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Foreword

It is remarkable to me that well over half of the subject matter in this book simply
did not exist when I taught my first electric machines course in 1959. This is
testimony to the expanding role of electromechanical conversion systems, fueled by
demands for improved energy management and enabled by developments in power
electronic devices and systems. It also speaks to the depth and breadth of the topical
coverage in the book.

The organisation into four parts, Electric Machines, Power Electronics, Electric
Drives and Drive Dynamics, provides substantial flexibility. Viewed as a textbook,
the four parts together provide comprehensive content suitable for a multi-semester
course sequence in electromechanical energy conversion. Alternatively, Part 1 can
be used alone for a one-semester course in Electric Machines and portions of Parts
2–4 for a one-semester Electric Drives course and a more advanced course
emphasising dynamics using Part 4. The book can also be viewed as a valuable
reference book because of its comprehensive coverage of the subject area including
many special topics such as stepping motors, switched reluctance motors, small
electric motor drives and voltage surges in electrical machines.

I spent a semester in Gent as a Fulbright Lecturer and had the opportunity to
collaborate with the author on the influence of magnetic saturation on electric
machine dynamic behaviour. This experience left me with a deep appreciation
of the author' s dedication to accurate but clear description of technical matters that
has carried over to this text.

Whether as a text or a reference, the content of this book provides a compre-
hensive treatment of electric machines and drives spiced with a generous collection
of special topics not usually included in contemporary books. It is a worthy addition
to any collection of electric machines books.

Donald Novotny
Emeritus Professor, Department of Electrical and
Computer Engineering University of Wisconsin—

Madison, Madison USA



Preface

This work can be used as a comprehensive study and reference textbook on the
most common electrical machines and drives. In contrast with many textbooks on
drives, this book goes back to the fundamentals of electrical machines and drives,
following in the footsteps of the traditional textbooks written by Richter and
Bödefeld & Sequenz in German.

The basic idea is to start from the pure electromagnetic principles to derive both
the equivalent circuits and the steady-state equations of these electrical machines
(e.g. in Part 1) as well as its dynamic equations in Part 4. In my view, only this
approach leads to a full understanding of the machine, of the steady-state behaviour
of a drive and its dynamics. Much attention is paid to the electromagnetic basis and
to analytical modelling. Intentionally, computer simulation is not addressed,
although the students are required to use computer models in the exercises and
projects, for example, for the section on power electronics or that on dynamic
modelling and behaviour. I have successfully used this approach for more than 30
years, and I often receive mails and requests from former students working abroad,
who would like my course texts in electronic format. Indeed, few (if any) books
offer a similar in-depth approach to the study of the dynamics of drives.

The textbook is used as the course text for the Bachelor’s and Master’s pro-
gramme in electrical and mechanical engineering at the Faculty of Engineering and
Architecture of Ghent University. Parts 1 and 2 are taught in the basic course
‘Fundamentals of Electric Drives’ in the third bachelor. Part 3 is used for the course
‘Controlled Electrical Drives’ in the first master, while Part 4 is used in the spe-
cialised master on electrical energy.

Part 1 focuses mainly on the steady-state operation of rotating field machines.
Nevertheless, the first two chapters are devoted to transformers and DC commutator
machines: the chapter on transformers is included as an introduction to induction
and synchronous machines, their electromagnetics and equivalent circuits, while
that on DC commutator machines concludes with the interesting motor and gen-
erator characteristics of these machines, mainly as a reference. Chapters 3 and 4
offer an in-depth study of induction and synchronous machines, respectively.
Starting from their electromagnetics, steady-state equations and equivalent circuits



are derived, from which their properties can be deduced. In addition to the poly-
phase machines, also special types such as capacitor motors and shaded-pole
motors are discussed.

The second part of this book discusses the main power electronic supplies for
electrical drives, for example, rectifiers, choppers, cycloconverters and inverters.
This part is not at all intended as a fundamental course text on power electronics
and its design. For the design of power electronic circuits, much more in-depth
textbooks are available. The only aim is to provide the basics required for their
application in electrical machine drives. After an overview of power electronic
components, the following chapters provide a rather thorough analysis of rectifiers,
DC and AC choppers, cycloconverters and inverters. Much attention is paid to
PWM techniques for inverters and the resulting harmonic content in the output
waveform.

In the third part, electrical drives are discussed, combining the traditional (ro-
tating field and DC commutator) electrical machines treated in Part 1 and the power
electronics of Part 2. Part 3 begins with a chapter on DC commutator machines and
their characteristics. Next, the traditional constant frequency operation of rotating
field machines is treated in detail, including its (limited) starting and variable speed
operation possibilities. In the same chapter, the effect of voltage variations is also
discussed, as is voltage adaptation to the load and power electronic starting of
induction machines. The next chapter analyses ideal sinusoidal current supply of
rotating field machines, with a special focus on main field saturation. After ideal
variable frequency supply of rotating field machines is treated, the useful funda-
mental frequency equivalent circuits for inverters (originally presented by the
colleagues of UW-Madison) are discussed. With these equivalent circuits, the main
properties of rotating field machines with variable frequency inverter supply are
straightforwardly derived. Next, the basics of controlled drives are presented,
including field orientation of induction and synchronous machines, as well as direct
torque control. The two subsequent chapters are devoted to power electronic control
of small electric machines and to AC commutator machines, respectively. To end,
small synchronous machines are described (i.e. permanent magnet synchronous
machines, reluctance machines and hysteresis motors), as are stepping motors and
switched reluctance machines.

Finally, Part 4 is devoted to the dynamics of traditional electrical machines. For
the dynamics of induction and synchronous machine drives as well, the electro-
magnetics are used as the starting point to derive the dynamic models. Throughout
Part 4, much attention is paid to the derivation of analytical models. Naturally, the
basic dynamic properties and probable causes of instability of induction and syn-
chronous machine drives are discussed in detail as well, with the derived models for
stability in the small as the starting point. In addition to the study of the stability in
the small, one chapter is devoted to large-scale dynamics (e.g. sudden short circuit
of synchronous machines). Another chapter is dedicated to the dynamics in vector-
and field-oriented control, while the last chapter discusses voltage surge phenomena
in electrical machines and transformers.



In the appendices, additional background is provided on terminal markings of
machines and transformers (Appendix A), static stability of a drive (Appendix B)
and on phasors and space vectors (Appendix C). Some basic knowledge of terminal
markings is of course required for the practical exercises. The notion of static
stability is explained in Appendix B, and it is not repeated for each machine type.
With regard to the appendix on space vectors and phasors, the first section is
required for Parts 1 and 3, while the second section is required for Part 4.

Ghent, Belgium Jan A. Melkebeek
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Symbols and Conventions

General

In most cases, lowercase letters are used for variables which are a function of time,
e.g. v, i, u . Phasors are indicated by underlined symbol, e.g. v; i; u. If required,
space vectors are distinguished from phasors by an arrow under the symbol, e.g.

!v ;!i ;!u .
Capital letters are used for variables in sinusoidal steady state, e.g. V ; I; U .
For the study of sinusoidal steady state, effective values are supposed for volt-

ages and currents. However, for fluxes and flux density (induction), amplitude
values are most common, and this is indicated by the hat symbol, e.g. B̂; Û.

Symbols

B Induction (flux density) (T)
C Capacitance (F)
E, e Emf (induced voltage) (V)
f Frequency (Hz)
F Force (N)
F mmf (A)
f pu mmf
H Magnetic field strength (A/m)
I, i Current (A)
J Inertia (kgm2)
J Current density (A/m2)
j pu inertia
j Imaginary unit
L Inductance (H)



l pu inductance
M Magnetic potential (mmf)
Nn Speed (rpm) (1/min)
Np Number of pole pairs
P Power (W)
p pu power
p Laplace operator
Q Reactive power (V A)
R Reluctance (A/Wb)
R Resistance
r pu resistance
s Slip
s Laplace operator
T Torque (Nm)
t pu torque
t Time (s)
U Voltage (V)
v pu voltage
V Voltage (V)
v pu voltage
W Energy (J)
X Reactance (X)
x pu reactance
Z Impedance (X)
z pu impedance

Greek symbols

b Steady-state load angle
d Load angle (instantaneous) (rad)
d Dirac
d, ∂ Incremental value
K Permeance (Wb/A)
k pu Laplace operator
l Permeability (H/m)
m pu speed or frequency
q Resistivity (Xm)
r Leakage coefficient
T pu time (xnt)
T pu time constant
U Flux (Wb)



u pu flux
W Flux linkage (Wb)
w pu flux linkage
X Mechanical (shaft) speed (rad/s)
x Electrical (shaft) speed; angular frequency (rad/s)

Subscripts

o Steady state (value)
1 Primary—
2 Secondary—
d d-axis—
l Load—(e.g. Tl for load torque)
m Magnetising—
m Motor—(e.g. Tm for motor torque)
n Nominal (rated) —
q q-axis—
r Rotor—
s Stator—
s Slip—
a a-axis—
b b-axis—
r Leakage—
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Transformers and Electrical Machines



Chapter 1
Transformers

Abstract Undoubtedly, transformers are omnipresent in our society. In this chapter,
the electromagnetic principles of transformers are explained in detail. Equivalent
circuits are derived starting from the basic laws of Maxwell and discussed in detail.
As such, the construction of transformers is also treated in some detail. Attention is
also paid to numerous applications.

1.1 Introduction

Classical power stations generate electrical energy on the medium voltage (MV)
level, i.e. around or lower than 10kV (mainly because of restrictions on the insulation
of the generators). Renewable energy is produced at even lower voltage levels.

However, for efficient power transport over large distances, much higher voltage
levels are required, i.e. 400kV to even more than 800kV (HV level).

On the other hand, local distribution requires somewhat lower voltage levels,
hence the MV level, e.g. 13kV. These voltage levels can also be used directly for
industrial plants. Yet, in many industrial applications and for home appliances, in
particular, much lower voltages are required (usually 400V/230V, called the LV
level).

Whereas an easy or lossless transfer of DC power to other voltage levels is not
possible, the main advantage of AC power is that it can be transformed to other
voltage levels rather easily and without hardly any loss. This efficient transformation
of AC power to other voltages levels is the task of electromagnetic transformers.
In such a classical transformer power is transformed to other voltage levels using
magnetic fields as the intermediating medium.

Figure1.1 shows some symbols of transformers as frequently used in electrical
schemes, both for single-phase and three-phase transformers.

The simplest transformer is a single-phase one, consisting of an iron yoke with
two windings, commonly called the primary and secondary windings. To start with,
suppose that the primary winding is fed by a sinusoidal voltage supply and the
secondary is open-circuited. The primary winding will draw a sinusoidal current
from the supply, causing an alternating electromagnetic field in the yoke. As the

© Springer International Publishing AG 2018
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single-phase
transformer

three-phase
transformer

or

(b)

(a)

Fig. 1.1 Transformer symbols

secondary winding is linked with the field in the yoke, an alternating (sinusoidal)
voltage will be induced in the secondary winding. It is easy to see that the ratio
of the primary to secondary voltage is equal to the ratio of the number of turns of
the primary to secondary windings. If the secondary winding is then connected to a
load, a current will be drawn from the secondary winding. As this current will try to
reduce its cause (the magnetic field in the yoke), this secondary current will attempt
to reduce the field (Lenz’s law). However this means that the primary current will
increase in order to annihilate the effect of the secondary current (assuming that the
primary voltage imposes the flux level). The power transmitted to the secondary load
will then be drawn from the primary supply (at the voltage level of the primary).

1.2 Transformer Equations

1.2.1 Basic Electromagnetic Description and Equations

Consider the principal electromagnetic scheme in Fig. 1.2. On the (soft) iron yoke we
see two windings, in this figure on two separate limbs.1 The permeability of the iron
yoke is assumed to be very large such that nearly all field lines remainwithin the yoke.
The two windings are therefore closely magnetically coupled. As we assume that
the primary winding has right turns and the secondary left turns, the usual polarity

1In practice, these windings are mostly placed concentric on one limb, to reduce leakage.
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Fig. 1.2 Transformer core
and windings

a 2ref

i2
i1

m

2
1 2

1 v2v1

winding 2
(secundary)winding 1

(primary)

1ref iron core

+

_

+

_

marks “•” may be positioned as in the figure. We will choose the reference directions
of the voltages in accordance with these marks, i.e. with the voltage “+” sign at the
marked ends. For both windings we use the Users Reference System (URS).With the
chosen voltage polarities the arrows of the current reference must then point to the
marks (positive currents will enter the windings at the marks). Conventionally, the
reference directions of the fluxes coupledwith the windings are chosen in accordance
with the current reference directions. Therefore positive currents in either primary
or secondary windings will magnetise the core in the same sense (ϕ1re f and ϕ2re f

point into the same sense with respect to the core).
Firstly suppose that the primary winding is supplied by an AC voltage source with

the secondary winding open-circuited. The primary winding will then draw a current
i1(t) which will magnetise the core. The flux coupled with the primary winding will
be denoted byΨ1(t) = w1ϕ1(t). Here,ϕ1(t) represents the physical flux, i.e. the flux
over a section of the core while w1is the number of primary turns.

The flux Ψ1(t) = w1ϕ1(t) can be subdivided into:

• a main or magnetising flux Ψm1(t) = w1ϕm(t) with field lines staying completely
within the iron core and thus also linking the secondary winding

• a primary leakage flux Ψ1σ(t) = w1ϕ1σ(t) linked only with the primary winding

Similarly one may also split up the physical flux as ϕ1(t) = ϕ1σ(t) + ϕm(t).
The main or magnetising flux will therefore induce an emf in the secondary

winding given by e2(t) = dΨm2(t)/dt = w2dϕm(t)/dt .
Secondly, suppose that the secondarywinding is supplied by anACvoltage source,

the primary open-circuited. A secondary current will then be drawn. The secondary
current will result in a flux Ψ2(t) = w2ϕ2(t) coupled with the secondary winding.
This flux can also be split up into a main flux Ψm2(t) = w2ϕm(t) coupled with the
secondary and a secondary leakage flux Ψ2σ(t) = w2ϕ2σ(t).

Thirdly, in the general case that both windings carry currents, we may write

Ψ1(t) = Ψ1σ(t) + Ψm(t) = w1ϕ1(t) = w1ϕ1σ(t) + w1ϕm(t) (1.1)

Ψ2(t) = Ψ2σ(t) + Ψm(t) = w2ϕ2(t) = w2ϕ2σ(t) + w2ϕm(t) (1.2)
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Ampère’s law along a field line in the core yields for the magnetising flux mmf

˛
Hmdl = w1i1(t) + w2i2(t) (1.3)

The physical magnetising flux is the integral of the magnetising induction over a
cross-section of the core

ϕm =
¨

�

Bm · ndσ (1.4)

with n the vertical unit vector on the elementary surface element dσ and with Bm =
μHm where μ is the permeability of the core. Therefore

ϕm(t) · �m = ϕm(t) · Λ−1
m = w1i1(t) + w2i2(t) (1.5)

where �m = Λ−1
m = lm/μ�m = lm/μ0μr�m is the reluctance of the core and μ =

μ0μr the permeance of the iron (supposing the iron linear2). lm and �m represent the
core mean length and cross-section respectively.

Similarly one may write for the leakage fluxes

ϕ1σ(t) · �1σ = ϕ1σ(t) · Λ−1
1σ = w1i1(t) (1.6)

ϕ2σ(t) · �2σ = ϕ2σ(t) · Λ−1
2σ = w2i2(t) (1.7)

ThefluxesΨ1(t) andΨ2(t) induce in the primary and secondarywindings the voltages
dΨ1(t)/dt and dΨ2(t)/dt respectively. Taking into account also the resistive voltage
drops, we may write for these voltages

v1(t) = R1i1(t) + dΨ1(t)

dt
(1.8)

v2(t) = R2i2(t) + dΨ2(t)

dt
(1.9)

or

v1(t) = R1i1(t) + w1
dϕ1σ(t)

dt
+ w1

dϕm(t)

dt
= R1i1(t) + w1

dϕ1σ(t)

dt
+ e1(t)

(1.10)

2In reality the iron in the yoke is almost always saturated; in that case μ = μ0μr represents the
equivalent chord slope of the saturation characteristic in the operating point.
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v2(t) = R2i2(t) + w2
dϕ2σ(t)

dt
+ w2

dϕm(t)

dt
= R2i2(t) + w2

dϕ2σ(t)

dt
+ e2(t)

(1.11)

The voltages induced by the magnetising flux are called the (magnetising) emfs. For
these magnetising emfs one may write

e1(t) = w1
d
dt [Λm (w1i1(t) + w2i2(t))] = w2

1
d
dt

[
Λm

(
i1(t) + w2

w1
i2(t)

)]

e2(t) = w2
d
dt [Λm (w1i1(t) + w2i2(t))] = w2

2
d
dt

[
Λm

(
w1
w2
i1(t) + i2(t)

)] (1.12)

Note that

e1(t)

e2(t)
= w1

w2
(1.13)

As the leakage flux lines remain for the greatest part in air, the constant leakage
inductances L1σ = w2

1 · Λ1σ and L2σ = w2
2 · Λ2σ may be introduced:

v1(t) = R1i1(t) + L1σ
di1(t)
dt + e1(t)

v2(t) = R2i2(t) + L2σ
di2(t)
dt + e2(t)

(1.14)

If the saturation of the iron yoke can be neglected, we may introduce constant mag-
netising inductances Lm1 = w2

1 · Λm and Lm2 = w2
2 · Λm :

e1(t) = Lm1
d
dt

[
i1(t) + w2

w1
i2(t)

]

e2(t) = Lm2
d
dt

[
w1
w2
i1(t) + i2(t)

] (1.15)

Therefore

v1(t) = R1i1(t) + L1σ
di1(t)
dt + Lm1

d
dt

[
i1(t) + w2

w1
i2(t)

]

v2(t) = R2i2(t) + L2σ
di2(t)
dt + Lm2

d
dt

[
w1
w2
i1(t) + i2(t)

] (1.16)

If the magnetic circuit is saturated, linearised chord slope inductances for the oper-
ating point considered may be used, see Fig. 1.12.

Note that Eq.1.16 are equivalent to the classical equations for two magnetically
coupled coils:

v1(t) = R1i1(t) + L1
di1(t)
dt + M di2(t)

dt

v2(t) = R2i2(t) + L2
di2(t)
dt + M di1(t)

dt

(1.17)

with L1 = L1σ + Lm1, L2 = L2σ + Lm2, M = Lm1 · w2
w1

= Lm2 · w1
w2
.
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From now on, we will use mostly the Eq.1.14 with

e1(t) = Lm1
d
dt

[
i1(t) + w2

w1
i2(t)

]

e2(t) = e1(t) · w2
w1

(1.18)

The equivalent current

im1 = i1(t) + w2

w1
i2(t) (1.19)

is called the primarymagnetising current (in fact: themagnetising current as observed
from the primary). It is the current which would be required in the primary winding
for the magnetising field in the operating point considered (in other words, if only
the primary winding current was present). Accordingly, Lm1 is the corresponding
magnetising inductance (as seen from the primary).

One may of course also use similar equations based on the secondary emf and the
magnetising inductance referred to the secondary.

1.2.2 Phasor Equations and Equivalent Circuit
for Sinusoidal Supply

For a sinusoidal supply with frequency f = 2π/ω Eq.1.14 may be rewritten using
the complex phasor representation:

V 1 = R1 I 1 + jωL1σ I 1 + E1

V 2 = R2 I 2 + jωL2σ I 2 + E2

(1.20)

with

E1 = jωLm1

[
I 1 + w2

w1
I 2

]

E2 = w2
w1

· E1

(1.21)

In these equations, reactances X1σ = ωL1σ , X2σ = ωL2σ and Xm1 = ωLm1 are
commonly used instead of inductances (at least for constant frequency supply).
For voltages and currents, effective values instead of amplitude values are used
(whereas for fluxes and magnetic fields, amplitude values are more common:
E1 = jωw1(Φ̂/

√
2) = jωw1Φ).

For power transformers the resistances are usually relatively small as are the leak-
age inductances. In contrast the magnetising inductances are quite large because
of the large permeance of the magnetic circuit. Therefore, taking into account
|R1 I 1|, |X1σ I 1| � |E1| and |R2 I 2|, |X2σ I 2| � |E2| it follows that V 1 ≈ E1 and
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Im1
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Fig. 1.3 Basic equivalent circuit

Fig. 1.4 No-load branch
with iron losses

Im1 Iv1

jXm1 Rm1

Io1

(a)

Iv1

Io1

Im1

E1

(b)

V 2 ≈ E2 and thus also V 2 ≈ V 1 · (w2/w1). Further, I m1 = I 1 + I 2(w2/w1) ≈ 0
and thus I 2 ≈ −I 1(w1/w2).

Equations1.20 through 1.21 may be represented by the equivalent circuit in
Fig. 1.3. This equivalent circuit can be interpreted as replacing the real transformer
by an ideal transformer with winding ratio w1/w2 and adding the parasitic elements
(e.g. resistances, leakage inductances) externally.

It should be remarked that in reality also iron losses (eddy current losses and
hysteresis losses) are present. Eddy current losses (also called Foucault losses) are
caused by the electrical conductivity of the iron. To reduce these eddy currents, the
core will always be laminated. These eddy current losses are proportional to the
square of the frequency and the square of the magnetic induction: Pd f ∼ Φ̂2 · f 2 ∼
E2. The hysteresis losses are proportional to the frequency and to an iron-dependent
power β of the magnetic induction: Pd f ∼ Φ̂β · f with β ≈ 1.6 · · · 2.

The iron losses are often modelled as (at least for a fixed frequency): Pdm =
E2
1/Rm1. In the equivalent circuit the magnetising branch is then to be replaced by a

resistance Rm1 parallel to the magnetising inductance (see (a) in Fig. 1.4). The sum
of the magnetising current and the iron-loss current is called the no-load current. The
no-load current lags the emf by less than π/2 (see (b) in Fig. 1.4).
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1.3 Referred Values: Equations and Equivalent Circuit

The equations and equivalent circuitmaybe simplified considerably by using referred
(also called reduced) values, referring either the secondary to the primary or the
primary to the secondary.

The first option, referring the secondary quantities to the primary, implies replac-
ing V 2, E2, I 2, Z2 by V

′
2, E

′
2, I

′
2, Z

′
2 with V

′
2 = w1

w2
V 2, E

′
2 = w1

w2
· E2 = E1, I

′
2 =

w2
w1

· I 2, Z ′
2 =

(
w1
w2

)2
Z2. The second option, referring the primary quantities to the

secondary, implies replacing V 1, E1, I 1, Z1 by V
′
1, E

′
1, I

′
1, Z

′
1 with V

′
1 = w2

w1
V 1,

E
′
1 = w2

w1
· E1 = E2, I

′
1 = w1

w2
· I 1, Z ′

1 =
(

w2
w1

)2
Z2.

The former option, referring the secondary to the primary, yields the equivalent
circuit in Fig. 1.5 and the equations

V 1 = R1 I 1 + j X1σ I 1 + E1

V
′
2 = R

′
2 I

′
2 + j X

′
2σ I

′
2 + E

′
2

(1.22)

with
E

′
2 = E1 = j Xm1 I m1

I m1 = I 1 + I
′
2 − I d1

(1.23)

If the galvanic potential difference between primary and secondary can be neglected
(or is unimportant), then the ideal transformer can be omitted and the equivalent
circuit in Fig. 1.6 is obtained.

Im1

I1

R1 R'2+

_

+

_

+

_

V1

+

_

E1 E'2 V'

jX'2jX1
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Rm1

Iv1

I'2

Fig. 1.5 Equivalent circuit with referred quantities and ideal transformer
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Fig. 1.6 Equivalent circuit for referred quantities
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Fig. 1.7 Equivalent circuit in per unit

1.4 Per-Unit Description

Instead of absolute values, per-unit values are sometimes used for modelling a trans-
former. Per-unit modelling implies that all values are referred to their rated (nominal)
values. The rated values for voltages and current are denoted as V1n , ı̀1n , V2n , I2n
(where primary and secondary voltages and currents obey the transformer wind-
ing ratio, i.e. V1n/V2n = w1/w2 and I1n/I2n = w2/w1). The reference value for
powermust obey Sn = V1n I1n = V2n I2n and those for the impedances Z1n = V1n/I1n ,
Z2n = V2n/I2n = Z1n · (w2/w1)

2.
The following per-unit equations are then obtained:

v1 = r1i1 + j x1σi1 + e

v2 = r2i2 + j x2σi2 + e
(1.24)

e = j xm1im1 = j xm1(i1 + i2) (1.25)

which corresponds to the equivalent circuit in Fig. 1.7.
The advantage of a per-unit description is that it allows us to compare transform-

ers (or machines) with different power ratings, transformer ratios or voltages. For
power transformers, for example, the resistances vary within quite a broad range,
depending of course on the power rating but also on other factors such as design and
construction quality. Per unit description makes it possible to distinguish between
the main properties and side aspects. However, for studying the behaviour of a trans-
former in a given grid (or, more general, an electric machine in a system) absolute
values will normally be used.

1.5 Construction and Scaling Laws

Obviously, the size of a transformer is quite narrowly related with the rated power of
the transformer, but this is also the case for many other parameters of a transformer,
such as (p.u.) resistances or leakage inductances or themagnetising inductance. These
relations between characteristic properties and dimensions are called scaling laws.
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Usually, one of the dimensions is used as a reference and the others will usually vary
proportionally with it. For a transformer, the average diameter D of the windings
is an appropriate reference dimension. In this section, we will discuss the scaling
laws and explain the background and causes of the relation with the dimensions and
construction of the transformer.

1.5.1 Specific Rated Quantities

Rewriting the apparent power of a transformer as

S = (V/w) · (I · w) (1.26)

shows that the apparent power can be expressed as the product of two factors that
are (almost) equal for both primary and secondary windings, i.e. the voltage per turn
and the bundle current. The rated voltage, current and apparent power related to one
square metre of the winding (i.e. for one metre of conductor length and one metre of
coil height, called rated specific values), can be expressed as follows:

Kn = (V1n/w1)/πD = (V2n/w2)/πD (1.27)

An = (w1 I1n)/h = (w2 I2n)/h (1.28)

S�
n = An · Kn = Sn/πDh (1.29)

with D being the average winding diameter and h the coil height. Kn , An and S�
n

represent the rated voltage per metre conductor length, rated current per metre coil
height and rated apparent power per square meter respectively. Like the scaling laws
(see below) these specific quantities make it possible to compare transformers of
quite different power ratings.

For a transformer it may be assumed as a first approximation that all dimensions
change proportionally with the average winding diameter D (which will be taken as
a reference). If the current density in the conductors and the flux density (induction)
in the core can be considered as constant, then

An = (w1 I1n)/h = (w1�cu Jn)/h ∼ D (1.30)

Kn = (V1n/w1)/πD = (�Fe · Bn)/πD ∼ D2/D ∼ D (1.31)

S�
n = An · Kn ∼ D2 (1.32)

The rated apparent power of a transformer therefore changes as D4.
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Average values for the specific rated quantities are: An = 5 · 104 · D [A/m];
Kn = 25 · D [V/m]; S�

n = 1.25 · 106 · D2 [VA/m2].

1.5.2 Rated Per-Unit Impedances

1.5.2.1 Winding Resistance

From
r = R/Zn = R · In/Vn = R · I 2n /Sn (1.33)

we see that the per-unit winding resistance is equal to the relative ohmic loss. The
rated ohmic loss varies with size as D3, indeed:

R · I 2n � �(l/�Cu) · I 2n � �(l/�Cu) · �2
Cu J

2
n ∼ D3 (1.34)

If Jn = constant and Sn ∼ D4 we can derive that r ∼ D−1. The higher efficiency of
large transformers is for the greater part the result of these smaller relative winding
resistances.

Inserting ρ = 2.5·10−8[�m], Jn = 4 · 106[A/m2], Kn = 25 · D [V/m] in

r = R · In/Vn = �(l/�Cu) · (�Cu · Jn/Kn · πDw) = � · Jn/Kn (1.35)

yields r � 0.004/D and thus r = 0.02 · · · 0.002 for D = 0.2 · · · 2m.

1.5.2.2 Leakage Inductance

If a transformer is fed by a constant voltage, then the secondary voltage will decrease
with increasing load,mainly due to the leakage inductance. To limit the voltage drop it
is therefore important to aim for a small leakage inductance. However, as the leakage
inductance also limits the current in case of a short circuit, some leakage inductance is
required.The choice of the leakage inductance will thus be a compromise. Moreover,
the effect of the scaling laws will also lead to an increasing leakage inductance with
increasing size of the transformer if all aspect ratios are kept the same.

The effect of the size can be elaborated as follows. Figure1.8 shows a longitudinal
cross sectionof one limbof a transformerwith concentric cylindricalwindings (which
is the usual configuration for transformers of small and not too large power ratings).
The magnetic energy in the space between primary and secondary windings is

Wσ = 1

2
H 2

σ · (volume)
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Fig. 1.8 Leakage path for
cylindrical windings

1 2 2 1

For the field line (left in Fig. 1.8), we get Hσ · 2h = A · h and therefore Hσ ∼ A.
For rated current Hσn ∼ An ∼ D and Wσn = 1

2H
2
σn · (volume) ∼ D2 · D3 ∼ D5.

For the per-unit leakage reactance, this results in

xσ = Xσ

Zn
= Xσ I 2n

Zn I 2n
= 2ωWσn

Vn In
= 2ωWσn

Sn
∼ D5

D4
∼ D (1.36)

Keeping the aspect ratio of the transformer constant leads to an increasing per-unit
leakage reactance. In order to limit the leakage for larger transformers, the distance
between primary and secondary windings (Δ in the figure) can be varied less than
proportionally with D. For very large transformers (with often high voltage ratings),
however, disk windings will normally be used (see below in this chapter).

For the per-unit leakage values between 2 × 0.01 and 2 × 0.1 are found in
actual transformers. The division between primary and secondary leakage is mostly
unknown but not that important.3

1.5.2.3 Magnetic Core: Magnetising Reactance and Magnetising
Current

Magnetic Core

To suppress eddy currents in the iron the magnetic core is always laminated: in fact
a stack of approximately 0.3mm thick insulated sheets is typically used.

In the case of circular coils an approximate round cross section is obtained by
using for the (then stepped) stack a limited number of different sheet widths (see (a)
in Fig. 1.9). For rectangular coils, a simple rectangular cross section with sheets of
equal widths can be used.

To limit further eddy currents, the iron is normally alloyed with Silicium and/or
Aluminium.

Oriented steel is typically used for the sheets. Oriented steel has a preferred
orientation for the flux with a higher permeability in that direction. To this end (but

3In fact, a T of inductances can always be replaced by an equivalent L of inductances (see Sect. 1.6
below).
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Fig. 1.9 Magnetic core
cross section with windings

(a) (b)

Fig. 1.10 Step or lap joints

also to enable the use of preformed coils) the core consists of separate limbs and
closing yokes, all of them with oriented sheets in the flux direction. At the corners,
where limbs and yokes join, the effect of parasitic air gaps is reduced by interleaving
sheets of different lengths (see Fig. 1.10). These are called step or lap joints. In this
way, the unreliable (and mostly larger) air gaps between sheets in the same layer are
avoided. The flux will now shift to the two adjacent sheets and the associated air gap
corresponds to the small (and well-defined) insulation layers of the sheets. This will
normally result in a local higher saturation in these sheets but this effect is minor
compared with a larger and undefined air-gap.

Magnetising current and inductance - saturation characteristic
From

v1(t) = R1i1(t) + w1
dϕ1σ(t)

dt
+ w1

dϕm(t)

dt
= R1i1(t) + L1σ

di1(t)

dt
+ w1

dϕm(t)

dt
(1.37)

where usually

|R1i1(t)|, |L1σ
di1(t)

dt
| � |w1

dϕm(t)

dt
| = |e1(t)|

it follows that

v1(t) ≈ w1
dϕm(t)

dt
= e1(t) (1.38)
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or

ϕm(t) �
ˆ

1

w1
· v1(t) · dt (1.39)

In other words, a voltage supply imposes the flux.
For a periodical (but not necessarily sinusoidal) voltage, it follows that

Φ̂m ∼ v1av = 2

T

T/2ˆ

0

v1(t) · dt = v1e f f /k f (1.40)

with v1e f f the effective value of the voltage and k f the form factor of the voltage
(k f = π/2

√
2 for a sinusoidal voltage). In case of a non-sinusoidal voltage, the higher

harmonics are damped in the flux (because of the integral). It is alsoworthmentioning
that harmonics 4k − 1 (e.g. third harmonics) change sign in the flux, causing a flatted
voltage curve to result in a pointed flux curve. Further, for a given effective value
of the voltage, the hysteresis losses will be more affected by the form factor of the
voltage. Indeed, the eddy current losses are proportional with E2

e f f ∼ (B̂ · k f · f )2,

whereas the hysteresis losses depend on (B̂2 · f ).
In what follows, we will consider a purely sinusoidal voltage v1(t) with effective

value V1. As voltage and flux are imposed, also the magnetic induction is approxi-
mately sinusoidal with maximum value

B̂m = √
2 · E1 · (ωw1�m)−1 ≈ √

2 · V1 · (ωw1�m)−1 (1.41)

where �m is the cross-section of the core.
The corresponding magnetic field strength Hm(t) follows from the B − H−

characteristic (or saturation characteristic) of the iron in the core. The required mag-
netising current can be derived from Ampère’s law:

j
Hm(t) · dl =

∑
w · i(t) (1.42)

The B − H−characteristic is not linear and shows hysteresis, as illustrated by the
green loop in Fig. 1.11. On the one hand the non-linearity results in a non-sinusoidal
and pointed curve as a function of time. The hysteresis, on the other hand, results
in a leading (fundamental harmonic component of the) magnetic field strength, as is
shown by the graphical derivation in Fig. 1.11. The hysteresis loss is in fact propor-
tional to the surface area of the hysteresis loop.The leading Hm(t) (or its fundamental)
also corresponds to a no-load current which leads the emf e(t) over less than π/2
(and which thus corresponds to a power loss).

The fundamental component of Hm(t)which is in phase with Bm(t) could also be
obtained with a fictitious B − H−characteristic without hysteresis (in some way the
average of the rising and descending branches of the real characteristic, cf. the red
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H

t

t

B

H(t)

H*(t)

B(t)

Fig. 1.11 Non-linear saturation characteristic

curve in Fig. 1.11). For the relation between the amplitude Ĥm and the fundamental
magnetising current,

Ĥm · km · h = √
2 · wm Im (1.43)

holds, where h represents the height of the winding and km (>1) is a factor which
takes into account the remaining parts of the core as well as the joints in the corners.
wm Im can either be the primary mmf w1 Im1 or the secondary mmf w2 Im2.

For the per-unit value of the magnetising current we may write that

im = Im1

In1
= Im2

In2
= Ĥm · km · h√

2 · w1 In1
= Ĥm · km · h√

2 · w2 In2
= Ĥm · km√

2 · An

(1.44)

For power transformers, Ĥm · km/
√
2 varies in rated conditions between 102 and 103

A/m dependent on the magnetic material and transformer construction.4 As An may
vary between 104 and 105 A/m dependent on the power rating (see Sect. 1.5) we may

4Rated induction is normally B̂m = 1 · · · 1.5 T , for distribution transformers sometimes to 1.8 T .
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E
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Xm

tan Xm

(a) (b)

Fig. 1.12 Chord-slope magnetising inductance

expect a rather large variation for the per-unit magnetising current (D = 0.2 · · · 2m):

imn = (2 · 10−2 · · · 2 · 10−3)/D = 0.1 · · · 0.001 (1.45)

Since the per-unit magnetising inductance is the inverse of the per-unit magnetising
current, xmn = 10 · · · 1000 for D = 0.2 · · · 2m.

As mentioned above, this large variation is the result of both the normal scal-
ing laws (smaller per-unit magnetising current for larger transformers) and the large
variation in magnetic material and construction of the core. If the operating condi-
tions differ from the rated ones (e.g. if the voltage is higher or lower) the magnetising
inductance will differ from the inductance for rated conditions. Indeed, the magnetis-
ing inductance is in fact proportional to the chord slope of the operating point on the
saturation characteristic (see Fig. 1.12). A higher voltage level will lead to a higher
saturation level and thus a smaller magnetising inductance. Conversely, a lower-
than-rated voltage will lead to larger magnetising inductances. However, loading
variations will also result in some variation of the emf and thus also the magnetising
inductance (due to the voltage drop over resistance and the leakage inductance in
particular).

The active component of the no-load current, which corresponds to the eddy cur-
rent and hysteresis losses5 in the core, is commonly modelled by an iron loss resis-
tance parallel to the magnetising inductance (e.g. for an equivalent circuit referred
to the primary Pdm = E2

1/Rm1). In per unit the iron dissipation resistance rm varies
with size approximately as rm ≈ 5 · xm ≈ (250 · · · 2500)D or rm ≈ 50 · · · 5000 for
D = 0.2 · · · 2m.

5Usually manufacturers of magnetic iron will specify the iron loss in terms of the loss per kg for a
given induction value and given frequency, e.g. Pdm = iron loss per kg for an induction of 1.5 T .
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1.6 Alternative and Simplified Equivalent Circuits

The equivalent circuit derived in the previous paragraphs is depicted in Fig. 1.13 (in
(a) for the circuit in absolute values and (b) for the circuit in per unit). Often, the iron
dissipation resistance is omitted. Such equivalent circuits (with or without the iron
resistance) are commonly called “T”-circuits.

To simplify calculations, the magnetising branch can be shifted completely to
the left (for a transformer supplied from a primary voltage) or to the right (for a
transformer fed from a secondary voltage), as is shown in Fig. 1.14. In this way, the
magnetising (or no-load) current can be directly calculated. The error is usually neg-
ligible because of the very high relative values of themagnetising branch impedances
compared to the series impedances.6 Such schemes are called “L”- schemes.

Except for studying the no-load conditions, the magnetising branch may also be
completely omitted (see (a) in Fig. 1.15). For a transformer of high power rating
the resistances are small and in most cases negligible (see (b) in Fig. 1.15). The
sum of the leakage inductances X1σ + X

′
2σ is sometimes denoted as Xσ1, the total

leakage as seen from the primary. The sum of these separate leakage inductances
is, however, only an approximation of the total leakage as seen from the primary. A
“T”-scheme of inductances can indeed be transformed correctly to an “L”-scheme,
resulting in Xσ1 = σX1 with σ = 1 − X2

m1/(X1X
′
2) the total leakage coefficient and

X1 = X1σ + Xm1, X
′
2 = X

′
2σ + Xm1 the primary and secondary total inductances

(here with the secondary inductance reduced to the primary). As the magnetising

6It is also possible to correctly transform a “T” of inductances to a “L”of inductances, but then the
iron resistance has to be neglected.
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Fig. 1.15 Equivalent circuits neglecting the magnetising branch
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Fig. 1.16 Thévenin equivalent circuits

inductance of transformers is quite large compared with the leakage inductances, the
error is small, however.

Another approach, now without approximations, is to use a Thévenin equivalent
circuit, as is demonstrated in Fig. 1.16. For studying the secondary load side (when
the primary is fed by a voltage source), the circuit in (a) is the preferred one. The
voltage V 20 is the no-load voltagemeasured at the secondary (thuswith the secondary
open). The secondary short-circuit (or Thévenin) impedance Zk2 is the impedance
measured at the secondary with the primary short-circuited. Both V 20 and Zk2 can
be expressed in terms of the impedances of the equivalent circuit in Fig. 1.13:

V 20 = w2

w1
V 1

( j Xm1‖Rm1)

R1 + j X1σ + ( j Xm1‖Rm1)
(1.46)

Zk2 = R2 + j X2σ + j Xm2‖Rm2‖(R ′
1 + j X

′
1σ) (1.47)

with ‖ denoting the parallel connection.
Similar expressions hold for the circuit (b) in Fig. 1.16.
Althoughwehave derived the equations and the equivalent circuit in a symmetrical

way (i.e. with the URS on both sides), in practice a transformer is in most cases
intended to transfer power fromone side (the supply) to the other (the load). Therefore
the URS is typically chosen on the supply side and the GRS on the load side, as is
shown in Fig. 1.17 in which the arrow for the secondary current is reversed. As a
result, the active (as well as reactive and apparent power) does not change signs:
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Fig. 1.17 Equivalent circuit with GRS at the secondary side

P1 = P2L + R1 I
2
1 + R

′
2 I

′2
2L + E2

1/Rm1 (1.48)

where S1 = P1 + j Q1 = V 1 I
∗
1 and S2L = P2L + j Q2L = V 2 I

∗
2L = V

′
2 I

′∗
2L . Remark

that the no-load current is now given by I 01 = I 1 − I
′
2L .

1.7 No-Load Operation

When the primary is connected to the grid with the secondary open-circuited, the
primary current of the transformer is the no-load current. The following equations
hold:

V 1 = I 10
[
R1 + j X1σ + j Xm1Rm1

Rm1+ j Xm1

]

V
′
2 = V

′
20 = E1 = I 10

[
j Xm1Rm1

Rm1+ j Xm1

] (1.49)

In most cases, the primary resistance can be omitted as it is negligible compared with
the leakage reactance. Further, as the iron dissipation resistance is much larger than
the magnetising reactance, some approximations may be used, resulting in

V 1 ≈ I 10

[
j X1σ + j Xm1 + X2

m1

Rm1

]
= I 10

[
j X1 + X2

m1

Rm1

]
(1.50)

or

I 10 ≈ V 1

j X1
+ V 1

Rm1
(1.51)

If the iron loss resistance can be neglected, then I 10 ≈ V 1/j X1.With similar approx-
imations we find for the no-load secondary voltage that

V
′
20 = V 1 − I 10(R1 + j X1σ) ≈ V 1

[
1 − X1σ

X1

]
= V 1

Xm1

X1
= V 1

1

1 + X1σ/Xm1
= V 1

1

1 + σ1
(1.52)
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Similar relations hold when the secondary is fed by a voltage source and the primary
is open-circuited. Per-unit expressions can also be derived easily.

1.8 Short-Circuit Operation

1.8.1 Short-Circuit Impedance

With a short-circuited secondary, we have

V 1 = I 1k

[
R1 + j X1σ +

(
1

Rm1
+ 1

j Xm1
+ 1

R
′
2 + j X

′
2σ

)−1
]

(1.53)

The impedance between square brackets is the primary short-circuit impedance Zk1
(see also the Thévenin equivalent circuits in Sect. 1.6). Taking into account that Rm1

is much larger than Xm1 and that R
′2
2 � X

′2
2σ � X

′2
2 , the expression for Zk1 may be

approximated as follows:

Zk1 ≈ R1 + j X1σ + j Xm1X
′
2σX

′
2 + j Xm1R

′2
2 + j X2

m1R
′
2

R
′2
2 + j X

′2
2

(1.54)

or

Zk1 ≈
(
R1 + R

′
2
X2
m1

X
′2
2

)
+ j

(
X1σ + Xm1X

′
2σX

′
2

X
′2
2

)

≈
(
R1 + R

′
2
X2
m1

X
′2
2

)
+ j

(
X1 − X2

m1

X
′
2

)

≈
(
R1 + R

′
2
X2
m1

X
′2
2

)
+ jσX1

(1.55)

The short-circuit reactance σX1 obtained is exactly the series reactance when the
“T”-circuit of inductances in the classical transformer equivalent circuit is replaced
by the equivalent “L”-circuit of inductanceswith themain inductance at the secondary
side (and the series inductance at the primary side). This short-circuit reactance σX1

is the total leakage seen from the primary side and is approximately equal to the
sum of the primary and secondary leakage inductances: Xk1 = σX1 ≈ X1σ + X

′
2σ .

The leakage coefficient σ = 1 − X2
m1/(X1X

′
2) is in fact a measure for the magnetic

coupling between primary and secondary windings. A leakage coefficient σ = 0
means a perfect coupling whereas a leakage coefficient σ = 1 implies no coupling
at all.

The short-circuit resistance is approximately equal to the sum of the primary and

(reduced) secondary resistances: Rk1 ≈ R1 + R
′
2
X2
m1

X
′2
2

≈ R1 + R
′
2.
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The short-circuit phase angle,ϕk1 with tanϕk1 = Xk1/Rk1 is another concept that
is sometimes used. The secondary current can be calculated from

I
′
2 = −I 1k

(
1

Rm1
+ 1

j Xm1
+ 1

R
′
2 + j X

′
2σ

)−1

· 1

R
′
2 + j X

′
2σ

≈ −I 1k · Xm1

X
′
2

= −I 1k · 1

1 + σ2

(1.56)

Similarly a primary short circuit with supply at the secondary can be studied.7

1.8.2 Procentual Short-Circuit Voltage

An important notion for the study of the short-circuit behaviour and parallel opera-
tion of transformers is the nominal short-circuit voltage. This is the supply voltage
required to obtain the rated current in the supplied winding with the other winding
shorted. For a secondary short circuit and primary supply, this short-circuit voltage
is simply Vk1n = Zk1 In1. Mostly the procentual value of the short-circuit voltage
is specified (i.e. vk1n% = 100 · Zk1 In1/V1n = 100 · zk1), thus equal to the per-unit
short-circuit impedance multiplied by 100. As zk1 and zk2 are almost equal, no dis-
tinction should be made between primary or secondary values.

From the discussion in the previous sections it follows that for large transform-
ers the procentual nominal short-circuit voltage almost completely results from the
reactive part, i.e. the short-circuit reactance (equal to the total leakage reactance). It
varies between 3 and 5% for transformers with power ratings between 5 and some
100kVA. For transformers with power ratings larger than 1MVA, vkn% � 5 · · · 15%
may be observed.

For small power ratings, on the other hand, the resistive part of the short-circuit
impedance becomes more important and vkn% increases for lower power ratings
(5 · · · 15% for Sn = 500 · · · 50 VA).

1.8.3 Remarks

InSect. 1.2.1we alreadynoted that the equations for a transformer correspond to those
of two magnetically coupled coils. Magnetically, such a set of two coupled coils is
completely defined by the self inductances L1 and L2, and the mutual inductance M .

In our model, however, we introduced four magnetic parameters: the leakages
of primary and secondary, the magnetising inductance and the turns ratio. It should
therefore be clear that we can never obtain unique values for these four parameters.

7As an exercise, derive the secondary short-circuit impedance and the approximative expressions
for resistive and reactive parts of it.
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Indeed, to experimentally characterise a transformer, wemay use: DCmeasurements
to obtain the resistances of primary and secondary and AC no-load and short-circuit
measurements.

From the short-circuit experiments, we can obtain:

R1 + R2

(
w1
w2

)2 ·
(

1
1+σ2

)2
, σX1 and

1
1+σ2

· w1
w2

= I2
Ik1

R2 + R1

(
w2
w1

)2 ·
(

1
1+σ1

)2
, σX2 and

1
1+σ1

· w2
w1

= I1
Ik2

(1.57)

From the no-load experiments, on the other hand, we can deduce:

X1, Rm1 and
1

1+σ1
· w2

w1
= V20

V1

X2, Rm2 and
1

1+σ1
· w1

w2
= V10

V2

(1.58)

The results obtained from these four experiments are thus not completely indepen-
dent. As to the magnetic parameters we may derive σX1, σX2, X1 and X2and thus
σ, X1, X2. However, we cannot derive the separate leakages X1σ, X2σ (or the leak-
age coefficients σ1and σ2) and the winding ratio. We may choose a value for the
turns ratio which will then correspond to some specific (but not necessarily physi-
cally realistic) values for the primary and secondary leakages. In other words, the
total leakage can be measured but the separate leakages of primary and secondary
cannot. This division of the leakage is not important however. As observed from the
terminals the behaviour of the transformer is completely determined. As seen from
the terminals the transformer is as a black box; what is inside as to turns ratio and
magnetic coupling is not unique and not important as long as the behaviour at the
terminals is the same.

In practice, only one no-load and one short-circuit experiment will be used and
the leakage will normally be assumed to be equally divided between primary and
secondary.

1.9 Voltage Variation with Load

In this section we suppose the transformer is supplied at the primary side by a
voltage source and the secondary is connected to a load. As a result of the series
impedances R1, R2, X1σ and X2σ the secondary voltage of a transformer will change
as to amplitude and phase with the load. Figure1.18 shows the phasor diagrams for
an inductive load and a capacitive load (with the URS at the primary side and the
GRS at the secondary side).

For the most common case of an inductive load the amplitude of the secondary
voltage will decrease with increasing load: |V2| < |V ′

1| ≈ |V20|. In contrast, a suf-
ficiently capacitive load may result in an increasing secondary voltage amplitude
|V2| > |V ′

1| ≈ |V20|.
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Fig. 1.18 Phasor diagrams for inductive and capacitive load

The voltage variation may be calculated as follows, using the Thévenin equivalent
circuit as seen from the secondary. We choose the real axis along the voltage V 2, as
a result V 2 = V2. The load current is then represented as I 2L = I2L exp(− jφ2) with
φ2 > 0 for an inductive load and φ2 < 0 for a capacitive load. We define the active
and reactive components of I 2L as

I 2L = I2L exp(− jφ2) = Iw + j Ib (1.59)

With V 2 = V 20 − Zk2 I 2 and Zk2 = Zk2 exp(− jφk2) = Rk2 + j Xk2 we obtain

V 2 = V 20 − Zk2 I2L [cos(φk − φ2) + j sin(φk − φ2)]

= V 20 − [(Rk2 Iw − Xk2 Ib) + j (Xk2 Iw + Rk2 Ib)] (1.60)

If φ2 = φk then V 2 = V 20 − (Rk2 Iw − Xk2 Ib). For load angles φ2 around φk ,
V2 = V20 − Zk2 I2L cos(φk − φ2) may still be used as an approximation. For larger
differences the following approach may be used.We will use the following abbrevia-
tions: Rk2 Iw − Xk2 Ib = |AB ′| = a and Xk2 Iw + Rk2 Ib = |B ′B| = b (see Fig. 1.19).
As V 20 = V 2 + (a + jb) and thus V20 = √

(V2 + a)2 + b2 we easily find after some
approximations (i.e. using

√
1 + x ≈ 1 + x/2) that

V20 − V2

V20
= a

V20
+ 1

2
· b2

V 2
20

= Rk2 Iw − Xk2 Ib
V20

+ 1

2
· (Xk2 Iw + Rk2 Ib)2

V 2
20

(1.61)

This result may also be obtained geometrically making use of the rectangular triangle
BB’B” and the isosceles triangle OBB” in Fig. 1.19.
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Fig. 1.19 Calculation of
voltage regulation

B' B"A
0

2

Iw

Ib I2L

V2

V20
B

-R Ik2 b

R I X Ik2 w k2 b

X Ik2 w

In per-unit, with V20 = V2n , Eq. 1.61 reads

Δv2 = (rkiw − xkib) + 1

2
(xkiw + rkib)

2 (1.62)

The quadratic term can be neglected for zk < 0.05 (or vk% < 5%).
Please note that it follows from Eq.1.60 that for φ2 � φk and I2L = I2n the p.u.

voltage drop is equal to the p.u. short-circuit impedance, Δv2 = zk .

1.10 Parallel Operation of Transformers

Parallel connected transformers supply the same load and are supplied from the same
voltage source, see Fig. 1.20. In practical applications, additional impedances due to
the grid conductors (which might ease the parallel operation) should be taken into
account. These will not be considered here.

In Fig. 1.21, the two transformers (“A” and “B”) are represented by their equivalent
circuits referred to the secondary. The GRS is used for the secondary windings. By
replacing the equivalent circuits by their Thévenin equivalents, we obtain the scheme
in Fig. 1.22. The following equations hold:

Fig. 1.20 Parallel operation
of transformers

A B
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Fig. 1.22 Parallel operation study using Thévenin equivalent circuits

V 2 = Z L I L
I L = I 2L A + I 2LB

V 20A = ZK2A I 2L A + V 2

V 20B = ZK2B I 2LB + V 2

(1.63)

Elimination of V 2 yields

I 2L A = V 20A−V 20B
Z K2A+ZK2B

+ I L · ZK2B
Z K2A+ZK2B

I 2LB = V 20B−V 20A
Z K2A+ZK2B

+ I L · ZK2A
Z K2A+ZK2B

(1.64)
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Fig. 1.24 Unequal
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In addition to a component proportional to the load current, the transformer cur-
rents therefore also contain a circulating component.

It should be clear that the circulating component is a disturbance. To avoid it, the
no-load voltages of the two transformers should be equal, implying that the turns
ratios should be equal.

Between the two transformers the load current is shared inversely proportional to
their short-circuit impedances. In order to have an acceptable load sharing, the short-
circuit impedances should be such that the load current is shared in proportion to their
power ratings. An acceptable load sharing in terms of the amplitude of the currents is
achieved if themoduli of the p.u. short-circuit impedances are equal.8 If this condition
is not fulfilled, the transformer with the smallest short-circuit impedance takes the
largest share of the load current, as is illustrated in Fig. 1.23.

However, it is also important that the phase angles of the short-circuit impedances
are equal. If the short-circuit angles are not equal, then the phase angle difference
between the two secondary currents I 2L A and I 2LB results in larger-than-necessary
amplitudes of these currents (for the given load current I L ) and therefore extra losses
(see Fig. 1.24).

The discussion above shows that parallel operation of identical transformers does
not pose any problems. Given the evolution of the p.u. short-circuit impedances with

8Prove this using the equality of the rated secondary voltages V2nA and V2nB .
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size (scaling laws), parallel operation of transformers with rather different power
ratings may be difficult to achieve.9 For that reason, the standards limit the ratio of
the power ratios of parallel connected transformers.

1.11 Construction of Single-Phase and Three-Phase
Transformers

1.11.1 Single-Phase Transformers

Single-phase transformers are either core-type or shell-type transformers. In a core-
type transformer (see (a) in Fig. 1.25), the windings surround the core. Primary
and secondary windings may be put on different legs or on the same leg. Usually,
both windings are split in half, with one half on each leg (and with primary and
secondary halves concentric). In a shell-type transformer, the core has three legs,
with both windings concentric on the middle leg (see (b) in Fig. 1.25). In a shell-type
transformer the outer legs (as well as the yokes) need only half the cross section of
the middle leg.

The core of small transformers is in many cases assembled using E-shaped lami-
nations with a closing lamination above or below (alternately stacked to reduce the
air gaps). Another construction type stacks L-shaped laminations, also stacked alter-
nately. The disadvantage of these construction types is that the flux is not everywhere
in the preferred magnetic direction for oriented steel. Larger transformers therefore
use (basically rectangular) lamination sheets that are cut with the preferred magnetic
direction along the length of the sheets. To avoid large air gaps, the laminations are
cut at an angle in the corners and somewhat different lengths are used for subsequent
layers so that the laminations overlap (see Fig. 1.10).

1.11.2 Three-Phase Transformers

1.11.2.1 Construction Types: Core

Transformer Bank

The most logical (albeit not very common) way to obtain a three-phase transformer
is to use three separate single-phase transformers, one for each phase. An advantage
of such a transformer bank is that the three magnetic flux paths are independent
of each other, which may be advantageous for non-symmetrical operation (see also

9Minor differences in short-circuit impedances may, however, be compensated by using inductors
in series connection.
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Fig. 1.25 Single-phase transformers: core and shell types
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Fig. 1.26 Three-phase temple and core transformers

Sect. 1.12.4 below). However, such a transformer bank is generally quite expensive
compared with the three-phase transformer units discussed below.

Three-Phase Core-Type Transformer

Consider three single-phase core-type transformers, each with both primary and
secondarywindings on one leg. If the three legs without windings aremerged (see the
3-D sketch (a) in Fig. 1.26), then for a symmetrical sinusoidal supply (and loading) the
sum of the three fluxes is zero and the combined leg (return yoke) can be completely
removed, resulting in a structure as (b) in Fig. 1.26.

Such a 3-D structure is not very practical, however. If we put the three legs for
each phase in the same plane as in (b) in Fig. 1.26, we obtain an almost equivalent
magnetic structure that can be used for symmetrical operation. The only difference
(and slight disadvantage) is that the magnetic paths for the outer legs are not exactly
equal to that of the inner leg - a slight unsymmetry that is of minor importance. This
structure is called a three-phase core-type.

Three-Phase Five-Leg Core-Type Transformer

For the sake of symmetry, two outer return legs may also be added (see (a) in
Fig. 1.27). This structure, called a five-leg (core-type) 3-phase transformer, offers
a return through iron if the three fluxes do not form a three-phase symmetrical set
and have a non-zero sum.
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Fig. 1.28 Winding types

Three-Phase Shell-Type Transformer

We may also broaden the idea of a single-phase shell-type transformer to a three-
phase structure by combining three single-phase shell-type transformers as illustrated
in (b) in Fig. 1.27. This structure, called a shell-type three-phase transformer, also
offers a return through iron if the three fluxes do not form a three-phase symmetrical
set and have a non-zero sum. There is a slight asymmetry for the transformer leg
in the centre compared to the two outer transformer legs, but this is irrelevant. This
core type also offers a return path through the iron core for the flux if the sum of the
three fluxes is non-zero.

1.11.2.2 Winding Types

In the discussion of the single-phase transformer in Sect. 1.5, we considered only the
cylindrical winding, i.e. a winding structure in cylindrical layers with the subsequent
turns in each layer below or above the previous turn (see (a) in Fig. 1.28). Between
the layers an extra insulation layer is usually required. The primary and secondary
cylinder windings are concentric with a phase-insulation layer in between. Two dis-
advantages of cylindrical windings are: turns with high voltage difference (belonging
to different layers)maybe rather close to each other and that the p.u. leakage increases
linearly with size, as the power rating goes up. Because of the insulation problems,
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this winding type is used only for low- to medium-voltage applications. However,
single-phase transformers are mostly used for low-voltage (LV) applications only,
i.e. grid voltages below 600V.

For three-phase transformers that are used in electrical energy distribution or
transport in the grid the voltage levels are medium voltage (MV) or high voltage
(HV). These transformers are often also subject to lightning disturbances. For these
higher voltage levels and higher power ratings, another type of winding is mostly
used, known as disk winding or pancake winding. In this type of winding, primary
and secondary windings consist of a series connection of flat coils (disks) in which
the turns form a spiral. The disks (or groups of disks) of primary and secondary are
placed alternating on the core (see (b) in Fig. 1.28). The leakage can be influenced
by changing the distance between the disks, modifying the interleaving of primary
and secondary disks (including more or less grouping disks belonging to primary
or secondary) or even by interleaving the turns inside one single disk (although this
last interleaving is mainly intended to modify the capacitance between the turns for
better behaviour in case of over-voltage as caused by lightning, for example).

A third winding type is the foil winding, shown in (c) in Fig. 1.28. In this type of
winding, primary and secondary windings consist of insulated aluminium or copper

a b

g

c
d
e
f

a) disc winding, HV
b) cylinder winding, LV
c) support and insulation cylinder
d) layer insulation
e)
f)
g) support - fixation

insulation cylinder
support and insulation cylinder

Fig. 1.29 Transformer assembly
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foils that form a spiral around the core. This winding type is mostly used for LV
applications.

Figure1.29 provides an example of the assembly of core and windings. Here a
cylindrical winding is used for the LV, while a disk-type HV winding is used.

1.12 Connection and Vector Group of a Three-Phase
Transformer

1.12.1 Winding and Terminal Markings

The three windings and the corresponding core legs of a three-phase transformer are
marked by the letters U, V, W. The primary and secondary windings are indicated
by a prefix (e.g. 1 or 2) and their terminals by a suffix consisting of 1 or 2 numbers10

(e.g. 1U01 or 1U1, 1U2, etc.). For windings on the same core leg, the order of
the markings must correspond to the signs of the induced voltage for a common
main flux direction. The markings of the terminals in the connection box or on the
external connection plate correspond to the winding terminals connected to them.
Figure1.30 provides some examples together with a commonly used representation
of the terminals in electrical schemes.11 The schemes in (a) and (b) in the figure show
the connections for a Y − Δ and a Δ − Δ transformer, while (c) does it for a Y − Z
transformer. A Z−connection consist of the series connection of two equal winding
sections belonging to two different core legs so that the phases of their voltages differ
by 30◦ (see also the next paragraph).

1.12.2 Modelling of a Three-Phase Transformer

For modelling a three-phase transformer with symmetrical supply and symmetri-
cal load, the single-phase equivalent circuit discussed above can be used for each
phase. This holds for both positive-sequence and negative-sequence situations. The
single-phase equivalent circuit can relate corresponding phase windings. For a
Δ−connection, the equivalent circuit may relate the fictitious phase windings of
an equivalent Y .

For a supply or load containing zero-sequence components, the behaviour (and
equivalent circuit to be used) will depend on the construction of the transformer and
the connections, as discussed below.

10Suffixes 1 and 2 are used for the end points while 3, 4, etc. are used for tap connections.
11Note the polarity dots “�”, indicating the common flux direction: one must imagine their physical
position on their leg corresponding to these windings pivoted vertically below the plane around the
terminal plate.
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Fig. 1.30 Connection Yd5, Dd6 and Yz11

1.12.3 Connections and Vector Groups

The choice of the primary and secondary winding connections in a three-phase trans-
former determines not only the (secondary) voltage levels but also the phase differ-
ence between primary and secondary voltages and the behaviour of the transformer
with respect to asymmetrical supply and loading conditions. The phase difference
between primary and secondary is always a multiple of 30◦. It is always consid-
ered as the lagging of the secondary voltage 2N − 2U with respect to the primary
voltage 1N − 1U . The neutral point can be the actual neutral point (in case of a
Y−connection) or the fictitious or equivalent neutral point for aΔ−connection. This
lagging of the secondary voltage with respect to the primary voltage is expressed
by the vector group, which is the multiple of 30◦ by which the secondary voltage
lags the primary. When specifying or determining the phase shift or vector group the
phase sequence is supposed to beU → V → W (i.e. phaseU leads phase V , which
in turn leads phase W ).
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The connection of a transformer is indicated by three symbols:

• the primary connection (Y, D or Z for a Y− or Δ− or Z−connection)
• the secondary connection (y, d or z for a Y− or Δ− or Z−connection)
• the vector group or phase shift in multiples of 30◦

Figure1.30 illustrates the connections Yd5, Dd6 and Yz11. For a Z−connection
of a (secondary) winding, each phase winding must contain two equal halves. In
the Z−connection, half a phase winding is connected in opposite series with half a
winding on another core leg. The secondary voltage is then the phasor sum of these
two voltages (with the appropriate sign). In the next paragraph, we will discuss the
advantages of this connection with regard to asymmetrical operation.

Todetermine the vector group the primary voltage vectors first need to be sketched.
Taking into account the polarity marks (“�”) and the connections of the winding
terminals, we may then derive the secondary voltage vectors. For the examples in
Fig. 1.30, this results in phase shifts of 150◦, 180◦ and 330◦, corresponding with the
vector groups 5, 6 and 11.

For the voltage ratios, in the given examples
√
3w1/w2,w1/w2 and 2w1/(

√
3w2)

are obtained, where w1 and w2 represent the total primary and secondary turns,
respectively.

Figure1.31 shows themost common connections of three-phase transformers used
in Europe. Remark that all these connections generate phase shifts of ±180◦, ±30◦,
or combinations of these. A vector group of 1 is obtained by a combination of Y and
Δ, or a combination of a Y or Δ with a Z−connection. For a vector group of 6 (or
phase shift of ±180◦), the transformer terminals are to be connected to the other end
of the windings.

Further, a phase shift of ±120◦ can be achieved if the transformer terminals
U, V,W are connected with winding terminals V,W,U or W,U, V . A phase shift
of±60◦ is obtained if the connections in aΔ are switched (e.g. connecting 2U2 with
2V 1 instead of 2W1yields Dd8 instead of Dd6).

When three-phase transformers are connected in parallel, it is clear that the phase
shift (vector group) must not be ignored, and neither must the phase sequence and the
equality of voltages (and, as much as possible, the equality of the p.u. short-circuit
impedances).

1.12.4 Asymmetrical Operation of 3-Phase Transformers

A general three-phase voltage or current system can be split up into a positive
sequence, a negative sequence and a zero-sequence system, using the symmetri-
cal components transformation. The behaviour of a transformer is fundamentally
equivalent for positive-sequence and negative-sequence components. This is, how-
ever, not the case for zero-sequence components. For these components, the core
construction has a fundamental effect on the resulting zero-sequence fluxes. Also
the electrical connection comes into play.
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Fig. 1.31 Commonly used connections and vector groups
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Fig. 1.32 Secondary load with zero-sequence current

As the transformer bank, the five-leg transformer and the three-phase shell-type
transformer offer amagnetic return for zero-sequence fluxes, the corresponding zero-
sequencemagnetising inductance is large (and the zero-sequencemagnetising current
small for an imposed zero-sequence flux). For the three-phase core-type transformer,
the zero-sequence flux has to return through the air and the corresponding magnetis-
ing inductance is small (and thus the zero-sequencemagnetising current is quite large
for an imposed zero-sequence flux).

However, whether or not zero-sequence fluxes are present or pose problems also
depends on the electrical connection.

Here we will restrict ourselves to the example of a symmetrical primary supply,
but with an asymmetrical secondary load imposing an asymmetrical current loading.

In order to impose a zero-sequence current load, the secondary must be
Y−connected with neutral connection. Consider for example a single-phase load
between phase V and the neutral. The symmetrical components transformation of
I 2U = 0, I 2V = I , I 2W = 0 yields I 20 = I/3, I 2+ = aI/3, , I 2− = a2 I/3.

The primary currents corresponding with these secondary currents depend on the
connection of the primary.

If the primary isY−connectedwithout neutral connection, zero-sequence currents
cannot flow in the primary. The primary positive- and negative-sequence currentswill
compensate the secondary positive- and negative-sequence currents (neglecting the
magnetising currents) but the zero-sequence component of the secondary will not be
compensated. This corresponds with the situation in Fig. 1.32 where I

′
represents

the current I referred to the number of windings of the primary, i.e. I · (w2/w1). The
primary currents are I 1U = I

′
/3, I 1V = −2I

′
/3, I 1W = I

′
/3.

Whereas the bi-symmetrical components (i.e. the sum of positive- and negative–
sequence components) are compensated (neglecting the magnetising current), the
zero-sequence component is not compensated. This zero-sequence-component,
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Fig. 1.33 Neutral voltage
displacement
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whose order of magnitude is that of a load current, results in a zero-sequence mmf
in each of the three phase legs of the core. This zero-sequence mmf will result in
a zero-sequence voltage induced in each phase, both in the primary and secondary.
As a consequence, the potential of the neutral will be displaced with regard to the
potentials of the lines, both in primary and secondary (see Fig. 1.33). If a core-type
(three-leg) transformer is used, the zero-sequence mmf will see a very low mag-
netising inductance and the displacement will be limited. In contrast, in a five-leg
core-type or a shell-type transformer, the neutral potential displacement will be unac-
ceptably large. In that case it may result in an important decrease of the secondary
V to N voltage. In addition, the higher flux in the other phase legs may increase
saturation to an unacceptable level. On the other hand, for a core-type transformer
the zero-sequence flux will try to close through the transformer casing, resulting in
high eddy-current losses and heating of the shell.

We conclude that a zero-sequence load for a Y − Y transformer without neutral
connection in the primary:

• should be avoided for shell-type transformers, five-leg transformers and trans-
former banks

• should be limited for core-type transformers; according to the standards no more
than 10% of the rated current.

Nevertheless, a single-phase load is acceptable if:

• the primary is Δ−connected
• the secondary is Z−connected
• a tertiary compensation winding is provided

With a primary winding in Δ or a compensation winding in Δ, currents in the delta
will compensate the zero-sequence fluxes. A secondary in Z will avoid any zero-
sequence fluxes.

Remarks:

1. The transformer connection may also affect the magnetising. When we discussed
the magnetising of a single-phase transformer we saw that the saturation of the
magnetic circuit leads to a sharped current shape and, as a result, third harmonic
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currents if the flux is imposed sinusoidally (by the supply voltage). In a three-
phase transformer such third harmonics are zero-sequence currents as they are
the same in all three phases. If the transformer is Y − Y−connected without neu-
tral connection, then these third harmonic currents cannot flow. The flux curve
will then have to be flattened. The flux and the voltages induced in the primary
and secondary phase windings will contain third harmonics. In the line-to-line
voltages these third harmonics will not appear, however.
As to the magnitude of these third harmonic fluxes and voltages there is, however,
a difference dependent on the construction of the transformer. For transformers
with a closing path for the zero-sequence fluxes through the iron (i.e. five-leg,
shell-type or transformer bank), the induced third harmonic voltages will bemuch
larger than for transformers without closing path through the iron yoke (i.e. the
core-type transformer with three legs).
If the primary (or secondary) is connected in Δ or if there is a tertiary compen-
sation winding in Δ, the third harmonic currents can flow and the zero-sequence
fluxes will then be weakened.

2. In a winding with neutral connection, the supply voltage (grid) might also impose
zero-sequence voltages. These may result in zero-sequence fluxes and magnetis-
ing currents. Here too, the construction of the transformer (whether or not a return
path for the zero-sequence fluxes through the core) and the transformer connection
will be determinant for the behaviour of the transformer.

1.13 Autotransformer

In an autotransformer, primary and secondarywindings share a commonwinding part
and are also physically connected (i.e. there is no galvanic separation). Figure1.34a
shows an autotransformer with the secondary voltage higher than the primary. Here,
the primary winding is taken from a tap on the secondary. The primary has w1 turns,
while the secondary has w1 + w2+ turns.
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w2+ V2+
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+

_

+

_

+

_

(b)

V1
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I

+
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+
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I1
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Fig. 1.34 Autotransformer
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To study the autotransformer, wemay first consider the transformer in (b) (without
the dashed connection lines). The number of turns of primary and secondary isw1 and
w2+, respectively. Disregarding the series voltage drop and the magnetising current
we have, denoting α = w2+/w1,

V2+ = αV1

I2+ = I1+/α

I = I1+

(1.65)

With the dashed connection lines, we obtain V2 = V1 + V2+ as secondary voltage.
Supposing the same output current I2 = I2+, we will see the same primary winding
current as before, I=αI2. For the terminal quantities we obtain now

V2 = (1 + α)V1

I1 = I + I2 = (1 + α)I2
(1.66)

This transformer, which is identical to the autotransformer in (a) in Fig. 1.34, can thus
be regarded as a transformerwith turns ratiow1/w2 = 1/(1 + α) = w1/(w1 + w2+).

The (apparent) power transferred by the autotransformer is S = V1 I1 = V2 I2.
This power is, however, not completely transferred by transformer action, S = V1 I +
V1 I2 = V1 I2 + V2+ I2.OnlyV1 I = V2+ I2 is actual transformer power, corresponding
to the actual voltages over and currents through the winding parts and therefore
determining the design of the transformer.

The autotransformer has the following advantages:

• for the same dimensions and weight as a normal transformer, the transferred power
is larger by the factor (1 + α)/α

• as the losses are proportional to the dimensions to the third power (i.e. the vol-
ume of iron and copper), the relative losses are lower and decrease by a factor
[α/(1 + α)]3/4

• the relative magnetising current is lower: the p.u. magnetising current decreases
by a factor α/(1 + α)

• there is a lower leakage and therefore also a lower voltage drop (also by a factor
α/(1 + α)

The main disadvantage of an autotransformer is of course the lack of galvanic isola-
tion between primary and secondary. Further, as the lower leakage results in higher
short-circuit currents, its design should take this into account (e.g. increase the leak-
age; rugged construction to better withstand short-circuit forces on the windings).
Figure1.35 illustrates that the short-circuit impedance is in absolute values the same
as in the transformer without interconnection; as the reference power with the auto-
transformer connection is larger, the p.u. value is lower. Clearly, a normal transformer
as such cannot be used in an autotransformer connection.

An autotransformer is merely used in applications where the voltages in the two
network parts are not very different. In many cases taps are provided to provide
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Fig. 1.35 Short-circuit
impedance of an
autotransformer

Zk2+

Zk2

voltage regulation. Autotransformers are also typically used to start an induction
motor (but in this case this is done to lower the voltage, thus in Fig. 1.34 the supply
is at the secondary side and the induction motor load is at the primary side).

1.14 Phase-Number Transformation

1.14.1 Three to Six or Twelve Phases

For the transformation from three into six phases, the configuration in Fig. 1.36 is
used. This transformer has two identical sets of three-phase windings, connected as
shown in the figure. In applications like rectifiers the neutral point may be connected
using a current limiting inductor.

Fig. 1.36 Three to six
phases

1U 1V 1W

a1 a3 a5

a4 a6 a2

1U

1V1W

a1

a3a5

a4

a6 a2
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To transform three into twelve phases an additional 30◦ phase shift is obtained by
means of a Δ−connection for the primary or secondary.

1.14.2 Three to Two Phases

For the transformation from three into two phases (or vice versa), the Scott connec-
tion in Fig. 1.37 can be used. The Scott connection makes use of two single phase
transformers with the same number of secondary turns but a primary number of turns
in a proportion of 1 : √

3/2. The coil with the higher number of turns has a centre
tap connected to one end of the other primary winding. The other end of this pri-
mary winding is connected to phase U of the primary three-phase supply, while the
end point of the winding with centre tap is connected to phases V and W. The end
points of the two secondaries are connected to the four conductors of the two-phase
grid. Both transformers, but in particular the one with centre tap) should have a tight
magnetic coupling, implying large magnetising reactances and small leakage.

The proof of the resulting transformation consists of three parts.
First, we need to prove that (under no load) a symmetrical three-phase voltage

system is transformed into a symmetrical two-phase voltage (or vice versa). The
phase-to-neutral voltage VU = VUn = V is used as reference (n is the actual or
fictitious neutral point of the grid). The potential of the midpoint “o” can be assumed
equal to the average potentials of b (V V ) and c (VW ). Indeed, the emfs in the two

U

VW (o)
(c) (b)

(a)

II

I

VU

VW VV

V(ref)

B2 B1
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VB

n

II

I
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U
V
W

A1

A2
B1
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IU IVIW

b (V)(W)c

w2

w1/2w1/2

w22
w1

o

Fig. 1.37 Scott transformer
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halves are the same andwe assume that themagnetising current is negligible.12 Then:

V A = V A1 − V A2 =
(
w2 · 2/w1

√
3
) (

V a − V o

) = (w2/w1)
√
3 · V

V B = V B1 − V B2 = (w2/w1)
(
V b − V c

) = − j (w2/w1)
√
3 · V

(1.67)

or: V B = − jV A.
Next, we show that a symmetrical two-phase current system is transformed in a

symmetrical three-phase current system.Again disregarding themagnetising current,
we may deduce from the equilibrium of the mmfs in both transformers:

IU ·
√
3
2 w1 = I A · w2

I V · w1
2 − I W · w1

2 = I B · w2

(1.68)

With IU + I V + I W = 0 and supposing that I B = − j I A ≡ − j I , we find (a =
exp( j2π/3) = −1/2 + j

√
3/2)

IU = w2
w1

· 2√
3

· I
I V = w2

w1
· 2√

3
· a2 I

I W = w2
w1

· 2√
3

· aI
(1.69)

Finally, the assumed equal p.u. short-circuit impedances will guarantee that a sym-
metrical load impedance results in still symmetrical currents and voltages.

1.15 Voltage Regulation Transformers

Voltage regulation transformers (also called load tap changing transformers) are
mainly used to compensate voltage drops in grids with variable loads. They have
taps on at least one of the windings (primary and/or secondary). In most cases, these
transformers make it possible to compensate voltage drops in steps of 2.5%.

The most important problems for regulating transformers is to guarantee that the
induction remains constant (as much as possible) and that the forces on the windings
remain balanced for whatever tap position. Variations of the core induction should
be limited to 5 · · · 10%. If the induction values are too high, this will lead to high
no-load currents and losses. If the induction values are too low, which is rare, they
point to a non-economic usage of the core. Balanced forces on the windings are quite
important as under load and particularly in short-circuit conditions these forces can
be rather high. The radial forces should not pose a problem, especially not for round
coils. Asymmetrical axial forces, however, may cause a displacement of the coils in

12Under load as well, we will assume that the voltage drops are small because of the small leakage
inductances and small resistances for these transformers.
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(a) (b)

Fig. 1.38 Forces on active winding parts

axial direction on the core. Tap placement should therefore ensure that for every tap
position, the equilibrium in axial direction of active winding sections is maintained
(see Fig. 1.38 in which active winding sections are shaded).

1.16 Measurement Transformers

Measurement transformers are used to measure high voltages (voltage transformers)
or high currents (current transformers) on a much lower measurement level, in many
cases also isolated from the dangerously high voltage level of the grid. Measurement
transformers are always single-phase transformers and have a very low rated power
(less than 1kVA and usually less than 100VA). As to construction and properties, low
magnetising currents, low resistances and low leakage will be aimed for. To obtain a
low magnetising current, special core materials will normally be used together with
special core construction (to keep the induction level and saturation levels low).

1.16.1 Current Transformers

Current transformers are high-precision transformers where the ratio of primary to
secondary current is a known constant that changes very little with the load. They
have only a few turns (albeit with large cross section) in the primary winding, but a
large number of turns in the secondary. The primary is put in series with the (grid)
conductor (e.g. high voltage line). The secondary is connected to a low-impedance
ammeter. In this way, the primary current is imposed while the secondary winding is
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Fig. 1.39 Current
transformer I1

I2

A

Fig. 1.40 Equivalent circuit
for measuring transformer

I'1

R'1 R2jX2jX'1

R

jX

jX m2Im2

I2

Table 1.1 Current
transformer classes

Class εi (% for In) δi (arc minutes for In)

0.1 0.1 5

0.5 0.5 30

1 1 60

almost short-circuited. A current transformer also isolates the measuring apparatus
from the possibly high voltage of the line (Fig. 1.39).

If the transformer were ideal, then

I 2 = I 1 · w1

w2
= I

′
1

However, because of the magnetising current a small magnitude and phase error
will exist (see also the equivalent circuit in Fig. 1.40):

I 2 = I
′
1 · j Xm2

R2 + R + j X2 + j X
� I

′
1 · exp( jδi )

1 + X+X2σ
Xm2

(1.70)

δi is the angle error with tan δi = (R2 + R)/(X2 + X). The amplitude error is
εi = (I2 − I

′
1)/I

′
1 ≈ −(X + X2σ)/Xm2 which illustrates the importance of a low

magnetising current (or large magnetising inductance).
Specifications of current transformers include: the accuracy class, the maximum

voltage protection, rated primary current and over-current possibility, rated apparent
power (or rated load impedance, in most cases for cosϕ = 0.8), own losses and
short-circuit durability (see for example Table1.1).

Please note that the secondary of a current transformer may never be opened when
the primary is carrying current. If it was opened, the imposed primary current would
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act as magnetising current and cause a dangerously high voltage at the secondary, a
high induction level and losses in the core.

1.16.2 Voltage Transformers

Voltage transformers are high-precision transformers that allow us to measure high
voltages at an acceptable lower level (e.g. 100 or 200V). The number of primary
turns is thus much higher than the number of secondary turns. In normal conditions,
the secondary impedance (voltmeter) is very large, so that the voltage transformer
works under practically no load. A voltage transformer also isolates the measuring
apparatus from the high voltage of the line (Fig. 1.41).

If the no-load current is negligible and the load impedance infinitely large, then

V 2 = V 1 · w2

w1
= V

′
1

In reality, the non-zero no-load current and the load current cause an amplitude
and a phase error. The error can be calculated as follows (see Fig. 1.40 and the
corresponding Thévenin equivalent):

V 20 = V
′
1 · j Xm2

R
′
1 + j X

′
1

(1.71)

V 2 = V 20 · R + j X

Z
′
k2 + R + j X

(1.72)

Fig. 1.41 Voltage
transformer

+

_
V2 V

+

_

V1grid voltage

Table 1.2 Voltage
transformer classes

Class εi (% for In) δi (arc minutes
for In)

Operation range

0.1 0.1 5 0.8 · · · 1.2 V1n
0.5 0.5 20 0.8 · · · 1.2 V1n
1 1 40 0.8 · · · 1.2 V1n
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For voltage transformers there are also accuracy classes, as illustrated in Table1.2.
Other characteristic data are: the rated voltages, the rated apparent power (the sec-
ondary rated power for V1n), the maximal power (maximal secondary power in order
not to exceed the maximum allowed heating), and the own power loss (for V1n and
open secondary).



Chapter 2
Direct Current Commutator Machines

Abstract Although DC commutator machines are nowadays largely being replaced
by rotating field machines, they remain an interesting study object. The basic prin-
ciples for energy conversion are similar to those of other machines. Moreover, their
excellent control properties (e.g. speed control, torque control) are the inspiration
for modern drive control schemes for rotating field machines. Starting from the basic
electromagnetic laws, the electromagnetic energy conversion in DC machines is
explained. Attention is paid also to commutation and armature reaction. Motoring
and generating characteristics are discussed in detail.

2.1 Introduction

DC commutator machines (abbreviated as ‘DC machines’) are (some of) the oldest
electrical machines. Thanks to the simplicity of direct current, DC machines were
able to maintain a leading position for many years, even after the introduction of AC
and induction and synchronous machines in the beginning of the 20th century.

Later on, this position was threatened by the advantage of AC as to loss-
less transforming voltage and current levels, at least for generators and constant
speed drives. For variable speed drives, however, DC machines were still the
preferred drives for variable speed drives (i.e. controlled drives). This changed
completely with the introduction of power electronics in the second half of the
20th century, which facilitated controlled drives using induction and synchronous
machines.

Nevertheless, DC machines are still used for low power applications (automo-
tive). However, this may not last as they are less reliable and generate higher mainte-
nance costs compared to pm-synchronous machines with low-cost power-electronic
supplies.

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_2
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W P
Y

A

Fig. 2.1 Main electromagnetic parts of a DC machine

Fig. 2.2 Pictures of the armature

2.2 Construction of the DC Machine

2.2.1 Basic Construction - Operating Principle

Construction

The most important electromagnetic parts of a DC machine are the following (see
also Fig. 2.1):

• The standstill excitation system mainly consisting of

– the main poles P
– the excitation winding W (or permanent magnets for small machines)
– the closing yoke Y

• The rotating armature A: the core of the armature is always laminated, with iron
sheets of less than 0.5mm. The armature has slots for the armature conductors.
The armature winding is a closed winding and is connected to the commutator
segments in several places. Brushes make contact with the segments to provide
current to the armature.
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armature core (segmented) with conductors in slots
end coils of the armature winding
commutator (copper segments)
brush holders with brushes
shaft ends
bearings
ventilator
housing (with yoke, segmented or massive)
main field pole (in most cases segmented)
main field coil
electrical terminals
feet (supports)
bearing houses
ventilator in- and outlets

Fig. 2.3 Construction details of DC machine

Figure2.2 shows some pictures of both sides of the armature, while Fig. 2.3 pro-
vides more details of the construction of a DC machine. Auxiliary poles and com-
pensation windings (see further on) have not been depicted.

Operating Principle

The operating principle of a DC commutator machine is explained in Fig. 2.4. The
excitation poles (either with a DC fed excitation winding or permanent magnets)
produce a magnetic field in the air gap. Because of the high permeability of the
iron in the poles and the armature core, the field lines are almost orthogonal to the
armature and field pole boundaries. As a result, the induction in the air gap as a
function of the linear coordinate x (or the angular coordinate θ) along the air gap
is as depicted in (c) in Fig. 2.4. When the armature rotates, emfs are induced in the
armature conductors: e = v · B · la with v = Ωa · ra(where ra is the armature radius)
and with la the armature length. The curve of this emf e as a function of time is
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Fig. 2.4 Operating principle

similar to the curve of the air-gap induction as a function of the linear coordinate of
the circumference.

Now consider two conductors that are positioned diametrically on the armature.
These are series connected on one end to form a coil, while the other ends are
connected to slip rings (see (b1) in the figure). The voltage u that can be measured
using two brushes that make contact with the slip rings will be an alternating voltage
with the same shape as e but with twice the amplitude (see the lower curve in the full
line in (c)). However, if the free ends of the coil are connected to two segments of a
commutator (see b2 in the figure), then the voltage uc measured using two brushes
will be a rectified voltage (see the lower dashed curve in (c)). A smoother curve
for this rectified voltage is obtained using more commutator segments, each pair
connected to similar coils with conductors distributed along the circumference of the
armature.

In contrast, if a DC supply is connected to the armature conductors via the brushes,
then a current will flow in the armature conductors. When the armature rotates, the
current direction in a given conductor will be an AC current. Indeed, the commutator
operates as a frequency converter. When a conductor is under the north pole, the
current will always flow in the same direction but it will be in an opposite direction
when the conductor is under the south pole. The current direction in the conductor
changes when it passes the neutral position between north and south poles. This
holds for all conductors and coils, i.e. the current direction for all conductors under
a north pole will be the same while the current direction for all conductors under a
south pole will be the opposite.

This may also be formulated as follows. An observer at standstill with respect
to the poles will see a constant current image while an observer rotating with the
armature (or conductors) will see alternating currents in the conductors. Conversely,
the current in the coils or conductors is an alternating current which is rectified by
the commutator.
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As a result, the tangential force on the conductors due to the interaction of the
currents with the magnetic field of the poles under the north and south poles will act
in the same direction and cause a net torque on the armature.

The operating principle of the DC commutator machine as an electromechanical
power converter should therefore be clear. Rotation of the armature in the presence
of an excitation will cause emfs in the armature conductors. The connection of the
armature conductors with the commutator causes the emfs to add to a DC voltage at
the brushes. If the brushes are connected to a load resistance (or a lower DC voltage
source in series with a resistance), a current will result in the load, converting the
mechanical energy into electrical energy in the resistances and/or the voltage source.
To maintain the speed, a mechanical driving torque must be exerted on the shaft of
the armature, as the currents in the conductors will cause a braking torque. In other
words, the DC machine works as a generator.

In contrast, if the brushes are connected to a voltage source which is higher than
the combined armature emfs at the brushes (which occurs at a sufficiently low speed),
the voltage source connected at the brushes will bring about a current in the armature
conductors, producing a driving torque that will try to accelerate the machine and
load. Here, the machine works as a motor.

In both generating and motoring, a constant equilibrium speed will be achieved
when the driving and braking torques are equal in magnitude. Remark that power
reversal is an inherent property of all electromagnetic power converters (transformers,
rotating machines).

2.2.2 Excitation

Construction

The stator of a DCmachine contains an even (2Np) number of identical salient poles.
These main poles are distributed evenly around the circumference. The distance
between subsequent poles is called the pole pitch τp, measured along the median
circle (in the middle of the air gap). The width of the pole shoes is referred to as the
pole width. These poles generate a heteropolar field around the circumference, i.e. a
succession of north and south poles. The excitation is either a DC-fed concentrated
winding around the poles or a permanent-magnet excitation. The field lines for a
two-pole machine and for the two-pole part of a multipole machine are illustrated in
(a) and (b) in Fig. 2.5, respectively.

Such a pair of poles ((a) in Fig. 2.6) is usually representative of thewholemachine.
For further analysis, we may represent it by a flat representation as in (b) in Fig. 2.6.
Because of the high permeability of the iron of poles and armature, most field lines
cross the air gap orthogonally to the iron-air boundary. Only at the corners of the
poles does some flux fringing occur. This flux fringing results in a smoother induction
curve (see the full lines in the figure) versus the ideal rectangular curve (in dashed
lines). In addition, the air gap is often widened at the corners, and the armature slots
also cause some deformation of the flux curve. However, later on we will see that
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Fig. 2.6 a Field lines; b real and idealised flux curves

the real shape of the flux curve is not significant. Only the average flux over a pole
pitch comes into play for the energy conversion (emf, torque).

Note that the magnetic field is zero in the middle between two subsequent poles
(i.e. the geometrical neutral zone. When also armature currents are present, the zone
with zero induction may shift away from this geometrical neutral zone (see the
armature reaction in Sect. 2.4).

Saturation Characteristic

The air-gap induction in a point x under a pole can be calculated as follows. We
denote by wm the number of turns per pole, Im the excitation current in the excitation
winding conductors, δx the air-gap length in a point x , Bδx the air-gap induction in
x and la the armature length. Applying Ampère’s law to a closed field line yields

j
H · dl = 2wm Im (2.1)
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The left hand part of this equation contains the magnetic field drops over the stator
yoke, the poles, the air gaps, the armature slot regions and the armature yoke:

Hyxδyx + 2Hpxδap + 2Hδxδx + 2Hsxδsx + Haxδax = 2wm Im (2.2)

If the permeability of the iron parts is infinite, then the left hand part reduces to the
mmf drop over the two air gaps and thus

2Hδxδx = 2wm Im (2.3)

The physical flux per pole is given by

Φm =
τp/2ˆ

−τp/2

Bδx · la · dx =
τp/2ˆ

−τp/2

μ0Hδx · la · dx (2.4)

If only the mmf drop over the air gap comes into play, then, using Eq.2.3

Φm =
τp/2ˆ

−τp/2

μ0
wm Im

δx
· la · dx = wm Im · �δ (2.5)

with �δ the permeance of the air gap. If the air-gap length is constant and equal to
δp under the poles (−bp/2 ≤ x ≤ bp/2) and almost infinite in between the poles
(such that the induction is about zero in between the poles), then �δ = μ0labp/δp =
μ0�δ/δp.

In reality, the permeability of the iron is finite.Moreover, there is always saturation
(reducing the iron permeability), especially in the teeth of the armature because of the
reduced iron cross section. The expression for permeance is therefore often written
as �m = μ0labp/δ

”
p = μ0�δ/δ

”
p with δ”p = kckiδp. The factor kc (>1) is Carter’s

factor, which takes into account the effect of the slots, and ki > 1 is a factor that
considers the mmf drops in the iron parts (in particular the armature teeth).

The relation between the pole flux and the excitation current is called the saturation
characteristic. Because of the iron, this is a non-linear characteristic. Moreover it
shows hysteresis (see (b) in Fig. 2.7). Although the hysteresis is important for the
self-excitation of generators (see below) we will usually neglect the hysteresis effect
and replace it with an average curve as in (a) in Fig. 2.7.

To obtain a given flux, the required excitation mmf Fm consists of the mmf Fδ for
the air gap, the mmf Fs for the armature slots and the mmf Fi for the iron. The latter
two are represented by the mentioned factors kc and ki , respectively.

Remarks:

• with increasing saturation, the leakage flux of the excitation winding (i.e. the flux
linking the excitation winding but not the armature) also increases.
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Fig. 2.7 Saturation characteristic

• the iron in the machine is required to concentrate the flux under the pole shoes
linked with the armature.

• the actual induction curve is sometimes represented by a fictitious square curve
with amplitude Bδ under the pole width so that the pole flux remains the same,
which means that Φm = Bδ · bp · la (see the dashed line in (b) in Fig. 2.7).

2.2.3 Armature

The main parts of the armature are the core with the windings and the commutator.
In this section, we will mainly discuss the core with the windings. The commutator
will be examined in more detail in Sect. 2.5.

The oldest version of the armaturewinding is the ringwinding (orGramme1 wind-
ing). Figure2.8a depicts the cross section of a 2-pole Gramme-winding machine.
Although this kind of winding does not have any industrial or practical applications
nowadays, it is a nice tool to explain the windings and the connections to the com-
mutator. The Gramme winding is in fact a coil closed on itself around a ring (or
cylinder). The outer conductors are exposed to the magnetic field of the excitation
(when under the poles), while the inner conductors are connected to the commutator
segments. The brushes make contact with the segments in between the poles.

In Fig. 2.8b, c, schematic layouts of a 2-pole and a 4-pole machine are shown (the
commutator has now been omitted and simplified by brush contacts with the outer
conductors). If the armature rotates in the magnetic field by the poles, voltages will
be induced in the outer conductors, with opposite signs under north and south poles
as marked in the figure. In the 2-pole version, the voltages in the conductors 2, 3, 4,

1Zenobe Gramme was a Belgian inventor; there is a statue of him on the bridge over the Meuse in
Liège.
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Fig. 2.8 Gramme winding

5 and 6 will add up. Similarly, the voltages in conductors 8, 9, 10, 11 and 12 will
add up. These two resulting voltages have the same magnitude because of symmetry.
Seen from the brush contacts, these voltages have the same sign. At the brushes, we
therefore see the winding as two parallel branches. A similar reasoning holds for
a current injected at the brushes, for example. Half of this current will flow in the
upper conductors and the other half in the lower conductors.

In the 4-pole depicted, it is assumed that the brushes with the same polarity are
connected externally. So there are four parallel branches in the armature winding as
observed from the external armature terminals.

In the Gramme winding, less than half of the conductor copper is used actively
as the inner conductors serve only as connections and do not take part in the energy
conversion. Nowadays, drum windings are always used. The drum winding may be
derived from the Gramme winding if the inner conductors are moved to the outside
under the opposite poles (for the 2-pole version, this is the diametrically opposed
pole). In this way, a winding is obtained with two conductors near each other but
belonging to two different coils and to different parallel branches (the two coil sides
are normally placed below each other in slots). The width of such coils is then equal
to the pole pitch τp. Figure2.9 shows the flat representation of a 4-pole drumwinding
with 23 slots (and also 23 commutator segments). In each slot, two coil sides can be
observed. One is called the entrance coil side (full lines) and the other the exit coil
side (dashed). In this example, the coil width (i.e. the distance between entrance and
exit coil sides of a single coil) is y = τp (although this is not always the case). Remark
that this drum winding is also closed on itself. Brushes with the same polarity are
connected externally. In this way, again four parallel branches are obtained.
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Fig. 2.9 Actual armature drum winding

2.3 Electrical Power Conversion in a DC Machine

2.3.1 Voltage Induction (emf)

When the armature rotates in the magnetic field of the excitation poles, electromotive
forces (emfs) are induced in the armature conductors according to ec(x) = va ·b(x)·la
with va = (Npτp/π) · Ωa the linear speed of the conductor in x , b(x) the induction
in x and la the armature (or conductor) length. In order to calculate the total emf
induced between two brushes, the following notations are used: z is the number of
conductors of the armature, 2a the number of parallel branches, Φm the flux per
pole, Ωa the rotation speed of the armature (rad/s) and ra the average radius of the
armature.

When the conductor moves over a pole pitch τp, the evolution in time of the emf
is similar to the curve of the air-gap induction along the pole pitch. The average
conductor emf can thus be calculated from

ec,av = 1

τp

τp/2ˆ

−τp/2

ec(x) · dx = va

τp

τp/2ˆ

−τp/2

Bδx (x) · ladx = va

τp
Φm = NpΩaΦm

π
(2.6)

The voltage measured at the armature terminals is the sum of the emfs of the z/2a
series connected conductors in one of the 2a parallel branches (see Fig. 2.10), which
means that

Ea = z

2πa
Np · Ωa · Φm (2.7)

This result can also be obtained by the summation of the emfs in the z/2a conductors
in a branch, assuming that the number of conductors is very large so that the summa-
tion can be replaced by a surface integral over a pole pitch. However, in reality the
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Fig. 2.10 a Parallel branches, b flat representation of pole flux

number of conductors is finite and the actual voltage shows some undulation. This
undulation is usually of no practical importance and only the time-average voltage
of equation is interesting (2.7).

Please note that this average voltage is only dependent on the average flux per
pole. The actual shape of the induction curve over the pole pitch does not come into
play.

From Eq.2.7 it also follows that the saturation characteristic Φm(im) is similar to
the emf curve as a function of the excitation current Ea(im) (for a constant speed),
which offers a practical and easy means to experimentally record this characteristic.

2.3.2 Torque

If an armature current Ia is flowing into the armature terminals, this current will be
divided into 2a equal parts in the 2a parallel branches. In each armature conductor,
we will thus see a current Ia/2a. As a result, on a conductor in point x of the armature
a tangential force fc(x) = Ia

2a · la · Bδx (x) will be exerted (see Fig. 2.11). This force

corresponds to a torque on the conductor tc(x) = Npτp
π

· Ia
2a · la · Bδx (x). The average

values of this force and torque when the conductor moves through a pole pitch are
then

fc,av = 1

τp

τp/2ˆ

−τp/2

fc(x) · dx = 1

τp
· Ia
2a

· Φm (2.8)
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Fig. 2.11 Tangential force
and torque on a conductor

f(x)

B x

Ia
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tc,av = 1

τp

τp/2ˆ

−τp/2

tc(x) · dx = Np

π
· Ia
2a

· Φm (2.9)

For the total electromagnetic torque on the armature, this average conductor torque
must be multiplied by the total number of conductors z:

Tem = z

2πa
Np · Ia · Φm (2.10)

The torque is independent of the actual shape of the induction over a pole pitch, as
long as the flux per pole remains the same.

Note that, as expected, the product of the electromotive force and the current equals
the product of the electromagnetic torque and the armature speed (i.e. conservation
of energy):

Ea · Ia = Tem · Ωa (2.11)

This product is called electromagnetic power Pem .

2.3.3 Electrical Power Conversion

When the machine is loaded, the armature terminal voltage differs from the emf by
the armature resistance drop and the transition voltage drop between commutator
and brushes. In the URS and GRS (see also Fig. 2.12):

Va = Ea + Ra I a + ΔVb (2.12)

Va = Ea − Ra I a − ΔVb (2.13)

respectively, where ΔVb = |ΔVb| ·sign(Ia). In other words, this transition voltage
always has the sign of the armature current. Its magnitude is approximately 2V .

To simplify the equations, the transition voltage is sometimes lumped together
with the armature resistance, as Va = Ea + R

′
a I aand Va = Ea − R

′
a I a , respectively.
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As to the torque, the shaft torque differs from the electromagnetic torque by the
friction torque, the ventilation torque and a small load torque due to the iron losses
in the armature:

Tsh = Tem − Tw (2.14)

Tsh = Tem + Tw (2.15)

for the GRS and the URS at the mechanical side, respectively (Fig. 2.13).
The power conversion in a DC machine can thus be described by the following

sets of equations.

• for the M-convention (URS at the electrical side and GRS at the mechanical side):

Va = Ea + Ra I a
Tsh = Tem − Tw

Pel = Va Ia = Pem + Ra I 2a
Psh = TshΩa = Pem − TwΩa

(2.16)

or also Pel = Psh + TwΩa + Ra I 2a .

• for the G-convention (URS at the mechanical side and GRS at the electrical side):

Va = Ea − Ra I a
Tsh = Tem + Tw

Pel = Va Ia = Pem − Ra I 2a
Psh = TshΩa = Pem + TwΩa

(2.17)

or Psh = Pel + Ra I 2a + TwΩa .

Fig. 2.13 a M-convention
and b G-convention
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a
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Fig. 2.14 Sankey diagrams

These equations are represented by the Sankey diagrams in Fig. 2.14.
Please note that in the preceding equations the electric power for the excitation is

not taken into account. In case of a series of shunt excitation, the energy loss in the
excitation winding must be provided at the armature connections as well.

Remarks:

1. The electromagnetic power may also be expressed as a function of the linear force
and the linear speed (e.g. for a linear motor):

Fem = z
2τpa

· Ia · Φm

va = Ωa · Npτp
π

Pem = Ea · Ia = Fem · va = z
2πa Np · Ωa · Ia · Φm

(2.18)

2. Force, torque and power may also be expressed per square meter of active air-gap
surface

F�
em = Fem

2Npbpla

T�
em = Tem

2Npbpla

P�
em = Pem

2Npbpla
= F�

em · va = T�
em · Ωa = Ka · Aa

(2.19)

with

Ka = Ea
(z/2a)·(bp/τp))·la = va · Bδ

Aa = z·Ia/2a
2Npτp

(2.20)

where Ka represents the emf per meter of active armature length and Aa the
current layer amplitude (or current per meter of armature circumference).

3. The efficiency of a DC machine is determined by the following three types of
losses:

a. no-load losses (e.g. mechanical losses and iron losses)
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b. load losses (i.e. Joule losses in the armature and brush contacts and extra
losses in the armature iron due to the slot effects; the latter two are in most
cases also included in the term R

′
a I

2
a)

c. excitation losses (unless permanent magnets are used for the excitation).

2.4 Armature Reaction and the Compensation Winding

Armature Reaction

From the discussion in Sect. 2.2.2, we learned that the excitation results in amagnetic
field along the pole axes (and an induction curve which is symmetrical around the
pole axes). However, this changes when armature currents are also present. In that
case, the curve is not symmetrical any more and a flux reduction may occur.

Figure2.15 shows the field lines due to an armature current (in dash-dot lines).
For example, to the right of the north pole the armature mmfs add to the mmf of
the excitation, while to the left they will subtract from the mmf of the excitation.
Figure2.16 illustrates this in more detail by means of a flat representation. Sketch
(b) in this figure shows the excitation mmf and induction without armature current.
In (c), on the other hand, the mmf and induction curves are depicted for armature
current without excitation (the induction in between the poles is low due to the large
air gap). The armature mmf varies with the coordinate x according to

Fa(x) = Ha(x) · δx =
xˆ

0

Aa(x) · dx (2.21)

Fig. 2.15 Field lines of
armature reaction
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Fig. 2.16 Flat representation of armature reaction

supposing that the field lines are orthogonal to the iron boundaries.
For a sufficiently fine distribution of the armature conductors, Aa may be consid-

ered as a constant (the average current layer amplitude), and the armature mmf then
varies linearly with x .

When both excitation and armature mmfs are present, the resulting mmf curve is
not symmetrical any more around the pole axes, as shown in (d). The flux over a pole
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pitch will not change if the magnetic material is linear, as the induction curve will
then always remain proportional to the total local mmf. Indeed, if themagnetic circuit
is linear, the separate induction values of excitation mmf and armature mmfmay also
be added. As the integral of the armature mmf over a pole pitch - symmetrical with
respect to the pole axes, thus from −τp/2 to τp/2 - is equal to zero, the pole flux
will not change.The only result will be a shift of the magnetically neutral zone (away
from the geometrically neutral zone). This transversal armature reaction is illustrated
by the induction curve B∗ in full lines in (e).

If, however, saturation of the iron occurs, the pole (longitudinal) fluxwill decrease,
as the relative induction increase for lower mmfs will not compensate the relative
induction decrease for higher mmfs (see the dashed induction curve Bt in (e)). The
outcome is therefore a flux reduction along the pole axes, resulting in a lower emf
and a lower torque. This effect is called the longitudinal armature reaction.

Compensation Winding

To mitigate the longitudinal armature reaction, larger DC machines often contain a
compensation winding. This is a winding in slots of the pole shoes with ampère-
windings that oppose the underlying armature currents (see Fig. 2.17). As this
winding should compensate the armature mmf in all operating conditions, this com-
pensation winding must be connected in series with the armature winding. Because
this winding is not fixed to the armature, no torque effects will occur. The only
negative effect is that the slots will reduce the permeability in the longitudinal axis.

However, note that the compensation winding will only compensate the armature
mmf under the pole shoes (and thus the longitudinal armature reaction) but will not
affect the armature mmf in the inter-polar space. As a result, the transversal armature
reaction and the shift of the neutral zone will not be eliminated.

Fig. 2.17 Compensation
winding
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Fig. 2.18 Commutation for a Gramme winding

2.5 Commutation and the Commutation Poles

Commutation

As discussed above, the armature winding is a winding closed in itself, with 2a
parallel branches. Current is supplied to (or from) the armature by the brushes.
These brushes make contact with the commutator segments that are connected to
the connection points of subsequent coils. As explained above, the currents in the
armature conductors are AC currents. The polarity of the current in a coil changes
when the segments connected to the coil end points pass the brushes (see Fig. 2.18).
For conductor 1, the current direction changes from upwards (a) to downwards (c)
when the armature rotates clockwise. In between, the brushes short-circuit the coil
to allow the current to reverse. This is called commutation.

The current should reverse smoothly and on time during the short-circuit interval.
If not, sparking will occur, causing wear of commutator and brushes. The commu-
tation is affected by both mechanical and electrical issues. The former, mechanical
issues, relate to vibrations, eccentricity and roundness of the commutator, insufficient
or variable contact pressure of the brushes, among other things. The latter, electrical
issues, are far more common causes of commutation problems, which is why they
will be further discussed below.

A schematic representation of the commutation is shown in Fig. 2.19. I = Ia/a is
called the brush current. Before commutation, the current I/2 in the coil connected
to segments 1 and 2 flows from left to right (see (a)). After commutation, it will
flow from right to left (see (c)). During the commutation interval, the coil is short-
circuited by the brushes. In the coil, we can then observe a short-circuit current ik(t).
During this commutation, the currents in the connections to segments 1 and 2 are
i1(t) = I/2+ik(t) and i2(t) = I/2−ik(t), respectively. Indeed, wemay suppose that
the brush current I does not change during the commutation. An important criterion
for a good commutation is that the current densities in the contact surfaces between
the brushes and the segments remain limited and, if possible, constant. These current
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Fig. 2.19 Schematic representation of commutation

densities in the contacts of segments 1 and 2 can easily be calculated taking into
account the contact surfaces of the brush with segments 1 and 2: bblb(1 − t/tk)
and bblb(t/tk), respectively, where bb is the brush width, lb the brush length and
tk = bb/vk the commutation time (vk represents the linear circumferential speed of
the commutator segments).

Figure2.20a gives a graphical representation in which the current densities can be
derived as J1 = J0 tanα1 and J2 = J0 tanα2 with J0 = I/bblb. The ideal situation
is a linear commutation, as shown in (b). In particular, if the current density J2 is
too high, this can be problematic and lead to sparking. However, many electrical and
electromagnetic factors affect the commutation:

1. The contact resistance of the brushes
The contact resistance with the segments is position-dependent (and thus time-
dependent). It is easily demonstrated that the larger the ratio λ = (Rs + 2Rv)/Rb

(where Rs , Rv and Rb represent the resistances of the short-circuited coil, the
resistance of the connection between the coil and the segment and the maximum
brush-segment contact resistance, respectively), themore linear the commutation,
as illustrated in (c) in Fig. 2.20.
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2. The leakage inductance of the short-circuited coils
The leakage inductance of the short-circuited coilswill obviously oppose a current
change, according to vσ = Lσ(dik/dt).

3. The transversal armature reaction
As discussed above, he transversal armature reaction results in a shift of the neutral
zone, away from the geometrically neutral zone. As a result, the commutating
armature conductors are now subjected to amagnetic field that opposes the current
change, i.e. emfs are induced that counteract the current reversal.2 This is also
clear from (a) in Fig. 2.21, where we can see that the field lines of the transversal
armature reaction Baand those of the leakage field Bσ have the same direction
and therefore induce emfs with the same polarity in the commutating coils.

2Can you prove this?
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To mitigate the negative factors and improve the commutation, there are two
possible solutions:

1. The brush axesmay be shifted into the real neutral zone or even somewhat further.
The main disadvantage is that the direction of the shift depends on the current
direction: for a given voltage polarity, the direction of the shift depends on motor-
ing or generating. This brush shift is usually only applied for small machines that
are to be operated either as motor or as generator (not both)

2. Auxiliary or commutation poles (see (b) in Fig. 2.21) may be provided, inducing a
local3 field for the commutating coil sides, which will improve the commutation.
This field will have to counteract the leakage field and the transversal armature
reaction, both of which are proportional to the current. Thus the auxiliary pole
winding must be connected in series with the armature. It will work for all speeds,
as both the voltages induced by the leakage and the transversal armature reac-
tion are proportional to the speed. Because of the more complicated machine
construction, this solution will only be used for somewhat larger power ratings.

3The auxiliary poles act only on the commutating conductors in the inter-polar space while the
compensation windings act only on the air gap between pole shoes and armature.
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2.6 Steady-State Characteristics

2.6.1 Introduction - Per-Unit

The variables determining an operating point of a DC machine are the terminal
voltage Va , the armature current Ia , the excitation current Im (or the excitation mmf
Fm or the excitation flux for a permanent magnet excitation), the speed Ωa and the
torque Ta . These five variables are not independent of each other because of the
electrical armature relation (Eqs. 2.12 and 2.7) and the torque equation2.10.

Generator characteristics include the no-load characteristic, the load characteris-
tic, the control characteristic and the external characteristic. The main motor char-
acteristic is the torque-speed characteristic.

Before discussing these characteristics in more detail, we will briefly describe the
per-unit system usually applied for DC machines.

For the five variables, only three reference values can be chosen independently.
For a generator, the reference values to start with will typically be the rated armature
voltage, the rated armature current and the rated speed. The reference values for
flux and torque then follow from the relations between emf, torque, flux, current and
speed (and the saturation characteristic for the excitation mmf or excitation current
reference values). For amotor, the rated values for speed, torque and armature current
will usually be taken as a starting point.

2.6.2 Basic Characteristics and Derivation Methods

2.6.2.1 No-Load Characteristic

The no-load characteristic is the basis for all other generator characteristics. It can
be measured by driving the DC machine at rated speed and measuring the armature
voltage as a function of the magnetising current (or mmf if the number of windings
of the excitation is known). The no-load characteristic is similar to the saturation
characteristic:

Va0(Im,Ωan) = Ea(Im,Ωan) = kΦm(Im) · Ωan (2.22)

In general, the relation between the magnetising flux and the magnetising current or
mmf is indeed non-linear because the permeance of themagnetic circuit is saturation-
dependent:

Φm(Im) = wm Im · �m(Im) (2.23)

The no-load characteristic may also be measured at a speed different from the rated
speed.Multiplying the emfs byΩan/Ωa then yields the characteristic for rated speed.
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The per-unit no-load or saturation characteristic is easily derived from the no-load
characteristic at rated speed:

ea(im) = ϕm(im) = Ea(Im,Ωan)

Van
(2.24)

The per-unit magnetising current im is also equal to the per-unit mmf fm . Therefore,
the per-unit characteristic ϕm( fm) ≡ ea(im) is sometimes called the generalised
saturation characteristic. The ordinate represents both the p.u. flux and p.u. emf, the
abscissa both the p.u. magnetising current and p.u. mmf.

A sometimes useful approximation for a saturation characteristic (neglecting hys-
teresis) is of the form:

fm = α · ϕm + (1 − α) · ϕz
m (2.25)

where the parameter z ≈ 5 . . . 7 mainly depends on the magnetic material. The
parameter α determines the relative importance of the linear and the non-linear
parts, see Fig. 2.22.

Although hysteresis is not considered in the parametric equation2.25, hysteresis
is important for self-excitation of DC machines.

2.6.2.2 General Derivation Method for Generator Characteristics

There are several excitation types for DC machines, as illustrated in Fig. 2.23. The
basic types are: separate (or independent) excitation, shunt excitation and series
excitation. DC machines may also have more than one excitation winding in order
to obtain more suitable characteristics. When a shunt excitation is combined with a
series excitation this is called a compound generator (or motor). The series excitation
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Fig. 2.23 Excitation types of DC machines

may either reinforce the independent (or shunt) excitation or counteract it, see (d) and
(e) in the figure. These are called compound4 and differential compound excitation,
respectively.

Consider aDCgeneratorwith an independent excitationwinding aswell as a series
excitationwinding. The separate (independent) excitation provides an excitationmmf
Ff 0. In no-load, the resulting emf at a given speed is E0.When the generator is loaded,
the armature current Ia results in a series mmf±K Ia , with the plus sign representing
an (over-)compound and the minus sign a differential compound.

For a differential compound the actual mmf Ff 0−K Ia will be lower when loaded,
which in turn leads to a lower emf. In addition, the armature resistance drop will
also cause a voltage reduction at the terminals. The load characteristic (for constant
armature current Ia) may be derived graphically from the no-load characteristic, as
illustrated in Fig. 2.24. The mmf, when loaded, will be reduced to OP ′ = Fres =
Ff 0 − K Ia . The resulting emf (as derived from the saturation characteristic) will
now be P ′N = Eres . The terminal voltage, however, will be somewhat lower: Va =
Eres−Ra Ia . In the rectangular triangleNMP, two sides are proportional to the current.
For a constant armature current, this triangle will remain congruent with itself. The
load characteristic Va = G(Ff ) for a constant armature current Ia is thus the no-load
characteristic shifted by the oriented line NM or the vector NM−→. The triangle NMP
is called Potier’s triangle or characteristic triangle or short-circuit triangle. The latter
name is explained by the triangle QRS which shows the required mmf OR to obtain
this particular armature current Ia when the armature is shorted (Va = 0).

It can be shown that the longitudinal armature reaction (which also brings about a
flux reductionwhen themagnetic circuit is saturated)maybemodelled approximately

4Which is sometimes also called additive compound or over-compound excitation.
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Fig. 2.24 General derivation method of DC machine characteristics

as a differential compound proportional to the armature current. If represented as an
mmf reduction −Ka Ia , the factor Ka is in reality saturation-dependent.

2.6.3 Generator Characteristics

2.6.3.1 Load Characteristic of a Separately Excited Generator

In the previous section,we derived the load characteristic Va = G(Ff ) of a separately
excited generator for a constant armature current, taking into account a differential
compound winding. The same sort of characteristic and derivation also holds for a
pure armature reaction (K = Ka). If there is no armature reaction, the load charac-
teristic simply follows from a vertical shift of the no-load characteristic

Another useful load characteristic is the characteristic Va = G(Ff ) for a given
load resistance RL and a given speed (usually the rated speed). The characteristic
and its derivation are illustrated in Fig. 2.25. Using the construction on the left (i.e.
Va = RL Ia and Ea = (Ra + RL)Ia) the shift of the no-load characteristic by the
vector NM−−→ of the triangle NMP, which now only remains similar and not congruent,
should be clear. The sides of the triangle are proportional to Ia (and Ea).
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2.6.3.2 External Characteristic of a Separately Excited Generator

The external characteristic, Va = G(Ia) for constant excitation mmf Ff 0 (or excita-
tion current I f 0) can be derived using the construction on the left in Fig. 2.26. The
triangleNMP remains similar, while point N moves on the no-load characteristic and
M remains on the vertical line corresponding with the excitation Ff 0. The armature
currents are proportional to the lengths of the sides of the triangles.
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The voltage drop with increasing armature current results from both the armature
reaction and the resistive voltage drop in the armature resistance. Nevertheless, short-
circuiting of such a generator will usually lead to excessive armature currents.

2.6.3.3 Control Characteristic of a Separately Excited Generator

The control characteristic Ff = G(Ia) for constant armature voltage Va and speed
of a separately excited generator, Fig. 2.27, is derived in a similar way. Now the
points P and M move on the horizontal line Va = Va0 while N is on the saturation
characteristic. The armature currents are proportional to the lengths of the sides of
the triangles.

2.6.3.4 Characteristics of a Shunt Excited Generator

The external characteristic Va = G(Ia), for a given resistance of the shunt wind-
ing and given speed, is the only important characteristic of a shunt generator. It is
illustrated in Fig. 2.28, along with its derivation. The sides of the triangles are again
proportional to the armature currents.

If hysteresis is taken into account, the dash-dot lines are obtained. Hysteresis is
in fact required for self-excitation if no external source is available. For example,
when the load is a pure resistance, the remanent magnetism will result in an emf
and an armature voltage, which in turn yields an excitation current in the parallel
connected excitation winding. The point N0 is called the no-load point. Neglecting
the excitation current Ia = Ip ≈ 0, it corresponds with the operating condition
Va = Va0, Ia ≈ 0. Va0 is referred to as the no-load voltage.

2.6.3.5 Characteristics of a Series Excited Generator

For a series excited generator, load and external characteristics coincide. The char-
acteristic is called the self-excitation characteristic. As the no-load characteristic is
measured without armature current (i.e. the excitation winding is then fed from a
separate source) the armature reaction must be subtracted form the series ampère-
turns. In other words, the horizontal side of the triangle now represents (ws −Ka)Ia .
Remark that in addition to the triangle NMP, also the triangle N PP ′ remains similar
(with the point P ′ on the y−axis, see Fig. 2.29).

The voltage of a series excited generator is clearly very variable with variable
armature current, which is one of the reasons why such a generator is hardly used.
Yet, thanks to the remnant flux, self-excitation on a resistive load is possible without
an external DC source.
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Fig. 2.27 Control characteristic of a separately excited generator

2.6.3.6 Characteristics of Compound and Differential Compound
Generators

In addition to an independent and/or shunt excitation, a (differential) compound
generator also has a series excitation. When the series excitation reinforces the inde-
pendent or shunt excitation, it is called a compound (generator). When it opposes
the other excitation(s), the term’differential compound’ is used. A generator with
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Fig. 2.30 Differential compound generator characteristic

separate, shunt and series excitation is referred to as a three-field generator, and when
the series excitation opposes the other excitations, it is called a Krämer dynamo.

Figure2.30 illustrates some external characteristics of aKrämer dynamo. By com-
bining the separate and shunt excitationwindingswith a differential compoundwind-
ing, a current limitation or even a constant current source is obtained in a fairly large
range.

In contrast, a series excitation which reinforces the separate and shunt excitation
(compound) results in anoutput voltage thatmay initially increase (for smaller current
output) (see Fig. 2.31). Saturation will limit the output voltage for larger currents.

2.6.4 Motor Characteristics

The derivation of the torque-speed characteristics is based on the equations

Va = k · Φm · Ωa + Ra I a + Ru I a
Ta = k · Φm · Ia

where Ru is an external series resistance (if present). Most characteristics can be
derived analytically if saturation and armature reaction may be neglected.
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Fig. 2.31 Additive compound generator characteristics

2.6.4.1 Separately Excited DC Motor

If armature reaction can be neglected, the torque-speed characteristic is a straight
line with a slope determined by the sum of armature and external resistances:

Ωa = Va

k · Φm
− (Ra + Ru)

(k · Φm)2
Ta

The no-load speed is

Ωa0 = Va

k · Φm

The characteristic for rated voltage and flux and without external resistance is called
the natural characteristic.

With increasing load speed also decreases, which is in most cases undesirable.
However, in the (distant) past, this property was also used for speed control and
starting, by adding a sufficiently high external resistance.

Nowadays, the preferred method for speed control (and starting) is to vary the
armature voltage (at least below the rated speed and thus voltage5) as this intro-
duces no extra losses. Power-electronic converters indeed permit an almost lossless
variation of the DC voltage. The characteristics for variable armature voltage (and
rated flux) are lines parallel to the natural characteristic (see the full drawn lines
in Fig. 2.32). To obtain higher-than-rated speeds the flux can be reduced, although

5The insulation of the windings is usually designed for rated voltage; higher than rated voltages
will reduce the machine’s life expectancy.



80 2 Direct Current Commutator Machines

Ia

Va
+ _

+

_

a

aon

Ta

mn a an u
, V < V , R = 0

mn a an u
, V < V , R = 0

mn a
an u

, V = V , R 0

mn a an u

, V = V , R = 0

n
mn

a
an

u

<
, V = V , R = 0

(a) (b)

Fig. 2.32 Separately excited DC motor and characteristics

this leads to a steeper slope of the characteristics (see the dash-dot line). This is
called field weakening. Remark, however, that in the field weakening range, a higher
armature current is required for the same torque value.

Armature reaction results in a lower flux with increasing armature current (or
torque). As a result, the speed will rise with increasing load compared to the lin-
ear characteristics derived above (see (b) in Fig. 2.33). A minimum in the speed
characteristic may also occur. In most cases, only the range before the minimum
is useful because of stability of the operating point (e.g. for a constant or almost
speed-independent load torque).

The torque characteristic including armature reaction can be calculated as fol-
lows. Suppose that Ea(Fm,Ωan) represents the no-load characteristic at rated speed.
Without armature reaction, the speed Ω

′
a corresponding with an armature current Ia

would be given by
Ω

′
a

Ωan
· Ea(Ff ,Ωan) = Va − Ra Ia

Armature reaction results in a lower mmf and therefore also a lower emf and thus a
higher speed Ωa for the same armature current

Ωa

Ωan
· Ea(Ff − Ka Ia,Ωan) = Va − Ra Ia
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Fig. 2.33 Armature reaction effect on a separately excited DC motor

The resulting characteristics for the speed versus the current are shown in (b) in
Fig. 2.33.

The relations between torque and armature can be derived in a similar way (see
(c) in the figure).

From the two characteristics including armature reaction, the relation between
torque and speed can be derived by eliminating Ia (see (a) in Fig. 2.33). In general,
field weakening may lead to a more pronounced effect of the armature reaction, as
is illustrated in the figure. A compound winding may be used to compensate the
armature reaction (see Sect. 2.6.4.4).

2.6.4.2 Shunt DC Motor

The torque-speed characteristic of a shunt motor is analogous to the one for the
separately excited motor. However, voltage lowering (as such) cannot be used for
speed control as the excitation current would decrease as well. Of course, adding
resistances in series with only the armature remains an option. Field weakening for
higher speeds is possible if an additional resistance is put in series with the excitation
winding.
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Fig. 2.34 Series excited DC motor characteristics

2.6.4.3 Series DC Motor

If saturation (and armature reaction) can be neglected, the torque-speed characteristic
is hyperbolic, as can easily be demonstrated. Indeed, without saturation, the flux is
proportional with the excitation current (i.e. k · Φm(Ia) = k ′ · Ia). From Ia =
Va/

(
Ra + Ru + k ′Ωa

)
and Ta = k ′ · I 2a , it follows that

Ta = k ′V 2
a

(Ra + Ru + k ′Ωa)
2

Figure2.34a illustrates this characteristic (dashed line). Armature reactionwill create
a flatter characteristic for higher torque values (see the full line).

The derivation of the effect of armature reaction is somewhat analogous to the
derivation for the separately excited DC motor. With now Fres = ws Ia − Ka Ia and
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Fig. 2.35 Series motor:
speed control

a

Ta
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Ra

Ωa

Ωan
· Ea(ws Ia − Ka Ia,Ωan) = Va − (Ra + Rs)Ia

we derive the characteristic Ωa versus Ia (see (c) in Fig. 2.34). A similar derivation
yields the characteristic Ta vs. Ia (see (d) in Fig. 2.34):

Ta = kΦm(Fres) · Ia = 1

Ωan
· Ea(ws Ia − Ka Ia,Ωan) · Ia

Eliminating Ia then yields the characteristic Ta versus Ωa . As Φm becomes more
constant (instead of proportional to the current), the torque tends to become more
linear with the current for higher armature currents.

The series DC motor is an ideal motor for traction. It offers a very high torque at
low speed (starting) and the shaft power varies little with speed. The characteristic
also exhibits very stable behaviour for various load torque characteristics. The main
disadvantage is that it must never be operated in no-load as the speed would rise to
intolerably high values (Fig. 2.35).

Speed regulation can be obtained by:

• voltage control
• inserting series resistances Ru between source and motor
• field weakening by inserting resistances in parallel with the series excitation wind-
ing (for higher speeds).6

6Prove that the characteristics for fieldweakening are approximately obtained by shifting the charac-
teristic to higher torque values for the same speeds (consider operating points for the same flux, with
and without parallel resistances; neglect the resistances in armature and series excitation winding).
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Fig. 2.36 Compound DC
motor characteristics
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2.6.4.4 Compound DC Motor

As derived above, the armature reaction causes the initially slightly decreasing speed
of a shunt motor to show a minimum value and even an increase for higher torque
values. In some cases, such an almost constant speed is desirable and this behaviour
can be reinforced by adding a differential compound winding (see (c) in Fig. 2.36).
On the other hand, if unstable behaviour is to be avoided and/or a more decreasing
speed with higher torque values is desired, an additive compound winding may help
(see (d) and (e)).



Chapter 3
Rotating Field Machines: mmf, emf
and Torque

Abstract Rotating fields are the basis for most electric drives (induction and syn-
chronous machines). First, the generation of a rotating field is discussed. As in the
previous chapters, we start again from the basic electromagnetic laws. Both using
a graphical depiction and a more mathematical method the rotating field generation
is explained. Next, the emf is discussed. Finally, the torque on a (rotating) current
layer in a (rotating) field is discussed.

3.1 Generation of a Rotating Field

Nowadays (and since long), induction and synchronous machines are by far the most
important electrical machines. Their operation principle is based upon rotating fields
(or travelling fields for linear machines). In this section we will see two ways to
realise such a rotating magnetic field. At the same time it is explained how it can be
ensured that this rotating field has an almost sinusoidal shape in space.

3.1.1 Magnetic Field by (stator) Salient Poles with
Concentrated Windings

Consider the pair of poles in Fig. 3.1 If we feed the excitation windings with a DC
current i , then a magnetic field originates with field lines as shown in (a). If we call
wp the number of windings per pole pair (i.e. wp = w/Np with w the total number
of windings for the machine and Np the number of pole pairs), then we may write
for each of the field lines:

∮
h.dl = wp.i (3.1)

If the magnetic voltage drop in the iron parts can be neglected, the left hand side of
this equation reduces to the magnetic voltage drop over the two air-gaps. If we call
bx the induction in the air-gap in x and δx the air-gap length in x , we get

© Springer International Publishing AG 2018
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Fig. 3.1 Salient poles with concentrated windings

bx = μo.
wpi

2δx
= μohx (3.2)

where hx is called the air-gap mmf in x .
When we draw the magnitude of the magnetic field along the circumference, we

get a wave shape like (b) in Fig. 3.1. The dashed line is the ideal (theoretical) curve,
neglecting the fringing at the edges of the poles (i.e. when the permeability of the
iron were infinite).

The field curve can be developed in a (space) Fourier series as follows (with x = 0
along the north pole axis):

bx = b(x) = B̂1 · cos xπ

τp
+ B̂3 · cos 3xπ

τp
+ B̂5 · cos 5xπ

τp
+ · · · (3.3)

where τp represents the pole pitch.
As we will see below, for rotating field machines only the space sinusoidal and

fundamental component (with respect to 2τp) is important:

b1(x) = B̂1 · cos xπ

τp
(3.4)

Until now, the current i has not been specified. It could be aDC current, in which case
the field is constant in time (but with an approximately sinusoidal space distribution).
If the excitation current i is an AC current i(t), then the field curve (b) in Fig. 3.1
represents the (sinusoidal) field distribution over the circumference at a given instant.
Neglecting saturation the (space) shape of this field curve will remain the same, but
the local induction values will vary periodically and proportionally with the current
i(t). This alternating field will therefore resemble the field of a transformer.

If the current i(t) is sinusoidal in time:

i(t) = Î · cosωt (3.5)
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then we obtain a field distribution

b1(x, t) = B̂1 · cos xπ

τp
· cosωt (3.6)

This is the equation of a standing wave, see (c) in Fig. 3.1. The radial direction of the
maximum of the field, called the field axis, is coincident with the axis of the winding
(the north-south axis). This alternating field with a sinusoidal distribution in space
can be represented by a space vector with as direction the field axis:

b−→ 1(t) = B̂1 · cosωt (3.7)

with B̂1 = B̂1e j0. More general, if the maximum of the field is displaced over an
electrical angle γ in the direction of positive x, i.e.

b1(x, t) = B̂1 · cos
(

xπ

τp
− γ

)
· cosωt

the space vector is

b−→ 1(t) = B̂1 · cosωt = B̂1e
jγ cosωt (3.8)

The instantaneous value of this field (with sinusoidal space distribution) in a point x
along the circumference is obtained by projecting the vector onto the radial through
this point x. For example at xπ/τp = γ, we get the maximum value B̂1 · cosωt or at
xπ/τp = γ +π/3 it’s (B̂1/2) ·cosωt . Back transformation to the real time domain is

obtained by multiplying the space vector (3.8) with e− j xπ
τp and taking the real part.1

3.1.2 Magnetic Field by Rotating Salient Poles with
Concentrated Windings

The same field distribution as in Fig. 3.2 is also obtained when the salient poles are
on the rotor of a machine. Or formulated more correctly: the same distribution but
now with respect to this rotor.

Suppose now that the excitation current is a DC current. Then this sinusoidal field
distribution is constant in time (and space as well, with respect to the rotor). We will
now use x ′ as the coordinate with respect to the rotor, i.e. for an observer on the rotor
the field looks like

1Remark that the sign of jγ in Eq.3.8 is opposite to that used in time phasors; more on that
convention later on.
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Fig. 3.2 Salient poles with
excitation windings on the
rotor

τpN

N

S S

b1(x ′, t) = B̂1 · cos x ′π
τp

(3.9)

If the rotor is stationary, an observer on the stator sees the same field distribution.
For the stator observer we will use a coordinate x in the same direction as x ′ (and
with x = x ′ at t = 0). Suppose now that the rotor rotates in the positive x direction
with a rotational speed N [1/s]. The linear speed of a point on the rotor is then
v = 2πr · N = 2Npτp · N . An observer on the stator sees now a field distribution
(substitute x = x ′ + vt or x ′ = x − vt in Eq.3.9)

b1(x, t) = B̂1 · cos
(

xπ

τp
− v

π

τp
t

)
= B̂1 · cos

(
xπ

τp
− ωt

)
(3.10)

Equation3.10 represents a rotating wave or travelling wave, see (a) in Fig. 3.3. Its
shape remains constant and sinusoidal (with a wave length of λ = 2τp), but the wave
moves at a constant linear speed dx/dt = v = ω · τ/π = 2τp · f = 2τp · Np N or a
constant rotational speed ω.

The rotational speed ω = 2π · Np.N = vπ/τp is the electrical rotational speed:
for an observer on the armature (stator), Np N north poles and Np N south poles are
passing each second. The frequency f = Np N=ω/2π also is the frequency of the
voltages induced by this field in a conductor on the armature; the amplitude of these
voltages also is proportional to f (in the next section all this will be discussed in
more depth).

Remark that the mechanical2 rotational speed [1/rad] is equal to Ω = 2π · N =
ω/Np.

2One revolution of the rotor corresponds to 2π mechanical radians and to 2π.Np electrical radians
where Np is the number of pole pairs; otherwise said the circumference of the rotor corresponds to
2Np pole pitches, i.e. 2πr = 2Npτp while each pole pitch corresponds to πelectrical radians.
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Fig. 3.3 Travelling wave, space vectors and time phasors

A rotating field can also be represented by a space vector (see (c) in Fig. 3.3):

b−→ 1 = B̂1e jωt = B̂1e jωt (3.11)

This is clearly a vector rotating in space at an electrical rotational speed ω. The
length of the space vector is equal to the maximum value of the rotating field. The
space vector also shows the instantaneous position of the maximum of the field at
each instant: the instantaneous value of the field at a given point on the armature is
obtained by projection of the space vector on the radial through this point.

A rotation in the negative x direction will result in a sign change in Eqs. 3.10 and
3.11: cos

(
xπ
τp

+ ωt
)
and B̂1e− jωt respectively.

More general, for a field that is shifted by an angle γ

b1(x, t) = B̂1 · cos
(

xπ

τp
− γ ± ωt

)
(3.12)

the space vector is

b−→ 1 = B̂1e∓ jωt = B̂1e+ jγe∓ jωt (3.13)

The maximum of this field is found at x = γ ·τp/π at t = 0 (or at x = 0 at t = γ/ω).
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As mentioned before, returning from the space vector domain to the real time
domain is achieved by multiplying with e− j xπ

τp and taking the real part.
This sign difference compared to the time domain (phasors) - where returning

to the real time domain is obtained by multiplying with e+ jωt - can be explained as
follows. Consider the two travellingwaves in (a) in Fig. 3.3 (i.e. in the space domain).
The travelling field in dashed line is clearly leading the travelling field in solid line:
an observer in a point x0 will indeed see passing the former before the latter. In
contrast, (b) in Fig. 3.3 shows two sinusoidal time waveforms. In this time domain,
the dashed waveform is later than the solid waveform and is thus lagging by ϕ! In
this figure, (d) shows the corresponding phasor representation in the complex time
plane ,while (c) shows the complex space plane corresponding with (a).

Remark: An alternating field can be decomposed into two counter-rotating fields,
each with half the amplitude of the alternating field:

b1(x, t) = B̂1 ·cos xπ

τp
·cosωt = (B̂1/2) ·cos

(
xπ

τp
−ωt

)
+(B̂1/2) ·cos

(
xπ

τp
+ωt

)

(3.14)
or in space vector form

b−→ 1(t) = B̂1 · cosωt = (B̂1/2) · e jωt + (B̂1/2) · e− jωt . (3.15)

3.1.3 Magnetic Field by a Distributed AC Winding

In Sect. 3.1.1 we have seen how a concentrated winding can be used to obtain a
magnetic field. In most cases the space distribution of such a field is not at all
sinusoidal, unless the pole faces are somewhat adapted. However, for rotating field
AC machines, a sinusoidal distribution in space is almost a must (in order to avoid
losses). To this end, distributed windings are preferred. In this section we will show
how a distributed winding may result in a fair approximation for a sinusoidal space
distribution.

We consider therefore a single-phase AC-fed winding and look for making the
field distribution as sinusoidal as possible, or at least more sinusoidal than that of a
concentrated winding.

First we consider a single-phase concentrated winding, Fig. 3.4. This is a winding
with Np coils (thus 2Np coil sides) on the circumference. All conductors carry the
same current and are in most cases series-connected. The diameter of the coils is
thus equal to the pole pitch τp. Each coil has wp = w/Np windings, where w is the
total number of phase windings and wp denotes the number of windings per pole
pair (or coil). Normally the conductors are located in slots3 (as in Fig. 3.1), but here
we suppose for simplicity that they are located ‘on the surface’.

3Slots protect the windings but they also result in a useful spread of the forces on the iron.
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Fig. 3.4 Concentrated surface winding

A DC current in this winding results in a magnetic field with field lines as the
dashed lines in (b) in Fig. 3.4. For each of these field lines, the mmf is wpi but
this mmf is divided equally between the two (equal because constant) air-gaps δp

(neglecting the mmf drop in the iron, i.e. we suppose μir ≈ ∞). This magnetic
voltage drop over the air-gap (i.e. the magnetic potential difference) we will call the
(air-gap) mmf 4, and denote it by F . When we draw the value of this mmf F over the
circumference, we get an (almost) rectangular curve with amplitude F = wpi/2. In
reality, there is a slight deviation from the rectangular shape due to the finite width
of the conductors and the effect of the slots (see the dash-dot sides).

A Fourier analysis of this curve yields:

fx = 4

π
F

[
cos

xπ

τp
− 1

3
cos

3xπ

τp
+ 1

5
cos

5xπ

τp
· · ·

]
(3.16)

where x is the distance measured from a north pole axis of the winding (also called
winding axis).

Next, we consider a single-phase distributed diameter5 winding, see (a) in Fig. 3.5.
In each double pole pitch there are q diameter coils, displaced with respect to each
other over a distance λ [m]. λ is the distance between successive coils of the same
polarity, either in or out. The subsequent coils may span a complete pole pitch, or
only partly as in this figure. In Fig. 3.6a, b the field lines are shown for a 2-pole and
a 4-pole machine respectively. The curve of the mmf values over the circumference
is shown in (b) in Fig. 3.5.

At each coil side, there is an mmf jump equal to ±(wp/q)i . This staircase curve
can also be derived from superposition of the q rectangular and, with respect to each
other, over λ delayed step curves in Fig. 3.4.

A superposition of the q Fourier series, delayed with respect to each other, accord-
ing to Eq.3.16 yields:

4Actually, the notion mmf is, strictly spoken, always related to a closed field line but in machine
theory it is also used in lieu of magnetic potential difference.
5In a diameter winding the coil width, i.e. the distance between entrance and exit conductors of a
turn, is exactly one pole pitch.
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Fig. 3.5 Distributed winding
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Fig. 3.6 Field lines for distributed windings

fx = F̂1 cos
xπ

τp
+ F̂3 cos

3xπ

τp
+ · · · + F̂ν cos

νxπ

τp
+ · · · (3.17)

when x = 0 is chosen along thewinding axis. For the amplitudes F̂ν a straightforward
calculation yields

F̂ν = 4

νπ
ξν · (−1)

ν−1
2 · wpi

2
(3.18)

where wp is the number of turns per pole pair (i.e. in the q coils) and ξν represents
the distribution factor or zone factor (which is equal to the winding factor for a
diameter6 winding):

ξν = sin q να
2

q · sin να
2

(3.19)

6As mentioned above, in a diameter winding the coil diameter is equal to a pole pitch.
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Fig. 3.7 Winding factor υα
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Table 3.1 Winding factors
for some q-values

q ξ1 ξ5 ξ7 ξ11 ξ13

1 1 1 1 1 1

2 0.9659 0.2588 0.2588 0.9659 0.9659

3 0.9598 0.21756 0.17736 0.17736 0.21756

4 0.95766 0.2053 0.15756 0.12608 0.12608

... ... ... ... ... ...

∞ 0.955 0.1909 0.1364 0.0868 0.0735

Herein α = λ · π/τp is the displacement between successive coil sides converted to
electrical radians (with respect to the period of the fundamental harmonic or 2τp).

The amplitudes of Eq.3.18 and the winding factors may also be obtained graph-
ically, see Fig. 3.7. For each harmonic the resultant amplitude is the vectorial sum
of the contributions of each of the q coils in a pole pair (for a higher harmonic ν,
the delay angle is να, as a double pole pitch 2τp corresponds to 2νπ radians for this
harmonic).

The distribution factor is thus the ratio of the length of the vector sum Ao Aq to the
sum of the lengths of the vectors Ao A1, A1A2,... Compared to a concentratedwinding
with a same number of turns w (or same wp), the amplitude of the fundamental is
thus reduced (i.e. ξ1 < 1). However the distribution factors for the higher harmonics
are much smaller ξν ≤ ξ1 (see Table3.1) and thus the resultant waveform is much
more sinusoidal than that for a concentrated winding. From Eq.3.18, it follows that
for a distributed winding not the number of turns w or wp but the product ξ1w (or
ξ1wp) determines the (fundamental) mmf. The product ξ1w (or ξ1wp) is called the
effective number of turns.

Note that for further reducing the harmonic content, in multiphase machines a
double (or multi-) layer winding can be used. In such a winding the layers are
displaced over one or more slots so that one (or more) slots contain conductors of
two phases.

Remark:
Figure3.8 shows a (simplified) depiction of a distributed winding configuration. The
winding is a single-layer diameter winding (i.e. a winding where the entry and exit
slots of a slot pair are a distance of τp apart, as measured on the mean circumference)
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Fig. 3.8 Winding
configuration

with q = 3. The red arrow indicates the entry conductor (and slot). The blue arrow
represents the exit conductor (and slot). Each pair of slots (red, green, blue) may
containmore thanone turn.After the conductors in the red pair of slots, the conductors
in the green pair of slots are connected in series, thereafter the conductors in the blue
slots.

3.1.4 Magnetic Field by a Multiphase AC Winding

The previous section explained how a distributed winding may yield a (more) sinu-
soidal field distribution in space. What we need however is a rotating (or travelling)
field with a sinusoidal space distribution. Section3.1.2 presented a first method for
obtaining a rotating field. However, it requires a rotating member (DC excited rotor,
rotated by external means). Although it was presented using a concentrated winding,
a DC excited distributed winding as in the previous section could be used as well
(and will result in a more sinusoidal space distribution).

In this section we will show how an AC fed multiphase (distributed) winding can
be used to obtain a rotating field (without a priori necessitating a rotating member).

As a starting point, the distributed winding of the previous section is supplied
with an AC current i = Î . cosωt . The air-gap mmf then becomes a standing wave
(along the winding axis):

f1(x, t) = F̂1 cos
xπ

τp
. cosωt (3.20)

with

F̂1 = 2

π
wpξ1. Î = 2

π

wξ1

Np
. Î (3.21)

(we recall that w is the total number of turns of the phase; each pole pair has wp =
w/Np turns which are evenly distributed in the q coils of the pole pair; the complete
phase winding contains Np · q coils in 2Np · q slots).
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The alternating mmf of Eq.3.20 can be decomposed in the sum of two counter-
rotating fields, each with half the amplitude of the alternating field:

f1(x, t) = F̂1 cos
xπ

τp
· cosωt = (F̂1/2) · cos

(
xπ

τp
−ωt

)
+ (F̂1/2) · cos

(
xπ

τp
+ωt

)

(3.22)

The rotation speed of each of these mmfs is ±ω (in electrical radians per second)
and the linear speed is v = ±ωτp/π = ±2τp f [m/s]. Note also that at the instant
the current in the phase is maximum, the (alternating) phase mmf is maximum as
well. At the same instant, both rotating mmfs are along the winding axis.

If saturation of the magnetic circuit can be neglected, the air-gap induction in each
point of the armature circumference follows directly from the local mmf:

bx = μohx = μo
fx

δx
(3.23)

If, moreover, the air gap length can be considered as constant (which implies that
the effect of the slots is neglected) then δx = δp and the distribution of the induction
over the circumference is identical in shape to that of the mmf. Saturation will
result in some deformation and thus space harmonics, but the periodicity and zero
crossings remain the same. Even if there are space harmonics (either due to the mmf
harmonics or to saturation), the space fundamental with 2Np poles determines the
basic properties of the machine; the higher harmonics result in fields with 2νNp

poles which cause some undesirable effects (e.g. losses).
Now we consider a multiphase (armature) winding. An m-phase (distributed)

winding normally contains 2m phase belts7 in a double pole pitch. Figure3.9a, b
show schematically the winding configurations of a three-phase armature with 2m
= 6 phase belts and q = 3, for four and two poles respectively. In (c) in Fig. 3.9a
linear representation of a double pole pitch (2π electrical radians) is depicted.

The belts without prime contain the entry wires, those with prime the correspond-
ing exit wires of the coils for these phases. All coils for a phase carry the same
current, e.g. for phase U the currents in the coils of belt U are I u and those for belt
U ′ are −I u .

Observe that the currents in subsequent phase belts are displaced in time with
respect to each other over 2π/2m = π/m (thus π/3 for a 3-phase winding), whereas
the subsequent phase belts are also displaced in space with respect to each other
over the same angle (thus with respect to 2π electrical radians or one double pole
pitch, over π/m or π/3 for a 3-phase winding). It is easily shown that under these
conditions, a rotating field results with a sinusoidal distribution in space. This field
contains 2Np poles and rotates at a constant speed in the direction of the lagging
phases (thus U → V → W → U . . . for a 3-phase winding).

7In some winding arrangements m.
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Fig. 3.9 Multiphase winding

This rotating mmf of a multiphase winding can be derived by superposition,
similarly as we have done before for a distributed winding.

A purely mathematical way is as follows. We consider the alternating mmfs of
the three phases, taking into account their phase lag in both space and time:

fu1(x, t) = F̂1 cos
xπ

τp
·cosωt = (F̂1/2) ·cos

(
xπ

τp
−ωt

)
+(F̂1/2) ·cos

(
xπ

τp
+ωt

)

(3.24)

fv1(x, t) = F̂1 cos

(
xπ

τp
− 2π

3

)
· cos

(
ωt − 2π

3

)
= (F̂1/2) · cos

(
xπ

τp
− ωt

)

+ (F̂1/2) · cos
(

xπ

τp
+ ωt − 4π

3

)

(3.25)

fw1(x, t) = F̂1 cos

(
xπ

τp
− 4π

3

)
· cos

(
ωt − 4π

3

)
= (F̂1/2) · cos

(
xπ

τp
− ωt

)

+ (F̂1/2) · cos
(

xπ

τp
+ ωt − 8π

3

)

(3.26)
Adding these three mmfs results in a purely rotating mmf in the direction of the
lagging phases with an amplitude equal to 3/2 times the amplitude of the separate
alternating mmfs:



3.1 Generation of a Rotating Field 97

f1(x, t) = 3

2
F̂1 cos

(
xπ

τp
− ωt

)
(3.27)

The speed of this rotating field is v1 = dx/dt = ωτp/π = 2τp f .
In general, an m-phase symmetrical winding results in a rotating wave, rotating

in the direction of the lagging phases with an amplitude equal to m/2 times the
amplitudes of the separate alternating mmfs.

If the single-phase mmfs contain space harmonics ν then a similar approach leads
- for a 3-phase winding - to

• absence of 3rd (i.e. ν = 3k) harmonics (for a 3-phase winding only)
• 5th, 11th,... (i.e. ν = 6k − 1 for k = 1, 2, . . .) harmonics that rotate in negative
direction (compared to the fundamental)

• 7th, 13th,... (i.e. ν = 6k + 1 for k = 1, 2, . . .) harmonics that rotate in positive
direction (compared to the fundamental)

The rotation speed of these harmonics is (1/ν)th of that of the fundamental: v =
dx/dt = ωτp/νπ = 2τp f/ν = v1/ν (note however that these space harmonic fields
have 2νNp poles; thus, for each harmonic, an observer on the stator sees passing the
same number of poles per second).

If the air-gap is constant (i.e. the effect of the slots can be neglected) and saturation
can be neglected, the fundamental mmf and the harmonics result in corresponding
rotating induction fields. Saturation and the slotting may add some additional field
harmonics.

There exist another, graphical, way to derive and visualise the rotating field of a
symmetrical m-phase winding. This graphical method starts from the ampere-turns
in the slots. In each slot there are wp/q = w/Npq turns carrying a current i(t) - for
a 3-phase winding either ±iu(t) or ±iv(t) or ±iw(t)). We denote the ampere-turns
in a slot k by ak = ak(t) = i(t). · w/q. We denote now the mmf between slot k and
slot k + 1 by fk = fk(t). According to Ampère’s law at each slot k the mmf jumps
by an amount ak . Thus, for the mmf difference of the teeth behind the slots n and m
we have

fn − fm =
n∑

k=m+1

ak (3.28)

Let us now represent the ampere-turns and the mmfs by their (time) phasors
Ak = Î k .wp/q and Fk respectively (their phase and length correspond to the phase
and amplitude of the time functions ak(t) and fk(t) respectively). If we draw the
successive current phasors Ak , they form the sides of a polygon and the mmf phasors
are the radii, see Fig. 3.10. For the time being, an arbitrary phasor has been drawn
for the start mmf phasor Fo.

For the winding configuration in Fig. 3.9, we then get a regular closed polygon
(as

∑
Ak = 0) with three (indeed, q = 3) current phasors on each side. Moreover,

the star of the mmf phasors must be symmetrical as the sum of the mmfs over the
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Fig. 3.10 Current layer and
mmf phasors
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machine is zero at each instant (the field lines are closed over the circumference, i.e.
there is no axial flux). Thus the origin of the mmf star is the midpoint of the polygon
and the start mmf phasor Fo is determined by this symmetry.

In Fig. 3.11 (left side), the polygon - known in literature as the polygon of Görges -
is drawn for three instants in time, i.e. t = 0, t = π/6ω and t = π/3ω (corresponding
to maximum current in phase U, zero current in phase V and maximum negative
current in phase W respectively). The mmf time values between two slots can be
derived by projection of the mmf phasors on the vertical time axis. As is clear from
the figures on the right, the mmf curves shift synchronously with the frequency of
the currents in the direction of lagging phases. The maximum of the mmf curves
are always along the axis of the phase winding where the current is maximum at
that instant. It is true that the shape of the mmf curves varies periodically (with 6
times the mains frequency), but this is due to the mmf harmonics that have different
propagation speeds (and which differ from the speed of the fundamental).

3.1.5 Current Layer - Linear Current Density

In the previous sections we considered the real winding and slot configuration
(althoughwe neglected the reluctance variation due to the slots and their finitewidth).
For the study of the basic properties of a machine, one may also suppose that the
winding is a surface winding distributed evenly over the circumference (i.e. with
q = ∞ but preserving the same total number of ampere-turns in a phase belt as
the real winding with finite q). The result is a (fictitious) stepwise linearly constant
current layer with a linear current density expressed in A/m. This comes down to
neglecting the mmf harmonics due to the slots.

First we consider a single-phase 2Np pole winding with in total w turns. In each
pole pitch the conductors are distributed over awidth S (‘phasewidth’). ADC current
i in such a winding results in the total ampere-turns of wi/Np in a pole pitch.

Now we suppose the conductors to be distributed evenly over the same width S,
keeping the total number of ampere-turns constant. This results in a linear current
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Fig. 3.12 Single-phase current layer

density (see (a) in the outstretched representation in Fig. 3.12), which is constant
over the phase width and equal to [A/m]:

a = wi

Np S
(3.29)
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If the current is an AC current, then the height of this block changes with supply
frequency and its maximum amplitude is equal to

Â = w Î

Np S
(3.30)

A Fourier analysis of this alternating current layer yields

a(x, t) =
∑

ν=2k±1

Âν · cos νxπ

τp
· cosωt (3.31)

with

Âν = 4

νπ
Â. sin

νβ

2
= 4

νπ

w Î

Np S
sin

νβ

2
(3.32)

where β = π.S/τp the phase width S [m] expressed in electrical radians.
The alternating current layer can thus be decomposed in a series of standingwaves

with wave lengths λ = 2τp/ν, all pulsating with mains frequency.
For the fundamental wave, the wave length is λ = 2τp and its amplitude is

Â1 = 4

π
Â. sin

β

2
= 4

π

w Î

Np S
sin

β

2
= 2

wξ1

Npτp
Î (3.33)

with the fundamental distribution factor

ξ1 = sin β/2

β/2
= lim

q→∞qα=β

sin qα/2

q sinα/2
(3.34)

Similar relations hold for the harmonics.
Next we consider a multiphase winding, see Fig. 3.13 for a double pole pitch

(outstretched). The winding considered has S/τp = 1/3. A similar approach as for a
single-phase winding can be adopted. However, we must take into account the time
shift between the phase currents and the space shift of the zones of the different
phases. This leads to the a-curves of (a) in Fig. 3.13, drawn for t = 0, t = T/12
and t = T/6. It is clear that the curves (and in particular the space fundamental
harmonic) move synchronously with the supply frequency in the direction of the
lagging phases. The shape is varying somewhat (with 6 times the supply frequency),
which is due to the harmonic fields that have different propagation speeds. Note also
that the maximum of the current layer is always in the centre of the phase belt where
the current is maximum at that instant.

A Fourier analysis of the current layer results in (x = 0 located in the middle of
phase belt U):
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Fig. 3.13 3-phase current layer

am(x, t) =
∑

ν=2k±1

aν,m(x, t) =
∑

ν=2k±1

Âν,m · cos
(

νxπ

τp
± ωt

)
(3.35)

with

Âν,m = m

2
. Âν = mwξν

Npτp
Î (3.36)

For the fundamental we have

a1,m(x, t) = Â1,m · cos
(

xπ

τp
− ωt

)
(3.37)

with

Â1,m = m

2
· A = mwξ1

Npτp
Î (3.38)

From the current distribution, the mmf distribution can easily be derived by integra-
tion, according to Ampère’s law (see also the discrete form in Eq.3.28):

fx =
∫ x

xo

a.dx (3.39)
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Normally, symmetry requirements will allow to locate the neutral point where
fx (xo) = 0.
Integration of the current distributions results in the mmf distributions (b) in

Figs. 3.12 and 3.13 for the single-phase and three-phase windings respectively.
Instead of the stepwise mmf curves in Figs. 3.5 and 3.11, the mmf curves are now
piecewise continuous lines.8

Fourier analysis yields:

fm(x, t) =
∑

ν=2k±1

fν,m(x, t) =
∑

ν=2k±1

F̂ν,m · cos
(

νxπ

τp
± ωt − π

2

)
(3.40)

with

F̂ν,m = mwξν

νπτp
Î (3.41)

For the fundamental we have

f1,m(x, t) = F̂1,m · cos
(

xπ

τp
− ωt − π

2

)
(3.42)

with

F̂1,m = mwξ1

πτp
Î (3.43)

Note that F̂1,m can be derived directly from the expression for Â1 by multiplying
with m/2 (m-phase instead of single-phase) and with τp/νπ (corresponding with the
integration w.r.t. x).

3.1.6 Discussion and Conclusions

Common conclusions for both the real winding in slots and the idealised evenly
distributed (surface) winding are:

1. An AC fed single-phase winding gives a standing wave AC current layer with
maximum value at the centre of the phase belt. The corresponding mmf curve as
well is a standing wave with maximum value at the axis of the winding.

2. A symmetrical multiphase winding fed by a symmetrical multiphase current
results in a current layer which is a travelling or rotating wave. The maximum
of the current layer is always at the centre of the phase belt where the current is

8Indeed, in Figs. 3.5 and 3.11 the jumps of the mmf curve at each slot correspond to the Dirac
functions for the ampere-turns in the slots.
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maximal at that instant. The corresponding travelling or rotating mmf wave has
its maximum always at the axis of the phase belt where the current is maximal at
that instant.
Current layer andmmfmove in the direction of the phases that are lagging in time.
During each period of the supply a double pole pitch is covered, corresponding
with 2π electrical radians. The complete circumference of a 2Np pole machine
(corresponding with 2π mechanical degrees or 2Npπ electrical radians) is passed
through in Np periods of the supply. Thus the mechanical synchronous speed (in
rad/s) is equal to 1/Np times the supply pulsation.

3. The amplitude of the fundamental (or of a space harmonic) rotating current layer
or mmf is equal to m/2 times the amplitude of the single-phase alternating current
layer or mmf respectively (Ferraris’ theorem).

4. Compared to a concentrated winding with the same number of turns per phase
- and for the same current - the amplitudes of fundamental and harmonics are
reduced with the winding factor ξν (cf. effective number of turns wξν ≤ w).
A distributed winding is therefore less effective for the fundamental than a con-
centrated winding. However, with a distributed winding the harmonics are, in
general, much more reduced than the fundamental, as shown in Table3.1 for
S/τp = 1/3 or β = π/3 (exceptions are the harmonics that correspond to the slot
harmonics, i.e. ν = k.2mq ± 1 or ν = k.6q ± 1 for m = 3 for which ξν = ξ1).
The higher the rank ν of the harmonics, the more they are reduced. For q = ∞
(an evenly distributed surface winding), ξν = ξ1/ν and the mmf harmonics are
reduced by ξν/ν = ξ1/ν

2.

Remark: For a diameter winding (coil width equal to pole pitch) the winding
factor is equal to the distribution factor (or zone factor), as was explained above.
Normally such a winding will be a so-called single-layer winding, i.e. in each slot
there is one coil side. Most multiphase windings (and especially those for larger
machine ratings) will use multilayer windings, mostly dual-layer. Such a winding
contains two (for a dual layer winding) coil sides per slot. Then the coil width
y will be chosen different from the pole pitch, e.g. the pole pitch minus or plus
one slot pitch. As a result, at the ends of a phase belt, one will see one or more
slots containing coils with currents belonging to different phases. This results in a
‘softer’ transition to the next phase belt. Mathematically an additional reduction
of the harmonics is obtained, i.e. by the chord factor:

ξν” = ± sin(πνy/2τp) (3.44)

The winding factor is then the product of the previously derived zone factor ξ′
(Eq. 3.19 or 3.34) and the chord factor, ξ = ξ ′ξ”. The chord factor can be used
to eliminate specific harmonics.
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3.2 Induced Voltage (Electromagnetic Force or emf)

In the previous section, we have seen how a rotating field can be obtained: either
by a rotating DC excited rotor or by a multiphase symmetrical winding fed by a
symmetrical multiphase AC current. In this section we discuss how a rotating field
can induce a (symmetrical) voltage in a (symmetrical) multiphase winding. Where
this rotating field originates from, either from the sameor anothermultiphasewinding
or from a rotating DC-fed rotor, is not important.

3.2.1 Sinusoidal Rotating Field

Consider a pure sinusoidal rotating field

b1(x, t) = B̂1 · cos
(

xπ

τp
− ωt

)
(3.45)

and a stationary multiphase AC winding (armature). We suppose x = 0 along the
axis of the reference phase (phase U) of the winding. The origin of the field is
unimportant, either by a stationary multiphase armature winding (the same winding
or another winding) or by a DC-fed rotating rotor winding but the number of poles
of the field and the AC winding should be equal.

The relative motion of the rotating field and the armature winding results in an
induced voltage in the conductors of the armature winding. For the one in x :

eco(x, t) = k(x, t).l = b1(x, t) · v · l (3.46)

with eco(x, t) and k(x, t) the induced voltage in a single conductor and the voltage
induced per meter of conductor length respectively and b1(x, t) the magnetic field
(all in the conductor at x). v is the linear speed of the field with respect to the armature
and l the armature length.

Remark that the superposition of a stationary armature and a rotating field is not
essential. The same voltage would be induced in a rotating armature and a stationary
field (as long as their relative speed is the same); in that case x is of course a rotating
coordinate.

The conductor voltage in x is thus a sinusoidal time function and corresponds
with the value of the induction in x at time t . The maximum value of the conductor
voltage is

Êco = B̂1 · v · l = B̂1 · 2τp · f · l = B̂1 · ωτp

π
· l (3.47)
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or with effective value

Eco = 1√
2

B̂1 · v · l = 1√
2

B̂1 · 2τp · f · l = 1√
2

B̂1 · ωτp

π
· l (3.48)

If this conductor belongs to a concentrated diameter winding with w turns in series
then the voltages in all conductors are in phase (entry and exit conductors are located
in opposing field values, but connected in opposite series). The total winding voltage
is therefore (in effective value):

E = 2w · Eco = 1√
2

B̂1 · v · l = 4τpl√
2

· B̂1 · w f = 2τpl

π
√
2

· B̂1 · w · ω (3.49)

In Eq.3.49 it is supposed that the windings of all pole pairs are series connected and
that all pole pairs are identical (as is normally the case). If the windings of different
pole pairs are connected in parallel, in Eq.3.49 w should be replaced by wp.

We may also calculate the fundamental flux per pole (with x = 0 along the axis
of the winding):

φ(t) = φ1(t) =
∫ τp/2

−τp/2

b1(x, t) · l · dx = 2

π
B̂1lτp cosωt ≡ Φ̂1 cosωt (3.50)

Therefore, we can now rewrite the winding voltage as:

E = 1√
2

· w · ω · Φ̂1 = 2π√
2

· w · f · Φ̂1 (≈ 4, 44 · w · f · Φ̂1) (3.51)

Note that, although this is a rotational emf, this expression resembles the common
expression for a transformer voltage: e(t) = +w · dφ(t)

dt = −Ê sinωt . As we adopt
here the URS (users reference system), see the + sign in the second term of the
previous equation, the voltage is leading the flux. When we take a look at the space
diagram in Fig. 3.14, we observe that the induction at the conductors is maximum
π/2 radians before the flux linked with the winding is maximum. Thus, in the time
domain, the motional voltage is indeed leading the flux linked with the winding.

Next, we consider a distributed diameter winding with q slots per pole and per
phase. The voltages induced in the conductors of a phase belonging to different slots
(of the same pole pitch) are now not in phase as the field is distributed sinusoidally
around the circumference. These voltages are phase-delayed sinusoidal time func-
tions and they must be added vectorially. In case the windings of the Np pole pairs
are series connected, the sum of all these voltages is equal to 2Np times the vectorial
sum of the q voltages of one pole pitch, as entry and exit conductors of each turn are
located under exactly opposite induction values (diameter winding):
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Fig. 3.14 emf sign
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e f (t) = 2Np ·
∑

B̂1 · ωτp

π
· l · w

Npq
· cos

(
ωt − x j

π

τp

)
(3.52)

Herein w is the number of series connected turns of one phase; w/Npq is thus the
number of series connected conductors of one slot. The phase delay between the slot
voltages is α = λπ/τp, corresponding to the displacement of the subsequent slots
expressed in electrical radians (see Sect. 3.1.3). The sum in Eq.3.52 thus leads to the
same reduction factor (winding factor ξ1) as in Sect. 3.1.3:

Ê f = 2B̂1 · ωτp

π
· l · w · ξ1 (3.53)

The time function of this voltage is e f (t) = −Ê f · sinωt if x = 0 is chosen along
the axis of the winding.

Equation3.53 can also be written as

Ê f = (w · ξ1) · ω · Φ̂1 (3.54)

or

E f = 1√
2

· (wξ1) · ω · Φ̂1 = 2π√
2

· (wξ1) · f · Φ̂1 (≈ 4, 44 · wξ1 · f · Φ̂1) (3.55)
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with Φ̂1 the flux of one pole pitch

Φ̂1 = 2

π
B̂1lτp

These expressions are similar to those of a concentrated winding, Eq. 3.51, but the
number of windings w must be replaced by the number of effective windings wξ1
(for a chord winding ξ1 is the product of zone factor and chord factor, see above).

3.2.2 Alternating Field

The voltage induced in an armature winding by an alternating field can be derived
from Eqs. 3.51 and 3.55. As seen before an alternating field can be decomposed into
two counter-rotating fields with half the amplitude as the original alternating field,
see (a) in Fig. 3.15. Each of these alternating fields induces a sinusoidal voltage in
the armature winding with amplitude given by

Ê ′ = (wξ) · ω · Φ̂/2 (3.56)

If the alternating field is directed along the winding axis, these two voltages are in
phase and the amplitude of the total induced voltage is given by

Ê = (wξ) · ω · Φ̂ = ω · Ψ̂ (3.57)

This voltage can also be interpreted as a transformer voltage, where Ψ̂ = (w · ξ) · Φ̂
is the amplitude of the alternating flux coupled with the armature winding. Here, the
winding factor takes into account that for a distributed winding the axes of the q coils

tjeB ωˆ
2
1 tjeB ω−ˆ

2
1

α
tjeB ω−ˆ

2
1

tjeB ωˆ
2
1

(a) (b)
Bcos tω^ Bcos tω^

Fig. 3.15 Alternating flux
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are not all aligned with the flux axis. The alternating flux coupled with them is then
lower by the cosine of the inclination angle.

If the winding axis is inclined over an angle γ with respect to the flux axis, see (b)
in Fig. 3.15, the induced voltage of Eq.3.57 (or the coupled flux) must be multiplied
by cos γ.

3.2.3 Non-sinusoidal Field

For a non-sinusoidal field, the induced voltages are calculated from the Fourier
components of the field. The calculation should then take into account the wave
length and the speed of these harmonic fields.

First, we consider the mmf (or field) harmonics from an AC-fed multiphase wind-
ing (the same winding or another). In this case the νth harmonic has a wave length
of λν = 2τp/ν (i.e. Np pole pairs), but a speed of 1/νth of the fundamental speed.
Thus all these harmonics induce voltages in the armature with the same frequency
as the fundamental

Ê f ν = (w · ξν) · ω · Φ̂ν (3.58)

or

E f ν = 1√
2
(w · ξν) · ω · Φ̂ν (3.59)

with ξν = ξ
′
ν · ξ”ν (see Eqs. 3.19 and 3.44) and Φ̂ν = 2

π
· τp

ν
· l · B̂ν

Thus for the ratio of the harmonic emf to the fundamental emf we obtain

E f ν

E f 1
= ξν

ξ1
· Φ̂ν

Φ̂1

= ξν

ξ1
· B̂ν

ν B̂1

(3.60)

The factor ν in the denominator stems from the flux calculation where ν − 1 half
pulses annihilate (ν is always odd).

We remark that the already small field harmonics from a distributed winding
(reduced by 1/νξ�

ν ≈ 1/ν2 for large q, where ξ�
ν is the winding factor of the field

winding) are again reduced by a factor 1/νξν ≈ 1/ν2. Thus the total reduction is
about (1/ν)4. For large q (in both field winding and armature), the emf harmonics
are therefore negligible.

For the field harmonics stemming from a rotating DC-fed excitation winding the
result is much less rosy. First of all, the amplitudes of these field harmonics are only
(1/ν)th of the fundamental amplitude. Secondly, these field harmonics move with
the same speed as the fundamental, i.e. the speed of the excitation winding. Thus they
induce emfs with a frequency ων which is ν times the fundamental emf frequency.
Therefore
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Ê f ν = (w · ξν) · ων · Φ̂ν (3.61)

or

E f ν = 1√
2
(w · ξν) · ων · Φ̂ν (3.62)

with ων = ν · ω and Φ̂ν = 2
π

· τp

ν
· l · B̂ν .

Thus we obtain for the ratio of the harmonic emf to the fundamental emf induced
in the armature winding:

E f ν

E f 1
= ξν

ξ1
· ω · ν · Φ̂ν

Φ̂1

= ξν

ξ1
· B̂ν

B̂1

(3.63)

For an armature winding with large q the reduction is thus only (1/ν)2.
Thus the higher the number of slots per pole and per phase (q), themore the higher

harmonics in the induced voltage are suppressed. There is one exception: for the slot
harmonics the winding factor is equal to the fundamental winding factor. We note
also that, if third harmonics are present in the field curve (e.g. with a concentrated
field winding), third harmonic voltages may be induced in the armature winding.
However, in the line voltages these third harmonic voltages are not present as they
cancel out. For an armature winding with S/τ p = 2/3 (a rather special two-layer
winding), the third harmonics are never present, as in that case ξ

′
ν = 0 for ν = 3k.

3.3 Magnetising Inductance of an Armature Winding

The magnetising inductance of a winding can be calculated from the ratio of coupled
air-gap flux and excitation current, or from the ratio of induced emf and current
(multiplied by the angular frequency).

3.3.1 Single-Phase Winding

Consider a single-phase 2Np-pole winding with w in series connected turns. An AC
current, e.g. i = Î cosωt , in this winding gives an air-gap magnetic field with an
amplitude of the fundamental equal to (see also Eq.3.21):

B̂1 = μo · 2
π

· wξ1

δp Np
. Î (3.64)
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The flux coupled with the winding is equal to

Ψ̂ = (wξ1) · Φ̂ = (wξ1) · 2
π

· τp · l · B̂1 (3.65)

The magnetising inductance of the winding for the fundamental field is therefore
(dimensions [H]):

L1 = Ψ̂

Î
= 8

π2
· μo · τp · l

2Np · δp
· (wξ1)

2 (3.66)

In this as well as the next section, we may denote this magnetising inductance also
as the self-inductance of the single-phase winding, because the leakage field is not
considered.

3.3.2 Multiphase Winding

We consider now a multiphase symmetrical winding fed by a multiphase symmetri-
cal current. The resulting rotating magnetic field has an amplitude equal to m/2 times
the amplitude of each composing alternating field (of the m single-phase windings).
Of course this holds also for the corresponding fluxes. The (so-called cyclic) mag-
netising inductance for a multiphase winding, which is the ratio between them-phase
rotating flux amplitude and the (single-phase) current amplitude in one of the phase
windings is therefore m/2 times the single-phase magnetising inductance of the pre-
vious section:

Lm1 = Ψ̂

Î
= m

2
· 8

π2
· μo · τp · l

2Np · δp
· (wξ1)

2 (3.67)

This cyclic magnetising inductance, is by a factor of m/2 larger than the single-phase
magnetising inductance (self-inductance). This is caused by the other phases which
contribute to the field and thus to the coupled flux, while the current in the phase
remains the same as in the single-phase case.

This result can also be derived by considering the inductance matrix for the set of
coupled three-phase windings. For example, for a symmetrical three-phase winding
the mutual inductance M1 between the phases is equal to minus half the single-phase
self-inductance L1, i.e. M1 = −L1/2 (because of the space shift of 2π/3). Taking into
account the symmetric three-phase currents (the sum of the three currents is always
zero), it is easily shown that the cyclic inductance is 3/2 times the self-inductance.

Remark: One may also derive a magnetising inductance or reactance per square
meter of air-gap. For an air-gap winding (uniformly spread, q = ∞) we may write
for the ratio of the emf per meter armature length to the current per meter of armature
circumference
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X�
m = K̂1

Â1

=
ωτp

π
· B̂1

Â1

=
ωτp

π
· μo

δp
· τp

π
Â1

Â1

= ω · μo ·
(τp

π

)2 · 1

δp
(3.68)

An actual slot winding with a finite number of slots may, for the fundamental flux,
also be treated as an air-gap winding. Indeed, we have (with ξ1the actual winding
factor for finite q)9

Â1 = m

2
· (2wξ1) · Î f

Npτp
= (2wξ1) · Î f

2Np(τp/m)

3.4 Torque

In the previous sections we have seen that a symmetrical multiphase current in a
symmetrical multiphase winding generates a rotating field. Further, we derived that
a symmetrical emf is induced in a symmetrical multiphase winding when it is located
in a rotatingmagnetic field. Note that current and voltage (emf) occurring at the same
time in the same winding will (or rather may) correspond to electrical power.

In this section we will analyse the torque that will (or may) come into being
when a current carrying (symmetrical multiphase) winding is located in a (rotating)
magnetic field. This torque will (or may) give rise to mechanical power).

3.4.1 General

We start by considering a general air-gap field b(x, t) (oriented orthogonally on
the stator or rotor surface) and a current layer a(x, t) (in a surface or slot winding
on stator or rotor). The magnetic field exerts a tangential force on the current and
therefore a torque will result. This torque can be calculated as follows.

The elementary tangential force, and thus torque, on an elementary segment dx
can be calculated according to Lorentz’ law:

d F = b(x, t) · a(x, t) · l · dx (3.69)

dT = Npτp

π
· b(x, t) · a(x, t) · l · dx (3.70)

The total equivalent tangential force and the torque can then be calculated by inte-
gration over the circumference, or, because of symmetry, as 2Np times the integral
over one pole pitch:

9Give an interpretation of the last term?
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F = 2Np

τp/2∫

−τp/2

b(x, t) · a(x, t) · l · dx (3.71)

T = Npτp

π
· F = Npτp

π
· 2Np

τp/2∫

−τp/2

b(x, t) · a(x, t) · l · dx (3.72)

In these equations b(x, t) and a(x, t) can be replaced by their Fourier expansion
in space harmonics. Force and torque are then obtained as the sum of integrals of
products of harmonics of induction and current layer. Because of the integration only
the products of harmonics with the same order (in space) may give a non-negative
result.

In the next sections we will apply this to alternating and rotating field and current
layers.

3.4.2 Alternating Field and Alternating Current Layer

Consider the space-fundamental harmonics of an alternating field distribution and
alternating current layer (with the same number of poles). A constant space angle ψ
between the axes of field and current layer is assumed. For the time being the time
functions of field and current are left unspecified.

b1(x, t) = B1(t) · cos xπ

τp
(3.73)

a1(x, t) = A1(t) · cos
(

xπ

τp
− ψ

)
(3.74)

The resulting torque (and tangential force) is then:

T = Npτp

π
·F = Npτp

π
·A1(t)·B1(t)·2Np

τp/2∫

−τp/2

cos
xπ

τp
·cos

(
xπ

τp
− ψ

)
·l ·dx (3.75)

or

T = Npτp

π
· F = Npτp

π
· Npτp · l · A1(t) · B1(t) · cosψ (3.76)

Equation3.76 can also be rewritten in terms of the pole flux Φ1(t):

T = 1

2
N 2

pτp · A1(t) · Φ1(t) · cosψ (3.77)



3.4 Torque 113

Consider now the case that the time functions of induction and current are sinu-
soidal with a time shift α

B1(t) = B̂1 · cosωt (3.78)

A1(t) = Â1 · cos(ωt − α) (3.79)

This yields

T = 1

4
N 2

pτp · Â1 ·Φ̂1 ·cosψ ·cosα+ 1

4
N 2

pτp · Â1 ·Φ̂1 ·cosψ ·cos(2ωt −α) (3.80)

An alternating field and alternating (i.e. single-phase) current layer thus results in
an average torque (first term), proportional to the cosine of the space shift angle and
the cosine of the time shift angle. In addition there is a pulsating torque with twice
the supply (mains) frequency (second term). The latter is of course an unwanted
disturbance (giving rise to vibrations and noise).

For a space shift ψ = π/2, i.e. the axes of current layer (i.e. in the centre of the
phase belt) and flux are orthogonal, the total torque is identically zero (both average
torque and pulsating torque). In fact, in this case the maximum of the field occurs
where the current is zero (and vice versa).

For a time shift α = π/2, the average torque is zero but here remains nonetheless
a non-zero pulsating torque (unless ψ = π/2).

For the space harmonics of field and current layer (same number of poles), a
similar discussion can be held (but only the harmonics with the same rank will or
may give a non-zero result).

3.4.3 Rotating Field and Rotating Current Layer

Next, we consider a multiphase winding carrying a symmetrical multiphase current
and a rotating field (with the same number of poles). For the space fundamentals of
these we may write for example

b1(x, t) = B̂1 · cos
(

xπ

τp
− ωt

)
(3.81)

a1(x, t) = Â1 · cos
(

xπ

τp
− ωt − ψ

)
(3.82)
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For the torque we obtain now

T = 2N 2
pτp

π
· l · Â1 · B̂1 ·

τp/2∫

−τp/2

1

2

[
cosψ + cos

(
2xπ

τp
− 2ωt − ψ

)]
dx

= 1

2
N 2

pτp · Â1 · Φ̂1 · cosψ (3.83)

In contrast with the case of alternating field and current layer, the torque for rotating
field and current layer is constant and does not contain a pulsating component.

It is quite interesting to investigate the relation between the mechanical quantities
torque-speed on the one hand and the electrical quantities current-emf on the other
hand.

The rotating field induces an emf in the winding given by (see Eq. 3.54)

Ê f 1 = (w · ξ1) · ω · Φ̂1 (3.84)

The current layer corresponds to a phase current in the (same) winding (see Eq.3.38)

Â1 = mwξ1

Npτp
Î f (3.85)

Substitution in Eq.3.83 gives

T · (ω/N p) = m

2
· Ê f 1 · Î f · cosψ (3.86)

or

Pem = T · Ω = m E f 1 · I f · cosψ (3.87)

The left hand side of Eq.3.87 is the product of the electromagnetic torque on the
winding and the speed of the rotating field with respect to this winding (in mechani-
cal radians per second). The right hand side resembles an electrical power. However,
the angle ψ came into play as the space angle between the magnetic field and the
current layer. It is easily shown, however, that ψ is also the time delay angle between
emf and current. Indeed, at the instant the field axis is at the centre of the (positive)
phase belt of the reference winding, the emf induced in this reference winding is
maximal (as the conductors are then located in maximum field strength). Further,
at the instant the axis of the current layer is along the centre of the (positive) phase
belt of this reference winding, the current in this reference winding is maximal (see
Sect. 3.1.4). Thus, if there is a space angle ψ between field and current layer axes,
the corresponding emf and current in the reference winding will have a time delay
of ψ as well, as both field and current layer rotate synchronously with synchronous
speed (Fig. 3.16).
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Fig. 3.16 Rotating field
power
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The right hand side of Eq.3.87 is therefore the electrical power of the voltage
induced by the field with the current in this reference winding. It is called “rotating
field power” or “electromagnetic power” and it is basic to the operation of all rotating
field machines (induction machines, synchronous machines and the now obsolete
multiphase commutator machines). It is the electrical power that is converted by the
rotating field in the current-carrying winding. But it is not necessarily a mechanical
power (left hand side) as the synchronous speed of the field is not necessarily the
speed of a mechanical part (but it can be).

Remark:

Equation3.72 can also be applied to derive the torque of a commutator machine,
both DC and AC (although this is not a rotating field machine).

For a commutator machine the current layer is fixed in space, i.e. between sub-
sequent brushes the current layer has the same instantaneous value: a(x, t) = A(t).
Thus

T = 2

π
N 2

pτp ·
τp∫

0

A(t) · b(x, t) · l · dx = 2

π
N 2

pτp · A(t) · Φ(t) (3.88)

with Φ(t) the physical flux entering the armature between two subsequent brushes.
This flux is independent of the space shape of the field (just like in the DC machine:
i.e. a decomposition into space harmonics is not required, it’s only the total flux that
comes into play). For a DC commutator machine, Eq.3.88 leads to a constant torque,
but for AC commutator machines a pulsating torque component will be present.



Chapter 4
The Induction Machine

Abstract Nowadays, the induction machine is by far the most commonly used
electrical machine in electrical drives (for applications that require a highly dynamic
behaviour or where energy efficiency or compactness is primordial the permanent
magnet synchronousmotormay be preferred, however). Themain reasons for this are
its straightforward and robust construction and its quite efficient energy conversion.
Moreover, the last 30 or so years variable speed operation of induction machines
using power electronic converters has ousted almost completely the DC commutator
machine in variable speed applications. This chapter starts from the traditional trans-
former properties of an induction motor at standstill. Then, the operating principle
of an induction machine is explained both intuitively and from a more mathemat-
ical point of view. In the subsequent sections we treat the energy conversion and
torque, equivalent circuits and equations for an induction machine, the current locus
and single-phase induction machines. Much attention is paid to per-unit values and
scaling laws as these determine the behaviour of the machine to a great extent.

4.1 Construction

The main components of a (multiphase) induction machine are

• the primary, mostly the stator, which contains a multiphase symmetrical winding
(m1 phases, Np pole pairs)

• the secondary, mostly on the rotor, containing either a multiphase symmetrical
winding (m2 phases, Np pole pairs) or a squirrel cage.

Other construction details of the electromagnetic and mechanical parts and compo-
nents are illustrated in Fig. 4.1.

© Springer International Publishing AG 2018
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Fig. 4.1 Induction motor

4.2 Transformer Properties of the Induction Machine at
Standstill

The operating principle of an induction machine can be explained most conveniently
with the rotating field transformer. A rotating field transformer is in fact an induction
machine with on both stator and rotor a symmetrical multiphase winding (with of
course the same number of pole pairs and, in most cases, also the same number of
phases), but where the rotor is at standstill (blocked). The rotor can be rotated in
different positions using worm gear and pinion.

4.2.1 The Axes of Stator and Rotor Windings Are Co-linear

First, we consider the case that the magnetic axes of the reference windings (1U and
2U) of stator and rotor are co-linear, Fig. 4.2.

The stator is fed by a symmetrical AC voltage source with frequency f1 = ω1/2π,
while the rotor windings are for the moment open-circuited. The stator windings will
then draw a symmetricalm1-phase current i1(t) from the supply; for the 3-phase case
thus

iu(t) = Î1 cosω1t ; iv(t) = Î1 cos(ω1t−2π/3) ; iw(t) = Î1 cos(ω1t−4π/3) (4.1)
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Fig. 4.2 Windings axes co-linear

This current results in a fundamental current layer (where x = 0 is chosen along the
winding axis of phase 1U)

a1(x, t) = Â1 sin

(
ω1t − xπ

τp

)
(4.2)

and therefore also a fundamental rotating field

b1(x, t) = B̂1 cos

(
ω1t − xπ

τp

)
(4.3)

with

B̂1 = μo

δp
· F̂1 = μo

δp
· τp

π
· Â1 = μo

δp
· τp

π
· m1w1ξ1

Npτp
· Î1 (4.4)

Herein we neglected the reluctance (and saturation) of the iron core;w1 is the number
of series connected turns per phase of the stator (primary), which corresponds to w

in Chap.3.
The rotating field induces a symmetrical emf in the primary winding which, for

the reference winding 1U, can be written as1 (see Sect. 3.2.1)

e1(t) = e11(t) = dψ11(t)

dt
= w1ξ1 · dφ11(t)

dt
(4.5)

with ψ11 the air-gap flux coupled with phase 1U (due to current in the primary) and
φ11 the physical air-gap flux over one pole pitch along the axis of phase 1U

1This is the emf in the reference winding 1U; the first index 1 indicates the winding where it is
induced while the second index 1 indicates where the flux originates.

http://dx.doi.org/10.1007/978-3-319-72730-1_3
http://dx.doi.org/10.1007/978-3-319-72730-1_3
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φ11(t) = φm1(t) =
τp/2∫

−τp/2

b1(x, t) · l · dx = 2

π
B̂1lτp cosω1t ≡ Φ̂m1 cosω1t (4.6)

The index m is used to indicate that this flux is the magnetising flux (later on we will
introduce another flux, the leakage flux).

This coupled magnetising flux is an alternating flux which can also be written as
(see Sect. 3.2.1)

ψ11(t) = Lm1 · i1(t) (4.7)

with the (cyclic) magnetising inductance given by

Lm1 = m1

2
· 8

π2
· μo · τp · l

2Np · δp
· (w1ξ1)

2 (4.8)

The field of the primary current also induces a voltage in the secondary winding,
given by (for the reference phase 2U)

e2(t) = e21(t) = dψ21(t)

dt
= w2ξ2 · dφ21(t)

dt
(4.9)

As the winding axes of primary and secondary are aligned, the flux φ21(t) is equal
to the flux φm1(t). For the flux coupled with the secondary ψ21(t) = w2ξ2 · φm1(t)
we may also write

ψ21(t) = M21 · i1(t) (4.10)

with the (cyclic) mutual inductance M21 between primary and secondary reference
phases given by

M21 = Lm1 · w2ξ2

w1ξ1
(4.11)

Remark that the ratio of the induced voltages is equal to the (effective) turns ratio,
similarly as in a transformer

e11(t)

e21(t)
= w1ξ1

w2ξ2
(4.12)

When the rotating field results from a symmetrical multiphase (m2 phases) current
i2(t) in the secondary winding instead of the primary, similar equations result, i.e.

e2(t) = e22(t) = dψ22(t)

dt
= w2ξ2 · dφm2(t)

dt
(4.13)

e1(t) = e12(t) = dψ12(t)

dt
= w1ξ1 · dφm2(t)

dt
(4.14)

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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with (assuming the current reference directions are so that positive currents in both
windings give a field with the same polarity)

ψ22(t) = Lm2 · i2(t) (4.15)

Lm2 = m2

2
· 8

π2
· μo · τp · l

2Np · δp
· (w2ξ2)

2 (4.16)

ψ12(t) = M12 · i2(t) (4.17)

M12 = Lm2 · w1ξ1

w2ξ2
(4.18)

In complex (time phasor) notation the preceding equations can be summarised as

E11 = jω1Lm1 I 1 (4.19)

E21 = jω1M21 I 1 (4.20)

E22 = jω1Lm2 I 2 (4.21)

E12 = jω1M12 I 2 (4.22)

with2 Lm1
M21

= w1ξ1
w2ξ2

, Lm2
M12

= w2ξ2
w1ξ1

.
Apparently both windings behave as the primary and secondary of a multiphase

transformer, i.e. the ratio of the induced voltages is equal to the (effective) turns ratio.
The inductances as well are similar if the number of phases is equal.

Next, suppose that both windings carry symmetrical multiphase currents (with
the same frequency and phase sequence). This could be the case when for example
the primary is fed from the mains and the secondary is connected to a symmetrical
load. In that case each of both windings produces a rotating mmf. These two mmfs
f1(x, t) and f2(x, t) (or in space vector notation F−→ 1 and F−→ 2) rotate in the same
direction with the same speed ω1/Np and they can therefore be added vectorially to a
resulting mmf F−→ m . This resulting mmf F−→ m produces a resulting rotating magnetic
field B−→ res . This resulting rotatingmagnetic field induces themultiphase symmetrical
emfs e1(t) and e2(t) (or in phasor form E1 and E2) in the primary and secondary
windings respectively.

When the magnetic circuit is linear the resulting magnetic field bres(x, t) can be
obtained as the (vectorial) sum of the magnetic fields due to the separate currents
i1(t) and i1(t) in both windings. Under the same simplifying assumption, this also
holds for the emfs e1(t) and e2(t) and we may write

2Calculate the ratio of the (cyclic) magnetising field inductances. If the number of phases of stator
and rotor is the same, would you indeed expect this result?
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E1 = E11 + E12 = jω1Lm1 I 1 + jω1M12 I 2 (4.23)

E2 = E22 + E21 = jω1Lm2 I 2 + jω1M21 I 1 (4.24)

or

E1 = jω1Lm1

[
I 1 + m2w2ξ2

m1w1ξ1
I 2

]
(4.25)

E2 = jω1Lm2

[
I 2 + m1w1ξ1

m2w2ξ2
I 1

]
= jω1Lm1 · w2ξ2

w1ξ1

[
I 1 + m2w2ξ2

m1w1ξ1
I 2

]
(4.26)

or
E1 = jω1Lm1 I m1 (4.27)

E2 = w2ξ2

w1ξ1
· jω1Lm1 I m1 = w2ξ2

w1ξ1
· E1 = E

′
1 (4.28)

with the prime indicating quantities referred to the other winding and I m1 denoting
the magnetising current referred to the primary winding:

I m1 =
[
I 1 + m2w2ξ2

m1w1ξ1
I 2

]
= I 1 + I

′
2 (4.29)

We conclude that the rotating field transformer behaves like a normal transformer.
For the voltages the conversion ratio from secondary to primary is w1ξ1

w2ξ2
while for

the currents the conversion ratio also depends on the number of phases, m2w2ξ2
m1w1ξ1

. If
the primary and secondary have the same number of phases then we obtain almost
identical conversion ratios as for a transformer (replacing only the number of turns
by the effective number of turns). At the end of the next section a set of equations
for the rotating field transformer will be derived.

4.2.2 The Axes of Stator and Rotor Windings Are Displaced

Next, we study the case where the reference winding axis of the rotor winding is
rotated by an electrical angle α = Np · θ with respect to the reference winding axis
of the stator, see Fig. 4.3. α = Np · θ is considered positive when in the direction of
the rotating field.

A symmetrical m1-phase primary current i1(t) = Î1 cosω1t results in a rotating
field, just as in the previous section:

b1(x, t) = B̂1 cos

(
ω1t − xπ

τp

)
(4.30)
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Fig. 4.3 Winding axes not co-linear

For the flux coupled with the primary winding, ψ11,α = w1ξ1 · φ11,α we obtain the
same result as in the previous section, i.e. the physical flux along the primarywinding
axis is also given by

φ11,α(t) =
τp/2∫

−τp/2

b1(x, t) · l · dx = 2

π
B̂1lτp cosω1t ≡ Φ̂m1 cosω1t (4.31)

As to the flux coupled with the secondary winding, ψ21,α = w2ξ2 ·φ21,α the physical
flux along the secondary winding axis is delayed by α

φ21,α(t) =
τp/2+ατp/π∫

−τp/2+ατp/π

b1(x, t) · l · dx = 2

π
B̂1lτp cos(ω1t − α) ≡ Φ̂m1 cos(ω1t − α)

(4.32)
Thus, for the induced voltages we see that also the secondary induced voltage is
delayed by α

e1(t) = e11(t) = dψ11,α(t)

dt
= −w1ξ1 · Φ̂m1 sinω1t (4.33)

e2(t) = e21(t) = dψ21,α(t)

dt
= −w2ξ2 · ω1 · Φ̂m1 sin(ω1t − α) (4.34)

or in phasor form
E11 = jω1Lm1 I 1 (4.35)
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E21 = jω1M21 I 1 · e− jα (4.36)

On the other hand, a symmetrical m2-phase secondary current i2(t) = Î2 cosω1t
results in a rotating field (with x ′ = 0 along the secondary axis):

b2(x
′, t) = B̂2 cos

(
ω1t − x ′π

τp

)
= B̂2e

jα cos

(
ω1t − xπ

τp
+ α

)
(4.37)

as x ′ = x − ατp/π. Therefore we obtain for the physical fluxes along the axes of
primary and secondary

φ12,α(t) =
τp/2∫

−τp/2

b2(x, t) · l · dx = Φ̂m2 cos(ω1t + α) (4.38)

φ22,α(t) =
τp/2∫

−τp/2

b2(x
′, t) · l · dx ′ = Φ̂m2 cosω1t (4.39)

For the induced voltages we see therefore that the primary induced voltage is leading
the secondary voltage by α

e1(t) = e12(t) = −w1ξ1 · ω1 · Φ̂m2 sin(ω1t + α) (4.40)

e2(t) = e22(t) = −w2ξ2 · ω1 · Φ̂m2 sinω1t (4.41)

or in phasor form
E12 = jω1M12 I 2 · e jα (4.42)

E22 = jω1Lm2 I 2 (4.43)

When both currents are present, in principle one should vectorially add the mmfs of
both currents to calculate the resulting rotatingmagnetic field from the resultingmmf.
If the magnetic circuit is (or can be supposed) linear, one may also add the magnetic
fields due to both mmfs considered separately and thus also add the corresponding
emfs, i.e.

E1 = E11 + E12 = jω1Lm1 I 1 + jω1M12 I 2 · e jα = jωLm1

[
I 1 + m2w2ξ2

m1w1ξ1
I 2 · e jα

]

(4.44)
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E2=E22 + E21= jω1Lm2 I 2 + jω1M21 I 1 · e− jα= jω1Lm2

[
I 2 + m1w1ξ1

m2w2ξ2
I 1 · e− jα

]

(4.45)
or

E1 = jωLm1

[
I 1 + I

′
2 · e jα

]
= jωLm1

[
I 1 + I

′′
2

]
= jω1Lm1 I m1 (4.46)

E2 = w2ξ2

w1ξ1
· e− jα · E1 = E

′
1 · e− jα = E

′′
1 (4.47)

with the magnetising current seen from the primary

I m1 = I 1 + m2w2ξ2

m1w1ξ1
I 2 · e jα =

[
I 1 + I

′
2 · e jα

]
=

[
I 1 + I

′′
2

]
(4.48)

Alternatively, one may rewrite the secondary emf referred to the primary

E
′′
2 = w1ξ1

w2ξ2
· e jα · E2 = E

′
2 · e jα = E1 (4.49)

The double prime is used here to indicate quantities referred to the other side when
the axes are rotated over an electrical angle α.

The complete equations of the rotating transformer are then obtained by adding
the resistive and leakage voltage drops (as in a normal transformer):

V 1 = (R1 + j X1σ)I 1 + E1 = Z1 I 1 + E1 (4.50)

V 2 = (R2 + j X2σ)I 2 + E2 = Z2 I 2 + E2 (4.51)

with E1 and E2 given by Eqs. 4.46 and 4.47. Usually the equations are being referred
to one or the other side. When referred to the primary the second voltage equation
reads

V
′′
2 = (R

′′
2 + j X

′′
2σ)I

′′
2 + E1 = Z

′′
2 I

′′
2 + E1 (4.52)

where

V
′′
2 = V 2 · w1ξ1

w2ξ2
· e jα (4.53)

I
′′
2 = I 2 · m2w2ξ2

m1w1ξ1
· e jα (4.54)

Z
′′
2 = Z2 · m1(w1ξ1)

2

m2(w2ξ2)2
(4.55)
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These equations are thus quite similar to the equations of a normal transformer.
They may also be represented by a similar equivalent circuit. There is however a
quantitative difference compared to the normal transformer as here the main (or
magnetising) field has to cross an air-gap. Therefore the magnetising inductance
is much smaller, in per-unit xm ≈ 2 (compared to xm � 10 for a transformer).
In addition, the leakages are somewhat larger, i.e. in per-unit x1σ ≈ x2σ ≈ 0.1,
compared to xσ ≈ 0.025 for a transformer. However, there are also other reasons for
designing induction machines with a higher leakage, see Sect. 4.9.

4.2.3 Energy Conversion and Forces for an Induction
Machine at Standstill

We suppose here that the rotor is not necessarily short-circuited (as in the case of a
cage rotor) but that the machine has a slip-ring rotor. From the (fundamental) air-gap
magnetic field b(x, t) and the current layer a(x, t) in one of the windings, we may
calculate the tangential force and torque on this winding, see Sect. 3.4.

The energy converted by the rotating field can be calculated from Eq.3.87

T · Ω = m · E · I · cosψ (4.56)

whereΩ is the speed of the field with respect to the winding and ψ is the space angle
between b(x, t) and the current layer a(x, t) in this winding. However, as shown in
Sect. 3.4ψ also is the time shift between the emf and the current in thiswinding. Thus
only the active current in the winding is responsible for the torque on this winding.

Applying the right hand side of Eq.4.56 on both primary and secondary windings
and recalculating using Eqs. 4.46 and 4.47 for the primary and secondary emf, yields

m1 · E1 · I1 · cosψ1 = −m2 · E2 · I2 · cosψ2 (4.57)

This equation shows that the rotating field power or electromagnetic power is the
same for stator and rotor when the induction motor rotor is at standstill. At standstill
the rotating field power is thus converted between primary and secondary in a purely
electrical way, like in a transformer. Indeed, as the rotor is at standstill (Ω is the
synchronous speed of the field with respect to both windings) no mechanical energy
is converted.

Equation4.57 also illustrates that the torque on stator and rotor is the same in
absolute value (action = reaction); the minus sign results from the application of the
user reference system in both windings.

http://dx.doi.org/10.1007/978-3-319-72730-1_3
http://dx.doi.org/10.1007/978-3-319-72730-1_3
http://dx.doi.org/10.1007/978-3-319-72730-1_3
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Fig. 4.4 Rotating field transformer

4.2.4 Applications of the Rotating Field Transformer

Some applications require a transformerwith a variable phase angle between primary
and secondary voltages or one with a variable transformation ratio.

Figure4.4a illustrates the use of a rotating field transformer as a phase shifter. It
is sometimes used in ring connections of a power grid.

By a connection as a (multiphase) auto-transformer one gets a variable transforma-
tion ratio, see (b) in Fig. 4.4. A disadvantage is that together with the transformation
ratio also the phase angle varies.3

4.3 The Rotating Induction Machine: Operating Principle

The inductionmachine utilised as a (rotating field) transformer is a rarity. In by far the
majority of its applications, the induction machine is used in drives, thus as a motor,
sometimes also as a generator. Of course the transformer action remains inherent to
its operating principle.

Suppose the multiphase (three-phase) winding of the stator is connected to a
multiphase (three-phase) voltage source (e.g. the electrical grid) with frequency f1 =
ω1/2π. The stator winding will then draw a multiphase (three-phase) symmetrical
current which will give rise to a rotating current layer with mechanical speed Ωsy =
ω1/Np. If this is the only current-carrying winding, this current layer will result in a
corresponding rotating field with the same speed.

3One obtains the same transformation ratio for a rotation in the rotation direction of the field or
opposite to it; it can be (e.g. graphically) shown, however, that dependent on the direction of the
active current one or the other is slightly advantageous.



128 4 The Induction Machine

The rotor winding of an induction machine is either a normal multiphase (three-
phase) winding connected to slip-rings, or a squirrel-cage winding.4

4.3.1 Motoring

For motoring, the rotor winding is short-circuited, either by the short-circuit rings
for a squirrel cage, or through the slip-rings (direct short-circuit or on external resis-
tances).

Suppose for example that the rotor is initially at standstill. Switching on the supply
of the stator results in a multi-phase current (I 1) and thus a rotating current layer
and a rotating field. This field, also rotating with respect to the rotor, will result in
a symmetrical multiphase emf in the rotor. Thus, as the rotor windings are short-
circuited, a multiphase symmetrical current (I 2) will start to flow in the rotor. From
Lenz’ law it follows that the current will result in a torque that will try to oppose
its cause, i.e. the relative speed of the rotating field with respect to the rotor. Thus
the resulting torque exerted by the field on the rotor will try to rotate the rotor in
the direction of the field. If the rotor is free to rotate, the rotor will try to reach
synchronism with the field. Finally, at synchronous speed, Ωm = Ωsy = ω1/2Np,
the induced emf in the rotor, the rotor current and the torque will become zero.

Note that the frequency of the induced emf (and current) in the rotor is equal to
the stator frequency when the rotor is at standstill. When the rotor rotates with a
speed Ωm the relative speed of the field with respect to the rotor becomes Ωsy − Ωm

(in mechanical radians per second) or ω1 − NpΩm (in electrical radians per second).
The induced emf and currents in the rotor then have as frequency the slip frequency
f2 = f1 − NpΩm/2π [Hz] or slip pulsation ω2 = ω1 − NpΩm [rad/s]. The ratio of
the secondary and primary frequency is called the slip

s = ω2

ω1
= ω1 − NpΩm

ω1
= Ωsy − Ωm

Ωsy
(4.58)

However, when a current flows in the rotor windings, the resulting rotor mmf will
affect the field. Indeed, the rotor mmf rotates with the slip speed ω2 = sω1 (electrical
rad/s)with respect to the rotor,which itself rotateswith a speed of NpΩm = (1−s)ω1.
Thus this mmf also rotates with the synchronous (electrical) speed ω1 with respect
to the stator, thus synchronously with the stator mmf. Thus both mmfs will add to
form the resulting mmf and magnetic field.5

4A squirrel cage winding consists of (aluminium or copper) bars cast inside slots in the rotor core
and that are short-circuited by short-circuit rings cast at the same time; it can be proved that a cage
winding behaves as a normal multiphase symmetrical winding as to the fundamental.
5In fact, this rotor current will, in accordance with Lenz’ law, try to reduce the field and thus oppose
the mmf by the stator current (which will have to increase again).



4.3 The Rotating Induction Machine: Operating Principle 129

4.3.2 Generating

Suppose now that the rotor is (externally) driven faster than the synchronous speed.
In this case as well there is a non-zero relative speed of the field with respect to the
rotor windings and thus an emf will be induced (although with the opposite phase
order, as can be seen intuitively). The torque resulting from the current in the short-
circuited rotor winding will try to oppose its cause, i.e. the relative motion of the field
with respect to the winding. This torque will thus exert a braking action, i.e. opposite
to the field rotation direction. The corresponding input mechanical power will then
be converted into electrical power that is delivered to the mains via the primary.

The final remark in the previous subsection regarding the contribution of the rotor
mmf to the resulting field also holds true here.

4.3.3 Frequency Converter

4.3.3.1 Rotor Winding Open

Suppose the rotor is driven at a speed Ωm , while the stator is fed by the AC supply
with frequency ω1. The relative speed of the field with respect to the rotor is then
Ωsy − Ωm (mechanical rad/s) or ω2 = ω1 − NpΩm = sω1 (electrical rad/s). This
is also the frequency of the voltages induced in the rotor. The magnitude as well of
these voltages is proportional to it. This is easily derived form Eq.4.32 where now
α = NpΩmt + αo

φ21,α(t) = Φ̂m1 cos(ω1t −α) = Φ̂m1 cos(ω1t − NpΩmt −αo) = Φ̂m1 cos(ω2t −αo)

(4.59)
For the rotor emf we obtain therefore

e2(t) = e21(t) = dψ21,α(t)

dt
= −w2ξ2 · ω2 · Φ̂m1 sin(ω2t − αo) (4.60)

or as time vector (i.e. phasor with explicit exponential time function)

E21 = jω2M21 I 1 · e jω2t− jαo (4.61)

At standstill, s = 1, the rotor frequency equals the stator frequency. With the rotor
rotating in the direction of the field (0 < s < 1) the frequency in the rotor decreases
with increasing speed until synchronism (s = 0). At synchronism the induced voltage
in the rotor becomes zero. When driving the rotor faster than the synchronous speed
the phase order (and polarity) of the rotor voltages reverses; both amplitude and
frequency increase with increasing speed (above synchronous speed).

In contrast, driving the rotor against the direction of the field (s > 1) results in
increasing voltage amplitudes and increasing rotor frequencies.
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4.3.3.2 Rotor Winding Connected to a Symmetrical Load

When the rotorwinding is connected to a symmetrical load, the induced rotor voltages
give rise to symmetrical rotor currentswith the slip frequencyω2 = sω1. The resulting
rotor mmf F−→ 2 rotates with the (mechanical) speed ω2/Np = sω1/Np = Ωsy − Ωm

with respect to the rotor, but as the rotor itself rotates with the speed Ωm , the speed
of F−→ 2 with respect to the stator is Ωsy . Stator mmf F−→ 1 and rotor mmf F−→ 2 are
therefore synchronous and add vectorially to form the resulting mmf F−→ m . It is this
resulting mmf that determines the air-gap field (inducing the stator and rotor emfs).
Whatever the speed of the rotor, for an observer on the stator everything happens
with stator frequency, while for an observer on the rotor it’s like everything has the
slip or rotor frequency. For a machine with slip rings the rotor voltage with slip
frequency can be used for an external load connected to the slip rings. Obviously
all these considerations are also valid when the machine is working as a motor or
generator.

4.4 Equations and Equivalent Circuit of an Induction
Machine

From the discussion in the previous section, it is clear that a rotating induction
machine also performs as a rotating field transformer, but with a rotor frequency
depending on the rotor speed. Suppose that the stator is connected to a primary
supply with frequency f1 (angular frequency ω1) while the rotor carries currents
with frequency f2 (angular frequency ω2). Hereby the rotor rotates with a speed
which corresponds to the difference of these frequencies: NpΩm = ωm = ω1 − ω2.
The rotor winding might be short-circuited or connected to an external load or an
external supply with frequency f2.

The currents in stator and rotor are symmetrical multi-phase, of the form

i1(t) = Î1 cos(ω1t − β1) (4.62)

i2(t) = Î2 cos(ω2t − β2) (4.63)

in the reference phases of stator and rotor respectively.
The stator current results in an mmf F1 that rotates with the speed Ωsy with

respect to the stator (and thus sΩsy with respect to the rotor). The rotor current
yields an mmf F−→ 2 which rotates with the speed sΩsy with respect to the rotor (and
thus sΩsy + Ωm = Ωsy with respect to the stator). Both mmfs rotate therefore
synchronously (with a speed Ωsy with respect to the stator or sΩsy with respect to
the rotor). The resulting magnetic field should be calculated from the resulting mmf,
i.e. the vectorial sum of F−→ m = F−→ 1 + F−→ 2. However if the magnetic circuit is linear
(or can be approximated as such) the magnetic fields, the fluxes and the emfs from
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the stator and rotor currents can be added. For the coupled fluxes we may write (by
analogy with Sects. 4.2.2 and 4.3.3.1, substituting now α = ωmt = (1 − s)ω1t):

ψ11(t) = Lm1 · Î1 cos(ω1t − β1) (4.64)

ψ12(t) = M12 · Î2 cos(ω2t − β2 + α) = M12 · Î2 cos(ω1t − β2) (4.65)

ψ21(t) = M21 · Î1 cos(ω1t − β1 − α) = M21 · Î1 cos(ω2t − β1) (4.66)

ψ22(t) = Lm2 · Î2 cos(ω2t − β2) (4.67)

As alreadymentioned above, from the stator side everything appears as if everywhere
the frequency is ω1; from the rotor side it appears as everything has the frequency
ω2.

We may write the emfs corresponding to these fluxes directly in complex time
vector form (see also Sect. 4.2.2):

E1(t) = E11(t) + E12(t) = jωLm1

[
I 1e

jω1t + m2w2ξ2

m1w1ξ1
I 2 · e jω2t · e jωmt

]
(4.68)

E2(t) = E22(t) + E21(t) = jω2Lm2

[
I 2e

jω2t + m1w1ξ1

m2w2ξ2
I 1 · e jω1t e− jωmt

]
(4.69)

or

E1(t) = jωLm1

[
I 1 + m2w2ξ2

m1w1ξ1
I 2

]
e jω1t = jωLm1

[
I 1 + I

′
2

]
e jω1t (4.70)

E2(t) = jω2Lm2

[
I 2 + m1w1ξ1

m2w2ξ2
I 1

]
e jω2t = jω2Lm2

[
I 2 + I

′
1

]
e jω2t (4.71)

Until now, we retained the explicit (exponential) time dependence in the equations
to emphasise the different frequencies in stator and rotor. In the sequel we will
omit these however. By introducing the magnetising current referred to the stator
I m1 = I 1 + I

′
2 and referring the magnitude of the rotor emf to the number of turns

of the stator we obtain

E1 = jωLm1

[
I 1 + I

′
2

]
= jωLm1 I m1 (4.72)

E2 = s
w2ξ2

w1ξ1
E1 = jsω1Lm1

w2ξ2

w1ξ1
I m1 (4.73)

or

E
′
2 = w1ξ1

w2ξ2
E2 = jsω1Lm1 I m1 = sE1 (4.74)
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Fig. 4.5 Basic equivalent
circuit
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For the relation between voltages and currents we have to add the resistive and
inductive leakage voltage drops in the windings:

V 1 = (R1 + j X1σ)I 1 + E1 = Z1 I 1 + E1 (4.75)

V 2 = (R2 + jsX2σ)I 2 + E2 = Z2 I 2 + E2 (4.76)

with6 E1 = jωLm1 I m1, E2 = s w2ξ2
w1ξ1

E1, I m1 = I 1 + m2w2ξ2
m1w1ξ1

I 2.
We may rewrite these equations with all voltages and currents referred to the

number of primary turns
V 1 = Z1 I 1 + E1 (4.77)

V
′
2 = Z

′
2 I

′
2 + sE1 (4.78)

E1 = jωLm1 I m1 (4.79)

I m1 = I 1 + I
′
2 (4.80)

I
′
2 = m2w2ξ2

m1w1ξ1
I 2 (4.81)

V
′
2 = w1ξ1

w2ξ2
V 2 (4.82)

Z
′
2 = m1(w1ξ1)

2

m2(w2ξ2)2
Z2 (4.83)

Dividing Eq.4.78 by the slip yields

V
′
2/s = (Z

′
2
/s)I

′
2 + E1 = (R

′
2/s + j X

′
2σ)I

′
2 + E1 (4.84)

With Eqs. 4.77, 4.84, 4.79 and 4.80 corresponds the equivalent circuit in Fig. 4.5.

6Remark that we will use the notation X for a reactance referred to the primary frequency. X2σ is
thus the rotor leakage reactance referred to the primary frequency.
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Table 4.1 Per-unit values

Induction machine Transformer

r1 ≈ r2 0.005/τp 0.005/D

x1σ ≈ x2σ 0.1 0.025

xm 2· · · 10 10· · · 1000

Fig. 4.6 Rotor winding
short-circuited

jXm1

jX1σ R’2/sR1

I1
I’2

E1
V1

jX’2σ

Fig. 4.7 Equivalent rotor
resistance split up

jXm1

jX1σ R’2R1

I1
I’2

E1
V1

jX’2σ

R’2
1-s

s

This equivalent scheme is about the same as that of a transformer, except for the
rotor resistance and rotor voltage that are divided here by the slip s.

In a similar way as for a transformer, simplified equivalent circuits can be derived.
However, there are some differences as the magnetising inductance of an induction
machine is (relatively) much smaller while the leakage reactances are much higher,
see the Table4.1 below. Therefore, the magnetising inductance cannot be neglected
as is frequently done for large transformers.7

In most applications the rotor winding is short-circuited, either directly or on an
external resistance (in case of slip-rings). The equivalent circuit is that in Fig. 4.6
(where the rotor resistance R

′
2 should be replaced by the sum of the rotor resistance

and the external resistance R
′
2 + R

′
2u if an external resistance is connected to the slip

rings, if any).
The equivalent resistance R

′
2/s can be split up into the real resistance R

′
2 and a

resistance R
′
2(1− s)/s, see Fig. 4.7. The resistance R

′
2 represents the real rotor joule

losses while the resistance R
′
2(1 − s)/s corresponds to the conversion of electrical

energy into mechanical energy (or vice versa), see also the next section.

7Also the number of poles has a large effect on the magnetising inductance: with increasing number
of pole pairs the magnetising inductance decreases as it varies approximately as 1/

√
Np . As a result

the leakage coefficient σ is also much higher for induction machines, the more so as the number of
pole pairs is larger.
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Pj1 Pir Pm Pj2

P1 P1-Pj1 P1-P -Pj1 ir
= Pem1

R’2

P -Pd1 m
= P = Pem2 j2

E1

Fig. 4.8 Equivalent circuit with power flows

4.5 Energy Conversion and Torque

The most common use of an induction machine is in motoring where the stator is
supplied by a three-phase voltage source and the rotor is short-circuited (on itself or
on an external resistance in case of a slip-ringmotor). From the supply, a symmetrical
stator current is drawn which results in a rotating mmf with speed Ωsy = ω1/Np

with respect to the stator. With respect to the rotor (with a mechanical speed Ωm)
the field rotates with a speed Ωsy − Ωm and induces in the rotor an emf and thus
a rotor current with the slip frequency ω2 = sω1 = Np(Ωsy − Ωm). The resulting
rotor mmf together with the stator mmf yield the resulting mmf responsible for the
actual air-gap field,8 see above.

In such a steady-state condition, we thus normally have both (non-zero) emfs E1,
E2 and both (non-zero) currents I1, I2. From Chap.3, Sect. 3.4 we know that the
electromagnetic or rotating field power of a winding is equal to the product of the
torque on the winding and the speed of the field with respect to the winding, thus for
stator and rotor respectively

Pem1 = TΩsy = m1E1 I1 cosψ1 (4.85)

Pem2 = T sΩsy = m2E2 I2 cosψ2 (4.86)

Splitting up the first equation yields

Pem1 = T (1 − s)Ωsy + sTΩsy = TΩm + Pem2 (4.87)

The equality 4.87 (and Pem2 = sPem1) also follows from the equivalent circuit9 in
Fig. 4.8 (but without the equivalent iron loss resistance). In fact, substituting E

′
2 =

8If there was only a stator current and mmf, the field would be that resulting from the stator mmf;
actually both stator and rotor mmfs contribute to the resulting field, except in no-load.
9In accordance with the M-convention we reversed the positive direction of I

′
2.

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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Table 4.2 Speed and power relations

Primary
(stator)

Secondary
(rotor)

Mechanical

Speed Ωsy = ω1/Np = sΩsy + (1 − s)Ωsy

Frequency ω1 = sω + (1 − s)ω1

Power Pem1 = TΩsy = sPem1 =
sTΩsy

+ (1− s)Pem1 =
(1 − s)TΩsy

Power for
shorted rotor

m2
R2
s I 22 = m2R2 I 22 + m2

(1−s)
s R2 I 22

sE1 yields:

m2E2 I2 cosψ2 = m1E
′
2 I

′
2 cosψ2 = s · [m1E1 I1 cosψ1] (4.88)

Equation4.87 shows that the primary (stator) electromagnetic power is transferred by
the rotating field partly intomechanical power Pm = TΩm and partly by transformer
action into electrical power in the rotor, the secondary (rotor) electromagnetic power
Pem2. For a short-circuited rotor this secondary electromagnetic power is equal to the
joule losses in the rotor resistance, Pem2 = m2E2 I2 cosψ2 = m2R2 I 22 = m1R

′
2 I

′2
2 .

If an external circuit or power source (with slip frequency) is connected to the slip
rings the secondary electrical power is partly (P2) transferred to this circuit or power
source (and partly into rotor joule losses).

The power P1 taken from the supply consists of the primary electromagnetic
power Pem1, the primary joule losses m1R1 I 21 and the iron losses m1E2

1/Rir . Of the
primary electromagnetic power Pem1 the fraction (1−s) is converted intomechanical
energy

Pm = (1 − s)Pem1 = TΩm (4.89)

The available shaft power is somewhat smaller due to the friction and ventilation
losses Pv f .

The foregoing is valid for either motoring or generating or braking, of course with
the proper signs for Pem1, Pem2, Pm and the slip s. The losses are however always
positive (thus also Pem2 in the case of a shorted rotor).

Table4.2 summarises the relation between speed and power for theM-convention.
In the M-convention motoring implies Pm positive while generating corresponds to
Pem1 negative.10

The last row is valid only for a short-circuited rotor.
For a short-circuited rotor (in the M-convention) we have Pem2 = T sΩsy =

m2R2 I 22 . As Pem2 = T sΩsy = m2R2 I 22 ≥ 0, T and s then always have the same

10Remark however that a negative mechanical power does not necessarily implies generating!
Conversely, however, generating always implies input of mechanical power.
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sign. A positive slip thus implies a positive torque, a negative slip implies a negative
torque.

The different operating conditions for a short-circuited rotor are summarised in
Table4.3.

The Sankey diagram in (a) in Fig. 4.9a illustrates the power flow for motoring
(0 < s < 1) while the one in (b) in Fig. 4.9 shows the power flow for generating
(s < 0). The dotted line corresponds with the power transfer by the rotating field. For
a shorted rotor the secondary supply power P2 is zero. As will be shown in Part 3,
Chap. 13, a secondary supply can be used for enlarging the possible operating states,
while at the same time also increasing the efficiency.

For s > 1 aswell the torque is positive, but as the speed is negative, themechanical
power is negative (i.e. input ofmechanical power). In this braking operating condition
the input mechanical power is dissipated in the (short-circuited) rotor together with
the positive input power from the supply.

Note also that, disregarding iron and stator joule losses, the efficiency formotoring
is given by η = 1 − s; for generating the efficiency is η = 1/(1 − s). It is therefore
important to keep the slip magnitude (|s|) as small as possible.

Table 4.3 Speed, slip, torque and power signs for shorted rotor

Braking Motoring Generating

Speed Ωm < 0 0 < Ωm < Ωsy Ωsy < Ωm

Slip 1 < s 0 < s < 1 s < 0

Torque T > 0 T > 0 0 > T

Primary
electromagnetic power

Pem1 > 0 Pem1 > 0 Pem1 < 0

Mechanical power Pm < 0 Pm > 0 Pm < 0

Pj1

P1

Pir

Pem1

(1-s)Pem1 sPem1

Pj2

(P )2

Pvf

Psh

Pm

(mechanical loss)

(secondary power, if any)

(rotor joule loss)

(iron loss)

(stator joule loss)

(=P )em2

(motoring, 0 < s < 1)

stator
rotor

P1

Pem1

=(1-s)Pem1

Pm

Psh

Pvf
(mechanical
loss)

sPem1

Pj1

Pir (iron loss)

(stator joule loss)

Pj2 (rotor joule loss)

(generating, rotor shorted; s < 0)

stator
rotor

(a) (b)

Fig. 4.9 Sankey diagrams

http://dx.doi.org/10.1007/978-3-319-72730-1_13
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4.6 Torque and Torque-Slip Characteristic

The torque expression can be derived from the rotating field power. For a short-
circuited rotor we may easily obtain the torque from the secondary electromagnetic
power Pem2 = T sΩsy = m2R2 I 22 = m1R

′
2 I

′2
2 .

To derive the expression for I
′
2 we use the Thévenin equivalent circuit as observed

from the rotor, Fig. 4.10 (which can be derived from Fig. 4.8, omitting the iron loss
resistance, or from Fig. 4.6 by reversing the sign of I 2):

I
′
2 = V

′
2o

R
′
k2 + j X

′
k2

(4.90)

with

V
′
2o = V 1

j Xm1

R1 + j X1σ + j Xm1
≈ V 1

1 + σ1
(4.91)

Z
′
k2 = R

′
k2 + j X

′
k2 ≈

[
R1

(1 + σ1)2
+ R

′
2/s

]
+ j

[
X

′
σ2 + X1σ

1 + σ1

]
(4.92)

where the primary leakage coefficient is defined by σ1 = X1σ/Xm1, and with[
X

′
σ2 + X1σ

1+σ1

]
= σX

′
2 = X

′
2σ the total leakage as observed from the secondary.

This results in

T � m1

Ωsy

[
V 1

1 + σ1

]2 R
′
2/s[

R1
(1+σ1)2

+ R
′
2/s

]2 +
[
X

′
σ2 + X1σ

1+σ1

]2 (4.93)

If the stator resistance can be neglected, this simplifies to

T � m1

Ωsy

[
V 1

1 + σ1

]2 R
′
2/s[

R
′
2/s

]2 + X
′2
2σ

(4.94)

For small slip values (s � R
′
2/X

′
2σ), on the one hand, Eq.4.94 can be approximated

to

Fig. 4.10 Thévenin
equivalent circuit

I’2

R’k2

V ’20

jX’k2
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T � m1

Ωsy

[
V 1

1 + σ1

]2 s

R
′
2

(4.95)

i.e. the torque varies about linearly with s.
For large values of the slip (s 	 R

′
2/X

′
2σ), on the other hand, the torque varies

hyperbolically with the slip:

T � m1

Ωsy

[
V 1

1 + σ1

]2 R
′
2/s

X
′2
2σ

(4.96)

In between the torque reaches a maximum value, the pull-out (or breakdown) torque:

Tpo � ± m1

Ωsy

[
V 1

1 + σ1

]2 1

2X
′
2σ

(4.97)

The corresponding slip value is called the pull-out slip:

spo = ±R
′
2/X

′
2σ (4.98)

The plus sign is for motoring, the minus sign for generating. The value of the pull-out
slip varies between 0.25 (for small power ratings, e.g. 5kW) and 0.025 (for larger
power ratings, e.g. 10MW).

The linear part of the torque characteristic resembles the speed-torque character-
istic of an independently excited DC motor. The cause for the maximum torque and
the further decreasing torque for slip values larger than the pull-out slip is that with
increasing slip, the rotor current increases considerably. As a result, also the primary
current will have to increase, attempting to keep the air-gap flux constant. However,
the voltage drop over the primary leakage (and the stator resistance) causes the air-
gap flux to decrease for these large slip values. The torque will therefore decrease
considerably for large slip values.

Figure4.11 illustrates the torque as a function of the speed (or slip). The dot-dash
curve shows the effect of the stator resistance (in essence a slight decrease of the
torque for motoring and a slight increase for generating11).

For small stator resistance, the torque-slip characteristic can also be written as

T

Tpo
= 2

s/spo + spo/s
(4.99)

where pull-out torque and slip are given by Eqs. 4.97 and 4.98 respectively. This
formula is known as Blondel’s formula.

In addition to the linearity of the torque characteristic for small slip values, two
other properties are of uttermost importance:

11Prove that with non-zero stator resistance the pull-out slip slightly decreases and the pull-out
torque decreases for motoring and increases for generating.
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Tpo

-Tpo

(0)
1

T

R 01≠

R =01

R 01≠

R =01

( )Ωsy
-spospo

( )Ωm

s-10

generatingmotoring(reverse) braking

Fig. 4.11 Torque-slip characteristic

• the quadratic dependence on the voltage (a voltage dip of e.g. 20% results in a
torque decrease of 36%!)

• the torque depends on the ratio s/spo or s/R
′
2 and not simply on s, while the pull-

out torque is independent of the rotor resistance.
Adding an additional resistance R2e in the rotor circuit (for a slip-ring motor)
permits to obtain the same torque for a larger slip (or smaller speed) while the
maximum torque does not change. The torque characteristics for some rotor resis-
tance values are illustrated in Fig. 4.12. The pull-out slip changes proportion-
ally to the total rotor resistance but the pull-out torque remains unchanged, i.e.
the torque characteristic just shifts to higher slip values, or T (s∗) = T (s) and
T (s∗

po) = T (spo) = Tpo with

s∗
po

spo
= s∗

s
= R2 + R2e

R2
(4.100)
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Tpo

T

4R2 3R2 2R2 R2

ss=0s=1

Fig. 4.12 Effect of additional rotor resistance

This property can be used for speed control and for starting purposes. Nowadays,
however, adding rotor resistance is rarely used for speed adaptation as the efficiency
(η ≈ (1− s)) is rather low for higher slip values. Instead, power electronic means
are now used for variable speed operation.

4.7 The Current Locus of an Induction Machine

To derive the current vector locus, we will neglect the stator resistance (and the iron
loss resistance).

A quite handy equivalent circuit is obtained if the conventional T-scheme of
inductances in Fig. 4.8 is replaced by an L-scheme with all leakage transferred to the
secondary. This is possible without any loss of information or accuracy.12 This results
in the equivalent scheme in Fig. 4.13. Stator voltage and current remain unchanged,
but the secondary current and the impedances are converted as follows:

Xm = X1σ + Xm1 = (1 + σ1)Xm1 ≡ X1 (4.101)

Xσ = σX
′
2(1 + σ1)

2 = σ

1 − σ
X1 (4.102)

R

s
= (1 + σ1)

2 R
′
2

s
(4.103)

I = I
′
2/(1 + σ1) (4.104)

12In fact, the separate leakages of stator and rotor cannot be measured, see the remarks at the end
of this section.
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Fig. 4.13 L-scheme

V

I
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I1

jXm R/s

jXσ

Fig. 4.14 Current vectors V

I1

Im

I

From this equivalent circuit we get

I m = V 1

j Xm
(4.105)

I = V 1

R/s + j Xσ
= V 1

j Xσ
· V 1

1 − jspo/s
(4.106)

I 1 = I m + I (4.107)

where the pull-out slip is given by spo = R/Xσ .
The torque (and electromagnetic power) can be written as

T = Pem1

Ωsy
= 3

Ωsy
V 2

1 · R/s

(R/s)2 + X2
σ

(4.108)

and the pull-out torque (for s = ±spo) as13

Tpo = ± 3

Ωsy
· V 2

1

2Xσ
(4.109)

The phasor diagram corresponding to Eq.4.107 (choosing the voltage phasor along
the real axis) is illustrated in Fig. 4.14.

13Show that all these expressions are equivalent to those derived above for the original circuit.
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Fig. 4.15 Current locus

With varying slip the locus of the phasor I (and thus of I 1) is a circle,14 see
Fig. 4.15. For zero slip, I = 0 and I 1 = I m (point Po). For infinite slip (s = ±∞),
the current vector endpoint is at P∞ with I∞ = PoP∞ = V1/j Xσ , from which we
derive that the diameter of the circle is V1/Xσ .

Other important endpoints are:

• the pull-out condition at Ppo for spo = R/Xσ and
• standstill or starting condition at Ps for s = 1.

Note that the position of the standstill point on the circle depends heavily on the
rotor resistance (in contrast to the other mentioned points). This has important con-
sequences, as for large machines (relatively small resistances) this standstill point
moves closer to P∞, while for small machines (relatively large resistances) the stand-
still point is located nearer to Ppo, or for extremely high resistances even between
Ppo and Po.

A linear slip scale can be obtained on a line parallel with PoP∞. The extension
of the vector PoP cuts on this line an oriented segment QoQ that is proportional to

14This is easily shown by introducing θ and substituting s/spo = tan θ in Eq.4.106.
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the slip s (QoQ = PoQo · tan ϑ = PoQo · (s/spo); remark that Qo is on the tangent
from Po).

On this current locus the torque and power values can also be found. For a given
operating point P , call R the projection on the line PoP∞ and S the intersection of
RP - or its extension - with PoPs . As RP (with sign corresponding to the oriented
segment RP) is equal to the active current component �e(I ) it is proportional to
the primary electromagnetic power Pem1 and, because of the zero stator resistance,
also proportional to the supply power P1: RP = Iw = Pem1/3V = P1/3V . As the
primary rotating field power is proportional to the torque, RP = TΩsy/3V .

The line PoPs cuts the line RP in S. From the pairs of similar triangles PoPR,
PoQQo and PoSR, PoQsQo it is easily shown that the (oriented) segment RS =
sRP is proportional to the slip losses while the remaining segment SP = (1 −
s)RP represents the mechanical power. The line PoPs is thus the reference line for
mechanical power while PoP∞ is the reference line for primary power and torque.15

In addition to the special points (Po, Ppo, Ps, P∞) mentioned above, other impor-
tant points are e.g. the rated operating point Pn or the pull-out condition in generating
P

′
po. This will be discussed in the next sections.

Remarks:

1. It is feasible to take into account the stator resistance (and the iron loss resistance)
for the current locus. The locus is still a circle but the no-load point is now not
any more located on the imaginary axis, the diameter of the locus is rotated
with respect to the imaginary axis, and the P∞ point is not on this diameter, see
Fig. 4.16.

2. An L-scheme can also be used without neglecting the stator resistance, Fig. 4.17.
However, themain advantage of the scheme in Fig. 4.13 is now lost, i.e. the voltage
over the magnetising inductance is not any more equal to the supply voltage and
depends on the load (current). Also an equivalent iron resistance can be added
in this scheme (although its meaning and value are not the same as the one in
Fig. 4.13).
Whereas neglecting the stator resistance is quite acceptable for large machines
(>100kW), formachines of smaller power ratings the effect of the stator resistance
can be important to calculate the characteristics (e.g. torque characteristic). For
assessing the losses, the stator resistance should always be taken into account of
course (as well as the iron resistance).

3. In principle, the L-schemes are not less accurate than the ‘general’ T-scheme if
saturation is neglected (as we did). Indeed, the no-load and short-circuit tests pro-
vide only two independent complex equations. These four real equations allow to
estimate the stator resistance (which can also be measured by a DC test if skin-
effect is neglected), the magnetising resistance for the scheme in Fig. 4.6 (or the
sum of primary leakage and magnetising inductance for the scheme in Fig. 4.17)
and the real and imaginary parts of the short-circuit impedance. However, this

15Work out that the figure also gives the correct sign for generating and braking (all segments are
oriented).
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does not permit to estimate the leakage division between stator and rotor, nor thus
the separate leakages (neither the turns ratio).16

For a cage induction machine it is even more extreme: disregarding the real parts
of the impedances, for a cage machine we only have two equations (from no-load
and short-circuit tests) for three unknowns, i.e. the two self-inductances and the
mutual inductance of the inductance matrix. Indeed, for a cage induction machine
the rotor windings are not accessible.

16As we know, this also is the case for a transformer.
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Note also that this becomes evenmore complex if saturation is taken into account,
as the magnetising inductance and all leakages vary with the supply voltage and
the load. Then for each value of the supply voltage and load, another scheme is
obtained. Then load tests are also required to estimate the equivalent parameters
of the schemes.

4.8 Per-Unit Description

A per-unit description of a machine implies choosing proper reference values for
electrical and mechanical quantities, i.e. voltage, current, torque and speed (also
frequency if variable frequency operation is considered). However these reference
values cannot be chosen completely arbitrarily, as the basic laws like conservation of
energy have to be fulfilled. Thus, only three reference values can be chosen indepen-
dently. For electrical machines that are mainly used in motoring, usually one starts
from the rated (nominal) values of supply voltage, torque and speed. For machines
mainly used as generator the starting values are the rated values of supply voltage,
current and speed.

As induction machines are mainly used as motor, the per-unit reference sys-
tem for an induction machine is based on the rated supply voltage, rated (electro-
magnetic) torque and synchronous speed at rated frequency. Using the synchronous
speed (at rated frequency) as reference instead of rated speed, results in the refer-
ence power being equal to the rated electromagnetic power (rotating field power)
and thus somewhat larger than the rated electromagnetic shaft power, i.e. greater by
a factor 1/(1 − sn). Nevertheless, there also are some advantages. For example, at
rated frequency the per-unit torque is also equal to the per-unit power. Note that with
this reference system, the reference current is about equal to the rated active current
(exactly equal when neglecting the effect of the stator resistance and iron loss).

This reference system results in the per-unit equivalent circuit in Fig. 4.18.
The per-unit values of the impedances are for most machines of the order of
xσ ≈ 0.15 · · · 0.25; xm ≈ 2 · · · 10; r ≈ 0.005/τp.

The corresponding equations for current, power and torque are quite similar to
those for absolute values:

v

im1

i1

jxm r/s

jxσ

(x _~ 0,15...0,25, typically 0,20)σ
i

(x _~ 1,2...10,      typically 2)m

(r _~ 0,005/ = 0,05...0,005
for = 0,1...1 m )

τ
τ

p

p

Fig. 4.18 p.u. equivalent circuit
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i1 = im + i = v

j xm
+ v

r/s + j xσ
(4.110)

p1 = pem1 = t · 1 = i2 · (r/s) = v2 r/s

(r/s)2 + x2σ
(4.111)

Mechanical power and slip losses are obtained by splitting up the electromagnetic
power according to

pem1 = s · pem1 + (1 − s) · pem1 ≡ p jr + pm (4.112)

As the reference power is equal to the rated17 electromagnetic or rotating field power
(Pem,n = Tn · Ωsy), in rated conditions of voltage, frequency and speed (or slip) we
then have

pem1,n = 1 = 12
r/sn

(r/sn)2 + x2σ
(4.113)

from which we get

r/sn = 1

2

[
1 ±

√
1 − 4x2σ

]
≈ 1

2

[
1 ± (1 − 2x2σ)

]
(4.114)

From these two solutions, only the largest one (corresponding with the smallest slip)
is here of interest to us:

r/sn ≈ 1 − x2σ ≈ 1 (4.115)

With a fair approximation, the rated slip is thus equal to the per-unit rotor resistance,
sn ≈ r . For this slip value we have pem1 = t ≈ 1 and iw = 1. This rated slip is on
the (approximately) linear part of the torque characteristic.

The other slip value corresponding with unity torque and electromagnetic power
is rather large, s ≈ r/x2σ , i.e. on the other side (the hyperbolic part) of the pull-
out torque on the torque characteristic. In per-unit the pull-out torque is given by
tpo = v2/2xσ for spo = r/xσ . Blondel’s torque formula is in per-unit

t = tpo · 2

s/spo + spo/s
(4.116)

Figure4.19 shows the current vector locus in per-unit (drawn for xm = 2 and xσ =
0.2). In the rated operating point (for motoring), we have for the current i1 = v(1−
j xσ − j/xm). The operating point with maximum power factor is found at the tangent
to the circle from the origin. This point is, generally, not the rated point.18

17The notation n (for nominal) is used for rated values.
18Calculate the optimal power factor from Fig. 4.19 and compare to the power factor at rated slip.
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4.9 Effect of s/r , xσ and xm on Current and Torque

In Fig. 4.20, we have drawn the evolution of the current and the torque as a function
of the generalised slip parameter s/r (for xm = 2 and xσ = 0.2).
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The current is minimal for zero slip and increases monotonously for increasing
slip parameter. The torque, however, increases from zero to the pull-out torque and
then decreases again (to zero) for infinite slip. For continuous operation, we want of
course a sufficiently high torque with a low or modest current (and high efficiency).
For transient purposes, higher currents (and/or with lower torque) can be acceptable.
Therefore, we may distinguish three ranges for the slip parameter:

1. s/r between 0 and 2: this is the normal continuous operating range, centred around
s/r = 1, i.e. the rated speed. Torque production is efficient and the power factor
is high.

2. s/r between 2 and 5: in this range the torque production is less efficient because
of large lagging currents. This range might be necessary to overcome sudden and
unwanted load torque increases without the risk to stalling the motor.

3. s/r higher than 5: here the currents are rather large and torque low. But brief
operation in this range might be required for starting purposes (cage motors).

For a further discussion, the value of the rotor resistance itself must be considered as
well. Also the distinction between cage induction machines and slip-ring machines
is important.

Figure4.21 shows the torque characteristics for some resistance values (v = 1
and xσ = 0.2 have been assumed). A small rotor resistance is preferable as it results
in a good efficiency in the normal operating range (small slip). However, in this case
the starting torque is rather limited resulting in large start-up times. And in Fig. 4.20
we have seen that for s/r > 1 the current is rather large as well (resulting also in
high stator joule losses). However, remember that the slip range between s = 1 and
s = sn must always be passed through when starting.

While machines of small power ratings mostly have rather large resistances
because of economic (and constructional) reasons, machines of large power rat-
ings always have low (per-unit) resistances because of efficiency reasons (efficiency
η ≈ 1 − s). In fact, it turns out (from an analysis of data of a large number of
machines) that the per-unit resistance of induction machines varies with the pole
pitch approximately as r ≈ 0.005/τp. This results in a rather low starting torque for

Fig. 4.21 Effect of the rotor
resistance on torque
characteristic
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(a) (c)

(b)

Fig. 4.22 Rotor cage constructions

large machines. Indeed, with spo = r/xσ ≈ 0.025/τp, the starting torque (for s = 1)
can be approximated as t ≈ tpo ·2spo ≈ tpo · (0.05/τp), which is very small for large
pole pitches (nevertheless the corresponding starting current is more than 5 times the
rated current).

If the machine is a slip-ring machine, additional rotor resistances may be con-
nected at the slip-rings for starting, while these resistances are afterwards removed,
for continuous operation.19

For large squirrel cage machines, however, starting may pose a problem with-
out additional measures. However, special construction of the cage may relieve the
starting problem (see below).

Figures4.22 and 4.23 illustrate the basic construction of a cage rotor. Electro-
magnetic sheets with punched slot openings are stapled on the shaft. Then, an alloy
containing mainly aluminium (or, more recently, also copper for high-efficiency
motors) is cast into these slots. Together with the cage slot fillings, the end-rings
(short-circuit rings) are cast, sometimes provided with ventilation blades as well. By
a special shape of the slot and slot openings, either in the form of narrow deep slots (a,
b and c in Fig. 4.23) or as a double-cage (d), thus both with the largest cross-section
to the inside of the rotor, the skin effect in these slots is increased and with a high
frequency in the rotor conductors, the rotor currents will shift to the upper part of
the cage conductors where the resistance is higher.

19In the past additional rotor resistances were also used for speed regulation, but since the advent
of power electronics this method for speed control all but disappeared.
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(a) (b) (c) (d)

Fig. 4.23 Deep slot and double cage
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Fig. 4.24 Field lines in double cage rotor

For explaining this operation principle for starting, we refer to Fig. 4.24, illus-
trating the field lines of the main air-gap field (crossing the air-gap and linking the
stator winding with the rotor slots, i.e. the dash-dot line) and those of the leakage
field of the rotor cage (i.e. the full lines, linking only the rotor slots). Remark that
nearly all field lines will close through the iron below the rotor slots because of the
lower reluctance of the rotor iron compared to the aluminium or copper conductor
in the slots. Thus the lower portion of the rotor cage slots is linked with nearly all
field lines, in particular with all field lines of the rotor leakage field.

At low speed (high slip), the rotor currents will shift to the higher parts of the
slots, near the air-gap. This can be explained in two ways. To start with, keep in mind
that at low speed and thus high slip, the frequency in the rotor is fairly high (e.g.
50Hz at s = 1).

The main field (dashed line) linked with the rotor induces an emf in the rotor
cage. This emf gives rise to currents in the short-circuited rotor. But these currents
result in a leakage field with field lines as in Fig. 4.24. In turn these alternating fields
results in emfs induced in the cage that oppose their origin and thus counteract the
currents. As the lower parts of the cage bars are linked with most or all leakage flux
lines, the counteracting emf is the higher the lower this part of the cage bar and thus
the current will be pushed to the upper parts of the cage bars. The higher the slip,
the higher the frequency and the higher the counteracting emfs. Thus for high slip,
almost all current will flow in the upper parts where the resistance is higher. For
low slip values, the counteracting emf is lower or negligible and the current will be
distributed evenly over the cross section of the cage bars, i.e. an equivalent lower
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resistance. This is analogous to the well known skin effect in a conductor in free
space, where the current is shifted to the outer skin.

Another way to explain this skin-effect is illustrated in Fig. 4.25 (for a double-cage
motor). For the upper conductor the resistance is high (small cross section) but its
leakage inductance is low as this upper conductor is linked with only a small portion
of the leakage field lines. For the lower conductor the resistance is low (high cross
section) but the leakage inductance is high as it is linked with nearly all leakage
flux lines. Both upper and lower conductors can be represented as acting in parallel
with the main field as in the figure. For high slip on the one hand, the impedance
of the leakage will dominate and the current will be shifted to the upper conductor,
resulting in an equivalent high resistance. In contrast, for low slip values the current
will be distributed over both conductors, inversely proportionally to the resistance
and the equivalent resistance of the cage will be that of the parallel connection of
both upper and lower conductors, i.e. a low resistance.

As a result, the torque-slip characteristic has for high slip a similar shape as
for an induction machine with high rotor resistance, while for low slip values the
characteristic resembles that of a machine with low resistance, Fig. 4.26.

For the leakage inductancewe supposed above a per-unit value of 0.2. This value
is in fact a compromise between two contradictory requirements:
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• a sufficient low value to obtain a pull-out torque that is at least twice the rated
torque (as prescribed by the standards, as sudden load increases may not stall the
motor); from tpo = v2/2xσ and v = 1, this yields therefore xσ ≤ 0.25

• a maximum starting current of maximum 7 times the rated current; from is ≈
v/

√
(r2 + x2σ) ≈ v/xσ , this yields (at rated voltage) values of xσ ≥ 0.15.

A per-unit value of xσ = 0.2 corresponds with a pull-out torque of 2.5 and a starting
current of 5 and is an ideal compromise.

The (per-unit) value of themagnetising inductance depends on the reluctance of
the main flux path. To reduce the magnetising current, the most important parameter
is an as small as possible air-gap.However, some other factors impose a lower limit on
the air-gap, in particular mechanical limitations (bearing slack) and electromechan-
ical restrictions (reducing pulsating losses and forces and the resulting vibrations).
This results in an approximate scaling law for the air-gap as δ ≈ 3 · 10−3 · τp · √Np

[m]. Further, also the quality of the iron used in the construction plays an important
role (e.g. from economic point of view, large machines allow for the use of higher
quality iron).

It is clear therefore that mainly the power rating of the machine (or its size) will
determine the p.u. value of the magnetising inductance20: xmn ≈ 10 · √

τp/Np. For
example, this yields for four-pole machines xmn = 1.2 . . . 10 for τp = 0.03 . . . 1 [m].

4.10 Scaling Laws - Rated Specific Values

In the preceding sections, we frequently referred to scaling laws as a means to obtain
an idea of the values of impedances of induction machines. Scaling laws reflect the
effect of the machine size on the properties of a machine. Indeed, induced voltage,
force and energy conversion per unit of air-gap surface area depend on three basic
quantities: air-gap induction B [T], linear current density A [A/m] and linear surface
speed v ≈ vsy [m/s]. As the pole pitch length τp has an important effect (i.e. the
scaling laws) on the value of these basic quantities in rated conditions, so it also has
on the basic properties of a machine.

For an efficient energy conversion the air-gap induction should be as large as
possible, but it is limited by the minimum allowable air-gap length.21 Nevertheless,
with increasing machine size the air-gap induction turns out to increase slightly,
thanks to a somewhat larger useful iron section available for the flux (and possibly
also better quality iron) for larger machine sizes:

B̂n ≈ τ 1/6
p (4.117)

20That the magnetising inductance decreases with the number of poles can be readily understood
considering that a high number of pole pairs results in multiple crossings of the air-gap over the
circumference.
21This minimum air-gap length also depends of the size, with an absolute minimum of usually
0.25mm.
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As to the current loading, a constant current density J (say 4 A/mm2) would corre-
spond to a current sheet or linear current loading A [A/m] proportional to the pole
pitch. As the linear speed of the circumference also increases with size (v = 2τp f )
this would seem acceptable with a cooling ventilator driven by the shaft. However,
with increasing machine size and thus axial length the cooling efficiency of the air-
flow in the air gap decreases. Therefore the losses per square meter of air gap should
decrease slightlymore than linear with size or linear speed, and thus the linear current
loading may increase less than linear with the pole pitch:

An ≈ 105τ 2/3
p (4.118)

These scaling laws for induction and current loading (together with v = 2τp f ) lead
to the following scaling laws for emf per metre, force density per square metre and
power per square metre (the numeric data are for τp = 0.03 . . . 1 m):

Kn = vsy Bn ≈ 70τ p7/6 ≈ 1 . . . 70 [V/m] (4.119)

F�
n = AnBn ≈ 7 · 104τ 5/6

p ≈ 3.5 · 103 . . . 7 · 104 [N/m2] (4.120)

P�
n = Fnvsy ≈ 7 · 106τ 11/6

p ≈ 104 . . . 7 · 106 [W/m2] (4.121)

For the relation between the axial length of the machine and the pole pitch, one may
assume la ≈ D = 2Npτp/π, which leads to the following scaling law for the rated
power:

Pn ≈ 107τ 23/6
p · N 2

p (4.122)

The rated power thus increases with approximately the fourth power of the dimen-
sions (pole pitch), slightly less than for transformers.

4.11 Single-Phase and Two-Phase Induction Machines

4.11.1 Two-Phase Induction Machines

Two-phase (squirrel cage) induction machines have two phase windings per pole-
pair. These windings are orthogonal in space (in electrical degrees). When supplied
by a symmetrical two-phase supply, a rotating field results and the energy conversion
is identical to that of three-phase machines.

A disadvantage however is that with a lower number of phases the actual field
contains more space harmonics of lower order (and thus higher amplitude).
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4.11.2 Single-Phase Induction Machines

The term ‘single-phase squirrel cage machines’ is used to denote all squirrel cage
induction machines that are supplied by a single-phase supply, i.e. true single-phase
motors, capacitormotors and alsomulti-phasemotors fed from a single-phase supply.

4.11.2.1 True Single-Phase Motors

These motors have only a single-phase stator winding, but a squirrel cage rotor
winding (thus indeed a multi-phase rotor).

The alternating current in the stator winding (from the supply) results in an alter-
nating current layer. As explained before, this alternating current layer can be decom-
posed into two counter-rotating current layers (with half the amplitude of the original
alternating current layer).

In the absence of rotor currents, the alternating stator current sheet would result in
an alternating air-gap field (which can also be decomposed into two counter-rotating
fields of equal amplitude).

As the (short-circuited) rotor cage is linked with this field, a rotor current will be
induced. This rotor current will contribute to the resulting field in the same way as
the stator current sheet, i.e. the mmfs of both current distributions will add to form
the resulting mmf, which in turn determines the resulting (induction) field.

If the rotor is at standstill, the rotor current sheet is an alternating current (which
is co-linear in space with the stator current sheet). The mmfs of both stator and rotor
current layers are thus also alternating and displaced 90◦ in space with respect to the
current distributions. This holds true for themagnetic field as well, and thus no torque
will be produced. As there is no starting torque, the rotor remains at standstill.22

Suppose now that the rotor is pushed in one or the other direction (say, in positive
direction). The slip s for this positive field direction then becomes smaller than 1
while the slip s ′ = 2 − s for the negative field direction is larger than 1. The field
rotating in the positive direction will induce in the rotor a symmetrical current with
frequency s f < f while the field rotating in the negative direction induces a current
with frequency s ′ f > f . The amplitudes of both rotor current layers differ however:
as s ′ f > s f the rotor current layer rotating in the negative direction is larger (larger
induced emf) and will pull down the field rotating in the negative direction, while the
field component rotating in the positive direction benefits as it is reduced to a lesser
degree.23

22This may also be derived by considering the counter-rotating current layers and the counter-
rotating fields corresponding to alternating current layers: from symmetry the torques resulting
from these cancel out.
23This is similar to a transformer where the load current tries to decrease the main field; the primary
current will of course increase trying to keep the total flux at the same level but because of the
leakage inductance the main flux will decrease. For this case of an induction machine the equivalent
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Fig. 4.27 Single-phase torque

The electromagnetic torque is, in principle, the sum of four components, i.e. the
torques of the left and right rotating fields on the left and right rotating current layers
in the rotor. However the torque components resulting from fields and current layers
that rotate in different directions are just pulsating and do not lead to a net torque.
The net torque is therefore the sum of the torque of the right rotating field on the
right rotating current layer and the torque of the left rotating field on the left rotating
current layer: T = T ′(s) + T ′(2 − s).

If the rotor is rotating to the right (positive direction), the latter is negative but
smaller in absolute value than the former (which is positive).As a result, there remains
a net torque to the right, i.e. in the actual direction of rotation of the rotor.

This is represented in Fig. 4.27. Here T ′′(s) and T ′′(2 − s) are the torques for a
normal inductionmotor (and full rated voltage) for the right and left rotation direction
respectively. If for the single-phasemachine the decomposition of the alternatingfield
(or current layer) into two equal counter-rotating components of half the original
amplitude remained valid also with a rotating rotor, then the torque components
T ′(s) and T ′(2 − s) would attain only 25% of the torques T ′′(s) and T ′′(2 − s) (as
he torque is proportional to the square of the voltage).

rotor resistance R/s for the positive rotating field is larger than the resistance R/s′ for the negative
rotating field and thus the remaining field for the former will be larger than the one for the latter.
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However as explained above, for a right rotation of the rotor, the right rotating
field increases while the left rotating one decreases (and vice versa for a left rotating
rotor). Thus24 for s < 1, T ′(s) may attain 50% of the corresponding torque for rated
voltage (while T ′(2 − s) decreases) for s < 1; for s ′ < 1 (or s = 2 − s ′ > 1) the
same holds true for T ′(s ′).

Although the torque values seem acceptable, some disadvantages of the single-
phase induction machine are apparent:

• there is no starting torque as T ′(s) = −T ′(2 − s) for s = 1. When the rotor is
pushed in one or the other direction it will start rotating in this direction

• synchronism will never be attained, as the total torque attains zero for some small
non-zero slip (because of the small negative torque in the other direction).

• the presence of non-negligible pulsating torques (remember that this is a single-
phase load with inherent pulsating electrical power)

Therefore, true single-phase machines are seldom used. Instead capacitor motors
and shaded-pole induction machines are frequently used when only a single-phase
supply is available, as explained in the next sections.

4.11.2.2 Capacitor Motors

A capacitor motor contains, in addition to the main single-phase supplied winding,
a second (auxiliary) winding placed orthogonally (i.e. a space shift of 90 electrical
degrees) with respect to the main winding. This auxiliary winding is fed by the same
supply, but connected in series with a capacitor in order to imitate a two-phase supply.
Figure4.28 shows a two-pole representation of the windings and connections. The
main A-winding is directly supplied by the mains. The auxiliary B-winding is also
fed by the same mains supply, but in series with a capacitor.

From the scheme in Fig. 4.28 we derive:

V = V A = Z(s) · I A = [R(s) + j X (s)]·I A (4.123)

V = V B − j Xc I B = Z(s) · I B − j Xc I B = [R(s) + j X (s)] · I B − j Xc I B (4.124)

where Z(s) = R(s) + j X (s) is the slip-dependent impedance of the induction
machine (cf. equivalent circuit) and Xc is the impedance of the capacitor.

From the condition for two-phase symmetry, i.e. V B = jV A and I B = j I A, we
may derive

Xc = (1 − j)[R(s) + j X (s)] (4.125)

This implies that, in order to achieve 2-phase symmetry, R(s) = X (s) and Xc =
2R(s) = 2X (s) = √

2Z(s).

24This single-phase machine is in fact equivalent with two mechanically connected machines that
are electrically series connected, one for the left and one for the right rotation direction.
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Fig. 4.28 Capacitor motor

Two-phase symmetry is therefore only possible if in the operating point (defined
by the slip s), the power factor angle is 45◦ and the capacitor is chosen according to
Eq.4.125.

The phasor diagram in Fig. 4.28 illustrates this condition and reveals an additional
advantage: the supply current is purely active. The capacitor compensates all reactive
current.

Also from the machine point of view, this operating condition is ideal: completely
symmetrical, with constant torque and thus without pulsating torque components (as
in pure single-phase machines). Of course, the mains power still contains a pulsating
component with twice the mains frequency (as always for single-phase supply), but
the capacitor effectively compensates this pulsating power for the machine.

For an efficient operation of themachine, the slip s where the power factor angle is
about 45◦ should occur at the rated operating point. This implies that the power factor
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angle should be about 45◦ at the rated slip sn . Figure4.29 shows a circle diagram,
where the 45◦ line intersects the circle in two points. One intersection point is at fairly
low slip while the second one is at rather high slip. If the rated power of the machine
is not too high, the p.u. rotor resistance is rather high and the standstill point (s =
1) is not far from the pull-out point. The low-slip intersection point is then near to
the rated operating point and thus quite useful. Nevertheless, it should be remarked
that power factor angles between 30◦ and 60◦ still result in acceptable symmetrical
operation conditions.

Whereas the interval between 30◦ and 60◦ corresponds for small machines with
the major part of slip values between s = 0 and s = 1, for large machines the larger
value of xm and the smaller value of the rotor resistance rr result in intersection
points that are not very useful (i.e. at small slip near no-load and at larger slip near
pull-out).

Capacitor motors may exhibit a problem at no-load, not only because of bad
symmetrical behaviour with a power factor angle around 90◦, but also because the
capacitor voltage (and current) may become extremely high. From

v = vB − j xci B ≈ j xmi B − j xci B (4.126)

where the per-unit value of xc is about
√
2 (seeEq.4.125) and xm is for smallmachines

between 1.2 and 2, we get a phasor diagram as in Fig. 4.30.
For starting, the ‘run capacitor’, as described above, is not an ideal solution.

Therefore sometimes two capacitors are used, one for starting (chosen corresponding
to the intersection point at large slip, i.e. around s = 1) and one for continuous
operation (the ‘run capacitor’). The value of the start capacitor ismuch larger than that
of the run capacitor. Whereas the run capacitor corresponds to Xc = 1/ωC ≈ √

2Zr

(or xc ≈ √
2 in per unit), the start capacitor corresponds to the machine impedance

at standstill, i.e. Xc = 1/ωC ≈ √
2Xσ (or in per-unit 0.2 · √

2 ≈ 0.28). This
corresponds to 133µF/kW or 2kVA/kW at 230V, compared to only 30µF/kW
or 500VA/kW for the run capacitor. The start capacitor is not continuously on, but
switched by a centrifugal or a current switch. Then also a cheaper electrolytic version
can be used for this start capacitor (another solution to reduce the cost is to use a
higher number of turns for the auxiliarywinding, resulting in a lower capacitor value).

In contrast, the run capacitor should be of high quality, i.e. with a low loss fac-
tor tan δ(≈ 0.01). Usually metal foil (with paper insulation) or the newer plastic
capacitors are used.

In the standards, capacitor motors are referred to by several names, depending on
the type. For Europe they are addressed in IEC Publication 50, Chap.411, Rotating
machines (e.g. 411-03-24: Capacitor motor; 411-03-25: Capacitor start motor; 411-
03-26: Capacitor start and run motor; 411-03-27: Two-value capacitor motor).

Fig. 4.30 No-load phasor
diagram for capacitor motor

V

jXm BI

-jXc BI
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4.11.2.3 Single-Phase Supply of Multi-phase Motors

A capacitor can also be used to obtain a rotating field in 3-phase motors when only
a single-phase supply is available, see Fig. 4.31. This connection is usually called
the ‘Steinmetz’ scheme. The mains voltage must of course correspond to either the
phase voltage (delta connection) or the line voltage (wye connection) of the machine.

Assume that a symmetrical voltage and current system is obtained. From the pha-
sor diagrams in Fig. 4.32 (corresponding to the schemes in Fig. 4.31), it is easily
derived that the power factor angle must be 60◦ in order to obtain 3-phase symmetry
(capacitor voltage and current are orthogonal and, dependent on wye or delta con-
nection, either the capacitor voltage or the capacitor current correspond to a machine
phase value).

However, at rated slip the power factor angle of multi-phase induction machines
normally differs greatly from the ideal angle of 60◦ and thus symmetrical operation
in rated conditions will be more difficult to obtain than for single-phase machines
with auxiliary winding. As a result there will be more extra losses and heating of the
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machine. Moreover, in most cases a start capacitor will not be present, leading to a
low starting torque, limiting its use to starting under no-load.

4.11.2.4 Shaded-Pole Motors

A shaded-pole motor has a normal squirrel cage rotor, but a single-phase fed stator
with a special electromagnetic construction to obtain a rotating field. The coils around
the salient poles in the stator are fed by the mains. One side of these poles is shielded
electromagnetically by a short-circuited winding (or ring) in a slot (see Fig. 4.33, for
a 4-pole machine).

As the short-circuited winding acts as the secondary of a transformer, the current
in it will oppose the alternating field excited by the mains-fed coils. If the coupling
between the main coils and the shorted ring were ideal, the field in the shielded part
would vanish completely. Because of the incomplete coupling (leakage field) and the
resistance of the ring, there remains a field in the shielded part δe ((a) in Fig. 4.34).
This field, however, lags the field in the non-shielded part. As the symmetry axis of
the shielded part is also displaced in space with respect to the non-shielded part, a
rotating field, although imperfect, is created. Mathematically this can be elaborated
as follows, see also (b) in Fig. 4.34.

With an ideal coupling,wewould have (the prime indicating referred to the number
of turns of the short-circuit ring)

wc I c + we I e = 0 (4.127)

Fig. 4.33 Shaded pole
motor
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or
I c = −I

′
e = −I e · we

wc
(4.128)

In this case, the field in the shielded part would vanish completely, φ
mc

= Xmc(I c +
I

′
e) ∼ wc I c + we I e = 0.
In reality, due to the leakage field and resistance of the short-circuit ring, we have

Rc I c + j Xσc I c + j Xmc(I c + I
′
e) = 0 (4.129)

or
Rc I c + j (Xσc + Xmc)I c = − j Xmc I

′
e (4.130)

As depicted in Fig. 4.34 the flux φ
mc

= Xmc(I c + I
′
e) lags the flux φ

me
= Xme I e

by an angle α. But the symmetry axes of the fluxes φ
mc

and φ
me

(thus the axes
of the parts δe and (1 − δ)e of the pole) are also shifted in space, by an angle β.
By decomposing both alternating fields into two equal and counter-rotating fields
we obtain a situation as depicted in Fig. 4.35. The left rotating fields may almost
completely annihilate each other while the right rotating fields add up. The result is
a large right rotating field and a small relic of the left rotating field. A pure rotating
field requires φ

mc
= φ

me
, α + β = π and α = β or thus α = β = π/2. Although

a time shift of 90◦ is quite feasible, a space shift of 90◦ is physically impossible (as
this would boil down to a magnetic short-circuit of adjacent north and south poles).

Another way to obtain a rotating-field effect is to use a step in the air-gap, see (a)
in Fig. 4.36. Where the air-gap is larger, the coupling of the rotor with the stator is
smaller. That part of the rotor has therefore a smaller air-gap inductance and a larger
leakage. Seen from the stator, the rotor may be modelled as the series connection of
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two parts, one with a larger air-gap inductance and small leakage and the other one
with a smaller air-gap inductance and larger leakage inductance, see (b) in Fig. 4.36.
Because of the above and with I 1 = I m2 − I

′
2 = I m3 − I

′
3 we easily obtain a

phasor diagram like (c) in Fig. 4.36. The magnetising current for the smaller air-
gap is lagging the magnetising current for the larger air-gap. Thus also the air-gap
field for the smaller air-gap will lag the one for the larger air-gap. Because of the
displacement in space we will again obtain a rotating-field effect.

A shaded pole and a step in the air-gap may also be combined to reinforce the
rotating-field effect (i.e. to reduce the inverse rotating field).

A disadvantage of all single phase motors with concentrated windings (and thus
also of the shaded pole motor or the stepped air-gap variant) is that the concentrated
winding gives rise to mmf harmonics, in particular the third mmf harmonic. The
torque characteristic will then show a distortion at 1/3rd of the synchronous speed
(in addition to torque components from the inverse rotating field), Fig. 4.37.

The third harmonic may be reduced by shaping the stator pole, by slanting the
rotor bars,.... It is also possible to use a distributed stator winding to eliminate the
third harmonic. The combination with a step in the air-gapmay also be used to reduce
the third mmf harmonic.



Chapter 5
The Synchronous Machine

Abstract In this chapter we discuss the synchronous machine mainly from its
traditional function as generator. Motoring, in particular with permanent magnet
synchronous motors, is treated in a later chapter. The first section gives an overview
of the main two rotor types and their properties. In the following section, the smooth
rotor synchronous machine is treated in detail, including armature reaction, phasor
diagrams, equivalent circuits, current diagram, torque but also a thorough discussion
of the non-linear generator characteristics. In the next section, salient pole syn-
chronous machines are treated. One of the last sections is devoted to the operation
(mainly as generator) on an infinitely strong grid.

5.1 Introduction - Construction

Whereas the induction machine is used mainly (but not exclusively) as a motor,
the synchronous machine is the obvious machine at the generating side of the grid.
Indeed, thanks to the (DC or permanent-magnet) excitation on the rotor the syn-
chronous machine is able to supply reactive power in addition to its main role for
active power conversion.

The synchronous machine is, however, also used for motoring, either for very
large power, or in applications where special requirements (efficiency, speed control
accuracy, dynamic properties, compactness,...) justify its higher acquisition costs.
The main electromagnetic parts of a synchronous machine are:

• the primary with a poly-phase (in most cases three-phase) winding, mostly on the
stator

• the excitation, either a DC field winding or a permanent magnet excitation, in most
cases on the rotor

For a DC excited field one may discern two designs:

• salient-pole synchronous machines (see a, b in Fig. 5.1). The field winding is a
concentrated winding around poles, similar to the excitation winding of a DC
machine. The number of poles 2Np (of alternating polarity around the circumfer-
ence) is normally quite large for these machines. The magnetic core (of the rotor

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_5
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Fig. 5.1 Rotor constructions

poles) can be massive iron, but is in many cases laminated. The air gap under the
pole shoes can be widened slightly at the ends in order to obtain a more sinusoidal
magnetic field shape. Because of the salient poles the reluctance around the cir-
cumference varies strongly, with a minimum along a pole axis and a maximum
in between the poles. These low speed machines with a large diameter and rela-
tively short armature length are the typical generators in hydraulic or diesel power
stations.

• smooth rotor synchronous machines (see c, d in Fig. 5.1). The field winding is a
distributed DC winding with a low number of poles, 2Np = 2 or 4. In most cases
the magnetic core is massive, as these synchronous machines are typical for large
turbo generators. Indeed, the high power ratings, up to 2 GW, and the high speeds
require long forged rotor structures. Further, because of the DC excitation, the
massive poles are not much of a problem (and the eddy currents in the iron yield
the required damping for oscillations). These machines are called smooth-rotor
machines because of the theoretical symmetry of the two electrical axes (pole axis
and intermediate axis). In reality, however, the reluctance along a pole axis is a
little higher than along an intermediate axis,1 but the difference is quite small. The
armature length of these machines is mostly a multiple of their diameter.

1The slots are usually omitted at the centre of the poles, as the mmf of these slots would not add
much to the field but would introduce additional reluctance.
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Fig. 5.2 Cross section of a synchronous machine with DC excitation and slip rings

In addition to theseDC-excited synchronousmachines, there also exist permanent-
magnet excited synchronous machines although these machines are mainly used
in motoring (e.g. robotics). For these PM machines, axial field designs gained a
lot of attention in recent years, e.g. for electric vehicles where their small axial
length makes them quite feasible as wheel motors. In essence, these PM machines
behave as ‘normal’ DC-excited synchronous machines (see Part 3, Chap.20), but
their excitation is fixed and, if required, the induced emf must be influenced by other
means.

Compared to induction machines, synchronous machines normally have a much
higher air gap. Indeed, a small air gap is of primordial importance for induction
machines as the (for the magnetic field) required reactive current from the supply
should be kept at a minimum. For synchronous machines the DC excitation is about
‘free’ and the larger air-gap offers a better reliability (especially for large power
ratings). In addition, for DC-excited machines a larger air gap yields a smaller ratio
of maximum to minimum excitation which results in easier excitation control.

Other constructional details of synchronous machines (generators) are illustrated
in Fig. 5.2.

http://dx.doi.org/10.1007/978-3-319-72730-1_20
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In the sequel of this chapter, we will use the G-convention (with at the electrical
side the GRS or Generator Reference System) for the synchronous machine as we
will concentrate on its use as a generator (although in Part 3 we will use the M-
convention, with the URS at the electrical side).

5.2 Smooth Rotor Synchronous Machines

5.2.1 Field Curve and No-Load Characteristic

The field curve of a smooth rotor synchronous machine (‘turbo-rotor’) with dis-
tributed DC winding has an almost sinusoidal shape, see Fig. 5.3. Denoting by x ′ a
linear co-ordinate on the rotor (with x ′ = 0 along the north pole axis) we may write

bp(x
′, t) =

∑

ν

B̂pν cos

(
ν
x ′π
τp

)
≈ B̂p1 cos

(
x ′π
τp

)
(5.1)

The higher harmonics in the field curve are indeed suppressed by the winding factors
of the distributed winding, see Chap.3:

F̂pν
∼= 2

π
.(−1)

ν−1
2 .

w f ξ f ν

νNp
i f (5.2)

where w f represents the total number of series connected field windings, ξ f ν the
winding factor for the ν th space harmonic and i f the DC excitation current.

If the reluctance of the iron core can be neglected, the almost constant air-gap
results in an induction curve that is proportional to the mmf:

B̂pν ≈ F̂pν
μo

τp
(5.3)

21 3 4 5

B

p

theoretical field curve experimental field curve

Fig. 5.3 Field curves

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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In the sequel of the analysis, we will neglect all higher harmonics in the field
(and omit the subscript “1”). When the rotor rotates with a mechanical speed Ω ,
a fundamental harmonic rotating field with respect to the stator (the ‘armature’) is
created:

bp(x, t) = B̂p cos

(
xπ

τp
− ωt

)
(5.4)

with ω = Ω · Np (see also Chap.3).
This rotating field induces a symmetrical three-phase emf in the stator winding

with angular frequency ω. The corresponding phase voltage in the reference phase
1U is given by (remark the + sign because of the GRS)2:

ep(t) = Ê p sinωt (5.5)

where the emf amplitude is given by3

Ê p = ω · (wξ1/Np
) · Φ̂p (5.6)

with the flux over one pole pitch centred around x = 0 (the axis x = 0 supposed
co-incident with the rotor north pole axis x ′ = 0 at the instant t = 0) given by

φp(t) = Φ̂p cosωt (5.7)

Φ̂p = 2

π
· l · τp · B̂p (5.8)

In phasor (time vector) form this is written as:

E p = − jω · (wξ1/Np) · ˆ(Φ p/
√
2)

(in the GRS, the voltage is indeed lagging the corresponding flux).
Higher space harmonics in the field curve also induce voltages in the armature

winding (although with a higher frequency, see Chap. 3), but because of the much
lower winding factors these induced voltages are negligible.

At constant speed, the effective (or amplitude) value of the fundamental induced
voltages is thus proportional to the fundamental flux over a pole pitch, Φ̂p.

With a variable excitation current, saturation of the iron of core and poles results
in a non-linear curve of the emf as a function of the excitation current, see Fig. 5.4.
The ordinate is the emf amplitude (or effective value), which is proportional to the
flux per pole as mentioned before. This curve is called the no-load characteristic of

2The subscript p is used whenever quantities are referred to the armature; thus although this emf
results from a DC field current (‘f’) we use the subscript ‘p’.
3This is the emf for all windings or conductors in series of one single pole-pair.

http://dx.doi.org/10.1007/978-3-319-72730-1_3
http://dx.doi.org/10.1007/978-3-319-72730-1_3
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Fig. 5.4 No-load
characteristic

mmf
air-gap

mmf
iron
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the synchronous machine. It allows to derive the required excitation current for a
given emf value. As the excitation is a DC current, the real no-load characteristic
does not go through the origin but is in fact a hysteretic curve (see the dot-dash line
in Fig. 5.4) with a remanent induction of about 5% of the rated voltage.

5.2.2 Armature Reaction

If the stator three-phase winding is connected to a symmetrical load (or to the grid
or other supply with the right frequency), a symmetrical three-phase current results
with the same frequency as the emf, ω = Np · Ω . The corresponding stator current
sheet with 2Np poles rotates also with the speed Ω and yields a rotating mmf with
the same speed as the rotor. The amplitude of this armature mmf is given by (see
Chap.3):

F̂a = 3

2
· 4
π

· wξ1

2Np
· Î1 = 3

π
· wξ1

Np
· Î1 (5.9)

As a result, there are now two rotating mmfs in the air-gap, thus two sine waves with
the same (mechanical) speedΩ and the same wavelength, i.e. the rotor mmf f p(x, t)
and the armature mmf fa(x, t). These twommfs add vectorially to the resulting mmf
fr (x, t)which determines the resulting rotatingmagnetic field br (x, t) in the air-gap.
Indeed, the mmfs must be added vectorially as, generally, these mmfs are not in

phase and their phase difference depends on the load.
The maximum of the rotor mmf is always coincident with the north pole of the

rotor. Thus an observer (at standstill) on the symmetry axis of the reference phase
1U (see (a) in Fig. 5.5) will see the maximum rotor mmf at the instant the rotor

http://dx.doi.org/10.1007/978-3-319-72730-1_3


5.2 Smooth Rotor Synchronous Machines 171

Ep

90°+

Fr

Fa

Fa

Fp

I

1U

1W’ 1V’

1U’

1V 1W

reference phase

x’

x

Fig. 5.5 Armature reaction and phasor diagram

north pole passes along his position. This is also the instant when the rotor emf ep(t)
induced in ‘his’ reference phase 1U goes through zero (i.e. this is the position of
the maximum flux coupled with this reference winding). The rotor emf ep(t) (i.e.
the voltage induced in the reference phase if only this rotor mmf were present) will
attain its maximum value 90◦ later (see Sect. 3.2.1 but now in the GRS), thus 90◦
after the north pole of the rotor is along the axis of the reference phase.

Connecting now a symmetrical load to the stator winding, a symmetrical stator
current will result. Suppose this current lags the (original) emf ep(t) by an angle ψ.
The armature mmf fa(x, t) resulting from this symmetrical current will lie along the
axis of the reference phase 1U at the instant the current in the phase 1U is maximal.
Note also that the maximum of the corresponding rotating armature current layer
lies along the centre of the phase belt of phase 1U where this current at that instant
is positive (indeed, the mmf is the integral of the current layer and will therefore lead
the current layer by 90◦: when the current layer is at the centre of the phase belt the
corresponding mmf will lie along the axis of this phase).

The phasors of the sinusoidal time functions emf ep(t) and current i(t) can be
represented as E p and I illustrated in (b) in Fig. 5.5.

The mmfs, however, are space quantities, i.e. functions of the space co-ordinate
x and time t , and a phasor representation of these does not speak for itself. But for
the analysis we might replace (or represent) these mmfs by the time quantities of the
corresponding fluxes coupled with the reference winding 1U, i.e. Ψp(t) for the mmf
f p(x, t) and Ψa(t) for the mmf fa(x, t). These fluxes are maximal for the reference
phase when the corresponding mmfs lie along the axis of the reference phase, i.e. at
the position of our observer in (a) in Fig. 5.5. When this observer could look at the
mmfs in the air-gap he/she would see that these mmfs have their maximum value
along the axis of phase 1U at the same instant the corresponding fluxes coupled
with the reference winding are maximal. Therefore we may use the notation of mmf
‘phasors’ instead of phasors for the corresponding fluxes,4 see (b) in Fig. 5.5.

4One could also consider the phasors for the time functions f..(0, t) with x = 0 along the axis of
the reference phase.

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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The phasor F̂a is in phase with the current phasor I : when the current is maximal
in the reference phase, the flux coupled with the reference phase due to the armature
currents is also maximal at that instant.

The phasor F̂ p leads the emf E p by 90◦: when the phasor F̂ p lies along the
reference winding axis, the flux coupled with the reference winding due to this mmf
is maximal (and the induced voltage is zero at that instant); the induced voltage due
to this mmf or flux is maximal 90◦ later (GRS) - which this same observer on the
axis of the phase could see on an oscilloscope connected to the phase winding -.

The vectorial sum of the mmfs F̂ p and F̂a is equal to the resulting mmf F̂r . This

resultingmmf determines the resulting air-gap field B̂r and thus the resulting induced
voltage Er which lags it by 90◦.

Dependent on the delay angle ψ (called the internal angle) between the no-load
emf E p and the armature current I a we may discern three cases:

• ψ = π/2 (or, more general, π/2 ≥ ψ > 0): in this case the amplitude of the
resulting mmf fr is lower than that of the mmf f p and thus the resulting emf
Er decreases in comparison with the no-load emf Ep (this is also called field
weakening). As observed from the point of view of the no-load emf, the machine
delivers reactive power to the load.

• ψ = −π/2 (or, more general, −π/2 ≤ ψ < 0): in this case the amplitude of the
resulting mmf fr is higher than that of the mmf f p and thus the resulting emf Er

increases in comparison with the no-load emf Ep. From the point of view of the
no-load emf, the machine uses reactive power from the load.

• ψ = 0: there ismerely an active power exchangewith the load (at least as seen from
the point of view of the no-load emf) while the emf does not change (significantly).

In the general case of ψ 	= ±π/2 the armature current can, if desired, be split up
into two components: one component in the direction of F̂ p and another orthogonal

to it. The component in the direction of F̂ p results in a decrease or an increase of
the resulting mmf and thus of the resulting emf (compared to the no-load case).
This longitudinal effect is called demagnetising and magnetising, respectively. The
orthogonal component gives a slight transverse magnetising effect, but the main
effect is active power conversion (at least with respect to the no-load emf). It should
be stressed however that the active or reactive power exchange with the load or
supply should be regarded from the terminal voltage and not from the emf (see the
next section). In addition, when the machine is loaded, i.e. when there is a non-zero
armature current, the no-load emf does not exist any more and the only physical emf
is the resulting emf.

Space Vector Representation

The mathematical basis of space vectors has already been introduced in Chap.3 (and
for a more elaborated explanation and discussion, see Appendix C):

• phasors (or time vectors) are a complex representation of sinusoidal time functions
like Â·cos(ωt−ϕ); the phasor representation in the complex plane is Â·exp(− jϕ).
To return to the real time representation, multiply by exp( jωt) and take the real

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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part of the product. The delay angle ϕ is recovered in the complex plane as the
phase delay of the phasor with respect to the real axis.5

• space vectors are a complex representation of sinusoidal space functions like Â ·
cos( xπ

τp
− ϕ); the space vector representation in the complex plane is a−→ = Â ·

exp( jϕ). To return to the real space representation, multiply by exp(− j xπ
τp

) and
take the real part of the product. The ‘delay’ angle ϕ is recovered in the complex
plane as the phase advance of the space vector with respect to the real axis. Note
that ϕ may, for example, also be a function of time (not necessarily a sinusoidal
function of time).

The background for the difference as to the handling of the sign of ϕ, is that in real
time a positive ϕ (in the above time example) corresponds to an event that occurs
later in time, thus lagging. To the contrary, in space, a positive ϕ in the above space
function example corresponds to something that occurs farther in space. When we
consider for example a rotating field Â ·cos( xπ

τp
−ωt−ϕ)we see that themaximum in

x = 0 occurs at t = −ϕ/ω whereas the maximum at t = 0 is found in x = ϕ · τp/π.
The field Â · cos( xπ

τp
− ωt − ϕ) is indeed leading6 in time and space a field like

Â · cos( xπ
τp

− ωt). The diagram in Fig. 5.5 is in fact a phasor diagram. The vectors
are time vectors or phasors for the reference phase quantities (voltage, current,...).
These phasors allow to derive theirmutual phase relationships (aswell as the absolute
phase, if the time axis is specified). However, the diagram can also be regarded as
a space vector diagram which, in particular for the mmfs, shows the instantaneous
space position of these mmfs in a two-pole representation of the machine.

The direction of the mmf F̂−→p
is coincident with the (rotating) north pole of the

rotor. For an observer fixed to the rotor, the whole diagram (a) in Fig. 5.6 is at rest.
For an observer fixed to the stator or stator windings (see (b) in Fig. 5.6), this diagram
rotates counter-clockwise7 with the angular frequency of the machine. The flux cou-
pled with a phase winding of the stator is maximal when the north pole axis of the
rotor is coincident with the axis of this stator phase. When the rotor rotates further
over 90◦, the emf induced in the reference winding is maximal, i.e. when the emf
vector E p is along the axis of the reference phase. The rotor north pole axis is usually
called the d-axis (direct axis) while the axis 90◦ in the opposite direction of rotation
(along E p) is called the q-axis (quadrature axis).8

5There also exists a complex time representation, which is nothing else but the phasor multiplied
by exp( jωt).
6Please, compare the phasor and space vector representations of both Â · cos( xπτp − ωt − ϕ) and

Â · cos( xπτp − ωt).
7In the complex space plane, we choose the counter-clockwise direction as the positive rotation
direction, like for the complex time plane.
8Many authors choose the q-axis in the other direction, thus 90◦ leading the d-axis; however in a
1968 IEEE recommendation the 90◦ lagging direction is preferred.
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Fig. 5.6 Space vector representation

For the mmfs F̂ p, F̂a , F̂r , the interpretation as space vectors is in complete
accordance with the mathematical definition of space vectors, as they are of the form
F̂ · cos( xπ

τp
− ϕ). For the emfs or voltages and the current vectors in this diagram

an interpretation as space quantities is somewhat less obvious. For the armature
current, one could consider the corresponding current sheet which is in fact also a
rotating space wave. For the current space vector, one should consider the vector
along the axis of the current layer (and not, as usual for a current layer, a vector along
the maximum of the current layer). For emfs (or voltages), the notion of space vectors
is even less obvious and may look somewhat artificial. One way to interpret emfs as
space quantities is as follows: one considers a uniform distribution of conductors
along the circumference of the machine; a (sinusoidal) rotating mmf will induce emfs
in these conductors and the distribution of these emfs along the circumference will be
sinusoidal in space (and time), i.e. of the form Ê · cos( xπ

τp
−ϕ); as the corresponding

space vector we consider the vector along the axis of this distribution (and not along
the maximum of the emf), just like for the current space vector. See also Appendix C.

5.2.3 Phasor Diagram of Voltages and Currents

For the synchronous machine with smooth rotor, the resulting air-gap mmf follows
from the vectorial addition of the rotor mmf and the armature mmf:

F̂r = F̂ p + F̂a (5.10)
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This resulting mmf determines the resulting air-gap induction B̂r or flux Ψ̂ r and
thus the resulting emf Er . Note that an addition of the fluxes Ψ̂ p and Ψ̂ a - which
would exist if the rotor mmf or the armature mmf existed separately - is not allowed
as saturation of the magnetic circuit precludes an addition of induction or fluxes.
Instead, the mmfs must be added and from the resulting mmf the air-gap induction
or flux can be determined using the no-load characteristic. In order to derive the
amplitude of the resulting flux Ψ̂ ror emf Er from the no-load characteristic, the
armature current must be rescaled to an equivalent excitation current i ′ = α · I ,
where α is determined by the equivalence of the resulting fundamental air-gap mmf.
With w f the number of turns of the excitation winding and w the number of series
connected turns of one phase of the armature, we have

2

π
· w f · ξ f 1

Np
· i ′ = 3

π
· w · ξ1

Np
· Î (5.11)

or, as Î = √
2I ,

α = 3√
2

· w · ξ1

w f · ξ f 1
(5.12)

Using α we may rewrite Eq.5.10 as follows, introducing an equivalent magnetising
current im

im = i f + i ′ (5.13)

From the no-load characteristic the amplitude or effective value of the resulting emf
Er can now be determined as the ordinate corresponding with im , see Fig. 5.7.

If required, the resulting mmf can be derived from im as F̂r = 2
π

· w f ·ξ f 1

Np
· im

The triangle corresponding with the vector addition Eq.5.10 can also be replaced
by a similar triangle for the magnetising currents, according to Eq.5.13, as illustrated
in Fig. 5.8.

The resulting emf vector Er lags (GRS!) the vector im by 90◦, see Fig. 5.8.
To obtain the terminal voltage V we have to subtract from Er the resistive voltage

drop in the armature Rs · I and the reactive voltage drop due to the leakage field of
the armature, j Xsσ · I , see Fig. 5.8.

Er = V + RI + j Xσ I (5.14)

The phasor diagram of the synchronous machine with smooth rotor in Fig. 5.8 is also
called the Potier diagram. It consists of two parts, anmmf or current part and a voltage
part. Using this phasor diagram and the no-load characteristic, the excitation current
required for a given terminal voltage and given load (I , cosϕ) can be determined.
Indeed, from V , I andϕwe derive Er using Eq.5.14. The no-load characteristic then
yields the magnetising current im corresponding with Er . The magnetising current
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phasor im is therefore known in magnitude and phase (as it is leading Er by 90◦).
From im and i ′ = α · I we obtain i f .

Note that the greater the inductive loading of the machine, the larger the required
excitation will be, as already derived before.

For the inverse problem, i.e. determining the terminal voltage corresponding with
a given excitation current and load (I , cosϕ), only a iterative procedure can be
followed.
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5.2.4 Linearised Equivalent Circuit of a Smooth Rotor
Synchronous Machine

Constructing now a triangle OCD similar to the triangle OC’D’ of the mmfs or the
magnetising currents on the side of the emf vector Er wemay write Er = OC as the
sum of vectors E p = OD and Ea = DC . Because of the similarity of the triangles,
the magnitudes OD and OC can be derived from the construction in Fig. 5.7. We also
have

OD

i f
= DC

i ′
= OC

im
= Er

im
(5.15)

In this way we have in fact linearised the synchronous machine around the operating
point defined by Er . Indeed, themagnitude of Er (or im) defines the flux level and thus
the saturation level of the machine. The saturation characteristic is for this operating
point linearised to the line through the origin and the point (im , Er ), Fig. 5.7.

It is important to stress that both E p = OD and Ea = DC are fictitious voltages

which would be induced by the mmfs F̂ p and F̂a respectively if these were to act
separately and at the saturation level defined by Er or im . Remark also that E p is not
at all equal to the no-load emf E po corresponding to the given excitation current i f .

The phasor equations corresponding to Fig. 5.9 can be written as:

V = Er − RI − j Xσ I (5.16)

Er = E p + Ea (5.17)
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where Ea is lagging I by 90◦. Its algebraic value is proportional toi ′, thus with I .
Defining the magnetising reactance Xm = α · tan γ, Ea can thus be written as

Ea = − j Xm I (5.18)

Therefore

V = E p − RI − j Xσ I − j Xm I (5.19)

or

V = E p − RI − j X I (5.20)

The total armature reactance X = Xσ + Xm is called the synchronous reactance and
consists of themagnetising reactance Xm correspondingwith that part of the armature
field linked with the rotor and the leakage reactance Xσ corresponding with that part
of the field linked only with the armature. Z = R + j X is called the synchronous
impedance. The magnetising reactance is sometimes called the armature reaction
component of the synchronous reactance.

The equivalent circuit corresponding with these equations is shown in Fig. 5.10.
The left part of the equivalent circuit (including Er ) is always valid while the right
part (dashed lines) is the linearised approximation valid only for the saturation level
defined by Er .

The phasor diagram in Fig. 5.9 indicates also the three important angles for a
synchronousmachine: the internal angleψ = arg(E p, I ), the load angle (also called
torque angle or power angle) β = arg(E p, V ) and the phase angle ϕ = arg(V , I ).
The above definition of the load angle is valid in the GRS; in contrast, in the URS
the definition of the load angle is: β = arg(V, E p).

Remarks:

1. In general, the stator leakage field of synchronousmachines is not very saturation-
dependent. To the contrary the main or magnetising field normally is rather
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saturation-dependent, and therefore the linearised equations and the correspond-
ing part of the equivalent circuit are only valid in the operating point defined by
Er . However, as large synchronous generators are usually connected to the grid
with a nearly constant voltage, the resulting emf Er will not vary that much in
normal operation conditions (the voltage drop over stator resistance is negligible
for large machines and that over the leakage reactance is relatively small).

2. The linearised equivalent circuit in Fig. 5.10 can also be transformed into an
equivalent circuit that is more similar to that of induction machines, see Fig. 5.11.
In this equivalent circuit the fictitious rotor emf E p is now replaced by a current
source I p, representing the excitation current as seen from the stator.
The excitation current referred to the stator, I p, is proportional to the real DC
excitation current i f , Ip = i f /α. However it has, as it is referred to the stator, the
same phase angle as the rotor mmf F̂ p (one could also interpret I p as the rotating
rotor excitation current sheet as seen from the stator).

I p = i f /α (5.21)

The voltage over j Xm , with as current the total magnetising current I p + I , is
equal to the resulting emf Er . Indeed

− j Xm Im = − j Xm(I + I p) = − j Xm I − j Xmi f /α = Ea + E p ≡ Er (5.22)

or also
− j Xm Im = − j Xmim/α ≡ Er (5.23)

One could argue that this equivalent circuit is more correct as mmfs or currents
are added instead of emfs or fluxes. However, the magnetising reactance is still
dependent on the magnetising level or total magnetising current and for a non-
linear magnetic circuit (as is generally the case) the outcome is the same.

3. If we record the armature current as a function of a variable terminal voltage,9 at
rated speed but with zero excitation current, we obtain the no-load characteris-
tic with poly-phase AC excitation. This saturation characteristic is similar to the
usual no-load characteristic with DC excitation.
Indeed, let’s indicate the no-load (saturation) characteristic at rated speed with
DC excitation by Ep = f (i f ).
In the general case, where there is an armature current in addition toDC excitation
current, we have

V = Er − RI − j Xσ I (5.24)

with
Er = f (im) = f (|i f + i ′|) = f (|i f + αI |) (5.25)

9Using a variable auto-transformer between the grid and the synchronous machine.
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with f (·) the no-load characteristic. If now the DC excitation is zero, then
Er = f (αI ) and thus V = f (αI ) − RI − j Xσ I . The recorded characteristic
of the terminal voltage as a function of the armature current for zero DC exci-
tation therefore also represents the usual no-load characteristic, yet with a slight
vertical shift due to the resistive and leakage voltage drops and a rescaling of the
abscissa (α). However, for not too small power ratings, the resistive voltage drop
can be neglected. As Er = − j Xm Im , we may also write V = − j (Xm + Xσ)I
and thus we may also derive the synchronous reactance as a function of I (recall
that Xm is not a constant but saturation-dependent!).

4. The short-circuit characteristic shows the short-circuit current as a function of
the excitation current. It is measured at rated speed with the armature shorted
(and reduced excitation current so as to limit the armature current). As illustrated
in Fig. 5.12 the short-circuit characteristic is almost linear, except for very large
armature currents.10

10The leakage reactance in per unit is about 0.2; limiting the armature current to 1 or 2 p.u. results in
a resulting emf which remains on the linear part of the no-load characteristic, well below saturation.
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5.2.5 Torque - Power - Energy Flow

The torque expression for the synchronous machine can be derived from the general
equations for rotating field power in Sect. 3.4. From Eq.3.87 follows:

T = 3

Ω
· Re(Er · I ∗) (5.26)

Substituting Er = E p + Ea = E p − j Xm I this yields

T = 3

Ω
· Re(E p · I ∗) = 3

Ω
· Ep · I · cosψ (5.27)

Usually, the torque is expressed as a function of the terminal voltage and the rotor
emf. Using (see Fig. 5.10)

I = E p − V

R + j X
(5.28)

and neglecting the stator resistance we get

T = 3

Ω
· Ep · V · sin β

X
(5.29)

If the real axis is chosen along the terminal voltage, i.e. V = V , then E p =
Ep · exp( jβ), Fig. 5.9.

For a constant voltage and constant11 rotor emf, the torque varies sinusoidally
with the load angle. The strong link between torque (or power) and the load angle is
obvious: when β = 0 voltage and emf are in phase and the active current is zero; a
non-zero active current component requires β 	= 0.

We recall that with the GRS chosen for the electrical side (and thus the URS for
the mechanical side, i.e. the G-convention) the load angle β is positive when the
rotor voltage is leading the terminal voltage,12 see Fig. 5.9. In the G-convention a
positive load angle implies generator operation (P = 3 · Re(V · I ∗) > 0) while the
mechanical power and the torque are positive as well (i.e. the torque of the machine
constitutes a mechanical load for the driving engine, e.g. a turbine).

Figure5.13 illustrates the torque as a function of the load angle for constant V
and Ep. In both the generating and motoring region there is a maximum torque

Tpo = ± 3

Ω
· Ep · V

X
(5.30)

11I.e. constant excitation current for a constant saturation level.
12With the URS at the electrical side, the load angle is positive when the terminal voltage is leading
the rotor voltage.

http://dx.doi.org/10.1007/978-3-319-72730-1_3
http://dx.doi.org/10.1007/978-3-319-72730-1_3
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Fig. 5.13 Torque versus load angle characteristic of a smooth rotor synchronous machine

for β = ±π/2. For a constant driving torque (or load torque in the motoring region),
only the rangeof load angles between0 and±π/2 corresponds to a stable behaviour.13

Themechanical power delivered to themachine ismainly converted into electrical
power via the rotating field (electromagnetic power, see Sect. 3.4). Some additional
shaft power is also required for the friction and ventilation losses (and also for a
portion of the iron losses). If we neglect these friction and ventilation losses we may
write

Psha f t ≈ Pem = T · Ω = 3 · Re(E p · I ∗) = 3 · Ep · I · cosψ (5.31)

The power delivered to the grid (or more general, the supply) is given by

P1 = 3 · Re(V · I ∗) = 3 · V · I · cosϕ = 3 · V · Iw = 3 · Ep · I · cosψ − 3 · RI 2
(5.32)

If we can neglect the stator joule losses, we may write

P1 ≈ Pem = T · Ω = 3 · V · Iw = 3 · V · Ep sin β/X (5.33)

If the friction and ventilation losses are taken into account, we must write

Psha f t = Pem + Pf v (5.34)

13Prove this by considering the equation of motion; you will also have to relate a change of the load
angle with an increasing or decreasing speed, e.g. for a constant supply frequency.

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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Fig. 5.14 Sankey diagram for generating

The power that can be converted into electrical power is the difference of the shaft
power and themechanical loss. This electromagnetic power Pem = T ·Ω is converted
into electrical form and is supplied to the grid, after some reduction for the stator
joule losses and (a portion of) the iron losses:

P1 = Pem − Pj1 − Pir = Pem − 3RI 2 − 3E2
r /Rm (5.35)

Figure5.14 shows the corresponding Sankey diagram. If required, the excitation DC
power can be accounted for as well.

Formotoring, the grid or electrical power supplymust compensate all these losses.
Then only the difference P1−Pj1−Pir −Pf v = Pem−Pf v is available asmechanical
shaft power.

Remark:
If the stator resistance is taken into account,we obtain the following torque expression

T = 3

Ω
·
{

E2
p R

R2 + X2 + V EpX sin β − V EpR cosβ

R2 + X2

}
= 3

Ω
·
{

E2
p R

R2 + X2 + V EpX sin(β − ρ)
√
R2 + X2

}

(5.36)
where � = arctan R/X .
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The pull-out torque occurs now at β = � ± π/2 and is somewhat smaller for
motoring and larger for generating, see Fig. 5.15.

5.2.6 Per-Unit Values

The per-unit values for a synchronous generator are based upon the reference values
for the rated voltage Vn , the rated armature current In and the rated speed Ωn =
ωn/Np. From these basic reference values, the reference values for power Pref =
3Vn In , for torque Tre f = 3Vn In/Ωn and for the armature impedances Zre f = Vn/In
are derived. Note that the reference value for the power is not the rated value for the
active power Pn = 3Vn In cosϕn , neither is the reference value for the torque equal
to the rated torque Tn ≈ Pn/Ωn .

With these reference values, the p.u values for voltages and emfs (e.g. v, ep),
current (i), impedances (z, r , x), active, reactive and apparent power (p, q, s) and
torque (t) can be derived.

The speed of a synchronous machine has a one-to-one relation with the frequency.
A speed different from the rated speed thus implies also a frequency different from the
rated frequency. When variable speed (and thus frequency) operation is considered
it is good practice to write reactances as ωL instead of X . For per-unit, the reference
value for the frequency should correspond with the reference value for the speed
(Ωn = ωn/Np). Per unit values for reactances are then of the form νl with ν = ω/ωn

the p.u frequency (equal to the p.u synchronous speed). Note however that also
the magnitude of the emf of motion is proportional to the speed or frequency, i.e.
Ep(i f ,ω) = ν · Ep(i f ,ωn).
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5.2.7 The Current Locus for Constant Excitation

From the equivalent circuit in Fig. 5.10 and choosing the real axis along the terminal
voltage (V = V ) it follows that

I = E p − V

R + j X
= Ep exp( jβ) − V

R + j X
(5.37)

For constant rotor emf (or constant excitation if the saturation condition is constant),
constant voltage and variable load angle, the locus of the current vector is a circle
with radius Ep/Z = Ep/

√
R2 + X2. The centre of the circle is at −V/(R + j X).

In per-unit we obtain

i = ep − v

r + j x
= ep exp( jβ) − v

r + j x
(5.38)

This locus is drawn in Fig. 5.16. The dashed line marks the boundary of stable
operation for a constant driving or load torque.

If the stator resistance can be neglected then

i = ep − v

j x
= ep exp( jβ) − v

j x
(5.39)

Figure5.17 illustrates the current loci (supposing r = 0) for three values of the ratio
ep/v. For under-excitation ep/v < 1 the synchronous machine will always absorb
reactive power from the grid or supply. In order to deliver reactive power to the grid,
the machine must be over-excited, i.e. ep/v > 1. Reactive power delivery (both for
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motoring or generating) is, however, only possible for sufficiently small load angles,
see (c) in Fig. 5.17. This clearly illustrates the compromise that the operation of
a synchronous machine presents. For an appreciable active power delivery (either
generating or motoring) the load angle should be sufficiently large, but as in most
cases also reactive power delivery is required, the load angle should be limited as
well.

For an idea about the numerical values for the load angle and rotor emf, suppose
x = 1.25, r ≈ 0 and rated values for voltage v = 1, for apparent power s = 1,
reactive power q = s · sinϕn = −0.6 and active power p = s · cosϕn = ±0.8. A
straightforward calculation leads to epn ≈ 2 and β ≈ ±π/6. This (rated) operating
point lies then below the real axis (meaning that reactive power is delivered to the
supply, q = −0.6) while the active power is 0.8 (or −0.8 for motoring). It should
be stressed again that this epn ≈ 2 is the value according to the linearised model and
not the no-load emf epo for the same excitation current.
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For very large power ratings (e.g. turbo-generators in nuclear power stations), the
load angle can be increased to e.g. π/4 so as to increase the active power. However,
when large variations in reactive power of the grid can be expected, a load angle
smaller than π/6 might be chosen.

5.2.8 Characteristics of Synchronous Machines

Characteristics of synchronous generators are quite similar to those ofDCgenerators.
Important characteristics are the load characteristics, the control characteristics and
the external characteristics. These characteristics are typically non-linear and can be
derived from the no-load characteristic as shown below.

5.2.8.1 Load Characteristics

The load characteristics are similar to the no-load characteristic, but instead of the
no-load voltage as a function of the excitation current, the load characteristics show
the evolution of the terminal voltage as a function of the excitation current for a given
load (I , cosϕ). For pure inductive or capacitive loads, the load characteristics can
be derived graphically from the no-load characteristic.

Load Characteristic for Pure Inductive Load

Disregarding the armature resistance, the equivalent circuit of the synchronous
machine with its inductive load is shown in Fig. 5.18 (only the left part will be
used here, as the right part in dashed line depends on the saturation level, which is
inherently variable). For a purely inductive load the phasor relations Er = V + j Xσ I
and im = i f + i ′ can be written as scalar equations Er = V + Xσ I and
im = i f − i ′ = i f − αI , see the phasor diagram in Fig. 5.18.

Suppose M(V, i f ) is a point on this load characteristic for an inductive current I
(Fig. 5.19). Then the corresponding point P(Er , im) will be on the no-load charac-
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Fig. 5.18 Equivalent circuit and phasors for inductive load
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teristic. The vertical distance between N and M is equal to Xσ I , while the horizontal
distance between these two points is equal toαI . Both points are therefore connected
by a rectangular triangle14 with all sides proportional to I . For a constant I , this tri-
angle remains congruent while point P stays on the no-load characteristic. Thus the
load characteristic for this constant I is found by shifting the no-load characteristic
in the direction of the vector NM−−→.

From Fig. 5.19 it is clear therefore that an inductive load will reduce the terminal
voltage. This is due to two causes: the armature reaction on the one hand (without
armature reaction the emf would be given by the ordinate of point R) and the leakage
voltage drop N P on the other hand.

From an experimentally recorded load characteristic and the no-load character-
istic, the vector NM can be reconstructed and therefore also the triangle MNP for
a given armature current. Thus α and Xσ can be determined as well. Moreover, if
also the short-circuit characteristic is known, one single measured point M on the
load characteristic suffices to reconstruct the triangle and thus the complete load
characteristic.15

14This triangle is called the Potier triangle; for a given machine (Xσ and α) these triangles are
always similar; the triangle is also called the short-circuit triangle, see the triangle ABC .
15From the short-circuit characteristic the excitation current corresponding with a short-circuit
current I can be derived and thus the point A on the short-circuit triangle can be found. From the
point Q on the horizontal through M with QM = OA a line parallel with the linear initial part of the
no-load characteristic the point N is found. This is known as the method of Fisher-Hinnen.
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Fig. 5.21 Equivalent circuit and phasors for capacitive load

However, it should be noted that the real measured load characteristics may differ
somewhat from the shifted no-load curves, especially for high saturation levels, see
Fig. 5.20. The cause is the not always uniform saturation of the core.

Load Characteristic for a Pure Capacitive Load

For a purely capacitive load, the phasor relations Er = V + j Xσ I and im = i f + i ′
can be written as scalar equations Er = V − Xσ I and im = i f + i ′ = i f + αI , see
the phasor diagram in Fig. 5.21.

The load characteristic for a pure capacitive load is therefore found by shifting the
no-load characteristic upwards in the direction of the vector NM−−→∗ (see Fig. 5.22).

For a capacitive load, the armature reaction ismagnetising, i.e. the terminal voltage
increases compared to the no-load case. For a given maximum terminal voltage there
is a maximum capacitive load as the excitation current may not be made negative.16

16For a smooth rotor synchronousmachine this would result in a reversal of the torque as the polarity
of the rotor poles switches.
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This is illustrated in Fig. 5.23, where the length of the vector BC−→ represents the
maximal capacitive armature current for the given voltage Vn . In B in Fig. 5.23 (or
F in Fig. 5.22) all magnetising current is drawn from the supply (grid), just like for
an induction machine.

Load Characteristics for a General Load

For a general load the load characteristics cannot easily be derived graphically. For a
given armature current amplitude, the corresponding load characteristics for different
cosϕ lie between the pure capacitive and pure inductive load characteristics for the
same current amplitude, see Fig. 5.24. However, all these load characteristics pass
through the same short-circuit point for this same current, whatever the cosϕ.17

5.2.8.2 Control Characteristics

The control characteristics show the evolution of the required excitation current as a
function of the armature current for a given terminal voltage and a given cosϕ, see
Fig. 5.25.

17Please, try to explain! Hint: when a complex impedance Z tends to zero, it doesn’t matter what
the phase angle is.
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Figure5.25 illustrates again that an inductive load requires a larger excitation
current in order to maintain the same terminal voltage. With a capacitive load, the
excitation current must be reduced. The characteristics also show the maximum
capacitive current for a given terminal voltage (point B).

These control characteristics can be derived graphically18 starting from the load
characteristics.

5.2.8.3 External Characteristics

The external characteristics show the relation between voltage and armature current
for a given excitation current and a given cosϕ. These characteristics also illustrate
themagnetising effect of capacitive loads versus the demagnetising effect of inductive
loads.
These external characteristics can also be derived graphically19 starting from the load
characteristics (Fig. 5.26).

18In the load characteristics, draw a horizontal line corresponding to the given terminal voltage.
Consider then the Potier triangles with point P on the no-load characteristic and the sides QM on
this horizontal line.
19In the load characteristics, draw a vertical line corresponding to the given excitation current.
Consider then the Potier triangles with point P on the no-load characteristic and the sides QP on
this vertical line.
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5.3 Salient-Pole Synchronous Machines

5.3.1 Emf Induced by a Salient-Pole Rotor with Concentrated
DC Winding

As mentioned before, the field curve of a salient-pole rotor with concentrated field
winding is not at all a pure sine. By shaping the pole shoes the field curve can bemade
somewhat more like a sine (instead of rectangular) but important space harmonics
remain present.

Rotation of the rotor will induce emfs or fluxes in the stator conductors with the
same non-sinusoidal shape in time. However, as discussed in Chap. 3, the distributed
armature winding will filter20 out the harmonics, and the winding voltage will be
fairly sinusoidal. Therefore,wewill concentrate on the fundamentals of the rotormmf
f p(t) and emf ep(t). As we have done for the smooth rotor synchronous machine,
we will represent these fundamentals by the (time) phasors F̂ p1 and E p. To recall,
these phasors stand for the rotor flux (or rotor mmf) measured along the axis of the

20Because of the lower winding factors for higher harmonics.

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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Fig. 5.27 Mmf and emf phasor diagram for salient pole synchronous machines

reference phase and the emf induced by the rotor mmf or flux in this same reference
phase. In the chosen G-convention (GRS at the electrical side), the mmf phasor F̂ p1
leads the emf phasor E p, see (b) in Fig. 5.27.

In space, see (a) in Fig. 5.27, the maximum of the rotor mmf is always along the
north-south axis of the rotor. This axis, usually the axis with the smallest reluctance,
is called the d-axis (direct axis or longitudinal axis). The axis which is lagging π/2
electrical radians (lagging is referred to as laggingwith respect to the positive rotation
direction), is called the q-axis (quadrature axis or transverse axis).

Just like for the smooth rotor synchronous machine, we may also interpret the
(time) phasors F̂ p1 and E p as (rotating) space vectors. Indeed, the flux (time function)
coupled with a winding is maximal when the maximum of the mmf (space quantity)
lies along the axis of this phase, i.e. when the d-axis is along the reference phase axis.
The maximal voltage induced in this reference winding occurs π/2 radians later (in
time), i.e. when the q-axis of the rotor is along the reference phase axis (the reference
winding in the figure is the one with the conductors shown; its axis is horizontal and
the positive direction is to the right). Imagine the vector diagram on the right rotating
counter-clockwise (synchronously with the rotor in the left figure). In the position
shown, the flux coupled with the reference winding is zero and the induced emf is
maximal. When the north pole or d-axis is rotated π/2 (electrical) radians to the left,
the flux coupled with the reference winding becomes maximal and then the induced
emf is zero (cf. e(t) ∼ dΨ

dt ).
The time values of mmf or emf therefore correspond with the projection at that

instant of these vectors on the axis of the reference phase. Here as well the no-load
characteristic gives the relation between the emf amplitude values and the excitation
current (or mmf).



5.3 Salient-Pole Synchronous Machines 195

5.3.2 Armature Reaction

In the previous section we analysed the no-load condition. When the armature wind-
ing is connected to a symmetrical electrical load (e.g. the grid), generally an armature
current will flow. This poly-phase armature current results in an armature mmfwhich
rotates synchronously with the rotor mmf. In the air gap there are thus two rotating
mmfs which are synchronous, but in general not in phase. The resulting mmf, which
determines the resulting rotating magnetic field and the resulting emf, is the vectorial
sum of both.

In contrast with the smooth rotor synchronous machine, one cannot derive the
resulting field directly from the resulting mmf. Indeed, as the air-gap is not uniform
- for a salient pole machine the reluctance in the d-axis is smaller than in the q-axis -
an mmf (or mmf component) acting in the d-axis (i.e. with the symmetry axis of the
mmf in the d-axis) will result in a larger magnetic field than a similar mmf (or mmf
component) acting in the q-axis.21

Therefore an approximate method is used, as explained below.
In principle, the vectorial addition of the rotor mmf and the armature mmf phasors

yields the resulting mmf phasor F̂r = F̂ p1 + F̂a . This resulting mmf determines the

resulting air-gap induction B̂r or flux Ψ̂ r and thus the resulting emf Er . However, to
obtain B̂r we must now use the permeances (or saturation characteristics) along the
d- and q-axes for the corresponding components of the resulting mmf.

The resultingmmf component along the d-axis is the sumof the rotormmf F̂ p1and

the d-axis component of the armature mmf F̂ad with F̂ad = −F̂a sinψ. The mmf
component along the q-axis stems from the armature mmf only: F̂aq with F̂aq =
F̂a cosψ. Instead of the armature mmf components one may also consider the d- and
q-axis components I d and I q of the armature current I for which Id = −I sinψ and
Iq = I cosψ (and calculate then the corresponding mmf components from these).
To calculate the emfs corresponding with these mmf components along the d- and
q-axes, we must use the corresponding permeances (or saturation characteristics).

For the mmf along the d-axis - resulting in an emf along the q-axis - we can use the
no-load characteristic. However this no-load characteristic has beenmeasured for the
quasi-rectangular mmf shape of a salient pole (with DC excitation in a concentrated
winding), see Fig. 5.28. The (no-load) emf considered in the no-load characteristic is
the fundamentalwhich is in fact the emf induced by the fundamental of the rotormmf.
So wemust compare the amplitude of the (nearly) sinusoidal armature mmf with that
of the fundamental of the quasi-rectangular rotor mmf (and not with the maximum
value of this mmf). When using the no-load characteristic to calculate the q-axis emf
resulting from the resulting d-axis mmf F̂d , we should correct for this difference by
reducing the d-axis armature mmf with a factor kd (≈ π/4 if the rotor mmf was a
pure rectangle). Thus, we should use F̂d = F̂p1 + kd · F̂ad = F̂p1 − kd · F̂a sinψ

(with as fundamental F̂d1 = 4
π
F̂d ). As the no-load characteristic is measured with the

21An additional problem is that, in general, the saturation characteristic in the q-axis is not known
and cannot easily be measured.
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Fig. 5.28 Mmf d-axis waveshapes for salient pole machines

DC current as abscissa, these mmfs can preferably be transformed into equivalent
excitation currents: imd = i f + i

′
d = i f − kd · α · I sinψ. For a salient pole rotor we

haveα = 6
√
2

π
· wξ1

w f
, as the rotor winding is a concentrated winding (see also Chap. 3).

These equations may also be written in phasor form as follows:

F̂d = F̂ p1 + kd · F̂ad (5.40)

and
imd = i f + i

′
d (5.41)

Corresponding with imd , we then find on the no-load characteristic the q-axis com-
ponent of the resulting emf, Eq , see Fig. 5.29.

Similar to the smooth rotor synchronous machine, we may linearise this q-axis
emf as

Eq = E p + Eaq = E p − j Xad I d (5.42)

where the d-axis armature (or magnetising) reactance Xad = kd · α · tan γ depends
on the saturation level determined by F̂d or imd . Remark again that E p is not the no-
load emf E po corresponding with i f , but a fictitious linearised value. To determine

the d-axis emf Ed corresponding to the q-axis mmf F̂aq , with F̂aq = F̂a cosψ,
ideally we should use a q-axis saturation characteristic. Unfortunately, such a q-axis
saturation characteristic is seldom available.22 As an approximation one will use
the d-axis saturation characteristic, with the q-axis mmf corrected for the (much)

22Normally, a q-axis excitation winding is not present; the only way to record a q-axis saturation
characteristic is to use AC excitation with all AC mmf in the q-axis. However, this is problematic
as well because of stability issues (please explain).

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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lower fundamental23 in the q-axis compared to the rectangular rotor mmf in the
d-axis, see Fig. 5.30: F̂q = kq · F̂aq = kq · F̂a cosψ. Instead, one may also use
the corresponding armature current component imq = kq · α · I cosψ. Whereas in
the d-axis kd ≈ 0.7. . . . 0.8, the reduction in the q-axis is much more important,
kq ≈ 0.5 · kd .

Often, these equations are written in phasor form as:

F̂q = kq · F̂aq (5.43)

imq = i
′
q = kq · α · I cosψ (5.44)

The emf induced in the d-axis by the q-axis mmf can also be written in linearised
(phasor) form as

Ed = Ead = − j Xaq I q (5.45)

with Xaq ∼ 0.5 · Xad .

23Which is caused by the large air-gap in the inter-polar space of the q-axis.
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Like Xad , the reactance Xaq as well is saturation dependent. In fact, the flux
lines of d- and q-axis follow many common saturated parts of the magnetic circuit,
like the armature teeth and the pole tips. For that reason Xaq (or Ead), is often
determined on the line set by the saturation level of the d-axis mmf, see Fig. 5.31.
Then Xaq = kq ·α·tan γ, where tan γ is determined by the d-axismmf ormagnetising
current imd or thus by Eq . Some authors argue that the q-axis is much less saturated
(because of the large reluctance of the inter-polar space), and that rather the tangent
line in the origin of the saturation characteristic should be used, thus leading to E∗

ad
(with Xaq = kq · α · tan γo) instead of Ead .

5.3.3 Equations and Phasor Diagram of the Salient Pole
Synchronous Machine

The total induced voltage24 can be obtained as the vectorial sum of the emfs induced
in d-axis and q-axis:

Er = Eq + Ed = E p + Eaq + Ead = E p − j Xad I d − j Xaq I q (5.46)

24This is in fact also an approximation or linearisation as adding these emfs is equivalent to adding
induction values which is strictly not allowed in case of saturation.
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If the real axis is chosen along the q-axis, we may write25 I d = j Id = − j I sinψ;
I q = Iq = I cosψ; Eaq = Eaq = −Xad I sinψ; Ead = j Ead = − j Xaq I cosψ.

The terminal voltage of the machine differs from the emf by the resistive voltage
drop and the leakage voltage drop:

V = Er − RI − j Xσ I = E p − j Xad I d − j Xaq I q − j Xσ I − RI (5.47)

Defining the total or ‘synchronous’ d- and q-axis reactances Xd = Xad + Xσ and
Xq = Xaq + Xσ , this can be simplified to

V = E p − j Xd I d − j Xq I q − RI (5.48)

The phasor diagram corresponding with Eq.5.46 is shown in Fig. 5.32. To draw this
diagram starting from (for example) the terminal voltage and armature current, the
armature mmf F̂a or the armature current I must first be split up into its d- and q-axis
components. However, this requires that the position of the d- and q-axes is known.
Note that only he portion of the diagram with the terminal voltage V = OA and the
resulting emf Er = OG (which differ by the resistive and leakage voltage drops)

25Alternatively, one may use the scalar form of these equations for d- and q-axes but then the risk
for errors is greater.
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represent the real physical quantities. The remaining voltage vectors OH = Eq ,
OD = E p, GH = j Xaq I q and HD = j Xad I d represent imaginary vectors from
the linearised model.

By introducing the synchronous reactances Xd and Xq , the diagram can be simpli-
fied, see Fig. 5.33. Starting from the knowledge of the terminal voltage as well as the
current and its phase angle, the d- and q-axes can be reconstructed if the synchronous
reactances are known, see the construction26 in Fig. 5.33.

For the inverse problem, i.e. calculating the terminal voltage for a given excitation
current and load, only an iterative solution method exists.

5.3.4 Equivalent Circuits for a Salient Pole Synchronous
Machine

From Eq.5.47 or 5.48, it is clear that a single equivalent circuit for the phasors V
and I does not exist27 if Xd 	= Xq .

26In B, draw the vector BF = j Xd I ; the endpoint E of the vector BE = j Xq I is on the q-axis
and the projection D of F on the line OE yields the emf OD = Ep .
27Indeed, verify that I d and I q cannot be replaced by I when Xd 	= Xq .
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If, however, the stator resistance can be neglected, then a system of two ‘scalar’
equivalent circuits can be devised, one for the q-axis current and one for the d-axis
current. Indeed, projecting Eq.5.48 on the d- and q-axes (for R = 0) yields the
following set of two equations:

V q = V · exp jβ · cosβ = E p − j Xd I d (5.49)

V d = V · exp( jβ − π/2) · sin β = − j Xq I q (5.50)

(these equations may also be written in real form). Figure5.34 shows the two corre-
sponding equivalent circuits.

When choosing the real axis along V we get

V q = (V · cosβ) · exp jβ = E p · exp jβ − j Xd I d (5.51)

V d = (− jV · sin β) · exp jβ = − j Xq I q (5.52)
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with I q = (I cosψ) exp jβ and I d = (− j I sinψ) exp jβ, see also the phasor dia-
gram in Fig. 5.33.

5.3.5 Torque, Power and Energy

The torque of a salient pole synchronous machine can be derived from the basic
power Eq.3.87 for rotating field machines:

T = 3

Ω
· Re(Er · I ∗) (5.53)

withΩ = ω/Np. Using Eq.5.47 or 5.48, the torque can then be written as a function
of E p and the current. To eliminate the current, Eqs. 5.49 and 5.50 can be used.

An alternative approach is to start from

T = 3

Ω
· [
Re(V · I ∗) + RI 2

]
(5.54)

When the stator resistance is not negligible, the resultant torque equation is rather
complicated. Here, we will study only the case of a negligible stator resistance. From
Eqs. 5.50 and 5.49, or the corresponding equivalent circuits, we find (with the real
axis along V )

I d = (E p − V cosβ) exp jβ/j Xd (5.55)

I q = (V sin β) exp jβ/Xq (5.56)

Projection of these current components on the real and imaginary axes then yields
the real (or active) and imaginary (or reactive) current components

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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Ire = I cosϕ = Ep sin β

Xd
+ 1

2
V

(
1

Xd
− 1

Xq

)
sin 2β (5.57)

Iim = −I sinϕ =
[
− Ep cosβ

Xd
+ V

(
sin2 β

Xq
+ cos2 β

Xd

)]
(5.58)

The expressions for torque, active and reactive power are therefore

T = 3

Ω

(
Ep sin β

Xd
+ 1

2
V

(
1

Xd
− 1

Xq

)
sin 2β

)
(5.59)

P = 3

(
V Ep sin β

Xd
+ 1

2
V 2

(
1

Xd
− 1

Xq

)
sin 2β

)
(5.60)

Q = 3

([
V Ep cosβ

Xd
− V 2

(
sin2 β

Xq
+ cos2 β

Xd

)])
(5.61)

Torque and active power consist of two parts. The first term stems from the DC
excitation in the rotor (and is similar to the one for the smooth rotor synchronous
machine). The second term, the reluctance torque or power, is due to the difference
in saliency in d- and q-axes.

Observe that the torque component due to saliency is proportional to the square
of the voltage, whereas the torque component due to excitation is proportional to the
product of voltage and emf. A supply voltage reduction (e.g. a grid voltage drop) will
therefore severely affect this reluctance torque (comparewith the inductionmachine).
The reluctance torque also varies with 2β, whereas the excitation component varies
with β.
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Figure5.35 illustrates the evolution of the torque as a function of the load angle.
When Xq < Xd the reluctance torque is in the same sense as the excitation torque
for load angles −π/2 ≤ β ≤ π/2 and thus reinforces the torque in this range. The
maximum (or pull-out) torque is somewhat larger than that of only the excitation
torque, and occurs for smaller values of |β|, i.e. for values |β| < π/2, which might
be advantageous as in most cases reactive power delivery is required whilst at the
same time sufficient active power should be converted. For per-unit values xd = 1.25,
xq = 0.75, v = 1, ep = 2 the maximum torque occurs for β = 80.8◦. The value
ep = 2 corresponds to the rated operating condition v = 1, i = 1 and cosϕn = 0.8
which occurs here at βn = 22.5◦.

5.3.6 Current Diagram

For the salient pole synchronous machine the current diagram for constant voltage
and excitation is not a circle as for the smooth rotor synchronous machine, see
Fig. 5.36. This is a so-called snail’s line of Pascal.

For a pure reluctance machine (i.e. Ep = 0 in the equations above), the current
locus is again a circle which lies, however, completely above the real axis (in the G-
convention), see Fig. 5.37 (for R = 0). A reluctancemotor or generator will therefore
always absorb reactive power from the supply.
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5.4 Synchronous Machines Connected to a Power Grid

In this section we study the behaviour of a synchronous machine connected to an
infinitely strong grid.

To start with, we suppose the synchronous machine driven at rated speed (Ω =
ω/Np), and synchronised with an infinitely strong grid with angular frequency ω
and voltage V (using an excitation current so that the no-load voltage Epo = V ). To
simplify matter, we consider a smooth rotor synchronous machine with negligible
stator resistance.

For such an ideal synchronisation we have V = E p and thus I = 0.
First, we increase the excitation current, keeping the phase angles of V and E p

equal to each other. With now Ep > V we get the phasor diagram (a) in Fig. 5.38.
The synchronous machine is now delivering pure reactive current to the grid, i.e. it
acts as a capacitor.

If we decrease the excitation current so that Ep < V , then the SM starts drawing
pure reactive current from the grid, i.e. it acts as a inductance (see (b) in Fig. 5.38).

Next, (starting again from the no-load condition) we increase the torque of the
engine driving the synchronous machine. As a result, the rotor speed momentarily
starts to increase and E p starts leading V , see (c) in Fig. 5.38. However, (with β
positive) the SM will now develop a braking torque to make equilibrium with the
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Fig. 5.38 Grid operation of a synchronous machine

increased driving torque. Thus synchronism will be retained. But at the same time
an active current starts to flow and active power will be delivered to the grid.

If we decrease the torque of the driving engine (below the ventilation and friction
torque), the speed of the SM would like to decrease below the (constant) rotational
speed of the voltage V . The load angle β becomes negative (G-convention) and the
synchronous machine starts developing a driving torque until equilibrium with the
engine and mechanical losses is obtained, see (d) in Fig. 5.38. The resulting negative
active current represents the power delivered by the grid to the synchronous “motor”.

In most cases, a synchronous machine will at the same time convert mechanical
power into electrical power (or vice versa) and take care of reactive power exchange
with the supply (see (e) in Fig. 5.38). In the case of a synchronous generator connected
to the grid, automatic speed control will take care of the driving torque of the engine
(by monitoring the frequency of the grid, in collaboration with other generators on
the grid). The reactive power exchange with the grid on the other hand is controlled
based on the voltage level at the point of connection with the grid.28

28Indeed, in reality the grid is not ‘infinitely’ strong and the generator active and reactive power
exchange will affect frequency and voltage level of the grid.
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5.5 Synchronous Motors

In the analysis above, we concentrated on the operation of the synchronous machine
as generator. Of course, as the greater part of electrical power in the grid is delivered
by (large) synchronous generators (e.g. 1 GWgenerators of nuclear or thermal power
stations), this is a most important application of synchronousmachines (as to power).

But synchronous machines are also frequently used as a motor and, although
in terms of total energy converted this might seem less important, in terms of the
number of applications (and machines) this may far outreach by far the number of
synchronous generators.

Some of the oldest applications of synchronous motors are those where very
large power output is required (for induction machines the power rating is limited
to 20 . . . 40kW, e.g. because of limitations regarding magnetising current). Another
important consideration for the use of synchronous motors is that the efficiency
of synchronous motors is much better than that of induction machines. Also, syn-
chronous motors are more compact than induction motors for the same power rating.

With the high degree of development of power electronics, making variable fre-
quency supply very common, and the advent of powerful permanent magnets instead
of theDCexcitation in smaller synchronousmotors, synchronousmotors have almost
entirely replaced DC drives. In particular for servo drives or controlled drives (e.g.
in robotics), the synchronous motor offers the same possibilities as to controllability
and dynamics (without issues regarding maintenance or cost).

In Part 3, the permanent-magnet synchronous motor will be studied in depth, after
a thorough study of power electronics in Part 2.

The basic equations for the study ofmotoring of synchronousmachines are exactly
the same as for generating, although one will in general opt for the M-convention
insteadof theG-convention.Moreover, permanentmagnet excitation canbemodelled
like DC excitation as will be discussed in Part 3.
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Chapter 6
Power Electronic Components

Abstract This chapter aims to give an overview of the main power electronic com-
ponents for application in electrical drives and electrical grids. It is not at all intended
as a power electronics components course, but rather as the basis for the later chapters
on the main power electronic circuits like rectifier, chopper or inverter. In addition
to the traditional components (for example: diode, thyristor, IGBT) also a section is
devoted to new developments regarding Si-C and GaN components.

6.1 Introduction

In most cases, if not all, power electronic components are operated as pure switches.
A general representation is shown in Fig. 6.1. Anode and cathode (or source and
drain) are the main terminals while the other connections (i.e. gate, basis), if present,
are used to control the flow of current between the main terminals.

Power electronic switches may be classified as:

• electronic valves: the typical representative is the diode which allows current in
one direction only, on condition that the voltage has the right sign. A diode will
only allow current from anode to cathode (if the voltage anode-cathode is positive),
but in the reverse direction (with negative voltage) only a negligibly small current
can flow.

• electronic valves that can be switched on (but not off): a typical representative
is the thyristor. With a positive voltage between anode and cathode a current can
flow from anode to cathode if a (small) positive voltage or current is present at the
gate. Once conduction has started, the gate signal is not required any more. When
a positive anode-to-cathode voltage is present, but no gate signal, the thyristor
remains blocked. In the reverse direction (with negative voltage) only a negligible
current can flow, just like in a diode.

• power electronic elements that can be switched on and off: for example, the Gate
Turn-off Thyristor (GTO), the Bipolar (Junction) Transistor (BJT), Mosfet, IGBT,
or IGCT.

In the following sections these power-electronic switches will be described intomore
detail.

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_6
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Tables6.1, 6.2, 6.3, 6.4, 6.5 and 6.6 at the end of this chapter provide overviews
of the main power semiconductors, their main properties and application examples
in drives.

6.2 The Diode

A diode is a two-layer p − n element; its symbol and schematic layout are shown in
Fig. 6.2a, b. Conduction is performed by both minority and majority charge carriers.
Typical characteristics are illustrated in Fig. 6.2c.

With a sufficiently positive voltage between anode and cathode, the p − n−
junction will be forward biased and current (IA = IF > 0) will flow with quite
a small voltage drop. However, the voltage should still be higher than the voltage
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Fig. 6.3 Thyristor: symbol and characteristics

threshold VF0 so as to obtain a small and often negligible voltage drop. The voltage
threshold is in the range of 0.7 . . . 1.2V. The forward voltage drop in conduction,
VA = VF > 0, depends on the type of semiconductor material and is current-
dependent. For rated diode current, the voltage drop is on the order of 0.3–1V above
the threshold voltage VF0.

Negative voltages VA = −VR < 0 will result in only a very small negative
current (IA = −IR < 0), meaning that the diode essentially behaves as an open
circuit because the p − n−junction is blocking the current. For very high negative
voltages VR > VBR , breakdownmay occur with a large negative current. The reverse
breakdown voltage VBR is normally high; depending on the semiconductor material,
it may be on the order of some tens of volts to some kilovolts.

When the diode switches from the conduction state to the non-conducting state
(by a reverse voltage), momentarily a higher reverse current will flow. This current
will remove the charge in the junction so as to block the current flow. The time for this
reverse current (i.e. the recovery time) varies from some 1 . . . 5µs in conventional
diodes to some hundred ns in fast-recovery diodes.

6.3 The Thyristor

The thyristor (also called the Silicon Controlled Rectifier or SCR) is a four-layer
p − n − p − n semiconductor element. Its schematic layout and symbol are shown
in (a) and (b) in Fig. 6.3. A thyristor has three terminals: in addition to the power
terminals anode and cathode, the gate terminal serves to control the conduction.
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Figure6.3c illustrates the characteristics of a thyristor. Like the diode, it conducts
current in only one direction, from anode to cathode. For negative voltages, it remains
in the reverse blocking region.

To conduct, together with a positive voltage VA = VF , also a (small) gate signal
is required to first turn the thyristor on. When a positive anode voltage is applied
without gate current (ig = iG = 0), the anode current remains small (cf. the red
line). The thyristor remains in the forward blocking region. If at the same time a
sufficiently positive gate signal ig is applied (IG1 > 0 or IG2 > 0 or IG3 > 0), the
thyristor comes into conduction1 with now a high anode current and a small voltage
drop (this range is called the high conduction region).

Applying too high an anode voltagemay, however, also cause the thyristor to enter
into conduction without gate signal (i.e. forward break-over).2

Note that a thyristor will come out of conduction if the anode current drops below
the holding current IH .

For negative anode-to-cathode voltages, the thyristor will show only a small neg-
ative leakage current (called the reverse blocking region). Now junctions J1 and J3
are reverse biased and junction J2 is forward biased. Too high a negative voltage may
result in avalanche (i.e. reverse breakdown), which is likely to destroy the thyristor.

When a thyristor should come out of conduction, a negative anode-to-cathode
voltage must be applied to allow the blocking charge for junction J2 to build up. In
practice, this can be achieved by discharging a capacitor with the right (negative)
charge to the anode of the thyristor, or by injecting a negative anode current; both
are realised in most cases using resonant L−C−circuits (called killer circuits). This
process is referred to as forced commutation, whereas natural or load commutation
is what happens when the external (AC) load or the (AC) power source causes a
reversal of the voltage, thus reducing the current below the holding current.

Note that a thyristormay come into conduction in other abnormalways (in addition
to an anode-to-cathode voltage exceeding the forward breaker voltage):

• by a very high dVA/dt , resulting in a capacitive ignition
• when, after a conduction interval, the positive anode-to-cathode voltage returns
too quickly.

The latter phenomenon, in particular, limits the switching speed of a thyristor. In order
to allow the blocking charge for the junction J2 to build up, the anode-to-cathode
voltage should be negative for a minimum time span, called the recovery time trr .
This recovery time is the largest part of the minimum delay before a positive anode-
to-cathode voltage can be applied again. To this recovery time other (smaller) delays
add. The total minimum delay between the instant the anode current becomes zero
and the instant the device is capable of blocking forward voltage is called the turn-off

1With a positive anode voltage, junctions J1 and J3 are forward biased but junction J2 is reverse
biased. The function of the gate signal is to lower the breakdown voltage of this junction.
2Another interpretation of normal conduction is that the gate signal reduces the breakdown voltage;
for high gate currents, the entire forward blocking region is removed and the thyristor behaves as a
diode (see Fig. 6.3).
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or hold-off time3 to f f . Whereas the turn-on time ton(or tgt ) is very short, on the order
of 1 · · · 3µs, the turn-off time is rather large, on the order of 50 · · · 100µs for normal
types or 1 · · · 50µs for fast-switching types. For mains-commutated thyristors the
turn-off time is more around 100 · · · 200µs, but these thyristors possess a very small
forward voltage drop in conduction.

Applying a safety factor of 10, a turn-off time of 100µs results in a maximum
frequency of 1kHz for the circuit. For mains applications (controlled rectifiers, see
further chapters) this is more than sufficient but not for all other applications (e.g.
inverters need higher frequencies).

Despite the limited speed of a thyristor, its important advantages are the very low
conduction and switching losses as well as the low power requirements4 for the gate
circuit.

Table6.5 (at the end of this chapter) lists the main parameters required to select a
thyristor. Figure6.4 shows an example of the gate characteristics of a typical thyristor.

In addition to fast fuses, a thyristor requires other means of protection. If the
current rises too fast, a local current concentration on the substrate may destroy the
device. To avoid this, some inductance must be present in series with the thyristor.
Because a thyristor may turn on by high dVA/dt , a snubber circuit in parallel with
the device is required as well (a simple snubber circuit consists of a series connection
of a resistance and capacitor, for example).

Maximum values for thyristors are:

• VDRM ≈ 6000V (VDRM = repetitive maximum direct (forward) off-state voltage)
• VRRM ≈ 5000V (VRRM = repetitive maximum reverse blocking voltage)
• IT RM ≈ 5000A (IT RM = repetitive maximum direct on-state current)
• fmax ≈ 50kHz

3The delay the circuit actually applies is the circuit turn-off time tq and this must be larger than the
device hold-off time.
4Gate current is quite low and the gate signal must only be applied at the start of the conduction
interval and can be removed afterwards.
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Fig. 6.5 Symmetrical and
asymmetrical thyristors
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Note that these maximum values will not occur at the same time. There is a trade-off
between high forward blocking voltage, high reverse blocking voltage, low voltage
drop in conduction, high current, high diA/dt and high frequency (low turn-off
time). For example, Fig. 6.5 shows the relation between the forward blocking voltage
and the turn-off time for common types. The full line applies to symmetrical types
with VDRM = VRRM , while the dashed line is for asymmetrical thyristors (with
VDRM > VRRM ). Asymmetrical thyristors have a lower forward voltage drop and
shorter turn-off times but also lower reverse blocking voltages.

6.4 The Triac

A triac can be considered as two thyristors connected in anti-parallel. Figure6.6
shows the symbol and characteristics. Triacs have somewhat less performant char-
acteristics than thyristors, such as lower forward and reverse blocking voltages and
higher turn-off time. They are not available with high voltage and current ratings,
but are more economical than two thyristors in anti-parallel and are used in many
low-power applications (e.g. blenders, vacuum cleaners).

6.5 The GTO

AGate Turn Off thyristor (GTO) is essentially a thyristor-like device, but in contrast
with the thyristor it can be turned off by a pulse of negative gate current. Figure6.7
shows symbols and turn-off characteristics.

When a negative gate current pulse is applied for turn-off, the anode current first
falls abruptly, while the anode-to-cathode voltage starts to rise. Subsequently, the
anode current falls rather slowly to zero. This tail current results in relatively high
losses, as the anode-to cathode voltage is already high (see also (b) in Fig. 6.7).
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Also note that, whereas the (positive) gate current to turn it on is quite low, the
negative gate current to turn it off is rather high. Typically, the ratio of the anode
current to the negative gate current for turn-off is only 3 to 5. For example, to turn
off an anode current of 1000A, a negative gate current of 250A is required.

The maximum characteristics of GTOs are somewhat lower than those of a thyris-
tor (e.g. VDRM ≈ 4000V, IT RM ≈ 4000A). Nevertheless, when forced commutation
is required, GTOs are nowadays used instead of thyristors with killer circuits.5

Other disadvantages of GTOs include the relatively high turn-off losses (due to
the tail current), and the limited or sometimes absent reverse blocking voltage.

5In turn, GTOs have made way for Integrated Gate Commutated Thyristors (IGCTs), which are
now often preferred to GTOs (see Sect. 1.6).

http://dx.doi.org/10.1007/978-3-319-72730-1_1
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6.6 The IGCT

The Integrated Gate Commutated Thyristor (IGCT) is a relatively new device that
was invented and patented by ABB at the beginning of this century. Its symbol and
basic structure can be found in Fig. 6.8.

Basically, the IGCT is a GTO-like device with several enhancements. First, the
co-axial gate consists of several fingers evenly distributed along the circumference of
the die. As a result, when the device is switched on (or off), the current distribution is
more even, thus avoiding local high current densities. Second, the gate control circuit
is integrated into the package, avoiding additional leakage inductance by gate leads.
Third, most types have an integrated anti-parallel diode which eases the turn-off.

As a result, higher switching frequencies (up to 2kHz or even higher) are possi-
ble, snubbers can be avoided because of the anti-parallel diode, the conduction and
switching losses are smaller and the power requirements for the gate are reduced,
especially for turn-off.

6.7 The BJT

The Bipolar Junction Transistor (BJT or BT) is a three-layer n− p−n (or p−n− p)
device. In Fig. 6.9, its structure, symbol and characteristics are shown.

The three terminals are called collector, emitter and base. In power electronic
applications, the transistor is normally used as a switch by providing sufficient base
current if it is switched on. When the basis current IB is zero, the BJT essentially
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behaves as an open circuit, with high high collector-emitter voltage VCE and low
collector current IC . For a sufficiently high basis current, the transistor enters satura-
tion and approximately behaves as a closed switch with a relatively low voltage drop
(see the characteristics IC − VCE in (b) in Fig. 6.9 or the characteristics VCE − IB in
(d) in Fig. 6.9).

A transistor is current-controlled: the basis current determines the open or closed
condition. To keep the collector-emitter voltage sufficiently low, the basis current
must be high enough; for high collector currents, the gain IC/IB may become less
than 10. A much higher gain (100 or more) can be obtained using a Darlington pair,
as is illustrated in (c) in Fig. 6.9.

The operating point of a BJT must lie within the Safe Operating Area (SOA)
(see Fig. 6.10). The SOA is defined by the maximum collector current IC,max , the
maximum dissipation Pmax , the second breakdown limit6 (∼V 2 I ), and themaximum
collector-emitter voltage VCE,max .

6A BJT does not only have a first breakdown limit (if VCE is too high) but also a second breakdown
or avalanche limit caused by a local current concentration in a limited area of the collector junction,
resulting in a thermal runaway. Such a second breakdown can occur when switching the device on,
but by switching off highly inductive loads as well.
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BJTs havemuch shorter switching times than thyristors (i.e. 1µs for switching-on
and 3µs for switching-off) and can be used for frequencies up to 100kHz. Another
advantage is that BJTs can be switched off quite easily: thyristors require killer cir-
cuits, andGTOs require rather high negative gate currents. Further, protection against
over-currents can be realised in quite a straightforward manner and the switching
losses are lower than for thyristors or GTOs.

On the other hand, BJTs (Darlingtons) are not available for high voltages and
high currents (e.g. maximum 500V and 2000A). Moreover, for higher voltages and
currents they are rather expensive (compared to GTOs). The reverse blocking voltage
is also fairly limited, and the power requirement for the control (basis) is relatively
high compared with thyristors or GTOs. Nowadays, they are mostly substituted by
Mosfets (for lower power) or IGBTs (for high-power applications).

6.8 The Mosfet

The powerMosfet (Metal Oxide Semiconductor Field Effect Transistor) is a unipolar
device, which means that current is solely carried by majority charge carriers (in
contrast with thyristors, GTOs or BJTs). Figure6.11 shows the basic layout, symbol
and characteristics of an N-channel Mosfet.

Positive and negative terminals are called drain and source, respectively, and cur-
rent flows from drain to source. By applying a positive voltage signal (dependent
on the type 3 . . . 4V to 10 . . . 15V) at the gate, we are able to form an N-type con-
duction channel between drain and source. Because the gate is only capacitively
coupled, the gate current is minimal, and the power required to control a Mosfet
is negligible. Other advantages include the absence of second breakdown (because
of a positive temperature coefficient), the very short switching times (<50ns), the
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Fig. 6.11 Mosfet: structure, symbol, and characteristics

small or even negligible switching losses and the fact that the positive temperature
coefficient facilitates parallel connections (for higher currents).

However, the conduction losses of Mosfets are rather significant compared to
BJTs or thyristors, especially for higher power ratings. As an example, compare the
characteristics in (c) in Fig. 6.11 for a BUZ54 (1000V, 25A). with the ON-state resis-
tance for aBUZ15 (50V; 45A): 0.03� for rated current. Other disadvantages include
the fact that reverse blocking is almost non-existent (since Mosfets have an inherent
anti-parallel diode) and their sensibility to high dV/dt , which somewhat limits the
switching speed. Nevertheless, the switching speed is still very high compared to
BJTs or thyristors, with frequencies up to 100MHz being realistic.

The SOA of a Mosfet can be found in Fig. 6.12.

6.9 The IGBT

The Insulated Gate Bipolar Transistor (IGBT) can be regarded as combination of a
BJT for the power part and aMOS-structure for the steering part. As such, it combines
the advantages ofBJTs andMosfets, i.e. lowconduction losses and lowcontrol losses.
Figure6.13 shows its structure, symbol and an example of its characteristics.

Switching speed, steering power and robustness are comparable to those of a
Mosfet, while the conduction properties are similar to those of a BJT (i.e. much
smaller conduction losses than a Mosfet). This is immediately clear from a com-
parison between the characteristics in Fig. 6.13c, d for a BUP 304 (1000V, 25A)
with those of (c) and (d) in Fig. 6.11 for a BUZ 54 (1000V, 25A). Note that both
semiconductors have the same semiconductor area. Table6.6 gives an overview of
the main characteristics of the IGBT BUP 304.

IGBTs are more advantageous than Mosfets for higher voltage levels (>500V)
and frequencies that are not too high. For lower voltage applications, IGBTs offer
minor advantages as Mosfets also have low conduction resistance. However, in the
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last few years the application range for IGBTs has been extended to both higher and
lower power applications. It is important to note here, however, that the tail current
when an IGBT is switched off may result in higher total losses than for a comparable
Mosfet (see Fig. 6.14).

6.10 SiC and GaN Devices

Silicium Carbide (SiC) and Gallium Nitride (GaN) semiconductors are quite new
devices. They entered the market a few years ago and are now further developed for
higher voltages and power range.

Both SiC and GaN are wide-bandgap (WBG) devices. The band gap (between
conduction and valence band) is approximately three times larger than the one for Si.
As a result,WBGmaterial allows high electric fields, with depletion regions possibly
very short or narrow, so device structures can have high carrier density and can be
packed very densely. In contrast with most Si devices, SiC and GaN are unipolar and
only use majority charge carriers. A limitation at this time is that the SiC and GaN
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semiconductors are to be grown on Si substrates, which may introduce dislocations.
However, it is expected that, in time, lateral GaN will replace Si FETs and vertical
SiC will replace Si IGBTs.

SiC has shown excellent capability to operate at voltages well above 1kV and
even above 10kV in some applications. Another advantage is that the operating
temperature may reach 250–300 ◦C (versus 125 ◦C for Si). It is optimal for higher
power applications (10kW to 1MW) and voltages from 1 to 7kV, thus replacing
silicon insulated-gate bipolar transistors (IGBTs). SiC semiconductors can exploit a
vertical structure for lowest resistance and benefit from the greatly reduced switching
losses (see Fig. 6.15). At lower voltages, SiC FETs become limited by relatively low
channel mobility, high field stresses in gate dielectrics, and high substrate resistance
[36]. An advantage of SiC semiconductors is the higher thermal conductivity of SiC
(compared to Si), leading to better and easier cooling.

Lateral GaN may replace Si FETs for a range of applications that require break-
down voltages of 100–650V. Currently, applications up to 10kW and voltages up to
1200V are envisaged. Lateral GaN offers the highest switching speed and lowest
switching losses, and it will enable frequencies to increase well above 1MHz in
many applications (even up to 10MHz) [16]. Further, generally, ON-resistance and
therefore also conduction losses are smaller than those for Si devices. Figure6.16
shows a schematic layout of a lateral GaN FET. Optimal performance is obtained in
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monolithic chips, meaning that logic, driver and FET are incorporated in the same
package.

Currently, SiC Schottky barrier diodes are preferred for systems between 300
and 1200V and SiC MOSFETS have already penetrated the market. Lateral high-
electron mobility transistor GaN devices for power-electronic systems under 650V
have also entered the market. Future research should enable developments related to
bidirectional 600V GaN MOSFETs, 10kV SiC bidirectional insulated-gate bipolar
transistors (IGBTs), SiC MOS-FETs and IGBTs rated above 10kV, as well as more
GaN-based power application-specific integrated circuits, for example incorporating
optoelectronics. Of course, it is expected that current and future research will also
improve Si-based semiconductors (i.e. Mosfets, IGBTs).

6.11 Other Power Electronic Devices

In the past, numerous other semiconductor power devices have been developed. A
few of these have found special applications, but others are not widely used. The
devices discussed below (which are used in special applications) are the SIT (Static
Induction Transistor), the SITh (Static Indiction Thyristor) and the MCT (MOS
Controlled Thyristor).
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Fig. 6.17 SIT: structure and
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The SIT (Static Induction Transistor) is a unipolar device just like the JFET. It
is also a normally-on device (as is the JFET). Figure6.17 illustrates its structure
and symbol. The SIT can be considered as the semiconductor equivalent of the
vacuum triode. Its main application is for high frequency and high power (e.g. audio,
VHF/UHF and microwave amplifiers). For general power electronic applications,
the voltage drop (and thus conduction loss) is too large, unless an exceptionally high
frequency justifies its use.

Similar to the SIT, the SITh (Static Induction Thyristor) is also a normally-on
device, but it has a bipolar structure (a p + nn+ diode-like power part with a raster-
like P+gate-structure). Figure6.18 shows its symbol and layout. It is important to
note that the SITh has no reverse blocking capacity. The turn-off requires a significant
negative gate current and exhibits a tail current (along with the associated losses)
like the GTO.

The MCT (MOS Controlled Thyristor) has a bipolar pnpn−structure for the
power part and a MOS control part (see Fig. 6.19). Like a GTO, the MCT can be
switched on and off by current pulses at the gate. However, the current gain for
switching off is much larger. The switching speed is of the same magnitude as for
an IGBT, but the voltage drop in conduction is smaller. Nevertheless, the MCT has
not found wide application.



226 6 Power Electronic Components

POLYSILICON POLYSILICON
OXIDE OXIDE

GATE

ANODE

CATHODE

P BUFFER

(NPN BASE, ON - FET DRAIN)

N SUBSTRATE+

(OFF - FET CHANNELS)

} } }

ON - FET
CHANNEL

P - (ON - FET
SOURCE)

P - (ON - FET
SOURCE)

(ANODE)

N+ N+

N(PNP - BASE,
OFF - FET DRAIN)

P-

J1

G

A

K

P+

Fig. 6.19 MCT: structure and symbol

Thyristor
(grid commutation)

GTO

IGBT(BJT)

U (kV)max

10kV

I (A)max

f (Hz)max

5kV
2,5kV

1kV

100Hz

1kHz

10kHz

100kHz

100A 1kA 10kA
MOS-
FET

100kHz Traction applications
(IGBT and  IGCT)

IGCT

Fig. 6.20 Application range of power semiconductors

6.12 Concluding Remarks

Power electronics semiconductor technology is in continuous evolution. It is there-
fore rather difficult to describe the state of the art. Figure6.20 gives a broad overview
of the industrial application range of the most common power semiconductors at this
moment. SiC and GaN semiconductors are not yet mentioned in this figure, but this
may change in a few years.

The tables below provide some more illustrative data of common power semicon-
ductors.
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Table 6.2 Comparison of the main properties of BJT, Mosfet, IGBT

Semiconductor Darlington BJT MOSFET IGBT

Symbol

Structure C

B E

N+

N+
N

-
P

SGS

D

N+

N+

N
-

P

E G E

C

N+

P

P+
N

-

Blocking properties
(upper limits)

Average Low High

Control circuit
complexity & power

average small minimal

high low low

Switching properties
Switch-on time
Switch-off time
Switching loss

average short average

long short average

high low average

Conducting properties
Current Power losses

quite high low high

low high rather low

Pulse frequency limit
for 0.5 IDC

= 4kHz = 250kHz 10kHz
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Table 6.4 Comparison of characteristics of power semiconductors for drives

t

UB

IB

f
0 2 6kHz0

5

10
W

f
0 001 002 kHz0

5

10
W

f
0 4020 kHz0

0,2

0,6
W

f
0 2010 kHz0

0,2

0,6
W 10

20
W

f
0 21 kHz0

40
20

W

f
0 105 kHz0

80

t

UG

IG

t

UG

IG

t

UG

IG

BJT SIT MOSFET IGBT GTO SITh

800 V
100 A

600 V
20 A

500 V
20 A

3000 V
1000 A

4 kV
2 kA

4 kV
2 kA

220kW 100 kW 5 kW
(10 kW) 10 MW 20 MW 1 MW

1 10 50 200 20 100 5 20 0.05 2 1 5

39 52 21 60 2.7 3.9 1.8 2.0 60 90 63 195

0.1 0.13 0.35 1.0 0.05 0.08 0.007 0.008 0.03 0.05 0.035 0.1

average - high average minimal high average - high

fp kHz

Ps W

PST/PSR %

complexity of the
control circuit

total control
power

specific
control
power

required power
for the control

typical gate signals

typical converter power
(three-phase)

typical (maximum) values
for voltage and current

10

W

f
0 31 kHz0

20

30 60

0.02 0.04

minimal
(integrated)

1 3

20 MW

1500 V
600 A

IGCT

2

Table 6.5 Definitions and abbreviations for power thyristors and diodes
VR reverse blocking voltage
also VRRM

RRSM

VRNM

repetitive

peak (surge)

non-repetitive

maximal reverse
blocking voltage

VD forward blocking voltage
also VDRM

VDSM

VDNM

repetitive

peak (surge)

non-repetitive

maximal direct (forward)
blocking voltage

VT on-state voltage forward voltage drop

dv
dt max

trr reverse recovery time

toff of  tq turn-off time

= ts (carrier storage time) + tf (fall time)

toff of  tgq gate controlled turn-off time
=tgs (carrier storage time) + tgf (fall time)

VG gate voltage
VGT minimum gate triggered voltage

VGD maximum gate non-triggered voltage

IR reverse leakage current

also IRRM repetitive  maximal reverse leakage current

IRRMS (M) effective maximal reverse leakage current

ID forward leakage current
also IDRM repetitive maximal direct leakage current

I RMS (M)D effective maximal direct leakage current

IL latching current
IH holding current

IT direct current
(ITAV (M);  ITRMS (M); ITSM;  ITCM; ...)

di
dt max

ton = tgt gate controlled turn-on time

= tgd (delay time + tr (rise time)

ton = tgt gate controlled turn-on time
= tgd (delay time + tr (rise time)

IG gate current
IGT minimum gate triggered current
IGD maximum gate non-triggered current

PG control (gate) power

(for GTOs)

(for thyristors)

(also for diodes)

PT conduction loss
(for  diodes: T F)

(also for  diodes)

(for thyristors)
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Table 6.6 Data of IGBT BUP304

Quantity Symbol Value Unity Conditions

Collector current IC 25 A TC = 25 ◦C
Power loss Ptot 200 W TC = 25 ◦C
Avalanche current, periodical IAR 5 A TJmax = 150 ◦C
Operating temperature limits TJ

Tstg
−55 to +150 ◦C –

Thermal resistance chip-package RthjC ≤0.63 ◦K/W –

min. typ. max.

Collector-emitter break-over
voltage

V(BR)CES 1000 – – V VGE = 0
IC = 0.25mA

Gate voltage (min) VGE(th) 4.0 5.0 6 V VGE = VCE,
IC = 1mA

Collector-emitor saturation voltage VCE(sat) - 3.5 5 V VGE = 15V,
IC = 15A

Inductive load

Turn-off time (recovery) td(off) – 200 – ns Tj = 125 ◦C
VCC = 600V
VGE = 15V
IC = 15A
Rg(on) = 3.3�

Rg(off) = 3.3�

Fall time tf – 200 – ns

Switching-off power loss
(Eoff = Eroff1+ Eoff2)

Eoff1 – 0.7 – mWs

Eoff2 – 1 –



Chapter 7
Rectifier

Abstract This chapter mainly discusses the classical rectifier. Starting from the
diode rectifier, next the controlled rectifier is treated (bothmainly for inductive loads).
A section also is devoted to operation on capacitive loads. Much attention is paid to
reactive power requirements and to harmonics in the grid (and load as well).

7.1 Introduction

There are two types of classical rectifiers, uncontrolled diode rectifiers and controlled
rectifiers. Both types convert the sinusoidal mains voltage (or current) into a DC
voltage (or current).

The first type, the (uncontrolled) diode rectifier, is the most straightforward recti-
fier, as the relation between the DC voltage and the AC voltage is fixed. The energy
flow always goes from the AC side to the DC side.

The second type, the controlled rectifier, however, makes it possible to adapt
(i.e. reduce) the DC voltage compared to the uncontrolled voltage. It also makes it
possible to reverse the energy flow and make it go from the DC side to the AC side.
However, as will be explained further on, the presence of an AC grid able to provide
reactive energy to switch the power electronic switches (diodes, thyristors) remains
essential: a rectifier cannot convert a DC voltage into an AC voltage without the prior
presence of an AC grid.

Both types will be discussed in the next section. The last section will discuss the
application of rectifiers for DC machine supply.

7.2 Basic Theory of the Rectifier

7.2.1 Uncontrolled Diode Rectifier

7.2.1.1 Wye-Connected Rectifier

Figure7.1 shows the layout of an m-phase wye-connected (also called centre-
connected) rectifier. On the left, in (a), the AC voltages are represented as ideal
© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_7
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Fig. 7.1 Basic circuit of an m-phase wye-connected rectifier

Fig. 7.2 Output voltage of
an m-phase wye-connected
rectifier m 1 2 3 m

id

T/2m-T/2m

imim
im

i2

i1

Vs

t0
3T/2m

sources vs1, vs2, . . . vsm. In reality, these AC voltages are the secondary voltages of
a transformer, as is illustrated on the right, in (b). In a more thorough analysis in a
later section, these voltages will be replaced by their Thevenin equivalents.

Here, the m-phase voltage source is wye connected. In series with each phase
voltage source, we can observe a diode. In our figure, the anodes are connected to
the voltage sources while the cathodes of all diodes are connected to the minus pole
of the DC side. The plus pole of the DC side is connected to the star point of the
m-phase AC source.

Consider the instant t1 = 0 (Fig. 7.2). At t1, the instantaneous voltage vs1 is higher
than the other source voltages. Thus, diode D1is positively polarised and conducts
current to the DC load, while all other diodes are negatively polarised and blocked.
From t2 = T/2m on, the instantaneous voltage vs2 becomes higher than the voltage
vs1. Diode D2 becomes positively polarised and starts conducting. At this instant
a short-circuit current1 starts flowing in the circuit vs2 − D2 − D1 − vs1 and diode

1This infinite short-circuit current only flows during an infinitely short interval; in reality the DC
inductance is finite and the short-circuit current is also finite and flows during a finite time interval.
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D1will block. Then, from t2 = T/2m to t3 = 3T/2m (when vs3 takes over), only vs2
will deliver the DC current to the load (via diode D2).

Suppose that the load inductance is very large, so that the DC current id = Id can
be considered as constant. The resulting (constant) current at the DC side is therefore
composed of m blocks of T/m (or in radians 2π/m) wide, each one delivered by one
of the m AC sources, as illustrated in Fig. 7.2.

As the DC current is constant (because of the supposition of an infinite inductance
at the DC side), the AC current in each phase is also a block current with a width
of T/m (or in radians 2π/m), separated by intervals of (m − 1)T/m (or in radians
(m − 1)2π/m). Besides a fundamental harmonic with AC frequency, the AC current
therefore also contains a DC component, as well as current harmonics with order
km ± 1. The effective value of the fundamental is given by:

If 1 = I1 =
√
2

π
· Id · sin π

m
(7.1)

The (total) effective value of these currents is Id/
√
m. Note that the mean value of

the phase currents is Id/m, which means that for a wye connection of the AC source,
each phase at the AC side of the rectifier contains a non-zero DC component. A
wye-connected rectifier therefore requires a suitable2 transformer between the grid
and the rectifier in order to eliminate the DC component in the grid.

The current through each semiconductor switch also has an instantaneous (i.e.
maximum) value Id , a mean value Id/m and an effective value (responsible for con-
ductive power losses) of Id/

√
m.

Note also that the DC voltage is not quite constant but contains harmonics of order
km:

vd = Vdo

[
1 +

∑
ν = km

(−1)k+1 2

ν2 − 1
cos νωt

]
(7.2)

with the mean DC voltage Vd0 given by

Vdo = √
2 · Vs

sin π/m

π/m
= V̂s

sin π/m

π/m
(7.3)

With a sufficient inductance at the DC side, the ripple in vd is found mainly across
the inductance and the DC part Vdo mainly over the load resistance R.

Note that the harmonics in the voltage become smaller the greater the number of
phases m there are. Also the order of these harmonics becomes larger with larger
m. We can conclude that the current harmonics at the DC side (for a realistic finite
inductance) will decrease significantly, the greater the phase-number m is.

2What would be a suitable connection for the multiphase transformer?
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Fig. 7.3 Two-phase wye
rectifier

VS

VP

Consider, for example, the single-phase (also called two-phase) wye-connected
rectifier with mid-tapped transformer (see Fig. 7.3). The harmonics are much more
significant and of a lower order than those of a three-phase rectifier.3

7.2.1.2 Bridge Rectifier

An important disadvantage of the above-mentioned wye (or centre-tap) rectifier is
the DC component in the AC current, necessitating an oversized transformer to avoid
DC currents in the grid. This is why a second type of uncontrolled diode rectifier,
the bridge rectifier, is mostly preferred.

Figure7.4a - without the dashed line - shows the schematic diagram of a three-
phase bridge rectifier (also calledGraetz-bridge). Here, the current flows at the right
side from the transformer4 pole where the voltage is at a maximum at that instant,
through the diode in series to point P of the load, then through the load to point Q,
and then back to the AC source through the diode that is connected with that phase
where the voltage is minimal at that instant. The diodes on the right commutate
among themselves, so that P is always connected to the transformer pole with the
highest voltage at that instant; similarly, the diodes at the left side commutate among
themselves, so that Q is always connected to the transformer pole with the lowest
voltage at that instant. As a result (see (b) in Fig. 7.4), the voltage across the load
follows the maximum values of the line-to-line voltages U − V , V − W , W −U
and their inverse.

With respect to the (real of fictitious) star point of the AC source, the voltage
potential vP of point P follows the positive tops of the line-to-neutral voltagesU − n,

3Calculate from Fourier analysis the mean DC voltage and harmonic content for this two-phase
rectifier. Do this directly, without using Eq.7.3; because of the mid-tapped transformer, m = 2.
4For a bridge rectifier a transformer between grid and rectifier is not strictly required, however.



7.2 Basic Theory of the Rectifier 237

i 2

i 1

i 3i’3

i’2

i’1
1’

2’

3’

1

2

3

i1

i2

i3

vsvs1vs3 vs2
+

_

_ +v

vd

n (v=0)

Q P

u-v
u-w

v-w
v-u

w-u
w-v

+-

(a) (b)

Fig. 7.4 Three-phase bridge rectifier

V − n,W − n, while the voltage potential vQ follows the negative tops of these line-
to-neutral voltages (see (a) in Fig. 7.5). The load voltage vd is the difference between
vp and vQ (see (b) in Fig. 7.5). Indeed, as to the voltage output, the bridge rectifier
can also be considered as the series connection of two wye rectifiers (see the dashed
line in (a) in Fig. 7.4). Therefore, for the DC output voltage we may write, for both
wye and bridge rectifier:

Vdo = s · √
2 · Vs

sin π/m

π/m
= s · V̂s

sin π/m

π/m
(7.4)

with s = 1 for a wye and s = 2 for a bridge connection. In Eq.7.4, m represents the
commutation number. This is the number of commutations per period in a group
commutating cells. For the Graetze bridge, m = 3 for both left and right diodes. In
most cases, the commutation number equals the number of phases. One exception
is the single-phase bridge in Fig. 7.6, where m = 2 and where for the application of
Eq.7.4 half the secondary voltage V̂s of the transformer must be inserted as voltage.

In contrast, the harmonics in the output voltage do not depend on the commutation
number m but on the pulse number p. The pulse number is the total number of non-
simultaneous commutations per period.5 For the three-phase bridge, p = 6 as the
commutations of the upper and lower diodes are not coincident. In general, for a
bridge rectifier with m odd, p = 2m. For a bridge with m even, p = m holds (e.g. the
single-phase bridge in Fig. 7.6, also referred to as a two-phase bridge).

Next, the currents in the rectifier will be examinedmore closely.We suppose again
that the load inductance is very large, so that the DC load current can be considered as
constant. Then, the diode currents are again blocks of width T/m (see (c) in Fig. 7.5).
For the average and effective value of the diode currents, the same equations hold as
before. However, now the secondary line currents (il1, il2, il3 see (d) in Fig. 7.5) do
not contain a DC component. For the fundamental of the secondary line current, we
obtain

5Explain why p determines the harmonics, referring to Eq.7.2.
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Fig. 7.5 Voltages and currents of the three-phase bridge

1’

2’

1

2

_ +2vs

(a) (b)

Fig. 7.6 Single-phase bridge
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Fig. 7.7 Phase-controlled
rectifier

π_

αα

π_
2m

π_
m

_ 0 ωt

Il1 = 2 ·
√
2

π
· Id · sin π

m
= s ·

√
2

π
· Id · sin π

m
(7.5)

Again, the expression on the right also holds in general, with s = 1 or s = 2 for wye
and bridge, respectively.6

7.2.2 Phase-Controlled Rectifier

In the diode rectifier of the previous section, within a group commutating switches,
the diodes commutate automatically from one phase to the next when the voltage of
the next phase becomes higher at the anode side (or lower for those connected to the
cathodes). This results in a DC voltage that is fixed for a given AC voltage.

When we substitute the diodes with valves that can be switched on, like thyristors,
the commutation instant can be delayed by an angleα (called the delay angle or phase
angle). Such a rectifier is called a controlled rectifier (sometimes also a mutator).
For a wye-connected rectifier, we therefore obtain a voltage diagram as in Fig. 7.7.
The average DC output voltage now becomes

Vdα = V̂s
sin π/m

π/m
· cosα = Vdo · cosα (7.6)

For a wye rectifier, negative instantaneous voltage values occur for α > 30◦; simi-
larly, for α ≥ 150◦ no positive instantaneous positive voltage values remain (see (b)
in Fig. 7.8).7

For a bridge rectifier, (usually) both the lower and upper switches are delayed
over the same angle (see (a) in Fig. 7.8). The output voltage for the bridge can then
be written as

6As an exercise, prove that for a three-phase bridge Vdo = (3/π)V̂l (with V̂l the secondary line-to-
line voltage). Calculate the line current for the three-phase bridge from Eq.7.5 and verify whether
power is indeed preserved.
7Nevertheless, the current must remain positive; what does this imply? (see also below).
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= 150°

(a)

(b)

Fig. 7.8 Output voltage a bridge with α = 80◦ b wye with α = 150◦

Vdα = Vdo · cosα (7.7)

where for the value of Vdo, Eq. 7.4 should be used with s = 2.
Sketch (a) in Fig. 7.8 illustrates the voltages for a bridge rectifier with α = 80◦.
For a bridgewithα > 60◦, the instantaneous voltage shows intervalswith negative

values (see Fig. 7.9). Forα > 90◦ the average voltage becomes negative. This implies
that a suitable emf must be present in the DC circuit (“load”) as the current direction
(Id or the average of id ) is confined by the thyristors. Moreover, such an emf also is
required to reverse the power flow from DC to AC.

Theoretically, the maximum value of α for a bridge rectifier is 180◦ but in reality
the finite commutation duration (see below) limits α to approximately 150◦.

The delay of the commutation over an angle α also affects the voltage waveform
and thus the harmonics at the DC side. Fourier analysis of this DC voltage yields the
following result for the harmonics of order ν:

Vν = 2

ν2 − 1
Vdα

√
1 + ν2 tan2 α

As for the current at theAC side, it is clear that, for an infinite or very large inductance
at theDC side, the currentwaveformhas not changedwith the commutation delay, i.e.
we still see current blocks of T/mwide with amplitude Id . Neither do the harmonics.
However, because of the commutation delay, these current blocks as well as the
harmonics (including the fundamental) have shifted by an angle of α. As a result,
the fundamental power input has also changed, corresponding with the decrease of
the DC voltage on the one hand, and the decrease of the output power (for the same
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Fig. 7.9 Bridge instantaneous output voltages for several α

Id ) on the other hand. As the delay angle cannot be negative,8 the controlled rectifier
will always absorb reactive power (see also below).

7.2.3 Discontinuous Conduction Mode

In the previous sections,we assumed that the inductance at theDCsidewas very large,
allowing us to consider the DC current as constant (and thus continuous). In reality
of course, the DC side inductance is finite. If the DC side voltage shows intervals
with instantaneous negative voltages, the current may decrease to zero during these
intervals at which time the diodes or thyristors will cease to conduct. The diodes will
start conducting again if the DC voltage becomes positive again, or in the case of
thyristors if at the same time a gate signal is present. Of course, this will also affect
the (average) output load voltage, as during the intervals with zero current, the output
voltage will be zero (and not negative).

This phenomenon may occur with both diode and (phase controlled) thyristor
rectifiers. For a diode rectifier, it can only occur if a counter-emf is present in the DC
circuit.

8Why not?
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For a purely resistive load, the rectifier diodes or thyristors will be blocked as soon
as the instantaneous voltage is negative, i.e. for α > π/2 − π/m for a wye rectifier
and α > π/2 − π/2m for a bridge rectifier (thus for a three-phase wye or bridge
rectifier, at 30◦ and 60◦, respectively; see Fig. 7.9 for a bridge rectifier). Then, input
and output are no longer connected and the output voltage is zero. If the voltage
becomes positive again, the diodes will start conducting, but thyristors will also
require a new gate signal at that instant.

This discontinuous conduction may also occur for a resistive-inductive load if
the inductance is insufficient to keep the current from attaining zero during negative
voltage intervals.

Discontinuous conduction may even occur for small delay angles, α < π/2 −
π/m or α < π/2 − π/2m (rectifier mode) if the load contains a counter-emf that is
larger than the instantaneous output voltage. It may also occur for regenerating mode
(α ≫ π/2 − π/m or α ≫ π/2 − π/2m) if the instantaneous negative DC output
voltage is more negative than the (then negative) emf.

Discontinuous operation for negative instantaneous load voltages (vd − E) can
be avoided if the load inductance is sufficiently large. Of course, in all cases, the
average load voltage (Vdα − E) must still be positive as the DC current direction is
confined by the switches.

7.2.4 Rectifier with a Capacitive Load

Rectifiers with discontinuous conduction will result in increased mains current har-
monics. Such discontinuous conduction always occurs in rectifiers with capaci-
tive or resistive-capacitive load. Rectifiers with a capacitive load are nevertheless
omnipresent, for example as a battery charger or supply for small appliances.

Consider the single-phase configuration depicted in (a) in Fig. 7.10. If the output
current were continuous, we would get an output voltage as in (b) in Fig. 7.10. This
could be realised by adding a sufficiently large inductance at the DC side, but such an
inductance is normally avoided because of the cost andweight penalty. In themajority
of such small power applications, the rectifier has a purely resistive-capacitive load.

For a pure R-C load, we get a (steady-state) output voltage as in Fig. 7.11. In the
same figure, the voltage |vs(t)| is drawn in dotted lines by way of reference. The
actual output voltage waveform can be explained as follows. From t1 to t2 diodes
2 and 1’ are conducting and the output voltage follows |vs(t)|. The source current
flows via the diodes to the resistance on the one hand, and the capacitor on the other
hand. In the meantime, the capacitor is being charged.

Oncebeyondωt = π, the current through the capacitor reverses, iC = C · dvd/dt <
0. While the capacitor discharges, diodes 2 and 1’ continue to conduct as long as
id > 0, i.e.

id = iC + iR = C
dvd
dt

+ vd

R
= C

d

dt
|V̂s cosωt| + 1

R
|V̂s cosωt| > 0
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The negative capacitor current becomes larger and larger (in absolute value), and
finally id turns zero at t2 = toff . Then, diodes 2 and 1’ stop conducting. This instant
can be calculated as tan(ωtoff ) = 1/ωRC. From that moment on, the capacitor dis-
charges in the resistance and the capacitor voltage vd decreases exponentially with
the time constant RC. When vd becomes smaller than V̂s cosωt, the diode bridge
starts conducting again at t3 = ton, in the case of Fig. 7.10 via diodes 1 and 2’. The
instant ton can be calculated from the transcendental equation

V̂s| cosωtoff | · exp[−(ton − toff )/RC] = V̂s| cosωton| (7.8)



244 7 Rectifier

Fig. 7.12 Line current for
capacitive load
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Toobtain a low ripple in themains voltage, the time constantRCshould be sufficiently
large, i.e. RC >> T/2.

Despite its widespread applications, the main disadvantage of the diode bridge
with a capacitor load is the far from sinusoidal mains current (see Fig. 7.12), espe-
cially for large capacitor values.

7.2.5 Non-ideal AC Source: Finite Commutation Duration

In the previous sections, we supposed that the AC source was an ideal voltage source
and did not have any internal impedance. This results in an immediate commuta-
tion, as these ideal sources are short-circuited over the switches at the instant of
commutation.

In reality, this AC source is either directly the grid or a transformer between
the grid and the rectifier. The AC source can then be represented by its Thévenin
equivalent. Inmost cases, the internal impedance of this source can be simplified to an
inductance (in the case of a transformer, approximately the total leakage inductance),
as is illustrated in Fig. 7.13.

The effects of this internal impedance are twofold: the commutation between the
switches takes a finite time and the output DC voltage changes compared to the case
of an ideal source.

7.2.5.1 Inductive Commutation

At the commutation instant between thyristors 1 to 2, the sources vs1 and vs2 are
short-circuited over the two internal inductances Lk1 and Lk2 The DC inductance is
supposed to be very large such that id = Id can be considered constant.

Suppose that switch 1 is conducting. When vs2(t) is or becomes larger than vs1(t)
- and, in the case of thyristors, switch 2 receives a gating signal - switch 2 starts to
conduct. Then both switches 1 and 2 are conducting and thus both phases 1 and 2
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Fig. 7.13 Inductive commutation

are short-circuited over the inductances Lk (and connected to the load). This results
in the following equations:

vd = vs1 − Lk
di1
dt

= vs2 − Lk
di2
dt

(7.9)

Adding and subtracting the Eq.7.9 and taking into account i1 + i2 = id = Id = ct
results in

vd = (vs1 + vs2)/2 (7.10)

di2
dt

= −di1
dt

= vs2(t) − vs1(t)

2Lk
(7.11)

During the commutation time (which we will denote by μ, in radians), the output
voltage takes on the mean value of the previous and the next phase voltages. The
current in the upcoming phase (2) increases while the one in the preceding phase
decreases with the same rate. This rate is directly proportional to the voltage differ-
ence between the new and old phases. As soon as the current in the upcoming phase
reaches Id (and the one in the preceding phase reaches zero), the new phase takes over
completely. The output voltage then becomes determined by the new phase voltage
only.

During the commutation, however, the output voltage has changed compared to
an instantaneous commutation. Between π/m + α and π/m + α + μ the voltage
potential of point P is not vs2(t), but instead equal to the average voltage given by
Eq.7.10. The average rectifier output voltage change can thus be computed from:

Dx = s · m

2π
·

π/m+α+μ∫
π/m+α

[
vs2 − vs1 + vs2

2

]
dωt = s · m

2π
·

π/m+α+μ∫
π/m+α

[
vs2 − vs1

2

]
dωt

(7.12)
where s = 1 for a wye rectifier and s = 2 for a bridge rectifier.

Substituting the time functions for vs1(t) and vs2(t) in Eq.7.12 results in
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Dx = Vdo
[cosα − cos(α + μ)]

2
(7.13)

where μ is still unknown.
On the other hand, substituting the expression for the voltage difference vs2 − vs1

in terms of di2 or di1 according to Eq.7.11 (and using
∫
di2 = Id ) results in

Dx = s · m · f · Lk · Id � Xd Id (7.14)

The average DC voltage then becomes

Vd = Vdα − Dx = Vdo
[cosα + cos(α + μ)]

2
= Vdα − Xd Id (7.15)

If the DC current is known, the commutation duration μ can be calculated from
Eq.7.15. The DC current can be calculated from Eq.7.15 if the DC load is known
(making use of the equality Vd = R · Id ).

The commutation duration is largest when the difference vs2 − vs1 is small, thus
nearα = 0 and nearα = π. A rather long commutationmay pose problems for delay
angles α near π (regeneration from the DC side). Indeed, consider Fig. 7.14.

When the commutation from 1 to 2 is finished before α = π, no problems arise as
phase 2 will have taken over completely from phase 1 and switch 1 is then blocked.
However, when the commutation lasts beyond α = π, i.e. when the voltage vs1(t)
again becomes more positive than vs2(t), commutation from phase 1 to phase 2 will
reverse and phase 1 will take over again. This commutation failure then results in
an output voltage which is larger (less negative) than expected and desired. As the
rectifier works in regenerating mode at values of α larger than π/2, the DC load is a
negative counter-emf. Combined with the now less negative - and possibly positive
- rectifier output voltage, this may or will result in much too large currents.
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Fig. 7.15 Resistive-inductive commutation

7.2.5.2 Resistive-Inductive Commutation

In most cases, the effect of a resistive impedance in the AC source can be disregarded
as to commutation. For large resistive values, or in the case of a low frequency AC
source, the resistance in the AC source may significantly lengthen the commutation
duration. The commutation can be calculated by introducing the short-circuit current
ik and solving the corresponding differential equation.

Figure7.15 shows the calculated relation between the commutation duration with
resistance μ and the one without the resistance effect μL as a function of the per
unit time constant ωLk/R. For small ωLk/R (or large resistances), the commutation
duration may become very large, prohibiting effectively delay angles larger than or
near 5π/6.

7.2.6 Power Exchange Between Rectifier and Grid

7.2.6.1 Active, Reactive and Harmonic Power

In this section, we will consider an ideal rectifier, i.e. with negligible commutation
duration, constant output DC current, without conductive losses and fed by an ideal
multiphase sinusoidal AC source.

At the DC side the instantaneous output voltage is vd (t), with average value Vdα.
The DC current is constant, id = Id . The instantaneous DC output power is given by

pd (t) = vd (t) · Id = Vdα · Id + Id ·
∑

vdν(t) (7.16)

In addition to the average (real) power Pd = Vdα · Id , the instantaneous power con-
tains pulsating terms oscillating back and forth between DC and AC side.
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At the AC side the supply is supposed an ideally sinusoidal voltage source. The
current at the AC side consists of rectangular current blocks with amplitude Id and
width 2π/m (for a wye rectifier, only positive current blocks as well as a DC com-
ponent; for a bridge rectifier, both positive and negative current blocks displaced by
π radials with respect to each other).

The fundamental of the AC phase (or line) current follows from Fourier analysis
of the current blocks:

Îl1 = s · Id · 2
π

· sin π

m
(7.17)

In a diode rectifier the currents blocks are in phase with the voltage, while in a
controlled rectifier these current blocks as well as the fundamental are displaced by
the delay angle α. The instantaneous power at the AC side is given by

p(t) =
m∑
i=1

vsi(t) · ili(t) (7.18)

with vsi(t)and ili(t) the instantaneous values of phase voltage and phase (line) current,
respectively.

As the AC voltage is sinusoidal, only the fundamental current will contribute to
the average active power:

P = m

2
· V̂s · Îl1 · cosα = Vdα · Id (7.19)

The instantaneous power Eq.7.16 contains other (pulsating) terms in addition to the
average active power. As is well known, these pulsating power components lead to
additional losses in the grid and transformers.

The pulsating power terms due to higher harmonic currents are referred to as
harmonic (pulsating) power. However, first we will concentrate here on the pulsating
power due to the fundamental current. For a diode rectifier, this pulsating power is
zero as the grid is supposed m-phase symmetric. For a controlled rectifier, however,
the phase delay α leads to non-zero m-phase pulsating power, which is generally
represented by the reactive power

Q = m

2
· V̂s · Îl1 · sinα (7.20)

This control reactive power can be very large, especially for large delay angles. For a
given active power P, the grid currents (and associated losses) are much higher with
higher delay angles.

Remarks:

• In addition to the reactive power Q for a controlled rectifier, the commutation
delay μ also creates a (small) reactive power component, i.e. the commutation
reactive power. It can be approximated by an additional phase delay of μ/2, as
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Fig. 7.16 Commutation
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is illustrated in Fig. 7.16. However, the commutation reactive power is generally
negligible compared to the reactive power Q for the control of the rectifier.

• The DC components in the phase current for a wye rectifier also generate addi-
tional losses in the secondary of the transformer that feeds the rectifier. These DC
components are not transformed to the grid side, but the transformer does have to
be oversized.

7.2.6.2 Reduction of the Reactive Power Requirements for a Controlled
Rectifier

As explained above, the reactive power requirements of a controlled rectifier may be
huge, especially for delay angles around π/2. Active and reactive power are given by
Eqs. 7.19 and 7.20 respectively, while for a given DC current Id , the apparent power
is constant, S = So = Vdo · Id . The locus of the complex power S = P + jQ is the
circle (a) in Fig. 7.17.

There are several solutions to mitigate the reactive power requirements, but what
is most suitable depends on the technical requirements and costs.

If regeneration is required and cost is not very important, a variable transformer
between thegrid and the rectifier couldbe considered,with the rectifier beingoperated
with delay angles either around α = 0 for rectifier operation, or around α = π for
regenerative operation.
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The second solution, at least if regeneration is not required, is a semi-controlled
(bridge) rectifier (see Fig. 7.18) which has much lower reactive power requirements
than a fully-controlled rectifier.

The lower switches are diodes, while the upper switches are controlled with a
delay angle α1. The average DC output voltage is thus given by

Vd = Vdo
1 + cosα1

2
(7.21)

However, the positive and negative current blocks in each phase are now displaced
by π radians. While the negative block is still in phase with the phase voltage, the
positive block is displaced by the delay angle α1, as is demonstrated in Fig. 7.19.
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Fig. 7.19 AC current blocks
for a semi-controlled bridge

vs =   2.Vs ωtsoc.

( 1-60)α ( 1+60)α
0

120 240 ωt

As a result, the (fundamental) harmonic current changes compared to that of the
symmetrically controlled bridge. This fundamental can be calculated from a Fourier
analysis but may also (and more easily) be derived from the active and reactive
components. From energy conservation (for the three-phase case)

P = Vdo
1 + cosα1

2
· Id = 3 · V · Iw (7.22)

it follows that the active component is given by Iw = Id ·
√
6

2π (1 + cosα1). As only
the current block corresponding to the upper controlled half of the bridge contributes
to the reactive current, we get Ir = −Id ·

√
6

2π sinα1.
Therefore, definingSo = Vdo · Id ,wemaywrite the expressions for active, reactive

and apparent power as follows:

P = So
1 + cosα1

2
= So cos

2(α1/2) (7.23)

Q = So cos(α1/2) · sin(α1/2) (7.24)

S = So cos(α1/2) (7.25)

The locus of the corresponding complex power S = P + jQ is the circle (b) in
Fig. 7.17. The advantage of this semi-controlled bridge is that the output voltage (and
active power) can be regulated to (almost) zero, while at the same time also the reac-
tive power is reduced. The fundamental phase displacement is cosϕ = cos(α1/2).

The anti-parallel diode is not strictly required but does offer some advantages, as
will be discussed below.

For values of α larger than π/m, there are intervals with zero output voltage (see
(a) in Fig. 7.20).

Without an anti-parallel diode, in these intervals the load current flows through
the diode and thyristor of the same branch, e.g. 1 − 1′ − P − load − Q−1. When
the anti-parallel diode is present, the current switches from this branch to the anti-
parallel diode as the voltage drop in it is lower. As a result, the thyristor (1 in our
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example) turns out of conduction and will not start to conduct again without a gating
signal.

A first advantage is that the anti-parallel diode may avoid commutation failure.
Indeed, if the delay angle α1 is large, the commutation at α1 = π may not always be
completed (e.g. from1 to 2 in our example).Without an anti-parallel diode, thyristor 1
will continue to conduct.As illustrated in (b) in Fig. 7.20, the output voltage (resulting
from the conduction of thyristor 1 and diode 2’) will increase beyond the aimed value.
This will be avoided by an anti-parallel diode: the current will shift to the anti-parallel
diode, and thyristor 1 will be blocked. The next commutation will be from the anti-
parallel diode to the next switch, at the right instant.
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Another advantage of the anti-parallel diode is that it will avoid an unwanted
continuation of power delivery to the load when the rectifier thyristor switches are
turned off. As shown in Fig. 7.21, without an anti-parallel diode, thyristor 2 may
continue to conduct even as no gating signals are delivered to the thyristors from
time t1 on. From t1 to t2, the load current flows through thyristor 2 - diode 2’ and
thyristor 2 will not be blocked if the DC inductance is large. From t2 on, the load
current will increase again as thyristor 2 and diode 3’ provide a positive voltage to
the load. With an anti-parallel diode, the load current will shift from the branch 2-2’
to the anti-parallel diode and thyristor 2 will not conduct any more.

A disadvantage of the semi-controlled bridge is that the six-pulse character that
exists for α = 0 (or for a symmetrically controlled bridge) gradually becomes three-
pulse for α �= 0 and becomes completely three-pulse (thus with higher harmonic
content) for α ≥ π/3.

A third possibility to reduce the reactive power requirements is to use an anti-
parallel diode in a controlled rectifier bridge (see Fig. 7.22).

For α < π/3, the anti-parallel diode has no effect. The complex power follows
the circle (a) until point B in Fig. 7.17. From α ≥ π/3 on, the anti-parallel diode will
take over the load current during the intervals with otherwise zero or negative output
voltage. As a result, the currents shown in Fig. 7.22 are obtained. AC phase currents
are zero when the anti-parallel diode conducts. Fourier analysis of these AC currents
yields the following result:

Iw = Id ·
√
6

π
· [1 − sin(α − π/6)]

Ir = −Id ·
√
6

π
· cos(α − π/6)

(7.26)

and thus
P = So · [1 − sin(α − π/6)]

Q = So · cos(α − π/6)
(7.27)

which correspondswith segment (d) in Fig. 7.17. Note that the active powerP = 0 for
α ≥ 2π/3. Two disadvantages are that regeneration is not possible with this circuit
and that some harmonics may be rather large. For example, the fifth harmonic for
α = 84◦ turns out to be 40% of the fundamental.

A fourth solution to mitigate the reactive power requirement is to use a series
connection of two controlled rectifiers, each of these providing half of the output
voltage (see Fig. 7.23).

While the delay angle for rectifier 2 is kept at 0, the delay angle of rectifier 1 may
vary between 0 and π, which is demonstrated in circle (b) in Fig. 7.17. While α1 is
then kept at π, the delay angle of rectifier 2 may vary between 0 and π, as is shown
in circle (c) in Fig. 7.17.

In other words, the average output voltage is

Vd = Vdo · cosα1 + cosα2

2
(7.28)
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Fig. 7.22 Fully-controlled bridge with anti-parallel diode

In practice, the delay angles α1 and α2 are limited to approximately 5π/6, to avoid
commutation failures. Thus, circle (b) cannot be run through until P = Q = 0.9 This
solution offers both rectifier and regenerative operation, but the investment cost is
higher.

9Draw the complete locus for the complex power in that case: howdo the circles (b) and (c) transform
if the delay angles are limited to 5π/6.
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Fig. 7.23 Series connection
of two controlled rectifiers

1 2

7.2.6.3 Grid Harmonics

Section7.2.6.1 already mentioned the higher current harmonics in the grid current.
Although these harmonics do not correspond with real power if the mains voltage
is purely sinusoidal, these higher current harmonics may propagate in the grid and
result in losses or other problems in other loads connected to the grid (generally,
these problems are indicated by the term EMC or electromagnetic compatibility).

If the commutation delay is negligible, the current blocks are perfectly rectangular;
for a bridge rectifier, positive and negative blocks in each phase are displaced by π
radians and between similar current blocks in different phases the displacement is
2π/m. For a wye rectifier, there is also a DC component Id/m at the secondary side
of the transformer, but this DC component is not transformed to the grid side.

Disregarding the transformer turns ratio, the Fourier analysis of the currents yields
(with s = 1 for a wye rectifier and s = 2 for a bridge rectifier):

i(t) = s · 2
π

· Id ·
∑
ν �=km

sin
νπ

m
· 1
ν

· cos νωt (7.29)

with ν being odd for a bridge rectifier. In these equations t = 0 is chosen at the centre
of the current blocks for reference phase U; for a diode rectifier this is also at the
maximum of the phase voltage U, but for a controlled rectifier t = 0 occursα radians
later than this maximum.

It can be proven that the order of the current harmonics at the grid side is deter-
mined by the pulse number of the rectifier, i.e. ν = kp ± 1. A general proof will not
be provided here, but this will be illustrated by some examples.

The first example is a three-phase wye rectifier (see Fig. 7.24). The order of the
grid harmonic currents is 1, 2, 4, 5, 7, . . .. As the pulse number for this rectifier is
p = m = 3, these harmonic orders correspond to kp ± 1.
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As a second example, we consider a six-phase wye-connected rectifier (see
Fig. 7.25). The harmonic orders at the rectifier side (i.e. the six-phase secondary
transformer side) are (according to Eq.7.29): 1, 2, 3, 4, 5, 7, . . . As the even har-
monics are canceled out at the three-phase primary, at the primary transformer side
we only find 1, 5, 7, . . .; in other words, again kp ± 1 = km ± 1. with p = m = 6.
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Fig. 7.27 Three-phase bridge rectifier (six-pulse)
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Fig. 7.28 Six-phase bridge rectifier (six-pulse)

The third example is a two-phase bridge rectifier (see Fig. 7.26). Harmonic orders
at both secondary and primary side are 1, 3, 5, . . ., so again kp ± 1 = km ± 1 with
p = m = 2.

The line current harmonics of the three-phase bridge rectifier in Fig. 7.27 also
contain only orders kp ± 1 with p = 6 (and m = 3).

For the six-phase bridge rectifier in Fig. 7.28, the rectifier side harmonic orders
are 1, 3, 5, 7, 9, . . . but as the third harmonics are cancelled out at the primary side of
the transformer, only harmonics 1, 5, 7, 11, . . . remain, whichmeans that ν = kp ± 1
with p = m = 6. In all these examples (and in general), the amplitude of the ν − th
harmonic is Îν = Î1/ν.
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Table 7.1 Ceff as a function
of the pulse number

p 3 6 12 ∞
Ceff 1.21 1.05 1.012 1
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Fig. 7.29 Six-phase wye rectifier with IPT (p = 6)

To limit the grid pollution, a high order (and lowamplitude) of the lowest harmonic
is of utmost importance. To avoid a too oversized transformer, the ratioCeff = Ieff /I1
with Ieff = √∑

I2v must be as low as possible as well. Therefore, a rectifier with a
high pulse number will be regarded as ideal, in particular if the power rating is high.
However, higher than 12 (or exceptionally 24) is not very common, as the additional
harmonics reduction with pulse numbers higher than 12 is limited (see Table7.1).

A pulse number of six can be obtained by a three-phase bridge rectifier, or by a
six-phase wye rectifier as shown in Fig. 7.25. A disadvantage of the configuration in
Fig. 7.25 is that each switch conducts only during π/3.

Figure7.29 shows a better scheme where a large inductance, the IPT (interphase
transformer), results in independent commutation of the two three-phase rectifiers,
so that the conduction of each switch is now 2π/3. The parallel connection of the
two three-phase rectifiers with π radians phase difference elicits six-pulse behaviour.
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Fig. 7.30 Series connection of two three-phase bridges (p = 12)

Another connection with higher pulse number is the twelve-pulse rectifier in
Fig. 7.30. The series connection of the two rectifiers with a phase difference of π/6
elicits twelve-pulse behaviour.

If necessary, the propagation in the grid of remaining harmonics can also be
mitigated by filters.

7.3 Rectifier Supply of DC Machines

Acontrolled rectifier (mutator) allows both rectifier and regenerative operation.How-
ever, only the average output voltage may change signs, while the current direction
is fixed due to the switches. Nevertheless, for the supply of DC machines, a reversal
of the current direction is often required (e.g. independently excited DC machines
with both motoring and generating). There are two possible (related) solutions: the
anti-parallel connection of two rectifiers and the cross-connection.

7.3.1 Anti-parallel Connection

The basic idea is to use two anti-parallel connected rectifiers, one for the posi-
tive current direction and one for the negative current direction. By using the delay
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Fig. 7.31 Anti-parallel connection of two bridges

angle αfor one of these rectifiers and the π−complement α′ = π − α for the other,
the average DC output voltages are complementary and, apparently, the two recti-
fiers can be connected in anti-parallel. However, although the average voltages are
exactly the opposite of each other, the difference between the instantaneous voltages
is quite important (see (b) in Fig. 7.31). To mitigate the resulting short-circuit cur-
rents between the two rectifiers, large inductances are inserted at both sides of the
converters: indeed, in this configuration there are two independent short-circuit cir-
cuits, one between P1 − P2 and one between Q1 − Q2. These large inductances are
indispensable if both converters are steered continuously at α and α′, respectively.
The resulting short-circuit currents are illustrated by curve a in (c) of Fig. 7.31.

Nowadays, the steering of the converters is usually adapted based on a current
sensing circuit:

• either only one is steered (e.g. the one for the positive current when a positive load
current is sensed) while the other is blocked completely;

• or the converter whose current direction corresponds to the sensed load current is
steered completely,while the other one is steered using a current-limiting algorithm
until a load current reversal is sensed;
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Fig. 7.32 Cross-connection of two bridges

• or the converter whose current direction corresponds to the sensed load current is
steered completely,while the other one is steered using a current-limiting algorithm
until some time before a load current reversal can be expected, after which both
are steered completely during some interval around the expected current reversal.

Although most anti-parallel connected rectifiers use some kind of current-limiting
algorithm, the practical realisation can sometimes be problematic. Detecting the
current reversal may be plagued by uncertainty as the DC load inductance is not
infinite in reality and thus the currentmay oscillate around zero at the current reversal.

7.3.2 Cross Connection

In the cross connection in Fig. 7.32, the two rectifiers are fed from two secondary
windings of the transformer.

As a result, there is one single short-circuit loop (see the dashed line). In this loop,
the instantaneous voltage differences P1 − P2 and Q1 − Q2 subtract, resulting in a
much smaller voltage in the loop (see (b) in Fig. 7.32 and curve b in (c) in Fig. 7.31).
Note that the short-circuit loop now contains the series connection of the leakage
inductances of the two secondaries, also limiting the current.



Chapter 8
DC Chopper

Abstract For AC, there is a straightforward and almost lossless way to transfer
electrical energy from one (voltage) level to another level, i.e. the classical electro-
magnetic transformer. For DC such a standard solution is not available. Energy trans-
fer from a higher to a lower level is indeed possible using a resistance network, but
this comes at the expense of high losses. The chopper is an elegant power-electronic
solution that does not lead to any significant losses. Starting from a fixed DC voltage,
it adapts the load voltage by periodically switching the input DC voltage (or current),
and as such adapting the average load voltage. Two advantages are that some chop-
per circuits also allow energy transfer to a higher voltage level, and that the chopper
principle eases electronic control. Another way to control the average current is by
using periodic switching of a series resistor, but this method is not energy-efficient.
For low-power applications (e.g. telecommunications, computer power supply), yet
another alternative using resonant circuits is quite common (see Sect. 8.5). In the
first section, the basic chopper circuits will be discussed. The next section shortly
discusses the power-electronic switches used in choppers. In other sections, chopper
applications in traction and DC drives are illustrated. The final section gives a brief
overview of the principles of resonant chopper circuits.

8.1 Basic Chopper Circuits

The two basic chopper circuits are the step-down chopper (buck chopper) and
the step-up chopper (boost chopper). They also can be combined as discussed in
Sect. 8.1.3. Finally, an (albeit rather energy inefficient) chopper variant is discussed
in Sect. 8.1.4.

8.1.1 Step-Down Chopper (Buck Chopper)

The first type of chopper is the step-down or buck converter, which allows energy
transfer from a fixed voltage level to a load with lower voltage level. The basic circuit

© Springer International Publishing AG 2018
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Fig. 8.1 Step-down chopper

is shown in Fig. 8.1. Here, the load is assumed to contain an L-R impedance and a
counter-emf with a current-dependent part (e.g. a series-excited DC machine).

The switch Th must be able to switch on and off (e.g. a GTO or IGBT or or
IGCT orMosfet). During interval T1, the source delivers current to the load (Th con-
ducting). When Th is switched off at t = T1, the current continues flowing through
the diode as the load is inductive. The load voltage is then zero. At t = T1 + T2 the
switch is turned on again, and so on periodically with period T = T1 + T2. Assuming
a steady-state condition, the following equations are valid in the intervals 0 ≤ t ≤ T1
and T1 ≤ t ≤ T1 + T2:

V − E = (K + R) · i + L di
dt f or 0 ≤ t ≤ T1 (8.1)

− E = (K + R) · i + L di
dt f or T1 ≤ t ≤ T1 + T2 (8.2)

This yields, again for intervals 0 ≤ t ≤ T1 and T1 ≤ t ≤ T1 + T2

i = I1 + (Im − I1) exp(−t/τ ) f or 0 ≤ t ≤ T1 (8.3)

i = I2 + (IM − I2) exp(−(t − T1)/τ ) f or T1 ≤ t ≤ T1 + T2 (8.4)

in which I1 = (V − E)/(K + R), I2 = −E/(K + R) and τ = L/(K + R).
Expressing the boundary conditions of steady state, i.e. continuity of i at t = T1

(i = IM) and at t = T1 + T2 i.e. i(T1 + T2) = i(0) = Im , we obtain

IM = I1 + (Im − I1) exp(−T1/τ ) (8.5)

Im = I2 + (IM − I2) exp(−T2/τ ) (8.6)
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Table 8.1 Control methods
of α

Method T T1 T2

I ct var var

II var ct var

III var var var

IV var var ct

From Eqs. 8.5 and 8.6, IM and Im can be calculated. In most cases, T ≪ τ . Using
exp(−x) ≈ 1 − x , we can approximate Im and IM by

Im = αI1 + β I2 − αβ
T

τ
I1 (8.7)

IM = αI1 + β I2 − αβ
T

τ
I2 (8.8)

where α = T1/T and β = 1 − α = T2/T . A straightforward calculation yields for
the average current

I ≡ iav = αI1 + β I2 = αV − E

R + K
(8.9)

which shows that the average current corresponds to an average load voltage of αV .
Note also that iav ≈ (IM + Im)/2.

The ripple of the current is

w = IM − Im
2I

= α(1 − α)

2
· T

τ
· V

αV − E
= α(1 − α)

2
· T · V

L I
(8.10)

To limit the ripple of the current, the ratio T/τ should be small (e.g. smaller than
0.1) and therefore the inductance should be sufficiently high.

As mentioned before, from Eq.8.9 it follows that, as to the average current, the
load is supplied with a voltage αV . With a step-down chopper, the voltage can be
regulated to a lower level without incurring any important losses.

Applications of step-down choppers include speed or torque control of DC
machines and switched power supplies (thus as DC converters). For the control of α
(called the duty ratio), there are four possibilities, as shown in Table8.1. Methods I
and II are most common. Method II might be cheaper to implement than method I,
but has as a disadvantage that the variable frequency makes adequate filtering diffi-
cult and may therefore lead to EMC problems. Methods III and IV as well have this
disadvantage.

It is important to note that the analysis above (in particular the calculation of the
average current) is only valid if the current is continuous. If the inductance is too
small, the current in the interval T2 may become zero and the diode may block.
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Fig. 8.2 Step-up chopper

8.1.2 Step-Up Chopper (Boost Chopper)

The step-down converter of the previous section can only be used for power transfer
to a load with a lower voltage level. This is where the step-up chopper comes in,
as this does allow transfer of DC power to a higher voltage level (see Fig. 8.2). A
current-dependent emf in series with an inductance is assumed to be the energy
source. The aim is to transfer the DC power to a fixed DC grid or battery (load) at a
higher voltage level, i.e. V > E .

When switch Th is conducting, the current builds up in the resulting short circuit.
Subsequently, the switch Th is turned off, and the current that has been built up
in the inductive circuit is returned to the load V via the diode. The corresponding
differential equations are, for the two corresponding intervals:

E = (R − K ) · i + L
di

dt
(8.11)

E − V = (R − K ) · i + L
di

dt
(8.12)

Note that the time constant of the circuit is τ = L/(R − K ). If R > K , we get an
unconditionally stable behaviour with negative exponentials. Limiting values (t →
∞) in intervals 1 and 2 are I1 = E/(R − K ) > 0 and I2 = (V − E)/(R − K ) > 0,
respectively.

However, if R < K , the time constant is negative andwe get positive exponentials.
As a result, the behaviour is only stable when at the end of interval 1 the voltage
vl = E + Ki − Ri is less than the voltage V . If not, the current will continue to
increase in interval 2 (until failure).
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Important applications include regenerative braking in DC traction, which is used
in older trains with DC traction where the emf of the braking train is not sufficient
to feed into the supply, but also numerous low-power appliances.

8.1.3 Mixed Step-Down and Step-Up Chopper Circuits

Chopper circuits that can handle both step-down and step-up conversion can be
obtained by a combination of the circuits in Sects. 8.1.1 and 8.1.2, by parallel con-
nection or cascade connection or in a combined circuit.

An example of a combined circuit is shown in Fig. 8.3. Importantly, in this circuit,
the load must not be inductive: the polarity of source and load are reversed compared
to the circuits in Figs. 8.1 and 8.2.

8.1.4 Resistance Chopping

Current regulation can also be obtained by chopping a resistance. Figure8.4a shows
a circuit where the series resistance of a DC machine is chopped between 0 and R,
for current or speed control, for example. To reduce the ripple, the resistance can
be split into parts that are chopped with a phase difference. Of course, this control
method is not lossless.

A more interesting application of resistance chopping is in resistance braking of
DC machines, as illustrated in (b) and (c) in Fig. 8.4. The disadvantage of circuit (b)
is that the voltage over the switch can be rather high. Circuit (c) can only be used at
sufficiently high speed.
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8.2 Practical Switches for Choppers

At the beginning of the power-electronic era, the only available switches were thyris-
tors with a killer circuit for turn-off (as the switch in a chopper must be turned on and
off). Later on, GTOs became available and a much less demanding turn-off circuit
was possible. BJTs (Darlington) have also been used for smaller power ratings.

Nowadays, Mosfets are used for lower power ratings, while IGBTs are the normal
choice for all but the very low or very high power ratings. For the latter, IGCTs or
GTOs could be used, although practical applications of very high power choppers
have practically disappeared nowadays.

Nevertheless, at least from a historical perspective, the circuit in Fig. 8.5 is worth
mentioning. The switch is replaced by five thyristors and a capacitor. When T1 is
conducting and the capacitor is charged, as is shown in the figure, the thyristor can
be switched off by switching-on T2 and T3. The current will temporarily continue
to flow until the capacitor charge is reversed. In the next cycle, T ′

2 and T ′
3 must be

used to turn off T1 (as the charge of the capacitor will have reversed). It is possible
to omit T1 and use T2 with T ′

2 and T3 with T ′
3 to conduct the load current, but in that

case these four thyristors have to be dimensioned for conducting continuously the
load current, and not only the turn-off current.
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8.3 Buffer Capacitor and Multiphase Chopping in Traction
Applications

For strongly inductive supply lines, like the long overhead lines for trams or trains,
it can be necessary to use a capacitor on board of the vehicle to limit the oscillations
of the supply voltage.

However, the overhead wire inductance and the capacitor also form an L − C-
circuit with a resonance frequency of fo = 1/2π

√
LC . For a reduction of the voltage

pulsations, the frequency f of the chopper circuit should be higher than twice this
resonance frequency, i.e. f > 2 fo. Thus either fo should be low (but this requires
a large capacitor) or the switching frequency should be high. This is problematic if
GTOs are used as switches, because their switching frequency is limited.

A solution to this is the use of two ormore choppers in parallel and phase displaced
with respect to each other (i.e. multiphase chopping). The circuit in Fig. 8.6 shows
two choppers in parallel, effectively doubling the line switching frequency com-
pared to the switching frequency of each chopper. The inductance or IPT (interphase
transformer) must ensure that both choppers work independently.

8.4 Chopper Supply of DC Machines

8.4.1 Motoring

Supplying aDCmotor fromachopper is equivalent to a supply fromavariable voltage
source, apart from the current ripple which is to be limited by a sufficiently large
inductance (for a series-excited DC machine there is already the large inductance of
the excitation winding). Therefore, starting and speed control are possible without
almost any additional losses. In addition, the chopper is ideal for electronic control
and automation.

With series-excitedDCmachines, the flux is often reduced to obtain higher speeds.
Figure8.7 illustrates a circuit where field flux weakening is obtained automatically
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Fig. 8.8 Chopping in quadrants 1 and 2

when the voltage supplied to the motor increases. When the switch is on, current is
supplied from the DC source to the armature winding. When the switch is turned
off, the inductance of the armature winding results in an increasing current in the
excitation winding (via diode D1).When the switch is turned on again, the remaining
excitation current will continue to flow via diode D2.

8.4.2 Two-Quadrant Operation

For operation in more than one quadrant (the first, for example) a combination of the
step-up and step-down choppers can be used.

On the one hand, Fig. 8.8 shows a configuration which allows operation in quad-
rants I and II. This is a combination of the circuits in Figs. 8.1 and 8.2.

On the other hand, Fig. 8.9 demonstrates a circuit for operation in quadrant I and
IV. With T1 and T2 conducting together, the supply is connected to the motor. When
one of the switches is switched on and off periodically (the other switch continuously
on), we get an operation as in Fig. 8.1. If one of the switches is turned off continuously
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Fig. 8.9 Chopping in quadrants 1 and 4

and the other switch turned on and off periodically, operation as in Fig. 8.2 is obtained
(e.g.: T2 turned off continuously; if T1 is turned on, the currents built up in the circuit
T1- D2; when T1 is turned off, current is supplied to the DC source). Note that the
polarity of the machine is now reversed.

8.5 Resonant Circuits for DC-DC Converters

Resonant circuits are frequently used to assist switching. In the past, resonant circuits
were required to turn off the thyristors (in killer circuits), but with the advent of
switches such as Mosfets, IGBTs or GTOs, this became history. For low-power
applications, however, resonant circuits are frequently used to realise high-frequency
circuits with reduced switching losses (as these high frequencies are advantageous to
reduce the dimensions andweights of filter inductances and transformers). Thousands
of resonant circuits have been reported in the literature, see e.g. [5]. Here we discuss
two basic circuits for DC-DC converters.

8.5.1 Series-Loaded Half Bridge

In the circuit in Fig. 8.10, the load (represented by the resistance R) is connected
in series with the inductance L and the capacitor C between the mid-point of the
half bridge and the artificial midpoint of the source (realised by two large capacitors
CDC1 and CDC2). The two switches are controlled complementarily, each with a
duty ratio of 0.5 and an angular frequency ω around the natural angular frequency,
ωc = 1/

√
LC (Fig. 8.11).
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Fig. 8.10 Series-loaded resonant circuit
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Fig. 8.11 Voltage and current for series-loaded resonant circuit

As a result, the voltage Vxy becomes a block wave with amplitude Vin/2 and
angular frequency ω.

The output current Ixy results from the impedance of the series impedance ZLCR :
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with the characteristic impedance Zc = √
L/C , the natural frequency ωc = 1/

√
LC

and the quality factor Q = ωcL/R.
Figure8.12 illustrates the amplitude and phase characteristics of the impedance

ZLCR . The impedance behaves as inductive for frequencies higher thanωc, but capac-
itive for frequencies lower thanωc. For ω = ωc, the impedance is purely resistive and
attains its minimum value. Note that the amplitude variation is quite large around
this characteristic frequency.

In addition to a fundamental current with frequency ω, the resulting current Ixy
will contain the same higher harmonics (orders 3, 5, 7,...) as the voltage block wave.
However, as the impedance becomes quite large for frequencies higher than ωc,
these higher harmonics in the current can be disregarded and the output current can
be considered as purely sinusoidal.

The output load AC voltage, R · Ixy , can be adjusted by varying the switching fre-
quency around the resonance frequency ωc. The output AC voltage can subsequently
be adapted using a transformer (thus at ω ≈ ωc) and rectified using a diode rectifier
to obtain a DC voltage. Since the AC voltage can be adjusted by a slight variation of
the switching frequency, so can the rectified voltage. The frequencies used aremostly
in the MHz range, permitting smaller inductive components and transformers. The
power of such converters usually ranges from a few watts to hundreds of watts.

In most cases, the circuit is utilised in either the range ω ≤ ωc (where the
impedance is capacitive) or the range ω ≥ ωc (where the impedance is inductive).

In the former range, the current switches sign before the voltage switches sign.
At the instant the switch (e.g. T1) is turned off, the current will therefore already
been transferred to the anti-parallel diode of this same switch (e.g. D1). This is
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Fig. 8.13 Parallel-loaded resonant circuit

called zero-current switching, or zero-current turn off. Turn-off of this switch will
not result in any losses but turn-on of the complementary switch will result in a
remarkable transient of the diode (i.e. “recovery transient”). Snubbers are required
and the switching loss is not negligible.

In the latter range, the current will have to switch to the anti-parallel diode (e.g.
D2) of the complementary switch at the instant the first switch (e.g. T1) turns off.
The turn-off of the first switch will result in losses due to the shift of the current to
the anti-parallel diode of the complementary switch. In contrast, switching on the
complementary switch will not incur any losses as the current will automatically
commutate from the diode to this switch if the current reverses sign. This is called
zero-voltage switching, or zero-voltage turn-on.
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8.5.2 Parallel-Loaded Resonant Converter

Another frequently used topology is the parallel-loaded resonant converter (see
Fig. 8.13). This figure also depicts the diode rectifier with which a DC-DC con-
verter is obtained. The operating principle is dual to the one in the previous section.
The output current is now rectangular, while the output voltage Vc (and the input
voltage of the rectifier) is - or should be - approximately sinusoidal. A transformer
may be inserted between the resonant bridge and the rectifier to adapt the voltage
and to obtain galvanic insulation.

There are numerous other resonant converter circuits, some combining the advan-
tages of series- and parallel-loaded converters (i.e. hybrid or series-parallel-loaded
converters).



Chapter 9
AC Chopper

Abstract The aim of the AC chopper (also called AC line control or phase control)
is somewhat analogous to the DC chopper, i.e. to obtain a variable voltage. Here, the
output is an AC voltage with the same fundamental frequency as the mains supply.
An important difference compared to the DC chopper is that also the current is now
bi-directional. This chapter discusses the basic circuits and analyses in more detail
a pure inductive load, both single-phase and three-phase.

9.1 Basic Principle

Figure9.1A shows the basic circuit of a single-phase AC chopper. The source is a
sinusoidal voltage with constant amplitude and frequency. In series with the load
(here an R-L load), a triac or a pair of anti-parallel thyristors is connected.

First, we consider the case of a purely resistive load. If the triac gets a gate signal
at the start of each positive (t1) and negative (t2) half period of the voltage (or a
continuous gate signal), then the load gets the full voltage and the resulting current
is sinusoidal (and in phase with the voltage). If, instead, the gate signal is sent only
later in the half period (t2, t ′2,...), then we get a current as in (B, b) in Fig. 9.1. The load
voltage is shown in (B, c). Of course, neither voltage nor current are sinusoidal but
the frequency of the fundamental is still the mains frequency, albeit with a reduced
fundamental amplitude.

If the load is not purely resistive, but resistive-inductive, for example, then for
load current and voltage the curves of (B, d) and (B, e) are obtained, respectively.
Load voltage and current are not sinusoidal but the frequency of the fundamental is
still the grid frequency, of course with reduced amplitudes of these fundamentals.
The higher harmonics are more or less harmless as the inductive load filters out these
higher current harmonics.

In principle, the control of chopping can be based on the hold-off angle γ, on the
delay angle α or on the extinction angle β (angles α and β are measured with respect
to the zero-crossings of the voltage). However, in many cases a control based on β
generates dynamic problems.

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_9
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Fig. 9.1 Single-phase AC chopper

9.2 Phase Control of a Single-Phase Inductance

For a purely inductive load (Fig. 9.2), phase control can easily be modelled analyti-
cally, at least as to the fundamental behaviour.

From the waveforms in Fig. 9.2B - for steady-state - it is easy to derive (assuming
lossless triac or thyristors) that α + β = π. Using α − β = γ, it follows that α =
(π + γ)/2 and β = (π − γ)/2.

Fourier analysis of the voltage over the switch (the control voltage) yields for the
amplitude:

V̂t1 = 2

π

γ/2∫

−γ/2

(V̂ cosωt) · cosωt · d(ωt) = V̂
γ + sin γ

π
(9.1)

The fundamental of the load voltage is therefore (in effective value):

Vl = V − Vt1 = V

[
1 − γ + sin γ

π

]
(9.2)
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Fig. 9.2 Phase control of a single-phase inductance

The fundamentals of load voltage and control voltage are in phase with the grid
voltage, while the fundamental of the load current is π/2 lagging. Choosing the real
axis along the voltage, the phasor representation of the current fundamental is

I 1 = V

j Xl

[
1 − γ + sin γ

π

]
= V

j Xl

[
π − γ − sin γ

π

]
(9.3)

As observed from the grid, this is equivalent to an additional inductance in series
with the load inductance

Xt = Xl

[
γ + sin γ

π − γ − sin γ

]
(9.4)

Figure9.3 shows Xt/Xl as a function of the hold-off angle.
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Fig. 9.3 Xt/Xl as a
function of γ for a
single-phase inductive load
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Note that, in principle, a similar analysis also holds for a capacitive load.1

9.3 Phase Control of a Three-Phase Inductance

Figure9.4 shows the circuit for phase control of a symmetrical three-phase induc-
tance. The grid voltage is assumed to be sinusoidal and three-phase symmetric.
Naturally, the gate signals for the three switches are also assumed to be three-phase
symmetrical (i.e. shifted by 2π/3 radians with respect to each other).

As the neutrals are not connected, zero-sequence load currents cannot flow. There-
fore, the load voltages will not contain zero-sequence components. From the three-
phase symmetry of voltages and of the load and switching sequence, it follows that
the voltage difference vh(t) between the neutral points of load and grid will not
contain fundamental components.

1Verifywhether phase control of a capacitor comes down to an equivalent larger or smaller capacitor.
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As the grid voltage is sinusoidal, also the sum of the voltages vl(t) + vt (t) + vh(t)
is sinusoidal. For the phase U, we may therefore write:

vlu(t) + vtu(t) + vh(t) = V̂ · sinωt (9.5)

Adding the three similar equations for the three phases yields

vh(t) = −1

3
[vtu(t) + vtv(t) + vtw(t)] (9.6)

To calculate the control and load voltages, a distinction must be made between
operation with γ < π/3 (at each instant 2 or 3 switches conducting) and π/3 ≤ γ ≤
2π/3 (either 2 or no switches conducting).

Operation with γ < π/3

For γ < π/3, either 3 or 2 switches are conducting.
Whenβ < ωt < α (i.e. within the hold-off interval for phaseU), only the switches

for phase V and W are conducting. The load voltage for phase U is thus zero,
vlu(t) = 0 and therefore

vtu(t) + vh(t) = V̂ sinωt

With the switches for phases V and W conducting, the voltage potential of the star
point O of the load is the average of the voltage potentials of phases V and W:

vh(t) = −1

2
V̂ sinωt (9.7)

The control voltage for phase U is thus

vtu(t) = 3

2
V̂ sinωt (9.8)

Note that Eqs. 9.7 and 9.8 are in agreement with the general Eq.9.6.

When 0 < ωt < β orα < ωt < π, the phaseU switch is conducting and therefore

vtu(t) = 0 (9.9)

and
vlu(t) + vh(t) = V̂ sinωt (9.10)

If, during this interval, the switches in the other phases conduct, then

vh(t) = 0 (9.11)

vlu(t) = V̂ sinωt (9.12)
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If only one of the other switches is conducting, then (analogous to Eq.9.7)

vh(t) = −1

2
V̂ sin(ωt ± 2π

3
) (9.13)

and thus

vlu(t) = V̂ sinωt + 1

2
V̂ sin(ωt ± 2π

3
) (9.14)

In the left part in Fig. 9.5, (c) shows the load voltage for phase U over a period and
(d) illustrates the load current.

Control and load fundamental voltage can be derived from the previous results
using Fourier analysis. If the switches are lossless, then the fundamental of the current
is lagging π/2 with respect to the voltage and thus α + β = π. Using α − β = γ it
follows that α = (π + γ)/2 and β = (π − γ)/2.

The fundamental of the control voltage is therefore

V̂t1 = 2

π

γ/2∫

−γ/2

(
3

2
V̂ cosωt) · cosωt · d(ωt) = 3

2
V̂

γ + sin γ

π
(9.15)

The fundamental of the load voltage is therefore (in effective value):

Vl1 = V − Vt1 = V

[
1 − 3

2

γ + sin γ

π

]
(9.16)

The fundamentals of load voltage and control voltage are in phase with the grid
voltage, while the fundamental of the load current is π/2 lagging. If we choose the
real axis along the voltage, the phasor representation of the current fundamental is

I 1 = V

j Xl

[
1 − 3

2

γ + sin γ

π

]
= V

j Xl

[
π − 3

2γ − 3
2 sin γ

π

]
(9.17)

As observed from the grid, this is equivalent to an additional inductance in series
with the load inductance

Xt = Xl

[
γ + sin γ

2
3π − γ − sin γ

]
(9.18)

Operation with γ > π/3

For γ > π/3, the hold-off intervals overlap, in which case no switches conduct. For
each phase there are then two current pulses, each with a duration of 2π/3 − γ (see
(a) in the right part of Fig. 9.5). The load voltage is then half the line voltage (see (c)
in the same figure).
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Fig. 9.5 Waveforms for phase control of a three-phase inductance load

The fundamental load voltage is:

V̂t1 = 2

π

π/2−γ/2∫

γ/2−π/6

[√
3

2
V̂ sin(ωt − π

6
)

]
· sinωt · d(ωt)

+ 2

π

7π/6−γ/2∫

γ/2+π/2

[√
3

2
V̂ sin(ωt + π

6
)

]
· sinωt · d(ωt) (9.19)

or, after rearrangement of the integrals:
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Fig. 9.6 Xt/Xl as a
function of γ for a
three-phase inductance load
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(9.20)
Therefore the equivalent additional reactance is

Xt = Xl

[
γ + sin( 2π3 − γ)

( 2π3 − γ) − sin( 2π3 − γ)

]
(9.21)

The evolution of Xt/Xl as a function of γ is illustrated in Fig. 9.6.
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9.4 Phase Control of a General Load

An analytic modelling of phase control for a general load is not straightforward. In
many cases, however, the load can be approximated by a reactance in series with an
inductance, as is the case in an induction machine (see Sect. 13.4.3).

http://dx.doi.org/10.1007/978-3-319-72730-1_13


Chapter 10
Cycloconverter

Abstract Variable speed operation of rotating fieldmachines requires a variable fre-
quency supply. Nowadays, a variable frequency supply is usually realised by means
of an inverter (see Chap. 11), which accomplishes this starting from a DC source
(i.e. a DC battery or the rectified grid voltage). The cycloconverter offers another
solution, however limited to rather low output frequencies. Nowadays, the cyclocon-
verter is (or was) mainly used for high output power (and low output frequencies). In
this chapter we review the operating principle, provide some examples of practical
three-phase circuits and discuss the main control methods. Important aspects are the
output voltage harmonic content and the input current harmonic content and reactive
power requirements.

10.1 Introduction

In contrast to an inverter, a cycloconverter starts directly from theACgrid voltage and
creates a variable frequency output voltage by combining suitable segments of the
input grid voltage. As will be shown below, it does this through the principle of the
controlled rectifier (with thyristors as switches). A consequence is that the attainable
output frequencies are limited to a fraction of the input frequency. In addition, much
reactive power is required (as is also the case with the controlled rectifier).

For many years, another kind of direct converter has been widely researched,
the matrix converter. In short, this converter can be envisaged as a matrix of nine
bidirectional switches (for three-phase input and three-phase output), where every
switchmay connect each input line to each output line. The switches can be turned on
and off (e.g. Mosfets or IGBTs) and the matrix converter is not subjected to the same
restrictions as the cycloconverter. Despite these advantages, industrial applications
of the matrix converter remain rare.

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_10
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Fig. 10.1 Basic
cycloconverter circuits
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10.2 Operating Principle

As explained in Chap.7, a controlled rectifier can convert the AC voltage into a
variable positive or negative output DC voltage, Vdα = Vdo · cosα. A reversal of the
current direction can also be realised bymeans of an anti-parallel or cross-connection.
In this way, a four-quadrant operation in the output V − I plane is obtained.

Consider the rectifier circuits in Fig. 10.1. Suppose that the delay angle is con-
trolled as α = ωot + kπ (with ωo � ωi where ωi is the input or grid angular
frequency). The average output voltage then becomes Vdα = Vdo · cosωot . It can
be proven that this is also generally the fundamental harmonic of the output voltage,
with a few rare exceptions.

If the delay angle is controlled as cosα = r · cosωot (with 0 < r ≤ 1), then the
amplitude of the output can be varied as well.

In nearly all practical cycloconverters, the output is also three-phase (or multi-
phase) to avoid DC and zero-sequence components in the input current. Figure10.2
illustrates the input and output voltages for a three-phase input and a three-phase out-
put; the delay angles for the three output phases are of course shifted by 2π/3 with
respect to each other. It is clear from the figure that the output voltages are composed
of appropriate segments of the three input voltages. The output voltage, however,
contains many higher harmonics in addition to the fundamental. This limits the ratio
of the output to the input frequency ωo/ωi (e.g. 30 to 60%). The input current will
contain many harmonics as well.

http://dx.doi.org/10.1007/978-3-319-72730-1_7
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output phase 1

output phase 2

output phase 3

Fig. 10.2 Input and output voltages for three-phase to three-phase bridge cycloconverter

Note that the average delay angle over one half period of one of the output phase
voltages is much larger than 0. Obviously, such a cycloconverter will need much
reactive power from the grid (as will be expounded in detail later on).

10.3 Examples of Some Practical Cycloconverter Circuits

Cycloconverters may be based on either wye or bridge circuits. In general, wye
circuits (e.g. Fig. 10.3)will result inmuch larger over-dimensioning of (the secondary
of) the transformer, as can be seen in the tables below the illustrations. On the other
hand, a three-phase bridge rectifierwill require either an isolated loador three separate
secondaries to avoid short circuits between the input phases (see Figs. 10.4 and 10.5).
The disadvantage of a non-isolated three-phase load is the large over-dimensioning
of the secondaries (see Figs. 10.4, 10.5 and 10.6).

It is intuitively clear that the higher the pulse number of the basic rectifier circuit,
the better the output waveform and the better the input current waveform. A six-
pulse wye rectifier (Fig. 7.25) will, however, require interphase transformers (IPT)
in order to have each switch conducting during 2π/3 (not π/3). Twelve-pulse circuits
are quite common for high-power applications (see Figs. 10.7 and 10.8).

In all circuits, the intergroup transformers (reactors) may be omitted if the short-
circuit currents of the anti-parallel rectifier circuits are mitigated (as explained in
Chap.7 and further on in Sect. 10.5.2).

http://dx.doi.org/10.1007/978-3-319-72730-1_7
http://dx.doi.org/10.1007/978-3-319-72730-1_7
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Fig. 10.3 Three-phase wye cycloconverter
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Fig. 10.4 Three-phase delta cycloconverter with isolated load
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Fig. 10.5 Three-phase delta cycloconverter with non-isolated load

10.4 Control Methods

As explained above, the principle of a cycloconverter is that appropriate segments
of the (sinusoidal) input voltage are switched to the output so as to obtain a fair
approximation of a sinusoidal output voltage, with the desired frequency and ampli-
tude. The choice of these segments is determined by the variable delay angle of the
converters. However, there are many different algorithms to obtain the proper delay
angles. Each of these methods has its own advantages and disadvantages (in terms
of e.g. harmonics, reactive power) as will be discussed below.

10.4.1 Sinusoidal Modulation (Open Loop)

Undoubtedly, the sinusoidal modulation is the most natural method to obtain the
delay angles. As explained above, for the positive converter the switching angles are
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Fig. 10.6 Six-phase wye cycloconverter

obtained by comparing the cosα curves (called ignition waves) with the sinusoidal
reference waves r ·cosωot . For the negative converter, the cosα′ waves must be com-
pared with the reference wave−r ·cosωot . This process can be somewhat simplified
by comparing cosα and− cosα′ with the same reference wave r ·cosωot , as is illus-
trated in Fig. 10.9. The switching instants are therefore given by the intersections of
the waves cosα = cos(ωi t − j 2πp ) and the reference waves r · cos(ωot − k 2π

n − ξ),
with j = (0 . . . p − 1) the input phase number, k = (0 . . . n − 1) the output phase
number and ξ the desired phase angle of the output reference phase (i.e. the phase
k = 0).

To demonstrate that the sinusoidal modulation is the most natural modulation
method, consider Fig. 10.10. In this figure, both the ignition waves and the reference
waves are referred to the same value as the intersection point of two subsequent sine
curves of the input, i.e. V̂ ·√3/2. A closer look at the ignition waves shows that these
ignition waves are equal to the average of two subsequent input sine waves. As a
result, the crossing of the referencewave and the ignitionwave, and thus the switching
to the next thyristor, occurs in such a way that the distance between the sinusoidal
reference wave and the input sine waves always remains minimal. Moreover, it can
be proven that the fundamental of the resulting output voltage is indeed equal1 to the
(sinusoidal) reference wave.

1Exception: a difference of a few percent for some discrete values of the input to output frequency.
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Fig. 10.7 Twelve-phase wye cycloconverter

Although sinusoidal modulation seems the most obvious modulation principle,
there are some disadvantages. A first disadvantage is the bad input power factor as
the average delay angle in half a period of the input is much larger than 0 (even
more so as the reduction factor is smaller). A second disadvantage is that the output
voltage contains a lot of harmonics, including sub-harmonics.2

10.4.2 Trapezoidal Modulation (Open Loop)

To address the poor power factor of sinusoidal modulation, trapezoidal modulation
may offer some opportunities. With a trapezoidal reference wave, the delay angles
remain small during a much longer interval. It is intuitively clear that the average
power factor will be improved.

2Although these are, strictly speaking, not real harmonics as their frequencies are not pure multiples
of the input frequency but combinations of input and output frequency.
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Fig. 10.8 Twelve-phase delta cycloconverter

However, the output voltage will contain much larger harmonics of lower order
(e.g. 3, 5, 7,...).3 Figure10.11 compares the output waveforms for voltage and current
of sinusoidal and trapezoidal modulation. It is clear that the output current is much
more distorted for the trapezoidal modulation.

Note that this figure also is interesting as it shows which converter operates at
each instant, as well as the rectifying or regenerating operation.

3For three-phase systems triple harmonics do not harm; then a trapezoidal waveform with limited
fifth harmonic will be chosen.
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Fig. 10.9 Sinusoidal modulation

10.4.3 Closed-Loop Control

To address the harmonics in the output, closed loop control with suppression of
disturbing harmonics is sometimes used. Some harmonics are, however, inherent to
the basic cycloconverter operating principle, and trying to eliminate these may lead
to instability.
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Fig. 10.11 Trapezoidal
modulation versus sinusoidal
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10.5 Cycloconverter Circuits with or Without Circulating
Current

10.5.1 Cycloconverters with Free Circulating Current

Although the average output voltages of the anti-parallel converters are equal, the
instantaneous voltages differ and unidirectional circulating currents will flow (see
also Sect. 7.3 inChap.7). Like the rectifierwith free circulating current, these currents
are to be limited by inserting inductances between the anti-parallel converters.

In an anti-parallel rectifier, the circulating currents are intermittent (pulsating) for
small delay angles.

However, in a cycloconverter the sinusoidal output current results in a second type
of circulating current, superposed on the pulsating circulating current components.
This phenomenon, called the self-induced circulating current, can be explained as
follows. Figure10.12 schematically represents the two anti-parallel switches of an
input phase. The two switches are connected by the intergroup transformer (IGT) to
limit the short-circuit currents. Suppose that for t ≤ 0 (only) the positive converter
switch is conducting. The load current can be assumed to be purely sinusoidal (due to
the filtering of the load). At t = 0, the load current reaches a maximum and the mmf
of the transformer at that instant isw·i p = w· Îo. From t = 0 on, the load current starts
decreasing. From t = 0+ on, di/dt becomes negative and induces a voltage in the
secondary of the IGT, so that the switch of the negative converter becomes positively
polarised and starts conducting. From then on, both switches conduct and both sides
of the IGT are connected to the same voltage (disregarding the instantaneous voltage
differences of the anti-parallel rectifiers). Thus, the voltage difference over the IGT is
zero and therefore themmf of the IGT is constant:w ·i p+w ·in = w · Îo. Moreover, as
i p − in = Îo ·sinωot , we obtain i p = Îo ·(1+sinωot)/2 and in = Îo ·(1−sinωot)/2.
This implies that from that instant on, both switches are continuously conducting
and there is a continuous circulating current. Except for one discrete instant in the
period of the load current, there is never more than an instantaneous tendency for the
switches to block.

Figure10.13 illustrates the instantaneous voltages of the positive and negative
converters, their average and difference, and the resulting ripple current superposed
on the continuous circulating current.

The most important advantage of the free circulating current is that the output
load voltage is much smoother4 than the separate voltages (see (c) in Fig. 10.13). A
second advantage is that a detection of the current direction is not required, as the
appropriate converter will take over the current automatically. The most important
disadvantage is that the thermal loading of the switches is much higher than in case
the circulating current is suppressed.

4Because it is the average of the voltages of the positive and negative converters.

http://dx.doi.org/10.1007/978-3-319-72730-1_7
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(a)

(b)

(c)

(d)

(e)

Fig. 10.12 Simplified circuit for circulating current

10.5.2 Cycloconverters Without Circulating Current

To avoid the additional thermal loading of the switches and the corresponding Joule
losses, often one of the converters is blocked, depending on the current direction.
However, in addition to the added complexity of sensors and logical circuits for
detecting the current direction, this operationwithout circulating current brings along
some other disadvantages as well. Because the output voltage is not smoothed as the
average of positive and negative converter, its harmonic content is much higher than
in the case of a free circulating current. The output load voltage and thus its harmonic
content in particular now also depend on the power factor of the load.
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Fig. 10.13 Voltages and currents with circulating current

The delay (and/or uncertainty as to the average current direction) when the con-
verters switch may also lead to discontinuous current and thus additional distortion
of the output voltage, especially for low resistive and capacitive loads as illustrated
in Figs. 10.14 and 10.15.

To mitigate some of these problems, modified circulating-current limiting algo-
rithms can be applied:

1. time-limited circulating current: it is often difficult to determine the exact instant
of reversal of the load current as the current is not smooth (due to the harmonics).
Therefore, both anti-parallel converters receive a gate signal during an interval
around the estimated reversal instant. The start of this interval can be estimated
in several ways: the interval is assumed to start when a first zero-crossing of the
current is detected or when the average current descends below a threshold value,
or it can also be deduced from the average currents in the two other phases, for
example.
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Fig. 10.14 Distortion due to discontinuous current, R-load
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Fig. 10.15 Distortion due to discontinuous current, C-load

2. amplitude-limited circulating current: both converters continuously receive a gate
signal, but only the converter whose current direction corresponds to the actual
average load current direction receives the normal gate signal; the other converter
receives a modified current-limiting gate signal so that the circulating current
is limited. When the average current direction changes, these gate signals are
reversed from one converter to the other.

3. closed-loop control of the voltage: this forces the converters to follow the desired
value.

10.6 Output Voltage Harmonic Content

The output voltage of a cycloconverter is not at all sinusoidal. Its harmonic content
mainly depends on the pulse number of the converters, the ratio of output to input
frequency, the reduction factor r of the output voltage, the control principle, free
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circulating current or suppressed circulating current and the power factor of the load
in case of operation without circulating current.

The first four factors determine the output of the separate positive and negative
converters. The last two determinewhich of these harmonics will appear in the output
voltage.

First, we discuss the harmonic content of the separate converters. We will limit
ourselves to sinusoidal modulation. In addition to the desired fundamental,

s · sin π/m

π/m
· V̂i · r · sinωot (10.1)

the output voltages vp and vn of the positive and negative converters contain the
following families of harmonic frequencies (for three-phase systems):

fh1 = |3(2k − 1) · fi ± 2l · fo| (10.2)

fh2 = |6k · fi ± (2l + 1) · fo| (10.3)

with 1 ≤ k ≤ ∞ and 0 ≤ l ≤ ∞. The pulse number may restrict the whole numbers
k and l. For a pulse number of six, only the harmonics fh2 exist; for a pulse number
of twelve, only those in fh2 with k even.

Which harmonics occur in the output voltage depends on whether a circulating
current is present and, if no circulating current is present, on the load power factor. In
case of a free circulating current, the output voltage is the average of the positive and
negative converter voltages: vo = (vp + vn)/2. As has been illustrated in Fig. 10.13,
the output voltage is much smoother. Indeed, many harmonics are cancelled out. Of
the harmonics in Eqs. 10.2 and 10.3, only a limited number remain in the output, as
now the inequalities 2l ≤ 3(2k − 1 + 1 and 2l + 1 ≤ 6k + 1 apply to the families
fh1 and fh2, respectively.
For a cycloconverter without circulating current, the harmonics are not cancelled

out. Moreover, the output voltage depends on the power factor of the load: vo =
vp · u p + vn · un where u p = 1 when the positive converter conducts, i.e. for
ϕo < ωot < ϕo + π and zero elsewhere; un = 1 when ϕo + π < ωot < ϕo + 2π
and zero elsewhere. The harmonics in the output thus depend on the power factor of
the load.

The effect of the circulating current on the harmonics is illustrated graphically
in Figs. 10.16 and 10.17. The y-axis shows harmonic frequencies while the x-axis
represents the fundamental output frequency. The ordinates of the lines starting at the
y-axis represent the harmonic frequencies as a function of the fundamental output
frequency (x-axis). Without circulating current each vertical line starting from a
point on the x-axis (the fundamental frequency) intersects a two-fold infinite number
of harmonic frequency lines. With circulating current, only a finite number of lines
start at each point on the y-axis, and thus the number of harmonic frequencies is
much reduced. Of course, the graph does not tell us anything about the amplitude of
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Fig. 10.16 Voltage harmonics - free circulating current

these harmonics. It is clear, however, that without circulating current, the potential
of an important harmonic with a frequency below the fundamental frequency (cf. the
dashed-line) is much greater.

To avoid important sub-harmonics (i.e. with an amplitude larger than 2.5% of the
fundamental), the ratio of output to input frequencies will usually be limited to 33%
for three-pulse converters, 50% for six-pulse converters, and 75% for twelve-pulse
converters (for r = 1 and with free circulating current).

10.7 Input Current Power Factor and Harmonic Content

A cycloconverter does not contain energy storage elements, and thus at each instant
input and output active power are equal. If the grid voltage can be considered as
sinusoidal, then only the fundamental input current is responsible for active power.
In addition to the fundamental, the output voltage also contains many harmonics.
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Fig. 10.17 Voltage harmonics - no circulating current

If the load is sufficiently inductive, the output current may be considered as almost
sinusoidal (i.e. due to the filtering of the load). We may then write

po(t) ≈ Po = 1

2
nV̂o Îo cosϕo (10.4)

with n as the number of output phases (only cycloconverters with multiphase output
are considered).

Therefore, the input active power, equal to Po, is also constant. This permits us to
derive the active component Îiw of the fundamental input current Îi

Îiw = n · r · s
π

· sin π

m
· Îo cosϕo (10.5)

Next to this active (fundamental) component, the input current also contains a reactive
component and higher harmonics.
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Fig. 10.18 Input power
factor for a cycloconverter
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The higher harmonics do not result in average active power as the supply (grid)
is assumed to be purely sinusoidal. However, they result in pulsating power and
therefore additional losses in the supply lines. The orders of these harmonics corre-
spond to the harmonics in the output voltage, Eqs. 10.2 and 10.3. Important orders
are the ’characteristic harmonics’, fi ± 6k fo for a three-phase output ( fi ± 2k fo for
a single-phase output).

More important is the input reactive component and the input reactive power. As
the operating principle of a cycloconverter is similar to that of a controlled rectifier,
a cycloconverter requires much reactive power: indeed, the average delay angle over
half a period of the input is much larger than 0 radians.

First, consider a cycloconverter with a purely resistive load. The output voltage is
V̂o, output current is Îo,R and output active power is Po = 1

2n · V̂o Îo,R . As the output
reactive power Qo = 0, output apparent power So = Po. The input active power is
of course equal to the output active power, Pi = Po, but because of the operating
principle of a cycloconverter there is a non-negligible input reactive power Qi,R :
Si,R = 1

2m · V̂i Îi,R > Pi = 1
2m · V̂i Îi,R · cosϕi .

Next, we connect an inductance in parallel with the output resistance. As a result,
the cycloconverter will have to provide the reactive power for this inductive loading,
Qo,L > 0. While the output active power remains the same, the output current and
apparent power have of course increased compared to the case with a purely resistive
load, So,L = 1

2n · V̂o Îo,L > Po = 1
2n · V̂o Îo,R . At the input as well, the active
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power is still the same but the current amplitude has increased as the currents in
a cycloconverter are directly transferred, Îi,L > Îi,R . The input reactive power has
therefore increased, Qi,L > Qi,R .

If, instead of an inductance, we connect a capacitor in parallel with the output
resistance, we arrive at the same conclusions. At the output the cycloconverter has
to absorb the reactive power provided by the capacitor load. The output current
amplitude and apparent power increase compared to the resistive case, So,C = 1

2n ·
V̂o Îo,C > Po = 1

2n · V̂o Îo,R . As output and input currents are directly related by the
cycloconverter, also the input current amplitude increases compared to the resistive
case, i.e. the reactive current and reactive power drained from the grid have increased.
It is important to note that in this case, reactive power is drawn from both sides.

Indeed, there is no such thing as conservation of reactive power. Reactive power
is only a mathematical concept5 to quantify the excess current required when the
load is not purely resistive.

Figure10.18 gives the input reactive power as a function of the output reactive
power. Either inductive or capacitive power at the output results in the same input
reactive power requirements. This is also independent of the direction of active power.
Note also that the greater reactive power demand is, the smaller the output voltage
will be, i.e. the smaller the reduction factor r (which can be explained by the larger
average delay angle with smaller r ).

5Only for linear time-invariant circuits is reactive power conserved.



Chapter 11
Inverter

Abstract Rectifiers convert AC into DC.With a controlled rectifier, energy can also
be transferred from theDC-side to theAC-side. However, theAC source (i.e. the grid)
always remains necessary as it is responsible for the commutation of the switches
(using the emf of the source or, put differently, using the reactive power of the
source, to switch off the thyristors). Controlled rectifiers can therefore not be used to
convert DC into AC with variable frequency. Nevertheless, the only energy-efficient
way to obtain variable speed operation of rotating field machines (i.e. induction
and synchronous machines) is by feeding them from a variable frequency source.
Inverters are able to convert DC into AC with variable frequency and, in most cases,
also variable amplitude. Contrary to controlled rectifiers, inverters require switches
that can be turned on and off at will at any instant. Nowadays, the switches used
in inverters are mainly Mosfets (for lower power), IGBTs or IGCTs (for very high
power).

11.1 Single-Phase Inverter

A first basic scheme for a single-phase inverter1 is illustrated in (a) in Fig. 11.1 (for
the time being, disregard the optional large inductance Ld ). When the upper switch is
“on” (conducting), the load gets the voltage+E; with the lower switch “on”, the load
sees the voltage −E, as is shown in the upper curve (A, a) in Fig. 11.2. By varying
the “on” times of upper and lower switches (always equal to each other, to achieve
symmetry), the frequency of the output can be varied at will. Note that, without the
optional inductance Ld , the upper and lower switches may never be “on” at the same
time.

However, this configuration requires a DC source with midpoint available. To
avoid the DC source with midpoint, the configuration (b) in Fig. 11.1 can be used. In
fact, the AC-side transformer now realises a load with a midpoint. Both configura-
tions permit stepwise waveforms with variable frequency as (A, a) in Fig. 11.2 (for

1In most figures the symbol used for these switches is that of a GTO, but this may also represent
any other switch.

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
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Fig. 11.2 A Voltage output for single phase inverter; B Combination of inverters

most (machine) applications only the fundamental is useful of course). However, the
amplitude cannot be varied.

The configuration (c) in Fig. 11.1 requires four switches but does not require a
source with midpoint. Moreover, connecting both left and right sides of the load to
the same AC terminal (i.e. 1 and 2’ on or 1’ and 2 on) gives the load a zero voltage
(see the lower waveform (A, b) in Fig. 11.2). In this way, the fundamental amplitude
can be varied, together with the frequency. Another possibility is a series connection
(using transformers) of two phase-delayed inverters (see (B) in Fig. 11.2).

However, a major disadvantage of the waveform (A, b) in Fig. 11.2 is that the
higher harmonics are not always reduced in the same proportion, and thus one may
end up with a relatively higher harmonic content (higher harmonics only lead to
extra losses). Pulse width modulation (PWM) is a better option to obtain a variable
fundamental amplitude, as is demonstrated in Sect. 11.3.

If a large inductance Ld is present, the inverter is called a current source inverter or
CSI (in contrast to a voltage source inverter or VSI, i.e. without the large inductance).
Although this is not a “real” current source, as the amplitude of the current still
depends on the AC load, the inverter now switches a current with virtually constant
amplitude to the AC side.
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Fig. 11.3 Three-phase
inverter scheme
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Table 11.1 Switching sequence for 120◦ conduction

Interval I II III IV V VI

+side 1 1 2 2 3 3

−side 2’ 3’ 3’ 1’ 1’ 2’

11.2 Three-Phase Six-Step Inverters

To obtain a three-phase inverter, three single-phase inverters could be combined.
However, the three-phase inverter in Fig. 11.3 is a better option as it requires a smaller
number of switches. Again, without the inductance Ld it is called a VSI and with a
large inductance Ld it is referred to as a CSI.

There are several possible switching sequences to obtain a three-phase symmetri-
cal output. However, two basic switching sequences are widely used because of the
favourable output voltage or current, i.e. 120◦ and 180◦ switching.

11.2.1 The 120◦ Switching Sequence

In the 120◦ switching sequence, each switch remains closed (conducting) during
120◦. Taking into account three-phase symmetry, we obtain the switching sequence
of Table11.1.

During each interval of 60◦, two AC output lines are connected to the DC source
while the third remains open. In case there is no inductance Ld , the connected output
lines have the voltage (potential difference) of+E or−E with respect to themidpoint
of the DC source, while the voltage of the third is zero (if the load is symmetrical
and passive). For the voltages of the output lines, this yields the upper three curves
in Fig. 11.4. These are also the phase voltages (vun , vvn , vwn) of the load if this load is
symmetrical and wye connected. The lower curve shows the line voltage vuw (equal
to the phase voltage for a delta-connected load).
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Fig. 11.4 Output voltages
for 120◦ switching
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However, if the load is not symmetrical, the voltage of the not-connected line is
not zero and takes on a value dependent on the degree of asymmetry of the load.
This implies that the 120◦ switching sequence is vulnerable to asymmetry of the
load if used with a DC voltage source. Another disadvantage of the 120◦ sequence
is that an inductive load will change the conduction length. With an inductive (or
capacitive) load, it becomes necessary to provide anti-parallel diodes (Fig. 11.5) to
allow the anti-parallel diode of the opposite switch to take over the current when a
switch is turned off (e.g. the anti-parallel diode of switch 1’ for turning off switch
1). However, this changes the conduction length, as illustrated in (a) in Fig. 11.5. In
extreme cases the conduction length becomes 180◦ (see (b) in Fig. 11.5).

When the DC source is a current source (e.g. a DC source with a large inductance
Ld ), these problems do not occur as it is the current itself that is switched off (and
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Table 11.2 180◦ switching table

Interval VI I II III IV V

+side 1 + 3 1 1 + 2 2 2 + 3 3

−side 2’ 2’ + 3’ 3’ 1’ + 3’ 1’ 1’ + 2’

the load voltage may lead or lag the current without any change to the conduction
length). Further, anti-parallel diodes are not required (and even unwanted) in this
case. Note that the commutation takes place between switches at the same DC side:
for example, switch 2 takes over the current from switch 1, similar to a controlled
rectifier.

The 120◦ sequence is therefore only used for current source inverters. A clear
advantage of this inverter scheme is that, at each instant, the current in each of the
output lines is unambiguously related (i.e. +I, −I or 0) to the input current.2

11.2.2 The 180◦ Switching Sequence

In the 180◦ switching sequence, each switch remains closed (conducting) during
180◦. Taking into account three-phase symmetry,we obtain the switching sequence of
Table11.2. Note that the commutation now occurs between upper and lower switches
of an output line (e.g. from interval I to interval II from switch 3 to switch 3’).

During each interval of 60◦, all three AC output lines are connected to the DC
source, i.e. two lines on one side and the third on the other side. If there is no
inductance Ld , the connected output lines have the voltage (potential difference) of
+E or −E with respect to the midpoint of the DC source (see the upper three curves
(vuo, vvo, vwo) in Fig. 11.6).With a DC voltage source the voltages of all output lines
are therefore uniquely determined at each instant. For a delta-connected load, we
obtain phase voltages like curve d for Vuv in the figure.

For a wye-connected load, the phase voltages of the load (vun , vvn , vwn) differ
somewhat from the voltages vuo, vvo, vwo because of the potential difference of the
star point with respect to the midpoint of the DC source. Indeed, for a symmetrical
load and without neutral current (the neutral is almost never connected), the voltage
between the neutral of the load and the midpoint of the source is given by curve e
in Fig. 11.6. This voltage only contains the zero-sequence components (i.e. the third
harmonics) of the voltages of curves a, b, c. This zero-sequence voltage is in fact
equal to 1/3rd of the sum of all three voltages of curves a, b and c. Subtracting this
zero-sequence voltage from the voltage curve vu0 yields the phase voltage vun of
curve f. Like the voltage for a delta-connected load (curve d), the voltage vun of

2In reality, pure DC current sources do not exist and the current value will depend on the load;
however, the shape is rectangular if the inductance is large enough.
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Fig. 11.6 Output voltages
for the 180◦ switching
sequence
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curve f is rid of the third harmonics. However, the fundamental harmonic of curve f
is the same as the fundamental of curve a, i.e. 4E/π.

If a large inductance Ld is present, the input behaves like a DC current source.
However, the division of this DC current between the two output lines that are con-
nected together to one of the poles of the DC source is not known as it depends on the
load. Therefore (and also for reasons of commutation), the 120◦ switching sequence
is preferably used for current source inverters, not the 180◦ switching sequence.

11.2.3 The Six-Step Voltage Source Inverter (VSI)

11.2.3.1 Basic Configuration

The basic configuration of a voltage source inverter or VSI is the one in Fig. 11.3 (but
without the inductance Ld ), using the 180◦ switching sequence and a DC voltage
source. Nowadays the switches3 are mostly IGBTs (or sometimes Mosfets for very
small power ratings and IGCTs or GTOs for very high power ratings), always with
anti-parallel diodes.

3In most figures, these switches are depicted as GTOs.
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The DC voltage source is either a battery or, for mains supply, a (controlled)
rectifier with a capacitor at the DC side. In the latter case, the combination of rectifier
and inverter (see Fig. 11.7) is also sometimes called VSI.

With the 180◦ switching sequence, we obtain output voltages as in Fig. 11.8. These
voltages are independent of the load, whether capacitive or inductive. Their funda-
mental amplitude is given by V̂1 = 4E/π = 2Vd/π, as mentioned before (where
2E = Vd ). However, now the nature of the load determines the shape of the current
in the DC link.

Curve (d) in Fig. 11.8 illustrates the DC link current for an inductive load. In
interval I, only switch T1 is conducting at the plus side of the source, and the current
id in the DC link therefore equals the then (lagging) AC current in phase U. In the
other intervals as well, the current id follows the current in the corresponding phase
and thus the shape of the current id is a repetition of this sine-wave segment. Note
that in each interval, first the anti-parallel diode is conducting and the switch takes
over when the current reverses sign (on condition that the gate signal for the switch
is still present). Commutation to the next interval requires the switch to be turned off
explicitly so that the diode of the opposite switch takes over (e.g. D2 from T

′
2 from

interval I to II). If the switch were not turned off explicitly, the DC source would
short circuit.

Curve (e) in Fig. 11.8 illustrates the DC link current for a capacitive load. In
interval I, only switch T1 is conducting at the plus side of the source and thus the
current id in theDC link equals the then (leading) AC current in phaseU. Similarly, in
the other intervals, the current id follows the current in the corresponding phases and
again we obtain the shape of the current id as a repetition of this sine-wave segment.
Note that now, in each interval, first the switch is conducting and the anti-parallel
diode takes over when the current reverses sign. For the commutation to the next
interval, switching on the opposite switch should, in principle, be sufficient to cause
the current to commutate to this side (e.g. T2 from D

′
2 from interval I to II). However,
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Fig. 11.8 VSI voltages and DC link current wave-shapes

an explicit turn-off signal will always be given to the previous switch (T2 in this
example) before turning on the next one (T

′
2), because otherwise a short circuit of

the DC source would ensue if the load was not (or not sufficiently) leading.
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Table 11.3 Instantaneous voltages and corresponding space vectors

Interval VI I II III IV V

Switches S1,S2’,S3 S1,S2’,S3’ S1,S2,S3’ S1’.S2,S3’ S1’,S2,S3 S1’,S2’,S3

van
2
3 E

4
3 E

2
3 E − 2

3 E − 4
3 E − 2

3 E

vbn − 4
3 E − 2

3 E
2
3 E

4
3 E

2
3 E − 2

3 E

vcn
2
3 E − 2

3 E − 4
3 E − 2

3 E
2
3 E

4
3 E

v − 4
3 E · a 4

3 E − 4
3 E · a2 4

3 E · a − 4
3 E

4
3 E · a2

V 6 V 1 V 2 V 3 V 4 V 5

11.2.3.2 Energy Reversal

In Fig. 11.8, the current id was in each case depicted with a mean value which is
positive. However, for a sufficiently lagging (d) or leading (e) load, the instantaneous
value may be negative and even the mean value of this DC link current could be
negative. A negative average value of the DC current implies that the energy flow
goes from the AC side to the DC side. This also means that for the VSI inverter,
energy reversal is quite feasible.

As theDC current reverses, theDC sourcemust be able to absorb this current. This
is not possible with a single rectifier (even a controlled one): energy reversal would
cause the capacitor to blow up. In small drives, a series connection of a dissipating
resistor and a switch may be connected in parallel with the DC link capacitor. For
large drives, usually an anti-parallel rectifier (for negative DC current) is utilised to
avoid large energy dissipation. When the DC source is a battery, no problems arise
as the battery will absorb the reversed current to charge the battery. It is mainly for
that reason that VSIs are preferred in electric cars.

11.2.3.3 Space Vector Representation

In each output fundamental period, the instantaneous voltages of a VSI take on
a different value during each of the six modes of 60◦ or π/3 (see Table11.3). The
instantaneous (line-to-neutral) three-phase voltages corresponding to these sixmodes
can also be represented by a space vector (with a = exp( j2π/3)), defined as follows:

v = 2

3
(van + a · vbn + a2 · vcn) (11.1)

Applying Eq.11.1 to the instantaneous voltages leads to the vectors in Table11.3.
Representing these vectors in the complex plane yields Fig. 11.9 (where in dashed

lines also the a, b, c axes of an imaginary rotating field machine are shown). In each
interval, the space vector remains constant during π/3 radians. At the commuta-
tion instants, the vector jumps over π/3 radians to the next vector (here, counter-
clockwise). Note that the length of each vector is equal to 4

3 E = 2
3Vdc (of course also
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Fig. 11.9 Space vector representation for a six-step VSI

the consequence of the well-chosen factor 2/3 in Eq.11.1). The fundamental of this
six-step voltage is 4

π
E and is thus somewhat smaller. This fundamental corresponds

to a circle with this same radius, i.e. this fundamental vector has a constant amplitude
and a constant rotational speed equal to the angular frequency of the sine. The radius
of this circle is larger than the radius of the circle inscribed into the hexagonal formed
by the six VSI-vectors. We will come back to this later on.

11.2.4 The Six-Step Current Source Inverter (CSI)

11.2.4.1 Basic Configuration

The basic configuration of a CSI is again the one in Fig. 11.10, but now the 120◦
switching sequence (and switches without anti-parallel diodes) is used.

The DC source can be a DC battery, or for mains supply a (controlled) rectifier; in
both cases the inductance Ld at the DC side must be large, approximating a current
source.

With the 120◦ switching sequence, we get output line currents as in Fig. 11.11. For
a given DC current Id the fundamental amplitude of the AC line currents is given by
Îu1 = 2

√
3Id/π (see curve (a)). When the load is delta-connected, the phase currents

are as in curve (b). Their fundamental amplitude is Îu�1 = 2Id/π.
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The shape of the input DC link voltage vd is determined by the load. On the one
hand, for an inductive load, we obtain a curve as (d) in Fig. 11.11. Its shape can be
derived by considering the fundamental voltage wave-shapes in (c). The fundamental
voltage vu is leading the line current iu and the line voltage vuv leads vu by 30◦. As
in interval I, the switches 1 and 2’ are conducting, and the DC link input voltage is
equal to that segment of the voltage vuv in this interval.

For a capacitive load, on the other hand, we get a vd waveform as in (f) which can
be derived from the lagging voltage vu depicted in (e).

As to commutation, the difference between inductive and capacitive load is crucial
for a CSI. In a CSI, commutation takes place between switches at the same side of
the DC source, for example between switch 1 and switch 2 at the end of the second
interval, at 150◦ or ωt = 5π/6. In the capacitive case, the voltage vuv is positive and
switching on switch 2 will automatically result in a decreasing current in phase U,
while the current in phase V increases and takes over the DC current. Thus, when
the load provides reactive energy, explicitly switching off the preceding switch is not
necessary. Therefore, GTOs or IGCTs or IGBTs are not required and thyristors can
be used. Note that this kind of commutation is completely identical to the one in a
controlled rectifier, where the grid provides the reactive energy for the commutation.
This kind of commutation in an inverter is commonly called load commutation.

When the load is inductive, the voltage vuv is negative at the end of the second
interval, and switch 1 should be switched off explicitly while switching on switch 2.
Thus this operation mode requires switches like GTOs or IGCTs.

The CSI with load commutation is mostly used with over-excited synchro-
nous machines as load (similar to classical grids that are supplied by synchronous
machines). It can also be used with induction machines as load, but then a capacitor
bank in parallel with the induction machine is required (even though this may give
rise to unwanted ringing). Nowadays, however, a VSI with a current control loop
will be preferred for basically inductive loads like induction machines, if a current
supply is required.



318 11 Inverter

(b)

(d)

(e)

i'U

iU

(

t

t

t

vd

t

t

t(a)
1-2' 1-3' 2-3' 2-1' 3-1' 3-2'

0

+Id

2/3Id
1/3Id

(c)

v =v -vUV U V

vU

vd

vU

vUV

vU

vUV

vU

vUV

(f)

vd

Fig. 11.11 CSI currents and DC link voltage wave-shapes

As a final remark, observe that, in contrast with a VSI, an insufficient capacitive
load in a CSI will not result in a short circuit of the DC source because the large
inductance Ld will limit the current.
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11.2.4.2 Energy Reversal

Like for VSIs, energy reversal is not at all a problem for the inverter part of a CSI.
The mean value of vd may as well be negative, meaning that the energy may flow
from the AC side to the DC side as well. Again, the limitation will be the DC source.
A DC battery will not accept a reversed polarity of the voltage vd and a polarity
reversal at the DC side will be necessary. However, with a controlled rectifier as DC
source, energy flow reversal is not a problem at all. It suffices to use a delay angle α
greater than 90◦ to match the negative voltage vd . Therefore, CSIs with a controlled
rectifier are often applied for large industrial drives where energy recuperation is
important or essential.

11.3 PWM Inverters

11.3.1 Principle: Single-Phase PWM Inverters

For variable frequency operation of AC (rotating field) electrical drives, it is desirable
to vary the voltage amplitude with (and in proportion to) the frequency so as to keep
the flux constant, if possible at its maximum (i.e. rated) value. Indeed, only in this
way canmaximum torque (or power) be produced, given themaximum current which
is limited by the section of the machine winding conductors.

The method to achieve a variable voltage amplitude, as illustrated in (A, b) in
Fig. 11.2, suffers from the fact that the higher harmonics do not always decrease in
the same proportion as the fundamental. Also, the frequencies of the 3rd, 5th, 7th . . .

harmonics are too low to be adequately filtered out by the (inductive) load.
Pulse Width Modulation (PWM) offers an effective solution to these problems.

The idea is to replace the single positive (or negative) pulse - and the zero interval
for the case of (A, b) in Fig. 11.2 - in each half period with an adequately chosen
series of smaller pulses and zeros. In this way the right and adjustable fundamental
amplitude is obtained, as well as a shift of the harmonics to much higher orders.

Dependent on the hardware configuration, two output waveforms can be distin-
guished, the bipolar one ((a) in Figs. 11.12 and 11.13), and the unipolar one ((b)
in Figs. 11.12 and 11.13). In the bipolar type, the output switches between +E and
−E, which therefore results in rather severe power pulsations. In the unipolar type,
the output switches between +E and 0 (or −E and 0 for the negative half cycle),
thus reducing power pulsations in comparison with the bipolar type. However, the
required hardware is somewhat more complex (and hence more expensive).

The classical (but not the only) way to obtain the pulse widths is to use the
intersections of a sinusoidal (or, in a simplified version, a rectangular) reference
wave of the desired fundamental amplitude with a high frequency carrier wave (see
Fig. 11.14).
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It can be shown (using Bessel’s functions, see Ref. [12]) that for a sinusoidal
reference wave, the output fundamental amplitude is exactly proportional to the
amplitude of the reference wave (at least as long as the amplitude modulation index
ma , i.e. the ratio between the amplitude of the reference wave and the amplitude
of the carrier, is less than or equal to one). The harmonics4 in the output depend
on the frequencies of the desired fundamental and of the carrier wave, and to a
minor degree also on the shape of the carrier wave (i.e. triangular or sawtooth).
For a sawtooth carrier wave, more harmonics are present in the output, as will be
elaborated further in Sect. 11.3.3. When the frequency modulation indexm f (i.e. the
ratio between the frequencyof the carrier fc and the frequency f of the desired output)
is sufficiently high (e.g. >10), one may assume that pure harmonics of the desired
output fundamental are absent and that only carrier harmonics and its side-bands (of

4As explained further on, these are not pure harmonics.
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the desired output frequency and its multiples) will be present. In the starting days of
power electronics development, the switching frequencies of the available switches
(thyristors with commutation circuits or bipolar transistors) were rather low so that
the frequency modulation index was limited. At that time, an often heard and applied
requirement was that m f should be a whole number (i.e. synchronous PWM), and,
depending on bipolar or unipolar hardware, odd or even. Nowadays asynchronous
PWMismostly used,with rather highm f so that pure lower harmonics of the required
fundamental are absent (see Sect. 11.3.3 for further details).

11.3.2 Three-Phase PWM Inverters

The principle for obtaining PWM in three-phase inverters is basically the same as for
single-phase inverters. The referencewaves for the three phases are displaced by 120◦
and thus the output fundamental will consist of symmetrical three-phase sinusoids.
Similar conclusions as for the single-phase inverter hold true for the three-phase
inverter:
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• the output fundamental amplitude is proportional to the amplitude of the reference
wave if the amplitude modulation index ma is less than 1

• if the frequency modulation index mi is large enough, pure harmonics of the
fundamental will be absent.

Zero output voltage is obtained either when all upper switches are connected to the
upper or positive DC rail, or when all lower switches are connected to the lower or
negative DC rail.

As we have seen before, the maximum instantaneous output wye voltage ampli-
tude for a six-step inverter is 4E/3, with a somewhat smaller corresponding funda-
mental amplitude 4E/π ≈ 1.274E . When we limit the amplitude modulation index
ma of the PWM to one (so that no output pulses are lost, to avoid compromising
the quality of the output voltage), the maximum fundamental wye output voltage
is only E. To obtain higher fundamental output voltages, ma has to be increased
beyond one, but then pulses get lost and the lower harmonics of the fundamental
reappear (see Fig. 11.15). In addition, the fundamental output voltage is no longer
proportional to the amplitude modulation index. In Sect. 11.3.3.3, a method will be
discussed to increase the fundamental output voltage somewhat further beyond E,
without sacrificing the quality of the output voltage.

Similarly to the single-phase PWM, one used to be limited to low switching fre-
quencies and thus the frequencymodulation indexwas limited. As such, synchronous
PWMwas nearly always used and for the frequency modulation index, odd numbers
as a multiple of three were used. The nowadays much higher switching frequencies
allow us to use asynchronous PWM without any pernicious consequences for the
quality of the output.

11.3.3 PWMModulation Principles

This section will describe the modulation basics for single-phase and three-phase
PWM inverters in detail. We start from the basic half-bridge converter and then
apply the results for the commonly used full-bridge single-phase and three-phase
inverters. There are in fact four methods to obtain the best switching instants for the
pulses and zeros:
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1. Optimal PWM: the switching instants are calculated (real-time or tabulated) so
as to obtain an ‘optimal’ output waveform.

2. Switching on the intersections of a sinusoidal reference wave (with the required
frequency and amplitude) and a high-frequency carrier wave (naturally sampled
PWM).

3. Switching on the intersections of a sampled sinusoidal reference wave (with the
required frequency and amplitude) and a high-frequency carrier wave (regular
sampled PWM).

4. Switching so that over a period of the carrier wave, the time integral of the output
waveform equals that of the reference wave (direct PWM).5

In what follows, we will concentrate mainly on methods 2 and 3 (i.e. naturally
sampled PWM and regular sampled PWM).

11.3.3.1 Single-Phase Half-Bridge Inverter

Naturally Sampled PWM

Consider the single-phase half-bridge inverter in Fig. 11.16.
The basic principle is to obtain the switching instances by comparing the carrier

wave with a pure sinusoidal reference wave of the required amplitude (both in per-
unit, for example).

For a (trailing edge) sawtooth carrier, the output voltage is illustrated in Fig. 11.17.
With this half-bridge, the output voltage switches between +E and −E, i.e. a bipolar
output. The frequency spectrum of this output voltage is shown in Fig. 11.18. The
output consists of:

• the required output fundamental, E · M · cosωot
• the carrier wave harmonic components, cosmωct (for m = 1 . . . ∞)

5This can be considered as a special case of ‘optimal PWM’.
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• the side-bands of the carrier harmonics, cos(mωct − nωot) (for m = 1 . . . ∞ and
n = −∞ . . . ∞; n �= 0).

The amplitudes of the carrier wave harmonic components and its side-bands can
be expressed as a function of the Bessel functions of order 0 and n, Jo(mπM)

and Jn(mπM). Note that for the general case with ωc/ωo �= whole number , pure
harmonics of the reference wave will be absent.

Instead of a sawtooth carrier, a triangular carrier wave is frequently used (sine-
triangle PWM or double edge naturally sampled PWM). Fourier analysis of the
resulting output shows similar components as above for the sawtooth carrier, with as
additional restrictions:

• even harmonics of the carrier are absent (i.e. only those with m = odd appear)
• side-bands of the carrier with m + n = even are absent (i.e. only those with m +
n = odd appear).

Nevertheless, the total harmonic content for triangle modulation is not that much
lower than for sawtooth modulation. Indeed, the most important harmonic compo-
nent is still the one with carrier frequency. For polyphase inverters, in contrast, the
triangular modulation results in a smaller harmonic content (see Sect. 11.3.3.3).

Regular Sampled PWM

The naturally sampled PWMdoes not lend itself to a digital implementation, because
the intersection of the reference sinusoid and the carrier is defined by a transcen-
dent equation and is complex to calculate. This can be solved by replacing the sine
reference with a sampled sine (‘sample and hold’), sampled at a sufficiently high
frequency. Ideally, the sampling should be synchronised with the carrier so that the
level changes of the sampled waveform occur at the positive and/or negative peaks
of the carrier (and not while comparing the sampled reference with the carrier). For
a trailing edge sawtooth carrier, for example, the sampling should occur at the end of
the carrier period, when the carrier wave falls. For a triangular carrier, the sampling
can be symmetrical, where the sampled reference is taken at the positive or negative
peaks of the carrier, or asymmetrical, where the reference is re-sampled at both the
negative and positive peaks of the carrier.

Figure11.19 illustrates these three alternatives. We note that there is a delay of
half a carrier period for the sawtooth or symmetrically regular sampled PWM and of
one quarter of this carrier period for an asymmetrically regular sampled PWM. The
delay can be compensated by leading the reference wave by half or one quarter of
the carrier period, respectively.

The harmonic analysis for a sawtooth regular sampled PWM yields:

• an approximation for the required output fundamental, E · M · cosωot
• harmonics of the required output fundamental, cos nωot
• the carrier wave harmonic components, cosmωct (for m = 1 . . . ∞)
• the side-bands of the carrier harmonics, cos(mωct − nωot) (for m = 1 . . . ∞ and
n = −∞ . . . ∞; n �= 0).
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Fig. 11.19 Regular sampled PWM modulation principles

Compared to the naturally sampled sinusoidal PWM, we can also find harmonics of
the fundamental. However, their amplitude is limited if the frequency modulation
index is sufficiently high. Another difference is that now the side-bands of the carrier
frequency harmonics are not completely symmetrical (i.e. the amplitudes of the side-
bands mωct − nωot and mωct + nωot are not equal). In addition, the fundamental
output amplitude is not exactly equal to E · M but the difference is minimal if fc is
large:

2E

π
· J1(πM(ωo/ωc))

(ωo/ωc)
≈ E · M (11.2)

Already for fc = 10 and M = 1, the difference is less than 1%. Figure11.20 shows
the harmonic spectrum for fc = 21 and M = 0.9.
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Fig. 11.20 Spectrum of
half-bridge PWM inverter
with regular sampled
sawtooth carrier
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Fig. 11.21 Spectrum for
half-bridge inverter with
symmetrical regular sampled
PWM
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Figure11.21 shows the spectrum for a symmetrical sampled PWM for fc = 21
and M = 0.9. Compared to the previous case of a sawtooth regular sampled PWM,
the approximation for the fundamental is still slightly improved, harmonics of the
fundamental are significantly decreased in amplitude, the even carrier frequency
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Fig. 11.22 Spectrum for
half-bridge inverter with
asymmetrical regular
sampled PWM
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harmonics are absent, and the amplitudes of the carrier side-bands with m + n =
even have significantly lower values.

For an asymmetrical regular sampled PWM (Fig. 11.22) the result of a harmonic
analysis is even better:

• even harmonics of the fundamental are absent
• all side-bands with m + n = even are absent.

In fact, it is intuitively clear that this asymmetrical regular sampled PWM comes
down to a sampling with twice the carrier frequency.

11.3.3.2 Single-Phase Full-Bridge Inverter

The half-bridge inverter is not very practical for a single-phase inverter, as it requires
aDC sourcewith accessible centre-tap point. Therefore, single-phase inverters nearly
always make use of a full bridge.

The single-phase full-bridge inverter consists of two half-bridge inverters, as
shown in Fig. 11.23. With this configuration the actual output may be switched
between +E , 0 and −E (where Vdc = 2E). The switches of the two legs are con-
trolled in a complementary pattern. The actual output voltage waveform (and its
quality) will, however, depend on the actual control scheme as shown below.
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Fig. 11.23 Single-phase full-bridge PWM inverter

Modulation with Three Levels

In the example in Fig. 11.23, both legsmake use of a commoncarrier (here a triangular
carrier), but of 180◦ opposed reference waves. The result of this modulation scheme
is shown in Fig. 11.24.

Legs a and b are switched between the + and − rails of the DC source, not
simultaneously as these switching instants depend on the comparison between the
(common) carrier and the different (complementary) sinusoidal reference waves.
While legs a and b are switched between +E and −E, the resulting (load) output
voltage waveform contains pulses 2E and −2E with intervals of zero voltage, i.e. a
unipolar waveform, without the need for a DC source with centre-tap. The advantage
of such a unipolar output waveform is that the harmonic content is much lower.
Figure11.25 illustrates this for a double edge naturally sampled PWM: (a) for leg a,
Va ; (b) for both legs, Vab.

The harmonic content for each leg follows from the analysis in the previous
paragraph, i.e. the fundamental E · M · cosωot or E · M · cos(ωot − π) respectively,
the odd harmonics of the carrier and the side-bands of the carrier with m + n =
odd. In the output voltage Vab, we get as fundamental 2E · M · cosωot and all odd
harmonics (m odd) of the carrier disappear, as well as all their side-bands (n even).
Thus only side-bands with m even and n odd remain. As illustrated in the expanded
switching detail for a carrier period in Fig. 11.24, (cf. the lower sketch), the switching
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Fig. 11.24 Three-level modulation for a single-phase full-bridge naturally sampled PWM inverter
with triangular carrier
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Fig. 11.25 Spectra for three-level single-phase full-bridge naturally sampled PWM inverter with
triangular carrier

frequency for the output voltage is effectively doubled and in each half period the
non-zero pulse is located approximately in the centre of this half period.

The same principle can also be used for regular sampled PWM (symmetrical
or asymmetrical), sawtooth carrier regular sampled PWM, and other PWMs. See
Ref. [12] for further details.

Remarks:

1. There are also other modulation methods to obtain a three-level output. The
previous one belongs to the category of ‘continuous PWM’. In discontinuous
PWM methods, only one leg is PWM controlled while the other is connected to
the + or − DC rail during half a period (see Ref. [12]).

2. All PWM methods result in (exactly or approximately) the same fundamental
(corresponding with the reference). However, the higher harmonics may differ
considerably, dependent on the control scheme. All modulation methods (with
the same fc) result in the same width of the pulse in a period (or half a period)
of the carrier: this corresponds to the same value of the time integral of this pulse
as the time integral of the reference wave in the same time span. However, they
differ as to the position of the pulse within this period or (half the period). For
the case studied above, the pulse is placed approximately in the centre of each
half period (and exactly in the centre for a sampled PWM). Modulation methods
which place the pulses closer to the centre have a superior harmonic performance
than those which do not centre the pulses. Moving the pulse to the beginning or
end of the period results in a worse harmonic performance.
For example, if we move the pulse in the first half carrier interval to the end and
the one in the second half carrier interval to the beginning (Fig. 11.26), we get one
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Fig. 11.26 Pulse placement
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large pulse with half the original harmonic frequency and a higher amplitude. The
cost of the ‘optimal’ placement is that both legsmust be independentlymodulated,
which is usually a more expensive implementation than other simplifiedmethods.

3. For an inverterwith two switching legs as in the case studied above, the elimination
of a large part of the harmonics essentially depends on an accurate control of the
two legs. If, for example, the carriers for both legs are not exactly the same or
if there is a larger delay in the control of one leg, the elimination will not be
complete.

Modulation with Two Levels

An inverterwith two levels canbeobtained for a full-bridge schemewith two switched
legs, if for the switching function of one leg, the opposite wave is chosen as for the
other leg (see Fig. 11.27).

The output voltage now switches between+2E and−2E in each switching period,
without zero states (see Fig. 11.27). From the detail in one carrier period, we note
that the pulses in each half period are shifted to the beginning or the end. The result is
one large pulse in a carrier period and the effective switching frequency is fc, instead
of 2 fc. Although the control is less complicated, the quality of the output voltage is
inferior compared to the three-level inverter as the harmonic content is much higher.

11.3.3.3 Three-Phase PWM Voltage Source Inverter

The topology of a three-phase PWM voltage source inverter is the same as that for
a six-step voltage source inverter (see Fig. 11.28).
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Fig. 11.27 Two-levelmodulation for single-phase PWM(naturally sampledwith triangular carrier)

Themodulation principles are essentially the same as for the single-phase inverter,
but the three-phase output connection makes the output fundamental and harmonic
voltages somewhat distinct. Moreover, the widespread application of three-phase
PWM inverters justifies a separate discussion. In a subsequent section, the “space
vector modulation” (SVM) will be discussed. It is shown that the output of SVM is
equivalent to that of a classical PWM.
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Fig. 11.28 Three-phase full-bridge VSI

Three-Phase Modulation with Sinusoidal Reference

Figure11.29 shows the modulation for a three-phase inverter using a sinusoidal ref-
erence and a triangular carrier. As for the single-phase three-level inverter, a common
carrier is used for the three phases. The reference sine waves are now of course 120◦
shifted with respect to each other. As is clear from Fig. 11.29, the resulting output
line-to-line voltages are unipolar, i.e. switching of these voltages occurs between
+2E and 0 or −2E and 0.

The fundamental and higher harmonics of the line-to-line voltagesmay be derived
from the harmonic analysis of the corresponding half-bridge inverter. For a naturally
sampled three-phase PWM, we therefore obtain:

• the required output fundamental,
√
3E · M · cosωot

• side-bands of the carrier harmonics, cos(mωct − nωot) (form = 1 . . . ∞ and n =
−∞ . . . + ∞; n �= 0; and n �= 3k and only those with n + m = odd).

Thus, compared to the single-phase full-bridge PWM inverter, for this naturally
sampled PWM the fundamental line-to-line voltages have a reduced amplitude (

√
3E

instead of 2E if M ≤ 1). Not all side-bands around the odd multiples of the carrier
frequency are absent, but only the third side-bands andmultiples are absent (including
thosewith n = 0, i.e. the pure carrier harmonics). The side-bandswithm + n = even
are absent as these donot appear for the half-bridge inverter. Thus, themost significant
harmonics are those with frequencies ωc ± 2ωo, ωc ± 4ωo, 2ωc ± ωo, 2ωc ± 5ωo, . . .
(not 2ωc ± 3ωo as these are cancelled out in the line-to-line voltages). It must be
remarked, however, that the THD (‘total harmonic distortion’),

T HD =
√
V 2
rms − V 2

1rms

V 2
1rms
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Fig. 11.29 Naturally sampled three-phase PWM inverter with triangular carrier

of a three-phase inverter with three levels is somewhat worse than that of the single-
phase inverter with three levels, as the side-bands around the odd carrier harmonics
do not disappear in the output.

Three-Phase Modulation with Regular Sampled Sinusoidal Reference

A three-phase VSI can of course also be modulated using a sampled PWM. The
carrier can be a sawtooth or a triangular carrier, where for the latter a symmetrical
or asymmetrical sampling may be used.

Like for the single-phase inverter, the best results are obtained with an asymmet-
rical regular sampled PWM (thus a triangular carrier). The harmonic analysis shows
that the side-bandswithm + n = even are absent, due to the asymmetrical sampling.
The side-bands m + 2n, however, do not disappear for the line-to-line voltages (as
was the case for the single-phase full-bridge inverter), but the side-bands m + 3n as
well as the triple harmonics of the fundamental are now cancelled out in the line-
to-line voltages. The fundamental output line-to-line voltage is not exactly equal to
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Fig. 11.30 Spectra for three-phase VSI

√
3E · M , but for sufficiently large values of the frequency modulation index, the

difference is small (less than 1% form f > 10). If the amplitude modulation index is
restricted to values M = ma ≤ 1, the maximum fundamental output voltage is thus√
3E .
For a symmetrical regular sampled PWM, the harmonic content is much higher.

The output contains for example a second harmonic of the fundamental, as well as
more side-bands of the carrier harmonics. For a sawtooth sampled PWM, the second
harmonic is rather high (6% of the fundamental) and this modulation principle is not
at all advised for three-phase inverters (unless m f is very large).

Figure11.30 compares the spectra of three phase inverters for (a) a naturally
sampled PWM with triangular carrier, (b) an asymmetrical regular sampled PWM,
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Fig. 11.31 Injection of a third harmonic

(c) a symmetrical regular sampled PWM, and (d) a regular sampled PWM with
sawtooth carrier. It is clear that (a) and (b) yield by far the best results, while (c) and
in particular (d) exhibit much worse harmonic behaviour.

Third Harmonic Injection

For single-phase full-bridge inverters, the maximum fundamental output voltage is
2E if the amplitude modulation index is restricted to M ≤ 1. Letting M > 1 makes
it possible to attain the fundamental voltage 4

π
2E for a block inverter but to the

detriment of the harmonic content.
For three-phase inverters, the maximum fundamental line-to-line output voltage

is
√
3E (or E for the line-to-neutral voltage) if the amplitude modulation index is

restricted to M ≤ 1. Letting M > 1 permits attaining the fundamental line-to-line
voltage 4

π

√
3E (or 4

π
E for the line-to-neutral voltage) of a six-step inverter, but to

the detriment of the harmonic content. The cause is that an amplitude modulation
index larger than 1 results in pulses falling away and being replaced by wider blocks.
Lower order harmonics then reappear. For three-phase inverters, a way to solve this
is to add a third harmonic to the sine reference wave in such a way that the maximum
value of the combined reference wave does not exceed unity (while the sine reference
may have an amplitude larger than unity, see Fig. 11.31).

In this way, the maximum fundamental line-to-line voltage may attain 2E , or
(2/

√
3)E for the line-to-neutral voltage. This is exactly equal to the radius of the

circle inscribed in the hexagonal of the six non-zero vectors of a six-step inverter
(see Fig. 11.9). Because the sine reference and the fundamental output voltage now
have a higher amplitude for about the same harmonic content, the THD turns out
to be lower than for M ≤ 1. Of course, the maximum fundamental output voltage
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(2/
√
3)E≈ 1.156E is still lower than the fundamental for a six-step inverter, i.e.

4
π
E ≈ 1.273E . The third harmonics in the output (which stem from the third har-

monic in the reference wave) do not have any detrimental effect as they are cancelled
out for a delta-connected load, or do not result in third-harmonic current in a wye
connected load (as the neutral of a wye inverter load will rarely be connected).

The optimal6 amplitude of the third harmonic is equal to 1/6th of the fundamental
reference amplitude, i.e. γ = M3/M = 1/6. For γ = 1/6 the maximum value of M
for which no pulses disappear (i.e. the maximum value of the combined reference
wave just attains 1) is equal to M = 2/

√
3 = 1.156.

Thus, by injection of a third harmonic in the reference wave, the fundamental out-
put voltage can attain the value corresponding to the inscribed circle in the hexagonal
of the six-step VSI (see Fig. 11.9), without reducing the quality of the output voltage.

6This can be calculated as follows: with a third harmonic added to the sine reference, the combined
reference is vre f = E · M[cosωot + γ cos 3ωot]. Deriving this expression yields that themaximum

of this voltage occurs for cosωoto =
√

3γ−1
12γ . Substituting this in the reference then yields for the

maximum value vre f,max = E · M[ 13 (1 − 3γ)
√
1 − 1

3γ ]. This maximum value has a minimum for

γ = − 1
6 and the minimum is (

√
3/2) · E · M . Thus without losing pulses, Mmay increase to 2/

√
3.
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If a further increase of the fundamental is required, M can be increased, but then
pulses will be lost and lower harmonics will reappear. In addition, the output voltage
is no longer proportional to M, as is illustrated in Fig. 11.32 for a PWMwithout third
harmonic.

11.4 Space Vector Modulation

From the discussion in the previous section, it became clear that nearly all natural
and regular sampled PWM schemes result in the same fundamental output voltage.
However, they differ as to the higher harmonic content in the output.We also observed
that this voltage quality is narrowly related to the position of the PWM pulses within
the switching interval (carrier period or half the carrier period).

Instead of determining the width and the placement of the pulses by comparing
a reference wave with a carrier, the pulse widths for each switching interval could
also be determined in such a way that the time integral of the pulse equals the time
integral of the desired output sine (in that interval), i.e. “direct PWM”. The position
of the pulse within the interval could then be used to reduce the harmonic content.

Space Vector Modulation (SVM) relies on the eight possible combinations for the
six switches of a VSI: six non-zero or active voltage vectors and two zero voltage
vectors. The active vectors correspond to the six modes of a six-step VSI (see also
Fig. 11.9 and Table11.3). The two zero voltage vectors are obtained if either all upper
switches are closed on the positive DC rail, or if all lower switches are closed on the
negative DC rail (in both cases, the three output voltages are zero).

V2

V1

V3

V4

V6V5

(S ,S’ ,S’ )1 2 3

(S ,S ,S’)1 2 3(S’,S ,S’)1 2 3

(S’,S ,S )1 2 3

(S’,S’,S )1 2 3 (S ,S’,S )1 2 3
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Vo(S’,S’ ,S’ )1 2 3 q-axis
(real axis)

V7(S ,S ,S )1 2 3

Fig. 11.33 The eight vectors of a VSI



340 11 Inverter

Fig. 11.34 Space vector
modulation principle
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These eight ‘stationary’ vectors are represented in Fig. 11.33. The aim is to supply
a three-phase loadwith a symmetrical sinusoidal three-phase voltage, i.e. correspond-
ing with a rotating vector V · exp( jωt) = V · exp( jθ).

We will try to approximate this ideal rotating vector as follows. The fundamental
period T = 2π/ω is divided into a sufficiently large number (usually denoted 2n) of
intervals (also called sub-periods) ΔT/2 = T/2n. In each of these intervals, we will
approximate the ‘average’ voltage vector in the interval (e.g. interval m)with a vector
with amplitude V and instantaneous phase angle θ = ω · m · ΔT/2 = ω · m · T/2n,
and this for all m, 0 ≤ m ≤ 2n.

Consider for example the vector V in the first sector in Fig. 11.34. To approximate
V in themth interval centred around it, we make use of the active vectors V 1 and V 2.
By switching on V 1 and V 2 during fractionsα1 = T1/(ΔT/2) andα2 = T2/(ΔT/2),
respectively, of the switching interval ΔT/2, we may write

V = V · exp( jθ) = α1 · V 1 + α2 · V 2 (11.3)

or
(ΔT/2)V = T1 · V 1 + T2 · V 2 (11.4)

or
(ΔT/2)V · exp( jθ) = T1 · Vm · exp( j0) + T2 · Vm · exp( jπ/3) (11.5)

with Vm = (4/3)E the amplitude of the voltage vectors V 1 . . . V 6. The on-times T1
and T2 are thus given by:

T1 = α1 · ΔT/2 = V · sin(π/3 − θ)

Vm · sin π/3
· ΔT/2 (11.6)

T2 = α2 · ΔT/2 = V · sin θ

Vm · sin π/3
· ΔT/2 (11.7)
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As 0 ≤ (T1, T2) ≤ ΔT/2, the maximum amplitude V is indeed Vm and in the first
sector this can only occur for θ = 0 or θ = π/3.

Further, as 0 ≤ T1 + T2 ≤ ΔT/2, the maximum value for T1 + T2 in the first
sector occurs for θ = π/6 and the corresponding maximum value for V is given by
Vmax = Vm sin π/3 = (2/

√
3)E . Thus for SVMthemaximum line-to-neutral voltage

is (2/
√
3)E (or 2E for the maximum line-to-line voltage). This corresponds to the

radius of the circle inscribed inside the hexagonal of the voltages of a VSI, and this
is also exactly the maximum voltage for a natural or regular sampled PWM with
optimal third harmonic injection.

In general, however, T1 + T2 < ΔT/2 and the remaining time in the interval
ΔT/2 must be filled by zero vectors, V o or V 7. The choice between V o or V 7 is such
that the switching is reduced as much as possible. For example, if switching to V o
requires changing one switch and switching to V 7 requires changing two switches,
then V o will be selected. The active pulses (or vectors) will also be centred in each
switching interval and the remaining time will be divided between V o and V 7. For
an interval in the sector 0 ≤ θ ≤ π/3, the resulting sequence will be V o → V 1 →
V 2 → V 7 → V 7 → V 2 → V 1 → V o (see Fig. 11.35).
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This sequence is exactly the same as for the asymmetrical sampled PWM (trian-
gular carrier with sampling on both rising and descending sides), except that, in the
classical PWM, the times for V o and V 7 are not necessarily equally divided (as these
are determined by the algorithm without any additional degree of freedom).

Remarks:

• the reversal of the sequence, i.e. (V o, V 7, V 7,V o) instead of (V o, V 7, V o,V 7), is
not necessary, but without it the SVM becomes equivalent to a regular sampled
sawtooth PWM (with a somewhat worse harmonic content).

• if the on-times T1 and T2 are not calculated every ΔT/2 but only every �T , SVM
becomes equivalent to a symmetrical regular sampled PWM.

• it can be proven that SVM inherently adds third harmonics, as mentioned above.



Part III
Electrical Drives and Special Electric

Machines



Chapter 12
DC Commutator Motor Drives

Abstract In the past, the DC machine was the only motor that could provide
easy speed control. Nowadays, since the advent of power electronics, rotating field
machines offer cheaper and more powerful possibilities for speed control. Neverthe-
less, in older industrial installations and environments, DC motor drives may still
be used. As a result, and also because of their excellent characteristics, it remains
instructive to shortly review the possibilities of DC machines for speed control,
including braking in particular.

12.1 Basic Characteristics of DC Motors

In Chap.2, we already discussed the basic characteristics of separately, shunt and
series-excited DC motors in detail. Basically, there are two types of torque-speed
characteristics:

• the (almost) linear torque-speed characteristic of separate and shunt motors
• the (almost) hyperbolic torque-speed characteristic of series-excited motors

By combining series and parallel excitationwindings (i.e. compound), wemay obtain
intermediate characteristics. Adding series or parallel resistances allows us to some-
what modify these characteristics (albeit not without introducing extra losses).

All characteristics can be derived from the following equations (in absolute
values):

Va = Ea + (Ra + Rs + Rv)I a = Ea + Rt I a
Ea = K · Ωa · �m

Tem = K · Ia · �m

�m = �m(Fm)

(12.1)

where: Rs is the resistance of the series excitationwinding (if present); Rv (if present)
is a resistance between the supply and the machine; K = z

2πa Np and Fm = wm Im =∑
wx Ix (armature reaction can be accounted for by deducting a term Ka Ia from the

mmf).

© Springer International Publishing AG 2018
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Fig. 12.1 DC motor with separate excitation: a torque-speed characteristics; b power and torque
diagram

In per unit, these equations are

va = ea + (ra + rs + rv)i a = ea + rt ia
ea = ωa · ϕm

tem = ia · ϕm

ϕm = ϕm( fm).

(12.2)

12.2 Torque-Speed Characteristics of Separately Excited or
Shunt-Excited DC Motors

12.2.1 Basic Characteristics

Basically, the torque-speed characteristic of a separately excited (or shunt-excited)
DC motor is a straight line with a slope determined by the resistance of the armature
circuit (Ra or Ra + Rv), as illustrated1 in (a) in Fig. 12.1.

For speeds below the rated speed (i.e. for voltages below rated voltage), speed
control is achieved by varying the armature supply voltage. This results in parallel
shifted characteristics. For speeds higher than rated, speed control can be achieved by
reducing the flux (fluxweakening). Fluxweakening (for higher speeds) yields torque-

1The figure only shows the first quadrant, although the characteristics continue in the second quad-
rant for generator operation (see Sect. 12.2.2).
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speed lines with a larger slope. However, note that the more the flux is weakened,
the more the torque is limited (for the same maximum, i.e. rated, armature current).
This range is called the constant power range (see (b) in Fig. 12.1). In Sect. 12.2.2,
some implementations of such a voltage control and flux weakening are discussed
in more detail.

Another method for speed control is to add resistances Rv in series with the
armature, but this method is not lossless at all. For that reason, series resistances
are nowadays only used for starting purposes, to reduce the starting current. Series
resistances are no longer considered as an acceptable method for speed control.

Braking of shunt or separately excited DC motors is possible in quadrant II (with
energy recuperation, thus as a generator) or in quadrant IV. In quadrant IV, however,
braking results in high energy dissipation as not only mechanical energy but also
additional electrical energy is converted into heat.

12.2.2 Ward-Leonard Drive

The basic (rotating) Ward-Leonard drive consists of a separately excited DC motor
fed by a separately (or compound) DC generator, as illustrated in (a) in Fig. 12.2. The
DC generator is driven by an internal combustion engine, or by an induction motor.
To control speeds less than or equal to rated speed, the voltage supplied to the DC
motor is varied by controlling the excitation of the generator (the curves a in (b) in
Fig. 12.2). To obtain speeds higher than rated, the excitation of the DC motor can be
decreased (field weakening) (see curves b in the figure).

There are no real limitations as to braking (plugging) or regenerative braking.
For regenerative braking, the DC motor will work as generator while the generator

a

b

a

b

-1

-1

1

1 t

G

M

0

(a) (b)

Fig. 12.2 Ward-Leonard (rotating)
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Fig. 12.3 Static Ward-Leonard (a) and speed control circuit (b)

will work as motor. However, for real energy recuperation, also the machine driving
the generator must be able to convert the mechanical energy provided by the DC
generator, which is now working as a motor, into useful energy. Naturally, this does
not pose any problems for, for example, an inductionmotor driving the DC generator.

Motoring (or generating) in the other rotation direction can be achieved either by
reversing the excitation of the generator, or by switching the connections between
generator and motor.

Advantages of the rotating Ward-Leonard include the very accurate speed con-
trol without any significant losses, the four-quadrant operation with possible energy
recuperation, and the presence of the large inertia of the driving engine and generator
to absorb even large load pulsations.

Disadvantages are the high acquisition price, the large space required, the cost
of the building foundations to support the weight of the three machines, the losses
associated with the threefold energy conversion, and the slow response time (due to
the large time constant of the generator excitation).

In the static Ward-Leonard (Fig. 12.3), the generator and driving machine (or
engine) are replaced by a power-electronic converter, usually a controlled rectifier
fed from the grid. In fact, such a static converter also provides the required variable
supply voltage for the DC motor. As regards to braking and energy recuperation,
there are important differences, however. Indeed, in a simple controlled rectifier, the
current cannot reverse. For example, consider an operating point in the first quadrant
(motoring). When the load torque decreases, the speed will increase to the no-load
speed for that supply voltage.When the load torque reverses (i.e. it becomes a driving
torque), the operating point cannot shift into the second quadrant (on the prolonged
characteristic), because this would correspond with a negative armature current.
In order to attain operating points in the second quadrant, we need an antiparallel
rectifier to absorb the negative current (and, as a result, recuperate the energy). With
a controlled rectifier in antiparallel connection, all four quadrants are attainable, just
as for the rotating Ward-Leonard.
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Fig. 12.4 Two- or four-quadrant operation

If, instead of the controlled rectifier, a diode rectifier with subsequent chopper is
used, only the first quadrant can be attained (or the third, by switching leads). Of
course, for braking, a braking resistance can always be used, albeit without energy
recuperation.

Depending on the actual implementation, operation is either limited to one or two
quadrants, or possible in all four quadrants (see Fig. 12.4).

Compared to the rotating Ward-Leonard, the static Ward-Leonard offers the fol-
lowing advantages:

• it is much cheaper
• it does not require much space or building investments
• it is easier to integrate into automatic control environments
• it allows for much faster control.

Disadvantages include:

• it is sensitive to over-currents, and thus not as robust as the rotating version
• power-electronic converters require fast built-in protections
• a controlled rectifier needs much reactive power
• grid harmonics of a rectifier
• the harmonics in the DC voltage may cause commutation problems for the DC
motor and current harmonicsmay result in torqueharmonics (i.e. vibrations, noise).

12.3 Characteristics of Series-Excited DC Motors

12.3.1 Speed Control

The hyperbolic torque-speed characteristic of a series-excited DC motor can also
be altered for lower speeds by reducing the supply voltage below the rated voltage.
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Fig. 12.5 Torque-speed characteristics of series DC motor

However, this results in much steeper curves, as is illustrated in (a) in Fig.2 12.5.
Curves that are too steep, however, lead to control difficulties (i.e. a small torque
variation results in too high a speed variation). The high losses in the series resistance
constitute another disadvantage of this control method.Moreover, the speed runaway
for low torques is not avoided.

The circuit (b) in Fig. 12.5 provides a solution to most of these problems. If a
resistance rp is connected in parallel with the armature, part of the excitation current
is provided directly, without passing the armature. The lower the parallel resistance,
the flatter the characteristics are. Note that the characteristics also enter the second
quadrant (albeit without net energy recuperation).

Field weakening (for higher speeds) is achieved by a parallel resistance to the
series excitation winding. It is easily shown3 that the resulting characteristics shift
parallel to higher torque values, as is illustrated in (c) in Fig. 12.5.

In the past, electrical traction was an important application of series DC motors.
Nowadays, if and when series DC motors are still used in traction, power electronic
control methods are applied (see below in Sect. 12.3.3).

12.3.2 Braking

Braking is needed either for shortening the run-out (i.e. reversing the torque for
the same rotation direction), or for controlling the speed when the speed direction
reverses for the same torque direction (for example, for lowering the load of cranes).

2The characteristics to the left are obtained by reversing the connection between armature and series
excitation; reversing the polarity of the supply does not affect the characteristics.
3To prove this, consider operating points with the same flux level and therefore also the same
excitation current.
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12.3.2.1 Plugging

Speed reversal, from motoring in quadrant I to braking in quadrant IV, occurs when
the load torque becomes too high, or, for a constant load torque, when the motor
torque decreases (for example, if the armature voltage is reduced).

For braking in the same speed direction, the connection between armature and
excitationwindingmust be reversed, i.e. connecting formotoring in the other rotation
direction. The operating point then moves from quadrant I to quadrant II.

Please note that in both cases no energy recuperation4 occurs. On the contrary,
both (additional) electrical and mechanical power are converted into heat. This kind
of braking is sometimes denoted as plugging.

12.3.2.2 Resistive Braking

For resistive braking, the series-excited DC motor is disconnected from the supply
and connected to a load resistance. With sufficient remnant magnetism and the right
rotation direction, self-excitation may occur. In self-excitation, the emf from the
remnant flux must be such that the resulting current in the field winding reinforces
the flux. For example, when the motor has previously operated in quadrant I (positive
speed with the connections D2 − D1 − A2 − A1 and e.g. A1 connected to the plus
of the supply), the remnant emf direction will be from A2 to A1 (A1 positive).
Connecting the terminals to a resistance will result in a current which will reinforce
the field if the rotation direction is now negative. To obtain braking in the positive
speed direction, the connections betweenfield and armaturemust first be reversed, i.e.
D2 − D1 − A1 − A2. The characteristics are as those illustrated in (a) in Fig. 12.6.
By varying the braking resistance, we can obtain different curves.

Themain disadvantage of this brakingmethod is that braking to zero speed is slow
or non-existent. A second disadvantage is that the presence of a sufficient remnant
flux is often uncertain.

12.3.2.3 Potentiometric Braking

To overcome the disadvantages of pure resistive braking, the circuit depicted in (b)
in Fig. 12.6 can be used. In this circuit, the supply is connected via a resistance rv .
Therefore, the braking is no longer exclusively dependent on the remnantmagnetism.
The characteristics (here for different values of rl) do not pass through the origin,
resulting in braking even for small torques and speeds. Other characteristics, for
example, for different values of r

′
l , are also possible. Although the braking character-

istics continue in the third and fourth quadrant, energy recuperation is very limited
or absent.

4Moreover, it can be shown that a series-excited machine is not able to recuperate electrical energy
into a voltage supply.
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Fig. 12.6 Resistive and potentiometric braking of a series motor

12.3.2.4 Recuperative Braking

In most, if not all, of the above braking configurations, energy recuperation is not
possible. For a DC machine with a pure series excitation, energy recuperation is
not possible at all, as can easily be demonstrated.5 To achieve energy recuperation,
the only possibility is to remove the (exclusive) series excitation. In (b) in Fig. 12.6,
the exclusive series character of the excitation is removed by the resistance rv . A
more drastic solution is illustrated in (a) in Fig. 12.7: the excitation winding is fed
independently (for example, by a chopper). In this way, themotor becomes separately
excited and regenerative breaking is possible.

5A transition from motoring in the first (or third) quadrant to generating in the second (or fourth)
quadrant is impossible: for zero load torque the speed goes to infinity, and armature current and
excitation current become zero. Even if there were an (artificial) ‘operating point’ with recuperation
into a voltage supply, such an operating point would not be stable. Again, this can be proven quite
easily.
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Fig. 12.8 Power-electronic supply of series DC motors

12.3.3 Power-Electronic Supply of Series-Excited DC Motors

A power-electronic supply of a series motor permits a nearly lossless variation of the
motor voltage. Either a controlled rectifier or a (buck) DC chopper (as illustrated in
(b) in Fig. 12.7) can be used. In the case of a DC chopper, the DC source voltage vn is
modified into a variablemotor voltage vm = α · vn . Disregarding the resistive voltage
drop over the armature and series excitation resistances, the emf of the machine will
also vary proportionally toα. The resulting torque-speed characteristics are therefore
shifted parallel to lower speed values (α ≤ 1), as can be seen in (c) in Fig. 12.7. Speed
values higher than rated are obtained by field weakening. Figure12.8 (a) shows a
circuit for automatic field weakening, yielding a gradual field weakening when α
increases.6

Please, note that a simple chopper does not permit negative current. Therefore,
operation is limited to motoring in the first quadrant (or the third quadrant, if the con-
nection between armature and excitationwinding is converted). As such, regenerative
braking is not possible either.

6Indeed, the larger α, the smaller the time available to increase the excitation current, and vice
versa.
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Advantages of chopper-supplied (and controlled-rectifier supplied) series motors
include the nearly lossless speed variation and therefore also less heat dissipation, the
fact that starting current and associated losses can be reduced, the fine and accurate
control7 possibilities, and the great aptitude for automation.

For braking, resistive braking can obviously be used. If the resistance is chopped,
as in (b) in Fig. 12.8, better braking control can be achieved. Regenerative braking
is possible by means of an anti-parallel chopper, as is shown in (c) in Fig. 12.8.

7This is important for the control of the adhesion between the rail and wheel in trains.



Chapter 13
Constant Frequency Voltage Supply
of Rotating Field Machines

Abstract For rotating field machines supplied by a constant frequency supply, there
are almost no acceptable means of speed control (and none whatsoever for synchro-
nous machines). This section will mainly focus on starting, accelerating and braking,
and speed control will be discussed in later chapter. Pure synchronous machines fed
from a constant frequency supply cannot start and accelerate, as should be clear from
Chap.5 in Part 1. However, when starting and accelerating is required, the damper
winding of a synchronous machine (which is usually required for stability) can be
adapted to give a starting and accelerating torque, operating as an asynchronous
machine. When approaching synchronous speed, the DC supply of the field winding
can be switched on and the machine will synchronise when the load is not too large.
The asynchronous starting, accelerating and braking discussed in the first section
below is therefore also important for synchronous machines which are not too large.
In the next section, speed control and cascade connections for slip-ring induction
motors are reviewed. Other sections discuss the behaviour of rotating field machines
at voltage variations and power-electronic voltage control for rotating fieldmachines.

13.1 Start-Up, Accelerating and Braking of Squirrel-Cage
Induction Machines

13.1.1 Accelerating Time and Power Loss

Accelerating time and power loss (heat) can be calculated starting from the equation
of motion:

J
dΩ

dt
= Tm − Tl (13.1)

where J is the combined inertia of machine and load, Tm is the motor torque and Tl
is the load torque.

The motor torque depends on the speed (slip) and even if the load torque is
constant, integration of this equation is not straightforward.

© Springer International Publishing AG 2018
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For a zero load torque, with only the machine inertia and if the rated machine
torque Tnom is available throughout the acceleration, the resulting acceleration time
τnom from standstill to synchronous speed (called the rated or nominal acceleration
time) is easily calculated as follows:

τnom = JmΩsy

Tnom
(13.2)

Obviously, this is a theoretical value which only serves as a reference (and is related
to machine size).

The actual accelerating time with load inertia and under load (and with an accel-
erating torque T − Tl which is in general dependent on the speed) can be calculated
by integrating equation13.1

τv = (Jm + Jl) ·
Ωmax∫

Ωmin

dΩ

Tm − Tl
(13.3)

or in pu:

τv = τnom · (1 + jl) ·
smax∫

smin

ds

t − tl
(13.4)

with jl = Jl/Jm the relative or pu load inertia, t = Tm/Tnom the pu torque and s =
(Ωsy − Ω)/Ωsy .

This can usually be approximated by a finite summation:

τv = τnom · (1 + jl) ·
∑ Δs

Δt
(13.5)

The rated acceleration time τnom depends on the power rating of the machine1 and
varies between 0.1s and some seconds: τnom ≈ (1.6 . . . 2)τp.

The relative load inertia is usually less than 1 (e.g. for pumps mostly less than
0.1), but can be higher than 10 as well.

The power dissipation during start-up and acceleration is relevant here. It can be
a limiting factor: if the duration of the start-up is rather short, this might lead to an
excessive temperature increase of the machine. During acceleration, the power loss
in the windings can be ten times larger than the iron losses (whereas both have the
same order of magnitude in rated operation). Especially the losses in the cage are
important because of the skin effect, the unequal distribution of heat over the rotor
bar height and the less efficient cooling of the rotor at lower speeds.

The (infinitesimal) heat dissipation in the rotor (cf. slip loss) during an infinitesi-
mal time δτ is given by

1The inertia varies with the fifth power of the pole pitch, while the rated torque varies with approx-
imately the fourth power of the pole pitch.
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δWth = TmΩsys · δτ (13.6)

From Eq.13.1, the time interval δτ is expressed as a function of the speed or slip
variation, which leads to

Wth =
∫

δWth =
smax∫

smin

TmΩsys · Jm + Jl
Tm − Tl

· Ωsy · δs = (Jm + Jl ) · Ω2
sy ·

smax∫

smin

Tm
Tm − Tl

s · δs

(13.7)
For a start-up without load (Jl = 0 and Tl = 0), the resulting (rotor) losses are called
the rated or nominal starting losses.

Wnom = 1

2
Jm · Ω2

sy (13.8)

Apparently, for a start-up without load, these losses are equal to the kinetic energy.
The energy required from the mains for this start up is thus twice the kinetic energy.
It is important to note that, whereas in rated conditions only a small fraction of the
supply power is converted into losses, for start-up 50% of the supplied power is
dissipated.

For a start-up with load torque (and load inertia), Eq. 13.7 must be integrated
(where Tm is a function of the slip). Equation13.7 can be rewritten in pu as follows

Wth = 2Wnom(1 + jl) ·
∫

s · δs

1 − tl/tm
(13.9)

For a zero load torque, the dissipated energy is again equal to the kinetic energy:
Wth = 1

2 (Jm + Jl) · Ω2
sy = Wnom(1 + jl). For a non-zero load torque, Eq. 13.7 can

sometimes be approximated by averaged values

Wth = Wnom(1 + jl) ·
∑ Δ(s2)

(1 − tl/tm)av

(13.10)

Note thatWnom is independent of the rotor resistance of the machine; in contrast,Wth

does depend on the rotor resistance used for start-up (e.g. for slip-ring machines).
There exists a straightforward relationship2 between Wnom , τnom and Pnom :

Wnom = 1
2 Pnomτnom .

In line with this, for a start-up with load inertia but without load torque, we get
Wth = 1

2 (1 + jl) · Pnomτnom = 1
2 Pnomτv .

The product Pnomτnom varieswithmachine size (thus the pole pitch) proportionally
to τ 5

p (indeed, for τnom ∼ τp, see above, and for Pnom ∼ τ 4
p , see Chap.4 in Part 1).

This indicates a possible thermal problem for start-up, as the acceptable heat
dissipation during start-up is proportional to the mass of the machine (rotor), Wac ∼
τ 3
p . For large power ratings, Wth could become larger than Wac, even without load

2Prove this with the definition of Pnom = ΩsyTnom and the expression for τnom .

http://dx.doi.org/10.1007/978-3-319-72730-1_4
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inertia (Wth = Wnom). This is illustrated in Fig. 13.1, in which both τnom ∼ τp and
τac = Wac/Pnom ∼ τ−1

p are plotted.
Where both curves intersect, only the machine inertia can be accelerated; for

larger pole pitches the machine is not allowed to accelerate, even without load inertia
(according to the figure, this occurs for large power ratings, with a pole pitch larger
than approximately 1m).

Remark: Multi-speed machines have a special stator winding that can be switched
between two numbers of pole pairs (usual ratios are 1:2 or 1:3). With multi-speed
machines, the starting power loss is reduced by first accelerating to the synchronous
speed for the higher pole number and then further accelerating to the synchronous
speed for the lower pole number.3

3Prove that, if α is the ratio between the lowest and highest pole number, the power loss is reduced
to a fraction α2 + (1 − α)2.
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13.1.2 Traditional Starting Methods for Cage Induction
Machines

Direct starting of squirrel-cage induction machines on the mains supply may result
in two important problems: a limited starting torque for high power ratings (due to
low rotor resistances), and a starting current which is too high.

There is no simple standard solution for the relatively low starting torques of
high-power machines on a fixed frequency supply. As will be shown in Chap.15,
variable frequency supply offers an excellent solution (also for starting purposes).

For the high starting currents in the traditional fixed frequency supply situation,
there are several possible solutions. The ultimate aim of these is to reduce the starting
current as much as possible, while limiting the reduction of the starting torque. These
standard starting methods include wye-delta, auto-transformer, series-parallel, stator
resistance, and inductance starting. The first three methods realise a mains current
reduction which is equal to the torque reduction, while for the last two the torque
reduction is larger than the mains current reduction (see Table13.1).

The results in this table can be derived as follows. The torque is proportional to the
square of thewinding current (for a given slip value). For the last two methods, stator
inductance and stator resistance, winding current (subscript w) and supply current
(subscript s) are the same. Therefore, the following holds:

tred
tdir

=
(
iw,red

iw,dir

)2

=
(
is,red
is,dir

)2

(13.11)

Table 13.1 Standard starting methods

IEV 411 Starting
method

Winding
current %

Mains
current %

Torque % Interruption Starting
time critical

−22–18 Direct – – – No No

−22–26 Series-
parallel

1/2 1/4 1/4 Yes No

−22–19 Wye-delta 1/
√
3 1/3 1/3 Yes No

−22–20 Auto-
transformer

α α2 α2

−22–21 With 2
switches

α α2 α2 Yes No

−22–22 With 3
switches

α α2 α2 No No

−22–23 Stator
inductance

α α α2 No Yes

−22–25 Stator
resistance

α α α2 No Yes

http://dx.doi.org/10.1007/978-3-319-72730-1_15
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For the series-parallel, wye-delta and auto-transformer methods, the supply current
reduction is equal to the square of the winding current reduction, and thus equal to
the torque reduction:

is,red
is,dir

=
(
iw,red

iw,dir

)2

= tred
tdir

(13.12)

Consider a wye-delta start-up, for example. In the direct or normal (full winding
voltage) situation, the machine winding is delta-connected and each winding gets
the full line voltage Vl . The winding current is, however, only 1/

√
3 times the supply

current. For initial start up, the machine winding is wye-connected and, as such, each
winding only gets the voltage Vl/

√
3. The winding current (equal to the winding

current in a wye connection) is therefore also reduced by the same factor 1/
√
3. The

torque is reduced by the square of it, i.e. 1/3. Yet, as the supply current in the full
voltage (delta) connection is

√
3 times the winding current, the result of Eq.13.12 is

obtained. Naturally, this solution requires the rated machine winding voltage to be
equal to the line voltage.

For the auto-transformer start-up, the primary or supply current is 1/α times the
secondary or machine current (if α is the transformer ratio), whereas in the direct
connection, supply and machine (winding) current are equal. If we consider the fact
that in each case the torque is proportional to the machine (winding) current, we can
also obtain the result of Eq.13.12. The downside of this solution is that it requires a
rather expensive auto-transformer.

For the series-parallel connection, the reasoning is similar. The disadvantage of
this solution is that two machines are needed on the same shaft that can be connected
electrically in series or parallel on the mains.

Remarks:
1. Starting, braking, reconnecting a machine and switching an electric circuit on
and off in general results in transient phenomena. For a single-phase AC electrical
circuit, the transient can be avoided by switching on exactly at the instant the expected
steady-state current goes through zero. However, this is not possible for a three-phase
circuit of course. Therefore, direct starting of an induction machine always results
in high transient torques (see Fig. 13.2).

Fig. 13.2 Transient torque

speed speed

euqrot

transient
+

steady-state
steady-state

(b)(a)

euq rot
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With high load inertias, these pulsating transient torques may result in the shaft
breaking, the rotor bars within the lamination breaking loose, ore the end windings
coming loose, for example.
2. For the wye-delta start-up, there are two possibilities to switch between wye and
delta (see Fig. 13.3).

Connection (1) is the preferred one, as this results in the lowest transient current
at the switching instant. The cause for the difference between connections (1) and (2)
lies in the voltage that is induced in the open-circuited machine winding at switch-
off, due to the remnant flux in the rotor. The remnant flux in the rotor decreases with
a relatively large time constant (up to seconds) and induces in the stator winding
a remnant voltage with the lower frequency (1 − s)ω (corresponding to the rotor
speed). As the time for switching from wye to delta is much shorter than the mains
period, it is advantageous to switch to new winding voltages which are lagging (1)
instead of leading (2) the old ones.

13.1.3 Braking of Induction Machines

13.1.3.1 Run-Out

If themachine is switched off and allowed to slow downwithout external load torque,
the time elapsed until standstill may be rather large. For example, when the friction
loss torque is only 10% of the rated torque (which is extremely large: usually friction
and ventilation torque is less than 10−4Tnom), the run-out time will be 10 times the
nominal starting time τnom . In many cases this is not acceptable, and braking will be
required.

13.1.3.2 Electromagnetic Braking

Electromagnetic braking (IEC terminology) uses a mechanical brake to quickly slow
down the machine. As such, the name is somewhat misleading, although the brake
is indeed controlled by an electromagnet.

The brake can be a disk brake or drum brake, or something in between. The use
of a drum brake is demonstrated in Fig. 13.4. The brake pads are pushed against the
drum (or disk, in case of a disk brake) by a spring. This is in fact a “normally-on”
device: in the absence of electrical power, it will brake. When power is applied to
the machine, an electromagnet supplied by the same supply lines as the machine will
retract the brake pads away from the drum or disk and no braking will occur.

This type of brake is used in many small applications, such as home appliances
like tumble dryers.
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ventilator
braking pad
spring
coil
magnet

Fig. 13.4 Electromagnetic braking

13.1.3.3 Electric Braking

As to electric braking, some possibilities may be distinguished: reversal braking,
braking to a lower speed for a multi-speed machine, DC-excited braking (i.e. a
Foucault brake), and capacitive braking. Each will be discussed below.

(a) Reversal braking:

Fast braking can be obtained by switching the phase order, i.e. reversal of the syn-
chronous speed. Braking is quite fast, but there is no energy recuperation and near
standstill the machine must be switched off (if not, the machine will accelerate in
the reverse direction, see Fig. 13.5).

(b) Braking for multi-speed machines:

When the machine is rotating at (or near) the highest synchronous speed (lower pole
number), switching to the higher pole number results in regenerative braking to the
lower synchronous speed (Fig. 13.6). From then on, other braking methods must be
used for braking to standstill.

(c) DC-excited braking:

For DC-excited braking, the stator winding is switched off from the mains and con-
nected to a DC supply (e.g. for a wye-connected winding, connecting phase U to the
plus-side of the DC-source and V (or W) or the parallel connection of V and W to
the minus side (see (a) and (b) in Fig. 13.7, respectively).

Fig. 13.5 Reversal braking t

r
10,5-0,5-1 0
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speed
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(a)

torque

speed
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Fig. 13.6 Multi-speed braking

Fig. 13.7 DC connections (a) (b)

The DC current in the stator winding creates a standstill electromagnetic field
in the air gap. Therefore, when the rotor is rotating, an emf is induced in the rotor
windings, resulting in a rotor current and associated power loss. The kinetic energy
is thus converted into heat.

The braking torque can be calculated as follows (see also Fig. 13.8). According
to the simplified equivalent circuit in L, the induction machine torque can be written
as

T = I 2 · (R/s) ≈ I 21 · (R/s) (13.13)

with I1, I and R the stator current, the rotor current and rotor resistance, respectively.
For normal AC voltage supply, the current varies with the slip (see (a) in Fig. 13.8).
If the machine were supplied by an AC current source instead, the current amplitude
would be constant and the corresponding torque as a function of the slip could be
calculated point by point from the curves in (a), by means of Eq. 13.13 (see the result
in (b) in Fig. 13.8).

For a DC current supply, the synchronous speed is zero. Therefore, the curve of
(b) must be shifted to the left (see curve (c) in the figure).

The equivalence between DC and AC current amplitudes can be derived from
Fig. 13.9: to the left, (a), we see the DC situation and to the right, (c), we see the
instantaneous condition in AC at the instant the current in phase U is zero (time axis
as in (b)). Thus, if the DC current IDC is equal to (

√
3/2) Î , then its mmf is the same
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Fig. 13.8 DC braking torque
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as the mmf (3/2) Î of a three-phase current Î , which means that also the torques are
equivalent. In other words, a DC current IDC has the same effect as an AC current
k In (with In the effective value) if IDC = (

√
3/2) · k In .

(d) Capacitive braking
For capacitive braking, capacitors and resistances are connected (in series or par-

allel) to the stator terminals, as is illustrated in Fig. 13.10. When the rotor rotates and
a remnant magnetic field is present in the rotor, a small emf is induced in the stator
windings. With an appropriate match of speed, capacitor and resistance values, the
systemmay enter a self-excitation state in which an AC current converts the mechan-
ical energy of the rotating rotor into heat in the resistances. As such, the frequency
of this AC current will have to be lower than the speed (cf. negative slip for genera-
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Fig. 13.9 Equivalence of DC and AC for the mmf

Fig. 13.10 Capacitive
breaking-series connection

C

R

tor operation). The match between the parameters (i.e. speed, machine inductances,
capacitors, resistances) will therefore also depend on the machine saturation level,
since this determines the inductance values.

Although the self-excitation is inherently non-linear, the equivalent circuit offers
some intuitive insight into the phenomenon. Consider the equivalent circuit in
Fig. 13.11, where the stator terminals are connected to an external resistance and
capacitor in series. If a non-zero current I exists in the circuit, then the following
relation for the impedances must be fulfilled:

Z = (R + 1/jωC) + Z(ω, s) = 0 (13.14)

(from Kirchhoff’s law
∑

V = Z · I = 0), where Z(ω, s) is the impedance of the
machine which depends on the frequency and the slip. Denoting by ωr the angular
speed of themachine (in electrical radians), we can conclude that the relation between
angular frequency, speed and slip is: ωr = (1 − s)ω.

The complex equation13.14 is equivalent to two real equations for two unknowns
(i.e. slip and angular frequency). It should already be clear that, in order for a solution
to exist, the slip should be negative, i.e. ωr > ω. Instead of trying to find the general
solutions for this (non-linear) equation, wewill consider two extreme situations: very
small slip, |s| ≈ 0 and very large slip, |s| ≫ 0.



13.1 Start-Up, Accelerating and Braking of Squirrel-Cage Induction Machines 367

Fig. 13.11 Capacitive
braking: equivalent circuit
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For large slip, on the one hand, the machine impedance can be approximated to
Z(ω, s) ≈ R′

2/s + jωL1σ and therefore ω ≈ 1/
√
L1σC and s ≈ −R′

2/(R + R1).
For very small slip, on the other hand, the machine impedance is approximately

Z(ω, s) ≈ L2
m1 · s/R′

2 + jωLσ1 + jωLm1 and therefore ω ≈ 1/
√
L1C , while s ≈

−(R + R1)R′
2/L

2
m1.

In each of these cases, the speed must correspond to ωr = (1 − s)ω. We may
therefore conclude that when capacitive braking is used to slow down a machine, the
braking starts (at the highest speed) with a large slip and a frequency approximately
corresponding to the resonance frequency for the leakage inductance (this frequency
must and will of course be lower than the electrical speed ωr ). When the machine
slows down, both the slip and the frequency (aswell as the rotation speedωr ) decrease
until the frequency approaches the resonance frequency corresponding with the main
inductance. As soon as that happens, braking ceases (Fig. 13.12).

Note that, according to this approximated and linearised modelling, the amplitude
of voltages and currents is not determined. In reality, themagnetic circuit is non-linear
and the magnetic circuit saturation actually4 lays down the amplitudes.

4It can be shown that this self-excitation is in fact a limit cycle of this non-linear system; when a
linearised model is used, there is a zero in the origin which corresponds to a non-existing degree of
freedom for the amplitudes.
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13.2 Slip-Ring Induction Machines: Start-Up, Speed
Control and Energy Recuperation

As follows from the equivalent circuit in Fig. 13.13a, or its simplified version (b),
the torque and current of an induction machine is determined by the ratio of slip to
secondary resistance (s/r ).

From the circle diagram in (a) in Fig. 13.14, the curves for current and torque
in (b) as a function of s/r can be derived. By increasing the secondary resistance,
we can shift the advantageous range of higher torque with lower current values (i.e.
0 < |s/r | < 2, thus around the rated value of |s/r | = 1) to higher slip values.
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For slip-ring induction machines, the secondary resistance consists of the internal
rotor resistance and an external resistance connected to the slip rings. By adjusting
the external resistance Rex (rex ), we obtain that for all slip values between 1 and sn
(≈rr ), the value of |s/r | remains limited to 2 · · · 5 and the machine operates in its
optimal range. This can be applied for starting and accelerating, and in theory also
for speed control, but as there are more efficient methods to achieve this, it is hardly
ever used for that purpose nowadays.

13.2.1 Start-Up of Slip-Ring Induction Machines

The use of secondary resistances for slip-ring induction machines eases start-up con-
siderably, because higher torques at lower currents are obtained for lower speeds.
A standard method to start slip-ring induction machines uses a battery of secondary
resistances so as to obtain smooth starting between maximum and minimum torque
values. As will be shown below, for starting between constant maximum and mini-
mum machine torque values, the subsequent secondary resistance values (as well as
the slip values at the minimum and maximum torque values) form a mathematical
series (see Fig. 13.15).

Indeed, the torque is only determined by the value of |s/r | and therefore we may
write at tmax and tmin

s1
ro

≡ s1
rr

= s2
r1

= s3
r2

= . . . = sn
rn−1

= sn+1

rn
(13.15)

tmin

tmax

tpo

0

n n-1

2 1 0

0s1s2 sosns =1n+1

t

s

r r sy= /

Fig. 13.15 Starting of slip-ring induction machines
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so
ro

≡ so
rr

= s1
r1

= s2
r2

= . . . = sn−1

rn−1
= sn

rn
(13.16)

respectively, where rn, rn−1, . . . , r1, ro = rr are the consecutive secondary resis-
tances in each step.

Dividing Eqs. 13.16 and 13.15 term by term leads to

s1
so

= s2
s1

= s3
s2

= . . . = sn+1

sn
(13.17)

and r1
rr

= r2
r1

= r3
r2

= . . . = rn
rn−1

(13.18)

Both slip and resistance values therefore form a mathematical series

sn+1

so
=

(
s1
so

)n+1

(13.19)

rn
rr

=
(
r1
rr

)n

(13.20)

with s1
so

= s j+1

s j
= r1

rr
= r j+1

r j
(13.21)

If the machine starts from standstill, sn+1 = 1, the number of steps is given by

n = log s1
log so − log s1

(13.22)

Clearly, the smaller the torque steps, the larger the required number of resistances.
Figure13.16a illustrates a traditional configuration of resistances and switches.

The required number of resistances (and switches) can be reduced by:

• asymmetrical resistances (see (b) in Fig. 13.16), creating a Kusa-circuit. This
causes distortions of the torque-slip characteristic due to inverse rotating fields
(Fig. 13.17) and is no longer used nowadays.

• a rectifier in de rotor circuit; instead of a three-phase battery of resistances, only
one set of resistances is required, at the DC side (see (c) in Fig. 13.16).

• the step-wise variation of the secondary resistance can be replaced by a continu-
ously variable liquid resistance, as is illustrated in (a) in Fig. 13.19. Besides the
gradual variation of the resistance, another notable advantage is the high thermal
capacity. Disadvantages are the vulnerability and required maintenance.

• a power-electronic version to replace the battery of resistances is obtained by
placing a triac (or a pair of anti-parallel thyristors) in parallel or series with the
external resistance (see Fig. 13.18).
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Fig. 13.18 Power-electronic resistance control

The parallel connection allows the external resistance to vary between 0 and Rex . The
series connection (somewhat more common) allows for an effective resistance vari-
ation between Rex and ∞. These power-electronic versions also facilitate automatic
speed control.

Remark: When the resistances are only used for starting, a construction was some-
times used in which, in steady state, the brush contact is replaced by short-circuit
bars inserted in holes in the slip rings (see (b) in Fig. 13.19).

13.2.2 Speed Control of Slip-Ring Induction Machines
Using Secondary Resistances

Secondary resistances can also be used for speed control, although this is nowadays
mostly replaced by a variable frequency supply. A typical application was in the
manipulation of loads, for example in harbour installations (e.g. cranes).

Figure13.20 shows the speed torque characteristics for several values of the sec-
ondary resistances. The characteristics (1a) are intended to hoist up the loads. The
characteristics (1b) can be used to hoist up small loads at low speeds, or, in the fourth
quadrant, to lower them. Disadvantages are that the characteristics (1b) are rather
steep, making it rather difficult to achieve a precise speed control (and lowering is
limited to loads larger than approximately 67%). It is also possible to bring down
loads by connecting the machine for the reverse direction (characteristics II). For
this high-speed descending (in generating mode), speed control is almost entirely
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absent, however. Loads can be brought down at low speeds by means of DC braking
(characteristics III), in which case speed control is available by varying the secondary
resistance.

Remark: In most hoisting applications, the thermal management of the machine at
these low speeds will not pose problems as periods of no-load generally alternate
with periods with load. Moreover, most of the heat is produced outside the machine,
in the external secondary resistances.

13.2.3 Speed Control of Slip-Ring Induction Machines
by Means of Cascade Connections

13.2.3.1 Principle

A significant disadvantage of speed control by means of secondary resistances is
the extremely low energy efficiency (approximately 1 − s), as all slip losses are
dissipated. Using a cascade connection, however, the slip energy can be transformed
into either useful mechanical energy, or electrical energy supplied back into the grid.

The basic energy conversion equation in an induction machine can be applied
here:

Pem1 = (1 − s)Pem1 + sPem1 (13.23)

Part (1 − s)Pem1 = T · (1 − s)�sy = T · �r is the mechanical output power of the
machine, while part sPem is the secondary electrical power which is, for a shorted
rotor winding or rotor connected to external resistances, dissipated as joule loss. This
is also clear from the electrical equation for the secondary circuit:

E2 = sE
′
1 = R2 I 2 + jsX2σ I 2 (13.24)

yielding (for a three-phase rotor)

Pem2 = sPem1 = Re(3E2 I
∗
2) = 3R2 I

2
2 (13.25)

Suppose now that we connect an AC voltage source with the secondary frequency
f2 = s f1 and voltage V 2 = γE

′
1 to the secondary. Then

E2 = sE
′
1 = R2 I 2 + jsX2σ I 2 + V 2 = R2 I 2 + j X2σ I 2 + γE

′
1 (13.26)

from which

Pem2 = sPem1 = 3Re(E2 I
∗
2) = 3R2 I

2
2 + 3Re(V 2 I

∗
2) = 3R2 I

2
2 + 3Re(γE

′
1 I

∗
2)

(13.27)
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Clearly, P2 = 3Re(V 2 I
∗
2) = 3Re(γE

′
1 I

∗
2) is the power transferred to (or from) the

secondary source.
As 3Re(V 2 I

∗
2) = 3Re(γE

′
1 I

∗
2) = 3γPem1, it follows from Eq.13.27 that

(s − γ)Pem1 = 3R2 I
2
2 ≥ 0 (13.28)

Therefore, (with Pem1 = T�sy) we find that T > 0 ⇐⇒ s > γ and T < 0 ⇐⇒
s < γ. For s = γ we have to revert to Eq.13.26, which yields I 2 = 0 and thus T = 0
or no-load.

We may therefore conclude that the external secondary source results in a shift of
the no-load point from s = 0 to s = γ with positive torque for s > γ and negative
torque for s < γ. Note that γ can be positive or negative, which means that we may
shift the no-load point to either sub-synchronous or over-synchronous speeds - at
least, if the secondary source allows this (see below).

For 1 > γ > 0, the no-load speed is shifted into the sub-synchronous speed range.
If 1 > s > γ, we get motoring, with Pem1 = T�sy > 0 and mechanical power Pm =
T · (1 − s)�sy > 0 and positive torque. As to the secondary (slip) power Pem2, the
part P2 = γPem1 > 0 is transferred to the secondary source while only the small
remaining part Pj2 = (s − γ)Pem1 is dissipated.

If s < γ, we are in generating mode, with Pem1 = T�sy < 0 and negative torque
and mechanical power. The secondary source power P2 = γPem1 is now negative,
which implies that the secondary source is delivering power. The secondary slip
power Pem2 = sPem1 is negative when s > 0, implying that the secondary source
power is used for the slip losses and the remaining part of it is transferred to the
primary source. For s < 0, a portion of the input mechanical power is used for the
slip losses (in addition to the secondary source power P2 = γPem1).

When operating with s > 1 > γ, we get reverse brakingwith negativemechanical
power; this dissipates a large amount of Pj2 but still recuperates some P2.

For γ < 0, the no-load speed is shifted to the over-synchronous speed (commonly
called super-synchronous operation). When 1 > s > γ, we again obtain motoring
with positive primary electromagnetic power Pem1 and positive mechanical power
(and, of course, positive torque). However, P2 = γPem1 < 0, which implies that the
secondary source now also delivers power to the drive, in addition to the primary
source.When s < γ, we get generatingwith negative primary electromagnetic power
Pem1 and negative mechanical power (and, naturally, negative torque). However,
P2 = γPem1 > 0, implying that power is also transferred to the secondary source,
in addition to the primary source.5 When γ < 0, operation with s > 1 (i.e. reverse
braking) is also possible, at least in theory - it is never used in practice.

Similarly, operation with γ > 1 is also possible in theory, but does not have any
practical significance.

5Note that the URS is used for the primary, while the GRS is used for the secondary.
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Fig. 13.21 Torque-speed characteristics for slip energy recuperation

Figure13.21 illustrates the torque-speed characteristics and the signs of the differ-
ent power quantities for these modes,6 while Fig. 13.22 shows the Sankey diagrams
for the discussed operating modes.7

The main advantages of a cascade connection include:

• the large range of speed control, both sub-synchronous and super-synchronous.
• the fact that slip energy is not completely dissipated as heat, and that the efficiency
is quite high as a result.

• the fact that mechanical output power can be larger than the primary input power,
which is useful for super-synchronous motoring.

6As is illustrated, the pull-out torque values are not constant, however.
7Prove the signs of the power flows and explain.
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13.2.3.2 Practical Implementations

The traditional implementations use a rectifier in the secondary and a DCmachine as
source. In this way the (variable) secondary frequency is decoupled from the source.
The inductionmachine sees the AC equivalent of the DC source, while the DC source
sees the rectified DC equivalent of the secondary voltage of the induction machine.

In the Krämer cascade (Fig. 13.23), the DC machine is mechanically coupled to
the induction machine. Speed control is achieved by adjusting the excitation of the
DC machine, which alters the counter-emf (see (b) in Fig. 13.23). The power P2
is transformed into additional mechanical power on the same shaft as the induc-
tion machine and the load. However, the diode rectifier only permits operation with
positive P2 (e.g. sub-synchronous motoring).

The disadvantage of the Krämer cascade is that, at low speeds, the secondary
power converted by the DC machine requires high currents, as the emf is low at
low speed. The DC machine must therefore be over-dimensioned, depending on the
lowest anticipated speed. As a consequence, slip values so larger than 0.5 are not
feasible.

Another standard scheme is the Scherbius cascade (see (a) in Fig. 13.24). The DC
machine is mechanically connected to another induction machine, working as an
over-synchronous generator. The secondary power is thus converted into electrical
power. Although the DC machine is now operated at high speeds and lower current,
this scheme requires three electrical machines. Moreover, this secondary power is
not directly converted into mechanical energy for the load. On the other hand, low-
speed operation (so > 0.5) is possible. Speed control is also achieved by varying the
excitation of the DC machine (in the diagram in Fig. 13.24, the Eg lines are now
horizontal lines).

adjustable
DC source

Eg

Em

s0
01

0
0

s

r r sy= /

E =K. . (1-s)g sy

E = k.E = k.s.E'm 2 1

1

(a)

(b)

Fig. 13.23 Krämer cascade
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Fig. 13.24 Scherbius cascade and PE versions

Nowadays, power electronic schemes are used. As illustrated in (b) in Fig. 13.24,
the counter-emf is provided by a second controlled rectifier that is connected to
the grid, usually via a transformer, to adapt the voltage levels of machine and grid.
For P2 > 0, the machine-side converter operates as a rectifier (diode rectifier or
controlled rectifier with α < π/2), and the grid-side rectifier operates in inverter
mode (α > π/2). With two controlled rectifiers (see (c) in Fig. 13.24), it is also
possible to obtain both sub- or super-synchronous operation, and both as motor
and generator, but the delay angles of both rectifiers must be coordinated. It is also
possible to replace the intermediate DC current circuit with a DC voltage circuit (and
the CSI with a PWM-VSI).

Cascade circuits were the earliest means to obtain energy-efficient speed con-
trol for induction machines. Nowadays, they have mostly been replaced by variable
frequency operation of cage induction motors (using inverters at the primary side).
However, there are still special applications where the robust behaviour (i.e. the over-
load capacity) and the broad speed range of cascade drives are valuable, for example
for dredging machines.

In recent years, a new application of cascade drives has emerged. In wind turbines,
the primary frequency of the generator is fixed (grid frequency) while the (optimal)
speed of the sails depends on the wind speed.8

8Note that also a wind turbine with a synchronous machine as generator requires an inverter to
adapt the generator output to the grid frequency.
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Fig. 13.25 Starting of a cascade using secondary resistors and cycloconverter version of a cascade

Remarks:

• In many cascade drives, operation at very large slip values is not permitted.9

Therefore, usually a variable resistor in the secondary is provided for starting
purposes (see (a) in Fig. 13.25).

• In the theoretical derivation, we assumed that the phase angle of the secondary
voltage V 2 was equal to that of the secondary emf E2; it is also possible to vary
the phase angle in order to control the reactive output of the machine, which is
useful for wind turbine applications.

• In the power electronic versions, the rectifier-inverter can be replaced by a cyclo-
converter (see (b) in Fig. 13.25), which allows four-quadrant operation. However,
unless the cycloconverter control is made dependent on (i.e. follows) the slip, this
kind of drive operates as a synchronous machine with the speed determined by the
difference of primary and secondary frequencies.

13.3 Behaviour of Rotating Field Machines at Voltage
Variations

13.3.1 Introduction

Voltage variations can be accidental (due to the grid) or deliberate (to obtain certain
effects). Deliberate voltage variations are usually three-phase symmetrical. However,

9Why?
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accidental voltage variations can be (and often are) non-symmetrical. Another differ-
ence is that deliberate voltage variations are commonly long-term, while accidental
variations can also be short-term.

13.3.2 Induction Machines at Voltage Variations

13.3.2.1 Symmetrical Voltage Deviations

Symmetrical voltage deviations are in particular important for

• starting (i.e. the starting current and torque)
• full-load behaviour, in particular the full-load current and thermal loading of the
stator winding.

To analyse the consequences of voltage variations, wewill make use of the equivalent
circuits in Fig. 13.26: circuit (a) or, if possible, the simplified circuits (b) or (c).

The starting current is mainly determined by the stator and rotor resistances and
the leakage:

i1 ≈ i ≈ v

j xσ + r1 + r/s
(13.29)

(with r ≈ r2). For s = 1, this may be simplified to

i1 ≈ i ≈ v

j xσ
(13.30)

The starting current would be proportional to the voltage (and the torque proportional
to the square of the voltage), if the leakage inductance were constant. However, the
leakage inductance is often saturation-dependent (especially the rotor leakage for
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Fig. 13.26 Equivalent circuits for induction machines
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Fig. 13.27 a leakage saturation; b iron loss

cage rotormachines) and the current then variesmore than proportional to the voltage
(see (a) in Fig. 13.27). As a consequence, a low voltage may cause starting problems,
particularly when the machine is loaded.

As far as the full-load behaviour is concerned, consider the case of a constant
load torque. In this case, we have v · iw = t = tl = ct . For a constant load torque,
the active current therefore varies in inverse proportion to the voltage. On the other
hand, the reactive current increases with the voltage and, because of the main field
saturation, even more than proportionally. In addition, the load torque may also vary
with the varying speed (slip) when the machine voltage changes.10 How the total
current and the joule loss in the windings change will depend on the load torque,
the saturation of the magnetic circuit and the cosϕ of the machine. In general, the
current and joule loss may increase with increasing voltage when the power factor of
the machine is low (e.g. less than 0.7), but they may decrease with increasing voltage
when the power factor is higher (e.g. higher than 0.8).

In addition to the joule loss in the windings, the iron loss must not be disregarded.
Iron loss varies for higher voltage more than quadratically with the voltage (see (b)
in Fig. 13.27). Although the loss component of the magnetising component is almost
negligible compared to the load component in the stator current, the iron loss itself
cannot be ignored.

13.3.2.2 Asymmetrical Voltage Deviations

Asymmetrical voltage deviations can be expressed as an additional inverse compo-
nent, besides the normal direct component (the zero-sequence component is seldom

10Note that the (pull-out) torque of an induction machine varies with the square of the voltage; a
voltage dip to 70% may lead to a maximum torque below the rated torque.
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Fig. 13.28 Equivalent
scheme for inverse voltage
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present, as the neutral of a wye-connected winding is almost never connected). For
the inverse or negative sequence component, the equivalent circuit in Fig. 13.28 is to
be used.

The slip s ′ for the negative sequence component is very large at the normal
small slip values s for the positive sequence: s ′ = 2 − s. The resulting low machine
impedance leads to very high inverse currents, even for small inverse voltage com-
ponents (e.g. 3% inverse voltage may lead to 20% inverse current). Although the
skin effect in the rotor results in somewhat higher equivalent rotor resistances for
the inverse component and therefore limits the current, the larger rotor resistance
leads to significant additional joule losses that may be detrimental for the machine.
Indeed, the additional rotor heat may lead to uneven expansion and fracture of the
rotor bars. In addition, most of the rotor heat will be evacuated through the air gap to
the stator, thus increasing the temperature of the stator winding. Another important
aspect is the unequal winding currents.

As a consequence, the wide-spread use of induction machines has resulted in
stringent standards for the inverse component that is allowed (e.g. less than 1–2%).

13.3.2.3 Supply Voltage Adaptation to the Load

When the load torque of an induction machine remains low during a considerable
interval of the load cycle, it may be economically advantageous to reduce the voltage
during these intervals.

If saturation of the main field is disregarded, i.e. for a constant xm , a variation of
the voltage with a factor α results in a variation of the currents with the same factor
if the slip remains constant. The torque will then vary with a factor α2.

Conversely, if the voltage is adapted in proportion to the square root of the torque
(v ∼ √

t), the current will vary as
√
t , the slip will be constant and also the power

factor will be constant - at least if resistances and inductances remain constant. The
iron loss will therefore vary approximately as v2, in other words as the torque t . This
is also true for thewinding losses, whichmeans that the efficiency of themachinewill
remain the same (i.e. higher) as in full-load (without voltage reduction, efficiency
would be much lower).

It should be noted that keeping the slip constant and equal to the rated slip does
not necessarily result in the optimal part-load efficiency. In fact, in theory we should
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take into account many factors, such as the actual ratio between iron losses and joule
losses, the fact that for higher voltages the iron losses vary more than proportionally
to the square of the voltage, or the variation of the (rotor) resistance with tempera-
ture. The lower losses could in fact also allow less cooling and consequently lower
ventilation losses, although the ventilation is almost never decreased. In addition,
if power electronics (i.e. AC choppers, see Sect. 13.4) are used to vary the voltage,
the additional higher harmonic losses may (partly) annihilate the intended efficiency
optimisation.

However, the reduction of the reactive current resulting from voltage adaptation
may be more important than efficiency optimisation.

13.3.2.4 Voltage Reduction for Speed Control

Voltage reduction can also be used for some speed control of cage rotor machines,
albeit with some limitations. Because the increased slip results in large secondary
(slip) losses, this method should only be used for quadratic load torques (see
Fig. 13.29).

Moreover, to limit the current, the rotor resistance should be higher than 0.1 · · · 0.2
pu. Therefore, this method is only suitable for low power ratings (some kW) and/or
intermittent use.

13.3.3 Synchronous Machines at Voltage Variations

13.3.3.1 Symmetrical Voltage Variations

The most important consequences of voltage variations relate to:

• starting current and torque (asynchronous starting)

Fig. 13.29 Speed control for
quadratic load
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• synchronising
• full-load behaviour, in particular current and thermal loading.

Asynchronous starting (if any) is similar to the induction machine starting, as was
demonstrated in the previous section. Saturation results in a more than proportional
variation of the current with the voltage and therefore a more than quadratic variation
of the torque.

Synchronising is rarely fundamentally affected; only in critical situations can
synchronising become uncertain with voltage reductions, as it is mostly performed
without load.

The full-load heating of the stator winding will mostly be affected by the stator
joule losses and somewhat less by the iron losses. The active component changes
inversely proportionally to the voltage. The reactive current will change in the same
way as the active current does when the machine is over-excited11 (i.e. increasing
with decreasing voltage and vice versa). When the machine is under-excited, the
variation of the reactive current will be in the sense of the variation of the voltage,
just as for the induction machine. Therefore, only for an over-excited machine is it
possible to predict the variation of the current with voltage variations. The current of
an over-excited machine will decrease with increasing voltage and thus the winding
temperature will decrease (and vice versa for a voltage decrease).

13.3.3.2 Asymmetrical Voltage Deviations

Expressing an asymmetrical voltage in terms of direct and inverse components, we
observe that the inverse component will rotate at twice the synchronous speed with
respect to the rotor. It will therefore result in induced rotor currents with twice
the supply frequency. As the rotor impedance is very small for these frequencies
(the inverse reactance of a synchronous machine is the same order of magnitude as
the leakage and very small for machines with a damper cage or massive rotor), the
rotor current will have a very high amplitude. This means that the rotor losses for the
inverse system can be extremely high, especially for laminated rotors with damper
windings or massive rotors. Just as for induction machines, the inverse component
of the voltage should be limited to 1–2%.

13.3.3.3 Supply Voltage Adaptation to the Load

Let us now consider a simultaneous variation of the supply voltage and the excitation
with a factor α. When the main field saturation can be disregarded (and the mag-
netising reactance xm or the synchronous reactance x in the circuits in Fig. 13.30a
and b, respectively, can be considered constant), then, for a constant load angle β,
the current will vary with the same factor α.

11Prove this.



386 13 Constant Frequency Voltage Supply of Rotating Field Machines

jxr

i
+

_

v

+

_

es ep p= e e
-j

jxr

jxm

i
+

_

v
+

_

+

_

ees ip p= i e
-j( + 2 )

(a) (b)

Fig. 13.30 Equivalent circuits for synchronous machines

Fig. 13.31 Torque
adaptation

t
t

v,ep
.v
.ep

The torque will then change with a factorα2. Therefore, a variation of both supply
voltage and excitation proportional to the square root of the load torque will lead to
a constant load angle as well as a constant power factor cosϕ (see also Fig. 13.31).

In reality, the main field saturation results in a somewhat smaller power factor and
a smaller primary current with decreasing torque.

The decrease of winding loss and iron loss (proportional to e2l ≈ v2) is advan-
tageous for the efficiency of the machine when it is partly loaded. This efficiency
could, in theory, be further increased if the cooling and ventilation losses could be
reduced. However, this requires a separately driven ventilator, which is only used for
very high power ratings. In many cases, however, such an additional control is also
considered an excessive and undesirable burden.

Note that for smaller power ratings also the adaptation of the excitation might
constitute an unwanted complication, or may be impossible because of permanent-
magnet excitation.

13.4 Power Electronic Starting and Voltage Adjustment
of Rotating Field Machines to the Load

13.4.1 Introduction

Chapter9 in Part 2 discussed the characteristics of AC choppers. These are frequently
used as starting aid (to limit the starting current) or for voltage adjustment to the load
(to increase part-load efficiency).

http://dx.doi.org/10.1007/978-3-319-72730-1_9
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For (asynchronous) starting, AC choppers cannot only be used to reduce the
starting current, but also to limit the transient phenomena, as will be explained in the
next section.

13.4.2 Power Electronic Starting of Induction Machines

ACchoppers can lower the initial starting current by temporarily reducing the voltage.
These are knownas basic soft starters. Like series resistors or inductances for starting,
their disadvantage is the lower starting torque as the torque is proportional to the
square of the current. Another disadvantage is that the voltages and currents are not
purely sinusoidal due to the chopping.

However, most of these hardware configurations for phase control can also reduce
the transient currents, which is not possible with traditional starting methods. As is
well known, a single-phase R-L-load can be switched on without a transient by
switching it on at the zero-crossing of the (expected) steady-state current. Of course,
this is not possible for three-phase loads, but the transients can be mitigated by first
switching on two phases at the zero-crossing instant of the corresponding steady-
state single-phase current. The third phase is then switched on at the optimum instant
(some 90◦) later on. Note, however, that this will not completely avoid the transients,
as by switching-on the third phase there will always be a transient from single phase
to three-phase supply. It will simply mitigate the transients. Combining this two-step
switching-on with phase control may further limit the accelerating torque jumps, as
it lets the currents increase slowly.

Figure13.32 shows some hardware configurations for phase control that can
be used for phase control and soft starting. In the past, some of the triacs (or

(a) (b)

(c) (d)

Fig. 13.32 Phase control schemes
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anti-parallel thyristors) were sometimes replaced by diodes to reduce costs, but such
circuits are far from optimal (asymmetric), or are limiting the switching possibilities
(and semiconductors are quite cheap nowadays).

13.4.3 Power Electronic Voltage Adjustment to the Load

ACchoppers are frequently used to adjust the voltage in partial-load operation. These
circuits are sometimes called Nola-converters (Frank Nola invented the principle in
the late seventies and was granted a patent in 1984). As has been explained above,
the part-load efficiency can be increased because the iron and winding losses can be
reduced compared to full-voltage operation. However, it is important to keep in mind
that the distorted voltages and currents may introduce additional harmonic losses that
could annihilate the fundamental loss reduction.

Another application of AC choppers can be speed (slip) control, but as mentioned
before, this is not a preferred method for speed control unless the load torque is
quadratic and the rotor resistance of the machine is sufficiently high.

In Chap.9 of Part 2, we derived a fundamental model for AC chopping of a pure
reactive load (single-phase and three-phase).

It is obvious that an induction machine is not a pure reactive load. Nevertheless,
an approximatemodel can be used to describe AC chopping of an inductionmachine.
Consider the simplified equivalent circuit in (a) in Fig. 13.33. The stator resistance is
neglected and themodel consists of the total leakage (as seen from the stator) in series
with the equivalent rotor impedance. As the electrical time constants of the rotor of
a 50Hz (or 60Hz) induction machine are quite high (80ms . . . 1 s) compared to the
time intervals of the AC chopping (less than 1/6th the mains period or 3.33ms for
50Hz), the rotor may be represented by a fundamental sinusoidal rotor emf er . For an
induction machine fed by an AC chopper, this leads to the schematic representation
in (b) in Fig. 13.33.

Using this simplifying assumption, we obtain a similar analysis as for a pure
reactance, but now with the fictitious source v′ = v − er and as reactance the total
leakage reactance xσ . In this way, the inductionmachine fed by anAC chopper can be
represented by an additional reactance xt proportional to xb = xσ (cf. the equations
in Chap.9). This leads to the approximate circuit in (c) in Fig. 13.33.

For the angles α′ and β′, which are defined with respect to the zero-crossing of
the voltage v′, the following relations are valid:

α′ = 1

2
(π + γ)

β′ = 1

2
(π − γ)

http://dx.doi.org/10.1007/978-3-319-72730-1_9
http://dx.doi.org/10.1007/978-3-319-72730-1_9
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Fig. 13.33 Fundamental scheme for phase control of a three-phase induction machine

The phase displacement with respect to v′ is indeed π/2. For the phase displacement
with respect to the real supply voltage v, we then have

ϕ = β + γ

2
= α − γ

2
= α + β

2

and therefore
α = α′ + ϕ − π

2
= ϕ + γ

2

β = β′ + ϕ − π

2
= ϕ − γ

2
.



Chapter 14
Ideal Current Supply of Rotating Field
Machines

Abstract An ideal current supply (i.e. a current independent of the load) is not
feasible. In fact, most sources come close to more or less ideal voltage sources. In
the (distant) past, a DC current supply was sometimes used for the supply of a group
of machines, as will be illustrated in the next section. In the subsequent two sections,
a purely theoretical discussion will be given of the ideal current supply of induction
and synchronous machines, respectively. Primarily, the aim of this discussion is to
point out the practical issues that would arise if an ideal current source existed. In
reality, modern controlled drives make use of a controlled current source inverter
or a voltage source inverter with a current control loop, as will be discussed in the
following chapters.

14.1 Current Supply of DC Commutator Machines

14.1.1 Individual Current Supply

Individual current supply of a separately excited DC machine comes down to pure
torque control:

T = K · � · I (14.1)

For a given flux, the current determines the torque.With a prescribedmachine torque,
the speed follows from the load torque characteristic (i.e. the equality of load and
machine torque).

In contrast, the usually voltage-supplied separately excited DC machines are in
fact speed-controlled drives: with a negligible armature resistance, the speed is com-
pletely determined by flux and voltage.

In the past, a current or torque control was realised by a (modified)Ward-Leonard
(see (a) in Fig. 14.1). TheDCgenerator in this case is a compound (or a three-winding)
generator, in which the series excitation is laid out so that a constant current output is
obtained. Nowadays, this could also be achieved by a controlled rectifier (or chopper)
with current control loop.

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_14
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Fig. 14.1 Current supply of DC commutator machines

14.1.2 Group Current Supply

One hundred years ago, group current supply was quite common. In this supply
configuration, DC motors and generators are connected in series so that each motor
is fed by the same current (see (b) and (c) in Fig. 14.1). Individual (speed or torque)
control of the motors is then realised by flux control. An important advantage is that
the commutation of all motors is quite effectively controlled (as mainly the current is
responsible for a good commutation and especially over-currents must be avoided).
Another advantage compared to (group) voltage supply is that the speed of themotors
is not directly affected by a variation of the supply voltage. Of course, this group
current supply is not very useful if the rated power (current) of the motors differs
considerably.

14.2 Ideal Current Supply of Induction Machines

14.2.1 Current, Voltage and Torque Relations

From the equivalent circuit (a) in Fig. 14.2 (assuming an impressed primary current),
we derive the following relations:
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Fig. 14.2 Induction machine current supply: equivalent circuit and phasor diagram

i2 = i1 · j xm
(r2/s) + j (xm + x2σ)

(14.2)

im = i1 · j x2σ + r2/s

(r2/s) + j (xm + x2σ)
(14.3)

el = i1 · 1

[ j xm]−1 + [r2/s + j x2σ]−1 (14.4)

v1 = el + i1 · (r1 + j x1σ) (14.5)

t = i22 · (r2/s) = i21 · x2m · (r2/s)

(r2/s)2 + (xm + x2σ)2
(14.6)

For current supply, the real axis is usually chosen along the primary current (see the
phasor diagram (b) in Fig. 14.2).

14.2.2 Behaviour of the Induction Machine Neglecting Main
Field Saturation

Suppose that the (main field) saturation is constant, i.e. xm = xmo = constant (for
example, at the rated condition xmo = xmn). Then, from Eq.14.6 it follows that:

• for small slip, |s/r2| � (xmo+x2σ)−1, i.e. the torque varies approximately linearly
with the slip:

t ≈ i21 · x2mo · (s/r2) (14.7)

• for large slip, |s/r2| � (xmo + x2σ)−1, i.e. the torque varies approximately hyper-
bolically with the slip:

t ≈ i21 · x2mo

(xmo + x2σ)2
· (r2/s) (14.8)
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• in between, i.e. for s/r2 = ±(xmo + x2σ)−1, the torque attains the pull-out or
maximum value:

t = ±i21 · x2mo

2(xmo + x2σ)
(14.9)

Note that the pull-out slip is much lower than for a constant voltage supply. The
torque-slip characteristic is therefore much steeper as well.

This has two important consequences. First, to obtain a pull-out torque of at least
200% compared to rated torque (100%), a primary current of 117.5% or more is
required (for the assumed xm = 3pu and xσ2 = 0.1pu). Secondly, the emfs are very
high (and consequently also the required supply voltages, as real DC supplies are
voltage sources): if there were no saturation (and thus xm were constant), Eq. 14.4
would lead to an emf of 2.5pu at the pull-out slip of s/r2 = 0.32 (and an emf of 3pu
at slip s = 0).

Obviously, this is impossible and, in reality, saturationwill lead to a lower (limited)
xm and hence a limited emf. Then, to obtain an overload capacity of 2, the required
primary current will be much higher (e.g. i1 = 1.7 for xm = 1.5 leading to an emf
of 1.8 for a slip value of s/r2 = 0.63).

14.2.3 Behaviour of the Induction Machine Including Main
Field Saturation

Saturation of the magnetising field results in:

• saturation harmonics in magnetising current and/or emf
• a magnetising current which increases much more than linearly with the emf

In what follows, the saturation harmonics will not be considered.
The saturation may, for example, be mathematically described by the following

law between magnetising current and air-gap emf:

im = 1

xmo
· el + (

1

xmn
− 1

xmo
)ezl (14.10)

where xmo and xmn represent the magnetising reactances in unsaturated condition
and rated condition (el = 1), respectively. This may also be written as

1

xm
= 1

xmo
+ (

1

xmn
− 1

xmo
)ez−1

l (14.11)

with xm denoting a variable saturation-dependent magnetising reactance. The linear
term represents (mainly) the air-gap reluctance, the non-linear term the reluctance
of the iron. Normal values for the exponent are z = 6 . . . 7.
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Fig. 14.3 Saturation
characteristic el (im) and
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Figure14.3 illustrates the emf and magnetising reactance as a function of the
magnetising current; the dotted lines correspond to the Rayleigh interval, which is
not taken into account in Eq.14.10.

The characteristics taking into account saturation can be calculated1 fromEq.14.2
through 14.6 by inserting the expression 14.4 for xm :

el = i1 · 1

[r2/s + j x2σ]−1 − j
[

1
xmo

+ ( 1
xmn

− 1
xmo

)ez−1
l

] (14.12)

For s = 0, on the one hand, the emf attains a maximum provided by the equation

i1 = 1

xmo
· elmax + (

1

xmn
− 1

xmo
)ezlmax (14.13)

For s → ∞, on the other hand, the emf attains a minimum provided by

elmin = i1 · [
x−1
2σ + x−1

mo

]−1 ≈ i1 · x2σ (14.14)

For small slip, the torque characteristic approaches the tangent to the torque charac-
teristic for a fictitious constant voltage supply with an emf elmax :

1To find the solutions of this non-linear equation, it is easiest to start from a proposed emf value
and calculate the corresponding slip.
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Fig. 14.4 Torque characteristic with and without saturation

t = e2lmax · (s/r2) (14.15)

while for high slip, the torque is hyperbolic with the slip according to Eq.14.8
(xm = xmo for the unsaturated condition).

In between, the torque attains a maximum that occurs approximately at the inter-
section of both asymptotes, i.e. approximately at

s

r2
= i1

elmax
· xmo

xmo + x2σ
≈ i1

elmax
(14.16)

Figure14.4 illustrates the effect of saturation on the torque-slip characteristic for
i1 = 2 and x2σ = 0.1. Note that the torque in the saturated condition (xmo = 3;xmn =
2;z = 6) is much lower compared to an unsaturated machine with xmo = xmn = 3.
The pull-out torque is only slightly larger than 2, even for a primary current of twice
the rated current. Figure14.5 compares the torque characteristics for some current
values (i1 = 1; 1.5; 2; 2.5) for the parameter values x2σ = 0.2; xmo = 3;xmn =
2;z = 6. For the sake of comparison, the figure also shows the torque characteristic
(dashed line) for a constant voltage supply with el = 1. At the crossing points
of the constant-current characteristics with the constant-voltage characteristic for
el = 1, the corresponding air-gap emf is unity. Most of these crossing points are,
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Fig. 14.5 Torque characteristics for different currents

however, with decreasing slip, on the upward part of the characteristic, which is the
statically unstable part for a constant load torque. Figure14.6 shows the torque and
emf characteristics for unsaturated and saturated conditions.

From the above, it should be clear that main field saturation results in:

• a much lower pull-out torque than in the unsaturated case (and for rated current,
much smaller than that for a constant voltage supply2)

• a significant increase of the pull-out slip
• still rather high emf values3 compared to a constant voltage supply.

Because of this (and the statically unstable behaviour for higher slip values where
the emf is nevertheless acceptable), constant current drives are always used with
(feedback) current and speed control loops, i.e. controlled current drives. In nearly all
cases, variable frequency control is used aswell. The use of both controlled (variable)
frequency and controlled current allows for precise torque and speed control, as will
be explained in Chap. 17.

2Explain why this is the case.
3These lead to high iron losses.

http://dx.doi.org/10.1007/978-3-319-72730-1_17
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14.3 Ideal Current Supply of Synchronous Machines

14.3.1 Current, Voltage and Torque Relations

As we know, the usual equivalent scheme for voltage supply of a synchronous
machine is that in (a) in Fig. 14.7, with a vector diagram as in (b). Here, the real
axis is chosen along the supply voltage.

For current supply, however, the alternate equivalent circuit in Fig. 14.8 is much
more appropriate. The superposition of mmfs (currents) rather than voltages is more
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Fig. 14.8 SM equivalent circuit for current supply

apt for modelling saturation. In fact, adding emfs as in Fig. 14.7 is only meaningful
if the saturation condition is almost constant, as it approximately is for a constant
voltage supply.

From the circuit in Fig. 14.8, the following relations are easily derived:

v = es + r1 · i1 (14.17)

es = el + j x1σ · i1 (14.18)

el = j xm · im (14.19)

im = i1 + i p (14.20)

Apparently, addingmagnetising currents (ormmfs) as in Eq.14.20 is themost correct
method if the magnetic circuit is non-linear. However, note that im determines the
saturation condition and therefore also the value of the magnetising inductance xm .
It is of course true that the last two equations are equivalent to el = ep + j xmi1 =
j xmi p + j xmi1 (see Fig. 14.7), but then emfs are being added again.

Choosing the real axis along the primary current in Fig. 14.8, we can derive the
following relations:

i p ≡ i p · exp(− jγ) (14.21)
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im ≡ im · exp[− j (π/2) + jϕ′] = i1 + i p (14.22)

ep ≡ ep · exp( jψ) = j xmi p (14.23)

el ≡ el · exp( jϕ′) = j xmim (14.24)

es = el + j x1σi1 (14.25)

v ≡ v · exp( jϕ) = es + r1i1 (14.26)

Between the angle γ (considered positive when i p lags i1 over less than π) and the
internal displacement angle ψ, there is the relation γ = π/2 − ψ.

While the phase angle ϕ and the load angle β are defined with respect to the
voltage v, the phase angle ϕ′ and the load angle β′ are defined with respect to the
air-gap emf el . Here the URS is used, which is why β (β′) is considered positive
when v (el) leads ep, while ϕ (ϕ′) is considered positive when i1 lags v (el). This
means that

ψ = ϕ − β = ϕ′ − β′ (14.27)

To simplify the analysis, we will use the air-gap emf as reference.
From the above equations, it follows that

γ = π/2 − ϕ′ + β′ = π/2 − ϕ + β (14.28)

and
im sinϕ′ − j im cosϕ′ = (i1 + i p cos γ) − j i p sin γ (14.29)

Equating the real and imaginary parts and dividing the resulting two equations side-
by-side results in

tanϕ′ = (i1/ i p + cosγ)

sin γ
(14.30)

FromEqs. 14.21 to 14.30, the following conclusions can be derived (see also Fig. 14.9
for a graphical derivation and Fig. 14.10 for a summary of the conclusions):

• for i1/ i p = 1, Eqs. 14.21 and 14.22 yield ϕ′ = π/2− γ/2. Therefore, the relation
between β′ and γ is a straight line: β′ = γ/2 (see Fig. 14.10). When γ varies from
0 to π, β′ increases from 0 to π/2, ϕ′ decreases from π/2 to 0 and the internal
displacement angle ψ varies between π/2 · · · 0 · · · − π/2.

• for i1/ i p > 1 (under-excitation), Eq. 14.21 yields ϕ′ > π/2 − γ/2. The relation
between β′ and γ is a curve, as is illustrated in Fig. 14.10 for i1/ i p = 4/3. Here,
we always get β′ > γ/2. When γ varies from 0 to π, β′ varies between 0 and π, ϕ′
varies between π/2 · · · ϕ′

min · · ·π/2 (ϕ′
min corresponds with cosϕ′

min = i p/ i1).
• for i1/ i p < 1 (over-excitation), Eq. 14.21 yields ϕ′ < π/2− γ/2 while β′ < γ/2.
When γ varies from 0 to π, β′ varies between 0 · · ·β′

max · · · 0 andϕ′ varies between



14.3 Ideal Current Supply of Synchronous Machines 401

im ip

i1 º

º ‛

‛

ip

‛

i1 º
º ‛
im

º

ip

i1
º ‛

i m

‛
‛max

(a)

(b)

(c)

Fig. 14.9 Magnetising current as a function of γ

Fig. 14.10 Load angle as a
function of γ
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π/2 · · · 0 · · ·−π/2. Themaximum load angle β′
max (with sin β′

max = i1/ i p) occurs
when ϕ′ = 0, i.e. when the current triangle is right-angled.4 Then we also have

4Derive this analytically from the equations above, starting from ∂β′/∂γ = 0.
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β′
max = γ − π/2 and thus all maximums for varying i1/ i p are on a straight line

(see the dash-dot line in Fig. 14.10).

It is particularly important to note that the highest value of themagnetising current
im will occur for small values of γ, which are therefore likely to result in significant
main field saturation. This may have some repercussions for the torque production.

Indeed, the torque or the rotating field power of a synchronous machine can be
written5 as a function of the currents i1, i p and the angle γ:

t · n = xm · i1 · i p · sin γ = xm · i p · iq
with iq the q-axis component of the primary current. Saturation will affect the mag-
netising reactance xm and thus directly the torque.

14.3.2 Behaviour of the Synchronous Machine Neglecting
Main Field Saturation

If we disregard main field saturation, xm is constant, for example equal to the unsat-
urated value xmo. The torque then varies sinusoidally with the angle γ, similarly to
the sinusoidal variation with the load angle β for constant voltage supply (see the
upper curve in Fig. 14.11).

Note, however, that the magnetising current im varies substantially with the angle
γ (im = |i1 + i p| = |i1 + i p · exp(− jγ)|). Consequently, also the air-gap field and
emf el will vary with γ. As discussed in the previous section, the increase of the emf
might be particularly relevant for small values of γ.

5Derive this from the power equation t · n = el · i1 · cosϕ′ = el · i′ p · sin β′.
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14.3.3 Behaviour of the Synchronous Machine Including
Main Field Saturation

Main field saturation may be modelled as for the induction machine, i.e. by means of
Eq.14.10 or 14.11. The only difference is that now the reactances are much smaller,
for example, for the unsaturated value of the magnetising reactance xmo = 1.5 and
for the saturated value xmn = 1 . . . 1.2.

As mentioned before, saturation will be especially important for small angles γ
(see the torque characteristic (b) in Fig. 14.11). For small angles, the torque may be
substantially reduced compared to the unsaturated case. The maximum torque is also
reduced and the pull-out angle is now larger than π/2.

To calculate this saturated torque characteristic, we may start from a given angle
γ and calculate im , which allows us to calculate el from the non-linear6 equation
14.10. Equation14.11 then gives the value of xm .

Figure14.12 shows the torque characteristics as a function of γ for i p = 1.5 and
for im = 1.5; 1; 2. For current supply, the angle γ plays the analogue role as the load
angle β for constant voltage supply. Saturation decreases the torque but apparently
increases the statically stable region for a constant load torque if the drive were
operated in an open loop (which is rarely the case for current supply). However,
as will be explained in later chapters, operation at large angles of γ is in fact field
weakening. This may be useful for high-speed operation, especially for permanent
magnet excitation, which can be considered as a constant excitation current i p.

6To avoid the solution of the non-linear equation, a value of el may be taken as a starting point,
somewhere between its minimum and maximum value, between γ = π and γ = 0, respectively.
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It is interesting to draw these torque characteristics for constant current supply as
a function of the load angle β′ (see Fig. 14.13). For i1/ i p < 1, the torque is not an
unambiguous function of β′ (the maximum value of β′ has been discussed above).
What is also interesting is the comparison with the torque characteristics for constant
voltage el (cf. the dashed lines). If the constant-current characteristics are above the
constant-voltage characteristic for el = 1, high saturation levels may be expected.



Chapter 15
Variable Frequency Voltage Supply
of Rotating Field Machines

Abstract Traditional rotating field machines have no (for synchronous motors) or
poor and limited (for induction motors) possibilities for variable speed operation
when power is supplied from a fixed frequency source. In this chapter, we will
discuss the open-loop variable frequency voltage supply of rotating field machines.
These kinds of drives are commonly denominated as V/f drives, because both the
voltage and the frequency are controlled together in open loop, so as to control
both the speed and the flux. The aim of the open-loop variable frequency operation
of rotating field machines is to obtain a cheaper and more reliable variable speed
drive than the expensive and high-maintenance DC drive. Drives that are even more
demanding in terms of speed, position or torque control will be discussed in later
chapters.

15.1 Introduction

In Part 1, we discussed induction and synchronous machines supplied by the (fixed
frequency) grid. However, in principle there are no stringent limitations for the fre-
quency of the supply (apart from possible mechanical limitations for the speed, for
example). As the sections belowwill demonstrate, the models and equivalent circuits
derived in Part 1 can also be used for variable frequency supply, if reactance notations
j X are replaced by inductance notations jωL . For the pu notation, jνl instead of j x
will be used. In this case, the reference value for the angular frequency is normally the
rated angular frequency ωn of the machine. Note that choosing a reference frequency
also implies a corresponding reference value ωn/Np for speed, and a reference value
for time in dynamical studies; in most cases, a pu time τ = ωnt is also used. The
reference value for inductances follows from Xref = ωre f Lre f = ωn Lre f .

Varying the frequency implies that the supply voltage level will also have to
vary, however. Indeed, the power output of a machine is determined by flux level
and current. Maximum power is obtained for the maximum flux level (limited by
saturation to the rated flux) and the maximum current (rated current). The air-gap
flux is related to the air-gap emf and the frequency: El = ωψl

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_15
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If we disregard the resistive and leakage voltage drop in the armature, the air-gap
emf is approximately equal to the voltage. For a constant flux equal to the rated
flux, the voltage should therefore vary proportionally to the frequency: V ≈ El =
ωψln . Alternatively, as rated flux corresponds to rated voltage at the rated frequency,
V/Vn = ω/ωn .

Please note that certain limits apply:

• for frequencies higher than the rated frequency, the voltage cannot increase beyond
the ratedvoltage, because of insulation limitations of thewinding and/or limitations
to the available DC voltage. For these high frequencies, the voltage will be limited
to the rated voltage, and the flux will decrease inversely proportionally to the
frequency (i.e. field weakening)

• for very low frequencies, the resistive voltage drop in the armature can no longer
be disregarded (compared to the reactive voltages), and an additional voltage bias
that is more or less equal to the product of resistance and (real part of the) rated
current has to be added.

15.2 Variable Frequency Supply of Induction Machines

To study the behaviour of induction machines with variable frequency supply, we
will use the equivalent circuits in Fig. 15.1 (a and c for absolute values, b and d for pu
values). Compared to the equivalent circuits for grid supply discussed in Part 1, the
reactances (X, x) have been replaced by ωL = νωn L and νl = (ωn/ω)l. The slip
s as always refers to the actual frequency or actual synchronous speed, s = (Ω −
Ωr )/Ω = (ω − ωr )/ω, where Ω = ω/Np is the synchronous speed corresponding
to the actual supply frequency ω. We may also write s = (1 − νr/ν), where νr =
ωr/ωn = (1 − s)ν is the speed in pu.

Note that the resistive voltage drop becomes relatively important compared to the
reactive voltage drops when the frequency is very low. Therefore, for low-frequency
operation, the stator resistive voltage drop cannot always be ignored.

For frequencies that are not too low, we may use the simplified L-circuits (b) and
(d) in Fig. 15.1 and we obtain the following equations for currents, power and torque
(in absolute values and pu, respectively):

I 1 = I m + I = V 1

jωLm
+ V 1

R/s + jωLσ
(15.1)

i1 = im + i = v1

jνlm
+ v1

r/s + jνlσ
(15.2)

Pem1 = 3V 2
1 · R/s

(R/s)2 + (ωLσ)2
(15.3)
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(a) (b)

(c) (d)

Fig. 15.1 Induction machine equivalent circuits for variable frequency

pem1 = v2
1 · r/s

(r/s)2 + (νlσ)2
(15.4)

Pm = (1 − s)Pem1 (15.5)

pm = (1 − s)pem1 (15.6)

T = 3

Ω
V 2
1 · R/s

(R/s)2 + (ωLσ)2
(15.7)

t = 1

ν
v2
1 · r/s

(r/s)2 + (νlσ)2
(15.8)

Maximum torque (pull-out torque) is always obtained for the same (pull-out) slip
frequency sνωn = sω = R/Lσ or sν = r/ lσ (in other words, the pull-out slip dimin-
ishes with increasing frequency). The pull-out torque is given by

Tpo = 3

Ω
V 2
1 · 1

2ωLσ
= 3

2
Np · V 2

1

ω2Lσ
(15.9)

tpo = v2
1

2ν2lσ
(15.10)
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Rated active current (Iw = In or i1w = iw = 1) is obtained for

iw = v1 · r/s

(r/s)2 + (νlσ)2
= 1 (15.11)

or
r

s
= v1

2

(
1 ±

√
1 − 4ν2l2σ

v2
1

)
≈ v1

2

(
1 ±

[
1 − 2ν2l2σ

v2
1

])
(15.12)

Only the largest solution corresponds to a useful small slip value, which means that

r

s
≈ v1

(
1 − ν2l2σ

v2
1

)
(15.13)

From now on, we will distinguish between operation at frequencies below or above
the rated frequency.

For frequencies below (or equal to) the rated frequency, the voltage is varied
proportionally to the frequency to obtain a constant flux (see Sect. 15.1). The pull-
out torque is therefore constant, independent of the frequency (see Eq.15.9 or 15.10).
For rated flux, v1 = ν and consequently

tpo = 1

2lσ
(15.14)

Maximum power therefore increases linearly with the frequency.
For the slip values corresponding to the rated active current (Eq.15.13),weobtain a

constant slip frequency νs ≈ r ≈ sn in this frequency range. For the corresponding
electromagnetic power, we obtain pem1 = v1 · iw = ν · 1 = ν. The corresponding
torque is thus the rated torque (t = pem1/ν = 1). In this constant torque range (or
constant flux range), the ratio of maximum torque to rated torque is also constant.

For frequencies above the rated frequency, the voltage must be limited to the
rated value (see Sect. 15.1). The flux will therefore decrease in inverse proportion
to the frequency. From Eqs. 15.9 to 15.10, it follows that the maximum torque in
this range will decrease inversely proportionally to the square of the frequency. This
means that in this range, the maximum power decreases inversely proportionally to
the frequency.

As to the slip values corresponding to Eq.15.13, we now obtain constant slip
values s ≈ r ≈ sn (at least if ν is not too large) and, as a result, increasing slip
frequency values with increasing frequency. With the constant voltage v1 = 1, we
obtain pem1 = 1 for the corresponding electromagnetic power; the corresponding
torque therefore decreases in inverse proportion to the frequency. This frequency
range is called the constant power range or the field weakening region.
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Fig. 15.2 Torque and power
as a function of frequency
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However, as the maximum (pull-out) torque decreases faster than this torque for
rated active current, for very high frequencies (sometimes called the over-speed
range), the rated torque can no longer be maintained.1

The above analysis is summarised in Fig. 15.2. Range 1 is the constant torque
region; range 2 is the constant power or field weakening region. In range 3 (over-
speed range), power decreases inversely proportionally to the frequency. Range 4
is the very low frequency region where a voltage bias is required to still obtain a
constant torque.

Figure15.3 illustrates some torque-speed characteristics in the normal ranges (1
and 2). Usually, the control will attempt to keep the slip sufficiently low, in the linear
part of the torque characteristics shown in bold (this requires slip control or current
control loop).

Negative speeds (with negative torques) imply a reversal of the phase sequence,
which is easily accomplished with inverters.

1Calculate the corresponding maximum frequency.
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Fig. 15.3 Torque-speed characteristics in a large speed range

j LR

I,V Ep p= j

jr

,v e = j p
i

(a) (b)

Fig. 15.4 Equivalent circuits for variable speed operation

Negative torques for positive speeds or positive torques for negative speed imply
generator operation. This is not a problem for the inverter, but the DC supply might
prohibit the power reversal (see Chap. 7 in Part 2).

15.3 Variable Frequency Supply of Synchronous Machines

In the equivalent circuits in Fig. 15.4, the reactances (X, x) have again been replaced
by ωL = νωn L and νl = (ωn/ω)l. Note that the rotor emf depends on the frequency.
For constant rotor excitation, the emf is proportional to the frequency.

For frequencies that are not too low, we may disregard the resistive voltage drop.
We then obtain for the pu values:

v = ep + jνli (15.15)

Choosing the voltage along the real axis, v = v, the emf (in the users reference
system or URS) is ep = ep · exp(− jβ). We then obtain (here in pu only)

i = (v − ep)/jνl = [v − νψp exp(− jβ)]/jνl (15.16)

iw = (ψp sin β)/ l (15.17)

http://dx.doi.org/10.1007/978-3-319-72730-1_7
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i b = − j (v − νψp cosβ)/νl (15.18)

pem = t · ν = v · ep
νl

sin β = v · νψp

νl
sin β (15.19)

t = v · ep
ν2l

sin β = v · νψp

ν2l
sin β (15.20)

Pull-out torque is obtained for β = π/2 and is equal to

tpo = v · ψp

νl
(15.21)

For frequencies below (or equal to) the rated frequency, the voltage is varied in
proportion to the frequency, v = ν and we find a constant torque (for constant β), a
constant pull-out torque and electromagnetic power proportional to the frequency:

t = pem/ν = ψp

l
sin β (15.22)

tpo = ψp

l
(15.23)

For example, for ψp = 2, l = 1.25, there is a pull-out torque of 1.6; β = π/6 results
in |i | = 1, iw = 0.8, i b = j0.6, t = 0.8 and pem = 0.8ν. Note in particular that in this
constant torque range, the reactive current is constant (for constant β), independent
of the frequency.

For frequencies above the rated frequency, the voltage is kept constant at the rated
value, v = 1.

If the excitation can be controlled (which is the case for DC excitation), the exci-
tation current will be varied inversely proportionally to the frequency, ψp = ψpn/ν,
resulting in a constant rotor emf ep. In that case, the maximum electromagnetic
power will decrease inversely proportionally to the frequency and the pull-out torque
decreases as 1/ν2. The rated active current can be maintained by increasing the load
angle β, until the frequency for which β = π/2 is attained. In this range, the electro-
magnetic power corresponding with this rated active current will remain constant,
but the torque will decrease with the frequency as 1/ν (constant power range). Yet
larger frequencies will result in a torque decreasing with the frequency as 1/ν2.

If the machine has permanent-magnet excitation, the rotor emf will increase with
the frequency (while the terminal voltage now remains constant at the rated value).
The pull-out torque will therefore only decrease as 1/ν and the maximum power
remains constant. In principle, the active current component can be maintained at its
rated value for the same load angle. However, the reactive current component will
increase with increasing frequency (the current will becomemore andmore leading).
As a result, the total current will increase and the active current component will be
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more and more limited. For a given frequency (and beyond), no active current will
be possible and no torque will be produced.2

To date, open-loop operation of V/f-supplied synchronous machines is rarely
applied because of possible dynamical problems: when the frequency is adjusted
too quickly, the machine may stall; an induction motor, on the other hand, will just
increase the slip. In recent literature, however, several solutions have been proposed.

Note that in most applications, variable frequency operation of synchronous
machines is based on current supply and current control (see Chaps. 16 and 17).

2Calculate this maximum frequency.

http://dx.doi.org/10.1007/978-3-319-72730-1_16
http://dx.doi.org/10.1007/978-3-319-72730-1_17


Chapter 16
Modelling of Inverter Supplied Rotating
Field Machines

Abstract In this chapter (which is mainly based on Novotny, Equivalent circuit
steady state analysis of inverter driven electric machines, [30]), we will study a
method for the fundamental harmonic modelling of inverter supplied rotating field
machines. First, we derive fundamental harmonic equivalent circuits for the inverter.
These fundamental harmonic circuits are then combined with the steady-state equiv-
alent circuits of rotating field machines to derive the basic characteristics of these
inverter-supplied machines. For the modelling of the inverters, the resistive voltage
drop over the switches will not be taken into account. Commutation will also be
simplified, as most transients will be disregarded.

16.1 Fundamental Harmonic Models of VSI and CSI

16.1.1 Review of the Basic Inverter Schemes

The inverter types that are commonly used for the supply of rotating field machines
are the (unmodulated) voltage source inverter or VSI, the modulated voltage source
inverter or PWM-VSI, and the (unmodulated) current source inverter or CSI.

The notations used in this chapter are the following:

• subscript e for equivalent quantities
• subscript i for input quantities of the inverter
• subscript l for line quantities (line voltage, line current)
• subscript f for phase quantities
• subscript y for wye quantities (real wye connection or equivalent wye).

16.1.1.1 The Unmodulated Voltage Source Inverter

Figure16.1(1a) shows the principal scheme of the VSI. The switches contain an
antiparallel diode as the load can be reactive. The capacitor in the DC link serves
to absorb temporarily negative DC link currents. Figure16.1(1b) illustrates the six

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_16
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Fig. 16.1 VSI and CSI circuits, modes and waveforms

conducting modes and the corresponding gating signals, while Fig. 16.1(1c) shows
the instantaneous line voltages and the wye voltages, as well as their fundamentals
(cf. dashed lines). For a wye-connected load, the wye voltages are the phase voltages,
while for a delta connected load the phase voltages equal the line voltages.
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As a result of the 180◦ conduction and the antiparallel diodes, each of the output
phases is at every instant connected to either the plus or the minus side of the DC
source. Commutation takes place between the upper and lower switches of the same
output phase (the required dead time between the switching-off of one switch and
the switching-on of the opposing switch is disregarded here). In other words, there
is a one-to-one relationship between the DC voltage and the AC phase voltages. In
contrast, the AC side currents are not completely determined by the circuit itself, as
at each instant two output phases are connected to one of the DC side terminals. In
fact, as figure (1b) shows, at each interval there is a circulating current in the two
phases connected to the same DC side terminal; obviously, this circulating current
is determined by the load, but not by the inverter circuit.

16.1.1.2 The Unmodulated Current Source Inverter

The principal scheme of the CSI is shown in (2a) in Fig. 16.1. The inductance in
the DC link serves to absorb temporarily negative DC link voltages. Figure (2b)
illustrates the six conducting modes and the corresponding gating signals. Figure
(2c) shows the instantaneous line currents and the phase currents for a load in delta,
as well as their fundamentals (cf. dashed lines). For a wye-connected load, the line
currents are also the phase currents.

As a result of the 120◦ conduction, only two of the output phases are connected to
the DC source - one at the plus side and one at the minus side - and the third output
phase is not connected. Commutation takes place between the switches connected
to a DC terminal. This means that there is a one-to-one relationship between the
DC current and the AC phase currents. In contrast, the AC side voltages are not
completely determined by the circuit itself, as at each instant one output phase is
not connected. As figure (2b) shows, the voltage in the not-connected phase is not a
priori determined by the inverter circuit but instead is determined together with the
load.

16.1.1.3 The Modulated Voltage Source Inverter

The PWM-VSI is a variant of the VSI, where in each mode sub-intervals are inserted
with the three AC terminals shorted on one of the DC terminals. As Fig. 16.2 illus-
trates, at each instant there also is a one-to-one relationship between the output
voltages and the DC voltages. Again, the distribution of the currents between the
output phases is only partially determined by the inverter. The load will determine
the missing relations.
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Fig. 16.2 PWM-VSI modes and waveforms

16.1.2 Idealised Output Waveforms

Only steady statewill be considered. The input quantities of the inverter, vi and ii , will
be replaced by their constant (or average) DC values Vi and Ii , and the commutation
phenomenon will be simplified as much as possible.

With these assumptions, the output waveforms of the voltages of the VSI and the
currents of the CSI are determined only by the inverter-imposed relations.



16.1 Fundamental Harmonic Models of VSI and CSI 417

For the VSI, the Fourier expansion of the line and wye voltages yields:

vl = 2
√
3

π
Vi

[
sin ϑl − 1

5
sin 5ϑl − 1

7
sin 7ϑl + 1

11
sin 11ϑl + . . .

]
(16.1)

vy = 2

π
Vi

[
cosϑy + 1

5
cos 5ϑy − 1

7
cos 7ϑy − 1

11
cos 11ϑy + . . .

]
(16.2)

respectively, where ϑx = ωt + ϑxo and with ω determined by the inverter and ϑxo

determined by the chosen time reference instant (x can be either l or y).
For the CSI, we obtain for the line current and for the phase current (if load in

delta):

il = 2
√
3

π
Ii

[
sin ϑl − 1

5
sin 5ϑl − 1

7
sin 7ϑl + 1

11
sin 11ϑl + . . .

]
(16.3)

i f = 2

π
Ii

[
cosϑ f + 1

5
cos 5ϑ f − 1

7
cos 7ϑ f − 1

11
cos 11ϑ f + . . .

]
(16.4)

For the PWM-VSI, the waveform depends on the modulation principle. Besides the
fundamental harmonic andmultiples, there are also carrier harmonics and side-bands.
In general, we may write

vl = 2
√
3

π
Vi

[
a1 sin ϑl − a5

5
sin 5ϑl − a7

7
sin 7ϑl + a11

11
sin 11ϑl + . . .

]
(16.5)

vy = 2

π
Vi

[
a1 cosϑy + a5

5
cos 5ϑy − a7

7
cos 7ϑy − a11

11
cos 11ϑy + . . .

]
(16.6)

where the coefficients depend on the modulation principle. In the above expressions,
it is clear that a1 will be smaller than unity.

It is often sufficient to consider only the fundamental harmonic, for example for
studying the average electromagnetic behaviourwithout paying attention to harmonic
torques or losses. Of course, harmonics may also contribute to the average torque
but their contribution is rather small.

The fundamental harmonics for the three inverter types are in effective value:

• for the VSI:

Vl =
√
6

π
Vi (16.7)

Vy =
√
2

π
Vi (16.8)
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• for the CSI (the mentioned phase quantity is valid only for a load in delta):

Il =
√
6

π
Ii (16.9)

I f =
√
2

π
Ii (16.10)

• for the PWM-VSI:

Vl =
√
6

π
a1Vi (16.11)

Vy =
√
2

π
a1Vi (16.12)

16.1.3 Secondary Quantities

Voltages for the VSI and currents for the CSI are primary quantities, determined by
the inverter only. The currents for a VSI and the voltages for a CSI, which we will
call the secondary quantities, are (mainly) determined by the load. The exact transfer
relations between DC and AC values may only be determined through a detailed
analytical study. However, for a fundamental harmonic approach, the power balance
between the DC and AC sides provides sufficient information.

For the VSI (and PWM-VSI), we know the exact relation between input (DC) and
output (AC) voltages. To derive the relation between input and output currents, we
suppose that the (internal) inverter losses can be disregarded and that the total DC
input power is transformed into fundamental harmonic AC output power:

Vi Ii = 3Vy Il cosϕ (16.13)

where ϕ is the angle by which the fundamental harmonic output load current is
lagging the output voltage. Substituting the expression for Vy from Eq.16.8 results
in

Ii = 3
√
2

π
Il cosϕ (16.14)

For a wye-connected load, I f = Il . For a load in delta, I f = Il/
√
3 and thus

Ii = 3
√
6

π
I f cosϕ.

At the DC-side, we see only the active component of the AC load current. The
reactive component of theAC load current must therefore be provided by the inverter,
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as the circulating current between the two phases that are shorted by the inverter in
each of the six modes.

By analogy, for the CSI we find:

Vi = 3
√
6

π
V y cosϕ (16.15)

where Vy ≡ V f for a load in wye, and Vi = 3
√
2

π
V f cosϕ for a load in delta.

For the PWM-VSI, the only difference with respect to the six-step VSI is the
reduction factor a1, thus

Ii = 3
√
2

π
a1 Il cosϕ (16.16)

with I f ≡ Il for a load in wye, and

Ii = 3
√
6

π
a1 I f cosϕ (16.17)

for a load in delta.

16.1.4 Fundamental Harmonic Equivalent Circuits

Based on the above relations, we may derive fundamental harmonic equivalent cir-
cuits for the VSI and CSI. We will refer all equivalent circuits to the AC phase
quantities (V f and If ).

For a VSI, we may write:

V f =
√
2

π
Vi (16.18)

I f cosϕ = π

3
√
2
Ii (16.19)

Equation16.18 expresses the phase voltage in an equivalent DC voltage, while
Eq.16.19 expresses the active current component in the equivalent DC current.
Figure16.3a shows a simple equivalent circuit representing Eqs. 16.18 and 16.19.
To the right, we find the output terminals of the inverter, connected to the load.
As we have chosen the real axis along the output voltage, the load current is
I f = I f exp(− jϕ). In parallel with the load, the inverter has a variable reactive
element (i.e. a capacitor for a reactive load) that will continuously compensate the
reactive power requirements of the load. This can be regarded as being continuously
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Fig. 16.3 Equivalent circuit for a VSI

in parallel resonance with the load.1 To the left of this element, we find the input
current of the inverter, referred to the AC side (by the factor π/3

√
2). The voltage at

the input and the output of the inverter is the same, V f = (
√
2/π)Vi .

We can complete this inverter scheme by adding to the left the Thévenin equivalent
circuit for theDCsource, comprising an ideal voltage source in serieswith the internal
resistance of the DC source (see (b) in Fig. 16.3). The (rectifier) DC voltage Vr has
to be referred to the AC side as Ve = Vr · (

√
2/π); the internal resistance also has

to be referred to the AC side as Re = Rr · (6/π2). We can easily verify that this
(single-phase) equivalent circuit correctly represents the three-phase power balance:

Ve · Ie = Re · I 2e + V f · I f cosϕ (16.20)

or, indeed,

1

3
Vr · Ii = 1

3
Rr · I 2i + V f · I f cosϕ (16.21)

The equivalent scheme for a CSI can be derived in a similar way (see (a) in Fig. 16.4).
To obtain a complete duality with the VSI, here a load in delta has been considered
together with a Norton equivalent for the DC source. The real axis is now chosen
along the inverter current. Instead of a parallel reactive element as for the VSI, now
a series reactive element should be inserted. The currents to the left and right of this
element are the same, i.e. the inverter output phase current I f , equal to the input DC
current referred to the AC side, Ii · (

√
2/π).

The voltage to the left of this element is the input DC voltage referred to the AC
side. It is equal to the real part of the AC voltage to the right of this reactive element.
The reactive part of the AC voltage is absorbed by the reactive element, which can
be a capacitor or an inductance. This reactive voltage can be seen as the voltage of
the not-connected phase in each mode of the inverter; for a rotating field machine as
load, this voltage is the emf induced by the rotating field. The Thévenin equivalent
circuit for the DC source is demonstrated in (b) of Fig. 16.4.

1This reactive current may be interpreted as corresponding to the short-circuit currents in the two
phases that are shorted by the inverter, in each of the six modes.
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The CSI equivalent circuit for a load in wye is shown in Fig. 16.5 ((a) for a Norton
and (b) for a Thévenin equivalent for the DC source).

Figure16.6 presents the equivalent circuit for a PWM-VSI. The difference com-
pared to the VSI lies only in the reduction factor a1 for the fundamental voltage
(symbolically represented by an autotransformer). This reduction factor also needs
to be accounted for in the equivalent values for the DC source current (and its internal
resistance).
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16.1.5 Discussion of the Equivalent Circuits

The equivalent circuits of the VSI and CSI may, in theory, be used to study the
steady-state behaviour when any symmetrical three-phase load is supplied. In the
next sections, wewill apply these circuits when induction and synchronousmachines
are supplied.

First, however, we should pay attention to the assumptions used to derive these
equivalent circuits, more particularly the fact that we disregarded the commutation
phenomenon.

For a CSI, commutation takes place between switches connected to the same
DC terminal (e.g. from T+

a to T+
b , see (2b) in Fig. 16.1). When a CSI supplies

a capacitive load (such as an over-excited synchronous machine), its operation is
similar to that of a controlled rectifier with a control angle α > 90◦. The AC side
supplies the reactive power required for the commutation: during commutation, two
phases are shorted by the inverter and the emfs of the AC side have the right polarity
to transfer the current to the next switch. There is only a small delay due to the
inductance in the shorted phases, which is actually the (small) leakage inductance
when a synchronous machine is supplied. After this short commutation interval, the
previous phase is open-circuited and the emf of the load (a synchronous machine,
for example) will induce a voltage in this open-circuited phase. It may therefore
be assumed that the reactive power is transferred from the load to the inverter first
during the short commutation interval and subsequently as the voltage induced in
the open-circuited phase. It is mainly the latter which is represented by the variable
reactive element in the inverter equivalent circuit.

For a VSI supplying an inductive load, the situation is somewhat dualistic with
the previous case. Commutation takes place between switches connected to the same
output phase. For example, for the commutation from T+

a to T−
a (from mode 2 to

mode 3 in (1b) in Fig. 16.1), switch T+
a receives the gate signal to switch off. The

inductive current will then switch to the antiparallel diode D−
a of the opposing switch.

At approximately the same instant, T−
a will receive a gate signal to conduct. Because

the voltage in the phase a is reversed, the current in phase a will first decrease to zero
and then reverse (through switch T−

a ). The reactive energy is now transferred, on the
one hand, during the short commutation form T+

a to D−
a /T

−
a , and on the other hand

during the remainder of mode 3, where two output phases (a and c in this case) are
shorted to the minus terminal of the DC source. The first part of the reactive energy
is quite small and corresponds to the reactive energy in the leakage field. Normally,
the second part is much larger and corresponds to the reactive energy transferred
from phase to phase by the main rotating field.

For a CSI with capacitive load and a VSI with inductive load, the fundamental
harmonic circuits provide fair approximations. Indeed, the usual load for a VSI (and
PWM-VSI) is a reactive load like an induction machine. A VSI relies on forced
commutation and uses switches that can be turned on and off. In contrast, the natural
load for a CSI is a capacitive load, for example an over-excited synchronousmachine,
as a traditional CSI relies on natural commutation (for inverter operation, this is also
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referred to as load commutation). Indeed, for aCSI in its basic configuration, switches
that can only be turned on will suffice, as is the case in a controlled rectifier. In fact,
that is what it really is: the over-excited synchronousmachine acts like the grid which
supplies reactive energy for the commutation.

In contrast, for aCSIwith inductive load, the currentwill not automatically transfer
to the next switch, because the sign of the voltage (Vb−Va in this case) has the wrong
sign. This requires switches that can be turned off as well, or thyristors with a killer
circuit. At the switching instant from T+

a to T+
b , a very high di/dt can be observed,

and therefore also very high peak voltages over the load will appear.
For a VSI with capacitive load, the current will have switched from T+

a to D+
a

before the end of mode 2. At the end of mode 2, switch T−
a receives a gate signal and

the current will transfer automatically to T−
a using the reactive energy of the load.2

However, this will result in a large dv/dt over the load and therefore also high peak
currents.

16.2 Inverter Supply of Induction Machines (Open Loop)

16.2.1 Induction Motor Supplied by a VSI or PWM-VSI

When an induction motor is supplied with a VSI or PWM-VSI, the harmonics in the
voltage waveform will result in harmonic currents, besides the fundamental current.
As the slip of the machine for these higher harmonics is close to one (for actual
machine speeds between 0 and the synchronous speed for the fundamental), the
impedance of themachine for these harmonics ismore or less equal to the short-circuit
impedance, i.e. approximately the leakage inductance: Zk1 = Rk1+ jωi Lk1 ≈ j Xσ ·
(ωi/ω1). The low leakage inductance results in relatively high harmonic currents,
although limited by the high order of the harmonics. Figure16.7 illustrates the current
wave-shapes in no-load and full-load for a normal leakage of 0.2 pu and for an
artificially low leakage of 0.06.

In the analysis below, we will concentrate on the fundamental harmonics. Com-
bining the equivalent circuit of the VSI and the equivalent circuit of the induction
machine creates the circuit in Fig. 16.8. Here, ν denotes the pu fundamental fre-
quency (with respect to the rated frequency of the machine). Reactances Xxy are also
referred to the rated frequency of the machine.

The phase voltage of the machine (chosen along the real axis) is equal to the
rectifier voltage referred to the AC side:

V f = V f =
√
2

π
Vi = Ve − Re Ie =

√
2

π
Vr − 6

π2
· Rr · π

3
√
2
Ii (16.22)

2For a VSI switches are always used that can be turned off because a wrong commutation would
result in a short circuit of the DC voltage source.
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The input current of the inverter, referred to the AC side, is equal to the active
component of the motor current

Ie = π

3
√
2
Ii = I f cosϕ (16.23)

From the equivalent circuit we learn that, with regard to the fundamental, the opera-
tion of an induction motor fed by a VSI (or PWM-VSI) is not very different from the
operation from the grid. The only difference lies in the DC source resistance which
is not completely equivalent to a higher stator resistance. Indeed, the voltage drop
over the resistance Re is proportional to the active component of the stator current,
while the voltage drop over the stator resistance is proportional to the total stator
current. A higher stator resistance leads to a reduction of the torque in motoring (see
Part1). However, the torque reduction due to the internal resistance of the rectifier is
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only somewhat similar3 for those slip values where the power factor is high. In other
words, this is not the case for very low or very high slip values (see Fig. 16.9).

As we know, the machine voltage is varied proportionally to the frequency for
frequencies below the rated frequency, and it is kept constant for higher frequencies.
For a VSI, this variable voltage is realised by varying the rectifier voltage Vr , while
for a PWM-VSI it is realised by the PWM. The resulting torque-speed curves are as
illustrated in Fig. 16.10. For a PWM-VSI, the fundamental behaviour is the same,
but the current harmonics are of a higher order and are therefore much smaller in
amplitude.

16.2.2 Induction Motor Fed by a CSI

With an ideal CSI, the induction motor gets block current waves of 120◦ (see
Fig. 16.11). Such a three-phase current corresponds to a space vector of constant

3For PWM-VSI, the effect is even lower due to the additional reduction factor a21 for the resistance.
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Fig. 16.11 Voltage
waveforms for a CSI-fed
induction machine

es

is
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amplitude whose phase angle shifts each sixth of the period by 60◦ (cf. the hexago-
nal for the output phasors of an inverter).

In each sixth of the period, the induction machine sees a constant DC current
in two phases (and zero current in the third), i.e. a constant current layer in the
stator windings. The rotor, rotating with an electrical speed of (1 − s)ω, will then
see exponential air-gap emf terms with an exponent comprising j (1 − s)ωt , thus
sinusoidal segments with a frequency of (1−s)ω. At the switching instants, a sudden
phase shift of sπ/3 is added so that the average frequency4 of the emf is ω. To
calculate the stator voltage, the resistive and inductive voltage drops over the stator
resistance and stator leakage must be added. In theory, the current jumps and the
leakage inductance results in impulse voltages in the stator voltage, but in practice
these voltage peaks are limited because of the non-ideal current source.

We will only consider the fundamentals of the current and voltages. For these, we
will use the equivalent circuit of a CSI combined with the equivalent circuit of the
induction machine.

However, a distinction should be made between a (more or less ideal) DC current
source and a (more or less ideal) voltage DC source.

For a current supplied CSI, we use the combined equivalent circuit in Fig. 16.12,
where the parallel source resistance Re is very large (or infinite). It is easy to see
that for Re = ∞, the induction motor fundamental behaviour is exactly the same
as if it were fed by an ideal sinusoidal current source (see Chap.14). In this case,

4Indeed: 6 · (1 − s)π/3 + 6 · sπ/3 = 2π.

http://dx.doi.org/10.1007/978-3-319-72730-1_14
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Fig. 16.13 Torque-speed characteristic for CSI-fed induction motor with DC current source

I f = Ii ·
√
2/π = Ie ≡ Ir ·

√
2/π. The only difference compared to an ideal sinusoidal

supply is that the reactive energy is now provided by the inverter, represented by the
variable reactive element in the circuit (which is, for an induction machine, actually a
variable capacitor). The machine phase voltage results from the machine equations,
but only the real part of it is visible at the inverter input (i.e. the DC terminals).

The resulting torque-speed characteristic (seeFig. 16.13) is very steepwith a rather
limited pull-out torque at rated current. The slip values in the statically stable region
(slip smaller than the pull-out slip) are very small and the emf values are quite high,
resulting in saturation levels that are too high. Therefore, the CSI-fed inductionmotor
is normally used at slip values larger than the pull-out slip, requiring a closed loop
control for stability (see Chap.17). The DC current can also be adjusted according
to needs and can be temporarily above rated current, if necessary.

Clearly, this is exactly the dual case of the ideal VSI-supplied induction motor.
For a voltage supplied CSI, the scheme in Fig. 16.14 applies, as a result of combin-

ing the CSI equivalent circuit with a Thévenin equivalent circuit for the DC source
and the induction motor equivalent circuit. The difference compared to the current

http://dx.doi.org/10.1007/978-3-319-72730-1_17
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Fig. 16.14 CSI-fed induction machine (delta connected) with DC voltage source

supplied CSI is that here the voltage is controlled independently (and switched to
the AC side by the inverter).

The equivalent source (rectifier) resistance can be added to the stator resistance.
Motor current and equivalent DC current are equal, but only the real (i.e. active)
component of theACvoltage is reflected to theDCside. The variable reactive element
(in this case, the capacitor) compensates the reactive component of themotor voltage.
As a result, the current is completely determined by the DC source voltage and the
total equivalent resistance:

I f = Ve

Re + R(s)
=

Vr · π
3
√
2

π2

6 Rr + R(s)
(16.24)

where R(s) is the real part of the motor impedance:

R(s) = R1 + (R
′
2/s) · ν2X2

m1

(R
′
2/s)

2 + (νX
′
2)

2
(16.25)

(X
′
2 = X

′
2σ + Xm1).

For motor current and torque, we then find:

I f = π

3
√
2

· Vr

R
·

1 +
(
sνX

′
2

R
′
2

)2

1 +
(
sνX

′
2

R
′
2

)2 + sν2X2
m1

RR
′
2

(16.26)

T = Np

νωn
· π2

6
·
(
Vr

R

)2

·
sν2X2

m1

R
′
2

·
(
1 +

(
sνX

′
2

R
′
2

)2
)2

(
1 +

(
sνX

′
2

R
′
2

)2 + sν2X2
m1

RR
′
2

)2 (16.27)

in which R = R1 + π2

6 Rr and νωn/Np = Ωsy .
The curve for the current as a function of the pu rotor speed νr = (1 − s)ν is

illustrated in Fig. 16.15. The current becomes very large for slip zero, even infinite for
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Fig. 16.15 CSI-fed induction machine: current as a function of speed

a small negative slip value. Indeed, the current is determined by the total resistance
in the circuit, which is Re + R1 for zero slip.

For increasing slip (decreasing speed), the current reaches a minimum value for
s = R

′
2/νX

′
2, after which it increases again with increasing slip. The minimum value

of the current is attained when the real part of the motor impedance is at a maximum.
This is exactly the same slip value as when the torque of a current-fed induction
machine is at a maximum, thus smin = R

′
2/νX

′
2. For both cases, this maximum real

part of the motor impedance is given by:

max[R(s)] = R1 + ν2X2
m1

2νX
′
2

(16.28)

For current supply, this corresponds to the maximal air-gap power (or torque),
whereas for a voltage supply it corresponds with the minimum current.

The torque characteristic shows a minimum and two (equal) maximums, see
Fig. 16.16. Theminimum torque is at the same slip valuewhere the current isminimal
and is given by

Tmin = Np · π2

3
· V 2

r · L
′
2

ν2ω2
n L

2
m1

·
(
1 − 4

L
′
2R

νωn Lm1

)
(16.29)

The maximum torque is given by

Tmax = Np

νωn
· π2

24
· V

2
r

R
(16.30)
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Fig. 16.16 Torque-speed characteristic for CSI-fed induction motor with DC voltage source

for the slip values
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smax,2 = R2

νX
′
2

· ν2X2
m1

2RνX
′
2

·
⎛
⎝1 −

√
1 − 4

(
RνX

′
2

ν2X2
m1

)2
⎞
⎠ ≈ R

′
2R

ν2ω2
n L

2
m1

(16.32)

The above discussion illustrates that the reactive current compensation by the inverter
dominates the behaviour of the system: current (and torque) are determined by the
real part of the impedances only.

We should note, however, that an open-loop operation of an induction motor with
a voltage-supplied CSI is not possible. It can be shown that, even in the statically
stable slip range, there are complex eigenvalues in the right half plane. Nevertheless,
such a drive can be used in a closed loopwhere frequency andDC voltage are adapted
depending on the slip (or slip frequency) and the required speed (see Chap.17). The
closed-loop control will also adjust the required flux level for themachine, dependent
on the frequency.

http://dx.doi.org/10.1007/978-3-319-72730-1_17
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16.3 Inverter Supply of Synchronous Machines

16.3.1 Introduction

Nowadays, most induction machine drives use a voltage source inverter (VSI or
PWM-VSI), frequently with a current control loop to imitate a current supply. For
very large power ratings, current source inverters are sometimes used, although less
and less frequently.

For synchronous machine drives, a CSI supply is much more common, although
a VSI with current control loop is also often applied for smaller power ratings. An
important reason to use a CSI for synchronousmachine drives is that the synchronous
machine can deliver the reactive power for the inverter, while at the same time
excellent dynamic behaviour comparable with that of a DCmachine can be obtained.

Figure16.17 illustrates a general scheme including DC source control, inverter
switching control and field regulation (which is absent in case of permanent-magnet
excitation). The obtained characteristics mainly depend on the control used for the
switching, but also on the DC control and the excitation control. As will be discussed
below, there are some differences between smooth-rotor synchronous machines and
salient-pole machines as well.

16.3.2 CSI-Fed Synchronous Machine with Smooth Rotor

Figure16.18 shows the equivalent scheme of a smooth-rotor synchronous machine,
combinedwith the equivalent scheme for aCSI. For the source, a Thévenin equivalent
has been used. V and I are phase quantities of the machine. The variable reactive
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Fig. 16.18 CSI-fed synchronous machine equivalent circuit (DC V-source)

element (in this case probably an inductance: i.e. load commutation for an over-
excited synchronousmachine) compensates the reactive part of themotor impedance.
The output power of the source (rectifier) is equal to three times the single-phase
power corresponding with the scheme

Pr = Vr · Ir = 3Ve · Ie = 3Ve · I (16.33)

At the input of the inverter, we have:

Pin = Pr − Rr I
2
r = Pr − 3Re I

2 = 3V · I · cosϕ (16.34)

From this power input to the inverter, the power converted by synchronous machine
into mechanical power is

Pin − Rs I
2 = 3V · I · cosϕ − Rs I

2 = 3Ep · I · cosψ (16.35)

The rotor emf depends on the excitation and the speed (frequency):

Ep = ω · Ψp = ω · Lm · Ip (16.36)

Depending on the control circuit (i.e. inverter switching signals, excitation), different
drive characteristics may be obtained, as is illustrated in the examples below.

16.3.2.1 Constant ψ Control

For a constant internal angle ψ and a constant rectifier voltage Vr , we get the phasor
diagrams in Fig. 16.19.
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Fig. 16.19 Phasor diagrams for constant ψ control

As V cosϕ is constant because of the constant DC voltage, all voltage phasors
end on the same vertical line. In the phasor diagram to the left, the stator resistance
is assumed to be zero or negligible in any case. Because the machine voltage drop is
now purely reactive, the rotor emf E p turns out to be a constant phasor. For a constant
excitation, the speed (or frequency) is therefore constant, independent of the current
or load torque. This means that the torque-speed characteristic is a horizontal line,
similar to a separately excited DCmachine with negligible armature resistance. Note
that the machine voltage decreases with increasing current.

From the phasor diagram to the right in Fig. 16.19, we can derive that a non-zero
stator resistance results in a decrease of Ep with increasing current. The torque-
speed characteristic for constant excitation is a straight line with decreasing speed
for increasing load (as for a separately excited DC machine).

As the reactive component of the load is continuously compensated by the variable
reactive element of the inverter, the current is only determined by the real components
of the voltages in the circuit. Consequently, the equivalent circuit may be simplified
to that in Fig. 16.20 and all reactive components may be omitted.
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Fig. 16.20 Reduced
equivalent circuit for a
CSI-fed synchronous
machine (smooth rotor)
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The voltage equation for this scheme reads

Ve = (Re + Rs) · I + Ep cosψ = (Re + Rs) · I + cosψ · Ψp · ω (16.37)

similar to the armature voltage equation of a DCmachine. For the three-phase power,
we get

Pin = 3Ve · I = 3(Re+Rs) · I 2+3Ep · I ·cosψ = 3(Re+Rs) · I 2+3 cosψ ·Ψp ·ω · I
(16.38)

From the total input power, the last term on the right hand side of this equation is the
electro-mechanical power:

Pem = T · Ω = 3 cosψ · Ψp · I · ω (16.39)

which yields for the torque

T = 3Np · Ψp · I · cosψ (16.40)

The practical implementation of the constant ψ control requires a position sensing
of the rotor. Indeed, the inverter switching signals determine the phase angle of the
current (i.e. ψ) with respect to the rotor flux or the rotor position. In this kind of
drive, the inverter actually follows the instantaneous speed of the machine and load.5

The complete control circuit of the drive will also contain a current control (for
controlling the torque) and an excitation control (for controlling the flux dependent
on the speed). The excitation may also be varied to optimise some other aspects of
the behaviour of the drive. In addition, one may depart from a fixed internal angle ψ
(e.g. zero or even a slightly positive angleψ, to obtain field orientation, see Chap. 17).

Figure16.21 shows some characteristics of a (smooth rotor) synchronousmachine
drive. As discussed before, the torque-speed characteristic is a straight line with
decreasing speed for increasing load torque, with a slope dependent on the stator
resistance.

5In contrast, in a traditional (grid) voltage fed drive, themachine and load speed follow the frequency
of the supply.

http://dx.doi.org/10.1007/978-3-319-72730-1_17
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Fig. 16.21 Characteristics of a CSI-fed synchronous motor with smooth rotor for constant ψ

In general, also external control circuits will be added, for example for speed or
position control. These will determine the desired value of the torque (and thus the
current). In later chapters, this will be discussed in more detail.

16.3.2.2 Constant ϕ Control

A significant problem with the constant ψ control is that it requires a rotor position
sensor, unless sensorless methods are used. An alternative solution is a constant ϕ
control, thus avoiding a mechanical position sensor and using an electronic sensor
instead.

Figure16.22 shows phasor diagrams for a synchronous machine with a smooth
rotor. The diagram shows that increasing the stator current from I1 to I2 results
in an increase of ψ and Ep and a decrease of Ep cosψ. For a constant excitation,
the increase of Ep (with an increasing current or torque), also causes the speed to
rise (see the characteristics in Fig. 16.23). This statically unstable characteristic (e.g.
for a constant load torque) does not create any instability as such a drive is always
operated in closed loop control. Nevertheless, the excitationmay also be programmed
to increase with increasing load so as to avoid a rising speed.
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Fig. 16.22 Phasor diagram
of CSI-fed synchronous
motor for constant ϕ
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Fig. 16.24 Open-loop
control of CSI-fed
synchronous motor
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There are also other advantages of this constant ϕ control. Indeed, the constant ψ
control method inherently disregards the main field saturation: in the case of main
field saturation, a stator current variation will affect the rotor flux and, as such, it is
more appropriate to express the torque as a function of the air-gap flux and the current
(i.e. it seems more logical to align the stator current with respect to the resulting or
air-gap flux). This will also be further discussed in Chap.17.

16.3.2.3 Constant-Speed Control

With constant-speed control, the synchronous machine operates as in a traditional
grid operation. The inverter switching signals determine the frequency and the syn-
chronous machine follows the variable frequency supply synchronously. The phasor
diagrams derived above can still be used. For a constant frequency (and excitation),
the rotor emf Ep has a constant amplitude. Load changeswill then result in a variation
of the internal angle ψ (see Fig. 16.24).

16.3.3 CSI-Fed Salient-Pole Synchronous Machines

A similar analysis for a synchronous machine with saliency in the rotor is much less
straightforward. Indeed, there is no equivalent circuit for the phasor quantities of a
synchronous machine when the reactances in d- and q-axes are distinct.6

6When the stator resistance is zero or negligible, two scalar equivalent schemes exist but still no
equivalent circuit for the complex phasor quantities exists.

http://dx.doi.org/10.1007/978-3-319-72730-1_17
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Fig. 16.25 Phasor diagram
for CSI-fed salient pole
synchronous motor
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Therefore, we have to start from the phasor diagram, as in Fig. 16.25.
From the fundamental equivalent circuit of the CSI, we know that the machine

current I = I is equal to the equivalent source current Ie and that the real part of the
load (machine) voltage V = Re(V ) = V cosϕ equals the equivalent input voltage
Vi . As the rotor emf E p differs from the machine terminal voltage by Rs · I + jνXq ·
I q+ jνXd · I d ≈ jνXq · I q+ jνXd · I d , we obtain, for a constant internal angleψ, the
vector diagram in Fig. 16.25 (the stator and source resistances are disregarded here).
We note that, when the machine is loaded, the amplitude of the rotor emf varies (and
increases if Xd > Xq ), even for a constant input voltage. For a constant excitation
current, the speed will therefore increase with increasing load (see Fig. 16.26).

This observation indicates that the saliency may be modelled by an equivalent
resistance, depending on the saliency. Indeed, from the phasor relations for the
machine

V = E p+Rs · I + jνXq · I q + jνXd · I d ≈ E p+ jνXq · I q + jνXd · I d (16.41)

After projection on the real axis, we find

V cosϕ = Ep cosψ + Rs · I − νXq · I sinψ cosψ + νXd · I sinψ cosψ

= Ep cosψ + Rs · I + 1

2
ν(Xd − Xq) · I sin 2ψ (16.42)
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Fig. 16.26 Characteristics for CSI-fed salient-pole synchronous motor
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Fig. 16.27 Reduced equivalent circuit for salient-pole CSI-fed synchronous motor

or, for a negligible stator resistance,

V cosϕ ≈ Ep cosψ + 1

2
ν(Xd − Xq) · I sin 2ψ (16.43)

This means that the saliency can be considered as an additional resistance

Rdq = 1

2
ν(Xd − Xq) · sin 2ψ

Here, the internal angle is negative, so the resistance is also negative.
This leads to the reduced equivalent scheme inFig. 16.27,which takes into account

both the stator resistance and the source resistance. The power dissipated in the
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equivalent resistance Rdq in reality corresponds with the reluctance torque and power
for a salient-pole synchronous machine:

T = 3

�
·
[
Ep I cosψ + 1

2
ν(Xd − Xq) · I 2 sin 2ψ

]
.

16.4 Effect of the Commutation Delay

In both the grid-side rectifier and the machine-side CSI, the commutation overlap
results in deviations from the idealised case or model. As we know, the commutation
overlap leads to a voltage drop and a shift of the fundamental of the AC current
(which in reality has a trapezoidal shape instead of a rectangular one due to the
commutation overlap).

For the grid-side rectifier, the only significant effect is a small DC voltage reduc-
tion. For a three-phase bridge rectifier, this voltage drop can be described by the drop
over a fictitious resistance7 Rkr

ΔVkr = Rkr · Ir = 3

π
ωn Lkr · Ir (16.44)

with Lkr (mainly) the short-circuit inductance of the transformer at the grid side and
ωn the grid frequency.8

For themachine sideCSI, both the voltage drop and the commutation delay result-
ing from the overlap may have important repercussions. Indeed, a CSI is in fact a
rectifier operating at a control angle α > 90◦(in other words, with energy flow from
the DC side to the AC side).

The voltage drop can again be described by a resistance determined by the short-
circuit inductance of the synchronous machine. For this short-circuit inductance, we
should use the subtransient inductance L”

k of the synchronous machine (per phase in
wye or equivalent wye).9

ΔVki = Rki · Ii = 3

π
ωi L

”
k · Ii (16.45)

or, for the equivalent voltage values in the CSI-machine equivalent circuit (for a
stator winding in wye),

ΔV f = π

6
ωi L

”
k · I f = π

6
νX ”

k · I f = Rke · I f (16.46)

7See Chap.7: the voltage drop is equal to sm f Lk Id with s = 2 for a bridge.
8Prove that the corresponding resistance in the equivalent circuit is given by Rkre = π

2 ωn Lkr and
Rkre = π

6 ωn Lkr for a load in delta or wye, respectively.
9This subtransient inductance is the very small equivalent inductance for a sudden short circuit of
a synchronous machine (see Part 4).

http://dx.doi.org/10.1007/978-3-319-72730-1_7
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Fig. 16.28 Effect of
commutation voltage drop
on the speed
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This causes the machine AC voltage to slightly decrease, as the machine side con-
verter works with a control angle larger than 90◦. This voltage drop may be taken
into account by an additional series resistance10 in the equivalent circuit.

The two additional resistances (from the rectifier andCSI overlap) result in a rather
significant speed drop with increasing load, as is demonstrated by the characteristics
in Fig. 16.28.

The commutation delay in the CSI may also affect the control considerably. Sup-
pose a switching command α (with respect to the voltage for ϕ control) or αp (with
respect to the rotor emf Ep forψ control). The commutation overlapμ causes an addi-
tional lagging of the current with respect to the voltage or the emf. For overlap angles
that are not too large, this lagging angle may be approximated11 by �ϕ = μ/2. In
the diagram in Fig. 16.29, α and αp represent the switching commands for constant
ϕ (with respect to the voltage vector V ) and constant ψ control (with respect to the
rotor emf vector E p), respectively. The current (−I when considered as a rectifier)
will then lag by an additional angle �ϕ = μ/2.

The overlap angle μ (or the lagging angle �ϕ = μ/2) may be calculated as
follows. The voltage drop, Eq.16.45, can also be written as a function of the subtran-
sient emf E”

y of the synchronous machine (which is the emf behind the subtransient
reactance in the subtransient model of the synchronous machine, see part 4):

10However, this resistance is dependent on the output frequency.
11Cf. the trapezoidal current wave form.
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ΔVki = 3

π
ωi L

”
k · Ii = 3

π

√
6 · E”

y · 1
2
[cosα − cos(α + μ)] (16.47)

( 3
π

√
6 · E”

y is the rectifier DC voltage Vdo for a bridge with an AC voltage amplitude

V̂s = Ê”
y = √

2 · E”
y in wye or equivalent wye).

The subtransient emf can be calculated using, on the one hand, the equality of the
(fundamental) active component of the synchronous machine voltage in steady state
and, on the other hand, the AC output voltage of the rectifier expressed by means of
the subtransient emf E”

y (per phase) with the commutation voltage drop:

Ep cosψ + I · ν(Xd − Xq) cosψ sinψ = −Rke · I − E”
y cos(α + μ) (16.48)

To avoid commutation failure, the angle α + μ must be below π. For low output
frequencies ωi = νωn this is not possible because it causes a relatively large resistive
voltage drop in the commutation circuit.



Chapter 17
Basics of Controlled Electrical Drives

Abstract As is clear from the previous chapters, DC commutator machines are
ideal machines to obtain controlled torque and speed. To obtain similar properties,
rotating field machines require more complicated supplies and control circuits. In
this chapter we derive the basic control methods for rotating field machines, with as
starting point the DC commutator machine characteristic properties.

17.1 Introduction: DC Machine Analogy

Both fixed frequency (mains) supply and variable frequency supply (V/f control) of
rotating field machines are open-loop controls. The supply is to deliver a suitable
voltage and frequency, and the load torque together with the machine torque and the
inertia for transient states will determine the speed and other operating parameters.
This is the analogue to the voltage supply of separately excited DC machines. For
the separately excited DC machine, the DC voltage determines the speed for a given
flux level:

Va = Ra Ia + E = Ra Ia + KΦmΩr ≈ KΦmΩr (17.1)

In reality, the resistive voltage drop will result in a slight decrease of the speed with
increasing load. As the machine torque is given by T = KΦm Ia , the load torque will
determine the required armature current and thus also the resistive voltage drop and
speed drop. If required, the speed drop can of course be compensated by feedback
control and by adapting the supply voltage.

A (somewhat) dualistic method to obtain a controlled DC drive is to supply the
machine with a given current. Now, the machine torque is determined by this current
together with the given flux:

T = KΦm Ia (17.2)

The characteristic of the load torque as a function of the speed determines the speed.
Feedback control is used to adjust the current so as to obtain the desired speed (see

© Springer International Publishing AG 2018
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Fig. 17.1 DC machine drive with torque control

Fig. 17.1). With this kind of drives, it is possible to obtain fast dynamics and very
high precision, in the order of 1:1000 (e.g. for a speed of 1500 rpm, a precision of
1 rpm).

Although DC machine drives are quite straightforward as far as control imple-
mentation is concerned, DC machines have many disadvantages, such as high main-
tenance costs for the commutator and brushes, a high sensitivity to vibrations (due
to the commutation), a high acquisition cost, the limitation of the product of power
and speed to 1000MW · rpm (e.g. 750kW at 1500 rpm).

Because of these disadvantages, the DCmachine is nowadays mostly replaced by
rotating field machines. However, the same control principles may be used, albeit
with a somewhat higher complexity.

17.2 V/f Control of Rotating Field Machines

17.2.1 Introduction

As discussed in Chap. 15, both induction and synchronous machines are quite apt
to operate with a variable frequency supply. V/f control of rotating field machines
is in some way analogous to DC machine control with voltage supply, although for
rotating field machines the main input is the frequency and not the amplitude of the
voltage. As discussed above, in order to maintain the desired flux level, the voltage
has to be adapted proportionally to the frequency (for frequencies lower than the rated
one) or needs to be limited (i.e. the flux-weakening region for higher frequencies)
because of insulation limitations and/or available voltage.

17.2.2 V/f Control of Induction Machines

V/f control of induction motors is very often used in lower cost drives and/or cases
where the required speed accuracy is not that high, often in open-loop control. By

http://dx.doi.org/10.1007/978-3-319-72730-1_15
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means of feedback speed control, the speed accuracy can be considerably improved
to compensate the slip.

An additional advantage is that the variable frequency can also be applied for
smooth starting, eliminating the need for traditional or power electronic soft starting
methods.

For driveswith higher demands concerning accuracy and dynamics, vector control
or similar control methods have to be used.

17.2.3 V/f Control of Synchronous Machines

In principle, V/f speed control is equally applicable to synchronous motors as induc-
tion motors. The only problem is that a synchronous machine has to remain syn-
chronous all the time (there is no slip), meaning that the frequency should be varied
sufficiently slowly, so as to not exceed the pull-out torque in accelerating or decel-
erating (if there is no cage in the rotor). In the past, V/f control was not frequently
used for that reason. Recent scientific papers have shown, however, that appropriate
control methods may make V/f control of synchronous motors quite feasible and
practical.

Still, vector control or similar methods are much more common for synchronous
machine drives.

17.3 Vector Control of Rotating Field Machines

17.3.1 Principle

The torque of an idealDC commutatormachine (with a brush axis electrically orthog-
onal to the flux axis and no armature reaction) is proportional to the product of flux
and armature current (seeEq.14.1). This is because the symmetry axis of the armature
current layer is co-incident with the field flux axis, and the torque is at a maximum
for a given armature current and flux (Fig. 17.2).

At the same time, if there is no armature reaction,1 a variation of the armature
current will not affect the flux and transients in the armature current will not influence
the torque-producing flux. As a consequence, there will be no additional transients.

In rotating field machines, the torque results from the interaction of a rotating
sinusoidal field distribution b(x, t) and a rotating sinusoidal current layer a(x, t),
as was explained in Chap. 3 of Part 1. As the speeds of both field distribution and

1For a brush axis in the neutral position, this requires a compensation winding or the absence of
saturation-induced armature reaction; however, a brush axis which is not in the neutral position may
result in armature reaction for non-rated operating conditions.

http://dx.doi.org/10.1007/978-3-319-72730-1_14
http://dx.doi.org/10.1007/978-3-319-72730-1_3
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Fig. 17.3 Field and current distributions in a rotating field machine

current layer are the same, this torque is constant in time, but its magnitude depends
on the angle ϑ between the symmetry axes of field and current layer (Fig. 17.3):

T ∼ Â · B̂ · cosϑ (17.3)

For given current layer and field amplitudes, the torque is at a maximum when the
symmetry axes of field and current layer are co-incident, i.e. ϑ = 0. When we
draw the mmf distribution f (x, t) corresponding with the current layer a(x, t), it
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becomes clear that the mmf distribution due to the torque-producing current layer
will not affect2 the field distribution if the symmetry axes of field and current layer
are co-incident (ϑ = 0).

We can therefore conclude that similar behaviour to that of the DC commutator
machine can be obtained with a rotating field machine, on these conditions:

1. the field can be controlled independently
2. the torque-producing current can be controlled independently
3. the angle ϑ can be controlled continuously at ϑ = 0

This operating condition, called field orientation, creates an ideal dynamic behaviour
just like the DC commutator machine. In some cases, other limitations preclude an
angle ϑ = 0. In that case, the angle ϑ can be controlled at another fixed value. This
is commonly called vector control, in which case transients of the torque producing
current will obviously affect the flux and result in higher order transients.

17.3.2 Vector Control and Field Orientation of Synchronous
Machines

Figure17.4 illustrates a basic control scheme for a synchronous machine drive with
a CSI. There are two control loops: the control of the current amplitude (I = Iw)

and the control of the instantaneous angle of the current (αi = αr + ϑw, with αr the
instantaneous rotor angle measured by an encoder and ϑw the desired displacement
between field axis and current layer axis). In addition, except for permanent magnet
excitation, there is a flux control circuit (not shown), with the desired rotor excitation
(rotor flux level Φw

p ) depending on the speed (rated rotor flux for speeds below the
rated speed and field weakening for higher speeds).

2In the absence of saturation.
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The desired current magnitude depends on the desired torque: for example, the
latter is determined by an external speed control circuit (not shown).

The desired displacement between field and current layer is zero for field orienta-
tion. However, for a CSI-supply with load commutation, the current should lead the
voltage and therefore the current layer should lead the field (Fig. 17.5). In that case,
there is vector control and no ideal field orientation.

It is obvious that for a supply by a CSI with forced commutation, field orientation
(with ϑ = 0) is the preferred control.

Moreover, for a VSI supply, there is no requirement for a leading current. The
control principle illustrated in Fig. 17.6 uses a VSI with a current control loop,

Here, the separate control loops formagnitude and angle of the current are replaced
by a (real-time) control with the desired current amplitude and current angle as input
and the desired switching angles of the PWM-VSI as output (i.e. a CRPWM, cf.
Fig. 17.7).

In fact, the control in Figs. 17.4 and 17.6, in which the current vector position is
controlled with respect to the rotor flux, corresponds to the ψ-control explained in
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Chap.16 - and the expression for the torque as a function of I p and I (see Part1). This
would be correct if there were no saturation, but in all practical machines saturation
will cause a variation of the flux with variations of the armature current.3 Another
practical disadvantage is that this method requires a position sensor of the rotor.
Such sensors reduce the reliability of the drive and therefore some vector control
schemes control the position of the stator current vector with respect to the stator
voltage (see also the ϕ-control of Chap.16). This alternative solution requires an
electronic voltage sensor for the voltage, which is normally less prone to faults. The
required phase angle θw = ϕ is now added to the angle αv of the voltage to obtain
the required angle αi of the current. In terms of torque control, this method is quite
comparable because, for a negligible stator resistance (and iron losses), the torque
can be written as T · Ωsy = Pem = 3 · Re(Er · I ∗) ≈ 3 · V · I · cosϕ. As far as field
orientation is concerned (and specifically the avoidance of higher order transients),
it might also be argued that an orientation of the current with respect to the resultant
emf Er corresponds better with physical reality in the case of main field saturation.
However, although the stator resistance might be negligible in most cases, the stator
leakage usually is not.

3In fact, also note that fluxes cannot be added mathematically if there is any saturation.

http://dx.doi.org/10.1007/978-3-319-72730-1_16
http://dx.doi.org/10.1007/978-3-319-72730-1_16


450 17 Basics of Controlled Electrical Drives

I1

+

_

V

Rs jX s

jX’r

I

R /s’

I1

+

_

V

Rs jXs jX’r

jXm

Ir‛

Rr /s‛

Im

X r = X 2
m /(X r +Xm)

X s = Xs +
X r Xm

’ ’

’

Im

X + X’r m
= (X + X )m s

R = R’ ’r . Xm
2

(X + X )’r m
2

+

_

E’r

(a) (b)

Fig. 17.8 Equivalent circuits for an induction machine

17.3.3 Vector Control and Field Orientation of Induction
Machines

The principles of field orientation or vector control also apply to induction machines,
i.e. field orientation requires a controllable flux, a controllable current magnitude
and a controllable displacement angle between flux and current. Nevertheless, it is
much more complicated to actually put this into practice, as the rotor position is
not representative of the flux position. In addition, there is no such a thing as an
excitation winding. Instead, there is only the stator current which determines the
torque producing current and, together with the slip, also the air-gap flux.

To explain the basic principle of field orientation for the induction machine, con-
sider the equivalent circuits in Fig. 17.8. From the general “T” circuit in (a), the “L”
circuit in (b) is easily derived. In this circuit, Xσs is the total leakage referred to the
stator.4 The rotor resistance is now directly in parallel with the rotor (magnetising)
reactance Xr .

Apparently, the stator current is split up into two orthogonal components I m and
I , with (R′/s) · I = j X ′

r · I m = E ′
r . As the torque can be written as a function of both

orthogonal components, T = 3
�sy

I 2 · (R′/s) = 3
�sy

Re(E ′
r · I ∗) = 3Np · L ′

r · Im · I ,
the condition of orthogonality for field orientation seems to be met.5

The other conditions for field orientation stipulate that these two components of
the stator current must be controlled independently. Note, however, that (R′/s) · I =
jωL ′

r · I m , or the two components must always satisfy the slip equation (here in static
form)

R′ · I = (ωs) · j L ′
r · I m (17.4)

4In the “L” circuit of Part1, we referred the total leakage to the rotor.
5Is it now safe to conclude that there is always field orientation in an induction machine?
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The two components are therefore narrowly related to the slip frequency, while their
vectorial sum is equal to the stator current (see also Fig. 17.9).

Ifwe succeed in controlling both components of the stator current, then both torque
and flux are controlled. However, in contrast to a synchronous machine, the flux of
an induction machine cannot be measured directly, as has already been mentioned
(e.g. the flux rotates at slip frequency with respect to the rotor and thus the rotor
position is not representative of the flux position).

To realise field orientation for an inductionmachine, there are twomethods: direct
field orientation and indirect field orientation.

In the direct method, position and magnitude of the flux are measured. From the
measured value of the flux and its desired value (which may depend on the speed,
cf. field weakening), the required (correction for the) magnetising current (�)I m is
derived. The desired value of the torque then determines the desired value of the
torque-producing component I . The required stator current I 1 = I m + I is now
known. A schematic for a possible implementation with a VSI-PWM and CRPWM
is shown in Fig. 17.10 (the d-axis corresponds to the flux axis).
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For the flux measurement, there are two possibilities:

• direct measurement by means of Hall sensors or flux coils in the stator
• measurement of stator voltage and current with correction for the stator resistance
and leakage voltage drop (and integration to obtain the flux)

The direct measurement with Hall sensors or flux coils is rather expensive because it
requires modifications to the stator of the machine. Furthermore, it yields the air-gap
flux and not the rotor flux, which means that another correction for the rotor leakage6

is required.
The advantage of the measurement of voltage and current is that these sensors

are mostly already available for the power-electronic converter. The disadvantage of
this method is that the stator resistance (required for the calculation of the flux) is
temperature-dependent. Finally, the leakage correction is not very straightforward,
because it is saturation-dependent.

The indirectmethod to obtain field orientation for an inductionmachine relies on
the slip equation. Indeed, it can be shown that the slip equation is not only a necessary
condition for field orientation,7 but also a sufficient one (at least in dynamical form,
i.e. augmented by a term corresponding to a possible flux variation, cf. Chap. 29 in
Part 4).

Most implementations use a combination of feedback and feedforward as follows:

• the required flux determines |I m |
• the required torque then yields |I |
• from |I m | and |I | and the slip equation, the slip frequency required for field ori-
entation can be calculated

• the rotor speed is measured (or estimated for sensorless versions)
• measured rotor speed and required slip frequency lay down the required stator
frequency for field orientation; this frequency and phase is used in feedforward
for the inverter (both Im and I are valid in a reference frame fixed to the rotor flux)

The most important disadvantage of the indirect method is that the slip equation
relies upon the rotor resistance, which is dependent on temperature and skin effect.

In the discussion above, we concentrated on field orientation based on the rotor
flux. There are also field orientation methods that are based on the air-gap flux or the
stator flux. The advantage of these methods is that a correction to the rotor flux (using
the saturation-dependent leakage) is not required. The disadvantage is that neither
stator flux nor air-gap flux field orientation offer the same automatic orthogonality
between the flux- and torque-producing components. In Part 4, this is explored in
further detail.

6However, in most cases, the rotor leakage of a cage motor is heavily saturation-dependent.
7This is shown above for steady state.

http://dx.doi.org/10.1007/978-3-319-72730-1_29
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17.4 Other Torque Control Methods for Rotating Field
Machines

In contrast to vector control and field orientation, where current control is used to
control the torque (and flux), Direct Torque Control (DTC) and related methods like
Direct Self Control (DSC) directly steer the output voltage vector of a PWM-VSI in
response to deviations of the flux and torque from their desired values.

The principle is as follows. As is well known, a PWM-VSI switches one of the
six non-zero voltage vectors u1 . . . u6 or one of the zero voltage vectors u0, u7 (see
Fig. 17.11) to the output during a given interval, for example the PWM period of a
traditional PWM. We recall that in space-vector PWM (SVM), each sector of π/3
is subdivided into a large number of subintervals. In each subinterval, the desired
output vector is formed by switching between the two adjacent non-zero vectors and
one of the zero vectors, each for an appropriate time.

DTC is somewhat similar to SVM, but in DTC the proper voltage vectors are
switched dependent on the deviation of actual and desired flux vectors and/or torque.

The (stator) flux control is based on the terminal voltage equation:

V s = Rs I s + dΨ s

dt

Or, if we disregard the stator voltage drop

dΨ s

dt
≈ V s

When the stator voltage is equal to one of the non-zero vectors u1 . . . u6, the flux
will thus evolve in the direction of this voltage vector (see Fig. 17.12). For the flux

Fig. 17.11 The six non-zero
vectors and the two zero
vectors of a VSI
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Fig. 17.13 Direct flux control: all sectors and hysteresis band

vector Ψ s in the figure, a voltage vector u3 will cause a counter-clockwise rotation,
without a noticeable variation in amplitude. A voltage vector u2 will cause both a
counter-clockwise rotation and an increase of the amplitude. When a zero voltage
vector is switched, the flux will remain more or less constant (in fact, it will slightly
decrease because of the resistance).

In the usual implementation of DTC, the complex plane is divided into six sectors
of π/3, each centred around one of the non-zero vectors (see Fig. 17.13). We will
now turn to the case where the flux vector is in the first sector (−π/6 ≤ ϑ ≤ π/6)
and the required rotation direction is positive (i.e. counter-clockwise), as is the case
in (b) in Fig. 17.13. Which vector is switched depends on the deviation of the angle
and amplitude of the actual flux vector with respect to the desired one (if hysteresis
controllers are used). If the actual flux vector is behind (lags) the desired one, either
u2 or u3 can be switched to advance the flux. When the actual amplitude is lower
than the desired one, u2 should be switched; when the actual amplitude is higher,
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Table 17.1 Switching vectors for flux control

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6

u3(0,1,0) u4(0,1,1) u5(0,0,1) u6(1,0,1) u1(1,0,0) u2(1,1,0)

u7(1,1,1)
u0(0,0,0) u7(1,1,1)

u0(0,0,0)
u7(1,1,1)
u0(0,0,0)

u7(1,1,1)
u0(0,0,0)u7(1,1,1)

u0(0,0,0)
u7(1,1,1)
u0(0,0,0)

u6(1,0,1)
u5(0,0,1) u6(1,0,1) u1(1,0,0)

u1(1,0,0) u2(1,1,0)
u2(1,1,0)
u3(0,1,0)

u3(0,1,0)
u )4(0,1,1

u4(0,1,1)
u5(0,0,1)

d _ sd
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u3 is switched. At some point, the actual flux vector may start to lead the desired
one. Then, normally one of the zero vectors (u0 or u7) will be switched, causing
the actual flux vector to stand still (and slightly decrease). In principle, either one of
the zero voltage vectors can be chosen, but the one resulting in the lowest number
of switchings will be preferred. To avoid too high a switching frequency, a wide
hysteresis band can be utilised (see (a) in Fig. 17.13).

Note that for an actual flux vector leading the desired one, u5 or u6 could have
been used as well. However, this would increase the switching frequency too much
and is thus best avoided.

Repeating this for the other sectors and also adding the sequence for the negative
rotation direction results in the switching Table17.1. As mentioned above, in steady
state, only the first and second rows are used for the positive (counter-clockwise)
rotation direction, while only the third and second rows are used for the negative
(clockwise) rotation. The hysteresis boundaries for amplitude and angle can be mod-
ified to obtain the required accuracy or limit the switching frequency.

A similar principle can be used for direct torque control. As we will see, this also
controls the flux level at the same time.

To explain the principle, we express the dynamic equations for the induction
machine in an instantaneous reference system fixed to the rotor flux8:

0 = Rr Irq + dΨrq

dt
− (ω − ωr )Ψrd (17.5)

0 = Rr Ird + dΨrd

dt
+ (ω − ωr )Ψrq (17.6)

with
Ψrq = Lr Irq + Lm Isq (17.7)

8In the following equations in this section, all currents and fluxes are amplitude values (without the
hat notation); see also Part 4.
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Ψrd = Lr Ird + Lm Isd (17.8)

For example, suppose the rotor flux is fixed to the d-axis (Ψ r = Ψrq + jΨrd ≡ jΨrd ).
For the rotor flux, on the one hand, we may then derive:

dΨrd

dt
= − Rr

Lr
Ψrd + Rr

Lm

Lr
Isd (17.9)

dΨrq

dt
= 0; Ψrq = Lr Irq + Lm Isq ≡ 0 (17.10)

On the other hand, the stator flux can be written as

Ψsd = σLs Isd + Lm

Lr
Ψrd (17.11)

Ψsq = σLs Isq (17.12)

while the torque can be written as

T = 3

2
Np · Im(Ψ ∗

s · I s) = 3

2
Np · Im(Ψ r · I ∗

r ) (17.13)

or,

T = −3

2
Np· Lm

Lr
·Ψrd ·Isq = −3

2
Np· Lm

σLs Lr
·Ψrd ·Ψsq = 3

2
Np·1 − σ

σLm
·|Ψ r |·|Ψ s |·sin γ

(17.14)
γ is the angle between the fluxes Ψ s and Ψ r , see Fig. 17.14. This torque equation
shows that the torque can be controlled by controlling the stator and rotor flux ampli-
tudes and the angle between both vectors. From Eqs. 17.9 and 17.10, we observe
that the rotor flux has a very large time constant Lr/Rr (of the order of seconds for
medium power machines). The stator flux, in contrast, does not only comprise the
rotor flux (corrected with the winding factor-like ratio Lm/Lr ), but also the leakage
flux (which may be varied with a small time constant). The stator flux, and thus its
amplitude as well as the angle γ, can be changed very quickly by the supply.

The direct torque control is based on these principles: the amplitude of the flux is
controlled in the same way as for the direct flux control described above, while the
torque is controlled by the lead angle γ of the stator flux with respect to the rotor
flux. For the positive rotation direction, in sector 1 the voltage vectors u2 and u3 are
used to increase the torque. When the torque is higher than the desired value, one
of the zero vectors is switched (switching the vectors u5 or u6 to reduce the angle
would increase the switching frequency too much). The switching sequence for all
sectors and both rotating directions is shown in Table17.2.

The hysteresis band can be decreased to improve the desired accuracy or increased
to limit the switching frequency.
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Fig. 17.14 Flux vectors for torque control

Table 17.2 Switching table for DTC

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6

u3(0,1,0) u4(0,1,1) u5(0,0,1) u6(1,0,1) u1(1,0,0) u2(1,1,0)

u7(1,1,1)
u0(0,0,0) u7(1,1,1)

u0(0,0,0)
u7(1,1,1)
u0(0,0,0)

u7(1,1,1)
u0(0,0,0)u7(1,1,1)

u0(0,0,0)
u7(1,1,1)
u0(0,0,0)

u6(1,0,1)
u5(0,0,1) u6(1,0,1) u1(1,0,0)

u1(1,0,0) u2(1,1,0)
u2(1,1,0)
u3(0,1,0)

u3(0,1,0)
u )4(0,1,1

u4(0,1,1)
u5(0,0,1)

d

1
u2(1,1,0) u3(0,1,0) u4(0,1,1) u5(0,0,1) u6(1,0,1) u1(1,0,0)1
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Figure17.15 shows an actual recording of the torque as a function of time for a
sudden start-up from standstill to the no-load speed at 40Hz. The direct torque control
was implemented digitally using aDSP; due to the peculiarities of this digital control,
there are some instances where the torque briefly leaves the hysteresis band.

Although our derivation was in a synchronous reference frame, DTC does not
require any axis transformation. Instead, thewhole control is executed in the standstill
stator coordinates.

The stator flux (estimation) follows from the stator voltage by integrating

Ψ s =
∫

(V s − RI s)dt ≈
∫

V sdt (17.15)
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Fig. 17.15 Start-up with
DTC from standstill to
no-load speed
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If the effect of the stator resistance cannot be disregarded (in particular at low speed),
this requires the measurement of both voltage and current. A pure integration may
also lead to stability problems such as drift. Therefore, the integration is sometimes
replaced by a low-pass filter, although this limits the lowest usable frequency for
DTC.

Once the stator flux is known, the actual torque can be calculated from the stator
voltage and current in stator coordinates (α − β components):

T = 3

2
Np · [Ψsα Isβ − Ψsβ Isα] (17.16)

When we compare DTC with field orientation, it should be clear that in an ideal case
(i.e. without saturation), field orientation will avoid most transients, except those
resulting from a flux change. Obviously, this is not the case with DTC.Whereas field
orientation controls the torque producing current (and also the flux), DTC directly
steers the voltage supplied by the inverter to control the torque (and the flux). Recent
scientific papers have shown (experimentally) that both methods usually produce
almost equivalent results in terms of acceleration.

Themain advantages ofDTCare the fast dynamics, the simple control, and the fact
that neither reference axis transformations nor a PWMmodulator are required. Dis-
advantages include the potentially high switching frequencies, the real-time calcula-
tions that require fast processors, the high torque ripple, some occasional problems
at low speeds, and the variable switching frequency.



Chapter 18
Small Electric Machines and Their Power
Electronic Control

Abstract Electric machines cover an extremely wide range of power ratings, from
1mW (10−3W) or less, to 1GW (109W), which is a ratio of 1 : 1012. The power
range of 1kWmay be considered as the boundary between small and large machines.

In addition to size and power rating, small and largemachines differ in many other
respects:

• manufacturing: mass production to series production and singular production
• MTBF: 1000h (or less) to (much) more than 10,000h (e.g. 100,000h for power
plant generators)

• construction: integrated units (into the application) to autonomous units
• disturbance effects compared to the main effect: large versus very small
• design variations: numerous versus minor.

The description of small machines is especially complicated due to the large distur-
bance effects, such as relatively large resistances, large losses and vibration torques,
and the many construction variants. Further, the steady-state operation common for
large machines is now replaced by servomotor operation with high dynamics (often
leading to a special construction).

18.1 Small DC Commutator Machines

18.1.1 Introduction

Small DC commutator machines (i.e. those< 1kW) differ from their big brothers by
a non-negligible armature resistance,1 a small number of poles (usually only two),
a small number of armature coils and commutator segments, a relatively large air
gap, a lack of compensation windings, often also a lack of commutation windings,
and series excitation or (in many cases) permanent-magnet excitation instead of
field windings. Apart from these machine-side differences, small DC machines are

1This is the result of scaling laws.
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Fig. 18.1 Small
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often supplied by low-power choppers or rectifiers, also bringing along some specific
peculiarities.

18.1.2 Series-Excited DC Machine

Due to the relatively larger resistance of the armature winding and the series excita-
tion winding, the torque-speed characteristic differs somewhat from those of larger
machines (see (a) in Fig. 18.1).

Because auxiliary poles are absent, the brush axis is sometimes rotated to improve
the commutation (see (b) in Fig. 18.1). As the brush axis should be rotated contrary
to the rotation direction (for motoring) in order to aid the commutation, this limits
its use to a single rotation direction.

The inductance of the series excitation increases the total inductance, which is
advantageous for limiting the starting current. The large inductance is also an advan-
tage for power electronic supply of the machine (rectifier or chopper), as this reduces
the current ripple. However, for power electronic supply the stator also needs to be
laminated (in which case the machine resembles an AC commutator machine).

18.1.3 Permanent-Magnet Excited DC Machine

There are many variants as to the construction of permanent-magnet DC machines.
All these variants have as an advantage that the reluctance of the main magnetic
circuit is enlarged due to the permanent magnet. This reduces the armature reaction
(the effect of the armature mmf on the main flux due to saturation).

The simplest construction type is one where the magnets are placed directly in
the air gap, without any pole shoes, as is demonstrated in (a) in Fig. 18.2. There are,
however, some disadvantages of this construction:
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(a)
(b)

(c)

(d)

Fig. 18.2 Small permanent magnet DC machines

• the required curvature of the magnets
• the lack of a flux-concentration effect
• although the armature reaction is low, the armature mmf may cause demagnetisa-
tion of the permanent magnets (e.g. if the machine stalls or overloads), as is shown
by the flux lines in (d) in Fig. 18.2.

A more complicated construction type uses iron pole shoes in the air gap (see (b)
and (c) in Fig. 18.2). Advantages of this construction variant are the following:

• flat magnets can be used
• the magnetic field in the air gap can be larger than in the magnets due to flux-
concentration

• the magnets are shielded from the armature mmf.

On the other hand, the good magnetic conductivity of the pole shoes will increase
somewhat the armature reaction.

Sometimes the permanent magnets are placed in between the ferromagnetic pole
shoes, as in (c) in Fig. 18.2.

The small armature reaction results in an almost ideal linear torque-speed char-
acteristic for voltage supply,

Ω = Va

k · Φ
− Ra

(k · Φ)2
· T

Compensation windings can also be placed in the pole shoes (if present) to further
reduce the armature reaction.
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Fig. 18.3 Small axial field DC machines

Such small DC machines are very common in cars, for example as window, roof
or mirror motors or as windscreen wiper motors.

When fast dynamics are required, which implies a low inertia, either a machine
with a large ratio of armature length to diameter can be used or the (rotating) armature
winding can be detached from the rotor yoke (remaining stationary). The latter design
frequently utilises an axial field with radial windings (see Fig. 18.3). The armature
winding can be a printed winding as well. The disadvantage of such a design is that
the overload capacity of the winding is very small and there is almost no thermal
inertia.

18.1.4 Power Electronic Supply of (Small) DC Machines

The small series-excited DC commutator machine is often supplied by a controlled
rectifier (see (A) in Fig. 18.4). The large machine inductance is an advantage as it
reduces the current ripple for the relatively low switching frequency. This configu-
ration can also be used for (resistive) braking, i.e. with a negative machine voltage.
The large machine inductance may result in a continuous current even in case of zero
average output voltage of the rectifier (α = π/2), as is illustrated in (A, c) in Fig. 18.4.
The emf of the machine is assumed to be negative here (i.e. resistive braking in the
reverse rotation direction).

Small permanent-magnet excited DCmachines are preferably supplied by a chop-
per (see (B) in Fig. 18.4). To limit the current ripple, a sufficiently high switching
frequency can be used.

Remark: The universal motor, a series-excited AC commutator machine (see
Chap.19) is often supplied by an AC chopper (e.g. in vacuum cleaners or cheaper
washing machines) (see (a) in Fig. 18.5). As for its cousin, the series-excited DC
commutator machine, the large series inductance is beneficial to limit the higher
current harmonics. From the equivalent circuit, (b) in Fig. 18.5, we can note that

http://dx.doi.org/10.1007/978-3-319-72730-1_19
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• for low speeds themachine impedance is almost purely reactive, leading to voltage
and current curves as in (c) and (d) in Fig. 18.5

• for high speeds the machine impedance comprises an important resistive compo-
nent and the voltage and current curves are as in (e) and (f) in the figure (φ is the
displacement angle without chopping; the power factor angle increases in case of
chopping).

18.2 Small Induction Machines

Small induction machines can be three-phase but are in many cases single-phase or
two-phase. Common peculiarities of small induction machines are

• a larger effect of stator and rotor resistances: because of the scaling laws, the pu
resistances are much larger

• a large pu magnetising current, mainly because of the relatively larger air gap
• larger effects of mmf harmonics on current, torque and losses.

18.2.1 Three- and Two-Phase Induction Machines

Small three-phasemachines usually also have a distributedwinding, but because they
have few slots, themmf harmonics aremore important than for greater power ratings.
These mmf harmonics result in rather significant harmonic torque components. The
lowmagnetising inductance and high resistance values lead to rather low efficiencies
(e.g. less than 40% for power ratings below 0.5kW).

Two-phase induction motors suffer from similar or even more problems regarding
mmf harmonics as the stator winding is often a concentrated winding. As two-phase
supplies are not very common, the second phase is commonly an auxiliary winding
supplied by means of a capacitor (for the capacitor motor, see Chap. 4 in Part 1).
In Sect. 18.2.3, a cheap two-phase servomotor (with power-electronic supply) is
described.

18.2.2 Single-Phase Induction Motors

As was discussed in Chap.4 of Part 1, pure single-phase induction motors have no
starting torque and are therefore mostly useless. With an auxiliary winding and a
starting or continuous capacitor, they actually become two-phase machines, albeit
supplied by a single-phase supply. Adding phase control makes these motors even
more versatile, as is also explained in Sect. 18.2.3. Another variant of the single-phase
fed induction motor is the shaded pole motor, which was also described in Chap. 4.

http://dx.doi.org/10.1007/978-3-319-72730-1_4
http://dx.doi.org/10.1007/978-3-319-72730-1_4
http://dx.doi.org/10.1007/978-3-319-72730-1_4
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18.2.3 Power-Electronic Supply of Small Induction Motors

Similar to their big brothers, small induction motors may be supplied by inverters,
which transform them into rather versatile variable speed drives. Still, less expensive
solutions are often called for.

Oneof these solutions is a two-phasemotor inwhich the auxiliary phase is supplied
by the grid in series with an AC chopper. The two-phase supply consists of one phase
supplied directly by the grid (voltage V ), while the secondary phase is supplied by
the grid in series with an AC chopper, resulting in a voltage that is π/2 leading and
with a variable amplitude (voltage − jαV , see Fig. 18.6).

This supply can be split up into direct and inverse components as follows2:

Vd = 1

2
[V + j (− jαV )] = 1

2
V (1 + α) (18.1)

Vi = 1

2
[V − j (− jαV )] = 1

2
V (1 − α) (18.2)

For α = +1 and α = −1, a direct and inverse voltage is obtained, respectively.
Supposing that the torque-slip characteristic can be simplified to a straight line (as
in the small slip range |s| < |spo|), we may find the total torque as the superposition
of a direct and an inverse torque component as follows:

Td =
[
Vd

Vn

]2

· 2Tpo

spo
·
[
1 − Ω

Ωsy

]
(18.3)

Ti = −
[
Vi

Vn

]2

· 2Tpo

spo
·
[
1 + Ω

Ωsy

]
(18.4)

2The two-phase symmetrical components transformation is similar to the three-phase one, but
instead of a = exp( j2π/3) we now have a = exp( jπ/2) = j).
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Fig. 18.7 Torque for the
2-phase servo

T

T = Td + Ti = 2
Tpo

spo
·
[
V

Vn

]2

·
[
α − 1

2
(1 + α2)

Ω

Ωsy

]
(18.5)

or

Ω

Ωsy
= 2

(1 + α2)
·
[
α − T

2Tpo/spo

]
(18.6)

According to Eq.18.6, every speed between+Ωsy and−Ωsy should be attainable by
controlling α between +1 and −1 (see also Fig. 18.7). This is of course only valid if
our approximation, the linearisation of the torque characteristic for small slip, were
valid in the whole speed range. However, this is not the case unless the pull-out slip
is very large (i.e. larger than 1); if it is smaller than 1, the speed range in which these
equations apply is limited to | Ω

Ωsy
| > 1 − |spo|.

The maximum available torque is also rather limited at low speeds. To obtain fast
dynamics, the inertia must therefore be limited. A solution to this predicament is the
Ferraris motor, in which the rotor is a conducting cup (aluminium) and the secondary
iron yoke is at standstill (see Fig. 18.8).

Another application of power-electronics for small induction motors is the AC
chopper supply of single-phase fed motors.

A first example is the pure single-phase motor as in (a) in Fig. 18.9. If the effects
of the inverse field are disregarded, similar equations as for the three-phase chopper
supply (see Chap.9 in Part 2) can be used. This is mainly useful to adapt the supply
voltage to the load or for limited speed control with a quadratic load torque (as long
as themotor temperature remains limited). In scheme (b) in Fig. 18.9, theAC chopper
is used for a capacitor-start motor, which may reduce the starting current. However,

http://dx.doi.org/10.1007/978-3-319-72730-1_9
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Fig. 18.9 AC chopper applications for single-phase fed induction motors

the starting torque is reduced by the square of the current reduction. Adaption to
the load torque and speed control are only possible above the speed at which the
centrifugal switch opens. Normally, AC chopper control will not be used for motors
with a continuous capacitor (i.e. a capacitor motor), as the already small starting
torque would be reduced even further. However, it could be acceptable if the AC
chopper could be inserted in series with the main winding only (see (c) in Fig. 18.9).
Yet, for this, separate connections to the main and auxiliary windings need to be
accessible.

Another useful application of the AC chopper is shown in (d) in Fig. 18.9. Here,
the chopper is inserted in series with the auxiliary winding only. This allows us to
vary the effective capacitive impedance, for example from starting to steady state.
Additional advantages are that only one capacitor is required, without a (centrifugal
or current) switch for the starting capacitor, and that rotation in the reverse direction
is possible.
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18.3 Small Synchronous Machines and Their
Power-Electronic Control

Small synchronous machines usually lack an excitation winding but have permanent
magnet excitation instead. Because of the large variety of small synchronous motors,
their construction will be dealt with separately in Chap.20.

Here, we will concentrate on the power-electronic supply of these permanent-
magnet synchronous motors and particularly the inverter supply, as AC choppers
are not frequently used for synchronous motors. In case of inverter supply, a rotor
cage is not required (as for asynchronous starting) and is usually not desired (unless
the control cannot provide sufficient stability, in which case a cage is still required
for damping purposes). Instead, the power electronic supply and control will mostly
require a rotor position sensor, unless modern sensorless methods are used, which
estimate the rotor position from electrical signals.

Depending on the permanent-magnet arrangement, i.e. surface permanent mag-
nets or interior permanentmagnets (seeChap.20), different kinds of power-electronic
supply and control are preferred.

The arrangement of the permanent magnets at the surface often results in a rather
rectangular distribution of the air-gap induction over the circumference. Interior
permanent magnets are most likely to cause an almost sinusoidal distribution of the
air-gap induction over the circumference.

A sinusoidal distribution of the air-gap induction will create an almost sinusoidal
emf in time (see (a) in Fig. 18.10), in which a sinusoidal current will lead to an
optimal, ripple-free constant three-phase torque or air-gap power (see Chap. 3 in
Part 1).

A rectangular air-gap induction distribution will create a trapezoidal3 emf in time.
The optimal current wave-shape (in time) to obtain a constant ripple-free torque or
air-gap power is then a block wave. For three-phase symmetry, the constant part of
the emf and current waves should be 2π/3, as has been assumed in (b) in Fig. 18.10.

Let us now compare the output power (or torque) for both arrangements, starting
from equal maximum values of the air-gap induction (i.e. the samematerial and same
saturation level) and thus the same maximum emf (

√
2 in the figure - in per unit -).

For the sinusoidal case, we assume a current of 1 per unit in effective value, or with
an amplitude of

√
2. The current amplitude for the rectangular case, resulting in the

same joule losses in the primary winding as for the sinusoidal case (assuming the
same winding resistances), is then4

√
3/2.

For the sinusoidal case, this leads to a constant three-phase air-gap power of 3,
while for the trapezoidal case the three-phase air-gap power amounts to 2

√
3.

3It is trapezoidal if there is a distributed winding with q > 1; for a concentrated winding, the emf
also has a block shape.
4Prove this.

http://dx.doi.org/10.1007/978-3-319-72730-1_20
http://dx.doi.org/10.1007/978-3-319-72730-1_20
http://dx.doi.org/10.1007/978-3-319-72730-1_3
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Fig. 18.10 Brushless AC and DC emf, current and power

In other words, the trapezoidal motor theoretically leads to some 15% higher
output power than the sinusoidal motor for the same maximum induction and joule
losses in the stator winding. In reality, this only holds for speeds that are not too
high, as for the trapezoidal case the higher harmonics in the emf and current lead to
harmonic losses (in the winding and also in the permanent magnets, especially for
rare-earth permanent magnets).

For both (high dynamic) drive types, rotor position information is required to
synchronise the current with the emf. For optimal torque production (and minimal
transients, i.e. field orientation), the maximum of the current layer and the maximum
of the emf should be in phase. This is valid for both the trapezoidal and the sinusoidal
motors. Rotor position information and inverter together act now as an electronic
commutator, just like the mechanical commutator in a DCmachine. This is also why
the term Brushless DCmotor is used for the trapezoidal pm-motor. This terminology
sometimes also refers to the sinusoidal pm-motor, but given the sinusoidal current
and field distributions, a more correct term is the Brushless AC motor.

However, for the sinusoidal pm-motor a much higher resolution for the position is
required than for the trapezoidalmotor. The sinusoidal pm-motor requires a resolution
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of 5.6◦(in an electrical degrees). For the trapezoidal motor, a resolution of about 60◦
is usually sufficient.

Between sinusoidal and trapezoidal pm-motors, there are many other differences
too:

• the stator winding of a sinusoidal pm-motor is mostly a distributed winding (q >

1), while for the stator winding of a trapezoidal motor a concentrated winding
(q = 1) is often preferred.

• The rotor construction of a sinusoidal pm-motor with iron pole shoes (and internal
permanent magnets) leads to a q-axis reactance xq larger than the d-axis reactance
xd ; the large reluctance of the surface permanent magnets of a trapezoidal pm-
motor and their pole width of about π electrical radians leads to more or less equal
reactances xq and xd . As long as current and field axes are orthogonal, id = 0,
the reluctance torque component t = (xd − xq)id iq does not contribute to the total
torque. For the sinusoidal pm-motor, a positive d-axis component of the currentwill
result in a positive contribution of the reluctance torque, which is thus very useful
in the high-speed and thus field-weakening speed range (the only way to obtain
field weakening for a pm-motor is to apply a positive d-axis current component5).

• The torque ripple of the sinusoidal pm-motor is very small, but for a trapezoidal
motor the torque ripple can be significant.

In addition to the motor differences, the converters differ considerably as well:

• for trapezoidal pm-motors, the preferred current blocks favour the use of a CSI
(current blocks of 120◦) while the preferred sinusoidal current distribution for a
sinusoidal pm-motor requires a VSI-PWM.Nowadays, however, for smaller trape-
zoidal pm-machines also a voltage source type inverter is used quite frequently,
but with a current control loop that mimics a block current wave.

• The trapezoidal motor with CSI requires only one current sensor (in the DC-link)
while the sinusoidal motor needs two sensors, i.e. in two phases.

• As mentioned above, the rotor position resolution requirements are much lower
for the trapezoidal motor.

As a result, the practical application of the two types of pm-motors is somewhat
different:

• for high-end servo applications that require a small torque ripple, the sinusoidal
pm motor is mainly used; also the more accurate position rotor information can
be an advantage for the application itself

• for applications with a high speed range, only sinusoidal pm-motors qualify.
Indeed, high speeds imply high emf values, so the available DC voltage might
not be sufficient to provide the required current. For the trapezoidal type, the
inverter starts to function as a voltage source inverter (interestingly, with 120◦
conduction). Some recovery of the torque can be obtained by leading the current
(id > 0, thus counteracting the p.m. flux) but this only causes a minor increase of

5In the URS, the PM excitation is supposed to be along the negative d-axis, which corresponds to
a rotor emf along the positive q-axis.
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the speed range and actually worsens the torque ripple. Somewhat better results
can be obtained by switching to 180◦ conduction, in combination with a leading
current.
Far better results can be obtained with a sinusoidal pm-motor and its VSI-PWM
converter with current control. Here, too, the current control starts to saturate
at higher speeds (and the VSI-PWM goes from PWM to a six-step operation).
With a leading current, id > 0, i.e. field weakening, some recovery of the torque
production can be obtained by the reluctance torque component, especially when
xq is sufficiently larger than xd . If themotor is well-designed (xq � xd ), sinusoidal
pm-motors can yield a much higher speed range than trapezoidal pm-motors.



Chapter 19
Single-Phase AC Commutator machines

Abstract Single-phase AC commutator machines are nowadays mostly used in
(small) household machines, such as coffee grinders, mixers, or vacuum cleaners.
Larger AC commutator machines also used to be applied in traction, for example in
trains, but are now replaced by inverter-fed rotating field machines. In this chapter
we review the basic properties of these single-phase AC commutator machines.

19.1 Introduction

Small single-phase AC commutator machines have much in common with small DC
commutator machines, for example:

• they usually have no more than two poles
• they both have a rather large air gap
• there are generally no auxiliary poles

However, for larger power ratings, which is the case in traction, auxiliary poles as
well as compensation windings used to be applied.

Compared to DC commutator machines, the construction of both small and large
AC commutator machines exhibits some differences: due to the alternating flux, the
stator core is completely laminated, and the alternating flux induces voltages in the
(short-circuited) armature coils in commutation, so that the number of windings of
the armature coils has to be limited (and, as a result, there has to be a large number
of armature coils).

19.2 Motional EMF, Transformer EMF and Torque

19.2.1 Motional EMF

The flux configuration (see Fig. 19.1) differs from theDC commutatormachine as the
longitudinal field is not constant but a time varying (sinusoidal) field B(t). A rotation

© Springer International Publishing AG 2018
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Fig. 19.1 AC commutator machine

of the armature results in an emf of motion induced in each armature conductor under
a pole shoe which is a (sinusoidal) function of time:

eco(t) = B(t) · la · v (19.1)

with v = 2π · r · Na = 2Npτp · Na = (Npτp/π) · Ωa the linear speed of a point on
the armature surface and la the armature length.

For the total induced emf in a parallel branch, we obtain:

ea(t) = z

2πa
· Np · Ωa .Φ(t) (19.2)

with z being the total number of conductors, 2a the number of parallel branches
and Φ(t) the flux over a pole pitch (i.e. the integral of B(t) between two successive
brushes). Note that this flux decreases if the brushes are shifted away from the
geometrically neutral position.

Except for the time dependence of the emf (and flux), this is essentially the same
expression as for the DC commutator machine. For an excitation current varying
sinusoidally with time, the flux Φ(t) is also alternating, varying sinusoidally with
time if saturation effects are negligible. The emf is thus also an alternating voltage
with the same frequency as the flux or excitation current and is in phase or shifted
180◦ with respect to the flux, depending on the rotation direction. The effective value
of the emf depends on the amplitude of the flux according to

Ea = z

2πa
· Np · Ωa · (Φ̂/

√
2) (19.3)
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For the relation between the (time) phasors of emf and flux, the following is valid

Ea = ± z

2πa
· Np · Ωa · (Φ̂/

√
2) = ± 1√

2
KΩa · Φ̂ (19.4)

The (±) sign depends on the direction of rotation. The rotation direction in which
the emf and flux are in phase will be referred to as the positive rotation direction.

19.2.2 Transformer EMF

Because the longitudinal flux is alternating, an emf will be induced in each of the
armature coils by transformer action. Whether or not a transformer voltage can be
measured at the brushes depends on the position of the brushes.

In general, this transformer voltage can be calculated according to

ea,t = dΨ (t)

dt
(19.5)

with Ψ (t) the flux coupled with the complete armature winding.
This coupled flux depends on the angle between the brush axis and the neutral

position. It is zero for α = 0 and is maximum for α = 90◦. However, the calculation
of this coupled flux is not straightforward. Only for the coils with the conductors in
the neutral position is the coupled physical flux equal to the pole flux. For the other
coils, the coupled flux depends on the shape of the induction curve along the armature
circumference. This shape is mostly not sinusoidal (as in rotating field machines),
nor is it constant under the pole shoes.

However, with the brushes in the geometrically neutral position, this voltage at
the brushes is no cause for concern, as the voltages of the (series) connected coils
will be cancelled out by symmetry.

On the other hand, the transformer-induced voltage is also present in the coils
which are commutating, and it will have a negative effect on the commutation (see
below).

19.2.3 Torque

Between two consecutive brushes, the current layer is constant in space (see (a) in
Fig. 19.2) as each conductor carries the same current ia/2a at a given instant

A = ia · z
2a · 2Npτp

(19.6)
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Fig. 19.2 Armature current, layer and mmf; commutation and torque

Naturally, current and current layer amplitudes vary in time (see (b) in Fig. 19.2).
For the instantaneous value of the torque, we find the same expression as for the DC
machine:

T (t) = z

2πa
Np · ia · Φ(t) (19.7)

This can also be derived from the general expression for the torque effect of an (air
gap) induction field distribution B(x, t) on a current distribution a(x, t) (see Chap.3)

As flux and current are sinusoidal time functions here

ia(t) = Îa sinωt (19.8)

φ(t) = Φ̂ sin(ωt + ϕ) (19.9)

the torque is not constant in time but contains a pulsating term with twice the supply
frequency (see (d) in Fig. 19.2)

T (t) = z

2πa
Np · Îa · Φ̂ · 1

2

[
cosϕ − cos(2ωt + ϕ)

]
= 1√

2
K · Ia · Φ̂[cosϕ − cos(2ωt + ϕ)]

(19.10)

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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As a consequence, the average torque is

T (t) = z

2πa
Np · Ia · Φ̂ · 1√

2
cosϕ = 1√

2
K · Ia · Φ̂ · cosϕ (19.11)

From the preceding, it is clear that the time shift between flux and current is equal to
the time shift between the emf of motion and the current. From Eqs. 19.4 and 19.11,
we may write for the electromagnetic power (i.e. the input power minus the Joule
losses):

E · I · cosϕ = T · Ω (19.12)

In other words, the mechanical power is indeed equal to the electromagnetic power.
Note that the average torque (or power) is but 1/

√
2 or 70% of the torque (power)

of a DC machine for the same maximal flux (i.e. flux amplitude, determining the
saturation level) and the same armature current (i.e. effective value, responsible for
the losses).

The pulsating term in the torque has twice the supply frequency, so the speed
variation will remain quite small, even for a very small inertia. However, it might
give rise to noise and vibrations.

19.2.4 Commutation

Similar to DC commutator machines, the commutation is affected by

• the resistances of the coils, their connection with the commutator and the contact
resistance with the brushes

• the leakage inductances of the short-circuited coils (giving rise to a reactance
voltage)

• the voltage induced by the quadrature field (i.e. the voltage induced by the quadra-
ture field of the other armature coils)

• the auxiliary poles (if present)

For the quadrature field and the auxiliary poles, the only difference compared to DC
machines is that the corresponding voltages are AC (with supply frequency) instead
of DC.

The reactance voltage can be calculated as follows. If we denote the leakage
inductance of the short-circuited coils by Lσ , the reactance voltage in the short-
circuited coil is given by

ekr = Lσ

di

dt
(19.13)

If during the commutation time tk the current changes from i1 to i2 (the latter with
an opposite sign, see (c) in Fig. 19.2), then the average reactance voltage is
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ekr = Lσ

i2 − i1
tk

(19.14)

(if the commutation is approximately linear). With the average brush current during
tk given by ib ≡ ia

a ≈ i2 − i1and with tk = bb/(bk .k.Na) - where bb= brush width;
bk= commutator segment width; Na= speed in rev/sec - we obtain

ekr ≈ −
[
Lσ

k.bk
a.bb

]
· Na .ia(t) = cr · Na · ia(t) (19.15)

It is clear that the reactance voltage is proportional to the speed and the (average)
armature current during the commutation.

In addition, the quadrature field (i.e. the field created by the other armature coils)
as well induces in the short-circuited coils a voltage proportional to the speed and
the armature current. Both voltages oppose (i.e. slow down) the commutation but
can be compensated by auxiliary poles. The field of these auxiliary poles induces a
motional voltage in the commutating coils given by

ekh = z

k
Bh(t) · la · va = [2 z

k
· Np · τp · la] · Na · Bh(t) (19.16)

with z = total number of armature conductors; z/k = number of conductors in each
commutating coil. As the auxiliary poles are connected in series with the armature,
the reactance and quadrature voltages can be compensated completely.

For an AC commutator machine, the transformer voltage induced in the commu-
tating coils also needs to be taken into account. For a brush axis in the geometric
neutral position (i.e. orthogonal to the excitation flux axis), the axis of the commu-
tating coils is coincident with the axis of the excitation winding. As a consequence,
the alternating excitation field induces a voltage in these short-circuited coils given
by:

ekt = dΨk

dt
(19.17)

in which Ψk is the flux coupled with the short-circuited coils. This voltage is not
proportional with the speed, however; instead, it is proportional with the supply
frequency, which means that it cannot be compensated by auxiliary poles. In order
to reduce the detrimental effect of this emf on the commutation, the design of the
machine will reduce the number of turns per coil as much as possible, i.e. the number
of segments of the commutator should be as large as possible. The total induced
voltage in the commutating coils (at rated conditions) should be limited to 1.5· · · 2V
or 2.0· · · 2.5V depending on the material of the brushes.
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Fig. 19.3 Universal motor

19.3 The Single-Phase AC Commutator Motor
(Universal Motor)

19.3.1 Introduction

In the past, the single-phase AC commutator motor with series excitation was the
motor of choice for traction purposes (particularly trains). The power electronics
revolution brought about a profound change. For railways where the supply was AC,
the universal motor was first replaced by the rectifier-fed DC commutator machine.
Later on, with the (r)evolution of power electronics, it was replaced by inverter fed
induction and synchronous machines, almost everywhere in traction.

As has already been mentioned, the construction of the (series-excited) AC com-
mutator motor is similar to the DC commutator machine, but the magnetic core is
completely laminated (the stator included). For traction applications, the excitation
of the universal motor is a series excitation; auxiliary poles and commutation poles
are used for higher power ratings only.

The single-phase AC commutator motor with series excitation is still widely
used, however, but only for lower power ratings, as in household machines. It is then
referred to as a universal motor (Fig. 19.3). Actually, this name itself indicates that
it can be used for both AC and DC supply.

19.3.2 Operating Characteristics

For emf and torque, the general Eqs. 19.4 and 19.11 derived in the preceding section
remain valid for the universal motor. Here, however, the flux Φ̂ is in phase with and
proportional to - if saturation is neglected - the current:
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Fig. 19.4 Phasor diagram and current locus

Φ̂ = k ′ · I a (19.18)

Therefore:

Ea = 1√
2
.K .k ′.Ωa .I a = K ′.Ωa .I a (19.19)

T (t) = 1√
2
.K .k ′.I 2a [1 − cos 2ωt] = K ′.I 2a [1 − cos 2ωt] (19.20)

For the relation between supply voltage, emf and current, we may write:

V a = (R + j X)I a + Ea = (R + K ′Ωa)I a + j X I a (19.21)

The corresponding phasor diagram is drawn in (a) in Fig. 19.4.
For a constant voltage, the endpoint of the phasor follows a circle for variable

speed, as is illustrated in (b) in Fig. 19.4. The diameter of the circle Va/j X , corre-
sponds to a slightly negative speed Ωa = −R/K ′. For increasing speed, the current
amplitude decreases and the cosϕ increases.

As K’ is proportional to the product of the number of turns of the excitation
winding and the armature winding, we may write

tan ϕ = X

R + K ′Ωa
≈ X

K ′Ωa
∼ aw2

a + bw2
b

wa .wb
∼ wb

wa
(19.22)

In order to obtain an acceptable cosϕ (for a given rated speed) the leakage
reactance X of the armature will have to be limited as much as possible. The ratio
of the number of turns of the excitation winding to that of the armature will also
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be kept as low as possible. Note that a lower supply frequency will help improve
the cosϕ (cf. the old 16 2/3Hz traction supply in many countries).

Similar to the circle diagram of an induction machine, a linear speed scale can
be obtained by drawing a line parallel to the line connecting the origin and the
operating point for infinite speed. Here, this is a line parallel to the tangent in the
origin or thus the real axis. The circle diagram also allows us to derive graphically
the power conversion: TP = supply power, TR = joule losses in the armature, and
RP = mechanical power. The lineOSconnects the originwith the standstill operating
point.

From Eq.19.21, we obtain for the current:

I a = Va

(R + K ′Ωa) + j X
(19.23)

or

I 2a = V 2
a

(R + K ′Ωa)2 + X2
(19.24)

As a consequence, the average torque is given by:

T = K ′.
V 2
a

(R + K ′Ωa)2 + X2
(19.25)

The maximum torque is obtained for Ωa = −R/K ′ and is given by

Tmax = K ′.
V 2
a

X2
(19.26)

We may also rewrite the torque equation as

T

Tmax
= 1

1 + (
R
X + K ′

X Ωa
)2

or,

Ωa = X

K ′

√
1 − T/Tmax

T/Tmax
− R

K ′ ≈ X

K ′

√
1 − T/Tmax

T/Tmax
(19.27)

For most universal motors, the value of the constant X/K ′ turns out to be between
(0.35...0.75)ω/Np , with ω the supply frequency. Therefore, ω/Np is sometimes
called the synchronous speed, although the notion of synchronous speed has no
physical meaning for an AC commutator machine. Indeed, there is no connection
between speed and supply frequency for an AC commutator machine.

Curve (a) in Fig. 19.5 illustrates the torque as a function of speed (for X/K ′ =
0, 5ω/Np and R/X=0,2). Speed or torque control is achieved by varying the voltage
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Fig. 19.5 Torque characteristic; third current harmonic

amplitude. Note that the torque is a quadratic function of the voltage. For 70%
voltage, the maximum torque is therefore only 50% (cf. the dash-dotted line in (a)
in Fig. 19.5, where Tmax still represents the maximum torque for 100% voltage).

Braking is obtained by self-excitation with a resistance (as for the DC series
commutator machine) or with a series connection of a resistance and a capacitor.
With a resistance, self-excitation is achieved with DC current. With a capacitor
in series with the resistance, self-excitation with AC current may occur. However,
this depends on the value of the capacitor and the saturation of the magnetic core;
if it works, the frequency corresponds to 1/

√
L .C , which may be derived by the

equilibrium of reactive power.
Nevertheless, braking with energy recuperation is not possible, for the same rea-

sons as for a series-excited DC commutator machine. If braking with recuperation
is desired, the excitation should be changed to an independent excitation.

19.3.3 Remarks

1. As mentioned above, the reactance X will be limited as much as possible in
order to reduce the required reactive power. However, a low reactive voltage drop
implies that the emf and therefore also the fluxwill be almost sinusoidal, also if the
magnetic core is saturated. Thus, with a saturated core (which is almost always
the case), the current will not be sinusoidal and will contain third harmonics
(see (b) in Fig. 19.5). On the other hand, the low reactance will result in reduced
differences between the torque-speed characteristics for AC or DC supply.

2. Wear and life of the brushes require special attention in the design, construction
and use of AC commutator machines. The two most important items affecting
wear are mechanical factors (e.g. vibrations, eccentricity of the commutator) and
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Fig. 19.6 Small grinding motor

sparking. Sparking is a rough adaptation of the current in the short-circuited
coil when the contact of the brush with the commutator is broken. As explained
before, due to the transformer emf, a perfect commutation is not quite feasible
in AC commutator machines. This is particularly true for small machines where
auxiliary poles are unusual - and thus the reactance voltage and the quadrature
field voltage are not compensated. Sparking can be reduced by utilising a large
number of commutator coils, a brush width somewhat larger than the width of
the commutator segments, and an odd number of coils per pole, so that the com-
mutation of both brushes is shifted in time. In fact, all these measures reduce the
reactance of the commutating coil.

3. It is important to stress the absence of a relation between frequency and speed
again. For 50Hz, supply speeds higher than 3000 rpm are quite feasible (e.g.
10000 rpm for grinding machines, see Fig. 19.6).

19.4 Special Single-Phase Commutator Machines

In the past, other types of single-phase commutator machines were also relatively
common. Two of these are the repulsion motor and the Déri motor, whose moveable
brush axis makes variable speeds possible. Of course, with the advent of power
electronics, these machines became obsolete.

19.4.1 The Repulsion Motor

The stator of a repulsion motor has an excitation winding supplied directly from
the AC grid. For somewhat higher power ratings, this winding was sometimes a
distributed winding, other times a concentrated winding as in a normal commutator
machine. The rotor (armature) contains a commutatorwindingwith amoveable brush
axis and short-circuited brushes (see (a) in Fig. 19.7).
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Fig. 19.7 Repulsion motor

The armature is not in contact with the supply and power can only be transferred
to it by transformer action. The two extreme positions of the brush axis are shown in
(b) in Fig. 19.7. For α = 0 (called no-load), there is no coupling between armature
and stator, but a large short-circuit current will be induced in the coils short-circuited
by the brushes. For α = 90◦ (called short circuit), the armature is maximally coupled
with the stator by transformer action. For an arbitrary brush axis situation α, we may
consider splitting up the stator field (which is assumed to be sinusoidally distributed)
into an excitation part E proportional to cosα and a transformer part T proportional to
sin α (see (c) in Fig. 19.7). The transformer part induces a current Ia in the armature.
The corresponding current distribution and the excitation part will result in a torque.
As a first approximation, we may suppose that the current distribution Ia completely
compensates the transformer field T. This means that, for the current distribution, we
may write Ia ∼ I1 sin α. Thus, with the excitation field E proportional to I1 cosα,
we obtain for the torque

T ∼ I1 sin α · I1 cosα ∼ I 21 sin 2α (19.28)

The electromagnetic energy conversion (and the torque) can also be explained as
follows. In Fig. 19.8, all windings are supposed to have right turns. A stator current I1
gives rise to a flux Φ1with the indicated direction. A counter-clockwise or clockwise
rotation of the brush axis results in an armature current with the direction shown in
(a) and (b) in Fig. 19.8, respectively. From the direction of the flux and the current,
we may derive that the torque direction is clockwise in (a) and counter-clockwise in
(b). In other words, the direction of rotation for motoring is opposite to the direction
of the twist of the brush axis.

In a similar way, we may also easily derive how the torque varies with current
and twist angle of the brush axis. From the equivalence of electrical and mechanical
power, we have

T .Ω = Ed .Ia . cosψ (19.29)
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where Ed is the motional emf and ψ is the phase lag between Ed and Ia . The emf
Ed is proportional to the field component orthogonal to the brush axis, i.e. I 1 cosα.
We may suppose that the armature current distribution completely compensates the
field component along the brush axis, and therefore we may write Ia ∼ I1 sin α. This
also implies that cosψ≈ 1, so the same expression as before arises (Eq.19.28).

Note, however, that the stator current I1 depends on the armature current Ia and
therefore also on the speed. Indeed, the stator is partially coupled with the armature
by transformer action and the armature current also depends on the motional emf
which is proportional to speed. The torque-speed characteristics are quite similar
to those of the commutator motor with series excitation (see Fig. 19.9). For lower
speeds, however, the torque approaches a (lower) limit value faster.

In normal operation, the α- value is around 75◦. Maximum torque occurs between
80 and 85◦.
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Fig. 19.10 Déri motor
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The biggest advantage of the repulsion motor is (was) its straightforward speed
control. Because of this, the design of the repulsion motor could concentrate more
on obtaining good commutation behaviour, without any concerns about the supply
voltage. On the other hand, a disadvantage is that auxiliary poles are not possible
because of the moveable brush axis. Furthermore, it is worth mentioning that, with
respect to the rotor, the field is an elliptical rotating field that becomes circular when
the speed is approximately ω/Np.

19.4.2 The Déri Motor

The Déri motor is in fact a repulsion motor with four brushes for each pair of poles.
Each pair of brushes is (electrically) independent of the other. Of each pair, one brush
is fixed along the excitation winding axis. The other two brushes are located along a
rotatable axis (see Fig. 19.10).

Compared to the repulsion motor, the advantages of the Déri motor are the fol-
lowing:

• under no-load (α = 0◦) the armature current is zero, also for the coils short-
circuited by the brushes. As a consequence, the motor may remain supplied with
full voltage without any danger
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• the larger control range (180◦ compared to 90◦) permits a more accurate speed
control

However, similar to the repulsion motor, the Déri motor is only interesting from a
historical perspective and is no longer relevant for current usage.



Chapter 20
Small Synchronous Motors

Abstract For large synchronous machines, the excitation is usually provided by a
DC-fed field winding in the rotor. For small synchronous machines, however, this is
undesirable, on the one hand because of the complications for supplying DC to the
rotor (i.e. slip rings, rectifier), on the other hand because the smaller the dimensions,
the less efficient a field winding is in producing a magnetic flux.

For small machines, synchronous operation can (preferably) be achieved in other
ways:

• by permanent magnet excitation (in the rotor)
• by reluctance variation in the rotor (i.e. saliency)
• by using a ring of hysteretic material in the rotor.

20.1 Synchronous Machines with Excitation by Permanent
Magnets

20.1.1 Permanent Magnet Material

Compared to DC excitation of synchronous machines, the advantages of permanent
magnet (PM) excitation are the following:

• speeds can be comparable to those of cage induction machines (of the same dimen-
sions)

• joule losses in the rotor are eliminated, which is particularly advantageous for
lower power ratings, where efficiency is generally low

• for lower power ratings, permanent magnet excitation results in a lower volume
of the required material, i.e. a more compact machine.1

1From scaling laws, it can be shown [21] that the ratio of the volumes of material required for
permanent magnet excitation to that for DC excitation varies proportionally to the pole pitch; thus
for smaller power ratings, permanent magnet excitation allows for a smaller machine.
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There are numerous different rotor concepts, depending on the shape and location
of the magnets, the presence of a damper cage, and many other factors. The rotor
construction is narrowly related to the type of permanent magnet material used. The
most important permanent magnet materials are

• cast materials (e.g. Alnico, Ticonal),
• ceramic materials (e.g. Barium Ferrite),
• rare earth materials (e.g. SmCo5), and
• amorphous materials (e.g. NdFeB).

The magnetic properties are characterised by the demagnetising curve, i.e. the seg-
ment of the relation B-H in the second quadrant ((a) in Fig. 20.1). The main properties
of a hard magnetic material are the following:

• the intersection points of the demagnetising characteristic with the y-axis and the
x-axis, i.e. the remanent induction Br (for H = 0) and the coercive force Hc (for
B = 0)

• the temperature coefficients of Br and Hc

• the shape and specifically the slopes of the minor loops that determine the repet-
itive demagnetising and magnetising; these minor loops can be approximated by
the recoil lines, i.e. straight lines with a slope almost equal to the slope of the
demagnetising curve in Br .

Consider now the basic magnetic circuit (b) in Fig. 20.1. For a non-stabilised magnet,
the no-load point Po is the intersection of the demagnetising curve of Br and the air-
gap line

Hpm · l pm + Hδ · lδ = 0

or

Hpm .l pm + Σpm · Bpm

Σδ · μo
lδ = 0 (20.1)

where Σpm and Σδ are the cross-sections of the permanent magnet material and the
air gap, respectively; l pm and lδ are the magnetic path lengths in the magnetic material
and the air gap, respectively. A normal range for the slope (l pm .Σδ)/(lδ.Σpm) of the
air-gap line is approximately 10–100.

The operating point can be (irreversibly) changed by opposing ampere-turns (e.g.
in the stator of a machine). The operating point will then (temporarily) move to Q as
the air-gap line will shift to the left by the opposing ampere-turns. When the opposing
current disappears, the air-gap line shifts to the right again but the new operating point
becomes P (on the minor loop through Q, although this can be approximated by the
recoil line). The induction is then reduced from Bo to B. In order to minimise the
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Fig. 20.2 Demagnetising characteristics for some PM materials

reduction of B, the demagnetising characteristic should approach a straight line with
slope μo.2,3

In this respect, it is quite instructive to compare the various permanent magnet
materials (see Fig. 20.2):

• cast materials (Alnico, Ticonal) yield a high induction but are rather susceptible to
demagnetisation; the temperature coefficients are quite low (−2.10−4 for Br and
(−7 . . . + 3).10−4 for Hc)

• ceramic materials (Sr- and Ba-ferrites) are less susceptible to demagnetisation but
offer much lower induction values. Moreover, their temperature coefficients are
rather high (−2.10−3 for Br and (+2 . . . + 5).10−3 for Hc)

2In practice, a machine will always have an already stabilised operating point at delivery.
3Note that also disassembling and removing the rotor from the stator without magnetically short-
circuiting the rotor will result in an irreversible reduction of the induction.
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Fig. 20.3 Surface PM motor

• rare earth (SmCo5) and amorphous (NdFeB) permanent magnet materials show
demagnetising characteristics that are relatively close to the ideal demagnetising
line with Br � 1 and dB/dH ≈ μo, but they are quite expensive. Their temper-
ature coefficients are quite low (−5.10−4 for Br and −3.10−4 for Hc).

20.1.2 Rotor Configurations

In the single-phase motor in (a) in Fig. 20.3, the permanent magnet is directly fixed
on the shaft. The laminated stator core and the pole shoes are asymmetrical, so that
a rotating field component can be obtained (cf. the shaded pole/jump pole induction
motor). At standstill, this results in a slant angle of the rotor with respect to the vertical
position, facilitating the run-up. At the same time, this asymmetry may allow a more
straightforward assembly of the coils.

The rotating field motor in (b) in Fig. 20.3 has a laminated stator core with a three-
phase distributed winding (in slots). The rotor has a laminated core as well, around
which permanent magnet strips are fixed, separated from each other by a-magnetic
spacings. The assembly is held together by a support cap, which may provide an
asynchronous starting torque if the cap is conducting.

In this surface PM configuration (and also somewhat in the one of (a)), there is no
appreciable difference between the reluctances (and thus the main field inductances)
in the direct (along the N-S axis of the magnet) and the quadrature (orthogonal to
the magnet axis) axes.

Figure 20.4 shows rotor constructions with a flat PM, which is the preferred shape
for PMs as the material is rather hard and cannot easily be machined. A cage is
provided in order to obtain an asynchronous starting torque. The cage also yields
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Fig. 20.4 Interior PM machines

damping for transients. Although the zone with teeth and slots (indicated by the
dashed line in the figures) protects the PM against demagnetisation, it reduces the
space available for the permanent magnets and thus the air-gap flux. Note that the
shaft also reduces the space for the magnets. In addition, the mechanical strength of
these anisotropic rotors requires special attention, as protection against centrifugal
forces is required. Particularly with ferrite as a permanent magnet material, the space
available can be problematic as the maximal induction of ferrite is smaller than the
normally desired induction in the air gap. The air-gap flux can be improved by using
PM material with higher induction or by a special shaping of the magnetic circuit in
the rotor. In the rotor configuration (c) in Fig. 20.4, the magnets are placed radially,
resulting in an air-gap induction higher than the PM induction, especially for a high
pole number. However, this requires an a-magnetic shaft, to keep the magnets from
short-circuiting. A variant on this is the rotor configuration (d) where the magnets
are positioned somewhat obliquely with respect to the radial direction.

In the configurations in Fig. 20.4, the main inductance in the d-axis is mostly
smaller than the main inductance in the q-axis, as the permeability of the PM mate-
rial is more or less the same as that for vacuum. This results in an opposite sign
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of the reluctance torque compared to traditional synchronous machines. However,
this can be used advantageously for current supply. An additional advantage of the
configurations in Fig. 20.4 is that the iron pole shoe shields the permanent magnet
material against demagnetisation by the stator currents.

20.1.3 Electromagnetic Behaviour and Torque of PM Motors

The electromagnetic behaviour and torque of permanent magnet motors is rather
comparable with that of DC-excited synchronous motors, as will be shown below.
The main difference lies in the (potential) sign reversal of the reluctance torque.

Figure 20.5 represents schematically the air-gap fields for armature current distri-
butions Aad in the d-axis and Aaq in the q-axis.

To begin with, consider the case of no-load (zero armature current, I = 0). For a
flux line along the d-axis, we have

∮
H · dl ≡ 2Hδ · lδ + 2Hpm · l pm = 0

or
Fδ ≡ Hδ.lδ = −Hpm · l pm (20.2)

The interpretation of Eq. 20.2 is that the permanent magnet mmf drop Hpm · l pm
provides the magnetic field in the air gap (as −Hpm .l pm > 0).

With
Σδ · Bδ = Σpm · Bpm (20.3)

and
Bδ = μoHδ (20.4)

we then obtain

Bpm = −μo · Σδ.l pm
Σpm .lδ

.Hpm = 1

Σpm
.μo · Σδ.

.lδ
.(−Hpmlpm) (20.5)

Next, consider an armature current I, or the corresponding current sheet Aa . For the
same integration path along the d-axis (see (b) in Fig. 20.5), we get

2Hδ · lδ + 2Hpm · l pm =
τp∫

0

Aa(x).dx =
τp∫

0

Aad(x).dx (20.6)

or
Fδ ≡ Hδ · lδ = −Hpm · l pm + Fad (20.7)
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Fig. 20.5 PM excitation and armature current

with Fad the armature (air-gap) mmf along the d-axis

Fad = 1

2

τp∫

0

Aad(x) · dx (20.8)

Two sources are now responsible for the mmf along the d-axis: the PM and the d-axis
component of the armature current.

Equations 20.7, 20.3 and 20.4 result in

Bpm = 1

Σpm
· μo · Σδ.

lδ
· (Fad − Hpmlpm) (20.9)
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If the minor loop (or recoil line) for the operating point (Hpm , Bpm) can be linearised
as (see Fig. 20.1)

Bpm = μm(Hr + Hpm) = B ′
r + μmHpm (20.10)

(where B ′
r = μmHr defines Hr ), then

Bpm = 1

Σpm
· (Hrlpm + Fad) · Λd (20.11)

or also
Φd = (Hrlpm + Fad) · Λd (20.12)

with Λd the d-axis permeance

Λ−1
d = Λ−1

pm + Λ−1
δ (20.13)

and

Λpm = μm · Σpm

lpm
and Λδ = μo · Σδ

lδ
(20.14)

the permeances of magnet and air gap, respectively.4

Equation 20.12 again demonstrates that the d-axis flux results from the equivalent
magnet mmf Hrlpm and the armature mmf Fad . The magnet mmf Hrlpm can be
treated like the mmf Fp of a DC-excited synchronous machine. All equations for
the DC-excited synchronous machine remain valid. With the mmf Fp = Hrlpm ,
the emf Ep corresponds; for the d-axis armature mmf Fad , the armature emf Eaq

is the corresponding value When adding the mmfs Fp and Fad to obtain the total
fundamental d-axis emf, we must take into account the difference of the fundamental
harmonic magnetic conductivity along the d-axis between an approximately square
mmf Fp and an approximately sinusoidal mmf Fad . This difference can be accounted
for by including a reduction factor kd for the armature mmf Fad

F̂d = F̂ p + kd .F̂ad (20.15)

The vector (or phasor) sign (underscore) could in fact be omitted as all these mmfs
are in the d-axis; the hat sign has been used to indicate that for fundamental harmonic
mmfs (as well as for induction values or fluxes), we always use amplitude values.

If saturation can be disregarded, we may also add the corresponding emfs

Eq = E p + Eaq = E p + j Xad I d (20.16)

4When the reluctance of the iron core is not negligible, this reluctance must be added in the denom-
inator of Eq. 20.13.
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where j Xad I d = jω(wξ1) · kd · F̂ad · Λd · (2√
2/π) and E p = jω(wξ1) · F̂ p · Λd ·

(2
√

2/π).
In the q-axis, the permeance of the magnet does not come into play - at least not

for designs with an assembly pole shoe (see Fig. 20.5). The q-axis component of the
armature mmf, Faq , gives rise to an emf along the d-axis

Ed = j Xaq I q (20.17)

The reactance Xaq corresponds to the permeance of the flux lines shown in (c) in
Fig. 20.5. For synchronous machines with DC excitation, the reactance Xaq is always
smaller than Xad . For permanent magnet excitation, the q-axis reactance is usually
larger than the d-axis reactance because the permeability of the permanent magnet
μm is only of the same order of magnitude as the permeability of vacuum μo.

For the torque as well, we have the same equations as for traditional synchronous
machines,

T = 3

Ω
.

[
EpV sin β

Xd
+ 1

2
V 2

(
1

Xq
− 1

Xd

)
sin 2β

]
(20.18)

or

T = 3

Ω
.

[
Ep I sin γ + 1

2
I 2

(
Xd − Xq

)
sin 2γ

]
(20.19)
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for voltage and current supply, respectively. In these equations, Xd = Xσ + Xad ;
Xq = Xσ + Xaq ; β = arg(V , E p); γ = arg(I , I p).

Note that the reluctance torque changes sign with respect to the normal (for a
DC-excited machine) situation when Xd < Xq . For Xd > Xq , the reluctance torque
has the same sign as the excitation torque for small |β| or |γ| (i.e. < π/2) and
therefore increases the useful torque for these small load angles (see (a) in Fig. 20.6).
In contrast, for Xd < Xq the sign of the reluctance torque is opposite to that of the
excitation torque for small load angles (|β| or |γ| < π/2). As a consequence, for
these small load angles the useful torque decreases and may even become negative
for small load angles (see (b) in Fig. 20.6). The dashed section in this figure, where
dT/dβ or dT/dγ is negative, is unstable and cannot be used in open loop. This is
called a hysteresis jump (see the horizontal lines with an arrow in (b) in Fig. 20.6).

However, this (at first sight) negative characteristic can be turned into an advantage
depending on the supply and operating point. To this end, we rewrite Eq. 20.19 in
terms of currents as follows:

T = 3

Ω
.
[
Xad .Ip.Iq − (

Xd − Xq
)
Id Iq

]
(20.20)

with Iq = I cos ψ = I sin γ and Id = −I sin ψ = −I cos γ.
A positive torque component due to the PM excitation requires Iq > 0 or 0 ≤

γ ≤ 180◦. If Xd > Xq , then the reluctance torque acts in the same direction as the
PM torque if Id < 0. Note that in that case the stator current also intensifies the PM
excitation (see also (c) in Fig. 20.6).

In contrast, if Xd < Xq (as is mostly the case for PM excitation), the reluctance
torque acts in the same direction as the PM torque if Id > 0. In this case, the armature
current is weakening the PM excitation (see (d) in Fig. 20.6). In other words, this is
advantageous to still obtain a sufficiently high torque for high speeds (in the field
weakening area). It is also important to keep in mind that for current supply (or
current control) in the range of Id > 0, thus γ > 90◦, saturation is reduced and the
higher magnetising inductance also causes a higher (i.e. less reduced) torque.

20.1.4 Axial Flux Permanent Magnet Motors

The permanent magnet machines we considered above are radial flux machines,
meaning that the main flux path is radial, just as in most traditional synchronous
machines with a DC rotor excitation winding. Most radial flux machines have an
inner rotor, although there exist also machines with outer rotor (called outer-runners).
The advantage of outer-runners is that, for the same tangential force, the torque is
larger as it is produced on a larger diameter.

Axial flux machines, in contrast, have their flux path in the axial direction. The
stator and rotor are disks, as is illustrated in Fig. 20.7. This means that the air gap is
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Fig. 20.7 Axial flux machines; a single stator and rotor; b double stator and single rotor; c single
stator and double rotor; d multi-stage with two stator modules and three rotor modules

flat, not a cylinder as in radial flux machines. It is obvious that the electromagnetic
energy conversion principle is the same as that for radial flux machines.

These axial flux machines may offer larger torques, similar to the radial outer-
runners. Their relatively high torque and the small axial length render these machines
quite suitable as wheel motors for electric vehicles. However, a disadvantage of axial
flux machines are the sometimes large axial forces, which may bend the stator and
rotor and may necessitate special bearings.

There is quite a wide range of different construction types. In addition to the single
stator - single rotor machine (see (a) in Fig. 20.7), there are also double stator - single
rotor machines (as illustrated in (b) in Fig. 20.7), single stator - double rotor machines
(see (c) in Fig. 20.7), and multistage versions as illustrated in (d) in Fig. 20.7.

The single stator - single rotor version has as a disadvantage that an iron yoke
is required on both stator and rotor. Therefore, the inertia of the rotor can be rather
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large, as are the axial forces. Figure 20.8 illustrates a possible configuration with a
three-phase stator winding in slots (here a concentrated winding, i.e. q = 1) and rotor
permanent magnets glued onto an iron backplate. The stator iron is a helicoid of a
thin iron sheet, possibly an amorphous metal, with slots punched in an appropriate
way (e.g. with a constant tooth width, or a constant slot width).

Symmetrical types, for example the double stator - single rotor depicted in (b) in
Fig. 20.7, create symmetrical axial forces on the rotor, ideally completely cancelling
out each other. In addition, this machine does not require a rotor iron, resulting in
relatively low rotor inertia (cf. its application as wheel motors and servo drives).

The single stator - double rotor depicted in (c) in Fig. 20.7 requires iron rotor
yokes, increasing the inertia. Yet, as the permanent magnets are in an outer posi-
tion, this facilitates their cooling. Indeed, rare earth and NdFeB magnets are prone
to demagnetisation when subjected to temperatures above 120◦ to 180◦ (the exact
critical temperature depends on the type of magnets). The stator yoke serves as flux
path for both sides. As illustrated in (a) in Fig. 20.9, the flux paths of both sides
remain separate, which means that this machine is actually a cascade or multistage
connection of two machines, resulting in a larger output for the same diameter.

The configuration depicted in (d) in Fig. 20.7 is a further extension of the idea
of using multistage axial motors to obtain higher output power. It should be noted,
however, that increasing the diameter yields a more efficient machine than the multi-
stage arrangement.

Starting from the configuration in (c) in Fig. 20.7, we might consider removing
the stator back iron and rearranging the stator winding and rotor. This would create a
configuration as depicted in (b) in Fig. 20.9. The stator winding is then a concentrated
winding around segmented teeth, and a north pole opposes a south pole on the other
end of each tooth. Obviously, the flux paths are also different from those in (a) in
Fig. 20.9. A few of the advantages of this configuration are its high efficiency (there
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is less iron loss because of the reduced stator iron), its straightforward construction
as the teeth with windings can be constructed before assembly, and its assembly
using composite material in the space between the windings. This machine type is
sometimes referred to as a YASA machine (Yokeless And Segmented Armature).

Another simplified construction is illustrated in Fig. 20.10. Here, stator slots are
completely absent. Instead, the three-phase winding is wound around a toroidal yoke
(i.e. a torus). Although the rotors are similar to those in the YASA machine, here they
are positioned so that north poles face north poles and south poles face south poles.
Needless to say, the flux paths are also different. Despite its simple construction,
some disadvantages of the air-gap winding are the forces on the windings, the rather
large air gap and therefore also a large magnetic reluctance, and the excess winding
losses due to transversal flux.
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Fig. 20.11 Phasor diagram
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20.2 Reluctance Motors

20.2.1 Introduction

Reluctance motors are synchronous motors that only utilise the reluctance torque for
electromagnetic energy conversion. They usually also have a rotor cage to provide
asynchronous starting and create better stability.

For the same frame size, the power that can be converted by the reluctance torque
is lower than that converted by the asynchronous torque or PM torque; it can be
proven5 that for the same maximum induction in the air gap, the converted power
is only one third of that for comparable induction motors or synchronous motors
with DC or PM excitation. On the other hand, because rotor losses (in the cage of
induction motors, i.e. about 1/3 of the total losses) are absent, higher losses can be
allowed in the stator and thus the maximum induction can be increased by some 20%
(≈√

3/2). In this way, the power converted can be increased up to two-thirds or even
three quarters of that of comparable induction motors or synchronous motors.

20.2.2 Current and Torque: Effect of the Stator Resistance

Basically, the torque expression is that of the synchronous machine, which means
that Eqs. 20.18, 20.19 or 20.20 apply, but without the excitation torque component
(Ep = Ip = 0). However, reluctance motors mostly have small power ratings, in
which case the stator resistance is not negligible.

For the current and torque we obtain the following expressions, taking the stator
resistance into account (see Fig. 20.11):

5Cf. Reluktanzmotoren kleiner Leistung, Hans-Joachim Gutt; Etz-Archiv, Bd.10, 1988, H.11,
pp. 345–354.
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I = V

R2
s + Xd Xq

.

{
Rs − j

Xd + Xq

2
+ 1

2
j (Xd − Xq) · e− j2β

}
(20.21)

or

I ≈ V ·
{

Rs

Xd Xq
− 1

2
j

[
1

Xq
+ 1

Xd

]
+ 1

2
j (

1

Xq
− 1

Xd
) · e− j2β

}
(20.22)

and

T · Ωsy = 3

2
V 2.

1[
1 + R2

s
Xd Xq

]2 ·
[

1

Xq
− 1

Xd

]
·
{[

1 − R2
s

Xd Xq

]
sin 2β + Rs

[
1

Xq

+ 1

Xd

]
cos 2β − Rs

[
1

Xq
− 1

Xd

]}
(20.23)

or, if we define tan �d = Rs/Xd and tan �q = Rs/Xq ,

T .Ωsy = 3

2
V 2 ·

[
1

Xq
− 1

Xd

]
· cos ρd cos ρq

cos2(�q − ρd)
.
{
sin(2β + ρd + ρq) − sin(�q − ρd)

}
(20.24)

or, as cos ρd ≈ cos ρq ≈ 1,

T .Ωsy ≈ 3

2
V 2 ·

[
1

Xq
− 1

Xd

]
· {

sin(2β + ρd + ρq) − sin(�q − ρd)
}

(20.25)

In the complex plane, the current vector describes a circle as shown in Fig. 20.12
(Z = R2

s + Xd Xq ≈ Xd Xq ). The most important effect of the stator resistance is a
horizontal shift VRs/Xd Xq of the circle, i.e. an additional active current component.
The reactive current remains almost unchanged; it is at a minimum for β = 0 (i.e.
V/Xd ) and at a maximum for β = π/2 (i.e. V/Xq ). When the current vector is
orthogonal to the radius of the circle, we obtain the optimal power factor, i.e. for
cos ϕ = cos2β ≈ (1 − Xq/Xd)/(1 + Xq/Xd) (disregarding the terms in Rs).

On the torque, the effect of the stator resistance is much more pronounced, as is
clear from the vertical and horizontal displacement of the torque curve in Fig. 20.13.
Just as for the induction machine, the effect of the stator resistance is a reduction
of the torque for motoring and an increase for generating. There is also a horizontal
shift, resulting in a non-zero torque for β = 0. Note that the maximum torque is
proportional to (1/Xq − 1/Xd).

20.2.3 Design and Construction

The reactances Xd and Xq are the most important design parameters. Naturally,
these reactances increase in absolute value with the dimensions (or power rating)
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of the machine; but also their pu-values vary with the pole pitch, approximately
proportional to the square root of the pole pitch divided by the number of pole pairs
(
√

τp/Np).6

For an efficient reluctance motor, the following is required:

• a sufficiently high value for xd as this determines the (minimum) reactive current,
i.e. at no-load

• a high value for xd/xq , in order to improve the cos ϕ
• a large difference between xd and xq , i.e. a high value for (1/xq − 1/xd), to obtain

a large (maximum) torque.

6How do the absolute values of the reactances vary with the pole pitch? Remember the variation of
the rated impedance Zn with the pole pitch for induction machines.
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Figure 20.14 illustrates the effect of xd and xq . Clearly, the larger the ratio xd/xq ,
the higher the pull-out torque and the better the cos ϕ.

Some designs are depicted in Fig. 20.15. The most straightforward (and oldest)
design is the crenellated rotor depicted in (A). Rotor sheets of an induction machine
can be used as a basis, after which the gaps in the q-axes are cut to obtain saliency.
This has as an additional advantage that a starting cage is present if the induction
motor rotor sheets already contain the slots for the cage (and if these slots are filled,
see (A-a)). Moreover, the gap can be filled with electrically conducting material so
that the cage is again (more or less) complete. However, the ratio of xd/xq , that can
be obtained in this way is limited to approximately 2. Indeed, if xq is reduced by an
increase in the width or depth of the gap, xd will also decrease. In most cases, a pole
width of around 0.5τp is selected.

The barrier rotor designs in (B) and (C) allow xd/xq to increase to more than 2
without compromising the two other requirements. Figure (B-a) shows a two-pole
version and (B-b) a four-pole version. In figures (C) (sometimes called a segmented
rotor), only one barrier is used; a cage can also be provided as illustrated in (C-b). A
clear disadvantage of this construction principle (which was presented a long time
ago7) is that it has a rather complicated assembly.

7J.K. Kostko, Polyphase reaction synchronous motors, JAIEE, 1923, pp. 1162–1168.
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Fig. 20.15 RM rotor designs

The larger the number of barriers, the greater the ratio xd/xq that can be obtained.
For one barrier, the theoretical maximum for xd/xq is approximately 5, as can be
derived as follows.

Consider a sinusoidal armature current distribution resulting in a q-axis mmf (or
magnetic potential) Maq(x) in Fig. 20.16; (a) shows the flat representation of one
half of the q-axis, so half of the complete q-axis circuit depicted in (c); (b) and (d)
show the mmf distributions.

The segments which are magnetically isolated with respect to each other (and to
the stator) take on a (non-zero) magnetic potential Mx that can be derived from the
equivalence of the flux crossing the air gap and the barrier:

μo
τpl

δ

[
2

π
M̂aq − Mx

]
= 2Mx · (Λbar/2) · l (20.26)

with (2/π)M̂aq the average stator mmf over one pole pitch, l the armature length
and Λbar the permeance of half a barrier per meter of armature length (in fact,
the permeance for one pole pitch per meter). Therefore, we obtain for the magnetic
potential Mx

Mx = 2

π
M̂aq ·

[
1 + δ

μoτp
· Λbar

]−1

(20.27)

The fundamental value of the mmf difference between Maq(x) and Mx determines
the fundamental of the q-axis (air-gap) mmf and thus the fundamental q-axis flux
(see also (d) in Fig. 20.16),
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F̂q1 = M̂aq − 4

π
Mx = M̂aq ·

{
1 − 8

π2

[
1 + δ

μoτp
· Λbar

]−1
}

(20.28)

It is clear that the lower Λbar , the lower the value of F̂q1; a theoretical minimum
value would occur for Λbar = 0

F̂q1,min = M̂aq

{
1 − 8

π2

}
(20.29)

For a (sinusoidal) d-axis mmf Mad(x), on the other hand, the segments remain mag-
netically neutral, i.e. Mx = 0, and thus
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F̂d1 = M̂ad (20.30)

The reluctance ratio xd/xq is equal to the ratio of the fundamental air-gap mmfs F̂d1

and F̂dq1 for identical armature mmf values M̂ad = M̂aq :

xd/xq =
{

1 − 8

π2

[
1 + δ

μoτp
· Λbar

]−1
}−1

(20.31)

with as theoretical maximum

(
xd/xq

)
max =

{
1 − 8

π2

}−1

≈ 5.28

This value corresponds to the maximum value of the magnetic potential Mx for a
given q-axis armature mmf (i.e. the average of a sine).

For a higher number of barriers, much higher values for the reluctance ratio are
possible. Indeed, a higher number of barriers results in a rotor-mmf consisting of
several steps that fit better with the sinusoidal Maq . The difference between Maq and
the fundamental of the stepwise rotor mmf Mx then becomes smaller.

20.3 Hysteresis Motors

20.3.1 Construction

The energy conversion principle of hysteresis motors is related to both induction and
synchronous machines. In the rotor, the hysteresis motor uses “hysteretic” material,
i.e. a semi-hard magnetic material with a sufficiently wide hysteresis loop. In this
hysteretic material, two types of magnetisation occur: alternating magnetisation and
rotational magnetisation. In the former case, the amplitude and sign of the induction
vary but the direction remains constant, while in the latter case the direction of the
induction varies but the amplitude remains constant.

There are basically two configurations, as is shown in Fig. 20.17. To favour alter-
nating magnetisation in both of them, the thickness of the hysteretic ring is kept
small, i.e. about 0.2 τp. Between the ring and the shaft, either an a-magnetic material
is used so that the flux is mainly tangential (a), or a ferromagnetic material is chosen
so that the flux is practically radial (b).
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Fig. 20.17 Hysteresis motor
basic configurations

1 3a 2 α 1 3b 2 α

(a)
(b)

1   = hysteretic material
2   = shaft
3a = amagnetic material
3b = ferromagnetic material

20.3.2 Principle

In the analysis of the working principle of induction machines, it is usually assumed
that only the rotor winding (or cage) is responsible for the conversion of the primary
rotating field power, i.e. mechanical power and some slip losses. In reality, some of
the primary power is also converted to the rotor through the rotor iron, i.e. by eddy
currents in the iron and by hysteresis losses.

At a given slip s, we have

T · Ωsy ≡ Pem1 = (1 − s)Pem1 + sPem1 = Pmech + sPem1 (20.32)

and also
sPem1 = Pj2 + Pm2 = Pj2 + Pf 2 + Ph2 (20.33)

with Pem1 the primary rotating field power (Pem1 = P1 − Pj1 − Pm1), Pj2 the joule
losses in the rotor windings, Pf 2 the Foucault losses in the rotor iron and Ph2 the
hysteresis losses in the rotor iron. Of course, Pj2, Pf 2 and Ph2 are dependent on the
slip and the air-gap flux.

For Pj2, we know from Chap. 4 that

Pj2 = 3
E2

1

(R′
2/s)

2 + (X ′
2σ)2

R′
2 ≈ 3s2 · E

2
1

R′
2

(20.34)

The approximation to the right is valid for sufficiently small slip (much smaller than
the pull-out slip). This means that for small slip E1 is about constant (i.e. not quite
reduced by the rotor currents) so that the corresponding torque is approximately
proportional to the slip:

Tj = 3

Ωsy
(E2

1/R
′
2) · s ≈ 3

Ωsy
(V 2

1 /R′
2) · s (20.35)

http://dx.doi.org/10.1007/978-3-319-72730-1_4
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Eddy current (Foucault) loss is proportional to the square of the induction and the
square of the frequency. In the rotor iron, the frequency is the slip frequency s · f .
As a result,

Pf 2 = s2 · Pf (E1 , f ) (20.36)

with Pf (E1 , f ) the eddy current loss in the rotor iron for the supply frequency f
and for the same air-gap induction (or the same stator emf E1). The corresponding
torque component is then also proportional to the slip (if the slip is not too large so
that E1 ≈ V1, i.e. the air-gap induction is not affected by the rotor currents):

T f = 1

Ωsy
Pf (E1 , f ) · s ≈ 1

Ωsy
Pf (V1 , f ) · s (20.37)

It is not surprising that this Foucault torque is similar to the normal induction machine
torque: both torque components result from currents (in rotor iron or cage winding,
respectively) and the corresponding mechanical power is compensated by the primary
power, together with the corresponding rotor joule loss.

Hysteresis loss, on the other hand, is proportional to the frequency and the area
of the hysteresis loop. The area of the hysteresis loop is a function of the induction
amplitude and is usually assumed to be proportional to B̂β (with β ≈ 1.6 . . . 2). For
the rotor hysteresis loss, we may thus write

Ph2 = |s| · Ph(E1 , f ) (20.38)

with Ph(E1 , f ) the rotor hysteresis loss for s = 1 and the same air-gap induction (or
stator emf).8

The hysteresis torque corresponding to this loss component can be written as

Th = 1

Ωsy
Ph(E1 , f ) · sign(s) (20.39)

For not too large a slip (|s| < sk so that E1 ≈ V1), this hysteresis torque is constant,
independent of the slip magnitude. The hysteresis torque, however, changes sign
with the sign of the slip: motoring for s > 0 and generating for s < 0. Obviously,
the hysteresis loss and the corresponding mechanical power are also compensated
by the electrical mains power, just like the other torque and rotor loss components.
Figure 20.18 shows the hysteresis torque and the Foucault torque as a function of
the slip. For induction machines, these torque components are usually negligible in
comparison with the normal induction motor torque. Nevertheless, in an ideal no-
load experiment with sufficiently accurate equipment, the hysteresis jump around
s = 0 can be measured.

For a hysteresis motor, i.e. without a rotor cage, the Foucault torque and in par-
ticular the hysteresis torque are the only torque components. As there is no rotor

8Why is the loss proportional to |s| and not simply s?
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Fig. 20.18 Hysteresis torque characteristic

winding or cage to counteract the field, the derived behaviour of these torque com-
ponents remains valid for a broad range of the slip, i.e. 0 < |s| < 1.

An equivalent circuit for the hysteresis motor is shown in Fig. 20.19. The equiv-
alent resistance Rh = sign(s) · |Rh | corresponds with the hysteresis torque. The
magnetising current for the rotor iron can be represented by a reactance Xh in par-
allel with the normal magnetising reactance Xm - or by a lower value of Xm . The
possible eddy current component can be represented by the resistance R f /s.

From this equivalent circuit, the following power equations can be derived:

Pem1 = 3 · Ph + 3 · E2
1

R f /s
= Ωsy .(Th + T f ) (20.40)

Ph2 = 3 · s · E
2
1

Rh
= s · Ωsy · Th (20.41)

Pf 2 = 3 · s2.
E2

1

R f
= s · Ωsy · T f (20.42)

The physical background for the Foucault torque is evident: it is the torque due to
the air-gap field and the eddy currents in the rotor iron.

The preceding discussion, however, does not provide an adequate physical expla-
nation for the hysteresis torque, nor does it explain what happens for synchronism.
Physically, hysteresis loss is due to microscopic currents in the grain boundaries.
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Fig. 20.20 Hysteresis torque action

Thus, the corresponding torque can be understood by the torque exerted by the
imposed field on these microscopic currents.

The hysteresis torque, its sign and its behaviour at synchronism can also be
explained as follows. When the rotor speed differs from the synchronous speed
Ω of the rotating induction field, the induction vector B−→ imposed by the stator slips
with respect to the rotor iron with a speed sΩ (see Fig. 20.20). Seen from the rotor,
the iron in the rotor describes a hysteresis loop.

In the time domain, the time phasor H leads the time phasor B, as can easily
be derived graphically (see e.g. Chap. 1). I n the space domain, the corresponding
magnetic field vector H−→ then leads B−→ (with respect to the rotor iron). As B−→ =
μo(H−→ + M−→), it follows that M−→ is lagging the field vector H−→ (in space). As the
torque at a magnetic moment is given by T−→ = M−→ × μo H−→, it follows that the torque
is clockwise (driving) for s > 0 and counter-clockwise (generating) for s < 0 (see
Fig. 20.20). The angle αh between M−→ and H−→ is constant and depends only on the
width of the hysteresis loop (Fig. 20.21), which means that the hysteresis torque is
constant for a given induction as long as there is a speed difference between field
and iron.

When the slip decreases to zero (synchronism), the magnetic situation that existed
just before synchronism becomes instantaneously frozen with respect to the iron.
Then the (macroscopic) magnetic moment M−→ becomes fixed to the iron: the rotor
iron becomes permanently magnetised. If the instantaneous angle between the rotor

http://dx.doi.org/10.1007/978-3-319-72730-1_1
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Fig. 20.21 Hysteresis loop B

H

and the imposed induction B−→ varies slightly, the angle between B−→ and M−→ will
change from αh to an angle α (with −αh < α < αh) and the torque becomes
T = B · M · sin α, just as the torque of a synchronous machine.

20.3.3 Properties

The almost speed-independent torque and the resulting high torque at standstill and
starting makes the hysteresis motor quite apt for loads with high inertia. However,
the hysteresis motor is rather expensive compared to an induction motor, due to the
expensive hysteretic material and the rather low power density (i.e. power or torque
per unit machine volume).

Indeed, for the hysteresis losses per cycle and per unit volume, we may write

Wh = η · 4 ˆ·BĤ ≈ B̂.Ĥ ≈ 104 J/m3 (20.43)

For a supply frequency f and slip s, we obtain for the tangential force per square
meter of air-gap area

s.vsy .F
�
h = s. f.d.Wh (20.44)

with the synchronous speed vsy = 2 f τp. If we approximate the thickness d of the
hysteresis ring by d ≈ 0.2τp, we get for the force per square meter

F�
h ≈ 103 N/m2 (20.45)

This is, however, much less than the corresponding value for induction machines,
i.e. F�

h ≈ 3.5 103 . . . 7 104 N/m2 (see the Chap. xxx on induction machines).
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20.3.4 Final Remarks

1. Because of the strongly non-linear B-H characteristic, a wye connection of the
stator windings is preferred to avoid third harmonics in the line currents.

2. To obtain a higher starting torque, an increased voltage is sometimes applied for
starting, as it increases the area of the hysteresis loop.

3. The stator slotting may result in a somewhat reduced torque capability and
increased losses due to secondary hysteresis loops and eddy currents by mmf
harmonics.

20.4 Small Motors for Special Applications

There are many other variants of small synchronous motors, used for example in
watches or as auxiliary drives for control or measurement apparatus. Some of these
examples will be discussed below.

20.4.1 Impulse-Field Motor (Not Self Starting)

The impulse-field motor (see Fig. 20.22) is a synchronous motor which is not self
starting and is (was) frequently used in clockworks.

The rotor has an even number (30–40) of teeth and is enclosed by the two pole
shoes of the stator. The width of each pole shoe should be equal to a broken number
of tooth pitches; the pole shoes may have teeth as well (with the same tooth pitch)
but this is not essential (although it does increase the torque). Between the two pole
shoes, there is a single-phase excitation winding.

Fig. 20.22 Impulse field
motor
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Fig. 20.23 Inductance variation

With z denoting the number of rotor teeth and α the rotor position, it should be
intuitively clear that the inductance will vary with the rotor position α and with a
period 2π/z, i.e. L = L(zα) (for example, see Fig. 20.23 for z = 2).

Expanding L(zα) in its Fourier components

L(zα) = Lo +
∞∑

ν=1

Lν · sin(ν.zα)

then it is clear (e.g. from virtual work) that a non-zero torque can only exist if
ν.z.α = 2ωt , i.e.

Ων = dα

dt
= 2ω

νz

The largest possible speed corresponds to the fundamental period of the inductance,
i.e. ν = 1:

Ω = 2ω

z

For example, if z = 30 and f = 50 Hz then for the speed we get N = 200 rpm.
Depending on the harmonics in L(zα), lower speeds are possible in theory. In

practice, we need to make sure that the fundamental harmonic is dominant, which
means that only the highest speed is stable. Note that this motor is not self starting
and that either direction of rotation is possible. One will, however, limit the rotational
direction to one direction, by mechanical means.
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Fig. 20.24 Self-starting
impulse-field motor N

S

S

N

20.4.2 Self-starting Impulse-Field Motor

Figure 20.24 depicts a self-starting impulse-field motor. The stator contains 30 poles
of alternating polarity excited by a single-phase ring winding. The rotor has six arms
with permanent magnets; on each arm there are alternating two north poles or two
south poles. Between two arms, two stator poles are skipped while the two poles of
each arm skip one stator pole. When the stator is excited, the polarity of the stator
poles changes with the mains frequency. If the rotor is originally at standstill, it will
start swinging. The oscillations will increase until they exceed a pole pitch and then
the rotor will synchronise with either the clockwise or counter-clockwise rotating
field. The rotation will be mechanically limited to one direction.

20.4.3 Other Single-Phase Synchronous Motors

In addition to the impulse-field motor, other single-phase synchronous motors include
single-phase hysteresis motors, single-phase reluctance motors or single-phase per-
manent magnet motors. Using partial screening of the stator poles, as in the shaded-
pole motor, we obtain an (elliptic) rotating field and the motor becomes self starting
(see Fig. 20.25).
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Fig. 20.25 Single-phase
hysteresis motor
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a 0
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a stator coil
b stator winding
d rotor
0 short-circuit ring

20.5 Electrostatic Motors

All motors treated so far use electromagnetic fields for energy conversion. Indeed, for
dimensions larger than around 1 mm, electromagnetic fields are much more advan-
tageous than electrostatic fields in terms of power (or energy or force or torque) pu
volume. However, for very small dimensions, i.e. less than about 1 mm, electromag-
netic fields become rather inefficient in terms of force per unit volume. In addition,
the largest part of the electrical energy is dissipated as heat, so cooling problems
arise for these small dimensions.

That electrostatic fields can be more efficient than electromagnetic fields for
smaller dimensions. This can be explained qualitatively as follows.

For electromagnetic fields, we consider the force on a current-carrying conductor.
Taking into account the practical limits for current density (J ≤ 4A/ mm2) and
induction (B ≤ 1.5 T) aswell as the expression for the synchronous speed v = 2τp f ,
we obtain for the electromagnetic tangential force and the electromagnetic power

Fem = I · l · B = J · Σ · l · B ∼ J · B · D3 ∼ D3

Pem ∼ Fem · v ∼ D4

For electrostatic fields, we may write for the electrostatic tangential force (consid-
ering E < 3.106 V/m)

Fes = q · E = C · V · E = ε(Σ/ l) · V · E ∼ ε · Σ · E2 ∼ D2

Pes ∼ Fes · v ∼ D3

Therefore

Pem/Pes ∼ D4/D3 ∼ D
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Fig. 20.26 Principle of
electrostatic motor
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For larger dimensions, electromagnetic energy conversion ismore efficient in terms of
power per unit of volume. For small dimensions, however, electrostatic energy con-
version becomes advantageous. As the proportionality factor in the power above
is approximately 104, electrostatic power conversion becomes advantageous for
D < 10−4 m.

20.5.1 Electrostatic Stepping Motor

The energy conversion in an electrostatic stepping motor is the force on a charge in
an electric field: F = q · E . Figure 20.26 shows a simplified configuration.

The rotor is built from ceramic material with high permittivity and can pivot
between two metal electrodes. A potential difference between the two electrodes
results in charges induced in the ceramic rotor. The resulting electric field in the air
gaps will attempt to align the rotor.

Figure 20.27 illustrates two real implementations on chip level9 of electrostatic
stepping motors. A typical rotor diameter is approximately 60µm with a thickness
of around 20µm.

9The dimensions shown are micrometers.
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Fig. 20.27 Electrostatic stepping motor

20.5.2 Piezo-Electric Actuators

The operation principle of piezo-electric actuators or motors is based on the inverse
piezo-electric effect. When a force is exerted on a crystalline material, an electric
potential difference between the end surfaces is generated. This is the (direct) piezo-
electric effect. On the other hand, when an electric potential difference is applied
between the faces of a piezo-electric material, the crystals will attempt to align with
the electric field and an elongation of the material will follow (see (b) in Fig. 20.28).
In this way, relatively large forces can be obtained, albeit with rather small displace-
ments.

Piezo-electric actuators are used in ink-jet printers.

20.5.3 Ultrasonic Actuators and Motors

Ultrasonic actuators and motors also utilise the (inverse) piezo-electric effect, but
with excitation at ultrasonic frequencies. Rotational motion can be obtained by
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Fig. 20.28 Piezo-electric
effect
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Fig. 20.29 Standing wave F

making use of travelling waves in elastic material and the resulting elliptical tra-
jectory of the points on the surface.

Travelling fields in Elastic Material

Consider an elastic beam or string (see Fig. 20.29).
When a sinusoidal force is exerted in a point of the beam or string, the beam or

string will exhibit a sinusoidal steady-state vibration with the excitation frequency.
As both ends of the string (or beam) are restricted, this motion is a standing wave.
We also know that a standing wave can be considered as the superposition of two
travelling waves, with the same amplitude but in opposite directions. What we need
for rotational motion is (1) to suppress the reflections at both ends, and (2) to impose
two excitations with the same frequency displaced in space and time.

This can be obtained by arranging the beam in the form of a ring and by exciting
the ring in two places with both time and space shifts of 90◦.

Elliptical Motion

When a travelling wave appears in an elastic material, each point on the surface
performs an elliptical motion (see Fig. 20.30). If a stiff, inflexible body is pushed
against this surface, the body will be dragged along by friction and will move with
the elliptic motion on the surface.

Piezo-electric Actuators and Motors

For the mechanical excitation, piezo-electric actuators are fed by ultrasonic voltage
sources. Ultrasonic frequencies are used because of two reasons: (1) frequencies
above 20 kHz are imperceptible to the ear and do not cause any irritation;, and (2)
as the piezo-electric displacement is rather small (e.g. 2µm), a sufficiently high
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Fig. 20.30 Elliptical motion

A B
C sin tω C cos tω

travelling wave

elastic body

motion

rotor

Fig. 20.31 Typical layout of
an USM

rotor ring

stator
(resonator)

piezo-electric
ceramic
layer (actuator)



522 20 Small Synchronous Motors

frequency is necessary to obtain practical speeds (2µ, with a frequency of 20 kHz
gives a speed of 4 cm/s).

Figure 20.31 shows the assembly of a piezo-electric ultrasonic motor (USM). It
consists of

• a piezo-electric ceramic ring as actuator,
• an elastic resonator fixed on the actuator, and
• a rotor ring pressed against the resonator.



Chapter 21
Stepping Motors

Abstract In contrast with the continuous motion of usual induction or synchronous
machine drives, stepping motors produce a controlled, stepwise motion without any
need for position measurement and feedback. The main characteristic quantities and
properties of steppingmotors are described. Thereafter, the different types of stepping
motors are discussed.

21.1 Introduction: Stepping Motion Versus Continuous
Motion

Depending on the operation cycle, we may distinguish for electrical drives (valid for
both motors and generators):

• continuous operation (‘S1’ according to IEC 34-1)
• short operation (‘S2’ according to IEC 34-1)
• intermittent operation (‘S3’ according to IEC 34-1)

Another possible classification makes a distinction between

• switched operation,
• controlled drives, and
• servo drives.

It is logical that servo drives and controlled drives are only relevant for motoring.
Controlled drives can be defined as drives where speed and/or torque are (contin-

uously) controlled or adjustable. Servo drives are also controlled drives, but differ
somewhat from other controlled drives in that they have a practically uninterrupted
variation of position, speed, acceleration. A typical example is a drive for position-
ing a mechanical tool. Mostly (and historically), servo operation only concerns small
drives.

Steppingmotors are a special kind of servomotor. In contrast to other servo drives,
they give a controlled, stepwise motion without any need for position measurement
and feedback. Accurate positioning is thus realised without a costly and vulnerable
position sensor and a complicated feedback of the rotor position. The electromagnetic

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_21
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construction and the excitation result in a recognisable step angle. For that reason,
the stepping motor is also an ideal partner of switching power electronic circuits.

There are three kinds of stepping motors: permanent magnet, variable reluctance
and hybrid stepping motors; these will all be discussed in the next paragraphs.

21.2 Characteristic Quantities and Properties

Two types of characteristics can be distinguished: static and dynamic characteristics.
The explanation of the dynamic characteristics is given in Sect. 21.2.3.

21.2.1 Static Characteristics

An important static characteristic is the static T/θ (or F/x) characteristic which
gives the static torque (or force) versus the rotation angle (or displacement) for a
given excitation current (see Fig. 21.1).

To measure this characteristic, the equilibrium position for the given current and
no-load first needs to be established. From this no-load equilibrium position on, a
rotation over an angle θ away from it corresponds to a load torque value required to
maintain the new position. This relation between the angle and the torque is called
the static T/θ (or F/x for linear motion) characteristic, and the maximum torque is
referred to as the holding torque. The difference angle between the no-load point and
the point of maximum torque is not necessarily exactly one step angle but it should
be equal to or larger than the step angle (see Fig. 21.1).

holding torque

equilibrium
position

step angle

0 θs θh θ

T

Th

Fig. 21.1 Static torque - angle characteristic
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There are also stepping motors that exhibit a non-zero torque for zero excitation
current. In that case, the maximum torque for the characteristic under zero current is
called the detent torque. The no-load point(s) for zero excitation current and the angle
for the detent torque do not necessarily correspond to those for non-zero excitation
current.

Another static characteristic gives the magnitude of the holding torque as a func-
tion of the current. This characteristic can be (approximately) linear for permanent
magnet stepping motors, or quadratic for reluctance stepping motors.

21.2.2 Dynamic Characteristics

The dynamic characteristics relate to stepping motors in motion or starting. Two
essential dynamic characteristics are

1. the pull-in torque characteristic or starting characteristic gives the range for
the load (or friction) torque where the stepping motor will start and run without
losing any steps, as a function of the frequency of the excitation pulse train (see
Fig. 21.2).

2. The pull-out torque characteristic or slewing characteristic gives the range for
the load (or friction) torque where the already running motor continues running
without losing any steps, as a function of the frequency of the excitation pulse
train (see Fig. 21.2).

Both characteristics depend heavily on the inertia of the load and the characteristics
of the electrical supply circuit; both should therefore be specified. The maximum
starting frequency is themaximum frequency of the pulse train at which the unloaded
motor can start without losing steps. Similarly, the maximum slewing frequency is

T

Th holding torque

maximum starting torque (pull-in torque)

pull-out torque (slewing torque) characteristic

pull-in torque (starting torque) characteristic

stepping rate (Hz)maximum pull-in
(starting) frequency

maximum pull-out
(slewing) frequency

unstartable or
unrotatable
range

0
10

Fig. 21.2 Dynamic characteristics
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the maximum frequency of the pulse train at which the unloaded motor will continue
running without losing any steps.

It is, however, also possible that certain areas (islands or dips) exist within the
startable or runnable range, in which the motor ceases to run faultlessly. These are
caused by resonances (see below).

The maximum starting torque or maximum pull-in torque is the maximum load
(or friction) torque for which the motor can start and synchronise with a pulse train
of sufficiently low frequency (e.g. 10Hz).

21.2.3 Eigen Frequency, Damping, Resonance

The system consisting of converter, motor and load (and their inertias) is in fact a
dynamical system of higher order (≥2). For a (sufficiently slow) stepwise excitation
the rotor will tend to oscillate, with its dominant eigen frequency and damping,
around the new equilibrium position at each step, similar to a spring-mass system
(see Fig. 21.3).
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Fig. 21.4 Two-phase PM stepping motor

When, in a continuous motion, the frequency of the pulse train corresponds to
(i.e. is equal to or near to) an eigen frequency of the system, there is a risk of steps
being by-passed (or surpassed), in which case the rotor will not follow the pulse
train accurately. This is the explanation of the islands (mostly near no-load) or dips
(loaded). This risk of resonance can be suppressed by appropriate damping, either
internally or externally.

21.3 The Permanent Magnet Stepping Motor

Figure21.4 shows the cross-section of a two-phase permanent-magnet stepping
motor. The stator has four poles; the rotor contains a two-pole permanent magnet.

With permanent-magnet excitation, the polarity of the stator poles must be
reversible. Two designs are possible. In design (b) in Fig. 21.4, each pole pair con-
tains one winding (the coils of poles I and I’ are connected in series, just like those
of II-II’) but the supply should provide both polarities. When the excitation is such
that pole I is a south pole (and thus I’ a north pole), the rotor will align as in (a) in
Fig. 21.5 (this will be referred to as a positive excitation). Switching off pole pair
I-I’ and a positive excitation of the pole pair II-II’ will result in a rotation of 90◦
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Fig. 21.5 Steps for the
two-phase PM stepping
motor

(I+) (II+) (I-) (II-) (I+, II+)

(a) (b) (c) (d) (e)

to the right and the alignment of the rotor as in (b). Then the negative excitation of
successively I-I’ and II-II’ will result in further rotation to the right with steps of 90◦
as in (c) and (d). An intermediate position as in (e) is possible as well, if both pole
pairs are excited at the same time, but the holding torque will be different than when
only one pole pair is excited. A particular property of permanent magnet stepping
motors is that, also without excitation, the rotor will align with one of the pole pairs.
Naturally, the corresponding detent torque differs from the holding torque.

The two polarities for the supply, which requires amore complex power electronic
converter, can be avoided by means of a bifilar winding. In that case, two windings
are provided on each pole pair, one for the positive and one for the negative polarity.
This mono-polar supply requires more copper for the motor but may result in a less
complicated converter. The main disadvantage might be the inefficient use of the
available space for the windings (i.e. for a given machine size, the power will be
more limited).

A smaller step angle can be obtained with more phases (and pole pairs) in the
stator. For example, a three-phase stator (with six poles) has a step angle of 60◦ and
a half-step value of 30◦. Doubling the number of stator phases from two to four (or
from four to eight stator poles) and doubling the number of rotor poles to four results
in a step angle of 45◦. However, as stepping motors generally have small power
ratings and sizes, the number of poles with their windings in the stator is usually
a limiting factor. This constructional restriction also applies to some extent to the
permanent magnets in the rotor.

21.4 The Variable-Reluctance Stepping Motor

The variable reluctance motor in Fig. 21.6 has six stator poles (with excitation wind-
ings) and four salient rotor poles (without windings or permanent magnets). The
coils of opposite poles are connected in series to form three pairs of north-south
poles (1-1’, 2-2’, 3-3’).

Excitation of the pole pair 1-1’ causes the rotor to rotate, resulting in a minimum
reluctance position corresponding to a minimum of the magnetic energy. Subsequent
excitation of 2-2’ and 3-3’ leads to a clockwise rotation with a step angle of 30◦ (see
Figs. 21.7 and 21.5).

Note that the polarity of the poles (or excitation) is of no importance, whichmeans
that the supply can be mono-polar. In contrast to permanent magnet stepping motors,
there is no detent torque.
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Fig. 21.7 Rotation of a 6-4 VR stepping motor

A smaller step angle can be obtained by increasing the number of stator poles and
rotor poles, like in the three-phase version (a) in Fig. 21.8 with 12 stator poles and
eight rotor poles. Another example is depicted in (b) in Fig. 21.8, i.e. a four-phase
motor with eight stator poles and six rotor poles. Both designs offer a step angle of
15◦. As is the case for the PM stepping motor, a small motor size (or power rating)
may limit the number of wound stator poles.

However, the step angle can also be reduced by increasing the number of rotor
poles, leaving the number of stator poles unchanged (see Fig. 21.9). In these designs,
the number of stator teeth has been doubled as well in order to increase the torque
and to improve the step resolution, but this does not have any effect on the step angle
as long as the number of stator poles remains the same.
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Fig. 21.8 12/8 and 8/6
stepping motors
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The step angle and the number of steps per revolution only depend on the rotor
pole pitch and the number of stator phases, not on the number of stator teeth. Indeed,
the operation principle of the motor is based on the position change of the rotor teeth
with respect to the subsequently excited stator poles. Mathematically, the step angle
εr can be derived as follows. Call Nr and Ns the number of rotor teeth and stator
teeth, respectively. By qwe represent the number of stator teeth per stator pole (which
means that the number of stator poles is Ns/q). As a consequence, the rotor tooth
pitch is λr = 2π/Nr while the average stator tooth pitch is given by λs = 2π/Ns .
The step angle εr , i.e. the displacement of the rotor at the excitation of the next stator
phase, can be written as

εr = min
n

[|q.λs − n.λr |] = min
n

[
|q.2π

Ns
− n.

2π

Nr
|
]

(21.1)

This step angle will be a fraction of the rotor tooth pitch (and smaller than λr/2).
Equation21.1 can usually be simplified to

εr = 2π/mNr (21.2)

Indeed, Ns/q is an even multiple of the number of phases: Ns/q = 2k · m. A
displacement of one rotor tooth pitch thus requires λr/εr steps and the required
number of steps per revolution of the rotor is S = Nr .λr/εr .



21.5 Multi-stack Stepping Motors 531

21.5 Multi-stack Stepping Motors

All stepping motors in the preceding paragraphs are single-stack types. In these, the
magnetic situation is the same over the whole armature length and all phases are in
a single plane.

Another type is the multi-stack or cascade type. This type of motor consists of
several layers lengthways. The ferromagnetic circuit in each layer is separate from
the other layers and corresponds to one phase of the stator. Here, the stator and rotor
have the same tooth pitch, but there is a shift of (1/m)th of a tooth pitch between
either the stator layers or the rotor layers. In general, the selected number of teeth is
relatively high (for example, six, eight or ten).

There are two type of multi-stack motors. Figure21.10a depicts a three-phase
homopolar (variable reluctance) type in which each (phase) layer also contains two
planes or layers, one for the north poles and one for the south poles. The flux passes
from the stator north poles to the rotor, axially through the rotor core to the stator south
poles, and then closes axially to the other side. The advantage of this configuration
is that for the excitation a simple ring winding can be used (Fig. 21.11), without the
need to put a winding around each pole as in a heteropolar type.

In the heteropolar type (b) in Fig. 21.10, the (stator) poles are alternating north
and south poles in the same plane. This necessitates a coil around each stator pole,
i.e. a more complicated winding structure with space restrictions as well.

For both types, all poles of stator and rotor of the excited phase will align. For a
three-phasemotor, each layer is displaced by (1/3)rd of a pole pitch and the excitation
of the next phase will cause the rotor to rotate further by (1/3)rd of the pole pitch. A
small step angle thus requires a large number of poles (and a small pole pitch), for
example 15◦ for a three phase motor with eight teeth.

There are also multi-stack stepping motors with permanent magnets in the rotor.
Figure21.12 depicts a four-phase claw pole PM stepping motor. There are two layers
(not four: an even number of phases always is rather special), but the stator excitation
must provide both polarities as it is a PM motor. Here, the rotor PM layers are not
displaced, but the stator layers are displaced by half a pole pitch (see also Fig. 21.13).
The bipolar supply generates four-phase behaviour.With the claw pole configuration,

*

coil

rotor pole

1e layer 2e layer 3e layer

(a) (b)

Fig. 21.10 Multi-stack VR stepping motor: a homopolar, b heteropolar
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Fig. 21.11 Multi-stack: three-phase homopolar layout
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Fig. 21.12 Multi-stack: four-phase homopolar layout

a simple ring winding can be used. However, a normal winding with coils around
each pole can be utilised as well and is better from an electromagnetic point of view:
a claw pole results in an important 3-D magnetic field which is undesirable, for
example because of iron losses.

The selected number of poles can be quite high in order to obtain a small step
angle (e.g. the motor in Fig. 21.12 or 21.13 has 12 poles and thus a step angle of only
15◦).

21.6 Hybrid Stepping Motors

Hybrid stepping motors combine the torque effect of reluctance and permanent mag-
nets. Adding permanent magnets to a reluctance stepping motor aims at increasing
the torque. Generally, however, the step angle will not be affected. On the other hand,
a bipolar excitation or a bifilar winding will normally be required.



21.6 Hybrid Stepping Motors 533

N N
Z

N
Z

N
Z

N
Z

Fig. 21.13 Multi-stack four-phase claw pole stator

Fig. 21.14 Hybrid 2-pole stepping motor

Figures21.14, 21.15, 21.16, 21.17, 21.18 and 21.19 illustrate the construction
and operating principles of some hybrid stepping motors with permanent magnets
in the rotor. Figure21.14 is a four-pole (i.e. two-phase bipolar and thus four-phase
supply) configuration. The stator is identical to the one in Fig. 21.4. The rotor contains
two toothed sections (with one tooth and one slot in each section), but displaced
with respect to each other by half a tooth pitch. Between both rotor sections, an
axial permanent magnet is positioned. Figure21.15 shows an eight-pole, four-phase
version. The stator structure is the same as the one in (b) in Fig. 21.8, but the windings
and connections between the coils are different: the two coils on each pole are
assigned to distinct phases. The rotor consists of two sections with the same tooth
pitch as in the stator, but displaced with respect to each other over half a tooth pitch;
between these two sections, an axial permanent magnet is placed. There are also
versions where the two stator sections are displaced instead of the rotor sections (see
Fig. 21.17).

Field distribution and torque production are illustrated in Figs. 21.18 and 21.19.
The torque results from the interaction of the two excitation types. The upper half
in Fig. 21.19 corresponds to the south pole end of the permanent magnet, while the
lower half corresponds to the north pole end. In the depicted situation, poles 1 and
3 are excited so as to yield a north and a south pole, respectively. The heteropolar
stator field and the homopolar rotor field combine so that under the south pole of
the PM (upper part of the figure) the field is intensified under the north pole (1) and
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Fig. 21.19 Torque production in a hybrid stepping motor
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Fig. 21.20 Hybrid stepping motor with PM in the stator

weakened under the south pole (3). Under the north pole of the PM (cf. the lower
part of the figure), the reverse applies. As a result, a force or torque originates that
works in the same direction on both sides of the PM, i.e. to the left in the figure, as
indicated by the arrows below the figures. When the teeth align, the force or torque is
reduced to zero. The excitation of the next pair of stator poles will then cause further
rotation.

Note that the permanent magnet is crucial for the torque or force, but that the step
angle only depends on the toothed structure of stator and rotor.

Figure21.20 shows a version with a permanent magnet in the stator. For the
excitationof the stator, a ring coil is used andboth sections therefore have ahomopolar
field. The relative toothing of stator and rotor in parts 1, 2, 3 and 4 is different,
however, as is shown in the figure. Subsequent bipolar excitation results in a step
angle of (1/4)th of a tooth pitch.



Chapter 22
Switched Reluctance Machines

Abstract The switched reluctancemachine (SRMor also SWRM) started to receive
much attention at the end of the 20th century. Its operation principle had already
been known since 1838 but had not been able to find a practical use because no (fast)
power electronic switches were available. Nowadays, the switched reluctance motor
is applied in many industrial applications like washing machines or looms and even
in more demanding applications like the starter-generator of jet turbines in airplanes.
The most important advantages of the SRM are its simple and rugged construction,
its inherent redundancy, and its suitability for high speeds. Its most negative aspect
is the high level of noise and vibrations that it brings along.

22.1 Operation Principle

The switched reluctancemotor operation principle is based on the variable reluctance
effect, similar to the variable-reluctance stepping motor. Its construction is also iden-
tical to that of the variable-reluctance stepping motor (see for example Fig. 22.1 for
a 6-4 type). The 6-4 SRM has six stator poles (three phases) and four rotor poles.
The coils of opposite stator poles (i.e. from the same phase) are connected in series
to form a coil pair for this phase. Excitation of a phase results in opposite north and
south poles. The four salient poles on the rotor do not contain any windings.

Similar to the variable-reluctance stepping motor, excitation of a phase (1-1’)
results in a rotation of the rotor so that a minimum reluctance position is attained
(see Fig. 22.1).

Subsequent excitation of the pole pairs 2-2’, 3-3’ results in a further clockwise
rotation of the rotor, each time with a step angle of 30◦ (see Fig. 22.2).

As the torque is solely due to the reluctance effect, the polarity of the excitation
is not important and the supply can be mono-polar. As was the case for the variable-
reluctance stepping motor, the step angle can be reduced by increasing the number
of stator and rotor poles, or by providing teeth on the rotor poles. Corresponding
teeth on the stator poles may increase the torque, but will not change the step angle.
For the SRM, such additional teeth are rather uncommon, however.

The step angle can be calculated as for the stepping motor (see paragraph 21.4).
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Fig. 22.2 Rotation of a 6/4 SRM

The main difference compared to the stepping motor can be found in the supply
and the control. For the stepping motor, it is assumed that the rotor will rotate exactly
one step angle at each excitation of a subsequent phase, but there is no feedback of
the rotor position. Furthermore, the supply of a stepping motor provides a pulse train
with voltage pulses of constant amplitude. It is assumed that the pulse train and the
torque will lie within the stable region of the motor (cf. the dynamic characteristics).

In contrast, the switched reluctance motor has a rotor position measurement and
feedback. Dependent on the rotor position, the appropriate phase will be supplied
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with an appropriate current or voltage at that instant. In most cases, a voltage supply
with current control is used, i.e. it behaves as a current control. The SRM therefore
has a controlled torque and can be used in a controlled drive system, such as an
induction or synchronous motor drive with variable frequency supply.

22.2 Electromagnetic and Electrical Analysis

An aligned position is when a pair of rotor poles is aligned with a pair of stator poles,
for example phase 1 (see (a) in Fig. 22.3). In this position, a current in phase 1 will
not result in a torque as it is the minimum reluctance position for this phase. When
the rotor is rotated away from this position, either to the right or to the left (see (c)
and (d), respectively, in the figure), a torque will ensue that will attempt to realign
the rotor poles with the stator (supposing of course that there is current in phase 1).

(a) aligned (b) unaligned

( c)  partial overlap
[e.g. motoring counter-clockwise

ending in (a)]

(d) partial overlap,
[e.g. generating counter-clockwise

starting from (a)]
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Fig. 22.3 Aligned and unaligned positions of a 6/4 SRM
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Fig. 22.4 Saturation characteristics of one phase for different rotor positions

In the unaligned position, see (b) in Fig. 22.3, the reluctance of the rotor with
respect to the poles 1-1’ of phase 1 is at a maximum. If a current is injected in phase
1 in this rotor position, the rotor may rotate either to the left or to the right (in the
exact unaligned position, the rotor might remain stationary but this is an unstable
condition).

If the flux of stator phase 1 is drawn as a function of the current for some rotor
positions, we obtain a graph as in Fig. 22.4. Curve 1 is for the completely aligned
position and curve 6 for the unaligned position, while the other curves correspond to
intermediate positions. In the aligned position, there is usually1 (heavy) saturation
of the magnetic circuit (poles and possibly also core). In the unaligned position, the
air gap is so large that there is usually no saturation. In intermediate positions, some
saturation occurs, mainly in the overlapping tips of the poles.

Instead of drawing flux versus current, we may also draw a figure showing induc-
tance versus rotor position, with the current as parameter (see Fig. 22.5). The induc-
tance can be the chord inductance, defined by:

L(θ, i) = ψ(θ, i)/I (22.1)

Alternatively, the incremental or tangent-slope inductance can be used, as defined
by:

Lt (θ, i) = ∂ψ(θ, i)/∂ I |θ=ct (22.2)

The tangent-slope inductance is useful when we consider the dynamic electrical
equations, especially for chopped supply (see below).

1As we will see later on, saturation in the aligned position improves the energy conversion of an
SRM.
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From an energetic point of view, the energy conversion can be explained as fol-
lows. Suppose we start from the unaligned position (or around it) for phase 1. When
at a given instant a voltage V is connected to phase 1, the current will increase
according to

V = R · i + dψ

dt
(22.3)

or

V = R · i + ∂ψ

∂i
· ∂i

∂t
+ ∂ψ

∂θ
· ω (22.4)

where ω = dθ/dt .
At the same time, there will be a tangential force and thus a torque, which means

that the rotor may start rotating. Subsequently, the operating point may move from
O to B along curve OAB (see (a) in Fig. 22.6).

The third term in Eq.22.4 can be called the emf of motion. A high value of the
emf of motion may result in a maximum value of the current along the curve OAB.

When the operating point moves along curve OAB, the supply delivers an amount
of electrical energy We equal to the area {OABD}.

Consider now the state curve OEB through point B, i.e. the characteristic ψ(i,θB)

for a rotor position corresponding to θ = θB . The area {OEBD} is the magnetic
energy Wm stocked in the motor for the position corresponding to point B (i.e. for
position angle θB and current iB). The electrical energy supplied for the rotation from
O to B can be written as:

We = {OABD} = {OABE} + {OEBD} = Wem1 + Wm (22.5)

This means that Wem1 = {OABE} is the electromechanical work during the move-
ment from O to B.

In B, the rotor is not yet aligned with the corresponding stator pole pair. However,
the electrical supply voltage is assumed to be turned off in B to ensure that the
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current will be reduced to zero in the aligned position (a non-zero current in the
aligned position would create a negative torque when the rotor rotates away from the
aligned position). If the supply voltage is turned off in B, usually anti-parallel diodes
are provided so that the current (in the inductive circuit) is reduced to zero and at
the same time returns to the DC source, i.e. energy recuperation. During the rotation
from B to the aligned position, the state of the system follows the segment BCO.
During this transition, an amount of electrical energy Wd is returned to the source
equal to the area OCBD = Wd . In O, current and flux are zero and the magnetic
energy in the system is therefore zero. During the transition from B to O, an amount
of electromechanical work Wem2 must have been delivered to the load, equal to the
area {OEBC}.

The total amount of electromechanical energy delivered to the load during the
cycle OABCO is therefore

Wem = Wem1 + Wem2 = {OABE} + {OEBC} = {OABC} (22.6)

If the joule losses (in the switches and windings, i.e. R ≈ 0 in Eq.22.4) are small, the
energy Wd is recuperated completely by the source. However, also when the losses
are small, it is important thatWd is kept as small as possible. Indeed, the ratio of the
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energy usefully converted, to the energy to be disposed by the source in each cycle
is given by

γ = Wem

Wem + Wd
= Wem

We
(22.7)

From Fig. 22.6, it can be seen that in order to obtain a γ close to 1, the degree of
saturation in the magnetic circuit should be large. The larger γ is, the larger the
converted energy is for a given machine frame size and power source.

Naturally, Wem is the energy converted per cycle for only one stator phase. The
mechanical power and torque can be derived as follows. If Tem is the average elec-
tromagnetic torque, the electromagnetic energy converted in one revolution of the
rotor is 2πTem . For one revolution we need m · Nr cycles and as for each cycle the
electromagnetic energy is Wem , we obtain

Tem = m.Nr

2π
· Wem (22.8)

In contrast with induction machines, for example, the torque is not quite constant
(see Fig. 22.7).

The ripple is rather pronounced when the number of phases and rotor poles is low.
A higher number of stator and rotor poles offers a lower ripple, but requires a much
higher supply frequency for a given speed (see also Sect. 22.5).
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22.3 Converters for Switched Reluctance Machines

The converter for a switched reluctance machine should be able to:

• switch on and off the supply voltage to the appropriate phase winding at the right
instant

• offer the possibility to control the current for the SRM (especially at low speeds)
• return the stocked electromagnetic energy to the supplywhen the phase is switched
off (or, as a low cost solution, at least dissipate this energy).

Figure22.8 shows the configuration of a standard converter for a three-phase
machine.

For the current built-up in a given phase (e.g. phase 1) both upper and lower
switches for this phase winding (Q1 and Q1’) are switched on. For motoring, the
appropriate instant is at the start of the overlapping of these stator poles and the appro-
priate rotor pole pair. Together with the current, the torque increases and the rotor
starts to align - or aligns further - but only if the load torque is not too large.

Inmost cases, a controlled (average) torque is expected, implying that the (increase
of the) current needs to be controlled. This is achieved by chopping the supply: one
of the two switches (say Q1) is given a PWM chopping control signal, while the
other (Q1’) is continuously on. If both Q1 and Q1’ are on, the current increases. If
Q1 is off (while Q1’ stays on), the current in the phase winding circulates through
Q1’ and D1’ and will not further increase (in fact decreases a bit). Switching Q1 on
again permits the current to increase (see Fig. 22.9).

This chopping is especially required for speeds that are not too high, i.e. when
the back-emf is small. At high speeds, the back-emf is high and will limit the current
built-up. In fact, at high speeds the current and thus also the torque might not attain

phase 1 phase 2 phase 3

Q1 D1

Q1' D1'

filter
capacitor

DC-power supply
supply current

+

-

i

Fig. 22.8 Basic three-phase power-electronic converter with 2 switches per phase
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Fig. 22.9 Current profiles for the converter with 2 switches per phase

phase 1
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phase 2

Q2

phase 3

Q3
D

Q

+

-

Vs

Fig. 22.10 Simplified power-electronic converter (n + 1 switches for n phases)

its rated value. This is indeed field weakening, similar to e.g. the DC machine or
induction machine.

Before the rotor poles reach the completely aligned position, the current has to
be switched off as fast as possible to avoid negative torques when the rotor moves
beyond the aligned position. In the configuration in Fig. 22.8, this is obtained by
switching off both Q1 and Q1’. The current in the winding then returns to the source
through the diodes D1 and D1’. Because the source voltage is now connected in
opposite direction to the winding, the current will decrease quickly and the energy
Wd will be recuperated by the source.

In addition to the basic configuration shown in Fig. 22.8, many other converter
configurations have been developed in recent years. An alternative configuration for
a three-phase SRM is shown in Fig. 22.10. The switches Q1, Q2 and Q3 are used
for chopping their particular phase current, while switch Q is common for the three
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Fig. 22.11 Energy diagram for generating (moving clockwise)

phases. Q remains on for chopping but is switched off together with Qi to reduce the
current of phase i to zero and return the energy Wd to the source. The disadvantage
of this circuit is that a faulty switch Q results in a complete failure. In the case
of Fig. 22.8, there is some redundancy as the motor may continue delivering some
torque and power when one switch is defective.

With a converter as in Fig. 22.8, the SRM can also convert mechanical energy
into electrical energy, i.e. generating. For that, the current already has to be built
up at the instant of complete alignment. When aligned, the switches are turned off
and the current from the inductive windings will flow via the diodes. When the rotor
moves away from the aligned position, the torque of the SRM is negative but the
positive mechanical torque from the driving machine (“load”) balances it out. From
a mechanical point of view, mechanical energy is delivered (as mechanical torque is
in the rotation direction) to the SRM, which converts it to electrical energy for the
DC source. Indeed, the diodes now conduct, because the switches are turned off and
thus the current is negative with respect to the DC source. The mechanical energy is
therefore converted into electrical energy, which is transferred to the DC source.

In the ψ − i diagram (Fig. 22.11), the cycle is completed in clockwise direction.
In some specific cases, the current may still increase when the rotor moves away

from the aligned position. Yet, this requires the back-emf to be sufficiently large
compared to the DC source voltage. Indeed, during the return of electromagnetic
energy to the source we have

− V = R · i + ∂ψ

∂i
· ∂i

∂t
+ ∂ψ

∂θ
· ω (22.9)

As the DC source is now connected in reverse polarity to the windings (i.e. through
the diodes), we find −V on the left. On the right, the last term, the motional emf, is
also negative as the flux is decreasing when the rotor moves away from the aligned
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position. To obtain an (at least initially) increasing current, the absolute value of this
motional emf should be larger than the source voltage. This might pose a problem,
as for motoring the source voltage should be much larger than the motional emf
(for a given speed). A solution to this problem is to provide two voltage sources, a
higher voltage for motoring and a lower one for generating, or to use a buck converter
between the machine and source for generating.

22.4 Control of an SRM

For an efficient operation of an SRM, the following is required:

• an accurate control (i.e. switching on and off) of the switches
• a sufficiently accurate position measurement of the rotor, required for controlling
the switches

• a control of the (average) current in order to control the torque
• a speed (and/or position) control loop of the drive system in order to generate the
value of the desired torque and thus of the (average) current.

Figure22.12 shows a basic control scheme for an SRM. What is inside the dashed
lines can be considered as the actual SRM drive (i.e. SRM, converter and its control).
The remaining is related to the application, i.e. the load and its control.

Only the SRM drive itself will be discussed here. An SRM requires quite an
accurate position control, with 0.5◦ or even 0.25◦ as a desired accuracy level.

For motoring, to obtain an efficient torque built-up, the switches of the active
phase should be turned on at the right instant. For example for normal speeds that
are not too high, this will be at the start of the overlap of the rotor poles and the
stator poles. The switches should also be turned off at the right instant: not too early,
to avoid losing positive torque, and not too late, to avoid negative torques beyond
alignment.

For a 6/4 SRM, normal control angles (on/off) are:

• 52.5◦/82.5◦ for normal PWM mode
• 37.5◦/67.5◦ for boost mode (high speed)
• 22.5◦/67.5◦ for advanced mode (very high speed)

torque
and

current
control

converter
+

control
SRM load

speed transducer
ω

w
Δω

ω
θ

I
w

-

Fig. 22.12 Control scheme for an SRM
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where we define 90◦ as complete alignment and 45◦ as unaligned (see (a) and (b) in
Fig. 22.3).

Normal mode is for low speeds, for which PWMcontrol can be required to control
the current. Normally, turn-on and -off angles are then constant. Boost mode is for
higher speeds, where the back-emf is already rather large and the switches therefore
need to be switched on early to ensure enough time for the current to build up. In
that case, current control is achieved by modifying the turn-on and turn-off angles.
Advanced mode is similar but for very high speeds.

For generating (braking), the turn-on instant is a few degrees before alignment
and the turn-off instant at or some degrees after alignment (e.g. 82.5◦/112.5◦). In
generating mode, PWM control of the current might be necessary but the already
limited back-emf will often reduce the current. The optimal turn-on and turn-off
angles can be found at the machine design stage (using finite element simulation
of the machine together with a model of the converter), but generally experimental
verification or correction will be used as well.

For some applications, a much more sophisticated control of the drive may be
desirable. By appropriately choosing the turn-on and turn-off angles and modifying
the PWM control of the current, we may mitigate the torque pulsations and the
noise. More theoretical and experimental research and trials are warranted to study
this further.

Tomeasure the rotor position, encoders based on theHall effect or optical encoders
may be used. However, an encoder adds to the complexity and the cost of the drive
and decreases reliability. As a consequence, much research on sensorless control has
been conducted in the last few years. For example, a non-excited phase winding may
be used to estimate the rotor position: for example, a small high frequency signal
is fed to this non-excited phase and from the measured current the rotor position is
estimated. Other methodsmay use an observer to derive the position from the voltage
and the current of the active phase.

22.5 SRM Types and Applications

In the previous paragraphs, wemainly concentrated on the 6/4 SRM. However, many
other types are common:

• the three-phase 12/8 SRM, see (a) in Fig. 22.13
• the three-phase 12/10 SRM, see (b) in Fig. 22.13
• the four-phase 8/6 SRM, see (c) in Fig. 22.13
• the four-phase 8/10 SRM, see (d) in Fig. 22.13
• the two-phase 4/2 SRM, see (e) in Fig. 22.13 (note: the air gap contains a step to
obtain an unambiguous rotation direction).

Important considerations to choose the number of phases and the number of poles
on stator and rotor are the following:
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Fig. 22.13 Other SRM types

• the starting possibilities (e.g. a single-phase SRM cannot start if rotor and stator
poles are aligned)

• an unambiguous rotation direction (e.g. an 4/2 SRM has no preferential rotation
direction if the air gap does not contain a step as in (e) in Fig. 22.13)

• the torque pulsations
• the reliability (the larger the number of phases, the greater the reliability: an 8/6
SRM can continue working if one phase is down)

• the cost (the larger the number of phases, the higher the cost of the converter)
• the efficiency (this is related to the operating frequency required for a given speed).

A larger number of phases reduces the torque pulsations (see Fig. 22.7), improves the
reliability but necessitates a higher operating frequency for a given speed (whichmay
be imposed by the application) as the step angle εr is then reduced (see Eq.21.2).
The number of steps for one revolution is thus m · Nr . As each step requires the
excitation of a next phase, Nr excitations are required per phase. For a speed of N
(1/s), the required stator frequency is fs = N · Nr .

For the above-mentioned SRM types, this gives:

• fs = 4 · N for the 6/4
• fs = 8 · N for the 12/8

http://dx.doi.org/10.1007/978-3-319-72730-1_21
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• fs = 10 · N for the 12/10
• fs = 6 · N for the 8/6
• fs = 10 · N for the 8/10
• fs = 2 · N for the 4/2.

For a speed of N = 00/s (or 6000 rpm), this results in 400, 800Hz, 1 kHz, 600Hz,
1 kHz and 200Hz respectively. This frequency greatly affects the efficiency of the
drive. The higher the frequency, the higher the switching losses in the converter and
the iron losses in the stator core. Moreover, the frequency in the rotor also increases,
which in turn causes the iron losses in the rotor core to rise.

For high speeds, the 6/4 SRM is therefore a good compromise: the iron losses
are relatively low, the motor can start and rotate in both directions and there is some
redundancy. In addition, the low number of poles creates a large reluctance effect
(or a large difference between the aligned and unaligned inductances) and therefore
the energy conversion is quite efficient. Indeed, a high number of poles (and thus
narrow pole widths) limits the inductance ratio. An additional advantage is that some
power electronic modules for traditional three-phase machines might be used. The
main disadvantages of the 6/4 SRM remain the torque pulsations and the noise.

The SRM can be used in many applications where standard variable-frequency
drives (rotating field machines) are common. It is especially suited for high speeds,
but its noise and vibrations must be acceptable for this specific application. Some
industrial applications include the following:

• highly dynamic drives in looms as replacement for induction machine drives with
field orientation (Picanol, Belgium)

• as starter-generator in jet turbines for airplanes (General Electric, USA)
• as servo drives for very high speeds (Brother Man. Co, Japan).
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Chapter 23
Stability and Dynamics

Abstract In this chapter we shortly review thewell known principles and definitions
of stability and dynamics of systems.

23.1 Introduction: Definition of Stability

Generally, a system is regarded as stable when small deviations between the actual
operating conditions and the operating conditions for which it was designed do not
fundamentally affect the system behaviour.

Actually, most people will intuitively feel whether a system exhibits stable behav-
iour or not. However, for practical applications, some more specific definitions of
stability are required.

23.2 Classifications of Stability

23.2.1 Stability of an Equilibrium Point

The first type of stability involves the behaviour of a system when disturbed in an
equilibrium state. A typical example is that of a ball resting on a surface and subjected
to gravity (see Fig. 23.1).

In case (a) in Fig. 23.1, the ball will oscillate around its initial position with a
limited amplitude (depending on the initial deviation) when it is moved away from
its equilibrium position. In case (b), the ball will remain in its new position when
moved away from its initial equilibriumposition, as the newposition is an equilibrium
position too. In both cases, this behaviour can be called stable: the deviation from
the initial position remains bounded and can be deliberately made small by making
the initial displacement sufficiently small.

In case (c) in Fig. 23.1, the ball will definitely move away from its initial position
when displaced from this position, whatever small the displacement. The equilibrium
state (c) is therefore called unstable.

© Springer International Publishing AG 2018
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(a) (b) (c)

Fig. 23.1 Equilibrium states

(a) (b) (c)

Fig. 23.2 Boundaries for stability

If friction is taken into account, in case (a) the ballwill return to its original position
after some damped oscillations, or even without any oscillations. This equilibrium
state is therefore called asymptotically stable. In case (b), the ball will never return
to its original position. This equilibrium state is stable but not asymptotically stable,
and it is asymptotic stability that is required in practical systems.

In the previous section, we disregarded the magnitude of the deviation from the
equilibrium position. Consider now the situations depicted in Fig. 23.2. In case (a),
the neighbourhood of the initial positionwhere the asymptotic stability holds is much
smaller than in case (b) in Fig. 23.2. In case (c), asymptotic stability is ensured for
every displacement. For practical applications, it is not sufficient that the equilibrium
state is stablewithin a, possibly very small, neighbourhood of this equilibrium (which
is called local asymptotic stability or stability in the small). The stability properties
should also remain valid within a sufficient range (i.e. the extent of [asymptotic]
stability) around the considered equilibrium state.

In an analogous way, the stability of a motion may be studied, i.e. the trajectory
of the output of a (non-linear) system. This implies that it should be known how far
the actual trajectory may deviate from the trajectory for which it was designed.

23.2.2 Input–Output Stability

A second class of stability concerns the behaviour of the system when subjected to a
given input signal. In this case, the question is whether the outputs y of the system,
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y (t)u (t) dynamical  system

Fig. 23.3 Input–output stability

regarded as a black box, correspond to the expected behaviour of the system with
the signals u as inputs (see Fig. 23.3). The expected behaviour can (for example)
be described as an output between prescribed boundaries ymin < y < ymax for an
input between given boundaries umin < u < umax . If it is possible to transform the
output variable y into a variable y′ so that the boundaries become −∞ and +∞,
respectively, and if the input variable u can be transformed into a variable u′ with as
boundaries −∞ and +∞, respectively, we obtain an equivalent dynamic system in
which a bounded input needs to yield a bounded output if input–output stability is
to be achieved.

23.3 Mathematical Tools to Explore the Stability
of a System

For a linear system, the (asymptotic) stability can be investigated by looking at
the eigenvalues of the system. If all eigenvalues are in the left half of the complex
plane, the system is asymptotically stable. Eigenvalues in the right half plane indicate
an unstable system. If eigenvalues on the imaginary axis are found and all other
eigenvalues are in the left half plane, the system is stable but not asymptotically
stable. For linear systems, the extent of stability is the whole state plane. At the same
time, input–output stability is ensured.

For non-linear systems, the systemmay be linearised.When the linearised system
is asymptotically stable, there is a neighbourhood of the equilibrium state in which
the non-linear system is stable. However, this neighbourhood might be very small,
and to explore the extent of stability methods like Lyapunov’s method need to be
applied. Note, however, that Lyapunov’s method only offers sufficient conditions for
stability, not necessary conditions.

If the linearised system shows eigenvalues in the right half plane, the non-linear
system is unstable as to the envisioned equilibrium point. If the linearised system has
eigenvalues on the imaginary axis, no conclusions can be drawn for the non-linear
system.

For some classes of non-linear systems, more specific methods exist (e.g. the
circle criterion). For more details, see Ref. [39].



Chapter 24
Transient Phenomena in Simple Electrical
Circuits

Abstract In this chapter we discuss some transient phenomena in simple electrical
circuits (resistive, inductive, capacitive), as an introduction to the later chapters on
(local) stability and dynamics of electrical machines and drives.

24.1 Switching On or Off a Resistive-Inductive Circuit

Consider the resistive-inductive circuit (a) in Fig. 24.1. R and L are assumed to be
constant (e.g. independent of current or frequency). The circuit is therefore described
by the linear time-invariant differential equation

v(t) = R · i(t) + L · di(t)
dt

(24.1)

First, we will examine the case in which the initially current-less circuit is connected
to a voltage source vs(t) = V̂ cos(ωt + ϕ). The solution of Eq.24.1 with boundary
conditions i(t) = 0 for t ≤ 0− and with v(t) = vs(t) for t ≥ 0+ consists of two
parts:

• the particular or steady-state solution

i(t) = V̂√
R2 + ω2L2

· cos(ωt + ϕ − arctanωL/R) (24.2)

• the transient solution

i(t) = I · exp(−t/τ ) (24.3)

with I = − V̂√
R2+ω2L2 · cos(ϕ − arctanωL/R) and τ = L/R.

Note that the time constant of the system corresponds with the eigenvalue of the
system Eq.24.1, with i(t) considered as state variable (and v(t) as input). This time
constant corresponds to the single energy storage of the system, i.e. the magnetic
energy in the coil. This solution can also be found using the Laplace transform.

© Springer International Publishing AG 2018
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Fig. 24.1 R-L- and R-L-C-circuit

Next, we will analyse the case of an interruption of a (steady-state) DC current Io
in the circuit. The state variable is now the voltage v(t), while the input is i(t). For
t ≤ 0−, i(t) = Io and v(t) = Vo = RIo. At t = 0, the switch is opened. Suppose
that the switch is ideal, i.e. i(t) = 0 for t ≥ 0+.

In order to use the (one-sided) Laplace transform, we have to transform the vari-
ables, i.e. i ′(t) = i(t) − Io and v′(t) = v(t) − Vo. In terms of the new variables, the
equations and boundary conditions become:

v′(t) = R · i ′(t) + L · di
′(t)
dt

(24.4)

i ′(t) = −Io · u(t) (24.5)

with u(t) the unit step function: u(t) = 0 for t ≤ 0− and u(t) = 1 for t ≥ 0+.
The Laplace transform yields

V ′(p) = R · I ′(p) + pL · I ′(p) (24.6)

I ′(p) = −Io/p (24.7)

The solution is

V ′(p) = − R · Io
p

− L · Io (24.8)

and thus in the time domain:

v′(t) = −R · Io · u(t) − L · Io · δ(t) (24.9)

or

v(t) = R · Io[1 − u(t)] − L · Io · δ(t) (24.10)
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The Dirac term in the voltage is the result of two (unrealistic) assumptions: an ideal
switch and a coil with a negligible capacitance between the turns of the coil. In reality,
the high voltage between the contacts of the switch will result in a spark, assuring
the continuity of the current.

The capacitance between the turns of the coil can (approximately) be modelled
by a lumped capacitor as in the circuit (b) in Fig. 24.1. The system equations are now

v(t) = R · i1(t) + L · di1(t)
dt

(24.11)

dv(t)

dt
= 1

C
i2(t) (24.12)

i(t) = i1(t) + i2(t) (24.13)

with boundary conditions i1 = Io, i2 = 0, and v = R · Io for t ≤ 0− and i1 + i2 = 0
for t ≥ 0+.

The solution is now

i1(t) = Io

{
[1 − u(t)] + R/L − p2

p1 − p2
exp(p2t) − R/L − p1

p1 − p2
exp(p1t)

}
(24.14)

v(t) = R · Io
{
[1 − u(t)] + R/L − 1/RC − p2

p1 − p2
exp(p2t) − R/L − 1/RC − p1

p1 − p2
exp(p1t)

}

(24.15)

with p1 and p2 the eigenvalues of this second-order system1

p1,2 = R

2L

(
−1 ±

√
1 − 4L

R2C

)
(24.16)

i.e. the zeros of the eigenvalue equation LCp2 + RCp + 1 = 0.
The capacitance between the turns limits the voltage between the contacts of the

switch (although sparks are still possible).

24.2 Single-Phase Transformer

If we disregard saturation and skin effects, the single-phase transformer is described
by Eqs. 24.17 and 24.18:

v1(t) = R1 · i1(t) + L1 · di1(t)
dt

+ M · di2(t)
dt

(24.17)

1Please analyse the case in which 4L < R2C and 4L > R2C and, in particular, the case in which
R = 0.
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v2(t) = R2 · i2(t) + L2 · di2(t)
dt

+ M · di1(t)
dt

(24.18)

If the turns ratio a = w1/w2 is known, we may also rewrite these equations as

v1(t) = R1 · i1(t) + L1σ · di1(t)
dt

+ Lm1 · d

dt
[i1(t) + i

′
2(t)] (24.19)

v
′
2(t) = R

′
2 · i ′

2(t) + L
′
2σ · di

′
2(t)

dt
+ Lm1 · d

dt
[i1(t) + i

′
2(t)] (24.20)

with L1σ = L1 − aM , L2σ = L2 − M/a, Lm1 = aM and with the prime indicating
the secondary variables referred to the primary.

The eigenvalues of the free system, with the currents as state variables and the
voltages as external inputs (assumed to be zero, for example), are the zeros of

det

∣∣∣∣ L1 p + R1 Mp
Mp L2 p + R2

∣∣∣∣ = 0 (24.21)

or
(L1L2 − M2)p2 + (L1R2 + L2R1)p + R1R2 = 0 (24.22)

This can be written as

σ p2 + (
T−1
m1 + T−1

m2

)
p + T−1

m1 T
−1
m2 = 0 (24.23)

or also as
p2 + (

T−1
1 + T−1

2

)
p + σT−1

1 T−1
2 = 0 (24.24)

where Tm1 = L1/R1, Tm2 = L2/R2 are the main field or open-circuit time constants
of primary and secondary, T1 = σL1/R1, T2 = σL2/R2 are the leakage field or
short-circuit time constants of primary and secondary, and σ is the total leakage
coefficient of the transformer.

For σ that are not too large, the eigenvalues can be approximated by

p1 = − (
T−1
1 + T−1

2

)
(24.25)

p2 = − (Tm1 + Tm2)
−1 (24.26)

These two eigenvalues correspond to the main and leakage fields of the transformer,
i.e. the two ways for magnetic energy storage. The eigenvalue p1 corresponds to that
of an R-L-circuit with as resistance the sum of the primary and secondary resistances
(referred to the same winding) and the total leakage as seen from this winding:
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p1 ≈ − R1 + R
′
2

σL1
= − R

′
1 + R2

σL2
(24.27)

The eigenvalue p2 corresponds to that of an R-L-circuit with as resistance the parallel
connection of primary and secondary resistances (referred to the same winding) and
the main field inductance seen from this same winding:

p2 ≈ − R1R
′
2/(R1 + R

′
2)

Lm1
(24.28)

To apply this, we will study the transient when a transformer, loaded with a resistor
R2e (denoting R = R2e + R2) at the secondary and fed by the grid (V1, f1) at the
primary, is disconnected from the grid at t = 0. Just before the switch is opened, the
primary and secondary currents are I10 and I20, respectively. The secondary current
and the primary voltage for t ≥ 0+ will be calculated in three ways.

Method n°1: Time Domain
At the secondary side, we have at each instant

Ri2(t) + L2 · di2(t)
dt

+ M · di1(t)
dt

= 0 (24.29)

For t > 0+, the primary current as well as its derivative are zero. However, the flux
coupled with the secondary has to remain continuous. Therefore

L2i2(t = 0+) = L2 · I20 + M · I10 (24.30)

or

i2(t = 0+) = I20 + (M/L2) · I10 (24.31)

For t > 0+, the secondary current has to satisfy equation24.29 with i1(t) =
di1(t)/dt ≡ 0. Thus

i2(t > 0+) = [I20 + (M/L2) · I10] exp(−t/τ ) (24.32)

with τ = L2/R. For t > 0−, we may write

i2(t > 0−) = I20[1 − u(t)] + [I20 + (M/L2) · I10]u(t) · exp(−t/τ ) (24.33)

The primary voltage for t > 0− can be calculated fromEq.24.17with i2(t) according
to Eq.24.33 and i1(t) = I10[1 − u(t)].
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For t > 0−, we have

v1(t) = R1 · i1(t) + σL1 · di1(t)
dt

+ M · d

dt

[
i2(t) + M

L2
i1(t)

]
(24.34)

or

v1(t) = R1 · i1(t) + σL1 · di1(t)
dt

− M

L2
R · i2(t) (24.35)

Using di1(t)/dt ≡ 0 for t > 0− and substituting i2(t) from Eq.24.33 yields

v1(t) = R1 · I10[1−u(t)]−σL1 · I10δ(t)− M

L2
R· I20[1−u(t)]− M

L2
R·[I20+ M

L2
· I10]u(t)·exp(−t/τ )

(24.36)
For t > 0+, we therefore have

v1(t) = − M

L2
R · [I20 + M

L2
· I10] exp(−t/τ ) (24.37)

The voltage for t > 0+ corresponds to the main flux coupled with the secondary that
is fading awaywith the secondary open-circuit time constant.When the switch opens
at t = 0, the secondary takes over the magnetising part of the flux corresponding
to the primary current (flux continuity). The Dirac voltage for t = 0 corresponds to
the leakage flux of the primary which is not coupled to the secondary and cannot be
compensated by a jump in the secondary current. This Dirac voltage will give rise to
a spark in the switch.

If for t < 0− the transformer was fed by a DC voltage vo = R1 I10 (with I20 = 0),
we find for the primary voltage

v1(t) = R1 · I10[1 − u(t)] − σL1 · I10δ(t) − M2

L2
2

R · I10u(t) · exp(−t/τ )

and for t > 0+

v1(t) = −M2

L2
2

R · I10 exp(−t/τ ) = −(1 − σ)
L1/R1

L2/R
· vo · exp(−t/τ ) (24.38)

In other words, the initial value is the DC voltage reduced by the factor 1 − σ and
transformed with the ratio of the primary and secondary time constants.
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Method n°2: Single-side Laplace Transform
To apply the single-side Laplace transform, we have to replace the currents i1 and i2
with fictitious currents i∗1 = i1 − I10 and i∗2 = i2 − I20 which are zero for t ≤ 0−.
For these new variables, the secondary transformer equation becomes

Ri∗2 (t) + L2 · di
∗
2 (t)

dt
+ M · di

∗
1 (t)

dt
= −RI20 (24.39)

and after the Laplace transform

RI ∗
2 (p) + pL2 · I ∗

2(p) + pM · I ∗
1(p) = −R

I20
p

(24.40)

As

I ∗
1 (p) = − I10

p
(24.41)

we find for the secondary current

I ∗
2 (p) = 1

R + pL2

(
−R

I20
p

+ MI10

)
(24.42)

Or, in the time domain:

i2(t) = i∗2 (t) + I20 = I20 (1 − u(t)) +
(
I20 + M

L2
I10

)
u(t) · exp(−t/τ ) (24.43)

The primary voltage2 can be calculated in a similar way.

Method n°3: A variation of Method n°2
Define the new variables i+1 (t) and i+2 (t) with i+1 (t) = 0 for t < 0−, i+1 (t) = i1(t)
for t > 0−, i+2 (t) = 0 for t < 0−, i+2 (t) = i2(t) for t > 0−.

The transformer secondary equation is now

Ri+2 (t) + L2 · di
+
2 (t)

dt
+ M · di

+
1 (t)

dt
= 0 (24.44)

and after Laplace transform

RI+
2 (p) + L2

(
pI+

2 (p) − I20
) + M

(
pI+

1 (p) − I10
) = 0 (24.45)

With I+
1 (p) = 0, we obtain

I+
2 (p) = 1

R + pL2
(L2 I20 + MI10) (24.46)

2Can you also find a Dirac function in the voltage?
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Fig. 24.2 a Coil with massive core b circulating currents

or, in the time domain for t > 0−:

i+2 (t) =
(
I20 + M

L2
I10

)
u(t) · exp(−t/τ ). (24.47)

24.3 Coil with Massive Iron Core

A coil with a massive iron core can be regarded as a special case of magnetically
coupled coils. We consider an infinitely long coil with a core with rectangular cross-
section and sides a (x-direction) and b (y-direction), as illustrated in (a) in Fig. 24.2.
The coil is uniformly distributed along the core length (z-direction).

The general transient solutions have to satisfy the following equations (from
Maxwell’s laws):

Ex = ρFe · Jx = ρFe

μ
· ∂Bz

∂y
(24.48)

Ey = ρFe · Jy = −ρFe

μ
· ∂Bz

∂x
(24.49)

∂Ey

∂x
− ∂Ex

∂y
= −∂Bz

∂t
(24.50)

with B the magnetic field (induction), E the electric field, J the current density, ρFe

the electric resistivity of the iron core and μ the permeability of the iron.
Eliminating the electric field components yields:

∂2Bz

∂x2
+ ∂2Bz

∂y2
= μ

ρFe
· ∂Bz

∂t
(24.51)
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As possible (transient) solutions for Eq.24.51, we propose

b(x, y, t) =
∑
α,β

bαβ (24.52)

with

bαβ = Bαβ cosαx · cosβy · exp(−γαβ t) (24.53)

Because x = 0 and y = 0 are symmetry axes, only cosine functions are considered.
We will only take into account cases where the current in the coil is zero for

t > 0+. From t > 0+ on, the magnetic field strength H−→ as well as the induction
B−→ outside the core are zero. Because of the continuity of the tangential component
of H−→, the magnetic field strength and the induction at the boundaries x = ±a/2

and y = ±b/2 are zero from t > 0+ on.3 Therefore, α = αm = m(π/a) and
β = βn = n(π/b) with m and n odd. Substitution of the solutions of Eqs. 24.53 in
24.51 yields

α2 + β2 = μ

ρFe
γαβ (24.54)

and thus

γαβ = γmn = ρFe

μ

{(
m

π

a

)2 +
(
n
π

b

)2
}

(24.55)

The proposed solution is

b(x, y, t) = bz(x, y, t) =
∑
m,n

Bmn cosαmx · cosβn y · exp(−γmnt) (24.56)

and consists of the sum of mode (m, n). Each mode corresponds to transient circu-
lating currents, as shown in (b) in Fig. 24.2 for m = 3 and n = 3. These currents
follow from

Jx = ∂Hz

∂y
(24.57)

Jy = −∂Hz

∂x
(24.58)

3This is only the transient solution. For other problems (e.g. switching on a sinusoidal excitation)
steady-state solutions should be considered separately. Even with a non-zero current in the coil,
however, the induction outside the coil is negligible because of the high iron permeability.
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In addition to the boundary conditions in space, there are also boundary conditions
in time.

Wewill investigate the case of a coil with very large diameter (so that its curvature
can be disregarded) and withw0 turns per meter. For t < 0 there is a DC current I0 in
the coil, giving rise to a steady-state induction B0 in the core. The current is switched
off at t = 0. From t > 0+ on, there is no current in the coil and the magnetic field
strength H−→ as well as the induction B−→ outside the core are zero.

The steady-state induction for t < 0 follows from Ampere’s law:

B0

μ
l = w0 · l · I0 (24.59)

As a transient solution for4 −a/2 < x < a/2 and −b/2 < y < b/2 for t > 0−, we
propose Eq.24.56. The continuity at t = 0 then requires

b(x, y, t = 0) = b(x, y, 0) =
∑
m,n

Bmn cosαmx ·cosβn y = B0 = μ·w0 · I0 (24.60)

Writing the two-dimensional block function B0 as a product of two Fourier series
(one in x and one in y) yields

Bmn =
(
4

π

)2 1

m · n (−1)
m+n−2

2 · B0 (24.61)

with m and n odd. Therefore

b(x, y, t) =
(
4

π

)2

B0 ·
∑
m,n

1

m · n (−1)
m+n−2

2 cos
(
mπ

x

a

)
· cos

(
nπ

y

b

)
· exp(−γmnt)

(24.62)
with γmn given by Eq.24.55.

The current densities in the iron for −a/2 < x < a/2 and −b/2 < y < b/2 are

Jx = −
(
4

π

)2 B0

μ
· π

b
·
∑
m,n

1

m
(−1)

m+n−2
2 cos

(
mπ

x

a

)
· sin

(
nπ

y

b

)
· exp(−γmnt)

(24.63)

Jy =
(
4

π

)2 B0

μ
· π
a

·
∑
m,n

1

n
(−1)

m+n−2
2 sin

(
mπ

x

a

)
·cos

(
nπ

y

b

)
·exp(−γmnt) (24.64)

4The edges are excluded as the sum is not uniformly convergent for t = 0.
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Fig. 24.3 Massive core:
equivalent circuit for the
fundamental mode

R11

R1 L1

L -Lo 11
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To calculate the flux, we will first have to integrate over−(a−ε)/2 < x < (a−ε)/2
and −(b − δ)/2 < y < (b − δ)/2 and then take the limit for ε, δ → 0:

Φεδ =
(
4

π

)2
B0 ·

∫ (a−ε)
2

− (a−ε)
2

dx
∫ (b−δ)

2

− (b−δ)
2

dy
∑
m,n

1

m · n (−1)
m+n−2

2 cos
(
mπ

x

a

)
·cos

(
nπ

y

b

)
·exp(−γmnt)

(24.65)

Φεδ =
(
4

π

)2
B0 · 4ab

π2

∑
m,n

(
1

m · n )2(−1)
m+n−2

2 sin

(
mπ

a − ε

2a

)
· sin

(
nπ

b − δ

2b

)
· exp(−γmnt)

(24.66)
and thus

Φ = lim
ε,δ→0

Φεδ =
(
4

π

)2 (
2

π

)2

· ab · B0 ·
∑
m,n

(
1

m · n )2 · exp(−γmnt) (24.67)

The equivalent self-inductance (permeter) of the coil formodem, n can be calculated
in an analogous way as the total self-inductance

w0Φ0 = L0 I0 (24.68)

The inductance Lmn results from w0Φmn = Lmn I0:

Lmn =
(
4

π

)2 (
2

π

)2

· ab · μ · w2
0 · (

1

m · n )2 = 64

π4m2n2
· L0 (24.69)

with L0 = w2
0μab the total self-inductance of the coil.

A time constant 1/γmn = Lmn/Rmn corresponds with each mode, with

Rmn = 64

π2
�Few

2
0 ·

(
1

n2
· b
a

+ 1

m2
· a
b

)
(24.70)
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The largest time constant corresponds with the mode (1, 1). This time constant
is commonly called the transient time constant and the corresponding component
(mode) the transient component. The other modes, with smaller time constants, are
called subtransient components (corresponding with subtransient time constants).
Figure24.3 shows a possible approximate model (equivalent circuit); R1 is the coil
resistance and L1σ its leakage inductance (which corresponds here to field lines cou-
pledwith the coil but outside the iron core); R11 and L11 correspondwith the transient
component; the remaining modes are lumped in the dashed part.

24.4 Quasi-stationary Modelling of Rotating Machines

For rotating machines, there are not only the electrical transients but also mechanical
transients (when the speed is variable).

In principle, electrical and mechanical transient phenomena have to be treated
together: the variable speed affects the electrical transients (e.g. via the emf ofmotion)
and the electrical transients affect the torque and, therefore, via the equation of
motion, the speed.

In many cases, however, the mechanical time constants are one or more orders of
magnitude larger than the pure electrical time constants (i.e. those that would occur
at constant speed). If these time constants differ by an order of magnitude, it may be
permitted to treat the electrical and mechanical transients separately: the electrical
transients as if the speed were constant and the mechanical transients as if the elec-
trical circuit were in steady state. For the analysis of the mechanical phenomena, we
may then use the steady-state currents, voltages and torques that can be derived from
the steady-state equations or equivalent circuits.

An example will be discussed in the next chapter on pulsating loads for an induc-
tion machine. As the mechanical time constant of this high-inertia drive is much
larger than the electrical time constants of the machine and than the period of the
pulsating torque, we may ignore the electrical transients and calculate everything as
if the machine were in steady state. For small slip, the torque equation may also be
approximated by its almost linear part:

T = 3V 2

�sy
· R/s

(R/s)2 + X2
σ

≈ 3V 2

�sy
· s

R
(24.71)

The equation of motion can then be approximated by (using �r = (1 − s)�sy):

− J�sy · ds
dt

= 3V 2

�sy
· s

R
− Tl (24.72)

However, we need to keep in mind that, actually, the electrical transients may give
rise to rather large transient torques, which are entirely disregarded here.



Chapter 25
Induction Machines with Pulsating Loads

Abstract For many induction machines with pulsating loads, the pulsation fre-
quency is rather low. Therefore, a quasi-stationary approach can be used to study
the behaviour of the induction machine. In this chapter it is shown that a simple
mathematical averaging cannot be used for dimensioning the machine.

25.1 Introduction

The torque of the load driven by an electrical machine is not always constant. In
many applications, pulsating loads are common, for example in punching and for
reciprocating compressors and pumps. What is typical of these kinds of applications
is the periodic character of the pulsating loads, where a rather high load torque Tb is
applied during a relatively short time tb, a fraction (e.g. 10%) of the load period tc.
The frequency of the torque pulsations is much smaller than the supply frequency,
typically 1 : 100 or 1 : 1000. An idealised waveform is shown in (b) in Fig. 25.1.
The figure also shows a simplified schematic of such a drive in (a), which typically
includes a high inertia to smooth out the torque.

A main problem is the dimensioning of the drive, including the choice of the
(required) inertia, the mechanical transmission and gear box and the choice of the
induction machine.

Suppose the load torque (or force) is known, as is the required frequency of the
torque pulsation (e.g. 30 strokes per minute). The gear box ratio and the number of
pole pairs of the induction machine follow from the required frequency of the torque
pulses, preferably avoiding two-pole machines (because of their inferior character-
istics) and choosing the more standard four-pole or six-pole machines. These are the
easiest design parameters.

Choosing the inertia and the rated power of the induction machine is much more
complicated.A traditional approach starts from an estimation of the energy per torque
pulse En = Ωav · Tb · tb, in which the average speed �av is known from the required
frequency of the torque pulses.

The inertia has to be sufficiently high to smooth out the torque pulse over the
cycle duration. However, at the same time, the allowable speed variation has to be

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_25
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Fig. 25.1 Pulsating load torque

sufficiently large. The large speed (and this slip) variation requires the rotor resistance
of the inductionmachine to be sufficiently high, i.e. in pu at least rr ≈ sn = 5 . . . 10%
or even up to 30%. After choosing an acceptable speed variation Δ�, we may then
derive the inertia from

En = Ωav · Tb · tb = 1

2
J · (�2

max − �2
min) = J · Ωav · Δ� (25.1)

In traditional approaches, the chosen induction machine rated power is (was) equal
to the average power requirement of the load. As will be shown in the next sections,
this may lead to overheating of the machine.

25.2 Quasi-stationary Analysis

For the following analysis, we suppose that the electrical transients have a much
smaller time constant than the mechanical time constants and the period of the torque
pulsations, allowing us to disregard them. We will also assume that the induction
machine always operates in the quasi-linear range s � rr/xσ of the torque-slip
characteristic, with T = (Tn/sn) · s. With � = Ωsy(1 − s), the equation of motion
can then be written as

J�sy
ds

dt
+ Tn

sn
· s = Tl (25.2)

Introducing

κ = sn
Tn

· �sy

tc
· J = snτi

tc
(25.3)

the equation of motion can be written as

Tl
Tn

= s

sn
+ κ

d(s/sn)

d(t/tc)
(25.4)
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or, in terms of T/Tn , as

Tl
Tn

= T

Tn
+ κ

d(T/Tn)

d(t/tc)
(25.5)

Note that the point (sn/Tn) determines the slope of the torque-slip characteristic, but
is not necessarily the rated operating point (snom/Tnom). For a slip-ring induction
motor, for example, an external resistance can be used to increase the pull-out slip,
i.e. to reduce the slope of the torque-slip characteristic.

Using the boundary conditions Tl = Tb for 0 ≤ t ≤ tb and Tl = 0 for tb < t ≤ tc,
we obtain

• for 0 ≤ t ≤ tb

T

Tn
= s

sn
= Tb

Tn
−

(
Tb
Tn

− Tmin

Tn

)
exp(−t/κtc) (25.6)

• for tb < t ≤ tc

T

Tn
= s

sn
= Tmax

Tn
exp[−(t − tb)/κtc] (25.7)

where, denoting the relative loading time as � = tb/tc,

Tmax = Tb
1 − exp(−ρ/κ)

1 − exp(−1/κ)
(25.8)

Tmin = Tmax · exp[−(1 − ρ)/κ] (25.9)

From Eqs. 25.6 and 25.7, we may derive

Tav = ρTb (25.10)

Trms = Tb

√
ρ

[
1 − κ

ρ

(
Tmax − Tmin

Tb

)]
(25.11)

Figure25.2 illustrates the motor torque and the speed as a function of time, corre-
sponding to Eqs. 25.6 and 25.7.

Figure25.3 presents some relations between Tb, Tmax , Trms, Tav as a function of
the parameters κ and ρ. The corresponding slip values are easily calculated using
s/T = sn/Tn = smax/Tmax = smin/Tmin = sav/Tav = srms/Trms .

From the previous analysis results, we may derive the average slip (or secondary)
losses and grid (supply) power during one period of the load:
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Fig. 25.2 Torque and speed
as function of time
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Pjr = 1

tc

∫ tc

0

T · s · �sydt =
(
Trms

Tn

)2

Tn�sysn = srmsTrms�sy (25.12)

Pgrid = 1

tc

∫ tc

0

T · �sydt = Tav�sy = ρTb�sy (25.13)

Clearly, the slip or secondary losses are determined by the rms value of torque (and
slip), while the supply power is determined by the average value of the torque. The
average supply power is not influenced by the machine (disregarding the effect of the
speed and the machine torque characteristic on the relative loading time ρ). However,
as the secondary losses are narrowly related to the rms value of the torque, they are
also narrowly related to κ and the slope of the torque-slip characteristic.
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(a) (b)

(c) (d)

Fig. 25.3 Characteristics of maximum, rms and average torque
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The rotor losses are a measure1 for the thermal loading of the machine and will
therefore determine the required power rating of the machine. Indeed, the rating of
a machine is based on the maximum losses that are acceptable in steady state for
the given machine size (the equilibrium between the losses and the dissipated heat
determines the operating temperature of the machine). For a slip-ring machine, not
all these secondary losses are dissipated as heat inside the machine. If Rex is the
external resistance connected at the slip rings then, with k = (Rex + Rr )/Rr , only
Pjr/k is dissipated inside the machine.

25.3 Drive Dimensioning

After the gear box transmission ratio and the associated number of poles of the
induction machine have been chosen (see above), all that remains to be done in
terms of design is dimension the inertia and choose the rated power rating of the
induction machine. For this, two criteria are decisive:

• the joule loss inside the machine during the load cycle determines the power rating
of the induction machine

• the maximum motor torque during the cycle should remain sufficiently below the
pull-out torque of the machine, for example no more than 2/3 of the pull-out
torque2

Mathematically, these criteria can be summarised as follows:

Pjr = srmsTrms�sy (25.14)

Pjr,int ≤ Pjr,nom = snomTnom�sy (25.15)

Tmax ≤ 2

3
Tpo ≈ 5

3
Tnom (25.16)

sn
Tn

= srms

Trms
= smax

Tmax
= k · snom

Tnom
(25.17)

with Pjr,int = Pjr for a cage induction motor, or Pjr,int = Pjr/k for a slip-ring
induction motor (external resistance increase).

1We disregarded the stator losses but the total copper joule losses may be approximated by doubling
the rotor losses.
2So that the operating point always remains in the linear part of the characteristic, and to keep a
safety margin as well.
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As described above, for an acceptable design, the inertia should be large enough3

to smooth out the load torque, but at the same time the speed variation should be
sufficiently large. The latter in turn requires the rotor resistance to be sufficiently
large. This is often a problem with standard cage induction motors, as these are
designed for high efficiency, which requires small (rotor) resistances. To remedy
this, sometimes a standard machine frame (i.e. standard stator and rotor laminations,
slot dimensions and stator windings) is used, but the rotor cage material is replaced
by an alloy with higher resistance. A slip-ring induction motor, on the other hand,
makes it possible to add external resistances to flatten the torque-slip characteristic
as desired. Two disadvantages of this approach are that slip-ring machines are more
expensive and more difficult to maintain.

In other words, three options can be distinguished:

• a standard cage induction motor with a sufficiently high rotor resistance can be
used right away. From Eqs. 25.14–25.17, we obtain (with k = 1): srmsTrms ≤
snomTnom , Trms ≤ Tnom , srms ≤ snom , Tmax ≤ (5/3)Tnom . In these expressions,
Trms , Tmax and srms depend on the choice of κ, and as the slope of the torque-slip
characteristic is known, they depend on the choice of the inertia J . This inertia
needs to be chosen so that the resulting Tmax fulfils Tmax ≤ (5/3)Tnom . If multiple
machine choices are possible, the most economical solution is the one closest to
the equalities, i.e. Trms = Tnom , srms = snom . It should be stressed, however, that
such a solution is only possible when an induction motor with a sufficiently high
rotor resistance is available.

• with a slip-ring induction motor, the secondary resistance can easily be adapted to
obtain the optimal slope of the torque-slip characteristic. An additional advantage
is that the part of the secondary loss corresponding to the external resistance
is developed as heat outside the motor. From Eqs. 25.14–25.17, we now obtain:
srmsTrms ≤ k · snomTnom , Trms ≤ Tnom , srms ≤ k · snom , Tmax ≤ (5/3)Tnom as
Pjr,int = Pjr/k. If we choose k � 1, the required inertia for the same value of
κ (which determines srms , Trms) can be much smaller. Keep in mind, however,
that too large a value of srms will reduce the relative loading time ρ as well as the
average speed and the frequency of the load cycle.

• for a cage induction motor with a modified (increased) rotor resistance, all sec-
ondary slip losses are developed inside the machine. From Eqs.25.14–25.17,
we obtain srmsTrms ≤ snomTnom , Trms · √

k ≤ Tnom , srms ≤ √
k · snom , Tmax ≤

(5/3)Tnom . As a result of the additional losses inside the machine due to the
increased rotor resistance, the rated torque (or power) of the machine should now
be higher than the calculated rms value by a factor

√
k. Indeed, the standard induc-

tionmachine has been designed for the standard rotor resistance and the associated
loss.

Clearly, this solution is only useful if the rms value of the torque calculated using
the higher κ (with the higher rotor resistance) is lower by at least a factor

√
k than

3Note, however, that the machine should be able to accelerate the inertia from standstill without
overheating, so there is a limit.
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the value that would be obtained for the standard resistance. Considering Fig. 25.3,
this can only be the case if ρ � 1.

In some practical cases, the above design procedure may require some iterative
calculations, as a chosen machine and inertia may lead to an unacceptable low or
high average speed (i.e. the cycle period of the torque pulses).

The above calculation method is quasi-stationary, i.e. the electrical dynamics of
the drive are ignored. In nearly all practical cases this will be justified, on the one
hand because the frequency of the torque pulsations is much lower than the electrical
time constants, and on the other hand because the electrical transients turn out to be
aperiodically damped due to the large rotor resistance (see Chap. 27).

http://dx.doi.org/10.1007/978-3-319-72730-1_27


Chapter 26
Modelling and Dynamic Behaviour of DC
Machines

Abstract As an introduction to the later chapters on the dynamics of induction
and synchronous machines, in this chapter we study the modelling and dynamic
behaviour of DC commutator machines. The traditional machine model, using a
simplifiedmodelling of the main field saturation, permits to derive the basic dynamic
properties. A more accurate model for main field saturation is also presented. It is
shown that the dynamic properties derived using this model are slightly different
from those using the traditional model, but also somewhat more realistic.

26.1 Standard Dynamic Model of the DC Machine

26.1.1 Basic Assumptions and Equations

We will consider the most basic form of the DC commutator machine, i.e. without
auxiliary poles and commutation windings (see Fig. 26.1).

The electrical model consists of two equations, one for the armature and one for
the excitation, here with the URS (Users Reference System) applied:

Va = Ra Ia + d

dt
Ψa + KΩrΨ f m (26.1)

V f = R f I f + d

dt
Ψ f (26.2)

Subscript a stands for the armature, subscript f for an independent excitation. In the
armature equation, K is the emf or torque constant. Ψ f is the total d-axis excitation
flux. The main flux linkage Ψ f m is that part of the total excitation flux Ψ f which
is linked with the armature. The remaining part of the flux is the leakage flux Ψ f σ ,
linked only with the excitation winding:

Ψ f = w f · Φ f (I f , Ia) = Ψ f m(I f , Ia) + Ψ f σ(I f ) (26.3)

Ψa = Ψa(Ia, I f ) = wa · Φa(Ia, I f ) = Ψam(Ia, I f ) + Ψaσ(Ia) (26.4)

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
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Fig. 26.1 DC machine
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The notationΦ denotes flux per turn (whereasΨ represents the total flux linkage). In
general, both armature and excitation fluxes are non-linear functions of the currents.

In addition to the electrical equations, the dynamics also require the mechanical
equation of motion:

J
d

dt
Ωr = T − Tl (26.5)

where the torque is given by T = KΨ f m Ia .
The steady-state equations (subscript o) are similar to Eqs. 26.1–26.5:

Vao = Ra Iao + KΩroΨ f mo (26.6)

V f o = R f I f o (26.7)

Tlo = To = KΨ f mo Iao (26.8)

The equations for small deviations around the steady state are derived by subtracting
the steady-state equations from the general equations and only considering small
variations (i.e. ignoring second-order variations). The equations are indeed inher-
ently non-linear due to the emf and torque expressions, involving products of state
variables, but non-linearity can generally also be attributed to the saturation of the
magnetic state. Linearisation then results in:

ΔVa = RaΔIa + d

dt
ΔΨa + KΩroΔΨ f m + KΨ f moΔΩr (26.9)

ΔV f = R f ΔI f + d

dt
ΔΨ f (26.10)
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ΔT = KΨ f moΔIa + K IaoΔΨ f m = J
d

dt
ΔΩr + ΔTl = J

d

dt
ΔΩr + KwΔΩr + ΔT ′

l

(26.11)
The load torque (or driving torque for a generating DC machine) has been split up
into a speed-dependent part, linearised as KwΔΩr , and an external input ΔT ′

l .

26.1.2 Per-Unit (pu) or Relative Description

In somecases, a pudescription is very practical, for example to compare the behaviour
of machines with different power ratings. In a pu description, voltages, currents,
torques, and speed, among other things, are referred to a reference value. To avoid
introducing unwanted proportionality constants, these reference values should obey
the basic physical laws such as conservation of energy or power. As a consequence,
only three reference values can be chosen freely. For a machine that is meant to or
designed to workmainly as a generator, the reference values are usually rated voltage
Vn , rated current In and rated speed Ωn . Usually, for a motor, the basic reference
values are rated torque Tn , rated speed Ωn , and rated current In .

In pu notation, the previous equations become the following:

va = raia + d

dτ
ϕa + νrϕ f m (26.12)

v f = r f i f + d

dτ
ϕ f (26.13)

ϕ f = ϕ f m(i f , ia) + ϕ f σ(i f ) (26.14)

ϕa = ϕa(ia, i f ) (26.15)

τn
d

dτ
νr = t − tl (26.16)

t = ϕ f mia (26.17)

with νr = Ωr/Ωn the pu speed; τ = Ωnt the pu time; τn = JΩ2
n/Tn the pu inertia

time constant.

26.1.3 Modelling of Saturation and Armature Reaction

In rated conditions, nearly all practical electrical machines have saturated magnetic
circuits. The main raison is that this yields an optimal condition as to power conver-
sion for a given machine size and weight. Other reasons might be to obtain stable
behaviour for self-generating (e.g. in shunt-excited DC machines).
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In a DC machine, when the magnetic circuit is saturated, there is a coupling
between the two orthogonal axes (i.e. the d-axis or main field axis and the q-axis
or armature axis). A well-known consequence is the armature reaction, where an
increasing armature current results in a decreasing main field linkage. As is well
known, an independently excited DC motor may then become unstable for high
loads. For an independently excited generator, in contrast, armature reaction results
in current limiting (i.e. stabilising).

Mathematically, saturation of the magnetic circuit results in a non-linear depen-
dence of the fluxes on the currents in the two axes, as mentioned above (Eqs. 26.3 and
26.4). For a linear magnetic circuit, the fluxes in each of the two (supposed orthogo-
nal) axes are only dependent on the current in that axis. When the circuit is saturated,
common (saturated) parts in the two flux linkages make each flux dependent on both
currents. In Refs. [22, 24], a flux model for a DC machine is elaborated on, with the
following expressions for the two flux linkages:

Φ f m(I f , Ia) = Φ(I f ) + 1

3! · d2

d I 2
Φ(I f ) · (k Ia)

2 + · · · (26.18)

Φam(Ia, I f ) = 1

2

bp

τp

{
1

3

d

d I
Φ(I f ) · (k Ia) + 1

5 · 3! · d3

d I 3
Φ(I f ) · (k Ia)

3 + · · ·
}

(26.19)

Φ(I f ) represents the useful d-axis flux in the absence of armature current, Φ(I f ) =
Φ f m(I f , 0).

These expressions are derived supposing an air-gap mmf which is proportional to
the armature current and varies linearlywith the coordinate x along the circumference
of the armature

B(·) = B(Ix ) = B(I f + k Iax) (26.20)

with k = (wa/w f )/τp. The non-linear function B(·) is the saturation characteristic
of the iron of the armature teeth and the pole shoes (the yokes are assumed not to
saturate).Φ f m(·) = la · bp · B(·), with la representing the armature length. τp and bp

are the pole pitch and pole shoe width, respectively. Note that Φ f m(·) = Φ f m(I f ) =
Φ f m(I f , 0) represents the (measured) no-load characteristic of the DC machine.

The magnetising fluxes coupled with excitation winding and armature are Ψ f m =
w f Φ f m and Ψam = waΦam , respectively. It can easily be shown that ∂Ψ f m/∂ Ia =
∂Ψam/∂ I f : also for saturated magnetic circuits, the reciprocity property holds [24].

Equations26.18 and 26.19 can be approximated by keeping only the first two
terms in the series. As the second derivative of the no-load characteristic Φ f m(I f ) is
negative, we may write (with k f > 0):

Φ f m(I f , Ia) = Φ f m(I f ) − k f (I f ) · I 2a (26.21)

Indeed, as we know, whatever the sign of the armature current, an (increasing) arma-
ture current will always result in a flux decrease (armature reaction).
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Fig. 26.2 Chord- and
tangent-slope inductances
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From the equations above, a rather practical mathematical flux model can be
derived.

For steady state and no load, the main flux can be written using the chord-slope
inductance ψ f mo(I f o) = L f mo(I f o) · I f o. As a consequence, for a loaded machine,

Ψ f mo(I f o, Iao) = L f mo(I f o) · I f o − w f k f (I f o) · I 2ao = L f mo(I f o) · I f o − K f (I f o) · I 2ao
(26.22)

Small variations around an equilibrium point, on the other hand, are described using
incremental or tangent-slope inductances (see also Fig. 26.2)

ΔΨ f m = L f mt (I f o) · ΔI f − 2K f (I f o) · Iao · ΔIa = L f mt (I f o) · ΔI f − M f a(I f o, Iao) · ΔIa
(26.23)

The inductance L f mt is the tangent-slope inductance of the no-load characteristic for
the excitation current I f o. Note that the dynamic (or incremental) mutual inductance
M f a can be positive or negative, dependent on the sign of the armature current:
M f a(I f o, Iao) = 2K f · Iao = 2K f · |Iao| · sign(Iao).

For the total excitation flux, the leakage flux needs to be added (the leakage flux
can be assumed to be unsaturated).

In a similar way, the armature flux can be described. For steady state, we have

Ψao(Iao, I f o) = Lao(Iao, I f o) · Iao (26.24)

For small variations around steady state

ΔΨa = Lat (Iao, I f o) · ΔIa − Maf (Iao, I f o) · ΔI f (26.25)

with Lat =
(

∂Ψa(Ia ,I f )
∂ Ia

)
Iao,I f o

and Maf = −
(

∂Ψa(Ia ,I f )
∂ I f

)
Iao,I f o

. As mentioned above,

Maf = M f a = −
(

∂Ψ f m (I f ,Ia)
∂ Ia

)
Iao,I f o

.

The flux model above can be combined with Eqs. 26.9–26.11 for the DC machine.
However, due to the interaction between armature current and magnetising flux,
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such a dynamic analysis is rather complicated. The results of such an analysis will
be presented at the end of this chapter.

In the next section, we will discuss the analysis of the dynamic behaviour by
means of a simplified standard model that uses the chord-slope inductance in the
operating point for both the steady-state flux and flux variations, and that disregards
the armature reaction.This simplifiedmodel is thus obtainedby combiningEqs. 26.9–
26.11 with the following flux model:

ΔΨ f m = L f mo · ΔI f (26.26)

ΔΨ f = L f o · ΔI f = L f mo · ΔI f + L f σ · ΔI f (26.27)

ΔΨa = Lao · ΔIa (26.28)

The subscript “o” for the (chord-slope) inductances will, however, be omitted in the
analysis below.

26.2 Characteristic Dynamic Behaviour According
to the Standard Model

As an example, we will study the dynamic behaviour of an independently excited
DC machine (in a similar way, a series-excited DC machine can be analysed). If we
rewrite Eqs. 26.9–26.11 in the Laplace domain and combine themwith the simplified
saturation model, this results in the following:

ΔVa = RaΔIa + sLaΔIa + KΩroΔΨ f m + KΨ f moΔΩr (26.29)

ΔV f = R f ΔI f + sL f ΔI f (26.30)

ΔΨ f m = L f mΔI f (26.31)

ΔT = KΨ f moΔIa + K IaoΔΨ f m = JsΔΩr + ΔTl = JsΔΩr + KwΔΩr + ΔT ′
l

(26.32)
For motoring, the output variable is the speed, while the input is the armature voltage
and the disturbance input is the external load torque ΔT ′

l . For a constant excitation,
the system becomes of second order. It can also be represented by the block scheme
in Fig. 26.3. Clearly, the emf acts as an internal feedback.

The characteristic equation is

1 + K 2Ψ 2
f mo

(Ra + sLa)(Kw + s J )
= 0 (26.33)
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Fig. 26.3 Block scheme for motoring
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If the excitation is not constant, the eigenvalues remain unchanged but in addition to
the external input, another input has to be added to ΔVa:

[
Ra − KΨ f moΩro/Iao + sLa

] (
L f m Iao/Ψ f mo

)
R f + sL f

ΔV f (26.34)

For generating, the input variable is the external driving torque, and the output is the
armature current, while the disturbance input is the DCmains voltage (for generating
in a DC grid, see (a) in Fig. 26.4), or the load resistance (for generating in island
mode, see (b) in Fig. 26.4). The eigenvalues for generating are, however, the same as
in motoring mode (for island generating, the inductance and resistance of the load
have to be added to the armature inductance and resistance).
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The number of parameters to describe the (typical) dynamic behaviour can never-
theless be reduced to three dimensionless parameters (or even two, if the mechanical
damping can be disregarded):

τa = �−1
a = Ωn La

Ra
= la

ra
(26.35)

τm = �−1
m = JΩn Ra

K 2Ψ 2
f mo

= τnra
ϕ2

f mo

(26.36)

τw = �−1
w = JΩn

Kw

= τn

kw

(26.37)

These armature, electromechanical and damping time constants are made dimen-
sionless by using 1/Ωn as time reference.

With these parameters, the characteristic equation can be written as

1 + �a�m

(�a + p)(�w + p)
= 0 (26.38)

where p represents the pu Laplace operator (p = s/Ωn ⇐⇒ d/dΩnt). The open-
loop poles of this second-order system are the negative inverse of the armature time
constant p = −�a = −τ−1

a and the mechanical damping time constant p = −�w =
−τ−1

w ≈ 0.
Referring the Laplace operator to the armature time constant, λ = pτa , we may

obtain an even more convenient representation

1 + τa/τm

(1 + pτa)(τa/τw + pτa)
= 0 (26.39)

or

1 + τa/τm

(1 + λ)(τa/τw + λ)
= 0 (26.40)

or, if the mechanical damping is negligible

1 + τa/τm

(1 + λ)λ
= 0 (26.41)

Open-loop poles are now λ = −1 and λ = −τa/τw. The gain is the ratio of the (elec-
trical) armature time constant and the electromechanical time constant. Figure26.5
shows the root locus.

For small gain values, we can find two negative real eigenvalues. For a very small
gain (i.e. a large electromechanical time constant compared to the armature time
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Fig. 26.5 Root locus for the independently excited DC motor

constant), the dominant pole of the closed loop is λ = −τa/τm or p = −1/τm . The
dynamics are then completely determined by the inertia.1

For somewhat larger gain values, the two real eigenvalues approach the break-
away point λ ≈ −1/2. For very large gain values (τa/τm > 1/4), the eigenvalues
become complex conjugate with a real part equal to approximately (minus) half the
inverse armature time constant (λ = pτa ≈ −1/2).

Clearly, the dynamic behaviour of the independently excited DCmachine is quite
stable, at least when the armature reaction is absent (see also the next section).

26.3 Characteristic Dynamic Behaviour Taking
into Account Saturation and Armature Reaction

When saturation and armature reaction are taken into account, the analysis becomes
much more complex. When the magnetic circuit is saturated, there are not only
two inductances (i.e. chord-slope and tangent-slope) in the equations for each axis
to complicate matters, but the cross-saturation (i.e. armature reaction) in particular
renders the machine model rather complicated.

1The electromechanical time constant is proportional to the ratio of the inertia and the slope of
the stationary torque-speed characteristic, as can be shown from a quasi-stationary model of the
machine.
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With saturation taken into consideration, the basic equations for small deviations
around a steady state become (see also Sect. 26.1.3):

ΔVa = RaΔIa + Lat sΔIa − Maf sΔI f + KΩroΔΨ f m + KΨ f moΔΩr (26.42)

ΔV f = R f ΔI f + L f σsΔI f + sΔΨ f m (26.43)

ΔΨ f m = L f mtΔI f − M f aΔIa (26.44)

ΔT = KΨ f moΔIa + K IaoΔΨ f m = JsΔΩr + ΔTl = JsΔΩr + KwΔΩr + ΔT
′
l

(26.45)
or in pu

Δva = raΔia + lat pΔia − maf pΔi f + νroΔϕ f m + ϕ f moΔνr (26.46)

Δv f = r f Δi f + l f σ pΔi f + pΔϕ f m (26.47)

Δϕ f m = l f mtΔi f − m f aΔia (26.48)

Δt = ϕ f moΔia + iaoΔϕ f m = τn pΔνr + Δtl = τn pΔνr + kwΔνr + Δt
′
l (26.49)

If the independent excitation can be considered as current-fed, the system remains
of second order, but the open-loop poles change compared to the unsaturated model.
The system equations in block-matrix form are in pu:

∣∣∣∣ Δva
−Δt

′
l

∣∣∣∣ =
∣∣∣∣ (ra − νrom f a) + lat p ϕ f mo

−(ϕ f mo − m f aiao) τn p + kw

∣∣∣∣ ·
∣∣∣∣ Δia
Δνr

∣∣∣∣ (26.50)

For a voltage-fed independent excitation (as in a realistic case), the cross saturation
causes additional feedbacks from the excitation equation and the system becomes of
third order:

∣∣∣∣∣∣
Δva
Δv f

−Δt
′
l

∣∣∣∣∣∣ =
∣∣∣∣∣∣
(ra − νrom f a) + lat p l f mtνro − maf p ϕ f mo

−m f a p r f + l f t p 0
−(ϕ f mo − m f aiao) −l f mt iao τn p + kw

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
Δia
Δi f
Δνr

∣∣∣∣∣∣ (26.51)

Figure26.6 shows the block scheme for the case of current-fed excitation inmotoring
and generating. The characteristic equation is

1 + (ϕ f mo − m f aiao)ϕ f mo

[(ra − νrom f a) + plat ](kw + pτn)
= 0 (26.52)

If we introduce similar dimensionless parameters as for the simplified saturation
model, i.e. τa = lat/ra ; τm = raτn/ϕ2

f mo; �w = τ−1
w = kw/τn and in addition the

armature reaction parameter κ = m f a/ lat , we may rewrite the equation as follows:



26.3 Characteristic Dynamic Behaviour Taking into Account … 587

ia

rva
p +kn w

1

t’

φfmo

(a) motoring
(URS)

va

t’m

(b) generating
(GRS)

+
+

+
-

-

(r )+pa atro fam
φfmo-m ifa ao t

e

p +kn w ++
-

-

(r )+pa atro fam

φfmo

t

e

φfmo-m ifa ao

1

Fig. 26.6 Block schemes including saturation for current excitation

1 + τ−1
m τa(1 − κlat iao/ϕ f mo)

[(1 − νroκτa) + pτa](ρwτa + pτa)
= 0 (26.53)

Due to the armature reaction, the effective armature time constant (see also Eq.26.52)
changes to the incremental value

τai = lat
(ra − νrom f a)

= τa

(1 − νroκτa)
(26.54)

Also the slope of the torque-speed characteristic changes to

Δt

Δνr
= − (ϕ f mo − m f aiao)ϕ f mo

(ra − νrom f a)
(26.55)

As a result, the actual electromechanical time constant also changes to the following
incremental value:

τmi = τm · (1 − νroκτa)

1 − κlat iao/ϕ f mo
(26.56)

With these incremental time constants, the characteristic equation can be written as

1 + τai/τmi

(1 + pτai )(τai/τw + pτai )
= 0 (26.57)

The gain now becomes τai/τmi . The relation between this incremental gain and the
gain in the standard model is
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τai

τmi
= τa

τm
· 1 − κlat iao/ϕ f mo

(1 − νroκτa)2
(26.58)

Note that κ is positive for motoring and negative for generating. As a consequence,
the root loci for motoring and generating are now as in Fig. 26.7 ((a) for motoring
and (b) for generating).

In motoring, saturation results in a less stable behaviour, while for generating
the damping increases. This is in line with the steady-state characteristics including
armature reaction, as is illustrated in Fig. 26.8 (dashed lines are used for the unsat-
urated case and full-drawn lines for the saturated case). For a very large armature
current (or high torque values), a motor may become unstable. As to the root loci,
this corresponds with a sign change of the gain and/or an infinite value of τai .

For a voltage-fed excitation, the block diagram is much more complex (see
Fig. 26.9). Introducing three additional parameters τ f = l f t/r f , σ f = lσ/ l f t and
λ = maf / l f t , the characteristic equation can be written as follows:
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1 + (τai/τmi )
{
1 + pτ f [σ f + (τaiτmi/τaτm)(1 − σ f )]

}
[
(1 + pτai )(1 + pτ f ) + pτ f τai (1 − σ f )κ(νro − λp)

]
(τai/τw + pτai )

= 0

(26.59)

There is now a finite zero around p ≈ −τ−1
f . The open-loop poles include the

mechanical damping pole and a pole around −τ−1
a as well as a third open-loop

pole around the same value as the finite zero, i.e. p ≈ −τ−1
f (without saturation and

armature reaction, this pole and this zero coincide so that the system then becomes
second order).

Possible root loci for motoring and generating are depicted in Fig. 26.10 ((a) for
motoring and (b) for generating). As is the case for a current-fed excitation, the
saturation and armature reaction stabilise the behaviour for generating, while for
motoring the damping (of the dominant eigenvalue) decreases.



Chapter 27
Modelling and Dynamic Behaviour
of Induction Machines

Abstract With the advent of variable frequency supply of rotating field machines in
the second half of the twentieth century, some cases of hunting of inductionmachines
fed with a low frequency supply became apparent. This was the starting point of
research into the causes of these instabilities. In this chapter we analyse the stability
behaviour of induction machine drives for variable frequency supply. A traditional
model with constant saturation is used to analyse the dynamic behaviour. Using well-
chosen dimensionless parameters, the characteristic dynamic behaviour of induction
machines can be represented in a handy way. Because induction machines obey
scaling laws quite narrowly, it is possible to predict the dynamic behaviour of a
typical machine.

27.1 Introduction: Modelling of Rotating Field Machines
Without Saliency

For the steady-state electrical modelling of rotating field machines without saliency,
it is common to use complex phasor equations of voltages, currents and/or fluxes.
A symmetrical three-phase induction machine with symmetrical three-phase supply,
for example, is described by two complex equations, one for the stator reference
phase and one for the rotor reference phase. Obviously, higher space harmonics of
current layers, mmf and field are disregarded in this model.

Such amodel can also be used if there is an asymmetrical supply. In that case, a set
of such equations has to be used for each of the symmetrical components. Superposi-
tion of the positive, negative and zero-sequence components of voltages and currents
then yields the total phasor quantities. For an induction machine, the positive and
negative sequence equations are the same except for the synchronous speed and the
slip (e.g. s for the positive sequence and 2 − s for the negative sequence).

The simplifying assumptions for the steady-state model are as follows:

• a three-phase (or polyphase) symmetrical machine (both stator and rotor)
• sinusoidal distributed windings (no higher space harmonics of current layer, mmf
or field)

• no skin effect

© Springer International Publishing AG 2018
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• no saturation
• no slot-effects nor any rotor (or stator) saliency
• steady state only.

As mentioned above, there is no restriction to a symmetrical sinusoidal three-phase
(or multiphase) supply. If the supply voltage contains harmonics, then for each har-
monic such a model has to be used.

The model we will use for the dynamic analysis is based on the same simplifying
assumptions, except for the steady state. To derive the model, we will start from the
(dynamical) electrical equations for the three stator and the three rotor phases, as
well as the equation of motion.

Such equations are very apt for digital simulation as the number of equations is
not very relevant for this method.

For an analytical study it is, however, important to reduce the number of equations
(and variables). For a wye-connected machine, the neutral is rarely connected and
thus zero-sequence current cannot flow; for a delta-connected machine, the zero-
sequence voltages are inherently zero. This implies that the zero-sequence equations
and components can be omitted inmost or all cases. Therefore, the six basic electrical
equations will be split up into their symmetrical components, and after the zero-
sequence equations have been omitted, the remaining electrical equations can be
simplified to two complex equations or four real equations. The next section will
illustrate this, in addition to showing that the equations can be made stationary (i.e.
not explicitly dependent on time, whereas the basic equations are time-dependent).

Finally, it is important to stress that neither the model nor the analysis method are
restricted to a symmetrical sinusoidal supply. Voltages and currents may in principle
contain harmonics and may be asymmetrical.

27.2 The Standard Dynamic Model of an Induction
Machine

27.2.1 Derivation of the Dynamic Model

We will derive the model for an idealised symmetrical and sinusoidal induction
machine (see the assumptions in the previous section). Stator and rotor are assumed
to be three phase.1

The differential equations between the instantaneous values of voltages and
currents are

Vi = Ri · Ii + d

dt

(
Li (θ) · Ii ]) (27.1)

1It can be shown that a rotor cage can always be replaced by an equivalent three-phase sinusoidally
distributed rotor winding.
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Fig. 27.1 Three-phase induction machine and two-phase model

Ri and Li are the resistance and inductance matrices, respectively:

Ri = diag(Ri
s,R

i
r ) (27.2)

Li (θ) =
[

Li
s Li

sr (θ)
Li
rs(θ) Li

r

]
(27.3)

θ is the instantaneous angle between the stator and rotor reference phase (see
Fig. 27.1). Voltages and currents are in principle2 the real instantaneous functions
of time.

If the machine is three-phase symmetrical with a constant air gap and sinusoidally
distributed windings, then we may write for the block matrices

Ri
s = diag(Rs, Rs, Rs) (27.4)

Ri
r = diag(Rr , Rr , Rr ) (27.5)

Li
s =

⎡

⎣
Ls Ms Ms

Ms Ls Ms

Ms Ms Ls

⎤

⎦ (27.6)

Li
r =

⎡

⎣
Lr Mr Mr

Mr Lr Mr

Mr Mr Lr

⎤

⎦ (27.7)

2However, the model can also be derived using the complex time phasors (see below).
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Li
sr(θ) =

⎡

⎣
cos θ cos(θ + 2π/3) cos(θ + 4π/3)

cos(θ + 4π/3) cos θ cos(θ + 2π/3)
cos(θ + 2π/3) cos(θ + 4π/3) cos θ

⎤

⎦ · Mi
sr = [Li

rs(θ)]T

(27.8)
The superscript T indicates matrix transposition. In the absence of saturation,
Ls, Lr , Ms, Mr , Msr are constants.

The basic equations in space vector form are now derived in two steps:

1. The symmetrical components transformation X′ = diag(T−1
s ,T−1

s ) · Xi with

T−1
s = 1

3

⎡

⎣
1 1 1
1 a a2

1 a2 a

⎤

⎦ (27.9)

transforms both stator and rotor three-phase systems into their symmetrical com-
ponents.3 Equation27.1 becomes

V
′ = R

′ · I′ + d

dt

(
L

′
(θ) · I′)

(27.10)

The six voltages and currents in this equation are the zero-sequence, positive and
negative sequence components of stator and rotor, respectively.
In a wye-connected stator, the zero-sequence currents cannot flow (the neutral is
rarely connected). As the zero-sequence voltages are zero in a delta-connected
stator, we may omit the zero-sequence equations as there cannot be any zero-
sequence power (except in asymmetrical rotor conditions). Equation27.10 can
thus be reduced to a set of four complex equations.
When real-time functions are used for voltages and currents in the transforma-
tion Eq.27.9, the resulting positive and negative sequence voltages and currents
are complex conjugate. The transformation of the original real system equa-
tion (applying Eq.27.9 to 27.1) yields two complex conjugate equations for the
positive and negative sequence components.4 By adding the positive sequence
components and the complex conjugate of the negative sequence components,
we actually obtain space vectors (see also Appendix A in Part1)

V = V−→ = V+ + V ∗
− (27.11)

The resulting equations relating the space vectors of voltages and currents for
stator and rotor are identical to those for the positive sequence components in
Eq.27.10. The outcome is a set of two complex equations

3In fact, this transformation yields the usual zero-sequence, positive and negative sequence com-
ponents when the inputs are the phasors or time phasors of the voltages or currents. We apply it
here to the real-time functions, and the resulting components are not the symmetrical components
as usually defined. However, the space vectors we will derive afterwards will be identical (see also
Appendix C).
4Check also (T−1

s RTs)
+ ≡ T−1

s RTs and (T−1
s LTs)

+ ≡ T−1
s LTs.
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V" = R" · I" + d

dt

(
L"(θ) · I") (27.12)

with

V" = [V s" V r"]T (27.13)

I" = [ I s" I r"]T (27.14)

R" = diag(Rs, Rr ) (27.15)

L"(θ) =
[

Ls M exp( jϑ)

M exp(− jϑ) Lr

]
(27.16)

andwhere Rs = Ri
s , Rr = Ri

r , Ls = Li
s − Mi

s , Lr = Li
r − Mi

r andM = (3/2)Mi
sr .

2. The Eq.27.12 are time-dependent, as θ is a function of time. The reason for this
is that in this equation the stator reference frame is at standstill, while the rotor
reference frame is rotating with rotor speed. The transformation

T−1
b = diag

[
exp(− jθb), exp (− j (θb − θ))

]
(27.17)

to a common reference frame with speed ωb = dθb/dt will make the equations
stationary

V = R · I + d

dt
(L · I) + jωb (L · I) − j θ̊ (Mr · I) (27.18)

with
V = [V s V r ]T (27.19)

I = [ I s I r ]T (27.20)

R = diag(Rs, Rr ) (27.21)

L =
[
Ls M
M Lr

]
(27.22)

M =
[
0 0
M Lr

]
(27.23)



596 27 Modelling and Dynamic Behaviour

The last term in Eq.27.18 represents the emf of motion.
The torque is given by (for a proof, see for example Ref. [14]):

T = 3

2
Np · Im (

I+ · Mr · I) = 3

2
Np · Im (

I s · M · I ∗
r

)
(27.24)

where Np represents the number of pole pairs and the+ sign indicates theHermitic
conjugate. The complete dynamical model therefore consists of the Eq.27.18,
together with the equation of motion

(J/Np)
d2θ

dt2
= T − Tl

with the torque T given by Eq.27.24 and with Tl the load torque.

We have transformed the original six real electrical Eq.27.1 into a set of two complex
(or four real) equations. By referring to a common reference frame, the resulting
equations are stationary. However, these equations are still non-linear. Indeed, the
non-linearity is inherent to electric machines: the torque is proportional to a product
of currents (or flux and current) and the emf of motion is proportional to the product
of speed and flux.

In many cases, we will use the real form of these equations by projecting the
complex equations of stator and rotor on the real and imaginary axes of the common
reference frame. In a general reference frame with speed ωb = dθb/dt , the compo-
nents of voltages and currents will be denoted by the subscript x and y. In a standstill
(stator) reference frame (ωb = 0), the subscripts α and β are typically used. If the
speed of the reference frame is chosen equal to the rotor speed, the reference frame
is called a rotor reference frame. Often, a reference frame synchronous with the flux
(instantaneously) is chosen, in which case the subscripts q, d are commonly used.

Remarks:

1. The same equations can be obtained by first applying the Clarke transformation
to Eq.27.1 and then the rotation to a common reference frame. This is normally
the case for the synchronous machine (see Chap. 28).

2. If the Eq.27.18 are written as two complex equations in a standstill reference
frame, then for a purely sinusoidal supply and for steady state, we obtain equa-
tions which are almost identical to the common steady-state equations for the
induction machine (but now in time-phasor notation and with amplitude val-
ues instead of effective values). In time-phasor representation, we have for a
sinusoidal voltage V s"(t) = V̂s · exp( jωt + jϕs) and V r"(t) = V̂r · exp( jωt +
jϕr ), instead of V s = Vs · exp( jϕs) = (1/

√
2) · V̂s · exp( jϕs) and V r = Vr ·

exp( jϕr ) = (1/
√
2) · V̂s · exp( jϕr ) as in the common notation with phasors for

steady state (using effective values). If we transform these time phasors into a
reference frame synchronous with the supply frequency, we get the same equa-
tions as for steady state but with amplitude values. In fact, the transformation

http://dx.doi.org/10.1007/978-3-319-72730-1_28
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Eq.27.17 is now T−1
b = diag[exp(− jωt), exp(− jsωt)] which is equivalent to

omitting the exp( jωt) and exp( jsωt) in the phasor representation.
3. The resulting Eq.27.18 are much more general than the steady-state equations,

as they are not limited to steady state or sinusoidal supply.
4. If we start (Eq. 27.1) from the complex time phasors of the phase voltages and cur-

rents, instead of their real-time values, then the symmetrical components transfor-
mation yields exactly the usual zero-sequence, positive- and negative-sequence
components (except for the exponential time dependences, e.g. exp( jωt)). It
is easily shown that after the transformation Eq.27.11 the same Eq.27.12 are
obtained, as space vectors. The equivalence - or non-equivalence - of (time) pha-
sors and space vectors has been extensively covered in the literature, but in the
author’s opinion, both are exactly equivalentwhen applied to symmetrical rotating
field machines.

27.2.2 Equations for Steady State and for Small Deviations
Around an Equilibrium State

As mentioned above, the induction machine equations are non-linear, both the elec-
trical equations and the torque in the equation of motion. To study the dynamic
behaviour, we will therefore revert to small deviations around a steady-state equilib-
rium.

For steady state (subscript o) with a sinusoidal voltage supply, the Eq.27.18
become

V0 = R · I0 + jω0 (L · I0) − j θ̊0 (Mr · I0) (27.25)

T = 3

2
Np · Im (

I+0 · Mr · I0
) = 3

2
Np · Im (

I s0 · M · I ∗
r0

) = Tl0 (27.26)

The voltage (or current) vectors are (for a constant ωb) of the form

V0 = [ V so V ro]T = [
Vso exp ( j (ω0 − ωb)t − jϕs) Vro exp ( j (ω0 − ωb)t − jϕr )

]T

(27.27)

For ωb = ω0, these are equal to the usual time phasors (but here with amplitude
values instead of effective values).

Subtracting Eq.27.25 from 27.18 and linearising (omitting second-order varia-
tions), we obtain

�V = R · �I + d

dt
(L · �I) + jωb0 (L · �I) + jΔωb (L · I0) − j θ̊0 (Mr · ΔI) − jΔθ̊ (Mr · I0)

(27.28)

In a similar way, we obtain for the equation of motion (the load torque variation is
written as the sum of a speed-dependent variation and an external variation):
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(J/Np)
d2Δθ

dt2
= 3

2
Np · Im (

ΔI+ · Mr · I0 + I+0 · Mr · �I
) − Kw · Δθ̊ − ΔT

′
l

(27.29)

In Eq.27.28, the term jΔωb (L · I0) is added to include a possible variation of the
reference frame speed (e.g. for an instantaneous synchronous reference frame when
the supply frequency is varying). If the reference frame were fixed to the steady-state
supply frequency, this term would be zero (but the frequency variation would then
cause a non-zero voltage variation �V).

27.2.3 Dynamic Model with Pu Time and Speeds

Many studies revert to pu equations. However, in the present textbook absolute values
will be used with only a pu time and thus also pu speeds. Pu time will be denoted
by τ = ωnt , pu frequency or synchronous speed by ν = ω/ωn , pu rotor speed by
νr = ωr/ωn = (1 − s)ν and pu slip frequency by νs = sω/ωn = sν.

With these notations, the steady-state equations for a supply frequencyω0 become:

V0 = R · I0 + jν0 (ωnL · I0) − jνr0 (ωnMr · I0) (27.30)

T = 3

2
Np · Im (

I+0 · Mr · I0
) = Tl0 (27.31)

Or, in vector notation:

V s0 = Rs I s0 + jν0ωn Ls I s0 + jν0ωnM I r0 (27.32)

V r0 = Rr I r0 + jνs0ωn Lr I r0 + jνs0ωnM I s0 (27.33)

T = 3

2
Np · Im (

I s0 · M · I ∗
r0

) = Tl0 (27.34)

The linearised equations around the steady state are, introducing the pu Laplace
operator p = d/d(ωnt):

�V = R · �I + p (ωnL · �I) + jνb0 (ωnL · �I) + jΔνb (ωnL · I0)
− jνr0 (ωnMr · ΔI) − jΔνr (ωnMr · I0) (27.35)

(J/Np)
d2Δθ

dt2
= 3

2
Np · Im (

ΔI+ · Mr · I0 + I+0 · Mr · �I
) − Kw · Δθ̊ − ΔT

′
l

(27.36)
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or, in vector notation:

ΔV s = RsΔI s + pωn LsΔI s + pωnMΔI r + jνb0ωn LsΔI s
+ jνb0ωnMΔI r + jΔνbωn Ls I s0 + jΔνbωnM I r0 (27.37)

ΔVr = RrΔI r + pωn LrΔI r + pωnMΔI s + j (νb0 − νr0)ωn LrΔI r + j (νb0 − νr0)ωnMΔI s+
j (Δνb − Δνr )ωn Lr I r0 + j (Δνb − Δνr )ωnM I s0

(27.38)

(J/Np)
d2Δθ

dt2
= 3

2
Np · M · Im (

I s0ΔI ∗
r + I ∗

r0ΔI s
) − Kw · ωnΔνr − ΔT

′
l

(27.39)
Remark: If we use pu, the separate leakages of stator and rotor can be written as
lsσ = ls − lm and lrσ = lr − lm where lm = m. However, the division of the leakage
into the separate leakages depends on the chosen reference values for stator and rotor
quantities, in contrast with the total leakages referred to stator and rotor. The latter
are lσs = σls and lσr = σlr , respectively. In absolute values, separate leakages can
also be defined but these will depend on the chosen turns ratio between stator and
rotor, which - importantly - cannot be measured.

27.2.4 Approximation for Saturation

The equations above have been derived assuming an unsaturated magnetic circuit.
In reality, all electric machines are operated with a saturated magnetic circuit at
rated conditions.5 In traditional machine theory, the steady-state analysis uses the
(magnetising field) chord-slope inductances in the operating point (see Fig. 27.2).

This is an acceptable approximation for the constant magnetising condition in
steady state. However, for dynamic studies both the chord-slope and the tangent-
slope inductances should be used. Indeed, whereas the main flux in the operating
point can be written asΨm0 = Lmo Im0, for flux variationsΔΨm = LmtΔIm should be
used. However, incorporating both inductances creates a rather complicated machine
model (see Ref. [22]). Moreover, in many cases (in particular for induction machines
with closed rotor slots) the leakage flux saturation should also be considered, in
addition to the main flux saturation. Although some attempts to model both main
and leakage flux saturation have been published, some criticism is to be called for as
the division of leakage between stator and rotor cannot easily (if at all) be measured.

In the present text, a dynamic model with chord-slope inductances will be used.
It turns out that the results of such a dynamic analysis are conservative, as more
stable machine behaviour is created if the tangent-slope inductance is also included
in the model. Nevertheless, some restrictions apply. When a machine is supplied by

5The reason for this is that a relatively high air-gap induction is required to obtain a sufficient power
output for a given machine size.
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chord-slope inductance lmo
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Fig. 27.2 Saturation characteristic

a current source inverter or in self-excitation6 on a capacitor-resistance bank, the flux
level may change considerably and modelling with only the chord-slope inductance
is not feasible. Motoring or generating on a grid or a voltage source inverter will
typically not lead to any large flux excursions, and modelling with only the chord-
slope inductance seems acceptable.

Below, we will limit ourselves to the study of small deviations around a steady
state using the approximate model with the chord-slope inductances. For the study
of large transients, the most appropriate method is simulation, where the variable
saturation can be taken into account in quite a straightforward way.

27.3 Characteristic Dynamic Behaviour of the Induction
Machine

27.3.1 Dynamic Model in Real Matrix Form

The dynamic equations for small deviations around a steady state, Eqs. 27.35
and 27.36, can be written in real form as follows:

6Another problem with self-excitation is that a model with only the chord-slope inductance will
create two degrees of freedom (i.e. two eigenvalues on the imaginary axis) for the self-excitation,
which does not exist in real life.



27.3 Characteristic Dynamic Behaviour of the Induction Machine 601

⎡

⎢
⎢
⎢⎢
⎣

ΔVsx
ΔVsy
ΔVrx
ΔVry
−ΔT

′
l

⎤

⎥
⎥
⎥⎥
⎦

=

⎡

⎢
⎢
⎢⎢
⎣

Rs + pωn Ls −ν0ωn Ls pωnM −ν0ωnM 0
ν0ωn Ls Rs + pωn Ls ν0ωnM pωnM 0
pωnM −νs0ωnM Rr + pωn Lr −νs0ωn Lr ωn

(
MIsy0 + Lr Iry0

)

νs0ωnM pωnM νs0ωn Lr Rr + pωn Lr −ωn (MIsx0 + Lr Irx0)
3
2 NpM Iry0 − 3

2 NpM Irx0 − 3
2 NpM Isy0

3
2 NpM Isx0

J
Np

ωn
2 p + ωn Kw

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

ΔIsx
ΔIsy
ΔIr x
ΔIry
Δνr

⎤

⎥
⎥
⎥⎥
⎦

+ ωn

⎡

⎢⎢⎢⎢
⎣

− (
Ls Isy0 + MIry0

)

+ (Ls Isx0 + MIrx0)
− (

MIsy0 + Lr Iry0
)

+ (MIsx0 + Lr Irx0)
0

⎤

⎥⎥⎥⎥
⎦

· Δν (27.40)

In this equation, an instantaneously synchronous reference frame is used. This fifth-
order model is applicable in both motoring and generating, and for both conventional
and power-electronic voltage supply. For current supply, the stator equations can be
omitted, and the model becomes third order (the stator equations are only important
for the voltages but do not affect the dynamic behaviour of the machine). For self-
excitation, also the external relations between stator voltages and currents would be
required. However, self-excitation will not be studied because the model does not
adequately model main field saturation.

27.3.2 Dimensionless Parameters for Dynamic Analysis

The dynamic model, Eq. 27.40, contains 11 machine parameters: the five electrical
parameters (Rs, Rr , Ls, Lr , M), the three mechanical parameters (J, Kw, Np) and
the three parameters that determine the operating point (Vs0,ω0,ωr0). The rotor is
assumed to be short-circuited (Vr0 = 0).

The minimum number of (dimensionless) parameters required to describe the
dynamic behaviour (open-loop poles and zeros, eigenvalues) is, nevertheless, much
smaller: for this fifth-order systemwith 11 parameters, only six (=11−5) parameters
are required. A convenient choice is as follows:

• ν0τr , the product of the rotor short-circuit time constant τr = σωn Lr/Rr and the
pu supply frequency ν0 = ω0/ωn

• ν0τs , the product of the stator short-circuit time constant τs = σωn Ls/Rs and the
pu supply frequency ν0 (moreover, ν0τs is often replaced by α = τr/τs ≈ rs/rr )

• the magnetic parameter or total leakage coefficient σ = 1 − M2/Ls Lr

• the pu slip frequency νs0, in many cases replaced by νs0τr

• the electromechanical time constant τm = ωnωs0 J
NpT0

= τn
νs0
t0

with τn = ω2
n J

NpTn
the pu

inertia time constant; it is preferably replaced by the ratio τr/τm
• the dimensionless friction time constant τw = 1/�w = Jωn

NpKw
.

The electrical time constants τr and τs are in principle constant for a given machine,
unless there is important leakage field saturation. However, the magnetic parameter
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(leakage coefficient) σ depends heavily on the main field saturation level as M as
well as the main field parts in Ls and Lr are directly proportional to the chord-slope
inductance.

The electromechanical time constant is the ratio of the inertia time constant τn
and the slope of the line connecting the no-load point (s = 0, T = 0) and the oper-
ating point (s0, T0) on the steady-state torque-slip characteristic. In the limit case of
no-load operation (s0 = 0), this slope is exactly equal to the slope of the torque-slip
characteristic (tangent slope). Then τm can be regarded as the time constant of the
mechanical system with the steady-state asynchronous torque (characteristic) as the
dynamic torque (characteristic). For non-zero steady-state slip values, this interpre-
tation is only approximately true (however, as will be explained in the next chapter,
another and exact interpretation valid in all cases can be given). Please note that for
constant flux operation (≈ V0/ω0 constant), τm is essentially constant for a given
machine and inertia.

The friction time constant is normally very small (see the next section) and neg-
ligible in terms of its effect on the dynamics, except when it represents an important
speed-dependent external load (e.g. a ventilator load).

27.3.3 Scaling Laws for the Dynamical Parameters

As iswell known, normal inductionmachines have to obeymanyconstraints (e.g. sup-
ply frequency, three-phase) and standards (e.g. minimum ratio of pull-out-torque and
rated torque, maximum pu starting current), in addition to economic constraints. As
a result, nearly all induction machines end up following some scaling laws (see also
Ref. [3]), which relate the machine parameters to the size of the machine (expressed
as the pole-pitch τp). For example, the pu total leakage inductance can be assumed
to be around xσ ≈ 0.2 (between 0.15 and 0.25 because of minimum pull-out torque
and maximum starting current). The pu stator and rotor resistances are almost equal
and will decrease with increasing machine size as rs ≈ rr ≈ 0.005/τp (because of
economic reasons).

As a result, the dynamic parameters also follow scaling laws, as illustrated in
Table27.1.

These scaling laws indicate the range for the (dynamic) parameters for normal
machines. The dynamic analysis can then be restricted to these realistic values in
order to describe the dynamic behaviour of most machines. Further, these laws allow
us to define an average or typical machine as a function of the power rating and
describe its typical dynamic behaviour.

From this table, it is clear that only two dynamic parameters show a significant
variation with size, i.e. τr/τm and τr . Moreover, with a variable frequency from e.g.
10–200Hz, ν0τr varies in the range of 1 : 400. With an extra load inertia (up to 10
times themachine inertia for smaller power ratings) τr/τm will also exhibit a variation
in the range of 1 : 200.
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Table 27.1 Scaling laws for the dynamic parameters

Parameter Scaling law Np = 2;
τp = 0.05 . . . 1m

Np = 3;
τp = 0.05 . . . 1m

τr = σωn Lr/Rr 40τp 2 . . . 40 2 . . . 40

α = τr/τs 0.5 . . . 2 (typically 1) 0.5 . . . 2 (typically 1) 0.5 . . . 2 (typically 1)

σ 0.02
√
Np/τp 0.13 . . . 0.028 0.16 . . . 0.034

(νsn) 0.005τ−1
p 0.1 . . . 0.05 0.1 . . . 0.05

νs0τr 0 . . . 0.2 (νsnτr = 0.2) 0 . . . 0.2 0 . . . 0.2

(τn)* 103(Np − 1)τp/Np 25 . . . 500 30 . . . 650

(τm )* 5(Np − 1)/Np 2.5 3.3

τr/τm* 8Npτp/(Np − 1) 0.8 . . . 16 0.6 . . . 12

�w 1.6 · 10−5(τp +
0.17)τ−11/6

p

(70 . . . 1)10−5 (70 . . . 1)10−5

(Pn) 107τ23/6p N 2
p 400W . . . 40MW 900W . . . (90MW)

*only machine inertia

Of the other parameters, only σ and νs0τr show some variation (with power rating
for σ and with load for νs0τr ), but as we will see later on, their effect on the dynamic
behaviour is somewhat less important. These remaining parameters will be referred
to as the secondary parameters.

27.3.4 Block Diagrams and Characteristic Equation

In this section, we will consider a voltage-fed induction machine with short-circuited
rotor. External inputs are the stator voltage variationsΔVsx = ΔVx andΔVsy = ΔVy

and the supply frequencyvariationΔν. The load torque variationΔT
′
l can be regarded

as an external disturbance input. The state variable is the speed variation Δνr . From
Eq.27.40, the dynamic equation is thus

(J/Np)ω
2
n(p + ρw)Δνr + ΔT

′
l = ΔT = −FνrΔνr + FνΔν + FvxΔV x + FvyΔV y

(27.41)

corresponding with the block diagram (with internal feedback) in Fig. 27.3.
Fνr , Fν , Fvx and Fvy are the open-loop transfer functions:

Fνr (p) = −ΔT

Δνr
= T0

νs0
· Nνr (p)

D(p)
(27.42)

Fν(p) = ΔT

Δν
= T0

νs0
· Nν(p)

D(p)
(27.43)
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Fig. 27.3 Block diagram for motoring

If we choose the steady-state voltage along the x- or real axis, we get for Fvx and Fvy

Fvx (p) = ΔT

ΔVx
= T0

νs0
· ν0

V0
· Nvre(p)

D(p)
(27.44)

Fvy(p) = ΔT

ΔVy
= T0

νs0
· ν0

V0
· pτr
ν0τr

· Nν(p)

D(p)
(27.45)

The polynomials D(p), Fνr (p), Fν(p) and Fvx (p) are7:

D(p) = C(p) · C(p)∗ (27.46)

with

C(p) = (τr p)
2 + (τr p)[(1 + α) + j (ν0τr )(1 + s0)] + [(σα − s0(ν0τr )

2) + j (1 + αs0)(ν0τr )]
(27.47)

Nνr (p) = (τr p)
3 + (τr p)

2[(1 + σ)α + 1 − (s0ν0τr )
2] + (τr p)[σα2 + 2σα − 2α(s0ν0τr )

2 + (ν0τr )
2]

(27.48)
+{σ2α2 + (ν0τr )

2 − (s0ν0τr )
2[α2 + (ν0τr )

2]}

Nν(p) = (τr p)
2(σα − s0(ν0τr )

2) + (τr p)[σα(1 + α) + (ν0τr )
2(1 − αs20 − 2s0)] (27.49)

+{σ2α2 + (ν0τr )
2[1 − 2s0 − s20 (α

2 + 2(1 − σ)α)] − (s0ν0τr )
2(ν0τr )

2(1 + 2s0)}

Nνre(p) = (τr p)
3(1 + s0α) + (τr p)

2{(1 + α)(1 + s0α) + (1 − s0)[(ν0τr )2s0 − σα]}
(27.50)

+2s0(τr p)[(1 + α)σα + (1 + s20α)(ν0τr )
2] + 2s0{[σα − (ν0τr )

2s0]2
+(ν0τr )

2(1 + s0α)2}

7Please explain why Fvy(p) is proportional to pFν(p).
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Fig. 27.4 Block diagram for generating

Note that all polynomials are (and can be written as) functions of τr p, i.e. the Laplace
operator referred to the rotor time constant. Also, all open-loop transfer functions
share the same open-loop poles, i.e. the zeros of D(p). All closed-loop transfer func-
tions (with as input frequency or voltage variations and output the speed variation)
have as poles the eigenvalues of the system and as open-loop zeros the zeros of the
corresponding open-loop transfer function.

The eigenvalues are the zeros of the characteristic equation

1 + Fνr

(J/Np)ω2
n(p + ρw)

= 0 (27.51)

or

1 + τr

τm
· Nνr (p)

D(p) · (τr p + τrρw)
= 0 (27.52)

With p as Laplace operator (1/ωn as time reference), the gain of the feedback loop is
1/τrτm . It turns out to be more convenient to choose the rotor time constant as time
reference, i.e. λ = pτr as Laplace operator, resulting in τr/τm as the feedback gain.

The zeros of the open loop are the zeros of the transfer function of speed to elec-
tromagnetic torque. The open-loop poles include the poles of this transfer function
and the mechanical (inertia) pole.

For generating on a constant voltage supply, we obtain the block diagram in
Fig. 27.4; state variable is the current variation and input is the driving (load) torque.
The voltage variations are assumed to be zero and the current variation therefore also
represents the active power variation. Gνr is the transfer function of speed to current,
while Gis represents the transfer function of current to electromagnetic torque. As
Gνr · Gis = Fνr , the eigenvalues for generating are the same as those for motoring.

27.3.5 Eigenvalue Analysis

27.3.5.1 Open-Loop Poles

The open-loop poles include the mechanical (inertia and friction) pole and the four
zeros of D(p). The latter are called the constant-speed poles, as these are the (purely
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Fig. 27.5 Open-loop poles for α = 1, α < 1 and α > 1

electrical) eigenvalues of the system without speed feedback (for example for an
infinite inertia).

To start with, we will analyse these poles for slip zero. Figure27.5 illustrates the
locus of the poles for variable frequency parameter ν0τr , at zero slip frequency and
for three cases: α = 1, α < 1 and α > 1.

For very small ν0τr , the electrical poles are on or near the real axis. Their real
parts correspond with the magnetising field time constants and the short-circuit (or
leakage) time constants, respectively.

With an increasing frequency parameter, the imaginary parts increase while the
real parts come closer together. If α = 1, these four poles come together two by two
for ν0τr = 2

√
(1 − σ) ≈ 2.

For still higher values of the frequency parameter (ν0τr � (1 + α)), the result
is two complex conjugate high-frequency poles and two complex conjugate low-
frequency poles. The real parts of these two pairs of poles are equal for α = 1. The
high-frequency imaginary part approximately correspondswith the supply frequency
(≈ ν0τr ). Note that forα 	= 1 the high-frequency poles have a real part corresponding
to λ ≈ α (the stator time constant), while the real part of the low-frequency poles
corresponds to λ ≈ 1 (the rotor time constant).8

An acceptable approximation for these constant speed poles is as follows:

• for ν0τr 
 1 + α:

λ ≈ −
(
1 + α − σα

1 + α

)
± jνoτr

α + s0
1 + α

λ ≈ − σα

1 + α
± jνoτr

1 + αs0
1 + α

8Explain this. Keep in mind the chosen (instantaneously) synchronous reference frame.
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• for ν0τr � 1 + α:

λ ≈ −1 ± jν0τr

(
s0 + (1 + α)2 − 4ασ

4(ν0τr )2(1 − s0)

)
≈ −1 ± jν0τr s0

λ ≈ −α ± jν0τr

(
1 − (1 + α)2 − 4ασ

4(ν0τr )2(1 − s0)

)
≈ −α ± jν0τr

The effect of the magnetic parameter σ is particularly important for ν0τr 
 1 + α,
thus for low frequencies. The poles with the smallest damping move up farther into
the left half plane for largerσ; this effect can be quite important as the real part of these
poles is proportional toσ. The imaginary parts are almost not affected, and neither are
the poles with the largest damping. For higher frequencies (ν0τr � 1 + α), the effect
of σ is limited. The small shift to the left of the high-frequency pole is negligible.

The effect of the slip (s0ν0τr ) is rather small for normal small slip values. From a
detailed analysis, the effect can be summarised as follows.

For low frequencies (ν0τr 
 1 + α), a larger positive slip results in an increase
of the imaginary parts while the difference between the real parts increases slightly.
A negative slip, on the other hand, has the inverse effect. For large frequencies
(ν0τr � 1 + α), the frequency (imaginary part) of the high-frequencypole decreases,
while the frequency of the low-frequency pole increases, both by an amount more
or less equal to the slip frequency parameter s0ν0τr . The real part (damping) is
only slightly affected. For intermediate values of the frequency (ν0τr ≈ 1 + α), the
damping (real part) of the poles is somewhat affected, while the imaginary part is
almost not altered.

27.3.5.2 Open-Loop Zeros

The zeros of the open loop are the zeros of the polynomial Nνr (pτr ) = Nνr (λ). To
find these zeros, we rewrite the polynomial as follows

{{[λ2 + λ(1 + α) + σα](λ + σα)} + (ν0τr )
2(λ + 1)

} − (νs0τr )
2[(λ + α)2 + (ν0τr )

2] = 0

(27.53)

To find the zeros, we will apply twice the root-locus method, first with (ν0τr )
2 as

gain and next with −(νs0τr )
2 as gain.

First,we consider zero slip frequency and a variable frequencyparameter. The gain
is (ν0τr )

2. This first root locus (cf. the dashed line in Fig. 27.6) has as its starting points
λ ≈ −σα/(1 + α), λ ≈ −[1 + α − σα/(1 + α)] and λ = −σα. The end points are
λ = −1 and the asymptote at λ = −(1 + σ)α/2.

For the second application of the root-locus method, we consider a constant fre-
quency parameter ν0τr and a variable slip frequency parameter νs0τr . The starting
points for the second root locus are points (correspondingwith the givenvalue ofν0τr )
on the previous root locus, and the end points are λ = −α ± jν0τr and λ = +∞.
For a given value of ν0τr and variable νs0τr , results the root locus drawn in full line.
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For sufficiently high frequencies (ν0τr � 1 + α) and normal small slip values,
an acceptable approximation for the zeros of the open loop is

λ1 ≈ −1 (27.54)

λ2,3 ≈ −α
1 + σ

2
± jν0τr (27.55)

For higher slip frequencies (and sufficiently high ν0τr ), only the zero λ1 should be
corrected as

λ1 ≈ −[1 − (νs0τr )
2] (27.56)

For values of the frequency parameter around 1 + α (and small slip), an approxima-
tion for the open-loop zeros is

λ1 ≈ − (ν0τr )
2 + (1 + α)3

(ν0τr )2 + (1 + α)2
(27.57)

λ2,3 ≈ −1

2

(ν0τr )
2α(1 + σ) + σα(1 + α)(2 + α)

(ν0τr )2 + (1 + α)2
± j

ν0τr√
1 + α

For very low values of the frequency parameter (ν0τr 
 1 + α), this can be simpli-
fied to
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λ1 ≈ −(1 + α)

λ2,3 ≈ −1

2
σα · 2 + α

1 + α
± j

ν0τr√
1 + α

(27.58)

The complex conjugate zeros are now rather close to the imaginary axis. Note also
that their real part is proportional to the magnetic parameter σ.

As is clear from Eqs. 27.55–27.58, the magnetic parameter σ has an important
effect on the real part of the complex zeros, especially for low frequencies. Small σ
values result in small real parts for these low values of the frequency parameter. For
larger frequency parameter values, the effect of σ is negligible. In the next section, it
will become clear that the magnetic parameter has a profound effect on the stability
behaviour at low supply frequencies.

27.3.5.3 Root Loci for the Eigenvalues

Section27.3.3 explained that, for conventional inductionmachines, mainly two para-
meters exhibit an important variation with machine size (scaling laws) and supply
frequency, i.e. the frequency parameter ν0τr and the ratio of the rotor time constant to
the electromechanical time constant, τr/τm . Of the other parameters, only σ exhibits
any significant effect of machine size (α is for most machines more or less equal to
1 and the slip frequency parameter in rated conditions is more or less equal to 0.2,
independently of machine size). On the other hand, from Sects. 27.3.5.1 and 27.3.5.2,
it is clear that the open-loop poles and zeros are mainly determined by ν0τr , and to
a minor degree by α, σ and the slip frequency parameter νs0τr .

As a consequence, machine size and supply frequency can be expected to have
an important effect on the dynamic behaviour of induction machines, mainly via the
frequency parameter ν0τr and the ratio of rotor time constant to electromechanical
time constant τr/τm . The latter parameter is also a convenient choice for the gain
of the internal feedback loop, as is clear from the characteristic equation or the
block diagrams presented in Sect. 27.3.4. It is important to note that the effect of the
operating point (e.g. flux level and slip) is reflected in the slip frequency parameter
(slip or thus load torque) and the gain (flux level, inertia).

We will therefore study the eigenvalues by means of the root-locus method with
τr/τm as gain and for a range of values for the other parameters, mainly the frequency
parameter ν0τr (and in a second instance, the slip frequency parameter νs0τr , the ratio
of rotor to stator time constants α and the magnetic parameter σ).

The root loci exist in mainly two distinct forms (see Fig. 27.7). For larger values of
the frequency parameter ν0τr � 1 + α, a high-frequency locus results, as is shown
in (a) in the figure. For small values of the frequency parameter ν0τr 
 1 + α, we
can observe a low-frequency locus as in (b) in Fig. 27.7. Intermediate locus shapes
also exist.

The high-frequency locus (for ν0τr � 1 + α) resembles the root locus of an inde-
pendently excited DC machine. As discussed in Sect. 27.3.5.2, for high ν0τr the two
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Fig. 27.7 Root loci for the eigenvalues: a high frequency; b low frequency

pairs of open-loop poles have almost the same damping but a large difference in
frequency: λ ≈ −α ± jν0τr and λ ≈ −1 ± jνs0τr . As result, there is minor inter-
action between these high- and low-frequency poles. On the other hand, there is
a real zero (λ ≈ −1) of the open loop in the vicinity of the low-frequency poles
and a pair of complex conjugate zeros (λ ≈ (1 + σ)α/2 ± jν0τr ) in the vicinity of
the high-frequency poles. As a result, the real zero almost compensates one of the
low-frequency poles. The segment on the real axis between the open-loop zero and
the inertia pole (λ ≈ 0) belongs to the root locus. Almost exactly in the middle of
this segment, there is a break-away point, from which branches depart to the com-
plex conjugate zeros. The high-frequency poles repel these branches so that these
branches may move into the right half plane.

Dependent on the gain τr/τm , three characteristic cases for the dynamic behaviour
can be distinguished:

• for very low values of the gain τr/τm (τr/τm < 0.1), the dynamic behaviour is
dominated by a real eigenvalue near the origin (on the trajectory starting from
the inertia pole λ = ρwτr ≈ 0). A good approximation for this eigenvalue is λ =
−τr/τm or p = −1/τm , which corresponds to the quasi-static electromechanical
time constant for the inertia and the steady-state load torque characteristic (thus
all electrical transients are negligible as these are much faster than the mechanical
one).
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• for values of the gain τr/τm approaching 1/4, we subsequently see two real

eigenvalues λ ≈ − 1
2 ±

[
1
4 − τr

τm

]1/2
, two coinciding real eigenvalues λ = −1/2

for τr/τm = 1/4 and then for higher gain, two complex conjugate eigenvalues

λ ≈ − 1
2 ± j

[
τr
τm

− 1
4

]1/2

• for very high values of the gain (τr/τm � 1/4), the root locus approaches the
complex zeros. The real part of the eigenvalues λ is initially equal to −0.5, but
for very high gain the root-locus may enter the right half plane, i.e. instability. We
will call the uttermost right point on the root locus the minimal damped point.

We note that for this high-frequency root locus, the effect of the magnetic parameter
σ is rather limited as poles and zeros are almost independent of σ. Only where the
root locus comes near to the high-frequency poles and zeros (i.e. where the root locus
bends to the right) may a stabilising effect for higher σ-values be observed.

The effect of the rotor-to-stator damping ratio, however, may be quite significant
as the real parts of the high-frequency poles and zeros are proportional to α. Low
values ofαwill result in a root locus branch closer to the imaginary axis and possibly
bending further into the right half plane. However, normal values for α are around
α = 1.

The effect of the slip parameter νs0τr is very limited for this high-frequency root
locus, at least for normal slip values.

From the above discussion, it is tempting to conclude that the high-frequency
instability can become a problem as soon as the frequency parameter is sufficiently
high. In the next section, we will show that this is only partially true. For very
high values of the frequency parameter, the gain values corresponding with possible
instability are indeed unrealistically high for practical machines.

The low-frequency locus (for ν0τr 
 1 + α) is somewhat special as the poles and
zeros are quite close together as to frequency (imaginary part). For the poles, we may
use the following approximation:

λ1,2 ≈ −
(
1 + α − σα

1 + α

)
± jνoτr

α + s0
1 + α

≈ −
(
1 + α − σα

1 + α

)
± jν0τr

α

1 + α

(27.59)

λ3,4 ≈ − σα

1 + α
± jνoτr

1 + αs0
1 + α

≈ − σα

1 + α
± jν0τr

1

1 + α

For the zeros, we have already found that (see Eq.27.58)

λ1 ≈ −(1 + α) (27.60)

λ2,3 ≈ −1

2
σα · 2 + α

1 + α
± j

ν0τr√
1 + α

(27.61)

The two pairs of open-loop poles and the complex zeros will now interact quite
closely. Moreover, the distance between the real zero and the poles and zeros near to
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the imaginary axis is rather large, limiting their interaction. The branches of the root
locus connecting the poles and the zeros with the smallest real parts will therefore
most likely be bent to the right, possibly into the right half plane.

27.3.6 Typical Dynamic Behaviour

27.3.6.1 Parameter Plane

The dynamic properties of induction machines are determined by six dimension-
less parameters. However, representing the dynamic properties in a six-dimensional
space is not very practical. As discussed in the previous sections, mainly two para-
meters play a key role in the dynamic properties: the frequency parameter and the
gain. Therefore, we will represent the dynamic properties in the parameter plane
(τr/τm, ν0τr ) with the other four parameters as secondary parameters. Each point in
this parameter plane will represent a specific dynamic behaviour when associated
with values for the other four parameters.

On the other hand, the scaling laws presented in Sect. 27.3.3 have indicated that for
normal induction machines, these same two parameters show an important variation
with machine size (and operating point, i.e. flux and supply frequency). A typical
or average machine in rated operating conditions can be derived from these scaling
laws. Indeed, for Np ≥ 2 we derive the following parametric equation in the plane
(τr/τm, ν0τr ):

ν0τr = 40τp (27.62)

τr/τm = 8
Np

Np − 1
· τp (27.63)

Eliminating τp yields the equation of a straight line τr/τm = Np

5(Np−1) · ν0τr or, on a
logarithmic scale,

log(τr/τm) = log ν0τr − log[5(Np − 1)/Np] (27.64)

Figure27.8 depicts this line for rated frequency (ν0 = 1) and Np = 2. Each point
on this line corresponds with a certain value of the pole pitch τp or machine size
(rated power). Each point also corresponds to scaling law values for the parameter
σ. For the parameters α (normally equal to 1) and τw/τr (negligible in most cases),
no annotations are given. The slip parameter νs0τr may vary, for example between 0
and νsnτr = 0.2.

Obviously, actual machines will not exactly correspond to this average machine
line, but the corresponding points will surely approach this line. The secondary
parameters for actual machines may also deviate from the average values. In the
figure, the arrows indicate how the corresponding point will move when the leakage
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Fig. 27.8 Typical machine line for Np = 2

inductance is halved, or the inertia, the voltage (or flux) or the pu rotor resistance are
halved. For variable supply frequency (and the same rated flux level), the line shifts
vertically.

27.3.6.2 Stability Boundaries for σ = 0

An interesting starting point for the dynamic analysis of the induction machine is the
ideal case σ = 0. Note that σ = 0 does not imply zero leakage, which would corre-
spond to zero rotor and stator short-circuit time constants. Instead, it corresponds to
an infinite magnetising inductance, similar to the idealised equivalent circuit without
magnetising inductance that is sometimes used for the steady-state analysis.

The advantage of the case σ = 0 is that analytic solutions are easily obtained. For
example, the locus corresponding with marginal stability behaviour (i.e. eigenvalues
on the imaginary axis) consists of two intersecting curves:

(ν0τr )
2 = (1 + α)

[
τr

τm
− (1 + α)

]
(27.65)

(ν0τr )
2 = τr

τm
· (1 + α)2 + (τr/2τm)

2 + τr/τm
(27.66)
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Fig. 27.9 Instability boundaries for σ = 0 (α = 1 and α = 2)

These loci (τr/τm, ν0τr ) are the borderlines between stable and unstable behaviour.
The oscillating frequencies (imaginary parts of the eigenvalues) corresponding with
these boundaries are

(νdτr )
2 = (ν0τr )

2

1 + α
(27.67)

(νdτr )
2 = 1

2
· τr

τm
(27.68)

Figure27.9 illustrates these boundaries for α = 1 and α = 2. The hatched region
between the boundaries for α = 1 corresponds to unstable behaviour (eigenvalues
in the right half plane). The region outside the boundaries is stable for α = 1. The
intersection point of the boundaries is at (τr/τm = 2(1 + α), ν0τr = 1 + α) with
eigenfrequency νdτr = √

(1 + α).
The two instability regions demarcated by the boundary curves correspond with

the instability parts in the low-frequency and the high-frequency root loci, respec-
tively, and are accordingly called the low- and the high-frequency instability regions.
The point (2(1 + α), 1 + α) where both curves intersect (for σ = 0) is referred to as
the transition point. Note that this value of the frequency parameter corresponds to
the break-away point for the open-loop poles.
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Figure27.9 also illustrates the effect of α. Larger α-values cause the instability
boundaries (and the transition point) to shift to higher values of ν0τr and τr/τm . As
we will see later on for non-zero σ, these larger α-values in fact increase the low-
frequency instability region (and slightly decrease the high-frequency instability).

In Fig. 27.9, also the average machine line for rated frequency supply is drawn.
As expected, conventional machines are indeed stable for rated frequency operation.
As a reduced supply frequency operation causes a vertical shift of the machine line
to lower values of the frequency parameter ν0τr , the figure suggests that at lower
frequencies all induction machines may become unstable. This would be a hasty
conclusion, as real non-zero values of the magnetic parameter cause an important
reduction of the instability regions (see Sect. 27.3.6.4).

Other secondaryparameters also affect the stability regions, for example the damp-
ing ratio α (see above) or the slip frequency. The latter may have a negative effect
on the stability (Sect. 27.3.6.4).

27.3.6.3 Dynamic Behaviour for the Case σ = 0

In addition to the boundaries between stability and instability, the idealised case of
σ = 0 can also teach us more about the degree of stability. Most important are the
dominant eigenvalues, their damping and eigenfrequency.

In the parameter plane, the dominant modes and eigenvalues may be represented
as in Fig. 27.10 (for the case σ = 0). The lines of constant damping may be regarded
as constant height contour lines referred to sea level (i.e. altitude); a negative value
represents a valley (stable), a positive value represents a hill (unstable). In this repre-
sentation, the instability regions form a ridge from the left lower corner to the right
upper corner of the plane.

The red dash-dot line in the figure is a possibleworst damping line, here the locus
of the points (τr/τm, ν0τr ) where for a given ν0τr the damping is maximally positive.
The points on this worst damping line9 correspond to the uttermost right points on
the root loci for given ν0τr (see Fig. 27.10). In the ideal case of σ = 0, all these points
are in the right half plane (or, only for the transition point, on the imaginary axis).
The transition point is in fact the best damped point for all points on the (or on each)
worst damping line and is really a saddle point for all worst damping lines.

In a similar way, the eigenfrequencies (at least for complex dominant eigenvalues)
may be represented in the parameter plane (see Fig. 27.11). From both figures, it is
again clear that the frequency-parameter value ν0τr = 1 + α (or ν0τr = 2 forα = 1)
is the real transition between high- and low-frequency behaviour.

As to the instability regions we observe that in the high-frequency range, the (pos-
itive) real part of the eigenvalue (i.e. positive damping) along the worst damping line

9There are an infinite number of worst damping lines, depending on how the concept is defined, for
example for constant τr/τm or for constant ν0τr . Explain this from a purely mathematical point of
view, and think of partial derivatives. In fact, the worst damping line for constant τr/τm and variable
ν0τr is somewhat more practical, but the difference between both lines is small.
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Fig. 27.10 Dynamic behaviour for σ = 0 and α = 1

increases monotonously and quite abruptly with increasing frequency parameter val-
ues (ν0τr ). To the right or left of the worst damping line, positive damping decreases
quite fast (i.e. the high-frequency instability region is steep but quite narrow).

In the low-frequency range, however, the positive damping increases much more
gently. The positive damping reaches a maximum and then decreases, in the limit
(ν0τr → 0) to zero. In other words, the low-frequency instability region is rather
weak. As we will see later on, the secondary parameters also have an important
effect in this region (in contrast to the high-frequency instability).

In the stable range, particularly above the worst damping line, the damping
becomes more and more negative for higher values of the frequency parameter,
until an extreme damping of about −0.5 is attained. In this region where the damp-
ing is −0.5, the eigenfrequency is (τr/τm − 0.25)1/2 (see Sect. 27.3.5.3). For low
values of the gain τr/τm the two dominant eigenvalues become real, and for very
low gain values there is only one real dominant eigenvalue, corresponding with the
inertia (and quasi-static machine torque). Note that in the stable range far above the
transition point, the damping is almost independent of the frequency parameter.
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Fig. 27.11 Eigenfrequencies for σ = 0 and α = 1

Below the worst damping line, and particularly in the low-frequency range, the
damping changes quite smoothly. For very low ν0τr and high τr/τm the damping
becomes independent of τr/τm and decreases with decreasing ν0τr . The eigenfre-
quency then corresponds to the frequencyof theopen-loop zerosνdτr = ν0τr

√
1 + α.

From the eigenfrequencies (seeFig. 27.11), similar conclusions as to the difference
between the high and low-frequency regions can be deduced. Above the transition
point and the worst damping line, the oscillation frequency is mainly dependent on
the gain τr/τm and more or less independent of ν0τr . Sufficiently below the transition
point and the worst damping line, the reverse is true.

27.3.6.4 Effect of the Secondary Parameters

As is the case for the main parameters ν0τr and τr/τm , the effect of the secondary
parameters is quite different in the low- and high-frequency regions. In some cases,
their effect is completely opposite. This is for example the case for the damping ratio
α and the slip parameter νs0τr . The magnetic parameter σ, on the other hand, has a
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Fig. 27.12 Effect of σ on the stability behaviour

uniform stabilising effect, albeit to a different degree in the low- and high-frequency
ranges.

Figure27.12 shows the instability regions in the parameter plane for α = 1 and
α = 2 and σ = 0.04. For the sake of comparison, the boundaries for σ = 0 are also
given. The stabilising effect of themagnetic parameter is clear. Even for a lowvalue of
σ = 0.04 the instability regions shrink considerably, especially around the transition
point. The two instability regions do not touch any more and around the transition
point there is now a band for τr/τm and ν0τr where no instability occurs. A machine
of rated power of 100kW, for example, will never enter instability with decreasing
supply frequency (for constant rated flux and machine inertia only). The stabilising
effect is, however, strongest in the low-frequency region. The low-frequency insta-
bility is indeed much less pronounced than the high-frequency instability (see the
previous section).With σ-values different from 0, the low-frequency region becomes
closed for low values of ν0τr , besides shrinking and moving away from the transition
point. For σ > 0.055 and α = 1 the low-frequency instability region does not exist
any more. The high-frequency instability region also shrinks with higher values of
the magnetic parameter but to a much lesser degree.

Thismay also be illustrated as inFigs. 27.13 and27.14,which show the damping as
a function of τr/τm along theworst damping line (forα = 1 andα = 2, respectively).



27.3 Characteristic Dynamic Behaviour of the Induction Machine 619

5 100.1 0.2 0.5 1 2 20 50 100

-0.04

-0.06

-0.02

0.0

0.02

0.04

0.06

0.08

r/ m

r

=0
=1

=0.08

=0.04

=0.12

( =1, so r = 0)

Fig. 27.13 Worst damping for different σ-values and α = 1

5 100.1 0.2 0.5 1 2 20 50 100

-0.04

-0.06

-0.02

0.0

0.02

0,04

0.06

0.08

r/ m

r

=0
=2

( =2, so r = 0)

=0.12
=2

( =0, =1)

=0.04
=2

=0.08
=2

Fig. 27.14 Worst damping for different σ-values and α = 2

Whereas a possible instability always remains in the high-frequency region (here
large τr/τm), the instability in the low-frequency region disappears completely for
larger σ (positive damping values imply instability, negative values imply stability).
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The effect of the damping ratioα has already been discussed forσ = 0.With larger
α-values the transition point moves up to higher values of τr/τm and ν0τr , and the
low-frequency instability region appears to increase in size (Fig. 27.9). A comparison
of Figs. 27.13 and 27.14 shows that for non-zero values of σ, with higher α-values
the positive damping along the worst damping line increases in the low-frequency
range but decreases in the high-frequency range. For example, the low-frequency
instability for α = 1 is non-existent for values of σ greater than 0.06 but for α = 2
and the same σ it will still exist. Also, at the transition point the damping becomes
more and more negative (stable) for higher α. Another illustration of the effect of
α is given in Fig. 27.15, where for σ = 0 and three α-values the damping along the
worst damping line is depicted.

The effect of the slip or slip frequency is illustrated in Figs. 27.16 and 27.17. The
stabilising effect of positive slip is most pronounced in the range of low-frequency
parameter values. For positive rated slip frequency νs0τr = 0.2, the low-frequency
instability completely disappears; in the high-frequency range, the positive damping
slightly decreases. In contrast, for negative slip values the instability in the low-
frequency range increases. In the high-frequency range, stability also improves with
negative slip - even more so than for positive slip (see Fig. 27.17).

Although the case σ = 0 seems to predict possible unstable behaviour for all
machine sizes at supply frequency reduction, for non-zero σ-values the instability
tendency is much lower. Actual induction machines have non-zero σ-values. The
smaller the power rating, the larger the σ-values are. As the stabilising effect of σ is
quite important in the range of low values of the frequency parameter and gain (i.e.
in the parameter range of these small machines), instability for these small power
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ratings is very unlikely. Larger machines (with power ratings in excess of 100kW)
may, nevertheless, exhibit instability at frequency reduction. This was first observed
in practice in the 1970s and generated this kind of stability studies.10

27.4 Conclusions

This chapter began with the derivation of a dynamic model for induction machines.
This model presupposes an idealised machine with sinusoidal distributed windings
so that mmf harmonics can be ignored. Main field saturation has been modelled in
a simplified way, similar to the steady-state analysis model, thus supposing a frozen
saturation condition. In terms of supply, the model is very general, however. Both
sinusoidal and non-sinusoidal supply can be studied with it.

Next, themodel was applied to study the local stability behaviour around a steady-
state operating point (with symmetrical sinusoidal supply). For an idealised induction
machine with infinite magnetising inductance (σ = 0), it was found that instabil-
ity could occur for all power ratings at reduced supply frequency. However, real
machines have a finite magnetising inductance and σ-values different from zero.
Moreover, as machines with a smaller power rating typically show larger σ-values,
the instability tendency for smallmachines turns out to be non-existent.Yet,machines
of large power rating are prone to unstable behaviour (e.g. oscillating, hunting) when
operated at lower supply frequencies.

In special cases, small machines may still exhibit unstable behaviour, for example
when large resistances are added in the supply lines. Or, with the boom of induction
generators for small wind turbines, a more important instance when the machine is
in generating mode.

Models with a more accurate modelling of (main) field saturation have quite
recently been presented. For example, in [22]main field saturation has beenmodelled
using both chord-slope and tangent-slope inductances. The model has then been
applied for a local stability analysis, the results of which show that the simplified
model used in this chapter yields somewhat more conservative results than the more
accurate model and real machines.

10On a laboratory setting, it is not possible to demonstrate the instability for large machines as the
maximum power rating inmost laboratories is too low. An artificial way of demonstrating instability
of inductionmachines is to usemachineswith a lower power rating and to compensate the stabilising
effect of σ by artificially increasing the damping ratio by means of additional line resistances.



Chapter 28
Modelling and Dynamic Behaviour
of Synchronous Machines

Abstract Not only induction machines, but synchronous machines as well may
exhibit dynamic problems when fed by a variable frequency supply. In this chapter
we analyse and represent the dynamic behaviour of synchronous machines in an
analogous way as we have done for the induction machine. The results are quite
similar. However, for synchronous machines such scaling laws do not exist to the
same extent as for induction machines.

28.1 Introduction: Modelling of Rotating Field Machines
with Saliency

Compared to inductionmachines, synchronousmachines nearly always exhibit some
kind of rotor saliency. In synchronousmachines with salient poles and a concentrated
DCexcitationwinding, the saliency is obviously quite pronounced.Yet, smooth-rotor
turbo generators (with a distributedDC excitationwinding), too, show some saliency.
Similar conclusions hold for permanent-magnet synchronous motors. Interior PM
machines normally exhibit a more pronounced saliency than surface PMmotors, but
also in the latter case, saliency is rarely negligible.

The stator of most synchronous machines is similar to that of induction machines,
i.e. three-phase with distributed windings (although there are exceptions like small-
surface PM motors, also known as BLDC motors).

The usual simplifying assumptions for the steady-state model of synchronous
machines are similar to those of induction machines:

• a three-phase (or polyphase) symmetrical machine (both stator and rotor)
• sinusoidal distributed stator windings (no higher space harmonics of current layer,
mmf or field)

• neither stator slot-effects nor stator saliency
• a two-phase rotor, possibly with saliency, and with the excitation in the d-axis

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_28

623



624 28 Modelling and Dynamic Behaviour of Synchronous Machines

• no skin effects
• no saturation (or constant saturation)
• a symmetrical sinusoidal three-phase supply
• steady state only

The rotor may contain saliency effects, and if this is the case, the standard Blondel
model applies (see Chap.5 in Part 1).

However, there is no real need for a restriction to a symmetrical sinusoidal three-
phase (ormultiphase) supply. If the supply is asymmetrical, this kind ofmodel should
be used for each symmetrical component. If the supply voltage contains harmonics,
then this kind of model can be used for each harmonic.

For the dynamic model, we will apply mostly the same simplifying assumptions,
except of course those unique to the steady state.The supply will not be restricted
to be either symmetrical or sinusoidal. To derive the model, we will start from the
(dynamical) electrical equations for the three stator phases and for the windings in
the two rotor axes, as well as the equation of motion.

Such equations are very apt for direct digital simulation as the number of equations
is not very important for simulation.

For an analytical study it is, however, important to reduce the number of equations
(and variables). For a wye-connected machine the neutral is almost never connected
and the zero-sequence current cannot flow; for a delta-connected machine the zero-
sequence voltages are inherently zero. This implies that the zero-sequence equations
and components in the stator can be omitted in most or all cases.

To reduce the number of stator equations, the symmetrical components transfor-
mation could be used in theory, as for the induction machine. In practice, though, this
would initially lead to complex stator equations, while the two-phase rotor equations
remain real. Furthermore, while the positive sequence stator component is synchro-
nous with the rotor, the negative sequence component slips with regard to the rotor.
Moreover, in case of saliency, the rotor is not two-phase symmetrical (magnetic
saliency, different number of windings in the two rotor axes, different windings),
and as such space vectors cannot be used. It is therefore more practical to use the
Clarke transformation for the stator, while also omitting the zero-sequence compo-
nents and the corresponding equations.

It will be shown that the resulting equations can be made stationary (i.e. not
explicitly dependent on time, whereas the basic equations are time-dependent).

Finally, it is important to stress that neither the model nor the analysis method is
restricted to a symmetrical sinusoidal supply. Voltages and currents may in principle
contain harmonics and may be asymmetrical.

http://dx.doi.org/10.1007/978-3-319-72730-1_5
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Fig. 28.1 Three-phase synchronous machine and two-phase equivalent

28.2 The Standard Dynamic Model of a Synchronous
Machine

28.2.1 Basic Assumptions and Equations

Figure28.1a schematically shows the considered synchronous machine with a three-
phase stator and a two-phase rotor, containing, in addition to the field winding f , the
two short-circuited damper windings kd and kq.

The differential equations between the instantaneous values of voltages and cur-
rents for this machine can be written as

Vi = Ri · Ii + d

dt

(
Li(θ) · Ii) (28.1)

with
Vi = [Va Vb Vc Vkq Vkd V f ]T

Ii = [ Ia Ib Ic Ikq Ikd I f ]T

Ri and Li are the resistance and inductance matrices, respectively:

Ri = diag(Rs, Rs, Rs, Rkq , Rkd , R f ) (28.2)

Li(θ) =
[
Li
ss(θ) L

i
sr(θ)

Li
rs(θ) Li

rr

]
(28.3)
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Li
ss(θ) =

⎡

⎣
Ls Ms Ms

Ms Ls Ms

Ms Ms Ls

⎤

⎦ − Ls2

⎡

⎣
cos 2θ cos 2(θ − π/3) cos 2(θ − 2π/3)

cos 2(θ − π/3) cos 2(θ − 2π/3) cos 2(θ − 3π/3)
cos 2(θ − 2π/3) cos 2(θ − 3π/3) cos 2(θ − 4π/3)

⎤

⎦ (28.4)

Li
sr(θ) = [Li

sr(θ)]T =
⎡

⎣
Mskq cos θ −Mskd sin θ −Ms f sin θ

Mskq cos(θ − 2π/3) −Mskd sin(θ − 2π/3) −Ms f sin(θ − 2π/3)
Mskq cos(θ − 4π/3) −Mskd sin(θ − 4π/3) −Ms f sin(θ − 4π/3)

⎤

⎦

(28.5)

Li
rr =

⎡

⎣
Lkq 0 0
0 Lkd Mkd f

0 M f kd L f

⎤

⎦ (28.6)

θ is the instantaneous angle between the stator reference phase and the q-axis of the
rotor, i.e. the axis of maximum reluctance (see Fig. 28.1). Voltages and currents are,
in principle, the real instantaneous functions of time.

The superscript T indicates matrix transposition. In the absence of saturation
Ls, Ls2, Ms, Mskq , Mskd , Ms f and Lkq , Lkd , M f kd = Mkd f are constants.

Because of the reluctance difference between the d-axis and q-axis of the rotor,
the self-inductance of the stator pulsates with a period of π electrical radians. In the
above model, only the fundamental is taken into account and higher harmonics are
disregarded. The mutual inductance matrix between stator and rotor contains terms
in sin θ, sin(θ ± 2π/3), on the one hand, and terms in cos θ, cos(θ ± 2π/3), on the
other hand, because of the two-phase rotor.

To obtain a more practical form of these equations, we will apply some transfor-
mations.

In order to obtain the two-axis representation of (b) in Fig. 28.1, we first apply the
Clarke transformation to the voltages and currents (a, b, c to 0,α,β) of the stator

T−1
s = 2

3

⎡

⎣
1/2 1/2 1/2
1 −1/2 −1/2
0

√
3/2 −√

3/2

⎤

⎦ (28.7)

After we have omitted the zero-sequence components, this yields

Vc = Rc · Ic + d

dt

(
Lc(θ) · Ic]) (28.8)

with
Vc = [Vα Vβ Vkq Vkd V f ] T (28.9)

Ic = [ Iα Iβ Ikq Ikd I f ] T (28.10)

Rc = diag[ Rs Rs Rkq Rkd R f ]T (28.11)
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Lc(θ) =
[
Lc
ss(θ) L

c
sr(θ)

Lc
rs(θ) Lc

rr

]
(28.12)

with

Lc
ss(θ) =

[
Ls − Ms 0

0 Ls − Ms

]
− 3

2
Ls2

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
(28.13)

Lc
sr(θ) = 2

3
[Lc

rs(θ)]T =
[
Mskq cos θ −Mskd sin θ −Msf sin θ
Mskq sin θ +Mskd cos θ +Msf cos θ

]
(28.14)

Lc
rr =Li

rr (28.15)

Note that the inductance matrix equation 28.12 is not reciprocal. This is the conse-
quence of the non power-invariant Clarke transformation equation 28.7 that we have

used (the power-invariant Clarke transformation1 has the coefficient
√

2
3 instead of

2
3

before the matrix, and for the zero-sequence components 1√
2
instead of 1

2 ). The non
power-invariant form is, nevertheless, most commonly used in machine theory as it
preserves the amplitude of currents and voltages (but not the power).

To obtain a stationary machine model, we will transform the α,β stator variables
into q, d variables in a reference frame fixed to the rotor (thus with a speed ωr =
dθ/dt , see (a) in Fig. 28.1):

T−1
` =

[
cos θ sin θ

− sin θ cos θ

]
(28.16)

This results in

V = R · I + d

dt
(L · I) − θ̇[G · I] (28.17)

with
V = [Vq Vd Vkq Vkd V f ] T (28.18)

I = [ Iq Id Ikq Ikd I f ] T (28.19)

R = diag[ Rs Rs Rkq Rkd R f ]T (28.20)

1You may also check the Wikipedia pages on the Clarke transformation (which is also called the
αβ-transformation).
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L =

⎡

⎢⎢
⎢⎢
⎣

Lq 0 Mskq 0 0
0 Ld 0 Mskd Ms f

3
2Mskq 0 Lkq 0 0
0 3

2Mskd 0 Lkd M f kd

0 3
2Msf 0 M f kd L f

⎤

⎥⎥
⎥⎥
⎦

(28.21)

G =

⎡

⎢⎢
⎢⎢
⎣

0 Ld 0 Mskd Ms f

−Lq 0 −Mskq 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥
⎥⎥
⎦

(28.22)

with Ld = Ls − Ms + 3
2 Ls2 and Lq = Ls − Ms − 3

2 Ls2 the inductances of the d-
and q-windings of the stator; the subscripts s, f, k refer to stator, field and damper
windings, respectively.

The instantaneous electromagnetic power is given by

P = Va Ia + Vb Ib + Vc Ic = 3V0 I0 + 3

2
(Vα Iα + Vβ Iβ) = 3V0 I0 + 3

2
(Vd Id + Vq Iq)

(28.23)
Subtracting the Joule losses and the change in magnetic energy (see Ref. [14] for a
proof), we obtain the mechanical power and thus the torque

T/Np = 1

2

{
[Ii]T · dL

i(θ)

dθ
· Ii

}
= 3

2
· 1
2

·{IT · [G + GT] · I} = 3

2
·{Ψq Id − Ψd Iq

}

(28.24)
where Ψq and Ψd are the fluxes linked with the stator windings

Ψq = Lq Iq + Mskq Ikq (28.25)

Ψd = Ld Id + Msf I f + Mskd Ikd (28.26)

These fluxes, as well as the fluxes linked with the rotor windings, follow from

� = [�q Ψd Ψkq Ψkd Ψ f ] T = L · I (28.27)

Each of these fluxes is composed of the main flux (linking all windings in the same
axis) and the leakage fluxes. The corresponding inductances may be written as the
sum of a main inductance and leakage inductances as follows:

Lq = Lqσ + Lqm (28.28)
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Ld = Ldσ + Ldm + Ldkdσ + Ld f σ (28.29)

Lkq = Lkqσ + Lkqm (28.30)

Lkd = Lkdσ + Lkdm + Lkddσ + Lkd f σ (28.31)

L f = L f σ + L f m + L f kdσ + L f dσ (28.32)

The main inductances in d- and q-axes refer to the main field or flux in these axes,
respectively; thus Ldm, Lkdm, L f m differ only by their turns ratio. The same holds
for Lqm, Lkqm .

The leakage fluxes in the d-axis (and the corresponding inductances) can be sub-
divided into leakage stricto sensu (Ldσ, Lkdσ, L f σ) coupled with only one winding,
and mutual (or common) leakages (Ldkdσ, Ld f σ, Lkd f σ) coupled with exactly two
windings.2 What corresponding leakage fluxes all have in common is that they are
not coupled to all three windings and are not considered main flux in this represen-
tation. In practice, the common leakage between d-and f -windings is usually rather
small and can be disregarded. We will see below that by choosing appropriate turns
ratios3 or reference values, all mutual leakage terms can be made equal to zero.

For the complete electromechanical model, the equation ofmotion has to be added
to the five electrical equations

(
J/Np

) d2θ

dt2
= T − Tl (28.33)

with the torque T given by the expression Eq.28.24.

Remarks:

1- In the above q, d model, the d-axis is chosen along the rotor flux or excitation
axis, while the q-axis is chosen π/2 electrical radians lagging with respect to the
d-axis, i.e. the positive rotation direction is from the q-axis towards the d-axis. This
is the preferred choice for modelling a generator in the GRS, as a positive excitation
along the d-axis then leads to a positive emf along the q-axis. It may be argued that a
choice with the q-axis leading the d-axis is more appropriate for studying motoring,
but then two different models have to be dealt with, one for generating and another
for motoring. The choice of a d-axis leading the q-axis is in agreement with a 1968
IEEE recommendation (see Ref. [13]).
2- As already mentioned, the α,β- and q, d-models can also be derived by means of
the symmetrical components transformation. A space vector representation can also

2In the literature, this is sometimes called doubly-coupled leakage.
3In fact, as for an induction machine or transformer, these turns ratios cannot be measured.
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Fig. 28.2 SM d-q-model for steady state

be obtained from the α,β- and q, d-models as follows:

V−→
c
s = Vα + jVβ (28.34)

V−→s =Vq + jVd = V−→
c
s exp(− jθ) (28.35)

(where, for sinusoidal supply, space vectors and phasors of voltages and currents are
identical, V−→c

s = V c
s and V−→s = V s). Other reference frames than a standstill or a rotor

reference can also be used. The problem, however, is that the rotor is not two-axis
symmetrical (in terms of saliency, the number of windings and/or the resistances),
which automatically excludes a space vector representation of the rotor. In addition,
the rotor model has two magnetically uncoupled axes only if a rotor reference frame
is used.
3- The steady-state phasor diagram corresponding with the above equations is shown
in (b) in Fig. 28.2. The instantaneous angle θ between the stator and rotor reference
axes is also the angle between the stator reference axis and the rotor-induced emf
E−→p (with E p = E−→p for sinusoidal steady state): θ = arg( E−→p, 1−→re f ) = ωt − δ
where ω is the instantaneous supply frequency (ω0 in steady state) and with the load
angle4 given by δ = arg( V−→s, E−→p). Besides the load angle, also the phase angle ϕ

and the internal angle ψ are used: ϕ = arg( V−→s, I−→s) and ψ = arg( E−→p, I−→s). In the
GRS: ϕ = ψ − δ because of the GRS definition of δ as δ = arg( E−→p, V−→s); in the
URS the relation between ϕ,ψ and δ is ϕ = ψ + δ because of the URS definition of
δ as δ = arg( V−→s, E−→p).

4In the URS, the load angle is positive if the stator voltage leads the emf.
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28.2.2 Equations for Sinusoidal Steady State and for Small
Deviations Around Steady State

The equations in the previous sections hold for both sinusoidal and non-sinusoidal
supply. In the next sections of this chapter, we will study small deviations around
a sinusoidal steady state. For a sinusoidal steady state, we have Vs0 = V0, Vd0 =
V0 sin δ, Vq0 = V0 cos δ, V f = V f 0, Vkq = Vkd = 0, θ0 = ω0t − δ0, Tl = T l0.
With all derivatives with respect to time equal to zero in Eq.28.17, we obtain for the
steady-state equations

V0 = R · I0 − ω0[G · I0] (28.36)

T0 = Tl0 = 3

2
· Np

{
Ψq0 Id0 − Ψd0 Iq0

}
(28.37)

The equations for small deviations around the steady state are derived by subtracting
the steady-state equations from the Eq.28.17 and omitting terms with second-order
variations:

�V = R · �I + d

dt
(L · �I) − ω0[G · �I] − Δωr [G · I0] (28.38)

(
J/Np

) dωr

dt
= 3

2
Np ·{ΔΨq Id0 + Ψq0ΔId − ΔΨd Iq0 − Ψd0ΔIq

}−KwΔωr −ΔT ′
l

(28.39)
Note that for the speed and frequency, the following relations hold: θ̇0 = ωr0 = ω0

and Δωr = Δθ̇ = Δω − Δδ̇

28.2.3 Reciprocity - pu or Absolute Modelling

Due to the non-power-invariant Clarke transformation used for the stator quantities,
the Eq.28.8 (and other equations derived from it) are not reciprocal. Although such
a model does not seem physically possible, all results derived based on this model
may nevertheless be used, as long as the corresponding non-power-invariant inverse
transformations are used to transform back to the original quantities.

Nevertheless, some authors prefer reciprocal equations, whichmay be obtained by
either using a reciprocal transformation or converting the non-reciprocal equations
to pu (with appropriate reference values).

The most comprehensive power-invariant transformation (see also Ref. [8]) is as
follows. If for the voltages a transformationV = T·V′ is used, then the transformation
for the currents which automatically guarantees power-invariance is I′ = TT · I.
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Indeed, VT · I = V′T · TT · I = V′T · I′ (note that the inverse of the matrix T is not
required to exist).

The Clarke transformation equation 28.7 with V′ = T−1
c · V and with the same

transformation for the currents I′ = T−1
c ·I is not power invariant becauseTT

c �= T−1
c .

A reciprocal form based on the Clarke transformation matrix applies this Clarke
matrix to the voltages, V′ = T−1

c · V, but for the currents it uses I′ = TT
c · I

or thus I = (
T−1
c

)T · I′. It is easy to verify that the coefficients for the positive

and negative sequence components in
(
T−1
c

)T
are those of Tc multiplied by 2

3 .
With this transformation, compared to the original three-phase machine, the voltages
are retained but the currents are larger by a factor of 3/2. Stator resistances and
self inductances are smaller by a factor of 2/3 and all mutual inductances between
stator and rotor are equal to the original inductances (Mskq , Mskd , Msf ). The retained
voltage amplitudes, the current amplitudes larger by a factor 3/2 and the resistances
and self-inductances smaller by a factor 2/3 all imply that (1) in the transformed
two-phase machine the number of effective stator windings per phase remains equal
to that of the original machine, (2) the amplitude of the air-gap mmf remains equal
to 3

2 (wξ1) · Î (meaning that also the flux has the same value), and (3) the section of
the stator windings is larger by a factor 3/2 (i.e. the same amount of copper is used
for the windings). As expected, the power remains invariant. For example, the stator
joule losses are for the two-phase machine 2 · 2

3 Rs · 1
2 (

3
2 Î )

2 = 3
2 Rs Î 2 = 3Rs I 2,

which is equal to those of the original machine.
In contrast, the non-power-invariant Clarke that we used in the previous sections

resulted in a non-reciprocal inductance matrix and a non-power-invariant model.
This two-phase machine is therefore not physically realisable5 (see also Table28.1).

Another way to obtain an equivalent reciprocal two-phase model is to apply the
power-invariant Clarke transformation, but in this case voltage amplitudes are not the
same as in the original three-phase machine, and neither are the current amplitudes.
As mentioned before, this power-invariant Clarke is rarely used in machine theory.

Although the non-reciprocal equations are useful for studying the machine and
its dynamic behaviour, some people prefer a reciprocal model. In that case, either
we have to use a reciprocal transformation as discussed above, or we revert to a pu
representation where a judicious choice of the reference values results in reciprocal
equations. To obtain a reciprocal pu representation starting from the non-reciprocal
model derived in Sect. 28.2.1, reference values for the rotor currents have to be chosen
which are 3/2 times larger than those corresponding to the turns ratios between
stator and rotor windings. As the voltage levels are retained in both models, the
reference values for the voltages differ only by the turns ratios between stator and
rotor windings.

In this way, we obtain the pu equations used in this section below.

5From the equality of the voltages, it follows that the number of effective windings should be the
same as in the original machine. In contrast, from the equivalence of the mmf (cf. the inductances of
the d- and q-windings compared to the original ones), the new number of effective stator windings
should be larger by a factor of 3/2.
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Table 28.1 Three-phase synchronous machine and two-phase equivalents

Three-phase machine Two-phase non-reciprocal Two-phase reciprocal

V̂ V̂ V̂

Î Î 3
2 Î

Rs Rs
2
3 Rs

Ls [±Ls2] Ls − Ms ≈ 3
2 Ls [±Ls2] 2

3 (Ls − Ms) ≈ Ls [±Ls2]
Ms = − 1

2 (Ls − Lsσ) ≈ − 1
2 Ls 0 0

Msr(d) = Ms f Msrd = Ms f Msrd = Ms f

Mrs(d) = Ms f Mrsd = 3
2Ms f Msrd = Ms f

Pj = 3
2 Rs Î 2 Pj = Rs Î 2 Pj = 3

2 Rs Î 2

m.m.f. = 3
2 Î (wξ) m.m.f. = Î (w′ξ′) m.m.f. = 3

2 Î (w”ξ”)

Ψphase = Ls Î Ψphase = (Ls −Ms) Î = 3
2 Ls Î Ψphase = 3

2 Ls Î

Ψdr,ss = 3
2 Ls Î Ψdr,ss = 3

2 Ls Î Ψdr,ss = 3
2 Ls Î

Ψdr,sr = Ms f i f Ψdr,sr = Ms f i f Ψdr,sr = Ms f i f

Ψdr,rs = 3
2Ms f Î Ψdr,rs = 3

2Ms f Î Ψdr,rs = 3
2Ms f Î

Non-power-invariant,
non-reciprocal

Power-invariant; reciprocal

Equivalence voltages:
w′ξ′ = wξ

Equivalence voltages:
w”ξ” = wξ

Equivalence mmf:
w′ξ′ = 3

2wξ
Equivalence mmf: w”ξ” = wξ

For the d-axis, the notation ldm has been used for the pu air-gap ormain (magnetis-
ing) field inductance. Mutual leakage inductances between the d-axis stator winding,
on the one hand, and the kd- and f -rotor windings, on the other hand, are absent.
This is because we have chosen the current reference values for the rotor windings in
the d-axis in accordance with their transformer ratio with respect to the stator d-axis
winding (but multiplied by a factor 3/2 to obtain reciprocity). In each of the three
d-axis windings, a unit current will result in the same unit air-gap flux in the d-axis
and in the same (unit) emf in the stator q-axis winding. A three-phase unit current
in the original three-phase stator windings would lead to the same emf. This is well
known as the Lad -basis, where Lad stands for the armature reaction inductance. The
only remaining mutual leakage6 is the one between the kd-and f -axes, l f kdσ .

ld = ldσ + ldm (28.40)

l f = l f σ + m f kd = l f σ + l f kdσ + ldm (28.41)

lkd = lkdσ + m f kd = lkdσ + l f kdσ + ldm (28.42)

6However, by appropriately choosing the turns ratios, we may eliminate this one as well - prove
this.
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For the q-axis, the notation lqm can be used for the mutual inductance if the actual
fundamental transformer ratio between the q- axis windings is used. However, the
transformer ratio between the stator and the q-axis rotor windings is not exactly equal
to that between the stator and the rotor d-axis windings because of the difference in
magnetic permeability for the two axes - referred to the fundamental - (see also Ref.
[8]). If, to simplify calculations, the transformer ratio between the d-axis windings
is also used for the q-axis, then instead of lqm the notation mqkq should be used7 for
the mutual inductance, as the d-axis transformer ratio is not a realistic representation
of the main air-gap field in the q-axis.

lq = lqσ + lqm (28.43)

lkq = lkqσ + lqm (28.44)

For steady state, with vd0 = v0 sin δ0, vq0 = v0 cos δ0, v f = v f 0, vkq = vkd = 0,
tl = tl0; νr0 = ν0, the pu electrical equations are

vq0 = v0 cos δ0 = rsiq0 − ν0
(
ld id0 + ldmi f 0

)
(28.45)

vd0 = v0 sin δ0 = rsid0 + ν0lq iq0 (28.46)

v f 0 = r f i f 0 (28.47)

while the torque is given by

tl0 = t0 = [
lq iq0id0 − (

ld id0 + ldmi f 0
)
iq0

] = ep0iq0/ν0 + (
lq − ld

)
iq0id0 (28.48)

The steady-state currents are, with ep0 = −ν0ldmi f 0 denoting the steady-state emf,

iq0 = rs(vq0 − ep0) + ν0ldvd0
r2s + ν2

0 ldlq
(28.49)

id0 = rsvd0 − ν0lq(vq0 − ep0)

r2s + ν2
0 ldlq

(28.50)

The steady-state torque is

t0 = lqvd0ep0
r2s + ν2

0 ldlq
+ (ld − lq)

vd0vq0

r2s + ν2
0 ldlq

+ (rs/ν0)
(vq0 − ep0)ep0
r2s + ν2

0 ldlq

+ (ld − lq)rs
ν0lq(vq0 − ep0)2 − ν0ldv2

d0 − 2rsν0(vq0 − ep0)vd0
r2s + ν2

0 ldlq
(28.51)

7The difference is usually small, however.
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or, for zero stator resistance,

t0 = v0ep0
ν2
0 ld

sin δ0 + 1

2
(v2

0/ν
2
0 )(l

−1
q − l−1

d ) sin 2δ0 (28.52)

The pu equations for small deviations around the steady state are (with short-circuited
damping windings):

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

Δv cos δ0
Δv sin δ0

0
0

Δv f

−Δt
′
l

Δν

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

rs + plq −νr0ld pmqkq −νr0ldm −νr0ldm −φd0 vd0
νr0lq rs + pld νr0mqkq pldm pldm φq0 −vq0
pmqkq 0 rkq + plkq 0 0 0 0

0 pldm 0 rkd + plkd pm f kd 0 0
0 pldm 0 pm f kd r f + pl f 0 0

φd0 − idolq −φq0 + iq0ld −id0lqm iq0ldm iq0ldm τn (p + �w) 0
0 0 0 0 0 1 p

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

·

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

Δiq
Δid
Δikq
Δikd
Δi f
Δνr
Δδ

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

(28.53)
in which p = d/d(ωnt), νr0 = ωr0/ωn = ν0 = ω0/ωn , Δν = Δω/ωn , Δνr =
Δωr/ωn , φq0 = lq iq0, φd0 = ld id0 + ldmi f 0.

In what follows, Eq.28.53 will be denoted as

M · u = A(p) · x (28.54)

with
u = [

Δv Δv f Δt
′
l Δν

]T
(28.55)

M =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

cos δ0 0 0 0
sin δ0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(28.56)

The steady-state equations in absolute values are similar to those in pu. Please keep
in mind that the expression for the torque in absolute values needs to be preceded by
the factor (3/2)Np.

For the dynamic equations in absolute values for voltages and currents, we obtain

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

ΔV cos δ0
ΔV sin δ0

0
0

ΔV f

−ΔT
′
l

Δν

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

=
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⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

Rs + pωn Lq −νr0ωn Ld pωn Mskq −νr0ωn Mskd −νr0ωn Ms f −ωn�d0 Vd0
νr0ωn Lq Rs + pωn Ld νr0ωn Mskq pωn Mskd pωn Ms f ωnΨq0 −Vq0
3
2 pωn Mskq 0 Rkq + pωn Lkq 0 0 0 0

0 3
2 pωn Mskd 0 Rkd + pωn Lkd pωn M f kd 0 0

0 3
2 pωn Ms f 0 pωn M f kd R f + pωn L f 0 0

3
2 Np(Ψd0 − Ido Lq ) − 3

2 Np(Ψq0 − Iq0Ld ) − 3
2 Np Id0Mskq

3
2 Np Iq0Mskd

3
2 Np Iq0Ms f

J
Np

pω2
n + ωn Kw 0

0 0 0 0 0 1 p

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΔIq
ΔId
ΔIkq
ΔIkd
ΔI f
Δνr
Δδ

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

(28.57)

in whichΨq0 = Lq Iq0 andΨd0 = Ld Id0 +Msf I f 0. This equation can also be written
in the form of Eq.28.54.

28.2.4 Approximation for Saturation in Standard Modelling

In the above model, the main or magnetising field inductances are assumed to be
constant. In reality, however, all (synchronous) machines are designed to work well
into saturation, mostly around the knee of the saturation characteristic.

For smooth rotor synchronous machines, the traditional (small-signal) model
always uses the chord-slope inductances corresponding with the resulting main flux
in the operating point. Amore accuratemodel should use the chord-slope inductances
in the operating point for the steady-state flux and the tangent-slope inductances for
flux variations, as was the case for the induction machine. In the analysis presented
below, we will nevertheless use the standard approach, using only the chord-slope
inductance.

For salient pole machines, different approaches are in use, even for the traditional
(small-signal) model. The most commonly used model is the Blondel model. Here,
first the mmf is split up into its components along the d- and q-axes. The flux
components along these two axes are calculated separately and then these fluxes are
added vectorially. For the d-axis flux, the (measured) d-axis saturation characteristic
is used to calculate the flux and the chord-slope inductances Ld0 and Ldm0. However,
for the q-axis, such a measured characteristic is usually not available (although a DC
excitation in the q-axis is absent, there are other methods to measure the saturation
characteristic8). As a consequence, sometimes the d-axis saturation characteristic
is used for the q-axis. Another approximation assumes an unsaturated state for the
q-axis. More sophisticated methods rely on finite-elements modelling to estimate
the permeance and saturation of the different parts of the q-axis flux trajectory (e.g.
stator teeth, stator yoke, rotor yoke).Whatever the approximation used for the q-axis,
in standard modelling only the chord-slope inductances are considered.

8These use AC excitation in the q-axis; however, how can stable operation be achieved with only
q-axis excitation?.
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28.3 Characteristic Dynamic Behaviour of Synchronous
Machines

28.3.1 Dynamic Parameters

As was the case with the DC machine and the induction machine, we prefer to study
the dynamic behaviour of synchronousmachineswith aminimal set of dimensionless
parameters.

A synchronous machine without excitation winding (reluctance machine) is
characterised by 15 parameters: the nine electrical machine parameters (Rs, Ld ,

Lq , Lkd , Lkq , Mskd , Mskq , Rkd , Rkq ), three mechanical parameters (J, Np, Kw)
and the three parameters that define the operating point (V0, ω0, δ).

A set of nine (9 = 15−6) dimensionless parameters is, nevertheless, sufficient to
characterise the dynamic behaviour of this sixth-order system. We will choose these
in analogy with the parameters chosen for the DC machine and induction machine:

• the magnetic parameters (leakage coefficients) for d- and q-axes:

σd = 1 − 3

2
M2

skd/Ld Lkd = 1 − l2dm/ ldlkd (28.58)

σq = 1 − 3

2
M2

skq/Lq Lkq = 1 − l2qm/ lqlkq (28.59)

• the dimensionless (short-circuit) stator time constants for d- and q-axes

τd = σdωn Ld/Rs = σdld/rs (28.60)

τq = σqωn Lq/Rs = σqlq/rs (28.61)

• the dimensionless (short-circuit) rotor time constants for d- and q-axes

τkd = σdωn Lkd/Rkd = σdlkd/rkd (28.62)

τkq = σqωn Lkq/Rkq = σqlkq/rkq (28.63)

• the dimensionless mechanical damping constant

τw = �−1
w = Jωn/NpKw (28.64)

(note that τw can also be written in terms of the inertia time constant τn: τw =
τn/kw = (Jωn/NpTn)/(Kw/Tn))
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• the dimensionless electromechanical time constant τm or the electromechanical
eigenfrequency νm defined as follows

τkdτm = ν−2
m = Jω2

n/[Np · (dT/dδ)] = τn/(dt/dδ) (28.65)

where τn is the inertia time constant and dT/dδ (or dt/dδ) is the slope of the
steady-state characteristic torque versus load angle

• the load angle δ (δ0)

The dimensionless supply frequency ν0 is eliminated by taking it together with the
electrical time constants (e.g. ν0τkd ), as we have done for the induction machine.

It is sometimes practical to introduce other parameters to illustrate the difference
between the d- and q-axes:

• the reluctance ratio
γdq = xd/xq (28.66)

• the damping ratio between d- and kd-windings

αdkd = τkd/τd (28.67)

• the damping ratio between q- and kq-windings

αqkq = τkq/τq (28.68)

• the stator damping ratio
αdq = τq/τd (28.69)

• the rotor damping ratio
αkdkq = τkq/τkd (28.70)

• the leakage ratio
κdq = σd/σq (28.71)

Note that αdkd · αkdkq = αdq · αqkq .
For a synchronous machine with excitation winding (and damper winding) in

the d-axis, we need seven additional parameters9 in addition to the three q-axis
parameters (τq , τkq , σq ), the two electromechanical parameters (τw, τm) and the
load angle δ:

9There are now 20 original parameters (13 electrical, 3 mechanical and 4 supply and excitation
parameters) for the drive while the system order is 7.



28.3 Characteristic Dynamic Behaviour of Synchronous Machines 639

• the leakage coefficient d − kd:

σdkd = 1 − 3

2
M2

skd/Ld Lkd = 1 − l2dm/ ldlkd (28.72)

• the leakage coefficient d − f

σd f = 1 − 3

2
M2

s f /Ld L f = 1 − l2dm/ ldl f (28.73)

• the leakage coefficient f − kd

σ f kd = 1−M2
f kd/L f Lkd = 1− (ldm + lkd f σ)2/ l f lkd ≡ 1−m2

f kd/ l f lkd (28.74)

(if by an appropriate choice of the reference values or turns ratios lkd f σ = 0, then
m f kd = ldm)

• the dimensionless stator time constant

τd = σdωn Ld/Rs = σdld/rs (28.75)

with σd the total d-axis leakage coefficient (Eq.28.78).
• the dimensionless time constant of the field winding

τ f = σd f ωn L f /R f = σd f l f /r f (28.76)

• the dimensionless time constant of the d-axis damper winding

τkd = σdkdωn Lkd/Rkd = σdkdlkd/rkd (28.77)

• the excitation parameter
ev = Ep0/V0 = ep0/v0

We note that in the definitions above, four d-axis leakage coefficients have been
introduced as there are now three windings in this axis. However, only three of these
four leakage coefficients are independent. For example, the total d-axis leakage
coefficient σd can be expressed in function of the three others as

1 − σd = (1 − σd f ) + (1 − σdkd) − 2
√

(1 − σd f )(1 − σdkd)(1 − σ f kd)

σ f kd
(28.78)

In most cases, σd is preferred to σ f kd .
Itmight be helpful to give amore explicit definition of themeaningof these leakage

coefficients. The coefficient σdkd between the d- and kd-windings is the ratio of the
short-circuit (leakage) inductance between these two windings, when measured or
viewed from the side of the kd-winding, and the main inductance of the kd-winding,
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while the f -winding is assumed open, thus: σdkd Lkd/Lkd . Put differently, σdkd Lkd

represents the remaining field coupled with the kd-winding when the d-winding is
shorted and the f -winding is open. These conditions may also be reversed: with
the kd-winding shorted and the f -and d-windings open, σdkd Ld is the short-circuit
inductance measured from the d-winding, and σdkd = σdkd Ld/Ld .

Analogous Definitions Hold for σd f and σ f kd .
The (total) leakage coefficient σd , on the other hand, is the ratio of the total

short-circuit (leakage) inductance viewed from the d-winding with both kd- and f -
windings shorted, and the main inductance of the d-winding, i.e. σd Ld/Ld . Thus,
σd Ld represents the remaining field coupled with the d-winding when the field
excited by the d-winding is shorted by both kd- and f -windings.

In addition to the short-circuit time constants τd , τ f , τkd , τq , τkq , the main field
time constants are also sometimes used. These are denoted by τdh, τ f h, τkdh, τqh,
τkqh and are defined in a similar way but with the main inductances instead of the
short-circuit inductances (or, with the leakage coefficients replaced by unity).

Although the (short-circuit) time constants and leakage inductances (or corre-
sponding leakage coefficients) are straightforward functions of the winding
impedances, in stability studies of grids and synchronous machines other quanti-
ties (transient and subtransient time constants and inductances) are quite common.
Their definition is as follows:

• the d-axis open-stator transient time constant τ
′
d0 = τ f /σd f = τ f h

• the d-axis open-stator subtransient time constant τ ”
d0 = τkd · (σ f kd/σdkd)

• the d-axis transient time constant τ
′
d = τ f

• the d-axis subtransient time constant τ ”
d = τkd · (σdσ f kd/σd f σdkd)

• the q-axis open-stator (sub)transient10 time constant τ ”
q0 = τkq/σq = τkqh

• the q-axis (sub)transient time constant τ ”
q = τkq

• the d-axis transient inductance l
′
d = ld · σd f

• the d-axis subtransient inductance l”d = ld · σd

• the q-axis (sub)transient inductance l”q = lq · σq

The mentioned quantities are idealised and can be derived from the electrical
equations derived in the previous section. For example, for all open-stator time con-
stants, the stator resistance has to be assumed to be infinite; for the transient and
subtransient time constants the stator resistance is assumed to be zero; in addition,
for the subtransient time constant in the d-axis, the field resistance as well needs to
be disregarded (zero). For the transient inductance in the d-axis, the damper winding
resistance has to be assumed to be infinite (no reaction from the damper winding)
and the field resistance has to be put equal to zero. For the transient and subtransient
inductances all resistances have to be put equal to zero.

Table28.2 gives an outline of normal values for these time constants and pu
inductances for larger turbo generators. For salient pole machines with massive rotor
(without damper windings), the transient and subtransient inductances are somewhat

10As there is only one rotor winding in the q-axis in our model, it is sometimes referred to as a
transient time constant, although the term ‘subtransient time constant’ is more common.
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Table 28.2 Range (and rated values) for time constants and p.u inductances of large synchronous
machines
Turbo generators Two-pole Two-pole Four-pole Four-pole

Air cooling Conductor cooling Air cooling Conductor cooling

xd 1.0 . . . 1.75 (1.65) 1.5 . . . 2.25 (1.85) 1.0 . . . 1.75 (1.65) 1.5 . . . 2.25 (1.85)

xq 0.96 . . . 1.71 (1.61) 1.46 . . . 2.21 (1.8) 0.96 . . . 1.71 (1.61) 1.46 . . . 2.21 (1.8)

x
′
d 0.12 . . . 0.25 (0.17) 0.2 . . . 0.35 (0.28) 0.2 . . . 0.3 (0.25) 0.25 . . . 0.45 (0.35)

x”d 0.08 . . . 0.18 (0.12) 0.15 . . . 0.28 (0.22) 0.12 . . . 0.20 (0.16) 0.20 . . . 0.32 (0.28)

x2 (inverse field) = x”d = x”d = x”d = x”d
x0 (zero sequence) (0.1 . . . 0.7)x”d (0.1 . . . 0.7)x”d (0.1 . . . 0.7)x”d (0.1 . . . 0.7)x”d
xp (Potier reactance) 0.07 . . . 0.17 0.2 . . . 0.45 0.12 . . . 0.24 0.25 . . . 0.45

rs 0.001 . . . 0.007 0.001 . . . 0.005 0.001 . . . 0.005 0.001 . . . 0.005

T
′
d0 (s) 5 5 8 6

T
′
d (s) 0.6 0.75 1.0 1.2

T ”
d (s) 0.035 0.035 0.035 0.045

Td (s) 0.13 . . . 0.45 0.2 . . . 0.55 0.2 . . . 0.4 0.25 . . . 0.55

τi (s) 5 . . . 7 5 . . . 7 6 . . . 8 6 . . . 8

different: x
′
d = 0.25 . . . 0.5 and x

′′
d = 0.13 . . . 0.32; for salient pole machines with

damper windings x
′
d = 0.25 . . . 0.5 and x

′′
d = 0.32 . . . 0.5.

As we will see later on, the mentioned (sub)transient time constants are narrowly
related to the electrical eigenvalues of a synchronous machine.

28.3.2 Block Diagram and Characteristic Equation

To analyse the dynamic behaviour, we will start from the dynamic equation in the
matrix notation (see Sect. 28.2.3)

M · u = A(p) · x (28.79)

where the matrix A(p) = Bp − C can be written in block-matrix form as

A(p) =
⎡

⎣
Ai(p) d −c
−mT

(
Jω2

n/Np
)
(p + �w) 0

0T 1 p

⎤

⎦ (28.80)

Here, Ai(p) is the (5 × 5) matrix of the electrical equations, d, c, m are (5 × 1)
matrices that can be derived from Eqs. 28.53 or 28.57 (for pu or absolute values,
respectively), and 0 is a (5 × 1) zero matrix. As detB �= 0, the system equation can
also be written as
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Fig. 28.3 Block diagram for the synchronous machine

x = (
pI − B−1 · C)−1 · B−1 · M · u = (pB − C)−1 · M · u (28.81)

The eigenvalues are the zeros of G(p) = detA(p) = det(pB − C). Using the
block-matrix notation of Eq.28.80, we obtain

G(p) = p · det
[

Ai d
−mT

(
Jω2

n/Np
)
(p + �w)

]
− det

[
Ai −c

−mT 0

]
(28.82)

or

G(p) = p
(
Jω2

n/Np
)
(p + �w) (detAi) + (detAi)mT · Ai

−1 · (pd + c) (28.83)

which may be regarded as corresponding with the feedback control loop in Fig. 28.3
(for motoring).

The open-loop poles comprise the two inertia poles and the zeros of D(p) =
detAi(p). The latter may be called the constant-speed poles (cf. the induction
machine) as these are the eigenvalues of the electrical system without feedback
of speed or load angle. The open-loop zeros are the zeros of (the numerator of)
mT ·Ai

−1 · (pd+ c), i.e. the transfer function Fδ from load angle to electromagnetic
torque.

Indeed, the torque is given by ΔT = mT · �I , while in the absence of external
inputs (Δν, ΔV, ΔV f ), ΔI = Ai

−1 · (pd + c)Δδ.
In fact, the system equation 28.57 or 28.53 may be written as (now with external

inputs)

− dΔν + M1 · [ΔV ΔV f ]T = Ai(p) · ΔI − (c + pd)Δδ (28.84)
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(
Jω2

n/Np
)
(p + �w)Δν + ΔT

′
l = mT · �I + (

Jω2
n/Np

)
(p + �w)pΔδ (28.85)

withM1 = M[1, 2, 3, 4, 5|1, 2].
Thus Fδ = ΔT

Δδ
= mT · Ai

−1 · (pd + c).

28.3.3 Gain

For the gain of the feedback loop in Fig. 28.3, different choices are possible. One
thing is sure: as the open-loop zeros and poles are completely determined by nearly
all dimensionless parameters, except the electromagnetic time constant τm (or eigen-
frequency νm), this gain will (have to) depend on the electromagnetic time constant
τm . Two possibilities are quite obvious:

• a static gain, proportional to the slope of the stationary characteristic torque versus
load angle and inversely proportional to the inertia constant. Mathematically, this
can be written as the limit

Ks = [ lim
t→∞(ΔT/Δδ)]/ (

Jω2
n/Np

) = [ lim
p→0

Fδ(p)]/
(
Jω2

n/Np
)

(28.86)

or, with Ai(p)=pBi−Ci,

Ks = { lim
p→0

[mT · Ai
−1 · (pd + c)]}/ (

Jω2
n/Np

) = −mT · Ci
−1 · c/ (

Jω2
n/Np

)

(28.87)
• another possibility is the dynamic gain, proportional to the dynamic torque

Kd = [lim
t→0

(ΔT/Δδ)]/ (
Jω2

n/Np
) = [ lim

p→∞ Fδ(p)]/
(
Jω2

n/Np
)

(28.88)

or

Kd = { lim
p→∞[mT · Ai

−1 · (pd + c)]}/ (
Jω2

n/Np
) = mT · Bi

−1 · d/
(
Jω2

n/Np
)

(28.89)

In principle, both definitions can be used. However, we prefer to obtain and use a
definition which is analogous to, and an extension of, the gain definition used for the
induction machine and the DC machine.

To explore this further, we may rewrite the equation of motion (without external
inputs) as follows

(
Jω2

n/Np
)
(p2 + �w p)Δδ + Fδ(p) · Δδ = ΔT

′
l (28.90)

The transfer function for the closed loop can be written as follows, denoting the
transfer function of load angle to torque Fδ(p) = Nδ(p)/Dδ(p),
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Δδ

ΔT
′
l

= 1
(
Jω2

n/Np
) (

p2 + �w p
) + Fδ

(28.91)

or
Δδ

ΔT
′
l

=
1

(Jω2
n/Np)(p2+�w p)

1 + Nδ(p)

(Jω2
n/Np)(p2+�w p)Dδ(p)

(28.92)

On the other hand, the load torque to speed transfer function for the inductionmachine
was, denoting Dνr (pτr ) = D(pτr ) and N

′
νr (pτr ) = (T0/νs0)Nνr (pτr ),

Δνr

ΔT
′
l

=
− 1

(Jω2
n/Np)(p+�w)

1 + N ′
νr (pτr )

(Jω2
n/Np)(p+�w)Dνr (pτr )

(28.93)

where Fνr (pτr ) = N
′
νr (pτr )/Dνr (pτr ) represents the transfer function of speed to

asynchronous machine torque. For the induction machine, we defined the gain τr/τm
as the quotient of the coefficients of the highest degree terms in τr p in the numerator
and denominator of

N
′
νr (pτr )(

Jω2
n/Np

)
(p + �w) Dνr (pτr )

= τr N
′
νr (pτr )(

Jω2
n/Np

)
(pτr + �wτr ) Dνr (pτr )

(28.94)

thus yielding
τr

τm
= τr · T0/νs0(

Jω2
n/Np

) (28.95)

Note, however, that N
′
νr (pτr ) and Dνr (pτr ) are polynomials of third and fourth

degree, respectively, in τr p. As a consequence, the quotient of the coefficients of the
highest degree terms in N

′
νr (pτr ) and Dνr (pτr ) cannot be a dynamic asynchronous

torque, as the limit of N
′
νr (pτr )/Dνr (pτr ) is zero for p → ∞. Nevertheless, we

used the quotient of the highest degree terms as gain. The question remains what this
quotient actually represents then.

The speed of an induction machine may also be written as the derivative of a load
angle, similarly to the load angle of a synchronousmachine.11 Thus, with νr ≡ dθ/dt
(θ is the instantaneous rotor angle) and writing θ as θ = ω0t − δ, we obtain in the
Laplace domain Δνr = −pΔδ.

We may now rewrite the characteristic equation of the induction machine in a
form similar to the one for the synchronous machine:

11In fact, in a synchronous machine, the rotor excitation current is DC, but the AC rotor current in
an induction machine can equally be regarded as an excitation current with slip frequency, inducing
an emf in the stator with stator frequency and providing a torque with the flux.
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Δδ

ΔT
′
l

=
1

(Jω2
n/Np)p(p+�w)

1 + pN ′
νr (pτr )

(Jω2
n/Np)p(p+�w)Dνr (pτr )

(28.96)

Here, pN
′
νr (pτr )/Dνr (pτr ) is the transfer function of load angle to electromagnetic

torque, ΔT/Δδ. The limit of ΔT/Δδ for p → ∞, i.e. the quotient of the highest
degree terms in p and equal to (T0/νs0)/τr , is the dynamic synchronising torque.

Now consider the equation of motion corresponding with the characteristic
Eq.27.52:

(
Jω2

n/Np
)
(p2 + �w p)Δδ +

(
pN

′
νr (pτr )/Dνr (pτr )

)
· Δδ = ΔT

′
l (28.97)

For very large p (p → ∞ thus corresponding to the limit t → 0), we may approxi-
mate this as

(
Jω2

n/Np
)
p2Δδ + ((T0/νs0)/τr ) · Δδ ≈ ΔT

′
l

This represents the dynamic equation for t → 0. It follows that (T0/νs0)/
(τr · Jω2

n/Np) ≡ 1/τrτm has the dimension of the square of a dynamic (or ini-
tial) eigenfrequency ν2

m = (dT/dδ)dyn /
(
Jω2

n/Np
)
. What we called the gain for the

induction machine was nothing else than the square of the dynamic eigenfrequency
referred to the rotor time constant,

τr

τm
= τ 2

r ν2
m

For the synchronous machine as well,12 we will therefore use the dynamic gain

Kd = τ 2
kdν

2
m = τ 2

kd · (dT/dδ)dyn(
Jω2

n/Np
) (28.98)

28.3.4 Eigenvalue Analysis of the Synchronous Machine

The eigenvalue analysis of a synchronous machine is obviously possible starting
from the 7× 7 matrix, Eq. 28.57. Still, a (semi-)analytical method is to be preferred,
as it will also allow us to introduce the operational inductances (or more general,
impedances) which are very common in machine studies.

The five electrical equations of the synchronous machine are the starting point of
this analysis. We rewrite the two stator equations introducing the q- and d-axis flux
variations ΔΨq = LqΔIq + MskqΔIkq and ΔΨd = LdΔId + MskdΔIkd + Msf ΔI f .
In these, all rotor current variations can be eliminated and expressed as a function of

12Please prove that the gain we used for the DC machine also corresponds to a dynamic gain.

http://dx.doi.org/10.1007/978-3-319-72730-1_27


646 28 Modelling and Dynamic Behaviour of Synchronous Machines

the stator current variations using the three rotor equations. This results in ΔΨq =
Lq(p) · ΔIq and ΔΨd = Ld(p) · ΔId + F(p) · ΔV f where

Ld(p) = Ld ·
p2τ f τkd · σkd f σd

σdkdσd f
+ p

(
τkd + τ f

) + 1

p2τ f τkd · σkd f

σdkdσd f
+ p

(
τkd
σdkd

+ τ f

σd f

)
+ 1

(28.99)

Lq(p) = Lq · pτkq + 1

p
(
τkq/σq

) + 1
(28.100)

F(p) = Msf ·
p (τkd/σdkd)

{(
1 − σ f kd

) 1−σdkd
1−σd f

}1/2 + 1

p2τ f τkd · σkd f

σdkdσd f
+ p

(
τkd
σdkd

+ τ f

σd f

)
+ 1

· R−1
f (28.101)

Ld(p) and Lq(p) are called the operational inductances of the d- and q-axes, respec-
tively. These are the transfer functions from current variations to flux variations in
these two axes (purely electrical, without load angle variations).

Writing the two stator equations as follows

ΔV cos δ0 = RsΔIq + pωnΔΨq − νr0ωnΔΨd − ψd0ωn(Δν − pΔδ) + Vd0Δδ
(28.102)

ΔV sin δ0 = RsΔId + pωnΔΨd + νr0ωnΔΨq + ψq0ωn(Δν − pΔδ) − Vq0Δδ
(28.103)

we obtain for the current variations (if frequency variations Δν are not considered)

ΔIq = D(p)−1 · {
(ΔV/V0) · [

RsVq0 + ωn Ld(p) · (
Vqo p + ν0Vdo

)]}+
D(p)−1 · {

ΔV f · ωn F(p) · ν0Rs + Δδ · [(
Vq0 + pωnΨq0

)
ν0ωn Ld(p)

− (Rs + pωn Ld(p)) (Vd0 + pωnΨdo)]} (28.104)

ΔId = D(p)−1 · {
(ΔV/V0) · [RsVd0 + ωn Lq (p) · (

Vdo p − ν0Vqo
)]} +

D(p)−1 ·
{
ΔV f · ωn F(p) ·

[
pRs + ωn Lq (p)

(
p2 + ν20

)]}
+

D(p)−1 · {
Δδ · [(Vd0 + pωnΨd0) ν0ωn Lq (p) + (

Rs + pωn Lq (p)
) (

Vq0 + pωnΨqo
)]}

(28.105)

with

D(p) = (Rs + pωn Ld(p))
(
Rs + pωn Lq(p)

) + ν2
0ωn L

2
d(p)Lq(p)

= (
p2 + ν2

0

) (
ω2
n Ld(p)Lq(p)

) + Rsωn p
(
Ld(p) + Lq(p)

) + R2
s

The transfer functions with as output the electromagnetic torque and as input the
supply voltage, the excitation voltage or the load angle can be derived from
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ΔT = 3

2
Np

{(
Ψq0 − Iq0Ld(p)

)
ΔId − (

Ψd0 − Id0Lq(p)
)
ΔIq

}
(28.106)

All these transfer functions have the zeros of D(p) as poles. These zeros are also the
open-loop poles of the feedback loop of Sect. 28.3.2, i.e. D(p) = det Ai (p).

Remark: As in most cases τ f 	 τkd and τ f h 	 τkdh , often the operational induc-
tances Eqs. 28.99–28.101 are written as

Ld(p) = Ld ·
(
pτ

′
d + 1

) (
pτ

′′
d + 1

)

(
pτ

′
d0 + 1

) (
pτ

′′
d0 + 1

) (28.107)

Lq(p) = Lq · pτ
′′
q + 1

pτ
′′
q0 + 1

(28.108)

F(p) = pτσkd + 1
(
pτ

′
d0 + 1

) (
pτ

′′
d0 + 1

) · Msf · R−1
f (28.109)

with the transient and subtransient time constants defined as in Sect. 28.3.1. τσkd is
the own leakage of the d-axis damper winding only.

28.3.4.1 Open-Loop Poles

The open-loop poles are the two inertia poles and the five zeros of D(p). Approximate
expressions for the poles of D(p) depend on the magnitude of the short-circuit time
constants.

For larger power ratings, usually ν0τd , ν0τq , ν0τkd , ν0τkq , ν0τ f d 	 1 (e.g.
5 . . . 10) and τ f 	 τkd hold. In that case, the zeros of D(p) can be approximated

by p1,2 = ± jν0, p3 = −τ
′−1
d = −τ−1

f , p4 = −τ
′′−1
d = −

(
τkd

σkd f σd

σdkdσd f

)−1
, p5 =

−τ
′′−1
q , if the stator resistance is negligible.
If the stator resistance is not negligible (but still small, i.e. τd and τq larger than τkd

and τkq ), then a better approximation for the poles p1,2 is p1,2 = − 1
2 (τ

−1
d +τ−1

q )± jν0,
while the other poles are rather unaffected by the stator resistance.

Typical pu values at rated frequency are, for example, p1,2 ≈ −0.02 ± j; p3 ≈
−3 · 10−3; p4 ≈ −0.09; p5 ≈ −0.09 which correspond to τd = τd = 50, τ f =
350, τkd = τkq = 11, τ f h = τ f /σd f = 1800 and ν0 = 1.

If the conditions ν0τd , ν0τq , ν0τkd , ν0τkq , ν0τ f d 	 1 are not met (e.g. for lower
supply frequencies ν0), then

• the real part of the stator poles becomes p1,2 = − 1
2 (τ

−1
dh + τ−1

qh ) ± jν0
• the poles corresponding with the subtransient time constants do not change appre-
ciably when the stator resistance is sufficiently small (τd , τq 	 τkd , τkq ). For
rather small supply frequencies (ν0τkd , ν0τkq < 1), these poles may become con-
jugate complex with as real part their average value − 1

2 (τ
−1
kd + τ−1

kq ) (and a small
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imaginary value). For larger values of the stator resistance, however, the absolute
value of their real part increases with an amount approximately equal to the inverse
stator time constant, i.e. p4 = −τ

′′−1
d − τ−1

d and p5 = −τ
′′−1
q − τ−1

q

• The transient pole p5 = −τ−1
f is not affected significantly as long as τ f 	 τkd

and ν0τ f 	 1.

Note that the behaviour of these open-loop poles is quite similar to the behaviour of
the induction machine poles.

28.3.4.2 Open-Loop Zeros

From Eqs. 28.104–28.106, the transfer function from load angle to electromagnetic
torque is easily derived

Fδ(p) = ΔT

Δδ
= 3

2
Np · D(p)−1

{(
Ψq0 − Iq0Ld(p)

) [
(Vd0 + pωnΨd0) ν0ωn Lq(p)

+ (
Rs + pωn Lq(p)

) (
Vq0 + pωnΨqo

)]}

− 3

2
Np · D(p)−1

{(
Ψd0 − Id0Lq(p)

) [(
Vq0 + pωnΨq0

)
ν0ωn Ld(p)

− (Rs + pωn Ld(p)) (Vd0 + pωnΨdo)]} (28.110)

Substituting Vd0 = Rs Id0 + ν0ωnΨq0 and Vq0 = Rs Iq0 − ν0ωnΨd0, we write the
numerator of Eq.28.110 as follows

N (p) = −3

2
Np · {[

Lq(p)Ld(p)
(
Iq0�qo + Ido�d0

)

−Ld(p)�
2
d0 − Lq(p)�

2
q0

] (
p2 + ν2

0

)
ω2
n

}

− 3

2
Np · Rs

{[
pLq(p)Ld(p)

(
I 2q0 + I 2d0

)

−p
(
Ld(p) − Lq(p)

) (
Ido�d0 − Iq0�q0

) − p
(
�2

q0 + �2
d0

)]
ωn

}

− 3

2
Np · R2

s

{[
Ld(p)I

2
q0 + Lq(p)I

2
d0

] − [
Ido�d0 + Iq0�q0

]}

(28.111)

Like the denominator D(p), this numerator is also a fifth degree polynomial in p.
For zero stator resistance, (p2 + ν2

0) is also a factor in the numerator. Thus, in
that case the stator modi p = ± jν0 are hidden modes, as these are for the induction
machine. The three other zeros are rather complicated functions of the reluctance
ratio γdq = Ld/Lq , the flux and the excitation.

For small stator resistance and with the flux mainly in the d-axis, two of the
remaining zeros are p = −τ−1

f and p = −τ−1
kd . The third zero depends on the

reluctance ratio γdq and the relative excitation ep0 = Ep0/V0 and varies between
p = −τ−1

kqh(1 − γ−1
dq ) for ep0 = 0, p = −τ−1

kqh for ep0 = 1 and p = −τ−1
kq for
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( d= q=25 ; kd= kq=7 ; f=300 ; dq=1,8 ; d 0,2 ; dkd=0,7 ; df=0,27 ; q=0,3)
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Fig. 28.4 Root loci for rated and reduced frequency

ep0 → ∞. For the flux position in the q-axis, one of the zeros is p = −τ−1
kq while

one of the other two may lie in the right half plane or in the origin, depending on the
reluctance ratio.

For a non-negligible stator resistance, the stator zeros have a real part which
is approximately half the real part of the corresponding open-loop poles, i.e. p =
−(1/4)(τ−1

d + τ−1
q ) ± jν0 for large ν0τkd , or p = −(1/2 . . . 1/4)(τ−1

dh + τ−1
qh ) ± jν0

for ν0τkd 
 1.

28.3.4.3 Root Loci and Eigenvalues

Based on the discussion of poles and zeros above, it can be expected that a general
dynamic analysis of the synchronous machine will be difficult or even impossible.
Instead, we will concentrate on the most common root loci shapes and associated
dynamic behaviour of synchronous machines.

Figure28.4a depicts the root locus of a (quite large) synchronousmachinewith (as
usual) low stator resistance, for rated frequency and at no load. Although the branches
starting from the inertia poles enter the right half plane around the high-frequency
poles and zeros, this is not at all of practical importance as the corresponding gain
values are unrealistically high: these values would correspond to a drive inertia 500
times smaller than the machine inertia.

The root locus (b) in Fig. 28.4 could be found for very low supply frequency
(ν0 = 0.01) at no load. The branches starting from the inertia poles will enter the
right half plane for very small gains. However, those small gain values correspond
to a drive inertia 100 times larger than the machine inertia, which is not realistic.

The root locus (c) corresponds to reduced frequency operation (ν0 = 0.1) without
active load (δ0 = 0), but over-excited. Here, the root locus enters the right half plane
for both low and high gain values. Where the branches enter the right half plane at
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Fig. 28.5 Root loci for high stator resistance

low gain values (around the inertia poles) is again not of any practical importance. In
contrast, the right half plane wandering around the high-frequency poles and zeros
now corresponds to gain values for the order of magnitude of the machine inertia
and rated flux operation.13

For a machine with a rather high stator resistance, on the other hand, we obtain
root loci as in Fig. 28.5. For the high-frequency root loci (a) at rated frequency, the
gain values corresponding with the branches into the right half plane are not of any
practical importance. However, for reduced frequency operation (ν0 = 0.1), see (b)
in Fig. 28.5, the gain values corresponding with the right half plane wandering may
be realistic, even without over-excitation.

The examples above might be typical but are not general at all. The number
of parameters of a synchronous machine (model) is much too high to draw gen-
eral conclusions for the stability behaviour of synchronous machines. Moreover, the
construction variations of synchronous machines are quite huge and not bound by
standards as for inductionmachines (similar scaling laws are non-existent). Themain
conclusion wemay draw is that over-excitation and/or high reluctance ratio may ren-
der the synchronous machine more prone to instability, especially at low-frequency
operation.

In the following sections of this chapter, we will study the dynamic behaviour of
two special types of synchronousmachines: the reluctancemotor and the symmetrical
synchronous machine (i.e. in fact an induction machine with wound rotor).

13Over-excitation tends to decrease the stability via its effect on the open-loop zeros; note that even
at rated resulting flux, a synchronous machine can be over-excited.
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28.3.5 Eigenvalue Analysis of the Reluctance Motor

Reluctance motors exhibit similar properties as induction machines, such as robust-
ness and low cost. In addition, the synchronous operation yields better efficiency,
and if a cage is present, asynchronous starting is possible as well.

Reluctance motors usually have modest power ratings, for example less than
10kW. Older or low-cost reluctance motors often are constructed starting from a
similar induction motor design. This most straightforward (and oldest) design is
the crenellated rotor. Rotor sheets of an induction machine can be used as a base,
by cutting away the gaps in the q-axes to obtain saliency. This has the additional
advantage of having a starting cage present if the inductionmotor rotor sheets already
contain the slots for the cage and if these slots are filled. Moreover, the gap can be
filled with electrically conducting material, so that the cage is again complete.14

However, the reluctance ratio xd/xq that can be obtained in this way is limited to
about 2.

The barrier rotor designs, on the other hand, make it possible to increase xd/xq
beyond 2 without compromising the other requirements (e.g. for sufficiently large
main inductances).

The dimensionless parameters for the reluctance machine model have been pre-
sented above. For the stator and rotor short-circuit time constants, similar scaling
laws hold as for the induction machine, with some slight variations between the
d- and q−axes and between stator and rotor side: τd ≈ 60τp; τq ≈ (50 · · · 60)τp;
τkd ≈ (40 · · · 60)τp; τkq ≈ (50 · · · 70)τp. The order of magnitude of the short-circuit
inductances is similar to that of the induction machine, i.e. σdld ≈ 0.24; σqlq ≈ 0.2.
Obviously, the main inductances differ from those of an induction machine. For
the d-axis inductance, we may write ld ≈ (10 · · · 20)√τp/Np, thus 1.1 · · · 2 for
crenellated rotors, and 1.5 · · · 3 (or more) for barrier rotors. The reluctance ratio
γdq = ld/ lq depends on the rotor type: γdq ≈ (1 + ld) · · · (1 + 2ld) and thus 2 · · · 5
for crenellated rotors or 2 · · · 8 for barrier rotors (and even higher for multi-segment
rotors). The inertia time constant is somewhat smaller than for induction machines,
i.e. τn ≈ 300τp/Np which results in ν2

mτ 2
kd ≈ (0.3 · · · 0.6)τkd .

The eigenvalue analysis of the reluctance motor can be treated as a simplified
version of the analysis for the general synchronous machine, for example as the limit
case for τ f → ∞ and v f = Δv f = 0. The operational inductance for the d-axis is
now

Ld(p) = Ld · pτkd + 1

p (τkd/σd) + 1
(28.112)

Figure28.6 shows the block diagram for the reluctance machine. The numerator and
denominator of the transfer function Fδ = ΔT/Δδ are both fourth-degree functions
of p. The open-loop poles and zeros can be derived directly from the analysis in
Sect. 28.3.4. The open-loop poles comprise the two complex conjugate stator poles
(p = −(1/2)(τ−1

d + τ−1
q ) ± jν0) and the two real (at least in most cases, i.e. not

14I.e. more or less symmetrical in the two axes.
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Fig. 28.6 Block diagram for the reluctance machine

for operation at too low frequencies) poles p = −τ−1
kd and p = −τ−1

kq . The open-

loop zeros comprise the two complex conjugate stator zeros (p = −(1/4)(τ−1
d +

τ−1
q ) ± jν0) and two real zeros which depend on the load condition and reluctance

ratio: for no load (δ0 = 0 and thus also iq0 = 0), we find p3 = −τ−1
kd and p4 =

−τ−1
kqh(1 − γdq); for δ0 = π/2 and thus also id0 = 0 we have an unstable behaviour

with p3 = +τ−1
kdh(γdq − 1) and p4 = −τ−1

kq .
The gain defined above corresponds to the dynamic synchronous torque (which

is different from the static15 synchronous torque). It is also interesting to calculate
the limit of (the maximum of) this dynamic synchronous torque for γdq → 1 (and
for equal time constants and leakages in d- and q-axes): this limit is equal to the
dynamic synchronous torque of the induction machine; or in other words: the gain
of the reluctance motor reduces to the gain of the induction motor.

For the root loci of the reluctance motor, we can find fewer variations than for the
general synchronous motor. For a reluctance motor of relatively high power rating
at rated (or not too low) frequency, we can find a root locus as in Fig. 28.7. Where
the high-frequency branch enters the right half plane, the corresponding gain values
are much too high to be of any practical importance.

For lower supply frequencies, these gain values decrease and instabilitymay occur
in real drives. For still lower frequencies, the root locus may ultimately evolve to
a low-frequency shape as (a) in Fig. 28.8. This root locus is quite similar to the
low-frequency root locus of an induction machine. The locus (b) corresponds to a
machine with a high reluctance ratio, rather high leakages and a larger than normal
stator resistance. Despite the equally reduced supply frequency of ν0 = 0.1, the
shape is still similar to a high-frequency root locus, but this is caused by the rather
special parameter values. Although the general stability behaviour of the reluctance
motor is somewhat similar to that of the induction machine, the larger number of
parameters and possible parameter variations and the lack of real scaling laws make
it impossible to draw any general conclusions.

15Calculate both dynamic and static synchronous torques for δ0 = 0; it will become clear that the
static synchronous torque is obviously zero for γdq = 1.
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Nevertheless, the dynamic properties of a reluctance motor may also be repre-
sented in the parameter space (or plane). We will illustrate the behaviour by a few
examples. Figure28.9 shows the instability boundaries for a reluctance machine with
low leakage (σ = 0.04) for different reluctance ratios. Clearly, the larger the reluc-
tance ratio, the larger the instability areas are. Note that the boundary for γdq = 1
is the one for an induction machine. For a machine with high reluctance ratio and
rather high leakage (see Fig. 28.10) the result is remarkable (compared to the induc-
tion machine). A high leakage results in a significant increase of the high-frequency
instability region. The instability region may even extend to the whole range of gain
and frequency values.

A third illustration shows the effect of the load, together with an average machine
line (based on the range of parameters given above) for rated frequency operation.
As it is the case for the induction machine, generator operation increases the low-
frequency instability region. A second conclusion we may draw from this figure is
that stability problems are not likely for rated frequency operation, but that reduced
frequency operation may result in unstable behaviour (Fig. 28.11).
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28.3.6 Eigenvalue Analysis of a Symmetrical Synchronous
Machine

Another interesting topic of study are symmetrical synchronous machines. These are
completely symmetrical with respect to the rotor d- and q-axes, both as to saliency
and to the windings. Thus, in such a machine, there is only one (and identical)
winding in each of the rotor axes. An example could be a wound-rotor induction
machine with DC excitation in one of the rotor windings.

For a symmetrical synchronous machine, the dimensionless parameters are the
three machine parameters (τs = τd = τq ; τr = τ f = τkq ; σ = σd = σq); the
three parameters defining the operating point (the frequency ν0 which will be taken
together with the time constants); the load angle δ0 and the excitation parameter
ev = Ep0/V0; and the two mechanical parameters τ 2

r ν2
m and ρw. In other words, the

parameters are the same as for the induction machine, with the exception of the slip
which is replaced by the load angle and the excitation parameter.

The four open-loop poles are the same as those of the induction motor (see
Chap.27). For frequencies that are not excessively low, we find a fourth zero on
the real axis as open-loop zero, in addition to the two complex conjugate zeros
p1,2 = −(1/2)τ−1

s ± jν0τr and the real zero p3 = −τ−1
r (see Chap.27):

http://dx.doi.org/10.1007/978-3-319-72730-1_27
http://dx.doi.org/10.1007/978-3-319-72730-1_27
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p4 = −τ−1
r · 1

1 + 1−σ
σ

· �2
o

Ψd0Ms f I f 0

= −τ−1
r · 1

1 + 1−σ
σ

· E2
o

Ep0Eq0

(28.113)

The zero p4 essentially is a function of the excitation. Without excitation (If0 = 0
or Ep0 = 0), or also for Ψd0 = 0, this zero is in the origin (the machine reduces to
an induction machine). For no-load operation (E0 = Ep0 = Eq0), it becomes equal
to −τ−1

rh , thus with as time constant the inverse main field rotor time constant. For
short-circuit operation (E0/Ep0Eq0 → 0), we get the inverse rotor short-circuit time
constant −τ−1

r .
For lower supply frequencies, the complex conjugate zeros shift to the imaginary

axis. Their real part is proportional to the inverse stator main field time constant
−τ−1

sh (as for the induction machine) and also becomes a function of the excitation,
p1,2 = −(1/2)τ−1

sh (2 − Ep0/Eq0) ± jν0. As to the zero p3, the evolution for lower
frequencies is the same as for the induction machine.

The gain is as defined for the general synchronous machine. Note that without
excitation this gain is reduced to that of the induction machine.

The root loci appear quite similar to those of an induction machine. There are
essentially two types of root loci, one for normal (higher) frequencies and one for
low frequencies Fig. 28.12.
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In the low-frequency root locus, the poles and zeros around the origin are close to
each other, resulting in a branch wandering into the right half plane. A higher exci-
tation shifts the complex conjugate zeros closer to the imaginary axis and therefore
results in moving this branch to the right (the shift of the real zero near the origin
with variable excitation has little or no effect on this). In a similar way, the effect of
the load angle (motoring or generating) can be studied.16

The high-frequency root locus, too, seems quite similar to that of the induction
machine. Here as well, a higher excitation shifts the branch starting from the inertia
poles further to the right (albeit less pronounced than in the low-frequency case).
In the high-frequency region, however, higher load angles have a slightly stabilising
effect, both for motoring and generating.

In the parameter plane (or space), we see stability boundaries which are more or
less similar to those of the induction machine. Figure28.13 shows these boundaries
for a machine with low leakage, for different values of the excitation parameter (at
no load). The boundaries for zero excitation (ev = 0) are those of the induction
machine for slip zero. Clearly, excitation reduces the stability, in both the low- and
high-frequency regions. For very high excitation, the two instability regions even
merge into one large region. This effect becomes even more significant for higher
stator resistances (α > 1).

Figure28.14 illustrates the effect of load. In the high-frequency range, the effect of
load is minimal but in the low-frequency range negative load angles (generating) tend

16For the same value of ev and |δ|, Ep0 > Eq0 for δ > 0 and Ep0 < Eq0 for δ < 0 from which
the distinct shift of the complex zeros can be derived. You may verify this shift by calculating the
low-frequency root loci for zero, positive and negative load angles, for example in Matlab.
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to stabilise. Here, very large positive load angles (motoring) result in a significant
increase in the low-frequency instability.17

28.3.7 Modelling and Stability for Current Supply

The models we derived in the previous sections are quite general and can be used
for both voltage and current supply. It may be instructive to discuss some general
aspects of ideal current supply as to dynamic studies.

If the supply is an ideal current source, and if we are not interested in the sup-
ply voltages, the stator equations can be omitted from the dynamic equations. For
example, the electrical equations of an induction machine or symmetrical synchro-
nous machine become second-order equations rather than fourth-order. In the two
remaining rotor equations, the stator currents are imposed and fixed.

Ifwewrite down the systemequations as a functionof dimensionless parameters, it
is revealed that these equations and the resulting dynamics are nowmost conveniently
expressed as a function of the main field rotor time constant ν0τrh , instead of the
short-circuit rotor time constant ν0τr .

17Verify this using a Matlab model.
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28.4 Conclusions and Further Remarks

For the general synchronous machine, the number of parameters and the lack of
general scaling laws make it impossible to draw any general conclusions about its
stability behaviour (as those derived for the induction machine). However, the tech-
niques presented in this chapter can be used or adapted to study the dynamics of any
synchronous machine.

In contrast, for the (maybe somewhat theoretical) case of a symmetrical syn-
chronous machine, i.e. an induction machine with DC excitation in one of the rotor
axes, such a general stability analysis is feasible. The results of this analysis show
that, especially in the low-frequency range, adding DC excitation to an induction
machine increases the instability regions. Whereas the low-frequency instability is
of not much practical importance for induction machines (due to the high leakage for
smaller power ratings), adding excitation more than annihilates the stabilising effect
of high leakage. With high excitation, both low- and high-frequency regions tend to
form one large instability region, so that also medium machine sizes (correspond-
ing to the transition zone for induction machines) may exhibit instability at supply
frequency reduction.
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A similar conclusion can be drawn for reluctance machines. In general, it may be
concluded that adding a reluctance effect creates instability regions that are larger
than the corresponding regions for induction machines.

From the above, it may be tempting to conclude that adding something that
enhances the energetic efficiency reduces the stability behaviour. In fact, such a
statement is in line with what Laithwaite [18] once claimed: that the measures which
enhance energetic conversion are mostly detrimental to stability.



Chapter 29
Dynamics in Vector Control and Field
Orientation

Abstract In Chap.17 of Part III, vector control and field orientation have already
been presented. However, the dynamics have not been analysed. In this chapter we
discuss vector control and field orientation more thoroughly, including an analysis
of their dynamic behaviour.

29.1 Introduction

For electro-mechanical systems that require four-quadrant operation (even to zero
speed) and a fast response, it is essential that the drive has a controllable torque
over the whole speed range. In the past, the DC commutator machine was the pre-
ferred machine for this kind of application. For constant excitation, the torque of a
DC machine is indeed proportional to the current. This controlled current may be
provided by a controllable current (DC chopper or controlled rectifier).

Advances in power electronics (and control) allow us to obtain a controllable AC
current supply for AC rotating field machines as well. However, to create a similar
ideal dynamic behaviour as the DC machine, additional control is required. In a DC
machine, the (stationary) armature current vector is orthogonal to the flux vector
(in the absence of armature reaction, i.e. a compensated machine). In rotating field
machines, in contrast, the position of the rotating current vector is not fixed with
respect to the rotating field vector. Thus, in addition to the current amplitude, also
the relative positions of current and field vectors have to be controlled. The ideal
scenario, in which field and current vectors are controlled to be orthogonal, is called
field orientation. The general case, inwhich the angle is controlled but not necessarily
kept at 90◦, is referred to as vector control.

29.2 Torque Control of a DC Machine

In a DC machine with the brush axis in the neutral position and without armature
reaction (Fig. 29.1), the electromagnetic interaction between the stationary field and
armature current layer results in an electromagnetic torque which is proportional to

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_29

661

http://dx.doi.org/10.1007/978-3-319-72730-1_17


662 29 Dynamics in Vector Control and Field Orientation

If

Ia Ia

torque

armature mmf
~ Ia

~ If
field flux

T = k f Ia

a = k f r

Ia
Ra

V

+

-

+

-

Fig. 29.1 Torque production in the DC machine

the product of main field flux (Φ f m = Φ f − Φ f σ ≈ Φ f ) and armature current:

Te = k · Φ f m · Ia (29.1)

Note that the induced emf in the armature is given by Ea = k · Φ f m · Ωr , corre-
sponding to the electromagnetic power Te · Ωr = Ea · Ia .

The traditional open-loop speed control is based on the voltage equation and the
expression for the induced emf. From Va = Ea − Ra Ia = k · Φ f m · Ωr − Ra Ia ≈
k · Φ f m · Ωr , it follows that for a constant flux the speed will be approximately
proportional to the applied armature voltage. The (usually small) speed drop with
increasing load due to the armature resistance can be compensated by feedback of
the speed, if required.

A completely different control method is based on the torque equation. A speed
or position control loop can be implemented with, for example, a PID controller
with the required torque as output. Using current control, the torque can then be
controlled. The speed of the torque control is the same as the speed of the current
control. Similar relations holds for the transients in torque and current control.

However, if the flux and current axes are not orthogonal in space (e.g. brush axis
shifted from the neutral position), or in case of armature reaction (no compensation
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windings), then the simple relation between torque and current does not hold any
longer. The flux becomes a function of the armature current and additional dynamics
for the torque result. In addition, the relation between torque and current becomes
dependent on the angle between the two axes. For a given flux and current, the
maximum torque is reduced as well.

To realise such an ideal torque control, the following is required:
1. an independent control of the armature current (and if both positive and negative

torque values are required the power electronic supply needs to be able to provide
positive and negative currents)

2. an independent control of the field flux
3. orthogonality between flux and armature axes (brush axis in the neutral position

and absence of armature reaction).

29.3 Vector Control of a Synchronous Machine

29.3.1 Steady State

29.3.1.1 Analogy with the DC Machine

A synchronous machine fed by an ideal current source (for example CSI-fed with
ideal DC source) is quite analogous to a current-fed DC machine:

• the CSI is a current supply, with controllable amplitude and phase
• the rotor field is independently controllable
• the position of the rotor field is known from the rotor position.

Figure29.2 shows a schematic configuration with a CSI as a supply. The CSI can
work with load commutation (with an over-excited synchronous machine), or with
forced commutation. The rotor position is measured to locate the field axis (d-axis)
and the CSI is switched synchronously with the rotor. As a consequence, the stator
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frequency is always equal and follows the rotor speed. The system may be called
self-synchronous.

The rotor position information is used to control the angle ϑ between the field
axis and the axis of the rotating armature current layer. If this angle is controlled to
be 90◦, then we get the same situation as for the DC machine. This ideal control is
called field orientation.

To describe the steady state of this brushless AC machine1 (BLAC), we may
use the equivalent circuit and the corresponding phasor diagram in Fig. 29.3. The
corresponding equations are

E p = j Ke · ωr · Φ f = jωr · Ψ f (29.2)

with ωr the rotor speed in electrical radians per second. Note that the magnitude of
the emf can be written as for the DC machine: Ep = Ke · ωr · Φ f .

The electromagnetic torque is given by

Te = 3

2
Np · (Ep I cosψ)/ωr = 3

2
Np · Ke · I · Φ f · cosψ = Kt · I · Φ f · cosψ

(29.3)
The equations for emf and torque are similar to those of the DC machine. However,
the torque depends on the phase angle ψ between the emf and the current (or the
angle ϑ = π/2 + ψ between the flux and the current).

The preceding equations show that with a controlled current magnitude and a
constant controlled angle between flux (or rotor emf) and current, the synchronous
machine may provide torque control (to be used in a drive based on current control).
If the CSI is supplied by a DC voltage rather than an ideal DC current, it can be
shown, by means of the fundamental CSI model, that the drive behaves as a voltage-

1The term brushless ACmachine is used when the field profile in space is sinusoidal; for trapezoidal
or rectangular field profiles the term brushless DC machine is normally used.
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Fig. 29.4 BLAC: reduced equivalent circuit

controlled and independently excited DCmachine. Chapter 16 in Part III has already
demonstrated that the simplified fundamental equivalent circuit of a voltage-supplied
CSI with a synchronous machine as load is as shown in Fig. 29.4. Denoting the
rectifier quantities referred to the AC side with the subscript e, we obtain

Ve = Ep cosψ + (Rs + Re)I (29.4)

This equation is quite similar to the armature voltage equation of a DC machine.
As Ep = Ke · ωr · Φ f , it shows that a self-synchronising CSI-fed (with DC voltage
supply) synchronousmachinewith a constant internal angleψ behaves as a separately
excited DCmachine with a mainly voltage-controlled speed and a slight dependence
on the current or the torque if the resistances are small.

29.3.1.2 Torque Control and Choice of ψ

To obtain torque control as in a DCmachine, both the current magnitude and its angle
ψ with respect to the rotor emf has to be controlled. In other words, the phasor I has
to be controlled. This may also be formulated as a controlled current space vector
I−→ with respect to the flux space vector Ψ−→.
If the internal angle ψ is controlled to remain equal to zero (or, equivalently, the

angle ϑ between the flux and current equal to π/2), then we get an identical situation
as in the DCmachine. Flux and current magnitudes are independently controlled and
the two phasors are orthogonal, because the CSI acts as the electronic commutator
in a DC machine. For this ideal case of ψ = 0 or ϑ = π/2 (called field orientation),
the ratio Te/I is at a maximum. As we will see later on, the dynamic behaviour is
also optimal in field orientation.

However, if the CSI requires load commutation, field orientation is not possible
as then the current should lead the voltage (and will thus lead the rotor emf, see (b)
in Fig. 29.5). If the angle ψ (or thus ϑ) is controlled to a fixed value different from
the ideal case, the control is called vector control.

http://dx.doi.org/10.1007/978-3-319-72730-1_16


666 29 Dynamics in Vector Control and Field Orientation

V

I Ep

j XsI

I

V

Ep

j XsI

(a) (b)

Fig. 29.5 BLAC: zero and large internal angle

29.3.2 Dynamical Analysis

The aim of vector control and field orientation is to obtain a highly dynamic torque
control (to be used in a speed or position control loop, for example).

As explained above, this requires an accurate control of the current amplitude and
the phase angle of the current vector with respect to the flux vector.

For the dynamic analysis of vector control the d − q-axis description with the
d-axis fixed to the rotor flux seems the most obvious. The expression for the torque
in the d − q-model is

Te = 3

2
Np · (

Ψq Id − Ψd Iq
) = 3

2
Np · (−Ldm I f Iq + (Lq − Ld )Id Iq − (Ldm Ikd Iq − Lqm Ikq Id )

)

(29.5)
In the d − q-description, vector control is equivalent to the control of the current
components Id and Iq. From Eq.29.5, it is therefore clear that even for constant flux
and controlled currents Id and Iq, the torque is not necessarily fully controlled in
transients.

In steady state, the voltage equations are

Vq0 = Rs Iq0 − ωLd Id0 − ωLdm I f 0 ≡ Rs Iq0 + Eaq0 + Ep0 (29.6)

Vd0 = Rs Id0 + ωLq Iq0 ≡ Rs Id0 + Ed0 (29.7)

while the steady-state torque can be written as

Te0 = 3

2
Np · (

Ψq0 Id0 − Ψd0 Iq0
) = 3

2
Np · (−Ldm I f 0 Iq0 + (Lq − Ld)Id0 Iq0

)

= 3

2
(Np/ω) · (Ep0 Iq0 + Eaq0Ed0

[
(ωLq)

−1 − (ωLd)
−1])

(29.8)
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Fig. 29.6 Steady-state vector diagrams

The vector diagrams for steady state are shown in Fig. 29.6 for a salient pole
machine and a smooth rotor machine. The angleψ between the q-axis and the current
vector is also the angle between the rotor emf phasor E p0 and the current phasor
I s (space vectors and phasors are identical here and the notations for phasors are
used). Note that the angle between the positive d-axis and the current vector is
equal to ϑ = π/2 + ψ (the angle between the rotor flux and the current vector is
ϑ′ = π/2 − ψ).
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Fig. 29.7 Steady-state vector diagram for field orientation

If the stator current is orthogonal to the rotor field (ψ = 0), only a stator q-axis
current Iq0 = Is0 is present, and the steady-state voltage and torque equations can be
simplified to

Vq0 = Rs Iq0 − ωLdm I f 0 ≡ Rs Iq0 + Ep0 (29.9)

Vd0 = ωLq Iq0 ≡ Ed0 (29.10)

Te0 = 3

2
Np · (−Ldm I f 0 Iq0

) = 3

2
(Np/ω0) · (

Ep0 Iq0
)

(29.11)

In this case, the reluctance torque is absent, as there is no current in the stator d-axis.
The vector diagram is identical to that in Fig. 29.7.

For the dynamical analysis, we will mainly restrict ourselves to the case of field
orientation, i.e. without d-axis stator current. Moreover, we will suppose that the
orthogonal positionof the stator current vectorwith respect to the rotor fluxvector (i.e.
stator current in the q-axis) will always be maintained, including during transients.
We will also assume that the stator current is the (independent) input variable of the
system.

For this case of Id = dId/dt ≡ 0, the torque equation 29.5 is simplified to

Te = 3

2
Np · (−Ldm I f Iq − Ldm Ikd Iq

)
(29.12)

In other words, the reluctance torque component is absent.
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The rotor currents are determined by the three rotor equations (with p correspond-
ing with d/dt):

Rkq Ikq + pLkq Ikq + pLqm Iq = 0

Rkd Ikd + pLkd Ikd + p(Ldm + L f kdσ)I f + 0 = 0 (29.13)

R f I f + pL f I f + p(Ldm + L f kdσ)Ikd + 0 = V f

For constant field excitation, Eq.29.13 show that I f = V f /R f and Ikd(p) =
ΔIkd(p) = 0. Without transient currents in the d-axis, all transients in the torque
are absent as well. Although there is a transient current in the q-axis damper winding
when the q-axis current changes,

Ikq(p) = ΔIkq(p) = −pLqm

Rkq + pLkq
ΔIq(p) (29.14)

the torque follows the variations of the q-axis current without any transients. There
is thus a complete decoupling of the rotor kd- and f -windings, on the one hand, and
the stator winding on the other hand, when the stator current is in the q-axis. This
is exactly the same situation as in a DC machine. However, in a DC machine the
two current layers are fixed in space, while these are synchronously rotating for the
synchronous machine.

In contrast, a variation of the excitation (e.g. in field weakening) results in a
transient current in the d-axis damper winding. From Eq.29.13, we can derive:

Ikd(p) = ΔIkd(p) = −p(Ldm + L f kdσ)

Rkd + pLkd
ΔI f (p) (29.15)

This transient d-axis damper current results in a torque transient with the same (large)
time constant τkdh = Lkd/Rkd (see Eq.29.5 and Fig. 29.8). In reality, the delay might
even be larger as the excitation winding is rather voltage-fed than current-fed. Note
that also in a DC machine a variation of the excitation current will result in a torque
transient: although there is usually not a real damper winding in a DC machine, the
eddy currents in the field yoke of the stator will create a similar damping.

In the general case of vector control (ψ �= 0), the situation is much more complex
and the control principles may also differ. For example, the angle ψ may be kept
constant and the stator current amplitude may be varied. Or the d-axis current com-
ponent may be kept constant and the q-axis component of the stator current varied.
The latter is frequently used for permanent-magnet motors, with a positive d-axis
current causing field weakening.

For example, consider the latter case where the d-axis current is controlled to a
fixed value. The non-zero d-axis stator current results in a steady-state reluctance
torque. As the d-axis stator current remains constant, the resulting torque is still
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Fig. 29.8 Torque transient for a variation of the field current

proportional to the q-axis current in steady state. However, if the q-axis component is
varied, a transient current Ikq(p) = ΔIkq(p) results, whichwill now cause a transient
torque together with the non-zero stator d-axis current.

The situation becomes even more complex if also the d-axis current may change,
but this will not be discussed here.

29.3.3 Practical Implementations

In typical implementations, a CSI is utilised (Fig. 29.9). The current magnitude is
controlled by the rectifier, while the phase angle is controlled by the switching signals
of the inverter.

Advantages include that

• the output is immediately the AC current
• the amplitude is directly controlled by the rectifier while its feedback only requires
a DC measurement

• the phase (and frequency) of the output current is directly controlled by the switch-
ing signals of the CSI

The disadvantages are that

• the phase control is very fast but the amplitude control of the current is rather slow
(due to the large inductance Ldc)

• the motor current is far from sinusoidal and rather a block wave
• the commutation delay of the inverter results in a current-dependent error that
should be compensated and that also depends on the frequency.

When ψw = 0, the current control is directly a torque control (Id ≡ 0; Iq = I ) - at
least for constant field excitation -. For ψw �= 0 this is no longer the case. A desired
value for the torque then corresponds to a desired value for the d- and q-axis currents.
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These then have to be transformed into a vector with its amplitude Iw and phase −ψ
with respect to the q-axis, using a resolver

Iw
q + j Iw

d = Iw
qd = Iw · exp(− jψw) (29.16)

A more common implementation nowadays makes use of a PWM voltage inverter
with current control loop (see Fig. 29.10). The PWM-VSI requires voltage switching
signals and therefore a current control loop needs to provide these signals. The current
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control loop compares the measured AC output current with the desired value. This
desired value Iw(t) has to be calculated or synthesised from the desired value of
the current magnitude |Iw| and the desired angle ψw (or from the values of Iw

q and
Iw
d ), together with the measured rotor position θr (t). This implies the following
transformations:

• the transformation from Iw
q and Iw

d (or |Iw| and ψw) to the current vector in the
q − d reference frame I qd = Iw

q + j Iw
d• the transformation of the current vector in the rotor q − d reference, I qd , to the

stator reference Iαβ(t) = Iw
α + j Iw

β (using the measured θr (t))
• the transformation from two-phase α,β to three-phase a, b, c

The switching is now quite fast, but the current control often shows dynamical prob-
lems. Indeed, this current control is a real-time control in the time domain that
regulates both the amplitude and phase of the current (providing the switching sig-
nals for the inverter). Both the reference and the feedback signals of the current are
AC quantities. This also requires the AC current measurements to be made in real
time, with high bandwidth and accuracy.

29.3.4 Vector Control and Field Orientation of Synchronous
Machines: Conclusions

The systems described in the previous section (Figs. 29.9 and 29.10) all comply with
the basic requirements for field orientation set out in Sect. 29.3.1 (as derived from
the DC machine):

• the field winding (or, for PM-motors, the pm-excitation) is the equivalent of the
field winding of the DC machine

• the stator (“armature”) current amplitude control corresponds to the armature cur-
rent control of the DC machine

• the phase control of the stator current is the exact electronic equivalent of the
mechanical commutator of the DC machine (field orientation for ψw = 0)

For the PWM-VSI implementation, the latter two items are obviously combined in
one controller, but the result is the same.

29.4 Vector Control of the Induction Machine

29.4.1 Introduction

Vector control of the synchronous machine has been derived from the torque con-
trol of the independently excited DC machine. For vector control of the induction
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Fig. 29.11 Alternate equivalent circuit for the synchronous machine

machine, we will take the vector control of the synchronous machine as a starting
point.

For the smooth-rotor synchronous machine (Lq = Ld = Ls), we may rewrite the
steady-state equations as follows (we have omitted the subscript “o”):

V s = Rs I s + jωLs I s + jωLdm I r ≡ Rs I s + jωLs I s + E p (29.17)

Te = 3

2
Np · (

Ψq Id − Ψd Iq
) = 3

2
Np · (−Ldm I f Iq

) = 3

2
(Np/ω) · Re(E p · I ∗

s )

(29.18)
where V s = Vq + jVd , I s = Iq + j Id , Ep = jωLdm I r and I r = j I f (the DC exci-
tation current is replaced by an equivalent complex rotor current referred to the
stator).

The usual equivalent circuit with the rotor emf E p (see (b) in Fig. 29.11) can be
replaced by an equivalent circuit with a rotor current source I r (see (c) in Fig. 29.11).
The current I r is an equivalent AC excitation current as seen from the stator. Together
with the stator current I s , this equivalent rotor excitation is responsible2 for the air-
gap emf Er = jωLdm(I s + I r ).

2Note that this superposition of mmfs also seems more correct than the traditional one with super-
position of emfs, which is not allowed in case of saturation; the air-gap emf is also representative
of the main field saturation level in a synchronous machine.
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The equivalent circuit (c) clearly bears resemblances with the usual equivalent
circuit of the induction machine. We may therefore be tempted to derive a torque
control principle for the inductionmachine from the torque control of the synchronous
machine.

Consider the general equivalent circuit and the phasor diagram for the induction
machine in Fig. 29.12 (the positive direction of the rotor current has been reversed
so as to correspond to the rotor current direction in the circuit of the synchronous
machine). The magnetising current for the air-gap field is thus I m = I s + I r , with
primes to indicate the turns ratio between stator and rotor omitted.

The well-known torque expression for the induction machine can be rewritten as
follows:

Te = 3

2
(Np/ω) · |I r |2(Rr /s)2 = 3

2
(Np/ω) · Re(−Er · I∗r ) = 3

2
(Np/ω) · Re(−Er Ir )

(29.19)
Compared with Eq.29.3 for the synchronous machine (in which field orientation can
be realised based on the field excitation or emf (E p) and the stator current I s = Iq ),
here the emf is a resulting rotor emf and the current is a rotor current. If we want
to obtain field orientation based on this equation, then both this emf and the rotor
current should be controllable by the stator current.

As is well known, the general equivalent circuit in T in Fig. 29.12 can be replaced
by the completely equivalent circuit in L in (a) in Fig. 29.13. Note that in this circuit,3

the rotor resistance is in parallel with the rotor inductance.

3This circuit may also be derived as the solution of the vectorial equation I s = I sφ + I sτ where
the two components are orthogonal, with I sτ in phase with the emf Er .
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It is easily shown that

I sτ = − Lr

Lm
I r (29.20)

I sφ = I s + Lr

Lm
I r (29.21)

Erτ = Lm

Lr
Er = jω

L2
m

Lr
I sφ =

(
Rr

s

)(
Lm

Lr

)2

· I sτ (29.22)

V s = Rs I s + jωLσs I s + Erτ (29.23)

The two current components I sτand I sφ are orthogonal, and their sum is equal to the
stator current (see also (b) in Fig. 29.13). The emf Erτ is the rotor emf Er = jωΨ r =
jω(Lm I s + Lr I r ) = jωLm I sφ transformed to the stator with as turns ratio Lm/Lr

(Ψ r is indeed the flux coupled with the rotor winding).

29.4.2 Torque Control Based on I sφ and I sτ

29.4.2.1 Steady State

The torque can be rewritten as a function of Erτ and I sτ :

Te =
(
3

2

) (
Np

ω

)
Re

[
Erτ · I ∗

sτ

] =
(
3

2

)(
Np

ω

)
· [Erτ Isτ ] (29.24)

or also

Te =
(
3

2

)
Np ·

(
L2
m

Lr

)
· Re [

j I sφ · I ∗
sτ

] =
(
3

2

)
Np ·

(
L2
m

Lr

)
· [−Isφ Isτ

]
(29.25)

The torque can thus be controlled by the two orthogonal components of the stator
current. The resemblance with the DC machine or synchronous machine is obvious:
Isτ is the equivalent of the armature current, Isφ is the equivalent of the field or
excitation current.

However, these two current components are not independent: Isτ = Is cos γ and
Isφ = −Is sin γ (with tan γ = Rr/sωLr , see Fig. 29.14). Both are also connected to
the slip frequency:

I sτ = jωs · Lr

Rr
· I sφ

This (steady-state) slip relation shows that the ratio of both stator current components
is strictly related to the slip frequency and, obviously, that the twovectors components
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Fig. 29.14 Orientation of
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are orthogonal. For torque control based on Isτand Isφ, this also implies that a given
torque will correspond to a certain slip frequency. In steady state, this is nothing else
but thewell-known steady-state torque-slip characteristic. In the next section, wewill
demonstrate that this also holds for transient conditions, albeit with a modification
in case of flux variations.

29.4.2.2 Dynamic Analysis

For the dynamic analysis, we will revert to the usual q − d-description. For the time
being, the speedω of this reference frame is deliberate. The equations of the induction
machine are the following (see Chap. 27):

Vsq = Rs Isq + pΨsq − ωΨsd (29.26)

Vsd = Rs Isd + pΨsd + ωΨsq (29.27)

0 = Rr Irq + pΨrq − (ω − ωr )Ψrd (29.28)

0 = Rr Ird + pΨrd + (ω − ωr )Ψrq (29.29)

T =
(
3

2

)
Np ·

(
Lm

Lr

)
· [

Ψrq Isd − Ψrd Isq
]

(29.30)

with p corresponding with d/dt and

Ψsq = Ls Isq + Lm Irq (29.31)

Ψsd = Ls Isd + Lm Ird (29.32)

Ψrq = Lr Irq + Lm Isq (29.33)

Ψrd = Lr Ird + Lm Isd (29.34)

http://dx.doi.org/10.1007/978-3-319-72730-1_27
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In steady state, the voltages, fluxes and currents in these equations are only con-
stants if the speed of the reference system corresponds with the instantaneous supply
frequency.

In the previous section we have shown that, in steady state, the torque can be
controlled with the two orthogonal components I sτ and I sφ of the stator current,
where I sφ is in phase with the rotor flux. In other words, the stator current phasor is
controlled with respect to the rotor flux phasor. However, it is important to keep in
mind that this steady-state analysis took place in the time domain, in which voltages,
currents and fluxes are phasors in a reference frame synchronouswith the steady-state
angular supply frequency.

The same steady-state analysis could also have been performed with the space-
vector Eq.27.18. If the speed ω of the reference frame is chosen equal to the steady-
state supply angular frequency, then the space-vector description is completely equiv-
alent (or even identical) to the time-phasor description.

What we have discussed in the previous section was nothing else but the normal
steady-state operation, only using the equivalent scheme in L and the corresponding
equations. It is clear that field orientation is a dynamic control. What we need is a
stator current vector that can be controlled in magnitude and position with respect to
the rotor flux vector, not only in steady state but also in transients.

To translate this into the q − d-representation, we may proceed as follows. We
choose the speed of the reference frame apriori equal to the instantaneous frequency
of the stator currents. The q − d-components of these currents are then DC values.
Field orientation implies that the flux has a fixed position in this reference frame and,
except in the field weakening range, also has a constant magnitude. Vector control
in this reference frame implies that the flux has a controllable position.

In analogy with the discussion of field orientation and vector control of the syn-
chronous machine, it seems logical to choose the phase angle of this reference frame
so that the flux is along the (negative) d-axis.

Mathematically, the requirement for field orientation can then be translated as

Ψrq ≡ 0

In theq − d-reference frame, the current andfluxvectors are as depicted inFig. 29.15.
This space vector diagram is analogous to the phasor diagram in Fig. 29.14, although
the current and flux vectors may now be time variant. Only the d-component of the
stator current determines the flux Ψr = Ψrd . For constant flux operation, Isd is to be
kept constant. Only Isq is then varied (to control the torque). As will be demonstrated
below, the torquewill then follow the q-axis currentwithout any additional transients.

An alternative way to derive the q − d-description of field and vector orientation
is to start by choosing the speed of the q − d-reference frame equal to the instanta-
neous speed of the rotor flux. For field or vector orientation, the current then needs

http://dx.doi.org/10.1007/978-3-319-72730-1_27
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Fig. 29.15 Orientation of
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to have a controlled position in this reference frame, i.e. the frequency of the current
needs to correspond to the instantaneous speed of the flux.

From the relation Eq.29.28 Ψrq = pΨrq = 0. Substituting in Eqs. 29.28, 29.29
and 29.33 yields

Isq = − Lr

Lm
Irq (29.35)

ω − ωr = ωs = s · ω = Rr Irq
ψrd

= − Rr (Lm/Lr )Isq
Ψrd

(29.36)

pΨrd + Rr Ird = 0 (29.37)

and for the torque

T = 3

2
Np · Lm

Lr
· [−Ψrd Isq

] = 3

2
Np · Ψrd Irq (29.38)

For constant flux, we observe from Eq.29.37 that Ird = 0. Put differently, there is
only a q-axis rotor current, which has to obey the relation with the flux and the slip
frequency according to Eq.29.36. Equation29.38 shows that the torque will follow
the q-axis stator current command without any further transients.

However, if the flux is varied (e.g. in the field weakening range) by a variation of
Isd , Eq. 29.29 shows, using Ψrd = Lr Ird + Lm Isd , that there will be a non-zero Ird
according to (Rr + pLr ) · Ird = −pLm Isd .

A variationΔIsd thus leads to a transient Ird = ΔIrd and a transientΔΨrd accord-
ing to

ΔΨrd = ΔIsd · Rr Lm

Rr + pLr
= LmΔIsd · 1

1 + pTrh
(29.39)
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with Trh the (relatively large) main rotor field constant. The torque will therefore
also exhibit a rather slow4 transient. The relation between slip frequency and current
also becomes time-dependent:

ωs = Rr Irq
ψrd

= − (Rr/Lr )Isq
Isd/(1 + pTrh)

(29.40)

where (1 + pTrh)−1 acts on Isd .
Field orientation of the induction machine therefore seems analogous to the field

orientation of the synchronous machine. Variations of the torque current component
Isq cause a change of the torque proportional to this current variation; variations of
the flux current component Isd are accompanied with a transient determined by the
field time constant (as the laws of physics prohibit any sudden changes of induction
or flux).

Nevertheless, there are some differences:
1- For the synchronous machine, the considered flux is the (fictitious) rotor flux,

i.e. the flux which would exist if only the rotor excitation were present. In reality,
both rotor and stator mmfs are present and the only real flux is the flux resulting from
both stator and rotor mmfs (mmfs may be superposed, not fluxes, as there is actually
always saturation). For the induction machine, the considered flux is the total flux
coupled with the rotor and this is indeed a real flux, resulting from stator and rotor
mmfs.

2- Ideal current sources do not exist. In reality, the starting point is always a DC
voltage source. As the inductance for the synchronous machine field orientation is
the relatively large synchronous reactance, while for the induction machine it is the
leakage inductance, the voltage requirements for the inverter are much higher for
synchronous machine field orientation.

29.4.3 Implementation of Field Orientation for the Induction
Machine

As to the power electronics used, induction machine field orientation schemes may
revert to both CSI and PWM-VSI, just as for the synchronous machine. Figure29.16
illustrates the PWM-VSI and CSI implementations. In the CSI-implementation, the
amplitude and phase of the current vector are controlled separately. The PWM-VSI
requires a current regulator and a transformation from the q − d-reference frame to
the stator reference frame.

Thebasic problem for inductionmachinefield orientation, however, is how theflux
angle can be derived from electrical and/or mechanical motor signals. To determine
the required position θr there are two methods. In the direct method, the flux angle

4It is slow, because it is bound by physical laws prohibiting any sudden flux changes.
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Fig. 29.17 Rotor flux computer and field orienter

is derived from electrical measurements. In the indirect method, the slip relation is
used to calculate the angle.

29.4.3.1 Direct Field Orientation

The direct method uses electrical signals to calculate the position of the rotor flux.
The principle is shown in Fig. 29.17. In a first step, the flux computer, the rotor flux
components (Ψra, Ψrb, Ψrc or Ψrα, Ψrβ) are calculated. In a second step, a resolver
(the field orienter) calculates the amplitude and phase angle of the flux vector.

To compute the flux components, the most direct method measures the air-gap
flux by means of Hall sensors or flux coils in the air gap (see (a) in Fig. 29.18). Then,
to obtain the rotor flux, only a correction for the rotor leakage is required. For this,
only two parameters are needed, i.e. Lrσ and Lr/Lm , which do not vary considerably
with saturation.5 Disadvantages of this method include the requirement tomodify the

5Except for machines with closed rotor slots where the rotor leakage flux may vary considerably.
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Fig. 29.19 Implementation of direct FO

machine and the poor accuracy of the measurement at low frequencies, particularly
for flux coils.

Another, less invasive method, utilises an estimate of the stator flux from voltage
and current measurements, as illustrated in (b) in Fig. 29.18. However, to obtain
the stator flux a correction using the (temperature-dependent) stator resistance is
required. The rotor flux is then obtained with a correction using the total leakage.
Here as well, low frequencies pose a problem in terms of accuracy: the integration of
low-frequency signals, where the resistive voltage drop has a relatively large impact.

Figure29.19a illustrates a possible control scheme using a PWM-VSIwith current
control. The actual field orientation control is inside the dashed lines. The block T−1

represents the transformation from the synchronous reference frame to the stator
reference frame (using the rotor position signal from the CFO). In the figure, this
basic scheme is completed with flux and torque control loops. The flux control loop
uses the flux amplitude information from the CFO, while the torque control loop also
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utilises the q-axis stator current calculated from the measured stator currents and the
position information from the CFO.

An implementation of direct field orientation using a CSI is illustrated in (b) in
Fig. 29.19. The CSI requires the amplitude and phase signals of the desired current,
which are derived in the resolver block. Bymeans of the required phase of the current
with respect to the flux and the flux position from the CFO, the switching signals for
the inverter are calculated (with a correction for the commutation lag, which depends
on the current amplitude). The current amplitude derived from the resolver is used
for the rectifier control. The optional flux and torque control loops are similar to
those for the PWM-VSI.

29.4.3.2 Indirect Field Orientation

In the indirect methods for field orientation, synchronisation is obtained by means
of the slip Eq.29.40, which is indeed a necessary and sufficient condition for field
orientation. From the desired q- and d-axis current components, the required slip
frequency is calculated with a slip calculator (see Fig. 29.20).

This slip frequency is then combined with the measured rotor speed or angle to
obtain the required stator frequency and phase. A disadvantage of the indirect method
is that the machine parameters used in the slip calculator are estimated values. The
rotor resistance may vary with temperature, while the rotor inductance is dependent
on saturation. The danger of incorrect orientation is especially true with varying flux
component Isd .

Figure29.21 shows a scheme using a PWM-VSI. The required phase angle θr of
the stator current with respect to the rotor flux is calculated from the slip frequency
ωw
s using the slip calculator (after integration to obtain the angle θw

s ), together with
the measured rotor angle6 θri . Usually, digital integration from slip frequency to
angle is used to avoid drift and to obtain a higher accuracy.

For the implementation of indirect field orientation with a CSI, Fig. 29.22 shows
a possible scheme. On the one hand, the current commands are used to calculate the

6Keep in mind that this is not the rotor flux angle but the mechanical rotor angle.
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required slip frequency ωw
s and on the other hand, they are transformed by a resolver

into amplitude and phase values. The amplitude signal serves as the input signal for
the current control of the rectifier, while the phase signal γ is combined with the
calculated slip frequency and the measured rotor angular speed ωr .

However, to take into account instantaneousvariations of the commandedcurrents,
a correctionΔγ has to be applied. Figure29.23 illustrates this necessity. Suppose the
torque signal Isq changes from Isq1 to Isq2 (with Isd unchanged). The phase of I s
changes from γ1 to γ2, the amplitude from Is1 to Is2 and the slip frequency fromωs1to
ωs2. The new amplitude and slip value will be calculated correctly, but without phase
correction the CSI will not take into account the phase change Δγ. The inverter gets
the new frequency ωs2 + ωr , but with the phase γ1 instead of the frequency ωs2 + ωr

with the phase γ2. Without compensation,7 the new current command would thus
correspond to I es instead of I s2. Therefore, without such a compensation the drive
would temporarily lose field orientation with a sluggish torque response.
Remarks:
1. In the PWM-VSI implementation, the phase change is correctly taken into account
by the integration of the frequency signal, which is subsequently used for the trans-
formation from synchronous to standstill reference.

7The compensation can also be regarded as an integration constant: the switching angle of the
inverter has to change from γ1 + (ωs1 + ωr )t to γ2 + (ωs2 + ωr )t and not to γ1 + (ωs2 + ωr )t .
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2. In the systems of Figs. 29.21 and 29.22, the desired value of the slip frequency is
calculated from the desired values of the q- and d-axis stator currents. For a change
of the flux or d-axis component, the calculated slip frequency also remains correct
if the value of the rotor time constant Lr/Rr is correct. Yet, the flux will change
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with this same large time constant when the desired value for the stator currents
(Fig. 29.21) or the value of the DC current (Fig. 29.22) is calculated from the (new)
desired value of Isd . Such implementations are called uncompensated.

There are compensated systems where the slip frequency is calculated using the
value of the fluxΨr = Ψrd (Eq. 29.36). The required d-axis current is calculated using
Eq.29.39 and takes into account the time delay. If the inverter is able to deliver a
quite large stator current, the transients will then be limited or short (for flux changes
that are not too large, however).

29.4.4 Other Field Orientation Techniques for Induction
Machines

The systems described above start from the flux coupled with the rotor (cf. the
equivalent schemewith all leakage referred to the stator). This seems themost logical
choice as the corresponding two stator current components are completely decoupled.
The disadvantage is that this rotor flux is not directly measurable.

However, using the rotor flux for obtaining field orientation is not strictly required.
Indeed, the torque can be written in different8 ways:

T = 3

2
Np · Re [

jΨ r ·I∗r
] = 3

2
Np · Lm

Lr
· Re [

jΨ r ·I∗s
] = 3

2
Np · Re [

jΨ s ·I∗s
] = 3

2
Np · Re [

jΨm ·I∗s
]

The last three expressions also correspond to the general equivalent scheme in
Fig. 29.24 for different values of the turns ratio a (a = Lm/Lr , a = Ls/Lm and
a = 1, respectively).

It is important to note that controlling the flux and current does not necessarily
cause field orientation. Field orientation for the induction machine requires the two
components of the stator current vector to be able to independently control the flux
and torque. This is the case for the torque expression with the rotor flux and the stator
current, as explained in the previous sections, but not for the other fluxes.

For example, let us consider the last expressionwith the air-gap flux. The reference
frame is chosen fixed to the flux (with the flux along the d-axis). From the two rotor

8Prove this using the flux definitions Ψ s = Ls I s + Lm I r , Ψ r = Lm I s + Lr I r , Ψ m = Lm(I s +
I r ) (where the turns ratio has been supposed as equal to 1).
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equations, the rotor current components are expressed in terms of the stator current
components. This results in two equations,9 one algebraic and the other a differential
equation for the flux:

ωs = − (Rr + pLrσ)Isq
Lr
Lm

Ψmd − Lrσ Isd

pΨmd = − Rr

Lr
Ψmd + Lm

Lr
(Rr + pLrσ) Isd + ωs

LrσLm

Lr
Isq

Compared to the equations for rotor flux orientation, both equations are now inher-
ently coupled. For a constant d-axis component of the stator current, the flux will
change with a variation of the q-axis current. Therefore, the control will need to cal-
culate the required Isd for a variation of Isq in order tomaintain a constant (or desired)
flux. Similarly, for the calculation of the slip frequency both Isq and Isd as well as
Ψmd come into play. Nevertheless, if the decoupling control is well implemented, a
qualitatively equivalent field orientation can be obtained.
Remarks:
1. Other variants involve the implementation of the control algorithms. For exam-
ple, for the PWM-VSI, the current control is sometimes integrated with the field
orientation algorithm and the output of the controller is then a voltage signal for the
inverter.
2. There is clearly some relation between field orientation based on the air-gap flux
and the standard V/ f -control of induction machines. However, in the V/ f -control,
the orthogonality between the flux and torque current component is not maintained
during transients, creating unwanted transient phenomena.
3. The actual magnetising flux in a machine is the combined result of the mmfs
of both stator and rotor currents. In this way, the field orientation algorithms for
the induction machine are more realistic than the one for the synchronous machine
where the (fictitious) rotor flux due to only the rotor mmf is considered. For the
torque, this is not relevant as long as the d-axis component of the flux is constant (or
not affected). For main field saturation, the cross-saturation effect will cause the flux
to change for a variation of Isq , just like the armature reaction in an uncompensated
DC machine (a compensation winding in the rotor q-axis of a synchronous machine
is obviously possible but never or rarely used). The outcome will be an unwanted
torque transient.

Although the field orientation algorithms for induction machines are based on
the total flux, saturation effects still come into play by the saturation-dependent
inductances, required for the calculation of the slip frequency (cf. the indirectmethod)
or the flux calculation or correction (cf. the direct methods).

9Prove this, introducing the leakages with Ls = Lsσ + Lm , Lr = Lrσ + Lm .



Chapter 30
Transient Phenomena in Electrical Machines

Abstract While the previous chapters analysed the local stability of electrical
machines, here we study a typical case of large transients, i.e. the sudden short-
circuit of a synchronous generator. Themodel used is a simplified constant saturation
machine model.

30.1 Introduction

While Chaps. 26, 27 and 28 discussed the stability in the small of electrical machines
(i.e. for small deviations around a steady state), the present chapter1 will focus on
large transients. A typical example is the sudden short circuit of a synchronous
machine.

In this respect, it is important to point out that an electrical machine is basically a
non-linear system.Only under simplifying assumptions such as a constant saturation
level and a constant speed can a synchronous machine be more or less considered to
be linear and allowing analytical solutions.

Nevertheless, even at constant speed, the synchronous machine is essentially a
non-stationary system. A transformation to a stationary representation is only pos-
sible under sinusoidal supply and rather restrictive assumptions (e.g. as to symmetry
of the supply). Consider, for example, a two-phase short circuit of phases b and c:

Ia = 0; Vb = Vc; Ib = −Ic (30.1)

In the 0, α, β representation, this is equivalent to

Io = 0; Vβ = 0; Iα = 0 (30.2)

However, in the q, d representation and at constant speed Ωm = ω/Np, we obtain

Iq cosωt = Id sinωt (30.3)

1This chapter is largely based on [40].
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Vq sinωt + Vd cosωt = 0 (30.4)

i.e. time-dependent relations between the transformed variables.

30.2 Transients in Synchronous Machines at Constant
Speed

At constant speed (and disregarding saturation), the synchronous machine model can
be considered to be linear.However, it is basically time-dependent (seeChap.28). The
linearity allows us to apply the superposition principle and the theorem of Thévenin
for the analysis of transients.

If we limit ourselves to switching phenomena or faults at the AC side, we may
study the resulting transients when a sinusoidal but otherwise quite general stator
voltage system of the following form is applied at t = 0:

Va(t) = Va · cos(ωt + ϕa) · μ(t)

Vb(t) = Vb · cos(ωt + ϕb) · μ(t) (30.5)

Vc(t) = Vc · cos(ωt + ϕc) · μ(t)

During the transient, the speed is assumed to be constant and equal to the synchronous
speed Ωm = ω/Np or ωm = ω (i.e. we suppose that the inertia is very large). The
excitation voltage V f is assumed to be constant as well.

The stator voltages in Eq.30.5 can be split up into a direct, an inverse and a zero-
sequence voltage that are applied to the stator at t = 0.We will subsequently analyse
the transients resulting from the application at t = 0 of

1. a positive-sequence voltage with Va = Vb = Vc = V and ϕb = ϕa − 2π/3,
ϕc = ϕa − 4π/3

2. a negative-sequence voltage with Va = Vb = Vc = V and ϕb = ϕa + 2π/3,
ϕc = ϕa + 4π/3

3. a zero-sequence voltage with Va = Vb = Vc = V and ϕa = ϕb = ϕc

30.2.1 Direct Transients

In this section, we will analyse the transient when the following positive-sequence
voltage is connected at the stator terminals at instant t = 0:

Va(t) = V · cos(ωt + δ1) · μ(t)

http://dx.doi.org/10.1007/978-3-319-72730-1_28
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Vb(t) = V · cos(ωt + δ1 − 2π/3) · μ(t) (30.6)

Vc(t) = V · cos(ωt + δ1 − 4π/3) · μ(t)

We introduced the angle δ1 so as to be able to vary the switching instant (t = 0)with
regard to the sine period. For the sake of generality, we define the angle between the
stator reference axis (or a- axis) and the q- axis (or emf axis) as

θ = ωt + δ2 (30.7)

(δ2 is thus the rotor angle at the switching instant). The load angle is therefore (URS)
δ = δ1 − δ2.

The transformed voltages are

Vo(t) = 0

Vα(t) = V · cos(ωt + δ1) · μ(t)

Vβ(t) = V · sin(ωt + δ1) · μ(t) (30.8)

and

Vq(t) = V · cos δ · μ(t)

Vd(t) = V · sin δ · μ(t) (30.9)

Transformation to the Laplace domain (with p = d/dt , thus in absolute time) yields

Vq(p) = 1

p
· V · cos δ

Vd(p) = 1

p
· V · sin δ (30.10)

The relation between the voltages and the currents follows from Chap.28:

⎡
⎢⎢⎢⎢⎣

Vq (p)
Vd (p)
0
0
0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Rs + pLq −ωLd pMskq −ωMskd −ωMs f

ωLq Rs + pLd ωMskq pMskd pMs f

3
2 pMskq 0 Rkq + pLkq 0 0

0 3
2 pMskd 0 Rkd + pLkd pM f kd

0 3
2 pMs f 0 pM f kd R f + pL f

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Iq (p)

Id (p)

Ikq (p)

Ikd (p)

I f (p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(30.11)

http://dx.doi.org/10.1007/978-3-319-72730-1_28
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To calculate the currents, the same method will be applied as in Chap. 28: from
the last three equations, the rotor currents are expressed as a function of the stator
currents and the stator equations are subsequently written in terms of the operational
inductances.

Vq(p) = Rs Iq(p) + p�q(p) − ω�d(p) (30.12)

Vd(p) = Rs Id(p) + p�d(p) + ω�q(p) (30.13)

with

�q(p) = Lq(p) · Iq(p) (30.14)

�d(p) = Ld(p) · Id(p) (30.15)

For the stator currents, we find that

Iq(p) = D(p)−1 · [
(Rs + pLd(p)) · Vq(p) + ωLd(p) · Vd(p)

]
(30.16)

Id(p) = D(p)−1 · [(
Rs + pLq(p)

) · Vd(p) − ωLq(p) · Vq(p)
]

(30.17)

with

D(p) = (p2 + ω2) · Lq(p) · Ld(p) + Rs[Lq(p) + Ld(p)] + R2
s (30.18)

The expressions for the operational inductances and the zeros of D(p) have been
discussed in Chap. 28. This may be summarised as follows:

Lq(p) = Lq · pTkq + 1

p
(
Tkq/σq

) + 1
= Lq · pT ”

q + 1

pT ”
qo + 1

(30.19)

Ld(p) = Ld ·
p2T f Tkd · σkd f σd

σdkdσd f
+ p

(
Tkd + T f

) + 1

p2T f Tkd · σkd f

σdkdσd f
+ p

(
Tkd
σdkd

+ T f

σd f

)
+ 1

≈ Ld ·
(
pT

′
d + 1

) (
pT ”

d + 1
)

(
pT

′
do + 1

) (
pT ”

do + 1
)

(30.20)

Another frequently used expression for the operational inductances is the
following2:

2Note that the following notation for Ld (p) as well as the approximation above in terms of the
transient and subtransient time constants are only valid if the field time constant is at least 10 times
larger than the d−axis damper time constant.

http://dx.doi.org/10.1007/978-3-319-72730-1_28
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1

Lq(p)
= 1

Lq
+

(
1

L”
q

− 1

Lq

)
pT ”

q

pT ”
q + 1

(30.21)

1

Ld(p)
= 1

Ld
+

(
1

L
′
d

− 1

Ld

)
pT

′
d

pT
′
d + 1

+
(

1

L”
d

− 1

L
′
d

)
pT ”

d

pT ”
d + 1

(30.22)

where L”
q = σq Lq ; L

′
d = σd f Ld ; L”

d = σd Ld . These expressions illustrate quite
clearly the behaviour of the operational inductances in the limit cases t → 0 (or
p → ∞); t → ∞(or p → 0), or an intermediate value for Ld(p).

As discussed in Chap. 28, for small or zero stator resistance, the zeros of D(p)
comprise: the stator poles p1,2 ≈ ± jω; the two d−axis rotor poles p3 = −T

′−1
d ,

p4 = −T ”−1
d and the q−axis rotor pole p5 = −T ”−1

q . For somewhat larger stator

resistances, mainly the stator poles change to p1,2 ≈ − 1
2

(
T−1
d + T−1

q

) ± jω, with
Td and Tq the stator time constants for d− and q− axes.

For our purposes (i.e. large machines) we may therefore approximate D(p) as
follows:

D(p) ≈ Ld(p) · Lq(p) ·
[(

1

2

(
T−1
d + T−1

q

) + p

)2

+ ω2

]

= Ld(p) · Lq(p) ·
[(
T−1
a + p

)2 + ω2
] (30.23)

To find the time expressions for the currents Id(t) and Iq(t), we have to calculate the
residues of Id(p) and Iq(p) in the zeros of D(p). These time functions will consist
of a damped AC term corresponding with the poles p1,2 and DC terms corresponding
with the poles p3, p4 and p5. To somewhat simplify the solution, we may ignore the
resistances in the numerator of Eqs. 30.16 and 30.17. This is essentially the same as
disregarding the residue of Id(p) in the pole p5 and the residues of Iq(p) in the poles
p3 and p4, and it leads to

Iq(p) = p · Vq(p) + ω · Vd(p)

Lq(p) ·
[(
T−1
a + p

)2 + ω2
] = V · p · cos δ + ω · sin δ

pLq(p) ·
[(
T−1
a + p

)2 + ω2
]

(30.24)

Id(p) = p · Vd(p) − ω · Vq(p)

Ld(p) ·
[(
T−1
a + p

)2 + ω2
] = V · p · sin δ − ω · cos δ

pLd(p) ·
[(
T−1
a + p

)2 + ω2
]

(30.25)

To obtain the residues, it is advantageous to make use of the expressions (30.21) and
(30.22) for the operational inductances. It immediately becomes clear that the time
function Iq(t) consists of a DC term decreasing with the time constant T ”

q and an AC
term decreasing with the armature time constant Ta . The time function Id(t), on the

http://dx.doi.org/10.1007/978-3-319-72730-1_28
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other hand, has two DC terms decreasing with the time constants T
′
d and T ”

d and an
AC term decreasing with the armature time constant Ta .

The initial behaviour (and value) of Iq(t) and Id(t) can be derived by considering
large values of |p| when Lq(p) ≈ L”

q and Ld ≈ L”
d :

V · p · cos δ + ω · sin δ

pL”
q · [

p2 + ω2
] = V

X ”
q

·
[
ω · cos δ − p · sin δ

p2 + ω2
+ sin δ

p

]
(30.26)

V · p · sin δ − ω · cos δ

pL”
d · [

p2 + ω2
] = V

X ”
d

·
[
ω · sin δ + p · cos δ

p2 + ω2
− cos δ

p

]
(30.27)

Finally, we obtain

Iq(t) = V

X ”
q

·sin(ωt−δ)·exp(−T/Ta)+V sin δ·
[(

1

X ”
q

− 1

Xq

)
exp(−t/T ”

q ) + 1

Xq

]

(30.28)

Id(t) = V

X ”
d

· cos(ωt − δ) · exp(−T/Ta)

− V cos δ ·
[(

1

X ”
d

− 1

X
′
d

)
exp(−t/T ”

d ) +
(

1

X
′
d

− 1

Xd

)
exp(−t/T

′
d) + 1

Xd

]

(30.29)

Apparently, the damping of the AC terms in Iq(t) and Id(t) can be attributed to
the stator resistance, while the damping of the DC terms results from the rotor
time constants. In the d−axis, there is first a fast decline with the subtransient time
constant of thed−axis,with a subsequently slower decreasewith thed−axis transient
time constant. In the q−axis, there is only the decrease with the subtransient time
constant of the q−axis (as we assumed that there would be only one damper in the
q- axis). The time span corresponding with the subtransient time constants is called
the subtransient interval, and the one corresponding with the transient time constant
is the transient interval.

However, the currents Iq(t) and Id(t) are in a synchronous reference system
rotating with the speed ω. The transformation to a standstill reference frame for the
AC component in d− and q−axes yields for the corresponding current component
in phase a:

− V

2
· exp(−T/Ta) ·

[(
1

X ”
d

+ 1

X ”
q

)
· sin δ1 +

(
1

X ”
d

− 1

X ”
q

)
· sin(2ωt − δ + δ2)

]

(30.30)
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The result for phases b and c is analogous (replacing δ, δ1 → δ − 2π/3, δ1 − 2π/3
or δ − 4π/3, δ1 − 4π/3, respectively). The phase currents contain a decaying DC
component and a small second harmonic. The magnitude of the DC component in
a given phase depends on the switching instant. The decaying second harmonic is
very small: it is proportional to the difference between the subtransient reactances in
q− and d−axes.

The decayingDC components in Iq(t) and Id(t) correspond to decayingAC phase
currents with mains frequency. We will refer to Iqo and Ido as these DC components
in Iq(t) and Id(t). The corresponding AC phase currents components are then

Iqo cos(ωt + δ2) − Ido sin(ωt + δ2)

Iqo cos(ωt + δ2 − 2π/3) − Ido sin(ωt + δ2 − 2π/3) (30.31)

Iqo cos(ωt + δ2 − 4π/3) − Ido sin(ωt + δ2 − 4π/3)

The amplitude of these fundamental harmonics is
(
Iqo

2 + Iqo
2
)1/2

and decreases
exponentially with time. At the start, the decay is very fast, with the subtransient
time constants of q− and d−axes. After that, the decrease settles down to a much
slower pace with the transient time constant of the d−axis (the time constant of the
excitation winding) - and a transient time constant of the q−axis if the machine and
itsmodel provide it - until finally the steady-state current is attained. This steady-state
value is determined by the reactances Xq and Xd .

To summarise, in the stator currents three components are present: a decaying
second harmonic, a damped fundamental harmonic and a decaying DC component.
The second harmonic component is typically quite small and decreases with the
armature time constant, similar to theDCcomponent. The value of theDCcomponent
in a given phase is strongly dependent on the starting instant of the transient. It can
be zero in a given phase, but then it will be large in the other phases. The armature
time constant is

Ta = 2
(
T−1
d + T−1

q

)−1
(30.32)

where Td = L”
d/Rs , Tq = L”

q/Rs for machines with damper windings and Td =
L

′
d/Rs , Tq = Lq/Rs for machines without damper windings.
The damping of the fundamental harmonic is determined by the rotor, i.e. by the

subtransient and transient time constants. The initial amplitude of this fundamental
harmonic is mainly determined by the subtransient reactances. After the subtransient
interval, the remaining amplitude is determined by the transient reactances. The final
value of these fundamental harmonic currents is determined by the steady-state rotor
reactances.
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Fig. 30.1 Fundamental
harmonic amplitude
evolution
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Figure30.1 shows the evolution of the amplitude of the fundamental AC compo-
nent for the case of sin δ = 0 (so that only the d-axis determines the value of this
current).

As a further illustration, Fig. 30.2 depicts a the currents in phases a, b, c for a
symmetrical three-phase short-circuit condition starting from no load. In the figure,
δ1 = π/2 is supposed so that no DC current is present in phase a (but in phases b
and c two opposite DC components are present, however). Moreover, for this short-
circuit condition δ = 0 is supposed so that the subtransient and transient components
result from the d−axis only. This is usually a good approximation for short circuits
in high-voltage AC grids which are mostly inductive.

The currents in the rotor have similar shape as the currents Iq(t) and Id(t) cal-
culated above. Figure30.3 shows the currents in the excitation winding and the two
damper windings for the same short-circuit phenomenon.

Remarks:

1. For the analysis of a three-phase short circuit as in the example above, the transient
voltage to be connected to the stator terminals is a function of both the excitation and
the steady-state currents before the short circuit. Consider for example a smooth-
rotor machine with a steady-state current Io before the short circuit. The steady-state
excitation emf is Eo = Epo and the stator voltage is Vo. The voltage equation before
the short circuit is

V o = Rs I o + j X I o + Eo (30.33)

At t = 0 the terminal voltage changes to V = V 1. To simplify this analysis, we
assume that the machine has no damper windings and that the excitation is by a
current source. For t = 0+ we have

V 1 = Rs I + j X I + L
d I

dt
+ Eo (30.34)
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Fig. 30.2 Three-phase AC
currents after short circuit
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With ΔI = I − I o, the transient is described by

V = V 1 − V o = RsΔI + j XΔI + L
dΔI

dt
(30.35)

The right hand side of Eq.30.35 is the simplified version of Eq.30.11, for a smooth-
rotor machine without damper windings and current supply of the excitation. The
left hand side is the voltage to be connected to the terminals to study the transient.
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Fig. 30.3 Rotor currents
after short circuit
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In case of a sudden short circuit, V 1 = 0 and V = −V o = −Rs I o − j X I o − Eo.
This is also the voltage to be considered for Eq.30.11 in the general case with

damper windings and voltage-supplied excitation winding. If the machine was in no
load before the short circuit, V = −V o = −Eo. If the machine is carrying current
before the short circuit, the voltage to be considered is therefore different for the
same excitation voltage.

2. The currents calculated from Eq.30.11 are the transient currents only. If we are
interested in the total current, we need to add the steady-state currents.

In some cases, only the subtransient phenomenon is relevant, i.e. the currents
immediately after the short circuit or switching. To simplify the superposition with
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the steady-state currents, the subtransient reactances may also be used to describe
the steady state. In that case, a fictitious rotor emf E”

o has to be introduced:

E”
o = Eo + j (Xd − X ”

d)I do + j (Xq − X ”
q)I qo (30.36)

This steady state can then also be described by

V o = E”
o + j X ”

d I do + j X ”
q I qo (30.37)

If we are only interested in the transient phenomenon, the steady state may be
described by the transient reactances X

′
q and X

′
d by introducing a transient steady-

state emf E
′
o = Eo + j (Xd − X

′
d)I do + j (Xq − X

′
q)I qo.

The subtransient state comes down to the assumption that the currents induced in
the damper windings and the excitation winding momentarily keep the flux coupled
with them constant. The subtransient emf corresponds with the voltage induced in
the stator by this flux. The currents in the stator can only affect the leakage fluxes of
these rotor windings with respect to the stator (reactances X ”

q and X ”
d ).

Similarly, the transient state comes down to the assumption that the currents
induced in the excitationwindingmomentarily keep the flux coupledwith it constant.
The transient emf corresponds with the voltage induced in the stator by this flux. The
currents in the stator can only affect the leakage fluxes of these rotor windings with
respect to the stator (reactances X

′
q and X

′
d ).

The subtransient representation can be used when only the initial transient phe-
nomena is relevant, i.e. immediately after the switching. This is, for example, useful
for analysing the commutation of a rectifier supplied by a synchronous machine.
Indeed, the commutation is so fast that the transient currents in damper and excita-
tion windings are barely reduced and, as a consequence, the emf can be considered
as constant during the commutation. The reactances involved in the commutation are
also the subtransient reactances.

The transient representation can also be used if we are interested in the time span
after the subtransient interval but before the steady state.

30.2.2 Zero-Sequence and Negative Sequence Transients

For the zero-sequence equations, we obtain from Eq.28 in Chap.28 after the Clarke
transformation (28.7):

Vo = Rs Io +
(
Ls + 2Ms

)
d Io
dt

(30.38)

or in the Laplace domain

Vo(p) = Rs Io(p) + Lo pIo(p) (30.39)

http://dx.doi.org/10.1007/978-3-319-72730-1_28
http://dx.doi.org/10.1007/978-3-319-72730-1_28
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Apparently, for zero-sequence voltages the machine behaves as a resistor in series
with a small inductance. The zero-sequence inductance corresponds with the own
leakage of a stator phase (slot leakage, air-gap leakage and end-winding leakage).

To analyse the behaviour for negative-sequence voltages, we consider the follow-
ing voltage system:

Va(t) = V · cos(ωt + δ3) · μ(t)

Vb(t) = V · cos(ωt + δ3 + 2π/3) · μ(t) (30.40)

Vc(t) = V · cos(ωt + δ3 + 4π/3) · μ(t)

This corresponds to

Vα(t) = V · cos(ωt + δ3) · μ(t)

Vβ(t) = −V · sin(ωt + δ3) · μ(t) (30.41)

and

Vq = V · cos(2ωt + δ3 + δ2) · μ(t)

Vd = −V · sin(2ωt + δ3 + δ2) · μ(t) (30.42)

Now, the voltages Vq and Vd are not constant but have twice the mains frequency.
This is in fact quite obvious as the machine is rotating synchronously in the positive
direction while these voltages are rotating in the negative direction at the same speed.

The currents corresponding with Eq.30.42 can be calculated using Eq.30.11.
We obtain a system of time-variant equations with inputs having twice the mains
frequency. Ultimately, this will create a sinusoidal steady-state with twice the mains
frequency, which will be analysed next.

In the corresponding equations, the Laplace operator has to be replaced by 2 jω
to obtain the steady-state relations (in phasor form). To simplify the calculations, we
will disregard the rotor resistances as these are much smaller than the reactances for
twice the mains frequency.

From the rotor equations, the rotor currents may be expressed as a function of the
stator currents:

I kq = −3

2

(
Mskq/Lkq

)
I q (30.43)

[
I f

I kd

]
= −3

2

[
L f M f kd

M f kd Lkd

]−1

·
[
Msf

Mskd

]
· I d (30.44)
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Substitution in the stator equations results in

V q = (
Rs + 2 jωL”

q

) ·I q − ωL”
d I d (30.45)

V d = ωL”
q I q + (

Rs + 2 jωL”
d

) ·I d (30.46)

from which

I q = ωL”
dV d + (

Rs + 2 jωL”
d

)
V q(

Rs + 2 jωL”
q

) (
Rs + 2 jωL”

d

) + ω2L”
q L

”
d

(30.47)

I d = −ωL”
qV q + (

Rs + 2 jωL”
q

)
V d(

Rs + 2 jωL”
q

) (
Rs + 2 jωL”

d

) + ω2L”
q L

”
d

(30.48)

with

V q = V · exp j (2ωt + δ2 + δ3) (30.49)

V d = jV · exp j (2ωt + δ2 + δ3) (30.50)

To simplify the analysis, we will neglect the stator resistances in Eqs. 30.47 and
30.48, resulting in

I q = − V d

3ωL”
q

+ 2V q

3 jωL”
q

(30.51)

I d = V q

3ωL”
d

+ 2V d

3 jωL”
d

(30.52)

In the time domain, we then find

Iq(t) = 1

ωL”
q

V · sin(2ωt + δ2 + δ3) (30.53)

Id(t) = 1

ωL”
d

V · cos(2ωt + δ2 + δ3) (30.54)

The α, β−components are therefore

Iα(t) = 1

ωL”q
V ·sin(2ωt+δ2+δ3) ·cos(ωt+δ2)− 1

ωL”d
V ·cos(2ωt+δ2+δ3) ·sin(ωt+δ2)

(30.55)
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Iβ(t) = 1

ωL”q
V ·sin(2ωt+δ2+δ3) ·sin(ωt+δ2)+ 1

ωL”d
V ·cos(2ωt+δ2+δ3) ·cos(ωt+δ2)

(30.56)

If L”
q = L”

d = L”, the currents Iα(t) and Iβ(t) and therefore also the three-phase
currents Ia(t), Ib(t), Ic(t) only contain a first harmonic. The corresponding complex
per-phase reactance for the negative sequence is then Z2 = jωL” = j X ”.

However, if L”
q �= L”

d , we can observe that the three-phase currents contain a third
harmonic, in addition to the first harmonic.3 This third harmonic is very small and
can usually be ignored.

Nevertheless, for the first harmonic we can observe a somewhat strange behaviour
as the impedance turns out to be different for voltage or current supply. For a voltage
supply, as in the analysis above, we find for the fundamental harmonic impedance

Z2 = j
2X ”

q X
”
d

X ”
q + X ”

d

(30.57)

Ifwe consider a current supply,wefind for the voltages, in addition to a first harmonic,
also a small third harmonic voltage. For the equivalent (and approximate) impedance
for the first harmonic, we now find

Z2 = j (X ”
q + X ”

d)/2 (30.58)

The explanation for this is that, because of the saliency and the associated third har-
monic, strictly spoken themachine cannot be represented by a fundamental harmonic
impedance.

If the stator resistance is taken into account, the stator resistance Rs should be
added to the impedances (30.58) or (30.57).

Conclusion :
For the negative sequence in steady state, the currents Iq(t) and Id(t) are AC cur-
rents (whereas these are DC currents for the positive sequence). The reactances are
therefore much more important than the resistances. This is also valid for the ini-
tial transient for the negative sequence. As a consequence, we may assume that the
machinewill enter the negative-sequence steady state almost immediately.With a fair
approximation, the machine can be represented by the complex impedances (30.57)
or (30.58) for the negative sequence.

3What is a more physical explanation for this third harmonic if the machine exhibits saliency?



Chapter 31
Voltage Surge Phenomena in Electrical
Machines

Abstract Windings of transformers and electrical machines are often subject to
voltage surges, either by switching in the grid or by atmospherical phenomena. The
resulting voltagewavesmay propagate into thewindings of transformers and rotating
machines, causing voltage stresses in the winding. In this chapter we present two
simplified models to calculate these voltage stresses. Although nowadays computer
models exist to rather accurately predict these voltage stresses, the simplified models
offer valuable insight into the physical causes of the localised voltage stresses.

31.1 Introduction

Windings of transformers and electrical machines are often subject to voltage surges.
These are caused either by switching in the grid or by atmospherical phenomena
(lightning), resulting in transient voltage waves that propagate in the grid. These
wavesmay also propagate into the windings of transformers andmachines. However,
because of the high frequencies associated with the steep voltage waves, not only
the self and mutual inductances of the windings but also the capacitances between
the windings and between windings and earth come into play. Usually, this causes
an uneven distribution of the voltage along the winding, resulting in (excessively)
large voltage stresses for the entrance coils.

The design ofmachines and transformers should take this into account by choosing
appropriate insulatingmaterial for the entrance coils. Othermeasures are usually also
taken to ensure a more even distribution of the voltage across the coils (by modifying
the capacitance between the windings and between windings and earth).

Nevertheless, a co-ordination with other measures like lightning conductors, volt-
age limiters, or protective switches remains necessary.

The most dangerous voltage surges are created by direct strokes of lightning.
The resulting induced voltages are of the order of 300–1500 kV, with a dV/dt of
100 · · · 1500 kV/µs. In some cases, voltages of several thousands kV are observed.
Indirect lighting strokes may generate voltages of 80 · · · 200 kV. As long as the rated
voltage level of that part of the grid is higher than 30 kV, this will not pose a problem.

© Springer International Publishing AG 2018
J. A. Melkebeek, Electrical Machines and Drives, Power Systems,
https://doi.org/10.1007/978-3-319-72730-1_31
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Fig. 31.1 Standardised voltage surge 1, 2/50
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Fig. 31.2 Simplified model of a single coil

The current amplitudes resulting from lightning strokes vary between some hun-
dreds of Ampères to 250kA. Statistical studies indicate that 97% are lower than
40kA; only 1% reaches amplitudes higher than 90kA.

Voltage surges due to switching are much less dangerous. These voltage ampli-
tudes are in fact related to the rated voltage and insulation level of that part of the
grid.

To study voltage surge phenomena, standardised reference waves have been intro-
duced. These reference waves are characterised by maximum voltage, polarity, max-
imum rise time, and duration (up to 50% of themaximum value) (see (a) in Fig. 31.1).
A frequently used reference wave is the wave 1, 2/50 (rise time 1µs, and duration
to half the maximum amplitude of 50µs) standardised by the IEC.

For the analysis (and design of transformers and machines with respect to volt-
age surges), powerful software tools exist nowadays. These tools should take into
account not only thewinding inductances but also the capacitances betweenwindings
and between windings and earth (see Fig. 31.2). However, these packages are rather
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complicated and use huge computer time as both the electromagnetic and electro-
static properties are analysed using finite elements. Further, these tools provide little
insight into what happens inside the transformer or machine windings. Therefore,
we present in the next section some simplified and approximate analytical methods.

31.2 Voltage Surge Waves in a Single-Layer Coil

31.2.1 Simplified Theory Disregarding Mutual Coupling

The winding is represented by the scheme in (b) in Fig. 31.2, where in addition to the
inductance of the coils permetre (L , [H/m]) also the capacitance (K , [F ·m]) between
turns per metre and the capacitance per metre between turns and earth (C, [F/m])
are taken into account.

With the notations in Fig. 31.2, we obtain the following relations for one element:

∂(i + ik)

∂x
= −C

∂u

∂t
(31.1)

ik = −K
∂2u

∂x∂t
(31.2)

∂u

∂x
= −L

∂i

∂t
(31.3)

Here, x is the distance in axial direction from the first turn of the coil, u is the voltage
in x , i is the longitudinal coil current in x and ik is the capacitive longitudinal current
in x . Note that the inductive voltage L∂i/∂t only accounts for the magnetic field by
the element L∂x in x (and not the magnetic fields by the other turns).

Eliminating i and ik from Eqs. 31.1–31.3 yields

∂2u

∂x2
+ LK

∂4u

∂2x∂2t
− LC

∂2u

∂t2
= 0 (31.4)

Equation31.4 describes the transients inside the coil.
We propose a solution of the form

u = U · exp jωt · exp jαx (31.5)

Substitution in Eq.31.4 leads to the condition

α2 − LCω2 − LKα2ω2 = 0 (31.6)
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or

ω = α
[
LC

(
1 + Kα2/C

)]1/2 (31.7)

or else

α = ±ω

√
LC

1 − ω2LK
(31.8)

With each value of α, one value of ω corresponds. When α → ∞, we see that
ω → ω∞ = 1/

√
LK . Clearly, ω∞ represents the limit frequency for free sinusoidal

oscillations in the coil (according to this model).
Since both positive and negative values of α may occur according to Eq.31.8, the

general solution can be represented by

u(x, t) =
∑

n

[
an exp( jαnx) + bn exp(− jαnx)

]
exp( jωnt) (31.9)

with αn, ωn satisfying Eq.31.6. The solution may therefore consist of both standing
waves

u = U · sinαx · cosωt (31.10)

and travelling waves

u = U · cos(αx ± ωt) (31.11)

The latter have as linear speed

v = ±ω

α
= ± 1

[
LC

(
1 + Kα2/C

)]1/2 (31.12)

which implies that the speed depends on the wave length: the shorter the wave length,
the higher the speed. In other words, the coil distorts the waves, i.e. the shape of the
waves changes when these waves move farther in the coil.

Let us now study the case of a voltage blockwave entering the coil at instant t = 0.
To do so, we also have to specify the conditions at the other end of the coil. We will
study two extreme cases, i.e. with the other end of the coil left open or short-circuited
to earth.

First, we will focus on the case with the other end earthed.We suppose the voltage
and current in the coil zero for t ≤ 0−.At t = 0+, a voltage blockwavewith amplitude
Uo enters the coil, in other words at t = 0+ the voltage at the entry jumps from u = 0
to u = Uo. Then, currents start to flow, creating a voltage redistribution over the coil
and the associated capacitors. This voltage distribution is not instantaneous, as the
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magnetic field due to the displacement currents in the capacitors opposes the change
(see Maxwell’s laws). However, as Faccioli [4] has demonstrated, the time span
required for this charge redistribution is very small, some nanoseconds, and can be
ignored compared to the time required to attain the final state. We will disregard
the time required for this redistribution and consider the charge redistribution as
instantaneous. This redistribution is therefore the instantaneous result of the voltage
jump at t = 0+ to u = Uo to a network of only capacitors (Fig. 31.2 with all
inductances set to ∞). The corresponding differential equation describing the initial
charge redistribution can be found by expression the charge equilibrium in whatever
node P (in x):

(
uo + duo

dx
dx

)
Cdx +

(
−duo

dx
dx − d2uo

dx2
dx

)
K

dx
+ duo

dx
dx

K

dx
= 0 (31.13)

with uo = u(x, t = 0+). Thus
d2uo
dx2

= C

K
uo (31.14)

(this equation can also be derived by putting L = ∞ in Eq.31.4).
For the specific case here with one terminal connected to Uo and the other con-

nected to ground, the boundary conditions are

x = 0 uo(0) = Uo

x = l uo(l) = 0
(31.15)

The solution of the differential equation31.14 for this case is therefore

uo = Uo
sinh γ(l − x)

sinh γl
(31.16)

with γ =
√

C
K . The (negative) voltage gradient

g = −duo
dx

= Uo
γ · cosh γ(l − x)

sinh γl
(31.17)

attains a maximum value for x = 0, i.e.

gmax = Uoγ coth(γl) (31.18)

With the average gradient over the length of the coil equal to gav = Uo/ l, we
observe gmax/gav = γl · coth(γl). As in most cases γl > 3, coth(γl) ≈ 1 and thus

gmax/gav ≈ γl = l
√

C
K =

√
Cl
K/ l =

√
Ct
Kt

(with Kt and Ct the total series capacitance
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Fig. 31.3 Gradient for (a) shorted and (b) open coil end

and capacitance to earth, respectively). The greater the capacitance to earth of the
coil compared to the series capacitance, the greater the gradient (see (a) in Fig. 31.3).

The physical explanation is that a large coil capacitance to earth results in a large
voltage drop for the first turns of the coil as the associated series capacitances have
to carry all the current to charge all following capacitances to earth. The voltage drop
over the first series capacitor is equal to −(∂u/∂x)dx . We may therefore define an
equivalent entrance capacitor Cv for the coil as follows:

[ik]x=0 = ∂

∂t

[
−∂u

∂x
dx

K

dx

]

x=0

.= Cv

[
∂u

∂t

]

x=0

(31.19)

Integrating equation31.19 using Eq.31.16 yields finally

Cv = Kγ · coth(γl) ≈ √
CK (31.20)

Equation31.16 represents the initial charge (or voltage) distribution which is the
starting point for the free oscillations in the coil. These free oscillationswill ultimately
end up in the final state (even though all resistances and thus all damping have been
ignored).

The differential equation for the final state can be derived fromEq.31.4 by putting
all time derivates equal to zero, i.e.

d2u f

dx2
= 0 (31.21)

With the boundary conditions u f (0) = Uo, u f (l) = 0, the result for the final state is
u f (x) = Uo(1 − x/ l). The corresponding current would be i f = (Uo/Ll) · t but in
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reality the current will be limited by the resistances, which we have disregarded in
our strongly simplified model.

As mentioned, free oscillations (i.e. the solutions of Eq.31.4) will ensure a tran-
sition between the initial charge distribution (i.e. Eq. 31.16) and the final state. The
resulting voltage surge wave may be written as follows:

ur (x, t) = u f (x) + u(x, t) (31.22)

u(x, t) represents the free oscillations, i.e. solutions of Eq.31.4 and of the form of
Eq.31.5. As u f (x) also satisfies Eq.31.4, so does ur (x, t). For u(x, t) we propose
the following real form:

u(x, t) =
∑

n

[
an cos(αnx) + bn sin(αnx)

]
cos(ωnt) (31.23)

The coefficients an, bn result from the boundary conditions:

t = 0 u(x, 0) = uo(x) − u f (x)

x = 0 u(0, t) = 0

x = l u(l, t) = 0

(31.24)

The second condition gives an = 0. The third condition yields αn = n π
l for n =

1, 2, . . .. Then, from the first condition, we get

∑

n

bn sin

(
nπx

l

)
= Uo

[
sinh γ(l − x)

sinh γl
−

(
1 − x

l

)]
(31.25)

Using a Fourier expansion of the right side of this equation, we obtain for the coef-
ficients bn (n = 1, 2, . . .):

bn = −2

nπ
· γ2l2

n2π2 + γ2l2
·Uo (31.26)

Therefore

ur (x, t) = Uo

{
(
1 − x

l

)
− 2

∑

n

γ2l2

n2π2 + γ2l2
· sin(

nπx
l )

nπ
cosωnt

}

(31.27)

with (see Eq.31.7):

ωn = nπ/ l
[
LC + LK

(
n2π2 + γ2l2

)]1/2 (31.28)
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The case of coil with the other end insulated with respect to earth can be treated in
a similar way. For the initial charge distribution, the following boundary conditions
hold:

x = 0 uo(0) = Uo

x = l (∂uo/∂x)x=l = 0
(31.29)

(the condition in x = l results from the zero current in x = l). Thus

uo = Uo
cosh γ(l − x)

cosh γl
(31.30)

The graph (b) in Fig. 31.3 shows uo(x)/Uo as a function of x/ l for some values of
γ/ l.

For the final voltage distribution, u f (x) = Uo and i f (x) = 0 hold. As a conse-
quence, the boundary conditions for the free oscillations are

t = 0 u(x, 0) = uo(x) −Uo

x = 0 u(0, t) = 0

x = l (∂u/∂x)x= l = 0

(31.31)

The third condition yieldsαn = n π
2l for n = 1, 3, . . .. Then, from the first condition,

we get

bn = −4

nπ
· γ2l2

(nπ/2)2 + γ2l2
·Uo (31.32)

and thus (with n = 1, 3, . . .):

ur (x, t) = Uo

{

1 − 4
∑

n

γ2l2

(nπ/2)2 + γ2l2
· sin(

nπx
2l )

nπ
cosωnt

}

(31.33)

Figure31.4 compares the two cases discussed. For an earthed end of the coil the
oscillations show an even number of half wave lengths, while for an insulated end
of the coil we see an odd number of quarters of wave lengths.

Despite the rather strongly simplifying assumptions, the model (which goes back
to 1915, seeRef. [37]) gives a fairly goodqualitative idea of the phenomena associated
with voltage surges in a coil.
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Fig. 31.4 Surge voltage free waves

31.2.2 Effect of the Mutual Coupling

The theory in the previous subsection completely disregards the mutual coupling
between the turns of the coil. Although the results describe the actual behaviour
quite accurately from a qualitative perspective, quantitatively the results for the free
oscillations do not match the actual phenomena very well. For example, a limit
frequency (see Eq.31.8) has never been observed.

An approximatemodel taking into account themutual inductive coupling between
turns has been developed in Ref. [1]. Consider the schematic representation of a coil
with iron core in Fig. 31.5. The current in the coil results in a magnetic field with field
lines partially in air (leakage) and partially in the iron core (main field), as depicted
in the figure.

Let us call ϕ(x, t) the physical flux (or flux per turn) in x , w the total number
of turns and l the axial length of the coil. The flux in x contributes to the voltage
according to

∂u(x, t)

∂x
= −w

l
· ∂ϕ(x, t)

∂t
(31.34)

The flux ϕ(x, t) consists of a main flux ϕo and a leakage flux ϕσ . The field lines
of the main flux remain completely in the iron core; this main flux is the same for all
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Fig. 31.5 Model with
mutual coupling

l

x

h

h

2Rm

turns in the coil. For the leakage flux, we may assume that the field lines resemble
the dash-dot lines in Fig. 31.5. To calculate the flux ϕ(x) in x , we consider a surface
� consisting of

• a cylindrical surface from x = x to x = l (with as starting point the turn in x = x).
• a basis at x = l completely in the iron yoke

We obtain for the flux

ϕ(x) =
∫∫

�

B · n · d� = 2πRm

l∫

x

Bσ(x) · dx + ϕo (31.35)

with Rm the average radius of the winding (and of the cylinder). To calculate the
leakage flux, Ampère’s law is applied on the leakage flux line shown in full line in
Fig. 31.5:

1

μo
Bσ(x) · h − 1

μo
Bσ(0) · h = w

l

x∫

0

i(x) · dx (31.36)

(where h is the radial length of a leakage flux line). SubstitutingEq.31.36 in Eq.31.35
yields

ϕ(x) = ϕo + 2πRm

l∫

x

Bσ(0) · dx + 2πRm

l∫

x

⎡

⎣
x∫

0

wμo

hl
i(x) · dx

⎤

⎦ · dx (31.37)

Differentiating twice with respect to x results in
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∂2ϕ(x)

∂x2
= −μo

2πRmw

hl
· i(x) (31.38)

Substituting in Eq.31.34, we obtain

∂3u

∂x3
= μo · w2

l2
· 2πRm

h

∂i

∂t
.= L

′ ∂i

∂t
(31.39)

Equation31.39 replaces Eq.31.3. Together with Eqs. 31.1 and 31.2, the differential
equation for the voltage in the coil now becomes

1

L ′
∂4u

∂x4
− K

∂4u

∂2x∂2t
+ C

∂2u

∂t2
= 0 (31.40)

Compared to the original differential equation31.4, the first term undergoes a sign
and order change. The reason for this is that now the inductance L

′
takes into account

the mutual leakage flux between the turns, while in the inductance L in the original
equation only accounts for the own field of the turn.

We now propose a solution of the form

u = U · exp jωt · exp jαx (31.41)

Substitution in Eq.31.40 leads to the condition

α4 − L
′
Cω2 − L

′
Kα2ω2 = 0 (31.42)

or

ω = α2

[
L ′C

(
1 + Kα2/C

)]1/2 (31.43)

Compared to the model of Sect. 31.2.1, we find that the angular frequency is some-
what proportional to the square of the space frequency α instead of proportional
to the space frequency. Further, there is no limit or critical frequency (ω∞) above
which all oscillations are damped as a function of the distance in the coil (i.e. when
jα becomes real).

The remainder of the analysis is similar as in Sect. 31.2.1. For an earthed coil, we
also obtain an even number of half waves and for an open end an odd number of
quarter waves.

Other important conclusions from the above analysis are the following:

• for an earthed coil the peak voltages may easily attain 150% of the rated voltage
of the coil (for switching transients, but much more for a direct lightning stroke)

• for a coil with insulated end the voltages may easily attain 300% of the rated
voltage (for switching transients, but much more for a direct lightning stroke).
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31.2.3 Discussion of the Models

Experimental research has demonstrated that themodel including themutual leakage
is much closer to reality:

• a critical frequency (ω∞) has never been found experimentally
• the relation between α and ω according to the second model with mutual coupling
matches experiments much better than the one according to the first model without
mutual coupling

• for higher frequencies in particular, the amplitudes calculated from the first model
do not correspond very well with the measured amplitudes (only 50% of the
experimental values)

The Blume-Boyajian model is also a simplified representation of reality. In reality,
a turn in x1 and a turn in x2 are only partially coupled by their leakage fluxes., The
greater their distance in the coil, the less they are coupled.

However, we will not discuss more detailed modelling. For more details about
modelling surge phenomena, see Ref. [9]. In a realmachine, the phenomena aremuch
more complex than in a simple coil (in terms of slots, end windings, and secondary
windings, among other things) and, nowadays, finite element software packages are
used to study surge phenomena in machines and transformers.

In the next section, we will discuss the most important differences concerning
surge phenomena in real machines and transformers compared to a simple coil.

31.3 Surge Phenomena in Real Machines and Transformers

In general, surge phenomena in actual transformers are somewhat similar to those
described above for a single coil. However, there are also important differences:

• the presence of a secondary winding, in most cases connected to a secondary grid
or load

• for three-phase transformers, the presence of the other phases
• the heterogeneous character of the windings (e.g. disk windings)
• for tap transformers, the effect of unconnected windings
• the effect of the iron core
• etc.

For rotating machines, the voltage surge behaviour is even more distinct from that
of a single coil. Indeed, in most cases (if not all) the windings are located in slots.
As a result:

• the capacitive coupling between windings in different slots is nearly non-existent
but

• the capacitive coupling to earth of the turns in a slot is very large and
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• the damping effect of the iron can be very large as the windings in the slots are
very near to the iron yoke

Therefore, a first-order model for surge phenomena in an electrical machine (as to
the windings in the slots) is more like a transmission line with series inductance
L and capacity C to earth (both per metre). The transients in the slot parts of the
winding have a linear speed v = 1/

√
LC ; the ratio between voltage and current is

given by Z = √
L/C . However, there is a considerable difference between the parts

of the windings in the slots and the parts in the overhang. Because of the high series
inductance and capacitance to earth for the conductors in the slots, the linear speed
of the voltage waves is much smaller for the conductors in the slots (20 · exp 6 m/s
versus 200 · exp 6 m/s for the conductors in the overhang). The damping due to the
iron is also much higher for the conductors in the slots.

An accuratemodel for the surge phenomena in rotating electrical machines should
therefore

• account for the different behaviour of the conductors in the slots and in the overhang
• consider the (longitudinal) resistive components to take into account the eddy
current damping; yet, mutual inductive and capacitive coupling between the turns
may be disregarded

• take into account the frequency dependence of the resistive and inductive series
components

It is, however, not possible to find any analytical solutions for such a complicated
model. Instead, numerical models are used and even for these models, approxima-
tions are frequently applied.

These models will not be further discussed here. Qualitatively, the models dis-
cussed above for a single coil give a good idea of the phenomena in real transformers
and rotating machines.

Instead, in the next section we will discuss means to reduce or avoid harmful
effects of voltage surges in transformers and rotating machines.

31.4 Protection Against Voltage Surges

To protect transformers and machines against voltage surges, two types of actions
are undertaken (in addition to external protection):

1- mitigating local high voltage surges by an appropriate (electromagnetic and
electrostatic) design of the machine or transformer, so that the voltage surges are
redistributed along a larger part of the winding

2- reducing the harmful effects of voltage surges by increasing the insulation
level of the machine or transformer, at least for the first turns
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The first kind of measures are mainly applied for transformers; the second kind
mostly for rotating machines. Nevertheless, a combination is possible, for example
for rotating machines fed at medium voltages, i.e. Vn > 6kV .

Below, we will mainly examine the first kind of measures.
For transformers, we will try to make the initial charge distribution as close as

possible to the final (linear) distribution so as to reduce the amplitude of the free
oscillations. As this initial charge distribution solely depends on the capacitances, a
more even distribution is obtained as follows:

1. for coil (cylindrical) windings:

• compensating the capacitances to earth by placing metal shields at the entrance
voltage level in close proximity of the windings. These shields compensate the
capacitive currents to earth. Basically, they affect the electrostatic fields at the
instant of the voltage surge.

• increasing the series capacitances of the windings, either by connecting discrete
capacitors in parallel between taps on the windings or by interweaving the turns

• connecting discrete resistances (in parallel with the winding) between the entrance
of the coils and well-chosen taps; combinations of resistances and capacitances
can also be used.

2. disk windings inherently have a (relatively) larger series capacitance and smaller
earth capacitance, except for the first disk. As such, disk windings are more apt for
transformer windings with high rated voltage levels. Nevertheless, additional steps
may be necessary:

• compensating or reducing the earth capacitance for the input disk (which is usually
closest to the core yokes at the top or bottom)

• adding series capacitances in parallel with the winding
• interleaving the turns by transposition inside a disk or, if necessary, with and
between adjacent disks

In addition, sometimes

• a tertiary delta-connected winding will be provided, short-circuited on suitable
damping resistances (in order to limit the free oscillations), and

• a wye-connected winding will be earthed with a Peterson coil

Regarding surge voltages, rotating machines differ from transformers because the
voltagewaves are propagated rather differently. In addition, rotatingmachines cannot
withstand the same level of voltages because the windings are not submerged in oil
and there is a lack of space for additional insulation. Compared to transformers, the
available slot space is limited and the fill factor of these slots should be as high as
possible.

In practice, a machine is required to withstand the same level of voltages as the
minimum industrial voltage test level (imposed by the standards, e.g. 1500V for a
230V machine). An alternative way to protect the machine is to limit the steepness
of possible voltage fronts by either connecting a capacitor (>0.1µF) between the
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terminals and earth, or by connecting the machine to the grid by means of a cable
with a suitable capacitance.

For high-voltage machines that are directly connected to the grid (i.e. without a
transformer), voltage-limiting devices are applied, sometimes combined with capac-
itors at both the machine terminals and the connection point of the grid. For wye-
connected high-voltage machines, a Peterson coil between the neutral and earth will
improve the voltage surge characteristics (compared to an isolated neutral).



Appendix A
Terminal Markings and Markings
of Windings

A.1 Markings for Three-Phase Transformers

General rules:

1. The three legs of a three-phase transformer are marked by the capital letters U,
V, W.

2. All coils and windings on the same leg are marked by the same letters as their
respective legs

a. Coils that are not intended to be connected in series or parallel get a different
numerical prefix (e.g. 1 for the primary, 2 for the secondary: for leg U, 1U
and 2U, respectively)

b. End terminals and taps of a winding are indicated by a numerical suffix. If a
winding consists of different coils that are to be connected in series of paral-
lel, the end points are marked by the suffixes (01, 02), (11, 12), . . . while the
taps get the suffixes (03, 04, 05, . . .), (13, 14, 15, . . .). The suffixes of a part
winding or coil always form an uninterrupted series, except when they are on
different coils or part windings, in which case the row is interrupted.
Examples:
The example (a) in Fig.A.1 shows a three-phase transformer with three wind-
ings (primary, secondary and tertiary) that are not intended to be connected
in series or parallel. In (b) a three-phase transformer with taps on the primary
winding is illustrated. (c) shows the windings of a three-phase transformer
with the primary winding in two parts that are intended to be connected in
series or parallel; one of these also has taps.

3. The general rule is that, for all windings on the same leg, the polarity of the end
point with the smallest suffix with regard to the polarity of the end point with the
largest suffix always is the same; the same rule is valid for the taps.

4. The terminal markings should maintain the same spacial position as the legs. The
terminal markings are indicated by the same letter and prefix as the corresponding
leg. The suffixes are the same as the suffixes of the end points of the windings
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Fig. A.1 Three-phase transformer winding markings

2U1 2U2

2V1

2W1
2W2

2V2
1V11V2

1W2

1U2

1W1

1U1

U1
V1

W1
N

U2
V 2

W2
(Yd5)

(b)(a)

2U1 2U2

2V1

2W1
2W2

2V2
1V11V2

1W2

1U2

1W1

1U1

U1
V1

W1
N

U2
V2

W2

(Yd1)

2U1 2U2

2V1

2W1
2W2

2V2
1V11V2

1W2

1U2

1W1

1U1

U1
V1

W1
N

U2
V 2

W2

(Yd11)

(d)

2U1 2U2

2V1

2W1
2W2

2V2
1V11V2

1W2

1U2

1W1

1U1

U1
V1

W1
N

U2
V2

W2

(Yd7)

(c)

Fig. A.2 Three-phase transformer terminal markings

which they are connected to, see Fig.A.2.
If there is a neutral point, it is indicated by the letter N.

Examples:
A comparison of examples (a) and (b), or (c) and (d) shows that, with unchanged
connection of the coils among themselves, there exist two ways to connect the end
points to the terminals, resulting in a change of the vector group by 4. The comparison
of the examples (a) and (c), or (b) and (d), shows that an interchange of of the end
points 1 and 2 (both for the mutual connection of the coils and the connection to
the terminals) yields a variation of the vector group of 6. This is also valid for wye
connections.
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A.2 Markings for Single-Phase Transformers

The markings of single-phase transformers are quite analogous to those of three-
phase transformer. As all coils and windings belong to the same leg, only one letter
(always the letter U) is used, see Fig.A.3.
Example:

Fig. A.3 Single-phase
transformer terminal
markings
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A.3 Markings and Rotation Direction of Rotating
Electrical Machines

A.3.1 General Rules

These general rules are based on the IEC standard: Terminal markings and direction
of rotation of rotating electrical machines.

1. The windings are marked by capital letters, e.g. U, V, W . . ..
2. End points and taps of a winding are distinguished by a numerical suffix, e.g. U1,

U2.
3. Similar coils of a group of windings are distinguished by a numerical prefix, e.g.

1U, 2U.
4. Prefixes and/or suffixes may be omitted when confusion can be ruled out.
5. For DC commutator machines the letters of the first part of the alphabet are used,

e.g. A, B, C. . .. For AC machines the letters belonging to the last part of the
alphabet are used, e.g. K, L, M, N, Q, U, V, W, Z.

Remark: The IEC recommendation only refers to external terminals, i.e. those that
are available to the user. However, similarly to transformers, thesemarkingsmay also
be used for the internal coils and winding terminals. In Fig.A.4, (a) is for a single
stator winding; (b) is for a single stator winding with taps; (c) is for a stator winding
in two parts that are to be connected in series or parallel; (d) is for a stator winding
in two parts that are not to be connected in series or parallel (except for two-speed
machines, see below); (e) is for a single stator winding with neutral point (to be
connected or not). If the machine with windings as in (d) is a two-speed machine,
then the terminals with the lowest prefix are intended for the lowest speed, and those
with the highest suffix for the highest speed.
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Fig. A.4 Stator winding markings for three-phase machines
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Fig. A.5 Three-phase machine terminal markings: a single speed; b, c multi-speed

A.3.2 Terminal Markings of Electric Machines

A.3.2.1 Markings for AC Machines (Except AC Commutator
Machines)

Three-Phase AC Machines

The terminals are marked as in Fig.A.5, i.e. usually the letters U, V, W, N are used
for the stator.
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Fig. A.6 Single-phase
induction machine terminal
markings
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U1

U2
main
winding

auxiliary
winding

In case of multi-speed machines, the terminals with the lowest (highest) prefix of
the stator (primary) indicate the lowest (highest) speed. See (b) and (c) in Fig.A.5
(for the lowest and the highest speed, respectively).

For the rotor (secondary), the letters U, V, W, N are replaced by K, L, M, Q, re-
spectively. If the externally supplied winding is on the rotor, this notation is reversed.

Two-Phase AC Machines

The markings are similar to those of three-phase machines, except that the letters W
and M are not used.

Single-Phase AC Machines

The markings for single-phase machines are as shown in Fig.A.6.

Excitation Windings of Synchronous Machines

The terminals of a synchronous machine excitation winding are marked as the sep-
arate excitation winding of DC machines.

A.3.2.2 DC Commutator Machines

The (winding) terminals of DC commutator machines are marked as in Fig.A.7.
Remarks:

1. the auxiliary (commutation) and compensation windings sometimes consist of
two parts, each part to be connected at one side of the armature

2. the series winding may have more than two terminals
3. if the separate excitation consists of two parts (intended for series or parallel

connection), the markings are as in Fig.A.8.
4. two (or more) excitation windings result in fluxes in the same sense when their

windings are supplied with currents flowing from the terminals with lowest (high-
est) suffix to those with the highest (lowest) suffix.

5. the fields of the auxiliary (commutation) and compensation windings have the
right polaritywith respect to eachother and to the armature if, in all thesewindings,
the current flows from the terminals with the lowest (highest) suffix to those with
the highest (lowest) suffix.
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A1 A2

C1 C2

D1 D2

E1 E2

F1 F2

H1 H2

J1 J2

B1 B2

(a)

(b)

(c)

(d)

(e)

(f)

(h)

(j)

Fig. A.7 DC machine winding and/or terminal markings

Fig. A.8 DC machine
windings in two halves
and/or taps 1B1 1B2

2B1 2B2 2C1 2C2

1C1 1C2

D1

D2

D2

D3 F5 F6

F1 F2

(a) (b)

(c) (d)

6. the external terminals of the series connection of two coils get the markings of
the connected coil extremities.

7. if auxiliary and compensation windings form a single unity, the letter C is used
for the markings.

8. when more than one winding is connected to an external terminal, the markings
of one or more of the connected extremities are used for the external terminal
marking, see Fig.A.9.

A.3.3 Rotation Direction

The rotation direction is assessed by an observer at the shaft end if the machine has
only one shaft end, or at the shaft end with the largest diameter if the machine has



Appendix A: Terminal Markings and Markings of Windings 723

Fig. A.9 Terminal markings
for a DC machine

B1

B2A1 (A2)(a)

(1C2)

1C1 (A1)(1B1)

(1B2)

(2B2)(A2)

(2B1) (2C1)

2C2

(b)

A1E1
or AE
or A
or A1

(D1)
(D2)

(E1)

(E2)

(B2)

(A2)(A1)

(B1)
D1E1
or DE
or D
or D1

(C1) (C2)

(c)

two shaft ends. If the machine has two shaft ends with the same diameter (or no shaft
ends at all), then the position of the observer is:

1. at the shaft end opposite to the commutator and/or slip rings if the machine has
commutator and/or slip rings only at one end

2. at the shaft end opposite to the commutator if the machine has both commutator
and slip rings, each at one side of the armature

3. at the shaft end opposite the ventilator for cage induction motors.

The rotation direction is called right or positive for a clockwise rotation and left or
negative for a counterclockwise rotation.

A.3.4 Relation Between the Markings and the Rotation
Direction

A.3.4.1 AC Machines

For three-phase machines, the rotation direction is right or positive if the alphabetic
order of the markings corresponds to the time order of the voltages.

For single-phase machines, the rotation direction is right or positive for the con-
nections as in Fig.A.10.
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Fig. A.10 Single-phase
induction machine: right
rotation direction

(Z1)

(Z2)

U1
(U1)

(U2)
U2

Fig. A.11 DC machine
positive rotation direction

(A2)A1

A2

(E1)

A1

(E2)

(A2)

(D1)

A1

D2

(A2)(A1)

(D2)

D1

(a)

(b)

(c)

A.3.4.2 DC Commutator Machines

The rotation direction is right or positive when the connections are as in Fig.A.11.
Remarks:

1. Note that the polarity of the terminals in this figure has no effect on the rotation
direction.

2. It is easy to verify that the right rotation direction for motoring corresponds to
currents in armature and excitation that flow in the same sense with respect to the
suffixes in both windings (lowest to highest, or highest to lowest). For generat-
ing, the positive rotation direction corresponds to opposite current directions in
armature and excitation with respect to the suffix order.



Appendix B
Static Stability of a Drive

The static stability of a motor with load depends on the slopes of the driving (motor)
and load torques at the operating point (the intersection of both). FigureB.1 depicts
a stable (a) and an unstable (b) operating point.

Mathematically this becomes clear when the equation of motion is considered (Ω
is the state variable)

J
dΩ

dt
= Tm − Tl (B.1)

An equilibrium position (stable or unstable) occurs when Tm = Tl . The associated
speed is called Ω0.

Both Tm and Tl are in general (non-linear) functions of the speed. To investigate
the local stability of the equilibrium point Ω0, we have to linearise these torque
functions around the equilibrium position and go over to the Laplace domain:

T T

Tm
Tm

T

T

dTm
d

dT
d

- < 0
dTm
d

dT
d

- > 0

stable unstable

Fig. B.1 Stability of a drive
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J p(ΔΩ) =
[(

∂Tm
∂Ω

)
Ω0

−
(

∂Tm
∂Ω

)
Ω0

]
· ΔΩ (B.2)

Clearly the operating point is stable when
(

∂Tm
∂Ω

)
Ω0

<
(

∂Tm
∂Ω

)
Ω0

(eigenvalue in the

left half plane) and unstable when
(

∂Tm
∂Ω

)
Ω0

>
(

∂Tm
∂Ω

)
Ω0

(eigenvalue in the right half

plane).
This may also be intuitively deduced from the figure. Consider a deviation ΔΩ

(e.g. ΔΩ > 0) from the equilibrium point Ω0. In case (a) in the figure, the load
torque now becomes higher than the driving torque. Thus the speed will decrease
and the system will return to the equilibrium point, which is stable. In case (b), the
speed will further rise, moving the operating point away from the equilibrium point,
which is therefore unstable.



Appendix C
Phasors and Space Vectors

C.1 General: Basic Definitions

Phasors (or time vectors) are commonly used to describe sinusoidal time quantities
like voltages or currents. A sinusoidal time quantity (e.g. voltage) v(t) = V̂ cos(ωt−
ϕ) is represented by the complex quantity V = V exp(− jϕ) where V = V̂ /

√
2 is

the effective value.1

The real time quantity can be regained by multiplying the phasor by
√
2 exp( jωt)

and taking the real part2: v(t) = Re[√2V · exp( jωt)] = Re[V̂ · exp( jωt − jϕ)] =
V̂ cos(ωt − ϕ).

Phasors can be represented in a complex (time) plane as in (a) in Fig.C.1. With
a positive angle ϕ in the above phasor, the voltage phasor is lagging with respect to
the real axis, i.e. v(t) is lagging with respect to a voltage v0(t) = V̂ cos(ωt).

Space vectors on the other hand are typical for three-phase (or multi-phase) quan-
tities as in rotating field machines. A basic physical example is that of a sinusoidal
rotating magnetic field b(x, t) = B̂ cos(xπ/τp − ωt − ψ). The space vector repre-
sentation is b−→ = B̂ exp( jωt + ψ).

To return to the real time representation, multiply the space vector by
exp(− j xπ/τp) and take the real part: b(x, t) = Re[ b−→ · exp(− j xπ/τp)] =
B̂ cos(xπ/τp − ωt − ψ).

In Fig.C.1, b shows the space vector b−→ in the complex space plane. In this case,
b−→ is a vector with constant amplitude rotating with constant angular speed in the
counter-clockwise direction (usually assumed the positive direction). Remark that a
positive angle ψ corresponds to a rotating field that is leading in space with respect
to a field b0(x, t) = B̂ cos(xπ/τp − ωt), i.e. at t = 0 the field b(x, t) is maximal in

1Sometimes amplitude values as well are used for the phasors.
2Without taking the real part, we obtain the so-called time phasor v(t) = V̂ · exp( jωt − jϕ).
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(a):  phasors

V=V

Ve-jφ

Re

Im+

(b): space vectors (at t=0)

+

b=Bej t+j

b =Be0
j tω

ω

Re

Im

^

^

ψ

ψ

a

b

c

Fig. C.1 Phasors and space vectors

xx=0

Bcos(x / - tπ p
Bcos(x / - tπ p

v=2 fp

p

(a): two travelling fields at t=0

ψ

ψ

tt=0

Vcos t
Vcos ( φt

(b): two sinusoidal time functions

Fig. C.2 Phasors in time and space vectors in space

x = ψτp/π whereas the field b0(x, t) is maximal in x = 0 at t = 0. In the figure, also
a schematic representation of the three axes of the stator of a three-phase machine (in
two-pole representation) is drawn. When the space vector b−→ is co-linear with one
of the phase axes, the flux in this phase is maximal at that instant (see also Chap.3).
Remark: the difference between leading and lagging in time and space can also be
illustrated as in Fig.C.2. FigureC.2 a shows the sinusoidal field distributions b(x, t)
and b0(x, t) as a function of the space co-ordinate x. FigureC.2 b on the other hand
shows the sinusoidal voltages v(t) and v0(t) versus time.

C.2 Mathematical Extension

Whereas phasors are limited to pure sinusoidal quantities, space vectors are not. The
space vector representation can be used for non-sinusoidal multiphase quantities and
are even not limited to multi-phase symmetrical situations. For example a waveform
can consist of two (or more) travelling or rotating waves with different angular fre-

http://dx.doi.org/10.1007/978-3-319-72730-1_3
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quency, however with the same wavelength (or pole pitch for an electrical machine).
Also standing waves (with the same wave length) can be included. The space vector
will then consist of the superposition of the space vectors for the separate waves.

To derive a more general mathematical approach, we start with considering three-
phase purely sinusoidal quantities, e.g. the stator currents of a three-phase ma-
chine: ia(t) = Îa cos(ωt − ϕa), ib(t) = Îb cos(ωt − ϕb), ic(t) = Îc cos(ωt − ϕc).
Their phasor and time phasor representations are (using amplitude values): I a =
Îa exp(− jϕa), I b = Îb exp(− jϕb), I c = Îc exp(− jϕc) and i a(t) = Îa exp( jωt −
jϕa), i b(t) = Îb exp( jωt − jϕb), i c(t) = Îc exp( jωt − jϕc) respectively.

The currents considered are not necessarily 3-phase symmetrical, as indicat-
ed by the general amplitudes and phase angles. To study the resulting current
layers or mmfs in the machine the symmetrical components transform can be
used: [ I 0 I p I n]T = T−1

s [ I a I b I c]T with

T−1
s = 1

3

⎡
⎣1 1 1
1 a a2

1 a2 a

⎤
⎦

and a = exp( j2π/3). Usually, symmetrical components are applied to the phasor
representation, but they can as well be used for the time phasor representation (the
only difference being the time exponential for both input and output of the transform).

Applying the resulting positive, negative and zero-sequence components to the
machine equations yields the corresponding current layer or mmf components. As
the zero-sequence components are in most cases not important for machines, we will
concentrate on the positive and negative sequence components, I p, I n and i p(t),
i n(t) for phasors and time phasors, respectively. For this sinusoidal currents i p(t) =
I p exp( jωt), i n(t) = I n exp( jωt).

The space vector is now defined as i−→(t) = i p(t) + i∗n(t). If the original three-
phase currents are symmetrical with positive sequence, then i n(t) = I n = 0 and
i−→(t) = I p(t) = I p exp( jωt). This is a vector with constant amplitude and speed
rotating in the positive (counter-clockwise) direction in the space plane. Conversely,
if the original currents are symmetrical with negative sequence then i p(t) = I p = 0
and i−→(t) = I ∗

n(t) = I ∗
n exp(− jωt), which is a vector rotating clockwise, i.e. in the

negative direction.
If the original currents are asymmetrical, i.e. contain both positive and negative

sequence components (with the same frequency), the resulting space vector is the
superposition of two counter-rotating waves. The result is then an elliptic wave,3 see
Fig.C.3.

If the original currents containmultiple frequency components, the resulting space
vector is a superposition of the space vectors for each frequency. Therefore, the space

3This elliptical wave can also be regarded as the superposition of a standing wave and a rotating
wave; prove this.
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Fig. C.3 Elliptic wave

b

a

c

Re

Im

i p

i

i n

n

p

n

i*n

vector approach can also be used for power-electronic waveforms (by considering
the Fourier expansion of the waveform).

From the foregoing, it can easily be shown that a more general mathematical
definition of the space vector is as follows, using the real time quantities:

i−→ = 2

3

(
ia(t) + a · ib(t) + a2 · ic(t)

)
Using this expression, the space vector for a power-electronic waveform can quite
easily be derived.

Physically, the notion of a space vector speaks for itself for current layers, mmfs
or inductionwaves in an electrical machine. The space vector for a current layer ( a−→),
mmf ( f−→) or induction ( b−→) always points in the direction of the maximal conductor

current, mmf or induction, respectively, at that instant.4 For voltages to the contrary,
a physical interpretation is less clear. A somewhat artificial interpretation (for an
electrical machine) is as follows. Suppose a layer of conductors (in the slots or in
the air gap) at the circumference of the stator (or rotor). The emfs induced in these

4Note that if the space vector i−→ for a current i is depicted, by convention this vector is aligned
along the axis of the maximal current at that instant.
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separate conductors by a rotating magnetic field form a rotating voltage wave in
phase with the rotating magnetic field.

Nevertheless, space vectors (in the mathematical sense and definition), are fre-
quently used for poly-phase systems, evenwithout reference to an electricalmachine.
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