial dysplasia)</td>
<td>80</td>
<td>40</td>
<td>Intravesical BCG × 6-weekly doses ± maintenance; consider cystectomy for recurrence</td>
<td>Cystoscopies + biopsy and cytology commencing 3 months</td>
</tr>
<tr>
<td>pT2/3, N0, M0 TCC, SCC or adenocarcinoma</td>
<td>Usually TUR is incomplete</td>
<td>N/A</td>
<td>Cystectomy or radiotherapy ± neo-adjuvant chemotherapy or palliative TURBT (unfit)</td>
<td>Cystoscopies if bladder is preserved. Urethral washings for cytology</td>
</tr>
<tr>
<td>T4 or metastatic TCC, SCC, or adenocarcinoma</td>
<td>Usually TUR is incomplete</td>
<td>N/A</td>
<td>Systemic chemotherapy; MDT symptom palliation</td>
<td>Palliative treatment for local bladder symptoms</td>
</tr>
</tbody>
</table>

References

Bladder cancer (non-muscle invasive TCC): adjuvant treatment

Intravesical chemotherapy (e.g. MMC 40mg in 40mL of saline for 1h) is used for G1–2, Ta or T1 tumours, and recurrent multifocal TCC. MMC is an antibiotic chemotherapeutic agent derived from *Streptomycetes lavendulae* that inhibits DNA synthesis. In experimental studies, it may cause regression of small papillary TCC, so it should be cytotoxic for microscopic residual disease post-TURBT. A meta-analysis of seven randomized trials demonstrated that a single dose given within 24h of first TURBT significantly (24%) reduces the likelihood of tumour recurrence, compared to TURBT alone, from 48% to 36%. This is now standard treatment for all new papillary bladder tumours post-TURBT.

For many patients at low risk of recurrence, the risk reduction seen with single-dose chemotherapy is equivalent to that seen using weekly instillations for 6wk, commencing up to 2wk post-TURBT. Such longer courses are still recommended for patients at higher risk of recurrence or who have multifocal recurrences, excluding those with high-grade Ta/1 TCC or CIS.

Intravesical chemotherapy has never been shown to prevent progression to muscle invasion and has no impact upon survival. It is administered via a urethral catheter, is held in the bladder for 1h, and should not be used if there is ongoing haematuria or if bladder perforation is suspected.

- **Toxicity of MMC:** 15% of patients report transient filling-type LUTS; occasionally, a rash develops on the genitals or palms of the hands, so treatment must be stopped. Systemic toxicity is rare with MMC.

- **Intravesical BCG:** is an attenuated strain of *Mycobacterium bovis*. Commercially available strains include Pasteur, Connaught, and Tice. It acts as an immune stimulant, upregulating cytokines such as IL-6 and IL-8 in the bladder wall, activating immune effector cells.

 BCG produces complete responses in 60–70% of patients. It is as effective as chemotherapy for adjuvant treatment of low- and intermediate-risk G1/2, Ta/1 TCC; therefore, it is not often used (except as second line) because of the additional toxicity. In high-risk patients, with multiple G2T1, high-grade G2 or G3Ta/T1, or CIS, the benefit of BCG over chemotherapy in reducing the risk of recurrence is clear, and it is standard care. BCG is given as a 6wk induction course, starting at least 2wk post-TURBT. It is administered via a urethral catheter, 81mg in 50mL of saline, and retained in the bladder for 1h.

 A meta-analysis of 24 trials has demonstrated that BCG reduces risk of stage progression (to muscle invasion) by 27%, based on a median follow-up of 2.5y. This effect was only seen in patients who received maintenance BCG (e.g. 30 treatments over 3y after the initial 6wk induction), which is now the standard recommendation for high-grade Ta/T1 or CIS initial responders. For recurrent high-grade Ta/T1 or CIS, a second course of BCG may be offered if maintenance was not given, as 50% will respond. A total of 66% of BCG non-responders and 10–20% of initial responders will eventually progress to MI TCC. Hence, if no response is seen or relapse diagnosed despite BCG maintenance or a second course, proceed without delay to radical cystectomy; the cure rate is 90%.
Though less expensive and more effective, BCG is more toxic than intravesical chemotherapy, causing cystitis symptoms in >90% of patients and low-grade fever with myalgia in 25%. Up to 6% of patients develop a high persistent fever, requiring antituberculous therapy for 6 months with isoniazid and pyridoxine or standard triple therapy (rifampicin, isoniazid, and ethambutol) in critically ill patients. Death due to BCG sepsis, granulomatous prostatitis, and epididymo-orchitis are rare complications.

Contraindications to intravesical BCG include

- Immunosuppressed patients.
- Pregnant or lactating women.
- Patients with haematological malignancy.
- Following traumatic catheterization.
- Symptomatic UTI or VH.

The appearances at cystoscopy performed too soon after BCG can appear alarming due to a generalized inflammatory response. Cystoscopy and biopsy 3 months after BCG may still reveal chronic granulomatous inflammation.

References

Bladder cancer (muscle-invasive): staging and surgical management of localized (pT2/3a) disease

This is a dangerous disease; the untreated 5y survival is just 3%. Management of patients with invasive bladder cancer requires an MDT approach, involving case-by-case discussion between the urological surgeon, radiotherapist, and medical oncologist, with support from the pathologist, radiologist, and cancer specialist nurse.

Staging investigations

- **Local:** CT and MRI are equivalent in assessing extravesical tumour extension, upper tract obstruction, and lymphadenopathy (pelvic nodes >8mm, abdominal nodes >10mm). T stage correlation with pathological findings at cystectomy is 65–80%. Both modalities will miss microscopic nodal disease in 70% of cases.
- **Distant:** CT best assesses lung metastases, although liver metastases are best assessed by MRI. Isotope bone scan or MRI is used to demonstrate bone metastases (5–15% of patients with MI TCC). FDG PET-CT can be considered for patients prior to radical treatment if there are indeterminate CT or MRI findings or a high risk of metastatic disease (e.g. T3b disease).
- **Upper tract TCC:** excretory-phase CTU shows the presence of upper tract TCC (1.8% overall, 7.5% if the primary tumour is at the trigone).

In the absence of prospective randomized trials comparing the surgical and non-surgical treatments, the options for a patient with newly diagnosed confined MI bladder cancer are:

- **Bladder preserving:**
 - Palliative TURBT ± palliative radiotherapy (RT): for elderly/unfit patients.
 - Partial cystectomy ± neo-adjuvant systemic chemotherapy.
 - TURBT plus definitive RT (see pp. 302–3): poor options for squamous and adenocarcinoma as they are seldom radiosensitive.

- **Radical cystectomy with:**
 - Ileal conduit urinary diversion.
 - Ureterosigmoidostomy urinary diversion.
 - Continent urinary diversion.
 - Neo-adjuvant chemotherapy: some evidence of benefit (see p. 304).
 - Neo-adjuvant RT: no evidence of benefit (see p. 304).

Partial cystectomy is a good option for well-selected patients with small solitary disease located near the dome and for urachal carcinoma. Morbidity is less than with radical cystectomy, and diversion is not required. The surgical specimen should be covered with perivesical fat, with a 1.5cm margin of macroscopically normal bladder around the tumour. There should be no biopsy evidence of CIS elsewhere in the bladder. The bladder must be closed without tension and catheterized for 7–10 days to allow healing. Subsequent review cystoscopies are mandatory to ensure no tumour recurrence.
Radical cystectomy with urinary diversion

This is the most effective primary treatment for MI TCC, SCC, and adenocarcinoma and can be performed as salvage treatment if RT has failed. It is also a treatment for G3T1 TCC and CIS refractory to BCG. Any ureteric obstruction caused by the primary tumour will be relieved by concomitant urinary diversion. However, this is a major undertaking for the patient and surgeon, requiring support from the cancer specialist nurse, stoma therapist, or continence advisor. Preoperative bowel preparation is not required, and fast-feeding is encouraged as part of enhanced recovery programmes.

The procedure

Through a midline transperitoneal or extraperitoneal approach, a bilateral pelvic lymphadenectomy is undertaken. The extent of lymphadenectomy ranges from limiting dissection to below the common iliac bifurcation (including internal iliac, external iliac, obturator, and presacral lymph nodes) to extending up to the aortic bifurcation or up to the inferior mesenteric artery (no evidence for improved survival with extended lymphadenectomy). The removal of ≥10 lymph nodes has been shown to be adequate for staging purposes and associated with an improvement in overall survival, with up to 30% having positive lymph nodes.

The entire bladder is then excised, along with perivesical fat, vascular pedicles, and the urachus, plus the prostate/seminal vesicles or anterior vaginal wall/uterus. The anterior urethra is not excised, unless there is prior biopsy evidence of tumour at the bladder neck or prostatic urethra (when recurrence occurs in 37%). The ureters are divided close to the bladder, ensuring their disease-free status by frozen section histology, if necessary, and anastomosed into the chosen urinary diversion (see pp. 306–7).

Several centres are pioneering laparoscopic and robot-assisted cystectomy. Potential advantages include less blood loss, less post-operative analgesia requirement, and reduced hospital stay. However, long operating times, high cost, and technical considerations may limit widespread adoption of this approach. The results from a large multi-centre RCT comparing open with robotic cystectomy (iROC study) are awaited.

Major complications affect 25% of cystectomy patients. These include perioperative death (1.2%), reoperation (10%), bleeding, thromboembolism, sepsis, wound infection/dehiscence (10%), intestinal obstruction or prolonged ileus (10%), cardiopulmonary morbidity, and rectal injury (4%). Erectile dysfunction (ED) is likely after cystectomy due to cavernosal nerve injury.

The complications of urinary diversion are discussed on pp. 306–7.

Post-operative care

• Many patients will spend the first 24h in the HDU or ITU.
• Daily clinical evaluations, including inspection of the wound (and stoma, if present), fluid balance, urine and drain outputs, blood count, creatinine/electrolytes, and albumin.
• Broad-spectrum antimicrobial prophylaxis.
• VTE prophylaxis with thromboembolic deterrent stockings (TEDS), pneumatic calf compression, and subcutaneous (SC) low-molecular-weight heparin (LMWH) (unfractionated heparin for patients with renal impairment) for 28 post-operative days.
Early mobilization within 24h, if possible.

Chest physiotherapy and adequate analgesia is especially important in smokers and patients with chest comorbidity.

Oral intake is commenced early, an integral part of the enhanced recovery concept; however, patients may require parenteral nutrition in the presence of GI complications or prolonged ileus.

Drains are usually sited in the pelvis and near the ureterodiversion anastomosis; ureteric catheters pass from the renal pelvis through the diversion and exit percutaneously; a catheter drains the diversion (except in the case of an ileal conduit), exiting urethrally or suprapublically.

Most patients stay in hospital for 10–14 days.

Salvage radical cystectomy is technically a more difficult and slightly more morbid procedure. Relatively few patients who have failed primary RT are suitable for this second chance of a cure; these are fit patients with mobile, clinically localized disease.

Efficacy of radical cystectomy

Failure to cure may result from an inadequate excision of the primary tumour or the presence of metastases (Table 7.8). Treatment delay should be avoided, if possible; cystectomy performed within 3 months of diagnosis (T2 TCC) results in significantly improved survival, compared with >3 months.\(^1\) Pathological upstaging of the primary can occur in up to 40% of cases. Lymph node metastases occur in 10% of T1 and up to 33% of T3–4 cancers. The use of neo-adjuvant chemotherapy in MI disease is discussed on p. 304.

<table>
<thead>
<tr>
<th>Stage/TxN</th>
<th>5y Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1/CIS</td>
<td>90%+</td>
</tr>
<tr>
<td>T2, T3a</td>
<td>55–63%</td>
</tr>
<tr>
<td>T3b</td>
<td>31–40%</td>
</tr>
<tr>
<td>T4a (into prostate)</td>
<td>10–25%</td>
</tr>
<tr>
<td>T1–2</td>
<td>30%</td>
</tr>
<tr>
<td>T0</td>
<td>70%</td>
</tr>
<tr>
<td>T1</td>
<td>50%</td>
</tr>
<tr>
<td>T2, 3a</td>
<td>25%</td>
</tr>
</tbody>
</table>

Reference

Bladder cancer (muscle-invasive): radical radiotherapy and palliative treatment

Management of patients with invasive bladder cancer requires an MDT approach, involving case-by-case discussion between the urological surgeon, radiotherapist, and medical oncologist, supported by the pathologist, radiologist, and cancer nurse specialist.

Radical external beam RT is a good option for pT2–4 TCC in patients who are unfit or unwilling to undergo cystectomy but who still wish to have the chance of cure. Typically, a total dose of 66Gy is administered in 30 fractions over 6wk. The target field comprises the bladder only, with a 1.5cm safety margin to allow for movement.

The 5y survival rates at 40–60% are inferior to those of cystectomy, but the bladder is preserved and the complications are less significant (Table 7.9). Higher-grade tumours tend to do less well, perhaps because of the undetected presence of disease outside the field of irradiation. Beyond this, prediction of RT response remains difficult, relying on follow-up cystoscopy and biopsy. Local recurrence occurs in ~30% of patients. There may be a small benefit in the use of neo-adjuvant or adjuvant cisplatin-based combination chemotherapy with RT in locally advanced (pT3b/4) disease (p. 305).

Interstitial brachytherapy using caesium or iridium sources can be used to treat small T2 TCC, in combination with RT and bladder-preserving surgery. Use of this technique is not widespread.

CIS, SCC, and adenocarcinoma are poorly sensitive to RT. There is no advantage in giving pre-cystectomy RT for invasive TCC.

Complications occur in 70% of patients, self-limiting in 95% of cases. These include radiation cystitis (filling LUTS and dysuria) and proctitis (diarrhoea and rectal bleeding), usually lasting only a few months. Refractory radiation cystitis and haematuria may rarely require desperate measures such as intravesical alum, formalin, hyperbaric oxygen, iliac artery embolization, or even palliative cystectomy.

If disease persists or recurs, salvage cystectomy may still be successful in appropriately selected patients, with 5y survival rates of 30–50% (p. 300). Otherwise, cytotoxic chemotherapy (p. 305) and palliative measures may be considered.

Table 7.9 Efficacy of RT: 5y survival

<table>
<thead>
<tr>
<th>Stage</th>
<th>5y Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage T1</td>
<td>70% (with adjuvant chemotherapy)</td>
</tr>
<tr>
<td>Stages T2</td>
<td>40%</td>
</tr>
<tr>
<td>Stage T3a</td>
<td>35%</td>
</tr>
<tr>
<td>Stage T3b,T4</td>
<td>10–20%</td>
</tr>
<tr>
<td>Stage TxN1–2</td>
<td>7%</td>
</tr>
</tbody>
</table>
Palliative treatment

RT (30Gy) is effective for metastatic bone pain or to palliate symptomatic (bleeding) local tumour (40–50Gy).

Intractable haematuria may be controlled by intravesical formalin or alum, hyperbaric oxygen, bilateral internal iliac artery embolization or ligation, or palliative cystectomy/diversion.

Ureteric obstruction may be relieved by percutaneous nephrostomy and antegrade stenting (p. 379 and p. 550).

Involvement of the palliative care team can be very helpful to the patient and family.
Bladder cancer: management of locally advanced and metastatic disease

Management of patients with invasive bladder cancer requires an MDT approach, involving case-by-case discussion between the urological surgeon, radiotherapist, and medical oncologist, with support from the pathologist, radiologist, and cancer specialist nurse.

Locally advanced bladder cancer (pT3b/4)

Many patients treated with primary cystectomy or RT with curative intent succumb to metastatic disease due to incomplete tumour excision or micrometastases. Up to 50% of patients develop metastases, with 70% at distant sites. At this stage, the 5y survival is only 25%. There is interest in augmenting primary treatment in an effort to improve outcomes.

Neo-adjuvant and adjuvant RT

Randomized studies have suggested improvements in local control (pathological downstaging) using RT (45–50Gy in 25 fractions) 4–6wk prior to cystectomy, but no survival benefit has been demonstrated. The rationale for post-cystectomy RT is that patients with proven residual or nodal disease may benefit from locoregional treatment. However, it leads to unacceptably high morbidity and has no demonstrable advantages. Post-treatment bowel obstruction occurs 4.5 times more commonly in RT patients.

Adjuvant cystectomy

Two studies have demonstrated an improvement in local control and a survival advantage when treating locally advanced disease with cystectomy after RT, compared to RT alone. However, this treatment strategy does not happen in current UK practice, probably due to the ↑ morbidity of surgery in this setting.

Neo-adjuvant chemotherapy with cystectomy

Preoperative chemotherapy is increasingly given to operable patients with non-metastatic T2–T4a disease. It may downstage the disease and treat micrometastases before the patient is debilitated by surgery. A meta-analysis of ten trials has suggested a 5–7% 5y survival advantage with the use of cisplatin-based combination chemotherapy prior to cystectomy, compared with cystectomy alone. The absolute gain was the same, regardless of stage: from 55% to 60% for T2, 40–45% for T3, and 25–30% for T4 patients. The relative gain was therefore greater for higher-stage patients. One randomized trial demonstrated a median survival of advantage of 31 months in the group treated with neo-adjuvant combination chemotherapy, compared to the group receiving cystectomy alone. Eligible patients must have a good performance status (<2—ambulatory and able to carry out light work) and renal function (GFR >60mL/min). This treatment should be discussed with suitable patients suspected of having locally advanced or micrometastatic disease prior to cystectomy.

Adjuvant chemotherapy

The rationale for post-cystectomy chemotherapy is that patients with proven residual or nodal disease may benefit from systemic treatment, if they have not received neo-adjuvant chemotherapy. Trials have been
hampered by protocol problems, small numbers, surgical complications interfering with treatment, and difficulty in assessing response in the absence of measurable disease. However, two of four studies have shown a survival benefit of almost 2y in the treated groups, using cisplatin-based regimes.

Neo-adjuvant or adjuvant chemotherapy with RT
While controversial, neo-adjuvant cisplatin-based combination chemotherapy with bladder preservation has been demonstrated to produce 5y survival rates of 42–72% when RT was used as definitive treatment. This may be offered to patients suspected of having locally advanced disease after clinical examination and staging imaging.

Metastatic bladder cancer
Up to 15% of patients have metastatic disease at the time of diagnosis.

Systemic chemotherapy
TCC is a chemosensitive cancer; it is recommended for patients with unresectable, diffusely metastatic measurable disease. Combination is more effective than single-agent treatment. A complete response is seen in 15% of patients given methotrexate, vinblastine, adriamycin, and cisplatin (MVAC), though 20% of patients develop neutropenia and 3% die of sepsis. Median survival is 14 months. Most UK centres are using gemcitabine, an antimetabolite agent, alone or in combination with cisplatin. Complete responses are reported in 25–40% of patients, and it is better tolerated than MVAC, with 1% toxic death rate. Carboplatin may be used if cisplatin is contraindicated (i.e. performance status 2 or GFR <60mL/min). Taxanes (paclitaxel and docetaxel) are microtubule disassembly inhibitors; responses range from 25% to 80%, using these agents alone or in combination.

Prognostic factors predicting response to chemotherapy include performance status, visceral metastases, Hb <10, and elevated alkaline phosphatase. Depending on the number of factors, median survival varies from 9 to 30 months. In future, molecular markers, such as tumour p53 status, may be shown to predict chemosensitivity. Unfortunately, no biomarker is currently available to predict outcome, drive treatment decisions, or monitor response to treatment.

Radiotherapy
Roles for RT include palliation of metastatic pain, haematuria, and spinal cord compression.

Surgery
There is no surgical role in treatment of extravesical metastatic disease. Palliative cystectomy or urinary diversion is justified for severe local symptoms.

References
Bladder cancer: urinary diversion after cystectomy

The choice of urinary diversion requires consideration of both clinical and QoL issues. Patients planned for cystectomy should be informed of the possible options. Contraindications to the continent reconstructive procedures include debilitating neurological and psychiatric illness, short life expectancy, and impaired renal or liver function. These patients must be motivated and able to perform ISC. Contraindications to orthotopic neobladder include tumour in the prostatic urethra, widespread CIS, and urethral stricture disease.

The majority of patients report good overall QoL following urinary diversion. The reconstructive procedures were expected to be better for social functioning, compared to the ileal conduit; most QoL studies have not shown significant differences, although patients with continent diversions generally score more favourably in terms of body image, social activity, and physical function.

Ureterosigmoidostomy

Dating back to 1821, the oldest form of urinary diversion, whereby the ureters drain into the sigmoid colon, either in its native form or following detubularization and reconstruction into a pouch (Mainz II). This diversion requires no appliance (stoma bag, catheter) so remains popular in developing countries. In recreating a ‘cloaca’, the patient may be prone to upper UTI with the risk of long-term renal deterioration, metabolic hyperchloraemic acidosis, and loose frequent stools. The low-pressure and capacious Mainz II pouch reduces, but does not abolish, these complications.

Ileal conduit

This was developed during the 1940s by Eugene Bricker of St Louis; it remains the most popular form of urinary diversion in the UK. Fifteen cm of the subterminal ileum is isolated on its mesentery, and the ureters are anastomosed to the proximal end (separate end-to-side anastomosis for each ureter, Bricker, or ureters joined together then anastomosed to the ileal conduit, Wallace). The distal end is brought out in the right iliac fossa as a stoma. The native ileum is anastomosed to gain enteral continuity.

Complications of an ileal conduit (overall 48%) are:

- Prolonged ileus.
- Urinary leak.
- Enteral leak.
- Pyelonephritis.
- Uretero-ileal stricture (2–5%).
- Stoma problems (20%—skin irritation, stenosis, and parastomal hernia).
- Upper tract dilatation (30%).
- Urolithiasis (38%).

Patients require stomatherapy support, and some find difficulty in adjusting their lifestyle to cope with a stoma bag. Metabolic complications are uncommon but must be considered in an unwell patient with an ileal conduit.
In post-RT salvage patients, a jejunal or colonic conduit is used because of concerns about the healing of radiation-damaged ileum. The conduit may be brought out in the upper abdomen, and patients require careful electrolyte monitoring due to sodium loss and hyperkalaemia.

** Continent diversion**

The advantage is the absence of an external collection device. There are two types of continent diversion.

- **A continent pouch** is fashioned from 60cm of the detubularized ileum or right hemicolon. The ureters drain into this low-pressure balloon-shaped reservoir, usually through an antireflux submucosal tunnel. This is drained by the patient via a continent catheterizable stoma, such as the appendix or uterine tube (the Mitrofanoff principle) brought out in the right iliac fossa.

- A similarly constructed pouch may be anastomosed to the patient’s urethra to act as an orthotopic neobladder, so that natural voiding can be established and no stoma is necessary. Patients void by relaxing their external sphincter and performing a Valsalva. This neobladder should require no catheter, unless the pouch is too large and fails to empty adequately. In this case, the patient must be prepared to perform ISC.

Popular ileal pouches include those of Studer (Fig. 7.4), Camey II, and Kock. Ileocaecal pouches include the Indiana and Mainz I. Which one is chosen often comes down to the surgeon’s preference; they carry similar complication risks. Previously irradiated bowel can safely be used to form pouches, though complications are more likely.

Complications relating to pouches and neobladders are divided into early (12%) and late (37%). They include:

- Urinary leakage and peritonitis.
- Pelvic abscess.
- Stone formation.
- Catheterizing difficulties and stomal stenosis.
- Urinary incontinence (particularly with neobladders, up to 30% nocturnal incontinence).
- Pouch ureteric reflux and UTI.
- Ureteropouch anastomotic stricture.
- Late neobladder rupture.

Metabolic abnormalities include early fluid and electrolyte imbalances; later, urinary electrolyte absorption may cause hyperchloraemic acidosis, and loss of small bowel may result in vitamin B12 deficiency. Metabolic acidosis is less likely in patients with normal renal function; treatment is with sodium bicarbonate and potassium citrate. Annual B12 monitoring should be undertaken, with supplementation if necessary.

Adenocarcinoma may develop (5%) in the intestinal conduit, neobladder, or sigmoid colon mucosa in the long term due to carcinogenic bacterial metabolism of urinary nitrosamines. This tends to occur near to the inflow of urine. It is therefore advisable to perform annual visual surveillance of urinary diversions after 10y. If the urethra is in situ, annual urethroscopy and cytology are important.
Fig. 7.4 (a) The distal 40–44 cm of the resected ileum opened along the antimesenteric border with scissors. Spatulated ureters are anastomosed end to side with 4-0 running suture on either side of proximal end of the afferent tubular ileal limb. Ureters are stented. (b) The two medial borders of the U-shaped, opened distal ileal segment are oversewn with a single-layer seromuscular continuous suture. The bottom of the U is folded between the two ends of the U. (c) Before complete closure of the reservoir, a 8- to 10-mm hole is cut into the most caudal part of the reservoir (left). Six sutures are placed between the seromuscular layer of the anastomotic area of the reservoir and the membranous urethra (right). An 18F urethral catheter is inserted. (d) Before complete closure of the pouch, a cystostomy tube is inserted and brought out suprapubically adjacent to the wound. Reproduced from Studer UE, Danuser H, Hochreiter W, et al. (1996) Summary of 10 years’ experience with an ileal low-pressure substitute combined with an afferent tubular isoperistaltic segment. *World J Urol* 14:29–39 with permission from Springer-Verlag.
Prostate cancer: epidemiology and aetiology

Hormonal and growth factors and diet

Growth of prostate cancer (PC), like benign prostatic epithelium, is largely under the promotional influence of testosterone and its potent metabolite dihydrotestosterone. Androgen ablation by orchidectomy results in programmed epithelial cell death (apoptosis) and involution of the prostate. PC is not seen in eunuchs or people with congenital deficiency of 5AR. Response to castration therapy in the treatment of patients with PC may be sub-optimal if serum testosterone is not fully suppressed (<50ng/dL).

Oestrogens, including phyto-oestrogen isoflavones (genistein, daidzein) found in foodstuffs used in Asian and Oriental cuisine, have a similar negative growth effect on PC. This may explain why these races rarely develop (or die of) prostate cancer. Other possible dietary inhibitors of PC growth include vitamin D, the antioxidants lycopene (present in cooked or processed tomatoes) and polyphenols (pomegranate, blueberry, green tea, red wine), isothiocyanates in cruciferous vegetables (sprouts, broccoli), and omega-3 unsaturated fatty acids present, for example, in mackerel and other oily fish. Conversely, arachidonic and linolenic acids and omega-6 polyunsaturated fatty acids (present in high-fat red meat) promote PC cell growth in vivo and increases the risk of advanced PC in prospective cohort studies. Obesity does not confer an ↑ risk of PC diagnosis but appears to be associated with more aggressive disease.

Vegan and dairy-free diets are associated with lower circulating IGF-1; this is of interest because high serum IGF-1 levels have been associated with an ↑ risk of developing prostate cancer. A pan-European study involving 142,000 men followed-up for 8y showed a high intake of dairy protein/calcium ↑ the risk of prostate cancer (see also □ pp. 314–16).

Other risk factors

• Age: is an important risk factor for development of histological PC, the disease being rare below 40y and becoming increasingly common with rising age, according to post-mortem studies. Prevalence of PC rises from 29% in the fifth decade to 67% in the ninth decade. This is paralleled 20y earlier by the presence of PIN, the accepted premalignant lesion. However, most PCs do not become clinically recognized or life-threatening. Seventy-five per cent of PCs are diagnosed in men >65y, and the peak incidence is 70–74y. The incidence amongst men aged 50–59 has trebled since the 1970s.

• Geographic variation: the disease is commoner in Western nations, particularly Scandinavian countries (where low sunlight and vitamin D synthesis may be implicated) and North America. The disease is rare in Asia and the Far East, but US migrants from Asia and Japan have a 20-fold ↑ risk. This suggests an environmental aetiology, such as a Western diet, may be important.
• **Ethnicity:** black men are at greatest risk, then Caucasians; Asians and Oriental races develop PC uncommonly, unless they migrate to the West. The world’s highest incidence is amongst African Americans and Jamaicans; there are scant data available regarding native African men. A recent British study suggests that African Europeans are at three times risk of developing PC, compared to white men, although the risk of PC death is similar.

• **Family history:** 5% of PCs are believed to be inherited. Hereditary PC tends to occur in younger (<60y) men who have a family history. The risk of a man developing PC is doubled if there is one affected first-degree relative and is 4-fold if there are two. Genome-wide association studies have identified >100 common variants, including abnormalities on chromosomes 2p (MSH2), 8p (MSR1), 10q (PTEN), 17q (HOXB13), Xp, and Y. Recent interest has focused on inherited DNA repair gene mutations, present in 4.6% and 12% of localized and metastatic cancers, respectively; amongst these is the hereditary breast cancer gene BRCA2 on 13q.

• **Exercise:** appears to confer protection against PC. It is known to reduce serum IGF-1, EGF, and insulin, while stimulating insulin-like growth factor binding protein (IGFBP)-1, antioxidant protection pathways, and immune function. At least two studies have demonstrated serum from exercised men slows the growth of LNCaP cells, compared with control serum. Several case-control studies have significantly associated exercise with reduced PC risk—in the largest of these, 47 000 men >65y were followed for 14y; 3h/wk of vigorous exercise was associated with reduced risk of high-grade, metastatic and fatal PC. In another study of 190 subjects undergoing biopsy, men taking the equivalent of 1h of strenuous exercise per week were less likely to be diagnosed with PC, adjusting for PSA and other variables, and >1h of mild/moderate exercise reduced the risk of high-grade diagnosis.

• **Some controversy surrounds the possible † risk of developing PC conferred by sexual activity, infectious agents, and vasectomy. The balance of data and opinion go against these putative risk factors at present. Exposure to cadmium has been suggested to raise the risk of PC, but no new data have been forthcoming since the 1960s. High alcohol intake appears to be associated with † risk, while smoking does not. However, smoking appears to increase the risk of fatal PC.
Prostate cancer: incidence, prevalence, mortality, and survival

Incidence
The diagnosis of PC is increasing every year, probably as a result of increasing use of serum PSA testing for both symptomatic and asymptomatic men and the use of more extensive prostatic biopsy protocols. PC is the most commonly diagnosed ♂ cancer (excluding skin) in the UK and USA. In 1999, 24,714 men were diagnosed with PC in the UK; by 2014, this had † to 46,700. The lifetime risk of a man being diagnosed with PC is estimated to be 1 in 8. Most are diagnosed with clinically localized disease, aged 65–79 y. Risk factors and aetiology are discussed on pp. 310–11.

Prevalence
While the incidence of PC continues to rise (now ~8% of all men), the true prevalence of the disease is highlighted by post-mortem studies carried out on men who died of unrelated causes. These have demonstrated histological evidence of PC in 10% of men in their third decade, 34% in the fifth decade, and rising to 67% in the ninth decade. A 1954 study suggested that 100% of men reaching age 90 would have PC and this was often quoted in textbooks, but it was based on a sample size of just two men! It is feared that much of this ‘latent’ or clinically insignificant PC could be detected by PSA screening and treated unnecessarily at the older end of the age spectrum. As the incidence of PC is high and 5y survival rates are around 70–80%, an estimated 215,000 men are alive in the UK who are diagnosed with PC.

Mortality
It is estimated that 3% of men die of PC. In 2014, 11,300 deaths were attributed to PC in the UK, the second commonest (13% of all) form of ♂ cancer death. Because most deaths occur in men over 80 y old, the number of years of life lost per PC death is low, compared to less common cancers. Worldwide, PC claimed 307,000 lives in 2014, and the areas with greatest mortality were southern Africa and northern Europe.

Mortality † slowly in the UK and USA during the 1970s and 80s, peaking in 1990 at 3% per year. However, in 1991, mortality started to decrease in the USA by 2% per year. In the UK, crude mortality is increasing slightly, while standardized mortality rate has been decreasing steadily since 1992. This could be due to changes in the way death certificates are written or treatment, e.g. earlier use of hormone therapy for advanced disease or † radical treatment of localized disease.
Survival
Survival rates for PC have been improving for the past 30y. The detection of a greater proportion of latent, earlier, and slow-growing tumours has had a beneficial effect on survival rates. Conversely, it has been suggested that PC patients have an overall improved life expectancy due to more intensive overall health care received. The relative 10y survival rate for men diagnosed was 84% in 2011, compared with only 21% for men diagnosed in 1971–75. The 5y survival for men diagnosed with metastatic PC has improved from 25% to 35%.1

Reference
Prostate cancer: prevention

The fact that as many as 32% of men in their fifth decade have histological PC, even though the disease is rarely detected clinically below the age of 50y, suggests an opportunity for preventative strategies (see pp. 315–16).

Dietary and lifestyle interventions

There are growing epidemiological and laboratory data supporting dietary and lifestyle interventions, though randomized prospective trials are few and mostly small.

- **High fat consumption**: results in ↑ production of insulin and IGFs. Diets rich in saturated fat, such as arachidonic, linolenic and omega-6 fatty acids, promote PC cell growth in vivo and increases the risk of advanced PC in prospective cohort studies. Obese men generally have lower PSA, but higher risk for high-grade or extracapsular disease at presentation, recurrence post-treatment, metastasis, and death.

- **Soy products**: contain phyto-oestrogens, including the isoflavone genistein. Genistein is a natural inhibitor of tyrosine kinase receptors and inhibits PC cell lines. Chinese Americans have a 24-fold risk of developing PC, compared to native Chinese, perhaps due to a difference in their respective diets.

- **Lycopene**: present in cooked tomatoes and tomato products, is considered to reduce the risk of PC progression and inhibits cell lines.

- **Selenium supplementation**: (0.2mg/day = 2 brazil nuts) was shown to reduce the risk of developing PC in a melanoma prevention trial. Selenium is a trace element required as an antioxidant. It is found in relatively low concentration in European soil and can be assayed using toenail clippings. Vitamin E supplementation was shown to reduce the incidence of PC in Finnish smokers. It is an antioxidant. However, a large prospective randomized North American trial (SELECT) recently showed no risk reduction using either of these agents alone or in combination.

- **Vitamins A (retinoids) and D**: both inhibit the growth of PC cell lines, and vitamin D receptor polymorphisms appear to predispose certain individuals to PC.

- **Pomegranate juice**: appears to reduce PSA doubling time during relapse following RP for high-risk disease.

- **Green tea**: contains polyphenol catechin and antioxidant compounds. A cohort study of >65 000 unscreened Japanese men followed up for 14y observed the risk of developing PC was reduced, proportional to the volume of green tea consumed; a randomized trial of men with PIN suggested less subsequent cancer diagnosed in men randomized to 600mg of green tea catechin daily.

- **Coffee**: consumption has been associated with PC prevention and improved outcomes, in particular four cups/day of non-filtered coffee that contains diterpenes cafestol and kahweol plus antioxidants that have demonstrated anti-neoplastic activity.
A large pan-European (EPIC) study of diet demonstrated consumers of vegetables (including vegetarians) did not exhibit a reduced incidence of PC; conversely, consumers of meat did not exhibit a greater risk of PC diagnosis. The same study did show that consumption of one portion of cruciferous vegetables per week (e.g. broccoli) reduces the incidence of PC by 40%. Other beneficial dietary ingredients include turmeric and black pepper.

Exercise: confers a preventative/protective effect against PC development, according to laboratory and prospective cohort studies.

Studies have shown 25–40% of PC patients are taking some form of complementary therapy, believing they are protective, most without informing their doctor. These products often lack evidence of benefit and can occasionally be harmful, e.g. a ‘Chinese herb’ mixture called PC-SPES, now withdrawn, frequently caused thromboembolism.

No definite link exists between vasectomy or sexual activity and PC. Studies have suggested an ↑ risk associated with early sexual activity and a reduced risk associated with frequent masturbation, but these require substantiation.

Chemoprevention

Antiandrogens

Given that most PCs are initially an androgen-dependent disease, interest in its prevention has focused on antiandrogens. While non-steroidal antiandrogens would have unacceptable side effects, 5ARIs could be feasible chemoprevention agents. The Prostate Cancer Prevention Trial1 recruited 18,000 men who had no clinical or biochemical evidence of PC and a PSA of <3ng/mL. They were randomized to placebo or finasteride 5mg daily for up to 7y. The men were offered biopsy if they developed a rising PSA, an abnormality on DRE, or at the end of the study. PC was detected in 24% and 18% of participants in the placebo and finasteride arms, respectively, suggesting that finasteride reduces the risk of developing PC by 25%. However, Gleason 7+ cancers were significantly more frequent in the finasteride arm. While this could be due to the effect of the 5ARI on tissue architecture or a selection artefact due to gland shrinkage, no licence has been granted to use 5ARIs for PC prevention. The ReDUCe study to assess the chemopreventative effects of dutasteride has yielded similar results in a population of men with PSA of 3–10ng/mL and a history of previous negative biopsy.2 Table 7.10 compares these two studies. Careful interpretation of these data suggest 5ARIs do not reduce the risk of clinically significant PC developing.

Metformin

This relatively cheap, non-toxic oral biguanide used to treat type 2 diabetes may prevent and/or improve outcomes mediated by its inhibitory effect on prostate and several other cancer stem cells. Prospective studies are ongoing.
Statins
Statins are 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors, a commonly prescribed class of medications that reduce cholesterol levels and prevent cardiovascular events. Statins can induce apoptosis and growth arrest in PC cell lines by suppressing IGF-1 receptor expression; they also reduce inflammation in PC tissue. In a population-based cohort of men aged 40–79 y followed up for 17 y, 38 of 634 statin users (6%) were diagnosed with PC, compared with 186 (10%) of 1813 non-statin users. In other studies, statin use significantly reduced the risk of elevated PSA, needle biopsy, and high-grade PC and correlated to the duration of statin use. In a cohort study of 7042 treated PC patients followed up for 4 y, any statin or NSAID use reduced the risk of all-cause mortality.

References
Prostate cancer: pathology—adenocarcinoma

PC was first described by the Venetian anatomist Nicolo Massa in 1536, at a similar time to the first anatomical drawings of the prostate by Vesalius in Padua. In 1786, John Hunter demonstrated that castrating young σ animals prevented the growth of the prostate. In 1817, the first good description of a PC was made in London by George Langstaff in a paper on cases of *Fungus haematodes*; 1853 saw the first histological description of PC by J Adams. In those times, PC was considered a rare disease, due to the shorter life expectancy of the population and poor detection methods.

By far, the commonest (>95%) primary PC is adenocarcinoma, a glandular epithelial malignancy of the acinar or ductal epithelium. The basal cell layer is absent, and the basement membrane is breached by the malignant cells which invade into the prostatic fibromuscular stroma. Macroscopically, they tend to be hard and white, though a soft mucin-producing variety exists. The prostatic urethra, ducts, or stroma may be invaded by TCC of the bladder (see pp. 284–6). Prostatic sarcomas, the commonest of which is the rhabdomyosarcoma, are rare and mostly seen in childhood. Secondary deposits (metastases) from other primary sites are rare.

Adenocarcinoma of the prostate

Most (75%) adenocarcinomas are located in the peripheral zone, and most (85%) are multifocal. The mean number of cancers in an RP specimen is seven. Twenty per cent arise more anteriorly in the transition zones, and 5% in the embryologically distinct central zone. The tumour spreads locally through the flimsy prostatic capsule (this is absent at the apex and base of the gland) into the surrounding tissue, at which time it is termed ‘locally advanced’. The disease may involve the urethral sphincter, corpora of the penis, seminal vesicles, or trigone of the bladder including the distal ureters, but rarely invades through Denonvilliers fascia to involve the rectum. Local spread is often along the course of autonomic nerves, so-called perineural invasion. The most frequent sites of metastasis are bone and lymph nodes of the obturator fossae, internal, external, and common iliac arteries, and presacral regions. Soft tissue metastases in the lung, liver, testis, and brain are less common. Bone metastases are characteristically sclerotic, rarely lytic. The axial skeleton (spine, ribs, and pelvis) are most commonly affected, followed by the proximal long bones, clavicles, and skull.

PC is a complex disease, exhibiting genetic, as well as morphological, heterogeneity, increasing with stage and grade. Epigenetic changes, such as inactivating hypermethylation of the detoxifying enzyme *GSTP1* gene, are observed in 90% of PCs and 70% of PIN lesions, suggesting this may be an early event in carcinogenesis. Up to 50% of PCs carry a rearrangement of chromosome 21 whereby a translocation results in the fusion of the
androgen-dependent protease TMPRSS2 gene and the ERG transcription factor (which then itself becomes androgen-dependent). It is postulated that this ‘gene fusion’ rearrangement could be an early step in prostate tumourigenesis. Frequent changes include somatic loss of alleles on chromosomes 16 and 18, inactivation of tumour suppressor genes pTEN (chromosome 10q), MSR-1 (chromosome 8p), and p53 (chromosome 17p), and activation of c-myc and bcl-2 proto-oncogenes. Evidence is also gathering on the potential tumourigenic role of a subset of prostatic basal epithelial cells that are thought to be immortal, undifferentiated stem cells.
Prostate cancer grading

Adenocarcinoma of the prostate is graded by the Gleason system (Fig. 7.5), developed in 1966 by the Minneapolis pathologist Dr Donald Gleason. Using low-power microscopy, adenocarcinoma is graded 1–5, according to its gland-forming differentiation. Since most PCs are multifocal and heterogeneous, allowance is made by adding the two dominant grades to give a score of between 2 and 10. If only one pattern is observed, that grade is doubled to give the score. This system is used to grade needle biopsies, TURP, and RP specimens.

Gleason scores of 2–6 are considered well differentiated; 7 is moderately differentiated, and 8–10 are poorly differentiated. In practice, 75% of PCs are graded 6 or 7, <5% are graded 2–5, and 20% are graded 8–10. Gleason scores of 8–10 are referred to as high-grade, though usually 7 is considered ‘clinically significant’ because of the presence of pattern 4. Amongst expert pathologists, there is good inter-observer reproducibility with Gleason scoring. However, scores assigned to needle biopsies are rarely <3 + 3 = 6, since grades 1 and 2 are rarely, if ever, observed. In 30–40% of cases, needle biopsy scores are lower than those assigned to the subsequent RP specimen, while over-grading by needle biopsy is uncommon (5%). If a minority pattern 5 is seen, pathologists will mention this as a tertiary grade in their report, since it carries a worse prognosis than the same Gleason score without it.

- Pattern 3: discrete glandular units varying in size and shape, with infiltration amongst non-neoplastic acini; most regard as clinically

Fig. 7.5 A diagrammatic representation of the Gleason grading system for prostrate cancer. The grade depends on the structure of the prostatic glands and their relationship to the stromal smooth muscle.
insignificant, without metastatic potential; controversially, some have questioned whether it should even be called cancer!

- Pattern 4: glands with fused, cribriform, glomeruloid, or non-luminal sub-patterns.
- Pattern 5: no glandular differentiation; solid sheets, cords, comedocarcinoma (with central necrosis).

In 2016, the WHO accepted a simplifying arrangement of Gleason scores into 5 ‘grade groups’ (Table 7.11).

The importance of the Gleason score (and now grade grouping) is that it correlates well with prognosis, stage for stage, however the patient is managed. Indeed, it remains the most important prognostic indicator following radical curative treatment. The advantage of the 2016 system is that patients find it easier to understand.

Some men with low-grade tumours develop high-grade tumours after several years. This is probably due to clonal expansion of high-grade cells, rather than de-differentiation of tumour cells. In general, large-volume tumours (e.g. the ‘index’ tumour in a multifocal primary PC) are more likely to be of high grade than smaller tumours, but occasionally exceptions are seen.

Caution must be taken when Gleason scoring tissue that has been subject to certain interventions, including RT and androgen deprivation therapy (ADT). It is recognized that PCs treated with androgen ablation exhibit changes similar to those seen in cancers of Gleason scores of 8–10. It is possible that treatment of BPH with 5ARIs could adversely affect the

<table>
<thead>
<tr>
<th>Grade group</th>
<th>Gleason score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>3 + 3 = 6</td>
<td>Only individual discrete, well-formed glands</td>
</tr>
<tr>
<td>Grade 2</td>
<td>3 + 4 = 7</td>
<td>Predominantly well-formed glands with a lesser component of poorly formed, fused, or cribriform glands</td>
</tr>
<tr>
<td>Grade 3</td>
<td>4 + 3 = 7</td>
<td>Predominantly poorly formed, fused, or cribriform glands with a lesser component of well-formed glands</td>
</tr>
<tr>
<td>Grade 4</td>
<td>4 + 4, 3 + 5, and 5 + 3 = 8</td>
<td>Only poorly formed, fused, or cribriform glands, or predominantly well-formed glands with a lesser component lacking glands, or predominantly lacking glands with a lesser component of well-formed glands</td>
</tr>
<tr>
<td>Grade 5</td>
<td>4 + 5, 5 + 4 = 9, and 5 + 5 = 10</td>
<td>Lacking gland formation or with necrosis with or without poorly formed, fused, or cribriform glands</td>
</tr>
</tbody>
</table>

Gleason score of cancer present in the gland. Pathologists are therefore keen to know relevant clinical details and are reluctant to provide Gleason scores for such patients.

Although cytological features play no part in this grading system, the diagnosis requires the absence of acinar basal cells, including absence of immunohistochemical staining for basal cell markers p63 (a homologue of the tumour suppressor gene p53) and cytokeratin 34βE12. In addition, positive staining for the α-methylacyl CoA racemase (AMACR, or racemase) enzyme, overexpressed in PC and PIN, is used routinely by pathologists to help make the diagnosis.

As well as the Gleason score, the tumour stage and PSA level are independent predictors of PC prognosis.
Prostate cancer: staging and imaging

PC staging is by TNM classification (for TNM staging, see http://www.uicc.org/resources/tnm/publications-resources), clinical (prefixed with 'c') or pathological (prefixed with 'p').

T stage is assessed by DRE (Fig. 7.6), imaging (TRUS, MRI), or examination of RP specimens. Imaging resolution limits the reliability in detection of multifocal and microscopic extraprostatic disease. Only 60% of cancers are visible on TRUS, and only 40% of pT3 tumours will be detected.

T1
Early (non-palpable) prostate cancer only detectable under the microscope; found at TURP or by needle biopsy

T2
Early (palpable) prostate cancer—still confined to the capsule

T3
Locally advanced prostate cancer—into periprostatic fat or seminal vesicles

T4
Locally advanced prostate cancer—invading the bladder, rectum, penile urethra, or pelvic side wall

Fig. 7.6 The T stages of prostate cancer.
The evolution of mpMRI has vastly improved prostatic imaging in recent years with regard to diagnostic accuracy and T staging. The three parameters used are T2-weighting (anatomical), diffusion-weighting (movement of water correlating with cellular density), and dynamic contrast enhancement (angiogenesis) with gadolinium. The radiologist uses the PIRAD system to score regions of interest (ROIs) from 1 to 5, ranging from likely benign to likely high-grade cancer. Most UK urologists are now obtaining an mpMRI prior to biopsying patients with suspected PC. Using this technology, a biopsy targeted at an ROI is 20% more likely to detect a clinically significant cancer than a systematic biopsy.

mpMRI is particularly helpful for detecting anterior and apical disease where systematic biopsy will under-sample the gland. However, a significant cancer may be ‘invisible’ in 5–25% of cases with PIRADS 1-2,1 so many urologists continue to recommend a biopsy in these circumstances.

Higher pathological stage (i.e. pT3 disease) found at RP may also be predicted by:
- Higher percentage (>66%) of positive biopsies.
- Cancer invading adipose in the biopsies (there is no fat in the prostate).
- Seminal vesicle biopsy may be carried out in cases at high risk of seminal vesicle involvement if this would affect management.
- Presence of perineural cancer invasion within the prostate.

N and M1a stage is assessed by imaging (usually MRI) or histological examination. Pelvic lymphadenectomy is the gold standard assessment of the N stage—this should be bilateral, even in cases where a prostate biopsy shows unilateral cancer, since contralateral positive nodes are present in up to one-third of such cases. This has commonly involved obturator fossa lymphadenectomy (OLND) during the performance of RP. Since low-risk patients have <10% risk of metastatic disease, current EAU guidelines recommend these patients are spared OLND. In contrast, ‘extended’ pelvic lymphadenectomy (ePLND) is becoming standard practice for intermediate- and high-risk disease; a study of high-risk cases undergoing RP has demonstrated that <40% of patients would be correctly staged by OLND. EPLND includes the external and iliac nodes up to the common iliac bifurcation; even the presacral nodes were positive in 9%. There is ongoing debate regarding the potential therapeutic value of EPLND, with some studies associating it with improved biochemical recurrence-free survival (BRFS) and suggesting the number of positive nodes removed correlates with cancer-specific survival (CSS), while others have failed to show such benefits. A nomogram predicting the risk of lymph node invasion at EPLND is published.2
- MRI or CT scanning can image enlarged nodes; radiologists report nodes of >8mm in maximal diameter. However, nodes larger than this often contain no cancer, while micrometastases may be present in normal-sized nodes. Sensitivity ranges from 0% to 70%, with a positive predictive value of only 50%. In practice, MRI pelvic imaging is restricted to intermediate- and high-risk patients (cT3 or PSA >10 or Gleason ≥7).
There is interest in $[11C]$-choline PET/CT, and particularly $[68Ga]$-PSMA PET/CT, for improving N and M1a staging, particularly following radical treatment when the PSA level is rising but still <5ng/mL. Cost currently prohibits wider use of this technology, at around £1400 per scan in the UK.

M1b/c stage is assessed by physical examination, imaging (MRI ‘marrow screen’ or isotope bone scan, chest CT, liver USS), and biochemical investigations [including creatinine and alkaline phosphatase (elevated in 70% of patients with bone metastases)]. MRI marrow is more sensitive than isotope bone scintigraphy. In practice, bone imaging is not carried out unless there is biopsy Gleason score ≥4 + 3 = 7, PSA >20ng/mL, or a clinical indication, when the chance of detecting M+ disease is >5%. PSA >100ng/mL predicts metastatic disease in almost 100%.

References
Prostate cancer: clinical presentation

Since the introduction of serum PSA testing in the late 1980s, the majority of new patients have non-metastatic disease at presentation. Shown below are possible presentations, grouped by disease stage.

Localized prostate cancer (T1–2)
- Asymptomatic; detected in association with elevated or rising serum PSA or incidental abnormal DRE.
- Incidental finding on MRI or PET imaging performed for other reasons.
- LUTS (in most cases due to coexisting benign hyperplasia causing BOO).
- Haematospermia;
- Haematuria (in most cases due to coexisting benign hyperplasia).
- Perineal or voiding discomfort (probably due to coexisting prostatitis).

Locally advanced cancer, non-metastatic (T3–4N0M0)
- Asymptomatic; detected in association with elevated or rising serum PSA, incidental abnormal DRE or imaging.
- LUTS.
- Haematospermia.
- Haematuria.
- Perineal or voiding discomfort.
- Symptoms of renal failure/anuria due to ureteric obstruction.
- Malignant priapism (rare).
- Rectal obstruction (rare).

Metastatic disease (N1 or M1a, b, or c)
- Asymptomatic (‘occult disease’): detected in association with elevated/rising serum PSA, incidental abnormal DRE or imaging.
- Lymphadenopathy (e.g. cervical, inguinal) with proven biopsy diagnosis.
- Swelling of lower limb(s) due to lymphatic obstruction.
- Bone pain, pathological fracture.
- Anorexia, weight loss.
- Neurological symptoms/signs in lower limbs (spinal cord compression).
- Anaemia; bleeding tendency (coagulopathy).
- Dyspnoea, jaundice.

A note about DRE
Since most PCs arise in the peripheral, posterior part of the prostate, they should be palpable on DRE. An abnormal DRE is defined by asymmetry, a nodule, or a fixed, craggy mass. ~50% of abnormal DREs are associated with PC, the remainder being caused by benign hyperplasia, prostatic calculi, chronic prostatitis, or post-RT change. Only 40% of cancers diagnosed by DRE will be organ-confined. The fact that an abnormal DRE in the presence of a ‘normal’ PSA (<4.0ng/mL) carries a 30% chance of predicting PC underlines its important role in clinical practice.
Prostate cancer: screening

Screening is defined as ‘The systematic application of a test or inquiry, to identify individuals at sufficient risk of a specific disorder to warrant further investigation or direct preventive action, amongst persons who have not sought medical attention on account of symptoms of that disorder’ (UK National Screening Committee, 2001).

This definition was modified in response to criticism that the UK breast cancer screening programme was leading to overtreatment of indolent disease, as follows:

‘Screening is a process of identifying apparently healthy people who may be at increased risk of a disease or condition. They can then be offered information, further tests and appropriate treatment to reduce their risk and/or any complications arising from the disease or condition. It is important to ensure that the benefits and downsides of screening have been properly thought through’ (UK National Screening Committee 2014).

The obvious candidate test to be applied to PC screening is serum PSA. By early detection and treatment, population screening of men aged 50 to 70–75y using PSA ± DRE may reduce the significant mortality and morbidity caused by PC. Proponents of screening say these acceptable and relatively inexpensive evaluations will detect clinically significant, but curable (localized), disease. The lead-time, estimated at 9–12y, between the screened diagnosis and the clinical diagnosis due to symptoms, should enable more organ-confined cancers to be diagnosed and cured. However, because of the low specificity of PSA (40%) and the high prevalence of latent PC, those against screening argue that many men would suffer unnecessary anxiety, biopsy, over-diagnosis, and overtreatment. Added to this, the treatments have morbidity and add cost to the already overburdened health-care systems of most developed countries. Mathematical models suggest fewer men screened in their sixth decade would be over-diagnosed, compared to those in their seventh or eighth decade—younger men have potentially more to gain in terms of life expectancy.

From an academic point of view, PC fails to fulfil many of the ten screening criteria set out by Wilson and Jungner in 1968, including the possession of a highly sensitive and specific test and a clear understanding of the disease’s natural history.

The results of pivotal European and North American randomized trials were published in 2009: the European Randomised trial of Screening for Prostate Cancer (ERSPC) and the US PLCO trial. CSS was the key outcome measure in both trials. While the mean follow-up of 8y in the ERSPC showed a 20% CSS advantage in the screened group over the control group, no difference between groups was observed in the PLCO trial. Even with the CSS advantage, the ERSPC concluded that the number (of men) needed to treat to save one life [number needed to treat (NNT)] was 48 men, so highlighting concerns regarding overtreatment. Interestingly, the Swedish subset of the ERSPC, with a 14y mean follow-up, reported a 40% CSS advantage to the screened group, with the NNT reduced to 12. This suggests that the benefits of screening continue to accrue in the longer term. Despite this, a 2011 Cochrane meta-analysis of randomized trials concluded that there is no CSS advantage to PSA screening. The ERSPC was updated with
a mean follow-up of 11y—adjusting for non-compliance, CSS was reduced by 29% in the screened arm and the number (of cancers) needed to detect to save one life [number needed to detect (NND)] had fallen to 33. The ERSPC also reported a 30% reduction of metastasis in the screened group at 11y follow-up.4

A UK multicentre trial ProTecT recruited 82 500 men aged 50–69y between 1999 and 2009, of whom 2664 with PSA of <20ng/mL were diagnosed with clinically localized PC. Of these, 1643 were randomized to RP, RT, or ‘active monitoring’, regardless of disease grade. At a median follow-up of 10y, 17 PC (1.03%) deaths were recorded, statistically equal in all three groups.5 However, metastatic progression was twice as prevalent in the monitoring group, compared with either treatment group, suggesting that with longer follow-up, a survival difference between the monitoring and treatment groups may emerge. Also noteworthy, the monitoring policy established when the trial commenced was more relaxed than contemporary active surveillance, so progressing disease could more easily have been missed.

Currently, there is little support for a PC screening programme in the UK. The Department of Health recommends that asymptomatic men requesting screening should be counselled prior to being offered a PSA test (see p. 336) This forms the basis for the 2002 NHS PC risk management programme, revised in 2016, available at: https://www.gov.uk/government/publications/prostate-cancer-risk-management-programme-psa-test-benefits-and-risks/prostate-cancer-risk-management-programme-pcrmp-benefits-and-risks-of-psa-testing.

References
Prostate cancer: prostate-specific antigen

See Chapter 3 for an introduction to the serum PSA test. Until the development of commercial serum PSA assays in the late 1980s, the only serum marker for PC was acid phosphatase. This was highly specific for PC metastatic to bone but lacked sensitivity in detecting less advanced disease and was normal in >20% of patients with bone metastases. Prior to the PSA era, most men with newly diagnosed PC had advanced incurable disease. PSA has revolutionized the diagnosis and management of PC, although its use in screening remains controversial. The predictive values of PSA and DRE for diagnosing PC in systematic biopsies are shown in Table 7.12. A sophisticated online PC predictor, which also considers family history, LUTS, race, and previous negative biopsy, is available from: http://www.prostatecancer-riskcalculator.com/seven-prostate-cancer-risk-calculators.

In addition to its use as a serum marker for the diagnosis of PC, PSA elevations may help in staging, counselling, and monitoring PC patients. PSA is used, along with the clinical (DRE) T stage and Gleason score, to predict pathological tumour staging and outcome after radical treatments using statistically derived nomograms and artificial neural networks. Here are some examples:

- PSA generally increases with advancing stage and tumour volume, although a small proportion of poorly differentiated tumours fail to express PSA.
- A single PSA of ≤1.0ng/mL at age 60 carries a 0.2% risk of PC death or 0.5% risk of metastatic disease by age 85.
- Any PSA rise from its nadir when on 5ARI treatment for BPH should prompt concern regarding the presence of PC and consideration of biopsy.
- >50% of patients have extraprostatic disease if PSA >10ng/mL.
- <5% of patients have obturator lymph node metastases, and only 1% have bone metastases shown by isotope scintigraphy if PSA <20ng/mL.
- 66% of patients have lymphatic involvement, and 90% have seminal vesicle involvement if PSA >50ng/mL.
- PSA should be undetectable (<0.01ng/mL in many laboratories) following RP for gland-confined disease.
- PSA rise after RP precedes the development of metastatic disease by a mean time of 8y.
- PSA falls to within the normal range in 80% of patients with metastatic disease within 4 months of starting androgen ablation therapy; the PSA rises in a mean time of 18 months after starting hormone therapy, signalling progressing disease.

Table 7.12 The predictive value of PSA and DRE for TRUS-biopsy diagnosis of prostate cancer

<table>
<thead>
<tr>
<th>PSA (ng/mL)</th>
<th>0.1–1.0</th>
<th>1.1–2.5</th>
<th>2.6–4.0</th>
<th>4–10</th>
<th>>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRE normal (%)</td>
<td>10</td>
<td>17</td>
<td>23</td>
<td>26</td>
<td>>50</td>
</tr>
<tr>
<td>DRE abnormal (%)</td>
<td>15</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>>75</td>
</tr>
</tbody>
</table>
PSA is prostate-specific, but not PC-specific. Other causes of elevated serum PSA are shown in Table 7.13, the commonest of which is BPH.

In the presence of infection or instrumentation, PSA should be requested at least 28 days after the event, to avoid a false-positive result, which may cause unnecessary anxiety. Ideally, PSA should not be requested within 2 days of ejaculation or vigorous cycling. Several studies have not demonstrated a significant change to PSA values after a normal DRE.

Table 7.13 Conditions excluding prostate cancer which cause elevated PSA

<table>
<thead>
<tr>
<th>Cause of elevated PSA</th>
<th>Minor elevation <1.0ng/mL</th>
<th>Intermediate elevation 1.0–20ng/mL</th>
<th>Major elevation 20–100ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign hyperplasia</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>UTI</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute prostatitis</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Chronic prostatitis</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention/catheterization</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biopsy, TURP</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ejaculation, vigorous cycling</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prostate cancer: PSA derivatives and kinetics

Measurement of the free-to-total (F:T) PSA ratio increases the specificity of total PSA, because the ratio is lower in men with PC than in men with benign hyperplasia. This may be helpful in deciding whether to re-image or re-biopsy a patient with previous benign biopsies. While overall a man with a normal DRE and a PSA of 4–10ng/mL has a 25% risk of PC (Table 7.12), this risk rises to 60% if the F:T ratio is 10% and falls to 10% if this ratio is >25%. The F:T ratio may also be useful in the total PSA range of 2.5–4ng/mL. Chronic prostatitis may also cause a reduced F:T ratio. An important limitation of this investigation is the instability of free PSA. The serum must be assayed within 3h or frozen at −20°C; otherwise, the free component reduces and a low ratio will be reported, perhaps leading to unnecessary biopsy.

Serum assays measuring the 4K score and the \('Prostate Health Index' (phi)\) \(\phi = \left(\frac{-2}{\text{proPSA}/fPSA \times \sqrt{tPSA}}\right)\) Beckmann Coulter combined assay are developed to use prior to the first biopsy, but their place in clinical practice has not been defined despite studies claiming greater accuracy than total PSA. 4K is based on four kallikreins and clinical information; the score correlates with a risk of high-grade disease and probability of metastases at 20y. A phi score of <30 correlates with a 25% probability of PC diagnosis at biopsy, while a score of 40–49 confers a 50% chance of a positive biopsy. In the UK, mpMRI of the prostate is becoming widely used prior to the first biopsy, in preference to using either of these products.

Consideration may be given to the prostate volume, since large benign prostates are the commonest cause of mildly elevated PSA. Serum PSA/prostate volume = \(\text{PSA density (PSAD)}\). Various cut-off densities have been proposed to raise the specificity of total PSA in the prediction of PC diagnosis by biopsy, e.g. >0.15. If the diagnosis of PC is made, PSAD of >0.19 predicts pT3 and high-grade disease in 50% of cases. PSAD of >0.15 at diagnosis also predicts early progression of PC in patients on active surveillance.

Short-term variations in serum PSA occur, the cause of which may be technical or physiological. Over the longer term, the PSA tends to rise slowly (<0.3ng/mL/y) due to BPH, and faster due to PC. The rate of rise per year is the PSA velocity. Despite current controversy over its use in untreated men, a landmark study introduced the concept of PSA velocity in 1992. It demonstrated 95% of PSA increases of >0.75ng/mL/y in a PSA range of 4–10ng/mL (over a minimum of three measurements 6 months apart) were associated with a diagnosis of PC several years later. Only 5% of men without cancer exhibited such a velocity. A PSA velocity of >20% per year should also prompt the recommendation of a biopsy, although a slower velocity does not exclude the presence of cancer. It has been suggested that a PSA velocity of >2ng/mL/y in the year prior to radical curative treatment of PC is associated with a poorer cancer outcome.

\(\text{PSA doubling time (PSADT)}\) is the time it takes for the PSA to double. It is calculated with the formula: \(\text{PSADT} = \log_2 \times dT/(\log B – \log A)\) where \(A\) and \(B\) are the initial (\(A\)) and final (\(B\)) PSA measurements, and \(dT\) is the time difference between the calendar dates of the two PSA measurements.
The PSADT may be the best indicator of the likely presence of PC or the rate of disease progression. Several serial measurements reduce the confounding physiological variability. Not always easy to calculate, the PSADT can be obtained online at: http://nomograms.mskcc.org/Prostate/PsaDoublingTime.aspx.

The PSADT is used to drive clinical management following treatment of PC. Reports from Johns Hopkins confirm that the PSADT correlates with CSS following RP—379 patients experiencing biochemical recurrence (BCR) when followed up for a median of 10y. Significant risk factors included PSADT of ≤3 months, Gleason score of >7, and time to BCR of ≤3y. For example, patients with a PSADT of <3 months had a median survival of 6y; this reduced to only 3y if their Gleason score was >7. Conversely, patients with none of the above risk factors had a 100% CSS. When 21% of these patients had died of PC and 6% had died of other causes, it was appreciated that only 15% of the PC deaths were associated with PSADTs of ≤3 months, while the majority (60%) of deaths were associated with PSADTs of 3–9 months. PSADTs of >15 months had a greater risk of death from competing causes.3

Other examples of the PSADT in clinical practice include: <5y raises suspicion of the presence of PC; <3y often drives recommendation to treat a patient on active surveillance; ≤6 months should drive recommendation of hormone therapy following radical treatment.

References
Prostate cancer: counselling before PSA testing

Counselling is mandatory before offering PSA and DRE to asymptomatic men, particularly to highlight the potential disadvantages of having an abnormal result. These must be weighed up against the potential benefit of having clinically significant PC diagnosed at an earlier stage than it would have been without these evaluations. There is currently no clear evidence of benefit by screening for PC (see pp. 330–1) This forms the basis of the UK Department of Health NHS Prostate Cancer Risk Management Programme (2016), whereby only men requesting the investigations and who have been appropriately counselled should be tested. Such counselling is less fundamental when investigating a symptomatic patient, because the diagnosis of PC could alter his clinical management. However, all patients should be informed when PSA testing is being considered.

The following points should be used in counselling asymptomatic men:

- Cancer will be identified in <5% of men screened.
- The benefits of PC screening remain controversial.
- Sensitivity is 80%—a false-negative result is possible; there is no level of detectable PSA at which PC can be excluded.
- Specificity is 40–50%—a false-positive result is possible; age-related benign hyperplasia and UTI are the commonest causes.
- Prostate MRI can cause distress/claustrophobia.
- Prostatic biopsy is uncomfortable (despite LA) and carries a risk of septicaemia or significant bleeding, each 0.5%.
- Prostatic biopsy may miss a cancer.
- Repeat biopsy may be recommended [presence of PIN, atypical small acinar proliferation (ASAP), persisting clinical suspicion, MRI abnormality, or rising PSA].
- Treatment may not be necessary.
- Treatment may not be curative.
- Treatment-related morbidity could lead to a diminished QoL.
Prostate cancer: molecular diagnostic and prognostic markers

Given the limitations of PSA discussed on pp. 332–3, there is considerable ongoing effort to identify better diagnostic and prognostic markers in both serum and first-voided urine following a DRE. These are mostly the RNA or protein products of genes commonly over- or under-expressed in PC tissue. It appears that the commercially available examples are currently used more in health systems where prostate MRI is less popular (and vice versa).

Diagnostic genomic markers

- **SelectMDx**: is a urinary assay of expressed prostatic secretions measuring HOXC6 and DLX1 gene messenger RNA expression, combined with clinical parameters. It is thought accurate at predicting the presence of high-grade PC, with a 98% negative predictive value, so clinical utility is focused on advising patients whether or not to undergo an initial biopsy.

- **Engrailed-2 (EN2)**: is a transcription factor expressed in PC cell lines and secreted into the urine by PC in men. First-pass urine DRE is collected, and EN2 protein measured by ELISA. A study of 82 men with PC and 102 controls demonstrated the presence of EN2 in the urine was highly predictive of PC, with a sensitivity of 66% and a specificity of 88.2%. There was no correlation with PSA levels. A large multi-centre study to further evaluate the diagnostic potential of EN2 is justified.¹

- **Microseminoprotein-β (MSMB)**: located on chromosome 10q, regulates apoptosis; using genome-wide association studies, the rs10993994 single nucleotide polymorphism in the MSMB promoter has been linked to an ↑ risk of developing PC. MSMB expression in benign and malignant prostate tissue, urine, and serum can be measured. MSMB levels in prostate tissue and urine were greatly reduced with PC. Urinary MSMB was better than urinary PSA at differentiating men with PC at all Gleason grades. ↓ expression of MSMB parallels the clinical progression of PC, and adjusted serum MSMB levels are associated with PC risk,² so clinical utility is potentially for advising patients whether or not to undergo initial biopsy.

- **Prostate cancer antigen 3 (PCA3)**: this gene is overexpressed in 95% of PCs, though its function is unclear. Commercially known as Progensa®, RNA transcripts are amplified and detected from urine sediment. Specificity for PC diagnosis is improved, compared with serum PSA alone (around 70%), in men who have already undergone one negative biopsy, though a sensitivity of 50–60% (i.e. at least 40% of false-negative results) remains an issue when advising patients whether or not to undergo repeat biopsy, regardless of PSA changes. Studies exploring potential improved sensitivity by combining the detection of PCA3 with other molecular markers, e.g. the TMPRSS2–ERG fusion transcript (see pp. 254–5, pp. 318–19), are ongoing.
- **ConfirmMDx®**: assesses for tissue DNA hypermethylation of three genes, including reducing enzyme glutathione-S-transferase P1 (GSTP1, the commonest epigenetic abnormality in PC, inactivating its transcription in 90% of PCs and 70% of PIN lesions), as well as clinical information. It is used in the setting of a negative biopsy to influence decision-making on whether to advise a repeat biopsy.

Prognostic genomic biomarkers

These are panels that can be used to obtain prognostic information from biopsy cores:

- **Oncotype DX®**: the genomic prostate score uses multiple genetic pathways to predict the likelihood of favourable pathology at RP, based on a 17-gene panel. It is currently in use, particularly in the USA, to counsel patients considering active surveillance for apparent low-risk PC.

- **Prolaris®**: is based on a 31-gene cell cycle progression panel. Published correlations with PC mortality after WW and BCR following RP, and may be used to influence intervention decision-making in these settings.

- **Decipher®**: measures the expression of 22 RNA biomarkers involved in multiple pathways that are associated with aggressive PC, performed on RP specimens. It can evidently predict the risk of metastasis within 5y and could therefore influence decision to recommend adjuvant RT treatment.

References

Prostate cancer: transrectal ultrasound and needle biopsy

The commonest modality for PC diagnosis is TRUS with guided transrectal needle biopsy (Fig. 7.7) or (increasingly) transperineal needle biopsy. TRUS provides imaging of the prostate and seminal vesicles, using a 7.5mHz biplane rectal probe measuring ~1.5cm in diameter. The peripheral/transition zones, cysts, and calcifications within the prostate can be seen. Hypoechoic and hyperechoic lesions in the peripheral zone may be due to PC or inflammatory conditions, although most PCs are isoechoic and are not identified. Seminal vesicles may be compared for asymmetry.

Indications for TRUS alone
- Estimation of prostate volume \([\text{cm}^3]\) = anteroposterior distance (cm) x width (cm) x sagittal length (cm) x 0.52.
- ♂ infertility with azoospermia, to look for seminal vesicle and ejaculatory duct obstruction due to calculus or Müllerian cyst.
- Suspected prostatic abscess.
- Investigation of chronic pelvic pain, looking for prostatic cyst, abscess, or calculi.

Fig. 7.7 Transrectal ultrasound scanning (TRUS). An ultrasound probe is inserted into the rectum to guide the biopsy needle into the correct position, so that several core biopsies can be taken from different areas of the prostate.
Indications for TRUS with biopsies

- An abnormal DRE and/or elevated PSA.*
- An abnormal prostate mpMRI.
- Previous biopsies showing multifocal PIN or ASAP.
- Previous biopsies normal, but PSA rising with abnormal DRE or abnormal mpMRI.
- Previous biopsies showing low-risk localized PC.
- As part of an active surveillance protocol for low-risk localized PC.
- To confirm viable PC following treatment if a salvage treatment is being considered.

The 2014 UK NICE PC guidelines (available from: https://www.nice.org.uk/guidance/CG175) stress the importance of discussing the risks and benefits of biopsy and individual risk factors, and allowing patients time for decision-making before proceeding.

Patients usually find the biopsy procedure uncomfortable, some painful. It takes about 5min and is undertaken on an outpatient basis with LA. Ultrasound-guided peri-prostatic injection of 10mL of 1–2% lidocaine is the gold standard; perianal glyceryl trinitrate (GTN) paste or inhalation of nitrous oxide/air (Entonox®) are less effective alternatives. A DRE precedes insertion of the probe. Antiseptic rectal wall cleansing using aqueous iodine on a sponge stick reduces the risk of sepsis after transrectal biopsy. Broad-spectrum antimicrobial prophylaxis (typically oral quinolone ± metronidazole) are given at least 30min prior to, and typically for 48h after, the procedure.

The emergence of fluoroquinolone-resistant bowel flora, which varies in prevalence between 5% and 18%, according to geographic location, has led to studies involving pre-biopsy stool cultures and targeted antibiotic prophylaxis; and calls for replacing transrectal with the transperineal approach.

Biopsy protocols

Systematic 18G Tru-cut needle biopsies are taken, plus 2–3 cores targeting any palpable or MRI-detected lesion. The traditional sextant protocol (parasagittal base, mid gland, and apex from each side) has been superseded by eight, ten, or 12 biopsies, adding samples from the far lateral peripheral zones (Fig. 7.8). Studies have demonstrated these extra biopsies detect up to 15% more cancers. Relating the number of biopsies to the prostatic volume is logical; attempts have been made to optimize this concept, e.g. the Vienna nomogram (Table 7.14).

Additional biopsies of each transition zone may be taken as the patient is undergoing repeat biopsies due to a rising PSA. If repeat biopsies fail to diagnose cancer in the setting of a persistently rising PSA, saturation needle biopsies (between 20 and 40) may be taken transrectally or via the perineum using a template grid, under GA. This enables the anterior gland and apices to be properly sampled. Alternatively, transurethral resection biopsies may be obtained, especially if the patient has BOO or no anus through which to

* Note: PC may also be diagnosed clinically (without histology) or by TURP histology. For example, it may be unnecessary to biopsy a frail, elderly man with a craggy, hard prostate and PSA of >100ng/mL prior to commencing palliative hormone therapy, or those in whom TURP is indicated for BOO with severe LUTS/retention.
perform TRUS. Seminal vesicle biopsies occasionally add staging information and may influence treatment options if they are positive. A basal nodule or PSA of >15ng/mL increases the likelihood of seminal vesicle invasion.

Transperineal template biopsies

Centres are performing transperineal ‘mapping’ biopsies for patients considering focal therapy and patients on active surveillance with rising PSA and normal mpMRI, and to access anteriorly placed regions of interest on mpMRI. Other indications for transperineal biopsy include previous transrectal post-biopsy sepsis and immunosuppressed patients because of the very low risk of infective complications, compared with transrectal biopsy.

Fig. 7.8 Biopsy protocols.
The disadvantage is the greater time and cost involved. Usually performed in the operating theatre under GA, the patient is in a lithotomy position; a catheter is inserted to help identify the position of the urethra, and LA containing adrenaline is administered to the perineum to minimize post-procedure pain and haematoma.

Multi-parametric MRI-targeted biopsy

T2-weighted MRI, supplemented by diffusion-weighting and dynamic contrast enhancement (gadolinium), is gaining popularity as radiologists become more experienced. It is recommended by NICE (2014) if concern persists despite a previous negative systematic biopsy. However, many UK centres are routinely obtaining a pre-biopsy MRI, with evidence suggesting this improves the chance of detecting clinically significant cancer by 20–30%, compared with systematic biopsies alone. This, in turn, should reduce the need for repeat biopsies by approximately the same number, so strengthening the economic, as well as clinical, justification. Depending on the level of suspicion (see pp. 324–6 on PC imaging), mpMRI can detect cancers of >0.5cc with 90% sensitivity and 88% specificity.2 A 'normal' mpMRI will miss significant PC in 5–25% patients, depending on the study methodology.3

Targeting biopsies

Can be performed using transrectal or transperineal approaches under local or general anaesthetic, either ‘cognitively’ (by studying the MRI images before performing the biopsies under TRUS guidance, which frequently appears completely normal) or deploying an image fusion platform to superimpose the mpMRI abnormality onto the TRUS real-time image. This latter technique is more costly (platforms range from £50 000 to £250 000 to purchase) and takes longer but increases confidence that the abnormality seen on the MRI is accurately sampled and not missed with the needle.

Table 7.14 The Vienna nomogram: optimal number of cores on TRUS-guided prostate biopsy

<table>
<thead>
<tr>
<th>Prostate volume on TRUS (mL)</th>
<th><50</th>
<th>50–60</th>
<th>60–70</th>
<th>>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–29</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>30–39</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>40–49</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>50–59</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>60–69</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>≥70</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Chapter 7 Urological neoplasia

Anticoagulants

Biopsying patients on low-dose aspirin is considered safe. It is not safe to biopsy a warfarinized patient; discontinue for at least 5 days, and the INR should be <1.5. Clopidogrel is usually stopped for 10 days; other clotting inhibitors (e.g. apixaban, dabigatran) should be stopped for 2–3 days. Anticoagulants can be resumed when obvious rectal bleeding and haematuria have ceased, typically within 48h. Bridging therapy with daily LMWH may be necessary for patients with metallic heart valves, recent coronary vessel stenting, or a history of recurrent VTE; advice should be sought for such patients.

Complications of prostatic biopsy

- Occasional vasovagal ‘fainting’ immediately after the procedure.
- 0.5% risk of septicaemia or prostatic abscess which may be life-threatening (TRUS and transrectal biopsy).
- 0.5% risk of significant rectal bleeding (TRUS and transrectal biopsy); treated by DRE using a swab soaked in 1:10 000 adrenaline or rectal balloon catheter.
- 2–11% acute or clot urinary retention (after transperineal biopsy).
- 5% UTI (TRUS and biopsy).
- Likely mild haematospermia (for up to 3wk) and haematuria; 0.1% risk of clot urinary retention (transrectal or transperineal biopsies).
- ED, chronic pain (rare).

References

Prostate cancer: suspicious lesions

Two histological lesions that are neither benign hyperplasia, inflammatory, or PC warrant discussion.

Prostatic intraepithelial neoplasia

- PIN consists of architecturally benign prostatic acini and ducts lined by cytologically atypical cells.
- The basal cell layer is present, although the basement membrane may be fragmented.
- PIN was formerly known as ductal dysplasia or reported by pathologists as ‘suspicious for cancer’.
- PIN was classified into low-grade (mild) and high-grade (moderate to severe) forms, based on the presence of prominent nucleoli. Subsequently, pathologists have agreed to report only high-grade PIN, since low-grade PIN reporting had no clinical value.
- PIN is believed to be a precursor for intermediate- or high-grade PC.
- Its age-related prevalence within the prostate mimics that of PC in post-mortem studies but starts to appear 20y earlier, lending support to the theory that PIN is a premalignant lesion.
- It does not appear to affect the serum PSA level.
- PIN is reported in 10–15% of prostate needle biopsies.
- The site of the PIN is not indicative of the site of a subsequently diagnosed cancer, nor is PIN always present in a prostate containing cancer.
- During the era of sextant prostate biopsies, PIN carried a 30–40% prediction of PC at subsequent biopsy. However, with the use of more extensive biopsy protocols, unifocal PIN can be ignored, with some studies reporting a positive repeat biopsy rate that is equal to, or lower than, the original cancer detection risk.

Atypical small acinar proliferation

- This lesion reported by pathologists on needle biopsies as ‘suspicious for cancer’ must be taken seriously.
- The focus containing small acini is typically small, averaging 0.4mm in diameter.
- Acini are lined with cytologically abnormal epithelial cells and may exhibit atrophic features.
- The columnar cells have prominent nuclei containing nucleoli, while the basal layer is focally absent, according to high-molecular-weight cytokeratin immunostaining.
- PIN may be present in the same sample, but clinical management is not affected by this.
- Studies have shown ASAP in needle biopsies predict cancer at subsequent biopsy in >40% of cases.
Clinical management of PIN and ASAP

Until recently, it has been standard practice to recommend that repeat systematic biopsies be performed if any isolated ASAP or multifocal PIN is reported on needle biopsy or TURP specimens. The timing of repeat biopsy varies, although concern regarding antibiotic-resistant bowel flora following the first biopsy has led to some authorities recommending a gap of 12wk between procedures. Most favour further PSA surveillance without repeat biopsy if a single focus of PIN is reported.

With the emergence of mpMRI, the finding of PIN or ASAP at targeted biopsy presents a new dilemma for clinicians, with no guidelines on which to base recommendations. Depending on the level of confidence that the ROI has been adequately targeted, options include repeating the biopsies, repeating the mpMRI after 6–12 months to monitor the ROI, which may increase or resolve, or simply monitoring PSA as one would for a benign biopsy follow-up.
Prostate cancer: watchful waiting and active surveillance

It can be understood from the incidence, mortality, and survival data that the oft-quoted statement ‘more men die with prostate cancer than because of it’ is correct. This is because most PCs are slow-growing, and the majority of men diagnosed are >70y, often with competing morbidities. This forms the basis for WW, by deferring hormone therapy until the development of metastatic disease for some men diagnosed with non-metastatic prostate cancer.

The risks of developing metastatic disease and of death due to PC after 10–15y of WW can be considered, using published data, according to biopsy grade. Table 7.15 summarises these data. Survival and cumulative mortality from PC and other causes up to 20y after diagnosis, stratified by age at diagnosis and Gleason score, can be seen in the figure from Albertsen (2005).¹

Selection of patients for watchful waiting

WW is the best option for patients with clinically localized PC and:
- Gleason score 2–4 disease at any age.
- Gleason score 5–7 disease in elderly or unfit men, with life expectancy considered to be <10y, for whom radical curative treatment would not be contemplated.
- Stage T1a disease with normal PSA (only 17% of pT1a patients will progress, compared to 68% with pT1b).

Watchful waiting protocols

Most men with localized PC on WW are seen every 6 months for clinical history, examination, including a DRE, and a serum PSA test (before or after DRE). If the disease progresses during follow-up, palliative treatment (e.g. androgen ablation therapy) is recommended. The threshold for treatment was traditionally when symptoms and signs of advanced disease appeared, e.g. back pain and metastases on bone scan. However, the use of PSA kinetics (e.g. doubling time <12 months), the evidence of benefit with earlier use of hormone therapy, and involvement of patient choice have driven earlier thresholds for treatment. Hence, an asymptomatic patient with a rising PSA may choose whether to treat his disease and accept the side effects, or whether to maintain his current QoL while leaving the disease untreated.

Table 7.15 Natural history of localized prostate cancer managed with no initial treatment

<table>
<thead>
<tr>
<th>Biopsy grade</th>
<th>% risk of metastasis (10y)</th>
<th>% risk of prostate cancer death (15y)</th>
<th>Estimated lost years of life (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–4</td>
<td>19</td>
<td>4–7</td>
<td><1</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>6–11</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>18–30</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>42–70</td>
<td>5</td>
</tr>
<tr>
<td>8–10</td>
<td>74</td>
<td>56–87</td>
<td>6–8</td>
</tr>
</tbody>
</table>
Active surveillance

With increasing numbers of low-risk cancers being diagnosed, there is concern that we are overtreating clinically insignificant disease, leading to unnecessary loss of QoL for patients and consumption of health-care resources. This issue could be amplified in the unlikely event of population-based PSA screening. AS has a different goal from WW, which is to identify and treat localized cancers that are demonstrably progressing with curative intent, while avoiding overtreatment for the majority. There are no randomized trials of AS vs immediate treatment.

The Toronto AS series is the largest and most mature. With a median follow-up of 6.4y (range 0.2–20), 149 (15%) of 933 patients died, including 15 deaths (1.5%) from PC. The majority of deaths were due to non-PC causes. Another 1.3% had developed metastatic disease, on treatment. At 5, 10, and 15y of follow-up, 76%, 63%, and 55% of men remained on AS. About one-third of patients were treated surgically for progression, of whom 50% subsequently relapsed. Other series ongoing in the UK, USA, and Europe show similar outcomes despite variations in selection and evaluation protocols.

The 2008 UK NICE guidelines recommend AS as the ‘preferred’ option for men with low-risk (stages T1c–T2a and Gleason score ≤6 and PSA <10ng/mL) disease who might be considered for curative treatment. The risk with AS, confirmed by the Toronto data, is that, in a few cases, the disease may progress beyond the possibility of cure or that the disease is initially understaged. This prompted some centres to perform template mapping re-biopsy prior to enrolling patients for AS. Somewhat controversially, many urologists will manage patients with small-volume Gleason 3 + 4 = 7 disease with AS, which is technically ‘intermediate risk’. It is estimated that the median time to treatment for this group is reduced from 15y to 5y, the risk of metastasis increasing from 4% to 16% over 15 years.

The 2014 NICE guidance (CG175) developed the original concept by advocating the incorporation of prostate mpMRI into the evaluation protocol. There is some evidence that this is re-classifying patients with more aggressive disease earlier by enabling lesion-targeted re-biopsy and also reducing the overall number of re-biopsy procedures carried out. Typically, AS patients undergo the following evaluations: PSA testing every 3 months (for velocity or doubling time calculation), initial PSA density calculation, DRE 6-monthly, mpMRI at or soon after enrolment, a repeat biopsy during the first year, and 2-yearly repeat mpMRI (± biopsy) to assess for progression. Upgrading or an increase in positive core length on repeat biopsy, increasing size of the MRI lesion, PSA velocity of >1ng/mL/y, and PSADT of <3y are currently considered evidence of progression, which prompts the recommendation of curative treatment.

References

Prostate cancer: radical prostatectomy and pelvic lymphadenectomy

Radical (total) prostatectomy (RP) is excision of the entire prostate, including the prostatic urethra, with the seminal vesicles. In 1867, Vienna’s Billroth performed the first perineal prostatectomy for PC, later propagated by Young (Johns Hopkins, Baltimore) in 1904. The retropubic approach was first undertaken by Millin (London) in 1945, though refinements in the 1980s, led by Patrick Walsh, gained its acceptance as the gold standard curative treatment for localized PC. Following excision of the prostate, reconstruction of the bladder neck and vesicourethral anastomosis complete the procedure.

RP is indicated for the treatment (with curative intent) of fit men with localized PC whose life expectancy exceeds 10y. Patients with Gleason score of ≤6 disease appear to do as well in the long term with surveillance as with treatment. The 2008 UK NICE guidelines recommend RP for high-risk disease (PSA ≥20 or Gleason score ≥8 or cT3) only if there is a ‘realistic prospect of long-term disease control’, and for low-risk disease (PSA <10 and Gleason score ≤6 and cT1–2) if AS is offered and declined. There is growing interest in offering RP for selected men with locally advanced and oligo-metastatic PC within clinical trials, with perceived advantages of cytoreduction and local control. The surgeon should take part in MDT discussion of each case. The patient should consider all available treatment options and the complications of RP before proceeding.

RP may be performed by open retropubic, perineal, manual laparoscopic, or robot-assisted laparoscopic (RARP) approaches. RARP is now the most frequently used in the USA and UK, with >80% of RPs now done this way. This means that contemporary trainees are rarely exposed to the open approach, potentially an issue should open conversion ever be necessary. All approaches allow a concurrent pelvic lymphadenectomy, except the perineal approach.

Since its introduction in 2000, RARP has gained popularity worldwide. As with laparoscopic prostatectomy, it is minimally invasive, with advantages of reduced bleeding, pain, and recovery time. Patients are expected to leave hospital the day after their surgery, compared with a typical hospital stay of 3–4 days following open RP. Beyond this, the benefits remain uncertain. There is only one published randomized trial comparing open RP to RARP.1 A total of 326 patients were randomized equally to the two approaches. At 12wk post-operatively, there were no significant differences between the two groups in terms of urinary or sexual function, complications, or positive surgical margins.

The training ‘learning curve’ is considered to be steeper than that of manual laparoscopy, because of the intuitive ‘wristed’ instrumentation of the da Vinci™ surgical system. The major disadvantage to RARP is cost, currently ~£1 million to purchase the system plus £100 000 for annual maintenance. This cost may reduce, as more systems are developed and marketed, but there is currently only one. Operating times also tend to be 1–2h longer than those of open RP. NICE 2014 recommends commissioners fund centres that carry out at least 150 robotic procedures per annum.
Typical steps in robot-assisted RP

- The patient is under anaesthetic, catheterized, and placed in Trendelenberg, with 30° of head down; care must be taken with positioning to avoid lower limb circulatory complications, e.g. compartment syndrome.
- Six laparoscopic ports are placed: the camera in the midline just above the umbilicus, two robotic ports to the left, one robotic port, and the 11mm and 6mm assistant ports to the right.
- The four arms of the da Vinci™ is ‘docked’ between the patient’s legs.
- The surgeon sits at a console inside the theatre, so maintaining visual contact with the rest of the team, while the assistant sits on the right at the patient side.
- By incising the peritoneum anteriorly and laterally, dividing the urachus and the medial umbilical ligaments (obliterated umbilical arteries), the bladder is ‘dropped’ and the retropubic space is opened.
- The anterior prostatic fat is cleared and may be sent for pathology with the prostate.
- Incisions in the endopelvic fascia and dissection in the planes between the prostatic fascia and the levator muscles on either side allow access to the prostatic apex and membranous urethra.
- The bladder neck is divided, and the ureteric orifices are identified.
- The catheter is grasped by the assistant and suspended anteriorly, facilitating the division of the seminal vesicles posteriorly.
- The prostate is mobilized antegradely from base to apex, dividing the lateral vascular pedicles, taking Denonvilliers’ fascia on its posterior surface to avoid incision into the prostate and taking care to avoid injury to the rectum posteriorly.
- If nerve sparing (NS) is undertaken, the lateral dissection is modified, as described below.
- Division and haemostatic control of the dorsal vein complex (passing from the penis under the pubic arch) allow access to the membranous urethra, which is divided at the prostatic apex, together with Denonvilliers’ fascia, thereby freeing the prostate.
- The prostate (with seminal vesicles still attached) is placed into an ‘endocatch’ bag, subsequently recovered through the camera port at the end of the procedure prior to its closure.
- The bladder is approximated to the urethral stump by suturing the cut edges of Denonvilliers’ fascia—the ‘posterior reconstruction stitch’, described by Rocco.
- A vesicourethral anastomosis with continuous absorbable material is stented by a 16Ch urethral catheter, typically for 10–14 days.
- The bladder neck sometimes requires reconstruction to the approximate diameter of the membranous urethra.
- Bilateral limited (obturator) lymphadenectomy is undertaken if PSA is >10 or the Gleason score is 7 or higher; extended (external and internal iliac) lymphadenectomy should be carried out in high-risk patients.
- A pelvic drain is placed via the lateral left port.
- The robot is undocked; the ports are removed under vision and closed using absorbable sutures.
The **nerve-sparing (NS) modification** aims to reduce the risk of post-operative ED (and possibly incontinence), minimizing cavernosal nerve injuries as they pass from the autonomic pelvic plexus on either side in the lateral prostatic fascia during antegrade mobilization of the prostate. This is facilitated by the improved view (less bleeding), compared with the open approach, with dissection between the prostatic capsule and the inner layer of the covering fascia (Fig. 7.9). NS should not be attempted in the presence of palpable or large-volume disease, as it may compromise cancer control. A decision on NS is best made during preoperative discussion with the patient, depending on his disease and expectations. NS can be carried out uni- or bilaterally, with return of erections in ~40% and 80% patients, respectively. The layers of the prostatic fascia, containing these nerves, are incised and peeled off the true prostatic capsule, using minimal cautery, to allow these nerves to fall away within the romantically named ‘veil of Aphrodite’. There are varying degrees of NS, depending on whether the prostatic fascia remains intact on the prostate (non-NS) or whether the veil includes only the outer levator fascia and interfascial veins (partial NS) or all tissue down to the true prostatic capsule (complete intrafascial NS).

Laparoscopic radical prostatectomy

Pioneered in the late 1990s in a number of European centres. It is carried out transperitoneally or extraperitoneally, the latter having much in common with the open retropubic technique. Via five ports, with a 20–25° head-down tilt, extraperitoneal laparoscopic radical prostatectomy (LRP) is carried out in 12 steps, as shown below, with varying levels of difficulty (I–V):

1. Trocar placement and dissection of the preperitoneal space: I.
2. Pelvic lymphadenectomy: II.
3. Incision of the endopelvic fascia and dissection of the puboprostatic ligaments: I.
4. Santorini plexus ligation: III.
5. Anterior and lateral bladder neck dissection: II, and dorsal bladder neck dissection: III.
6. Dissection and division of the vasa deferentia: III.
7. Dissection of the seminal vesicles: III.
8. Incision of the posterior Denonvilliers’ fascia—mobilization of the dorsal surface of the prostate from the rectum: III.
9. Dissection of the prostatic pedicles: III.
10. NS procedure: V.
11. Apical dissection, urethral division: IV.
12. Urethrovesical anastomosis; dorsal circumference (4, 5, 6, 7, 8 o’clock stitches): IV; 3 and 9 o’clock stitches: II; bladder neck closure and 11 and 1 o’clock stitches: III.

In highly experienced hands, LRP operating times are comparable to those of open RP.

Bilateral pelvic lymphadenectomy

There is no longer a place for frozen section analysis of lymph nodes, with a view to aborting RP if they are positive; aside from the technical issues concerning the pathological evaluation of frozen sections, at least two studies have demonstrated improved CSS in patients with lymph node invasion (LNI) who still underwent RP, compared to those who did not. The EAU 2012 guidelines recommend no bilateral pelvic lymphadenectomy (BPLND) for low-risk cases (because the risk of LNI is <5%). High-risk localized disease and cT3 are associated with 15–40% and 45% risk of LNI, respectively. Limited (obturator fossae) BPLND is inadequate for intermediate- and high-risk cases, missing up to 60% of LNI, compared with extended BPLND, which includes the additional removal of the internal and external iliac nodes.

Extended BPLND should yield >20 nodes. It therefore gives more accurate pN staging and guides further management options. However, it increases operative time and complications (lymphoedema, bleeding, DVT, PE). The suggestion by enthusiasts that patients derive therapeutic benefit from EPLND is controversial. No randomized trial exists demonstrating improved outcome following extended BPLND; the number of nodes (regardless of status) removed is reported to correlate with BRFS and CSS; the greater the number of positive nodes removed correlates with CSS in one report.

References

Prostate cancer—radical prostatectomy: post-operative care and complications

Post-operative routine course after robot-assisted and laparoscopic RP

Day 1: mobilize; check FBC and C&Es; diet; remove drain; teach catheter care; home. Discharge may be delayed if the drain is producing large quantities of fluid or the patient is not mobilizing adequately.

Open RP usually requires 3 post-operative days on the ward because mobilization is generally slower than seen with the minimally invasive approaches. Catheter time varies between 7 and 14 days; cystography is carried out if early removal (<7 days) is planned or if there has been a urine leak or persistent haematuria.

Complications of RP

General complications

Those of any major surgery (all rare, 1–2%): bleeding requiring reoperation and/or transfusion, infection, VTE, and lower limb compartment syndrome (rarely seen after RARP). Risks are minimized by attention to haemostasis, prophylactic antimicrobials, careful positioning, and early mobilization. VTE prophylaxis consists of TEDS, pneumatic calf compression, and prophylactic SC LMWH (unfractionated heparin for patients with renal impairment); NICE (2010) recommends continuing heparin for 28 post-operative days. Chest infection may be prevented by physiotherapy and encouragement of deep breathing, especially in smokers. Post-operative death is estimated to occur <1 in 500 cases.

Specific complications—early

- Per-operative ureteric or rectal injury (both rare, <0.5%); these should be managed immediately if recognized: ureteric reimplantation; primary rectal closure with or without a loop colostomy.
- Per-operative encounter with bowel adhesions from previous surgery, significant bleeding, malfunction of the robot, and anaesthetic respiratory complications associated with high (especially >35) BMI are all potential causes for conversion of minimally invasive to open approaches.
- Post-operative catheter displacement (rare); managed with careful replacement if within 48h; if >48h, urethrography may reveal no anastomotic leak.
- Post-operative urine or lymphatic leak (distinguished by dipstick glycosuria or creatinine concentration) through drains (occasional, 5%); managed by prolonged catheterization, cystography, and wound drainage. Urine leaks always settle without surgical intervention. Lymphoceles may require percutaneous drainage if symptomatic; sclerotherapy with tetracycline or, very rarely, surgical fenestration if persistent.
- Port-site herniation of the bowel can cause obstruction, requiring laparotomy.
Specific complications—late

- **Sexual dysfunction:** ED affects 50–90% of patients; spontaneous erections can return up to 3y post-operatively. Men >65y or with pre-existing ED are more likely to suffer long term. NS techniques improve outcomes. Forty to 70% respond to oral phosphodiesterase type 5 (PDE5) inhibitors at 6 months, while others require intraurethral or intracavernosal prostaglandin E1 (alprostadil) treatments, a vacuum device, or rarely a prosthesis. Patients should also be told that they will not ejaculate and will lose their fertility, the penis may be slightly shorter, and orgasm may feel different, sometimes painful.

- **Incontinence (stress-type):** requiring >1 pad/day affects 5% of patients beyond 6 months; this is due to injury of the external urethral sphincter during division and haemostatic control of the dorsal vein complex. Most consider the robotic approach to be associated with an earlier recovery of continence, although there seems to be no difference at 6 months post-operatively. Predisposing factors include age >65y and excessive bleeding. Preoperative teaching of pelvic floor exercises helps to regain continence; peri-urethral bulking injections, a urethral sling, or implantation of an AUS are occasionally necessary. Incontinence may also develop secondary to bladder neck stenosis or detrusor instability; flow rates, PVR measurement, uro-dynamics, and cystoscopy may help.

- **Bladder neck stenosis:** or urethral stricture affects 4% of patients. It typically presents 3–9 months post-operatively, with patients complaining of poor flow and frequency/urgency of micturition. Predisposing factors include heavy bleeding, post-operative urinary leak, and previous TURP. It is treated by endoscopic BNI and rarely becomes a recurrent problem.

- **Inguinal hernia:** 2–4%.
Chapter 7 Urological neoplasia

Prostate cancer: oncological outcomes of radical prostatectomy

Excellent long-term results are seen in well-selected patients following RP, particularly those with organ-confined disease and prior LUTS due to BOO. Serum PSA is measured a few days after RP, then 6-monthly; it should fall to <0.01ng/mL. The 5y outcomes of LRP and RARP are similar to those of open RP. The 10y PSA progression rate following open RP for clinically localized PC, usually defined as a serum PSA of >0.2ng/mL, is about 30%. Of these, 80% will fail within 3y of RP and 5% will occur beyond 10y. Without additional treatment, the time to development of clinical disease after PSA progression averages 8y.1 A 20y clinical DFS of 60% is reported.2 Outcome correlates with: Gleason score, preoperative PSA, pathological T stage, and the surgical margin status. Neo-adjuvant hormone therapy (hormone therapy given 3 months prior to RP) does not alter the BRFS, despite apparently reducing the incidence of positive surgical margins.

Probability of BRFS and CSS following RP can be predicted for individual patients using preoperative or post-operative factors (PSA, PSADT, pT stage, and Gleason score) using various tables,3,4 nomograms5,6 (Fig. 7.10), or estimated online, at: http://www.mskcc.org/mskcc/applications/nomograms/PostRadProstatectomy.aspx and https://www.mskcc.org/nomograms/prostate/biochemical-recurrence.

Prognostic tissue markers may also predict PSA progression, e.g. aberrant p53 expression in biopsy or RP specimens.7 Commercially available genomic markers, such as Decipher® or OncotypeDX®, described on pp. 338–9, may have a role in aiding decision-making regarding adjuvant treatment following RP. So far, these markers have not been approved for funding in the UK but are in use in the USA.

Comparing outcomes with other treatments

Recently, the ProTecT multi-centre randomized trial compared 10y RP outcomes to those of RT and active monitoring in a screened UK population of 1643 men diagnosed with clinically localized PC with PSA <20.8 No difference was observed between the three arms with respect to cancer-specific mortality, which was low (1.03%). However, the monitoring group were twice as likely to develop PC metastasis during the follow-up, compared with the two treatment groups (which were equal).

Earlier, the Swedish SPCG-4 study randomized 695 non-screened men aged <75 with low and intermediate risk to RP or WW.9 After a median follow-up of 12.8y, a 48% risk reduction in CSS [20.4% WW vs 14.6% RP (P = 0.01)] and a 26% risk reduction in overall survival [53% WW vs 46% RP (P = 0.007)] were demonstrated. The number of RPs required to save one life was 15 overall, but only seven for men <65y. In addition, 40% and 66% reductions in metastatic and local progression in favour of the RP group were reported. High-grade cancers were excluded from this trial.

A retrospective analysis of >400 000 patients with localized PC treated by RP, RT, or observation showed CSS was best in patients up to the age of 80 treated surgically, although patients with high-risk PC aged 70–79 survived equally well when treated either way.10
The US-based PIVoT (RP vs observation RCT) study included 731 patients with low- and intermediate-risk PC randomized and followed up over a median of 10y. No significant CSS difference was found between the two groups (5.8% in RP group vs 8.4% (P = 0.09)), though RP was associated with improved overall survival in men with PSA >10 (P = 0.04) and possibly in men with intermediate-risk disease (P = 0.07).11

Management of biochemical relapse post-RP

The definition of biochemical relapse (rising PSA) following RP is controversial, especially when many centres use the ultrasensitive assay that can detect PSA down to 0.01ng/mL. However, most still agree on the cut-point of >0.2ng/mL because of evidence suggesting PSA detection below this may indicate the presence of benign residual prostate tissue.

Increasingly, imaging is being used to influence management of biochemical relapse. mpMRI may be helpful in imaging local recurrence but lacks sensitivity for detection of micrometastases. Biopsy of the vesicourethral anastomosis is not recommended. Studies have shown that CT and isotope bone scans are rarely helpful in searching for metastatic disease, unless...
PSA is >7ng/mL. The hybrid imaging technique combining PET/CT is currently the modality of choice for distinguishing between local and distant relapse, even when PSA is <1.0, using either $^{[11}C$]-choline, $^{[18}F$]-choline, $^{[18}F$]-fluciclovine, or $^{[68}Ga$]-prostate-specific membrane antigen (PSMA) ligand. Of these tracers, the latter two are considered to be more sensitive and specific for metastases, especially when PSA is <1.0, but are more expensive.

Current management options include:
- Observation if PSA rise is late and slow.
- Salvage pelvic RT (66Gy).
- Whole pelvis or stereotactic RT if regional lymphatic or solitary bone metastases are detected on PET imaging.
- Salvage pelvic lymphadenectomy if regional lymphatic metastases are detected; rarely practised due to lack of evidence of lasting benefit; proponents argue that it may delay the need for hormone therapy for a year of more.
- Hormone therapy—either antiandrogen monotherapy (bicalutamide 150mg daily) or androgen deprivation.

A good response to salvage pelvic RT is likely if:
- PSA rise is delayed >1y post-RP.
- PSADT >12 months.
- PSA is <1ng/mL.
- Low-grade and low-stage disease.

If the PSA never falls below 0.2, or it rises in the first year with a doubling time of <10 months, the response to pelvic RT is usually disappointing.

Individual predictions of 6y progression-free probability can be found online at: http://nomograms.mskcc.org/Prostate/SalvageRadiationTherapy.aspx

Adjuvant vs salvage RT

Standard care in the UK has been to refer for salvage RT if the PSA rises consecutively above 0.2ng/mL following RP. It is unclear whether patients considered at risk of relapse benefit in terms of overall survival from immediate (adjuvant) RT. However, three randomized trials (EORTC 22911, German intergroup, and SWOG 8794) have shown significant improvements in biochemical disease-free survival (BDFS), and SWOG 8794 trial demonstrated improved metastasis-free survival following adjuvant RT (compared with salvage RT), for pT3- and margin-positive patients. In the UK, the RADICALS trial results are awaited. The potential for overtreatment of many patients who may never relapse and the adverse effect of adjuvant RT on continence recovery following RP cause concern.
References

Prostate cancer: radical external beam radiotherapy

Since the early 1980s, advances in RT for localized and locally advanced PC have included the advent of linear accelerators and conformal and intensity-modulated techniques to minimize toxicity to the rectum and bladder. Increasing the dosage, shaping the beam intensity using multi-leaf collimators, and more accurate image-guided treatment delivery by TRUS-guided insertion of gold fiducial markers are the standard of care. External beam radiotherapy (EBRT) is administered with curative intent, accompanied by 24–36 months of neo-adjuvant/adjuvant ADT in high-risk or locally advanced cases, while a randomized trial has demonstrated a 10% overall 5y survival benefit for patients with intermediate-risk localized disease treated with 6 months’ (2 months each of neo-adjuvant, concurrent, and adjuvant) ADT.¹

Indications
All men with a life expectancy of >5y, with clinically localized and locally advanced non-metastatic PC, a Gleason score of ≥6. The UK 2014 NICE guidelines recommend low-risk localized cases (PSA <10 and Gleason score ≤6 and cT1–2) should first be offered AS.

In the setting of high-risk and locally advanced PC with pelvic node metastases, evidence for EBRT, in addition to ADT, has also emerged from the STAMPEDE trial, wherein the 3y failure-free survival rate was 71% for men who got EBRT vs 47% for those who did not, representing a 49% reduction in risk of progression or death.²

Contraindications
- Severe LUTS.
- Inflammatory bowel disease.
- Previous pelvic irradiation.

Protocol
UK NICE guidelines recommend conformal fractions (up to 2Gy per treatment) amounting to a minimum dose of 74Gy. Recently, however, the CHHiP trial³ reported that hypofractionated RT using 60Gy in 20 fractions was non-inferior to conventional fractionation using 74Gy in 37 fractions and was recommended as the new standard of care.

Side effects
- Transient moderate/severe filling-type LUTS (common, rarely permanent).
- Haematuria, contracted bladder 4–23%; radiation cystitis can be very troublesome, rarely warranting cystectomy.
- Moderate to severe GI symptoms, bloody diarrhoea, pain, rectal stenosis 3–32%.
- ED gradually develops in 30–50%.
- The risk of a second solid pelvic malignancy (bladder, rectum) is estimated to be 1 in 300, falling to 1 in 70 long-term survivors.
Outcomes of EBRT

• Definitions of treatment failure: the 2005 Phoenix definition is the time at which the PSA rises by 2ng/mL or more above the nadir. This has succeeded the complicated and flawed 1996 ASTRO (American Society of Therapeutic Radiation Oncologists) definition, which required three consecutive PSA increases above the nadir measured 4 months apart.

• Pre-treatment prognostic factors: PSA, Gleason score, clinical stage, percentage of positive biopsies.

The 10y BDFS using intensity-modulated radiotherapy (IMRT) delivered at 81Gy is:

• 81% for low-risk disease (T1–2a and PSA <10ng/mL and Gleason ≤6).
• 78% for intermediate-risk disease (T2b, or PSA 10–20, or Gleason 7).
• 62% for high-risk disease (T2c, or PSA >20ng/mL, or Gleason 8–10).

Treatment of PSA relapse post-EBRT

Hormone therapy, either with antiandrogens or androgen deprivation, is currently the mainstay of treatment in this setting. However, local salvage treatments appear attractive, potentially offering another chance of cure if metastases cannot be demonstrated at repeat staging. Pelvic and bone imaging using MRI or PET/CT (better for low PSA) should be used to rule out metastatic disease before salvage treatment is directed at the prostate. Salvage RP is seldom undertaken because it is associated with highly morbidity and disappointing oncological outcomes. There has been renewed interest using the robot-assisted approach, but incontinence and stricture rates of, respectively, around 25% and 10% remain disappointing. Other local salvage treatments include brachytherapy (BT), cryotherapy, and HIFU (see pp. 362–3 and p. 364), also associated with occasional significant morbidity, including recto-urethral fistula. If salvage local treatment is under consideration, repeat prostatic biopsies should be taken to demonstrate viable tumour cells. This should be at least 18 months post-EBRT, because fatally damaged cells may survive a few cell divisions.

References

Prostate cancer: brachytherapy

The commonly used low-dose-rate (LDR) BT is ultrasound-guided transperineal implantation of radioactive seeds, usually iodine-125 \(^{125}\text{I}\), into the prostate. It is currently popular, having failed in the 1970s, prior to transrectal ultrasonography. BT is minimally invasive, requires GA, and is usually completed in a single stage. ~150 Gy is delivered; this may be augmented by an EBRT boost in high-risk cases. Another approach is high-dose-rate (HDR) BT which uses iridium-192 wires, left for several hours in situ in a series of applications, either before or after EBRT. The treatment is expensive due to the cost of the consumables, roughly equivalent to the cost of RP or EBRT.

- **Indications for BT:** low- and intermediate-risk localized PC, cT1–2 and Gleason ≤7, and PSA <20; life expectancy >5y. The 2008 UK NICE guidance suggests patients with low-risk disease (PSA <10 and Gleason score ≤6 and cT1–2) should first be offered AS.
- **Indications for BT with EBRT:** T1–3, Gleason 7–8, PSA <20 PC.
- **Contraindications to BT:** previous TURP (increases risk of incontinence); large-volume prostate (>60ml) causes difficulty with seed placement due to pubic arch interference, unless cyto-reductive hormone therapy is used; moderate to severe LUTS, IPSS >12; obstructed urine flow rate, Qmax <15ml/s (increases risk of retention).

Complications of LDR BT

- Perineal haematoma (occasional).
- LUTS (common), due to post-implant prostatic oedema.
- Urinary retention (5–20%); α-blockers are often used to treat LUTS and to improve the chance of a successful TWOC in patients with urinary retention.
- Chronic perineal pain.
- Incontinence (5%), usually if TURP is required to treat urinary retention.
- ED affects up to 50% of patients, gradual onset.
- Seed migration.
- Second primary cancer: bladder, rectum (rare).

Outcomes of BT

PSA rises in the first 3 months post-implant (‘PSA bounce’), then subsequently declines. As with EBRT, the ASTRO or Phoenix definitions (see p. 361) are used to define progression. Neo-adjuvant androgen ablation therapy is often used.

- 7y biochemical progression-free survival (bPFS) for low-risk disease (cT1c–2a, Gleason <7, PSA <10ng/ml) is 80–90%; 10y bPFS for low-risk disease is 60%.
- 7y bPFS for intermediate-risk disease (T2b, PSA 10–20ng/mL, Gleason 7) is 70–80%.
- 7y bPFS for high-risk disease (T2c, PSA >20ng/mL, Gleason >7) is 50–60%.
Outcomes of BT plus EBRT (usually with androgen ablation)
- 15y bPFS for low-risk disease is 86%.
- 15y bPFS for moderate-risk disease is 80%.
- 15y bPFS for high-risk disease is 68%.

Comparisons of BT or BT plus EBRT with RP or EBRT alone
These are confounded by treatment heterogeneity. In non-randomized comparisons, age and tumour-matched RP series at 8y yielded a progression-free survival of 98%, compared to 79% with BT alone. Outcome of BT alone appears similar to EBRT and RP in men with PSA >10 and Gleason score 7–10. In the randomized ASCENDE trial, patients with intermediate- or high-risk PC were treated with at least 12 months of androgen deprivation plus 46Gy pelvic RT, then randomized to having either EBRT or LDR BT boost. Patients randomized to the LDR BT arm showed significantly less biochemical failure.1

Rising PSA post-BT
Salvage RP, EBRT, cryotherapy, or HIFU are options if local recurrence is suspected; calculation of PSADT, repeat biopsy, and staging are necessary to select suitable cases. While offering a further chance of cure, morbidity is higher with all, compared to their use in primary treatment (e.g. prostate–rectal fistula rates are ≥5% vs 1% for primary cases). If metastatic disease is suspected or proven, further local treatment is unjustified.

Salvage BT following EBRT treatment failure is gaining popularity in some centres. Biochemical 5y disease-free rates of 34–53% are reported, with moderate toxicity.

Focal BT is a potentially attractive option for unilateral PC; as with other modalities of focal therapy for localized PC, further evidence of durability and benefit is awaited.

Reference
Prostate cancer—minimally invasive management of localized and radio-recurrent prostate cancer: cryotherapy, high-intensity focused ultrasound, and photodynamic therapy

Minimally invasive treatments for localized PC currently evolving are attractive to patients and their doctors. Proponents claim them to be alternatives to radical surgery or RT, with shorter hospital stay and less morbidity; they are also the only potentially curative options for ‘salvage’ treatment of organ-confined recurrent disease following radical RT, since most surgeons will not offer salvage prostatectomy.

Careful patient selection and mentored training are important to achieve good results. No randomized outcome data exist. The 2014 UK NICE guidance recommended that these technologies should be used only in the setting of a controlled clinical trial.

Cryotherapy

This involves transperineal ultrasound-guided placement of cryo-probes delivering argon or liquid nitrogen at temperatures of –20°C to –40°C. When applied in two cycles of freeze–thaw, cellular necrosis occurs. The diameter of the ice-ball is monitored using ultrasound; precautions are taken to protect the urethra, external sphincter, and rectal wall, such as warming devices. An anaesthetic is required, although this is a day-case procedure which can be repeated.

- **Results:** PSA nadir is usually achieved within 3 months; 25–48% of men with localized disease achieved a PSA nadir of <0.1ng/mL in 3 months and 96% of men achieved PSA of <0.2ng/mL within 6 months. Positive biopsies are observed in 8–25% of patients after cryotherapy.

- **Complications**
 - ED (40–80%); incontinence (4–27%); LUTS due to urethral sloughing; pelvic pain; transient penile numbness; recto-urethral fistula (rare).
 - In the salvage setting, good short-term PSA responses are reported in 66% of men, at the expense of significant morbidity, including incontinence and urinary retention (70% each). In a contemporary UK series, 5y freedom from PSA progression (ASTRO definition) was 73%, 45%, and 11% in low-, medium-, and high-risk patients, respectively. Careful disease staging with prostate biopsy and MRI is important; the best results are seen when the PSA is <4ng/mL. Persistent incontinence developed in 13% of patients, while 1% developed recto-urethral fistula.

High-intensity focused ultrasound

- **HIFU** allows the selective destruction of tissues at up to 4cm depth without damaging intervening structures, most importantly the rectal wall. Tissue is heated to the point of coagulative necrosis (over 85°C) by high-energy ultrasound transmitted to the prostate using a transrectal
device. Numerous $6 \times 2 \times 2$mm cigar-shaped lesions are produced, side by side, to create a continuous volume in which the tissue is ablated. An anaesthetic is required, although this is a day-case procedure which can be repeated.

- **Results:** from a large ($n = 463$) French series, PSA nadir was usually achieved within 4 months; 77% of patients achieved PSA nadir of 0.5ng/mL or less. At 2y median follow-up, 64% remained disease-free by the Phoenix definition. In a Japanese series of 181 patients, half of whom received neo-adjuvant androgen ablation, the 3y BDFS (ASTRO definition) for low-, intermediate-, and high-risk PC was 94%, 75%, and 35%, respectively.

Complications

- ED (50%), urinary retention 8%, urethral stricture (10–25%), stress incontinence (2%), and recto-urethral fistula (1%).
- Data for HIFU in the **salvage** setting are scarce. Good PSA responses are reported in 61% of men, with 38% remaining disease-free in a mixed group of patients. Morbidity is ↑ in the salvage treatment setting, and recto-urethral fistula or osteomyelitis are seen in ≥5%.
- Another technology—**photodynamic therapy (PDT)**—is also under investigation in the salvage setting. This involves parenteral administration of a chlorophyll-derived photosensitizing drug (Tookad®), followed by light activation using transperineal template-guided interstitial laser. The free radicals generated cause thrombosis of nearby vasculature and ischaemic tissue necrosis.

Focal therapy

While currently treating the whole prostate, the above technologies are potentially suitable for **focal ablation** of localized PC. Such a strategy could reduce morbidity, treatment time, and cost. However, some authorities argue that PC is a multifocal disease, so leaving part of the prostate untreated risks uncertainty about residual/recurrent disease.

A phase III trial of focal PDT vs AS was recently reported—413 men with low-risk PC randomized and the endpoint was PC progression. It was observed that the PDT halved the progression rate, with minimal morbidity, yet still 28% of these low-risk cancers progressed despite the treatment.

Already practised widely in the private sector, focal therapy is not even mentioned in the 2014 UK NICE PC Guidance and remains under investigation in Europe and the USA. A randomized trial of focal HIFU vs RP for intermediate-risk PC is currently recruiting in the UK.

Reference

Prostate cancer: management of locally advanced non-metastatic (T3–4N0M0) and N1 disease

Radical prostatectomy

RP has traditionally been discouraged for men with cT3 disease in the UK. However, younger men with apparently non-metastatic clinically operable (mobile on DRE) disease may benefit from surgery, as part of a multimodality treatment plan. Proponents accept that 50–80% will require additional treatment but argue that 27% of cT3 cases are pathologically organ-confined (T1–2) and could be cured by surgery. Cyto-reductive surgery for pT3 disease could reduce morbidity from local progression and improve oncological outcome, while concurrent extended BPLND (lymphadenectomy) provides additional staging and possible therapeutic value.

The 10y CSS following RP plus BPLND for cT3 PC is 73% for low-grade disease, dropping to 30% for high-grade disease. Outcomes are better for patients with PSA of <10ng/mL. Lymph node metastases will be found in around 40% of patients with cT3 PC. There are survival data suggesting that RP should not be abandoned if lymph node metastases are identified at the time of surgery (frozen section of nodes should not be done) and that removal of the prostate may reduce the risk of development of metastases, compared with RT treatment.1 EAU 2012 guidelines state that RP is an option for selected well-informed, fit patients with cT3a PC, PSA <20ng/mL, and Gleason score ≤8. Clinical trials in this area are urgently required.

EBRT

There are no randomized trials to inform best treatment between RP and EBRT in combination with ADT. By default, the latter is currently the UK gold standard treatment for non-metastatic cT3–4 PC in fit men. This combination consistently demonstrated better outcomes, compared to EBRT alone, which is associated with a 15–30% 10y survival. In a European randomized study,2 the ADT group received LH-RH analogues for 3y, starting at the time of EBRT. The 5y overall survival was 79%, compared to 62% in the group treated with EBRT alone; the 5y CSS was 85%, compared to 48%. A randomized trial (MRC PR07) of hormone therapy alone vs EBRT plus hormone therapy of 1200 patients with cT3N0M0 PC reported that CSS at 8y follow-up was significantly improved in the combination arm.3 The optimal timing and duration of ADT remain unclear—the 2008 UK NICE guidance recommends neo-adjuvant and concomitant ADT for 3–6 months, increasing to a minimum of 2y if the Gleason score is ≥8; the EAU 2011 guidelines recommend an EBRT dose of ≥74Gy with 3y of concomitant and adjuvant ADT.

• Pelvic EBRT: may be considered if risk of N1 disease >15%, according to the Roach formula: 2/3 PSA + [10 × (Gleason score – 6)]. Historic evidence of benefit for whole pelvic EBRT in locally advanced PC is unconvincing. Recently, findings from the control arm of the STAMPEDE study have suggested a significant DFS benefit by the addition of

2. European Organization for Research and Treatment of Cancer/Genitourinary Group (EORTC GU)/European Society for Medical Oncology/International Society for Therapeutic Radiation Oncology (EORTC GU/ESMO/ISART) 2009 guidelines.
prostate/pelvic RT to ADT in node-positive patients. Randomized trials involving contemporary patients are ongoing.

- Minimally invasive treatments such as LDR BT, HIFU, and cryotherapy are not recommended outside clinical trials. HDR BT, in combination with ADT, is becoming popular, though long-term trial outcomes are awaited.
- Bisphosphonates are not currently recommended to prevent PC bone metastases.
- Hormone therapy alone: is an option for symptomatic elderly patients or those unwilling to undergo EBRT, especially if the disease is bulky, the PSA is >25ng/mL, or the PSADT is <1y. In this setting, a non-steroidal antiandrogen, such as bicalutamide 150mg daily, has equivalent efficacy to ADT, with reduced side effects. Off label in this context, the author uses tamoxifen 40mg twice weekly to reduce the incidence of painful gynaecomastia, the only common and troublesome adverse effect of high-dose bicalutamide. Patient counselling should include an explanation that hormone therapy is not a curative treatment.
- WW: is an option for non-metastatic T3 disease in an elderly asymptomatic patient who may prefer to avoid side effects of treatment.

Palliative treatment of locally advanced disease

Palliative TURP, prostatic artery embolization, or medical treatment for LUTS, urinary retention, or haematuria may be necessary. Incontinence can be a problem due to sphincter involvement, though BOO and instability should be considered. A penile sheath (i.e. Conveen®) or catheter may be required. Patients may present in renal failure, commonly to the emergency service—percutaneous nephrostomy or ureteric stenting are necessary for bypassing ureteric obstruction. ADT in this setting may relieve this tumour compression of the distal ureters in previously untreated patients. Very rarely, a colostomy is necessary to bypass a rectal stenosis. Palliative EBRT may be useful for treatment of persistent prostatic haematuria or perineal pain.

References

Prostate cancer—management of advanced disease: hormone therapy I

Metastatic disease is the cause of nearly all PC-related death. Currently incurable, the 5y survival is improving, currently 35%. Ten per cent survive <6 months, while <10% survive >10y. The concept of hormone therapy was realized in 1941 when Chicago physicians Charles Huggins and Clarence Hodges reported favourable symptomatic and biochemical (acid and alkaline phosphatase) responses in metastatic PC patients when castrated or given oestrogens.¹

Management of all PC patients should be coordinated by the MDT, particularly this group of unfortunate men. The gold standard systemic treatment for metastatic PC is hormone therapy (ADT), with early docetaxel chemotherapy in appropriate cases, followed by salvage chemotherapy, second-generation hormone manipulations, and novel treatments (such as growth factor inhibitors, angiogenesis inhibitors, immunotherapy) for progression.

Recently introduced in the setting of research is the use of adjuvant RP or RT in highly selected ‘oligo-metastatic’ cases.² Based on theoretical benefits of cyto-reduction and local control in patients with ≤3 metastases, this concept would have been highly controversial 5y ago. Outcomes of randomized trials are awaited.

Hormone dependence of prostate cancer

All prostate epithelial cells, with the exception of rare undifferentiated stem cells and neuro-endocrine cells, are dependent on androgens and fail to grow or undergo programmed cell death (apoptosis) in their absence. Similarly, most previously untreated PC cells are dependent on androgens. In men, 95% of circulating androgens, mainly testosterone, are produced by testicular Leydig cells under the influence of luteinizing hormone (LH). The anterior pituitary synthesizes LH, stimulated by hypothalamic LHRH. The remaining 5% of circulating androgens (mainly dehydroepiandrosterone) is synthesized by the adrenal cortex from cholesterol, under the influence of pituitary ACTH. Testosterone is metabolized to the 5-fold more potent dihydrotestosterone (DHT) by 5AR enzymes types 1 and 2. DHT binds the cytoplasmic androgen receptor, which translocates to the nucleus, thereby activating transcription of androgen-responsive genes, which drive the cell cycle or inhibit apoptosis.

ADT results in a reduction in PSA and clinical improvements in >70% of patients. However, most patients with metastatic disease will still die within 5y due to the emergence of castrate-resistant progression. This may be due to selection of innately androgen-independent cell clones or stimulation of the androgen receptor by intracellular androgen biosynthesis or via alternative pathways (e.g. PI3-kinase activation associated with PTEN loss). The mean time to disease progression after androgen deprivation is 14 months in men with metastatic disease.
Prognostic factors
Predictors of poor hormone therapy response include:
- ≥5 metastatic lesions at presentation.
- Elevated alkaline phosphatase at presentation.
- Anaemia at presentation.
- Poor performance status (level of activity) at presentation.
- Low serum testosterone at presentation.
- Failure of bone pain to improve within 3 months of treatment.
- Failure of PSA to normalize (to <4ng/mL) within 6 months of treatment (conversely, a PSA nadir [= lowest value] of <0.1ng/mL predicts a long-term response).

References
Prostate cancer—management of advanced disease: hormone therapy II

Methods of androgen deprivation therapy

- Surgical castration: bilateral orchidectomy.
- Medical castration:
 - LHRH agonists.
 - LHRH antagonists.
 - Oestrogens.
- Maximal androgen blockade (MAB): medical or surgical castration plus antiandrogen;

Both forms of castration have equivalent efficacy, so patients can be given the choice. Oestrogens are no longer used first line, due to the significant cardiovascular morbidity observed when they were the only alternative to orchidectomy. MAB has a theoretical advantage over castration in blocking the effects of adrenal androgens; significant clinical advantages (>5% improved 5y survival) have not been demonstrated by trial meta-analyses.

Bilateral orchidectomy (subcapsular technique)

Rarely performed in the era of effective medical alternatives, this is a simple, quick procedure usually carried out under GA. Through a midline scrotal incision, both testes may be accessed. The tunica albuginea of each testis is incised and the seminiferous tubules removed, after which the capsule is closed. The epididymes and testicular appendages are preserved. Post-operative complications include scrotal haematoma or infection (rare). Serum testosterone falls within 8h to <20ng/dL.

LHRH agonists

LHRH agonists (also known as analogues) were developed in the 1980s, giving patients an alternative to bilateral orchidectomy, with which they are considered clinically equivalent in efficacy. They are given by SC or IM injection, as monthly or 3-monthly depots. Examples include goserelin, triptorelin, and leuprorelin acetates; the 6-monthly triptorelin formulation is currently the least expensive option in the UK health service.

When the anterior pituitary is over-stimulated by an agonist of LHRH, it switches off LH synthesis, although serum testosterone rises in the first 14 days due to a surge of LH. This can result in ‘tumour flare’, manifest in a small number of patients by symptoms, including catastrophic spinal cord compression. To prevent flare, oral antiandrogen is recommended for 1–2wk before and 2wk after the first dose of an LHRH agonist. There is awareness that, on occasions, the serum testosterone level may not be suppressed to castrate levels by all LHRH agonists, so it is routine to check for adequate suppression if a patient is not responding adequately to treatment.

One LHRH antagonist degarelix is currently licensed in Europe and the USA. Given by monthly SC injection, it rapidly reduces serum testosterone to <20ng/dL, abolishing the issue of tumour flare or the need for antiandrogen cover. To date, there are no published clinical trials comparing
immediate or long-term outcomes of LHRH agonists and antagonists, although data point to a reduction in incidence of cardiovascular events and prolonged time to disease progression associated with degarelix administration. At over twice the cost of 6-monthly triptorelin, degarelix was recommended ‘as an option’ for treating PC patients with spinal metastases by NICE in 2016, depending on a negotiated discount.

Side effects of bilateral orchidectomy and LHRH agonists/antagonists
- Loss of sexual interest and ED.
- Shrinkage of genitalia.
- Hot flushes and sweats can be frequent and troublesome during work or social activity.
- Weight gain.
- Lethargy, fatigue.
- Gynaecomastia.
- Anaemia.
- Cognitive changes, depression, and memory loss.
- Osteoporosis and pathological fracture (particularly of the hip): secondary to osteoporosis may occur in patients on long-term (>5y) treatment. A single yearly dose of the bisphosphonate zoledronic acid appears to maintain bone mineral density, though the clinical advantage this may confer remains uncertain.

Antiandrogens
These are orally bio-available blockers of the androgen receptor. Examples include bicalutamide (monotherapy dose is 150mg daily, or 50mg daily for flare cover, or MAB in combination with ADT), flutamide, and cyproterone acetate (CPA). The first two raise the serum testosterone slightly, so sexual interest and performance should be maintained, although many such patients have pre-existing ED due to the advancing age and disease. Bone demineralization, lethargy, and cognitive changes are not seen with antiandrogens.

Antiandrogen monotherapy with bicalutamide 150mg daily is less effective than ADT in treating metastatic disease, but equivalent for non-metastatic locally advanced disease. It may be offered to such patients who were unsuitable or refusing RT, or for non-metastatic biochemical relapse following radical RT. Side effects include frequent gynaecomastia, breast tenderness, and occasional liver dysfunction. The troublesome breast toxicity may be reduced or prevented by tamoxifen 40mg twice weekly. Flutamide not uncommonly causes diarrhoea and is now rarely used. Similarly, CPA is rarely used as monotherapy at its full dose of 100mg three times daily (tds), because it is less effective than androgen ablation; it can also cause unpleasant, but reversible, dyspnoea. At 50mg bd, CPA may be helpful for prevention of castration-induced hot flushes.
Prostate cancer—management of advanced disease: hormone therapy III

Monitoring treatment during ADT
Typically, patients will have baseline PSA, FBC, renal and liver function tests, a renal USS, and an MRI marrow screen or isotope bone scan. The PSA is repeated after 3 months, 6 months, then, provided that it has fallen to an acceptable nadir, 6-monthly thereafter until it rises. Liver function is checked 3-monthly if antiandrogen monotherapy is used. Contemporary patients will often be seeing the oncologist shortly after starting ADT to discuss early docetaxel or abiraterone, so monitoring for disease progression will be under their supervision, rather than the urologist.

Physical examination, including DRE, and serum renal function are checked on disease progression, and imaging if clinically indicated. While PSA is very useful as a marker for response and progression, 5% of patients show clinical progression without a PSA rise. This may occur in anaplastic tumours that fail to express PSA.

Lifestyle advice is often sought by patients during treatment. Exercise and calcium/vitamin D supplements should be encouraged to minimize the risk of osteoporotic complications. NICE 2014 guidance recommends that patients with bone metastases are assessed for fracture risk, and if this is high or if there is a history of bone fractures or osteoporosis, bone densitometry should be carried out and bisphosphonates prescribed. NICE 2014 also recommends that patients are offered sexual counselling and supervised aerobic exercise at least twice weekly for 12wk to combat fatigue and maintain bone and muscle strength. Patients with vertebral bone metastasis should be advised to react to symptoms and signs of possible spinal cord compression. Specialist nursing and counselling support are much needed by many of these patients.

Immediate vs delayed hormone therapy
For decades after ADT was discovered, it was reserved for patients with symptomatic metastatic disease. Arguments against its immediate use focused on its side effects and cost. However, studies of patients with locally advanced and metastatic PC have demonstrated slower disease progression and reduced morbidity when treated with ADT early (i.e. before the onset of symptoms). Improved survival has also been reported in patients without bone metastases (but including node-positive disease) when treated immediately. Subgroups of patients <70 years old, those with PSADT of <12 months, and patients with baseline PSA of >50ng/mL appear to benefit most.

Intermittent hormone therapy
The potential advantages of stopping hormone therapy when the disease has remitted (PSA <4ng/mL) and then restarting it when the PSA has risen again (to perhaps 10 or 20ng/mL) are the reduced side effects, improved QoL during the off-treatment periods, and cost savings; these advantages have been demonstrated in phase II trials.
Two large phase III studies comparing long-term outcomes of intermittent vs continuous ADT or MAB in men with locally advanced or metastatic disease have reported non-inferiority using intermittent ADT. In the most recent update from one of these studies (SEUG9901), after 5.8y of median follow-up, CSS was equivalent, with the continuous group more likely to die from a cardiovascular-related event. Only 14% of patients in this trial had metastatic disease at recruitment. Another randomized trial conducted on patients with biochemical failure following radical RT showed no difference in overall survival after 7y of median follow-up.

None of the LHRH agonists/antagonists or antiandrogens are currently licensed for intermittent therapy, though they are already an option for patients enjoying disease remission who are intolerant of side effects.

References
Prostate cancer—management of advanced disease: castrate-resistant prostate cancer

Castrate-resistant PC (CRPC) is defined by two consecutive PSA rises from its nadir, or symptomatic progression despite a favourable biochemical response, following ADT in the presence of a castrate serum testosterone level (<20ng/dl). Biologically, this state may be due to proliferation of androgen-independent clones, androgen receptor amplification, aberrant stimulation of androgen-dependent transcription pathways, or a block to apoptosis induced by androgen withdrawal. It is recognized that intracellular androgen synthesis occurs in cancer cells, which has opened new therapeutic avenues. Clinically, CRPC is an incurable, debilitating condition requiring multidisciplinary management, often of frail, elderly patients.

The prognostic factors for survival with CRPC are identical to the factors predicting response to hormone therapy (see p. 369), with the addition of time from initiation of hormone therapy to initiation of chemotherapy and visceral metastasis status. The mean survival at this point ranges from 9 months in the presence of extensive metastatic disease to 27 months in asymptomatic patients without demonstrable metastases.

There has been a paradigm shift in the management of CRPC since 2004. Before this, management was palliative, with no effective systemic agents available. In 2004, for the first time, a cytotoxic agent (the taxane docetaxel) was demonstrated to confer survival benefit of 3 months. Taxanes disrupt microtubules essential for cell division and promote apoptosis by phosphorylation of bcl-2. Since 2010, there has been a swathe of practice-changing trials published, demonstrating efficacy and safety of a plethora of agents and, alongside this, a new generation of oncologists interested in PC has emerged. Two of these trials STAMPeDe (2016) and ChAARTeD (2105) have demonstrated an even greater survival advantage (10–14 months) by using docetaxel concurrently with ADT prior to the castrate-resistant stage of the disease, which has largely cleared urology clinics of metastatic PC follow-up patients, except the frail elderly or patients with comorbidities (heart disease, renal impairment, or haematological abnormalities) that are unsuitable for chemotherapy.

Treatment of CRPC in patients not previously treated with docetaxel is initially with second-line hormone therapy. Twenty-five per cent of patients respond by adding an antiandrogen, e.g. bicalutamide 50mg daily, to establish MAB. If MAB was used from initiation of hormone therapy, withdrawal of the antiandrogen paradoxically elicits a favourable response in 25% of patients. Two 2016 randomized trials STRIVE and TeRRAIN have demonstrated a 10– to 14-month progression-free survival advantage when using enzalutamide, instead of bicalutamide, in this setting, although at the time of writing, enzalutamide has not been approved for this indication.

A further rise in PSA formerly required third-line hormonal therapy, such as the addition of oestrogens or corticosteroids. For example, diethylstilbestrol 1mg daily, with 75mg aspirin for thromboembolic prophylaxis, elicits a response in up to 60% of these patients. The mean duration of response is 4 months. Fortunately, however, newer second-generation
hormonal treatments have demonstrated improved efficacy and safety in the pre-chemotherapy and post-chemotherapy settings (with continuation of ADT):

- **Abiraterone**: a CYP450c17 enzyme inhibitor which blocks androgen biosynthesis within cancer cells (Fig. 7.11). Administered orally with prednisolone, it prolongs overall survival in men who have failed docetaxel by 3.6 months, compared with prednisolone alone.\(^1\) In the chemo-naïve setting, abiraterone reduced time to chemotherapy by 8 months, compared to prednisolone alone.\(^2\) Mineralocorticoid side effects (hypokalaemia, hypertension, cardiac failure) occur in 8% (3% serious). Licensed and approved by NICE for both indications, but restricted to a single use per patient. At the time of writing, the results of the ADT/abiraterone arm of STAMPeDe have demonstrated a significant progression-free survival advantage which will likely see abiraterone started at the same time as ADT in the pre-CRPC setting.

- **Enzalutamide**: an orally bioavailable androgen receptor antagonist, 5-fold more potent than bicalutamide, which also inhibits the process by which the receptor–hormone complex is transported to the cell nucleus. Randomized placebo-controlled trials in men with post-docetaxel CRPC (AFFIRM, 2012) demonstrated a median survival advantage of 5 months, and with docetaxel-naïve CRPC (PREVAIL, 2014) observed a 17-month delay to chemotherapy. Patients with the AR V-7 splice variant within circulating tumour cells show a poor response. Licensed and approved by NICE for both indications, but restricted to a single use per patient.
Cytotoxic chemotherapy
Systemic chemotherapy is offered to appropriate patients with CRPC by the medical oncologist. Men with low-volume disease who have failed radical local treatment and hormone therapy are also candidates for chemotherapy. Correction of renal and bone marrow dysfunction is necessary prior to treatment.

Cancer control
Most single-agent cytotoxic chemotherapy trials define response as >50% decrease in PSA. Responses are reported in 20–40% of patients, with haematological toxicity (especially neutropenia), using most agents. The median survival following chemotherapy ranges from 24 to 44wk. Results of two 2004 randomized studies comparing docetaxel 3-weekly cycles with mitoxantrone plus prednisolone demonstrated a 2.4- to 3-month median survival advantage in favour of docetaxel. Toxicity includes febrile neutropenia (6–15%) and thrombocytopenia (8%). Docetaxel maintenance is not used, but salvage regimens using cabazitaxel (conferring a 2.5-month survival advantage, compared with mitoxantrone) are in clinical use, subject to conditional approval by UK NICE in 2016 (TA391).

Symptom palliation
This is discussed in further detail on pp. 378–9. Symptomatic improvements may be achieved with cytotoxic chemotherapy. In a randomized trial of mitoxantrone plus prednisolone vs prednisolone alone, 29% in the combination group experienced a reduction in pain and analgesic use, compared with 12% in the prednisolone-alone group. PSA response did not predict palliative response. In another study, docetaxel plus prednisolone produced a pain reduction in 35%, compared to 22% of patients given mitoxantrone and prednisolone, resulting in improved QoL scores.

Bisphosphonates (in particular, zoledronic acid) have been shown to reduce skeletal-related events (SREs), such as pathological fractures, in CRPC. However, the STAMPEDE trial showed no survival advantage to its use with ADT. NICE 2014 recommends bisphosphonates are offered to CRPC patients when other pain-relieving modalities have failed. Denosumab, an anti-osteolytic fully human monoclonal anti-RANKL antibody, is even more effective at preventing SREs and reducing bone pain. NICE recommends its use only in patients who cannot take bisphosphonates; side effects can include hypocalcaemia and (rarely) osteonecrosis of the jaw.

Other palliative treatments may include opiate analgesics, EBRT to symptomatic primary or metastatic bone lesions, systemic radionuclides (strontium-89) for widespread bone pain, surgery or drainage procedures for urinary obstruction, and neurosurgery for spinal cord compression (see p. 378 and Chapters 10 and 11).
Novel therapies
While clinical trials of tyrosine kinase and endothelin-1 receptor antagonists have so far yielded disappointing results, promising results are reported for several effective and relatively well-tolerated new treatment options for CRPC, including the following agents:

- **Provenge® (sipuleucel-T) vaccine**: this is the first patient-derived US Food and Drug Administration (FDA)-approved CRPC immunotherapy against prostatic acid phosphatase. A 4-month survival advantage has been demonstrated over placebo in a randomized trial of men with minimally symptomatic CRPC (IMPACT, 2010). Serious infusion-related adverse events occur in 3% of patients. It is estimated to cost around £60 000 for three doses. Not approved for use in the UK.

- **Radium-223 (Alpharadin)**: reduced bone SREs, bone pain, and prolonged survival by 3.6 months in a UK placebo-controlled RCT of 922 CRPC patients (ALSYMPCA, 2013). It is approved for use by UK NICE, either post-docetaxel or in CRPC patients unsuitable to receive docetaxel.

- **PARP (poly-ADP ribose polymerase) inhibitors**: around 30% of CRPC patients can harbour DNA repair gene defects, including BRCA1 and 2. In a trial of just 16 such patients, 14 responded to the oral well-tolerated PARP inhibitor olaparib (TOPARP-A, 2015). Larger trials are awaited in this promising avenue of targeted therapy. Not currently licensed or approved for use in the UK.

References
Prostate cancer—management of advanced disease: palliative care

Multidisciplinary involvement of the oncologist, urologist, cancer nurse specialist, palliative care, and acute pain teams is often necessary in the terminal phase of the illness, to optimize the patient’s dignity, comfort, and QoL.

Pain is undoubtedly the most debilitating symptom of advanced PC. The pathogenesis of this pain is poorly understood, but there is known to be osteoclastic and osteoblastic activity. Table 7.16 categorizes the pain syndromes and their management. Androgen ablation therapy is effective in newly presenting disease. In castrate-resistant disease, bisphosphonates (especially zoledronic acid) can reduce bone pain in up to 80% of patients and the risk of skeletal complications such as pathological fracture. Chemotherapy also has a palliative role.

Spinal cord compression
See Chapter 11.

Lower urinary tract symptoms/urinary retention/haematuria

TURP may be required for BOO or retention. Instrumentation can be difficult if there is a bulky, fixed PC. The prostate may be friable and bleed spontaneously, causing intractable haematuria. Patients often present to the

Table 7.16 Pain syndromes and their management

<table>
<thead>
<tr>
<th>Pain type</th>
<th>Initial management</th>
<th>Other options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal bone pain</td>
<td>Medical: simple, NSAIDs, opiates</td>
<td>Surgical fixation of pathological fracture or extensive lytic metastasis</td>
</tr>
<tr>
<td></td>
<td>Single-shot RT, 8Gy (75% respond up to 6 months)</td>
<td></td>
</tr>
<tr>
<td>Diffuse bone pain</td>
<td>Medical: NSAIDs, opiates</td>
<td>Steroids; bisphosphonates (e.g. zoledronic acid); denosumab; radium-223 (Alpharadin) Chemotherapy</td>
</tr>
<tr>
<td></td>
<td>Multi-shot RT or radiopharmaceutical (e.g. strontium-89)</td>
<td></td>
</tr>
<tr>
<td>Epidural metastasis and cord compression</td>
<td>See Chapter 11</td>
<td></td>
</tr>
<tr>
<td>Plexopathies (rare—caused by direct tumour extension)</td>
<td>Medical: NSAIDs, opiates RT; nerve blocks</td>
<td>Tricyclics; anticonvulsants</td>
</tr>
<tr>
<td>Other pain syndromes: skull/cranial nerve, liver, rectum/perineum</td>
<td>RT Medical: NSAIDs, opiates, steroids</td>
<td>Intrathecal chemotherapy for meningeal involvement</td>
</tr>
</tbody>
</table>
emergency service in clot retention, which may temporarily settle following catheterization and bladder washouts, although TURP, prostatic artery embolization, or palliative RT can be helpful for longer-term control. Some advocate the use of tranexamic acid.

The bladder may be contracted due to disease involvement, causing misery, even after relief of BOO. This may perhaps respond to anticholinergic therapy, or a long-term urethral or suprapubic catheter may be required for persistent voiding symptoms or recurrent retention.

Ureteric obstruction
This is a uro-oncological emergency, described in Chapter 10. Locally advanced PC and bladder cancer may cause bilateral ureteric obstruction. The patient presents either with symptoms or signs of renal failure, anuria without a palpable bladder, and occasionally with signs of sepsis. Renal ultrasound will demonstrate bilateral hydronephrosis and an empty bladder. A discussion with the patient and his relatives will determine whether he wishes to be treated; the alternative would be a relatively comfortable death in renal failure, which may be the best course for a very frail, terminally ill patient.

After treating any life-threatening hyperkalaemia, options include bilateral percutaneous nephrostomies (PCNs) or ureteric stents. Insertion of retrograde ureteric stents in this scenario is usually unsuccessful because the tumour affecting the bladder trigone obscures the ureteric orifices. Clotting screen and blood grouping are required prior to PCN insertion by the interventional radiologists. Antegrade ureteric stenting following placement of PCN is usually successful. Hormone therapy should be commenced, if not previously used.

Unilateral ureteric obstruction is occasionally observed at presentation or on progression. Usually asymptomatic, this may be managed conservatively, provided there is a normal contralateral kidney. Optimization of renal function becomes important if cytotoxic chemotherapy is being considered.

Anaemia, thrombocytopenia, and coagulopathy
Some patients with extensive bone marrow replacement by tumour rapidly and regularly become symptomatic with anaemia. This tends to be normochromic and normocytic, often occurring without other symptoms and with normal renal function. They require regular blood transfusions. Platelet transfusions are rarely required for bleeding/thrombocytopenia. Terminal patients may develop a clinical picture similar to DIC, also leading to problematic haematuria.
Chapter 7 Urological Neoplasia

Urethral cancer

Primary urethral cancer is very rare, occurring in elderly patients and more commonly in men and African Americans, compared to whites (Surveillance, Epidemiology, and End Result data).

Risk factors include urethral stricture, urethral diverticulae, and STD (human papillomavirus (HPV)).

Pathology and staging

In ♀, the majority of cancers occur in the proximal urethra (SCC 60%, TCC 20%, adenocarcinoma 10%). In ♂, 60% occur in the bulbomembranous, 30% in penile, and 10% in prostatic urethra (TCC 60%, SCC 20%, adenocarcinoma 15%), with other cancers including sarcoma and melanoma.

Urethral cancer metastasizes to the pelvic lymph nodes from the posterior urethra and to the inguinal nodes from the anterior urethra in 50% of patients. Staging is by the TNM system (for TNM staging, see http://www.uicc.org/resources/tnm/publications-resources).

Presentation

- Often late; many patients have metastatic disease at presentation.
- Painless haematuria, initial, terminal, or bloody urethral discharge.
- Voiding-type LUTS (less common).
- Perineal pain (less common).
- Peri-urethral abscess or urethrocutaneous fistula (rare).
- Past history of sexually transmitted or stricture disease.

Examination may reveal a hard, palpable mass at the ♀ urethral meatus or along the course of the ♂ anterior urethra. Inguinal lymphadenopathy, chest signs, and hepatomegaly may suggest metastatic disease.

The differential diagnosis in men is:
- Urethral stricture.
- Perineal abscess.
- Metastatic disease involving the corpora cavernosa.
- Urethrocutaneous fistula.

The differential diagnosis in women is:
- Urethral caruncle.
- Urethral cyst.
- Urethral diverticulum.
- Urethral wart (condylomata acuminata).
- Urethral prolapse.
- Periurethral abscess.

Investigations

Urine cytology, cystourethroscopy, biopsy, and bimanual examination under anaesthesia will obtain a diagnosis and local clinical staging. Radiological staging is obtained by MRI pelvis and CT chest and abdomen.
Treatment
For localized anterior urethral cancer, radical surgery or RT (55–70Gy ± BT) are the options. Results are better with anterior urethral disease. ♂ patients would require perineal urethrostomy. Post-operative incontinence due to disruption of the external sphincter mechanism is minimal, unless the bladder neck is involved, but the patient would need to sit to void. For posterior/prostatic urethral cancer, cystoprostatourethrectomy should be considered for fit men, while anterior pelvic exenteration (excision of the pelvic lymph nodes, bladder, urethra, uterus, ovaries, and part of the vagina) should be considered for women. In the absence of distant metastases, inguinal lymphadenectomy is performed if nodes are palpable since 80% contain metastatic tumour.

For locally advanced disease, a combination of preoperative RT and surgery is recommended.

For metastatic disease, cytotoxic chemotherapy [if SCC, 5-fluorouracil (5FU) + MMC; if TCC, cisplatin-based] is the only option.

Staging is by the TNM (2017) classification following histological confirmation of the diagnosis (for TNM staging, see www.uicc.org/resources/tnm/publications-resources). All rely upon physical examination and imaging, with the pathological classification (prefixed ‘p’) corresponding to the TNM categories.

Prognosis
(See Table 7.17.)

Table 7.17 Urethral cancer: 5y survival

<table>
<thead>
<tr>
<th>Treatment</th>
<th>5y survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery: anterior urethra</td>
<td>50%</td>
</tr>
<tr>
<td>Surgery: posterior urethra</td>
<td>15%</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>34%</td>
</tr>
<tr>
<td>Radiotherapy and surgery</td>
<td>55%</td>
</tr>
</tbody>
</table>
Penile neoplasia: benign, viral-related, and premalignant lesions

Benign cutaneous lesions

- **Pearly penile papules**: multiple, small (about 1–3mm) papules running around the circumference of the corona of the glans, occur in 15% of post-pubertal ♂. They may be mistaken for warts, are not infectious, and require no treatment.
- **Zoon’s balanitis**: bright red, shiny, erythematous plaque on the glans or inner prepuce.
- **Lichen planus**: flat-topped violaceous papule.
- **Lichen sclerosus**: also known as balanitis xerotica obliterans (BXO), this is a common sclerosing condition of the glans and prepuce. It occurs at all ages and most commonly presents as non-retractile foreskin (phimosis). The meatus and fossa navicularis may be affected, causing obstructed and spraying voiding. The histological diagnosis is usually made after circumcision, with epithelial atrophy, loss of rete pegs, and collagenization of the dermis.
- **Non-specific balanoposthitis**: inflammatory condition of the glans and foreskin. Can be caused by bacterial and candidal infections.
- **Psoriasis**: appears as thickened red papules or plaques with well-defined edges and often has a scaly surface.

Benign subcutaneous lesions

- **Peyronie’s plaque**: appears in response to microtrauma to small blood vessels. There is strong evidence that genetic factors and drug factors also influence the start of Peyronie’s disease.
- **Retention cysts**.
- **Syringomas (sweat gland tumours)**.
- **Neurilemoma**.
- **Angioma, lipoma**.
- **Iatrogenic pseudotumour following injections**.
- **Pyogenic granuloma following injections**.

Viral-related lesions

- **Condyloma acuminatum**: also known as genital warts, related to HPV infection. Soft, usually multiple benign lesions on the glans, prepuce, and shaft; may occur elsewhere on the genitalia or perineum. A biopsy is worthwhile prior to topical treatment with podophyllin; 5% have urethral involvement, which may require diathermy. HPV infection (particularly types 16 and 18) is potentially carcinogenic, and condylomata have been associated with penile SCC.
- **Bowenoid papulosis**: a condition resembling penile intraepithelial neoplasia (PIN), but with a benign course. Multiple papules appear on the penile skin or a flat granular lesion. These should be biopsied. HPV is the suspected cause.
- **Kaposi’s sarcoma**: first described in 1972, this reticuloendothelial tumour has become the second commonest malignant penile tumour. It presents as a raised, painful, bleeding violaceous papule or as a...
bluish ulcer with local oedema. It is slow-growing, solitary, or diffuse. It occurs in immunocompromised men, particularly in homosexuals with HIV/AIDS. Urethral obstruction may occur. Treatment is palliative; intralesional chemotherapy, laser or cryoablation, or RT.

Premalignant lesions
Some histologically benign lesions are recognized to have malignant potential or occur in close association with SCC of the penis. The extent to which SCC is preceded by premalignant lesions is unknown.
- Bowenoid papulosis: a condition resembling PIN, but with a relatively benign course. Single or multiple papules appear on the penile skin. These should be biopsied. HPV is the suspected cause.
- Bowen’s disease: this is PIN of the penile shaft or scrotal skin (keratinizing PIN). Treatment is wide local excision or topical therapy with 5FU (an inhibitor of thymidylate synthetase and therefore DNA synthesis) or imiquimod (an imidazoquinonin tetracyclicamine).
- Erythroplasia of Queyrat: also known as PIN of the glans or inner prepuce. A red velvety, circumscribed painless lesion, though it may ulcerate, resulting in discharge and pain. Treatment is as for Bowen’s disease, although it is ten times more likely to progress to invasive SCC than is Bowen’s disease.
- Buschke–Löwenstein tumour: also known as giant condyloma acuminatum, this is an aggressive locally invasive tumour of the glans related to a viral infection. Metastasis is very rare, but wide excision is necessary to distinguish it from SCC. Urethral erosion and fistulation may occur.
- Extramammary Paget’s disease: is a rare slow-growing condition mainly observed in the elderly. It is an intraepithelial adenocarcinoma that involves the area rich in apocrine glands.
- Verrucous hyperplasia: manifests as a verrucous, exophytic, or endophytic lesion that typically develops at sites of chronic irritation and inflammation. It is a premalignant lesion that may transform into a slow-growing verrucous carcinoma or an SCC.
- Cutaneous horn: rare solid skin overgrowth; extreme hyperkeratosis, the base may be malignant; treatment is wide local excision.

A chronic red or pale lesion on the glans or prepuce is always a cause for concern. Note should be made of its colour, size, and surface features, and both inguinal regions should be palpated for lymph nodes. Early review following steroid, antibacterial, or antifungal creams is recommended; if persistent, urgent biopsy should be recommended.
Penile cancer: epidemiology, risk factors, and pathology

SCC is the commonest primary penile cancer, accounting for 95% of penile malignancies. Others include Kaposi’s sarcoma (3%); rarities include basal cell carcinoma (2%), malignant melanoma (2%), sarcoma (<1%), and Paget’s disease. Metastases are very rarely seen from the bladder, prostate, rectum, and other primary sites.

Incidence and aetiology of SCC

Penile cancer is rare, representing 1% of мужской cancers. The incidence of both penile cancer and PIN appears to be increasing, most occurring in elderly men. ~600 new cases of penile cancer and 100 deaths are reported annually in the UK.

Risk factors for SCC

- **Age**: penile cancer incidence rises during the fifth decade and peaks in the eighth decade and above. It is unusual below the age of 40.
- **Premalignant lesions**: around 40% of patients with penile SCC are reported to have had a pre-existing penile lesion.
- **Phimosis**: penile cancer is rare in men circumcised neonatally. It is virtually non-existent in Israel. It is thought that chronic irritation with smegma, inflammation (balanitis), and poor hygiene are contributory.
- **Geography**: commoner in parts of Asia, Africa, and South America where it accounts for 10–20% of мужской cancers. Paraguay has the highest worldwide incidence.
- **HPV**: wart infection, especially with types 16 and 18, appears to be associated with up to 80% of cases.
- **Smoking**.
- **Immunocompromised patients**.
- **History of PUVA** (psoralen combined with ultraviolet A) therapy.

Pathology and staging of penile SCC

Believed to be preceded by PIN, SCC starts as a slow-growing papillary, flat, or ulcerative lesion on the glans (48%), prepuce (21%), glans and prepuce (9%), coronal sulcus (6%), or shaft (2%). The remainder are indeterminate. It grows locally by superficial spread beneath the foreskin before entering a vertical-phase growth pattern, invading the corpora cavernosa and urethra, and eventually, the perineum, pelvis, and prostate. Lymphatic metastasis is stepwise, initially to the superficial, then deep inguinal lymph nodes, and subsequently to the iliac and obturator nodes. Skin necrosis, ulceration, and infection of the inguinal lymph nodes may lead to sepsis or haemorrhage from the femoral vessels. Ten per cent metastasize, most commonly to the lung(s).

Histologically, SCC exhibits keratinization, epithelial pearl formation, and mitoses. There are ‘classic’, papillary, basaloïd, verrucous, sarcomatoid, and condylomatous histological subtypes. Grading is G1 (20%), G2 (50%), or G3 (30%); grading correlates with prognosis, as does the presence of vascular invasion. Staging is by the TNM classification (Fig. 7.12) (for TNM staging, see www.uicc.org/resources/tnm/publications-resources).
Prognostic factors for penile SCC

The presence of metastatic node disease is the most important prognostic indicator. Risk groups for N+ disease have been defined, based on the location, size, histological grade, depth of invasion, presence of corporal invasion, and vascular or lymphatic invasion.

![TNM staging of penile cancer](image)

Fig. 7.12 TNM staging of penile cancer.
Penile cancer: clinical management

Clinical presentation
A hard, painless lump on the glans penis or inner prepuce is the commonest presentation. Up to 15–50% of patients delay presentation for >1y due to embarrassment, personal neglect, fear, or ignorance. A bloody discharge may be confused with haematuria. Rarely, a groin mass or urinary retention are presenting symptoms. Examination reveals a solid, non-tender mass or ulcer beneath or involving the foreskin. There is usually evidence of local infection. In more advanced disease, the genitalia and even perineum are replaced by a fungating tumour.

Examination
A thorough examination of the abdomen, external genitalia, and inguinal lymph nodes is necessary.

Investigation
Urgent biopsy is usually indicated. Penile MRI with intracavernosal prostaglandin E1 is used for tumour staging. Chest, abdomen, and pelvic CT scan is obtained in advanced cases to assess pelvic lymph nodes and distant metastases.

Treatment
Following histological diagnosis, management of penile cancer should take place in supraregional centres that can provide multidisciplinary surgical and oncological expertise for this rare disease.

The primary tumour
The first-line treatment of penile cancer, regardless of the inguinal node status, is surgery. Circumcision is appropriate for preputial lesions. PIN should be treated with topical 5FU or 5% imiquimod, 5 days per week for 4–6wk. Recurrence should be investigated with biopsy to exclude invasive cancer, and then treated by glansectomy with split skin graft glanular reconstruction.

Penis-preserving surgery is recommended, wherever possible, in order to avoid the loss of identity, loss of sexual ability and interest, and voiding dysfunction. Glansectomy with split skin graft glanular reconstruction is recommended for Ta–1 and T2 (not invading the corpora cavernosa) tumours, giving safe oncological and good cosmetic and functional results. Alternatives to surgery include laser ablation, cryoablation, EBRT, or BT, but these are associated with higher recurrence rates.¹

For T3 tumours, a partial penectomy may be performed, with good cosmetic, functional, and oncological outcomes. Recurrence rates for penile-preserving surgery in contemporary studies are around 2–8%.

Total penile amputation with formation of a perineal urethrostomy is indicated in patients with more extensive lesions. The patient must be psychologically prepared for the inability to have sexual intercourse and need to sit to void urine. Local recurrence occurs in <5% if the excision margins are clear by 1–2mm. The commonest complication is urethral meatal stenosis. RT or BT are non-surgical alternatives, though local recurrence rates of 30–50% are reported; tissue necrosis/damage leads to meatal stenosis (15–30%), urethral stricture (20–35%), telangiectasia (90%), fistula, and pain.
In advanced cases, chemotherapy with cisplatin + fluorouracil + docetaxel/paclitaxel can be considered, with the option of surgery in those who have a good response.

Lymphadenopathy

In those who have clinically impalpable lymph nodes and low-risk disease (pTa, pTis, or pT1G1), surveillance can be offered. However, 12–25% have metastases, and survival is reduced with delayed lymphadenectomy, compared to early lymphadenectomy (40% vs 90%). Therefore, lymph node assessment is recommended for all patients with clinically impalpable lymph nodes, initially with USS ± FNA (if positive, proceed to radial inguinal lymphadenectomy) and then, if negative, dynamic sentinel lymph node biopsy (DSLNB). DSLNB has a false-positive rate of <5% and involves intra-dermal (at the tumour site) administration of 30–70MBq 99mTc-nanocolloid on the morning of surgery, Patent Blue dye injection immediately before surgery, and then intraoperative gamma-camera detection of the sentinel lymph node.

For patients with palpable lymph nodes, there is no role for routine antibiotics, as contemporary studies have shown that >90% harbour metastases. These patients should undergo USS ± FNA or biopsy and then radial inguinal lymphadenectomy. The boundaries of the dissection are the inguinal ligament, the adductors, and the sartorius, with the femoral vessels in the floor. Current morbidity rates are around 25% (lymphoedema, lymphocele, wound infection, and skin necrosis), although higher in obese patients.

RT and chemotherapy are alternative or adjuvant treatments for metastatic nodal disease in unfit, elderly, or inoperable patients; 5y survival 25%2 (Table 7.18).

Pelvic lymphadenectomy should be considered when two or more positive inguinal nodes are identified at DSLNB or inguinal lymphadenectomy or if the CT scan has shown enlarged pelvic lymph nodes by CT criteria; here, the likelihood of pelvic node metastasis is 23–56% and cure rates of 14–54% are reported.

- **Fixed inguinal masses**: may be considered for salvage surgery following neo-adjuvant chemotherapy (response rates 20–60%), ideally within a clinical trial. Rarely, lymphadenopathy ulcerates the skin, may encase the femoral vessels, and invade the deeper musculature. In these circumstances, collaboration with plastic and vascular surgeons is necessary if surgery is considered appropriate.

<table>
<thead>
<tr>
<th>Table 7.18 5y cancer-specific survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
</tr>
<tr>
<td>N1</td>
</tr>
<tr>
<td>N2</td>
</tr>
<tr>
<td>N3</td>
</tr>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>
Distant metastatic disease: is treated in a palliative setting using systemic chemotherapy with cisplatin-based chemotherapy. Responses are partial and short-lived. Patients with M1 disease are offered palliative surgery for their primary tumour, as prognosis in this group of patients is extremely poor.

Follow-up

Careful follow-up, initially every 2–4 months, is essential after primary tumour surgery to detect and treat local recurrence early (most recurrences occur within 3y). Patients should be taught self-examination, and in clinic, the penis and lymph nodes should be examined.

Pelvic, abdominal, and chest CT imaging is justified for those patients who have undergone inguinal lymphadenectomy for metastatic disease.

References

Scrotal and paratesticular tumours

Carcinoma of the scrotum

SCC was originally described in 1775 by London surgeon Percivall Pott as ‘chimney sweepers’ cancer’. Called by the unfortunate individuals ‘the soot-wart’, it was the first cancer to be associated with an occupation. Pott wrote, ‘It is a disease which always makes its first attack on, and its first appearance in, the inferior part of the scrotum; where it produces a superficial, painful, ragged, ill-looking sore, with hard and rising edges. In no great length of time, it pervades the skin, dartos, and membranes of the scrotum, and seizes the testicle, which it inlarges, hardens, and renders truly and thoroughly distempered; from whence it makes its way up the spermatic process into the abdomen, most frequently indurating, and spoiling the inguinal glands: when arrived within the abdomen, it affects some of the viscera, and then very soon becomes painfully destructive’.

Nowadays, a rare disease, chronic exposure of the scrotal skin to soot, tar, or oil was the cause. A history of prior RT, PUVA treatment, or hPV (warts) infection may be forthcoming. It usually presents as a painless lump or ulcer, often purulent, on the scrotal wall. If posterior, the lesion is concealed from view if the patient is lying or sitting. Inguinal lymphadenopathy may suggest metastasis (present in 50%) or a reaction to infection. Staging is described in Table 7.19.

Treatment of a mass or ulcer on the scrotum is wide local excision, ideally with a 2cm margin. Neo-adjuvant or adjuvant RT may be given. Skin grafting or tissue flap may be required to achieve closure/testicular cover.

Antimicrobials are administered for 6wk if there is lymphadenopathy, after which the groins are re-evaluated. Inguinal lymphadenectomy is considered if lymphadenopathy persists, with adjuvant combination chemotherapy. Supraclavicular lymphadenopathy and haematogenous, visceral, and bony metastases are rare, are treated with combination chemotherapy, and carry a poor prognosis.

Table 7.19 Stage and description of squamous cell carcinoma of the scrotum

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Localized to scrotal wall</td>
</tr>
<tr>
<td>A2</td>
<td>Locally extensive tumour invading adjacent structures (testis, spermatic cord, penis, pubis, and perineum)</td>
</tr>
<tr>
<td>B</td>
<td>Metastatic disease involving inguinal lymph nodes only</td>
</tr>
<tr>
<td>C</td>
<td>Metastatic disease involving pelvic lymph nodes without evidence of distant spread</td>
</tr>
<tr>
<td>D</td>
<td>Metastatic disease beyond the pelvic lymph nodes involving distant organs</td>
</tr>
</tbody>
</table>

Tumours of the testicular adnexa
Epithelial tumours arising from the epididymis and paratesticular tissues are rare. They are mostly of mesenchymal origin.
- **Adenomatoid tumours**: small solid tumours arising in the epididymis or on the surface of the tunica albuginea; usually present without change for several years; benign vacuolated epithelial and stromal cells, origin unknown, treatment is local excision.
- **Cystadenoma of the epididymis**: benign epithelial hyperplasia; young adults; often asymptomatic; one-third bilateral and associated with VHL syndrome.
- **Mesothelioma**: presents as a firm, painless scrotal mass, associated with hydrocele which gradually enlarges; any age group; 15% metastatic to inguinal nodes; treated with orchidectomy and follow-up.

Paratesticular tumours
- **Rhabdomyosarcoma**: scrotal mass in first/second decade; in spermatic cord, compresses the testis and epididymis; lymphatic spread to paraaortic nodes; treatment is multimodal radical orchidectomy with RT and combination chemotherapy; 5y survival 75%.
- **Leiomyoma/sarcoma**: scrotal mass, age 40–70y; in spermatic cord; 30% are malignant, 70% are benign; haematogenous distant spread; treatment is wide excision or radical (inguinal) orchidectomy.
- **Liposarcoma**: spermatic cord tumour; 70% are malignant; treatment is wide excision or radical (inguinal) orchidectomy.
Testicular cancer: incidence, mortality, epidemiology, and aetiology

Incidence and mortality
Primary testicular cancer (TC) is the commonest solid cancer in men aged 20–45, rare below 15y and above 60y. Constituting 1% of all ♂ cancers and 5% of all urological tumours, it is considered the most curable cancer. The incidence is increasing in most European countries (although recently, it has fallen slightly in the UK), while the mortality has fallen steadily from 1.3 to 0.2 per 100 000 since 1975, when platinum-based chemotherapy was introduced. Lifetime risk of developing TC is estimated at 1 in 210. A total of 2200 new cases were seen, but only 60 deaths occurred in the UK (2014). Public health campaigns encouraging testicular self-examination (TSE) for young men are ongoing.

Epidemiology and aetiology

- **Age:** the commonest affected age group is 20–45y, with GCTs. Half of all cases occur in men <35y. NSGCTs are commoner at ages 20–35, while seminoma is commoner at ages 35–45y. Rarely, infants and boys below 10y develop yolk sac tumours, and 50% of men >60y with TC have lymphoma.

- **Race:** white Caucasian people living in europe and the USA have the highest risk. Whites are three times more likely to develop TC than blacks in the USA. With the exception of New Zealand Maoris, TC is rare in non-Caucasian races.

- **Previous TC:** confers a 12-fold ↑ risk of metachronous TC. Bilateral TC occurs in 1–2% of cases.

- **Cryptorchidism:** 5–10% of TC patients have a history of cryptorchidism. Ultrastructural changes are present in these testes by age 3y, although earlier orchidopexy does not completely eliminate the risk of developing TC. According to a large Swedish study, cryptorchidism is associated with a 3-fold ↑ risk of TC in men who underwent orchiopexy aged <13y old, but risk is ↑ 6-fold in men who underwent orchidopexy aged >13y. A meta-analysis showed the risk of contralateral TC almost doubles, while ipsilateral TC risk is ↑ 6-fold in men with unilateral cryptorchidism.

- **Intratubular germ cell neoplasia (testicular intraepithelial neoplasia, TIN):** synonymous with carcinoma in situ, although the disease arises from malignant change in spermatogonia. Fifty per cent of cases develop invasive germ cell TC within 5y. The population incidence is 0.8%. Risk factors include cryptorchidism, extra-gonadal GCT, atrophic contralateral testis, 45XO karyotype, Klinefelter’s syndrome, previous or contralateral TC (5%), and infertility.

- **HIV:** patients develop seminoma 35% more frequently than expected.

- **Hereditary factors:** appear to play a role, given that first-degree relatives of TC sufferers are at higher risk by 4-fold (affected father) to 8-fold (affected brother), but a defined familial inheritance pattern is not apparent. Family history of non-Hodgkin’s lymphoma and oesophageal cancer believed to be at ↑ risk.
• Genetic factors: an isochromosome of 12p is described in all GCT subtypes and TIN; altered p53 is described in 66% of TIN lesions.

• Maternal oestrogen exposure: higher-than-usual levels during pregnancy appears to increase the risk of cryptorchidism, urethral anomalies, and TC in ♀ offspring.

• Very tall men: are at 3-fold greater risk of developing TC; cause unclear.

Trauma and viral-induced atrophy have not been convincingly implicated as risk factors for TC. The finding of testicular microlithiasis, reported in otherwise normal ultrasound examinations, is not considered a risk factor for TC (although it may be present within TC).
Testicular cancer: pathology and staging

Ninety per cent of testicular tumours are malignant GCTs, split into seminoma and non-seminomatous (NS) GCTs for clinical purposes (Table 7.20). Seminoma, the commonest GCT, appears pale and homogeneous. Teratomas are at the differentiated end of the NSGCT spectrum—heterogeneous and may contain bizarre tissues such as cartilage or hair. Metastases within the testis constitute 1% of all testicular tumours, notably spreading haematogenously from the prostate (35%), lung (19%), colon (9%), and kidney (7%).

The right testis is affected slightly more commonly than the left; synchronous bilateral TC occurs in 1–2% of cases. TC spreads by local extension into the epididymis, spermatic cord, and rarely the scrotal wall. Lymphatic spread occurs via the testicular vessels, initially to the para-aortic nodes. Involvement of the epididymis, spermatic cord, or scrotum may lead to pelvic and inguinal node metastasis. Bloodborne metastasis to the lungs, liver, and bones is more likely once the disease has breached the tunica albuginea.

TC is staged using the TNM (2017) system (Fig. 7.13) (for TNM staging, see http://www.uicc.org/resources/tnm/publications-resources).

Herein, T stage is pathological; N stage is clinical (physical examination, imaging with CT abdomen and chest) or pathological; M stage involves physical examination, imaging with CT, and biochemical investigations. An additional S category is appended for serum tumour markers (see p. 398).

<table>
<thead>
<tr>
<th>Table 7.20</th>
<th>The WHO histopathological classification of testicular tumours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germ cell tumours (90%)</td>
<td>Other tumours (7%)</td>
</tr>
<tr>
<td>Seminoma (48%):</td>
<td>Epidermoid cyst (benign)</td>
</tr>
<tr>
<td>Spermatocytic, classical, and anaplastic subtypes</td>
<td>Adenomatoid tumour</td>
</tr>
<tr>
<td>Non-seminomatous GCT (42%):</td>
<td>Adenocarcinoma of the rete testis</td>
</tr>
<tr>
<td>Teratoma:</td>
<td>Carcinoid</td>
</tr>
<tr>
<td>Differentiated/mature</td>
<td>Lymphoma (5%)</td>
</tr>
<tr>
<td>Intermediate/immature</td>
<td>Metastatic, from another site (1%)</td>
</tr>
<tr>
<td>Undifferentiated/malignant</td>
<td></td>
</tr>
<tr>
<td>Yolk sac tumour</td>
<td></td>
</tr>
<tr>
<td>Choriocarcinoma</td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
</tr>
<tr>
<td>Mixed seminoma and NSGCT (10%):</td>
<td></td>
</tr>
<tr>
<td>Sex cord stromal tumours (3%) (10% malignant)</td>
<td></td>
</tr>
<tr>
<td>Leydig cell</td>
<td></td>
</tr>
<tr>
<td>Sertoli cell</td>
<td></td>
</tr>
<tr>
<td>Mixed or unclassified</td>
<td></td>
</tr>
<tr>
<td>Mixed germ cell/sex cord tumours (rare)</td>
<td></td>
</tr>
</tbody>
</table>
Intratubular germ cell neoplasia (testicular intraepithelial neoplasia)

The precursor lesion for most testicular GCTs, TIN may be observed adjacent to TC. It is present in the contralateral testis in up to 9% of TC patients. The 5y risk of developing TC from TIN is 50%. Controversy exists as to whether to biopsy the contralateral testis in all cases to diagnose TIN; it is not routinely done in the UK. At particularly high risk of TIN are patients with small (<12mL) testis, a history of cryptorchidism, and age <30y. If TIN is diagnosed, treatment is with orchidectomy, RT, or careful surveillance. Consequently, the issues of infertility and hormone replacement need to be discussed with these patients.

![Diagram of testicular anatomy](image)

![Diagram of pathological staging](image)

Fig. 7.13 Pathological staging of testicular cancer. (a) Primary tumours T1–4. If radical orchidectomy has not been used, Tx is used. (b) Node/metastasis: paraaortic lymphadenopathy measured in the long axis on CT scan (upper figure); supraclavicular lymphadenopathy and/or pulmonary metastases—M1a, other distant metastases (e.g. liver, brain); M1b lower figure.
Testicular cancer: clinical presentation, investigation, and primary treatment

Symptoms
Most patients present with a scrotal lump, usually painless. Four per cent of referrals to UK urology clinics with a scrotal lump are diagnosed with TC. Delay in presentation is not uncommon; this may be due to patient factors (fear, self-neglect, ignorance, denial) or earlier misdiagnosis. Five per cent of patients develop acute scrotal pain due to intra-tumoural haemorrhage, causing diagnostic confusion. The lump may have been noted by the patient, sometimes after minor trauma, or by his partner. Ten per cent of patients develop symptoms suggestive of advanced disease, including weight loss, lumps in the neck, chest symptoms, or bone pain.

Signs
Examination of the genitalia should be carried out in a warm room, with the patient relaxed. Observation may reveal asymmetry or slight scrotal skin discolouration. Using careful bimanual palpation, the normal side is examined first, followed by the abnormal side. This will reveal a hard, non-tender, irregular, non-transilluminable mass in the testis or replacing the testis. Care should be taken to assess the epididymis, spermatic cord, and overlying scrotal wall, which may be normal or involved in 10–15% of cases. Rarely, a secondary hydrocele may be present if the tunica albuginea has been breached. General examination may reveal cachexia, supraclavicular lymphadenopathy, chest signs, hepatomegaly, lower limb oedema, or abdominal mass, all suggestive of metastatic disease. Gynaecomastia is seen in about 5% of patients with TC, due to endocrine manifestations of some tumours.

Differential diagnoses
Hydrocele, epididymal cyst (spermatocele), indirect inguinal hernia, TB or syphilitic gumma (both exceedingly rare nowadays in developed countries), and tiny palpable thickenings of the tunica albuginea are causes of a painless scrotal lump. Varicocele is normally apparent only when the patient is standing. Epididymal ‘sperm granuloma’, testicular torsion, and acute epididymo-orchitis account for most presentations of acute scrotal pain. Every patient who is concerned should be examined and, if any doubt persists, further investigated.

Investigation
- Ultrasound: is the first-line investigation of any scrotal lump and will confirm whether the palpable lesion is within the testis, distorting its normally regular outline and internal echo pattern. The sensitivity of USS for detecting a testicular tumour is almost 100%, including impalpable lesions of 1–2mm and ‘occult’ primary tumours in patients presenting with systemic symptoms and signs. Any hypoechoic area inside the tunica albuginea should be regarded with suspicion. USS may also distinguish a primary from a secondary hydrocele. Testicular microlithiasis is occasionally reported in association with TC. There has been uncertainty regarding the significance of this anomaly in otherwise
normal testes—the few prospective studies have failed to demonstrate any risk of TC development. Consequently, there is no rationale for recommending serial USS to these individuals.

- **Abdominal and chest CT scans**: are usually obtained for staging purposes if the diagnosis of TC is confirmed or considered likely. Node staging is correct in 75%, based on size and shape criteria; 10% show subtle lung abnormalities. Other imaging (such as CT of the brain or spine, or bone scan) is performed if clinically indicated. MRI and PET scans are not routinely used.

- **Serum tumour markers [α-fetoprotein (AFP), human chorionic gonadotrophin (hCG), and LDH]**: are measured prior to any treatment of a suspected TC (see p. 398).

Treatment

Radical inguinal orchidectomy is both the definitive diagnostic investigation and the primary treatment for most testicular tumours, unless tissue diagnosis has been made from biopsy of a metastasis. Radical orchidectomy is curative in ~75% of TC patients. Fertility assessment, semen analysis, and cryo-preservation should be offered to patients without a normal contra-lateral testis.

At operation, the testis, epididymis, and spermatic cord are excised en bloc through a groin incision. To prevent inadvertent metastasis, the cord is mobilized within the inguinal canal, clamped, transfixed, and divided 1–2cm from the internal inguinal ring, before the testis is manipulated out of the scrotum by dividing the gubernaculum. A silicone prosthesis may be inserted at the time or at a later date. Contralateral testis biopsy should be offered to patients at high risk for intratubular germ cell neoplasia (TIN) (see p. 395, p. 405).
Testicular cancer: serum markers

GCTs may express and secrete into the bloodstream relatively specific and readily measurable proteins. These tumour markers [with the exception of placental alkaline phosphatase (PLAP)] are useful in diagnosis, staging, prognostication, and monitoring of response to treatment.

Onco-fetal proteins

- **AFP**: is expressed by trophoblastic elements within 50–70% of NSGCTs. With respect to seminomas, the presence of elevated serum AFP strongly suggests an NS element. Serum half-life is 3–5 days; normal <10ng/mL.
- **hCG**: is expressed by 40–60% of NSGCTs (notably the syncytiotrophoblastic elements) and up to 30% of seminomas. Serum half-life is 24–36h. Laboratory assays measure the β-subunit; normal <5mIU/mL.

When used together, 90% of patients have elevation of one or both markers, and less among patients with low-stage tumours.

Cellular enzymes

- **LDH**: is a ubiquitous enzyme, elevated in serum for various causes, therefore less specific. It is elevated in 10–20% of seminomas, correlating with tumour burden, and is most useful in monitoring treatment response in advanced seminoma.
- **PLAP**: is a fetal isoenzyme, elevated in up to 40% of patients with advanced GCTs. It is not widely used, as it is non-specific and may be elevated in smokers.

Clinical use

These markers are measured at presentation, 5–7 days after radical orchidectomy and typically 3–4 times per year for years 1–3, and thereafter annually to assess response to treatment and the presence of residual disease. They form an additional part of the TNM staging, termed S stage (for TNM staging, see http://www.uicc.org/resources/tmn/publications-resources). Also, AFP and hCG at the time of salvage treatment are both included in the 2010 International Prognostic Factors study group scoring system for patients with metastatic TC relapsing after chemotherapy.

Normal markers prior to orchidectomy do not exclude metastatic disease; normalization of markers post-orchidectomy cannot be equated with absence of disease. Persistent elevation of markers following orchidectomy is referred to as stage 1S if there is no measurable evidence of metastatic disease; it implies the presence of GCT in the contralateral testis or subclinical metastatic disease; however, it may occur with liver dysfunction and hypogonadotrophism. Stage 1S is found in 5% of NSGCT patients.
Testicular cancer: management of non-seminomatous germ cell tumours

Following radical orchidectomy and formal staging, the patient is managed by the oncologist, though the urological surgeon with appropriate training may perform retroperitoneal lymph node dissection (RPLND) in selected cases, following germ cell MDT recommendations. In the presence of elevated AFP, a seminoma would be managed as for NSGCT. Combination chemotherapy, introduced in the 1970s, revolutionized the treatment of metastatic NSGCT, which was, until then, virtually untreatable.

Treatment and follow-up variations exist between the UK, Europe, and the USA. In the UK, it depends largely on the International Germ Cell Cancer Collaborative Group (IGCCCG) prognostic staging (see p. 402), as follows.

Localized NSGCT pT1–4N0M0S0 (also known as stage 1)
This group comprises 55% of NSGCT cases.

Surveillance results in 30% relapse rate, with 80% within a year post-orchidectomy.

In the event of relapse or in stage 1S, chemotherapy (as described below) produces excellent responses, with disease-specific survival of >99%.

Hence, risk-adapted management is recommended to minimize the risk of toxicity:
- Surveillance for pT1 disease without vascular/lymphatic invasion, proliferation rate <70% (only 15% relapse).
- Adjuvant chemotherapy (bleomycin, etoposide, cisplatin × 1 cycle) for pT1 disease in those unwilling or unsuitable for surveillance, and for pT2–4 disease.

Metastatic NSGCT (including stage 1S)

Good prognosis:
- Chemotherapy (bleomycin, etoposide, cisplatin × 3 cycles).
- RPLND for residual or recurrent mass; salvage chemotherapy for relapse.

Intermediate and poor prognosis:
- Chemotherapy (bleomycin, etoposide, cisplatin × 4 cycles).
- RPLND for residual or recurrent mass; occasionally, salvage chemotherapy (see below) or RT if histology confirms tumour.
- Salvage high-dose chemotherapy with autologous stem cells for relapse.

Surveillance and follow-up after treatment

Surveillance requires the following:
- Year 1: monthly clinic visit, serum markers, and CXR; abdominal CT months 3 and 12.
- Year 2: 2-monthly clinic visit with serum markers and CXR; abdominal CT month 24.
- Years 3, 4, and 5: 3-monthly clinic visit, serum markers, and CXR.
- Annual clinic visit, serum markers, and CXR thereafter to 10y. The risk of relapse is highest in the first 2y.
Salvage chemotherapy in cases of rising marker and progressing metastatic disease would be cisplatin, ifosfamide, and a third agent (e.g. paclitaxel) × 3 cycles; 50% will enjoy remission following this, avoiding the rare need for salvage RPLND.

RPLND for NSGCT

- Retroperitoneal lymphadenopathy detected on CT scanning is usually the first and only evidence of extra-gonadal metastasis of NSGCT.
- In the UK, RPLND is used only to remove or de-bulk residual mass >1cm post-chemotherapy (viable tumour in 10–30% of patients, the remainder is mature teratoma or fibro-necrotic).
- RPLND removes para-aortic nodes up to the origin of the superior mesenteric artery and down to the iliac bifurcation.
- In a small number of cases, planned multidisciplinary surgery may involve removal of other organs (e.g. hepatic resection) or aortic/caval replacement.
- Complications: 1% mortality and 25% morbidity including lymphocele, pancreatitis, ileus, and ejaculatory failure.
- Modified nerve-sparing techniques reduce the risk of ejaculatory disturbance, by taking nodes on the unaffected side only down to the inferior mesenteric artery.
- Laparoscopic, in particular robot-assisted laparoscopic approaches, are gaining popularity in experienced centres.
- In the USA and parts of Europe, RPLND remains the gold standard staging investigation, following radical orchidectomy.
Testicular cancer: prognostic staging system for metastatic germ cell tumours

The IGCCCG devised a prognostic factor-based staging system for metastatic germ cell cancer that includes good- and intermediate-prognosis seminoma and good-, intermediate-, and poor-prognosis NSGCTs (Table 7.21).

Table 7.21 IGCCCG prognostic factor-based staging system for metastatic germ cell cancer

<table>
<thead>
<tr>
<th>Prognostic group</th>
<th>Seminoma</th>
<th>NSGCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>90% of patients</td>
<td>56% of patients</td>
</tr>
<tr>
<td>5y progression-free survival, 5y overall survival (%)</td>
<td>82, 86</td>
<td>89, 92</td>
</tr>
<tr>
<td>All factors listed present</td>
<td>Any primary site</td>
<td>Testis or retroperitoneal primary site</td>
</tr>
<tr>
<td></td>
<td>No non-pulmonary visceral metastases</td>
<td>No non-pulmonary visceral metastases</td>
</tr>
<tr>
<td></td>
<td>Normal AFP</td>
<td>AFP <1000ng/mL</td>
</tr>
<tr>
<td></td>
<td>Any hCG or LDH</td>
<td>hCG <5000mIU/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>And LDH <1.5 \times \text{normal upper limit (S1)}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>10% of patients</th>
<th>28% of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>5y progression-free survival, 5y overall survival (%)</td>
<td>67, 72</td>
<td>75, 80</td>
</tr>
<tr>
<td>All factors listed present</td>
<td>Any primary site</td>
<td>Testis or retroperitoneal primary site</td>
</tr>
<tr>
<td></td>
<td>Non-pulmonary visceral metastases present</td>
<td>No non-pulmonary visceral metastases</td>
</tr>
<tr>
<td></td>
<td>Normal AFP</td>
<td>AFP 1000–10 000ng/mL or</td>
</tr>
<tr>
<td></td>
<td>Any hCG or LDH</td>
<td>hCG 5000–50 000mIU/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LDH 1.5–10 \times \text{normal upper limit (S2)}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poor</th>
<th>16% of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>5y progression-free survival, 5y overall survival (%)</td>
<td>No patients classified as poor prognosis</td>
</tr>
<tr>
<td>All factors listed present</td>
<td>Mediastinal primary</td>
</tr>
<tr>
<td></td>
<td>Non-pulmonary visceral metastases present</td>
</tr>
<tr>
<td></td>
<td>AFP >10 000ng/mL or</td>
</tr>
<tr>
<td></td>
<td>hCG >50 000mIU/L</td>
</tr>
<tr>
<td></td>
<td>LDH > 10 \times \text{normal upper limit (S3)}</td>
</tr>
</tbody>
</table>

Testicular cancer: management of seminoma, intratubular germ cell neoplasia, and lymphoma

Of all seminomas, 75% are confined to the testis at presentation and are cured by radical orchidectomy; 10–15% of patients harbour regional node metastasis, while 5–10% have more advanced disease (see Table 7.21 on p. 402).

As with NSGCT, following radical orchidectomy and formal staging, the patient is managed by the oncologist. Nodes of <2cm should be re-staged after 8wk, in case they are benign. Treatment and follow-up depend largely on disease stage, according to the presence of metastases and the size of nodal disease, as follows.

Localized seminoma T1N0M0S0–1 (stage I)
- Risk of subsequent para-aortic node relapse is 20%.
- Adjuvant treatment reduces the risk of recurrence to <1%.
- Standard management is surveillance, with CSS between 97% and 100%.
- Alternatively, in a risk-adapted approach, single-agent carboplatin is recommended for patients with tumours of >4cm and/or rete testis involvement.
- A third option is RT—a randomized MRC study comparing one cycle of carboplatin with RT suggested equivalence. If RT is used, 20Gy is delivered in ten fractions, including para-aortic nodes.

Metastatic seminoma
Patients should be classified into prognostic grouping classification (IGCCCG), as this provides an overall prognosis for patients (Table 7.22).

If post-chemotherapy node mass persists, FDG-PET may help confirm whether viable cancer is present. Salvage chemotherapy is preferred to RPLND, which is technically very difficult due to fibrosis, so is rarely performed.

These patients require careful long-term follow-up, according to national guidance.

Table 7.22 IGCCCG prognostic grouping classifications

<table>
<thead>
<tr>
<th>T1–3N1M0S0–1</th>
<th>RT 30–36Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1–3N2M0S0–1</td>
<td>RT 30–36Gy or chemotherapy if nodes near kidneys</td>
</tr>
<tr>
<td>T1–4N3M0–1S0–3</td>
<td>Chemotherapy (bleomycin, etoposide, and cisplatin × 3–4 cycles or etoposide and cisplatin × four cycles)</td>
</tr>
</tbody>
</table>
Management of intratubular germ cell neoplasia (TIN)
- Observation or orchidectomy for unilateral disease.
- RT for unilateral disease in the presence of a contralateral tumour.
- RT for bilateral disease to preserve Sertoli cells.
- Systemic chemotherapy (e.g. cisplatin) controversial, not currently adopted in the UK.
- Sperm cryo-preservation storage must be offered.

Management of testicular lymphoma
This may be a primary disease or a manifestation of disseminated nodal lymphoma. The median age of incidence is 60y but has been reported in children. It should be managed primarily by the haematology oncologists once the diagnosis is made. Ten per cent have bilateral testicular tumours, and 25% of patients present with systemic symptoms; these patients have a poorer prognosis following radical orchidectomy and chemotherapy, while those with localized disease may enjoy long-term survival.
Chapter 8

Miscellaneous urological diseases of the kidney

Simple and complex renal cysts 408
Calyceal diverticulum 411
Medullary sponge kidney (MSK) 412
Acquired renal cystic disease 414
Autosomal dominant polycystic kidney disease 416
Vesicoureteric reflux in adults 420
Pelviureteric junction obstruction in adults 424
Anomalies of renal fusion and ascent: horseshoe kidney and ectopic kidney 428
Anomalies of renal number and rotation: renal agenesis and malrotation 432
Upper urinary tract duplication 434
Simple and complex renal cysts

• **Simple renal cysts**: do not communicate with any part of the nephron or the renal pelvis. They are mainly confined to the renal cortex, are filled with clear fluid, and contain a membrane composed of a single layer of flattened or cuboidal epithelium. They can be single or multiple, ranging from a few millimetres to several centimetres in diameter. They can be unilateral or bilateral and often affect the lower pole of the kidney.

• **Parapelvic cysts**: describe simple parenchymal cysts located adjacent to the renal pelvis or hilum.

Prevalence

Increases with age, the precise prevalence depending on the method of diagnosis. On CT, 20% of adults have renal cysts by age 40y, and 33% by the age of 60. At post-mortem, 50% of subjects aged >50y have simple cysts. Cysts do not usually increase in size with age but may increase in number. \ddagger and φ are affected equally.

Aetiology

Both congenital and acquired causes have been suggested. Chronic dialysis is associated with the formation of new simple cysts.

Presentation

Simple cysts are most commonly diagnosed as an incidental finding following a renal USS) or CT performed for other purposes. The majority are asymptomatic; however, very large cysts may present as an abdominal mass or cause dull flank or back pain. Acute severe loin pain may follow bleeding into a cyst (causing sudden distension of the wall). Rupture (spontaneous or following renal trauma) is rare. Rupture into the pelvicalyceal system can produce haematuria. Infected cysts (rare) present with flank pain and fever. Very occasionally, large cysts can cause obstruction and hydronephrosis.

Differential diagnosis

• RCC (4–7% of RCCs are cystic).

• Early autosomal dominant polycystic kidney disease (ADPKD—diffuse, multiple, or bilateral cysts, associated with hepatic cysts).

• Complex renal cysts (i.e. those which contain blood, pus, or calcification).

Investigation

Renal USS

Simple cysts are round or spherical, have a smooth and distinct outline, and are 'anechoic' (no echoes within the cyst, i.e. sound waves are transmitted through the cyst). USS using microbubble contrast agents can improve diagnostic accuracy. Evidence of calcification, septation, irregular margins, or clusters of cysts requires further investigation (renal triphasic CT). In the absence of these features, no further investigation is required.
CT

See Table 8.1 for Bosniak’s classification of the appearance of simple and complex cysts.

Simple cysts are seen as round, smooth-walled lesions with homogenous fluid in the cavity (with a typical density of –10 to +20 Hounsfield units) and with no enhancement after contrast (enhancement implies that it contains vascular tissue or communicates with the collecting system, i.e. that it is not a simple cyst). Hyperdense cysts have a density of +20–90 Hounsfield units, do not enhance with contrast media, and are <3cm in diameter.

Biopsy

Image-guided cyst aspiration or biopsy can be used to help diagnose indeterminate cysts and prevent unnecessary surgery.

Table 8.1 Bosniak’s classification of CT appearance of simple and complex cysts

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Approximate % of such cysts which are malignant</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Simple benign cyst with smooth margins, no contrast enhancement, no septation, no calcification</td>
<td><2%</td>
<td>None; no follow-up required</td>
</tr>
<tr>
<td>II</td>
<td>Benign cyst with smooth margins; few thin septae; minimal calcification; no contrast enhancement; <3cm</td>
<td>19% (II and IIF combined)</td>
<td>Observation—repeat USS looking for increase in size or development of malignant features</td>
</tr>
<tr>
<td>IIF</td>
<td>↑ number of thin septae; thickening and/or minimal enhancement of septae; may contain calcium, but no enhancement. Includes non-enhancing, high-attenuation >3cm cysts</td>
<td>19% (II and IIF combined)</td>
<td>Follow-up with USS (or CT). Type IIF cysts have greater malignant potential than type II cysts</td>
</tr>
<tr>
<td>III</td>
<td>Irregular margins; moderate calcification; thick septation (septae >1mm thick); enhancement</td>
<td>33%</td>
<td>Surgical exploration ± partial nephrectomy</td>
</tr>
<tr>
<td>IV</td>
<td>Cystic malignant lesion; irregular margins and/or solid enhancing elements</td>
<td>93%</td>
<td>Radical nephrectomy</td>
</tr>
</tbody>
</table>

*Bosniak suggested follow-up scans at 6 months and 1y. If the lesion remained stable after this time, it is considered benign.
Treatment

A simple cyst (type I: round or spherical, smooth wall, distinct outline, and no internal echoes) requires no further investigation, no treatment, and no follow-up. In the rare situation where the cyst is thought to be the cause of symptoms (e.g. back or flank pain), treatment options include percutaneous aspiration ± injection of sclerosing agent or open or laparoscopic surgical excision of the cyst wall. In the rare event of cyst infection, percutaneous drainage and antibiotics are indicated.

Cysts with features on USS suggesting possible malignancy (calcification, septation, irregular margins) should be investigated by CT with contrast.

References

Calyceal diverticulum

A calyceal diverticulum is a spherical outpouching of the renal collecting system (specifically from a calyx) which protrudes into the corticomedullary region of the kidney. It communicates with the renal calyx via a narrow neck or channel. It is lined by a transitional cell epithelium and is covered by a thin layer of renal cortex. They range from only a few millimetres to many centimetres in size.

Aetiology

The exact aetiology of calyceal diverticula is unknown. Some may be congenital. Acquired calyceal diverticula can develop after obstruction of a calyceal infundibulum or following blunt renal trauma.

Presentation

They are usually asymptomatic and are discovered incidentally on an IVU, most commonly seen in upper pole calyces. Symptoms may result from the development of a stone or infection within the diverticulum, presumably caused by urinary stasis.

Investigation

On IVU, a calyceal diverticulum appears as a rounded collection of contrast medium next to a papilla, although often, the connecting channel is too narrow to be clearly seen. They can be identified on CT, MRI, and USS; however, the distinction between a renal cyst and an obstructed calyx may be difficult on unenhanced images.

Treatment

Stones that form within the calyceal diverticulum may be treated by flexible ureteroscopy and laser lithotripsy or, if large, by percutaneous nephrolithotomy (PCNL) if percutaneous access is possible. Endoscopic dilatation or incision of the neck of the diverticulum may be attempted at the time of stone surgery to prevent recurrence, and this technique can also be employed if the diverticulum is thought to be the cause of recurrent urinary infection. Open surgery has also been used to remove stones and to deroof calyceal diverticula. Extracorporeal shock wave lithotripsy (ESWL) therapy is not helpful. ESWL may result in stone fragmentation, but it may be difficult for the stone fragments to get out of the diverticulum and they may simply reform into a larger stone.
Medullary sponge kidney (MSK)

Definition
A congenital cystic disorder of the kidneys characterized by dilatation of the distal CDs associated with the formation of multiple cysts and diverticula within the medulla of the kidney.

Prevalence
Difficult to know, as it may be asymptomatic (diagnosed on an IVU performed for other reason or at post-mortem). Estimated to affect between 1 in 5000 to 1 in 20 000 people in the general population; 1 in 200 in those under going IVU (a select population). In 75% of cases, both kidneys are affected.

Pathology
The renal medulla resembles a sponge in cross-section due to dilated CDs in the renal papillae and the development of numerous small cysts. This is associated with urinary stasis and the formation of small calculi within the cysts. Some report a familial inheritance. It can be associated with other congenital or inherited disorders, including hemihypertrophy and Beckwith–Wiedemann syndrome.

Presentation
The majority of patients are asymptomatic. When symptoms do occur, they include ureteric colic, renal stone disease (calcium oxalate ± calcium phosphate), UTI, and haematuria (microscopic or macroscopic). Up to 50% have hypercalciuria due to renal calcium leak or GI calcium absorption. Renal function is normal, unless obstruction occurs (secondary to renal pelvis or ureteric stones).

Differential diagnosis
Other causes of nephrocalcinosis (deposition of calcium in the renal medulla, e.g. TB, hyperparathyroidism, healed papillary necrosis, multiple myeloma).

Investigation
- MSU: dipstick ± culture. Check for UTI and treat according to sensitivities.
- Biochemistry: 24h urinary calcium may be elevated (hypercalciuria). Detection of hypercalciuria requires further investigation to exclude other causes (i.e. raised PTH levels indicate hyperparathyroidism).
- Imaging: IVU is the principle method for diagnosing MSK, although CT and USS may also be used. The characteristic radiological features of MSK, as seen on IVU, are enlarged kidneys associated with dilatation of the distal portion of the CDs, along with numerous associated cysts and diverticula (the dilated ducts are said to give the appearance of ‘bristles on a brush’). The CDs may become filled with calcifications, giving an appearance described as a ‘bouquet of flowers’ or ‘bunches of grapes’ (Fig. 8.1).

* Beckwith–Wiedemann syndrome: a growth disorder characterized by macroglossia, macrosomia, visceromegaly, Wilms’ tumour, neuroblastoma, omphalocele, and renal anomalies.
Asymptomatic MSK disease requires no treatment. General measures to reduce urine calcium levels help reduce the chance of calcium stone formation (high fluid intake, vegetarian diet, low salt intake, consumption of fruit and citrus fruit juices). Thiazide diuretics may be required for hypercalciuria resistant to dietary measures and are designed to lower urine calcium concentration. Intrarenal calculi are often small and, as such, may not require treatment, but if indicated, this can take the form of ESWL or flexible ureteroscopy and laser treatment. Ureteric stones are again usually small and will therefore pass spontaneously in many cases with a period of observation. Recurrent UTI may need prophylactic antibiotics. Renal function tends to remain stable in the long term. Rarely, recurrent infection and nephrocalcinosis may lead to the complication of renal impairment.
Acquired renal cystic disease

A cystic degenerative disease of the kidney, with ≥ 5 cysts visualized on CT scan. By definition, this is an acquired condition, as opposed to ADPKD which is inherited (in an autosomal dominant fashion). It is predominantly associated with chronic and end-stage renal failure and, as such, is commonly found in patients undergoing haemodialysis or peritoneal dialysis. Over one-third of patients develop acquired renal cystic disease (ARCD) after 3y of dialysis. Clinically important because it may cause pain and haematuria and is associated with the development of benign and malignant renal tumours. The $\varnothing : \varpi$ ratio is 3:1.

Pathology

Usually multiple bilateral cysts found mainly within the cortex of small, contracted kidneys. Cysts vary in size (average 0.5–1cm) and are filled with a clear fluid which may contain oxalate crystals. They usually have cuboidal or columnar epithelial linings and are in continuity with renal tubules (and therefore cannot be defined as simple cysts). Atypical cysts have a hyperplastic lining of epithelial cells, which may represent a precursor for tumour formation. Renal transplantation can cause regression of cysts in the native kidneys.

Aetiology

The exact pathogenesis is unknown, but several theories have been proposed. Obstruction or ischaemia of renal tubules may induce cyst formation. Renal failure may predispose to the accumulation of toxic endogenous substances or metabolites, alter the release of growth factors, and result in changes in sex steroid production or cause cell proliferation (secondary to immunosuppressive effects) which result in cyst formation.

Associated disorders

There is an ↑ risk of benign and malignant renal tumours. The chance of developing RCC is ~20%, 3–6 times greater than the general population ($\varnothing > \varpi$). When on dialysis, RCC usually develops within the first 10y of treatment.

Presentation

Flank pain; UTI; visible haematuria; renal colic (stone disease); hypertension.

Investigation

This depends on the presenting symptoms.

- For suspected UTI: culture urine.
- For haematuria: urine cytology, flexible cystoscopy, and renal USS.

On USS, the kidneys are small and hyperechoic, with multiple cysts of varying size, many of which show calcification. If the nature of the cysts cannot be determined with certainty on USS, arrange a renal CT.
Treatment
Persistent macroscopic haematuria can become problematic, exacerbated by heparinization (required for haemodialysis). Options include transferring to peritoneal dialysis, renal embolization, or nephrectomy (acceptable as these patients already on dialysis by definition have non-functioning kidneys). Infected cysts, which develop into abscesses, require percutaneous or surgical drainage. Radical nephrectomy is indicated for renal masses with features suspicious of malignancy. Smaller asymptomatic masses require surveillance. Patients with ARCD on long-term dialysis should also be considered for renal surveillance with ultrasonography or CT.
Autosomal dominant polycystic kidney disease

Definition
An autosomal dominant inherited disorder involving multiple expanding renal parenchymal cysts (Fig. 8.2).

Epidemiology
Incidence is 0.1–0.5%; 95% are bilateral. ADPKD can affect children and adults, although symptoms usually occur between ages 30 and 50y. ADPKD accounts for 10% of all renal failures (which usually manifest at >40y old).

Pathology
The kidneys reach an enormous size due to multiple fluid-filled cysts and can easily be palpated on abdominal examination. Expansion of the cysts results in ischaemic atrophy of the surrounding renal parenchyma and obstruction of normal renal tubules. End-stage renal failure occurs at around age 50y.

Associated disorders
Ten to 30% incidence of circle of Willis berry aneurysms (associated with subarachnoid haemorrhage), cysts of the liver (33%), pancreas (10%), spleen (<5%), and seminal vesicles, mitral valve prolapse, aortic root dilatation, aortic aneurysms, and diverticular disease. Of note, the incidence of renal adenoma is ~20%; however, the risk of RCC is the same as the general population.

Aetiology
Two genes have been identified in ADPKD. The \textit{PKD1} gene is localized on the short arm of chromosome 16 (16p13.3) and accounts for 85% of cases. The \textit{PKD2} gene is on the long arm of chromosome 4 (4q21) and causes 15% of cases. A third gene \textit{PKD3} is also implicated. Pathogenesis theories include intrinsic basement membrane abnormalities, tubular epithelial hyperplasia (causing tubular obstruction and basement membrane weakness), and alterations in the supportive extracellular matrix due to defective proteins, all of which may cause cyst formation.

Presentation
- Positive family history.
- Hypertension (75%).
- Palpable abdominal masses.
- Flank pain (due to mass effect, infection, stones, or following acute cystic distension due to haemorrhage or obstruction).
- Haematuria (visible or non-visible).
- UTI.
- Renal failure which may present with lethargy, nausea, vomiting, anaemia, confusion, and seizures.
Differential diagnosis

Other forms of renal cystic disease: multiple simple cysts, autosomal recessive polycystic kidney disease (ARPKD), familial juvenile nephronophthisis, medullary cystic disease (see pp. 706–7).

Multiple renal cysts are also found in other autosomal dominant conditions:

- **TS:** has TSC1 and 2 gene mutations on chromosomes 9 and 16. It presents with adenoma sebaceum, epilepsy, learning difficulties, polycystic kidneys, and renal tumours (angiomyolipomas and, more rarely, RCC).

- **VHL syndrome:** has a VHL tumour suppressor gene mutation on the short arm of chromosome 3 (3p25) which causes HIF to increase the levels of growth factors (platelet-derived growth factor (PDGF), TGF-α, VEGF), which can stimulate the formation of haemangioblastomas (cerebellar and retinal) and RCC. VHL syndrome also includes renal, pancreatic, and epididymal cysts, and phaeochromocytoma.

Investigation

This depends on the presenting symptoms:

- **Adult patients with a family history of ADPKD:** first counsel the patient on the implications of a positive diagnosis. USS*, CT, and MRI of the renal tract are useful for initial diagnosis and investigation of complications. On USS, the kidneys are small and hyperechoic, with multiple cysts of varying size, many of which show calcification. If the nature of the cysts cannot be determined with certainty on USS, arrange a renal CT. Genetic testing can be done if imaging is equivocal or when a definite diagnosis is required in a young patient.

* USS diagnostic criteria. Patients at 50% risk for developing ADPKD are: ≥2 unilateral or bilateral cysts if aged <30y; two cysts in each kidney in patients aged 30–59y; four cysts in each kidney in patients aged >60y.
• For suspected UTI: culture urine.
• For haematuria: urine cytology, flexible cystoscopy, and renal USS.
• Renal failure: refer for management by a nephrologist. Renal failure may be associated with anaemia, although conversely, ADPKD can cause ↑ erythropoietin production and polycythaemia.

Treatment

The aim is to preserve renal function for as long as possible (monitor and control hypertension and UTI). Infected cysts should be drained. Persistent, heavy haematuria can be controlled by embolization or nephrectomy. Progressive renal failure requires dialysis and ultimately renal transplantation.

Due to the high risk of inheritance of ADPKD, offsprings should be fully counselled and offered genetic testing or USS screening at an appropriate time.
Vesicoureteric reflux in adults

VUR is the retrograde flow of urine from the bladder into the upper urinary tract with or without dilatation of the ureter, renal pelvis, and calyces (see pp. 692–5).

Pathophysiology

Reflex is normally prevented by low bladder pressures, efficient ureteric peristalsis, and the ability of the VUJ to occlude the distal ureter during bladder contraction. This is assisted by the ureters passing obliquely through the bladder wall (the ‘intramural’ ureter) which is 1–2cm long. Normal intramural ureteric length to ureteric diameter ratio is 5:1. VUR of childhood tends to resolve spontaneously with increasing age, because as the bladder grows, the intramural ureter lengthens.

Classification

- **Primary:** a primary anatomical (and therefore functional) defect where the intramural length of the ureter is too short (ratio <5:1).
- **Secondary:** to some other anatomical or functional problem.
 - BOO (BPO, DSD, urethral stricture, missed PUVs), leading to elevated bladder pressures.
 - Poor bladder compliance or intermittently elevated pressures of neuropathic detrusor overactivity (due to neuropathic disorders, e.g. SCI, spina bifida).
 - Iatrogenic reflux. A relatively common cause would be direct ureteric reimplantation into the bladder without using an antirefluxing technique. Other causes include: ureteric meatotomy, i.e. incision of the ureteric orifice for removal of ureteric stones stuck at the VUJ; following incision of a ureterocele; following TURP or TURBT; and post-pelvic RT.
 - Inflammatory conditions affecting function of the VUJ—TB, schistosomiasis, UTI.

Associated disorders

- VUR is commonly seen in duplex ureters (the Weigert–Meyer law)** and associated with PUJ obstruction. Cystitis can cause VUR through bladder inflammation, reduced bladder compliance, ↑ pressures, and distortion of the VUJ. Coexistence of UTI with VUR can cause pyelonephritis. Reflux of infected urine under high pressure may lead to reflux nephropathy, resulting in renal scarring, hypertension, and renal impairment—although this is much less common in adults, compared to children. More commonly, this would manifest as loin pain in adults.

* Neuropathic disorders cause VUR because they lead to intermittently or chronically raised bladder pressure (due to BOO, poor compliance, and/or detrusor overactivity).

** The lower renal moiety ureter inserts into the bladder in a higher and more lateral location, as compared to the upper moiety ureter, which inserts distally and medially, i.e. nearer the bladder neck. The lower moiety ureter has a shorter intramural length and therefore can be prone to reflux. The upper moiety ureter has a longer intramural length and tends to be at risk of obstruction.
Presentation

- VUR may be asymptomatic. It may only be detected incidentally during investigations performed for other reasons such as videourodynamics, IVU, or renal USS.
- Loin pain (sometimes associated with a full bladder or immediately after micturition).
- UTI symptoms.

Investigation

The definitive test for the diagnosis of VUR is cystography, which may be apparent during bladder filling or during voiding [micturating cystourethrography (MCUG)]. Where clinically indicated, urodynamics establishes the presence of voiding dysfunction. If there is radiographic evidence of reflux nephropathy, check BP and the urine for proteinuria, measure serum creatinine, and arrange a 99mTc-DMSA renogram study to assess for renal cortical scarring and determine the split renal function.

Management

VUR is harmful to the kidney in the presence of infected urine and/or where bladder pressures are markedly elevated (due to severe BOO, poor compliance, or high-pressure OAB contractions). In the absence of these factors, VUR is not harmful, at least in the short term (months). Subsequent management depends on:

- The presence and severity of symptoms.
- The presence of recurrent, proven urinary infection.
- The presence of already established renal damage, as indicated by radiological evidence of reflux nephropathy, hypertension, impaired renal function, or proteinuria.

Primary VUR

- For the patient with primary VUR and recurrent UTIs with no symptoms between infections, no hypertension, and good renal function: treat the UTIs when they occur; consider low-dose antibiotic prophylaxis if UTIs occur frequently (>3 per year). If UTIs are regularly associated with systemic symptoms (acute pyelonephritis, rather than uncomplicated cystitis), then ureteric reimplantation is indicated.
- For the patient with primary VUR and objective evidence of deterioration in the affected kidney: ureteric reimplantation.
- Reflux into a non-functioning kidney (<10% function on DMSA scan) with recurrent UTIs and/or hypertension: nephroureterectomy.
- Primary reflux with severe recurrent loin pain: ureteric reimplantation.
Secondary VUR

- VUR into a transplanted kidney: no treatment is necessary.
- VUR in association with the neuropathic bladder: treat the underlying cause—relieve BOO, improve bladder compliance (options: intravesical BTX injections, augmentation cystoplasty, sacral deafferentation).
- VUR with no symptoms, no UTI, no high bladder pressures, and no BOO: for grade I–II reflux, monitor for infection, hypertension, and evidence of deterioration in the appearance and function of the kidneys. For grades III–V, some urologists would recommend ureteric reimplantation or an endoscopic injection of bulking agent at the ureteric orifice (for VUR grading) (Fig. 8.3).

Grade I: Contrast into non-dilated ureter
Grade II: Contrast into renal pelvis and calyces; no dilatation
Grade III: Mild dilatation of ureter, pelvis, and calyces
Grade IV: Dilated ureter becomes slightly tortuous; moderate dilatation of pelvis and blunting of calyces
Grade V: Severe ureteric dilatation and tortuosity; gross dilatation of pelvis and calyces

Fig. 8.3 International reflux classification.
Pelviureteric junction obstruction in adults

Definition
PUJO is an obstruction of the proximal ureter at the junction with the renal pelvis, resulting in a restriction of urine flow (see pp. 702–3)—known as ‘uretero-pelvic junction obstruction’ (UPJO) in North America.

Aetiology

Congenital

- **Intrinsic**: smooth muscle defect results in an aperistaltic segment of the ureter at the PUJ. The ureter can insert high on the renal pelvis (which may be a primary abnormality or secondary to the pelvic dilatation).
- **Extrinsic**: compression from the lower renal pole (‘aberrant’) vessel over which the PUJ runs. It is unlikely that these vessels are the primary cause of the obstruction. It is more probable that PUJO leads to a dilated PUJ and ballooning of the renal pelvis over the lower pole vessels, which may thus contribute to, but is not the primary cause of, the obstruction.

Acquired

PUJ stricture secondary to ureteric manipulation (e.g. ureteroscopy); trauma from passage of calculi; fibroepithelial polyps; TCC of the urothelium at the PUJ; external compression of the ureter by retroperitoneal fibrosis or malignancy.

Presentation

Flank pain precipitated by diuresis (high fluid intake, especially after consumption of alcohol); flank mass; UTI; haematuria (after minor trauma). It may also be associated with VUR.

Investigation

- **Blood test**: for renal function (U&E, eGFR).
- **MSU**: to exclude infection.
- **Renal USS**: shows renal pelvis dilatation in the absence of a dilated ureter.
- **IVU**: demonstrates a delay of excretion of contrast and a dilated pelvicalyceal system (Fig. 8.4).
- **CT**: shows a dilated renal pelvis and non-dilated ureter. Also helpful in excluding a small, radiolucent stone, urothelial TCC, or retroperitoneal pathology, which may be the cause of the obstruction at the PUJ (Fig. 8.5).
- **MAG3 renogram** (with administration of furosemide to establish maximum diuresis): is the definitive diagnostic test for PUJO. Radioisotope accumulates in the renal pelvis, and following IV furosemide, it continues to accumulate (a ‘rising’ curve). Also useful as it provides split renal function.
- **Retrograde pyelography**: to establish the exact site of the obstruction—often performed at the time of PUJ repair to avoid introducing infection into an obstructed renal pelvis (Fig. 8.6).
Management

Surgery is indicated for recurrent episodes of bothersome pain, renal impairment, where a stone has developed in the obstructed kidney, and where infection has supervened (an acutely infected obstructed kidney in a septic patient will require nephrostomy insertion). In the absence of symptoms, consider watchful waiting with serial MAG3 renograms. If renal function remains stable and the patient remains free of symptoms, there is no need to operate. A non-functioning, ‘burnt-out’ kidney with PUJO may require nephrectomy to avoid the complication of pyonephrosis.

Pyeloplasty

(See pp. 816–17.)

- **Laparoscopic pyeloplasty:** dismembered pyeloplasty is the most commonly performed technique using transperitoneal, retroperitoneal, or robotic-assisted approaches. Success rates are ~95%.
- **Open pyeloplasty:** success rates of 95%. Common techniques include dismembered or Anderson–Hynes pyeloplasty. The narrowed area of the PUJ is excised, and the proximal ureter is spatulated and anastomosed to the renal pelvis. Alternative techniques include flap pyeloplasty (Culp) and Y–V-plasty (Foley).
Fig. 8.5 Contrast-enhanced CT (coronal section) image of a right PUJO (dilated pelvicalyceal system and non-dilated ureter). Image kindly provided with permission from Mr A. Wedderburn.

Fig. 8.6 Retrograde pyelogram demonstrating a right PUJO (circled). Image kindly provided with permission from Mr P. Malone.
A double J ureteric stent is left for 6wk post-operatively, which can be removed with flexible cystoscopy as an outpatient procedure.

Endopyelotomy (or pyelolysis)

A minimally invasive technique to treat PUJO, but tends not to be offered as first-line therapy other than in older or frail patients. It can be utilized after pyeloplasty has failed. A full-thickness incision is made through the obstructing proximal ureter from within the lumen of the ureter down into the peripelvic and periureteral fat, using a sharp knife or Holmium:YAG laser. The incision is stented for 4wk to allow re-epithelialization of the PUJ. Generally not used for PUJO of >2cm in length. The incision may be made percutaneously or by a retrograde approach via a rigid or flexible ureteroscope or by using a specially designed endopyelotomy balloon—the Acucise® technique. Here, an angioplasty-type balloon (over which runs a cautery wire) is inflated across the PUJ. An electrical current heats the wire, and this cuts through the obstructing ring of tissue at the PUJ.

The presence of a combination of PUJO and a renal stone that is suitable for PCNL is an indication for combined PCNL and percutaneous endopyelotomy.

Success rates in terms of relieving obstruction: percutaneous endopyelotomy, 60–100% (mean 70%); cautery wire balloon endopyelotomy, 70%; ureteroscopic endopyelotomy, 80%.

Follow-up

Repeat MAG3 renogram is usually performed 3 months post-operatively. If there has been no improvement, this can be repeated 6–12 months post-operatively. Failure may need redo surgery or endopyelotomy.
Anomalies of renal fusion and ascent: horseshoe kidney and ectopic kidney

Abnormalities of renal fusion and ascent occur in weeks 6–9 of gestation, when the embryonic kidney is ‘ascending’ to its definitive lumbar position in the renal fossa (‘ascending’ as a result of rapid caudal growth of the embryo).

Horseshoe kidney

Commonest example of renal fusion. Prevalence 1 in 400. ♂:♀ ratio 2:1. The kidneys lie vertically (instead of obliquely) and are joined at their lower poles (in 95%) by midline parenchymal tissue (the isthmus). The inferior mesenteric artery obstructs the ascent of the isthmus. Consequently, the horseshoe kidney lies lower in the abdomen (L3 or L4 vertebral level). Normal rotation of the kidney is also prevented, and therefore, the renal pelvis lies anteriorly, with the ureters also passing anteriorly over the kidneys and isthmus (but entering the bladder normally). Blood supply is variable, usually from one or more renal arteries or their branches or from branches off the aorta or inferior mesenteric artery (Fig. 8.7).

A proportion of individuals with horseshoe kidneys have associated congenital abnormalities (Turner’s syndrome, trisomy 18, genitourinary anomalies, ureteric duplication), VUR, PUJ obstruction, and renal tumours (including Wilms’ tumours).

Most patients with horseshoe kidneys remain asymptomatic; however, infection and calculi may develop and cause symptoms. The diagnosis is usually suggested on renal USS and confirmed by IVU (calyces of the lower renal pole are seen to point medially and lie medially in relation to the ureters) or CT. Renal function is usually normal.

Ectopic kidney

The kidney fails to achieve its normal position and may be located in the thorax, abdomen, lumbar region (in iliac fossa), or pelvis (on the contralateral side or crossed). The prevalence of renal ectopia is 1 in 900, with both sexes affected equally. The left kidney is affected more often than the right, and bilateral cases are seen in <10%. The affected kidney is smaller, with the renal pelvis positioned anteriorly (instead of medially), and the ureter is short but enters the bladder normally. Pelvic kidneys occur in 1 in 2000–3000 and lie opposite the sacrum and below the aortic bifurcation and are supplied by adjacent (aberrant) vessels (Fig. 8.8). Renal ectopia has an ↑ risk of congenital anomalies, including contralateral renal agenesis and genital malformations.

Most are asymptomatic. Diagnosis is made on renal USS, IVU, or renography. Complications include hydronephrosis [secondary to VUR, VUJ obstruction (VUJO), and PUJO], stones, and infection.
Fig. 8.7 (a) Horseshoe kidney. (b) Axial section of a CT scan demonstrating a horseshoe kidney.
Fig. 8.8 (a) Ectopic (pelvic) kidney. (b) IVU demonstrating ectopic kidneys. Sterilization clips are also seen. Image kindly provided with permission from Prof. S. Reif.
Anomalies of renal number and rotation: renal agenesis and malrotation

Renal agenesis
Unilateral renal agenesis is the absence of one kidney due to embryological abnormality or absence of the ureteric bud. This results in failure of the ureteric bud to contact the metanephric blastema, with failed induction of nephrogenesis. The incidence is 1 in 1000; left side > right, ♂ > ♀. Absence of a kidney may also be caused by involution of a multicystic dysplastic kidney in utero or postnatally. Many patients are asymptomatic; however, it is associated with Turner’s syndrome and cardiac, respiratory, GI, and musculoskeletal abnormalities. Associated genitourinary anomalies include absence of the ipsilateral ureter, abnormal trigone, VUR, PUJO, VUJO, uterine abnormalities (unicornuate—one side has failed to develop; bicornuate—partially divided uterus; didelphys—double uterus), vaginal agenesis, anomalies of the seminal vesicles, and absence of the vas deferens. Often discovered as an incidental finding on USS performed for other reasons or during investigation of associated abnormalities. Long-term follow-up of renal function, urinalysis, and BP should be considered.

Bilateral renal agenesis is rare and incompatible with life. It is associated with complete ureteric atresia, bladder hypoplasia or absence, intrauterine growth retardation, pulmonary hypoplasia, and oligohydramnios (reduced amniotic fluid), causing characteristic ‘Potter’ facial features (blunted nose, low-set ears, depression on the chin) and limb abnormalities.

Malrotation
The kidney is located in a normal position, but the renal pelvis fails to rotate to the normal medial orientation. Often seen with horseshoe kidneys and renal ectopia and associated with Turner’s syndrome. The incidence is ~1 in 1000, with a ♂:♀ ratio of 2:1. The renal shape may be altered (flattened, oval, triangular, or elongated), and the kidney retains its fetal lobulated outline (Fig. 8.9). It is associated with deposition of fibrous tissue around the renal hilum, which can produce symptoms due to ureteric or PUJ obstruction (causing hydronephrosis, infection, or stone formation). Most patients, however, remain asymptomatic. The diagnosis is made on USS, IVU, or retrograde pyelography.
AnOMALIES OF renAl nUMber AnD r OtAtIOn

Anterior renal pelvis

Ureter

Bladder

Fig. 8.9 Malrotation of the kidney.
Upper urinary tract duplication

Definitions
A duplex kidney has an upper renal moiety and a lower renal moiety, each with its own separate pelvicalyceal system and ureter. The two ureters may join to form a single ureter at the PUJ (bifid system) (Fig. 8.10) or more distally (bifid ureter) before entering the bladder through one ureteric orifice. Alternatively, the two ureters may pass down individually to the bladder (complete duplication) (Fig. 8.11). In this case, the Weigert–Meyer rule states that the upper moiety ureter always opens onto the bladder medially and inferiorly to the ureter of the lower moiety, thereby predisposing to ectopic placement of the ureteric orifice and obstruction (due to the longer intramural course of the ureter through the bladder wall). The lower moiety ureter opens onto the bladder laterally and superiorly, reducing the intramural ureteric length which predisposes to VUR (in up to 85%) (Fig. 8.12).

Epidemiology
Ureteric duplication occurs in 1 in 125 individuals. The ♀:♂ ratio is 2:1. Unilateral cases are commoner than bilateral cases, with right and left sides affected equally. Risk of other congenital malformations is ↑.

Embryology
In duplication, two ureteric buds arise from the mesonephric duct (week 4 of gestation). The ureteric bud situated more distally (lower moiety ureter) enters the bladder first and so migrates a longer distance, resulting in the superior and lateral position of the ureteric orifice. The proximal bud (upper moiety ureter) has less time to migrate, and consequently, the ureteric orifice is inferior and medial (ectopic) (see Epp. 698–9). Interaction of each ureteric bud with the same metanephric tissue creates separate collecting systems within the same renal unit. With bifid ureters, a single ureteric bud splits after it has emerged from the mesonephric duct.

Complications
Ectopic ureters are associated with upper renal moiety hydronephrosis (secondary to obstruction), renal hypoplasia or dysplasia (maldevelopment of the kidney correlating with the degree of ectopic displacement of the ureteric orifice),¹ and ureteroceles (Fig. 8.10). Lower moiety ureters are prone to reflux, resulting in hydroureter and hydronephrosis. Bifid ureters can get urine continuously, passing from one collecting system to the other (yo-yo reflux), causing urinary stasis (and predisposing to infection).

Presentation
Symptoms of UTI, flank pain, or an incidental finding.

Investigation
- Renal USS: demonstrates ureteric duplication ± dilatation and hydronephrosis.
- IVU: ↓ contrast excretion from the renal upper pole ± hydronephrosis (which may displace the lower pole downwards and outwards, producing a ‘drooping lily’ appearance). Contrast in a ureterocele gives the appearance of a ‘cobra head’ (Fig. 8.10).
UPPER URINARY TRACT DUPLICATION

MCUG: will determine whether reflux is present.
Enhanced CT and MRI: reveals detailed anatomical information.
99mTc-DMSA renogram: assesses individual renal moiety function.

Management

Uncomplicated complete or incomplete ureteric duplication does not require any intervention. In symptomatic patients, the aim is to reduce obstruction and reflux and to improve function. Where renal function is reasonable, common sheath ureteric reimplantation (where a cuff of bladder tissue is taken that encompasses both duplicated ureters) can treat both conditions. A poorly functioning renal moiety (i.e. upper moiety associated with an ectopic ureter and/or reflux or lower moiety associated with a ureterocele) may require heminephrectomy and ureterectomy. Where both renal moieties have poor function or dysplasia, nephroureterectomy is indicated.

Fig. 8.10 IVU demonstrating bilateral (bifid system) renal duplication and a left ureterocele in the bladder (‘cobra head’ sign).
Fig. 8.11 IVU demonstrating complete left-sided renal and ureteric duplication.

Fig. 8.12 Diagrammatic representation of the Weigert–Meyer rule with complete ureteric duplication.

Reference
Chapter 9

Stone disease

Kidney stones: epidemiology 438
Kidney stones: types and predisposing factors 442
Kidney stones: mechanisms of formation 444
Factors predisposing to specific stone types 446
Evaluation of the stone former 450
Kidney stones: presentation and diagnosis 452
Kidney stone treatment options: watchful waiting and the natural history of stones 454
Stone fragmentation techniques: extracorporeal lithotripsy 456
Intracorporeal techniques of stone fragmentation 460
Flexible ureteroscopy and laser treatment 464
Kidney stone treatment: percutaneous nephrolithotomy 466
Kidney stones: open stone surgery 472
Kidney stones: medical therapy (dissolution therapy) 474
Ureteric stones: presentation 476
Ureteric stones: diagnostic radiological imaging 478
Ureteric stones: acute management 480
Ureteric stones: indications for intervention to relieve obstruction and/or remove the stone 482
Ureteric stone treatment 486
Treatment options for ureteric stones 488
Prevention of calcium oxalate stone formation 492
Bladder stones 496
Management of ureteric stones in pregnancy 498
Kidney stones: epidemiology

What is the risk of de novo stone formation?
Previous editions of this book have stated that 10% of Caucasian men will develop a kidney stone by the age of 70. This is very much an average figure, since the lifetime stone risk is multifactorial, being dependent on a variety of intrinsic (inherent to the patient—sex, age, family history, comorbid conditions) and extrinsic factors (fluid intake, diet, lifestyle, climate, country of residence). In the USA, the lifetime prevalence of stones is ~12% for men and ~7% for women. In other western countries, the lifetime risk is probably lower, but the gap between the lifetime risk in the USA and that in other countries is probably narrowing as our lifestyles move closer to a USA one.

The prevalence of stone disease is increasing in all western societies. In the USA, the prevalence of stone disease from affecting 3.6% of the population in the period 1976–1980 to 5.2% between 1988 and 1994. While some of this increase may reflect better diagnostic tests (e.g. the advent of CTU) diagnosing asymptomatic stones, much of this increase is likely to be real. Certainly, in the UK, rates of treatment for stones have shown a very substantial rise over the last 10y at a time when there have been no substantial changes in technology or technique of stone treatment. Thus, use of ESWL for treating upper tract stones by 55% between 2000 and 2010, a 127% increase in the number of ureteroscopic stone treatments, with 49% of this increase occurring between the periods 2007–8 and 2009–10.

Of 5047 men and women (mean age 57y) undergoing CT colonography screening in 2004–8 and with no symptoms of stone disease, a staggering 395 (7.8%) had stones (an average of two stones per patient, mean stone size 3mm). The prevalence in men was 9.7% and in women 6.3%, but was not (surprisingly) related to diabetes, obesity, and age >60. A substantial proportion of these initially asymptomatic stones became symptomatic over time. Over 10y of follow-up, 81 of these 395 patients (21%) went on to develop at least one symptomatic stone event.

What is the risk of recurrent stone formation in those who have already had a stone?
Once a stone has formed, the risk of future stone disease is very substantially. Within 1y of a calcium oxalate stone, 10% of men will form another calcium oxalate stone, and ~27–50% will have formed another stone within a mean of 7.54 to 9y.5

Once a second stone has formed, the frequency of recurrences increases, and the interval between relapses becomes smaller.

Factors affecting stone formation
The prevalence of renal tract stone disease is determined by factors intrinsic to the individual and by extrinsic (environmental) factors. A combination of factors often contributes to the risk of stone formation.
Intrinsic factors
The prevalence of stone disease and incidence of new stone events is increasing. Much of this change may relate to the epidemic of obesity sweeping western societies (obesity is associated with urinary excretion of stone-promoting substances, e.g. calcium, oxalate, uric acid, and excretion of stone-preventing substances, e.g. citrate). Obese patients have a lower urinary pH which encourages urate stone formation.

- **Age:** the peak incidence of stones occurs between the ages of 20y and 50y.
- **Sex:** previous editions of this book have stated that ♂ are affected three times as frequently as ♀, but the gender gap is closing, at least in the USA, so that between 1997 and 2002, the ♂ to ♀ ratio for treated stones fell from 1.7:1 to 1.3:1.6 Testosterone may cause oxalate production in the liver (predisposing to calcium oxalate stones), and women have higher urinary citrate concentrations (citrate inhibits calcium oxalate stone formation).
- **Genetic:** kidney stones are relatively uncommon in Native Americans, Black Africans, and American Blacks and commoner in Caucasians and Asians. About 25% of patients with kidney stones report a family history of stone disease (the relative risk of stone formation remaining high after adjusting for dietary calcium intake). Familial renal tubular acidosis (RTA) (predisposing to calcium phosphate stones) and cystinuria (predisposing to cystine stones) are inherited.7

Extrinsic (environmental) factors
- **Geographical location, climate, and season:** the relationship between these factors and stone risk is complex. While renal stone disease is commoner in hot climates, some indigenous populations of hot climates have a low incidence of stones (e.g. Black Africans, Aborigines), and many temperate areas have a high incidence of stones (e.g. Northern Europe and Scandinavia). This may relate to western lifestyle—excess food, inadequate fluid intake, limited exercise—combined with a genetic predisposition to stone formation.
- **Ureteric stones become more prevalent during summer:** the highest incidence occurs a month or so after peak summertime temperatures, presumably because of higher urinary concentration in the summer (encourages crystallization). The number of patients presenting acutely with urinary calculi increases by 2.8% for each degree increase in temperature and by 0.2% for each hour increase in sunlight hours.8 Concentrated urine has a lower pH, encouraging cystine and uric acid stone formation. Exposure to sunlight may also increase endogenous vitamin D production, leading to hypercalciuria.
- **Water intake:** low fluid intake (<1200mL/day) predisposes to stone formation,9 and patients who relapse after experiencing a stone are less likely to have their fluid intake than those who remain stone-free. Increasing water ‘hardness’ (high calcium content) may reduce the risk of stone formation, by decreasing urinary oxalate.10
• **Diet:** high animal protein intake increases the risk of stone disease (high urinary oxalate, low pH, low urinary citrate). High salt intake causes hypercalciuria (through a sodium:calcium co-transport mechanism). Contrary to conventional teaching, epidemiological studies show that in populations, low-calcium diets predispose to calcium stone disease and high calcium intake is protective.

• **Occupation:** sedentary occupations predispose to stones, compared with manual workers.

References

Kidney stones: types and predisposing factors

Stones may be classified according to composition (Table 9.1), X-ray appearance, size, and shape.

- Other rare stone types (all of which are radiolucent): indinavir (a protease inhibitor used for treatment of HIV), triamterene (a relatively insoluble potassium-sparing diuretic, most of which is excreted in urine), and xanthine.

Radiodensity on X-ray

Three broad categories of stones are described, based on their X-ray appearance. This gives some indication of the likely stone composition and helps, to some extent, to determine treatment options. However, in only 40% of cases is the stone composition correctly identified from visual estimation of the radiodensity on plain X-ray.¹

Radio-opaque

Opacity implies the presence of substantial amounts of calcium within the stone. Calcium phosphate stones are the most radiodense stones, being almost as dense as bone. Calcium oxalate stones are slightly less radiodense.

Relatively radiolucent on plain X-ray

Cystine stones are relatively radiodense because they contain sulfur (Fig. 9.1). Magnesium ammonium phosphate (struvite) stones are less radiodense than calcium-containing stones.

Completely radiolucent on plain X-ray

Uric acid, triamterene, xanthine, indinavir (cannot be seen, even on CTU; hence, if suspected, confirm by IVU).

Size and shape

Stones can be characterized by their size, in millimetres or centimetres. Stones which grow to occupy the renal collecting system (the pelvis and one or more renal calyces) are known as staghorn calculi, since they resemble

Table 9.1 Composition of stones

<table>
<thead>
<tr>
<th>Stone composition</th>
<th>% of all renal calculi¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium oxalate</td>
<td>80–85</td>
</tr>
<tr>
<td>Uric acid""</td>
<td>5–10</td>
</tr>
<tr>
<td>Calcium phosphate + calcium oxalate</td>
<td>10</td>
</tr>
<tr>
<td>Pure calcium phosphate</td>
<td>Rare</td>
</tr>
<tr>
<td>Struvite (infection stones)</td>
<td>2–20</td>
</tr>
<tr>
<td>Cystine</td>
<td>1</td>
</tr>
</tbody>
</table>

¹ The precise distribution of stone types will vary depending on the characteristics of the study population (geographical location racial distribution etc.). Hence the quoted figures do not equate to 100.

" Eighty per cent of uric acid stones are pure uric acid and 20% contain some calcium oxalate as well.
Kidney Stones: Types and Predisposing Factors

The horns of a stag (Fig. 9.2). They are most commonly composed of struvite—magnesium ammonium phosphate (being caused by infection and forming under alkaline conditions induced by urea-splitting bacteria), but may be composed of uric acid, cystine, or calcium oxalate monohydrate.

Reference

Fig. 9.1 A left cystine stone, barely visible, just below the mid-point of the twelfth rib.

Fig. 9.2 A large right staghorn calculus.
Kidney stones: mechanisms of formation

The driving force behind stone formation is the supersaturation of urine. Supersaturation is expressed as the ratio of urinary calcium oxalate (for example) to its solubility. Below a supersaturation of 1, crystals of calcium oxalate remain soluble. Above a supersaturation of 1, crystals of calcium oxalate nucleate and grow, thereby promoting stone formation.

Urine is said to be saturated with, for example, calcium and oxalate when the product of the concentrations of calcium and oxalate exceeds the solubility product (K_{sp}). Below the K_{sp}, crystals of calcium and oxalate will not form and the urine is said to be undersaturated. Above the K_{sp}, crystals of calcium and oxalate should form, but they do not because of the presence of inhibitors of crystal formation. However, above a certain concentration of calcium and oxalate, inhibitors of crystallization become ineffective and crystals of calcium oxalate start to form. The concentration of calcium and oxalate at which this is reached (i.e. at which crystallization starts) is known as the formation product (K_f), and the urine is said to be supersaturated with the substance or substances in question at concentrations above this level. Urine is described as being metastable for calcium and oxalate at concentrations between the K_{sp} of calcium and oxalate and the K_f (Box 9.1).

The ability of urine to hold more solute in solution than can pure water is due partly to the presence of various inhibitors of crystallization (e.g. citrate forms a soluble complex with calcium, preventing it from combining with oxalate or phosphate to form calcium oxalate or calcium phosphate stones). Other inhibitors of crystallization include magnesium, GAGs, and Tamm–Horsfall protein. From a practical perspective, the only inhibitor of stone formation that is open to manipulation is citrate.

Periods of intermittent supersaturation of urine with various substances can occur as a consequence of dehydration and following meals.

The earliest phase of crystal formation is known as nucleation. Crystal nuclei usually form on the surfaces of epithelial cells or on other crystals. Crystal nuclei form into clumps—a process known as aggregation. Citrate and magnesium not only inhibit crystallization, but also inhibit aggregation. Calcium oxalate stones form over a nucleus of calcium phosphate (Randall’s plaques on the surface of a renal papilla).
Box 9.1 Steps leading to stone formation
- Calcium and oxalate concentration < solubility product → NO STONE FORMATION.
- Metastable calcium and oxalate concentrations → NO STONE FORMATION.
- Calcium and oxalate concentrations > formation product → STONE.
Factors predisposing to specific stone types

Calcium oxalate (~85% of stones)
Although most patients with calcium oxalate stones have at least one metabolic abnormality (e.g. hypercalciuria, hyperoxaluria, hypocitraturia), the majority of calcium oxalate stones are idiopathic, i.e. the cause of that metabolic abnormality is unknown.

Hypercalciuria: excretion of >7mmol of calcium per day in men and >6mmol per day in women. The major metabolic risk factor for calcium oxalate stone formation is that it increases the relative supersaturation of urine. Some series suggest that as many as 50% of patients with calcium stone disease have hypercalciuria, although the proportion of hypercalciuric patients in other series is lower. There are three types:
- Absorptive: ↑ intestinal absorption of calcium.
- Renal: renal leak of calcium.
- Resorptive: ↑ demineralization of bone (due to hyperparathyroidism).

Diet has a major influence on hypercalciuria.

Hypercalcaemia: almost all patients with hypercalcaemia who form stones have primary hyperparathyroidism. Of hyperparathyroid patients, about 1% form stones (the other 99% do not because of early detection of hyperparathyroidism by screening serum calcium).

Hyperoxaluria: is due to the following:
- Altered membrane transport of oxalate, leading to ↑ renal leak of oxalate.
- Primary hyperoxaluria: ↑ hepatic oxalate production—rare.
- ↑ oxalate absorption in short bowel syndrome or malabsorption (enteric hyperoxaluria): the colon is exposed to more bile salts and this increases its permeability to oxalate.

Ascorbic acid and high protein intake increase oxalate production.

Hypocitraturia: citrate forms a soluble complex with calcium (so-called chelation), thus preventing the complexing of calcium with oxalate to form calcium oxalate stones. Distal RTA, hypokalaemia, and carbonic anhydrase inhibitors lead to hypocitraturia.

Hyperuricosuria: high urinary uric acid levels lead to the formation of uric acid crystals, on the surface of which calcium oxalate crystals form.

Uric acid (~5–10% of stones)
Humans (unlike birds) are unable to convert uric acid (which is relatively insoluble) into allantoin (which is very soluble). Human urine is supersaturated with insoluble uric acid. Uric acid exists in two forms in urine: uric acid and sodium urate. Sodium urate is 20 times more soluble than uric acid. At a urine pH of 5, <20% of uric acid is present as soluble sodium urate. At a urine pH of 5.5, half of the uric acid is ionized as sodium urate (soluble) and half is non-ionized as free uric acid (insoluble). At a urine pH of 6.5, >90% of uric acid is present as soluble sodium urate. Thus, uric acid is essentially insoluble in acid urine and soluble in alkaline urine. Human urine is acidic (because the end-products of metabolism are acid), and this low pH,
combined with supersaturation of urine with uric acid, predisposes to uric acid stone formation.

About 20% of patients with gout have uric acid stones. Patients with uric acid stones may have:

- **Gout**: 50% of patients with uric acid stones have gout. The chance of forming a uric acid stone if you have gout is in the order of 1% per year from the time of the first attack of gout.

- **Myeloproliferative disorders**: particularly following treatment with cytotoxic drugs, cell necrosis results in the release of large quantities of nucleic acids which are converted to uric acid. A large plug of uric acid crystals may form in the collecting system of the kidney in the absence of ureteric colic, causing oliguria or anuria.

- **Idiopathic uric acid stones**: no associated condition.

Calcium phosphate (calcium phosphate + calcium oxalate = 10% of stones)

Occur in patients with RTA—a defect of renal tubular H⁺ secretion, resulting in an impaired ability of the kidney to acidify urine. The urine is therefore of high pH and the patient has metabolic acidosis. The high urine pH increases supersaturation of the urine with calcium and phosphate, leading to their precipitation as stones.

Types of renal tubular acidosis

- **Type 1 or distal RTA**: the distal tubule is unable to maintain a proton gradient between the blood and the tubular fluid; 70% of such patients have stones. When the urine pH is >5.5, the patient has metabolic acidosis and hypokalaemia, urinary citrate is low, and hypercalciuria is present.

- **Type 2 or proximal RTA**: due to failure of bicarbonate resorption in the proximal tubule. There is associated urinary citrate excretion which protects against stone formation.

- **Type 3**: a variant of type 1 RTA.

- **Type 4**: seen in diabetic nephropathy and interstitial renal disease. These patients do not make stones.

If urine pH is >5.5, use the ammonium chloride loading test. Urine pH that remains above 5.5 after an oral dose of ammonium chloride = incomplete distal RTA.

Struvite (infection or triple phosphate stones) (2–20% of stones)

These stones are composed of magnesium, ammonium, and phosphate. They form as a consequence of urease-producing bacteria which produce ammonia from the breakdown of urea (urease hydrolyses urea to carbon dioxide and ammonium) and, in so doing, alkalinate urine, as in the following equation:

$$\text{NH}_2 - \text{NH}_2 \rightarrow \text{H}_2\text{O}12\text{NH}_3 \text{CO}_2$$

Under alkaline conditions, crystals of magnesium, ammonium, and phosphate precipitate.
Cystine (1% of all stones)
Occur only in patients with cystinuria—an inherited (autosomal recessive) disorder of transmembrane cystine transport, resulting in ↓ absorption of cystine from the intestine and in the proximal tubule of the kidney. Cystine is very insoluble, so reduced absorption of cystine from the proximal tubule results in supersaturation with cystine and cystine crystal formation. Cystine is poorly soluble in acid urine (300mg/L at pH 5, 400mg/L at pH 7).
Evaluation of the stone former

Determination of stone type and a metabolic evaluation allow the identification of factors that led to stone formation, so advice can be given to prevent future stone formation.

Metabolic evaluation depends, to an extent, on the stone type (Table 9.2). In many cases, a stone is retrieved. The stone type is analysed by polarizing microscopy, X-ray diffraction, and infrared spectroscopy, rather than by chemical analysis. Where no stone is retrieved, its nature must be inferred from its radiological appearance (e.g. a completely radiolucent stone is likely to be composed of uric acid) or from more detailed metabolic evaluation.

In most patients, multiple factors are involved in the genesis of kidney stones, and as a general guide, the following evaluation is appropriate in most patients.

Risk factors for stone disease

- **Diet**: enquire about volume of fluid intake, meat consumption (causes hypercalciuria, high uric acid levels, low urine pH, low urinary citrate), multivitamins (vitamin D increases intestinal calcium absorption, although in healthy post-menopausal women with no history of stone formation, vitamin D supplementation does not increase urinary calcium excretion), and high doses of vitamin C (ascorbic acid causes hyperoxaluria).
- **Drugs**: corticosteroids (increase enteric absorption of calcium, leading to hypercalciuria), chemotherapeutic agents (breakdown products of malignant cells leads to hyperuricaemia).
- **UTI**: urease-producing bacteria (*Proteus, Klebsiella, Serratia, Enterobacter*) predispose to struvite stones.
- **Mobility**: low activity levels predispose to bone demineralization and hypercalciuria.
- **Systemic disease**: gout, primary hyperparathyroidism, sarcoidosis.
- **Family history**: cystinuria, RTA.
- **Renal anatomy**: PUJO, horseshoe kidney, MSK (up to 2% of patients with calcium-containing stones have MSK).
- **Previous bowel resection or inflammatory bowel disease**: causes intestinal hyperoxaluria.

Table 9.2 Characteristics of stone types

<table>
<thead>
<tr>
<th>Stone type</th>
<th>Urine acidity</th>
<th>Mean urine pH (± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium oxalate</td>
<td>Variable</td>
<td>6 (± 0.4)</td>
</tr>
<tr>
<td>Calcium phosphate</td>
<td>Tendency towards alkaline urine</td>
<td>>5.5</td>
</tr>
<tr>
<td>Uric acid</td>
<td>Acid</td>
<td>5.5 (± 0.4)</td>
</tr>
<tr>
<td>Struvite</td>
<td>Alkaline¹</td>
<td>–</td>
</tr>
<tr>
<td>Cystine</td>
<td>Normal (5–7)</td>
<td>–</td>
</tr>
</tbody>
</table>

¹ Urine pH must be above 7.2 for deposition of struvite crystals.

SEM, standard error of the mean.
Metabolic evaluation of the stone former

Patients can be categorized as low risk and high risk for subsequent stone formation. High risk: previous history of a stone (i.e. multiple stone formers), bilateral stones, family history of stones, GI disease, uric acid stones or gout, chronic UTI, nephrocalcinosis, patients with solitary kidneys, staghorn calculi, children, and young adults.

Low-risk patient evaluation

U&E, FBC (to detect undiagnosed haematological malignancy), serum calcium (corrected for serum albumin) and uric acid, urine culture, urine dipstick for pH.

High-risk patient evaluation

As for low-risk patients plus 24h urine for calcium, oxalate, uric acid, and cystine; evaluation for RTA.

Urine pH

Urine pH in normal individuals shows variation from pH 5–7. After a meal, pH is initially acid because of acid production from metabolism of purines (nucleic acids in, for example, meat). This is followed by an ‘alkaline tide’, with the pH rising to >6.5. Urine pH can help establish what type of stone the patient may have (if a stone is not available for analysis) and can help the urologist and patient in determining whether preventative measures are likely to be effective or not.

- pH <6 in a patient with radiolucent stones suggests the presence of uric acid stones.
- pH consistently >5.5 suggests type 1 (distal) RTA (~70% of such patients will form calcium phosphate stones).

Evaluation for RTA

Evaluate for RTA if: calcium phosphate stones, bilateral stones, nephrocalcinosis, MSK, and hypocitraturia.

- If fasting morning urine pH (i.e. first urine of the day) is >5.5, the patient has complete distal RTA.
- First and second morning urine pH are a useful screening test for the detection of incomplete distal RTA, with >90% of cases of RTA having a pH >6 on both specimens. The ammonium chloride loading test involves an oral dose of ammonium chloride (0.1g/kg; an acid load). If serum pH falls <7.3 or serum bicarbonate falls <16mmol/L, but urine pH remains >5.5, the patient has incomplete distal RTA.

Diagnostic tests for suspected cystinuria

- Cyanide–nitroprusside colorimetric test (‘cystine spot test’): if positive, a 24h urine collection is done. A 24h cystine of >250mg is diagnostic of cystinuria.¹

Reference

Kidney stones: presentation and diagnosis

Kidney stones may present with symptoms or be found incidentally during investigation of other problems. Presenting symptoms include pain or haematuria (microscopic or occasionally macroscopic). Struvite staghorn calculi classically present with recurrent UTIs. Malaise, weakness, and loss of appetite can also occur. Less commonly, struvite stones present with infective complications (pyonephrosis, perinephric abscess, septicaemia, xanthogranulomatous pyelonephritis).

Diagnostic tests

- **Plain abdominal radiography**: calculi that contain calcium are radiodense. Sulfur-containing stones (cystine) are relatively radiolucent on plain radiography.
- **Radiodensity of stones in decreasing order**: calcium phosphate > calcium oxalate > struvite (magnesium ammonium phosphate) >> cystine.
- **Completely radiolucent stones** (e.g. uric acid, triamterene, indinavir) are usually suspected on the basis of the patient’s history and/or urine pH (pH <6—gout; drug history—triamterene, indinavir), and the diagnosis may be confirmed by USS, CT-KUB, or magnetic resonance urography (MRU).
- **Renal USS**: its sensitivity for detecting renal calculi is variable, depending on the series. Some series suggest ~95% sensitivity for detecting stones, others just 50%. A combination of plain abdominal radiography and renal ultrasonography is a useful screening test for renal calculi.
- **IVU**: virtually a historical investigation now having, to all intents and purposes, been replaced by CT-KUB. Useful for the rare patient with suspected indinavir stones (which are not visible on CT).
- **CTU**: a very accurate method of diagnosing renal and ureteric stones (except) indinavir stones. Allows accurate determination of stone size and location and good definition of pelvicalyceal anatomy.
- **MRU**: cannot visualize stones but is able to demonstrate the presence of hydronephrosis.

Reference

Kidney stone treatment options: watchful waiting and the natural history of stones

The traditional indications for intervention are pain, infection, and obstruction. Haematuria caused by a stone is only very rarely severe or frequent enough to be the only reason to warrant treatment.

Before embarking on treatment of a stone which you think is the cause of the patient’s pain or infections, warn them that though you may be able to remove the stone successfully, their pain or infections may persist (i.e. the stone may be coincidental to their pain or infections which may be due to something else). Remember, UTIs are common in women as are stones, and it is not therefore surprising that the two may coexist in the same patient, but be otherwise unrelated.

Options for stone management are WW, ESWL, flexible ureteroscopy, PCNL, open surgery, and medical ‘dissolution’ therapy.

When to watch and wait—and when not to

It is not necessary to treat every kidney stone. As a rule of thumb, the younger the patient, the larger the stone, and the more symptoms it is causing, the more inclined we are to recommend treatment. Thus, one would be inclined to do nothing about a 1cm symptomless stone in the kidney of a patient aged 95y. On the other hand, a 1cm stone in a symptomless patient aged 20y runs the risk over the remaining (many) years of the patient’s life of causing problems. It could drop into the ureter, causing ureteric colic, or it could increase in size and affect kidney function or cause pain.

The results of observational studies are conflicting, some suggesting most renal stones progress—increase in size, cause symptoms, or require intervention, while others suggest many do not. In a series of 80 calyceal stones followed over 7.5y (stone size not reported), 45% of the stones increased in size and the authors concluded that 80% would require intervention within 5y. Conversely, 68% of patients with small renal stones remained asymptomatic over 2.5y in Glowacki’s study, and in Keeley’s RCT of ESWL vs WW for small calyceal stones, only 9% required surgery over an average follow-up of 2y.

Burgher’s paper is helpful because it relates the risk of intervention to stone size and location, allowing a more tailored approach to decision-making. Asymptomatic stones followed over a 3y period were more likely to require intervention (surgery or ESWL) or to increase in size or cause pain if they were >4mm in diameter or if located in a middle or lower pole calyx. The approximate risks over 3y of follow-up of requiring intervention, developing pain, or an increase in stone size relative to the stone size can be found in Burgher et al. (2004).

Another factor determining the need for treatment is the patient’s job. Airline pilots are not allowed to fly if they have kidney stones for fear that the stones could drop into the ureter at 30 000 ft with disastrous consequences! They will only be deemed fit to fly when they are radiologically
stone-free. It is sensible to warn any one whose job entrusts them with the safety of others (pilots, train drivers, drivers of buses and lorries) that they are not fit to carry out these occupations until stone-free or, at the very least, that they should contact the relevant regulatory authority to seek guidance [the Civil Aviation Authority (CAA) for pilots and the Driver and Vehicle Licensing Agency (DVLA) for drivers].

Some stones are definitely not suitable for WW. Untreated struvite (i.e. infection-related) staghorn calculi will eventually destroy the kidney if untreated and are a significant risk to the patient’s life. WW is therefore NOT recommended for staghorn calculi, unless patient comorbidity is such that surgery would be a higher risk than WW. Historical series suggest that somewhere between 9% and 30% of patients with staghorn calculi who did not undergo surgical removal (from choice or because of comorbidity) died of renal-related causes—renal failure, urosepsis (septicemia, pyonephrosis, perinephric abscess). A combination of a neurogenic bladder and staghorn calculus seems to be particularly associated with a poor outcome.

References
Chapter 9 Stone disease

Stone fragmentation techniques: extracorporeal lithotripsy

The technique of focusing externally generated shock waves at a target (the stone). First used in humans in 1980. The first commercial lithotripter—the Dornier HM3—became available in 1983. Shock wave lithotripsy (SWL) revolutionized kidney and ureteric stone treatment. The great advantage of SWL is its ease of administration (outpatient procedure), the absence of any requirement for GA, and its low complication rates.

Three methods of shock wave generation are commercially available: electrohydraulic, electromagnetic, and piezoelectric.

- **Electrohydraulic:** application of a high-voltage electrical current between two electrodes, about 1mm apart, under water causes discharge of a spark. Water around the tip of the electrode is vaporized by the high temperature, resulting in a rapidly expanding gas bubble. The rapid expansion and then the rapid collapse of this bubble generate a shock wave that is focused by a metal reflector shaped as a hemiellipsoid. Used in the original Dornier HM3 lithotripter.

- **Electromagnetic:** two electrically conducting cylindrical plates are separated by a thin membrane of insulating material. Passage of an electrical current through the plates generates a strong magnetic field between them, the subsequent movement of which generates a shock wave. An ‘acoustic’ lens is used to focus the shock wave.

- **Piezoelectric:** a spherical dish is covered with about 3000 small ceramic elements, each of which expands rapidly when a high voltage is applied across them. This rapid expansion generates a shock wave.

X-ray, USS, or a combination of both are used to locate the stone on which the shock waves are focused. Older machines required general or regional anaesthesia because the shock waves were powerful and caused severe pain. Newer lithotriptors generate less powerful shock waves, allowing ESWL with oral or parenteral analgesia in many cases, but they are less efficient at stone fragmentation.

Efficacy of SWL

The likelihood of fragmentation with SWL depends on the stone size and location, the anatomy of the renal collecting system, the degree of obesity, and the stone composition. Most effective for stones <1cm in diameter (stone-free rate 80%) and somewhat less effective for 1–2cm stones (stone-free rate 60%). Stone location is probably less of a factor in determining SWL outcomes than was once thought to be the case. Less effective for stones >2cm in diameter (PCNL is the usual treatment choice) and those composed of cystine or calcium oxalate monohydrate (very hard).

Randomized studies show that a lower shock wave rate (60 vs 120/min) achieves better stone fragmentation and clearance. Animal studies also demonstrate less renal injury and a smaller decrease in renal blood flow from lower shock wave rates.
There have been no randomized studies comparing stone-free rates between different lithotriptors. In non-randomized studies, rather surprisingly, when it comes to the efficacy of stone fragmentation, older (the original Dornier HM3 machine) is better (but with a higher requirement for analgesia and sedation or GA). Less powerful (modern) lithotriptors have lower stone-free rates and higher retreatment rates.

Side effects of SWL

(See Fig. 9.3.)

SWL causes a certain amount of structural and functional renal damage (found more frequently the harder you look). Haematuria (microscopic, macroscopic—due to the rupture of intraparenchymal vessels) and oedema are common, and perirenal haematomas less so (0.5% detected on USS with modern machines, although reported in as many as 30% with Dornier HM3). Effective renal plasma flow (measured by renography) has been reported to fall in 30% of treated kidneys.

Renal injury during SWL is significantly reduced by slowing the rate of shock wave delivery from 120 to 30 shock waves per min.\(^3\)

There are data suggesting that SWL may increase the likelihood of development of hypertension. Acute renal injury may be more likely to occur in patients with pre-existing hypertension, prolonged coagulation time, coexisting coronary heart disease, and diabetes and in those with solitary kidneys. A retrospective case-control study with 19y follow-up has raised the possibility that SWL may cause pancreatic damage, leading to a higher risk of diabetes—diabetes developed in 16.8% of patients undergoing SWL vs 6.6% of controls.\(^4\)

Fig. 9.3 Side effects of ESWL: steinstrasse (= Stone Street) or ‘log-jam’.
Should a stent be inserted prior to SWL to renal (or ureteric) calculi?

Is SWL more effective in the absence of pre-SWL stenting? Probably yes. Does pre-SWL stenting reduce the risk of SWL complications? Probably not. When SWL was first introduced, stones of all sizes were treated. It soon became apparent that multiple fragments from large stones could obstruct the ureter, causing a so-called steinstrasse (incidence of steinstrasse 2–3% for stones 1.5–2cm in diameter; 56% for stones 3–3.5cm).

Whether stenting prior to SWL can reduce the risk of steinstrasse remains controversial. Pre-SWL stenting does not reduce the chances of spontaneous resolution of the steinstrasse (spontaneous passage of stones). We nowadays see steinstrasse only rarely because SWL tends to be reserved for smaller stones (<2cm) and PCNL is used for larger stones. Steinstrasse is managed expectantly (since 50% will resolve spontaneously), with SWL of the so-called ‘lead’ fragment or ureteroscopy being required where the stones fail to pass.

The overall consensus is that pre-SWL stenting is probably not necessary in most cases. For patients with solitary kidneys undergoing SWL, pre-stenting is an option to reduce the risk of renal obstruction. The alternative is closer monitoring in the days and weeks after SWL and emergency ureteroscopy where anuria develops.

Contraindications to SWL

Absolute contraindications: pregnancy, uncorrected blood clotting disorders (including anticoagulation), known renal artery stenosis.

BAUS procedure-specific consent form: potential complications after SWL

Common
- Bleeding on passing urine for a short period after procedure.
- Pain in the kidney as small fragments of stone pass after fragmentation.
- UTI from bacteria released from the stone, needing antibiotic treatment.

Occasional
- Stone will not break as too hard, requiring an alternative treatment.
- Repeated ESWL treatments may be required.
- Recurrence of stones.

Rare
- Kidney damage (bruising) or infection, needing further treatment.
- Stone fragments occasionally get stuck in the tube between the kidney and the bladder, requiring hospital attendance and sometimes surgery to remove the stone fragment.
- Severe infection requiring IV antibiotics and sometimes drainage of the kidney by a small drain placed through the back into the kidney.

Alternative therapy

Telescopic surgery, open surgery, or observation to allow spontaneous passage.
What is the fate of the ‘clinically insignificant fragment’ after SWL?

Clinically insignificant residual fragments (CIrFs) are residual stone fragments of 4mm in size or less after SWL. ‘Clinically insignificant’ is something of a misnomer, for 12–46% of such fragments will increase in size over a period of 2–3y. Given that there is a significant risk of increase in stone size and given our knowledge that stones that grow are likely to continue to do so, and therefore require intervention, or to become symptomatic, and so requiring intervention, radiological follow-up of such patients seems to be sensible. How (plain X-ray if the stones are visible, or USS or CT), how often, and by whom (in primary care or by urologists) are contentious issues.

References

Intracorporeal techniques of stone fragmentation

Electrohydraulic lithotripsy
The first technique developed for intracorporeal lithotripsy. A high voltage applied across a concentric electrode under water generates a spark. This vaporizes water, and the subsequent expansion and collapse of the gas bubble generates a shock wave. An effective form of stone fragmentation. The shock wave is not focused, so the electrohydraulic lithotripsy (EHL) probe must be applied within 1mm of the stone to optimize stone fragmentation.

EHL has a narrower safety margin than pneumatic, ultrasonic, or laser lithotripsy and should be kept as far away as possible from the wall of the ureter, renal pelvis, or bladder to limit damage to these structures and at least 2mm away from the cystoscope, ureteroscope, or nephroscope to prevent lens fracture.

- **Principal uses:** bladder stones (wider safety margin than in the narrower ureter).

Pneumatic (ballistic) lithotripsy
A metal projectile contained within the handpiece is propelled backwards and forwards at great speed by bursts of compressed air (Fig. 9.4a). It strikes a long, thin metal probe at one end of the handpiece at 12Hz (12 strikes per second), transmitting shock waves to the probe which, when in contact with a rigid structure such as a stone, fragments the stone. Used for stone fragmentation in the ureter (using a thin probe to allow insertion down a ureteroscope) or kidney (a thicker probe may be used, with an in-built suction device—‘Lithovac’—to remove stone fragments).

Pneumatic lithotripsy is very safe, since the excursion of the end of the probe is about 1mm and it bounces off the pliable wall of the ureter. Ureteric perforation is therefore rare. Also low cost and low maintenance. However, its ballistic effect has a tendency to cause stone migration into the proximal ureter or renal pelvis where the stone may be inaccessible to further treatment. The metal probe cannot bend around corners, so it cannot be used for ureteroscopic treatment of stones within the kidney.

- **Principal uses:** ureteric stones.

Ultrasonic lithotripsy
An electrical current applied across a piezoceramic plate located in the ultrasound transducer generates ultrasound waves of a specific frequency (23 000–25 000Hz). The ultrasound energy is transmitted to a hollow metal probe which, in turn, is applied to the stone (Fig. 9.4b). The stone resonates at high frequency, and this causes it to break into small fragments (the opera singer breaking a glass), which are then sucked out through the centre of the hollow probe. Soft tissues do not resonate when the probe is applied to them and therefore are not damaged. Can only be used down straight instruments.

- **Principal uses:** fragmentation of renal calculi during PCNL.
Fig. 9.4 (a) The Lithoclast: a pneumatic lithotripsy device. (b) The Calcuson: an ultrasonic lithotripsy device. Reproduced from Walsh PC, Retik AB, Vaughan D et al. (2002) Campbell’s Urology, 8th edn. Amsterdam: W.B. Saunders/Elsevier, pp. 3395–7 with permission from Elsevier.
Laser lithotripsy
The holmium:YAG laser. Principally, a photothermal mechanism of action, causing stone vaporization. Minimal shock wave generation, and therefore less risk of causing stone migration. The laser energy is delivered down fibres, which vary in diameter from 200 to 360µm. The 200µm fibre is very flexible and can be used to gain access to stones, even within the lower pole of the kidney (Figs. 9.5 and 9.6). A 275µm fibre delivers more laser energy at the expense of a reduction in flexibility, and therefore a reduced chance of lower pole access. The zone of thermal injury is limited from 0.5 to 1mm from the laser tip. No stone can withstand the heat generated by the Holmium:YAG laser. Laser lithotripsy takes time, however, since the thin laser fibre must be ‘painted’ over the surface of the stone to vaporize it.

- Principal uses: ureteric stones, small intrarenal stones.

Fig. 9.5 A laser fibre.
Fig. 9.6 Access to the lower pole of the kidney with a flexible ureteroscope.
Flexible ureteroscopy and laser treatment

The development of small-calibre ureteroscopes with active deflecting mechanisms and instrument channels, in combination with the development of laser technology, small-diameter laser fibres, and stone baskets and graspers, has opened the way for intracorporeal, endoscopic treatment of kidney stones. Access to virtually the entire collecting system is possible with modern instruments. The holmium:YAG laser has a minimal effect on tissues at distances of 2–3 mm from the laser tip, and so ‘collateral’ tissue damage is minimal with this laser type.

Flexible ureteroscopy and laser fragmentation offer a more effective treatment option, compared with ESWL, with a lower morbidity than PCNL, but usually requires GA (some patients will tolerate it with sedation alone). It can also allow access to areas of the kidney where ESWL is less efficient or where PCNL cannot reach. It is most suited to stones <2 cm in diameter.

Indications for flexible ureteroscopic kidney stone treatment

- ESWL failure.
- Lower pole stone (reduces the likelihood of stone passage post-ESWL—fragments have to pass ‘uphill’).
- Cystine stones.
- Obesity such that PCNL access is technically difficult or impossible (nephroscopes may not be long enough to reach the stone).
- Obesity such that ESWL is technically difficult or impossible. BMI >28 is associated with lower ESWL success rates. Treatment distance may exceed the focal length of the lithotripter.
- Musculoskeletal deformities such that stone access by PCNL or ESWL is difficult or impossible (e.g. kyphoscoliosis).
- Stone in a calyceal diverticulum (accessing stones in small diverticula in upper and anterior calyces is difficult and carries significant risks).
- Stenosis of a calyceal infundibulum or ‘tight’ angle between the renal pelvis and infundibulum. The flexible ureteroscope can negotiate acute angles, and the laser can be used to divide obstructions.
- Bleeding diathesis where reversal of this diathesis is potentially dangerous or difficult.
- Horseshoe or pelvic kidney. ESWL fragmentation rates are only 50% in such cases1 due to difficulties of shock wave transmission through overlying organs (bowel). PCNL for such kidneys is difficult because of bowel proximity and variable blood supply (blood supply derived from multiple sources).
- Patient’s preference.
Disadvantages
Efficacy diminishes as stone burden increases—it simply takes a long time to 'paint' the surface of the stone with laser energy, so destroying it. A dust cloud is produced as the stone fragments, and this temporarily obscures the view until it has been washed away by irrigation. Stone fragmentation rates for those expert in flexible ureteroscopy (not every stone surgeon will be able to achieve these results) are ~70–80% for stones <2cm in diameter and 50% for those >2cm in diameter, and ~10% of patients will require two or more treatment sessions.

References
Kidney stone treatment: percutaneous nephrolithotomy

Technique

PCNL is the removal of a kidney stone via a ‘track’ developed between the surface of the skin and the collecting system of the kidney. The first step requires ‘inflation’ of the renal collecting system (pelvis and calyces) with fluid or air instilled via a ureteric catheter inserted cystoscopically (Fig. 9.7). This makes subsequent percutaneous puncture of a renal calyx with a nephrostomy needle easier (Fig. 9.8). Once the nephrostomy needle is in the calyx, a guide wire is inserted into the renal pelvis to act as a guide over which the ‘track’ is dilated (Fig. 9.9). An access sheath is passed down the track and into the calyx, and through this, a nephroscope can be advanced into the kidney (Fig. 9.10). An ultrasonic lithotripsy probe is used to fragment the stone and remove the debris.

A posterior approach is most commonly used, below the twelfth rib (to avoid the pleura and far enough away from the rib to avoid the intercostals, vessels, and nerve). The preferred approach is through a posterolateral calyx, rather than into the renal pelvis, because this avoids damage to posterior branches of the renal artery which are closely associated with the renal pelvis. GA is usual, though regional, or even local, anaesthesia (with sedation) can be used.

Fig. 9.7 A ureteric catheter is inserted into the renal pelvis to dilate it with air or fluid.
Fig. 9.8 A nephrostomy needle has been inserted into a calyx.

Fig. 9.9 A guide wire is inserted into the renal pelvis and down the ureter; over this guide wire, the track is dilated.
Indications for, and outcomes of, PCNL

PCNL is generally recommended for stones >3cm in diameter and those that have failed ESWL and/or an attempt at flexible ureteroscopy and laser treatment. It is the first-line option for staghorn calculi, with ESWL and/or repeat PCNL being used for residual stone fragments. For staghorn stones, the stone-free rate of PCNL, when combined with post-operative ESWL for residual stone fragments, is in the order of 80–85%.

For middle and upper pole stones 2–3cm in diameter, options include ESWL (with a JJ stent in situ), flexible ureteroscopy and laser treatment, and PCNL. PCNL gives the best chance of complete stone clearance with a single procedure, but this is achieved at a higher risk of morbidity. Some patients will opt for several sessions of ESWL or flexible ureteroscopy/laser treatment and the possible risk of ultimately requiring PCNL because of failure of ESWL or laser treatment, rather than proceeding with PCNL ‘up front’. About 50% of stones >2cm in diameter will be fragmented by flexible ureteroscopy and laser treatment.

For lower pole stones, PCNL achieves substantially higher stone clearance than ESWL for all stones sizes (<1cm, 100% vs 63%; 1–2cm, 93% vs 23%; >2–3cm, 86% vs 14%). It also achieves superior stone-free rates, compared to flexible ureteroscopy/laser treatment, for lower pole stones of between 1cm and 2.5cm (71% vs 37%). Again, better stone-free rates must be balanced against higher morbidity.

Fig. 9.10 An access sheath is passed down the track and into the calyx, and through this, a nephroscope can be advanced into the kidney.
Post-PCNL tube drainage vs tubeless PCNL?
PCNL is traditionally followed by the placement of a large-bore nephrostomy tube, the rationale being to tamponade bleeding from the track (less frequently, the tube is used to keep the track patent to allow the option of check nephroscopy if post-operative imaging—CT scan or nephrostogram—demonstrates residual stone). The disadvantage is more post-operative pain and the requirement for analgesics and longer hospital stay (though some reports suggest tubed PCNL does not increase any of these parameters). As a consequence, tubeless PCNL is now in vogue—tubeless meaning no nephrostomy tube, but usually some form of ureteric drainage, e.g. a J stent or ureteric catheter (i.e. ‘tubeless’ PCNL is actually ‘relatively tubeless’; there are occasional reports of ‘totally tubeless’ PCNL).

The use of track sealants has been suggested, but there is no convincing proof that they reduce bleeding or urinary extravasation. Track diathermy and cryoaablation (a 10min freeze–thaw cycle) have also been reported.

A recent review\(^4\) suggests that tubeless PCNL should be the default, but that the decision to place a tube should be individualized—partly based on the surgeon’s experience and erring on the side of tube placement in cases with >2 access tracks, infection stones (most staghorns), significant intraoperative bleeding, collecting system perforation (though one could argue that antegrade J stent insertion or ureteric catheter drainage might be just as effective), and where a second look is anticipated (e.g. especially large stone burden).

Supine vs prone PCNL?
Traditionally, PCNL is performed in the prone position (once access to the renal collecting system has been gained with the patient in the supine position, the patient is turned from supine to prone after the initial ureteric catheterization). ‘Supine’ PCNL (keeping the patient in the supine position throughout the procedure, rotated to one or other side to allow access to the appropriate flank) has recently been proposed as an alternative approach, the potential advantages being:\(^5\) (1) reduced operating time (no time is wasted turning the patient), (2) lower anaesthetic morbidity (the prone position reduces cardiac output), (3) easier management of airway problems (it is difficult to access the airway in a prone patient), (4) should haemorrhage occur, arterial and central venous line insertion is easier, and (5) it allows the potential for manipulating the renal stone burden not only percutaneously, but also ureteroscopically (the argument being that a ‘two-handed’ approach is better than a one-handed one). Whether the supine position will become the preferred option remains to be seen.

What treatment is best for the smaller (<3cm) lower pole kidney stone?
It is more difficult to achieve a stone-free status for lower pole kidney stones, compared with stones in the upper and middle pole calyces, because of poor clearance of stone fragments from the dependent lower pole. Lower Pole I1 and another randomized study comparing stone-free rates for lower pole stones treated either by flexible ureterorenoscopy vs ESWL or flexible ureterorenoscopy vs PCNL inform treatment decisions (Tables 9.3 and 9.4).
The convenience of ESWL over flexible ureterorenoscopy (outpatient procedure, no anaesthetic, much shorter recovery time) means that many patients prefer ESWL over flexible ureterorenoscopy, if given the choice. Comparing flexible ureterorenoscopy vs PCnL, stone-free rates strongly favour PCnL. For stones <3cm, convalescence time is similar.

For 1cm or smaller stones, ESWL or flexible ureterorenoscopy are reasonable first-line approaches, but warn the patient that stone clearance is relatively low for both (35% vs 50%).

For stones between 1cm and 2cm, PCnL achieves higher clearance rates, although the potential for morbidity is higher. In the above well-designed study, flexible ureterorenoscopy was able to clear stones in only one-third of patients (no doubt this relatively low success rate was due to the use of very accurate non-enhanced CT scanning to determine stone-free status 3 months after treatment, as opposed to plain radiography). For stones >2cm, PCnL achieves higher clearance rates than any other modality.

Table 9.3 Stone-free rates for lower pole stones: PCNL vs ESWL

<table>
<thead>
<tr>
<th>Stone size (cm)</th>
<th>PCNL (%)</th>
<th>ESWL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>100</td>
<td>63</td>
</tr>
<tr>
<td>1–2cm</td>
<td>93</td>
<td>23</td>
</tr>
<tr>
<td>>2–3cm</td>
<td>86</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 9.4 Stone-free rates for lower pole stones: flexible ureterorenoscopy (F-URS) vs ESWL and flexible ureterorenoscopy vs PCnL

<table>
<thead>
<tr>
<th>Stone size (cm)</th>
<th>ESWL (%)</th>
<th>F-URS (%)</th>
<th>PCNL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: <1</td>
<td>35</td>
<td>50</td>
<td>–</td>
</tr>
<tr>
<td>Group 2: 1–2.5</td>
<td>–</td>
<td>37</td>
<td>71</td>
</tr>
</tbody>
</table>

References
Kidney stones: open stone surgery

Indications
- Complex stone burden (projection of stone into multiple calyces such that multiple PCNL tracks would be required to gain access to all the stone).
- Failure of endoscopic treatment (technical difficulty gaining access to the collecting system of the kidney).
- Anatomic abnormality that precludes endoscopic surgery (e.g. retrorenal colon).
- Body habitus that precludes endoscopic surgery (e.g. gross obesity, kyphoscoliosis—open stone surgery can be difficult).
- Patient’s request for a single procedure where multiple PCNLs might be required for stone clearance.
- Non-functioning kidney.

Non-functioning kidney
Where the kidney is not working, the stone may be left in situ if it is not causing symptoms (e.g. pain, recurrent urinary infection, haematuria). However, staghorn calculi should be removed, unless the patient has comorbidity that would preclude safe surgery because of the substantial risk of developing serious infective complications. If the kidney is non-functioning, the simplest way of removing the stone is to remove the kidney.

Functioning kidneys—options for stone removal
Small- to medium-sized stones
- Pyelolithotomy.
- Radial nephrolithotomy.

Staghorn calculi
- Anatrophic (avascular) nephrolithotomy.
- Extended pyelolithotomy with radial nephrotomies (small incisions over individual stones).
- Excision of the kidney, ‘bench’ surgery to remove the stones, and autotransplantation.

Specific complications of open stone surgery
Wound infection (the stones operated on are often infection stones), flank hernia, wound pain. (With PCNL, these problems do not occur, blood transfusion rate is lower, analgesic requirement is less, mobilization is more rapid, and discharge is earlier—all of which account for PCNL having replaced open surgery as the mainstay of treatment of large stones.) There is a significant chance of stone recurrence after open stone surgery (as for any other treatment modality), and the scar tissue that develops around the kidney will make subsequent open stone surgery technically more difficult.
Kidney stones: medical therapy (dissolution therapy)

Uric acid and cystine stones are potentially suitable for dissolution therapy. Calcium within either stone type reduces the chances of successful dissolution.

Uric acid stones

Urine is frequently supersaturated with uric acid (derived from a purine-rich diet, i.e. animal protein). Fifty per cent of patients who form uric acid stones have gout. The other 50% do so because of a high protein and low fluid intake (‘western’ lifestyle). In patients with gout, the risk of developing stones is ~1% per year after the first attack of gout.

Uric acid stones form in concentrated acid urine. Dissolution therapy is based on hydration, urine alkalinization, allopurinol, and dietary manipulation—the aim being to reduce urinary uric acid saturation. Maintain a high fluid intake (urine output 2–3L/day), ‘alkalinize’ the urine to pH 6.5–7 (sodium bicarbonate 650mg tds or qds or potassium citrate 30–60mEq day, equivalent to 15–30mL of a potassium citrate solution tds or qds). In those with hyperuricaemia or urinary uric acid excretion of >1200mg/day, add allopurinol 300–600mg/day (inhibits the conversion of hypoxanthine and xanthine to uric acid). Dissolution of large stones (even staghorn calculi) is possible with this regimen.

Cystine stones

Cystinuria is an inherited kidney and intestinal transepithelial transport defect for the amino acids cystine, ornithine, arginine, and lysine (‘COAL’), leading to excessive urinary excretion of cystine. Autosomal recessive inheritance; prevalence of 1 in 700 are homozygous (i.e. both genes defective); occurs equally in both sexes. About 3% of adult stone formers are cystinuric, and 6% of stone-forming children.

Most cystinuric patients excrete about 1g of cystine per day, which is well above the solubility of cystine. Cystine solubility in acid solutions is low (300mg/L at pH 5, 400mg/L at pH 7). Patients with cystinuria present with renal calculi, often in their teens or twenties. Cystine stones are relatively radiodense because they contain sulfur atoms. The cyanide nitroprusside test will detect most homozygote stone formers and some heterozygotes (false positives occur in the presence of ketones).
Treatment of existing stones and prevention of further stones

The aim is to:

- Reduce cystine excretion (dietary restriction of the cystine precursor amino acid methionine and also of sodium intake to <100mg/day).
- Increase solubility of cystine by alkalinization of the urine to pH >7.5, maintenance of a high fluid intake, and use of drugs which convert cystine to more soluble compounds.

Penicillamine, N-acetyl-D-penicillamine, and mercaptopropionylglycine (tiopronin) bind to cysteine, as does captopril—the compounds so formed are more soluble in urine than is cystine alone. Penicillamine has potentially unpleasant and serious side effects (allergic reactions, nephrotic syndrome, pancytopenia, proteinuria, epidermolysis, thrombocytosis, hypogeusia)—therefore, reserved for cases where alkalinization therapy and high fluid intake fail to dissolve the stones.

Treatment for failed dissolution therapy

Cystine stones are very hard and are therefore relatively resistant to ESWL. Nonetheless, for small cystine stones, a substantial proportion will still respond to ESWL. Flexible ureteroscopy (for small) and PCNL (for larger) cystine stones are used where ESWL fragmentation has failed.
Ureteric stones: presentation

Ureteric stones usually present with sudden onset of severe flank pain which is colicky (waves of increasing severity are followed by a reduction in severity, but it seldom goes away completely). It may radiate to the groin, as the stone passes into the lower ureter. About 50% of patients with classic symptoms for a ureteric stone do not have a stone confirmed on subsequent imaging studies nor do they physically ever pass a stone.

Examination

Spend a few seconds looking at the patient. Ureteric stone pain is colicky—the patient moves around, trying to find a comfortable position. They may be doubled up with pain. Patients with conditions causing peritonitis (e.g. appendicitis, a ruptured ectopic pregnancy) lie very still; movement and abdominal palpation are very painful.

Pregnancy test

Arrange a pregnancy test in premenopausal women (this is mandatory in any premenopausal woman who is going to undergo imaging using ionizing radiation). If positive, refer to a gynaecologist; if negative, arrange imaging to determine whether they have a ureteric stone.

Dipstick or microscopic haematuria

Many patients with ureteric stones have dipstick or microscopic haematuria (and, more rarely, macroscopic haematuria), but 10–30% have no blood in their urine.\(^1,2\) The sensitivity of dipstick haematuria for detecting ureteric stones presenting acutely is ~95% on the first day of pain, 85% on the second day, and 65% on the third and fourth days.\(^2\) Therefore, patients with a ureteric stone whose pain started 3–4 days ago may not have blood detectable in their urine. Dipstick testing is slightly more sensitive than urine microscopy for detecting stones (80% vs 70%), because blood cells lyse and therefore disappear if the urine specimen is not examined under the microscope within a few hours. Both ways of detecting haematuria have roughly the same specificity for diagnosing ureteric stones (~60%).

Remember, blood in the urine on dipstick testing or microscopy may be a coincidental finding because of non-stone urological disease (e.g. neoplasm, infection) or a false-positive test (no abnormality is found in ~70% of patients with microscopic haematuria despite full urological investigation).

Temperature

The most important aspect of examination in a patient with a ureteric stone confirmed on imaging is to measure their temperature. If the patient has a stone and fever, they may have infection proximal to the stone. Fever in the presence of an obstructing stone is an indication for urine and blood culture, IV fluids and antibiotics, and nephrostomy drainage or J stent insertion if the fever does not resolve within a matter of hours.\(^1,2\)
References

Ureteric stones: diagnostic radiological imaging

The IVU, for many years the mainstay of imaging in patients with flank pain, has been superseded by CT-KUB, an unenhanced (i.e. no contrast) CT of the kidneys, ureters, and bladder (except in the rare situation of suspected indinavir stones which are not visible on CT-KUB) (Fig. 9.11). Compared with IVU, CT-KUB:

- Has greater specificity (97%) and sensitivity (94–100%) for diagnosing ureteric stones.\(^1\) Can identify non-stone causes of flank pain (Fig. 9.12).
- Requires no contrast administration, so avoiding the chance of flank pain (Fig. 9.12).
- Is faster, taking just a few minutes to image the kidneys and ureters. An IVU, particularly where delayed films are required to identify a stone causing high-grade obstruction, may take hours to identify the precise location of the obstructing stone.
- Is equivalent in cost to IVU in high-CT-volume hospitals.\(^3\)

CT-KUB radiation dose: ~4.7mSv, compared to 1.5mSv for IVU (fatal cancer risk is estimated at 1 in 2000 for a 10mSv radiation exposure). ULDCT lowers radiation exposure (0.6–2mSv), but at the expense of a lower sensitivity (68–86%) for small (<3mm) ureteric stones. CEULDCT uses contrast which increases sensitivity (97%) and specificity (100%) for detecting small ureteric stone disease, while limiting radiation dose to levels comparable with IVU (1.7mSv vs 1.4mSv).\(^4\)

If you only have access to IVU, remember it is contraindicated in patients with previous contrast reactions. Avoid in those with hay fever and a strong history of allergies or asthma who have not been pretreated with high-dose steroids 24h before the IVU. Patients taking metformin for diabetes should stop this for 48h prior to an IVU. Clearly, being able to perform an alternative test such as CT-KUB in such patients is very useful.

Where 24h CT-KUB access is not available, admit patients with suspected ureteric colic for pain relief and arrange a CT-KUB the following morning. When CTU is not immediately available, we arrange urgent abdominal ultrasonography in all patients aged >50y who present with flank pain suggestive of a possible stone, to exclude serious pathology, e.g. a leaking AAA and to demonstrate any other gross abnormalities due to non-stone-associated flank pain. Plain abdominal X-ray and renal USS are not sufficiently sensitive or specific for their routine use for diagnosing ureteric stones.

MR urography

Very accurate for identifying ureteric stones.\(^5\) However, at the present time, cost and restricted availability limit its usefulness as a routine diagnostic method of imaging in cases of acute flank pain.
References

Ureteric stones: acute management

While appropriate imaging studies are being organized, pain relief should be given.
- NSAIDs (e.g. diclofenac) by IM or IV injection, by mouth or per rectum. Provides rapid and effective pain control. Analgesic effect—partly anti-inflammatory, partly by reducing ureteric peristalsis.
- Where NSAIDs are inadequate, opiate analgesics, such as pethidine or morphine, are added.

There is no need to encourage the patient to drink copious amounts of fluids nor to give them large volumes of fluids IV in the hope that this will ‘flush’ the stone out. In a randomized trial of forced IV hydration vs minimal hydration, there was no significant difference in analgesic requirement, pain scores, or spontaneous stone passage rates.

Renal blood flow and urine output from the affected kidney falls during an episode of acute partial obstruction due to a stone. Excess urine output will tend to cause a greater degree of hydronephrosis in the affected kidney, which may make ureteric peristalsis* even less efficient than it already is.

The exception to this rule may be those with radiolucent uric acid stones (suspected if low urinary pH and stones not visible on plain X-ray or with lower attenuation on CT, compared with calcium, cystine, and struvite stones). High fluid intake and oral potassium citrate, sodium citrate, or sodium bicarbonate (to elevate urine pH to 6–7) may dissolve uric acid stones or at least reduce their size, so increasing stone spontaneous passage rates.

Watchful waiting

In many instances, small ureteric stones will pass spontaneously within days or a few weeks, with analgesics supplements for exacerbations of pain.

Data on the rate of spontaneous stone passage are surprisingly limited. Chances of spontaneous stone passage depend principally on stone size.

Sixty-eight per cent of stones 5mm or less will pass spontaneously (95% confidence interval (CI) 46–85%; meta-analysis of 224 patients); 47% of stones 6–10mm in diameter will pass spontaneously (95% CI 36–59%; meta-analysis of 104 patients). Average time for spontaneous stone passage for stones 4–6mm in diameter is 3wk. Stones that have not passed in 2 months are unlikely to do so. Of those stones that do eventually pass, those 2mm or less do so within 30 days and those 2–6mm in size do so within 40 days (but not all stones do pass, and we cannot predict the chance of spontaneous passage in the individual patient). Therefore, accurate determination of stone size (on plain abdominal X-ray or by CTU) helps predict chances of spontaneous stone passage.

* Peristalsis, the forward propulsion of a bolus of urine down the ureter, can only occur if the walls of the ureter above the bolus of urine can coapt, i.e. close firmly together. If they cannot, as occurs in a ureter distended with urine, the bolus of urine cannot move distally.
Medical expulsive therapy
There is mixed evidence for the efficacy of medical expulsive therapy (MET).1-3 Until recently, evidence from multiple small trials and several meta-analyses demonstrated the efficacy of smooth muscle-relaxing α\textsubscript{1}-adrenergic adrenoreceptor blockers (α-blockers).

α-blockers were thought to increase spontaneous stone passage rates, reduce stone passage time, and reduce the frequency of ureteric colic. The EAU/AUA Nephrolithiasis Guideline Panel meta-analysis showed that 29% more patients (CI 20–37%) taking tamsulosin passed their stones, compared to controls.1 Tamsulosin has been most studied in this setting, but terazosin and doxazosin seemed to be equally effective.

However, in 2015, the large RCT (SUSPEND) from the UK has suggested that MET may not have any benefit for ureteric stones.3 Current guidelines are changing in light of this publication.

GTN patches do not aid stone passage or reduce the frequency of pain episodes, and corticosteroids are of minimal, if any, benefit.4,5

For distal ureteric stones, a trial of MET may be a reasonable approach, but individual circumstances may dictate ‘up-front’ SWL or ureteroscopy, e.g. the possible disruption to work and daily living activities from episodes of pain occurring while a stone is progressing towards eventual spontaneous passage may prompt the patient to request SWL or ureteroscopy (e.g. commercial airline pilots cannot fly until stone-free nor can those who fly for leisure).

MET is contraindicated where there is clinical evidence of sepsis (essentially fever) or deteriorating renal function. If you use a trial of MET, warn patients of the risks (drug side effects, possible need for intervention in the form of SWL, ureteroscopy, or J stenting), and mention it is an ‘off-label’ (i.e. non-licensed) therapy. Arrange periodic follow-up imaging (usually a plain X-ray) to monitor stone position.

References

Further reading
Ureteric stones: indications for intervention to relieve obstruction and/or remove the stone

- **Pain**: that fails to respond to analgesics or recurs and cannot be controlled with additional pain relief.
- **Bacteriuria**: in the presence of an obstructing stone can lead to the development of urosepsis. The EAU/AUA Nephrolithiasis Guideline Panel recommends that patients with ureteric stones and bacteriuria be treated with appropriate antibiotics (level IV evidence, i.e. based on the opinions or clinical experience of respected authorities). Where intervention is planned (ESWL or ureteroscopy), appropriate antibiotics should be given in advance of the treatment.
- **Fever**: have a low threshold for draining the kidney (either percutaneous nephrostomy or JJ stent).\(^1\)
- **Impaired renal function** (solitary kidney obstructed by a stone, bilateral ureteric stones, or pre-existing renal impairment which gets worse as a consequence of a ureteric stone): threshold for intervention is lower.
- **Prolonged unrelieved obstruction**: this can result in long-term loss of renal function.\(^1\) How long it takes for this loss of renal function to occur is uncertain, but generally speaking, the period of WW for spontaneous stone passage tends to be limited to 4–6wk.
- **Social reasons**: young, active patients may be very keen to opt for surgical treatment because they need to get back to work or because of their childcare duties, whereas some patients will be happy to sit things out. Airline pilots and some other professions are unable to work until they are stone-free.

Emergency temporizing and definitive treatment of the stone

Where the pain of a ureteric stone fails to respond to analgesics or where renal function is impaired because of the stone, then temporary relief of the obstruction can be obtained by the insertion of a JJ stent or percutaneous nephrostomy tube. (A percutaneous nephrostomy tube can restore efficient peristalsis by restoring the ability of the ureteric wall to coapt.)

JJ stent insertion or a percutaneous nephrostomy tube can be done quickly, but the stone is still present (Fig. 9.13). It may pass down and out of the ureter with a stent or nephrostomy *in situ*, but in many instances, it simply sits where it is and subsequent definitive treatment is still required. While JJ stents can relieve stone pain, they can cause bothersome irritative bladder symptoms (pain in the bladder, frequency, and urgency) (Table 9.5). JJ stents do make subsequent stone treatment in the form of ureteroscopy technically easier by causing passive dilatation of the ureter.

The patient may elect to proceed to definitive stone treatment by immediate ureteroscopy (for stones at any location in the ureter) or ESWL (if the stone is in the upper and lower ureter—ESWL cannot be used for stones in the mid ureter, because this region is surrounded by bone, which prevents penetration of the shock waves) (Fig. 9.14). Local facilities and expertise will determine whether definitive treatment can be offered immediately. Not all hospitals have access to ESWL or endoscopic surgeons 365 days a year.
Fig. 9.13 A JJ stent.

Table 9.5 Complications of, and problems associated with, nephrostomy insertion and drainage \((n = 169)\) and J stent (none performed for relief of infected obstructed kidney; \(n = 226\))

<table>
<thead>
<tr>
<th>Complication</th>
<th>J stent (%)</th>
<th>Nephrostomy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure of insertion</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Sepsis in previously non-septic patient</td>
<td>3–4</td>
<td></td>
</tr>
<tr>
<td>Haemorrhage requiring transfusion</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Stent occlusion</td>
<td>1–7</td>
<td></td>
</tr>
<tr>
<td>Tube displacement (tube falling out or J stent migrating up or down)</td>
<td>0.1–7</td>
<td>5</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pneumonia/atelectasis</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ureteric perforation</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Stent symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flank pain, 15–20; suprapubic pain, 20; urinary frequency, 40; haematuria, 40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emergency treatment of an obstructed infected kidney

Antibiotic delivery into an obstructed collecting system is impaired, and so the septic patient with an obstructing stone should undergo urgent decompression of the collecting system and definitive stone treatment (ESWL or ureteroscopy) should be delayed until the sepsis has resolved. The rationale for performing percutaneous nephrostomy, rather than JJ stent insertion, for an infected obstructed kidney is to reduce the likelihood of septicaemia occurring as a consequence of showering bacteria into the circulation. It has been theorized that this is more likely to occur with JJ stent insertion than with percutaneous nephrostomy insertion, that JJ stent insertion might damage the ureter (unlikely), and that monitoring of urine output and the facility for irrigation of a viscous pyonephrosis is possible with a nephrostomy, but with not a JJ stent. Nephrostomy insertion has the advantage that it avoids the need for GA, but in fact, JJ stent insertion can be done with sedation and avoids the risk of bleeding from an inadvertent puncture of a branch of the renal artery.¹

The EAU/AUA Nephrolithiasis Guideline Panel² recommends that the system of drainage—JJ stent or percutaneous nephrostomy—is left to the discretion of the urologist, since both have been shown in a randomized trial of 42 patients with obstructing stones and a temperature of >38°C and/or WBC of 17 000/mm³³ to be equally effective for the management of presumed obstructive pyelonephritis or pyonephrosis³ in terms of time to normalization of temperature and WBC (which takes ~2–3 days) and in-hospital stay. A 6 or 7Ch JJ stent was used (with a Foley bladder catheter in 70%) or 8Ch (occasionally larger) nephrostomy (plus a urethral catheter in 33%).

Fig. 9.14 Ureteroscopic stone fragmentation for a lower ureteric stone.

* An arbitrary definition of leucocytosis since patients with ureteric stones often have mildly elevated WBC.
References

Further reading
Ureteric stone treatment

Almost 70% of stones 5mm or less and almost 50% of stones 6–10mm in diameter will pass spontaneously over a period of 3–6wk or thereabouts. Stones that have not passed in 2 months are unlikely to do so, although much to the patient’s and surgeon’s surprise, large stones do sometimes drop out of the ureter at the last moment.

Indications for stone removal

- Pain that fails to respond to analgesics or recurs and cannot be controlled with additional pain relief.
- Impaired renal function (solitary kidney obstructed by a stone, bilateral ureteric stones, or pre-existing renal impairment which gets worse as a consequence of a ureteric stone).
- Prolonged unrelieved obstruction (generally speaking ~4–6wk).
- Social reasons: young, active patients may be very keen to opt for surgical treatment because they need to get back to work or because of their childcare duties, whereas some patients will be happy to sit things out. Airline pilots and some other professions are unable to work until they are stone-free.

These indications need to be related to the individual patient (their stone size, their renal function, the presence of a normal contralateral kidney, their tolerance of exacerbations of pain, their job and social situation) and local facilities (the availability of surgeons with appropriate skill and equipment to perform endoscopic stone treatment).

Twenty years ago, when the only options were WW or open surgical removal of a stone (open ureterolithotomy), surgeons and patients were inclined to ‘sit it out’ for a considerable time in the hope that the stone would pass spontaneously. Nowadays, the advent of ESWL and of smaller ureteroscopes with efficient stone fragmentation devices (e.g. the holmium laser) has made stone treatment and removal a far less morbid procedure, with a far smoother and faster post-treatment recovery. It is easier for both the patient and the surgeon to opt for intervention, in the form of ESWL or surgery, as a quicker way of relieving them of their pain and a way of avoiding unpredictable and unpleasant exacerbations of pain.

It is clearly important for the surgeon to inform the patient of the outcomes and potential complications of intervention, particularly given the fact that many of stones would pass spontaneously if left a little longer, particularly now there is evidence for MET.

Reference

Treatment options for ureteric stones

- ESWL: *in situ* or after JJ stent insertion.
- Ureteroscopy.
- PCNL.
- Open ureterolithotomy.
- Laparoscopic ureterolithotomy.
- Percutaneous antegrade ureteroscopy.

Basketting of stones (blind or under radiographic ‘control’) is a historical treatment (the potential for serious ureteric injury is significant).

For the purposes of decision-making with regard to treatment options, the ureter can be divided into two halves (proximal and distal to the iliac vessels) or in thirds (upper third from the PUJ to the upper edge of the sacrum; middle third from the upper to the lower edge of the sacrum, i.e. the extent of the sacroiliac joint; lower third from the lower edge of the sacrum to the VUJ).

EAU/AUA Nephrolithiasis Guideline Panel recommendations 2007

(See Preminger *et al.*’s) These should be interpreted in light of local facilities and expertise. Some hospitals have access to, and expertise in, the whole range of treatment options. Others may have limited access to a lithotriptor or may not have surgeons skilled in the use of the ureteroscope.

Smaller ureteroscopes with improved optics and larger instrument channels and the advent of holmium laser lithotripsy have improved the efficacy of ureteroscopic stone fragmentation (to ~95% stone clearance) and reduced its morbidity. As a consequence, many surgeons and patients will opt for ureteroscopy, with its potential for a ‘one-off’ treatment, over ESWL where more than one treatment will be required and post-treatment imaging is required to confirm stone clearance (with ureteroscopy, you can directly see that the stone has gone).

Many urology departments do not have unlimited access to ESWL, and patients may therefore opt for ureteroscopic stone extraction.

The stone clearance rates for ESWL are stone size-dependent. ESWL is more efficient for stones <1cm in diameter, compared with those >1cm in size. Conversely, the outcome of ureteroscopy is somewhat less dependent on stone size.

The bottomline seems to be that for stones <1cm in diameter, ESWL and ureteroscopy are able to achieve virtually equivalent stone-free rates, but ureteroscopy has the edge over ESWL for stones >1cm (although the difference in stone-free rates is not huge between these two treatments).\(^2,3\)

*ESWL after ‘push-back’ of the stone into the kidney (i.e. into the renal pelvis or calyces) is a historical treatment for two reasons: (1) *in situ* ESWL (ESWL of the stone located within the ureter) is very effective in most cases without the need to push the stone back into the kidney; (2) if the ESWL fails to fragment the stone, a relatively straightforward operation of ureteroscopy has been converted into the technically more challenging one of flexible ureterorenoscopy. So try to avoid pushing the stone back into the kidney when inserting a J stent, but warn the patient of this possibility.*
Efficacy outcomes (i.e. stone-free rates) of EAU/AUA Nephrolithiasis Guideline Panel 2007

RCTs comparing ESWL and ureteroscopy are generally lacking. The EAU/AUA Nephrolithiasis Guideline Panel 2007 meta-analysis suggests that:

- **Proximal ureter <10mm:** ESWL marginally higher stone-free rate than ureteroscopy.
- **Proximal ureter >10mm:** ureteroscopy marginally higher stone-free rate than ESWL.
- **For all mid-ureteric stones:** ureteroscopy has a marginally higher stone-free rate than ESWL, but small patient numbers make comparison difficult.
- **For all distal stones ureteroscopy:** has a higher stone-free rate than ESWL.

Thus, there are no great differences in stone-free rates between ESWL and ureteroscopy (Table 9.6). Precisely which technique one uses will depend, to a considerable degree, on local resources (e.g. ready access to ESWL) and local expertise at performing ureteroscopy, particularly for upper tract stones. Failed initial ESWL is associated with a low success rate for subsequent ESWL. Therefore, if no effect after one or two treatments, change tactics.

Open ureterolithotomy and laparoscopic ureterolithotomy (less invasive than open ureterolithotomy) are used in the rare cases (e.g. very impacted stones) where ESWL or ureteroscopy have been tried and failed or were not feasible. Laparoscopic ureterolithotomy for large, impacted stones has a stone-free rate averaging almost 90%.

Should a stent be inserted after ureteroscopic stone removal?

The standard advice, based on a number of RCTs, is that routine J stenting after an ‘uncomplicated’ ureteroscopy is unnecessary. ‘Uncomplicated ureteroscopy’ has not been precisely defined. Definitions include minimal or no ureteral trauma during the process of stone extraction, minimal or no ureteral dilatation required in order to allow ureteroscope access, and no or minimal residual stone burden.

<table>
<thead>
<tr>
<th>Stone position and size</th>
<th>ESWL</th>
<th>Ureteroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distal ureter <10mm</td>
<td>86% (73–75)</td>
<td>97% (96–98)</td>
</tr>
<tr>
<td>Distal ureter >10mm</td>
<td>74% (80–90)</td>
<td>93% (88–96)</td>
</tr>
<tr>
<td>Mid ureter <10mm</td>
<td>84% (65–95)</td>
<td>91% (81–96)</td>
</tr>
<tr>
<td>Mid ureter >10mm</td>
<td>76% (36–97)</td>
<td>78% (61–90)</td>
</tr>
<tr>
<td>Proximal ureter <10mm</td>
<td>90% (85–93)</td>
<td>80% (73–85)</td>
</tr>
<tr>
<td>Proximal ureter >10mm</td>
<td>68% (55–79)</td>
<td>79% (71–87)</td>
</tr>
</tbody>
</table>

Meta-analyses of post-ureteroscopy complications (emergency room visit, readmission to hospital, requirement for secondary procedures) showed no significant difference in outcome in those stented post-ureteroscopy, compared with those not stented.6,7 Whether there are subgroups of patients who do benefit from stenting post-ureteroscopy remains to be determined.

It has been suggested that post-ureteroscopy stenting reduces ureteric stricture rates, but there is no convincing evidence to support this assertion.6,7

References

Prevention of calcium oxalate stone formation

The recurrent nature of stone disease emphasizes the importance of prevention. Recurrence is more likely in those with an onset of stone disease at a young age, a family history for stones, and an underlying metabolic predisposition (cystinuria, gout), and those who have had an infection stone (especially in those with neuropathic bladders).

A series of landmark papers from Harvard Medical School\(^1\) and other groups allow us to give rational advice on reducing the risk of future stone formation. The Harvard studies were carried out in those with no prior history of stone disease but are likely to be relevant to those who have already formed a stone (which, of course, is the group most interested in how to avoid the unpleasantness of another stone). The Harvard studies stratified the risk of stone formation, based on intake of calcium and other nutrients (Nurses Health Study, \(n=81,000\) women; equivalent \(\&\) study, \(n=45,000\)).

Low fluid intake

Low fluid intake may be the single most important risk factor for recurrent stone formation. High fluid intake is protective,\(^2\) by reducing urinary saturation of calcium, oxalate, and urate. Time to recurrent stone formation is prolonged from 2 to 3y in previous stone formers randomized to high fluid vs low fluid intake (averaging \(\sim2.5\) vs 1L/day), and over 5y, the risk of recurrent stones was 27% in low-volume controls, compared with 12% in high-volume patients.\(^2\)

Dietary calcium

Conventional teaching was that high calcium intake increases the risk of calcium oxalate stone disease. The Harvard Medical School studies have shown that low calcium intake is paradoxically associated with a reduced risk of forming kidney stones in both men and women (relative risk of stone formation for the highest quintile of dietary calcium intake vs the lowest quintile \(=0.65\); 95% CI 0.5–0.83, i.e. high calcium intake was associated with a low risk of stone formation).

Calcium supplements

In the Harvard studies,\(^1,3\) the relative risk of stone formation in women on supplemental calcium (most calcium supplements contain calcium carbonate), compared with those not on calcium was 1.2 (95% CI 1.02–1.4), and for men, it was 1.23 (95% CI 0.84–1.79). In 67% of women and 49% of men on supplements, calcium was either not consumed with a meal or was consumed with a meal with low oxalate content. It is possible that consuming calcium supplements with a meal or with oxalate-containing foods could reduce this small risk of inducing kidney stones. A total of 650mg of calcium carbonate taken immediately after a meal is associated with a lower urinary oxalate and higher urinary citrate than when taken at bedtime. Urinary calcium excretion \(\uparrow\), but the net effect was a reduction in the activity product for calcium oxalate crystal formation.\(^4\) The bottomline seems to be ‘take your calcium supplement at mealtimes’.
In post-menopausal women, calcium citrate 400 mg bd increases urinary calcium and citrate excretion, reduces oxalate excretion, and does not change urine calcium oxalate saturation, which suggests calcium citrate neither increases nor decreases stone risk.5

Those few studies exploring the risk of calcium supplementation in those who have already formed a stone recruited so few subjects that few conclusions can be drawn. A reduction in urine saturation with calcium and oxalate was reported in 22 hyperoxaluric stone formers advised to consume calcium-containing foods or supplemental calcium citrate \textit{with meals} (300–500 mg of calcium), entirely in keeping with the protective effect of calcium noted in the Harvard studies (the risk of \textit{actual} stone formation was not assessed).6 The critical factor may be taking the supplement \textit{at mealtimes}.

\textbf{Other dietary risk factors related to stone formation}

† risk of stone formation (relative risk of stone formation shown in brackets for highest to lowest quintiles of intake of a particular dietary factor):

- Sucrose (1.5).
- Sodium (1.3): high sodium intake (leading to natriuresis) causes hypercalciuria.
- Potassium (0.65).

\textbf{Animal proteins}

High intake of animal proteins causes † urinary excretion of calcium, reduced pH, high urinary uric acid, and reduced urinary citrate, all of which predispose to stone formation.7,8

\textbf{Alcohol}

Curhan’s studies from Harvard9 suggest small quantities of wine decrease the risk of stones.

\textbf{Vegetarian diet}

Vegetable proteins contain less of the amino acids phenylalanine, tyrosine, and tryptophan that increase the endogenous production of oxalate. A vegetarian diet may protect against the risk of stone formation.10 A low-animal protein, low-sodium, and low-oxalate diet with normal calcium intake (1200 mg daily) is associated with a reduction in the risk of stone formation of almost 50% over 5 y, when compared with a diet low in calcium (400 mg daily) and oxalate.7

\textbf{Dietary oxalate}

A small increase in urinary oxalate concentration increases calcium oxalate supersaturation much more than does an increase in urinary calcium concentration. Mild hyperoxaluria is one of the main factors leading to calcium stone formation.11

\textbf{Potassium citrate}

Potassium citrate results in a substantial reduction in the risk of stone formation.12,13 GI side effects (nausea, vomiting, bloating, diarrhoea) are common. Calcium phosphate stones may form in the alkaline urine induced by citrate supplements (keep urine pH < 6.5).
Thiazide diuretics

Reduce calcium stone disease by reducing urinary calcium excretion. Hypokalaemia, glucose intolerance, hyperuricaemia, and ↑ total cholesterol, low-density lipoprotein (LDL), and triglycerides are potential side effects, the latter predisposing to cardiovascular disease.

Allopurinol

Allopurinol 50–100mg daily reduces calcium oxalate stone recurrence in both urate stone formers and calcium oxalate stone formers.

Calcium salts or calcium supplementation

May be helpful in those with hyperoxaluria or excessive GI oxalate absorption (inflammatory bowel disease, small bowel resection).

Magnesium and phosphate

Magnesium (an inhibitor of crystallization) and phosphate (which reduces GI calcium absorption) are probably not effective.

The bottom line in calcium stone prevention...

High fluid intake (aiming for >2.5L of urine output daily); normal calcium intake; low sodium, oxalate, and protein; potassium citrate (e.g. lemon squash).

Prevention of other stone types

- Uric acid stones: high fluid intake aiming for urine output of >3L/day; alkalinate urine (e.g. citrate), allopurinol (xanthine oxidase inhibitor).
- Calcium phosphate stones: usually due to RTA (inability to appropriately acidify the urine). Citrate increases urinary pH and helps reduce stone risk.
- Cystine stones: aim to increase free cystine solubility (by alkalinating the urine to pH >7 with citrate and bicarbonate) and reduce its urinary concentration to <500μmol/L (increase fluid intake to >4L/day; nighttime fluids help). Penicillamine, α-mercaptopyrroglucose (tiopronin), and captopril bind with cystine to form soluble dimers.
- Infection stones: a difficult one, especially in the neuropathic patient, since sterilizing the urine may be impossible in the context of indwelling catheters. Consider low-dose antibiotics, although whether they reduce stone recurrence rates is debatable (warn of rare, but serious, side effects: nitrofurantoin—pulmonary fibrosis; trimethoprim—haematological).
References

Bladder stones

Composition
Struvite (i.e. they are infection stones) or uric acid (in non-infected urine).

Adults
Bladder calculi are predominantly a disease of men aged >50 and with BOO due to BPE. They also occur in the chronically catheterized patient (e.g. SCI patients) where the chance of developing a bladder stone is 25% over 5y (similar risk whether urethral or suprapubic location of the stone).¹

Children
Bladder stones are still common in Thailand, Indonesia, North Africa, the Middle East, and Burma. In these endemic areas, they are usually composed of a combination of ammonium urate and calcium oxalate. A low-phosphate diet in these areas (a diet of breast milk and polished rice or millet) results in high peaks of ammonia excretion in the urine.

Symptoms
May be symptomless (incidental finding on KUB X-ray or bladder USS or on cystoscopy)—a common presentation in spinal patients who have limited or no bladder sensation. In the neurologically intact patient—suprapubic or perineal pain, haematuria, urgency and/or urge incontinence, recurrent UTI, LUTS (hesitancy, poor flow).

Diagnosis
If you suspect a bladder stone, they will be visible on KUB X-ray or renal USS (Fig. 9.15).

Treatment
Most stones are small enough to be removed cystoscopically (endoscopic cystolitholapaxy), using stone-fragmenting forceps for stones that can be engaged by the jaws of the forceps and EHL or pneumatic lithotripsy for those that cannot. Large stones (Fig. 9.15) can be removed by open surgery (open cystolitholapaxy).¹
Fig. 9.15 A bladder stone.

Reference

Management of ureteric stones in pregnancy

While hypercalciuria and uric acid excretion increases in pregnancy (predisposing to stone formation), so too do urinary citrate and magnesium levels (protecting against stone formation). The ‘net’ effect—the incidence of ureteric colic is the same as in non-pregnant women. Ureteric stones occur in 1 in 1500–2500 pregnancies, mostly during the second and third trimesters. They are associated with a significant risk of preterm labour, and the pain caused by ureteric stones can be difficult to distinguish from other causes.

Differential diagnosis of flank pain in pregnancy

Ureteric stone, placental abruption, appendicitis, pyelonephritis, and all the other (many) causes of flank pain in non-pregnant women.

Diagnostic imaging studies in pregnancy

Exposure of the fetus to ionizing radiation can cause fetal malformations, intrauterine growth retardation, malignancies in later life (leukaemia), and mutagenic effects (damage to genes, causing inherited disease in the offspring of the fetus). The fetus is most at risk during organogenesis (weeks 4–10 of gestation). Fetal radiation doses during various procedures are shown in Table 9.7. Radiation doses of <100mGy are reported as unlikely to have an adverse effect on the fetus. In USA, the National Council on Radiation Protection has stated that ‘fetal risk is considered to be negligible at <50mGy when compared to the other risks of pregnancy and the risk of malformations is significantly increased above control levels at doses >150mGy’. The American College of Obstetricians and Gynecologists has stated that ‘X-ray exposure to <50mGy has not been associated with an increase in fetal anomalies or pregnancy loss’. However, every effort should be made to limit exposure of the fetus to radiation.

Table 9.7 Fetal radiation dose after various radiological investigations (note 1cGy is equivalent to 10mGy)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Fetal dose (mGy)</th>
<th>Risk of inducing cancer (up to age 15y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KUB X-ray</td>
<td>1.4</td>
<td>1 in 24 000</td>
</tr>
<tr>
<td>IVU 6 shot</td>
<td>1.7</td>
<td>1 in 10 000</td>
</tr>
<tr>
<td>IVU 3 shot</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>CT: abdominal</td>
<td>8</td>
<td>1 in 4000</td>
</tr>
<tr>
<td>CT: pelvic</td>
<td>25</td>
<td>1 in 1300</td>
</tr>
<tr>
<td>Fluoroscopy for JJ stent insertion</td>
<td>0.4</td>
<td>1 in 42 000</td>
</tr>
</tbody>
</table>

Adapted from the Joint Guidance from the National Radiographic protection Board, College of Radiographers Royal College of Radiologists, 1998.
Plain radiography and IVU
Limited usefulness (fetal skeleton and the enlarged uterus obscure ureteric stones; delayed excretion of contrast limits opacification of the ureter; theoretical risk of fetal toxicity from the contrast material). Recommendations are for a limited IVU (e.g. control film followed by a 30min film) with fetal shielding.

CT-KUB
Very accurate method for detecting ureteric stones, but most radiologists and urologists are unhappy to recommend this form of imaging in pregnant women due to fetal radiation exposure. Low- and ultra-low-dose CT protocols are being developed.

MRU
The American College of Obstetricians and Gynecologists and the US National Council on Radiation Protection state that "although there is no evidence to suggest that the embryo is sensitive to magnetic and radio-frequency at the intensities encountered in MRI, it might be prudent to exclude pregnant women during the first trimester". MRU can therefore potentially be used during the second and third trimesters, but not during the first trimester. Involves no ionizing radiation. Very accurate (100% sensitivity for detecting ureteric stones), but expensive and not readily available in most hospitals, particularly out of hours.

Management
Most (70–80%) will pass spontaneously.

- Pain relief: opiate-based analgesics; avoid NSAIDs (can cause premature closure of the ductus arteriosus by blocking prostaglandin synthesis).
- Indications for intervention: the same as in non-pregnant patients—pain refractory to analgesics, suspected urinary infection (high fever, high WBC), high-grade obstruction, and obstruction in a solitary kidney).

Options for intervention
Depend on the stage of pregnancy and on local facilities and expertise:

- JJ stent urinary diversion requires regular changing (~6–8wk) to avoid encrustation.
- Nephrostomy urinary diversion.
- Ureteroscopic stone removal with laser fragmentation.

Aim to minimize radiation exposure to the fetus and to minimize the risk of miscarriage and preterm labour. GA can precipitate preterm labour, and many urologists and obstetricians will err on the side of temporizing options such as nephrostomy tube drainage or JJ stent placement, rather than on operative treatment in the form of ureteroscopic stone removal. Avoid PCNL; ESWL is contraindicated.
References

Further reading

Upper tract obstruction, loin pain, hydronephrosis

Hydronephrosis 502
Management of ureteric strictures (other than PUJO) 506
Pathophysiology of urinary tract obstruction 508
Physiology of urine flow from kidneys to bladder 510
Ureter innervation 511
Retroperitoneal fibrosis 512
Hydronephrosis

Dilatation of the renal pelvis and calyces (Fig. 10.1). When combined with dilatation of the ureters, known as hydroureteronephrosis. For causes, see Box 10.1.

Obstructive nephropathy is damage to the renal parenchyma, resulting from an obstruction to the flow of urine anywhere along the urinary tract.

Dilatation of the renal pelvis and calyces can occur without obstruction, and therefore, hydronephrosis should not be taken to necessarily imply the presence of obstructive uropathy.

Ultrasound

- False negative (i.e. obstruction present, no hydronephrosis): acute onset of obstruction; in the presence of an intrarenal collecting system; with dehydration; misdiagnosis of dilatation of the calyces as renal cortical cysts (in acute ureteric colic, ultrasonography fails to detect hydronephrosis in up to 35% of patients with proven acute obstruction on IVU).
- False positive (i.e. hydronephrosis, no obstruction): capacious extrarenal pelvis; parapelvic cysts; VUR; high urine flow.

Diagnostic approach to the patient with hydronephrosis

Patients with hydronephrosis may present either as an incidental finding of hydronephrosis on USS or CT done because of non-specific symptoms or it may be identified in a patient with raised creatinine or presenting with loin pain. Symptoms, if present, will depend on the rapidity of onset of obstruction of the kidney (if that is the cause of hydronephrosis), whether the obstruction is complete or partial, unilateral or bilateral, and whether the obstruction to the ureter is extrinsic to the ureter or is within its lumen.

History

- Severe flank pain suggests a more acute onset of obstruction, and if very sudden in onset, a ureteric stone may well be the cause. Pain induced by diuresis (Dietl’s crisis, e.g. following consumption of alcohol) suggests a possible PUJO.
Box 10.1 Causes of hydronephrosis

Unilateral
- Obstructing ureteric stone.
- PUJO.
- Obstructing clot in the ureter.
- Obstructing ureteric TCC.
- (Any of the causes listed below where the pathologic process has not yet extended to involve both ureters).

Bilateral
- BOO.
 - BPH.
 - PC.
 - Urethral stricture.
 - DSD.
 - PUV.
- Bilateral ureteric obstruction at their level of entry into the bladder.
 - Locally advanced cervical cancer.
 - Locally advanced PC.
 - Locally advanced rectal cancer.
 - Poor bladder compliance (often combined with DSD): neuropathic bladder (SCI, spina bifida), post-pelvic RT.
- Periureteric inflammation.
 - From adjacent bowel involved with inflammatory bowel disease (e.g. Crohn’s, ulcerative colitis) or diverticular disease, endometriosis.
- Retroperitoneal fibrosis.
 - Idiopathic 70% (diagnosed following exclusion of other causes; consider IgG4-related disease).
 - Periarteritis—aortic aneurysm, iliac artery aneurysm.
 - Post-irradiation.
 - Drugs—methysergide, hydralazine, haloperidol, lysergic acid diethylamide (LSD), methyldopa, β-blockers, phenacetin, amphetamines.
 - Malignant—retroperitoneal malignancy (lymphoma, metastatic disease from, e.g. breast cancer), post-chemotherapy.
 - Chemicals—talcum powder.
 - Infection—TB, schistosomiasis, syphilis, *Actinomyces*, gonorrhoea, chronic UTI.
 - Sarcoidosis.
- Bilateral PUJO (uncommon).
- Hydronephrosis of pregnancy (partly due to smooth muscle relaxant effect of progesterone, partly obstruction of the ureters by the fetus).
- Hydronephrosis in association with an ileal conduit (a substantial proportion of patients with ileal conduit urinary diversion have bilateral hydronephrosis in the absence of obstruction).
- Bilateral ureteric stones (rare).
Anuria (the symptom of bilateral ureteric obstruction or complete obstruction of a solitary kidney).

If renal function is impaired, symptoms of renal failure may be present (e.g. nausea, lethargy, anorexia).

Extrinsic causes of obstruction (e.g. compression of the ureters by retroperitoneal malignancy) usually have a more insidious onset, whereas intrinsic obstruction (ureteric stone) is often present with severe pain of very sudden onset.

An increase in urine output may be reported by the patient due to poor renal concentrating ability.

Obstruction in the presence of bacterial UTI—signs and symptoms of pyelonephritis (flank pain and tenderness, fever) or sepsis.

Examination

- Measure BP: elevated in HPCR due to BPO (caused by fluid overload).
- Bilateral oedema (due to fluid overload).
- Abdominal examination: percuss and palpate for an enlarged bladder.
- DRE († prostate or rectal cancer) and, in women, vaginal examination († cervical cancer).
- Check serum creatinine, potassium, and the acid–base balance to determine the functional effect of the hydronephrosis.
- Renal ultrasonography (if not already done).

IVU findings in renal obstruction

- An obstructive (dense) nephrogram.
- A delay in filling of the collecting system with contrast material.
- Dilatation of the collecting system.
- An increase in renal size.
- Rupture of fornices (junction between the renal papilla and its calyx) with urinary extravasation.
- Ureteric dilatation and tortuosity.
- A standing column of contrast material in the ureter.

Unilateral hydronephrosis

KUB X-ray (a ureteric stone may be seen); CTU (or IVU) if stone suspected.

- If no stone seen, but hydronephrosis is confirmed and the ureter is non-dilated, the obstruction must be at the PUJ (PUJO).
- If no stone seen and the ureter is dilated, as well as the kidney, ureteric TCC is likely. Arrange retrograde ureterography to identify the site of obstruction and ureteroscopy/ureteric biopsy.

Bilateral hydronephrosis

- If the patient is in retention or has a substantial PVR urine volume, pass a catheter. If the elevated creatinine falls (and the hydronephrosis improves), the diagnosis is BOO due to, for example, BPH, PC, urethral stricture, and DSD. If the creatinine remains elevated, the obstruction affecting both ureters is higher ‘upstream’.
- TRUS and prostatic biopsy if PC suspected on DRE; CT scan looking for malignant bilateral ureteric obstruction and AAA.
Management of ureteric strictures (other than PUJO)

Definition
A normal ureter undergoes peristalsis, and therefore, at any one moment, at least one area of the ureter will be physiologically narrowed. A ureteric stricture is a segment of the ureter that is narrowed and remains so on several images (i.e. it is a length of the ureter that is constantly narrow).

Causes
Most ureteric strictures are benign and iatrogenic. Some follow the impaction of a ureteric stone for a prolonged period; malignant strictures—within the wall of the ureter (e.g. TCC ureter), extrinsic compression from the outside wall of the ureter (e.g. lymphoma, malignant retroperitoneal lymphadenopathy); and retroperitoneal fibrosis (RPF) which may be benign (idiopathic, aortic aneurysm, post-irradiation, analgesic abuse) or malignant (retroperitoneal malignancy, post-chemotherapy).

Mechanism of iatrogenic ureteric stricture formation
Normally ischaemic:
- Usually injury at the time of open or endoscopic surgery (e.g. damage to ureteric blood supply or direct damage to the ureter at the time of colorectal resection, AAA graft, hysterectomy); at ureteroscopy—mucosal trauma (from ureteroscope or EHL), perforation of the ureter (urine extravasation, leading to fibrosis).
- RT in the vicinity of the ureter.
- Stricture of ureteroneocystostomy of renal transplant.

Investigation
The stricture may be diagnosed following investigation for symptoms (loin pain, upper tract infection) or may be an incidental finding on an investigation done for some other reason. The stricture may be diagnosed on renal USS (hydronephrosis), IVU, or CTU. A MAG3 renogram will confirm the presence of obstruction (some minor strictures may cause no renal obstruction) and establish split renal function. Where ureteric TCC is possible, proceed with urine cytology, ureteroscopy, and biopsy.

‘Treatment’ options
- Nothing (symptomless stricture in an old patient with significant comorbidity or <25% function in an otherwise healthy patient with a normally functioning contralateral kidney).
- Permanent JJ stent or nephrostomy, changed at regular intervals (symptomatic stricture in an old patient with significant comorbidity or <25% function in the affected kidney with compromised overall renal function).
- Dilatation (balloon or graduated dilator) (Figs. 10.2 and 10.3).
- Incision + balloon dilatation (endoureterotomy by Acucise® balloon; ureteroscopy or nephrostomy and incision, e.g. by laser). Leave a 12Ch stent for 4wk.
- Excision of stricture and repair of the ureter (open or laparoscopic approach).
- Nephrectomy.
Factors associated with reduced likelihood of a good outcome after endoureterotomy

- <25% function in the kidney.
- Stricture length >1cm.
- Ischaemic stricture.
- Mid-ureteric stricture (compared with upper and lower)—tenuous blood supply.
- JJ stent size <12Ch.

Ureteroenteric strictures (ileal conduits, ureteric implantation into neobladder)

These are due to ischaemia and/or periureteral urine leak in the immediate post-operative period, which leads to fibrosis in the tissues around the ureter (~5% in Bricker and 3% in Wallace anastomoses). In ileal conduits, the left ureter is affected more frequently than the right, because greater mobilization is required to bring it to the right side and it may be compressed under the sigmoid mesocolon, both of which impair blood flow to the distal end of the ureter.
Pathophysiology of urinary tract obstruction

Effects of obstruction on renal blood flow and ureteric pressure

Acute unilateral ureteric obstruction (UUO)

 Leads to a triphasic relationship between renal blood flow (RBF) and ureteric pressure.

- **Phase 1** (up to 1.5h post-obstruction): ureteric pressure rises, RBF rises (afferent arteriole dilatation mediated by prostaglandins, nitric oxide, and angiotensin II).
- **Phase 2** (from 1.5–5h post-obstruction): ureteric pressure continues to rise, RBF falls (efferent arteriole vasoconstriction, with shunting of blood from the outer to inner cortex).
- **Phase 3** (beyond 5h): ureteric pressure falls, RBF continues to fall (afferent arteriole vasoconstriction mediated by thromboxanes, prostaglandin E2 (PGE2), endothelin-1, and platelet-activating factor).

Acute bilateral ureteric obstruction or obstruction of a solitary kidney

 The early haemodynamic response seen in UUO is not observed, or markedly reduced.

- **Phase 1** (up to 1.5h post-obstruction): ureteric pressure rises.
- **Phase 2** (from 1.5–5h post-obstruction): ureteric pressure continues to rise, RBF is significantly lower than that during UUO.
- **Phase 3** (beyond 5h): ureteric pressure remains elevated (in contrast to UUO). By 24h, RBF has declined to the same level as for UUO.

Chronic bilateral ureteric obstruction (BUO)

 Leads to a biphasic pattern, in contrast to acute UUO.

- **Phase 1** (up to 1h post-obstruction): ureteric pressure rises, short-lived rise in RBF (afferent arteriole dilatation).
- **Phase 2** (from 1h post-obstruction): ureteric pressure continues to rise until stabilizing around 24h, RBF rapidly falls (efferent arteriole vasoconstriction, with shunting of blood).
- **No afferent arteriole vasoconstriction phase**, due to release of atrial natriuretic peptide (ANP) (promotes diuresis and natriuresis via afferent arteriole vasodilatation and efferent arteriole vasoconstriction).

In UUO, the decrease in urine flow through the nephron results in a greater degree of sodium absorption, so sodium excretion falls. Water loss from the obstructed kidney increases.

 Release of BUO is followed by marked natriuresis, ↑ potassium excretion, and diuresis (solute diuresis). This is due to:

- An appropriate (physiological) natriuresis to excrete excessive sodium, which is a consequence of BUO.
- A solute diuresis from the accumulation of urea in the extracellular fluid (ECF).
A diminution of the corticomedullary concentration gradient, which is normally established by the countercurrent mechanism of the loop of Henle (LoH) and is dependent on maintenance of flow through the nephron—a reduction of flow, as occurs in BUO, reduces the efficiency of the countercurrent mechanism (effectively, the corticomedullary concentration gradient is ‘washed out’).

There may also be accumulation of natriuretic peptides (e.g. ANP) during BUO, which contributes to natriuresis following the release of the obstruction.

Likelihood of recovery of renal function after release of obstruction

In dogs with completely obstructed kidneys, full recovery of renal function after 7 days of UUO occurs within 2wk of relief of obstruction. A total of 14 days of obstruction leads to a permanent reduction in renal function to 70% of control levels (recovery to this level taking 3–6 months after reversal of obstruction). There is some recovery of function after 4wk of obstruction, but after 6wk of complete obstruction, there is no recovery. In humans, there is no clear relationship between the duration of BUO and the degree of recovery of renal function after relief of obstruction. Two phases of recovery: (1) tubular, by 2wk (improved serum creatinine, sodium, and volume), and (2) glomerular, by 3 months (improved GFR).
Physiology of urine flow from kidneys to bladder

Urine production by the kidneys is a continuous process. Its transport from the kidneys down the ureter and into the bladder occurs intermittently by waves of peristaltic contraction of the renal pelvis and ureter (peristalsis = wave-like contractions and relaxations). The renal pelvis delivers urine to the proximal ureter. As the proximal ureter receives a bolus of urine, it is stretched and this stimulates it to contract while the segment of the ureter just distal to the bolus of urine relaxes. Thus, the bolus of urine is projected distally.

The origin of the peristaltic wave is from collections of pacemaker cells in the proximal-most regions of the renal calyces, with electrical activity dependent on the movement of potassium and calcium (not sodium) ions. In species with multiple calyces such as humans, there are multiple pacemaker sites in the proximal calyces. The frequency of contraction of the calyces is independent of urine flow rate (it is the same at high and low flow rates), and it occurs at a higher rate than that of the renal pelvis. Precisely how the frequency of contraction of each calyx is integrated into a single contraction of the renal pelvis is not known. All areas of the ureter are capable of acting as a pacemaker. Stimulation of the ureter at any site produces a contraction wave that propagates proximally and distally from the site of stimulation, but under normal conditions, electrical activity arises proximally and is conducted distally from one muscle cell to another (the proximal-most pacemakers are dominant over these latent pacemakers).

Peristalsis persists after renal transplantation and denervation and does not therefore appear to require innervation. The ureter does, however, receive both parasympathetic and sympathetic innervation, and stimulation of these systems can influence the frequency of peristalsis and the volume of urine bolus transmitted.

At normal urine flow, the frequency of calyceal and renal pelvic contractions is greater than that in the upper ureter, and there is a relative block of electrical activity at the PUJ. The renal pelvis fills; the ureter below it is collapsed and empty. As renal pelvic pressure rises, urine is extruded into the upper ureter. The ureteric contractile pressures that move the bolus of urine are higher than renal pelvic pressures. A closed PUJ may prevent back-pressure on the kidney. At higher urine flow rates, every pacemaker-induced renal pelvic contraction is transmitted to the ureter.

To propel a bolus of urine, the walls of the ureter must coapt (touch). Resting ureteric pressure is 0–5cmH₂O, and ureteric contraction pressures range from 20 to 80cmH₂O. Ureteric peristaltic waves occur 2–6 times per minute. The VUJ acts as a one-way valve under normal conditions, allowing urine transport into the bladder and preventing reflux back into the ureter; although decompensation occurs when the bladder pressure is >40cmH₂O.
Ureter innervation

Autonomic
The ureter has a rich autonomic innervation.

- **Sympathetic**: preganglionic fibres from spinal segments T10–L2; postganglionic fibres arise from the coeliac, aorticorenal, mesenteric, superior, and inferior hypogastric (pelvic) autonomic plexuses.
- **Parasympathetic**: vagal fibres via coeliac to the upper ureter; fibres from S2–4 to the lower ureter.

The role of ureteric autonomic innervation is unclear. It is not required for ureteric peristalsis (though it may modulate this). Peristaltic waves originate from intrinsic smooth muscle pacemakers located in minor calyces of the renal collecting system.

Afferent

Upper ureter—afferents pass (alongside sympathetic nerves) to T10–L2; *lower ureter*—afferents pass (alongside sympathetic nerves and by way of the pelvic plexus) to S2–4. Afferents subserve stretch sensation from the renal capsule, collecting system of the kidney (renal pelvis and calyces), and ureter. Stimulation of the mucosa of the renal pelvis, calyces, and ureter also stimulates nociceptors, the pain so felt being referred in a somatic distribution to T8–L2 (kidney T8–L1, ureter T10–L2), in the distribution of the subcostal, iliohypogastric, ilioinguinal, or genitofemoral nerves. Thus, ureteric pain can be felt in the flank, groin, scrotum or labia, and upper thigh, depending on the precise site in the ureter from which the pain arises.

Peristalsis modulators

- **Contraction**: α-adrenoceptor stimulation, tachykinins, histamine, angiotensin, PGF2-α, possibly opiates.
- **Relaxation**: β-adrenoceptor stimulation, calcitonin GRP, PGE1/2, progesterone, calcium channel antagonists.
Retroperitoneal fibrosis

RPF was first clearly described by the French urologist Albarran in 1905. Further cases were described by Ormond in 1948.

Benign causes

- Autoimmune: idiopathic RPF comprises two-thirds of cases. Considered to be a response to an insoluble lipid called ceroid that has leaked through a thinned arterial wall from atheromatous plaques, a fibrous plaque extends laterally and downwards from the renal arteries encasing the aorta, IVC, and ureters but rarely extends into the pelvis. The central portion of the plaque consists of woody scar tissue, while the growing margins have the histological appearance of chronic inflammation. It may be associated with AAA, intra-arterial stents, and angioplasty; mediastinal, mesenteric, or bile duct fibrosis.
- IgG4-related: approximately half of previously documented ‘idiopathic’ RPF. Histological features include lymphoplasmacytic infiltrate of IgG4-positive plasma cells, storiform fibrosis, tissue eosinophilia, and obliteratorive phlebitis.
- Drugs, including methysergide, β-blockers, hydralazine, haloperidol, amphetamines, and LSD; methyl methacrylate cement used for joint replacement.
- Chronic urinary infection, including TB.
- Inflammatory conditions such as Crohn’s disease, Reidel’s thyroiditis, or sarcoidosis.
- Amyloidosis and periaortic haematoma may mimic RPF.

Malignant causes

- Lymphoma is the commonest cause, also sarcoma.
- Metastatic or locally infiltrative carcinoma of the breast, stomach, pancreas, colon, bladder, prostate, and carcinoid tumours.
- RT may cause RPF, although rare in recent years with precise field localization.
- Chemotherapy, especially following treatment of metastatic testicular tumours, may leave fibrous masses encasing the ureters. These may or may not contain residual tumour.

Presentation

- Idiopathic RPF classically occurs in the fifth or sixth decade of life.
- Men are affected twice as commonly as women.
- In the early stage, symptoms are relatively non-specific, including loss of appetite and weight, low-grade fever, sweating, and malaise. Lower limb swelling may develop. Dull, non-colicky abdominal or back pain is described in up to 90% of patients.
- Later, the major complication of the disease develops—bilateral ureteric obstruction, causing anuria and renal failure.
- Examination may reveal hypertension in up to 60% of patients and an underlying cause such as an AAA.
Investigation
- Inflammatory serum markers and IgG4 levels are elevated in idiopathic RPF [60–90% elevated erythrocyte sedimentation rate (ESR)].
- Pyuria or bacteriuria are common.
- Ultrasound will demonstrate uni- or bilateral hydronephrosis.
- CT, IVU, or ureterography reveal tapering medial displacement of the mid ureters, with proximal dilatation, and will exclude calculus disease. Up to one-third of patients will have a non-functioning kidney at the time of presentation due to long-standing obstruction.
- CT-guided fine-needle biopsy of the mass may confirm the presence of malignant disease, infection, or IgG4-positive cells. A negative result does not exclude malignancy.
- FDG-PET shows avidity associated with lymphoma or sarcoma.

Management
- Emergency management of a patient presenting with established renal failure requires relief of the obstruction by percutaneous nephrostomy or ureteric stenting.
- Replacement of fluid and electrolyte losses following relief of BUO is vital due to frequent post-obstructive diuresis.
- Assess with daily weighing and measurement of BP (lying and standing).
- Consider DVT and treat.
- Steroids may decrease oedema often associated with RPF and, in this way, help reduce the obstruction (typical regimen of prednisolone 60mg PO on alternate days for 2 months, reassess; if improvement, taper the dose over 6–8wk to 5mg maintenance). If used, steroids are usually discontinued when inflammatory markers return to normal. Azathioprine, tamoxifen, and cyclophosphamide have been used successfully in some patients.
- Surgical ureterolysis with omental wrap may be necessary to free and insulate the ureters from the encasing fibrous tissue.
- Monitor for recurrent disease with serum creatinine and ultrasound 3- to 6-monthly or annual DMSA renography for 5y.
Chapter 11

Trauma to the urinary tract and other urological emergencies

Initial resuscitation of the traumatized patient 516
Renal trauma: classification, mechanism, grading 518
Renal trauma: clinical and radiological assessment 520
Renal trauma: treatment 522
Ureteric injuries: mechanisms and diagnosis 526
Ureteric injuries: management 528
Pelvic fractures: bladder and ureteric injuries 532
Bladder injuries 538
Posterior urethral injuries in males and urethral injuries in females 541
Anterior urethral injuries 542
Testicular injuries 545
Penile injuries 546
Torsion of the testis and testicular appendages 548
Paraphimosis 549
Malignant ureteric obstruction 550
Metastatic spinal cord and cauda equina compression 552
Initial resuscitation of the traumatized patient

The resuscitation of the traumatized patient is usually initiated in the field by the paramedic team and is continued systematically once the patient reaches the emergency department by a rapid, multidisciplinary, priority-based approach.

Goals of resuscitation are:
- Restoration of cardiac, pulmonary, and neurological function.
- Diagnosis of immediate life-threatening conditions.
- Prevention of complications from multisystem injuries.

The initial resuscitation process can be divided into three phases: the primary survey, the secondary survey, the definitive survey.

Primary survey

ABC: assess the patient’s Airway, Breathing, and Circulation.

Airway and Breathing
- Establish a secure airway.
- Ventilate by oxygen mask or endotracheal intubation and mechanical ventilation.
- Immobilize the cervical spine.

Circulation

Assess circulatory function by pulse rate and BP.

The commonest cause of hypotension in the polytraumatized patient is hypovolaemia secondary to haemorrhage. With hypovolaemic shock, an immediate bolus of IV isotonic crystalloid solution should be given and the patient’s response (pulse rate, BP) is assessed.

Radiological imaging

Determined by local facilities. Increasingly, in the severely traumatized patient, CT of the chest, abdomen, and pelvis is used to identify significant chest, abdominal, and pelvic injuries. If not available, arrange supine chest, abdomen, and pelvic X-rays to identify the presence of rib and pelvic fractures and to identify the presence of significant quantities of blood in the chest, abdomen, and pelvis, and in patients with persistent hypotension from presumed bleeding, search for occult haemorrhage using a diagnostic peritoneal lavage or focused abdominal USS.

Hypovolaemic shock is not always associated with hypotension. In young patients, compensatory mechanisms, e.g. rapid vasoconstriction, can compensate for as much as a 35% volume loss, without significant decreases in BP.

Remember the non-hypovolaemic causes of hypotension:
- Tension pneumothorax.
- Cardiac tamponade.
- Myocardial infarction.
- Neurogenic (SCI).
Urinalysis
Routinely performed in every trauma patient because it provides valuable information regarding the likelihood of injuries to the upper and lower urinary tract. The absence of haematuria, however, does not exclude a urinary tract injury, e.g. haematuria may be absent in acceleration/deceleration renal injuries (see pp. 518–19).

As life-threatening injuries are found during the primary survey, resuscitation efforts are initiated concurrently (e.g. chest drain for pneumothorax). The decision to transfer a patient from the emergency room to either the operating room or angiography suite is made during the primary survey.

Secondary survey
Performed after completion of the primary survey. Take a complete history, and perform a physical examination from head to toe. Arrange selective skeletal X-rays according to physical findings.

Definitive survey
During this phase, focus attention on identifying specific organ injuries using clinical and radiographic means. Genitourinary injuries are usually recognized during the definitive survey.

During all phases of the initial resuscitation, assess vital signs (BP, respiratory rate, blood gases, urinary output, and body temperature) continually. Vascular pressure monitoring, using central venous and pulmonary arterial catheters, can be performed selectively. Frequent re-evaluation should be performed to detect changes in the patient’s condition, and the appropriate actions taken.
ChAPTeR 11 Trauma to the urinary tract

Renal trauma: classification, mechanism, grading

Classification

Two categories: blunt and penetrating
(See Table 11.1.)

Proportion of all renal injuries that are blunt: Europe 97%; USA 90%; and South Africa 25–85%. Proportion depends on whether urban or non-urban community. This classification is useful because it predicts the likely need for surgical exploration to control bleeding. Experience from large series shows that 95% of blunt injuries can be managed conservatively, whereas 50% of stab injuries and 75% of gunshot wounds require exploration. For staging, see Box 11.1.

Blunt injuries

• Direct blow to the kidney.
• Rapid acceleration or rapid deceleration.
• A combination of the above.

Rapid deceleration frequently causes renal pedicle injuries (renal artery and vein tears or thrombosis, PUJ disruption), because the renal pedicle is the site of attachment of the kidney to other fixed retroperitoneal structures.

Table 11.1 Summary of mechanisms, causes, grading, and treatment of renal disease

<table>
<thead>
<tr>
<th>Mechanisms and cause</th>
<th>Blunt: direct blow or acceleration/deceleration [road traffic accidents (RTAs), falls from a height, fall onto flank]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Penetrating: knives, gunshots, iatrogenic (e.g. PCNL)</td>
</tr>
<tr>
<td>Imaging and grading</td>
<td>CT: accurate, rapid, images other intra-abdominal structures</td>
</tr>
<tr>
<td></td>
<td>Staging—AAST Organ Injury Severity Scale:</td>
</tr>
<tr>
<td></td>
<td>I: contusion or subcapsular haematoma</td>
</tr>
<tr>
<td></td>
<td>II: <1cm laceration without urinary extravasation</td>
</tr>
<tr>
<td></td>
<td>III: >1cm laceration without urinary extravasation</td>
</tr>
<tr>
<td></td>
<td>IV: laceration into collecting system, i.e. urinary extravasation</td>
</tr>
<tr>
<td></td>
<td>V: shattered kidney or avulsion of renal pedicle</td>
</tr>
<tr>
<td>Treatment</td>
<td>Conservative: 95% of blunt injuries, 50% of stab injuries, and 25% of gunshot wounds can be managed non-operatively (cross-match, bed rest, observation)</td>
</tr>
<tr>
<td></td>
<td>Exploration if: Persistent bleeding (persistent tachycardia and/or hypotension not responding to appropriate fluid and blood replacement)</td>
</tr>
<tr>
<td></td>
<td>Expanding perirenal haematuria</td>
</tr>
<tr>
<td></td>
<td>Pulsatile perirenal haematoma</td>
</tr>
</tbody>
</table>

Commonest cause: motor vehicle accidents (e.g. pedestrian hit by a car, direct blow combined with rapid acceleration and then deceleration). Seemingly trivial injuries (e.g. fall from a ladder), direct falls onto the flank, or sporting injuries can lead to significant renal injuries.

Penetrating injuries

Stab or gunshot injuries to the flank, lower chest, and anterior abdominal area may inflict renal damage. Fifty per cent of patients with penetrating trauma and haematuria have grade III, IV, or V renal injuries. Penetrating injuries anterior to the anterior axillary line are more likely to injure the renal vessels and renal pelvis, compared with injuries posterior to this line where less serious parenchymal injuries are more likely. Thus, renal injuries from stab wounds to the flank (i.e. posterior to the anterior axillary line) can often be managed non-operatively.

The wound profile of a low-velocity gunshot wound is similar to that of a stab wound. High-velocity gunshot wounds (>350m/s) cause greater tissue damage due to stretching of surrounding tissues (‘temporary cavity’).

Mechanism

The kidneys are retroperitoneal structures surrounded by perirenal fat, the vertebral column and spinal muscles, the lower ribs, and abdominal contents. They are therefore relatively protected from injury, and a considerable degree of force is usually required to injure them (only 1.5–3% of trauma patients have renal injuries). Associated injuries are therefore common (e.g. spleen, liver, mesentery of the bowel). Renal injuries may not initially be obvious, hidden as they are by other structures. To confirm or exclude a renal injury, imaging studies are required. In children, there is proportionately less perirenal fat to cushion the kidneys against injury and thus, renal injuries occur with lesser degrees of trauma.

Paediatric renal injuries

The kidneys are said to be more prone to injury in children because of the relatively greater size of the kidneys in children, the smaller protective muscle mass and cushion of perirenal fat, and the more pliable rib cage.
Renal trauma: clinical and radiological assessment

The haemodynamically stable patient

History: nature of trauma (blunt, penetrating)
Examination: pulse rate, systolic BP, respiratory rate, location of entry and exit wounds, flank bruising, rib fractures. The lowest recorded systolic BP is used to determine the need for renal imaging.

Urinalysis: crucial for determining the likelihood of renal injury, and therefore the need for radiological tests.

Haematuria (defined as >5 erythrocytes per hPf or dipstick positive) suggests the possibility of a renal injury; however, the amount of haematuria does not correlate consistently with the degree of renal injury.

Do FBC and serum chemistry profile.

Indications for renal imaging
- Macroscopic haematuria.
- Penetrating chest and abdominal wounds (knives, bullets).
- Microscopic (>5 RBCs per hPf) or dipstick haematuria in a hypotensive patient (systolic BP <90mmHg recorded at any time since the injury).
- A history of a rapid acceleration or deceleration (e.g. fall from a height, high-speed motor vehicle accident). Falls from even a low height can cause serious renal injury in the absence of shock (systolic BP <90mmHg) and of haematuria (PUJ disruption prevents blood from reaching the bladder).
- Any child with microscopic or dipstick haematuria who has sustained trauma.

Adult patients with a history of blunt trauma and microscopic or dipstick haematuria need not have their kidneys imaged, as long as there is no history of acceleration/deceleration and no shock, since the chances of a significant injury being found are <0.2%.

Degree of haematuria vs severity of injury
While significant renal injury is more likely with macroscopic haematuria, in some cases of severe renal injury, haematuria may be absent. Thus, the relationship between the presence, absence, and degree of haematuria and the severity of trauma is not absolute. Broadly speaking, in blunt trauma, macroscopic haematuria predicts the likelihood of significant renal injury (Table 11.2). Conversely, in penetrating trauma, haematuria may be absent in severe renal injury (renal vascular injury, PUJ, or ureter avulsion).

The haemodynamically unstable patient
Haemodynamic instability may preclude standard imaging, such as CT, the patient having to be taken to the operating theatre immediately to control the bleeding. In this situation, an on-table IVU (Box 11.2) is indicated if:
- A retroperitoneal haematoma is found and/or
- A renal injury is found which is likely to require nephrectomy.

* Remember, in young adults and children, hypotension is a late manifestation of hypovolaemia; BP is maintained until there has been substantial blood loss.
Table 11.2 Blunt trauma in adults: chance of significant renal injury vs degree of haematuria and systolic BP (SBP)

<table>
<thead>
<tr>
<th>Degree of haematuria; SBP (mmHg)</th>
<th>Significant renal injury (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microhaematuria; >90</td>
<td>0.2</td>
</tr>
<tr>
<td>Macroscopic haematuria; >90</td>
<td>10</td>
</tr>
<tr>
<td>Macroscopic haematuria; <90</td>
<td>10</td>
</tr>
</tbody>
</table>

* Dipstick or microscopic haematuria.

Box 11.2 What imaging study?

The IVU has been replaced by contrast-enhanced CT scan as the imaging study of choice in patients with suspected renal trauma. Compared with IVU, it provides clearer definition of the injury, allowing injuries to the parenchyma and collecting system to be more accurately graded, and therefore determines subsequent management. An arterial–venous phase scan is done within minutes of contrast injection, followed by a repeat scan 10–20min after contrast administration, to allow time for contrast to reach collecting system.

While ultrasound can establish the presence of two kidneys and identify blood flow in the renal vessels (power Doppler), it cannot accurately identify parenchymal tears, collecting system injuries, or extravasation of urine until a later stage when a urine collection has had time to accumulate.

Imaging is designed to:
- Grade injury.
- Document the presence and function of the contralateral kidney.
- Detect associated injuries.
- Detect pre-existing renal pathology in the affected kidney.

On contrast-enhanced CT, look for:
- Depth of parenchymal laceration.
- Parenchymal enhancement (absence of enhancement suggests renal artery injury).
- Presence of urine extravasation (medial extravasation of contrast suggests disruption of the PUJ or renal pelvis).
- Presence, size, and position of retroperitoneal haematoma (haematoma medial to the kidney suggests a vascular injury).
- Presence of injuries to adjacent organs (bowel, spleen, liver, pancreas, etc.).
- Presence of a normal contralateral kidney.

On-table IVU

When, because of shock and need for immediate laparotomy, a patient is transferred immediately to the operating theatre without having had a CT scan and a retroperitoneal haematoma is found, a single-shot abdominal X-ray, taken 10min after contrast administration (2mL/kg of contrast), can establish the presence/absence of a renal injury and the presence of a normally functioning contralateral kidney where the ipsilateral kidney injury is likely to necessitate a nephrectomy.
Renal trauma: treatment

Conservative (non-operative) management
Most blunt (95%) and many penetrating renal injuries (50% of stab injuries and 25% of gunshot wounds) can be managed non-operatively.

- Dipstick or microscopic haematuria: if systolic BP since injury has always been >90mmHg and no history of acceleration or deceleration, imaging and admission are not required.
- Macroscopic haematuria: in a cardiovascularly stable patient, having staged the injury with CT, admit for bed rest (no hard and fast rules as to duration) and observation until the macroscopic haematuria, if present, resolves (cross-match in case the BP drops); give antibiotics if urinary extravasation.
- High-grade (IV and V) injuries: can be managed non-operatively if they are cardiovascularly stable. However, grade IV, and especially grade V, injuries often require nephrectomy to control bleeding (grade V injuries function poorly if repaired).

Embolization and surgical exploration
Embolization is increasingly being used for renal trauma of all grades. Surgical exploration is indicated (whether blunt or penetrating injury) (Table 11.3) if:

- The patient develops shock which does not respond to resuscitation with fluids and/or blood transfusion.
- Hb decreases (there are no strict definitions of what represents a ‘significant’ fall in Hb).
- There is urinary extravasation and associated bowel or pancreatic injury.
- Expanding perirenal haematoma (again the patient will show signs of continued bleeding).
- Pulsatile perirenal haematoma (though embolization may be used in this situation).

An expanding and/or pulsatile perirenal haematoma suggests a renal pedicle avulsion. Haematuria is absent in 20%.

Urinary extravasation
Not in itself necessarily an indication for exploration. Almost 80–90% of these injuries will heal spontaneously. The threshold for operative repair is lower with associated bowel or pancreatic injury—bowel contents mixing with urine is a recipe for overwhelming sepsis. In these situations, the renal repair should be well drained and the omentum interposed between the kidney and bowel or pancreas.

If there is substantial contrast extravasation, consider placing a JJ stent. Repeat renal imaging if the patient develops a prolonged ileus or fever, since these signs may indicate the development of a urinoma which can be drained percutaneously. Renal exploration is required for a persistent leak.

Devitalized segments
Exploration is usually not required for patients with devitalized segments of the kidney and with urinary extravasation.
Complications of renal injury

See references for more information.²⁻⁴

Early

- **Delayed bleeding:** 1.5% of surgically treated patients, 4% of surgically treated penetrating injuries, 1–6% of paediatric blunt injuries managed non-operatively, 20% of conservatively managed stab injuries; 75% require surgery, and of these, 60% require nephrectomy.

- **Urinary extravasation and urinoma formation:** blunt injury 2–20%; penetrating injury 10–25%. If low volume and non-infected, often heal spontaneously; large volume—consider a trial of JJ stenting with renal repair if extravasation persists.

- **Abscess formation:** flank pain, fever, ileus. CT or USS is diagnostic. Treat by percutaneous drainage.
• **Renal arteriovenous fistulae:** commonest cause is percutaneous renal biopsy, i.e. iatrogenic. Often small and heal spontaneously, but may manifest with retroperitoneal bleeding; collecting system bleeding (heavy haematuria); microscopic haematuria; abdominal bruit; hypertension; tachycardia; high output heart failure. Diagnosis is confirmed by selective renal arteriography. Treat by arterial embolization (treatment of choice); partial nephrectomy; complete nephrectomy.

Late
- ↓ renal function.
- Hypertension.

Hypertension and renal injury
Excess renin excretion occurs following renal ischaemia from renal artery injury or thrombosis or renal compression by haematoma or fibrosis (so-called ‘Page’ kidney). This can lead to hypertension months or years after renal injury. The exact incidence of post-traumatic hypertension is uncertain. It may occur in <1% of individuals.

Iatrogenic renal injury: renal haemorrhage after percutaneous nephrolithotomy
Significant renal injuries can occur during PCNL for kidney stones. This is the surgical equivalent of a stab wound, and serious haemorrhage results in 1% of cases.\(^5\)

Bleeding during or after a PCNL can occur from vessels in the nephrostomy track itself, from an arteriovenous fistula, or from a pseudoaneurysm which has ruptured. Track bleeding will usually tamponade around a large-bore nephrostomy tube. Traditionally, persistent bleeding through the nephrostomy tube is managed by clamping the nephrostomy tube and waiting for the clot to tamponade the bleeding. While this may control bleeding in some cases, in others, a rising or persistently elevated pulse rate (with later hypotension) indicates the possibility of persistent bleeding and is an indication for renal arteriography and embolization of the arteriovenous fistula or pseudoaneurysm (Figs 11.1 and 11.2). Failure to stop bleeding by this technique is an indication for renal exploration.

Arteriovenous fistulae can sometimes occur following open renal surgery for stones or tumours, and arteriography with embolization again can be used to stop the bleeding in these cases. However, bleeding usually occurs over a longer time course (days or even weeks), rather than as an acute haemorrhage causing shock.

References
Fig. 11.1 Renal arteriography after PCNL where severe bleeding was encountered. An arteriovenous fistula was found and embolized.

Fig. 11.2 Post-embolization of an arteriovenous fistula. Note the embolization coils in the lower pole.

Ureteric injuries: mechanisms and diagnosis

Types, causes, and mechanisms

- **External**: rare—blunt (e.g. high-speed RTAs, fall from a height); penetrating (knife or gunshot wounds).
- **Internal trauma (= iatrogenic)**: during pelvic or abdominal surgery, e.g. hysterectomy, colectomy, AAA repair; ureteroscopy. The ureter may be divided, ligated, or angulated by a suture; a segment excised or damaged by diathermy.

External injury: diagnosis

Based on a high index of suspicion for the possibility of ureteric injury in the types of scenarios (see p. 527). Imaging studies: IVU or CT can be used to determine the presence of a ureteric injury. If doubt remains regarding the integrity of the ureters, retrograde ureterography should be done.

Internal (iatrogenic) injury: diagnosis

The injury may be suspected at the time of surgery, but injury may not become apparent until some days or weeks post-operatively.

Intraoperative diagnosis

For ureteric contusions and perforations seen at the time of ureteroscopy, insert a JJ stent. During abdominal or pelvic surgery, first optimize exposure of the suspected injury site by packing the bowel out of the way, controlling bleeding, and ensuring the theatre lights are appropriately positioned. Examine both ureters (bilateral injuries can occur).

Direct inspection of the ureter

A good way of inspecting the ureter for injury but requires exposure of a considerable length of the ureter to establish that it has not been injured. Lower ureteric exposure is more difficult than upper ureteric.

Extravasation after injection of methylene blue into the ureter

Look for leakage of the dye from a more distant section of the ureter.

On-table IVU

Technically difficult; does not always demonstrate the presence or site of injury.

On-table retrograde ureterography

Via an incision made in the bladder or via a cystoscope. A very accurate method of establishing the presence or absence of a ureteric injury (Fig. 11.3). Both ureters can be easily examined.

Post-operative diagnosis

The diagnosis is usually apparent in the first few days following surgery (Box 11.3), but it may be delayed by weeks, months, or years (presentation: flank pain, post-hysterectomy incontinence—a continuous leak of urine suggests a ureterovaginal fistula).
Investigation

IVU or retrograde ureterogram. Ultrasonography may demonstrate hydronephrosis, but hydronephrosis may be absent when urine is leaking from a transected ureter into the retroperitoneum or peritoneal cavity. The IVU usually shows an obstructed ureter or, occasionally, a contrast leak from the site of injury.

Box 11.3 Symptoms and signs of ureteric injury

May include:
- An ileus (due to urine within the peritoneal cavity).
- Prolonged post-operative fever or overt urinary sepsis.
- Persistent drainage of fluid from drains, the abdominal wound, or the vagina. Send this for creatinine estimation. Creatinine level higher than that of serum = urine (the creatinine level will be at least $300\mu\text{mol}/\text{L}$).
- Flank pain if the ureter has been ligated.
- Abdominal mass, representing a urinoma (a collection of urine).
- Vague abdominal pain.
- The pathology report on the organ that has been removed may note the presence of a segment of the ureter!
Ureteric injuries: management

When to repair the ureteric injury

Generally, the best time to repair the ureter is as soon as the injury has been diagnosed.

Delay definitive ureteric repair when:
- The patient is unable to tolerate a prolonged procedure under GA.
- There is evidence of active infection at the site of proposed ureteric repair (infected urinoma).

A percutaneous nephrostomy should be placed, the infection drained radiologically (percutaneous drain), IV antibiotics given, and ureteric repair delayed until the patient is apyrexial.

Traditional teaching held that surgical repair should be delayed when the injury was diagnosed between roughly days 7 and 14 after ureteric injury, the time when maximal oedema and inflammation at the site of repair was believed to occur. However, favourable outcomes have been demonstrated after early repair, and the time of the original injury is nowadays seen as a less important determinant of the time of definitive repair.¹

Definitive treatment of ureteric injuries

The options depend on:
- Whether the injury is recognized immediately.
- The level of injury.
- Other associated problems.

The options are:
- JJ stenting for 3–6wk (e.g. ligature injury recognized immediately).
- Primary closure of a partial transection of the ureter.
- Direct ureter-to-ureter anastomosis (primary uretero-ureterostomy)—if the defect between the ends of the ureter is of a length where a tension-free anastomosis is possible.
- Reimplantation of the ureter into the bladder (uretero-neocystostomy), using either a psoas hitch or a Boari flap (Figs. 11.4 and 11.5).
- Transuretero-ureterostomy (Fig. 11.6).
- Autotransplantation of the kidney into the pelvis—where the segment of the damaged ureter is very long.
- Replacement of the ureter with the ileum—where the segment of the damaged ureter is very long.
- Permanent cutaneous ureterostomy—where the patient’s life expectancy is very limited.
- Nephrectomy—traditionally advocated for ureteric injury during vascular graft procedures (e.g. aortobifemoral graft for AAA), but the trend is towards ureteric repair and renal preservation, reserving nephrectomy only where a urine leak develops post-operatively (continuing drainage of urine from the drain placed at the site of the ureteric anastomosis).²

JJ stenting

For some injuries, JJ stenting may be adequate for definitive treatment, particularly where the injury does not involve the entire circumference of the ureter, and continuity is therefore maintained across the region of the ureteric injury. In situations where a ligature has been applied around the
ureter and this has been immediately recognized such that viability of the
ureter has probably not been compromised, remove the ligature and place
a JJ stent (cystoscopically if this is feasible or, if not, by opening the bladder).
If there has been a delay in recognition of a ligature injury to the ureter, it is
probably safer to remove the affected segment of the ureter and perform
a uretero-ureterostomy. Generally speaking, the stent is maintained in pos-
tion for somewhere between 3 and 6wk (no hard and fast rules). At the
time of stent removal, perform a retrograde ureterogram to confirm that

Fig. 11.5 A Boari flap. Reproduced from Reynard, J, Mark, S. et al. (2008) Urological
Surgery. Oxford University Press, with permission from Oxford University Press.
there is no persistent leakage of contrast from the original site of injury and to see if there is evidence of ureteric stricturing.

Factors other than the level of injury are important in determining the type of repair (Box 11.4). Blast injuries characteristically cause considerable ‘collateral’ damage to the ureter and surrounding tissues, and this may not be apparent at the time of surgery. Delayed necrosis can occur in such apparently normal-looking ureters.

Box 11.4 General principles of ureteric repair

- The ends of the ureter should be debrided, so that the edges to be anastomosed are bleeding freely.
- The anastomosis should be tension-free.
- For complete transection, the ends of the ureter should be spatulated to allow a wide anastomosis to be done.
- A stent should be placed across the repair.
- Mucosa-to-mucosal anastomosis should be done to achieve a watertight closure.
- Use 4/0 absorbable suture material.
- A drain should be placed around the site of anastomosis.

References

Pelvic fractures: bladder and ureteric injuries

Pelvic fractures are usually due to run-over or crush injuries where massive force is applied to the pelvis. Associated head, chest, intra-abdominal (spleen, liver, mesentery of the bowel), pelvic (bladder, urethra, vagina, rectum), and genital injuries are common, and these injuries and massive blood loss from torn pelvic veins and arteries account for the substantial (20%) mortality after pelvic fracture.

Initial assessment

Pelvic fractures are often occult. Screen run-over or crush victims with a pelvic X-ray. Assess:

- Vital signs (pulse rate, systolic BP).
- Neurovascular integrity of the lower limb (lumbosacral plexus, peripheral nerves, and major vessels may be damaged).
- Examine for head, chest, abdominal, and perineal injuries.
- Determine stability/instability of the fracture from pelvic X-rays.

Is the fracture stable or unstable?

(See Box 11.5 and Table 11.4.)

Abdominal and pelvic imaging in pelvic fracture

- Abdominal/pelvic CT: establishes the presence/absence of associated pelvic (rectum, bladder) and abdominal organ injury (liver, bowel, spleen).
- Retrograde urethrogram: to detect urethral injury. Some hospitals perform retrograde urethrography only when blood is present at the meatus; others do this in all pelvic fracture patients where the pubic rami have been disrupted.
- If the urethra is intact, a retrograde cystogram is done to assess the integrity of the bladder.

Is urethral catheterization of a pelvic fracture patient safe?

If there is no blood present at the meatus, a gentle attempt at urethral catheterization may be made. It has been suggested that this could convert a partial urethral rupture into a complete rupture. However, leading trauma centres in the USA state, ‘We and others have not seen any evidence that this can convert an incomplete into a complete transection ... and we usually make one gentle attempt to place a urethral catheter in suspected urethral disruption’. If any resistance is encountered, stop and obtain a retrograde urethrogram. If the retrograde urethrogram demonstrates a normal urethra, proceed with another attempt at catheterization, using plenty of lubricant. If there is a urethral rupture, insert an SPC via a formal open approach to allow inspection of the bladder (and repair of injuries, if present).
Box 11.5 Is the fracture stable or unstable?

Stable = the fracture can withstand normal physiologic forces.

Unstable = the fracture cannot withstand normal physiologic forces.

Instability suggests a greater degree of trauma to the pelvis and increases the likelihood of serious associated injuries. In addition, fixation of an unstable fracture reduces blood loss, mortality, hospital stay, leg length discrepancy, and long-term disability; makes nursing care easier; and reduces analgesic consumption. Stability can be defined according to the Tile classification system of pelvic ring fractures (Table 11.4).

Of unstable pelvic fractures, 70% are B2 and B3, 10–20% are open-book type (B1), and 10–20% are type C.

- Open-book pelvic fracture (B1): caused by anteroposterior compression. A dramatic rise in pelvic volume stretches vessels, nerves, and organs (e.g. bladder) (Figs. 11.7 and 11.8).

- Closed-book pelvic fracture (B2 or B3): caused by a lateral compression force to the pelvis. The pubic rami fracture and overlap, and the ilium and sacral wings may be fractured. Nerves and vessels are not stretched, but the urethra is more likely to be damaged by scissor-like action of overlapping pubic rami.

- Vertically unstable pelvic fracture (C): vessels and nerves can be damaged by stretching.

Radiological determination of stability

Based on inlet (for anteroposterior displacement) and outlet views (for vertical displacement) of the pelvis, with the X-ray beam being angled accordingly. CT provides better definition of sacral, sacroiliac, and acetabular fractures and dislocations.

| Type A—stable | A1: fracture of the pelvis not involving the pelvic ring
| | A2: minimal displacement of the pelvic ring, with no instability |
| Type B—rotationally (horizontally) unstable | B1: open book
| | B2: closed book
| | Lateral compression: ipsilateral fracture B3, closed book
| | Lateral compression: contralateral fracture (bucket handle fracture) |
| Type C—rotationally (horizontally) and vertically unstable | C1: unilateral
| | C2: bilateral
| | C3: with acetabular fracture |
Bladder injuries associated with pelvic fractures

Ten per cent of ♂ and 5% of ♀ pelvic fractures are associated with a bladder injury (the fracture type leading to bladder injury is usually an anteroposterior pelvic compression fracture, i.e. open-book pelvic fracture; Tile classification B1) (Figs 11.7 and 11.8). Sixty per cent of pelvic fracture bladder ruptures are extraperitoneal, 30% intraperitoneal, and 10% combined extraperitoneal and intraperitoneal.

Fig. 11.7 An open-book pelvic fracture before fixation.

Fig. 11.8 An open book pelvic fracture after fixation.
Urethral injuries associated with pelvic fractures

The posterior urethra (essentially the membranous urethra) is injured, with roughly the same frequency as the bladder, in subjects who sustain a pelvic fracture, occurring in 5–15% of such cases. Most posterior urethral injuries occur in association with pelvic fractures. Cass found bladder ruptures in 6% of pelvic fractures, urethral rupture in 2%, and combined bladder and urethral rupture in 0.5%.

Combined bladder and posterior urethral injuries following pelvic fracture

One-third of patients with a traumatic bladder rupture have injuries to other urinary structures, most commonly the urethra. Ten to 20% of patients with a pelvic fracture and bladder rupture also have a posterior urethral rupture (Box 11.6).

Box 11.6 Management of bladder injuries associated with pelvic fractures

Extraperitoneal: urethral catheter until the bladder has healed (usually 2–3 wk).
Intraperitoneal: open surgical repair.

Management of urethral injuries associated with pelvic fractures

SPC: placement via an open approach is generally better than a percutaneous approach, partly because it allows inspection of the bladder for associated injuries which may require repair, but also because the catheter may inadvertently be placed into the large pelvic haematoma which always accompanies such fractures. Not only does this mean that the bladder is not being drained (so urine will leak into the pelvic haematoma and fracture site), but the SPC can also act as a potential source of infection of the pelvic haematoma, which can lead to life-threatening sepsis.

Management of combined urethral and bladder injuries associated with pelvic fractures

If a urethral catheter can be passed and a cystogram shows an extraperitoneal bladder rupture, leave a urethral catheter in place until the bladder has healed (usually 2–3 wk).
If a urethral catheter cannot be passed (because of a complete urethral rupture), an SPC should be placed via an open approach (rather than percutaneously) to allow inspection of the bladder (and repair if the bladder has been torn) at the same time that the SPC is placed. The urethral rupture will prevent a cystogram from being done, so direct inspection of the bladder is required to establish the presence/absence of a bladder injury.
Symptoms and signs of bladder or urethral injury in pelvic fracture

- Blood at the meatus—in 40–50% of patients (no blood at the meatus in 50–60%).
- Gross haematuria.
- Inability to pass urine.
- Perineal or scrotal bruising.
- ‘High-riding’ prostate.
- Inability to pass a urethral catheter.

‘High-riding prostate’

The prostate and bladder become detached from the membranous urethra and are pushed upwards by the expanding pelvic haematoma. The high-riding prostate is said to be a classic sign of posterior urethral rupture. Traditional teaching states that a DRE should be done in cases of pelvic trauma to determine the prostatic position. However, the presence of a high-riding prostate is an unreliable sign. The pelvic haematoma may make it impossible to feel the prostate, so the patient may be thought to have a high-riding prostate when, in fact, it is in a normal position. Conversely, what may be thought to be a normal prostate in a normal position may actually be a palpable pelvic haematoma. In pelvic fracture, a DRE is done not to identify a high-riding prostate, but rather to establish the presence of an associated rectal injury (blood seen on the examining finger). However, rectal injury can still occur in the absence of rectal blood.

References

Bladder injuries

Situations in which the bladder may be injured
TURBT (Figs. 11.9 and 11.10), cystoscopic bladder biopsy, TURP, cystolitholapaxy, penetrating trauma to the lower abdomen or back, Caesarean section (especially as an emergency), blunt pelvic trauma—in association with pelvic fracture or ‘minor’ trauma in the inebriated patient, rapid deceleration injury (e.g. seat belt injury with a full bladder in the absence of a pelvic fracture), spontaneous rupture after bladder augmentation, total hip replacement (very rare).

Types of perforation
- **Intraperitoneal perforation**: the peritoneum overlying the bladder is breached, allowing urine to escape into the peritoneal cavity.
- **Extraperitoneal perforation**: the peritoneum is intact and urine escapes into the space around the bladder, but not into the peritoneal cavity.

Making the diagnosis
During endoscopic urological operations (e.g. TURBT, cystolitholapaxy), the diagnosis is usually obvious on visual inspection alone—a dark hole is seen in the bladder, and loops of bowel may be seen on the other side. No further diagnostic tests are required.

In cases of trauma, the classic triad of symptoms and signs suggesting a bladder rupture is:
- Suprapubic pain and tenderness.
- Difficulty or inability in passing urine.
- Haematuria.

Fig. 11.9 An intraperitoneal bladder perforation following TURBT, as demonstrated on a cystogram (anteroposterior view).
Additional signs:
- Abdominal distension.
- Absent bowel sounds (indicating an ileus from urine in the peritoneal cavity).

These symptoms and signs are an indication for a retrograde cystogram. The diagnosis may be made only at operation for fixation of a pelvic fracture.

Imaging studies

Retrograde cystography or CT cystography

- Ensure the bladder is adequately distended with contrast. With inadequate distension, a clot, omentum, or small bowel may ‘plug’ the perforation, which may not therefore be diagnosed. Use at least 400mL of contrast in an adult, and 60mL plus 30mL per year of age in children up to a maximum of 400mL in children.
- Obtain images after the contrast agent has been completely drained from the bladder (a post-drainage film). A whisper of contrast from a posterior perforation may be obscured by a bladder distended with contrast.
- In extraperitoneal perforations, extravasation of contrast is limited to the immediate area surrounding the bladder. In intraperitoneal perforations, loops of bowel may be outlined by the contrast.

Treatment

(See Box 11.7.)
Box 11.7 Treatment of bladder rupture

Extraperitoneal
Bladder drainage with a urethral catheter for 2wk, followed by a cystogram to confirm the perforation has healed.

Indications for surgical repair of extraperitoneal bladder perforation:
- If you have opened the bladder to place an SPC for a urethral injury.
- A bone spike protruding into the bladder on CT.
- Associated rectal or vaginal perforation.
- Where the patient is undergoing open fixation of a pelvic fracture, the bladder can be simultaneously repaired.

Intraperitoneal
Usually repaired surgically to prevent complications from leakage of urine into the peritoneal cavity.

Spontaneous rupture after bladder augmentation
Spontaneous bladder rupture occasionally occurs months or years after bladder augmentation and usually with no history of trauma. If the patient has spina bifida or an SCI, they usually have limited awareness of bladder fullness and pelvic pain. Their abdominal pain may therefore be mild and vague in onset and nature. Fever or other signs of sepsis may be present. Have a high index of suspicion in patients with augmentation who present with non-specific signs of illness. A cystogram usually, although not always, confirms the diagnosis. If doubt exists, consider exploratory laparotomy.
Posterior urethral injuries in males and urethral injuries in females

Mechanisms
- **External blunt**: pelvic fracture—RTAs, falls from a height, crush injuries—commonest cause.
- **External penetrating**: gunshot—rare; stab—rare.
- **Internal, iatrogenic**: endoscopic surgery; RP; TURP (more likely with vascular prostate, PC, inexperienced surgeon).
- **Internal, self-inflicted**: foreign bodies inserted into the urethra—rare.

Male posterior urethral injuries

The great majority of posterior urethral injuries are an associated injury following pelvic fracture, and their diagnosis and initial management are discussed on p. 535. Immediate (within 48h) open repair of posterior urethral injuries is associated with a high incidence of urethral strictures (70%) and subsequent restenosis after stricture repair, incontinence (20%), and impotence (40%). The surrounding haematoma and tissue swelling make it difficult to identify structures and to mobilize the two ends of the urethra to allow tension-free anastomosis.

In the majority of ♂ posterior urethral injuries, treatment should be deferred for 3 months to allow the oedema and haematoma to completely resolve. As this occurs, the two distracted ends of the urethra come closer together, thereby reducing the amount of mobilization that the surgeon has to do. Most such injuries can be repaired by an anastomotic urethroplasty. Optical urethrotomy (division of the stricture using an endoscopic knife or laser via a cystoscope inserted into the urethra) is generally not recommended.

Immediate repair is indicated where there is an open wound, as long as the urethral ends are close (i.e. not distracted by a large haematoma).

Urethral injuries in females

Rare because the ♀ urethra is short and its attachments to the pubic bone are weak, such that it is less prone to tearing during pubic bone fracture. When they do occur, such injuries are usually associated with rectal or vaginal injuries. In developing countries, prolonged labour can cause ischaemic injury to the urethra and bladder neck, leading to urethrovaginal or vesicovaginal fistula formation.
Anterior urethral injuries
These injuries are uncommon.

Mechanisms
- **External blunt**: straddle injury (e.g. forceful contact of the perineum with a bicycle cross-bar)—commonest cause of injury; kick to the perineum; penile fracture.
- **External penetrating**: gunshot; stab.
- **Internal, iatrogenic**: catheter balloon inflated in the urethra; endoscopic surgery; penile surgery.
- **Internal, self-inflicted**: foreign bodies inserted into urethra.

History and examination
The patient usually presents with difficulty in passing urine and frank haematuria in the context of a straddle injury. Blood may be present at the end of the penis and a haematoma around the site of the rupture. If Buck’s fascia has been ruptured (the deep layer of the superficial fascia of the penis), urine and blood track into the scrotum, causing swelling and a ‘butterfly wing’ pattern of bruising, reflecting the anatomical attachments of Colles’ fascia—the membranous layer of the superficial fascia of the groin and perineum (Figs. 11.11 and 11.12; Box 11.8).

Confirming the diagnosis and subsequent management
Retrograde urethrography delineates the extent of urethral injury. Extravasation of urine can create a collection of urine around the urethra (a urinoma) and generates an inflammatory reaction, with subsequent stricture formation. Superadded infection can lead to abscess formation which may burst onto the surface of the skin, leading to a urethrocutaneous...
fistula. More rarely, Fournier’s gangrene supervenes. Urinary diversion (urethral or suprapubic catheter) prevents further extravasation of urine, and antibiotics may reduce the likelihood of superadded infection.

Anterior urethral contusion

Typical history: blood at the meatus, no extravasation of contrast on retrograde urethrogram. Pass a small-gauge urethral catheter (12Ch in an adult), and remove a week or so later.

Partial rupture of anterior urethra

Leak of contrast from the urethra, with retrograde flow into the bladder. Most can be managed by a period of suprapubic urinary diversion. Seventy per cent heal without stricture formation (primary closure can be difficult because of oedema and haematoma at the site of injury and can convert a short area of urethral injury into a longer one). Give a broad-spectrum antibiotic to prevent infection of extravasated urine and blood. If a voiding cystogram 2wk later confirms urethral healing, remove the SPC. If contrast still extravasates, leave it in place a little longer.

Suprapubic catheterization (percutaneously) is preferred over urethral catheterization, because a partial rupture can be converted to a complete rupture. If the bladder cannot be palpated, such that an SPC cannot be safely inserted, then perform an open suprapubic cystostomy (under GA).

Complete rupture of anterior urethra

Leak of contrast from the urethra on retrograde urethrogram, no filling of the posterior urethra or bladder. Either the urethra may be immediately
Box 11.8 Anatomical explanation for the ‘butterfly wing’ pattern of bruising in anterior urethral rupture
Fascial layers of the penis, from superficial to deep (Fig. 11.12):
- Penile skin.
- Superficial fascia of the penis (= dartos fascia)—continuous with the membranous layer of the superficial fascia of the groin and perineum (= Colles’ fascia).
- Buck’s fascia (= the deep layer of the superficial fascia).
- Deep fascia of the penis (the tunica albuginea) which covers the two dorsal rods of erectile tissue, the corpora cavernosa, and the ventrally located corpus spongiosum that surrounds the urethra.

If Buck’s fascia is intact, bruising from a urethral rupture is confined in a sleeve-like configuration along the length of the penis. If Buck’s fascia has ruptured, extravasation of blood, and thus subsequent bruising, is limited by the attachments of Colles’ fascia which forms a ‘butterfly’-like pattern in the perineum and is continuous in the upper abdomen and chest with Scarpa’s fascia.

How to perform a retrograde urethrogram
- Aseptic technique.
- Urografin 150® (sodium amidotrizoate and meglumine amidotrizoate), but other contrast agents can be used.
- Position the patient at an oblique angle (bottom leg flexed at the hip and knee).
- A 12Ch catheter is placed in the fossa navicularis of the penis, 1–2cm from the external meatus, with the catheter balloon with 2mL of water or with a penile clamp applied to prevent contrast from spilling out of the urethra and to hold the catheter in place.
- Continuous screening (fluoroscopy) is done as contrast is instilled until the entire length of the urethra is demonstrated. Remember, as the urethra passes through the pelvic floor (the membranous urethra), there is a normal narrowing and similarly, the prostatic urethra is narrower than the bulbous urethra.

repaired (if a surgeon with sufficient experience is available) or an SPC can be placed with delayed repair.

Penetrating partial and complete anterior urethral injuries
Knife or gunshot wound: primary (i.e. immediate) repair may be carried out if a surgeon experienced in these techniques is available; if not, suprapubic diversion and subsequent repair by an appropriate surgeon.

Immediate surgical repair of anterior urethral injuries is only done in the context of penile fracture or where there is an open wound.
Testicular injuries

Testicular injuries are uncommon.

Mechanisms

Blunt or penetrating. Most in civilian practice are blunt, a blow forcing the testicle against the pubis or the thigh. Bleeding occurs into the parenchyma of the testis, and if sufficient force is applied, the tunica albuginea of the testis (the tough fibrous coat surrounding the parenchyma) ruptures, allowing extrusion of the seminiferous tubules.

Penetrating injuries occur as a consequence of gunshot and knife wounds and from bomb blasts; associated limb (e.g. femoral vessel), perineal (penis, urethra, rectum), pelvic, abdominal, and chest wounds may occur.

Where bleeding is confined by the tunica vaginalis, a haematocele is said to exist. Intraparenchymal (intratesticular) haemorrhage and bleeding beneath the parietal layer of the tunica vaginalis will cause the testis to enlarge slightly. The testis may be under great pressure as a consequence of the intratesticular haemorrhage confined by the tunica vaginalis. This can lead to ischaemia, necrosis, and atrophy of the testis.

The force is usually sufficient to rupture the tunica albuginea and tunica vaginalis, and the seminiferous tubules and blood extrude into the layers of the scrotum. This is a haematoma.

History and examination

Severe pain is common, as are nausea and vomiting. If the testis is surrounded by haematoma, it will not be palpable. If it is possible to palpate the testis, it is usually very tender. The resulting scrotal haematoma can be very large, and the bruising and swelling so caused may spread into the inguinal region and lower abdomen.

Testicular ultrasound in cases of blunt trauma

A normal parenchymal echo pattern suggests there is no significant testicular injury (i.e. no testicular rupture). Hypoechoic areas within the testis (indicating intraparenchymal haemorrhage) suggests testicular rupture.

Indications for exploration in scrotal trauma

- Testicular rupture: exploration allows evacuation of the haematoma, excision of extruded seminiferous tubules, and repair of the tear in the tunica albuginea.
- Penetrating trauma: exploration allows repair to damaged structures (e.g. the vas deferens may have been severed and can be repaired).
Penile injuries

Amputation
Blood loss can be severe; resuscitate the shocked patient, and cross-match blood. Place the penis, if found, in a wet swab inside a plastic bag, which is then placed inside another bag containing ice (‘bag in a bag’). It can survive for 24h.

Knife and gunshot wounds
Associated injuries are common (e.g. scrotum, major vessels of the lower limb). Most injuries, other than minor ones, should undergo primary repair. Remove debris from the wound (e.g. particles of clothing) and debride necrotic tissue, and repair as for penile fractures (Box 11.9).

Penile fracture
Rupture of the tunica albuginea of the erect penis (i.e. rupture of one or both corpora cavernosa, rupture of the corpus spongiosum with rupture of the urethra). The tunica albuginea is 2mm thick in the flaccid penis. It thins to 0.25mm during erection and is therefore vulnerable to rupture if the penis is forcibly bent (e.g. during vigorous sexual intercourse). The patient usually reports a sudden ‘snapping’ or ‘popping’ sound and/or sensation with sudden penile pain and detumescence of the erection.

The penis is swollen and bruised, sometimes resembling an aubergine. If Buck’s fascia has ruptured, bruising extends onto the lower abdominal wall and into the perineum and scrotum. A tender, palpable defect may be felt over the site of the tear in the tunica albuginea. If the urethra is damaged, there may be blood at the meatus or haematuria (dipstick/microscopic or macroscopic) and pain on voiding or urinary retention. Arrange a retrograde urethrogram in such cases.

Treatment
There has been a trend away from conservative management towards surgical repair (lower complication rate, e.g. reduced penile deformity, less chance of penile scar tissue, and prolonged penile pain).

- **Conservative**: application of cold compresses to the penis; analgesics and anti-inflammatory drugs; abstinence from sexual activity for 6–8wk to allow healing.
- **Surgery**: expose the fracture site in the tunica albuginea; evacuate the haematoma, and close the defect in the tunica.
Box 11.9 Surgical reimplantation of amputated penis

Repair the urethra first over a catheter to provide a stable base for subsequent neurovascular repair. Close the tunica albuginea of the corpora (4/0 absorbable suture). Cavernosal artery repair is technically very difficult and does not improve penile viability. Anastomose the dorsal artery of the penis (11/0 nylon), then the dorsal vein (9/0 nylon) to provide venous drainage, and finally the dorsal penile nerve (10/0 nylon).

Surgical repair of penile fracture

Expose the fracture site by degloving the penis via a circumcising incision around the subcoronal sulcus or by an incision directly over the defect, if palpable. A degloving incision allows better exposure of the urethra for associated urethral injuries. Alternatively, use a midline incision extending distally from the midline raphe of the scrotum along the shaft of the penis. This latter incision, along with a degloving incision, allows excellent exposure of both corpora cavernosa so that an unexpected bilateral injury can be repaired easily, as can a urethral injury, should this have occurred.

Close the defect in the tunica with absorbable sutures or by non-absorbable sutures (bury the knots so that the patient is unable to palpate them). Non-absorbable sutures may possibly be associated with prolonged post-operative pain. Leave a urethral catheter (voiding can be difficult immediately post-operatively). Repair a urethral rupture, if present, with a spatulated single- or two-layer urethral anastomosis and splint repair with a urethral catheter for 3wk.

Penile bites

Clean the wound. Give broad-spectrum antibiotics (e.g. cephalosporin and amoxicillin).

Zipper injuries

If the penis is still caught in the zipper, use lubricant jelly and gently attempt to open it. The zipper may have to be cut with orthopaedic cutters or prised apart with a pair of surgical clips on either side of the zipper.
Torsion of the testis and testicular appendages

Definition
A testicular torsion is a twist of the spermatic cord, resulting in strangulation of the blood supply to the testis and epididymis. Testicular torsion occurs most frequently between the ages of 10 and 30 (peak incidence 13–15y of age), but any age group may be affected.

History and examination
Sudden onset of severe pain in the hemiscrotum, sometimes waking the patient from sleep. It may radiate to the groin, loin, or epigastrium (reflecting its origin from the dorsal abdominal wall of the embryo and its nerve supply from T10/11). There is sometimes a history of minor trauma to the testis. Some patients report previous episodes, with spontaneous resolution of the pain (suggesting previous torsion with spontaneous detorsion). The patient may have a slight fever. The testis is usually slightly swollen and very tender to touch. It may be high-riding (lying at a higher-than-normal position in the testis) and may be in a horizontal position due to twisting of the cord. The cremasteric reflex is usually, but not always, absent (positive Rabinowitz’s sign). The cremasteric reflex may normally be elicited by stroking the finger along the inside of the thigh, which results in an upward movement of the ipsilateral testis. Elevation of the involved testicle does not ameliorate the symptoms (negative Prehn’s sign).

Differential diagnosis and investigation
Epididymo-orchitis, torsion of a testicular appendage, and causes of flank pain with radiation into the groin and testis (e.g. a ureteric stone). Colour Doppler USS (reduced arterial blood flow in the testicular artery) and radionuclide scanning (radioisotope uptake) can be used to diagnose testicular torsion, but in many hospitals, these tests are not readily available and the diagnosis is based on symptoms and signs.

Surgical management
Scrotal exploration should be undertaken as a matter of urgency. Delay in relieving the twisted testis results in permanent ischaemic damage to the testis, causing atrophy, loss of hormone and sperm production, and, as the testis undergoes necrosis and the blood–testis barrier breaks down, an autoimmune reaction against the contralateral testis (sympathetic orchidopathy). Fix BOTH testes, since the bell-clapper abnormality, which predisposes to torsion, can occur bilaterally.

Torsion of testicular appendages
The appendix testis (hydatid of Morgagni—a remnant of the Müllerian duct) and the appendix epididymis (a remnant of a cranial mesonephric tubule of the Wolffian duct) can undergo torsion, causing pain that mimics a testicular torsion. At scrotal exploration, they are easily removed with scissors or a diathermy probe.
Paraphimosis

Definition and presentation
This is where the foreskin is retracted from over the glans of the penis, becomes oedematous, and cannot then be pulled back over the glans into its normal anatomical position. It occurs most commonly in teenagers or young men and also in elderly men (who have had the foreskin retracted during catheterization, but where it has not been returned to its normal position). Paraphimosis is usually painful. The foreskin is oedematous, and a small area of ulceration of the foreskin may have developed.

Treatment
- **The ‘iced glove’ method**: apply topical lidocaine gel to the glans and foreskin for 5 min. Place ice and water in a rubber glove, and tie a knot in the cuff of the glove to prevent the contents from pouring out. Invaginate the penis into the thumb of the glove. This may reduce the swelling and allow reduction of the foreskin.
- **Granulated sugar**: placed in a condom or glove and applied over the end of the penis, has been used to reduce oedema by osmosis.
- **The Dundee technique**: give the patient a broad-spectrum antibiotic, such as 500 mg of ciprofloxacin, by mouth. Apply a ring block to the base of the penis using a 26G needle and 10–20 mL of 0.5% plain bupivacaine (children usually require GA). Clean the skin of the foreskin and the glans with cleaning solution. Using a 25G needle; make ~20 punctures into the oedematous foreskin. Squeeze the oedema fluid out of the foreskin, and return to its normal position. Approximately one-third of patients subsequently require elective circumcision for an underlying phimosis.

If this fails, the traditional surgical treatment is a dorsal slit under GA or ring block. A longitudinal incision is made in the tight band of constricting tissue, and the foreskin is pulled back over the glans. Close the incision transversely to lengthen the circumference of the foreskin and prevent recurrences.

Reference
Malignant ureteric obstruction

Locally advanced PC, and bladder or ureteric cancer may cause unilateral or bilateral ureteric obstruction. Locally advanced non-urological malignancies can also obstruct the ureters (e.g. cervical cancer, rectal cancer, lymphoma).

Unilateral ureteric obstruction

Often asymptomatic; an incidental USS finding that requires no specific treatment in the presence of a normal contralateral kidney. Occasionally, loin pain and systemic symptoms may develop due to infection of the obstructed upper urinary tract. In this circumstance, drainage by nephrostomy or stenting is required.

Bilateral ureteric obstruction

A urological emergency. The patient presents either with symptoms and signs of renal failure or anuric without a palpable bladder. A mass will probably be palpable on rectal examination.

- **Investigations:** renal USS will demonstrate bilateral hydronephrosis and an empty bladder; CT-KUB will confirm the presence of dilated ureters down to a mass at the bladder base.

Immediate treatment of bilateral ureteric obstruction

After treating any life-threatening hyperkalaemia, options include bilateral percutaneous nephrostomy or ureteric stenting. A clotting screen is required prior to nephrostomy insertion. Insertion of retrograde ureteric stents in this setting is usually unsuccessful, because a tumour involving the trigone obscures the location of the ureteric orifices. More successful is antegrade ureteric stenting following nephrostomy insertion, both of which are performed under sedo-analgesia. The full-length double-J silicone or polyurethane ureteric stents require periodic (4- to 6-monthly) changes to prevent calcification or blockage. In the case of PC, hormone therapy should be commenced, if not previously used; even in patients with androgen-independent disease, high-dose parenteral oestrogens may relieve ureteric obstruction.

Long-term treatment of bilateral ureteric obstruction

Longer-term treatment options include urinary diversion by formation of an ileal conduit, ureteric reimplantation, insertion of short ‘permanent’ metallic ureteric stents, or ureteric replacement with isolated ileal segments or prosthetic graft material. Such procedures are often complicated and inappropriate in those patients with poor prognosis.
Metastatic spinal cord and cauda equina compression

Metastatic spinal cord compression

This is an oncological emergency; failure to diagnose and treat promptly can lead to permanent paraplegia and autonomic dysfunction. It is defined as spinal cord or cauda equina compression by direct pressure and/or induction of vertebral collapse or instability by metastatic spread or direct extension of malignancy that threatens or causes neurological disability.¹

Ninety-five per cent of patients will complain of back or nerve root pain and have a positive bone scan. Five per cent of patients do not exhibit these features because their disease is paravertebral. The majority of urological cases of metastatic spinal cord compression (MSCC) are due to PC. Patients with back or nerve root pain should be examined neurologically and evaluated radiologically. Pain, sometimes worsened by straining or coughing, usually precedes clinical cord compression by ~4 months. Clinical features include sensory changes and muscle weakness in the lower limbs; 50% of patients present unable to stand or walk. Only two-thirds of patients presenting as such will recover any function within 1 month.

If cord compression is suspected, the patient should be nursed flat with neutral spine alignment (including 'log rolling' or turning beds, with use of a slipper pan for toilet), until bony and neurological stability are ensured and cautious remobilization may begin. Every acute UK NHS Cancer Centre should have access to an MSCC coordinator who should be informed. The investigation of choice is emergency spinal MRI. Short TI inversion recovery (STIR) and sagittal T2-weighted sequences will reveal the bone deposits and level (multiple in 20% of cases) of the soft tissue cord compression. If MRI is not possible, CT scan or myelography should be considered.

Initial treatment is with high-dose IV corticosteroids, e.g. dexamethasone 16mg, followed by 4mg 6-hourly for 2–3wk. Analgesics and bisphosphonates are administered for pain relief. Within 24h, definitive treatment is with fractionated RT or neurosurgical decompression. Surgery to achieve decompression and spinal stability is considered preferable if there is pathological fracture, an unknown tissue diagnosis, or a history of previous RT. Subsequently, care should include pressure sore and VTE prophylaxis measures. Bladder and bowel dysfunction may also occur, requiring catheterization and stool softeners. Rehabilitation and community support will also be required.

Cauda equina compression

The adult spinal cord tapers below L2 vertebral level into the conus medullaris. The cauda equina consists of the nerve roots of all spinal cord segments below L2, as they run in the subarachnoid space to their exit levels in the lower lumbar and sacral spines.

• **Pathophysiology:** the cauda equina may be compressed by central intervertebral disc prolapse (1–15% of cases), spinal stenosis, or a benign or malignant tumour within the lower lumbar or sacral vertebral canal.
Symptoms: the diagnosis should be considered in any ♀ or young ♂ presenting with difficulty voiding or in urinary retention. There may be back pain.

Signs: palpable bladder, loss of perianal (S2–4) and lateral foot sensation (S1–2), reduced anal tone; priapism.

Investigations: MRI lumbosacral spine; urodynamic studies reveal a normally compliant, but areflexic, bladder.

Treatment: ISC, neurosurgery.

Reference

Chapter 12

Infertility

Male reproductive physiology 556
Aetiology and evaluation of male infertility 558
Investigation of male infertility 562
Oligozoospermia 566
Azoospermia 568
Varicocele 570
Treatment options for male infertility 574
Male contraception: vasectomy and vasectomy reversal 578
Male reproductive physiology

Hypothalamic–pituitary–testicular axis

The hypothalamus secretes LHRH, also known as gonadotrophin-releasing hormone (GnRH). This causes the pulsatile release of anterior pituitary gonadotrophins called follicle-stimulating hormone (FSH) and LH, which act on the testis. FSH stimulates the seminiferous tubules to secrete inhibin and produce sperm; LH acts on Leydig cells to produce testosterone (Fig. 12.1).

Testosterone is secreted by the interstitial Leydig cells, which lie adjacent to the seminiferous tubules in the testis. It promotes the development of the ♂ reproductive system and secondary sexual characteristics. Steroidogenesis is stimulated by a cyclic adenosine monophosphate (cAMP)–protein kinase C mechanism which converts cholesterol to pregnenolone. Further steps in the biosynthesis pathway produce intermediary substances (dehydroepiandrosterone and androstenedione), prior to producing testosterone. In blood, 60% of testosterone is attached to sex hormone-binding globulin (SHBG), 38% is bound to albumin, and 2% is free. At androgen-responsive target tissues, testosterone is converted into a potent androgen dihydrotestosterone (DHT) by intracellular 5AR (see p. 713) (Fig. 16.7).

Spermatogenesis: the seminiferous tubules are lined with Sertoli cells, which surround developing germ cells (spermatogonia) and provide nutrients and stimulating factors, as well as secreting androgen-binding factor and inhibin (Fig. 12.2). Primordial germ cells divide to form primary spermatocytes. These undergo a first meiotic division to create secondary spermatocytes (46 chromosomes), followed by a second meiotic division to form spermatids (23 chromosomes). Finally, these differentiate into spermatozoa. This process takes 72 days. The non-motile spermatozoa leave the seminiferous tubules and pass to the epididymis for storage and maturation (until ejaculation). Spermatozoa that are not released are reabsorbed by phagocytosis.

Mature sperm has a head, middle piece, and tail (Fig. 12.3). The head is composed of a nucleus covered by an acrosome cap containing vesicles filled with lytic enzymes. The middle piece contains mitochondria and contractile filaments which extend into the tail to aid motility. After deposition at the cervix, sperm penetrate cervical mucus and travel through the uterus to the site of fertilization in the Fallopian tube, during which time they undergo functional maturation (capacitation). Sperm start to penetrate the oocyte and bind to the zona pellucida. The activation phase is initiated (by ZP3), triggering hyperactivated motility and the acrosomal reaction which leads to enzyme release, penetration into the cytoplasm of the oocyte, fusion, and fertilization.

Of note, the seminal vesicles contribute 2mL, prostate 0.5mL, and Cowper’s glands 0.1mL to overall ejaculate/semen volume.
Fig. 12.1 Hypothalamic–pituitary–testicular axis.

Fig. 12.2 Spermatogenesis in the seminiferous tubules of the testis.

Fig. 12.3 Spermatozoa.
Aetiology and evaluation of male infertility

Definition of infertility
Failure of conception after at least 12 months of regular unprotected intercourse. The chance of a healthy couple conceiving is estimated at 20–25% per month, 75% by 6 months, and 90% at 1y.

Epidemiology
Up to 50% of infertility is related to ♂ factors. An estimated 14–25% of couples may be affected at some point in their reproductive years. It can be primary (never conceived a child) or secondary (infertility after previous successful conception).

Pathophysiology
Due to failed fertilization of the normal ovum due to defective sperm development, function, or inadequate numbers. Abnormal epididymal function may also result in defective spermatozoa maturation transport or induce cell death. There may be abnormalities of:
- Morphology—teratozoospermia (<4% normal forms).
- Motility—asthenozoospermia (<40% motile sperm).
- Low sperm numbers—oligozoospermia (<15 × 10⁶/mL).
- Anomalies of all three factors—oligoasthenoteratozoospermia or oligoasthenoteratospermia (OAT) syndrome.
- Absence of spermatozoa—azoospermia.

Prognostic factors for male infertility
- Primary vs secondary infertility.
- Semen analysis parameters.
- Duration of time of infertility.
- ♂ partner age and fertility status (♀ fertility potential is reduced significantly after age 35).

Aetiology of male factor infertility
- Idiopathic (30%).
- Varicocele (present in ~40%).
- Undescended testes.
- Functional sperm disorders: immunological infertility (antisperm antibodies); head or tail defects; Kartagener’s syndrome (immotile cilia); dyskinetic cilia syndrome.
- ED.
- Ejaculatory problems: retrograde ejaculation causes absent or low volume ejaculate.
- Testicular injury: testicular torsion; trauma; RT.
- Endocrine disorders: Kallmann’s syndrome (isolated gonadotrophin deficiency causing hypogonadism); Prader–Willi syndrome (hypogonadism, short stature, hyperphagia, obesity); pituitary gland adenoma, radiation, or infection.
• Hormone excess: excess prolactin (pituitary tumour); excess androgen (adrenal tumour, congenital adrenal hyperplasia, anabolic steroids); excess oestrogens.
• Genetic disorders: including Klinefelter’s syndrome (47,XXY) with azoospermia, ↑ FSH/LH, and ↓ testosterone; Klinefelter’s mosaicism (46,XY/47,XXY); XX♂ and XYY syndromes.
• Deletions in the azoospermic factor (AZF) gene on the Y chromosome are associated with abnormal spermatogenesis, which can be inherited by ♂ offspring. Microdeletions of region AZFa has associations with Sertoli cell-only syndrome; AZFb microdeletions with maturation arrest and AZFc microdeletions with azoospermia/severe oligozoospermia.
• Cystic fibrosis (CF) is an autosomal recessive disorder with abnormality of the CF transmembrane conductance regulator (CFTR) gene on chromosome 7p. CFTR gene mutations are associated with congenital bilateral absence of the vas deferens (CBAVD), causing obstructed azoospermia. The ♀ partner should also be tested for CFTR gene mutation, and if they are also a carrier, the couple should be counselled on the ↑ risks of having a child with CF or CBAVD.
• ♂ genital tract obstruction: due to congenital absence of the vas deferens; agenesis of the seminal vesicles/Wolffian duct abnormalities; epididymal obstruction or infection; Müllerian prostatic cysts; inguinoscrotal or pelvic surgery.
• Systemic disease: renal failure; liver cirrhosis; CF.
• Drugs: chemotherapy; steroids; antiandrogens; alcohol; recreational drugs (marijuana); sulfasalazine; smoking.
• Environmental factors: pesticides; heavy metals; hot baths.
• Infection: genital tract infections are found in 10–20%. Chlamydia trachomatis can attach to, and penetrate, sperm; Ureaplasma urealyticum reduces sperm motility. HIV infection, previous prostatitis, and bilateral epididymitis reduce semen quality. Post-pubertal bilateral mumps orchitis can also contribute to reduced fertility.
• Malignancy: testicular tumours, lymphoma, leukaemia (and their adjuvant therapies and treatments).
• Congenital: anorchia.

History
• Sexual and reproductive: duration of problem; frequency and timing of intercourse; use of vaginal lubricants (adversely affects sperm function); previous successful conceptions; previous birth control; erectile or ejaculatory dysfunction.
• Partner’s history: age; previous pregnancies; previous investigation for subfertility; medical history.
• Developmental: age at puberty; history of undescended testes; gynaecomastia.
• Medical and surgical: detailed assessment for risk factors—recent febrile illness; post-pubertal mumps orchitis; varicocele; testicular torsion, orchidopexy, trauma, or tumour; STIs; UTI; genitourinary and pelvic surgery; RT; respiratory diseases associated with ciliary dysfunction; diabetes.
• **Drug and environmental**: previous chemotherapy; exposure to substances which impair spermatogenesis or erectile function; alcohol consumption; smoking habits; hot baths.
• **Family history**: hypogonadism; undescended testes; parent infertility issues.

Examination

Perform a full assessment of all systems, with attention to general appearance (evidence of secondary sexual development; signs of hypogonadism; gynaecomastia). *Urogenital examination* should include assessment of the penis (phimosis, hypospadias, chordee) and the presence of testes, and measurement of testicular consistency, tenderness, and volume with a Prader orchidometer (normal >20mL—varies with race); palpate the epididymides (assess for tenderness, swelling/fullness, and nodules) and spermatic cord (vas deferens present or absent, nodules, varicocele); DRE of the prostate. Absence of the vas is associated with CF.

Of note, the patient’s ♀ partner should also undergo full screening and assessment for infertility by a gynaecologist, either in a separate consultation or in a joint clinic.
Investigation of male infertility

Basic investigation

- **Semen analysis**: two specimens should be taken at least 4 wk apart, collected after 2–7 days of sexual abstinence. Avoid lubricants or spermicides. Place into a sterile container. Deliver the specimens to the laboratory within 1 h (ideally keeping the specimen warm in a shirt or trouser pocket). Ejaculate volume, liquefaction time, and pH are noted (Table 12.1). The sample is centrifuged at 3000g for 15 min to produce a pellet, which then undergoes microscopic examination by phase contrast optics at ×200 magnification. The pellet can then be stained and re-inspected. Microscopy techniques measure sperm concentration, total numbers, morphology, and motility (Table 12.2). The mixed agglutination reaction (MAR) test detects antisperm antibodies (useful for asthenozoospermia, which can be associated with immunological infertility), although this is not commonly performed in clinical practice now. The presence of leucocytes (>1 × 10⁶/mL in semen) suggests infection, and cultures should be requested. Low or absent ejaculate volume may suggest absence or hypoplasia of the vas deferens or seminal vesicles, ejaculatory duct obstruction, hypogonadism, or retrograde ejaculation. If semen analysis has been abnormal on two or more tests, further andrological investigation is recommended.

Table 12.1 WHO semen analysis characteristics

<table>
<thead>
<tr>
<th>Semen analysis parameter</th>
<th>Lower reference limit (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum volume</td>
<td>1.5mL (1.4–1.7)</td>
</tr>
<tr>
<td>pH</td>
<td>≥7.2 (normal range is 7.9–8.1)</td>
</tr>
<tr>
<td>Total sperm count</td>
<td>39 × 10⁶ per ejaculate (33–46)</td>
</tr>
<tr>
<td>Sperm concentration</td>
<td>15 × 10⁶ per mL (12–16)</td>
</tr>
<tr>
<td>Motility</td>
<td>40% progressive + non-progressive (38–40)</td>
</tr>
<tr>
<td></td>
<td>32% progressive motility (31–34)</td>
</tr>
<tr>
<td></td>
<td>Forward progression > grade 2</td>
</tr>
<tr>
<td>Sperm morphology</td>
<td>4% normal forms (3–4)</td>
</tr>
<tr>
<td>Vitality</td>
<td>58% live spermatozoa (55–63)</td>
</tr>
<tr>
<td>Time to liquefy</td>
<td>5–25min</td>
</tr>
<tr>
<td>WBC</td>
<td><1 × 10⁶ WBC per mL</td>
</tr>
<tr>
<td>MAR test (for antisperm antibody)</td>
<td><50% motile spermatozoa with bound particles</td>
</tr>
<tr>
<td>Zinc</td>
<td>≥2.4μmol per ejaculate</td>
</tr>
<tr>
<td>Semen fructose</td>
<td>≥13μmol per ejaculate</td>
</tr>
</tbody>
</table>

Investigation of male infertility

- **Hormone measurement**: serum FSH, LH, and testosterone (Table 12.3). In cases of isolated low testosterone level, it is recommended to test early morning and free testosterone levels. If LH/FSH or testosterone levels are abnormal, consider checking prolactin, as a raised level is associated with sexual dysfunction, infertility, and pituitary disease.

Special investigation

Offer selective genetic testing (i.e., karyotype, Y deletions) to men with sperm counts of <10 million/mL.

- **Karyotype**: 5–10% of azoospermic patients have Klinefelter’s syndrome (47,XXY).

- **Y chromosome (AZF) microdeletion assay**:
 - AZFa: microdeletion predicts no spermatogenesis (Sertoli cell only).
 - AZFb: associated with maturational arrest (spermatogenic rest).
 - AZFc: associated with severe oligozoospermia.

If a patient carries AZFa or AZFb microdeletions, no sperm will be identified either in the ejaculate or on testicular biopsy. This has implications when considering semen retrieval for in vitro fertilization (IVF). In men with AZFc deletion, sperm are detectable in around 50%; however, the offspring produced will also be infertile.

<table>
<thead>
<tr>
<th>Table 12.2 Grading of sperm motility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 12.3 Clinical diagnosis on hormone assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH</td>
</tr>
<tr>
<td>↑</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>↑</td>
</tr>
<tr>
<td>↓</td>
</tr>
</tbody>
</table>

FSH, follicle-stimulating hormone; LH, luteinizing hormone.
Post-orgasmic urine analysis: consider for patients with low ejaculate volume. The presence of >10–15 sperm per HPF confirms the diagnosis of retrograde ejaculation.

Antisperm antibodies: associated with testicular trauma, torsion, or surgery, infection, and ductal obstruction, and seen after vasectomy reversal. Can be associated with lower pregnancy rates. Not routinely tested; some would advocate testing for couples with unexplained infertility.

Imaging

Scrotal USS: is used to assess for testicular, epididymal, and vasal abnormalities, and detection of varicocele.

TRUS: is indicated for low ejaculate volumes, to investigate seminal vesicle obstruction (>1.5cm width) or absence, and ejaculatory duct obstruction (>2.3mm).

Abdominal USS: if unilateral or bilateral absence of the vas deferens, as this is associated with renal anomalies.

Vasography: the vas deferens is punctured at the level of the scrotum and injected with contrast. A normal test shows the passage of contrast along the vas deferens, seminal vesicles, and ejaculatory duct, and into the bladder, which rules out obstruction.

Venography: used to diagnose and guide embolization treatment of varicocele.

Testicular biopsy

Performed for azoospermic patients to help differentiate between obstructive and non-obstructive causes. Simultaneous sperm retrieval can be carried out [testicular exploration and sperm extraction (TESE)] for use in intracytoplasmic sperm injection (ICSI) treatment, either at the time or at a later date (following freezing and storage). The degree of spermatogenesis can be histologically scored by the Johnsen score.¹ The Johnsen score ranges from 1 (neither germ cells nor Sertoli cells present in the sample) to 10 (complete spermatogenesis, many spermatozoa). Only mature spermatozoa (score 8 or above) can be used for fertility treatment. Of note, the spermatozoa retrieved from infertile men have a high risk of chromosomal and genetic abnormalities which can be passed on to offspring.

Reference

Oligozoospermia

Defined as a sperm concentration of <15 million/mL of ejaculate. This will be identified in around 25% of patients presenting with infertility.

Aetiology

(See pp. 558–60.)

- Idiopathic.
- Varicocele.
- Androgen deficiency/hypogonadism.
- Other: recreational drugs; medication (antiandrogens, anabolic steroids); smoking; alcohol; testicular trauma, infection, and maldescent; genetic defects on Y chromosome; chromosomal abnormalities (Klinefelter’s syndrome); neoplasia.

Associated disorders

Often associated with abnormalities of morphology and motility. The combined disorder is called OAT syndrome. Common causes of OAT include varicocele, undescended testes, idiopathic, drug and toxin exposure, and febrile illness. Oligozoospermia is also associated with risk of DNA fragmentation known to reduce the rate of natural conception and increase the risk of pregnancy loss.

Further investigation

- **Hormone analysis:** sperm counts of <5–10 million/mL require hormone investigation (FSH and testosterone). Severe oligozoospermia (<1 million/mL) is associated with seminiferous tubular failure, small soft testes, and FSH. Include prolactin levels, particularly if the testosterone level is low, as hyperprolactinaemia can adversely affect spermatogenesis.
- **Genetic analysis:** indicated for sperm counts of <10 million/mL.
- **Scrotal USS:** to identify any varicocele.

Treatment

Lifestyle advice and modification of risk factors. Correct the underlying cause (i.e. varicocele repair or embolization may improve testosterone levels, sperm production, and parameters). Idiopathic cases may respond to empirical medical therapy (clomiphene). There is limited evidence that antioxidants may be of benefit. Where these measures fail, couples will require assisted reproductive techniques (ART) (see p. 575).

Outcomes

The 2y follow-up cumulative pregnancy rates are around 27% in couples where oligozoospermia is the cause of infertility.
Azoospermia

Defined as an absence of sperm in the ejaculate fluid (and post-ejaculate urine). This is identified in around 10% of patients presenting with infertility.

Aetiology

Obstructive azoospermia (OA)
- Epididymal obstruction: the commonest cause. Can be idiopathic or related to infection (i.e. Chlamydia, gonococcal), post-surgery, or due to agenesis.
- Vasal aplasia: CBAVD presents with a low ejaculate volume and impalpable vasa.
- Vas deferens obstruction: post-surgery or post-vasectomy.
- Ejaculatory duct obstruction: presents as low ejaculate volume (<1.5mL) in the presence of palpable vas deferens, with acidic pH (pH <7.0), low or absent semen fructose, and dilated seminal vesicles. Causes can be post-infective, post-surgery, or congenital, or due to a Müllerian duct cyst.
- Intratesticular obstruction: accounts for 15% of OA and presents with normal-sized testis, normal FSH/LH, and fullness of the epididymides. It can be congenital or acquired or secondary to trauma or infection/inflammation.
- Distal seminal duct obstruction: functional obstruction may be related to neuropathy or use of SSRI medication.

Non-obstructive azoospermia (NOA)
- Hormonal abnormality: hypogonadotrophism (Kallmann’s syndrome, pituitary tumour).
- Abnormalities of spermatogenesis: commonest cause is idiopathic (60% of NOA). Others are secondary to testicular torsion or trauma, viral orchitis, chromosomal anomalies (i.e. Klinefelter’s syndrome), or testicular failure (seen as raised FSH/LH and both vasa present).

Investigation
- Hormone assay: raised FSH is suggestive of a non-obstructive cause (i.e. reduced spermatogenesis presents with ↑ FSH associated with ↓ inhibin). Normal FSH with normal testes indicates ↑ likelihood of obstruction.
- Semen analysis: the volume and pH of the semen can be indicative of the underlying pathology. Seminal vesicle fluid is alkaline, so its absence (due to obstruction) will result in an acidic pH of the ejaculate (and reduced volume), whereas prostatic fluid is acidic, so its absence will result in a raised pH.
- Genetic testing/chromosomal analysis: chromosomal anomalies tend to be associated with lower sperm counts. Karyotyping is used to identify Klinefelter’s syndrome in patients presenting with azoospermia, small soft testes, gynaecomastia, ↑ FSH/LH, and ↓ testosterone. Assessment should also be made for Y chromosome (AZF) microdeletions. CF gene analysis is indicated for ♂ patients with unilateral or bilateral non-palpable vas deferens. Remember to include the ♀ partner to exclude carrier status in both.
AZOOSPERMIA

- **TRUS**: assesses for absence or blockage of vas deferens and ejaculatory duct obstruction. Exclude CF in patients with vas deferens defects.
- **Renal tract USS**: CBAVD as it is associated with unilateral renal agenesis.
- **Vasogram**: to assess for vas deferens obstruction.
- **Testicular biopsy**: to help distinguish between obstructed and non-obstructed cases where the aetiology is not clear clinically. Can be combined with sperm retrieval for later therapeutic use.

Management

Obstructed azoospermia

- **Bilateral absence or agenesis of vas deferens (CBAVD)**: this is associated with mutations in the *CFTR* gene. Most of these patients are not candidates for reconstruction, as they have a defect in sperm transport from mid epididymis to the seminal vesicles, and therefore ART are required in the form of microsurgical epididymal sperm aspiration (MESA). Alternative options include percutaneous epididymal sperm aspiration (PESA) and TESE.

- **Obstructive cause with normal testis**: if an isolated obstruction of the epididymis is identified, vasoepididymostomy can be performed. A microsurgical reversal of vasectomy (vasovasostomy) can be performed in the case of previous vasectomy, with good results. There is a trend to offer simultaneous TESE (for semen retrieval and storage), particularly if there has been a long interval since the vasectomy and if the ♀ partner is older (>35y). If reconstruction is not possible, TESE alone may be needed.

- **Ejaculatory duct obstruction**: transurethral resection of ejaculatory duct; deroofing or incision of any obstructing cysts. Alternatives include using MESA or TESE instead.

- **Intratesticular obstruction**: requires TESE.

Non-obstructed azoospermia

- **Primary testicular failure with testicular atrophy**: microsurgical TESE with ICSI and IVF. Consider artificial insemination by donor (AID) if this fails.

- **Primary testicular failure with normal testis**: TESE with ICSI and IVF, or AID.

The chances of retrieving sperm by TESE in NOA are around 50%.

Outcomes

The results of ICSI are better with ejaculated (vs retrieved) semen, and from semen extracted from men with OA (vs NOA). Higher birth rates are seen in OA. Live birth and pregnancy rates for NOA with successful spermatozoa extraction is around 30–50%.
Varicocele

Definition
Dilatation of veins in the pampiniform plexus of the spermatic cord. For grading, see Table 12.4.

Prevalence
Found in 15% of men in the general population, with 20–40% of ♂ presenting with primary infertility and 45–80% of men with secondary infertility. Rare prior to puberty; present in ~10% of adolescents. Bilateral or unilateral (left side affected in 90%).

Aetiology
Incompetent valves in the internal spermatic veins lead to retrograde blood flow, vessel dilatation, and tortuosity of the pampiniform plexus. The left internal spermatic (testicular) vein enters the left renal vein at right angles and is under a higher pressure than the right vein, which enters the vena cava obliquely at a lower level. As a consequence, the left side is more likely to develop a varicocele. Most are idiopathic; rarely are caused by an underlying renal or retroperitoneal malignancy.

Pathophysiology
Testicular venous drainage is via the pampiniform plexus, a meshwork of veins encircling the testicular arteries. This arrangement normally provides a countercurrent heat exchange mechanism which cools arterial blood as it reaches the testis. Varicoceles adversely affect this mechanism, resulting in elevated scrotal temperatures and consequent deleterious effects on spermatogenesis (± loss of testicular volume over time).

Presentation
The majority are asymptomatic, although large varicoceles may cause pain or a heavy feeling in the scrotal area. Examine, both lying and standing, and ask the patient to perform the Valsalva manoeuvre (strain down). A varicocele is identified as a mass of dilated and tortuous veins above the testicle (‘bag of worms’), which decompress on lying supine. Examine also for testicular atrophy.

Urgently assess and investigate if there is a solitary, right-sided varicocele, a recent-onset symptomatic varicocele, and varicoceles which remain tense when the patient lies down, to exclude renal carcinoma causing vena caval obstruction or compression from other retroperitoneal masses.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Size</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Subclinical</td>
<td>Detected only on USS</td>
</tr>
<tr>
<td>1</td>
<td>Small</td>
<td>Palpable only with Valsalva manoeuvre</td>
</tr>
<tr>
<td>2</td>
<td>Moderate</td>
<td>Palpable without Valsalva</td>
</tr>
<tr>
<td>3</td>
<td>Large</td>
<td>Visible through the scrotal skin</td>
</tr>
</tbody>
</table>
Investigation

- **Scrotal Doppler USS**: is diagnostic (venous diameter >3.5mm with patient supine) and allows for assessment of testicular health.
- **Venography**: is the ‘gold standard’ but is reserved for patients considering embolization or for varicocele recurring after treatment.
- **Semen analysis**: varicoceles are associated with low or absent sperm counts, reduced sperm motility, and abnormal morphology, either alone or in combination (OAT syndrome). The higher the grade of the varicocele, the lower the semen count.
- **Urinary tract USS**: reserve for a solitary, right-sided varicocele or suspicious presentations of an acute-onset, symptomatic varicocele that does not decompress on lying.

Indications for varicocele repair

- **Adolescents**: pain, bilateral large varicoceles, varicocele in a solitary testis, small testicular volume/persistent delayed testicular growth by >20% (as compared with non-affected side), and for impaired semen quality.
- **Adults**: repair is indicated for symptomatic varicoceles and pain.

It is also performed for subfertility to improve semen parameters, with some studies showing improved pregnancy rates. It is recommended in the USA for a palpable varicocele associated with an abnormal semen analysis. The EAU recommends repair in men with a clinical varicocele, oligozoospermia, and otherwise unexplained couple infertility. Varicoceles are thought to be associated with a risk of sperm DNA damage/fragmentation. Intact sperm DNA integrity is important for normal fertilization and growth of the embryo, and therefore, offering varicocele repair can potentially improve the success rates of pregnancy, including those in couples needing artificial reproductive techniques.

However, this remains controversial, and in the UK, the Cochrane review failed to identify significant benefit to pregnancy rates. NICE does not recommend routine varicocele repair for infertility reasons. Patients should be fully counselled on the limitations of varicocele repair for infertility before being booked for treatment.

Management

Embolization

This is the first-line management. It is an interventional radiological technique where the femoral vein is used to access the spermatic veins for venography and embolization (with coils or other sclerosing agents), with success rates of >90%.

Surgical ligation of spermatic veins

- **Microsurgical varicocelectomy ± Doppler USS guidance**: reports the best surgical success rates and the fewest complications. Deliver the spermatic cord via a subinguinal approach, and use an operating microscope to isolate the veins and tie them off; 1–2% risk of testicular artery injury.
- **Subinguinal (Marmar) approach**: the external spermatic veins are accessed and ligated via a small transverse incision below the external ring.
- Inguinal (Ivanissevich) approach: the inguinal canal is incised to access the spermatic cord, and the external spermatic veins are tied off as they exit the internal ring.
- High retroperitoneal (Palomo) approach: a muscle-splitting incision is made near the anterior superior iliac spine, and the internal spermatic veins are ligated at that level.
- Laparoscopic: the internal spermatic veins are occluded high in the retroperitoneum.

Surgical complications
Varicocele recurrence; hydrocele formation; testicular atrophy, haematoma; ilioinguinal nerve damage, and wound infection.

Surgical outcomes
Overall 95% surgical success rate. Semen analysis should be repeated 3 months post-operatively for men undertaking the procedure for infertility reasons. Semen parameters can improve by up to 50% after varicocele repair, and overall, 70% of men have improvement of semen parameters. Patients with lower counts gain most from repair; the best results are with clinically apparent varicoceles.

When offering varicocele surgery for fertility reasons, check the ♀ partner’s age. If there is an older partner, and a significant (grade 3) varicocele, consider recommending that the couple proceed straight to IVF.

References
Treatment options for male infertility

General
Aim to identify and treat reversible causes of infertility and improve semen quality. Advice on modification of lifestyle factors (i.e. reduce alcohol consumption, avoid hot baths), and review medications.

Medical treatment

Antibiotics
Treat any positive semen, urine, or urethral cultures with the appropriate antibiotics.

Hormonal
- Secondary hypogonadism (pituitary intact): may respond to administration of hCG, which stimulates an increase in testosterone and testicular size. If the patient remains azoospermic after 6 months of treatment, FSH is added (human recombinant FSH) or human menopausal gonadotrophin (HMG). Pulsatile LHRH can be administered SC via a mini-pump and is used for treating secondary hypogonadism due to a hypothalamic cause (Kallman’s syndrome).
- Hyperprolactinaemia: is treated with dopamine agonists. Arrange an MRI to rule out a pituitary tumour.
- Antioestrogens (clomifene citrate 25mg od): are used empirically to increase LHRH, which stimulates endogenous gonadotrophin secretion. Used selectively for idiopathic oligozoospermia and OAT.

Antioxidants
Vitamin E supplements have been shown to improve sperm function and IVF success rates; zinc and folic acid may help increase sperm concentrations.

Erectile and ejaculatory dysfunction
ED may be treated conventionally (oral, intraurethral, intracavernosal drugs; vacuum devices or prostheses). Ejaculatory failure may respond to sympathomimetic drugs (desipramine), or electroejaculation or vibro- ejaculation (used in SCI) where an electrical stimulus is used to produce ejaculation. It is delivered via a rectal probe to the post-ganglionic sympathetic nerves that innervate the prostate and seminal vesicles.

Summary of surgical options
- Epididymal obstruction: can be overcome by microsurgical anastomosis between the epididymal tubule and vas (vasoepididymostomy).
- Vas deferens obstruction: is treated by microsurgical re-anastomosis of the ends of the vas (vasovasostomy) and is used for vasectomy reversal. Highest success rates for finding viable sperm occur in the first 8y post-vasectomy (80–90%); overall pregnancy rates are ~50%.
- Ejaculatory duct obstruction: requires transurethral resection of the ejaculatory ducts (TURED).
- CBAVD: consider MESA or TESE.
- Varicocele: consider repair for men with a clinical (palpable) varicocele and abnormal semen analysis (oligozoospermia). First-line treatment is embolization. Optimal open repair is microsurgical subinguinal varicocelectomy.
TreATMenT OpTIOns FOr MAle InFer TILITy

Assisted reproductive techniques

Sperm extraction

(See Table 12.5.)

Sperm are removed directly from the epididymis by PESA or MESA. If these methods fail, TESE by conventional biopsy or microsurgical techniques, or testicular exploration and sperm aspiration (TESA) may be tried. Sperm undergo cryo-preservation until required. Later, they are separated from seminal fluid by dilution and centrifugation methods, with further selection of motile sperm and normal forms using Percoll gradient techniques. In men with complete AZFa and AZFb microdeletions, sperm extraction procedures are contraindicated as the likelihood of successful sperm retrieval is extremely low.

Semen cryo-preservation

Prior to cryo-preservation, semen is initially quarantined and all men must undergo HIV and hepatitis B and C testing. If positive, semen can undergo washing techniques but should be stored separately. Additional analysis is performed for non-partner semen donations (selected genetic testing, syphilis and C. trachomatis testing). Semen is frozen, and samples are immersed in liquid nitrogen for storage (−196°C). Cryo-preservation inevitably does cause deterioration of semen quality, which is affected particularly by the freezing and thawing processes, but paternity success rates overall are comparable to fresh semen for ICSI.

Indications for cryo-preservation

- Following semen extraction (i.e. TESE) to facilitate future attempts at ART.
- Can be offered at the time of testicular biopsy (performed for diagnosis of infertility).
- Offered to men prior to undergoing chemo- or radiotherapy for cancer (i.e. prior to radical orchidectomy).

Table 12.5 Summary of techniques used in assisted reproduction

<table>
<thead>
<tr>
<th>Technique</th>
<th>Acronym</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percutaneous epididymal sperm aspiration</td>
<td>PESA</td>
<td>Epididymal obstruction (OA); ED</td>
</tr>
<tr>
<td>Microsurgical epididymal sperm aspiration</td>
<td>MESA</td>
<td>Epididymal obstruction (OA)</td>
</tr>
<tr>
<td>Testicular exploration and sperm aspiration</td>
<td>TESA</td>
<td>NOA; testicular failure; SCI; ED (can also use for OA)</td>
</tr>
<tr>
<td>Testicular exploration and sperm extraction</td>
<td>TESE</td>
<td>NOA; testicular failure; OAT; SCI (can also use for OA)</td>
</tr>
<tr>
<td>Microsurgical TESE (gold standard)</td>
<td>Micro-TESE</td>
<td>NOA; testicular failure; OAT (can also use for OA)</td>
</tr>
</tbody>
</table>

ED, erectile dysfunction; NOA, non-obstructive azoospermia; OA, obstructive azoospermia; OAT, oligoasthenoteratozoospermia; SCI, spinal cord injury.
For medical conditions associated with a risk of ↓ semen quality.
Following semen harvest after electroejaculation (SCI patients; psychogenic anejaculation).

Assisted conception

- **Intrauterine insemination (IUI):** following ovarian stimulation, sperm are placed directly into the uterus.
- **IVF:** controlled ovarian stimulation with gonadotrophins produces oocytes which are then retrieved by transvaginal USS-guided needle aspiration. Oocytes and sperm are placed in a Petri dish for fertilization to occur. Embryos are incubated and cultured for 2–3 days and then transferred to the uterine cavity. Pregnancy rates are 20–30% per cycle.
- **Gamete intra-Fallopian transfer (GIFT):** oocytes and sperm are mixed and deposited into the Fallopian tubes via laparoscopy. Variations include zygote intra-Fallopian transfer (ZIFT) and tubal embryo transfer (TET).
- **ICSI:** a single spermatozoa is injected directly into the oocyte cytoplasm (through the intact zona pellucida). The advantage is that fewer sperm are needed. ICSI is always combined with IVF, and the clinical pregnancy rate is 28–40% per cycle. Good success is seen with TESE, TESA, and PESA in combination with ICSI (better results with OA patients). Most report similar success between fresh and frozen semen. Offspring conceived through ICSI have a 3-fold higher risk of sex chromosome anomalies, compared to natural conception.
Male contraception: vasectomy and vasectomy reversal

Vasectomy
Bilateral division of the vas deferens to achieve ‘permanent’ sterilization for contraceptive reasons (also see pp. 790–1). It is performed most commonly under LA. The no-scalpel (or Li) technique is associated with the lowest risks. Excise 1–2cm length of the vas and occlude the lumen; this is done most effectively by cauterization of the lumen of the divided vas using a needle diathermy and suturing the fascia between the two divided vas ends (fascial interposition). Alternative occlusion techniques are to suture ligate the ends of the vas or to fold over the ends of the vas and then tie.

Counselling
• Vasectomy should be considered irreversible.
• Couples need to use alternative contraception until two negative semen analysis specimens are achieved.

Consent and risks
• Bleeding.
• Infection (wound; epididymitis).
• Pain (may be chronic).
• Early failure (due to recanalization); risk is around 1 in 200.
• Late failure; risk of pregnancy of around 1 in 2000.
• Sperm granuloma.

Clearance
Post-vasectomy semen analysis should be performed at 16wk (preferably after the patient has produced 24 ejaculates), with a second sample at around 20wk, post-operatively. The patient has ‘clearance’ (and alternative forms of contraception can stop) when there is confirmation of no motile spermatozoa on both tests; ideally, there should be two azoospermic specimens.

Special clearance
If motile spermatozoa are identified post-vasectomy, generally, this is evidence of failure. Special clearance may be granted to indicate that it is safe to reply on the vasectomy for contraception if there are <10 000 non-motile spermatozoa per millilitre in semen samples at least 7 months after vasectomy.

Vasectomy reversal (vasovasostomy)
The best outcomes are seen using microsurgical techniques to first identify and then dissect the obstructed ends of the vas to ensure they are healthy and patent, and then re-anastomose using very fine non-absorbable sutures in layers to achieve closure. It can take up to 18 months to get the maximal number of spermatozoa reappearing in the semen. The keys points are that success is directly related to the interval of time since the vasectomy was
performed, with longer durations being associated with poorer outcomes for patency and paternity rates (Table 12.6). It is also important to consider the age of the ♀ partner. For women aged <35y, vasectomy reversal is a preferable option for conception, rather than going straight to ICSI.

Table 12.6 Patency and pregnancy rates following vasectomy reversal over time

<table>
<thead>
<tr>
<th>Post-vasectomy</th>
<th>Patency rate (%)</th>
<th>Pregnancy rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><3y</td>
<td>97</td>
<td>76</td>
</tr>
<tr>
<td>3–8y</td>
<td>88</td>
<td>53</td>
</tr>
<tr>
<td>9–14y</td>
<td>79</td>
<td>44</td>
</tr>
<tr>
<td>>15y</td>
<td>71</td>
<td>30</td>
</tr>
</tbody>
</table>

References
Chapter 13

Sexual health

Physiology of erection and ejaculation 582
Erectile dysfunction: evaluation 586
Erectile dysfunction: treatment 590
Peyronie’s disease 594
Priapism 598
Retrograde ejaculation 602
Premature ejaculation 604
Other disorders of ejaculation and orgasm 606
Late-onset hypogonadism 610
Male hypogonadism and hormone replacement therapy 614
Urethritis 618
Physiology of erection and ejaculation

Innervation

Autonomic
Sympathetic nerves originating from T11–L2 and parasympathetic nerves originating from S2–4 join to form the pelvic plexus. The cavernosal nerves are branches of the pelvic plexus (parasympathetic) that innervate the penis. Parasympathetic stimulation causes erection; sympathetic activity causes ejaculation, inhibition of erection, and detumescence (loss of erection).

Somatic

Somatosensory (afferent) information travels via the dorsal penile and pudendal nerves and enters the spinal cord at S2–4. Onuf’s nucleus (segments S2–4) is the somatic centre for efferent (i.e. somatomotor) innervation of the ischiocavernosus and bulbocavernosus muscles of the penis.

Central

Medial preoptic area (MPOA) and paraventricular nucleus (PVN) in the hypothalamus are important centres for sexual function and penile erection.

Mechanism of erection

Neuroendocrine signals from the brain, created by audiovisual or tactile stimuli, activate the autonomic nuclei of the spinal erection centre (T11–L2 and S2–4). Signals are relayed via the cavernosal nerve to the erectile tissue of the corpora cavernosa, activating the veno-occlusive mechanism (Table 13.1). This triggers arterial blood flow into sinusoidal spaces (secondary to arterial and arteriolar dilatation), relaxation of cavernosal smooth

Table 13.1 Phases of erectile process

<table>
<thead>
<tr>
<th>Phase</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Flaccid phase</td>
<td>Cavernosal smooth muscle contracted; sinusoids empty; minimal arterial flow</td>
</tr>
<tr>
<td>1</td>
<td>Latent (filling) phase</td>
<td>Increased pudendal artery flow; penile elongation</td>
</tr>
<tr>
<td>2</td>
<td>Tumescent phase</td>
<td>Rising intracavernosal pressure; erection forming</td>
</tr>
<tr>
<td>3</td>
<td>Full erection phase</td>
<td>↑ cavernosal pressure causes the penis to become fully erect</td>
</tr>
<tr>
<td>4</td>
<td>Rigid erection phase</td>
<td>Further increases in pressure + ischiocavernosal muscle contraction</td>
</tr>
<tr>
<td>5</td>
<td>Detumescence phase (initial, slow, and fast phases)</td>
<td>Following ejaculation, sympathetic discharge resumes; there is smooth muscle contraction and vasoconstriction; reduced arterial flow; blood is expelled from sinusoidal spaces</td>
</tr>
</tbody>
</table>
muscle, and opening of the vascular space. The result is expansion of the sinusoidal spaces against the tunica albuginea which compresses the subtunical venous plexuses, decreasing venous outflow. Maximal stretching of the tunica albuginea, which acts to compress the emissary veins that lie within its inner circular and outer longitudinal layers, reduces venous flow even further. Rising intracavernosal pressure and contraction of the ischiocavernous muscles produce a rigid erection. Following orgasm and ejaculation, vasoconstriction (due to ↑ sympathetic activity, endothelin, PGF2, and breakdown of cGMP) produces detumescence. NA released from sympathetic nerve terminals in the corpora acts on smooth muscle cell α1-adrenoceptors, leading to raised intracellular calcium which helps maintain penile flaccidity (Figs. 13.1 and 13.2).

Three main types of erection are described:

- Nocturnal (or physiological) erections are associated with rapid eye movement (REM) sleep, with men usually experiencing 4–5 erections per night.
- Reflexogenic erections are related to direct tactile stimuli.
- Psychogenic erections are associated with arousing audiovisual stimuli and are more readily evoked in younger men.

Ejaculation

Tactile stimulation of the glans penis sends sensory information (via the pudendal nerve) to the lumbar spinal sympathetic nuclei. Sympathetic efferent signals (travelling in the hypogastric nerve) cause contraction of the smooth muscle of the epididymis, vas deferens, and secretory glands, propelling spermatozoa and glandular secretions into the prostatic urethra (emission). There is simultaneous closure of the internal urethral sphincter and relaxation of the extrinsic sphincter, directing sperm into the bulbourethra, but preventing sperm from entering the bladder. Rhythmic contraction of the bulbocavernous muscle (somatomotor innervation) leads to the pulsatile emission of the ejaculate from the urethra. During ejaculation, the alkaline prostatic secretion is discharged first, followed by spermatozoa and finally, seminal vesicle secretions (ejaculate volume of 2–5mL). The seminal vesicles contribute 2mL, prostate 0.5mL, and Cowper’s glands 0.1mL of the ejaculate. There is an additional vasal and testicular contribution (accounting for around 5–10% of the total ejaculate volume).

Fig. 13.1 Factors influencing the cavernosal smooth muscle.

- **Cavernosal smooth muscle**
 - Nitric oxide (NO)
 - Vasoactive intestinal peptide (VIP)
 - Prostaglandin E₁ (PGE₁)
 - **Decrease in calcium**
 - **RELAXATION** (erection)

- **Noradrenaline (NA)**
 - Endothelin-1
 - Prostaglandin F₂ (PGF₂)
 - **Increased sensitivity to calcium**
 - **CONTRACTION** (flaccidity)
Fig. 13.2 Secondary messenger pathways involved in erection (ATP, adenosine triphosphate; Ca\(^{2+}\), calcium; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; GTP, guanosine triphosphate; NA, noradrenaline; NO, nitric oxide; NOS, nitric oxide synthase enzyme; PDE5, phosphodiesterase type 5; PGE1, prostaglandin E1; PGF2, prostaglandin F2; VIP, vasoactive intestinal polypeptide).
Erectile dysfunction: evaluation

Definition
ED (also called impotence) describes the ‘consistent or recurrent inability to attain and/or maintain a penile erection sufficient for sexual intercourse’.

Epidemiology
In men aged 40–70y, mild ED is found in 17%, moderate ED in 25%, and complete ED in 10%. Incidence increases with age, with complete ED affecting ~15% of men in their 70s and 30–40% in their 80s. Increasing age is associated with an escalating risk of atherosclerosis in penile arteries, leading to corporeal ischaemia, fibrosis, and ED.

Aetiology
ED is generally divided into psychogenic and organic causes (Table 13.2). It is often multifactorial.

History
- Sexual: ask about the onset of ED (sudden or gradual); duration of the problem; presence of erections (nocturnal, early morning, spontaneous); ability to maintain erections (early collapse, not fully rigid); loss of libido; relationship issues (frequency of intercourse and sexual desire).
- Sexual function symptom questionnaires: International Index of Erectile Function (IIEF)—full and short version (IIEF 5) (see p. 589; Table 13.3).
- Medical and surgical: enquire about risk factors:
 - Diabetes mellitus (risk ×2; ED affects 50% overall and 30% of treated diabetics).
 - Cardiovascular disease (CVD). It is important to screen for CVD in men presenting with ED, as a significant number will have early evidence of coronary artery (or peripheral vascular) disease and are at higher risk of a more severe form than men without ED. Intermediate- or high-risk CVD requires specialist assessment and management prior to ED treatment.
 - Hypertension (risk ×2).
 - Dyslipidaemia (risk ×2 in men >55y).
 - Peripheral vascular disease.
 - Endocrine and neurological disorders.
 - Pelvic and penile surgery, RT, or trauma. Around one-third of men undergoing treatment for prostate cancer experience ED. Following open or robotic-assisted prostatectomy, erectile problems are reported in 42%.
- Psychosocial: assess for social stresses, anxiety, depression, coping problems, patient expectations, and relationship details.
- Drugs: enquire about current medications (particularly antiandrogens and recreational drugs) and ED treatments already tried and their outcome.
- Social: smoking, alcohol consumption.
An organic cause is more likely with gradual-onset ED (unless associated with an obvious cause such as surgery where onset is acute), loss of spontaneous erections, intact libido and ejaculatory function, and existing medical risk factors and older age groups. Psychogenic ED is more usually of sudden onset. Some patient fit into a mixed category.

Examination

Full physical examination (cardiovascular, abdomen, neurological); assess secondary sexual characteristics; external genitalia assessment to document foreskin phimosis and penile deformities and lesions (Peyronie’s plaques); confirm the presence, size, and location of testicles. EAU guidelines recommend DRE to assess the prostate. Include cardiovascular and neurological assessment (asking the patient to contract the anal sphincter against a gloved finger during DRE is good general test for integrity of S2, 3, 4 motor component, with additional neurological testing of the lower limbs, as indicated).

Investigation

- **Blood tests:** fasting glucose, early morning total testosterone (taken 8–11 a.m.), and fasting lipid profile are essential basic work-up tests. SHBG, U&E, LH/FSH, prolactin, PSA, and thyroid function testing should be selected according to the patient’s history and risk factor profile. Consider HbA1c test for known diabetics.
- **Blood pressure.

Further investigation

(If clinically indicated and available.)

- **Nocturnal penile tumescence and rigidity testing:** the RigiScan device contains two rings that are placed around the base and distal penile shaft to measure tumescence and the number, duration, and rigidity of nocturnal erections. Useful for diagnosing psychogenic ED and for illustrating this diagnosis to patients.
- **Penile colour Doppler USS:** measures arterial peak systolic and end-diastolic velocities, pre- and post-intracavernosal injection of PGE1. Normal values: peak systolic velocity >35cm/s; end-diastolic velocity <5cm/s.
- **Cavernosography:** imaging and measurement of penile blood flow after intracavernosal injection of contrast and induction of artificial erection are used to identify venous leaks.
- **Penile arteriography:** reserved for trauma-related ED in younger men. Pudendal arteriography is performed before and after drug-induced erection to identify those requiring arterial bypass surgery (although this is less commonly indicated now with the advent of modern penile prostheses).
- **MRI:** useful for assessing penile fibrosis and severe cases of Peyronie’s disease.

Of note, antihypertensives which exhibit a positive effect on erectile function include angiotensin receptor blockers and α-blockers, and should be considered for men with hypertension and ED.
<table>
<thead>
<tr>
<th>Cause</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory</td>
<td>Prostatitis</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Peyronie’s disease</td>
</tr>
<tr>
<td>Psychological</td>
<td>Depression; anxiety; relationship difficulties; lack of attraction; stress</td>
</tr>
<tr>
<td>Occlusive vascular factors</td>
<td>Arteriogenic: hypertension; smoking; hyperlipidaemia; diabetes mellitus; peripheral vascular disease</td>
</tr>
<tr>
<td></td>
<td>Venogenic: impairment of veno-occlusive mechanism (due to anatomical or degenerative changes)</td>
</tr>
<tr>
<td>Trauma</td>
<td>Pelvic fracture; SCI; penile fracture/trauma</td>
</tr>
<tr>
<td>Extra factors</td>
<td>Iatrogenic: pelvic surgery; prostatectomy</td>
</tr>
<tr>
<td></td>
<td>Other: increasing age; chronic renal failure; cirrhosis, ischaemic priapism (i.e. corporeal fibrosis); smoking; penile cancer</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>CNS: MS; PD; multisystem atrophy; tumour; stroke</td>
</tr>
<tr>
<td></td>
<td>Spinal cord: spina bifida; MS; SCI; tumour</td>
</tr>
<tr>
<td></td>
<td>PNS: pelvic surgery or RT; peripheral neuropathy (diabetes, alcohol-related); pelvic/urethral surgery</td>
</tr>
<tr>
<td>Chemical</td>
<td>Antihypertensives (β-blockers, thiazides, ACE inhibitors)</td>
</tr>
<tr>
<td></td>
<td>Antiarrhythmics (amiodarone)</td>
</tr>
<tr>
<td></td>
<td>Antidepressants (tricyclics, MAOIs, SSRIs)</td>
</tr>
<tr>
<td></td>
<td>Anxiolytics (benzodiazepine)</td>
</tr>
<tr>
<td></td>
<td>Antipsychotics (neuroleptics)</td>
</tr>
<tr>
<td></td>
<td>Antiandrogens (finasteride, cyproterone acetate)</td>
</tr>
<tr>
<td></td>
<td>GnRH analogues</td>
</tr>
<tr>
<td></td>
<td>Anticonvulsants (phenytoin, carbamazepine)</td>
</tr>
<tr>
<td></td>
<td>Anti-PD drugs (levodopa)</td>
</tr>
<tr>
<td></td>
<td>Statins (atorvastatin)</td>
</tr>
<tr>
<td></td>
<td>Recreational drugs (alcohol, marijuana, cocaine, heroin, anabolic steroids)</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Diabetes mellitus; hypogonadism; hyperprolactinaemia; hypo- and hyperthyroidism; hypo- and hypercortisolism</td>
</tr>
</tbody>
</table>

ACE, angiotensin-converting enzyme inhibitor; GnRH, gonadotrophin-releasing hormone; MAOI, monoamine oxidase inhibitor; MS multiple sclerosis; RT, radiotherapy; SCI, spinal cord injury; SSRI, serotonin reuptake inhibitor.

References

Table 13.3 International Index of Erectile Function short form (IIEF 5)—also known as the Sexual Health Inventory for Men (SHIM)

<table>
<thead>
<tr>
<th>Question</th>
<th>Very low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How do you rate your confidence that you could get and keep an erection?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. When you had erections with sexual stimulation, how often were your erections hard enough for penetration?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3. During sexual intercourse, how often were your erections hard enough for penetration?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4. During sexual intercourse, how difficult was it to maintain your erection to completion of intercourse?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5. When you attempted sexual intercourse, how often was it satisfactory to you?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

IIEF 5 is scored from 1 to 25. Scores 1–7 = severe ED; 8–11 = moderate ED; 12–16 = mild to moderate ED; 17–21 = mild ED; 22–25 = no ED.

Erectile dysfunction: treatment

Correct any reversible causes (i.e., alter lifestyle, reduce weight, exercise, stop smoking, change medication, optimize diabetes control, etc.) (Table 13.2).

Psychosexual therapy

Aims to understand and address underlying psychological issues and provides information and treatment in the form of sex education, psychosexual counselling, instruction on improving partner communication skills, cognitive therapy, and behavioural therapy (programmed relearning of a couple’s sexual relationship). Pharmacotherapy may be a useful adjuvant.

Drug therapy

PDE5 inhibitors

First-line oral therapies which enhance cavernosal smooth muscle relaxation and erection by blocking the breakdown of cGMP by PDE (Table 13.4). Sexual stimulus is still required to initiate erection, and they are best taken on an empty stomach as food delays absorption. Results are less good in diabetes. They are all taken on demand; tadalafil is also licensed for daily use at low dose (2.5 and 5mg). As a rule, patients should ensure they take the drug correctly and have tried the drug six times and at the highest dose before reporting treatment failure. PDE5 inhibitors can also improve voiding symptoms due to BPE (daily tadalafil is licensed for this use). Evidence for a role of early use of PDE5 inhibitors following radical prostatectomy to optimize the return of spontaneous erections (penile rehabilitation) is limited.

- **Sildenafil** (Viagra®) — success rates of up to 84%.
- **Tadalafil** (Cialis®) — success rates of up to 81%.
- **Vardenafil** (Levitra®) — success rates of up to 80%.
- **Avanafil** (Spedra®) — success rates of up to 59%.

Contraindications: patients taking nitrates, recent myocardial infarction, stroke, or arrhythmia, hypotension (<90/50) or hypertension (>170/100), unstable angina, non-arteritic anterior ischaemic optic nerve neuropathy (NAION), severe renal or hepatic failure. **Cautions:** intermediate- and high-risk CVD requires a cardiac review prior to treatment; groups with predisposition to priapism. α-blockers should be taken at a different time of the day to sildenafil, due to a potential interaction which can reduce blood pressure.

Intraurethral therapy

Second-line therapy when oral therapies have been ineffective. A synthetic PGE1 pellet (alprostadil) is placed into the urethra via a specialized applicator [Medicated Urethral System for Erection (MUSE)™ device]. Once inserted, the penis is gently rolled to encourage the pellet to dissolve into the urethral mucosa from where it enters the corpora. PGE1 acts to increase cAMP within the corporal smooth muscle, resulting in muscle relaxation. Success is reported in 30–66%. **Side effects:** penile and urethral pain, priapism, dizziness, urethral bleeding, local reactions.

Intracavernosal injection therapy

- **Alprostadil** (Caverject™) — success rates of >70%.
Erectile Dysfunction: Treatment

- **Papaverine** (PDE inhibitor) — usually given in combination with either phentolamine (α-adrenoceptor antagonist) and/or alprostadil in patients who have failed oral or single-agent injectable therapies. Triple therapy reports success rates of >90%.
- **Invicorp** — vasoactive intestinal peptide (VIP) + phentolamine. Effective in >80%, with the benefit of a very low incidence of penile pain and priapism.

Training of the technique and first dose is performed by a health professional. The needle is inserted at right angles into the corpus cavernosum on the lateral aspects of the mid-penile shaft. Discontinuation rates from penile injection techniques are high. **Contraindications:** bleeding disorders, sickle-cell disease, or high risk of priapism. **Adverse effects:** pain, prolonged erection, priapism, haematoma, fibrosis.

Vacuum erection device

Used when pharmacotherapies have failed, and useful in veno-occlusive dysfunction. It contains three components: a vacuum chamber, a pump, and a constriction band. The penis is placed in the chamber, and a vacuum

Table 13.4 A comparison of PDE5 inhibitors

<table>
<thead>
<tr>
<th>PDE5 inhibitor</th>
<th>Doses (mg)</th>
<th>Half-life</th>
<th>Effective within</th>
<th>Duration of action</th>
<th>Common side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sildenafil (Viagra®)</td>
<td>25, 50, 100</td>
<td>3.7h</td>
<td>30–60 min</td>
<td>Up to 4–5h</td>
<td>Headache, dizzy, GI upset, flushing, nasal congestion, blurred vision, blue vision</td>
</tr>
<tr>
<td>Vardenafil (Levitra®)</td>
<td>5, 10, 20</td>
<td>3.9h</td>
<td>25–60 min</td>
<td>Up to 4–5h</td>
<td>Headache, dizzy, GI upset, flushing, nasal congestion, blurred vision</td>
</tr>
<tr>
<td>Tadalafil (Cialis®)</td>
<td>2.5, 5, 10, 20</td>
<td>17.5h</td>
<td>30min to 2h</td>
<td>Up to 36h</td>
<td>Headache, dizzy, GI upset, flushing, nasal congestion, back pain</td>
</tr>
<tr>
<td>Avanafil (Spedra®)</td>
<td>50, 100, 200</td>
<td>5h</td>
<td>15–30 min</td>
<td>Up to 4–5h</td>
<td>Headache, dizzy, flushing, nasal and sinus congestion, back pain (overall lower risk)</td>
</tr>
</tbody>
</table>

Free NHS prescription (SLS Schedule 11) applies for certain conditions, including diabetes, SCI, MS, PD, polio, spina bifida, one-gene neurological disease, severe pelvic injury, PC, prostatectomy, radical pelvic surgery, and renal failure (treated by dialysis or transplant), for ‘severe distress’, and for patients already receiving NHS ED treatment on 14 September 1998.
created by the pump, increasing blood flow to the corpora cavernosa to induce an erection. The constriction band is placed onto the base of the penis to retain blood in the corpora and maintain rigidity. **Relative contraindication:** anticoagulation therapy. **Side effects:** penile coldness, bruising, pain, obstructed ejaculation.

Microvascular arterial bypass and venous ligation surgery
Used in specialist centres where there is a clear-cut diagnosis of a vascular disorder. Acts to increase arterial inflow and decrease venous outflow. Rarely used now, as it is uncommon for success rates to exceed 50%.

Penile prosthesis
Semi-rigid, malleable, and inflatable penile prostheses are available when other therapies have failed or are unsuitable. Also indicated for Peyronie's disease, trauma, and penile fibrosis (i.e. secondary to priapism). The device is surgically implanted into the corpora to provide penile rigidity and generally has high satisfaction rates of >90% (Fig. 13.3). **Side effects:** infection, erosion, mechanical failure, penile shortening, glans may not fully engorge.

Testosterone replacement therapy
Indicated for hypogonadism and used mainly in transdermal gel and intramolecular or buccal preparations. Most guidelines recommend PSA, FBC, and LFT checks before and after starting treatment (see pp. 614–16). It can improve the results of PDE5 inhibitors in hypogonadal men.

Fig. 13.3 (a) AMS 700™ Series Tactile Pump penile prosthesis. (b) Inflated prosthesis *in situ*. Reproduced with permission, courtesy of Boston Scientific Ltd.
Peyronie’s disease

Definition
An acquired benign penile condition characterized by deformity of the penile shaft secondary to the formation of a fibrous, inelastic scar on the tunica albuginea.¹

Epidemiology
Prevalence is 3–9%,¹ predominantly affecting men aged 40–60y. The prevalence is higher in diabetes and men with ED.

Pathophysiology
Histologically, plaques have excessive connective tissue (fibrosis) and † cellularity, with random orientation of collagen fibres. Dorsal penile plaques are the commonest (66%). The corpus cavernosus underlying the lesion cannot lengthen fully on erection, resulting in penile curvature. The disorder has two phases:
- **Active phase** (1–6 months): early inflammatory phase with painful erections and changing penile deformity.
- **Quiescent (stable) phase** (9–12 months): disease ‘burns out’. Pain disappears with resolution of inflammation, and there is stabilization of the penile deformity.

The natural history of Peyronie’s plaques over 18 months is that 40% will progress, 47% will remain stable, and 13% will improve.²

Aetiology
The exact cause is unknown, but it is currently considered to be a wound healing disorder which occurs after penile trauma in genetically predisposed men.¹ It is likely that repeated minor trauma during sexual intercourse causes microvascular injury and bleeding into the tunica, resulting in inflammation and fibrosis (exacerbated by TGF-β).

Presentation
Peyronie’s disease can present with penile pain, a palpable lump (plaque), penile curvature, ED (in 40%), a more complex deformity (shortening, indentation, hourglass deformity), or a combination of these features.

Common comorbidities
Diabetes mellitus (in 30%); ED; raised cholesterol or triglycerides; hypertension; arterial disease; Dupuytren’s contractures (25%); plantar fascial contracture; tympanosclerosis; low testosterone.

Evaluation
Take a full medical and sexual history (including erectile function). Can the patient still achieve penetrative sexual intercourse (in which case carefully assess the need for surgical correction)? If the patient has ED, can he achieve erections with PDE5 inhibitors? What bothers the patient the most? Patient photographs or outpatient injection of intracavernosal alprostadil can be used to assess the degree of curvature. Assess the location and size of the plaque; is it tender or calcified? Is there a waist deformity? Record the
stretched penile length preoperatively, to help advise patients that loss of penile length is partly due to the disease, and not all due to the surgical correction. Assess the psychological impact, and manage patient expectation.

Investigation

Colour Doppler

US is useful in assessing vascular abnormalities relating to ED. Contrast-enhanced MRI [after injection of low-dose alprostadil (Caverject™)] is indicated for complex cases and extensive cavernosal fibrosis when considering a penile prosthesis.

Management

Early disease with active inflammation (<3 months, penile pain, changing deformity) may benefit from medical therapy. Surgery is indicated for stable, mature disease (present for 12 months; stable for 3 months), with significant deformity preventing intercourse. Non-mechanical components of ED can be treated conventionally (e.g. oral PDE5 inhibitors or intracavernosal pharmacotherapy). Patients with minor curvature (<30°), with no ED or other abnormalities, should be advised against surgical correction.

Conservative treatment

Medical treatment

- **Oral therapy**: limited evidence of benefit. Vitamin E may reduce pain in the inflammatory phase, but has not been shown to improve deformity. Colchicine, combined with vitamin E, has been reported to improve plaque size and curvature. POTABA (para-aminobenzoate) has shown superiority over placebo in stabilizing curvature, reducing plaque size, and improving pain.

- **Intralesional injection**: verapamil, collagenase, and interferon alfa-2b injection directly into the plaque have all been reported to improve curvature.

ESWL

This has little effect on penile deformity but may help reduce pain.

Mechanical therapy

Application of a Peyronie’s penile vacuum pump (SOMACorrect Xtra) produces stretching and straightening of the penis. When applied for 10 min per day for 3 months, it can improve curvature in around two-thirds. Alternatively, traction devices can be applied to the penis, with resulting improvements in curvature; however, they are inconvenient for many, as they need to be applied for several hours each day.

Surgery

(See Box 13.1.)

- **Nesbit procedure**: the penis is degloved via a circumglanular incision. An artificial erection is induced by intracavernosal saline injection. On the opposite side to the plaque (convex side of the penis), a small ellipse of the tunica albuginea is excised, either on each corpora at equal levels or in the midline after the urethra has been mobilized upwards. A width
of 1mm is taken for every 10° of penile curvature, and the defects closed with PDS sutures. Success rates are 88–94%. A circumcision is recommended for those with phimosis or previous surgery. Risks: all will have penile shortening (often 2–3cm), bleeding, infection, residual deformity, palpable sutures (permanent if non-absorbable suture is used), recurrence, and ED (1–5%).

- Lemberger/Yachia technique: vertical incision into the tunica albuginea over the corpora opposite the plaque, with a horizontal suture closure (Heineke–Mikulicz repair).
- Simple plication technique: sutures are placed on the opposite side of maximal deformity to straighten the penis. Success rates tend to be lower (~40%).
- Plaque incision and grafting (Lue procedure): incision of the plaque with insertion of a graft to lengthen the affected side (and minimize penile shortening). Graft materials include a saphenous vein patch, Pelvicol® (porcine dermal collagen), and Biocor™ (bovine pericardium). Success rates of 75–96%. Risks: ED in up to 25%, bleeding, infection, residual deformity, penile numbness, penile shortening (0–20%).
- Penile prosthesis: reserved for patients with moderate to severe ED, cavernosal fibrosis, and complex deformities (see p. 592). Residual curvature after prosthesis placement will require correction with manual modelling, or if this fails, incision ± graft insertion.

Box 13.1 Choice of surgical intervention for Peyronie’s disease

Patients with adequate erectile function preoperatively (with or without the use of pharmacotherapy)

- **Nesbit procedure:** deformity <60°, no complex deformity, predicted loss of erectile length <20%.
- **Lue procedure:** deformity >60°, hinge deformity, aim for minimal loss of penile length.

Patients with poor erectile function preoperatively (and/or poor response to pharmacotherapy):

- **Penile prosthesis:** deformity >60°, complex deformity, cavernosal fibrosis.

References

Priapism

Definition
Prolonged, unwanted erection, in the absence of sexual desire or stimulus, lasting >4h.

Epidemiology
Incidence of 1.5 per 100,000,\(^1\) with peaks in adults at ages of 20–50y.

Classification
- Low-flow (ischaemic) priapism: due to veno-occlusion (intracavernosal pressures of 80–120mmHg). Commonest form (accounts for 95%), which manifests as a painful, rigid erection, with absent or low cavernosal blood flow. Ischaemic priapism for >4h requires emergency intervention. Blood gas analysis shows hypoxia and acidosis.
- High-flow (non-ischaemic) priapism: due to unregulated arterial blood flow, presenting with a semi-rigid, painless erection. Caused by trauma (or surgery) to the penis or perineum, resulting in cavernosal artery laceration and subsequent formation of an arteriovenous fistula. It is often self-limiting. Blood gas analysis shows similar results to arterial blood.
- Recurrent (or stuttering) priapism: intermittent, recurrent ischaemic episodes of priapism, of relatively short duration, which are often painful. Most commonly seen in sickle-cell disease. Usually high flow but may change to low flow with anoxia. Less commonly, it can also be idiopathic, neurological, or drug-related.

Aetiology of ischaemic priapism
Causes are primary (idiopathic) or secondary, including:
- Intracavernosal injection therapy: papaverine, alprostadil.
- Oral drugs:
 - α-blockers: prazosin, terazosin.
 - Antihypertensives: hydralazine.
 - Antidepressants: sertraline, fluoxetine, lithium.
 - Antipsychotics: clozapine.
 - Psychotropics: chlorpromazine.
 - Anxiolytics: hydroxyzine.
 - Anticoagulants: warfarin, heparin.
 - Recreational drugs: cocaine, marijuana, alcohol excess.
 - Hormones: GnRH; testosterone.
- Thromboembolic: sickle-cell disease, leukaemia, thalassaemia, fat emboli.
- Neurogenic: spinal cord lesion/injury, autonomic neuropathy, spinal anaesthesia.
- Infection: malaria, rabies, scorpion sting, genitourinary sepsis.
- Other: prostate or bladder cancer extending into the penis, amyloidosis.

Pathophysiology
Priapism lasting for 12h causes interstitial oedema, followed by destruction of the sinusoidal endothelium and exposure of the basement membrane at 24h and sinusoidal thrombi, smooth muscle cell necrosis, and corporal fibrosis at 48h.
Evaluation
Establish how long the erection has been present. Is it painful? Has this happened before, and if so, how was it treated? Enquire about risk factors and triggers. Examination will show a rigid corpora, but a soft glans penis in ischaemic priapism, which the patient will report as painful. Check for pelvic or perineal malignancy.

- **Serum blood test**: FBC, clotting screen. Exclude sickle cell, leukaemia, and thalassaemia, if indicated.
- **Cavernous blood**: send a sample for rapid blood gas analysis to confirm the type of priapism.
- **Colour Doppler penile USS**: can be used as an alternative method to distinguish ischaemic from non-ischaemic priapism, and to locate the site of trauma in high-flow priapism.

Management in adults
Ice packs, cold showers, ejaculation, and exercise may help in early stages (Fig. 13.4).

Low-flow priapism
- **Step 1**: give an LA penile block. Decompress urgently with aspiration of blood from the corpora (sending a sample for blood analysis), taking 5mL portions using an 18G butterfly needle inserted into the lateral aspect of one corpora, until oxygenated red blood is obtained (avoid aspirating over 50mL). Many also advocate saline washout of the corpora as well.
- **Step 2**: if no change after 10min, proceed to intracavernosal injection of an \(\alpha_1 \)-adrenergic agonist. Phenylephrine comes as a vial of 10mg in 1mL (see http://www.bnf.org). This is diluted with 9mL of sterile normal saline to make 10mg of phenylephrine in 10mL. Then take 1mL of this solution, and dilute again in 9mL of saline to make 1mg of phenylephrine in 10mL of saline. Now inject 200μg (equivalent to 2mL) into the corpora every 5min (up to a maximum of 1mg in total), until detumescence occurs. Monitor BP and pulse rate during drug administration. **Contraindications**: uncontrolled hypertension; monoamine oxidase inhibitor (MAOI) treatment.
 - Oral terbutaline is an effective treatment for intracavernosal injection-related cases.
- **Step 3**: if aspiration and phenylephrine fail after 1h, surgical intervention is attempted with a distal shunt. Following a penile block, the Winter technique places a Trucut biopsy needle through the glans into the corpora cavernosa to remove small pieces of the tunica albuginea and allow evacuation of hypoxic blood and saline washout. Alternatively, a scalpel blade (e.g. #10) stab incision is made via the glans into the corpora. This can be combined with turning the blade 90° laterally and away from the urethra (T-shunt). If no response, a proximal shunt between the corpora or a corporosaphenous shunt can be considered where the long saphenous vein is tunnelled and anastomosed onto the corpora cavernosum. These are rarely indicated or used now.
- **Step 4**: if this fails or the patient presents late (after 48–72h), discuss insertion of a penile prosthesis. This will treat both the priapism and inevitable ED, and avoids the difficulty and high complication rates of delayed insertion into a fibrotic penis at a later date.
High-flow priapism

This is not an emergency, as the penis is not ischaemic. Conservative treatment is recommended in most cases, as the fistula can close spontaneously. Ice packs and compression on the perineum can help. A traumatic or delayed presentation requires pudendal arteriography and either selective or internal pudendal artery embolization with gelfoam, autologous blood clot, or fat. If this fails, ligation of the fistula rarely may be required. Follow the patient up after treatment to ensure the fistula is closed.
Recurrent priapism
Sickle-cell disease requires aggressive rehydration, oxygenation, analgesia, and haematological input. Acute episodes are treated as for ischaemic priapism. The long-term aim is to prevent or reduce the frequency of attacks using courses of oral drugs. Regular oral α-agonists, such as etilefrine, can be helpful. Hormone manipulation with GnRH analogues, antiandrogens (i.e. cyproterone acetate), or diethylstilbestrol are effective, but counsel patients on the risks of reduced libido and sexual dysfunction. Paradoxically, regular low-dose PDE5 inhibitors can also provide clinical benefit (once the penis is flaccid). If medical therapy fails, distal or proximal shunt surgery can be used, or a penile prosthesis for prolonged ischaemic priapism with ED.

Complications
Ninety per cent of priapism lasting >24h develop complete ED.

Reference
Retrograde ejaculation

Definition

Failure of adequate bladder neck contraction results in the propulsion of sperm back into the bladder on ejaculation.

Aetiology

Acquired causes are due to damage or dysfunction of the bladder neck sphincter mechanism. These include neurological disease (SCI; neuropathy associated with diabetes mellitus; nerve damage after retroperitoneal surgery) or anatomical disruption following transurethral resection of ejaculatory ducts (for obstruction), BNI, TURP, or open prostatectomy. Drugs to treat BOO (α-blockers) cause reversible retrograde ejaculation in 5% of men. Congenital causes include bladder extrophy, ectopic ejaculatory ducts, and spina bifida.

Incidence

Retrograde ejaculation following TURP or open prostatectomy occurs in nine out of ten men, and after BNI in 1–5 in ten men.

Presentation

‘Dry’ ejaculation (failure to expel ejaculate fluid from the urethral meatus) or low ejaculate volume (<1mL) and cloudy urine (containing sperm) in the first void after intercourse.

Investigation

The presence of >10–15 sperm per HPF in post-orgasmic urine specimens confirms the diagnosis of retrograde ejaculation.

Treatment

- Treat reversible causes (i.e. stop α-blockers).
- **Medical therapy:** initiated in men wishing to preserve fertility to induce antegrade ejaculation. It is reserved for men without previous bladder neck surgery or SCI. Therapy is often given for 7–10 days, prior to a planned ejaculation (coordinated with the partner’s ovulation). Options include:
 - Oral α-adrenergic receptor agonist drugs (ephedrine sulfate, pseudoephedrine)—increase the sympathetic tone of the bladder neck smooth muscle sphincter mechanism.
 - Imipramine, a tricyclic antidepressant drug with anticholinergic and sympathomimetic effects.

Sperm retrieval from urine for assisted fertility techniques

Oral sodium bicarbonate and adjustment of fluid intake are initiated to optimize urine osmolarity and pH and to enhance sperm survival. Sperm are collected by gentle urine centrifuge and washed in insemination media, in preparation for IUI or IVF treatments. Alternatively, sperm can be retrieved directly from the testis or epididymis.
Premature ejaculation

Definition
Premature ejaculation (PE) is classified as lifelong or acquired. The International Society for Sexual Medicine (ISSM)\(^1\) defines PE as:

‘a male sexual dysfunction characterised by the following:
1. Ejaculation that always or nearly always occurs prior to or within about 1 minute of vaginal penetration (lifelong PE) or a clinically significant and bothersome reduction in latency time, often to about 3 minutes or less (acquired PE).
2. The inability to delay ejaculation on all or nearly all vaginal penetrations.
3. Negative personal consequences, such as distress, bother, frustration, and/or the avoidance of sexual intimacy.’

Symptoms should be present for >6 months and experienced on almost all occasions of sexual intercourse (>75%). Prevalence is around 2–5%.

Aetiology
The cause of PE is unknown. Suggestions include the following.

Psychological
- Early sexual experience.
- Anxiety.
- Reduced frequency of sexual intercourse.

Biological
- Penile hypersensitivity.
- 5-hydroxytryptamine (5-HT) receptor sensitivity (involved in the central control of ejaculation).
- Hyperexcitable ejaculatory reflex.

Risk factors
- Inflammation—treatment of chronic prostatitis can improve PE.
- Association seen with ED.
- Genetic predisposition.
- Poor health and obesity.

Evaluation
Take a detailed medical, sexual, and psychosocial history, and physical examination. Establish the perceived degree of ejaculatory control, onset, and duration of the problem and level of distress. Enquire about ED. Examine to exclude a physical or an infective component. Quantitative measures of sexual intercourse include:

- Intravaginal ejaculatory latency time (IELT)—the time between vaginal penetration and ejaculation averaged over several performances. IELT of <1–3min suggests a diagnosis of PE.
- Score of partner’s sexual satisfaction.
- Patient’s assessment of his voluntary control over ejaculation.
- Questionnaires: the Premature Ejaculation Diagnostic Tool (PEDT) assesses control, frequency, minimal stimulation, distress, and interpersonal difficulty. PE most likely with scores of >11, and unlikely with scores of <8.

Treatment

Treat any associated problems such as prostatitis and ED. Mild PE will usually respond to behavioural therapy (± medical therapy), whereas lifelong PE usually requires pharmacotherapy.

Behavioural and psychological intervention

- Education and counselling.
- Seman’s stop–start manoeuvre (inhibiting the urge to ejaculate by repeatedly stopping sexual stimulation).
- Masters and Johnson squeeze technique (inhibiting the urge to ejaculate by squeezing the glans penis).
- Sensate focus.
- Psychotherapy with partner.

Pharmacological

- SSRIs—paroxetine daily (unlicensed) is the most effective and can also be used on demand 4–6h before intercourse. Dapoxetine is licensed for on-demand use (taken 1–3h before intercourse) and has a more rapid onset of action and a shorter half-life. Alternatives taken daily are sertraline, fluoxetine, and citalopram (not licensed). Side effects include GI effects, anorexia, and rash. SSRIs should be slowly stopped to avoid withdrawal syndrome.
- Clomipramine (tricyclic antidepressant) given daily or as required 4–6h before intercourse. Side effects include dry mouth, sedation, blurred vision, and difficulty voiding.
- Topical LA such as lidocaine and/or prilocaine cream, gel, or spray (with condom to prevent transvaginal absorption with resultant vaginal numbness).
- PDE5 inhibitors (sildenafil): limited role for acquired PE associated with ED.
- Tramadol (on demand) has been shown to increase IELT.

Gradual withdrawal of drug therapy can be attempted after 6–8wk.

Reference

Other disorders of ejaculation and orgasm

Definition
The ISSM defines orgasmic dysfunction as: an ‘inability to achieve an orgasm or markedly diminished intensity of orgasmic sensation’ or a ‘marked delay of orgasm during any kind of sexual stimulation’. Under this category, they include delayed ejaculation (DE), anejaculation, and anorgasmia. It is thought to affect around 6% of men aged >50y.

Delayed ejaculation
A marked DE, marked infrequency, or absence of ejaculation where symptoms have persisted for >6 months and affect almost all occasions of sexual intercourse (>75%), causing significant personal distress. It may be lifelong or acquired, and global or situational, and the prevalence increases with age. An IELT of >20–25min should alert clinicians to a possible diagnosis of DE. Causes include drugs (SSRIs), SCI, penile nerve injury, pelvic surgery, or psychological factors (Table 13.5).

Anejaculation
The complete absence of an antegrade or retrograde ejaculation. There is failure of emission from the seminal vesicles, prostate, and ejaculatory ducts into the urethra, and this has implications for fertility. This may be related to obstructive causes [i.e. ejaculatory duct obstruction (EDO)]. True anejaculation is associated with normal orgasm and is most often due to drug-related causes or central or peripheral nervous system dysfunction (Table 13.5).

Anorgasmia
The inability to reach orgasm (which may give rise to anejaculation in men). This is rare. Primary conditions are usually attributed to psychological causes. Secondary causes may be related to drugs or ↓ penile sensation (secondary to pudendal nerve dysfunction, seen in peripheral neuropathy associated with diabetes mellitus) (Table 13.5).

Evaluation
A detailed sexual and relationship history, including the exact symptoms, duration, related arousal or desire problems, presence or absence of orgasm, and precipitating factors, should be taken. Is it a global or a situational problem? Is it lifelong or of recent onset? A full medical, drug, and surgical history can identify any underlying or reversible causes. Also enquire about psychosocial problems. A focused physical (including external genitalia and palpation for bilateral vasa, and DRE) and neurological examination (including bulbocavernosus reflex, anal sphincter tone, and perineal sensitivity where appropriate) should be performed. Urine microscopy and culture may identify infection. In anejaculation, post-ejaculatory urinalysis should be performed. If sperm are present, this suggests retrograde ejaculation; if sperm are absent, this suggests EDO. If there is clinical suspicion
of possible EDO, consider TRUS or vasography or cystoscopy to assess the ejaculatory ducts and exclude urethral obstruction (urethral stenosis).

Management

- **General**: aim to identify and treat the underlying aetiology, and stop medications which may be contributing to the problem. Address any infertility issues in men of reproductive age who may require sperm retrieval for assisted reproduction. Patient education and counselling on lifestyle changes (i.e. reducing alcohol consumption, attempting sexual intercourse when not tired) are helpful adjuvants. If an organic cause has been excluded, psychosexual therapy is recommended.

- **Drugs**: medications that facilitate ejaculation by central dopaminergic or antiserotonergic action have been suggested as adjuvant therapy for patients with SSRI-induced sexual dysfunction, but there is no clear guideline to recommend their use. Examples include cyproheptadine, amantadine, yohimbine, bupropion, and buspirone. α₁-agonists show limited efficacy. Hypogonadism is a cause for DE, and testosterone replacement should be offered to these patients.

- **Mechanical techniques**: used for anejaculation where the aim is to retrieve sperm for assisted reproductive methods include:
 - **Vibrostimulation** (first-line therapy): a vibrator is applied to the penis, evoking the ejaculation reflex. It requires an intact lumbosacral spinal cord segment.
 - **Electroejaculation**: involves the electrical stimulation of periprostatic nerves via a rectal probe, usually under anaesthesia.

Table 13.5 Causes of delayed ejaculation, anejaculation, and anorgasmia

<table>
<thead>
<tr>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drugs</td>
</tr>
<tr>
<td>Antihypertensive drugs (thiazides)</td>
</tr>
<tr>
<td>Antidepressants (tricyclics, SSRIs)</td>
</tr>
<tr>
<td>Antipsychotic drugs (phenothiazines)</td>
</tr>
<tr>
<td>Alcohol excess</td>
</tr>
<tr>
<td>Neurological</td>
</tr>
<tr>
<td>Diabetic autonomic neuropathy</td>
</tr>
<tr>
<td>SCI</td>
</tr>
<tr>
<td>MS</td>
</tr>
<tr>
<td>PD</td>
</tr>
<tr>
<td>Pelvic surgery (secondary to proctocolectomy)</td>
</tr>
<tr>
<td>Para-aortic lymphadenectomy</td>
</tr>
<tr>
<td>Psychological</td>
</tr>
<tr>
<td>Surgical</td>
</tr>
<tr>
<td>Prostate surgery (TURP, BNI)</td>
</tr>
<tr>
<td>Congenital</td>
</tr>
<tr>
<td>Müllner duct obstruction</td>
</tr>
<tr>
<td>Infection</td>
</tr>
<tr>
<td>Urethritis</td>
</tr>
<tr>
<td>Endocrine</td>
</tr>
<tr>
<td>Hypogonadism, hypothyroidism</td>
</tr>
</tbody>
</table>

Painful ejaculation
May be idiopathic or infective/inflammatory (related to urethritis, prostatitis, CPPS, seminal vesiculitis), or associated with BPE or EDO. Men report a higher incidence of ED and worse LUTS. Treat any underlying reversible cause.

References
Late-onset hypogonadism

Definition
Defined as ‘a clinical and biochemical syndrome associated with advancing age, and characterized by symptoms and a deficiency n serum testosterone levels (below the young healthy adult male reference range). This condition may result in significant detriment in the quality of life and adversely affect the function of multiple organ systems’.

Pathophysiology
Late-onset hypogonadism (LOH) involves components of both primary and secondary hypogonadism (see p. 614) and a degree of reduced responsiveness of target organs to testosterone and its androgenic mediators. Ageing decreases the production of LHRH and LH due to effects on the hypothalamus and pituitary. This causes a decline in the both the number of Leydig cells in the testes and their sensitivity to LH, so reducing testosterone levels. SHBG binds testosterone and renders it unavailable to most tissues, and levels of SHBG increase with age. Along with age-related changes in androgen receptors and altered androgen metabolism, the result is less bioavailable testosterone.

Presentation
• ED.
• Reduced libido.
• Reduced concentration.
• Hot flushes.
• Changes in mood (depression).
• Lethargy/fatigue.
• Anaemia.
• Sleep disturbance.
• Hair/skin changes.
• Osteoporosis/osteopenia
• ↓ muscle mass and strength.
• Infertility.
• Metabolic syndrome (see p. 616).

Evaluation
(See Fig. 13.5.)
• History: elicit symptoms related to low testosterone levels, voiding, and medical history.
• BMI and waist circumference.
• Examination: note the distribution of body hair; assess for gynaecomastia and testicular size and consistency; DRE (with PSA to exclude prostate cancer prior to giving testosterone and to assessing prostate size).
• Flow rate and PVR volume to assess for BOO.
• Serum bloods: early morning total testosterone, LH, PSA, FBC, LFTs, and fasting lipid profile.
• Further blood tests: prolactin (if total testosterone <5.2nmol/L); SHBG (if borderline testosterone or if suspect secondary hypogonadism). Consider pituitary MRI if hyperprolactinaemia and very low testosterone levels.
Dual-energy X-ray absorptiometry (DEXA) scan to check bone mineral density (and for surveillance).

Androgen Deficiency in the Aging Male (ADAM) questionnaire to assess and compare baseline and post-treatment symptoms.

Testosterone assessment

Around 40–50% of testosterone is weakly bound to albumin, and 1–2% is free (bioavailable); the remainder is bound to SHBG (non-bioavailable). In a normal adult σ°, the serum testosterone reference range is around 10.4–34.7nmol/L (equivalent to 3–10μg/L). Testosterone levels show diurnal variation, peaking in early morning, and recommendations for testing are:

- Early morning serum total testosterone (taken 8–11 a.m.).
- If low or borderline total testosterone level, perform repeat testosterone level with LH, FSH, and prolactin. LH will help differentiate between primary and secondary hypogonadism (i.e. high LH and low/normal testosterone indicates testicular failure).
- In general, a total testosterone level of >12nmol/L does not require treatment; a total testosterone of <8nmol/L requires replacement therapy. For patients with levels of 8–12nmol/L, it is helpful to calculate the free testosterone level (lower limit of normal is 225pmol/L).

![Fig. 13.5 Management pathway for symptomatic LOH.](image-url)
Treatment of LOH
Treat any reversible causes of hypogonadism, and optimize medical health (including weight loss if raised BMI). Symptoms and biochemical evidence of testosterone deficiency indicate the need for testosterone replacement therapy (Fig. 13.5). Where testosterone levels are borderline/normal, but symptoms are present, consider an initial 3-month trial of testosterone and then review (see pp. 614–16). Residual symptoms may need specific treatment such as PDE5 inhibitors for ED.

For normal testosterone physiology, see p. 556; for normal androgen metabolic pathways, see p. 713.

Reference
Male hypogonadism and hormone replacement therapy

Male hypogonadism
Defined as ‘a biochemical syndrome associated with low level of testosterone, which may adversely affect multiple organ functions and quality of life’. It is related to inadequate gonadal function due to deficiencies in gametogenesis and/or the secretion of gonadal hormones. Hypogonadism may be primary (due to abnormal testicular function or testicular response to gonadotrophins) or secondary (due to failure of the hypothalamic–pituitary axis, leading to inadequate gonadotrophic stimulation and reduced testicular testosterone production) (Table 13.6). The result is testosterone deficiency.

Presentation and evaluation
The same as for LOH (see p. 310). The lower the testosterone level, the higher the number of associated symptoms.

Indications for testosterone treatment
Hypogonadism and related symptoms caused by low testosterone levels. Symptomatic LOH and primary hypogonadism should be treated with androgens. Patients with secondary hypogonadism may be given LH and FSH or pulsatile LHRH if fertility is required; otherwise, they should receive androgen replacement (see Table 13.7). The aim is to achieve normal serum testosterone levels. Of note, low-dose clomifene citrate (25mg daily) is also effective in elevating serum testosterone levels in LOH by stimulating the endogenous androgen production pathway as an alternative to testosterone therapy, but is ‘off-label’ for use in men.

Table 13.6 Causes of primary and secondary hypogonadism

<table>
<thead>
<tr>
<th>Primary hypogonadism (hypergonadotrophic hypogonadism)</th>
<th>Secondary hypogonadism (hypergonadotrophic hypogonadism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital:</td>
<td>Congenital:</td>
</tr>
<tr>
<td>Chromosomal (Klinefelter’s syndrome)</td>
<td>Kallmann’s syndrome*</td>
</tr>
<tr>
<td>Undescended testes</td>
<td></td>
</tr>
<tr>
<td>Acquired:</td>
<td>Acquired:</td>
</tr>
<tr>
<td>Surgery (bilateral orchidectomy)</td>
<td>Hypopituitarism (pituitary lesion; surgery or radiation to the cranium)</td>
</tr>
<tr>
<td>Bilateral testicular torsion</td>
<td></td>
</tr>
<tr>
<td>RT/chemotherapy</td>
<td></td>
</tr>
<tr>
<td>Infection (bilateral orchitis)</td>
<td></td>
</tr>
<tr>
<td>Cirrhosis</td>
<td></td>
</tr>
</tbody>
</table>

* Kallman’s syndrome is an isolated gonadotrophin (GnRH) deficiency which leads to hypogonadism.
Contraindications to testosterone treatment
- Male breast cancer.
- Established/untreated prostate cancer.
- History of primary liver tumour.
- Hypercalcaemia.
- Pre-existing clinically significant LUTS secondary to obstructive BPE.
- Pre-existing polycythaemia/erythrocytosis (haematocrit >52%).
- Avoid if untreated severe liver, renal, or heart failure.
- Untreated obstructive sleep apnoea.

Assessment prior to testosterone treatment
- In men >45y, DRE and serum PSA are mandatory to assess prostate health.
- Fasting lipid profile.
- LFTs.
- FBC.
- Flow rate, residual volume, IPSS to assess for BOO.
- Assess bone density prior to, and during, treatment (DEXA scan) if clinically indicated.

Assessment during testosterone treatment
- DRE annually.
- PSA at 3–6 months, 12 months, then yearly (to monitor for PC). An initial rise in PSA and prostate volume is seen in the first 6 months of treatment (take 6-month PSA as new baseline).
- FBC at 3 months, 12 months, then yearly (to assess for new-onset polycythaemia).
- Fasting lipid profile (testosterone can alter total and low-density lipoprotein cholesterol).
- Re-check testosterone level.

Side effects of testosterone treatment
- Headache.
- Oedema due to sodium retention.
- Depression.
- GI bleeding.
- Nausea.
- Cholestatic jaundice (less common with transdermal or IM).
- Liver toxicity.
- Gynaecomastia.
- Androgenic effects (hirsutism, male pattern baldness).
- Polycythaemia.

Testosterone treatment
The most popular testosterone replacement therapies are gel preparations. They are easy to use, and transdermal preparations produce a normal testosterone level with physiological diurnal profile. Side effects include local skin reaction, absorption may be variable, and the patient needs to wait 5–10min for it to dry and be careful not to transfer the drug onto their partner.
IM testosterone injection is long-acting but does not provide normal hormonal circadian rhythm. Buccal mucoadhesive tablets produce more reliable testosterone levels but require twice-daily application. Transdermal patches and pellets that are administered SC are no longer easily available in the UK. Oral preparations tend to be less used due to variable pharmacokinetics. (Table 13.7).

Metabolic syndrome

This is characterized by central obesity, insulin resistance, dyslipidaemia, and hypertension, resulting in ↑ risk of CVD and progression to diabetes mellitus. *Hypogonadism* is frequently associated with metabolic syndrome. There is evidence that testosterone treatment may help some conditions associated with the syndrome and reduce the risk of cardiovascular complications.

<table>
<thead>
<tr>
<th>Route of administration</th>
<th>Examples of preparations</th>
<th>Dosing regimen</th>
</tr>
</thead>
</table>
| IM injection | Testosterone enantate | Initial: 250mg every 2–3wk
 | Sustanon 250® | Maintenance: 250mg every 3–6wk
 | Nebido® | 1mL (250mg testosterone) every 3wk
| Implant | Testopel® | 2–6 pellets (150–450mg) SC every 3–6 months (FDA approved)
| Transdermal patch | Androderm® | 4mg per day (available in the USA)
| Transdermal gel | Testim® | 5g gel (50mg testosterone), apply daily; adjust according to response (max 10g gel/24h)
 | Testogel® | 5g gel (50mg testosterone), apply daily
 | | Can be ↑ to 10g daily
| Buccal | Striant® | 30mg 12-hourly
| Oral | Restandol® (testosterone undecanoate) | 40mg 3–4 times daily (120–160mg)
 | | for 2–3wk
 | | Maintenance: 40–120mg daily |

Reference

Urethritis

Urethritis is inflammation of the urethra. Infective urethritis may present with clear, mucopurulent, or purulent urethral discharge, and coloured white, yellow, green, or brown. It can be associated with dysuria and pain at the external urethral meatus or in the penile shaft, which persist between voids. There may be urinary frequency and urgency. Some infections are asymptomatic.

Types of infective urethritis
- Gonococcal urethritis (GU).
- Non-gonococcal urethritis (NGU), also referred to as non-specific urethritis (NSU).
- Recurrent or persistent urethritis (occurs 30–90 days following treatment of NGU).

Infective causes
- Neisseria gonorrhoeae.
- Chlamydia trachomatis.
- Trichomonas vaginalis.
- Ureaplasma urealyticum.
- Mycoplasma genitalium.
- Herpes simplex virus.

Non-infective causes of urethritis
- Urethral trauma/foreign object.
- Contact urethritis (spermicides, shower gel).
- Reiter’s syndrome (urethritis, seronegative arthritis, conjunctivitis).
- Wegener’s granulomatosis (vasculitis of unknown aetiology).

Evaluation
Assess symptoms, sexual history, and sexual contacts. Examine the external genitalia for testicular or epididymal tenderness, discharge at the meatus, lymphadenopathy, or skin lesions. Refer to GUM for management, to trace and treat contacts, and advice on safe sexual practice for future relationships.

Investigation
The presence of urethral discharge and 1+ or more leucocytes on urine dipstick from a first-void-of-the-day urine supports the clinical suspicion of urethritis. Gram stain of urethral discharge or urethral smear will show ≥5 polymorphonuclear leucocytes (PMNLs) per HPF (×1000 magnification) or ≥10 PMNLs per HPF (×400 magnification) in the first-void urine specimen. The presence of Gram-negative intracellular diplococci within PMNLs are diagnostic of GU. Patients with proven gonococcal infection should also be tested for Chlamydia.

Specific tests
- Urethral swabs (with endocervical swabs in women) transported in charcoal transport medium. Used for culture and Gram stain to identify N. gonorrhoeae. Also used for nucleic acid amplification test (NAAT) or enzyme immunoassay (EIA) to detect N. gonorrhoeae and C. trachomatis.
• Alternatively, a first 20mL void of urine (after holding urine for ≥2h) can be used for EIa or NAAT to identify *C. trachomatis*.
• MSU: dipstick testing ± microscopy to investigate UTI.
• In selected cases, consider and counsel on HIV and syphilis testing with serum rapid plasma reagin (RPR) test.

Gonococcal urethritis
Caused by the Gram-negative diplococcus *N. gonorrhoeae* (Table 13.8). Infection is spread through sexual contact. Specific complications include haematogenous spread of infection to other sites causing disseminated gonococcal infection (DGI), manifesting as arthritis–dermatitis syndrome.

Non-gonococcal urethritis
Mainly caused by *C. trachomatis* infection; however, around 50% have no defined cause (Table 13.8). Infection is spread through sexual contact. It may be asymptomatic (particularly in women). Specific complications include oculogenital syndrome (NGU and conjunctivitis).

Genitourinary tract complications in men
• Epididymitis.
• Orchitis.
• Urethral stricture.

Genitourinary tract complications in women
• Salpingitis.
• Cervicitis.
• Pelvic inflammatory disease (*M. genitalium*).

Table 13.8 Comparison and treatment of non-gonococcal and gonococcal urethritis

<table>
<thead>
<tr>
<th></th>
<th>Non-gonococcal urethritis</th>
<th>Gonococcal urethritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main causative organism</td>
<td>C. trachomatis</td>
<td>N. gonorrhoeae</td>
</tr>
<tr>
<td>Incubation time (days)</td>
<td>7–21</td>
<td>2–7</td>
</tr>
<tr>
<td>Onset</td>
<td>Gradual</td>
<td>Sudden</td>
</tr>
<tr>
<td>Discharge</td>
<td>Watery and clear</td>
<td>Larger volume and yellow</td>
</tr>
<tr>
<td>Dysuria</td>
<td>Mild</td>
<td>Moderate</td>
</tr>
<tr>
<td>Treatment (empirical)</td>
<td>Doxycycline 100mg bd PO for 7 days OR Azithromycin 1–1.5g single PO dose</td>
<td>Ceftriaxone 1g single IV or deep IM dose plus Azithromycin 1–1.5g single PO dose OR (Ciprofloxacin 500mg single PO dose if sensitivity proven)</td>
</tr>
</tbody>
</table>
Post-gonococcal urethritis

Recurrence of symptoms and signs 4–7 days after successful single-dose therapy for GU is commonly caused by coexisting infection (usually with \textit{C. trachomatis}) which has not been treated. It is therefore recommended that GU is also treated with antichlamydial therapy.

Treatment of other infectious causes

- \textit{T. vaginalis}—metronidazole 2g single PO dose.
- \textit{U. urealyticum}—doxycycline 100 mg bd PO for 7 days or azithromycin 1.0–1.5g single PO dose.
- \textit{M. genitalium}—azithromycin 500mg PO dose on day 1, then 250mg on days 2–5.

Patients should abstain from sex for 7 days after initiation of treatment, and until they (and their partner) have been fully treated. In patients with persisting symptoms of NGU after appropriate treatment, consider further treatment to eradicate possible coexisting \textit{T. vaginalis} infection.
Chapter 14

Neuropathic bladder

Innervation of the lower urinary tract 622
Physiology of urine storage and micturition 626
Bladder and sphincter behaviour in the patient with neurological disease 628
The neuropathic lower urinary tract: clinical consequences of storage and emptying problems 630
Bladder management techniques for the neuropathic patient 632
Catheters and sheaths and the neuropathic patient 640
Management of incontinence in the neuropathic patient 642
Management of recurrent urinary tract infections in the neuropathic patient 646
Management of hydronephrosis in the neuropathic patient 648
Bladder dysfunction in multiple sclerosis, Parkinson’s disease, and spina bifida, after stroke, and in other neurological disease 650
Neuromodulation in neuropathic and non-neuropathic lower urinary tract dysfunction 654
Innervation of the lower urinary tract

Motor innervation of the bladder

Parasympathetic motor innervation of the bladder
Preganglionic parasympathetic nerve cell bodies are located in the intermediolateral column of spinal segments S2–4. These preganglionic parasympathetic fibres pass out of the spinal cord through the anterior primary rami of S2, S3, and S4, and contained within nerves called the nervi erigentes, they head towards the pelvic plexus. In the pelvic plexus (in front of the piriformis muscle), the preganglionic parasympathetic fibres synapse within the ganglia with the cell bodies of post-ganglionic parasympathetic nerves, which then run to the bladder and urethra. Fifty per cent of the ganglia of the pelvic plexus lie in the adventitia of the bladder and bladder base (the connective tissue surrounding the bladder), and 50% are within the bladder wall. The post-ganglionic axons provide cholinergic excitatory input to the smooth muscle of the bladder.

Sympathetic motor innervation of the bladder
In the ♂, preganglionic sympathetic nerve fibres arise from the intermediolateral column of T10–12 and L1–2. These preganglionic neurons synapse in the sympathetic chain, and post-ganglionic sympathetic nerve fibres travel as the hypogastric nerves to innervate the trigone, blood vessels of the bladder, and the smooth muscle of the prostate and preprostatic sphincter (i.e. the bladder neck). In the ♀, there is sparse sympathetic innervation of the bladder neck and urethra.

In both sexes, some post-ganglionic sympathetic nerves also terminate in parasympathetic ganglia (in the adventitia surrounding the bladder and within the bladder wall) and exert an inhibitory effect on bladder smooth muscle contraction.

Afferent innervation of the bladder

Afferent nerves from receptors throughout the bladder ascend with parasympathetic neurons back to the cord and from there, up to the pontine storage and micturition centres or to the cerebral cortex. They sense bladder filling.

Other receptors are located in the trigone, and afferent neurons from these neurons ascend with sympathetic neurons up to the thoracolumbar cord, and thence to the pons and cerebral cortex.

Other receptors are located in the urethra. The afferent neurons pass through the pudendal nerve and again ascend to the pons and cerebral cortex. All these neurons have local relays in the cord.

Somatic motor innervation of the urethral sphincter: the distal urethral sphincter mechanism
Anatomically, this is located slightly distal to the apex of the prostate in the ♂ (between the verumontanum and proximal bulbar urethra) and in the mid urethra in the ♀. It has three components:

- **Extrinsic skeletal muscle**: this is the outermost layer, the pubourethral sling (part of the levator ani). Composed of striated muscle and
innervated by the pudendal nerve (spinal segments S2–4, somatic nerve fibres). It is activated under conditions of stress and augments urethral occlusion pressure.

- **Smooth muscle within the wall of the urethra**: cholinergic innervation. Tonically active. Relaxed by nitric oxide (NO).
- **Intrinsic striated muscle** (i.e. skeletal muscle within the wall of the urethra, hence known as the ‘intrinsic rhabdosphincter’): it forms a ‘U’ shape around the urethra and around the anterior and lateral aspects of the membranous urethra and is absent posteriorly (i.e. it does not completely encircle the membranous urethra). It may produce urethral occlusion by kinking the urethra, rather than by circumferential compression.

Preganglionic *somatic* nerve fibres (i.e. neurons which innervate *striated* muscle) are, along with *parasympathetic* nerve fibres (which innervate the bladder), derived from spinal segments S2–4, specifically from Onuf’s nucleus (also known as spinal nucleus X), which lies in the medial part of the anterior horn of the spinal cord. (Onuf’s nucleus is the location of the cell bodies of somatic motoneurons that provide motor input to the striated muscle of the pelvic floor—the external urethral and anal sphincters.) These somatomotor nerves travel to the rhabdosphincter via the perineal branch of the pudendal nerve [documented by direct stimulation studies and horseradish peroxidase (HRP) tracing—accumulates in Onuf’s nucleus following injection into either the pudendal or the pelvic nerves]. There also seems to be some innervation to the rhabdosphincter from branches of the pelvic plexus (specifically the inferior hypogastric plexus) via pelvic nerves. In dogs, complete silence of the rhabdosphincter is seen only if both the pudendal and pelvic efferents are sectioned. Thus, pudendal nerve block or pudendal neurectomy does not cause incontinence.

The nerve fibres that pass distally to the distal sphincter mechanism are located in a dorsolateral position (5 and 7 o’clock). More distally, they adopt a more lateral position.

Sensory innervation of the urethra

Afferent neurons from the urethra travel in the pudendal nerve. Their cell bodies lie in the dorsal root ganglia, and they terminate in the dorsal horn of the spinal cord at S2–4, connecting with neurons that relay sensory information to the brainstem and cerebral cortex.

The pudendal nerve (a somatic nerve derived from spinal segments S2–4) innervates the striated muscle of the pelvic floor (levator ani, i.e. the pubourethral sling). Bilateral pudendal nerve block does not lead to incontinence because of maintenance of internal (sympathetic innervation) and external sphincter function (somatic innervation, S2–4, nerve fibres travelling to the external sphincter alongside parasympathetic neurons in the nervi erigentes).

Damage to the nerves is discussed in Box 14.1.
Box 14.1 Clinical consequences of damage to the nerves innervating the LUT

Bladder neck function in the female

About 75% of continent young women and 50% of perimenopausal continent women have a closed bladder neck during the bladder filling phase. Twenty-five per cent of continent young women and 50% of perimenopausal continent women have an open bladder neck, and yet they remain continent (because of their functioning distal sphincter mechanism—the external sphincter).\(^2\)\(^3\) Presacral neurectomy (to destroy afferent pain pathways) does not lead to incontinence because of maintenance of the somatic innervation of the external sphincter.

Sympathetic motor innervation of the bladder

Division of the hypogastric plexus of nerves during a retroperitoneal lymph node dissection for metastatic testis tumours results in paralysis of the bladder neck. This is of significance during ejaculation where normally sympathetic activity results in closure of the bladder neck so that the ejaculate is directed distally into the posterior, and then the anterior, urethra. If the bladder neck is incompetent, the patient develops retrograde ejaculation; they remain continent of urine because the distal urethral sphincter remains functional, being innervated by somatic neurons from S2–4.

During pelvic fracture, the external sphincter and/or its somatic motor innervation may be damaged, such that it is incompetent and unable to maintain continence of urine. Preservation of bladder neck function (the sympathetic innervation of the bladder neck usually remains intact) can preserve continence. However, if in later life, the patient undergoes TURP or BNI for symptomatic prostatic obstruction, they may well be rendered incontinent because their one remaining sphincter mechanism (the bladder neck) will be divided during these operations.

References

Physiology of urine storage and micturition

Urine storage
During bladder filling, bladder pressure remains low despite a substantial increase in volume. The bladder is thus highly compliant. Its high compliance is partly due to the elastic properties (viscoelasticity) of the connective tissues of the bladder and partly due to the ability of detrusor smooth muscle cells to increase their length without any change in tension. The detrusor is able to do this as a consequence of prevention of transmission of activity from preganglionic parasympathetic neurons to post-ganglionic efferent neurons—a so-called ‘gating’ mechanism within the parasympathetic ganglia. In addition, inhibitory interneuron activity in the spinal cord prevents transmission of afferent activity from sensors of bladder filling.

Micturition
A spino-bulbar-spinal reflex, coordinated in the pontine micturition centre in the brainstem (also known as Barrington’s nucleus or the M region), results in simultaneous detrusor contraction, urethral relaxation, and subsequent micturition. Receptors located in the bladder wall sense increasing tension as the bladder fills (rather than stretch). This information is relayed by afferent neurons to the dorsal horn of the sacral cord. Neurons project from here to the periaqueductal grey matter (PAG) in the pons. The PAG is thus informed about the state of bladder filling. The PAG and other areas of the brain (limbic system orbitofrontal cortex) input into the pontine micturition centre (PMC) and determine whether it is appropriate to start micturition.

At times when it is appropriate to void, micturition is initiated by relaxation of the external urethral sphincter and pelvic floor. Urine enters the posterior urethra, and this, combined with pelvic floor relaxation, activates afferent neurons, which results in stimulation of the PMC (located in the brainstem). Activation of the PMC switches on a detrusor contraction via direct communication between neurons of the PMC and the cell bodies of parasympathetic preganglionic motoneurons located in the sacral intermediolateral cell column of S2–4. At the same time that the detrusor contracts, the urethra (the external sphincter) relaxes. The PMC inhibits the somatic motoneurons located in Onuf’s nucleus (the activation of which causes external sphincter contraction) by exciting gamma-aminobutyric acid (GABA) and glycine-containing inhibitory neurons in the intermediolateral cell column of the sacral cord, which, in turn, project to the motoneurons in Onuf’s nucleus. In this way, the PMC relaxes the external sphincter.
Micturition is an example of a positive feedback loop, the aim being to maintain bladder contraction until the bladder is empty. As the detrusor contracts, tension in the bladder wall rises. The bladder wall tension receptors are stimulated, and the detrusor contraction is driven harder. One of the problems of positive feedback loops is their instability. Several inhibitory pathways exist to stabilize the storage–micturition 'loop'.
• Tension receptors activate bladder afferents, which, via the pudendal and hypogastric nerves, inhibit S2–4 parasympathetic motor nerve output. An ongoing detrusor contraction cannot be overridden.
• Afferents in the anal and genital regions and in the distribution of the posterior tibial nerve stimulate inhibitory neurons in the sacral cord, and these neurons inhibit S2–4 parasympathetic motor nerve output. This pathway can override an ongoing detrusor contraction. It is hypothesized that this system prevents involuntary detrusor contraction during sexual activity, defecation, and while walking, running, and jumping.

Excitatory neurotransmission in the normal detrusor is exclusively cholinergic, and reciprocal relaxation of the urethral sphincter and bladder neck is mediated by NO released from post-ganglionic parasympathetic neurons.

Further reading
Bladder and sphincter behaviour in the patient with neurological disease

A variety of neurological conditions are associated with abnormal bladder and sphincter function [e.g. SCI, spina bifida (myelomeningocele), MS]. The bladder and sphincters of such patients are described as ‘neuropathic’.

They may have abnormal bladder function or an abnormal sphincter function or, more usually, both. The bladder may be over- or underactive, as may the sphincter, and any combination of bladder and sphincter over- or underactivity may coexist. ‘Activity’ here means bladder and sphincter pressure.

In the normal LUT during bladder filling, the detrusor muscle is inactive and the sphincter pressure is high. Bladder pressure is therefore low, and the high sphincter pressure maintains continence. During voiding, the sphincter relaxes and the detrusor contracts. This leads to a short-lived increase in bladder pressure, sustained until the bladder is completely empty. The detrusor and sphincter thus function in synergy—when the sphincter is active, the detrusor is relaxed (storage phase), and when the detrusor contracts, the sphincter relaxes (voiding phase).

An OAB is one that intermittently contracts during bladder filling, so developing high pressures when normally bladder pressure should be low. In between these waves of contraction, bladder pressure returns to normal or near normal levels. In a patient with an underlying neurological problem, bladder overactivity is called detrusor hyperreflexia (DH). In other patients, the bladder wall is stiffer than normal, a condition known as poor compliance. Bladder pressure rises progressively during filling, with such bladders being unable to store urine at low pressures. Some patients have a combination of DH and poor compliance. The other end of the spectrum of bladder behaviour is the underactive bladder which is low-pressure during filling and voiding. This is called detrusor areflexia.

An overactive sphincter generates high pressure during bladder filling, but it also does so during voiding when normally it should relax. This is known as detrusor–external sphincter dyssynergia (DES or DSD) (Fig. 14.1). During EMG recording, activity in the external sphincter increases during attempted voiding (the external sphincter should normally be ‘quiet’ during voiding). An underactive sphincter is unable to maintain enough pressure in the face of normal bladder pressures to prevent leakage of urine.
Fig. 14.1 Detrusor–external sphincter dyssynergia (DESD) seen during VCUG.
The neuropathic lower urinary tract: clinical consequences of storage and emptying problems

Neuropathic patients experience two broad categories of problems—bladder filling and emptying—depending on the balance between bladder and sphincter pressures during filling and emptying. The effects of these bladder filling and emptying problems include incontinence, retention, recurrent UTIs, and renal failure.

High-pressure sphincter

High-pressure bladder

If the bladder is overactive (DH) or poorly compliant, bladder pressures during filling are high. The kidneys have to function against these chronically high pressures. Hydronephrosis develops, and ultimately, the kidneys fail (renal failure). At times, the bladder pressure overcomes the sphincter pressure and the patient leaks urine (incontinence). If the sphincter pressure is higher than the bladder pressure during voiding (DSD), bladder emptying is inefficient (retention, recurrent UTIs).

Low-pressure bladder

If the bladder is underactive (detrusor areflexia), pressure during filling is low. The bladder simply fills up—it is unable to generate enough pressure to empty (retention, recurrent UTIs). Urine leaks at times if the bladder pressure becomes higher than the sphincter pressure (incontinence), but this may occur only at very high bladder volumes or not at all.

Low-pressure sphincter

High-pressure bladder

If the detrusor is hyperreflexic or poorly compliant, the bladder will only be able to hold low volumes of urine before leaking (incontinence).

Low-pressure bladder

If the detrusor is areflexic, such that it cannot develop high pressures, the patient may be dry for much of the time. They may, however, leak urine (incontinence) when abdominal pressure rises (e.g., when coughing, rising from a seated position, or when transferring to or from a wheelchair). Their low bladder pressure may compromise bladder emptying (recurrent UTIs).
Bladder management techniques for the neuropathic patient

A variety of techniques and procedures are used to treat retention, incontinence, recurrent UTIs, and hydronephrosis in the patient with a neuropathic bladder. Each of the techniques described here can be used for a variety of clinical problems. Thus, a patient with a high-pressure, hyperreflexic bladder that is causing incontinence can be managed with an ISC (with intravesical BTX injections, if necessary) or an SPC or by sphincterotomy with condom sheath drainage or by deafferentation combined with a sacral anterior root stimulator (SARS). Precisely which option to choose will depend on the individual patient’s clinical problem, their hand function, their lifestyle, and other ‘personal’ factors such as body image, sexual function, etc. Some patients will opt for an SPC as a simple, generally safe, generally very convenient, and effective form of bladder drainage. Others wish to be free of external appliances and devices because of an understandable desire to look and ‘feel’ normal. They might opt for deafferentation with a SARS.

Intermittent self-catheterization

See p. 640.

Indwelling catheters

See pp. 640–1.

External sphincterotomy

Deliberate division of the external sphincter to convert the high-pressure, poorly emptying bladder due to DSD to a low-pressure, efficiently emptying bladder. **Indications:** retention, recurrent UTIs, hydronephrosis.

Techniques

- Surgical (with an electrically heated ‘knife’ or laser). **Disadvantages:** irreversible, post-operative bleeding, septicaemia, and stricture formation.1
- Intra-sphincteric BTX (botulinum toxin). A minimally invasive and reversible alternative to surgical sphincterotomy. **Disadvantage:** repeat injection required every 6–12 months; in the author’s opinion (based on years of experience of BTX and surgical sphincterotomies), probably not as effective at lowering bladder pressure and improving bladder emptying as surgical sphincterotomy (but no trials have compared the two techniques).
- A third potential option is an oral or sublingual NO donor (e.g. nifedipine, GTN). NO is a neurotransmitter which relaxes the external sphincter. Hypothesized as a treatment for DSD, and preliminary studies support this hypothesis.2,3

Augmentation

Technique of increasing bladder volume to lower pressure by implanting detubularized small bowel into the bivalved bladder (‘clam’ ileocystoplasty) (Fig. 14.2) or by removing a disc of muscle from the dome of the bladder (auto-augmentation or detrusor myectomy). In the BTX era, augmentation is becoming less and less frequently used because repeat (every 6–12 months) BTX injections are often all that is required to achieve an
(a) Midline incision (b) The isolated small bowel segment is detubularized.

(c) The ileal patch has been configured into a ‘U’ shape ready for anastomosis onto the bladder.

(d) The patch of ileum is anastomosed to the bladder.

Fig. 14.2 A ‘clam’ ileocystoplasty.
Reproduced from Reynard, J, Mark, S. et al., Urological Surgery. Oxford University Press, with permission from OUP.
acceptable level of continence, but also because of the short- and long-
term morbidity of augmentation (bladder stones in 15%, bladder per-
foration, high-grade invasive bladder cancers). 4 Indications: incontinence unacceptable to the patient or hydronephrosis despite full conservative therapy (regular ISC combined with anticholinergics and a trial of bladder BTX injections).

Intravesical botulinum toxin injections

Recently, intravesical BTX-A injections at multiple sites in the bladder every 6–12 months have produced impressive reductions in bladder pressure and increases in volume (bladder capacity), with a low risk of side effects. As a consequence, surgical augmentation is nowadays only rarely done, being reserved for cases where BTX has failed to work (where the pa-
tient is still wet between passing ISC catheters or where there is persistent hydronephrosis).

BTX is a potent neurotoxin produced by the Gram-negative anaer-
obic bacterium *Clostridium botulinum*. Of the seven serotypes, only types A (BoNT-A) (“Botox®”, Allergan, CA, USA; “Dysport®, Ipsen, Slough, UK) and B (“Myobloc”, Elan Pharmaceuticals, NJ, USA) are used clinically. BoNT-A is synthesized as an inactive single chain of 1285-amino acid poly-
peptide and is activated when cleaved by clostridial protease into a two-
chain polypeptide (50kDa light chain, 100kDa heavy chain).

BTX-A (“Botox®” or “Dysport®”) binds to the SV2 receptor (synaptic ves-
icle protein) on the presynaptic nerve terminal where it is internalized by endocytosis. It causes proteolysis of the synaptosomal associated protein SNAP-25, which is one of a group of SNARE proteins—with neuronal cell membranes (BoNT-B cleaves synaptobrevin). Thus, BTX inhibits neuro-
transmission at motor cholinergic, noradrenergic, and other (sensory) nerve terminals. It also reduces the expression of the vanilloid receptor TRPV1 and the purinoreceptor P2X3, both of which are sensory neuron receptors.

Thus, while we tend to think of BTX-A as inhibiting neuromuscular nerve transmission, and therefore as a muscle-paralysing agent, it is likely that it also has effects on sensory nerve transmission. BoNT-A inhibits the release of calcitonin gene-related peptide, substance P, glutamate, nerve growth factor, and adenosine triphosphate (ATP), which are neurotransmitters in-
volved in pain pathways. In rat pain models, BoNT-A reduces pain behav-
iour.5,6 How this effect on sensory nerve function translates into a role, if any, in the management of sensory urological conditions (sensory urgency, interstitial cystitis) remains to be established.

Recovery of neurotransmission requires removal of BoNT and restor-
ation of intact SNARE proteins.

Intravesical botulinum toxin (BTX) injections can be administered using a flexible cystoscope (with a flexible injection needle) or a rigid scope. Multiple techniques of injection have been described, and all seem to be effective. Some surgeons dilute the BTX in 5mL of saline, whereas others use the same number of units in 10 or 20mL of saline. Some use ‘Dysport®’ (Ipsen), while others use ‘Botox®’ (Allergan). Some inject in ten sites, others in 20 sites, while others make 50 injections. Whether one technique or concentration or formulation of BTX is superior to any other remains to be established. Precisely where the BTX is actually administered (into the detrusor muscle or into the suburothelium) is debatable (the bladder wall is thin).
For intravesical injection in neuropathic patients (e.g., those with SCI or MS), the author uses a standard dose of 1000U of Dysport® (though not infrequently between 1000 and 1500U in those failing to respond for an adequate duration with 1000U), diluted in 10mL of saline, and injects 0.33mL per site (three doses per 1mL syringe) in ~30 sites (roughly 30–35U per site), using (usually) a flexible cystoscope and a flexible injection needle. Some surgeons spare the trigone (i.e., avoid injecting the trigone), the theory (not proven) being that this avoids disrupting the valve mechanism of the VUJ. Other surgeons (the author included) inject in the trigone. Since the trigone has a dense sensory innervation, trigonal injections may (unproven) be more effective for sensory or painful bladder syndromes.

Intravesical BTX injections are indicated for hydronephrosis which has failed to respond to ♣ frequency of ISC combined with oral anticholinergic medication, inter-ISC leakage which has failed to respond to ♣ frequency of ISC combined with oral anticholinergic medication, and urethral leakage in patients with an SPC where the leakage is thought to be due to uninhibited bladder contractions.

Outcomes of bladder botulinum toxin injections in the neuropathic patient
Bladder BTX injections reduced incontinence episodes by a mean of 50% in patients with SCI, when compared with placebo,7 and markedly improved continence in patients with MS where 80% were wet before BTX, with ~80% being dry afterwards and remaining so for a median of 12–13 months.8

Outcomes of bladder botulinum toxin injections in the non-neuropathic patient
In non-neuropathic patients, three randomized, placebo-controlled trials have shown that patients treated with 200–300U of Botox® dissolved in between 2.5 and 20mL of saline and given at 10–20 sites had reduced urinary frequency and, on average, 3.88 fewer incontinence episodes per day.9 The botox took effect within 3–14 days and lasted for a median of 307 days.

What dose of bladder botulinum should be used?
There have been few studies to determine the ‘correct’ dose of botox either in neuropaths or in non-neuropaths, e.g., the minimal effective dose or the dose giving an adequate duration of effect (balanced against a low frequency of side effects). For the patient who has to change their clothes several times a day, knowledge of the undoubted efficacy of intravesical BTX injections makes it difficult to decide to enter a placebo-controlled study or one where a low, possibly ineffective, dose might be used.

In the neuropathic patient, there appears to be no significant difference in clinical and urodynamic outcomes in patients (mainly spinal injury or MS and almost all doing ISC) randomized to 500 vs 750U of Dysport® (5mL of saline, 20 injection sites).10 Complete continence was achieved in 56% and 74%, respectively (no significant dose difference). Reappearance of incontinence occurred at a median of 168 days (5.5 months). The bladder volume at which a reflex bladder contraction occurred ♣ by a mean of ~150mL, and maximum cystometric capacity ♣ by a median of 192mL (500U) to 243mL (750U) (no significant dose difference, but a trend towards a better symptomatic and urodynamic improvement in those receiving 750U).
In the author’s experience, intravesical BTX injections are most successful for the neuropathic patient with inter-ISC leakage, but they are also a very effective treatment for the symptoms of frequency, nocturia, urgency, and urge incontinence caused by non-neuropathic detrusor overactivity. They last for somewhere between 6 and 12 months, and the efficacy and duration of effect of the botulinum toxin does not appear to diminish with repeat injections in both the neuropath or non-neuropath over, at present, 10y of follow-up, an experience shared by others.8,11

Side effects of botulinum toxin type A

The principal side effect is urinary retention, a retention volume of >150–200mL of urine occurring in ~40% of individuals (in the non-neuropathic patient); in the neuropathic patient, the deliberate aim is to achieve retention so that the patient becomes completely continent between doing ISC. Up to 41% of patients were said to ‘require’ ISC for up to 6 months.9 Committing a patient to ISC for as long as 6 months after BTX injections, according to a rigid definition of urinary retention based solely on a PVR urine volume of >150–200mL, but in the absence of symptoms, is, in the author’s opinion, an unnecessary imposition. The author has a less rigid practice and places a patient on ISC only if they: (1) have painful, complete urinary retention (painful inability to pass any urine, the pain being relieved by catheterization), or (2) are able to void only a few mL of urine while retaining the bulk of their urine production, or (3) have complete painless retention (painless inability to pass any urine—very unusual), or (4) develop symptomatic, recurrent UTI in the post-BTX period. The author recommends the patient to discontinue ISC once they feel comfortable to do so which, empirically, is usually when the balance between voided urine volume and retained urine volume shifts in favour of the former.

There is limited evidence suggesting retention is more likely with higher doses of Botox® at 200U leading to retention of urine, compared with no retention after 100U.12

Haematuria is almost inevitable after making multiple intravesical injections and is almost always self-limiting (very occasionally admission for a bladder washout of clots, and irrigation via a 3-way catheter is required, but this is rare—two cases in 10y in the author’s experience). Occasionally, systemic side effects can occur. These are uncommon but can be disabling, particularly in the patient with pre-existing neurological disease. The author warns patients of the risks of generalized weakness which occurs in ~1 in 100 patients (lower risk after bladder injections; higher risk after external sphincter injections) and can impair the ability to transfer on and off a wheelchair and affect daily living and working activities; blurring of vision (due to intraocular muscle effects—very rare, but very disabling); and difficulty taking a deep breath and/or swallowing (two cases in 10y in the author’s experience, both resolving spontaneously within 2–3wk and neither required in-hospital observation). All of these side effects are uncommon, will last weeks or a few months, require no specific treatment, and usually do not recur with subsequent repeat injections.
Fig. 14.3 A sacral anterior root stimulator used to ‘drive’ micturition following deafferentation (external components).

Fig. 14.4 KUB X-ray showing the sacral electrodes positioned on the ventral roots of S2, 3, and 4.
Deafferentation
Division of the dorsal spinal nerve roots of S2–4 to convert the hyperreflexic, high-pressure bladder into an areflexic, low-pressure one. Can be used where the hyperreflexic bladder is the cause of incontinence or hydronephrosis. Bladder emptying can subsequently be achieved by ISC or implantation of a nerve stimulator placed on the ventral roots (efferent nerves) of S2–4 to ‘drive’ micturition when the patient wants to void (a pager-sized externally applied radiotrigger activates micturition (Figs. 14.3 and 14.4). Also useful for DSD/incomplete bladder emptying causing recurrent UTIs and retention.

References
Catheters and sheaths and the neuropathic patient

Many patients manage their bladders by intermittent catheterization (IC) done by themselves (ISC) or by a carer if their hand function is inadequate, as is the case with most (though remarkably not all) tetraplegics. Many others manage their bladders with an indwelling catheter (urethral or suprapubic). Both methods can be effective for managing incontinence, recurrent UTIs, and BOO causing hydronephrosis.

Intermittent catheterization

Requires adequate hand function. The technique is a ‘clean’ one (simple handwashing prior to catheterization), rather than ‘sterile’. Gel-coated catheters become slippery when in contact with water, so providing lubrication usually done 3- to 4-hourly.

Problems
- Recurrent UTIs.
- Recurrent incontinence: check technique (adequate drainage of last few drops of urine). Suggest increasing frequency of ISC to minimize the volume of urine in the bladder (reduces bacterial colonization and minimizes bladder pressure). If incontinence persists, consider intravesical BTX.

Long-term catheterization

Some patients prefer the convenience of a long-term catheter. Others regard it as a last resort when other methods of bladder drainage have failed. The suprapubic route (SPC) is preferred over the urethral route because of pressure necrosis of the ventral surface of the distal penile urethra in men (acquired hypospadias—‘kippering’ of the penis) and pressure necrosis of the bladder neck in women which becomes wider and wider until urine leaks around the catheter (‘patulous’ urethra) or frequent expulsion of the catheter occurs with the balloon inflated.

Problems and complications of long-term catheters
- Recurrent UTIs: colonization with bacteria provides a potential source of recurrent infection.
- Catheter blockages are common: due to encrustation of the lumen of the catheter with bacterial biofilms. *Proteus mirabilis, Morganella,* and *Providencia* species secrete a polysaccharide matrix. Within this, urease-producing bacteria generate ammonia from nitrogen in urine, raising urine pH and precipitating magnesium and calcium phosphate crystals. The matrix–crystal complex blocks the catheter. Catheter blockage causes bypassing which soils the patient’s clothes. Bladder distension can cause autonomic dysreflexia, leading to extreme rises in BP which can cause stroke and death! Regular bladder washouts and ↑ catheter size sometimes help. Impregnation of catheters with antibacterials (e.g. triclosan) are under investigation. Intermittent filling and emptying of the bladder using a ‘flip-flow’ valve may reduce the frequency of catheter blockages.

1

Intermittent filling and emptying of the bladder using a ‘flip-flow’ valve may reduce the frequency of catheter blockages.
- **Bladder stones**: develop in one in four patients over 5y.²
- **Bladder cancer**: chronic inflammation (from bladder stones, recurrent UTIs, long-term catheterization) may increase the risk of SCC in SCI patients. Some studies report a higher incidence of bladder cancer (whether chronically catheterized or not); others do not.³

Condom sheaths

These are an externally worn urine collection device, consisting of a tubular sheath applied over the glans and shaft of the penis (just like a contraceptive condom, only without the lubrication to prevent it from slipping off). Usually made of silicone rubber, with a tube attached to the distal end to allow urine drainage into a leg bag. They are used as a convenient way of preventing leakage of urine but are obviously only suitable for men. Detachment of the sheath from the penis is prevented by using adhesive gels and tapes. They are used for patients with reflex voiding (where the hyperreflexic bladder spontaneously empties and where bladder pressure between voids never reaches a high enough level to compromise kidney function). They are also used as a urine collection device for patients after external sphincterotomy (for combined DH and sphincter dysynergia where incomplete bladder emptying leads to recurrent UTIs and/or hydronephrosis).

Problems

The principal problem experienced by some patients is sheath detachment. Despite the fact that a man walked on the moon 30y ago, we have been unable to design a condom sheath that will consistently prevent urine leakage in all men. This can be a major problem and, in some cases, requires a complete change of bladder management. Skin reactions sometimes occur.

References

Management of incontinence in the neuropathic patient

Causes
High-pressure bladder (DH, reduced bladder compliance); sphincter weakness; UTI; bladder stones; rarely, bladder cancer (enquire for UTI symptoms and haematuria). Hyperreflexic peripheral reflexes suggest the bladder may be hyperreflexic († ankle jerk reflexes, S1–2, and a positive bulbocavernous reflex indicating an intact sacral reflex arc, i.e. S2–4 intact). Absent peripheral reflexes suggest the bladder and sphincter may be areflexic (i.e. the sphincter unable to generate pressures adequate for maintaining continence).

Initial investigation
Urine culture (for infection); KUB X-ray for bladder stones; bladder and renal USS for residual urine volume and to detect hydronephrosis; cytology and cystoscopy if bladder cancer suspected.

Empirical treatment
Start with simple treatments. If the bladder residual volume is large, regular ISC may lower the bladder pressure and achieve continence. Try an anticholinergic drug (e.g. oxybutynin, tolterodine). Many SCI patients are already doing ISC, and simply increasing the ISC frequency to 3- to 4-hourly may achieve continence. ISC more frequently than 3-hourly is usually impractical, particularly for paraplegic women who usually have to transfer from their wheelchair onto a toilet and then back onto their wheelchair (Table 14.1).

Management of failed empirical treatment
Determined by VCUG to assess bladder and sphincter behaviour.

Detrusor hyperreflexia or poor compliance
- High-pressure sphincter (i.e. DSD): treating the high-pressure bladder is usually enough to achieve continence.
- Bladder treatments: intravesical BTX, detrusor myectomy (auto-augmentation), bladder augmentation (ileocystoplasty). All will usually require ISC for bladder emptying.

Table 14.1 Summary of treatment for incontinence

<table>
<thead>
<tr>
<th>High bladder pressure</th>
<th>Low bladder pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>High sphincter pressure</td>
<td>Lower bladder pressure by ISC + anticholinergics or botulinum toxin type A or augmentation</td>
</tr>
<tr>
<td>Low sphincter pressure</td>
<td>Lower bladder pressure by (ISC + anticholinergics or BTX or augmentation) + urethral bulking agent TVT or bladder neck closure, AUS</td>
</tr>
</tbody>
</table>

* High sphincter pressure is usually enough to keep the patient dry.
• Long-term SPC.
• Sacral deafferentation + ISC or Brindley implant (SARS).

Low-pressure sphincter: treat the bladder first. If bladder treatment alone fails, consider a urethral bulking agent, a transvaginal tape (TVT), or bladder neck closure in women, or an AUS in either sex (Fig. 14.5).

Detrusor areflexia + low-pressure sphincter

- Urethral bulking agents.
- TVT.
- Bladder neck closure in women.
- AUS.

Artificial urinary sphincter

The AUS essentially consists of two balloons connected by tubing to a control pump. One of the balloons is configured as a cuff around the bulbar urethra or bladder neck. The other balloon (placed deep to the rectus muscle) applies a constant pressure (usually 61–70 cmH₂O pressure) to the cuff via a control pump located in the scrotum or labia (Fig. 14.5) [The AMS (American Medical Systems) 800 AUS]. Pressure in the cuff is maintained until the control pump is squeezed by the patient. This forces fluid from the cuff (so it temporarily no longer occludes the urethra) into the balloon. Pressure from the balloon then refills the cuff via delay resistors in the control pump over a minute or so.

Indications

Incontinence

- Following prostatectomy (post-TURP or RP).
- In the neuropathic patients (SCI, spina bifida) due to intrinsic sphincter deficiency.
- Following trauma to the pelvis or perineum.

![Fig. 14.5 Artificial urinary sphincter implanted around the bulbar urethra.](image-url)
Relative contraindications
- Poor bladder compliance (risk of dangerous and silent elevation of bladder pressure, with the development of hydronephrosis).
- Untreated involuntary bladder contractions (persistent incontinence common).
- Urethral stricture—incision can expose the underlying cuff, leading to AUS infection.
- Poor cognitive function, such that the patient is unable to appreciate the need to deflate the cuff several times a day.

Preparation prior to insertion
- Videourodynamics (to assess bladder pressure and confirm the presence of sphincter weakness incontinence). Usually not necessary in ‘simple’ post-RP patients (cause of incontinence usually obvious).
- Flexible cystoscopy to exclude urethral stricture.
- Urine culture. Treat infection with an appropriate antibiotic for a week or so before insertion.

Bulbar cuff placement
For post-RP incontinence, previous surgery or trauma (pelvic fracture) in the region of the bladder neck (↑ risk of rectal perforation).

Bladder neck cuff placement
Women (obviously), children (bulbar urethra too small for the available cuff sizes), men who wish to maintain fertility by preserving antegrade ejaculation, neuropathic patients where ISC is or may be required.
- A deactivation button prevents return of fluid from the balloon to the cuff, so allowing catheterization or instrumentation.

Outcomes
Improved continence in 60–90%. Complications in 5–30%—infection, urethral erosion, urethral loosening under the cuff (atrophy), device (‘mechanical’) failure.

Alternatives
- Injectable urethral bulking agents.
- Male urethral sling: three types—bulbourethral (suprapubic to suburethral); bone anchored perineal (InVance™); transobturator (AdVance™). Said to improve continence by bulbar urethral repositioning (rather than compression). Good (short-term) outcomes for less severe incontinence—five or fewer pads per day; poor outcome if six or more pads per day. Long-term outcomes and those for transobturator slings remain undetermined.
- Extraurethral retropubic adjustable compression devices: under local or regional anaesthesia, two small silicone balloons are introduced percutaneously via a perineal approach and positioned on each side of the urethra, close to the bladder neck. Subcutaneous ports allow volume adjustment post-operatively to increase (for persistent leakage) or decrease urethral resistance (for voiding difficulty). Questions remain over its safety (e.g. 10% urethral or bladder perforation, balloon migration, fluid leakage) and continence outcomes.
References

Management of recurrent urinary tract infections in the neuropathic patient

Causes of recurrent UTIs
- Incomplete bladder emptying.
- Kidney stones.
- Bladder stones.
- Presence of an indwelling catheter (urethral or suprapubic).

History
What the patient interprets as a UTI may be different from your definition of a UTI. The neuropathic bladder is frequently colonized with bacteria and often contains pus cells (pyuria). From time to time, it becomes cloudy due to the precipitation of calcium, magnesium, and phosphate salts in the absence of active infection. The presence of bacteria, pus cells, or cloudy urine in the presence of non-specific symptoms (abdominal pain, tiredness, headaches, feeling ‘under the weather’) is frequently interpreted as a UTI.

Indications for treatment of UTI in the neuropathic patient
It is impossible to eradicate bacteria or pus cells from the urine in the presence of a foreign body (e.g. a catheter). In the absence of fever and cloudy, smelly urine, we do not prescribe antibiotics, the indiscriminate use of which encourages growth of antibiotic-resistant organisms. We prescribe antibiotics to the chronically catheterized patient where there is a combination of fever and cloudy, smelly urine, and where the patient feels unwell. Culture urine, and immediately start empirical antibiotic therapy with nitrofurantoin, ciprofloxacin, or trimethoprim (the antibiotic sensitivities of our local ‘bacterial flora’), changing to a more specific antibiotic if the organism is resistant to the prescribed one.

Investigation
For recurrent UTIs (= frequent episodes of fever, cloudy and smelly urine, and feeling unwell), organize the following:
- KUB X-ray—looking for kidney and bladder stones.
- Renal and bladder USS to determine the presence/absence of hydronephrosis and to measure pre-void bladder volume and PVR urine volume.

Treatment
In the presence of fever and cloudy, smelly urine, culture the urine and start antibiotics empirically (e.g. trimethoprim, nitrofurantoin, amoxicillin, ciprofloxacin), changing the antibiotic if the culture result suggests resistance to your empirical choice. ‘Response’ to treatment is suggested by the patient feeling better and their urine clearing and becoming non-offensive to smell. Persistent fever with constitutional symptoms (malaise, rigors) despite treatment with a specific oral antibiotic in an adequate dose is an indication for admission for treatment with IV antibiotics.
Management of recurrent UTIs
(See Table 14.2.)
If there is residual urine present, optimize bladder emptying by IC (♂, ♀) or external sphincterotomy for DSD (♂). IC can be done by the patient (ISC) if hand function is good (paraplegic) or by a carer if tetraplegic. An indwelling catheter is an option, but the presence of a foreign body in the bladder may itself cause recurrent UTIs (though, in some, it seems to reduce UTI frequency).

<table>
<thead>
<tr>
<th>Low bladder pressure</th>
<th>High bladder pressure + DSD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISC</td>
<td>ISC</td>
</tr>
<tr>
<td>Indwelling catheter</td>
<td>Indwelling catheter</td>
</tr>
<tr>
<td></td>
<td>External sphincterotomy—surgical, botox, stent</td>
</tr>
<tr>
<td></td>
<td>Deafferentation/SARS</td>
</tr>
</tbody>
</table>

Remove stones, if present—cystolitholapxy for bladder stones, PCNL for staghorn stones.

*A new potential option for DSD is augmentation of the external sphincter by nitric oxide (NO), a neurotransmitter which relaxes the external sphincter, thereby encouraging antegrade flow of urine and potentially, therefore, lowering the residual urine volume. NO donors, such as nifedipine or GTN, can be used. There is theoretical, and some experimental, evidence to support this.1,2

References
MANAGEMENT OF HYDRONEPHROSIS IN THE NEUROPATHIC PATIENT

An OAB (DH) or a poorly compliant bladder is frequently combined with a high-pressure sphincter (DSD). Bladder pressures during both filling and voiding are high. At times, the bladder pressure may overcome the sphincter pressure and the patient leaks small quantities of urine. For much of the time, however, the sphincter pressures are higher than the bladder pressures and the kidneys are chronically exposed to these high pressures. They are hydronephrotic on USS, and renal function slowly, but inexorably, deteriorate.

TREATMENT OPTIONS FOR HYDRONEPHROSIS

Bypass the external sphincter
- Indwelling catheter.
- ISC + anticholinergics.

Treat the external sphincter
- Sphincterotomy: surgical incision via a cystoscope inserted down the urethra (electrically heated knife or laser), BTX-A injections into the sphincter, urethral stent.
- Deafferentation + ISC or SARS.

Treat the bladder
- Intravesical BTX-A + ISC.
- Augmentation + ISC.
- Deafferentation + ISC or SARS.

* Deafferentation converts the high-pressure sphincter into a low-pressure sphincter and the high-pressure bladder into a low-pressure bladder.
Bladder dysfunction in multiple sclerosis, Parkinson’s disease, and spina bifida, after stroke, and in other neurological disease

Multiple sclerosis

Seventy-five per cent of patients with MS have spinal cord involvement, and in these patients, bladder dysfunction is common. The commonest symptoms in patients with MS are urgency, frequency, nocturia, and urge incontinence (due to DH), occurring in 32–97% of individuals, depending on the duration and severity of their MS. Bladder pressures are rarely high enough to cause upper tract problems (hydronephrosis). The mainstays of treatment are anticholinergics, ISC, and bladder BTX injections.

Parkinson’s disease

PD is a cause of parkinsonism (tremor, rigidity, bradykinesia—slow movements) and is due to the degeneration of dopaminergic neurons in the substantia nigra in the basal ganglia. The principal urological manifestation of PD is the development of LUTS, affecting 30–40% of patients with PD. In the 30–40% of patients with PD and LUTS, nocturia is reported by 90%, urinary frequency and urgency by 70%, and urge incontinence by >40% (the symptoms that classically respond least well to TurP).

The commonest urodynamic abnormality is DH (the basal ganglia may have an inhibitory effect on the micturition reflex). Levodopa seems to have a variable effect on these symptoms and DH, improving symptoms in some and making them worse in others. Impaired detrusor contractility can also occur, albeit uncommonly. Sphincter function during spontaneous (desired) voiding is synergic, i.e. there is no sphincter dyssynergia. Thus, the patient with PD has unobstructed voiding, unless they have coexisting BPO. Poor striated sphincter function can also occur. Both DH and poor striated sphincter function can predispose to post-TURP incontinence.

Urological lore is that patients with PD have had a poor outcome after TURP (de novo urinary incontinence rate of 20%). However, this is probably because of inclusion of patients with multisystem atrophy in previous studies, which is associated with a particularly poor outcome after TURP. If a patient with PD has urodynamically proven BOO, symptomatic outcomes after TURP can be good, at least in patients with mild PD of <5y duration.

Multiple system atrophy (formerly Shy–Drager syndrome)

A cause of parkinsonism characterized clinically by postural hypotension and detrusor areflexia. Loss of cells in the pons leads to DH (symptoms of bladder overactivity); loss of parasympathetic neurons due to cell loss in the intermediolateral cell column of the sacral cord causes poor bladder emptying, and loss of neurons in Onuf’s nucleus in the sacral anterior horns leads to denervation of the striated sphincter, causing incontinence. The
presentation is usually with DH (i.e. symptoms of bladder overactivity), followed, over the course of several years, by worsening bladder emptying.

Spina bifida

The term ‘spina bifida’ (more correctly, spinal dysraphism) describes the clinical manifestations arising from the failure of fusion of the neural and bony elements of the spine. The entity of spina bifida includes spina bifida cystica (myelomeningocele and meningocele) and spina bifida occulta (lipomeningocele, intradural lipoma, and tethered cord).

Urinary incontinence, recurrent UTI, bladder and renal stone formation, and reflux nephropathy are common problems.

McGuire introduced the concept of detrusor leak point pressure as an indicator of the risk of upper tract deterioration in spina bifida patients. In 42 patients with myelodysplasia, followed over 15y, urethral urine leakage occurred in 20 patients at intravesical pressures of <40cmH₂O (the detrusor leak point pressure) and in 22 at pressures of >40cmH₂O. While no patient with a leak point pressure of <40cmH₂O had VUR and only two had ureteral dilatation on IVU, in contrast, VUR was present in 15 patients (68%) and ureteral dilatation in 18 (81%) in those patients with a leak point pressure of >40cmH₂O. As a result of this study (later supported by others), an end-fill pressure of <40cmH₂O is taken as an indication that upper tract deterioration will not occur and an end-fill pressure of >40cmH₂O is taken as an indication of the potential for upper tract deterioration.

The hallmark urodynamic finding in spina bifida is loss of bladder compliance combined with outlet resistance secondary to abnormal bladder neck function or DSD (62% of patients; 38% had what was described as detrusor areflexia which, in reality, described a group of 34 patients, 30 of whom had poor bladder compliance with high end-fill pressures). Most patients have a fixed (static) external sphincter, and 10–15% of patients have DESD.

The mainstay of management is directed towards maintaining a low-pressure, continent bladder with anticholinergics combined with ISC. In those with detrusor leak point pressures, this decreases the probability of upper tract deterioration. Where anticholinergics fail to achieve continence or fail to eliminate hydronephrosis, the next step is to try bladder BTX injections combined with ISC, though the poorly compliant bladder that is so characteristic of spina bifida seems to be more resistant to botox than the purely hyperreflexic bladder.

If anticholinergics or BTX combined with ISC are not able to achieve safe storage pressures in the small-capacity, poorly compliant bladder, augmentation cystoplasty, with or without a Mitrofanoff stoma to make ISC easier (especially in the wheelchair-bound patient), may be required to achieve safe lowering of bladder pressure. Where continence cannot be achieved by reducing bladder pressure alone, bladder neck closure, urethral support (e.g. a TVT in women), or an artificial sphincter may be required. Leak point pressure can predict (with reasonable accuracy) those patients who have adequate bladder outlet resistance (those with a leak point pressure of >40cmH₂O generally) to obviate the need for bladder outlet surgery.
Those patients with spina bifida and impaired cognitive ability (who represent a significant proportion of the spina bifida population) may not be able to cope with the requirement for regular and frequent bladder emptying with ISC or with the use of the AUS. For such patients, an SPC may be a safer method of achieving continence and protecting renal function. Furthermore, while it is possible to improve continence with LUT reconstructive surgery, there is evidence that this may not be paralleled with substantial improvements in overall QoL.9 QoL scores seem to be no different between patients with spina bifida who undergo successful surgery for incontinence and matched controls who do not (it is difficult to improve QoL by correcting just one system in a complex multisystem disability such as spina bifida).

Cerebrovascular accidents

DH occurs in 70\%, DSD in 15\%. Detrusor areflexia can occur.10 Frequency, nocturia, urgency, and urge incontinence are common. Retention occurs in 5\% in the acute phase. Incontinence within the first 7 days after a cerebrovascular accident predicts poor survival.11

Other neurological disease

Frontal lobe lesions (e.g. tumours, arteriovenous malformations)

May cause severe frequency and urgency (the frontal lobe has inhibitory input to the pons).

Brainstem lesions (e.g. posterior fossa tumours)

Can cause urinary retention or bladder overactivity.

Transverse myelitis

Severe tetraparesis and bladder dysfunction which often recovers to a substantial degree.

Peripheral neuropathies

The autonomic innervation of the bladder makes it ‘vulnerable’ to the effects of peripheral neuropathies, such as those occurring in diabetes mellitus and amyloidosis. The picture is usually one of reduced bladder contractility (poor bladder emptying, i.e. chronic low-pressure retention).
References

Neuromodulation in neuropathic and non-neuropathic lower urinary tract dysfunction

This is the electrical activation of afferent nerve fibres to modulate their function.

Electrical stimulation applied anywhere in the body preferentially depolarizes nerves (higher current amplitudes are required to directly depolarize muscle). In patients with LUT dysfunction, the relevant spinal segments are S2–4. Indications: urgency, frequency, urge incontinence, chronic urinary retention where behavioural and drug therapy has failed.

Several sites of stimulation are available, with the electrical stimulus being applied directly to nerves or as close as possible:

- SNS.
- Pudendal nerve: direct pelvic floor electrical stimulation (of the bladder, vagina, anus, pelvic floor muscles) or via stimulation of the dorsal penile (DPN) or clitoral nerve (DCN).
- Posterior tibial nerve stimulation (PTNS).

PTNS

The posterior tibial nerve (L4, 5; S1–3) shares common nerve roots with those innervating the bladder. PTNS can be applied transcutaneously (stick-on surface electrodes) or percutaneously (needle electrodes). Percutaneous needle systems include the SaNS (Stoller) and the UrgentPC system. Stimulation is applied via an acupuncture needle inserted just above the medial malleolus, with a reference (or returns) electrode—30min of stimulation per week, over 12wk. Thereafter, 30min of treatment every 2–3wk can be used to maintain the treatment effect in those who respond. PTNS has not been compared with placebo (‘sham’ stimulation), and therefore, reported efficacy may represent a placebo response. In a single-blinded, placebo-controlled study (gastrocnemius muscle stimulation without PTNS), 71% of patients receiving PTNS (12 treatments; 3 per week over 4wk) reported >50% reduction in urge incontinence episodes.

SNS (sacral nerve modulation—SNM)

A sacral nerve stimulator (Medtronic InterStim) delivers continuous electrical pulses to S3 via an electrode inserted through the sacral foramina and connected to an electrical pulse generator which is implanted subcutaneously. Supported by NICE for patients with urge incontinence who have failed lifestyle modification and behaviour and drug therapy.

A test stimulation [peripheral nerve evaluation (PNE)] is performed, under LA, by a percutaneous test electrode placed in the S3 foramina to confirm an appropriate clinical response (a reduction in urgency, frequency, or incontinence episodes). A permanent implant is offered if there is a 50% reduction in frequency and urgency. This is placed in a subcutaneous pocket and is connected to the sacral electrode. It can be switched on and off, and the amplitude varied within set limits. About 50–60% of patients have a successful PNE. A multi-centre study, randomizing non-neuropathic
patients with a successful PNE test to immediate vs delayed (for 6 months) implantation (the control group), showed significantly better symptomatic outcomes in the implant group, with 50–70% reporting resolution of their urge incontinence and 80% reporting >50% reduction in incontinence episodes, persisting for at least 3–5y. Longer-term follow-up studies report a durable response. Numbers of neuropathic patients treated with SNS are too small to draw meaningful conclusions.

For non-obstructive urinary retention in those responding to PNE (68 of 177, 38%) and who were subsequently implanted, 58% no longer required ISC at 18 months of follow-up, results mirrored by others (50–55% stopping ISC) at a mean of 41–43 months (70% with Fowler’s syndrome stopped ISC).

The exact mechanism of action of SNM in patients with bladder dysfunction is not known.

References
Chapter 15

Urological problems in pregnancy

Physiological and anatomical changes in the urinary tract 658
Urinary tract infection 660
Hydronephrosis of pregnancy 662
Other urological issues arising in pregnancy, childbirth, and post-partum 664
Physiological and anatomical changes in the urinary tract

Upper urinary tract

- **Renal size enlarges**: by 1 cm, secondary to ↑ interstitial volume and distended renal vasculature, with renal volume increasing up to 30%.
- **Dilatation of the collecting systems**: occurs in the majority of pregnant women, producing physiological hydronephrosis and hydroureters (right > left side), which starts in the second month of pregnancy and is maximal by the middle of the second trimester. It is caused by mechanical obstruction by the growing uterus and ovarian venous plexus and smooth muscle relaxation due to progesterone. There is associated ↓ peristalsis of the whole system. It usually resolves within weeks post-partum but, in some cases, may take up to 2–3 months to fully disappear.
- **Renal plasma flow (RPF) rate**: goes up early in the first trimester, reaching an increase of ~75% by 16 wk gestation. This is maintained until 34 wk gestation, followed by a decline of ~25% towards term.
- **GFR**: increases by 50% by the end of the first trimester, which is maintained until term. GFR has returned to normal levels by 3 months after delivery.
- **Renal function and biochemical parameters**: are affected by changes in RPF and GFR. Creatinine clearance increases, and serum levels of creatinine, urea, and urate fall in normal pregnancy due to glomerular hyperfiltration (Table 15.1). Biochemistry labs do not often provide a gestation-corrected normal range, and hence it is important not to miss a significant decline in renal function in pregnancy. Where possible, compare renal function test results with those taken in an earlier trimester or before pregnancy as a baseline. Raised GFR causes an ↑ glucose load at the renal tubules and results in glucose excretion (physiological glycosuria of pregnancy which tends to be intermittent). Of note, patients with persistent glycosuria should be screened for diabetes mellitus. Proteinuria is only ↑ in women with pre-existing proteinuria before pregnancy. Urine output is also ↑.

Table 15.1 Biochemistry reference intervals

<table>
<thead>
<tr>
<th>Substance</th>
<th>Non-pregnant</th>
<th>Pregnant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (mmol/L)</td>
<td>135–145</td>
<td>132–141</td>
</tr>
<tr>
<td>Urea (mmol/L)</td>
<td>2.5–6.7</td>
<td>2–4.2</td>
</tr>
<tr>
<td>Urate (µmol/L)</td>
<td>150–390</td>
<td>100–270</td>
</tr>
<tr>
<td>Creatinine (µmol/L)</td>
<td>70–150</td>
<td>24–68</td>
</tr>
<tr>
<td>Creatinine clearance (mL/min)</td>
<td>90–110</td>
<td>150–200</td>
</tr>
<tr>
<td>Bicarbonate (mmol/L)</td>
<td>24–30</td>
<td>20–25</td>
</tr>
</tbody>
</table>
Physiological and Anatomical Changes

- **Salt and water handling:** a reduction in serum sodium causes reduced plasma osmolality. The kidney compensates by increasing renal tubular reabsorption of sodium. Plasma renin activity is ↑ 10-fold, and levels of angiotensinogen and angiotensin are ↑ 5-fold. Osmotic thresholds for ADH and thirst decrease.

- **Acid–base metabolism:** serum bicarbonate is reduced. Progesterone increase stimulates the respiratory centre, resulting in reduced \(\text{PCO}_2 \).

Lower urinary tract

- **Bladder:** displacement occurs (superiorly and anteriorly) due to the enlarging uterus. The bladder becomes hyperaemic, and raised oestrogen levels cause hyperplasia of muscle and connective tissues. The bladder capacity increases, and urinary stasis is more likely. Bladder pressures can increase over pregnancy (from 9 to 20cmH\(_2\)O), with associated rises in absolute and functional urethral length and pressures.

- **Haematuria:** there is an ↑ risk of non visible haematuria (NVH) due to elevation of the trigone and ↑ bladder vascularity. Persistent NVH in patients with associated risk factors (i.e. smoking) or visible haematuria will need further investigation, similar to non-gravid patients. Placenta percreta with bladder invasion (a rare condition in which the placenta invades through the uterine wall and into adjacent tissues) can cause haematuria and should be excluded as a cause.

- **LUTS:** urinary frequency (>7 voids during the day) and nocturia (≥1 void at night) increase over the duration of gestation (incidence of 80–90% in the third trimester). Urgency is reported in up to 60%, and urgency incontinence may develop in 10–20%, predominantly in the third trimester. These effects are contributed to by pressure on the bladder from the enlarging uterus, causing reduced functional capacity. Nocturia is also exacerbated due to ↑ excretion of water (while lying down) that tends to be retained during the day. Normal bladder function returns in the majority soon after delivery.

- **Acute urinary retention:** is uncommon during pregnancy but may occur at 12–14wk gestation in association with a retroverted uterus, which usually resolves by 16wk as the uterus grows. Fibroids and other uterine anomalies may predispose to retention.

- **SUI:** is common in pregnancy and affects around 22% (and around 30% post-delivery). The risk may increase with parity. In pregnancy, it is partly caused by the placental production of peptide hormones (relaxin), which induces collagen remodelling and consequent softening of tissues of the birth canal, and by the pressure of the gravid uterus directly on the bladder. Infant weight, the duration of the first and second stages of labour, and instrumental delivery (ventouse extraction or forceps delivery) increase the risks of post-partum stress incontinence.

Parity = any pregnancy ending in delivery from 24wk onwards; post-partum = after delivery of the baby; gravid = pregnant.
Urinary tract infection

Pregnancy itself does not alter the incidence of lower UTI. However, physiological and anatomical changes associated with pregnancy and an increased risk of urinary stasis can alter the course of infection, causing an increased risk of recurrent UTI and progression to acute pyelonephritis.

Asymptomatic bacteriuria

Describes an asymptomatic UTI which affects 5–10% of pregnant women. In the non pregnant patient, it is defined as two consecutive voided cultures with ≥10⁵ CFUs of the same bacteria, or a single catheterized urine specimen with ≥10² CFUs of one bacterium. However, in pregnant women, treat the infection at the time of the first positive urine culture [rather than wait for a second to confirm asymptomatic bacteriuria (ASB)]. If untreated, there is a 20–40% risk of developing pyelonephritis. NICE guidance recommends routine screening by MSU culture; treatment of ASB reduces the risk of pyelonephritis and the complications associated with infection, including preterm birth.

Symptomatic UTI

- **Cystitis**: affects 1–3% and presents with urinary frequency, urgency, suprapubic pain, and dysuria.
- **Acute pyelonephritis**: is more frequently seen than in non-pregnant women, affecting around 1–2%. It is commonest in the second and third trimesters (when hydronephrosis and urinary stasis are most prominent) and is most likely to affect the right side. Most are due to undiagnosed or inadequately treated lower UTI. It presents with fever, flank pain, nausea, and vomiting, often with an elevated WCC.

Other risk factors for UTI in pregnancy

Previous history of recurrent UTIs, pre-existing anatomical or functional urinary tract abnormality (i.e. VUR), diabetes.

Pathogenesis

The commonest causative organism is *Escherichia coli*, accounting for up to 80% of UTIs. An increased risk of gestational pyelonephritis is associated with *E. coli* containing the virulence factor ‘Dr adhesin’. Other common Gram-negative organisms include *Klebsiella*, *Proteus*, and *Pseudomonas*. Group B streptococci (Gram-positive) account for around 10%.

Complications

UTI generally increases the risk of preterm delivery, low fetal birthweight, intrauterine growth retardation, and maternal anaemia. Acute pyelonephritis can be complicated by progression to septic shock, signs of preterm labour, and adult respiratory distress syndrome.

Screening tests

MSU should be obtained at the first antenatal visit (week 10) and sent for urinalysis and culture to look for bacteria, protein, and blood. Repeated MSU investigation (urine dipstick ± culture) is recommended at later antenatal visits to examine for signs of bacteriuria (usually leucocyte esterase and
nitrite positive), protein, and glucose, particularly in high-risk patients with a history of urinary tract anomalies or recurrent UTI. (See pp. 194–5 and Table 6.1 for the recommended criteria for diagnosing UTI.)

Treatment

All proven episodes of lower UTI (cystitis) should be treated (asymptomatic or symptomatic), guided by urine culture sensitivities for 3–7 days. If cultures are positive, recommendations are to follow up with serial urine cultures and consider low-dose prophylactic antibiotics where repeat infections are proven. Moderate to severe pyelonephritis or women with pyelonephritis who develop signs of preterm labour require hospital admission for IV antibiotics (cephalosporin or aminopenicillin) until apyrexial. This is followed by oral antibiotics to complete a total of 10–14 days of therapy and repeated cultures following treatment and for the duration of pregnancy. The obstetric team will normally lead on treatment.

Antibiotics that are deemed to be low risk and safe to use during pregnancy include penicillins (i.e. ampicillin, amoxicillin, penicillin V), cephalosporins (i.e. cefaclor, cefalexin, cefotaxime, ceftriaxone, cefuroxime), clindamycin, and macrolides (azithromycin, erythromycin). Antibiotics that should be avoided in different trimesters are shown in Table 15.2.

Unfortunately, other treatments used for recurrent UTI in non-pregnancy women, such as intravesical instillation of GAG analogues (i.e. sodium hyaluronate), lack safety evidence in pregnancy and are unlicensed.

<table>
<thead>
<tr>
<th>Trimester</th>
<th>Antibiotic</th>
<th>Potential risk to the fetus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3</td>
<td>Tetracyclines</td>
<td>Effects on skeletal development and dental discoloration (maternal hepatotoxicity)</td>
</tr>
<tr>
<td>1, 2, 3</td>
<td>Quinolones</td>
<td>Arthropathy</td>
</tr>
<tr>
<td>1, 2, 3</td>
<td>Chloramphenicol</td>
<td>Neonatal ‘grey’ syndrome in third trimester</td>
</tr>
<tr>
<td>1</td>
<td>Trimethoprim</td>
<td>Teratogenic risk (folate antagonist)</td>
</tr>
<tr>
<td>2, 3</td>
<td>Aminoglycosides</td>
<td>Auditory or vestibular nerve damage</td>
</tr>
<tr>
<td>3</td>
<td>Sulfonamides</td>
<td>Neonatal haemolysis; methaemoglobinemia</td>
</tr>
<tr>
<td>Avoid at term</td>
<td>Nitrofurantoin</td>
<td>Neonatal haemolysis</td>
</tr>
</tbody>
</table>

* See BNF for full details.

Of note, antibiotics which undergo excretion by glomerular filtration may need dose adjustment in pregnancy due to renal clearance of these drugs.
Hydronephrosis of pregnancy

Hydronephrosis is dilatation of the renal collecting system (pelvis and calyces). It can be associated with hydrourereters (dilatation of the ureters) and represents a normal physiological event in pregnancy, which is usually asymptomatic. Hydronephrosis develops from 6- to 10wk gestation and increases with advancing gestation. By 28wk gestation, 90% of pregnant women have hydronephrosis. The incidence appears to be higher in first pregnancies. It usually resolves within 2–3 months of delivery.

Anatomical causes

As the uterus enlarges, it rises out of the pelvis and rests upon the ureters, compressing them at the level of the pelvic brim. In addition, the ureters become elongated and mildly tortuous, with lateral displacement due to the gravid uterus. The right ureter is generally more dilated than the left due to extrinsic compression from the overlying congested right uterine vein and dextrorotation of the gravid uterus. The left ureter tends to be cushioned from compression by the colon. Ureteric dilatation tends to be from above the pelvic brim. Of note, hydronephrosis is not seen if the ureters do not cross the pelvic brim (i.e. pelvic kidney).

Physiological causes

Early onset of upper urinary tract dilatation is attributed to ↑ levels of progesterone, which causes smooth muscle relaxation. This mechanism, coupled with mechanical obstruction, contributes to the reduced peristalsis observed in the collecting system during pregnancy.

Diagnostic dilemmas

Hydronephrosis of pregnancy poses diagnostic difficulties in women presenting with flank pain thought to be due to renal or ureteric calculi (see pp. 498–500 for the diagnosis and management of loin pain and ureteric stones in pregnancy). Occasionally, it may be possible to identify a sudden worsening of hydronephrosis if previous imaging has been performed, which may increase the level of suspicion of an obstructing stone. To avoid using ionizing radiation in pregnant women, renal USS is often used as the initial imaging technique in those presenting with flank pain. In the non-pregnant patient, the presence of hydronephrosis is taken as surrogate evidence of ureteric obstruction. Because hydronephrosis is a normal finding in the majority of pregnancies, its presence cannot be taken as a sign of a possible ureteric stone. USS is an unreliable way of diagnosing the presence of stones in pregnant (and in non-pregnant) women. In a series of pregnant women, USS had a sensitivity of 34% (i.e. it ‘misses’ 66% of stones) and a specificity of 86% for detecting an abnormality in the presence of a stone (i.e. false-positive rate of 14%). Measurement of resistive index (RI) (derived from measuring the velocity of intrarenal blood flow using Doppler) improves the sensitivity and specificity of the diagnosis of ureteric obstruction, along with attempts to visualize ureteric jets.

Resistive index (RI) = peak systolic velocity (PSV) minus end-diastolic velocity (EDV) divided by peak systolic velocity (PSV), or RI = (PSV – EDV)/PSV.
Pregnant women with obstruction secondary to stones have a higher difference in RI between affected and unaffected kidneys than women with non-obstructive hydronephrosis. Colour Doppler and transvaginal USS enhance the diagnostic accuracy further. MRU is a second-line investigation for evaluating painful hydronephrosis in the second and third trimesters.

References
Other urological issues arising in pregnancy, childbirth, and post-partum

Pregnancy in women with previous lower urinary tract reconstruction

There is a greater need to monitor these women during pregnancy, as there are higher rates of complications such as UTI (52%), upper tract obstruction requiring intervention (10%), and pre-eclampsia (10%). Generally, there is no long-term effect on renal function with pregnancy,1 with the exception of patients with pre-existing renal insufficiency, who should be monitored carefully with regular renal function testing, urine dipsticks (for proteinuria), BP checks, and scans to monitor upper tract dilatation (being vigilant for new or deteriorating hydrenephrosis).

Confirmation of pregnancy

More than half of patients who have had urinary tract reconstruction using bowel will have a false-positive urine pregnancy test (due to interaction between bowel mucus and the urine test reagent). Therefore, always confirm with a blood test, using serum hCG measurement.

Bladder augmentation (enterocystoplasty)

The mesenteric pedicle supplying the segment of bowel used for bladder augmentation (most often the ileum) commonly lies over the uterus. In general, women with enterocystoplasty and a native bladder neck and urethra should aim to deliver vaginally, in order to avoid possible injury to the bladder and the pedicle of the augmenting bowel segment; however, some series do report a high rate of conversion to emergency section in patients with LUT reconstruction.1 Generally, a Caesarean section should be reserved for obstetric indications. The vascular pedicle may be pushed to one side of the uterus—but there is no way to predict this—therefore, it is preferable to plan an elective Caesarean section, with a urologist present. An upper-segment Caesarean section is a safer approach in this situation. Rates of Caesarean section in patients with enterocystoplasty or other LUT reconstruction are around 17–60%.2

Mitrofanoff and Monti continent catheterizable channels

As the gravid uterus enlarges, the anatomy of the channel can change due to compression and stretch, making CISC challenging, as well as difficult for the patient to visualize the stomal opening when it is located in the right iliac fossa. There is also an ↑ risk of stomal prolapse. Trial of alternative types of catheter (Tiemann, curved tipped, or extra long) may help, or if persistent difficulties are encountered, insertion of an indwelling catheter into the channel may be required. Equally, due to changes in body habitus, urethral CISC may become difficult, and again, an indwelling catheter may temporarily be required. Most problems will resolve post-partum.

Bladder neck reconstruction

There is no clear clinical consensus on the optimal mode of delivery in women with previous bladder neck reconstruction. Patients with complex LUT reconstruction, including AUS insertion, and patients having
undertaken previous continence operations, such as pubovaginal sling, appear best served by elective Caesarean section, due to the risk of recurrent incontinence.

Ileal conduit and orthotopic neobladders
There is a risk of stomal or parastomal herniation with ileal conduits as pregnancy progresses. There is also a risk of compression or stretching by the gravid uterus, but few adverse complications have been reported. The mode of delivery chosen is purely an obstetric (and patient) decision, as continence should not be affected; however, for open surgery, it is sensible to have a urologist present who can advise on the reconstruction and vascular mesenteric pedicle associated with it.

Bladder exstrophy–epispadias complex
These women are at higher risk of uterine prolapse and have a higher rate of breech babies. Many clinicians advocate elective Caesarean section to avoid the risks of both incontinence and prolapse. The risk of having offspring with exstrophy was previously reported as 1 in 70, but longer experience suggests the actual rate is much lower.

Placenta abnormalities impacting on the urinary tract
Placenta accreta is abnormal placental invasion superficially into the uterine wall and affects between 1 in 500 and 1 in 1000 pregnancies. When invasion is into or through the myometrium, it is termed *placenta increta*. When the placenta invades further into a surrounding structure, such as the bladder ± ureters, this is termed *placenta percreta*, which is estimated to affect between 1 in 1000 and 1 in 70 000 births. Women of an older maternal age and women who have had two previous Caesarean sections are most at risk. There is a significant risk of needing hysterectomy and bladder reconstruction. Placenta percreta is a rare, but life-threatening, event, associated with significant maternal haemorrhage. With the rise in the number of Caesarean sections being performed, this condition is becoming more commonly encountered by urologists who are asked to advise and assist at deliveries.

Assessment
Haematuria, particularly in patients with a history of previous surgical deliveries, should be considered a red flag symptom and prompt further investigation, including assessment for abnormal placenta invasion. Around one-quarter to one-third of patients with placenta percreta will have haematuria.

Investigation
Suspicion is raised with an antenatal USS showing a low-lying placenta (placenta previa) in a patient who has had a previous Caesarean section, with later findings of a ‘Swiss cheese’ appearance adjacent to the placenta. Pre-delivery planning with pelvic MRI and colour Doppler USS is helpful. From a urological perspective, it can confirm the diagnosis of bladder invasion, map the location, and assess the ureters. Cystoscopy can also be considered.
Multidisciplinary team review

In cases of placenta percreta recognized during pregnancy, an MDT approach is essential, including involvement of the patient. In addition to obstetricians, neonatologists, and paediatricians, it is helpful to involve the interventional radiology, urology, and intensive care teams and to alert the anaesthetists and haematology to the case and likely blood requirements. Careful preparation with the team is essential, and the delivery should be carried out electively, whenever possible, to ensure the appropriate expertise is available. Patients may present as an emergency with vaginal bleeding or with a previously unrecognized placenta percreta, whereupon all on-call teams are mobilized urgently and the outcome can be less favourable. A carefully documented plan of care for this situation can be enormously helpful in this emergency situation. Increasingly, such cases are being referred to specialist centres with greater availability of specialist resources.

Urological input

In an elective setting, the urologist should take the opportunity to discuss the potential interventions and take consent from the patient. Where feasible, ensure the patient is on a radiology table for the procedure, with arms by the sides. It is helpful to place prophylactic bilateral ureteric stents and a urethral catheter at the beginning of surgery. Patients are managed with a Caesarean section and immediate hysterectomy in most cases. Interventional radiology may place balloon catheters into the internal iliac arteries prophylactically where significant blood loss is anticipated, with facility for embolization where indicated. Following delivery, control of haemorrhage, and maternal stabilization, urological assessment can be made more fully. Superficial bladder defects may require suture repair; deeper infiltration of the placenta into bladder tissue may require partial cystectomy. The bladder should be drained adequately post-operatively with a urethral and suprapubic catheter, with washouts if required, and a cystogram performed 3wk post-operatively to ensure there are no urinary leaks prior to catheter removal and trial of voiding. Ureteric injury requires repair ± ureteric reimplantation (see pp. 528–31 for the management of ureteric injury). Generally, after repair, a ureteric stent will be left in situ for 6wk and followed up with imaging (MAG 3 renogram). Post-partum follow-up, including assessment for bladder dysfunction, should be offered.

Bladder injury during Caesarian section

The incidence is low (<1%). There is a higher risk associated with emergency procedures, repeat Caesarean deliveries, and in women with adhesions. The crucial factor is recognition; signs include a visualized bladder wall laceration, haematuria, appearance of the catheter, and clear fluid in the wound (extravasation of urine). Most injuries occur in the bladder dome. If the injury is not clearly seen, options include saline or methylene blue instillation into the bladder via the urethra catheter and then observing for extravasation, cystoscopy, or on-table cystogram. Assess for any risk of ureteric injury (laceration close to the trigone and ureteric orifices), and if suspected, be prepared to perform on-table retrograde pyelograms. The bladder wall can be repaired with absorbable suture (2-0 Vicryl) with full-thickness or two-layer closure (mucosa and detrusor layers). The bladder
must be drained post-operatively with a urethral catheter for 7–14 days (depending on the extent of the injury). A cystogram is performed prior to catheter removal to ensure the bladder has healed; however, this is not always necessary for small defects in otherwise healthy bladders.

Missed bladder injury may present post-operatively with haematuria, abdominal pain or distension, ileus, peritonitis, sepsis, elevated creatinine level, and fistula. A CT cystogram should be performed to confirm the bladder injury (± CTU if any concerns regarding the upper tracts). Small cystotomies detected early may heal with conservative management with a free-draining catheter and antibiotics; large or complicated defects will need drainage of large collections and open repair.

Urinary retention following childbirth

Around 10–15% of women will suffer some degree of voiding dysfunction following delivery. Symptomatic post-partum urinary retention (PUR) is defined as 'the inability to void spontaneously within 6h after vaginal delivery, or 6h after removal of an indwelling bladder catheter after Caesarean section, requiring catheterization'. Acute PUR post-partum normally resolves spontaneously within 3 days of delivery. Prolonged post-partum urinary retention (≥3 days’ duration) is uncommon, affecting around 0.2%. Unrecognized PUR can lead to irreversible bladder damage (via bladder overdistension, denervation, and detrusor atony), leading to voiding dysfunction, so early diagnosis and intervention are essential. Some patients may have an asymptomatic chronic type of PUR, in that they void but leave behind an ↑ PVR of >150mL. These cases may go unrecognized if PVR measurement is not standard, and large residuals will also need draining. Most cases resolve within 1wk.

Risk factors for PUR

- Instrument-assisted delivery (vacuum or forceps).
- Prolonged second stage of labour.
- First child.
- Epidural anaesthesia.
- Perineal trauma or episiotomy.
- ↑ birthweight.
- Caesarean section.

Management

In general, a thorough pelvic floor history should be taken, as urinary problems post-partum can coexist with other pelvic floor issues such as faecal urgency and incontinence and prolapse symptoms which may need treatment. The Royal College of Obstetricians and Gynaecologists and NICE publish guidelines which include advice on post-partum bladder management, but there remains variation in practice in the UK. Principles to follow include:

- Women should be encouraged to void regularly during labour.
- The timing and volume of the first-void urine should be monitored and documented.
- A PVR should be measured if retention is suspected.
- Women who have had a spinal anaesthetic or an epidural that has been topped up (i.e. for assisted delivery or Caesarean section) should have an indwelling catheter for at least 12h post-delivery.
Women who have had an epidural for normal labour (particularly if a heavy block) should be offered an indwelling catheter, which should stay for a minimum of 6h post-partum or until full sensation has returned. Of note, the catheter should be removed temporarily prior to delivery, to avoid trauma to the bladder neck or urethra at this stage of labour.

Women having an assisted delivery with ventouse or forceps should have an in-and-out catheter prior to the delivery itself to ensure the bladder is empty.

Patients who have not passed urine within 6h of normal delivery (or after catheter removal post-Caesarean section), where conservative measures have failed, should be catheterized.

If voiding dysfunction persists longer term, consider urodynamic studies.

References

Paediatric urology

Embryology: urinary tract 670
Embryology: genital tract 672
Undescended testes 676
Paediatric uro-physiology 680
Foreskin 682
Urinary tract infection 684
Antenatal hydronephrosis 688
Vesicoureteric reflux 692
Megaureter 696
Ectopic ureter 698
Ureterocele 700
Pelviureteric junction obstruction 702
Posterior urethral valves 704
Cystic kidney disease 706
Hypospadias 708
Disorders of sex development 712
Exstrophy–epispadias complex 718
Primary epispadias 720
Urinary incontinence in children 722
Nocturnal enuresis 724
Urolithiasis 728
Trauma 730
Embryology: urinary tract

Following fertilization, a blastocyte (sphere of cells) is created, which implants into the uterine endometrium on day 6. The early embryonic disc of tissue develops a yolk sac and amniotic cavity, from which are derived the ectoderm, endoderm, and mesoderm. Organ formation occurs between 3 and 10 wk gestation. Most of the genitourinary tract is derived from the mesoderm.

Upper urinary tract

The *pronephros* [precursor of the kidney; *pro* (Greek) = before] is derived from an intermediate plate of mesoderm, which functions between wk 1 and 4. It then regresses. The *mesonephros* [meso (Greek) = middle] functions from wk 4–8 and is also associated with two duct systems—the mesonephric duct and, adjacent to this, the paramesonephric duct [para (Greek) = beside] (Fig. 16.1a). The *mesonephric (Wolffian) ducts* develop laterally and advance downwards to fuse with the cloaca (Latin = sewer), a part of the primitive hindgut. By wk 5, ureteric buds grow from the distal part of the mesonephric ducts, and by a process of reciprocal induction, they stimulate the formation of the *metanephros* [permanent kidney; *meta* (Greek) = after] when they reach the renal tissue. Branching of the ureteric bud forms the ureter, renal pelvis, calyces, and CDs. Glomeruli and nephrons [distal convoluted tubules (DCTs), PCTs, and the LoH] are derived from the metanephric mesenchyme (metanephros). During wk 6–10, the caudal end of the fetus grows rapidly and the fetal kidney effectively moves up the posterior abdominal wall to the lumbar region. Urine production starts at wk 10.

Thus, in both ♂ and ♀, the mesonephric duct forms the ureters and renal collecting system. The paramesonephric duct essentially forms the ♀ genital system (Fallopian tubes, uterus, upper vagina); in ♂, it regresses. The mesonephric ducts also form the ♂ genital duct system (epididymis, vas deferens, seminal vesicles) and the central zone of the prostate; in ♀, it regresses (see E pp. 672–4).

Lower urinary tract

Bladder

The mesonephric ducts and ureters drain into the cloaca. During wk 4–6, the cloaca is subdivided into the *urogenital canal or sinus* (anteriorly) and the *anorectal canal* (posteriorly) by a process of growth, differentiation, and remodelling (Fig. 16.1b).\(^1\) The bladder is formed by the upper part of the urogenital canal. Bladder smooth muscle (detrusor) is developed from the adjacent pelvic mesenchyme. The trigone develops separately, arising from a segment of the mesonephric duct. The bladder dome is initially connected to the allantois, but this connection later regresses to become a fibrous cord (urachus).

Urethra

The inferior portion of the urogenital canal forms the entire urethra in ♀ and the posterior urethra in ♂. Closure of the urogenital groove creates the ♂ anterior urethra. The mesonephric ducts separate from the ureters (Fig. 16.1c) and travel caudally to join the posterior urethra in ♂ (where they differentiate into the ♂ genital duct system at 8–12 wk).
Fig. 16.1 (a) Development of the upper urinary tract. (b) Development of the lower urinary tract (bladder). (c) Development of the distal ureters and mesonephric ducts.

Reference

Embryology: genital tract

Sexual differentiation and gonadal development are determined by the sex chromosomes (XY, ♂; XX, ♀). The gonads produce hormones which influence the subsequent differentiation of the internal and external genitalia.

Both sexes

Gonads develop from the *genital ridges* (formed by cells of the mesonephros and coelomic epithelium). At 5–6wk, primordial germ cells migrate from the yolk sac to populate the genital ridges. Primitive sex cords are formed, which support germ cell (sperm and ova) development.

From 4wk, the *mesonephric (Wolffian) ducts* are incorporated into the genital system when renal function is taken over by the definitive kidney. At 6wk, the coelomic epithelium creates the *paramesonephric (Müllerian) ducts* which develop laterally and are fused to the urogenital sinus at their bases.

Males

Embryos are genetically programmed to be ♀, unless the *testis-determining gene* (*SRY*) is present, in which case the embryo will differentiate into a ♂. The *SRY* gene is located on the Y chromosome. It stimulates medullary sex cords in the primitive testis to differentiate into Sertoli cells which, via the action of *SOX9*, produce *Müllerian inhibiting substance (MIS)*, a member of the TGF-β superfamily, at 7–8wk. The sex cords differentiate into seminiferous tubules of the testis within which the primordial germ cells differentiate into spermatogonia. MIS triggers regression of the paramesonephric ducts (apart from the appendix testis, verumontanum, and utriculus), testosterone secretion from Leydig cells of the testis from wk 9, and the initial phase of testicular (abdominal) descent. The androgens testosterone and DHT are responsible for masculinization of the fetus, including the development of the phallus from the genital tubercle.

During wk 8–12, the mesonephric ducts differentiate into the epididymis, rete testis, vas deferens, seminal vesicles, and ejaculatory ducts. Under the influence of DHT acting on androgen receptors, proliferation and budding of the urethral endoderm give rise to prostatic acini and glands and, by a process of reciprocal induction, forms the prostatic capsule and smooth muscle from the surrounding mesenchyme (completed by wk 15). MIS and insulin-like hormone 3 give rise to testicular descent along the gubernaculum towards the internal inguinal ring between wk 8–25.

After wk 25, the second androgen-dependent phase of testicular descent occurs. The testes rapidly descend from the abdomen via the inguinal canal and into the scrotal sac, aided by calcitonin gene-related polypeptide (released from the genitofemoral nerve) acting on the gubernaculum. The testis is enclosed in a diverticulum of the peritoneum called the processus vaginalis. The distal part persists as the tunica vaginalis around the testis, the remainder usually regresses.

External genitalia develop from wk 7. Urogenital folds form around the opening of the urogenital sinus, and labioscrotal swellings develop on either side. The penile shaft and glans are formed by elongation of the genital tubercle (under the action of DHT) and fusion of the urogenital folds. The scrotum is created by fusion of the labioscrotal folds.
Females
(See Figs. 16.2 and 16.3.)

The genital ridge forms secondary sex cords (primitive sex cords degenerate) which surround the germ cells to create ovarian follicles (wk 15). These undergo meiotic division to become primary oocytes, which are later activated to complete gametogenesis at puberty. Oestrogen is produced from wk 8 under the influence of the aromatase enzyme. In the absence of MIS, the mesonephric ducts regress and the paramesonephric ducts become the Fallopian tubes, uterus, and upper two-thirds of the vagina. The sinovaginal sinus is developed at the junction of the paramesonephric ducts and the urogenital sinus. This forms the lower third of the vagina.

The genital tubercle forms the clitoris; the urogenital folds become the labia minora, and the labioscrotal swellings form the labia majora.

Fig. 16.2 Differentiation of the external genitalia (wk 7–16).

Fig. 16.3 Differentiation of the genital tract.
Summary
The ureteric bud gives rise to the renal pelvis, ureter, calyces, and CDs. The metanephros gives rise to the glomeruli, convoluted tubules, and LoH. The mesonephric ducts give rise to the prostate central zone, epididymis, rete testis, vas deferens, seminal vesicle, ejaculatory duct, and trigone of the bladder; in ♀, remnants persist as Gartner’s cysts, epoophoron, and paroophoron. The paramesonephric (Müllerian) ducts give rise to the Fallopian tubes, uterus, and upper two-thirds of the vagina; in ♀, remnants persist as the appendix testis, verumontanum, and prostatic utricle. The urogenital canal gives rise to the bladder [apart from the trigone; in ♀, the urethra and lower one-third of the vagina; in ♀, the posterior urethra and prostate (apart from central zone)].
Undescended testes

The first phase of testicular descent from the genital ridge to the internal inguinal ring occurs under the influence of MIS acting on the gubernaculum (around 7–8 wk gestation). The second phase of testicular descent through the inguinal canal into the scrotum occurs at 24–28 wk gestation under the influence of testosterone. Failure of descent results in cryptorchidism or congenital UDT.

Incidence

UDT is the commonest anomaly of the♂ genitalia, affecting between 2% and 4% at birth for a full-term neonate, more frequently on the right. Many spontaneously descend after birth due to a surge in LH, and the incidence at 3 months is 1%. Only a small number undergo descent between 3 months and 1 y when the incidence is 0.8%. The incidence of unilateral UDT is greater than bilateral UDT.

Classification

- **Ectopic cryptorchidism (<5%)**: abnormal testis migration below the external ring of the inguinal canal (to the perineum, base of the penis, or femoral areas) (Fig. 16.4a).
- **Undescended (>95%)**: palpable (intra-inguinal or pre-scrotal, 80%) or impalpable (20%, of which 40% intra-abdominal, 10% inguinal, 30% absent intra-abdominal, and 20% absent intra-canicular) (Fig. 16.4b).
- **Retractile**: an intermittent active cremasteric reflex causes the testis to retract up and out of the scrotum.
- **Atrophic/absent.**
- **Ascended**: testes that were down in the scrotum have ascended. Risk higher with retractile testes and a patent processus vaginalis. It occurs around 7–9 y old, and the incidence is 1–2%,^1^ ~20% will fail to return to the scrotum by puberty. Orchidopexy is recommended, as the ‘ascended’ testis is at the same risk of degenerative changes as congenital UDT.

Risk factors

- Preterm infants (incidence at <30 wk gestation is 40%; most will spontaneously descend if >2 kg birthweight).
- Low birthweight or small for gestational age.
- Twins.
- Family history of UDT (father or brother, 4.6 or 6.9 times relative risk, respectively).

Aetiology

- Abnormal testis or gubernaculum (tissue that guides the testis into the scrotum during development).
- Endocrine abnormalities: low level of androgens, hCG, LH, calcitonin gene-related peptide, or MIS.
- ↓ intra-abdominal pressure (prune belly syndrome, gastroschisis).
Pathology

UDT demonstrate the degeneration of Sertoli cells, loss of Leydig cells, atrophy, and abnormal spermatogenesis. σ^3 fertility depends on the transformation of gonocytes to adult dark spermatogonia at 3–6 months, and germ cell loss is preventable by correcting the position of the testis.

Fig. 16.4 (a) Ectopic sites for the undescended testis. (b) Incomplete descent of the testis.
Long-term complications

- Relative risk of cancer is 4-fold higher in unilateral UDT (1:125) and 11-fold higher in bilateral UDT (1:45) and is higher in those with higher testes. There is a 4% lifelong risk of cancer with an intra-abdominal testis. Early orchidopexy decreases the risk of malignancy (existing evidence is <13y 2.2-fold and >13y 5.4-fold). The majority are seminomas. Slightly ↑ risk of cancer in the contralateral normally descended testis.

- Reduced fertility (the paternity rate in unilateral UDT is 80–90% and in bilateral UDT is 45–65%). Paternity rates improve if orchidopexy is performed before 2y of age.

- ↑ risk of testicular torsion (10-fold) or trauma.

- ↑ risk of indirect inguinal hernias (due to a patent processus vaginalis).

Evaluation

Initial assessments at the newborn check within 72h and at 6wk. Examine the scrotum and inguinal region to elucidate if a testis is palpable (identify its location—is it ectopic?) or impalpable. Retractile testes may be brought back down into the bottom of the scrotum without tension. Assess for associated congenital defects (30% incidence if bilateral UDT). If neither testis is palpable, early chromosome analysis (to exclude an androgenized ♀) and endocrine analysis are required (high LH and FSH with low testosterone indicates anorchia, confirmed with serum inhibin B). Referral to a specialist paediatric urologist or an adult urologist with paediatric skills should occur by 4–6 months of age. No role for preoperative imaging.

Treatment

- Examination under anaesthesia ± orchidopexy between 3 and 12 months (British Association of Paediatric Urologists, 2015).

- Inguinal UDT: inguinal orchidopexy—consists of inguinal exploration, mobilization of the spermatic cord, ligation of the processus vaginalis, and securing the testis into a dartos pouch in the scrotal wall. Risks include failure (8%), testicular atrophy (5%), damage to the vas (1–2%), and re-ascent of the testis.

- Intra-abdominal testes: require a laparoscopic approach to mobilize the testis for orchidopexy as a single or 2-stage (Fowler–Stephens) procedure. The Fowler–Stephens approach involves initial clipping or division of spermatic vessels to provide extra length (the testis then relies on blood flow from the vas and collaterals which develop from the deferential and cremasteric arteries). Six months later, the testis is then mobilized on its vas with its new collateral vessels and brought down into the scrotum. Success rates are >85%. Intra-abdominal testes with a short vas may need microvascular autotransplantation. This involves high intra-abdominal ligation of the spermatic vessels; the testis is brought down into the scrotum, and the vessels are re-anastomosed to the inferior epigastric vessels. Small, atrophic intra-abdominal testes (nubbin) require orchidectomy ± orchidopexy of the contralateral normally descended testis.

Overall success rates of orchidopexy vary according to the position of the UDT: 92% for inguinal testes, 87% for canalicular testes, and 74% for abdominal testes.²
References

Paediatric uro-physiology

Antenatal
Fetal urine production begins around wk 10–12. By wk 32, urine production is 30mL/h, and by wk 36, the kidneys are fully developed with ~700 000 nephrons per kidney.

Neonatal
At birth, babies have a reduced concentrating ability and reduced sodium handling. Bicarbonate reabsorption is low, and therefore, it is common to have mild mixed acidosis. Serum creatinine is high, as it reflects maternal creatinine for the first 24–48h. Thereafter, it falls rapidly within the first week. RBF and GFR are low, with a GFR of 12mL/min/m² at birth. The GFR doubles by 2wk, peaks at 4 months, and normalizes by the age of 2y. This increase in GFR occurs due to reduced renal vascular resistance, ↑ perfusion pressure, improved glomerular permeability, and ↑ filtration surface.

Serum creatinine at 6 months is a marker of end-stage renal disease, with a level below 150μmol/L associated with a good prognosis and a level of 350–600μmol/L associated with end-stage renal disease by the age of 5y. Common causes of chronic renal failure (CRF) in children include glomerulonephritis, congenital abnormalities (PUV, hypoplasia, dysplasia, VUR), collagen vascular disease, and obstruction.

Bladder
Estimated bladder capacity (EBC) can be calculated, based on age:

< 1y : EBC (mL) = weight (kg) X10

= 1y : EBC (mL) = 30 (age + 1).

PVR should be <10% of EBC.

Urinary frequency reduces with age, with a neonate voiding 30 times per 24h (explaining the difficulty in obtaining accurate urinalysis in infection), 1- to 2-year-old children voiding 20 times per 24h and 2- to 4-year olds voiding 5–10 times per 24h.
Foreskin

The prepuce develops between wk 8 and 24 and is attached to the glans. Natural regression occurs over several years until the prepuce is fully retractile. Nerve supply is from the dorsal nerve of the penis and scrotal nerves; parasympathetic supply is from S2–4, and sympathetic from T11–L1. Arterial supply is from the superficial external pudendal arteries and branches of the internal pudendal artery. Venous drainage is via the superficial, intermediate, and deep veins, which drain into the great saphenous vein. Lymphatics drain to the superficial and deep inguinal lymph nodes.

Physiological phimosis

At birth, >95% of foreskins are non-retractile (phimosis, Greek ‘muzzling’). A large study of serial observations in 1968 schoolboys showed that the majority of foreskins become fully retractile by the age of 16 (Table 16.1). Prepucial adhesions separate by proximal desquamation, smegma accumulation, penile growth, and spontaneous erections. Examination shows characteristic ‘flowering’ of a healthy, non-scarred prepuce on gentle manual retraction, which cannot be retracted back over the glans. Physiological phimosis is associated with ballooning of the foreskin on voiding, and this does not require treatment. Reassurance that this will improve with time is generally all that is required, although topical steroids (0.1% Betnovate® tds for 6wk) have been shown to accelerate natural resolution.

Pathological phimosis

Scarring of the foreskin opening leading to symptoms and non-retractility of the prepuce—usually due to lichen sclerosis and BXO. It is rare before the age of 5y (0.6% incidence), and it is associated with other autoimmune disorders. Boys most commonly present with a foreskin which is non-retractile (although occasionally, the foreskin is retractile and the disease is primarily on the glans), irritation ± infections, abnormal urinary stream, and urinary retention. Meatal involvement is found in 20%. On examination, the prepuce is tight, thickened, and scarred, and a white constriction band is seen on attempted manual retraction. Treatment is traditionally with circumcision or preputioplasty (preputioplasty ± intralesional triamcinolone has a good outcome, with low rates of meatal stenosis, despite a small risk of recurrent BXO—RCTs are required).

Table 16.1 Incidence of phimosis and preputial adhesions in various age groups

<table>
<thead>
<tr>
<th>Age group (y)</th>
<th>Phimosis (%)</th>
<th>Preputial adhesions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–7</td>
<td>8</td>
<td>63</td>
</tr>
<tr>
<td>10–11</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>16–17</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Congenital megaprepuce

This is also known as primary buried penis, with secondary buried penis being acquired from circumcision (especially when Plastibell is used) or hypospadias repair. Examination reveals a massively enlarged foreskin, although there is a paucity of skin ventrally and an excess of skin internally. Initial treatment is with dorsal slit ± preputioplasty, then plastics referral for definitive surgical correction, which involves degloving of the penile skin, ± excision of fat pad, ± hitching of penile tissue to the periosteum, and excision of redundant internal skin. Flaps might also be needed to achieve good cosmesis.

Circumcision

Circumcision is the most commonly performed surgical procedure worldwide. Absolute indications for childhood circumcision include lichen sclerosis and recurrent balanoposthitis. Relative indications include recurrent UTI, febrile UTI associated with an underlying abnormality (VUR, PUV), recurrent paraphimosis, traumatic injury, and religious reasons. A meta-analysis showed the numbers needed to treat to prevent one UTI are 111 (normal urinary tract), 11 (recurrent febrile UTI), and 4 (high-grade VUR and UTI). Contraindications include acute local infection, hypospadias, and buried penis.

A sleeve circumcision is most commonly used, and care must be taken to inspect the urethral meatus (dorsal slit if required) at the start of the procedure, in order to identify any hypospadias (the prepuce may be required for reconstructive surgery). Complications include oozing (36%), bleeding requiring reoperation (1–2%), infection (8%), discomfort >1wk (26%), poor cosmesis, and meatal stenosis, glans amputation, buried penis, and urethra-cutaneous fistula (rare).

References

Urinary tract infection

Definition
UTI is a bacterial infection of the urine, which may involve the lower urinary tract/bladder (cystitis) or upper urinary tract/kidney (pyelonephritis) (see pp. 194–5).

Classification
Children may be asymptomatic or symptomatic.
- Simple UTI: presents with mild dehydration and pyrexia.
- Severe UTI: presents as fever (≥38°C), unwell, vomiting, and moderate to severe dehydration.
- Atypical UTI: includes features of serious illness/septicaemia, poor urinary flow, bladder mass, elevated creatinine, abnormal renal function, failure to respond to treatment in <48h, and non-<i>Escherichia coli</i> infection.
- Recurrent UTI: in children, describes either one episode of cystitis with one episode of pyelonephritis, ≥2 episodes of pyelonephritis, or ≥3 episodes of cystitis. It may be due to bacterial persistence, unresolved infection, or re-infection.

Incidence
Up to age 1, the incidence in boys is higher than girls (the ♂:♀ ratio is 3:1), but thereafter, the incidence in girls becomes greater (schoolaged ♂ 1%; ♀ 3%).

Pathology
Common bacterial pathogens are <i>E. coli</i>, <i>Enterococcus</i>, <i>Pseudomonas</i>, <i>Klebsiella</i>, <i>Proteus</i>, and <i>Staphylococcus epidermidis</i>. Bacteria enter via the urethra to cause cystitis, and ascending infection causes pyelonephritis. Alternatively, there can be haematogenous spread from other systemic infections.

Risk factors
- Age: neonates and infants have ↑ bacterial colonization of the peri-urethral area and an immature immune system.
- VUR (see pp. 692–5).
- Previous UTI.
- Genitourinary abnormalities: pelvi- or vesicoureteric obstruction, ureterocele, PUV, labial adhesions.
- Voiding dysfunction: abnormal bladder activity, compliance, or emptying.
- Gender: ♀ > ♂ after 1y old.
- Foreskin: uncircumcised boys have a 10-fold higher risk of UTI in the first year due to bacterial colonization of the glans and foreskin.
- Faecal colonization: contributes to perineal bacterial colonization.
- Chronic constipation.

Presentation
- Neonates and infants: fever, irritability, vomiting, lethargy, diarrhoea, poor feeding, failure to thrive, abdominal pain, offensive urine, haematuria.
- Children: fever, nausea, suprapubic pain, dysuria, frequency, voiding difficulties, changes to continence, abdominal or flank pain, haematuria.
Investigation

- **Urine analysis and culture:** advised with unexplained fever (≥38°C) or if symptomatic of UTI. Clean-catch specimen where possible. In toilet-trained children, an MSU specimen is considered diagnostic with ≥10^5 CFUs/mL in asymptomatic children and ≥10^4 CFU/mL if symptomatic. In young children, a catheterized urine specimen with ≥10^3 CFUs/mL of one pathogen or a suprapubic aspirate with ≥1 CFU/mL are diagnostic of UTI. Collection bag specimens are less reliable due to skin flora contamination.

- **Imaging:** refer to NICE recommendations (Tables 16.2–16.4).¹
 - USS is the first-line investigation. It identifies bladder and kidney abnormalities (e.g. hydronephrosis, stones, duplex kidneys, ureteric dilatation, bladder abnormalities).
 - DMSA renogram can demonstrate and monitor renal scarring.
 - MCUG (with antibiotic prophylaxis) detects urethral and bladder anomalies (anatomical and functional), VUR, and some ureterocele.

<table>
<thead>
<tr>
<th>Table 16.2</th>
<th>Recommended imaging regimen for infants <6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging</td>
<td>Responds well to treatment <48h</td>
</tr>
<tr>
<td>USS during UTI</td>
<td>No</td>
</tr>
<tr>
<td>USS within 6wk</td>
<td>Yes</td>
</tr>
<tr>
<td>DMSA 4–6 months following UTI</td>
<td>No</td>
</tr>
<tr>
<td>MCUG</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 16.3</th>
<th>Recommended imaging regimen for infants/children 6 months to 3y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging</td>
<td>Responds well to treatment <48h</td>
</tr>
<tr>
<td>USS during UTI</td>
<td>No</td>
</tr>
<tr>
<td>USS within 6wk</td>
<td>No</td>
</tr>
<tr>
<td>DMSA 4–6 months following UTI</td>
<td>No</td>
</tr>
<tr>
<td>MCUG</td>
<td>No</td>
</tr>
</tbody>
</table>

¹ MCUG may be considered for hydronephrosis, poor urinary flow, family history of VUR, or non-E. coli UTI.

Management

Infants <3 months (and children at risk of serious illness) are managed according to the ‘fever in under 5s’ guidelines. For children aged 3 months to 3y, antibiotics are recommended (before urine culture results are available) for specific symptoms of UTI and for non-specific symptoms where the risk of intermediate to serious infection is high (i.e. associated anatomical or functional abnormality). In children older than 3y, antibiotics are indicated if urine dipstick analysis is positive for nitrites ± leucocyte esterase or if there is good clinical evidence of UTI.

- Infants <3 months: paediatric referral and treat with IV antibiotic such as third-generation cephalosporin (cefotaxime or ceftriaxone).
- Infants and children >3 months with pyelonephritis: paediatric referral; 7–10 days of PO cephalosporin or co-amoxiclav, or IV cefotaxime or ceftriaxone for 2–4 days followed by oral antibiotics for a total of 10 days.
- Infants and children >3 months with cystitis: oral antibiotics for 3 days (trimethoprim, nitrofurantoin, cephalosporin, or amoxicillin), and reassess. The choice of antibiotics should be directed by local hospital guidelines.

Asymptomatic bacteriuria does not require antibiotics or routine follow-up. Antibiotic prophylaxis is not recommended following a first-time simple UTI but can be considered after recurrent symptomatic UTI. Advice on preventing UTI should be given, including good intake of fluids, regular voiding, and treatment of constipation.

Follow-up

Recurrent UTI or abnormal imaging requires paediatric assessment. Long-term follow-up is needed for bilateral renal anomalies, impaired renal function, hypertension, and/or proteinuria. Many children with unilateral renal anomalies also require follow-up, e.g. VUR, megaureter, duplex with hydronephrosis, etc. Follow-up should include recordings of growth (height, weight), BP, and urine dipstick testing.
References
Antenatal hydronephrosis

Definition
Generally defined as a maximal transverse anteroposterior diameter (TAPD) of the renal pelvis of ≥7mm on antenatal USS.

Incidence
The incidence of antenatal hydronephrosis (renal pelvic dilatation ≥5mm) is 1–2% on second-trimester (20wk gestation) USS. The incidence of antenatal USS-detected congenital anomalies of the urinary tract is 0.1–4%. An increasing degree of hydronephrosis is related to ↑ risk of urinary tract pathology and requirement for surgery. However, in around 65%, antenatal hydronephrosis will resolve, and overall, <5% will require nephrological or surgical intervention.

Aetiology
Causes include transient hydronephrosis (48%), physiological hydronephrosis (15%), PUJO, VUR, megaureter, multicystic dysplastic kidney (MCDK), renal cysts, PUV, ectopic ureter, and ureterocele (also see Table 16.5).

Antenatal management
- 20wk gestation USS. If necessary, repeat the scan to observe for changes when the bladder empties. Note the gender of the fetus.
- Repeat USS at 32wk if TAPD >7mm to assess for persisting or increasing renal dilatation. Document if unilateral or bilateral.

Table 16.5 Clinically significant causes of antenatal hydronephrosis

<table>
<thead>
<tr>
<th>Cause</th>
<th>Incidence (%)</th>
<th>USS features</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUJO (see p. 702–3)</td>
<td>11</td>
<td>Most have RPD >15mm, with no ureteric dilatation. Bilateral in 10–40%</td>
</tr>
<tr>
<td>VUR (see p. 692–5)</td>
<td>9</td>
<td>Ureter dilated to bladder ± dilatation of pelvicalyceal system</td>
</tr>
<tr>
<td>Megaureter (see p. 696–7)</td>
<td>4</td>
<td>Dilated ureter >7mm; left side affected more commonly than right side</td>
</tr>
<tr>
<td>MCDK (see p. 706)</td>
<td>2</td>
<td>Kidney is replaced by cysts of varying size; 30% risk of abnormality in the contralateral kidney, i.e. PUJO, VUR</td>
</tr>
<tr>
<td>Ureterocele (see p. 700–1)</td>
<td>2</td>
<td>Cystic area in the bladder, usually associated with a duplex kidney and hydronephrosis due to obstruction or reflux</td>
</tr>
<tr>
<td>PUV (see p. 704–5)</td>
<td>1</td>
<td>Bilateral hydrourereteronephrosis and distended, thick-walled bladder, dilated posterior urethra, oligohydramnios, and pulmonary hypoplasia</td>
</tr>
</tbody>
</table>

ANTENATAL HYDRONEPHROSIS

- Antenatal counselling to discuss differential diagnosis, prognosis, and investigations required postnatally. Particularly important for BOO (i.e. PUV), unilateral RPD >30mm, bilateral RPD >15mm, MCKD, and ureterocele.
- Arrange delivery at an appropriate centre for cases requiring specialist intervention (i.e. with paediatric urology, nephrology, and neonatal ITU on site).

General principles of postnatal management

Specific postnatal investigation and management will depend on the underlying diagnosis and severity of hydronephrosis and are described individually later in this chapter. The important principles of postnatal management include:

- Clinical assessment, including BP reading. Examine for a palpable bladder (PUV) and an abdominal mass (PUJO, MCKD).
- Start prophylactic antibiotics immediately (trimethoprim 2mg/kg daily) until the diagnosis is established. Exceptions to this include: TAPD <10mm and normal calyces (give UTI advice); MCDK with normal contralateral kidney and ectopic kidney with no dilatation.
- Renal function blood tests (particularly if distended bladder, ureterocele, bilateral hydronephrosis, and unilateral hydronephrosis in a solitary kidney). Within the first 48h, creatinine reflects maternal renal function.

Imaging

- **Postnatal USS:** generally recommended at 1 and 6wk postnatal, although it can be delayed longer for lower-risk anomalies. Avoid USS in the first 48h post-delivery (physiological dehydration, high false-negative rate). Exceptions that require immediate USS are conditions with obstruction needing urgent surgery—PUV and ureterocele.
- **MCUG:** if hydronephrosis + ureteric dilatation, or bilateral hydronephrosis. It is deferred until the child is older (~3–6 months), unless there is an urgent clinical indication (BOO/PUV) where it is performed as soon as possible after birth. Other indications for MCUG include duplex kidney, ureterocele, and renal scarring where it is used to detect associated VUr.
- **DMSA:** is a static scan which provides an accurate measurement of renal split function. It is used to confirm non-function of multicystic kidney, differential function of upper and lower moieties of a duplex kidney, and renal damage associated with VUR and UTI (renal cortical scarring). It is performed at 6–12wk old.
- **MAG3:** is a dynamic scan used to identify obstruction where there is no demonstrable reflux and significant hydronephrosis persists (TAPD >15mm, or <15mm with calyceal dilatation). Usually deferred until the infant is 6–12wk old. It also provides an approximation of renal split function and is particularly useful for the diagnosis of PUJO.

Consider an urgent referral to paediatric urology for:

- BOO (PUV).
- Ureterocele associated with obstruction or infection.
Consider a referral to paediatric nephrology or urology for:
- Bilateral RPD >15mm with no reflux.
- Non-refluxing megaureters.
- Dilatation of a solitary kidney.
- Dilatation of any moiety of a duplex kidney.
- Unilateral RPD >30mm.
- Progressive increase in dilatation or cortical thinning.
- Differential function <40%.
- Development of symptoms such as pain/UTI.

(Please refer to local hospital guidelines, as these will differ between different hospitals and tertiary centres.)

References
Vesicoureteric reflux

Definition
VUR results from abnormal retrograde flow of urine from the bladder into the upper urinary tract.

Epidemiology
Overall incidence in children is 1–2%; younger > older; girls > boys (♀:♂ ratio = 5:1); Caucasian > Afro-Caribbean. The offspring of an affected parent has up to 50% incidence of VUR; siblings of an affected child have 30% risk of reflux. Screening of offsprings and siblings is controversial, and many would only recommend it if there is significant renal scarring in the index case.

Pathogenesis
The ureter passes obliquely through the bladder wall (1–2cm) where it is supported by muscular attachments which prevent urine reflux during bladder filling and voiding. The normal ratio of intramural ureteric length to ureteric diameter is 5:1. Reflux occurs when the intramural length of the ureter is too short (ratio <5:1) (Paquin’s law). The degree of reflux is graded I–V (see pp. 420–2) (Fig. 8.3). The appearance of the ureteric orifice changes with increasing severity of reflux, classically described as stadium, horseshoe, golf hole, or patulous.

Classification
• Primary reflux: results from a congenital abnormality of the VUJ. An anatomical cause is seen with duplex kidneys (and ureters). The Weigert–Meyer rule states the lower moiety ureter enters the bladder lateral and superior, resulting in a shorter intramural tunnel which predisposes to reflux (see pp. 434–6) (Fig. 8.10). A genetic cause is also recognized.
• Secondary reflux: results from urinary tract dysfunction associated with elevated intravesical pressures, creating damage to the VUJ. Causes include: PUV (reflux seen in 50%), urethral stenosis, neuropathic bladder, and DSD. Inflammation associated with infection (acute cystitis) can also distort the VUJ, causing reflux. Treatment is of the underlying condition.

Complications
VUR (associated with UTI) can result in reflux nephropathy and renal scarring (particularly at compound papillae of the renal poles, maximal after the first episode of pyelonephritis), causing hypertension (10–20%) and rarely end-stage renal failure (<0.1%).

Presentation
Symptoms of UTI (fever, dysuria, suprapubic and abdominal pain), failure to thrive, vomiting, diarrhoea. It is important to elicit associated symptoms and signs of bladder and/or bowel dysfunction: urinary frequency, urgency, prolonged voiding intervals, daytime wetting, holding manoeuvres to prevent wetting, and constipation.
Investigation

- Baseline measurements: height, weight, BP, as well as serum creatinine if there are bilateral renal cortical abnormalities.
- Urine analysis to assess for bacteriuria and proteinuria.
- Urine culture if evidence of UTI.
- Renal tract USS initially and then annually, as indicated.
- DMSA renogram to detect and monitor associated renal cortical scarring (most likely in grades III–V reflux, children <4y, recurrent febrile UTI, and underlying renal tract abnormality on USS).
- MCUG to diagnose and grade reflux, establish reversible causes, and follow-up after 12–24 months to assess for resolution of higher-grade VUR treated conservatively and after endoscopic treatment (Fig. 16.5).
- (Video)urodynamics if suspicious of voiding dysfunction.

Management

The majority of primary VUR grades I–II will resolve spontaneously (80%), with an overall 50% resolution in grades III–V. Reflux tends to improve with age, as the length of the intramural ureter increases with growth (Table 16.6). General advice includes good fluid intake, regular voiding, perineal hygiene, treatment of constipation, and use of probiotics. Provide parents with UTI advice, and emphasize the need to seek medical attention early if the child has an unexplained febrile illness or a suspected UTI. It is important to treat any coexisting bladder or bowel dysfunction.

Medical treatment

Although the effect of antibiotic prophylaxis on reducing renal scarring has not been demonstrated, several RCTs have demonstrated a reduction in infection rates, compared to placebo/surveillance, and similar outcomes compared to surgery (Birmingham Reflux Study Group, Swedish reflux trial, and RIVUR trial). Therefore, low-dose antibiotic prophylaxis is generally used for high-grade reflux (III–V) and any reflux with a febrile UTI, to keep the urine sterile and lower the risk of renal damage in young children (≤1y old). Typically, trimethoprim 2mg/kg or nitrofurantoin 1mg/kg is used. If the child remains well, antibiotics may be discontinued when they are toilet-trained (dry day and night).

While on treatment, growth, BP, and urine should be monitored (for proteinuria and bacteriuria), with an annual renal tract USS.

Surgery

Routine surgical intervention is not recommended for VUR. Indications for surgery include breakthrough febrile UTI despite antibiotic prophylaxis, scarred kidney, and UTI when prophylaxis is stopped and recurrent UTIs after stopping prophylaxis. High-grade reflux is not an absolute indication for surgical intervention. Circumcision reduces the risk of UTI in boys with VUR and is used for those with anatomical anomalies and recurrent or breakthrough UTI.

Surgical techniques include endoscopic injection, ureteric reimplantation performed by open surgery (98% success), or laparoscopically. Endoscopic injection of Deflux® is the first-line surgical treatment. Indications for ureteric reimplantation include high-grade reflux with loss of function, failure of Deflux®, duplex renal system, and renal ectopia.
Table 16.6 Example of the percentage incidence and spontaneous resolution of VUR according to grade

<table>
<thead>
<tr>
<th>Grade of VUR</th>
<th>Incidence (%)</th>
<th>Spontaneous resolution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7</td>
<td>83</td>
</tr>
<tr>
<td>II</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>III</td>
<td>31</td>
<td>46</td>
</tr>
<tr>
<td>IV</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 16.5 MCUG demonstrating grade III VUR and intrarenal reflux (shown by arrow) in a child.

Image kindly provided with permission from Professor S. Reif.
Endoscopic injection
Deflux® is a hyaluronic acid/dextranomer bulking agent which is most effective for VUR grades I–III, although it can be used for all grades. An injection of Deflux® can be either a STING (below the ureteric orifice) and/or a ‘HIT’ (hydrodistension technique, injected into the floor of the intramural ureter) and has success rates of 80–90%.

Open surgery

- Intravesical methods: involve opening the bladder, mobilizing the ureter, and advancing it across the trigone (Cohen repair), or reinsertion into a higher, medial position in the bladder (Leadbetter–Politano repair, good for megaureter). The aim is to place the mobilized ureter into a submucosal tunnel whose total length is five times the diameter of the ureter in order to prevent further reflux. Success rates with open surgery are around 98%.

- Extravesical techniques: involve suturing the distal ureteric end directly onto the bladder and constructing a tunnel of detrusor muscle around it (Lich–Gregoir procedure).

If febrile UTI recurs after conservative or surgical resolution of VUR, re-investigate for bladder dysfunction and recurrence of VUR. Longer-term follow-up into adolescence is recommended if there is any renal abnormality on USS or DMSA, even if VUR has resolved.

References
Megaureter

Classification
Megaureter is the term for a dilated ureter, usually larger than 7mm in diameter, which may be a primary condition or secondary to another underlying problem. It can be classified into four different groups:

- Obstructed.
- Refluxing.
- Non-refluxing and non-obstructed.
- Refluxing and obstructed.

Primary megaureter can be refluxing or obstructed and is associated with either a simplex renal system or a duplex. Obstruction is due to either a stenotic or an aperistaltic distal ureter, which results in a dilated and tortuous ureter proximally.

Secondary megaureter may be:

- Unilateral—secondary to obstruction or scarring from stones and tumour or following ureteric surgery (i.e. subtrigonal injection of bulking agent around the ureteric orifice, ‘STING’, or reimplantation surgery).
- Bilateral cases are due to BOO (i.e. PUV), prune belly syndrome, and neuropathic bladder dysfunction.

Incidence
Megaureter affects ~1 in 2000 children. ♂ are more commonly affected than ♀; the left ureter is more commonly affected than the right side.

Presentation
Megaureter is the underlying cause for prenatal ultrasound-detected fetal hydronephrosis in around 4% of cases, associated with a dilated ureter (>7mm) (see pp. 688–90). After birth, UTI is the commonest presentation. When associated with an undetected obstructed megaureter, this may present as urosepsis with an infected, obstructed system, which is a urological emergency and requires urgent decompression and antibiotics.

Investigation

- **Renal tract USS:** should be performed within the first postnatal week to assess for the persistence of ureteric dilatation and identify any bladder pathology. Repeat USS checks will then be guided by the underlying diagnosis, i.e. if there is no renal compromise or obstruction, at 6wk, and again at 1y.
- **MCUG:** is performed early if there is concern of obstruction (i.e. BOO), otherwise deferred until the infant is 3–6 months old. It can help to distinguish between obstruction and reflux and may also identify the cause of obstruction.
- **MAG3 renogram:** provides a measurement of split renal function and helps to differentiate between obstructed and non-obstructed megaureter, although a grossly dilated ureter can make interpretation difficult. An ipsilateral PUJO may be identified in 13%. It is usually performed 6–12wk after delivery.
Conservative management
Empirical treatment is to start antibiotic prophylaxis at birth, while the diagnosis is being established (trimethoprim 2mg/kg daily). If the differential renal function is >40%, patients can be managed with expectant or conservative treatment and follow-up renal tract USS. If the ureteric dilatation resolves or improves (in 60–80% of cases) and the child remains well, they may be discharged at the age of 5 with UTI advice. Prophylactic antibiotics can be continued if infection is a feature; however, recurrent, breakthrough, or severe UTI would be an indication for surgical intervention.

Surgical treatment
Most children are managed initially with a trial of stenting of the VUJ, with increasing reports of success using this treatment alone. If this fails or is not possible, more invasive treatment is needed.

Up to 12 months old
Definitive surgical correction with ureteric reimplantation is deferred until after 6–12 months old, if possible, as this is associated with less morbidity and better outcomes. Other surgical management options in the younger child include formation of ureterostomy or temporary side-to-side anastomosis between the bladder and the ureter.

After 12 months old
The aims of surgery are to excise the stenotic or aperistaltic distal ureteric segment and perform an intravesical ureteric reimplantation with a Cohen repair, bringing the ureter across the trigone in a submucosal tunnel.

For more severely dilated and capacious ureters, it is often necessary to taper the ureter before reimplantation. This can be achieved by placation of the ureter (Starr technique), folding of the ureter (Kalicinski technique), or ureteric excision. The choice of reimplantation surgery is then a Leadbetter–Politano repair, which has the advantage of creating a longer antirefluxing submucosal tunnel. This is often coupled with a psoas hitch to help prevent kinking and further obstruction of the ureter. For bilateral cases of megaureter, a transuretero-ureterostomy can be performed. Here, one ureter is excised distally and attached to drain into the contralateral ureter, so only one ureter drains urine from both kidneys into the bladder. This ureter can then be plicated and reimplanted as before. Nephroureterectomy is indicated if the megaureter is associated with a non-functioning or poorly functioning kidney.

Follow-up after surgery
Renal tract USS and MAG3 renogram should be performed after 1y to reassess the degree of ureteric dilatation and for pelvicalyceal dilatation. Prophylactic antibiotics may be continued in children with persistent reflux but can be stopped once the child is fully toilet-trained if they remain well.

Reference
Ectopic ureter

An ectopic ureter is caused by the ureteric bud which arises from an abnormal (high or low) position on the mesonephric duct during embryological development. There is a direct correlation between the location of the ectopic ureter and the degree of ipsilateral renal hypoplasia or dysplasia.¹ Eighty per cent are associated with a duplicated collecting system. A duplex kidney has an upper and a lower moiety, each with its own renal pelvis and ureter. The two ureters may join to form a single ureter or they may pass down individually to the bladder (complete duplication). In this case, the upper renal moiety ureter always opens onto the bladder below and medial to the lower moiety ureter (Weigert–Meyer rule), predisposing to ectopic placement of the ureters and ureteric orifices (see pp. 434–6) (Fig. 8.10).

- **Incidence:** about 1 in 2000. The ♀:♂ ratio is ≥3:1. Most ectopic ureters in ♀ are associated with a duplex kidney, whereas most ectopic ureters in ♂ are associated with a single renal system.

Other drainage sites of ectopic ureters

- ♀: bladder neck, urethra, vagina, vaginal vestibule, uterus.
- ♂: posterior urethra, seminal vesicles, ejaculatory duct, vas deferens, epididymis, bladder neck (never infrasphincteric).

Presentation

May present with an antenatal diagnosis of hydronephrosis and a dilated ureter to the bladder. Later presentations include acute or recurrent UTI. Obstruction of the ectopic ureter can lead to hydroureteronephrosis which may present postnatally as an abdominal mass or pain.

- ♀: when the ureteric opening is below the urethral sphincter, girls present with persistent vaginal discharge or incontinence despite successful toilet training.
- ♂: the ureter is always sited above the external urethral sphincter, so boys do not develop incontinence. Insertion into the mesonephric duct structures (seminal vesicle, vas, epididymis) may cause recurrent epididymo-orchitis.

Investigation

- **Postnatal USS:** may demonstrate ureteric dilatation and hydronephrosis. USS is performed immediately if obstruction is suspected (i.e. ectopic ureter associated with ureterocele); otherwise, it is performed at wk 1 and 6 postnatally.
- **MCUG:** is used to assess whether there is reflux into the ectopic ureter (or lower renal moiety).
- **MAG3 renogram:** is used when MCUG has excluded reflux and to investigate for obstruction and estimate split renal function.
- **DMSA renogram:** is used to assess split renal function and differential function between the upper and lower pole moieties of a duplex kidney to help plan surgery. Assesses for renal cortical scars when reflux is present.
- **Cystourethroscopy:** may identify the ectopic ureteric orifice.
• **MRU:** identifies duplex systems and gives information on the upper and lower renal moieties.

• **IVU:** not commonly performed now but demonstrates characteristic features, including ‘drooping lily sign’ (inferior and lateral displacement of the lower pole moiety of a duplex kidney by a poorly functioning upper pole moiety exerting a mass effect) and a ‘scalloped’ lower pole ureter (lateral displacement by a dilated upper pole ureter).

Treatment

Commence prophylactic trimethoprim (2mg/kg daily), while conducting postnatal investigation. An ectopic ureter without a ureterocele, but associated with dilatation of a poorly/non-functioning upper renal moiety, requires urgent decompression only in the presence of an infected, obstructed system.

Management is mainly expectant if there are no symptoms and no evidence of acute obstruction or dilatation. Where an ectopic ureter is associated with a poorly functioning renal upper pole moiety or a single-system kidney, surgery is an option. This includes open or laparoscopic upper moiety heminephrectomy or total nephrectomy with excision of the associated ureter. Ureteropyelostomy and uretero-ureterostomy can be considered in duplex systems where the upper renal pole has reasonable function. Where some useful function is retained in a single-system kidney, the distal ureter can be resected and reimplanted into the bladder.

Reference

Ureterocele

Definition
A ureterocele is a cystic dilatation of the distal ureter, as it drains into the bladder.

Incidence
One in 5000–12 000 clinical paediatric admissions¹ (although one in 500 are found at autopsy).² The ♀:♂ ratio is 4:1, predominantly affecting Caucasians. Ten per cent of ureteroceles are bilateral.

Classification
Ureteroceles form due to a failure of normal perforation of Chawalla’s membrane, which separates the ureter and bladder, and may be associated with a single or duplex renal system. Eighty per cent are associated with the upper moiety of a duplex kidney.

They are further classified into intravesical or extravesical ureteroceles.

- **Intravesical** (20%): the ureterocele is completely confined within the bladder. These tend to be associated with single systems and are commoner in ♀. Subtypes include:
 - **Stenotic**: small, stenotic ureteric orifice associated with obstruction.
 - **Non-obstructed**: large ureteric orifice that tends to balloon open when filled by peristalsis of urine.

- **Extravesical** (or ectopic) (80%): when the ureterocele extends to the bladder neck or urethra and tend to occur with duplex systems; most commonly in ♀. Subtypes include:
 - **Sphincteric**: ureterocele extends into the hbladder neck and urethra. The orifice is wide and usually opens proximal to the external sphincter.
 - **Sphincterostenotic**: similar to a sphincteric ureterocele, but the ureteric orifice is stenosed.
 - **Cecoureterocele**: ureterocele prolapses posterior to the urethra and anterior to the vagina, but the orifice is within the bladder (affects girls only). Can cause urethral obstruction.
 - **Blind ectopic**: similar to sphincteric, but no ureteric orifice.

Presentation
Most present with antenatal hydronephrosis. Later presentation in infants may be with symptoms of UTI, an abdominal mass, or pain. Association with ureteric duplication increases the risk of reflux and reflux nephropathy. Extravesical ureteroceles can also cause BOO and bilateral hydrourerteronephrosis (urological emergency) or ureteric obstruction and unilateral hydrourerteronephrosis, which require urgent assessment and intervention. A prolapsing ureterocele can present as a congested purple mass at the introitus in girls.
Investigation

- **USS renal tract**: shows a thin-walled cyst in the bladder, often associated with a duplex system and an ectopic (dilated) ureter. If there are concerns about obstruction, USS should be performed immediately after birth, with a view to urgent surgical treatment.

- **MCUG**: can identify ureterocele location and size and associated VUR (reflux into the lower moiety of an associated duplex kidney is seen in 50%). This should be performed early in the postnatal period if there is evidence of BOO; otherwise, defer 3–6 months.

- **MAG3 renogram**: is used to exclude obstruction.

- **DMSA renogram**: is used to assess renal moiety function and demonstrate renal cortical abnormalities in the presence of reflux.

- **Cystoscopy**: can be used for diagnosis and endoscopic treatment.

Treatment

Commence prophylactic antibiotics at birth (trimethoprim 2mg/kg daily). Urgent surgical intervention is required for obstruction.

- **Endoscopic incision/puncture**: emergency treatment for infected or obstructed ureteroceles. Puncture is also indicated for elective management of intravesical ureteroceles with normal renal function. Rarely, these may require further surgery, including ureterocele excision and ureteric reimplantation, to preserve renal function and prevent reflux.

- **Uretero-ureterostomy or uretero-pyelostomy (from upper to lower pole moiety)**: option for ectopic ureteroceles associated with a duplex system, with good function in the upper moiety and no reflux in the lower moiety.

- **Upper pole heminephrectomy**: option for ectopic ureterocele associated with a duplex system with poor function in the upper moiety and no reflux in the lower moiety.

- **Upper pole heminephrectomy, ureterocele excision, and ureteric reimplantation**: option for ectopic ureterocele associated with a duplex system with poor function in the upper moiety and reflux in the lower moiety.

- **Nephroureterectomy**: indicated for significant lower moiety reflux with poor function in both renal moieties or for poor renal function in a single system.

References

Pelviureteric junction obstruction

Definition
A blockage of the ureter at the junction with the renal pelvis, resulting in a restriction of urine flow that, if left untreated, would cause progressive renal deterioration.∗

Epidemiology
Childhood incidence is estimated at one in 1000. Boys are affected more than girls (ratio 2:1 in newborns). The left side is more often affected than the right side (ratio 2:1). They are bilateral in 10–40%.

Aetiology
In children, most PUJO is congenital. Intrinsic obstruction may be due to aberrant development of ureteric/renal pelvis muscle, aberrant insertion of the ureter into the renal pelvis, abnormal collagen, or ureteric folds or polyps. Extrinsic causes include compression of the PUJ by aberrant crossing vessels (5%). Coexisting VUR is found in up to 25%. Secondary PUJO can be caused by horseshoe kidney and retrocaval ureter.

Presentation
PUJO is the commonest cause of hydronephrosis (without ureteric dilatation) found on antenatal USS, accounting for 30–50% of all cases. Infants may also present with an abdominal mass, UTI, and haematuria. Older children present with flank or abdominal pain (exacerbated by diuresis), UTI, nausea and vomiting, and haematuria following minor trauma.

Investigation
If prenatal USS has shown a large (TAPD >15mm) or bilateral hydronephrosis, a follow-up renal tract USS should be performed soon after birth. If the USS shows a normal bladder, the scan is deferred until day 3–7 (to allow normal physiological diuresis to occur, which may spontaneously improve or resolve the hydronephrosis). MAG3 renogram is performed at 6–12wk for diagnosis and to assess split renal function. Significant obstruction is unlikely if the TAPD is <15mm. Bilateral PUJO can make renography difficult to interpret, and USS alone is used to plan treatment in these cases.

∗ Of note, the pelviureteric junction (PUJ) is also referred to as the ureteropelvic junction (UPJ).
Treatment

Long-term studies in patients with good renal function have demonstrated that function frequently remains stable (56%) or spontaneous resolution occurs (27%), with only 17% requiring pyeloplasty for loss of function.\(^1\) The likelihood of requiring surgery is higher with greater TAPD: <20mm, 3% require surgery; 20–29mm, 20% surgery; 30–39mm, 50% surgery; 40–49mm, 80% surgery; and >50mm, up to 100% surgery.\(^2\) Overall, 90% of patients with a TAPD of >30mm will require surgery. These studies form the basis of management.

- **Conservative:** infants are placed on prophylactic trimethoprim (2mg/kg daily) until the diagnosis is established. Children may be observed with USS and MAG3 renogram if they remain stable with good renal function and no other complications (such as infection or stones).

- **Surgery:** pyeloplasty is indicated if children are symptomatic with pain or UTIs, progressive hydronephrosis, or a decline in split function of >10%. The initial degree of hydronephrosis and the initial differential renal function are not absolute indications for surgery, although intervention is usually recommended for TAPD of >50mm or function of <40%. Techniques include laparoscopic or open Anderson–Hynes dismembered pyeloplasty. Success rates are around 90–95%. Postoperative follow-up is with USS (± MAG3 renogram). Where renal function is poor (<10–15%) on the side of the PUJO, temporary nephrostomy/stent is rarely used to preserve function while awaiting definitive treatment or to assess viability of pyeloplasty, or nephrectomy can be performed where the impairment is severe or irreversible.

References

Posterior urethral valves

PUV are derived from an abnormal congenital membrane arising from the verumontanum and attaching obliquely to the anterior urethra (beyond the external urethral sphincter), resulting in LUT obstruction. An alternative term is COPUM (or congenital obstructive posterior urethral membrane). Urethral instrumentation or spontaneous partial rupture of the membrane is thought to cause the classical appearance of two valve-like folds in the prostatic urethra.

Incidence
One in >5000 ♂ (higher in Down’s syndrome).

Pathology
PUV may arise through an abnormal insertion of the Wolffian ducts into the urogenital sinus around wk 7 of fetal development.

Presentation
- Prenatal USS: 80% are diagnosed prenatally, with 60% identified on USS at 20wk. Immediate referral to specialist centres after birth is recommended. PUV account for 1% of cases of antenatal hydronephrosis. Features include: bilateral hydroureteronephrosis, dilated and thick-walled bladder, dilated posterior urethra (keyhole sign), thick-walled bladder, oligohydramnios (reduced amniotic fluid), and renal dysplasia. Prenatal factors associated with poor prognosis include detection before 24wk, thick bladder wall, dysplastic kidneys, and oligohydramnios.
- Newborn and infants: respiratory distress secondary to pulmonary hypoplasia, palpable abdominal mass (hydronephrotic kidneys or distended bladder), ascites, UTI, sepsis, electrolyte abnormalities (renal impairment), failure to thrive.
- Older children: milder cases may present later with recurrent UTI, poor urinary stream, incomplete bladder emptying, poor growth, and incontinence. There is a risk of renal failure, VUR, and voiding dysfunction (over- or underactive bladder), also described as ‘valve bladder syndrome’.
- Associated features: ‘pop-off valve syndrome’ is seen in 20%. It describes mechanisms by which high urinary tract pressure is dissipated to allow normal renal development. It includes leaking of urine from a small bladder or renal pelvis rupture (urinary ascites), unilateral reflux into a non-functioning kidney (VUR with renal dysplasia or VURD), and formation of bladder diverticuli.

Management
The role of prenatal intervention with vesico-amniotic shunting remains unclear. Immediate postnatal urological management includes bladder drainage (urethral 5–8Fr paediatric feeding tube or SPC, although this can be difficult in a thick-walled bladder) and fluid balance, with careful monitoring ± correction of electrolytes and acid–base balance. An urgent USS and MCUG (VUR in 50%) should be performed. Sepsis prevention by antibiotic prophylaxis is recommended (trimethoprim 2mg/kg daily).
Definitive treatment is with cystoscopy and transurethral ablation of the valve at the 4 and 8 o’clock positions with either cold knife or electrocautery. Complications of surgery include urethral strictures. A temporary cutaneous vesicostomy is indicated (communicating stoma between the bladder dome and suprapubic abdominal wall, allowing free drainage of urine) when the urethra is too small for the resectoscope. Alternatives are ureterostomy drainage, with valve ablation performed at a later stage. Any underlying bladder dysfunction should be diagnosed and treated.

Long-term monitoring

Long-term monitoring of bladder and renal function is critical. Monitor children for linear growth (height, weight, and head circumference), renal function, BP, urine analysis (for proteinuria, osmolality), USS, and formal GFR with chromium EDTA. Renography (MAG3 and DMSA) are also performed to assess split renal function and look for evidence of obstruction or reflux. Videourodynamic studies are used to assess for, and aid in the management of, any associated voiding dysfunction.

Prognosis

In the long-term, one-third develop end-stage renal failure, one-third have impaired renal function, and one-third have normal renal function. In the UK, PUV are the underlying cause of renal failure, requiring paediatric transplantation in 25% of patients.

Bladder dysfunction occurs in up to 70% of boys despite treatment of outflow obstruction. Under 3y, this includes low capacity, hypercontractility, and overactivity. Later, bladder dysfunction includes capacity, hypocontractility (75%), and incomplete emptying (chronic retention with overflow, high-pressure retention). Incontinence is common in childhood but improves with time (81% at 5y, <10% in adulthood).

Problems may arise with retrograde ejaculation, impotence and reduced libido (related to renal impairment), and abnormal prostatic or seminal vesicle secretions, contributing to reduced fertility.

References

Cystic kidney disease

Congenital cystic kidney disease can be classified into non-genetic and genetic types.

Non-genetic

Multicystic dysplastic kidney

The cysts of a ‘multicystic’ kidney are not due to dilatation of the renal CDs (as in polycystic disease), but instead, the entire kidney is dysplastic and non-functioning due to failure of induction of the metanephric blastema by the ureteric bud, with immature dysplastic stroma and non-communicating cysts of various sizes. The proximal ureter is atretic in about 66%.

Incidence

The incidence of unilateral MCKD is one in 4000, with a ♂:♀ ratio of 2:1. Bilateral disease occurs in 10% of cases and is incompatible with life.

Presentation

MCDK is detected on antenatal USS (20wk gestation). A 34wk antenatal USS is performed to assess for contralateral anomalies.

Clinical types and associated disorders

MCKD may be simple (contralateral kidney is normal on USS) or complicated (contralateral side is abnormal). Unilateral disease is associated with VUR or PUJO in the contralateral kidney in 70%. A ureterocele will be associated with MCKD in 10% of cases.

Management

Postnatal renal tract USS is performed at 1wk after birth (beware PUJO with huge dilatation if multiple cysts with a large central cyst are seen on USS).

Simple MCDK

This does not require prophylactic antibiotics. Repeat USS and DMSA renogram are performed at 6wk to confirm there is no renal function in the MCDK. Affected kidneys (especially those <6cm) tend to involute. Most can be treated conservatively with surveillance of growth, BP, urine analysis, and USS follow-up. Consider surgical removal for MCDK of >6cm (which tend to grow), any solid component, hypertension, symptoms, or parental preference.

Complicated MCDK

Prophylactic antibiotics are started at birth. Postnatal USS and MAG3 renogram are performed to investigate obstruction (i.e. contralateral PUJO). MCUG and DMSA renogram are performed to exclude reflux.

Risks

The risk of developing hypertension or Wilms’ tumour (see pp. 256–8) with MCDK is rare, and routine nephrectomy to prevent the development of these conditions is no longer recommended. Follow-up of BP, growth, proteinuria, and renal tract USS is recommended.

Multilocular cystic nephroma

Presents in young children with a flank mass, loin pain, or haematuria. Diagnosis is on USS or CT, demonstrating multilocular cysts in the renal
parenchyma, which may extend into the collecting system. It is included in a spectrum of disease that is closely associated with Wilms’ tumour, and so the recommended treatment used to be partial or full nephrectomy, but many specialists will monitor these now, rather than proceed directly to surgery.

Genetic

Autosomal recessive polycystic kidney disease
A disease of infancy and childhood where the renal collecting tubules and ducts become cystically dilated and numerous small cysts form in the renal cortex and medulla bilaterally. Incidence of 1 in 10 000–40 000. Severe forms present early and have a poor prognosis. Prenatal USS demonstrates oligohydramnios (amniotic fluid <200mL) and large, ‘bright’, homogeneously hyperechogenic kidneys which can cause obstructed labour and respiratory problems (secondary to pulmonary hypoplasia). Neonates have large flank masses and limb and facial anomalies. All cases are associated with congenital hepatic fibrosis. Infants may develop fatal uraemia and respiratory failure; older children present with renal failure, hypertension, and portal hypertension. Most develop end-stage renal failure by adulthood, requiring haemodialysis, nephrectomy (to control hypertension), and subsequent renal transplantation.

Autosomal dominant polycystic kidney disease
(See pp. 416–18.) Typically presents in adulthood, although older children can present with complications of haematuria, flank pain, flank mass, UTI, proteinuria, hypertension, and intracerebral bleeds (secondary to berry aneurysm rupture). ADPKD is the most commonly inherited renal disease, with an incidence of ~1 in 1000. It is characterized by multiple expanding cysts of both kidneys that ultimately destroy the intervening parenchyma and accounts for 10% of all CRF. Ninety per cent of cases are due to a defective PKD1 gene located on chromosome 16; the remainder are due to a defective PKD2 gene on chromosome 4.

Familial juvenile nephronophthisis
An autosomal recessive disorder which develops in early childhood and accounts for up to 20% of paediatric renal failure. Medullary cystic disease is a similar (autosomal dominant) condition which develops in later childhood. Histology in both conditions shows interstitial nephritis associated with corticomedullary cysts. Disease progression causes a reduction in kidney size. Features include polyuria and polydipsia (due to a salt-losing nephropathy), anaemia, growth retardation, hypertension, and CRF. Initial treatment includes salt replacement. Dialysis and renal transplantation are later options.

Others
Renal cysts are also a feature of autosomal dominant conditions, including VHL syndrome (cerebellar and retinal haemangioblastomas, phaeochromocytoma, pancreatic cysts, RCC) and TS (adenoma sebaceum, epilepsy, learning difficulties associated with renal angiomyolipoma, and RCC).
Hypospadias

Hypospadias is a congenital deformity where the opening of the urethra (the meatus) is sited on the underside (ventral) part of the penis, anywhere from the glans to the perineum. It is often associated with a ‘hooded’ foreskin (prepuce) and chordee (ventral curvature of the penile shaft). It occurs in 1 in 250 live births, and the incidence is increasing. There is an 8% incidence in offspring of an affected male and a 14% risk in male siblings. Risk is ↑ in offspring of very young and older mothers and in low-birthweight babies.

Classification

Hypospadias can be classified according to the anatomical location of the urethral meatus (Fig. 16.6).
- **Anterior/distal (80–85%)**: glandular, coronal, and subcoronal.
- **Middle (10–15%)**: distal penile, mid shaft, and proximal penile.
- **Posterior/proximal (5–10%)**: penoscrotal, scrotal, and perineal.

Aetiology

Hypospadias results from incomplete closure of urethral folds on the undersurface of the penis during embryological development. This is related to a defect in the production or metabolism of fetal androgens or the number and sensitivity of androgen receptors in the tissues. Chordee is caused by abnormal urethral plate development or an intrinsic abnormality of the corpora cavernosa, and the ‘hooded’ foreskin is due to failed fusion of the preputial folds (resulting in a lack of ventral foreskin). Associations are related to the location of hypospadias. For example, genetic factors are associated with anterior and middle hypospadias, and multiple pregnancy with posterior hypospadias.

![Diagram of the anatomical classification of hypospadias according to the location of the urethral meatus.](image)

Fig. 16.6 The anatomical classification of hypospadias according to the location of the urethral meatus.
Associated anomalies
- Undescended testes (in 10%).
- Inguinal hernia ± hydrocele (in 15%).
- Disorders of sexual development (i.e. mixed gonadal dysgenesis) in 15% of boys with palpable UDT + hypospadias, and 50% of boys with impalpable UDT + hypospadias.
- Persistence of Müllerian structures (i.e. dilated utricle).
- NOT associated with upper urinary tract abnormalities

Diagnosis
A full clinical examination should be performed at birth to establish the diagnosis, assess the penis and urethral plate and classify the hypospadias, and detect associated abnormalities needing treatment. Parents should be fully counselled. Patients with unilateral or bilateral absent or impalpable testes and hypospadias should undergo chromosomal and endocrine investigation to exclude disorders of sex development (DSD).

Treatment
Surgery is indicated where deformity is severe, interferes with voiding, or is predicted to interfere with sexual function. Repair is performed around 12 months of age. Androgens have been used preoperatively to help increase tissue size. Surgery aims to correct penile curvature (orthoplasty), reconstruct a new urethra, and bring the new meatus to the tip of the glans using urethroplasty, glansplasty, and meatoplasty techniques, in order to enable voiding in a forward direction. If possible, the foreskin is frequently reconstructed.

Chordee correction
In 70% of cases requiring chordee correction, tethered ventral penile skin requires degloving of the penis and excision of the chordee. If the corpus spongiosum is atretic, these segments should be excised. If the urethral plate is tethered to the corpus spongiosum, this should be released. If the ventral corpus cavernosum is fibrotic, a Nesbitt’s plication is required.

Single-stage urethroplasty
Distal (and selected cases of middle and proximal hypospadias) can be treated by a variety of techniques that involve a single-stage urethroplasty. The penis is degloved and, if required, an artificial erection created to assess for chordee, which may be corrected with dorsal plication. The glans wings are incised to separate them from the urethral plate, which is incised in the midline to widen it and allow tubularization and a layered suture closure over a catheter. A dartos pedicle is used to cover the repair. Reconstruction of the glans is with layered suture repair (glansplasty). The catheter is removed 7 days later.

Two-stage urethroplasty (free graft repair)
Many proximal and some middle hypospadias may require a two-stage procedure, which consists of initial preparation of the urethral plate and insertion of a free graft (prepuce or buccal mucosa). A fine catheter is placed into the bladder, and an occlusive dressing applied. The dressing is removed under GA around 7 days later, the graft examined for viability, and the catheter removed. The second stage of tubularization of the neo-urethra and closure is performed around 6 months later.
Other repairs described for hypospadias

Distal hypospadias repairs
- Tubularized incised plate (TIP) urethroplasty.
- Snodgrass urethroplasty.
- Tubularization (Thiersch Duplay). Operation of choice if wide urethral plate and deep glans groove available for reconstruction.
- Meatal advancement and glanuloplasty (MAGPI).
- Meatal-based flaps (Mathieu procedure).

Middle hypospadias repairs
- TIP urethroplasty.
- Snodgrass urethroplasty.
- Tubularization (Thiersch Duplay).
- Onlay island flap (OIF) using a preputial graft.
- Meatal-based flaps.

Proximal hypospadias repairs
- Free graft (two-stage repair).
- Transverse preputial island flap (TPIF).
- OIF repair.
- TIP urethroplasty.

Complications
Overall complication rate of 4–7% in the short to medium term. Complications increase with time and severity of hypospadias and are higher with proximal hypospadias (up to 30% long-term morbidity). Early complications include bleeding, infection, and wound dehiscence. Late complications include urethrocutaneous fistula, urethral stricture, meatal stenosis, spraying of urine, voiding dysfunction, urethral diverticulum, recurrent chordee, sexual dysfunction, poor cosmesis, and failure of repair or graft requiring reoperation. Redo surgery for fistula repair is associated with 50% recurrence.
Disorders of sex development

(See Table 16.7.)

DSD are defined as congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. They are estimated to affect 1 in 4500 births. Using the Chicago Consensus, DSD is divided into:

- **Sex chromosome DSD** (disorders of gonadal differentiation): these include conditions with seminiferous tubule dysgenesis (Klinefelter’s syndrome 47XXY and 46XX testicular DSD), Turner’s syndrome (45XO), ovotesticular DSD (46XX/46XY; 46XX; or 46XY with both ovarian and testicular tissue and ambiguous genitalia), mixed gonadal dysgenesis 45XO/46XY mosaicism (streak gonads and a spectrum of ambiguous genitalia), and 46XX (pure) gonadal dysgenesis (♀ with streak gonads). Refer to the summary in Table 16.7.

- **46XY DSD**: 46XY karyotype with defects of androgen synthesis (SAR, 3β-hydroxysteroid dehydrogenase, or 17α-hydroxylase enzyme deficiencies; testicular dysgenesis; Leydig cell aplasia), defects of androgen action [complete androgen insensitivity syndrome—(CAIS), partial androgen insensitivity syndrome (PAIS)], or disorders of gonadal development (Swyers syndrome). Also included are disorders of MIS or MIS receptor defects, resulting in persistent Müllerian duct syndrome (♂ phenotype with a uterus, Fallopian tubes, and an upper vagina).

- **CAIS**: caused by androgen resistance, is the commonest cause of 46XY DSD. Where the family history is positive, karyotyping can be performed at birth. Sporadic cases are difficult to detect. In CAIS, the phenotype and external genitalia are ♀; however, the internal genitals are usually absent (or rudimentary). At puberty, there is breast development, scanty pubic and axillary hair, and a short blind-ending vagina, and patients are often tall. They may present at this time for investigation of primary amenorrhoea, with raised LH and testosterone. UDT may be palpable in the inguinal canal and will require removal after puberty due to malignancy risk. Oestrogen replacement is then given.

- In comparison, PAIS presents with a wide spectrum of phenotypes, most commonly with a degree of ambiguous genitalia.

- **46XX DSD**: 46XX karyotype with disorders of androgen excess [congenital adrenal hyperplasia (CAH), exogenous androgens], with ovaries and internal genitalia, but a partially masculinized phenotype and ambiguous external genitalia due to intrauterine exposure to androgens.

- **CAH**: is the commonest cause of 46XX DSD, and is an autosomal recessive disorder due to 21-hydroxylase deficiency (in 95%). CAH accounts for around 85% of all infants with ambiguous genitalia. Formation of hydrocortisone is impaired, resulting in a compensatory increase in ACTH and testosterone production. Some forms have a ‘salt-wasting’ aldosterone deficiency, which can present in the first few weeks of life with adrenal crisis (severe vomiting and dehydration), requiring rehydration and steroid replacement therapy with mineralocorticoids and glucocorticoids. Rarer causes of CAH are 11β-hydroxylase deficiency and 3β-hydroxysteroid dehydrogenase deficiency (Fig. 16.7).

Disorders of ovarian development (i.e. 46XX gonadal dysgenesis, 46XX testicular DSD) can also be included in this category.
Evaluation

- **History**: may uncover a positive family history of DSD. Maternal ingestion of drugs such as steroids or contraceptives during pregnancy should be ascertained.
- **Examination**: may show associated syndrome anomalies (Klinefelter’s and Turner’s syndromes) or failure to thrive and dehydration (salt-wasting CAH). Assess the external genitalia for virilization (Prader staging of genital development), phallus size, anogenital distance, location of the urethral meatus, features of hypospadias, and the presence of palpable gonads (both palpable, likely 46XY; neither palpable, likely 46XX; one palpable, likely a chromosomal abnormality).
- **Abdominal/pelvic USS**: can help locate the gonads and identify the uterus/Müllerian structures.
- **Diagnostics laparoscopy or laparotomy**: with gonadal biopsy may be required to clarify diagnosis.
- **Chromosomal analysis**: using fluorescence *in situ* hybridization (FISH) or PCR confirms the karyotype.
- **Serum tests**: serum electrolytes, testosterone, cortisol, FSH, LH. Raised serum 17-hydroxyprogesterone is seen in 21-hydroxylase deficiency. A hCG stimulation test can diagnose androgen resistance and 5AR deficiency.

Fig. 16.7 Metabolic pathways for adrenal steroid synthesis.
<table>
<thead>
<tr>
<th>Disorder</th>
<th>Karyotype</th>
<th>Gonad</th>
<th>Genitalia</th>
<th>Other features</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinefelter's syndrome</td>
<td>47XXy</td>
<td>Seminiferous tubule dysgenesis, small testes</td>
<td>Tall, gynaecomastia, azoosperma, mild mental retardation, ↑ FSH/LH, ↓ testosterone</td>
<td></td>
<td>Androgen replacement</td>
</tr>
<tr>
<td>46XX testicular DSD</td>
<td>46XX (Sry +ve)</td>
<td>Seminiferous tubule dysgenesis</td>
<td>Shorter stature, gynaecomastia, infertile, hypospadias, ↑ FSH/LH, ↓ testosterone</td>
<td></td>
<td>Androgen replacement</td>
</tr>
<tr>
<td>Turner's syndrome</td>
<td>46XO</td>
<td>Streak ovaries</td>
<td>Short stature, sexual infantilism, web neck, widespread nipples, wide carrying angle, coarctation, renal anomalies</td>
<td></td>
<td>Growth hormone, oestrogen replacement therapy</td>
</tr>
<tr>
<td>Ovotesticular DSD</td>
<td>46XX, Xy, 46XX/ 46Xy</td>
<td>Ovary and testis</td>
<td>Ambiguous</td>
<td>Hypospadias (80%) in ♂, clitoromegaly in ♀</td>
<td>Gender assignment</td>
</tr>
<tr>
<td>Mixed gonadal dysgenesis</td>
<td>46XO/46XY</td>
<td>Streak ovaries</td>
<td>Unilateral undescended tests and streak gonad</td>
<td>Wide phenotypic spectrum from Turner's syndrome-like ♀ to ♂</td>
<td>Gender assignment, gonadectomy (as ↑ cancer risk), screen for Wilms' tumour</td>
</tr>
<tr>
<td>46XX 'pure' gonadal dysgenesis</td>
<td>46XX</td>
<td>Streak ovaries</td>
<td>Normal stature, sexual infantilism, primary amenorrhoea</td>
<td></td>
<td>Cyclic hormone replacement</td>
</tr>
<tr>
<td>46XY DSD</td>
<td>46XY</td>
<td>Testes</td>
<td>Ambiguous</td>
<td>Salt-wasting, ↓ cortisol, ↑ aldosterone</td>
<td></td>
</tr>
</tbody>
</table>

Table 16.7 Disorders of sex development
<table>
<thead>
<tr>
<th>Disorder</th>
<th>Chromosome</th>
<th>Gonads</th>
<th>Sex</th>
<th>Clinical Features</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>17α-hydroxylase deficiency</td>
<td>46XY</td>
<td>Testes</td>
<td>Ambiguous</td>
<td>↓ cortisol (causing ↑ ACTH), resulting in ↓ steroids, hypokalaemia, hypertension</td>
<td>Glucocorticoid replacement</td>
</tr>
<tr>
<td>Complete androgen insensitivity syndrome</td>
<td>46XY</td>
<td>Testes</td>
<td>♀</td>
<td>Androgen resistance, ♀ phenotype, short blind-ending vagina, breasts at puberty</td>
<td>Gonadectomy after puberty, oestrogen replacement therapy</td>
</tr>
<tr>
<td>Incomplete androgen insensitivity syndrome</td>
<td>46XY</td>
<td>Testes</td>
<td>Ambiguous</td>
<td>Wide spectrum, including hypospadias, infertility, gynaecomastia, pseudovagina</td>
<td>Gender assignment surgery ± gonadectomy and hormone</td>
</tr>
<tr>
<td>5α-reductase deficiency</td>
<td>46XY</td>
<td>Testes</td>
<td>Ambiguous</td>
<td>Failure to convert testosterone to DHT in androgen-sensitive cells, hypospadias, small phallus, short vagina, virilization at puberty</td>
<td>Reconstructive surgery ± hormonal support</td>
</tr>
<tr>
<td>46XX DSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital adrenal hyperplasia</td>
<td>46XX</td>
<td>Ovaries</td>
<td>Ambiguous</td>
<td>Simple virilization or salt-wasting aldosterone deficiency</td>
<td>Glucocorticoid, mineralocorticoid replacement and surgery</td>
</tr>
<tr>
<td>Transplacental androgens</td>
<td>46XX</td>
<td>Ovaries</td>
<td>Ambiguous</td>
<td>Virilization by maternal drug use in pregnancy or maternal adrenal tumours</td>
<td>External genitalia reconstruction as required</td>
</tr>
</tbody>
</table>
Management
A multidisciplinary approach is required, with full parental input. In cases of ambiguous genitalia, advise parents to delay registering the birth until a diagnosis is established and gender has been assigned. The Registry Office has special provision for this situation. Gender assignment of ambiguous genitalia is guided by the functional potential of gonadal tissue, reproductive tracts, and genitalia, with the aim of optimizing psychosocial well-being and producing a stable gender identity. This is ultimately decided by a full MDT (paediatric urologists, endocrinologists, geneticists, and psychologists) in tertiary specialist centres. Patients have a higher risk of gonadal malignancy, which requires surveillance and/or removal of gonadal tissues and hormone replacement. Patients with hypogonadism will require hormone replacement and artificial induction of puberty.

Reference
Exstrophy–epispadias complex

Exstrophy–epispadias complex describes a spectrum of rare congenital malformations affecting the abdominal wall, pelvis, genitourinary tract, and sometimes also the spine and anus. It includes bladder extrophy, epispadias, and cloacal extrophy.

Classic bladder extrophy

This is the commonest manifestation and results from defective development of the anterior bladder and lower abdominal walls, resulting in the posterior bladder wall lying exposed on the abdomen. Virtually all cases are associated with epispadias (see p. 720).

- Epidemiology: incidence is 71 in 30 000 live births. The ♂:♀ ratio is 4:1. ↑ risk in offspring of affected patients and with younger maternal age and ↑ parity.
- Embryology: classically described as an embryological malformation causing abnormal overdevelopment of the cloacal membrane, which prevents in-growth of lower abdominal (mesenchymal) tissues. The cloacal membrane normally perforates to form the urogenital and anal openings, but in extrophy, premature rupture results in a triangular defect below the umbilicus. The timing of the rupture determines the type of resulting defect (bladder extrophy, cloacal extrophy, or epispadias). Other theories challenge this and suggest an abnormal development of the bony pelvis or maldevelopment of the genital hillocks below their normal position, with midline fusion below, rather than above, the cloacal membrane (resulting in premature cloacal rupture prior to mesenchymal in-growth).

Associated anomalies

- Bone defects: normal-sized bony pelvis with pubic diastasis of 3–4cm.
- Musculofascial defects: umbilical hernias, inguinal hernias, divarication of the rectus abdominis, abnormal pelvic floor; low-lying umbilicus.
- Genital defects: ♂—short, broad penis with lateral splaying of the corporal cavernosa, short urethral plate, epispadias, deficiency of the dorsal foreskin. ♀—bifid clitoris, stenotic vaginal orifice, short anteriorly placed vaginal canal, uterine prolapse in adult life.
- Urinary tract defects: exposed bladder plate; the majority suffer VUR due to lateral displacement of the ureteric orifices.
- GI tract defects: anteriorly displaced anus, rectal prolapse; an abnormal anal sphincter contributes to faecal incontinence.

Investigation

Typical features seen on prenatal USS include a lower abdominal wall mass, absent bladder filling, low-set umbilicus, small genitalia, and abnormal iliac crest widening. Diagnosis can help planning of delivery in a centre with facilities to perform early surgical correction.
Management
At birth, these babies are generally otherwise healthy. Cover the bladder with plastic film, and irrigate regularly with sterile saline. Trauma to the bladder mucosa can result in squamous metaplasia, cystitis cystica or adenocarcinoma, and SCC after chronic exposure. Referral can then be arranged to a specialist centre.

- **Surgery:** aims to provide a continent reservoir for urine storage, preserve renal function, and create functional and cosmetically acceptable external genitalia. Selected cases are suitable for a one-stage complete primary repair of bladder exstrophy (CPRE), involving closure of the bladder plate and epispadias repair. However, many require staged procedures.
 - **Newborn:** pelvic osteotomy (cutting bone to correct the deformity) with external fixation and closure of the bladder, abdominal wall, and posterior urethra.
 - **6–18 months:** epispadias repair (see [p. 720].
 - **4–5y:** bladder neck reconstruction (Young–Dees–Leadbetter procedure) and antireflux surgery (ureteric reimplantation) are performed when there is adequate bladder capacity and children can participate in voiding protocols. Where bladder capacity is too small, bladder augmentation and/or urinary diversion are required.

- **Surgical complications:** ↑ risk of malignancy in urinary or orthotopic bladder, fistula, hypospadias, bladder stones, infection (UTI, epididymitis), incontinence.

Cloacal exstrophy
This is the most severe form of exstrophy–epispadias complex. Characterized by an exomphalos (midline abdominal defect, with the bowel covered in a thin sac of amnion and peritoneum), below which are two halves of an extrophied bladder separated by an extrophied bowel segment. It is associated with a bifid or micro-penis and the absence of one or both testes. The incidence is between 1 in 200 000 and 1 in 400 000. The ♂:♀ ratio is 6:1. In contrast to epispadias and bladder exstrophy, there is a high risk of associated congenital anomalies. Surgical reconstruction may require terminal colostomy, pelvic osteotomy, anterior bladder reconstruction ± augmentation cystoplasty. Gender assignment may need to be considered in ♂.
Primary epispadias

In epispadias, the urethra opens onto the dorsal surface of the penis, anywhere from the glans, penile shaft, or, most commonly, the penopubic region. An incomplete urethral sphincter mechanism (seen with posterior urethral epispadias) results in a high risk of incontinence. Epispadias is also associated with severe dorsal chordee (causing an upward curvature of the penis) and with incomplete foreskin dorsally. Epispadias is part of the exstrophy–epispadias complex (see pp. 718–19). Primary epispadias (without exstrophy) is rare.

Associated anomalies

Diastasis of the symphysis pubis results in splaying and rotation of the corpora cavernosa, laterally placed neurovascular bundles, and shortening of the penile shaft. There is reduced fertility, with paternity rates of around 30–40%. ♀ have a bifid clitoris and poorly developed labia, and demonstrate a spectrum of urethral deformities, ranging from a patulous urethral orifice to a urethral cleft affecting the entire length of the urethra and sphincter. There is >40% risk of VUR which commonly requires ureteric reimplantation.

Incidence

Affects 1 in 117 000 ♂; rarely seen in ♀ (1 in 400 000).

Management

Males

Urethroplasty with functional and cosmetic reconstruction of the external genitalia (penile lengthening and correction of chordee) at 6–18 months. The modified Cantwell–Ransley technique is commonly used in ♂. It describes mobilizing the urethra to the ventral aspect of the penis, with advancement of the urethral meatus onto the glans with a reverse meatal advancement glanuloplasty. The corporal bodies are separated and rotated medially above the urethra and re-approximated. From age 4–5y, when children can be toilet-trained, bladder neck reconstruction can be performed (Youngs–Dees–Leadbetter procedure). This achieves continence, and any bladder residuals may then be emptied by urethral catheterization. If this surgery fails, insertion of AUS may be tried. Some patients may require bladder augmentation and Mitrofanoff reconstruction to achieve continence.

Females

Surgery involves urethral repair reinforced with pubic fat, along with clitoral reconstruction ± bladder neck repair.

Follow-up to monitor upper tracts and bladder growth is required.
Urinary incontinence in children

Normal bladder control
- Neonates: sacral spinal cord reflex triggers voiding when the bladder is full.
- Infants: primitive reflexes are suppressed, bladder capacity increases, and voiding frequency is reduced.
- 2–4y: development of conscious bladder sensation and voluntary control in daytime (night control usually developed by 3–7y).

Lower urinary tract symptoms and types of incontinence
Daytime urinary incontinence is common, affecting 3% of girls and 2% of boys aged 7y (≥1day/wk). It can be divided into primary types (never been dry) or secondary (re-emergence of incontinence after being dry for 6 months).
- OAB syndrome: like adults, this is manifest as urgency ± urge incontinence, usually with frequency and nocturia. The symptoms are usually caused by detrusor overactivity but can be due to other forms of voiding dysfunction.
- Extraordinary daytime urinary frequency: small volume, frequent voiding during daytime (after bladder control is achieved). It is usually self-limiting.
- SUI: leak of urine with exertion. It is seen in patients with CF but otherwise is rare in non-neuropaths.
- Giggle incontinence: a rare condition mainly affecting girls, with urinary incontinence triggered by laughing. Bladder function is normal between episodes.
- Vaginal reflux: urine refluxes into the vagina, then dribbles into the underwear on standing. Improved by correcting toilet posture. Occasionally, it may be caused by labial adhesions which can be treated with topical oestrogen cream or divided, if necessary.
- Voiding postponement: children with incontinence may demonstrate holding manoeuvres (leg crossing, squatting, Vincent’s curtsey) to defer micturition and increase voiding intervals. It may be associated with behavioural and psychological disturbances.
- Underactive bladder: large-capacity bladder, poor contractility, infrequent voids, and may need to strain to empty the bladder.
- Nocturnal enuresis (NE) (see pp. 724–6).
- Dysfunctional voiding (previously called Hinman’s syndrome or non-neurogenic neurogenic bladder): it results from external urethral sphincter contraction during voiding, leading to a staccato flow pattern on uroflowmetry. It has a multifactorial aetiology, which includes abnormal learnt voiding patterns. It can result in incomplete bladder emptying, UTI, and urge incontinence, and is associated with bowel dysfunction (constipation). Severe cases may result in a small and trabeculated bladder, VUR, hydronephrosis, and renal damage.

Evaluation
- History: enquire about antenatal scans and birth history, UTIs, age at toilet training, voiding habits (frequency, urgency, primary or secondary
incontinence, including amount and daytime and/or night-time symptoms), family history, bowel history, drug history, social history, and behavioural and psychosocial problems.

- **Examination:** general—happy/quiet, interaction with parents. Abdominal—palpable masses (bladder, kidneys, colon). Pants and external genitalia, including perianal region, for congenital anomalies (i.e. epispadias). Neurological—spine, sacrum (hairy patch, lipoma, dimple), lower limb power, sensation, and reflexes.

- **Investigations:** urinalysis (infection, protein, glucose). Bladder diary (volumes, times, continence, fluid intake and type, bedtime): expected bladder capacity = (age + 2) × 30mL. Flow rate + PVR (satisfactory if \(Q_{\text{max}} > \text{voided volume}\)). In selected cases: USS renal tract (to assess for hydrenephrosis, bladder size), MCUG (to assess for VUR, PVR), videourodynamics (if suspicion of neuropathic bladder or sphincter dysfunction, or difficulty in clinical diagnosis), MRI spine (if clinical suspicion of neurological cause).

Management

Conservative

Education of the family and child is essential. Children may need bladder re-training, timed double voiding, change of voiding posture, and avoidance of bladder irritants. Avoidance and treatment of constipation are mandatory, and successful treatment of constipation cures 90% of urinary symptoms. Psychological counselling and support should be available. Many conditions respond and improve with these measures alone.

Specific management

- **OAB syndrome:** where conservative methods have failed, anticholinergic medication (i.e. oxybutynin) is indicated. Some patients also respond well to neuromodulation of the bladder with TENS. More invasive methods usually reserved for neuropathic patients include BTX-A injection into the bladder and ileocystoplasty.

- **Giggle incontinence:** treatment options include anticholinergic medications, imipramine and methylphenidate (Ritalin®).

- **Underactive bladder:** symptomatic children may need antibiotics for UTI and ISC, if tolerated. It can be self-limiting and resolve.

- **NE (see pp. 724–6):** first-line active treatments are enuresis alarms and desmopressin.

- **Dysfunctional voiding:** in addition to conservative techniques, anticholinergic medication may be useful and TENS can be used to neuromodulate the OAB. ISC ± α-blockers may be needed for patients with an underactive bladder and incomplete emptying. Antibiotics prophylaxis may be required for recurrent UTI. The condition tends to resolve spontaneously.

Reference

Nocturnal enuresis

Nocturnal enuresis (NE) is defined as intermittent incontinence while sleeping.\(^1\) Monosymptomatic nocturnal enuresis (MNE) is defined as (nocturnal) enuresis in children without any other LUTS and without a history of bladder dysfunction.\(^1\) MNE accounts for <50% of children with bedwetting. Non-monosymptomatic nocturnal enuresis (NMNE) includes children with associated voiding dysfunction. Primary NE refers to children that have never been dry for more than a 6-month period. Secondary NE refers to the re-emergence of bedwetting after a period of being dry for at least 6 months.

Prevalence

NE is estimated to affect up to 15% of 5y olds\(^2\) and 10% of 7y-old children and is commoner in boys (Table 16.8)\(^3\). There is 15% spontaneous resolution of symptoms per year.\(^1\) The prevalence in adults is 0.5%.

Pathophysiology

Three main factors that interact to produce NE are:

- **Altered ADH secretion:** an abnormal decrease in ADH levels at night causes ↑ urine production (NP).
- **Altered sleep/arousal mechanism:** impaired ‘arousal from sleep’ response to a full bladder.
- **Reduced nocturnal functional bladder capacity**\(^*\) (± nocturnal detrusor overactivity).

Familial predisposition, psychological factors, UTI, and constipation are also considered to contribute to NE.

History

The aim is to establish the underlying pathophysiological factors to guide treatment. Enquire about the frequency and if it is primary or secondary. Specifically ask about fluid intake, daytime urinary symptoms, bowel habit, and sleep patterns. Establish any underlying contributory medical conditions, family history, and psychosocial history, including the impact on the child and family.

Examination

Physical examination in a child with MNE is usually normal. Examination of the abdomen and genitals, neurological exam, lower limb sensation, and examination of the spine in children with associated voiding dysfunction (NMNE) is recommended.

Investigation

- **Voiding diary:** to assess for NP and functional bladder capacity.
- **Urinalysis:** to assess for infection and the presence of glucose (diabetes) or protein (UTI, renal disease).

* Aged-based ‘normal’ bladder capacity in children is calculated as: child <1y: bladder capacity (mL) is estimated as 10mL/kg; child >1y: bladder capacity (mL) = 30 (age + 2).
Management

General advice should be given to children and their parents. Active treatment is usually deferred until age 6y. First-line treatments are enuresis alarm and desmopressin.4,5

Behavioural

- **Reassurance and counselling:** including motivational techniques and reward systems to improve the child’s self-esteem, and information about the natural history.
- **Bladder training:** regular daytime toileting, emptying the bladder before bed, avoiding bladder stimulants (i.e. blackcurrant drinks, caffeine), reduced fluid intake in the hours before sleep. Adjust diet to avoid constipation, and treat constipation with laxatives if it occurs.
- **Conditioning therapy:** an enuretic alarm is connected to the child’s underwear, which is triggered with the first few drops of urine, waking the child from sleep (60–70% successful response).

Pharmacological

- **Desmopressin** (synthetic analogue of ADH) given PO (tablet or buccal melt) just before bedtime, with no further drinks. It produces an antidiuretic response. Overall, 30% achieve a full response to desmopressin and a further 40% have a partial response.
- **Anticholinergics** can be used to suppress detrusor overactivity when conservative methods have failed.
- **Imipramine,** a tricyclic antidepressant with anticholinergic and antispasmodic properties (used only selectively in children).

A full response to treatment is 14 consecutive dry nights or a 90% improvement in the number of wet pads.4 Patients with NP (and normal bladder function) tend to have a good response to desmopressin. Patients with functionally reduced bladder capacity (which may be associated with occult bladder dysfunction) benefit most from a combination of enuresis alarm, bladder training, and anticholinergic drugs (i.e. oxybutynin) ± desmopressin. If resistant to therapy, take a break from treatment, and retry 1–2y later.

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>♀ (%)</th>
<th>♂ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10–15</td>
<td>15–20</td>
</tr>
<tr>
<td>7</td>
<td>7–15</td>
<td>15–20</td>
</tr>
<tr>
<td>9</td>
<td>5–10</td>
<td>10–15</td>
</tr>
<tr>
<td>16</td>
<td>1–2</td>
<td>1–2</td>
</tr>
</tbody>
</table>

References

Urolithiasis

Paediatric urolithiasis is increasing in children, with a ♀ preponderance. Risk factors include preterm infants (drugs, stones), UTI, single-gene disorders (including primary hyperoxaluria, cystinuria, and purine disorders), urinary stasis, immobility, medications (furosemide, topiramate, theophylline), and enterocystoplasties.

Presenting symptoms include haematuria (VH less common than in adults, NVH commoner), UTI, abdominal pain, and sepsis. One in six are asymptomatic.

Investigation is by USS, then CT. All children with stones require metabolic evaluation (abnormality found in 50%), including stone analysis, serum U&E, calcium, phosphorus, alkaline phosphatase, uric acid, protein, and PTH. Nephrology input is recommended. Urinalysis should be performed, together with 24h urine collections and analysis.

Types of stones

- **Calcium**: commonest type, due to hypercalciuria (idiopathic, secondary—immobility, hyperparathyroidism, hyperthyroidism, acidosis, metastases, high vitamin D, drugs), hyperoxaluria (high dietary intake, metabolic error, short bowel syndrome), and hypocitraturia (distal tubular acidosis, diarrhoea, high protein and high salt intake). Treatment includes ↑ fluid intake, thiazide diuretics, reduced dietary oxalate, potassium citrate, and pyridoxine.

- **Uric acid**: 4–8%, non-opaque. Associated with urinary pH of <5.9, hyperuricosuria (not a risk factor for calcium oxalate stones, unlike in adults), high purine and protein intake, myeloproliferative disorders, and metabolic error. Treatment includes urinary alkalinization with potassium citrate and, if that fails, allopurinol (10mg/kg).

- **Cystine**: 2–6%, faintly opaque and hard. Cystinuria is an autosomal recessive disorder of intestinal and proximal tubular renal resorption of dibasic amino acids (cystine, ornithine, lysine, and arginine—only cystine is very insoluble and therefore forms stones, particularly if urinary pH <7.0). Treatment includes ↑ fluid intake (urine output >2.5L/day), urinary alkalinization with potassium citrate, and, if that fails, α-mercaptopropionylglycine/captopril/penicillamine.

- **Struvite**: 5%. Associated with genitourinary tract anomalies. Mechanism of stone formation is the same as in adults, via urease-producing organisms and urinary alkalinization.
Treatment

In addition to increasing fluid intake, medical management of underlying metabolic abnormalities, and specific medical therapies, various treatment options can be used. Choice of treatment depends on stone size and location, composition, likely success/risks/further procedures, symptoms, and complications, length of procedure, and comorbidities (cardiorespiratory, orthopaedics). Urine should be sterile before intervention is performed.

- **SWL**: performed under GA if <10y of age, with adequate pre- and post-SWL hydration. Usually between 1800 and 2000 shocks are delivered, with 80% overall stone-free rates. Success rates depend on stone burden (90% for <1cm stone, 80% for 1–2cm stone, 60% for >2cm stone).

- **PCNL**: if the stone burden is very high or a patient has failed SWL, PCNL can be used. High stone-free rates are seen (95% overall, 85% for staghorn calculi). Access can be with a mini- (13/14Fr) or microsheath (4.85Fr).

- **Ureterorenoscopy (URS)**: with laser stone fragmentation; results in 90% stone-free rates.
Trauma

Paediatric trauma demands specialist care in trauma centres. The basic principles of trauma management apply, and it is good to have a working knowledge of fluid resuscitation (10mL/kg bolus, repeated as necessary, and 4mL/kg/h maintenance). A summary of injuries are detailed below, with particular relevance to paediatrics. The principles of management of paediatric urinary tract trauma is similar to that of adults (see Chapter 11)

Renal

Renal trauma is common, affecting 10% of all blunt trauma injuries in children, usually through deceleration injuries, direct flank trauma, fall from a height, and, in certain areas, penetrating injuries. The child’s kidney is particularly susceptible, as it is relatively larger, contains fetal lobulations, and is less protected by lower amounts of perirenal fat, weaker abdominal muscles, and less ossified thorax. Haematuria is an unreliable marker of injury severity, with VH only present in 65% of severe injuries (2% have no haematuria) and two-thirds of patients with low-grade injuries having normal urine. Haemodynamic instability is a very late sign. Contrast CT with delayed images is the investigation of choice. As with adult injuries, grading is with the AAST system. Repeat imaging should be considered if there is a fall in Hb, severe pain, ileus, or suspected associated injury. Follow-up includes an USS between 7 and 10 days (? pseudoaneurysm), DMSA in 3 months, and annual BP check (<5% risk of hypertension from Page or Goldblatt kidney). If injury occurs in a solitary kidney, parents should be appropriately counselled, including the information that their child has only one kidney and its loss would result in need for dialysis or transplant, that renal injury increases the risk of renal insufficiency, and that, although renal injury can result from contact sports, the risks are less than those of a head injury and therefore, contact sports are not advised against.

Ureter

Rarely, a ureter is injured by blunt trauma—it is well protected, and iatrogenic injury is commoner. A high index of suspicion is needed for timely diagnosis and treatment. Retrograde ureteropyelogram is the best investigation, and management is usually with ureteric stent or percutaneous nephrostomy.

Bladder

The bladder is more vulnerable to injury, compared to that of an adult, due to its higher position in the abdomen where it is exposed above the bony pelvis, weaker abdominal muscles, and less pelvic/abdominal fat.

The majority of patients with a bladder injury have VH, and diagnosis is made with a retrograde bladder filling to capacity. Most injuries are intraperitoneal, requiring immediate repair and catheterization. However, it is, less commonly, injury in pelvic fractures, compared to in adults (57% vs 89%). In association with a pelvic fracture, most bladder injuries are extraperitoneal and can be managed non-operatively. Trauma to the urethra, scrotum, and testes is uncommon, as they are relatively well protected. Principles of investigation and management are the same as for adults.
Chapter 17

Urological surgery and equipment

Preparation of the patient for urological surgery 732
Antibiotic prophylaxis in urological surgery 736
Complications of surgery in general: DVT and PE 740
Fluid balance and the management of shock in the surgical patient 744
Patient safety in the urology theatre 746
Transurethral resection syndrome 747
Catheters and drains in urological surgery 748
Guidewires 754
Irrigating fluids and techniques of bladder washout 756
JJ stents 758
Lasers in urological surgery 764
Diathermy 766
Sterilization of urological equipment 770
Telescopes and light sources in urological endoscopy 772
Consent: general principles 774
Cystoscopy 776
Transurethral resection of the prostate 778
Transurethral resection of bladder tumour 780
Optical urethrotomy 782
Circumcision 784
Hydrocele and epididymal cyst removal 786
Nesbit’s procedure 788
Vasectomy and vasovasostomy 790
Orchidectomy 792
Urological incisions 794
JJ stent insertion 796
Nephrectomy and nephro-ureterectomy 798
Radical prostatectomy 800
Radical cystectomy 802
Ileal conduit 806
Percutaneous nephrolithotomy 808
Ureteroscopes and ureteroscopy 812
Pyeloplasty 816
Laparoscopic surgery 818
Endoscopic cystolitholapaxy and (open) cystolithotomy 820
Scrotal exploration for torsion and orchidopexy 822
Electromotive drug administration 824
Preparation of the patient for urological surgery

The degree of preparation is related to the complexity of the procedure. Certain aspects of examination (pulse rate, BP) and certain tests (Hb, electrolytes, creatinine) are important, not only to assess fitness for surgery, but also as a baseline against which changes in the post-operative period may be measured.

- Assess cardiac status (angina, arrhythmias, previous myocardial infarction) with BP, electrocardiogram (ECG), and CXR.
- Arrange an anaesthetic review, as needed. Cardiopulmonary exercise testing is offered to some patients with cardiac and/or lung disease prior to major surgery.
- Culture urine; treat active (symptomatic) infection with an appropriate antibiotic, starting a week before surgery, and give prophylactic antibiotics at induction of anaesthesia.
- Consider stopping anticoagulation (with or without bridging therapy) 7–10 days prior to surgery.
- Obtain consent.
- Measure Hb and serum creatinine, and investigate and correct anaemia, electrolyte disturbance, and abnormal renal function. If blood loss is anticipated, group and save a sample of serum or cross-match several units of blood, the precise number depending on the speed with which your blood bank can deliver blood, if needed. In our own unit, our policy is (other units may have a different policy) (Table 17.1):
 - The patient may choose to store their own blood prior to the procedure.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURBT</td>
<td>Group and save</td>
</tr>
<tr>
<td>TURP</td>
<td>Group and save</td>
</tr>
<tr>
<td>Open prostatectomy</td>
<td>Cross-match 2U</td>
</tr>
<tr>
<td>Simple nephrectomy</td>
<td>Cross-match 2U</td>
</tr>
<tr>
<td>Radical nephrectomy</td>
<td>Cross-match 4U</td>
</tr>
<tr>
<td>(Renal vein or IVC extension)</td>
<td>Cross-match 6U</td>
</tr>
<tr>
<td>Cystectomy</td>
<td>Cross-match 4U</td>
</tr>
<tr>
<td>RP</td>
<td>Cross-match 2U</td>
</tr>
<tr>
<td>PCNL</td>
<td>Group and save</td>
</tr>
</tbody>
</table>

Table 17.1 The Group and Save and Cross Match policy in Oxford University Hospitals NHS Foundation Trust (consult your local hospital policy)
Should anticoagulation be stopped prior to minor urological procedures and urological surgery?

Aspirin and TRUS biopsy
In the UK, 65% of urologists routinely stop aspirin prior to TRUS biopsy; 35% do not.¹ Four of 297 urologists (1.3%) reported cerebrovascular side effects from stopping aspirin. There remains no consensus guidance on whether to stop or continue aspirin.

Aspirin and TURP
There is wide variation in the management of aspirin in men undergoing TURP. In a recent audit of UK urologists, 38% said they did not stop aspirin prior to TURP, but of those that said they did stop it, a substantial number still proceeded with TURP if the aspirin had inadvertently not been stopped.² Overall, 75% either did not bother stopping aspirin or proceeded with TURP if patients were inadvertently still taking it, presumably because of a perceived ↑ risk of serious cardiovascular events. Some studies suggest an ↑ risk of bleeding and the need for blood transfusion in those on aspirin, while others report no ↑ risk. There is only one RCT, and this showed that aspirin did increase blood loss after TURP, but not enough to increase the requirement for blood transfusion.³ The risks of short-term withdrawal of aspirin prior to TURP have not been established, although there are anecdotal reports of serious adverse cardiovascular events. So should aspirin be stopped or continued prior to TURP? The short answer is that there is no substantial body of evidence to support stopping it or continuing it, and as the majority continue to do TURP with patients on aspirin, but a substantial minority stop it, either behaviour is reasonable. Since bleeding times return to normal within 48h of stopping aspirin (the time taken for new platelets to reach sufficient numbers to compensate for impaired function of circulating platelets), it seems reasonable to stop it 2 days before surgery and to restart it within a few days of surgery when it is obvious that postoperative bleeding has stopped (usually when it is deemed safe to remove the catheter).

Drug-eluting cardiac stents and antiplatelet agents
Be careful in patients receiving the newer antiplatelet drugs such as clopidogrel or ticlopidine (with or without aspirin), since bleeding times can increase 3-fold.⁴ Severe intractable bleeding can occur following ‘minor’ procedures such as prostate biopsy or bladder biopsy. Patients with coronary artery stents are treated with dual anticoagulation with aspirin and clopidogrel for several months after stent insertion to reduce the risk of stent thrombosis. The precise duration of antiplatelet therapy has not been established, and while recent evidence suggests 6 months might be non-inferior to longer regimens, 12 months is a common treatment. Seek advice from a cardiologist about the safety of stopping these drugs. Consider delaying invasive procedures (e.g. prostate or bladder biopsy) if the risk of bleeding is deemed to be unacceptable in the presence of the continued need for anticoagulation.
New oral anticoagulants
Patients on one of the new oral anticoagulants (NOACs), such as dabigatran (inhibitor of free thrombin, fibrin-bound thrombin, and thrombin-induced platelet aggregation), apixaban, edoxaban, and rivaroxaban (inhibitors of factor Xa), are advised to discontinue treatment for at least 2 days preoperatively (3–5 days if renal impairment) if surgery is associated with a high risk of bleeding (PCNL, radical cancer surgery, TURP). Treatment can be restarted when post-operative bleeding has settled, usually at 1–2 days.

If emergency surgery is required for a patient taking a NOAC, idarucizumab (to reverse dabigatran) or andexanet alfa (to reverse apixaban, edoxaban, or rivaroxaban) can be used, depending on availability.

Bowel preparation
Indicated if large bowel is to be used (bowel prep is not required if small bowel alone is to be used, e.g. ileal conduit, ileal neobladder reconstruction). Use a simple mechanical prep (Citramag® or Picolax®—magnesium salts), two doses starting the morning before surgery, with a clear, fluid-only diet.
Antibiotic prophylaxis in urological surgery

The precise antibiotic prophylaxis policy that you use will depend on your local microbiological flora. Your local microbiology department will provide regular advice and updates on which antibiotics should be used, both for prophylaxis and treatment. The policy shown here and in Table 17.2 is our own local policy.

We do not routinely administer prophylaxis for flexible cystoscopy, SWL, diagnostic cystoscopy and biopsy, transperineal prostate biopsy, circumcision, inguinoscrotal surgery, or upper tract surgery.

There is a move away from the use of cefuroxime (to reduce the risk of antibiotic-induced *Clostridium difficile* colitis) and fluoroquinolones (to reduce the risk of *C. difficile*–associated diarrhoea, pseudomembranous colitis, and MRSA). Trimethoprim, gentamicin, penicillin, and co-amoxiclav are less likely to cause *C. difficile*-associated disease.

Culture urine before any procedure, and use specific prophylaxis (based on sensitivities) if culture positive.

We avoid ciprofloxacin in inpatients because it is secreted onto the skin and causes MRSA colonization. For most purposes, nitrofurantoin provides equivalent cover without being secreted onto the skin. We do use ciprofloxacin if there is known *Proteus* infection (all *Proteus* species are resistant to nitrofurantoin).

Patients with artificial heart valves

Antibiotic prophylaxis against infective endocarditis is not recommended routinely for urological procedures (NICE guidelines, 2015).

Patients with joint replacements

The advice is conflicting.

AAOS/AUA advice

Joint advice of the American Academy of Orthopaedic Surgeons (AAOS) and the AUA—antibiotic prophylaxis is not indicated for urological patients with pins, plates, or screws or for most patients with total joint replacements. It is recommended for all patients undergoing urological procedures, including TURP within 2y of a prosthetic joint replacement, those who are immunocompromised (e.g. rheumatoid patients, those with *C. difficile* is a Gram-positive, anaerobic, spore-forming bacillus. The commonest cause of nosocomial diarrhoea and antibiotic-associated colitis. Disease arises as a consequence of faeco-oral transmission of *C. difficile* spores (ribotype 027 seems to be particularly pathogenic). Once colonization has occurred, progression to diarrhoea or colitis depends on coexisting conditions and host immune response. *C. difficile* toxins A and B are responsible for pathogenicity. They bind to intestinal epithelial receptors. Inflammatory cytokines cause fluid secretion, mucosal destruction, and tissue necrosis. Other risk factors for *C. difficile*-associated disease: age >65y, use of proton pump inhibitors, laxatives, nasogastric tubes, and prolonged hospital stay. Treatment for diarrhoea and colitis: stop causative antibiotics, isolate and barrier nurse (wash hands with soap and water, as alcohol hand rubs are ineffective against spores), and oral metronidazole (oral vancomycin reserved for serious or recurrent infection).
SLE, drug-induced immunosuppression, including steroids), and those with a history of previous joint infection, haemophilia, HIV infection, diabetes, and malignancy.

Antibiotic regime

Single dose of a quinolone, such as ciprofloxacin 500mg, 1–2h preoperatively + ampicillin 2g IV + gentamicin 1.5mg/kg 30–60min preoperatively (substituting vancomycin 1g IV for penicillin-allergic patients).

UK advice

In the UK, a Working Party of the British Society for Antimicrobial Chemotherapy has stated that patients with prosthetic joint implants (including total hip replacements) do not require antibiotic prophylaxis and considers that it is unacceptable to expose patients to the adverse effects of antibiotics when there is no evidence that such prophylaxis is of any benefit.
This advice is based on the rationale that joint infections are caused by skin organisms that get onto the prosthesis at the time of the operation and that the role of bacteraemia as a cause of seeding outside the immediate post-operative period has never been established.

We use the same antibiotic prophylaxis as for patients without joint prostheses.

Reference

Complications of surgery in general: DVT and PE

VTE is uncommon after urological surgery, but it is considered the most important non-surgical complication of major urological procedures. Following TURP, 0.1–0.2% of patients experience a PE, and 1–5% of patients undergoing major urological surgery experience symptomatic VTE. The mortality of PE is in the order of 1%.

Risk factors for DVT and PE

↑ risk: open (vs endoscopic) procedures, malignancy, increasing age, duration of procedure.

Categorization of VTE risk

The American College of Chest Physicians (ACCP) guidelines on the prevention of VTE and the British Thromboembolic Risk Factors (THRIFT) Consensus Group categorize the risk of VTE as:

- **Low-risk patients**: those <40 undergoing minor surgery (surgery lasting <30min) and no additional risk factors. No specific measures to prevent DVT are required in such patients other than early mobilization. Increasing age and duration of surgery increase the risk of VTE.
- **High-risk patients**: include those undergoing major surgery (surgery lasting >30min) who are aged >60.

Additional risk factors (that indicate the requirement for additional prophylactic measures, e.g. the addition of SC heparin and/or intermittent pneumatic calf compression (IPC))

- Active heart or respiratory failure.
- Active cancer or cancer treatment.
- Acute medical illness.
- Age >40y.
- Antiphospholipid syndrome.
- Behçet’s disease.
- Central venous catheter in situ.
- Continuous travel >3h up to 4wk before surgery.
- Immobility (paralysis or limb in plaster).
- Inflammatory bowel disease (Crohn’s disease/ulcerative colitis).
- Myeloproliferative diseases.
- Nephrotic syndrome.
- Obesity (BMI >30kg/m²).
- Paraproteinaemia.
- Paroxysmal nocturnal haemoglobinuria.
- Personal or family history of VTE.
- Recent myocardial infarction or stroke.
- Severe infection.
- Use of oral contraceptive or hormone replacement therapy.
- Varicose veins with associated phlebitis.
- Inherited thrombophilia.
• Factor V Leiden.
 • Prothrombin 2021A gene mutation.
 • Antithrombin deficiency.
 • Protein C or S deficiency.
 • Hyperhomocysteinaemia.
 • Elevated coagulation factors (e.g. factor VIII).

Prevention of DVT and PE
(See Table 17.3.)

Diagnosis of DVT
Signs of DVT are non-specific (i.e. cellulitis and DVT share common signs—low-grade fever, calf swelling, and tenderness). If you suspect a DVT, arrange a Doppler USS. If the ultrasound probe can compress the popliteal and femoral veins, there is no DVT; if it cannot, there is a DVT.

Diagnosis of PE
Small PEs may be asymptomatic. Symptoms: include breathlessness, pleuritic chest pain, haemoptysis. Signs: tachycardia, tachypnoea, raised jugular venous pressure (JVP), hypotension, pleural rub, pleural effusion.

Tests
• CXR: may be normal or show linear atelectasis, dilated pulmonary artery, oligae mia of affected segment, small pleural effusion.
• ECG: may be normal or show tachycardia, right bundle branch block, inverted T waves in V1–V4 (evidence of right ventricular strain). The ‘classic’ S1, Q3, T3 pattern is rare.
• ABGs: low PO\textsubscript{2} and low PCO\textsubscript{2}.
• Imaging: CT pulmonary angiogram (CTPA)—superior specificity and sensitivity, when compared with ventilation–perfusion (V/Q) radioisotope scan.
• Spiral CT: a negative CTPA rules out a PE with similar accuracy to a normal isotope lung scan or a negative pulmonary angiogram.

<table>
<thead>
<tr>
<th>Table 17.3 Pre- and post-operative risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
</tr>
<tr>
<td>High risk, e.g. VTE within 1 month. Prosthetic mitral valve, AF, and history of stroke</td>
</tr>
<tr>
<td>Non-high risk, e.g. AF without previous stroke</td>
</tr>
</tbody>
</table>

* Continue until INR >2.0 for 2 consecutive days.
** Stop full-dose IV unfractionated heparin 6h preoperatively and check APTT; omit full-dose SC LMWH on the day of surgery.
*** For patients with VTE within 1–3 months or cancer, we would suggest prophylactic LMWH preoperatively.
Treatment of established DVT
- **Below-knee DVT**: AK-TEDs if no peripheral arterial disease (enquire for claudication and check pulses) + unfractionated heparin 5000U SC 12-hourly.
- **Above-knee DVT**: start LMWH and warfarin, and stop heparin when the INR is between 2 and 3. Continue treatment for 6wk for postsurgical patient; lifelong if underlying cause (e.g. malignancy).
- LMWH.

Treatment of established PE
Fixed dose of SC LMWH seems to be as effective as adjusted-dose IV unfractionated heparin for the treatment of PE found in conjunction with symptomatic DVT. Rates of haemorrhage are similar with both forms of heparin treatment. Start warfarin at the same time, and stop heparin when the INR is 2–3. Continue warfarin for 3 months.

Options for prevention of VTE
- Early mobilization.
- AK-TEDs—provide graduated, static compression of the calves, thereby reducing venous stasis. More effective than below-knee TEDS for DVT prevention.
- SC heparin [low-dose unfractionated heparin (LDUH) or LMWH]. In unfractionated preparations, heparin molecules are polymerized—molecular weights from 5000–30 000Da. LMWH is depolymerized—molecular weight 4000–5000Da.
- IPC boots, which are placed around the calves, are intermittently inflated and deflated, thereby increasing the flow of blood in calf veins.
- For patients undergoing major urological surgery (RP, cystectomy, nephrectomy), AK-TEDS with IPC intraoperatively, followed by SC heparin (LDUH or LMWH) should be used. For TURP, many urologists use a combination of AK-TEDS and IPCs; relatively few use SC heparin.

Contraindications to AK-TEDS
- Any local leg conditions with which stockings would interfere such as dermatitis, vein ligation, gangrene, and recent skin grafts.
- Peripheral artery occlusive disease (PAOD).
- Massive oedema of the legs or pulmonary oedema from congestive cardiac failure.
- Extreme deformity of the legs.

Contraindications to heparin
- Allergy to heparin.
- History of haemorrhagic stroke.
- Active bleeding.
- Significant liver impairment—check clotting first.
- Thrombocytopenia (platelet count <100 x 10⁹/L).
Management of anticoagulation in the perioperative period

Liaise with whoever is responsible for the patient’s anticoagulation (e.g. anticoagulant clinic). Warfarin should be stopped either 4 days (if the target INR is 2.5) or 5 days (if the target INR is higher) before surgery. Determine the INR the day before surgery to reduce the risk of cancellation. Administer oral vitamin K (2.5mg) if the INR is ≥2.0. Check the INR on the day of surgery.

The main decision is whether to give bridging therapy with treatment-dose heparin (unfractionated heparin or LMWH) and, if not, whether preoperative prophylactic LMWH is advised when the INR is <2.0. For pragmatic purposes, to save monitoring the INR as an outpatient, this could be instituted 2–3 days after warfarin is stopped, i.e. on the morning after two doses have been omitted.

A controversial group of patients are those with a prosthetic (non-caged) aortic valve and no other risk factor. It is acceptable not to use bridging therapy with treatment-dose heparin in these patients, particularly if the bleeding risk is high.8,9

References
Fluid balance and the management of shock in the surgical patient

Daily fluid requirement
Can be calculated according to the patient’s weight:
- For the first 10kg: 100mL/kg per 24h (= 1000mL).
- For the next 10kg (i.e. from 10–20kg): 50mL/kg per 24h (= 500mL).
- For every kg above 20kg: 20mL/kg per 24h (= 1000mL for a patient weighing 70kg).

Thus, for every 24h, a 70kg adult will require 1000mL for their first 10kg of weight, plus 500mL for their next 10kg of weight, and 1000mL for their last 50kg of weight = total 24h fluid requirement, 2500mL.

Daily sodium (Na⁺) requirement is 100mmol, and for potassium (K⁺) 70mmol. Thus, a standard 24h fluid regimen is 2L of 5% glucose + 1L of normal saline (equivalent to about 150mmol of Na⁺), with 20mmol K⁺ for every litre of infused fluid.

Fluid losses from drains or nasogastric aspirate are similar in composition to plasma and should be replaced principally with normal saline.

Shock due to blood loss
Inadequate organ perfusion and tissue oxygenation. The causes are hypovolaemia, cardiogenic, septic, anaphylactic, and neurogenic. The commonest cause in the surgical patient is hypovolaemia due to blood and other fluid loss. Haemorrhage is an acute loss of circulating blood volume.

Haemorrhagic shock may be classified as:
- **Class I**: up to 750mL of blood loss (15% of blood volume); normal pulse rate (PR), respiratory rate (RR), BP, urine output, and mental status.
- **Class II**: 750–1500mL (15–30% of blood volume); PR >100; ↓ pulse pressure due to ↑ diastolic pressure; RR 20–30; urinary output 20–30mL/h.
- **Class III**: 1500–2000mL (30–40% of blood volume); PR >120; ↓ BP and pulse pressure due to ↓ systolic pressure; RR 30–40; urine output 5–15mL/h; confusion.
- **Class IV**: >2000mL (>40% of blood volume); PR >140; ↓ pulse pressure and BP; RR >35; urine output <5mL/h; cold, clammy skin.
Management

- Remember ‘ABC’: 100% oxygen to improve tissue oxygenation.
- ECG, cardiac monitor, pulse oximetry.
- Insert two short and wide IV cannulae in the antecubital fossa (e.g. 16G). A central venous line may be required.
- Infuse 500mL of crystalloid (e.g. Hartmann’s) over <15min. Aim for a urinary output of 0.5mL/kg/h and maintenance of BP.
- Check FBC, coagulation screen, U&E, and cardiac enzymes.
- Consider early (<3h) tranexamic acid 1g IV (trials of use in trauma patients show significantly ↑ survival).
- Cross-match 6U of blood.
- ABGs to assess oxygenation and pH.
- Obvious and excessive blood loss may be seen from drains, but drains can block, so assume there is covert bleeding if there is tachycardia (and low BP). If this regimen fails to stabilize pulse and BP, return the patient to the operating room for exploratory surgery.
Patient safety in the urology theatre

In 2009, the WHO developed guidelines for safe surgery, and the WHO checklist, which is now in use worldwide, has been shown to significantly reduce morbidity and mortality. It has three components, although modifications and additions to the WHO checklist are incorporated according to local practices:

- **Sign in:** before induction of anaesthesia, with at least the anaesthetist and a nurse. Verbal check (ideally with the patient) of identity, procedure and site, consent, operative site mark, and functioning pulse oximeter. Review of the patient’s risk of blood loss (if >500mL, ensure blood available), airway difficulty or aspiration risk, allergies, and anaesthesia safety checks.
- **Time out:** after anaesthesia induction, before surgical incision, all team (introductions if not previously done). Confirm correct operation for correct patient on correct site; review anticipated critical events; confirm prophylactic antibiotics (as required), VTE prophylaxis, patient warming, and glycaemic control; and display any essential imaging.
- **Sign out:** during or immediately after wound closure (with surgeon present in operating theatre). Confirm operation performed and recorded; check instrument, swab, and needle counts complete and correct; check surgical specimens labelled correctly; highlight any equipment issues, and verbalize concerns for post-operative recovery.

Develop an approach to operating that involves members of your team. Listen to the opinions of junior staff; they may sometimes be able to identify errors that are not obvious to you. Cultivate the respect of the recovery room staff. They may express concern about a patient under their care—listen to their concerns, take them seriously, and if all is well, reassure them. It does no harm for your patients or for your reputation to develop the habit of visiting every patient in the recovery room to check that all is well. You may be able to identify a problem before it has developed into a crisis, and at the very least, you will gain a reputation for being a caring surgeon.
Transurethral resection syndrome

Arises from the infusion of a large volume of hypotonic irrigating solution into the circulation during endoscopic procedures (e.g. TURP, TURBT, PCNL). Occurs in 0.5% of TURPs.

Pathophysiology

Biochemical, haemodynamic, and neurological disturbances occur.

- Dilutional hyponatraemia is the most important—and serious—factor leading to the symptoms and signs. Serum sodium usually has to fall to $<125\text{mmol/ L}$ before the patient becomes unwell.
- Hypertension—due to fluid overload.
- Visual disturbances may be due to the fact that glycine is a neurotransmitter in the retina.

Diagnosis: symptoms, signs, and tests

Confusion, nausea, vomiting, hypertension, bradycardia, visual disturbances, seizures. If the patient is awake (spinal anaesthesia), they may report visual disturbances (e.g. flashing lights).

Preventing the development of TUR syndrome and definitive treatment

Use a continuous irrigating cystoscope (provides low-pressure irrigation), limit the resection time ($<60\text{min}$), avoid aggressive resection near the capsule, and reduce the height of the irrigant solution ($<70\text{cm}$).

Early identification of TUR syndrome is important, particularly by less experienced surgeons and during resection of a large prostate. For prolonged procedures, where a greater degree of fluid absorption may occur, measure serum sodium and give 20–40mg of IV furosemide to start offloading the excess fluid that has been absorbed. If serum sodium comes back as being normal, you will have done little harm by giving furosemide, but if it comes back at $<125\text{mmol/ L}$, you will have started treatment already and thereby may have prevented the development of severe TUR syndrome.

Techniques for measuring fluid overload

- Weighing machines can be added to the ordinary operating table.
- Adding a little alcohol to the irrigating fluid and constantly monitoring the expired air with a breathalyser allow an estimation of the volume of excess fluid which has been absorbed.

References

Catheters and drains in urological surgery

Catheters
Made from latex or silastic (for patients with latex allergy or for long-term use—better tolerated by the urethral mucosa).

Types
- Self-retaining (also known as a Foley, balloon, or 2-way catheter) (Fig. 17.1). An inflation channel can be used to inflate and deflate a balloon at the end of the catheter, which prevents the catheter from falling out.
- A 3-way catheter (also known as an irrigating catheter). Has a third channel (in addition to the balloon inflation and drainage channels) which allows fluid to be run into the bladder at the same time as it is drained from the bladder (Fig. 17.2).

Size
The size of a catheter is denoted by its circumference in millimetre. This is known as the ‘French’ or ‘Charrière’ (hence Ch) gauge. Thus, a 12Ch catheter has a circumference of 12mm.

Uses
- Relief of obstruction (e.g. BOO due to BPE causing urinary retention—use the smallest catheter that you can pass; usually a 12Ch or 14Ch is sufficient in an adult).
- Irrigation of the bladder for clot retention (use a 20Ch or 22Ch 3-way catheter).
- Drainage of urine to allow the bladder to heal if it has been opened (trauma or deliberately, as part of a surgical operation).
- Prevention of ureteric reflux, maintenance of a low bladder pressure, where the ureter has been stented (post-pyeloplasty for PUJO).
- To empty the bladder before an operation on the abdomen or pelvis (deflating the bladder gets it out of harm’s way).
- Monitoring of urine output post-operatively or in the unwell patient.
- For delivery of bladder instillations (e.g. intravesical chemotherapy or immunotherapy).
- To allow identification of the bladder neck during surgery (e.g. RP, operations on or around the bladder neck).

Drains
Principally indicated for the prevention of accumulation of urine, blood, lymph, or other fluids. Particularly used after the urinary tract has been opened and closed by suture repair. A suture line takes some days to become completely watertight, and during this time, urine leaks from the closure site. A drain prevents accumulation of urine (a urinoma), the very presence of which can cause an ileus, and if it becomes infected, an abscess can develop.
Fig. 17.1 A Foley catheter with the balloon inflated.

Fig. 17.2 Two- and 3-way catheters.
• Tube drains (e.g. Robinson’s drain) (Figs. 17.3 and 17.4): provide passive drainage (i.e. no applied pressure). Used to drain suture lines at a site of repair or anastomosis of the urinary tract. Avoid placing the drain tip on the suture line, as this may prevent healing of the repair. Suture it to adjacent tissues to prevent it from being dislodged.

• Suction drains (e.g. Hemovac®) (Figs. 17.5 and 17.6): provide active drainage (i.e. air in the drainage bottle is evacuated, producing a negative pressure when connected to the drain tube to encourage evacuation of fluid). Used for the prevention of accumulation of blood (a haematoma) in superficial wounds. Avoid in proximity to a suture line in the urinary tract—the suctioning effect may encourage continued flow of urine out of the hole, discouraging healing.

As a general principle, drains should be brought out through a separate stab wound, rather than through the main wound, since the latter may result in bacterial contamination of the main wound, with subsequent risk of infection. Secure the drain with a thick suture to prevent it from inadvertently ‘falling out’.

Fig. 17.3 A Robinson’s (passive) drainage system.
Fig. 17.4 Note the eye-holes of the Robinson’s catheter.

Fig. 17.5 A Redivac suction drain showing the drain tubing attached to the needle used for insertion and the suction bottle.
Failure to deflate a catheter balloon for removal of a urethral catheter

From time to time, an inflated catheter balloon will not deflate when the time comes for removal of the catheter.

- Try inflating the balloon with air or water—this can dislodge an obstruction.
- Leave a 10mL syringe firmly inserted in the balloon channel, and come back an hour or so later.
- Try bursting the balloon by overinflation.
- Cut the end of the catheter off, proximal to the inflation valve—the valve may be ‘stuck’, and the water may drain out of the balloon.
- In the ♀ patient, introduce a needle alongside your finger into the vagina, and burst the balloon by advancing the needle through the anterior vaginal and bladder wall.
- In ♂ patients, balloon deflation with a needle can also be done under USS guidance. Fill the bladder with saline, using a bladder syringe, so that the needle can be introduced percutaneously and directed towards the balloon of the catheter under USS control.
- Pass a ureteroscope alongside the catheter, and deflate the balloon with the rigid end of a guidewire or with a laser fibre (the end of which is sharp).
Guidewires
An essential tool for endourological procedures.

Uses
As a track over which catheters or instruments can be passed into the ureter, collecting system of the kidney (retrograde or antegrade), or bladder.

Types
Many different types of guidewire are available. They are classified according to their size, tip design, rigidity, and surface coating. These specific properties determine their use. All are radio-opaque, so X-ray screening can be used to determine their position. They come prepackaged in a coiled sheath to allow ease of handling and storage (Fig. 17.7).

Size
‘Size’ refers to the diameter measured in inches (the length is usually around 150cm). The commonest sizes are 0.035 inches (2.7Ch) and 0.038 inches (2.9Ch). Also available as 0.032 inches (2.5Ch).

Tip design
Shape of the tip—straight or angle (Fig. 17.8); a straight tip is usually adequate for most uses. Occasionally, an angled tip is useful for negotiating an impacted stone or for placing the guidewire in a specific position. Similarly, a J-shaped tip can negotiate an impacted stone—the curved leading edge of this guidewire type can sometimes suddenly flick past the stone (in this situation, a straight guidewire can inadvertently perforate the ureter, thereby creating a false passage).
Surface coating
Most standard guidewires are coated with polytetrafluoroethylene (PTFE), which has a low coefficient of friction, thus allowing easy passage of the guidewire through the ureter and of instruments over them. Some guidewires are coated with a polymer which, when wet, is very slippery (hydrophilic coating). In some cases, the entire length of the guidewire is so coated (e.g. Terumo Glidewire), and in others, just the tip (e.g. Sensor guidewire). The virtually friction-free surface of Glidewires makes them liable to slip out of the ureter, and they therefore make unreliable safety wires (they can be exchanged for a wire with greater friction via a ureteric catheter). If allowed to become dry, these wires have a high coefficient of friction, which makes them difficult to manipulate.

Tip rigidity
The tip of all guidewires, over at least 3cm, is soft, and therefore flexible. This reduces—although certainly does not completely remove—the risk of ureteric perforation.

Shaft rigidity
Stiff guidewires are easier to manipulate than floppy ones and help to straighten a tortuous ureter (e.g. Amplatz Ultrastiff is particularly useful for this). Very malleable wires, such as the Terumo Glidewire, can be very useful for passing an impacted stone (for the same reason as J tip wires).

Some guidewires provide a combination of properties—a soft, floppy, hydrophilic-coated tip, with the remainder of the guidewire being stiff (e.g. Sensor guidewire).
Irrigating fluids and techniques of bladder washout

Glycine (usually 1.5%) is used for endoscopic surgery requiring application of diathermy

Normal saline is used for:
- Irrigation of the bladder following TURP and TURBT.
- Irrigation during ureteroscopy and PCNL.

Blocked catheter post-TURP and clot retention

Avoiding catheter blockage following TURP—keep the catheter bag empty; ensure a sufficient supply of the irrigant solution.

The bladder will be painfully distended. Irrigant flow will have stopped. A small clot may have blocked the catheter, or a chip of the prostate may have stuck in the eye of the catheter. Attach a bladder syringe to the end of the catheter, and pull back (Fig. 17.9). This may suck out the clot or chip of the prostate, and flow may restart. If it does not, draw some irrigant up into the syringe until it is about half full, and forcefully inject this fluid into the bladder. This may dislodge (and fragment) a clot that has stuck in the eye of the catheter. If the problem persists, change the catheter. You may see the obstructing chip of the prostate on the end of the catheter, as it is withdrawn.

Blocked catheter post-TURBT

Use the same technique as for post-TURP catheter blockage, but avoid vigorous pressure on the syringe—the wall of the bladder will have been weakened at the site of tumour resection, and it is possible to perforate the bladder, particularly in elderly women who have thin bladder walls.

Blocked catheters following bladder augmentation or neo-bladder

The suture line of the augmented bladder is weak, and over-vigorous bladder washouts can rupture the bladder.
Fig. 17.9 A bladder syringe—the tip is designed to fit onto a catheter.
JJ stents

These are hollow tubes with a coil at each end, which are inserted through the bladder (usually) into the ureter, and thence into the renal pelvis. They are designed to bypass a ureteric obstruction (e.g. due to a stone) or drain the kidney (e.g. post-renal surgery). They have a coil at each end (hence, the alternative name of ‘double pigtail’ stent—the coils have the configuration of a pig’s tail—or the less accurate name of J stent). These prevent migration downwards (out of the ureter) or upwards (into the ureter). They are therefore ‘self-retaining’. Made of polymers of variable strength and biodurability. Some stents have a hydrophilic coating which absorbs water and thereby makes them more slippery and easier to insert. Stents are impregnated with barium- or bismuth-containing metallic salts to make them radio-opaque, so that they can be visualized radiographically to ensure correct positioning.

Types

Classified by size and length. Common sizes are 6 or 7Ch (range 4–8Ch) (Fig. 17.10). Common lengths for adults are 22–28cm (range 18–30cm). Multilength stents are of variable length, allowing them to accommodate to ureters of different length.

Stent materials

Polyurethane; silicone; C-flex; Silitek; Percuflex; biodegradable (experimental—obviates the need for stent removal and eliminates the possibility of the ‘forgotten stent’). Some are coated (by chemical bonding) with a hydrogel (e.g. HydroPlus™) which provides a low friction surface, so making insertion easier and encrustation less likely, and, in theory, makes the stent more comfortable (whether this is the case in practice has not been established). Metallic stents are sometimes used in benign strictures or malignant obstruction (e.g. Allium self-expanding stent, Resonance®), and the Detour® stent is an extra-anatomical ureteric bypass stent.

Indications and uses

- Relief of obstruction: from ureteric stones; benign (i.e. ischaemic) ureteric strictures; malignant ureteric strictures. The stent will relieve the pain caused by obstruction and reverse renal impairment, if present.
- Prevention of obstruction: post-ureteroscopy (routine stenting after ‘uncomplicated’ ureteroscopy is not necessary).
- Indications for J stenting post-ureteroscopy:
 - Ureteric injury.
 - Solitary kidney.
 - Large residual stone burden.
 - Raised creatinine (implying overall impaired renal function).
 - Ureteric stricture.

* The definition of ‘uncomplicated’ ureteroscopy is not precise. ‘Complicated’ ureteroscopy has been variously defined as: (1) ureteral perforation (i.e. mucosal injury); (2) severe ureteric oedema at the site of the stone; (3) impaction (which means difficulty getting a guidewire past the stone (‘cork in a bottle’ stone); (4) prolonged operation (no precise definition of what ‘long’ is); and (5) one where ureteral dilatation was carried out (to define such ureteroscopies as ‘complicated’ is contentious, because some urologists routinely ‘dilate’ with a dual-lumen catheter to allow double guidewire placement. Does this automatically make all their ureteroscopies ‘complicated’?).
Prevention of obstruction post-ESWL.

Indications for J stenting post-ESWL:

- Stents reduce the incidence of steinstrasse with large renal calculi (1.5–3.5cm, 6% with a stent, and 13% without developing steinstrasse post-ESWL).
- Solitary kidney.
- Raised creatinine (implying overall impaired renal function).
- (The analysis by the Joint AUA/EAU Nephrolithiasis Guideline Panel 2007 found no improvement in stone fragmentation with stenting, i.e. stents do not enhance ESWL efficacy.)
- ‘Passive’ dilatation of the ureter prior to ureteroscopy.
- To ensure antegrade flow of urine following surgery (e.g. pyeloplasty) or injury to the ureter.
- Following endopyelotomy (endopyelotomy stents have a tapered end, from 14 to 7Ch, to keep the incised ureter ‘open’).
- Post-renal transplantation (stenting of the reimplanted ureter).

An alternative to the J stent

A short-term 4 or 6Ch ureteric catheter, attached to a 12Ch urethral catheter (to stop the ureteric catheter from falling out), is an alternative form of post-ureteroscopy drainage.

In an RCT of 24h of ureteric catheter drainage post-ureteroscopy, compared with no drainage, the non-catheterized group were more likely to report renal colic (45% vs 2%) and have loin pain (76% vs 20%) than the ureteric catheterized group. Analgesic use was greater in the non-catheterized group (67% vs 20%). Twenty per cent of non-catheterized patients and 5% of catheterized patients returned to hospital for analgesia (but no patient required readmission). The only disadvantage of this technique was a higher reported rate of urethral irritation (37% vs 4%) in the catheterized patients. It has the obvious advantage of ease of removal of the catheter without the need for a second procedure and avoids the potential risk of the forgotten stent.

Fig. 17.10 A JJ stent.
Symptoms and complications of stents

- **Stent symptoms:** common (78%)—suprapubic pain, LUTS (frequency, urgency—the stent irritates the trigone), haematuria, inability to work. More than 80% of patients have stent-related pain that affects daily activities; 32% report sexual dysfunction, and 58% report reduced work capacity and loss of income. α-blockers may help reduce pain with voiding and overall analgesic use.

- **UTI:** development of bacteriuria after stenting is common. In a small proportion, sepsis can develop. In such cases, consider placement of a urethral catheter to lower the pressure in the collecting system and prevent reflux of infected urine. Stents coated with the antibacterial triclosan are no better than non-coated stents in preventing stent-associated UTI.

- **Incorrect placement:** too high (distal end of the stent in the ureter; subsequent stent removal requires ureteroscopy; can be technically difficult; percutaneous removal may be required). Too low (proximal end not in the renal pelvis; stent may not therefore relieve obstruction).

- **Stent migration** (up the ureter or down the ureter and into the bladder).

- **Stent blockage:** catheters and stents become coated with a biofilm when in contact with urine (a protein matrix secreted by bacteria-colonizing stent). Calcium, magnesium, and phosphate salts become deposited. Biofilm build-up can lead to stent blockage or stone formation on the stent (Fig. 17.11). Stents coated with heparin are no better than non-coated stents in preventing stent biofilm formation or encrustation.

- **The ‘forgotten stent’:** rare, but potentially very serious, as the biofilm may become encrusted with the stone, making removal technically very difficult. If the proximal end only is encrusted, PCNL may be required to remove the stone and then the stent. If the entire stent is encrusted, open removal via several incisions in the ureter may be necessary.

Commonly asked questions about stents

Does urine pass through the centre of the stent?

No, it passes around the outside of the stent. Reflux of urine occurs through the centre.

Should I place a JJ stent after ureteroscopy?

(See pp. 758–62.)

A stent should be placed if:

- There has been ureteric injury (e.g. perforation—indicated by extravasation of contrast).
- There are residual stones that might obstruct the ureter.
- The patient has had a ureteric stricture that required dilatation.
- Solitary kidney.
- Raised creatinine (implying overall impaired renal function).

Routine stenting after ureteroscopy for distal ureteric calculi is unnecessary. Many urologists will place a stent after ureteroscopy for proximal ureteric stones.
Do stents cause obstruction?

In normal kidneys, stents cause a significant and substantial increase in intrarenal pressure, which persists for up to 3 wk.\(^7\) (This can be prevented by placing a urethral catheter.)

Do stents aid stone passage?

Ureteric peristalsis requires coaptation of the wall of the ureter proximal to the bolus of urine to be transmitted down the length of the ureter. JJ stents paralyse ureteric peristalsis. In dogs, the amplitude of each peristaltic wave (measured by an intraluminal ureteric balloon) falls (from 50 to 15 mmHg) and the frequency of ureteric peristalsis falls (from 11 to 3 waves/min). Peristalsis takes several weeks to recover. Ball bearings of 3 mm placed within a non-stented dog ureter take 7 days to pass, compared with 24 days in a stented ureter.

Are stents able to relieve obstruction due to extrinsic compression of a ureter?

Stents are less effective at relieving obstruction due to extrinsic obstruction by, for example, a tumour or retroperitoneal obstruction.\(^8\) They are much more effective for relieving obstruction by an intrinsic problem (e.g. a stone). Placement of two stents may provide more effective drainage (figure-of-eight configuration may produce more space around the stents for drainage).
For acute ureteric stone obstruction with fever, should I place a JJ stent or a nephrostomy?

In theory, one might imagine that a nephrostomy is better than a JJ stent—it can be done under LA (JJ stent insertion may require GA); it lowers the pressure in the renal pelvis to zero or a negative value, whereas a JJ stent results in a persistently positive pressure; it is less likely to be blocked by thick pus, and it allows easier subsequent imaging (contrast can be injected down the ureter—a nephrostogram—to determine if the stone has passed). A randomized trial of 42 patients with obstructing, infected stones (temperature >38°C and/or WBC >17,000/mm³) showed J stenting (6 or 7 Ch J stent with a Foley bladder catheter) and nephrostomy drainage (8 Ch) to be equally effective in terms of time to normalization of temperature and WBC (~2–3 days) and in-hospital stay. As a consequence, the EAU/AUA Nephrolithiasis Guideline Panel recommends that the system of drainage of the obstructed, infected kidney is left to the discretion of the urologist. Whichever method is chosen, decompression should be performed as soon as possible.

References

Lasers in urological surgery

Light amplification by stimulated emission of radiation. Photons are emitted when an atom is stimulated by an external energy source and its electrons, having been so excited, revert to their steady state. In a laser, the light is coherent (all the photons are in phase with one another), collimated (the photons travel parallel to each other), and of the same wavelength (monochromatic). The light energy is thus ‘concentrated’, allowing delivery of high energy at a desired target.

The holmium:YAG laser is currently the principal urological laser. It has a wavelength of 2140nm and is highly absorbed by water, and therefore by tissues which are composed mainly of water. The majority of the holmium laser energy is absorbed superficially, resulting in a superficial cutting or ablation effect. The depth of the thermal effect is no greater than 1mm. The holmium:YAG laser produces a cavitation bubble that generates only a weak shock wave, as it expands and collapses. Holmium laser lithotripsy occurs primarily through a photothermal mechanism that causes stone vaporization.

Uses of the holmium:YAG laser
- Laser lithotripsy (ureteric stones, small intrarenal stones, bladder stones).
- Resection of the prostate (holmium laser prostatectomy).
- Division of urethral strictures.
- Division of ureteric strictures, including PUJO.
- Ablation of small bladder, ureteric, and intrarenal TCCs.

Advantages
- The holmium laser energy is delivered via a laser fibre (Fig. 17.12), which is thin enough to allow its use down a flexible instrument, without affecting the deflection of that instrument, and can therefore gain access to otherwise inaccessible parts of the kidney.
- The zone of thermal injury adjacent to the tip of the laser fibre is limited to no more than 1mm; the laser can safely be fired at a distance of 1mm from the wall of the ureter.
- Can be used for all stone types.
- Minimal stone migration effect because of minimal shock wave generation.

Disadvantages
- High cost.
- Produces a dust cloud during stone fragmentation, which temporarily obscures the view.
- Can irreparably damage endoscopes if inadvertently fired near or within the scope.
- Relatively slow stone fragmentation—the laser fibre must be ‘painted’ over the surface of the stone to vaporize it.
Greenlight PVP for TURP
The 80 or 120W KTP laser is used for photoselective vaporization of the prostate. The laser is green (hence, the name ‘greenlight’ laser) and is absorbed by Hb, generating a heating effect which causes vaporization of the targeted tissue.

The procedure is done under general or spinal anaesthetic.

Advantages
Saline is used for irrigation (therefore, no risk of TUR syndrome).

Disadvantages
No tissue for histological examination.
Diathermy

Diathermy is the coagulation or cutting of tissues through heat.

Monopolar diathermy

When an electric current passes between two contacts on the body, there is an increase in temperature in the tissues through which the current flows. This increase in temperature depends on the volume of tissue through which the current passes, the resistance of the tissues, and the strength of the current. The stronger the current, the greater the rise in temperature. If one contact is made large, the heat is dissipated over a wide area and the rise of temperature is insignificant. This is the earth or neutral electrode, and under this, the rise in temperature is only 1 or 2°C. The working electrode or diathermy loop is thin, so that the current density is maximal, and therefore, so is the heating effect.

When a direct current is switched on or off, nerves are stimulated and muscles will twitch. If the switching on and off is rapid enough, there is the sustained contraction familiar to the physiology class as the ‘tetanic contraction’. If a high-frequency alternating current is used (300kHz to 5MHz), there is no time for the cell membranes of nerve or muscle to become depolarized and nerves and muscles are not stimulated (they are stimulated at lower frequencies).

The effect of the diathermy current on the tissues depends on the heat that is generated under the diathermy loop. At relatively low temperatures, coagulation and distortion of small blood vessels occur. If the current is to raise the temperature further, water within cells vaporizes and the cells explode. This explosive vaporization literally cuts the tissues apart.

Bipolar diathermy

Bipolar diathermy involves the passage of electrical current between two electrodes on the same hand piece. It is inherently safer than monopolar diathermy, since the current does not pass through the patient and diathermy burns cannot therefore occur.

Potential problems with diathermy

The diathermy is not working

- Do not increase the current.
- Check that the irrigating fluid is glycine (sodium chloride conducts electricity, causing the diathermy to short-circuit).
- Check that the diathermy plate is making good contact with the skin of the patient.
- Check that the lead is undamaged.
- Check that the resectoscope loop is securely fixed to the contact.

Modern diathermy machines have warning circuits which sound an alarm when there is imperfect contact between the earth plate and the patient.
Diathermy burns
If current returns to earth through a small contact, rather than the broad area of the earth pad, then the tissues through which the current passes will be heated, just like those under the cutting loop. If the pad is making good contact, the current will find it easier to run to earth through the pad and no harm will arise, even when there is accidental contact with some metal object. The real danger arises when the diathermy pad is not making good contact with the patient. It may not be plugged in or its wire may be broken. Under these circumstances, the current must find its way to earth somehow, and any contact may then become the site of a dangerous rise in temperature.

Pacemakers and implantable cardioverter–defibrillators (ICDs) and use of diathermy
See Box 17.1 for diathermy problems and their prevention.

Box 17.1 Pacemakers, ICDs, and diathermy: problems and their prevention
Diathermy can cause electrical interference of a pacemaker or ICD, leading to inhibition, triggering of electrical output from the device, reprogramming, asynchronous pacing, damage to the circuitry of the device, or triggering of defibrillator discharge. An electrical current can also be induced in the pacemaker or ICD leads, which can, in turn, cause tissue heating, leading to myocardial damage.

- Pacemaker inhibition: the high frequency of the diathermy current may simulate the electrical activity of myocardial contraction, so the pacemaker can be inhibited. If the patient is pacemaker-dependent, the heart may stop.
- Phantom reprogramming: the diathermy current may also simulate the radiofrequency impulse by which the pacemaker can be reprogrammed to different settings. The pacemaker may then start to function in an entirely different mode.
 - The internal mechanism of the pacemaker: may be damaged by the diathermy current if this is applied close to the pacemaker.
 - Ventricular fibrillation: if the diathermy current is channelled along the pacemaker lead, ventricular fibrillation may be induced.
 - Myocardial damage: another potential effect of channeling of the diathermy current along the pacemaker lead is burning of the myocardium at the tip of the pacemaker lead. This can subsequently result in ineffective pacing.

It was formerly recommended that a magnet was placed over the pacemaker to overcome pacemaker inhibition and to make the pacemaker function at a fixed rate. This can, however, result in phantom reprogramming. For demand pacemakers, it is better to programme the pacemaker to a fixed rate (as opposed to demand pacing) for the duration of the operation. Consult the patient’s cardiologist for advice.

(Continued)
Box 17.1 (Contd.)

Other precautions

- The patient plate should be sited, so that the current path does not go right through the pacemaker. Ensure that the indifferent plate is correctly applied, as an improper connection can cause grounding of the diathermy current through the ECG monitoring leads and this can affect pacemaker function. The indifferent plate should be placed as close as possible to the pacemaker (e.g. over the thigh or buttock).
- The diathermy machine should be placed well away from the pacemaker and should certainly not be used within 15cm of it.
- The heartbeat should be continually monitored, and a defibrillator and external pacemaker should be at hand.
- Try to use short bursts of diathermy at the lowest effective output.
- Use bipolar diathermy in preference to monopolar (not practical for many urological procedures where the only form of diathermy that can be used is monopolar).
- Give antibiotic prophylaxis (as for patients with artificial heart valves).
- Because the pacemaker-driven heart will not respond to fluid overload in the normal way, resection should be as quick as possible and fluid overload should be avoided.

Further reading

Sterilization of urological equipment

Techniques for sterilization

- **Autoclaving**: modern cystoscopes and resectoscopes, including components such as light leads, are autoclavable. Standard autoclave regimens heat the instruments to 121°C for 15min or 134°C for 3min.

- **Chemical sterilization**: this involves soaking instruments in an aqueous solution of chlorine dioxide (Tristel), an aldehyde-free chemical (there has been a move away from formaldehyde because of health and environmental concerns). Chlorine dioxide solutions kill bacteria, viruses (including HIV and hepatitis B and C), spores, and mycobacteria.

Cameras cannot be autoclaved. Use a camera sleeve, or sterilize the camera between cases in solutions such as Tristel.

Sterilization and prion diseases

Variant Creutzfeldt–Jakob disease (vCJD) is a neurodegenerative disease caused by a prion protein (PrP). Other examples of neurodegenerative prion diseases include classic CJD, kuru, sheep scrapie, and bovine spongiform encephalopathy (BSE). Variant CJD and BSE are caused by the same prion strain and represent a classic example of cross-species transmission of a prion disease.

There has been much recent concern about the potential for transmission of vCJD between patients via contaminated surgical instruments. Classic CJD may be transmitted by neurosurgical and other types of surgical instruments, because normal hospital sterilization procedures do not completely inactivate prions. It is not possible at present to quantify the risks of transmission of prion diseases by surgical instruments. To date, iatrogenic CJD remains rare, with 267 cases having been reported worldwide up to 2000.

The risk of transmission of CJD may be higher with procedures performed on organs containing lymphoreticular tissue, such as tonsillectomy and adenoidectomy, because vCJD targets these tissues and is found in high concentrations there. For this reason, there was a move towards the use of disposable, once-only-use instruments for procedures such as tonsillectomy. However, these instruments have been associated with a higher post-operative haemorrhage rate, and as a consequence, ear, nose, and throat (ENT) departments in the UK are no longer obliged to use disposable instruments.

In the UK, the Advisory Committee on Dangerous Pathogens and Spongiform Encephalopathy provides advice on appropriate methods of cleaning and sterilization of surgical instruments. Prions are particularly resistant to conventional chemical (ethylene oxide, formaldehyde, and chlorine dioxide) and standard autoclave regimens, and dried blood or tissue remaining on an instrument could harbour prions that will not then be killed by the sterilization process. Once proteinaceous material, such as blood or tissue, has dried on an instrument, it is very difficult to
subsequently be sure that the instrument has been sterilized. Sterilization should include:

- **Pre-sterilization cleaning**: initial low-temperature washing (<35°C) with detergents and an ultrasonic cleaning system remove and prevent coagulation of PRPs—sonic cleaners essentially ‘shake’ attached material from the instrument.
- **Hot wash**.
- **Air drying**.
- **Thermal sterilization**: longer autoclave cycles at 134–137°C for at least 18 min (or six successive cycles with holding times of 3 min) or 1 h at conventional autoclave temperatures may result in a substantial reduction in the level of contamination with prions.

The latest models of pre-sterilization cleaning devices—automated thermal washer disinfectors—perform all of these cleaning tasks within one unit. Enzymatic proteolytic inactivation methods are under development.

References

Telescopes and light sources in urological endoscopy

There are three types of modern urological telescopes: rigid, semi-rigid, and flexible. These endoscopes may be used for inspection of the urethra and bladder (cystourethroscopes—usually simply called cystoscopes), the ureter and collecting system of the kidney (ureteroscopes and ureterorenoscopes), and, via a percutaneous access track, the kidney (nephrosopes). The light sources and image transmission systems are based on the innovative work of Professor Harold Hopkins from the University of Reading.

The Hopkins rod–lens system

Introduced by Professor Harold Hopkins in 1959. The great advance in telescope design was the development of the rod–lens telescope, which replaced the conventional system of glass lens with rods of glass, separated by thin air spaces which essentially were air lenses (Fig. 17.13). By changing the majority of the light transmission medium from air to glass, the quantity of light that could be transmitted was doubled. The rods of glass were also easier to handle during manufacture, and therefore, their optical quality was greater.

The angle of view of the telescope can be varied by placing a prism behind the objective lens. 0°, 12°, 30°,* and 70° scopes are available.

Lighting

Modern endoscopes (urological and those used to image the GI tract) use fibreoptic light bundles to transmit light to the organ being inspected (developed by Karl Storz). Each glass fibre is coated with glass of a different refractive index, so that light entering at one end is totally internally reflected and emerges at the other (Fig. 17.14). These fibreoptic bundles can also be used for image (as well as light) transmission, as long as the arrangement of the fibres at either end of the instrument is the same (coordinated fibre bundles are not required for simple light transmission). The fibre bundles are tightly bound together only at their end (for coordinated image transmission). In the middle, the bundles are not bound—this makes the instrument flexible (e.g. flexible cystoscope and flexible ureteroscope).

Digital image capture systems

Conventional analogue camera systems have a 3-chip camera with separate sensors for red, green, and blue colours. They convert analogue data into digital data for image storage and enhancement. Image distortion can reduce image quality (a ‘spectrum’ effect can occur—bands of red, green, and blue across the image). A recent innovation in scope design is chip miniaturization which allows these sensors to be placed at the tip of the flexible cystoscope or flexible ureteroscope, so allowing a totally digital imaging system (as in a digital camera). The resolution and image quality are superior to analogue systems.

* In days gone by, when a tiny lamp at the end of the telescope was used for illumination, it was necessary to have a slightly angled line of vision; otherwise, the light bulb got in the way of the view. The 30° scope is a throw back to this historical requirement.
TELESCOPES AND LIGHT SOURCES IN UROLOGICAL ENDOSCOPY

Fig. 17.13 (a) Diagram of a conventional cystoscope. The glass lenses are held in place by metal spacers and separated by air spaces. (b) A rod–lens telescope with ‘lenses’ of air separated by ‘spaces’ of glass, with no need for metal spacers. Reproduced from Blandy J, Fowler C (1995) Urology. Oxford: Blackwell Science, pp. 3–5, with permission from Wiley Blackwell.

Consent: general principles

Consent is required before you examine, treat, or care for a competent adult (a person aged 16 or more).

Think of obtaining consent as a process, rather than an event. In order to give consent, a patient must understand the nature, purpose, and likely effects (outcomes, risks) of the treatment. From the information they receive, the patient must be able to weigh up the risks against benefits and so arrive at an informed choice. They must not be coerced into making a decision (e.g. by the doctor in a hurry). Giving the patient time to reach a decision is a good way of avoiding any accusation that they were pressured into a decision. To reiterate—think of consent as a process, rather than an event.

Giving information and level of disclosure

How much information should you give? What options and risks should you mention? While the previous standard of adequate consent was judged against the Bolam test (which asks whether a doctor’s conduct would be supported by a responsible body of medical opinion), the Montgomery Supreme Court ruling in 2015 has resulted in a move away from the ‘reasonable doctor’ to the ‘reasonable patient’. This materiality test relates to whether a reasonable person in the patient’s position would be likely to attach significance to the risk or the doctor is or should reasonably be aware that the particular patient would be likely to attach significance to it.

You have a duty to discuss the range of treatment options available (the alternatives), regardless of their cost, in a form the patient can understand and the side effects and risks that are relevant to the individual patient’s circumstances.

Remember, it can be argued that the consent was not valid because the amount of information you gave was not enough or was in a form the patient could not understand.

Recording

Remember, record the consent discussion in the notes. If you do not record what you said, you might as well not bother saying it. If a patient later claims that they were not told of a particular risk or outcome, it will be difficult to refute this if your notes do not record what you said. Writing ‘risks explained’ is inadequate. When cases do come to court, this is usually several years after the events in question. You will have forgotten precisely what you said to the patient, and it will not take much effort on the part of a barrister to suggest that you might not have said everything that you thought you said! If you give a written information sheet, record that you have done so and put a copy of the version you gave in the notes.

The consent form

The consent form is designed to record the patient’s decision and, to some extent, the discussions that took place during the consent process (although the space available for recording the discussion, even on the new NHS consent form, is limited). It is not proof that the patient was properly informed—that valid consent was obtained. Avoid, if possible, technical
abbreviations such as TURBT. A patient could reasonably claim not to have understood what this was. Try to avoid standing over the patient, waiting for them to sign the form. It is good practice to leave the form with them and to return after a few minutes—they will feel less pressured and can ask further questions if they wish.

Children

Children aged <16 may give consent, as long as they fully understand what is involved in the proposed examination or treatment (a parent cannot override the competent child’s consent to treatment). However, a child cannot refuse consent to treatment (i.e. a parent can override a child’s refusal to consent—the parent can consent on the child’s behalf if the child refuses consent, although such situations are rare).
Cystoscopy

A basic skill of the urologist. Allows direct visual inspection of the urethra and bladder.

Indications

- Haematuria.
- Irritative LUTS (marked frequency and urgency) where intravesical pathology is suspected (e.g. CIS, bladder stone).
- For bladder biopsy.
- Follow-up surveillance of patients with previously diagnosed and treated bladder cancer.
- Retrograde insertion of ureteric stents and removal.
- Cystoscopic removal of stones.

Technique

- **Flexible cystoscopy:** a flexible cystoscope is easily passed down the urethra and into the bladder following instillation of lubricant gel (with or without LA—a meta-analysis of nine RCTs showed no difference in pain control between lidocaine gel and plain gel lubrication). Principally diagnostic, but small biopsies can be taken with flexible biopsy forceps, small tumours can be fulgurated (with a diathermy probe) or vaporized (with a laser fibre), and JJ stents can be inserted and removed using this type of cystoscope.

- **Rigid cystoscopy:** rigid metal instrument which can be passed under LA in women (short urethra) but usually requires GA. Preferred over flexible cystoscopy where deeper biopsies will be required or as an antecedent to TURBT or cystolitholapaxy where it is anticipated that other pathology will be found (tumour, stone).

The flexible cystoscope uses fibreoptics for illumination and image transmission. It can be deflected through 270°.

Common post-operative complications and their management

Mild burning discomfort and haematuria are common after both flexible and rigid cystoscopy. It usually resolves within hours. Bacteriuria after flexible cystoscopy occurs in about 8–9% of patients (4–5% have bacteriuria before cystoscopy), and this rate is reduced by prophylactic antibiotics (Table 17.2).

BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications of flexible cystoscopy

Warn the patient that if cystoscopy is being done because of haematuria, it is possible that bladder cancer may be found, which may require further treatment. You should specifically seek consent for biopsy (removal of tissue if an abnormality is found).
Common
- Mild burning or bleeding on passing urine for a short period after the operation.
- Biopsy of an abnormal area in the bladder may be required.

Occasional
- Infection of the bladder requiring antibiotics.

Rare
- Temporary insertion of a catheter.
- Delayed bleeding requiring removal of clots or further surgery.
- Injury to the urethra causing delayed scar formation (a stricture).

Serious or frequently occurring complications of rigid cystoscopy
- As for flexible cystoscopy.
- The use of heat (diathermy) may be required to cauterize biopsy sites.
- Very rarely, perforation of the bladder can occur, requiring temporary insertion of a catheter or open surgical repair.

Reference
Transurethral resection of the prostate

Indications
- Bothersome LUTS which fail to respond to changes in lifestyle or medical therapy.
- Recurrent acute urinary retention.
- Renal impairment due to BOO (high-pressure chronic urinary retention).
- Recurrent haematuria due to BPE.
- Bladder stones due to prostatic obstruction.

Post-operative care
A 3-way catheter is left in situ after the operation, through which irrigation fluid (normal saline) is run to dilute the blood so that a clot will not form to block the catheter. The rate of inflow of the saline is adjusted to keep the outflow a pale pink rosé colour, and as a rule, the rate of inflow can be cut down after about 20min. The irrigation is continued for 12–24h. The catheter is removed the day after (second post-operative day) if the urine has cleared to a normal colour [TWOC or trial of void (TOV)].

Common post-operative complications and their management

Blocked catheter post-TURP

Common
The catheter may become blocked with a clot or a prostatic ‘chip’ which was inadvertently left in the bladder at the end of the operation.
- Apply a bladder syringe to the end of the catheter to try to dislodge the obstruction.
- If this fails, withdraw some irrigant into the syringe and flush the catheter.
- If this fails, change the catheter. The obstructing chip of the prostate may be found stuck in one of the eye-holes of the catheter.
- Pass a new catheter on an introducer.

If the bladder has been allowed to become so full of clot that a simple bladder washout is unable to evacuate it all, return the patient to the theatre for clot evacuation.

Haemorrhage
Minor bleeding after TURP is common and will stop spontaneously. A simple system to allow communication between staff is to describe the colour of the urine draining through the catheter as the same as rosé wine (minor haematuria), dark red wine (moderate haematuria), or frank blood (bright red bleeding, suggesting serious haemorrhage). Rosé urine requires no action. Dark red urine should be managed by increasing the flow of irrigant and by applying gentle traction to the catheter (with the balloon inflated to 40–50mL), thereby pulling it onto the bladder neck or into the prostatic fossa to tamponade bleeding for 20min or so. This will usually result in the urine clearing. An attempt at controlling heavier bleeding by these techniques may be tried, but at the same time, you should make preparations to return the patient to theatre because it is unlikely that bleeding...
of this degree will stop. The bleeding vessel(s), if seen, is controlled with diathermy. If bleeding persists, open surgical control is required—the prostatic capsule is opened, the bleeding vessels sutured, and the prostatic bed packed. Post-operative bleeding requiring a return to theatre occurs in 0.5% of cases.¹

BAUS procedure-specific consent form—recommended discussion of adverse events

Serious or frequently occurring complications of TURP
- Temporary mild burning on passing urine, urinary frequency, haematuria.
- Retrograde ejaculation in 75% of patients.
- Failure of symptom resolution.
- Permanent inability to achieve an erection adequate for sexual activity.
- UTI requiring antibiotic therapy.
- 10% of patients require redo surgery for recurrent prostatic obstruction.
- Failure to pass urine after the post-operative catheter has been removed.
- In 10% of patients, PC is found on subsequent pathological examination of the resected tissue.
- Urethral stricture formation requiring subsequent treatment.
- Incontinence (loss of urinary control)—may be temporary or permanent.
- Absorption of irrigating fluid, causing confusion and heart failure (TUR syndrome).
- Very rarely, perforation of the bladder requiring a temporary urinary catheter or open surgical repair.

Alternative therapy
Observation, drugs, catheter, stent, laser prostatectomy, open operation.

Reference

Transurethral resection of bladder tumour

Indications
- Local control of NMI bladder cancer (i.e. stops bleeding tumours).
- Staging of bladder cancer: to determine whether the cancer is NMI or MI, so that subsequent treatment and appropriate follow-up can be arranged.

Post-operative care
A 2- or 3-way catheter is left in situ after the operation, depending on the size of the tumour, and therefore on the likelihood that bleeding requiring irrigation will be required. As for TURP, normal saline is run through the catheter to dilute the blood, so that a clot will not form to block the catheter. It is particularly important to avoid catheter blockage post-TURBT, since this could lead to distension of the bladder already weakened by resection of a tumour. The period of irrigation is usually shorter than that required after TURP and for small tumours; the catheter may be removed the day after TURBT. For larger tumours, remove it 2 days later.

Common operative and post-operative complications and their management

Bladder perforation during TURBT
Small perforations into the perivesical tissues (extraperitoneal) are not uncommon when resecting small tumours of the bladder, and so long as you have secured good haemostasis and all the irrigating fluid is being recovered, no additional steps are required, except that perhaps one should leave the catheter in for 4, rather than 2, days.

Intraperitoneal perforations (through the wall of the bladder, through the peritoneum, and into the peritoneal cavity) are uncommon but far more serious.

Is it an extraperitoneal or intraperitoneal perforation? Establishing this can be difficult. Both can cause marked distension of the lower abdomen—an intraperitoneal perforation by allowing escape of irrigating solution directly into the abdominal cavity and an extraperitoneal perforation by expanding the retroperitoneal space, with fluid then diffusing directly into the peritoneal cavity. The fact that a suspected intraperitoneal perforation was actually extraperitoneal becomes apparent only at laparotomy when no hole can be found in the peritoneum overlying the bladder (the peritoneum over the bladder is not breached in an extraperitoneal perforation).

When there is no abdominal distension, the volume of extravasated fluid is likely to be low, and if the perforation is small, it is reasonable to manage the case conservatively. Achieve haemostasis, and pass a catheter. Make frequent post-operative assessments of the patient’s vital signs and abdomen (worsening abdominal pain, distension, and tenderness suggest the need for laparotomy).

Where there is marked abdominal distension, whether the perforation is extraperitoneal or intraperitoneal, explore the abdomen, principally to
drain the large amount of fluid (which can compromise respiration in an elderly patient) by splinting the diaphragm, but also to check that loops of bowel adjacent to the site of perforation have not been injured at the same time. Failing to make the diagnosis of an intraperitoneal perforation, particularly if the bowel has been injured, is a worse situation to be in than performing a laparotomy for a suspected intraperitoneal perforation, but then finding that the perforation was ‘only’ extraperitoneal.

Open bladder repair

A Pfannenstiel incision or a lower midline abdominal incision; open the bladder, evacuate the clot, control bleeding, and repair the hole. Open the peritoneum, and inspect the small and large bowel for perforations. Leave a urethral catheter and a drain in place.

Blocked catheter post-TURBT

The catheter may become blocked with clot. Use the same technique for unblocking it as for TURP, but avoid vigorous washouts of the bladder because of the risk of bladder perforation.

Haemorrhage

Minor bleeding after TURBT is common and will stop spontaneously. The only ‘technique’ for controlling it is to ensure that an adequate flow of irrigant is maintained (to dilute the blood, thereby preventing clots from forming). If bleeding persists, return the patient to theatre for endoscopic control.

TUR syndrome

Uncommon after TURBT, unless the tumour is large and the resection therefore long.

BAUS procedure-specific consent form—recommended discussion of adverse events

Serious or frequently occurring complications of TURBT

Common complications

- Mild burning on passing urine.
- Additional treatment (intravesical chemotherapy or immunotherapy) may be required to reduce the risk of future tumour recurrence.
- UTI.
- No guarantee of bladder cancer cure.
- Tumour recurrence is common.

Rare complications

- Delayed bleeding requiring removal of clots or further surgery.
- Damage to drainage tubes from the kidney (ureters) requiring additional therapy.
- Development of a urethral stricture.
- Bladder perforation requiring a temporary urinary catheter or open surgical repair.

Alternative treatment

Open removal of the bladder; chemotherapy, radiation.
Optical urethrotomy

Indications
- Bulbar urethral stricture.
- Also used for penile urethral strictures.

Anaesthesia
Regional or general.

Post-operative care
- Leave a catheter for 3–5 days (longer catheterization does not reduce long-term re-stricturing).
- Consider ISC for 3–6 months, starting several times daily, reducing to once or twice a week towards the end of this period.

Common post-operative complications and their management
- Septicaemia.
- Re-stricturing: is the commonest long-term problem occurring after optical urethrotomy.

BAUS procedure-specific consent form—recommended discussion of adverse events

Common
- Mild burning on passing urine for short periods of time after operation.
- Temporary insertion of a catheter.
- Need for self-catheterization to keep the narrowing from closing down again.

Occasional
- Infection of the bladder requiring antibiotics.
- Permission for telescopic removal/biopsy of bladder abnormality/stone, if found.
- Recurrence of the stricture necessitating further procedures or repeat incision.

Rare
- Decrease in quality of erections, requiring treatment.

Alternative therapy
Observation, urethral dilatation, open (non-telescopic) repair of the stricture.
Circumcision

Indications
- Phimosis.
- Recurrent paraphimosis.
- Penile cancer confined to the foreskin.
- Lesions on the foreskin of uncertain histological nature.

Contraindications
- In neonates—hypospadias, chordee with hypospadias, microphallus.
- In all patients—bleeding diatheses.

Circumcision in HIV prevention
♂ circumcision has a significant protective effect against HIV infection.\(^1\)\(^2\) This is thought to be due to the presence of large numbers of HIV-binding target cells being present on the inner layer of the prepuce, compared to the glans and outer prepuce (which is lined by squamous epithelium).

Clearly, mass circumcision programmes in Africa and other high-risk areas would be a huge task. In addition, concerns have been expressed that this beneficial effect will be negated by ↑ behaviour that increases HIV risk (e.g. a drop in condom use, a rise in sexual partners).

Anaesthesia
Local or general.

Post-operative care
A non-adhesive dressing may be applied to the end of the penis, but this is difficult to keep on for more than an hour or two and is unnecessary. Warn the patient that the penis may be bruised and swollen after the operation but that this resolves spontaneously over a week or two. Sexual intercourse or masturbation should be avoided until the absorbable skin sutures have dissolved.

Common post-operative complications and their management
You might think that circumcision is about as simple an operation as you can get, but it can cause both the patient (or, in the case of little boys, their parents) and you considerable concern if the cosmetic result is not what was expected or if ‘complications’ occur about which the patient was not warned. As with any procedure, it should be performed with care and with the potential complications always in mind, so that steps can be taken to avoid these. If complications do occur, manage them appropriately.

Haemorrhage
Most frequently occurs from the frenular artery on the ventral surface of the penis. If local pressure does not stop the bleeding (and if it is from the frenular artery, it usually will not), return the patient to theatre and, either under ring-block LA or GA, suture ligature the bleeding vessel. Be careful not to place the suture through the urethra!
Necrosis of the skin of the shaft of the penis
In most cases of suspected skin necrosis, there is none. Not infrequently, a crust of coagulated blood develops around the circumference of the penis after circumcision. As blood oxidizes, it turns black and this appearance can be mistaken for necrosis of the end of the penis. Reassurance of the patient (and the referring doctor!) is all that is needed. If necrosis has occurred because, for example, adrenaline was used in the LA, wait for the necrotic tissue to demarcate before assessing the extent of the problem. The penis has a superb blood supply and has remarkable healing characteristics.

- Separation of the skin of the coronal sulcus from the shaft skin: if limited to a small area, this will heal spontaneously. If a larger circumference of the wound has 'dehisced', resuture in theatre.
- Wound infection: rare.
- Urethrocutaneous fistula: due to haemostatic sutures (placed to control bleeding from the frenulum) passing through the urethra, the wound later breaking down.
- Urethral damage: due to a stitch placed through the urethra as the frenular artery is suture ligatured.
- Excessive removal of skin: re-epithelialization can occur if the defect between the glans and the shaft skin is not too great. If the defect is too great, the end-result will be a buried penis—the glans retracts towards the skin at the base of the penis.

BAUS procedure-specific consent form—recommended discussion of adverse events

Serious or frequently occurring complications of circumcision

- Bleeding of the wound, occasionally needing a further procedure.
- Infection of incision requiring further treatment.
- Permanent altered sensation of the penis.
- Persistence of absorbable stitches after 3–4wk, requiring removal.
- Scar tenderness, rarely long term.
- You may not be completely cosmetically satisfied.
- Occasional need for removal of excessive skin at a later date.
- Permission for biopsy of an abnormal area of the glans if malignancy is a concern.

Alternative therapy
Drugs to relieve inflammation, leave uncircumcised.

References

Hydrocele and epididymal cyst removal

Hydrocele repair (removal)

Indications
Primary (idiopathic) hydrocele repair; not indicated for secondary hydrocele repair.

Anaesthesia
Local or general.

Techniques
- Lord’s plication technique: for small- to medium-sized hydroceles (minimal interference with surrounding scrotal tissues, which minimizes the risk of post-operative haematoma).
- Jaboulay procedure: for large hydroceles; excision of hydrocele sac.

Hydrocele aspiration
Strict attention to asepsis is vital, since the introduction of infection into a closed space could lead to abscess formation. Avoid superficial blood vessels (if you hit them, a large haematoma can result).

Post-operative care
Nothing specific.

Post-operative complications and their management
- Scrotal swelling: resolves spontaneously.
- Haematoma formation: if it is large, surgical drainage is best performed, as spontaneous resolution may take many weeks. It can be difficult to identify the bleeding vessel. Leave a small drain to prevent reaccumulation of the haematoma.
- Hydrocele recurrence.

Epididymal cyst removal (spermatocelectomy)
- Avoid in young men who wish to maintain fertility, since epididymal obstruction can occur.
- An alternative to surgical removal is aspiration, though recurrence is usual.

BAUS procedure-specific consent form: recommended discussion of adverse events

Hydrocele removal

Occasional
- Recurrence of fluid collection can occur.
- Collection of blood around the testes that resolves slowly or requires surgical removal.
- Possible infection of the incision or testis, requiring further treatment.

Alternative therapy
- Observation.
- Removal of fluid with a needle.
Epididymal cyst removal

Occasional
- Recurrence of fluid collection can occur.
- Collection of blood around the testes that resolves slowly or requires surgical removal.
- Possible infection of the incision or testis, requiring further treatment.

Rare
- Scarring can damage the epididymis, causing subfertility.

Alternative therapy
Observation, removal of fluid with a needle.
Nesbit’s procedure

Penile straightening procedure for correcting penile curvature. Wait for at least 6 months after the patient has experienced no more pain, and wait for the penile curvature to stabilize (there is no point in repairing the curvature if it is still progressing).

Indications
Peyronie’s disease.

Anaesthesia
Local or general.

Post-operative care
Avoid intercourse for 2 months. Oedema can be managed with cold compresses.

BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications

- **Common**
 - Some shortening of the penis.
 - Possible dissatisfaction with the cosmetic or functional result.
 - Temporary swelling and bruising of the penis and scrotum.

- **Occasional**
 - Circumcision is sometimes required as part of the procedure.
 - There is no guarantee of total correction of the bend.
 - **Bleeding or infection:** may require further treatment.

- **Rare**
 - Impotence or difficulty maintaining an erection.
 - Nerve injury, with temporary or permanent numbness of the penis.

Alternative therapy
Observation, drugs, other surgical procedures.
Vasectomy and vasovasostomy

Vasectomy
This is the removal of a section of the vas deferens from each side, with the aim of achieving infertility.

Indications
A method of birth control.

Anaesthesia
Local or general.

Post-operative care and common post-operative complications and their management
Post-operative haematoma can occur. If large, evacuation may be required. Infection can occur but is usually superficial. The 2016 guidelines from the Association of Biomedical Andrologists, the British Andrology Society, and the BAUS recommend a single post-vasectomy semen analysis be performed at 12wk (minimum 20 ejaculations) within 4h of production (1h if non-motile sperm are observed), and if no sperm are observed, then clearance can be given. Occasionally, a persistently positive semen analysis is an indication that the vas was not correctly identified at the time of surgery and has not been ligated (or, very rarely, that there were two vas deferens on one side). If <100 000/mL of non-motile sperm are observed in two samples, special clearance can be given (overall around 2% of vasectomy patients, not associated with pregnancies in large studies).

The potential for fertility remains in those with positive semen analysis, and re-exploration is indicated. Even if clearance is given, warn the patient that the vas deferens can later recanalize, thereby restoring fertility.

Sperm granuloma
A hard, pea-sized lump in the region of the cut ends of the vas forming as a result of an inflammatory response to sperm leaking out of the proximal cut end of the vas. It can be a cause of persistent pain, in which case, it may have to be excised or evacuated and the vas cauterized or re-ligated.

Vasovasostomy
Vasectomy reversal.

Anaesthesia
This tends to be done under general or spinal anaesthesia, as it takes far longer than a vasectomy.

Post-operative care and common post-operative complications and their management
Much the same as for vasectomy. The patient should avoid sexual intercourse for 2wk or so.
Vasectomy: BAUS procedure-specific consent form—recommended discussion of adverse events

Serious or frequently occurring complications

Common
- Irreversible.
- Small amount of scrotal bruising.

Occasional
- Bleeding requiring further surgery or bruising.
- Early failure (1:200).

Rare
- Inflammation or infection of the testis or epididymis, requiring antibiotics.
- Rejoining of the vas ends, resulting in fertility and pregnancy (1 in 2000).
- Chronic testicular pain (5%) or sperm granuloma.

Alternative treatment
Other forms of contraception (♂ or ♀).

Vasovasostomy: BAUS procedure-specific consent form—recommended discussion of adverse events

Serious or frequently occurring complications

Common
- Small amount of scrotal bruising.
- No guarantee that sperm will return to semen.
- Sperm may return, but pregnancy not always achieved.
- If storing sperm, check that appropriate forms have been filled out.

Occasional
- Bleeding requiring further surgery.

Rare
- Inflammation or infection of the testes or epididymis, requiring antibiotics.
- Chronic testicular pain (5%) or sperm granuloma.

Alternative therapy
IVF, sperm aspiration, ICSI.
Orchidectomy

Indications
Two types: radical orchidectomy and simple orchidectomy.

Radical (inguinal) orchidectomy
For excision of TC. This approach is used for three reasons:
- To allow ligation of the testicular lymphatics as high as possible as they pass in the spermatic cord and through the internal inguinal ring, thereby removing any cancer cells which might have started to metastasize along the cord.
- To allow cross-clamping of the cord prior to manipulation of the testis which, theoretically at least, could promote dissemination of cancer cells along the lymphatics. (In reality, this probably does not occur.)
- To prevent the potential for dissemination of tumour cells into the lymphatics that drain the scrotal skin that could occur if a scrotal approach is used. These lymphatics drain to the inguinal nodes. Thus, direct spread of the tumour to the scrotal skin and ‘violation’ of another lymphatic field (the groin nodes) are avoided. Historically, this was important because the only adjuvant therapy for metastatic disease was RT. The morbidity of groin and scrotal irradiation was not inconsiderable (severe skin reactions to RT, irradiation of the femoral artery and nerve).

Obtain serum markers before surgery (AFP, β-hCG, and LDH), and get a CXR. For full-staging CT scan, wait till after surgery. If the contralateral testis has been removed or is small, offer sperm storage—there is usually time to do this. Warn the patient that, very occasionally, what appears clinically and on ultrasound to be a malignant testis tumour turns out to be a benign tumour on subsequent histological examination.

Simple orchidectomy
For hormonal control of advanced PC. Done via a scrotal incision, with ligation and division of the cord and complete removal of the testis and epididymis. Alternatively, a subcapsular orchidectomy may be done where the tunica of the testis is incised and the seminiferous tubules contained within are excised. There is the potential with this approach to leave a small number of Leydig cells which can continue to produce testosterone.

Anaesthesia
Local, regional, general. Few men will require or opt for local.

Post-operative care and common post-operative complications and their management

For both simple and radical orchidectomy
Scrotal haematoma. Drain it if large or enlarging or if there are signs of infection (fever, discharge of pus from the wound).

For radical orchidectomy
Damage to the ilioinguinal nerve, leading to an area of loss of sensation overlying the scrotum.
Orchidectomy ± testicular implant: BAUS procedure-specific consent form—recommended discussion of adverse events

Serious or frequently occurring complications

Occasional
- Cancer, if found, may not be cured by orchidectomy alone.
- There may be a need for additional surgery, RT, or chemotherapy.
- Loss of future fertility.
- Biopsy of the contralateral testis may be required if an abnormality is found (small testis or history of maldescent).

Rare
- On pathological examination, cancer may not be found or the pathologic diagnosis may be uncertain.
- Infection of incision may occur, requiring further treatment and possibly removal of the implant if this has been inserted.
- Pain requiring removal of the implant.
- Cosmetic expectation not always met.
- The implant may lie higher in the scrotum than the normal testis did.
- A palpable stitch may be felt at one end of the implant.
- Long-term risks of silicone implants are not known.
Urological incisions

Midline, transperitoneal

Indications
Access to the peritoneal cavity and pelvis for radical nephrectomy, cystectomy, reconstructive procedures, etc.

Technique
Divide the skin and subcutaneous fat. Divide the fascia in the midline. Find the midline between the rectus muscles. Dissect the muscles free from the underlying peritoneum. Place two clips on either side of the midline; pinch between the two to ensure no bowel has been trapped; elevate the clips, and divide between them with a knife. Extend the incision in the peritoneum up and down, ensuring no bowel is in the way.

Closure
Use a non-absorbable (e.g. nylon) or very slowly absorbable (e.g. PDS) suture, using Jenkins rule to reduce the risk of dehiscence (suture length four times the wound length).

Specific complications
Dehiscence (classically around day 10 post-operatively and preceded by pink serous discharge, then sudden herniation of the bowel through the incision).

Lower midline, extraperitoneal

Indications
Access to the pelvis (e.g. RP, colposuspension).

Technique
Divide the skin and subcutaneous fat. Divide the fascia in the midline. Find the midline between the rectus muscles, and dissect the muscles free from the underlying peritoneum. If you make a hole in it, repair the defect with Vicryl. Divide the fascia posterior to the rectus muscles in the midline, so exposing the extravesical space.

Closure
As for midline, transperitoneal.

Pfannenstiel

Indications
Access to pelvis (e.g. colposuspension, open prostatectomy, open cystolithotomy).

Technique
Divide the skin 2cm above the pubis and the tissues down to the rectus sheath which is cut in an arc, avoiding the inguinal canal. Apply clips to the top flap (and afterwards the bottom flap), and use a combination of scissors and your fingers to separate the rectus muscle from the sheath. For maximum exposure, you must elevate the anterior rectus sheath from the recti cranially to just below the umbilicus and caudally to the pubis. Take
care to diathermy a perforating branch of the inferior epigastric artery on each side. Apply two Babcock’s forceps to the inferior belly of the rectus on either side of the midline. Elevate and cut in the midline, the lower part of the fascia (transversalis fascia) between the recti. Separate the recti in the midline (do not divide them).

Closure

Tack the divided transversalis fascia together, and then close the transversely divided rectus sheath with Vicryl.

Supra-twelfth rib incision

Indications

Access to the kidneys, renal pelvis, and upper ureter.

Technique

Make the incision over the tip of the twelfth rib through the skin and subcutaneous fascia. Palpate the tip of the twelfth rib. Make a 3cm cut with diathermy through the muscle (latissimus dorsi) overlying the tip of the twelfth rib, so you come down onto the tip of the twelfth rib, and then cut anterior to the tip of the twelfth rib, down through the external and internal obliques and the transversus abdominis, to Gerota’s fascia and the perirenal fat. Sweep anteriorly with a finger to push the peritoneum and intraperitoneal organs out of harm’s way. Cut with scissors along the top edge of the rib to free the intercostal muscle from the rib—beware the pleura! Insert Gillie’s forceps between the pleura and the overlying intercostal muscle, and divide the muscle fibres, so protecting the pleura. Dissect the fibres of the diaphragm away from the inner surface of the twelfth rib—as you do so, the pleura will rise upwards, with the detached diaphragmatic fibres out of harm’s way. At the posterior end of the incision, feel for the sharp edge of the costovertebral ligament. Insert heavy scissors, with the blades just open on the top of the rib (to avoid the eleventh intercostal nerve), and divide the costovertebral ligament. You should now be on top of Gerota’s fascia.

Specific complications

- **Damage to the pleura:** if you make a hole in the pleura, repair it at the end of the operation. Pass a small-bore catheter (e.g. Jacques) through the hole; close all the muscle layers; inflate the lung, and then before closing the skin, remove the catheter.

Complications common to all incisions

- Hernia, wound infection, chronic wound pain.
JJ stent insertion

Preparation
Can be done under sedation or GA, using either a rigid or flexible cystoscope. The latter is particularly useful for patients who are not fit enough for GA. The technique described is that used with the flexible cystoscope, but this is essentially the same if using a rigid scope.

With sedation
Oral ciprofloxacin 250mg; lidocaine gel for urethral anaesthesia and lubrication; sedoanalgesia (Diazemuls® 2.5–10mg IV, pethidine 50–100mg IV). Monitor pulse and oxygen saturation with a pulse oximeter.

Technique
A flexible cystoscope is passed into the bladder and rotated through 180°. This allows greater deviation of the end of the cystoscope and makes identification of the ureteric orifice easier. A 0.9mm hydrophilic guidewire (Terumo Corporation, Tokyo, Japan) is passed into the ureter under direct vision. The guidewire is manipulated into the renal pelvis using C-arm digital fluoroscopy. The cystoscope is placed close to the ureteric orifice, and its position, relative to bony landmarks in the pelvis, is recorded by frame-grabbing a fluoroscopic image. The flexible cystoscope is then removed, and a 4Ch ureteric catheter is passed over the guidewire into the renal pelvis. A small quantity of non-ionic contrast medium is injected into the renal collecting system to outline its position and to dilate it. The Terumo guidewire is replaced with an ultra-stiff guidewire (Cook UK Ltd, Letchworth, UK), and the 4Ch ureteric catheter is removed. We use a variety of stent sizes, depending on the patient’s size (6–8Ch, 20–26cm; Boston Scientific Ltd, St Albans, UK). The stent is advanced to the renal pelvis under fluoroscopic control using a ‘pusher’ (a hollow tube inserted over the guidewire), checking that the lower end of the stent is not inadvertently pushed up the ureter by checking the position of the ureteric orifice on the previously frame-grabbed image. The guidewire is then removed, while the pusher holds the stent in position (so that the stent is not pulled out along with the wire).

Further reading
Nephrectomy and nephro-ureterectomy

Indications for nephrectomy
- Renal cell cancer.
- Non-functioning kidney containing a staghorn calculus.
- Persistent haemorrhage following renal trauma.

Indications for nephro-ureterectomy
Transitional carcinoma of the renal pelvis and/or ureter.

Anaesthesia
General.

Post-operative care

Nephrectomy
Cardiovascular status and urine output should be carefully monitored in the immediate post-operative period. Haemorrhage from the renal pedicle or, for left-sided nephrectomy, the spleen is rare but will present with increasing tachycardia, cool peripheries, falling urine output, and eventually a drop in BP. A drain is usually not left in place, but if it is, there may be excessive drainage of blood from the drain. However, do not be lulled into a false sense of security by the absence of drainage—this does not mean that haemorrhage is not occurring, as the drain may be blocked, but haemorrhage may be ongoing.

For nephrectomy via a posterolateral (rib-based) incision, watch for pneumothorax. Arrange a CXR on return from the recovery room. Arrange routine chest physiotherapy to reduce the risk of chest infection. Regular chest examination is important, looking specifically for pneumothorax and pleural effusion.

Mobilize the patient as quickly as possible to reduce the risk of DVT and PE.

Nephro-ureterectomy
Where the ureter has been excised from the bladder, a urethral catheter is left in place at the end of the procedure to allow the hole in the bladder to heal. This is usually removed 10–14 days after surgery.

Common post-operative complications and their management
- Haemorrhage.
- **Wound infection:** rare. If superficial, treat with antibiotics. If an underlying collection of pus is suspected, open the wound to allow free drainage and pack the wound daily.
- **Pancreatic injury:** rare, but would be indicated by excessive drainage of fluid from the drain, if present, which will have a high amylase level. If no drain is present, an abdominal collection will develop, which may be manifested by a prolonged ileus.
BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications of nephrectomy/nephro-ureterectomy

Simple nephrectomy

- Common.
 - Temporary insertion of a bladder catheter.
 - Occasional insertion of a wound drain.
- Occasional.
 - Bleeding requiring further surgery or transfusion.
 - Entry into the lung, requiring temporary insertion of a drainage tube.
- Rare.
 - Involvement or injury to nearby structures—blood vessels, spleen, lung, liver, pancreas, bowel, requiring further extensive surgery.
 - Infection, pain, or hernia of incision, requiring further treatment.
 - Anaesthetic or cardiovascular problems, possibly requiring intensive care admission (including chest infection, PE, stroke, DVT, heart attack).

Radical nephrectomy

As above plus:

- Occasional.
 - Need for further therapy for cancer.
- Rare.
 - May be an abnormality other than cancer on microscopic analysis.

Nephro-ureterectomy

As above.
Radical prostatectomy

Indications
Localized PC.

Anaesthesia
General or regional.

Post-operative care
Mobilize as quickly as possible, and continue SC heparin and AK-TEDS until discharge, to reduce the risk of DVT and PE. Remove the drains when drainage is minimal. If there is persistent leak of fluid from the drains, send a sample for urea and creatinine, and if it is urine, get a cystogram to determine the size of the leak at the vesicourethral junction. Urethral catheters are left *in situ* post-RP for a variable time, depending on the surgeon who performs the operation. Some surgeons leave a catheter for 3 wk, and others for just 1 wk.

Common post-operative complications and their management

Haemorrhage
Managed in the usual way (transfusion; return to theatre where bleeding persists or where there is cardiovascular compromise).

Ureteric obstruction
Usually results from oedema of the bladder, obstructing the ureteric orifices. Retrograde ureteric catheterization is rarely possible (this would require urethral catheter removal, and it is difficult to see the ureteric orifices because of oedema). Arrange placement of percutaneous nephrostomies.

Lymphocele
Drain by radiologically assisted drain placement. If lymphocele recurs after drain removal, create a window from the lymph collection into the peritoneal cavity, so the lymph drains into the peritoneum from which it is absorbed.

Displaced catheter post-radical prostatectomy
If the catheter falls out a week after surgery, the patient may well void successfully, and in this situation, no further action needs be taken. If, however, the catheter inadvertently falls out the day after surgery, gently attempt to replace it with a 12Ch catheter which has been well lubricated. If this fails, pass a flexible cystoscope under LA into the bulbar urethra, and attempt to pass a guidewire into the bladder, over which a catheter can then safely be passed. If this is not possible, another option is to hope that the patient voids spontaneously and does not leak urine at the site of the anastomosis. An ascending urethrogram may provide reassurance that there is no leak of contrast and that the anastomosis is watertight. If there is a leak or the patient is unable to void, an SPC can be placed (percutaneously or under GA via an open cystostomy).
Faecal fistula
Due to rectal injury, either recognized and repaired at the time of surgery and later breaking down or not immediately recognized. Formal closure is often required.

Contracture at the vesicourethral anastomosis
Gentle dilatation may be tried. If the stricture recurs, instruct the patient on ISC in an attempt to keep the stricture open. If this fails, BNI may be tried.

BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications of radical prostatectomy

Common
- Temporary insertion of a bladder catheter and wound drain.
- High chance of impotence due to unavoidable nerve damage.
- No semen is produced during orgasm, causing subfertility.

Occasional
- Blood loss, requiring transfusion or repeat surgery.
- Urinary incontinence—temporary or permanent, requiring pads or further surgery.
- Discovery that cancer cells are already outside the prostate, needing observation or further treatment at a later date, if required, including RT or hormonal therapy.

Rare
- Anaesthetic or cardiovascular problems, possibly requiring intensive care admission (including chest infection, PE, stroke, DVT, heart attack).
- Pain, infection, or hernia in area of incision.
- Rectal injury, very rarely needing temporary colostomy.

Alternative therapy
WW, RT, BT, hormonal therapy, and perineal or laparoscopic removal.
Radical cystectomy

Indications
- MI bladder cancer.
- Adenocarcinoma of the bladder (radioresistant).
- Squamous carcinoma of the bladder (relatively radioresistant).
- NMI TCC of the bladder, which has failed to respond to intravesical chemotherapy or immunotherapy.
- Recurrent TCC of the bladder post-RT.

Combined with urethrectomy if:
- Multiple bladder tumours.
- Involvement of the bladder neck or prostatic urethra.

Anaesthesia
General.

Post-operative care and common post-operative complications and their management
Monitor cardiovascular status, urine output, and respiratory status carefully in the first 48h. Routine chest physiotherapy is started early in the post-operative period to reduce the chance of chest infection. Mobilize the patient as early as possible to minimize the risk of DVT and PE. Drains are removed when they stop draining. Some surgeons prefer to leave them for a week or so, so that late leaks (urine, intestinal contents) will drain via the drain track and not cause peritonitis. Try to remove the nasogastric tube, if used, as soon as possible to assist respiration and reduce the risks of chest infection. The patient usually starts to resume their diet within a week or so. If the ileus is prolonged, start parenteral nutrition.

Haemorrhage
Persistent bleeding that fails to respond to transfusion should be managed by re-exploration.

Wound dehiscence
Requires resuturing under GA.

Ileus
Common. Usually resolves spontaneously within a few days.

Small bowel obstruction
From herniation of the small bowel through the mesenteric defect created at the junction between the two bowel ends. Continue nasogastric aspiration. The obstruction will usually resolve spontaneously. Reoperation is occasionally required where the obstruction persists or where there are signs of bowel ischaemia.
Leakage from the intestinal anastomosis

Leading to:
- **Peritonitis**: requiring reoperation and repair or refashioning of the anastomosis.
- **Enterocutaneous fistula**: bowel contents leak from the intestine and through a fistulous track onto the skin. If low-volume leak (<500mL/24h), will usually heal spontaneously. Normal (enteral) nutrition may be maintained until the fistula closes (which usually occurs within a matter of days or a few weeks). If high-volume leak, spontaneous closure is less likely and reoperation to close the fistula may be required.

Pelvic abscess

Formal surgical (open) exploration of the pelvis is indicated with drainage of the abscess and careful inspection to see if the underlying cause is a rectal injury, in which case a defunctioning colostomy should be performed.

Partial cystectomy

Indications

Primary, solitary bladder tumours at a site that allows 2cm of normal tissue around it to be removed in a bladder that will have adequate capacity and compliance after operation. There should be:
- No prior history of bladder cancer.
- No CIS.
- A solitary MI tumour located well away from the ureteral orifices, which includes 2cm of normal surrounding bladder.

High-grade tumours should not be excluded if these criteria are met. The lesions most commonly amenable to partial cystectomy are G2 or G3 TCCs or adenocarcinomas located on the posterior wall or dome.

Contraindications

Associated CIS, deeply invasive tumours, tumours at the bladder base (i.e. near the ureteric orifices).

BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications of radical cystectomy

See also consent for an ileal conduit if this is the planned form of urinary diversion.

Common

- Temporary insertion of a nasal tube, drain, and stent.
- High chance of impotence (lack of erections) due to unavoidable nerve damage.
- No semen is produced during orgasm (dry orgasm), causing subfertility.
- Blood loss, requiring transfusion or repeat surgery.
- In women, pain or difficulty with sexual intercourse due to narrowing or shortening of the vagina and need for removal of the uterus and ovaries (causing premature menopause in those who have not reached the menopause).
Occasional
- Cancer may not be cured with surgery alone.
- Need to remove penile urinary pipe as part of the procedure.

Rare
- Infection or hernia of incision, requiring further treatment.
- Anaesthetic or cardiovascular problems, possibly requiring intensive care admission (including chest infection, PE, stroke, DVT, heart attack).
- ↓ renal function with time.

Very rare
- Rectal injury, very rarely needing temporary colostomy.
- Diarrhoea due to shortened bowel, vitamin deficiency requiring treatment.
- Bowel and urine leak, requiring reoperation.
- Scarring of the bowel or ureters, requiring operation in the future.
- Scarring, narrowing, or hernia formation around the stomal opening, requiring revision.

Alternative therapy
RT, neobladder formation, rather than ileal conduit urinary diversion.

Formation of neobladder with bowel
- Common: need to perform ISC if the bladder fails to empty.
Ileal conduit

Indications
- For urinary diversion following radical cystectomy.
- Intractable incontinence for which anti-incontinence surgery has failed or is not appropriate.

Post-operative care and common post-operative complications and their management

Oliguria or anuria
Try a fluid challenge.

Wound infection
Treat with antibiotics and wound care. Open the superficial layers of the wound to release pus.

Wound dehiscence
Rare. Requires resuturing in theatre under GA.

Ileus
Common. Usually resolves spontaneously within a few days.

Small bowel obstruction
From herniation of the small bowel through the mesenteric defect created at the junction between the two bowel ends. Continue nasogastric aspiration. The obstruction will usually resolve spontaneously. Reoperation is occasionally required where the obstruction persists or where there are signs of bowel ischaemia.

Leakage from the intestinal anastomosis
Leading to:
- Peritonitis: requiring reoperation and repair or refashioning of the anastomosis.
- Enterocutaneous fistula: bowel contents leak from the intestine and through a fistulous track onto the skin. If low-volume leak (<500mL/24h), will usually heal spontaneously. Normal (enteral) nutrition may be maintained until the fistula closes (which usually occurs within a matter of days or a few weeks). If high-volume leak, spontaneous closure is less likely and reoperation to close the fistula may be required.

Leakage from the uretero-ileal junction
May be suspected because of a persistently high output of fluid from the drain. Test this for urea. Urine will have a higher urea and creatinine concentration than serum. If the fluid is lymph, the urea and creatinine concentration will be the same as that of serum. Arrange a loopgram (conduitogram). This will confirm the leak. Place a soft, small catheter (12Ch) into the conduit to encourage antegrade flow of urine and assist healing of the uretero-ileal anastomosis. If the leakage continues, arrange bilateral nephrostomies to divert the flow of urine away from the area and encourage wound healing.

Occasionally, a uretero-ileal leak will present as a urinoma (this causes persistent ileus). Radiologically assisted drain insertion can result in a dramatic resolution of the ileus, with subsequent healing of the uretero-ileal leak.
Hyperchloraemic acidosis
May be associated with obstruction of the stoma at its distal end or from infrequent emptying of the stoma back (leading to back pressure on the conduit). Catheterize the stoma—this relieves the obstruction. In the long term, the conduit may have to be surgically shortened.

Acute pyelonephritis
Due to the presence of reflux combined with bacteriuria.

Stomal stenosis
The distal (cutaneous) end of the stoma may become narrowed, usually as a result of ischaemia to the distal part of the conduit. Revision surgery is required if this stenosis causes obstruction, leading to recurrent UTIs or back pressure on the kidneys.

Parastomal hernia formation
Around the site through which the conduit passes, through the fascia of the anterior abdominal wall. Many hernias can be left alone. The indications for repairing a hernia are:
- Bowel obstruction.
- Pain.
- Difficulty with applying the stoma bag (distortion of the skin around the stoma by the hernia can lead to frequent bag detachment).

Repair the hernia defect by placing mesh over the hernia site, via an incision sited as far as possible from the stoma itself, so as to reduce the risk of wound infection.

BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications of ileal conduit formation

Common
- Temporary drain, stents, or nasal tube.
- Urinary infections, occasionally requiring antibiotics.

Occasional
- Diarrhoea due to shortened bowel.
- Blood loss, requiring transfusion or repeat surgery.
- Infection or hernia of incision, requiring further treatment.

Rare
- Bowel and urine leakage from anastomosis, requiring reoperation.
- Scarring to the bowel or ureters, requiring operation in future.
- Scarring, narrowing, or hernia formation around the urine opening, requiring revision.
- ↓ renal function with time.

Alternative therapy
Catheters, continent diversion of urine.
Percutaneous nephrolithotomy

Indications
- Stones >2cm in diameter (although with recent miniaturization, stones >1cm should also be considered).
- Stones that have failed ESWL and/or an attempt at flexible ureteroscopy and laser treatment.
- Staghorn calculi.

Preoperative preparation
- CT scan to assist planning the track position and to identify a retrorenal colon.\(^1\)
- Stop aspirin 10 days prior to surgery.
- Culture urine (so appropriate antibiotic prophylaxis can be given).
- Cross-match 2U of blood.
- Start IV antibiotics the afternoon before surgery to reduce the chance of septicaemia (many of the stones treated by PCNL are infection stones). If urine is culture-negative, use 1.5g IV cefuroxime tds and IV gentamicin (3mg/kg) once daily (od). Routine antibiotic prophylaxis also reduces the incidence of post-operative UTI.\(^2\)

Access
- Positioning can be either prone or supine.
- Ultrasound or fluoroscopy or both to guide puncture.
- Dilatation of the tract using balloon, metal, or Amplatz dilators.

Post-operative management
Once the stone has been removed, a nephrostomy tube is left in situ for several days (Fig. 17.15). This drains urine in the post-operative period and tamponades bleeding from the track. So-called ‘tubeless’ PCNL (no nephrostomy tube, although a J stent is often inserted, which has a certain morbidity) can be used in select patients (no infection—therefore, not suitable for infection staghorn stones). Less requirement for post-operative analgesia and earlier discharge have been reported.

Complications of PCNL and their management

Bleeding
Some bleeding is inevitable, but that severe enough to threaten life is uncommon. In most cases, it is venous in origin and stops following placement of a nephrostomy tube (which compresses bleeding veins in the track). If bleeding persists, clamp the tube for 10min. If bleeding continues despite this, arrange urgent angiography, looking for an arteriovenous fistula or pseudoaneurysm, both of which will require selective renal artery embolization (required in 1% of PCNLs)\(^3\) or open exposure of the kidney to control bleeding by suture ligation, partial nephrectomy, or nephrectomy.

Septicaemia
Occurs in 1–2% of cases. Incidence is reduced by prophylactic antibiotics. Track damage. Essentially minimal. Cortical loss from the track is estimated to be <0.2% of the total renal cortex in animal studies.\(^4\)
Colonic perforation
The colon is usually lateral or anterolateral to the kidney and is therefore not usually at risk of injury, unless a very lateral approach is made. The colon is retrorenal in 2% of individuals (more commonly in thin ♀ with little retroperitoneal fat). The perforation usually occurs in an extraperitoneal part of the colon and is managed by JJ stent placement and withdrawal of the nephrostomy tube into the lumen of the colon to encourage drainage of bowel contents away from that of the urine, thereby encouraging healing without development of a fistula between the bowel and the kidney. A radiological contrast study a week or so later confirms that the colon has healed and that there is no leak of contrast from the bowel into the renal collecting system.

Damage to the liver or spleen
Very rare in the absence of splenomegaly or hepatomegaly.

Damage to the lung and pleura, leading to pneumothorax or pleural effusion
Can occur with supra-twelth rib puncture.

Nephrocutaneous fistula
When the nephrostomy tube is removed from the kidney, a few days after surgery, the 1cm incision usually closes within a few hours to a day or so. Occasionally, urine continues to drain percutaneously for a few days and a small 'stoma' bag must be worn. In the majority of such cases, the urine leak
will stop spontaneously, but if it fails to do so after a week or so, place a JJ stent to encourage antegrade drainage of urine.

Outcomes

For small stones, the stone-free rate after PCNL is in the order of 90–95%. For staghorn stones, the stone-free rate of PCNL, when combined with post-operative ESWL for residual stone fragments, is in the order of 80–85%.

BAUS procedure-specific consent form—recommended discussion of adverse events

Serious or frequently occurring complications of PCNL

Common
- Temporary insertion of a bladder catheter and ureteric stent/kidney tube, needing later removal.
- Transient haematuria.
- Transient temperature.

Occasional
- More than one puncture site may be required.
- No guarantee of removal of all stones and need for further operations.
- Recurrence of stones.

Rare
- Severe kidney bleeding, requiring transfusion, embolization, or, as last resort, surgical removal of the kidney.
- Damage to the lung, bowel, spleen, and liver, requiring surgical intervention.
- Kidney damage or infection, needing further treatment.
- Overabsorption of irrigating fluids into the blood system, causing strain on heart function.

Alternative therapy

External shock wave treatments, open surgical removal of stones, observation.

References

Ureteroscopes and ureteroscopy

The instruments
Two types of ureteroscope in common use: the semi-rigid ureteroscope and the flexible ureteroscope.

Semi-rigid ureteroscopes
Have high-density fibreoptic bundles for light (‘non-coherently’ arranged) and image transmission (‘coherently’ arranged to maintain image quality). For equivalent light and image transmission using glass rod lenses, thicker lenses are required than with fibreoptic bundles. As a consequence, semi-rigid ureteroscopes can be made smaller, while maintaining the size of the instrument channel. In addition, the instrument can be bent by several degrees without the image being distorted.

The working tip of most current models is in the order of 7–8Ch, with the proximal end of the scope being in the order of 11–12Ch. There is usually at least one working channel of at least 3.4Ch.

Flexible ureteroscopes
The fibreoptic bundles in flexible ureteroscopes are the same as those in semi-rigid scopes, only of smaller diameter. Thus, image quality and light transmission are not as good as with semi-rigid scopes but are usually adequate.

The working tip of most current models is in the order of 7–8Ch, with the proximal end of the scope being in the order of 9–10Ch. There is usually at least one working channel of at least 3.6Ch.

The great advantage of the flexible ureteroscope over the semi-rigid variety is the ability to perform controlled deflection of the end of the scope (active deflection). Behind the actively deflecting tip of the scope is a segment of the scope which is more flexible than the rest of the shaft. This section is able to undergo passive deflection—when the tip is fully actively deflected by advancing the scope further, this flexible segment allows even more deflection. Flexible ureteroscopes have recently been developed which have two actively deflecting segments.

Flexible ureteroscopes are intrinsically more intricate and are therefore less durable than semi-rigid scopes.

Ureteroscopic irrigation systems
Normal saline is used (high-pressure irrigation with glycine or water would lead to fluid absorption from pyelolymphatic or venous backflow). Irrigation by gravity pressurization alone (the fluid bag suspended above the patient without any applied pressure) will produce flow that is inadequate for visualization because the long, fine-bore irrigation channels of modern ureteroscopes are inherently high resistance. Several methods are available: hand-inflated pressure bags, foot pumps, and hand-operated syringe pumps. Whatever system is chosen, use the minimal flow required to allow a safe view, so as to avoid flushing the stone out of the ureter and into the kidney, from where you may not be able to retrieve it.
Ureteric dilatation
Some surgeons do; others do not. Those who do not argue that dilatation is unnecessary in the era of modern, small-calibre ureteroscopes. Those who do cite a higher chance of being able to pass the ureteroscope all the way up to the kidney. Ureteric dilatation may be helpful where multiple passes of the ureteroscope up and down the ureter are going to be required for stone removal (alternatively, use a ureteric access sheath). Some surgeons prefer to place two guidewires into the ureter, one to pass the ureteroscope over (‘railroading’) and the other to act as a safety wire so that access to the kidney is always possible if difficulties are encountered. The second guidewire is most easily placed via a dual-lumen catheter which has a second channel through which the second guidewire can be easily passed into the ureter without requiring repeat cystoscopy. This dual-lumen catheter has the added function of gently dilating the ureteric orifice to about 10Ch. There is probably no long-term harm done to the ureter as a consequence of dilatation.¹

Ureteric access sheaths, which have outer diameters from 10 to 14Ch, may facilitate access to the ureter and are particularly useful if it is anticipated that the ureteroscope will have to be passed up and down the ureter on multiple occasions (to retrieve fragments of stone). In addition, they facilitate the outflow of irrigant fluid from the pelvis or the kidney, thereby maintaining the field of view and decreasing intrarenal pressures.

Patient position
The patient is positioned as flat as possible on the operating table to ‘iron out’ the natural curves of the ureter. A cystoscopy is performed with either a flexible or rigid instrument. A retrograde ureterogram can be done to outline pelvicalyceal anatomy. A guidewire is then passed into the renal pelvis. We use a Sensor guidewire (Microvasive, Boston Scientific) which has a 3cm-long floppy, hydrophilic tip, which can usually easily be negotiated up the ureter. The remaining length of the wire is rigid and covered in smooth PTFE. Both properties aid passage of the ureteroscope.

Technique of flexible ureteroscopy and laser treatment for intrarenal stones
Flexible ureteroscopy and laser treatment can be performed with topical urethral LA and sedation. However, trying to fragment a moving stone with the laser can be difficult, and ideally, therefore, ureteroscopy is most easily done under GA, with endotracheal intubation (rather than a laryngeal mask) to allow short periods of suspension of respiration and so stopping movement of the kidney and its contained stone.

Empty the bladder to prevent ‘coiling’ of the scope in the bladder. Pass the scope over a guidewire. This requires two people—the surgeon holds the shaft of the scope, and the assistant applies tension to the guidewire to fix the latter in position without pulling it down. This allows the scope to progress easily up the ureter. The assistant also ensures that acute angulation of the scope where the handle meets the shaft does not occur. The flexible ureteroscope should slide easily up the ureter and into the renal pelvis.
With modern active secondary deflection ureteroscopes, access to most, if not all, parts of the renal collecting system is possible.

Laser lithotripsy

The main drawback of laser lithotripsy is the dust-cloud effect that occurs as the stone is fragmented. This temporarily obscures the view and must be washed away before the laser can be safely re-applied.

Use of stone baskets to retrieve stones after ureteroscopy

The aim of ureteroscopy (or flexible ureterorenoscopy) is to remove the ureteric (or renal) stone. It therefore seems intuitive to remove any large fragments—leaving them *in situ* runs the risk of ureteric colic post-ureteroscopy.

To stent or not to stent after ureteroscopy

JJ stent insertion does not increase stone-free rates and is therefore not required in ‘routine’ cases. A stent should be placed if:

- There has been ureteric injury (e.g. perforation—indicated by extravasation of contrast).
- There are residual stones that might obstruct the ureter.
- The patient has had a ureteric stricture that required dilatation.
- Solitary kidneys.

Routine stenting after ureteroscopy for distal ureteric calculi is unnecessary. Many urologists will place a stent after ureteroscopy for proximal ureteric stones.

Complications of ureteroscopy

Septicaemia; ureteric perforation, requiring either a JJ stent or, very occasionally, a nephrostomy tube where JJ stent placement is not possible; ureteric stricture (<1%).

BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications of ureteroscopy for treatment of ureteric stones

Common

- Mild burning or bleeding on passing urine for a short period after the operation.
- Temporary insertion of a bladder catheter may be required.
- Insertion of a stent may be required, with a further procedure to remove it.
- Urinary infections, occasionally requiring antibiotics.

Occasional

- Inability to get the stone or movement of the stone back into the kidney where it is not retrievable.
- Kidney damage or infection, requiring further treatment.
- Failure to pass the scope if the ureter is narrow.
- Recurrence of stones.
Rare

- Damage to the ureter with need for an open operation or placement of a nephrostomy tube into the kidney.

Alternative therapy

Open surgery, shock wave therapy, or observation to allow spontaneous passage.

References

Pyeloplasty

Indications
PUJO.

Anaesthesia
General.

Post-operative care
A JJ stent, bladder catheter, and drain are left in situ. The bladder catheter serves to prevent reflux of urine up the ureter, which can lead to leakage of urine from the anastomosis site (reflux occurs because of the presence of the JJ stent). The drain is removed when the drain output is minimal. The stent is left in position for ~6wk.

Common post-operative complications and their management

Haemorrhage
Usually arising from the nephrostomy track (if a nephrostomy tube has been left in place—some surgeons leave a JJ stent and a perinephric drain, with no nephrostomy). Clamp the nephrostomy tube in an attempt to tamponade the bleeding. If bleeding continues, consider angiography and embolization of the bleeding vessel if seen, or exploration.

Urinary leak
This can occur within the first day or so. If a urethral catheter has not been left in place, catheterize the patient to minimize bladder pressure, and therefore the chance of reflux which might be responsible for the leak. If drainage persists for more than a few days, shorten the drain—if it is in contact with the suture line of the anastomosis, it can keep the anastomosis open, rather than letting it heal. If the leak continues, identify the site of the leak by either a nephrostogram (if a nephrostomy has been left in situ) or a cystogram (if a JJ stent is in place—contrast may reflux up the ureter and identify the site of leakage) or an IVU. Some form of additional drainage may help ‘dry up’ the leak (a JJ stent if only a nephrostomy has been left in situ or a nephrostomy if one is not already in place).

Obstruction at the PUJ
This is uncommon, and if it occurs, it is usually detected once all the tubes have been removed and a follow-up renogram has been done. If the patient had symptomatic PUJO but remains asymptomatic, then no further treatment may be necessary. If they develop recurrent flank pain, reoperation may be necessary.

Acute pyelonephritis
Manage with antibiotics.
BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications of pyeloplasty

Common
- Temporary insertion of a bladder catheter and wound drain.
- Further procedure to remove the ureteric stent, usually under LA.

Occasional
- Bleeding, requiring further surgery or transfusion.

Rare
- Recurrent kidney or bladder infections.
- Recurrence can occur, needing further surgery.

Very rare
- Entry into the lung cavity, requiring insertion of a temporary drainage tube.
- Anaesthetic or cardiovascular problems, possibly requiring intensive care admission (including chest infection, PE, stroke, DVT, heart attack).
- Need to remove the kidney at a later time because of damage caused by recurrent obstruction.
- Infection, pain, or hernia of incision, requiring further treatment.

Alternative therapy
Observation, telescopic incision, dilatation of the area of narrowing, temporary placement of a plastic tube through the narrowing, laparoscopic repair.
Laparoscopic surgery

Virtually every urological procedure can be done laparoscopically. It is particularly suited to surgery in the retroperitoneum (nephrectomy for benign and malignant disease and for kidney donation at transplantation, pyeloplasty for PUJO), but it is also suited to pelvic surgery (lymph node biopsy, RP). Reconstructive surgery requiring laparoscopic suturing and using the bowel is technically very challenging, but possible. Laparoscopic surgery offers the advantages over open surgery of:

- Reduced post-operative pain.
- Smaller scars.
- Less disturbance of bowel function (less post-operative ileus).
- Reduced recovery time and reduced hospital stay.

Contraindications to laparoscopic surgery

- Severe chronic obstructive pulmonary disease (COPD) (avoid use of carbon dioxide for insufflation).
- Uncorrectable coagulopathy.
- Intestinal obstruction.
- Abdominal wall infection.
- Massive haemoperitoneum.
- Generalized peritonitis.
- Suspected malignant ascites.

Laparoscopic surgery is difficult or potentially hazardous in the morbidly obese (inadequate instrument length, ↓ range of movement of instruments, higher pneumoperitoneum pressure required to lift the heavier anterior abdominal wall, excess intra-abdominal fat limiting the view); in those with extensive previous abdominal or pelvic surgery (adhesions); in previous peritonitis, leading to adhesion formation; in those with organomegaly; in the presence of ascites; in pregnancy; in patients with a diaphragmatic hernia; and in those with aneurysms.

Potential complications unique to laparoscopic surgery

Gas embolism (potentially fatal), hypercarbia (acidosis affecting cardiac function, e.g. arrhythmias), post-operative abdominal crepitus (subcutaneous emphysema), pneumothorax, pneumomediastinum, pneumopericardium, barotraumas.

Bowel, vessel (aorta, common iliac vessels, IVC, anterior abdominal wall injury), and other viscus injury are not unique to laparoscopic surgery but are a particular concern during port access. Perforation of the small or large bowel is the commonest trocar injury. Rarely, the bladder is perforated. Failure to progress with a laparoscopic approach or a vessel injury with uncontrollable haemorrhage requires conversion to an open approach. Post-operatively, the bowel may become entrapped in the trocar sites or there may be bleeding from the sheath site. An acute hydrocele can develop due to irrigation fluid accumulating in the scrotum. It resorbs spontaneously. Scrotal and abdominal wall bruising not uncommonly occurs.
BAUS procedure-specific consent forms: recommended discussion of adverse events

For all laparoscopic procedures

Common
- Temporary shoulder tip pain.
- Temporary abdominal bloating.
- Temporary insertion of a bladder catheter and wound drain.

Occasional
- Infection, pain, or hernia of the incision, requiring further treatment.

Rare
- Bleeding, requiring conversion to open surgery or transfusion.
- Entry into the lung cavity, requiring insertion of a temporary drainage tube.

Very rare
- Recognized (and unrecognized) injury to organs or blood vessels, requiring conversion to open surgery or deferred open surgery.
- Anaesthetic or cardiovascular problems, possibly requiring intensive care admission (including chest infection, PE, stroke, DVT, heart attack).

Laparoscopic pyeloplasty

Common
- Further procedure to remove the ureteric stent, usually under LA.

Occasional
- Recurrence can occur, needing further surgery.
- Short-term success rates are similar to open surgery, but long-term results unknown.

Very rare
- Need to remove the kidney at a later time because of damage caused by recurrent obstruction.

Alternative therapy

Observation, telescopic incision, dilatation of the area of narrowing, temporary placement of a plastic tube through the narrowing, conventional open surgical approach.

Laparoscopic simple nephrectomy

Occasional
- Short-term success rates are similar to open surgery, but long-term results unknown.

Alternative therapy

Observation and conventional open surgical approach.

Laparoscopic radical nephrectomy

Occasional
- Short-term success rates are similar to open surgery, but long-term results unknown.

Rare
- A histological abnormality other than cancer may be found.

Alternative therapy

Observation, embolization, chemotherapy, immunotherapy, conventional open surgical approach.
CHAPTER 17 Urological surgery and equipment

Endoscopic cystolitholapaxy and (open) cystolithotomy

Indications
- **Endoscopic cystolitholapaxy**: generally indicated for small stones. The definition of ‘small’ is debatable. Many stones of <4cm in diameter can be removed endoscopically, but the greater the number and size of the stones, the more inclined will the surgeon be to adopt an open approach. Having said this, if you anticipate that the patient is likely to develop recurrent stones, and therefore will require multiple future procedures to remove them, then try to avoid open surgery because each redo open cystolithotomy will be more difficult (due to the presence of scar tissue).
- **Open cystolithotomy**: for stones of >4cm in diameter and/or multiple stones (though some surgeons will be happy to ‘take on’ larger stones endoscopically); patients with urethral obstruction which precludes endoscopic access to the bladder.

Anaesthesia
Regional or general.

Post-operative care
A catheter is left in the bladder for a day or so, since haematuria is common, particularly after fragmentation of large stones. Irrigation may be required if haematuria is heavy.

Common post-operative complications and their management

Haematuria
Requiring bladder washout or return to theatre is rare.

Septicaemia
Uncommon.

Bladder perforation
Uncommon, but can occur with the use of stone ‘punches’ which grab the stone between powerful cutting jaws. Grasping the bladder wall in the jaws of the stone forceps or punch is easily done and can cause perforation.

BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications of endoscopic cystolitholapaxy

Common
- Mild burning or bleeding on passing urine for short periods after the operation.
- Temporary insertion of a catheter.
Occasional
• Infection of the bladder, requiring antibiotics.
• Permission for removal/biopsy of a bladder abnormality, if found.
• Recurrence of stones or residual stone fragments.

Rare
• Delayed bleeding, requiring removal of clots or further surgery.
• Injury to the urethra, causing delayed scar formation.

Very rare
• Perforation of the bladder, requiring a temporary urinary catheter or return to theatre for open surgical repair.

Alternative therapy
Open surgery, observation.
Scrotal exploration for torsion and orchidopexy

Indications
Suspected testicular torsion.

Technique
A midline incision, since this allows access to both sides so that they may both be ‘fixed’ within the scrotum. Untwist the testis, and place in a warm, saline-soaked swab for 10 min. If it remains black, remove it, having ligated the spermatic cord with a transfixion stitch of absorbable material. If it ‘pinks up’, fix it. If uncertain about its viability, make a small cut with the tip of a scalpel. If the testis bleeds actively, it should be salvaged (close the small wound with an absorbable suture). If not, it is dead and should be removed. Whatever you do, fix the other side.

Fixation technique
Some surgeons fix the testis within the scrotum with suture material, inserted at three points (3-point fixation). Some use absorbable sutures, and others non-absorbable. Those who use the latter argue that absorbable sutures may disappear, exposing the patient to the risk of retorsion. Those who use absorbable sutures argue that the fibrous reaction around the absorbable sutures prevents retorsion and argue that the patient may be able to feel non-absorbable sutures, which can be uncomfortable. The sutures should pass through the tunica albuginea of the testis and then through the parietal layer of the tunica vaginalis lining the inner surface of the scrotum.

Others say the testis should be fixed within a dartos pouch, arguing that suture fixation breaches the blood–testis barrier, exposing both testes to the risk of sympathetic orchidopathia (an autoimmune reaction caused by the development of antibodies against the testis). For dartos pouch fixation, open the tunica vaginalis; bring the testis out, and untwist it. Develop a dartos pouch in the scrotum by holding the skin with forceps and dissecting with scissors between the skin and the underlying dartos muscle. Enlarge this space by inserting your two index fingers and pulling them apart. Place the testis in this pouch. Use a few absorbable sutures to attach the cord near the testis to the inside of the dartos pouch to prevent retorsion of the testes. The dartos may then be closed over the testis, and the skin can be closed in a separate layer.

Post-operative care and potential complications and their management
As for all procedures involving scrotal exploration, a scrotal haematoma may result, which may have to be surgically drained.
BAUS procedure-specific consent form: recommended discussion of adverse events

Serious or frequently occurring complications of scrotal exploration

Common
- The testis may have to be removed if non-viable.

Occasional
- You may be able to feel the stitch used to fix the testis.
- Blood collection around the testes which slowly resolves or requires surgical removal.
- Possible infection of the incision or testis, requiring further treatment.

Rare
- Loss of testicular size or atrophy in future if the testis is saved.
- No guarantee of fertility.

Alternative therapy
Observation—risks loss of testis and autoimmune reaction, leading to subfertility and loss of hormone production in the remaining testis.

References
Electromotive drug administration

Electromotive drug administration (EMDA) is a non-invasive method of enhancing drug penetration across the bladder urothelium (and prostatic urethra), resulting in greater quantities of local drug being delivered to a greater tissue depth than is achievable by passive diffusion alone. It avoids many of the side effects seen with systemic administration.

Mechanism of action

EMDA uses an electric current to accelerate and actively transport ionized molecules into tissues. Drug administration can therefore be controlled by altering the electric current intensity. The two main electrokinetic principles are: iontophoresis (transport of ionized molecules into tissue by applying a current across a solution containing the ions, e.g. lidocaine) and electro-osmosis (transport of non-ionized solutes associated with the bulk transport of water, e.g. MMC).

Applications in urology

- LA of the bladder (and prostatic urethra) prior to other procedures: flexible and rigid cystoscopy with biopsy and cystodiathermy, TURBT, BNI, TUIP, intravesical capsaicin therapy, and BTX-A injections.
- Intravesical MMC therapy for TCC of the bladder.
- Intravesical oxybutynin therapy for OAB.
- Antibiotic administration (i.e. gentamicin) for infective recalcitrant cystitis.
- LA with anti-inflammatory drugs for cystodistension.

Method of EMDA LA

It can be performed as a day case or an outpatient procedure. A CE-DAS® UROGENICS® catheter electrode* (Fig. 17.16) is inserted urethrally, and the bladder emptied and irrigated with sterile water to remove any residual urine. A total of 150mL of 0.5% bupivacaine and 1.5mL (1.5mg) of 1/1000 adrenaline are instilled into the bladder. Two dispersive electrode pads are placed on the lower abdomen, and both the electrode pads and the catheter are connected to the PHYSIONISER® generator* set to positive polarity, 25mA current strength, and a pulsed current with a rise rate of 50μA/s for 23min. The catheter is then removed, and endoscopy can proceed. EMDA LA is effective for 60min.

Contraindications to EMDA LA

Allergy to LA, significant haematuria, patients on MAOIs.

Relative contraindications

Active infection of the lower genitourinary tract, protrusion of the enlarged median lobe of the prostate into the bladder, urethral stricture, bladder neck stenosis.

* Physion Srl, Medolla, Italy.
Fig. 17.16 EMDA in the bladder and prostate using a catheter electrode. (Reproduced with permission from Physion S.r.l.).
Basic science and renal transplant

Basic physiology of the bladder and urethra 828
Basic renal anatomy 830
Renal physiology: glomerular filtration and regulation of renal blood flow 834
Renal physiology: regulation of water balance 836
Renal physiology: regulation of sodium and potassium excretion 837
Renal physiology: acid–base balance 838
Renal replacement therapy 840
Renal transplant: recipient 842
Renal transplant: donor 843
Transplant surgery and complications 844
Basic physiology of the bladder and urethra

Bladder
The bladder has an endothelial lining (urothelium) on a connective tissue base (lamina propria), surrounded by smooth muscle (detrusor), with outer connective tissue (adventitia). The urothelium consists of multi-layered transitional epithelium, with numerous tight junctions that render it impermeable to water and solutes. Detrusor muscle is a homogenous mass of smooth muscle bundles. c-kit antigen-positive ‘interstitial cells’ exist around detrusor bundles and in the suburothelium and play a role in modulating contractile behaviour of adjacent smooth muscle. The bladder base is known as the trigone—a triangular area with the two ureteric orifices and the internal urinary meatus forming the corners. Intravesical pressure during filling is low due to reciprocal relaxation in a bladder with normal compliance. The main excitatory motor input to the bladder is from the autonomic nervous system and is predominantly **parasympathetic innervation** (S2–4). Preganglionic nerve fibres are conveyed to the bladder in the pelvic nerves and then synapse with cholinergic post-ganglionic nerve cells in the pelvic plexus and on the bladder, which, when activated, cause muscle contraction. **Sympathetic innervation** (T10–L2) via the hypogastric plexus plays a role in urine storage (see **p. 626).**

Urethra
The bladder neck (and posterior urethra) is normally closed during filling. It is composed of circular smooth muscle (with sympathetic innervation) and is also referred to as the internal sphincter. High pressure is generated at the midpoint of the urethra in women and at the level of the membranous urethra in men where the urethral wall is composed of a longitudinal and a circular smooth muscle coat, surrounded by striated muscle (external urethral sphincter).

The striated part of the sphincter receives **motor innervation** from the somatic pudendal nerve derived from S2–4 in a region in the sacral spinal cord called ‘Onuf’s nucleus’. It has voluntary control, and ACh mediates contraction. The smooth muscle component of the sphincter has myogenic tone and receives excitatory and inhibitory innervation from the autonomic nervous system. Contraction is enhanced by sympathetic input (NA) and ACh. Inhibitory innervation is nitrergic (NO) (see **pp. 626–7).**

Micturition
As the bladder fills, sensory afferent nerves (A-delta) respond to stretch in the bladder wall and send information about bladder filling via the spinothalamic tracts to the sacral micturition centre and up to the PMC. During urine storage, the PMC mediates enhanced external urethral sphincter activity (so causing constriction of the sphincter). There is also somatic outflow via the pudendal nerve to the external striated sphincter muscle to cause contraction, and sympathetic outflow to constrict the internal smooth muscle sphincter (bladder neck) and also to inhibit ganglia.
in the bladder wall. At a socially acceptable time, the voiding reflex is activated (Fig. 18.1). Neurones in the PAG in the pons trigger a switch to the PMC in the brainstem to activate the voiding reflex. Inhibition of somatic input relaxes the external striated sphincter muscle, and sympathetic inhibition causes coordinated bladder neck smooth muscle (internal sphincter) relaxation. Simultaneous stimulation of detrusor smooth muscle by parasympathetic cholinergic nerves causes the bladder to contract. Activation of nitricergic nerves reduces the intraurethral pressure, resulting in bladder emptying (also see pp. 626–7).

Fig. 18.1 Diagram representing the storage and voiding pathways of the micturition reflex. Micturition is stimulated by activity in the parasympathetic (pelvic) nerves and inhibited by activity in the sympathetic (hypogastric) nerves and pudendal nerves.
Basic renal anatomy

The kidneys and ureters lie within the retroperitoneum (behind the peritoneal cavity). The hila of the kidneys lie on the transpyloric plane (vertebral level L1). Each kidney is composed of a cortex surrounding the medulla which forms projections (papillae) that drain into cup-shaped, epithelial-lined pouches called calyces. The calyx draining each papilla is known as a minor calyx, and several minor calyces coalesce to form a major calyx, several of which drain into the central renal pelvis (Fig. 18.2). The renal artery, which arises from the aorta at vertebral level L1/2, branches to form interlobar arteries which, in turn, form arcuate arteries and then cortical radial (interlobular) arteries, from which the afferent arterioles are derived. Venous drainage occurs into the renal vein. There are two capillary networks in each kidney—a glomerular capillary network (lying within Bowman’s capsule) which drains into a peritubular capillary network surrounding the tubules (PCT, LoH, DCT, and CD). The capillaries drain into venous channels which drain into interlobar veins, then arcuate veins, eventually draining into the renal vein via interlobar veins.

Anatomical relations of the kidney

- Anterior relations of the right kidney are, from top to bottom, the adrenal (suprarenal) gland, liver, and hepatic flexure of the colon. Medially and anterior to the right renal pelvis is the second part of the duodenum. The anterior relations of the left kidney are, from top to bottom, the adrenal gland, stomach, spleen, and splenic flexure of the colon. Medially lies the tail of the pancreas.
- Posterior relations of both kidneys are, superiorly, the diaphragm and lower ribs, and inferiorly (from lateral to medial), the transversus abdominis, quadratus lumborum, and psoas major muscles.

The nephron

Each kidney has 1 million functional units, or nephrons (Fig. 18.3). These consist of a glomerular capillary network, surrounded by podocytes (epithelial cells) that project into Bowman’s capsule, which then drains into a tubular system. This includes the PCT, LoH, DCT, collecting tubule (CT), and CD. Blood is delivered to the glomerular capillaries by an afferent arteriole and drained by an efferent arteriole. An ultrafiltrate of plasma is formed within the lumen of Bowman’s capsule, driven by Starling forces across the glomerular capillaries. Reabsorption of salt and water occurs in the PCT, LoH, DCT, and CD, although the majority of glomerular filtrate is absorbed in the PCT (Table 18.1). The LoH generates hypertonicity; its descending limb is only permeable to water, whereas its ascending limb is only permeable to solutes. The role of the DCT is fine adjustment of the composition of urine by selective reabsorption or secretion of solutes.
Fig. 18.2 Basic renal anatomy.

Fig. 18.3 The nephron.

KEY:
1. Afferent and efferent arterioles of the glomerulus
2. Bowman’s capsule
3. Proximal convoluted tubule
4. Loop of Henle (thin descending limb)
5. Loop of Henle (thin ascending limb)
6. Loop of Henle (thick ascending limb)
7. Distal convoluted tubule
8. Collecting tubule
9. Collecting duct
Table 18.1 Solute and water reabsorption by different parts of the nephron

<table>
<thead>
<tr>
<th>Solute</th>
<th>PCT</th>
<th>LoH</th>
<th>DCT</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>66%</td>
<td>25%</td>
<td>~5%</td>
<td>~5% under control of aldosterone</td>
</tr>
<tr>
<td>Potassium</td>
<td>Majority</td>
<td></td>
<td>Reabsorption by intercalated cells; secretion by principal cells</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>66% (by osmosis)</td>
<td></td>
<td></td>
<td>ADH † permeability to water</td>
</tr>
<tr>
<td>Magnesium</td>
<td>80%</td>
<td><5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td>90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>60% passive transport</td>
<td>20%</td>
<td>10% active transport</td>
<td></td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>Majority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>Majority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amino acids</td>
<td>Majority</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CD, collection duct; DCT, distal convoluted tubule; LoH, Loop of Henle; PCT, proximal convoluted tubule; TAL, thick ascending limb (of the LoH).
Renal physiology: glomerular filtration and regulation of renal blood flow

Renal plasma clearance

Clearance is the volume of plasma that is completely cleared of solute by the kidney per minute. The clearance ratio for a substance indicates the amount of active reabsorption or excretion (i.e. ratio <1 = actively reabsorbed; >1 = actively excreted). Clearance of a substance from plasma can be expressed mathematically as:

\[
\text{Clearance} = \frac{U \times V}{P} \quad (\text{mL/min})
\]

\[
\text{Clearance ratio} = \frac{\text{clearance}}{\text{GFR}}
\]

where \(U\) is the concentration of a given substance in urine, \(P\) is its concentration in plasma, and \(V\) is the urine flow rate.

Glomerular filtration rate

(See also pp. 38–9.)

Glomerular filtration is driven by Starling forces—a hydrostatic pressure gradient between the capillary and Bowman’s capsule, which favours filtration, and colloid oncotic pressure which opposes filtration. The GFR is the clearance for any substance which is freely filtered and is neither reabsorbed, secreted, nor metabolized by the kidney. For such a substance, clearance is equivalent to the GFR. Where a substance is both filtered at the glomerulus and secreted by the renal tubules, its clearance will be greater than the GFR. Where a substance is filtered at the glomerulus but reabsorbed by the renal tubules, its clearance will be less than the GFR.

Clinically, the GFR is estimated using creatinine and is \(~125\text{mL/min}.\) Of note, serum creatinine is an insensitive marker of early renal impairment, as the GFR needs to fall below \(60–80\text{mL/min}\) before a rise in creatinine is seen. The GFR is directly related to the renal plasma flow (RPF). Experimentally, the GFR can be accurately calculated by measuring the clearance of inulin (a substance which is freely filtered by the glomerulus and is neither secreted nor reabsorbed by the kidneys), using the equation:

\[
\text{GFR} = \frac{U \times V}{P} \quad (= 125\text{mL/min})
\]

Thus, the volume of plasma from which, in 1 min, the kidneys remove all inulin is equivalent to the GFR. Factors affecting the GFR are:

- Rate of blood flow through the glomerulus.
- Permeability of the glomerular capillary wall (\(K\)).
- Surface area of the glomerular capillary bed (\(S\)).
- Differences in hydrostatic pressure between the glomerular capillary lumen (\(P_c\)) and Bowman’s space (\(P_t\)).
- Differences in oncotic pressure between the glomerular capillary (\(\pi_c\)) and Bowman’s space (\(\pi_t\)) (although autoregulation of blood flow tends to keep the GFR constant, despite a varying range of incoming perfusion pressures).
This can be represented by the equation:

\[
GFR \text{ (single nephron)} = KS[(P_{gc} - P_t) - (\pi_{gc} - \pi_t)]
\]

Normally about one-fifth (120mL/min) of plasma that flows through the glomerular capillaries (600mL/min) is filtered (filtration fraction = GFR/RPF).

Renal blood flow

The kidneys represent <0.5% of the body weight, but they receive 25% of cardiac output (~1300mL/min through both kidneys; 650mL/min per kidney). Combined blood flow in the two renal veins is about 1299mL/min, and the difference in flow rates represents the urine production rate (i.e. ~1mL/min).

Autoregulation of RBF

RBF is defined as the pressure difference between the renal artery and the renal vein divided by the renal vascular resistance. The glomerular arterioles are the major determinants of vascular resistance. RBF remains essentially constant over a range of perfusion pressures (780–180mmHg, i.e. RBF is autoregulated). Autoregulation requires no innervation and probably occurs via:

- **A myogenic mechanism:** ↑ pressure in the afferent arterioles causes them to contract, thereby preventing a change in RBF.
- **Tubuloglomerular feedback:** the flow rate of tubular fluid is sensed at the macula densa of the juxtaglomerular apparatus (JGA), and, in some way, this controls flow through the glomerulus to which the JGA is opposed.

Other factors that influence RBF

Neural mechanisms

Sympathetic nerves innervate the glomerular arterioles. A reduction in circulating volume (such as blood loss) can stimulate sympathetic nerves, causing the release of NA (which acts on α1-adrenoceptors on the afferent arteriole) to cause vasoconstriction. This results in reduced RBF and GFR.

Endocrine and paracrine mechanisms

- Angiotensin II constricts the efferent and afferent arterioles and reduces RBF.
- ADH, ATP, and endothelin all cause vasoconstriction and reduce RBF and GFR.
- NO causes vasorelaxation and increases RBF.
- ANP causes afferent arteriole dilatation and increases RBF and GFR.
Renal physiology: regulation of water balance

Total body water (TBW) is 42L. It is contained in two major compartments—the intracellular fluid (ICF or the water inside cells) which accounts for 28L and the extracellular fluid (ECF or water outside of cells) representing 14L. ECF is further divided into interstitial fluid (ISF; 11L), transcellular fluid (1L), and plasma (3L). Hydrostatic and osmotic pressures influence movement between the compartments. Water is taken in from fluids and food, and from oxidation of food. Water is lost from urine, faeces, and insensible losses. Intake and losses usually balance (72L/day), and TBW remains relatively constant. The role of the kidney is regulation of the volume and composition of ECF by constant adjustment of solutes and water to maintain a normal concentration.

ADH or vasopressin

ADH is secreted from the posterior pituitary in response to stimulus from changes in plasma osmolarity (detected by osmoreceptors in the hypothalamus) or changes in BP or volume (detected by baroreceptors in the left atrium, aortic arch, and carotid sinus). These changes also stimulate the thirst centre in the brain.

The action of ADH on the kidney:
- Increases CD permeability to water (via aquaporin water channel proteins) and urea.
- Increases LoH and CD reabsorption of sodium chloride (NaCl).
- Vasoconstriction.

During conditions of water excess

Body fluids become hypotonic, and ADH release and thirst are suppressed. In the absence of ADH, the CD is impermeable to water and a large volume of hypotonic urine is produced, so restoring normal plasma osmolarity.

During conditions of water deficit

Body fluids are hypertonic, and ADH secretion and thirst are stimulated. The CD becomes permeable; water is reabsorbed into the lumen, and a small volume of hypertonic urine is excreted.

The ability to concentrate or dilute urine depends on the countercurrent multiplication system in the LoH. Essentially, a medullary concentration gradient is generated (partly by the active transport of NaCl), which provides the osmotic driving force for the reabsorption of water from the lumen of the CD when ADH is present.

Children have a circadian rhythm in ADH secretion high at night and low during the day. Adults essentially have constant ADH secretion over a 24h period, with slight increases occurring around mealtimes. At these times, ADH secretion probably acts to prevent sudden increases in plasma osmolarity that would otherwise occur due to ingestion of solutes in a meal.
Regulatory physiology: regulation of sodium and potassium excretion

Sodium regulation

NaCl is the main determinant of ECF osmolality* and volume. Two-thirds of sodium (Na*+) is reabsorbed in the PCT by either primary active transport [Na*-K*-ATPase pump which transports Na* in and potassium (K*) out] or by secondary active transport (specialized Na*+ channels allow Na*+ in and transfer of other solutes in and out of the cell).

Low-pressure receptors in the pulmonary vasculature and cardiac atria and high-pressure baroreceptors in the aortic arch and carotid sinus recognize changes in the circulating volume. ↓ blood volume triggers ↑ sympathetic nerve activity and stimulates ADH secretion, which results in reduced NaCl excretion. Conversely, when blood volumes are ↑, sympathetic activity and ADH secretion are suppressed and NaCl excretion is enhanced (natriuresis). A variety of natriuretic peptides have been isolated which cause natriuresis. Under physiological conditions, renal natriuretic peptide (urodilatin) is the most important of these. ANP, released after atrial distension, may influence Na*+ output under conditions of heart failure (acting to increase excretion of NaCl and water).

Renin–angiotensin–aldosterone system

Renin is an enzyme made and stored in the juxtaglomerular cells found in the walls of the afferent arteriole. Factors increasing renin secretion are:
- Reduced perfusion of the afferent arteriole.
- Sympathetic nerve activity.
- Reduced Na*+ delivery to the macula densa.

Renin acts on angiotensin to create angiotensin I. This is converted to angiotensin II in the lungs by angiotensin-converting enzyme (ACE). Angiotensin II performs several functions, which result in the retention of salt and water:
- Stimulates aldosterone secretion (resulting in NaCl reabsorption and promoting the secretion of K*+ and H*+).
- Vasoconstriction of arterioles (efferent > afferent arterioles).
- Stimulates ADH secretion and thirst.
- Enhances NaCl reabsorption by the PCT.

Potassium regulation

K*+ is critical for many cell functions. A large concentration gradient across cell membranes is maintained by Na*-K*-ATPase pump. Insulin and adrenaline also promote cellular uptake of K*+.

The majority of K*+ is reabsorbed in the PCT. The DCT can both reabsorb K*+ in cases of K*+ depletion (intercalated cells) and secrete it when there is K*+ excess (principal cells). It is also secreted by the CD. Overall, the kidney excretes up to 95% of K*+ ingested in the diet.

Factors promoting K*+ secretion include:
- ↑ dietary K*+ (driven by the electrochemical gradient).
- Aldosterone.
- ↑ rate of flow of tubular fluid.
- Metabolic alkalosis (acidosis exerts the opposite effect).

* Osmolality = mol/kg water; osmolarity = mol/L of solution.
Renal physiology: acid–base balance

The normal pH of ECF is 7.4 ([H+] = 40nmol/L). Several mechanisms are in place to eliminate acid produced by the body and maintain body pH within a narrow range.

Buffering systems that limit [H+] fluctuation in the blood

Buffer bases that take up H+ ions in the body include:

Bicarbonate buffer system: \[H^+ + HCO_3^- \leftrightharpoons H_2CO_3 \rightarrow H_2O + CO_2 \]

Phosphate system: \[H^+ + HPO_4^{2-} \leftrightharpoons H_2PO_4^- \]

Protein buffers: \[H^+ + \text{protein} \leftrightharpoons H\text{protein} \]

The Henderson–Hasselbalch equation describes the relationship between pH and the concentration of the conjugate acid and base.

\[pH = 6.1 + \log \left(\frac{[HCO_3^-]}{0.03pCO_2} \right) \]

From this equation, it can be seen that alterations in bicarbonate (HCO_3^-) or carbon dioxide (CO_2) will affect pH. Metabolic acid–base disturbances relate to a change in HCO_3^-, and respiratory acid–base disorders relate to alterations in CO_2.

Bicarbonate reabsorption along the nephron

(See Fig. 18.4.)

HCO_3^- is the main buffer of ECF and is regulated by both the kidneys and lungs. Eighty-five per cent is reabsorbed in the PCT. Carbonic acid is first produced from CO_2 and water (accelerated by carbonic anhydrase). The carbonic acid dissociates, and an active ion pump (Na^+/H^+ antiporter) extrudes intracellular H^+ into the tubule lumen in exchange for Na^+. Secretion of H^+ ions favours a shift of the carbonic acid–bicarbonate equilibrium towards carbonic acid, which is rapidly converted into CO_2 and water. CO_2 diffuses into the tubular cells down its diffusion gradient and is re-formed into carbonic acid by intracellular carbonic anhydrase. HCO_3^- formed by this reaction is exchanged for chloride and passes into the circulation. Essentially, with each H^+ ion that enters the kidney, a HCO_3^- ion enters blood, which bolsters the buffering capacity of the ECF.

The remaining HCO_3^- is absorbed in the DCT where cells actively secrete H^+ into the lumen via an ATP-dependent pump. The DCT is the main site that pumps H^+ into the urine to ensure complete removal of HCO_3^-.

Once HCO_3^- has gone, phosphate ions and ammonia buffer any remaining H^+ ions.
Fig. 18.4 Diagram showing bicarbonate reabsorption in the proximal convoluted tubule.

CA, carbonic anhydrase; Cl⁻, chloride ion; CO₂, carbon dioxide; H⁺, hydrogen ion; HCO₃⁻, bicarbonate; H₂CO₃, carbonic acid; H₂O, water; H₂PO₄⁻, phosphate ions; H₃PO₄, phosphoric acid; Na⁺, sodium ion; pCO₂, partial pressure of carbon dioxide.
Renal replacement therapy

Indications for dialysis
- CKD stage 5 (eGFR 10–15mL/min).
- Acute renal failure due to persistent hyperkalaemia, metabolic acidosis, fluid overload, symptomatic uraemia, sepsis, and multiorgan failure, drug or toxin poisoning.

Haemodialysis
Access
Arteriovenous fistula (requires 8wk to mature).

Principles
The dialysis machine pumps blood and dialysate through a dialyser. The dialysate is composed of water, Na⁺, K⁺, dextrose, calcium, chloride, magnesium, and HCO₃⁻ or acetate (as a buffer). The fluids are on opposite sides of a semi-permeable membrane and pumped in opposite directions (countercurrent flow). Waste products of metabolism diffuse from blood to the dialysate. Accumulated fluid is removed by convection of water and dissolved solutes (including proteins) down a pressure gradient (ultrafiltration). Heparin is used to prevent clotting.

Regimen
4h sessions performed three times per week in a hospital-based dialysis unit or at home.

Complications
Anaemia, CVD [hypertension, arrhythmias, myocardial infarction, peripheral vascular disease (PVD), CVA], acquired renal cystic disease and renal tract cancers, renal osteodystrophy, neuropathy, ED. Fistula problems include thrombosis, stenosis, aneurysm, and infection.

Peritoneal dialysis
Access
Tenckhoff catheter which allows instillation of fluid into the peritoneum.

Principles
Fluid and solute exchange occurs between peritoneal capillary blood and the dialysis solution, using the peritoneum as the dialysis membrane. Small-molecular-weight solutes diffuse down a concentration gradient from blood into the dialysate. Water movement is achieved by osmosis from the ECF compartment to the hypertonic peritoneal dialysate.

Regimen
Continuous ambulatory dialysis (CAPD) involves continuous dialysis using 3–5 exchanges per day of fluid, performed at home. Automated peritoneal dialysis (APD) allows fast instillation and drainage of large volumes of fluid if more intense dialysis is needed or for dialysis overnight.
Contraindications
Bowel adhesions, obesity, inoperable hernias, stoma.

Complications
As for haemodialysis and also catheter infection, peritonitis, membrane (peritoneal) failure, and hernia.

Haemofiltration
Access
Intravascular (tunnelled) catheters, placed in the femoral or internal jugular veins.

Principle
Removal of solutes with water is achieved by convection down a pressure gradient. It does not require dialysate. Large volumes of filtrate are removed and need to be replaced during this process. This is a controlled and slow process, avoiding large intravascular fluid shifts and minimizing electrolyte disturbances, arrhythmias, and hypotension. It is particularly useful for the haemodynamically compromised patients with acute renal failure. Anticoagulation is required.

Regimen
Blood is filtered continuously across a highly permeable synthetic membrane.

Complications
Similar, but lower, incidence than for haemodialysis. Includes thrombosis of the catheter or access vein, bleeding or clotting, sepsis, fluid overload, alkalosis, and hypotension.

Haemodiafiltration
This describes the combination of dialysis and ultrafiltration (diffusion and convection removal of solutes).
Renal transplant: recipient

Indications for transplant
End-stage renal disease.

Contraindications to renal transplant
- Active malignancy is a contraindication to receiving immunotherapy. Generally should remain cancer-free for 2y before transplantation can be considered. Higher-risk tumours, including melanoma, breast cancer, and colorectal carcinoma, must be disease-free for longer (5y). Lower-risk tumours of the skin (basal and squamous cell carcinomas) can undergo transplantation immediately after treatment.
- Active infection (bacterial and viral, including hepatitis B and C, HIV, CMV, and TB).
- Severe vasculitis.
- Significant CVD (including recent myocardial infarction).
- Active SLE.
- Primary hyperoxaluria (requires combined renal and liver transplant).
- Untreated psychological disorders, IV drug use, or alcohol excess.

Genitourinary tract assessment
- USS of the kidneys, ureters, and bladder.
- Urine analysis and cultures.
- Urodynamic studies for LUTS (if clinically indicated).

Preoperative assessment
- History: including cause and length of time of renal failure, previous interventions for renal impairment, and previous transplants. Coexisting conditions such as diabetes mellitus (which might require pancreatic transplant). Symptoms of voiding dysfunction which will require treatment before transplant.
- Physical examination.
- Cardiology work-up: stress test and ECG.
- Bloods: FBC, U&E, LFTs, glucose, calcium, magnesium, clotting, viral serology [HIV, hepatitis, CMV, syphilis, Epstein–Barr virus (EBV), human T lymphotropic virus (HTLV)].
- ABO blood group.
- Tissue typing for human leucocyte antigen (HLA)-A, B, and DR phenotypes.
- Blood cross-match to detect preformed antibodies. The recipient’s sera are mixed with donor lymphocytes. Recipient antibodies will bind to, and lyse, donor cells if the cross-match is positive.
Renal transplant: donor

Types of donor
- Cadaveric (heart-beating): brainstem-dead (brainstem death) donor with supported ventilation and circulation.
- Cadaveric (non-heart-beating): rapid retrieval is required to minimize ischaemia from these patients without active circulation.
- Living-related.
- Live-unrelated: donation must comply with regulations set by the Unrelated Live Transplant Regulatory Authority (ULTRA).

Absolute contraindications
- Active malignancy.
- History of metastatic cancer or cancer with a higher recurrence risk (i.e. lymphoma).
- Significant cardiac disease [previous myocardial infarction, coronary artery bypass graft (CABG), angina].
- Diabetes, hypertension, significant pulmonary or vascular disease.
- Active systemic renal disease, i.e. SLE.
- HIV or other active infection.
- BMI >35.
- Coercion.
- Inability to give consent.
- IV drug or alcohol abuse.
- Pregnancy.

Assessment of donor
- History: including family history of disorders such as glomerulonephropathies, polycystic kidney disease, SLE). Clinical and psychological evaluation in living donors, BP check.
- Bloods: FBC, U&E, cholesterol, glucose, clotting.
- ABO and HLA compatibility: kidneys should be allocated to the recipient with the lowest number of HLA mismatches.
- Viral serology (hepatitis B and C, HIV, CMV, EBV, syphilis, TB): establish any family history of high-risk renal disease or prion disease (CJD).
- eGFR (24h urine collection or EDTA in living donors).
- ECG and CXR.
- Renal imaging to assess donor anatomy, choose the kidney (leave the donor with the better kidney), and plan the technique.

Living donors
- Higher success rates than deceased donors and shortens waiting times.
- Long-term follow-up of donor is recommended for surveillance of hypertension or renal impairment.
- Full informed consent should be taken. Risks of nephrectomy include: hypertension, CRF, and mortality (<0.03%).

* Brainstem death: requires two sets of test by two doctors (registered for >5y). The criteria include absence of: corneal reflex, cranial nerve motor function, vestibulo-ocular reflex, and cough and gag reflex. Pupils are fixed and unresponsive, no spontaneous movement, and apnoea off ventilator (PaCO$_2$ >6.7kPa).
Transplant surgery and complications

Technique for donor removal
The kidney, ureter, vena cava, aorta, and renal vessels may be taken en bloc from a cadaveric donor. Transport media include University of Wisconsin preservation solution (with glutathione and adenosine) with the graft, then packed in ice. Living donor kidney and ureter may be harvested via a laparoscopic or open approach.

Surgery
The renal graft is most commonly placed into the iliac fossa, and the vessels anastomosed to the external iliac vein and artery (alternatives include common iliac vessels). An extravasal ureteric reimplantation is performed, and a ureteric stent inserted.

Immunosuppression after renal transplantation
Immunosuppression is used as prophylaxis against graft rejection. Agents utilized include:

- Calcineurin inhibitors (CNIs)—ciclosporin or tacrolimus, which inhibit IL-2 production. Blood level monitoring is required.
- Mycophenolate (MPA).
- Corticosteroid (prednisolone or methylprednisolone).
- Azathioprine, an antimetabolite producing bone marrow suppression.
- Antithymocyte globulin (ATG), a polyclonal antibody which can lyse human leucocytes.
- OKT3, a monoclonal antibody directed against T lymphocytes.
- Rapamycin, an mTOR inhibitor, involved in IL-2 downregulation.

Common regimens include CNI, MPA, and corticosteroid. Steroids can be stopped at 3–12 months post-surgery for patients on a combination of CNI and MPA. Azathioprine is an alternative to MPA in low-risk patients. The consent process should include the need for long-term immunosuppression and explanation of the related side effects (↑ risk of malignancy, infection, diabetes, hypertension, tremor, renal and liver problems, osteoporosis, etc.).

Post-operative management

- Monitor fluid balance with input and output charts and daily weights.
- Radionuclide renal scan to assess graft blood flow and exclude extravasation.
- Removal of the catheter at 7 days if no extravasation.
- Antiplatelet inhibitors (aspirin, dipyridamole).
- Antibacterial and antifungal prophylaxis.
- Avoid NSAIDs and ACE inhibitors.
- Be wary of drug interaction, and alter doses of drugs accordingly.

Complications
Graft dysfunction can occur early or late and may be due to medical or surgical causes.
Rejection
This manifests as renal function deterioration (oliguria, rising creatinine, hypertension, and proteinuria). Patients may be asymptomatic or have systemic symptoms (fever) or local symptoms, including graft tenderness or swelling. Investigate with percutaneous renal biopsy.
- **Hyperacute rejection** (intraoperatively or within days): due to preformed antibodies to allograft major histocompatibility complex (MHC). Treatment is graft removal.
- **Accelerated rejection** (within first week): due to cellular presensitization. Treatment is intensive antirejection treatment, with temporary dialysis support.
- **Acute allograft rejection** (occurs in the first 3 months): affects around 20–30% (90% respond to steroids). Classified as acute cellular rejection (ACR) which is T-cell-mediated or acute humoral rejection (AHR) which is antibody-mediated. ACR: treat with a steroid bolus. If this fails, employ intensified immunosuppression, conversion to tacrolimus, and T-cell-depleting agents. AHR: steroid bolus, conversion to tacrolimus, and IV immunoglobulin treatment.
- **Chronic allograft rejection** (months to years): is multifactorial and affects around 30%. Treatment options include conversion from CNI to mTOR inhibitor, or CNI reduction with MPA ± steroid cover.

Other
- Post-transplant malignancy. Most affect the skin (40%) or lymphatic system (11%).
- Graft loss due to recurrence of original renal disease.
- Urinary tract: urinary leak, ureteric stricture/obstruction, fistula, stones, perinephric collections (lymphocele, haematoma, urinoma, abscess).
- Vascular complications: renal artery stenosis or thrombosis, renal vein thrombosis, pseudoaneurysm, arteriovenous fistula, atheromatous vascular disease.
- Drug toxicity.
- Infection.
- Diabetes (thought to be due to use of corticosteroids and tacrolimus).
- Hypertension.

Outcomes
Recipient death rate at 12 months is 5%. Graft survival rate is >85% at 1y, 60–70% at 5y, and 40–50% at 10y. The best results are with living donors.

Long-term follow-up
Review every 6–12 months. Monitor renal function, immunosuppression, and side effects. Monitor cholesterol (may be raised due to ciclosporin or rapamycin). Diabetes control may be difficult due to steroids. Perform surveillance for the development of malignancy.
Urological eponyms
Alcock’s canal: canal for the internal pudendal vessels and nerve in the ischiorectal fossa.

Benjamin Alcock (b 1801). Professor of Anatomy, Physiology, and Pathology (1837) at the Apothecaries Hall in Dublin.

Anderson–Hynes pyeloplasty: dismembered pyeloplasty for PUJO.

James Anderson and Wilfred Hynes. Surgeons, Sheffield United Hospitals.

BCG (bacille Calmette–Guérin): attenuated TB bacillus used for immunotherapy of carcinoma in situ of the bladder.

Camille Guérin (b 1872). A veterinary surgeon at the Calmette Institute in Lille who, along with Calmette, developed the BCG vaccine.

Bonney’s test: elevation of the bladder neck during vaginal examination reduces leakage of urine during coughing (used to diagnose stress incontinence).

Bowman’s capsule: epithelial-lined ‘cup’ surrounding the glomerulus in the kidney.

Camper’s fascia: superficial layer of the superficial fascia (fat) of the abdomen and inguinal region.

Charrière system: system of measurement for ‘sizing’ catheters and stents.

Clutton’s sounds: metal probes for dilating the urethra (originally used for ‘sounding’ for bladder stones).

Henry Clutton (1850–1909). Surgeon to St Thomas’s Hospital, London.

Colles fascia: superficial fascia of the perineum.

Abraham Colles (1773–1843). Professor of Anatomy and Surgery in Dublin.

Denonvilliers fascia: rectovesical fascia.

Charles Denonvilliers (1808–1872). Professor of Anatomy, Paris and later Professor of Surgery.

Dormia basket: basket for extracting stones from the ureter.
Enrico Dormia. Assistant Professor of Surgery, Milan.

Douglas, pouch of: rectouterine pouch (in ♀), rectovesical pouch (in ♂).

Foley catheter: balloon catheter, designed to be self-retaining.

Foley pyeloplasty

Fournier’s gangrene: fulminating gangrene of the external genitalia and lower abdominal wall.

Jean Fournier (1832–1914). Professor of Dermatology, Hôpital St Louis, Paris. Also recognized the association between syphilis and tabes dorsalis.

Gerota’s fascia: the renal fascia.

Dumitru Gerota (1867–1939). Professor of Surgery, University of Budapest.

Henle, loop of: U-shaped segment of the nephron between the PCT and DCT.

Friedrich Henle (1809–1885). Professor of Anatomy, Zurich and Göttingen.

von Hippel–Lindau syndrome: syndrome of multiple renal cancers.

Arvid Lindau (b 1892). Swedish pathologist.

Hunner’s ulcer: ulcer in the bladder in interstitial cystitis.

Jaboulay procedure: operation for hydrocele repair (excision of hydrocele sac).

Klinefelter’s syndrome: ♂ hypogonadism with XXY chromosome complement.

Harry Klinefelter (b 1912). Associate Professor of Medicine, Johns Hopkins.

Kockerization of the duodenum: mobilization of the second part of the duodenum. Used to expose the IVC and right renal vein during radical nephrectomy.

Lahey forceps: curved forceps used during surgery.

Frank Lahey (1880–1953). Head of Surgery, Lahey Clinic, Boston.

Langenbeck retractor: commonly used retractor during surgery.

Leydig cells: interstitial cells of the testis.

Chapter 19 Urological eponyms

Malécot catheter: large-bore catheter, used for drainage of kidney following PCNL.

Millin’s prostatectomy: retropubic open prostatectomy.

Terence Millin (d 1980). Irish surgeon, trained in Dublin. Surgeon at Middlesex and Guy’s Hospitals and later, Westminster Hospital. Became President of the British Association of Urological Surgeons and then President of the Royal College of Surgeons of Ireland.

Peyronie’s disease: fibrosis of the shaft of the penis, causing a bend of the penis during erection.

Pfannenstiel incision: suprapubic incision used for surgery to the bladder and uterus.

Retzius, cave of: prevesical space.

Andreas Retzius (1796–1860). Professor of Anatomy and Physiology at the Karolinska Institute, Stockholm.

Santorini’s plexus: plexus of veins on the ventral surface of the prostate.

Scarpa’s fascia: deep layer of the superficial fascia of the abdominal wall.

Antonio Scarpa (1747–1832). Professor of Anatomy in Modena and Pavia.

Sertoli cells: supportive cells of the testicular epithelium.

Entrico Sertoli (1842–1910). Professor of Experimental Physiology, Milan.

Trendelenburg position: head-down operating position.

Friedrich Trendelenburg (1844–1924). Langenbeck’s assistant in Berlin and was then Professor of Surgery at Rostock, Bonn, and then Leipzig.

Weigert’s law: the inverse position of an ectopic ureter (the ureter of the upper moiety of a duplex system) drains distally into the bladder (or below into the urethra), whereas the lower pole ureter drains into a proximal position in the bladder.

Carl Weigert (1845–1904). German pathologist.

Wilms’ tumour: nephroblastoma of the kidney.

Max Wilms (1867–1918). Surgical assistant to Trendelenburg in Leipzig and subsequently Professor of Surgery in Leipzig. Later, Professor of Surgery in Basle and Heidelberg.

Young’s prostatectomy: perineal prostatectomy.

Hugh Hampton Young (1870–1945). Professor of Urology, Johns Hopkins School of Medicine.
Index

A
abdominal distension 29
abdominal examination 28–9
abiraterone 374–5
abscess
 perinephric 210–11
 peri-urethral 222
 prostatic 229
 psoas 33
acid–base balance 838, 839
acoustic shadow 44, 45
acquired immune deficiency syndrome 244
acquired renal cystic disease 414–15
Acucise® 427
acute bacterial prostatitis 228–9
acute epididymitis 224–5
acute loin pain 20–1
acute-on-chronic retention 120–1
acute pyelonephritis 208–9, 211, 660
acute urinary retention causes 104–5
definition 104
definitive management 108
initial management 108
lower urinary tract symptoms 81–2
mortality 109
pathophysiology 104
post-operative 107
pregnancy 659
risk factors 105
TURP 108–9
adenoma 254–5
ADH 836
adjustable compression device (ACT®) 153, 161
AdVance™ Male Sling 155, 158, 159
aggregation 444
Alcock’s canal 848–9
allopurinol 494
alpha blocker therapy 86–7
alpha-fetoprotein 398
Alpharad 377
alprostadil 590
amiodarone 224
Anderson–Hynes pyelo-plasty 425–7
androgen deprivation therapy 370, 372
androgen resistance 712–16
anejaculation 606, 607
angiomylipoma 254–5, 262–3
angiotensin I/II 837
anorgasmia 606, 607
antiandrogens 315, 371
Anticholinergic Cognitive Burden Scale 163
anticoagulation 733–4, 743
antiandrogens 574
antiplatelets 733
arteriovenous fistula 523–4, 525
attention
 artificial urinary sphincter 152–3, 155, 160–1, 643–5
 ascended testes 676
 aspirin 733–4
 assisted reproductive techniques 575
asymptomatic bacteriuria 660
atypical small acinar proliferation 346, 347
audit 6
augmentation
 enterocystoplasty 168–9
 autoimmune disease 416–18, 707
 autosomal recessive polycystic kidney disease 707
avalanfil 590, 591
axitinin 276–7
azospermia 568–9

B
bacteraemia 216
bacterial prostatitis 227, 228–9
bacterial resistance 202
bacteriuria 194
asymptomatic 660
Baden–Walker classification 188
balanitis 248
Zoon’s (plasma cell) 249, 382
balanitis xerotica obliterans 127, 248–9, 382
balanoposthitis 247, 248, 382
Balkan nephropathy 278–80
ballistic lithotripsy 460, 461
Barrington’s nucleus 626–7
Behçet’s syndrome 250
benign prostatic hyperplasia
 alpha blocker therapy 86–7
 androgens 72
 bladder outlet obstruction 73
 characteristics 72
 clinical practice guidelines 76
 combination therapy 90–1
 development 72
 diagnostic tests 76–7
 high intensity focused ultrasound (HIFU) 95
 holmium:YAG laser 99–100
 invasive surgical alternatives to TURP 96–100
 KTP laser vaporization of prostate 96–8
 laser prostatectomy 96
 minimally invasive surgery 94–5
 open prostatectomy 102–3
 phytotherapy 92
 prostate artery embolization 98
 prostatic urethral lift (UroLift®) 95
 5α-reductase inhibitor therapy 88–9
 transurethral electrovaporization of prostate (TUVP) 96
 transurethral micro-wave thermotherapy (TUMT) 94
 transurethral radiofrequency needle ablation (TUNA) 94
 transurethral resection of prostate (TURP) 102
 watchful waiting for uncomplicated cases 84
benign prostatic obstruction symptoms and signs 74
benign renal masses 262–3
bevacizumab 276–7
bicalutamide 371
bicarbonate reabsorption 838, 839
bilharzia 240–2
Birt–Hogg–Dubé syndrome 268–9
bladder afferent innervation 622
toxin injections 634–6
cancer, see bladder cancer capacity calculation 680
computed tomography 57
deafferentation 638
consequences of nerve damage 624
ederivation 638
embryology 670, 671
high pressure/low pressure 630
motor innervation 622, 828
cancer, see also neuropathic bladder
overactive, see overactive bladder
physiology 828
poor compliance 132–3, 628
pregnancy 659
TB 238
ultrasound 44
underactive 628, 722, 723
bladder augmentation neuropathic bladder 632–6
pregnancy 664
spontaneous rupture after 540
bladder cancer adenocarcinoma 284–6
adjuvant treatment 296–7
tology 282–3
alternative to TURBT 294
BCG 296–7
benign tumours 284–6
brachytherapy 302–3
carcinoma in situ 284–6
catheterized population 114–15, 640–41
clinical presentation 288
diagnosis 292–3
epidemiology 282–3
follow-up after TURBT 294
haematuria 288, 290–1
histological grading 284–5
incidence 282
initial treatment 292–3
intravesical chemotherapy 297
locally advanced 304–5
metastatic 305
mitomycin therapy 296–7
mortality 282
narrow-band imaging 292–3
muscle-invasive 298–303
non-muscle invasive TCC 294–7
occupational exposures 282–3
palliative treatment 303
partial cystectomy 298
pathology 284–6
PET 59
photodynamic detection 292–3
predicting recurrence and progression 294–5
cystectomy with urinary diversion 299–300
radical external beam radiotherapy 302–3
risk factors 282–3
salvage radical cystectomy 299
second resection 294
secondary cancer 284–6
signs 288
smoking link 282–3
spread 284–6
squamous cell carcinoma 284–6
staging 284–5
staging investigations 290–1, 298
survival 282
symptoms 288
systemic chemotherapy 305
TNM staging 284–5
transitional cell carcinoma 284–6
cystectomy of bladder tumour (TURBT) 292–3,
294, 780–1
urinary diversion techniques 306–7
urine cytology 42, 292
urine markers 292
bladder diary 136
bladder extrophy 665, 718–19
bladder injuries 538–40
Caesarian section 666–8
paediatrics 730
pelvic fracture 534, 535, 536
TURBT 780–1
bladder outlet obstruction (BOO) causes 73
pathophysiological consequences 73
women 124–5
bladder pain syndrome 232–5
bladder stones 114–15, 496–7
bladder washout fluids and techniques 756, 757
Boari flap 530
Bolam test 774
bone imaging 61
Bonney’s test 848–9
Bosniak’s classification 409
botulinum toxin-A 166–7, 632, 634–6
bowel preparation 734
Bowenoid papulosis 382–3
Bowen’s disease 383
Bowman’s capsule 848–9
brachytherapy 302–3, 362–3
brainstem lesions 652
buffering systems 838
bulbocavernous reflex 30
bulbourethral sling (Advance™ Male Sling) 155, 158, 159
Burch colposuspension 142, 143
Buschke–Löwenstein tumour 383
butterfly wing bruising 542, 544
C
cabozantinib 276–7
Caesarian section 666–8
calcium oxalate stones 446, 492–5
calcium phosphate stones 447, 494–5
calcium supplements 492–3, 494
Calcuson 461
calyceal diverticulum 411
Camper’s fascia 848–9
canal of Nück, hydrocele 32–3
Cantwell–Ransley technique 720
carcinoma 254–5
casts 41
cataract surgery 87
catheters
blockages 114–15, 640–1, 756, 778, 781
bypassing 114–15
care 116–17
complications 113–17
neuropathic patients 640–1
pelvic fracture 532
suprapubic 112–17
urethral 110–11, 113–17, 532
urological surgery 748–52
cauda equina compression 552–3
cave of Retzius 847–50
cavernosonography 587–8
cecoureterocele 700
cefalexin 205–6
cerebrovascular accidents 652
Charrière system 848–9
chemical sterilization 770
children, see paediatric urology
chimney sweepers' cancer 390
chlorine dioxide 770
chondroitin sulfate 204–5
chronic bacterial prostatitis 229
chronic epididymitis 225
chronic kidney disease, classification 38
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation 39
chronic loin pain 21–2
chronic pelvic pain syndrome 227, 230–1
chronic pyelonephritis 214
chronic scrotal pain 26–7
chronic urinary retention high-pressure 16–17, 25, 74, 122–3
ciprofloxacin 205–6
circumcision 683, 784–5
‘clam’ ileocystoplasty 168–9, 632–4
clearance 834
clearance ratio 834
cloacal exstrophy 719
Clostridium difficile 736–8
Clutton’s sounds 848–9
Cockcroft–Gault formula 39
Cohen repair 695
Colles fascia 848–9
communication skills 2–3
complete androgen insensitivity syndrome 712–16
completely patent urachus 29
computed tomography 54–7
condom sheaths 641
condyloma acuminatum 382–3
ConfirMDx® 338–9
genital adenoma hyperplasia 712–16
congenital obstructive posterior urethral membrane 704–5
connective tissue neoplasms 254–5
consent 774–5
contact laser prostatectomy 96
continent diversion 307
continent pouch 307
contrast-enhanced ultra-low dose CT 56
cystogram 52
cystolithotomy 820–1
cystometry 68, 136–7
cystoscopy 11, 12, 776–7

cystitis 200–1
interstitial 232, 233
malignant 288
non-infective 201
pregnancy 660

D
darifenacin 162–3
dartos pouch fixation 822
deaferentation 638
Decipher® 339
deep vein thrombosis 740–3
definitive survey 517
Deftix® 693–5
degarelix 372–1
delayed ejaculation 606, 607
Denovilliers fascia 848–9
desmopressin (DDAVP) 118–19, 725–6
detrusor areflexia 628
detrusor–external sphincter dysynergia 628, 629
detrusor hyperreflexia 628
detrusor muscle 828
detrusor myectomy 168–9
detrusor overactivity 130–1, 132–3, 166
DIAPPERS 176
diathermy 766–7
digital image capture systems 772
digital rectal examination 30, 76, 328
dipstick test 200, 8–9, 40, 290–1, 476
disorders of sex development 712–16
46XX disorders of sex development 712–16
46XX ‘pure’ gonadal dysgenesis 714
46XX testicular disorder of sex development 714
46XY disorders of sex development 712–16
diverticulum
calyceal 411
urethral 184–7
vesicourachal 29
DMSA scanning 61
documentation 4–5, 774
Dormia basket 848–9
drains 748–52
drug-eluting stents 733
Dundee technique 549
duplex kidney 434–6
dutasteride 72, 88
dysfunctional voiding 722, 723

ectopic cryptorchidism 676
ectopic kidney 428, 430
ectopic ureter 434, 698–9
ejaculation 583
anejaculation 606, 607
delayed 606, 607
painful 608
premature 604–5
retrograde 602
electroejaculation 607
electrohydraulic lithotripsy 456–9, 460
electromagnetic lithotripsy 456–9
electromotive drug administration 824, 825
embryology 670–4
emphysematous pyelonephritis 212–13
endopyelotomy 427
endoscopic cystolitholapaxy 820–1
endoscopy telescopes and light sources 772
engrailed-2 338–9
enterocutaneous fistula 803, 806
enzalutamide 374–5
epididymal cysts 34, 786, 787
epididymal pain syndrome 26–7
epididymal TB 238
epididymal tumours 391
epididymitis acute 224–5
chronic 225
epididymo-orchitis 26
epididymal TB 238
epididymal tumours 391
epididymitis
family juvenile
 nephronophthisis 707
femoral aneurysm 33
femoral hernia 32
Fenofibrate 162–3
fessotheride 72, 88
feline needle aspiration 261
fistula
arteriovenous 523–4, 525
enterocutaneous 803, 806
nephrocutaneous 809–10
vesicovaginal 172–4
flank (loin) pain 20–2, 56, 498
flexible cystoscopy 776–7
flexible ureteroscopes 812
flexible ureteroscopy and laser fragmentation 464–5, 813–14
FlowSecure™ 152–3, 155
fluid balance 744
fluor-371
Foley catheter 848–50
Foley pyeloplasty 848–50
follicle-stimulating hormone 556
foreskin 682–3
formation product 444
fosfomycin 205–6
Fournier’s gangrene 220–1, 488–50
Fournier’s gangrene severity index (FGSI) 221
Fowler–Stephens approach 678–9
Fowler’s syndrome 105, 124–5
fractures pelvic 532–6
penile 546, 547
frequency–volume chart 18–19
fronto-lopob lesions 652
Fuhrman grading system 264–5
gadolinium contrast 57
game intra-Fallopian transfer (GIFT) 576
‘gating’ mechanism 626
gender assignment 716
gene fusions 254–5
genital filariasis 242
genital ridges 672
genital symptoms 26–7
genital tract development 672–4
genital warts 382–3
genitourinary hydatid disease 242
genitourinary tuberculosis 238–9
germ cell tumours 59, 254–5
Gerota’s fascia 488–50
Giant condyloma acuminatum 383
GIFT 576
Gleason score 320–1
glomerular filtration rate (GFR) 38–9, 834–5
gonadal differentiation disorders 712–16
gonadotrophin-releasing hormone 556
gonococcal urethritis 619
gout 446–7
greenlight photoselective vaporization of prostate 96–8, 765
groin lumps 32–3
guidewires 754–5
gumma of testis 35
gunshot wounds 519, 546
haematuria 8–13, 40
bladder cancer 288, 290–1
causes 10
cystoscopy 11, 12
initial investigation 9
lower urinary tract symptoms 16–17
multidetector CT urography 11, 54–6
non-visible (microscopic/dipstick) 8–9, 290–1, 476
pregnancy 659
prostate cancer 378–9
5α-reductase inhibitor therapy 88–9
referral 9
significant 9
 transient (non-significant) 9
urine microscopy 290–1
urological investigations 11–13
visible (macroscopic/gross) 8, 290–1
haemodialysis 840
haemofiltration 841
haemorrhagic shock 744
haemospermia 14–15
Henderson–Hasselbalch equation 838
HIV 244–5, 392–3
holmium laser ablation of prostate (HoLAP) 99
holmium laser enucleation of prostate (HoLEP) 99–100
holmium laser resection of prostate (HoLRP) 99–100
hydrocele 26, 32–3, 786–7
hydronephrosis 44, 45, 502–4
antenatal 688–90
neuropathic patients 648
pregnancy 662–3
17α-hydroxylase deficiency 714–15
3β-hydroxyysteroid dehydrogenase deficiency 714
hypercalcaemia 446
hypercalcuria 446
hyperoxaluria 446
hyperprolactinaemia 574
hyperuricosuria 446
hypocitraturia 446
hypogonadism 614–16
late-onset 610–12
secondary 574
hypoplasias 708–10
hypothalamic–pituitary–testicular axis 556, 557
hypospadias 708–10
hypovolaemic shock 516
hydronephrosis 44, 45, 502–4
antenatal 688–90
neuropathic patients 648
pregnancy 662–3
17α-hydroxylase deficiency 714–15
3β-hydroxyysteroid dehydrogenase deficiency 714
hypercalcaemia 446
hypercalcuria 446
hyperoxaluria 446
hyperprolactinaemia 574
hyperuricosuria 446
hypocitraturia 446
hypogonadism 614–16
late-onset 610–12
secondary 574
hypoplasias 708–10
hypothalamic–pituitary–testicular axis 556, 557
hypospadias 708–10
hypovolaemic shock 516

iAluRil® 204–5
ICDs 767
icd glove method 549
ICSI 576
ileal conduit 306–7, 507, 665, 806–7
ileal loopogram 52
immunotherapy 276–7
impotence, see erectile dysfunction
incisions 794–5
incomplete (partial) androgen insensitivity syndrome 712–16
incontinence, see urinary incontinence
Incontinence Modular Questionnaire (ICIQ-U1 SF) 135
International Consultation on Incontinence Modular Questionnaire (ICIQ-U1 SF) 135
International Index of Erectile Function short form (IIEF 5) 589
International Prostate Symptom Score (IPSS) 16–17
InterStim 118, 654–5
intraoperative floppy iris syndrome 87
intratubular germ cell neoplasia 392–3, 395, 405
intrauterine insemination 576
intraocular pressure 604–5
intravenous urography 48–50
intravenous pyelography 48–50
Intrinsically rich sphincter deficiency 130–1, 133
Invicorp® 591
irrigating fluids 756
IVF 576
JJ stents 758–62
alternatives 759
blockages 760
complications 760
‘forgotten stent’ 760
indications and uses 758–9
insertion technique 796
materials 758
IVF 576

Jaboulay procedure 786, 848–50
Johansen score 564
INDEX

K
4K score 334–5
Kaposi’s sarcoma 382–3
Katayama fever 241
ketamine misuse 236–7
kidney anatomy 830, 831, 832
assessing function 38–9
cancer 59
duplex 434–6
ectopic 428, 430
enlarged 28
horseshoe 428, 429
malrotation 432, 433
TB 238
kidney stones aggregation 444
airline pilots 454–5
calcium oxalate 446, 492–5
calcium phosphate 447, 494–5
classification 442–3
clinically insignificant residual fragments 459
composition 442
cystine stones 448, 474, 494–5
diagnostic tests 452
diet 439–40, 450, 492–3
dissolution therapy 474–5
epidemiology 438–40
evaluation of stone former 450–1
extracorporeal lithotripsy 456–9
factors affecting stone formation 438–40
flexible ureteroscopy and laser fragmentation 464–5, 813–14
fluid intake 439–40, 492
genetics 439
infection stones 447, 494–5
intracorporeal fragmentation 460–2
KUB X-ray 46
mechanisms of formation 444, 445
non-functioning kidney 472
nucleation 444
obesity 439
open stone surgery 472
percutaneous nephrolithotomy 466–70, 524–5, 808–10
predisposing factors 446–8
presentation 452
prevalence 438
prevention 492–5
radiodensity on X-ray 442
risk factors 438, 450
risk of recurrence 438
seasonality 439–40
sex differences 439
size and shape 442–3
staghorn calculi 442–3, 454–5, 472
struvite (triple phosphate) 447
ultrasound 44, 45
uric acid 446–7, 474, 494–5
watchful waiting 454–5
Klinefelter’s syndrome 714, 848–50
Kockerization of duodenum 848–50
KTP (greenlight) laser vaporization of prostate 96–8, 765
L
Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC) score 220–1
lactate dehydrogenase 398
Lahey forceps 848–50
Langenbeck retractor 848–50
laparoscopic surgery 818–19
partial nephrectomy 272
pyeloplasty 425–7, 819
radical nephrectomy 819
radical prostatectomy 352–3, 354
simple nephrectomy 819
laser lithotripsy 462, 814
laser prostatectomy 96
lasers 764–5
late-onset hypogonadism 610–12
Leadbetter–Politano repair 695
Leibovitch score 273
leiomyosarcoma 254–5
Lemberger/Yachia technique 596
leukocyte esterase 40, 200
Leydig cells 556, 848–50
LHRH agonists (analogues) 370–1
lichen planus 249, 382
lichen sclerosis 127, 248–9, 382
lipoma, cord 33
Lithoclast 461
Lithovac 460
liver enlargement 28
loin (flank) pain 20–2, 56, 498
long-term catheterization 640–1
loop of Henle 848–50
Lord’s plication technique 786
low pressure hydrodistension 233–4
lower midline, extraperitoneal incision 794
lower urinary tract symptoms (LUTS) bothersome symptoms 81
causes 16–17
children 722
classification 78–82
conservative management 78–9
diagnostic tests in suspected benign prostate hyperplasia 76–7
drug treatment 78–9
haematuria 16–17
initial (primary care) assessment 78–9
NICE 2010 Guidelines 78–82, 121
pregnancy 659
prostate cancer 81, 378–9
reasons for seeking treatment 80–1
referral 79
specialist assessment 79–81
surgical treatment 79–81
symptoms 16–17
terminology 16–17, 74
treatment goals 81
urinary retention risk 81–2
Lue procedure 595
lumps groin 32–3
scrotal 34–5
luteinizing hormone 556
luteinizing hormone-releasing hormone 556
lymphoma, testicular 405
Lynch syndrome 278–80
M
M region 626–7
MAG3 renogram 60–1
magnetic resonance imaging 57
Malécot catheter 847–50
malignant cystitis 288
INDEX

malignant epithelial neoplasms 254–5
malignant neoplasms 254–5
malignant ureteric obstruction 550
malrotation of kidney 432, 433
medical expulsive therapy 481
medical notes 4–5, 774
Medtronic InterStim 118, 654–5
medullary cystic disease 707
medullary sponge kidney 412–13
mesonephric ducts 670, 672
mesonephros 670
metabolic syndrome 616
metanephros 670
metformin 315
methenamine hippurate 204–5
microRNA 254–5
microseminoprotein-β (MSMB) 338–9
micturition 626–7, 828–9
midline, transperitoneal incision 794
midurethral slings 144–8
Millin’s prostatectomy 847–50
mini tapes 147
mirabegron 163
mitomycin 296–7
Mitrofanoff procedure 595–6, 788
modifications of Diet in Renal Disease (MDRD) equation 39
monosymptomatic nocturnal enuresis 724–6
Müllerian (paramesonephric) ducts 670, 672
Müllerian inhibiting substance 672
multidetector CT urography 11, 54
multilocular cystic nephroma 706–7
multiparametric MRI 57, 324–5, 343
multiple sclerosis 650
multiple system atrophy 650–2
mumps orchitis 225
MUSE™ 590
myeloproliferative disorders 446–7
narrow-band imaging 292–3
National Institute of Health Chronic Prostatitis Symptom Index (NIH-CPSI) 230
needle biopsy 261
needle stick injury 245
neoplasia 254–5
nephrectomy 272–3, 798–9, 819
nephroblastoma 256–8
nephrectomy 272–3, 798–9, 819
nephroblastoma 256–8
nephrocutaneous fistula 809–10
nephron 830, 831, 832
neurological disease 16–17, 628; see also neuropathic bladder
neuromodulation 654–5
note keeping 4–5, 774
nucleation 444

N

National Institute of Health Chronic Prostatitis Symptom Index (NIH-CPSI) 230
needle biopsy 261
needle stick injury 245
neoplasia 254–5
nephrectomy 272–3, 798–9, 819
nephroblastoma 256–8
nephrocutaneous fistula 809–10
nephron 830, 831, 832
neurological disease 16–17, 628; see also neuropathic bladder
neuromodulation 168–9, 654–5
neuropathic bladder 628
augmentation 632–6
botulinum toxin injections 632, 634–6
choice of bladder management technique 632–8
condom sheaths 641
deferentiation 638
dehydronephrosis 648
incontinence 642–5
intermittent catheterization 640
long-term catheterization 640–1
neuromodulation 654–5
storage and emptying problems 630
urinary tract infections 646–7
nitric oxide donors 632
nitrite testing 40, 200
nivolumab 277
nocturia 18–19, 118–19
nocturnal enuresis 130–1, 724–6
nocturnal polyuria 18–19, 78–9, 118–19
non-gonococcal urethritis 619
non-monosymptomatic nocturnal enuresis 724–6
non-polycystic nocturia 118
note keeping 4–5, 774
nucleation 444

O

OAT syndrome 566
obstructive sleep apnoea 119
occupational needle stick injury 245
oestrogen, topical 163–4
oligozoospermia 566
oncocytoma 254–5, 262
oncogenes 254–5
Oncotype Dx® 339
Onuf’s nucleus 622–3, 828
open cystolithotomy 820–1
open prostatectomy 102–3
open pyeloplasty 425–7
open stone surgery 472
operation notes 5
optical urethrotomy 127, 782
orchidectomy 370, 371, 397, 792–3
orchitis 34, 225
orgasmic dysfunction 606
orthotopic neobladder 307, 665
overactive bladder anticholinergic medication 162–3
botulinum toxin-A 166–7
children 722, 723
combination therapy 163
conservative management 162
definition 162–4, 628
mirabegron 163
percutaneous tibial nerve stimulation 168–9
post-prostatectomy 155–6
sacral nerve stimulation 168–9
surgery 168–9
topical oestrogen 163–4
urgency 24
overactive sphincter 628
overflow incontinence 130–1
ovotesticular disorder of sex development 714
oxybutynin 162–3
pacemakers 767
pad testing 136
paediatric urology
antena tal hydronephrosis 688–90
bladder capacity 680
coital incontinence 130–1
consent 775
cystic kidney
disease 706–7
disorders of sex
development 712–16
ectopic ureter 698–9
exstrophy–epispadias
complex 718–19
foreskin 682–3
hypospadias 708–10
megaprepuce 683
megaureter 696–7
nocturnal enuresis 130–1, 724–6
pelviureteric junction obstruction 20–1, 424–7, 702–3
penetrating renal injuries 519
penile amputation 386–7, 546, 547
penile arteriography 587–8
penile bites 547
penile cancer 384–8
aetiology 384
clinical presentation 386
examination 386
follow-up 388
incidence 384
investigations 386
lymphadenopathy 387–8
pathology 384
prognostic factors 385
risk factors 384
staging 384, 385
survival 387
treatment 386–8
penile fracture 546, 547
penile injuries 546, 547
penile neoplasia 383; see also penile cancer
penile protheses 592, 596
penile TB 238
penile vacuum pump 595
penis
fascial layers 543
inflammatory disorders 248–50
zipper injuries 547
peptide growth factors 254–5
percutaneous nephro lithotomy 466–70, 524–5, 808–10
percutaneous tibial nerve stimulation 168–9
perinephric abscess 210–11
peripheral neuropathies 652–3
peristalsis 510
peritoneal dialysis 840–1
peri-urethral abscess 222
PET/CT 58–9
Peyronie’s
disease 847–50, 594–6
Peyronie’s plaque 382
Pfannenstiel incision 847–50, 794–5
phimosis 246–7, 682
phosphodiesterase type-5 inhibitors 590, 591
photodynamic detection 292–3
photodynamic therapy 365
phytotherapy 92
piezoelectric lithotripsy 456–9
placenta abnormalities 665–7
placental alkaline phosphatase 398
plain abdominal radiography 46
plasma cell (Zoon’s) balanitis 249, 382
puematic (ballistic) lithotripsy 460, 461
Polars® 339
poly-ADP ribose polymerase 377
polycystic kidney disease autosomal dominant 416–18, 707
autosomal recessive 707
polypria 18–19
nocturnal 18–19, 78–9, 118–19
pons micturition centre 626–7
pop-off valve syndrome 704
posenmission emission tomography (PET) 58–9
post-gonococcal urethritis 620
post-micturition dribble 130–1
post-vasectomy pain syndrome 26–7
post-void residual urine volume 66–7, 76, 136
posterior tibial nerve stimulation 654
posterior urethral valves 704–5
potassium citrate 493
potassium regulation 837
pouch of Douglas 837
pregnancy
acute pyelonephritis 660
acute urinary retention 659
antibiotic prescribing 661
asymptomatic bacteriuria 660
bladder injury during Caesarian section 666–8
cystitis 660
diagnostic imaging studies 498–9
flank pain 498
haematuria 659
hydronephrosis 662–3
lower urinary tract reconstruction 666–8
lower urinary tract symptoms 659
physiological and anatomical changes in urinary tract 658–9
placenta abnormalities 665–7
stress incontinence 659
ureteric stones 498–500
urinary retention after childbirth 667–8
urinary tract infection 660–1
premature ejaculation 604–5
pressure flow studies 68, 77
priapism 27, 598–601
primary epispadias 720
primary hyperoxaluria 446
primary nocturnal enuresis 130–1, 724–6
primary survey 516
prostate digital rectal examination 30
prostate artery embolization 98
prostate cancer active surveillance 349
adenocarcinoma 318–19
adjuvant radiotherapy 358–9
aetiology 310–11
age 310–11
anaemia 379
androgen deprivation therapy 370, 372
antiandrogens 315, 371
bilateral orchidectomy 370, 371
bilateral pelvic lymphadenectomy 353
biochemical relapse post-RP 357–9
biopsy 340–4
brachytherapy 362–3
castrate-resistant 374–7
chemoprevention 315–16
clinical presentation 328
coagulopathy 379
counselling pre-PSA testing 336
cryotherapy 364
cytotoxic chemotherapy 376
diet 310, 314–16
digital rectal examination 328
epidemiology 310–11
ethnicity 310–11
exercise 310–11
external beam radiotherapy 360–1, 366–7
family history 310–11
focal therapy 365
geographic variation 310–11
Gleason score 320–1
haematuria 378–9
high intensity focused ultrasound (HIFU) 364–5
hormonal factors 310, 368
hormone therapy 368–73, 374–7
intermittent hormone therapy 372–3
LHRH agonists (analougues) 370–1
lifestyle intervention 314–16
localized 328
locally advanced disease 318–19
locally advanced non-metastatic disease 328, 366–7
lower urinary tract symptoms 81, 378–9
maximal androgen blockade 370
metastatic disease 318–19, 328
metformin 315
minimally invasive management of localized and radio-recurrent disease 364–5
molecular markers 338–9
mortality 312
multi-parametric MRI 324–5, 343
novel therapies 377
oncological outcomes of radical prostatectomy 356–9
pain control 378
palliative treatment 367, 376, 378–9
pathology 318–19
perineural invasion 318–19
PET 58
photodynamic therapy 365
prevalence 312
prevention 314–16
prostate-specific antigen (PSA) 330–1, 332–3, 334–5
radical prostatectomy 350–3, 354–5, 356–9, 366
risk factors 310–11
salvage radiotherapy 358–9
sarcoma 318–19
screening 330–1
staging 324–6
statins 316
survival 313
thrombocytopenia 379
transrectal ultrasound and needle biopsy 340–4
ureteric obstruction 379
urinary retention 378–9
Vienna nomogram 343
watchful waiting 348–9
prostate cancer antigen 3 (PCA3) 338–9
Prostate Health Index 334–5
prostate pain syndrome 227, 230–1
prostate-specific antigen (PSA) 43
age-adjusted normal range 43
benign prostatic hyperplasia 76
density 334–5
doubling time 334–5
free-to-total ratio 334–5
indications for checking 43
prostate cancer 330–1, 332–3, 334–5
velocity 334–5
INDEX

prostatic abscess 229
prostatic intraepithelial neoplasia 254–5, 346, 347
prostatic urethral lift (UroLift®) 95
prostatitis 226–7
bacterial 227, 228–9
chronic non-bacterial/chronic pelvic pain syndrome 230–1
classification 226
epidemiology 226
inflammatory and non-inflammatory 227
pathophysiology 227
segmented urine cultures 226
proteinuria 40
Provenge® 377
pseudotumour 260–1
psoas abscess 33
psoas hitch 529
psoas shadow 46, 47
psoriasis 249, 382
psychosexual therapy 590
pulmonary embolism 740–3
pyelolysis 427
pyelonephritis acute 208–9, 211, 660
complicated 211
emphysematous 212–13
pregnancy 660
xanthogranulomatous 213
pyeloplasty 425–7, 816–17, 819
pyonephrosis 210, 211
pyuria 194
radical cystectomy 299–300, 802–4
radical nephrectomy 272–3, 819
radical orchidectomy 397, 792–3
radical prostatectomy 154, 350–3, 354–5, 356–9, 366, 800–1
radiofrequency ablation 274
radioisotope imaging 60–1
radium-223 377
Randall’s plaques 444
record keeping 4–5, 774
red blood cell casts 41
red blood cell morphology 41
5α-reductase deficiency 714–15
inhibitors 88–9, 315
refractory septic shock 216
Reiter’s syndrome 249
renal agenesis 432
renal anatomy 830, 831, 832
renal arteriovenous fistula 523–4, 525
renal artery embolization 274
renal ascension anomalies 428
renal blood flow 835
urinary tract obstruction 508–9
renal cell carcinoma 264–6
active surveillance 274
adjuvant therapy 274
aetiology 268–9
chromophobe 264–5
clear cell 264–5
clinical examination 270
collecting duct (Bellini) 264–5
cryosurgery 274
environmental factors 268–9
epidemiology 268
follow-up after treatment 275
Fuhrman grading system 264–5
high intensity focused ultrasound (HIFU) 274
histological classification 264–5
history 270
image-guide percutaneous RFA 274
immunotherapy 276–7
incidence 268
investigations 271
local recurrence 275
medullary cell 264–5
metastatic disease 264–6, 275, 276–7
minimally invasive surgery 272
mortality 268
non-surgical alternatives for localized disease 274
parapapillary 264–5, 268–9
paraneoplastic syndromes 270
partial nephrectomy 272
pathology 264–6
post-operative prognosis (Leibovich score) 273
presentation 270
prognosis 266
radical nephrectomy 272–3
renal artery embolization 274
sarcomatoid histology 264–5
screening 269
staging 265, 266
survival 268
renal CT 56
renal cysts 260, 408–10, 414–18, 706–7
renal fusion anomalies 428
renal masses benign 262–3
radiological assessment 260–1
renal physiology 834–8
renal plasma clearance 834
renal replacement therapy 840–1
renal transplant donor 843
recipient 842
rejection 845
surgery and complications 844–5
renal trauma 518–25, 730
renal tubular acidosis 447, 451
renal ultrasound 44, 77
renin–angiotensin–aldosterone system 837
renogram 60–1
resistive index 662–3
resuscitation 516–17
retention cysts 382
retrograde ejaculation 602
retrograde urography 52
retroperitoneal fibrosis 512–13
retropubic tape 144–5
rigid cystoscopy 776–7
RigiScan 587–8
robot-assisted partial nephrectomy 272
robot-assisted radical prostatectomy 350–3, 354
sacral nerve stimulation 168–9, 654–5
Santorini’s plexus 847–50
saphena varix 32
Saw palmetto 92
Scarpa’s fascia 847–50
schistosomiasis 240–2
screening prostate cancer 330–1
renal cell carcinoma 269
scrotal carcinoma 390
scrotal exploration 822–3
scrotal lumps 34–5
scrotal pain 26–7
INDEX

scrotal skin carcinoma 35
sebaceous cyst 35
secondary hypogonadism 574
secondary malignant neoplasms 254–5
secondary nocturnal enuresis 130–1, 724–6
secondary survey 517
segmented urine cultures 226
SelectMDx® 338–9
semen analysis 562–3
cryo-preservation 575–6
semi-rigid ureteroscopes 812
seminoma 35, 404–5
sepsis 216
septic shock 216
Sertoli cells 847–50, 556
serum creatinine 38–9, 76
severe sepsis 216
sex chromosome disorders of sex development 712–16
Sexual Health Inventory for Men (SHIM) 589
shock 516, 744–5
shock wave lithotripsy 456–9
Shy–Drager syndrome 650–1
sildenafil 590, 591
sipuleucel-T 377
sodium hyaluronate 204–5
sodium urate 446–7
solifenacin 162–3
solubility product 444
SOMACorrectXtra 595
sperm extraction 575
granuloma 790
motility grading 563
retrieval from urine 602
spermatic vein ligation 571–2
spermatocele 34
spermatocele tumours 391
supra-twelfth rib incision 795
suprapubic catheterization 112–17
surgery, see urological surgery
swimmer’s itch 241
syphilis 35
systemic inflammatory response syndrome (SIRS) 216
T
tadalafil 590, 591
tamsulosin 87
technetium scan 60–1
temsirolimus 276–7
teratoma 35
testes
ascended 676
gamma 35
ultrasound 44
undescended 33, 676–9
testicular adnexa tumours 391
testicular appendage torsion 548
testicular biopsy 564
testicular cancer aetiology 392–3
age 392–3
clinical presentation 396–7
cryptorchidism 392–3
differential diagnosis 396 epidemiology 392–3
hereditary factors 392–3
incidence 392
intratubular germ cell neoplasia 392–3, 395, 405
investigations 396–7
mortality 392
non-seminomatous germ cell tumours 400–1
pathology 394–5
primary treatment 397
prognostic staging for metastatic germ cell tumours 402
radical inguinal orchidectomy 397
retroperitoneal lymph node dissection 401
seminoma 404–5
serum markers 398
signs 396
staging 394–5
symptoms 396
ultrasound 396–7
testicular injuries 545
testicular intraepithelial neoplasia (TIN) 392–3, 395, 405
testicular lymphoma 405
testicular pain syndrome 26–7
testicular torsion 26, 548, 822–3
testicular tumours 35; see also testicular cancer, 26
testosterone 72, 556
assessment 611
therapy 592, 614–16
thiazide diuretics 494
3-swab test 172
Tile classification 533
tolterodine 162–3
Tookad® 365
total body water 836
transitional cell carcinoma 278–80, 284–6, 294–7
transitional cell papilloma 254–5
transobturator tape 144–6
transplacental androgens 714–15
transrectal ultrasound (TRUS) 44, 340–4
transuretero-ureterostomy 531
transurethral electrovaporization of prostate (TUVP) 96
transurethral micro-wave thermotherapy (TUMT) 94
transurethral radiofrequency needle ablation (TUNA) 94
transurethral resection of bladder tumour (TURBT) 292–3, 294, 780–1
transurethral resection of prostate (TURP) 102, 778–9
aspirin 733
catheter blockage 756, 778
haemorrhage 778–9
urinary retention 108–9
transurethral resection syndrome 747, 781
transurethral ultrasound-guided laser-induced prostatectomy (TULIP) 96
transverse myelitis 652
trauma bladder injuries 538–40, 730
blunt injuries 518–19
cauda equina compression 552–3
complications of renal injury 523–4
conservative management of renal injuries 522
definitive survey 517
embolization 522, 523
haemodynamically stable patients 520
haemodynamically unstable patients 520
hypertension 524
imaging choice 521
paediatric 519, 730
pelvic fracture 532–6
penetrating injuries 519
penile injuries 546, 547
primary survey 516
renal 518–25, 730
resuscitation 516–17
secondary survey 517
spinal cord compression 552
staging renal injury 519
surgical exploration 522, 523
testicular injuries 545
ureteric injuries 526–31, 532–6, 730
ureteral injuries 535, 536, 541–4
urinalysis 517
urinary extravasation 522, 523–4
Trendelenburg position 847–50
trigone 828
trimethoprim 205–6
tuberculosis 238–9
tuberculous epididymo-orchitis 35
tuberculous sclerosis 268–9, 417, 707
tumour colic 20–1
tumour flare 370–1
pain 20
percutaneous nephrostomy tube 482
ultrasound lithotripsy 460, 461
ultrasound 44, 77, 396–7
umbilical cyst/sinus 29
underactive bladder 628, 722, 723
underactive sphincter 628
undescended testes 33, 676–9
UPOINT system 234
urachus 29
ureter
ectopic 434, 698–9
infiltration 511
TB 238
ureteric access sheaths 813
ureteric colic 20
ureteric dilatation 813
ureteric duplication 434–6
ureteric implantation into neobladder 507
ureteric injuries 526–31, 532–6, 730
ureteric obstruction 379, 508–9
malignant 550
ureteric pressure 508–9
ureteric stones
acute management 480–1
bacteriuria 482–5
definitive treatment 482
diagnostic and radiological imaging 478–9
dipstick or microscopic haematuria 476
EAU/AUA Nephrolithiasis Guideline Panel recommendations 488–90
emergency temporizing 482
emergency treatment of obstructed infected kidney 484–5
examination 476
indications for intervention 482–5
indications for stone removal 486
JJ stents 482, 483
KUB X-ray 46
medical expulsive therapy 481
pregnancy 498–500
post-ureteroscopy stenting 489–90
presentation 476–7
temperature 476–7
treatment options 488–90
watchful waiting 480
ureteric strictures 506–7
ureterocoele 700–1
ureteroenteric strictures 507
ureteropelvic junction obstruction 20–1, 424–7, 702–3
ureteroscopes 812–15
ureteroscopic irrigation systems 812
ureteroscopy 812–15
stenting after 489–90, 760, 814
uretersigmoidostomy 306
urethra
embryology 670–1
physiology 828
sensory innervation 623–4
ultrasound 44
urethral bulking agents 140, 161
urethral cancer 380–1
urethral catheterization 110–11, 113–17, 532
urethral dilatation 127
urethral diverticulum 184–7
urethral hypermobility 133
urethral injuries 535, 536, 541–4
urethral pressure profile 138–9
urethral sling (male) 644–5
urethral sphincter EMG 136–7
high pressure/low pressure 630
intrinsic deficiency 130–1, 133
neurological disease 628
overactive/underactive 628
somatic motor innervation 622–4
urethral stenosis 126–7
urethral stricture 126–7
urethritis 618–20
urethrography 52, 53
urge urinary incontinence 24, 130–1
uric acid stones 446–7, 474, 494–5, 728
urinary diversion 168–9, 306–7
urinary extravasation 522, 523–4
urinary incontinence causes 132–3
children 722–3
classification 130–1
coital 130–1
continuous 130–1
definition 24, 130
detrusor overactivity 130–1, 132–3
elderly patients 176–7, 182
evaluation 134–7
giggle 722, 723
history 134
initial management in men 180
initial management in women 178
insensible 130–1
intrinsic sphincter deficiency 130–1, 133
investigations 136
low bladder compliance 132–3
mixed 24, 130–1, 170–1
neuropathic patients 642–5
overflow 130–1
pathophysiology 132–3
patient questionnaires 134, 135
physical examination 134
post-prostatectomy 154–61, 355
prevalence 130, 131
red flags 134
risk factors 132
specialized management in men 181
specialized management in women 179
stress, see stress urinary incontinence
urge 24, 130–1
urinary retention post-partum 667–8
prostate cancer 378–9
see also acute urinary retention; chronic urinary retention
urinary schistosomiasis 240–2
urinary sepsis 216–19
urinary tract infection antibiotic prophylaxis 205–6
antimicrobial therapy 202, 203
bacterial persistence 207
bacterial resistance 202
catheter-related 114–16
causative organisms 197
children 684–7
complicated 194, 196
definition 194
diagnostic criteria 195
investigation 200–1
isolated 194
microbiology 196–8, 198
neuropathic patients 646–7
post-intercourse prophylaxis 206
post-stenting 760
pregnancy 660–1
prevalence 195
preventative advice 203
recurrent 194, 204–7
re-infection 204
risk factors 195
route of infection 196
self-start therapy 206
uncomplicated 194, 196
unresolved 194
urinary tract obstruction 508–9
urine constant leakage 25
inhibitors of crystallization 444
metastable 444
pH 40, 201, 451
saturated 444
segmented cultures 226
storage 626
supersaturated 444
undersaturated 444
urine cytology 42, 292
urine dipstick test 8–9, 114, 200, 290–1, 476
urine flow measurement 62–4, 76, 136
physiology 510
urine microscopy 41, 201, 290–1
urine molecular markers 292
urinoma 523–4
urodynamic stress incontinence 130–1
uroflowmetry 62–4, 76, 136
UroLift® 95
urological surgery antibiotic prophylaxis 736–8
anticoagulation 733–4, 743
artificial heart valves 736
bladder washout fluids and techniques 756, 757
bowel preparation 734
catheters 748–52
corector 774–5
deep vein thrombosis and pulmonary embolism 740–3
diathermy 746–7
drains 748–52
urological surgery (Contd)
endoscopy telescopes and light sources 772
fluid balance 744
guidewires 754–5
incisions 794–5
irrigating fluids 756
joint replacement patients 736–8
laparoscopic 818–19
lasers 764–5
pacemakers and ICDs 767
patient preparation 732–4
patient safety 746
shock 744–5
sterilization of equipment 770–1
urosepsis 216–19
urothelium 828

V
vacuum erection devices 591–2
vaginal reflux 722
vagino-obturator shelf/paravaginal repair 142–3
vardenafil 590, 591
variant CJD 770–1
varicocele 35, 570–2
vasectomy 578, 790–1
reversal 578–9, 790, 791
vasopressin 836
vasovasostomy 578–9, 790, 791
vegetarian diet 493
venous thromboembolism 740–3
verrucous hyperplasia 383
vesicourachal diverticulum 29
vesicoureteric reflux 420–2, 692–5
vesicovaginal fistula 172–4
vibrostimulation 607
videocystometry 68
videocystourthrography 52, 53
Vienna nomogram 343
visual laser ablation of prostate 96
voiding postponement 722
von Hippel–Lindau syndrome 268–9, 417, 707, 848–50

W
wag artefact 62, 63
warfarin 743
water balance 836
Weigert–Meyer rule 434, 436, 692, 698–9
Weigert’s law 847–50
white blood cell casts 41
white blood cells 4O, 200
Wickham’s striae 249
Wilms’ tumour 847–50, 254–5, 256–8
Wolffian ducts 67O, 672
Wunderlich’s syndrome 263

X
xanthogranulomatous pyelonephritis 213

Y
Young–Dees–Leadbetter procedure 720
Young’s prostatectomy 847–50

Z
zipper injuries 547
Zoon’s balanitis 249, 382